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abstract

The saturation of Moore’s Law has stalled the improvement in performance and
energy efficiency obtained with conventional homogeneous processors over tech-
nology nodes. Homogeneous processors cannot cater to the contrasting perfor-
mance and energy requirements of different applications, leading to the rise of
heterogeneous computing architectures. While heterogeneous processors provide
programming flexibility, there is still a steep performance and energy-efficiency gap
compared to special-purpose solutions. However, combining all kinds of processing
elements in a single chip leads to a severe penalty in design cost, chip area, and
poor utilization at runtime. To address all the above challenges, domain-specific
architectures (DSAs) judiciously combine processing elements such as general-
purpose cores, special-purpose cores, and hardware accelerators to maximize the
energy efficiency of domain applications and provide programming flexibility.

The major challenge in DSAs is to optimally utilize the diverse processing el-
ements at runtime to exploit their potential. Mapping tasks to the processing
elements (task scheduling) and controlling their voltage and frequencies are crit-
ical aspects of resource management. To this end, we pose task scheduling as a
classification problem and propose a novel offline imitation learning framework
and decision tree (DT) classifiers. Our imitation learning-based scheduling policy
achieves performance that is within 1% of an Oracle for multiple optimization
objectives and SoC configurations. The offline-trained scheduling policies become
ineffective when new applications or processing clusters are introduced in the
workload; hence, they must be updated online. DTs pose an additional challenge
in online training since they use the entire dataset. To address this challenge,
we propose an incremental and online lightweight training framework for DTs
that achieves a performance within 5% of a baseline DT by storing only 1-8% of
the original dataset. To support the rapid exploration and evaluation of resource
management algorithms, we developed a high-level discrete-event full-system sim-
ulation framework that models the processing elements, scheduling pipeline, and
other components of the system. We also developed an FPGA-based prototyp-
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ing and emulation framework to enable functional validation and early software
development. This dissertation addresses critical challenges in DSA runtime re-
source management and evaluation frameworks that accelerate their design and
development for mainstream adoption.
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1 introduction

Process technology-driven power, performance, and energy efficiency improve-

ments have recently slowed down significantly [5, 6]. In addition, performance

cannot be further improved by scaling the frequency arbitrarily due to the power

wall [7, 8]. Consequently, two primary drivers of higher performance-per-watt

cease to provide the expected gains. At the same time, the instruction-level par-

allelism techniques, such as processor pipelining, prefetching, and out-of-order

execution, provide only marginal benefits, thereby leaving a substantial scope for

improvement in performance and energy efficiency [9].

Homogeneous multicore architectures integrate multiple identical cores onto

the same die to provide higher computational capabilities under similar area bud-

gets [10, 11]. They opened new avenues to parallel processing capabilities with

higher performance at a modest power consumption increase, thereby allowing

drastic energy efficiency improvements [12]. However, homogeneous cores cannot

simultaneously satisfy competing application requirements, such as low power and

high performance. Low-power cores, such as the Arm Cortex-M series, have limited

performance. In contrast, high-performance cores, such as the Arm Cortex-A72/A76

processors, consume higher power due to the out-of-order execution nature, large

caches, and deep execution pipelines. Heterogeneous multiprocessor architectures

address this problem by integrating low-power and high-performance cores [13, 14].

Therefore, heterogeneous architectures are extensively used in most processing

systems, such as mobile phones, laptops, desktops, and servers [15, 16, 17].

Heterogeneous architectures significantly improve performance and energy
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Figure 1.1: (a) Trends in energy efficiency and design effort in Giga operations per
Watt (GOPS / Watt) for applications implemented on CPU, GPU, FPGA, and fixed-
function/special-purpose ASIC. (b) An illustration of domain-specific architecture
(DSA) combining the flexibility benefits of CPU and GPU implementations, the
performance benefits of FPGA, and the energy efficiency of fixed-function ASIC
implementations.

efficiency compared to their homogeneous counterparts. However, they still have a

substantial gap with application-specific integrated circuits (ASIC). To provide a

quantitative comparison, Figure 1.1(a) shows the energy efficiency of applications

implemented on CPU, GPU, FPGA, and ASIC. CPU implementations require the

least design effort and also provide low energy efficiency [18]. GPUs and FPGAs im-

prove energy efficiency and performance by exploiting single-instruction multiple

data (SIMD) execution and parallelism benefits, respectively [19, 20]. Applica-

tion code is converted to GPU-compatible code to run on GPUs, and hardware

description languages or high-level synthesis for FPGAs. ASICs provide the highest

energy efficiency since they are specifically designed for the target application [21].

However, the ASIC effort, which includes design, development, fabrication, and

software development could require several months to years. Therefore, there is

a critical need to continue the evolution of computing architectures to provide
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ASIC-like energy efficiency with the shortest possible time-to-market.

Domain-specific architectures represent an emerging instance of heterogeneous

architectures that optimize data flow for applications in a target domain through

hardware acceleration while providing programming flexibility [22, 23, 24, 25].

Examples of recently growing domains include wearable and human activity recog-

nition for health monitoring, machine learning and artificial intelligence (AI),

autonomous driving, and software defined radios [26, 27, 28, 29, 30, 23]. For in-

stance, machine learning and AI are extensively being used for image processing,

scheduling, recommendation systems, spam filtering, stock market analysis, video

analytics, and medical applications [31, 32, 33, 34, 35, 29, 36, 37, 38]. Hence, there is

a strong need for computing architectures that enable seamless, high-performance,

and energy-efficient execution of these domain applications. DSAs aim at improved

programmability by including general-purpose cores and the highest energy effi-

ciency by integrating special-purpose processors and hardware accelerators. The

domain-specific nature of DSAs stems from the fact that the hardware accelerators

(e.g., as [39, 40]) and data flows are highly tailored to the type of computations in

the applications of a particular domain. Broadly speaking, DSAs encompass any

computing architecture that provides:

• Superior energy efficiency through specialized processing: The specialized

processors accelerate the frequently occurring domain-specific computations

in hardware, thereby boosting energy efficiency. For example, a custom-

designed fast Fourier transform (FFT) hardware accelerates the direct- and

inverse-FFT operations, while a systolic matrix multiplication processor accel-
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erates machine learning and AI applications.

• Programmability/flexibility: DSAs aim to improve the programming flexi-

bility for both domain and non-domain applications. For example, DSAs that

target neural network inference must be programmable to execute multi-layer

perceptrons, convolutional neural networks, and recurrent neural networks.

Second, they must be capable of executing other neural network inference

operations that cannot be easily implemented using specialized hardware.

Finally, they should be able to execute non-domain applications to improve

flexibility and enable broader usage.

• Heterogeneous processing elements (PEs): The diverse types of PEs in

DSAs cater to contrasting application requirements such as low power, high

performance, energy efficiency, and programmability.

The potential of DSAs is also evident in recent and growing commercial exam-

ples. Google’s tensor processing unit (TPU) comprises hardware designs, systems,

and software stacks to accelerate machine learning training and inference [41, 42].

TPUs provide 3×–7× speedup over state-of-the-art GPUs and 80× better energy

efficiency than general-purpose processors [22, 43, 44]. Nvidia’s data center pro-

cessing unit (DPU) is another DSA that integrates high-performance Arm cores

and hardware accelerators with an extensive software eco-system optimized for

AI, cloud supercomputing, network security, and wireless communication [45].

Intel’s infrastructure processing unit (IPU) is a programmable network device

that integrates with server CPUs to accelerate networking control, storage manage-
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ment, and security. Offloading the infrastructure operations to the IPU reduces

the overhead of infrastructure tasks to improve overall performance and energy

consumption [46]. In the low-power domain, RedMulE offers a sub-100 mW DSA

for deep learning that comprises RISC-V cores and dedicated matrix-multiplication

accelerators [47]. DSAs have started making substantial strides in all domains to

offer superior energy efficiency and short time-to-market.

1.1 Contributions

DSAs offer multiple alternative PEs to execute tasks, such as general-purpose cores,

hardware accelerators, and specialized processors. To exploit the potential of DSAs,

one of the most critical aspects remains the ability to efficiently utilize the available

PEs for task execution [48, 49, 18]. To this end, system-level design - including

scheduling, power-thermal management algorithms and design space exploration

studies - plays a crucial role. The first contribution of this dissertation presents a

system-level domain-specific SoC simulation (DS3) framework to address this need.

DS3 enables both design space exploration and dynamic resource management for

power-performance optimization of domain applications. We showcase DS3 using

six real-world applications from wireless communications and radar processing do-

main. DS3, as well as the reference applications, is shared as open-source software

to stimulate research in this area.

Reaching the full potential of these architectures depends critically on opti-

mally scheduling the applications to available resources at runtime. The second
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contribution of this dissertation addresses these two requirements simultaneously.

Existing optimization-based techniques cannot achieve this objective at runtime due

to the combinatorial nature of the task scheduling problem. As the third theoretical

contribution, this work poses scheduling as a classification problem and proposes

a hierarchical imitation learning (IL)-based scheduler that learns from an Oracle

to maximize the performance of multiple domain-specific applications. Extensive

evaluations with six streaming applications from wireless communications and

radar domains show that the proposed IL-based scheduler approximates an offline

Oracle policy with more than 99% accuracy for performance- and energy-based

optimization objectives. Furthermore, it achieves almost identical performance

to the Oracle with a low runtime overhead and successfully adapts to new appli-

cations, many-core system configurations, and runtime variations in application

characteristics. The fourth contribution focuses on optimization of decision tree

classifier inference in hardware and software and achieves a latency of less than 50

nanoseconds for trees of up to depth 12.

Decision trees (DTs) perform high-quality, low-latency task scheduling to utilize

the massive parallelism and heterogeneity in DSSoCs effectively. However, offline

trained DT scheduling policies can quickly become ineffective when applications

or hardware configurations change. There is a critical need for runtime techniques

to train DTs incrementally without sacrificing accuracy since current training ap-

proaches have large memory and computational power requirements. To address

this need, we propose INDENT, an incremental online DT framework to update the

scheduling policy and adapt it to unseen scenarios. INDENT updates DT sched-
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ulers at runtime using only 1-8% of the original training data embedded during

training. Thorough evaluations with hardware platforms and DSSoC simulators

demonstrate that INDENT performs within 5% of a DT trained from scratch using

the entire dataset and outperforms current state-of-the-art approaches.

DSSoCs integrate several hardware components, resulting in higher design,

implementation, and validation complexities. Significant emphasis on pre-silicon

validation is required to eliminate functional and performance bugs to avoid the

post-silicon failure cost and market loss penalties. Emulation frameworks accelerate

pre-fabrication design validation by prototyping target designs. They also allow the

early development of software, drivers, firmware, and performance analysis. As the

final contribution, we present FALCON, a full-system DSSoC emulation platform

that allows functional validation of DSSoCs as they interact with the operating

system and runtime frameworks. We show that FALCON allows early software and

driver development for accelerators and validates the system before the silicon avail-

ability. Finally, we demonstrate that FALCON enables rapid and extensive design

space exploration to obtain early pre-silicon power and performance estimates.

In summary, this dissertation makes the following contributions:

• A detailed and comprehensive literature review on DSAs and corresponding

research directions [50],

• DS3, a domain-specific system-on-chip simulation framework to perform

rapid design space exploration and evaluate resource management algo-

rithms [51],
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• An imitation learning (IL) based task scheduling approach [49],

• Optimization techniques for decision tree classifiers [52],

• An incremental and online decision tree training framework [53], and

• An FPGA-based emulation framework for domain-specific architectures.

The rest of the dissertation is organized as follows. The literature survey is

discussed in Chapter 2. Chapter 3 presents DS3 and discusses its role in high-level

design space exploration and evaluation of resource management algorithms. The

IL based task scheduling approach for heterogeneous SoCs is presented in Chapter 4.

The optimization of decision tree (DT) classifiers for IL is discussed in Chapter 5.

Chapter 6 presents a novel approach to adapt standalone DT classifiers online

to variations in the environment. Chapter 7 presents the FPGA-based emulation

framework to perform pre-silicon functional validation, early software development,

performance and power analysis. Finally, Chapter 8 concludes this dissertation

with directions for future work.
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2 literature review

2.1 Research Directions in Domain-Specific

Architectures

DSAs have the potential to enable high energy efficiency and programmability

across multiple applications. However, critical research and infrastructure design

challenges must be addressed before DSAs can become a mainstream computing

paradigm [6, 22, 54]. For instance, designers must choose the optimal number and

type of PEs to balance design time, cost, complexity, area, and energy efficiency.

Novel and rapid hardware design techniques that condense the design time and

costs allow for a shorter time-to-market [54, 55]. Similarly, DSAs require novel and

state-of-the-art simulation, compilation, and emulation frameworks to minimize

the gap between conceptualization and market availability of a product [56]. In

summary, there is a strong need to understand the factors that currently limit the

design and deployment of DSAs. To this end, this dissertation identifies the key

research areas (summarized in Figure 2.1) that need new ideas and solutions to

make DSAs default choices for designers, developers, and end-users:

• Domain Representation: Application source code must be analyzed to extract

the domain-specific kernels and construct the data flow graphs that can exploit

the data- and task-level parallelism both in applications and hardware [57].

Understanding the domain applications plays a critical role in selecting the

PEs for the DSA.
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Figure 2.1: Prime research directions in the conceptualization, design and develop-
ment of DSAs. Applications are represented as directed flow graphs. The nodes in
the graph represent the key computational kernels within each application and the
edges of the graph denote the communication volumes between kernels.

• Hardware Architecture and Design: With the saturation of energy efficiency

of general-purpose processors, DSAs require novel hardware architectures

and innovative solutions to exploit parallelism and maximize energy efficiency

for domain-specific kernels.

• Resource Management in DSAs: Exploiting the full potential of DSAs in-

volves optimally allocating the tasks to PEs, and selecting their voltage-

frequency levels at runtime using resource management algorithms.

• Evaluation Frameworks and Productivity Tools: DSAs demand the need for

rapid design space exploration frameworks to aid top-level design decisions

in the early development phase, and emulation platforms to aid functional

validation and software development.

• Software Development: The challenge in programming DSAs with hetero-

geneous PEs demands innovation in software frameworks and toolchains.
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Furthermore, the software stack also serves as a bridge between domain

representation, hardware and resource management techniques.

2.1.1 Interactions between the Research Directions

This section discusses the interactions between the research directions presented so

far, as outlined in Figure 2.2. Domain representation efforts analyze the applications

and present computational kernels that are potential candidates for implementa-

tion in special-purpose hardware. The hardware architecture and design exploit

this information to develop customized and efficient processing for these poten-

tial candidates using either fixed-function or specialized accelerators. Hardware

design techniques also leverage the data dependencies between the kernels in

applications to design an appropriate on-chip communication network, such as

bus, point-to-point network, and network-on-chip. Similarly, the domain analy-

sis provides design-time and runtime information to the resource management

algorithms. Design-time information includes the kernel characteristics and their

interactions that affect latency, execution time, and communication volumes. Re-

source management algorithms exploit this information offline to deploy targeted

scheduling and power management techniques for the chosen PEs. The domain-

specific information in the applications helps narrow down the vast design space.

Simulation frameworks perform rapid design space explorations and systematically

evaluate resource management algorithms. The domain representation techniques

and software stack share similar tools and infrastructure, such as compilation and

performance profiling APIs. They target specific hardware by providing the rele-
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drive the hardware architecture and design of PEs. The application and hardware
PE information is exploited by the resource management techniques. The DSA
configurations are evaluated for functionality and performance using simulators,
emulation frameworks, and the software stack.

vant compiler and API support. Finally, emulation frameworks accelerate software

development, enable performance evaluation, and facilitate functional validation

to improve the time-to-market for DSAs.

2.1.2 Insights and Open Challenges

DSAs are making solid advances toward becoming the preferred choice for future

computing systems. DSA design and development efforts require significant atten-

tion as the algorithms, design methodologies, and tools evolve. Furthermore, the

subtle interaction between the different DSA research aspects requires substantial
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research focus. The ever-lasting pursuit of maximizing performance and energy

efficiency while minimizing the cost and design effort leaves the following open

research questions:

• How can we reduce the time required to generate application traces, scope

them and extract the flow graphs?

• Can we perform DSA hardware-aware application code compilation using

state-of-the-art and just-in-time compilation techniques?

• Can we automatically generate highly optimized and specialized hardware

based on high-level requirements, such as performance, power, and through-

put?

• How can we architect easily programmable and flexible, yet highly specialized

hardware?

• Can we design light-weight and near-optimal resource management algo-

rithms considering all application requirements, such as performance, power

consumption, energy efficiency, and deadlines?

• Can we explore preemption-based resource management techniques with

hardware accelerators (that do not allow context switching) to address real-

time needs?

• How can we automatically generate software support for custom-designed

hardware accelerators and reduce the development time?
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• How can we accurately and quickly calibrate high-level simulators with pre-

silicon data or real hardware, speed up cycle-accurate simulations and reduce

the development times for emulation frameworks?

• How can we embed security and privacy into all the DSA design aspects and

components?

• How can we seamlessly integrate the different DSA research directions and

tools to maximize performance and energy efficiency with minimum inter-

vention from users and developers?

A few challenges involved in DSA design listed in the different sections are

compiled here. These and similar questions demand innovation and research for

performant and energy-efficient DSA-based computing systems. A comprehensive

review on the research problems in DSAs and promising approaches is presented

in [50]. This dissertation addresses some of the challenges described here to make

DSAs a mainstream computing paradigm.

2.2 Evaluation Frameworks for DSAs

2.2.1 Simulation Frameworks

As the use cases for a simulation environment intersect with a number of distinct

research areas, we break the related work into three parts. First, we discuss existing

work in the area of scheduling, power, and thermal optimization algorithms, and

we motivate a need for a unified framework that integrates these with rich design
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space exploration capabilities. Second, we discuss existing work in the area of

design space exploration for embedded systems, and we note the lack of rich

support for thermal/power models or plug-and-play scheduling frameworks. Third,

for completeness, we give a brief overview of related works in the scope of high

performance computing or non-embedded environments. Together, this set of

related works serves to motivate the need for an environment such as DS3 that

unifies all of these aspects into a single, open-source framework for embedded DSA

development.

Starting with works on scheduling, power, and thermal optimization algorithms,

one of the most important goals of heterogeneous SoC design is to optimize energy-

efficiency while satisfying the performance constraints. To this end, a variety of

offline and runtime algorithms have been proposed to schedule applications to

PEs in multi-core architectures [58, 59, 60, 61]. Similarly, DVFS policies, such as

HiCAP [62], power management governors, such as ondemand [63], and thermal

management techniques [64] have been proposed to efficiently manage the power

and temperature of SoCs. However, existing approaches are typically evaluated

in isolated environments and different in-house tools. Hence, there is a strong

need for a unified simulation framework [65] to compare and evaluate various

scheduling algorithms in a common environment.

Next, there are a large number of works on design space exploration for em-

bedded systems, but they are found to be lacking in support for rich scheduling,

thermal, and power optimization algorithms. Khalilzad et al. [66] consider a hetero-

geneous multiprocessor platform along with applications modeled as synchronous
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dataflow graphs and periodic tasks. The design space exploration problem is solved

using a constraint programming solver for different objectives such as deadline,

throughput, and energy consumption. ASPmT [67] proposes a multi-objective

tool using Answer Set Programming (ASP) for heterogeneous platforms with a

grid-like network template and applications specified as directed acyclic graphs

(DAGs). Trčka et al. [68] utilize the Y-chart [69] philosophy for design space

exploration and introduces an integrated framework using the Octopus toolset

[70] as its kernel module. Then, for different steps in the exploration process (i.e.,

modeling, analysis, search, and diagnostics), different languages and tools such as

Ptolemy, Uppaal, and OPT4J are employed. Target platforms and applications are

modeled in the form of an intermediate representation to support translation from

different languages and to different analysis tools. Artemis [71] aims to evaluate

embedded-systems architecture instantiations at multiple abstraction levels. Later,

authors extend the work and introduce the Sesame framework [72] in which target

multimedia applications are modeled as Kahn Process Network (KPN) written

in C/C++. Architecture models, on the other hand, include components such as

processor, buffers, and buses and are implemented in SystemC. The framework

supports different schedulers such as first in, first-out (FIFO), round-robin, or

customized. A trace-driven simulation is applied for cosimulation of application

and architecture models.

Finally, ReSP [73] is a virtual platform targeting multiprocessor SoCs focusing

on a component-based design methodology utilizing SystemC and transaction-

level modeling libraries. ReSP adopts lower-level instruction set based simulation
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approach and is restricted to applications implemented in SystemC. All aforemen-

tioned frameworks or tools lack accurate power and thermal models, and do not

support for exploration of scheduling algorithms and power-thermal management

techniques.

Outside of embedded systems, there has also been a large body of work on

design space exploration via heterogeneous runtimes at the desktop or HPC scale,

with StarPU [74] being one of the most prominent examples of such a runtime.

StarPU is a comprehensive framework that provides the ability to perform run-time

scheduling and execution management for DAG based programs on heterogeneous

architectures. Although, the framework allows users to develop new scheduling

algorithms, StarPU lacks power-thermal models and DVFS techniques to optimize

power and energy consumption. A recent work [75] targets domain-specific pro-

grammability of heterogeneous architectures through intelligent compile-time and

run-time mapping of tasks across CPUs, GPUs, and hardware accelerators. In the

proposed approach, the authors employ four different simulators, more specifically,

Contech to generate traces, MacSim to model CPU/GPU architectures, BookSim2

to model the networks-on-chip, and McPat to predict energy consumption. The

proposed DS3 simulator integrates the above features in a unified framework to

benefit similar studies in the future.

To the best of our knowledge, DS3 is the first open-source framework to inte-

grate all of these distinct elements into a unified simulation environment targeting

embedded DSAs. It includes built-in analytical models, scheduling algorithms,

DTPM policies, and six reference applications from wireless communication and
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radar processing domain.

2.2.2 Emulation Frameworks

Emulation frameworks overcome the limitation of simulators by enabling functional

verification, early software and firmware development [76, 73, 77]. The emulation

frameworks are broadly classified into virtual model-based emulators and FPGA-

based frameworks that rely on the actual implementation [78]. It is worth noting

that only FPGA-based frameworks allow functionality validation since they use the

actual implementation, as compared to representative models in virtual platforms.

The emergence of SystemC and TLM-based modeling also significantly en-

hanced the development of virtual emulation frameworks [79]. The quick emulator

(QEMU) deploys abstract models of the computing elements and transaction-level

models for its interactions with the rest of the system [80]. QEMU also enables

developers to bringup a variety of guest operating systems and execute applications

on the CPU through dynamic binary translations [81]. Along these lines, Arm

provides fast models which are accurate and representative models of their IPs such

as CPUs, interconnects, subsystems, and other peripheral components [82]. Fast

models allow the bringup of the Linux OS, and programmers to develop software,

firmware, and applications.

FPGA-based frameworks also improve task scheduling and DTPM policies by

utilizing more realistic estimates in MPSoCs [83, 84]. An MPSoC-based sensor-

and actuator-rich cyber-physical SoC is prototyped in [20], enabling hardware and

software co-design. Other frameworks for MPSoCs are presented and discussed
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in [85, 86]. The MPSoC-based frameworks must be adapted for DSAs by integrating

the other components, such as specialized cores, hardware accelerators, and on-chip

interconnects. In that direction, the FPGA-based user-space emulation framework

in [87] integrates hardware and software to evaluate resource management policies

for DSAs. While this work is an initial step in the DSA direction, frameworks that

scale to the entire design are critical to bridge the gap between the requirements

and state-of-the-art approaches.

To the best of our knowledge, FALCON is the first FPGA-based emulation

platform that integrates general-purpose processors, hardware accelerators, on-

chip interconnect, and a detailed software stack that supports the Linux operating

system (OS).

2.3 Resource Management Techniques for

Heterogeneous Architectures

DSAs offer multiple alternative PEs to execute tasks, such as general-purpose cores,

hardware accelerators, and specialized processors. To exploit the potential of

DSAs, one of the most critical aspects remains the ability to efficiently utilize the

available PEs for task execution [48, 49, 18, 88]. This section discusses the resource

management aspects of DSAs, key bottlenecks, and outstanding research problems.

The techniques fall broadly into two categories: (1) static (or design-time) and

(2) dynamic (or runtime) techniques. Static algorithms utilize the design time

information to manage the resources [1, 89, 90]. These algorithms can provide
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optimal or heuristic solutions since they are not bounded by computation and la-

tency constraints [91]. Static approaches cannot access runtime information and are

inefficient in several scenarios [49]. DSAs inherently support several simultaneous

applications that could demand a substantial amount of system resources. While

static algorithms may suffice in limited application-specific scenarios, DSAs require

efficient runtime resource management techniques. While several static and dy-

namic approaches have been proposed previously [92, 93, 94, 95, 96], the following

fundamental challenges drive the research need for novel dynamic techniques that

target DSAs:

• Heterogeneity: PEs with different power and performance characteristics

for various applications require algorithms to evaluate all valid execution

alternatives to obtain the optimal solution. Considering the characteristics of

all heterogeneous PEs at runtime makes the resource management problem

complex.

• Streaming Arrivals: Most applications (e.g., video/signal processing, au-

tonomous driving, radar systems) continuously perform identical operations

on streaming data frames. The complexity lies in efficiently managing the

resources when randomly arriving frames overlap with currently executing

and pending tasks from previous frames.

• Concurrent Applications: SoCs execute several applications simultaneously.

Resource management techniques must recognize the divergent application
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Figure 2.3: The key areas of focus in DSA resource management techniques which
interface with the domain applications and DSA hardware. The domain represen-
tation outputs and hardware design decisions are used to design task scheduling,
voltage-frequency scaling, and other resource management techniques.

characteristics and satisfy their compute requirements, performance, power,

and deadline constraints.

The type of applications and the choice of hardware components in the DSA

play a critical role in developing resource management techniques. The various

aspects of resource management algorithms shown in Figure 2.3 are discussed in

the next sections.

2.3.1 Task Scheduling Techniques

Current many-core systems use runtime heuristics to enable scheduling with low

overheads. For example, the completely fair scheduler (CFS) [97], widely used



22

in Linux systems, aims to provide fairness for all processes in the system. CFS

maintains two queues (active and expired) to manage task scheduling. In addition,

CFS gives a fixed time quantum for each process. Tasks are swapped between

active and expired queues based on activation and expiration of the time quantum.

However, complex heuristics are required to manage such queues. CFS also does not

generalize to optimization objectives apart from performance and fairness. More

importantly, CFS scheduling is limited to general-purpose cores and lacks support

for specialized cores and hardware accelerators [98]. With the same limitations,

shortest job first (SJF) [99] scheduler estimates the task’s CPU processing time and

assigns the first available resource to the task with the shortest execution time.

List scheduling techniques [100, 101] for DAGs [1, 102, 89] prioritize various

objectives, such as energy [103, 104], fairness [105], security [106]. In general, this

technique places the nodes (tasks) of a DAG in a list and provides a PE assignment

and order at design time. Heterogeneous earliest finish time (HEFT) [1] is one

example, in which an upward rank is computed to perform the scheduling decisions.

The authors in [102] use a lookahead algorithm as an enhancement to the HEFT

scheduler to improve the execution time, but suffers from fourth order complexity

O(n4) on the number of tasks (n). Another recent technique shows improvement

in performance with quadratic complexity [89]. However, these algorithms suffer

from the time complexity problem and are tailored to particular objectives and fail

to generalize to a combination of objectives and choice of applications.

Machine learning (ML)-based schedulers show promise in eliminating the

drawbacks of list scheduling and runtime heuristic techniques. ML-based sched-
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ulers possess the capabilities to be further tuned at runtime [33]. A recent support

vector machine (SVM)-based scheduler for OpenCL kernels assigns kernels (tasks)

between CPUs and GPUs [107]. In contrast to schedulers that use supervised

learning, authors in [108] uses reinforcement learning (RL) to schedule Tensorflow

device placement, but lacks the ability of scheduling streaming jobs. DeepRM [33]

uses deep neural networks with RL for scheduling at an application granular-

ity as opposed to using the notion of DAGs. On the other hand, Decima [109]

uses a combination of graph neural networks and RL to perform coarse-grained

processing-cluster level scheduling for streaming DAGs.

RL-based scheduling techniques have two major drawbacks. First, they require

a significant number of episodes to converge. For example, the technique proposed

in [109] takes 50k episodes, with 1.5 seconds each, to converge to a solution that

is equivalent to 21 hours of simulation in Nvidia Tesla P100 GPU. Second, the

efficiency of an RL-based technique predominantly depends on the choice of the

reward function. Usually, the reward function is hand-tuned, depending on the

problem under consideration.

To overcome these difficulties, we propose an IL-based scheduling methodology.

Since IL uses an Oracle to construct a policy, it does not suffer from slow convergence,

as seen in RL. IL-based policies were initially used in robotics to show their fast

convergence property [110]. Recently, the use of imitation learning to intelligently

manage power and energy consumption in SoCs has been demonstrated [111, 112].

To the best of our knowledge, this is the first approach that applies IL for multi-application

streaming task scheduling in heterogeneous many-core platforms.
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2.3.2 Dynamic Thermal-Power Management (DTPM)

Techniques

State-of-the-art PEs and cores support multiple voltage and frequency (V-F) levels.

Another critical aspect in exploiting the potential of DSAs is optimally selecting

these power states at runtime [113, 114, 115]. The V-F levels of PEs play a primary

role in determining power and performance, while power consumption determines

the temperature of the PEs [116]. For example, using the highest V-F levels to

maximize performance increases power consumption and, in turn, the tempera-

ture [117]. Furthermore, portions of the SoC may be placed in different levels of

sleep states where they are partially or entirely powered off to save energy and

control temperature [8]. Like task scheduling, V-F selection for the cores is also

NP-complete [118]. Therefore, efficient DTPM techniques are essential to utilize

DSAs efficiently while maintaining the chip temperature within limits [83].

The DTPM techniques also fall into categories similar to the task scheduling al-

gorithms, namely optimization-, heuristic-, and machine learning-based techniques.

The extensive use of heterogeneous multiprocessor systems-on-chip (MPSoCs) in

battery and energy-constrained systems has attracted substantial research in this

domain. The heuristic techniques proposed in [119] and [120] use the difference

between achieved and target metrics to adjust the frequencies. The approach pre-

sented in [121] combines the benefits of traditional control theoretic approaches

and heuristics to develop a lightweight and efficient frequency scaling policy. The

control theoretic approach presented in [122] proposed a DVFS technique that

calculates the change in application execution time with change in frequency to
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honor soft deadline constraints. Recent approaches presented in [123, 113, 124] use

machine learning to train policies to determine the optimal operating frequency

and generalize to unseen workloads. Temperature management on heterogeneous

SoCs is also critical as the on-die power density critically increases [116, 125, 126].

Current approaches for power and thermal management techniques focus on ho-

mogeneous and heterogeneous CPU cores and also on GPUs, comprehensively

discussed in [127]. A few techniques consider hardware accelerators in their power

management policies [128, 129]. However, DSAs demand novel techniques that

consider all types of hardware accelerators and specialized cores since they can

significantly contribute to the overall power, energy, and temperature.

2.3.3 Other Resource Management Research Directions

While task scheduling, mapping, and DTPM ideas dominate the primary aspects

of resource management, modern-day SoCs look at other aspects to satisfy re-

quirements such as reliability and security to meet user expectations and privacy

standards. For instance, SoCs and processors from Apple, Intel, and RISC-V include

a secure enclave to protect user data when the platform is experiencing security

attacks [130, 131, 132]. Instead of relying solely on the secure enclave to protect sen-

sitive data, building security into other aspects enhances the security of the design.

DSAs seek adaptation and advancement of ideas from prior work on heterogeneous

MPSoCs.

Risk and Security: Integrating security into scheduling algorithms and dynamic

voltage frequency scaling (DVFS) governors is at the expense of chip area, schedul-
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ing latency, power and energy overheads, and design complexity. Therefore, low

complexity and runtime overheads remain essential requirements of security-aware

techniques. Commercial SoCs integrate several third-party IPs to promote design

reuse and improve the design cycle [133]. However, using external IPs has the

severe risk of untrusted designs, leading to security flaws. To this end, a multi-

dimensional optimization approach improves the security of the MPSoC through

task scheduling with negligible impact on performance and no additional hardware

cost [134]. In this approach, task duplication and isolation are the two techniques

that aid in detecting hardware trojans in the presence of third-party IPs. Recent

literature has shown that security attacks can extract sensitive data by exploiting

the temperature patterns on the chip [135]. Indeed, the ThermalAttackNet [136]

discusses the potential of DVFS governors in avoiding the detection of stored pass-

words using on-chip temperature patterns. Therefore, integrating such techniques

into resource management algorithms improves the security of DSAs.

Reliability and Robustness: With the increasing use of SoCs in safety-critical

applications (such as autonomous driving, avionics, and medical applications),

there is a critical emphasis on reliable and robust computing [137, 138]. The chip

temperature plays a critical role in the mean time to failure since it directly impacts

the metal fatigue. A tradeoff between power consumption and reliability (in the

mean time to failure) is explored by estimating the failure rate at a given chip

temperature in [139]. The DVFS technique proposed in this paper integrates a

reliability metric into its optimization problem to increase the mean time to failure.

Furthermore, differential aging of cores in an SoC results in certain cores failing
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sooner than the other counterparts. To address this challenge, the scheduling

approach presented in [140] includes the mean time to failure in the objective

function along with deadline constraints. While the above techniques focus on

prolonging the time to failure, task scheduling techniques also provide reliable

and robust decisions in the presence of system faults [141, 142]. For space-based

applications, state-of-the-art approaches must provide reliable and robust decision

in high-radiation environments [143, 142, 144]. In summary, emerging reliability

and robustness requirements demand resource management approaches for DSAs

to take them into consideration to enhance usability.

2.4 Incremental and Online Updates to Decision Tree

Classifiers

DSAs integrate multiple heterogeneous processing elements and offer massive

parallelism to execute several jobs in parallel [6, 22]. Task scheduling algorithms

must effectively allocate the tasks to the processing elements at runtime to fully

exploit their potential [23]. Scheduling policies range from simple lookup tables

to static and runtime heuristic schedulers [1, 145, 102, 146, 147]. More recently,

DT based machine learning schedulers have attracted significant interest since

they provide interpretability and ultra-low inference latencies, making them highly

suitable for DSA resource management [49, 52, 148].

Current ML approaches are static, i.e., their rules do not change at runtime.

Consequently, these models cannot adapt to workload changes and new scenarios.
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Therefore, DT classifiers used for resource management must possess the capability

to adapt on-the-fly to the variations in the environment, which are inevitable. Since

DTs are conventionally batch trained using the CART algorithm, there is a strong

need for novel techniques to allow DTs to be updated online [149]. To this end, we

categorize the prior work on adaptive, online, and incremental updates to DTs into

three broad categories, and compare them qualitatively in Table 2.1.

Reinforcement Learning (RL): Neural networks use stochastic gradient descent

(SGD) to update the model parameters in multiple batches. Differentiable and

fuzzy approaches utilize SGD approaches to update the DT parameters [150, 3, 151].

After converting a DT to a differentiable model, RL and SGD algorithms can update

the parameters when new applications or SoC configurations are encountered.

However, RL suffers from significant drawbacks because of: (1) excessive time

needed to explore the search space for large problem sizes (such as DSAs), (2) high

computational power required to perform SGD iteratively for several iterations, (3)

the complexity in designing a good reward function, and (4) difficulty in converging

to a well-performing policy [49, 33].

Ensemble Decision Tree Algorithms: Ensemble DT algorithms [4, 152] comprise

two key steps: (1) training multiple weak DTs, and (2) combining the weak predic-

tions to obtain a final prediction [153]. Resource management applications target

inference latencies in the order of tens of nanoseconds [52]. Hence, executing mul-

tiple inferences and combining their predictions in DT ensembles have prohibitive

latency overheads, as quantified in Chapter 6.

Hoeffding Trees: Hoeffding trees are used when the training sample size exceeds
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Table 2.1: Comparing INDENT with prior work on DT training.

Technique
Allows
Online
Update

Computation
and Memory

Resources

Training
Time

Inference
Latency

Ease of
Convergence

CART DT [149, 4] No Low Low Low High

RL [3] Yes High High Low Low

DT Ensembles [4, 152, 154] Yes Low Low High Moderate

Hoeffding Trees [2] Yes Low Low Low Low

the memory capacity. They stream the data samples, i.e., the algorithm only ob-

serves a portion of the data at a time to construct the DT [2]. However, they rely

on a critical assumption: the data distribution does not change over time, and a

small set of observed samples is representative of the entire dataset [155]. How-

ever, this vital assumption does not apply to SoC resource management. First,

the training samples are not independent and identically distributed since they

depend on previous scheduling decisions. Second, the initial training samples

are not representative of the new applications and additional processing clusters.

Therefore, the Hoeffding tree family of algorithms does not converge to a model

that performs well for resource management applications; hence is not suitable for

online updates [156, 155].

To the best of our knowledge, INDENT is the first approach to incrementally update

a single DT model online. INDENT stores just 1-8% of the original training data and

yet performs within 5% of a DT that was trained with the entire training data.
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3 ds3: a domain-specific system-on-chip simulation

framework

3.1 Background, Motivation and Contributions

Harvesting the full potential of DSSoCs depends critically on the integration of

optimal combination of computing resources and their effective utilization and

management at runtime. Hence, the first step in the design flow includes analysis

of the domain applications to identify the commonly used kernels [56]. This analy-

sis aids in determining the set of specialized hardware accelerators for the target

applications. For example, DSSoCs targeting wireless communication applications

obtain better performance with the inclusion of Fast-Fourier Transform (FFT) ac-

celerators [30]. Similarly, SoCs optimized for autonomous driving applications

integrate deep neural network (DNN) accelerators [157]. Then, a wide range of

design- and run-time algorithms are employed to schedule the applications to the

processing elements (PEs) in the DSSoC [61, 58, 59, 60]. Finally, dynamic power

and thermal management (DTPM) techniques optimize the SoC for energy efficient

operations at runtime. Throughout this process, evaluation frameworks, ranging

from analytical models and hardware emulation, are needed to explore the de-

sign space and ensure that the DSSoC achieves performance, power and energy

targets [158].

Full-system simulators, like gem5 [159], have the ability to perform instruction-

level cycle-accurate simulation. However, this level of detail leads to long execution
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ü High degree of modularity
ü Highly scalable

System-level simulation

Figure 3.1: Common DSE methodologies with their advantages and disadvantages.

times, in the order of hours to simulate a few milliseconds of workloads [160].

Hence, they are not suitable for rapid design space exploration (DSE). It is also

important to note that the level of detail provided by cycle-accurate simulations is

beyond the requirements of high-level design space exploration. The most critical

system-level questions are where tasks should run and how fast PEs should operate to

satisfy the design requirements, e.g., maximizing performance per Watt (PPW)

or energy-delay product (EDP). On the other hand, hardware emulation using

Field-Programmable Gate Array (FPGA) prototypes are substantially faster [161].

However, they involve significantly higher development effort to implement the

target SoC and applications (see Figure 3.1). Given the design complexities and

the cost of considering a large design space, there is a strong need for a simulation

environment which allows rapid, high-level, simultaneous exploration of schedul-

ing algorithms and power-thermal management techniques, both of which can

significantly influence energy efficiency.

In this work, we present DS3, a system-level domain-specific system-on-chip

simulation framework. DS3 framework enables (1) run-time scheduling algorithm

development, (2) DTPM policy design, and (3) rapid design space exploration.



32

To this end, DS3 facilitates plug-and-play simulation of scheduling algorithms; it

also incorporates built-in heuristic and table-based schedulers to aid developers

and provide a baseline for users. DS3 also includes power dissipation and thermal

models that enable users to design and evaluate new DTPM policies. Furthermore,

it features built-in dynamic voltage and frequency scaling (DVFS) governors, which

are deployed on commercial SoCs. Besides providing representative baselines, this

capability enables users to perform extensive studies to characterize a variety of

metrics, PPW and EDP for a given SoC and set of applications. Finally, DS3 comes

with six reference applications from wireless communications and radar processing

domain. These applications are profiled on heterogeneous SoC platforms, such as

Xilinx ZCU102 [162] and Odroid-XU3 [14], and included as a benchmark suite in

DS3 distribution. The benchmark suite enables realistic design space explorations,

as we demonstrate in this work.

The major contributions of this chapter include:

• A unified, high-level DSSoC simulator, DS3, that enables design space explo-

ration together with scheduling and DTPM strategies,

• A benchmark suite of real-world applications and their reference hardware

implementations and

• Extensive design space exploration studies for fine-grained architecture tun-

ing.
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3.2 Overall Goals and Architecture

The goal of DS3 is to enable rapid development of scheduling algorithms and DTPM

policies, while enabling extensive design space exploration. To achieve these goals,

it provides:

• Scalability: Provide the ability to simulate instances of multiple applications

simultaneously by streaming multiple jobs from a pool of active domain

applications.

• Flexibility: Enable the end-users to specify the SoC configuration, target

applications, and the resource database swiftly (e.g., in minutes) using simple

interfaces.

• Modularity: Enable algorithm developers to modify the existing scheduling

and DTPM algorithms, and add new algorithms with minimal effort.

• User-friendly Productivity Tools: Provide built-in capabilities to collect,

report and plot key statistics, including power dissipation, execution time,

throughput, energy consumption, and temperature.

The organization of the DS3 framework designed to accomplish these objectives

is shown in Figure 3.2. The resource database contains the list of PEs, including

the type of each PE, capacity, operating performance points (OPP), among other

configurations. By exploiting the deterministic nature of domain applications, the

profiled latencies of the tasks are also included in the resource database. The simu-

lation is initiated by the job generator, which generates application representative
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Figure 3.2: Organization of DS3 framework describing the inputs and key functional
components to perform rapid design space exploration and validation.

task graphs. The injection of applications in the framework is controlled by a ran-

dom exponential distribution. The DS3 framework invokes the scheduler at every

scheduling decision epoch with the list of tasks ready for execution. Then, the sim-

ulation kernel simulates task execution on the corresponding PE using execution

time profiles based on reference hardware implementations. Similarly, DS3 employs

analytical latency models to estimate interconnect delays on the SoC [163]. After

each scheduling decision, the simulation kernel updates the state of the simulation,

which is used in subsequent decision epochs. In parallel, DS3 estimates power, tem-

perature and energy of each schedule using power models [116]. The framework

aids the design space exploration of dynamic power and thermal management

techniques by utilizing these power models and commercially used DVFS policies.

DS3 also provides plots and reports of schedule, performance, throughput and
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energy consumption to help analyze the performance of various algorithms.

The following two sections present the implementation details and capabilities

for new developers and users, respectively.

3.3 Developer View: DS3 Implementation

This section describes the implementations of the DS3 components (Figure 3.2)

from a developer’s perspective.

3.3.1 Resource Database

DS3 enables instantiating a wide range of SoC configurations with different types of

general- and special-purpose PEs. A list of PEs and its characteristics are stored in

the resource database. Each PE in the database has the static and dynamic attributes

described in Table 3.1.

The static and dynamic attributes are determined based on the current industry

practice and upon a careful examination of available systems on the market. For

example, CFS scheduler, the default Linux kernel scheduler [164], makes task

mapping decisions based on the utilization of PEs. In addition, ARM big.LITTLE

architecture [116], combining Cortex-A15 cluster with energy-efficient Cortex-A7

cluster, supports different operating frequencies for each cluster. The voltage level

and thus energy consumption depend on the operating point and DS3 takes these

effects into account. Finally, commercial SoCs utilize DVFS policies [63] to control

power and performance of PEs. For this reason, we integrated these policies into
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Table 3.1: List of PE attributes in resource database

Attribute Description

St
at

ic

Type Defines type of PE
Example: CPU, accelerator etc.

Capacity Number of simultaneous threads
a PE can execute

DVFS policy Policy which controls PE
frequency and voltage at runtime

Operating
performance point

Operating frequencies and
corresponding voltages for a PE

Execution time
profile

Defines the execution time of
supported tasks on each PE

Power consumption
profile

Provides the power consumption
profile of each PE

D
yn

am
ic Utilization Defines active time of a PE for

a particular time window

Blocking Probability that a PE is busy
when a task is ready

State Indicates whether a PE
is busy or idle

DS3 and assigned the current DVFS policy as an attribute to a PE. This list in

Table 3.1 can be extended either by defining a new parameter in the corresponding

SoC file and parsing it, or assigning as an attribute in the PE class of DS3 framework.

3.3.2 Job Generator

Figure 3.3 presents block diagrams for a WiFi transmitter (WiFi-TX) and receiver

(WiFi-RX) both of which are composed of multiple tasks. The tasks and dependen-

cies in an application are represented using a DAG. The job generator produces

the tasks shown in Figure 3.3, for a WiFi-TX job along with the dependencies. The

basic unit of data processed by this chain is a frame, which is 64 bits in this work.

DS3 defines each new input frame of an application as a job. Hence, each job is a
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Figure 3.3: Block diagrams for WiFi-TX and WiFi-RX applications.

64-bit frame streaming through the WiFi-TX chain.

The job generator produces the tasks and DAG for each active application follow-

ing a user-specified job injection model. DS3 currently models the traffic by injecting

jobs based on an exponential distribution. The framework provides the flexibility

to model other distributions as well. DS3 is scalable in terms of job generation and

is capable of spawning jobs from multiple applications. For example, suppose that

both WiFi-TX and WiFi-RX applications are active and the corresponding injection

ratio is 0.8:0.2. On an average, DS3 generates 4 WiFi-TX jobs for every WiFi-RX

job. This capability plays a crucial role in exploring mix of multiple workloads, as

demonstrated in Section 3.6.
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3.3.3 Scheduling and DTPM Algorithms

DS3 provides a plug-and-play interface to choose between different scheduling and

DTPM algorithms. Hence, developers can implement their own algorithms and

easily integrate them with the framework. To achieve this, developers define the

new scheduling algorithm as a member function of the Scheduler class. Then, the

new scheduler is invoked from the run method of the simulation core. Scheduling

algorithms vary significantly in their complexities and hence, require different

inputs to map tasks to PEs. To support this, DS3 provides a loosely defined inter-

face to specify inputs to the schedulers as required. The framework supports list

schedulers (such as HEFT [1] as well as table-based schedulers (such as constraint

programming), where schedule for all the tasks in a job is generated at the time of

job injection.

DS3 provides built-in DTPM policies and facilitates the design of new DTPM

algorithms. The policy is invoked periodically at every control epoch, which is

parameterizable by the user. To minimize the run-time and power overhead of

DTPM decisions, we use 10ms–100ms range following the common practice [116].

A policy of low complexity may use only the power state information of the PEs.

On the other hand, advanced algorithms may use PE utilization and more detailed

performance metrics, such as number of memory accesses and retired instructions.

In addition, the DTPM policies have access to the resource management, including

the power consumption and performance profiles therein. The decisions of the

DTPM policy are evaluated and applied to the PEs at every control epoch.

Developers can add new scheduling and DTPM algorithms without modifying
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Figure 3.4: Life-cycle of a task in DS3 queues.

the rest of DS3. Modular design enables both maintaining existing interfaces and

expanding them to support radically different algorithms.

3.3.4 Simulation Kernel

The life cycle of a task in DS3 is shown in Figure 3.4. The job generator constructs

a task graph as described in Section 3.3.2. The tasks that are ready to execute

(i.e. free of dependencies) are moved to a Ready Queue. The other tasks that are

waiting for predecessors to complete execution are held in the Outstanding Queue

before being moved to the Ready Queue. The scheduler, an algorithm either built-

in or user-defined, uses the resource database and produces PE assignments for

ready tasks. Then, the simulation kernel migrates the tasks to the Executable Queue
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until communication requirements from predecessors are met. Finally, the task is

simulated on the PE and retired after execution. The simulation kernel clears the

dependencies imposed by these tasks and removes them from the system. If all the

predecessors of a task waiting in the Outstanding Queue retire, the kernel moves

them to the Ready Queue. This triggers a new scheduling decision and the tasks

experience a similar life cycle in the framework, as described above.

Memory and network are shared resources in an SoC. The communication fabric

performing high-speed data transfers among the various resources of the platform

is assumed to be a mesh-based network-on-chip (NoC). We integrate analytical

models to compute the latency at a given traffic load in a priority-aware mesh-based

industrial NoC [163, 165]. Executing multiple applications simultaneously leads to

higher traffic in the network, as compared to the standalone execution. Hence, we

account for the effect of a congestion in the network on execution time of applications.

To model memory communication in the SoC, we include a bandwidth-latency

model for memory latency modeling based on DRAMSim2 [166]. DRAMSim2 is

used to obtain memory latencies at varying bandwidth requirements as shown
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Figure 3.5: Bandwidth-Latency curve used to model DRAM latency in DS3 frame-
work.
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in Figure 3.5. DS3 models the transactions between the various communicating

elements and keeps track of outstanding memory requests in a sliding window. We

compute the memory bandwidth based on outstanding requests and then utilize

the bandwidth-latency curve as a look-up table to obtain the average latency for the

current memory bandwidth and add it to the execution time of the application(s).

Hence, we account for contention of shared resources using the described network

and memory models.

The simulation kernel also calls the DTPM governor periodically at every de-

cision epoch. The DTPM governor determines the power states of the PEs as a

function of their current load and information provided by the resource database.

Subsequently, the simulation kernel updates the power states of the PEs and the

decisions are retained until the next evaluation at the next epoch.

3.4 User View: DS3 Capabilities

This section presents the built-in scheduling and DTPM algorithms provided by

the framework.

3.4.1 Scheduling Algorithms

DS3 provides a set of commonly used built-in scheduling algorithms, which can

be specified by the users in the main configuration file. The framework generates

Gantt charts to visualize the schedulers (see Figure 3.7). This allows the end-user to

understand the dynamics of the scheduler under evaluation. We describe the built-
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in scheduling algorithms in DS3 using one of the most commonly used canonical

task graphs [1] shown in Figure 3.6. Since this task graph is used commonly as

reference for many list-scheduling studies, it serves as a representative example

before analyzing the results from real-world applications in Section 3.6.3.

Minimum Execution Time (MET) Scheduler: The MET scheduler assigns a ready

task to a PE that achieves the minimum expected execution time following a FIFO

policy [167]. If there are multiple PEs that satisfy the minimum execution criterion,

the scheduler then reads the current state information of all these PEs and assign

the tasks to one of the most idle PEs. Figure 3.7(a) shows the schedule generated by

the MET scheduler in DS3 for the DAG shown in Figure 3.6. All tasks are assigned

to their best-performing PEs as expected.
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Figure 3.6: A canonical task flow graph [1] with 10 tasks. Each node represents
a task and each edge represents average communication cost across the available
pool of PEs for the pair of nodes sharing that edge. The computation cost table on
the right indicates the execution time for each of the PEs.
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Figure 3.7: Schedule of task graph in Figure 3.6 with (a) MET,
(b) ETF, and (c) CP.

Earliest Task First (ETF) Scheduler: The ETF scheduler utilizes the information

about the communication cost between tasks and the current status of all PEs to

make a scheduling decision [168]. Figure 3.7(b) shows the schedule produced by

DS3 for a single instance of DAG shown in Figure 3.6 with ETF scheduler. Although

the execution times are the same for both MET and ETF based schedules, the map-

ping decisions are different as shown in Figure 3.7(a) and 3.7(b). This difference

becomes evident when multiple applications are executed together, as shown in

Section 3.6.3.

Table-based Scheduler: DS3 also provides a scheduler which stores the scheduling

decisions in a look-up table. This allows users to utilize any offline schedule, such
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as an assignment generated by an constraint programming (CP) solver, with the

help of a small look-up table. For example, we use IBM ILOG CPLEX Optimization

Studio [169] to generate the CP solution for a job. The schedule from the CP

solution depicted in Figure 3.7(c) outperforms the other two schedulers for a

single job instance as expected. However, we note that the schedule stored in the

table guarantees optimality only if there is a single job in the system. Hence, its

performance degrades when multiple jobs overlap, as shown in Section 3.6.3.

3.4.2 DTPM Policies

State-of-the-art SoCs support multiple voltage-frequency domains and DVFS, which

enables users to optimize for various power-performance trade-offs. To support this

capability, DS3 allows each PE to have a range of OPPs, configurable in the resource

database. The OPPs are voltage-frequency tuples that represent all supported

frequencies of a given PE, which can be exploited by DTPM algorithms to tune

the SoC at runtime. In addition, DS3 integrates analytical power dissipation and

thermal models for Arm Cortex-A15 and Cortex-A7 cores [116], and power profiles

for FFT [170], scrambler encoder, and Viterbi accelerators [171].

The power models capture both dynamic and static power consumption. The

dynamic power consumption (P = CV2Af) varies according to the load capacitance

(C), supply voltage (V), activity factor (A), and operating frequency (f ). Voltage

and frequency are modeled through the OPPs, while the load capacitance and

activity factors are modeled using measurements on real devices and published

data. Static power consumption depends mainly on the current temperature and
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voltage, and DS3 uses thermal models obtained from measurements in the Odroid-

XU3 SoC to accurately model both power and temperature.

The integrated power, performance, and temperature models enable us to imple-

ment a wide range of DTPM policies using DS3. To provide a solid baseline to the

user, we also provide built-in DVFS policies that are commonly used in commercial

SoCs. More specifically, users use the input configuration file to set the DTPM

policy to ondemand, performance and powersave [63] governors, or to a custom DTPM

governor.

Ondemand Governor: The ondemand governor controls the OPP of each PE as a

function of its utilization. The supported voltage-frequency pairs of a given PE are

given by the following set:

OPP = {(V1, f1), (V2, f2), . . . , (Vk, fk)} (3.1)

where k is the number of operating points supported by that PE. Suppose that the

PE currently operates at (V2, f2). If the utilization of the PE is less than a user-defined

threshold, then the ondemand governor decreases the frequency and voltage such

that the new OPP becomes (V1, f1). If the utilization is greater than another user-

defined threshold, the OPP is increased to the maximum frequency. Otherwise, the

OPP stays at the current value, i.e., (V2, f2).

Performance Governor: This policy sets the frequency and voltage of all PEs to

their maximum values to minimize execution time.

Powersave Governor: This policy sets the frequency and voltage of all PEs to their

minimum values to minimize power consumption.
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User-Specified Values: This policy enables users to set the OPP (i.e., frequency

and voltage) of each PE individually to a constant value within the permitted range.

It enables thorough power-performance exploration by sweeping the OPPs. Finally,

developers can also define custom DTPM algorithms in the DTPM class, similar to

the scheduler.

3.5 Simulator Validation

Simulation frameworks serve as powerful platforms to perform rapid design space

exploration, evaluation of scheduling algorithms and DTPM techniques. However,

the fidelity of such simulation frameworks is questionable. Particularly, the level

of abstraction in high-level simulators is significant. Hence, estimations from

simulations may diverge due to differences in modeling, ineffective representation

and limitations to capture overheads observed on hardware platforms. In this

section, we comprehensively evaluate our DS3 framework in terms of performance,

power and temperature estimations with two commercial SoC platforms — Odroid-

XU3 and Zynq Ultrascale+ ZCU102.

3.5.1 Validation with Odroid-XU3

We choose Odroid-XU3 as one of the platforms for validation because of its abilities

to measure power, performance and temperature. This platform comprises in-built

current and temperature sensors enabling us to measure power, performance and

temperature simultaneously and accurately at runtime. Since the design space
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Figure 3.8: Comparison of execution time, power and temperature between DS3
and Odroid-XU3 for single-threaded applications when (a) Freq-Sweep: Number
of cores is constant, frequencies of the cores are varied (b) Core-Sweep: Frequencies
of cores are constant, number of cores is varied.
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Figure 3.9: Comparison of execution time, power and temperature between DS3
and Odroid-XU3 for multi-threaded applications when (a) Freq-Sweep: Number of
cores is constant, frequencies of the cores are varied (b) Core-Sweep: Frequencies
of cores are constant, number of cores is varied.
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Table 3.3: Error percentages in comparison of execution time, power and tempera-
ture between DS3 and Odroid-XU3

Application
Type Scenario Execution

Time Power Temperature

Single
Threaded

Freq-Sweep 3.6% 3.1% 2.7%
Core-Sweep 5.3% 5.1% 2.1%

Multi
Threaded

Freq-Sweep 2.8% 6.1% 2.4%
Core-Sweep 2.7% 1.3% 3.8%

comprising the number of cores, frequency levels and applications is very large,

we choose representative configurations and applications for validation against

the Odroid-XU3, as shown in Figure 3.8 and Figure 3.9. For a comprehensive

validation, we consider two cases: (1) Freq-Sweep: the number of cores is fixed,

frequencies of the cores are varied and (2) Core-Sweep: the frequencies of the cores

are fixed, the number of cores is varied. To ensure completeness in validation, we

validate both single-threaded and multi-threaded applications in both scenarios.

For single-threaded applications, Figure 3.8(a) describes the execution time, power

and temperature for Freq-Sweep scenario and Figure 3.8(b) for Core-Sweep. For

Freq-Sweep, we vary the frequency from 0.6-2.0 GHz. Odroid-XU3 has four LITTLE

cores and four big cores, leading to 16 possible combinations of configurations of

active cores. Core-Sweep compares the parameters of DS3 and Odroid-XU3 for all

16 combinations. Similarly, Figures 3.9(a) and (b) show the comparisons of DS3 and

Odroid-XU3 for multi-threaded applications. Table 3.3 shows the error percentages

in comparison of execution time, power and temperature for single-threaded and

multi-threaded applications in both Freq-Sweep and Core-Sweep configurations.

In Freq-Sweep scenario, the frequency of the LITTLE and big cores are varied
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in unison until we reach the maximum frequency of the LITTLE cores, which is

1.4 GHz. Thereafter, the frequency of the big cores are swept until the maximum

frequency of 2.0 GHz. From Table 3.3, we observe that the average error in perfor-

mance, power and temperature estimates are 3.6%, 3.1%, and 2.7%, respectively,

for single-threaded applications. Similarly, the errors are 2.8%, 6.1%, and 2.4% for

multi-threaded applications.

In Core-Sweep scenario, the number of active cores is varied in all combinations

while the frequencies of the LITTLE and big cores are retained at 1.0 GHz. The per-

formance, power and temperature mean absolute errors are 5.3%, 5.1%, and 2.1%,

respectively, for single-threaded applications while multi-threaded applications

have an average error of 2.7%, 1.3%, and 3.8%.

On an average, the error in accuracy is mostly less than 6%. We note that the

platform experiences frequency throttling when the temperature reaches trip points

(95C). The throttling behavior is modeled in DS3 and hence, we obtain highly

correlated estimates for execution time, power and temperature even when the

platform is throttled by the on-board thermal management agent.

In summary, the estimates from DS3 closely match real-time measurements

obtained by the execution of similar workloads on the platform, as summarized

in Table 3.3. The strong validation results aid in reinforcing the fidelity of the

framework in simulating DSSoCs with high accuracy.
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Figure 3.10: Comparison of execution time between DS3 and Zynq MPSoC when (a)
Freq-Sweep with only Cortex A53 cores, (b) Freq-Sweep with Cortex A53 cores and
hardware accelerators (c) Core-Sweep with only Cortex A53 cores, (d) Core-Sweep
with Cortex A53 cores and hardware accelerators.

3.5.2 Validation with Zynq Ultrascale+ ZCU102

The second platform used to validate the results of the DS3 framework is Zynq

Ultrascale+ ZCU102 FPGA SoC. Zynq serves as a crucial platform for validation

as it supports the implementation of hardware accelerators, unlike Odroid-XU3.

The support for hardware accelerators aids in validating DS3 against highly het-

erogeneous SoCs. However, lack of on-board sensors prevent us from accurately

measuring power and temperature. Hence, we chose to validate the execution time

of Zynq and DS3 in the presence of hardware accelerators in various scenarios.

We pick multiple scenarios to validate the execution time. First, we sweep the

frequencies across the four supported frequencies on the Zynq board, which is

the Freq-Sweep scenario. We then measure the execution times when applications

are executed only on Cortex A53 cores on the platform and then with both A53

cores and hardware accelerators. Secondly, we measure the execution times in Core-

Sweep scenario with only A53 cores, and with A53 cores and hardware accelerators.

Figure 3.10 shows high correlation between the measurements obtained from the
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Zynq board and DS3. However, when four A53 cores and hardware accelerators

are enabled, we observe an anomaly with 15% error between DS3 and Zynq.

Current Linux kernels do not support scheduling and enablement of hard-

ware accelerators in the operating system. Hence, we implement the scheduling

mechanism for accelerators in user-space and identify the anomaly as an overhead

incurred due to the user-space implementation. This overhead is expected to be

significantly minimized when operating systems include support for accelerators.

Finally, the average error in execution time is 6.85%.

3.6 Application Case Studies

This section presents case studies and experiments for design space exploration

of dynamic resource management, power-thermal management, and architecture

configurations. We base our studies on the benchmark applications, which are

presented in the following section.

3.6.1 Benchmark Applications

DS3 comes with six reference applications from wireless communications and radar

processing domain:

• WiFi-TX/RX,

• Low-power single-carrier TX/RX, and

• Radar and Pulse Doppler.
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Table 3.4: Execution time profiles of applications on Arm A53 core in Xilinx ZCU102,
Arm A7/A15 cores in Odroid-XU3, and hardware accelerators

Application Task Latency (µs)
Zynq
A53

Odroid
A7

Odroid
A15

HW
Acc.

WiFi
TX

Scrambler-
Encoder 22 22 10 8

Interleaver 8 10 4
QPSK
Modulation 15 15 8

Pilot Insertion 4 5 3
Inverse-FFT 225 296 118 16
CRC 5 5 3

WiFi
RX

Match Filter 15 16 5
Payload Extraction 5 8 4
FFT 218 290 115 12
Pilot Extraction 4 5 3
QPSK
Demodulation 79 191 95

Deinterleaver 10 16 9
Decoder 1983 1828 738 2
Descrambler 2 3 2

Pulse
Doppler

FFT 30 35 15 6
Vector
Multiplication 30 100 35

Inverse-FFT 30 35 15 6
Amplitude
Computation 25 70 40

FFT Shift 6 7 3

Range
Detection

LFM Waveform
Generator 20 90 60

FFT 68 150 60 30
Vector
Multiplication 52 75 60

Inverse-FFT 68 150 60 30
Detection 10 20 20

The WiFi protocol consists of transmitter and receiver flows as shown in Fig-

ure 3.3. It has compute-intensive blocks, such as FFT, modulation, demodulation,

and Viterbi decoder (see Table 3.4), which require a significant amount of system
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Figure 3.11: Block diagram of (a) range detection application, (b) pulse Doppler
application where m is number of signals and n is number of samples for a signal.

resources. When the bandwidth and latency requirements are small, one can use a

simpler single carrier protocol to achieve lower power consumption. Finally, we in-

clude two applications from the radar domain as part of the benchmark application

suite - (1) range detection and (2) pulse Doppler (see Table 3.4). Figure 3.11(a)

and Figure 3.11(b) represents block diagrams of the range detection and pulse

Doppler applications, respectively.

The benchmark applications enable various algorithmic optimizations and real-

istic design space exploration studies, as we demonstrate in this chapter. We will

continuously include applications from other domains to the benchmarks.
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3.6.2 Reference Design of Applications

We developed a reference design for each of the applications described in Sec-

tion 3.6.1 on two popular commercial heterogeneous SoC platforms: Xilinx Zynq

ZCU102 UltraScale MpSoC [162] and Odroid-XU3 [14] which has Samsung Exynos

5422 SoC. The nodes of the DAG, i.e., the tasks that constitute the target application,

are scheduled on the processing elements. Since the tasks in the DAG determine

the scheduling and acceleration granularity, they should be coarse enough to offset

the overheads and produce benefits. In the scope of DS3, we implement hardware

accelerators in the programmable logic (PL) of the Xilinx Zynq SoC. Depending

on the size of data transfers required for the accelerator, we use either memory-

mapped (AXI4-Lite) or streaming interfaces (AXI-Stream). To be specific, we use

memory-mapped interfaces to communicate with scrambler-encoder accelerators

and stream interfaces for the FFT accelerators. A direct memory access (DMA)

unit facilitates data transfers between user-space mappable memory buffers and

the accelerators using a streaming interface. In this regard, we profiled the com-

putation and communication times in a Linux environment running on the Zynq

SoC. The speedup of scrambler-encoder accelerator is 2.75× in comparison to the

performance on Arm A53 of Zynq SoC. On the other hand, the speedup of the FFT

accelerator is ∼19×when comparing the total latency (computation and commu-

nication) with that of Arm A53 on Zynq SoC. The streaming interface allows for

significantly improved data transfer latencies. The transfer of data by the DMA unit

through the user-space mappable memory buffers can further be improved by en-

abling caching and higher-bandwidth interfaces in the Zynq SoC. Hence, the Viterbi
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decoder accelerator is assumed to have a highly efficient data transfer mechanism

and consequently the speedup is three orders of magnitude (see Table 3.4).

The latency of each task in every application on different resource types of

these two platforms is profiled. At runtime, the schedulers decide to allocate

the task to either hardware accelerators or general-purpose cores based on their

corresponding function of communication- and computation-times along with other

system parameters. In addition to latency profiling, we used the power consumption

and temperature sensors on the Odroid-XU3 board for power consumption profiling.

DS3 power/performance models used in the resource manager incorporate these

performance profiles for each task-resource pair.

3.6.3 Scheduler Case Studies

This section provides an extension to our previous work in [172], using built-in

DS3 schedulers and applications in the benchmark suite. For the simulations,

we use a typical heterogeneous SoC with a total of 16 general-purpose cores and

hardware accelerators: 4 big Arm Cortex-A15 cores, 4 LITTLE Arm Cortex-A7, and

2 scrambler, 4 FFT, and 2 Viterbi decoder accelerators.

We schedule and execute the WiFi TX/RX, range detection and pulse Doppler

task flow graphs using DS3 and plot the average job execution time trend with

respect to the job injection rate, as shown in Figure 3.12. We use the parameters

pRX, pTX, prange, and ppulse representing the probabilities for the new job being

WiFi-RX, WiFi-TX, range detection and pulse Doppler, respectively.

Figures 3.12(a) and (b) depict the results with WiFi applications for a download
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Figure 3.12: Results from different schedulers with a workload consisting of (a)
WiFi-TX (pTX=0.2) and WiFi-RX (pRX=0.8), (b) WiFi-TX (pTX=0.8) and WiFi-RX
(pRX=0.2), (c) range detection (prange=0.8) and pulse Doppler (ppulse=0.2), (d)
WiFi-TX (pTX=0.3), WiFi-RX (pRX=0.3), range detection (prange=0.3), and pulse
Doppler (ppulse=0.1).

and upload intensive workload, independently. To understand the performance of

scheduling algorithms, we analyze the average execution time at varying rates of

job injection. MET uses a naive representation of the system state for scheduling

decisions (described in Section 3.3.3), which results in higher execution time. On

the other hand, CP uses a static table-based schedule which is optimal for one

job instance. At low injection rates (less than 1 job/ms), CP is suitable as jobs

do not interleave. However, as the injection rate increases, the CP schedule is not

optimal. ETF scheduler is superior in comparison to the others, as observed in

Figures 3.12(a),(b).

Figure 3.12(c) demonstrates the results for a workload comprising radar bench-

marks. This workload uses prange = 0.8 and ppulse = 0.2, owing to the difference

in execution times of the two applications. The performance of ETF and CP sched-
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ulers are similar until 5 jobs/ms, following which performance of ETF is superior

in comparison to CP. Although the trend in execution time for radar benchmarks

is similar to WiFi, the job injection rate at which ETF and CP diverge is different

because of the differences in execution times of these applications, as shown in

Table 3.5. At an injection rate lower than 5 jobs/ms, the level of interleaving of jobs

is low which aligns with the CP solution.

Finally, we construct a workload comprising of all four applications and Fig-

ure 3.12(d) shows the corresponding results. The performance trend of the sched-

ulers with all applications is similar to WiFi and radar workloads. MET considers

only the best performing PEs for mapping and CP is sub-optimal at high injection

rates whereas ETF utilizes the state information of all PEs for mapping decisions.

In summary, the experiments presented in Figure 3.12 demonstrate the capabili-

ties of the simulation environment. DS3 allows the end user to evaluate workload

scenarios exhaustively by sweeping the pTX, pRX, prange and ppulse configuration

space to determine the scheduling algorithm that is most suitable for a given SoC

architecture and set of workload scenarios.

Table 3.5: Execution time of applications in benchmark suite with different sched-
ulers

Execution Time of Single Job (µs)

WiFi-TX WiFi-RX Range
Detection

Pulse
Doppler

MET 69 389 177 1665
ETF 69 301 177 1045
CP 69 288 177 1000
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3.6.4 SoC Design Space Exploration

This section illustrates how DS3 can be utilized to identify the number and types of

PEs during early design space exploration. We employ the WiFi-TX and WiFi-RX

applications to explore different SoC architectures. All configurations in this study

have 4 big Arm Cortex-A15 and 4 LITTLE Arm Cortex-A7 cores to start with and

DS3 guides the user to determine the number of configurable hardware accelerators

in the architecture. We choose accelerators for FFT and Viterbi decoder. FFT is a

widely used accelerator among all applications. We also choose Viterbi decoder

because its execution cost on a general-purpose core is significantly high.

DSE Using Grid Search

We vary the number of instances of FFT (0, 1, 2, 4, 6) and Viterbi decoder (0, 1, 2,

3) in this grid search study. Table 3.6 lists the representative configurations out

of 20 configurations. Each row in the table represents the configuration under

investigation with an estimated SoC area, and average execution time and average

energy consumption per job. The DS3 framework provides metrics that aid the user

Table 3.6: Area, performance and energy for different SoC configurations with
varying number of accelerators

Configuration Area
(mm2)

Average Job
Execution (µs)

Energy per
Job (µJ/job)ID FFT Viterbi

1 0 0 14.94 2606 1744
2 0 1 14.94 1824 1244
3 2 1 15.82 293 589
4 4 0 16.29 1212 957
5 4 1 16.56 274 584
6 6 3 19.29 264 582
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Figure 3.13: Design space exploration studies showing energy per job vs. SoC area
with pareto-frontier.

in choosing a configuration that best suits power, performance, area and energy

targets.

Figure 3.13 plots the energy consumption per job as a function of the SoC area.

We find the area of a given configuration using a built-in floorplanner that takes

the areas of PEs and other components such as system level cache and memory

controllers. The energy consumption per job is computed as the ratio of total energy

consumption for the entire workload with the number of completed jobs.

As the accelerator count increases in the system, the energy consumption per

operation decreases. This comes at the cost of larger SoC area, as shown in Fig-

ure 3.13 and Table 3.6. For this workload, configuration-3, i.e., an SoC with two FFT

and one Viterbi decoder accelerators, provides the best trade-off. Removing any of

the accelerators leads to a significant increase in energy per operation with a small

area advantage. In contrast, any further increase in the number of accelerators

does not result in significant improvement in energy per job for this workload. As

a result, configuration-3 is the best configuration in terms of energy-area product
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(EAP). This configuration leads to an EAP gain of almost 65% (an energy reduction

of 67% with an increase in area by only less than 6%) compared to configuration-1.

After this point, the improvement in the overall performance by adding more FFT

accelerators and Viterbi decoders does not overcome the cost of increase in the total

area as seen in both Figure 3.13 and Table 3.6.

DSE Using Guided Search

DS3 also supports a guided search in the design space. Figure 3.14 depicts a 2-D

performance plane for a PE (or a PE cluster) where x-axis and y-axis are utilization

and blocking, both as percentages, respectively. Ideally, a PE should be on the

lower-right corner where utilization is high, and blocking is low. If both utilization

and blocking are high, upper-right corner, then it means that there is a need for

more resources in the system. If, however, the opposite is true, the utilization of a

PE is low, and it also does not block tasks very often. In this case, resources in the

system are abundant. Finally, a PE should never be on the upper-left corner, low

utilization and high blocking, which is unrealistic.
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Figure 3.14: PE blocking vs utilization (2-D performance plane)
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Figure 3.15: Utilization vs blocking for PE clusters in representative configurations
with average job execution times.

Considering the case study in Section 3.6.4 where we explore 20 different configu-

rations, the guided search will converge on the best configuration faster. Figure 3.15

shows how utilization, blocking, and average job execution time differ for six rep-

resentative configurations. Configuration-1, with no FFT and Viterbi accelerator,

yields a high utilization and blocking for both Arm clusters, hence the SoC requires

hardware accelerators. The results with configuration-2 (addition of one Viterbi

accelerator) indicate that the Viterbi accelerator is a critical component for the

system since it provides a huge gain in average job execution time (a reduction

from 2606 µs to 1824 µs) although the utilization for this accelerator is very small

(0.61%). Configuration-2 also suggests that one Viterbi accelerator is enough for the

system since both utilization and blocking is low. Based on this observation, we

directly eliminate configurations with no and more than one Viterbi accelerator

(i.e., configuration-4 and -6, see Table 3.6). The comparison between configuration-3

and -5 based on utilization, blocking, and estimated SoC area draws a conclusion

that configuration-3 is the best configuration for this case study.

Figure 3.16 depicts the same results for the representative configurations on the

2-D plane. As seen, configuration-3 is closest to the ideal region and provides the
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Figure 3.16: Results for representative configurations on 2-D performance plane for
PE clusters.

best trade-off.

These approaches can be used to utilize DS3 for design space exploration of

SoC architectures by analyzing energy efficiency, area, and developmental effort

involved in the development of specialized cores for hardware acceleration. This

approach can also be extended to explore the effect of modifying the number of

general-purpose cores and hardware accelerators in a DSSoC architecture.

3.6.5 DTPM Design Space Exploration

In this section, we evaluate a subset of five applications from our benchmark set:

WiFi-RX/TX, single-carrier RX/TX, and range detection on an SoC with 16 hetero-

geneous PEs. We explore 8 frequency points for the big cluster (0.6-2.0GHz) and 5

for the LITTLE (0.6-1.4GHz), using a 200MHz step. All possible DVFS modes were

evaluated, i.e., all possible combinations of power states for each PE in addition to

ondemand, powersave, and performance [63] modes.

Figure 3.17 presents the Pareto frontier for all aforementioned configurations.

The ondemand and performance policies provide low latency with high energy con-
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Figure 3.17: Pareto frontier in the energy-performance curve for an SoC with 16
processing elements (PEs) executing a representative workload.
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Figure 3.18: Energy-Delay Product (EDP) histogram.

sumption, while powersave minimizes the power at the cost of high latency, which

results in sub-optimal energy consumption due to the increased execution time. The

best configuration in terms of EDP uses 1.6GHz and 4 active cores for the big cluster,

and 600MHz and 3 active cores for the LITTLE cluster, achieving 5.6ms and 13.7mJ.

This figure also shows a 5× variation in execution time and energy consumption

between different configurations. The best EDP configuration achieves up to 4×

better EDP than default DTPM algorithms. This indicates that there is opportunity

for users to propose their own power management mechanisms to improve the
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energy efficiency of the system and integrate those mechanisms into DS3.

In addition to the Pareto frontier, DS3 also provides energy, performance, and

EDP histograms to aid the design space exploration. Due to space constraints,

Figure 3.18 depicts only the EDP histogram. This histogram shows that only a small

fraction of configurations achieve an EDP below 80mJ*ms. While the performance

and ondemand governors are in the range of 90mJ*ms, the powersave mode gets

330mJ*ms EDP. Therefore, users can use these visualization tools to quickly identify

the most promising configurations for the SoC.

3.6.6 Scalability Analysis

This section illustrates the scalability of DS3 as a function of simulated number of

jobs, SoC size, and the number of tasks in a single job (application). To maximize

the load, we run four applications (WiFi TX/RX, range detection and pulse Doppler)

simultaneously while sweeping the job injection rates and number of PEs. For the

last case, however, we fix the job injection rates and SoC configuration while running

applications different in size, separately.

Figure 3.19(a) shows the total simulation time as a function of the number of

jobs injected throughout the simulation. As the relation between two metrics is

linear, DS3 simulation run-time increases linearly with the workload size. Similarly,

Figure 3.19(b) presents the simulation time when the number of PEs increase.

This relationship is also linear, leading to 6ms per simulation cycle (1µs) for a

56-core configuration. Finally, in Figure 3.19(c), the simulation time with respect to

application size (number of tasks in a single job) is depicted. As application size
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grows, the runtime to simulate of 1µs also increases linearly.

The scalability analysis provided in this section demonstrates that DS3 runtime

is a linear function of workload, SoC and application size. As a side note, we obtain

a simulation speedup of 600×when running 1675 jobs of WiFi-TX in comparison

to gem5. Hence, DS3 facilitates rapid design space exploration with relatively

short turn-around times. This feature makes DS3 very powerful and helps users

with extensive design space exploration in relatively short time while avoiding

unnecessary simulation of low-level details.
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4 imitation learning based task scheduling for

heterogeneous systems

4.1 Background, Motivation and Contributions

Homogeneous multi-core architectures have successfully exploited thread- and

data-level parallelism to achieve performance and energy efficiency beyond the lim-

its of single-core processors. While general-purpose computing achieves program-

ming flexibility, it suffers from significant performance and energy efficiency gap

when compared to special-purpose solutions. Domain-specific architectures, such

as graphics processing units (GPUs) and neural network processors, are recognized

as some of the most promising solutions to reduce this gap [22]. Domain-specific

systems-on-chip (DSSoCs), a concrete instance of this new architecture, judiciously

combine general-purpose cores, special-purpose processors, and hardware accel-

erators. DSSoCs approach the efficacy of fixed-function solutions for a specific

domain while maintaining programming flexibility for other domains [6].

The success of DSSoCs depends critically on satisfying two intertwined require-

ments. First, the available processing elements (PEs) must be utilized optimally,

at runtime, to execute the incoming tasks. For instance, scheduling all tasks to

general-purpose cores may work, but diminishes the benefits of the special-purpose

PEs. Likewise, a static task-to-PE mapping could unnecessarily stall the parallel

instances of the same task. Second, acceleration of the domain-specific applications

needs to be oblivious to the application developers to make DSSoCs practical. This
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chapter addresses these two requirements simultaneously.

The task scheduling problem involves assigning tasks to processing elements

and ordering their execution to achieve the optimization goals, e.g., minimizing

execution time, power dissipation, or energy consumption. To this end, applica-

tions are abstracted using mathematical models, such as directed acyclic graph

(DAG) and synchronous data graphs (SDG) that capture both the attributes of

individual tasks (e.g., expected execution time) and the dependencies among the

tasks [1, 103, 100]. Scheduling these tasks to the available PEs is a well-known

NP-complete problem [173, 174]. An optimal static schedule can be found for small

problem sizes using optimization techniques, such as mixed-integer programming

(MIP) [175] and constraint programming (CP) [176]. These approaches are not

applicable to runtime scheduling for two fundamental reasons. First, statically

computed schedules lose relevance in a dynamic environment where tasks from

multiple applications stream in parallel, and PE utilizations change dynamically.

Second, the execution time of these algorithms, hence their overhead, can be pro-

hibitive even for small problem sizes with few tens of tasks. Therefore, a variety of

heuristic schedulers, such as shortest job first (SJF) [99] and complete fair sched-

ulers (CFS) [97], are used in practice for homogeneous systems. These algorithms

trade off the quality of scheduling decisions and computational overhead.

To improve this state of affairs, this chapter addresses the following challenging

proposition: Can we achieve a scheduler performance close to that of optimal MIP and CP

schedulers, while using minimal runtime overhead compared to commonly used heuristics?

Furthermore, we investigate this problem in the context of heterogeneous PEs. We
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note that much of the scheduling in heterogeneous many-core systems is tuned

manually, even to date [177]. For example, OpenCL, a widely-used programming

model for heterogeneous cores, leaves the scheduling problem to the programmers.

Experts manually optimize the task to resource mapping based on their knowledge

of application(s), characteristics of the heterogeneous clusters, data transfer costs,

and platform architecture. However, manual optimization suffers from scalability

for two reasons. First, optimizations do not scale well for all applications. Second,

extensive engineering efforts are required to adapt the solutions to different platform

architectures and varying levels of concurrency in applications. Hence, there

is a critical need for a methodology to provide optimized scheduling solutions

applicable to a variety of applications at runtime in heterogeneous many-core

systems.

Scheduling has traditionally been considered as an optimization problem [175].

We change this perspective by formulating runtime scheduling for heterogeneous

many-core platforms as a classification problem. This perspective and the following

key insights enable us to employ machine learning (ML) techniques to solve this

problem:

Key insight 1: One can use an optimal (or near-optimal) scheduling algorithm offline

without being limited by computational time and other runtime overheads. Then,

the inputs to this scheduler and its decisions can be recorded along with relevant

features to construct an Oracle.

Key insight 2: One can design a policy that approximates the Oracle with minimum

overhead and use this policy at runtime.
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Key insight 3: One can exploit the effectiveness of ML to learn from Oracle with dif-

ferent objectives, which includes minimizing execution time, energy consumption,

etc.

Realizing this vision requires addressing several challenges. First, we need to

construct an Oracle in a dynamic environment where tasks from multiple appli-

cations can overlap arbitrarily, and each incoming application instance observes a

different system state. Finding optimal schedules is challenging even offline, since

the underlying problem is NP-complete. We address this challenge by constructing

Oracles using both CP and a computationally expensive heuristic, called earliest

task first (ETF) [178]. ML uses informative properties of the system (features) to

predict the category in a classification problem. The second challenge is identifying

the minimal set of relevant features that can lead to high accuracy with minimal

overhead. We store a small set of 45 relevant features for a many-core platform with

16 processing elements along with the Oracle to minimize the runtime overhead.

This enables us to represent a complex scheduling decision as a set of features

and then predict the best processing element for task execution. The final chal-

lenge is approximating the Oracle accurately with a minimum implementation

overhead. Since runtime task scheduling is a sequential decision-making prob-

lem, supervised learning methodologies, such as linear regression and decision

tree, may not generalize for unseen states at runtime. Reinforcement learning

(RL) and imitation learning (IL) are more effective for sequential decision-making

problems [179, 113, 180]. Indeed, RL has shown promise when applied to the

scheduling problem [33, 109, 181], but it suffers from slow convergence and sen-
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sitivity of the reward function [111, 112]. In contrast, IL takes advantage of the

expert’s inherent knowledge and produces policies that imitate the expert deci-

sions [110]. Hence, we propose an IL-based framework that schedules incoming

applications to heterogeneous multi-core systems.

The proposed IL framework is formulated to facilitate generalization, i.e. it can

be adapted to learn from any Oracle that optimizes a specific objective, such as

performance and energy efficiency, of an arbitrary DSSoC. We evaluate the proposed

framework with six domain-specific applications from wireless communications

and radar systems. The proposed IL policies successfully approximate the Oracle

with more than 99% accuracy, achieving fast convergence and generalizing to

unseen applications. In addition, the scheduling decisions are made within 1.1µs

(on an Arm A53 core), which is better than CFS performance (1.2µs). To the best

of our knowledge, this is the first imitation learning-based scheduling framework

for heterogeneous many-core systems capable of handling multiple applications

exhibiting streaming behavior. The main contributions of this chapter are as follows:

• An imitation learning framework to construct policies for task scheduling in

heterogeneous many-core platforms;

• Oracle design using both optimal and heuristic schedulers for performance-

and energy- based optimization objectives;

• Extensive experimental evaluation of the proposed IL policies along with

latency and storage overhead analysis;
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• Performance comparison of IL policies against reinforcement learning and

optimal schedules obtained by constraint programming.

The rest of this chapter is organized as follows. Section 4.2 provides an overview

of DAG scheduling and imitation learning. In Section 4.3, we discuss the proposed

methodology, followed by relevant experimental results in Section 4.4.

4.2 Overview

The runtime scheduling problem addressed in this chapter is illustrated in Figure 4.1.

We consider streaming applications that can be modeled using directed acyclic

graphs, such as the one shown in Figure 4.1(a). These applications process data

frames that arrive at a varying rate over time. For example, a WiFi-transmitter,

one of our domain applications, receives and encodes raw data frames before they

are transmitted over the air. Data frames from a single application or multiple

simultaneous applications can overlap in time as they go through the tasks that

compose the application. For instance, Task-1 in Figure 4.1(a) can start processing

2 3
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High-performance (big) 
general-purpose 1, 2, 3, 4, 5, 6, 7

Low-power (LITTLE)
general-purpose 1, 2, 3, 4, 5, 6, 7
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(Acc-2) 2, 5, 6 LITTLE

big

Acc-1 3

Time
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Acc-2 2

6

5

7

(a) (b) (c)

Figure 4.1: (a) An example DAG consisting of 7 tasks (b) A heterogeneous comput-
ing platform with 4 processing elements and list of tasks in DAG supported by each
PE (c) A sample schedule of the DAG on the heterogeneous many-core system.
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a new frame, while other tasks continue processing earlier frames. Processing

of a frame is said to be completed after the terminal task without any successor

(Task-7 in Figure 4.1(a)) is executed. We define the application formally to facilitate

description of the schedulers.

Definition 1: An application graph GApp(T,E) is a directed acyclic graph, where

each node Ti ∈ T represents the tasks that compose the application. Directed edge

eij ∈ E from task Ti to Tj shows that Tj cannot start processing a new frame before

the output of Ti reaches Tj for all Ti, Tj ∈ T. vij for each edge eij ∈ E denotes the

communication volume over this edge. It is used to account for the communication

latency.

Each task in a given application graph GApp can execute on different processing

elements in the target DSSoC. We formally define the target DSSoC as follows:

Definition 2: An architecture graph GArch(P,L) is a directed graph, where each node

Pi ∈ P represents processing elements, and Lij ∈ L represents the communication

links between Pi and Pj in the target SoC. The nodes and links have the following

quantities associated with them:

• texe(Pi, Tj) is the execution time of task Tj on PE Pi ∈ P, if Pi can execute (i.e.,

it supports) Tj.

• tcomm(Lij) is the communication latency from Pi to Pj for all Pi,Pj ∈ P.

• C(Pi) ∈ C is the PE cluster Pi ∈ P belongs to.

The DSSoC example in Figure 4.1(b) assumes one big core cluster, one LITTLE core

cluster, and two hardware accelerators each with a single PE in them for simplicity.
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Figure 4.2: An overview of the proposed imitation learning framework for task
scheduling in heterogeneous many-core systems. The framework integrates the sys-
tem configuration, profiling information, scheduling algorithms and applications
to construct Oracle, and train IL policies for task scheduling. The IL policies, that
are improved using DAgger, are then evaluated on the heterogeneous many-core
system at runtime.

The low-power (LITTLE) and high-performance (big) general-purpose clusters

can support the execution of all tasks, as shown in the supported tasks column in

Figure 4.1(b). In contrast, hardware accelerators (Acc-1 and Acc-2) support only a

subset of tasks.

A particular instance of the scheduling problem is illustrated in Figure 4.1(c).

Task-6 is scheduled to big core (although it executes faster on Acc-2) since Acc-2 is

not available at the time of decision making. Similarly, Task-4 is scheduled to the

LITTLE core (even if it executes faster on big) because the big core is utilized when

Task-4 is ready to execute. In general, scheduling complex DAGs in heterogeneous

many-core platforms present a multitude of choices making the runtime scheduling

problem highly complex. The complexity increases further with: (1) overlapping

DAGs at runtime, (2) executing multiple applications simultaneously, and (3)

optimizing for objectives such as performance, energy, etc.

The proposed solution leverages imitation learning, and is outlined in Figure 4.2.
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It is also referred to as learning by demonstration, and is an adaption of supervised

learning for sequential decision making problems. The decision-making space is

segmented into distinct decision epochs, called states (S). There exists a finite set

of actions A for every state s ∈ S. IL uses policies that map each state (s) to a

corresponding action.

Definition 3: Oracle Policy (expert) π∗(s) : S→ A maps a given system state to

the optimal action. In our runtime scheduling problem, the state includes the set of

ready tasks and actions that correspond to assignment of tasks T to processing ele-

ments P. Given the Oracle π∗, the goal with imitation learning is to learn a runtime

policy that can approximate it. We construct an Oracle offline and approximate

it using a hierarchical policy with two levels. Consider a generic heterogeneous

many-core platform with a set of clusters C, as illustrated in Figure 4.2. At the first

level, an IL policy chooses one cluster (among n clusters) for a task to be executed

in.

The first-level policy assigns the ready tasks to one of the clusters in C, since each

PE within the same cluster has the same static parameters. Then, a cluster-level

policy assigns the tasks to a specific PE within that cluster. The details of state

representation, Oracle generation, and hierarchical policy design are presented in

the next section.
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4.3 Proposed Methodology and Approach

This section first introduces the system state representation, including the features

used by the IL policies. Then, it presents the Oracle generation process, and the

design of the hierarchical IL policies. Table 4.1 details the notations that will be

used hereafter.

4.3.1 System State Representation

Offline scheduling algorithms are NP-complete even though they rely on static

features, such as average execution times. The complexity of runtime decisions

is further exacerbated as the system schedules multiple applications that exhibit

Table 4.1: Summary of the notations used in the IL-based task scheduling approach

Tj Task-j T Set of Tasks

Pi PE-i P Set of PEs

c Cluster-c C Set of clusters

Lij
Communication links
between Pi to Pj

L
Set of
communication links

texe(Pi, Tj)
Execution time of
task Tj on PE Pi

tcomm(Lij)
Communication
latency from Pi to Pj

s State-s S Set of states

vjk
Communication volume
from task Tj to Tk

A Set of actions

FS Static features FD Dynamic features

πC(s)
Apply cluster policy
for state s

πP,c(s)
Apply PE policy
in cluster-c for state s

π Policy π∗ Oracle policy

πG Policy for many-core
platform configuration G π∗G Oracle for many-core

platform configuration G
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streaming behavior. In the streaming scenario, incoming frames do not observe an

empty system with idle processors. In strong contrast, PEs have different utilization,

and there may be an arbitrary number of partially processed frames in the wait

queues of the PEs. Since our goal is to learn a set of policies that generalize to all ap-

plications and all streaming intensities, the ability to learn the scheduling decisions

critically depends on the effectiveness of state representation. The system state

should encompass both static and dynamic aspects of the set of tasks, applications,

and the target platform. Naive representations of DAGs include adjacency matrix

and adjacency list. However, these representations suffer from drawbacks such as

large storage requirements, highly sparse matrices which complicates the training

of supervised learning techniques, and scalability for multiple streaming applica-

tions. In contrast, we carefully study the factors that influence task scheduling in

a streaming scenario and construct features that accurately represent the system

state. We broadly categorize the features that make up the state as follows:

• Task features: This set includes the attributes of individual tasks. They can be

both static, such as average execution time of a task on a given PE (texe(Pi, Tj)),

and dynamic, such as the relative order of a task in the queue.

• Application features: This set describes the characteristics of the entire applica-

tion. They are static features, such as the number of tasks in the application

and the precedence constraints between them.

• PE features: This set describes the dynamic state of the processing elements.

Examples include the earliest available times (readiness) of the PEs to execute
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tasks.

The static features are determined at the design time, whereas the dynamic features

can only be computed at runtime. The static features aid in exploiting design

time behavior. For example, texe(Pi, Tj) helps the scheduler compare the expected

performance of different PEs. Dynamic features, on the other hand, present the

runtime dependencies between tasks and jobs and also the busy states of the

processing elements. For example, the expected time when cluster c becomes

available for processing adds invaluable information, which is only available at

runtime.

In summary, the features of a task comprehensively represent the task itself and

the state of the processing elements in the system to effectively learn the decisions

from the Oracle policy. The specific types of features used in this work to represent

the state and their categories are listed in Table 4.2. The static and dynamic features

are denoted as FS and FD, respectively. Then, we define the systems state at a given

time instant k using the features in Table 4.2 as:

sk = FS,k ∪ FD,k (4.1)

where FS,k and FD,k denote the static and dynamic features respectively at a given

time instant k. For an SoC with 16 processing elements grouped as 5 clusters, we

obtain a set of 45 features for the proposed IL technique.
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Table 4.2: Types of features employed for state representation from point of view of
task Tj

Feature Type Feature Description Feature Categories

Static
(FS)

ID of task-j in the DAG Task

Execution time of a task Tj
in PE Pi (texe(Pi, Tj))

Task
PE

Downward depth of task Tj
in the DAG

Task
Application

IDs of predecessor tasks
of task Tj

Task
Application

Application ID Application

Power consumption of task Tj
in PE Pi

Task
PE

Dynamic
(FD)

Relative order of task Tj in
the ready queue Task

Earliest time when PEs
in a cluster-c are ready
for task execution

PE

Clusters in which predecessor
tasks of task Tj executed Task

Communication volume from task
Tj to task Tk(vjk)

Task

4.3.2 Oracle Generation

The goal of this work is to develop generalized scheduling models for streaming

applications of multiple types to be executed on heterogeneous many-core systems.

The generality of the IL-based scheduling framework enables using IL with any

Oracle. The Oracle can be any scheduling algorithm that optimizes an arbitrary

metric, such as execution time, power consumption, and total SoC energy.

To generate the training dataset, we implemented both optimal schedulers using

CP and heuristics. These schedulers are integrated into a SoC simulation framework,
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as explained under experimental results. Suppose a new task Tj becomes ready at

time k. The Oracle is called to schedule the task to a PE. The Oracle policy for this

action task with system state sk can be expressed as:

π∗(sk) = Pi, (4.2)

where Pi ∈ P is the PE Tj scheduled to and sk is the system state defined in

Equation 4.1. After each scheduling action, the particular task that is scheduled

(Tj), the system state sk ∈ S, and the scheduling decision are added to the training

data. To enable the Oracle policies to generalize for different workload conditions,

we constructed workload mixes using the target applications at different data rates,

as detailed in Section 4.4.1.

4.3.3 IL-based Scheduling Framework

This section presents the hierarchical IL-based scheduler for runtime task schedul-

ing in heterogeneous many-core platforms. A hierarchical structure is more scalable

since it breaks a complex scheduling problem down into simpler problems. Fur-

thermore, it achieves a significantly higher classification accuracy compared to a

flat classifier (>93% versus 55%), as detailed in Section 4.4.4.

Our hierarchical IL-based scheduler policies approximate the Oracle with two

levels, as outlined in Algorithm 1. The first level policy πC(s) : S→ C is a coarse-

grained scheduler that assigns tasks into clusters. This is a natural choice since

individual PEs within a cluster have identical static parameters, i.e., they differ only
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Algorithm 1: Hierarchical imitation learning Framework
1 for task T ∈ T do
2 s = Get current state for task T

/* Level-1 IL policy to assign cluster */
3 c = πC(s)

/* Level-2 IL policy to assign PE */
4 p = πP,c(s)

/* Assign T to the predicted PE */
5 end

in terms of their dynamic states. The second level (i.e., fine-grained scheduling)

consists of one dedicated policy πP,c(s) : S→ P for each cluster c ∈ C. These policies

assign the input task to a PE within its own cluster, i.e., πP,c(s) ∈ Pc, ∀c ∈ C.

We leverage off-the-shelf machine learning techniques, such as decision trees and

neural networks, to construct the IL policies. The application of these policies

approximates the corresponding Oracle policies constructed offline.

IL policies suffer from error propagation as the state-action pairs in the Oracle

are not necessarily i.i.d. (independent and identically distributed). Specifically,

if the decision taken by the IL policies at a particular decision epoch is different

from the Oracle, then the resultant state for the next epoch is also different with

respect to the Oracle. Therefore, the error further accumulates at each decision

epoch. This can occur during runtime task scheduling when the policies are applied

to applications that the policies did not train with. This problem is addressed by

the data aggregation algorithm (DAgger), proposed to improve IL policies [182].

DAgger adds the system state and the Oracle decision to the training data whenever

the IL policy makes a wrong decision. Then, the policies are retrained after the

execution of the workload.
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DAgger is not readily applicable to the runtime scheduling problem since the

number of states is unbounded as a scheduling decision at time t for state s (st)

can result in any possible resultant state, st+1. In other words, the feature space

is continuous, and hence, it is infeasible to generate an exhaustive Oracle offline.

We overcome this challenge by generating an Oracle on-the-fly. More specifically,

we incorporate the proposed framework into a simulator. The offline scheduler

used as the Oracle is called dynamically for each new task. Then, we augment the

training data with all the features, Oracle actions, as well as the results of the IL

policy under construction. Hence, the data aggregation process is performed as

part of the dynamic simulation.

The hierarchical nature of the proposed IL framework introduces one more

complexity to data aggregation. The cluster policy’s output may be correct, while

Algorithm 2: Methodology to aggregate data in a hierarchical imitation
learning framework
1 for task T ∈ T do
2 s = Get current state for task T
3 if πC(s) == π∗

C(s) then
4 if πP,c(s) != π∗

P,c(s) then
5 Aggregate state s and label π∗

P,c(s) to the dataset
6 end
7 end
8 else
9 Aggregate state s and label π∗

C(s) to the dataset
10 c∗ = π∗

C(s)
11 if πP,c∗(s) != π∗

P,c∗(s) then
12 Aggregate state s and label π∗

P,c(s) to the dataset
13 end
14 end

/* Assign T to the predicted PE */
15 end
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the PE cluster reaches a wrong decision (or vice versa). If the cluster prediction

is correct, we use this prediction to select the PE policy of that cluster, as outlined

in Algorithm 2. Then, if the PE prediction is also correct, the execution continues;

otherwise, the PE data is aggregated in the dataset. However, if the cluster pre-

diction does not align with the Oracle, in addition to aggregating the cluster data,

an on-the-fly Oracle is invoked to select the PE policy, then the PE prediction is

compared to the Oracle, and the PE data is aggregated in case of a wrong prediction.

4.4 Experimental Results

Section 4.4.1 presents the experimental methodology and setup. Section 4.4.2 ex-

plores different machine learning classifiers for IL. The significance of the proposed

features is studied using a decision tree classifier in Section 4.4.3. Section 4.4.4

presents the evaluation of the proposed IL-scheduler. Section 4.4.5 analyzes the

generalization capabilities of IL-scheduler. The performance analysis with multiple

workloads is presented in Section 4.4.6. We demonstrate the evaluation of the

proposed IL technique to energy-based optimization objectives in Section 4.4.7. Sec-

tion 4.4.8 presents comparisons with RL-based scheduler and Section 4.4.9 analyzes

the complexity of the proposed approach.

4.4.1 Experimental Methodology and Setup

Domain Applications: The proposed IL scheduling methodology is evaluated

using applications from wireless communication and radar processing domains.
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Table 4.3: Characteristics of applications used in this study and the number of
frames of each application in the workload

App # of
Tasks

Execution
Time (µs)

Supported
Clusters

Representation
in workload

#frames #tasks

WiFi-TX 27 301 big, LITTLE, FFT 69 1863

WiFi-RX 34 71 big, LITTLE,
FFT, Viterbi 111 3774

RangeDet 7 177 big, LITTLE, FFT 64 448

SC-TX 8 56 big, LITTLE 64 512

SC-RX 8 154 big, LITTLE,
Viterbi 91 728

TempMit 10 81 big, LITTLE,
Matrix mult. 101 1010

TOTAL 500 8335

We employ WiFi-transmitter (WiFi-TX), WiFi-receiver (WiFi-RX), range detection

(RangeDet), single-carrier transmitter (SC-TX), single-carrier receiver (SC-RX)

and temporal mitigation (TempMit) applications, as summarized in Table 4.3. We

construct workload mixes using these applications and run them in parallel.

Heterogeneous DSSoC Configuration:

Considering the nature of applications, we employ a DSSoC with 16 PEs, in-

cluding accelerators for the most computationally intensive tasks; they are divided

into five clusters with multiple homogeneous PEs, as illustrated in Figure 4.3. To

enable power-performance trade-off while using general-purpose cores, we include

a big cluster with four Arm A57 cores and a LITTLE cluster with four Arm A53

cores. In addition, the DSSoC integrates accelerator clusters for matrix multipli-

cation, FFT, and Viterbi decoder to address the computing requirements of the
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Big Cluster
General-Purpose (4 PEs)

LITTLE Cluster
General-Purpose

(4 PEs)

Matrix Multiplication
Accelerator (2 PEs)

Fast Fourier Transform
Accelerator (4 PEs)

Viterbi Decoder
Accelerator (2 PEs)

Figure 4.3: Configuration of the heterogeneous many-core platform comprising 16
processing elements, used for scheduler evaluations.

target domain applications summarized in Table 4.3. The accelerator interfaces are

adapted from [87]. The number of accelerator instances in each cluster is selected

based on how much the target applications use them. For example, three out of

the six reference applications involve FFT, while range detection application alone

has three FFT operations. Therefore, we employ four instances of FFT hardware

accelerators and two instances of Viterbi and matrix multiplication accelerators, as

shown in Figure 4.3.

Simulation Framework: We evaluate the proposed IL scheduler using the discrete

event-based simulation framework [51], which is validated against two commercial SoCs:

Odroid-XU3 [14] and Zynq Ultrascale+ ZCU102 [162]. This framework enables

simulations of the target applications modeled as DAGs under different scheduling

algorithms. More specifically, a new instance of a DAG arrives following a specified

inter-arrival time rate and distribution, such as an exponential distribution. After

the arrival of each DAG instance, called a frame, the simulator calls the scheduler

under study. Then, the scheduler uses the information in the DAG and the current

system state to assign the ready tasks to the waiting queues of the PEs. The simulator



85

facilitates storing this information and the scheduling decision to construct the

Oracle, as described in Section 4.3.2.

The execution times and power consumption for the tasks in our domain appli-

cations are profiled on Odroid-XU3 and Zynq ZCU102 SoCs. The simulator uses

these profiling results to determine the execution time and power consumption

of each task. After all the tasks that belong to the same frame are executed, the

processing of the corresponding frame completes. The simulator keeps track of the

execution time and energy consumed for each frame. These end-to-end values are

within 3%, on average, of the measurements on Odroid-XU3 and Zynq ZCU102

SoCs.

Scheduling Algorithms used for Oracle and Comparisons: We developed a CP

formulation using IBM ILOG CPLEX Optimization Studio [169] to obtain the

optimal schedules whenever the problem size allows. After the arrival of each

frame, the simulator calls the CP solver to find the schedule dynamically as a

function of the current system state. Since the CP solver takes hours for large inputs

(∼100 tasks), we implemented two versions with one minute (CP1−min) and five

minutes (CP5−min) time-out per scheduling decision. When the model fails to

find an optimal schedule, we use the best solution found within the time limit.

Figure 4.4 shows that the average time of the CP solver per scheduling decision

for the benchmark applications is about 0.8 seconds and 3.5 seconds, respectively,

based on the time limit. Consequently, one entire simulation can take up to 2 days,

even with a time-out.

We also implemented the ETF heuristic scheduler, which goes over all tasks and
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Figure 4.4: A comparison of average runtime per scheduling decision for each
application with CP5−min, CP1−min and ETF schedulers.

possible assignments to find the earliest finish time considering communication

overheads. Its average execution time is close to 0.3 ms, which is still prohibitive

for a runtime scheduler, as shown in Figure 4.4. However, we observed that it

performs better than CP1−min and marginally worse than CP5−min, as we detail in

Section 4.4.4.

Oracle generation with the CP formulation is not practical for two reasons.

First, it is possible that for small input sizes (e.g., less than ten tasks), there might

be multiple (incumbent) optimal solutions, and CP would choose one of them

randomly. The other reason is that for large input sizes, CP terminates at the time

limit providing the best solution found so far, which is sub-optimal. The sub-

optimal solutions produced by CP vary based on the problem size and the limit.

In contrast, ETF is easier to imitate at runtime and its results are within 8.2% of

CP5−min results. Therefore, we use ETF as the Oracle policy in our experiments

and use the results of CP schedulers as reference points. We train IL policies for

this Oracle in Section 4.4.2 and evaluate their performance in Section 4.4.4.
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4.4.2 Exploring Different Machine Learning Classifiers for IL

We explore various ML classifiers within the IL methodology to approximate the

Oracle policy. One of the key metrics that drive the choice of machine learning

techniques is the classification accuracy of the IL policies. At the same time, the

policy should also have a low storage and execution time overheads. We evaluate

the following algorithms for classification accuracy and implementation efficiency:

decision tree (DT), support vector classifier (SVC), logistic regression (LR), and a

multi-layer perceptron neural network (NN) with 4 hidden layers and 32 neurons

in each hidden layer.

The classification accuracy of ML algorithms under study are listed in Table 4.4.

In general, all classifiers achieve a high accuracy to choose the cluster (the first

column). At the second level, they choose the correct PE with high accuracy (>97%)

Table 4.4: Classification accuracies of trained IL policies with different machine
learning classifiers.

Classifier Cluster
Policy

LITTLE
Policy

big
Policy

MatMult
Policy

FFT
Policy

Viterbi
Policy

DT 99.6 93.8 95.1 99.9 99.5 100
SVC 95.0 85.4 89.9 97.8 97.5 98.0
LR 89.9 79.1 72.0 98.7 98.2 98.0
NN 97.7 93.3 93.6 99.3 98.9 98.1

Table 4.5: Execution time and storage overheads per IL policy for decision tree and
neural network classifiers.

Classifier Latency (µs) Storage (KB)
Odroid-XU3
(Arm A15)

Zynq Ultrascale+ ZCU102
(Arm A53)

DT 1.1 1.1 19.3
NN 14.4 37 16.9
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within the hardware accelerator clusters. However, they have lower accuracy and

larger variation for the LITTLE and big clusters (highlighted columns). This is intu-

itive as the LITTLE and big clusters can execute all types of tasks in the applications,

whereas accelerators execute fewer tasks. In strong contrast, a flat policy, which

directly predicts the PE, results in training accuracy with 55% at best. Therefore,

we focus on the proposed hierarchical IL methodology.

DTs trained with a maximum depth of 12 produce the best accuracy for the

cluster and PE policies, with more than 99.5% accuracy for the cluster and hardware

acceleration policies. DT also produces an accuracy of 93.8% and 95.1% to predict

PEs within the LITTLE and big clusters, respectively, which is the highest among all

the evaluated classifiers. The classification accuracy of NN policies are comparable

to DT, with a slightly lower cluster prediction accuracy of 97.7%. In contrast, support

vector classifiers (SVC) and logistic regression (LR) are not preferred due to lower

accuracy of less than 90% and 80%, respectively, to predict PEs within LITTLE and

big clusters.

We choose DTs and neural networks to analyze the latency and storage overheads

(due to their superior performance). The latency of DT is 1.1µs on Arm Cortex-

A15 in Odroid-XU3 and on Arm Cortex-A53 in Zynq ZCU102, as shown Table 4.5.

In comparison, the scheduling overhead of CFS, the default Linux scheduler, on

Zynq ZCU102 running Linux Kernel 4.9 is 1.2µs, which is slightly larger than our

solution. The storage overhead of an DT policy is 19.33 KB. The NN policies incur

an overhead of 14.4µs on the Arm Cortex-A15 cluster in Odroid-XU3 and 37µs on

Arm Cortex-A53 in Zynq, with a storage overhead of 16.89 KB. NNs are preferable
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for use in an online environment as their weights can be incrementally updated

using the back-propagation algorithm. However, due to competitive classification

accuracy and lower latency overheads of DTs over NNs, we choose DT for the rest

of the experiments.

4.4.3 Feature Space Exploration with Decision Tree Classifier

This section explores the significance of the features chosen to represent the state.

For this analysis, we assess the impact of the input features on the training accuracy

with DT classifier and average execution time following a systematic approach.

The training accuracy with subsets of features and the corresponding scheduler

performance is shown in Table 4.6 and Figure 4.5 respectively. First, we exclude all

static features from the training dataset. The training accuracy for the prediction

of the cluster significantly drops by 10%. Since we use hierarchical IL policies, an

incorrect first-level decision results in a significant penalty for the decisions at the

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
1 5 0
2 2 5
3 0 0
3 7 5
4 5 0
5 2 5

Av
g. 

Ex
ec

uti
on

 Ti
me

 (µ
s)

N o r m a l i z e d  T h r o u g h p u t

 O r a c l e   I L  ( P r o p o s e d )
 S t a t i c  F e a t u r e s  E x c l .   D y n a m i c  F e a t u r e s  E x c l .

 P E  A v a i l .  T i m e s  E x c l .   T a s k  F e a t u r e s  E x c l .

Figure 4.5: Average execution time comparison of the applications with Oracle, IL
(Proposed) and IL policies with subsets of features. As shown, the average execution
time with IL closely follows the Oracle.
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Table 4.6: Training accuracy of IL policies with subsets of the proposed feature set

Features Excluded
from Training

Cluster
Policy

LITTLE
Policy

big
Policy

MatMul
Policy

FFT
Policy

Viterbi
Policy

None 99.6 93.8 95.1 99.9 99.5 100
Static features 87.3 93.8 92.7 99.9 99.5 100
Dynamic features 88.7 52.1 57.6 94.2 70.5 98
PE availability times 92.2 51.1 61.5 94.1 66.7 98.1
Task ID, depth, app. ID 90.9 93.6 95.3 99.9 99.5 100

next level. Second, we exclude all dynamic features from training. This results in

a similar impact for the cluster policy (10%) but significantly affects the policies

constructed for the LITTLE, big, and FFT. Next, a similar trend is observed when

PE availability times are excluded from the feature set. The accuracy is marginally

higher since the other dynamic features contribute to learning the scheduling

decisions. Finally, we remove a few task related features such as the downward

depth, task, and application identifier. In this case, the impact is to the cluster policy

accuracy since these features describe the node in the DAG and influence the cluster

mapping.

As observed in Figure 4.5, the average execution time of the workload signifi-

cantly degrades when all features are not included. Hence, the chosen features help

to construct effective IL policies, approximating the Oracle with over 99% accuracy

in execution time.

4.4.4 IL-Scheduler Performance Evaluation

This section compares the performance of the proposed policy to the ETF Oracle,

CP1−min, and CP5−min. Since heterogeneous many-core systems are capable of
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running multiple applications simultaneously, we stream the frames in our applica-

tion mix (see Table 4.3) with increasing injection rates. For example, a normalized

throughput of 1.0 in Figure 4.6 corresponds to 19.78 frames/ms. Since the frames

are injected faster than they can be processed, there are many overlapping frames

at any given time.

First, we train the IL policies with all six reference applications and refer to

this as the baseline-IL scheduler. IL policies suffer from error propagation due

to the non i.i.d. nature of training data. To overcome this limitation, we use a

data aggregation technique adapted for a hierarchical IL framework (IL-DAgger),

as discussed in Section 4.3.3. A DAgger iteration involves executing the entire

workload. We execute ten DAgger iterations and choose the best iteration with

performance within 2% of the Oracle. If we fail to achieve the target, we continue

to perform more iterations.

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 01 5 0
1 7 5
2 0 0
2 2 5
2 5 0
2 7 5

Av
g. 

Ex
ec

uti
on

 Ti
me

 (µ
s)

N o r m a l i z e d  T h r o u g h p u t

                  C P 1 - m i n   C P 5 - m i n   O r a c l e  
 B a s e l i n e - I L  ( b e f o r e  D A g g e r )   I L - D A g g e r  ( P r o p o s e d )

Figure 4.6: Comparison of average job execution time between Oracle, CP solutions,
and imitation learning policies to schedule a workload comprising a mix of six
streaming applications. IL scheduler policies with baseline-IL (before DAgger) and
with IL-DAgger (Proposed) are shown in the comparison.
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Figure 4.6 shows that the proposed IL-DAgger scheduler performs almost identi-

cal to the Oracle; the mean average percentage difference between them is 1%. More

notably, the gap between the proposed IL-DAgger policy and the optimal CP5−min

solution is only 9.22%. We emphasize that CP5−min is included only as a reference

point, but it has six orders of magnitude larger execution time overhead and cannot

be used at runtime. Furthermore, the proposed approach performs better than

CP1−min, which is not able to find a good schedule within the one-minute time limit

per decision. Finally, we note that the baseline IL can approach the performance

of the proposed policy. This is intuitive since both policies are tested on known

applications in this experiment. This is in contrast to the leave one out experiments

presented in Section 4.4.5.

Pulse Doppler Application Case Study: We demonstrate the applicability of the

proposed IL-scheduling technique in complex scenarios using a pulse Doppler

application. It is a real-world radar application, which computes the velocity of

a moving target object. This application is significantly more complex, with 13-

64× more tasks than the other applications. Specifically, it consists of 449 tasks

comprising 192 FFT tasks, 128 inverse-FFT tasks, and 129 other computations.

The FFT and inverse-FFT operations can execute on the general-purpose cores

and hardware accelerators. In contrast, the other tasks can execute only on the

general-purpose cores.

The proposed IL policies achieve an average execution time within 2% of the

Oracle. The 2% error is acceptable, considering that the application saturates the

computing platform quickly due to its high complexity. Moreover, the CP-based
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approach does not produce a viable solution either with 1-minute or 5-minute time

limits due to the large problem size. For this reason, this application is not included

in our workload mixes and the rest of the comparisons.

4.4.5 Illustration of Generalization with IL for Unseen

Applications, Runtime Variations and Platforms

This section analyzes the generalization of the proposed IL-based scheduling ap-

proach to unseen applications, runtime variations, and many-core platform config-

urations.

IL-Scheduler Generalization to Unseen Applications using Leave-one-out Ex-

periments: IL, being an adaptation of supervised learning for sequential decision

making, suffers from lack of generalization to unseen applications. To analyze the

effects of unseen applications, we train IL policies, excluding applications one each

at a time from the training dataset [183].

To compare the performances of two schedulers S1 and S2, we use the job slow-
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Figure 4.7: Average slowdown of IL policies in comparison with Oracle for leave-
one-out (LOO) experiments before and after DAgger (Proposed).
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down metric slowdownS1,S2 = TS1/TS2 . SlowdownS1,S2 > 1 when TS1 > TS2 [33].

The average slowdown of scheduler S1 with respect to scheduler S2 is computed

as the average slowdown for all jobs at all injection rates. The results present an

interesting and intuitive explanation of the average job slowdown in execution

times for each of the leave-one-out experiments.

Figure 4.7 shows the average slowdown of the baseline IL (IL-LOO) and pro-

posed policy with DAgger iterations (IL-LOO-DAgger) with respect to the Oracle.

We observe that the proposed policy outperforms the baseline IL for all applications,

with the most significant gains obtained for WiFi-RX and SC-RX applications. These

two applications consist of a Viterbi decoder operation, which is very expensive to

compute on general-purpose cores and highly efficient to compute on hardware

accelerators. When these applications are excluded, the IL policies are not exposed

to the corresponding states in the training dataset and make incorrect decisions.

The erroneous PE assignments lead to an average slowdown of more than 2× for the

receiver applications. The slowdown when the transmitter applications (WiFi-TX

and SC-TX) are excluded from training is approximately 1.13×. Range detection

and temporal mitigation applications experience a slowdown of 1.25× and 1.54×,

respectively, for leave-one-out experiments. The extent of the slowdown in each

scenario depends on the application excluded from training and its execution time

profile in the different processing clusters. In summary, the average slowdown of

all leave-one-out IL policies after DAgger (IL-LOO-DAgger) improves to ~1.01× in

comparison with the Oracle, as shown in Figure 4.7.

Figure 4.8(a)-(f) show the average job execution times for the Oracle (ETF),
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Figure 4.8: Average execution time with Oracle, IL-DAgger (all applications are
included for training), IL with one application excluded from training (IL-LOO) and
finally, the leave-one-out policy improved with DAgger (Proposed IL-LOO-DAgger)
technique. The excluded applications are: (a) WiFi-TX, (b) WiFi-RX, (c) Range
Detection (d) Single-Carrier TX (e) Single-Carrier RX and (f) Temporal Mitigation.

baseline-IL, IL with leave-one-out and DAgger for IL with leave-one-out policies

for each of the applications. The highest number of DAgger iterations needed was

8 for SC-RX application, and the lowest was 2 for range detection application. If

the DAgger criterion is relaxed to achieving a slowdown of 1.02×, all applications

achieve the same in less than 5 iterations. A drastic improvement in the accuracy of

the IL policies with few iterations shows that the policies generalize quickly and

well to unseen applications, thus making them suitable for applicability at runtime.

IL-Scheduler Generalization with Runtime Variations:

Tasks experience runtime variations due to variations in system workload, mem-

ory, and congestion. Hence, it is crucial to analyze the performance of the proposed

approach when tasks experience such variations, rather than observing only their
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Table 4.7: Standard deviation (in percentage of execution time) profiling of appli-
cations in Odroid-XU3 and Zynq ZCU-102.

Application WiFi-TX WiFi-RX RangeDet SC-TX SC-RX TempMit

Zynq ZCU-102 0.34 0.56 0.66 1.15 1.80 0.63
Odroid-XU3 6.43 5.04 5.43 6.76 7.14 3.14

static profiles. Our simulator accounts for variations by using a Gaussian distribu-

tion to generate variations in execution time [184]. To allow evaluation in a realistic

scenario, all tasks in every application are profiled on big and LITTLE cores of

Odroid-XU3, and, on Cortex-A53 cores and hardware accelerators on Zynq for

variations in execution time.

We present the average standard deviation as a ratio of execution time for the

tasks in Table 4.7. The maximum standard deviation is less than 2% of the execution

time for the Zynq platform, and less than 8% on the Odroid-XU3. To account for

variations in runtime, we add a noise of 1%, 5%, 10%, and 15% in task execution

time during simulation. The IL policies achieve average slowdowns of less than

1.01× in all cases of runtime variations. Although IL policies are trained with

static execution time profiles, the aforementioned results demonstrate that the IL

policies adapt well to execution time variations at runtime. Similarly, the policies

also generalize to variations in communication time and power consumption.

IL-Scheduler Generalization with Platform Configuration: This section presents

a detailed analysis of the IL policies by varying the configuration i.e., the number

of clusters, general-purpose cores, and hardware accelerators. To this end, we

choose five different SoC configurations presented in Table 4.8. The Oracle policy

for a configuration G1 is denoted by π∗G1. An IL policy evaluated on configuration
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Table 4.8: Configuration of many-core platforms.

Platform
Config.

LITTLE
PEs

big
PEs

MatMul
Acc. PEs

FFT
Acc. PEs

Decoder
Acc. PEs

G1 (Baseline) 4 4 2 4 2
G2 2 2 2 2 2
G3 1 1 1 1 1
G4 4 4 1 1 1
G5 4 4 0 0 0

G1 is denoted as πG1. G1 is the baseline configuration that is used for extensive

evaluation.

Between configurations G1–G4, we vary the number of PEs within each cluster.

We also consider a degenerate case that comprises only LITTLE and big clusters

(configuration G5). We train IL policies with only configuration G1. The average

execution times of πG1, πG2, and πG3 are within 1%, πG4 performs within 2%, and

πG5 performs within 3%, of their respective Oracles. The accuracy of πG5 with

respect to the corresponding Oracle (π∗G5) is slightly lower (97%) as the platform

saturates the computing resources very quickly, as shown in Figure 4.9.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 01 0 0
2 2 5
3 5 0
4 7 5
6 0 0
7 2 5
8 5 0

Av
g. 

Ex
ec

uti
on

 Ti
me

 (µ
s)

N o r m a l i z e d  T h r o u g h p u t

 π* G 1   π* G 2   π* G 3   π* G 4   π* G 5

 πG 1    πG 2    πG 3    πG 4    πG 5

Figure 4.9: IL policy evaluation with multiple many-core platform configurations.
IL policies are trained with only configuration G1.
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Based on these experiments, we observe that the IL policies generalize well for

the different many-core platform configurations. The change in system configura-

tion is accurately captured in the features (in execution times, PE availability times,

etc.), which enables us to generalize well to new platform configurations. When the

cluster configuration in the many-core platform changes, the IL policies generalize

well (within 3%) but can also be improved by using DAgger to obtain improved

performance (within 1% of the Oracle).

4.4.6 Performance Analysis with Multiple Workloads

To demonstrate the generalization capability of the IL policies trained and aggre-

gated on one workload (IL-DAgger), we evaluate the performance of the same

policies on 50 different workloads consisting of different combinations of appli-

cation mixes at varying injection rates, and each of these workloads contains 500

frames. For this extensive evaluation, we consider workloads each of which are

intensive on one of WiFi-TX, WiFi-RX, range detection, SC-TX, SC-RX, and tempo-

ral mitigation. Finally, we also consider workloads in which all applications are

distributed similarly.

Figure 4.10 presents the average slowdown for each of the 50 different workloads

(represented as W-1, W-2 and so on). While W-22 observes a slowdown of 1.01×

against the Oracle, all other workloads experience an average slowdown of less than

1.01× (within 1% of Oracle). Independent of the distribution of the applications

in the workloads, the IL policies approximate the Oracle well. On average, the

slowdown is less than 1.01×, demonstrating the IL policies generalize to different
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Figure 4.10: Comparison of average job slowdown normalized with IL-DAgger
(Proposed) policies against the Oracle for 50 different workloads. The slowdown
of IL-DAgger policies are shown for workloads with different intensities of each
application in the benchmark suite.

workloads and streaming intensities.

4.4.7 Evaluation with Energy and Energy-Delay Objectives

Average execution time is crucial in configuring computing systems for meeting

application latency requirements and user experience. Another critical metric in

modern computing systems, especially battery-powered platforms, is energy con-

sumption [121, 120]. Hence, this section presents the proposed IL-based approach

with the following objectives: performance, energy, energy-delay product (EDP),

and energy-delay2 product (ED2P). We adapt ETF to generate Oracles for each

objective. Then, the different Oracles are used to train IL policies for the corre-

sponding objectives. The scheduling decisions are significantly more complex for

these Oracles. Hence, we use an DT of depth 16 (execution time uses DT of depth

12) to learn the decisions accurately. The average latency per scheduling decision

remains similar for DT of depth 16 (~1.1µs) on Cortex-A53.
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Figure 4.11: (a) Average execution time and (b) average energy consumption of
the workload with Oracles and IL policies for performance, energy, energy-delay
product (EDP) and energy-delay2 product (ED2P) objectives.

Figure 4.11(a) and Figure 4.11(b) present the average execution time and av-

erage energy consumption, respectively, for IL policies with different objectives.

The lowest energy is achieved by the energy Oracle, while it increases as more em-

phasis is added to performance (EDP→ ED2P→ performance), as expected. The

average execution time and energy consumption in all cases are within 1% of the

corresponding Oracles. This demonstrates the proposed IL scheduling approach is

powerful as it learns from Oracles that optimize for any objective.

4.4.8 Comparison with Reinforcement Learning

Since the state-of-the-art machine learning techniques [33, 109] do not target stream-

ing DAG scheduling in heterogeneous many-core platforms, we implemented a

policy-gradient based reinforcement learning technique using a deep neural net-

work (multi-layer perceptron with 4 hidden layers with 32 neurons in each hidden

layer) to compare with the proposed IL-based task scheduling technique. For the

RL implementation, we vary the exploration rate between 0.01 to 0.99 and learn-
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Figure 4.12: Comparison of average execution time between Oracle, IL, and RL
policies to schedule a workload comprising a mix of six streaming real-world
applications.

ing rate from 0.001 to 0.01. The reward function is adapted from [109]. RL starts

with random weights and then updates them based on the extent of exploration,

exploitation, learning rate, and reward function. These factors affect convergence

and quality of the learned RL models.

Fewer than 20% of the experiments with RL converge to a stable policy and less

than 10% of them provide competitive performance compared to the proposed

IL-scheduler. We choose the RL solution that performs best to compare with the

IL-scheduler. The Oracle generation and training parts of the proposed technique

take 5.6 minutes and 4.5 minutes, respectively, when running on an Intel Xeon

E5-2680 processor at 2.40 GHz. In contrast, an RL-based scheduling policy that

uses the policy gradient method converges in 300 minutes on the same machine.

Hence, the proposed technique is 30× faster than RL. As shown in Figure 4.12, the

RL scheduler performs within 11% of the Oracle, whereas the IL scheduler presents

average execution time that is within 1% of the Oracle.

In general, RL-based schedulers suffer from the following drawbacks: (1) need
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for excessive fine-tuning of the parameters (learning rate, exploration rate, and NN

structure), (2) reward function design, and (3) slow convergence for complex prob-

lems. In strong contrast, IL policies are guided by strong supervision eliminating

the slow convergence problem and the need for a reward function.

4.4.9 Complexity Analysis of the Proposed Approach

In this section, we compare the complexity of our proposed IL-based task scheduling

approach with ETF, which is used to construct the Oracle policies. The complexity

of ETF is O(n2m) [178], where n is the number of tasks and m is the number of

PEs in the system. While ETF is suitable for use in Oracle generation (offline), it is

not efficient for online use due to the quadratic complexity on the number of tasks.

However, the proposed IL-policy which uses decision tree has the complexity of

O(n). Since the complexity of the proposed IL-based policies is linear, it is practical

to implement in heterogeneous many-core systems.

4.4.10 Evaluation on Real Hardware Platforms

This section presents the demonstration of the intelligent IL-based scheduler for a

workload that comprises a mix of GNU Radio applications, WiFi-TX, synthetic aper-

ture radar (SAR) applications on two different platforms, Xilinx Zynq UltraScale+

ZCU102 FPGA and Nvidia Jetson AGX Xavier. Specifically, the pulse Doppler ap-

plication constitutes the GNU Radio application. We use CEDR, a software runtime

framework to execute the IL-based scheduler on real hardware platforms. We first

instrument CEDR to run a complex scheduler and generate the Oracle. We choose
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the earliest finish time (EFT) heuristic for these experiments. During this step,

CEDR populates the list of features and labels for each in task the workload. This

information is then used to train a DT classifier in Python using the scikit-learn

library. The trained model is then plugged back into CEDR to perform runtime

scheduling for the workload with streaming application arrivals. The rest of the

section focuses on specific details and results on the two evaluation platforms.

4.4.11 Xilinx Zynq UltraScale+ ZCU102

To demonstrate the IL-based scheduling approach on Zynq ZCU102 FPGA, we

choose an SoC configuration with 3 CPU cores and 2 FFT hardware accelerators.

The EFT scheduler uses only one of the CPUs and both FFT hardware accelerators

for scheduling at runtime. As a consequence, the DT-based IL policy also performs

likewise, as shown in Figure 4.13(a). We can observe that the hardware accelerators

are the obvious PE choice for the FFT dominated workload. The scheduling policy

only reverts to the CPU core when both hardware accelerators are busy executing

other tasks and have a significant waiting time. Therefore, the IL scheduling policy

effectively utilizes the PEs at runtime.

4.4.12 Nvidia Jetson AGX Xavier

On the Nvidia Jetson AGX Xavier platform, we choose a resource configuration of

2 CPU cores and the GPU to execute the workload. The GPU offers substantially

lower execution times than the CPU cores and hence, a majority of the workload

is executed on the GPU. The scheduling policy prefers to execute the tasks on the
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(a) (b)

Figure 4.13: Gantt charts of the workload execution on (a) Xilinx Zynq ZCU102
FPGA and (b) Jetson AGX Xavier for a workload comprising the GNU Radio Pulse
Doppler, WiFiTX and SAR applications.

CPU cores only when the GPU is significantly blocked for a long period of time, as

shown in Figure 4.13(b).

4.4.13 Summary

We successfully demonstrate that the IL-based scheduling polices are applicable

and portable across different platforms. Furthermore, the framework seamlessly

integrated into CEDR, thereby providing an easy plug-and-play environment for

user evaluation.
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5 optimization techniques for decision tree classifier

implementation

5.1 Background, Motivation and Contributions

Decision trees, traditionally used as machine learning (ML) classifiers in data

mining, are gaining traction in resource management algorithms in systems-on-

chip [185, 113, 49]. A decision tree (DT) is characterized by a tree with conditional

statements at the root and internal nodes, which evaluate either True or False.

Finally, each leaf node denotes an outcome, i.e., the output decision, as illustrated

in Figure 5.1. DTs are control-flow oriented, with a maximum of D branching

instructions for a tree of maximum depth D. The simple set of conditions make

them understandable and easy to use [185].

Decision trees are commonly used in applications with widely varying require-

ments. While applications, such as data mining and bioinformatics, use ensembles

and classify large datasets, decision trees used for resource management in em-

bedded devices target ultra-low latency [185, 113, 49]. DTs can be implemented

using both software (using sequential code execution) and hardware accelerators to

satisfy the different requirements. While hardware architectures offer a high degree

of parallelism (hence, throughput), software approaches provide the following

advantages: (1) re-use of existing CPU cores, (2) avoid the complexity of hardware

design and integration, (3) reduce data movement on the interconnect, and (4)

eliminate data and control handoff overheads between CPU and accelerator. Data



106

function decision_tree :
# Input: FEATURES(F1,F2,F3)
if F1 < V1 :

if F2 < V2 :
label = 1

else :
label = 2

else :
if F3 < V3 :
label = 3

else :
label = 2

return label

F1 < V1

F2 < V2 F3 < V3

label
= 1

label
= 2

label
= 3

label
= 2

True

True True FalseFalse

False

Figure 5.1: An illustration of a decision tree of maximum depth 2 (left) and its
corresponding pseudo code for classification (right).

mining and bioinformatics applications benefit from the parallelism in hardware

implementations since they classify large datasets [185]. In contrast, decision tree

classifiers used in resource management applications use a singular decision tree

invoked periodically and target ultra-low latency (tens of nanoseconds) [113, 49].

Therefore, the nature of the application plays a crucial role in selecting between

execution in software and hardware.

This chapter focuses on DT classifiers used for resource management appli-

cations. While hardware architectures for decision trees have shown substantial

speed-ups over software approaches in the literature, most approaches do not con-

sider the data transfer overheads between the host and hardware accelerator [185].

Considering these overheads is crucial for low-latency applications since the speed-

up obtained with hardware accelerators is a function of the amount of data to

be moved [186]. Moreover, the data movement and control overheads may be

prohibitively high (typically in microseconds) to achieve low latency, especially

when the classification operation is a handful of instructions in a software program,
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which we demonstrate in Section 5.2. Existing software approaches do not use

fixed-point data and also do not accurately profile code that executes in the order of

nanoseconds. Hence, we propose software implementation and optimization tech-

niques to achieve ultra-low latency (<50 ns) for trees up to depth 12 for resource

management applications, as shown in Section 5.2.

5.2 Hardware Architecture and Evaluation of DT

Classifiers

5.2.1 Microarchitecture and Hardware Design

This section first presents the hardware design for a DT classifier and then analyzes

its end-to-end latency on an implementation in the Xilinx Zynq ZCU102 FPGA. The

microarchitecture of the decision tree hardware design is presented in Figure 5.2.

The design utilizes an internal memory structure that holds the features used up in

each node in the DT, the threshold values used, and the output class value for the

leaf nodes. The internal memory is pre-loaded with the weights based on a trained

model. Initially, we always start with the root node whose weights are stored in the

first row of the memory. The internal memory provides the feature and threshold

value for comparison in the root node. After the comparison, the address of the

next node is determined based on the result of the comparison, which determines

the address of the next node in the memory. Iteratively, the features and thresholds

are fetched for comparison until the leaf node. Once we reach the leaf node, the
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Figure 5.2: Proposed microarchitecture for DT classifier acceleration in hardware.

output class stored in the internal memory is fetched and driven as the output of

the classification operation. Currently, the decision provisions for up to 32 input

features and is parameterizable for different tree depths. The hardware design

processes one node of the tree in 2 clock cycles and uses 1 clock cycle to drive the

output. In total, for a DT of depth D, the total number of clock cycles is (2D + 1).

5.2.2 End-to-End Latency Evaluation of DT Accelerator on FPGA

The presented hardware design is translated into behavioral Verilog, synthesized,

and implemented on the Xilinx Zynq ZCU102 FPGA. The input features are 8-bits

each, and the AXI bus width on the FPGA is 32-bits. The maximum depth of the tree

is 4. Hence, we transfer four input features in each write transaction to improve the

useful bandwidth and reduce the data transfer latency. The design is implemented

at the maximum supported frequency of 300 MHz for the programmable logic,
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Figure 5.3: Schematic of the hardware components for DT accelerator implementa-
tion in ZCU102 FPGA. The numbered circles indicate the computation and com-
munication steps involved in sending and receiving data from/to the accelerator.

while the host controller runs at 1.2 GHz.

Hardware accelerators incur significant overheads in terms of communication

as the inputs and outputs are streamed in and out of the design. While this cost is

ammortized for compute-intensive designs, it remains substantial for small designs,

which we will illustrate in this section. Figure 5.3 presents the schematic of the

hardware implementation in the ZCU102 FPGA, the computation and the commu-

nication paths to send and receive data to and from the accelerator respectively.

We use the Xilinx integrated logic analyzer (ILA) to observe the waveforms and

measure the average number of cycles for data transfer as shown in Table 5.1. We

observe that the communication latency is 173 ns, which is 6.4× of the computation

latency of 27 ns (2D + 1 cycles for depth 4 at 300 MHz is ∼ 27 ns). Therefore, the

communication latencies override the benefit of highly efficient computation of DT

classification in hardware. Since these latencies are prohibitive, we explore highly

targeted software optimizations explained in the next section.
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Table 5.1: Table showing the communication latencies of data transfers for the DT
accelerator (depth 4) implementation in the ZCU102 FPGA with the Arm cores
operating at 1.2 GHz and accelerator operating at 300 MHz.

Communication
Step

No. of
Transactions

Avg. Latency per
Transaction (cycles)

Avg. Latency per
Transaction (ns)

Total Expected
Latency (ns)

1 + 2 9 5 3.33 ns × 5 = 16.7 ns 16.7 ns × 9 = 150 ns
4 + 5 1 7 3.33 ns × 7 = 23.3 ns 23.3 ns × 1 = 23 ns

Total Communication Latency 173 ns

5.3 Proposed Software Optimization Approaches for

DT Classifiers

This section describes the software optimization techniques to enhance the latency

of DTs. We use Scikit-learn [4] a popular Python-based framework for supervised

machine learning and decision tree classification [4], to design the DTs used in

this work. Then, the sklearn-porter tool translates the rules of the decision tree

to generate a C-language implementation [187], which is our baseline. Finally, we

propose optimization techniques that improve its performance, listed as follows.

Fixed-point number representation: The inherent robustness in ML models al-

lows us to reduce computational complexity by using fewer bits for data repre-

sentation [188]. We designed a DT optimizer that parses the baseline C-language

implementation to transform the single-precision floating-point (FP) data types

into a parameterized fixed-point representation. Classification accuracy of ∼95% is

achieved with an 8-bit data format with a marginal impact to accuracy, as shown in

Figure 5.4. Using 8-bit numbers reduces the size of the model and, subsequently,

the memory footprint by 75%. This transformation also allows for processing in
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Figure 5.4: Effect of number of bits on the classification accuracy (Fixed-point: 4–16
bits, single-precision floating point: 32 bits).

integer functional units in the processors, which incur lower latency than FP units.

Transformation of Decision Variable: The default C-code generated by sklearn-porter

uses weighted arrays for the possible output labels. The final decision label is

computed by performing an argmax operation on the array. This approach has a

memory footprint (due to the array) and latency (due to the argmax operation).

Our decision tree optimizer transforms the weighted array assignments (performs

argmax operation) to a single variable that directly holds the decision label, as

shown in Figure 5.1.

Implementation on Arm NEON SIMD co-processor: We exploit the presence of a

tightly coupled vector extension (NEON), available in most Arm-based processor

architectures, to leverage the parallelism they offer [189]. The NEON extension

performs SIMD processing on 128-bit registers that can be fragmented into 16 lanes

of 8-bits each. This design choice nicely fits our 8-bit data format and allows for

maximum parallel processing. We utilize the VCLE instruction to perform up to

16 comparisons simultaneously. The designed decision tree optimizer transforms

the C-code into a NEON-friendly code, and the implementation is outlined in

Figure 5.6.
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5.4 Experimental Results

Profiling and Setup: The key functional component in a DT classifier comprises

a handful of instructions. Thus, even high-resolution timers cannot capture the

latency of a single classification call accurately. Hence, we measure the execution

time by repeatedly calling the classifier to obtain the average time per classification

invocation. We use the GCC toolchain and compile the programs with the -O3 flag

to enable the highest level of compiler optimization.

Results and Discussion: We evaluate the proposed DT classifiers using a dataset

for dynamic resource management of a system-on-chip (SoC) [49]. The dataset

comprises task scheduling decisions for the target SoC that uses 16 processing cores,

organized into five processing clusters. Two clusters consist of Arm big.LITTLE

cores, while the others have signal processing hardware accelerators. The proposed

optimization techniques are evaluated on a DT that schedules tasks to these clusters.

Figure 5.5 presents the latency of the DT classifier for various tree depths on Arm

Cortex-A53 at 1.2 GHz, Arm Cortex-A72 at 1.5 GHz, and Nvidia Carmel cores at 1.9

GHz on Xilinx Zynq UltraScale+ SoC, Raspberry Pi 4, and Nvidia Jetson Xavier NX,
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Figure 5.5: Latencies of decision tree classifiers for varying tree depths on Arm
Cortex-A53, Arm Cortex-A72 and Nvidia Carmel cores with (a) scalar processing
using 8-bit data, (b) scalar processing with floating-point (32-bit) data, and (c)
vector processing in NEON using 8-bit data.
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Figure 5.6: Transformation of sequential decision tree code into NEON-friendly
code for SIMD processing.

respectively. The latency improves on average by ∼35% by converting 32-bit data

(Figure 5.5(b)) format to 8-bits (Figure 5.5(a)). The latency for a tree depth of 4 is

similar with scalar processing (18.1 ns) and SIMD processing in NEON (23.98 ns).

However, as tree depths increase, the latency is substantially higher with processing

in the NEON co-processor. Upon a detailed characterization, we observed that

data transfer between the scalar core and the NEON unit contributes to ∼60% of the

latency. The rest of the overhead comes from additional comparisons performed to

allow any branch to be taken in the tree. So, for highly control-oriented programs

such as DT classifiers, scalar cores provide better latency due to lower computation

and data movement overheads. These results show the critical need to analyze the

interplay between control flow, parallelizable vector operations, and data movement

when designing latency-sensitive kernel tasks.
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6 incremental and online updates to decision tree

classifiers

6.1 Background, Motivation and Contributions

With the slowdown of Moore’s law and Dennard scaling, heterogeneous processing

elements (PEs) have been the primary catalyst for the performance and energy

efficiency of computing systems [5]. For example, highly optimized fixed-function

hardware accelerators for signal processing and deep learning are commonly used

in communication and autonomous driving applications [49, 23]. However, perfor-

mance and energy efficiency boosts come at the expense of programming flexibility,

as the hardware accelerators are notoriously hard to program. To address this

challenge, domain-specific systems-on-chip rise as a new class of heterogeneous

SoCs [24, 190]. They combine the flexibility of general-purpose cores with the

performance and energy efficiency of specialized hardware accelerators tailored to

applications in a target domain [6, 22, 51]. DSSoCs comprise many heterogeneous

processing elements, resulting in an ample runtime decision space for task execu-

tion. Hence, scheduling algorithms try to identify the most appropriate execution

resource to maximize a specific optimization objective, such as performance, power

consumption, or energy-delay product [145, 191, 1, 33, 49, 192].

DSSoCs can execute tasks in the order of nanoseconds due to highly specialized

hardware accelerators. Hence, task scheduling algorithms must provide high-

quality scheduling decisions at ultra-low latencies [6, 147]. Decision tree (in short,
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DT) classifiers offer a promising solution since they provide high-quality decisions

at low inference latency compared to multi-layer perceptron and deep neural net-

works. Furthermore, DT policies are simple and easy to interpret [52, 148, 185].

Task scheduling policies designed offline are optimized for a particular optimiza-

tion objective, SoC configuration, and set of applications [193, 1, 49]. Therefore,

rapidly evolving SoC architectures, emerging applications, and workloads pose a

severe risk to fixed scheduling policies. As these parameters change over time, the

offline designed static policies become ineffective, lowering the energy efficiency

potentials of DSSoCs. Hence, there is a critical need for task scheduling policies to

adapt to dynamic changes to maximize performance and energy efficiency.

Existing DT design techniques require the entire dataset to train a new stan-

dalone DT [2]. This requirement poses a significant drawback compared to other

ML models, such as neural networks, since storing all training samples would

require significant memory on the target platform. Hence, the classical DT training

algorithms are impractical for online adaptation. Prior studies tried to address this

challenge using reinforcement learning (RL), ensemble trees, and very fast decision

trees (e.g., Hoeffding trees) [3, 194, 153, 155]. RL techniques suffer from com-

putational power requirements for training [195]; DT ensembles result in higher

latency and computational overheads due to several weak learners [196]; finally, the

assumptions to train Hoeffding trees do not hold for online updates [155]. Hence,

existing techniques are not applicable for incremental and online DT updates due to the

resource constraints and inference latency targets for DSSoCs.

This chapter proposes INDENT, a new algorithm for incremental training to
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adapt DTs for task scheduling to new workloads and hardware changes. INDENT

addresses the following research question in the DSSoC task scheduling context:

Can we incrementally update a single DT model online without storing all prior

training data and yet obtain the same accuracy as the DT designed with all training data?

The following insights help us answer this question while addressing scalability

and shortcomings of prior techniques.

Key Insight 1: We can embed a small amount of metadata (e.g., 1-8% of the original

data) into a DT to store the synopsis of the original data used for initial training.

Key Insight 2: We can use the metadata and newly encountered dataset to update

the DT online such that it performs similar to one trained from scratch with the

entire training data.

The proposed approach is evaluated systematically by varying applications, SoC

configurations, and optimization objectives. We use six applications from wireless

communication and radar systems domains, three DSSoC configurations, and

three optimization metrics (performance, energy, and energy-delay2 product). Our

results demonstrate that INDENT successfully adapts to unseen scenarios using 1%–

8% of the training data used by the popular classification and regression tree (CART)

algorithm [149]. The resulting DT schedulers achieve almost the same performance

(within 5%) as schedulers trained using all the training data. Furthermore, they

lead to 5.4×, 2.6×, and 2.5× application execution time speed-up compared to

DTs trained by RL, Hoeffding trees, and DT ensembles, respectively. Finally, we

implement these DT policies on the Nvidia Jetson Xavier NX platform. INDENT

achieves the lowest inference latency of 42 ns, similar to RL and Hoeffding tree
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algorithms, while the random forest ensemble takes 1.4 µs per decision. INDENT

establishes a base to update information theoretic machine learning classifiers

online. The key contributions of this chapter are:

• The INDENT algorithm that incrementally trains DTs online by embedding a

synopsis of the original training data into the tree;

• Extensive experimental evaluations that demonstrate the benefits of INDENT

in adapting to new applications or new processing clusters for different per-

formance and energy metrics;

• Hardware measurements and simulations that show INDENT outperforms

RL-, Hoeffding tree- and ensemble tree approaches.

Section 6.2 presents an overview of DT classifiers and our assumptions, while

Section 6.3 presents the proposed INDENT algorithm. Section 6.4 presents our

extensive experimental evaluations.

6.2 An Overview of Decision Tree Classifiers and

Assumptions

6.2.1 Overview of Decision Tree Classifiers

The CART algorithm is widely used to train standalone DT classifiers [149, 197].

Notable DT training algorithms also include iterative dichotomiser 3 (ID3), C4.5,

C5.0, Chi-square automatic interaction detection, and MARS [198]. This section
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F1 <= V1
[ 10, 8, 2 ]

G=0.58, IG=0.26

Label = 1
[ 10, 0, 0 ]
G=0, IG=0

F3 <= V3
[ 0, 8, 2 ]

G=0.32, IG=0.32

Label = 2
[ 0, 8, 0 ]

G=0, IG=0

Label = 3
[ 0, 0, 2 ]

G=0, IG=0

True False

FalseTrue

Root Node

Intermediate
Node

Leaf Node

Figure 6.1: An example of a decision tree (DT) classifier showing the root, interme-
diate, and the leaf nodes.

Table 6.1: A summary of symbols used in INDENT.

Symbol Description of the Symbol

Do, Di Original training dataset (Do) and incremental dataset (Di)

S

So, Si
Subset of dataset that propagates to the node of interest in the tree
Original (So) and incremental (Si) subsets that propagate to tree node

Strue

Sfalse

Split of S using a (feature-threshold) pair into true branch (Strue)
and false branch (Sfalse) at a tree node

M, N Number of input features (M) and output classes (N)

G, G(S) Gini index (G) and G(S): Gini index of a sample set S

IG Information gain

pi Probability of classifying sample(s) to class i

P Set of pi, where 1 ⩽ i ⩽ N

Fj jth feature, j ∈ Z+, 1 ⩽ j ⩽ M

U(Fj, S) Set of unique values of Fj in S

defines the important terms used in the literature and an overview of DTs, while

Table 6.1 summarizes the symbols used in this work.

Root Node: The first decision point in the DT is the root node, as shown in Figure 6.1.

Leaf Node: A leaf node in the tree is defined as the node that contains the final
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prediction (or) output class.

Intermediate Node: The remaining nodes in the tree, apart from the root and leaf

nodes. They contain a decision condition and lead to another intermediate node or

a leaf node, as shown in Figure 6.1.

Suppose the number of output classes for the DT classifier is N. We denote the

probability that any given sample belongs to class i as pi ∀i ∈ Z+, 1 ⩽ i ⩽ N. M

denotes the number of input features to the classifier.

Gini Index: Assume that a data sample is randomly chosen and classified to one of

the N classes. The Gini index, a.k.a. Gini impurity, measures the probability that

this classification will be incorrect [199]. The probability of selecting a sample from

class i and the incorrect classification probability are pi and (1 − pi), respectively.

Hence, the Gini index (G) is expressed as:

G =

N∑
i=1

pi(1 − pi) = 1 −

N∑
i=1

p2
i (6.1)

As an example, consider a dataset that contains 20 samples categorized into 3 output

classes. Assume that 10 samples are labeled with class 1, 8 with class 2, and 2 with

class 3.

p1 = 10/20 = 0.5;p2 = 8/20 = 0.4;p3 = 2/20 = 0.1

G = 1 − [(0.5)2 + (0.4)2 + (0.1)2] = 0.58

The Gini index ranges between 0 and 1. Suppose all the samples at a particular

node in the tree belong to the same class, i.e., pi = 1; then the Gini index is G = 0,
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denoting the purity of the classification. A low Gini index is preferred, especially 0,

such that all samples at the particular node can be classified into the same class.

Information Gain (IG): This term, obtained from Kullback–Leibler divergence,

is a measure of the information gained when a particular node is split based on a

specific feature and a threshold value [149]. Let U(Fj, S) be the set of unique values

of feature Fj (1 ⩽ j ⩽ M) in sample set S. Suppose the corresponding node is split

based on feature Fj and threshold value Vk ∈ U(Fj, S). Assume that the samples

in S are split into Strue under the true branch and Sfalse under the false branch,

hence, |Strue|+ |Sfalse| = |S|. The resulting information gain (IG) is defined as the

difference between the Gini impurity of the parent node and the weighted sum of

the Gini impurities of the true and false branches based on (Fj, Vk):

IG(Fj,Vk) = G(S) − [
|Sleft|

|S|
·G(Strue) +

|Sright|

|S|
·G(Sfalse)] (6.2)

DT training algorithms aim to choose (Fj, Vk) at each node such that the information

gain (IG) is maximized. Figure 6.1 shows an illustration of the Gini indices and

information gains at each node for the chosen (Fj, Vk) computed as per Equation 6.1

and Equation 6.2.

6.2.2 Assumptions

We assume that a system-level framework (e.g., a system scheduler or a runtime

framework) invokes INDENT when there are variations in the set of applications
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or processing clusters. Once invoked, the system temporarily switches from using

the DT for task scheduling to a baseline scheduler, such as a sophisticated heuris-

tic. Sophisticated schedulers include complex heuristics such as the earliest task

first [51] and heterogeneous earliest finish time (HEFT) [192]. Given a new task

and the system state, the goal of the baseline scheduler is to search for the best

scheduling decision. Then, the system state and this decision are stored as features

(shown in Table 6.2) and labels, respectively. We run the baseline scheduler for

a specific amount of time (e.g., 200 new jobs in our experiments) to obtain the

incremental dataset (Di). After the incremental data collection is complete, the

proposed INDENT algorithm updates the DT policy, as described in Section 6.3,

and switches back to it.

In this work, we use the earliest task first (ETF) [51] heuristic as the baseline

since it iterates over all ready tasks and processing elements to determine the best

action. However, the INDENT algorithm can work with any scheduler since it only

uses the scheduling decisions as labels without relying on the internal operation.

Table 6.2: The list of all input features for each task and the specific order of features
enforced by INDENT to allow incremental updates when new clusters are added.

List of Input Features Order of Features Enforced by INDENT

Execution times on M clusters Depth of task in the DAG
Power consumption in M clusters Job ID
Earliest availability of M clusters Application type
Depth of task in the DAG Execution time, power consumption in Cluster-1
Job ID Earliest availability time of Cluster-1
Application type Execution time, power consumption in Cluster-2

Earliest availability time of Cluster-2
Execution time, power consumption in Cluster-M
Earliest availability time of Cluster-M
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Train DT using CART algorithm
with the original dataset (𝒟!)

Embed metadata in the DT
during training using INDENT

Save the 
INDENT-ed DT OFFLINE

Obtain incrementally 
trained DT

Utilize embedded metadata and new 
data samples (𝒟") to update DT using INDENT

Import the 
INDENT-ed DT ONLINE

Figure 6.2: An overview of the INDENT flow to incrementally train DTs online.

We emphasize that using the baseline scheduler indefinitely is prohibitive since

searching for high-quality decisions can lead to significantly long execution times.

As our hardware measurements in Section 5.5 demonstrate, DT schedulers trained

by INDENT make decisions within 42 ns, in strong contrast to 370 ns – 3.6 µs (for

1–20 ready tasks) execution time of ETF. Finally, we note that the online updates to

schedulers will be very infrequent, e.g., new applications or hardware configura-

tions typically appear in the order of months. Consequently, the incremental data

collection and runtime overheads of INDENT are negligible.

6.3 INDENT: Incremental Online DT Training

This section presents the proposed INDENT algorithm that incrementally trains

DTs online. The algorithm consists of two primary steps as illustrated in Figure 6.2:

1. An offline phase that uses the original training data to construct a DT and

embed metadata into it,

2. An online phase that updates the DT incrementally to adapt to changes in

hardware and new applications.
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Algorithm 3: INDENT Algorithm to Embed Metadata into the Initial Deci-
sion Tree (built OFFLINE)
1 build_CART_tree (Do) /* where Do ← original dataset */
2 Function build_CART_tree (S) begin
3 Features in S, F← {F1, F2, ..., FM} /* M features */
4 G = compute_Gini (S) as per Equation 6.1
5 best_IG = 0 ; best_feature = 0
6 best_Strue = {} ; best_Sfalse = {} ; metadata = {}
7 foreach Fj ∈ F do
8 foreach Vk ∈ U(Fj, S) do
9 Strue, Sfalse = divide_data(S, Fj, Vk)

10 IG = G−{[ |Strue| · G(Strue) + |Strue| · (Sfalse) ] / |S|}
/* Get probability of frequency of classes in true and false

branches */
11 Ptrue = get_prob_dist_labels (Strue)
12 Pfalse = get_prob_dist_labels (Sfalse)
13 metadata.add (Fj, Vk, IG, |Strue|, |Sfalse|, Ptrue, Pfalse)
14 if IG > best_IG then
15 best_feature = (Fj, Vk) ; best_IG = IG
16 best_Strue = Strue

17 best_Sfalse = Sfalse

/* If IG at a node is 0, all samples belong to same class */
18 if best_IG == 0 then
19 metadata = get_histogram (S)
20 P = get_prob_dist_labels (S) ; class_label = argmax (P)

/* Create a leaf node at stopping criteria */
21 if (best_IG == 0) or (depth == max_depth) then
22 create_DT_node (class_label, metadata)

/* Build true branch (left child) */
23 true_branch = build_CART_tree (best_Strue)

/* Build false branch (right child) */
24 false_branch = build_CART_tree (best_Sfalse)
25 return create_DT_node(best_feature, true_branch, false_branch, metadata)

This section describes these phases and how INDENT adapts to new applications,

processing cluster and other unseen scenarios.
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6.3.1 The Offline Phase of INDENT

The first step of the offline phase is designing the DT using the recursive CART

algorithm with the original dataset. Algorithm 3 outlines the CART training al-

gorithm in black typeface, and our modifications to embed metadata into the DT

using blue typeface. We call the algorithm using the original dataset Do (line 1). It

first uses the input dataset and features to compute the Gini index at the root node

(line 3). Then, it loops through each feature (line 7) and each unique feature value

(line 8) to determine the best feature-value pair (Fj, Vk) which maximizes IG at the

current node (lines 7–17). The input dataset is split based on the best feature-value

pair (Fj, Vk) to divide the samples into the true (Strue) and false (Sfalse) branches

respectively (line 9). Then, the child’s true and false branches are built recursively

using the corresponding samples in Strue and Sfalse (lines 23 & 24), respectively.

This recursive training procedure terminates when the maximum depth or leaf

node is reached (line 21) on all branches of the DT.

The metadata we embed into the tree is crucial to help reconstruct the informa-

tion provided by the original dataset. The Gini index and information gain are used

to compute the feature and threshold at each decision node (e.g., lines 4 & 10). Since

the Gini index depends on the frequency of classes of data arriving at a particular

node (Equation 6.1), we store the probability distribution of the labels (lines 11 &

12) as part of the metadata for feature and threshold pair combinations (as shown

in line 13 of Algorithm 3). In addition, we also store the information gain and the

number of samples in the true and false branch splits. If the information gain at

a node is zero, it implies that all samples belong to the same class, and we now
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store the histogram of the data samples at the node, which will help reconstruct

information in the online phase.

6.3.2 The Online Phase of INDENT

The primary challenge in the online training phase is the lack of access to the

original training data. However, online algorithms can only use the new training

samples and the metadata embedded during the offline phase. Hence, the critical

differences between the two phases is the computation of class distribution prob-

abilities (pi), Gini indices, and IG (lines 4, 10–12, & 20) in Algorithm 3. One of

the novel contributions of INDENT is computing these quantities using only the

metadata and the new data samples, as outlined in Figure 6.3. This key contribution

enables the update to the DT without requiring access to the entire original training

data.

The online update begins at the root node and follows the steps outlined in

Figure 6.3 for all nodes, similar to the offline phase. At the root node, INDENT uses

the new training sample set (Si) and extracts all unique feature-value pairs (Fj,

Vk) ∀j for 1 ⩽ j ⩽ M and ∀ Vk ∈ U(Fj, Si). If Fj is a new feature that has not been

New data 
samples Create new entryIf newly added 

feature?
(Fj , Vk) pairs

in	𝓢!
Yes

Add 
entry in 

metadata(Fj , Vk) exist in 
metadata? 

Approximate to Vj with 
smallest absolute difference

No
No

Yes

• Compute pi using Equation 3
• Compute G using above pi

• Compute IG using G
• Split 𝓢! based on best (Fj ,Vk) 

to get 𝓢"#$% and 𝓢&'()%

INDENT’s Computation in Each Tree Node (ONLINE)

Iteratively
proceed to
child nodes

𝓢!

Look-up and fetch information from metadata

Figure 6.3: Block diagram describing the computation in INDENT’s online phase
to incrementally update a DT node.
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encountered before, there is no prior information about Fj in the original training

data. Hence, INDENT creates a new entry in the metadata of this node. If Fj is

a pre-existing feature, INDENT checks if information to corresponding (Fj, Vk)

is available in the metadata. If the information is present, INDENT looks up the

information. Otherwise, we approximate the information corresponding to (Fj, Vk)

with that of (Fj, Vx) such that |Vx −Vk| is minimum ∀ Vx ∈ U(Fj, S) in the metadata

and create a corresponding entry.

The metadata provides the probability distribution of the labels (pi,metadata)

and number of samples (ni,metadata) in the original data for 1 ⩽ i ⩽ N. Similarly,

the corresponding probabilities and number of samples in the new training samples

(Si) are pi,inc and ni,inc respectively. Using these inputs, INDENT updates the

probability distribution of the labels as:

pi,inc =
(pi,metadata × nmetadata) + ni,inc

nmetadata + ntotal,inc

(6.3)

This equation enables us to obtain a unified probability for each class. Then, IN-

DENT uses these probabilities and Equation 6.1 to compute the Gini indices. Like

in the offline phase, the Gini indices are used to identify the best (Fj, Vk) pair such

that IG is maximized. Finally, Si is split into the true and false branch samples, Strue

and Sfalse respectively. Then, these two subsets are propagated to the child nodes,

and the above computation is recursively repeated until the maximum depth of the

tree is reached. As a result, INDENT updates the DT incrementally through this

procedure to adapt it to unseen scenarios.

The INDENT framework adapts DT schedulers to a wide variety of scenarios,
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such as the addition of new processing clusters and the addition of new applications,

as discussed in the following sections.

6.3.3 Handling New Processing Clusters

The number of features increases with the number of processing clusters, but

the metadata embedded offline does not contain any information about the new

features. For example, the additional input features that describe the new PEs

include the availability time of a PE, expected execution time of the task on the PE,

and power consumption of the task on the PE, as listed in Table 6.2. To address this

challenge and update the DT online, we employ the following three strategies.

Strategy 1: To retain the significance of existing features and allow scalability for

new processing clusters, INDENT enforces an ordering that places the cluster

independent features at the beginning (see Table 6.2). Then, the features of each

processing cluster are grouped together and appended to the feature set to the end

without affecting the significance of the original features in the DT.

Strategy 2: If the feature being parsed is available in the original dataset, then

INDENT only updates the values of the entries for that (feature, threshold) combi-

nation in the metadata.

Strategy 3: If the feature being parsed is a newly introduced feature, then we com-

pute the Gini score, information gain, and other metrics, and append them to the

metadata.

Combined with these strategies, the techniques presented in Section 6.3.1 and

6.3.2 update DTs online effectively, as illustrated next.
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6.3.4 Illustration: Adapting to New Scenarios

This section illustrates how INDENT adapts a DT trained using Algorithm 3 to

new scenarios encountered online. Suppose that INDENT is invoked after a new

application, which was not known during training, arrives. The new application

may have tasks that show different characteristics than the existing ones, while

some others may be identical to them. The DT classifier can predict the execution

resource accurately for the tasks in the new applications that are identical to the

ones in the original training data. However, it may need one of the following two

updates for the tasks that do not resemble existing tasks:

1. Adding new nodes or branches,

2. Updates to the decision criteria in the existing nodes.

We explain both scenarios using a canonical example shown in Figure 6.4, which

assumes that the dataset uses two features and contains three output classes. The

F1 <= V1

Class = 3

True False

F2 <= V2

Class = 1 Class = 2

FalseTrue

F1 <= V1
True False

F2 <= V2’

Class = 1 Class = 2

FalseTrue

(a) Initial Scenario (b) After Incremental Update

F3 <= V3

Class = 3 Class = 4

FalseTrue

1

2 3 2 3

1

4 5 4 5 6 7

Figure 6.4: A canonical example showing the (a) initial and (b) incrementally
updated DT. The incremental update may change decision criteria in nodes (node
2), expand nodes (node 3) and introduce new leaf nodes (node 7).
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DT for the applications in the initial workload is shown in Figure 6.4(a). The

introduction of new applications in the workload expands the DT by creating

new nodes, highlighted by rectangles with red bold dashed borders in Figure 6.4(b).

Another example of an unseen scenario is newer processing clusters, which typically

improve the power and performance characteristics. DTs may require updating the

decision criteria in the existing nodes or adding new ones.

INDENT effectively updates the decision criteria in the nodes (rectangles in

blue bold dashed borders) and modifies the structure of the tree, as illustrated in

Figure 6.4(b). The quality of its results is evaluated in the next section.

6.4 Experimental Evaluation

This section first presents the applications and the DSSoC configurations. Then,

Section 6.4.2 evaluates the proposed INDENT algorithm with the addition of new

processing clusters, while Section 6.4.3 presents the results when new applications

are introduced. Section 6.4.4 illustrates INDENT with three different optimization

objectives. Finally, Section 6.4.5 compares INDENT to state-of-the-art RL, Hoeffding

trees, and DT ensemble (random forest) techniques.

6.4.1 Experimental Setup

Domain Applications: We use the following six wireless communications and

radar systems applications to evaluate INDENT: WiFi transmitter and receiver

(W-TX and W-RX), single-carrier transmitter and receiver (S-TX and S-RX), lag
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detection (LD), and temporal mitigation (TM). Jobs from these applications are

mixed to construct complex workloads (see Table 6.3). Since the jobs stream into

the system, they observe varying system dynamics in the states of the system and

processing elements in the DSSoC.

DSSoC Description: The processing clusters are chosen to provide programming

flexibility and maximize the energy efficiency for domain applications. To this

end, the DSSoC has two general-purpose core clusters. The first one has four

energy-efficient LITTLE Arm cores, while the other has four high-performance

(energy-intensive) big Arm cores. In addition, the DSSoC integrates hardware

accelerators for complex matrix multiplication (MM), fast Fourier transform (FFT),

inverse FFT, and Viterbi decoding (VD), as shown in Table 6.3. We use 4 cores each

in the LITTLE, big and FFT clusters, and 2 cores each in the FFT and VD cluster,

resulting in a total of 16 cores.

Evaluation Hardware Platform and Simulator: The proposed INDENT framework

is rigorously evaluated with the DS3 simulator [51]. DS3 supports plug-and-play

scheduling algorithms, analytical and logical models for the scheduling environ-

ment, processing elements, interconnect, and memory. It is calibrated and validated

with Xilinx Zynq ZCU102 and Exynos 5422 platforms. The DTs used in our eval-

uations are implemented on the Tegra SoC in the Jetson Xavier NX platform and

profiled for their inference latencies.

Decision Tree Specification: The maximum DT depth and the number of input

features critically influence the inference latency, which must be low for resource

management applications. Therefore, we choose a small set of 19 features and a
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Table 6.3: Table summarizing the workload and SoC configuration scenarios used
for the evaluation of INDENT. The bold text denotes the new processing clusters or
applications.

SoC
.Config...

Clusters
in Initial
Config

Clusters
in New
Config

.Workload..
Apps in
Initial

Workload

Apps in
New

Workload

Config-1 LITTLE, big
MM, VD

LITTLE, big
MM, VD,

FFT
Workload-1 W-TX, S-TX,

LD, TM

W-TX, S-TX,
LD, TM,

W-RX,S-RX

Config-2 LITTLE, big
FFT, MM

LITTLE, big
FFT, MM,

VD
Workload-2 W-RX, W-TX,

S-RX, S-TX

W-RX, W-TX,
S-RX, S-TX,

LD,TM

Config-3 LITTLE, big
FFT, VD

LITTLE, big
FFT, VD,

MM
Workload-3 W-RX, W-TX,

LD, TM

W-RX, W-TX,
LD, TM,

S-TX,S-RX

maximum depth of 6 to avoid overfitting. The depth of 6 is enforced for INDENT

and all other prior approaches that we use for comparison in this work.

In our experiments, the DTs are first trained with the original data Do offline

using Algorithm 3. Then, new processing clusters are added to the SoC or the

workload is expanded with the new applications. Finally, INDENT incrementally

updates the offline DT to adapt it to the unseen scenarios. INDENT’s performance

is compared to the baseline approach that trains a new DT from scratch using

both the original (Do) and incremental (Di) data. We strongly emphasize that this

baseline is not practical, but it is chosen here to produce a theoretical comparison point.

6.4.2 Evaluating INDENT with New PE Clusters

To evaluate the INDENT framework with new processing clusters, we consider the

three SoC configurations presented in Table 6.3.

Adding an FFT accelerator cluster: Wireless communication and radar applications
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Figure 6.5: The incremental DT trained using INDENT (⋆ marker) by updating the
initial DT (•marker) performs very close to the DT trained from scratch with the
entire training data (▲ marker) .

extensively utilize the FFT and inverse-FFT operations [200]. In the absence of an

FFT cluster, the initial DT policy schedules the FFT tasks to the general-purpose

cores, leading to significantly higher execution times, as shown in Figure 6.5(a).

This study adds an FFT hardware accelerator that performs the direct and inverse-

FFT operations at least 10× faster than general-purpose cores [49]. Then, INDENT

adapts the DT online with the new training samples to learn using the FFT pro-

cessing cluster. Figure 6.5(a) shows that INDENT (⋆ marker) achieves 2% better

performance than the baseline tree trained from scratch (▲ marker) using only

7.4% of the original data as metadata. Furthermore, storing only the entries with

the highest information gains reduces the metadata size to 6.6% with negligible

performance impact.

Adding a Viterbi decoder accelerator cluster: The W-RX and S-RX receiver ap-
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plications use the Viterbi decoding (VD) task to decode the incoming bitstream.

The original DT was trained without this accelerator and hence, schedules the

Viterbi decoding task to the general-purpose cluster with significant execution

time (∼2 ms). As a result, the overall system performance is significantly poor, as

shown in Figure 6.5(b). In contrast, INDENT successfully adapts the DT and takes

advantage of the new Viterbi decoder accelerator (with ∼10 µs execution time).

INDENT improves the original DT significantly using metadata as little as 1.1% of

the original training data. Figure 6.5(b) shows that its performance is almost the

same as the baseline DT.

Adding a Matrix Multiplication accelerator cluster: The lower task latency with

the matrix multiplication accelerator significantly improves the average execution

time per job. After adding the matrix multiplication accelerator, updating the

DT incrementally using as little as 1.7% of the original training data achieves a

performance within 3% of a DT trained from scratch, as shown in Figure 6.5(c).

These results demonstrate that INDENT performs as well as training DTs from

scratch after adding new processing clusters.

6.4.3 Evaluating INDENT with New Applications

To demonstrate INDENT’s ability to update a DT classifier with new applications

(described in Section 6.3.4), we consider the three workload scenarios presented in

Table 6.3 (columns 4–6). Workload-1 initially comprises only the transmitter (W-TX

and S-TX) and radar (LD and TM) applications. Then, we introduce the WiFi and

single-carrier receiver applications (W-RX and S-RX). Likewise, the second scenario
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introduces the radar (LD and TM) applications to the initial workload. Finally,

the third scenario adds two single-carrier (S-TX and S-RX) applications into the

workload after offline training.

Workload Scenario-1: Adding W-RX and S-RX receiver applications into the

workload: The newly added applications have a compute-intensive VD task, not

included in the original dataset. Since the original DT does not know how to handle

these tasks, it schedules them to the general-purpose cluster which is almost 100×

slower in execution compared to the Viterbi decoder accelerator cluster, as described

in Section 6.4.2. Hence, the overall system performance degrades significantly, as

shown in Figure 6.5(d). In contrast, INDENT (⋆ marker) successfully adapts the

offline trained DT (•marker) to these new applications (as conceptually illustrated

in Figure 6.4) and exploits the Viterbi decoder accelerator. As a result, the DT

incrementally trained using INDENT performs within 3.7% of the DT trained from

scratch (▲ marker) and metadata that is 4% of the original training data, as shown

in Figure 6.5(d).

Workload Scenario-2: Adding two radar applications (LD and TM) into the

workload: Introducing these two applications into the workload causes perfor-

mance degradation of 16% on average (and 54% at the highest throughput) when

the initial DT policy is used. Similar to the previous scenario, INDENT adapts

the offline DT to learn the new radar applications in the workload, as shown in

Figure 6.5(e) and performs within 2% of the baseline DT by utilizing metadata that

sizes to 4.7% of the original data.

Workload Scenario-3: Adding single-carrier applications into the workload:
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These two new applications do not contain any new tasks that are missing in the

original dataset. Thus, the initial DT performs as well as the fully trained tree with

the addition of S-TX and S-RX applications. Figure 6.5(f) shows that INDENT

successfully maintains the accuracy without any adverse effects. This corner case

confirms that INDENT will improve the DT when there is room for improvement

without impacting correct decisions.

6.4.4 Illustration with Other Objectives

This section illustrates INDENT with schedulers that optimize other objectives, such

as energy and energy delay2 product (ED2P). For demonstration, we consider a

scenario when W-RX and S-RX applications are added to the workload. Figure 6.6(a)

shows that the original DT (•marker) performs poorly after the new applications

are added. In contrast, INDENT successfully adapts the DTs to the new applications
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ED2P (b) for workload-1 against a baseline DT.
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with energy consumption within 2% of the baseline DT using only 5% of the original

training samples as metadata. Similarly, Figure 6.6(b) shows that INDENT works

equally well with the ED2P metric (emphasizes performance more than delay),

achieving almost identical performance to the DT trained from scratch with entire

training data.

6.4.5 Comparing INDENT with Prior Work

This section compares the performance of INDENT to alternative approaches using

RL, Hoeffding trees, and DT ensembles.

Reinforcement Learning: The RL approach used for comparison is based on a

differentiable decision tree (DDT) approach proposed in [3]. We use the proximal

policy optimization (PPO) based RL method for evaluation [201]. The negative

value of the makespan of each job is used as the reward to update the DT using

RL [33].

Hoeffding Trees: We employ the Hoeffding tree classifier implementation from

the River library [202, 2], with a maximum depth of 6. Other parameters such as

splitting confidence and tie threshold are retained at the default recommended

values.

Decision Tree Ensembles: Random forests (RF) are highly popular DT ensemble

techniques, and hence, we use the scikit-learn library implementation to compare

against INDENT [4]. Our implementation uses 100 weak estimators with a depth

of 6.

Performance Comparison: Figure 6.7(a) presents a comparison of the loss in the
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Tree [2], RL [3], Random Forest (DT Ensemble) [4] and INDENT (our proposed
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training data. (b) Comparison of inference latencies measured on the Jetson Xavier
NX hardware platform of DT ensemble (random forest [4]) and standalone DTs
(such as INDENT, RL [3] and Hoeffding trees [2]).

performance of the RL-based approach, Hoeffding trees, random forest, and pro-

posed INDENT techniques normalized to the execution time of the baseline DT. RL

suffers from poor convergence due to a weak reward function and a small number of

features, thereby limiting its ability to learn the scheduling decisions effectively. Fur-

thermore, RL consumes excessively large computation resources (multi-threaded

CPUs and GPU acceleration), takes more than 4 hours to train a policy (versus 20

minutes for INDENT and other prior techniques), and encounters severe conver-

gence issues, making it impractical. The performance degradation with Hoeffding

trees is substantial since they are suited for ultra-large data streams and require

large tree depths to grow the tree with incoming data samples. A maximum depth

of 6 is highly limiting for Hoeffding trees, resulting in poor performance. Random

forests perform similar to INDENT when new applications are introduced, but

fail to learn the decisions when new processing clusters are introduced since new

features are added. Hence, they are unable to adapt to these changes. In contrast,

INDENT performs well in all cases and achieves similar performance (within 5%)
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to the baseline DT. Finally, INDENT achieves an average application execution

time speedup of 5.4×, 2.6×, and 2.5× compared to RL, Hoeffding trees, and DT

ensembles, respectively.

Inference Latency: We implemented the DT classifiers on the Nvidia Jetson Xavier

NX platform running at 1.9 GHz. The inference latency measured on the platform

is 42 ns for the standalone classifiers such as INDENT, RL, and Hoeffding trees.

On the contrary, the random forest ensemble classifier experiences a higher infer-

ence latency of 1.4 µs (due to the evaluation of 100 weak learners and combining

their predictions), making them a less suitable choice for resource management

applications, as shown in Figure 6.7(b).

Summary: Out of the approaches we evaluated (RL, Hoeffding Trees, DT ensem-

bles and INDENT), INDENT is the only approach that achieves ultra-low latency,

outperforms other approaches, and also performs very similar (within 5%) to

hypothetical DTs that are trained with both the original and incremental training

samples.
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7 fpga-based emulation framework for domain-specific

architectures

7.1 Background, Motivation and Contributions

With the slowdown of Moore’s Law, the ability of traditional homogeneous proces-

sors and single-ISA heterogeneous multicore architectures to satisfy the power and

performance requirements has saturated [21]. Graphics processing units (GPUs),

digital signal processors (DSPs), and hardware accelerators significantly improve

the efficiency metrics at the cost of user programmability. Domain-specific system-

on-chip (DSSoC) architectures, which are a specific realization of heterogeneous

architectures, bridge the gap between programmability and energy efficiency by

smartly combining general-purpose, special-purpose, and hardware accelerator

cores. The special-purpose and hardware accelerator cores strive to maximize the

energy efficiency of applications in a targeted domain, and the general-purpose

processors provide programming flexibility [87].

SoC architectures, particularly DSSoCs, face monumental design and verification

efforts due to rapidly increasing design sizes and complexities and pose critical

threats to the design and verification life cycle, planning, cost, man effort, tools,

and time to market [203]. Functional and performance bugs in these complex

chips post-fabrication result in unprecedented costs. Therefore, stringent pre-

silicon verification techniques such as RTL simulation, gate-level simulation, formal

verification, FPGA emulation, and prototyping frameworks are used to detect and
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rectify bugs in the early design stages. Specifically, FPGA prototyping offers the

following advantages [86]: (1) enables execution of real-world workloads on the

full system (significantly faster than simulation), (2) allows early firmware and

software development, and (3) facilitates faster time-to-market. In literature, FPGAs

have extensively been used for network-on-chip (NoC) emulation, prototyping, and

performance evaluation of novel special-purpose architectures [204, 205, 20, 206].

However, end-to-end frameworks do not exist for the emulation and prototyping

DSSoCs on a Linux-based operating system.

This chapter proposes FALCON, an end-to-end FPGA-based emulation frame-

work, to prototype DSSoCs for rapid design, pre-silicon functional validation, and

performance evaluation. FALCON provides an accelerator sandbox, which uses

standard AMBA-based interfaces to the rest of the SoC. The accelerator sandbox

improves developers’ productivity by providing a plug-and-play environment to

include, remove, and modify hardware accelerators. FALCON also allows designers

to develop drivers for non-standard ISA designs before the chip is available. The

framework enables software and firmware development, including boot firmware,

operating system bundles, and device management. Finally, FALCON interfaces

with CEDR [87], a software runtime framework, to allow applications to be seam-

lessly executed in a DSSoC. The contributions in this chapter are summarized as follows:

• An FPGA-based DSSoC emulation framework,

• An accelerator sandbox that provides a plug-and-play interface for hardware

accelerators,
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• An environment for hardware accelerator driver development and validation,

and

• Experiments to demonstrate FALCON’s capabilities using radar/signal pro-

cessing domain applications.

7.2 The FALCON Architecture

This section describes FALCON’s full-system architecture for DSSoC design and em-

ulation, as outlined in Figure 7.1. FALCON is composed of the hardware platform

and the software stack. While these components are typical in any SoC, DSSoCs

are highly customized to maximize the energy efficiency of domain applications.

The hardware platform integrates general-purpose cores that offer programma-
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bility, hardware accelerators and specialized processors for energy efficiency, a

high-speed interconnect for low-latency on-chip data movement, last-level cache

(LLC), peripherals, and debug logic. After synthesis and automatic place-and-

route, the entire hardware architecture is packaged into a bitstream to program

the programmable logic on the FPGA. The software stack comprises the Linux

OS kernel, file system, and embedded system software components such as the

boot firmware and U-boot. All components in the software stack are integrated

into a software image, which is programmed into the FPGA flash memory. Then,

applications run on the underlying hardware of the DSSoC with the use of software

runtime environments, such as CEDR and SPARTA [87, 124].

7.2.1 Hardware Architecture

The FALCON hardware architecture is constructed using three major components:

(1) DSSoC base system, (2) DSSoC accelerator sandbox, and (3) miscellaneous

hardware, controllers, and peripherals in the FPGA. The framework organizes the

energy-efficient processors into the accelerator sandbox and the general-purpose

processors with the on-chip system-level interconnect into the base system. In addi-

tion to the base system and the sandbox, FALCON includes peripherals, controllers,

and other hardware, as shown in Figure 7.1.
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7.3 Demonstrations using FALCON

FALCON aids chip developers in performing functional design validation, iden-

tifying the optimal data flow for hardware accelerators, analyzing performance

bottlenecks using hardware performance counters, and even performing early pre-

silicon power evaluations. This chapter demonstrates the capabilities of FALCON

for the radar/signal processing application domain. We pick two representative

examples: pulse Doppler and temporal mitigation, to showcase the need for hard-

ware acceleration using fast Fourier Transform (FFT) and matrix multiplications.

FALCON is evaluated using three Xilinx FPGA devices, Zynq UltraScale+ ZCU102,

Virtex UltraScale+ VCU128, and Virtex UltraScale+ VU19P. Only the accelerator

sandbox is deployed on the ZCU102 since it includes pre-built Arm Cortex-A53

cores (Zynq base system). We strongly emphasize that FALCON is generic and can

be seamlessly used for any application domain using the hardware architecture

and software stack principles described in this work.

7.3.1 Enabling Software Development and Functional Validation

We developed software drivers for the hardware accelerators in the sandbox, which

send and receive data from the system using DMA units. We generate random

stimuli as inputs to the hardware accelerators. The outputs of the accelerators are

compared with a reference software implementation for functional validation and

precision evaluation. For the FFT accelerator, we evaluated transform sizes from 32

to 2048 (in multiples of 2) as shown in Figure 7.2. The number of precision mis-
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Figure 7.2: The number of precision mismatches (primary axis) per-kilo computa-
tions and the percentage of precise values (secondary axis) of the FFT and matrix
multiplication hardware accelerators with respect to a reference software imple-
mentation in VCU128.

matches remains fewer than three per-kilo computations. A larger transform size

experiences higher mismatches due to a higher number of floating-point multipli-

cation and accumulation operations. The fixed-size complex matrix multiplication

accelerator experiences an average of one precision mismatch per-kilo computations.

On average, more than 99.9% of the values in the computations match the software

implementation within a 0.1% difference. Therefore, FALCON enables the devel-

opment of software drivers, functional validation of the drivers and accelerators

when exercised with the full system, and evaluation of the precision requirements.

7.3.2 Optimizing DSSoC Configuration for Domain Applications

Hardware accelerators introduce the notorious double-copy problem where the

data must be explicitly transferred from/to them using DMA units. While fetch-

ing the data from the main memory involves significant latency overheads, the
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Figure 7.3: A comparison of the hardware accelerator latencies (in thousands
of cycles) when data is transferred through DDR memory (with and without
coherency) and the on-chip scratchpad memory (SPM) in VCU128.

on-chip scratchpad memory have limited capacity. Figure 7.3 presents the latency

(in thousands of equivalent CPU clock cycles) for 128-, 256-, and 512-point FFT

operations and complex matrix multiplication computation. The latency improves

substantially with the use of scratchpad memory for larger computations (larger

transform sizes). Larger computations require more memory and experience signif-

icant conflicts in the cache. Therefore, they experience better speedup when data is

transferred using the on-chip scratchpad. Through such analyses, FALCON allows

us to optimize the number of processors, cache sizes, and memory hierarchies

for the processing elements for specific domain applications to maximize energy

efficiency.

7.3.3 Illustration of Hardware Performance Counters

Table 7.1 presents the hardware counters (described in Section 7.4.2) for two im-

plementations of a matrix multiplication operation. The two implementations use

different loop ordering to improve data locality in the caches, reflecting fewer cache
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Table 7.1: Comparison of Hardware Performance Counter Values between Two
Different Software Implementations of Matrix Multiplication in VCU128 operating
at a frequency of 32 MHz.

HW Perf. Counter Implementation 1 Implementation 2

Task-clock 640.2 seconds 495.6 seconds
Context-switches 687 164

Cpu-migrations 0 1
Page faults 751 996

Cycles 20.5 B 15.8 B
Instructions 14.8 B 9.5 B

Branches 1.0 B 0.14 B
Branch-misses 5.9 M (0.58%) 2.2 M (1.59%)

Cache-references 1.5 B 1.9 B
Cache-misses 125 M (8.6%) 5.3 M (0.274%)

misses and, consequently, fewer computation cycles and wall time (Table 7.1). The

ability to utilize performance counters in FALCON enables users and developers to

systematically analyze the effects of code optimization and their impact in terms of

microarchitectural events.

7.3.4 Enabling Pre-Silicon Power Evaluations

Figure 7.4 presents the power consumption in the processing system (PS) and

programmable logic (PL) in a ZCU102 FPGA using four Arm Cortex-A53 cores at

1.2GHz, one FFT, and one complex matrix multiplication accelerator operating at

100 MHz. The power consumption is captured using TI INA226 power monitors on

the board. We run 100 jobs each of pulse Doppler and temporal mitigation compiled

for heterogeneous execution and managed using CEDR [87]. Figure 7.4 presents

the idle and active PS and PL power for 100 seconds. At time 0, the PS consumes

1.6 W, while PL consumes 1.322 W when the system is idle. The PS power increases
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Figure 7.4: An illustration of power consumption in the processing system (Arm
Cortex-A53 cores operating at 1.2 GHz) and programmable fabric (hardware accel-
erators operating at 100 MHz) in a Zynq UltraScale+ ZCU102 FPGA.

to 2.2 W when the applications start execution. The change in PL power remains

insignificant because of its lower operating frequency and high static/idle power in

the FPGA logic. The PS power reduces at 52 seconds when pulse Doppler completes

and reduces to idle power of 1.6 W at 58 seconds when the temporal mitigation also

ends. This capability allows developers to obtain early estimates and observe power

consumption trends for preliminary analysis before the chip is taped out.
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7.3.5 FPGA Implementation strategy

Although FALCON shares a similar design as the actual chip, there are a few critical

aspects that must be addressed. First, a failure to generate the intended gated clocks

in the design causes the tool to use cascaded clocks instead of generating a clock

tree on the FPGA. This failure can also cause long placement and routing runtimes.

While the tool must automatically generate gated clocks, developers must carefully

check the gated clock conversion reports after synthesis and manually specify

the clock relationships as required. Second, the design may instantiate memory

modules from a specific process technology library. We should replace the memory

instantiations with the FPGA memory primitive or a generic memory model. Third,

the synthesis, placement and routing strategy should be tuned to the specific FPGA

and the size of SoC. We use the AlternateRoutability for the accelerator sandbox

synthesis and the SpreadLogic at the top-level due to the Finally, we achieve timing

closure at 32MHz main clock frequency on the VCU128 and VU19P FPGAs.

Base System: The base system forms the general-purpose subsystem of the DSSoC.

FALCON utilizes Arm’s Corstone-700 as the base system. Corstone-700 is a flexible

and configurable subsystem that houses the 32-bit Arm Cortex-A32 cores as the

processing cluster. It also provides easy and flexible interfaces to integrate other sys-

tem components and peripherals. The number of Cortex-A32 cores is configurable

between 1–4. An AXI-based interrupt controller distributes the interrupts to the

different on-chip components. The secure enclave and CoreSight unit address the

system’s security and debug services. We note that the ratios of all clock frequencies

are maintained to maintain accuracy with the final tapeout. The flexibility of the
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architecture allows the base subsystem to be easily swapped with other Corstone

subsystems or potentially with different types of host systems.

Accelerator Sandbox: The design and integration of components in a DSSoC are

highly complex due to the large number and diverse processing elements. There-

fore, the exploration phase involves frequent addition, modification, and removal

of accelerators in a DSSoC. To address this concern, FALCON employs a modu-

larized implementation of the interfacing of hardware accelerators with the base

system. The accelerator sandbox is an independent module that uses standard

AXI interfaces to connect to the system-level interconnect. The sandbox approach

allows the rest of the system to observe only the AXI interfaces from the sandbox.

It is oblivious to its internal architecture, providing a plug-and-play mechanism for

integrating hardware accelerators. This architecture assumes each accelerator can

master the memory bus or work closely with other accelerators or DMA engines

to transfer data to the system. The sandbox provides interrupt lines to the accel-

erators to indicate control transfer to the base subsystem. The sandbox uses four

AXI initiator-responder channels. Designers map the chosen number of channels

among the different hardware accelerators and their data streams based on the

latency, bandwidth, and throughput requirements. A DSSoC that targets wireless

communication and radar applications may integrate accelerators for a finite im-

pulse response (FIR-filter), fast Fourier transform (FFT), and matrix multiplication

to accelerate frequently encountered tasks as illustrated in Figure 7.1. The plug-

and-play mechanism allows designers to provide intra-sandbox communication

between accelerators to improve data movement latencies. The sandbox can easily



150

be extended to support multiple clocks and resets if the accelerators are required to

operate at different frequencies.

On-Chip System Interconnect:

With the diverse processing elements on the chip, data movement is critical

to ensure that the hardware has the necessary inputs to perform the required

computation. Developers may choose to integrate low-latency mesh network-on-

chip (NoC) interconnects (such as Arm CMN-600) or low-power crossbar based

interconnects (such as Arm NIC-400) [207].

While the base system and system-level interconnect use Arm-based components,

FALCON is not limited to Arm-based systems, and developers are free to integrate

processing elements and interconnects of their choice. We note that the software

stack (described in Section 7.3.6) would need appropriate updates to support the

hardware choices.

7.3.6 Software Stack

DSSoCs demand an extensive software stack to exploit the full potential of the

hardware architecture and provide comprehensive programming support to end-

users and developers. FALCON is based on the Arm Corstone-700 base system.

Hence, it utilizes the Arm reference platforms to produce the software stack [208].

The Arm reference platforms are based on the Yocto project to build customized

Linux distributions. While this section describes configuring the Arm reference

platforms for FALCON, the methodology is generic since the Yocto project is widely

used to produce Linux distributions and software stacks. We emphasize that this
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in software for a DSSoC emulated by the proposed FALCON framework.

software stack is fully deployable with standard security, virtualization, and the

guarantees of a full-fledged Linux-based embedded system. This section focuses

more on the specific configurations for the DSSoC configuration prototyped in this

work.

The software stack integrates the following components to produce the entire

software stack (as shown in Figure 7.1): (1) Linux kernel, (2) boot firmware, (3)

trusted firmware, (4) U-boot, (5) root filesystem, and (6) application packages.

The interactions between these components are captured in Figure 7.5.

Linux Kernel: The primary responsibilities of the kernel include (1) memory

management, (2) process management, (3) device drivers, and (4) system calls

and security. To support the hardware described in Section 7.2.1, FALCON makes

the following modifications to the base configuration [208] for the Linux kernel:

• Enable multicore support through symmetric multiprocessing feature
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• Configure input-output memory management unit (IOMMU) for multiple

cores

• Enable kernel debugging capabilities

• Configure power state coordination interface (PSCI) for multiple cores

• Modify address pointers and image size of the software stack image stored in

the flash memory

Boot Firmware: The boot firmware is the software for the secure enclave in the

hardware architecture [208]. From the user perspective, the components that

should be modified are the firewall access, system-wide memory map definitions

and the interconnect initialization. The firewall determines the accessible/restricted

memory regions of: (1) root file system, (2) Linux kernel, and (3) DDR. The boot

firmware is converted into compiled binary code that is then built into the secure

enclave hardware. Embedding the boot firmware into the hardware has a major

implication in the DSSoC validation process, and this is precisely where early

software development supported by FALCON plays a crucial role in developing

bug-free and fully-functional SoCs (described in Section 7.4).

U-Boot: This software comprises the first-stage boot loader (FSBL) and a second-

stage boot loader (U-boot). It is the primary component that handles hardware

initialization and control hand-off to the OS for the booting process. FALCON

modifies the Linux kernel address based on its size in the software image and the

device tree address in U-Boot.
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Trusted Firmware: The trusted firmware in FALCON comprises the critical secu-

rity software for Arm-based processor systems. The default Corstone-700 stack

boots only one Arm core. One of the most critical components is the power state

coordination interface (PSCI) which is the interface for managing the idle cores,

booting the secondary cores, and system shutdown/reset. FALCON modifies the

PSCI firmware to power on the secondary cores and enables real-time access to

multiple cores. FALCON also adds helper threads with assembly code to initialize

and boot the secondary cores. The secondary core information is also specified in

the device trees as entries in (1) the PSCI interfaces and (2) CPU cores. The device

tree binary is built as part of the trusted firmware in FALCON’s software stack.

Root Filesystem: The operating system’s root filesystem (rootFS) contains the

files and directories critical to the system’s operation. By default, the Corstone-700

reference software stack provides a read-only file system. This requirement forces

all the critical packages and features to be built into the rootFS during the build

process. The packages to be integrated into the rootFS determine its size. It is also

critical to reduce the rootFS size to minimize the boot time.

User Application Packages: The user applications range from libraries that include

APIs to exercise the hardware accelerators to workloads, benchmarks, profilers, and

performance monitors. The domain workload- and benchmark-source codes are

cross-compiled for the specific Arm architecture (32-bit Arm v8 architecture in FAL-

CON) and packaged into the software stack. Additionally, performance monitoring

tools, such as perf that uses the performance monitoring unit to monitor the CPU

pipelines and the interconnect, can be integrated to enable runtime performance
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monitoring and evaluation. The FALCON emulation framework utilizes the CEDR

runtime framework, which is also deployed as a user application package.

7.3.7 Software Runtimes

In this study for our experimental evaluations, we utilize the Compiler integrated

Extensible DSSoC Runtime (CEDR) [87] ecosystem to conduct a design space

exploration over the heterogeneous architecture emulated on the FPGA. This system

allows end users to compile their applications for execution on a heterogeneous

architecture and then interact with hardware by launching a workload composed

of any number and combination of different applications with user-specified arrival

rates. We choose CEDR over other runtime frameworks [209, 210] since it enables

the compilation and development of user applications for heterogeneous SoCs,

evaluating the performance of pre-silicon heterogeneous hardware configurations

based on dynamically arriving workload scenarios through distinct plug-and-play

integration points in a unified workflow. Furthermore, CEDR offers a rich set of

integrated scheduling policies, allows integration of new policies through its distinct

plug-and-play interfaces, offers collecting performance counter-based performance

evaluation through “perf” utility, and, more importantly, enables conducting design

space exploration in the trade space of hardware composition, workload complexity,

scheduling policy over the user-defined performance metrics.
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7.4 Enabling Software and Driver Development

The efforts involved in software design and driver development for DSSoCs are

substantially higher due to the presence of hardware accelerators and specialized

cores. Software development after fabrication significantly delays the time-to-

market. To this end, pre-silicon FPGA-based emulation frameworks serve as a

platform for software development and hardware-software codesign cycle.

7.4.1 Accelerator Drivers

While general-purpose cores have a well-established programming methodology in

terms of programming languages and compilation toolchains, the hardware accel-

erator interfaces are mainly ad-hoc. They may not follow pre-defined protocols and

languages. The interface to a hardware accelerator involves the following aspects:

(1) configuration interface that allows the user to configure the accelerator based

on the application parameters, (2) control interface that manages its initialization,

starting, and completion, (3) data interface for the inputs and outputs. It is critical

to validate these interfaces and data transfer protocols in the design stage. An-

other aspect involves determining the optimal burst size for input and output data

transfers and the memory hierarchy for the data interfaces. Current approaches in

the literature include analytical and performance models to estimate these effects,

but the modeling accuracy limits them. Moreover, they are often evaluated with

only portions of the system, resulting in estimation inaccuracies. FALCON enables

evaluation in a full-system real-platform-like environment, providing highly accu-
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rate performance estimates. The precise evaluation allows designers to redesign

the hardware and software architecture and interfaces as necessary to maximize

metrics, including performance, throughput, bandwidth, and energy efficiency.

7.4.2 Enabling Performance Monitoring Unit (PMU)

The performance monitoring unit (PMU) records architectural and microarchitec-

tural events and provides key performance indicators (KPIs). KPIs allow users to

profile the applications and fine-tune the system parameters and architecture to

maximize performance. Enabling the PMU in FALCON requires several changes to

the software stack. First, the following features are enabled in the Linux kernel: (1)

CONFIG_PROFILING, (2) CONFIG_PERF_EVENTS, (3) CONFIG_ARM_PMU,

and (4) CONFIG_HW_PERF_EVENTS. The size of the Linux kernel in the software

image increases when the PMU is enabled. This increase changes the address

offsets and the size parameters in the boot firmware and the U-boot, as described

in Section 7.3.6.

While the modifications described above are to the software stack, they strongly

affect the hardware design. As described in Section 7.3.6, the boot firmware includes

addresses, offsets, and sizes of the Linux kernel, rootFS, and the DDR memory,

which are used in the firewall of the secure enclave. This information is packaged

into the hardware design, making it infeasible to update these parameters after

the chip is fabricated. To this end, FALCON enables all these hardware-software

codesign aspects to ensure that the fabricated chip supports all intended features

and functionality.
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8 conclusions and future directions

The slowdown of Moore’s Law and Dennard scaling has limited the power and

performance gains obtained with the evolution of technology process nodes over

the years. Beyond the conventional approaches to address this challenge, DSAs

promise to achieve superior energy efficiency by combining general-purpose cores

and hardware accelerators for applications in a target domain. This dissertation

addressed several critical challenges in DSA design and development to fully ex-

ploit their potential and improve their performance and energy efficiency. First, we

developed DS3, a high-level discrete-event full-system simulation framework that

facilitates rapid design space exploration and extensive evaluation of resource man-

agement algorithms. Then, we posed scheduling as a classification problem and

proposed the use of imitation learning and decision tree-based machine learning

classifiers to perform runtime task scheduling. The proposed imitation learning

based scheduling policy performs within 1% of an Oracle generated Oracle with

minimal scheduling overheads. Next, the software optimization approaches pro-

posed in this dissertation achieve a latency of less than 50 nanoseconds for decision

trees of up to depth 12 on hardware platforms such as the Xilinx Zynq UltraScale+

ZCU102 and Nvidia Jetson Xavier NX. Scheduling policies generated using offline

Oracles can quickly be rendered ineffective when new applications are introduced

or new processing clusters are introduced. To this end, we proposed an online and

lightweight training algorithm to adapt decision tree-based scheduling policies to

changes in the workload and SoC configurations. The online algorithm utilizes
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merely 1-8% of the original training dataset and yet achieves a performance that

is within 5% of a baseline implementation that trains trees from scratch using the

entire training data. Finally, we developed end-to-end full-system FPGA-based

emulation framework for DSAs that integrate general-purpose processors, hard-

ware accelerators, memory hierarchies, and on-chip interconnects. It’s hardware

architecture and software stack, coupled with a runtime environment enable realis-

tic application execution in a Linux-based operating system and allow full-system

functional validation and early performance estimates.

In summary, this dissertation addressed several critical gaps in the design and

development of DSAs by making the following contributions:

• A detailed and comprehensive literature review on DSAs and corresponding

research directions [50],

• DS3, a domain-specific system-on-chip simulation framework to perform

rapid design space exploration and evaluate resource management algo-

rithms [51],

• An imitation learning (IL) based task scheduling approach [49],

• Optimization techniques for decision tree classifiers [52],

• An incremental and online decision tree training framework [53], and

• An FPGA-based emulation framework for domain-specific architectures.
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8.1 Future Directions

High-Level Simulation Framework: The DS3 simulator presented in this disserta-

tion is calibrated to real-world wireless communication and radar applications and

to commercially available hardware platforms such as the Xilinx Zynq UltraScale+

ZCU102 FPGA and Odroid-XU3. As the fabrication and academic/commercial

availability of DSAs become prominent, fine-tuning the models in DS3 based on

power and performance measurements from real DSA silicon will improve its fi-

delity. Furthermore, exploring the applicability of DS3 to other application domains

would improve DS3’s scope and applicability.

Imitation learning based task scheduling: Machine learning (ML) based ap-

proaches rely heavily on the distribution of the training data to perform predictions.

Real systems present runtime variations due to changes in system workload, mem-

ory, and congestion. The variations manifest as imperfections in the input data

and result in outliers. However, the IL-based policies presented in this work must

be robust to such outliers. In other words, the policies must ensure that they do

not make illegal decisions that violate the constraints of the system. Incorporating

robustness and other ancillary aspects such as risk awareness and security are

interesting future directions.

This dissertation proposes use of the IL-based scheduling approach to perform

task scheduling and our voltage-frequency scaling technique [113] to adjust the V-F

levels and avoid deadline violations. However, future directions can consider build-

ing the deadline constraints directly into the task scheduling policies to consider

deadlines at a finer granularity.
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Incremental and online decision tree training framework: The online training

technique proposed in this work uses only 1-8% of the original training data by

storing its synopsis. Several compression algorithms such as arithmetic encoding

and dictionary-based methods can aid in further reducing the memory footprint

of the metadata. Future directions can consider such compression algorithms and

efficient online Oracle generation approaches to minimize the impact of generating

the ground truth and the memory footprint at runtime.

FPGA-based System-Level Emulation: This work illustrated the optimization

of the memory hierarchy of domain applications between the on-chip cache and

scratchpad memory based on the kernel sizes. While the hardware cache controller

is responsible for selecting the data stored in the cache, the scratchpad memory

management relies on the application programmer or the runtime framework to

manage the data. In the future, compilers, runtime frameworks, and hardware in-

teractions can automatically partition the scratchpad memory based on the domain

applications and kernel sizes, thereby relieving the programmer’s burden. Finally,

updating the high-level simulators with models that describe the data partitioning

between caches and scratchpad memory improves their power and performance

estimates.
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