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Introduction 

Human activities are changing the Earth's ecosystems, which has profound consequences 

for biodiversity. The alarming trend of biodiversity loss is most pronounced in the tropics 

(Laurance et al. 2012; Pimm et al. 1995). Accuracy and efficient assessments of broad-scale 

patterns of biodiversity is necessary to understand the factors determining biodiversity patterns, 

and the responses of species to environmental change (Sutherland et al. 2009). Although 

knowledge of the causes of spatial heterogeneity in biodiversity has increased considerably, 

incomplete assessments of biodiversity patterns in many tropical regions continue to hamper the 

understanding of the underlying mechanisms that shape such patterns, hindering conservation 

efforts (Jetz et al. 2012). Biodiversity science requires better assessments of current patterns of 

species diversity and distributions in order to greatly improve conservation planning and protect 

biodiversity (Pereira et al. 2013; Scholes et al. 2008). Remote sensing is essential to develop 

such assessments (Kerr and Ostrovsky 2003; Turner 2014; Turner et al. 2003). 

Remotely sensed measures of key habitat factors, such as productivity, can reveal the 

mechanisms and constraints that shape patterns of biodiversity at broad spatial and temporal 

scales. Measures of productivity and seasonality are strong predictors of biodiversity, even 

though the positive species-productivity relationship is still debated (Evans et al. 2005; Hawkins 

et al. 2003; Mittelbach et al. 2001). While satellite data provide a suite of productivity measures 

to assess broad-scale habitat and biodiversity patterns, the challenge is how to quantify patterns 

of species diversity and distribution using remotely sensed productivity measures that are 

ecologically relevant to species. Furthermore, the utility of remotely sensed productivity 

measures for biodiversity assessments have largely been conducted in temperate ecosystems 

(Nagendra et al. 2013), and not yet been assessed in many tropical regions. This is why it still 
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remains unclear if the remotely sensed productivity measures can effectively assess patterns of 

species richness and distribution in the tropics. 

MODIS satellite data provides a great opportunity to develop relevant measures for 

biodiversity assessments (Duro et al. 2007). The Dynamic Habitat Indices (DHIs) integrate three 

measures of dynamic patterns of annual primary productivity: (a) cumulative annual 

productivity, (b) minimum annual productivity, and (c) seasonal variation in productivity (Berry 

et al. 2007; Coops et al. 2008; Mackey et al. 2004). The cumulative annual productivity captures 

the availability of primary productivity throughout a year (Coops et al. 2009a; Coops et al. 2008; 

Coops et al. 2009b), and species richness is generally high where energy availability is high 

(Connell and Orias 1964). The minimum annual productivity relates to the potential of a 

landscape in maintaining productivity level throughout the year, and species richness is generally 

high where energy availability never reaches a low minimum. The seasonal variation in 

productivity reflects the variation in phenology of primary productivity in a landscape 

throughout a year, and areas with less intra-annual variability may support more species 

(Hurlbert and Haskell 2003; Rahbek et al. 2007). The DHIs are promising for biodiversity and 

conservation, and unique from other MODIS productivity products, in that they are well 

grounded in biodiversity theory (Coops et al. 2009a; Coops et al. 2009b).  

The strength of the DHIs are that the three measures are rooted in a number of hypotheses 

regarding the relationship between patterns of species richness and distribution and productivity 

(Hawkins et al. 2003; Mittelbach et al. 2001; Storch et al. 2006). For example, species-energy 

theory hypothesizes a strong correlation between species richness and productivity (Wright 

1983), even though the strength of the species richness–productivity relationship is still debated 

(Bonn et al. 2004; Currie et al. 2004; Storch et al. 2005). Additionally, the DHIs are designed 
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specifically to be derived from satellite data that are available at high temporal resolution and 

over broad scales (Kerr and Ostrovsky 2003). The DHIs thus provides a unique opportunity to 

utilize satellite data for biodiversity assessments. 

The DHIs have successfully predicted biodiversity patterns for fauna in the temperate 

regions. The DHIs explain up to 88% of the variation in breeding bird species richness across the 

United States, with seasonal variation in productivity being the most important measure of the 

DHIs while cumulative productivity is the least important factor (Coops et al. 2009a). Similarly, 

the DHIs explain a high proportion of the variation in breeding bird species richness in Ontario, 

Canada, but here minimum productivity is the most important factor (Coops et al. 2009b).  

Diversity of Canadian butterfly communities positively associate with cumulative annual and 

annual minimum productivity (Andrew et al. 2012). The DHIs significantly predict the 

probability of occurrence and abundance for moose (Alces alces) in Ontario (Michaud et al. 

2014). However, the DHIs have not yet been evaluated in the tropics, and it is not clear if the 

patterns of primary productivity derived from the DHIs can predict patterns of species richness 

and distributions in the tropical ecosystems. 

The overarching goal of my dissertation was to evaluate the importance of dynamic 

patterns of primary productivity measured via the Dynamic Habitat Indices (DHIs) for 

assessing patterns of species richness and distributions in the tropics. Specifically, my 

research questions were: 
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Question 1: How well does productivity as measured by the Dynamic Habitat Indices 

(DHIs) based on MODIS fPAR data explain tropical bird species richness patterns?  

Species richness is a fundamental aspect of biodiversity and related to both ecological 

processes and ecosystem services (Currie 1991; MacArthur 1957; Whittaker et al. 2001). 

However, current bird extinction rates are at least 30 times higher than expected rates (Pimm et 

al. 2006). Bird species are a focal taxonomic group for investigations of the relationship between 

richness and dynamics of productivity because productivity is closely related to various aspects 

of bird life history such as habitat preferences for nesting, feeding, mating, and migratory 

behavior. The dynamic patterns of primary productivity strongly influences species richness 

patterns (Evans and Gaston 2005; Hawkins et al. 2003; Storch et al. 2005). Assessing the ability 

of the three DHIs to explain bird diversity patterns in tropical ecosystems, such as Thailand, is 

important to understand the underlying mechanisms shaping such pattern and could help mitigate 

potential avian diversity losses. 

I assessed the relationships between the DHIs and tropical bird species richness for 

different functional guilds. I also evaluated the complementarity of the DHIs measures with 

topography, climate, latitudinal gradients, habitat heterogeneity, and habitat area in explaining 

tropical bird species richness. I hypothesized that the bird species richness is highest where the 

cumulative productivity and minimum productivity is highest, and seasonal variability of 

productivity is lowest. I also hypothesized that among three DHIs, cumulative productivity 

would be the most important factor in explaining the patterns of species richness, and that the 

DHIs would outperform other environmental variables. 
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Question 2: How well do texture measures derived from the cumulative productivity index 

of the DHIs predict tropical bird distribution patterns in forest ecosystems? 

Habitat heterogeneity is one of the most important landscape attributes shaping species 

distribution patterns (Hutchinson and Macarthur 1959; Macarthur and Macarthur 1961; Stein et 

al. 2014). Understanding the relationship between species and habitat heterogeneity is crucial for 

maintaining biodiversity, and identifying high quality habitat is key for conservation 

management (Kreft and Jetz 2007). However, the pattern of species-heterogeneity relationship 

still remains a debate (Kerr and Packer 1997; Stein et al. 2014; Tews et al. 2004) and requires 

more empirical evidence, especially from tropical ecosystems. This work has been accomplished 

in my dissertation. 

Texture measures, a proxy for habitat heterogeneity, strongly associate with bird diversity 

and distribution patterns (Culbert et al. 2012; St-Louis et al. 2006; Bellis et al. 2008). I developed 

texture measures derive from the DHI cumulative annual productivity, and evaluated if texture 

measures compare favorably with habitat composition and fragmentation in improving the 

predictions of distribution patterns for tropical forest birds. I hypothesized that the incorporation 

of texture measures into habitat composition and fragmentation models would improve model 

performance for predicting tropical bird distributions because texture measures capture both 

within and between habitat heterogeneity which are complementary to the effects of habitat 

composition and fragmentation in predicting area- and edge-sensitive tropical forest bird species.  

Question 3: How important are trophic interactions in identifying the spatial patterns of 

habitat connectivity for the Indochinese tiger? 

Many endangered carnivores such as the Indochinese tiger (Panthera tigris) persists only 

in small, fragmented, and isolated populations within human-dominated landscapes (Karanth et 
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al. 2004b; Lynam 2010; Wikramanayake et al. 2004). Habitat connectivity is crucial to long-term 

persistence of tigers (Kanagaraj et al. 2013; Sanderson et al. 2010; Wikramanayake et al. 2011). 

Yet, limited understanding of the distribution patterns of suitable habitats and dispersal corridors 

of tigers still constrains conservation efforts (Dinerstein et al. 2007; Seidensticker et al. 2010b; 

Smith et al. 2010). 

I employed species distribution models to predict habitat suitability of ungulate prey 

species based on productivity and other environmental variables, and then habitat suitability of 

the endangered Indochinese tigers based on its prey distributions plus other factors. I 

subsequently assessed habitat connectivity for tigers. I hypothesized that the probability of 

occurrence of tigers would be high in areas where habitat suitability for prey is high because 

primary productivity, the base of food webs of herbivores and their predators, is high. These 

direct effects of consumption and productivity through trophic interactions influence the 

distributions of prey and predator species in a community (Power 1992). Suitable habitat for 

tigers in Thailand may be fragmented because of highly heterogeneous prey density (Steinmetz 

et al. 2010; Steinmetz et al. 2013), habitat loss and fragmentation (Lynam 2010; Lynam et al. 

2001). 

Study area 

My research was in Thailand, an ideal tropical region in which to conduct my dissertation 

research for several reasons. First, Thailand is a global biodiversity hotspot (Myers et al. 2000), 

and home to more than 1,000 bird and 302 mammal species (IUCN 2014; Bird Conservation 

Society of Thailand Records Committee 2012). However, these species are facing rapid habitat 

loss and degradation due to economic development and land use change (Trisurat et al. 2010; 

Woodruff 2013), rates of which will likely rise due to international free market policies in 2015 
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(i.e., ASEAN Economic Community, (Fox and Vogler 2005). Second, broad-scale biodiversity 

assessments are needed for conservation planning (Laurance et al. 2012). Forest bird species of 

Thailand are declining in richness and density (Round and Gale 2008). Thailand’s native 

mammal community is collapsing, with up to 12 species threatened by extirpation (Gibson et al. 

2013) and the endangered Indochinese tigers only persisting in isolated, fragmented populations 

(Lynam 2010;Rabinowitz 1999; Smith et al. 1999). Although Thailand’s situation is not unique, 

assessments of Thailand’s biodiversity with the DHIs are novel for better understanding 

underlying mechanisms shaping such patterns, and can assist conservation efforts which will be 

important for biodiversity conservation across the tropics as well. 

In the following pages I provide a summary of three chapters, which examine specific 

research questions in detail.  
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Chapter 1 Summary 

Question 1: How well does productivity as measured by the Dynamic Habitat Indices 

(DHIs) based on MODIS fPAR data explain tropical bird species richness patterns? 

Avian biodiversity is facing severe threats from anthropogenic activities, it is important 

to assess current patterns of bird species richness in order to mitigate potential losses. 

My goal was to investigate the relationship of the dynamic patterns of primary 

productivity derived from the DHIs in explaining tropical bird species richness in Thailand. My 

objectives were to (1) examine the relationship between the three DHI measures and the patterns 

of species richness for tropical birds and for different functional guilds, and (2) evaluate the 

effects of the combination of the DHIs and other environmental factors in explaining patterns of 

species richness. 

I performed best-subsets regression to assess the patterns of species richness. I analyzed 

species richness of all bird species and for several functional guilds based on habitat preferences 

including (a) forest birds; (b) early-successional birds (c) grassland birds; (d) wetland birds; (e) 

farmland birds, and migratory status: (f) resident birds; and (g) migratory birds derived from 

range map as well as species distribution models. I also conducted a regression analysis to 

examine the relationships between species richness of all bird species, and that of each functional 

guild, versus the DHIs and other environmental variables (i.e., latitudinal gradients, elevation, 

topographic relief, annual precipitation, annual temperature, temperature range, land cover 

richness, and habitat area). I then used a hierarchical partitioning regression to assess the relative 

importance of the DHIs and environmental variables in each model. 

My results showed that the highest cumulative annual productivity, highest annual 

minimum productivity, and lowest seasonal variation in productivity occurred where bird species 
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richness was highest. Among the three DHIs, I found that cumulative annual productivity was 

the most important factor in explaining the patterns of bird richness. Forest birds and resident 

birds strongly associated with the DHIs. In comparison to other environmental factors, the DHIs 

were the most important factor in explaining bird species richness in Thailand, outcompeting 

latitudinal gradients, topography, climate, habitat heterogeneity, and area, but these other factors 

were complementary to the DHIs. 

In summary, my results indicated that the dynamic patterns of primary productivity as 

captured by the DHIs are important in shaping the patterns of tropical bird richness in Thailand 

at nationwide scale. The relationship between the DHIs and tropical bird species richness 

provides a more complete understanding of tropical species richness and spatial patterns of 

energy availability in a tropical landscape, as well as an effective tool for tropical biodiversity 

assessments and bird conservation. 

 

Resulting paper: Naparat Suttidate, Philip D. Round, Anna M. Pidgeon, Nicholas C. Coops, 

Nicholas S. Keuler, David Helmers, Warren Y. Brockelman, and Volker C. Radeloff. Journal of 

Biogeography, not submitted yet. 
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Chapter 2 Summary 

Question 2: How well do texture measures derived from the cumulative productivity index 

of the DHIs predict tropical bird distribution patterns in forest ecosystems? 

The identification of high quality habitat is critical for prioritizing limited conservation 

resources and hence maintaining the integrity of biodiversity and ecosystem functions. Texture 

measures derived from satellite data are a proxy measure for habitat heterogeneity, and have 

been effectively used to predict species richness and distributions. However, texture measures 

have been tested mainly in temperate ecosystems which limit understanding of the tropical 

diversity-habitat heterogeneity relationship. 

My goal was to evaluate the ability of texture measures derived from 1-km MODIS fPAR 

to predict patterns of bird distribution in tropical forest ecosystems. I was specifically interested 

in (1) whether image texture measures can predict forest bird species distributions, and (2) 

whether combining texture measures with habitat composition and fragmentation can improve 

the prediction performance. 

I developed texture measures from the cumulative annual productivity of the DHIs using 

1-km MODIS fPAR data averaged from 2003-2014 over forested areas across Thailand. I 

selected occurrence data of 86 forest bird species, including to 5 taxonomic orders: (a) 

Bucerotiformes, (b) Cuculiformes, (c) Galliformes, (d) Passeriformes, and (e) Piciformes. I 

modeled forest bird distributions using generalized logistic regression models. I subsequently 

compared the predictive power of texture models with models fitted using habitat composition 

and fragmentation derived from categorical land cover classification, as well as models fitted 

using the combination measures of texture, habitat composition, and fragmentation. 
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Measures of texture, particularly second-order homogeneity was effective in modeling 

tropical forest bird distributions. Specifically, Bucerotiformes forest bird species, such as 

hornbill species had the highest model performance when fitted with texture measures. The 

combination of texture measures with habitat composition and fragmentation significantly 

improved model performance compared with habitat composition measures. 

In conclusion, my results for this chapter highlight the ability of texture measures in 

predicting forest bird distributions in tropical ecosystems, especially when combined with habitat 

composition and fragmentation measures. Texture measures capture habitat heterogeneity 

making them complementary to the effects of habitat composition and fragmentation in tropical 

forest ecosystems where the patterns of habitat strongly affect patterns of species distributions. 

Combining texture measures for mapping and assessing status of biodiversity patterns can 

greatly assist conservation planning and habitat management. 

 

Resulting paper: Naparat Suttidate, Anna M. Pidgeon, Volker C. Radeloff, The effects of 

habitat heterogeneity on tropical forest bird distributions. Remote Sensing of Environment, not 

submitted yet. 
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Chapter 3 Summary 

Question 3: How important are trophic interactions in identifying the spatial patterns of 

habitat connectivity for the Indochinese tiger? 

Many endangered carnivores such as the Indochinese tiger (Panthera tigris) persists only 

in small, fragmented, and isolated populations within human-dominated landscapes. Restoring 

habitat connectivity is crucial for the long-term persistence of tigers, and to minimize their 

extinction risk because their need for large home ranges require well-connected habitat patches. 

Yet limited understanding of current distributions of tigers and their ungulate prey species 

constrains connectivity assessments. 

My goal was to assess habitat connectivity for Indochinese tigers in Thailand. My 

objectives were to (1) assess the effect of trophic interactions between primary productivity, prey 

availability, and predator on the prediction of habitat suitability for apex predator and patterns of 

prey-predator system, (2) identify the spatial patterns of suitable habitat and dispersal corridors 

for tigers, and (3) assess the relative importance of suitable habitat patches and dispersal 

corridors in maintaining an overall connectivity network across Thailand. 

I obtained large mammal occurrence data from camera-trap surveys of 15 protected areas 

in Thailand, which provided in situ occurrence data for Indochinese tigers, Eurasian wild boar 

(Sus scrofa), Gaur (Bos gaurus), Red muntjac (Muntiacus muntjac), and Sambar deer (Rusa 

unicolor). To assess the effect of trophic interactions in predicting large mammal distributions, I 

compared predictions of habitat suitability models with abiotic variables, ungulate prey 

variables, and their trophic interaction (i.e., the combination of primary productivity, ungulate 

prey, and abiotic variables). To evaluate habitat connectivity for tigers, I used the habitat 

suitability map derived from the trophic interaction model to identify suitable habitat patches for 
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tigers with a patch size greater than 70 km2, and to estimate a dispersal resistance surface in 

order to identify potential dispersal corridors using least-cost paths and circuit analysis. I then 

employed graph theory to evaluate the relative importance of each potential habitat patch and 

dispersal corridor in maintaining an overall habitat connectivity network, and thus prioritize 

areas for potential corridors and reintroduction. 

My analyses showed that including trophic interactions significantly improved model 

prediction of habitat suitability for tigers. Currently occupied and potential suitable habitats for 

tigers in Thailand were fragmented and isolated. However, I identified potential habitat patches 

and dispersal corridors connecting existing populations in Thailand’s Western Forest Complex 

that could support the viability of tiger populations. 

In conclusion, my results demonstrated the importance of trophic interactions in shaping 

spatial distribution patterns of predator and prey species in mammal communities, and hence 

improved the assessment of habitat quality and connectivity for apex predators in a fragmented 

landscape of Thailand. Protecting prey species and decreasing human activities in both currently-

occupied and potential habitat patches and corridors that are integral for maintaining an overall 

connectivity among populations can help to restore the connectivity among tigers’ small and 

isolated populations, and offer an applicable and robust approach for conservation planning for 

Indochinese tigers and other endangered carnivores. 

 

Resulting paper: Naparat Suttidate, Antony J. Lynam, Ronglarp Sukmasuang, Robert 

Steinmetz, Dusit Ngoprasert, Wanlop Chutipong, Kate E. Jenks, Megan Baker, Shumpei 

Kitamura, Elżbieta Ziółkowska, Brooke L. Bateman, Volker C. Radeloff. Habitat connectivity 

for endangered Indochinese tigers. Biological Conservation, not submitted yet. 
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Significance  

Human activities are changing the Earth's ecosystems, which has profound consequences 

for biodiversity. To predict how species will respond to these changes, biodiversity science 

requires indicators of biodiversity patterns at relevant temporal and spatial scales. However, 

biodiversity assessments are still limited, especially in tropical regions, due to a lack of 

applicable and relevant indices. New approaches using satellite data may play a key role in 

filling this gap. The Dynamic Habitat Indices (DHIs), derived from satellite data, are designed 

for biodiversity studies, and have been evaluated for the first time in the tropical ecosystems by 

this dissertation research. My dissertation research thus contributes to the fields of landscape 

ecology, remote sensing science, and conservation biology in three aspects: science, 

methodology, and conservation. 

Scientific contribution  

Assessments of the factors driving the variability in species diversity and predicting their 

patterns across regions and biomes is crucial for understanding underlying mechanisms shaping 

those patterns and how species responses to human-dominated landscapes at broader scales. 

Tropical ecosystems are experiencing species losses at unprecedented rates (Laurance et al. 

2012), making it crucial to better assess current patterns of species diversity and distributions. 

However, many aspects of tropical diversity patterns are complex and not well understood due to 

lack of broad-scale ecological measures that can reveal such patterns. My dissertation fills this 

knowledge gap by evaluating the use of satellite productivity measures, which capture the 

dynamics of energy availability and habitat heterogeneity, to understand patterns of species 

richness, distribution, as well as species interactions within communities. Additionally, my 

research provides insights into which environmental factors species respond most to in tropical 
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ecosystems where broad-scale biodiversity assessments are limited. As such, assessing 

quantitative, baseline information on tropical ecosystems is a necessary initial step on which to 

base future ecological research in Thailand and other tropical regions. 

In chapter 1, the relationship between the DHIs and tropical bird species richness 

provides a more complete understanding of tropical species richness and dynamics of energy 

availability. This dissertation chapter also indicates how well the DHIs can explain patterns of 

tropical bird richness as well as different functional guilds, and thus highlights the DHIs as 

effective measures for better understanding patterns of tropical biodiversity. 

In chapter 2, the relationship between species distributions and texture measures, a proxy 

for habitat heterogeneity, are mostly non-linear. Different tropical forest bird species and 

taxonomic orders respond to dynamics of habitat heterogeneity vary depending on how species 

or group of species perceive the landscape, their body size, habitat requirements, and scales of 

texture measures (i.e., 1-km texture measures in this study). Importantly, chapter 2 highlights the 

complementary effects of texture measures with habitat composition and fragmentation in 

predicting distribution patterns. 

In chapter 3, I provide more ecological knowledge about distribution patterns and habitat 

suitability for tigers through trophic interactions among tigers and their ungulate prey in food 

webs connecting vegetation productivity directly - via consumption - with herbivores, and 

indirectly - via the consumption of herbivores - to carnivores. Additionally, fragmented habitat 

patches and long, ill-suited dispersal corridors emphasize the effect of humans-altered landscape 

on the viability of endangered species. The relative importance of habitat patches and dispersal 
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corridors can sustain viable subpopulations, and landscape connectivity among suitable habitat 

patches. 

Methodological contribution 

The current global biodiversity crisis requires accurate and efficient mapping and 

monitoring broad-scale patterns of biodiversity. Developing methods for effective assessments of 

biodiversity is necessary, in particular in the tropics where ecosystems are complex, and 

experience the intensity of human alteration to tropical landscapes. Advances in remotely sensed 

data provide effective tools in quantifying the influence of environmental changes on 

biodiversity and ecosystem processes at spatial and temporal scales (Turner 2014). However, 

ecological applications of such advanced remotely sensed approaches are still needed to evaluate 

in tropical biodiversity studies. 

My dissertation research makes methodological advances by developing and testing the 

Dynamic Habitat Indices for models of species richness and species distribution patterns for the 

first time in tropical ecosystems. Specifically, my dissertation research contributes to remote 

sensing and biodiversity science by seizing the opportunity presented by global, consistent well-

calibrated satellite MODIS data. The DHIs are specifically designed to capture the dynamics of 

primary productivity that strongly correlates to patterns of species richness and distribution. 

In chapter 1, the DHIs explained the patterns of species richness for all species and 

different functional guilds well because the DHIs capture the energy availability within birds’ 

habitat through the cumulative annual productivity and phenology of productivity. The DHIs 

thus can serve as ecological measures when assessing and monitoring broad-scale patterns of 
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tropical bird richness in Thailand. In addition, the integration with other environmental data can 

provide a variety of ecological applications in biodiversity assessments. 

In chapter 2, texture measures derived from the cumulative annual productivity of the 

DHIs provide between and within habitat heterogeneity of forest ecosystems, which commonly 

used habitat variables (i.e., habitat composition and fragmentation) ignore. The combined 

measures of texture and habitat composition and fragmentation improved species distribution 

models. This highlights the ability of texture measures as a valuable tool to capture habitat 

heterogeneity, and should be considered in conjunction with habitat composition and 

fragmentation in species distribution modeling. Because of the strong relationship between forest 

bird distributions and habitat heterogeneity, and hence texture measures can be used as a tool to 

assess biodiversity and monitor habitat quality over broad scales. 

In chapter 3, the integration of trophic interactions (primary productivity, seasonality in 

productivity, and ungulate prey species) improved the prediction of habitat suitability for tigers 

in Thailand. This indicates that primary productivity and ungulate prey can be used as proxies for 

food availability and add ecologically realism to habitat suitability models for apex predators. In 

addition to trophic interactions, integrating connectivity methods with ecology of species such as 

home range size, dispersal distance, and dispersal barrier data can greatly improve connectivity 

assessments. I used ensemble species distribution models, which use multiple species 

distribution model algorithms, and their outcomes yield the best possible habitat suitability 

model for tigers. For connectivity methods, we integrated least-cost path modeling and circuit 

analysis to identify dispersal corridors and quantify possible routes for tigers’ movements within 

the corridors. I also ranked the relative importance of suitable habitat patches and dispersal 

corridors to an overall habitat connectivity network using the graph theory method which 
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performs removal operations of habitat patches and corridors, and thus prioritize sites for 

potential corridors and reintroduction. 

Conservation contribution 

Thailand is a global biodiversity hotspot experiencing dramatic ecological and 

socioeconomic changes. As is the case for most tropical countries, Thailand still needs better 

biodiversity assessments and more comprehensive spatial distribution information to improve 

national-scale conservation planning in order to sustain the integrity of ecological processes and 

ecosystem services. The achievement of conservation goals and natural management can 

determine the fate of tropical biodiversity. Given this, improved knowledge of tropical 

ecosystems will reduce current rates of extinction and facilitate long-term persistence of species 

across the globe. The dissertation research contributes greatly to conservation of Thailand, and 

around the world by improving assessments of the patterns of species richness and distributions 

as well as ecological processes influencing broad-scale patterns of biodiversity. 

In chapter 1, incorporating knowledge of the relationship between patterns of bird 

species richness of different functional guilds and the dynamics of primary productivity (i.e., 

energy availability) into the identification of important factors shaping richness patterns 

highlights the effectiveness of the DHIs as an ecological tool to prioritize areas for bird 

conservation. In the process of this chapter, I also developed new bird richness and functional 

guild maps, which by themselves will be valuable for conservation and biodiversity science. 

Comprehensive information from chapter 1 can help policy-makers in compiling data on the 

species richness patterns of planning areas to maintain biodiversity. 
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In chapter 2, I tested and improved methods of characterizing complex forest habitat in 

Thailand, which will serve as a model for other tropical studies. Synergistic remotely sensed data 

can enhance the ability to quantify habitat quality and habitat biodiversity values. The most 

important contribution of my work on the ground is its direct application to conservation and 

management in Thailand. Characterizing the effects of landscape structure and ecological 

processes on bird distributions will provide information for broad-scale conservation planning. 

Such information enhances the understanding of threats posed to habitat suitability and avian 

biodiversity in Thailand. This fosters the development of efficient conservation planning by 

identifying likely targets of future conservation efforts, including existing protected areas that 

may be improved. 

In chapter 3, broad-scale conservation planning for tigers cannot be successful without 

identifying suitable habitat patches, dispersal corridors, and an effective assessment of 

connectivity network that can maintain viability of tiger populations and facilitating gene flow 

among populations. My third dissertation chapter provides maps of spatial distribution patterns 

on (a) currently occupied and potential suitable habitat patches of tigers, (b) potential dispersal 

corridors connecting among those suitable patches, (c) a ranking of the importance of suitable 

habitat patches and corridors to maintain overall connectivity network for the Indochinese tigers 

in Thailand, and (d) habitat suitability maps for five large mammal species in Thailand, including 

tigers, gaur, muntjac, sambar deer, and wild boar. These spatial data are crucial information for 

prioritizing areas for tiger conservation planning, and identifying potential reintroduction sites 

for tigers as well as their prey species, which can greatly improve conservation efforts for tigers 

in Thailand as well as their current distribution ranges in other regions. 
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Summary 

My evaluation of dynamic patterns of primary productivity as measured by the Dynamic 

Habitat Indices (DHIs) for biodiversity assessments in the tropics is highly novel. In addition to 

assessing the relationship between species diversity and the DHIs as effective measures to 

understand underlying mechanisms and identifying important factors shaping broad-scale 

patterns of species richness and distribution in tropical ecosystems, it provides insights into 

conservation planning and resource management in Thailand. Assessing current patterns and 

predicting future changes in biodiversity in tropical regions is urgently needed for science, 

conservation, and land management, given high rates of global biodiversity loss and the impacts 

of rapid environmental change. My dissertation research helps to close this gap by successfully 

evaluating the DHIs from MODIS as a valuable measure to detect and predict patterns of tropical 

biodiversity, in order to advance the development of essential biodiversity variables (EBVs) 

(Pereira et al., 2013). Additionally, my dissertation research addresses the need for accurate 

assessment of biodiversity data at relevant spatial and temporal scales as stated in conventions 

such as the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services 

(IPBES), and The Convention on Biological Diversity (CBD) (Pimm et al. 2014). As such, my 

dissertation research contributes substantially to biodiversity science, and has broad societal 

relevance, striving globally to protect biodiversity and the ecosystem services that sustain human 

well-being within the context of rapid environmental changes. 
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Chapter 1: The relationship of tropical bird species richness and primary productivity as 

measured by the Dynamic Habitat Indices based on MODIS satellite data 

 Abstract 

Avian biodiversity is facing severe threats from anthropogenic activities. It is important 

to assess current patterns of bird species richness in order to mitigate potential losses. Our goal 

was to investigate the relationships between tropical bird species richness patterns in Thailand 

and primary productivity as measured by the Dynamic Habitat Indices (DHIs). We calculated the 

Dynamic Habitat Indices (DHIs) based on the fraction of absorbed photosynthetically active 

radiation (fPAR) derived from NASA’s Moderate Resolution Imaging Spectroradiometer 

(MODIS). The DHIs summarize three measures of productivity: cumulative annual productivity, 

annual minimum productivity, and seasonal variation in productivity. We estimated species 

richness for all birds and different functional guilds by combining (a) 888 individual bird species 

range maps and (b) 336 species distribution model (SDM) prediction maps. We modeled species 

richness for all bird species, and for different functional guilds, based on habitat preferences and 

migratory status, as a function of the DHIs. We also evaluated these relationships in multivariate 

models adding climate, topography, latitudinal gradients, habitat heterogeneity, and area, with 

best-subsets and hierarchical partitioning regressions. Our results showed that the highest 

cumulative annual productivity, highest annual minimum productivity, and lowest seasonal 

variation in productivity occurred where bird species richness was highest. Among the three 

DHIs, cumulative annual productivity was the most important factor in explaining the species 

richness patterns of birds in Thailand. Cumulative annual productivity explained the highest 

proportion of the variation in species richness patterns for all birds, forest birds, and resident 

birds from both range and SDM prediction maps (up to 63%). When estimating richness with all 
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three DHIs, resident bird species richness showed the strongest correlation among the range map 

based richness estimates (R2 = 0.65, P < 0.001), while forest bird species showed the strongest 

correlation based on SDM prediction maps (R2 = 0.61, P < 0.001). The DHIs and other 

environmental factors were complementary in explaining the species richness patterns of all bird 

species richness and functional guilds (up to 87%). In comparison to other environmental factors, 

the DHIs were the most important factors outcompeting latitudinal gradients, topography, 

climate, habitat heterogeneity, and area. The strong relationships between the DHIs and tropical 

bird species richness patterns in Thailand suggested that the DHIs provide an efficient 

quantification of energy availability shaping tropical bird species richness at broad scales, and 

can assist biodiversity assessments and hence bird conservation. 
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Introduction 

Biodiversity loss is a global crisis and tropical regions are experiencing the greatest 

declines (Brook et al. 2008; Laurance et al. 2012; Sala et al. 2000). Accurate and efficient 

assessments of broad-scale patterns of biodiversity are necessary to understand the factors 

determining biodiversity patterns, and the responses of species to changing environments 

(Sutherland et al. 2009). Although knowledge of the spatial variation in biodiversity patterns has 

increased considerably, incomplete assessment of biodiversity patterns in many tropical regions 

continues to hamper the understanding of the underlying mechanisms that shape such patterns, 

hindering conservation efforts (Gaston 2000; Jetz et al. 2012). Biodiversity science requires 

better assessments of current patterns of species diversity and distributions in order to protect 

biodiversity and advance conservation planning (Pereira et al. 2013; Scholes et al. 2008). Remote 

sensing is essential to develop such assessments (Kerr and Ostrovsky 2003; Turner 2014; Turner 

et al. 2003). 

Species richness is a fundamental aspect of biodiversity, and is strongly associated with 

primary productivity (MacArthur 1957; Wright 1983; Evans et al. 2005). The underlying 

mechanisms shaping broad scale richness patterns are still subject to debate due to the 

confounding effects of observation scales (Rahbek and Graves 2001; Whittaker et al. 2001), and 

the complexity of relationships between species and their environments (Jetz et al. 2004; Orme et 

al. 2005). Empirically, species richness patterns show strong relationships to energy availability 

though (Bonn et al. 2004; Currie et al. 1991; Storch et al. 2005). The energy within a landscape 

is usually indirectly estimated from other variables, and often used interchangeably with primary 

productivity (Gaston 2000). In addition to cumulative energy, seasonal variation in productivity 
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influences how prevalent migration is among the members of a given bird community (Coops et 

al. 2009a; Hurlbert and Haskell 2003).  

Remotely sensed measures of dynamic patterns of productivity and phenological 

variation in productivity can reveal underlying mechanisms and ecosystem functions of species 

richness patterns (Evans and Gaston 2005; Hawkins et al. 2003; Mittelbach et al. 2001), and be 

used to test the species-energy hypothesis (Hutchinson and Macarthur 1959; Wright 1983; 

Wright et al. 1993). The relationship of species richness as a function of productivity in fauna 

can be positive, negative, or non-linear (Gaston 2000; Mittelbach et al. 2001; Storch et al. 2006). 

Although the species richness-energy relationship is still debated (Currie et al. 2004; Evans et al. 

2005; Storch et al. 2005), the dynamic patterns of primary productivity are among the most 

important factors shaping species richness at broad scales (Field et al. 2009; Hawkins et al. 

2003). Given the complexity in the species-productivity relationship and the important role 

productivity plays in species richness patterns, the challenge is how to derive productivity 

indices that can capture the dynamic patterns of primary productivity and effectively assess 

broad-scale patterns of species richness. 

Satellite observations provide a suite of productivity data and are increasingly used to 

model and understand species richness patterns at broad scales in space and time (Nagendra 

2001; Nagendra et al. 2013). The main advantage of remotely sensed data over field data is the 

availability of consistent data with high spatial and temporal resolution for large areas (Innes and 

Koch 1998; Roy and Tomar 2000). Typically, remote sensing data are used to measure 

environmental variables that predict species richness rather than by identifying species in the 

satellite imagery directly (Kerr and Ostrovsky 2003; Turner et al. 2003). For example, the 

Normalized Difference Vegetation Index (NDVI), a measure of photosynthetic activity (Tucker 



36 

 

et al. 2005), can predict the species richness patterns of fauna and flora (Hurlbert and Haskell 

2003). NDVI is, however, an indirect measure of productivity, with limitations to its use in 

tropical ecosystems where NDVI saturates at low to medium productivity levels as vegetation 

canopy increases (Foody et al. 2001; Nagendra and Rocchini 2008; Steininger 1996). 

Productivity can be directly measured through biophysical parameters, such as standing biomass, 

tree volume, foliage vigor as measured by Leaf Area Index (LAI), and photosynthesis as 

measured by the fraction of light absorbed by the vegetation (fPAR) (Turner et al. 2003; Duro et 

al. 2007). 

The fraction of absorbed photosynthetically active radiation (fPAR) is a measure of the 

proportion of available solar radiation in photosynthetically active wavelengths that is absorbed 

by vegetation for photosynthesis, and thus can quantify the dynamic patterns of primary 

productivity (Myneni et al. 2002; Sellers et al. 1996). In theory, the higher average fPAR level 

during the growing cycle, the denser the green leaf cover, and hence the higher the productivity. 

fPAR values vary from zero for barren land to one for dense vegetation cover (Knyazikhin et al. 

1998). While fPAR is not commonly applied to biodiversity studies, it holds promise because it 

captures landscape gross primary productivity (Duro et al. 2007). Previous studies have 

successfully used fPAR measures to predict broad-scale species patterns of diversity, 

distribution, and ecosystem processes, yet those studies have been conducted in temperate 

regions (Coops et al. 2009a; Coops et al. 2009b; Michaud et al. 2014).The relationship between 

species richness in the tropics and dynamic patterns of primary productivity derived from fPAR 

still remains unclear and it is not known if it could be an effective tool in predicting tropical 

biodiversity patterns. 
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The Dynamic Habitat Indices (DHIs) summarize three aspects of the dynamic patterns of 

primary productivity: (a) cumulative annual productivity, (b) annual minimum productivity, and 

(c) seasonal variation in productivity (Berry et al. 2007; Mackey et al. 2004, Coops et al. 2008). 

The cumulative annual productivity captures the availability of primary productivity throughout 

a year (Coops et al. 2009a; Coops et al. 2008; Coops et al. 2009b), and species richness is 

generally high where energy availability is high (Connell and Orias 1964). The annual minimum 

productivity relates to the potential of a landscape in maintaining productivity levels throughout 

the year, and species richness is generally high where energy availability never falls to a low 

minimum (Schwartz et al. 2006). The seasonal variation in productivity reflects the variation in 

phenology of primary productivity in a landscape throughout a year, and areas with less intra-

annual variability may support more species (Hurlbert and Haskell 2003; Rahbek et al. 2007). 

The DHIs are promising for biodiversity assessments, and unique from other MODIS 

productivity products, in that they are well grounded in biodiversity theory (Duro et al. 2007; 

Coops et al. 2009a; Coops et al. 2009b). 

The DHIs have been successfully used for assessments of faunal biodiversity patterns in 

temperate regions. For example, in the U.S., the DHIs explain up to 88% of the variation in 

breeding bird species richness among ecoregions, with seasonal variation in productivity being 

the most important measure and cumulative annual productivity the least important factor (Coops 

et al. 2009a). Similarly, the DHIs explain a high proportion of the variation in breeding bird 

species richness in Ontario, Canada, but here minimum productivity is the most important factor 

(Coops et al. 2009b).  Diversity of Canadian butterfly communities associated positively with 

cumulative and minimum productivity (Andrew et al. 2012), and the DHIs significantly 

predicted the probability of occurrence and abundance for moose in Ontario (Michaud et al. 
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2014). However, the DHIs have not yet been evaluated in the tropics, and it is not clear if the 

patterns of primary productivity derived from the DHIs can predict patterns of species richness in 

tropical ecosystems. 

Our overall goal was to investigate the relationship of tropical bird species richness and 

the dynamic patterns of primary productivity captured by the DHIs. To achieve the goal, our first 

objective was to assess the relationships between tropical bird species richness for all birds and 

different functional guilds and the DHIs. Our second objective was to determine the relative 

importance of the complementarity of the DHIs, topography, latitudinal gradients, climate, 

habitat heterogeneity, and area in explaining species richness patterns for tropical birds. We 

hypothesized that the bird species richness is highest where the cumulative annual productivity 

and annual minimum productivity are highest, and seasonal variation in productivity is lowest. 

We also hypothesized that among three DHIs, cumulative annual productivity would be the most 

important factor in explaining the patterns of species richness, and that the DHIs would 

outperform other environmental variables. 

Methods 

Study area 

Thailand (Figure 1) is located in Southeast Asia and covers an area of 513,115 km2 

between latitudes 5° 45´ and 20° 27´ N and longitudes 97° 22´ and 105° 37´ E with elevation 

ranges from 0 to 2,564 m. The climate is dominated by seasonal monsoons with a pronounced 

rainy season and dry season. Annual precipitation ranges between 1000 and 4000 mm and most 

precipitation falls in the rainy season from May to October. The average annual temperature is 

approximately 26-29 °C, and the highest temperature is approximately 40 °C in April (TMD 

2010). Thailand has two major diverse types of tropical forest: broad-leaved evergreen forest and 
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broad-leaved deciduous forest. The tropical broad-leaved evergreen forest contains multiple 

forest habitat types including montane evergreen forest, dry evergreen forest, rain forest, pine 

forest, swamp forest, mangrove forest, and beach forest. The tropical broad-leaved deciduous 

forest includes mixed deciduous forest and dry dipterocarp forest (RFD 2013). Thailand is a 

global biodiversity hotspot (Myers et al. 2000), and is home to more than 1,000 bird species 

(Bird Conservation Society of Thailand Records Committee 2012). However, Thailand’s birds 

are facing extensive habitat loss, fragmentation, and climate change, which has led to declines in 

bird diversity (Pattanavibool and Dearden 2002; Round and Gale 2008; Round et al. 2006). 

Study species 

Birds of Thailand are ideal study taxa for our study goal because they differ widely in 

migratory behavior, nesting requirements, feeding and mating habitats, and other life history 

traits (Newbold et al. 2013; Petchey and Gaston 2006; Sekercioglu et al. 2004) In order to 

capture these differences, we defined functional guilds of birds based on habitat preference (i.e., 

foraging site, nesting placement), and migratory status. We grouped bird functional guilds into: 

(a) forest birds that use any type of forests including mangrove forest and limestone outcrops 

because they often remain forested, (b) early-successional birds that occur in areas after 

disturbance, mostly by fire, including bamboo forest, secondary growth, and scrub, (c) farmland 

birds, which are ecologically tolerant deciduous forest or grassland birds that can survive in 

intensely cultivated areas which provide a scattering of trees rough scrub, and grassland, (d) 

fresh-water wetland birds that use marshes, lakes, rivers, rice paddy fields, and water reservoirs, 

and (e) seacoast birds that occur in coastal area. For migratory status, we distinguished between 

(f) resident and (g) migratory guilds (Appendix 1) (Lekagul and Round 1991; Robson 2000; 

Round 1988). We calculated each bird species richness twice based on two different data 
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sources: (1) range maps, and (2) species distribution model prediction (SDM) maps (see details 

below). The reason for this was that range maps are available for a much larger number of 

species, but have been questioned in their ability to capture diversity patterns, which is why we 

included the SDM prediction maps as a robustness check. 

Range maps 

Range maps for all birds have recently been developed by IUCN and BirdLife 

International (IUCN 2014). Similarly, albeit cruder, range maps for subsets of species have been 

used to identify biodiversity hotspots (Mittermeier et al. 2003; Myers et al. 2000), examine 

human population density in hotspots (Cincotta et al. 2000; Jha and Bawa 2006), and model 

determinants of species (Roy et al. 2009). We downloaded the IUCN distribution range maps of 

888 bird species, excluding extinct species and small range species. To obtain species richness, 

we converted the polygon range maps to grid cells and created maps of species presence 

(Sandom et al. 2013) in a 8-km grid to match the resolution of the DHI data (Figure 1). 

Species distribution model (SDM) prediction maps 

We obtained 338 bird species occurrence data from the Global Biodiversity Information 

Facility (GBIF) from year 2000 to 2013 with a minimum 20 unique occurrences. We used 

MAXENT version 3.3.1 (Phillips et al. 2006) to model distributions of 338 bird species. We 

retained 11 environmental variables for species distribution models (Lekagul and Round 1991; 

Trisurat et al. 2013): (1) annual mean temperature; (2) temperature seasonality, (3) maximum 

temperature of the warmest month, (4) minimum temperature of the coldest month, (5) annual 

precipitation, (6) precipitation during the driest quarter, (7) precipitation seasonality, (8) average 

elevation, (9) slope, (10) five habitat types, and (11) the percent tree cover (MODIS Vegetation 

Continuous Fields, VCF, Hansen et al. 2003). We parameterized MAXENT with default settings 
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(Phillips and Dudik 2008). To reduce the effects of biased sampling, we selected pseudo-

absences from occurrence locations of other bird species (Phillips et al. 2009). To evaluate model 

performance, we applied 10-fold cross-validation and calculated the AUC each time (Elith et al. 

2011). To validate our predicted maps, we developed a bias corrected null-model to test whether 

our species distribution model prediction maps significantly differed from the null model of a 

random distribution of species (Raes and ter Steege 2007). The SDM prediction maps for Thick-

billed warbler (Acrocephalus aedon) and Plaintive cuckoo (Cacomantis merulinus) were not 

better than random distributions, so we excluded them from further analyses (Appendix 2). We 

then transformed the results of 336 species distribution models to species distribution maps using 

the maximum sensitivity and specificity threshold (Liu et al. 2005). We compiled 336 species 

distribution maps into 8-km resolution species richness maps (Figure 2). 

Dynamic habitat indices 

We obtained the monthly fPAR MODIS from 2000-2009 from Boston University 

(climate and vegetation research group: http://cliveg.bu.edu). We calculated the DHIs as the 

integration of multiple years (ten years in our study), and extracted the three DHI measures as 

follows. To estimate cumulative annual productivity, we summed monthly fPAR observations 

for each year to produce a cumulative annual productivity, and then averaged them to produce a 

long-term cumulative annual productivity measure. The cumulative annual productivity relates to 

net primary productivity and is an indicator of vegetation production over a variety of land cover 

types (Figure 3a). For annual minimum productivity, we selected the lowest fPAR monthly value 

of each year, and averaged them to produce a long-term annual minimum productivity measure. 

Change in vegetation cover is detectable from satellite observations by estimating the minimum 

amount of primary productivity over the year. Areas which maintain varying degrees of 

http://cliveg.bu.edu/
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vegetated cover throughout the year with no snow cover will have positive values of annual 

minimum productivity. In contrast, in areas with snow cover for significant portions of the year, 

the annual minimum productivity of fPAR DHIs will be zero (Figure 3b). To assess seasonal 

variation in fPAR throughout the year, we divided the standard deviation of monthly values for 

each cell by the mean annual fPAR to obtain the coefficient of variation (CV). High CV values 

represent seasonal extremes in climatic conditions or limited growing seasons (Figure 3c). Low 

coefficient of variation typically represents irrigated pasture, barren land, or evergreen forests 

(Coops et al. 2009a; Coops et al. 2008; Coops et al. 2009b). We calculated the DHIs at 8-km 

resolution (Figure 3d), because that is the native resolution of the fPAR data time series, which 

incorporates both AVHRR (1980-2005) and MODIS (2000-2009) data (Zhu et al. 2013). 

Environmental variables 

To evaluate the relative importance of the DHIs and other environmental variables, we 

used five other major variables that influence species richness patterns of tropical birds: (a) 

latitudinal gradient, (b) average elevation, (c) habitat area, (d) habitat heterogeneity, and (e) 

climate (Rahbek 1997; Rahbek and Graves 2001; Rahbek et al. 2007). To obtain average 

elevation, we used the 90-m elevation data from Shuttle Radar Topography Mission (SRTM). To 

obtain habitat area, we calculated the proportion of bird habitat types in each 8-km grid cell: old-

growth forest, secondary-growth forest, agriculture and build-up, wetland, and coastal areas from 

the 2000 Thailand land cover map. To obtain habitat heterogeneity, we calculated the number of 

habitat types in each 8-km cell (Hill and Smith 2005), and topographic relief as the difference 

between maximum and minimum elevation in a given grid cell (Rahbek 1997). We considered 

climate variables that are important in determining species richness patterns of tropical birds, 
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including annual mean precipitation, annual mean temperature, and mean annual temperature 

range (Currie et al. 2004; Jetz et al. 2012; Rahbek et al. 2007). 

Statistical analyses 

To assess the relationships between bird species richness patterns and the DHIs, as well 

as the complementarity of DHIs and potential environmental variables for both bird data sets, we 

(1) parameterized simple ordinary least squares regressions to examine the potential of individual 

factors in explaining species richness patterns of all birds and different functional guilds, (2) 

examined the normality and homoscedasticity of variables to ensure that the assumption of linear 

regressions were met (Osborne & Waters, 2002), (3) limited multicollinearity by removing 

variables with Pearson’s correlation coefficient |r| > 0.8, (4) performed best-subsets regression, 

i.e., a multiple linear regression approach, that measures how often a variable is entered in a set 

of models (Miller 2002), (5) performed hierarchical partitioning to assess the relative importance 

of different explanatory variables in the best models derived from best-subsets regressions (Mac 

Nally 2002), and (6) examined semivariograms to check for spatial autocorrelation in model 

residuals (Appendix 3) (Lennon et al. 2000). 

We analyzed the species richness of each species guild (all birds, forest birds, early-

successional birds, farmland birds, wetland birds, seacoast birds, resident birds, and migratory 

birds) against each of the potential explanatory variables using simple ordinary least squares 

regressions. We reported adjusted R2 and P-values. We included 14 explanatory variables of the 

DHIs (cumulative annual productivity, annual minimum productivity, seasonal variation in 

productivity), topography (average elevation), habitat area (proportions of old-growth forest, 

secondary-growth forest, agriculture and build-up, wetland, and coastal areas), habitat 
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heterogeneity (habitat richness, and topographic relief), and climate (annual mean temperature, 

mean annual temperature range, and mean annual precipitation) (Appendix 5 and Appendix 6). 

To minimize the effects of spatial autocorrelation, we randomly sampled 1,000 grid cells 

from 8,046 cells across Thailand with a minimum distance of 10 km. In addition, we checked the 

normality and homoscedasticity in the relationships of bird species richness and each 

environmental variable (Osborne & Waters, 2002). The species richness and variables were 

normally distributed and their variances were homogeneous (results not shown). Only variables 

that yielded an R2 value > 0.05 for at least one bird guild were retained for further analysis. 

We used multiple linear regression models with best-subsets regressions (Miller 2002) to 

assess the relationships between bird species richness and the DHIs, as well as the 

complementarity of the DHIs, together with topography, area, latitudinal gradients, climate, and 

habitat heterogeneity. Before performing the multiple linear regressions, we checked for 

multicollinearity and dropped variables with lower predictive power in the univariate models for 

each pair of variables with |r| > 0.8 (Appendix 4). We applied best-subsets regression, ranking 

models based on their adjusted R2, with the leaps packages in R (Furnival and Wilson 2000) to 

obtain a subset of models that best explained species richness. Fitting several models instead of 

one best model highlights which variables are repeatedly chosen in the best models, and whether 

they have a consistent effect on the response variable (Furnival and Wilson 2000; Miller 2002). 

For the hierarchical partitioning analysis, we chose the best model according to the best 

subset regression for each guild and applied the hier.part package in R (Chevan and Sutherland 

1991). In hierarchical partitioning regression, all possible combinations of explanatory variables 

are fitted in the model, and for each model the variable of interest is dropped and the model fitted 
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again. The importance of each explanatory variable is calculated as the average change in R2 

(Chevan and Sutherland 1991). 

Results 

Species richness and the Dynamic Habitat Indices 

Bird species richness strongly correlated with the different measures of the DHIs. The 

directions of the correlations were consistent with what ecological theory would predict. The 

species richness of birds in Thailand was highest where the cumulative annual productivity and 

annual minimum productivity were high, and seasonal variation in productivity was low. Among 

the three DHIs, cumulative annual productivity explained the most variability in univariate 

regression models, followed by minimum productivity, and seasonal variation in productivity. 

For functional guilds, the species richness of the resident bird guild derived from range maps had 

the strongest correlation with the cumulative annual productivity (Adjusted R2 = 0.63, P < 0.001) 

(Table 1). The species richness of forest birds derived from species distribution prediction maps 

was also highly correlated with cumulative annual productivity (Adjusted R2 = 0.60, P < 0.001) 

(Table 2). The models with the least predictive power were those for species richness pattern of 

the wetland guild derived from range maps, and species richness of the early-successional guild 

derived from species distribution model maps. 

For multivariate models of the DHIs, the species richness of the resident guild derived 

from range maps had the strongest correlation to the composite DHI (Adjusted R2 = 0.65, P < 

0.001) (Table 3). The species richness of forest birds derived from species distribution prediction 

maps was also highly correlated with the DHIs (Adjusted R2 = 0.61, P < 0.001) (Table 4). The 

poorest models were those for species richness pattern of the wetland guild derived from range 

maps, and species richness of the early-successional guild derived from species distribution 



46 

 

model prediction maps. Differences in the statistical significance for each of the DHI measures 

indicated that cumulative annual productivity, annual minimum productivity, and seasonal 

variation in productivity each provide unique and potentially complementary information 

explaining bird species richness. 

The relative importance of the DHIs and the environmental variables 

We found that species richness patterns for different functional guilds responded 

differently to environmental factors for both data sources (Table 5, Table 6). The DHIs 

outcompeted latitudinal gradients, climate, topography, habitat heterogeneity, and area in our 

multivariate models. The DHIs were the most important factor for explaining species richness 

pattern for all birds (58%), residents (60%), forest birds (44%), and migratory birds (33%). 

Climate (38%) and habitat heterogeneity (26%) played important, but secondary, roles in shaping 

the species richness patterns for most guilds. In contrast, topography (14%) and habitat area 

(13%) explained species richness the least for most guilds (Figure 4). 

The relative importance of variables in explaining species richness was fairly similar for 

richness estimates based on range maps and species distribution models. The main difference 

was that climate emerged as the strongest factor, and the DHIs were the second most important 

factor, in explaining species richness patterns for most guilds derived from species distribution 

model prediction maps (Figure 5). These differences may be due to different numbers of bird 

species in each species richness map (Appendix 7). 

Discussion 

Our study was the first to investigate the broad-scale relationships between bird species 

richness and dynamic patterns of primary productivity derived from the Dynamic Habitat Indices 
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in the tropics. The DHIs capture the variability of primary productivity throughout a year (i.e., 

energy availability) and explained species richness patterns of birds well. The DHIs were the 

most important factors in shaping species richness patterns of birds in Thailand, outcompeting 

latitudinal gradients, topography, climate, and habitat heterogeneity and area. However, DHIs 

and environmental variables were complementary. Among the three DHIs, the cumulative annual 

productivity explained the highest proportion of the variation in species richness patterns. 

The DHIs explained bird species richness well and our results provide empirical evidence 

supporting species-energy hypothesis. Previous studies of bird richness and the DHIs in 

temperate ecosystems demonstrated that the DHIs can capture productivity dynamics for 

different bird guilds in the United States (Coops et al. 2009a) and Canada (Coops et al. 2009b). 

An important difference in the observed patterns of bird species richness and the DHIs in 

temperate and tropical regions is the relative importance of each DHI measure. In our results, 

species richness was most strongly correlated with cumulative annual productivity, and less 

correlated with seasonal variation in productivity. In contrast, seasonal variation in productivity 

is the most important factor for bird richness in the United States (Coops et al. 2009a), and 

cumulative annual productivity the least important factor. Minimum productivity was the most 

important factor explaining breeding bird species richness, in particular grassland birds in 

Ontario, Canada (Coops et al. 2009b), but minimum productivity was not as important in our 

results for the tropics. The differences between the DHIs’ behavior in explaining bird species 

richness in temperate and tropical regions are likely due to less pronounced seasonal variation in 

tropical ecosystems.  

Cumulative annual productivity explained the highest proportion of the variance in 

species richness for all bird species and for different functional guilds in the tropical ecosystems 
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of Thailand. The strong relationships between species richness patterns and the cumulative 

annual productivity suggest that birds in Thailand have the greatest richness in areas with the 

highest energy availability. However, we found that wetland bird guild showed weak correlations 

to the DHIs. The classification of wetland bird guild included reservoirs, and probably only 

permanent wetland, not seasonally dry wetland which may cause weak relationship between 

wetland birds and the DHIs. We expected that the cumulative annual productivity would be the 

most important factor because primary productivity strongly influences species richness in the 

subtropics and the tropics (Jetz et al. 2012; Rahbek 1997; Rahbek and Graves 2001), while 

ambient energy (i.e., temperature and related variables) constrains species richness in temperate 

regions (Hawkins et al. 2003). Minimum productivity and seasonal variation in productivity had 

moderate influence on the species richness pattern of birds in the tropics. Typically, tropical 

evergreen vegetation has a low seasonality and higher vegetation cover throughout the year, 

while tropical deciduous vegetation defoliates due to water stress (Trisurat et al. 2000). The 

dynamic patterns of primary productivity derived from the DHIs can disentangle the relationship 

between bird species richness and the variation in energy availability within a landscape (Coops 

et al. 2009a, b). 

The combination of the DHIs and other environmental variables improved our models of 

species richness patterns of birds in the tropics. We found similar relationships as previous bird 

richness studies showing strong associations among primary productivity, topography, climate, 

habitat heterogeneity, and area in the tropics (Rahbek 1997; Rahbek et al. 2007). However, the 

relationships between bird species richness and environmental factors can vary widely among 

biogeographical regions and functional guilds. In the tropics, water and energy are the most 

important factors in shaping bird species richness patterns (Hawkins et al. 2003). For example, 
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across South America, climate explains bird species richness patterns best for birds with large 

species ranges (Rahbek et al. 2007). In the subtropics of Taiwan, productivity is the most 

important factor in shaping breeding bird species richness patterns (Koh et al. 2006; Lee et al. 

2004). Climate and energy factors best explain elevational gradients of breeding bird species 

richness patterns in Hengduan mountains, China (Wu et al. 2013). For breeding bird species 

richness in the United States, seasonal variation in productivity and habitat heterogeneity are the 

most important factors (Hurlbert and Haskell 2003). Additionally, a global meta-analysis study 

of diversity drivers shows that productivity and climate are primary factors in shaping bird 

species richness patterns at broad scales (Field et al. 2009). Our results highlight the importance 

of dynamic productivity captured by the DHIs, and the ability of the DHIs in explaining species 

richness pattern of birds in tropical ecosystems, especially when combining the DHIs with other 

environmental variables. 

In interpreting our results, it is important to highlight caveats of our analyses. First of all, 

range maps are inherently biased (Graham and Hijmans 2006), and tend to overestimate species 

occurrences and distributions (Rondinini et al. 2011). Therefore, we conducted our analysis 

based on both ranges maps, which allowed us to analyze more species, and maps from species 

distribution models, which are likely more accurate (Graham and Hijmans 2006; Pineda and 

Lobo 2012), and found similar results explaining richness based on either data source. One 

caveat of the accuracy of maps stemming from distribution models depends on the availability 

and the accuracy of occurrence data, and on the degree to which species interactions affect 

occurrences (Kadmon et al. 2004). We were reassured in that both richness maps showed very 

similar results. However, the observed difference in our results may be influenced by the 

different species pools.  



50 

 

We did not include some environmental variables, such as evolutionary history, 

disturbance regimes, and species interactions (Currie 1991; Gotelli and Colwell 2001) in our 

analyses of bird species richness in Thailand because these data were not available. While 

species richness patterns sometimes follow continental boundaries (a.k.a mid-domain effect, 

Colwell and Lees 2000), we did not include geometric constraints in our study either. According 

to the mid-domain effect definition, there can be a peak of species richness of endemic species in 

the middle of an area (Colwell and Lees 2000; Jetz and Rahbek 2001; Jetz et al. 2004). We did 

not observe this however, most likely because Thailand is home to few endemic bird species 

(Lekagul and Round 1991). 

Our results highlight the effectiveness of the DHIs in capturing dynamic patterns of 

primary productivity for understanding species richness patterns in tropical ecosystems. We 

calculated the DHIs derived from fPAR MODIS satellite data and showed that the DHIs were the 

best variable explaining bird species richness patterns in the tropical ecosystems of Thailand. 

Additionally, the DHIs improved the explanatory power of models of species richness patterns 

when combined with other variables. As tropical regions are experiencing considerable economic 

development, causing rapid loss of natural habitat and biodiversity, there is a need for accurate 

and effective measures of biodiversity to support conservation efforts (Sutherland et al. 2009). 

The DHIs derived from remotely sensed data can quantify dynamic pattern of primary 

productivity, and advance the understanding of the patterns and drivers of biodiversity. 

In summary, our study showed that the Dynamic Habitat Indices characterized dynamic 

patterns of primary productivity, and captured the nuanced species richness-energy relationships 

for birds and functional guilds in the tropics. The combination of the DHIs and other 

environmental variables provides insight into the factors shaping patterns of species richness in 
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the tropics. We suggest that future studies of tropical biodiversity could benefit from remotely 

sensed data thereby advancing the understanding of how tropical ecosystems are changing, and 

what effects this has on tropical bird diversity. The DHIs can serve as effective measures for 

broad-scale biodiversity assessments. 
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Tables 

Table 1. R2 values for simple ordinary least squares models of species richness of different guilds 

derived from range maps and the DHIs: cumulative annual productivity, annual minimum 

productivity, and seasonal variation in productivity. 

Guild 

Cumulative 

productivity 

Minimum 

productivity 

Seasonal variation in 

productivity 

All birds 0.58*** 0.34*** -0.35*** 

Residents 0.63*** 0.38*** -0.39*** 

Migratory birds 0.26*** 0.09*** -0.10*** 

Forest birds 0.63*** 0.38*** -0.38*** 

Early-successional birds 0.22*** 0.10*** -0.10*** 

Farmland birds -0.03*** -0.06*** 0.07*** 

Wetland birds NS -0.01*** 0.01*** 

Seacoast birds 0.07*** 0.07*** -0.11*** 

*** P-value < 0.001, ** P-value < 0.01, * P-value < 0.05, NS not significant. 
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Table 2. R2 values for simple ordinary least squares models of species richness of different guilds 

derived from species distribution model prediction maps and the DHIs: cumulative annual 

productivity, annual minimum productivity, and seasonal variation in productivity. 

Guild 

Cumulative 

productivity 

Minimum 

productivity 

Seasonal variation in 

productivity 

All birds 0.53*** 0.40*** -0.39*** 

Residents 0.57*** 0.42*** -0.40*** 

Migratory birds 0.18*** 0.10*** -0.13*** 

Forest birds 0.60*** 0.46*** -0.42*** 

Early-successional birds 0.01** NS NS 

Farmland birds -0.02*** -0.06*** 0.07*** 

Wetland birds -0.30*** -0.25*** 0.19*** 

Seacoast birds -0.44*** 0.05*** 0.05*** 

*** P-value < 0.001, ** P-value < 0.01, * P-value < 0.05, NS not significant. 
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Table 3. Parameter estimates of models of bird species richness based on range maps by different 

guilds for multivariate models that used the Dynamic Habitat Indices. Bold numbers are the 

parameters for each multiple regression model that was significant at P < 0.05. 

Guild Cumulative 

productivity 

Minimum 

productivity 

Seasonal variation 

in productivity 

Adjusted R2 P-value 

All birds 0.2 -1.66 -55.37 0.6 <0.001 

Residents 0.17 -1.22 -24.35 0.65 <0.001 

Migratory birds 0.03 -0.49 -30.34 0.26 <0.001 

Forest birds 0.18 -1.22 -15.13 0.64 <0.001 

Early-successional birds 0.01 -0.08 4.91 0.26 <0.001 

Farmland birds 0 0 17.38 0.08 <0.001 

Wetland birds 0.01 -0.1 8.41 0.03 <0.001 

Seacoast birds 0 -0.24 -67.35 0.14 <0.001 
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Table 4. Parameter estimates of models of bird species richness based on species distribution 

model prediction maps by different guilds for multivariate models that used the Dynamic Habitat 

Indices. Bold numbers are the parameters for each multiple regression model that was significant 

at P < 0.05. 

Guild Cumulative 

productivity 

Minimum 

productivity 

Seasonal variation 

in productivity 

Adjusted R2 P-value 

All birds 0.08 -0.12 -13.67 0.53 <0.001 

Residents 0.08 -0.01 23.53 0.57 <0.001 

Migratory birds 0.01 -0.21 -30.53 0.2 <0.001 

Forest birds 0.1 0.28 78.06 0.61 <0.001 

Early-successional birds 0 0 1.03 0.01 <0.05 

Farmland birds 0 -0.04 13.43 0.09 <0.001 

Wetland birds -0.01 -0.3 -60.16 0.33 <0.001 

Seacoast birds 0 -0.12 -31.28 0.13 <0.001 
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Table 5. Adjusted R2 values of best models of bird species richness based on range maps by 

different guilds for multivariate models that used the combination of the DHIs, latitudinal 

gradients, topography, habitat heterogeneity, and habitat area. 

Guild #variables Adjusted R2 P-value 

All birds 7 0.74 < 0.001 

Resident birds 8 0.76 < 0.001 

Migratory birds 7 0.60 < 0.001 

Forest birds 9 0.77 < 0.001 

Early-successional birds 8 0.65 < 0.001 

Farmland birds 8 0.84 < 0.001 

Wetland birds 8 0.64 < 0.001 

Seacoast birds 7 0.77 < 0.001 
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Table 6. Adjusted R2 values of best models of bird species richness based on species distribution 

prediction maps by different guilds for multivariate models that used the combination of the 

DHI, latitudinal gradients, topography, habitat heterogeneity, and habitat area. 

Guild #variables Adjusted R2 P-value 

All birds 7 0.83 < 0.001 

Residents 8 0.83 < 0.001 

Migratory birds 8 0.44 < 0.001 

Forest birds 8 0.87 < 0.001 

Early-successional birds 8 0.34 < 0.001 

Farmland birds 5 0.77 < 0.001 

Wetland birds 8 0.61 < 0.001 

Seacoast birds 6 0.52 < 0.001 
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Figures 

Figure 1. Species richness patterns for birds of Thailand derived from the range maps: (a) all 

birds (n = 888 species), (b) resident birds (n = 664 species), (c) migratory birds, (d) forest birds 

(n = 636 species), (e) early-successional birds (n = 47species), (f) farmland birds (n = 35 

species), (g) wetland birds (n = 113 species), and (h) seacoast birds (n = 57 species). 
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Figure 2. Species richness patterns for birds of Thailand derived from species distribution model 

prediction maps: (a) all birds (n = 336 species), (b) resident birds (n = 261 species), (c) migratory 

birds (n = 75 species), (d) forest birds (n = 222 species), (e) early-successional birds (n = 15 

species), (f) farmland birds (n = 26 species), (g) wetland birds (n = 49 species), and (h) seacoast 

birds (n = 24 species). 
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Figure 3. Individual measures of the Dynamic Habitat Indices (DHIs) for Thailand (a) 

cumulative annual productivity, (b) annual minimum productivity, (c) seasonal variation in 

productivity, and (d) the three DHIs from 2000-2009 1-km fPAR MODIS data in RGB. Bright 

green areas indicate consistent productivity throughout the year. Green areas represent high 

cumulative annual productivity, moderate annual minimum productivity, and low seasonality. 

Red areas have moderate productivity with high seasonality. Brown have low primary 

productivity in any part of the year. Abbreviations: C, cumulative annual productivity; M, annual 

minimum productivity; S, seasonal variation in productivity. 
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Figure 4. The percentage of independent contribution of variables in productivity, climate, 

topography, latitudinal, habitat heterogeneity, and habitat area to species richness for all birds, 

resident birds, migratory birds, forest birds, early-successional birds, farmland birds, wetland 

birds, and seacoast birds derived from range maps. 
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Figure 5. The percentage of independent contribution of variables in productivity, climate, 

topography, latitudinal, habitat heterogeneity, and habitat area to species richness for all birds, 

resident birds, migratory birds, forest birds, early-successional birds, farmland birds, wetland 

birds, and seacoast birds derived from species distribution model prediction maps. Values within 

each guild sum to 100. 
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Appendices  

Appendix 1. Bird species were classified into functional guilds based on habitat preference and 

migratory status. Abbreviation: R, resident birds; M, migratory birds; F, forest birds; E, early-

successional birds; A, farmland birds; W, wetland birds; S, seacoast birds. 

# Scientific name Common name R M F E A W S 

1 Malacocincla abbotti Abbott's Babbler x  x     

2 Cettia flavolivacea Aberrant Bush-warbler x  x     

3 Sarkidiornis melanotos Comb Duck  x    x  

4 Psittacula eupatria Alexandrine Parakeet x  x     

5 Seicercus soror Alstrom's Warbler  x x     

6 Falco amurensis Amur Falcon  x x     

7 Phylloscopus borealis Arctic Warbler  x x     

8 Hemixos flavala Ashy Bulbul x  x     

9 Dicrurus leucophaeus Ashy Drongo x  x     

10 Pericrocotus divaricatus Ashy Minivet  x x     

11 Orthotomus ruficeps Ashy Tailorbird x  x     

12 Columba pulchricollis Ashy Woodpigeon x  x     

13 Artamus fuscus Ashy Woodswallow x    x   

14 Phylloscopus maculipennis Ashy-throated Warbler x  x     

15 Glaucidium cuculoides Asian Barred Owlet x    x   

16 Hypsipetes leucocephalus Asian Black Bulbul x  x     

17 Muscicapa dauurica Asian Brown Flycatcher x  x     

18 Limnodromus semipalmatus Asian Dowitcher  x     x 

19 Chrysococcyx maculatus Asian Emerald Cuckoo x  x     

20 Irena puella Asian Fairy-bluebird x  x     

21 Aplonis panayensis Asian Glossy Starling x  x     

22 Ploceus hypoxanthus Asian Golden Weaver x  x     

23 Merops orientalis Asian Green Bee-eater x    x   

24 Calyptomena viridis Asian Green Broadbill x  x     

25 Delichon dasypus Asian House-martin  x x     

26 Anastomus oscitans Asian Openbill  x    x  

27 Cypsiurus balasiensis Asian Palm-swift x    x   

28 Terpsiphone paradisi Asian Paradise-flycatcher x  x     

29 Sturnus contra Asian Pied Starling x  x     

30 Urosphena squameiceps Asian Stubtail  x x     

31 Ciconia episcopus Asian Woollyneck x     x  



78 

 

32 Anorrhinus austeni Austen's Brown Hornbill x  x     

33 Mirafra javanica Australasian Lark x     x  

34 Aythya baeri Baer's Pochard  x    x  

35 Zapornia pusilla Baillon's Crake  x    x  

36 Gecinulus viridis Bamboo Woodpecker x   x    

37 Zapornia paykullii Band-bellied Crake  x    x  

38 Cacomantis sonneratii Banded Bay Cuckoo x  x     

39 Eurylaimus javanicus Banded Broadbill x  x     

40 Lacedo pulchella Banded Kingfisher x  x     

41 Chrysophlegma miniaceum Banded Woodpecker x  x     

42 Arborophila brunneopectus Bar-backed Partridge x  x     

43 Coracina striata Bar-bellied Cuckooshrike x  x     

44 Pitta elliotii Bar-bellied Pitta x  x     

45 Hirundo rustica Barn Swallow  x   x   

46 Turnix suscitator Barred Buttonquail x    x   

47 Macropygia unchall Barred Cuckoo-dove x  x     

48 Bubo sumatranus Barred Eagle-owl x  x     

49 Limosa lapponica Bar-tailed Godwit  x     x 

50 Hemipus picatus Bar-winged Flycatcher-shrike x  x     

51 Macheiramphus alcinus Bat Hawk x  x     

52 Blythipicus pyrrhotis Bay Woodpecker x  x     

53 Ploceus philippinus Baya Weaver x   x    

54 Esacus magnirostris Beach Thick-knee x      x 

55 Sitta formosa Beautiful Nuthatch x  x     

56 Accipiter virgatus Besra x  x     

57 Seicercus valentini Bianchi's Warbler  x x     

58 Aviceda leuphotes Black Baza x  x     

59 Ixobrychus flavicollis Black Bittern x     x  

60 Dicrurus macrocercus Black Drongo x     x  

61 Ictinaetus malaiensis Black Eagle x  x     

62 Anthracoceros malayanus Black Hornbill x  x     

63 Milvus migrans Black Kite x    x   

64 Garrulax lugubris Black Laughingthrush x  x     

65 Platysmurus leucopterus Black Magpie x   x    

66 Melanoperdix niger Black Partridge x  x     

67 Ciconia nigra Black Stork  x    x  

68 Meiglyptes jugularis Black-and-buff Woodpecker x  x     

69 Cymbirhynchus macrorhynchos Black-and-red Broadbill x  x     

70 Pycnonotus melanoleucos Black-and-white Bulbul x  x     
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71 Eurylaimus ochromalus Black-and-yellow Broadbill x  x     

72 Enicurus immaculatus Black-backed Forktail x  x     

73 Ceyx erithaca Black-backed Kingfisher x  x     

74 Phaenicophaeus diardi Black-bellied Malkoha x  x     

75 Sterna acuticauda Black-bellied Tern x     x  

76 Pica pica Black-billed Magpie x  x     

77 Turdus dissimilis Black-breasted Thrush x  x     

78 Alcippe grotei Black-browed Fulvetta x  x     

79 Acrocephalus bistrigiceps Black-browed Reed-warbler  x    x  

80 Pellorneum capistratum Black-capped Babbler x  x     

81 Halcyon pileata Black-capped Kingfisher  x    x  

82 Sturnus nigricollis Black-collared Starling x   x    

83 Pycnonotus melanicterus Black-crested Bulbul x  x     

84 Nycticorax nycticorax Black-crowned Night-heron x     x  

85 Pteruthius melanotis Black-eared Shrike-babbler x  x     

86 Emberiza spodocephala Black-faced Bunting  x    x  

87 Platalea minor Black-faced Spoonbill  x     x 

88 Pycnonotus atriceps Black-headed Bulbul x  x     

89 Carduelis ambigua Black-headed Greenfinch  x  x    

90 Larus ridibundus Black-headed Gull  x     x 

91 Threskiornis melanocephalus Black-headed Ibis  x    x  

92 Picus erythropygius Black-headed Woodpecker x  x     

93 Oriolus xanthornus Black-hooded Oriole x   x    

94 Hypothymis azurea Black-naped Monarch x  x     

95 Oriolus chinensis Black-naped Oriole  x x     

96 Sterna sumatrana Black-naped Tern x      x 

97 Ephippiorhynchus asiaticus Black-necked Stork x     x  

98 Aerodramus maximus Black-nest Swiftlet x  x     

99 Zapornia bicolor Black-tailed Crake x  x     

100 Limosa limosa Black-tailed Godwit  x    x  

101 Microhierax fringillarius Black-thighed Falconet x  x     

102 Stachyris nigricollis Black-throated Babbler x  x     

103 Garrulax chinensis Black-throated Laughingthrush x  x     

104 Paradoxornis nipalensis Black-throated Parrotbill x  x     

105 Aethopyga saturata Black-throated Sunbird x  x     

106 Aegithalos concinnus Black-throated Tit x  x     

107 Coracina melaschistos Black-winged Cuckooshrike x  x     

108 Hemipus hirundinaceus Black-winged Flycatcher-shrike x  x     

109 Elanus caeruleus Black-winged Kite x    x   
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110 Himantopus himantopus Black-winged Stilt  x     x  

111 Psittacula roseata Blossom-headed Parakeet x  x     

112 Urocissa erythrorhyncha Blue Magpie x  x     

113 Sitta azurea Blue Nuthatch x  x     

114 Pitta cyanea Blue Pitta x  x     

115 Monticola solitarius Blue Rock-thrush x      x 

116 Myophonus caeruleus Blue Whistling-thrush x  x     

117 Nyctyornis athertoni Blue-bearded Bee-eater x  x     

118 Hierococcyx fugax Blue-breasted Quail x   x    

119 Loriculus galgulus Blue-crowned Hanging-parrot x  x     

120 Megalaima australis Blue-eared Barbet x  x     

121 Psittinus cyanurus Blue-eared Kingfisher x  x     

122 Megalaima asiatica Blue-fronted Redstart x  x     

123 Cinclidium frontale Blue-fronted Robin x  x     

124 Psittinus cyanurus Blue-rumped Parrot x  x     

125 Pitta soror Blue-rumped Pitta x  x     

126 Merops philippinus Blue-tailed Bee-eater x  x     

127 Luscinia svecica Bluethroat  x    x  

128 Megalaima asiatica Blue-throated Barbet  x  x     

129 Merops viridis Blue-throated Bee-eater x  x     

130 Cyornis rubeculoides Blue-throated Flycatcher x  x     

131 Chloropsis cochinchinensis Blue-winged Leafbird x  x     

132 Minla cyanouroptera Blue-winged Minla x  x     

133 Pitta moluccensis Blue-winged Pitta x  x     

134 Acrocephalus concinens Blunt-winged Warbler  x    x  

135 Nisaetus alboniger Blyth's Hawk-eagle x  x     

136 Alcedo hercules Blyth's Kingfisher x     x  

137 Merops viridis Bornean Crested Fireback x  x     

138 Haliastur indus Brahminy Kite x      x 

139 Onychoprion anaethetus Bridled Tern x      x 

140 Calidris falcinellus Broad-billed Sandpiper  x     x 

141 Dicrurus aeneus Bronzed Drongo x  x     

142 Metopidius indicus Bronze-winged Jacana x     x  

143 Calorhamphus fuliginosus Brown Barbet x  x     

144 Ninox scutulata Brown Boobook x  x     

145 Sula leucogaster Brown Booby x      x 

146 Bradypterus luteoventris Brown Bush-warbler x   x    

147 Cinclus pallasii Brown Dipper x  x     

148 Ketupa zeylonensis Brown Fish-owl x  x     
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149 Alcippe brunneicauda Brown Fulvetta x  x     

150 Prinia polychroa Brown Prinia x  x     

151 Lanius cristatus Brown Shrike  x   x   

152 Strix leptogrammica Brown Wood-owl x  x     

153 Hirundapus giganteus Brown-backed Needletail x  x     

154 Pycnonotus xanthorrhous Brown-breasted Bulbul x  x     

155 Muscicapa muttui Brown-breasted Flycatcher  x x     

156 Alcippe poioicephala Brown-cheeked Fulvetta x  x     

157 Larus brunnicephalus Brown-headed Gull  x     x 

158 Pericrocotus cantonensis Brown-rumped Minivet  x x     

159 Pelargopsis amauroptera Brown-winged Kingfisher x  x     

160 Phylloscopus pulcher Buff-barred Warbler  x x     

161 Trichastoma tickelli Buff-breasted babbler x  x     

162 Stachyris ambigua Buff-chested Babbler x  x     

163 Meiglyptes tukki Buff-necked Woodpecker x  x     

164 Chrysocolaptes lucidus Buff-spotted Flameback x  x     

165 Phylloscopus subaffinis Buff-throated Warbler x   x    

166 Iole olivacea Buff-vented Bulbul x  x     

167 Ketupa ketupu Buffy Fish-owl x  x     

168 Bulweria bulwerii Bulwer's Petrel  x     x 

169 Lanius collurioides Burmese Shrike x  x     

170 Yuhina humilis Burmese Yuhina x  x     

171 Anorrhinus galeritus Bushy-crested Hornbill x  x     

172 Bubulcus ibis Cattle Egret x     x  

173 Nisaetus cirrhatus Changeable Hawk-eagle x  x     

174 Picus mentalis Checker-throated Woodpecker x  x     

175 Emberiza rutila Chestnut Bunting  x x     

176 Lonchura atricapilla Chestnut Munia x  x     

177 Turdus rubrocanus Chestnut Thrush x  x     

178 Pomatorhinus montanus Chestnut-backed Scimitar-babbler x  x     

179 Phaenicophaeus sumatranus Chestnut-bellied Malkoha x  x     

180 Sitta castanea Chestnut-bellied Nuthatch x   x    

181 Monticola rufiventris Chestnut-bellied Rock-thrush  x x     

182 Phaenicophaeus curvirostris Chestnut-breasted Malkoha  x  x     

183 Timalia pileata Chestnut-capped Babbler x  x     

184 Garrulax mitratus Chestnut-capped Laughingthrush x  x     

185 Zoothera interpres Chestnut-capped Thrush x  x     

186 Cettia major Chestnut-crowned Bush-warbler  x  x    

187 Seicercus castaniceps Chestnut-crowned Warbler x  x     
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188 Emberiza fucata Chestnut-eared Bunting  x    x  

189 Zosterops erythropleurus Chestnut-flanked White-eye  x x     

190 Pteruthius aenobarbus Chestnut-fronted Shrike-babbler x  x     

191 Merops leschenaulti Chestnut-headed Bee-eater x  x     

192 Arborophila cambodiana Chestnut-headed Partridge x  x     

193 Tesia castaneocoronata Chestnut-headed Tesia x  x     

194 Enicurus ruficapillus Chestnut-naped Forktail x  x     

195 Arborophila charltonii Chestnut-necklaced Partridge x  x     

196 Stachyris maculata Chestnut-rumped Babbler x  x     

197 Minla strigula Chestnut-tailed Minla x  x     

198 Sturnus malabaricus Chestnut-tailed Starling x   x    

199 Sitta nagaensis Chestnut-vented Nuthatch x  x     

200 Stachyris erythroptera Chestnut-winged Babbler x  x     

201 Clamator coromandus Chestnut-winged Cuckoo  x x     

202 Bradypterus tacsanowskius Chinese Bush-warbler  x    x  

203 Egretta eulophotes Chinese Egret  x     x 

204 Francolinus pintadeanus Chinese Francolin x  x     

205 Phylloscopus yunnanensis Chinese Leaf-warbler  x x     

206 Ardeola bacchus Chinese Pond-heron  x    x  

207 Accipiter soloensis Chinese Sparrowhawk  x  x    

208 Anas zonorhyncha Chinese Spot-billed Duck  x    x  

209 Fregata andrewsi Christmas Frigatebird x      x 

210 Ixobrychus cinnamomeus Cinnamon Bittern x     x  

211 Treron fulvicollis Cinnamon-headed Green-pigeon x  x     

212 Harpactes orrhophaeus Cinnamon-rumped Trogon x  x     

213 Motacilla citreola Citrine Wagtail  x    x  

214 Acrocephalus stentoreus Clamorous Reed-warbler  x    x  

215 Gampsorhynchus torquatus Collared Babbler x  x     

216 Microhierax caerulescens Collared Falconet x  x     

217 Mycerobas affinis Collared Grosbeak x  x     

218 Todiramphus chloris Collared Kingfisher x      x 

219 Glaucidium brodiei Collared Owlet x  x     

220 Otus bakkamoena Collared Scops-owl x    x   

221 Tyto alba Common Barn-owl x  x     

222 Turnix sylvaticus Common Buttonquail x     x  

223 Fulica atra Common Coot  x    x  

224 Grus grus Common Crane  x    x  

225 Dinopium javanense Common Flameback x  x     

226 Tringa nebularia Common Greenshank  x     x 
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227 Sterna nilotica Gull-billed Tern  x     x 

228 Upupa epops Common Hoopoe x    x   

229 Aegithina tiphia Common Iora x  x     

230 Falco tinnunculus Common Kestrel  x   x   

231 Alcedo atthis Common Kingfisher x  x     

232 Gallinula chloropus Common Moorhen x     x  

233 Acridotheres tristis Common Myna x  x     

234 Aythya ferina Common Pochard  x    x  

235 Carpodacus erythrinus Common Rosefinch  x   x   

236 Actitis hypoleucos Common Sandpiper  x    x  

237 Gallinago gallinago Common Snipe  x    x  

238 Saxicola torquatus Common Stonechat  x x     

239 Orthotomus sutorius Common Tailorbird x  x     

240 Anas crecca Common Teal  x    x  

241 Sterna hirundo Common Tern  x     x 

242 Tephrodornis pondicerianus Common Woodshrike x  x     

243 Psilopogon haemacephalus Coppersmith Barbet x    x   

244 Nectarinia calcostetha Copper-throated Sunbird x  x     

245 Carpococcyx renauldi Coral-billed Ground-cuckoo x  x     

246 Pomatorhinus ferruginosus Coral-billed Scimitar-babbler x  x     

247 Nettapus coromandelianus Cotton Pygmy-goose x     x  

248 Dromas ardeola Crab-plover   x     x 

249 Pycnonotus simplex Cream-vented Bulbul x  x     

250 Melophus lathami Crested Bunting x   x    

251 Spizixos canifrons Crested Finchbill x  x     

252 Accipiter trivirgatus Crested Goshawk x  x     

253 Platylophus galericulatus Crested Jay x  x     

254 Megaceryle lugubris Crested Kingfisher x  x     

255 Rollulus rouloul Crested Partridge x  x     

256 Spilornis cheela Crested Serpent-eagle x  x     

257 Hemiprocne coronata Crested Treeswift x  x     

258 Aethopyga siparaja Crimson Sunbird x  x     

259 Prionochilus percussus Crimson-breasted Flowerpecker x  x     

260 Picoides cathpharius Crimson-breasted Woodpecker x  x     

261 Picus puniceus Crimson-winged Woodpecker x  x     

262 Dicrurus annectans Crow-billed Drongo  x x     

263 Calidris ferruginea Curlew Sandpiper  x     x 

264 Heterophasia melanoleuca Dark-backed Sibia x  x     

265 Orthotomus atrogularis Dark-necked Tailorbird x  x     
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266 Apus acuticauda Dark-rumped Swift  x x     

267 Muscicapa sibirica Dark-sided Flycatcher  x x     

268 Zoothera marginata Dark-sided Thrush x  x     

269 Oriolus xanthonotus Dark-throated Oriole x  x     

270 Phoenicurus auroreus Daurian Redstart  x x     

271 Bradypterus davidi David's Bush-warbler  x  x    

272 Phylloscopus davisoni Davison's Leaf-warbler x  x     

273 Harpactes diardii Diard's Trogon x  x     

274 Corydon sumatranus Dusky Broadbill x  x     

275 Hirundo concolor Dusky Crag-martin x  x     

276 Bubo coromandus Dusky Eagle-owl x  x     

277 Turdus naumanni Dusky Thrush  x x     

278 Phylloscopus fuscatus Dusky Warbler  x   x   

279 Pitta phayrei Eared Pitta x  x     

280 Phylloscopus coronatus Eastern Crowned Warbler  x x     

281 Tyto longimembris Eastern Grass-owl x     x  

282 Aquila heliaca Eastern Imperial Eagle  x      

283 Circus spilonotus Eastern Marsh-harrier  x    x  

284 Stigmatopelia chinensis Eastern Spotted Dove x  x     

285 Botaurus stellaris Eurasian Bittern  x    x  

286 Buteo buteo Eurasian Buzzard  x x     

287 Numenius arquata Eurasian Curlew  x     x 

288 Falco subbuteo Eurasian Hobby  x  x    

289 Garrulus glandarius Eurasian Jay x  x     

290 Zoothera dauma Eurasian Scaly Thrush  x x     

291 Accipiter nisus Eurasian Sparrowhawk  x  x    

292 Burhinus oedicnemus Eurasian Thick-knee  x    x  

293 Passer montanus Eurasian Tree Sparrow x    x   

294 Mareca penelope Eurasian Wigeon  x    x  

295 Scolopax rusticola Eurasian Woodcock  x x     

296 Jynx torquilla Eurasian Wryneck  x   x   

297 Zosterops everetti Everett's White-eye x  x     

298 Turdus obscurus Eyebrowed Thrush  x x     

299 Napothera epilepidota Eyebrowed Wren-babbler x  x     

300 Mareca falcata Falcated Duck  x    x  

301 Trichastoma bicolor Ferruginous Babbler x  x     

302 Aythya nyroca Ferruginous Duck  x    x  

303 Muscicapa ferruginea Ferruginous Flycatcher  x x     

304 Caloperdix oculeus Ferruginous Partridge x  x     
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305 Pericrocotus igneus Fiery Minivet x  x     

306 Alophoixus finschii Finsch's Bulbul x  x     

307 Dicaeum ignipectus Fire-breasted Flowerpecker x  x     

308 Cephalopyrus flammiceps Fire-capped Tit  x x     

309 Psilopogon pyrolophus Fire-tufted Barbet x  x     

310 Pycnonotus flavescens Flavescent Bulbul x  x     

311 Macronous ptilosus Fluffy-backed Tit-babbler x  x     

312 Dendronanthus indicus Forest Wagtail  x x     

313 Niltava davidi Fujian Niltava x  x     

314 Dendrocopos macei Fulvous-breasted Woodpecker x   x    

315 Rhinomyias olivaceus Fulvous-chested Jungle-

flycatcher 

x  x     

316 Spatula querquedula Garganey  x    x  

317 Pitta granatina Garnet Pitta x  x     

318 Collocalia germani Germain's swiftlet x      x 

319 Thaumatibis gigantea Giant Ibis x     x  

320 Sitta magna Giant Nuthatch x  x     

321 Pitta caerulea Giant Pitta x  x     

322 Plegadis falcinellus Glossy Ibis  x    x  

323 Collocalia esculenta Glossy Swiftlet x  x     

324 Stachyris chrysaea Golden Babbler x  x     

325 Tarsiger chrysaeus Golden Bush-robin  x x     

326 Gerygone sulphurea Golden-bellied Gerygone x      x 

327 Ampeliceps coronatus Golden-crested Myna x  x     

328 Chloropsis aurifrons Golden-fronted Leafbird x  x     

329 Cisticola exilis Golden-headed Cisticola x  x     

330 Megalaima franklinii Golden-throated Barbet x  x     

331 Psilopogon chrysopogon Gold-whiskered Barbet x  x     

332 Batrachostomus stellatus Gould's Frogmouth x  x     

333 Aethopyga gouldiae Gould's Sunbird  x x     

334 Argusianus argus Great Argus x  x     

335 Psilopogon virens Great Barbet x  x     

336 Phalacrocorax carbo Great Cormorant  x    x  

337 Eurostopodus macrotis Great eared nightjar x    x   

338 Lyncornis macrotis Great Eared-nightjar x  x     

339 Fregata minor Great Frigatebird x      x 

340 Buceros bicornis Great Hornbill x  x     

341 Aegithina lafresnayei Great Iora x  x     

342 Calidris tenuirostris Great Knot  x     x 

343 Acrocephalus arundinaceus Great Reed-warbler  x    x  
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344 Mulleripicus pulverulentus Great Slaty Woodpecker x  x     

345 Esacus recurvirostris Great Thick-knee x     x  

346 Parus major Great Tit x  x     

347 Ardea alba Great White Egret x     x  

348 Ardea sumatrana Great-billed Heron x      x 

349 Leptoptilos dubius Greater Adjutant  x    x  

350 Centropus sinensis Greater Coucal x  x     

351 Thalasseus bergii Greater Crested Tern x      x 

352 Chloropsis sonnerati Greater Green Leafbird x  x     

353 Garrulax pectoralis Greater Necklaced 

Laughingthrush 

x  x     

354 Rostratula benghalensis Greater Painted-snipe x     x  

355 Dicrurus paradiseus Greater Racket-tailed Drongo x  x     

356 Charadrius leschenaultii Greater Sandplover  x     x 

357 Clanga clanga Greater Spotted Eagle  x    x  

358 Chrysophlegma flavinucha Greater Yellownape x  x     

359 Cochoa viridis Green Cochoa x  x     

360 Ducula aenea Green Imperial-pigeon x  x     

361 Aegithina viridissima Green Iora x  x     

362 Cissa chinensis Green Magpie x  x     

363 Pavo muticus Green Peafowl x  x     

364 Tringa ochropus Green Sandpiper  x    x  

365 Butorides striata Green-backed Heron x  x     

366 Phaenicophaeus tristis Green-billed Malkoha x  x     

367 Psilopogon faiostrictus Green-eared Barbet x  x     

368 Phylloscopus trochiloides Greenish Warbler  x x     

369 Arborophila chloropus Green-legged Partridge x  x     

370 Aethopyga nipalensis Green-tailed Sunbird x  x     

371 Saxicola ferreus Grey Bushchat x  x     

372 Ardea cinerea Grey Heron  x    x  

373 Caprimulgus indicus Grey Nightjar x  x     

374 Polyplectron bicalcaratum Grey Peacock-pheasant x  x     

375 Pluvialis squatarola Grey Plover  x     x 

376 Dendrocitta formosae Grey Treepie x  x     

377 Motacilla cinerea Grey Wagtail  x x     

378 Lanius tephronotus Grey-backed Shrike  x   x   

379 Pycnonotus cyaniventris Grey-bellied Bulbul x  x     

380 Tesia cyaniventer Grey-bellied Tesia x  x     

381 Prinia hodgsonii Grey-breasted Prinia x    x   

382 Arachnothera affinis Grey-breasted Spiderhunter x  x     
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383 Chalcophaps indica Grey-capped Emerald Dove x  x     

384 Picoides canicapillus Grey-capped Woodpecker x  x     

385 Alophoixus bres Grey-cheeked Bulbul x  x     

386 Alcippe morrisonia Grey-cheeked Fulvetta x  x     

387 Seicercus poliogenys Grey-cheeked Warbler x  x     

388 Rhinomyias umbratilis Grey-chested Jungle-flycatcher x  x     

389 Pericrocotus solaris Grey-chinned Minivet x  x     

390 Seicercus tephrocephalus Grey-crowned Warbler  x x     

391 Iole propinqua Grey-eyed Bulbul x  x     

392 Macronous kelleyi Grey-faced Tit-babbler  x  x     

393 Picus canus Grey-faced Woodpecker x  x     

394 Stachyris poliocephala Grey-headed Babbler x  x     

395 Pyrrhula erythaca Grey-headed Bullfinch x   x    

396 Culicicapa ceylonensis Grey-headed Canary-flycatcher x  x     

397 Icthyophaga ichthyaetus Grey-headed Fish-eagle x  x     

398 Vanellus cinereus Grey-headed Lapwing  x    x  

399 Psittacula finschii Grey-headed Parakeet x  x     

400 Paradoxornis gularis Grey-headed Parrotbill x  x     

401 Hemiprocne longipennis Grey-rumped Treeswift x  x     

402 Turdus feae Grey-sided Thrush  x x     

403 Tringa brevipes Grey-tailed Tattler  x     x 

404 Stachyris nigriceps Grey-throated Babbler x  x     

405 Turdus boulboul Grey-winged Blackbird x  x     

406 Pitta gurneyi Gurney's Pitta x  x     

407 Cyornis hainanus Hainan Blue-flycatcher x  x     

408 Dicrurus hottentottus Hair-crested Drongo x  x     

409 Tricholestes criniger Hairy-backed Bulbul x  x     

410 Hemicircus canente Heart-spotted Woodpecker x  x     

411 Rhinoplax vigil Helmeted Hornbill x  x     

412 Circus cyaneus Hen Harrier  x    x  

413 Cyornis banyumas Hill Blue-flycatcher x  x     

414 Gracula religiosa Hill Myna x  x     

415 Prinia atrogularis Hill Prinia x  x     

416 Cutia nipalensis Himalayan Cutia x  x     

417 Collocalia brevirostris Himalayan Swiftlet x  x     

418 Batrachostomus hodgsoni Hodgson's Frogmouth x  x     

419 Pitta sordida Hooded Pitta x  x     

420 Malacocincla sepiaria Horsfield's Babbler x  x     

421 Corvus splendens House Crow x   x    
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422 Apus nipalensis House Swift x  x     

423 Phylloscopus humei Hume's Leaf-warbler  x x     

424 Phalacrocorax fuscicollis Indian Cormorant x     x  

425 Cuculus micropterus Indian Cuckoo  x x     

426 Caprimulgus asiaticus Indian Nightjar x    x   

427 Coracias benghalensis Indian Roller  x  x     

428 Mirafra erythrocephala Indochinese Bushlark x  x     

429 Coracina polioptera Indochinese Cuckooshrike x  x     

430 Yuhina torqueola Indochinese Yuhina x  x     

431 Phylloscopus inornatus Inornate Warbler  x x     

432 Ardea intermedia Intermediate egret x     x  

433 Lymnocryptes minimus Jack Snipe  x    x  

434 Ramphiculus jambu Jambu Fruit-dove x  x     

435 Terpsiphone atrocaudata Japanese Paradise-flycatcher  x x     

436 Coturnix japonica Japanese Quail  x   x   

437 Accipiter gularis Japanese Sparrowhawk  x x     

438 Zosterops japonicus Japanese White-eye  x x     

439 Alcedo euryzona Javan Blue-banded Kingfisher x  x     

440 Batrachostomus affinis Javan Frogmouth x  x     

441 Ardeola speciosa Javan Pond-heron x     x  

442 Aviceda jerdoni Jerdon's Baza x  x     

443 Saxicola jerdoni Jerdon's Bushchat x  x     

444 Corvus levaillantii Jungle Crow x    x   

445 Acridotheres fuscus Jungle Myna x  x     

446 Lophura leucomelanos Kalij Pheasant x  x     

447 Charadrius alexandrinus Kentish Plover  x     x 

448 Phylloscopus ogilviegranti Kloss's Leaf-warbler x  x     

449 Picus vittatus Laced Woodpecker x  x     

450 Locustella lanceolata Lanceolated Warbler  x x     

451 Cyornis magnirostris Large Blue-flycatcher  x x     

452 Coracina macei Large Cuckooshrike x  x     

453 Batrachostomus auritus Large Frogmouth x  x     

454 Treron capellei Large Green-pigeon x  x     

455 Hierococcyx sparverioides Large Hawk-cuckoo x  x     

456 Niltava grandis Large Niltava x  x     

457 Pomatorhinus hypoleucos Large Scimitar-babbler x  x     

458 Tephrodornis gularis Large Woodshrike x  x     

459 Turdinus macrodactylus Large Wren-babbler x  x     

460 Corvus macrorhynchos Large-billed Crow x    x   
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461 Acrocephalus orinus Large-billed Reed-warbler  x    x  

462 Caprimulgus macrurus Large-tailed Nightjar x  x     

463 Phylloscopus proregulus Lemon-rumped Warbler  x x     

464 Leptoptilos javanicus Lesser Adjutant x  x     

465 Centropus bengalensis Lesser Coucal x  x     

466 Thalasseus bengalensis Lesser Crested Tern  x     x 

467 Coracina fimbriata Lesser Cuckooshrike x  x     

468 Icthyophaga humilis Lesser Fish-eagle x  x     

469 Fregata ariel Lesser Frigatebird x      x 

470 Chloropsis cyanopogon Lesser Green Leafbird x  x     

471 Garrulax monileger Lesser Necklaced Laughingthrush x  x     

472 Dicrurus remifer Lesser Racket-tailed Drongo x  x     

473 Charadrius mongolus Lesser Sandplover  x     x 

474 Brachypteryx leucophrys Lesser Shortwing x  x     

475 Dendrocygna javanica Lesser Whistling-duck x     x  

476 Picus chlorolophus Lesser Yellownape x  x     

477 Pycnonotus sinensis Light-vented Bulbul  x  x    

478 Gypsophila crispifrons Limestone Wren-babbler x  x     

479 Psilopogon lineatus Lineated Barbet x  x     

480 Chrysococcyx minutillus Little Bronze-cuckoo x  x     

481 Emberiza pusilla Little Bunting  x  x    

482 Microcarbo niger Little Cormorant x     x  

483 Macropygia ruficeps Little Cuckoo-dove x  x     

484 Egretta garzetta Little Egret  x     x  

485 Tachybaptus ruficollis Little Grebe x     x  

486 Treron olax Little Green-pigeon  x x     

487 Ficedula westermanni Little Pied Flycatcher x  x     

488 Glareola lactea Little Pratincole x     x  

489 Charadrius dubius Little Ringed Plover  x    x  

490 Arachnothera longirostra Little Spiderhunter x  x     

491 Sternula albifrons Little Tern x      x 

492 Rhizothera longirostris Long-billed Partridge x  x     

493 Charadrius placidus Long-billed Plover  x    x  

494 Arachnothera robusta Long-billed Spiderhunter x  x     

495 Psarisomus dalhousiae Long-tailed Broadbill x  x     

496 Pericrocotus ethologus Long-tailed Minivet x  x     

497 Lanius schach Long-tailed Shrike x  x     

498 Heterophasia picaoides Long-tailed Sibia x  x     

499 Zoothera dixoni Long-tailed Thrush x  x     
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500 Calidris subminuta Long-toed Stint  x    x  

501 Lophura erythrophthalma Malay Crestless Fireback x  x     

502 Lyncornis temminckii Malay Eared-nightjar x  x     

503 Cuculus fugax Malay Hawk-cuckoo x  x     

504 Indicator archipelagicus Malay Honeyguide x  x     

505 Gorsachius melanolophus Malay Night-heron x     x  

506 Polyplectron malacense Malay Peacock-pheasant x  x     

507 Charadrius peronii Malay Plover x      x 

508 Pitta irena Malayan Banded Pitta x  x     

509 Garrulax peninsulae Malayan Laughingthrush x  x     

510 Cyornis turcosus Malaysian Blue-flycatcher x  x     

511 Cettia canturians Manchurian Bush-warbler  x  x    

512 Acrocephalus tangorum Manchurian Reed-warbler  x    x  

513 Pitta megarhyncha Mangrove Pitta x  x     

514 Pachycephala grisola Mangrove Whistler x      x 

515 Certhia manipurensis Manipur Treecreeper x  x     

516 Turdinus marmorata Marbled Wren-babbler x  x     

517 Oriolus traillii Maroon Oriole x  x     

518 Blythipicus rubiginosus Maroon Woodpecker x  x     

519 Philentoma velata Maroon-breasted Philentoma x  x     

520 Tringa stagnatilis Marsh Sandpiper  x     x 

521 Seicercus omeiensis Martens's Warbler  x x     

522 Heliopais personatus Masked Finfoot x  x     

523 Bambusicola fytchii Mountain Bamboo-partridge x  x     

524 Hypsipetes mcclellandii Mountain Bulbul x  x     

525 Alcippe peracensis Mountain Fulvetta x  x     

526 Ducula badia Mountain Imperial-pigeon x  x     

527 Phylloscopus trivirgatus Mountain Leaf-warbler x  x     

528 Otus spilocephalus Mountain Scops-owl x  x     

529 Orthotomus cuculatus Mountain Tailorbird x  x     

530 Malacopteron magnirostre Moustached Babbler x  x     

531 Psilopogon incognitus Moustached Barbet x  x     

532 Hierococcyx vagans Moustached Hawk-cuckoo x  x     

533 Syrmaticus humiae Mrs Hume's Pheasant x  x     

534 Ficedula mugimaki Mugimaki Flycatcher  x x     

535 Ficedula narcissina Narcissus Flycatcher  x x     

536 Accipiter gentilis Northern Goshawk  x x     

537 Delichon urbicum Northern House-martin  x  x    

538 Vanellus vanellus Northern Lapwing  x    x  
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539 Anas acuta Northern Pintail  x    x  

540 Spatula clypeata Northern Shoveler  x    x  

541 Alophoixus ochraceus Ochraceous Bulbul x  x     

542 Iole virescens Olive Bulbul x  x     

543 Anthus hodgsoni Olive-backed Pipit  x  x    

544 Nectarinia jugularis Olive-backed Sunbird x  x     

545 Dinopium rafflesii Olive-backed Woodpecker x  x     

546 Pycnonotus plumosus Olive-winged Bulbul x  x     

547 Chrysocolaptes validus Orange-backed Woodpecker x  x     

548 Dicaeum trigonostigma Orange-bellied Flowerpecker x  x     

549 Chloropsis hardwickii Orange-bellied Leafbird x  x     

550 Treron bicinctus Orange-breasted Green-pigeon x  x     

551 Harpactes oreskios Orange-breasted Trogon x  x     

552 Tarsiger cyanurus Orange-flanked Bush-robin  x x     

553 Zoothera citrina Orange-headed Thrush  x x     

554 Phodilus badius Oriental Bay-owl x  x     

555 Cuculus saturatus Oriental Cuckoo  x  x    

556 Anhinga melanogaster Oriental Darter x     x  

557 Eurystomus orientalis Oriental Dollarbird x  x     

558 Falco severus Oriental Hobby  x x     

559 Pernis ptilorhynchus Oriental Honey-buzzard x  x     

560 Copsychus saularis Oriental Magpie-robin x   x    

561 Anthracoceros albirostris Oriental Pied Hornbill x  x     

562 Glareola maldivarum Oriental Pratincole x     x  

563 Otus sunia Oriental Scops-owl  x x     

564 Alauda gulgula Oriental Skylark  x x     

565 Streptopelia orientalis Oriental Turtle-dove x  x     

566 Zosterops palpebrosus Oriental White-eye x  x     

567 Pandion haliaetus Osprey  x     x 

568 Pluvialis fulva Pacific Golden Plover  x    x  

569 Egretta sacra Pacific Reef-egret x      x 

570 Hirundo tahitica Pacific Swallow x      x 

571 Apus pacificus Pacific Swift  x x     

572 Anthus rufulus Paddyfield Pipit x   x    

573 Mycteria leucocephala Painted Stork  x    x  

574 Cyornis unicolor Pale Blue-flycatcher x  x     

575 Paradoxornis atrosuperciliaris Pale-billed Parrotbill x   x    

576 Columba punicea Pale-capped Pigeon x  x     

577 Cettia pallidipes Pale-footed Bush-warbler x  x     
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578 Gecinulus grantia Pale-headed Woodpecker x  x     

579 Phylloscopus tenellipes Pale-legged Leaf-warbler  x x     

580 Locustella certhiola Pallas's Grasshopper-warbler  x    x  

581 Larus ichthyaetus Pallas's Gull  x     x 

582 Falco peregrinus Peregrine Falcon  x  x     

583 Hydrophasianus chirurgus Pheasant-tailed Jacana x     x  

584 Saxicola caprata Pied Bushchat x   x    

585 Rhipidura javanica Pied Fantail x   x    

586 Circus melanoleucos Pied Harrier  x    x  

587 Ducula bicolor Pied Imperial-pigeon x      x 

588 Ceryle rudis Pied Kingfisher x  x     

589 Lalage nigra Pied Triller x  x     

590 Treron vernans Pink-necked Green-pigeon x  x     

591 Macronous gularis Pin-striped Tit-babbler x  x     

592 Gallinago stenura Pintail Snipe  x    x  

593 Treron apicauda Pin-tailed Green-pigeon  x x     

594 Erythrura prasina Pin-tailed Parrotfinch x   x    

595 Dicaeum concolor Plain Flowerpecker x  x     

596 Riparia paludicola Plain Martin x  x     

597 Prinia inornata Plain Prinia x     x  

598 Anthreptes simplex Plain Sunbird x  x     

599 Passer flaveolus Plain-backed Sparrow x  x     

600 Rhyticeros subruficollis Plain-pouched Hornbill x  x     

601 Anthreptes malacensis Plain-throated Sunbird x  x     

602 Cacomantis merulinus Plaintive Cuckoo  x x     

603 Rhyacornis fuliginosa Plumbeous Water-redstart x   x    

604 Stercorarius pomarinus Pomarine Jaeger  x     x 

605 Pycnonotus eutilotus Puff-backed Bulbul x  x     

606 Pellorneum ruficeps Puff-throated Babbler x  x     

607 Alophoixus pallidus Puff-throated Bulbul x  x     

608 Cochoa purpurea Purple Cochoa x  x     

609 Ardea purpurea Purple Heron  x    x  

610 Nectarinia asiatica Purple Sunbird x  x     

611 Porphyrio porphyrio Purple Swamphen x     x  

612 Sturnus sturninus Purple-backed Starling  x  x    

613 Hypogramma hypogrammicum Purple-naped Sunbird x  x     

614 Nectarinia sperata Purple-throated Sunbird x  x     

615 Muscicapella hodgsoni Pygmy Blue-flycatcher x  x     

616 Pnoepyga pusilla Pygmy Wren-babbler x  x     
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617 Crypsirina temia Racket-tailed Treepie x   x    

618 Phylloscopus schwarzi Radde's Warbler  x x     

619 Rhinortha chlorophaea Raffles's Malkoha x  x     

620 Eupetes macrocerus Rail-babbler x  x     

621 Coturnix coromandelica Rain Quail x  x     

622 Temnurus temnurus Ratchet-tailed Treepie x  x     

623 Amandava amandava Red Avadavat x  x     

624 Gallus gallus Red Junglefowl x  x     

625 Streptopelia tranquebarica Red Turtle-dove x  x     

626 Nyctyornis amictus Red-bearded Bee-eater x  x     

627 Zanclostomus javanicus Red-billed Malkoha x  x     

628 Pomatorhinus ochraceiceps Red-billed Scimitar-babbler x  x     

629 Psittacula alexandri Red-breasted Parakeet x  x     

630 Picus rabieri Red-collared Woodpecker  x  x     

631 Hemicircus concretus Red-crested Woodpecker x  x     

632 Psilopogon rafflesii Red-crowned Barbet x  x     

633 Otus rufescens Reddish Scops-owl x  x     

634 Pycnonotus brunneus Red-eyed Bulbul x  x     

635 Liocichla phoenicea Red-faced Liocichla x  x     

636 Harpactes erythrocephalus Red-headed Trogon x  x     

637 Sarcogyps calvus Red-headed Vulture x  x     

638 Rallina fasciata Red-legged Crake x  x     

639 Harpactes kasumba Red-naped Trogon x  x     

640 Calidris ruficollis Red-necked Stint  x     x 

641 Hirundo daurica Red-rumped Swallow x    x   

642 Garrulax milnei Red-tailed Laughingthrush x  x     

643 Psilopogon mystacophanos Red-throated Barbet x  x     

644 Anthus cervinus Red-throated Pipit  x    x  

645 Anthreptes rhodolaemus Red-throated Sunbird x  x     

646 Pycnonotus cafer Red-vented Bulbul x    x   

647 Vanellus indicus Red-wattled Lapwing x   x    

648 Pycnonotus jocosus Red-whiskered Bulbul x  x     

649 Buceros rhinoceros Rhinoceros Hornbill x  x     

650 Anthus richardi Richard's Pipit  x   x   

651 Vanellus duvaucelii River Lapwing x     x  

652 Sterna aurantia River Tern x     x  

653 Sterna dougallii Roseate Tern x      x 

654 Pericrocotus roseus Rosy Minivet  x x     

655 Anthreptes singalensis Ruby-cheeked Sunbird x  x     
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656 Halcyon coromanda Ruddy Kingfisher  x x     

657 Tadorna ferruginea Ruddy Shelduck  x    x  

658 Arenaria interpres Ruddy Turnstone  x    x  

659 Zapornia fusca Ruddy-breasted Crake x     x  

660 Prinia rufescens Rufescent Prinia x  x     

661 Calidris pugnax Ruff  x    x  

662 Sasia abnormis Rufous Piculet x  x     

663 Dendrocitta vagabunda Rufous Treepie x  x     

664 Micropternus brachyurus Rufous Woodpecker x  x     

665 Ceyx rufidorsa Rufous-backed Kingfisher x  x     

666 Heterophasia annectens Rufous-backed Sibia x  x     

667 Lophotriorchis kienerii Rufous-bellied Eagle x  x     

668 Niltava sundara Rufous-bellied Niltava  x x     

669 Dendrocopos hyperythrus Rufous-bellied Woodpecker  x x     

670 Ficedula solitaris Rufous-browed Flycatcher x  x     

671 Stachyris ruficeps Rufous-capped Babbler x  x     

672 Ficedula dumetoria Rufous-chested Flycatcher x  x     

673 Actenoides concretus Rufous-collared Kingfisher x  x     

674 Malacopteron magnum Rufous-crowned Babbler x  x     

675 Abroscopus albogularis Rufous-faced Warbler x  x     

676 Stachyris rufifrons Rufous-fronted Babbler x  x     

677 Ficedula strophiata Rufous-gorgeted Flycatcher  x x     

678 Aceros nipalensis Rufous-necked Hornbill x  x     

679 Graminicola bengalensis Rufous-rumped Grassbird x  x     

680 Luscinia sibilans Rufous-tailed Robin  x x     

681 Trichixos pyrropygus Rufous-tailed Shama x  x     

682 Orthotomus sericeus Rufous-tailed Tailorbird x  x     

683 Alcippe rufogularis Rufous-throated Fulvetta x  x     

684 Arborophila rufogularis Rufous-throated Partridge x  x     

685 Butastur liventer Rufous-winged Buzzard x  x     

686 Alcippe castaneceps Rufous-winged Fulvetta x  x     

687 Mirafra assamica Rufous-winged Lark x    x   

688 Philentoma pyrhoptera Rufous-winged Philentoma x  x     

689 Bradypterus mandelli Russet Bush-warbler x  x     

690 Passer rutilans Russet Sparrow x    x   

691 Cacomantis sepulcralis Rusty-breasted Cuckoo x  x     

692 Alcippe dubia Rusty-capped Fulvetta x  x     

693 Pomatorhinus erythrogenys Rusty-cheeked Scimitar-babbler x  x     

694 Pitta oatesi Rusty-naped Pitta x  x     
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695 Riparia riparia Sand Martin  x    x  

696 Calidris alba Sanderling  x     x 

697 Ficedula sapphira Sapphire Flycatcher x  x     

698 Caprimulgus affinis Savanna Nightjar x  x     

699 Pycnonotus squamatus Scaly-breasted Bulbul x  x     

700 Lonchura punctulata Scaly-breasted Munia x  x     

701 Malacopteron cinereum Scaly-crowned Babbler x  x     

702 Mergus squamatus Scaly-sided Merganser  x x     

703 Haematospiza sipahi Scarlet Finch x  x     

704 Pericrocotus flammeus Scarlet Minivet x  x     

705 Aethopyga mystacalis Scarlet Sunbird x  x     

706 Dicaeum cruentatum Scarlet-backed Flowerpecker x  x     

707 Prionochilus thoracicus Scarlet-breasted Flowerpecker x  x     

708 Harpactes duvaucelii Scarlet-rumped Trogon x  x     

709 Ixobrychus eurhythmus Schrenck's Bittern  x x     

710 Accipiter badius Shikra x  x     

711 Pericrocotus brevirostris Short-billed Minivet x  x     

712 Asio flammeus Short-eared Owl  x    x  

713 Malacocincla malaccensis Short-tailed Babbler x  x     

714 Batrachostomus poliolophus Short-tailed Frogmouth x  x     

715 Paradoxornis davidianus Short-tailed Parrotbill x   x    

716 Centropus rectunguis Short-toed Coucal x  x     

717 Lophura diardi Siamese Fireback x  x     

718 Luscinia cyane Siberian Blue Robin  x x     

719 Luscinia calliope Siberian Rubythroat  x   x   

720 Zoothera sibirica Siberian Thrush  x x     

721 Phylloscopus forresti Sichuan Leaf-warbler x  x     

722 Oriolus mellianus Silver Oriole  x x     

723 Lophura nycthemera Silver Pheasant x  x     

724 Hirundapus cochinchinensis Silver-backed Needletail  x x     

725 Serilophus lunatus Silver-breasted Broadbill x  x     

726 Garrulax melanostigma Silver-eared Laughingthrush x  x     

727 Leiothrix argentauris Silver-eared Mesia x  x     

728 Rhaphidura leucopygialis Silver-rumped Spinetail x  x     

729 Ficedula hodgsonii Slaty-backed Flycatcher  x x     

730 Enicurus schistaceus Slaty-backed Forktail x  x     

731 Tesia olivea Slaty-bellied Tesia x  x     

732 Ficedula tricolor Slaty-blue Flycatcher x  x     

733 Lewinia striata Slaty-breasted Rail x  x     
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734 Rallina eurizonoides Slaty-legged Crake  x x     

735 Oriolus tenuirostris Slender-billed Oriole  x x     

736 Gyps tenuirostris Slender-billed Vulture x  x     

737 Pericrocotus cinnamomeus Small Minivet x  x     

738 Niltava macgrigoriae Small Niltava x  x     

739 Ficedula hyperythra Snowy-browed Flycatcher x  x     

740 Onychoprion fuscatus Sooty Tern  x     x 

741 Malacopteron affine Sooty-capped Babbler x  x     

742 Pycnonotus aurigaster Sooty-headed Bulbul x    x   

743 Phylloscopus reguloides Southern Blyth's Leaf-warbler  x x     

744 Picumnus innominatus Speckled Piculet x   x    

745 Columba hodgsonii Speckled Woodpigeon  x x     

746 Actinodura ramsayi Spectacled Barwing x  x     

747 Pycnonotus erythropthalmos Spectacled Bulbul x  x     

748 Arachnothera flavigaster Spectacled Spiderhunter x  x     

749 Calidris pygmaea Spoon-billed Sandpiper  x     x 

750 Bubo nipalensis Spot-bellied Eagle-owl x  x     

751 Pelecanus philippensis Spot-billed Pelican  x    x  

752 Garrulax merulinus Spot-breasted Laughingthrush x  x     

753 Paradoxornis guttaticollis Spot-breasted Parrotbill x   x    

754 Stachyris striolata Spot-necked Babbler x  x     

755 Rhipidura perlata Spotted Fantail x  x     

756 Tringa guttifer Spotted Greenshank  x     x 

757 Athene brama Spotted Owlet x  x     

758 Tringa erythropus Spotted Redshank  x    x  

759 Strix seloputo Spotted Wood-owl x  x     

760 Pellorneum albiventre Spot-throated Babbler x  x     

761 Mycerobas melanozanthos Spot-winged Grosbeak x   x    

762 Saroglossa spiloptera Spot-winged Starling  x  x    

763 Surniculus lugubris Square-tailed Drongo-cuckoo x  x     

764 Treron pompadora Sri Lanka Green-pigeon x  x     

765 Aquila nipalensis Steppe Eagle  x x     

766 Pelargopsis capensis Stork-billed Kingfisher x  x     

767 Ciconia stormi Storm's Stork x  x     

768 Pycnonotus zeylanicus Straw-headed Bulbul  x  x     

769 Pomatorhinus ruficollis Streak-breasted Scimitar-babbler x  x     

770 Picus viridanus Streak-breasted Woodpecker x  x     

771 Pycnonotus blanfordi Streak-eared Bulbul x  x     

772 Ixos malaccensis Streaked Bulbul x  x     
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773 Arachnothera magna Streaked Spiderhunter x  x     

774 Ploceus manyar Streaked Weaver x  x     

775 Napothera brevicaudata Streaked Wren-babbler x  x     

776 Picus xanthopygaeus Streak-throated Woodpecker x  x     

777 Pycnonotus striatus Striated Bulbul x  x     

778 Megalurus palustris Striated Grassbird x  x     

779 Yuhina castaniceps Striated Yuhina  x  x     

780 Dendrocopos atratus Stripe-breasted Woodpecker x  x     

781 Kenopia striata Striped Wren-babbler x  x     

782 Pycnonotus finlaysoni Stripe-throated Bulbul x  x     

783 Phylloscopus ricketti Sulphur-breasted Warbler  x x     

784 Melanochlora sultanea Sultan Tit x  x     

785 Anser cygnoides Swan Goose  x    x  

786 Hydrobates monorhis Swinhoe's Storm-petrel x      x 

787 Ficedula albicilla Taiga Flycatcher  x   x   

788 Calidris temminckii Temminck's Stint  x    x  

789 Xenus cinereus Terek Sandpiper  x     x 

790 Dicaeum agile Thick-billed Flowerpecker x  x     

791 Treron curvirostra Thick-billed Green-pigeon x  x     

792 Arachnothera crassirostris Thick-billed Spiderhunter x  x     

793 Acrocephalus aedon Thick-billed Warbler  x x     

794 Cyornis tickelliae Tickell's Blue-flycatcher x  x     

795 Anorrhinus tickelli Tickell's Brown Hornbill x  x     

796 Phylloscopus affinis Tickell's Leaf-warbler  x x     

797 Lanius tigrinus Tiger Shrike  x x     

798 Ficedula superciliaris Ultramarine Flycatcher  x x     

799 Sitta frontalis Velvet-fronted Nuthatch x  x     

800 Eumyias thalassinus Verditer Flycatcher x  x     

801 Loriculus vernalis Vernal Hanging-parrot x  x     

802 Sturnus burmannicus Vinous-breasted Starling x  x     

803 Chrysococcyx xanthorhynchus Violet Cuckoo  x x     

804 Niltava vivida Vivid Niltava x  x     

805 Nisaetus nanus Wallace's Hawk-eagle x  x     

806 Gallicrex cinerea Watercock x     x  

807 Hydrochous gigas Waterfall Swift  x  x     

808 Treron sphenurus Wedge-tailed Green-pigeon x  x     

809 Eudynamys scolopaceus Western Koel x  x     

810 Rallus aquaticus Western Water Rail  x    x  

811 Numenius phaeopus Whimbrel  x     x 
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812 Chlidonias hybrida Whiskered Tern  x     x 

813 Hemiprocne comata Whiskered Treeswift x  x     

814 Yuhina flavicollis Whiskered Yuhina x  x     

815 Motacilla alba White Wagtail  x    x  

816 Treron sieboldii White-bellied Green-pigeon  x x     

817 Lonchura leucogastra White-bellied Munia x  x     

818 Hodgsonius phaenicuroides White-bellied Redstart x   x    

819 Haliaeetus leucogaster White-bellied Sea-eagle x      x 

820 Dryocopus javensis White-bellied Woodpecker x  x     

821 Erpornis zantholeuca White-bellied Yuhina x  x     

822 Halcyon smyrnensis White-breasted Kingfisher x   x    

823 Amaurornis phoenicurus White-breasted Waterhen x  x     

824 Amaurornis cinerea White-browed Crake x  x     

825 Rhipidura aureola White-browed Fantail x  x     

826 Garrulax sannio White-browed Laughingthrush x  x     

827 Sasia ochracea White-browed Piculet x   x    

828 Pomatorhinus schisticeps White-browed Scimitar-babbler x  x     

829 Brachypteryx montana White-browed Shortwing x  x     

830 Pteruthius flaviscapis White-browed Shrike-babbler x  x     

831 Trichastoma rostratum White-chested Babbler x  x     

832 Garrulax leucolophus White-crested Laughingthrush x  x     

833 Enicurus leschenaulti White-crowned Forktail x  x     

834 Berenicornis comatus White-crowned Hornbill x  x     

835 Butastur teesa White-eyed Buzzard x    x   

836 Eurochelidon sirintarae White-eyed River-martin  x    x  

837 Otus sagittatus White-fronted Scops-owl x  x     

838 Ficedula monileger White-gorgeted Flycatcher x  x     

839 Hypsipetes thompsoni White-headed Bulbul x  x     

840 Lonchura maja White-headed Munia x  x     

841 Stachyris leucotis White-necked Babbler x  x     

842 Garrulax strepitans White-necked Laughingthrush x  x     

843 Lonchura striata White-rumped Munia x  x     

844 Polihierax insignis White-rumped Pygmy-falcon x  x     

845 Copsychus malabaricus White-rumped Shama x  x     

846 Gyps bengalensis White-rumped Vulture x  x     

847 Meiglyptes tristis White-rumped Woodpecker x   x    

848 Sturnus sinensis White-shouldered Starling  x   x   

849 Cyornis concretus White-tailed Flycatcher x  x     

850 Cinclidium leucurum White-tailed Robin x  x     
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851 Alophoixus flaveolus White-throated Bulbul x  x     

852 Rhipidura albicollis White-throated Fantail x  x     

853 Monticola gularis White-throated Rock-thrush  x x     

854 Acridotheres grandis White-vented Myna x  x     

855 Asarcornis scutulata White-winged Duck x     x  

856 Chlidonias leucopterus White-winged Tern  x     x 

857 Hirundo smithii Wire-tailed Swallow x     x  

858 Tringa glareola Wood Sandpiper  x    x  

859 Gallinago nemoricola Wood Snipe  x x     

860 Rhyticeros undulatus Wreathed Hornbill x  x     

861 Rhabdotorrhinus corrugatus Wrinkled Hornbill x  x     

862 Ixobrychus sinensis Yellow Bittern x     x  

863 Motacilla flava Yellow Wagtail  x   x   

864 Alophoixus phaeocephalus Yellow-bellied Bulbul x  x     

865 Rhipidura hypoxantha Yellow-bellied Fantail x  x     

866 Dicaeum melanoxanthum Yellow-bellied Flowerpecker x  x     

867 Prinia flaviventris Yellow-bellied Prinia x  x     

868 Abroscopus superciliaris Yellow-bellied Warbler x  x     

869 Eophona migratoria Yellow-billed Grosbeak  x  x    

870 Emberiza aureola Yellow-breasted Bunting  x    x  

871 Prionochilus maculatus Yellow-breasted Flowerpecker x  x     

872 Cissa hypoleuca Yellow-breasted Magpie x  x     

873 Sylviparus modestus Yellow-browed Tit x  x     

874 Parus spilonotus Yellow-cheeked Tit x  x     

875 Psilopogon henricii Yellow-crowned Barbet x  x     

876 Leiopicus mahrattensis Yellow-crowned Woodpecker x  x     

877 Arachnothera chrysogenys Yellow-eared Spiderhunter x  x     

878 Chrysomma sinense Yellow-eyed Babbler x  x     

879 Treron phoenicopterus Yellow-footed Green-pigeon x  x     

880 Turnix tanki Yellow-legged Buttonquail  x x     

881 Ficedula zanthopygia Yellow-rumped Flycatcher  x x     

882 Phylloscopus armandii Yellow-streaked Warbler  x x     

883 Pycnonotus goiavier Yellow-vented Bulbul x   x    

884 Dicaeum chrysorrheum Yellow-vented Flowerpecker x  x     

885 Treron seimundi Yellow-vented Green-pigeon x  x     

886 Phylloscopus cantator Yellow-vented Warbler x  x     

887 Geopelia striata Zebra Dove x  x     

888 Cisticola juncidis Zitting Cisticola x     x  
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Appendix 2. Results for species distribution models for 336 bird species in Thailand. The 

occurrence of each species is indicated as “#Record”. The AUC values of species distribution 

models are indicated by “AUC”. Fitted 95% C.I. AUC values for the biased corrected null-model 

are indicated by “95% C.I. Bias”. All 336 species distribution models are significantly deviating 

from biased corrected null-models (P < 0.05). 

# Scientific name Common name Record AUC 95% 

C.I. 

Bias 

1 Malacocincla abbotti Abbott's Babbler 28 0.953 0.819 

2 Phylloscopus borealis Arctic Warbler 45 0.953 0.733 

3 Hemixos flavala Ashy Bulbul  38 0.939 0.766 

4 Dicrurus leucophaeus Ashy Drongo 154 0.804 0.597 

5 Pericrocotus divaricatus Ashy Minivet  34 0.870 0.771 

6 Artamus fuscus Ashy Woodswallow  141 0.710 0.601 

7 Glaucidium cuculoides Asian Barred Owlet 84 0.828 0.652 

8 Hypsipetes leucocephalus Asian Black Bulbul  29 0.971 0.807 

9 Muscicapa dauurica Asian Brown Flycatcher 118 0.756 0.620 

10 Chrysococcyx maculatus Asian Emerald Cuckoo 23 0.945 0.829 

11 Irena puella Asian Fairy-bluebird  69 0.927 0.669 

12 Aplonis panayensis Asian Glossy Starling 40 0.960 0.710 

13 Merops orientalis Asian Green Bee-eater 81 0.768 0.656 

14 Delichon dasypus Asian House-martin 33 0.939 0.776 

15 Anastomus oscitans Asian Openbill  118 0.861 0.620 

16 Cypsiurus balasiensis Asian Palm-swift  241 0.616 0.551 

17 Terpsiphone paradisi Asian Paradise-flycatcher 49 0.864 0.714 

18 Sturnus contra Asian Pied Starling 100 0.875 0.629 

19 Cacomantis sonneratii Banded Bay Cuckoo 22 0.944 0.830 

20 Eurylaimus javanicus Banded Broadbill 21 0.930 0.825 

21 Lacedo pulchella Banded Kingfisher 26 0.969 0.844 

22 Hirundo rustica Barn Swallow 278 0.638 0.538 

23 Macropygia unchall Barred Cuckoo-dove 20 0.972 0.811 

24 Hemipus picatus Bar-winged Flycatcher-shrike 71 0.814 0.672 

25 Ploceus philippinus Baya Weaver  40 0.892 0.710 

26 Accipiter virgatus Besra 22 0.902 0.830 

27 Aviceda leuphotes Black Baza 38 0.845 0.766 

28 Ixobrychus flavicollis Black Bittern 20 0.967 0.811 



101 

 

29 Dicrurus macrocercus Black Drongo 228 0.641 0.557 

30 Milvus migrans Black Kite  46 0.913 0.620 

31 Acrocephalus bistrigiceps Black-browed Reed-Warbler 27 0.941 0.831 

32 Halcyon pileata Black-capped Kingfisher 91 0.858 0.634 

33 Sturnus nigricollis Black-collared Starling 98 0.687 0.456 

34 Pycnonotus melanicterus Black-crested Bulbul  185 0.824 0.579 

35 Nycticorax nycticorax Black-crowned Night-heron 51 0.939 0.698 

36 Pycnonotus atriceps Black-headed Bulbul  75 0.879 0.664 

37 Oriolus xanthornus Black-hooded Oriole  36 0.927 0.785 

38 Hypothymis azurea Black-naped Monarch 97 0.856 0.637 

39 Oriolus chinensis Black-naped Oriole 106 0.752 0.616 

40 Garrulax chinensis Black-throated Laughingthrush 29 0.943 0.807 

41 Aethopyga saturata Black-throated Sunbird 45 0.901 0.733 

42 Coracina melaschistos Black-winged Cuckooshrike 37 0.933 0.748 

43 Elanus caeruleus Black-winged Kite 92 0.822 0.632 

44 Himantopus himantopus Black-winged Stilt  81 0.890 0.656 

45 Pitta cyanea Blue Pitta  20 0.968 0.811 

46 Monticola solitarius Blue Rock-thrush 63 0.888 0.675 

47 Myophonus caeruleus Blue Whistling-thrush 77 0.921 0.534 

48 Nyctyornis athertoni Blue-bearded Bee-eater  34 0.965 0.771 

49 Psilopogon cyanotis Blue-eared barbet 41 0.929 0.726 

50 Merops philippinus Blue-tailed Bee-eater  55 0.814 0.724 

51 Psilopogon asiaticus Blue-throated barbet 62 0.949 0.673 

52 Cyornis rubeculoides Blue-throated Flycatcher  28 0.838 0.819 

53 Chloropsis cochinchinensis Blue-winged Leafbird  71 0.883 0.672 

54 Minla cyanouroptera Blue-winged Minla 20 0.971 0.811 

55 Haliastur indus Brahminy Kite 110 0.896 0.624 

56 Dicrurus aeneus Bronzed Drongo 79 0.840 0.657 

57 Metopidius indicus Bronze-winged Jacana  43 0.891 0.722 

58 Ninox scutulata Brown Boobook 22 0.964 0.830 

59 Lanius cristatus Brown Shrike  182 0.597 0.580 

60 Hirundapus giganteus Brown-backed Needletail  38 0.938 0.766 

61 Alcippe poioicephala Brown-cheeked Fulvetta 33 0.938 0.776 

62 Larus brunnicephalus Brown-headed Gull  29 0.980 0.807 

63 Pelargopsis amauroptera Brown-winged Kingfisher  23 0.989 0.829 

64 Trichastoma tickelli Buff-breasted babbler 23 0.949 0.829 

65 Iole olivacea Buff-vented Bulbul  22 0.975 0.830 

66 Lanius collurioides Burmese Shrike  27 0.924 0.831 

67 Bubulcus ibis Cattle Ibis 173 0.667 0.582 
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68 Nisaetus cirrhatus Changeable Hawk-eagle 20 0.937 0.811 

69 Phaenicophaeus curvirostris Chestnut-breasted Malkoha  21 0.986 0.825 

70 Timalia pileata Chestnut-capped Babbler  21 0.873 0.825 

71 Zosterops erythropleurus Chestnut-flanked White-eye 20 0.938 0.811 

72 Merops leschenaulti Chestnut-headed Bee-eater  78 0.818 0.649 

73 Minla strigula Chestnut-tailed Minla 24 0.995 0.808 

74 Sturnus malabaricus Chestnut-tailed Starling  32 0.815 0.752 

75 Sitta nagaensis Chestnut-vented Nuthatch 23 0.989 0.829 

76 Ardeola bacchus Chinese Pond-heron 215 0.658 0.563 

77 Ixobrychus cinnamomeus Cinnamon Bittern 34 0.862 0.771 

78 Todiramphus chloris Collared Kingfisher 66 0.914 0.680 

79 Glaucidium brodiei Collared Owlet  44 0.947 0.737 

80 Otus lettia Collared Scops-owl  30 0.818 0.762 

81 Dinopium javanense Common Flameback 30 0.946 0.762 

82 Tringa nebularia Common Greenshank  45 0.953 0.733 

83 Upupa epops Common Hoopoe  64 0.743 0.680 

84 Aegithina tiphia Common Iora 144 0.706 0.620 

85 Falco tinnunculus Common Kestrel  31 0.779 0.758 

86 Alcedo atthis Common Kingfisher 126 0.800 0.610 

87 Gallinula chloropus Common Moorhen 53 0.814 0.710 

88 Acridotheres tristis Common Myna 419 0.664 0.500 

89 Tringa totanus Common Redshank  31 0.944 0.758 

90 Carpodacus erythrinus Common Rosefinch 20 0.950 0.811 

91 Actitis hypoleucos Common Sandpiper 113 0.881 0.620 

92 Gallinago gallinago Common Snipe 32 0.946 0.752 

93 Saxicola torquatus Common Stonechat  95 0.769 0.644 

94 Orthotomus sutorius Common Tailorbird  178 0.632 0.585 

95 Sterna hirundo Common Tern 28 0.967 0.819 

96 Psilopogon haemacephalus Coppersmith barbet 181 0.711 0.576 

97 Nettapus coromandelianus Cotton Pygmy-goose  23 0.838 0.829 

98 Accipiter trivirgatus Crested Goshawk 34 0.900 0.771 

99 Spilornis cheela Crested Serpent-eagle  66 0.894 0.680 

100 Hemiprocne coronata Crested Treeswift 37 0.917 0.748 

101 Aethopyga siparaja Crimson Sunbird 40 0.951 0.710 

102 Dicrurus annectans Crow-billed Drongo 27 0.933 0.831 

103 Calidris ferruginea Curlew Sandpiper 21 0.991 0.825 

104 Heterophasia melanoleuca Dark-backed Sibia 30 0.983 0.762 

105 Orthotomus atrogularis Dark-necked Tailorbird 81 0.753 0.656 

106 Muscicapa sibirica Dark-sided Flycatcher 29 0.891 0.807 
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107 Phylloscopus davisoni Davison's Leaf-warbler  26 0.977 0.844 

108 Hirundo concolor Dusky Crag-martin 20 0.839 0.811 

109 Phylloscopus fuscatus Dusky Warbler  47 0.876 0.732 

110 Phylloscopus coronatus Eastern Crowned Warbler 22 0.932 0.830 

111 Circus spilonotus Eastern Marsh-harrier 26 0.939 0.844 

112 Spilopelia chinensis Eastern Spotted Dove 347 0.539 0.521 

113 Buteo buteo Eurasian Buzzard 26 0.943 0.844 

114 Garrulus glandarius Eurasian Jay 37 0.944 0.748 

115 Passer montanus Eurasian Tree Sparrow 338 0.640 0.519 

116 Turdus obscurus Eyebrowed Thrush  26 0.977 0.844 

117 Dicaeum ignipectus Fire-breasted Flowerpecker 33 0.952 0.776 

118 Pycnonotus flavescens Flavescent Bulbul  54 0.954 0.703 

119 Dendronanthus indicus Forest Wagtail  34 0.898 0.771 

120 Aerodramus germani Germain's swiftlet 80 0.868 0.443 

121 Stachyris chrysaea Golden Babbler 26 0.989 0.844 

122 Gerygone sulphurea Golden-bellied Gerygone 27 0.986 0.831 

123 Chloropsis aurifrons Golden-fronted Leafbird 57 0.877 0.697 

124 Megalaima franklinii Golden-throated Barbet 29 0.987 0.807 

125 Aethopyga gouldiae Gould's Sunbird 26 0.988 0.844 

126 Psilopogon virens Great Barbet 39 0.942 0.780 

127 Lyncornis macrotis Great Eared-nightjar 21 0.973 0.825 

128 Buceros bicornis Great Hornbill 43 0.977 0.722 

129 Aegithina lafresnayei Great Iora 35 0.913 0.758 

130 Parus major Great Tit  30 0.990 0.762 

131 Ardea alba Great White Egret 135 0.791 0.607 

132 Centropus sinensis Greater Coucal 222 0.643 0.563 

133 Chrysocolaptes guttacristatus Greater Flameback 35 0.944 0.758 

134 Chloropsis sonnerati Greater Green Leafbird 32 0.926 0.752 

135 Garrulax pectoralis Greater Necklaced Laughingthrush 22 0.957 0.830 

136 Dicrurus paradiseus Greater Racket-tailed Drongo 133 0.807 0.608 

137 Charadrius leschenaultii Greater Sandplover  26 0.957 0.844 

138 Picus flavinucha Greater Yellownape 24 0.901 0.808 

139 Aegithina viridissima Green Iora 20 0.984 0.811 

140 Cissa chinensis Green Magpie  29 0.952 0.807 

141 Tringa ochropus Green Sandpiper 27 0.941 0.831 

142 Butorides striata Green-backed Heron 101 0.784 0.631 

143 Phaenicophaeus tristis Green-billed Malkoha 126 0.732 0.610 

144 Psilopogon faiostrictus Green-eared barbet 30 0.981 0.762 

145 Phylloscopus trochiloides Greenish Warbler 44 0.891 0.737 
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146 Arborophila chloropus Green-legged Partridge 24 0.971 0.808 

147 Aethopyga nipalensis Green-tailed Sunbird 25 0.991 0.823 

148 Saxicola ferreus Grey Bushchat  35 0.946 0.758 

149 Ardea cinerea Grey Heron 67 0.906 0.680 

150 Pluvialis squatarola Grey Plover 24 0.995 0.808 

151 Dendrocitta formosae Grey Treepie 20 0.975 0.811 

152 Motacilla cinerea Grey Wagtail 83 0.896 0.646 

153 Lanius tephronotus Grey-backed Shrike 42 0.961 0.733 

154 Prinia hodgsonii Grey-breasted Prinia 48 0.865 0.718 

155 Chalcophaps indica Grey-capped Emerald Dove  56 0.854 0.713 

156 Picoides canicapillus Grey-capped Woodpecker  51 0.883 0.698 

157 Alcippe morrisonia Grey-cheeked Fulvetta 38 0.968 0.766 

158 Pericrocotus solaris Grey-chinned Minivet  32 0.964 0.752 

159 Seicercus tephrocephalus Grey-crowned Warbler 35 0.976 0.758 

160 Iole propinqua Grey-eyed Bulbul  61 0.847 0.687 

161 Culicicapa ceylonensis Grey-headed Canary-flycatcher 90 0.873 0.645 

162 Vanellus cinereus Grey-headed Lapwing 31 0.868 0.758 

163 Hemiprocne longipennis Grey-rumped Treeswift 25 0.951 0.823 

164 Stachyris nigriceps Grey-throated Babbler  31 0.955 0.758 

165 Cyornis hainanus Hainan Blue-flycatcher  28 0.973 0.819 

166 Dicrurus hottentottus Hair-crested Drongo 76 0.890 0.517 

167 Cyornis banyumas Hill Blue-flycatcher  53 0.883 0.710 

168 Gracula religiosa Hill Myna  45 0.934 0.733 

169 Prinia atrogularis Hill Prinia 21 0.984 0.825 

170 Aerodramus brevirostris Himalayan Swiftlet 42 0.885 0.733 

171 Passer domesticus House Sparrow 56 0.945 0.713 

172 Apus nipalensis House Swift 112 0.751 0.616 

173 Phalacrocorax fuscicollis Indian Cormorant  39 0.947 0.780 

174 Coracias benghalensis Indian Roller  195 0.673 0.571 

175 Mirafra erythrocephala Indochinese Bushlark 34 0.916 0.771 

176 Phylloscopus inornatus Inornate Warbler 130 0.751 0.605 

177 Ardea intermedia Intermediate egret 73 0.911 0.664 

178 Accipiter gularis Japanese Sparrowhawk 26 0.948 0.844 

179 Zosterops japonicus Japanese White-eye 42 0.957 0.733 

180 Ardeola speciosa Javan Pond-heron  92 0.881 0.632 

181 Charadrius alexandrinus Kentish Plover 31 0.950 0.758 

182 Coracina macei Large Cuckooshrike 26 0.993 0.844 

183 Hierococcyx sparverioides Large Hawk-cuckoo  26 0.941 0.844 

184 Niltava grandis Large Niltava 21 0.978 0.825 
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185 Tephrodornis gularis Large Woodshrike  33 0.960 0.776 

186 Corvus macrorhynchos Large-billed Crow 226 0.701 0.557 

187 Caprimulgus macrurus Large-tailed Nightjar 34 0.912 0.771 

188 Centropus bengalensis Lesser Coucal  59 0.730 0.699 

189 Garrulax monileger Lesser Necklaced Laughingthrush 32 0.953 0.752 

190 Dicrurus remifer Lesser Racket-tailed Drongo  52 0.933 0.690 

191 Charadrius mongolus Lesser Sandplover  40 0.951 0.710 

192 Dendrocygna javanica Lesser Whistling-duck  80 0.719 0.443 

193 Picus chlorolophus Lesser Yellownape  24 0.927 0.808 

194 Psilopogon lineatus Lineated barbet 54 0.797 0.703 

195 Microcarbo niger Little Cormorant  131 0.872 0.605 

196 Egretta garzetta Little Egret  234 0.735 0.553 

197 Tachybaptus ruficollis Little Grebe 68 0.884 0.667 

198 Ficedula westermanni Little Pied Flycatcher 28 0.968 0.819 

199 Charadrius dubius Little Ringed Plover 47 0.948 0.732 

200 Arachnothera longirostra Little Spiderhunter 69 0.897 0.669 

201 Sternula albifrons Little Tern 32 0.982 0.752 

202 Psarisomus dalhousiae Long-tailed Broadbill  33 0.939 0.776 

203 Pericrocotus ethologus Long-tailed Minivet 30 0.976 0.762 

204 Lanius schach Long-tailed Shrike 72 0.814 0.657 

205 Calidris subminuta Long-toed Stint 30 0.976 0.762 

206 Oriolus traillii Maroon Oriole  22 0.983 0.830 

207 Tringa stagnatilis Marsh Sandpiper 34 0.989 0.771 

208 Hypsipetes mcclellandii Mountain Bulbul  47 0.949 0.732 

209 Ducula badia Mountain Imperial-pigeon 42 0.960 0.733 

210 Orthotomus cuculatus Mountain Tailorbird 24 0.987 0.808 

211 Psilopogon incognitus Moustached barbet 28 0.991 0.819 

212 Alophoixus ochraceus Ochraceous Bulbul  46 0.950 0.620 

213 Anthus hodgsoni Olive-backed Pipit 60 0.901 0.620 

214 Nectarinia jugularis Olive-backed Sunbird 195 0.742 0.571 

215 Dicaeum trigonostigma Orange-bellied Flowerpecker 36 0.944 0.785 

216 Harpactes oreskios Orange-breasted Trogon 29 0.956 0.807 

217 Eurystomus orientalis Oriental Dollarbird  62 0.869 0.673 

218 Pernis ptilorhynchus Oriental Honey-buzzard  69 0.860 0.669 

219 Copsychus saularis Oriental Magpie-robin 301 0.639 0.530 

220 Anthracoceros albirostris Oriental Pied Hornbill 52 0.959 0.690 

221 Glareola maldivarum Oriental Pratincole  39 0.939 0.780 

222 Acrocephalus orientalis Oriental Reed Warbler  34 0.938 0.771 

223 Streptopelia orientalis Oriental Turtle-dove 20 0.936 0.811 
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224 Zosterops palpebrosus Oriental White-eye 61 0.880 0.687 

225 Pandion haliaetus Osprey  31 0.966 0.758 

226 Pluvialis fulva Pacific Golden Plover 38 0.971 0.766 

227 Egretta sacra Pacific Reef-egret 37 0.934 0.748 

228 Hirundo tahitica Pacific Swallow  77 0.920 0.534 

229 Apus pacificus  Pacific Swift  46 0.914 0.620 

230 Anthus rufulus Paddyfield Pipit 85 0.796 0.653 

231 Mycteria leucocephala Painted Stork 28 0.989 0.819 

232 Phylloscopus tenellipes Pale-legged Leaf-warbler  31 0.936 0.758 

233 Falco peregrinus Peregrine Falcon  25 0.945 0.823 

234 Hydrophasianus chirurgus Pheasant-tailed Jacana  25 0.943 0.823 

235 Saxicola caprata Pied Bushchat  81 0.889 0.656 

236 Rhipidura javanica Pied Fantail 164 0.811 0.587 

237 Circus melanoleucos Pied Harrier 26 0.920 0.844 

238 Treron vernans Pink-necked Green-pigeon  24 0.934 0.808 

239 Macronous gularis Pin-striped tit-babbler 87 0.896 0.637 

240 Gallinago stenura Pintail Snipe 39 0.830 0.780 

241 Dicaeum concolor Plain flowerpecker 31 0.932 0.758 

242 Prinia inornata Plain Prinia 98 0.898 0.456 

243 Passer flaveolus Plain-backed Sparrow 81 0.874 0.656 

244 Anthreptes malacensis Plain-throated Sunbird 75 0.776 0.664 

245 Pellorneum ruficeps Puff-throated Babbler  72 0.874 0.657 

246 Alophoixus pallidus Puff-throated Bulbul 53 0.932 0.710 

247 Ardea purpurea Purple Heron  38 0.853 0.766 

248 Cinnyris asiatica Purple Sunbird 44 0.912 0.737 

249 Porphyrio porphyrio Purple Swamphen 28 0.982 0.819 

250 Crypsirina temia Racket-tailed Treepie 54 0.877 0.703 

251 Phylloscopus schwarzi Radde's Warbler 38 0.928 0.766 

252 Gallus gallus Red Junglefowl 73 0.869 0.664 

253 Streptopelia tranquebarica Red turtle dove 151 0.802 0.591 

254 Pycnonotus brunneus Red-eyed Bulbul 30 0.965 0.762 

255 Harpactes erythrocephalus Red-headed Trogon 31 0.962 0.758 

256 Calidris ruficollis Red-necked Stint  30 0.980 0.762 

257 Hirundo daurica Red-rumped Swallow 77 0.691 0.534 

258 Psilopogon mystacophanos Red-throated Barbet 26 0.979 0.844 

259 Vanellus indicus Red-wattled Lapwing 144 0.808 0.620 

260 Pycnonotus jocosus Red-whiskered Bulbul  157 0.831 0.586 

261 Anthus richardi Richard's Pipit  47 0.835 0.732 

262 Columba livia Rock Dove 256 0.736 0.549 
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263 Pericrocotus roseus Rosy Minivet 29 0.959 0.807 

264 Anthreptes singalensis Ruby-cheeked Sunbird  63 0.918 0.675 

265 Zapornia fusca Ruddy-breasted crake 28 0.962 0.819 

266 Prinia rufescens Rufescent Prinia  54 0.840 0.703 

267 Dendrocitta vagabunda Rufous Treepie 21 0.933 0.825 

268 Niltava sundara Rufous-bellied Niltava 20 0.983 0.811 

269 Stachyris rufifrons Rufous-fronted babbler 36 0.957 0.785 

270 Alcippe castaneceps Rufous-winged Fulvetta 28 0.991 0.819 

271 Riparia riparia Sand Martin 28 0.952 0.819 

272 Lonchura punctulata Scaly-breasted Munia 149 0.673 0.601 

273 Pericrocotus flammeus Scarlet Minivet  88 0.881 0.653 

274 Dicaeum cruentatum Scarlet-backed Flowerpecker 161 0.705 0.588 

275 Accipiter badius Shikra 67 0.811 0.680 

276 Pericrocotus brevirostris Short-billed Minivet 21 0.973 0.825 

277 Luscinia cyane Siberian Blue Robin 32 0.882 0.752 

278 Luscinia calliope Siberian Rubythroat 28 0.943 0.819 

279 Serilophus lunatus Silver-breasted Broadbill  29 0.914 0.807 

280 Garrulax melanostigma Silver-eared Laughingthrush 23 0.993 0.829 

281 Leiothrix argentauris Silver-eared Mesia 23 0.972 0.829 

282 Enicurus schistaceus Slaty-backed Forktail 26 0.991 0.844 

283 Pericrocotus cinnamomeus Small Minivet 27 0.965 0.831 

284 Pycnonotus aurigaster Sooty-headed Bulbul  146 0.819 0.597 

285 Phylloscopus reguloides Southern Blyth's Leaf-warbler  41 0.970 0.726 

286 Picumnus innominatus Speckled Piculet 24 0.944 0.808 

287 Athene brama Spotted Owlet  24 0.952 0.808 

288 Tringa erythropus Spotted Redshank 22 0.988 0.830 

289 Surniculus lugubris Square-tailed Drongo-cuckoo 30 0.876 0.762 

290 Pelargopsis capensis Stork-billed Kingfisher  20 0.985 0.811 

291 Pycnonotus blanfordi Streak-eared Bulbul 229 0.707 0.565 

292 Arachnothera magna Streaked Spiderhunter  52 0.908 0.690 

293 Hirundo striolata striated swallow  57 0.868 0.697 

294 Pycnonotus finlaysoni Stripe-throated Bulbul 83 0.896 0.646 

295 Melanochlora sultanea Sultan Tit  33 0.899 0.776 

296 Ficedula albicilla Taiga Flycatcher 116 0.770 0.616 

297 Calidris temminckii Temminck's Stint 21 0.977 0.825 

298 Treron curvirostra Thick-billed Green-pigeon 42 0.905 0.733 

299 Cyornis tickelliae Tickell's Blue-flycatcher  31 0.854 0.758 

300 Sitta frontalis Velvet-fronted Nuthatch 54 0.885 0.703 

301 Eumyias thalassinus Verditer Flycatcher 61 0.900 0.687 
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302 Loriculus vernalis Vernal Hanging-parrot  53 0.942 0.710 

303 Sturnus burmannicus Vinous-breasted Starling 20 0.985 0.811 

304 Gallicrex cinerea Watercock  22 0.883 0.830 

305 Eudynamys scolopaceus Western Koel  192 0.717 0.581 

306 Numenius phaeopus Whimbrel  28 0.957 0.819 

307 Chlidonias hybrida Whiskered Tern 40 0.959 0.710 

308 Motacilla alba White Wagtail 77 0.860 0.534 

309 Haliaeetus leucogaster White-bellied Sea-eagle  37 0.925 0.748 

310 Erpornis zantholeuca White-bellied Yuhina  43 0.946 0.722 

311 Halcyon smyrnensis White-breasted Kingfisher 194 0.650 0.568 

312 Amaurornis phoenicurus White-breasted Waterhen 130 0.674 0.605 

313 Sasia ochracea White-browed Piculet 24 0.981 0.808 

314 Pomatorhinus schisticeps White-browed Scimitar-babbler 39 0.949 0.780 

315 Pteruthius flaviscapis White-browed shrike-babbler 41 0.963 0.726 

316 Garrulax leucolophus White-crested Laughingthrush 51 0.890 0.698 

317 Enicurus leschenaulti White-crowned Forktail 24 0.978 0.808 

318 Lonchura striata White-rumped Munia 74 0.808 0.658 

319 Copsychus malabaricus White-rumped Shama 113 0.857 0.620 

320 Rhipidura albicollis White-throated Fantail  54 0.946 0.703 

321 Acridotheres grandis White-vented Myna 260 0.694 0.549 

322 Chlidonias leucopterus White-winged Tern 20 0.979 0.811 

323 Hirundo smithii Wire-tailed Swallow 30 0.925 0.762 

324 Tringa glareola Wood Sandpiper 58 0.939 0.703 

325 Rhyticeros undulatus Wreathed Hornbill 28 0.977 0.819 

326 Ixobrychus sinensis Yellow Bittern 54 0.898 0.703 

327 Motacilla flava Yellow Wagtail  51 0.854 0.698 

328 Rhipidura hypoxantha Yellow-bellied Fantail  21 0.993 0.825 

329 Prinia flaviventris Yellow-bellied Prinia 45 0.846 0.733 

330 Abroscopus superciliaris Yellow-bellied Warbler 38 0.959 0.766 

331 Parus spilonotus Yellow-cheeked Tit 34 0.982 0.771 

332 Chrysomma sinense Yellow-eyed Babbler 20 0.945 0.811 

333 Pycnonotus goiavier Yellow-vented Bulbul  121 0.824 0.620 

334 Dicaeum chrysorrheum Yellow-vented Flowerpecker 27 0.964 0.831 

335 Geopelia striata Zebra Dove 206 0.698 0.563 

336 Cisticola juncidis Zitting Cisticola 46 0.914 0.620 
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Appendix 3. Semivariograms were used to examine the spatial autocorrelation in model residuals 

for all bird species richness based on (a) range maps and (b) species distribution model 

prediction maps  

 

    

  

(a) (b) 
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Appendix 4. Pearson’s correlation coefficients for 11 selected environmental variables used in 

multivariate models for the species richness pattern of birds in Thailand. 

Variable* Latitude C M S MAT MATR AP Elevation TR Area 

Latitude           

C -0.006          

M -0.157 0.739         

S 0.292 -0.400 -0.657        

MAT -0.070 -0.031 -0.006 0.378       

MATR 0.586 0.261 0.178 0.277 0.576      

AP -0.503 0.138 0.270 -0.145 0.388 -0.043     

Elevation 0.426 0.528 0.495 -0.363 -0.323 0.391 -0.202    

TR 0.094 0.592 0.609 -0.505 -0.231 0.235 0.020 0.753   

Area 0.247 0.590 0.648 -0.499 -0.180 0.344 -0.034 0.758 0.791  

LCR 0.367 0.093 0.039 0.130 0.098 0.405 -0.055 0.254 0.244 0.290 

*C, cumulative annual productivity; M, annual minimum productivity; S, seasonal variation in 

productivity; MAT, mean annual temperature; MART, mean annual temperature range; AP, 

annual precipitation; TR, topographic relief; LCR, land cover richness.  
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Appendix 5. R2 values for simple ordinary least squares models of species richness for different 

guilds derived from range maps and 14 environmental variables.  Sign indicates direction of 

relationship. Bolded variable names indicate variables included for subsequent analysis due to 

correlations with bird species richness guilds (R2 values > 0.05) and less collinearity among 

variables based on Pearson’s correlation coefficients |r| < 0.8. C, cumulative annual productivity; 

M, annual minimum productivity; S, seasonal variation in productivity; MAT, mean annual 

temperature; MART, mean annual temperature range; AP, annual precipitation; TR, topographic 

relief; LCR, land cover richness. 

Variable All birds Resident 

birds 

Migratory 

birds 

Forest 

birds 

Early-

successional 

birds 

Farmland 

birds 

Wetland 

birds 

Seacoast 

birds 

Latitude 0.02*** 0.01** 0.23*** 0.01*** 0.28*** 0.78*** 0.56*** -0.67*** 

C 0.58*** 0.63*** 0.26*** 0.63*** 0.22*** -0.03*** NS 0.07*** 

M 0.34*** 0.38*** 0.09*** 0.38*** 0.10*** -0.06*** -0.01*** 0.07*** 

S -0.35*** -0.39*** -0.10*** -0.38*** -0.10*** 0.07*** 0.01*** -0.11*** 

MAT  -0.43*** -0.42*** -0.32*** -0.45*** -0.40*** -0.06*** -0.06*** 0.07*** 

MATR 0.17*** 0.13*** 0.28*** 0.15*** 0.36*** 0.50*** 0.46*** -0.58*** 

MAP NS NS -0.05*** NS 0.08*** -0.43*** -0.28*** 0.32*** 

Elevation  0.48*** 0.47*** 0.38*** 0.49*** 0.46*** 0.12*** 0.13*** 0.09*** 

TR 0.53*** 0.57*** 0.28*** 0.56*** 0.31*** 0.01** 0.02*** NS 

LCR 0.02*** 0.02*** 0.03*** 0.02*** 0.04*** 0.11*** 0.02*** -0.13*** 

Area of 

forest 

0.50*** 0.51*** 0.31*** 0.52*** 0.35*** 0.06*** 0.05*** -0.01*** 

Area of 

scrub 

0.03*** 0.04*** 0.02*** 0.04*** 0.02*** 0.01** NS NS 

Area of 

agriculture 

-0.49*** -0.50*** -0.30*** -0.51*** -0.34*** -0.07*** -0.05*** 0.02*** 

Area of 

wetland 

-0.02*** -0.02*** -0.01** -0.02*** -0.01)*** NS NS -0.01* 

Area of 

coast 

NS NS NS NS NS 0.01** NS 0.01* 

*** P-value < 0.001, ** P-value < 0.01, * P-value < 0.05, NS, not significant.  
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Appendix 6. R2 values for simple ordinary least squares models of species richness for different 

guilds derived from species distribution model prediction maps and 14 environmental variables.  

Sign indicates direction of relationship. Bolded variable names indicate variables included for 

subsequent analysis due to correlations with bird species richness guilds (R2 values > 0.05) and 

less collinearity among variables based on Pearson’s correlation coefficients |r| < 0.8. C, 

cumulative annual productivity; M, annual minimum productivity; S, seasonal variation in 

productivity; MAT, mean annual temperature; MART, mean annual temperature range; AP, 

annual precipitation; TR, topographic relief; LCR, land cover richness. 

Variable All birds Residents Migratory 

birds 

Forest 

birds 

Early-

successional 

birds 

Farmland 

birds 

Wetland 

birds 

Seacoast 

birds 

Latitude 0.03*** 0.02*** 0.04*** 0.02*** 0.18*** 0.55*** -0.03*** -0.44*** 

C 0.53*** 0.57*** 0.18*** 0.60*** 0.01** -0.02*** -0.30*** 0.05*** 

M 0.40*** 0.42*** 0.10*** 0.46*** NS -0.06*** -0.25*** 0.05*** 

S -0.39*** -0.40*** -0.13*** -0.42*** NS 0.07*** 0.19*** -0.09*** 

MAT -0.32*** -0.48*** -0.24*** -0.53*** -0.14*** -0.04 0.38*** 0.02*** 

MATR 0.18*** 0.12*** 0.06*** 0.13 0.08*** 0.50*** -0.15*** -0.36*** 

MAP -0.01*** -0.01*** -0.04*** -0.00* -0.07*** -0.65*** -0.01* 0.20*** 

Elevation 0.63*** 0.62*** 0.31*** 0.67*** 0.14*** 0.10*** -0.39*** -0.05*** 

TR 0.62*** 0.63*** 0.19*** 0.67*** 0.02*** 0.01* -0.42*** NS 

LCR 0.03*** 0.02*** NS 0.03*** 0.04*** 0.11*** -0.14*** -0.07*** 

Area of 

forest 

0.73*** 0.73*** 0.26*** 0.77*** 0.08*** 0.04*** -0.44*** -0.01** 

Area of 

scrub 

0.05*** 0.05*** 0.00* 0.05*** NS NS -0.05*** NS 

Area of 

agriculture 

-0.72*** -0.72*** -0.25*** -0.76*** -0.07*** -0.03*** 0.44*** 0.01** 

Area of 

wetland 

-0.01*** -0.02*** -0.01*** -0.02*** NS NS NS -0.01* 

Area of 

coast 

NS NS 0.01** NS NS NS NS 0.03*** 

*** P-value < 0.001, ** P-value < 0.01, * P-value < 0.05, NS, not significant.  
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Appendix 7. Pearson’s correlation coefficients (r) between species richness for each guild 

derived from range maps and species distribution model prediction maps. 

Species 

distribution model  

prediction map 

 (#species) 

All 

birds 

(336) 

Residen 

birds 

(261) 

Migratory 

birds 

(75) 

Forest 

birds 

 (222) 

Early- 

Successional  

birds 

 (15) 

Farmland 

birds 

(26) 

Wetland 

birds 

(49) 

Seacoast 

birds 

(24) 

Rang map 

(#species)                 

All birds  

(888) 0.74        

Resident birds  

(664) 0.74 0.75       

Migratory birds 

(224) 0.63 0.61 0.62      

Forest birds 

(636) 0.75 0.75 0.52 0.77     

Early-Successional 

birds 

(47) 0.64 0.63 0.57 0.62 0.25    

Farmland birds 

(35) 0.19 0.18 0.24 0.16 0.33 0.74   

Wetland birds 

(113) 0.26 0.24 0.40 0.20 0.28 0.66 0.15  

Seacoast birds 

(57) 0.04 0.03 0.08 0.00 -0.30 -0.58 -0.39 0.75 
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Chapter 2: The effects of habitat heterogeneity, as measured by satellite image texture, on 

tropical forest bird distributions 

Abstract 

Habitat heterogeneity is a key landscape characteristic influencing species distributions 

and diversity patterns. However, assessments of habitat heterogeneity at broad-scales are 

difficult and therefore limited. Our goal was to evaluate the performance of satellite image 

texture measures as an indicator of habitat heterogeneity for predicting tropical forest bird 

distributions over broad areas with varying levels of vertical forest habitat structure. We 

calculated a suite of texture measures from satellite-derived productivity data (1-km fPAR 

MODIS data) over only forested areas across Thailand. We evaluated these texture measures in 

terms of their ability to provide within-class habitat heterogeneity in species distribution models 

for 86 tropical forest bird species. We tested the predictive power of these models against models 

with landscape metrics derived from categorical land cover data. Measures of texture were 

effective in predicting occurrences of tropical forest birds, and homogeneity was the best 

predictor among texture measures. However, by themselves, both habitat composition-only and 

fragmentation-only measures were better predictors of species distributions than texture-only 

measures. Combing texture measures with habitat composition-only data significantly improved 

model accuracy though, and that combination performed better than habitat composition-only 

plus fragmentation measures. Based on our results, we suggest that satellite texture measures can 

predict species distributions at broad scales in regions with complex habitat heterogeneity such 

as tropical forests. Incorporating texture measures into broad-scale species distribution models 

may contribute to a better understanding of the mechanisms underlying species distributions and 

to more accurate predictions of range shifts due to land use and climate change. 



115 

 

Introduction 

Combating the crisis of biodiversity loss due to human activities and climate change 

requires efficient and accurate assessments of broad-scale patterns of biodiversity (Pereira et al. 

2013; Scholes et al. 2008; Sutherland et al. 2009). Remotely sensed data are increasingly used to 

model and understand species diversity and distributions at relevant temporal and spatial scales 

(Kerr and Ostrovsky 2003; Turner 2014; Turner et al. 2003). The challenge is how to quantify 

habitat features that are ecologically relevant to the species or taxa of interest. The use of satellite 

image texture has proved to be useful in capturing heterogeneity of land cover and vegetation 

(Culbert et al. 2009; Haralick et al. 1973; Wood et al. 2012). However, broad-scale assessments 

of species diversity-heterogeneity patterns have been conducted almost exclusively in temperate 

ecosystems (Culbert et al. 2012; Hepinstall and Sader 1997; St-Louis et al. 2009). Incomplete 

assessments of species diversity-heterogeneity patterns in tropical ecosystems continues to 

hamper understanding of the underlying mechanisms shaping such patterns, hindering 

conservation efforts (Tuanmu and Jetz 2015). Measures of habitat heterogeneity designed to 

predict biodiversity at scales relevant to conservation planning and the specific mechanisms 

underlying biodiversity patterns are needed to improve conservation and habitat management in 

the tropics.  

Habitat heterogeneity is an important landscape attribute influencing species and 

ecosystem functions (Kerr and Packer 1997; Macarthur and Macarthur 1961; Stein et al. 2014), 

and essential for mapping and monitoring broad-scale patterns of biodiversity (Culbert et al. 

2012; St-Louis et al. 2014b). Spatial heterogeneity of habitat affects metapopulations and 

communities by influencing movement patterns of individuals, intra- and interspecific 

interactions among organisms, and exposure to physical structure of habitats such as edge effects 
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(Benton et al. 2003; Fahrig 2003). Species perceive heterogeneity of their habitats at multiple 

scales throughout their life history (Morrison et al. 2006). At fine scales, heterogeneity of 

vegetation structure strongly influences bird assemblages (Bersier and Meyer 1994). Species 

may select habitat for nesting and foraging in association with heterogeneity in vertical and 

horizontal vegetation structure (Martin 1993). At broad scales, habitat heterogeneity influences 

the spatial patterns of species richness and distributions (Bellis et al. 2008; Culbert et al. 2012). 

Species may respond to heterogeneity in landscapes, such as forest fragmentation, depending on 

their habitat area requirement and ability to cross gaps (Dale et al. 1994). While the effects of 

habitat heterogeneity on species distribution patterns are well documented in temperate regions 

(Hepinstall and Sader 1997; Tuttle et al. 2006), its effects on species distributions at broad scales 

in tropical ecosystems is not. This knowledge gap is unfortunate because a better understanding 

of the effects of habitat heterogeneity on current patterns of species distributions is essential for 

biodiversity conservation and habitat management. 

The habitat heterogeneity hypothesis predicts that more varied habitat can support greater 

numbers of species because more heterogeneous habitat structure provides more foraging niches 

thereby allowing more species to co-exist (Hutchinson and Macarthur 1959; Macarthur and 

Macarthur 1961). However, the positive species-heterogeneity relationship is not universally true 

(Bar-Massada and Wood 2014; Tews et al. 2004). However, the strength of relationship varies, 

and can be positive, negative, unimodal, or flat depending on ecological characteristics of species 

or the taxonomic group (Bellis et al. 2008; Hepinstall and Sader 1997), scales (Bar-Massada et 

al. 2012), habitat type (Estes et al. 2010), biodiversity indices (e.g., species richness, abundance, 

or distribution) (St-Louis et al. 2014b). 
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Modeling broad-scale patterns of species-heterogeneity benefits greatly from the use of 

remotely sensed data (Bellis et al. 2008; St-Louis et al. 2014b; Tuanmu and Jetz 2015). Direct 

field measures of habitat heterogeneity, while effective in explaining species distributions and 

diversity patterns, are time consuming and labor intensive. Consequently, field-based studies of 

habitat heterogeneity and diversity are typically limited to small areas (Innes and Koch 1998). 

The advantages of spatially continuous coverage by satellite data, have prompted many broad-

scale studies to employ satellite imagery, and heterogeneity measures derived from, for example, 

elevation or categorical land cover data (Kerr and Packer 1997; Rahbek et al. 2007). However, 

land-cover–based and elevation-based heterogeneity measures have shortcomings. Land cover 

classification gives some information on spatial and temporal dynamics of habitat types, but 

ignores within-class habitat heterogeneity (St-Louis et al. 2006). Elevation-based data, on the 

other hand, do not capture vegetation patterns directly, and is only one of many factors 

determining habitat heterogeneity. Recently, using high-spectral and spatial satellite data from 

space-borne systems, such as Light Detection and Ranging (LiDAR) and Synthetic Aperture 

Radar (SAR) have gained importance as effective approaches to detect heterogeneity of 

vegetation structure, but data from these active sensors is not widely available (Nagendra and 

Rocchini 2008). 

Image texture has high potential for characterizing habitat, and thus for improving upon 

methods for mapping and monitoring biodiversity. The texture of a satellite image contains 

information about the spatial and structural arrangement of objects (Haralick et al. 1973). Image 

texture quantifies the pattern of brightness variations or grey-levels within an image or region 

within an image. There are two classes of texture measures: first- order (occurrence) and second-

order measures (co-occurrence) (Haralick et al. 1973). First-order texture measures are based on 
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the frequency distribution of pixel values (i.e., cumulative annual fPAR) in a defined 

neighborhood within an image, typically implemented as a moving window. Second-order 

texture measures are based on the differences in spectral values among neighboring pixels (i.e., 

the grey-level co-occurrence matrix, GLCM) (Haralick et al. 1973). The first-order measures are 

based on individual pixel values which reflect their compositional variability, whereas the 

second-order measures are determined by the interaction or co-occurrence of pixel values which 

reflect their spatial arrangement and dependence. Characteristics of different texture measures 

relate to spatial and spectral variation in a satellite image. Additionally, texture measures reflect 

heterogeneity among land cover classes, such as sharp transitions between forest and pasture 

(Haralick 1979). Therefore, texture measures are useful for characterizing land cover (Franklin et 

al., 2000; 2001), and habitat modeling (Bellis et al. 2008; Estes et al. 2008; Tuttle et al. 2006).  

Satellite observations provide a suite of vegetation indices to calculate texture measures 

in order to assess habitat heterogeneity at broad scales. The challenge is how to derive measures 

of texture that are most relevant for species distributions. For example, NDVI–based texture 

derived from Landsat imagery can predict species distributions of birds in the northeastern 

United States (Hepinstall and Sader 1997), and species richness of birds in the desert Southwest 

(St-Louis et al. 2009) and the Midwestern United States (Culbert et al. 2012; Wood et al. 2013). 

EVI – based texture derived from Moderate Resolution Imaging Spectroradiometer (MODIS) 

can explain bird species richness patterns in the United States (Tuanmu and Jetz 2015). Texture 

measures can also be assessed based on spatial data on the fraction of light absorbed by the 

vegetation (fPAR) imagery from MODIS data. MODIS fPAR is grounded in species-energy 

availability theory, and, as a measure of available energy, has successfully predicted biodiversity 

patterns for fauna in the temperate regions (Coops et al. 2009a; Coops et al. 2009b). So far 
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MODIS fPAR data has not been used to derive texture measures for species distribution 

modeling.  This is unfortunate, because MODIS fPAR data are available at high temporal 

resolution and over broad scales, thus providing a potentially greater opportunity to develop 

relevant, consistent, and applicable texture measures for biodiversity assessments (Coops et al. 

2008). However, the use of MODIS fPAR data as texture measures to capture within-class 

habitat heterogeneity across broad spatial extents has not been tested. 

Texture measures derived from remotely sensed data have successfully predicted species 

distributions and richness patterns of species at broad scales. Texture–species relationships have 

been studied for multiple taxa in a variety of habitat types, such as bird species richness in North 

American desert shrub land and grassland (St-Louis et al. 2009; St-Louis et al. 2014a), 

Wisconsin grassland, savanna, and woodland (Wood et al. 2013), Midwestern ecoregions 

(Culbert et al. 2012), the United States (Tuanmu and Jetz 2015), and South American highland 

forests (Bellis et al. 2015). The relationship between species distribution patterns and habitat 

heterogeneity has been demonstrated for mountain bongo in east African montane forest (Estes 

et al. 2008; Estes et al. 2010), the red tail monkey (Stickler and Southworth 2008), the Greater 

Rhea in grassland Argentina (Bellis et al. 2008), and bird distributions in Maine (Hepinstall and 

Sader 1997). Studies of bird distributions in Maine and Argentina show the association with 

heterogeneous habitats (Bellis et al. 2008; Hepinstall and Sader 1997). To our knowledge, the 

species distribution–heterogeneity relationship for tropical forest birds has not yet been 

evaluated. Birds, in particular, respond to a variety of habitat features, and capturing the breadth 

of those features using remotely sensed data is challenging. Thus, it still remains unclear whether 

texture measures derived from MODIS fPAR data can predict broad-scale species distribution 
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patterns of forest birds in structurally complex, closed-canopy habitat such as tropical forest 

ecosystems. 

Our goal was to evaluate the ability of satellite image texture measures derived from 

MODIS fPAR to predict tropical bird species distributions. Our specific objectives were to test: 

(1) if texture measures can predict distributions of tropical forest bird specialists across broad 

scales, and (2) how these models based on texture measures compare with models based on 

measures of habitat availability and habitat fragmentation, and can these variables complement 

each other to improve species distribution modeling of tropical birds. We hypothesize that 

texture measures can describe broad-scale distributions of species utilizing forest habitats with 

complex vertical and horizontal habitat structure, and perform particularly well for species with 

large body size and that nest in tree cavities or canopies, compared to species with smaller body 

size that utilize simple vertical and horizontal structure and nest on the ground or in the 

understory. We hypothesize that including texture measures would improve model performance 

for predicting tropical bird distributions because landscape metrics derived from land cover 

classification ignore within-habitat variability, whereas texture measures capture both within and 

between habitat heterogeneity. Furthermore, we expected that texture measures would 

complement measures of habitat composition and fragmentation in particular for area- and edge-

sensitive species. 
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Methods 

Study area 

Our study area was the tropical forest ecosystems of Thailand covering 163,391 km2 

(32% of the country total area, RFD 2013) (Figure 6). The climate is seasonal with monsoons, a 

rainy and a dry season. Annual precipitation ranges between 1000 mm and 4000 from May to 

October in the rainy season. The average annual temperature is approximately 26-29 °C, and the 

highest temperature is approximately 40 °C in April (TMD 2010). The study area consists of two 

major diverse types of tropical forest: broad-leaved evergreen forest and broad-leaved deciduous 

forest. The tropical broad-leaved evergreen forest contains multiple forest habitat types including 

montane evergreen forest, dry evergreen forest, rain forest, pine forest, swamp forest, mangrove 

forest, and beach forest. The tropical broad-leaved deciduous forest includes mixed deciduous 

forest and dry dipterocarp forest (RFD 2013). Thailand is a global biodiversity hotspot (Myers et 

al. 2000) , and is home to more than 1,000 bird species (Bird Conservation Society of Thailand 

Records Committee 2012). However, Thailand is facing extensive forest loss and fragmentation 

which has led to a decline in forest bird diversity (Pattanavibool and Dearden 2002; Round and 

Gale 2008; Woodruff 2013). 

Study species and occurrence data 

To evaluate the utility of texture measures for species modelling, we obtained data on 

bird species occurrences from the Global Biodiversity Information Facility (GBIF) 

(http://www.gbif.org/). The bird GBIF data for Thailand is mainly based on opportunistic 

observations and some field survey data. For the purpose of our study, we focused on resident 

forest bird species to investigate the ability of texture measures in predicting bird distributions 

utilizing different forest habitat types all year round. We analyzed all georeferenced records 

http://www.gbif.org/
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collected from 2000-2015, to temporally coincide with texture and landscape metric data. We 

included all species with greater than 30 unique localities as the minimum sample size required 

for species distribution modeling (Hernandez et al. 2006; Pearson et al. 2007). We assembled 86 

forest specialist bird species of 5 taxonomic orders and 28 families with a total of 12,858 

georeferenced records (Table 7). All samples were georeferenced to the spatial resolution of the 

environmental data that we used (1 km²). 

Texture measure data 

To characterize texture, we calculated a suite of texture measures (Table 8) based on the 

1-km MODIS fPAR data from the MOD15A2. We acquired 8-day mosaics of Collection 5 data 

from 2003-2014. We analyzed a 12-year time period to balance potential land-cover changes and 

a sufficient number of cloud-free fPAR values to characterize the greenness. To characterize the 

greenness throughout a year, we extracted the MODIS fPAR value for the 15th of each month, 

and calculated the cumulative annual productivity by summing monthly MODIS observations for 

each year (Coops et al. 2009a; Coops et al. 2008). To exclude artificially low fPAR values over 

water, we masked the pixels covered by water, and we selected the median value of the 12-year 

time series for each date to exclude low values due to sensor errors or missing data. Details about 

the way the fPAR composite image was derived can be found in Radeloff et al (in preparation).  

We calculated three first-order texture measures: entropy, mean, and variance in a 3×3 

moving window. We also calculated eight second-order texture measures: angular second 

moment, contrast, correlation, dissimilarity, entropy, homogeneity, mean, and variance (Haralick 

et al. 1973). We selected these texture measures based on their ability to characterize vegetation 

structure, and therefore be relevant measures for bird species distributions (Bellis et al. 2008; 

Hepinstall and Sader 1997; Wood et al. 2012). We quantized the imagery to 64 values to limit 



123 

 

the size of the GLCM and avoid matrices that are too sparsely populated (Culbert et al. 2012). 

We calculated the texture measures for adjacent pixels as the mean of the four possible 

directional GLCMs (0°, 45°, 90° and 135°) (Haralick et al. 1973). We calculated texture 

measures using ENVI software (Exelis Visual Information Solutions, Boulder, Colorado). The 

texture data were projected to the WGS84 geographic coordinate system with UTM47N using 

bilinear convolution (Figure 7). Many texture measures are correlated (Culbert et al. 2012) and 

we applied a Pearson’s correlation coefficient threshold (|r|>0.7) to exclude collinear variables 

(Dormann et al. 2013), which reduced the eleven texture measures to five measures: first-order 

coefficient of variation, second-order homogeneity, correlation, contrast, and entropy (Appendix 

9). 

Habitat composition data 

We generated habitat composition at 1-km resolution based on categorical land-cover 

data. These measures are commonly used to predict bird species distributions in broad-scale 

studies (Jetz and Rahbek 2002; Kerr and Packer 1997; Kreft and Jetz 2007). We calculated 

habitat composition from the 2000 Thailand land cover map with a 30-m resolution, derived 

from Landsat TM, ETM+. To quantify habitat composition measures, we calculated the 

proportion of habitat area within a 1-km grid cell for six forest habitat types: montane evergreen 

forest, dry evergreen forest, lowland evergreen forest, mixed deciduous forest, dry dipterocarp 

forest, and secondary-growth forest. 

Habitat fragmentation data 

We also calculated five fragmentation measures of forest habitat from the 2000 Thailand 

land cover map for core, edge, perforation, bridge, and loop with the Morphological Spatial 

Pattern Analysis (MSPA) implemented in GUIDOS analytical tool (Vogt et al. 2007). The 



124 

 

MSPA is based on morphological image segmentation allowing an automated per-pixel 

classification and description of the geometry, pattern, fragmentation, and connectivity of a 

landscape (Soille and Vogt 2009; Vogt et al. 2007). We selected five fragmentation metrics, (1) 

core is defined as forest pixels whose distance to the non-forested areas is greater than the edge 

width, and is considered as the focal habitat area for birds, (2) edge is defined as a set of forest 

pixels whose distance to the patch edge is lower than or equal to the given edge width and 

corresponds to the outer boundary of a forest core area, (3) perforation is similar to edge, but it 

corresponds to the inner boundary of a core forest area, (4) bridge is a set of contiguous non-core 

forest pixels connecting at least two forest patches, (5) loop is a group of pixels that connect 

different parts of the same forest patch (Saura et al. 2011; Soille and Vogt 2009). 

Species distribution models 

We used logistic regression models (GLMs, McCullagh and Nelder, 1989) to (1) evaluate 

whether MODIS fPAR texture can predict bird species distributions, (2) evaluate whether 

combining measures of texture with habitat composition and fragmentation derived from land 

cover classifications can improve model performance for species distributions. 

We fitted all possible combinations of (i) texture, (ii) composition, (iii) fragmentation, 

(iv) texture + composition, (v) fragmentation + composition, and (vi) texture + fragmentation + 

composition. To assess multicolinearity among the 16 texture, habitat composition, and 

fragmentation variables, we applied Pearson’s correlation coefficients (|r|>0.7) and found that 

there was no collinearity among them (Appendix 10). To address potential nonlinearities in the 

relationship between species distributions and predictors, we included both linear and quadratic 

forms of predictors in the models. The best approximating model was then selected based on the 

Akaike Information criterion (AIC) with the best fitting model having the lowest AIC (Burnham 
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and Anderson, 2002). The GLM modeling algorithm requires binary or background data, so we 

generated pseudo-absences by randomly sampling 1-km grid cells within forested areas. 

Generating pseudo-absences from environmental regions further away from the optimum 

established by presence data may lead to over-prediction of the model (Bateman et al. 2012; 

VanDerWal et al. 2009). For each model run, we constructed two sets of pseudo-absences, each 

chosen at random to obtain more reliable distribution model outputs (Thuiller et al. 2009). We 

generated pseudo-absences as ten times the number of presence records (Barbet-Massin et al. 

2012). 

To evaluate model performance, we used 10-fold cross-validation with a split random 

sample of 90% of presence data used for calibration (training data) and the remaining 10% for 

evaluation (testing data) (Elith et al. 2011). During the calibration process, we gave equal 

weighting to presence data and pseudo-absence data. For each species, we used 10-fold cross 

validation on the two pseudoabsence replicates, for a total of 20 replicates each. We used AUC 

values to test model performance, and initially considered values above 0.7 to be indicative of 

useful models (Elith et al. 2006; Swets 1988). 

The importance of each variable for each species was calculated using a randomization 

procedure as one minus the Pearson’s correlation coefficients between the standard prediction 

and the prediction where the considered variables was randomly permutated. If the correlation is 

high (i.e., there is a small difference between the two predictions), the variable permutated is 

considered not important for the model. Therefore, one minus the correlation coefficient 

represents, for a given variable, the probability that the coefficient can contribute to the model. 

The higher the probability, the higher a variable contributes in predicting the pattern (Thuiller et 

al. 2009). 
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Model comparison 

To determine whether including texture measures are important in predicting current 

distributions of tropical forest birds in Thailand, we compared estimators of model performance 

(i.e., AUC) between composition and texture, and between composition and texture + 

composition, and between composition and texture + fragmentation + composition. We used 

Wilcoxon signed-rank tests for related samples to test the significant difference among models. 

Additionally, we examined whether the texture + composition + fragmentation models for all 

bird species consistently select the texture measures (Araujo and Luoto 2007; Bateman et al. 

2012). 

For each species, we calculated the relative difference of AUC values of the composition, 

texture + composition, fragmentation + composition, and texture + fragmentation + composition 

(Δ AUC). Large relative values of Δ AUC indicate that one model scenario performed 

substantially better than the other, whereas Δ AUC values close to zero indicate that the two 

model scenarios performed equally well. All statistical analyses were conducted in R (R Core 

Team 2015). GLMs were fitted within the BIOMOD2 package (Thuiller 2003; Thuiller et al. 

2009). 

Results 

Texture measures as predictors of species distributions 

Texture measures effectively predicted species distributions for 86 tropical forest birds 

with an average AUC value of 0.80 (AUC > 0.7 is a fair model, Swets 1988) (Table 9). 

However, the predictive accuracies of models varied across species and taxonomic orders. Of all 

species modelled, Tickell's Brown Hornbill (Anorrhinus tickelli) had the highest AUC values of 

0.94 (Appendix 8). Among different taxonomic orders, Bucerotiformes (i.e., hornbill species) 
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had the highest AUC values with an average AUC value of 0.87. On the other hand, the forest 

bird species in Passeriformes and Piciformes taxonomic groups had the lowest AUC values with 

an average AUC value of 0.79 (Figure 8). As we expected, texture measures derived from 1-km 

MODIS fPAR well predicted large body size-forest bird species, such as hornbill species because 

hornbill species perceive and utilize forest structure at larger scales than smaller species, and 

thus are influenced more by heterogeneity of forest structure. 

In comparison to habitat composition and fragmentation, the composition models 

outperformed fragmentation models (P < 0.001), and texture models (P < 0.001). However, the 

texture + composition models were significantly better than the fragmentation + composition 

models (P < 0.001) (Figure 8), indicating the complementarity of information carried by 

measures of texture. We found that there was considerable variation in AUC values among 

species and the AUC values of the composition models were not higher in all species. Texture 

measures better predicted Grey Peacock Pheasant, Yellow-vented Flowerpecker, Greater 

Necklaced Laughingthrush, Lesser Necklaced Laughingthrush, and Buff-vented Bulbul 

distributions than measures of composition and fragmentation (Appendix 8). At the taxonomic 

level, forest bird species in Bucerotiformes showed no significant difference in AUC values 

between texture models and fragmentation models (P = 0.875) (Figure 8), indicating that this 

group of species may perceive habitat heterogeneity as habitat fragmentation due to their large 

home range size. 

The incorporation of texture measures with habitat composition and fragmentation 

The incorporation of texture measures significantly improved species distribution models 

for tropical forest birds. The texture + composition + fragmentation models for all bird species 

consistently selected the texture measures, especially homogeneity and contrast (results not 
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shown). The incorporation of texture measures into the models for tropical forest birds 

significantly improved the AUC values from 0.889 (± 0.057 SD), for the composition models to 

0.927 (± 0.0576 SD) for the texture + composition + fragmentation models (Table 9) with 

relative gains up to 39% in Bar-backed Partridge (results not shown) and average 10% in 

Galliformes (P < 0.001) (Figure 9). Likewise, including texture or fragmentation significantly 

improved model performance compared with composition models (P < 0.001). Galliformes 

showed the highest increase of the relative AUC values. However, Bucerotiformes and 

Cuculiformes taxonomic groups showed no difference in the relative AUC values after including 

fragmentation into texture + composition models (Figure 9). While confirming the importance of 

habitat composition and fragmentation, these results also highlight the importance of including 

texture measures to predict the distributions of tropical forest bird at the broad-scales. 

Variable importance of texture measures 

Second-order homogeneity was the best predictor for overall bird species distributions 

when using texture measure alone (Figure 10). At the taxonomic level, Bucerotiformes, 

Cuculiformes, Passeriforme, and Piciformes were strongly associated with second-order 

homogeneity whereas Galliformes was highly associated with second-order entropy. Second-

order homogeneity, and contrast were the best complement to habitat composition and 

fragmentation for modeling species distributions, highlighting their relevance for capturing 

habitat characteristics.  The relationships of texture measures and species distributions varied, 

sometimes positive, negative, and nonlinear depending on species and taxonomic groups. Almost 

all texture measures showed nonlinear relationships in the most parsimonious model for each 

species (lowest AIC) (results not shown). We thus chose Tickell’s brown hornbill with the 

highest model accuracy to investigate the strength of the relationships. We found that the 
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probability of occurrences of Tickell’s brown hornbill increased as homogeneity and correlation 

values increased but not linearly, while the probability of occurrences decreased as coefficient of 

variation and contrast increased. The probability of occurrences was higher at the middle level of 

entropy values. These results indicated that the probability of occurrences for Tickell’s brown 

hornbill were high in highly homogeneous areas (Figure 11). 

Habitat suitability maps 

To validate that the distribution models from the texture + fragmentation + composition 

improved the predictions from the habitat composition models, we investigated the suitability 

maps of the brown hornbill. We selected brown hornbill because this species is an IUCN non-

threatened concern facing serious threat from human activities, such as deforestation, and illegal 

poaching (Poonswad et al. 2013; Round 1988). A visual inspection of the predicted potential 

geographic distributions of Brown Hornbills derived from both models showed a broad 

agreement with the currently known distribution from 15 protected areas across Thailand that 

covers the extent of dry and montane evergreen forest biomes with elevation ranges of 500-1500 

m (Poonswad 1993; Round et al. 2003). However, the texture + fragmentation + composition 

model (Figure 12a) agreed better with the known range whereas the habitat composition model 

over-predicted suitable areas (Figure 12b). 

Discussion 

We evaluated the ability of image texture measures, a proxy of within-class habitat 

heterogeneity, to predict distributions of tropical forest birds at broad scales. We found that 

image texture measures derived from 1-km MODIS fPAR effectively predicted the distributions 

of tropical forest birds across Thailand. As expected, texture measures strongly associated with 

broad-scale distributions of forest bird species utilizing forest habitats with complex vertical and 
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horizontal structure such as those nesting in old-growth tree cavities, compared to species 

utilizing forest habitats with simpler vertical and horizontal structure, such as ground-nesting 

species. Texture measures complemented measures of habitat composition well, and more so 

than fragmentation metrics. Our results suggest that texture measures successfully captured 

habitat heterogeneity and provide detailed information which can complement measures of 

habitat composition when predicting patterns of species distributions. Given this, we suggest that 

texture–based MODIS fPAR measures can contribute to a better understanding of patterns of 

species distributions and diversity at broad temporal and spatial scales. 

Our results support previous studies modeling species distributions based on image 

texture, for example the Greater Rhea, a grassland bird species of central Argentina (Bellis et al. 

2008), and temperate birds in Maine (Hepinstall and Sader 1997) as well as bird richness patterns 

in savanna, grassland, and woodland (Wood et al. 2013), desert-scrub (St-Louis et al. 2009; St-

Louis et al. 2014a; St-Louis et al. 2006), North American ecosystems (Culbert et al. 2012; 

Tuanmu and Jetz 2015), and South American highland forests (Bellis et al. 2015). While 

modeling bird distribution patterns has been effective in habitats with low vertical structure, such 

as grassland (Bellis et al. 2008), and among habitat generalists (Hepinstall and Sader 1997), we 

showed that image textured derived from MODIS fPAR can capture within-class habitat 

heterogeneity and successfully predict species distribution patterns even in habitats with highly 

complex habitat structure as is common in tropical forest ecosystems. 

As we expected, texture measures predict distributions for species with large body size 

utilizing complex vertical and horizontal habitat structure better, than those of smaller body size 

species utilizing understory vegetation structure. Specifically, tropical forest birds in 

Bucerotiformes taxonomic group, such as hornbills strongly associated with texture measures. 
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Hornbills are large-size frugivorous bird species ( Poonswad et al. 1998; Lekagul and Round 

1991; Kitamura et al. 2004) with approximately body mass of 0.9 – 3 kg (Dunning 2008), and 

with an average home range size of 3.7 - 10 km2 for the breeding season and 14.7 - 28 km2 for 

the non-breeding season in Thailand (Poonswad and Tsuji 1994). Hornbills nest in tree cavities 

and gather to feed in fruiting trees, and thus require old-growth evergreen forests and mixed 

deciduous forests (Poonswad 1995; Poonswad et al. 2005). In contrast, smaller body size, canopy 

or understory foraging and nesting bird species had lower associations with texture measures. 

These taxonomic groups, such as pheasant, cuckoo, flycatcher, and piculet may perceive habitat 

heterogeneity at different scales, causing texture measures to have lower predictive power 

(Robson 2000; Round 1988). While satellite imagery is generally not well suited to measure the 

structure of understory vegetation in forests (Gottschalk et al. 2005), understory mapping can be 

successful when structural characteristics are correlated with canopy features (Estes et al. 2010). 

The combined texture with habitat composition and fragmentation models yielded the 

highest model accuracies compared to models derived from habitat composition, and predicted 

more accurate suitable habitat for tropical forest bird species. The best models included a 

relatively even mix of texture, fragmentation, and habitat composition because each measure is 

important and contributes to different aspects that shape species distributions, richness, and 

abundance differently, and species may respond to those factors differently. We expected that 

including texture measures into distribution models would improve model performance more 

because texture measures capture additional characteristics of heterogeneity of forest structure 

that are useful in predicting distribution patterns. Texture measures capture the between and 

within heterogeneity of a given forest type, whereas habitat composition and fragmentation 

based on land cover classification do not provide within land cover class heterogeneity (Estes et 
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al. 2010).  This explains the complementary information of texture measures with commonly 

used habitat composition and fragmentation measures in predicting species distributions. 

Surprisingly though, model accuracies for hornbill and cuckoo species showed no improvement 

of model accuracies after including fragmentation measures into the combined texture and 

habitat models. This highlights the importance of habitat heterogeneity for canopy-species. 

Previous studies also showed that the combination of texture, productivity, landscape metrics, 

and human disturbance resulted in a better understanding of the relationships between bird 

species richness in Midwest temperate ecosystems (Culbert et al. 2012), Southwest desert-scrub 

(St-Louis et al. 2014b; St-Louis et al. 2006), and across the United States (Tuanmu and Jetz 

2015) as well as bird distributions in Argentinian grassland (Bellis et al. 2008).  

A few image texture measures were most important in predicting bird distribution at 

broad-scales. Although species-heterogeneity predicts a positive relationship where more 

heterogeneity results in higher species diversity (Macarthur and Macarthur 1961), most of 

texture measures in our study had a nonlinear relationship. Theoretical and empirical studies 

have suggested that a trade-off between the positive effect of high habitat heterogeneity and the 

negative effect of small habitat areas on species diversity may cause an unimodal species-

heterogeneity relationship (Allouche et al. 2012; Kadmon and Allouche 2007). Second-order 

homogeneity was the most important factor in predicting tropical forest bird distributions but 

exhibited nonlinear relationships with most species. Second-order homogeneity is a measure of 

uniformity and is high when adjacent pixels have similar reflectance values, suggesting that 

tropical bird occurrences are more likely in homogeneous habitats. The reason for this may be 

that among different forest types, evergreen forests are generally more homogenous than 

deciduous forests and secondary-growth forests (Appendix 11). Most of our study species 
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occupy evergreen forests, which is why homogeneity of habitat may be more important than 

other texture measures. In contrast, we found that second-order entropy was the most important 

factor in predicting ground foraging and nesting species, such as pheasants and partridge. This 

taxonomic group utilizes a variety of forest habitat structure from evergreen to scrub and forage 

a variety of diet such as invertebrate, grains, buds, seeds, and fallen fruits. This may make 

Galliformes respond positively to higher heterogeneity. Our findings are supported by a previous 

study on bird species richness patterns with texture based MODIS EVI showing that the texture 

measures sensitive to low levels of heterogeneous habitat (e.g., entropy) are useful for 

homogeneous areas, such as forest ecosystem, while measures that have similar sensitivity across 

heterogeneity levels (e.g., homogeneity) are useful for diverse habitat types (Tuanmu and Jetz 

2015). This is likely the reason why homogeneity and entropy were the most useful measures for 

capturing spatial heterogeneity in forest ecosystems. 

When we compared species distribution models based on texture versus habitat 

composition versus fragmentation, we found that both sets of habitat measures outperformed 

texture-only measures. This supports the theory that habitat heterogeneity of vegetation structure 

is more important in explaining species diversity at small- scales, but spatial patterns of 

landscape elements are more important at broad-scales (Hutto 1985). The only exception was the 

hornbill, which showed no significant difference in model accuracy when modeling with texture-

only variables or fragmentation-only variables. We speculate that this is due to that fact that 

because of its large body size, hornbill species perceive within-forest structure as fragmentation 

of habitat.  

Texture measure derived from MODIS fPAR improved model predictions for tropical 

bird distributions, but many texture measures are difficult to interpret in terms of their 



134 

 

relationships with individual species and ecological processes (Culbert et al. 2012). We 

developed texture measures based on fPAR rather than individual spectral bands of remote 

sensing images in previous studies (Estes et al. 2010). Texture measures from MODIS fPAR can 

be conceptualized as a measure of spatial variability and spatial arrangement of vegetation 

productivity (i.e., availability of energy within a landscape). This makes texture measures more 

ecologically meaningful and thus more applicable for biodiversity modelling at broad-scales 

(Coops et al. 2009a; Coops et al. 2009b). However, the interpretation of texture based on 1-km 

MODIS fPAR is different than texture measures derived from higher resolution remote sensing 

images, such as 30-m Landsat data, which capture both vertical and horizontal complexity of 

vegetation structure (Wood et al. 2012). MODIS’ 1-km spatial resolution may not be relevant to 

some smaller body size species utilizing understory habitat, and thus limit the use of MODIS 

fPAR for connecting them to their specific ecological functions. However, the lower temporal 

frequency of Landsat images can make it challenging to acquire cloud free imagery at the same 

phenological stage over broad-scales (Culbert et al. 2009). 

In summary, our study shows that texture measures are effective variables in predicting 

tropical forest bird species distribution patterns at broad-scales. Texture measures derived from 

MODIS fPAR captured habitat heterogeneity for several taxonomic groups, and across varied 

forest habitats, ranging from secondary-growth forests to moist evergreen forests. The 

incorporation of texture measures and landscape metrics improved model performance because 

texture measures provide more ecologically relevant information and may enhance 

understanding of the relationship between heterogeneity and species distributions and underlying 

mechanisms. The successful applications of texture based MODIS fPAR indicate broader 

applications for biodiversity assessments. Additionally, texture measures derived from MODIS 
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fPAR are able to capture phenological changes in vegetation at broad-scales, and potentially be 

applied in monitoring spatial and temporal dynamics of habitat heterogeneity. The texture 

measures from MODIS fPAR are a promising tool for assessing and predicting biodiversity 

patterns in response to environmental changes. 
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Tables 

Table 7. List of five bird taxonomic groups and guild affiliation in the study. 

Order Foraging Nesting Diet Example 

Bucerotiformes Canopy Old-growth 

tree cavity 

Fruit Hornbill 

Cuculiformes Arboreal Canopy Insect, 

vertebrate, fruit 

Cuckoo, Malkoha 

Galliformes Ground Ground Invertebrate, 

grain, bud, seed, 

fallen fruit 

Jungle fowl, Partridge, Pheasant 

Passeriformes Arboreal Low 

vegetation to 

canopy 

Fruit, insect, 

nectar, bud 

Flowerpecker, Laughingthrush, 

Flycatcher, Bulbul, Babbler 

Piciformes Canopy Small tree 

cavity 

Fruit, insect Barbet, Piculet, Yellownape 
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Table 8. Five texture measures derived from the cumulative productivity with description of 

texture characteristics, and the statistical equations. 

 Description Equation1 

First-order texture   

Coefficient of 

Variation 

Dispersion of fPAR  𝑆𝐷𝑓𝑃𝐴𝑅

𝑓𝑃𝐴𝑅̅̅ ̅̅ ̅̅ ̅̅
 

Second-order texture   

Contrast A measure of the local fPAR intensity 

variation in values among 

neighboring pixels 

∑ 𝑛2

𝑁−1

𝑛=0

{∑ ∑ 𝑝(𝑖, 𝑗)

𝑁

𝑗=1

𝑁

𝑖=1

} 

Correlation Linear dependency of fPAR on 

neighboring pixels 

∑ 𝑃𝑖,𝑗 [
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)

(𝜎𝑖
2 ∙ 𝜎𝑗

2)
1 2⁄

]
𝑁−1

𝑖,𝑗=0
 

Entropy Disorderliness of fPAR (i.e., Shannon 

diversity)  

− ∑ ∑ 𝑝(𝑖, 𝑗) log(𝑝(𝑖, 𝑗))
𝑗𝑖

 

Homogeneity A measure of sum in values of fPAR  

among neighboring pixels 

∑ ∑
1

1 + (𝑖 − 𝑗)2
𝑝(𝑖, 𝑗)

𝑗
𝑖

 

1 From Haralick et al. (1973) 
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Table 9. AUC scores for texture, texture + composition, and all three sets of variable models of 

the bird distribution for all species and five taxonomic orders. The number are the average and 

standard deviation of AUC values for bird species in the groups. All three model scenaios for 

each taxonomic group were significantly different at P < 0.001. 

 Texture Texture + Composition Texture + Composition + Fragmentation 

All species 0.801 ± 0.077 0.927 ± 0.056 0.938 ± 0.062 

Bucerotiformes 0.871 ± 0.049 0.945 ± 0.043 0.946 ± 0.043 

Cuculiformes 0.807 ± 0.087 0.921 ± 0.063 0.924 ± 0.073 

Galliformes 0.834 ± 0.091 0.928 ± 0.099 0.938 ± 0.096 

Passeriformes 0.794 ± 0.077 0.928 ± 0.051 0.939 ± 0.059 

Piciformes 0.794 ± 0.071 0.92 ± 0.064 0.931 ± 0.064 
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Figures 

 

Figure 6. Study area, including six main forest habitat for birds in Thailand 
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Figure 7. Spatial patterns of habitat heterogeneity captured by the five texture measures of 

cumulative productivity (i.e., the cumulative Dynamic Habitat Index) derived from 1-km 

resolution MODIS FPAR. First-order coefficient of variation (a) quantify composition of habitat 

heterogeneity. Second-order contrast (b), correlation (c), entropy (d), and homogeneity (e) 

quantify spatial arrangement of cumulative fPAR values.  



152 

 

 

Figure 8. Plot summarizes AUC values of six distribution model scenarios for five bird 

taxonomic orders. The AUC values are the average of AUC for individual bird species in 

Bucerotiformes, Cuculiformes, Galliformes, Passeriformes, and Piciformes taxonomic orders. 

Six models scenarios for the model comparison are texture models, composition models, 

fragmentation models, texture + fragmentation models, fragmentation + composition models, 

and texture + composition + fragmentation models.  
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Figure 9. The relative gain of AUC values (%) of bird species distribution models for five 

taxonomic orders calculated from the differences between composition models and models 

integrating fragmentation, texture, and both fragmentation and texture. 
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Figure 10. Variable importance of five texture measures used to predict the patterns of 

distributions for tropical forest birds. variable importance is obtained from 1- Pearson’s 

coefficient correlation for three model scenarios of texture, texture + habitat, and texture + 

composition + fragmentation. The amplitude of the bar represents the relative contribution of 

each variable for predicting the response.  
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(a)             (b) 

 
(c)             (d) 

 
(e) 

 

Figure 11. Response curves depict the relationship between the probability of occurrences of 

Tickell’s brown hornbill and texture measures: (a) coefficient of variation, (b) contrast, (c) 

correlation, (d) entropy, and (e) homogeneity.  
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Figure 12. Predicted habitat suitability maps for Tickell’s brown hornbill overlays with their 

known distributions in 15 protected areas in Thailand; (a) modeled with habitat composition 

variables, (b) modeled with texture, habitat composition, and fragmentation.  

(a) (b) 
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Appendices 

Appendix 8. AUC scores for texture, habitat composition, fragmentation, texture + composition, 

fragmentation + composition, and texture + composition + fragmentation models of the 

distribution of 86 tropical forest bird species. The AUC are the average of the 20 individual runs 

(2 replicates each of 10-fold cross validations) for each model scenarios. IUCN represents IUCN 

Red List categories of bird species: LC= least concern, NT = Near Threatened. Species are 

classified by taxonomic orders in bold. 

Common name Scientific name IUCN Texture Composition Fragmentation 

Texture 

Composition 

Fragmentation 

Composition 

All 

Variables 

BUCEROTIFORMES         

Tickell's Brown 

Hornbill   

Anorrhinus 

tickelli NT 0.937 0.942 0.885 0.969 0.932 0.962 

Oriental Pied Hornbill   

Anthracoceros 

albirostris LC 0.845 0.848 0.861 0.941 0.876 0.947 

Great Hornbill   

Buceros 

bicornis NT 0.847 0.924 0.857 0.936 0.934 0.946 

Wreathed Hornbill    

Rhyticeros 

undulatus LC 0.857 0.937 0.860 0.935 0.933 0.931 

CUCULIFORMES         

Banded Bay Cuckoo 

Cacomantis 

sonneratii LC 0.777 0.839 0.808 0.888 0.884 0.883 

Asian Emerald Cuckoo   

Chrysococcyx 

maculatus  LC 0.826 0.892 0.837 0.961 0.911 0.961 

Chestnut-breasted 

Malkoha    

Phaenicophaeus 

curvirostris LC 0.879 0.942 0.872 0.977 0.953 0.984 

Green-billed Malkoha  

Phaenicophaeus 

tristis LC 0.748 0.750 0.754 0.857 0.781 0.867 

GALLIFORMES         

Bar-backed Partridge   

Arborophila 

brunneopectus LC 0.735 0.686 0.757 0.944 0.883 0.954 

Scaly-breasted 

Partridge  

Arborophila 

chloropus LC 0.819 0.878 0.866 0.913 0.890 0.918 

Red Junglefowl   Gallus gallus LC 0.807 0.854 0.816 0.879 0.862 0.894 
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Siamese Fireback  Lophura diardi LC 0.826 0.940 0.895 0.956 0.923 0.951 

Silver Pheasant    

Lophura 

nycthemera LC 0.899 0.920 0.932 0.959 0.959 0.981 

Grey Peacock Pheasant    

Polyplectron 

bicalcaratum LC 0.920 0.898 0.879 0.916 0.918 0.929 

PASSERIFORMES         

Yellow-bellied Warbler   

Abroscopus 

superciliaris LC 0.722 0.838 0.812 0.864 0.842 0.893 

Spectacled Barwing  

Actinodura 

ramsayi LC 0.841 0.947 0.876 0.975 0.973 0.980 

Great Iora   

Aegithina 

lafresnayei LC 0.870 0.889 0.823 0.935 0.895 0.934 

Green Iora 

Aegithina 

viridissima NT 0.842 0.916 0.781 0.976 0.915 0.980 

Black-throated Sunbird   

Aethopyga 

saturata LC 0.730 0.932 0.874 0.937 0.944 0.956 

Brown-cheeked 

Fulvetta   

Alcippe 

poioicephala LC 0.788 0.838 0.808 0.898 0.850 0.906 

Little Spiderhunter  

Arachnothera 

longirostra LC 0.772 0.862 0.799 0.906 0.864 0.923 

Streaked Spiderhunter   

Arachnothera 

magna LC 0.749 0.909 0.831 0.909 0.915 0.926 

Yellow-bellied Fairy-

flycatcher 

Chelidorhynx 

hypoxantha LC 0.887 0.961 0.860 0.974 0.955 0.964 

Golden-fronted 

Leafbird   

Chloropsis 

aurifrons LC 0.684 0.845 0.825 0.852 0.848 0.868 

Blue-winged Leafbird   

Chloropsis 

cochinchinensis LC 0.778 0.871 0.850 0.896 0.875 0.907 

Orange-bellied 

Leafbird   

Chloropsis 

hardwickii  LC 0.736 0.943 0.898 0.954 0.949 0.943 

Chestnut-tailed Minla   

Chrysominla 

strigula LC 0.884 0.973 0.881 0.986 0.979 0.988 

Common Green 

Magpie   Cissa chinensis LC 0.833 0.898 0.853 0.913 0.907 0.933 

White-rumped Shama  

Copsychus 

malabaricus LC 0.725 0.810 0.790 0.823 0.785 0.832 

Tickell's Blue 

Flycatcher   

Cyornis 

tickelliae LC 0.813 0.814 0.842 0.909 0.870 0.942 

Grey Treepie 

Dendrocitta 

formosae LC 0.804 0.908 0.825 0.941 0.916 0.959 
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Thick-billed 

Flowerpecker   Dicaeum agile LC 0.728 0.858 0.803 0.935 0.879 0.948 

Yellow-vented 

Flowerpecker   

Dicaeum 

chrysorrheum LC 0.871 0.864 0.859 0.931 0.893 0.943 

Plain Flowerpecker 

Dicaeum 

minullum LC 0.734 0.864 0.834 0.924 0.884 0.936 

Orange-bellied 

Flowerpecker   

Dicaeum 

trigonostigma LC 0.891 0.929 0.883 0.980 0.950 0.989 

Bronzed Drongo   

Dicrurus 

aeneus LC 0.708 0.867 0.796 0.863 0.840 0.879 

Lesser Racket-tailed 

Drongo 

Dicrurus 

remifer LC 0.727 0.856 0.814 0.920 0.888 0.928 

Black-throated 

Laughingthrush   

Dryonastes 

chinensis LC 0.814 0.905 0.897 0.918 0.913 0.919 

Slaty-backed Forktail   

Enicurus 

schistaceus LC 0.753 0.926 0.885 0.945 0.957 0.964 

White-bellied Erpornis  

Erpornis 

zantholeuca LC 0.765 0.929 0.871 0.942 0.937 0.944 

Little Pied Flycatcher    

Ficedula 

westermanni LC 0.729 0.945 0.881 0.979 0.952 0.976 

White-crested 

Laughingthrush   

Garrulax 

leucolophus LC 0.769 0.854 0.844 0.908 0.881 0.909 

Lesser Necklaced 

Laughingthrush   

Garrulax 

monileger LC 0.827 0.818 0.789 0.873 0.829 0.882 

Greater Necklaced 

Laughingthrush  

Garrulax 

pectoralis LC 0.828 0.767 0.745 0.897 0.784 0.911 

Eurasian Jay   

Garrulus 

glandarius LC 0.662 0.876 0.793 0.926 0.873 0.933 

Common Hill Myna   

Gracula 

religiosa  LC 0.847 0.867 0.847 0.899 0.878 0.915 

Bar-winged Flycatcher-

shrike 

Hemipus 

picatus LC 0.743 0.886 0.834 0.904 0.895 0.931 

Ashy Bulbul   Hemixos flavala LC 0.758 0.891 0.851 0.951 0.898 0.964 

Buff-vented Bulbul  Iole olivacea NT 0.921 0.910 0.879 0.965 0.928 0.970 

Asian Fairy-bluebird  Irena puella LC 0.819 0.894 0.860 0.960 0.915 0.965 

Mountain Bulbul    

Ixos 

mcclellandii LC 0.745 0.942 0.823 0.951 0.938 0.960 

Silver-eared Mesia  

Leiothrix 

argentauris LC 0.810 0.934 0.872 0.944 0.957 0.959 

Pin-striped Tit Babbler   

Macronus 

gularis LC 0.774 0.829 0.812 0.874 0.863 0.889 
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Dark-backed Sibia  

Malacias 

melanoleucus LC 0.853 0.959 0.862 0.987 0.968 0.992 

Abbott's Babbler   

Malacocincla 

abbotti LC 0.886 0.928 0.884 0.941 0.929 0.958 

Sultan Tit   

Melanochlora 

sultanea LC 0.824 0.780 0.870 0.854 0.872 0.926 

Large Niltava   Niltava grandis LC 0.838 0.969 0.896 0.969 0.966 0.973 

Dark-necked Tailorbird   

Orthotomus 

atrogularis LC 0.818 0.796 0.802 0.892 0.829 0.893 

Yellow-cheeked Tit  

Parus 

spilonotus LC 0.818 0.951 0.861 0.972 0.959 0.962 

Short-billed Minivet  

Pericrocotus 

brevirostris LC 0.758 0.912 0.829 0.908 0.897 0.946 

Mountain Tailorbird   

Phyllergates 

cuculatus LC 0.794 0.938 0.821 0.968 0.931 0.970 

Blyth's Leaf Warbler   

Phylloscopus 

reguloides LC 0.851 0.945 0.863 0.957 0.949 0.968 

Blue Pitta Pitta cyanea LC 0.837 0.901 0.890 0.929 0.903 0.940 

White-browed Scimitar 

Babbler   

Pomatorhinus 

schisticeps LC 0.726 0.890 0.855 0.908 0.936 0.944 

Long-tailed Broadbill   

Psarisomus 

dalhousiae LC 0.825 0.919 0.906 0.926 0.945 0.941 

Rufous-winged 

Fulvetta   

Pseudominla 

castaneceps LC 0.888 0.951 0.876 0.984 0.969 0.981 

Blyth's Shrike-babbler 

Pteruthius 

aeralatus LC 0.795 0.930 0.851 0.963 0.940 0.974 

Black-headed Bulbul   

Pycnonotus 

atriceps LC 0.797 0.849 0.808 0.884 0.858 0.903 

Stripe-throated Bulbul   

Pycnonotus 

finlaysoni LC 0.767 0.827 0.784 0.870 0.843 0.889 

Black-crested Bulbul   

Pycnonotus 

flaviventris LC 0.720 0.828 0.799 0.863 0.837 0.881 

White-throated Fantail   

Rhipidura 

albicollis LC 0.722 0.921 0.834 0.950 0.928 0.964 

Silver-breasted 

Broadbill   

Serilophus 

lunatus LC 0.747 0.863 0.855 0.899 0.863 0.917 

Chestnut-vented 

Nuthatch   Sitta nagaensis LC 0.765 0.956 0.826 0.976 0.969 0.984 

Golden Babbler   

Stachyridopsis 

chrysaea LC 0.834 0.936 0.882 0.962 0.952 0.970 
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Grey-throated Babbler   

Stachyris 

nigriceps LC 0.811 0.919 0.816 0.948 0.934 0.957 

Large Woodshrike   

Tephrodornis 

virgatus LC 0.849 0.880 0.840 0.933 0.891 0.932 

Silver-eared 

Laughingthrush   

Trochalopteron 

melanostigma  LC 0.800 0.951 0.825 0.983 0.981 0.945 

PICIFORMES         

Greater Flameback   

Chrysocolaptes 

guttacristatus LC 0.881 0.907 0.888 0.939 0.925 0.944 

Greater Yellownape    

Chrysophlegma 

flavinucha LC 0.788 0.884 0.852 0.899 0.907 0.911 

Grey-capped Pygmy 

Woodpecker   

Dendrocopos 

canicapillus LC 0.646 0.777 0.740 0.869 0.784 0.866 

Blue-throated Barbet   

Megalaima 

asiatica  LC 0.738 0.891 0.846 0.927 0.891 0.947 

Blue-eared Barbet   

Megalaima 

australis LC 0.867 0.884 0.855 0.915 0.914 0.919 

Green-eared Barbet   

Megalaima 

faiostricta LC 0.860 0.932 0.871 0.946 0.940 0.950 

Moustached Barbet  

Megalaima 

incognita LC 0.877 0.954 0.915 0.963 0.955 0.964 

Great Barbet  

Megalaima 

virens LC 0.715 0.887 0.829 0.903 0.918 0.928 

White-browed Piculet   Sasia ochracea  LC 0.780 0.880 0.842 0.918 0.899 0.953 
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Appendix 9. Correlations between all 11 texture measures derived from MODIS fPAR. The 

lower triangle of the matrix shows scatterplots for pairs of texture measures and red lines are 

loess regression lines. The upper triangle shows Pearson’s correlation coefficients between the 

texture measures. Positive and negative correlation coefficients are shown with larger fonts 

indicating larger absolute values of correlation coefficients. The diagonal shows the histogram 

for each texture measure. The texture measures were obtained from 5,000 1-km pixels randomly 

selected from the forest areas of Thailand. The names of the measures used in the species 

distribution model are underlined. 
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Appendix 10. Correlations between selected 16 variables of habitat fragmentation, composition, 

and texture. The lower triangle of the matrix shows scatterplots for pairs of variables and red 

lines are loess regression lines. The upper triangle shows Pearson’s correlation coefficients 

between the variables. Positive and negative correlation coefficients are shown with larger fonts 

indicating larger absolute values of correlation coefficients. The diagonal shows the histogram 

for each texture measure. The variables were obtained from 5,000 1-km pixels randomly selected 

from the forest areas of Thailand. 
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Appendix 11. Habitat heterogeneity captured by five texture measures for different forest types. 

The boxplots indicate 95th, 75th, 50th, 25th and 5th percentiles of measure values. The values 

were calculated from 1,000 randomly selected pixels within each forest type at the 1-km 

resolution based on Landsat land cover map of Thailand. 
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Chapter 3: Habitat connectivity for endangered Indochinese tigers in Thailand 

Abstract 

Habitat connectivity is crucial for the conservation of species restricted to small, fragmented, and 

isolated populations within human-dominated landscapes. However, identifying habitat 

connectivity, especially for top predators, is challenging due to trophic interactions between 

primary productivity and prey species influencing the distribution of predator’s habitats and their 

capacity to move and disperse. Our goal was to assess current and potential habitat connectivity 

for Indochinese tigers (Panthera tigris) in Thailand. We quantified currently occupied and 

potentially suitable habitat and dispersal corridors across Thailand based on habitat suitability for 

the Indochinese tiger. We estimated habitat suitability with an ensemble species distribution 

model based on camera-trap data from 15 protected areas with trophic interactions and abiotic 

variables. We employed graph theory to evaluate the relative importance of habitat patches and 

dispersal corridors to the overall connectivity network. Our analyses showed that habitat 

suitability models both with and without trophic interactions performed well. However, 

including trophic interactions between plant productivity, prey (wild boar, sambar, muntjac, and 

gaur) and predator (tiger) significantly improved model performance (P < 0.001). Currently-

occupied habitat patches were highly fragmented and isolated with high resistance to movement 

within the dispersal corridors. Potential habitat patches were mostly isolated. However, we 

identified potential habitat patches that could serve as target sites for reintroduction and restore 

connectivity, especially in the Western Forest complex. The Western Forest Complex habitat 

patch and the Kaeng Krachan dispersal corridor were the most important habita patch and 

corridor for maintaining the overall habitat connectivity network. More broadly, our results 

highlight the value of integrating trophic interactions into assessments of connectivity to predict 
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habitat suitability and delineate dispersal corridors, and thus offer an effective tool for 

conservation planning of tigers and other large carnivores.  
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Introduction 

Human activities are changing the Earth's ecosystems with profound consequences for 

biodiversity (Chapin et al. 2000; Sala et al. 2000). The loss and fragmentation of habitat poses an 

imminent threat to the viability of many species, especially those with large home ranges (Brook 

et al. 2008; Pimm et al. 2014). Survival of these species depends upon maintaining connectivity 

between isolated populations (Fahrig and Merriam 1985; Noss et al. 1996; Taylor et al. 1993). 

Landscape connectivity is defined as the degree to which a landscape facilitates or impedes 

individual dispersal between habitat patches (Taylor et al. 1993). Connectivity can mitigate 

impacts of climate change by allowing species to track their fundamental niches (Noss 2001). In 

addition, connectivity plays a crucial role in conservation planning where the goal is often to 

preserve resilient habitat networks, and design linkages of high quality habitat (i.e., dispersal 

corridors) between remnant patches or protected areas (Soule and Terborgh 1999). The 

assessment of functional connectivity, defined as ecological response of organisms to landscape 

elements (e.g., patches), and the ability of individuals to disperse across non-habitat areas 

(Moilanen and Hanski 2001; Moilanen and Nieminen 2002; Tischendorf and Fahring 2000; Uezu 

et al. 2005), requires understanding of the requirement of dispersing species, the spatial 

distribution of habitat suitability, and the potential connections between them (Goodwin and 

Fahrig 2002; Urban et al. 2009). However, models identifying habitat connectivity networks 

typically focus on a single species, and disregard the influence of species interactions due to 

incomplete assessments of competition, or trophic interactions (Beier et al. 2011). 

Trophic interactions shape the realized niche that ultimately determines movement or 

dispersal success, and therefore functional habitat connectivity. Trophic interactions in 

conjunction with abiotic factors determine the distributions and abundance of species 
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(Hutchinson and Macarthur 1959). Specifically, trophic interactions play a crucial role in 

controlling distributions of large mammal communities through the interrelationships of plants, 

herbivores, omnivores, and carnivores at different trophic levels (Finke and Snyder 2010; Power 

1992). This role of trophic interactions on species distributions has relevance for the assessment 

of habitat connectivity of large carnivores because trophic interactions influence the spatial 

structure of habitat suitability, and the movement behavior of both predator and prey in acquiring 

food resources in different habitat patches. 

Trophic interactions can provide ecological insights into how species respond to 

landscape heterogeneity, and consequently define habitat suitability and dispersal corridors. 

However, studies of habitat connectivity for large carnivores typically define habitat suitability 

based on abiotic factors only due to a paucity of data on prey species. Such models assume that 

trophic interactions are implicit in models, for example, of jaguar (Panthera onca) (Rabinowitz 

and Zeller 2010), grizzy bears (Ursus arctor), and cougar (Puma concolor) (Chetkiewicz and 

Boyce 2009). Yet, if trophic interactions are not explicitly accounted for when  modeling habitat 

suitability, it is possible that habitat patches and dispersal corridors will not be ecologically 

relevant (Kanagaraj et al. 2013). Previous studies have demonstrated that the incorporation of 

trophic interactions into habitat suitability for large carnivores improves predictions of habitat 

suitability and is essential to assess habitat connectivity (Hebblewhite et al. 2014; Kanagaraj et 

al. 2011; Kanagaraj et al. 2013). A study of the Bengal tigers in the Terai Arc Landscape of India 

and Nepal demonstrates that including trophic interactions with Chital and Sambar results in the 

best habitat suitability model for connectivity assessment (Kanagaraj et al. 2011; Kanagaraj et al. 

2013). However, while some studies of large carnivore connectivity have included food 

resources into habitat suitability models, habitat connectivity studies assessing interactions 
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among different trophic levels between predator, prey, and primary productivity are few and far 

between. 

Different methods have been proposed to estimate habitat connectivity, depending on the 

landscape structure, the scientific questions, and the species of interest (Kindlmann and Burel 

2008). However, each method has drawbacks, and no single approach can provide complete 

guidance as to where conservation efforts can be successful to maintain or improve connectivity. 

It is often necessary to integrate multiple approaches (Tischendorf and Fahring 2000). 

Commonly used modeling approaches to quantify habitat connectivity are: least-cost path 

analysis (Adriaensen et al. 2003; Rabinowitz and Zeller 2010; Tischendorf and Fahring 2000), 

circuit analysis (McRae et al. 2008), graph theory (Bunn et al. 2000; Urban and Keitt 2001), and 

metapopulation modeling (Hanski 1999; Moilanen and Nieminen 2002). 

The combination of least cost modeling, circuit analysis, and graph theory has been 

successfully applied to restore or preserve habitat connectivity for species-level conservation 

(Brodie et al. 2015; Ziolkowska et al. 2012). Least-cost path analysis integrates the matrix 

between patches using an individual’s movement routes within a landscape (Adriaensen et al. 

2003). However, the limitation of least-cost path analysis for landscape connectivity is that only 

a single path is identified, even though alternative paths with just slightly higher cost may exist 

(Driezen et al. 2007). Furthermore, connectivity measures focusing on optimum routes only fail 

to incorporate variation in the behavior among individuals, and for the same individual over time 

(Belisle 2005). Circuit analysis, on the other hand, identifies multiple pathways for connectivity, 

thus providing a better assessment how individuals would move across landscape, and can 

complements least-cost modeling. Furthermore, graph theory evaluates the relative importance of 

individual landscape elements in maintaining overall habitat connectivity throughout the network 
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of patches and corridors (Calabrese and Fagan 2004; Urban and Keitt 2001; Urban et al. 2009). 

Graph-based metrics can quantify landscape elements as a source or a stepping stone based on 

habitat availability and species traits (e.g., dispersal distance), and evaluate functional 

connectivity (Saura and Pascual-Hortal 2007; Saura and Rubio 2010). Although while a 

combination of methods is a promising approach, corridor locations derived from least-cost 

modelling and circuit analysis are sensitive to the relative cost values assigned (i.e., the 

ecological costs associated with individuals dispersing through different land cover classes), and 

to the spatial configuration of habitat patches (McRae et al. 2008). Therefore, conducting least-

cost modeling and circuit analysis using a habitat suitability map can yield ecological 

connectivity network. A number of studies have applied a combined approach to the analysis of 

landscape connectivity in order to guide conservation and restoration efforts, such as European 

bison (Bison bonasus) (Ziolkowska et al. 2012). 

One species for which habitat connectivity is very important is tigers (Panthera tigris). 

Tigers now occupy only 7% of their historical range (Dinerstein et al. 2007), and have declined 

precipitously over the last century due to human threats, including habitat loss, degradation and 

fragmentation, poaching (Lynam 2010; Seidensticker et al. 2010; Wikramanayake et al. 2004), 

and decreased prey availability (Barber-Meyer et al. 2013; Karanth et al. 2004a; Steinmetz et al. 

2013). Long-term persistence of tigers depends on large, well-connected habitat patches. Thus, it 

is important to assess connectivity of suitable habitat for tigers in order to provide essential 

information for conservation planning such as habitat restoration projects, translocations, and 

reintroductions (Karanth et al. 2014; Lynam et al. 2001; Sunquist et al. 1999). Tiger populations 

in Thailand are at risk of extinction, even though Thailand occupies the historical center of 

tiger’s range (Lynam 2010; Lynam et al. 2001). However, due to socio-economic developments 
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and poaching, only 250-350 tigers remain in Thailand according to recent estimates, and they are 

splintered into small, isolated subpopulations (Rabinowitz 1993; Smith et al. 1999; Ngoprasert et 

al. 2012). Furthermore, these subpopulations are vulnerable to extinction due to deforestation, 

illegal trade, and insufficient prey due to poaching (Simcharoen et al. 2014b; Steinmetz et al. 

2006; Steinmetz et al 2013). In 2010, the Global Tiger Initiative identified priority areas for tiger 

conservation (Sanderson et al. 2010). However, incomplete assessments of tiger distributions and 

habitat connectivity in many regions still continue to hamper conservation efforts. Thailand is 

one of the regions that still needs better understanding of the patterns of tiger distributions and 

habitat connectivity (Lynam 2010). 

Habitat availability for tigers depends ultimately on the full range of resources and 

environmental conditions that allow the species to survive and reproduce, including shelter, 

availability of prey species, absence of human disturbances, and connectivity to other occupied 

patches for breeding and to maintain genetic diversity (Dinerstein et al. 2007; Kanagaraj et al. 

2013; Wikramanayake et al. 2004). Tigers prefer a mosaic of forest and grassland habitats with 

disturbed and undisturbed tracts of forest that maximize the density of prey abundance, and offer 

cover for hunting, breeding, and raising cubs (Karanth et al. 2003; Smith et al. 2010; Karanth and 

Stith 1999). This is why tigers are restricted to forest and grassland habitats within the suite of 

protected areas in Thailand (Rabinowitz 1993; Smith et al. 1999). In terms of species 

interactions, tiger distribution is primarily driven by prey availability, while intra-guild predation 

(i.e., leopard, cloud leopard, and dhole) appears to have little effect on tiger occurrences (Jenks et 

al. 2012; Ngoprasert et al. 2012; Steinmetz et al. 2013). The most common ungulate prey species 

are wild boar, red muntjac, sambar deer, gaur, and banteng (Ngoprasert et al. 2012). Although 
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tigers’ biology is well-studied, it remains unclear how trophic interactions predict habitat 

suitability, and influence habitat connectivity patterns. 

Here, we combined species distribution modeling at different trophic levels and 

connectivity metrics in a novel way to understand the mechanism underlying patterns of habitat 

connectivity for the Indochinese tiger in Thailand. We tested the hypothesis that trophic 

interactions between primary productivity (i.e., cumulative productivity, and seasonality in 

productivity), prey, and predator play a significant role in predicting habitat suitability for tigers. 

We also employed an integrative approach of least-cost modeling, circuit analysis, and graph 

theory to assess connectivity pattern across Thailand. Conducting the cost-path analyses (i.e., 

least-cost modeling and circuit analysis) based on habitat suitability together with spatial data on 

dispersal barriers provided more ecological resistance surface to yield potential dispersal 

corridors. Via graph theory, we then evaluate the relative importance of habitat patches and 

dispersal corridors in maintaining overall connectivity networks. 

Our goal was to assess currently occupied and potential habitat connectivity for the 

Indochinese tigers in Thailand. Our specific objectives were to: 

(i) test the trophic interaction hypothesis based on food resources and environmental 

variables that provide the best prediction of habitat suitability. 

(ii) identify currently occupied and potential habitat patches and dispersal corridors 

(iii) evaluate the relative importance of habitat patches and dispersal corridors in 

maintaining an overall habitat connectivity network in order to identify priority sites 

for tiger and prey reintroduction. 
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Methods 

Study area 

Thailand covers 513 115 km2 of land area between latitudes 5°45´ and 20° 27´ N and 

longitudes 97° 22´ and 105° 37´ E. Elevation ranges from 0 to 2565 m. The climate is influenced 

by seasonal monsoons and varies among regions. Most forested areas have been converted for 

commercial forestry. The recent estimate shows only 32% of natural forest remains cover, 

mostly within protected areas with the dominant coverage at higher elevations (RFD 2013). 

Thailand is a global biodiversity hotspot (Myers et al. 2000), and home to more than 300 

mammal species, including endangered tigers (IUCN 2014). However, Thailand’s native 

mammal community is collapsing, with up to 12 species threatened by rapid habitat loss and 

fragmentation due to increasing human populations, economic development, and land use change 

(Gibson et al. 2013; Trisurat et al. 2010a; Woodruff 2013), rates of which will likely rise due to 

emerging international free market policies in 2015 (i.e., ASEAN Economic Community) (Fox 

and Vogler 2005). 

Camera trap survey data 

We collected camera trap data during 1997-2013 from 15 protected areas (Figure 13). We 

selected camera locations to maximize chances of capturing animals where animal signs were 

found (i.e., prints and scats) close to wildlife trails, stream beds, and ridges, and to span gradients 

in elevation (ranging from 0-1351 m) and multiple mammal habitat conditions (e.g., hill 

evergreen forests, mixed deciduous forest, dry dipterocarp forest, and grassland). We attached 

the cameras to the base of trees about 50 cm aboveground with approximately 0.5 km spacing 

between cameras. We operated cameras 24 hours per day, and cameras recorded time and date 

for each exposure. We did not use baits or lures. We selected tiger and the four most common 
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ungulate prey species of tigers: Eurasian wild boar (Sus scrofa), Gaur (Bos gaurus), Red muntjac 

(Muntiacus muntjac), and Sambar deer (Rusa unicolor) (Ngoprasert et al. 2012) to conduct 

habitat suitability, connectivity, and corridor analyses. 

Habitat variables 

We predicted potential habitat suitability for tigers using trophic and abiotic variables 

considered critical to tiger reproduction and survival. We included (1) the probability of 

occurrence of four prey ungulate species; (2) primary productivity; (3) proportion of habitat 

types; (4) mean elevation; (5) slope; (6) terrain ruggedness; (7) distance to nearest rivers and 

streams; (8) mean annual precipitation; (9) distance to nearest forest edge; (10) distance to 

nearest human settlement and roads. We calculated continuous values of each habitat variable 

within 1-km resolution. This grain scale has been previously applied in the calculation of habitat 

variables in studies of mammal carnivores and ungulate prey species in Thailand (Jenks et al. 

2012; Ngoprasert et al. 2012; Steinmetz et al. 2013). 

Trophic variable included the probability of occurrence of four prey ungulate species, and 

primary productivity. The direct effects of consumption and productivity, i.e., the bottom of food 

webs of herbivores and their predators, throughout food webs play important role for 

distributions of prey and predator species in the community (Power 1992). We extracted the 

cumulative annual productivity and seasonal variation in productivity from the Dynamic Habitat 

Indices, derived from fPAR-MODIS primary productivity product. Details about the way the 

fPAR composite image was derived can be found in Radeloff et al (in preparation). We 

employed the probability of occurrence of four prey ungulate species as a surrogate for prey 

availability or abundance. 



175 

 

Abiotic variables included habitat types, elevation, slope, terrain ruggedness, distance to 

nearest rivers or streams, mean annual precipitation, and human disturbance variables 

(Ngoprasert et al. 2012; Simcharoen et al. 2014a). We computed the proportion of eight habitat 

types: grassland, secondary forest, bamboo forest, mixed deciduous forest, dry dipterocarp forest, 

hill evergreen forest, moist evergreen forest, and dry evergreen forest using the Thailand land 

cover map of 2000 provided by the Thailand Department of National Parks, Wildlife, and Plant 

Conservation. The land cover map is derived from Landsat TM and ETM+ using supervised 

classification approach at the scale of 1:50,000. We calculated mean elevation, slope (0-90°), and 

terrain ruggedness from the Shuttle Radar Topography Mission (SRTM). We extracted mean 

annual precipitation derived from averages for the period of 1961-1990 from the WorldClim data 

(Hijmans et al. 2005). We also calculated distance to nearest rivers or streams, forest edge, and 

human settlement or road, using the Thailand land cover map of 2000. We chose distance to the 

nearest forest edge and human settlement or road as a surrogate for hunting pressure because 

hunting intensity is inversely related to the distance that poachers have access to wildlife habitat 

(Ngoprasert et al. 2012). 

Tiger habitat suitability 

To estimate habitat suitability for tigers, we employed an ensemble modeling approach 

relating the camera trap data to the environmental variables. An ensemble method combines 

multiple types of Species Distribution Models (SDMs) to reach a consensus outcome for 

probability of species occurrence to account for variability among SDM algorithms (Araujo and 

New 2007; Thuiller 2003; Thuiller et al. 2009). We included ten different species distribution 

modelling algorithms implemented within the BIOMOD2 package version 3.1-64 in R (Thuiller 
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et al. 2009; R Development Core Team 2015): three regression methods (generalized linear 

model, GLM; generalized additive model, GAM; and Multiple Adaptive Regression Splines, 

MARS), two classification methods (flexible discriminant analysis, FDA and classification tree 

analysis, CTA), and four machine-learning methods (artificial neural networks, ANN; 

generalized boosted model, GBM; random forests, RF; and maximum entropy, MAXENT), and 

a climate envelope method (surface range envelope, SRE) (Phillips et al. 2006; Thuiller et al. 

2009). We set model algorithms with default parameters. The SDM algorithms require 

background data, and we combined true absences and generated pseudo-absences from within a 

50-km buffer of each presence location based on average home range size for tigers (Simcharoen 

et al. 2014b). We generated ten times the number of occurrence records for all species (Barbet-

Massin et al. 2012). 

In order to evaluate the predictive performance of the SDMs for prey species and tigers, 

we calculated AUC (Fielding and Bell 1997) with 10-fold cross-validation by splitting a random 

subset of 90% of the observed data for the model calibration, and the remaining 10% of the data 

for model evaluation (Bateman et al. 2012; Elith et al. 2011). To provide an unbiased measure of 

model performance and obtain standard deviations for evaluation metrics (Pearce and Ferrier 

2000), we repeated data splitting ten times with the two pseudoabsence replicates (a total of 20 

replicates for each model algorithm). To ensure all replicates were comparable, we rescaled each 

replicate within Biomod2 using a binomial GLM. We considered AUC values above 0.7 to be 

indicative of useful models (Swets 1988). To obtain the consensus distribution for ungulate prey 

and tigers, we selected the top five performing models; GLM, GAM, GBM, RF, and MAXENT 

with AUC > 0.7 (Elith et al. 2006), and used an ensemble forecast technique by calculating the 

weighted mean distributions across selected SDMs. In order to transform the probabilistic 
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consensus distribution from the ensemble technique to a binary suitable/non-suitable habitat for 

each prey species and tigers, we considered suitability values above the sensitivity-specificity 

sum maximization threshold (Liu et al. 2005). 

To compare the effects of trophic interactions in habitat suitability models for tigers, we 

modeled tigers with three different sets of variables: abiotic variables, prey, or abiotic and 

trophic interactions (i.e., primary productivity, and prey availability). For the tiger model 

obtained with trophic interactions, we first computed species distributions for the four prey 

ungulate species (i.e., wild boar, gaur, muntjac, and sambar) with primary productivity (i.e., 

cumulative productivity, and seasonality in productivity) as a measure of forage availability for 

ungulate prey, and abiotic variables described above. The predicted distributions of ungulate 

species were a surrogate for trophic interactions between plants and herbivores (Ngoprasert et al. 

2012; Jenks et al. 2012), and we included them as predictor variables for the tiger model. 

To determine whether trophic interactions (selection of abiotic variables versus trophic 

interaction variables) significantly improve the prediction of current distributions of Indochinese 

tigers, we tested the differences in model outputs produced with abiotic variables, prey, and 

abiotic + prey with Wilcoxon signed-rank tests for related samples (Araujo and Luoto 2007). The 

importance of the variable for each species was calculated using a randomization procedure as 

one minus the Pearson’s correlation coefficients between the standard prediction and the 

prediction where the considered variables was randomly permutated. If the correlation is high 

(i.e., there is a small difference between the two predictions), the variable permutated is 

considered not important for the model. Therefore, one minus the correlation coefficient 

represents, for a given variable, the probability that the coefficient can contribute to the model. 
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The higher the probability, the higher a variable contributes in predicting the pattern (Thuiller et 

al. 2009). 

Identify habitat patches and dispersal corridors 

To assess habitat connectivity for tigers in Thailand (Figure 14), we integrated three 

connectivity models: least cost modelling, circuit analysis, and graph theory. To identify 

potential habitat patches, we considered suitable patches that were greater than 70 km2 based on 

average home range size for female tigers from Huai Kha Khaeng Wildlife Sanctuary 

(Simchareon et al., 2014b). Previous studies in Thailand have shown that tiger home ranges vary 

depending on location, season, year, and prey availability in the region (Simcharoen et al. 2014a; 

Simcharoen et al. 2014b). 

To identify locations of dispersal corridors, we employed least-cost path modeling 

(Adriaensen et al. 2003). We used a probabilistic habitat suitability map for tigers derived from 

the model including trophic interactions to generate least-cost path corridors for tigers. Least-

cost paths can be identified by accumulating cost surface values along possible routes for two or 

more source patches. A cost surface is derived by quantifying the resistance of different land 

cover classes and summing the travel cost over the route of least resistance when individuals 

move between two patches (Adriaensen et al. 2003). We inverted the habitat suitability map for 

tigers with a linear function as a measure of resistance surfaces, rescaled from 1 (lowest 

resistance) to 100 (highest resistance). Dispersing tigers avoid agricultural areas and human 

disturbance, but may travel through a mosaic of forest and grassland with disturbed and 

undisturbed tracts of forest offering cover for movement (Smith 1993; Wikramanayake et al. 

2004). We therefore included potential dispersal barriers for tigers: agriculture area, settlement, 
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highways, major roads, and rivers into the resistance surface map. We assigned grid cells that 

included the potential dispersal barriers to the maximum cost value to ensure that constructed 

least-cost paths will not cross them unless no other possibility of movement exists (Adriaensen et 

al. 2003; Ziolkowska et al. 2012). To determine the position of least-cost path locations, we used 

the cost distance tools in ArcGIS 10.1 (ESRI 2011) with scripts written in Python 2.7 (Python 

Software Foundation 2013). We constructed the least-cost path between a given habitat patch 

and its nearest neighbors with Euclidean distances, assuming that corridors to further patches 

will pass through habitat patches between them. To synthesize the movement of individuals 

across landscape matrices, we calculated the effective distance (i.e., the accumulative cost along 

the least cost paths), taking into account the landscape structure and movement behavior of 

tigers. 

To complement the least-cost path analyses, we conducted a connectivity analysis based 

on electrical circuit theory (McRae et al. 2008). Least-cost path can identify a corridor location, 

but a least-cost path corridor is an optimal, linear route only, and it is likely that broader areas are 

used as corridors than just the optimal path. There are no clear methods to determine optimum 

width for corridors, and quantify the quality of corridors in facilitating organism movements 

(Beier et al. 2008; Sawyer et al. 2011). Therefore, we employed Circuitscape software version 

3.5 (McRae and Shah, 2009) to identify other potential movement routes around the least-cost 

path corridor and quantify how tigers would move across the landscape within a given corridor 

width. We buffered the least-cost paths by 10 km and identified define dispersal corridors within 

that range that are wide enough to support the tiger movement, based on average home range 

size for tigers. We then assessed the flow of current between each pairwise combination of 

suitable habitat patches within 10-km buffer of least-cost paths. 
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Assess the importance of habitat patches and dispersal corridors 

To evaluate the relative importance of individual patches and dispersal corridors for the 

overall connectivity network, we used the Probability of Connectivity index (PC) based on graph 

theory (Saura and Pascual-Hortal 2007; Urban and Keitt 2001; Saura and Rubio 2010).  PC 

indicates the probability that two tigers randomly placed in the study area are in habitat patches 

that are reachable from each other (Saura and Pascual-Hortal 2007; Saura and Rubio 2010). The 

probability of individual tigers moving between habitat patches depends on both the amount of 

suitable habitat (nodes of the graph), and the distance and resistance to movement across the 

matrix (links of the graph). We defined a graph component composed as a set of nodes 

corresponding to the suitable habitat patches with > 70 km2 (the average female tiger home range 

in Thailand). Each pair of nodes was connected through links (least cost paths) depicting 

potential movement paths of tigers. 

To assess the probability of connectivity, we used effective distances to calculate inter-

patch-cost-dispersal probabilities (pij) as a decreasing exponential function of the effective 

distance between nodes (dij) and dispersal abilities of tigers (k) (Urban and Keitt 2001), as 

follows: 

𝑝𝑖𝑗 = 𝑒−𝑘𝑑𝑖𝑗                                                                    (1) 

We set k = 0. 028, 0.012, and 0.011 to obtain a dispersal probability of 0.5 based on 

dispersal distance of tigers in Thailand of 25, 58, and 64 km, corresponding to values obtained 

from field observations (Robert Steinmetz, personal communication). We then computed PC for 

landscape elements (i.e., habitat patches, and dispersal corridors) and for each dispersal distance. 
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PC summarizes the contribution of all habitat patches to tiger movements across the whole study 

area, as follows: 

PC = 
∑ ∑ 𝑎𝑖  𝑎𝑗 𝑝𝑖𝑗

𝑚𝑎𝑥𝑛
𝑗−1

𝑛
𝑖−1

𝐴𝐿
2                                                                 (2) 

where ai and aj are the areas of habitat patches i and j, 𝑝𝑖𝑗
𝑚𝑎𝑥is the maximum product 

probability of all the possible paths between habitat patches i and j (including direct route 

between the two patches), and AL is the study area (Saura and Pascual-Hortal 2007; Saura and 

Torne 2009).  

To assess the relative importance of each habitat patches and dispersal corridors to 

overall connectivity, we calculated d(PC)k , which prioritizes and ranks removal operations 

(Bodin and Saura 2010). The d(PC)k can be partitioned into three fractions which quantify the 

role of each habitat patch and dispersal corridor in maintaining or enhancing the movements of 

tigers with respect to habitat availability, connectivity, and stepping stone (Saura et al. 2014; 

Saura and Rubio 2010), as follows: 

dPC k = dPCintra k + dPCflux k + dPCconnector k                                    (3) 

The intra fraction (dPCintra k) is the contribution of habitat patch k given by the suitable 

habitat that it contains. The flux fraction (dPCflux k) measures the degree of connection of a 

habitat patch k with the other habitat patches. The connector fraction (dPCconnector k) 

corresponds to the contribution of a habitat patch and dispersal corridor k to the connectivity 

between other habitat patches as a stepping stone or connectivity facilitating dispersal between 
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them. We used Conefor 2.6 software software to calculate all graph theoretical measures (Saura 

and Torne 2009). 

Results 

Tiger habitat suitability 

Habitat suitability models for the Indochinese tiger in Thailand performed well with 

abiotic variables, trophic interactions, and the combination of abiotic and trophic interactions 

(Figure 15 and Table 10). However, the incorporation of trophic interactions significantly 

improved model performance. Of all three tiger habitat models, accuracy of model performance 

was highest with tiger + abiotic + prey (AUC = 0.954, SD = 0.06), followed by tiger + abiotic 

(AUC = 0.939, SD = 0.06), and tiger + prey (AUC = 0.932, SD = 0.05). Model performance was 

significantly different (Wilcoxon signed-rank test, P < 0.001) between tiger + abiotic and tiger + 

abiotic + prey, and between tiger + abiotic and tiger + prey. The predictive power of the habitat 

suitability models was greater with tiger + abiotic than with prey models. However, models were 

significantly improved when trophic interactions (i.e., primary productivity and ungulate prey) 

were included into tiger + abiotic model. These results supported the importance of trophic 

interactions and that incorporating trophic interactions between primary productivity, herbivores, 

and carnivores can provide better predictions of habitat suitability for apex predators. 

Prey habitat suitability was the most important variable in predicting habitat suitability 

for tigers (Figure 16 and Table 10). In the trophic interaction model (tiger + abiotic + prey), the 

occurrence of tigers was more likely where occurrences of wild boar, gaur, mixed deciduous, 

distance to human settlement, and distance to forest edge increased. For the prey-only model, 

tiger occurrence was best predicted by high occurrences of wild boar and gaur. For the abiotic-
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only model, tiger occurrences were more likely at higher proportion of mixed deciduous forest 

and dry evergreen forest, further distance to human settlement, and forest edge. The occurrence 

of wild boar was the best predictor of tiger habitat suitability in both models of tiger + prey and 

tiger + abiotic + prey. 

The effect of variables on predictions of habitat suitability for ungulate prey varied 

among species. Habitat suitability of wild boar, gaur, muntjac, and sambar were all highly 

correlated with cumulative productivity, seasonality in productivity, annual precipitation, and 

forest edge. Occurrences of all four species increased as cumulative productivity increased. 

Occurrences of wild boar and gaur were highest at a moderate level of seasonality in 

productivity, while seasonality in productivity had little effect on muntjac and sambar. 

Occurrences of all four species were highest at annual precipitation range of 1000-1500 mm, but 

decreased with higher annual precipitation. Distance to forest edge affected species differently. 

Increased distance to forest edge was associated with increased probabilities of occurrence for 

gaur and muntjac, but wild boar and samber were higher at medium distances to forest edge (~ 

15 – 20 km) than in either low and high distance to forest edge. 

Habitat patches and dispersal corridors 

The Indochinese tiger populations currently occupy only eight habitat patches, and they 

are highly isolated (Figure 17a). Currently occupied habitat patches covered 8,675 km2 ranging 

from 85 – 3,665 km2 with a mean area of 528 km2. Total area was 8,675 km2 with 94.8% of 

currently occupied patches inside protected areas. The largest habitat patch is located in the 

Western Forest Complex (Huai Kha Khaeng, Thungyai, and Mae Wong Wildlife Sanctuaries). 

We identified seven potential connections occurring between currently occupied patches (Figure 
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17a). However, there were only two dispersal corridors of 25-km dispersal distance (between 

Kaeng Krachan and Kuiburi, and between Banglang and Hala-Bala); and three connections of 

58-km and three of 64-km dispersal distances, respectively (between Kaeng Krachan and 

Kuiburi, between Banglang and Hala-Bala, and Khao Yai and Thap Lan). All other connections 

among occupied habitat patches were either blocked by dispersal barriers (e.g., ACE highways, 

agriculture, and urban) or were too far for tigers to disperse (Table 11). 

The potential habitat of the Indochinese tiger in Thailand was also highly fragmented, 

and habitat fragments were largely unconnected with long dispersal corridors (Figure 17b). We 

identified 26 potential tiger habitat patches ranging from 74 – 1,513 km2 with a mean area of 305 

km2. Total area was 7,929 km2 with 88.8% located in protected areas. The largest patch was 

located in Salawin Wildlife Sanctuary. We identified 13 connections (i.e., least-cost paths among 

suitable habitat patches) with a dispersal distance of 25 km; 20 connections with a dispersal 

distance of 58 km; and 22 connections with a dispersal distance of 64 km (Figure 17b). 

The pattern of resistance to movement for tigers (i.e., current) was heterogeneously 

distributed among the least-cost path corridors for both currently occupied and potential patches 

(Figure 17c and d). For currently occupied patches, the least-cost path corridor between the 

Kaeng Krachan and Kuiburi habitat patches had the lowest resistance for tiger movement, 

meaning that that there was no barrier separating them, and dispersal between them is possible. 

Conversely, the resistance of movement between Huai Kha Khaeng located in the Western 

Forest Complex (WFC) patch and Kaeng Krachan patch, and between Khao Yai and Thap Lan 

patches were high and tiger dispersal is not likely (Figure 17c, Table 11). For the resistance of 

movement among potential dispersal corridors, we found that there was low resistance of 
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movement among the least-cost path corridors in the northern Thailand, which can potentially 

serve as dispersal corridors connecting currently occupied patches to unoccupied suitable patches 

(Figure 17d). 

Importance of patches and dispersal corridors 

The spatial patterns of currently occupied and potential connectivity networks were 

locally connected, but not regionally and nationally. The relative importance of currently 

occupied habitat patches and dispersal corridors in maintaining the overall connectivity for 

Indochinese tigers in Thailand were similar at all dispersal distances (Figure 18). For existing 

tiger populations (Figure 18a, b and c), the Western Forest Complex habitat patch covered Huai 

Kha Khaeng, Thung Yai, and Mae Wong Wildlife Sauntuaries was most important in 

maintaining tiger habitat connectivity in Thailand (as quantified by the percentage of 

contribution to overall connectivity; dPC = 61 – 63 %). This habitat patch is highly valuable to 

maintaining a connectivity network because it covers a large area of quality habitat (highest 

dPCintra). However, the Kaeng Kracha habitat patch was well connected to the other habitat 

patches which tiger populations could potentially disperse (highest dPCflux). The Keng Kracha 

habitat patch could also serve as a stepping stone because it has a topological position that can 

sustain connectivity among other habitat patches (highest dPCconnector) (Table 12). In terms of 

the relative importance of dispersal corridors between currently occupied patches, the Kaeng 

Krachan – Kuiburi dispersal corridor showed the highest contribution to the connectivity 

network (dPCconnector = 9 – 11%) (Table 13). This corridor also had the highest dispersal 

probability and lowest resistance to movement. 
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For the relative importance of potential habitat patches and dispersal corridors, Western 

Forest Complex habitat patch had the highest contribution to overall connectivity (dPC = 47 – 52 

%). The Kaeng Krachan – Kuiburi dispersal corridor was the most important linkage 

(dPCconnector = 6%). Several potential habitat patches and dispersal corridors located in the 

Western Forest Complex and northern Thailand were important in maintaining the overall 

potential connectivity network, but there are currently unoccupied by tiger populations based on 

the recent surveys (Figure 18e, d, and f). 

Discussion 

Our goal was to assess the connectivity of currently-occupied and potential habitat for the 

endangered Indochinese tiger in Thailand. Our results reveal that the incorporation of trophic 

interactions between primary productivity, herbivores, and carnivores significantly improved 

predictions of habitat suitability for apex predators, such as the Indochinese tiger. However, 

current tiger populations in Thailand are limited to small, unconnected areas of high-quality 

habitat. Potential dispersal corridors between existing tiger populations were long with high 

resistance to movement. The habitat patches and corridors within the Forest Western Complex 

and Kaeng Krachan forest complex were the most importance for maintaining overall functional 

connectivity for Indochinese tigers in Thailand. Potential habitat patches that could serve as 

priority sites for reintroduction and dispersal corridors in terms of their likelihood facilitating 

movement were also highly fragmented and isolated, suggesting that it will be difficult to regain 

functional connectivity across all of Thailand. 
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Tiger Habitat suitability 

Our results suggest that the incorporation of trophic interactions can significantly 

improve predictive power of habitat suitability models, and hence provide more realistic habitat 

predictions for connectivity assessments. Our finding was consistent with prior findings that tiger 

presence is highly correlated with prey availability (Hebblewhite et al. 2014; Karanth et al. 

2004b; Ngoprasert et al. 2012). Habitat models of tigers in other regions that included prey 

occurrence also had enhanced predictive performance (Hebblewhite et al. 2014; Kanagaraj et al. 

2011), that revealed important ecological patterns of habitat connectivity (Kanagaraj et al. 2013).  

Our ensemble modeling approach for predicting habitat suitability indicated that the 

distribution of habitat suitable for tigers was mainly driven by the distributions of their main 

ungulate prey species, and avoidance of areas with high human disturbance. Although, this 

finding is not new, it confirms our hypothesis of habitat suitability for tigers’ dispersal based on 

previous studies of tigers in Thailand (Ngoprasert et al. 2012). For tiger connectivity in other 

regions, tigers’ habitat suitability associate with prey availability (Kanagaraj et al. 2013; 

Wikramanayake et al. 2004). Additionally, our results are similar to habitat suitability of other 

studies for other large carnivores, where suitable habitat depends on both food resources (e.g., 

prey availability, primary productivity, and land cover types) and the absence of human 

disturbances (Brodie et al., 2014). For example, studies grizzly bears in North America are 

positively correlated with forage variables (i.e., greenness, soil wetness, and nearest rivers), 

while cougars are well predicted by terrain ruggedness, greenness, and avoidance of roads 

(Chetkiewicz and Boyce 2009). Similarly, European brown bears occurrence is associated with 

forest cover, higher elevations, and avoidance of roads and human activity in the east-central 
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Alps (Boitani et al., 1999; Guthlin et al., 2011), and the Italian Alps (Peters et al., 2015). In 

Borneo indicated that local abundance of sun bears (Helarctos malayanus) and Sunda clouded 

leopards (Neofelis diardi) is related to elevation, logging, and road density (Brodie et al., 2014). 

And last but not least, connectivity models for Jaguars included land cover type, percent tree and 

shrub cover, elevation, and human disturbance (Rabinowitz and Zeller 2010). In addition to 

including prey availability, we integrated the cumulative annual productivity and seasonal 

variation in productivity derived from the DHIs, which has been successfully used for the 

occurence of moose in Canada (Michaud et al. 2014), but not yet in the tropics. Our results 

demonstrated that primary productivity variables were important factors in predicting the 

occurrence of ungulate prey species, and ultimately those for tigers in Thailand. 

Connectivity assessment 

The remaining large, intact habitats for Indochinese tigers in Thailand are mostly located 

within protected areas. However, the suitable habitat patches were highly fragmented with high 

resistance values in the dispersal corridors. Our results demonstrated that the habitat patch 

located in the Western Forest Complex was the largest area of suitable habitat, but it had low 

dispersal probability and high resistance to movement due to its isolation. Based on available 

information for Indochinese tigers in Thailand, individual tigers may not be able to travel to the 

nearest currently occupied patches due to patch isolation and high resistance in urban and 

agricultural areas. Moreover, the East-West economic corridor, a highway connecting Myanmar 

to Vietnam through Thailand, is a dispersal barrier that may block tiger movement within the 

dispersal corridor between the Western Forest Complex and Kaeng Krachan Forest Complex. 

Our results indicate that tiger populations in Kaeng Krachan and Kuiburi occur in large, well-
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connected patches and that potential dispersal corridors for tigers exist or can be restored among 

these patches. 

Currently occupied and potential connectivity networks were isolated and unconnected, 

and regaining connectivity across the country may prove to be difficult. Habitat connectivity 

remains intact only in protected areas within the Western Forest Complex and Kaeng Krachan 

Forest Complex. By ranking the relative importance of each habitat patch and dispersal corridor 

in maintaining the connectivity among existing tiger populations and potential suitable habitat 

for tigers’ dispersal, we identified the areas where future reintroduction efforts should focus. We 

found that the habitat patch located in the Western Forest Complex was the most important 

refuge for tigers because it covers a large extent of suitable habitat with abundant prey 

(Simcharoen et al. 2014a; Simcharoen et al. 2014b; Trisurat et al. 2010b). However, we also 

found that this habitat patch is becoming isolated, which could eventually lead to inbreeding 

depression, as is the case for the isolated Bengal tiger (Panthera tigris) populations in India and 

Nepal (Smith and McDougal, 1991). Whereas, Kaeng Krachan patch has smaller habitat area, it 

is well connected to Kuiburi habitat patch. Therefore, the Kaeng Krachan patch is an important 

stepping stone, and dispersal corridor between both patches, and is the most important in 

maintaining a connectivity network in the region. Indeed, habitat loss and fragmentation of these 

habitats would likely decrease the probability of tiger survival in the region. Other currently 

occupied patches had low contribution to an overall connectivity network because they were 

isolated and far from the largest patch. However, the dispersal corridor between Taplan and 

Khao Yai connected relatively large suitable habitat areas and had low resistance to movement 

that could also play an important role in the conservation of tiger populations. 
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Management implications 

In terms of improving the connectivity of tiger populations in Thailand, our study 

suggests in several conservation strategies. First, it is important to enhance the quality of 

currently-occupied patches by decreasing conflicts with land use policy, and enact effective anti-

poaching law. Second, it is necessary to protect both currently occupied and potential habitat 

patches and dispersal corridors identified by this study.  Third, it is crucial to maintain high value 

habitat patches and dispersal corridors to ensure persistence of a connectivity network. Forth, we 

suggest restoring degraded habitat through strategic land-use planning because tigers are habitat 

generalists and can disperse through a mosaic of degraded forests. Fifth, we identified several 

priority patches and dispersal corridors for connectivity, where future introductions would 

contribute to facilitate existing tiger populations. The important, unoccupied potential habitat 

patches and corridors occurred in protected areas located in the north of Thailand. We 

recommend the investigation of these potential habitat patches and corridors as candidate sites 

for reintroduction of tigers and their prey. 

Conclusion 

The ultimate goal for tiger conservation is to create large and well-connected populations 

that can persist long-term. Our analysis demonstrated that habitat connectivity for Indochinese 

tigers in Thailand is currently very low, because habitat patches are highly isolated patches and 

exist only within protected areas. However, we identified priority areas for conserving existing 

tiger population, and candidate habitat patches and dispersal corridors for future reintroductions. 

For the long-term persistence of tigers, it is crucial to protect both currently-occupied and 

potential habitat patches and corridors. Enhancing the quality of currently occupied habitat and 
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reintroducing tiger populations and their prey would substantially increase the overall 

connectivity among the Indochinese tiger populations. Our connectivity analyses also highlight 

the importance of incorporating trophic interactions when quantifying habitat suitability, and 

combining least-cost modeling, circuit analysis, and graph theory approaches with species’ 

dispersal ability to improve assessments of habitat quality and its connectivity. Our results 

stemming from this approach are novel and important for the understanding of current patterns of 

habitat connectivity and for developing management strategies to ensure long term survival of 

tigers in the region as well as other carnivores. 
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Tables 

Table 10. Mean model performance and ensemble measures (AUC scores) of top performing 

habitat suitability models for tiger + abiotic, tiger + prey, tiger + prey + abiotic, wild boar, gaur, 

muntjac, and sambar. The hypothesis on the role of trophic interactions in habitat suitability 

performance assessing the differences between: abiotic versus prey model; and abiotic versus 

abiotic + prey models based on Wilcoxon signed-rank tests. 

Model GLM GAM GBM RF MAXENT Ensemble 

Tiger + Abiotic 0.763 ± 

0.055 

0.693 ± 

0.068 

0.784 ± 

0.054 

0.707 ± 

0.070 

0.774 ± 

0.060 

0.939 ± 

0.06*** 

Tiger + Prey 0.735 ± 

0.061 

0.757 ± 

0.061 

0.761 ± 

0.058 

0.726 ± 

0.071 

0.772 ± 

0.067 

0.932 ± 

0.052*** 

Tiger + Prey + 

Abiotic 

0.784 ± 

0.055 

0.692 ± 

0.059 

0.805 ± 

0.043 

0.734 ± 

0.053 

0.782 ± 

0.058 

0.954 ± 

0.060*** 

Wild boar 0.855 ± 

0.017 

0.858 ± 

0.015 

0.880 ± 

0.016 

0.854 ± 

0.020 

0.876 ± 

0.016 

0.962 ± 

0.028 

Gaur 0.790 ± 

0.027 

0.806 ± 

0.038 

0.844 ± 

0.025 

0.812 ± 

0.030 

0.825 ± 

0.029 

0.962 ± 

0.047 

Muntjac 0.896 ± 

0.010 

0.917 ± 

0.011 

0.932 ± 

0.010 

0.936 ± 

0.011 

0.930 ± 

0.010 

0.976 ± 

0.018 

Sambar 0.913 ± 

0.013 

0.929 ± 

0.018 

0.941 ± 

0.009 

0.904 ± 

0.029 

0.934 ± 

0.013 

0.981 ± 

0.019 

*** P <0.001 
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Table 11. Cost dispersal probabilities (pij) and sum of cost of resistance movement (Resistance) 

calculated for each dispersal distance delineated dispersal corridors between currently occupied 

habitat patches for Indochinese tigers in Thailand. Higher values of cost dispersal probability 

indicate the high probability of movement between suitable patches. Higher values of cost of 

resistance movement indicate the low probability of movement between suitable patches.  

Corridor1 Distance (km) pij 25 km pij 58 km pij 64 km  Resistance 

KK-KB 13 0.69 0.85 0.86 59.98041 

BL-HB 20 0.58 0.79 0.81 disconnected 

KY-THP 36 0.37 0.65 0.68 223.1436 

HKK-KK 195 0.00 0.10 0.12 1551.59 

PK-KY 258 0.00 0.05 0.06 disconnected 

PK-HKK 605 0.00 0.00 0.00 disconnected 

KB-BL 950 0.00 0.00 0.00 disconnected 

1 KK-KB = Kaeng Krachan and Kuiburi, BL-HB = Banglang and Hala-Bala, KY-THP = Khao 

Yai and Thaplan, Huai Kha Khaeng and Kaeng Krachan, PK-KY = Phu Khieo and Khao Yai, 

Phu Khieo and Huai Kha Khaeng, and Kuiburi and Banglang.  
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Table 12. Contribution of each currently occupied habitat patches to the maintenance of an 

overall landscape connectivity as measured by the relative importance of the probability of 

connectivity index dPC (%) and its fractions for tigers’ movement at 64 km. 

Node dPC dPCintra dPCflux dPCconnector 

Phu Khieo 0.77 0.61 0.16 0.00 

Western Forest Complex 62.85 53.15 9.69 0.00 

Khao Yai 1.06 0.16 0.88 0.03 

ThaplanP 3.30 2.36 0.94 0.00 

Kaeng Krachan 38.02 19.10 17.56 1.36 

Kuiburi 13.57 1.71 11.86 0.00 

Bang Lang 2.34 1.96 0.38 0.00 

Hala-Bala 0.41 0.03 0.38 0.00 
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Table 13. Contribution of each dispersal corridor to the maintenance of the overall landscape 

connectivity as measured by dPCconnector (%) for all tiger dispersal distances. 

Corridor1 dPCconnector25 dPCconnector58 dPCconnector64 

KK-KB 9.0 11.1 11.2 

BL-HB 0.3 0.4 0.4 

KY-THP 0.5 0.8 0.9 

HKK-KK 0.4 6.2 7.2 

PK-KY 0.0 0.0 0.1 

PK-HKK 0.0 0.0 0.0 

KB-BL 0.0 0.0 0.0 

1 KK-KB = Kaeng Krachan and Kuiburi, BL-HB = Banglang and Hala-Bala, KY-THP = Khao 

Yai and Thaplan, Huai Kha Khaeng and Kaeng Krachan, PK-KY = Phu Khieo and Khao Yai, 

Phu Khieo and Huai Kha Khaeng, and Kuiburi and Banglang.  
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Figures 

 

Figure 13. Study area, filed surveys in 15 protected areas across Thailand: Bang Lang National 

Park (BL), Don Yai Wildlife Saunctuary (DY), Hala-Bala Wildlife Sanctuary (HB), Huai Kha 

Khaeng Wildlife Sanctuary (HKK), Kaeng Krachan National Park (KK), Khao Ang Rua Nai 

Wildlife Sanctuary (KARN), Khao Sok National Park (KOS), Khlong Saeng Wildlife Sanctuary 

(KLS), Khao Yai National Park (KY), Kuiburi National Park (KB), Phu Khieo Wildlife 

Sanctuary (PK), Ta Phraya National Park (TAP), Thap Lan National Park (THP), Thung Yai 

Naresuan-West Wildlife Sanctuary (TYW), Salak Pra Wildlife Sanctuary (SP). Tiger 

occurrences were in black dots within protected areas with bold names.  
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Figure 14. Flowchart synthesizing the procedure used for assessing habitat connectivity for the 

Indochinese tigers in Thailand.  
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Figure 15. Habitat suitability models for the Indochinese tigers in Thailand derived from an 

ensemble of species distribution models showing the probability of occurrence, (a) habitat 

suitability models based on tiger + abiotic variables, (b) tiger + prey, (c) tiger + prey + abiotic 

variables.  
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Figure 16. Habitat suitability models for ungulate prey: (a) wild boar, (b) gaur, (c) muntjac, (d) 

sambar derived from an ensemble of species distribution models showing the probability of 

occurrence.  
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Figure 17. Connectivity across Thailand, (a) currently occupied habitat patches (dark green) and 

least-cost path corridors (red line), (b) potential habitat patches and least-cost path corridors, (c) 

currently occupied habitat patches and circuit analysis corridors with 10 km buffers, (d) potential 

habitat patches and circuit analysis corridors with 10 km buffers, showing high probability of 

tigers’ movements (light cyan) and low probability of tigers’ movements (dark blue).  
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Figure 18. The relative importance of habitat patches and dispersal corridors for Indochinese 

tigers in Thailand. The importance of each habitat patch is shown in term of its contribution to 

maintain an overall landscape connectivity as measured by the probability of connectivity index 

for both currently occupied: (a), (b), and (c), and potential habitat patches: (d), (e), and (f) for the 

dispersal distance of 25 km, 58 km, and 64 km, respectively.  
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Appendices 

Appendix 12. AUC scores for individual models of the distribution of tiger habitat, as indicated 

by abiotic variables, including proportions of habitat type, elevation, slope, distance to nearest 

river, distance to nearest forest edge, distance to nearest village or road, and annual precipitation. 

Avg and Run SD are the aveage and standard deviation of the 20 individual runs (2 replicates 

each of 10-fold cross validations) for each model algorithm. Full AVG and Full SD are the 

average and standard deviation of each model run without setting aside testing data. Ensemble 

AUC scores for top performing models was 0.939, with standard deviation 0.06. 

Model Run Avg Run SD Full Avg Full SD 

GLM 0.763 0.055 0.81 0.00 

GBM 0.784 0.054 0.89 0.00 

CTA 0.716 0.067 0.79 0.03 

FDA 0.761 0.050 0.81 0.00 

MARS 0.751 0.055 0.84 0.00 

RF 0.707 0.070 0.97 0.00 

MAXENT 0.774 0.060 0.88 0.00 

ANN 0.734 0.055 0.75 0.06 

SRE 0.659 0.067 0.66 0.00 

GAM 0.693 0.068 0.89 0.00 
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Appendix 13. AUC scores for individual models of the distribution of tiger habitat, as indicated 

by trophic interactions, including cumulative annual productivity, seasonal variation in 

productivity, Eurasian wild boar, gaur, muntjact, and sambar deer. Avg and Run SD are the 

average and standard deviation of the 20 individual runs (2 replicates each of 10-fold cross 

validations) for each model algorithm. Full AVG and Full SD are the average and standard 

deviation of each model run without setting aside testing data. Ensemble AUC scores for top 

performing models was 0.932, with standard deviation 0.052. 

Model Run Avg Run SD Full Avg Full SD 

GLM 0.735 0.061 0.763 0.002 

GBM 0.761 0.058 0.882 0.003 

CTA 0.725 0.067 0.815 0.008 

FDA 0.717 0.073 0.795 0.003 

MARS 0.734 0.062 0.817 0.001 

RF 0.726 0.071 0.973 0.000 

MAXENT 0.772 0.067 0.844 0.002 

ANN 0.740 0.090 0.824 0.001 

SRE 0.625 0.046 0.625 0.009 

GAM 0.757 0.061 0.822 0.003 
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Appendix 14. AUC scores for individual models of the distribution of tiger habitat, as indicated 

by the combination of trophic interactions and abiotic variables, including species distributions 

of Eurasian wild boar, gaur, muntjact, sambar deer, proportions of habitat type, elevation, slope, 

distance to nearest river, distance to nearest forest edge, distance to nearest village or road, and 

annual precipitation. Avg and Run SD are the average and standard deviation of the 20 

individual runs (2 replicates each of 10-fold cross validations) for each model algorithm. Full 

AVG and Full SD are the average and standard deviation of each model run without setting aside 

testing data. Ensemble AUC scores for top performing models was 0.954, with standard 

deviation 0.060.  

Model Run Avg Run SD Full Avg Full SD 

GLM 0.784 0.055 0.819 0.004 

GBM 0.805 0.043 0.915 0.004 

CTA 0.753 0.035 0.797 0.028 

FDA 0.726 0.075 0.829 0.011 

MARS 0.769 0.067 0.851 0.000 

RF 0.734 0.053 0.972 0.000 

MAXENT 0.782 0.058 0.903 0.001 

ANN 0.729 0.050 0.733 0.031 

SRE 0.614 0.069 0.659 0.003 

GAM 0.692 0.059 0.920 0.001 
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Appendix 15. Resistance surface for tigers across Thailand. Resistance ranges from 1 (green) to 

100 (blue). Note that resistance everywhere within a suitable habitat patch has been set to 1. 
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