
 

Linking population and ecosystem processes through time and space in the highly dynamic  

Lake Mývatn, Iceland 

by 

Joseph S. Phillips 

 

A dissertation submitted in partial fulfillment of 

the requirements for the degree of  

 

Doctor of Philosophy 

(Zoology) 

 

at the 

UNIVERSITY OF WISCONSIN-MADISON 

2019 

 

 

Date of final oral examination: April 17th, 2019 
 
The dissertation is approved by the following members of the Final Oral Committee:  
 Stephen R. Carpenter, Professor of Integrative Biology 
 Claudio Gratton, Professor of Entomology  
 Anthony R. Ives, Professor of Integrative Biology 
 Monica G. Turner, Professor of Integrative Biology 
 Jake Vander Zanden, Professor of Integrative Biology



 i 

Table of Contents 

 

Acknowledgements ......................................................................................................................... ii 

Abstract .......................................................................................................................................... vi 

Introduction ................................................................................................................................... vii 

Chapter 1 ......................................................................................................................................... 1 

Spatiotemporal variation in the sign and magnitude of ecosystem engineer effects on lake 

ecosystem production .................................................................................................................. 1 

Appendix A: Supplementary methods and results for Chapter 1 ............................................. 47 

Chapter 2 ....................................................................................................................................... 63 

Time-varying responses of lake metabolism to light and temperature ..................................... 63 

Appendix B: Supplementary methods and results for Chapter 2 ............................................ 113 

Chapter 3 ..................................................................................................................................... 138 

Estimating time-varying demographic rates from age-structured abundance: application to a 

historically variable fishery ..................................................................................................... 138 

Appendix C: Supplementary methods and results for Chapter 3 ............................................ 176 

 

 

 

 

 

 

 



 ii 

Acknowledgements 

 My time as a graduate student at UW-Madison, including the work reported in this 

dissertation, benefitted from the contributions and support of many people to whom I am 

sincerely grateful. This includes all of the members of my dissertation committee (Steve 

Carpenter, Claudio Gratton, Monica Turner, and Jake Vander Zanden), who have provided 

substantial feedback on my work and have always offered that feedback in the kindest spirit. 

Of course, I am particularly grateful to my graduate advisor, Tony. I was originally 

interested in joining Tony’s group because his work was a model for the kind of science I wanted 

to do1. Five years later, I can say that Tony is a model for the kind of scientist I want to be, 

which has far more to do with how you treat those around you than it does with the work itself. 

In my first summer working as part of Tony’s long-term project at Mývatn, when I was the only 

graduate student in charge of the field crew upon Tony’s return to the US, he told me that the 

only thing I could do wrong was to treat someone poorly. On a separate occasion, Tony said that 

mentoring students is far more important than publishing papers, which is one of those rare 

points that is obviously true (how much impact can a single paper or even ten papers really 

have?) but can be difficult to spot and is easy to forget. But mostly, Tony has led by example, 

with perhaps the most important being the way he pursues science by working with people that 

he likes and treating those people such that the feeling is mutual.  

In this vein, I owe a tremendous debt to all of people I have been lucky enough to count 

as collaborators and friends on the Mývatn project. Cristina Herren and Kyle Webert helped 

                                                
1I don’t think Tony knows this, but I first became interested in his work after reading a paper by him and one of his 
postdocs on pea aphids the summer prior to my freshman year of college. I was sufficiently intrigued that I found his 
lab webpage. Based on the paper, I assumed he was a “real entomologist”, but one who was interested in “real 
ecology”. Tony would be the first to admit that he’s far from a “real entomologist”. But the fact that he could be 
confused for one in a “real ecology” paper says a lot about Tony’s science and why I found it so appealing.      



 iii 

encouraged me to say “yes” to Tony’s invitation to work at Mývatn and played a big role in my 

orientation to the project. Caroline Daws was our field technician in 2015, whose support was 

absolutely essential to the success of my first summer as a graduate student. She was followed by 

Becca Blundell, an intern in 2015 who came back as our field tech in 2016 and whose sense of 

order and discipline was much appreciated and has been hard to replicate in the years sense. 

Amanda McCormick joined the project as a graduate student for the summer of 2016, and she 

and I jointly led the field crew (with others joining later—more on them in a moment) for the 

2016, 2017, and 2018 field seasons. Those summers were great, and I can say with certainty that 

they would not have been nearly so successful had it not been for Amanda’s dual presence as the 

responsible adult and the ringleader of fun. Jamie Botsch joined the project as an intern in 2016 

and decided to stick around forever (he’s now a graduate student on the project and will be the 

principle team leader this coming summer). He and I are perhaps a bit too similar in our 

obsessive tendencies (be it fawning about midges or constructing preposterous experimental 

apparatuses in the cold basement), but usually we arrive at a better place than we could have 

alone. Matt McCary joined us as a postdoc for the 2017 and 2018 seasons and is one of the most 

thoughtful scientists I’ve known, in addition to being a ringleader of fun in his own right. 

Claudio Gratton (another “real ecologist” masquerading as an entomologist1) as a co-PI on the 

project spent a few weeks at Mývatn during each of my field seasons, and even as my interests 

gravitated in a more aquatic direction, he continued to provide essential advice on how to 

function as a field scientist. Árni Einarsson was (and is) our host and collaborator at Mývatn, 

whose knowledge of the ecosystem and undying generosity were absolutely critical to every 

aspect of our time at Mývatn. I would also like to thank all of our field interns, without whom 

our field work simply wouldn’t have been possible: Aldo Arellano, Riley Book, Kelvin Chen, 



 iv 

Aliza Fassler, Shannon Grover, Jennifer Harris, Karen Jorgenson, Abby Lewis, Colleen Miller, 

Caroline Owens, Jose Sanchez-Ruiz, Natalie Schmer, Beth Smith, and Aspen Ward. 

Back in Madison, many members of the Ives lab provided essential support, sometimes 

through their advice or expertise, but mostly through their friendship. Meghan Fitzgerald and 

Huan Fan were my first friends in Madison and played a central role to my introduction to life as 

a graduate student. Lucas Nell has exerted an inordinate influence on my habits and skills with 

computers, but more importantly has been a great collaborator on projects beyond Mývatn and in 

doing so has helped to remind me of my fondness for population biology beyond midges (he also 

puts up with my rambling rants and my general quirkiness, while contributing his own in equal 

measure). In a similar vein, Mike Bosch’s work with ants and aphids has reminded me of my 

fondness for those critters in particular are for critters in general (and how important that is for 

doing biology properly). Several postdocs have spent time in the lab and have shaped me and my 

work both directly and by example: Brandon Barton, Rachel Penczykowski, and Tanjona 

Ramiadantsoa (a.k.a the pot-stirrer). Finally, I’d like to thank Claudio Gratton (again) for 

inviting me to spend time with the wonderful people in his lab, who have provided great 

feedback on my work and have taught me a lot about the more applied side of ecology.  

My fellow graduate students beyond the Ives labs have been central to my time in 

Madison—in fact, I count them (along with my friends in the lab) as the primary determinant of 

my very happy time in Madison. Everyone talks about how great Madison is, but it’s really the 

people that are great. They are far too numerous to name, but I am particularly indebted to Jen 

Chandler, Pete Guiden, Devin Merullo, and Jeremy Spool, for many hours of racquetball, 

birding, symphony concerts, games of Risk, and general hanging about since the beginning of 

my time in Madison.  



 v 

Finally, I would like to thank my parents Jack and Jane, and my brother Jacob. Not only 

are they the most important people in my life, they are the most important dimension of my life. I 

am incredibly grateful that despite spending most of our time apart, not even the smallest 

distance has entered my relationships with any of them. May that always be so. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vi 

Abstract 

 Many populations vary substantially in abundance, which can have important 

consequences for the communities and ecosystems in which they exist. This is especially true for 

species with large per capita effects, such as ecosystem engineers that modify the structure of the 

physical environment experienced by themselves and other populations. Regardless of whether a 

population’s ecosystem effects arise from high abundance, high per capita effects, or both, these 

effects are often mediated by their environmental context and therefore have the potential to vary 

substantially through space and time.  

In this dissertation, I explore the connections between population dynamics, 

environmental variation, and ecosystem-consequences of single populations in the context of 

Lake Mývatn in northeastern Iceland. Mývatn is uniquely suited to exploring the intersection of 

these topics due to (1) its relatively simple ecological community dominated by a few taxa and 

(2) its high productivity that fuels high, but variable, abundance of those dominant taxa. Chief 

among these are midges that transform the benthic habitat in years of peak abundance through 

their building of silk-tubes, which in turn provides a substrate for algal growth. However, the 

dominant midge species has erratic fluctuations in abundance spanning several orders-of-

magnitude, raising the question of how these dynamics arise and what their consequences are for 

the whole ecosystem. Furthermore, Mývatn is subject to episodic but occasionally very thick 

cyanobacterial blooms that have to potential to shift the majority of production from the benthic 

to the pelagic habitat, thereby altering the energy flow through the food web. Given that context, 

I discuss field experiments and modeling of ecological time series spanning multiple trophic 

levels and temporal scales at Mývatn. Together, this work illustrates the connections between 

population and ecosystem processes in the context of the highly dynamic Mývatn system.  
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Introduction 

Many populations fluctuate dramatically in abundance, which can have important 

consequences for the communities and ecosystems in which they occur (Elton 1924, Elton and 

Nicholson 1942, Dwyer et al. 2004, Yang 2004, Hoekman et al. 2011). While ecologists have 

identified various causes of complex population dynamics, perhaps the most important are 

consumer-resource interactions and environmental variation (e.g. Elton 1924; Davidson & 

Andrewartha 1948; Krebs et al. 2001). Historically, these two mechanisms were considered in 

isolation, and there was even contentious debate over which was more important (Elton 1924; 

Nicholson & Bailey 1935; Andrewartha & Birch 1954; Turchin et al. 2000). Subsequent work 

revealed that not only are both mechanisms important, but understanding their interplay is 

essential for understanding population fluctuations (Ripa and Ives 2003, Benincà et al. 2011). 

For example, species interactions can amplify or dampen environmental stochasticity and can act 

as ‘filters’ that change the underlying structure of the stochasticity (Vasseur 2007). In turn, 

environmental variation can cause consumer-resource pairs that would otherwise be stable to 

fluctuate, sometimes altering the long-term persistence of the system (Turchin 2003). However, 

most investigations of the interplay between species interactions and environmental variation 

have been theoretical, and our understanding of how these mechanisms manifest in natural 

populations is rudimentary.  

In addition to the interplay of species interactions and environmental variation in the 

context of complex population dynamics, there is the long-standing interest in how single 

populations that have large influences on their ecosystems (Paine 1966). For some populations, 

these large effects arise as a direct consequence of their high abundance. “Dominant species” are 

those that are consistently abundant through time and have been shown to be important for 



 viii 

enhancing primary production and limiting temporal variability of plant communities (Smith and 

Knapp 2003, Sasaki and Lauenroth 2011). Some populations are only transiently abundant but 

can nonetheless have large effects on their ecosystems that can potentially persist beyond the 

period of high abundance (e.g. insect outbreaks and phytoplankton blooms) (Dokulil and 

Teubner 2000, Yang and Gratton 2014). In contrast to populations that whose large effects arise 

primarily from their high abundance, “keystone” species have impacts that are disproportionate 

to their abundance (i.e. they have large per capita effects). The classic example comes from 

rocky intertidal communities, where high predation rates by sea stars promote species richness 

by suppressing mussels that would otherwise become dominant (Paine 1966). Other keystone 

species are “ecosystem engineers”; they directly alter the physical environment experienced by 

themselves and other populations, with cascading consequences for the whole system (Jones et 

al. 1994, Bertness and Leonard 1997, Wright and Jones 2006). For example, reefs built by corals 

and dams built by beavers create complex habitats that support high primary productivity and 

biodiversity (Bellwood 2001; Wright et al. 2002). Regardless of whether a population’s 

ecosystem effects arise from high abundance, high per capita effects, or both, these effects are 

often mediated by the environmental context and therefore have the potential to vary 

substantially through space and time (Hastings et al. 2007).  

In this dissertation, I explore the connections between population dynamics, 

environmental variation, and ecosystem-consequences of single populations in the context of 

Lake Mývatn in northeastern Iceland. Mývatn is uniquely suited to exploring the intersection of 

these topics for two main reasons: (1) a relatively simple community dominated by a few taxa 

and (2) high primary productivity fueling high, but variable, abundance of those dominant taxa 

(Einarsson et al. 2004). Mývatn’s relative simplicity reflects the low species diversity of Iceland 
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as a whole, likely a function of it both being geographically isolated and at a high latitude. 

Mývatn’s high productivity results from high nutrient inputs from the warm and cold springs that 

are the primary hydrological sources of the lake. The springs vary in their nutrient 

concentrations, but the overall external loading is estimated as 1.5 g m-2 y-1 of nitrogen (N), 1.4 g 

m-2 y-1 of phosphorus (P), and 340 g m-2 y-1 of silicon (Si) (Ólafsson 1979). The lake is quite 

shallow, with a maximum depth in the main (south) basin of approximately 3.3m and of around 

5m in the secondary (north) basin due to sediment dredging; prior to dredging the north basin 

was much shallower (max depth » 2m) (Einarsson et al. 2004). Mývatn’s shallowness means that 

during clear periods much light reaches the bottom of the lake, which in conjunction with the 

high nutrient availability supports high benthic primary production, mainly by diatoms.  

Mývatn’s high benthic production supports large populations of midges (Diptera: 

Chironomidae), which spend most of their lives as aquatic larvae before emerging as flying 

adults that primarily function as the dispersal and reproductive stage. While Mývatn contains 

more than 30 midge species of differing ecologies, by far the most abundant are the related 

species Tanytarsus graclientus and Chironomus islandicus of the tribe Chironominae 

(Gardarsson et al. 2004). In peak years, the Chironomae can exceed densities of 200,000 m-2 and 

compose two-thirds of Mývatn’s secondary biomass production (Einarsson et al. 2004). They in 

turn serve as a major food source for higher trophic levels, including fish (e.g. arctic char) and 

ducks. In addition to their numerical dominance, the Chironominae are ecosystem engineers, 

constructing silk tubes and a network of silk that stabilizes and provides 3-dimensional structure 

to the sediment (Hölker et al. 2015, Herren et al. 2017). Furthermore, the midge have the 

potential to alter sediment biogeochemistry through nutrient excretion and bioturbation that 

alters the redox conditions in the sediment (Hölker et al. 2015, Baranov et al. 2016, Baranov 
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Viktor et al. 2016). By virtue of being both abundant and having large per capita effects on the 

structure of the benthic environment, the Chironominae have the potential for large effects on 

function of the lake ecosystem.  

While the Chironominae dominate the benthic environment in years of high abundance, 

both Tanytarsus and Chirnomus display high-amplitude fluctuations with episodic crashes that 

leave the sediment nearly absent of midge larvae (Lindegaard and Jónasson 1979). The 

fluctuations of Tanytarsus are particularly dramatic, spanning 5 orders-of-magnitude with 

crashes occurring every 4 to 7 years. Long-term data on adult Tanytarsus suggest that their 

fluctuations are tied to food limitation, as the individual wing-lengths (a proxy of overall 

condition) tend to decline immediately before the population crashes (Einarsson et al. 2002). 

Furthermore, the fluctuating abundance of Tanytarsus larvae and diatoms across nearly 30 years 

inferred from a sediment core resemble consumer-resource cycles, with Tanytarsus as the 

consumers and diatoms as the resource (Einarsson et al. 2016). However, the erratic nature of 

Tanytarsus population fluctuations is atypical of classic consumer-resource cycles. A model fit 

to a time series of Tanytarsus abundance from 1976-2002 suggests that the population dynamics 

are best explained by the existence of two alternative attractors: a stable equilibrium at 

moderately-high density and a high-amplitude cycle (Ives et al. 2008). The high-amplitude cycle 

is driven by depletion and recovery of the algal food source, with detritus buffering the decline in 

the midges that in turn prevents the immediate recovery of the algae. It is this decoupling of the 

midge-algae interactions that allows the existence of multiple attractors. In the presence of 

environmental stochasticity, the population is repeatedly pushed between these alternative 

dynamical states, resulting in the aperiodic high amplitude fluctuations. While this model 

provides a good phenomenological description of the complex dynamics of Tanytarsus 
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populations, the hypothesized processes that underlie the model have not been empirically 

demonstrated. Therefore, a mechanistic understanding of the midge fluctuations has yet to 

emerge. 

The cyanobacterium Dolichospermum spp. is another species that has large but variable 

influences on the Mývatn ecosystem. Blooms of Dolichospermum are historically episodic, 

occurring in some years but not in others, and spatially variable with north basin typically having 

the highest concentrations (Einarsson et al. 2004). When the blooms due occur, they can be very 

thick; concentrations of phycocyanin (a cyanobacteria pigment) can exceed concentrations of 

>200 µg L-1 and the bloom can block virtually all light 5cm below the water surface. Under these 

conditions, the lake is likely to shift from being dominated by benthic to pelagic primary 

production, which in turn could have consequences for the movement of energy throughout the 

food web (Elser 1999, Dokulil and Teubner 2000). Furthermore, Dolichospermum can fix 

nitrogen and heterocysts have been observed in their colonies which suggests that they actively 

fix nitrogen during summer blooms at Mývatn; this possibility has been supported by some 

preliminary attempts to measure nitrogen fixation rates in the field. While the ultimate fate of 

this nitrogen is unknown, eventually it probably becomes part of Mývatn’s internal nitrogen 

loading and may be available for use to other organisms. In any case, the Mývatn’s 

cyanobacterial blooms likely have major consequences for its ecosystem function, as has been 

observed in many other lakes.  

  The work described in this dissertation explores a variety of topics related to the causes 

and consequences of variation in the abundance of various populations in Mývatn. In Chapter 1, 

I describe two field experiments that (1) investigate the mechanisms through which midges 

(mainly Tanytarsus) influence benthic primary production and (2) illustrate the role of light in 
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mediating this effect. The results illustrate that ecosystem engineering by midges can have either 

positive or negative effects on net ecosystem production in the sediment, depending on variation 

in light conditions. To place these experimental results in context, I used measurements of the 

spatial variability in water column light attenuation due to a thick cyanobacterial bloom in 2015 

to project the expected variation in midge effects on benthic production given variation in light. 

These results illustrate the role of environmental variation in mediating the ecological 

consequences of ecosystem engineering.  

Chapter 2 extends Chapter 1’s theme of light effects on primary production to both finer 

and longer temporal scales. Using hourly observations of dissolved oxygen and related variables 

from 6 summers at Mývatn between 2012-2018, I fit a model that characterized the time-varying 

dependence of lake metabolism on light and temperature. To do so, I extended a previous 

modeling approach by allowing the model parameters to change smoothly through time as a 

random walk, reflecting changes in the underlying ecological dynamics. When fit to data from 

Mývatn, the model showed substantial temporal variability in the response of lake metabolism to 

light. In particular, the maximum rate of gross primary production under light-saturating 

conditions made the dominant contribution to temporal variation in lake metabolism in Mývatn. 

This variation in turn was closely related to variation in cyanobacterial pigments, suggesting that 

Mývatn’s episodic cyanobacterial blooms can have important consequences for ecosystem 

function. 

Finally, Chapter 3 describes an extension of the statistical approach presented in Chapter 

2 to a very different context: the problem of inferring temporal variation in demographic rates 

(e.g.  survival and recruitment) from time series of observed population abundance. The focus of 

this chapter is partly methodological, including an exploration of the statistical performance of 
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the method. However, the method is illustrated through application to the surveyed abundance of 

Mývatn’s population of arctic char (Salvelinus alpinus). The char were historically an important 

fishery prior to a decline that followed very high exploitation rates and other changes in the lake 

ecosystem (Gudbergsson 2004). After comparing the full model to reduced versions with 

different demographic rates fixed through time, I return to the fit of the model to the real data 

and describe how the estimated sequence of time-varying recruitment and survival can be used to 

partition their relative contributions to temporal variation in the per capita population growth 

rate. Per capita recruitment was the dominant contributor to variation in the arctic char 

population over the past 30 years. While the source of this variability is unknown, it is 

potentially connected to fluctuations in their food sources, including  certain midges (mainly 

non-Chironominae) and zooplankton (many of which covary either positively or negatively with 

Tanytarsus abundance Einarsson and Örnólfsdóttir 2004, Webert et al. 2017).  
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Abstract 

Ecosystem engineers can have diverse and conflicting effects their ecosystems, and the balance 

between these effects can depend on the physical environment. This context-dependence means 

that environmental variation can produce large differences in engineer effects through space and 

time. Here, we explore how local variability in environmental conditions can lead to large 

spatiotemporal variation in the effect of tube-building midges on benthic ecosystem metabolism 

in a shallow subarctic lake. Using field experiments, we found that midge engineering increases 

both gross primary production (GPP) and respiration (RESP) in the sediment. GPP and RESP 

have opposing influences on net ecosystem production (NEP), and the net effect of midges on 

the benthic ecosystem depends on the balance between their effects on GPP and RESP. Variation 

in light mediates this balance—under high light conditions primary producers are able to exploit 

the structural benefits provided by midges, while in the dark the elevation of respiration from 

midge engineering predominates. Benthic light levels vary spatially and temporally due to 

episodic cyanobacterial blooms that prevent almost all light from reaching the benthos. By 

quantifying the nonlinear relationship between midge engineering and light, we were able to 

project ecosystem-wide consequences of natural variation in light conditions across the lake. Our 

results illustrate how the sign and magnitude of ecosystem-wide effects of ecosystem engineers 

can vary through space and time. 

 

Key Words: Chironomus islandicus; context-dependence; lake metabolism; light limitation; 

nutrient limitation; macroinvertebrates; Tanytarsus gracilientus  
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Introduction 

Ecologists have long been interested in the potential for single populations to have 

disproportionate influences on their ecosystems (Paine 1966). Striking examples come from 

‘ecosystem engineering’, whereby a single species alters the physical environment experienced 

by many others, with cascading consequences for the whole system (Jones et al. 1994, Bertness 

and Leonard 1997, Wright and Jones 2006). Different organisms in a community respond to 

environmental changes in different ways, leading to multiple effects of ecosystem engineering at 

the community and ecosystem scale (Jones et al. 1997, Hastings et al. 2007, Gribben et al. 2013). 

Ecosystem engineers also have non-engineering effects on other organisms within a community 

through direct interactions such as competition and herbivory (Jones et al. 1997, Bertness et al. 

1999, Hastings et al. 2007, Largaespada et al. 2012). The net impact of ecosystem engineers 

depends on the balance between these diverse and potentially conflicting effects, which itself can 

depend on the environmental context (Bertness et al. 1999, Norkko et al. 2006, Daleo and 

Iribarne 2009, Brown and Lawson 2010, Lathlean and McQuaid 2017).  

The context-dependence of ecosystem engineering means that environmental variation 

can produce large differences in engineer effects through space and time (Wright et al. 2006, 

Hastings et al. 2007). For example, many engineers provide refuges from stressful environments 

(e.g. temperature or physical disturbance), and the response of other organisms in the 

communities varies across gradients in stress (e.g. tidal height or latitude) (Bertness et al. 1999, 

Crain and Bertness 2005, Arribas et al. 2014). While previous studies have demonstrated the 

existence of variation in the effects of ecosystem engineering across a range of scales (Wright et 

al. 2006, McAfee et al. 2016, Lathlean and McQuaid 2017), few studies have attempted to 

predict the magnitude of spatiotemporal variation in engineering effects at the ecosystem scale. 
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Scaling small-scale engineering to ecosystem-wide effects requires (1) modeling the functional 

response of engineering to continuous variation in the environment and (2) quantifying the 

spatial and temporal variation in the environment within the region of interest (Wright et al. 

2006, Hastings et al. 2007). This is particularly important because responses of engineering to 

environmental conditions are likely nonlinear (as is true for many ecological processes) and the 

shape of this nonlinearity could have large consequences for the overall effects of engineering in 

variable environments (Ruel et al. 1999).  

Here, we explore how local variability in environmental conditions can lead to large 

spatiotemporal variation in the effect of tube-building midges on benthic ecosystem metabolism 

in Lake Mývatn, Iceland. Midges (Diptera: Chironomidae) are widespread in lakes worldwide 

and exemplify other benthic invertebrates (e.g. annelids and mollusks) in their roles as ecosystem 

engineers (Armitage et al. 1995, Gutiérrez et al. 2003, Norkko et al. 2006, Arribas et al. 2014, 

Hölker et al. 2015). Larval midges construct silk tubes and a network of silk that stabilizes and 

provides 3-dimensional structure to the sediment (Olafsson and Paterson 2004, Hölker et al. 

2015) (Fig 1). In Mývatn, midge populations are highly variable but can exceed densities of 

200,000 m-2 and compose a majority of animal biomass in peak years (Lindegaard and Jónasson 

1979, Einarsson et al. 2004). Therefore, Mývatn’s midges have the potential to greatly alter 

benthic ecosystem function (Fig 2). We examined midge effects on net ecosystem production 

(NEP), which equals gross primary production (GPP) minus respiration (RESP) (Lovett et al. 

2006, Chapin et al. 2006). NEP is a central component of ecosystem carbon budgets that 

influences the biomass available across trophic levels and the exchange of dissolved CO2 with 

the atmosphere (Randerson et al. 2002, Cebrian and Lartigue 2004, Chapin et al. 2006, Davidson 

et al. 2015). There is much current interest in the biotic and abiotic factors determining the 
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balance between GPP and RESP in both aquatic and terrestrial systems, particularly in the 

context of global environmental change (Belshe et al. 2013, Holgerson and Raymond 2016, 

Demars et al. 2016).  

Previous work showed that midges can increase GPP and producer biomass, possibly by 

providing a substrate for algal growth; chlorophyll concentrations can be twice as high in the 

tubes compared to the surrounding sediment (Pringle 1985, Olafsson and Paterson 2004, Hölker 

et al. 2015, Herren et al. 2017). However, midges may also decrease GPP through direct 

consumption of primary producers. Midges may ameliorate short-term nutrient limitation of GPP 

through mobilization (e.g. excretion or bioturbation) of N and P, but can also reduce P 

availability by oxidizing the sediment (Henriksen et al. 1983, Svensson 1997, Zhang et al. 2010, 

Hölker et al. 2015, Benelli et al. 2018). Furthermore, sediment oxygenation can increase 

microbial RESP by changing redox conditions and inducing shifts in bacterial community 

composition (Svensson and Leonardson 1996, Yeager et al. 2001, Nogaro et al. 2008, Hölker et 

al. 2015, Baranov et al. 2016a, 2016b). Therefore, midges may have opposing effects on NEP 

through their various effects on GPP and RESP (Fig 2). Determining how the physical 

environment regulates the balance of midge effects on production and respiration is important for 

understanding their role in the functioning of lake ecosystems (Hölker et al. 2015).  

With two field experiments, we (1) explored the mechanisms by which midges stimulate 

benthic GPP and RESP and (2) quantified the role of light in mediating the balance between 

these effects and the consequences for NEP. In the first experiment, we experimentally 

mimicked two ways in which midges alter the benthic environment: modification of sediment 

structure and nutrient mobilization. We predicted that if midges stimulate ecosystem metabolism 

through these mechanisms, then experimental manipulations should (i) approximate the effects 
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of midges when midges are absent and (ii) be at least partially redundant with midges such that 

they have weaker effects when midges are present. We were interested in comparing the effects 

of midges through sediment structure and nutrient mobilization, because structural effects would 

be largely predictable from the presence of midges (Hölker et al. 2015). In contrast effects of 

nutrient mobilization would depend on the ambient nutrient content in the sediment pore water, 

which is highly dynamic in Mývatn (Gíslason et al. 2004). 

In the second experiment, we quantified NEP across a light gradient in the presence and 

absence of midges. We expected the positive effect of midges on GPP to decline as 

photosynthesis became more limited by light, as the potential benefits provide by midges could 

only be exploited by the primary producers in the presence of sufficient light for photosynthesis. 

In contrast, we expected the positive effects of midge on RESP (at least from heterotrophs) to be 

present in both light and dark conditions. Therefore, a decline in light would tip the balance 

between positive midge effects on GPP and ER, making the midge effect on NEP less positive or 

more negative (Fig 2). In Mývatn, benthic light levels vary spatially and temporally due to 

variation in depth and episodic cyanobacterial blooms that prevent almost all light from reaching 

the benthos (Einarsson et al. 2004). To investigate how this spatiotemporal variation in light 

intensity can alter midge effects on NEP, we combined data on patterns of light transmission 

throughout the lake with a model parameterized from our field experiments. This allowed us to 

project the potential consequences of spatiotemporal variation in environmental conditions for 

determining the effect of midge engineering on NEP at the whole-lake scale.  
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Experimental Methods 

Study System 

Mývatn is located in northeastern Iceland (65°40’N 17°00’W) and has a tundra-subarctic 

climate (Björnsson and Jónsson 2004). The lake is shallow (mean depth » 2.5m and max depth » 

4m in main basin) and is fed by cold and warm springs rich in phosphorus (N, P, and Si loading 

of 1.5, 1.4, and 340 g m-2 y-1 respectively) (Ólafsson 1979, Einarsson et al. 2004). Most of the 

primary production (roughly 288 g C m-2 y-1) is benthic (Einarsson et al. 2004) as is likely true 

for many shallow lakes (Vadeboncoeur et al. 2002, Karlsson et al. 2009). Diatoms are the 

dominant benthic producers, with the genus Fragilaria composing most of the algal biomass 

(Jónasson 1979, Einarsson et al. 2004). Benthic primary production supports large populations of 

midges (>30 species), and the dominant tube-building genera Tanytarsus (tribe Tanytarsini) and 

Chironomus (tribe Chironomini) compose a majority of the lake’s animal biomass in peak years. 

Tanytarsus generally has two generations per year accompanied by large emergences of adults 

that greatly reduce the number of larvae in the sediment. Furthermore, many of Mývatn’s tube-

building midge show large interannual fluctuations in abundance, with Tanytarsus spanning 

several orders of magnitude between high- and low-midge years (Ives et al. 2008). It is unknown 

how long the midge tubes persist following emergence, but they probably degrade within a few 

weeks.  

 

Mesocosms 

We performed two field experiments to explore (1) the mechanisms of positive midge 

effects and (2) light mediation of midge effects on benthic ecosystem metabolism. The 

experiments used mesocosms constructed from acrylic tubes (33cm height ´ 5cm diameter) with 

the bottom 15cm filled with sediment and the top 18cm with lake water. In both experiments we 
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manipulated the presence/absence of midges and their associated engineering to quantify their 

effects on ecosystem metabolism. A previous experiment at Mývatn directly demonstrated 

positive effects of midges on GPP and NEP by adding different midge densities to sediment that 

was sieved to remove any naturally occurring midges (Herren et al. 2017). In contrast, our goal 

was to quantify the magnitude of midge effects under the most realistic conditions possible, so 

we could place midge engineering in the context of natural environmental variability. Adding 

midges to sieved sediment does not accomplish this, because it takes time for the midges to 

recover from being relocated and for the impact of midge tube building to be fully realized in the 

sediment structure. Instead, we filled the mesocosms with either intact sediment cores (‘midges 

present’) or sediment sieved to remove midges and disrupt the structure created by midge tubes 

and silk (‘midge absent’). Mývatn’s sediment is composed of very fine particles (primarily 

diatom frustules and volcanic tephra; (Einarsson et al. 2004), and in the natural absence of 

midges the sediment has a very loose structure that was closely mimicked by the sieved sediment 

(Olafsson and Paterson 2004). Therefore, our midge treatments reflected the natural contrast in 

sediment structure between years of high and low midge abundance.  

For the ‘midges present’ treatments, we extruded the top 15cm of sediment cores 

containing larval midges into each mesocosm without disturbing the sediment. For ‘midges 

absent’, we sieved the top 5cm (containing most of the active algal cells) and bottom 10cm of 

sediment cores through 63µm and 125µm mesh respectively, pooled the two sediment layers 

from all cores, and reassembled them as two layers in the mesocosms. The use of 63µm mesh for 

the top layer was necessary to remove first instar larvae that typically reside near the sediment 

surface. Sieved sediment was stored in a cool dark location for 2-3 days prior to establishing the 

mesocosms so that the sediment could settle, while cores for ‘midges present’ were collected on 
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the day each experiment was deployed. The sediment cores were collected from Mývatn using a 

Kajak corer, at times and locations of moderate larval midge density (15,000-25,000 m-2). For 

both ‘midges present’ and ‘midges absent’ treatments the bottoms of the mesocosms were sealed 

with foam stoppers and tape. The bottom 15cm of each mesocosm was wrapped with four layers 

of black plastic to replicate the naturally dark conditions within the lake sediment.  

Sieving and storing of sediment was clearly a large perturbation that could have altered 

algal abundance, productivity, or microbial activity. However, chlorophyll-a concentrations were 

similar between sieved and intact sediment (Appendix A). Furthermore, there were no 

indications of transient shifts in ecosystem metabolism of the sieved treatments that were not 

also present in the intact treatments; the sieved treatments were actually more consistent through 

time (Results; Appendix A). While this does not demonstrate that sieving had no artificial 

effects, it does suggest that the sieved treatments quickly reached an equilibrium state with their 

surrounding environment (consistent with the fast turnover times of diatoms that are the 

dominant benthic producers) (McCormick and Stevenson 1991, Sommer 1991) and provide a 

consistent baseline for evaluating the effects of midges engineering.  

The mesocosms were deployed on the bottom of the lake for either 11 (experiment 1) or 

15 (experiment 2) days at a depth of 1m. We left the tops of the mesocosms open to allow 

exchange with the ambient lake water, except during measurements of metabolism when they 

were sealed with rubber stoppers for several hours (see Measurements of NEP, GPP, and RESP). 

Mývatn is spring fed and has substantial lateral water flow even on days with low wind, so there 

was likely significant exchange between the mesocosms and overlying water (Bartrons et al. 

2015). 
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Experiment 1: Mechanism of Midge Engineering 

We used a factorial experiment to test two mechanisms by which midges may increase 

ecosystem metabolism rates: (1) enhanced substrate quality by building silk tubes and (2) 

promoting algal growth by mobilizing nutrients. The experiment had a 2 ´ 2 ´ 2 design crossing 

midge presence with artificial silk structures (to mimic midge tubes) and nutrient enrichment (to 

mimic nutrient mobilization), and we measured the responses of GPP, RESP, and chlorophyll-a. 

We predicted that if tube building by midges stimulated algal growth, then the presence of either 

silk or midges would increase GPP by a comparable amount. However, if the benefits of 

enhanced sediment structure (provided by either midges or silk) saturate, then the presence of 

both midges and silk should be lower than what would be expected from their separate effects. 

Similarly, we predicted that if nutrient mobilization by midges stimulated GPP, then midges and 

nutrient enrichment would both increase GPP when applied separately but that these effects 

would be at least partially redundant when applied together. We expected RESP to respond 

similarly to GPP, as is often the case in lake ecosystems with high in situ production. Since GPP 

and RESP have opposite effects on NEP, the effects of midges, silk, and nutrients would depend 

on the relative magnitude of their effects on GPP and RESP. 

The presence of midges and associated sediment structure was manipulated as described 

in Methods: Mesocosms. To mimic midge engineering, we used thin sheets of natural silkworm 

silk (Undyed Silk Hankies, Yarn Designers Boutique, CA, USA) originally 25 ´ 25cm that we 

stretched into loops approximately 15cm in diameter. Each mesocosm received a single silk 

loop, which we loosely coiled into a 3-dimensional structure and positioned so that the bottom 

half of the loop sat below the sediment surface (Fig A1). While the silk coils were clearly not a 

perfect imitation of midge tubes, they are similar in that they provided 3-dimensional structure 
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that expanded the effective surface area available for algal growth. The silk could present a 

physical barrier reducing between the sediment and the water column, although this also is 

similar to the effect of the midge tubes and silk that can completely cover the sediment surface. 

We manipulated nutrient concentration with agar rods (1.5cm diameter ´ 15cm length) 

either enriched with both N and P or not enriched (Tank et al. 2006) that were pushed vertically 

into the mesocosm sediment. While N and P are not the only nutrient that could be limited for 

benthic primary producers (particularly Si for diatoms) (Kilham 1971, Paasche 1973), N and P 

are the nutrients that are most obviously influenced by midges and are also the focus of most 

studies of nutrient limitation in freshwater systems (Svensson and Leonardson 1996, Hölker et 

al. 2015). We enriched the agar with NH4Cl and KH2PO4 to produce N and P concentrations of 

0.5M and 0.13M respectively, to roughly mimic the excretion ratios measured from Tanytarsus 

(Herren et al. 2017). Laboratory measurements of similarly enriched agar rods yielded average N 

and P release rates of 22.8 and 1.23 mg day-1, respectively (Appendix A). The rods were 

constructed by pouring the hot agar into clean surgical tubing cut to the appropriate length, with 

a bamboo skewer inserted into the center for stability. 

We secured the mesocosms to 2 racks with 12 mesocosms each. We intended to use a 

balanced design with 3 replicates in each of 8 treatment combinations (total n=24). However, due 

to a logistical error one ‘silk present’ and ‘silk absent’ treatment were switched for each nutrient 

and midge combination, so that each treatment had either 2 or 4 replicates. We deployed the 

experiment on the lake bottom near the southern shore from 2-13 August 2016 and measured 

GPP, RESP, and NEP on the 3rd and 11th days of deployment (see Measurements of NEP, GPP, 

and RESP). On day 11 we collected 1mL of surface sediment from each mesocosm (after 

removing the silk in the silk treatment) and quantified chlorophyll-a concentration extracted in 
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methanol with a fluorometer (Turner Designs, Sunnyvale, CA, USA) (Welschmeyer 1994, 

Herren et al. 2017). We also measured the chlorophyll-a in the silk loops from each mesocosm in 

the ‘silk present’ treatment; chlorophyll-a was extracted from the entire silk loop using methanol, 

following the same procedure as for the sediment.   

 

Experiment 2: Light Mediation of Midge Engineering Effects 

We quantified the relationship between light and midge effects on benthic production by 

measuring NEP across a light gradient in the presence or absence of midges with their associated 

engineering. The experiment consisted of 48 mesocosms filled with sieved and intact sediment 

(Methods: Mesocosms). To create variation in light, we wrapped the sides of the upper 18cm of 

40 mesocosms with 0, 1, 2, 3, or 4 layers of white mesh. We wrapped two layers of black plastic 

around the sides of the upper 18cm of the remaining 8 mesocosms. There was no algal growth or 

other fouling on the sides of the mesocosms during experiment, so the shading treatments 

remained consistent. Altogether we had 6 shading treatments with 8 replicates each. These 

replicates were evenly distributed across the two midge treatments, for a total of 12 treatment 

combinations.  

We secured the mesocosms to 3 racks with 16 mesocosms each. Thirty-six replicates 

were distributed among racks in a complete block design, while the remaining 12 mesocosms 

were distributed haphazardly. We deployed the experiment in a small bay in the southeastern 

corner of Mývatn, free of the thick cyanobacterial bloom occurring across the rest of the lake that 

prevented most of the light from penetrating to a depth of 1m. Tanytarsus and Chironomus are 

absent from this portion of the lake (due to the hard substrate) and therefore could not colonize 

the mesocosms. This portion of the lake is near the springs that feed the main basin, and have 

substantially lower N:P ratios (~1:1) than the rest of the lake (~16:1 for the outlet on the opposite 
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side of the lake) . However, the nutrient content in the sediment pore-water of the mesocosms 

was likely much higher than in the water column, so differences in water column chemistry 

likely had minimal effects (Gíslason et al. 2004). The experiment was deployed from 28 July to 

12 August 2015, and we measured NEP on 3rd and 15th days of deployment (see Measurements 

of NEP, GPP, and RESP).  

To determine the effect of shading treatments on in situ light levels at the mesocosm 

sediment surface, we measured the photosynthetically active radiation (PAR) inside of a clear 

polycarbonate tube secured with the appropriate shading treatment. We secured a light meter (Li-

192 Quantum Underwater Sensor, Li-COR, NE, USA) 18cm from the top of each tube and took 

the readings with the sensor just below the water’s surface, at 0.5 below the surface, and 1m 

below the surface. For each set of readings, we also measured ambient light with the meter 

outside of the tube. This allowed us to calculate the effect of a given shading treatment as a 

fraction of surface irradiance at a given depth. We repeated each series of measurements 3 times 

so we could average across changes in ambient light intensity within a series of measurements at 

different depths. Throughout the incubation period for measuring NEP (see Measurements of 

NEP, GPP, and RESP), we measured PAR using the bare sensor at the locations above/below the 

water surface as described above. This allowed us to estimate the light level experienced by each 

mesocosm during the incubation, given its shading treatment and the ambient light level. 

Estimated light levels at the sediment surface ranged from 3.43 to 228 µmol-photons m-2 s-1. 

From our long-term sampling location in May-August of 2013-2017, approximately 77% of light 

levels observed at midday from a depth of 2.5m (Mývatn’s average depth) were within the 

experimental range. Day 15 was sunnier than day 3, so the most extreme mesocosm light levels 
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were greater for day 15, although with substantial overlap with day 3 due to the shading 

treatments.  

To evaluate the efficacy of our midge (sieving) treatments and determine how much the 

larval midges grew, at the end of the experiment we sieved sediment from all cores in the full 

light and full dark shading treatments (n=16) and collected the larval midges (n=299). We 

identified the midges to either tribe (Tanytarsini or Chironomini) or subfamily (Appendix A). 

There was minimal colonization of the mesocosms by Micropsectra (tribe Tanytarsini); however, 

the ‘midges absent’ treatment remained largely midge-free. Tanytarsini dominated the ‘midges 

present’ treatment. The head capsule widths and body lengths of Tanytarsini larva were 

measured to determine whether the midges grew throughout the experiment. We used the 

distribution of head capsule widths from both the experiment and long-term data of the 

Tanytarsini population to define boundaries between instars (< 0.15mm for second instar, 0.15 - 

0.24mm for third instar, and > 0.24mm for fourth instar). First instars were not present in the 

lake during the experimental period. We quantified midge growth by comparing the midge 

measurements from the mesocosms to those in sediment cores taken from the source location a 

few days before the beginning (n=133) and on the last day of the experiment (n=97).  

 

Measurements of NEP, GPP, and RESP 

 Ecosystem metabolism rates were quantified in each mesocosm as the difference between 

the final and initial dissolved oxygen concentration per hour (g O2 L-1 h-1) over an incubation 

period of approximately 4 hours (ProODO, YSI Co., OH, USA) (Bott 2006, Herren et al. 2017). 

The incubations were performed on the lake bottom at a depth of 1m, with the mesocosms sealed 

with rubber stoppers for the duration (stoppers lead to an approximately 10% reduction in light at 

the mesocosm sediment surface). The mesocosm water columns were gently stirred to 
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homogenize the oxygen concentration before taking readings. Metabolism in the mesocosm 

water columns was negligible, as illustrated by experiments with similar mesocosms lacking 

sediment where changes in O2 were not detectible. Therefore, we converted the differences in 

final and initial O2 concentrations to fluxes of O2 across the sediment surface (g O2 m-2 h-1) by 

multiplying by the depth of the mesocosm water column. We present ecosystem metabolism 

rates as fluxes of O2, assuming that GPP and RESP correspond to roughly equal fluxes of C and 

that the net O2 flux (NEP) is biologically meaningful (Bott 2006). We recognize that measuring 

metabolism through closed incubations has the potential to introduce some artifact (e.g. lag of 

water column mixing), but this approach has been used in previous studies (Bott 2006) and 

should provide a reasonable quantification of variation across treatments that is the major focus 

of our study. 

For experiment 1, both NEP and RESP were quantified in sequential 4-hour incubations 

under light and dark conditions, respectively. Dark conditions were achieved by wrapping the 

tops of the mesocosms with four layers of black plastic, which blocked out essentially all light 

when the rubber stoppers were in place.  GPP was calculated as the summed magnitudes of NEP 

and RESP (since NEP = GPP – RESP) (Lovett et al. 2006). The average water temperatures 

inside the mesocosms during the light and dark incubations were respectively 14.4°C and 15.9°C 

on day 3, and they were 14.7°C and 13.7°C on day 11. Average light levels at the deployment 

depth during the light incubation were 335 and 155 µmol-photons m-2 s-1 on days 3 and 11, 

respectively.  

For experiment 2, we incubated each mesocosms once per measurement day with the 

shading treatments intact (as opposed to twice per measurement day, one light and one dark, as 

for experiment 1). This allowed us to quantify NEP across a light gradient, which in turn allowed 
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us to draw inferences about GPP and RESP across midge treatments (but not for each mesocosm 

separately; see Statistical Methods). Average water temperatures were 9.13°C on day 3 and 

10.2°C on day 15 (see above for description of light levels during Experiment 2). We note that 

water temperatures were lower for Experiment 2 than Experiment 1, which was reflected in 

lower overall metabolism rates.  

 

Statistical Methods 

 

All analyses were conducted using R version 3.4.3 (R Core Team 2016). Code and data can be 

found at https://github.com/jsphillips2/midge_light. 

 

Experiment 1: Mechanism of Midge Engineering 

We fit separate linear mixed models (LMMs) for GPP, RESP, and NEP with two-way 

interactions between silk, midges, nutrients, and time. Mesocosm identity was included a random 

effect to account for repeated measures. A single extreme value was omitted for day 11, which 

did not alter the statistical conclusions. We calculated p-values using F-tests with the Kenward-

Roger approximation, which can be applied to unbalanced designs (Luke 2017). We performed a 

parallel analysis to compare chlorophyll-a across treatments, although these data were only 

available for day 11 so there was no need to account for repeated measures. Unless otherwise 

noted we reported p-values for the full models, due to the risk of inflated Type-I errors following 

model selection (Freedman 1983). However, we also dropped non-significant interactions with 

backward selection to check for changes in the inference for corresponding fixed effects.  

 

Experiment 2: Light Mediation of Midge Engineering Effects 
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Experiment 2 quantified NEP across a light gradient, with and without midges, and at two 

time points (days 3 and 15). We analyzed these data by fitting a modified productivity-irradiance 

curve with a Michaelis-Menten form (Jassby and Platt 1976):  

 

NEP$ = 	a$	´	light$	(1	 + 	b	´	light$) +	d$ 	+ e0123/5672875[:]	 (1)	

a$ = 	a< 	+	a=	´	midge$ 	+ 	aA	´	time	$ +	aB	´	midge$	´	time	$	

d$ = 	d< 	+	d=	´	midge$ 	+ 	dA	´	time	$ +	dB	´	midge$	´	time	$	 

 

where ‘i’ is an index for observations, e is the residual error nested within rack and mesocosm, 

‘light’ is the in situ light level (PAR; µmol-photons m-2 s-1), ‘midge’ and ‘time’ are binary 

indicators for midge treatment and time, and a1, a2, a3, a4, b, d1, d2, d3, and d4 are parameters to 

be estimated. The term ai is the maximum rate of increase in NEP, and b is the rate at which 

NEP saturates with increasing light. The term di captures light-independent effects on NEP. The 

hierarchical forms of ai and di allowed us to test the effects of midge presence, time, and their 

interactions on the light-dependent and independent components of NEP. In general, the light-

dependent terms should be related to GPP and light-independent terms to RESP (Attard et al. 

2014), although possible changes in algal biomass or microbial activity across light treatments 

potentially complicate this interpretation for day 15.  

We evaluated the importance of the model parameters by fitting reduced versions of the 

full model that excluded different parameters and then ranked the models by their AIC scores 

(Burnham and Anderson 2002). This resulted in 25 models comprising all combinations of 

midge and time effects, with the restriction that models including midge ´ time interactions for 

either a or d also included the corresponding main effects. The models were fit using maximum 
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likelihood, with normally distributed residuals and random effects to account for blocking (rack) 

and repeated measures (mesocosm). Following model selection, we refit the “optimal model” 

using restricted maximum likelihood for presentation of its results.   

We quantified changes in midge stage structure by comparing the proportion of 

Tanytarsini individuals in second instar between the end of the experiment and (1) in-lake 

samples immediately prior to the experiment (to approximate the starting conditions for the 

experiment) and (2) in-lake samples at the end of the experiment with separate binomial 

generalized linear mixed models (GLMMs) including observation-level random effects to 

account for overdispersion. This allowed us to compare changes in midge stage structure in the 

mesocosms and the lake. Fewer than 5% of individuals were fourth instar, so this analysis 

essentially compared the proportions of second vs. third instars. To quantify midge growth, we 

performed a parallel analysis on body lengths using LMMs, with random effects for mesocosm 

or sediment core. We calculated p-values with either likelihood ratio tests (GLMMs) or F-tests 

using the Kenward-Roger approximation (LMMs) (Luke 2017).  

 We used the average densities of Tanytarsini (predominantly Tanytarsus gracilentus) and 

Chironomini (Chironomus spp.) observed in the ‘midges present’ mesocosms to estimate the 

potential contribution of respiration by midges themselves to NEP. We used these two taxa 

because Tanytarsini composed most of the individuals in the mesocosms and Chironomus are 

much more massive than any of the other taxa and therefore would contribute disproportionately 

to total respiration per individual. We used measurements of individual dry weights for these two 

taxa from (Herren et al. 2017) and literature values (Brodersen et al. 2004) for biomass-specific 

respiration measured at 10°C (the approximate summer average water temperature in Mývatn) to 

estimate total respiration for the midge densities observed in the mesocosms. We averaged 
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different values for Tanytarsus gracilientus and Chironomus spp. (C. hyperboreus and C. 

riparius—values for the main Chironomus species in Mývatn, C. islandicus, were not reported). 

This yielded the following estimates of total taxon-specific respirations:  

 

Tanytarsini: 118.2 individuals ´ 0.0769 mg individual-1 ´ 7.7 µg O2 h-1 mg-1  = 70.00 µg O2 h-1 

Chironomini: 7.5 individuals ´ 0.6812 mg individual-1 ´ 1.862 µg O2 h-1 mg-1  = 9.51 µg O2 h-1 

 

Therefore, the combined respiration of Tanytarsini and Chironomini was 79.50 µg O2 h-1, or 

0.0000795 g O2 h-1.  

 

Lake-Scale Effects of Midges on NEP 

To investigate how natural variation in benthic light intensity may alter midge effects on 

NEP, we combined the model fit to data from experiment 2 (equation 1) with field observations 

of light transmission to the lake bottom to project the potential spatiotemporal variation in midge 

effects on benthic production across the lake. The purpose of this projection was to place our 

experimental results in a broader context by illustrating how much variation one would expect in 

midge engineering effects across the lake given natural variation in light. This was in contrast to 

predicting the actual lake-wide effect of midges on NEP, which would require both 

characterizing the response of ecosystem metabolism to a gradient of midge densities and fine 

resolution of data on spatial variability in midge density, both of which were beyond the scope of 

this study. 

We calculated the net midge effect as the partial derivative of equation 1 with respect to 

the binary midge index (identical to taking the difference between the equation evaluated with 
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and without midges). For the full version of the model, the net midge effect as a function of light 

level and time was calculated as  

 

∂NEP
Dmidge

= 	 (a= 	+	aB	´	time)´		light	/	(1	 + 	b	´	light) + 	d2	 + 	d4	´	time		 (2) 

with ‘light’ as continuous variation in PAR, ‘time’ as a binary indicator for the day of the 

experiment, and all parameters defined as above. The parameter values were based on the 

estimates associated with the final model as determined through the model selection procedure 

(terms that were not included in the final model were set to 0). Projections of midge effects at 

each time point were calculated by substituting light levels into this expression.  

In July and August 2015 Mývatn experienced a thick cyanobacterial bloom, during which 

we took light readings at 65 sites around the lake to determine the local rates of light attenuation 

(Appendix A). The sites were positioned on a 500´500m grid and at each site we recorded light 

levels at 0.5m intervals between the surface and 2m. We estimated the exponential light 

attenuation at each site, which characterized the spatial variation in the severity of the bloom. 

The spatial pattern of the bloom roughly matched those from 2011 (Bartrons et al. 2015) and 

2016-2017 (unpublished data) based on measurement of cyanobacterial pigments and cell counts. 

For each site we calculated the light level on the lake bottom assuming moderate surface light of 

320 µmol-photons m-2 s-1 and one of three water clarity scenarios: low clarity (100% measured 

light attenuation), medium clarity (40%), or high clarity (15%). Surface light was set to ensure 

that benthic light levels were within the range of observations over which the model was fit 

(which included approximately 77% of light levels observed at midday from a depth of 2.5m at 

our long-term sampling location in May-August of 2013-2017). Spatial variation in benthic light 

levels reflected both differences in depth and observed bloom severity. For each water clarity 
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scenario, we quantified the site-specific midge effect by evaluating equation (2) for the 

corresponding light level. We made projections using both time points in equation (2), 

corresponding to midge communities dominated by either second or third instar Tanytarsini (see 

RESULTS). This resulted in six scenarios of water clarity and midge stage. 

 

Results 

Experiment 1: Mechanism of Midge Engineering 

Experiment 1 tested two mechanisms by which midges may stimulate GPP and RESP: 

enhanced substrate quality and nutrient mobilization. GPP was higher in the presence of midges 

(F1,24.78=6.34, p=0.019) and silk (F1,25.64=6.83, p=0.015) than in their absence, and these effects 

were of comparable magnitudes (Fig 3a,b). However, there was a significant negative interaction 

between these effects (F1,15.33=16.31, p=0.001) (Fig 3a,b). While GPP was higher with both silk 

and midges than with neither, GPP with both was comparable to (or perhaps slightly lower than) 

GPP with only one or the other. This is consistent with the possibility that experimental silk and 

midges provide similar net benefits to GPP that saturate when both are present, although it could 

also be due to the silk directly altering the effects of the midges. Nutrient enrichment had a 

negative effect on GPP (F1,27.04=6.65, p=0.016), although it was only visually obvious in the day 

3 data and was only marginally significant when non-significant interactions including nutrients 

were dropped. GPP increased from day 3 to 11 across all treatments (F1,17.90=5.0, p=0.038). This 

implies that nutrients were not limiting and therefore that nutrient mobilization could not explain 

the positive effect of midges on GPP in the experimental mesocosms.  

Paralleling GPP, RESP increased with midges (F1,24.78=5.85, p=0.023) and silk (F1,25.64= 

5.07, p=0.033), but with a negative interaction (F1,16.31=9.58, p=0.007) (Fig 3c,d). There was a 

nutrient ´ day interaction (F1,18.95=5.16, p=0.035), with the nutrient effect being relatively more 
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negative on day 3 than day 11. By definition GPP and RESP had opposite effects on NEP, but 

because the overall magnitude of GPP was greater than RESP, GPP had a disproportionate 

influence. Therefore, the response of NEP to the experimental treatments broadly paralleled 

GPP, with positive effects of midges (F1,24.78=4.33, p=0.048) and silk (F1,25.64=5.63, p=0.025), 

and negative midge ´ silk interaction (F1,15.52=16.31, p=0.001), and negative effects of nutrients 

(F1,27.04=11.90, p= 0.002) (Fig A2). NEP was higher on day 11 than day 3 (F1,17.09=15.12, 

p=0.001), and there was a positive midge ´ day interaction (F1,18.89=4.61, p= 0.045).  

Sediment chlorophyll-a was higher with midges (mean±standard error = 21.4±1.6 mg/L) 

than without (16.2±0.8 mg/L) (F1,20.0=9.87, p=0.005), although this effect was only significant 

when the nonsignificant interactions with silk and nutrients were dropped. There were no 

significant effects of silk (F1,20=0.74, p=0.400) or nutrients (F1,20=0.15, p=0.706) on chlorophyll-

a in the sediment itself (i.e. with the silk removed) (p-values for the reduced model). On the silk 

itself, chlorophyll-a concentrations were >10 times (254±50 mg/L) than in the sediment 

(regardless of silk treatment).  

 

Experiment 2: Light Mediation of Midge Engineering Effects 

Experiment 2 quantified the net effect of midges on benthic NEP across a light gradient. 

We fit models (equation 1) of in situ NEP with different combinations of midge and time effects 

on light-dependent and independent processes. Of the 25 possible models, the three best were 

similarly well supported (DAIC < 2), and all remaining models had DAICs > 4 (Table 1). For 

simplicity, we present the results from the second-best model as it had the fewest parameters, 

noting that each of the three best models provide similar interpretations of the data. The second-
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best model contained a light-dependent main effect of midges (‘slopes’ in Fig 4) and light-

independent main and interaction effects of midges and time (y-intercepts in Fig 4).  

Midges enhanced NEP at high light levels through their positive effect on GPP, but this 

effect declined as light decreased to levels too low to sustain algal photosynthesis (Fig 4). 

Furthermore, midges increased RESP, such that their net effect on NEP switched from positive 

to negative at low light levels. The direct contribution of midge respiration to total respiration 

was likely small (estimated as 0.0000795 g O2 h-1, while the difference in NEP between ‘midges 

present’ and ‘midges absent’ treatment in the dark was -0.044 g O2 h-1), indicating that midges 

stimulated respiration of other organisms in the sediment. NEP in the ‘midges absent’ 

mesocosms did not change between the beginning and end of the experiment (Appendix A; Fig 

A3), indicating an absence of transient artificial effects of the manipulation (i.e. sieving 

sediment) per se. In contrast, NEP declined substantially through time in the presence of midges, 

which resulted from an increase in midge stimulation of RESP (y-intercepts in Fig 4) while the 

midge effect on GPP (‘slopes’ in Fig 4) remained the same. Consequently, the amount of light 

required for the positive effects of midges on NEP to outweigh the negative effects was 

substantially higher at the end of the experiment (91 µmol-photons m-2 s-1) than at the beginning 

(8 µmol-photons m-2 s-1).  

The change in midge effects on NEP through time coincided with a shift in midge stage 

structure (c2=13.35, df=1, p=0.0003). At the beginning of the experiment 26.3% of Tanytarsini 

larvae were third instar, while 72.2% were third instar by the end. Slightly more Tanytarsini were 

third instar in the lake (88.7%) than in the mesocosms at the end of the experiment, but this 

difference was not significant (c2=2.16, df=1, p=0.141). Tanytarsini body lengths exactly 

paralleled these results. The midges grew between the beginning (mean length=2.42mm) and end 
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(2.70mm) of the experiment (F1,11.3=5.34, p=0.041), and were not significantly longer in the lake 

than in the mesocosms at the end (mean=3.10mm) (F1,11.68=3.82, p=0.075). Approximating 

individual midges as cylinders and using the head capsule width as a proxy for diameter, the 

midges nearly doubled in volume (and therefore body mass) over the course of the experiment 

(Appendix A). 

 

Lake-Scale Effects of Midges on NEP 

We used equation 2 and field measurements of light attenuation during a cyanobacterial 

bloom to project potential midge effects on production across the lake. Based on the model 

selection described above, we employed the parameterization of the model that excluded the 

light-dependent midge ´ light interaction (a4), yielding the following expression for the net 

midge effect:  

 

∂NEP
Dmidge

= 	a=	´		light	/	(1	 + 	b	´	light) + 	d2	 + 	d4	´	time		 (3) 

 

where a2 = 0.00169 [(g O2 m-2 h-1/µmol-photons m-2 s-1)], b = 0.0202 [1/(µmol-photons m-2 s-1)], 

d2 = -0.0122 [g O2 m-2 h-1], and d4 = -0.0420 [(g O2 m-2 h-1)/time-1]. We made projections for low 

(100% observed light attenuation), medium (40%), and high (15%) water clarities crossed with 

two dominant midge stages (second and third instar, corresponding to days 3 and 15 of 

experiment 2). Across the six scenarios projected midge effects on benthic NEP ranged from 

strongly negative (-0.054 g O2 m-2 h-1) to strongly positive (0.053 g O2 m-2 h-1), thus spanning 

~0.11 g O2 m-2 h-1. The estimated seasonal production by diatoms from Mývatn (200 g C m-2) in 

a year of moderate midge abundance (Jónasson 1979) converted to the same timescale and units 
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is roughly 0.22 g O2 m-2 h-1 (Appendix A), which means that the potential range of projected 

midge effects is substantial relative to the overall magnitude of production. In some cases, both 

moderately positive and moderately negative midge engineering effects occurred across the lake 

for a given water clarity scenario (Fig 5). Spatial variation was highest at medium water clarities, 

while midge effects at extreme water clarities tended to be either uniformly positive, negative, or 

neutral across the lake. 

 

Discussion 

Our results show how environmental conditions can alter the magnitude and sign of 

ecosystem engineer effects on their ecosystems: midges acting as both engineers and consumers 

increase benthic NEP when light is abundant but decrease NEP when light limits algal 

photosynthesis. Mývatn experiences patchy and episodic cyanobacterial blooms, which generate 

large variation in water clarity and benthic light levels across the lake, within a season, and 

between years. Therefore, the influence of midge ecosystem engineering on benthic production is 

spatiotemporally complex, and the positive effects of midges can be overshadowed by events in 

the pelagic zone. The majority of the world’s lakes are shallow and likely to be limited by light 

(Karlsson et al. 2009, Cael et al. 2017), which is of increasing concern given increasing 

eutrophication and associated declines in water clarity (Vadeboncoeur et al. 2003, Taranu et al. 

2015). Our results have implications for how such changes may produce spatiotemporal variation 

in the effects of benthic ecosystem engineers on the function of a variety of aquatic ecosystems.  

We tested two hypothesized mechanisms for positive midge effects on benthic production 

at high light levels: (1) enhanced substrate quality by building silk tubes and (2) increased 

nutrient availability by mobilizing N and P. Experiment 1 supported the first hypothesis and 
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rejected the second. Artificial silk structures increased GPP in “midges absent” mesocosms to a 

level similar to the “midges present” mesocosms without silk. However, addition of silk to 

“midges present” mesocosms caused no further increase in GPP, suggesting that the potential 

benefit of artificial silk was already provided by the tubes and silk webs constructed by the 

midges (although this silk could also have had direct effects on the midges or their effects on 

GPP). Furthermore, chlorophyll-a was higher in the presence of midges and silk (on the silk 

itself), so it is likely that higher algal biomass supported by the enhanced substrate contributed to 

higher GPP (Pringle 1985). In contrast, addition of nitrogen and phosphorus slightly reduced 

GPP, implying that the algae were not strongly limited by those nutrients and hence would not 

benefit from nutrient mobilization by midges. The negative effect of nutrient enrichment could 

be due to a shift in the algal community (e.g. from diatom to green algae dominated) (Steinman 

et al. 2016) or from artifacts of the agar preparation such as release of hydrogen peroxide 

(Tanaka et al. 2014). An additional caveat is the potential for benthic production to be limited by 

nutrients other than N and P (e.g. Si for benthic diatoms) (Kilham 1971, Paasche 1973), although 

these two elements are the nutrients that are most obviously influenced by midges (Hölker et al. 

2015) and are also the focus of many studies of nutrient limitation in freshwater systems (Elser et 

al. 2007). 

 The negative effect of midges on NEP at low light levels resulted from their effect on 

total respiration. In both experiments midges increased total respiration, yet respiration by 

midges themselves likely made a small contribution to this effect. Bioturbation by midges and 

other sediment-dwelling invertebrates can stimulate aerobic respiration by microbes through 

oxidizing the sediment and shifting bacterial community composition (Yeager et al. 2001, Hölker 

et al. 2015, Baranov et al. 2016a, 2016b). Furthermore, defecation by midges could provide a 



 27 

carbon substrate for microbial respiration (Svensson and Leonardson 1996). Midge effects on 

RESP increased throughout experiment 2, causing the apparent effect of midges on NEP to 

become less positive or more negative. This change was accompanied by a large shift in size- 

and age-structure of the midge populations; the midges shifted from second to third instar 

dominated and nearly doubled in body mass. Larger midges may have increased bioturbation to 

meet their higher metabolic demands, further oxygenating the sediment and stimulating greater 

respiration (Hölker et al. 2015, Baranov et al. 2016a, 2016b). 

 By quantifying the functional dependence of the ecosystem engineering on continuous 

environmental variation, we were able to illustrate the expected spatiotemporal variation in the 

effects of midge engineering due to natural variation in light. These projections illustrate the 

potential for realistic variation in environmental conditions to produce large variation in engineer 

(e.g. midge) effects through space (across the lake) and time (between periods with and without 

cyanobacterial blooms). Cyanobacteria have many impacts on aquatic ecosystems that could 

affect benthic production beyond simply limiting light, such as nitrogen fixation and release of 

toxins (Elser 1999, Dokulil and Teubner 2000). Nonetheless, our projections illustrate one key 

respect in which cyanobacterial blooms could result in spatiotemporal variation in the effects of 

midge engineering on benthic production. While our analysis focused on the role of 

environmental variation in producing variation in engineer effects, the density of engineer 

populations is itself variable and likely to have large consequences for predicting engineer 

effects (Hastings et al. 2007). For example, Tanytarsus in Mývatn fluctuate across 5 orders of 

magnitude among years, with erratic population crashes that are difficult to anticipate (Ives et al. 

2008). Given the large magnitude of their effects on benthic ecosystem processes, theses 

fluctuations in abundance likely have large consequences for the whole system. While Mývatn is 
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a fairly extreme example, many other ecosystem engineers show large spatiotemporal variation 

in abundance (Nalepa et al. 1993, Bos et al. 2007). Furthermore, the effects of ecosystem 

engineering can feed back to the engineer populations themselves (e.g. by affecting production 

of their food), and the strength and duration of these feedbacks could alter the qualitative nature 

of their dynamics (Hastings et al. 2007, Cuddington et al. 2009, Largaespada et al. 2012). 

Quantifying these feedbacks is essential to predicting the consequences of environmental 

variation through space and time, both in Mývatn and other cases of ecosystem engineering.  
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Table 1: AIC values for models of NEP (equation 1) fit to data from experiment 2.  The 

models vary by light-dependent (a) and light-independent (d) effects of midge treatment and 

time. Models with interactions (×) also include corresponding main effects. All models include 

the saturation parameter b and intercepts for a and d. For clarity only models with ΔAIC < 10 

are shown (see Table A3 for details on all models).  

  

Light-dependent 
(α) fixed effects 

Light-independent 
(δ) fixed effects 

Number of fixed 
effects parameters AIC ΔAIC 

midge + time midge × time 8 -474.67 0.00 

midge midge × time 7 -473.17 1.50 

midge × time midge × time 9 -472.69 1.99 

midge × time midge + time 8 -470.25 4.42 

midge × time time 7 -465.31 9.36 

 

 

 

 

 

 

 

 

 

 

 

 



 41 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Midges build silk tubes that provide a substrate for algal growth. The sediment 

core in the photograph was taken from the bottom of Mývatn using a Kajak corer in a year of 

moderate midge abundance. The cylindrical structures projecting from the sediment surface are 

the silk tubes constructed by the midge larvae. Diatoms grow on the tubes and in the sediment. 

The image is in false color, replacing infrared with red to highlight the distribution of 

chlorophyll, which is more concentrated on the midge tubes than in the surrounding sediment. 

Photo credit: T. Ives.   
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Figure 2. Midges can alter benthic ecosystem function. Larval midges build silk tubes that 

provide a substrate for algal growth and increase gross primary production (GPP) in the 

sediment. However, midges may inhibit GPP through consumption of algae. Furthermore, 

midges can stimulate microbial respiration (RESP) by oxygenating the sediment. GPP and RESP 

have opposite effects on net ecosystem production (NEP), so the effect of midges on NEP 

depends on the balance between their effects on GPP and RESP. We hypothesized that light 

mediates this balance, because the positive effects of midges on GPP would decline as 

photosynthesis became more limited by light. Episodic cyanobacterial blooms have a negative 

effect on benthic light levels, which could result in spatiotemporal variation in the net effects of 

midges on benthic production.  
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Figure 3. Midges and silk increase GPP and RESP. Each panel shows GPP (a,b) or RESP 

(c,d) for either absence (a,c) or presence (b,d) of silk. The data are grouped by midge treatment, 

nutrient treatments are represented by filled (“Nutrients”) and open (“No Nutrients”) points, and 

days are represented by circles (“Day 3”) and triangles (“Day 11”). Lines show fits from LMMs. 

Using standard photosynthetic and respiratory quotients of 1.2 and 0.85, a 0.1 g O2 m-2 h-1 O2  

difference equals 0.031 g C m-2 h-1 and 0.032 g C m-2 h-1, respectively.  
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Figure 4. Light mediates midge effects on benthic net ecosystem production. NEP from 

experiment 2 is plotted against light for (a) day 3 and (b) day 15. The lines show model estimates 

evaluated with (solid) and without (dashed) midges. The colored shading indicates the net midge 

effect, calculated as the difference in the model estimates when evaluated with and without 

midges. The shift between days 3 and 15 is associated with a shift from second to third instar 

midges. Using a photosynthetic quotient of 1.2, a net midge effect of 0.1 g O2 m-2 h-1 equals 

0.031 g C m-2 h-1. 
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Figure 5. Projected midge effects on NEP vary through space and time. The maps show 

projected effects of midges on NEP across Mývatn. Midge effects were calculated as the 

difference in the model estimates when evaluated with and without midges. Different panels 

correspond to benthic light levels for the different water clarity scenarios (low, medium, high) 

and Tanytarsini stages (second and third instar-dominated). Using a photosynthetic quotient of 

1.2, a net midge effect of 0.1 g O2 m-2 h-1 equals 0.031 g C m-2 h-1. 
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Appendices 

Appendix A: Supplementary methods and results 
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Appendix A: Supplementary methods and results for Chapter 1 

 

Supplementary methods 

Experiment 1: Silk addition 

 Figure A1 shows a photograph of a silk coil in a mesocosm, typical of those used to 

mimic midge tubes.  

 

Experiments 1 & 2: Comparison of Initial Chlorophyll-a between Sieving Treatments 

For Experiment 1, we quantified chlorophyll-a concentrations (main text) from five 

samples of the homogenized sieved sediment (from the top 5cm) and samples of the top 5cm of 

five sediment cores collected from the same location and analyzed chlorophyll-a concentrations. 

Chlorophyll-a concentrations did not differ significantly between the sieved (mean ± standard 

error = 28.23 ± 3.51 mg L-1) and intact sediment (36.01 ± 5.05 mg L-1) (t-test on log-transformed 

values: t=-1.242, p=0.249).  

For Experiment 2, we quantified chlorophyll-a concentrations in the same manner as for 

Experiment 1, except that we collected samples from both the top 5cm and bottom 10cm of 

sieved and intact sediment, with 3 samples for each layer ´ treatment combination. Chlorophyll-

a concentration was substantially higher in the sediment from the top 5cm (13.07 ± 0.68 mg L-1) 

than from the bottom 10cm (8.51 ± 0.86 mg L-1). However, sieved vs. intact sediment did not 

differ within the ‘top’ (12.25 ± 0.55 vs. 13.89 ± 1.16 mg L-1) (t-test on log-transformed values: 

t=1.321, p=0.257) and ‘bottom’ (7.30 ± 0.43 vs. 9.73 ± 1.42 mg L-1) (t=1.559, p=0.194) sediment 

samples.  



 48 

We note that for both Experiment 1 and Experiment 2, the low sample size provided 

limited power for detecting a difference in chlorophyll-a between sieved and intact sediment, and 

this approach does not provide information on variation in chlorophyll-a with sediment depth. 

Nonetheless, the average values are broadly similar, which is the central point. We also note that 

the chlorophyll-a concentrations were substantially higher for Experiment 1 than Experiment 2, 

likely due to the different sediment sources. This is consistent with the substantially higher 

primary production values in Experiment 1.   

 

Experiment 2: Nutrient Release Rates from Agar 

 To determine the release rates of N and P from the agar rods, we constructed two 

enriched rods and two control rods containing agar (on a separate occasion from the main 

experiment) and placed them in separate 1L containers containing tap water. The enriched rods 

contained NH4Cl and KH2PO4 to produce N and P concentrations of 0.5M and 0.13M 

respectively. We sampled 45mL of water from each container on 4 occasions over 6 days and 

analyzed the samples for N (NH4) and P (SRP) concentration. Nutrient concentrations were 

analyzed using colorimetric methods on a segmented flow auto-analyzer (OI-A FS 3100, O-I-

Analytical, TX, USA), following US-EPA protocols for ammonium (Unites States 

Environmental Protection Agency 1993a p. 36) and SRP(Unites States Environmental Protection 

Agency 1993b p. 36). Samples were also analyzed for NOx following (Unites States 

Environmental Protection Agency 1993c), however their concentrations were negligible.    

We estimated average daily release rates as the slope of total nutrient mass (accounting 

for the change in volume due to sampling) regressed against the days since the start of the release 

rate trial. N was released at an average rate of 22.8 mg day-1 in the enriched treatment, with 
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137.1 mg of the possible 185.5 mg being released over 6 days. P was released at a rate of 1.23 

mg day-1 in the enriched treatment, with 7.42 mg of the possible 107 mg being released over 6 

days. Neither N nor P increased through time in the control treatments, indicating that there was 

no release of nutrients in the absence of enrichment. However, the control treatment did have 

detectable levels of P (7.6mg), indicating some contamination in the release rate set-up. This 

contamination resulted from the fact that the agar rods for the release rate measurements were 

stored on a plastic tray that previously contained nutrient-enriched agar rods from the preparation 

for the main experiment. However, the surfaces used in the preparation of the rods for the main 

experiment were cleaned prior to use and so there is no reason to believe that there was 

contamination in the main experiment.  

 

Supplementary results 

Experiment 1: NEP 

Figure A2 shows the results from Experiment 1 for NEP (GPP and RESP are shown in 

main text Figure 3). By definition GPP and RESP had opposite effects on NEP, but because the 

overall magnitude of GPP was greater than RESP, GPP had a disproportionate influence. 

Therefore, the response of NEP to the experimental treatments broadly paralleled GPP, with 

positive effects of midges (F1,24.78=4.33, p=0.048) and silk (F1,25.64=5.63, p=0.025), and negative 

midge ´ silk interaction (F1,15.52=16.31, p=0.001), and negative effects of nutrients 

(F1,27.04=11.90, p= 0.002) (Fig A2). NEP was higher on day 11 than day 3 (F1,17.09=15.12, 

p=0.001), and there was a positive midge ´ day interaction (F1,18.89=4.61, p= 0.045).  

 

Experiment 2: Midge Counts 
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To evaluate the efficacy of our midge (sieving) treatments, we sieved the sediment from a 

subset of the mesocosms (all cores from the full light and full dark shading treatments) and 

counted the larval midges. The ‘midges present’ mesocosms had substantially more midges than 

the ‘midges absent’, indicating that the sieving treatments were effective (Table A1). Most of 

these were Tanytarsus gracilentus, the only member of the genus that occurs in Mývatn. There 

was minimal colonization of the mesocosms by Micropsectra (closely related to Tanytarsus), 

which are primarily restricted to the portion of the lake where the mesocosms were incubated. 

Two species of Chironomus (C. islandicus and C. plumosus) occur in Mývatn, however we did 

not distinguish between them. Members of Tanypodinae and Orthocladinae are quite diverse in 

Mývatn and we only identified them to subfamily.  

 

Experiment 2: Midge Growth 

We used the body lengths and head capsule widths of Tanytarsini midges collected from 

the lake near the beginning of the experiment and from a subset of the experimental cores at the 

end to estimate how much the midges grew. Mean body length of midges increased from 

2.42mm to 2.70mm and head capsule widths increased from 0.12mm to 0.16mm. We estimated 

the change in midge biovolume by approximating individual midges as perfect cylinders, using 

head capsule with as the diameter and body length as the height of each cylinder (Smit et al. 

1993). Using this approximation, mean biovolume increased by 91%, from 0.035mm3 to 

0.066mm3. Body mass is generally proportional to biovolume; Smit et al. (1993) estimated wet 

specific gravity of 1.05 mg mm-3 for Chironomus muratensis (closely related to tribe 

Tanytarsini). Using this value, the average mass of Tanytarsini increased from 0.036mg to 

0.069mg.  
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Experiment 2: Changes in NEP through Time by Midge Treatment 

To evaluate whether the change in in situ NEP between days 3 and 15 was different 

across midge treatments, we fit a reduced version of equation (1) separately for the ‘midges 

present’ and ‘midges absent’ treatments (omitting the fixed effects of midges from a and d). We 

evaluated the significance of the time parameters by examining the 95% confidence intervals 

based on REML estimates. For ‘midges absent’, the confidence intervals for both light-

dependent and light-independent effects of time included 0, indicating that NEP did not change 

through time (Table A2). In contrast, while the confidence interval for light-dependent time 

effects for ‘midges present’ included 0, the light-independent effect excluded 0. The difference 

between temporal changes in the two midges treatments is especially striking when examined 

graphically (Fig A3)—changes through time are much more apparent when midges are present.  

These results indicate that the shift in apparent midge effects through time was driven by 

changes in the ‘midges present’ treatment.  

 

Lake-Scale Effects of Midges on NEP 

To quantify spatial variation in light attenuation as a result of a thick cyanobacterial 

bloom in summer of 2015, we measured PAR (µmol-photons m-2 s-1) with a light sensor (Li-192 

Quantum Underwater Sensor, Li-COR, NE, USA) at the water surface and at 0.5m, 1m, and 2m 

below the water surface for each of 65 sites around the lake. The sites were positioned on a 

500´500m grid in the south basin of Mývatn. For each site, we calculated the light extinction 

coefficient by as the rate of exponential decay of PAR as a function of depth (using the lm() 

function in R3.3.1(R Core Team 2016)). The light readings were taken on 5 separate days 

between 30 July 2015 and 11 August 2015, and we acknowledge that substantial changes in the 
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spatial structure of the cyanobacterial bloom could have occurred over this time period. 

However, the spatial pattern of light attenuations (Fig A4) matched mapping of cyanobacterial 

blooms based on pigments over shorter windows of time in 2011(Bartrons et al. 2015) and 2016 

(unpublished data). Therefore, the light attenuation data from 2015 likely provides a reasonable 

characterization of spatial patterns of light variation as a result of cyanobacterial blooms in 

general.  

For each site we calculated the light level on the lake bottom assuming moderate surface 

light (320 µmol photons m-2 s-1) and one of three water clarity scenarios: low clarity (100% 

measured light attenuation,) medium clarity (40% measured attenuation), or high clarity (15% 

measured attenuation). Benthic light levels varied from virtually 0 µmol photons m-2 s-1 to 180 

µmol photons m-2 s-1, which roughly matches the range of light levels used for the experiment 

and are typically of benthic light levels throughout much of the lake during the summer.  

 For each water clarity scenario we quantified the site-specific midge effect as the 

difference between equation (1) evaluated with and without midges. We made projections using 

both time points in equation (1), corresponding to midge communities dominated by either 2nd or 

3rd instar Tanytarsus. This resulted in six scenarios of water clarity and midge stage (main text 

Fig 5). For comparison, we repeated this analysis using average light attenuations across the lake 

for each water clarity and midge scenario, such that the only spatial within scenarios was due to 

depth (Fig A5).   

Projected midge effects on benthic production ranged from strongly negative (-0.054 g 

O2 m-2 h-1) to strongly positive (0.053 g O2 m-2 h-1) across the six scenarios. To facilitate 

comparison to these results, we converted the estimated benthic diatom production in Mývatn 

(200 g C m-2) to a comparable scale. During much of the year Mývatn is frozen and likely has 
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negligible benthic production. We assumed a growing season of 4 months, which is probably 

somewhat shorter than the actual period and therefore provides a conservative comparison of the 

magnitude of midge effects relative to the overall benthic diatom production (by assuming more 

in situ production occurs in a shorter period of time).  Using a photosynthetic quotient of 1.2 

(Bott 2006), in situ diatom production was calculated as follows: 

 

200 g C m-2 ´ (12 g C mol-1)-1 ´ 1.2 mol O2 mol-1 C ´ 32 g O2 mol-1 ´ (4 months ´ 720 h month-

1)-1 = 0.222 g O2 m-2 h-1 
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Table A1: Midge counts (mean ± standard error) by taxon from Experiment 2.  

Midge 

Treatment 

Tanytarsini Chironomini Tanypodinae Orthocladinae 

‘Absent’ 

(sieved) 

17.00 ± 0.68 1.667 ± 0.494 4.500 ± 1.310 3.167 ± 1.376 

‘Present’ (not 

sieved) 

118.2 ± 33.71 7.500 ± 1.432 6.500 ± 2.825 8.200 ± 2.958 
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Table A2: Model coefficients (95% C.I.) for time effects estimated via REML separately for the 

‘midges absent’ and ‘midges present’ treatments.  

 Midges Absent Midges Present 

Light Dependent   

time (a3) 0.00025 (-0.00014, 0.00064) 0.0014 (-0.001, 0.0038) 

Light Independent    

time (d3) -0.0045 (-0.017, 0.0077) -0.060 (-0.099, -0.021) 
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Table A3: AIC values for models of NEP (eq. 1) fit to data from Experiment 2.  The models 

vary by light-dependent (a) and light-independent (d) effects of midge treatment and time. 

Models with interactions (×) also include corresponding main effects. All models include the 

saturation parameter b and intercepts for a and d; ‘1’ indicates intercept only.   

Light-dependent 

(α) fixed effects 

Light-independent 

(δ) fixed effects 

Number of fixed 

effects parameters AIC ΔAIC 

midge + time midge × time 8 -474.67 0.00 

midge midge × time 7 -473.17 1.50 

midge × time midge × time 9 -472.69 1.99 

midge × time midge + time 8 -470.25 4.42 

midge × time time 7 -465.31 9.36 

time midge × time 7 -461.62 13.05 

midge × time midge 7 -460.84 13.83 

1 midge × time 6 -460.16 14.51 

midge × time 1 6 -455.69 18.99 

midge + time midge + time 7 -443.62 31.06 

midge + time time 6 -443.02 31.65 

midge midge + time 6 -442.98 31.69 

midge time 5 -442.48 32.19 

time midge + time 6 -439.87 34.80 

1 midge + time 5 -439.27 35.40 

midge + time midge 6 -438.51 36.16 

time time 5 -437.79 36.88 
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midge + time 1 5 -437.45 37.22 

1 time 4 -437.29 37.38 

time midge 5 -434.09 40.58 

midge midge 5 -432.58 42.09 

time 1 4 -432.12 42.56 

midge 1 4 -430.90 43.77 

1 midge 4 -427.43 47.24 

1 1 3 -425.35 49.33 
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Figure A1. Top-down view of experimental mesocosm with a silk coil partially submerged in 

sediment.  
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Figure A2. Midge, silk, and nutrient effects on NEP. These effects mirrored those for GPP and 

RESP, with midges and silk having positive effects but with negative interactions. The effect of 

nutrients was negative, although this was only obvious in the day 3 data. Using a standard 

photosynthetic of 1.2, a 0.1 g O2 m-2 h-1 O2  difference equals 0.031 g C m-2 h-1.  
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Figure A3. NEP changed through time, but only when midges were present. Each panel shows 

NEP from Experiment 2 for either the (a) midges absent or (b) midges present treatments, with 

open circles (dashed lines) indicating day 3 and filled circles (solid lines) indicating day 15. 

These data are the same as presented in Main Text Fig 4, but organized to highlight the changes 

in NEP through time within each midge treatment.  
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Figure A4. Spatial variation in light attenuation across Mývatn. Attenuation was calculated from 

readings of PAR at multiple depths at each site between 30 July and 11 August 2015. 
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Figure A5. Projected midge effects on NEP through space and time, based on the model (Main 

Text Fig 4) and different water clarify scenarios (low, medium, high). Midge effects were 

calculated as the difference in the model predictions when evaluated with and without midges. In 

contrast to Main Text Fig 5, this figure uses a single water clarity value for each scenario (rather 

than different values for each site), such that the only variation in benthic light levels is due to 

variation in depth.  
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Abstract 

Light is a primary driver of lake ecosystem metabolism, and the dependence of primary 

production on light is often quantified as a photosynthesis-irradiance or “P-I” curve. The 

parameters of the P-I curve (e.g. the maximum primary production when light is in excess) can 

change through time due to a variety of biological factors (e.g. changes in biomass or community 

composition), which themselves are subject to external drivers (e.g. herbivory or nutrient 

availability). However, the relative contribution of variation in the P-I curve to overall ecosystem 

metabolism is largely unknown. I developed a statistical model of ecosystem metabolism with 

time-varying parameters governing the P-I curve, while also accounting for the influence of 

temperature. I parameterized the model with dissolved oxygen time-series spanning six summers 

from Lake Mývatn, a shallow eutrophic lake in northern Iceland with large temporal variability 

in ecosystem metabolism. All of the estimated parameters of the P-I curve varied substantially 

through time. The sensitivity of primary production to light under light-limiting conditions was 

particularly variable (>15-fold). However, the 3.5-fold variation in the maximum potential 

primary production made the largest contribution to variation in ecosystem metabolism, 

accounting for around 90% of the variance in net ecosystem production. Much of the variation in 

maximum primary production was attributable to cyanobacterial blooms, which occur in some 

but not all years in Mývatn. Overall, these results illustrate how changes in the P-I curve 

contribute substantially to temporal variation in lake ecosystem metabolism.  

 

Keywords: benthic production; cyanobacteria; ecosystem metabolism; pelagic production; 

photosynthesis-irradiance curve; state-space model 
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Introduction 

Ecosystem metabolism, the biological assimilation and release of carbon, is central to the 

function of aquatic ecosystems (Hanson et al. 2003, Staehr et al. 2010b, 2010a). Photosynthesis 

stores light energy in the form of organic compounds, and gross carbon assimilation (known as 

gross primary production or GPP) provides metabolic energy and structural material to primary 

producers, higher trophic levels, and detrital food webs (Del Giorgio et al. 1999, Carpenter et al. 

2001, Chapin et al. 2006). In ecosystems without substantial external carbon inputs, in situ GPP 

constrains total biological productivity, which in turn influences ecological dynamics across 

organizational scales (Del Giorgio et al. 1999, Fussmann 2000, Staehr et al. 2010b). The 

counterpart to GPP is ecosystem respiration (ER), which includes the oxidation of organic 

carbon and subsequent energy utilization by all organisms in the ecosystem (Chapin et al. 2006, 

Solomon et al. 2013). The balance between GPP and ER determines the net assimilation or 

release of carbon due to biological processes (net ecosystem production or NEP), which plays a 

key role in ecosystem carbon budgets (Randerson et al. 2002, Chapin et al. 2006, Demars et al. 

2016). Freshwater ecosystems can be either sources or sinks of CO2 and make substantial 

contributions to regional carbon cycling, especially in landscapes with high densities of 

freshwater bodies (Cole et al. 2007, Raymond et al. 2013, Holgerson and Raymond 2016, 

Demars et al. 2016). Therefore, characterizing the physical and biological controls of ecosystem 

metabolism is important for predicting both the local function and regional impacts of freshwater 

systems. 

 Light is a fundamental requirement of photosynthesis and therefore is a key driver of 

ecosystem metabolism. Many studies have characterized photosynthesis-irradiance (P-I) curves 

(Jassby and Platt 1976, Behrenfeld and Falkowski 1997) at organizational scales spanning 

laboratory monocultures (Myers and Graham 1971) to whole ecosystems (Holtgrieve et al. 2010, 
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Schindler et al. 2017). For ecosystem metabolism, the P-I curve can be defined as the response of 

NEP (i.e. GPP minus ER) to light, with a y-intercept equal to –ER (since GPP is 0 is the absence 

of light) and GPP as the light-dependent increase above this level (Figure 1) (Holtgrieve et al. 

2010). Defining ER as the intercept of the P-I curve neglects possible light-dependent changes in 

ER, but nonetheless is a common assumption for studies of ecosystem metabolism (Schindler et 

al. 2017). P-I curves are modeled in various ways (Jassby and Platt 1976, Henley 1993, 

Behrenfeld and Falkowski 1997) but often take the form of a saturating relationship with 

parameters such as the maximum rate of GPP attained at high light levels (“maximum GPP”) and 

the rate at which GPP increases with light at low light levels (“initial slope”). 

Variation in NEP can arise from two sources: variation in light levels and variation in the 

biological processes governing the P-I curve. Aquatic ecosystems experience substantial 

variability in light due to changes in solar irradiance (e.g. diel and seasonal cycles; changes in 

cloud cover) and water clarity (e.g. resuspension of sediment; phytoplankton blooms). Changes 

in the P-I curve result from biological processes across organizational scales (Falkowski 1984). 

At the cellular level, photosynthetic rates vary with temperature, availability of nutrients, and 

physiological regulation (Falkowski 1984, Davison 1991, Edwards et al. 2011). For example, 

aquatic primary producers can increase production of photosynthetic pigments in response to 

chronic light limitation, thereby increasing their sensitivity to a given amount of light (Falkowski 

1984, Moore et al. 2006, Dubinsky and Stambler 2009). At the population and community scale, 

photosynthetic rates may change due to variation in primary producer biomass, rapid evolution, 

and species composition (Carpenter and Kitchell 1984, Vrede et al. 2009, Schwaderer et al. 

2011, Edwards et al. 2015), which can either occur in response to the physical environment or 

through interactions with other organisms (e.g. competition with other producers; herbivory by 
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zooplankton) (Carpenter and Kitchell 1984, Bergquist and Carpenter 1986, Yoshiyama et al. 

2009, Hashioka et al. 2013).   

ER comprises respiration by both autotrophs (i.e. primary producers) and heterotrophs 

and is determined in part by their respective biomasses (Del Giorgio et al. 1999). The extent to 

which heterotrophic production (and therefore respiration) is coupled with GPP is expected to 

depend on the dominant source of carbon in the system (Del Giorgio et al. 1999, Solomon et al. 

2013). Many freshwater ecosystems are dominated by allochthonous (external) sources of 

carbon, especially those with extensive boundaries along terrestrial landscapes (e.g. streams) 

(Thorp and Delong 2002, Staehr et al. 2010b, Solomon et al. 2013). In these ecosystems, 

heterotrophic respiration (and total ER) can exceed GPP and changes in response to variation in 

the allochthonous resource (Hanson et al. 2003, Cole et al. 2006, Ask et al. 2009, Staehr et al. 

2010b). Conversely, in ecosystems with relatively low allochthonous inputs, ER should be more 

strongly coupled to GPP, due to both respiration by primary producers and respiration by 

heterotrophs whose primary source of carbon is in situ GPP (Solomon et al. 2013). On shorter 

times scales, ER is driven by variation in temperature (Solomon et al. 2013, Demars et al. 2016, 

Song et al. 2018), due to the thermal dependence of enzyme kinetics. GPP may also be 

influenced by changes in temperature, and while ER is assumed to be more sensitive to 

temperature (but see Demars et al. 2016), little is known about how these temperature-

metabolism relationships compare to the coupling of ER and GPP through other biological 

processes. 

Despite the large potential for temporal variation in the P-I curve, the relative 

contribution of this variation to ecosystem metabolism is largely unknown. In this study, I 

present a statistical model of ecosystem metabolism with time-varying parameters governing the 
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P-I curve, and I fit the model to observations of dissolved oxygen (DO) from Lake Mývatn in 

northern Iceland. The model includes explicit dependence of GPP and ER on temperature, as 

temperature is a well-documented driver of the physiological processes contributing to 

ecosystem metabolism (Demars et al. 2016). Beyond the effects of light and temperature, the 

parameters of the P-I curve (e.g. “maximum GPP” and “initial slope”) vary smoothly through 

time as stochastic processes and thereby capture temporal variation in ecosystem metabolism due 

changes in the P-I curve itself. These changes could be due to a variety of biological factors (e.g. 

organismal traits, biomass, or community composition) which themselves could be influenced by 

changes in other variables (e.g. herbivory, nutrient availability, or lake mixing).   

This approach builds on a large body of work utilizing time series of DO to infer 

ecosystem metabolism in aquatic systems, relying on the fact that photosynthesis releases 

oxygen while aerobic respiration consumes oxygen and the respective conversions between CO2 

and O2 fluxes assumed to be approximately equal (Odum 1956, Hanson et al. 2008, Holtgrieve et 

al. 2010, Staehr et al. 2010a). However, common methods either do not provide an explicit 

characterization of the P-I relationship (i.e. model-free “bookkeeping”) (Staehr et al. 2010a) or 

assume that the relationship between ecosystem metabolism and light or other covariates (e.g. 

temperature; chlorophyll) is fixed over some time interval (usually one to several days) 

(Holtgrieve et al. 2010, Winslow et al. 2016, Richardson et al. 2017). In both cases, temporal 

variation in responses to light is investigated by applying the method iteratively to separate 

sequences of data that are assumed to be independent. In contrast, the present method explicitly 

models the temporal changes in the P-I curve utilizing many time periods simultaneously. This 

takes advantage of the fact that the physical and biological processes governing ecosystem 

metabolism and other aspects of DO dynamics are correlated through time, which means that this 
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shared information can be used to inform the parameter estimates across all time points. 

Furthermore, this method is statistically unified since it uses all of the data to fit a single model, 

which facilitates characterizing the uncertainty in the estimates of temporally variable parameters 

of the P-I curve.  

I applied this method to DO time series from Lake Mývatn spanning six summers to (a) 

characterize temporal variation in Mývatn’s P-I relationship, (b) evaluate the contribution of this 

variation to changes in ecosystem metabolism, and (c) evaluate the contribution of different 

variables to the coupling of GPP and ER. Mývatn is dynamic, with much of its ecology being 

driven by midges (Diptera: Chironomidae) that fluctuate across four orders-of-magnitude and 

constitute the majority of the lake’s secondary biomass production (Einarsson et al. 2004). The 

midges are ecosystem engineers and locally stimulate both GPP and ER, such that their 

population fluctuations may contribute to large variation in Mývatn’s whole-lake metabolism 

(Herren et al. 2017). Furthermore, while Mývatn is generally dominated by benthic primary 

production during clear-water phases, it is also subject to cyanobacterial blooms that are 

occasionally very thick and may shift the majority of production from benthic to pelagic 

(Einarsson et al. 2004). The dynamic nature of Mývatn’s ecology likely results in large variation 

in its responses to light and temperature, making it a useful test case for partitioning the relative 

contribution of different sources of variation in ecosystem metabolism. 

 

 

Methods 

Study System 
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Mývatn is located in northeast Iceland (65°40’N 17°00’W), approximately 100km south 

of the Arctic Circle and has a tundra-subarctic climate (Björnsson and Jónsson 2004). The lake 

has two basins (north and south) connected by a narrow channel; the south basin is larger and is 

the central focus of this study. The south basin is shallow (mean depth = 2.3m) and does not 

stratify in the summer, with water temperature tracking the air temperature and ice cover for 190 

days per year on average (Einarsson et al. 2004). Phosphorous- and silicon-rich cold springs 

(inputs of N, P, and Si = 1.4, 1.5, and 340 g m-2 y-1) feed the south basin (Ólafsson 1979). 

Consequently, Mývatn is naturally eutrophic with high primary production. According the 

previous estimates, the majority of primary production is benthic and attributable to benthic 

diatoms (chiefly Fragilaria) and mats of filamentous green algae (Cladophora glomerata and 

Aegagropila linnai) (Ólafsson 1979, Einarsson et al. 2004). However, there are occasional 

blooms of green algae, diatoms, and cyanobacteria which may make substantial contributions to 

primary production. The cyanobacterial blooms (chiefly Dolichospermum spp.) in particular can 

be quite thick (peak phycocyanin concentration >200 µg L-1), blocking almost all light below 

5cm of the water surface (JS Phillips unpublished data). Benthic primary production supports 

large populations of midges (>30 species) that in peak years compose over two-thirds of the 

lake’s secondary production and show dramatic fluctuations in abundance spanning 4 orders of 

magnitude (Lindegaard and Jónasson 1979, Einarsson et al. 2004, Ives et al. 2008). The midges 

in turn are an important food source for ducks and fish (sticklebacks, brown trout, and arctic 

char). The two dominant midge genera (Tanytarsus and Chironomus) are tube-building 

ecosystem engineers that locally stimulate benthic GPP by providing a stable 3-dimensional 

substrate for diatom growth (Hölker et al. 2015, Herren et al. 2017).  
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Data Collection and Processing 

A sonde multiprobe (Hydrolab DS5X, Hach Co., CO, USA) was deployed near the center 

of Mývatn’s south basin during the summer months (late May through late August) from 2012 to 

2018. This location corresponded with a routine monitoring station that was manually sampled 

approximately weekly during the periods of sonde deployment for standard water column 

variables (e.g. DO, light, and temperature) as well as benthic variables such as larval midge 

density and sediment chlorophyll. The sonde was attached to a buoy so that the sensors sat at a 

depth of 0.5m. This location is quite shallow (3.3m) and well-mixed, such that the sensor 

measurements represent integrated values throughout the water column. The sonde measured 

temperature, DO, turbidity, and phycocyanin (a cyanobacterial pigment) every 30 minutes. 

However, DO data were unavailable from 2014 due to probe failures, so only 2012-2013 and 

2015-2018 data were used in this analysis. The sensor data had occasional anomalies, which I 

removed by first excluding values that exceeded thresholds of plausibility (< 5 mg L-1 for DO 

and > 18°C for temperature) based on routine monitoring with handheld DO probes (ProODO, 

YSI Co., OH, USA) or visual inspection (> 200 volts for turbidity). I then excluded values that 

deviated from the mean on a given day by more than two standard deviations. This resulted in 

the omission of 5.6% of the observations. There were no indications of sensor drift (Figures B3 

and B4), and therefore no drift correction was applied. I averaged the half-hourly measurements 

to an hourly scale to match the resolution of the local weather data (solar irradiance and wind 

speed), which resulted in minimal loss of information due to the high temporal autocorrelation in 

the measurements (Figure B7).  

Light readings were taken either every 15 or 30 minutes (depending on the year) with a 

light/temperature logger (HOBO Pendant, Onset Computer Corporation, MA, USA) attached to 
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the top of the buoy deploying the sonde; I averaged these data to an hourly scale for further 

analysis. HOBO loggers measure visible light intensity in lux, which is closely related to the 

spectral range (400-700nm) used to calculate photosynthetically active radiation (PAR; measured 

in µmol-photons m-2 s-1) (Thimijan and Heins 1983). I also obtained downwelling solar 

irradiance from the local whether station (in Watts). When converted to PAR with standard 

scalar conversions (Thimijan and Heins 1983), the solar irradiance and HOBO logger data were 

strongly correlated (r = 0.79; Figures  B1 and B2). However, solar irradiance generally showed 

higher peaks at midday than the HOBO logger data, likely due to the wider spectral range used 

for calculating solar irradiance (Thimijan and Heins 1983). When available I used HOBO logger 

data. However, HOBO logger data were missing in 2012, so I used solar irradiance instead (solar 

irradiance was not available in 2018, so it would not have been possible to use the same metric 

for all 6 years of data). Both HOBO logger and solar irradiance data were scalarly converted to 

PAR (Thimijan and Heins 1983); for simplicity I henceforth refer to them both as “PARout” To 

estimate light below the water surface, I regressed PAR measurements taken approximately 5cm 

below the water surface during routine monitoring (using a Li-192 Quantum Underwater Sensor, 

Li-COR, NE, USA) against PARout at the corresponding time with the y-intercept forced 

through 0, since light beneath the water surface must be 0 when PARout is 0. I used resulting 

regression equation (y = 0.44 ´ PARout; df = 54; R2 = 0.80) to translate PARout into PAR 

below the water surface for each time point in the sonde data.  

Primary production occurs throughout the water column and in the benthos. Therefore, I 

estimated the mean light level throughout the water column given observed variation in surface 

light and water clarity as 
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HI,K(L) =
1

L51M
N HI,KO
PQRS

O
	TUVW,X	P	YL =

HI,KO (1 − TUVW,K	PQRS)
L51M	[I,K

	 (1) 

 

where z [m] is the vertical position in the water column, zmax is the water column depth (3.3m), 

L0d,h is the PAR [µmol-photons m-2 s-1] at the water surface (z = 0) and cd,h is the rate at which 

light attenuates through the water column. For simplicity, I henceforth denote HI,K(L) as Ld,h. To 

estimate cd,h, I regressed observe light attenuation calculated from weekly measurements of PAR 

at 0.5m depth intervals against turbidity measured simultaneously by the sonde. I used this 

regression (y = 0.43 + 0.059 ´ turbidity; df = 34; R2 = 0.66) to predict cd,h from turbidity for each 

time point in the sonde data. 

 

Model Structure 

I separated net ecosystem production (\] Î,K) in hour h on day d into contributions from 

GPPd,h and ERd,h as  

 

\] Î,K = _^ Î,K − ]`I,K	 (2) 

 

with all three components quantified as total change in oxygen throughout the water column, 

resulting a flux per unit area of the lake [mg O2 m-2 h-1]. The following equations govern the 

dependence of GPPd,h and ERd,h on hourly measurements of light and temperature; these 

equations collectively specify the P-I curve for a given set of parameters that vary between days. 

In other words, a separate P-I curve is estimated for each day (although informed by data from 

all days), factoring out the influence of temperature.   
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I modeled GPPd,h as a saturating function of average light throughout the water column 

Ld,h [µmol-photons m-2 s-1]:  

 

_^ Î,K = aI,K	tanh d
eI,K
aI,K

HI,Kf	 (3) 

 

where bd,h [mg O2 m-2 h-1] is the maximum potential GPP (“max GPP”; Fig 1) attained at high 

light levels and eI,K [mg O2 s µmol-photons–1 h–1] is the rate at which GPP increases with Ld,h 

when Ld,h is near zero (“initial slope”) (Jassby and Platt 1976, Holtgrieve et al. 2010).  

While many studies of lake metabolism assumed that GPP is insensitive to temperature, 

primary production tends to increase with temperature particularly when light is saturating 

(Edwards et al. 2016, Demars et al. 2016, Richardson et al. 2017). Therefore, I modeled the 

maximum potential GPP as 

 

aI,K = aIO	gh
iW,XUij
∆i 	 (4) 

 

where aIO is the maximum potential GPP on a given day at the mean water temperature for the 

entire time series lO [12°C], lI,K is the observed water temperature, and ∆l = 1°C to make the 

exponent dimensionless. The parameter gh [dimensionless] describes the scaling of aI,K with 

changes in temperature. For example, if gh = 1.2, then a 1°C increase in lI,K above the mean 

temperature would result in a 20% increase in aI,K. This is phenomenologically similar to the 

Arrhenius equation that has previously been used to model the relationship between ecosystem 
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metabolism and temperature based on enzyme kinetics (Demars et al. 2016, Schindler et al. 

2017). I opted for this alternative parameterization as it is more concise.  

 Daily changes in max GPP not due to temperature (e.g. changes in primary producer 

biomass or biomass-specific photosynthetic rates) were described by changes in aIO, which I 

modeled as a multiplicative stochastic process analogous to exponential population growth:  

 

aIO = aIU<O 	TmWno
p

qI
h ∼ st0, whx

	 (5) 

 

where qI
h is daily the rate of change in aIO with standard deviation wh. This is equivalent to 

modeling aIO as a random walk on a log scale; this ensures that aIO remains positive (negative 

values are biologically unintelligible). The stochastic process implies temporal autocorrelation in 

the estimates of aIO, which has the consequence of smoothing the estimates through time with the 

degree of smoothing being influenced by the observed data (Zeng et al. 1998, Ives and Dakos 

2012). Analogously, I modeled daily variation in the initial slope of the P-I curve eI as  

 

eI = eIU<	TmWno
z

qI{ ∼ s(0, w{)
	 (6) 

 

with rate of change qI{ and standard deviation w{. 

Daily and hourly variation in ER was modeled as a function of temperature: 

 

]`I,K = }I	g~
iW,XUij	

∆i 	 (7) 
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where }I [mg O2 m–2 h–1] is the baseline respiration rate at lO and g~ [dimensionless] is the 

temperature scaling of ]`I (Holtgrieve et al. 2010). Similar to aIO and eI, daily variation in }I 

(e.g. changes in biomass or biomass-specific respiration of all aerobic organisms) was modeled 

as  

 

}I = }IU<TmWno
Ä

qI
~ ∼ st0, w~x

	 (8) 

 

with rate of change qI
~ and standard deviation w~. Various studies have documented diel 

variation in ER in response to factors other than temperature (Sadro et al. 2011), and these have 

occasionally been incorporated into models of lake ecosystem metabolism (e.g. Schindler et al. 

2017). However, the primary goal of the present analysis was to estimate variation in ecosystem 

metabolism rates between days, and it is likely that incorporating diel variation in respiration not 

due to temperature would have a minimal impact on the estimates of daily variation (Hanson et 

al. 2008). Therefore, to reduce the complexity of the model I did not include diel variation in ER 

driven by factors other than temperature.  

I estimated parameters for equations 2-8 from the observed DO time-series by modeling 

the hourly concentration of DO [mg O2 m–3] as 

 

ÇÉI,K = ÇÉI,KU< +
∆ℎt\] Î,KU< + ]ÖÜI,KU<x

Lá$à
+ âI,KU<

äãåV 	 (9) 
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where ∆ℎ = 1 hour, ]ÖÜI,K [mg O2 m-2 h-1] is the exchange of oxygen between the water and the 

air, Lá$à is the mixing depth (3.3m), and âI,KU<
äãåV  is the processes error, defined as 

 

âI,K
äãåV ∼ st0, wäãåV	x	 (10) 

 

where wäãåV is the standard deviation of the stochastic changes in DO (see below for description 

of the observation model linking equation 9 to the observed data).  

]ÖÜI,K is the oxygen flux across the air-water boundary, defined with respect to the 

water (i.e. a negative flux corresponds to a loss of O2 from the water): 

 

]ÖÜI,K = éI,KtÇÉI,K
èê − ÇÉI,Kx (11) 

 

where ÇÉI,K
èê  is the atmospheric equilibrium (i.e. saturation) concentration of oxygen based on 

temperature, pressure, and salinity (Staehr et al. 2010a). The parameter éI,K is known as the 

“piston velocity” and scales the rate of gas exchange across the air-water boundary. While some 

studies estimate éI,K directly in the field, in most studies it is modeled as a function of wind 

speed with the following equation: 

 

éI,K = ëéOíOO + é<íOOìI,K
îï
ñjj
ó	d

ScöïtlI,K, õx
600

f
UO.ù

(12) 

 

where ì is the wind speed [m s-1], and éOíOO, é<íOO, and é=íOO are constants defined for a standard 

Schmidt number of 600, which is converted for oxygen at the observed temperature and salinity 
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based on its corresponding Schmidt number Scöï(lI,K, õ) (Wanninkhof 1992, Staehr et al. 

2010a). While in principle it is possible to estimate éOíOO, é<íOO, and é=íOO from DO time series 

(similar to Holtgrieve et al. 2010), empirical estimates for these constants exist in the literature 

(Cole and Caraco 1998, Staehr et al. 2010a) and are widely utilized in studies of ecosystem 

metabolism. I opted for using the existing values for statistical simplicity and consistency with 

previous studies.   

It is important to note that equation 9 does not strictly follow mass-balance; because 

]`I,K is not a function of oxygen concentration, theoretically it can exceed the amount of 

available oxygen. In most applications (including here), oxygen concentrations are sufficiently 

high that respiration is not oxygen limited. However, it is important to recognize the potential for 

negative values to arise during model fitting, as this influences the choice of appropriate 

descriptions of process and observation error. For example, using a lognormal error model might 

fail because it could require taking the log of negative predicted values. I used the most 

straightforward approach (as in other studies) of Gaussian process and observation error, relying 

on the data to guide the model to physically meaningful values. This yielded the following 

observation equation: 

 

ÇÉI,Kåûü =		ÇÉI,K + âI,Kåûü (13) 

 

where âI,Kåûü is the observation error, modeled as 

 

âI,Kåûü ∼ s(0,  wåûü) (14) 
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where wåûü is the standard deviation of the observation process. The central statistical difference 

between these types of error is that process errors propagate through time and manifest as 

relatively smooth variations, while observation errors do not propagate and appear “noisy” (Box 

et al. 1994). 

  

Model Fitting 

Observed DO time series were fit to all six years (2012-2013 and 2015-2018) 

simultaneously. Continuous series of hourly observations (i.e. without missing data or spanning 

years) were initialized as separate time series, with starting values modeled with observation 

error according to equations 13 and 14 with the mean of the Gaussian distribution set to the 

observed value for that time step. The presence of missing values meant that some continuous 

series had a small number of observations. While in principle the model could accommodate 

these short series because the parameters estimates would be informed by the longer series, the 

short series likely contributed little information. Therefore, I removed any continuous series with 

fewer than 24 observations (i.e. one day’s worth of observations). A single continuous stochastic 

process was used to model aIO,	eI, and }I for each year, with the model “smoothing” across 

unobserved days.  

I fit the model with a Bayesian approach via Stan 2.17.0 run from R 3.5.1 (R Core Team 

2018) using the ‘rstan’ package (Stan Development Team 2018). Stan utilizes Hamiltonian 

Monte Carlo to generate a multivariate stochastic process that converges to a stationary 

distribution approximating the joint posterior distribution for the unobserved variables 

(Carpenter et al. 2017). I centered the observed DO on its mean and divided by its standard 

deviation across all time points and then scaled the model parameters accordingly (Appendix B). 
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Scaling the model stabilized the fitting process and also facilitated the use of normal distributions 

on unit scale as weakly informative priors (standard deviations of 1 and truncated at 0 or 1 for 

those parameters with corresponding lower bounds; Appendix B). I used four independent chains 

with diffuse initial values and 2000 iterations including a 1000-iteration “warm-up”. 

Convergence was determined by examining trace plots for parameter estimates and the potential 

scale reduction factor ( †̀), which quantified the relative variance within and between chains to 

determine whether stationarity was achieved (values near 1 indicate convergence, with 1.1 as a 

generally accepted upper threshold). See Appendix B for further details for the fitting routine and 

additional diagnostics.  

Attempting to estimate both wåûü and wäãåV independently resulted in very inefficient 

sampling of the posterior distribution as wåûü slowly approached 0 (Figure B5). Therefore, I fit 

the model with wåûü set to 1% of the observed standard deviation in DO (which was 

computationally more convenient than setting it to exactly 0). This resulted in much more 

efficient sampling and estimates for model parameters that were similar to the model with wåûü 

estimated independently (Figure B6). It was not surprising that wåûü was low, as the observed 

time series of DO (filtered for anomalous values) lacked the appearance of high frequency noise 

that would be indicative of observation error (Figure B7). This is partially due to the fact that I 

used hourly data that were averaged from half-hourly data; observation error would likely have 

been more substantial for higher frequency data. 

The posteriors for all parameters were unimodal and at most only modestly skewed, 

justifying the use of quantiles to provide summaries for parameter estimates. Throughout I use 

posterior medians for point estimates and 16% and 84% quantiles for the bounds of 68% 

uncertainty intervals (‘ui68%’) to match the coverage of standard errors. I expressed values for 
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total daily values for GPP, ER, and NEP in units g O2 m–2 day–1 rather than mg O2 m–2 h–1 to 

facilitate a more natural comparison to other reported values for ecosystem metabolism in both 

aquatic and terrestrial systems. 

 

Model Assessment 

 The main objective of this analysis was to infer temporal variation in the biological 

processes contributing to the P-I curve and ecosystem metabolism. Therefore, I assessed the 

performance of the model by addressing two questions: (1) how much of the variation in 

observed DO was attributable to explicitly modeled biological processes (i.e. the strength of the 

biological signal) and (2) what was the risk of inferring temporal variation in the P-I curve when 

it actually did not vary (i.e. the risk of “false positives” for inferred changes in the P-I curve). For 

the former, I rearranged equation 9 to yield 

 

∆ÇÉI,KU<
∆ℎ

=
ÇÉI,K − ÇÉI,KU<

∆ℎ
=
\] Î,KU<

Lá$à
+
]ÖÜI,KU<
Lá$à

+
âI,KU<
äãåV

∆ℎ
(15) 

 

where ∆°¢W,Xno
∆K

 was the observed hourly change in DO (since observation error was negligible). 

Because the primary goal of this assessment was to relate the biological processes to observed 

DO, I subtracted the atmospheric exchange term £§•W,Xno
P¶ß®

 from each side to obtain a “corrected” 

change in DO:  

 

∆ÇÉI,KU<VåããèV©èI

∆ℎ
=
∆ÇÉI,KU<

∆ℎ
−
]ÖÜI,KU<
Lá$à

=
\] Î,KU<

Lá$à
+
âI,KU<
äãåV

∆ℎ
	 (16) 
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The corrected change in DO was therefore due to either NEP (expressed volumetrically) or 

processes error (expressed per hour). By comparing the time-series of corrected DO change and 

NEP, I was able to visually assess the relative contributions of NEP and process error, providing 

a measure of the strength of the biological signal. For clarity, I present the summed hourly values 

of corrected change in DO and NEP for each day (i.e. the net daily fluxes) (Figure 2).  

 To determine the risk of false positives in inferred changes of the P-I curve, I fit the 

model to simulated data with the time-varying parameters of the P-I curve (aIO,	eI, and }I) fixed 

to their mean values according to the model fit to the real data. The simulated data implied that 

standard deviations associated with the changes in the parameters of the P-I curve (wh, w{, and 

w~) had “true” values of 0. Therefore, the model fit to these data should produce estimates shifted 

toward 0 relative to the estimates for the actual data. Since the goal was to assess the model as fit 

to the particular data used in this analysis, I used the observed environmental data and the 

particular sequence of process errors as inferred from the original model fit to construct the 

simulated data. Therefore, the simulated data approximated what would have actually been 

observed if the parameters of the P-I curve had been fixed through time (see Appendix B for full 

simulation details). The values of wh, w{, and w~ for the simulated data also provide a benchmark 

to which to compare the corresponding estimates for the real data, which are dimensionless.  

 

Variance Partitioning 

I partitioned variance in GPP, ER, and NEP into contributions from light, temperature, 

and the time-varying parameters using the “delta method” (Clark 2007). This approach differs 

from a more conventional partitioning (e.g. ANOVA) by explicitly accounting for nonlinearities 

and covariances between variables. The delta method is a locally linear approximation of the 
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variance relative to the mean values of the input variables (see Appendix B for full mathematical 

details). In general, the contribution of a parameter (e.g. temperature) to the variance in a 

function of that parameter (e.g. GPP) is determined by (i) the sensitivity of the function to 

changes in the parameter and (ii) the overall variability of that parameter. For example, 

temperature could explain a large portion of the variance in GPP either because (i) GPP is very 

sensitive to temperature or (ii) because temperature itself has a high variance. For each variable, 

I report the squared coefficient of variation (“CV2”) and scaled sensitivity, with the latter 

including the effect of covariances between variables. The product of CV2 and scaled sensitivity 

equals the relative contribution of a given variable to the variance in the response.  

 

Code and data availability 

Data and code can be found at https://github.com/jsphillips2/sonde_oxygen. 

 

Results  

Model Assessment 

 To assess the extent to which biological fluxes of O2 as inferred by the model accounted 

for variation in the observed data, I compared the corrected DO flux (equation 15) to NEP 

(Figure 2). The corrected DO flux excluded the atmospheric exchange and was therefore due to 

either modeled biological processes (i.e. NEP) or to processes (physical or biological) not 

explicitly included in the model (i.e. process error). Much of the variation in the observed DO 

flux was attributable to modeled NEP, although with substantial variation due to process error 

(Figure 2). Nonetheless, this demonstrates that the ecosystem metabolism inferred by the model 

reflects real variation in the observed data. 
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 To assess the risk of false positives in inferred temporal changes in the P-I curve  I fit the 

model to simulated data with the parameters of the P-I curve (aIO,	eI, and }I) fixed to their 

means for a given year, implying that the corresponding standard deviations for their daily 

variations (wh, w{, and w~) equaled 0. When fit to the real data, the estimates of wh, w{, and w~ 

were all clearly different from 0, indicating substantial temporal variation in the corresponding 

metabolism parameters (Table I). In contrast, the variance estimates for the simulated data were 

all strongly right skewed, with posterior densities concentrated near 0 (Figure B9; Table I). This 

suggests that the temporal variation in aIO,	eI, and }I inferred by the model reflected real 

changes in the underlying P-I curve.  

  

Parameter Estimates  

 Table I presents the estimates and 68% uncertainty intervals for the model parameters. 

ER was very sensitive to temperature, with g~  = 1.15 implying that 1°C increase (or decrease) 

from the reference temperature would result in a 15% increase (or 8.7% decrease) in ER. GPP 

was also sensitive to temperature (gh  = 1.06), although substantially less so than ER. The 

metabolism parameters aIO,	eI, and }I all varied through time, with the standard deviations of 

their associated stochastic processes clearly different from 0 (Table I; Figure B9). This resulted 

in substantial temporal variation in the resulting P-I curves (Figure 1).  

The initial slope of the P-I curve (eI) was by far the most temporally variable parameter 

relative to its overall magnitude (w{ = 0.21), indicating that the response of GPP to variation in 

light under light-limiting conditions was very dynamic (Figure 3). Several years showed similar 

seasonal patterns, with eI starting low and increasing to a peak mid-summer, followed by a 

steep decline. However, in 2012 and 2016 eI declined gradually throughout the season. The 
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estimate for eI in 2012 was substantially lower than in other years, which could be due to the 

use of solar irradiance rather than HOBO logger light data.  

Maximum GPP at high light (aIO) was slightly more variable relative to overall magnitude 

(wh = 0.06) than the baseline ER (}I) (w~ = 0.05). However, this difference was exaggerated by 

the fact that magnitude of  aIO greatly exceeded the }I, making the maximum GPP substantially 

more variable on the absolute scale (Figure 4). Maximum GPP showed fairly consistent seasonal 

trends, with steady increases from early to mid-summer followed by a plateau or a modest 

decline. Temporal variation in the baseline ER loosely mirrored variation in maximum GPP, 

with the exception of 2015 when maximum GPP steadily increased while baseline ER decreased 

throughout the season.   

The parameters of the P-I curve were estimated using the average light throughout the 

water column, which varied due to changes in surface light and to water clarity. However, 

variation in light attenuation was estimated from turbidity and was therefore subject to some 

uncertainty. Furthermore, other studies typically use PAR at the surface as the measure of light 

for fitting P-I curves. To explore this further, I fit the model using surface light and compared the 

resulting parameter estimates to those using the average water column light (as above). The 

estimates of baseline ER and maximum GPP were almost identical, as they should be given that 

they characterize metabolism when light is 0 (i.e. when surface and water column light are the 

same) and when light is saturating (i.e. when differences between surface and water column later 

are irrelevant) (Figure B10). The average value of the initial slope of the P-I curve was 

substantially lower for the model fit using surface light, which again was as expected because the 

surface light values were always higher than the water column values (Figure B11). However, 

the temporal patterns were very similar, with the largest differences being relatively high values 
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in 2015 and 2018 when using the water column light. These two years had substantial declines in 

water column light due to reduced water clarity associated with cyanobacterial blooms, which 

suggests that the initial slope of the P-I curve partially compensated for the declines in water 

clarity. 

 

Ecosystem Metabolism 

Mean daily estimates of GPP (5.34 g O2 m–2 day–1; ui68% = [5.20, 5.49]) and ER (4.63 g 

O2 m–2 day–1; ui68% = [4.46, 4.79]) were large overall, reflecting Mývatn’s eutrophic state. Both 

showed substantial variation through time, both within and between years (Figure 5). However, 

because GPP and ER were correlated (r = 0.73; Figure 6), NEP remained comparatively stable 

and slightly above zero (0.72 g O2 m–2 day–1; ui68% = [0.64, 0.80]). This indicates that Mývatn 

was net autotrophic during the summer months over this time period. Correlation between GPP 

and ER is expected in ecosystems dominated by autochthonous production due to respiration by 

autotrophs and heterotrophic respiration of organic carbon directly resulting from endogenous 

GPP (Del Giorgio et al. 1999, Solomon et al. 2013). However, the correlation between maximum 

GPP (aIO) and baseline ER (}I) estimated from the model was only modest (r = 0.51; Figure 7) 

and the remainder of the correlation between overall GPP and ER was due to their joint 

responses to temperature.   

 Most of the variation in GPP was due to variation in the maximum GPP, with 

temperature as the second most important contributor (Table II). In contrast, the contributions of 

variation in light and the initial slope of the P-I curve were quite small, despite the fact that these 

two variables had comparatively high coefficients of variation. This is because GPP was 

relatively insensitive to changes in these variables, due the average light level (144 µmol-
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photons m–2 s–1) generally being in the saturated part of the P-I curve. Variation in baseline ER 

and temperature made comparable contributions to variance in ER, owing to their similar 

variability and sensitivities. Note that the variance partitioning is an approximation around the 

means of the input variables (i.e. light, temperature, and time-varying parameters) and so reflects 

the contribution of variation in different variables centered around the average conditions.   

Since GPP and ER had opposite effects on NEP, variables with correlated effects on GPP 

and ER had reduced contributions to the variance in NEP. Consequently, both temperature 

(positively related to both GPP and ER) and the baseline ER (correlated with max GPP) had 

negligible or even slightly negative contributions. The contribution of variation in light was 

slightly higher for NEP than for GPP, while the contribution of variation in the initial slope was 

slightly lower. Maximum GPP was by far the largest contributor to variation in NEP, with a 

relative contribution of 0.89 despite being correlated with baseline ER. This is because the 

sensitivity of NEP to maximum GPP was substantially higher than its sensitivity to baseline ER. 

 

Drivers of Maximum GPP 

 Maximum GPP at high light (aIO) was quite variable, and it was the dominant contributor 

to variation in overall GPP and NEP. To explore the possible drivers of variation in maximum 

GPP, I fit linear models regressing aIO against daily mean phycocyanin concentration (as a 

measure of cyanobacterial abundance) and larval midge abundance. Phycocyanin data were 

available for all days for which there were estimates of aIO, while midge data were only available 

approximately weekly. Therefore, I fit two models: (1) including phycocyanin for all days, and 

(2) including both phycocyanin and midge abundance for those days when midge samples were 

collected. For midge abundance, I used total counts of the two dominant midge taxa previously 
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shown to have positive effects on benthic primary production (Tanytarsus gracilentus and 

Chironomus islandicus) (Herren et al. 2017) averaged across replicated samples for a given date. 

I z-transformed (subtracted the mean and divided by the standard deviation) all variables and 

included an autoregressive correlation structure grouped by year to account for temporal 

autocorrelation in estimates of aIO (Pinheiro et al. 2018). Maximum GPP was positively related to 

phycocyanin in both the model for all observations (df = 343; t = 3.65; p = 0.0003) and the 

model for days with midge samples (df = 39; t = 2.87; p = 0.0066) (Figure 8). In contrast, there 

was no relationship between maximum GPP and midge abundance (df = 39; t = –0.20; p = 0.84) 

(Figure B12). This suggests that increases in cyanobacterial abundance during blooms increased 

the maximum GPP, while midges had no effect.   

 

Discussion 

In this study I used time-series of DO from Lake Mývatn to estimate temporal variation 

in P-I curves and ecosystem metabolism across six summers. To do so, I employed a new 

approach that extended previous methods by explicitly modeling temporal variation in the 

parameters governing ecosystem metabolism, taking advantage of the shared information across 

the full set of data. All of the parameters of the P-I curve (maximum GPP, initial slope of the P-I 

curve, and baseline ER) varied substantially through time, with the initial slope being 

particularly variable. However, variation in the maximum GPP made the largest contribution to 

variation in estimated NEP with respect to average conditions, with this variation being 

associated with increases in the abundance of cyanobacteria during blooms. Overall, these results 

illustrate how changes in the P-I curve contributes substantially to temporal variation in lake 

ecosystem metabolism. 
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The method is quite flexible and could be readily applied to DO time-series from other 

systems to quantify temporal variation in components of ecosystem metabolism. While the 

present analysis places emphasis on the P-I curve as something of interest in itself, this method 

has utility for the broader goal of identifying trends and drivers of metabolism by removing 

short-term fluctuations and thereby clarifying longer-term changes. Diel variation in light and 

temperature major contributors to short-term variability in ecosystem metabolism, potentially 

obscuring other drivers that may be of primary interest (Coloso et al. 2011, Richardson et al. 

2017). In the present model, all variation in ecosystem metabolism due to biological and physical 

variables other than light and temperature (e.g. biomass, nutrient concentration, etc.) manifest 

entirely in the time-varying parameters of the P-I curve. For example, the maximum GPP can be 

understood as the ecosystem-wide photosynthetic potential (Jassby and Platt 1976, Behrenfeld 

and Falkowski 1997) that could be directly linked to drivers such as primary producer biomass or 

nutrient limitation. Furthermore, the model utilizes information across all time points to directly 

estimate temporal variation in the parameters of the P-I, which essentially smooths across short-

term fluctuations, thereby clarifying the longer-term variations that are often of central interest.  

 Many studies have considered the coupling of GPP and ER, because the balance between 

these two processes determines whether a given ecosystem is a net carbon source 

(“heterotrophic”) or sink (“autotrophic”). It is generally argued that systems dominated by 

autochthonous carbon should have a strong coupling between GPP and ER, due both to 

respiration by photosynthetic organisms themselves and heterotrophic respiration of the organic 

carbon fixed through primary production (Del Giorgio et al. 1999, Solomon et al. 2013, 

Richardson et al. 2017, Schindler et al. 2017). Recent work has also suggested that correlated 

responses to temperature can couple GPP and ER (Solomon et al. 2013, Demars et al. 2016, 



 90 

Richardson et al. 2017), and distinguishing between these two mechanisms is important for 

predicting the response of GPP-ER coupling to long-term change (e.g. climate). In Mývatn GPP 

and ER were strongly correlated, and this was due to both temperature (to which both GPP and 

ER were sensitive) and correlations between the time-varying ecosystem metabolism rates 

(maximum GPP and baseline ER, controlling for temperature). Even though ER was more 

sensitive to temperature than GPP relative to its overall scale (i.e. g~ >  gh), the magnitude of 

GPP was much greater; consequently, the temperature-driven variations in ER and GPP largely 

negated each other in the resulting NEP. This suggests that net carbon flux from Mývatn is 

relatively insensitive changes in temperature. In contrast, the coupling between maximum 

potential GPP and baseline ER was only modestly positively (R = 0.51), allowing variation in 

maximum GPP to have a large effect on NEP. Given that Mývatn likely has low allochthonous 

inputs (being surrounded by low-productivity tundra; Gratton et al. 2008), it is surprising the 

temperature-independent coupling of GPP and ER is not stronger. Solomon et al. (2013) argue 

that ER-GPP coupling should be weaker in eutrophic lakes when ER is substantially lower than 

GPP. However, Mývatn does not fit this pattern as overall ER during the most productive 

summer months was 86% of GPP. The unexcepted decoupling of ER and GPP could be due to 

the high organic content of the lake sediment (itself the source of past primary production; 

Einarsson et al. 2004), which could fuel high respiration during periods of low GPP.  

The relative contribution of benthic and pelagic organisms to primary production is of 

growing interest given the role of eutrophication in stimulating phytoplankton blooms, often at 

the expense of benthic production (Vadeboncoeur et al. 2002, 2003, Karlsson et al. 2009, Taranu 

et al. 2015). Mývatn is generally regarded as being dominated by benthic production (Jónasson 

1979, Einarsson et al. 2004), which is typical of shallow lakes that have large amounts light 
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reaching the benthos (Karlsson et al. 2009). Furthermore, Mývatn’s high benthic production 

sustains very large midge populations (peak larval densities exceeding 500000 m-2) that are an 

important subsidy to the surrounding landscape (Gratton et al. 2008, 2017, Dreyer et al. 2015). 

However, water column phycocyanin concentrations were a strong predictor of the maximum 

potential GPP at high light which suggests that much of the temporal variation in GPP was due 

pelagic production. This could explain the absence of a relationship between maximum GPP and 

larval midge density, despite previous experiments showing that midges have large effects on 

benthic GPP through their engineering of the sediment. Nonetheless, GPP early in each summer 

during the “clear water phase” is dominated by benthic production (as illustrated by in situ 

incubations of sediment and water; JS Phillips unpublished data), and this is reflected by early 

summer NEP being positive despite the low abundance of primary producers in the water 

column. Together, these results suggest that the relative contributions of benthic and pelagic 

production vary substantially both within and between years.  

Lake ecosystem metabolism is a topic of growing interest, with extensive effort devoted 

to developing new estimation methods and identifying drivers of spatiotemporal variation. In this 

study, I developed a new method for modeling temporal variation in ecosystem metabolism 

responses to two key physical drivers: light and temperature. In Lake Mývatn, the maximum 

GPP at high light showed 3.5-fold variation through time and was the most important contributor 

to variation in overall ecosystem metabolism. Variation in the response of metabolism to light 

was associated with cyanobacterial blooms that shifted relative contributions of benthic and 

pelagic production. These results illustrate how modeling temporal variation in P-I curves can 

provide insights into the physical and biological drivers of lake ecosystem metabolism.  
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Table I: Posterior summaries of fixed (non-time varying) parameters, using posterior medians as 

point estimates and 16% and 84% quantiles as bounds of 68% uncertainty intervals (‘ui68%’) to 

match the coverage of standard errors. The “Fixed” column shows point estimates for the model 

fit to simulated data, where the metabolism parameters were fixed to their means, implying 

corresponding standard deviations (wh, w{, and w~) of 0.  

Parameter Description Estimate† [ui68%] Fixed 

gh Scaling of max GPP with temperature 1.06 [1.05, 1.08]  

g~   Scaling of ER with temperature 1.15 [1.13, 1.18]  

w{ 
Standard deviation of changes in 

initial slope  
0.21 [0.18, 0.25] 0.01 

wh  
Standard deviation of changes in max 

GPP 
0.06 [0.05, 0.07] 0.004  

w~ 
Standard deviation of changes in 

baseline ER 
0.05 [0.04, 0.08] 0.004 

wäãåV  Standard deviation of process error  0.099 [0.098, 0.010]  

 

†The estimates for wäãåV are expressed in terms of the standard deviation of the observed DO 
data. All other parameters of dimensionless.  
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Table II:  Variance partitioning of GPP, ER, and NEP into contributions from light, temperature, 

and the time-varying parameters of the P-I curve. The CV2 and scaled sensitivity are 

dimensionless and can therefore be compared for different variables. The relative contribution to 

the variance equals the product of the CV2 and scaled sensitivity. 

  
CV2  

[ui68%] 

Scaled Sensitivity 

[ui68%] 

Relative Contribution 

to Variance [ui68%] 

GPP     

 initial slope 0.38 [0.30, 0.48] 0.09 [0.04, 0.15] 0.04 [0.02, 0.06] 

 max GPP 0.09 [0.07, 0.11] 7.95 [6.69, 9.63] 0.71 [0.63, 0.78] 

 temperature 0.03† 5.81 [3.72, 7.97] 0.17 [0.11, 0.23] 

 light 1.67†  0.05 [0.02, 0.8] 0.08 [0.04, 0.13] 

ER     

 baseline ER 0.08 [0.05, 0.11] 5.56 [3.96, 7.44] 0.44 [0.32, 0.58] 

 temperature 0.03† 19.10 [14.7, 23.2] 0.56 [0.42, 0.68] 

NEP     

 initial slope 0.38 [0.30, 0.48] 0.06 [0.00, 0.13] 0.02 [0.00, 0.05] 

 max GPP 0.09 [0.07, 0.11] 10.10 [8.44, 12.2] 0.90 [0.79, 0.99] 

 baseline ER 0.08 [0.05, 0.11] –0.41 [-1.40, 0.373] -0.03§ [-0.09, 0.04] 

 temperature 0.03† -0.79 [-1.70, 0.13] -0.02§ [-0.05, 0.00] 

 light 1.67†  0.08 [0.04, 0.13] 0.13 [0.07, 0.22] 

†The environmental variables are inputs to the model and therefore have no modeled uncertainty  
in their coefficients of variation.  
 
§Negative contributions to variance in metabolism arise due to covariances with other 
parameters, resulting in compensatory effects on metabolism.   
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Figure 1: Photosynthesis-irradiance (P-I) curves for ecosystem metabolism. The dashed lines 

illustrate the contribution of each parameter of the P-I curve. The thin lines show P-I curves for a 

random subset of days at Lake Mývatn as inferred by the model described in the main text, while 

the thick line shows the P-I curve using the mean parameter values across this subset of days. 
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Figure 2: Observed daily change in DO (with flux to atmosphere removed) and the modeled 

daily NEP, plotted through time. After accounting for the atmospheric flux, the change in DO is 

either attributable to the explicitly modeled biological flux (i.e. NEP) or process error. 
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Figure 3: Initial slope of the P-I curve as inferred from the model, plotted through time. The 

lines are the posterior medians, and the shaded regions are the 68% uncertainty intervals 

matching the coverage of standard errors. 
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Figure 4: Maximum GPP and baseline ER (at the reference temperature of 12°C) as inferred 

from the model, plotted through time. The lines are the posterior medians, and the shaded regions 

are the 68% uncertainty intervals matching the coverage of standard errors. 
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Figure 5: Daily estimates of GPP, ER, and NEP, plotted through time. The lines are the posterior 

medians, and the shaded regions are the 68% uncertainty intervals matching the coverage of 

standard errors. 
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Figure 6: Estimated daily ER plotted against GPP, with the 1-to-1 line. The estimates of ER and 

GPP include the influence of temperature, which contributes to their correlation (R = 0.73) 
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Figure 7: Baseline ER plotted against maximum GPP, with both at the reference temperature of 

12°C. Each line represents a separate year, with squares indicating the beginning and triangles 

the end of each series. 
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Figure 8: Maximum GPP inferred from the model and phycocyanin concentration (a 

cyanobacterial pigment), plotted through time. Both variables are shown as z-scores (centered on 

mean and divided by standard deviation). 
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Appendices 

Appendix B: Supplemental methods and results for Chapter 2 
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Appendix B: Supplementary methods and results for Chapter 2 

 

Code and data availability 

Data and code for data processing and model fitting, diagonstics, and analysis can be 

found at https://github.com/jsphillips2/sonde_oxygen. 

 

Data preparation 

Light 

Light readings were taken either every 15 or 30 minutes (depending on the year) with a 

light/temperature logger (HOBO Pendant, Onset Computer Corporation, MA, USA) attached to 

the top of the buoy deploying the sonde; I averaged these data to an hourly scale for further 

analysis. HOBO loggers measure visible light intensity in lux, which is closely related to the 

spectral range (400-700nm) used to calculate photosynthetically active radiation (PAR; measured 

in µmol-photons m-2 s-1) (Thimijan and Heins 1983). I also obtained downwelling solar 

irradiance from the local whether station (in Watts). Following Thimijan and Heins 1983, visible 

light intensity and downwelling irradiance can be scalarly converted to photon flux density based 

on an approximate standard spectrum for sunlight. Specifically, the visible intensity is divided by 

54 and downwelling irradiance is multiplied by 4.57.  

When approximately converted to PAR, visible light intensity and downwelling 

irradiance were strongly correlated (™=0.79 on natural scale and ™=0.89 on log-log scale; Figure 

B1). However, when hourly values are plotted through time it appears that downwelling 

irradiance has higher peaks than the visible intensity (Figure B2), which makes sense as the 

downwelling irradiance is calculated using a wider spectral range that visible intensity. 
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Sensor drift 

To evaluate whether the sonde DO readings drifted through time, I compared them to 

measurements and the same depth (0.5m) and location made with handheld probes (ProODO, 

YSI Co., OH, USA) during routine sampling of the central monitoring station. The sonde and 

handheld probe measurements were strongly correlated (™=0.92; Figure B3). Furthermore, the 

DO time-series measured by the sonde failed to display linear trends that were consistent 

between years (Figure B4). Therefore, there did not appear to be any major drift in the sensor 

readings. 

 

Model fitting 

Scaling the model 

For fitting the model, I z-scored (centered on the mean and divided by the standard 

deviation) the observed DO concentrations and scaled the model accordingly. I then 

nondimensionalized the scaled model to remove the scale parameters (mixing depth and 

mean/standard deviation for the observed DO). This put the observed values and model 

parameters on unit scale, which improved the computational efficiency and allowed for the use 

for weakly informative priors on unit scale. I then back-transformed the scaled parameters to 

recover their values on the original scale. 

The model for DO dynamics (equations 9 and 10 in the Chapter 2) is: 

 

ÇÉ©´< = ÇÉ© +
¨ℎ
Lá$à

t\] ©̂ + é©(ÇÉ©
èê − ÇÉ©)x + â©

äãåV 
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where ÇÉ© is the DO concentration [≠Æ	É=	≠UA], ÇÉ©
èê is the DO concentration at saturation 

[≠Æ	É=	≠UA], ¨ℎ = 1 hour, \] ©̂ is the net ecosystem production [≠Æ	É=	≠U=	ℎU<], é [≠	ℎU<] 

is the rate of oxygen exchange, Lá$à is the mixing depth [3.3≠], and âäãåV is the processes error 

[≠Æ	É=	≠UA]. For simplicity, only a single time index Ø is used, rather than indexing by hour 

and day as in the main text. For clarity, ÇÉ is substituted with ∞ and \]^ with ±, yielding 

 

∞©´< = ∞© +
¨ℎ
Lá$à

t±© + é©(∞©
èê − ∞©)x + â©

äãåV. 

 

Z-scoring the observed DO values by the mean (≤) and standard deviation (≥) of the full set of 

DO observations implies the following scaling of the model: 

 

∞©´< − ≤
≥

=
1
≥
¥∞© − ≤ +

¨ℎ
Lá$à

t±© + é©(∞©
èê − ∞©)x + â©

äãåVµ 

 

which can be expanded as 

 

∞©´< − ≤
≥

=
1
≥
∞© −

1
≥
≤ +

1
≥
¨ℎ
Lá$à

±© +
1
≥
¨ℎ
Lá$à

é©(∞©
èê − ∞©) +

1
≥
â©
äãåV. 

 

Rearranging to express all “∞” terms to resemble the left-hand side yields 

 

∞©´< − ≤
≥

=
∞© − ≤
≥

+
1
≥
¨ℎ
Lá$à

±© +
¨ℎ
Lá$à

é© ∂d
∞©
èê − ≤
≥

+
≤
≥
f − ë

∞© − ≤
≥

+
≤
≥
ó∑ +

1
≥
â©
äãåV 
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which simplifies to 

 

∞©´< − ≤
≥

=
∞© − ≤
≥

+
1
≥
¨ℎ
Lá$à

±© +
¨ℎ
Lá$à

é© d
∞©
èê − ≤
≥

−
∞© − ≤
≥

f +
1
≥
â©
äãåV. 

 

Substituting with scaled variables yields 

 

∏©´< = ∏© + ±©̂ + é̂© (∏©
èê − ∏©) + â̂©

äãåV 

 

where  

∏© =
∞© − ≤
≥

 

 

∏©
èê =

∞©
èê − ≤
≥

 

 

±̂© =
1
≥
¨ℎ
Lá$à

±© 

 

é̂© =
¨ℎ
Lá$à

é© 

 

â̂©
äãåV

=
1
≥
â©
äãåV 
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I fit the nondimensionalized version of the model to the data, resulting in estimates for the scaled 

parameters (e.g. ±̂©). The parameter values on the original scale could be obtained by back-

transforming the scaled values. For example, ±© = ≥ P¶ß®
∫K

±̂©. 

NEP (±©) is the difference between GPP and ER. Therefore, the scaling of NEP implies 

that GPP (denoted ª) and ER (denoted º) are scaled as 

The original equation for ª (main text equation 3) is 

 

ª© = aI	tanh ¥
e©
a©
H©µ 

 

where a© is the maximum rate of GPP [≠Æ	É=	≠UA	ℎU<] on a particular day and e 

[≠Æ	É=	Ω	≤≠æø	¿ℎæØæ¡ΩU<	≠U<	ℎU<] is the initial slope of the P-I at low light. This is scaled as 

 

ª̂© =
1
≥
¨ℎ
Lá$à

a©	tanh¬

√
≥
¨ℎ
Lá$à

e©
1
≥
¨ℎ
Lá$à

a©

H©
√
ƒ 

 

where √ is the mean light level (so that the initial slope can be expressed on unit scale). This 

simplifies to 

 

ª̂© = â© 	tanh ∂
ê©
â©
Ĥ©∑ 
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where 

â© =
1
≥
¨ℎ
Lá$à

a© 

 

ê© =
√
≥
¨ℎ
Lá$à

	e© 

 

Ĥ© =
H©
√
. 

 

This scaling can be applied by direct analogy to ER and to the time varying components of a©, 

e©, and }© (main text eqns 5, 6, and 7). 

 

Priors 

I fit the model using weakly informative priors based on normal distributions (see 

http://mc-stan.org/users/documentation/case-studies/weakly_informative_shapes.html). Because 

the parameters were fit on unit scale, I generally used priors with standard deviations of 1 and 

means of 0. However, because the parameters describing the scaling of GPP and ER with 

temperature (gh and g~) had lower bounds of 1, I used corresponding priors with means of 1. For 

those parameters with lower bounds (1 for gh and g~ and 0 for all standard deviations), I used 

normal priors truncated at their respective lower bounds. 

 

Estimating observation error 

Attempting to estimate the standard deviations for observation error (wåûü) and process 

error (wäãåV) independently resulted in very inefficient sampling of the posterior distribution as 
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wåûü slowly converged to 0. This can be seen by examining the parameter trace plots from the 

MCMC (Figure B5). While wäãåV showed good mixing across all four chains, the chains for 

wäãåV did not mix, indicating a lack of convergence. However, the overall magnitude of wåûü was 

close to 0 and the lack of convergence is likely due to difficulties associated with estimating the 

parameter when near its boundary. Therefore, I refit the model fixing wåûü to near 0 (1% of the 

observed standard deviation in obseved DO, so that I could use the same model specification in 

Stan). This resulted in nearly identical estimates for most parameters except for wäãåV, which was 

nontheless very similar (Figure B6). It is not surprising that observation error was so low, given 

the smooth appearance of the DO time series (Figure B7). 

 

Variance partitioning 

I partitioned variation in NEP, GPP, and ER resulting from variation in physical and 

biological parameters by applying the delta method to Chapter 2 equations 2, 3, and 7, 

respectively. This method gives the first-order approximation of the variance in a function ≈ that 

depends on a vector ∆«,» of time-varying parameters …I,K< , …I,K= , … …I,KÀ 	as 

 

VarŒ≈t∆«,»xœ ≈—d
D≈†

D…†$
f
=

$

σ”ß
= + — —

D≈†

D…†$
‘|‘÷$

D≈†

D…†‘
σ”ß,”◊	

$|$÷‘

 

 

where …†$ is the mean value of …I,K$  across all d and h, ≈† is the function evaluated at the vector of 

mean values for each parameter vector ∆ÿ , Ÿ⁄
†

Ÿ”ÿß
  is the partial derivative of ≈† with respect to  …†$,  

σ”ß
=  is the variance in …I,K$ , and σ”ß,”◊	is the covariance between …I,K$  and …I,K

‘ . The relative 
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contribution of a given parameter …I,K$¤‹ is calculated as the sum of all terms in equation where › =

fi, divided by the total variance Var[≈(∆«,»)]. Note that the contribution of a parameter will be 

reduced by its negative covariances with other parameters and can even be negative if the 

contribution of its negative covariance terms exceeds the contribution of its (necessarily positive) 

variance term. The advantage of an explicit partitioning based on the model equations, as 

opposed to a more conventional “statistical” variance partitioning (e.g. ANOVA), is that the 

explicit partitioning accounts for nonlinearities and interactions between explanatory variables 

through both derivatives and covariances.  

 Generically, the contribution of a variable …$ to the variance in ≈ is determined by (1) the 

sensitivity of ≈ to variation in …I,K$  (i.e. the partial derivatives) and (2) the variance of …I,K$ . This 

can be illustrated by considering the contribution of a single parameter …I,K$¤‹		relative to the total 

variance: 

 

fld
D≈†

D…†‹
f
=

σ”‡
= + —

D≈†

D…†‹
‘|‘÷‹

D≈†

D…†‘
™”‡,”◊σ”‡σ”◊· VarŒ≈t∆«,»xœ‚  

 

where the covariance between a given pair of variables …‹ and …‘ is expressed in terms of their 

correlation (™”‡,”◊) and respective standard deviations (σ”‡ and σ”◊). Factoring σ”‡
=  and 

expressing it in terms of the coefficient of variation (CV”‡)  yields  
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which can be simplified by expressing it as the product of CV”‡
=  and the “scaled sensitivity” ‰”‡: 

 

CV”‡
= ‰”‡	  

 

Both CV”‡
=  and ‰”‡	are dimensionless and can be compared for different variables. CV”‡

=  

quantifies the overall variation in …I,K‹ , while ‰”‡ quantifies how sensitive ≈ is to variation in 

…I,K‹ 	 given its correlations with other variables. 

 

Simulations 

Methods 

A main objective of the analysis was to infer the temporal variation in the parameters of 

the P-I curve (aIO, eI, and ™ℎæI), with the magnitude of variation characterized by the standard 

deviations of the respective stochastic processes (wh, w{, and w~). To explore the capacity of the 

model to distinguish real changes in these parameters from noise, I fit the model to simulated 

data with aIO, eI, and ™ℎæI fixed to their mean values for each year as inferred by the fit of the 

model to real data. The simulated data implied that wh, w{, and w~ had “true” values of 0; 

therefore, the model fit to these data should produce estimates shifted toward 0 relative to the 

estimates for the actual data. 

The goal was to validate the model as fit to the particular data used in this analysis. 

Therefore, I constructed the simulated data using the observed environmental data and the 

particular sequence of process errors (i.e. âI
äãåV) as inferred from the model fit to the original 

data. The observed DO for each year had gaps due to missing data, which resulted in many 

contiguous time-series within each year. For the simulated data, I retained this structure as it 
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could have implications for the efficacy of the model fitting. Initial values for the first time-series 

in each year were set to the corresponding value in the observed data. However, for the initial 

values of all subsequent time-series within a year I projected the model as if there were no gap in 

the data (such that each year would have a single contiguous stretch of observations) and then 

inserted gaps into the simulated time-series to match the structure of the original data. This is 

was necessary as using the observed values to initial each time-series would lead to substantial 

differences between the initial value and the equilibrium determined by metabolism rates when 

fixed to their means. The real and simulated data appear quite different, indicating that the 

temporal variation in the ecosystem metabolism parameters has large effects on the DO 

dynamics (Figure B8). 

 

Results 

As discussed in the main text, wh, w{, and w~ were all clearly different from 0 when 

estimated from the real data. In contrast, the variance estimates for the simulated data were all 

strongly right skewed, with posterior densities concentrated near 0 (Figure B9). This suggests 

that the temporal variation in aIO, eI, and ™ℎæI inferred by the model reflected real changes in 

the underlying P-I curve. 

 

Surface vs. average water column PAR 

Methods 

Because primary production occurs throughout the water column and in the benthos, I fit 

the model using the average water column light, calculated as 
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HI,K(L) =
1

L51M
N HI,KO
PQRS

O
	TUVW,X	P	YL =

HI,KO (1 − TUVW,K	PQRS)
L51M	[I,K

 

 

where L [≠] is the vertical position in the water column, LáÂà is the water column depth, HI,KO  is 

the PAR at the water surface (L = 0), and [I,K is the light attenuation coefficient (we used [ 

rather than the standard éI to avoid notational confusion with gas exhange constants used 

below). For notational simplicity, we henceforth denote HI,K(L) as HI,K. To estimate [I,K, I 

regressed observe light attenuation calculated from weekly measurements of PAR at 0.5m depth 

intervals against turbidity and used this regression (y = 0.43 + 0.059 × turbidity; df = 34; `= = 

0.66) to predict [I,K from turbidity for each time point in the sonde data. 

The estimates HI,K(L) have some uncertainty to do the inference of water clarity from 

turbidity. Furthermore, it is common in other studies of ecosystem metabolism to use light as 

measured near the water surface. To evaluate the consequences of using HI,K(L), I refit the model 

to surface light (HI,KO ) and compared the estimates of the time-varying parameters to those for the 

original model fit. 

 

Results 

The estimates of baseline ER and maximum GPP were almost identical for both surface 

and water column light, as they should be given that they characterize metabolism when light is 

0 (i.e. when surface and water column light are the same) and when light is saturating (i.e. when 

differences between surface and water column later are irrelevant) (Figure B10). The average 

value of the initial slope of the P-I curve was substantially lower for the model fit using surface 

light, which again was as expected since the surface light values were always higher than the 
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water column values (Figure B11). However, the temporal patterns were very similar, with the 

largest differences being relatively high values in 2015 and 2018 when using the water column 

light. These two years had substantial declines in water column light due to reduced water clarity 

associated with cyanobacterial blooms. 

 

Drivers of Maximum GPP 

Maximum GPP at high light aIO was quite variable, and it was the dominant contributor to 

variation in overall GPP and NEP. In the main text, I report results from linear models regressing 

aIO against daily mean phycocyanin (as a measure of cyanobacterial abundance) and larval midge 

abundance. Phycocyanin data were available for all days for which there were estimates of aIO, 

while midge data were only available approximately weekly. Therefore, I fit two models: (1) 

including phycocyanin for all days, and (2) including both phycocyanin and midge abundance 

for those days when midge samples were collected. In the main text I show a figure relating aIO 

against phycocyanin for all days. Here I show the corresponding figure for those days where 

midges were samples (Figure B12). 
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Figure B1. Visible light intensity measured by HOBO logger and downwelling 

irradiance from weather station, scalarly converted to approximate PAR equivalent. 
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Figure B2. PAR equivalent for visible light intensity and downwelling irradiance plotted by hour 

for 10 days in 2013 
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Figure B3. DO measured from the sonde and handheld probes, with the 1-to-1 line. 
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Figure B4. Hourly DO measurements plotted through time. The lines are the sonde 

measurements, while the points are the handheld probe measurements. 
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Figure B5. Trace plots for standard deviations of observation and process error from the 

MCMC. Colors indicate separately initialized chains (note the different y-axis scales). 
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Figure B6. Posterior distributions for parameter estimates, with the standard deviation of 

observation error either estimated from data or fixed to 0. 
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Figure B7. Observed DO time-series for first six days in 2012. 
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Figure B8. Time-series for real and simualted DO. 
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Figure B9. Posterior distributions for standard deviations of variation in ecosystem metabolism 

rates for real and simulated data. 
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Figure B10. Ecosystem metabolism rates estimated using either surface or average water column 

light. 
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Figure B11. Initial slope of the P-I curve estimated using either surface or average water column 

light. 
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Figure B12. Time-series of maximum GPP (as inferred from the model), phycocyanin, and 

midge larva. 
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Chapter 3 

 

Estimating time-varying demographic rates from age-structured abundance: application to 
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Abstract 

A variety of methods have been developed for estimating recruitment and survival in populations 

from field data. One approach is to fit a model to age- or stage-structured time-series data; 

recruitment is inferred from the appearance of the earliest stages, while survival is inferred from 

the loss of individuals from cohorts. However, most statistical methods for time series assume 

that demographic rates are fixed through time, while those that attempt to incorporate temporal 

variation have proven to implement. This is a limitation because demographic rates are almost 

certainly variable for any natural population, and this variability can have important implications 

for population dynamics. Here, we present a flexible method for incorporating time-varying 

recruitment and survival into structured models that can be fit to time series of observed 

population abundance. The demographic rates are modeled as random walks, allowing them to 

vary smoothly through time while taking advantage of the full set of data for estimating all 

parameters simultaneously. We illustrate the utility of this method through application to age-

structured observations of an arctic char fishery that was historically heavily exploited and has 

experienced substantial fluctuations over the 32-year time series. When fit to the arctic char time 

series, the model inferred substantial variation in recruitment and survival. This was corroborated 

by comparing the full model to reduced models with different combinations of demographic 

rates fixed through time, which all produced poorer fits to the data than the full model even when 

accounting for model complexity. Temporal variation in per capita recruitment was the dominant 

contributor to variation in the per capita population growth rate, while temporal variation in 

survival was relatively less important. These results illustrate the ability of our approach to 

estimate time-varying recruitment and survival in age- or stage- structured models. The method 

is flexible in its description of temporal variation in demographic rates and is readily 
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generalizable to a variety of population structures, which should make it a useful tool for 

inferring temporal variation in a variety of natural populations. 

 

Keywords: Arctic char, matrix population model, recruitment, survival, state-space model 
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Introduction 

Quantifying temporal variation in the age- and stage-specific demographic rates 

underpins efforts to characterize both exogenous and endogenous drivers of population dynamics 

(Twombly 1994, Zeng et al. 1998, Koons et al. 2016). For some taxa it is possible to repeatedly 

detect and identify individual organisms (i.e. mark-recapture and related methods), which 

enables relatively direct estimation of detection probabilities and transition rates between life-

stages (Lebreton et al. 1992, Nichols et al. 1992, Fujiwara and Caswell 2002). While mark-

recapture methods often assume that demographic rates are fixed through time, when applied 

over sufficiently long time periods they can be used to infer temporal variation in demographic 

rates (Hadley et al. 2007, Regehr et al. 2010). Recent work has used this approach to link 

temporal variation in age- and stage-specific demographic rates to environmental drivers such as 

climate (Forcada et al. 2008, Hunter et al. 2010) and harvesting (Michielsens et al. 2006, 

Whitlock and McAllister 2009, Whitlock et al. 2012).  

Unfortunately, repeated observation of individuals is often labor-intensive and only 

applicable to a limited set of taxa typically comprising large or sessile organisms. Therefore, in 

many contexts estimation of demographic rates must rely on time series of observed population 

abundance (Zipkin et al. 2014). It is possible to estimate detection probabilities and transition 

rates between life-stages in a manner analogous to mark-recapture from repeated or spatially 

replicated observations of abundance using N-mixture models (Royle 2004, Dail and Madsen 

2011, Zipkin et al. 2014). However, such methods are only applicable to populations (or 

subpopulations within a metapopulation) that are closed to immigration and reproduction during 

the period of repeated observations. Furthermore, these methods require multiple observations 

within each time period of interest and therefore are relatively labor-intensive. Some studies have 
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fit age- or stage-structure models to time-series of population abundance without the structural 

restrictions of N-mixture models (sometimes known as “inverse methods”) (Gross et al. 2002, 

Udevitz and Gogan 2012, Gudmundsson and Gunnlaugsson 2012, Smart et al. 2018). However, 

this approach generally assumes that demographic rates are fixed through time (e.g.Udevitz & 

Gogan, 2012) or change in to response measured covariates (e.g. Hansen, Ives, Vander Zanden, 

& Carpenter, 2013). 

There have been a few previous attempts to incorporate temporal variation in 

demographic parameters into age- and stage-structured models fit to observed population 

abundance. One approach is to fit matrix population models to moving windows containing 

subsets of the full data, providing a sequence of time-dependent demographic rates (Twombly 

and Caswell 1991, Twombly 1994). However, this method fails to utilize all of the data to inform 

each time-specific demographic rate, resulting in potentially biased estimates and difficulties in 

quantifying parameter uncertainty (Wood 1994, Twombly 1994). Wood (1994) presents an 

alternative to matrix projection methods that entails fitting a smooth surface to observed 

abundances across organism age/stage and sample time, from which time-dependent recruitment 

and survival can be inferred from the shape of the surface. However, this method is 

computationally difficult to implement and is quite different from more conventional approaches 

to population modeling, which could explain why it has not been widely utilized (Caswell, 2001; 

but see Ohman & Wood, 1996). 

In this study, we present a flexible method for incorporating time-varying recruitment 

and survival into structured population models that can be estimated using age- or stage-

structured time series of observed abundance. The demographic rates are modeled as random 

walks, an approach that has previously been applied to infer population growth rates from non-
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structured abundance (Zeng et al. 1998) and for age-specific mortality rates inferred from 

fisheries stock assessments (Nielsen and Berg 2014). This method takes advantage of the entire 

time series for estimating the parameters while allowing them to vary smoothly through time, 

potentially reducing bias and facilitating quantification of parameter uncertainty (Ives and Dakos 

2012). Furthermore, this approach is a direct extension of widely used matrix population 

methods and therefore should be relatively intuitive to implement and interpret. The model 

parameters are estimated in a state-space framework, which in principle allows real changes in 

abundance to be distinguished from apparent changes due to observation error (Harvey 1989) 

We illustrate the utility of this method through application to an age-structured time 

series of arctic char (Salvelinus alpinus) abundance from Lake Mývatn, a shallow eutrophic lake 

in Iceland. This population of char was an important fishery prior to a decline that followed very 

high exploitation rates and other changes in the lake ecosystem (Gudbergsson 2004). Fishing 

regulations have limited harvesting in recent years, and a key question is whether the population 

has started to recover. Furthermore, the dominant food sources for the char (midge larva and 

large-bodied zooplankton) fluctuate dramatically in abundance between years (Ornolfsdottir and 

Einarsson 2004, Ives et al. 2008), which may play an important role in char recruitment and 

survival. An important step to understanding the decline and possible recovery of the char 

population is quantifying the temporal variation in demographic rates and their resulting effects 

on variation in the population growth rate, making the Mývatn char fishery a good test case for 

our method.  
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Methods 

We begin with a description of the study system and data to motivate the formulation of 

the model. However, the approach is a direct extension of matrix population models (Caswell 

2001) that have been applied to a wide variety of taxa and is similarly generalizable. After 

explaining the procedure for estimating the parameters of the full model, we illustrate how 

comparison to reduced models can provide an assessment of the evidence for temporal variation 

in the demographic rates. Finally, we describe how the estimated sequence of time-varying 

recruitment and survival can used to calculate time-varying per capita population growth rates 

and how these can in turn be partitioned into contributions from each demographic parameter.  

 

Study System  

Mývatn is located in northeastern Iceland (65°40’N 17°00’W) and has a tundra-subarctic 

climate (Björnsson and Jónsson 2004). The lake is moderately large (37 km2) and is dived into 

north (8 km2) and south (29 km2) connected by a narrow channel (Einarsson et al. 2004). 

Mývatn is shallow (mean depth = 2m) and is fed by cold and warms springs rich in phosphorous 

(south basin N and P inputs of 1.4 and 1.5 g m-2 y-1, respectively) (Ólafsson 1979). 

Consequently, the lake has high levels of benthic primary production that supports large 

populations of midges comprising >30 species. Midges are an important food source for 

Mývatn’s vertebrate populations, including arctic char, three-spined sticklebacks (Gasterosteus 

aculeatus), brown trout (Salmo trutta), and various waterfowl (Einarsson et al. 2004).  

Arctic char (Salmonidae: Salmoninae) have a circumpolar distribution and are important 

consumers in many boreal and arctic lakes. While some char populations are anadromous, 

Mývatn’s population appears to reside strictly within the lake, despite a major outflow that 
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connects the lake to the Greenland Sea (Gudbergsson 2004). Spawning occurs in the fall among 

individuals aged 4 years or older. There are two char morphs within Mývatn: “regular” (size at 

maturation 35-50cm) and “dwarf” (20-25cm). However, the dwarf morph is restricted to a small 

and relatively isolated part of the S basin; therefore, the “regular” morph is the focus of this 

study. Gut content data reveal a diverse diet, including midges, snails, clams, zooplankton, and 

sticklebacks. The large bodied zooplankton Eurycercus is thought to be a particularly important 

prey item. While many char populations are cannibalistic, especially in the absence of other 

large-bodied prey (e.g. fish), the char in Mývatn appear to lack cannibalism, possibly because of 

the abundance of other prey.  

 

Data 

Systematic surveys of Mývatn’s arctic char have been conducted with gill nets every year 

from 1986-2017. Most captured individuals were measured for length, mass, age (either based on 

otoliths or estimated from size), and a binary index of maturity. Surveys were conducted at 12 

sites around the lake, most of which were located in the south basin. For our analysis, we pooled 

all observations across all sites and assumed that the population is well mixed across years. 

While this assumption is not completely realistic, there were no consistent differences across 

sites and variation through time was fairly synchronous (Supporting Information). Surveys were 

conducted in fall (late August through September) of every year (just before spawning) and in 

May a subset of years. For this analysis we used only the September data. Therefore, in our age 

classifications a fish of age x is a fish that survived to that age (e.g. an “age 1” fish was born in 

the previous fall). The oldest fish in the data set were 12 years old, although observations of fish 

older than 6 years are very sparse. Therefore, we grouped the oldest fish into a single 
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reproductive age class, called “adults”. In Mývatn, char reach maturity between 4 and 5 years of 

age, so all aged 4 and older were categorized as adults (denoted “age 4” for simplicity).  

 

Model Structure  

The model includes four age classes with three juvenile stages and one adult stage. 

Individuals aged 1 through 3 progress to the next age i with survival probability ±©: , while adults 

survive and return to the adult class with probability ±©B. Adults contribute to the age 1 fish of the 

next time step with per capita recruitment }©. Assuming a population closed to immigration, this 

structure implies the following set of equations	 

 

¡©´<< = }©¡©B	

¡©´<= = ±©<¡©<	

¡©´<A = ±©=¡©=	

¡©´<B = ±©A¡©A + ±©B¡©B	 (1) 

 

where ¡©$  denotes the number of individuals of age i at time t. The per capita recruitment (}©) 

varies through time as random walk on a log scale: 

 

log	(}©´<) = log	(}©) + Ë©
~	

Ë©
~ ∼ st0, w~x	 (2) 

 

where w~ is the standard deviation of Gaussian-distributed steps in the random walk. Modeling 

the random walk on a log scale ensures that }© remains positive. Similarly, temporal variation in 
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age-specific survival probabilities (±©$) is modeled as random walk on a logit scale (constraining 

±©´<:  between 0 and 1): 

 

logit(±©´<: ) = logitt±©:x + Ë©
Èß	

Ë©
Èß ∼ st0, wÈx	 (3) 

 

where wÈ is the standard deviation of the random walk. A single standard deviation is estimated 

for survival probabilities of all ages to reduce the number of parameters to estimate, although the 

actual degree of temporal variability is informed by the data and therefore can differ between 

ages. In principle different values of wÈ could be used for each age class; however, in our 

application to the arctic char data this resulted in poor convergence during model fitting, so we 

used a single value of wÈ for all life stages. 

 We fit the model in a state-space framework, using log-normally distributed observation 

error:  

 

logt¡åûü,©$ x = logt¡©: x + Ë©
ÍÎÏÌ
ß
	

Ë©
ÍÎÏÌ
ß

∼ s(0,  wåûü)	 (4)	 

 

where ¡åûü,©$  is the observed abundance of age i fish at time t and wåûü is the observation error 

standard deviation (on a log-scale). The observation error is assumed to be symmetrically 

distributed about the log population size with the same standard deviation across life stages. This 

is an unrealistic assumption, as smaller fish are less likely to be captured in gill nets than large 
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fish. Indeed, for a given cohort the observed number of age 1 fish (¡åûü,©< ) is generally much less 

than ¡åûü,©´<= , implying an increase in age 2 fish despite the fact that the population is closed 

(Figure 1). Furthermore, ¡åûü,©=  is generally only slightly higher than ¡åûü,©´<A , implying an 

unrealistically high survivorship for age 2 fish. Therefore, it appears that both age 1 and 2 fish 

are systematically underrepresented in the survey, as is often the case for age- and stage-

structured observations of abundance.  

We addressed systematic detection bias across age in two ways. First, because the 

detection bias for age 1 fish was so great and the data so “noisy” in comparison to other age 

classes, we did not use those data to fit the model (i.e. ¡©< was treated as a latent variable) and set 

the survival probability of age 1 fish (±©<) equal to 1. Therefore, }© can be interpreted as the per 

capita recruitment and survival of fish to age 2 at time t + 1. Second, we evaluated the sensitivity 

of the parameter estimates to systematic under-detection of age 2 fish by imposing a bias of 0.5 

relative to other ages (i.e. by doubling the observed number of age 2 fish prior to model fitting). 

This model resulted in elevated estimates of recruitment and reduced estimates of age 2 survival 

(Figure C3-4), which is a straightforward consequence of assuming relatively greater abundance 

of age 2 individuals. However, the pattern of temporal variation in recruitment was almost 

identical to the model without assuming systematic detection bias, as were the estimates of 

survival probabilities of age 3 and adults. The survival probability of age 2 fish was more 

strongly affected by imposing the systematic detection bias, primarily because the temporal 

variability of age 2 survival was constrained by its upper bound when estimated without 

detection bias. Because the true detection bias is unknown and could not be estimated from the 

data, we present the model fit to the observed data without imposing the detection bias, which 
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was reasonable given our focus on pattern of temporal variation that was largely insensitive to 

this bias (but see Appendix C for analysis of the model with systematic detection bias).  

 

Model Fitting 

We fit the model with a Bayesian approach using Stan 2.17.0 run from R 3.5.1 (R Core 

Team 2018) with the ‘rstan’ package (Stan Development Team 2018). Stan utilizes Hamiltonian 

Monte Carlo to generate Markov chains that converge to a stationary distribution approximating 

the joint posterior distribution for the unobserved variables (Carpenter et al. 2017).Weakly 

informative Gaussian priors were used for all parameters, truncated at 0 for parameters that must 

be nonnegative (wåûü, wÈ, and w~). We scaled the observation error standard deviation (wåûü) by 

the standard deviation of the observed data (on a log scale) and scaled the per capita recruitment 

(}©) by the mean abundance of age 2 individuals divided by the by the mean abundance of adults 

before fitting the model to facilitate selection of weakly informative priors on unit scale; these 

parameters were then transformed back to their natural scales following model fitting. We used 

four independent chains with diffuse initial values and 2000 iterations including a 1000-iteration 

“warm-up”. Convergence was assessed by examining trace plots for parameter estimates, the 

number of divergent transitions of the Markov chain, and the potential scale reduction factor ( †̀), 

which quantifies the relative variance within and between chains. All parameters had †̀ £ 1.01, 

which is regarded as a conservative threshold for assessing convergence as measured by †̀ . 

Detailed specifications for the priors, fitting routine, and additional diagnostics can be found at 

https://github.com/jsphillips2/arctic_char.  

For most parameters we used posterior medians as point estimates and 16% and 84% 

quantiles for the bounds of 68% uncertainty intervals (UI68%), matching the coverage of 
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standard errors. However, for parameters with lower bounds of 0 for which quantiles provide 

poor summaries (wåûü, wÈ, and w~) we used posterior modes and 68% highest density intervals 

calculated (HDI68%) with the ‘hdrcde’ package in R 3.5.1 (R Core Team 2018). 

 

Model Comparison 

 Modeling time-varying demographic rates as walks provides in a single parameter that 

characterizes the magnitude temporal variation in each demographic rate (wÈ for recruitment and 

w~ for survival), and fitting the model in a Bayesian framework yields in a posterior distribution 

characterizing the uncertainty in wÈ and w~. However, the fact that wÈ and w~ are bounded by 

zero means that there is some ambiguity in assessing the strength of evidence for temporal 

variation in the demographic rates, which is important for the statistical objective of determining 

whether the data contain meaningful information about changes in demographic rates.  

To provide a more formal assessment of the evidence for temporal variation in the demographic 

rates, we fit reduced versions of the model including only time-varying recruitment (“Variable 

Recruitment), only time-varying survival (“Variable Survival)”, or with both fixed through time 

(“Both Fixed”). We then compared the fit of the models using the Leave-One-Out Information 

Criterion (LOOIC), which is related to WAIC but has been shown to be more robust (Vehtari et 

al. 2017). LOOIC is an approximation to leave-one-out cross validation and is calculated from 

the log pointwise predictive density penalized by an estimate of the effective number of 

parameters. In this way, LOOIC is conceptually similar to likelihood-based information criteria 

(e.g. AIC and BIC), and it is reported in units of deviance so that it can be interpreted in a similar 

manner. However, the calculation of LOOIC integrates across the full posterior distribution of 
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the model and therefore is fully Bayesian. We calculated LOOIC using the “loo” package in R 

3.5.1 (R Core Team 2018).  

 

Population Growth Rate 

Quantifying time-varying demographic rates from Mývatn’s arctic char fishery was 

motivated by a desire to characterize the dynamics of the population during its decline and 

possible recovery. To illustrate the utility of estimating time-varying demographic rates for this 

objective, we used the parameter estimates to partition the variance in the per capita population 

growth rate into contributions from different demographic parameters. Over a given time step, 

the realized per capita growth rate is calculated as 

 

√©ãèÂÓ =
\©
\©U<

(5) 

 

where \© is the summed abundance of all age classes. Changes in √©ãèÂÓ result from both changes 

in the demographic rates (}© and ±©: ) and shifting age structure when the population has yet to 

reach a stable age distribution, which is the case when demographic rates change though time 

(Caswell 2001, Koons et al. 2016). While it is possible to partition variance in √©ãèÂÓ to both 

changes in demographic rates and non-equilibrium stage structure (Koons et al. 2016), we take 

the alternative approach of calculating the asymptotic growth rate (√©
ÂüÔá) determined by a given 

set of demographic rates under the assumption that the population has reached its stable age 

distribution. Temporal variation in √©
ÂüÔá reflects temporal variation in the demographic 

parameters per se and so provides a synthetic measure of their collective influence on the 
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dynamics of the population (see Figure C1 for comparison of √©
ÂüÔá and √©ãèÂÓ from the full 

model). 

The asymptotic growth rate equals the leading eigenvalue of the demographic projection 

matrix Ò	parameterized with recruitment and survival probabilities in a given time step (Caswell 

2001):    

	

Ò =

⎝

⎜
⎛
0 0 0 }©	
±©< 0 0 0
0 ±©= 0 0
0 0 ±©A ±©B⎠

⎟
⎞
	 (6) 

 

We calculated √©
ÂüÔá for the full model and the two reduced models that allowed at least one 

demographic rate to vary through time (i.e. Variable Recruitment and Variable Survival).  

To partition variance in √©
ÂüÔá  for the full model resulting from temporal variation in the 

recruitment and survival, we define a vector ¯˘˙˚¸ containing asymptotic growth rates and 

vectors ˝˛ for each demographic parameter j (e.g.	˝~ = 	 {}<, }=, … }!51M}). The contribution of 

˝˛ to the variance in ¯˘˙˚¸ is then approximated as  

 

Contribution	from	˝˛ ≈ 1
Var[¯˘˙˚¸]

—CovŒ˝˛, ˝'œ
î

D√(̋
ÂüÔá

D…)***
D√(̋

ÂüÔá

D…î*** 	 (7) 

 

where CovŒ˝˛, ˝'œ is the covariance between the parameter vectors ˝˛ and ˝' (the covariance 

when j = k is the variance of ˝˛), …)*** is the mean value for parameter vector ˝˛, √(̋
ÂüÔá is the 

asymptotic growth rate for a projection matrix consisting of the mean parameter values, and 
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Var[¯˘˙˚¸] is the total variance in ¯˘˙˚¸ calculated as the sum of the contributions for all ˝˛ 

(Caswell 2001). The partial derivatives ¥
Ÿ+(̋

,Ì-¶

Ÿ”.**** 	µ	are the “sensitives” of the asymptotic growth 

with respect to mean value of a given demographic parameter. Because the variance terms are 

generally larger than the covariances, the contribution of a given demographic parameter to 

variance in √(̋
ÂüÔá is largely determined by the variance of the parameter and the sensitivity of 

√(̋
ÂüÔá to that variance. We calculated the contributions from each parameter for 1000 draws 

from the posterior distribution of the full model, which we summarized using medians and 16% 

and 84% quantiles.   

 

Data and code availability 

Data and R code for all analyses can be found at https://github.com/jsphillips2/arctic_char. 

 

Results 

Model Fit 

 The full model provided a good visual fit to the observed data, with short-term 

fluctuations attributed to observation error and longer-term changes attributed to real changes 

abundance (Figure 1). However, there was some apparent temporal autocorrelation in the 

observation error, which could either be due genuine autocorrelation in the observation process 

or from the model failing to fully separate observation error from changes in the true population 

size. The standard deviation for per capita recruitment (w~) indicated substantial temporal 

variation in recruitment (Figure 2) with a peak in the early 1990’s followed by two periods of 

steep decline in the late 1990’s and late 2000’s (Figure 3). This manifested in the observed 

abundance of age 2 and 3 fish, which declined in the late 1990’s and remained fairly steady 
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thereafter despite increases in the abundance of adults. The decline in recruitment was also 

visible in the observed abundance of age 1 individuals, even though these data were not used to 

fit the model (Figure 1). Age-specific survival probabilities (±©: ) also appeared to vary through 

time (Figures 2 and 4), with an increase in survival for age 3 and adult individuals in the early 

2000s, followed by modest declines. However, the posterior distribution for wÈ had high 

variance when compared to w~, and the precision in the estimates of ±©:  was low relative to the 

magnitude of temporal variability, which indicates greater uncertainty in the magnitude of 

variation in survival than for recruitment.  

 

Model Comparison 

 To determine the strength of evidence for temporal variation in survival and recruitment, 

we fit reduced versions of the full model and compared their fits to the observed data using 

LOOIC. The full model had by far the lowest LOOIC, with DLOOIC > 30 for the other models, 

even though its effective number of parameters was much greater. The improved fit of the full 

model relative to the reduced models can be seen in Figure 5, especially for the peak in the 

abundance of age classes two and three in the 1990’s and the increase in adults beginning in the 

mid 2000’s. Altogether, this indicates evidence in favor of the model including temporal 

variation in both survival and recruitment. 

The LOOIC for Variable Survival was two units lower than for Variable Recruitment, 

indicating modest support for the former over the latter (Table I). This was due in part to the 

higher number of effective parameters for Variable Recruitment, which itself was a result of the 

estimates for recruitment being much more temporally variable than the estimates for survival 

(Figures C7-8). The temporal patterns for the demographic rates estimated by Variable 
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Recruitment and Variable Survival were largely similar to the corresponding estimates in the full 

model, with the main exception being that Variable Recruitment did not detect the decline in 

recruitment over the last decade that was inferred by the full model (Figure C7). Furthermore, 

the effective number of parameters in the full model was nearly the same as the combined 

effective number of parameters from Variable Recruitment and Variable Survival (Table I). 

These results show that the estimates of time-varying recruitment and survival were largely 

independent of each other, which is consistent with both contributing substantially to the fit of 

the full model. 

 

Population Growth Rate 

 The asymptotic growth rate for the full model varied substantially through time (Figure 

6), indicating periods of both population growth (√©
ÂüÔá > 1) and decline (√©

ÂüÔá < 1). The 

population growth rate peaked in the mid 1990’s, followed by a steep decline and a subsequent 

recovery towards positive growth in the mid 2000’s. However, the population growth rate 

gradually declined over the last decade and was slightly below the replacement rate in the most 

recent year of observation (2017). This recent decline in the asymptotic growth rate coincided 

with relatively stable abundance of age classes two and three despite an increase in the adults 

(Figure 1), consistent with the decline in recruitment inferred by the full model (Figure 3).  

The relative importance of time-varying recruitment for the per capita growth rate can be seen by 

comparing √©
ÂüÔá calculated for the reduced models Variable Recruitment and Variable Survival 

(Figure 6). Despite the fact that Variable Survival provided a slightly better fit to the observed 

data, Variable Recruitment provided estimates of √©
ÂüÔá that were qualitatively more similar to 

the full model than those for Variable Survival. Only allowing temporal variation in survival 
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resulted in a substantial underestimate of the overall temporal variability in √©
ÂüÔá, which failed 

to show the peak in the early 1990’s and the decline over the last decade inferred by the two 

models allowing variable recruitment. The variance partitioning of √©
ÂüÔá for the full model into 

contributions from time-varying recruitment and survival corroborates this point, with 

recruitment accounting for nearly two-thirds of the variance in the asymptotic growth rate 

(Figure 7). Survival probability of age three fish to adulthood made the next largest contribution 

to the variance in √©
ÂüÔá, with the contribution of adult survival being small and the contribution 

of survival of age two fish being almost negligible.   

The full model assuming systematic under-detection of age 2 fish produced estimates of 

¯˘˙˚¸ nearly identical to those assuming no such bias (Figure C5). The model with system 

under-detection also resulted in a very similar partitioning of variance, but with a slightly greater 

contribution of age 2 individuals (Figure C6). 

 

Discussion 

 In this study, we present an approach for using observations of abundance to estimate 

temporal variation in recruitment and survival with age- or stage-structured state-space models. 

The approach characterizes time-varying demographic rates as random walks, which has the 

advantage of using all of the data to inform the estimates of all parameter values simultaneously 

while allowing the parameters to vary smoothly through time (Zeng et al. 1998, Nielsen and 

Berg 2014). The method is a direct extension of matrix population models (Caswell 2001) that 

have been applied to a wide variety of taxa and is similarly generalizable. Furthermore, the 

method is straightforward to implement in the Stan statistical software (Carpenter et al. 2017) 

and could be readily adapted for other modeling-fitting software environments that have become 
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increasingly used by ecologists, such as WinBUGS, JAGS, and AD Model Builder (Bolker et al. 

2013). When applied to the Mývatn arctic char fishery, the method inferred substantial temporal 

variation in both recruitment and age-specific survival. Variation in these demographic rates was 

responsible for large fluctuations in the growth rate of the char population, including a steady 

decline over the last of the time series decade despite efforts to alleviate harvesting pressure. 

 We illustrated our method in the context of state-space models fit to time series of 

observed abundance, which are often the only data available in both basic and applied contexts. 

However, when appropriate data are available, using random walks to model temporal variation 

in recruitment and survival could also be incorporated into mark-recapture and N-mixture 

models. This is conceptually similar to modeling variation in demographic rates using random 

effects or splines, as has previously been done for mark-recapture type models either alone or in 

conjunction with explicit covariates (Gimenez et al. 2006, Schofield et al. 2009, Grosbois et al. 

2009, Regehr et al. 2010). The advantage of modeling demographic rates as random walks is the 

explicit assumption that the demographic rates are autocorrelated through time, as is likely the 

case for most populations since the biological (e.g. organismal traits) and environmental (e.g. 

climate) drivers of recruitment and survival are themselves temporally autocorrelated.  

 Any method for estimating temporal variation in demographic rates should provide an 

approach for assessing the strength of evidence for such variation (Fieberg and Staples 2006, 

Grosbois et al. 2009, Regehr et al. 2010). This is true not only for the ecological objective of 

determining whether the demographic rates actually vary, which is likely the case to at least 

some extent for any wild population, but also for the statistical objective of determining whether 

the data contain meaningful information about changes in demographic rates. Modeling temporal 

variation in demographic rates as random walks provides a single parameter characterizing the 
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extent to which a given demographic rate varies through time: the standard deviation of step 

sizes in the random walk. When fit to Mývatn’s arctic char data, the posterior distribution of the 

standard deviations for variation in recruitment (w~) provided clear evidence of variation, while 

the evidence for variation in survival (wÈ) was more equivocal due to low precision and much of 

the posterior density being concentration near the lower bound of 0. To more formally assess the 

evidence for temporal variation in the demographic rates, we fit reduced versions of the model 

(Variable Recruitment, Variable Survival, and Both Fixed) and then compared their fits to the 

observed data using LOOIC. The full model fit the data substantially better than any of the 

reduced models, which provides evidence for temporal variation in both recruitment and 

survival. Comparison of the full model to Variable Recruitment and Variable Survival indicated 

that the estimates of time-varying recruitment and survival were largely independent of each 

other. This is a desirable statistical property, as extreme interdependence of the estimated 

demographic rates could lead to poor identifiability and make it difficult to evaluate their relative 

importance to the model fit, which has limited previous attempts to estimate time-varying 

demographic rates in age structured models (as discussed in Wood 1994).   

We applied our method to Mývatn’s arctic char fishery to characterize its dynamics 

during a decline and possible recovery following relaxed harvesting pressure. The per capita 

growth rate of the char population varied substantially through time, with large oscillations 

between population growth (√©
ÂüÔá > 1) and decline (√©

ÂüÔá < 1) preceding a period of modest 

population growth over the last decade. This period of growth was accompanied by a steady 

increase in the abundance of adult fish, which has been taken as a sign of possible recovery by 

some of the local fisherman. However, this increase in the abundance of adult fish coincided 

with relatively little change in the abundance of younger fish, which is the consequence of a 
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large decline in recruitment. This shift towards a relatively older age structure has manifested in 

the gradual but steady decline in the asymptotic growth rate from values unambiguously greater 

than one in the late 2000’s to very slightly below one in 2017. While this decline was mostly 

driven by recruitment, the survival probabilities of age 3 fish and adults plateaued around 2010 

and have slightly declined in the last few years. A continuation of these trends would lead to a 

decline of the population in the near future, despite the hope for the population to return to its 

historically high abundances that could support increased harvest (Gudbergsson 2004). A crucial 

step for projecting the future dynamics of the population is identifying the underlying causes for 

changes in demographic rates beyond harvesting pressure, which are currently unknown but are 

speculated to be connected to large fluctuations in zooplankton and aquatic insects (midges) that 

are major components of the char diet (Gudbergsson 2004, Einarsson and Örnólfsdóttir 2004, 

Gardarsson et al. 2004).      

  In this study, we presented a method for inferring time-varying demographic rates in age- 

and stage-structured models from time series of observed abundance. Our method performs well 

given the limited nature of the data, providing reasonable estimates for temporal variation in 

recruitment and survival. Application to Mývatn’s arctic char population illustrates the utility of 

this approach for investigating the possible recovery of a historically heavily exploited fishery. 

This approach is readily generalizable to other populations and may help managers to make 

important policy decisions that often rely on limited and noisy data (Doak et al. 2005).  
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Table I: Comparisons of the full and reduced versions of the model fit to the arctic char 

data. LOOIC is in units of deviance (similar to AIC) and DLOOIC shows the difference in 

LOOIC between a given model and the full model. 

 

Model Effective parameters LOOIC DLOOIC 

Full 26.1 223 0 

Variable Survival 12.1 256 33 

Variable Recruitment 15.0 258 35 

Both Fixed 6.01 272 49 
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Figure 1. Model fits (thick lines) to the surveyed abundance of Mývatn's arctic char population 

(gray lines and points), on a log scale. The shaded regions correspond to UI68%, matching the 

coverage of standard errors. Data for age 1 individuals were not used to fit the model due to large 

detection bias and “noisy” fluctuations relative to other age classes. 
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Figure 2. Prior and posterior densities for standard deviation of observation error (wåûü), 

recruitment (w~), and survival probability (wÈ) from the model fit the real data. The dashed 

vertical lines correspond to the posterior modes and the shaded regions correspond to the 

HDI68%, matching the coverage of standard errors. Probability densities are scaled to the same 

maximum value across panels for ease of visualization. 
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Figure 3. Estimated per capita recruitment (}©) of Mývatn's arctic char population, on a log 

scale. The shaded region corresponds to UI68%. 
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Figure 4. Estimated age-specific survival probabilities (±©$) of Mývatn's arctic char population. 

The shaded regions correspond to UI68%. The estimates are centered on 0, as the overall 

magnitudes of the estimates are biased by differences in detection probability across different 

ages. 
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Figure 5. Comparison of the full and reduced models to the observed data. The observed data are 

shown as points and light gray lines. The full model is shown in each panel to facilitate 

comparison with each reduced model. The shaded regions correspond to UI68%. 
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Figure 6. Asymptotic per capita growth rates (√©
ÂüÔá) for the full model and the two reduced 

models that included at least one time-varying demographic parameter, on a log scale. The 

shaded regions correspond to UI68%. Per capita growth rates of 1 (horizontal dashed line) indicate 

no change in population size (asymptotically), with values above or below 1 indicating 

population increase or decrease, respectively. 

 

 

 

0.7

1.0

1.4

1990 2000 2010

Year

Pe
r c

ap
ita

 p
op

ul
at

io
n

gr
ow

th
 ra

te Full Model

Variable
Recruitment

Variable
Survival



 174 

 

 

Figure 7. Partitioning of variance in the asymptotic per capita growth rate (√©
ÂüÔá) into 

contributions from time-varying recruitment (}©) and survival (±©$). The error bars correspond to 

UI68%, matching the coverage of standard errors. The survival probability of age 1 fish does not 

contribute to variance in the per capita growth rate because it is fixed through time. 
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Appendices 

Appendix C: Supplementary methods and results for Chapter 3 
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Appendix C: Supplementary methods and results for Chapter 3 

 

Realized versus asymptotic population growth rate 

 Figure C1 compares the realized (√©ãèÂÓ) and asymptotic (√©
ÂüÔá) per capita population 

growth rates for the full model, as defined in the main text of Chapter 2. The realized growth rate 

includes variation due to both changes in demographic rates and non-equilibrium age structure, 

while the asymptotic growth rate assumes equilibrium age structure and therefore only reflects 

changes in the demographic rates. Therefore, the realized growth rate provides information about 

the actual history of the population, while the asymptotic growth rate isolates the contribution of 

the demographic rates per se (which was of primary interest in this study). This difference is 

reflected in the fact that the realized growth rate is substantially more variable than the 

asymptotic growth rate. Nonetheless, the overall temporal pattern for the two is similar, which is 

a reflection of the relative importance of the time-varying demographic rates. 

 

Systematic detection bias for age class 2 

In the arctic char survey data, the observed number of age 1 fish in a given cohort (¡åûü,©< ) 

is generally much less than ¡åûü,©´<= , implying an increase in age 2 fish despite the fact that the 

population is closed (Chapter 2 figure 1). Furthermore, ¡åûü,©=  is generally only slightly higher 

than ¡åûü,©´<A , implying an unrealistically high survivorship for age 2 fish. Therefore, it appears 

that both age 1 and 2 fish are systematically underrepresented in the survey, as is often the case 

for age- and stage-structured observations of abundance. We address this in two ways: (1) by not 

using the data on age 1 fish to fit the model and instead treating it as a latent variable and (2) by 

exploring the consequences of imposing a systematic detection bias on age 2 fish relative to the 
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other stages. The true bias in unknown, so for the sake of this exercise we imposed a bias of 0.5 

relative to the other life stages, which was equivalent to doubling the observed number of age 2 

fish prior to fitting the model. 

 With the exception of age 2 survival, the temporal patterns of all parameters from the 

model fit with the systematic detection bias were nearly identical to those for the model without 

the bias (Figures C2-4). The abundance of age 2 fish and the per capita recruitment estimated 

from the model with bias were larger than those for the model without, which is a 

straightforward consequence of the imposed bias. Survival of the age 2 fish was substantially 

different between the two models, which is a consequence of the survival probability being close 

to its upper threshold of 1 when no bias was imposed, because the abundance of age 2 fish was 

so close to the abundance of age three fish.  

 The asymptotic per capita growth rate was nearly identical between the models with and 

without systematic detection bias (C5). The partitioning of variance in the per capita growth rate 

was also very similar between the two (C6), although with a greater contribution from age 2 

survival for the model with the bias. Nonetheless, for both models the survival probability of age 

3 fish was more important than the survival probability of the other two age classes, and the 

contribution of recruitment was greatest overall.  

 

Time-varying recruitment and survival for the reduced models 

 Figures C7-8 compare the estimated demographic rates from the full model to each of the 

reduced models allowing either recruitment (Figure C7) or survival (Figure C8) to vary through 

time. The pattern of temporal variation in recruitment was generally similar between the full 

model and Variable Recruitment, although the latter failed to detect the large decline in 



 178 

recruitment over the last decade of the time series. The estimates of survival from the full model 

and Variable Survival were quite similar, although the latter had much greater uncertainty in the 

estimated survival probability of adults. 
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Figure C1. Realized (√©ãèÂÓ) and asymptotic (√©
ÂüÔá) per capita growth rates for the full model. 

The shaded regions correspond to UI68%.  
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Figure C2. Estimated abundance from the models with and without the systematic detection 

bias. The shaded regions correspond to UI68%.   
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Figure C3. Estimated per capita recruitment from the models with and without the systematic 

detection bias. The shaded regions correspond to UI68%.   
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Figure C4. Estimated survival probabilities from the models with and without the systematic 

detection bias. Unlike in the Chapter 2 figure 4, the survival probabilities are not centered on 

their means, to highlight the difference between the overall magnitudes of the estimates between 

the two models. The shaded regions correspond to UI68%.   
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Figure C5. Asymptotic per capita growth rates from the models with and without the systematic 

detection bias. The shaded regions correspond to UI68%.   
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Figure C6. Partitioning of variance in the asymptotic per capita growth rate (√©
ÂüÔá) into 

contributions from time-varying recruitment (}©) and survival (±©$), from the models with and 

without the systematic detection bias. The error bars correspond to UI68%.   
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Figure C7. Estimated per capita recruitment from the full model and reduced model with 

variable recruitment. The shaded regions correspond to UI68%.   
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Figure C8. Estimated survival probabilities from the full model and reduced model with variable 

survival. The shaded regions correspond to UI68%.   

 

 

adult

age 3

age 2

1990 2000 2010

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Year

Su
rv

iva
l p

ro
ba

bi
lit

y

Full Model
Variable
Survival


