Spatial patterns of primary productivity derived from the Dynamic Habitat Indices predict patterns of species richness and distributions in the tropics

By

Naparat Suttidate

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Wildlife Ecology)

at the

UNIVERSITY OF WISCONSIN - MADISON

2016

Date of final oral examination: 12/16/2015

The dissertation is approved by the following members of the Final Oral Committee:

Volker C. Radeloff, Professor, Forest and Wildlife Ecology

Anna M. Pidgeon, Associate Professor, Forest and Wildlife Ecology

Ian G. Baird, Assistant Professor, Geography

Benjamin Zuckerberg, Assistant Professor, Forest and Wildlife Ecology

Mutlu Özdoğan, Associate Professor, Forest and Wildlife Ecology

Acknowledgements

I am thankful to numerous people and organizations that have helped and supported me during my time as a graduate student. I will always be grateful to my advisor, Volker Radeloff, for being a great mentor. Dr. Radeloff has always been so generous with his advice, time, and support on research, comments on manuscripts, and career advice. I am thankful to Volker for giving me all the opportunities I have had as part of the SILVIS family. I am grateful to my committee members for their expert and enthusiastic guidance: I especially appreciate Anna Pidgeon for her suggestions and feedback throughout all stages of my research, and for her insights in furthering my understanding of avian ecology. I am grateful to Ian Baird for setting me off on my scientific path in Thailand, and his insights on Thai's ecology and human science aspects. Benjamin Zuckerberg has given me his extremely helpful suggestions and comments on my research. Mutlu Özdoğan has helped make my dissertation possible through helpful advice.

I am indebted to all of my collaborators who have contributed to make this dissertation accomplished, special thanks to Philip Round, Warren Brockelman, Ronglarp Sukmasuang, Antony Lynam, Robert Steinmetz, Kate Jenks, Dusit Ngoprasert, Wanlop Chutipong, Megan Baker, Shumpei Kitamura, Brooke Bateman, Elżbieta Ziółkowska, Nicholas Coops, Dave Helmers, and Nick Keuler have been helpful with my dissertation by sharing data, ideas, suggestions, GIS, and statistical support. I am grateful for financial support from the Royal Thai Government and NASA's Biodiversity and Ecological Forecasting Program. I also thank Lev Ginzburg, Reşit Akçakaya, Adisorn Aderektawan, and Augustine Waitayanon, for all their support. I am would like to dedicate to this work to Thongchai Chalearmchaikit and Pitiwong Tantichodok, mentors of mine that have passed away. Many members of the SILVIS lab have assisted me over the years and collaborated on my research. I thank Jodi Brandt for helping me early on in my research, classes, and her friendship. I am grateful to all of the members of the SILVIS lab and visiting scientists in the past and present for their friendship and insights on research. I thank my friends, Supranart Sisala, Pannapat Prompen, Siranan Prammanee, Jaruwan Chatwichian, Nattakarn Sukomon, Monsikarn Jansrang, Jennifer Rollins, Huan Gu, and many others.

Finally, I could not make it without my parents, Somjit and Chumnong Suttidate who always love me unconditionally and have provided support throughout my life, my siblings, Wanitcha Jitthamma and Pattiya Suttidate for being my best friends, and my grandmother. My husband, Matthew Morrill deserves special thanks, especially for helping me with everything and giving me a family in the U.S. His love and all his hard work over the last six years have been crucial to my success.

Table of Contents

Introduction	1
Chapter 1 Summary	8
Chapter 2 Summary	
Chapter 3 Summary	
Significance	14
Summary	
References	
Chapter 1: The relationship of tropical bird species richness and primary prod	luctivity as
measured by the Dynamic Habitat Indices based on MODIS satellite data	
Abstract	
Introduction	
Methods	
Study area	
Study species	
Range maps	
Species distribution model (SDM) prediction maps	
Dynamic habitat indices	
Environmental variables	

Statistical analyses	
Results	
Species richness and the Dynamic Habitat Indices	
The relative importance of the DHIs and the environmental variables	
Discussion	46
References	
Tables	66
Figures	
Appendices	
Chapter 2: The effects of habitat heterogeneity, as measured by satellite im	age texture, on
tropical forest bird distributions	
tropical forest bird distributions	114 114
tropical forest bird distributions Abstract Introduction	114 114 115
tropical forest bird distributions Abstract Introduction Methods	
tropical forest bird distributions Abstract Introduction Methods Study area	
tropical forest bird distributions Abstract Introduction Methods Study area Study species and occurrence data	
tropical forest bird distributions Abstract Introduction Methods Study area Study species and occurrence data Texture measure data	114 114 115 115 121 121 121 121 122
tropical forest bird distributions Abstract Introduction Methods Study area Study species and occurrence data Texture measure data Habitat composition data	114 114 115 115 121 121 121 122
tropical forest bird distributions Abstract Introduction Introduction Methods Study area Study species and occurrence data Texture measure data Habitat composition data Habitat fragmentation data	114

Model comparison	
Results	126
Texture measures as predictors of species distributions	
The incorporation of texture measures with habitat composition and fragmenta	ution 127
Variable importance of texture measures	
Habitat suitability maps	
Discussion	129
References	135
Tables	147
Figures	150
Appendices	157
Chapter 3: Habitat connectivity for endangered Indochinese tigers in Thailand	d 165
Abstract	165
Introduction	167
Methods	173
Study area	
Camera trap survey data	
Habitat variables	
Tiger habitat suitability	
Identify habitat patches and dispersal corridors	

Assess the importance of habitat patches and dispersal corridors
<i>Results</i>
Tiger habitat suitability 182
Habitat patches and dispersal corridors 183
Importance of patches and dispersal corridors 185
Discussion
References
Tables
Figures
Appendices

List of Figures

Figure 1. Species richness patterns for birds of Thailand derived from the range maps: (a) all birds (n = 888 species), (b) resident birds (n = 664 species), (c) migratory birds, (d) forest birds (n = 636 species), (e) early-successional birds (n = 47 species), (f) farmland birds (n = 35)Figure 2. Species richness patterns for birds of Thailand derived from species distribution model prediction maps: (a) all birds (n = 336 species), (b) resident birds (n = 261 species), (c) migratory birds (n = 75 species), (d) forest birds (n = 222 species), (e) early-successional birds (n = 15species), (f) farmland birds (n = 26 species), (g) wetland birds (n = 49 species), and (h) seacoast Figure 3. Individual measures of the Dynamic Habitat Indices (DHIs) for Thailand (a) cumulative annual productivity, (b) annual minimum productivity, (c) seasonal variation in productivity, and (d) the three DHIs from 2000-2009 1-km fPAR MODIS data in RGB. Bright green areas indicate consistent productivity throughout the year. Green areas represent high cumulative annual productivity, moderate annual minimum productivity, and low seasonality. Red areas have moderate productivity with high seasonality. Brown have low primary productivity in any part of the year. Abbreviations: C, cumulative annual productivity; M, annual minimum productivity; S, seasonal variation in productivity......74 Figure 4. The percentage of independent contribution of variables in productivity, climate, topography, latitudinal, habitat heterogeneity, and habitat area to species richness for all birds, resident birds, migratory birds, forest birds, early-successional birds, farmland birds, wetland Figure 5. The percentage of independent contribution of variables in productivity, climate, topography, latitudinal, habitat heterogeneity, and habitat area to species richness for all birds, resident birds, migratory birds, forest birds, early-successional birds, farmland birds, wetland birds, and seacoast birds derived from species distribution model prediction maps. Values within Figure 6. Study area, including six main forest habitat for birds in Thailand 150 Figure 7. Spatial patterns of habitat heterogeneity captured by the five texture measures of cumulative productivity (i.e., the cumulative Dynamic Habitat Index) derived from 1-km resolution MODIS FPAR. First-order coefficient of variation (a) quantify composition of habitat heterogeneity. Second-order contrast (b), correlation (c), entropy (d), and homogeneity (e) Figure 8. Plot summarizes AUC values of six distribution model scenarios for five bird taxonomic orders. The AUC values are the average of AUC for individual bird species in Bucerotiformes, Cuculiformes, Galliformes, Passeriformes, and Piciformes taxonomic orders. Six models scenarios for the model comparison are texture models, composition models, fragmentation models, texture + fragmentation models, fragmentation + composition models, Figure 9. The relative gain of AUC values (%) of bird species distribution models for five taxonomic orders calculated from the differences between composition models and models Figure 10. Variable importance of five texture measures used to predict the patterns of distributions for tropical forest birds. variable importance is obtained from 1- Pearson's coefficient correlation for three model scenarios of texture, texture + habitat, and texture +

composition + fragmentation. The amplitude of the bar represents the relative contribution of Figure 11. Response curves depict the relationship between the probability of occurrences of Tickell's brown hornbill and texture measures: (a) coefficient of variation, (b) contrast, (c) Figure 12. Predicted habitat suitability maps for Tickell's brown hornbill overlays with their known distributions in 15 protected areas in Thailand; (a) modeled with habitat composition Figure 13. Study area, filed surveys in 15 protected areas across Thailand: Bang Lang National Park (BL), Don Yai Wildlife Saunctuary (DY), Hala-Bala Wildlife Sanctuary (HB), Huai Kha Khaeng Wildlife Sanctuary (HKK), Kaeng Krachan National Park (KK), Khao Ang Rua Nai Wildlife Sanctuary (KARN), Khao Sok National Park (KOS), Khlong Saeng Wildlife Sanctuary (KLS), Khao Yai National Park (KY), Kuiburi National Park (KB), Phu Khieo Wildlife Sanctuary (PK), Ta Phraya National Park (TAP), Thap Lan National Park (THP), Thung Yai Naresuan-West Wildlife Sanctuary (TYW), Salak Pra Wildlife Sanctuary (SP). Tiger Figure 14. Flowchart synthesizing the procedure used for assessing habitat connectivity for the Figure 15. Habitat suitability models for the Indochinese tigers in Thailand derived from an ensemble of species distribution models showing the probability of occurrence, (a) habitat suitability models based on tiger + abiotic variables, (b) tiger + prey, (c) tiger + prey + abiotic

List of Tables

Table 1. R^2 values for simple ordinary least squares models of species richness of different guilds
derived from range maps and the DHIs: cumulative annual productivity, annual minimum
productivity, and seasonal variation in productivity
Table 2. R^2 values for simple ordinary least squares models of species richness of different guilds
derived from species distribution model prediction maps and the DHIs: cumulative annual
productivity, annual minimum productivity, and seasonal variation in productivity
Table 3. Parameter estimates of models of bird species richness based on range maps by different
guilds for multivariate models that used the Dynamic Habitat Indices. Bold numbers are the
parameters for each multiple regression model that was significant at $P < 0.05$
Table 4. Parameter estimates of models of bird species richness based on species distribution
model prediction maps by different guilds for multivariate models that used the Dynamic Habitat
Indices. Bold numbers are the parameters for each multiple regression model that was significant
at <i>P</i> < 0.05
Table 5. Adjusted R^2 values of best models of bird species richness based on range maps by
different guilds for multivariate models that used the combination of the DHIs, latitudinal
gradients, topography, habitat heterogeneity, and habitat area70
Table 6. Adjusted R^2 values of best models of bird species richness based on species distribution
prediction maps by different guilds for multivariate models that used the combination of the
DHI, latitudinal gradients, topography, habitat heterogeneity, and habitat area
Table 7. List of five bird taxonomic groups and guild affiliation in the study
Table 8. Five texture measures derived from the cumulative productivity with description of
texture characteristics, and the statistical equations

Table 9. AUC scores for texture, texture + composition, and all three sets of variable models of the bird distribution for all species and five taxonomic orders. The number are the average and standard deviation of AUC values for bird species in the groups. All three model scenaios for Table 10. Mean model performance and ensemble measures (AUC scores) of top performing habitat suitability models for tiger + abiotic, tiger + prey, tiger + prey + abiotic, wild boar, gaur, muntjac, and sambar. The hypothesis on the role of trophic interactions in habitat suitability performance assessing the differences between: abiotic versus prey model; and abiotic versus Table 11. Cost dispersal probabilities (p_{ii}) and sum of cost of resistance movement (Resistance) calculated for each dispersal distance delineated dispersal corridors between currently occupied habitat patches for Indochinese tigers in Thailand. Higher values of cost dispersal probability indicate the high probability of movement between suitable patches. Higher values of cost of resistance movement indicate the low probability of movement between suitable patches...... 205 Table 12. Contribution of each currently occupied habitat patches to the maintenance of an overall landscape connectivity as measured by the relative importance of the probability of Table 13. Contribution of each dispersal corridor to the maintenance of the overall landscape

List of Appendices

Appendix 1. Bird species were classified into functional guilds based on habitat preference and migratory status. Abbreviation: R, resident birds; M, migratory birds; F, forest birds; E, earlysuccessional birds; A, farmland birds; W, wetland birds; S, seacoast birds......77 Appendix 2. Results for species distribution models for 336 bird species in Thailand. The occurrence of each species is indicated as "#Record". The AUC values of species distribution models are indicated by "AUC". Fitted 95% C.I. AUC values for the biased corrected null-model are indicated by "95% C.I. Bias". All 336 species distribution models are significantly deviating Appendix 3. Semivariograms were used to examine the spatial autocorrelation in model residuals for all bird species richness based on (a) range maps and (b) species distribution model Appendix 4. Pearson's correlation coefficients for 11 selected environmental variables used in Appendix 5. R^2 values for simple ordinary least squares models of species richness for different guilds derived from range maps and 14 environmental variables. Sign indicates direction of relationship. Bolded variable names indicate variables included for subsequent analysis due to correlations with bird species richness guilds (R^2 values > 0.05) and less collinearity among variables based on Pearson's correlation coefficients |r| < 0.8. C, cumulative annual productivity; M, annual minimum productivity; S, seasonal variation in productivity; MAT, mean annual temperature; MART, mean annual temperature range; AP, annual precipitation; TR, topographic

Appendix 6. R^2 values for simple ordinary least squares models of species richness for different guilds derived from species distribution model prediction maps and 14 environmental variables. Sign indicates direction of relationship. Bolded variable names indicate variables included for subsequent analysis due to correlations with bird species richness guilds (R^2 values > 0.05) and less collinearity among variables based on Pearson's correlation coefficients |r| < 0.8. C, cumulative annual productivity; M, annual minimum productivity; S, seasonal variation in productivity; MAT, mean annual temperature; MART, mean annual temperature range; AP, Appendix 7. Pearson's correlation coefficients (r) between species richness for each guild Appendix 8. AUC scores for texture, habitat composition, fragmentation, texture + composition, fragmentation + composition, and texture + composition + fragmentation models of the distribution of 86 tropical forest bird species. The AUC are the average of the 20 individual runs (2 replicates each of 10-fold cross validations) for each model scenarios. IUCN represents IUCN Red List categories of bird species: LC = least concern, NT = Near Threatened. Species are Appendix 9. Correlations between all 11 texture measures derived from MODIS fPAR. The lower triangle of the matrix shows scatterplots for pairs of texture measures and red lines are loess regression lines. The upper triangle shows Pearson's correlation coefficients between the texture measures. Positive and negative correlation coefficients are shown with larger fonts indicating larger absolute values of correlation coefficients. The diagonal shows the histogram for each texture measure. The texture measures were obtained from 5,000 1-km pixels randomly

selected from the forest areas of Thailand. The names of the measures used in the species Appendix 10. Correlations between selected 16 variables of habitat fragmentation, composition, and texture. The lower triangle of the matrix shows scatterplots for pairs of variables and red lines are loss regression lines. The upper triangle shows Pearson's correlation coefficients between the variables. Positive and negative correlation coefficients are shown with larger fonts indicating larger absolute values of correlation coefficients. The diagonal shows the histogram for each texture measure. The variables were obtained from 5,000 1-km pixels randomly selected Appendix 11. Habitat heterogeneity captured by five texture measures for different forest types. The boxplots indicate 95th, 75th, 50th, 25th and 5th percentiles of measure values. The values were calculated from 1,000 randomly selected pixels within each forest type at the 1-km resolution based on Landsat land cover map of Thailand......164 Appendix 12. AUC scores for individual models of the distribution of tiger habitat, as indicated by abiotic variables, including proportions of habitat type, elevation, slope, distance to nearest river, distance to nearest forest edge, distance to nearest village or road, and annual precipitation. Avg and Run SD are the aveage and standard deviation of the 20 individual runs (2 replicates each of 10-fold cross validations) for each model algorithm. Full AVG and Full SD are the average and standard deviation of each model run without setting aside testing data. Ensemble Appendix 13. AUC scores for individual models of the distribution of tiger habitat, as indicated by trophic interactions, including cumulative annual productivity, seasonal variation in productivity, Eurasian wild boar, gaur, muntjact, and sambar deer. Avg and Run SD are the

average and standard deviation of the 20 individual runs (2 replicates each of 10-fold cross validations) for each model algorithm. Full AVG and Full SD are the average and standard deviation of each model run without setting aside testing data. Ensemble AUC scores for top Appendix 14. AUC scores for individual models of the distribution of tiger habitat, as indicated by the combination of trophic interactions and abiotic variables, including species distributions of Eurasian wild boar, gaur, muntjact, sambar deer, proportions of habitat type, elevation, slope, distance to nearest river, distance to nearest forest edge, distance to nearest village or road, and annual precipitation. Avg and Run SD are the average and standard deviation of the 20 individual runs (2 replicates each of 10-fold cross validations) for each model algorithm. Full AVG and Full SD are the average and standard deviation of each model run without setting aside testing data. Ensemble AUC scores for top performing models was 0.954, with standard Appendix 15. Resistance surface for tigers across Thailand. Resistance ranges from 1 (green) to 100 (blue). Note that resistance everywhere within a suitable habitat patch has been set to 1...217

Introduction

Human activities are changing the Earth's ecosystems, which has profound consequences for biodiversity. The alarming trend of biodiversity loss is most pronounced in the tropics (Laurance et al. 2012; Pimm et al. 1995). Accuracy and efficient assessments of broad-scale patterns of biodiversity is necessary to understand the factors determining biodiversity patterns, and the responses of species to environmental change (Sutherland et al. 2009). Although knowledge of the causes of spatial heterogeneity in biodiversity has increased considerably, incomplete assessments of biodiversity patterns in many tropical regions continue to hamper the understanding of the underlying mechanisms that shape such patterns, hindering conservation efforts (Jetz et al. 2012). Biodiversity science requires better assessments of current patterns of species diversity and distributions in order to greatly improve conservation planning and protect biodiversity (Pereira et al. 2013; Scholes et al. 2008). Remote sensing is essential to develop such assessments (Kerr and Ostrovsky 2003; Turner 2014; Turner et al. 2003).

Remotely sensed measures of key habitat factors, such as productivity, can reveal the mechanisms and constraints that shape patterns of biodiversity at broad spatial and temporal scales. Measures of productivity and seasonality are strong predictors of biodiversity, even though the positive species-productivity relationship is still debated (Evans et al. 2005; Hawkins et al. 2003; Mittelbach et al. 2001). While satellite data provide a suite of productivity measures to assess broad-scale habitat and biodiversity patterns, the challenge is how to quantify patterns of species diversity and distribution using remotely sensed productivity measures that are ecologically relevant to species. Furthermore, the utility of remotely sensed productivity measures for biodiversity assessments have largely been conducted in temperate ecosystems (Nagendra et al. 2013), and not yet been assessed in many tropical regions. This is why it still

remains unclear if the remotely sensed productivity measures can effectively assess patterns of species richness and distribution in the tropics.

MODIS satellite data provides a great opportunity to develop relevant measures for biodiversity assessments (Duro et al. 2007). The Dynamic Habitat Indices (DHIs) integrate three measures of dynamic patterns of annual primary productivity: (a) cumulative annual productivity, (b) minimum annual productivity, and (c) seasonal variation in productivity (Berry et al. 2007; Coops et al. 2008; Mackey et al. 2004). The cumulative annual productivity captures the availability of primary productivity throughout a year (Coops et al. 2009a; Coops et al. 2008; Coops et al. 2009b), and species richness is generally high where energy availability is high (Connell and Orias 1964). The minimum annual productivity relates to the potential of a landscape in maintaining productivity level throughout the year, and species richness is generally high where energy availability never reaches a low minimum. The seasonal variation in productivity reflects the variation in phenology of primary productivity in a landscape throughout a year, and areas with less intra-annual variability may support more species (Hurlbert and Haskell 2003; Rahbek et al. 2007). The DHIs are promising for biodiversity and conservation, and unique from other MODIS productivity products, in that they are well grounded in biodiversity theory (Coops et al. 2009a; Coops et al. 2009b).

The strength of the DHIs are that the three measures are rooted in a number of hypotheses regarding the relationship between patterns of species richness and distribution and productivity (Hawkins et al. 2003; Mittelbach et al. 2001; Storch et al. 2006). For example, species-energy theory hypothesizes a strong correlation between species richness and productivity (Wright 1983), even though the strength of the species richness–productivity relationship is still debated (Bonn et al. 2004; Currie et al. 2004; Storch et al. 2005). Additionally, the DHIs are designed

specifically to be derived from satellite data that are available at high temporal resolution and over broad scales (Kerr and Ostrovsky 2003). The DHIs thus provides a unique opportunity to utilize satellite data for biodiversity assessments.

The DHIs have successfully predicted biodiversity patterns for fauna in the temperate regions. The DHIs explain up to 88% of the variation in breeding bird species richness across the United States, with seasonal variation in productivity being the most important measure of the DHIs while cumulative productivity is the least important factor (Coops et al. 2009a). Similarly, the DHIs explain a high proportion of the variation in breeding bird species richness in Ontario, Canada, but here minimum productivity is the most important factor (Coops et al. 2009b). Diversity of Canadian butterfly communities positively associate with cumulative annual and annual minimum productivity (Andrew et al. 2012). The DHIs significantly predict the probability of occurrence and abundance for moose (*Alces alces*) in Ontario (Michaud et al. 2014). However, the DHIs have not yet been evaluated in the tropics, and it is not clear if the patterns of primary productivity derived from the DHIs can predict patterns of species richness and distributions in the tropical ecosystems.

The overarching goal of my dissertation was to evaluate the importance of dynamic patterns of primary productivity measured via the Dynamic Habitat Indices (DHIs) for assessing patterns of species richness and distributions in the tropics. Specifically, my research questions were:

Question 1: How well does productivity as measured by the Dynamic Habitat Indices (DHIs) based on MODIS fPAR data explain tropical bird species richness patterns?

Species richness is a fundamental aspect of biodiversity and related to both ecological processes and ecosystem services (Currie 1991; MacArthur 1957; Whittaker et al. 2001). However, current bird extinction rates are at least 30 times higher than expected rates (Pimm et al. 2006). Bird species are a focal taxonomic group for investigations of the relationship between richness and dynamics of productivity because productivity is closely related to various aspects of bird life history such as habitat preferences for nesting, feeding, mating, and migratory behavior. The dynamic patterns of primary productivity strongly influences species richness patterns (Evans and Gaston 2005; Hawkins et al. 2003; Storch et al. 2005). Assessing the ability of the three DHIs to explain bird diversity patterns in tropical ecosystems, such as Thailand, is important to understand the underlying mechanisms shaping such pattern and could help mitigate potential avian diversity losses.

I assessed the relationships between the DHIs and tropical bird species richness for different functional guilds. I also evaluated the complementarity of the DHIs measures with topography, climate, latitudinal gradients, habitat heterogeneity, and habitat area in explaining tropical bird species richness. I hypothesized that the bird species richness is highest where the cumulative productivity and minimum productivity is highest, and seasonal variability of productivity is lowest. I also hypothesized that among three DHIs, cumulative productivity would be the most important factor in explaining the patterns of species richness, and that the DHIs would outperform other environmental variables.

Question 2: How well do texture measures derived from the cumulative productivity index of the DHIs predict tropical bird distribution patterns in forest ecosystems?

Habitat heterogeneity is one of the most important landscape attributes shaping species distribution patterns (Hutchinson and Macarthur 1959; Macarthur and Macarthur 1961; Stein et al. 2014). Understanding the relationship between species and habitat heterogeneity is crucial for maintaining biodiversity, and identifying high quality habitat is key for conservation management (Kreft and Jetz 2007). However, the pattern of species-heterogeneity relationship still remains a debate (Kerr and Packer 1997; Stein et al. 2014; Tews et al. 2004) and requires more empirical evidence, especially from tropical ecosystems. This work has been accomplished in my dissertation.

Texture measures, a proxy for habitat heterogeneity, strongly associate with bird diversity and distribution patterns (Culbert et al. 2012; St-Louis et al. 2006; Bellis et al. 2008). I developed texture measures derive from the DHI cumulative annual productivity, and evaluated if texture measures compare favorably with habitat composition and fragmentation in improving the predictions of distribution patterns for tropical forest birds. I hypothesized that the incorporation of texture measures into habitat composition and fragmentation models would improve model performance for predicting tropical bird distributions because texture measures capture both within and between habitat heterogeneity which are complementary to the effects of habitat composition and fragmentation in predicting area- and edge-sensitive tropical forest bird species.

Question 3: How important are trophic interactions in identifying the spatial patterns of habitat connectivity for the Indochinese tiger?

Many endangered carnivores such as the Indochinese tiger (*Panthera tigris*) persists only in small, fragmented, and isolated populations within human-dominated landscapes (Karanth et

al. 2004b; Lynam 2010; Wikramanayake et al. 2004). Habitat connectivity is crucial to long-term persistence of tigers (Kanagaraj et al. 2013; Sanderson et al. 2010; Wikramanayake et al. 2011). Yet, limited understanding of the distribution patterns of suitable habitats and dispersal corridors of tigers still constrains conservation efforts (Dinerstein et al. 2007; Seidensticker et al. 2010b; Smith et al. 2010).

I employed species distribution models to predict habitat suitability of ungulate prey species based on productivity and other environmental variables, and then habitat suitability of the endangered Indochinese tigers based on its prey distributions plus other factors. I subsequently assessed habitat connectivity for tigers. I hypothesized that the probability of occurrence of tigers would be high in areas where habitat suitability for prey is high because primary productivity, the base of food webs of herbivores and their predators, is high. These direct effects of consumption and productivity through trophic interactions influence the distributions of prey and predator species in a community (Power 1992). Suitable habitat for tigers in Thailand may be fragmented because of highly heterogeneous prey density (Steinmetz et al. 2010; Steinmetz et al. 2013), habitat loss and fragmentation (Lynam 2010; Lynam et al. 2001).

Study area

My research was in Thailand, an ideal tropical region in which to conduct my dissertation research for several reasons. First, Thailand is a global biodiversity hotspot (Myers et al. 2000), and home to more than 1,000 bird and 302 mammal species (IUCN 2014; Bird Conservation Society of Thailand Records Committee 2012). However, these species are facing rapid habitat loss and degradation due to economic development and land use change (Trisurat et al. 2010; Woodruff 2013), rates of which will likely rise due to international free market policies in 2015 (i.e., ASEAN Economic Community, (Fox and Vogler 2005). Second, broad-scale biodiversity assessments are needed for conservation planning (Laurance et al. 2012). Forest bird species of Thailand are declining in richness and density (Round and Gale 2008). Thailand's native mammal community is collapsing, with up to 12 species threatened by extirpation (Gibson et al. 2013) and the endangered Indochinese tigers only persisting in isolated, fragmented populations (Lynam 2010;Rabinowitz 1999; Smith et al. 1999). Although Thailand's situation is not unique, assessments of Thailand's biodiversity with the DHIs are novel for better understanding underlying mechanisms shaping such patterns, and can assist conservation efforts which will be important for biodiversity conservation across the tropics as well.

In the following pages I provide a summary of three chapters, which examine specific research questions in detail.

Chapter 1 Summary

Question 1: How well does productivity as measured by the Dynamic Habitat Indices (DHIs) based on MODIS fPAR data explain tropical bird species richness patterns?

Avian biodiversity is facing severe threats from anthropogenic activities, it is important to assess current patterns of bird species richness in order to mitigate potential losses.

My goal was to investigate the relationship of the dynamic patterns of primary productivity derived from the DHIs in explaining tropical bird species richness in Thailand. My objectives were to (1) examine the relationship between the three DHI measures and the patterns of species richness for tropical birds and for different functional guilds, and (2) evaluate the effects of the combination of the DHIs and other environmental factors in explaining patterns of species richness.

I performed best-subsets regression to assess the patterns of species richness. I analyzed species richness of all bird species and for several functional guilds based on habitat preferences including (a) forest birds; (b) early-successional birds (c) grassland birds; (d) wetland birds; (e) farmland birds, and migratory status: (f) resident birds; and (g) migratory birds derived from range map as well as species distribution models. I also conducted a regression analysis to examine the relationships between species richness of all bird species, and that of each functional guild, versus the DHIs and other environmental variables (i.e., latitudinal gradients, elevation, topographic relief, annual precipitation, annual temperature, temperature range, land cover richness, and habitat area). I then used a hierarchical partitioning regression to assess the relative importance of the DHIs and environmental variables in each model.

My results showed that the highest cumulative annual productivity, highest annual minimum productivity, and lowest seasonal variation in productivity occurred where bird species

richness was highest. Among the three DHIs, I found that cumulative annual productivity was the most important factor in explaining the patterns of bird richness. Forest birds and resident birds strongly associated with the DHIs. In comparison to other environmental factors, the DHIs were the most important factor in explaining bird species richness in Thailand, outcompeting latitudinal gradients, topography, climate, habitat heterogeneity, and area, but these other factors were complementary to the DHIs.

In summary, my results indicated that the dynamic patterns of primary productivity as captured by the DHIs are important in shaping the patterns of tropical bird richness in Thailand at nationwide scale. The relationship between the DHIs and tropical bird species richness provides a more complete understanding of tropical species richness and spatial patterns of energy availability in a tropical landscape, as well as an effective tool for tropical biodiversity assessments and bird conservation.

Resulting paper: Naparat Suttidate, Philip D. Round, Anna M. Pidgeon, Nicholas C. Coops, Nicholas S. Keuler, David Helmers, Warren Y. Brockelman, and Volker C. Radeloff. *Journal of Biogeography*, not submitted yet.

Chapter 2 Summary

Question 2: How well do texture measures derived from the cumulative productivity index of the DHIs predict tropical bird distribution patterns in forest ecosystems?

The identification of high quality habitat is critical for prioritizing limited conservation resources and hence maintaining the integrity of biodiversity and ecosystem functions. Texture measures derived from satellite data are a proxy measure for habitat heterogeneity, and have been effectively used to predict species richness and distributions. However, texture measures have been tested mainly in temperate ecosystems which limit understanding of the tropical diversity-habitat heterogeneity relationship.

My goal was to evaluate the ability of texture measures derived from 1-km MODIS fPAR to predict patterns of bird distribution in tropical forest ecosystems. I was specifically interested in (1) whether image texture measures can predict forest bird species distributions, and (2) whether combining texture measures with habitat composition and fragmentation can improve the prediction performance.

I developed texture measures from the cumulative annual productivity of the DHIs using 1-km MODIS fPAR data averaged from 2003-2014 over forested areas across Thailand. I selected occurrence data of 86 forest bird species, including to 5 taxonomic orders: (a) Bucerotiformes, (b) Cuculiformes, (c) Galliformes, (d) Passeriformes, and (e) Piciformes. I modeled forest bird distributions using generalized logistic regression models. I subsequently compared the predictive power of texture models with models fitted using habitat composition and fragmentation derived from categorical land cover classification, as well as models fitted using the combination measures of texture, habitat composition, and fragmentation. Measures of texture, particularly second-order homogeneity was effective in modeling tropical forest bird distributions. Specifically, Bucerotiformes forest bird species, such as hornbill species had the highest model performance when fitted with texture measures. The combination of texture measures with habitat composition and fragmentation significantly improved model performance compared with habitat composition measures.

In conclusion, my results for this chapter highlight the ability of texture measures in predicting forest bird distributions in tropical ecosystems, especially when combined with habitat composition and fragmentation measures. Texture measures capture habitat heterogeneity making them complementary to the effects of habitat composition and fragmentation in tropical forest ecosystems where the patterns of habitat strongly affect patterns of species distributions. Combining texture measures for mapping and assessing status of biodiversity patterns can greatly assist conservation planning and habitat management.

Resulting paper: Naparat Suttidate, Anna M. Pidgeon, Volker C. Radeloff, The effects of habitat heterogeneity on tropical forest bird distributions. *Remote Sensing of Environment*, not submitted yet.

Chapter 3 Summary

Question 3: How important are trophic interactions in identifying the spatial patterns of habitat connectivity for the Indochinese tiger?

Many endangered carnivores such as the Indochinese tiger (*Panthera tigris*) persists only in small, fragmented, and isolated populations within human-dominated landscapes. Restoring habitat connectivity is crucial for the long-term persistence of tigers, and to minimize their extinction risk because their need for large home ranges require well-connected habitat patches. Yet limited understanding of current distributions of tigers and their ungulate prey species constrains connectivity assessments.

My goal was to assess habitat connectivity for Indochinese tigers in Thailand. My objectives were to (1) assess the effect of trophic interactions between primary productivity, prey availability, and predator on the prediction of habitat suitability for apex predator and patterns of prey-predator system, (2) identify the spatial patterns of suitable habitat and dispersal corridors for tigers, and (3) assess the relative importance of suitable habitat patches and dispersal corridors in maintaining an overall connectivity network across Thailand.

I obtained large mammal occurrence data from camera-trap surveys of 15 protected areas in Thailand, which provided *in situ* occurrence data for Indochinese tigers, Eurasian wild boar (*Sus scrofa*), Gaur (*Bos gaurus*), Red muntjac (*Muntiacus muntjac*), and Sambar deer (*Rusa unicolor*). To assess the effect of trophic interactions in predicting large mammal distributions, I compared predictions of habitat suitability models with abiotic variables, ungulate prey variables, and their trophic interaction (i.e., the combination of primary productivity, ungulate prey, and abiotic variables). To evaluate habitat connectivity for tigers, I used the habitat suitability map derived from the trophic interaction model to identify suitable habitat patches for tigers with a patch size greater than 70 km², and to estimate a dispersal resistance surface in order to identify potential dispersal corridors using least-cost paths and circuit analysis. I then employed graph theory to evaluate the relative importance of each potential habitat patch and dispersal corridor in maintaining an overall habitat connectivity network, and thus prioritize areas for potential corridors and reintroduction.

My analyses showed that including trophic interactions significantly improved model prediction of habitat suitability for tigers. Currently occupied and potential suitable habitats for tigers in Thailand were fragmented and isolated. However, I identified potential habitat patches and dispersal corridors connecting existing populations in Thailand's Western Forest Complex that could support the viability of tiger populations.

In conclusion, my results demonstrated the importance of trophic interactions in shaping spatial distribution patterns of predator and prey species in mammal communities, and hence improved the assessment of habitat quality and connectivity for apex predators in a fragmented landscape of Thailand. Protecting prey species and decreasing human activities in both currently-occupied and potential habitat patches and corridors that are integral for maintaining an overall connectivity among populations can help to restore the connectivity among tigers' small and isolated populations, and offer an applicable and robust approach for conservation planning for Indochinese tigers and other endangered carnivores.

Resulting paper: Naparat Suttidate, Antony J. Lynam, Ronglarp Sukmasuang, Robert Steinmetz, Dusit Ngoprasert, Wanlop Chutipong, Kate E. Jenks, Megan Baker, Shumpei Kitamura, Elżbieta Ziółkowska, Brooke L. Bateman, Volker C. Radeloff. Habitat connectivity for endangered Indochinese tigers. *Biological Conservation*, not submitted yet.

Significance

Human activities are changing the Earth's ecosystems, which has profound consequences for biodiversity. To predict how species will respond to these changes, biodiversity science requires indicators of biodiversity patterns at relevant temporal and spatial scales. However, biodiversity assessments are still limited, especially in tropical regions, due to a lack of applicable and relevant indices. New approaches using satellite data may play a key role in filling this gap. The Dynamic Habitat Indices (DHIs), derived from satellite data, are designed for biodiversity studies, and have been evaluated for the first time in the tropical ecosystems by this dissertation research. My dissertation research thus contributes to the fields of landscape ecology, remote sensing science, and conservation biology in three aspects: science, methodology, and conservation.

Scientific contribution

Assessments of the factors driving the variability in species diversity and predicting their patterns across regions and biomes is crucial for understanding underlying mechanisms shaping those patterns and how species responses to human-dominated landscapes at broader scales. Tropical ecosystems are experiencing species losses at unprecedented rates (Laurance et al. 2012), making it crucial to better assess current patterns of species diversity and distributions. However, many aspects of tropical diversity patterns are complex and not well understood due to lack of broad-scale ecological measures that can reveal such patterns. My dissertation fills this knowledge gap by evaluating the use of satellite productivity measures, which capture the dynamics of energy availability and habitat heterogeneity, to understand patterns of species richness, distribution, as well as species interactions within communities. Additionally, my research provides insights into which environmental factors species respond most to in tropical

ecosystems where broad-scale biodiversity assessments are limited. As such, assessing quantitative, baseline information on tropical ecosystems is a necessary initial step on which to base future ecological research in Thailand and other tropical regions.

In *chapter 1*, the relationship between the DHIs and tropical bird species richness provides a more complete understanding of tropical species richness and dynamics of energy availability. This dissertation chapter also indicates how well the DHIs can explain patterns of tropical bird richness as well as different functional guilds, and thus highlights the DHIs as effective measures for better understanding patterns of tropical biodiversity.

In *chapter 2*, the relationship between species distributions and texture measures, a proxy for habitat heterogeneity, are mostly non-linear. Different tropical forest bird species and taxonomic orders respond to dynamics of habitat heterogeneity vary depending on how species or group of species perceive the landscape, their body size, habitat requirements, and scales of texture measures (i.e., 1-km texture measures in this study). Importantly, chapter 2 highlights the complementary effects of texture measures with habitat composition and fragmentation in predicting distribution patterns.

In *chapter 3*, I provide more ecological knowledge about distribution patterns and habitat suitability for tigers through trophic interactions among tigers and their ungulate prey in food webs connecting vegetation productivity directly - via consumption - with herbivores, and indirectly - via the consumption of herbivores - to carnivores. Additionally, fragmented habitat patches and long, ill-suited dispersal corridors emphasize the effect of humans-altered landscape on the viability of endangered species. The relative importance of habitat patches and dispersal

corridors can sustain viable subpopulations, and landscape connectivity among suitable habitat patches.

Methodological contribution

The current global biodiversity crisis requires accurate and efficient mapping and monitoring broad-scale patterns of biodiversity. Developing methods for effective assessments of biodiversity is necessary, in particular in the tropics where ecosystems are complex, and experience the intensity of human alteration to tropical landscapes. Advances in remotely sensed data provide effective tools in quantifying the influence of environmental changes on biodiversity and ecosystem processes at spatial and temporal scales (Turner 2014). However, ecological applications of such advanced remotely sensed approaches are still needed to evaluate in tropical biodiversity studies.

My dissertation research makes methodological advances by developing and testing the Dynamic Habitat Indices for models of species richness and species distribution patterns for the first time in tropical ecosystems. Specifically, my dissertation research contributes to remote sensing and biodiversity science by seizing the opportunity presented by global, consistent wellcalibrated satellite MODIS data. The DHIs are specifically designed to capture the dynamics of primary productivity that strongly correlates to patterns of species richness and distribution.

In *chapter 1*, the DHIs explained the patterns of species richness for all species and different functional guilds well because the DHIs capture the energy availability within birds' habitat through the cumulative annual productivity and phenology of productivity. The DHIs thus can serve as ecological measures when assessing and monitoring broad-scale patterns of

tropical bird richness in Thailand. In addition, the integration with other environmental data can provide a variety of ecological applications in biodiversity assessments.

In *chapter 2*, texture measures derived from the cumulative annual productivity of the DHIs provide between and within habitat heterogeneity of forest ecosystems, which commonly used habitat variables (i.e., habitat composition and fragmentation) ignore. The combined measures of texture and habitat composition and fragmentation improved species distribution models. This highlights the ability of texture measures as a valuable tool to capture habitat heterogeneity, and should be considered in conjunction with habitat composition and fragmentation in species distribution modeling. Because of the strong relationship between forest bird distributions and habitat heterogeneity, and hence texture measures can be used as a tool to assess biodiversity and monitor habitat quality over broad scales.

In *chapter 3*, the integration of trophic interactions (primary productivity, seasonality in productivity, and ungulate prey species) improved the prediction of habitat suitability for tigers in Thailand. This indicates that primary productivity and ungulate prey can be used as proxies for food availability and add ecologically realism to habitat suitability models for apex predators. In addition to trophic interactions, integrating connectivity methods with ecology of species such as home range size, dispersal distance, and dispersal barrier data can greatly improve connectivity assessments. I used ensemble species distribution models, which use multiple species distribution model algorithms, and their outcomes yield the best possible habitat suitability models for tigers. For connectivity methods, we integrated least-cost path modeling and circuit analysis to identify dispersal corridors and quantify possible routes for tigers' movements within the corridors. I also ranked the relative importance of suitable habitat patches and dispersal corridors to an overall habitat connectivity network using the graph theory method which

performs removal operations of habitat patches and corridors, and thus prioritize sites for potential corridors and reintroduction.

Conservation contribution

Thailand is a global biodiversity hotspot experiencing dramatic ecological and socioeconomic changes. As is the case for most tropical countries, Thailand still needs better biodiversity assessments and more comprehensive spatial distribution information to improve national-scale conservation planning in order to sustain the integrity of ecological processes and ecosystem services. The achievement of conservation goals and natural management can determine the fate of tropical biodiversity. Given this, improved knowledge of tropical ecosystems will reduce current rates of extinction and facilitate long-term persistence of species across the globe. The dissertation research contributes greatly to conservation of Thailand, and around the world by improving assessments of the patterns of species richness and distributions as well as ecological processes influencing broad-scale patterns of biodiversity.

In *chapter 1*, incorporating knowledge of the relationship between patterns of bird species richness of different functional guilds and the dynamics of primary productivity (i.e., energy availability) into the identification of important factors shaping richness patterns highlights the effectiveness of the DHIs as an ecological tool to prioritize areas for bird conservation. In the process of this chapter, I also developed new bird richness and functional guild maps, which by themselves will be valuable for conservation and biodiversity science. Comprehensive information from chapter 1 can help policy-makers in compiling data on the species richness patterns of planning areas to maintain biodiversity.

In *chapter 2*, I tested and improved methods of characterizing complex forest habitat in Thailand, which will serve as a model for other tropical studies. Synergistic remotely sensed data can enhance the ability to quantify habitat quality and habitat biodiversity values. The most important contribution of my work on the ground is its direct application to conservation and management in Thailand. Characterizing the effects of landscape structure and ecological processes on bird distributions will provide information for broad-scale conservation planning. Such information enhances the understanding of threats posed to habitat suitability and avian biodiversity in Thailand. This fosters the development of efficient conservation planning by identifying likely targets of future conservation efforts, including existing protected areas that may be improved.

In *chapter 3*, broad-scale conservation planning for tigers cannot be successful without identifying suitable habitat patches, dispersal corridors, and an effective assessment of connectivity network that can maintain viability of tiger populations and facilitating gene flow among populations. My third dissertation chapter provides maps of spatial distribution patterns on (a) currently occupied and potential suitable habitat patches of tigers, (b) potential dispersal corridors connecting among those suitable patches, (c) a ranking of the importance of suitable habitat patches and corridors to maintain overall connectivity network for the Indochinese tigers in Thailand, and (d) habitat suitability maps for five large mammal species in Thailand, including tigers, gaur, muntjac, sambar deer, and wild boar. These spatial data are crucial information for prioritizing areas for tiger conservation planning, and identifying potential reintroduction sites for tigers as well as their prey species, which can greatly improve conservation efforts for tigers in Thailand as well as their current distribution ranges in other regions.
Summary

My evaluation of dynamic patterns of primary productivity as measured by the Dynamic Habitat Indices (DHIs) for biodiversity assessments in the tropics is highly novel. In addition to assessing the relationship between species diversity and the DHIs as effective measures to understand underlying mechanisms and identifying important factors shaping broad-scale patterns of species richness and distribution in tropical ecosystems, it provides insights into conservation planning and resource management in Thailand. Assessing current patterns and predicting future changes in biodiversity in tropical regions is urgently needed for science, conservation, and land management, given high rates of global biodiversity loss and the impacts of rapid environmental change. My dissertation research helps to close this gap by successfully evaluating the DHIs from MODIS as a valuable measure to detect and predict patterns of tropical biodiversity, in order to advance the development of essential biodiversity variables (EBVs) (Pereira et al., 2013). Additionally, my dissertation research addresses the need for accurate assessment of biodiversity data at relevant spatial and temporal scales as stated in conventions such as the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), and The Convention on Biological Diversity (CBD) (Pimm et al. 2014). As such, my dissertation research contributes substantially to biodiversity science, and has broad societal relevance, striving globally to protect biodiversity and the ecosystem services that sustain human well-being within the context of rapid environmental changes.

- Andrew, M.E., Wulder, M.A., Coops, N.C., Baillargeon, G., 2012. Beta-diversity gradients of butterflies along productivity axes. Global Ecology and Biogeography 21, 352-364.
- Bellis, L.M., Pidgeon, A.M., Radeloff, V.C., St-Louis, V., Navarro, J.L., & Martella, M.B.,
 2008. Modeling habitat suitability for Greater Rheas based on satellite image texture.
 Ecological Applications 18, 1956-1966.
- Berry, S., Mackey, B., Brown, T., 2007. Potential applications of remotely sensed vegetation greenness to habitat analysis and the conservation of dispersive fauna. Pacific Conservation Biology 13, 120-127.
- Bird Conservation Society of Thailand Records Committee, 2012. Checklist of Thai bird names, January 2012. [http://www.bcst.or.th/]
- Bonn, A., Storch, D., Gaston, K.J., 2004. Structure of the species-energy relationship. Proceedings of the Royal Society B-Biological Sciences 271, 1685-1691.
- Connell, J.H., Orias, E., 1964. The ecological regulation of species diversity. Amer Natur 98, 399-414.
- Coops, N.C., Waring, R.H., Wulder, M.A., Pidgeon, A.M., Radeloff, V.C., 2009a. Bird diversity: a predictable function of satellite-derived estimates of seasonal variation in canopy light absorbance across the United States. Journal of Biogeography 36, 905-918.
- Coops, N.C., Wulder, M.A., Duro, D.C., Han, T., Berry, S., 2008. The development of a Canadian dynamic habitat index using multi-temporal satellite estimates of canopy light absorbance. Ecological Indicators 8, 754-766.

- Coops, N.C., Wulder, M.A., Iwanicka, D., 2009b. Exploring the relative importance of satellitederived descriptors of production, topography and land cover for predicting breeding bird species richness over Ontario, Canada. Remote Sensing of Environment 113, 668-679.
- Culbert, P.D., Radeloff, V.C., St-Louis, V., Flather, C.H., Rittenhouse, C.D., Albright, T.P.,
 Pidgeon, A.M., 2012. Modeling broad-scale patterns of avian species richness across the
 Midwestern United States with measures of satellite image texture. Remote Sensing of
 Environment 118, 140-150.
- Currie, D.J., 1991. Energy and large-scale patterns of animal-species and plant-species richness American Naturalist 137, 27-49.
- Currie, D.J., Mittelbach, G.G., Cornell, H.V., Field, R., Guegan, J.F., Hawkins, B.A., Kaufman, D.M., Kerr, J.T., Oberdorff, T., O'Brien, E., Turner, J.R.G., 2004. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters 7, 1121-1134.
- Dinerstein, E., Loucks, C., Wikramanayake, E., Ginsberg, J., Sanderson, E., Seidensticker, J.,
 Forrest, J., Bryja, G., Heydlauff, A., Klenzendorf, S., Leimgruber, P., Mills, J., O'Brien,
 T.G., Shrestha, M., Simons, R., Songer, M., 2007. The fate of wild tigers. Bioscience 57, 508-514.
- Duro, C.D, Coops, N.C., Wulder, M.A., Han, T., 2007. Development of a large area biodiversity monitoring system driven by remote sensing. Progress in Physical Geography 31, 235-260.

- Evans, K.L., Gaston, K.J., 2005. People, energy and avian species richness. Global Ecology and Biogeography 14, 187-196.
- Evans, K.L., Greenwood, J.J.D., Gaston, K.J., 2005. Dissecting the species-energy relationship. Proceedings of the Royal Society B-Biological Sciences 272, 2155-2163.
- Fox, J., Vogler, J.B., 2005. Land-use and land-cover change in montane mainland southeast Asia. Environmental Management 36, 394-403.
- Gibson, L., Lynam, A.J., Bradshaw, C.J.A., He, F., Bickford, D.P., Woodruff, D.S., Bumrungsri,
 S., Laurance, W.F., 2013. Near-Complete Extinction of Native Small Mammal Fauna 25
 Years After Forest Fragmentation. Science 341, 1508-1510.
- Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guegan, J.F., Kaufman, D.M., Kerr, J.T.,
 Mittelbach, G.G., Oberdorff, T., O'Brien, E.M., Porter, E.E., Turner, J.R.G., 2003.
 Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105-3117.
- Hurlbert, A.H., Haskell, J.P., 2003. The effect of energy and seasonality on avian species richness and community composition. American Naturalist 161, 83-97.
- Hutchinson, G.E., Macarthur, R.H., 1959. A theoretical ecological model of size distributions among species of animals. Amer Nat 93, 117-126.
- IUCN, 2014. The IUCN Red List of Threatened Species. Version 2014.1. http://www.iucnredlist.org. Acessed on 09 May 2013.
- Jetz, W., McPherson, J.M., Guralnick, R.P., 2012. Integrating biodiversity distribution knowledge: toward a global map of life. Trends in Ecology & Evolution 27, 151-159.

- Kanagaraj, R., Wiegand, T., Kramer-Schadt, S., Goyal, S.P., 2013. Using individual-based movement models to assess inter-patch connectivity for large carnivores in fragmented landscapes. Biological Conservation 167, 298-309.
- Karanth, K.U., Nichols, J.D., Kumar, N.S., Link, W.A., Hines, J.E., 2004. Tigers and their prey:Predicting carnivore densities from prey abundance. Proceedings of the NationalAcademy of Sciences of the United States of America 101, 4854-4858.
- Kerr, J.T., Ostrovsky, M., 2003. From space to species: ecological applications for remote sensing. Trends in Ecology & Evolution 18, 299-305.
- Kerr, J.T., Packer, L., 1997. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252-254.
- Kreft, H., Jetz, W., 2007. Global patterns and determinants of vascular plant diversity.Proceedings of the National Academy of Sciences of the United States of America 104, 5925-5930.
- Laurance, W.F., Useche, D.C., Rendeiro, J., Kalka, M., Bradshaw, C.J.A., Sloan, S.P., Laurance, S.G., Campbell, M., Abernethy, K., Alvarez, P., Arroyo-Rodriguez, V., Ashton, P., Benitez-Malvido, J., Blom, A., Bobo, K.S., Cannon, C.H., Cao, M., Carroll, R., Chapman, C., Coates, R., Cords, M., Danielsen, F., De Dijn, B., Dinerstein, E., Donnelly, M.A., Edwards, D., Edwards, F., Farwig, N., Fashing, P., Forget, P.-M., Foster, M., Gale, G., Harris, D., Harrison, R., Hart, J., Karpanty, S., Kress, W.J., Krishnaswamy, J., Logsdon, W., Lovett, J., Magnusson, W., Maisels, F., Marshall, A.R., McClearn, D., Mudappa, D., Nielsen, M.R., Pearson, R., Pitman, N., van der Ploeg, J., Plumptre, A., Poulsen, J., Quesada, M., Rainey, H., Robinson, D., Roetgers, C., Rovero, F., Scatena, F.,

Schulze, C., Sheil, D., Struhsaker, T., Terborgh, J., Thomas, D., Timm, R., Urbina-

- Cardona, J.N., Vasudevan, K., Wright, S.J., Arias-G, J.C., Arroyo, L., Ashton, M., Auzel,
- P., Babaasa, D., Babweteera, F., Baker, P., Banki, O., Bass, M., Bila-Isia, I., Blake, S.,
- Brockelman, W., Brokaw, N., Bruehl, C.A., Bunyavejchewin, S., Chao, J.-T., Chave, J.,
- Chellam, R., Clark, C.J., Clavijo, J., Congdon, R., Corlett, R., Dattaraja, H.S., Dave, C.,
- Davies, G., Beisiegel, B.d.M., da Silva, R.d.N., Di Fiore, A., Diesmos, A., Dirzo, R.,
- Doran-Sheehy, D., Eaton, M., Emmons, L., Estrada, A., Ewango, C., Fedigan, L., Feer,
- F., Fruth, B., Willis, J.G., Goodale, U., Goodman, S., Guix, J.C., Guthiga, P., Haber, W.,
- Hamer, K., Herbinger, I., Hill, J., Huang, Z., Sun, I.F., Ickes, K., Itoh, A., Ivanauskas, N.,
- Jackes, B., Janovec, J., Janzen, D., Jiangming, M., Jin, C., Jones, T., Justiniano, H.,
- Kalko, E., Kasangaki, A., Killeen, T., King, H.-b., Klop, E., Knott, C., Kone, I.,
- Kudavidanage, E., Ribeiro, J.L.d.S., Lattke, J., Laval, R., Lawton, R., Leal, M., Leighton,
- M., Lentino, M., Leonel, C., Lindsell, J., Ling-Ling, L., Linsenmair, K.E., Losos, E.,
- Lugo, A., Lwanga, J., Mack, A.L., Martins, M., McGraw, W.S., McNab, R., Montag, L.,
- Thompson, J.M., Nabe-Nielsen, J., Nakagawa, M., Nepal, S., Norconk, M., Novotny, V.,
- O'Donnell, S., Opiang, M., Ouboter, P., Parker, K., Parthasarathy, N., Pisciotta, K.,
- Prawiradilaga, D., Pringle, C., Rajathurai, S., Reichard, U., Reinartz, G., Renton, K.,
- Reynolds, G., Reynolds, V., Riley, E., Roedel, M.-O., Rothman, J., Round, P., Sakai, S.,
- Sanaiotti, T., Savini, T., Schaab, G., Seidensticker, J., Siaka, A., Silman, M.R., Smith,
- T.B., de Almeida, S.S., Sodhi, N., Stanford, C., Stewart, K., Stokes, E., Stoner, K.E.,
- Sukumar, R., Surbeck, M., Tobler, M., Tscharntke, T., Turkalo, A., Umapathy, G., van
- Weerd, M., Rivera, J.V., Venkataraman, M., Venn, L., Verea, C., de Castilho, C.V.,
- Waltert, M., Wang, B., Watts, D., Weber, W., West, P., Whitacre, D., Whitney, K.,

Wilkie, D., Williams, S., Wright, D.D., Wright, P., Xiankai, L., Yonzon, P., Zamzani, F.,2012. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290-+.

- Lynam, A.J., 2010. Securing a future for wild Indochinese tigers: Transforming tiger vacuums into tiger source sites. Integrative Zoology 5, 324-334.
- Lynam, A.J., Kreetiyutanont, K., Mather, R., 2001. Conservation status and distribution of the Indochinese tiger (Panthera tigris corbetti) and other large mammals in a forest complex in northeastern Thailand. Natural History Bulletin of the Siam Society 49, 61-75.

Macarthur, R., Macarthur, J.W., 1961. On bird species-diversity. Ecology 42, 594-598.

- MacArthur, R.H., 1957. On the relative abundance of bird species. Proc Natl Acad Sci 43, 293-295.
- Mackey, B. G., Bryan, J., & Randall, L., 2004. Australia's dynamic habitat template 2003. Proceedings MODIS Vegetation Workshop II Missoula, MT: University of Montana.
- Michaud, J.-S., Coops, N.C., Andrew, M.E., Wulder, M.A., Brown, G.S., Rickbeil, G.J.M., 2014. Estimating moose (Alces alces) occurrence and abundance from remotely derived environmental indicators. Remote Sensing of Environment 152, 190-201.
- Mittelbach, G.G., Steiner, C.F., Scheiner, S.M., Gross, K.L., Reynolds, H.L., Waide, R.B.,
 Willig, M.R., Dodson, S.I., Gough, L., 2001. What is the observed relationship between species richness and productivity? Ecology 82, 2381-2396.
- Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858.

- Nagendra, H., Lucas, R., Honrado, J.P., Jongman, R.H.G., Tarantino, C., Adamo, M., Mairota,
 P., 2013. Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecological Indicators 33, 45-59.
- Pereira, H.M., Ferrier, S., Walters, M., Geller, G.N., Jongman, R.H.G., Scholes, R.J., Bruford, M.W., Brummitt, N., Butchart, S.H.M., Cardoso, A.C., Coops, N.C., Dulloo, E., Faith, D.P., Freyhof, J., Gregory, R.D., Heip, C., Hoeft, R., Hurtt, G., Jetz, W., Karp, D.S., McGeoch, M.A., Obura, D., Onoda, Y., Pettorelli, N., Reyers, B., Sayre, R., Scharlemann, J.P.W., Stuart, S.N., Turak, E., Walpole, M., Wegmann, M., 2013. Essential Biodiversity Variables. Science 339, 277-278.
- Pimm, S., Raven, P., Peterson, A., Sekercioglu, C.H., Ehrlich, P.R., 2006. Human impacts on the rates of recent, present, and future bird extinctions. Proceedings of the National Academy of Sciences of the United States of America 103, 10941-10946.
- Pimm, S.L., Jenkins, C.N., Abell, R., Brooks, T.M., Gittleman, J.L., Joppa, L.N., Raven, P.H., Roberts, C.M., Sexton, J.O., 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 987-+.
- Pimm, S.L., Russell, G.J., Gittleman, J.L., Brooks, T.M., 1995. The future of biodiversity. Science 269, 347-350.
- Power, M.E., 1992. Top-down and bottom up forces in food webs-do plants have primacy. Ecology 73, 733-746.
- Rabinowitz, A., 1999. The status of the Indochinese tiger: separating fact from fiction.

- Rahbek, C., Gotelli, N.J., Colwell, R.K., Entsminger, G.L., Rangel, T.F.L.V.B., Graves, G.R.,
 2007. Predicting continental-scale patterns of bird species richness with spatially explicit
 models. Proceedings of the Royal Society B-Biological Sciences 274, 165-174.
- Round, P.D., Gale, G.A., 2008. Changes in the status of Lophura pheasants in Khao Yai National Park, Thailand: A response to warming climate? Biotropica 40, 225-230.
- Sanderson, E.W., Forrest, J., Loucks, C., Ginsberg, J., Dinerstein, E., Seidensticker, J.,
 Leimgruber, P., Songer, M., Heydlauff, A., O'Brien, T., Bryja, G., Klenzendorf, S.,
 Wikramanayake, E., 2010. Setting Priorities for Tiger Conservation: 2005-2015. Tigers of the World: the Science, Politics, and Conservation of Panthera Tigris, 2nd Edition, 143-161.
- Scholes, R.J., Mace, G.M., Turner, W., Geller, G.N., Juergens, N., Larigauderie, A., Muchoney,D., Walther, B.A., Mooney, H.A., 2008. Ecology Toward a global biodiversityobserving system. Science 321, 1044-1045.
- Seidensticker, J., Gratwicke, B., Shrestha, M., 2010. How Many Wild Tigers Are There? An Estimate for 2008. Tigers of the World: the Science, Politics, and Conservation of Panthera Tigris, 2nd Edition, 295-299.
- Smith, J.L.D., McDougal, C., Gurung, B., Shrestha, N., Shrestha, M., Allendorf, T., Joshi, A.,
 Dhakal, N., 2010. Securing the Future for Nepal's Tigers: Lessons from the Past and
 Present. Tigers of the World: the Science, Politics, and Conservation of Panthera Tigris,
 2nd Edition, 331-344.

- Smith, J.L.D., Tunhikorn, S., Tanhan, S., Simcharoen, S., Kanchanasaka, B., 1999. Metapopulation structure of tigers in Thailand.
- St-Louis, V., Pidgeon, A.M., Radeloff, V.C., Hawbaker, T.J., Clayton, M.K., 2006. Highresolution image texture as a predictor of bird species richness. Remote Sensing of Environment 105, 299-312.
- Stein, A., Gerstner, K., Kreft, H., 2014. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters 17, 866-880.
- Steinmetz, R., Chutipong, W., Seuaturien, N., Chirngsaard, E., Khaengkhetkarn, M., 2010.
 Population recovery patterns of Southeast Asian ungulates after poaching. Biological Conservation 143, 42-51.
- Steinmetz, R., Seuaturien, N., Chutipong, W., 2013. Tigers, leopards, and dholes in a half-empty forest: Assessing species interactions in a guild of threatened carnivores. Biological Conservation 163, 68-78.
- Storch, D., Davies, R.G., Zajicek, S., Orme, C.D.L., Olson, V., Thomas, G.H., Ding, T.-S.,
 Rasmussen, P.C., Ridgely, R.S., Bennett, P.M., Blackburn, T.M., Owens, I.P.F., Gaston,
 K.J., 2006. Energy, range dynamics and global species richness patterns: reconciling middomain effects and environmental determinants of avian diversity. Ecology Letters 9,
 1308-1320.
- Storch, D., Evans, K.L., Gaston, K.J., 2005. The species-area-energy relationship. Ecology Letters 8, 487-492.

- Sutherland, W.J., Adams, W.M., Aronson, R.B., Aveling, R., Blackburn, T.M., Broad, S.,
 Ceballos, G., Cote, I.M., Cowling, R.M., Da Fonseca, G.A.B., Dinerstein, E., Ferraro,
 P.J., Fleishman, E., Gascon, C., Hunter, M., Jr., Hutton, J., Kareiva, P., Kuria, A.,
 Macdonald, D.W., Mackinnon, K., Madgwick, F.J., Mascia, M.B., McNeely, J., MilnerGulland, E.J., Moon, S., Morley, C.G., Nelson, S., Osborn, D., Pai, M., Parsons, E.C.M.,
 Peck, L.S., Possingham, H.P., Prior, S.V., Pullin, A.S., Rands, M.R.W., Ranganathan, J.,
 Redford, K.H., Rodriguez, J.P., Seymour, F., Sobel, J., Sodhi, N.S., Stott, A., VanceBorland, K., Watkinson, A.R., 2009. One Hundred Questions of Importance to the
 Conservation of Global Biological Diversity. Conservation Biology 23, 557-567.
- Tews, J., Brose, U., Grimm, V., Tielborger, K., Wichmann, M.C., Schwager, M., Jeltsch, F., 2004. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography 31, 79-92.
- Trisurat, Y., Alkemade, R., Verburg, P.H., 2010. Projecting Land-Use Change and Its Consequences for Biodiversity in Northern Thailand. Environmental Management 45, 626-639.
- Turner, W., 2014. Sensing biodiversity. Science 346, 301-302.
- Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., Steininger, M., 2003. Remote sensing for biodiversity science and conservation. Trends in Ecology & Evolution 18, 306-314.
- Whittaker, R.J., Willis, K.J., Field, R., 2001. Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography 28, 453-470.

- Wikramanayake, E., Dinerstein, E., Seidensticker, J., Lumpkin, S., Pandav, B., Shrestha, M.,
 Mishra, H., Ballou, J., Johnsingh, A.J.T., Chestin, I., Sunarto, S., Thinley, P., Thapa, K.,
 Jiang, G., Elagupillay, S., Kafley, H., Pradhan, N.M.B., Jigme, K., Teak, S., Cutter, P.,
 Aziz, M.A., Than, U., 2011. A landscape-based conservation strategy to double the wild
 tiger population. Conservation Letters 4, 219-227.
- Wikramanayake, E., McKnight, M., Dinerstein, E., Joshi, A., Gurung, B., Smith, D., 2004.Designing a conservation landscape for tigers in human-dominated environments.Conservation Biology 18, 839-844.
- Woodruff, D.S., 2013. Wildlife conservation in protected areas in Thailand: lessons from Chiew larn, Khao sok and Khlong saeng. Natural History Bulletin of the Siam Society 59, 91-107.
- Wright, D.H., 1983. Species-energy theory an extension of species-area theory. Oikos 41, 496-506.

Chapter 1: The relationship of tropical bird species richness and primary productivity as measured by the Dynamic Habitat Indices based on MODIS satellite data

Abstract

Avian biodiversity is facing severe threats from anthropogenic activities. It is important to assess current patterns of bird species richness in order to mitigate potential losses. Our goal was to investigate the relationships between tropical bird species richness patterns in Thailand and primary productivity as measured by the Dynamic Habitat Indices (DHIs). We calculated the Dynamic Habitat Indices (DHIs) based on the fraction of absorbed photosynthetically active radiation (fPAR) derived from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS). The DHIs summarize three measures of productivity: cumulative annual productivity, annual minimum productivity, and seasonal variation in productivity. We estimated species richness for all birds and different functional guilds by combining (a) 888 individual bird species range maps and (b) 336 species distribution model (SDM) prediction maps. We modeled species richness for all bird species, and for different functional guilds, based on habitat preferences and migratory status, as a function of the DHIs. We also evaluated these relationships in multivariate models adding climate, topography, latitudinal gradients, habitat heterogeneity, and area, with best-subsets and hierarchical partitioning regressions. Our results showed that the highest cumulative annual productivity, highest annual minimum productivity, and lowest seasonal variation in productivity occurred where bird species richness was highest. Among the three DHIs, cumulative annual productivity was the most important factor in explaining the species richness patterns of birds in Thailand. Cumulative annual productivity explained the highest proportion of the variation in species richness patterns for all birds, forest birds, and resident birds from both range and SDM prediction maps (up to 63%). When estimating richness with all

three DHIs, resident bird species richness showed the strongest correlation among the range map based richness estimates ($R^2 = 0.65$, P < 0.001), while forest bird species showed the strongest correlation based on SDM prediction maps ($R^2 = 0.61$, P < 0.001). The DHIs and other environmental factors were complementary in explaining the species richness patterns of all bird species richness and functional guilds (up to 87%). In comparison to other environmental factors, the DHIs were the most important factors outcompeting latitudinal gradients, topography, climate, habitat heterogeneity, and area. The strong relationships between the DHIs and tropical bird species richness patterns in Thailand suggested that the DHIs provide an efficient quantification of energy availability shaping tropical bird species richness at broad scales, and can assist biodiversity assessments and hence bird conservation.

Introduction

Biodiversity loss is a global crisis and tropical regions are experiencing the greatest declines (Brook et al. 2008; Laurance et al. 2012; Sala et al. 2000). Accurate and efficient assessments of broad-scale patterns of biodiversity are necessary to understand the factors determining biodiversity patterns, and the responses of species to changing environments (Sutherland et al. 2009). Although knowledge of the spatial variation in biodiversity patterns has increased considerably, incomplete assessment of biodiversity patterns in many tropical regions continues to hamper the understanding of the underlying mechanisms that shape such patterns, hindering conservation efforts (Gaston 2000; Jetz et al. 2012). Biodiversity science requires better assessments of current patterns of species diversity and distributions in order to protect biodiversity and advance conservation planning (Pereira et al. 2013; Scholes et al. 2008). Remote sensing is essential to develop such assessments (Kerr and Ostrovsky 2003; Turner 2014; Turner et al. 2003).

Species richness is a fundamental aspect of biodiversity, and is strongly associated with primary productivity (MacArthur 1957; Wright 1983; Evans et al. 2005). The underlying mechanisms shaping broad scale richness patterns are still subject to debate due to the confounding effects of observation scales (Rahbek and Graves 2001; Whittaker et al. 2001), and the complexity of relationships between species and their environments (Jetz et al. 2004; Orme et al. 2005). Empirically, species richness patterns show strong relationships to energy availability though (Bonn et al. 2004; Currie et al. 1991; Storch et al. 2005). The energy within a landscape is usually indirectly estimated from other variables, and often used interchangeably with primary productivity (Gaston 2000). In addition to cumulative energy, seasonal variation in productivity influences how prevalent migration is among the members of a given bird community (Coops et al. 2009a; Hurlbert and Haskell 2003).

Remotely sensed measures of dynamic patterns of productivity and phenological variation in productivity can reveal underlying mechanisms and ecosystem functions of species richness patterns (Evans and Gaston 2005; Hawkins et al. 2003; Mittelbach et al. 2001), and be used to test the species-energy hypothesis (Hutchinson and Macarthur 1959; Wright 1983; Wright et al. 1993). The relationship of species richness as a function of productivity in fauna can be positive, negative, or non-linear (Gaston 2000; Mittelbach et al. 2001; Storch et al. 2006). Although the species richness-energy relationship is still debated (Currie et al. 2004; Evans et al. 2005; Storch et al. 2005), the dynamic patterns of primary productivity are among the most important factors shaping species richness at broad scales (Field et al. 2009; Hawkins et al. 2003). Given the complexity in the species-productivity relationship and the important role productivity plays in species richness patterns, the challenge is how to derive productivity indices that can capture the dynamic patterns of primary productivity and effectively assess broad-scale patterns of species richness.

Satellite observations provide a suite of productivity data and are increasingly used to model and understand species richness patterns at broad scales in space and time (Nagendra 2001; Nagendra et al. 2013). The main advantage of remotely sensed data over field data is the availability of consistent data with high spatial and temporal resolution for large areas (Innes and Koch 1998; Roy and Tomar 2000). Typically, remote sensing data are used to measure environmental variables that predict species richness rather than by identifying species in the satellite imagery directly (Kerr and Ostrovsky 2003; Turner et al. 2003). For example, the Normalized Difference Vegetation Index (NDVI), a measure of photosynthetic activity (Tucker et al. 2005), can predict the species richness patterns of fauna and flora (Hurlbert and Haskell 2003). NDVI is, however, an indirect measure of productivity, with limitations to its use in tropical ecosystems where NDVI saturates at low to medium productivity levels as vegetation canopy increases (Foody et al. 2001; Nagendra and Rocchini 2008; Steininger 1996). Productivity can be directly measured through biophysical parameters, such as standing biomass, tree volume, foliage vigor as measured by Leaf Area Index (LAI), and photosynthesis as measured by the fraction of light absorbed by the vegetation (fPAR) (Turner et al. 2003; Duro et al. 2007).

The fraction of absorbed photosynthetically active radiation (fPAR) is a measure of the proportion of available solar radiation in photosynthetically active wavelengths that is absorbed by vegetation for photosynthesis, and thus can quantify the dynamic patterns of primary productivity (Myneni et al. 2002; Sellers et al. 1996). In theory, the higher average fPAR level during the growing cycle, the denser the green leaf cover, and hence the higher the productivity. fPAR values vary from zero for barren land to one for dense vegetation cover (Knyazikhin et al. 1998). While fPAR is not commonly applied to biodiversity studies, it holds promise because it captures landscape gross primary productivity (Duro et al. 2007). Previous studies have successfully used fPAR measures to predict broad-scale species patterns of diversity, distribution, and ecosystem processes, yet those studies have been conducted in temperate regions (Coops et al. 2009a; Coops et al. 2009b; Michaud et al. 2014). The relationship between species richness in the tropics and dynamic patterns of primary productivity derived from fPAR still remains unclear and it is not known if it could be an effective tool in predicting tropical biodiversity patterns.

The Dynamic Habitat Indices (DHIs) summarize three aspects of the dynamic patterns of primary productivity: (a) cumulative annual productivity, (b) annual minimum productivity, and (c) seasonal variation in productivity (Berry et al. 2007; Mackey et al. 2004, Coops et al. 2008). The cumulative annual productivity captures the availability of primary productivity throughout a year (Coops et al. 2009a; Coops et al. 2008; Coops et al. 2009b), and species richness is generally high where energy availability is high (Connell and Orias 1964). The annual minimum productivity relates to the potential of a landscape in maintaining productivity levels throughout the year, and species richness is generally high where energy availability in productivity reflects the variation in phenology of primary productivity in a landscape throughout a year, and areas with less intraannual variability may support more species (Hurlbert and Haskell 2003; Rahbek et al. 2007). The DHIs are promising for biodiversity assessments, and unique from other MODIS productivity products, in that they are well grounded in biodiversity theory (Duro et al. 2007; Coops et al. 2009b).

The DHIs have been successfully used for assessments of faunal biodiversity patterns in temperate regions. For example, in the U.S., the DHIs explain up to 88% of the variation in breeding bird species richness among ecoregions, with seasonal variation in productivity being the most important measure and cumulative annual productivity the least important factor (Coops et al. 2009a). Similarly, the DHIs explain a high proportion of the variation in breeding bird species richness in Ontario, Canada, but here minimum productivity is the most important factor (Coops et al. 2009b). Diversity of Canadian butterfly communities associated positively with cumulative and minimum productivity (Andrew et al. 2012), and the DHIs significantly predicted the probability of occurrence and abundance for moose in Ontario (Michaud et al.

2014). However, the DHIs have not yet been evaluated in the tropics, and it is not clear if the patterns of primary productivity derived from the DHIs can predict patterns of species richness in tropical ecosystems.

Our overall goal was to investigate the relationship of tropical bird species richness and the dynamic patterns of primary productivity captured by the DHIs. To achieve the goal, our first objective was to assess the relationships between tropical bird species richness for all birds and different functional guilds and the DHIs. Our second objective was to determine the relative importance of the complementarity of the DHIs, topography, latitudinal gradients, climate, habitat heterogeneity, and area in explaining species richness patterns for tropical birds. We hypothesized that the bird species richness is highest where the cumulative annual productivity and annual minimum productivity are highest, and seasonal variation in productivity is lowest. We also hypothesized that among three DHIs, cumulative annual productivity would be the most important factor in explaining the patterns of species richness, and that the DHIs would outperform other environmental variables.

Methods

Study area

Thailand (Figure 1) is located in Southeast Asia and covers an area of 513,115 km² between latitudes 5° 45′ and 20° 27′ N and longitudes 97° 22′ and 105° 37′ E with elevation ranges from 0 to 2,564 m. The climate is dominated by seasonal monsoons with a pronounced rainy season and dry season. Annual precipitation ranges between 1000 and 4000 mm and most precipitation falls in the rainy season from May to October. The average annual temperature is approximately 26-29 °C, and the highest temperature is approximately 40 °C in April (TMD 2010). Thailand has two major diverse types of tropical forest: broad-leaved evergreen forest and

broad-leaved deciduous forest. The tropical broad-leaved evergreen forest contains multiple forest habitat types including montane evergreen forest, dry evergreen forest, rain forest, pine forest, swamp forest, mangrove forest, and beach forest. The tropical broad-leaved deciduous forest includes mixed deciduous forest and dry dipterocarp forest (RFD 2013). Thailand is a global biodiversity hotspot (Myers et al. 2000), and is home to more than 1,000 bird species (Bird Conservation Society of Thailand Records Committee 2012). However, Thailand's birds are facing extensive habitat loss, fragmentation, and climate change, which has led to declines in bird diversity (Pattanavibool and Dearden 2002; Round and Gale 2008; Round et al. 2006).

Study species

Birds of Thailand are ideal study taxa for our study goal because they differ widely in migratory behavior, nesting requirements, feeding and mating habitats, and other life history traits (Newbold et al. 2013; Petchey and Gaston 2006; Sekercioglu et al. 2004) In order to capture these differences, we defined functional guilds of birds based on habitat preference (i.e., foraging site, nesting placement), and migratory status. We grouped bird functional guilds into: (a) forest birds that use any type of forests including mangrove forest and limestone outcrops because they often remain forested, (b) early-successional birds that occur in areas after disturbance, mostly by fire, including bamboo forest, secondary growth, and scrub, (c) farmland birds, which are ecologically tolerant deciduous forest or grassland birds that can survive in intensely cultivated areas which provide a scattering of trees rough scrub, and grassland, (d) fresh-water wetland birds that occur in coastal area. For migratory status, we distinguished between (f) resident and (g) migratory guilds (Appendix 1) (Lekagul and Round 1991; Robson 2000; Round 1988). We calculated each bird species richness twice based on two different data

sources: (1) range maps, and (2) species distribution model prediction (SDM) maps (see details below). The reason for this was that range maps are available for a much larger number of species, but have been questioned in their ability to capture diversity patterns, which is why we included the SDM prediction maps as a robustness check.

Range maps

Range maps for all birds have recently been developed by IUCN and BirdLife International (IUCN 2014). Similarly, albeit cruder, range maps for subsets of species have been used to identify biodiversity hotspots (Mittermeier et al. 2003; Myers et al. 2000), examine human population density in hotspots (Cincotta et al. 2000; Jha and Bawa 2006), and model determinants of species (Roy et al. 2009). We downloaded the IUCN distribution range maps of 888 bird species, excluding extinct species and small range species. To obtain species richness, we converted the polygon range maps to grid cells and created maps of species presence (Sandom et al. 2013) in a 8-km grid to match the resolution of the DHI data (Figure 1).

Species distribution model (SDM) prediction maps

We obtained 338 bird species occurrence data from the Global Biodiversity Information Facility (GBIF) from year 2000 to 2013 with a minimum 20 unique occurrences. We used MAXENT version 3.3.1 (Phillips et al. 2006) to model distributions of 338 bird species. We retained 11 environmental variables for species distribution models (Lekagul and Round 1991; Trisurat et al. 2013): (1) annual mean temperature; (2) temperature seasonality, (3) maximum temperature of the warmest month, (4) minimum temperature of the coldest month, (5) annual precipitation, (6) precipitation during the driest quarter, (7) precipitation seasonality, (8) average elevation, (9) slope, (10) five habitat types, and (11) the percent tree cover (MODIS Vegetation Continuous Fields, VCF, Hansen et al. 2003). We parameterized MAXENT with default settings (Phillips and Dudik 2008). To reduce the effects of biased sampling, we selected pseudoabsences from occurrence locations of other bird species (Phillips et al. 2009). To evaluate model performance, we applied 10-fold cross-validation and calculated the AUC each time (Elith et al. 2011). To validate our predicted maps, we developed a bias corrected null-model to test whether our species distribution model prediction maps significantly differed from the null model of a random distribution of species (Raes and ter Steege 2007). The SDM prediction maps for Thickbilled warbler (*Acrocephalus aedon*) and Plaintive cuckoo (*Cacomantis merulinus*) were not better than random distributions, so we excluded them from further analyses (Appendix 2). We then transformed the results of 336 species distribution models to species distribution maps using the maximum sensitivity and specificity threshold (Liu et al. 2005). We compiled 336 species distribution maps into 8-km resolution species richness maps (Figure 2).

Dynamic habitat indices

We obtained the monthly fPAR MODIS from 2000-2009 from Boston University (climate and vegetation research group: http://cliveg.bu.edu). We calculated the DHIs as the integration of multiple years (ten years in our study), and extracted the three DHI measures as follows. To estimate *cumulative annual productivity*, we summed monthly fPAR observations for each year to produce a cumulative annual productivity, and then averaged them to produce a long-term cumulative annual productivity measure. The cumulative annual productivity relates to net primary productivity and is an indicator of vegetation production over a variety of land cover types (Figure 3a). For *annual minimum productivity*, we selected the lowest fPAR monthly value of each year, and averaged them to produce a long-term annual minimum productivity measure. Change in vegetation cover is detectable from satellite observations by estimating the minimum amount of primary productivity over the year. Areas which maintain varying degrees of vegetated cover throughout the year with no snow cover will have positive values of annual minimum productivity. In contrast, in areas with snow cover for significant portions of the year, the annual minimum productivity of fPAR DHIs will be zero (Figure 3b). To assess seasonal variation in fPAR throughout the year, we divided the standard deviation of monthly values for each cell by the mean annual fPAR to obtain the coefficient of variation (CV). High CV values represent seasonal extremes in climatic conditions or limited growing seasons (Figure 3c). Low coefficient of variation typically represents irrigated pasture, barren land, or evergreen forests (Coops et al. 2009a; Coops et al. 2008; Coops et al. 2009b). We calculated the DHIs at 8-km resolution (Figure 3d), because that is the native resolution of the fPAR data time series, which incorporates both AVHRR (1980-2005) and MODIS (2000-2009) data (Zhu et al. 2013).

Environmental variables

To evaluate the relative importance of the DHIs and other environmental variables, we used five other major variables that influence species richness patterns of tropical birds: (a) latitudinal gradient, (b) average elevation, (c) habitat area, (d) habitat heterogeneity, and (e) climate (Rahbek 1997; Rahbek and Graves 2001; Rahbek et al. 2007). To obtain average elevation, we used the 90-m elevation data from Shuttle Radar Topography Mission (SRTM). To obtain habitat area, we calculated the proportion of bird habitat types in each 8-km grid cell: old-growth forest, secondary-growth forest, agriculture and build-up, wetland, and coastal areas from the 2000 Thailand land cover map. To obtain habitat heterogeneity, we calculated the number of habitat types in each 8-km cell (Hill and Smith 2005), and topographic relief as the difference between maximum and minimum elevation in a given grid cell (Rahbek 1997). We considered climate variables that are important in determining species richness patterns of tropical birds,

including annual mean precipitation, annual mean temperature, and mean annual temperature range (Currie et al. 2004; Jetz et al. 2012; Rahbek et al. 2007).

Statistical analyses

To assess the relationships between bird species richness patterns and the DHIs, as well as the complementarity of DHIs and potential environmental variables for both bird data sets, we (1) parameterized simple ordinary least squares regressions to examine the potential of individual factors in explaining species richness patterns of all birds and different functional guilds, (2) examined the normality and homoscedasticity of variables to ensure that the assumption of linear regressions were met (Osborne & Waters, 2002), (3) limited multicollinearity by removing variables with Pearson's correlation coefficient |r| > 0.8, (4) performed best-subsets regression, i.e., a multiple linear regression approach, that measures how often a variable is entered in a set of models (Miller 2002), (5) performed hierarchical partitioning to assess the relative importance of different explanatory variables in the best models derived from best-subsets regressions (Mac Nally 2002), and (6) examined semivariograms to check for spatial autocorrelation in model residuals (Appendix 3) (Lennon et al. 2000).

We analyzed the species richness of each species guild (all birds, forest birds, earlysuccessional birds, farmland birds, wetland birds, seacoast birds, resident birds, and migratory birds) against each of the potential explanatory variables using simple ordinary least squares regressions. We reported adjusted R^2 and P-values. We included 14 explanatory variables of the DHIs (cumulative annual productivity, annual minimum productivity, seasonal variation in productivity), topography (average elevation), habitat area (proportions of old-growth forest, secondary-growth forest, agriculture and build-up, wetland, and coastal areas), habitat heterogeneity (habitat richness, and topographic relief), and climate (annual mean temperature, mean annual temperature range, and mean annual precipitation) (Appendix 5 and Appendix 6).

To minimize the effects of spatial autocorrelation, we randomly sampled 1,000 grid cells from 8,046 cells across Thailand with a minimum distance of 10 km. In addition, we checked the normality and homoscedasticity in the relationships of bird species richness and each environmental variable (Osborne & Waters, 2002). The species richness and variables were normally distributed and their variances were homogeneous (results not shown). Only variables that yielded an R^2 value > 0.05 for at least one bird guild were retained for further analysis.

We used multiple linear regression models with best-subsets regressions (Miller 2002) to assess the relationships between bird species richness and the DHIs, as well as the complementarity of the DHIs, together with topography, area, latitudinal gradients, climate, and habitat heterogeneity. Before performing the multiple linear regressions, we checked for multicollinearity and dropped variables with lower predictive power in the univariate models for each pair of variables with |r| > 0.8 (Appendix 4). We applied best-subsets regression, ranking models based on their adjusted R^2 , with the *leaps* packages in *R* (Furnival and Wilson 2000) to obtain a subset of models that best explained species richness. Fitting several models instead of one best model highlights which variables are repeatedly chosen in the best models, and whether they have a consistent effect on the response variable (Furnival and Wilson 2000; Miller 2002).

For the hierarchical partitioning analysis, we chose the best model according to the best subset regression for each guild and applied the *hier.part* package in *R* (Chevan and Sutherland 1991). In hierarchical partitioning regression, all possible combinations of explanatory variables are fitted in the model, and for each model the variable of interest is dropped and the model fitted

again. The importance of each explanatory variable is calculated as the average change in R^2 (Chevan and Sutherland 1991).

Results

Species richness and the Dynamic Habitat Indices

Bird species richness strongly correlated with the different measures of the DHIs. The directions of the correlations were consistent with what ecological theory would predict. The species richness of birds in Thailand was highest where the cumulative annual productivity and annual minimum productivity were high, and seasonal variation in productivity was low. Among the three DHIs, cumulative annual productivity explained the most variability in univariate regression models, followed by minimum productivity, and seasonal variation in productivity. For functional guilds, the species richness of the resident bird guild derived from range maps had the strongest correlation with the cumulative annual productivity (Adjusted $R^2 = 0.63$, P < 0.001) (Table 1). The species richness of forest birds derived from species distribution prediction maps was also highly correlated with cumulative annual productivity (Adjusted $R^2 = 0.60$, P < 0.001) (Table 2). The models with the least predictive power were those for species richness pattern of the wetland guild derived from range maps, and species richness of the early-successional guild derived from species distribution model maps.

For multivariate models of the DHIs, the species richness of the resident guild derived from range maps had the strongest correlation to the composite DHI (Adjusted $R^2 = 0.65$, P < 0.001) (Table 3). The species richness of forest birds derived from species distribution prediction maps was also highly correlated with the DHIs (Adjusted $R^2 = 0.61$, P < 0.001) (Table 4). The poorest models were those for species richness pattern of the wetland guild derived from range maps, and species richness of the early-successional guild derived from species distribution model prediction maps. Differences in the statistical significance for each of the DHI measures indicated that cumulative annual productivity, annual minimum productivity, and seasonal variation in productivity each provide unique and potentially complementary information explaining bird species richness.

The relative importance of the DHIs and the environmental variables

We found that species richness patterns for different functional guilds responded differently to environmental factors for both data sources (Table 5, Table 6). The DHIs outcompeted latitudinal gradients, climate, topography, habitat heterogeneity, and area in our multivariate models. The DHIs were the most important factor for explaining species richness pattern for all birds (58%), residents (60%), forest birds (44%), and migratory birds (33%). Climate (38%) and habitat heterogeneity (26%) played important, but secondary, roles in shaping the species richness patterns for most guilds. In contrast, topography (14%) and habitat area (13%) explained species richness the least for most guilds (Figure 4).

The relative importance of variables in explaining species richness was fairly similar for richness estimates based on range maps and species distribution models. The main difference was that climate emerged as the strongest factor, and the DHIs were the second most important factor, in explaining species richness patterns for most guilds derived from species distribution model prediction maps (Figure 5). These differences may be due to different numbers of bird species in each species richness map (Appendix 7).

Discussion

Our study was the first to investigate the broad-scale relationships between bird species richness and dynamic patterns of primary productivity derived from the Dynamic Habitat Indices

in the tropics. The DHIs capture the variability of primary productivity throughout a year (i.e., energy availability) and explained species richness patterns of birds well. The DHIs were the most important factors in shaping species richness patterns of birds in Thailand, outcompeting latitudinal gradients, topography, climate, and habitat heterogeneity and area. However, DHIs and environmental variables were complementary. Among the three DHIs, the cumulative annual productivity explained the highest proportion of the variation in species richness patterns.

The DHIs explained bird species richness well and our results provide empirical evidence supporting species-energy hypothesis. Previous studies of bird richness and the DHIs in temperate ecosystems demonstrated that the DHIs can capture productivity dynamics for different bird guilds in the United States (Coops et al. 2009a) and Canada (Coops et al. 2009b). An important difference in the observed patterns of bird species richness and the DHIs in temperate and tropical regions is the relative importance of each DHI measure. In our results, species richness was most strongly correlated with cumulative annual productivity, and less correlated with seasonal variation in productivity. In contrast, seasonal variation in productivity is the most important factor for bird richness in the United States (Coops et al. 2009a), and cumulative annual productivity the least important factor. Minimum productivity was the most important factor explaining breeding bird species richness, in particular grassland birds in Ontario, Canada (Coops et al. 2009b), but minimum productivity was not as important in our results for the tropics. The differences between the DHIs' behavior in explaining bird species richness in temperate and tropical regions are likely due to less pronounced seasonal variation in tropical ecosystems.

Cumulative annual productivity explained the highest proportion of the variance in species richness for all bird species and for different functional guilds in the tropical ecosystems

of Thailand. The strong relationships between species richness patterns and the cumulative annual productivity suggest that birds in Thailand have the greatest richness in areas with the highest energy availability. However, we found that wetland bird guild showed weak correlations to the DHIs. The classification of wetland bird guild included reservoirs, and probably only permanent wetland, not seasonally dry wetland which may cause weak relationship between wetland birds and the DHIs. We expected that the cumulative annual productivity would be the most important factor because primary productivity strongly influences species richness in the subtropics and the tropics (Jetz et al. 2012; Rahbek 1997; Rahbek and Graves 2001), while ambient energy (i.e., temperature and related variables) constrains species richness in temperate regions (Hawkins et al. 2003). Minimum productivity and seasonal variation in productivity had moderate influence on the species richness pattern of birds in the tropics. Typically, tropical evergreen vegetation has a low seasonality and higher vegetation cover throughout the year, while tropical deciduous vegetation defoliates due to water stress (Trisurat et al. 2000). The dynamic patterns of primary productivity derived from the DHIs can disentangle the relationship between bird species richness and the variation in energy availability within a landscape (Coops et al. 2009a, b).

The combination of the DHIs and other environmental variables improved our models of species richness patterns of birds in the tropics. We found similar relationships as previous bird richness studies showing strong associations among primary productivity, topography, climate, habitat heterogeneity, and area in the tropics (Rahbek 1997; Rahbek et al. 2007). However, the relationships between bird species richness and environmental factors can vary widely among biogeographical regions and functional guilds. In the tropics, water and energy are the most important factors in shaping bird species richness patterns (Hawkins et al. 2003). For example,

across South America, climate explains bird species richness patterns best for birds with large species ranges (Rahbek et al. 2007). In the subtropics of Taiwan, productivity is the most important factor in shaping breeding bird species richness patterns (Koh et al. 2006; Lee et al. 2004). Climate and energy factors best explain elevational gradients of breeding bird species richness patterns in Hengduan mountains, China (Wu et al. 2013). For breeding bird species richness in the United States, seasonal variation in productivity and habitat heterogeneity are the most important factors (Hurlbert and Haskell 2003). Additionally, a global meta-analysis study of diversity drivers shows that productivity and climate are primary factors in shaping bird species richness patterns at broad scales (Field et al. 2009). Our results highlight the importance of dynamic productivity captured by the DHIs, and the ability of the DHIs in explaining species richness pattern of birds in tropical ecosystems, especially when combining the DHIs with other environmental variables.

In interpreting our results, it is important to highlight caveats of our analyses. First of all, range maps are inherently biased (Graham and Hijmans 2006), and tend to overestimate species occurrences and distributions (Rondinini et al. 2011). Therefore, we conducted our analysis based on both ranges maps, which allowed us to analyze more species, and maps from species distribution models, which are likely more accurate (Graham and Hijmans 2006; Pineda and Lobo 2012), and found similar results explaining richness based on either data source. One caveat of the accuracy of maps stemming from distribution models depends on the availability and the accuracy of occurrence data, and on the degree to which species interactions affect occurrences (Kadmon et al. 2004). We were reassured in that both richness maps showed very similar results. However, the observed difference in our results may be influenced by the different species pools.

We did not include some environmental variables, such as evolutionary history, disturbance regimes, and species interactions (Currie 1991; Gotelli and Colwell 2001) in our analyses of bird species richness in Thailand because these data were not available. While species richness patterns sometimes follow continental boundaries (a.k.a mid-domain effect, Colwell and Lees 2000), we did not include geometric constraints in our study either. According to the mid-domain effect definition, there can be a peak of species richness of endemic species in the middle of an area (Colwell and Lees 2000; Jetz and Rahbek 2001; Jetz et al. 2004). We did not observe this however, most likely because Thailand is home to few endemic bird species (Lekagul and Round 1991).

Our results highlight the effectiveness of the DHIs in capturing dynamic patterns of primary productivity for understanding species richness patterns in tropical ecosystems. We calculated the DHIs derived from fPAR MODIS satellite data and showed that the DHIs were the best variable explaining bird species richness patterns in the tropical ecosystems of Thailand. Additionally, the DHIs improved the explanatory power of models of species richness patterns when combined with other variables. As tropical regions are experiencing considerable economic development, causing rapid loss of natural habitat and biodiversity, there is a need for accurate and effective measures of biodiversity to support conservation efforts (Sutherland et al. 2009). The DHIs derived from remotely sensed data can quantify dynamic pattern of primary productivity, and advance the understanding of the patterns and drivers of biodiversity.

In summary, our study showed that the Dynamic Habitat Indices characterized dynamic patterns of primary productivity, and captured the nuanced species richness-energy relationships for birds and functional guilds in the tropics. The combination of the DHIs and other environmental variables provides insight into the factors shaping patterns of species richness in the tropics. We suggest that future studies of tropical biodiversity could benefit from remotely sensed data thereby advancing the understanding of how tropical ecosystems are changing, and what effects this has on tropical bird diversity. The DHIs can serve as effective measures for broad-scale biodiversity assessments.

References

- Andrew, M.E., Wulder, M.A., Coops, N.C. & Baillargeon, G. (2012) Beta-diversity gradients of butterflies along productivity axes. Global Ecology and Biogeography, 21, 352-364.
- Berry, S., Mackey, B. & Brown, T. (2007) Potential applications of remotely sensed vegetation greenness to habitat analysis and the conservation of dispersive fauna. Pacific Conservation Biology, 13, 120-127.
- Bonn, A., Storch, D., Gaston, K.J., 2004. Structure of the species-energy relationship. Proceedings of the Royal Society B-Biological Sciences 271, 1685-1691.
- Bird Conservation Society of Thailand Records Committee. (2012) Checklist of Thai bird names, January 2012. [http://www.bcst.or.th/]
- Brook, B.W., Sodhi, N.S. & Bradshaw, C.J.A. (2008) Synergies among extinction drivers under global change. Trends in Ecology & Evolution, 23, 453-460.
- Chevan, A. & Sutherland, M. (1991) Hierarchical partitioning. American Statistician, 45, 90-96.
- Cincotta, R.P., Wisnewski, J. & Engelman, R. (2000) Human population in the biodiversity hotspots. Nature, 404, 990-992.
- Colwell, R.K. & Lees, D.C. (2000) The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology & Evolution, 15, 70-76.

- Connell, J.H. & Orias, E. (1964) The ecological regulation of species diversity. Amer Natur, 98, 399-414.
- Coops, N.C., Wulder, M.A. & Iwanicka, D. (2009a) Exploring the relative importance of satellite-derived descriptors of production, topography and land cover for predicting breeding bird species richness over Ontario, Canada. Remote Sensing of Environment, 113, 668-679.
- Coops, N.C., Wulder, M.A., Duro, D.C., Han, T. & Berry, S. (2008) The development of a Canadian dynamic habitat index using multi-temporal satellite estimates of canopy light absorbance. Ecological Indicators, 8, 754-766.
- Coops, N.C., Waring, R.H., Wulder, M.A., Pidgeon, A.M. & Radeloff, V.C. (2009b) Bird diversity: a predictable function of satellite-derived estimates of seasonal variation in canopy light absorbance across the United States. Journal of Biogeography, 36, 905-918.
- Currie, D.J. (1991) Energy and large-scale patterns of animal-species and plant species richness. American Naturalist, 137, 27-49.
- Currie, D.J., Mittelbach, G.G., Cornell, H.V., Field, R., Guegan, J.F., Hawkins, B.A., Kaufman, D.M., Kerr, J.T., Oberdorff, T., O'Brien, E. & Turner, J.R.G. (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecology Letters, 7, 1121-1134.
- Duro, C, D., Coops, N.C., Wulder, M.A. & Han, T. (2007) Development of a large area biodiversity monitoring system driven by remote sensing. Progress in Physical Geography, 31, 235-260.

- Elith, J., Phillips, S.J., Hastie, T., Dudik, M., Chee, Y.E., & Yates, C.J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43-57.
- Evans, K.L. & Gaston, K.J. (2005) People, energy and avian species richness. Global Ecology and Biogeography, 14, 187-196.
- Evans, K.L., Greenwood, J.J.D. & Gaston, K.J. (2005) Dissecting the species-energy relationship. Proceedings of the Royal Society B-Biological Sciences, 272, 2155-2163.
- Field, R., Hawkins, B.A., Cornell, H.V., Currie, D.J., Diniz-Filho, J.A.F., Guegan, J.-F.,
 Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff, T., O'Brien, E.M. & Turner,
 J.R.G. (2009) Spatial species-richness gradients across scales: a meta-analysis. Journal of
 Biogeography, 36, 132-147.
- Foody, G.M., Cutler, M.E., McMorrow, J., Pelz, D., Tangki, H., Boyd, D.S. & Douglas, I. (2001) Mapping the biomass of Bornean tropical rain forest from remotely sensed data. Global Ecology and Biogeography, 10, 379-387.
- Furnival, G.M. & Wilson, R.W. (2000) Regressions by leaps and bounds. Technometrics, 42, 69-79.
- Gaston, K.J. (2000) Global patterns in biodiversity. Nature, 405, 220-227.
- Gotelli, N.J. & Colwell, R.K. (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4, 379-391.
- Graham, C.H. & Hijmans, R.J. (2006) A comparison of methods for mapping species ranges and species richness. Global Ecology and Biogeography, 15, 578-587.

- Hansen, M.C., DeFries, R.S., Townshend, J.R.G., Carroll, M., Dimiceli, C. & Sohlberg, R.A.
 (2003) Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm. Earth Interactions, 7
- Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guegan, J.F., Kaufman, D.M., Kerr, J.T.,
 Mittelbach, G.G., Oberdorff, T., O'Brien, E.M., Porter, E.E. & Turner, J.R.G. (2003)
 Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117.
- Hill, R.A. & Smith, G.M. (2005) Land cover heterogeneity in Great Britain as identified in Land Cover Map 2000. International Journal of Remote Sensing, 26, 5467-5473.
- Hurlbert, A.H. & Haskell, J.P. (2003) The effect of energy and seasonality on avian species richness and community composition. American Naturalist, 161, 83-97.
- Hutchinson, G.E. & Macarthur, R.H. (1959) A theoretical ecological model of size distributions among species of animals. Amer Nat, 93, 117-126.
- Innes, J.L. & Koch, B. (1998) Forest biodiversity and its assessment by remote sensing. Global Ecology and Biogeography, 7, 397-419.
- IUCN. (2014) The IUCN Red List of Threatened Species. Version 2014.1. http://www.iucnredlist.org. Downloaded on 09 May 2013.
- Jetz, W. & Rahbek, C. (2001) Geometric constraints explain much of the species richness pattern in African birds. Proceedings of the National Academy of Sciences of the United States of America, 98, 5661-5666.

- Jetz, W., Rahbek, C. & Colwell, R.K. (2004) The coincidence of rarity and richness and the potential signature of history in centres of endemism. Ecology Letters, 7, 1180-1191.
- Jetz, W., McPherson, J.M. & Guralnick, R.P. (2012) Integrating biodiversity distribution knowledge: toward a global map of life. Trends in Ecology & Evolution, 27, 151-159.
- Jha, S. & Bawa, K.S. (2006) Population growth, human development, and deforestation in biodiversity hotspots. Conservation Biology, 20, 906-912.
- Kadmon, R., Farber, O. & Danin, A. (2004) Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. *Ecological Applications*, 14, 401-413.
- Kerr, J.T. & Ostrovsky, M. (2003) From space to species: ecological applications for remote sensing. Trends in Ecology & Evolution, 18, 299-305.
- Knyazikhin, Y., Martonchik, J.V., Diner, D.J., Myneni, R.B., Verstraete, M., Pinty, B. &
 Gobron, N. (1998) Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data.
 Journal of Geophysical Research-Atmospheres, 103, 32239-32256.
- Koh, C.-N., Lee, P.-F. & Lin, R.-S. (2006) Bird species richness patterns of northern Taiwan: primary productivity, human population density, and habitat heterogeneity. Diversity and Distributions, 12, 546-554.
- Laurance, W.F., Useche, D.C., Rendeiro, J., Kalka, M., Bradshaw, C.J.A., Sloan, S.P., Laurance,
 S.G., Campbell, M., Abernethy, K., Alvarez, P., Arroyo-Rodriguez, V., Ashton, P.,
 Benitez-Malvido, J., Blom, A., Bobo, K.S., Cannon, C.H., Cao, M., Carroll, R.,
 Chapman, C., Coates, R., Cords, M., Danielsen, F., De Dijn, B., Dinerstein, E., Donnelly,
- M.A., Edwards, D., Edwards, F., Farwig, N., Fashing, P., Forget, P.-M., Foster, M., Gale,
- G., Harris, D., Harrison, R., Hart, J., Karpanty, S., Kress, W.J., Krishnaswamy, J.,
- Logsdon, W., Lovett, J., Magnusson, W., Maisels, F., Marshall, A.R., McClearn, D.,
- Mudappa, D., Nielsen, M.R., Pearson, R., Pitman, N., van der Ploeg, J., Plumptre, A.,
- Poulsen, J., Quesada, M., Rainey, H., Robinson, D., Roetgers, C., Rovero, F., Scatena, F.,
- Schulze, C., Sheil, D., Struhsaker, T., Terborgh, J., Thomas, D., Timm, R., Urbina-
- Cardona, J.N., Vasudevan, K., Wright, S.J., Arias-G, J.C., Arroyo, L., Ashton, M., Auzel,
- P., Babaasa, D., Babweteera, F., Baker, P., Banki, O., Bass, M., Bila-Isia, I., Blake, S.,
- Brockelman, W., Brokaw, N., Bruehl, C.A., Bunyavejchewin, S., Chao, J.-T., Chave, J.,
- Chellam, R., Clark, C.J., Clavijo, J., Congdon, R., Corlett, R., Dattaraja, H.S., Dave, C.,
- Davies, G., Beisiegel, B.d.M., da Silva, R.d.N., Di Fiore, A., Diesmos, A., Dirzo, R.,
- Doran-Sheehy, D., Eaton, M., Emmons, L., Estrada, A., Ewango, C., Fedigan, L., Feer,
- F., Fruth, B., Willis, J.G., Goodale, U., Goodman, S., Guix, J.C., Guthiga, P., Haber, W.,
- Hamer, K., Herbinger, I., Hill, J., Huang, Z., Sun, I.F., Ickes, K., Itoh, A., Ivanauskas, N.,
- Jackes, B., Janovec, J., Janzen, D., Jiangming, M., Jin, C., Jones, T., Justiniano, H.,
- Kalko, E., Kasangaki, A., Killeen, T., King, H.-b., Klop, E., Knott, C., Kone, I.,
- Kudavidanage, E., Ribeiro, J.L.d.S., Lattke, J., Laval, R., Lawton, R., Leal, M., Leighton,
- M., Lentino, M., Leonel, C., Lindsell, J., Ling-Ling, L., Linsenmair, K.E., Losos, E.,
- Lugo, A., Lwanga, J., Mack, A.L., Martins, M., McGraw, W.S., McNab, R., Montag, L.,
- Thompson, J.M., Nabe-Nielsen, J., Nakagawa, M., Nepal, S., Norconk, M., Novotny, V.,
- O'Donnell, S., Opiang, M., Ouboter, P., Parker, K., Parthasarathy, N., Pisciotta, K.,
- Prawiradilaga, D., Pringle, C., Rajathurai, S., Reichard, U., Reinartz, G., Renton, K.,
- Reynolds, G., Reynolds, V., Riley, E., Roedel, M.-O., Rothman, J., Round, P., Sakai, S.,

Sanaiotti, T., Savini, T., Schaab, G., Seidensticker, J., Siaka, A., Silman, M.R., Smith,
T.B., de Almeida, S.S., Sodhi, N., Stanford, C., Stewart, K., Stokes, E., Stoner, K.E.,
Sukumar, R., Surbeck, M., Tobler, M., Tscharntke, T., Turkalo, A., Umapathy, G., van
Weerd, M., Rivera, J.V., Venkataraman, M., Venn, L., Verea, C., de Castilho, C.V.,
Waltert, M., Wang, B., Watts, D., Weber, W., West, P., Whitacre, D., Whitney, K.,
Wilkie, D., Williams, S., Wright, D.D., Wright, P., Xiankai, L., Yonzon, P. & Zamzani,
F. (2012) Averting biodiversity collapse in tropical forest protected areas. Nature, 489,
290-+.

- Lee, P.F., Ding, T.S., Hsu, F.H. & Geng, S. (2004) Breeding bird species richness in Taiwan: distribution on gradients of elevation, primary productivity and urbanization. Journal of Biogeography, **31**, 307-314.
- Lekagul, B. & Round, P.D. (1991) A guide to the birds of Thailand. A guide to the birds of Thailand., 1-457.
- Lennon, J.J., Greenwood, J.J.D. & Turner, J.R.G. (2000) Bird diversity and environmental gradients in Britain: a test of the species-energy hypothesis. Journal of Animal Ecology, 69, 581-598.
- Liu, C.R., Berry, P.M., Dawson, T.P. & Pearson, R.G. (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography, 28, 385-393.
- Mac Nally, R. (2002) Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodiversity and Conservation, 11, 1397-1401.

- MacArthur, R.H. (1957) On the relative abundance of bird species. Proc Natl Acad Sci, 43, 293-295.
- Mackey, B. G., Bryan, J., & Randall, L. (2004) Australia's dynamic habitat template 2003. Proceedings MODIS Vegetation Workshop II Missoula, MT: University of Montana
- Michaud, J.-S., Coops, N.C., Andrew, M.E., Wulder, M.A., Brown, G.S. & Rickbeil, G.J.M. (2014) Estimating moose (Alces alces) occurrence and abundance from remotely derived environmental indicators. Remote Sensing of Environment, 152, 190-201.

Miller, A. (2002). Subset selection in regression. CRC Press.

- Mittelbach, G.G., Steiner, C.F., Scheiner, S.M., Gross, K.L., Reynolds, H.L., Waide, R.B.,
 Willig, M.R., Dodson, S.I. & Gough, L. (2001) What is the observed relationship
 between species richness and productivity? Ecology, 82, 2381-2396.
- Mittermeier, R.A., Mittermeier, C.G., Brooks, T.M., Pilgrim, J.D., Konstant, W.R., da Fonseca,G.A.B. & Kormos, C. (2003) Wilderness and biodiversity conservation. Proceedings ofthe National Academy of Sciences of the United States of America, 100, 10309-10313.
- Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858.
- Myneni, R.B., Hoffman, S., Knyazikhin, Y., Privette, J.L., Glassy, J., Tian, Y., Wang, Y., Song, X., Zhang, Y., Smith, G.R., Lotsch, A., Friedl, M., Morisette, J.T., Votava, P., Nemani, R.R. & Running, S.W. (2002) Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment, 83, 214-231.

- Nagendra, H. (2001) Using remote sensing to assess biodiversity. International Journal of Remote Sensing, 22, 2377-2400.
- Nagendra, H. & Rocchini, D. (2008) High resolution satellite imagery for tropical biodiversity studies: the devil is in the detail. Biodiversity and Conservation, 17, 3431-3442.
- Nagendra, H., Lucas, R., Honrado, J.P., Jongman, R.H.G., Tarantino, C., Adamo, M. & Mairota,
 P. (2013) Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecological Indicators, 33, 45-59.
- Newbold, T., Scharlemann, J.P.W., Butchart, S.H.M., Sekercioglu, C.H., Alkemade, R., Booth,
 H. & Purves, D.W. (2013) Ecological traits affect the response of tropical forest bird
 species to land-use intensity. Proceedings of the Royal Society Biological Sciences Series
 B, 280, 1-8.
- Orme, C.D.L., Davies, R.G., Burgess, M., Eigenbrod, F., Pickup, N., Olson, V.A., Webster, A.J.,
 Ding, T.S., Rasmussen, P.C., Ridgely, R.S., Stattersfield, A.J., Bennett, P.M., Blackburn,
 T.M., Gaston, K.J. & Owens, I.P.F. (2005) Global hotspots of species richness are not
 congruent with endemism or threat. Nature, 436, 1016-1019.
- Osborne, J., & Waters, E. (2002) Four assumptions of multiple regression that researchers should always test. Practical assessment, research & evaluation, **8**, 1-9.
- Pattanavibool, A. & Dearden, P. (2002) Fragmentation and wildlife in montane evergreen forests, northern Thailand. Biological Conservation, 107, 155-164.
- Pereira, H.M., Ferrier, S., Walters, M., Geller, G.N., Jongman, R.H.G., Scholes, R.J., Bruford,M.W., Brummitt, N., Butchart, S.H.M., Cardoso, A.C., Coops, N.C., Dulloo, E., Faith,

D.P., Freyhof, J., Gregory, R.D., Heip, C., Hoeft, R., Hurtt, G., Jetz, W., Karp, D.S., McGeoch, M.A., Obura, D., Onoda, Y., Pettorelli, N., Reyers, B., Sayre, R., Scharlemann, J.P.W., Stuart, S.N., Turak, E., Walpole, M. & Wegmann, M. (2013) Essential Biodiversity Variables. Science, 339, 277-278.

- Petchey, O.L. & Gaston, K.J. (2006) Functional diversity: back to basics and looking forward. Ecology Letters, 9, 741-758.
- Phillips, S.J. & Dudik, M. (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161-175.
- Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
- Phillips, S.J., Dudik, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J. & Ferrier, S. (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19, 181-197.
- Pineda, E. & Lobo, J.M. (2012) The performance of range maps and species distribution models representing the geographic variation of species richness at different resolutions. Global Ecology and Biogeography, 21, 935-944.
- Raes, N. & ter Steege, H. (2007) A null-model for significance testing of presence-only species distribution models. Ecography, 30, 727-736.
- Rahbek, C. (1997) The relationship among area, elevation, and regional species richness in neotropical birds. American Naturalist, 149, 875-902.

- Rahbek, C. & Graves, G.R. (2001) Multiscale assessment of patterns of avian species richness.Proceedings of the National Academy of Sciences of the United States of America, 98, 4534-4539.
- Rahbek, C., Gotelli, N.J., Colwell, R.K., Entsminger, G.L., Rangel, T.F.L.V.B. & Graves, G.R.
 (2007) Predicting continental-scale patterns of bird species richness with spatially explicit models. Proceedings of the Royal Society B-Biological Sciences, 274, 165-174.
- RFD. (2013) Forestry statistics of Thailand 2013. Royal Forest Department, Ministry of Natural Resources and Environment, Bangkok
- Robson, C. (2000) A field guide to the birds of South-East Asia. A field guide to the birds of South-East Asia., 1-504.
- Rondinini, C., Di Marco, M., Chiozza, F., Santulli, G., Baisero, D., Visconti, P., Hoffmann, M.,
 Schipper, J., Stuart, S.N., Tognelli, M.F., Amori, G., Falcucci, A., Maiorano, L. &
 Boitani, L. (2011) Global habitat suitability models of terrestrial mammals. Philosophical
 Transactions of the Royal Society B-Biological Sciences, 366, 2633-2641.
- Round, P.D. (1988) Resident forest birds in Thailand: their status and conservation. International Council for Bird Preservation Monograph, i-xiv, 1-211.
- Round, P.D. & Gale, G.A. (2008) Changes in the status of Lophura pheasants in Khao Yai National Park, Thailand: A response to warming climate? Biotropica, 40, 225-230.
- Round, P.D., Gale, G.A. & Brockelman, W.Y. (2006) A comparison of bird communities in mixed fruit orchards and natural forest at Khao Luang, southern Thailand. Biodiversity and Conservation, 15, 2873-2891.

- Roy, K., Hunt, G., Jablonski, D., Krug, A.Z. & Valentine, J.W. (2009) A macroevolutionary perspective on species range limits. Proceedings of the Royal Society B-Biological Sciences, 276, 1485-1493.
- Roy, P.S. & Tomar, S. (2000) Biodiversity characterization at landscape level using geospatial modelling technique. Biological Conservation, 95, 95-109.
- Sala, O.E., Chapin, F.S., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E.,
 Huenneke, L.F., Jackson, R.B., Kinzig, A., Leemans, R., Lodge, D.M., Mooney, H.A.,
 Oesterheld, M., Poff, N.L., Sykes, M.T., Walker, B.H., Walker, M. & Wall, D.H. (2000)
 Biodiversity Global biodiversity scenarios for the year 2100. Science, 287, 1770-1774.
- Sandom, C., Dalby, L., Flojgaard, C., Kissling, W.D., Lenoir, J., Sandel, B., Trojelsgaard, K., Ejrnaes, R. & Svenning, J.-C. (2013) Mammal predator and prey species richness are strongly linked at macroscales. Ecology, 94, 1112-1122.
- Scholes, R.J., Mace, G.M., Turner, W., Geller, G.N., Juergens, N., Larigauderie, A., Muchoney,D., Walther, B.A. & Mooney, H.A. (2008) Ecology Toward a global biodiversityobserving system. Science, 321, 1044-1045.
- Schwartz, M.D., Ahas, R. & Aasa, A. (2006) Onset of spring starting earlier across the Northern Hemisphere. Global Change Biology, 12, 343-351.
- Sekercioglu, C.H., Daily, G.C. & Ehrlich, P.R. (2004) Ecosystem consequences of bird declines. Proceedings of the National Academy of Sciences of the United States of America, 101, 18042-18047.

- Sellers, P.J., Los, S.O., Tucker, C.J., Justice, C.O., Dazlich, D.A., Collatz, G.J. & Randall, D.A. (1996) A revised land surface parameterization (SiB2) for atmospheric GCMs .2. The generation of global fields of terrestrial biophysical parameters from satellite data. Journal of Climate, 9, 706-737.
- Steininger, M.K. (1996) Tropical secondary forest regrowth in the Amazon: Age, area and change estimation with Thematic Mapper data. International Journal of Remote Sensing, 17, 9-27.
- Storch, D., Evans, K.L. & Gaston, K.J. (2005) The species-area-energy relationship. Ecology Letters, 8, 487-492.
- Storch, D., Davies, R.G., Zajicek, S., Orme, C.D.L., Olson, V., Thomas, G.H., Ding, T.-S., Rasmussen, P.C., Ridgely, R.S., Bennett, P.M., Blackburn, T.M., Owens, I.P.F. & Gaston, K.J. (2006) Energy, range dynamics and global species richness patterns: reconciling mid-domain effects and environmental determinants of avian diversity. Ecology Letters, 9, 1308-1320.
- Sutherland, W.J., Adams, W.M., Aronson, R.B., Aveling, R., Blackburn, T.M., Broad, S.,
 Ceballos, G., Cote, I.M., Cowling, R.M., Da Fonseca, G.A.B., Dinerstein, E., Ferraro,
 P.J., Fleishman, E., Gascon, C., Hunter, M., Jr., Hutton, J., Kareiva, P., Kuria, A.,
 Macdonald, D.W., Mackinnon, K., Madgwick, F.J., Mascia, M.B., McNeely, J., MilnerGulland, E.J., Moon, S., Morley, C.G., Nelson, S., Osborn, D., Pai, M., Parsons, E.C.M.,
 Peck, L.S., Possingham, H.P., Prior, S.V., Pullin, A.S., Rands, M.R.W., Ranganathan, J.,
 Redford, K.H., Rodriguez, J.P., Seymour, F., Sobel, J., Sodhi, N.S., Stott, A., Vance-

Borland, K. & Watkinson, A.R. (2009) One Hundred Questions of Importance to the Conservation of Global Biological Diversity. Conservation Biology, 23, 557-567.

TMD. (2010). Climate of Thailand 2010. Thai Meteorological Department, Bangkok

- Trisurat, Y., Eiumnoh, A., Murai, S., Hussain, M.Z. & Shrestha, R.P. (2000) Improvement of tropical vegetation mapping using a remote sensing technique: a case of Khao Yai National Park, Thailand. International Journal of Remote Sensing, 21, 2031-2042.
- Trisurat, Y., Chimchome, V., Pattanavibool, A., Jinamoy, S., Thongaree, S., Kanchanasakha, B., Simcharoen, S., Sribuarod, K., Mahannop, N. & Poonswad, P. (2013) An assessment of the distribution and conservation status of hornbill species in Thailand. Oryx, 47, 441-450.
- Tucker, C.J., Pinzon, J.E., Brown, M.E., Slayback, D.A., Pak, E.W., Mahoney, R., Vermote, E.F.
 & El Saleous, N. (2005) An extended AVHRR 8-km NDVI dataset compatible with
 MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26, 4485-4498.
- Turner, W. (2014) Sensing biodiversity. Science, 346, 301-302.
- Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E. & Steininger, M. (2003) Remote sensing for biodiversity science and conservation. Trends in Ecology & Evolution, 18, 306-314.
- Whittaker, R.J., Willis, K.J. & Field, R. (2001) Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography, 28, 453-470.

- Wright, D.H. (1983) Species-energy theory an extension of species-area theory. Oikos, 41, 496-506.
- Wright, D.H., Currie, D.J. & Maurer, B.A. (1993) Energy supply and patterns of species richness on local and regional scales. Species diversity in ecological communities: Historical and geographical perspectives, 66-76.
- Wu, Y., Colwell, R.K., Rahbek, C., Zhang, C., Quan, Q., Wang, C. & Lei, F. (2013) Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. Journal of Biogeography, 40, 2310-2323.
- Zhu, Z., Bi, J., Pan, Y., Ganguly, S., Anav, A., Xu, L., Samanta, A., Piao, S., Nemani, R.R. & Myneni, R.B. (2013) Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2011. Remote Sensing, 5, 927-948.

Tables

-

Table 1. R^2 values for simple ordinary least squares models of species richness of different guilds derived from range maps and the DHIs: cumulative annual productivity, annual minimum productivity, and seasonal variation in productivity.

	Cumulative	Minimum	Seasonal variation in
Guild	productivity	productivity	productivity
All birds	0.58***	0.34***	-0.35***
Residents	0.63***	0.38***	-0.39***
Migratory birds	0.26***	0.09***	-0.10***
Forest birds	0.63***	0.38***	-0.38***
Early-successional birds	0.22***	0.10***	-0.10***
Farmland birds	-0.03***	-0.06***	0.07***
Wetland birds	NS	-0.01***	0.01***
Seacoast birds	0.07***	0.07***	-0.11***

*** *P*-value < 0.001, ** *P*-value < 0.01, * *P*-value < 0.05, NS not significant.

Table 2. R^2 values for simple ordinary least squares models of species richness of different guilds derived from species distribution model prediction maps and the DHIs: cumulative annual productivity, annual minimum productivity, and seasonal variation in productivity.

Guild	Cumulative	Minimum	Seasonal variation in
	productivity	productivity	productivity
All birds	0.53***	0.40***	-0.39***
Residents	0.57***	0.42***	-0.40***
Migratory birds	0.18***	0.10***	-0.13***
Forest birds	0.60***	0.46***	-0.42***
Early-successional birds	0.01**	NS	NS
Farmland birds	-0.02***	-0.06***	0.07***
Wetland birds	-0.30***	-0.25***	0.19***
Seacoast birds	-0.44***	0.05***	0.05***

*** *P*-value < 0.001, ** *P*-value < 0.01, * *P*-value < 0.05, NS not significant.

Table 3. Parameter estimates of models of bird species richness based on range maps by different guilds for multivariate models that used the Dynamic Habitat Indices. Bold numbers are the parameters for each multiple regression model that was significant at P < 0.05.

Guild	Cumulative	Minimum	Seasonal variation	Adjusted R^2	<i>P</i> -value		
	productivity	productivity	in productivity				
All birds	0.2	-1.66	-55.37	0.6	< 0.001		
Residents	0.17	-1.22	-24.35	0.65	<0.001		
Migratory birds	0.03	-0.49	-30.34	0.26	< 0.001		
Forest birds	0.18	-1.22	-15.13	0.64	<0.001		
Early-successional birds	0.01	-0.08	4.91	0.26	< 0.001		
Farmland birds	0	0	17.38	0.08	<0.001		
Wetland birds	0.01	-0.1	8.41	0.03	< 0.001		
Seacoast birds	0	-0.24	-67.35	0.14	<0.001		

Table 4. Parameter estimates of models of bird species richness based on species distribution model prediction maps by different guilds for multivariate models that used the Dynamic Habitat Indices. Bold numbers are the parameters for each multiple regression model that was significant at P < 0.05.

Guild	Cumulative	Minimum	Seasonal variation	Adjusted R^2	<i>P</i> -value
	productivity	productivity	in productivity		
All birds	0.08	-0.12	-13.67	0.53	< 0.001
Residents	0.08	-0.01	23.53	0.57	<0.001
Migratory birds	0.01	-0.21	-30.53	0.2	< 0.001
Forest birds	0.1	0.28	78.06	0.61	<0.001
Early-successional birds	0	0	1.03	0.01	< 0.05
Farmland birds	0	-0.04	13.43	0.09	<0.001
Wetland birds	-0.01	-0.3	-60.16	0.33	< 0.001
Seacoast birds	0	-0.12	-31.28	0.13	<0.001

Table 5. Adjusted R^2 values of best models of bird species richness based on range maps by different guilds for multivariate models that used the combination of the DHIs, latitudinal gradients, topography, habitat heterogeneity, and habitat area.

Guild	#variables	Adjusted R^2	<i>P</i> -value
All birds	7	0.74	< 0.001
Resident birds	8	0.76	< 0.001
Migratory birds	7	0.60	< 0.001
Forest birds	9	0.77	< 0.001
	2	<u></u>	0.004
Early-successional birds	8	0.65	< 0.001
Formland hinda	Q	0.84	< 0.001
Farmland birds	ð	0.84	< 0.001
Wetland birds	8	0.64	< 0.001
Wettaha onas	0	0.04	< 0.001
Seacoast birds	7	0.77	< 0.001

Table 6. Adjusted R^2 values of best models of bird species richness based on species distribution prediction maps by different guilds for multivariate models that used the combination of the DHI, latitudinal gradients, topography, habitat heterogeneity, and habitat area.

Guild	#variables	Adjusted R^2	<i>P</i> -value
All birds	7	0.83	< 0.001
Residents	8	0.83	< 0.001
Migratory birds	8	0.44	< 0.001
Forest birds	8	0.87	< 0.001
Early-successional birds	8	0.34	< 0.001
Farmland birds	5	0.77	< 0.001
Wetland birds	8	0.61	< 0.001
Seacoast birds	6	0.52	< 0.001

Figures

Figure 1. Species richness patterns for birds of Thailand derived from the range maps: (a) all birds (n = 888 species), (b) resident birds (n = 664 species), (c) migratory birds, (d) forest birds (n = 636 species), (e) early-successional birds (n = 47 species), (f) farmland birds (n = 35 species), (g) wetland birds (n = 113 species), and (h) seacoast birds (n = 57 species).

Figure 2. Species richness patterns for birds of Thailand derived from species distribution model prediction maps: (a) all birds (n = 336 species), (b) resident birds (n = 261 species), (c) migratory birds (n = 75 species), (d) forest birds (n = 222 species), (e) early-successional birds (n = 15 species), (f) farmland birds (n = 26 species), (g) wetland birds (n = 49 species), and (h) seacoast birds (n = 24 species).

Figure 3. Individual measures of the Dynamic Habitat Indices (DHIs) for Thailand (a) cumulative annual productivity, (b) annual minimum productivity, (c) seasonal variation in productivity, and (d) the three DHIs from 2000-2009 1-km fPAR MODIS data in RGB. Bright green areas indicate consistent productivity throughout the year. Green areas represent high cumulative annual productivity, moderate annual minimum productivity, and low seasonality. Red areas have moderate productivity with high seasonality. Brown have low primary productivity in any part of the year. Abbreviations: C, cumulative annual productivity; M, annual minimum productivity; S, seasonal variation in productivity.

Figure 4. The percentage of independent contribution of variables in productivity, climate, topography, latitudinal, habitat heterogeneity, and habitat area to species richness for all birds, resident birds, migratory birds, forest birds, early-successional birds, farmland birds, wetland birds, and seacoast birds derived from range maps.

Figure 5. The percentage of independent contribution of variables in productivity, climate, topography, latitudinal, habitat heterogeneity, and habitat area to species richness for all birds, resident birds, migratory birds, forest birds, early-successional birds, farmland birds, wetland birds, and seacoast birds derived from species distribution model prediction maps. Values within each guild sum to 100.

Appendices

Appendix 1. Bird species were classified into functional guilds based on habitat preference and migratory status. Abbreviation: R, resident birds; M, migratory birds; F, forest birds; E, early-successional birds; A, farmland birds; W, wetland birds; S, seacoast birds.

#	Scientific name	Common name	R	Μ	F	E	Α	W	S
1	Malacocincla abbotti	Abbott's Babbler	x		X				
2	Cettia flavolivacea	Aberrant Bush-warbler	X		X				
3	Sarkidiornis melanotos	Comb Duck		X				X	
4	Psittacula eupatria	Alexandrine Parakeet	X		х				
5	Seicercus soror	Alstrom's Warbler		X	х				
6	Falco amurensis	Amur Falcon		X	х				
7	Phylloscopus borealis	Arctic Warbler		X	Х				
8	Hemixos flavala	Ashy Bulbul	х		Х				
9	Dicrurus leucophaeus	Ashy Drongo	Х		Х				
10	Pericrocotus divaricatus	Ashy Minivet		Х	Х				
11	Orthotomus ruficeps	Ashy Tailorbird	Х		Х				
12	Columba pulchricollis	Ashy Woodpigeon	х		Х				
13	Artamus fuscus	Ashy Woodswallow	х				Х		
14	Phylloscopus maculipennis	Ashy-throated Warbler	х		Х				
15	Glaucidium cuculoides	Asian Barred Owlet	Х				X		
16	Hypsipetes leucocephalus	Asian Black Bulbul	х		Х				
17	Muscicapa dauurica	Asian Brown Flycatcher	х		Х				
18	Limnodromus semipalmatus	Asian Dowitcher		Х					Х
19	Chrysococcyx maculatus	Asian Emerald Cuckoo	Х		х				
20	Irena puella	Asian Fairy-bluebird	Х		Х				
21	Aplonis panayensis	Asian Glossy Starling	х		Х				
22	Ploceus hypoxanthus	Asian Golden Weaver	х		Х				
23	Merops orientalis	Asian Green Bee-eater	Х				Х		
24	Calyptomena viridis	Asian Green Broadbill	х		Х				
25	Delichon dasypus	Asian House-martin		Х	Х				
26	Anastomus oscitans	Asian Openbill		х				Х	
27	Cypsiurus balasiensis	Asian Palm-swift	х				X		
28	Terpsiphone paradisi	Asian Paradise-flycatcher	х		Х				
29	Sturnus contra	Asian Pied Starling	X		Х				
30	Urosphena squameiceps	Asian Stubtail		X	Х				
31	Ciconia episcopus	Asian Woollyneck	X					Х	

32	Anorrhinus austeni	Austen's Brown Hornbill	Х		Х				
33	Mirafra javanica	Australasian Lark	х					Х	
34	Aythya baeri	Baer's Pochard		х				х	
35	Zapornia pusilla	Baillon's Crake		Х				Х	
36	Gecinulus viridis	Bamboo Woodpecker	X			х			
37	Zapornia paykullii	Band-bellied Crake		х				Х	
38	Cacomantis sonneratii	Banded Bay Cuckoo	Х		х				
39	Eurylaimus javanicus	Banded Broadbill	Х		х				
40	Lacedo pulchella	Banded Kingfisher	Х		Х				
41	Chrysophlegma miniaceum	Banded Woodpecker	Х		х				
42	Arborophila brunneopectus	Bar-backed Partridge	Х		х				
43	Coracina striata	Bar-bellied Cuckooshrike	х		Х				
44	Pitta elliotii	Bar-bellied Pitta	X		х				
45	Hirundo rustica	Barn Swallow		х			Х		
46	Turnix suscitator	Barred Buttonquail	х				Х		
47	Macropygia unchall	Barred Cuckoo-dove	х		х			<u> </u>	
48	Bubo sumatranus	Barred Eagle-owl	х		х			<u> </u>	
49	Limosa lapponica	Bar-tailed Godwit		х				<u> </u>	х
50	Hemipus picatus	Bar-winged Flycatcher-shrike	х		х				
51	Macheiramphus alcinus	Bat Hawk	X		Х				
52	Blythipicus pyrrhotis	Bay Woodpecker	х		х				
53	Ploceus philippinus	Baya Weaver	X			х			
54	Esacus magnirostris	Beach Thick-knee	X						х
55	Sitta formosa	Beautiful Nuthatch	X		х				
56	Accipiter virgatus	Besra	Х		х				
57	Seicercus valentini	Bianchi's Warbler		х	Х				
58	Aviceda leuphotes	Black Baza	X		х				
59	Ixobrychus flavicollis	Black Bittern	X					Х	
60	Dicrurus macrocercus	Black Drongo	Х					х	
61	Ictinaetus malaiensis	Black Eagle	х		Х				
62	Anthracoceros malayanus	Black Hornbill	Х		х				
63	Milvus migrans	Black Kite	Х				Х		
64	Garrulax lugubris	Black Laughingthrush	х		Х				
65	Platysmurus leucopterus	Black Magpie	X			х			
66	Melanoperdix niger	Black Partridge	X		х				
67	Ciconia nigra	Black Stork		Х				Х	
68	Meiglyptes jugularis	Black-and-buff Woodpecker	x		X				
69	Cymbirhynchus macrorhynchos	Black-and-red Broadbill	x		X				
70	Pycnonotus melanoleucos	Black-and-white Bulbul	X		X				

71	Eurylaimus ochromalus	Black-and-yellow Broadbill	Х		Х				
72	Enicurus immaculatus	Black-backed Forktail	Х		X				
73	Ceyx erithaca	Black-backed Kingfisher	Х		X				
74	Phaenicophaeus diardi	Black-bellied Malkoha	Х		X				
75	Sterna acuticauda	Black-bellied Tern	Х					Х	
76	Pica pica	Black-billed Magpie	Х		Х				
77	Turdus dissimilis	Black-breasted Thrush	Х		X				
78	Alcippe grotei	Black-browed Fulvetta	Х		X				
79	Acrocephalus bistrigiceps	Black-browed Reed-warbler		X				х	
80	Pellorneum capistratum	Black-capped Babbler	Х		X				
81	Halcyon pileata	Black-capped Kingfisher		X				Х	
82	Sturnus nigricollis	Black-collared Starling	Х			X			
83	Pycnonotus melanicterus	Black-crested Bulbul	Х		X				
84	Nycticorax nycticorax	Black-crowned Night-heron	Х					Х	
85	Pteruthius melanotis	Black-eared Shrike-babbler	Х		X				
86	Emberiza spodocephala	Black-faced Bunting		X				Х	
87	Platalea minor	Black-faced Spoonbill		Х					Х
88	Pycnonotus atriceps	Black-headed Bulbul	Х		X				
89	Carduelis ambigua	Black-headed Greenfinch		X		х			
90	Larus ridibundus	Black-headed Gull		X					х
91	Threskiornis melanocephalus	Black-headed Ibis		x				Х	
92	Picus erythropygius	Black-headed Woodpecker	Х		X				
93	Oriolus xanthornus	Black-hooded Oriole	Х			х			
94	Hypothymis azurea	Black-naped Monarch	Х		X				
95	Oriolus chinensis	Black-naped Oriole		X	X				
96	Sterna sumatrana	Black-naped Tern	Х						Х
97	Ephippiorhynchus asiaticus	Black-necked Stork	Х					Х	
98	Aerodramus maximus	Black-nest Swiftlet	Х		X				
99	Zapornia bicolor	Black-tailed Crake	Х		Х				
100	Limosa limosa	Black-tailed Godwit		Х				Х	
101	Microhierax fringillarius	Black-thighed Falconet	Х		X				
102	Stachyris nigricollis	Black-throated Babbler	Х		X				
103	Garrulax chinensis	Black-throated Laughingthrush	Х		X				
104	Paradoxornis nipalensis	Black-throated Parrotbill	Х		X				
105	Aethopyga saturata	Black-throated Sunbird	Х		X				
106	Aegithalos concinnus	Black-throated Tit	Х		x				1
107	Coracina melaschistos	Black-winged Cuckooshrike	Х		x				1
108	Hemipus hirundinaceus	Black-winged Flycatcher-shrike	Х		х				
109	Elanus caeruleus	Black-winged Kite	Х	1	1	1	x		1

110	Himantopus himantopus	Black-winged Stilt	Х				Х	
111	Psittacula roseata	Blossom-headed Parakeet	X		Х			
112	Urocissa erythrorhyncha	Blue Magpie	X		х			
113	Sitta azurea	Blue Nuthatch	X		Х			
114	Pitta cyanea	Blue Pitta	X		Х			
115	Monticola solitarius	Blue Rock-thrush	Х					х
116	Myophonus caeruleus	Blue Whistling-thrush	Х		х			
117	Nyctyornis athertoni	Blue-bearded Bee-eater	Х		X			
118	Hierococcyx fugax	Blue-breasted Quail	Х			х		
119	Loriculus galgulus	Blue-crowned Hanging-parrot	Х		х			
120	Megalaima australis	Blue-eared Barbet	Х		х			
121	Psittinus cyanurus	Blue-eared Kingfisher	Х		Х			
122	Megalaima asiatica	Blue-fronted Redstart	Х		Х			
123	Cinclidium frontale	Blue-fronted Robin	Х		Х			
124	Psittinus cyanurus	Blue-rumped Parrot	Х		Х			
125	Pitta soror	Blue-rumped Pitta	X		Х			
126	Merops philippinus	Blue-tailed Bee-eater	X		Х			
127	Luscinia svecica	Bluethroat		х			х	
128	Megalaima asiatica	Blue-throated Barbet	X		х			
129	Merops viridis	Blue-throated Bee-eater	X		Х			
130	Cyornis rubeculoides	Blue-throated Flycatcher	X		X			
131	Chloropsis cochinchinensis	Blue-winged Leafbird	X		Х			
132	Minla cyanouroptera	Blue-winged Minla	Х		Х			
133	Pitta moluccensis	Blue-winged Pitta	X		Х			
134	Acrocephalus concinens	Blunt-winged Warbler		Х			х	
135	Nisaetus alboniger	Blyth's Hawk-eagle	Х		Х			
136	Alcedo hercules	Blyth's Kingfisher	X				х	
137	Merops viridis	Bornean Crested Fireback	Х		X			
138	Haliastur indus	Brahminy Kite	Х					х
139	Onychoprion anaethetus	Bridled Tern	Х					х
140	Calidris falcinellus	Broad-billed Sandpiper		Х				х
141	Dicrurus aeneus	Bronzed Drongo	Х		Х			
142	Metopidius indicus	Bronze-winged Jacana	Х				х	
143	Calorhamphus fuliginosus	Brown Barbet	X		X			
144	Ninox scutulata	Brown Boobook	X		Х			
145	Sula leucogaster	Brown Booby	X					х
146	Bradypterus luteoventris	Brown Bush-warbler	X			X		
147	Cinclus pallasii	Brown Dipper	X		X			
148	Ketupa zeylonensis	Brown Fish-owl	X		X			

149	Alcippe brunneicauda	Brown Fulvetta	Х		Х				
150	Prinia polychroa	Brown Prinia	х		х				
151	Lanius cristatus	Brown Shrike		Х			х		
152	Strix leptogrammica	Brown Wood-owl	х		х				
153	Hirundapus giganteus	Brown-backed Needletail	х		х				
154	Pycnonotus xanthorrhous	Brown-breasted Bulbul	х		х				
155	Muscicapa muttui	Brown-breasted Flycatcher		Х	х				
156	Alcippe poioicephala	Brown-cheeked Fulvetta	х		Х				
157	Larus brunnicephalus	Brown-headed Gull		Х					х
158	Pericrocotus cantonensis	Brown-rumped Minivet		Х	х				
159	Pelargopsis amauroptera	Brown-winged Kingfisher	х		х				
160	Phylloscopus pulcher	Buff-barred Warbler		Х	Х				
161	Trichastoma tickelli	Buff-breasted babbler	х		Х				
162	Stachyris ambigua	Buff-chested Babbler	х		Х				
163	Meiglyptes tukki	Buff-necked Woodpecker	х		Х				
164	Chrysocolaptes lucidus	Buff-spotted Flameback	х		Х				
165	Phylloscopus subaffinis	Buff-throated Warbler	х			х			
166	Iole olivacea	Buff-vented Bulbul	х		Х				
167	Ketupa ketupu	Buffy Fish-owl	х		Х				
168	Bulweria bulwerii	Bulwer's Petrel		Х					х
169	Lanius collurioides	Burmese Shrike	х		Х				
170	Yuhina humilis	Burmese Yuhina	х		Х				
171	Anorrhinus galeritus	Bushy-crested Hornbill	х		Х				
172	Bubulcus ibis	Cattle Egret	х					х	
173	Nisaetus cirrhatus	Changeable Hawk-eagle	х		х				
174	Picus mentalis	Checker-throated Woodpecker	х		Х				
175	Emberiza rutila	Chestnut Bunting		Х	Х				
176	Lonchura atricapilla	Chestnut Munia	х		х				
177	Turdus rubrocanus	Chestnut Thrush	Х		Х				
178	Pomatorhinus montanus	Chestnut-backed Scimitar-babbler	х		х				
179	Phaenicophaeus sumatranus	Chestnut-bellied Malkoha	х		х				
180	Sitta castanea	Chestnut-bellied Nuthatch	х			Х			
181	Monticola rufiventris	Chestnut-bellied Rock-thrush		Х	х				
182	Phaenicophaeus curvirostris	Chestnut-breasted Malkoha	х		х				
183	Timalia pileata	Chestnut-capped Babbler	х		Х				
184	Garrulax mitratus	Chestnut-capped Laughingthrush	х		Х				
185	Zoothera interpres	Chestnut-capped Thrush	x		Х				1
186	Cettia major	Chestnut-crowned Bush-warbler		Х		Х			
187	Seicercus castaniceps	Chestnut-crowned Warbler	х		Х				

188	Emberiza fucata	Chestnut-eared Bunting		Х				Х	
189	Zosterops erythropleurus	Chestnut-flanked White-eye		Х	Х				
190	Pteruthius aenobarbus	Chestnut-fronted Shrike-babbler	х		Х				
191	Merops leschenaulti	Chestnut-headed Bee-eater	х		Х				
192	Arborophila cambodiana	Chestnut-headed Partridge	х		Х				
193	Tesia castaneocoronata	Chestnut-headed Tesia	х		Х				
194	Enicurus ruficapillus	Chestnut-naped Forktail	х		Х				
195	Arborophila charltonii	Chestnut-necklaced Partridge	х		Х				
196	Stachyris maculata	Chestnut-rumped Babbler	х		Х				
197	Minla strigula	Chestnut-tailed Minla	х		Х				
198	Sturnus malabaricus	Chestnut-tailed Starling	х			Х			
199	Sitta nagaensis	Chestnut-vented Nuthatch	х		Х				
200	Stachyris erythroptera	Chestnut-winged Babbler	х		Х				
201	Clamator coromandus	Chestnut-winged Cuckoo		Х	Х				
202	Bradypterus tacsanowskius	Chinese Bush-warbler		Х				Х	
203	Egretta eulophotes	Chinese Egret		Х					х
204	Francolinus pintadeanus	Chinese Francolin	х		Х				
205	Phylloscopus yunnanensis	Chinese Leaf-warbler		Х	Х				
206	Ardeola bacchus	Chinese Pond-heron		Х				Х	
207	Accipiter soloensis	Chinese Sparrowhawk		Х		Х			
208	Anas zonorhyncha	Chinese Spot-billed Duck		Х				Х	
209	Fregata andrewsi	Christmas Frigatebird	х						х
210	Ixobrychus cinnamomeus	Cinnamon Bittern	х					х	
211	Treron fulvicollis	Cinnamon-headed Green-pigeon	х		Х				
212	Harpactes orrhophaeus	Cinnamon-rumped Trogon	х		Х				
213	Motacilla citreola	Citrine Wagtail		Х				Х	
214	Acrocephalus stentoreus	Clamorous Reed-warbler		Х				Х	
215	Gampsorhynchus torquatus	Collared Babbler	х		Х				
216	Microhierax caerulescens	Collared Falconet	х		Х				
217	Mycerobas affinis	Collared Grosbeak	х		Х				
218	Todiramphus chloris	Collared Kingfisher	х						х
219	Glaucidium brodiei	Collared Owlet	х		Х				
220	Otus bakkamoena	Collared Scops-owl	х				Х		
221	Tyto alba	Common Barn-owl	х		Х				
222	Turnix sylvaticus	Common Buttonquail	х					Х	
223	Fulica atra	Common Coot		Х				Х	
224	Grus grus	Common Crane		Х				X	
225	Dinopium javanense	Common Flameback	x		X				
226	Tringa nebularia	Common Greenshank	1	Х					х

227	Sterna nilotica	Gull-billed Tern		X					х
228	Upupa epops	Common Hoopoe	х				Х		
229	Aegithina tiphia	Common Iora	Х		х				
230	Falco tinnunculus	Common Kestrel		X			Х		
231	Alcedo atthis	Common Kingfisher	Х		х				
232	Gallinula chloropus	Common Moorhen	Х					х	
233	Acridotheres tristis	Common Myna	Х		х				
234	Aythya ferina	Common Pochard		X				Х	
235	Carpodacus erythrinus	Common Rosefinch		X			Х		
236	Actitis hypoleucos	Common Sandpiper		X				х	
237	Gallinago gallinago	Common Snipe		X				Х	
238	Saxicola torquatus	Common Stonechat		X	X				
239	Orthotomus sutorius	Common Tailorbird	Х		X				
240	Anas crecca	Common Teal		X				Х	
241	Sterna hirundo	Common Tern		X					х
242	Tephrodornis pondicerianus	Common Woodshrike	X		х				
243	Psilopogon haemacephalus	Coppersmith Barbet	X				Х		
244	Nectarinia calcostetha	Copper-throated Sunbird	Х		х				
245	Carpococcyx renauldi	Coral-billed Ground-cuckoo	Х		х				
246	Pomatorhinus ferruginosus	Coral-billed Scimitar-babbler	X		х				
247	Nettapus coromandelianus	Cotton Pygmy-goose	Х					Х	
248	Dromas ardeola	Crab-plover		X					х
249	Pycnonotus simplex	Cream-vented Bulbul	Х		х				
250	Melophus lathami	Crested Bunting	Х			х			
251	Spizixos canifrons	Crested Finchbill	Х		х				
252	Accipiter trivirgatus	Crested Goshawk	Х		х				
253	Platylophus galericulatus	Crested Jay	X		х				
254	Megaceryle lugubris	Crested Kingfisher	Х		х				
255	Rollulus rouloul	Crested Partridge	Х		х				
256	Spilornis cheela	Crested Serpent-eagle	Х		х				
257	Hemiprocne coronata	Crested Treeswift	Х		х				
258	Aethopyga siparaja	Crimson Sunbird	Х		х				
259	Prionochilus percussus	Crimson-breasted Flowerpecker	Х		х				
260	Picoides cathpharius	Crimson-breasted Woodpecker	X		х				
261	Picus puniceus	Crimson-winged Woodpecker	X		х				
262	Dicrurus annectans	Crow-billed Drongo		X	х				
263	Calidris ferruginea	Curlew Sandpiper		X					x
264	Heterophasia melanoleuca	Dark-backed Sibia	X		X				
265	Orthotomus atrogularis	Dark-necked Tailorbird	X		x				

266	Apus acuticauda	Dark-rumped Swift		Х	х				
267	Muscicapa sibirica	Dark-sided Flycatcher		Х	Х				
268	Zoothera marginata	Dark-sided Thrush	х		х				
269	Oriolus xanthonotus	Dark-throated Oriole	х		х				
270	Phoenicurus auroreus	Daurian Redstart		Х	х				
271	Bradypterus davidi	David's Bush-warbler		Х		х			
272	Phylloscopus davisoni	Davison's Leaf-warbler	х		х				
273	Harpactes diardii	Diard's Trogon	х		Х				
274	Corydon sumatranus	Dusky Broadbill	х		Х				
275	Hirundo concolor	Dusky Crag-martin	х		Х				
276	Bubo coromandus	Dusky Eagle-owl	х		Х				
277	Turdus naumanni	Dusky Thrush		Х	Х				
278	Phylloscopus fuscatus	Dusky Warbler		Х			Х		
279	Pitta phayrei	Eared Pitta	х		Х				
280	Phylloscopus coronatus	Eastern Crowned Warbler		Х	х				
281	Tyto longimembris	Eastern Grass-owl	х					Х	
282	Aquila heliaca	Eastern Imperial Eagle		Х					
283	Circus spilonotus	Eastern Marsh-harrier		Х				Х	
284	Stigmatopelia chinensis	Eastern Spotted Dove	х		Х				
285	Botaurus stellaris	Eurasian Bittern		Х				Х	
286	Buteo buteo	Eurasian Buzzard		Х	Х				
287	Numenius arquata	Eurasian Curlew		Х					х
288	Falco subbuteo	Eurasian Hobby		Х		х			
289	Garrulus glandarius	Eurasian Jay	х		Х				
290	Zoothera dauma	Eurasian Scaly Thrush		Х	Х				
291	Accipiter nisus	Eurasian Sparrowhawk		Х		х			
292	Burhinus oedicnemus	Eurasian Thick-knee		Х				Х	
293	Passer montanus	Eurasian Tree Sparrow	х				Х		
294	Mareca penelope	Eurasian Wigeon		Х				Х	
295	Scolopax rusticola	Eurasian Woodcock		Х	х				
296	Jynx torquilla	Eurasian Wryneck		Х			Х		
297	Zosterops everetti	Everett's White-eye	Х		Х				
298	Turdus obscurus	Eyebrowed Thrush		Х	х				
299	Napothera epilepidota	Eyebrowed Wren-babbler	х		х				
300	Mareca falcata	Falcated Duck		Х				Х	
301	Trichastoma bicolor	Ferruginous Babbler	х		х				
302	Aythya nyroca	Ferruginous Duck		Х				Х	
303	Muscicapa ferruginea	Ferruginous Flycatcher		Х	Х				
304	Caloperdix oculeus	Ferruginous Partridge	х		Х				

305	Pericrocotus igneus	Fiery Minivet	Х		Х				
306	Alophoixus finschii	Finsch's Bulbul	х		Х				
307	Dicaeum ignipectus	Fire-breasted Flowerpecker	х		Х				
308	Cephalopyrus flammiceps	Fire-capped Tit		Х	Х				
309	Psilopogon pyrolophus	Fire-tufted Barbet	х		Х				
310	Pycnonotus flavescens	Flavescent Bulbul	х		Х				
311	Macronous ptilosus	Fluffy-backed Tit-babbler	х		Х				
312	Dendronanthus indicus	Forest Wagtail		Х	Х				
313	Niltava davidi	Fujian Niltava	х		Х				
314	Dendrocopos macei	Fulvous-breasted Woodpecker	х			Х			
315	Rhinomyias olivaceus	Fulvous-chested Jungle- flycatcher	х		х				
316	Spatula querquedula	Garganey		Х				Х	
317	Pitta granatina	Garnet Pitta	х		Х				
318	Collocalia germani	Germain's swiftlet	х						х
319	Thaumatibis gigantea	Giant Ibis	х					Х	
320	Sitta magna	Giant Nuthatch	х		Х				
321	Pitta caerulea	Giant Pitta	х		Х				
322	Plegadis falcinellus	Glossy Ibis		Х				Х	
323	Collocalia esculenta	Glossy Swiftlet	х		Х				
324	Stachyris chrysaea	Golden Babbler	х		Х				
325	Tarsiger chrysaeus	Golden Bush-robin		Х	Х				
326	Gerygone sulphurea	Golden-bellied Gerygone	х						х
327	Ampeliceps coronatus	Golden-crested Myna	х		Х				
328	Chloropsis aurifrons	Golden-fronted Leafbird	х		Х				
329	Cisticola exilis	Golden-headed Cisticola	х		Х				
330	Megalaima franklinii	Golden-throated Barbet	х		Х				
331	Psilopogon chrysopogon	Gold-whiskered Barbet	х		Х				
332	Batrachostomus stellatus	Gould's Frogmouth	х		X				
333	Aethopyga gouldiae	Gould's Sunbird		Х	Х				
334	Argusianus argus	Great Argus	х		Х				
335	Psilopogon virens	Great Barbet	х		Х				
336	Phalacrocorax carbo	Great Cormorant		Х				Х	
337	Eurostopodus macrotis	Great eared nightjar	х				Х		
338	Lyncornis macrotis	Great Eared-nightjar	х		Х				
339	Fregata minor	Great Frigatebird	х						х
340	Buceros bicornis	Great Hornbill	х		х				
341	Aegithina lafresnayei	Great Iora	х		Х				
342	Calidris tenuirostris	Great Knot		Х					x
343	Acrocephalus arundinaceus	Great Reed-warbler		Х				Х	

344	Mulleripicus pulverulentus	Great Slaty Woodpecker	Х		Х			
345	Esacus recurvirostris	Great Thick-knee	х				Х	
346	Parus major	Great Tit	х		х			
347	Ardea alba	Great White Egret	х				Х	
348	Ardea sumatrana	Great-billed Heron	X					х
349	Leptoptilos dubius	Greater Adjutant		Х			Х	
350	Centropus sinensis	Greater Coucal	х		Х			
351	Thalasseus bergii	Greater Crested Tern	х					х
352	Chloropsis sonnerati	Greater Green Leafbird	х		Х			
353	Garrulax pectoralis	Greater Necklaced	х		Х			
251		Laughingthrush						
354	Rostratula benghalensis	Greater Painted-snipe	X				X	
355	Dicrurus paradiseus	Greater Racket-tailed Drongo	X		X			
356	Charadrius leschenaultu	Greater Sandplover		X				Х
357	Clanga clanga	Greater Spotted Eagle		X			Х	
358	Chrysophlegma flavinucha	Greater Yellownape	Х		Х			
359	Cochoa viridis	Green Cochoa	X		Х			
360	Ducula aenea	Green Imperial-pigeon	Х		Х			
361	Aegithina viridissima	Green Iora	Х		Х			
362	Cissa chinensis	Green Magpie	Х		Х			
363	Pavo muticus	Green Peafowl	х		х			
364	Tringa ochropus	Green Sandpiper		Х			Х	
365	Butorides striata	Green-backed Heron	х		х			
366	Phaenicophaeus tristis	Green-billed Malkoha	х		х			
367	Psilopogon faiostrictus	Green-eared Barbet	х		х			
368	Phylloscopus trochiloides	Greenish Warbler		Х	х			
369	Arborophila chloropus	Green-legged Partridge	х		х			
370	Aethopyga nipalensis	Green-tailed Sunbird	х		х			
371	Saxicola ferreus	Grey Bushchat	х		х			
372	Ardea cinerea	Grey Heron		Х			Х	
373	Caprimulgus indicus	Grey Nightjar	Х		х			
374	Polyplectron bicalcaratum	Grey Peacock-pheasant	Х		х			
375	Pluvialis squatarola	Grey Plover		Х				х
376	Dendrocitta formosae	Grey Treepie	Х		х			
377	Motacilla cinerea	Grey Wagtail		Х	х			
378	Lanius tephronotus	Grey-backed Shrike		Х		Х		
379	Pycnonotus cyaniventris	Grey-bellied Bulbul	х		х			
380	Tesia cyaniventer	Grey-bellied Tesia	x		X			
381	Prinia hodgsonii	Grey-breasted Prinia	х			Х		
382	Arachnothera affinis	Grey-breasted Spiderhunter	x		Х			

383	Chalcophaps indica	Grey-capped Emerald Dove	Х		Х			
384	Picoides canicapillus	Grey-capped Woodpecker	х		Х			
385	Alophoixus bres	Grey-cheeked Bulbul	х		Х			
386	Alcippe morrisonia	Grey-cheeked Fulvetta	х		Х			
387	Seicercus poliogenys	Grey-cheeked Warbler	х		Х			
388	Rhinomyias umbratilis	Grey-chested Jungle-flycatcher	х		Х			
389	Pericrocotus solaris	Grey-chinned Minivet	х		Х			
390	Seicercus tephrocephalus	Grey-crowned Warbler		Х	Х			
391	Iole propinqua	Grey-eyed Bulbul	х		Х			
392	Macronous kelleyi	Grey-faced Tit-babbler	х		Х			
393	Picus canus	Grey-faced Woodpecker	х		Х			
394	Stachyris poliocephala	Grey-headed Babbler	х		Х			
395	Pyrrhula erythaca	Grey-headed Bullfinch	х			х		
396	Culicicapa ceylonensis	Grey-headed Canary-flycatcher	х		Х			
397	Icthyophaga ichthyaetus	Grey-headed Fish-eagle	х		Х			
398	Vanellus cinereus	Grey-headed Lapwing		Х			х	
399	Psittacula finschii	Grey-headed Parakeet	х		Х			
400	Paradoxornis gularis	Grey-headed Parrotbill	х		X			
401	Hemiprocne longipennis	Grey-rumped Treeswift	х		Х			
402	Turdus feae	Grey-sided Thrush		Х	Х			
403	Tringa brevipes	Grey-tailed Tattler		х				х
403 404	Tringa brevipes Stachyris nigriceps	Grey-tailed Tattler Grey-throated Babbler	x	Х	X			x
403 404 405	Tringa brevipes Stachyris nigriceps Turdus boulboul	Grey-tailed Tattler Grey-throated Babbler Grey-winged Blackbird	X X	X	X X			X
403 404 405 406	Tringa brevipes Stachyris nigriceps Turdus boulboul Pitta gurneyi	Grey-tailed TattlerGrey-throated BabblerGrey-winged BlackbirdGurney's Pitta	X X X X	X	X X X			x
403 404 405 406 407	Tringa brevipes Stachyris nigriceps Turdus boulboul Pitta gurneyi Cyornis hainanus	Grey-tailed TattlerGrey-throated BabblerGrey-winged BlackbirdGurney's PittaHainan Blue-flycatcher	X X X X X	X	X X X X			X
403 404 405 406 407 408	Tringa brevipes Stachyris nigriceps Turdus boulboul Pitta gurneyi Cyornis hainanus Dicrurus hottentottus	Grey-tailed TattlerGrey-throated BabblerGrey-winged BlackbirdGurney's PittaHainan Blue-flycatcherHair-crested Drongo	X X X X X X X	X	X X X X X X			X
403 404 405 406 407 408 409	Tringa brevipesStachyris nigricepsTurdus boulboulPitta gurneyiCyornis hainanusDicrurus hottentottusTricholestes criniger	Grey-tailed TattlerGrey-throated BabblerGrey-winged BlackbirdGurney's PittaHainan Blue-flycatcherHair-crested DrongoHairy-backed Bulbul	X X X X X X X X X	X	X X X X X X X			X
403 404 405 406 407 408 409 410	Tringa brevipesStachyris nigricepsTurdus boulboulPitta gurneyiCyornis hainanusDicrurus hottentottusTricholestes crinigerHemicircus canente	Grey-tailed TattlerGrey-throated BabblerGrey-winged BlackbirdGurney's PittaHainan Blue-flycatcherHair-crested DrongoHairy-backed BulbulHeart-spotted Woodpecker	X X X X X X X X X X	X	X X X X X X X X X			X
403 404 405 406 407 408 409 410 411	Tringa brevipesStachyris nigricepsTurdus boulboulPitta gurneyiCyornis hainanusDicrurus hottentottusTricholestes crinigerHemicircus canenteRhinoplax vigil	Grey-tailed TattlerGrey-throated BabblerGrey-winged BlackbirdGurney's PittaHainan Blue-flycatcherHair-crested DrongoHairy-backed BulbulHeart-spotted WoodpeckerHelmeted Hornbill	X X	X	X X X X X X X X X X X			X
403 404 405 406 407 408 409 410 411 412	Tringa brevipesStachyris nigricepsTurdus boulboulPitta gurneyiCyornis hainanusDicrurus hottentottusTricholestes crinigerHemicircus canenteRhinoplax vigilCircus cyaneus	Grey-tailed TattlerGrey-throated BabblerGrey-winged BlackbirdGurney's PittaHainan Blue-flycatcherHair-crested DrongoHairy-backed BulbulHeart-spotted WoodpeckerHelmeted HornbillHen Harrier	x x x x x x x x x x x x	x	X X X X X X X X X		x	
403 404 405 406 407 408 409 410 411 412 413	Tringa brevipesStachyris nigricepsTurdus boulboulPitta gurneyiCyornis hainanusDicrurus hottentottusTricholestes crinigerHemicircus canenteRhinoplax vigilCircus cyaneusCyornis banyumas	Grey-tailed TattlerGrey-throated BabblerGrey-winged BlackbirdGurney's PittaHainan Blue-flycatcherHair-crested DrongoHairy-backed BulbulHeart-spotted WoodpeckerHelmeted HornbillHen HarrierHill Blue-flycatcher	x x x x x x x x x x x x x x x	x	X X X X X X X X X X		x	X
403 404 405 406 407 408 409 410 411 412 413 414	Tringa brevipesStachyris nigricepsTurdus boulboulPitta gurneyiCyornis hainanusDicrurus hottentottusTricholestes crinigerHemicircus canenteRhinoplax vigilCircus cyaneusCyornis banyumasGracula religiosa	Grey-tailed TattlerGrey-throated BabblerGrey-winged BlackbirdGurney's PittaHainan Blue-flycatcherHair-crested DrongoHairy-backed BulbulHeart-spotted WoodpeckerHelmeted HornbillHen HarrierHill Blue-flycatcherHill Blue-flycatcher	x x x x x x x x x x x x x x x x	x	X X X X X X X X X X X X		x	X
403 404 405 406 407 408 409 410 411 412 413 414 415	Tringa brevipesStachyris nigricepsTurdus boulboulPitta gurneyiCyornis hainanusDicrurus hottentottusTricholestes crinigerHemicircus canenteRhinoplax vigilCircus cyaneusCyornis banyumasGracula religiosaPrinia atrogularis	Grey-tailed TattlerGrey-throated BabblerGrey-winged BlackbirdGurney's PittaHainan Blue-flycatcherHair-crested DrongoHairy-backed BulbulHeart-spotted WoodpeckerHelmeted HornbillHen HarrierHill Blue-flycatcherHill Prinia	x x	x	X X X X X X X X X X X X X X		x	X
403 404 405 406 407 408 409 410 411 412 413 414 415 416	Tringa brevipesStachyris nigricepsTurdus boulboulPitta gurneyiCyornis hainanusDicrurus hottentottusTricholestes crinigerHemicircus canenteRhinoplax vigilCircus cyaneusCyornis banyumasGracula religiosaPrinia atrogularisCutia nipalensis	Grey-tailed TattlerGrey-throated BabblerGrey-winged BlackbirdGurney's PittaHainan Blue-flycatcherHair-crested DrongoHairy-backed BulbulHeart-spotted WoodpeckerHelmeted HornbillHen HarrierHill Blue-flycatcherHill PriniaHimalayan Cutia	X X	x	X X X X X X X X X X X X X X X X		X	
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417	Tringa brevipesStachyris nigricepsTurdus boulboulPitta gurneyiCyornis hainanusDicrurus hottentottusTricholestes crinigerHemicircus canenteRhinoplax vigilCircus cyaneusCyornis banyumasGracula religiosaPrinia atrogularisCutia nipalensisCollocalia brevirostris	Grey-tailed TattlerGrey-throated BabblerGrey-winged BlackbirdGurney's PittaHainan Blue-flycatcherHair-crested DrongoHairy-backed BulbulHeart-spotted WoodpeckerHelmeted HornbillHen HarrierHill Blue-flycatcherHill PriniaHimalayan CutiaHimalayan Swiftlet	X X	x	X X X X X X X X X X X X X X X X X X		x	
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418	Tringa brevipesStachyris nigricepsTurdus boulboulPitta gurneyiCyornis hainanusDicrurus hottentottusTricholestes crinigerHemicircus canenteRhinoplax vigilCircus cyaneusCyornis banyumasGracula religiosaPrinia atrogularisCutia nipalensisCollocalia brevirostrisBatrachostomus hodgsoni	Grey-tailed TattlerGrey-throated BabblerGrey-winged BlackbirdGurney's PittaHainan Blue-flycatcherHair-crested DrongoHairy-backed BulbulHeart-spotted WoodpeckerHelmeted HornbillHen HarrierHill Blue-flycatcherHill PriniaHimalayan CutiaHimalayan SwiftletHodgson's Frogmouth	X X <td< td=""><td></td><td>x x</td><td></td><td></td><td></td></td<>		x x			
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419	Tringa brevipesStachyris nigricepsTurdus boulboulPitta gurneyiCyornis hainanusDicrurus hottentottusTricholestes crinigerHemicircus canenteRhinoplax vigilCircus cyaneusCyornis banyumasGracula religiosaPrinia atrogularisCutia nipalensisCollocalia brevirostrisBatrachostomus hodgsoniPitta sordida	Grey-tailed TattlerGrey-throated BabblerGrey-winged BlackbirdGurney's PittaHainan Blue-flycatcherHair-crested DrongoHairy-backed BulbulHeart-spotted WoodpeckerHelmeted HornbillHen HarrierHill Blue-flycatcherHill PriniaHimalayan CutiaHimalayan SwiftletHooded Pitta	X X <td< td=""><td>x</td><td>x x x x x x x x x x x x x x x x x x x</td><td></td><td>X</td><td></td></td<>	x	x x x x x x x x x x x x x x x x x x x		X	
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420	Tringa brevipesStachyris nigricepsTurdus boulboulPitta gurneyiCyornis hainanusDicrurus hottentottusTricholestes crinigerHemicircus canenteRhinoplax vigilCircus cyaneusCyornis banyumasGracula religiosaPrinia atrogularisCutia nipalensisCollocalia brevirostrisBatrachostomus hodgsoniPitta sordidaMalacocincla sepiaria	Grey-tailed TattlerGrey-throated BabblerGrey-winged BlackbirdGurney's PittaHainan Blue-flycatcherHair-crested DrongoHairy-backed BulbulHeart-spotted WoodpeckerHelmeted HornbillHen HarrierHill Blue-flycatcherHill PiniaHimalayan CutiaHimalayan SwiftletHooded PittaHorsfield's Babbler	X X <td< td=""><td></td><td>x x</td><td></td><td></td><td></td></td<>		x x			

422	Apus nipalensis	House Swift	Х		Х				
423	Phylloscopus humei	Hume's Leaf-warbler		Х	Х				
424	Phalacrocorax fuscicollis	Indian Cormorant	х					Х	
425	Cuculus micropterus	Indian Cuckoo		Х	Х				
426	Caprimulgus asiaticus	Indian Nightjar	х				Х		
427	Coracias benghalensis	Indian Roller	х		х				
428	Mirafra erythrocephala	Indochinese Bushlark	х		Х				
429	Coracina polioptera	Indochinese Cuckooshrike	х		Х				
430	Yuhina torqueola	Indochinese Yuhina	х		х				
431	Phylloscopus inornatus	Inornate Warbler		Х	Х				
432	Ardea intermedia	Intermediate egret	х					Х	
433	Lymnocryptes minimus	Jack Snipe		Х				Х	
434	Ramphiculus jambu	Jambu Fruit-dove	х		Х				
435	Terpsiphone atrocaudata	Japanese Paradise-flycatcher		Х	Х				
436	Coturnix japonica	Japanese Quail		Х			Х		
437	Accipiter gularis	Japanese Sparrowhawk		Х	Х				
438	Zosterops japonicus	Japanese White-eye		Х	Х				
439	Alcedo euryzona	Javan Blue-banded Kingfisher	х		х				
440	Batrachostomus affinis	Javan Frogmouth	Х		Х				
441	Ardeola speciosa	Javan Pond-heron	х					Х	
442	Aviceda jerdoni	Jerdon's Baza	х		х				
443	Saxicola jerdoni	Jerdon's Bushchat	х		Х				
444	Corvus levaillantii	Jungle Crow	Х				Х		
445	Acridotheres fuscus	Jungle Myna	х		Х				
446	Lophura leucomelanos	Kalij Pheasant	Х		х				
447	Charadrius alexandrinus	Kentish Plover		Х					х
448	Phylloscopus ogilviegranti	Kloss's Leaf-warbler	Х		Х				
449	Picus vittatus	Laced Woodpecker	х		Х				
450	Locustella lanceolata	Lanceolated Warbler		Х	Х				
451	Cyornis magnirostris	Large Blue-flycatcher		Х	Х				
452	Coracina macei	Large Cuckooshrike	Х		Х				
453	Batrachostomus auritus	Large Frogmouth	Х		Х				
454	Treron capellei	Large Green-pigeon	х		х				
455	Hierococcyx sparverioides	Large Hawk-cuckoo	Х		Х				
456	Niltava grandis	Large Niltava	Х		Х				
457	Pomatorhinus hypoleucos	Large Scimitar-babbler	Х		Х				
458	Tephrodornis gularis	Large Woodshrike	Х		Х	İ			
459	Turdinus macrodactylus	Large Wren-babbler	Х		Х				
460	Corvus macrorhynchos	Large-billed Crow	X				Х		

461	Acrocephalus orinus	Large-billed Reed-warbler		Х			Х	
462	Caprimulgus macrurus	Large-tailed Nightjar	х		Х			
463	Phylloscopus proregulus	Lemon-rumped Warbler		Х	Х			
464	Leptoptilos javanicus	Lesser Adjutant	х		Х			
465	Centropus bengalensis	Lesser Coucal	х		Х			
466	Thalasseus bengalensis	Lesser Crested Tern		Х				х
467	Coracina fimbriata	Lesser Cuckooshrike	х		Х			
468	Icthyophaga humilis	Lesser Fish-eagle	х		Х			
469	Fregata ariel	Lesser Frigatebird	х					х
470	Chloropsis cyanopogon	Lesser Green Leafbird	х		Х			
471	Garrulax monileger	Lesser Necklaced Laughingthrush	х		Х			
472	Dicrurus remifer	Lesser Racket-tailed Drongo	х		х			
473	Charadrius mongolus	Lesser Sandplover		Х				х
474	Brachypteryx leucophrys	Lesser Shortwing	х		Х			
475	Dendrocygna javanica	Lesser Whistling-duck	х				Х	
476	Picus chlorolophus	Lesser Yellownape	х		Х			
477	Pycnonotus sinensis	Light-vented Bulbul		Х		х		
478	Gypsophila crispifrons	Limestone Wren-babbler	х		Х			
479	Psilopogon lineatus	Lineated Barbet	х		Х			
480	Chrysococcyx minutillus	Little Bronze-cuckoo	х		Х			
481	Emberiza pusilla	Little Bunting		Х		Х		
482	Microcarbo niger	Little Cormorant	х				Х	
483	Macropygia ruficeps	Little Cuckoo-dove	х		х			
484	Egretta garzetta	Little Egret	х				Х	
485	Tachybaptus ruficollis	Little Grebe	х				Х	
486	Treron olax	Little Green-pigeon		Х	Х			
487	Ficedula westermanni	Little Pied Flycatcher	х		х			
488	Glareola lactea	Little Pratincole	х				Х	
489	Charadrius dubius	Little Ringed Plover		Х			Х	
490	Arachnothera longirostra	Little Spiderhunter	х		х			
491	Sternula albifrons	Little Tern	х					х
492	Rhizothera longirostris	Long-billed Partridge	х		Х			
493	Charadrius placidus	Long-billed Plover		Х			Х	
494	Arachnothera robusta	Long-billed Spiderhunter	х		х			
495	Psarisomus dalhousiae	Long-tailed Broadbill	х		х			
496	Pericrocotus ethologus	Long-tailed Minivet	х		Х			
497	Lanius schach	Long-tailed Shrike	X		X			
498	Heterophasia picaoides	Long-tailed Sibia	x		X			
499	Zoothera dixoni	Long-tailed Thrush	x		X			

500	Calidris subminuta	Long-toed Stint		Х			х	
501	Lophura erythrophthalma	Malay Crestless Fireback	X		Х			
502	Lyncornis temminckii	Malay Eared-nightjar	х		х			
503	Cuculus fugax	Malay Hawk-cuckoo	х		х			
504	Indicator archipelagicus	Malay Honeyguide	х		х			
505	Gorsachius melanolophus	Malay Night-heron	х				х	
506	Polyplectron malacense	Malay Peacock-pheasant	x		Х			
507	Charadrius peronii	Malay Plover	х					х
508	Pitta irena	Malayan Banded Pitta	х		х			
509	Garrulax peninsulae	Malayan Laughingthrush	х		Х			
510	Cyornis turcosus	Malaysian Blue-flycatcher	х		х			
511	Cettia canturians	Manchurian Bush-warbler		Х		х		
512	Acrocephalus tangorum	Manchurian Reed-warbler		Х			Х	
513	Pitta megarhyncha	Mangrove Pitta	х		х			
514	Pachycephala grisola	Mangrove Whistler	х					х
515	Certhia manipurensis	Manipur Treecreeper	х		х			
516	Turdinus marmorata	Marbled Wren-babbler	х		Х			
517	Oriolus traillii	Maroon Oriole	х		Х			
518	Blythipicus rubiginosus	Maroon Woodpecker	x		Х			
519	Philentoma velata	Maroon-breasted Philentoma	х		х			
520	Tringa stagnatilis	Marsh Sandpiper		Х				х
521	Seicercus omeiensis	Martens's Warbler		Х	Х			
522	Heliopais personatus	Masked Finfoot	х		Х			
523	Bambusicola fytchii	Mountain Bamboo-partridge	х		Х			
524	Hypsipetes mcclellandii	Mountain Bulbul	х		Х			
525	Alcippe peracensis	Mountain Fulvetta	х		Х			
526	Ducula badia	Mountain Imperial-pigeon	х		х			
527	Phylloscopus trivirgatus	Mountain Leaf-warbler	х		х			
528	Otus spilocephalus	Mountain Scops-owl	х		Х			
529	Orthotomus cuculatus	Mountain Tailorbird	х		х			
530	Malacopteron magnirostre	Moustached Babbler	х		Х			
531	Psilopogon incognitus	Moustached Barbet	х		Х			
532	Hierococcyx vagans	Moustached Hawk-cuckoo	х		х			
533	Syrmaticus humiae	Mrs Hume's Pheasant	х		х			
534	Ficedula mugimaki	Mugimaki Flycatcher		Х	х			
535	Ficedula narcissina	Narcissus Flycatcher		Х	х			
536	Accipiter gentilis	Northern Goshawk		х	Х	1		1
537	Delichon urbicum	Northern House-martin		Х		X		
538	Vanellus vanellus	Northern Lapwing		Х		İ	Х	

539	Anas acuta	Northern Pintail		Х			X	
540	Spatula clypeata	Northern Shoveler		Х			Х	
541	Alophoixus ochraceus	Ochraceous Bulbul	х		х			
542	Iole virescens	Olive Bulbul	х		Х			
543	Anthus hodgsoni	Olive-backed Pipit		Х		х		
544	Nectarinia jugularis	Olive-backed Sunbird	х		х			
545	Dinopium rafflesii	Olive-backed Woodpecker	х		Х			
546	Pycnonotus plumosus	Olive-winged Bulbul	х		Х			
547	Chrysocolaptes validus	Orange-backed Woodpecker	х		Х			
548	Dicaeum trigonostigma	Orange-bellied Flowerpecker	х		Х			
549	Chloropsis hardwickii	Orange-bellied Leafbird	х		Х			
550	Treron bicinctus	Orange-breasted Green-pigeon	х		х			
551	Harpactes oreskios	Orange-breasted Trogon	х		Х			
552	Tarsiger cyanurus	Orange-flanked Bush-robin		Х	Х			
553	Zoothera citrina	Orange-headed Thrush		Х	Х			
554	Phodilus badius	Oriental Bay-owl	х		Х			
555	Cuculus saturatus	Oriental Cuckoo		Х		X		
556	Anhinga melanogaster	Oriental Darter	х				Х	
557	Eurystomus orientalis	Oriental Dollarbird	х		Х			
558	Falco severus	Oriental Hobby		Х	Х			
559	Pernis ptilorhynchus	Oriental Honey-buzzard	х		х			
560	Copsychus saularis	Oriental Magpie-robin	х			х		
561	Anthracoceros albirostris	Oriental Pied Hornbill	х		Х			
562	Glareola maldivarum	Oriental Pratincole	х				Х	
563	Otus sunia	Oriental Scops-owl		Х	Х			
564	Alauda gulgula	Oriental Skylark		Х	х			
565	Streptopelia orientalis	Oriental Turtle-dove	х		Х			
566	Zosterops palpebrosus	Oriental White-eye	х		Х			
567	Pandion haliaetus	Osprey		Х				х
568	Pluvialis fulva	Pacific Golden Plover		Х			Х	
569	Egretta sacra	Pacific Reef-egret	х					х
570	Hirundo tahitica	Pacific Swallow	х					х
571	Apus pacificus	Pacific Swift		Х	х			
572	Anthus rufulus	Paddyfield Pipit	х			х		
573	Mycteria leucocephala	Painted Stork		Х			Х	
574	Cyornis unicolor	Pale Blue-flycatcher	х		X			
575	Paradoxornis atrosuperciliaris	Pale-billed Parrotbill	х			X		
576	Columba punicea	Pale-capped Pigeon	х		X			
577	Cettia pallidipes	Pale-footed Bush-warbler	х		X			
578	Gecinulus grantia	Pale-headed Woodpecker	Х		Х			
-----	--------------------------	------------------------------	---	---	---	---	---	---
579	Phylloscopus tenellipes	Pale-legged Leaf-warbler		Х	х			
580	Locustella certhiola	Pallas's Grasshopper-warbler		Х			Х	
581	Larus ichthyaetus	Pallas's Gull		Х				х
582	Falco peregrinus	Peregrine Falcon	х		х			
583	Hydrophasianus chirurgus	Pheasant-tailed Jacana	х				Х	
584	Saxicola caprata	Pied Bushchat	х			х		
585	Rhipidura javanica	Pied Fantail	х			х		
586	Circus melanoleucos	Pied Harrier		Х			Х	
587	Ducula bicolor	Pied Imperial-pigeon	х					х
588	Ceryle rudis	Pied Kingfisher	х		х			
589	Lalage nigra	Pied Triller	х		х			
590	Treron vernans	Pink-necked Green-pigeon	х		х			
591	Macronous gularis	Pin-striped Tit-babbler	х		X			
592	Gallinago stenura	Pintail Snipe		Х			Х	
593	Treron apicauda	Pin-tailed Green-pigeon		Х	х			
594	Erythrura prasina	Pin-tailed Parrotfinch	х			х		
595	Dicaeum concolor	Plain Flowerpecker	x		X			
596	Riparia paludicola	Plain Martin	х		х			
597	Prinia inornata	Plain Prinia	х				Х	
598	Anthreptes simplex	Plain Sunbird	х		х			
599	Passer flaveolus	Plain-backed Sparrow	х		х			
600	Rhyticeros subruficollis	Plain-pouched Hornbill	х		х			
601	Anthreptes malacensis	Plain-throated Sunbird	х		х			
602	Cacomantis merulinus	Plaintive Cuckoo		Х	х			
603	Rhyacornis fuliginosa	Plumbeous Water-redstart	х			х		
604	Stercorarius pomarinus	Pomarine Jaeger		Х				х
605	Pycnonotus eutilotus	Puff-backed Bulbul	х		X			
606	Pellorneum ruficeps	Puff-throated Babbler	х		X			
607	Alophoixus pallidus	Puff-throated Bulbul	х		X			
608	Cochoa purpurea	Purple Cochoa	х		X			
609	Ardea purpurea	Purple Heron		Х			Х	
610	Nectarinia asiatica	Purple Sunbird	x		X			
611	Porphyrio porphyrio	Purple Swamphen	х				Х	
612	Sturnus sturninus	Purple-backed Starling		Х		х		
613	Hypogramma hypogrammicum	Purple-naped Sunbird	X		X			
614	Nectarinia sperata	Purple-throated Sunbird	X		X			
615	Muscicapella hodgsoni	Pygmy Blue-flycatcher	X		X			
616	Pnoepyga pusilla	Pygmy Wren-babbler	X		x			

617	Crypsirina temia	Racket-tailed Treepie	Х			Х			
618	Phylloscopus schwarzi	Radde's Warbler		Х	Х				
619	Rhinortha chlorophaea	Raffles's Malkoha	Х		х				
620	Eupetes macrocerus	Rail-babbler	Х		Х				
621	Coturnix coromandelica	Rain Quail	Х		Х				
622	Temnurus temnurus	Ratchet-tailed Treepie	Х		х				
623	Amandava amandava	Red Avadavat	X		х				
624	Gallus gallus	Red Junglefowl	X		х				
625	Streptopelia tranquebarica	Red Turtle-dove	Х		х				
626	Nyctyornis amictus	Red-bearded Bee-eater	X		х				
627	Zanclostomus javanicus	Red-billed Malkoha	X		х				
628	Pomatorhinus ochraceiceps	Red-billed Scimitar-babbler	X		х				
629	Psittacula alexandri	Red-breasted Parakeet	Х		х				
630	Picus rabieri	Red-collared Woodpecker	Х		х				
631	Hemicircus concretus	Red-crested Woodpecker	х		х				
632	Psilopogon rafflesii	Red-crowned Barbet	х		х				
633	Otus rufescens	Reddish Scops-owl	х		х				
634	Pycnonotus brunneus	Red-eyed Bulbul	х		Х				
635	Liocichla phoenicea	Red-faced Liocichla	х		Х				
636	Harpactes erythrocephalus	Red-headed Trogon	х		х				
637	Sarcogyps calvus	Red-headed Vulture	х		Х				
638	Rallina fasciata	Red-legged Crake	х		Х				
639	Harpactes kasumba	Red-naped Trogon	х		Х				
640	Calidris ruficollis	Red-necked Stint		Х					х
641	Hirundo daurica	Red-rumped Swallow	х				Х		
642	Garrulax milnei	Red-tailed Laughingthrush	х		х				
643	Psilopogon mystacophanos	Red-throated Barbet	Х		х				
644	Anthus cervinus	Red-throated Pipit		Х				х	
645	Anthreptes rhodolaemus	Red-throated Sunbird	Х		х				
646	Pycnonotus cafer	Red-vented Bulbul	х				Х		
647	Vanellus indicus	Red-wattled Lapwing	х			Х			
648	Pycnonotus jocosus	Red-whiskered Bulbul	х		х				
649	Buceros rhinoceros	Rhinoceros Hornbill	X		х				
650	Anthus richardi	Richard's Pipit		Х			X		
651	Vanellus duvaucelii	River Lapwing	х					х	
652	Sterna aurantia	River Tern	X					х	
653	Sterna dougallii	Roseate Tern	x						x
654	Pericrocotus roseus	Rosy Minivet		Х	X				
655	Anthreptes singalensis	Ruby-cheeked Sunbird	x		X				

656	Halcyon coromanda	Ruddy Kingfisher		Х	Х			
657	Tadorna ferruginea	Ruddy Shelduck		Х			Х	
658	Arenaria interpres	Ruddy Turnstone		Х			Х	
659	Zapornia fusca	Ruddy-breasted Crake	X				Х	
660	Prinia rufescens	Rufescent Prinia	X		х			
661	Calidris pugnax	Ruff		Х			Х	
662	Sasia abnormis	Rufous Piculet	X		х			
663	Dendrocitta vagabunda	Rufous Treepie	Х		Х			
664	Micropternus brachyurus	Rufous Woodpecker	Х		Х			
665	Ceyx rufidorsa	Rufous-backed Kingfisher	Х		Х			
666	Heterophasia annectens	Rufous-backed Sibia	Х		Х			
667	Lophotriorchis kienerii	Rufous-bellied Eagle	Х		Х			
668	Niltava sundara	Rufous-bellied Niltava		Х	Х			
669	Dendrocopos hyperythrus	Rufous-bellied Woodpecker		Х	Х			
670	Ficedula solitaris	Rufous-browed Flycatcher	Х		Х			
671	Stachyris ruficeps	Rufous-capped Babbler	Х		х			
672	Ficedula dumetoria	Rufous-chested Flycatcher	Х		х			
673	Actenoides concretus	Rufous-collared Kingfisher	Х		х			
674	Malacopteron magnum	Rufous-crowned Babbler	Х		Х			
675	Abroscopus albogularis	Rufous-faced Warbler	Х		х			
676	Stachyris rufifrons	Rufous-fronted Babbler	Х		Х			
677	Ficedula strophiata	Rufous-gorgeted Flycatcher		Х	Х			
678	Aceros nipalensis	Rufous-necked Hornbill	Х		Х			
679	Graminicola bengalensis	Rufous-rumped Grassbird	Х		х			
680	Luscinia sibilans	Rufous-tailed Robin		Х	х			
681	Trichixos pyrropygus	Rufous-tailed Shama	Х		х			
682	Orthotomus sericeus	Rufous-tailed Tailorbird	X		х			
683	Alcippe rufogularis	Rufous-throated Fulvetta	Х		Х			
684	Arborophila rufogularis	Rufous-throated Partridge	X		Х			
685	Butastur liventer	Rufous-winged Buzzard	Х		Х			
686	Alcippe castaneceps	Rufous-winged Fulvetta	X		Х			
687	Mirafra assamica	Rufous-winged Lark	X			Х		
688	Philentoma pyrhoptera	Rufous-winged Philentoma	Х		Х			
689	Bradypterus mandelli	Russet Bush-warbler	Х		Х			
690	Passer rutilans	Russet Sparrow	Х			х		
691	Cacomantis sepulcralis	Rusty-breasted Cuckoo	Х		Х			
692	Alcippe dubia	Rusty-capped Fulvetta	Х		Х			
693	Pomatorhinus erythrogenys	Rusty-cheeked Scimitar-babbler	х		Х	1	1	1
694	Pitta oatesi	Rusty-naped Pitta	Х		Х	1		1

695	Riparia riparia	Sand Martin		Х				Х	
696	Calidris alba	Sanderling		Х					х
697	Ficedula sapphira	Sapphire Flycatcher	Х		Х				
698	Caprimulgus affinis	Savanna Nightjar	X		Х				
699	Pycnonotus squamatus	Scaly-breasted Bulbul	X		Х				
700	Lonchura punctulata	Scaly-breasted Munia	х		х				
701	Malacopteron cinereum	Scaly-crowned Babbler	X		Х				
702	Mergus squamatus	Scaly-sided Merganser		Х	Х				
703	Haematospiza sipahi	Scarlet Finch	X		х				
704	Pericrocotus flammeus	Scarlet Minivet	X		Х				
705	Aethopyga mystacalis	Scarlet Sunbird	X		Х				
706	Dicaeum cruentatum	Scarlet-backed Flowerpecker	х		х				
707	Prionochilus thoracicus	Scarlet-breasted Flowerpecker	X		Х				
708	Harpactes duvaucelii	Scarlet-rumped Trogon	X		Х				
709	Ixobrychus eurhythmus	Schrenck's Bittern		х	х				
710	Accipiter badius	Shikra	X		Х				
711	Pericrocotus brevirostris	Short-billed Minivet	X		Х				
712	Asio flammeus	Short-eared Owl		Х				х	
713	Malacocincla malaccensis	Short-tailed Babbler	X		Х				
714	Batrachostomus poliolophus	Short-tailed Frogmouth	X		Х				
715	Paradoxornis davidianus	Short-tailed Parrotbill	Х			X			
716	Centropus rectunguis	Short-toed Coucal	X		Х				
717	Lophura diardi	Siamese Fireback	X		Х				
718	Luscinia cyane	Siberian Blue Robin		Х	Х				
719	Luscinia calliope	Siberian Rubythroat		Х			х		
720	Zoothera sibirica	Siberian Thrush		Х	х				
721	Phylloscopus forresti	Sichuan Leaf-warbler	X		Х				
722	Oriolus mellianus	Silver Oriole		Х	Х				
723	Lophura nycthemera	Silver Pheasant	х		Х				
724	Hirundapus cochinchinensis	Silver-backed Needletail		Х	х				
725	Serilophus lunatus	Silver-breasted Broadbill	X		Х				
726	Garrulax melanostigma	Silver-eared Laughingthrush	X		Х				
727	Leiothrix argentauris	Silver-eared Mesia	х		х				
728	Rhaphidura leucopygialis	Silver-rumped Spinetail	х		X				
729	Ficedula hodgsonii	Slaty-backed Flycatcher		Х	X				
730	Enicurus schistaceus	Slaty-backed Forktail	X		Х				
731	Tesia olivea	Slaty-bellied Tesia	x		X				
732	Ficedula tricolor	Slaty-blue Flycatcher	x		X				
733	Lewinia striata	Slaty-breasted Rail	X		X				

734	Rallina eurizonoides	Slaty-legged Crake		Х	Х				
735	Oriolus tenuirostris	Slender-billed Oriole		x	x				
736	Gyps tenuirostris	Slender-billed Vulture	х		X				
737	Pericrocotus cinnamomeus	Small Minivet	х		х				
738	Niltava macgrigoriae	Small Niltava	х		х				
739	Ficedula hyperythra	Snowy-browed Flycatcher	Х		х				
740	Onychoprion fuscatus	Sooty Tern		X					х
741	Malacopteron affine	Sooty-capped Babbler	X		х				
742	Pycnonotus aurigaster	Sooty-headed Bulbul	X				x		
743	Phylloscopus reguloides	Southern Blyth's Leaf-warbler		X	х				
744	Picumnus innominatus	Speckled Piculet	X			Х			
745	Columba hodgsonii	Speckled Woodpigeon		X	х				
746	Actinodura ramsayi	Spectacled Barwing	х		X				
747	Pycnonotus erythropthalmos	Spectacled Bulbul	X		х				
748	Arachnothera flavigaster	Spectacled Spiderhunter	X		х				
749	Calidris pygmaea	Spoon-billed Sandpiper		X					х
750	Bubo nipalensis	Spot-bellied Eagle-owl	х		х				
751	Pelecanus philippensis	Spot-billed Pelican		X				х	
752	Garrulax merulinus	Spot-breasted Laughingthrush	Х		х				
753	Paradoxornis guttaticollis	Spot-breasted Parrotbill	х			х			
754	Stachyris striolata	Spot-necked Babbler	х		X				
755	Rhipidura perlata	Spotted Fantail	х		X				
756	Tringa guttifer	Spotted Greenshank		X					х
757	Athene brama	Spotted Owlet	х		X				
758	Tringa erythropus	Spotted Redshank		X				х	
759	Strix seloputo	Spotted Wood-owl	х		X				
760	Pellorneum albiventre	Spot-throated Babbler	х		X				
761	Mycerobas melanozanthos	Spot-winged Grosbeak	х			Х			
762	Saroglossa spiloptera	Spot-winged Starling		X		Х			
763	Surniculus lugubris	Square-tailed Drongo-cuckoo	X		X				
764	Treron pompadora	Sri Lanka Green-pigeon	х		X				
765	Aquila nipalensis	Steppe Eagle		X	X				
766	Pelargopsis capensis	Stork-billed Kingfisher	х		X				
767	Ciconia stormi	Storm's Stork	х		X				
768	Pycnonotus zeylanicus	Straw-headed Bulbul	х		X				
769	Pomatorhinus ruficollis	Streak-breasted Scimitar-babbler	X		X				
770	Picus viridanus	Streak-breasted Woodpecker	X		X				
771	Pycnonotus blanfordi	Streak-eared Bulbul	X		X				
772	Ixos malaccensis	Streaked Bulbul	x		x				

773	Arachnothera magna	Streaked Spiderhunter	Х		Х			
774	Ploceus manyar	Streaked Weaver	Х		Х			
775	Napothera brevicaudata	Streaked Wren-babbler	Х		Х			
776	Picus xanthopygaeus	Streak-throated Woodpecker	Х		Х			
777	Pycnonotus striatus	Striated Bulbul	Х		Х			
778	Megalurus palustris	Striated Grassbird	х		Х			
779	Yuhina castaniceps	Striated Yuhina	х		Х			
780	Dendrocopos atratus	Stripe-breasted Woodpecker	х		Х			
781	Kenopia striata	Striped Wren-babbler	х		Х			
782	Pycnonotus finlaysoni	Stripe-throated Bulbul	х		Х			
783	Phylloscopus ricketti	Sulphur-breasted Warbler		х	Х			
784	Melanochlora sultanea	Sultan Tit	Х		Х			
785	Anser cygnoides	Swan Goose		х			Х	
786	Hydrobates monorhis	Swinhoe's Storm-petrel	Х					х
787	Ficedula albicilla	Taiga Flycatcher		х		х		
788	Calidris temminckii	Temminck's Stint		х			Х	
789	Xenus cinereus	Terek Sandpiper		х				х
790	Dicaeum agile	Thick-billed Flowerpecker	х		Х			
791	Treron curvirostra	Thick-billed Green-pigeon	х		Х			
792	Arachnothera crassirostris	Thick-billed Spiderhunter	х		Х			
793	Acrocephalus aedon	Thick-billed Warbler		X	Х			
794	Cyornis tickelliae	Tickell's Blue-flycatcher	Х		Х			
795	Anorrhinus tickelli	Tickell's Brown Hornbill	Х		Х			
796	Phylloscopus affinis	Tickell's Leaf-warbler		X	Х			
797	Lanius tigrinus	Tiger Shrike		х	Х			
798	Ficedula superciliaris	Ultramarine Flycatcher		х	Х			
799	Sitta frontalis	Velvet-fronted Nuthatch	х		Х			
800	Eumyias thalassinus	Verditer Flycatcher	Х		Х			
801	Loriculus vernalis	Vernal Hanging-parrot	х		Х			
802	Sturnus burmannicus	Vinous-breasted Starling	Х		Х			
803	Chrysococcyx xanthorhynchus	Violet Cuckoo		Х	Х			
804	Niltava vivida	Vivid Niltava	х		Х			
805	Nisaetus nanus	Wallace's Hawk-eagle	Х		Х			
806	Gallicrex cinerea	Watercock	Х				Х	
807	Hydrochous gigas	Waterfall Swift	х		Х			
808	Treron sphenurus	Wedge-tailed Green-pigeon	Х		Х			
809	Eudynamys scolopaceus	Western Koel	Х		Х			
810	Rallus aquaticus	Western Water Rail		X			Х	
811	Numenius phaeopus	Whimbrel		X				Х

812	Chlidonias hybrida	Whiskered Tern		X					X
813	Hemiprocne comata	Whiskered Treeswift	х		х				
814	Yuhina flavicollis	Whiskered Yuhina	х		х				
815	Motacilla alba	White Wagtail		X				х	
816	Treron sieboldii	White-bellied Green-pigeon		X	х				
817	Lonchura leucogastra	White-bellied Munia	Х		х				
818	Hodgsonius phaenicuroides	White-bellied Redstart	х			Х			
819	Haliaeetus leucogaster	White-bellied Sea-eagle	х						х
820	Dryocopus javensis	White-bellied Woodpecker	х		х				
821	Erpornis zantholeuca	White-bellied Yuhina	х		х				
822	Halcyon smyrnensis	White-breasted Kingfisher	х			Х			
823	Amaurornis phoenicurus	White-breasted Waterhen	Х		х				
824	Amaurornis cinerea	White-browed Crake	Х		х				
825	Rhipidura aureola	White-browed Fantail	х		х				
826	Garrulax sannio	White-browed Laughingthrush	Х		х				
827	Sasia ochracea	White-browed Piculet	Х			Х			
828	Pomatorhinus schisticeps	White-browed Scimitar-babbler	Х		х				
829	Brachypteryx montana	White-browed Shortwing	х		х				
830	Pteruthius flaviscapis	White-browed Shrike-babbler	Х		х				
831	Trichastoma rostratum	White-chested Babbler	х		х				
832	Garrulax leucolophus	White-crested Laughingthrush	Х		х				
833	Enicurus leschenaulti	White-crowned Forktail	Х		х				
834	Berenicornis comatus	White-crowned Hornbill	Х		х				
835	Butastur teesa	White-eyed Buzzard	х				X		
836	Eurochelidon sirintarae	White-eyed River-martin		X				х	
837	Otus sagittatus	White-fronted Scops-owl	х		х				
838	Ficedula monileger	White-gorgeted Flycatcher	х		х				
839	Hypsipetes thompsoni	White-headed Bulbul	х		х				
840	Lonchura maja	White-headed Munia	х		х				
841	Stachyris leucotis	White-necked Babbler	х		х				
842	Garrulax strepitans	White-necked Laughingthrush	х		х				
843	Lonchura striata	White-rumped Munia	х		х				
844	Polihierax insignis	White-rumped Pygmy-falcon	х		х				
845	Copsychus malabaricus	White-rumped Shama	х		х				
846	Gyps bengalensis	White-rumped Vulture	Х		х				
847	Meiglyptes tristis	White-rumped Woodpecker	Х			Х			
848	Sturnus sinensis	White-shouldered Starling		x			x		1
849	Cyornis concretus	White-tailed Flycatcher	х		X				
850	Cinclidium leucurum	White-tailed Robin	Х		X				

851	Alophoixus flaveolus	White-throated Bulbul	Х		Х				
852	Rhipidura albicollis	White-throated Fantail	х		Х				
853	Monticola gularis	White-throated Rock-thrush		Х	х				
854	Acridotheres grandis	White-vented Myna	х		Х				
855	Asarcornis scutulata	White-winged Duck	х					Х	
856	Chlidonias leucopterus	White-winged Tern		Х					х
857	Hirundo smithii	Wire-tailed Swallow	х					Х	
858	Tringa glareola	Wood Sandpiper		Х				Х	
859	Gallinago nemoricola	Wood Snipe		Х	х				
860	Rhyticeros undulatus	Wreathed Hornbill	х		х				
861	Rhabdotorrhinus corrugatus	Wrinkled Hornbill	х		Х				
862	Ixobrychus sinensis	Yellow Bittern	х					Х	
863	Motacilla flava	Yellow Wagtail		Х			Х		
864	Alophoixus phaeocephalus	Yellow-bellied Bulbul	х		Х				
865	Rhipidura hypoxantha	Yellow-bellied Fantail	х		Х				
866	Dicaeum melanoxanthum	Yellow-bellied Flowerpecker	х		Х				
867	Prinia flaviventris	Yellow-bellied Prinia	х		Х				
868	Abroscopus superciliaris	Yellow-bellied Warbler	х		Х				
869	Eophona migratoria	Yellow-billed Grosbeak		Х		Х			
870	Emberiza aureola	Yellow-breasted Bunting		Х				Х	
871	Prionochilus maculatus	Yellow-breasted Flowerpecker	х		Х				
872	Cissa hypoleuca	Yellow-breasted Magpie	х		х				
873	Sylviparus modestus	Yellow-browed Tit	х		Х				
874	Parus spilonotus	Yellow-cheeked Tit	х		х				
875	Psilopogon henricii	Yellow-crowned Barbet	х		х				
876	Leiopicus mahrattensis	Yellow-crowned Woodpecker	х		х				
877	Arachnothera chrysogenys	Yellow-eared Spiderhunter	х		х				
878	Chrysomma sinense	Yellow-eyed Babbler	х		X				
879	Treron phoenicopterus	Yellow-footed Green-pigeon	х		Х				
880	Turnix tanki	Yellow-legged Buttonquail		Х	Х				
881	Ficedula zanthopygia	Yellow-rumped Flycatcher		Х	Х				
882	Phylloscopus armandii	Yellow-streaked Warbler		X	Х				
883	Pycnonotus goiavier	Yellow-vented Bulbul	х			х			
884	Dicaeum chrysorrheum	Yellow-vented Flowerpecker	х		х				
885	Treron seimundi	Yellow-vented Green-pigeon	х		Х				
886	Phylloscopus cantator	Yellow-vented Warbler	Х		Х				
887	Geopelia striata	Zebra Dove	Х		Х				
888	Cisticola juncidis	Zitting Cisticola	х					Х	

Appendix 2. Results for species distribution models for 336 bird species in Thailand. The occurrence of each species is indicated as "#Record". The AUC values of species distribution models are indicated by "AUC". Fitted 95% C.I. AUC values for the biased corrected null-model are indicated by "95% C.I. Bias". All 336 species distribution models are significantly deviating from biased corrected null-models (P < 0.05).

#	Scientific name	Common name	Record	AUC	95%
					C.I.
1	Malacocincla abbotti	Abbott's Babbler	28	0.953	0.819
2	Phylloscopus borealis	Arctic Warbler	45	0.953	0.733
3	Hemixos flavala	Ashy Bulbul	38	0.939	0.766
4	Dicrurus leucophaeus	Ashy Drongo	154	0.804	0.597
5	Pericrocotus divaricatus	Ashy Minivet	34	0.870	0.771
6	Artamus fuscus	Ashy Woodswallow	141	0.710	0.601
7	Glaucidium cuculoides	Asian Barred Owlet	84	0.828	0.652
8	Hypsipetes leucocephalus	Asian Black Bulbul	29	0.971	0.807
9	Muscicapa dauurica	Asian Brown Flycatcher	118	0.756	0.620
10	Chrysococcyx maculatus	Asian Emerald Cuckoo	23	0.945	0.829
11	Irena puella	Asian Fairy-bluebird	69	0.927	0.669
12	Aplonis panayensis	Asian Glossy Starling	40	0.960	0.710
13	Merops orientalis	Asian Green Bee-eater	81	0.768	0.656
14	Delichon dasypus	Asian House-martin	33	0.939	0.776
15	Anastomus oscitans	Asian Openbill	118	0.861	0.620
16	Cypsiurus balasiensis	Asian Palm-swift	241	0.616	0.551
17	Terpsiphone paradisi	Asian Paradise-flycatcher	49	0.864	0.714
18	Sturnus contra	Asian Pied Starling	100	0.875	0.629
19	Cacomantis sonneratii	Banded Bay Cuckoo	22	0.944	0.830
20	Eurylaimus javanicus	Banded Broadbill	21	0.930	0.825
21	Lacedo pulchella	Banded Kingfisher	26	0.969	0.844
22	Hirundo rustica	Barn Swallow	278	0.638	0.538
23	Macropygia unchall	Barred Cuckoo-dove	20	0.972	0.811
24	Hemipus picatus	Bar-winged Flycatcher-shrike	71	0.814	0.672
25	Ploceus philippinus	Baya Weaver	40	0.892	0.710
26	Accipiter virgatus	Besra	22	0.902	0.830
27	Aviceda leuphotes	Black Baza	38	0.845	0.766
28	Ixobrychus flavicollis	Black Bittern	20	0.967	0.811

29	Dicrurus macrocercus	Black Drongo	228	0.641	0.557
30	Milvus migrans	Black Kite	46	0.913	0.620
31	Acrocephalus bistrigiceps	Black-browed Reed-Warbler	27	0.941	0.831
32	Halcyon pileata	Black-capped Kingfisher	91	0.858	0.634
33	Sturnus nigricollis	Black-collared Starling	98	0.687	0.456
34	Pycnonotus melanicterus	Black-crested Bulbul	185	0.824	0.579
35	Nycticorax nycticorax	Black-crowned Night-heron	51	0.939	0.698
36	Pycnonotus atriceps	Black-headed Bulbul	75	0.879	0.664
37	Oriolus xanthornus	Black-hooded Oriole	36	0.927	0.785
38	Hypothymis azurea	Black-naped Monarch	97	0.856	0.637
39	Oriolus chinensis	Black-naped Oriole	106	0.752	0.616
40	Garrulax chinensis	Black-throated Laughingthrush	29	0.943	0.807
41	Aethopyga saturata	Black-throated Sunbird	45	0.901	0.733
42	Coracina melaschistos	Black-winged Cuckooshrike	37	0.933	0.748
43	Elanus caeruleus	Black-winged Kite	92	0.822	0.632
44	Himantopus himantopus	Black-winged Stilt	81	0.890	0.656
45	Pitta cyanea	Blue Pitta	20	0.968	0.811
46	Monticola solitarius	Blue Rock-thrush	63	0.888	0.675
47	Myophonus caeruleus	Blue Whistling-thrush	77	0.921	0.534
48	Nyctyornis athertoni	Blue-bearded Bee-eater	34	0.965	0.771
49	Psilopogon cyanotis	Blue-eared barbet	41	0.929	0.726
50	Merops philippinus	Blue-tailed Bee-eater	55	0.814	0.724
51	Psilopogon asiaticus	Blue-throated barbet	62	0.949	0.673
52	Cyornis rubeculoides	Blue-throated Flycatcher	28	0.838	0.819
53	Chloropsis cochinchinensis	Blue-winged Leafbird	71	0.883	0.672
54	Minla cyanouroptera	Blue-winged Minla	20	0.971	0.811
55	Haliastur indus	Brahminy Kite	110	0.896	0.624
56	Dicrurus aeneus	Bronzed Drongo	79	0.840	0.657
57	Metopidius indicus	Bronze-winged Jacana	43	0.891	0.722
58	Ninox scutulata	Brown Boobook	22	0.964	0.830
59	Lanius cristatus	Brown Shrike	182	0.597	0.580
60	Hirundapus giganteus	Brown-backed Needletail	38	0.938	0.766
61	Alcippe poioicephala	Brown-cheeked Fulvetta	33	0.938	0.776
62	Larus brunnicephalus	Brown-headed Gull	29	0.980	0.807
63	Pelargopsis amauroptera	Brown-winged Kingfisher	23	0.989	0.829
64	Trichastoma tickelli	Buff-breasted babbler	23	0.949	0.829
65	Iole olivacea	Buff-vented Bulbul	22	0.975	0.830
66	Lanius collurioides	Burmese Shrike	27	0.924	0.831
67	Bubulcus ibis	Cattle Ibis	173	0.667	0.582

68	Nisaetus cirrhatus	Changeable Hawk-eagle	20	0.937	0.811
69	Phaenicophaeus curvirostris	Chestnut-breasted Malkoha	21	0.986	0.825
70	Timalia pileata	Chestnut-capped Babbler	21	0.873	0.825
71	Zosterops erythropleurus	Chestnut-flanked White-eye	20	0.938	0.811
72	Merops leschenaulti	Chestnut-headed Bee-eater	78	0.818	0.649
73	Minla strigula	Chestnut-tailed Minla	24	0.995	0.808
74	Sturnus malabaricus	Chestnut-tailed Starling	32	0.815	0.752
75	Sitta nagaensis	Chestnut-vented Nuthatch	23	0.989	0.829
76	Ardeola bacchus	Chinese Pond-heron	215	0.658	0.563
77	Ixobrychus cinnamomeus	Cinnamon Bittern	34	0.862	0.771
78	Todiramphus chloris	Collared Kingfisher	66	0.914	0.680
79	Glaucidium brodiei	Collared Owlet	44	0.947	0.737
80	Otus lettia	Collared Scops-owl	30	0.818	0.762
81	Dinopium javanense	Common Flameback	30	0.946	0.762
82	Tringa nebularia	Common Greenshank	45	0.953	0.733
83	Upupa epops	Common Hoopoe	64	0.743	0.680
84	Aegithina tiphia	Common Iora	144	0.706	0.620
85	Falco tinnunculus	Common Kestrel	31	0.779	0.758
86	Alcedo atthis	Common Kingfisher	126	0.800	0.610
87	Gallinula chloropus	Common Moorhen	53	0.814	0.710
88	Acridotheres tristis	Common Myna	419	0.664	0.500
89	Tringa totanus	Common Redshank	31	0.944	0.758
90	Carpodacus erythrinus	Common Rosefinch	20	0.950	0.811
91	Actitis hypoleucos	Common Sandpiper	113	0.881	0.620
92	Gallinago gallinago	Common Snipe	32	0.946	0.752
93	Saxicola torquatus	Common Stonechat	95	0.769	0.644
94	Orthotomus sutorius	Common Tailorbird	178	0.632	0.585
95	Sterna hirundo	Common Tern	28	0.967	0.819
96	Psilopogon haemacephalus	Coppersmith barbet	181	0.711	0.576
97	Nettapus coromandelianus	Cotton Pygmy-goose	23	0.838	0.829
98	Accipiter trivirgatus	Crested Goshawk	34	0.900	0.771
99	Spilornis cheela	Crested Serpent-eagle	66	0.894	0.680
100	Hemiprocne coronata	Crested Treeswift	37	0.917	0.748
101	Aethopyga siparaja	Crimson Sunbird	40	0.951	0.710
102	Dicrurus annectans	Crow-billed Drongo	27	0.933	0.831
103	Calidris ferruginea	Curlew Sandpiper	21	0.991	0.825
104	Heterophasia melanoleuca	Dark-backed Sibia	30	0.983	0.762
105	Orthotomus atrogularis	Dark-necked Tailorbird	81	0.753	0.656
106	Muscicapa sibirica	Dark-sided Flycatcher	29	0.891	0.807

107	Phylloscopus davisoni	Davison's Leaf-warbler	26	0.977	0.844
108	Hirundo concolor	Dusky Crag-martin	20	0.839	0.811
109	Phylloscopus fuscatus	Dusky Warbler	47	0.876	0.732
110	Phylloscopus coronatus	Eastern Crowned Warbler	22	0.932	0.830
111	Circus spilonotus	Eastern Marsh-harrier	26	0.939	0.844
112	Spilopelia chinensis	Eastern Spotted Dove	347	0.539	0.521
113	Buteo buteo	Eurasian Buzzard	26	0.943	0.844
114	Garrulus glandarius	Eurasian Jay	37	0.944	0.748
115	Passer montanus	Eurasian Tree Sparrow	338	0.640	0.519
116	Turdus obscurus	Eyebrowed Thrush	26	0.977	0.844
117	Dicaeum ignipectus	Fire-breasted Flowerpecker	33	0.952	0.776
118	Pycnonotus flavescens	Flavescent Bulbul	54	0.954	0.703
119	Dendronanthus indicus	Forest Wagtail	34	0.898	0.771
120	Aerodramus germani	Germain's swiftlet	80	0.868	0.443
121	Stachyris chrysaea	Golden Babbler	26	0.989	0.844
122	Gerygone sulphurea	Golden-bellied Gerygone	27	0.986	0.831
123	Chloropsis aurifrons	Golden-fronted Leafbird	57	0.877	0.697
124	Megalaima franklinii	Golden-throated Barbet	29	0.987	0.807
125	Aethopyga gouldiae	Gould's Sunbird	26	0.988	0.844
126	Psilopogon virens	Great Barbet	39	0.942	0.780
127	Lyncornis macrotis	Great Eared-nightjar	21	0.973	0.825
128	Buceros bicornis	Great Hornbill	43	0.977	0.722
129	Aegithina lafresnayei	Great Iora	35	0.913	0.758
130	Parus major	Great Tit	30	0.990	0.762
131	Ardea alba	Great White Egret	135	0.791	0.607
132	Centropus sinensis	Greater Coucal	222	0.643	0.563
133	Chrysocolaptes guttacristatus	Greater Flameback	35	0.944	0.758
134	Chloropsis sonnerati	Greater Green Leafbird	32	0.926	0.752
135	Garrulax pectoralis	Greater Necklaced Laughingthrush	22	0.957	0.830
136	Dicrurus paradiseus	Greater Racket-tailed Drongo	133	0.807	0.608
137	Charadrius leschenaultii	Greater Sandplover	26	0.957	0.844
138	Picus flavinucha	Greater Yellownape	24	0.901	0.808
139	Aegithina viridissima	Green Iora	20	0.984	0.811
140	Cissa chinensis	Green Magpie	29	0.952	0.807
141	Tringa ochropus	Green Sandpiper	27	0.941	0.831
142	Butorides striata	Green-backed Heron	101	0.784	0.631
143	Phaenicophaeus tristis	Green-billed Malkoha	126	0.732	0.610
144	Psilopogon faiostrictus	Green-eared barbet	30	0.981	0.762
145	Phylloscopus trochiloides	Greenish Warbler	44	0.891	0.737

146	Arborophila chloropus	Green-legged Partridge	24	0.971	0.808
147	Aethopyga nipalensis	Green-tailed Sunbird	25	0.991	0.823
148	Saxicola ferreus	Grey Bushchat	35	0.946	0.758
149	Ardea cinerea	Grey Heron	67	0.906	0.680
150	Pluvialis squatarola	Grey Plover	24	0.995	0.808
151	Dendrocitta formosae	Grey Treepie	20	0.975	0.811
152	Motacilla cinerea	Grey Wagtail	83	0.896	0.646
153	Lanius tephronotus	Grey-backed Shrike	42	0.961	0.733
154	Prinia hodgsonii	Grey-breasted Prinia	48	0.865	0.718
155	Chalcophaps indica	Grey-capped Emerald Dove	56	0.854	0.713
156	Picoides canicapillus	Grey-capped Woodpecker	51	0.883	0.698
157	Alcippe morrisonia	Grey-cheeked Fulvetta	38	0.968	0.766
158	Pericrocotus solaris	Grey-chinned Minivet	32	0.964	0.752
159	Seicercus tephrocephalus	Grey-crowned Warbler	35	0.976	0.758
160	Iole propinqua	Grey-eyed Bulbul	61	0.847	0.687
161	Culicicapa ceylonensis	Grey-headed Canary-flycatcher	90	0.873	0.645
162	Vanellus cinereus	Grey-headed Lapwing	31	0.868	0.758
163	Hemiprocne longipennis	Grey-rumped Treeswift	25	0.951	0.823
164	Stachyris nigriceps	Grey-throated Babbler	31	0.955	0.758
165	Cyornis hainanus	Hainan Blue-flycatcher	28	0.973	0.819
166	Dicrurus hottentottus	Hair-crested Drongo	76	0.890	0.517
167	Cyornis banyumas	Hill Blue-flycatcher	53	0.883	0.710
168	Gracula religiosa	Hill Myna	45	0.934	0.733
169	Prinia atrogularis	Hill Prinia	21	0.984	0.825
170	Aerodramus brevirostris	Himalayan Swiftlet	42	0.885	0.733
171	Passer domesticus	House Sparrow	56	0.945	0.713
172	Apus nipalensis	House Swift	112	0.751	0.616
173	Phalacrocorax fuscicollis	Indian Cormorant	39	0.947	0.780
174	Coracias benghalensis	Indian Roller	195	0.673	0.571
175	Mirafra erythrocephala	Indochinese Bushlark	34	0.916	0.771
176	Phylloscopus inornatus	Inornate Warbler	130	0.751	0.605
177	Ardea intermedia	Intermediate egret	73	0.911	0.664
178	Accipiter gularis	Japanese Sparrowhawk	26	0.948	0.844
179	Zosterops japonicus	Japanese White-eye	42	0.957	0.733
180	Ardeola speciosa	Javan Pond-heron	92	0.881	0.632
181	Charadrius alexandrinus	Kentish Plover	31	0.950	0.758
182	Coracina macei	Large Cuckooshrike	26	0.993	0.844
183	Hierococcyx sparverioides	Large Hawk-cuckoo	26	0.941	0.844
184	Niltava grandis	Large Niltava	21	0.978	0.825

185	Tephrodornis gularis	Large Woodshrike	33	0.960	0.776
186	Corvus macrorhynchos	Large-billed Crow	226	0.701	0.557
187	Caprimulgus macrurus	Large-tailed Nightjar	34	0.912	0.771
188	Centropus bengalensis	Lesser Coucal	59	0.730	0.699
189	Garrulax monileger	Lesser Necklaced Laughingthrush	32	0.953	0.752
190	Dicrurus remifer	Lesser Racket-tailed Drongo	52	0.933	0.690
191	Charadrius mongolus	Lesser Sandplover	40	0.951	0.710
192	Dendrocygna javanica	Lesser Whistling-duck	80	0.719	0.443
193	Picus chlorolophus	Lesser Yellownape	24	0.927	0.808
194	Psilopogon lineatus	Lineated barbet	54	0.797	0.703
195	Microcarbo niger	Little Cormorant	131	0.872	0.605
196	Egretta garzetta	Little Egret	234	0.735	0.553
197	Tachybaptus ruficollis	Little Grebe	68	0.884	0.667
198	Ficedula westermanni	Little Pied Flycatcher	28	0.968	0.819
199	Charadrius dubius	Little Ringed Plover	47	0.948	0.732
200	Arachnothera longirostra	Little Spiderhunter	69	0.897	0.669
201	Sternula albifrons	Little Tern	32	0.982	0.752
202	Psarisomus dalhousiae	Long-tailed Broadbill	33	0.939	0.776
203	Pericrocotus ethologus	Long-tailed Minivet	30	0.976	0.762
204	Lanius schach	Long-tailed Shrike	72	0.814	0.657
205	Calidris subminuta	Long-toed Stint	30	0.976	0.762
206	Oriolus traillii	Maroon Oriole	22	0.983	0.830
207	Tringa stagnatilis	Marsh Sandpiper	34	0.989	0.771
208	Hypsipetes mcclellandii	Mountain Bulbul	47	0.949	0.732
209	Ducula badia	Mountain Imperial-pigeon	42	0.960	0.733
210	Orthotomus cuculatus	Mountain Tailorbird	24	0.987	0.808
211	Psilopogon incognitus	Moustached barbet	28	0.991	0.819
212	Alophoixus ochraceus	Ochraceous Bulbul	46	0.950	0.620
213	Anthus hodgsoni	Olive-backed Pipit	60	0.901	0.620
214	Nectarinia jugularis	Olive-backed Sunbird	195	0.742	0.571
215	Dicaeum trigonostigma	Orange-bellied Flowerpecker	36	0.944	0.785
216	Harpactes oreskios	Orange-breasted Trogon	29	0.956	0.807
217	Eurystomus orientalis	Oriental Dollarbird	62	0.869	0.673
218	Pernis ptilorhynchus	Oriental Honey-buzzard	69	0.860	0.669
219	Copsychus saularis	Oriental Magpie-robin	301	0.639	0.530
220	Anthracoceros albirostris	Oriental Pied Hornbill	52	0.959	0.690
221	Glareola maldivarum	Oriental Pratincole	39	0.939	0.780
222	Acrocephalus orientalis	Oriental Reed Warbler	34	0.938	0.771
223	Streptopelia orientalis	Oriental Turtle-dove	20	0.936	0.811

224	Zosterops palpebrosus	Oriental White-eye	61	0.880	0.687
225	Pandion haliaetus	Osprey	31	0.966	0.758
226	Pluvialis fulva	Pacific Golden Plover	38	0.971	0.766
227	Egretta sacra	Pacific Reef-egret	37	0.934	0.748
228	Hirundo tahitica	Pacific Swallow	77	0.920	0.534
229	Apus pacificus	Pacific Swift	46	0.914	0.620
230	Anthus rufulus	Paddyfield Pipit	85	0.796	0.653
231	Mycteria leucocephala	Painted Stork	28	0.989	0.819
232	Phylloscopus tenellipes	Pale-legged Leaf-warbler	31	0.936	0.758
233	Falco peregrinus	Peregrine Falcon	25	0.945	0.823
234	Hydrophasianus chirurgus	Pheasant-tailed Jacana	25	0.943	0.823
235	Saxicola caprata	Pied Bushchat	81	0.889	0.656
236	Rhipidura javanica	Pied Fantail	164	0.811	0.587
237	Circus melanoleucos	Pied Harrier	26	0.920	0.844
238	Treron vernans	Pink-necked Green-pigeon	24	0.934	0.808
239	Macronous gularis	Pin-striped tit-babbler	87	0.896	0.637
240	Gallinago stenura	Pintail Snipe	39	0.830	0.780
241	Dicaeum concolor	Plain flowerpecker	31	0.932	0.758
242	Prinia inornata	Plain Prinia	98	0.898	0.456
243	Passer flaveolus	Plain-backed Sparrow	81	0.874	0.656
244	Anthreptes malacensis	Plain-throated Sunbird	75	0.776	0.664
245	Pellorneum ruficeps	Puff-throated Babbler	72	0.874	0.657
246	Alophoixus pallidus	Puff-throated Bulbul	53	0.932	0.710
247	Ardea purpurea	Purple Heron	38	0.853	0.766
248	Cinnyris asiatica	Purple Sunbird	44	0.912	0.737
249	Porphyrio porphyrio	Purple Swamphen	28	0.982	0.819
250	Crypsirina temia	Racket-tailed Treepie	54	0.877	0.703
251	Phylloscopus schwarzi	Radde's Warbler	38	0.928	0.766
252	Gallus gallus	Red Junglefowl	73	0.869	0.664
253	Streptopelia tranquebarica	Red turtle dove	151	0.802	0.591
254	Pycnonotus brunneus	Red-eyed Bulbul	30	0.965	0.762
255	Harpactes erythrocephalus	Red-headed Trogon	31	0.962	0.758
256	Calidris ruficollis	Red-necked Stint	30	0.980	0.762
257	Hirundo daurica	Red-rumped Swallow	77	0.691	0.534
258	Psilopogon mystacophanos	Red-throated Barbet	26	0.979	0.844
259	Vanellus indicus	Red-wattled Lapwing	144	0.808	0.620
260	Pycnonotus jocosus	Red-whiskered Bulbul	157	0.831	0.586
261	Anthus richardi	Richard's Pipit	47	0.835	0.732
262	Columba livia	Rock Dove	256	0.736	0.549

263	Pericrocotus roseus	Rosy Minivet	29	0.959	0.807
264	Anthreptes singalensis	Ruby-cheeked Sunbird	63	0.918	0.675
265	Zapornia fusca	Ruddy-breasted crake	28	0.962	0.819
266	Prinia rufescens	Rufescent Prinia	54	0.840	0.703
267	Dendrocitta vagabunda	Rufous Treepie	21	0.933	0.825
268	Niltava sundara	Rufous-bellied Niltava	20	0.983	0.811
269	Stachyris rufifrons	Rufous-fronted babbler	36	0.957	0.785
270	Alcippe castaneceps	Rufous-winged Fulvetta	28	0.991	0.819
271	Riparia riparia	Sand Martin	28	0.952	0.819
272	Lonchura punctulata	Scaly-breasted Munia	149	0.673	0.601
273	Pericrocotus flammeus	Scarlet Minivet	88	0.881	0.653
274	Dicaeum cruentatum	Scarlet-backed Flowerpecker	161	0.705	0.588
275	Accipiter badius	Shikra	67	0.811	0.680
276	Pericrocotus brevirostris	Short-billed Minivet	21	0.973	0.825
277	Luscinia cyane	Siberian Blue Robin	32	0.882	0.752
278	Luscinia calliope	Siberian Rubythroat	28	0.943	0.819
279	Serilophus lunatus	Silver-breasted Broadbill	29	0.914	0.807
280	Garrulax melanostigma	Silver-eared Laughingthrush	23	0.993	0.829
281	Leiothrix argentauris	Silver-eared Mesia	23	0.972	0.829
282	Enicurus schistaceus	Slaty-backed Forktail	26	0.991	0.844
283	Pericrocotus cinnamomeus	Small Minivet	27	0.965	0.831
284	Pycnonotus aurigaster	Sooty-headed Bulbul	146	0.819	0.597
285	Phylloscopus reguloides	Southern Blyth's Leaf-warbler	41	0.970	0.726
286	Picumnus innominatus	Speckled Piculet	24	0.944	0.808
287	Athene brama	Spotted Owlet	24	0.952	0.808
288	Tringa erythropus	Spotted Redshank	22	0.988	0.830
289	Surniculus lugubris	Square-tailed Drongo-cuckoo	30	0.876	0.762
290	Pelargopsis capensis	Stork-billed Kingfisher	20	0.985	0.811
291	Pycnonotus blanfordi	Streak-eared Bulbul	229	0.707	0.565
292	Arachnothera magna	Streaked Spiderhunter	52	0.908	0.690
293	Hirundo striolata	striated swallow	57	0.868	0.697
294	Pycnonotus finlaysoni	Stripe-throated Bulbul	83	0.896	0.646
295	Melanochlora sultanea	Sultan Tit	33	0.899	0.776
296	Ficedula albicilla	Taiga Flycatcher	116	0.770	0.616
297	Calidris temminckii	Temminck's Stint	21	0.977	0.825
298	Treron curvirostra	Thick-billed Green-pigeon	42	0.905	0.733
299	Cyornis tickelliae	Tickell's Blue-flycatcher	31	0.854	0.758
300	Sitta frontalis	Velvet-fronted Nuthatch	54	0.885	0.703
301	Eumyias thalassinus	Verditer Flycatcher	61	0.900	0.687

302	Loriculus vernalis	Vernal Hanging-parrot	53	0.942	0.710
303	Sturnus burmannicus	Vinous-breasted Starling	20	0.985	0.811
304	Gallicrex cinerea	Watercock	22	0.883	0.830
305	Eudynamys scolopaceus	Western Koel	192	0.717	0.581
306	Numenius phaeopus	Whimbrel	28	0.957	0.819
307	Chlidonias hybrida	Whiskered Tern	40	0.959	0.710
308	Motacilla alba	White Wagtail	77	0.860	0.534
309	Haliaeetus leucogaster	White-bellied Sea-eagle	37	0.925	0.748
310	Erpornis zantholeuca	White-bellied Yuhina	43	0.946	0.722
311	Halcyon smyrnensis	White-breasted Kingfisher	194	0.650	0.568
312	Amaurornis phoenicurus	White-breasted Waterhen	130	0.674	0.605
313	Sasia ochracea	White-browed Piculet	24	0.981	0.808
314	Pomatorhinus schisticeps	White-browed Scimitar-babbler	39	0.949	0.780
315	Pteruthius flaviscapis	White-browed shrike-babbler	41	0.963	0.726
316	Garrulax leucolophus	White-crested Laughingthrush	51	0.890	0.698
317	Enicurus leschenaulti	White-crowned Forktail	24	0.978	0.808
318	Lonchura striata	White-rumped Munia	74	0.808	0.658
319	Copsychus malabaricus	White-rumped Shama	113	0.857	0.620
320	Rhipidura albicollis	White-throated Fantail	54	0.946	0.703
321	Acridotheres grandis	White-vented Myna	260	0.694	0.549
322	Chlidonias leucopterus	White-winged Tern	20	0.979	0.811
323	Hirundo smithii	Wire-tailed Swallow	30	0.925	0.762
324	Tringa glareola	Wood Sandpiper	58	0.939	0.703
325	Rhyticeros undulatus	Wreathed Hornbill	28	0.977	0.819
326	Ixobrychus sinensis	Yellow Bittern	54	0.898	0.703
327	Motacilla flava	Yellow Wagtail	51	0.854	0.698
328	Rhipidura hypoxantha	Yellow-bellied Fantail	21	0.993	0.825
329	Prinia flaviventris	Yellow-bellied Prinia	45	0.846	0.733
330	Abroscopus superciliaris	Yellow-bellied Warbler	38	0.959	0.766
331	Parus spilonotus	Yellow-cheeked Tit	34	0.982	0.771
332	Chrysomma sinense	Yellow-eyed Babbler	20	0.945	0.811
333	Pycnonotus goiavier	Yellow-vented Bulbul	121	0.824	0.620
334	Dicaeum chrysorrheum	Yellow-vented Flowerpecker	27	0.964	0.831
335	Geopelia striata	Zebra Dove	206	0.698	0.563
336	Cisticola juncidis	Zitting Cisticola	46	0.914	0.620

Appendix 3. Semivariograms were used to examine the spatial autocorrelation in model residuals for all bird species richness based on (a) range maps and (b) species distribution model prediction maps

Variable*	Latitude	С	М	S	MAT	MATR	AP	Elevation	TR	Area
Latitude										
С	-0.006									
Μ	-0.157	0.739								
S	0.292	-0.400	-0.657							
MAT	-0.070	-0.031	-0.006	0.378						
MATR	0.586	0.261	0.178	0.277	0.576					
AP	-0.503	0.138	0.270	-0.145	0.388	-0.043				
Elevation	0.426	0.528	0.495	-0.363	-0.323	0.391	-0.202			
TR	0.094	0.592	0.609	-0.505	-0.231	0.235	0.020	0.753		
Area	0.247	0.590	0.648	-0.499	-0.180	0.344	-0.034	0.758	0.791	
LCR	0.367	0.093	0.039	0.130	0.098	0.405	-0.055	0.254	0.244	0.290

Appendix 4. Pearson's correlation coefficients for 11 selected environmental variables used in multivariate models for the species richness pattern of birds in Thailand.

^{*}C, cumulative annual productivity; M, annual minimum productivity; S, seasonal variation in productivity; MAT, mean annual temperature; MART, mean annual temperature range; AP, annual precipitation; TR, topographic relief; LCR, land cover richness.

Appendix 5. R^2 values for simple ordinary least squares models of species richness for different guilds derived from range maps and 14 environmental variables. Sign indicates direction of relationship. Bolded variable names indicate variables included for subsequent analysis due to correlations with bird species richness guilds (R^2 values > 0.05) and less collinearity among variables based on Pearson's correlation coefficients |r| < 0.8. C, cumulative annual productivity; M, annual minimum productivity; S, seasonal variation in productivity; MAT, mean annual temperature; MART, mean annual temperature range; AP, annual precipitation; TR, topographic relief; LCR, land cover richness.

Variable	All birds	Resident birds	Migratory birds	Forest birds	Early- successional birds	Farmland birds	Wetland birds	Seacoast birds
Latitude	0.02***	0.01**	0.23***	0.01***	0.28***	0.78***	0.56***	-0.67***
С	0.58***	0.63***	0.26***	0.63***	0.22***	-0.03***	NS	0.07***
Μ	0.34***	0.38***	0.09***	0.38***	0.10***	-0.06***	-0.01***	0.07***
S	-0.35***	-0.39***	-0.10***	-0.38***	-0.10***	0.07***	0.01***	-0.11***
MAT	-0.43***	-0.42***	-0.32***	-0.45***	-0.40***	-0.06***	-0.06***	0.07***
MATR	0.17***	0.13***	0.28***	0.15***	0.36***	0.50***	0.46***	-0.58***
MAP	NS	NS	-0.05***	NS	0.08***	-0.43***	-0.28***	0.32***
Elevation	0.48***	0.47***	0.38***	0.49***	0.46***	0.12***	0.13***	0.09***
TR	0.53***	0.57***	0.28***	0.56***	0.31***	0.01**	0.02***	NS
LCR	0.02***	0.02***	0.03***	0.02***	0.04***	0.11***	0.02***	-0.13***
Area of forest	0.50***	0.51***	0.31***	0.52***	0.35***	0.06***	0.05***	-0.01***
Area of scrub	0.03***	0.04***	0.02***	0.04***	0.02***	0.01**	NS	NS
Area of	-0.49***	-0.50***	-0.30***	-0.51***	-0.34***	-0.07***	-0.05***	0.02***
Area of wetland	-0.02***	-0.02***	-0.01**	-0.02***	-0.01)***	NS	NS	-0.01*
Area of coast	NS	NS	NS	NS	NS	0.01**	NS	0.01*

*** *P*-value < 0.001, ** *P*-value < 0.01, * *P*-value < 0.05, NS, not significant.

Appendix 6. R^2 values for simple ordinary least squares models of species richness for different guilds derived from species distribution model prediction maps and 14 environmental variables. Sign indicates direction of relationship. Bolded variable names indicate variables included for subsequent analysis due to correlations with bird species richness guilds (R^2 values > 0.05) and less collinearity among variables based on Pearson's correlation coefficients |r| < 0.8. C, cumulative annual productivity; M, annual minimum productivity; S, seasonal variation in productivity; MAT, mean annual temperature; MART, mean annual temperature range; AP, annual precipitation; TR, topographic relief; LCR, land cover richness.

Variable	All birds	Residents	Migratory birds	Forest birds	Early- successional birds	Farmland birds	Wetland birds	Seacoast birds
Latitude	0.03***	0.02***	0.04***	0.02***	0.18***	0.55***	-0.03***	-0.44***
С	0.53***	0.57***	0.18***	0.60***	0.01**	-0.02***	-0.30***	0.05***
Μ	0.40***	0.42***	0.10***	0.46***	NS	-0.06***	-0.25***	0.05***
S	-0.39***	-0.40***	-0.13***	-0.42***	NS	0.07***	0.19***	-0.09***
MAT	-0.32***	-0.48***	-0.24***	-0.53***	-0.14***	-0.04	0.38***	0.02***
MATR	0.18***	0.12***	0.06***	0.13	0.08***	0.50***	-0.15***	-0.36***
MAP	-0.01***	-0.01***	-0.04***	-0.00*	-0.07***	-0.65***	-0.01*	0.20***
Elevation	0.63***	0.62***	0.31***	0.67***	0.14***	0.10***	-0.39***	-0.05***
TR	0.62***	0.63***	0.19***	0.67***	0.02***	0.01*	-0.42***	NS
LCR	0.03***	0.02***	NS	0.03***	0.04***	0.11***	-0.14***	-0.07***
Area of	0.73***	0.73***	0.26***	0.77***	0.08***	0.04***	-0.44***	-0.01**
forest								
Area of	0.05***	0.05***	0.00*	0.05***	NS	NS	-0.05***	NS
scrub							O 4 4 desired	0.01.4.4
Area of	-0.72***	-0.72***	-0.25***	-0./6***	-0.07***	-0.03***	0.44^{***}	0.01**
agriculture	0.01***	0.02***	0.01***	0.02***	NC	NC	NC	0.01*
Area of	-0.01	-0.02	-0.01	-0.02	NS	INS	INS	-0.01**
Area of	NS	NS	0.01**	NS	NS	NS	NS	0.03***
coast								

*** *P*-value < 0.001, ** *P*-value < 0.01, * *P*-value < 0.05, NS, not significant.

Appendix 7. Pearson's correlation coefficients (r) between species richness for each guild

Species					Early-			
distribution model	All	Residen	Migratory	Forest	Successional	Farmland	Wetland	Seacoast
prediction map	birds	birds	birds	birds	birds	birds	birds	birds
(#species)	(336)	(261)	(75)	(222)	(15)	(26)	(49)	(24)
Rang map								
(#species)								
All birds								
(888)	0.74							
Resident birds								
(664)	0.74	0.75						
Migratory birds								
(224)	0.63	0.61	0.62					
Forest birds								
(636)	0.75	0.75	0.52	0.77				
Early-Successional								
birds								
(47)	0.64	0.63	0.57	0.62	0.25			
Farmland birds								
(35)	0.19	0.18	0.24	0.16	0.33	0.74		
Wetland birds								
(113)	0.26	0.24	0.40	0.20	0.28	0.66	0.15	
Seacoast birds								
(57)	0.04	0.03	0.08	0.00	-0.30	-0.58	-0.39	0.75

derived from range maps and species distribution model prediction maps.

Chapter 2: The effects of habitat heterogeneity, as measured by satellite image texture, on tropical forest bird distributions

Abstract

Habitat heterogeneity is a key landscape characteristic influencing species distributions and diversity patterns. However, assessments of habitat heterogeneity at broad-scales are difficult and therefore limited. Our goal was to evaluate the performance of satellite image texture measures as an indicator of habitat heterogeneity for predicting tropical forest bird distributions over broad areas with varying levels of vertical forest habitat structure. We calculated a suite of texture measures from satellite-derived productivity data (1-km fPAR MODIS data) over only forested areas across Thailand. We evaluated these texture measures in terms of their ability to provide within-class habitat heterogeneity in species distribution models for 86 tropical forest bird species. We tested the predictive power of these models against models with landscape metrics derived from categorical land cover data. Measures of texture were effective in predicting occurrences of tropical forest birds, and homogeneity was the best predictor among texture measures. However, by themselves, both habitat composition-only and fragmentation-only measures were better predictors of species distributions than texture-only measures. Combing texture measures with habitat composition-only data significantly improved model accuracy though, and that combination performed better than habitat composition-only plus fragmentation measures. Based on our results, we suggest that satellite texture measures can predict species distributions at broad scales in regions with complex habitat heterogeneity such as tropical forests. Incorporating texture measures into broad-scale species distribution models may contribute to a better understanding of the mechanisms underlying species distributions and to more accurate predictions of range shifts due to land use and climate change.

Introduction

Combating the crisis of biodiversity loss due to human activities and climate change requires efficient and accurate assessments of broad-scale patterns of biodiversity (Pereira et al. 2013; Scholes et al. 2008; Sutherland et al. 2009). Remotely sensed data are increasingly used to model and understand species diversity and distributions at relevant temporal and spatial scales (Kerr and Ostrovsky 2003; Turner 2014; Turner et al. 2003). The challenge is how to quantify habitat features that are ecologically relevant to the species or taxa of interest. The use of satellite image texture has proved to be useful in capturing heterogeneity of land cover and vegetation (Culbert et al. 2009; Haralick et al. 1973; Wood et al. 2012). However, broad-scale assessments of species diversity-heterogeneity patterns have been conducted almost exclusively in temperate ecosystems (Culbert et al. 2012; Hepinstall and Sader 1997; St-Louis et al. 2009). Incomplete assessments of species diversity-heterogeneity patterns in tropical ecosystems continues to hamper understanding of the underlying mechanisms shaping such patterns, hindering conservation efforts (Tuanmu and Jetz 2015). Measures of habitat heterogeneity designed to predict biodiversity at scales relevant to conservation planning and the specific mechanisms underlying biodiversity patterns are needed to improve conservation and habitat management in the tropics.

Habitat heterogeneity is an important landscape attribute influencing species and ecosystem functions (Kerr and Packer 1997; Macarthur and Macarthur 1961; Stein et al. 2014), and essential for mapping and monitoring broad-scale patterns of biodiversity (Culbert et al. 2012; St-Louis et al. 2014b). Spatial heterogeneity of habitat affects metapopulations and communities by influencing movement patterns of individuals, intra- and interspecific interactions among organisms, and exposure to physical structure of habitats such as edge effects (Benton et al. 2003; Fahrig 2003). Species perceive heterogeneity of their habitats at multiple scales throughout their life history (Morrison et al. 2006). At fine scales, heterogeneity of vegetation structure strongly influences bird assemblages (Bersier and Meyer 1994). Species may select habitat for nesting and foraging in association with heterogeneity in vertical and horizontal vegetation structure (Martin 1993). At broad scales, habitat heterogeneity influences the spatial patterns of species richness and distributions (Bellis et al. 2008; Culbert et al. 2012). Species may respond to heterogeneity in landscapes, such as forest fragmentation, depending on their habitat area requirement and ability to cross gaps (Dale et al. 1994). While the effects of habitat heterogeneity on species distribution patterns are well documented in temperate regions (Hepinstall and Sader 1997; Tuttle et al. 2006), its effects on species distributions at broad scales in tropical ecosystems is not. This knowledge gap is unfortunate because a better understanding of the effects of habitat heterogeneity on current patterns of species distributions is essential for biodiversity conservation and habitat management.

The habitat heterogeneity hypothesis predicts that more varied habitat can support greater numbers of species because more heterogeneous habitat structure provides more foraging niches thereby allowing more species to co-exist (Hutchinson and Macarthur 1959; Macarthur and Macarthur 1961). However, the positive species-heterogeneity relationship is not universally true (Bar-Massada and Wood 2014; Tews et al. 2004). However, the strength of relationship varies, and can be positive, negative, unimodal, or flat depending on ecological characteristics of species or the taxonomic group (Bellis et al. 2008; Hepinstall and Sader 1997), scales (Bar-Massada et al. 2012), habitat type (Estes et al. 2010), biodiversity indices (e.g., species richness, abundance, or distribution) (St-Louis et al. 2014b).

Modeling broad-scale patterns of species-heterogeneity benefits greatly from the use of remotely sensed data (Bellis et al. 2008; St-Louis et al. 2014b; Tuanmu and Jetz 2015). Direct field measures of habitat heterogeneity, while effective in explaining species distributions and diversity patterns, are time consuming and labor intensive. Consequently, field-based studies of habitat heterogeneity and diversity are typically limited to small areas (Innes and Koch 1998). The advantages of spatially continuous coverage by satellite data, have prompted many broadscale studies to employ satellite imagery, and heterogeneity measures derived from, for example, elevation or categorical land cover data (Kerr and Packer 1997; Rahbek et al. 2007). However, land-cover-based and elevation-based heterogeneity measures have shortcomings. Land cover classification gives some information on spatial and temporal dynamics of habitat types, but ignores within-class habitat heterogeneity (St-Louis et al. 2006). Elevation-based data, on the other hand, do not capture vegetation patterns directly, and is only one of many factors determining habitat heterogeneity. Recently, using high-spectral and spatial satellite data from space-borne systems, such as Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar (SAR) have gained importance as effective approaches to detect heterogeneity of vegetation structure, but data from these active sensors is not widely available (Nagendra and Rocchini 2008).

Image texture has high potential for characterizing habitat, and thus for improving upon methods for mapping and monitoring biodiversity. The texture of a satellite image contains information about the spatial and structural arrangement of objects (Haralick et al. 1973). Image texture quantifies the pattern of brightness variations or grey-levels within an image or region within an image. There are two classes of texture measures: first- order (occurrence) and secondorder measures (co-occurrence) (Haralick et al. 1973). First-order texture measures are based on the frequency distribution of pixel values (i.e., cumulative annual fPAR) in a defined neighborhood within an image, typically implemented as a moving window. Second-order texture measures are based on the differences in spectral values among neighboring pixels (i.e., the grey-level co-occurrence matrix, GLCM) (Haralick et al. 1973). The first-order measures are based on individual pixel values which reflect their compositional variability, whereas the second-order measures are determined by the interaction or co-occurrence of pixel values which reflect their spatial arrangement and dependence. Characteristics of different texture measures relate to spatial and spectral variation in a satellite image. Additionally, texture measures reflect heterogeneity among land cover classes, such as sharp transitions between forest and pasture (Haralick 1979). Therefore, texture measures are useful for characterizing land cover (Franklin et al., 2000; 2001), and habitat modeling (Bellis et al. 2008; Estes et al. 2008; Tuttle et al. 2006).

Satellite observations provide a suite of vegetation indices to calculate texture measures in order to assess habitat heterogeneity at broad scales. The challenge is how to derive measures of texture that are most relevant for species distributions. For example, NDVI–based texture derived from Landsat imagery can predict species distributions of birds in the northeastern United States (Hepinstall and Sader 1997), and species richness of birds in the desert Southwest (St-Louis et al. 2009) and the Midwestern United States (Culbert et al. 2012; Wood et al. 2013). EVI – based texture derived from Moderate Resolution Imaging Spectroradiometer (MODIS) can explain bird species richness patterns in the United States (Tuanmu and Jetz 2015). Texture measures can also be assessed based on spatial data on the fraction of light absorbed by the vegetation (fPAR) imagery from MODIS data. MODIS fPAR is grounded in species-energy availability theory, and, as a measure of available energy, has successfully predicted biodiversity patterns for fauna in the temperate regions (Coops et al. 2009a; Coops et al. 2009b). So far MODIS fPAR data has not been used to derive texture measures for species distribution modeling. This is unfortunate, because MODIS fPAR data are available at high temporal resolution and over broad scales, thus providing a potentially greater opportunity to develop relevant, consistent, and applicable texture measures for biodiversity assessments (Coops et al. 2008). However, the use of MODIS fPAR data as texture measures to capture within-class habitat heterogeneity across broad spatial extents has not been tested.

Texture measures derived from remotely sensed data have successfully predicted species distributions and richness patterns of species at broad scales. Texture-species relationships have been studied for multiple taxa in a variety of habitat types, such as bird species richness in North American desert shrub land and grassland (St-Louis et al. 2009; St-Louis et al. 2014a), Wisconsin grassland, savanna, and woodland (Wood et al. 2013), Midwestern ecoregions (Culbert et al. 2012), the United States (Tuanmu and Jetz 2015), and South American highland forests (Bellis et al. 2015). The relationship between species distribution patterns and habitat heterogeneity has been demonstrated for mountain bongo in east African montane forest (Estes et al. 2008; Estes et al. 2010), the red tail monkey (Stickler and Southworth 2008), the Greater Rhea in grassland Argentina (Bellis et al. 2008), and bird distributions in Maine (Hepinstall and Sader 1997). Studies of bird distributions in Maine and Argentina show the association with heterogeneous habitats (Bellis et al. 2008; Hepinstall and Sader 1997). To our knowledge, the species distribution-heterogeneity relationship for tropical forest birds has not yet been evaluated. Birds, in particular, respond to a variety of habitat features, and capturing the breadth of those features using remotely sensed data is challenging. Thus, it still remains unclear whether texture measures derived from MODIS fPAR data can predict broad-scale species distribution

patterns of forest birds in structurally complex, closed-canopy habitat such as tropical forest ecosystems.

Our goal was to evaluate the ability of satellite image texture measures derived from MODIS fPAR to predict tropical bird species distributions. Our specific objectives were to test: (1) if texture measures can predict distributions of tropical forest bird specialists across broad scales, and (2) how these models based on texture measures compare with models based on measures of habitat availability and habitat fragmentation, and can these variables complement each other to improve species distribution modeling of tropical birds. We hypothesize that texture measures can describe broad-scale distributions of species utilizing forest habitats with complex vertical and horizontal habitat structure, and perform particularly well for species with large body size and that nest in tree cavities or canopies, compared to species with smaller body size that utilize simple vertical and horizontal structure and nest on the ground or in the understory. We hypothesize that including texture measures would improve model performance for predicting tropical bird distributions because landscape metrics derived from land cover classification ignore within-habitat variability, whereas texture measures capture both within and between habitat heterogeneity. Furthermore, we expected that texture measures would complement measures of habitat composition and fragmentation in particular for area- and edgesensitive species.

Methods

Study area

Our study area was the tropical forest ecosystems of Thailand covering 163,391 km² (32% of the country total area, RFD 2013) (Figure 6). The climate is seasonal with monsoons, a rainy and a dry season. Annual precipitation ranges between 1000 mm and 4000 from May to October in the rainy season. The average annual temperature is approximately 26-29 °C, and the highest temperature is approximately 40 °C in April (TMD 2010). The study area consists of two major diverse types of tropical forest: broad-leaved evergreen forest and broad-leaved deciduous forest. The tropical broad-leaved evergreen forest contains multiple forest habitat types including montane evergreen forest, dry evergreen forest, rain forest, pine forest, swamp forest, mangrove forest and dry dipterocarp forest (RFD 2013). Thailand is a global biodiversity hotspot (Myers et al. 2000) , and is home to more than 1,000 bird species (Bird Conservation Society of Thailand Records Committee 2012). However, Thailand is facing extensive forest loss and fragmentation which has led to a decline in forest bird diversity (Pattanavibool and Dearden 2002; Round and Gale 2008; Woodruff 2013).

Study species and occurrence data

To evaluate the utility of texture measures for species modelling, we obtained data on bird species occurrences from the Global Biodiversity Information Facility (GBIF) (http://www.gbif.org/). The bird GBIF data for Thailand is mainly based on opportunistic observations and some field survey data. For the purpose of our study, we focused on resident forest bird species to investigate the ability of texture measures in predicting bird distributions utilizing different forest habitat types all year round. We analyzed all georeferenced records collected from 2000-2015, to temporally coincide with texture and landscape metric data. We included all species with greater than 30 unique localities as the minimum sample size required for species distribution modeling (Hernandez et al. 2006; Pearson et al. 2007). We assembled 86 forest specialist bird species of 5 taxonomic orders and 28 families with a total of 12,858 georeferenced records (Table 7). All samples were georeferenced to the spatial resolution of the environmental data that we used (1 km²).

Texture measure data

To characterize texture, we calculated a suite of texture measures (Table 8) based on the 1-km MODIS fPAR data from the MOD15A2. We acquired 8-day mosaics of Collection 5 data from 2003-2014. We analyzed a 12-year time period to balance potential land-cover changes and a sufficient number of cloud-free fPAR values to characterize the greenness. To characterize the greenness throughout a year, we extracted the MODIS fPAR value for the 15th of each month, and calculated the cumulative annual productivity by summing monthly MODIS observations for each year (Coops et al. 2009a; Coops et al. 2008). To exclude artificially low fPAR values over water, we masked the pixels covered by water, and we selected the median value of the 12-year time series for each date to exclude low values due to sensor errors or missing data. Details about the way the fPAR composite image was derived can be found in Radeloff et al (in preparation).

We calculated three first-order texture measures: entropy, mean, and variance in a 3×3 moving window. We also calculated eight second-order texture measures: angular second moment, contrast, correlation, dissimilarity, entropy, homogeneity, mean, and variance (Haralick et al. 1973). We selected these texture measures based on their ability to characterize vegetation structure, and therefore be relevant measures for bird species distributions (Bellis et al. 2008; Hepinstall and Sader 1997; Wood et al. 2012). We quantized the imagery to 64 values to limit

the size of the GLCM and avoid matrices that are too sparsely populated (Culbert et al. 2012). We calculated the texture measures for adjacent pixels as the mean of the four possible directional GLCMs (0°, 45°, 90° and 135°) (Haralick et al. 1973). We calculated texture measures using ENVI software (Exelis Visual Information Solutions, Boulder, Colorado). The texture data were projected to the WGS84 geographic coordinate system with UTM47N using bilinear convolution (Figure 7). Many texture measures are correlated (Culbert et al. 2012) and we applied a Pearson's correlation coefficient threshold (|r|>0.7) to exclude collinear variables (Dormann et al. 2013), which reduced the eleven texture measures to five measures: first-order coefficient of variation, second-order homogeneity, correlation, contrast, and entropy (Appendix 9).

Habitat composition data

We generated habitat composition at 1-km resolution based on categorical land-cover data. These measures are commonly used to predict bird species distributions in broad-scale studies (Jetz and Rahbek 2002; Kerr and Packer 1997; Kreft and Jetz 2007). We calculated habitat composition from the 2000 Thailand land cover map with a 30-m resolution, derived from Landsat TM, ETM+. To quantify habitat composition measures, we calculated the proportion of habitat area within a 1-km grid cell for six forest habitat types: montane evergreen forest, dry evergreen forest, lowland evergreen forest, mixed deciduous forest, dry dipterocarp forest, and secondary-growth forest.

Habitat fragmentation data

We also calculated five fragmentation measures of forest habitat from the 2000 Thailand land cover map for core, edge, perforation, bridge, and loop with the Morphological Spatial Pattern Analysis (MSPA) implemented in GUIDOS analytical tool (Vogt et al. 2007). The MSPA is based on morphological image segmentation allowing an automated per-pixel classification and description of the geometry, pattern, fragmentation, and connectivity of a landscape (Soille and Vogt 2009; Vogt et al. 2007). We selected five fragmentation metrics, (1) core is defined as forest pixels whose distance to the non-forested areas is greater than the edge width, and is considered as the focal habitat area for birds, (2) edge is defined as a set of forest pixels whose distance to the patch edge is lower than or equal to the given edge width and corresponds to the outer boundary of a forest core area, (3) perforation is similar to edge, but it corresponds to the inner boundary of a core forest area, (4) bridge is a set of contiguous non-core forest pixels connecting at least two forest patches, (5) loop is a group of pixels that connect different parts of the same forest patch (Saura et al. 2011; Soille and Vogt 2009).

Species distribution models

We used logistic regression models (GLMs, McCullagh and Nelder, 1989) to (1) evaluate whether MODIS fPAR texture can predict bird species distributions, (2) evaluate whether combining measures of texture with habitat composition and fragmentation derived from land cover classifications can improve model performance for species distributions.

We fitted all possible combinations of (i) texture, (ii) composition, (iii) fragmentation, (iv) texture + composition, (v) fragmentation + composition, and (vi) texture + fragmentation + composition. To assess multicolinearity among the 16 texture, habitat composition, and fragmentation variables, we applied Pearson's correlation coefficients (|r|>0.7) and found that there was no collinearity among them (Appendix 10). To address potential nonlinearities in the relationship between species distributions and predictors, we included both linear and quadratic forms of predictors in the models. The best approximating model was then selected based on the Akaike Information criterion (AIC) with the best fitting model having the lowest AIC (Burnham and Anderson, 2002). The GLM modeling algorithm requires binary or background data, so we generated pseudo-absences by randomly sampling 1-km grid cells within forested areas. Generating pseudo-absences from environmental regions further away from the optimum established by presence data may lead to over-prediction of the model (Bateman et al. 2012; VanDerWal et al. 2009). For each model run, we constructed two sets of pseudo-absences, each chosen at random to obtain more reliable distribution model outputs (Thuiller et al. 2009). We generated pseudo-absences as ten times the number of presence records (Barbet-Massin et al. 2012).

To evaluate model performance, we used 10-fold cross-validation with a split random sample of 90% of presence data used for calibration (training data) and the remaining 10% for evaluation (testing data) (Elith et al. 2011). During the calibration process, we gave equal weighting to presence data and pseudo-absence data. For each species, we used 10-fold cross validation on the two pseudoabsence replicates, for a total of 20 replicates each. We used AUC values to test model performance, and initially considered values above 0.7 to be indicative of useful models (Elith et al. 2006; Swets 1988).

The importance of each variable for each species was calculated using a randomization procedure as one minus the Pearson's correlation coefficients between the standard prediction and the prediction where the considered variables was randomly permutated. If the correlation is high (i.e., there is a small difference between the two predictions), the variable permutated is considered not important for the model. Therefore, one minus the correlation coefficient represents, for a given variable, the probability that the coefficient can contribute to the model. The higher the probability, the higher a variable contributes in predicting the pattern (Thuiller et al. 2009).

Model comparison

To determine whether including texture measures are important in predicting current distributions of tropical forest birds in Thailand, we compared estimators of model performance (i.e., AUC) between composition and texture, and between composition and texture + composition, and between composition and texture + fragmentation + composition. We used Wilcoxon signed-rank tests for related samples to test the significant difference among models. Additionally, we examined whether the texture + composition + fragmentation models for all bird species consistently select the texture measures (Araujo and Luoto 2007; Bateman et al. 2012).

For each species, we calculated the relative difference of AUC values of the composition, texture + composition, fragmentation + composition, and texture + fragmentation + composition (Δ AUC). Large relative values of Δ AUC indicate that one model scenario performed substantially better than the other, whereas Δ AUC values close to zero indicate that the two model scenarios performed equally well. All statistical analyses were conducted in R (R Core Team 2015). GLMs were fitted within the BIOMOD2 package (Thuiller 2003; Thuiller et al. 2009).

Results

Texture measures as predictors of species distributions

Texture measures effectively predicted species distributions for 86 tropical forest birds with an average AUC value of 0.80 (AUC > 0.7 is a fair model, Swets 1988) (Table 9). However, the predictive accuracies of models varied across species and taxonomic orders. Of all species modelled, Tickell's Brown Hornbill (*Anorrhinus tickelli*) had the highest AUC values of 0.94 (Appendix 8). Among different taxonomic orders, Bucerotiformes (i.e., hornbill species) had the highest AUC values with an average AUC value of 0.87. On the other hand, the forest bird species in Passeriformes and Piciformes taxonomic groups had the lowest AUC values with an average AUC value of 0.79 (Figure 8). As we expected, texture measures derived from 1-km MODIS fPAR well predicted large body size-forest bird species, such as hornbill species because hornbill species perceive and utilize forest structure at larger scales than smaller species, and thus are influenced more by heterogeneity of forest structure.

In comparison to habitat composition and fragmentation, the composition models outperformed fragmentation models (P < 0.001), and texture models (P < 0.001). However, the texture + composition models were significantly better than the fragmentation + composition models (P < 0.001) (Figure 8), indicating the complementarity of information carried by measures of texture. We found that there was considerable variation in AUC values among species and the AUC values of the composition models were not higher in all species. Texture measures better predicted Grey Peacock Pheasant, Yellow-vented Flowerpecker, Greater Necklaced Laughingthrush, Lesser Necklaced Laughingthrush, and Buff-vented Bulbul distributions than measures of composition and fragmentation (Appendix 8). At the taxonomic level, forest bird species in Bucerotiformes showed no significant difference in AUC values between texture models and fragmentation models (P = 0.875) (Figure 8), indicating that this group of species may perceive habitat heterogeneity as habitat fragmentation due to their large home range size.

The incorporation of texture measures with habitat composition and fragmentation

The incorporation of texture measures significantly improved species distribution models for tropical forest birds. The texture + composition + fragmentation models for all bird species consistently selected the texture measures, especially homogeneity and contrast (results not
shown). The incorporation of texture measures into the models for tropical forest birds significantly improved the AUC values from 0.889 (\pm 0.057 SD), for the composition models to 0.927 (\pm 0.0576 SD) for the texture + composition + fragmentation models (Table 9) with relative gains up to 39% in Bar-backed Partridge (results not shown) and average 10% in Galliformes (P < 0.001) (Figure 9). Likewise, including texture or fragmentation significantly improved model performance compared with composition models (P < 0.001). Galliformes showed the highest increase of the relative AUC values. However, Bucerotiformes and Cuculiformes taxonomic groups showed no difference in the relative AUC values after including fragmentation into texture + composition models (Figure 9). While confirming the importance of habitat composition and fragmentation, these results also highlight the importance of including texture measures to predict the distributions of tropical forest bird at the broad-scales.

Variable importance of texture measures

Second-order homogeneity was the best predictor for overall bird species distributions when using texture measure alone (Figure 10). At the taxonomic level, Bucerotiformes, Cuculiformes, Passeriforme, and Piciformes were strongly associated with second-order homogeneity whereas Galliformes was highly associated with second-order entropy. Secondorder homogeneity, and contrast were the best complement to habitat composition and fragmentation for modeling species distributions, highlighting their relevance for capturing habitat characteristics. The relationships of texture measures and species distributions varied, sometimes positive, negative, and nonlinear depending on species and taxonomic groups. Almost all texture measures showed nonlinear relationships in the most parsimonious model for each species (lowest AIC) (results not shown). We thus chose Tickell's brown hornbill with the highest model accuracy to investigate the strength of the relationships. We found that the probability of occurrences of Tickell's brown hornbill increased as homogeneity and correlation values increased but not linearly, while the probability of occurrences decreased as coefficient of variation and contrast increased. The probability of occurrences was higher at the middle level of entropy values. These results indicated that the probability of occurrences for Tickell's brown hornbill were high in highly homogeneous areas (Figure 11).

Habitat suitability maps

To validate that the distribution models from the texture + fragmentation + composition improved the predictions from the habitat composition models, we investigated the suitability maps of the brown hornbill. We selected brown hornbill because this species is an IUCN nonthreatened concern facing serious threat from human activities, such as deforestation, and illegal poaching (Poonswad et al. 2013; Round 1988). A visual inspection of the predicted potential geographic distributions of Brown Hornbills derived from both models showed a broad agreement with the currently known distribution from 15 protected areas across Thailand that covers the extent of dry and montane evergreen forest biomes with elevation ranges of 500-1500 m (Poonswad 1993; Round et al. 2003). However, the texture + fragmentation + composition model (Figure 12a) agreed better with the known range whereas the habitat composition model over-predicted suitable areas (Figure 12b).

Discussion

We evaluated the ability of image texture measures, a proxy of within-class habitat heterogeneity, to predict distributions of tropical forest birds at broad scales. We found that image texture measures derived from 1-km MODIS fPAR effectively predicted the distributions of tropical forest birds across Thailand. As expected, texture measures strongly associated with broad-scale distributions of forest bird species utilizing forest habitats with complex vertical and horizontal structure such as those nesting in old-growth tree cavities, compared to species utilizing forest habitats with simpler vertical and horizontal structure, such as ground-nesting species. Texture measures complemented measures of habitat composition well, and more so than fragmentation metrics. Our results suggest that texture measures successfully captured habitat heterogeneity and provide detailed information which can complement measures of habitat composition when predicting patterns of species distributions. Given this, we suggest that texture–based MODIS fPAR measures can contribute to a better understanding of patterns of species distributions and diversity at broad temporal and spatial scales.

Our results support previous studies modeling species distributions based on image texture, for example the Greater Rhea, a grassland bird species of central Argentina (Bellis et al. 2008), and temperate birds in Maine (Hepinstall and Sader 1997) as well as bird richness patterns in savanna, grassland, and woodland (Wood et al. 2013), desert-scrub (St-Louis et al. 2009; St-Louis et al. 2014a; St-Louis et al. 2006), North American ecosystems (Culbert et al. 2012; Tuanmu and Jetz 2015), and South American highland forests (Bellis et al. 2015). While modeling bird distribution patterns has been effective in habitats with low vertical structure, such as grassland (Bellis et al. 2008), and among habitat generalists (Hepinstall and Sader 1997), we showed that image textured derived from MODIS fPAR can capture within-class habitat heterogeneity and successfully predict species distribution patterns even in habitats with highly complex habitat structure as is common in tropical forest ecosystems.

As we expected, texture measures predict distributions for species with large body size utilizing complex vertical and horizontal habitat structure better, than those of smaller body size species utilizing understory vegetation structure. Specifically, tropical forest birds in Bucerotiformes taxonomic group, such as hornbills strongly associated with texture measures. Hornbills are large-size frugivorous bird species (Poonswad et al. 1998; Lekagul and Round 1991; Kitamura et al. 2004) with approximately body mass of 0.9 - 3 kg (Dunning 2008), and with an average home range size of 3.7 - 10 km² for the breeding season and 14.7 - 28 km² for the non-breeding season in Thailand (Poonswad and Tsuji 1994). Hornbills nest in tree cavities and gather to feed in fruiting trees, and thus require old-growth evergreen forests and mixed deciduous forests (Poonswad 1995; Poonswad et al. 2005). In contrast, smaller body size, canopy or understory foraging and nesting bird species had lower associations with texture measures. These taxonomic groups, such as pheasant, cuckoo, flycatcher, and piculet may perceive habitat heterogeneity at different scales, causing texture measures to have lower predictive power (Robson 2000; Round 1988). While satellite imagery is generally not well suited to measure the structure of understory vegetation in forests (Gottschalk et al. 2005), understory mapping can be successful when structural characteristics are correlated with canopy features (Estes et al. 2010).

The combined texture with habitat composition and fragmentation models yielded the highest model accuracies compared to models derived from habitat composition, and predicted more accurate suitable habitat for tropical forest bird species. The best models included a relatively even mix of texture, fragmentation, and habitat composition because each measure is important and contributes to different aspects that shape species distributions, richness, and abundance differently, and species may respond to those factors differently. We expected that including texture measures into distribution models would improve model performance more because texture measures capture additional characteristics of heterogeneity of forest structure that are useful in predicting distribution patterns. Texture measures capture the between and within heterogeneity of a given forest type, whereas habitat composition and fragmentation based on land cover classification do not provide within land cover class heterogeneity (Estes et

al. 2010). This explains the complementary information of texture measures with commonly used habitat composition and fragmentation measures in predicting species distributions. Surprisingly though, model accuracies for hornbill and cuckoo species showed no improvement of model accuracies after including fragmentation measures into the combined texture and habitat models. This highlights the importance of habitat heterogeneity for canopy-species. Previous studies also showed that the combination of texture, productivity, landscape metrics, and human disturbance resulted in a better understanding of the relationships between bird species richness in Midwest temperate ecosystems (Culbert et al. 2012), Southwest desert-scrub (St-Louis et al. 2014b; St-Louis et al. 2006), and across the United States (Tuanmu and Jetz 2015) as well as bird distributions in Argentinian grassland (Bellis et al. 2008).

A few image texture measures were most important in predicting bird distribution at broad-scales. Although species-heterogeneity predicts a positive relationship where more heterogeneity results in higher species diversity (Macarthur and Macarthur 1961), most of texture measures in our study had a nonlinear relationship. Theoretical and empirical studies have suggested that a trade-off between the positive effect of high habitat heterogeneity and the negative effect of small habitat areas on species diversity may cause an unimodal speciesheterogeneity relationship (Allouche et al. 2012; Kadmon and Allouche 2007). Second-order homogeneity was the most important factor in predicting tropical forest bird distributions but exhibited nonlinear relationships with most species. Second-order homogeneity is a measure of uniformity and is high when adjacent pixels have similar reflectance values, suggesting that tropical bird occurrences are more likely in homogeneous habitats. The reason for this may be that among different forest types, evergreen forests are generally more homogenous than deciduous forests and secondary-growth forests (Appendix 11). Most of our study species occupy evergreen forests, which is why homogeneity of habitat may be more important than other texture measures. In contrast, we found that second-order entropy was the most important factor in predicting ground foraging and nesting species, such as pheasants and partridge. This taxonomic group utilizes a variety of forest habitat structure from evergreen to scrub and forage a variety of diet such as invertebrate, grains, buds, seeds, and fallen fruits. This may make Galliformes respond positively to higher heterogeneity. Our findings are supported by a previous study on bird species richness patterns with texture based MODIS EVI showing that the texture measures sensitive to low levels of heterogeneous habitat (e.g., entropy) are useful for homogeneous areas, such as forest ecosystem, while measures that have similar sensitivity across heterogeneity levels (e.g., homogeneity) are useful for diverse habitat types (Tuanmu and Jetz 2015). This is likely the reason why homogeneity and entropy were the most useful measures for capturing spatial heterogeneity in forest ecosystems.

When we compared species distribution models based on texture versus habitat composition versus fragmentation, we found that both sets of habitat measures outperformed texture-only measures. This supports the theory that habitat heterogeneity of vegetation structure is more important in explaining species diversity at small- scales, but spatial patterns of landscape elements are more important at broad-scales (Hutto 1985). The only exception was the hornbill, which showed no significant difference in model accuracy when modeling with textureonly variables or fragmentation-only variables. We speculate that this is due to that fact that because of its large body size, hornbill species perceive within-forest structure as fragmentation of habitat.

Texture measure derived from MODIS fPAR improved model predictions for tropical bird distributions, but many texture measures are difficult to interpret in terms of their relationships with individual species and ecological processes (Culbert et al. 2012). We developed texture measures based on fPAR rather than individual spectral bands of remote sensing images in previous studies (Estes et al. 2010). Texture measures from MODIS fPAR can be conceptualized as a measure of spatial variability and spatial arrangement of vegetation productivity (i.e., availability of energy within a landscape). This makes texture measures more ecologically meaningful and thus more applicable for biodiversity modelling at broad-scales (Coops et al. 2009a; Coops et al. 2009b). However, the interpretation of texture based on 1-km MODIS fPAR is different than texture measures derived from higher resolution remote sensing images, such as 30-m Landsat data, which capture both vertical and horizontal complexity of vegetation structure (Wood et al. 2012). MODIS' 1-km spatial resolution may not be relevant to some smaller body size species utilizing understory habitat, and thus limit the use of MODIS fPAR for connecting them to their specific ecological functions. However, the lower temporal frequency of Landsat images can make it challenging to acquire cloud free imagery at the same phenological stage over broad-scales (Culbert et al. 2009).

In summary, our study shows that texture measures are effective variables in predicting tropical forest bird species distribution patterns at broad-scales. Texture measures derived from MODIS fPAR captured habitat heterogeneity for several taxonomic groups, and across varied forest habitats, ranging from secondary-growth forests to moist evergreen forests. The incorporation of texture measures and landscape metrics improved model performance because texture measures provide more ecologically relevant information and may enhance understanding of the relationship between heterogeneity and species distributions and underlying mechanisms. The successful applications of texture based MODIS fPAR indicate broader applications for biodiversity assessments. Additionally, texture measures derived from MODIS

fPAR are able to capture phenological changes in vegetation at broad-scales, and potentially be applied in monitoring spatial and temporal dynamics of habitat heterogeneity. The texture measures from MODIS fPAR are a promising tool for assessing and predicting biodiversity patterns in response to environmental changes.

References

- Allouche, O., Kalyuzhny, M., Moreno-Rueda, G., Pizarro, M., & Kadmon, R. (2012). Areaheterogeneity tradeoff and the diversity of ecological communities. Proceedings of the National Academy of Sciences of the United States of America, 109, 17495-17500
- Araujo, M.B., & Luoto, M. (2007). The importance of biotic interactions for modelling species distributions under climate change. Global Ecology and Biogeography, 16, 743-753
- Bar-Massada, A., & Wood, E.M. (2014). The richness-heterogeneity relationship differs between heterogeneity measures within and among habitats. Ecography, 37, 528-535
- Bar-Massada, A., Wood, E.M., Pidgeon, A.M., & Radeloff, V.C. (2012). Complex effects of scale on the relationships of landscape pattern versus avian species richness and community structure in a woodland savanna mosaic. Ecography, 35, 393-411
- Barbet-Massin, M., Jiguet, F., Albert, C.H., & Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution, 3, 327-338
- Bateman, B.L., VanDerWal, J., Williams, S.E., & Johnson, C.N. (2012). Biotic interactions influence the projected distribution of a specialist mammal under climate change.
 Diversity and Distributions, 18, 861-872

- Bellis, L.M., Pidgeon, A.M., Alcantara, C., Dardanelli, S., & Radeloff, V.C. (2015). Influences of succession and erosion on bird communities in a South American highland wooded landscape. Forest Ecology and Management, 349, 85-93
- Bellis, L.M., Pidgeon, A.M., Radeloff, V.C., St-Louis, V., Navarro, J.L., & Martella, M.B.(2008). Modeling habitat suitability for Greater Rheas based on satellite image texture.Ecological Applications, 18, 1956-1966
- Benton, T.G., Vickery, J.A., & Wilson, J.D. (2003). Farmland biodiversity: is habitat heterogeneity the key? Trends in Ecology & Evolution, 18, 182-188
- Bersier, L.F., & Meyer, D.R. (1994). Bird assemblages in mosaic forests: the relative importance of vegetation structure and floristic composition along the successional gradient. Acta Oecologica-International Journal of Ecology, 15, 561-576
- Bird Conservation Society of Thailand Records Committee. 2012. Checklist of Thai bird names, January 2012. [http://www.bcst.or.th/]
- Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: a practical information-theoretic approach. Springer Science & Business Media
- Coops, N.C., Waring, R.H., Wulder, M.A., Pidgeon, A.M., & Radeloff, V.C. (2009a). Bird diversity: a predictable function of satellite-derived estimates of seasonal variation in canopy light absorbance across the United States. Journal of Biogeography, 36, 905-918
- Coops, N.C., Wulder, M.A., Duro, D.C., Han, T., & Berry, S. (2008). The development of a Canadian dynamic habitat index using multi-temporal satellite estimates of canopy light absorbance. Ecological Indicators, 8, 754-766

- Coops, N.C., Wulder, M.A., & Iwanicka, D. (2009b). Exploring the relative importance of satellite-derived descriptors of production, topography and land cover for predicting breeding bird species richness over Ontario, Canada. Remote Sensing of Environment, 113, 668-679
- Culbert, P.D., Pidgeon, A.M., St-Louis, V., Bash, D., & Radeloff, V.C. (2009). The Impact of Phenological Variation on Texture Measures of Remotely Sensed Imagery. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2, 299-309
- Culbert, P.D., Radeloff, V.C., St-Louis, V., Flather, C.H., Rittenhouse, C.D., Albright, T.P., &
 Pidgeon, A.M. (2012). Modeling broad-scale patterns of avian species richness across the
 Midwestern United States with measures of satellite image texture. Remote Sensing of
 Environment, 118, 140-150
- Dale, V.H., Pearson, S.M., Offerman, H.L., & Oneill, R.V. (1994). Relating patterns of land-use change to faunal biodiversity in the central Amazon. Conservation Biology, 8, 1027-1036
- Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carre, G., Garcia Marquez, J.R.,
 Gruber, B., Lafourcade, B., Leitao, P.J., Muenkemueller, T., McClean, C., Osborne, P.E.,
 Reineking, B., Schroeder, B., Skidmore, A.K., Zurell, D., & Lautenbach, S. (2013).
 Collinearity: a review of methods to deal with it and a simulation study evaluating their
 performance. Ecography, 36, 27-46

Dunning Jr, J. B. (2nd Ed.). CRC handbook of avian body masses. CRC press. (2008).

Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T.,
Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams,
S., Wisz, M.S., & Zimmermann, N.E. (2006). Novel methods improve prediction of
species' distributions from occurrence data. Ecography, 29, 129-151

- Elith, J., Phillips, S.J., Hastie, T., Dudik, M., Chee, Y.E., & Yates, C.J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43-57
- Estes, L.D., Okin, G.S., Mwangi, A.G., & Shugart, H.H. (2008). Habitat selection by a rare forest antelope: A multi-scale approach combining field data and imagery from three sensors. Remote Sensing of Environment, 112, 2033-2050
- Estes, L.D., Reillo, P.R., Mwangi, A.G., Okin, G.S., & Shugart, H.H. (2010). Remote sensing of structural complexity indices for habitat and species distribution modeling. Remote Sensing of Environment, 114, 792-804
- Exelis Visual Information Solutions. 2010. Name of the manual. Boulder, Colorado: Exelis Visual Information Solutions.
- Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology Evolution and Systematics, 34, 487-515
- Franklin, S. E., Hall, R. J., Moskal, L. M., Maudie, A. J., & Lavigne, M. B. (2000). Incorporating texture into classification of forest species composition from airborne multispectral images. International Journal of Remote Sensing, 21, 61-79.

- Franklin, S. E., Maudie, A. J., & Lavigne, M. B. (2001). Using spatial co-occurrence texture to increase forest structure and species composition classification accuracy.
 Photogrammetric Engineering and Remote Sensing, 67, 849-856.
- Gottschalk, T.K., Huettmann, F., & Ehlers, M. (2005). Thirty years of analysing and modelling avian habitat relationships using satellite imagery data: a review. International Journal of Remote Sensing, 26, 2631-2656
- Haralick, R.M. (1979). Statistical and structural approaches to texture. Proceedings of the Ieee, 67, 786-804
- Haralick, R.M., Shanmuga.K, & Dinstein, I. (1973). Textural features for image classification.Ieee Transactions on Systems Man and Cybernetics, SMC3, 610-621
- Hepinstall, J.A., & Sader, S.A. (1997). Using Bayesian statistics, Thematic Mapper satellite imagery, and breeding bird survey data to model bird species probability of occurrence in Maine. Photogrammetric Engineering and Remote Sensing, 63, 1231-1237
- Hernandez, P.A., Graham, C.H., Master, L.L., & Albert, D.L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29, 773-785
- Hutchinson, G.E., & Macarthur, R.H. (1959). A theoretical ecological model of size distributions among species of animals. Amer Nat, 93, 117-126
- Hutto, R.L. (1985). Habitat selection by nonbreeding, migratory land birds. Habitat selection in birds., 455-476

- Innes, J.L., & Koch, B. (1998). Forest biodiversity and its assessment by remote sensing. Global Ecology and Biogeography, 7, 397-419
- Jetz, W., & Rahbek, C. (2002). Geographic range size and determinants of avian species richness. Science, 297, 1548-1551
- Kadmon, R., & Allouche, O. (2007). Integrating the effects of area, isolation, and habitat heterogeneity on species diversity: A unification of island biogeography and niche theory. American Naturalist, 170, 443-454
- Kerr, J.T., & Ostrovsky, M. (2003). From space to species: ecological applications for remote sensing. Trends in Ecology & Evolution, 18, 299-305
- Kerr, J.T., & Packer, L. (1997). Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature, 385, 252-254
- Kitamura, S., Yumoto, T., Poonswad, P., Chuailua, P., & Plongmai, K. (2004). Characteristics of hornbill-dispersed fruits in a tropical seasonal forest in Thailand. Bird Conservation International, 14, S81-S88
- Kreft, H., & Jetz, W. (2007). Global patterns and determinants of vascular plant diversity.
 Proceedings of the National Academy of Sciences of the United States of America, 104, 5925-5930
- Lekagul, B., & Round, P.D. (1991). A guide to the birds of Thailand. A guide to the birds of Thailand., 1-457
- Macarthur, R., & Macarthur, J.W. (1961). On bird species-diversity. Ecology, 42, 594-598

- Martin, T.E. (1993). Nest predation and nest sites New perspectives on old patterns. Bioscience, 43, 523-532
- McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (Vol. 37). CRC press.
- Morrison, M.L., Marcot, B.G., & Mannan, R.W. (2006). Wildlife-habitat relationships: concepts and applications. Third edition. Wildlife-habitat relationships: concepts and applications. Third edition., i-xxv, 1-493
- Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853-858
- Nagendra, H., & Rocchini, D. (2008). High resolution satellite imagery for tropical biodiversity studies: the devil is in the detail. Biodiversity and Conservation, 17, 3431-3442
- Pearson, R.G., Raxworthy, C.J., Nakamura, M., & Peterson, A.T. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102-117
- Pereira, H.M., Ferrier, S., Walters, M., Geller, G.N., Jongman, R.H.G., Scholes, R.J., Bruford, M.W., Brummitt, N., Butchart, S.H.M., Cardoso, A.C., Coops, N.C., Dulloo, E., Faith, D.P., Freyhof, J., Gregory, R.D., Heip, C., Hoeft, R., Hurtt, G., Jetz, W., Karp, D.S., McGeoch, M.A., Obura, D., Onoda, Y., Pettorelli, N., Reyers, B., Sayre, R., Scharlemann, J.P.W., Stuart, S.N., Turak, E., Walpole, M., & Wegmann, M. (2013). Essential Biodiversity Variables. Science, 339, 277-278
- Poonswad, P. (1993). Current status and distribution of hornbills and their habitats in Thailand.

- Poonswad, P. (1995). Nest-site characteristics of 4 sympatric species of hornbills in Khao-Yai National-Park, Thailand. Ibis, 137, 183-191
- Poonswad, P., Chimchome, V., Mahannop, N., & Mudsri, S. (2013). Conservation of hornbills in Thailand. Conservation Biology: Voices from the Tropics, 157-166
- Poonswad, P., Sukkasem, C., Phataramata, S., Hayeemuida, S., Plongmai, K., Chuailua, P., Thiensongrusame, P., & Jirawatkavi, N. (2005). Comparison of cavity modification and community involvement as strategies for hornbill conservation in Thailand. Biological Conservation, 122, 385-393
- Poonswad, P., & Tsuji, A. (1994). Ranges of males of the Great hornbill *Buceros bicornis*,
 Brown hornbill *Ptilolaemus tickelli* and Wreathed hornbill *Rhyticeros undulates* in Khao-Yai-National-Park, Thailand. Ibfis, 136, 79-86
- Poonswad, P., Tsuji, A., Jirawatkavi, N., & Chimchome, V. (1998). Some aspects of food and feeding ecology of sympatric hornbill species in Khao Yai National Park, Thailand. Thai Studies in Biodiversity, 2, 137-157
- R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/
- Rahbek, C., Gotelli, N.J., Colwell, R.K., Entsminger, G.L., Rangel, T.F.L.V.B., & Graves, G.R.
 (2007). Predicting continental-scale patterns of bird species richness with spatially
 explicit models. Proceedings of the Royal Society B-Biological Sciences, 274, 165-174
- RFD (2013). Forestry statistics of Thailand 2013. Royal Forest Department, Ministry of Natural Resources and Environment, Bangkok

- Robson, C. (2000). A field guide to the birds of South-East Asia. A field guide to the birds of South-East Asia., 1-504
- Round, P.D. (1988). Resident forest birds in Thailand: their status and conservation. International Council for Bird Preservation Monograph, i-xiv, 1-211
- Round, P.D., & Gale, G.A. (2008). Changes in the status of Lophura pheasants in Khao Yai National Park, Thailand: A response to warming climate? Biotropica, 40, 225-230
- Round, P.D., Hughes, J.B., & Woodruff, D.S. (2003). Latitudinal range limits of resident forest birds in Thailand and the Indochinese-Sundaic zoogeographic transition. Natural History Bulletin of the Siam Society, 51, 69-96
- Saura, S., Vogt, P., Velazquez, J., Hernando, A., & Tejera, R. (2011). Key structural forest connectors can be identified by combining landscape spatial pattern and network analyses. Forest Ecology and Management, 262, 150-160
- Bird Conservation Society of Thailand Records Committee. (2012). Checklist of Thai bird names, January 2012. [http://www.bcst.or.th/]
- Scholes, R.J., Mace, G.M., Turner, W., Geller, G.N., Juergens, N., Larigauderie, A., Muchoney,D., Walther, B.A., & Mooney, H.A. (2008). Ecology Toward a global biodiversityobserving system. Science, 321, 1044-1045
- Soille, P., & Vogt, P. (2009). Morphological segmentation of binary patterns. Pattern Recognition Letters, 30, 456-459

- St-Louis, V., Pidgeon, A.M., Clayton, M.K., Locke, B.A., Bash, D., & Radeloff, V.C. (2009).
 Satellite image texture and a vegetation index predict avian biodiversity in the
 Chihuahuan Desert of New Mexico. Ecography, 32, 468-480
- St-Louis, V., Pidgeon, A.M., Kuemmerle, T., Sonnenschein, R., Radeloff, V.C., Clayton, M.K., Locke, B.A., Bash, D., & Hostert, P. (2014a). Modelling avian biodiversity using raw, unclassified satellite imagery. Philosophical Transactions of the Royal Society B-Biological Sciences, 369
- St-Louis, V., Pidgeon, A.M., Kuemmerle, T., Sonnenschein, R., Radeloff, V.C., Clayton, M.K., Locke, B.A., Bash, D., & Hostert, P. (2014b). Modelling avian biodiversity using raw, unclassified satellite imagery. Royal Society Philosophical Transactions Biological Sciences, 369, 20130197-20130197
- St-Louis, V., Pidgeon, A.M., Radeloff, V.C., Hawbaker, T.J., & Clayton, M.K. (2006). Highresolution image texture as a predictor of bird species richness. Remote Sensing of Environment, 105, 299-312
- Stein, A., Gerstner, K., & Kreft, H. (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17, 866-880
- Stickler, C.M., & Southworth, J. (2008). Application of multi-scale spatial and spectral analysis for predicting primate occurrence and habitat associations in Kibale National Park,
 Uganda. Remote Sensing of Environment, 112, 2170-2186
- Sutherland, W.J., Adams, W.M., Aronson, R.B., Aveling, R., Blackburn, T.M., Broad, S., Ceballos, G., Cote, I.M., Cowling, R.M., Da Fonseca, G.A.B., Dinerstein, E., Ferraro,

P.J., Fleishman, E., Gascon, C., Hunter, M., Jr., Hutton, J., Kareiva, P., Kuria, A.,
Macdonald, D.W., Mackinnon, K., Madgwick, F.J., Mascia, M.B., McNeely, J., MilnerGulland, E.J., Moon, S., Morley, C.G., Nelson, S., Osborn, D., Pai, M., Parsons, E.C.M.,
Peck, L.S., Possingham, H.P., Prior, S.V., Pullin, A.S., Rands, M.R.W., Ranganathan, J.,
Redford, K.H., Rodriguez, J.P., Seymour, F., Sobel, J., Sodhi, N.S., Stott, A., VanceBorland, K., & Watkinson, A.R. (2009). One Hundred Questions of Importance to the
Conservation of Global Biological Diversity. Conservation Biology, 23, 557-567

Swets, J.A. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293

- Tews, J., Brose, U., Grimm, V., Tielborger, K., Wichmann, M.C., Schwager, M., & Jeltsch, F. (2004). Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography, 31, 79-92
- Thuiller, W. (2003). BIOMOD optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology, 9, 1353-1362
- Thuiller, W., Lafourcade, B., Engler, R., & Araujo, M.B. (2009). BIOMOD a platform for ensemble forecasting of species distributions. Ecography, 32, 369-373

TMD. (2010). Climate of Thailand 2010. Thai Meteorological Department, Bangkok

- Tuanmu, M.-N., & Jetz, W. (2015). A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecology and Biogeography, 24, 1329-1339
- Turner, W. (2014). Sensing biodiversity. Science, 346, 301-302

- Turner, W., Spector, S., Gardiner, N., Fladeland, M., Sterling, E., & Steininger, M. (2003). Remote sensing for biodiversity science and conservation. Trends in Ecology & Evolution, 18, 306-314
- Tuttle, E.M., Jensen, R.R., Formica, V.A., & Gonser, R.A. (2006). Using remote sensing image texture to study habitat use patterns: a case study using the polymorphic white-throated sparrow (Zonotrichia albicollis). Global Ecology and Biogeography, 15, 349-357
- VanDerWal, J., Shoo, L.P., Graham, C., & William, S.E. (2009). Selecting pseudo-absence data for presence-only distribution modeling: How far should you stray from what you know? Ecological Modelling, 220, 589-594
- Vogt, P., Riitters, K.H., Estreguil, C., Kozak, J., & Wade, T.G. (2007). Mapping spatial patterns with morphological image processing. Landscape Ecology, 22, 171-177
- Wood, E.M., Pidgeon, A.M., Radeloff, V.C., & Keuler, N.S. (2012). Image texture as a remotely sensed measure of vegetation structure. Remote Sensing of Environment, 121, 516-526
- Wood, E.M., Pidgeon, A.M., Radeloff, V.C., & Keuler, N.S. (2013). Image Texture Predicts Avian Density and Species Richness. Plos One, 8
- Woodruff, D.S. (2013). Wildlife conservation in protected areas in Thailand: lessons from Chiew Larn, Khao Sok and Khlong Saeng. Natural History Bulletin of the Siam Society, 59, 91-107

Tables

Order	Foraging	Nesting	Diet	Example
Bucerotiformes	Canopy	Old-growth	Fruit	Hornbill
		tree cavity		
Cuculiformes	Arboreal	Canopy	Insect,	Cuckoo, Malkoha
			vertebrate, fruit	
Galliformes	Ground	Ground	Invertebrate,	Jungle fowl, Partridge, Pheasant
			grain, bud, seed,	
			fallen fruit	
Passeriformes	Arboreal	Low	Fruit, insect,	Flowerpecker, Laughingthrush,
		vegetation to	nectar, bud	Flycatcher, Bulbul, Babbler
		canopy		
Piciformes	Canopy	Small tree	Fruit, insect	Barbet, Piculet, Yellownape
		cavity		

Table 7. List of five bird taxonomic groups and guild affiliation in the study.

Table 8. Five texture measures derived from the cumulative productivity with description of texture characteristics, and the statistical equations.

	Description	Equation ¹
First-order texture		
Coefficient of	Dispersion of fPAR	$\frac{SD_{fPAR}}{\overline{SDAD}}$
Variation		f PAR
Second-order texture		
Contrast	A measure of the local fPAR intensity	$\sum_{n=1}^{N-1} n^2 \left(\sum_{i=1}^{N} \sum_{i=1}^{N} n(i,i) \right)$
	variation in values among	$\sum_{n=0}^{n} \left(\sum_{i=1}^{n} \sum_{j=1}^{p(i,j)} \right)$
	neighboring pixels	
Correlation	Linear dependency of fPAR on	$\sum^{N-1} p\left[(i-\mu_i)(j-\mu_j) \right]$
	neighboring pixels	$\sum_{i,j=0}^{P_{i,j}} \left[\left(\sigma_i^2 \cdot \sigma_j^2 \right)^{1/2} \right]$
	8 8 81	
Entropy	Disorderliness of fPAR (i.e., Shannon	$-\sum \sum p(i, i) \log(p(i, i))$
	diversity)	$\Delta_i \Delta_j$
Homogeneity	A measure of sum in values of fPAR	$\sum \sum \frac{1}{n(i,i)}$
		$\sum_{i} \sum_{j} \overline{1 + (i-j)^2} p(i,j)$
	among neighboring pixels	

¹ From Haralick et al. (1973)

Table 9. AUC scores for texture, texture + composition, and all three sets of variable models of the bird distribution for all species and five taxonomic orders. The number are the average and standard deviation of AUC values for bird species in the groups. All three model scenaios for each taxonomic group were significantly different at P < 0.001.

	Texture	Texture + Composition	Texture + Composition + Fragmentation
All species	0.801 ± 0.077	0.927 ± 0.056	0.938 ± 0.062
Bucerotiformes	0.871 ± 0.049	0.945 ± 0.043	0.946 ± 0.043
Cuculiformes	0.807 ± 0.087	0.921 ± 0.063	0.924 ± 0.073
Galliformes	0.834 ± 0.091	0.928 ± 0.099	0.938 ± 0.096
Passeriformes	0.794 ± 0.077	0.928 ± 0.051	0.939 ± 0.059
Piciformes	0.794 ± 0.071	0.92 ± 0.064	0.931 ± 0.064

Figures

Figure 6. Study area, including six main forest habitat for birds in Thailand

Figure 7. Spatial patterns of habitat heterogeneity captured by the five texture measures of cumulative productivity (i.e., the cumulative Dynamic Habitat Index) derived from 1-km resolution MODIS FPAR. First-order coefficient of variation (a) quantify composition of habitat heterogeneity. Second-order contrast (b), correlation (c), entropy (d), and homogeneity (e) quantify spatial arrangement of cumulative fPAR values.

Figure 8. Plot summarizes AUC values of six distribution model scenarios for five bird taxonomic orders. The AUC values are the average of AUC for individual bird species in Bucerotiformes, Cuculiformes, Galliformes, Passeriformes, and Piciformes taxonomic orders. Six models scenarios for the model comparison are texture models, composition models, fragmentation models, texture + fragmentation models, fragmentation + composition models, and texture + composition + fragmentation models.

Figure 9. The relative gain of AUC values (%) of bird species distribution models for five taxonomic orders calculated from the differences between composition models and models integrating fragmentation, texture, and both fragmentation and texture.

Figure 10. Variable importance of five texture measures used to predict the patterns of distributions for tropical forest birds. variable importance is obtained from 1- Pearson's coefficient correlation for three model scenarios of texture, texture + habitat, and texture + composition + fragmentation. The amplitude of the bar represents the relative contribution of each variable for predicting the response.

Figure 11. Response curves depict the relationship between the probability of occurrences of Tickell's brown hornbill and texture measures: (a) coefficient of variation, (b) contrast, (c) correlation, (d) entropy, and (e) homogeneity.

Figure 12. Predicted habitat suitability maps for Tickell's brown hornbill overlays with their known distributions in 15 protected areas in Thailand; (a) modeled with habitat composition variables, (b) modeled with texture, habitat composition, and fragmentation.

Appendices

Appendix 8. AUC scores for texture, habitat composition, fragmentation, texture + composition, fragmentation + composition, and texture + composition + fragmentation models of the distribution of 86 tropical forest bird species. The AUC are the average of the 20 individual runs (2 replicates each of 10-fold cross validations) for each model scenarios. IUCN represents IUCN Red List categories of bird species: LC= least concern, NT = Near Threatened. Species are classified by taxonomic orders in bold.

						Texture	Fragmentation	All
Common name	Scientific name	IUCN	Texture	Composition	Fragmentation	Composition	Composition	Variables
BUCEROTIFORMES								
Tickell's Brown Hornbill	Anorrhinus tickelli	NT	0.937	0.942	0.885	0.969	0.932	0.962
Oriental Pied Hornbill	Anthracoceros albirostris	LC	0.845	0.848	0.861	0.941	0.876	0.947
Great Hornbill	Buceros bicornis	NT	0.847	0.924	0.857	0.936	0.934	0.946
Wreathed Hornbill	Rhyticeros undulatus	LC	0.857	0.937	0.860	0.935	0.933	0.931
CUCULIFORMES								
Banded Bay Cuckoo	Cacomantis sonneratii	LC	0.777	0.839	0.808	0.888	0.884	0.883
Asian Emerald Cuckoo	Chrysococcyx maculatus	LC	0.826	0.892	0.837	0.961	0.911	0.961
Chestnut-breasted Malkoha	Phaenicophaeus curvirostris	LC	0.879	0.942	0.872	0.977	0.953	0.984
Green-billed Malkoha	Phaenicophaeus tristis	LC	0.748	0.750	0.754	0.857	0.781	0.867
GALLIFORMES								
Bar-backed Partridge	Arborophila brunneopectus	LC	0.735	0.686	0.757	0.944	0.883	0.954
Scaly-breasted Partridge	Arborophila chloropus	LC	0.819	0.878	0.866	0.913	0.890	0.918
Red Junglefowl	Gallus gallus	LC	0.807	0.854	0.816	0.879	0.862	0.894

Siamese Fireback	Lophura diardi	LC	0.826	0.940	0.895	0.956	0.923	0.951
Silver Pheasant	Lophura nycthemera	LC	0.899	0.920	0.932	0.959	0.959	0.981
Grey Peacock Pheasant	Polyplectron bicalcaratum	LC	0.920	0.898	0.879	0.916	0.918	0.929
PASSERIFORMES								
Yellow-bellied Warbler	Abroscopus superciliaris	LC	0.722	0.838	0.812	0.864	0.842	0.893
Spectacled Barwing	Actinodura ramsayi	LC	0.841	0.947	0.876	0.975	0.973	0.980
Great Iora	Aegithina lafresnayei	LC	0.870	0.889	0.823	0.935	0.895	0.934
Green Iora	Aegithina viridissima	NT	0.842	0.916	0.781	0.976	0.915	0.980
Black-throated Sunbird	Aethopyga saturata	LC	0.730	0.932	0.874	0.937	0.944	0.956
Brown-cheeked Fulvetta	Alcippe poioicephala	LC	0.788	0.838	0.808	0.898	0.850	0.906
Little Spiderhunter	Arachnothera longirostra	LC	0.772	0.862	0.799	0.906	0.864	0.923
Streaked Spiderhunter	Arachnothera magna	LC	0.749	0.909	0.831	0.909	0.915	0.926
Yellow-bellied Fairy- flycatcher	Chelidorhynx hypoxantha	LC	0.887	0.961	0.860	0.974	0.955	0.964
Golden-fronted Leafbird	Chloropsis aurifrons	LC	0.684	0.845	0.825	0.852	0.848	0.868
Blue-winged Leafbird	Chloropsis cochinchinensis	LC	0.778	0.871	0.850	0.896	0.875	0.907
Orange-bellied Leafbird	Chloropsis hardwickii	LC	0.736	0.943	0.898	0.954	0.949	0.943
Chestnut-tailed Minla	Chrysominla strigula	LC	0.884	0.973	0.881	0.986	0.979	0.988
Common Green Magpie	Cissa chinensis	LC	0.833	0.898	0.853	0.913	0.907	0.933
White-rumped Shama	Copsychus malabaricus	LC	0.725	0.810	0.790	0.823	0.785	0.832
Tickell's Blue Flycatcher	Cyornis tickelliae	LC	0.813	0.814	0.842	0.909	0.870	0.942
Grey Treepie	Dendrocitta formosae	LC	0.804	0.908	0.825	0.941	0.916	0.959

LC	0.728	0.858	0.803	0.935	0.879	0.948
LC	0.871	0.864	0.859	0.931	0.893	0.943
LC	0.734	0.864	0.834	0.924	0.884	0.936
LC	0.891	0.929	0.883	0.980	0.950	0.989
LC	0.708	0.867	0.796	0.863	0.840	0.879
LC	0.727	0.856	0.814	0.920	0.888	0.928
LC	0.814	0.905	0.897	0.918	0.913	0.919
LC	0.753	0.926	0.885	0.945	0.957	0.964

trigonostigma	LC	0.891	0.929	0.883	0.980	0.950	0.989
Dicrurus aeneus	LC	0.708	0.867	0.796	0.863	0.840	0.879
Dicrurus remifer	LC	0.727	0.856	0.814	0.920	0.888	0.928
Dryonastes chinensis	LC	0.814	0.905	0.897	0.918	0.913	0.919
Enicurus schistaceus	LC	0.753	0.926	0.885	0.945	0.957	0.964
Erpornis zantholeuca	LC	0.765	0.929	0.871	0.942	0.937	0.944
Ficedula westermanni	LC	0.729	0.945	0.881	0.979	0.952	0.976
Garrulax leucolophus	LC	0.769	0.854	0.844	0.908	0.881	0.909
Garrulax monileger	LC	0.827	0.818	0.789	0.873	0.829	0.882
Garrulax pectoralis	LC	0.828	0.767	0.745	0.897	0.784	0.911
Garrulus glandarius	LC	0.662	0.876	0.793	0.926	0.873	0.933
Gracula religiosa	LC	0.847	0.867	0.847	0.899	0.878	0.915
Hemipus picatus	LC	0.743	0.886	0.834	0.904	0.895	0.931
Hemixos flavala	LC	0.758	0.891	0.851	0.951	0.898	0.964
Iole olivacea	NT	0.921	0.910	0.879	0.965	0.928	0.970
Irena puella	LC	0.819	0.894	0.860	0.960	0.915	0.965
Ixos mcclellandii	LC	0.745	0.942	0.823	0.951	0.938	0.960
Leiothrix argentauris	LC	0.810	0.934	0.872	0.944	0.957	0.959
Macronus gularis	LC	0.774	0.829	0.812	0.874	0.863	0.889
	trigonostigma Dicrurus aeneus Dicrurus remifer Dryonastes chinensis Enicurus schistaceus Erpornis zantholeuca Ficedula westermanni Garrulax leucolophus Garrulax garrulax gectoralis Garrulax gectoralis Garrulas glandarius Garrulus glandarius Hemipus picatus Hemixos flavala Iole olivacea Irena puella Ixos mcclellandii Leiothrix argentauris	trigonostigmaLCDicrurus aeneusLCDicrurus remiferLCDryonastes chinensisLCEnicurus schistaceusLCErpornis zantholeucaLCFicedula westermanniLCGarrulax pectoralisLCGarrulax glandariusLCGracula religiosaLCHemipus picatusLCIole olivaceaNTIrena puellaLCLos kacronus gularisLCLos picatusLCLos bicatusLCLos cos flavalaLCLos bicatusLCLos b	trigonostigmaLC0.891Dicrurus aeneusLC0.708Dicrurus remiferLC0.727Dryonastes chinensisLC0.814Enicurus schistaceusLC0.814Erpornis zantholeucaLC0.753Ficedula westermanniLC0.729Garrulax nonilegerLC0.769Garrulax pectoralisLC0.827Garrulax glandariusLC0.828Garrulas 	trigonostigma LC 0.891 0.929 Dicrurus LC 0.708 0.867 Dicrurus LC 0.727 0.856 Dryonastes LC 0.814 0.905 Enciurus LC 0.753 0.926 Enicurus LC 0.765 0.929 Schistaceus LC 0.765 0.929 Ficedula LC 0.765 0.929 Ficedula LC 0.769 0.854 Garrulax LC 0.769 0.854 Garrulax LC 0.828 0.767 Garrulax LC 0.847 0.867 Garrulax LC 0.743 0.886 Garrulas LC 0.758 0.891 Jole olivacea NT 0.921 0.910 Irena puella LC <	trigonostigma LC 0.891 0.929 0.883 Dicrurus aeneus LC 0.708 0.867 0.796 Dicrurus remifer LC 0.727 0.856 0.814 Dryonastes chinensis LC 0.727 0.856 0.814 Dryonastes chinensis LC 0.723 0.905 0.897 Enicurus schistaceus LC 0.753 0.926 0.885 Erpornis schistaceus LC 0.765 0.929 0.871 Ficedula westermanni LC 0.769 0.854 0.881 Garrulax leucolophus LC 0.769 0.818 0.789 Garrulax monileger LC 0.828 0.767 0.745 Garrulax glandarius LC 0.828 0.767 0.847 Garrulus glandarius LC 0.826 0.876 0.793 Gracula religiosa LC 0.743 0.886 0.834 Hemipus picatus LC 0.758 0.891 0.851 Iole olivacea NT 0.921 0.910 0.879 Irena puel	Irrgonositgma LC 0.891 0.929 0.883 0.980 Dicrurus aeneus LC 0.708 0.867 0.796 0.863 Dicrurus remifer LC 0.727 0.856 0.814 0.920 Dryonastes chinensis LC 0.814 0.905 0.897 0.918 Enicurus schistaceus LC 0.753 0.926 0.885 0.945 Erpornis cantholeuca LC 0.765 0.929 0.871 0.942 Ficedula westermanni LC 0.729 0.945 0.881 0.979 Garrulax beucolophus LC 0.769 0.854 0.844 0.908 Garrulax pectoralis LC 0.827 0.818 0.789 0.873 Garrulax pectoralis LC 0.826 0.876 0.793 0.926 Garrulax pectoralis LC 0.662 0.876 0.847 0.897 Garrulax pectoralis LC 0.743 0.867 0.847 0.926 Garrulax menoil	Irrgonostigma LC 0.891 0.929 0.883 0.980 0.950 Dicrurus aencus LC 0.708 0.867 0.796 0.863 0.840 Dicrurus aencus LC 0.707 0.856 0.814 0.920 0.888 Dryonastes chinensis LC 0.717 0.856 0.897 0.918 0.913 Enicurus schistaceus LC 0.753 0.926 0.885 0.945 0.957 Erpornis camholeuca LC 0.765 0.929 0.871 0.942 0.937 Ficedula westermanni LC 0.769 0.854 0.881 0.979 0.952 Garrulax monileger LC 0.769 0.854 0.844 0.908 0.881 Garrulax monileger LC 0.769 0.854 0.844 0.908 0.829 Garrulax monileger LC 0.827 0.818 0.783 0.829 0.873 Garrulax monileger LC 0.826 0.876 0.743 0.

Thick-billed Flowerpecker

Yellow-vented

Plain Flowerpecker

Orange-bellied

Flowerpecker

Dicaeum agile

chrysorrheum

Dicaeum

Dicaeum

minullum

Dicaeum

Dark-backed Sibia	matactas melanoleucus	LC	0.853	0.959	0.862	0.987	0.968	0.992
Abbott's Babbler	Malacocincla abbotti	LC	0.886	0.928	0.884	0.941	0.929	0.958
Sultan Tit	Melanochlora sultanea	LC	0.824	0.780	0.870	0.854	0.872	0.926
Large Niltava	Niltava grandis	LC	0.838	0.969	0.896	0.969	0.966	0.973
Dark-necked Tailorbird	Orthotomus atrogularis	LC	0.818	0.796	0.802	0.892	0.829	0.893
Yellow-cheeked Tit	Parus spilonotus	LC	0.818	0.951	0.861	0.972	0.959	0.962
Short-billed Minivet	Pericrocotus brevirostris	LC	0.758	0.912	0.829	0.908	0.897	0.946
Mountain Tailorbird	Phyllergates cuculatus	LC	0.794	0.938	0.821	0.968	0.931	0.970
Blyth's Leaf Warbler	Phylloscopus reguloides	LC	0.851	0.945	0.863	0.957	0.949	0.968
Blue Pitta	Pitta cyanea	LC	0.837	0.901	0.890	0.929	0.903	0.940
White-browed Scimitar Babbler	Pomatorhinus schisticeps	LC	0.726	0.890	0.855	0.908	0.936	0.944
Long-tailed Broadbill	Psarisomus dalhousiae	LC	0.825	0.919	0.906	0.926	0.945	0.941
Rufous-winged Fulvetta	Pseudominla castaneceps	LC	0.888	0.951	0.876	0.984	0.969	0.981
Blyth's Shrike-babbler	Pteruthius aeralatus	LC	0.795	0.930	0.851	0.963	0.940	0.974
Black-headed Bulbul	Pycnonotus atriceps	LC	0.797	0.849	0.808	0.884	0.858	0.903
Stripe-throated Bulbul	Pycnonotus finlaysoni	LC	0.767	0.827	0.784	0.870	0.843	0.889
Black-crested Bulbul	Pycnonotus flaviventris	LC	0.720	0.828	0.799	0.863	0.837	0.881
White-throated Fantail	Rhipidura albicollis	LC	0.722	0.921	0.834	0.950	0.928	0.964
Silver-breasted Broadbill	Serilophus lunatus	LC	0.747	0.863	0.855	0.899	0.863	0.917
Chestnut-vented Nuthatch	Sitta nagaensis	LC	0.765	0.956	0.826	0.976	0.969	0.984
Golden Babbler	Stachyridopsis chrysaea	LC	0.834	0.936	0.882	0.962	0.952	0.970

Grey-throated Babbler	Stachyris nigriceps	LC	0.811	0.919	0.816	0.948	0.934	0.957
Large Woodshrike	Tephrodornis virgatus	LC	0.849	0.880	0.840	0.933	0.891	0.932
Silver-eared Laughingthrush	Trochalopteron melanostigma	LC	0.800	0.951	0.825	0.983	0.981	0.945
PICIFORMES								
Greater Flameback	Chrysocolaptes guttacristatus	LC	0.881	0.907	0.888	0.939	0.925	0.944
Greater Yellownape	Chrysophlegma flavinucha	LC	0.788	0.884	0.852	0.899	0.907	0.911
Grey-capped Pygmy Woodpecker	Dendrocopos canicapillus	LC	0.646	0.777	0.740	0.869	0.784	0.866
Blue-throated Barbet	Megalaima asiatica	LC	0.738	0.891	0.846	0.927	0.891	0.947
Blue-eared Barbet	Megalaima australis	LC	0.867	0.884	0.855	0.915	0.914	0.919
Green-eared Barbet	Megalaima faiostricta	LC	0.860	0.932	0.871	0.946	0.940	0.950
Moustached Barbet	Megalaima incognita	LC	0.877	0.954	0.915	0.963	0.955	0.964
Great Barbet	Megalaima virens	LC	0.715	0.887	0.829	0.903	0.918	0.928
White-browed Piculet	Sasia ochracea	LC	0.780	0.880	0.842	0.918	0.899	0.953

Appendix 9. Correlations between all 11 texture measures derived from MODIS fPAR. The lower triangle of the matrix shows scatterplots for pairs of texture measures and red lines are loess regression lines. The upper triangle shows Pearson's correlation coefficients between the texture measures. Positive and negative correlation coefficients are shown with larger fonts indicating larger absolute values of correlation coefficients. The diagonal shows the histogram for each texture measure. The texture measures were obtained from 5,000 1-km pixels randomly selected from the forest areas of Thailand. The names of the measures used in the species distribution model are underlined.

		0.0 1.0 2.0		0.0 0.4		-0.5 0.5		0.0 1.0 2.0		0.0 0.4 0.8		Coofficient
	cv1	0.32	0.02	-0.01	0.75	0.05	0.78	0.43	-0.21	0.20	0.09	of variation
0.0 1.5		ent1	0.41	0.35	0.18	0.13	0.30	0.52	0.31	0.44	0.31	1 st Entropy
			mean1	0.47	0.25	0.16	0.20	0.16	0.48	0.68	0.82	1 st Mean
0.0	j.	į	فنند	ASM	0.09	0.19	0.16	0.53	0.89	0.79	0.72	ASM
				j.	contrast	-0.05	0.93	0.39	-0.13	0.37	0.34	<u>Contrast</u>
0.5 0.6	1	;				correlatio	-0.02	0.22	0.26	0.26	0.24	Correlation
ŝ	······································				A CONTRACT OF		dissimilar	0.62	-0.08	0.49	0.38	Dissimilarity
0.0 1.5	Ş			. · · · · · · · · · · · · · · · · · · ·			A. S. C. S.	entropy	0.46	0.76	0.51	2 st Entropy
				and the second s					homogeneit	0.75	0.70	Homogeneity
910 010			<u>_</u>							mean2	0.94	2 st Mean
0.0	0.2 0.4		0 2000		0 200 400		0 5 10 15		0.0 0.4 0.8		variance2	Variance

Appendix 10. Correlations between selected 16 variables of habitat fragmentation, composition, and texture. The lower triangle of the matrix shows scatterplots for pairs of variables and red lines are loess regression lines. The upper triangle shows Pearson's correlation coefficients between the variables. Positive and negative correlation coefficients are shown with larger fonts indicating larger absolute values of correlation coefficients. The diagonal shows the histogram for each texture measure. The variables were obtained from 5,000 1-km pixels randomly selected from the forest areas of Thailand.

		0 40 80		0.0 1.0		0.0 0.2 0.4		-0.5 0.5		0.0 0.4 0.8		0 40 80		0 40 80		
		-0.13	0.29	0.03	-0.02	0.02	-0.02	-0.01	0.03	-0.03	0.09	-0.04	-0.03	-0.04	-0.08	-0.02 Bridge
09 0	in the second		-0.32	-0.01	0.10	-0.02	0.09	0.15	0.03	0.21	0.06	0.12	0.19	0.15	0.45	0.09 Core
	Pro-			0.02	-0.22	0.15	0.04	-0.09	0.13	-0.11	0.26	-0.21	-0.17	0.00	-0.19	0.01 EgEdge
0.0 1.5	1:·	STAT.	Gali		0.07	0.00	0.00	0.00	-0.03	-0.05	0.00	0.00	-0.01	-0.02	-0.03	-0.02 Loop
	ξ. · ·	1	in the second	o.s.	a second second	0.01	0.04	0.04	0.03	0.04	-0.03	0.05	0.12	-0.05	0.12	-0.02 Perforation
0.0 0.4	-	1		ing		m	0.75	0.05	0.43	-0.21	0.10	-0.05	-0.10	-0.15	0.13	0.04 Coefficient
	and in	1220		ini	Sec. 1			-0.05	0.39	-0.13	-0.04	0.01	-0.07	-0.03	0.20	-0.01 Contrast
-0.5	-							A	0.22	0.26	-0.01	0.05	0.13	0.05	0.06	0.00 Correlation
	· .		1		1. A.	A			• <u>1</u>	0.46	0.18	-0.04	0.01	-0.07	0.12	0.04
0.0 0.8				 649 :		A State)ð		-0.04	0.12	0.14	0.22	0.08	-0.03 Homogeneity
	the section		1000	N	and the second s							-0.14	-0.08	-0.18	-0.35	-0.11 Dry dipterocarp
09 0	ě.										1		-0.03	-0.09	-0.16	-0.04 Dry Evergreen
				i.						in the	·	· · .		-0.05	-0.08	-0.03 Montane Evergreen
0 60	*			;	4									1	-0.23	-0.07 Lowland Evergreen
	100	1000			and the second s	14 A.	-	1.1			10 ×	A.C.	as it as	<u>)</u> .	L	-0.13 Mixed deciduous
09 0														<u> </u>	(internet	Secondary-growth
	0.0 1.5 3.0		0 10 20		0 5 15		0 200 400	0	0.0 1.0 2.0		0 40 80		0 40 80		0 40 80	
Appendix 11. Habitat heterogeneity captured by five texture measures for different forest types. The boxplots indicate 95th, 75th, 50th, 25th and 5th percentiles of measure values. The values were calculated from 1,000 randomly selected pixels within each forest type at the 1-km resolution based on Landsat land cover map of Thailand.

Chapter 3: Habitat connectivity for endangered Indochinese tigers in Thailand

Abstract

Habitat connectivity is crucial for the conservation of species restricted to small, fragmented, and isolated populations within human-dominated landscapes. However, identifying habitat connectivity, especially for top predators, is challenging due to trophic interactions between primary productivity and prey species influencing the distribution of predator's habitats and their capacity to move and disperse. Our goal was to assess current and potential habitat connectivity for Indochinese tigers (Panthera tigris) in Thailand. We quantified currently occupied and potentially suitable habitat and dispersal corridors across Thailand based on habitat suitability for the Indochinese tiger. We estimated habitat suitability with an ensemble species distribution model based on camera-trap data from 15 protected areas with trophic interactions and abiotic variables. We employed graph theory to evaluate the relative importance of habitat patches and dispersal corridors to the overall connectivity network. Our analyses showed that habitat suitability models both with and without trophic interactions performed well. However, including trophic interactions between plant productivity, prey (wild boar, sambar, muntjac, and gaur) and predator (tiger) significantly improved model performance (P < 0.001). Currentlyoccupied habitat patches were highly fragmented and isolated with high resistance to movement within the dispersal corridors. Potential habitat patches were mostly isolated. However, we identified potential habitat patches that could serve as target sites for reintroduction and restore connectivity, especially in the Western Forest complex. The Western Forest Complex habitat patch and the Kaeng Krachan dispersal corridor were the most important habita patch and corridor for maintaining the overall habitat connectivity network. More broadly, our results highlight the value of integrating trophic interactions into assessments of connectivity to predict

habitat suitability and delineate dispersal corridors, and thus offer an effective tool for conservation planning of tigers and other large carnivores.

Introduction

Human activities are changing the Earth's ecosystems with profound consequences for biodiversity (Chapin et al. 2000; Sala et al. 2000). The loss and fragmentation of habitat poses an imminent threat to the viability of many species, especially those with large home ranges (Brook et al. 2008; Pimm et al. 2014). Survival of these species depends upon maintaining connectivity between isolated populations (Fahrig and Merriam 1985; Noss et al. 1996; Taylor et al. 1993). Landscape connectivity is defined as the degree to which a landscape facilitates or impedes individual dispersal between habitat patches (Taylor et al. 1993). Connectivity can mitigate impacts of climate change by allowing species to track their fundamental niches (Noss 2001). In addition, connectivity plays a crucial role in conservation planning where the goal is often to preserve resilient habitat networks, and design linkages of high quality habitat (i.e., dispersal corridors) between remnant patches or protected areas (Soule and Terborgh 1999). The assessment of functional connectivity, defined as ecological response of organisms to landscape elements (e.g., patches), and the ability of individuals to disperse across non-habitat areas (Moilanen and Hanski 2001; Moilanen and Nieminen 2002; Tischendorf and Fahring 2000; Uezu et al. 2005), requires understanding of the requirement of dispersing species, the spatial distribution of habitat suitability, and the potential connections between them (Goodwin and Fahrig 2002; Urban et al. 2009). However, models identifying habitat connectivity networks typically focus on a single species, and disregard the influence of species interactions due to incomplete assessments of competition, or trophic interactions (Beier et al. 2011).

Trophic interactions shape the realized niche that ultimately determines movement or dispersal success, and therefore functional habitat connectivity. Trophic interactions in conjunction with abiotic factors determine the distributions and abundance of species (Hutchinson and Macarthur 1959). Specifically, trophic interactions play a crucial role in controlling distributions of large mammal communities through the interrelationships of plants, herbivores, omnivores, and carnivores at different trophic levels (Finke and Snyder 2010; Power 1992). This role of trophic interactions on species distributions has relevance for the assessment of habitat connectivity of large carnivores because trophic interactions influence the spatial structure of habitat suitability, and the movement behavior of both predator and prey in acquiring food resources in different habitat patches.

Trophic interactions can provide ecological insights into how species respond to landscape heterogeneity, and consequently define habitat suitability and dispersal corridors. However, studies of habitat connectivity for large carnivores typically define habitat suitability based on abiotic factors only due to a paucity of data on prey species. Such models assume that trophic interactions are implicit in models, for example, of jaguar (Panthera onca) (Rabinowitz and Zeller 2010), grizzy bears (Ursus arctor), and cougar (Puma concolor) (Chetkiewicz and Boyce 2009). Yet, if trophic interactions are not explicitly accounted for when modeling habitat suitability, it is possible that habitat patches and dispersal corridors will not be ecologically relevant (Kanagaraj et al. 2013). Previous studies have demonstrated that the incorporation of trophic interactions into habitat suitability for large carnivores improves predictions of habitat suitability and is essential to assess habitat connectivity (Hebblewhite et al. 2014; Kanagaraj et al. 2011; Kanagaraj et al. 2013). A study of the Bengal tigers in the Terai Arc Landscape of India and Nepal demonstrates that including trophic interactions with Chital and Sambar results in the best habitat suitability model for connectivity assessment (Kanagaraj et al. 2011; Kanagaraj et al. 2013). However, while some studies of large carnivore connectivity have included food resources into habitat suitability models, habitat connectivity studies assessing interactions

among different trophic levels between predator, prey, and primary productivity are few and far between.

Different methods have been proposed to estimate habitat connectivity, depending on the landscape structure, the scientific questions, and the species of interest (Kindlmann and Burel 2008). However, each method has drawbacks, and no single approach can provide complete guidance as to where conservation efforts can be successful to maintain or improve connectivity. It is often necessary to integrate multiple approaches (Tischendorf and Fahring 2000). Commonly used modeling approaches to quantify habitat connectivity are: least-cost path analysis (Adriaensen et al. 2003; Rabinowitz and Zeller 2010; Tischendorf and Fahring 2000), circuit analysis (McRae et al. 2008), graph theory (Bunn et al. 2000; Urban and Keitt 2001), and metapopulation modeling (Hanski 1999; Moilanen and Nieminen 2002).

The combination of least cost modeling, circuit analysis, and graph theory has been successfully applied to restore or preserve habitat connectivity for species-level conservation (Brodie et al. 2015; Ziolkowska et al. 2012). Least-cost path analysis integrates the matrix between patches using an individual's movement routes within a landscape (Adriaensen et al. 2003). However, the limitation of least-cost path analysis for landscape connectivity is that only a single path is identified, even though alternative paths with just slightly higher cost may exist (Driezen et al. 2007). Furthermore, connectivity measures focusing on optimum routes only fail to incorporate variation in the behavior among individuals, and for the same individual over time (Belisle 2005). Circuit analysis, on the other hand, identifies multiple pathways for connectivity, thus providing a better assessment how individuals would move across landscape, and can complements least-cost modeling. Furthermore, graph theory evaluates the relative importance of individual landscape elements in maintaining overall habitat connectivity throughout the network of patches and corridors (Calabrese and Fagan 2004; Urban and Keitt 2001; Urban et al. 2009). Graph-based metrics can quantify landscape elements as a source or a stepping stone based on habitat availability and species traits (e.g., dispersal distance), and evaluate functional connectivity (Saura and Pascual-Hortal 2007; Saura and Rubio 2010). Although while a combination of methods is a promising approach, corridor locations derived from least-cost modelling and circuit analysis are sensitive to the relative cost values assigned (i.e., the ecological costs associated with individuals dispersing through different land cover classes), and to the spatial configuration of habitat patches (McRae et al. 2008). Therefore, conducting leastcost modeling and circuit analysis using a habitat suitability map can yield ecological connectivity network. A number of studies have applied a combined approach to the analysis of landscape connectivity in order to guide conservation and restoration efforts, such as European bison (*Bison bonasus*) (Ziolkowska et al. 2012).

One species for which habitat connectivity is very important is tigers (*Panthera tigris*). Tigers now occupy only 7% of their historical range (Dinerstein et al. 2007), and have declined precipitously over the last century due to human threats, including habitat loss, degradation and fragmentation, poaching (Lynam 2010; Seidensticker et al. 2010; Wikramanayake et al. 2004), and decreased prey availability (Barber-Meyer et al. 2013; Karanth et al. 2004a; Steinmetz et al. 2013). Long-term persistence of tigers depends on large, well-connected habitat patches. Thus, it is important to assess connectivity of suitable habitat for tigers in order to provide essential information for conservation planning such as habitat restoration projects, translocations, and reintroductions (Karanth et al. 2014; Lynam et al. 2001; Sunquist et al. 1999). Tiger populations in Thailand are at risk of extinction, even though Thailand occupies the historical center of tiger's range (Lynam 2010; Lynam et al. 2001). However, due to socio-economic developments

and poaching, only 250-350 tigers remain in Thailand according to recent estimates, and they are splintered into small, isolated subpopulations (Rabinowitz 1993; Smith et al. 1999; Ngoprasert et al. 2012). Furthermore, these subpopulations are vulnerable to extinction due to deforestation, illegal trade, and insufficient prey due to poaching (Simcharoen et al. 2014b; Steinmetz et al. 2006; Steinmetz et al 2013). In 2010, the Global Tiger Initiative identified priority areas for tiger conservation (Sanderson et al. 2010). However, incomplete assessments of tiger distributions and habitat connectivity in many regions still continue to hamper conservation efforts. Thailand is one of the regions that still needs better understanding of the patterns of tiger distributions and habitat connectivity (Lynam 2010).

Habitat availability for tigers depends ultimately on the full range of resources and environmental conditions that allow the species to survive and reproduce, including shelter, availability of prey species, absence of human disturbances, and connectivity to other occupied patches for breeding and to maintain genetic diversity (Dinerstein et al. 2007; Kanagaraj et al. 2013; Wikramanayake et al. 2004). Tigers prefer a mosaic of forest and grassland habitats with disturbed and undisturbed tracts of forest that maximize the density of prey abundance, and offer cover for hunting, breeding, and raising cubs (Karanth et al. 2003; Smith et al. 2010; Karanth and Stith 1999). This is why tigers are restricted to forest and grassland habitats within the suite of protected areas in Thailand (Rabinowitz 1993; Smith et al. 1999). In terms of species interactions, tiger distribution is primarily driven by prey availability, while intra-guild predation (i.e., leopard, cloud leopard, and dhole) appears to have little effect on tiger occurrences (Jenks et al. 2012; Ngoprasert et al. 2012; Steinmetz et al. 2013). The most common ungulate prey species are wild boar, red muntjac, sambar deer, gaur, and banteng (Ngoprasert et al. 2012). Although tigers' biology is well-studied, it remains unclear how trophic interactions predict habitat suitability, and influence habitat connectivity patterns.

Here, we combined species distribution modeling at different trophic levels and connectivity metrics in a novel way to understand the mechanism underlying patterns of habitat connectivity for the Indochinese tiger in Thailand. We tested the hypothesis that trophic interactions between primary productivity (i.e., cumulative productivity, and seasonality in productivity), prey, and predator play a significant role in predicting habitat suitability for tigers. We also employed an integrative approach of least-cost modeling, circuit analysis, and graph theory to assess connectivity pattern across Thailand. Conducting the cost-path analyses (i.e., least-cost modeling and circuit analysis) based on habitat suitability together with spatial data on dispersal barriers provided more ecological resistance surface to yield potential dispersal corridors. Via graph theory, we then evaluate the relative importance of habitat patches and dispersal corridors in maintaining overall connectivity networks.

Our goal was to assess currently occupied and potential habitat connectivity for the Indochinese tigers in Thailand. Our specific objectives were to:

- test the trophic interaction hypothesis based on food resources and environmental variables that provide the best prediction of habitat suitability.
- (ii) identify currently occupied and potential habitat patches and dispersal corridors
- (iii) evaluate the relative importance of habitat patches and dispersal corridors in maintaining an overall habitat connectivity network in order to identify priority sites for tiger and prey reintroduction.

172

Methods

Study area

Thailand covers 513 115 km² of land area between latitudes 5°45′ and 20° 27′ N and longitudes 97° 22′ and 105° 37′ E. Elevation ranges from 0 to 2565 m. The climate is influenced by seasonal monsoons and varies among regions. Most forested areas have been converted for commercial forestry. The recent estimate shows only 32% of natural forest remains cover, mostly within protected areas with the dominant coverage at higher elevations (RFD 2013). Thailand is a global biodiversity hotspot (Myers et al. 2000), and home to more than 300 mammal species, including endangered tigers (IUCN 2014). However, Thailand's native mammal community is collapsing, with up to 12 species threatened by rapid habitat loss and fragmentation due to increasing human populations, economic development, and land use change (Gibson et al. 2013; Trisurat et al. 2010a; Woodruff 2013), rates of which will likely rise due to emerging international free market policies in 2015 (i.e., ASEAN Economic Community) (Fox and Vogler 2005).

Camera trap survey data

We collected camera trap data during 1997-2013 from 15 protected areas (Figure 13). We selected camera locations to maximize chances of capturing animals where animal signs were found (i.e., prints and scats) close to wildlife trails, stream beds, and ridges, and to span gradients in elevation (ranging from 0-1351 m) and multiple mammal habitat conditions (e.g., hill evergreen forests, mixed deciduous forest, dry dipterocarp forest, and grassland). We attached the cameras to the base of trees about 50 cm aboveground with approximately 0.5 km spacing between cameras. We operated cameras 24 hours per day, and cameras recorded time and date for each exposure. We did not use baits or lures. We selected tiger and the four most common

ungulate prey species of tigers: Eurasian wild boar (*Sus scrofa*), Gaur (*Bos gaurus*), Red muntjac (*Muntiacus muntjac*), and Sambar deer (*Rusa unicolor*) (Ngoprasert et al. 2012) to conduct habitat suitability, connectivity, and corridor analyses.

Habitat variables

We predicted potential habitat suitability for tigers using trophic and abiotic variables considered critical to tiger reproduction and survival. We included (1) the probability of occurrence of four prey ungulate species; (2) primary productivity; (3) proportion of habitat types; (4) mean elevation; (5) slope; (6) terrain ruggedness; (7) distance to nearest rivers and streams; (8) mean annual precipitation; (9) distance to nearest forest edge; (10) distance to nearest human settlement and roads. We calculated continuous values of each habitat variable within 1-km resolution. This grain scale has been previously applied in the calculation of habitat variables in studies of mammal carnivores and ungulate prey species in Thailand (Jenks et al. 2012; Ngoprasert et al. 2012; Steinmetz et al. 2013).

Trophic variable included the probability of occurrence of four prey ungulate species, and primary productivity. The direct effects of consumption and productivity, i.e., the bottom of food webs of herbivores and their predators, throughout food webs play important role for distributions of prey and predator species in the community (Power 1992). We extracted the cumulative annual productivity and seasonal variation in productivity from the Dynamic Habitat Indices, derived from fPAR-MODIS primary productivity product. Details about the way the fPAR composite image was derived can be found in Radeloff et al (in preparation). We employed the probability of occurrence of four prey ungulate species as a surrogate for prey availability or abundance.

Abiotic variables included habitat types, elevation, slope, terrain ruggedness, distance to nearest rivers or streams, mean annual precipitation, and human disturbance variables (Ngoprasert et al. 2012; Simcharoen et al. 2014a). We computed the proportion of eight habitat types: grassland, secondary forest, bamboo forest, mixed deciduous forest, dry dipterocarp forest, hill evergreen forest, moist evergreen forest, and dry evergreen forest using the Thailand land cover map of 2000 provided by the Thailand Department of National Parks, Wildlife, and Plant Conservation. The land cover map is derived from Landsat TM and ETM+ using supervised classification approach at the scale of 1:50,000. We calculated mean elevation, slope (0-90°), and terrain ruggedness from the Shuttle Radar Topography Mission (SRTM). We extracted mean annual precipitation derived from averages for the period of 1961-1990 from the WorldClim data (Hijmans et al. 2005). We also calculated distance to nearest rivers or streams, forest edge, and human settlement or road, using the Thailand land cover map of 2000. We chose distance to the nearest forest edge and human settlement or road as a surrogate for hunting pressure because hunting intensity is inversely related to the distance that poachers have access to wildlife habitat (Ngoprasert et al. 2012).

Tiger habitat suitability

To estimate habitat suitability for tigers, we employed an ensemble modeling approach relating the camera trap data to the environmental variables. An ensemble method combines multiple types of Species Distribution Models (SDMs) to reach a consensus outcome for probability of species occurrence to account for variability among SDM algorithms (Araujo and New 2007; Thuiller 2003; Thuiller et al. 2009). We included ten different species distribution modelling algorithms implemented within the BIOMOD2 package version 3.1-64 in R (Thuiller et al. 2009; R Development Core Team 2015): three regression methods (generalized linear model, GLM; generalized additive model, GAM; and Multiple Adaptive Regression Splines, MARS), two classification methods (flexible discriminant analysis, FDA and classification tree analysis, CTA), and four machine-learning methods (artificial neural networks, ANN; generalized boosted model, GBM; random forests, RF; and maximum entropy, MAXENT), and a climate envelope method (surface range envelope, SRE) (Phillips et al. 2006; Thuiller et al. 2009). We set model algorithms with default parameters. The SDM algorithms require background data, and we combined true absences and generated pseudo-absences from within a 50-km buffer of each presence location based on average home range size for tigers (Simcharoen et al. 2014b). We generated ten times the number of occurrence records for all species (Barbet-Massin et al. 2012).

In order to evaluate the predictive performance of the SDMs for prey species and tigers, we calculated AUC (Fielding and Bell 1997) with 10-fold cross-validation by splitting a random subset of 90% of the observed data for the model calibration, and the remaining 10% of the data for model evaluation (Bateman et al. 2012; Elith et al. 2011). To provide an unbiased measure of model performance and obtain standard deviations for evaluation metrics (Pearce and Ferrier 2000), we repeated data splitting ten times with the two pseudoabsence replicates (a total of 20 replicates for each model algorithm). To ensure all replicates were comparable, we rescaled each replicate within Biomod2 using a binomial GLM. We considered AUC values above 0.7 to be indicative of useful models (Swets 1988). To obtain the consensus distribution for ungulate prey and tigers, we selected the top five performing models; GLM, GAM, GBM, RF, and MAXENT with AUC > 0.7 (Elith et al. 2006), and used an ensemble forecast technique by calculating the weighted mean distributions across selected SDMs. In order to transform the probabilistic

consensus distribution from the ensemble technique to a binary suitable/non-suitable habitat for each prey species and tigers, we considered suitability values above the sensitivity-specificity sum maximization threshold (Liu et al. 2005).

To compare the effects of trophic interactions in habitat suitability models for tigers, we modeled tigers with three different sets of variables: abiotic variables, prey, or abiotic and trophic interactions (i.e., primary productivity, and prey availability). For the tiger model obtained with trophic interactions, we first computed species distributions for the four prey ungulate species (i.e., wild boar, gaur, muntjac, and sambar) with primary productivity (i.e., cumulative productivity, and seasonality in productivity) as a measure of forage availability for ungulate prey, and abiotic variables described above. The predicted distributions of ungulate species were a surrogate for trophic interactions between plants and herbivores (Ngoprasert et al. 2012; Jenks et al. 2012), and we included them as predictor variables for the tiger model.

To determine whether trophic interactions (selection of abiotic variables versus trophic interaction variables) significantly improve the prediction of current distributions of Indochinese tigers, we tested the differences in model outputs produced with abiotic variables, prey, and abiotic + prey with Wilcoxon signed-rank tests for related samples (Araujo and Luoto 2007). The importance of the variable for each species was calculated using a randomization procedure as one minus the Pearson's correlation coefficients between the standard prediction and the prediction where the considered variables was randomly permutated. If the correlation is high (i.e., there is a small difference between the two predictions), the variable permutated is considered not important for the model. Therefore, one minus the correlation coefficient represents, for a given variable, the probability that the coefficient can contribute to the model.

The higher the probability, the higher a variable contributes in predicting the pattern (Thuiller et al. 2009).

Identify habitat patches and dispersal corridors

To assess habitat connectivity for tigers in Thailand (Figure 14), we integrated three connectivity models: least cost modelling, circuit analysis, and graph theory. To identify potential habitat patches, we considered suitable patches that were greater than 70 km² based on average home range size for female tigers from Huai Kha Khaeng Wildlife Sanctuary (Simchareon et al., 2014b). Previous studies in Thailand have shown that tiger home ranges vary depending on location, season, year, and prey availability in the region (Simcharoen et al. 2014b).

To identify locations of dispersal corridors, we employed least-cost path modeling (Adriaensen et al. 2003). We used a probabilistic habitat suitability map for tigers derived from the model including trophic interactions to generate least-cost path corridors for tigers. Least-cost paths can be identified by accumulating cost surface values along possible routes for two or more source patches. A cost surface is derived by quantifying the resistance of different land cover classes and summing the travel cost over the route of least resistance when individuals move between two patches (Adriaensen et al. 2003). We inverted the habitat suitability map for tigers with a linear function as a measure of resistance surfaces, rescaled from 1 (lowest resistance) to 100 (highest resistance). Dispersing tigers avoid agricultural areas and human disturbance, but may travel through a mosaic of forest and grassland with disturbed and undisturbed tracts of forest offering cover for movement (Smith 1993; Wikramanayake et al. 2004). We therefore included potential dispersal barriers for tigers: agriculture area, settlement,

highways, major roads, and rivers into the resistance surface map. We assigned grid cells that included the potential dispersal barriers to the maximum cost value to ensure that constructed least-cost paths will not cross them unless no other possibility of movement exists (Adriaensen et al. 2003; Ziolkowska et al. 2012). To determine the position of least-cost path locations, we used the cost distance tools in ArcGIS 10.1 (ESRI 2011) with scripts written in Python 2.7 (Python Software Foundation 2013). We constructed the least-cost path between a given habitat patch and its nearest neighbors with Euclidean distances, assuming that corridors to further patches will pass through habitat patches between them. To synthesize the movement of individuals across landscape matrices, we calculated the effective distance (i.e., the accumulative cost along the least cost paths), taking into account the landscape structure and movement behavior of tigers.

To complement the least-cost path analyses, we conducted a connectivity analysis based on electrical circuit theory (McRae et al. 2008). Least-cost path can identify a corridor location, but a least-cost path corridor is an optimal, linear route only, and it is likely that broader areas are used as corridors than just the optimal path. There are no clear methods to determine optimum width for corridors, and quantify the quality of corridors in facilitating organism movements (Beier et al. 2008; Sawyer et al. 2011). Therefore, we employed Circuitscape software version 3.5 (McRae and Shah, 2009) to identify other potential movement routes around the least-cost path corridor and quantify how tigers would move across the landscape within a given corridor width. We buffered the least-cost paths by 10 km and identified define dispersal corridors within that range that are wide enough to support the tiger movement, based on average home range size for tigers. We then assessed the flow of current between each pairwise combination of suitable habitat patches within 10-km buffer of least-cost paths. To evaluate the relative importance of individual patches and dispersal corridors for the overall connectivity network, we used the Probability of Connectivity index (*PC*) based on graph theory (Saura and Pascual-Hortal 2007; Urban and Keitt 2001; Saura and Rubio 2010). *PC* indicates the probability that two tigers randomly placed in the study area are in habitat patches that are reachable from each other (Saura and Pascual-Hortal 2007; Saura and Rubio 2010). The probability of individual tigers moving between habitat patches depends on both the amount of suitable habitat (nodes of the graph), and the distance and resistance to movement across the matrix (links of the graph). We defined a graph component composed as a set of nodes corresponding to the suitable habitat patches with > 70 km² (the average female tiger home range in Thailand). Each pair of nodes was connected through links (least cost paths) depicting potential movement paths of tigers.

To assess the probability of connectivity, we used effective distances to calculate interpatch-cost-dispersal probabilities (p_{ij}) as a decreasing exponential function of the effective distance between nodes (d_{ij}) and dispersal abilities of tigers (k) (Urban and Keitt 2001), as follows:

$$p_{ij} = e^{-kd} ij \tag{1}$$

We set k = 0.028, 0.012, and 0.011 to obtain a dispersal probability of 0.5 based on dispersal distance of tigers in Thailand of 25, 58, and 64 km, corresponding to values obtained from field observations (Robert Steinmetz, personal communication). We then computed *PC* for landscape elements (i.e., habitat patches, and dispersal corridors) and for each dispersal distance. *PC* summarizes the contribution of all habitat patches to tiger movements across the whole study area, as follows:

$$PC = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} p_{ij}^{max}}{A_{L}^{2}}$$
(2)

where a_i and a_j are the areas of habitat patches *i* and *j*, p_{ij}^{max} is the maximum product probability of all the possible paths between habitat patches *i* and *j* (including direct route between the two patches), and A_L is the study area (Saura and Pascual-Hortal 2007; Saura and Torne 2009).

To assess the relative importance of each habitat patches and dispersal corridors to overall connectivity, we calculated $d(PC)_k$, which prioritizes and ranks removal operations (Bodin and Saura 2010). The $d(PC)_k$ can be partitioned into three fractions which quantify the role of each habitat patch and dispersal corridor in maintaining or enhancing the movements of tigers with respect to habitat availability, connectivity, and stepping stone (Saura et al. 2014; Saura and Rubio 2010), as follows:

$$dPC_{k} = dPCintra_{k} + dPCflux_{k} + dPCconnector_{k}$$
(3)

The intra fraction (dPCintra_k) is the contribution of habitat patch k given by the suitable habitat that it contains. The flux fraction (dPCflux_k) measures the degree of connection of a habitat patch k with the other habitat patches. The connector fraction (dPCconnector_k) corresponds to the contribution of a habitat patch and dispersal corridor k to the connectivity between other habitat patches as a stepping stone or connectivity facilitating dispersal between them. We used Conefor 2.6 software software to calculate all graph theoretical measures (Saura and Torne 2009).

Results

Tiger habitat suitability

Habitat suitability models for the Indochinese tiger in Thailand performed well with abiotic variables, trophic interactions, and the combination of abiotic and trophic interactions (Figure 15 and Table 10). However, the incorporation of trophic interactions significantly improved model performance. Of all three tiger habitat models, accuracy of model performance was highest with tiger + abiotic + prey (AUC = 0.954, SD = 0.06), followed by tiger + abiotic (AUC = 0.939, SD = 0.06), and tiger + prey (AUC = 0.932, SD = 0.05). Model performance was significantly different (Wilcoxon signed-rank test, P < 0.001) between tiger + abiotic and tiger + abiotic + prey, and between tiger + abiotic than with prey models. However, models were significantly improved when trophic interactions (i.e., primary productivity and ungulate prey) were included into tiger + abiotic model. These results supported the importance of trophic interactions and that incorporating trophic interactions between primary productivity, herbivores, and carnivores can provide better predictions of habitat suitability for apex predators.

Prey habitat suitability was the most important variable in predicting habitat suitability for tigers (Figure 16 and Table 10). In the trophic interaction model (tiger + abiotic + prey), the occurrence of tigers was more likely where occurrences of wild boar, gaur, mixed deciduous, distance to human settlement, and distance to forest edge increased. For the prey-only model, tiger occurrence was best predicted by high occurrences of wild boar and gaur. For the abioticonly model, tiger occurrences were more likely at higher proportion of mixed deciduous forest and dry evergreen forest, further distance to human settlement, and forest edge. The occurrence of wild boar was the best predictor of tiger habitat suitability in both models of tiger + prey and tiger + abiotic + prey.

The effect of variables on predictions of habitat suitability for ungulate prey varied among species. Habitat suitability of wild boar, gaur, muntjac, and sambar were all highly correlated with cumulative productivity, seasonality in productivity, annual precipitation, and forest edge. Occurrences of all four species increased as cumulative productivity increased. Occurrences of wild boar and gaur were highest at a moderate level of seasonality in productivity, while seasonality in productivity had little effect on muntjac and sambar. Occurrences of all four species were highest at annual precipitation range of 1000-1500 mm, but decreased with higher annual precipitation. Distance to forest edge affected species differently. Increased distance to forest edge was associated with increased probabilities of occurrence for gaur and muntjac, but wild boar and samber were higher at medium distances to forest edge (\sim 15 – 20 km) than in either low and high distance to forest edge.

Habitat patches and dispersal corridors

The Indochinese tiger populations currently occupy only eight habitat patches, and they are highly isolated (Figure 17a). Currently occupied habitat patches covered 8,675 km² ranging from 85 – 3,665 km² with a mean area of 528 km². Total area was 8,675 km² with 94.8% of currently occupied patches inside protected areas. The largest habitat patch is located in the Western Forest Complex (Huai Kha Khaeng, Thungyai, and Mae Wong Wildlife Sanctuaries). We identified seven potential connections occurring between currently occupied patches (Figure

17a). However, there were only two dispersal corridors of 25-km dispersal distance (between Kaeng Krachan and Kuiburi, and between Banglang and Hala-Bala); and three connections of 58-km and three of 64-km dispersal distances, respectively (between Kaeng Krachan and Kuiburi, between Banglang and Hala-Bala, and Khao Yai and Thap Lan). All other connections among occupied habitat patches were either blocked by dispersal barriers (e.g., ACE highways, agriculture, and urban) or were too far for tigers to disperse (Table 11).

The potential habitat of the Indochinese tiger in Thailand was also highly fragmented, and habitat fragments were largely unconnected with long dispersal corridors (Figure 17b). We identified 26 potential tiger habitat patches ranging from 74 - 1,513 km² with a mean area of 305 km². Total area was 7,929 km² with 88.8% located in protected areas. The largest patch was located in Salawin Wildlife Sanctuary. We identified 13 connections (i.e., least-cost paths among suitable habitat patches) with a dispersal distance of 25 km; 20 connections with a dispersal distance of 58 km; and 22 connections with a dispersal distance of 64 km (Figure 17b).

The pattern of resistance to movement for tigers (i.e., current) was heterogeneously distributed among the least-cost path corridors for both currently occupied and potential patches (Figure 17c and d). For currently occupied patches, the least-cost path corridor between the Kaeng Krachan and Kuiburi habitat patches had the lowest resistance for tiger movement, meaning that that there was no barrier separating them, and dispersal between them is possible. Conversely, the resistance of movement between Huai Kha Khaeng located in the Western Forest Complex (WFC) patch and Kaeng Krachan patch, and between Khao Yai and Thap Lan patches were high and tiger dispersal is not likely (Figure 17c, Table 11). For the resistance of movement among the least-cost path corridors in the northern Thailand, which can potentially serve as dispersal corridors connecting currently occupied patches to unoccupied suitable patches (Figure 17d).

Importance of patches and dispersal corridors

The spatial patterns of currently occupied and potential connectivity networks were locally connected, but not regionally and nationally. The relative importance of currently occupied habitat patches and dispersal corridors in maintaining the overall connectivity for Indochinese tigers in Thailand were similar at all dispersal distances (Figure 18). For existing tiger populations (Figure 18a, b and c), the Western Forest Complex habitat patch covered Huai Kha Khaeng, Thung Yai, and Mae Wong Wildlife Sauntuaries was most important in maintaining tiger habitat connectivity in Thailand (as quantified by the percentage of contribution to overall connectivity; dPC = 61 - 63 %). This habitat patch is highly valuable to maintaining a connectivity network because it covers a large area of quality habitat (highest dPCintra). However, the Kaeng Kracha habitat patch was well connected to the other habitat patches which tiger populations could potentially disperse (highest dPCflux). The Keng Kracha habitat patch could also serve as a stepping stone because it has a topological position that can sustain connectivity among other habitat patches (highest dPCconnector) (Table 12). In terms of the relative importance of dispersal corridors between currently occupied patches, the Kaeng Krachan – Kuiburi dispersal corridor showed the highest contribution to the connectivity network (dPC connector = 9 - 11%) (Table 13). This corridor also had the highest dispersal probability and lowest resistance to movement.

For the relative importance of potential habitat patches and dispersal corridors, Western Forest Complex habitat patch had the highest contribution to overall connectivity (dPC = 47 - 52%). The Kaeng Krachan – Kuiburi dispersal corridor was the most important linkage (dPCconnector = 6%). Several potential habitat patches and dispersal corridors located in the Western Forest Complex and northern Thailand were important in maintaining the overall potential connectivity network, but there are currently unoccupied by tiger populations based on the recent surveys (Figure 18e, d, and f).

Discussion

Our goal was to assess the connectivity of currently-occupied and potential habitat for the endangered Indochinese tiger in Thailand. Our results reveal that the incorporation of trophic interactions between primary productivity, herbivores, and carnivores significantly improved predictions of habitat suitability for apex predators, such as the Indochinese tiger. However, current tiger populations in Thailand are limited to small, unconnected areas of high-quality habitat. Potential dispersal corridors between existing tiger populations were long with high resistance to movement. The habitat patches and corridors within the Forest Western Complex and Kaeng Krachan forest complex were the most importance for maintaining overall functional connectivity for Indochinese tigers in Thailand. Potential habitat patches that could serve as priority sites for reintroduction and dispersal corridors in terms of their likelihood facilitating movement were also highly fragmented and isolated, suggesting that it will be difficult to regain functional connectivity across all of Thailand. Our results suggest that the incorporation of trophic interactions can significantly improve predictive power of habitat suitability models, and hence provide more realistic habitat predictions for connectivity assessments. Our finding was consistent with prior findings that tiger presence is highly correlated with prey availability (Hebblewhite et al. 2014; Karanth et al. 2004b; Ngoprasert et al. 2012). Habitat models of tigers in other regions that included prey occurrence also had enhanced predictive performance (Hebblewhite et al. 2014; Kanagaraj et al. 2011), that revealed important ecological patterns of habitat connectivity (Kanagaraj et al. 2013).

Our ensemble modeling approach for predicting habitat suitability indicated that the distribution of habitat suitable for tigers was mainly driven by the distributions of their main ungulate prey species, and avoidance of areas with high human disturbance. Although, this finding is not new, it confirms our hypothesis of habitat suitability for tigers' dispersal based on previous studies of tigers in Thailand (Ngoprasert et al. 2012). For tiger connectivity in other regions, tigers' habitat suitability associate with prey availability (Kanagaraj et al. 2013; Wikramanayake et al. 2004). Additionally, our results are similar to habitat suitability of other studies for other large carnivores, where suitable habitat depends on both food resources (e.g., prey availability, primary productivity, and land cover types) and the absence of human disturbances (Brodie et al., 2014). For example, studies grizzly bears in North America are positively correlated with forage variables (i.e., greenness, soil wetness, and nearest rivers), while cougars are well predicted by terrain ruggedness, greenness, and avoidance of roads (Chetkiewicz and Boyce 2009). Similarly, European brown bears occurrence is associated with forest cover, higher elevations, and avoidance of roads and human activity in the east-central

Alps (Boitani et al., 1999; Guthlin et al., 2011), and the Italian Alps (Peters et al., 2015). In Borneo indicated that local abundance of sun bears (*Helarctos malayanus*) and Sunda clouded leopards (*Neofelis diardi*) is related to elevation, logging, and road density (Brodie et al., 2014). And last but not least, connectivity models for Jaguars included land cover type, percent tree and shrub cover, elevation, and human disturbance (Rabinowitz and Zeller 2010). In addition to including prey availability, we integrated the cumulative annual productivity and seasonal variation in productivity derived from the DHIs, which has been successfully used for the occurrence of moose in Canada (Michaud et al. 2014), but not yet in the tropics. Our results demonstrated that primary productivity variables were important factors in predicting the occurrence of ungulate prey species, and ultimately those for tigers in Thailand.

Connectivity assessment

The remaining large, intact habitats for Indochinese tigers in Thailand are mostly located within protected areas. However, the suitable habitat patches were highly fragmented with high resistance values in the dispersal corridors. Our results demonstrated that the habitat patch located in the Western Forest Complex was the largest area of suitable habitat, but it had low dispersal probability and high resistance to movement due to its isolation. Based on available information for Indochinese tigers in Thailand, individual tigers may not be able to travel to the nearest currently occupied patches due to patch isolation and high resistance in urban and agricultural areas. Moreover, the East-West economic corridor, a highway connecting Myanmar to Vietnam through Thailand, is a dispersal barrier that may block tiger movement within the dispersal corridor between the Western Forest Complex and Kaeng Krachan Forest Complex.

connected patches and that potential dispersal corridors for tigers exist or can be restored among these patches.

Currently occupied and potential connectivity networks were isolated and unconnected, and regaining connectivity across the country may prove to be difficult. Habitat connectivity remains intact only in protected areas within the Western Forest Complex and Kaeng Krachan Forest Complex. By ranking the relative importance of each habitat patch and dispersal corridor in maintaining the connectivity among existing tiger populations and potential suitable habitat for tigers' dispersal, we identified the areas where future reintroduction efforts should focus. We found that the habitat patch located in the Western Forest Complex was the most important refuge for tigers because it covers a large extent of suitable habitat with abundant prey (Simcharoen et al. 2014a; Simcharoen et al. 2014b; Trisurat et al. 2010b). However, we also found that this habitat patch is becoming isolated, which could eventually lead to inbreeding depression, as is the case for the isolated Bengal tiger (Panthera tigris) populations in India and Nepal (Smith and McDougal, 1991). Whereas, Kaeng Krachan patch has smaller habitat area, it is well connected to Kuiburi habitat patch. Therefore, the Kaeng Krachan patch is an important stepping stone, and dispersal corridor between both patches, and is the most important in maintaining a connectivity network in the region. Indeed, habitat loss and fragmentation of these habitats would likely decrease the probability of tiger survival in the region. Other currently occupied patches had low contribution to an overall connectivity network because they were isolated and far from the largest patch. However, the dispersal corridor between Taplan and Khao Yai connected relatively large suitable habitat areas and had low resistance to movement that could also play an important role in the conservation of tiger populations.

189

In terms of improving the connectivity of tiger populations in Thailand, our study suggests in several conservation strategies. First, it is important to enhance the quality of currently-occupied patches by decreasing conflicts with land use policy, and enact effective anti-poaching law. Second, it is necessary to protect both currently occupied and potential habitat patches and dispersal corridors identified by this study. Third, it is crucial to maintain high value habitat patches and dispersal corridors to ensure persistence of a connectivity network. Forth, we suggest restoring degraded habitat through strategic land-use planning because tigers are habitat generalists and can disperse through a mosaic of degraded forests. Fifth, we identified several priority patches and dispersal corridors for connectivity, where future introductions would contribute to facilitate existing tiger populations. The important, unoccupied potential habitat patches and corridors occurred in protected areas located in the north of Thailand. We recommend the investigation of these potential habitat patches and corridors as candidate sites for reintroduction of tigers and their prey.

Conclusion

The ultimate goal for tiger conservation is to create large and well-connected populations that can persist long-term. Our analysis demonstrated that habitat connectivity for Indochinese tigers in Thailand is currently very low, because habitat patches are highly isolated patches and exist only within protected areas. However, we identified priority areas for conserving existing tiger population, and candidate habitat patches and dispersal corridors for future reintroductions. For the long-term persistence of tigers, it is crucial to protect both currently-occupied and potential habitat patches and corridors. Enhancing the quality of currently occupied habitat and reintroducing tiger populations and their prey would substantially increase the overall connectivity among the Indochinese tiger populations. Our connectivity analyses also highlight the importance of incorporating trophic interactions when quantifying habitat suitability, and combining least-cost modeling, circuit analysis, and graph theory approaches with species' dispersal ability to improve assessments of habitat quality and its connectivity. Our results stemming from this approach are novel and important for the understanding of current patterns of habitat connectivity and for developing management strategies to ensure long term survival of tigers in the region as well as other carnivores.

References

- Adriaensen, F., Chardon, J.P., De Blust, G., Swinnen, E., Villalba, S., Gulinck, H., Matthysen,E., 2003. The application of 'least-cost' modelling as a functional landscape model.Landscape and Urban Planning 64, 233-247.
- Araujo, M.B., Luoto, M., 2007. The importance of biotic interactions for modelling species distributions under climate change. Global Ecology and Biogeography 16, 743-753.
- Araujo, M.B., New, M., 2007. Ensemble forecasting of species distributions. Trends in ecology & evolution 22, 42-47.
- Barber-Meyer, S.M., Jnawali, S.R., Karki, J.B., Khanal, P., Lohani, S., Long, B., MacKenzie,
 D.I., Pandav, B., Pradhan, N.M.B., Shrestha, R., Subedi, N., Thapa, G., Thapa, K.,
 Wikramanayake, E., 2013. Influence of prey depletion and human disturbance on tiger occupancy in Nepal. Journal of Zoology 289, 10-18.

- Barbet-Massin, M., Jiguet, F., Albert, C.H., Thuiller, W., 2012. Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution 3, 327-338.
- Bateman, B.L., VanDerWal, J., Williams, S.E., Johnson, C.N., 2012. Biotic interactions influence the projected distribution of a specialist mammal under climate change. Diversity and Distributions 18, 861-872.
- Beier, P., Majka, D.R., Spencer, W.D., 2008. Forks in the road: Choices in procedures for designing wildland linkages. Conservation Biology 22, 836-851.
- Beier, P., Spencer, W., Baldwin, R.F., McRae, B.H., 2011. Toward Best Practices for Developing Regional Connectivity Maps. Conservation Biology 25, 879-892.
- Belisle, M., 2005. Measuring landscape connectivity: The challenge of behavioral landscape ecology. Ecology 86, 1988-1995.
- Bodin, O., Saura, S., 2010. Ranking individual habitat patches as connectivity providers:
 Integrating network analysis and patch removal experiments. Ecological Modelling 221, 2393-2405.
- Brodie, J.F., Giordano, A.J., Dickson, B.G., Hebblewhite, M., Bernard, H., Mohd-Azlan, J., Anderson, J., Ambu, L., 2015. Evaluating multispecies landscape connectivity in a threatened tropical mammal community. Conservation Biology 29, 122-132.
- Brook, B.W., Sodhi, N.S., Bradshaw, C.J.A., 2008. Synergies among extinction drivers under global change. Trends in Ecology & Evolution 23, 453-460.

- Bunn, A.G., Urban, D.L., Keitt, T.H., 2000. Landscape connectivity: A conservation application of graph theory. Journal of Environmental Management 59, 265-278.
- Calabrese, J.M., Fagan, W.F., 2004. A comparison-shopper's guide to connectivity metrics. Frontiers in Ecology and the Environment 2, 529-536.
- Chapin, F.S., Zavaleta, E.S., Eviner, V.T., Naylor, R.L., Vitousek, P.M., Reynolds, H.L.,Hooper, D.U., Lavorel, S., Sala, O.E., Hobbie, S.E., Mack, M.C., Diaz, S., 2000.Consequences of changing biodiversity. Nature 405, 234-242.
- Chetkiewicz, C.-L.B., Boyce, M.S., 2009. Use of resource selection functions to identify conservation corridors. Journal of Applied Ecology 46, 1036-1047.
- Dinerstein, E., Loucks, C., Wikramanayake, E., Ginsberg, J., Sanderson, E., Seidensticker, J.,
 Forrest, J., Bryja, G., Heydlauff, A., Klenzendorf, S., Leimgruber, P., Mills, J., O'Brien,
 T.G., Shrestha, M., Simons, R., Songer, M., 2007. The fate of wild tigers. Bioscience 57, 508-514.
- Driezen, K., Adriaensen, F., Rondinini, C., Doncaster, C.P., Matthysen, E., 2007. Evaluating least-cost model predictions with empirical dispersal data: A case-study using radiotracking data of hedgehogs (Erinaceus europaeus). Ecological Modelling 209, 314-322.
- Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T.,

Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams,S., Wisz, M.S., Zimmermann, N.E., 2006. Novel methods improve prediction of species'distributions from occurrence data. Ecography 29, 129-151.

- Elith, J., Phillips, S.J., Hastie, T., Dudik, M., Chee, Y.E., Yates, C.J., 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17, 43-57.
- ESRI, 2011. ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.
- Fahrig, L., Merriam, G., 1985. Habitat patch connectivity and population survival. Ecology 66, 1762-1768.
- Fielding, A.H., Bell, J.F., 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24, 38-49.
- Finke, D.L., Snyder, W.E., 2010. Conserving the benefits of predator biodiversity. Biological Conservation 143, 2260-2269.
- Fox, J., Vogler, J.B., 2005. Land-use and land-cover change in montane mainland southeast Asia. Environmental Management 36, 394-403.
- Gibson, L., Lynam, A.J., Bradshaw, C.J.A., He, F., Bickford, D.P., Woodruff, D.S., Bumrungsri,S., Laurance, W.F., 2013. Near-Complete Extinction of Native Small Mammal Fauna 25Years After Forest Fragmentation. Science 341, 1508-1510.

- Goodwin, B.J., Fahrig, L., 2002. How does landscape structure influence landscape connectivity? Oikos 99, 552-570.
- Hanski, I., 1999. Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 87, 209-219.
- Hebblewhite, M., Miquelle, D.G., Robinson, H., Pikunov, D.G., Dunishenko, Y.M., Aramilev,
 V.V., Nikolaev, I.G., Salkina, G.P., Seryodkin, I.V., Gaponov, V.V., Litvinov, M.N.,
 Kostyria, A.V., Fomenko, P.V., Murzin, A.A., 2014. Including biotic interactions with
 ungulate prey and humans improves habitat conservation modeling for endangered Amur
 tigers in the Russian Far East. Biological Conservation 178, 50-64.
- Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965-1978.
- Hutchinson, G.E., Macarthur, R.H., 1959. A theoretical ecological model of size distributions among species of animals. Amer Nat 93, 117-126.
- IUCN. (2014) The IUCN Red List of Threatened Species. Version 2014.1. http://www.iucnredlist.org. Downloaded on 09 May 2013.
- Jenks, K.E., Kitamura, S., Lynam, A.J., Ngoprasert, D., Chutipong, W., Steinmetz, R., Sukmasuang, R., Grassman, L.I., Jr., Cutter, P., Tantipisanuh, N., Bhumpakphan, N., Gale, G.A., Reed, D.H., Leimgruber, P., Songsasen, N., 2012. Mapping the distribution of dholes, Cuon alpinus (Canidae, Carnivora), in Thailand. Mammalia 76, 175-184.

- Kanagaraj, R., Wiegand, T., Kramer-Schadt, S., Anwar, M., Goyal, S.P., 2011. Assessing habitat suitability for tiger in the fragmented Terai Arc Landscape of India and Nepal. Ecography 34, 970-981.
- Kanagaraj, R., Wiegand, T., Kramer-Schadt, S., Goyal, S.P., 2013. Using individual-based movement models to assess inter-patch connectivity for large carnivores in fragmented landscapes. Biological Conservation 167, 298-309.
- Karanth, K.U., Chundawat, R.S., Nichol, J.D., Kumar, N.S., 2004a. Estimation of tiger densities in the tropical dry forests of Panna, Central India, using photographic capture-recapture sampling. Animal Conservation 7, 285-290.
- Karanth, K.U., Kumar, N.S., Vasudev, D., 2014. Photographic database informs management of conflict tigers. Oryx 48, 484-484.
- Karanth, K.U., Nichols, J.D., Kumar, N.S., Link, W.A., Hines, J.E., 2004b. Tigers and their prey:
 Predicting carnivore densities from prey abundance. Proceedings of the National
 Academy of Sciences of the United States of America 101, 4854-4858.
- Karanth, K.U., Nichols, J.D., Seidensticker, J., Dinerstein, E., Smith, J.L.D., McDougal, C., Johnsingh, A.J.T., Chundawat, R.S., Thapar, V., 2003. Science deficiency in conservation practice: the monitoring of tiger populations in India. Animal Conservation 6, 141-146.
- Karanth, K.U., Stith, B.M., 1999. Prey depletion as a critical determinant of tiger population viability. Riding the tiger: tiger conservation in human-dominated landscapes., 100-113.

- Kindlmann, P., Burel, F., 2008. Connectivity measures: a review. Landscape Ecology 23, 879-890.
- Liu, C.R., Berry, P.M., Dawson, T.P., Pearson, R.G., 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385-393.
- Lynam, A.J., 2010. Securing a future for wild Indochinese tigers: Transforming tiger vacuums into tiger source sites. Integrative Zoology 5, 324-334.
- Lynam, A.J., Kreetiyutanont, K., Mather, R., 2001. Conservation status and distribution of the Indochinese tiger (Panthera tigris corbetti) and other large mammals in a forest complex in northeastern Thailand. Natural History Bulletin of the Siam Society 49, 61-75.
- McRae, B.H., Dickson, B.G., Keitt, T.H., Shah, V.B., 2008. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89, 2712-2724.
- McRae, B.H., and Shah, V.B. 2009. Circuitscape User Guide. ONLINE. The University of California, Santa Barbara. Available at: http://www.circuitscape.org
- Moilanen, A., Hanski, I., 2001. On the use of connectivity measures in spatial ecology. Oikos 95, 147-151.
- Moilanen, A., Nieminen, M., 2002. Simple connectivity measures in spatial ecology. Ecology 83, 1131-1145.
- Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853-858.

- Ngoprasert, D., Lynam, A.J., Sukmasuang, R., Tantipisanuh, N., Chutipong, W., Steinmetz, R., Jenks, K.E., Gale, G.A., Grassman, L.I., Kitamura, S., Howard, J., Cutter, P., Leimgruber, P., Songsasen, N., Reed, D.H., 2012. Occurrence of Three Felids across a Network of Protected Areas in Thailand: Prey, Intraguild, and Habitat Associations. Biotropica 44, 810-817.
- Noss, R.F., 2001. Beyond Kyoto: Forest management in a time of rapid climate change. Conservation Biology 15, 578-590.
- Noss, R.F., Quigley, H.B., Hornocker, M.G., Merrill, T., Paquet, P.C., 1996. Conservation biology and carnivore conservation in the Rocky Mountains. Conservation Biology 10, 949-963.
- Pearce, J., Ferrier, S., 2000. An evaluation of alternative algorithms for fitting species distribution models using logistic regression. Ecological Modelling 128, 127-147.
- Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231-259.
- Pimm, S.L., Jenkins, C.N., Abell, R., Brooks, T.M., Gittleman, J.L., Joppa, L.N., Raven, P.H., Roberts, C.M., Sexton, J.O., 2014. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 987-+.
- Power, M.E., 1992. Top-down and bottom-up forces in food webs-do plants have primacy. Ecology 73, 733-746.

- Python Software Foundation. Python Language Reference, version 2.7. Available at http://www.python.org
- Rabinowitz, A., 1993. Estimating the Indo-Chinese tiger *Panthera tigris corbetti* population in Thailand. Biological Conservation 65, 213-217.
- Rabinowitz, A., Zeller, K.A., 2010. A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biological Conservation 143, 939-945.
- RFD, 2013. Forestry statistics of Thailand 2013. Royal Forest Department, Ministry of Natural Resources and Environment, Bangkok
- Royle, J.A., Nichols, J.D., Karanth, K.U., Gopalaswamy, A.M., 2009. A hierarchical model for estimating density in camera-trap studies. Journal of Applied Ecology 46, 118-127.
- Sala, O.E., Chapin, F.S., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E.,
 Huenneke, L.F., Jackson, R.B., Kinzig, A., Leemans, R., Lodge, D.M., Mooney, H.A.,
 Oesterheld, M., Poff, N.L., Sykes, M.T., Walker, B.H., Walker, M., Wall, D.H., 2000.
 Biodiversity Global biodiversity scenarios for the year 2100. Science 287, 1770-1774.
- Sanderson, E.W., Forrest, J., Loucks, C., Ginsberg, J., Dinerstein, E., Seidensticker, J.,
 Leimgruber, P., Songer, M., Heydlauff, A., O'Brien, T., Bryja, G., Klenzendorf, S.,
 Wikramanayake, E., 2010. Setting Priorities for Tiger Conservation: 2005-2015. Tigers of the World: the Science, Politics, and Conservation of Panthera Tigris, 2nd Edition, 143-161.
- Saura, S., Bodin, O., Fortin, M.-J., 2014. Stepping stones are crucial for species' long-distance dispersal and range expansion through habitat networks. Journal of Applied Ecology 51, 171-182.
- Saura, S., Pascual-Hortal, L., 2007. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landscape and Urban Planning 83, 91-103.
- Saura, S., Rubio, L., 2010. A common currency for the different ways in which patches and links can contribute to habitat availability and connectivity in the landscape. Ecography 33, 523-537.
- Saura, S., Torne, J., 2009. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environmental Modelling & Software 24, 135-139.
- Sawyer, S.C., Epps, C.W., Brashares, J.S., 2011. Placing linkages among fragmented habitats: do least-cost models reflect how animals use landscapes? Journal of Applied Ecology 48, 668-678.
- Seidensticker, J., Dinerstein, E., Goyal, S.P., Gurung, B., Harihar, A., Johnsingh, A.J.T.,
 Manandhar, A., McDougal, C.W., Pandav, B., Shrestha, M., Smith, J.L.D., Sunquist, M.,
 Wikramanayake, E., 2010. Tiger range collapse and recovery at the base of the
 Himalayas.

- Simcharoen, A., Savini, T., Gale, G.A., Roche, E., Chimchome, V., Smith, J.L.D., 2014a. Ecological factors that influence sambar (Rusa unicolor) distribution and abundance in western Thailand: implications for tiger conservation. Raffles Bulletin of Zoology 62, 100-106.
- Simcharoen, A., Savini, T., Gale, G.A., Simcharoen, S., Duangchantrasiri, S., Pakpien, S., Smith, J.L.D., 2014b. Female tiger Panthera tigris home range size and prey abundance: important metrics for management. Oryx 48, 370-377.
- Smith, J.L.D., 1993. The role of dispersal in structuring the Chiwan tiger population, pp. 165-195.
- Smith, J.L.D., McDougal, C., Gurung, B., Shrestha, N., Shrestha, M., Allendorf, T., Joshi, A., Dhakal, N., 2010. Securing the Future for Nepal's Tigers: Lessons from the Past and Present. Tigers of the World: the Science, Politics, and Conservation of Panthera Tigris, 2nd Edition, 331-344.
- Smith, J.L.D., Tunhikorn, S., Tanhan, S., Simcharoen, S., Kanchanasaka, B., 1999. Metapopulation structure of tigers in Thailand.
- Soule, M.E., Terborgh, J., 1999. Conserving nature at regional and continental scales a scientific program for North America. Bioscience 49, 809-817.
- Steinmetz, R., Chutipong, W., Seuaturien, N., 2006. Collaborating to conserve large mammals in Southeast Asia. Conservation Biology 20, 1391-1401.

- Steinmetz, R., Seuaturien, N., Chutipong, W., 2013. Tigers, leopards, and dholes in a half-empty forest: Assessing species interactions in a guild of threatened carnivores. Biological Conservation 163, 68-78.
- Sunquist, M., Karanth, K.U., Sunquist, F., 1999. Ecology, behaviour and resilience of the tiger and its conservation needs. Riding the tiger: tiger conservation in human-dominated landscapes, 5-18.
- Swets, J.A., 1988. Measureing the accuracy of diagnostic systems. Science 240, 1285-1293.
- Taylor, P.D., Fahrig, L., Henein, K., Merriam, G., 1993. Connectivity is a vital element of landscape structure. Oikos 68, 571-573.
- Thuiller, W., 2003. BIOMOD optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology 9, 1353-1362.
- Thuiller, W., Lafourcade, B., Engler, R., Araujo, M.B., 2009. BIOMOD a platform for ensemble forecasting of species distributions. Ecography 32, 369-373.
- Tischendorf, L., Fahring, L., 2000. On the usage and measurement of landscape connectivity. Oikos 90, 7-19.
- Trisurat, Y., Alkemade, R., Verburg, P.H., 2010a. Projecting Land-Use Change and Its Consequences for Biodiversity in Northern Thailand. Environmental Management 45, 626-639.

- Trisurat, Y., Pattanavibool, A., Gale, G.A., Reed, D.H., 2010b. Improving the viability of largemammal populations by using habitat and landscape models to focus conservation planning. Wildlife Research 37, 401-412.
- Uezu, A., Metzger, J.P., Vielliard, J.M.E., 2005. Effects of structural and functional connectivity and patch size on the abundance of seven Atlantic Forest bird species. Biological Conservation 123, 507-519.
- Urban, D., Keitt, T., 2001. Landscape connectivity: A graph-theoretic perspective. Ecology 82, 1205-1218.
- Urban, D.L., Minor, E.S., Treml, E.A., Schick, R.S., 2009. Graph models of habitat mosaics. Ecology Letters 12, 260-273.
- Wikramanayake, E., McKnight, M., Dinerstein, E., Joshi, A., Gurung, B., Smith, D., 2004.Designing a conservation landscape for tigers in human-dominated environments.Conservation Biology 18, 839-844.
- Woodruff, D.S., 2013. Wildlife conservation in protected areas in Thailand: lessons from Chiew Larn, Khao Sok, and Khlong Saeng. Natural History Bulletin of the Siam Society 59, 91-107.

Ziolkowska, E., Ostapowicz, K., Kuemmerle, T., Perzanowski, K., Radeloff, V.C., Kozak, J., 2012. Potential habitat connectivity of European bison (Bison bonasus) in the Carpathians. Biological Conservation 146, 188-196.

Tables

Table 10. Mean model performance and ensemble measures (AUC scores) of top performing habitat suitability models for tiger + abiotic, tiger + prey, tiger + prey + abiotic, wild boar, gaur, muntjac, and sambar. The hypothesis on the role of trophic interactions in habitat suitability performance assessing the differences between: abiotic versus prey model; and abiotic versus abiotic + prey models based on Wilcoxon signed-rank tests.

Model	GLM	GAM	GBM	RF	MAXENT	Ensemble
Tiger + Abiotic	0.763 ±	0.693 ±	$0.784 \pm$	0.707 ±	$0.774 \pm$	$0.939 \pm$
	0.055	0.068	0.054	0.070	0.060	0.06***
Tiger + Prey	$0.735 \pm$	$0.757 \pm$	0.761 ±	$0.726 \pm$	$0.772 \pm$	$0.932 \pm$
	0.061	0.061	0.058	0.071	0.067	0.052***
Tiger + Prey +	$0.784 \pm$	$0.692 \pm$	$0.805 \pm$	$0.734 \pm$	$0.782 \pm$	$0.954 \pm$
Abiotic	0.055	0.059	0.043	0.053	0.058	0.060***
Wild boar	$0.855 \pm$	$0.858 \pm$	$0.880 \pm$	$0.854 \pm$	$0.876 \ \pm$	$0.962 \pm$
	0.017	0.015	0.016	0.020	0.016	0.028
Gaur	$0.790 \pm$	$0.806 \pm$	$0.844 \pm$	$0.812 \pm$	$0.825 \pm$	$0.962 \pm$
	0.027	0.038	0.025	0.030	0.029	0.047
Muntjac	$0.896 \pm$	$0.917 \pm$	$0.932 \pm$	$0.936 \pm$	$0.930 \pm$	$0.976 \pm$
	0.010	0.011	0.010	0.011	0.010	0.018
Sambar	$0.913 \pm$	$0.929 \pm$	0.941 ±	$0.904 \pm$	$0.934 \pm$	$0.981 \ \pm$
	0.013	0.018	0.009	0.029	0.013	0.019

*** P <0.001

Table 11. Cost dispersal probabilities (p_{ij}) and sum of cost of resistance movement (Resistance) calculated for each dispersal distance delineated dispersal corridors between currently occupied habitat patches for Indochinese tigers in Thailand. Higher values of cost dispersal probability indicate the high probability of movement between suitable patches. Higher values of cost of resistance movement indicate the low probability of movement between suitable patches.

Corridor ¹	Distance (km)	<i>p_{ij}</i> 25 km	p _{ij} 58 km	p _{ij} 64 km	Resistance
KK-KB	13	0.69	0.85	0.86	59.98041
BL-HB	20	0.58	0.79	0.81	disconnected
KY-THP	36	0.37	0.65	0.68	223.1436
НКК-КК	195	0.00	0.10	0.12	1551.59
PK-KY	258	0.00	0.05	0.06	disconnected
PK-HKK	605	0.00	0.00	0.00	disconnected
KB-BL	950	0.00	0.00	0.00	disconnected

¹ KK-KB = Kaeng Krachan and Kuiburi, BL-HB = Banglang and Hala-Bala, KY-THP = Khao Yai and Thaplan, Huai Kha Khaeng and Kaeng Krachan, PK-KY = Phu Khieo and Khao Yai, Phu Khieo and Huai Kha Khaeng, and Kuiburi and Banglang. Table 12. Contribution of each currently occupied habitat patches to the maintenance of an overall landscape connectivity as measured by the relative importance of the probability of connectivity index dPC (%) and its fractions for tigers' movement at 64 km.

Node	dPC	<i>dPC</i> intra	<i>dPC</i> flux	dPCconnector
Phu Khieo	0.77	0.61	0.16	0.00
Western Forest Complex	62.85	53.15	9.69	0.00
Khao Yai	1.06	0.16	0.88	0.03
ThaplanP	3.30	2.36	0.94	0.00
Kaeng Krachan	38.02	19.10	17.56	1.36
Kuiburi	13.57	1.71	11.86	0.00
Bang Lang	2.34	1.96	0.38	0.00
Hala-Bala	0.41	0.03	0.38	0.00

Corridor ¹	dPCconnector25	dPCconnector58	dPCconnector64
KK-KB	9.0	11.1	11.2
BL-HB	0.3	0.4	0.4
KY-THP	0.5	0.8	0.9
НКК-КК	0.4	6.2	7.2
PK-KY	0.0	0.0	0.1
PK-HKK	0.0	0.0	0.0
KB-BL	0.0	0.0	0.0

Table 13. Contribution of each dispersal corridor to the maintenance of the overall landscape connectivity as measured by *dPC*connector (%) for all tiger dispersal distances.

¹ KK-KB = Kaeng Krachan and Kuiburi, BL-HB = Banglang and Hala-Bala, KY-THP = Khao Yai and Thaplan, Huai Kha Khaeng and Kaeng Krachan, PK-KY = Phu Khieo and Khao Yai, Phu Khieo and Huai Kha Khaeng, and Kuiburi and Banglang.

Figures

Figure 13. Study area, filed surveys in 15 protected areas across Thailand: Bang Lang National Park (BL), Don Yai Wildlife Saunctuary (DY), Hala-Bala Wildlife Sanctuary (HB), Huai Kha Khaeng Wildlife Sanctuary (HKK), Kaeng Krachan National Park (KK), Khao Ang Rua Nai Wildlife Sanctuary (KARN), Khao Sok National Park (KOS), Khlong Saeng Wildlife Sanctuary (KLS), Khao Yai National Park (KY), Kuiburi National Park (KB), Phu Khieo Wildlife Sanctuary (PK), Ta Phraya National Park (TAP), Thap Lan National Park (THP), Thung Yai Naresuan-West Wildlife Sanctuary (TYW), Salak Pra Wildlife Sanctuary (SP). Tiger occurrences were in black dots within protected areas with bold names.

Figure 14. Flowchart synthesizing the procedure used for assessing habitat connectivity for the Indochinese tigers in Thailand.

Figure 15. Habitat suitability models for the Indochinese tigers in Thailand derived from an ensemble of species distribution models showing the probability of occurrence, (a) habitat suitability models based on tiger + abiotic variables, (b) tiger + prey, (c) tiger + prey + abiotic variables.

Figure 16. Habitat suitability models for ungulate prey: (a) wild boar, (b) gaur, (c) muntjac, (d) sambar derived from an ensemble of species distribution models showing the probability of occurrence.

Figure 17. Connectivity across Thailand, (a) currently occupied habitat patches (dark green) and least-cost path corridors (red line), (b) potential habitat patches and least-cost path corridors, (c) currently occupied habitat patches and circuit analysis corridors with 10 km buffers, (d) potential habitat patches and circuit analysis corridors with 10 km buffers, showing high probability of tigers' movements (light cyan) and low probability of tigers' movements (dark blue).

Figure 18. The relative importance of habitat patches and dispersal corridors for Indochinese tigers in Thailand. The importance of each habitat patch is shown in term of its contribution to maintain an overall landscape connectivity as measured by the probability of connectivity index for both currently occupied: (a), (b), and (c), and potential habitat patches: (d), (e), and (f) for the dispersal distance of 25 km, 58 km, and 64 km, respectively.

Appendices

Appendix 12. AUC scores for individual models of the distribution of tiger habitat, as indicated by abiotic variables, including proportions of habitat type, elevation, slope, distance to nearest river, distance to nearest forest edge, distance to nearest village or road, and annual precipitation. Avg and Run SD are the aveage and standard deviation of the 20 individual runs (2 replicates each of 10-fold cross validations) for each model algorithm. Full AVG and Full SD are the average and standard deviation of each model run without setting aside testing data. Ensemble AUC scores for top performing models was 0.939, with standard deviation 0.06.

Model	Run Avg	Run SD	Full Avg	Full SD
GLM	0.763	0.055	0.81	0.00
GBM	0.784	0.054	0.89	0.00
СТА	0.716	0.067	0.79	0.03
FDA	0.761	0.050	0.81	0.00
MARS	0.751	0.055	0.84	0.00
RF	0.707	0.070	0.97	0.00
MAXENT	0.774	0.060	0.88	0.00
ANN	0.734	0.055	0.75	0.06
SRE	0.659	0.067	0.66	0.00
GAM	0.693	0.068	0.89	0.00

Appendix 13. AUC scores for individual models of the distribution of tiger habitat, as indicated by trophic interactions, including cumulative annual productivity, seasonal variation in productivity, Eurasian wild boar, gaur, muntjact, and sambar deer. Avg and Run SD are the average and standard deviation of the 20 individual runs (2 replicates each of 10-fold cross validations) for each model algorithm. Full AVG and Full SD are the average and standard deviation of each model run without setting aside testing data. Ensemble AUC scores for top performing models was 0.932, with standard deviation 0.052.

Model	Run Avg	Run SD	Full Avg	Full SD
GLM	0.735	0.061	0.763	0.002
GBM	0.761	0.058	0.882	0.003
CTA	0.725	0.067	0.815	0.008
FDA	0.717	0.073	0.795	0.003
MARS	0.734	0.062	0.817	0.001
RF	0.726	0.071	0.973	0.000
MAXENT	0.772	0.067	0.844	0.002
ANN	0.740	0.090	0.824	0.001
SRE	0.625	0.046	0.625	0.009
GAM	0.757	0.061	0.822	0.003

Appendix 14. AUC scores for individual models of the distribution of tiger habitat, as indicated by the combination of trophic interactions and abiotic variables, including species distributions of Eurasian wild boar, gaur, muntjact, sambar deer, proportions of habitat type, elevation, slope, distance to nearest river, distance to nearest forest edge, distance to nearest village or road, and annual precipitation. Avg and Run SD are the average and standard deviation of the 20 individual runs (2 replicates each of 10-fold cross validations) for each model algorithm. Full AVG and Full SD are the average and standard deviation of each model run without setting aside testing data. Ensemble AUC scores for top performing models was 0.954, with standard deviation 0.060.

Model	Run Avg	Run SD	Full Avg	Full SD
GLM	0.784	0.055	0.819	0.004
GBM	0.805	0.043	0.915	0.004
СТА	0.753	0.035	0.797	0.028
FDA	0.726	0.075	0.829	0.011
MARS	0.769	0.067	0.851	0.000
RF	0.734	0.053	0.972	0.000
MAXENT	0.782	0.058	0.903	0.001
ANN	0.729	0.050	0.733	0.031
SRE	0.614	0.069	0.659	0.003
GAM	0.692	0.059	0.920	0.001

