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Geometry and Arithmetic in the Moduli of Pairs of Elliptic

Curves

Yu Fu

Abstract

This thesis explores two kinds of questions on the moduli spaces of pairs of elliptic

curves over number fields and finite fields. The first question is about rational points

in a family of pairs of elliptic curves over number fields. Given a family of products

of elliptic curves over a rational curve over a number field K, we give a bound for the

number of special fibers of height at most B such that the two factors are isogenous. We

prove an upper bound that depends on K, the family, and the height B. Moreover, if

we slightly change the definition of the height of the parametrizing family, we prove a

uniform bound that depends only on the degree of the family, K and the height B.

The second question is about the size of isogeny classes of non-simple abelian surfaces

over finite fields. Let A = E × Ess be an abelian surface over a finite field Fq, where E

is an ordinary elliptic curve and Ess is a supersingular elliptic curve. We give a lower

bound on the size of isomorphism classes of principally polarized abelian surfaces defined

over Fqn that are Fq-isogenous to A by studying classification of certain kind of finite

group schemes.
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Chapter 1

Introduction

The exuberant arithmetic properties of elliptic curves have been brought to mathemati-

cians’ attention for more than 150 years. In this report, we explore two directions in the

moduli aspect of elliptic curves, with main results shown in Subsction 1.1 and 1.2.

This thesis has three chapters, including the present one. Chapter 2 talks about the

first direction, and Chapter 3 about the second.

1.1 Families of isogenous elliptic curves ordered by heights

Let k be a field. Let X → S be a family of algebraic varieties over k, where S is

irreducible, and let Xη be the generic fiber of this family. People care about what

properties of Xη extend to other fibers and how we can measure the size of specializations

such that a specific property does not extend. For example, the Hilbert Irreducibility

Theorem says that for a Galois covering X → Pn over a number field K, for most of the

rational points t ∈ Pn(K) the specializations over t generate a Galois extension with

Galois group G. Moreover, the size of the complement set, which can be considered as

locus of ‘exceptional’ points, can be bounded as in [23].

In [10], Ellenberg, Elsholtz, Hall, and Kowalski studied families of Jacobians of

hyperelliptic curves defined over number fields by affine equations

y2 = f(x)(x− t), t ∈ A1,
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with the assumption that the generic fiber is geometrically simple. They proved that

the number of geometrically non-simple fibers in this family, with the height of the

parametrizer t ≤ B, is bounded above by a constant C(f) depending on f . Moreover,

they obtained an effective bound using the analytic method that depends on the primes

dividing the discriminant of f(x) and the genus of the family.

In this paper, we study families of pairs of elliptic curves defined over a rational

curve over a number field K. To be precise, let C be a rational curve over K isomorphic

to P1 which parametrizes a one-dimensional family of pairs of elliptic curves and let

(Et, E
′
t) be the generic fiber of this family over K(t), with the assumption that there

exists no isogeny between Et and E′
t. We prove an upper bound for the number of

specializations of (Et, E
′
t) such that the two factors are isogenous, with the assumption

that the height of the parameter t ≤ B. The method relies on constructions of explicit

covers of X(1) × X(1) and results in dimension growth conjecture, as proven in [6].

Moreover, by a proper choice of definition of the height of t, this uniform upper bound

depends only on the degree and the height of the parameter. The independence of our

bound is an exciting aspect for possible further applications.

To discuss the results, we first fix the general setting and terminology (see section §2

for more details). Define ι to be the map from C to P3 which is a composition of a finite

map via the j-invariant, followed by the Segre embedding:

ι : C → X(1)×X(1) → P1 × P1 ↪→ P3. (1.1.1)

To be precise, the map ι sends t to

(Et, E
′
t) 7→ (j(Et), j(E

′
t)) 7→ (j(Et)j(E

′
t); j(Et); j(E

′
t); 1).

Degrees and heights are computed with respect to this fixed embedding. We prove the

following theorem:

Theorem 1.1.1. Let K be a number field of degree dK . let C be a rational curve over

K isomorphic to P1 which parametrizes a one-dimensional family of pairs of elliptic

curves (E,E′). Let (Et, E
′
t) be the generic fiber of this family over K(t), and suppose
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that there exists no K(t)-isogeny between Et and E
′
t. Let d = deg ι∗OP3(1) be the degree

of the parameter family C defined with respect to ι. Let H(ι) be the height of ι defined

by the projective height of the coefficients of the defining polynomials of j(Et) and j(E′
t).

Let H : C(K) → R be the projective height defined over K. Define S(B) to be the set

S(B) = {t ∈ C(K)|H(t) ≤ B, there is an Q-isogeny between Et and E
′
t}.

There is an absolute constant M such that for any B ≥M , we have

|S(B)| ≲K d4+ϵ(logH(ι) + logB)6.

Definition 1.1.2. For a point Pt ∈ C parametrized by t ∈ K, define the height H(Pt)

to be the projective height of ι(Pt) ∈ P3.

Note that in Theorem 3.1.1, H(t) is the height of t as an element of K. If we change

the definition of the height from H(t) to H(Pt) and assume that H(Pt) ≤ B, then we

get an uniform bound on the number of points t such that Et and E
′
t are geometrically

isogenous. Moreover, this uniform bound only depends on K, the height B, and the

degree of the family.

Theorem 1.1.3. Assume the same hypothesis as in Theorem 3.1.1. Let S′(B) be the set

S′(B) = {t ∈ C(K)|H(Pt) ≤ B, there is an Q-isogeny between Et and E
′
t}.

Then we have

|S′(B)| ≲K d4(logB)6.

1.2 Isogeny Classes of Non-Simple Abelian Surfaces over

Finite Fields

Many fundamental problems on Shimura varieties pertain to the behavior of isogeny

classes, for example, the Hecke orbit conjecture and specific questions related to unlikely

intersections. In [24, Theorem 4.1], Shankar and Tsimerman proved an asymptotic
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formula for the size of the isogeny class of ordinary elliptic curves over finite fields. As

an application, they proved the existence of a hypersurface in the moduli space X(1)270,

which intersects every isogeny class.

A few common strategies exist to obtain asymptotic formulas for the size of isogeny

classes of abelian varieties over finite fields. In particular, when the abelian variety is

ordinary and simple, the inspiring work of Deligne [8] explicitly classified such abelian

varieties over finite fields. Using the classification, one can get bounds for the isogeny

classes of ordinary abelian varieties, for example, [24, Theorem 3.3]. A handful of studies

in this flavor have been performed in more general settings. For example, one may refer

to [18] when the abelian variety is almost-ordinary and geometrically simple and to [4] for

a setting of Hilbert modular varieties. All of the results above depend on the existence

of canonical lifting and classification of abelian varieties over finite fields.

A second way of doing this is to interpret isogeny classes in terms of orbital integrals.

For example, in [2], Achter and Cunningham proved an explicit formula for the size of

the isogeny class of a Hilbert-Blumenthal abelian variety over a finite field. They express

the size of the isogeny class as a product of local orbital integrals on GL(2) and then

evaluate all the relevant orbital integrals. See also [1] where Achter and Williams proved

that for a particular class of simple, ordinary abelian surfaces over Fq given by a q-weil

polynomial f , the number of principally polarized abelian surfaces over Fq with Weil

polynomial f could be calculated by an infinite product of local factors which can be

calculated by method of orbital integrals.

Throughout this article, (A, λA) is a principally polarized non-simple abelian surface

defined over Fq, with the polarization given by λA. Moreover, we assume that A has

the form A = E × Ess, where E is an ordinary elliptic curve and Ess is a supersingular

elliptic curve. The endomorphism algebra End◦(A) is non-commutative, and there is

no canonical lifting of A. Therefore, we cannot interpret the question as estimating

the size of class groups by using the classification of abelian varieties over finite fields.

Instead, we measure the size of the isogeny class of A defined over Fq and describe

how this cardinality is affected by the base change to finite extensions of Fq by using

group-theoretical methods.
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Before introducing the main theorem, we introduce some notations. Let I(qn, A) be

the set of principally polarized abelian varieties defined over Fqn that are isogenous to A

over Fq. Let N(qn, A) denote the cardinality of I(qn, A). By interpreting the question

as a classification of finite subgroup schemes, we obtain a lower bound on the number of

principally polarized abelian varieties over Fqn that is isogenous to A over Fq. Our main

result is the following.

Theorem 1.2.1. Let (A, λA) be a principally polarized abelian variety over Fq such that

A = E × Ess. Let K be the quadratic number field such that K = End◦(E). Let n be an

integer such that for all prime ℓ ramified in OK , (n, ℓ) ̸= 1. Then

N(qn, A) ≫ qn+o(1).

Also, we provide a different approach to count the size of isogeny classes of ordinary

elliptic curves over finite fields, which upper bound is known by Lenstra [14, Proposition

1.19] and Shankar-Tsimerman [24, Theorem 3.3].

Theorem 1.2.2. Let E be an elliptic curve defined over Fq. For a positive density set

of n, we have

N(qn, E) = (qn)1/2+o(1).

There is a general conjecture regarding the size of the isogeny class of abelian varieties

over finite fields. Let N(W ) be the open Newton stratum of Ag consisting of all abelian

varieties whose Newton polygon is W and let A be a principally polarized abelian variety

in Ag. Recall that the central leaf through A consists of all abelian varieties in N(W )

whose p-divisible group is isomorphic to A[p∞]. The isogeny leaf through A is a maximal

irreducible subscheme of Ag consisting of abelian varieties A′ in N(W ) such that A′ is

isogenous to A through an isogeny whose kernel is an iteration extension of the group

scheme αp. Let dim(CL) be the dimension of the central leaf through A and let dim(IL)

be the dimension of the isogeny leaf through A.

Conjecture 1.2.3. We have

N(qn, A) = qn(
dim(CL)

2
+dim(IL))+o(1).
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All the previous results we state above satisfy the Conjecture 3.1.3. When A is a

non-simple abelian surface, it is easy to see that the dimension of the central leaf through

A is 2, by the formula of lattice-point count by Shankar and Tsimerman [24, Section

5.2]. The dimension of the isogeny leaf through A is 0. Therefore the conjecture is true

in this case.
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Chapter 2

Families of isogenous elliptic

curves ordered by height

2.1 Introduction

Let k be a field. Let X → S be a family of algebraic varieties over k, where S is

irreducible, and let Xη be the generic fiber of this family. People care about what

properties of Xη extend to other fibers and how we can measure the size of specializations

such that a specific property does not extend. For example, the Hilbert Irreducibility

Theorem says that for a Galois covering X → Pn over a number field K, for most of the

rational points t ∈ Pn(K) the specializations over t generate a Galois extension with

Galois group G. Moreover, the size of the complement set, which can be considered as

locus of ‘exceptional’ points, can be bounded as in [23].

In [10], Ellenberg, Elsholtz, Hall, and Kowalski studied families of Jacobians of

hyperelliptic curves defined over number fields by affine equations

y2 = f(x)(x− t), t ∈ A1,

with the assumption that the generic fiber is geometrically simple. They proved that

the number of geometrically non-simple fibers in this family, with the height of the

parametrizer t ≤ B, is bounded above by a constant C(f) depending on f . Moreover,
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they obtained an effective bound using the analytic method that depends on the primes

dividing the discriminant of f(x) and the genus of the family.

In this paper, we study families of pairs of elliptic curves defined over a rational

curve over a number field K. To be precise, let C be a rational curve over K isomorphic

to P1 which parametrizes a one-dimensional family of pairs of elliptic curves and let

(Et, E
′
t) be the generic fiber of this family over K(t), with the assumption that there

exists no isogeny between Et and E′
t. We prove an upper bound for the number of

specializations of (Et, E
′
t) such that the two factors are isogenous, with the assumption

that the height of the parameter t ≤ B. The method relies on constructions of explicit

covers of X(1) × X(1) and results in dimension growth conjecture, as proven in [6].

Moreover, this uniform upper bound depends only on the degree and height of the

parameter. The independence of our bound is an exciting aspect for possible further

applications.

To discuss the results, we first fix the general setting and terminology (see section §2

for more details). Define ι to be the map from C to P3 which is a composition of a finite

map via the j-invariant, followed by the Segre embedding:

ι : C → X(1)×X(1) → P1 × P1 ↪→ P3. (2.1.1)

To be precise, the map ι sends t to

(Et, E
′
t) 7→ (j(Et), j(E

′
t)) 7→ (j(Et)j(E

′
t); j(Et); j(E

′
t); 1).

Degrees and heights are computed with respect to this fixed embedding. We prove the

following theorem:

Theorem 2.1.1. Let K be a number field of degree dK . let C be a rational curve over

K isomorphic to P1 which parametrizes a one-dimensional family of pairs of elliptic

curves (E,E′). Let (Et, E
′
t) be the generic fiber of this family over K(t), and suppose

that there exists no K(t)-isogeny between Et and E
′
t. Let d = deg ι∗OP3(1) be the degree

of the parameter family C defined with respect to ι. Let H(ι) be the height of ι defined

by the projective height of the coefficients of the defining polynomials of j(Et) and j(E′
t).
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Let H : C(K) → R be the projective height defined over K. Define S(B) to be the set

S(B) = {t ∈ C(K)|H(t) ≤ B, there is an Q-isogeny between Et and E
′
t}.

There is an absolute constant M such that for any B ≥M , we have

|S(B)| ≲K d4+ϵ(logH(ι) + logB)6.

Definition 2.1.2. For a point Pt ∈ C parametrized by t ∈ K, define the height H(Pt)

to be the projective height of ι(Pt) ∈ P3.

Note that in Theorem 3.1.1, H(t) is the height of t as an element of K. If we change

the definition of the height from H(t) to H(Pt) and assume that H(Pt) ≤ B, then we

get an uniform bound on the number of points t such that Et and E
′
t are geometrically

isogenous. Moreover, this uniform bound only depends on K, the height B, and the

degree of the family.

Theorem 2.1.3. Assume the same hypothesis as in Theorem 3.1.1. Let S′(B) be the set

S′(B) = {t ∈ C(K)|H(Pt) ≤ B, there is an Q-isogeny between Et and E
′
t}.

Then we have

|S′(B)| ≲K d4(logB)6.

Relations with Unlikely Intersections

Although Theorem 2.1.1 indicates the sparsity of isogeny between elliptic curves in a

family, one should emphasize that this is not an unlikely intersection problem on its own.

There are infinitely many t ∈ Q such that Et and E
′
t are isogenous! However, since we

are working over a fixed number field K, this number has to be finite. Nevertheless, one

may consider questions in more generalized settings.

Let S be a GSpin Shimura variety and denote by {Zi}i a sequence of special divisors

on S. Let C ↪→ S be a curve whose generic fiber has maximal monodromy.
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Definition 2.1.4. Define the set Z(C) to be the intersection of C with the infinite union

of the special divisors

Z(C) = C ∩
⋃
i

Zi.

If C is a curve over C, then the set Z(C) is infinite, which is a classical result dating

back to the 1980s. In the work [15], Maulik, Shankar, and Tang proved a similar result

for curves C over Fp. The result also holds if C = SpecOK where K is a number field,

as proved by Shankar-Shankar-Tang-Tayou in [25].

Since X(1)×X(1) is a GSpin Shimura variety, one can take the special divisors to

be Zn = Y0(n), which parametrizes n-isogenous pairs of elliptic curves. Our Theorem

2.1.3 can be reformulated as follows:

Theorem 2.1.5. Let K be a number field of degree dK . Let C ∈ X(1) × X(1) be a

rational curve defined over K parametrizing a family of non-isotrivial and generically

non-isogenous elliptic curves. Let d be the projective degree of C defined by ι. For a

positive integer B define the set Z(C;B) to be the set of K-valued points on C such that

Z(C;B) = {x ∈ Z(C) | H(ι(x)) ≤ B}.

We have

|Z(C;B)| ≲K d4(logB)6.

The discussion above suggests the following question (which we do not claim to know

the answer to):

Question: Suppose C is a curve defined over Q and let Z(C;B) denote the set of

Q-valued points in Z(C) whose absolute height is bounded above by B. One may ask if

Z(C;B) is finite. If this is the case, can we get an upper bound in terms of the bounded

height B?

Non-simple abelian varieties in a family

Theorem 3.1.1 can be considered as a generalization of the results from Ellenberg,

Elsholtz, Hall, and Kowalski. In work in progress, we hope to generalize their main
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results [10, Theorem A, Theorem B] to any family of abelian varieties parametrized by

an irreducible rational curve. To be explicit, let X ∈ Ag/Q be a curve that parametrizes

a 1-dimensional family of abelian varieties where we denote by Ax the fiber of this family

over x ∈ X. Let d be the projective degree of X. We aim to obtain a uniform bound

for the number of x ∈ X(Q) such that Ax is geometrically non-simple, using a method

similar to what we use in this article. By contrast, all upper bounds for the number

of non-simple fibers studied in previous literature depend on X, and a uniform upper

bound that does not depend on X would follow inexplicitly from Lang’s conjecture via

the result of Caporaso-Harris-Mazur [5], as explained in [10].

Organization of the paper. In §2, we recall the notion of heights on projective spaces,

Hecke correspondence, the modular diagonal quotient surfaces, and some results on the

dimension growth conjectures, which we will use later. In §3, we interpret the counting

problem into counting rational points on projective curves with certain level structures

and construct ‘nice’ Galois covers that capture the information of being isogenous. In §4,

we construct certain projective embeddings with respect to the covers in §3, such that

the dimension growth conjecture applies. In §5, we give an upper bound on the change

of heights between covers so that one can bound the height of the lifting points. Finally,

we prove Theorem 3.1.1 and Theorem 2.1.3 in §6.

2.2 Preliminaries

This section introduces the notations, definitions, and geometric objects for future use.

Also, we recall some results in arithmetic geometry, primarily a result of the dimension

growth conjectures, that play an essential role in our proofs.

Let C be a rational curve over K isomorphic to P1 parametrizing a one-dimensional

family of pairs of elliptic curves, and let (Et, E
′
t) be the generic fiber of this family over

K(t), with the assumption that there exists no isogeny between Et and E
′
t. Without loss

of generality, one may write Et and E
′
t in the Weierstrass form

Et : y
2 = x3 + f(t)x+ g(t) (2.2.1)
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E′
t : y

2 = x3 + f ′(t)x+ g′(t) (2.2.2)

where f(t), g(t), f ′(t) and g′(t) are rational functions over K. Therefore, the j-invariants

of Et and E
′
t, denoted by j(Et) and j(E

′), are also rational functions.

2.1. Heights of points. For a rational point a ∈ K, define the height H(a) of a to be

H(a) :=
∏

v∈MK

max{1, |a|v}
nv

[K:Q]

where nv = [Kv : Qv].

The height of a K-rational point P ∈ Pn with homogeneous coordinates P =

(x0, · · · , xn) is defined to be

H(P ) =
∏

v∈MK

max{|x0|v, · · · , |xn|v}
nv

[K:Q]

where nv = [Kv : Qv]. Recall that we define ι to be the map obtained via the j-invariant

and via the Segre embedding in P3, see (2.1.1).

Recall the definition of H(Pt) in Definition 2.1.2. The following lemma indicates that

H(Pt) = H(j(Et))H(j(E′
t)).

Lemma 2.2.1. Let σn be the Segre embedding of n-copies of P1

σn : P1 × P1 × . . .× P1︸ ︷︷ ︸
n-times

↪→ P2n−1

such that for a point (x1, · · · , xn) ∈ P1 × · · · × P1

σn(x1, · · · , xn) = (
∏

1≤i≤n

xi,
∏

i1<i2<···<in−1

xi1 · · ·xin−1 , . . . , x1, . . . , xn, 1).

Let H(.) be the projective height defined above. We have

H(σn(x1, · · · , xn)) = H(x1) · · ·H(xn).
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Proof. By definition of the projective height,

H(σn(x1, · · · , xn)) =
∏

v∈MK

max{|
∏

1≤i≤n

xi|v, · · · , |x1|v, · · · , |xn|v, 1}
nv

[K:Q]

and

H(x1) · · ·H(xn) =
∏

v∈MK

{max{1, |x1|v} · · ·max{1, |xn|v}}
nv

[K:Q] .

A direct observation shows that for each v ∈MK ,

max{|
∏

1≤i≤n

xi|v, · · · , |x1|v, · · · , |xn|v, 1} = max{1, |x1|v} · · ·max{1, |xn|v}.

2.2. The modular diagonal quotient surfaces. Later in this article, we will define

the modular surface XH̃∆
(m) (see (2.3.1)) that lies in a special family, called the modular

diagonal quotient surfaces, which arise naturally as the (coarse) moduli space to the

moduli problem that classifies isomorphisms between mod m Galois representations

attached to pairs of elliptic curves E/K.

The modular curve X(m) is a Galois cover of X(1) with Galois group

G = SL2(Z/mZ)/{±1}.

Let ϵ be an element in (Z/mZ)×. Let αϵ be the automorphism of G defined by conjugation

with Qϵ =
(
ϵ 0
0 1

)
, i.e. αϵ(g) = QϵgQ

−1
ϵ . The product surface X(m) ×X(m) carries an

action of the twisted diagonal subgroup of SL2(Z/mZ)× SL2(Z/mZ) defined by

αϵ : ∆ϵ = {(g, αϵ(g)) : g ∈ G}.

Definition 2.2.2. The twisted diagonal quotient surface defined by αϵ is the quotient

surface Xϵ := ∆ϵ\X(m)×X(m) obtained by the action of ∆ϵ.

Xϵ can be viewed as the moduli space of the triple (E1, E2, Q), where

Q : E1[p]
∼→ E2[p]

multiplies the Weil pairing by ϵ.
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The modular diagonal quotient surfaces and their modular interpretation are widely

used in studying Mazur’s question[16] [11], Frey’s conjecture[Fre97], and so on.

2.3. Uniform bound for points of bounded height on curves.

Let X be an irreducible projective curve defined over a number field K with a degree

d embedding into Pn. Denote by N(X,B) the set of K-rational points on X ⊆ Pn of

projective heights at most B. Heath-Brown proved a uniform bound for rational points

on a curve X with bounded height in [13, Theorem 5], which addresses that

N(X,B) ≤ Oϵ(B
2/d+ϵ).

The result on irreducible projective curves with the removal of the term Bϵ without

needing logB was proved by Walsh in [28], using a combination of the determinant

method based on the p-adic approximation introduced by Heath-Brown [13] with the

method due to Ellenberg and Venkatesh in [9]. The uniform upper bound on N(X,B)

with an explicit term of polynomial growth depends on d was proved by Castryck,

Cluckers, Dittmann, and Nguyen [6]:

Theorem 2.2.3. [6, Theorem 2] Given n ≥ 1, there exists a constant c = c(n) such that

for all d > 0 and all integral projective curves X ∈ Pn
Q of degree d and all B ≥ 1 one has

|N(X,B)| ≤ cd4B2/d.

A year later, Paredes and Sasyk [19] extended the work of Castryck, Cluckers,

Dittmann, and Nguyen to give uniform estimates for the number of rational points of

bounded height on projective varieties defined over global fields. More precisely, they

proved the following extension of [6, Theorem 2] to global fields.

Theorem 2.2.4. [19, Theorem 1.8] Let K be a global field of degree dK . Let H be the

absolute projective multiplicative height. For any integral projective curve C ⊆ PN
K of

degree d it holds

|{x ∈ C(K) : H(x) ≤ B}| ≲K,N


d4B

2dK
d if K is a number field,

d8B
2dK
d if K is a function field.
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We will discuss this result in section §6, where we apply it.

2.3 Construct Galois Covering with Level Structures

In this section, we construct ‘nice’ Galois coverings of X(1)×X(1) with level structures.

To be precise, for a large enough rational prime m, these are quotients of X(m)×X(m)

by certain kinds of subgroups of SL2(Z/mZ)× SL2(Z/mZ), with the property that one

can lift a point t ∈ S(B) to one of the quotients. In other words, the Galois coverings

capture points that parametrize isogenous pairs (Et, E
′
t) in the family. The main theorem

in this section is Lemma 2.3.11.

We assume that m is a rational prime such that m ≥M ′ = max{17,M1} for some

absolute integer M1 defined in Theorem 2.3.4. Also we want m to be a prime between

2(log(d + 1) + logH(ι) + logB)
1
2 and 4(log(d + 1) + logH(ι) + logB)

1
2 once we fix

B, which we will make precise in §6. This condition implies that we need to assume

4(log(d+1)+ logH(ι) + logB)
1
2 ≥M ′ and thus we can always assume B is greater than

the absolute integer M = e(
M′
4

)2 to make everything go through. Let X(m)×X(m) be

the surface parametrizing 4-tuples (E,E′, ϕ, ϕ′), where Et and E
′
t are elliptic curves and

ϕ, ϕ′ are m-level structures, i.e.

ϕ : E[m] → (Z/mZ)2, ϕ′ : E′[m] → (Z/mZ)2

are isomorphisms of group schemes preserving the Weil pairing. Let H be a subgroup of

SL2(Z/mZ)× SL2(Z/mZ) and define XH to be the quotient

XH := (X(m)×X(m))/H. (2.3.1)

p-torsion monodromy representations and the lifting criterion. Let E be an

elliptic curve over a number field K and let p be a prime. Denote by

ρE,p : GK → Aut(E[p])
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the p-torsion Galois representation associated to the p-torsion points E[p] of the elliptic

curve E. It is a standard fact that the elliptic curve E/K admits an isogeny of degree p

defined over K if and only if the image ρE,p (GK) is contained in a Borel subgroup of

Aut(E[p]). If E/K and E′/K are related by an isogeny over K of degree coprime to p,

then this isogeny induces a GK-module isomorphism E[p] ≃ E′[p], which identifies the

images ρE,p (GK) and ρE′,p(GK) up to change of basis. See [21] for an explicit description

of the images of p-torsion Galois representations attached to the product of two isogenous

elliptic curves with an isogeny of degree p.

Definition 2.3.1. Define H∆ to be the image of the diagonal map

∆ : SL2(Z/mZ) → SL2(Z/mZ)× SL2(Z/mZ).

We will prove, in Proposition 2.3.7, that there exists an isogeny ϕt : Et → E′
t defined

over Q if and only if the monodromy of the p-torsion Galois representation on Et[p]×E′
t[p]

is contained in a group H̃∆, which contains H∆ as an index 2 subgroup for all but finitely

many p.

Remark 2.3.2. It is a classical result that for elliptic curves defined over a number field

K, there are finitely many j-invariants with complex multiplication in K. Denote this

number by C(K). We need to bound the number of points Pt on C whose j-invariant

lies in this set. There are at most C(K)2 points Pt ∈ C such that ι(Pt) = (j(Et), j(E
′
t))

contains CM j-invariants. Therefore in our setting, we can discard them and focus on

pairs of elliptic curves without complex multiplication.

Lemma 2.3.3. Let E1 and E2 be two elliptic curves without complex multiplication

over a number field K. If there exists an isogeny ϕ : E1 → E2 defined over K then the

p-torsion Galois representation of E1 × E2

Gal(K̄/K) → GL2(Fp)×GL2(Fp)

has image conjugate to H∆ for primes p not dividing the degree of ϕ.

Proof. First, by Serre’s open image theorem, the p-torsionGalois representation of each
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factor

Gal(K̄) → GL2(Fp)

is surjective for all large enough primes p.

Suppose E1/K and E2/K are related by an isogeny over K of degree d, then for all

primes p ∤ d this isogeny induces a GK-module isomorphism from E1[p] to E2[p], which

identifies the images ρE1,p (GK) and ρE2,p(GK). The lemma follows.

Note that Lemma 2.3.3 is a result of pairs of elliptic curves over number fields. Later

in the proof of Proposition 2.4.9, we need to use the result over the function field K(t)

that classifies elliptic curves up to isogeny by their p-torsion Galois representations. We

present a beautiful theorem by Bakker and Tsimerman [3, Theorem 1].

Theorem 2.3.4. Let k be an algebraically closed field of characteristic 0. For any N > 0,

there exists MN > 0 such that for any prime p > MN and any smooth quasi-projective

curve U of gonality n < N , non-isotrivial elliptic curves E over U are classified up to

isogeny by their p-torsion local system E [p].

Definition 2.3.5. Let H̃∆ be the maximal subgroup of SL2(Z/mZ)× SL2(Z/mZ) that

contains H∆ as an index 2 subgroup.

The following lemma, together with the fact that if F is a field with more than 5

elements then the only proper normal subgroup of SL2(F ) is the group {±1}, proves

that H̃∆ is the unique proper subgroup of SL2(Z/mZ)× SL2(Z/mZ) that contains H∆

as an index 2 subgroup.

Lemma 2.3.6. Let A be a group and let G = A×A. Define ∆ = {(a, a) | a ∈ A} as the

diagonal subgroup of G. If ∆ ≤ H ≤ G then there exists a normal subgroup N of A such

that H = {(g, h) ∈ G | gh−1 ∈ N}.

Proof. Let N = {h ∈ A | (h, 1) ∈ H} be a subgroup of G. We claim that N is the

desired normal subgroup. Indeed, for any a ∈ A and (h, 1) ∈ H, we have (aha−1, 1) =

(a, a)(h, 1)(a−1, a−1) ∈ H, therefore N is a normal subgroup of A.
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For any a, a′ ∈ A, we have (aa′−1, 1)(a′, a′) = (a, a′). Therefore (a, a′) ∈ H is and

only if (aa′−1, 1) ∈ H, if and only if aa′−1 ∈ A by the definition of A.

Proposition 2.3.7. Let E1 and E2 be elliptic curves without complex multiplication

over Q. There exists an isogeny ϕ : E1 → E2 defined over Q if and only if the p-torsion

Galois representation

Gal(Q/Q) → GL2(Fp)×GL2(Fp)

has image contained H̃∆, for all primes p not dividing the degree of ϕ.

Proof. We need the following lemma:

Lemma 2.3.8. Let E1, E2 be elliptic curves without complex multiplication defined over

a number field K. If E1 and E2 are isogenous over Q then there exists a quadratic twist

of E2 that is isogenous to E1 over K.

Suppose there exists an isogeny φ : E1 → E2 over Q then by Lemma 2.3.8 and

Lemma 2.3.3, there is a quadratic extension L/K such that GL has diagonal image

in GL2(Fp) × GL2(Fp). Therefore the image of GK is contained in a subgroup of

GL2(Fp)×GL2(Fp) which contains H∆ as an index 2 subgroup. For the other direction,

we take the preimage of the H∆, which can be written in the form GF for some number

field F , that is quadratic over K. By Proposition 2.19, there is an isogeny φ : E1 → E2

defined over F which completes the proof.

Proof of Lemma 2.3.8. Let φ : E1 → E2 be an isogeny over Q and GQ/K = Gal(Q/K).

For every g ∈ GQ/K , φg = [α(g)] ◦ φ is another isogeny E1 → E2 of the same degree as

φ. Here we define α : GQ/K → R be a character on GQ/K . Since for all elliptic curves

without complex multiplication over Q, there exists a cyclic isogeny φ : E1 → E2 up to

sign and all other isogenies ψ from E1 to E2 can be written as ψ = φ ◦ [m] for some

integer m, we have α(g) = ±1. Hence α(g) is a quadratic character and there exists

d ∈ K∗ such that α(g) = g(
√
d)/

√
d. Thus the quadratic twist of E2 by d is the desired

twist.
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Definition 2.3.9. Let Hp := H1 × H2, where H1 and H2 (possibly H1 = H2) are

maximal parabolic subgroups of SL2(Z/mZ).

Remark 2.3.10. All maximal parabolic subgroups of SL2(Z/mZ) are in the same conju-

gacy class. Therefore the covers constructed in this way are all isomorphic to each other.

If t ∈ S(B) lifts to one, it lifts to all.

Lemma 2.3.11. Any rational point t ∈ S(B) for some B admits a lifting to one of the

congruence covers: XH̃∆
(K) or XHp(K) .

Proof. By the argument above, when there is a K-isogeny of degree m ∤ d, it induces

a GK-isomorphism Et[m] ≃ E′
t[m] which implies an isomorphism of the mod m Galois

images, up to a change of basis given by conjugating by an element (1, g) ∈ SL2(Z/mZ).

Applying Proposition 2.3.7, we get the conclusion that if m does not divide the degree

of the isogeny, the Galois image lies in H̃∆. As for the rest of the lemma, when d = m,

we have the Galois image of the m-torsion monodromy representation of both E1 and

E2 contained in a Borel subgroup of SL2(Z/mZ). Since any Borel subgroup is maximal

parabolic in SL2(Z/mZ), this proves lemma 2.3.11.

2.4 Geometric Interpretation and Projective Embeddings

In this section, we explore the geometric interpretation of the question and construct

projective embeddings, which allow us to transform the question into counting rational

points with bounded height in projective spaces.

Definition 2.4.1. Let H be a subgroup of SL2(Z/mZ) × SL2(Z/mZ) such that H

is either H̃∆ or Hp. Define CH to be the lifting of C to the modular surface XH :=

X(m)×X(m)/H, which is given by the pullback of the following diagram.

CH XH

C X(1)×X(1)



20

2.4.1 The curve CH is integral

In order to apply the result by Paredes and Sasyk, we need to prove that the lifting CH

of C is integral for large enough m. We need the following Goursat’s lemma:

Lemma 2.4.2. [12, Theorem 5.5.1] Let G and H be groups, and let K be a subdirect

product of G and H; that is, K ≤ G×H, and πG(K) = G, πH(K) = H, where πG and

πK are the projections onto the first and second factor, respectively from G ×H. Let

N1 = K ∩ ker (πG) and N2 = K ∩ ker (πH). Then N2 can be identified with a normal

subgroup NG of G,N1 can be identified with a normal subgroup NH of H, and the image

of K in G/NG ×H/NH is the graph of an isomorphism G/NG
∼= H/NH .

Proof. See [12, Theorem 5.5.1].

Also, we prove the following proposition:

Proposition 2.4.3. For all m ≥ 17, the Galois image of the p-torsion monodromy

representation of Et[m] and E′
t[m] in the generic fiber is SL2(Z/mZ).

Proof. Suppose the Galois image of the m-torsion monodromy representation is some

proper subgroup G of SL2(Z/mZ). Then we have a dominant map f : C → X(m)/G.

Since the genus of C is zero, this implies that the genus of the modular curve X(m)/G

is zero.

Let N (m) be the quantity such that

N (m) := min{genus(X(m)/G) | G ⊊ SL2(Z/mZ), G maximal}.

Cojocaru and Hall proved the genus formula for X(m)/G for all possible maximal

subgroup G of SL2(Z/mZ), which is summarized in a table [7, Table 2.1]. Moreover,

they proved that

N (m) =
1

12
[m− (6 + 3e2 + 4e3)] > 0

for m ≥ 17. The proposition follows.
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Now we are ready to prove that CH is irreducible. This follows as a consequence of

Proposition 2.4.3:

Lemma 2.4.4. For each choice of H, the curve CH is integral.

Proof. We have the covering map qŨ : Ũ → U where U is the connected dense open subset

of C parametrizing smooth points. Later in the proof of Proposition 2.4.9, we showed that

the Galois image of the m-torsion monodromy representation of π1(U) is the full group

SL2(Z/mZ)× SL2(Z/mZ), by using Proposition 2.4.3 and Lemma 2.4.2. Therefore the

monodromy of π1(U) acts transitively on the right cosets SL2(Z/mZ)× SL2(Z/mZ)/H,

which implies that the cover CH is connected for both H = H̃∆ and H = Hp. The

lemma follows by the fact that the quotient space of a connected space is connected.

2.4.2 Construct projective embeddings

In this subsection, we give an explicit construction of projective embeddings of CH ,

denoted by ιH . We make the following diagram commute for each case’s choice of N ∈ Z.

Here the rational map PN 99K P3 is a projection of coordinates of PN .

CH PN

C P3.

ιH

q (2.4.1)

Case I: The modular diagonal quotient surfaces.

Recall the definition of the modular diagonal quotient surfaces in §2.4. In our

case where ϵ = 1, XH∆
(m)(K) has the moduli interpretation that it is the set of

isomorphism classes of triples (E1, E2, ψ), where E1, E2 are elliptic curves over K and

ψ : E1[m]
∼→ E2[m] is an isomorphism of the m-torsion subgroups of the elliptic curves

which preserves the Weil pairing. Let t be a rational point of C(K) such that there

exists a point (Et, E
′
t, ψ : Et[m]

∼→ E′
t[m]) which is a point of XH∆

(m)(K). One may

notice that it is not obvious that CH̃∆
is connected, and we will address this point in

Lemma 2.4.4.
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We now define some functions on CH̃∆
in order to apply the result from [6] and to

bound the number of points on CH̃∆
.

For a fixed t ∈ K, there is a list of elliptic curves isogenous to Et through cyclic

isogenies of degree m given by the list of cyclic subgroups of Et[m], say

Et,1, · · · , Et,m+1.

Similarly we have a list of m-cyclic subgroups of E′
t[m] parametrizing the m-cyclic

isogenies of E′
t, with the corresponding list of elliptic curves isogenous to E′

t:

E′
t,1, · · · , E′

t,m+1.

Remark 2.4.5. These isogenies will most likely not be defined over K unless Et[m] or

E′
t[m] has a rational cyclic subgroup. Even then, most of them will not be defined over

K.

For each point (Et, E
′
t, ψ) on C̃, we have m+ 1 cyclic subgroups of Et[m] and m+ 1

cyclic subgroups of E′
t[m] which can be placed in natural bijection with each other under

ψ. We can re-order the lists for E′
t such that Et,1 is in correspondence with E′

t,1 and so

on.

Definition 2.4.6. Let F be a function defined on XH̃∆
given by

F (Et, E
′
t, ψ) = j(Et,1)j(E

′
t,1) + · · ·+ j(Et,m+1)j(E

′
t,m+1).

Lemma 2.4.7. F is defined over Q. Moreover, F is an element of the function field

Q(XH̃∆
).

Proof. For any g ∈ Gal(Q/Q), t ∈ Q, denote by (t, ψ) one of the preimages on XH̃∆
.

F ((t, ψ)g) = Σm+1
i=1 j(Etg ,i)j(E

′
tg ,i) = Σm+1

i=1 (j(Et,i)j(E
′
t,i))

g.

The second equality holds since ψg = ψ and for an arbitrary 1 ≤ i ≤ m+ 1, there is a
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unique k such that

(j(Et,i))
g = j(Et,k)

and once we fix i, it is also true that

(j(E′
t,i))

g = j(E′
t,k)

for the same k.

Definition 2.4.8. Define ι′
H̃∆

: CH̃∆
→ P1 × P1 × P1 to be the function given by

ι′
H̃∆

((Et, E
′
t, ψ)) = (F (Et, E

′
t, ψ), j(Et), j(E

′
t)).

Proposition 2.4.9. For m ≥ 17, ι′
H̃∆

is generically an embedding of CH̃∆
into P1 ×

P1 × P1. This is equivalent to saying that the subfield M ⊂ K(CH̃∆
) generated by j(Et),

j(E′
t) and F is the whole function field.

The proof of Proposition 2.4.9 splits into two parts. The first part is to show that M

is not contained in K(C). The second part is to show there is no intermediate extension

between K(C) and K(CH̃∆
), so that K(C) ⊆ M ⊆ K(CH̃∆

) and M ̸= K(C) implies

M = K(CH̃∆
).

First, we present some representation theoretical lemma which we will use later.

Let G be a finite group and let V and V ′ be permutation representations of G of the

same dimension, such that G acts 2-transitively on some finite sets by V and V ′. It is

a standard fact that the corresponding representation V (resp. V ′) is the direct sum of

the trivial representation and an irreducible representation whose coordinates sum to 0.

Denote the irreducible representation by V0(resp. V
′
0). We prove that if v ∈ V , v′ ∈ V ′

such that ⟨v, v′⟩ = ⟨v, (v′)g⟩ for any g ∈ G, then either v or v′ is fixed by G. We first

prove the following lemma.

Lemma 2.4.10. If v ∈ V (resp. v′ ∈ V ′) is not in the trivial representation generated by

[1, · · · , 1]T , the set {v − vg}(resp. {v′ − (v′)g}), as g ranges over G, span the space of

all vectors in V0(resp. V
′
0).
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Proof. Let Wv(resp. W
′
v) be the subspace Span{v − vg}(resp. Span{(v′) − (v′)g}) as

g ranges over G. We claim that Wv is a sub-representation of V0, the irreducible

representation of the permutation representation given by the condition that the sum of

the coordinates equals 0. Indeed, for any v ∈Wv, σ, τ ∈ G, one have

(v − vσ)τ = vτ − vστ = (v − vστ )− (v − vτ ).

The lemma follows from the face that V0(resp. V
′
0) is irreducible.

Lemma 2.4.11. If v ∈ V , v′ ∈ V ′ such that ⟨v, v′⟩ = ⟨v, (v′)g⟩ for any g ∈ G, then

either v or v′ is fixed by G.

Proof. If ⟨v, v′⟩ = ⟨v, (v′)g⟩ for all g ∈ G, then

⟨v, (v′)− (v′)γ⟩ = 0

for all g ∈ G.

If Wv′ = 0, then v′ = (v′)g for any g ∈ G thus v′ is fixed by G. If Wv′ ≠ 0, by lemma

2.4.10, v′ − (v′)g span the space V ′
0 which is the orthogonal complement of the trivial

representation. Therefore

v ∈W⊥
v′ = C⟨[1, · · · , 1]T ⟩,

thus fixed by G.

Now we apply Lemma 2.4.11 to the case where G = SL2(Z/mZ) and where V and

V ′ are m+ 1 dimensional representations of SL2(Z/mZ) spanned by vectors vt and v
′
t

respectively, as t ranges over C. For t ∈ C such that Et and E
′
t are both non-singular,

define vt and v
′
t by

vt = (j(Et,1), · · · , j(Et,m+1)) (2.4.2)

v′t = (j(E′
t,1), · · · , j(E′

t,m+1)). (2.4.3)
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It is easy to see that V and V ′ are permutation representations of SL2(Z/mZ) by its

transitive action on the basis.

Recall the definition of F in 2.4.6. We may also write F as an inner product:

F (Et, E
′
t, ψ) = ⟨vt, v′t⟩ = j(Et,1)j(E

′
t,1) + · · ·+ j(Et,m+1)j(E

′
t,m+1).

Note that F is defined on CH̃∆
by restriction, but SL2(Z/mZ)× SL2(Z/mZ) does not

act on CH̃∆
. By Lemma 2.4.4 CH̃∆

is connected, we define C ′ as the Galois closure of

CH̃∆
over C. This is equivalent to saying that C ′ is the pullback of C all the way to

X(m) ×X(m), see diagram 2.4.4. Therefore the pullback of F to X(m) ×X(m) is a

function on C ′ with F σ = F for all σ ∈ H̃∆. We prove that F is not defined on C.

C ′ X(m)×X(m)

CH̃∆
X(m)×X(m)/H̃∆

C X(1)×X(1).

(2.4.4)

Lemma 2.4.12. F is not defined on C.

Proof. For each γ ∈ SL2(Z/mZ), the action of γ on F is given by

F (Et, E
′
t, ψ)

γ = ⟨vt, (v′t)γ⟩.

If F is defined on C, then for every γ ∈ SL2(Z/mZ) we have F γ = F therefore

⟨vt, v′t⟩ = ⟨vt, (v′t)γ⟩. By Lemma 2.4.11, either vt or v
′
t is fixed by SL2(Z/mZ). But this

implies either

j(Et,1) = · · · = j(Et,m+1)

or

j(E′
t,1) = · · · = j(E′

t,m+1).

Since there exists t ∈ C such that Et and E
′
t are both non-CM elliptic curves, this cannot

happen. Therefore F cannot be defined on C.
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Now we are ready to prove the generic injectivity of ι′H∆
. We show no intermediate

cover exists between C̃ and C by an argument using monodromy.

Proof of Proposition 2.4.9. By lemma 2.4.11, we have the argument that F is not defined

on C.

Recall that CH̃∆
is defined to be the cover of C constructed by pulling back C →

X(1)×X(1) in the previous context. Let U ⊂ C be the dense open locus parametrizing

smooth points, i.e., pairs of genuine elliptic curves. The étale fundamental group π1(U)

is a quotient of the absolute Galois group of K(t), which acts on the m-torsion of the

generic fiber, say Et[m] and E′
t[m], in the usual Galois way. Proposition 2.4.3 asserts

that for m ≥ 17, the map

ρm : π1(U) → SL2(Z/mZ)× SL2(Z/mZ)

is surjective on each of the two factors. Therefore the reduction map

ρ̄m : π1(U) → PSL2(Z/mZ)× PSL2(Z/mZ)

is surjective on each factor. Form ≥ 5, the projective special linear group PSL2(Z/mZ) =

SL2(Z/mZ)/{±1} is simple. By assumption, the generic fiber Et and E
′
t of the family

are not isogenous. Therefore by the work of Bakker and Tsimerman [3, Theorem 1], there

exists an absolute constant M1 such that for any prime m > M1, the image of ρm on

each of the factors is non-isomorphic. Hence the inequivalence condition in Lemma 2.4.2

is satisfied. Lemma 2.4.2 leads to the conclusion that the Galois image of the m-torsion

monodromy representation of π1(U) is full in PSL2(Z/mZ)× PSL2(Z/mZ).

We prove that there is no intermediate cover between CH̃∆
and C. Suppose there is

a curve X such that

CH̃∆
→ X → C

with all maps of degrees greater than 1. Since the connected covering space of C is in

bijection with the subgroups of π1(C), X corresponds to a proper subgroup H ′ strictly

containing H̃∆. However, H̃∆ is a maximal subgroup of PSL2(Z/mZ)× PSL2(Z/mZ),

which implies that X is isomorphic to CH̃∆
, contradiction. Therefore CH̃∆

is birational
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to its image under ι′
H̃∆

, which proves the proposition.

We have constructed a generic embedding ι′
H̃∆

of CH̃∆
into a product of projective

lines from the argument above. Composing with the Segre embedding, we get a generic

embedding of CH̃∆
into P7, denoted by ιH̃∆

.

ιH̃∆
: CH̃∆

↪→ P1 × P1 × P1 ↪→ P7.

One notice that ιH̃∆
fits into the diagram 2.4.1 at the beginning of this chapter, with

N = 7.

Case II: the maximal parabolic quotient surfaces. When H = Hp which is a

product of maximal parabolic subgroups, the quotient X(m)×X(m)/H is isomorphic to

X0(m)×X0(m). The corresponding projective embedding ιHp can be constructed in the

context of Hecke correspondence of level SL2(Z/mZ) followed by the Segre embedding,

as following:

ιHp : X0(m)×X0(m) ↪→ P1 × P1 × P1 × P1 ↪→ P15. (2.4.5)

To be explicit, for a point P̃t = (Et, Ẽt, E
′
t, Ẽ

′
t) that lifts Pt = (Et, E

′
t), where Et and

Ẽt are linked by a cyclic isogeny of degree m and same for E′
t and Ẽ

′
t, one may write

ιHp as

ιHp : (Et, Ẽt, E
′
t, Ẽ

′
t) 7→ j(Et)× j(Ẽt)× j(E′

t)× j(Ẽ′
t)

7→ (j(Et)j(Ẽt)j(E
′
t)j(Ẽ

′
t); · · · ; j(Et); j(Ẽt); j(E

′
t); j(Ẽ

′
t); 1).

In this case, we choose N = 15 in diagram 2.4.1.

2.5 Bound for the Change of Heights

In this section, we give an upper bound on the height of a point in CH(K) lying over a

point Pt ∈ C(K), in terms of the height H(t) and the level m. The main theorem of this
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section is Proposition 2.5.4.

5.1. Hecke correspondence and modular polynomials. Modular polynomials

of elliptic curves, the so-called ’elliptic modular polynomials,’ are the most common

and simplest examples of modular equations. For a positive integer m, the classical

modular polynomial Φm is the minimal polynomial of j(mz) over C(j). In other words

we have Φm(j(mz), j(z)) = 0. The bivariate polynomial Φm(X,Y ) is symmetric of degree

ψ(m) = m
∏

p|m(1 + p−1) in both variables, and its coefficients grow super-exponentially

in m. The modular curve Y0(m) is birational to its image in P1×P1 with Φm an equation

for this image. The graph of Φm describes the Hecke correspondence such that there

exists a cyclic isogeny of degree m between projections onto each copy of P1.

For elliptic curves E1 and E2 linked with a cyclic isogeny of order m, we aim to find

an upper bound for the height H(j(E1)), in terms of H(j(E2)) and the coefficients of

Φm. This has been worked out by Pazuki in [20].

Theorem 2.5.1. [20, Theorem 1.1] Let φ : E1 → E2 be a Q-isogeny between two elliptic

curves defined over Q. Let j1 and j2 be the respective j-invariants. Then one has

|h (j1)− h (j2)| ≤ 9.204 + 12 log degφ

where h(.) denotes the absolute logarithmic Weil height.

Theorem 2.5.1 leads to the following corollary:

Corollary 2.5.2. Let φ : E1 → E2 be a Q-isogeny between two elliptic curves defined

over Q which is cyclic of degree m. Let j1 and j2 be the respective j-invariants. Then

one has

H(j1) < Am12H(j2)

for some absolute constant A. Here H(.) denotes the projective height.

5.2. Bounding change of heights. We prove an upper bound on the product of

heights, which we will use later.
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Lemma 2.5.3. Let d be the projective degree of C under the embedding ι, see (2.1.1). Let

H(ι) be the height of ι defined by the height of the coefficients of the defining polynomials

of j(Et) and j(E
′
t). Then for every t ∈ K with H(t) ≤ B, we have

H(Pt) ≤ (d+ 1)H(ι)Bd.

Proof. By Lemma 2.2.1 we have

H(Pt) = H(j(Et))H(j(E′
t)).

The lemma then follows from [26, VIII, Theorem 5.6] , which asserts that when there is

a map of degree d between two projective spaces, say

F : Pm → PM ,

then for all points P ∈ Pm(Q) there are positive constant C1 and C2 depending on F

such that

C1H(P )d ≤ H(F (P )) ≤ C2H(P )d.

Write F = [f0, · · · , fM ] using homogeneous polynomials fi having no common zeros.

Let H(F ) be the height of F defined by the height of the coefficients of fi. The constant

C1 and C2 can be explicitly calculated in terms of M , m and H(F ). Especially, we can

let C1 =
(
m+d
m

)
H(F ). The lemma follows from the assumption that F = ι, m = 1 and

M = 3.

By Lemma 2.3.11, for our choice of m ∈ Z, a rational point t ∈ C(K) with t ∈ S(B)

for some B lifts to a rational point on one of the covers CH̃∆
⊂ XH̃∆

or CHp ⊂ XHp . We

have the following proposition:

Proposition 2.5.4. Fix m ∈ N. Let t ∈ K be a rational point such that t ∈ S(B) for

some B. Let Pt denote the point on C parametrized by t, and denote by P̃t a lifting of

Pt to one of the covers CH in Lemma 2.3.11. Let H(ιH(P̃t)) denote the projective height

of P̃t with respect to ιH .
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If H = H̃∆, then

H(ιH(P̃t)) ≤ (m+ 1)m24(m+1)A2(m+1)((d+ 1)H(ι))m+2Bd(m+2).

If H = Hp, then

H(ιH(P̃t)) ≤ m24(d+ 1)2H(ι)2B2d.

Proof. Case 1: Pt lifts to C̃H̃∆
(K)

As noted above, passing to the quotient CH̃∆
we have ιH̃∆

embeds CH̃∆
into P7 by

composing ι′
H̃∆

with the Segre embedding. A point P̃t = (Et, E
′
t, ψ : Et[m]

∼→ E′
t[m])

that is a lift of Pt = (Et, E
′
t) embedded into P7 as following:

(Et, E
′
t, ψ) → F × j(Et)× j(E′

t) ↪→ [Fj(Et)j(E
′
t), F j(Et), F j(E

′
t), · · · , 1].

Since our ultimate goal is to count rational points parametrized by t ∈ K, we need a

formula relating the height of ιH(P̃t) with heights of F , j(Et) and j(E
′
t). By Lemma

2.2.1, we have

H(ιH(P̃t)) = H(F )H(j(Et))H(j(E′
t)). (2.5.1)

Let i be an integer between 1 and m+ 1 such that

H(j(Et,i)j(E
′
t,i)) = max

1≤k≤m+1
H(j(Et,k)j(E

′
t,k)).

By Definition 2.4.6 and Corollary 2.5.2 and Lemma 2.5.3, together with the fact that for

any α, β, α1 · · ·αr ∈ Q,

H(αβ) ≤ H(α)H(β)

and

H(α1 + · · ·αr) ≤ rH(α1) · · ·H(αr),

we have
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H(F ) = H(j(Et,1)j(E
′
t,1) + · · ·+ j(Et,m+1)j(E

′
t,m+1)) (2.5.2)

≤ (m+ 1)H(j(Et,i))
m+1H(j(E′

t,i))
m+1 (2.5.3)

≤ (m+ 1)m24(m+1)A2(m+1)H(j(Et))
m+1H(j(E′

t))
m+1 (2.5.4)

≤ (m+ 1)m24(m+1)A2(m+1)((d+ 1)H(ι))m+1Bd(m+1). (2.5.5)

The constant A comes from Corollary 2.5.2, and the first part of the lemma follows from

(2.5.1).

Case 2: Pt lifts to one of the maximal parabolic quotient surfaces

Recall the definition of Hp (2.3.9) and ιHp (2.4.5). As in the previous case, Lemma

2.2.1 implies that

H(ιHp(P̃t)) = H(j(Et))H(j(Ẽt))H(j(E′
t))H(j(Ẽ′

t))

By Corollary 2.5.2 and Lemma 2.5.3, where Ẽt ism-isogenous to Et and Ẽ
′
t ism-isogenous

to E′
t, we have

H(ιHp(P̃t)) ≪ m24(d+ 1)2H(ι)2B2d.

2.6 Proof of the Main Theorems

2.6.1 Proof of Theorem 3.1.1

The previous sections show that for a rational point Pt on C, we have two types of

possible liftings to some modular surfaces with m-level structures. Accordingly, we divide

the proof of Theorem 3.1.1 into two parts and analyze each part’s contribution to |S(B)|.

We make optimization of m in terms of the height B of t as.

Case 1: Contributions from modular diagonal quotient surfaces.
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Recall that we have the following commutative diagram:

CH̃∆
P1 × P1 × P1 P7

C P1 × P1 P3

ι′
H̃∆

q

Segre

Let ιH̃∆
be the composition of ι′

H̃∆
with the Segre embedding. In order to apply

Theorem 2.2.4, we bound the degree of ιH̃∆
, which depends on m and the projective

degree of C.

Let degCH̃∆
(F ) be the degree of F as a function on CH̃∆

. The degree of the function

ι′
H̃∆

on CH̃∆
can be viewed as a tridegree, which we denote by (degCH̃∆

(F ), e, e′). When

we pass to P7 by compose with the Segre embedding, we have

ιH̃∆
= deg(F ) + e+ e′.

Here e denotes the degree of the function j(Et) on CH̃∆
and e′ is the degree of j(E′

t) on

CH̃∆
. Let α be the degree of the cover q and let dE be the degree of the j-invariant map

C → P1. Therefore e = αdE . Similarly, we have e′ = αdE′ . Therefore

deg(ιH̃∆
) > e+ e′ = α(dE + dE′) = αd.

The degree of q is equal to the index of H̃∆ inside the Galois group G = SL2(Z/mZ)×

SL2(Z/mZ). We have

α = [G : H̃∆] = m3(1− 1

m2
) = m(m+ 1)(m− 1).

Therefore

deg(ιH̃∆
) ≥ m(m+ 1)(m− 1)d.

In order to get an upper bound of deg(ιH̃∆
), we need an upper bound for the degree

of F over CH̃∆
. Recall from diagram 2.4.4, C ′ is the Galois closure of CH̃∆

over C and

the function F is defined to be

F = j(Et,1)j(E
′
t,1) + · · ·+ j(Et,m+1)j(E

′
t,m+1).
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The individual terms j(Et,i) and j(E′
t,i) are defined on C ′, instead of on CH̃∆

. A

point on C ′ is a product of triples (Et, P,G)× (E′
t, P

′, G′), where P (resp. P ′) is a point

of Et[m](resp. E′
t[m]) and G(resp. G′) is a cyclic subgroup of Et[m](resp. E′

t[m]). Fix

a j-invariant x, the degree of j(Et,i)(resp. j(E
′
t,i)) is the number of points on C ′ such

that j(Et/G) = x. As long as Et and E
′
t) is not CM, there are m+ 1 j-invariants which

are m-isogenous to x and there are dE points on C mapping to each of those (m+ 1)

j-invariants. Hence the degree degC(j(Et,i))(resp. degC(j(E
′
t,i))) for each 1 ≤ i ≤ m+ 1

is (m+ 1)dE(resp. (m+ 1)dE′).

The argument above, together with the fact that if f and g are functions on a curve

X then

deg(f + g) ≤ deg(f) + deg(g)

and

deg(fg) ≤ deg(f) + deg(g),

yields that

degCH̃∆
(F ) ≤ degC′(F ) ≤ (m+ 1)2d.

Hence we get an upper bound on the degree of ιH̃∆
which is

deg(ιH̃∆
) ≤ (m(m+ 1)(m− 1) + (m+ 1)2)d.

We can write the argument in the paragraph above in a lemma:

Lemma 2.6.1.

m(m+ 1)(m− 1)d ≤ deg(ιH̃∆
) ≤ (m(m+ 1)(m− 1) + (m+ 1)2)d.

Let SB,m,H∆
be the set of rational points on CH̃∆

(K) which are liftings of Pt for some

t ∈ S(B). Recall that we prove an upper bound for the heights of points in SB,m,H∆
in

Proposition 2.5.4. Theorem 2.2.4 ([19, Theorem 1.8]) then applies, along with Lemma
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2.4.4 and Lemma 2.6.1, yielding

SB,m,H∆
≲K ((α+ (m+ 1)2)d)4((m+ 1)m24(m+1)A2(m+1)((d+ 1)H(ι))m+2Bd(m+2))

2dK
αd

(2.6.1)

≲K ((m2 + 1)(m+ 1)d)4((m+ 1)m24(m+1)A2(m+1)((d+ 1)H(ι))m+2Bd(m+2))
2dK

m(m−1)(m+1)d

(2.6.2)

≲K (m3d)4(m+ 1)
2dK

m(m−1)(m+1)dA
4dK

m(m−1)dm
48dK

m(m−1)d ((d+ 1)H(ι)B)
2dK (m+2)

m(m−1)(m+1)

(2.6.3)

The terms in (2.6.3) other than (m3d)4 are bounded above by an absolute constant.

The argument requires optimizations on the choice of m, which we will prove in the

following lemma.

Lemma 2.6.2. Recall that m is a prime between 2(log(d+ 1) + logH(ι) + logB)
1
2 and

4(log(d+ 1) + logH(ι) + logB)
1
2 . There is an absolute constant A0 such that

(m+ 1)
2dK

m(m−1)(m+1)dA
4dK

m(m−1)dm
48dK

m(m−1)d ((d+ 1)H(ι)B)
2dK (m+2)

m(m−1)(m+1) ≤ A0.

Proof. Once we write

(m+ 1)
2dK

m(m−1)(m+1)d

as

e
(

2dK
m(m−1)(m+1)d

) log(m+1)
,

it is easy to see that for m ≥ 2 we have

(m+ 1)
2dK

m(m−1)(m+1)d ≪ e
2dK
d ≤ e2dK .

This is because log(m+1)
m(m−1)(m+1) is bounded above by 1. A similar argument shows that

m
48dK

m(m−1)d ≪ e
48dK

d ≤ e48dK

which also contributes as a constant independent of m and d.

It is left to consider ((d+ 1)H(ι)B)
2dK (m+2)

m(m−1)(m+1) which plays an important role in the

optimization process. We make the optimization by choosing suitable m in terms of B,

d, and H(ι). The following inequalities, together with Proposition 2.4.3, allows one to
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take m to be any prime between 2(log(d + 1) + logH(ι) + logB)
1
2 and 4(log(d + 1) +

logH(ι) + logB)
1
2 , so that

((d+ 1)H(ι)B)
2dK (m+2)

m(m−1)(m+1) = e
2dK (m+2)

m(m−1)(m+1) (log(d+ 1) + logH(ι) + logB)

= e
2dK (log(d+1)+logH(ι)+logB)

(m−1)(m+1) · e
4dK (log(d+1)+logH(ι)+logB)

m(m−1)(m+1)

≤ eN1dK · eN2dK

where 2(log(d+1)+logH(ι)+logB)
(m−1)(m+1)d and 4(log(d+1)+logH(ι)+logB)

m(m−1)(m+1)d are bounded above by some

absolute constant N1 and N2.

We have the following proposition as a conclusion of the case.

Proposition 2.6.3. The number of points in |S(B)| that comes from the modular

diagonal quotient surface is bounded up by

SB,m,H∆
≲K d4((log(d+ 1) + logH(ι) + logB))6

≲K d4+ϵ(logH(ι) + logB)6.

Proof. The proposition follows from the inequality (2.6.3) and Lemma 2.6.2.

Case 2: Contributions from maximal parabolic quotient surfaces. Recall that

in this case, we have the following commutative diagram.

CHp P1 × P1 × P1 × P1 P15

C P1 × P1 P3

ι′Hp

q

Segre

The degree of the covering space q, denoted by β, is equal to the index of Hp inside

the Galois group G, similar to the previous case. The index of Hp as a product of

maximal parabolic subgroups is equal to

β = [G : Hp] =
1

4
(m+ 1)2.
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One notice that the degree of ιHp satisfies deg(ιHp) = βd. Let SB,m,Hp be the number of

rational points in CHp(K) that lift Pt for some t ∈ S(B). Applying Proposition 2.5.4

and Theorem 2.2.3, we get the following inequality

SB,m,Hp ≲K ((m+ 1)2d)4(m24(d+ 1)2H(ι)2B2d)
8dK

(m+1)2d

which allows us to make the same optimization as in case 1. By taking

m ∼ (logB + log(d+ 1) + logH(ι))
1
2 ,

we get an upper bound of the total contribution to |S(B)| from the maximal parabolic

surfaces:

Proposition 2.6.4.

SB,m,Hp ≲K d4(logB + log(d+ 1) + logH(ι))4

≲K d4+ϵ(logB + logH(ι))4.

Proof of Theorem 3.1.1. It is easy to see that the contribution from case 1 dominates

that of case 2. Theorem 3.1.1 then follows from Proposition 2.6.3 and 2.6.4.

2.6.2 Proof of Theorem 2.1.3

Recall that in Theorem 3.1.1, H(t) is defined as the height of t as an element of K.

Instead, if we calculate the height of t as the height of a point on X(1)×X(1), which we

have been calling H(Pt). Assume that H(Pt) ≤ B. In this section, we prove an uniform

bound on the number of points t such that Et and E
′
t are geometrically isogenous, which

only depends on K, B, and the degree of the parametrize family.

We need a slightly modified version of Proposition 2.5.4, which we state as a corollary.

Corollary 2.6.5. Fix m ∈ N. Let t ∈ K be a rational point such that t ∈ S(B) for some

B. Let Pt denote the point on C parametrized by t, and denote by P̃t a lifting of Pt to

one of the covers CH in Lemma 2.3.11. Let H(ιH(P̃t)) denote the projective height of P̃t

with respect to ιH .
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If H = H̃∆, then

H(ιH(P̃t)) ≤ (m+ 1)m24(m+1)A2(m+1)B(m+2).

If H = Hp, then

H(ιH(P̃t)) ≤ m24B2.

Proof. The proof is the same as Proposition 2.5.4, except that we have

H(j(Et))H(j(E′
t)) ≤ B

instead of Lemma 2.5.3.

Proof of Theorem 2.1.3. Let S′
B,m,H be the set of rational points on CH(K) which are

preimages of Pt for some t ∈ S′(B). A similar argument to the proof of Theorem 3.1.1

yields

S′
B,m,H̃∆

≲K ((α+ (m+ 1)2)d)4((m+ 1)m24(m+1)A2(m+1)B)(m+2)
2dK
αd (2.6.4)

≲K ((m2 + 1)(m+ 1)d)4((m+ 1)m24(m+1)A2(m+1)B(m+2))
2dK

m(m−1)(m+1)d

(2.6.5)

≲K (m3d)4(m+ 1)
2dK

m(m−1)(m+1)dA
4dK

m(m−1)dm
48dK

m(m−1)dB
2dK (m+2)

m(m−1)(m+1)d (2.6.6)

when H = H̃∆, and

S′
B,m,Hp

≲K ((m+ 1)2d)4(m24B2)
8dK

(m+1)2d . (2.6.7)

We choose m to be a prime between 2(logB)
1
2 and 4(logB)

1
2 as to control the growth

of the B-power factors in both 2.6.6 and 2.6.7, such that

B
2dK (m+2)

m(m−1)(m+1)d = e
2dK (m+2)

m(m−1)(m+1)d
logB

= e
2dK (logB)

(m−1)(m+1) · e
4dK (logB)

m(m−1)(m+1)

≤ eN
′
1dK · eN ′

2dK
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and

B
16dK

(m+1)2d = e
16dK

(m+1)2d
logB ≤ eN

′
3dK

for some absolute constant N ′
1, N

′
2 and N ′

3.
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Chapter 3

Isogeny classes of non-simple

abelian surfaces over finite fields

3.1 Introduction

Many fundamental problems on Shimura varieties pertain to the behavior of isogeny

classes, for example, the Hecke orbit conjecture and specific questions related to unlikely

intersections. In [24, Theorem 4.1], Shankar and Tsimerman proved an asymptotic

formula for the size of the isogeny class of ordinary elliptic curves over finite fields. As

an application, they proved the existence of a hypersurface in the moduli space X(1)270,

which intersects every isogeny class.

A few common strategies exist to obtain asymptotic formulas for the size of isogeny

classes of abelian varieties over finite fields. In particular, when the abelian variety is

ordinary and simple, the inspiring work of Deligne [8] explicitly classified such abelian

varieties over finite fields. Using the classification, one can get bounds for the isogeny

classes of ordinary abelian varieties, for example, [24, Theorem 3.3]. A handful of studies

in this flavor have been performed in more general settings. For example, one may refer

to [18] when the abelian variety is almost-ordinary and geometrically simple and to [4] for

a setting of Hilbert modular varieties. All of the results above depend on the existence

of canonical lifting and classification of abelian varieties over finite fields.
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A second way of doing this is to interpret isogeny classes in terms of orbital integrals.

For example, in [2], Achter and Cunningham proved an explicit formula for the size of

the isogeny class of a Hilbert-Blumenthal abelian variety over a finite field. They express

the size of the isogeny class as a product of local orbital integrals on GL(2) and then

evaluate all the relevant orbital integrals. See also [1] where Achter and Williams proved

that for a particular class of simple, ordinary abelian surfaces over Fq given by a q-weil

polynomial f , the number of principally polarized abelian surfaces over Fq with Weil

polynomial f could be calculated by an infinite product of local factors which can be

calculated by method of orbital integrals.

Throughout this article, let (A, λA) be a principally polarized non-simple abelian

surface defined over Fq, with the polarization given by λA. Moreover, assume that A has

the form A = E × Ess, where E is an ordinary elliptic curve and Ess is a supersingular

elliptic curve. The endomorphism algebra End◦(A) is non-commutative, and there is

no canonical lifting of A. Therefore, we cannot interpret the question as estimating

the size of class groups by using the classification of abelian varieties over finite fields.

Instead, we measure the size of the isogeny class of A defined over Fq and describe

how this cardinality is affected by the base change to finite extensions of Fq by using

group-theoretical methods.

Before introducing the main theorem, we introduce some notations. Let I(qn, A) be

the set of principally polarized abelian varieties defined over Fqn that are isogenous to A

over Fq. Let N(qn, A) denote the cardinality of I(qn, A). By interpreting the question

as a classification of finite subgroup schemes, we obtain a lower bound on the number of

principally polarized abelian varieties over Fqn that is isogenous to A over Fq. Our main

result is the following.

Theorem 3.1.1. Let (A, λA) be a principally polarized abelian variety over Fq such that

A = E × Ess. Let K be the quadratic number field such that K = End◦(E). Let n be an

integer such that for all prime ℓ ramified in OK , (n, ℓ) ̸= 1. Then

N(qn, A) ≫ qn+o(1).
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Also, we provide a different approach to count the size of isogeny classes of ordinary

elliptic curves over finite fields, which upper bound is known by Lenstra [14, Proposition

1.19] and Shankar-Tsimerman [24, Theorem 3.3].

Theorem 3.1.2. Let E be an elliptic curve defined over Fq. For a positive density set

of n, we have

N(qn, E) = (qn)1/2+o(1).

There is a general conjecture regarding the size of the isogeny class of abelian varieties

over finite fields. Let N(W ) be the open Newton stratum of Ag consisting of all abelian

varieties whose Newton polygon is W and let A be a principally polarized abelian variety

in Ag. Recall that the central leaf through A consists of all abelian varieties in N(W )

whose p-divisible group is isomorphic to A[p∞]. The isogeny leaf through A is a maximal

irreducible subscheme of Ag consisting of abelian varieties A′ in N(W ) such that A′ is

isogenous to A through an isogeny whose kernel is an iteration extension of the group

scheme αp. Let dim(CL) be the dimension of the central leaf through A and let dim(IL)

be the dimension of the isogeny leaf through A.

Conjecture 3.1.3. We have

N(qn, A) = qn(
dim(CL)

2
+dim(IL))+o(1).

All the previous results we state above satisfy the Conjecture 3.1.3. When A is a

non-simple abelian surface, it is easy to see that the dimension of the central leaf through

A is 2, by the formula of lattice-point count by Shankar and Tsimerman [24, Section

5.2]. The dimension of the isogeny leaf through A is 0. Therefore the conjecture is true

in this case.

3.2 The Isogeny Classes and Maximal Isotropic Subgroups

A classical way to construct abelian varieties isogenous to a fixed abelian variety A is to

take quotients of A by finite subgroup schemes. A theorem of Mumford [17, II.7 Theorem
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4] addresses that one can construct isogenies from finite subgroups of an abelian variety

and vice versa.

Theorem 3.2.1. [17, II.7 Theorem 4] Let X be an abelian variety. There is a one-to-one

correspondence between the two sets of objects:

(a) finite subgroups K ∈ X,

(b) separable isogenies f : X → Y , where two isogenies f1 : X → Y1, f2 : X → Y2

are considered equal if there is an isomorphism h : Y1 → Y2 such that f2 = h ◦ f1,

which is set up by K = ker(f), and Y = X/K.

The maximal isotropic subgroups. In order to count the number of abelian varieties

isogenous to A, a natural way is to look at all its finite subgroups G ⊂ A. Let A[m] be

the m-torsion subgroup of A . when p ∤ m, A[m] = (Z/mZ)4. Without loss of generality,

let m be a prime integer. Recall that for a symplectic F -vector space V equipped with

the symplectuc bilinear form ω : V × V → F , a subspace H is called isotropic if for any

h1, h2 ∈ H, ω(h1, h2) = 0. It is a standard fact that for a symplectic vector space of

dimension 2g, each of the maximal isotropic subspaces is of dimension g.

Definition 3.2.2. Let (A, λA) be a principally polarized abelian surface, and ℓ be a

prime such that ℓ ∤ p. Define the (ℓm, ℓm)-isogeny to be any isogeny f : A→ B whose

kernel is a maximal isoptopic subgroup of A[ℓm], with respect to the Weil paring induced

by the polarization λA.

We claim that for an (ℓm, ℓm)-isogeny f : A → B, there is a unique principal

polarization on B, denoted by λB, such that f∗λB = ℓm × λA. This is a consequence

of Grothendieck’s descent, and we omit the proof here. See [22, Proposition 2.4.7] for

detailed proof. This fact allows us to compute a lower bound of N(qn, A) first by counting

the number of maximal isotropic subgroups of A that are defined over Fqn , then by

computing the number of the subgroups that give the same quotient up to isomorphism.

Lemma 3.2.3. For l ∤ p, there are

ℓ3m + ℓ3m−1 + ℓ3m−2 + l3m−3



43

maximal isotropic subgroups of A[ℓm] with respect to the principal polarization λA.

Proof. Without loss of generality, one can assume that λA is given by the matrix

λA =



0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


up to a proper choice of basis for the ℓ-adic Tate module TℓA. Then the corresponding

symplectic form is ψ(x, y) = xTMy. It is easy to see that any cyclic group H of order

ℓm, we call it isotropic line, is an isotropic subgroup. Any maximal isotropic subgroup

has the form (Z/ℓmZ)2. These can be viewed as the isotropic planes inside A[ℓm]. Let

H⊥ denote the orthogonal complement of H. A direct computation shows that

H ⊂ H⊥, dim(H⊥) = 3.

Since any maximal isotropic subgroup has dimension two, the number of isotropic

planes containing H is the number of lines in H⊥/H counts to ℓm + ℓm−1. The number

of lines L in A[ℓm] is ℓ3m + ℓ3m−1 + ℓ3m−2 + ℓ3m−3 and any maximal isotropic plane

contains ℓm + ℓm−1 lines. The result follows.

We introduce a criterion by Waterhouse [29, Proposition 3.6], which enables us to rule

out maximal isotropic subgroups that give the same quotient variety up to isomorphism.

We investigate the ℓ-power subgroups of A, where ℓ ∤ p. Let H1, H2
∼= (Z/ℓmZ)2 be

isotropic planes in A[ℓm].

Definition 3.2.4. H1 is equivalent to H2 if they define the same quotient up to

isomorphism

A/H1
∼= A/H2.

Theorem 3.2.5. [29, Proposition 3.6] Let G1 and G2 be two finite subgroups of A, not

necessarily étale. Then A/G1
∼= A/G2 if and only if for some isogeny ρ ∈ End(A) and

some non-zero N ∈ Z, ρ−1(G1) = [N ]−1G2.
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Proof. See [29, Proposition 3.6]. We include the proof here for completeness.

Suppose A/G1 ≃ A/G2. Then we have φi : A → B with kerφi = Gi, i = 1, 2. For

N1 large (e.g., N1 = rankG1), we have [N1]
−1G2 ⊇ G1. Now [N1]

−1G2 = ker(N1φ2), so

by the definition of quotient there is a σ : B → B such that σφ1 = N1φ2. For N2 large

enough there is a ρ : A → A with φ1ρ = [N2]σφ1 (choose an iA and look at the two

lattices in E). Thus φ1ρ = N1N2φ2. Set N = N1N2, then

ρ−1(G1) = ker(φ1ρ) = ker([N ]φ2) = [N ]−1G2.

Conversely, A
ρ→ A→ A/G1 shows that

A/G1 ≃ A/ρ−1(G1);

likewise

A/G2 ≃ A/[N ]−1G2,

so the condition is sufficient.

3.3 Counting inequivalent maximal isotropic planes

In this section, we prove a lower bound for the number of inequivalent maximal isotropic

planes. The main result is Proposition 3.3.3 and Proposition 3.3.5. For any prime ℓ ∤ p,

fix a basis {e1, e2, f1, f2} for TℓA, such that for i, j = 1, 2, ω(ei, fj) = 1 only when i ̸= j.

For the rest of the paper, H will denote a maximal isotropic subgroup of A[ℓm].

Let ϕ : A → B be an isogeny defined over Fqn . Since there is no isogeny be-

tween ordinary and supersingular elliptic curves, the endomorphism ring decomposes as

End(A) = End(E)× End(Ess). Therefore there is a decomposition of ϕ into ordinary

and supersingular part, namely ϕ = ϕord×ϕss, accordingly a decomposition of the kernel:

ker(ϕ) = Kord ×Kss, where Kord ⊂ E and Kss ⊂ Ess. We have the following theorems

on the number of endomorphisms of elliptic curves over finite fields whose kernel is cyclic:

Proposition 3.3.1. Let E be an ordinary elliptic curve defined over Fqn. For any

positive integer d, the number of endomorphisms in End(E) with cyclic kernel Z/dZ is



45

bounded up by O(dϵ).

Proof. Let K = End◦(E), E is ordinary implies that K is a quadratic number field.

Let OK denote the ring of integers of K. Assume that d has prime decomposition

d = pe11 · · · perr q
f1
1 · · · qfss d1, such that pi splits in OK , qj inert in OK and every prime

factor of di, namely the ramified prime, divides D. The number of endomorphisms

in End(E) with cyclic kernel Z/ℓmZ is the number of elements in OK with norm ℓk.

Therefore it is (e1 + 1) · · · (er + 1) if all fj , 1 ≤ j ≤ s are even, or zero otherwise. The

divisor bound is O(dϵ), which is a standard fact.

Proposition 3.3.2. Let Ess be a supersingular elliptic curve defined over Fqn. For

ℓ ∤ D where D is the determinant of the norm form on End(Ess), there are O(ℓm)

endomorphisms whose kernel is the cyclic group Z/ℓmZ.

Proof. Let Ess be a supersingular elliptic curve defined over Fqn with characteristic p,

then OEss = End(Ess) is a maximal order in the quaternion algebra ramified exactly at

p and ∞. Endomorphism with kernel a cyclic subgroup of order m, i.e., of degree m,

are elements in OEss with norm m. For a quaternion algebra F = Q+Qα+Qβ +Qαβ

where α2 = a, β2 = b, a < 0, b < 0, βα = −αβ, x = x0 + x1α + x2β + x3αβ ∈ F , the

norm N(x) = xx̄ = x20 − ax21 − bx22 + abx23 is a quaternion quadratic form. The question

boils down to counting the number of representations

r(n) = rN (n) = #{x ∈ Z4, x = (x0, x1, x2, x3);N(x) = n}

This can be solved making use of the theta series

ϑ(z) =
∑
α∈Z4

e(zN(α)) =
∑
n≥0

r(n)e(nz)

where e(z) = e2πiz, which is a generating series for r(n). ϑ(z) satisfy

ϑ(
az + b

cz + d
) = χ(γ)(cz + d)m/2ϑ(z)

where γ ∈ SL2(Z) and therefore is a modular form of weight m/2. So it can be written

as the sum of an Eisenstein series
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E(z) =
∑
n≥0

ρ(n)e(nz), ρ(0) = 1

and a cusp form

f(z) = ϑ(z)− E(z) =
∑
n≥1

a(n)e(nz).

Thus we can write r(n) = ρ(n) + a(n) and then bound it from above by estimating

the Fourier coefficient a(n) of the cusp form and estimating ρ(n) gives a bound from

below. In our case where m = 4, assume that ℓ ∤ D. We have m
2 − 1 = 1 such that

ρ(n) ≫ n.

One way to get a nontrivial upper bound for a(n) is to use the Rankin-Selberg method.

For even m, Deligne[Del73] proved that a(n) ≪ n
m
4
− 1

2
+ϵ. In our case, it turns out to be

a(n) ≪ n
1
2 .

Putting together, we get

r(ℓm) ≫ ℓm.

Since Ess is simple, every non-zero endomorphism is an isogeny, and we have

ℓm + ℓm−1 = O(ℓm)

cyclic subgroups of order ℓm in Ess[ℓ
m] = Z/ℓmZ× Z/ℓmZ. Thus

r(n) = rN (n) = O(ℓm).

There are two types of maximal isotropic planes in A[ℓm] we take into concern with

respect to our choice of basis:

• Type 1: H is a product H1 ×H2 where H1 ∈ E, H2 ∈ Ess.

• Type 2: H cannot be written as a product H1 ×H2 where H1 ≤ E, H2 ≤ Ess.
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3.3.1 H is of product type

In the case where H is of type 1, we write H = ⟨ae1 + be2, cf1 + df2⟩, where a, b, c, d ∈

Z/ℓmZ. Here {e1, e2, f1, f2} denote a basis of A[ℓm]. We claim that:

Proposition 3.3.3. Let N1 be the number of inequivalent maximal isotropic planes of

type 1. We have

N1 ≍ ℓm

Proof. For an elliptic curve, either ordinary or supersingular, there are O(ℓm) cyclic

subgroups of the order less than or equal to ℓm. Therefore, there are O(ℓ2m) such

kind of H in total. Let H1 and H
′
1 be cyclic subgroups(isotropic lines) of E[ℓm]. By

Theorem 3.2.5, A/H1
∼= A/H

′
1 if and only if there exists ϕ ∈ End(E), N ∈ Z such

that ϕ−1H
′
1 = [N ]−1H1. For such possible ϕ that has prime-to-ℓ kernel, we have N ∤ ℓ,

N−1H1 = (Z/NZ)× (Z/NZ)× (Z/ℓmZ). Since Ker(N) ⊂ Ker(ϕ), ϕ factors through the

multiplication by N map as ϕ = i ◦N where i ∈ Aut(E). But for an ordinary elliptic

curve, there are only finitely many units in End(E), thus the possible choices of ϕ.

The same argument also works for ϕ has ℓ-power kernel. Indeed, for positive integer

k, we have [ℓk]−1H1 = (Z/ℓkZ) × (Z/ℓk+mZ) and the possible choices of Ker(ϕ) are

(Z/ℓk+iZ) × (Z/ℓk−iZ) for 0 ≤ i ≤ m. Proposition 3.3.1 implies that the number of

inequivalent isotropic lines H1 ⊂ E is O(lm−ϵ).

We assumed that H2 comes from the supersingular elliptic curve Ess. Since the

number of supersingular elliptic curves up to F̄q-isomorphism is finite, for instance, see

[26, V.4 Theorem 4.1]. we have finitely many inequivalent H2 ∈ Ess. Putting these

arguments together, we proved that the number of such inequivalent H of type 1 is

asymptotically ℓm.

3.3.2 H is not a product

In the second case, we assume that H is not a product of ordinary and supersingular

subgroups. To be explicit, we write H = ⟨e1 + af1 + bf2, e2 + cf1 + df2⟩, with the
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assumption that

det(

a b

c d

) = −1.

By Lemma 3.2.3 and Proposition 3.3.3, the total number of the maximal isotropic plane

in the non-product form is O(ℓ3m).

Fix an H in this form. We count the number of all isotropic planes H ′ that is

equivalent to H. By work of Waterhouse [29],

ϕ−1H ′ = [N ]−1H

for some ϕ ∈ End(A) and some positive integer N . Before proving Proposition 3.3.5, we

introduce the following lemma.

For any ϕ ∈ End(A), we can write ϕ = ϕord × ϕss. As a consequence, the kernel of ϕ

decomposes as Ker(ϕ) = Kord ×Kss. Therefore, to bound the number of endomorphisms

ϕ once we fix N , we need to bound the number of possible ϕord and ϕss separately. By

Proposition 3.3.1, the number of endomorphisms of an ordinary elliptic curve with a

fixed degree d is O (dϵ). Therefore, we only have to determine how many possible choices

of Kss we can have under the assumption of H.

Lemma 3.3.4. Assume that H is of Type 2, and take N = ℓm. Then there are at most

O(ℓm) supersingular endomorphisms which we denote by ϕss, such that

ϕss = ℓa ◦ ϕcyc,

for some 0 ≤ a ≤ m, and there exists an endomorphism ϕ = ϕord × ϕss, such that

ϕ−1H ′ = [N ]−1H.

Moreover, ϕcyc is cyclic of order at most ℓm.

Proof. First of all, we prove that the degree of ϕcyc is at most ℓm. This is equivalent to

the statement that we cannot have an element

α ∈ [ℓm]−1H ∩ Ess
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whose order is greater than or equals to ℓm+1. We prove this by contradiction. Suppose

such an element exists and call it |x|. Since |x| ≥ ℓm+1, ℓm ◦ (x) is nontrivial. By

definition we have ℓm ◦ (x) ∈ H and ℓm ◦ (x) ∈ Ess. Therefore

ℓm ◦ (x) ∈ [ℓm]−1H ∩ Ess.

Since H has the form H = ⟨e1 + af1 + bf2, e2 + cf1 + df2⟩, one gets to the conclusion

that Ess ∩H = {id}. Hence the contradiction.

By Proposition 3.3.2, we conclude that there are at most O(ℓm) such ϕcyc, hence at

most O(ℓm) such ϕss.

Proposition 3.3.5. Let N2 be the number of inequivalent maximal isotropic planes of

type 2. We have

N2 >> ℓ2m−ϵ

Proof. For a fixed H, getting a lower bound of the number of inequivalent isotropic

planes is equivalent to getting an upper bound of the maximal isotropic planes which

are equivalent to H. We do this by bounding the number of endomorphisms ϕ ∈ End(A)

such that ϕ ◦ [N ]−1H is a maximal isotropic plane for each fixed N , as N goes through

the set of positive integers.

First, suppose that ℓ ∤ N . In this case, the pullback of an isotropic plane under ϕ has

the form

ϕ−1(H) ≃ (Z/ℓmZ)2 × ker(ϕ).

On the other hand, we have

[N ]−1H ≃ (Z/ℓmZ)2 × (Z/NZ)4.

By Theorem 3.2.5, Ker(ϕ) ≃ (Z/NZ)4. Therefore we have ϕ = i ◦ N , where

i ∈ Aut(A) is an automorphism. Taking for granted the fact that principally polarized

abelian varieties have finitely many automorphisms which are independent of n, we get

finitely many H ′ that is equivalent to H where H ′ = ϕ(◦[N ]−1H) is a maximal isotropic

plane inside A[ℓm].
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When l | N , k ≥ 1. We may write N = N0 · ℓa for some a ≥ 1, where N0 is coprime

to ℓ. Then

[N ]−1H ≃ (Z/ℓaZ)2 × (Z/ℓm+aZ)2 × (Z/N0Z)4.

Therefore

Ker(ϕ) ≃ (Z/N0Z)4 ×Gℓ,

where Gℓ is some ℓ-power subgroup which we will specify later. Therefore ϕ can be

written as a decomposition

ϕ = i ◦N0 ◦ ϕl

where ϕℓ is an ℓ-power isogeny with kernel Gℓ.

So without loss of generality, we can assume that N = ℓk for some k ≥ 1 and prove

the following subcases depending on the power of ℓ.

If k < m, we have

[ℓk]−1H = (Z/ℓkZ)2 × (Z/ℓk+mZ)2.

Let A ⊂ [ℓk]−1H be a subgroup such that

[ℓk]−1H/A ≃ (Z/ℓmZ)2.

Then

A ≃ (Z/ℓkZ)2 × (Z/ℓk+iZ)× (Z/ℓk−iZ)

for some 0 ≤ i ≤ m. Hence the possible choices of Ker(ϕ) have the above form.

For k = m, we have

[ℓm]−1H = (Z/ℓmZ)2 × (Z/ℓm+mZ)2.

Similarly we have the possible choices for Ker(ϕ) are subgroups in the following form

(Z/ℓm+iZ)× (Z/ℓm−iZ)× (Z/ℓm+jZ)× (Z/ℓm−jZ)

for 0 ≤ i ≤ m and 0 ≤ j ≤ m.
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For k > m, the possible choices for Ker(ϕ) are

(Z/ℓk+iZ)× (Z/ℓk+jZ)× (Z/ℓk+m−nZ)× (Z/ℓk+m−wZ)

where i, j, n, w ≥ 0 and i+ j + n+ w = 2m.

However, since Z/ℓk−mZ is a common factor, this implies Ker(ϕ) contains ker([ℓk−m]) =

(Z/ℓk−mZ)4. Therefore ϕ factors through the multiplication by ℓk−m map, we are return-

ing to the case where k = m.

Now we can bound the number of endomorphisms and the number of maximal

isotropic planes equivalent to a given H. Proposition 3.3.1 asserts that the number of

endomorphisms of an ordinary elliptic curve with a fixed degree d is O (dϵ) and Lemma

3.3.4 states that there are at most O(ℓm) supersingular endomorphisms that serve as the

supersingular part of ϕ. An upper bound of the maximal isotropic planes isomorphic

to a fixed H is O(ℓm+ϵ). Therefore the total number of inequivalent maximal isotropic

planes of type 2 in A[ℓm] is

O(ℓ2m−ϵ) = O(ℓ3m)/O(ℓm+ϵ)).

Remark 3.3.6. We note that improving the bound without the ϵ term is plausible.

Corollary 3.3.7. Let ℓ1, · · · , ℓn be n primes different from p and let m1, · · · ,mn be

positive integers. Let N0 be the total number of inequivalent maximal isotropic planes.

We have

N0 >> (ℓm1
1 · · · ℓmn

n )2−ϵ

Proof. The proof is a generalization of Proposition 3.3.5 proof. Since the majority of the

inequivalent maximal isotropic planes come from products of isotropic planes of Type 2

as ℓ varies, we fix a subgroup G

G ≃ (Z/ℓm1
1 Z)2 × · · · × (Z/ℓmn

n Z)2
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such that for each ℓi, 1 ≤ i ≤ n, (Z/ℓm1
1 )2 is an isotropic plane of Type 2. Let

{e11, e12, f11 , f12 }, · · · , {en1 , en2 , fn1 , fn2 } be a basis for Tℓ1(A), · · · , Tℓn(A), respectively.

We count the maximal number of maximal isotropic planes G′ that is equivalent to G.

By Theorem 3.2.5, G and G′ are equivalent if there is ϕ ∈ End(A) and non-zero positive

integer N such that ϕ−1G′ = [N ]−1G. We split the argument into different cases based

on the choice of N .

Case I: N is coprime to ℓ1, · · · , ℓn.

If N is coprime to ℓ1 · · · ℓn,

[N ]−1H = (Z/NZ)4 × (Z/ℓm1
1 )2Z× · · · × (Z/ℓmn

n Z)2.

Therefore we have ϕ = i ◦N , where i ∈ Aut(A) is an automorphism. Taking for granted

the fact that principally polarized abelian varieties have finitely many automorphisms, we

get finitely many H ′ that is equivalent to H under the assumption that H ′ = ϕ◦ [N ]−1H.

Case II: N = ℓ
mj1
j1

· · · ℓmjk
jk

for some 0 < k ≤ n and 1 ≤ j1 < · · · < jk ≤ n.

Similar to Proposition 3.3.5, if N is not coprime to some of the {ℓ1, · · · , ℓn}, we

may restrain ourselves on this case, for the same reason as explained in the proof of

Proposition 3.3.5.

The pullback of G under ℓ
mj1
j1

· · · ℓmjk
jk

is isomorphic to

(Z/ℓmj1
j1

Z)2 × · · · × (Z/ℓmjk
jk

Z)2 × (Z/ℓ2mj1
j1

Z)2 × · · · × (Z/ℓ2mjk
jk

Z)2 ×
∏

j ̸=j1,··· ,jk

(Z/ℓmj

j Z)2.

Recall that for each 1 ≤ i ≤ n we assume that

Gi := (Z/ℓmi
i Z)2 = ⟨ei1 + aif

i
1 + bif

i
2, e

i
2 + cif

i
1 + dif

i
2⟩,

with the assumption that

det(

ai bi

ci di

) = −1.

Similar to the proof of Lemma 3.3.4, an endomorphism ϕ that satisfies the Waterhouse’s

criterion can be realized as an endomorphism with kernel Ker(ϕ) = Kord ×Kss. More-

over, we can factor out the ℓ-power scalar multiple from each part and consider those
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supersingular endomorphisms whose kernels are cyclic subgroups. We claim that the

supersingular part Kss contains a cyclic subgroup of order at most ℓ
mj1
j1

· · · ℓmjk
jk

. Suppose

this is not the case, i.e., there is an element x ∈ [ℓ
mj1
j1

· · · ℓmjk
jk

]−1H ∩ Ess with order

|x| ≥ ℓ
mj1
j1

· · · ℓmjk
jk

, then

ℓ
mj1
j1

· · · ℓmjk
jk

◦ (x) ∈
∏
i

Gi ∩ Ess

is nontrivial. By definition of Gi for each 1 ≤ i ≤ n, the intersection
∏

iGi∩Ess is trivial.

Therefore the claim follows.

By Proposition 3.3.2, there are at most ℓ
mj1
j1

· · · ℓmjk
jk

such Kss. For the ordinary

component, Proposition 3.3.1 implies that there are at most (ℓ
mj1
j1

· · · ℓmjk
jk

)2ϵ many

possible choices for Kord. We conclude that there are at most (ℓ
mj1
j1

· · · ℓmjk
jk

)2−ϵ maximal

isotropic planes G′ that are equivalent to a given G. The result follows.

3.4 Proof of the Theorems

3.4.1 Semisimplicity assumption on the Frobenius action

Let E be an ordinary elliptic curve over Fq with End◦(E) = K and let π be the Frobenius

endomorphism. Here K is the quadratic imaginary field generated by π: K = Q(π). We

fix a basis {e1, e2} of Tℓ(E). The characteristic polynomial χπ is the unique polynomial

such that for every n prime to p, the characteristic polynomial of the action of the

Frobenius π on E[n] is χπ mod n. Let ∆πn be the discriminant of πn. The characteristic

polynomial is a quadratic polynomial

χπn = x2 − tx+ qn.

We have ∆πn = t2 − 4qn.

Remark 3.4.1. For an degree n extension Fqn , the Frobenius of EFqn
is πn.

An isogeny ϕ : E → E′ whose kernel is a cyclic subgroup of E can be understood by

looking at the Frobenius action on the torsion subgroups. If ϕ is defined over Fqn , then
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kerϕ is stabilized by the Frobenius action. For ℓ ̸= p, the number of ℓ-power isogenies

defined over Fqn is determined by the action of πn on ℓ-power torsions. Moreover, the

action of Frobenius can be realized as a 2× 2 matrix with coefficients in Z/ℓmZ.

Now we state the semisimplicity assumption on the Frobenius action, which helps us

narrow down cases that we should focus on.

Recall that our goal is to compute the number of ℓ-power isogenies from E that

is defined over Fqn , as ℓ goes through all prime integers. The semisimplicity of the

Frobenius action depends on whether ℓ is ramified in OK or not:

⋆ If ℓ is unramified in OK , then πn is semisimple modulo ℓm for all m ≥ 1. We prove

the following lemma:

Lemma 3.4.2. Let m be the maximal number such that ∆πn ≡ 0 mod ℓ2m, then

πn ≡

λ 0

0 λ

 mod ℓm.

Proof. Let λ1 and λ2 be the eigenvalues of χπn . We have

∆πn = (λ1 − λ2)
2

and ℓ2m divides ∆πn . Therefore ℓm | (λ1 − λ2).

Since ℓ is unramified in OK , the action of πn is semisimple modulo ℓm. Work on the

setting over Zℓ, if λ1, λ2 ∈ Zℓ we are done. Otherwise, λ1, λ2 ∈ Oℓ where Oℓ is unramified

of degree 2. We now prove that λ1, λ2 mod ℓm are in Z/ℓmZ. By the semisimplicity

assumption, the action of πn is diagonalizable over Oℓ/ℓ
mOℓ for any m ≥ 1. This is

equivalent to say there exists X ∈ GL2(Oℓ/ℓ
mOℓ) such that

πn = X

λ1 0

0 λ2

X−1 mod ℓm.

But we proved that λ1 ≡ λ2 mod ℓm. Therefore

πn = XX−1

λ1 0

0 λ1

 =

λ1 0

0 λ1

 mod ℓm.
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Since πn mod ℓm ∈ GL2(Z/ℓmZ), the lemma follows.

⋆ If ℓ is ramified in OK , then it is possible that the Frobenius action πn is not

semisimple. But Recall that we assumed on n such that for ℓ ramified in OK ,

(n, ℓ) ̸= 1. This implies for all such ℓ | ∆K , the power of ℓ dividing ∆πn is bounded

independent of n. Therefore we have the following corollary:

Corollary 3.4.3. Let n be an integer such that for all prime ℓ | ∆K , (n, ℓ) = 1. Let S

be the set of all primes that divides ∆K . Then the number of ℓ-power isogenies where

ℓ ∈ S is bounded independent of n. In other words, this number does not grow with n.

We make the table of classification of the Frobenius action under the semisimplicity

assumption as follows:

(a). Assume ℓ,m, n such that χπn mod ℓm is irreducible modulo ℓm. In this case πn

acts on E[ℓm] as a distortion map. I.e., no subgroups Z/ℓmZ is stabilized by πn.

Therefore E has no ℓm-isogenies defined over Fqn .

(b.1). Assume ℓ,m, n such that πn is diagonalizable mod ℓm. Moreover, χπn has distinct

eigenvalues λ and µ modulo ℓm. In this case, the Frobenius acts on E[ℓm] as a

matrix conjugates to

λ 0

0 µ

 and there are two isogenies of degree ℓm from E

which are defined over Fqn , given by E modulo cyclic subgroups generated by the

two eigenvectors of λ and µ respectively.

(b.2). Assume ℓ,m, n such that πn is diagonalizable mod ℓm. Moreover, the Frobenius

χπn modulo ℓm has one eigenvalue λ of multiplicity two. In this case, the Frobenius

acts on E[ℓm] as a scalar multiple by

λ 0

0 λ

 and every ℓm subgroup is stable

under πn. Therefore, there are ℓm + ℓm−1 + · · ·+ 1 ℓ-power isogenies of degree less

than or equal to ℓm from E which are defined over Fqn .

(b.3). Assume ℓ,m, n such that πn is diagonalizable mod ℓm. Assume that χπn has

distinct eigenvalues λ and µ modulo ℓm but eigenvalues are congruent modulo
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ℓr for some 1 < r < m. In this case, the Frobenius acts on E[ℓr] as a matrix

conjugates to

λ 0

0 λ

 and there are ℓr + ℓr−1 + · · ·+ 1 ℓ-power isogenies of degree

less than or equal to ℓm from E which are defined over Fqn .

3.4.2 Horizontal isogenies

As one may notice, there are a lot of prime power isogenies of E that are indeed

endomorphisms of E. By the theory of complex multiplications, the number of such

isogenies is bounded by the class number of OK , see Theorem 3.4.6. We give information

about when such isogenies arise and use the information to bound the total number of

isogenies defined over Fqn .

We use the classification of the Frobenius action on the ℓ-torsion subgroups to

compute each case’s horizontal prime power isogenies.

Definition 3.4.4. Let f : E → E′ be an isogeny of degree ℓm. We say f is horizontal if

End(E) = End(E′).

Let a be an invertible ideal in End(E). Define the a-torsion subgroup of E as

E[a] :=
{
P ∈ E

(
Fq

)
| σ(P ) = 0 for all σ ∈ a

}
.

Let ϕa be an isogeny whose kernel is E[a]. Then the codomain E/E[a] is a well-defined

elliptic curve. The isogeny ϕa is horizontal, and its degree equals the ideal norm of a.

We denote by a · E for the isomorphism class of the image of ϕa.

Lemma 3.4.5. Let Eqn be an ordinary elliptic curve over Fqn with the Frobenius action

by πn. Let H(ℓm) denote the number of horizontal ℓm-isogenies.

H(ℓm) =


0, if πn is irreducible

1, if πn is diagonalizable with one eigenvalue modulo ℓm

2, if πn is diagonalizable with two eigenvalues modulo ℓm .

Proof. If ∆πn is not a square modulo ℓm, we are in case (a) where no subgroup of order

ℓm is stabilized by the action of πn. Therefore no ℓm-isogeny is defined over Fqn .
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Suppose πn is diagonalizable with one eigenvalue modulo ℓm. In that case, we are

in case (b.2) (and (b.3)), and there is one horizontal isogeny given by a = (πn − λ, ℓm)

with norm ℓm. Moreover, ϕa is self-dual.

If πn is diagonalizable with two eigenvalues modulo ℓm, we are in case (b.1). There are

two torsion subgroups of order ℓm, generated by the eigenvector of λ and µ, respectively.

The two horizontal isogenies are given by the ideals a = (πn−λ, ℓm) and â = (πn−µ, ℓm).

Furthermore, aâ = (ℓm) implying that a and â are the inverse of one another in the class

group, thus ϕâ is the dual isogeny of ϕa.

Recall that for an elliptic curve E with CM by an order O, horizontal ℓ-isogenies

correspond to the CM action of an invertible O-ideal of norm ℓ. Moreover, let Ellq(O)

be the set

Ellq (O) := {E/Fq : End(E) ≃ O} .

Because elliptic curves in Ellq(O) are connected exclusively by horizontal cyclic isogenies,

the theory of complex multiplication tells us:

Theorem 3.4.6. Let E be an elliptic curve with endomorphism ring O. Then the set of

horizontal isogenies forms a principal homogeneous space under the class group of O. To

be precise, assume the set is non-empty. Then it is a principal homogeneous space for

the class group Cℓ(O), under the action

Cℓ(O)× Ellq(O) −→ Ellq(O), (3.4.1)

(a, E) 7−→ a · E (3.4.2)

with cardinality equal to the class number h(O).

Proof. See for example [27, Chapter II].



58

3.4.3 Proof of Theorem 3.1.2

Fix an ordinary elliptic curve E over Fq as in the previous context. Assume End(E) = O.

We compute the size of I(qn, E), which can be interpreted as the number of certain cyclic

subgroups. We consider two kinds of subgroups; one is that the subgroups are the kernel

of some horizontal isogenies, and the other is where the subgroups define non-horizontal

isogenies.

Let {ℓi}, 1 ≤ i ≤ k be the set of prime divisors of ∆πn which are unramified in

OK . For each i, let mi be the maximal integer such that ℓ2m | ∆πn . By Lemma 3.4.2,

the n-Frobenius action is diagonalizable and The classification (b.2) tells us that every

ℓj-subgroup, 1 ≤ j ≤ m is defined over Fqn . For ordinary elliptic curves, ∆πn ̸= 0, so

only finitely many primes divide ∆πn .

Lemma 3.4.7. We have

N(qn, E) ≍ (
k∏

i=1

ℓmi
i )1−ϵ.

Proof. Denote by Ellq,as/ds(O) the isomorphism classes of elliptic curves that admit an

ascending/descending isogeny to E. Thus

N(qn, E) = |Ellq,as/ds(O)|+ |Ellq(O)|.

Since we have the assumptions on n, by Lemma 3.4.2, πn is diagonalizable modulo any

power of ℓ1, · · · , ℓk, and by Corollary 3.4.3, the number of ramified prime-power isogenies

does not grow with n. Thus we only have to consider isogenies from cases where the

Frobenius action is diagonal, i.e., the number of isogenies grows with n. By Theorem

3.4.6, the number of horizontal isogenies |Ellq(O)| = h(O) is a fixed number once we fix

E.

The number of non-horizontal isogenies is roughly the number of cyclic subgroups

of order less than or equal to ℓm1
1 · · · ℓmk

k , up to minus h(O). This is because Lemma

3.4.5 implies that if ∆πn ≡ 0 mod ℓm, there is always a horizontal ℓ-power isogeny,

and Theorem 3.4.6 tells us there are at most h(O) horizontal isogenies come from this

form. By Theorem 3.2.5, For any cyclic subgroup G of Z/ℓm1
1 · · · ℓmk

k Z, there are at most
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(ℓm1
1 · · · ℓmk

k )ϵ cyclic subgroups that give quotient curves isomorphic to E/G. Therefore

N(qn, E) =

k∏
i=1

(ℓmi
i + ℓmi−1

i + · · ·+ ℓ)/(ℓm1
1 · · · ℓmk

k )ϵ (3.4.3)

≍ (ℓm1
1 · · · ℓmk

k )1−ϵ (3.4.4)

Proof of Theorem 3.1.2. Lemma 3.4.7 asserts that we can write N(qn, E) as a product

of ℓm1
1 , · · · , ℓmk

k ; on the other hand, for large n, the product well approximates the square

root of ∆πn :
k∏

i=1

ℓmi
i ≍ ∆

1
2
πn ≍ q

n
2 .

The theorem follows.

3.4.4 Proof of Theorem 3.1.1

Proof of Theorem 3.1.1. Let A = E × Ess be an abelian surface defined over Fq, with

the assumption that E is the same ordinary elliptic curve as in the previous section. The

Frobenius πnA acts on the ℓ-adic Tate modules of A by a conjugacy to
πn 0

0
qn/2 0

0 qn/2


where πn is the Frobenius of E over Fqn . For the set of prime divisors of ∆πn which

are unramified in OK and positive integers n such that (n, ℓ) ̸= 1, we want to count the

number of inequivalent maximal isotropic planes defined over Fqn . By definition of mi,

for each 1 ≤ i ≤ k, πnA acts as a scalar on A[ℓmi
i ].

Corollary 3.3.7 together with the equality

k∏
i=1

ℓmi
i ≍ q

n
2
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indicate that for a positive density set of n, we have

N(qn, A) ≫ ((ℓm1
1 · · · ℓmk

k )2−ϵ) = qn+ϵ

for some ϵ > 0.
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