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Abstract 

Magnetic resonance (MR) neuroimaging is an active field in investigating brain structures and 

functions. After decades of development, the whole pipeline of MR neuroimaging tends to become 

mature, but many essential steps still faces challenges and difficulties, especially in the accuracy 

of the image segmentation, image generation and data prediction. Recently, the revival of deep 

neural networks made immense progress in the field of machine learning. The proposal of 

Bayesian deep learning further enabled the ability of uncertainty generation in deep learning 

prediction. In this work, we proposed and developed different kinds of Bayesian neural networks 

to improve the accuracy of brain segmentation, brain image synthesis, and brain function related 

behavior prediction. To overcome the challenges in brain segmentation, we proposed a fully-

automated brain extraction pipeline combining deep Bayesian convolutional neural network (CNN) 

and fully connected three-dimensional (3D) conditional random field (CRF). To increase the image 

synthesis accuracy and improve the calibration of the model uncertainty, we proposed a Bayesian 

conditional generative adversarial network (GAN). To improve the brain function related behavior 

prediction, we proposed a Bayesian deep neural network (DNN), and a feature extraction and 

ranking method for it. Experiments were done on real data to validate the proposed methods. The 

comparison between our methods and the state-of-the-arts showed that our methods can 

significantly improve the testing accuracy and the behavior of the model uncertainty generated by 

the Bayesian neural networks matches our expectation. 
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Chapter 1 

 

Introduction 

 

 
Magnetic resonance (MR) neuroimaging has been widely used in brain structural and functional 

studies due to its capability of observing brain anatomic structures and tracking brain functional 

activities. The whole pipeline of MR neuroimaging has been developed for decades and tend to 

become increasingly mature, which includes the pulse sequence design in data acquisition, the 

sparse and rapid reconstruction in image generation, the segmentation, registration and noise 

removal in the image preprocessing, and various statistical models for the final data analysis and 

prediction. However, the current pipeline for MR neuroimaging is far from perfect and still faces 

many challenges and difficulties, especially in the accuracy of the image segmentation, image 

generation and data prediction. 

Brain extraction and brain segmentation are the essential steps in magnetic resonance imaging 

(MRI) and functional magnetic resonance imaging (fMRI) processing. Current methods can 

segment most healthy human adult’s brain correctly, but for patients with brain tumors, trauma or 

stroke, or nonhuman primates which are also important parts of the neuroscience research, 
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manually labeling or manually modifying the segmentation results by template-based methods is 

still necessary. 

For image synthesis and image reconstruction in medical imaging, the state-of-the-art methods 

usually formulate the problem as an optimization problem, whose accuracy highly depends on the 

accuracy of the forward model. Currently in the field of medical imaging, the forward models are 

usually based on the physical mechanism of the imaging modality, and often simplified forward 

models are unavoidable. Even though, these forward models have strict requirements towards the 

data in the acquisition domain, which makes problems like reconstruction with extremely under-

sampled k-space data or synthesizing T2-weighted (T2w) MR image with only T1-weighted (T1w) 

MR image very challenging. 

For the fMRI analysis investigating individual differences in brain activation or functional 

connectivity, generalized linear models are widely used, but for the fitting and prediction of lots 

of sociodemographic information, neuropsychological test results, and clinical characteristics, 

there is still a large room for the prediction models’ accuracy to improve. In neuroscience, 

extracting, ranking and analyzing the important features for the prediction is also very important, 

and comparing those features between different groups can help us answer many difficult and 

meaningful neuropsychiatric questions. Thus, improved methods for robust feature extraction and 

ranking methods from high-accuracy prediction models are still needed.  

In the recent past, tremendous progress has been made in artificial intelligence (AI) because of the 

revival of artificial neural networks and the rapidly advancing parallel computing technique of 

graphical processing unit (GPU). Among all the machine learning models, deep learning is one of 

those most successful architectures, which has drawn increasingly attention. This technique has 

proven its capability in many computer vision applications, such as image classification, 
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segmentation, and regression, where the performance of traditional methods can hardly compete. 

In the areas of medical imaging, deep learning has broadly impacted neuroimaging, cancer imaging, 

and cardiac imaging on the processing performance and the accuracy improvement. 

This thesis will describe the advances in three different deep leaning models for different tasks in 

the field of MR neuroimaging. Among deep learning models, convolutional neural network (CNN) 

has been proven to be useful in a broad range of image segmentation applications, outperforming 

traditional state-of-the-art methods. Generative adversarial network (GAN) is a powerful tool in 

various image synthesis tasks, including image to image translation and image reconstruction. 

Deep neural network (DNN) is particularly good at dealing with non-image data with high-

dimensional feature space, and therefore, is suited for feature-related classification tasks. 

The current workflow of deep learning based research usually consists of two steps: a neural 

network is training with a training dataset, and then the trained neural network is used to make 

predictions on the data in the testing dataset. By comparing the predicted results and the ground 

truth of the testing dataset, we can report the accuracy of the results and evaluate the performance 

of the model. However, if we really want AI to work by itself in the daily clinical routine, there 

won’t be ground truth of the testing data any more. At the same time, the inconsistency within the 

training dataset and the inconsistency between the training dataset and testing dataset will cause 

errors in the predictions. In the conventional deep learning, without ground truth, there in no way 

for us to no whether the predicted results can be trusted or not. 

The emergence of Bayesian deep learning provides us the possibility to solve this problem. From 

the statistical point of view, in the framework of Bayesian deep learning, all the weights and 

predicted results are treated as random variables following certain statistical distributions. The 

purpose of the training stage is to get the distributions of the network weights that best explain the 
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observed data and match our prior knowledge, while the testing stage is equivalent to sampling the 

posterior distributions of the predicted values or label possibilities. Therefore, from the predicted 

posterior distributions, we can estimate the model uncertainties for each prediction, which can give 

us a clue about how confident the model is about each prediction. 

1.1 Specific Aims 

The objective of this research is to advance the deep learning and Bayesian deep learning based 

techniques for a better MRI and fMRI neuroimaging processing pipeline, which is more accurate, 

robust and automatic. To achieve this objective, different kinds of Bayesian deep learning models 

were developed and applied to the challenging applications of image segmentation, image 

synthesis, and data classification in MR neuroimaging, to improve the models’ prediction accuracy 

as well as give the predictive models the ability to generate model uncertainty. The specific aims 

focused on for the completion of the thesis are as follows: 

 

1. Developing a fully-automated brain extraction pipeline combining deep Bayesian CNN 

and fully connected three-dimensional (3D) conditional random field (CRF) for the brain 

extraction in nonhuman primates.     

 

2. Developing a Bayesian conditional GAN with concrete dropout and model recalibration 

for inter-contrast image synthesis, specifically for the image transformation from T1w 

MR image to T2w MR image. 
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3. Developing a Bayesian Deep Neural Network and corresponding feature extraction and 

ranking method for brain functional connectivity gender prediction and gender related 

functional connectivity pattern recognition. 

1.2 Thesis Outline 

According to the aims of this work, the remainder of the thesis will be composed in the following 

structure: 

• Chapter 2 provides a comprehensive review of the related work. This chapter first focuses 

on the progress of the deep learning techniques including deep neural network, 

convolutional neural network, generative neural network, and the important regularization 

technique used by deep learning models, dropout. Next, a review of the framework of 

Bayesian deep learning are outlined. Finally, a discussion of prior works specifically in 

brain segmentation, image synthesis in medical imaging, and gender predication and 

gender difference in neuroimaging are provided. 

• Chapter 3 discusses the framework of the developed motion tracking algorithm. The first 

section introduces the challenging image segmentation problem of nonhuman primate 

brain extraction. The following sections discuss the proposed fully-automated brain 

extraction pipeline combining deep Bayesian CNN and fully connected 3D CRF. The 

performance of the proposed method is validated with T1w MR brain volumes of 100 

nonhuman primates, and is compared with the state-of-the-arts methods. The behavior of 

the uncertainty generated by Bayesian Neural Network is also shown. 

• Chapter 4 addresses the challenge of inter-modality MR image synthesis with the 

proposed Bayesian conditional GAN. The first section introduces the challenges in inter-
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modality MR image synthesis in the field of medical imaging. Then, the proposed Bayesian 

conditional GAN with concrete dropout and model recalibration is studied. The method is 

validated with the T1w to T2w MR image translation with a brain tumor dataset of 102 

subjects. Finally, results of the proposed method are compared with the conventional 

Bayesian neural network with Monte Carlo dropout. The improvement of the calibration 

of the uncertainty by the uncertainty recalibration method is also illustrated. 

• Chapter 5 discusses the proposed Bayesian deep neural network and the feature extraction 

and ranking method for brain functional connectivity gender classification. First, the 

importance of the brain function related behavior classification as well as the importance 

of feature extraction methods in brain functional related research is discussed. Then, a 

Bayesian deep neural network and a feature extraction and ranking method for it are 

proposed to solve the problem. These methods are tested with the resting state functional 

MRI (rs-fMRI) data of 1003 healthy subjects in the human connectome project (HCP). 

Finally, the behavior of the uncertainty generated and the robustness of the features 

extracted are also investigated.    

• Chapter 6 draws a final conclusion of the projects in the thesis and gives a discussion of 

the potential future work for each aim. 
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Chapter 2 

 

Learning Models and Applications for MR 
Neuroimaging 

 

 

2.1 Machine Learning 

Many machine learning models have been invented in the last a few decades. Among them we 

have the linear regression model for regression problems, and logistic regression, perceptron and 

support vector machine (SVM) for classification problems. There are also k-means clustering and 

independent component analysis (ICA) for unsupervised learning, and principal component 

analysis (PCA) for dimension reduction. In this section, SVM and ICA will be reviewed, since 

these methods were used in the work of this thesis. 

2.1.1 Support Vector Machine 

As a linear classifier for a binary classification problem, SVM tries to learn a hyperplane from the 

training data to separate the two classes with a large margin. For each observation, x is the input 
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feature vector and { 1,1}y∈ −  is the corresponding label. Then the SVM classifier can be formulated 

as: 

 , ( ) ( )T
w bh x g w x b= +   (2.1) 

where ( ) 1g z =  if 0z ≥ , and ( ) 1g z = −  if 0z < . w and b are the weights to learn for the hyperplane

0Tw x b+ = . Given the separating hyperplane as 0Tw x b+ = , then 2
/w w  is the unit vector 

perpendicular the hyperplane. Therefore, the geometric margin for the ith observation can be 

written as: 

 ( ) ( ) ( )

2 2

T

i i iw by x
w w

γ
  
 = +     

  (2.2) 

For a confident classifier, we want this margin as large as possible. Thus, we define the geometric 

margin for the training dataset as the smallest one among the all the ( )iγ , and we can formulate the 

training of the SVM as an optimization problem: 

 
, ,

( ) ( )

2

max

. . ( ) , 1,...
1

w b

i T is t y w x b i m
w

γ γ

γ+ ≥ =

=

  (2.3) 

The constraint, 2
1w = , is added, since the rescaling of w and b won’t change the geometric 

margin. However, this constraint makes the optimization problem non-convex, so the optimization 

problem is reformulated as the following with the constraint removed: 

 
, ,

2
( ) ( )

ˆ
max

ˆ. . ( ) , 1,...

w b

i T i

w

s t y w x b i m

γ
γ

γ+ ≥ =

  (2.4) 
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Although the non-convex constraint, 2
1w = , is removed, now the objective, 

2

ˆ
w
γ

, is  non-convex. 

Since rescaling w and b by a constant is equivalent to rescaling γ̂  by the same constant, and won’t 

change the geometric margin or the objective. Therefore, by introducing the scaling constraint, 

ˆ 1γ = , the optimization problem can be further reformulated as: 

 
2

, , 2

( ) ( )

1min
2

. . ( ) 1, 1,...

w b

i T i

w

s t y w x b i m

γ

+ ≥ =
  (2.5) 

Now the optimization problem is one with a convex quadratic objective and linear constraints, and 

it can be solved with quadratic programming. Its solution is the optimal margin classifier. 

Sometimes the observed data are not linear separable, and a linear separating hyperplane could 

also be susceptible to outliers. To make the model more robust to these cases, the optimization 

problem can be reformulated as: 

 

2
, , 2

1
( ) ( )

1min
2

. . ( ) 1 , 1,...
0, 1,...

m

w b i
i

i T i
i

i

w C

s t y w x b i m
i m

γ ξ

ξ
ξ

=

+

+ ≥ − =
≥ =

∑
  (2.6) 

Thus, in the new formulation a margin less than 1 is permitted with a penalty of iCξ  in the 

objective function. C is the weight to trade off the balance between the two terms in the objective 

function. 

2.1.2 Independent Component Analysis 

Independent component analysis (ICA) is a model for recovering the n independent sources ns∈ , 

given the observations x  as mixtures of the sources: 
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 x As=   (2.7) 

where A is the mixing matrix. Repeated observations can generate a dataset 

( ) ( ) ( ){ ; , 1,..., }i i ix x As i m= = . ( )is  is the ith data generated from the n independent sources before 

mixture, and ( )ix  is the ith observation after mixture. Each ( )is  is an n-dimensional vector, and the 

goal of the problem is to recover all the ( )is , given ( )ix . Let 1W A−=  be the unmixing matrix, then 

if W can be found, the sources can be recovered by ( ) ( )i is Wx= . 

Given that each source si’s probability density function is ps, and that the sources are independent, 

the problem can be solved with the maximum likelihood estimation (Bell and Sejnowski, 1995): 

 
1

( ) ( )
n

s i
i

p s p s
=

=∏   (2.8) 

With 1x As W s−= =  , the probability density function of x can be solved as: 

 
1

( ) ( )
n

T
s i

i

p x p w x W
=

=∏   (2.9) 

where T
iw is the ith row of W, and W  is the determinant of W. Without any prior knowledge of 

the sources’ probability density functions, the derivative of the sigmoid function, ( ) 1/ (1 )sg s e−= + , 

can be assigned as the probability density function for each source, which works well for most 

situations. Given a training set ( ){ ; 1,..., }ix i m= , the log likelihood can be given as: 

 
1 1

( ) ( log '( ) log )
m n

T
i

i j
l W g w x W

= =

= +∑ ∑   (2.10) 

With stochastic gradient ascent the log likelihood can be maximized with respect to W. For each 

training data point ( )ix , the update rule for each iteration is: 
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  (2.11) 

There are also some limitations of the ICA model: it can solve neither the permutation of the 

original sources, nor the correct scaling of the weights in the matrix, W. However, these usually 

do not matter for applications in reality, like the ICA for signal decomposing in rs-fMRI. The ICA 

model also cannot solve the problem with sources following Gaussian distributions, and this is 

usually not the case for the rs-fMRI data. 

2.2 Deep Learning 

In the recent past, tremendous progress has been made in deep learning as a result of the revival 

of deep neural networks (Krizhevsky et al., 2012a; LeCun et al., 2015) as well as the rapid advance 

of parallel computing techniques (Coates et al., 2013; Schmidhuber, 2015). Among many deep 

learning models, convolutional neural networks (CNN) are good at prediction tasks with images 

as input; recurrent neural networks (RNN) are frequently used to process tasks with sequential 

data; deep reinforcement learning (RL) models have been proven effective on sequential decision 

making and control problems. Multiple deep learning platforms, including TensorFlow 

(https://www.tensorflow.org/), Caffe (https://caffe.berkeleyvision.org/), PyTorch 

(https://pytorch.org/) and Theano (http://deeplearning.net/software/theano/) etc., were also 

released publicly to make the development, training and model sharing of deep learning easier. In 

this section deep learning models dealing with images and the features extracted from images will 

be reviewed. 

https://www.tensorflow.org/
https://caffe.berkeleyvision.org/
https://pytorch.org/
http://deeplearning.net/software/theano/


12 
 

2.2.1 Convolutional Neural Network 

Convolutional neural network (CNN) is often used for image processing tasks (LeCun et al., 1999). 

Convolutional encoder networks can be used for image classification tasks, while convolutional 

encoder-decoder networks are often used for image segmentation tasks. The encoder network is 

used to extract features from the input image, and the decoder network is used to generate the 

target image or mask with the learned features as recovering the original resolution of the input 

image.  

A CNN usually contains several kinds of layers, including convolutional layers, batch 

normalization layers, activation layers, pooling layers, and fully connected layers. The 

convolutional layer is the core building block of a CNN. It contains convolutional kernels to extract 

the features from the input image. All the kernel weights are learned from the training of the CNN. 

Batch normalization layers (Ioffe and Szegedy, 2015) are usually inserted immediately after 

convolutional layers and before the activation layers. They are used to force the neuron activations 

to follow normal distribution throughout the neural network. Therefore, the neuron values locate 

mostly around the high gradient region of the activation function, and this results in fast 

convergence of the network parameters during training. Activation layers are used after each 

convolutional layer or fully connected layer. They are used to add nonlinearity to the model, and 

this can give the model the ability to imitate the behavior of highly nonlinear functions. Commonly 

used activation functions include sigmoid, Tanh and ReLU etc. Pooling layers are usually 

periodically inserted into a CNN between the successive convolutional layers. It is used to reduce 

the spatial size of the layers with feature-representing neurons. Thus, it has the effect of reducing 

the total amount of parameters and computation in the neural network, and therefore can prevent 

overfitting. Fully connected layers use full connections to calculate each neuron in the current 
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layer with all the neurons in the previous layer. A fully connected layer can be formulated as a 

matrix multiplication followed by a bias, and is often used to change the spatial size of a layer. For 

fast converging during training, before being fed into the CNN, input images are usually 

normalized to zero mean and unit variance.  

For both binary classification and multiclass classification tasks, cross-entropy loss is often used 

as the objective function. For image segmentation tasks, in addition to the cross-entropy loss, a 

variety of loss functions have been proposed to enhance the segmentation performance, including 

Dice loss (Milletari et al., 2016), generalized Dice loss (Sudre et al., 2017), sensitivity-specificity 

loss (Brosch et al., 2015), and generalized Wasserstein Dice loss (Fidon et al., 2018) etc. The 

stochastic gradient decent (SGD) algorithm is commonly used for the training of CNN and other 

deep neural networks. Other gradient decent algorithms, like Momentum (Qian, 1999), Adaptive 

Moment Estimation (Adam) (Kingma and Ba, 2014) and Adadelta (Zeiler, 2012) etc., were also 

proposed for the fast training of CNN and other deep learning models. 

2.2.2 Generative adversarial Network 

Generative adversarial network (GAN) usually consists of a generator network and a discriminator 

network, and is widely used for image synthesis tasks (Goodfellow et al., 2014). For image 

synthesis, the generator network is usually a convolutional encoder-decoder network used to 

synthesize images in the output domain from the images in the input domain, while the 

discriminator network could be a convolutional encoder network used to discriminate the 

difference between the generated images and the target images. The objective function for GAN 

usually looks like this: 

 ,min max [log ( )] [log(1 ( ( )))]
d d g

g d
X Y XD y D G xθ θ θθ θ

+ −     (2.12) 
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where gθ  is the parameter set of the generator network; dθ  is the parameter set of the discriminator 

network; x X∈  is the input image, and y Y∈  is the target image for the synthesized image. G and 

D are the forward models of the generator network and the discriminator network respectively. 

The training of GAN optimizes the generator and the discriminator alternatively in each iteration, 

and the goal is to train a discriminator that can discriminate the difference between the synthesized 

image and the target image, and at the same time to train a generator that can fool the discriminator.  

Based on the GAN architecture, conditional GAN (Isola et al., 2016) was proposed and became a 

more accurate and consistent way to synthesize paired images. It concatenates the input image as 

the condition for the synthesized image and the ground truth image for the discriminator. This 

gives the discriminator a clue about the input domain image that the output domain image paired 

with, and can further improve the image synthesis accuracy for paired data. The objective function 

used by conditional GAN is: 

 ,min max [log ( | )] [log(1 ( ( ) | ))]
d d g

g d
X Y XD y x D G x xθ θ θθ θ

+ −     (2.13) 

The l1 norm between the synthesized image and the ground truth image can also be added to this 

loss function to further emphasize the similarity between them. 

Compared with synthesizing images using only the CNN generator with the l1 norm or the l2 norm 

between the synthesized image and the ground truth image as the objective function, the 

conditional GAN works much better with the discriminator as part of the objective function. The 

images synthesized by conditional GAN are sharper with more details captured by the model. 
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2.2.3 Deep Neural Network 

Deep neural network (DNN) consists of many fully connected layers, and usually uses the sigmoid 

function as the activation function. It is often used for classification tasks with feature vectors as 

input. For rs-fMRI data, the connectivity matrices can be extracted from the original 4D rs-fMRI 

data, and then be fed into DNN for classification. Studies have shown high accuracy of DNN for 

the classification between schizophrenia patients and healthy controls with the rs-fMRI data (Kim 

et al., 2016). 

2.2.4 Dropout 

Dropout (Srivastava et al., 2014) is an effective regularization technique for preventing overfitting. 

In each forward pass during training, the dropout layer randomly sets the activations of the neurons 

in the previous layer as zero with a probability p, the dropout rate or dropout probability. In this 

way, all the features in the neural network get the chance to be trained, and the neural network can 

prevent from only depending on the several important features, which usually causes overfitting. 

During testing time, no dropout is performed, and the dropout layer rescales the neurons’ 

activations in the previous layer to 1-p times their original values during the forward propagation, 

This has an effect of keeping the expectation of the activation magnitude in the testing stage at the 

same level as that in the training stage. 

2.3 Bayesian Deep Learning 

Being different from conventional deep learning models, the framework of Bayesian deep learning 

views all the weights to train in the neural network and the values to predict during the testing 

stage as random variables following certain probability distributions. 
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2.3.1 Training of Bayesian Deep Learning 

The training goal of Bayesian deep learning is to get the posterior ( | , )p X Yω . However, usually 

the true posterior ( | , )p X Yω  is intractable analytically, so a variational distribution ( )qθ ω  

parametrized by θ  is used to approximate the true posterior. Thus, the training goal of the 

Bayesian deep learning is transferred to minimize the Kullback-Leibler (KL) divergence with 

respect to θ  (Gal and Ghahramani, 2015): 

 ( )( ( ) || ( | , )) ( )
( | , )
qKL q p X Y q d

p X Y
θ

θ θ
ωω ω ω ω

ω
= ∫   (2.14) 

With the techniques in variational inference, it can be proved that minimizing the KL divergence 

is equivalent to maximizing the evidence lower bound (ELBO). Thus, the optimization problem 

can be reformulated as maximizing the following objective (Gal and Ghahramani, 2015): 

 ( ) : ( ) log ( | , ) ( ( ) || ( )) log ( | )VI q p Y X d KL q p p Y Xθ θθ ω ω ω ω ω= − ≤∫   (2.15) 

The first term in this equation drives the approximating distribution ( )qθ ω  to explain the observed 

data well, and at the same time the second term encourages ( )qθ ω  to be like the prior distribution 

( )p ω . By reparametrizing ( )qθ ω  with ( , )gω θ=  , where θ  is a set of parameters and   is a set 

of random variables having the probability density function of ( )p , the objective can be further 

reformulated as minimizing the following objective (Gal, 2016): 

 

( , )( ) ( ) log ( | ( )) ( ( ) || ( ))g
VI p p Y f X d KL q pθ

θθ ω ω= − +∫      (2.16) 

where f is the forward model. Given a training dataset with N observations and using mini-batch 

optimization, the objective can be rewritten as (Gal, 2016): 

 

( , )( ) ( ) log ( | ( )) ( ( ) || ( ))g
VI i i

i S

N p p y f x d KL q p
M

θ
θθ ω ω

∈

= − +∑∫      (2.17) 
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where S is a random mini-batch with the size of M. With the technique of Monte Carlo integral, 

the expected log likelihood in the objective can be replaced with its stochastic estimator (Gal, 

2016): 

 


 

( , )

,

( ) log ( | ( )) ( ( ) || ( ))

. . ( ( )) ( )

g
MC i i

i S

MC VIS

N p y f x KL q p
M

s t

θ
θθ ω ω

θ θ
∈

= − +

=

∑








 
  (2.18) 

Given that the prior of the network weights ( )p ω  following Gaussian distributions, it can be 

proved that the training of a Bayesian neural network is equivalent to the training of the 

conventional neural network with the regularization of dropout and the square of the l2 norm of 

the weight matrices (Gal, 2016). 

2.3.2 Testing of Bayesian Deep Learning 

Instead of a single number, Bayesian deep learning treats each prediction as a posterior distribution. 

Thus, at testing time, the goal of Bayesian deep learning it to estimate the posterior distribution 

(Gal and Ghahramani, 2016):  

 * * * *( | , , ) ( | , ) ( | , )p y x X Y p y x p X Y dω ω ω= ∫   (2.19) 

With the approximating distribution of the weights got during the training stage, this posterior 

distribution can be approximated as: 

 * * * * * * * *( )( | , , ) ( | ) ( ) : ( | )p y x X Y p y x q d xf q yω
θ θω ω≈ =∫   (2.20) 

Given the assumption that * * * * 1( | ( )) ( ; ( ), )p y f x y f x Iω ω τ −=   with 0τ > , it can be proved that 

* * *
*

( | )
[ ]

q y x
y

θ
  can be estimated with the unbiased estimator (Gal and Ghahramani, 2016): 
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 



* * *
* * *

( | )
1

1[ ] : ( ) [ ]t

T

q y xTt
y f x y

T θ

ω

→∞
=

= →∑    (2.21) 

With the same assumption, * * *
*

( | )
[ ]

q y x
Var y

θ
 can be estimated with the unbiased estimator (Gal and 

Ghahramani, 2016): 

 

 

 

* * *
* 1 * * * * *

( | )
1

1[ ] : ( ) ( ) [ ] [ ] [ ]t t

T
T T

q y xTt
Var y I f x f x y y Var y

T θ

ω ωτ −

→∞
=

= + − →∑     (2.22) 

This means that the mean and variance of the T stochastic forward passes through the Bayesian 

neural network can be used to estimate the mean and variance of the true posterior * *( | , , )p y x X Y . 

2.4 Physics of MRI 

2.4.1 Physics Overview 

MRI is based on the quantum mechanics of atomic nuclei. Protons and Neutrons are the nucleons 

used to make the nucleus of an atom. Both of them have the quantum mechanical property of spin. 

Spin is measured in the discrete half-integer unit. Only nuclei with non-zero spins have magnetic 

moments, and therefore can absorb and emit electromagnetic radiation and can have resonance in 

an external magnetic field. The MR-active nuclei are those that have odd-numbered spins, so the 

spins of the protons and neutrons don’t cancel each other, and result in a net spin. In the clinical 

MRI, the hydrogen nucleus (proton), 1H, is the most common source of signal, due to its abundance 

in the human body. 1H is a spin-1/2 nucleus, and there are two spin states, up and down.  

Each spin rotates around its own axis, which induces a magnetic field. When the spins are exposed 

to a strong external magnetic field (B0), the magnetic field interaction causes the spins to precess. 

The frequency of the precession is defined by the Larmor equation: 
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 0 0Bω γ=   (2.23) 

where 0ω  is the frequency of the precession; γ  is the gyromagnetic ratio, which is a constant for 

every atom; 0B  is the external magnetic field strength. For 1H, 42.57γ = MHz/T. Before the 

external magnetic field is applied, the rotation axes of the spins are randomly aligned. When being 

exposed to the 0B , the spins starte to precess around the axes along the magnetic axis of 0B : some 

axes are parallel with 0B , while the others are anti-parallel with 0B . For nuclei having odd-

numbered spins, more spins precess around the axes parallel to 0B , since this is a lower energy 

state. The cumulative effect of this results in a net magnetization vector parallel to 0B . 

During an MRI session, the radio frequency (RF) pulses are turned on and off. When the RF pulse 

has the same frequency as the precessional frequency, the phenomenon of resonance emerges. The 

RF pulse can transfer energy to the spins, which has two main effects on the spins. First, some 

spins acquire energy from the RF pulse and move to the higher energy state with being antiparallel 

to 0B . In consequence, the parallel and antiparallel spins cancel each other and result in reduced 

longitudinal magnetization or even a growth of longitudinal magnetization in the antiparallel 

direction. Second, the transference of energy from the RF pulse to the spins causes the spins to 

precess in phase, and results in a transverse magnetization. The precessing transverse 

magnetization at the Larmor frequency can be captured by the receiver coil. 

As soon as the RF pulse is turned off, the spins start to return to the lower energy state as well as 

fall out of phase. These are the T1 and T2 relaxations, or spin-lattice and spin-spin relaxations. 

The recovery of the longitudinal magnetization occurs exponentially with the time constant T1, so 

it is called T1 relaxation. It is also called spin-lattice relaxation, since the spins return to the low 
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energy state by emitting energy to their surroundings. The loss of phase coherence of the spins 

causes the exponential decay of the transverse magnetization with the time constant T2 and thus 

is called T2 relaxation. The transverse magnetization is dephased due to the interaction between 

the spins and their magnetic fields, so it is also called spin-spin relaxation. In practice, because of 

the inhomogeneities of 0B  and the susceptibility boundaries in the sample, there are small 

differences in the static magnetic field at different locations. This causes the spins to be dephased 

faster, and is often referred to as T2’ relaxation. The combination of T2 and T2’ relaxations is 

referred to as the T2* relaxation, and these time constants have the following relation: 

 * '
2 2 2

1 1 1
T T T

= +   (2.24) 

The time constant T1 is much longer than T2, and T2* is always shorter than T2 (Bitar et al., 2006; 

Currie et al., 2013). 

2.4.2 Tissue Contrast 

Different tissues have different T1, T2 and proton density properties, and the tissue contrasts in 

MR images are basically generated by these different tissue properties. In MR pulse sequences, 

the repetition time (TR) and the echo time (TE) are the two key parameters for the creation of 

different tissue contrasts. TR is the time cycle between two RF excitation pulses, while TE is the 

time from the application of the RF excitation pulse to the amplitude peak of the received signal 

(echo). All types of MR images are affected by the tissue property parameters of T1, T2 and proton 

density, but the adjustment of TR and TE can emphasize a specific type of contrast mechanism, 

since TR and TE are sensitive to different spin relaxation processes. The combination of short TR 

and short TE emphasizes the T1 differences between different tissue types, and can be used for the 
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T1w MR images. Meanwhile, long TR and long TE lets the longitudinal net magnetization from 

different tissues fully recover, and can show the differences of the T2 relaxation of different tissues, 

so this combination is usually used for T2w MR images. When TR is long and TE is short, the 

amplitude of the signal is mainly determined by the proton density of the tissue, so this 

combination is often used for the proton-density-weighted (PDw) MRI (Bitar et al., 2006; Currie 

et al., 2013). 

2.4.3 Pulse Sequence 

Pulse sequences are the wave forms and their corresponding timing of the gradients and the RF 

pulses used for MR image acquisition. The spin echo (SE) pulse sequence and the gradient echo 

(GRE) pulse sequence are the two fundamental pulse sequences of MRI, and other MR pulse 

sequences can be viewed as the variations of them. In addition, pulse sequences can be two-

dimensional (2D) or 3D. 2D pulse sequences use one of the gradients to perform slice selection, 

while for 3D sequences there is no slice selection, but the phase encoding is performed in two 

separate directions. 

In SE sequence, first a 90-degree RF pulse tips the net magnetization vector into the transverse 

plane. As the spins go through the T2 and T2* relaxations, the spins are dephased and the net 

magnetization in the transverse plane decreases. At the time point of half TE a 180-degree RF 

pulse is applied to flip the spins 180 degrees. Since the spins are still in the same location with the 

same local magnetic field inhomogeneity, the spins will start to be rephased. At the time point of 

TE, the phase differences of the spins caused by the T2’ relaxation are eliminated, and the echo is 

produced and read out, so SE is able to acquire images with T2w contrasts. With the adjustment 

of the TE and TR, SE can also acquire images with other contrasts, e.g. T2w and PDw etc. 
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In a GRE sequence, the RF pulse is used to partially tip the net magnetization down to the 

transverse plane with variable flip angles, and the application of gradient causes the spins to be 

dephased and rephased in the transverse plane. The gradient reversal only refocuses the spins that 

were dephased by the gradient instead of the magnetic field inhomogeneity, so the image contrast 

in GRE sequence is affected by the proton density, T1 and T2* relaxations, but not the T2 

relaxation. In a GRE sequence, TE is the time taken from the decay of the signal to the time point 

when the signal reaches its maximum. Without the 180-degree RF, GRE sequences can take 

shorter time than the SE sequences, and the combination of short TE and short TR allows rapid 

signal acquisition. In GRE MRI, T1w, T2*-weighted (T2*w) and PDw images can be obtained 

through the manipulation of the flip angle, TE and TR (Bitar et al., 2006; Currie et al., 2013).  

2.4.4 Signal Localization and Imaging 

Gradients are used to change the magnetic field strength linearly along the selected directions. 

According to the change of the magnetic field strength, the precessional frequency of the spins 

also changes. In total, there are three kinds of gradients, X, Y and Z, along the orthogonal axes in 

the 3D space. For 2D MRI, one gradient is used as the slice-selection gradient. It is first applied to 

select the slice to be imaged. Then, another gradient is applied as the phase-encoding gradient. It 

causes the spin phase shift proportional to the location in the phase-encoding direction. Finally, 

the last gradient is used as the frequency encoding gradient. It causes the spins to precess at 

different frequencies along the frequency encoding direction. In this way, the position information 

of all the spins are encoded in the signal. The signal can be collected along certain trajectories in 

the K-space, the source of the signal can be recovered by the 2D Fourier transformation. For 3D 

MRI, the slice selection gradient is replaced by another phase-encoding gradient, and the signal 

can be recovered by the 3D Fourier transformation (Bitar et al., 2006; Currie et al., 2013). 
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2.5 Applications of Deep Learning in MR Neuroimaging 

In this section, three key applications in the processing pipeline of MR neuroimaging are discussed, 

which include image segmentation, image synthesis, and feature classification and extraction. 

Conventional methods and learning based models used to solve the tasks in these applications are 

reviewed and discussed. 

2.5.1 Brain Extraction in Humans and Nonhuman Primates 

A large number of brain extraction methods have been proposed in recent decades, which again 

emphasize its importance. However, the need for an accurate, robust and sufficiently fast method 

has not yet been fulfilled. Mainly, these methods can be divided into two categories, edge based 

methods and template based methods (Roy et al., 2017). Although most of these methods work 

well for human brains, they encounter challenges when dealing with nonhuman primate brains due 

to their complex anatomical structure (Wang et al., 2014). A comprehensive review can be found 

at (Roy et al., 2017; Wang et al., 2014). Due to the sub-optimal performance of existing automated 

brain extraction routines in rhesus monkeys, prior work from our laboratory has used brain images 

that were manually extracted by well-trained experts (Oler et al., 2010; Birn et al., 2014; Fox et 

al., 2015a). This procedure, however, is extremely time consuming and labor intensive.  

The Brain Extraction Tool (BET) (Smith, 2002) is based on a deformable tool, which initializes a 

spherical mesh at the center of gravity of the brain, and then expands it towards the edge of the 

brain. The whole process is guided by a set of locally adaptive forces determined by surface 

smoothness and contrast changes in the vicinity of the surface. This toolbox has been reported to 

be useful for nonhuman primate brain extraction (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET/FAQ). 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BET/FAQ
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The Brain Surface Extractor (BSE) was proposed by (Shattuck et al., 2001). It involves anisotropic 

filtering, Marr-Hildreth edge detection and morphological operations. Serving as an edge-

preserving filter, the anisotropic diffusion filtering step is intended to smooth gentle gradients, 

while preserving sharp gradients, which helps the edge detection. Morphological operations, 

including erosion and dilation, can further enhance the results from edge detection.  

Another popular brain extraction tool is 3dSkullStrip in the Analysis of Functional NeuroImages 

(AFNI) software suite (https://afni.nimh.nih.gov/afni/). It consists of 3 steps: removing gross non-

uniformity artifacts, iteratively expanding a spherical surface to the edge of the brain and creating 

masks and surfaces of the brain. The second step is a modified version of BET. The improvement 

includes excluding eyes and ventricles, driving the expansion with data both inside and outside of 

the surface, and involving 3D edge detection. It has a -monkey option helping with initialization 

of a surface based on nonhuman primate brains. 

The Hybrid Watershed Algorithm (HWA) (Ségonne et al., 2004) combines watershed algorithm 

with a deformable surface model. Based on the 3D white matter connectivity, the watershed 

algorithm outputs the initial estimate of the brain volume, and then the deformable model generates 

a force field to drive a spherical surface to the boundary of the brain. The option -atlas can 

incorporate a statistical brain atlas generated from accurately segmented human brains to correct 

the segmentation. The HWA in the software FreeSurfer is not originally designed or optimized for 

nonhuman primates. 

Robust Learning-Based Brain Extraction (ROBEX) (Iglesias et al., 2011) is a more recently 

published algorithm. In ROBEX a discriminative method is combined with a generative model. A 

random forest classifier is trained to detect the contour of the brain, after the subject is registered 

to the template with an affine transformation, and then a point distribution model is fitted to find 

https://afni.nimh.nih.gov/afni/
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the most likely boundary of the brain. Finally, a small deformation optimized by graph cuts serves 

as the refining step. 

Recently the National Institute of Mental Health Macaque Template (NMT) was published by 

(Seidlitz et al., 2017). It is a high-resolution template for the macaque brain derived from MRI 

images averaged from 31 subjects. Rhesus macaque brain MRI images can be registered into this 

template space to extract the brains. After brain extraction in the template space, the brain images 

can be transformed back to the original image space with the inverse transformation. To increase 

the accuracy of the registration, both affine and deformable transformations should be involved. 

Among many deep learning methods, deep CNN has proven to be very useful in a broad range of 

computer vision applications, outperforming traditional state-of-the-art methods (Shelhamer et al., 

2016; Simonyan and Zisserman, 2014). In the area of image segmentation, many CNN based 

architectures have been proposed. These methods can broadly be divided into 2D methods and 3D 

methods. A c (FCN) was proposed by (Long et al., 2015) as a 2D network for the general task of 

semantic segmentation. SegNet (Badrinarayanan et al., 2015b) was first proposed for road and 

indoor scene segmentation, and later was combined with a 3D deformable model to solve tissue 

segmentation in MRI (Liu et al., 2017). UNet (Ronneberger et al., 2015) is a kind of 2D encoder-

decoder network proposed for microscopic images, and later expanded to 3D for volumetric data 

(Çiçek et al., 2016). VNet (Milletari et al., 2016) was proposed as a 3D FCN with dice loss to 

perform 3D segmentation on MR images. (Wachinger et al., 2017) proposed a 3D patch-based 

method and arranged 2 networks hierarchically to separate the foreground and then identify 25 

brain structures. (Chen et al., 2017) proposed a 3D residual network with multi-modality and multi-

level information to identify 3 key structures of the brain. Recently, Several patch-based 3D FCN 

were also proposed, like LiviaNet to segment the subcortical region of the brain (Dolz et al., 2017) 
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and DeepMedic to segment brain lesions (Kamnitsas et al., 2017). In the specific field of brain 

extraction, (Kleesiek et al., 2016) proposed a 3D patch based CNN network for human brain 

extraction on T1w human brain datasets and a multi-modality human brain dataset with tumors. In 

a further study, (Salehi et al., 2017) proposed an auto-context CNN where the probability maps 

output by the CNN are iteratively used as input to the CNN along with the original 2D image 

patches to refine the results. A more comprehensive review can be found at (Bernal et al., 2017; 

Craddock et al., 2017).  

2.5.2 Image Synthesis in Medical Imaging 

Image synthesis is a technique used to translate images in one domain to their corresponding 

images in another domain, or images in one contrast to their corresponding images in another 

contrast. It is especially useful in the field of medical imaging. For example, if the MR images 

with some specific contrast were not collected during data acquisition and were found useful 

during diagnosis, image synthesis can generate the images with this contrast from other existing 

images of other contrasts. Images with high resolution can be synthesized from images with low 

resolution, and artifacts can be removed via image synthesis. CT images can be synthesized 

through PET or MR images, which can potentially reduce the radiation dose to patients for 

diagnosis, and increase the accuracy of the processes where CT images are unavailable, such as 

PET attenuation correction (Liu et al., 2018) and MR only treatment planning of the magnetic 

resonance - linear accelerator (MR-Linac) (Guerreiro et al., 2017). 

Conventional image synthesis approaches can be classified into two categories: registration based 

image synthesis and intensity transformation based image synthesis. Usually, the problem of image 

synthesis can be formulated as: given an image a1 in contrast A, synthesizing its corresponding 
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image b1 in contrast B, with an image set, a, in contrast A and its corresponding image set, b, in 

contrast B. Usually, the image set a and its paired image set b are co-registered. 

For the registration based image synthesis, the image a is registered to a1 with deformable 

registration algorithms, and then the obtained deformable transformation is applied to b to generate 

a1’s paired image b1 in contrast B. This method was first used to synthesize positron emission 

tomography (PET) images from MR images as a single atlas registration and transformation 

approach with a single aligned image pair in set a and set b (Miller et al., 1993). Then, this method 

was extended to use multiple aligned image pairs in set a and set b. All the images in a are 

registered to a1 with deformable registration. Then the same deformable transformations are 

applied to the corresponding paired images in b, and an intensity fusion is performed to synthesize 

the intensity of each voxel of b1. This extended method was first used to synthesize the computed 

tomography (CT) images from MR images for the attenuation correction in PET reconstruction 

(Burgos et al., 2014, 2013). Obviously, the performance of registration based image synthesis 

highly depends on the accuracy of the deformable registration, which is challenging for brain 

images with many fine structures. Moreover, this method cannot be applied to the situations in 

which the a1 image has abnormal anatomy, for example, brain images with stroke, brain tumors or 

multiple sclerosis. Since the anatomic structures in a and b do match with those in a1, the method 

is not able to generate a1’s corresponding structures in b1 with contrast B (Burgos et al., 2014; 

Cardoso et al., 2015; Miller et al., 1993). 

Intensity transformation based image synthesis can be viewed as a supervised prediction approach. 

First, for every voxel location in an image in set a, a feature vector is extracted. The feature vector, 

for example, could be a 3D patch centered at that voxel. Each feature vector has a target intensity 

value, which is the voxel intensity at the same location in the corresponding image in set b. The 
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training dataset is created by extracting the feature vectors and generating the feature-vector-

target-intensity pairs across all in the images in the image sets a and b. Then, a regression algorithm 

can be learned to map the feature vectors to their target intensity values. During the prediction 

stage, feature vectors can be extracted from the image a1 to generate the corresponding voxel 

intensities for the image b1 with the learned regression algorithm. Image analogy was one of the 

earliest intensity transformation models proposed for image synthesis (Hertzmann et al., 2001). 

The patch extracted from a1 is matched to the its k nearest-neighbor patches in the patches extracted 

from a. Then the k corresponding patches extracted from b were combined to generate the patch 

for b1. In MR image synthesis, this method was used for the purpose of image registration (Iglesias 

et al., 2013). MIMECS is another image synthesis method proposed for intensity transformation, 

which solves the problem with dictionary learning (Roy et al., 2013, 2011). Patches extracted from 

a are treated as a set of bases of a dictionary, and are used to sparsely represent the patches 

extracted from a1 with the linear combinations of these bases. Each basis patch extracted from a 

has its corresponding patch extracted from b, and the linear combinations of these corresponding 

patches from b with the same weights are used to generate the patches for b1. Intensity 

transformation based methods are usually computationally intensive, and cannot synthesize all the 

contrasts flexibly (Roy et al., 2013). For a more comprehensive review, please refer to (Jog, 2016). 

As learning based models develop rapidly in the recent past, machine learning and deep learning 

based techniques were also applied on the task of image synthesis. REPLICA encodes both global 

and local information in the feature vectors and uses random forests to learn the nonlinear 

regression for image synthesis (Jog et al., 2017). CNN was used to synthesize the CT images from 

the corresponding PET images for the attenuation correction in PET reconstruction (Liu et al., 
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2018). CT images were also synthesized from MR images by CNNs (Xiang et al., 2018) and GANs 

(Nie et al., 2018) for patient dose reduction and MR-only treatment planning in radiation therapy. 

2.5.3 Functional Connectivity Gender Difference 

Morphologically, men in general have a slightly larger brain as well as gray and white matter tissue 

volumes than women (Ruigrok et al., 2014). In addition, the hippocampus, amygdala, neocortex, 

insula and many other brain regions in charge of different kinds of cognitive processing are 

sexually dimorphic (Cahill, 2006). (Sowell et al., 2007) showed a difference in cortical thickness 

between genders across a large age range, and (Lv et al., 2010) reported significant cortical 

thickening in the frontal, parietal and occipital lobes in women. In diffusion tensor imaging (DTI) 

studies, females were found having significantly lower fractional anisotropy (FA) in the right deep 

temporal region and microstructural organization in multiple white matter regions suggested a 

sexual dimorphism (Hsu et al., 2008), while (Ingalhalikar et al., 2014) illustrated more inter-

hemispheric connectivity in females and more intra-hemispheric connectivity in males. (Feis et al., 

2013) achieved very high gender prediction accuracy (96%) when using multimodal anatomical 

and diffusion MR images. 

Structural brain differences can help us understand the gender related psychological and behavioral 

differences to some extent, and functional brain differences can let us move one step further (Gong 

et al., 2011). Many studies have shown gender differences in FC derived from fMRI in the last 

decade. Mainly, these studies can be divided into task based fMRI studies and resting state fMRI 

(rs-fMRI) studies. (Schmithorst and Holland, 2006) observed a gender-intelligence-age interaction 

in the FC during the silent verb generation semantic task within a large pediatric group. (Butler et 

al., 2007) showed the FC difference between men and women in the ventral anterior cingulate 
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cortex and the dorsal anterior cingulate cortex connection during a visuospatial task. In the last 

decade, rs-fMRI has drawn enormous attention due to its ability to investigate the spontaneous and 

intrinsic brain activities. (Bluhm et al., 2008) reported the gender difference in the default mode 

network. (Biswal et al., 2010) examined the gender difference of resting FC on a large dataset of 

1414 subjects collected at 35 international centers, in which men and women showed different 

connectivity strength in multiple brain connections. Similarly, (Filippi et al., 2013) showed the 

gender difference between different resting state networks with statistical parametric mapping and 

ICA. Recently, (Zhang et al., 2016) used regression and graph theory analyses to show the gender 

differences in resting FC. For a more comprehensive review, please refer to (Gong et al., 2011; 

Zhang et al., 2018). 

Compared with analyzing the FC group mean differences between genders, extracting important 

features from an accurate prediction model can disclose the direct relationship between FC and 

genders. (Casanova et al., 2012) used lasso regression and random forest based methods, and 

reached 62.3% and 65.4% accuracy respectively on a 148-subject dataset. (S. M. Smith et al., 2013) 

applied leave-one-out training and testing with multivariate linear discriminant analysis to 104 

subjects from Human Connectome Project (HCP) and achieved 87% gender prediction accuracy. 

Recently, (Zhang et al., 2018)  achieved 87% accuracy with partial least squares regression on 820 

HCP subjects with 10-fold cross validation. All these studies also tried to extract the important 

features from the prediction models to study the FC characteristics of different genders. 

In the recent past, tremendous progress has been made in the field of artificial intelligence because 

of the resurgence of the deep learning based methods (Krizhevsky et al., 2012a; LeCun et al., 2015) 

and the rapid advance of parallel computing (Coates et al., 2013; Schmidhuber, 2015). Due to its 

ability of accurate prediction, deep learning has been quickly applied to image processing in neuro-



31 
 

imaging and classification in neuroscience. CNN based architectures are effective at brain 

segmentation or skull stripping, while DNN is broadly used for increasing the prediction accuracy 

in various neuropsychiatric disorders. (Kim et al., 2016) used DNN to classify schizophrenia 

patients against healthy controls with an accuracy of 85.8% and investigated multiple DNN 

configurations’ effects on the predicting accuracy. Several groups have applied DNN based 

methods to the diagnosis of Alzheimer’s disease (Liu et al., 2014; Suk et al., 2015; Hu et al., 2016; 

Bhatkoti and Paul, 2016) and showed improvement against traditional methods. (Hazlett et al., 

2017) used a combination of DNN and support vector machine to study the brain development of 

infants at high risk for autism spectrum disorder. A more comprehensive review can be found in 

(Vieira et al., 2017). 
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Chapter 3 

 

Bayesian Convolutional Neural Network for 
MRI Brain Extraction 

 

 

3.1 Introduction 

Brain extraction, also known as skull stripping, is an essential process in MRI and fMRI. It often 

serves as the first step in the preprocessing pipeline, since processing software often requires the 

extracted brains as sources and targets in the registration. By removing the non-brain parts, such 

as the skull, eyes, muscle, adipose tissue and layers of meninges etc., brain registration achieves 

improved performance (Wang et al., 2012). Meanwhile, the accuracy of brain extraction is 

important and can dramatically affect the accuracy of the following processes. Mistakenly 

removing brain tissues and/or retaining non-brain areas can lead to biased results of further 

analyses, such as the estimation of cortical thickness, parcel-wise averaged fMRI signal and voxel-

based brain morphometry (Fennema-Notestine et al., 2006; Shattuck et al., 2009; van der Kouwe 
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et al., 2008). Accurate brain extraction is extremely challenging as a result of complex brain 

anatomical structure, and therefore the improvement of brain extraction still remains an intensively 

investigated research topic (Roy et al., 2017). 

Nonhuman primates have been widely used in neuroimaging as experimental subjects due to their 

similarity to human beings, especially in intervention studies and studies involving radiation, 

contrast agent and drugs (Baldwin et al., 1993; Kalin et al., 2007; Fox and Kalin, 2014). The 

particularity of the nonhuman primate’s brain makes the challenge of brain extraction even more 

difficult. Nonhuman primates’ brains are smaller in size than human brains, and have complex 

tissue structures. The eyes of nonhuman primates are relatively larger than human beings’ and 

surrounded by much more adipose tissue. The adipose tissue behind their eyes are close to the 

brain, which makes it difficult to be separated. Their frontal lobes are quite narrow and protrude 

sharply (Rohlfing et al., 2012b), which causes this region to be excluded by many brain extraction 

packages. As a result, manually examining, refining or even extracting the whole brain is often 

unavoidable. Therefore, an accurate and robust automatic brain extraction approach for nonhuman 

primates is highly demanded to mitigate the time-consuming human intervention. 

The purpose of this work is to implement and validate deep learning based methods on nonhuman 

primate brain extraction, and to build a framework for this fully automatic approach. In this study, 

we propose to improve the brain extraction accuracy using a Bayesian CNN with refinement 

through fully connected 3D CRF. In comparison to previous brain extraction studies, our study has 

several novel aspects. Firstly, we evaluated brain extraction using Bayesian SegNet, a Bayesian 

convolutional encoder-decoder network that involves Monte Carlo dropout layers to provide 

additional information for model uncertainty evaluation. In our previous study, the basic version 

of this network, SegNet, was proven to be highly efficient in MRI tissue segmentation (Liu et al., 
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2017). Secondly, we incorporated the fully connected 3D CRF as a post-processing step to 

regularize the result according to the fully 3D anatomical context. Fully connected 3D CRF, as a 

probabilistic graphic model, is helpful to improve 2D CNN segmentation results by considering 

the distance and contrast relationships among all the voxel pairs in the whole 3D space. Finally, 

on a large-scale nonhuman primate dataset, we made a full comparison of the proposed method 

with current state-of-the-art software packages and well-established deep learning based methods. 

The accuracy and robustness of these algorithms on challenging nonhuman primate brain 

extraction were investigated. We hypothesize that a Bayesian deep learning based image 

segmentation framework with fully connected 3D CRF refinement is suitable for nonhuman 

primate’s brain extraction with improved accuracy and efficiency, and the uncertainty it generated 

can also reflect the confidence of the model on each prediction. 

3.2 Material and Methods 

3.2.1 Image Datasets 

MRI data of 100 periadolescent rhesus macaques (Macaca mulatta; mean (standard deviation) age 

= 1.95 (.38) years; 43% female) were collected in a 3T MRI scanner (MR750, GE Healthcare, 

Waukesha, WI, USA) with a 16-cm quadrature birdcage extremity coil (GE Healthcare, Waukesha, 

WI, USA) and a stereotactic head-frame integrated with the coil to prevent motion. Immediately 

prior to the scan, subjects received medetomidine (30 µg/kg i.m.) and a small dose of ketamine 

(<15 mg/kg) for anesthesia purpose. During the scan, anatomical structures were acquired using a 

3D T1-weighted inversion-recovery fast gradient echo sequence with the following imaging 

parameters: TE = 5.41ms, TR = 11.39, TI = 600ms, Flip Angle = 10°, NEX = 2, FOV = 140 mm, 

Bandwidth = 61.1 kHz. The whole brain was reconstructed into a 3D volume of 256×224 in-plane 
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matrix size and 0.27×0.27 mm2 in-plane pixel size with 248 slices over 124 mm. All the brains 

were then manually extracted by well-trained image scientists using these T1w images with the 

software SPAMALIZE (http://psyphz.psych.wisc.edu/~oakes/spam/spam_frames.htm). The data 

used in this study are a subset of those used in our prior studies (Fox et al., 2015b; Shackman et 

al., 2017). 

3.2.2 Full Brain Extraction Method 

The proposed brain extraction pipeline is a combination of Bayesian SegNet (Kendall et al., 2015a) 

and fully connected 3D CRF (Krähenbühl and Koltun, 2012). As shown in Fig. 3.1 It has a training 

phase and a testing phase. The 3D brain image volumes and corresponding manual label volumes 

are treated as a stack of 2D images input to the Bayesian neural network. In the training phase, the 

process is formulated as an optimization problem to optimize the network parameters by 

minimizing the difference between the network’s output and the manual labels using multinomial 

logistic loss (Krizhevsky et al., 2012b). In the testing stage, the network with well-trained 

parameters are used as a pixel-wise segmentation classifier to predict the label probability and 

generate model uncertainty on each pixel of new brain volumes. Finally, the predicted probabilities 

and the 3D brain volumes are passed to fully connected 3D CRF for refinement in the whole 3D 

context.  

http://psyphz.psych.wisc.edu/%7Eoakes/spam/spam_frames.htm
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Fig. 3.1. Work flow of the proposed brain extraction method, a combination of Bayesian SegNet and fully 

connected 3D CRF. 

 

3.2.3 Bayesian Convolutional Neural Network 

A convolutional encoder-decoder network, Bayesian SegNet, is used as the core segmentation 

engine in the brain extraction workflow (Fig. 3.1). This network was first introduced by (Kendall 

et al., 2015a) and benchmarked on the multiple scene recognition datasets (Everingham et al., 2015) 

with excellent performance. This network consists of a VGG16 (Simonyan and Zisserman, 2014) 

encoder network and a reversed decoder network. The encoder network performs the function of 

feature extraction and data compression, while the decoder network assembles the compressed 

features to the original image size using extracted features via multi-scale sparse upsampling 

(Badrinarayanan et al., 2015b). Networks of encoders and decoders were constructed using a series 

of convolutional layers, batch normalization (Ioffe and Szegedy, 2015), ReLU non-linearity (Nair 

and Hinton, 2010), and maximum pooling layers or upsampling layers. Compared with other 

segmentation CNNs, Bayesian SegNet features both dropout training and dropout testing. Dropout 

training offers the network robustness against overfitting especially on small datasets. Dropout 

testing predicts both pixel-wise probability maps for all the labels as well as additional 
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measurement of model uncertainty which is particularly useful for accuracy evaluation. These 2 

features are achieved by implementing Bayesian SegNet with Monte Carlo dropout layers as 

shown in Fig. 3.1. The dropout rate is set beforehand and a certain percentage of neurons in the 

preceding layer are randomly ignored in every iteration during training or every forward pass 

during testing (Srivastava et al., 2014).  

Given the dataset X and its corresponding label set Y, (Gal and Ghahramani, 2015) showed that 

Monte Carlo dropout training can be used to evaluate the posterior distribution over the network 

weights W: 

 ( )| ,p W X Y   (3.1) 

Since this posterior is not traceable directly from Bayesian SegNet, an approximation can be made 

by using variational inference (Gal and Ghahramani, 2015; Kendall et al., 2015a), which allows 

defining an approximating distribution ( )q W  and inferring it by minimizing the KL divergence 

(Gal and Ghahramani, 2015): 

 ( ) ( )( || | , )KL q W p W X Y   (3.2) 

(Gal and Ghahramani, 2015) illustrated that the integral in the KL divergence can be approximated 

with Monte Carlo integration over the network weights, and the process of minimizing the KL 

divergence is equivalent to performing Monte Carlo dropout training.  

(Gal and Ghahramani, 2015) also showed that after getting the optimal weights, Monte Carlo 

dropout sampling can also be used in testing. To predict the label *y  for the data *x , the posterior 

distribution can be determined through T times Monte Carlo dropout testing. During each testing 

the network weight subset ˆ
tW  is occupied. 
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The integral in the equation is approximated with Monte Carlo integration, which is identical to 

Monte Carlo dropout sampling of Bayesian SegNet during testing. This can be considered as 

sampling the posterior distribution over the weights to get the posterior distribution of the predicted 

label probabilities. The mean of sampled probabilities * *( | , )ˆ
tp y x W  will be used as the prediction 

of the probability map for each label, and the variance of them will be used as the model uncertainty 

on each prediction. 

3.2.4 Fully Connected Three-Dimensional Conditional Random Field 

The final prediction outputs from the Bayesian SegNet are 2D probability maps for each label. To 

take into account the 3D contextual relationships among voxels, we propose to incorporate fully 

connected 3D CRF (Krähenbühl and Koltun, 2012) to refine the results from the Bayesian SegNet. 

Based on the probability maps from Bayesian SegNet, this approach can maximize the label 

agreement between voxels having similar contrasts or close to each other in the whole 3D volume 

by a maximum a posteriori (MAP) inference (He et al., 2004) made in the CRF defined over the 

full brain volume. Considering  𝑥𝑥 as the label assignment for each voxel, and 𝑖𝑖, 𝑗𝑗 as the voxel index 

ranging from 1 to the total number of voxels, to get the MAP inference optimization is carried out 

to minimize the Gibbs energy in the 3D space: 

 ( ) ( ) ( ),u i p i j
i i j

E x x x xψ ψ
<

= +∑ ∑   (3.4) 
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The probability result on each voxel from the Bayesian SegNet is used to build the unary potential 

( )u ixψ , while the pairwise potential ( ),p i jx xψ  depends on each voxel pair’s location ip , jp  and 

intensity iI , jI : 

 ( ) ( )
2 2 2

1 22 2 2, , exp exp
2 2 2

i j i j i j
p i j i j

p p I I p p
x x x x

α β γ

ψ µ ω ω
θ θ θ

    − − −    = − − + −
    

    

  (3.5) 

In the pairwise potential, the appearance kernel and the smoothness kernel are involved 

(Krähenbühl and Koltun, 2012). The appearance kernel, the first exponential term in Eq. 3.5, 

assumes voxels close to each other or having similar contrasts tend to share the same label. The 

extent of each effect is controlled by αθ  or βθ . The smoothness kernel, the second exponential 

term, removes isolated small regions (Shotton et al., 2009), and is controlled by γθ . 1ω  and 2ω  are 

the weights for the two kernels. The compatibility function, ( ),i jx xµ , is set as the Potts model: 

 ( ) [ ], 1
i ji j x xx xµ ≠=   (3.6) 

To make the complex inference practical given a tremendous number of pairwise potentials in 

fully connected CRF, we use the highly efficient algorithm proposed by (Krähenbühl and Koltun, 

2012), where the pairwise edge potentials are defined as a linear combination of Gaussian Kernels 

in the feature space. A mean approximation to the CRF distribution is made in the algorithm, and 

it is optimized through an iterative message passing process. (Krähenbühl and Koltun, 2012) 

showed that the message passing process can be performed using Gaussian filtering in the feature 

space. In this way, using highly efficient approximations of high-dimensional filtering, the 

computational complexity of message passing can be reduced from being quadratic to being linear, 



40 
 

with respect to the number of variables. As a result, the approximate inference algorithm for fully 

connected 3D CRF is linear with respect to the number of variables and sublinear with respect to 

the number of edges in the model. 

3.2.5 Parameter Selection for Competing Methods 

The proposed method was compared to six popular publicly available brain extraction software 

packages and three state-of-the-art deep learning based methods, including 3dSkullStrip in AFNI 

(17.0.09; https://afni.nimh.nih.gov/), BET (Smith, 2002) in FSL (5.0.10; 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki), BSE (Shattuck et al., 2001) in BrainSuite (v.17a; 

http://brainsuite.org/), HWA (Ségonne et al., 2004) in FreeSurfer (Stable v6.0; 

https://surfer.nmr.mgh.harvard.edu/), ROBEX (1.2; https://www.nitrc.org/projects/robex) 

(Iglesias et al., 2011), NMT (v1.2; https://github.com/jms290/NMT) (Seidlitz et al., 2017), SegNet 

(https://github.com/alexgkendall/caffe-segnet) (Badrinarayanan et al., 2015c), LiviaNet 

(https://github.com/josedolz/LiviaNET) (Dolz et al., 2017) and VNet 

(https://github.com/faustomilletari/VNet) (Milletari et al., 2016). For a direct comparison, SegNet 

used the same parameters as Bayesian SegNet. LiviaNet used all the default parameters (30 epochs; 

20 subepochs per epoch; 1000 samples in each subepoch). VNet used the default parameters, 5000 

iterations (500 epochs) and batch size 1 due to the limitation of GPU memory, and the learning 

rate was changed to 0.00015 accordingly. To determine the parameters of the other software 

packages, a two-step evaluation strategy was used for each software package, and the parameter 

selection was done under the assumption that all the subjects are similar enough to one another 

that they can be properly processed with one set of parameters. We first randomly chose one 

representative subject, varied each parameter by small increments in either direction from the 

default values to achieve the best accuracy by careful visual inspection by a well-trained researcher. 

https://afni.nimh.nih.gov/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
http://brainsuite.org/
https://surfer.nmr.mgh.harvard.edu/
https://www.nitrc.org/projects/robex
https://github.com/jms290/NMT
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The selected parameters were then tested on a second randomly selected subject to verify its 

validity before application to the rest of the dataset. In our experiments, no obvious difference was 

observed on the performance of the selected set of parameters between the 2 selected subjects. 

With the exception of ROBEX and NMT, which do not have any parameters to tune, all the other 

software packages’ parameters studied and their associated values used are shown in Table 3.1. 

For 3dSkullStrip in AFNI, besides the original method labeled as AFNI in this paper, to achieve a 

better performance in detecting the protruding frontal lobe, we also performed 3dSkullStrip with 

a coronal slice thickness reduced to one half of the original value in the headers of the data. This 

method is labeled as AFNI+ later in this paper. This was done because a common challenge in 

skull stripping rhesus macaque brains is that the ventral portion of the frontal lobe is quite narrow 

in the transverse plane, and the resultant high curvature of this region causes many skull stripping 

algorithms to exclude the anterior portions of the frontal lobe. By reducing the coronal slice 

thickness by a factor of 2, the curvature is reduced, and the frontal lobe is more easily retained. 

The slice thickness is then set back to the original value after brain extraction. Note that this 

procedure does not involve any resampling; only the value of the slice thickness in mm is changed.  

For the NMT, the AFNI functions, align_epi_anat.py and auto_warp.py (https://afni.nimh.nih.gov/) 

are used to carry out the 12 degrees of freedom (DOF) affine and deformable registration between 

the original image and the template for brain extraction in the NMT template space. 

Table 3.1. Parameters studied and values used for the competing methods. 

Method Parameter Description Range Optimal value 
3dSkullStri

p -push_to_edge Push to edge aggressively w/ or w/o w/ 

 -monkey Brain of a monkey w/ or w/o w/ 
 -shrink_fac Brain VS non-brain intensity threshold 0~1 0.5 for AFNI 
    0.4 for AFNI+ 

HWA -less Shrink the surface w/ or w/o w/o 

https://afni.nimh.nih.gov/


42 
 

 -more Expand the surface w/ or w/o w/o 
 -atlas Use the atlas information w/ or w/o w/ 

BET -f Fractional intensity threshold 0.1~0.9 0.3 
 -g Vertical gradient -1~1 -0.5 
 -r Head radius 30~50 35 

BSE -d Diffusion constant 5~35 25 

 -s Edge detection constant 0.10~0.8
0 0.69 

 -p Dilate final mask w/ or w/o w/o 
 

3.2.6 Metrics for Comparison 

Several quantitative metrics commonly used in image segmentation were used to evaluate the 

performance of all the compared brain extraction methods (Kleesiek et al., 2016; Taha and 

Hanbury, 2015; Wang et al., 2014). Let M and R represent the brain mask extracted by a specific 

method and the manually extracted reference serving as the ground truth respectively, then the 

following metrics can be defined: True Positive: TP M R=  ; True Negative: TN M R=  ; False 

Positive: FP M R=  ; False Negative: FN M R=  ; Sensitivity: TPSens
TP FN

=
+

; Specificity: 

TNSpec
TN FP

=
+

; Absolute Error: absE FP FN= 
. We also involved the most commonly used 

metrics in image segmentation, dice coefficient (DC) (Dice, 1945), maximum symmetric surface 

distance (or Hausdorff distance, HD) (Huttenlocher et al., 1993) and average symmetric surface 

distance (ASSD) (Geremia et al., 2011): 

 
2 2

2
M R TPDC

M R TP FP FN
∩

= =
+ + +

  (3.7) 

 
( ) ( ) ( ) ( )

max max min , max min
r R m Mm M r R

HD m r r m
∈∂ ∈∂∈∂ ∈∂

 = − − 
 

  (3.8) 
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Where   means the total voxels in the set, and ( )∂   means the boundary of the set. The Dice 

coefficient is probably the most widely used metric for image segmentation. It takes the real value 

within [0,1], where 1 means a perfect segmentation, and 0 means there is no overlap at all. For the 

segmentation of a region as large as the brain, the Dice coefficient is less sensitive due to the small 

edge to volume ratio. Hence, we also introduced the surface distance based metrics. HD is defined 

as the maximum shortest Euclidean distance between two surface sets, while ASSD is defined as 

the average of these shortest Euclidean distances. HD or ASSD is 0 for a perfect segmentation. 

Both of these are used as segmentation metrics historically, but since HD is sensitive to outliers, 

ASSD is usually preferred (Gerig et al., 2001; Zhang and Lu, 2004). 

False positive, false negative, and absolute error maps are all spatial error maps. To visualize the 

systematic spatial error distribution of each method, the averaged error maps are calculated. First, 

the 12-DOF affine registration and deformable registration are done for each subject’s full brain 

image from the original space to the NMT (Seidlitz et al., 2017) space using AFNI’s 

align_epi_anat.py and auto_warp.py (https://afni.nimh.nih.gov/). Then, each kind of error map for 

each method are transformed to the NMT space with the transformation matrices calculated in the 

first step. Next, each specific kind of error map is averaged across all the subjects in the NMT 

space. Finally, for display purposes, the natural logarithm of the averaged error maps collapsed 

(averaged) along each axis was plotted (Kleesiek et al., 2016; Wang et al., 2014). 

3.2.7 Experiments 

3.2.7.1 Brain Extraction for Nonhuman Primates 

https://afni.nimh.nih.gov/
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Before being sent to Bayesian SegNet as inputs, each subject’s original 3D image volume was 

normalized to [0,1] and dissembled along the longitudinal (superior-inferior) axis into a stack of 

2D images. Since manual skull stripping was done on the 3D brain volumes that were manually 

cropped to exclude the body of the monkey and regions far outside the brain, all the 2D images 

and corresponding manual labels were upsampled to the same size (352×256) with bilinear 

interpolation and nearest neighbor interpolation respectively. The Bayesian SegNet was trained by 

SGD algorithm with multinomial logistic loss in 60000 iterations (18 epochs). The learning rate 

during training was fixed as 0.01 with a momentum of 0.9. In testing, the number of samples were 

set as 6 based on (Kendall et al., 2015a) and the limitation of GPU memory. The dropout rate for 

all the dropout layers were set as 0.5 for both MC dropout training and testing (Kendall et al., 

2015a). Fully connected 3D CRF was performed for each subject following Bayesian SegNet. The 

parameters for fully connected 3D CRF were empirically selected in the same manner as was 

described in Section 3.2.5: 1 3ω = , 2 1ω = , 4α γθ θ= =  and 1βθ =  (Eq. 3.5), and a total of 5 

iterations were carried out to refine each subject’s result. The whole processing pipeline is 

implemented on the platform of Caffe (Jia et al., 2014) based on the original work of (Kendall et 

al., 2015; Krähenbühl and Koltun, 2012). The 100-subject dataset was divided into 2 sets by 

random permutation, resulting in 50 subjects in each half. A two-fold cross-validation was 

performed between these 2 sets to test the proposed method on all the subjects. In this way, the 

training and testing phases used independent sets of data. Due to the robustness of deep learning 

based methods, no registration is used during the entire process. All the training and testing of the 

proposed method and the evaluation of other compared methods was performed on a workstation 

hosting 2 Intel Xeon(R) E5-2620 v4 CPUs (8 cores, 16 threads @2.10GHz) with 64 GB DDR4 
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RAM and an Nvidia GTX980Ti GPU with 6 GB GPU memory. The workstation runs a 64-bit 

Linux operation system. 

3.2.7.2 Uncertainty of the Bayesian SegNet 

One important aspect of Bayesian SegNet is the output of model uncertainty on predictions. We 

studied the influence of training set size, label inconsistency and training-testing inconsistency on 

the model uncertainty. Besides the training set of 50 subjects, we trained the Bayesian SegNet with 

25 and 5 subjects to show how the size of the training set can affect the uncertainty. We also trained 

Bayesian SegNet with 50 subjects, of which either 25 or 5 subjects had sub-optimal labels from 

AFNI+, while the rest of the labels were the manually-segmented ground truth. This was done to 

investigate how label consistency affects the uncertainty. Since AFNI+ usually includes some non-

brain tissues around the frontal lobe and includes the adipose tissue behind the eyes in nonhuman 

primates, these labels can be used to simulate the same kind of errors possibly made in manual 

labels by carelessness or fatigue. To achieve similar level of convergence, the training procedures 

in this section were also performed with 60000 iterations. Finally, to study the influence of 

inconsistency between the training set and the testing set, 4 new testing sets were designed to be 

slightly inconsistent with the training set. The 50 subjects in fold 2 (set #2) were rotated around 

the longitudinal axis by 10, 20 and 30 degrees, to create 3 new testing sets. Another 50 subjects 

(mean (standard deviation) age = 3.20 (.86) years; 66% female) were scanned at another site, with 

an older scanner model (GE Signa 3T, Waukesha, WI, USA), but the same coil model and 

experimental setup. The brain masks for these 4 new testing sets were all generated by the Bayesian 

SegNet trained with the original 50 subjects in fold 1 (set #1) (mean (standard deviation) age = 

1.98 (.37) years; 38% female) and processed by 3D CRF with the same parameters used in Section 

3.2.7.1. These results were then compared to the results of the original 50 subjects in fold 2 (mean 



46 
 

(standard deviation) age = 1.92 (.39) years; 48% female) tested in Section 3.2.7.1. Model 

uncertainties on these new testing sets were also generated and compared with those on the original 

fold 2 in Section 3.2.7.1. 

3.3 Results 

3.3.1 Convergence of Bayesian SegNet during Training 

Fig. 3.2 shows the convergence of the Bayesian SegNet on a 50-subject nonhuman primate training 

set and the convergence speed in one training set. There is no obvious improvement in the loss and 

accuracy after 18 epochs. Without loss of generality, we used the network weights at the 18th 

epoch, which is equivalent to 60000 iterations to predict brain masks, and one 18-epoch training 

over 50 subjects took about 12.3 hours on our workstation. 

 
Fig. 3.2. Loss and accuracy for Bayesian SegNet during training against epochs. Loss is the multinomial 

logistic loss between the output labels and the ground truth labels. Accuracy is defined as the ratio of 
correctly labeled pixels over total number of pixels for each category. 
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3.3.2 Brain Extraction for Nonhuman Primates 

The performance of the proposed method and nine other state-of-the-art-methods were evaluated 

on the T1w volumes from 100 subjects. The Dice coefficient and average symmetric surface 

distance of each individual for each method are plotted in Fig. 3.3. The boxplots are shown in Fig. 

3.4, and the corresponding mean values and standard deviations are shown in Table 3.2. Fig. 3.3 

shows that the performance of the proposed method, a combination of Bayesian SegNet and fully 

connected 3D CRF (BSegNetCRF), is the best on both metrics among all the compared methods 

for each individual’s brain extraction. The boxplots in Fig 3.4 shows the median and quartiles of 

the Dice coefficient and the average symmetric surface distance for each method. Table 3.2 

illustrates that BSegNetCRF has not only achieved the best mean values, but also the smallest 

standard deviation on both metrics. Multiple pairwise Wilcoxon signed rank tests (two-sided) were 

done to compare the performance of these methods. The performance of BSegNetCRF is better 

than all other methods, as evaluated on both metrics (p < 10-4, Bonferroni corrected). BSegNet is 

significantly better than SegNet on both metrics (p < 10-4, Bonferroni corrected). In the comparison 

between BSegNet and VNet, VNet’s average symmetric surface distance is significantly better 

than BSegNet’s (p < 10-4, Bonferroni corrected) but the p-value on Dice Coefficient is 0.0425 

before Bonferroni correction, which is insignificant after Bonferroni correction at the 0.05 

significance level. Both BSegNet and VNet are better than LiviaNet on both metrics (p < 10-4, 

Bonferroni corrected). The comparisons of different methods on Hausdorff distance, sensitivity 

and specificity are also shown in Appendix A Fig. A1-A4. 
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Fig. 3.3. Evaluation scores on each subject from different brain extraction methods. Enlarged figures are 

on the right. Higher Dice coefficients and lower average symmetric surface distance indicate better 
agreement between the automatically-defined and manually-labeled (ground truth) brain masks. For all 

subjects, BSegNetCRF resulted in better brain extraction than all other methods tested. 
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Fig. 3.4. Evaluation scores in boxplots from different brain extraction methods. Enlarged figures are on 

the right. In the figure points are drawn as outliers with red ‘+’ symbols, if they are greater than 
q3+1.5(q3-q1) or less than q1-1.5(q3-q1), where q1 and q3 are the first and third quartiles respectively. 

 

Table 3.2. Mean and standard deviation of Dice coefficient and ASSD for all 100 subjects. The best result 
is in bold font. 

Method Dice ASSD/mm 
AFNI 0.967 (±0.003) 0.670 (±0.123) 

AFNI+ 0.965 (±0.004) 0.609 (±0.088) 
BET 0.926 (±0.006) 1.175 (±0.105) 
BSE 0.740 (±0.034) 4.200 (±0.738) 
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HWA 0.739 (±0.046) 4.046 (±0.812) 
NMT 0.962 (±0.005) 0.578 (±0.075) 

SegNet 0.975 (±0.006) 0.404 (±0.116) 
BSegNet 0.980 (±0.002) 0.306 (±0.026) 
LiviaNet 0.972 (±0.006) 1.271 (±0.431) 

VNet 0.980 (±0.003) 0.283 (±0.046) 
BSegNetCRF 0.985 (±0.002) 0.220 (±0.023) 

 

Fig. 3.5 shows the extracted brain masks from all the methods for a representative subject. AFNI 

typically cannot catch the complete frontal lobe due to its challenging sharp curvature in nonhuman 

primates. AFNI+ was used to fix this by reducing the coronal slice thickness to one half. Although 

AFNI+ can capture the frontal lobe more completely, but it also captures tissues outside the brain. 

In addition, both AFNI and AFNI+ mistakenly include the adipose tissue behind the eyes. BET 

misses the frontal and occipital lobes of the brain, and the mask often extends past the upper 

boundary of the brain. BSE and HWA are not designed for nonhuman primates, and their resultant 

brain masks include a lot of non-brain tissue. ROBEX failed on all the nonhuman primate data, so 

it is not shown in the figure. NMT mistakenly includes the adipose tissue behind the eyes as part 

of the brain mask, and misses some boundaries and overshoots some others. SegNet tends to 

include the nonbrain tissue around the frontal lobe, eyes and brain stem as part of the brain mask. 

LiviaNet includes multiple nonbrain regions and misses some small regions within the brain. 

Results from BSegNet, VNet and BSegNetCRF are very close to the manually labeled ground 

truth. VNet performs well at the frontal lobe and eyes, but in general it includes slightly more 

nonbrain voxels close to the boundaries than BSegNetCRF, especially at the area close to the 

bottom of the brain and the brain stem. BSegNetCRF is also better than BSegNet, especially at 

excluding the brain stem. Fig. 3.5 shows a comparison of the error maps of these methods on the 

representative subject. A more comprehensive systematic comparison is shown in Fig. 3.6. 
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Fig. 3.5. Comparison of the brain masks extracted by different methods on a typical subject: subject 007. 

 

Fig. 3.6 is the averaged absolute error map of each method in the NMT template space. As 

mentioned in Section 3.2.6, the natural logarithm of the averaged error maps collapsed (averaged) 

along each axis is shown for display purposes. In Fig. 3.6’s comparison, BSegNetCRF has the best 

systematic performance with a much smaller error distribution than other methods considering the 

results in all the voxels for every subject, and the systematic performance improvement by fully 

connected 3D CRF can also be viewed between the absolute error maps of BSegNet and 

BSegNetCRF. VNet also has very good performance, but BSegNetCRF is still better than VNet 

around the bottom area of the brain. The averaged false positive and false negative maps can also 

be found in the Appendix A Fig. A5 and A6. 



53 
 

 
Fig. 3.6. Averaged absolute error maps for compared methods. For display purposes, the natural 

logarithm of the averaged map collapsed (averaged) along each axis is shown. 
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As a probabilistic network, Bayesian SegNet is able to output the model uncertainty on the 

prediction of every voxel’s label via Monte Carlo dropout testing. The maximum voxel-labeling 

uncertainty of Bayesian SegNet within each subject’s 3D volume was calculated, and it has a mean 

value of 0.116 and a standard deviation of 0.023 across all 100 subjects. Fig. 3.7 shows the voxel-

labeling uncertainty on the same representative subject. In general, the uncertainty of the brain 

extraction is very low, and the relatively higher uncertainty regions concentrate around the edges 

of the brain. The uncertainty map of each subject was also transformed, averaged, collapsed and 

displayed in the same manner as the averaged absolute error map to calculate and show the 

averaged uncertainty map in the NMT space (Fig. 3.8). Fig. 3.8 illustrates the systematic 

uncertainty distribution in the 3D volume over all the subjects. Overall, the uncertainty is very low, 

and the relative high uncertainty area is at boundary of the brain close to the brain stem. The fully 

connected 3D CRF successfully helped correct the results from Bayesian SegNet around this area 

as shown is Fig. 3.5 and 3.6. 

 
Fig. 3.7. The uncertainty map given by Bayesian SegNet for subject 007. 

 

 
Fig. 3.8. Averaged uncertainty maps from Bayesian SegNet. For display purposes, the natural logarithm 

of the averaged map collapsed (averaged) along each axis is shown. 
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In terms of processing time, the prediction for a single subject in the test stage by Bayesian SegNet 

with Nvidia GTX980Ti GPU is around 40 seconds, and after this the fully connected 3D CRF with 

an Intel Xeon(R) E5-2620 v4 CPU (8 cores, 16 threads @2.10GHz) is approximately 80 seconds 

for 5 iterations. Thus, the total time for one prediction is approximately 2 minutes, which is 

comparable to other edge detecting based methods. However, the template based method, NMT, 

is very time consuming. It costs around 5 hours even with an OpenMP version AFNI and 2 Intel 

Xeon(R) E5-2620 v4 CPUs to do the registration for one subject. 

3.3.3 Uncertainty of the Bayesian SegNet 

Uncertainty maps were also generated by Bayesian SegNet trained with different numbers of 

subjects to study the effect of training set size on the uncertainty. The uncertainty maps of the 

representative subject are shown in Fig 3.9, from which it can be seen that as the training set size 

decreases, the uncertainty increases, especially at the boundaries of the frontal lobe and behind the 

eyes. The total uncertainty defined as 2
tot i

i
σ σ= ∑  ( i  is the voxel index) was also calculated for 

each subject, and the total uncertainties for the 50 subjects in the testing set generated by different 

training set sizes are shown in the boxplot in Fig. 3.10. In Fig. 3.10, an increase in the total 

uncertainty can be seen as the training set decreases, and the total uncertainty of every subject 

tends to deviate more from one to another as the training set size decreases. 
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Fig. 3.9. Uncertainty maps on subject 007 generated by Bayesian SegNet trained with different training 

set sizes. The blue arrows in the figure point out the regions with obvious uncertainty increase. 

 

 
Fig. 3.10. Total uncertainty in boxplots generated by Bayesian SegNet trained with different training set 
sizes. In the figure points are drawn as outliers with red ‘+’ symbols, if they are greater than q3+1.5(q3-

q1) or less than q1-1.5(q3-q1), where q1 and q3 are the first and third quartiles respectively. 

 

The relationship between training label consistency and prediction uncertainty was also studied. 

Fig. 3.11 shows the uncertainty maps of a representative subject 007 generated by Bayesian 

SegNet trained with manual labels and labels generated by AFNI+. As the number of AFNI+ labels 

increases in the 50-subject training set, the uncertainty generated by Bayesian SegNet also 

increases, especially in the frontal lobe and regions behind the eyes where the AFNI+ labels 

mismatch the corresponding manual labels. Fig. 3.12 shows a boxplot of the total uncertainty in 

the ROI behind the eyes against different AFNI+ label numbers in the training set. As the number 
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of AFNI+ labels in the training set increases, each tested subject’s total uncertainty in the 

inconsistently labeled area also increases and tends to deviate more from one to another. 

 
Fig. 3.11. Uncertainty maps on subject 007 generated by Bayesian SegNet trained with 50 subjects in 

which different numbers of manual labels were replaced by labels generated by AFNI+ for the 
corresponding subjects. The blue arrows in the figure point out the regions with obvious uncertainty 

increase. 

 

 
Fig. 3.12. Total uncertainty of the ROI behind eyes in boxplots generated by Bayesian SegNet trained 

with 50 subjects in which different numbers of manual labels were replaced by labels generated by 
AFNI+ for the corresponding subjects. In the figure points are drawn as outliers with red ‘+’ symbols, if 

they are greater than q3+1.5(q3-q1) or less than q1-1.5(q3-q1), where q1 and q3 are the first and third 
quartiles respectively. 

 

The inconsistency between the training set and the testing set can also cause erroneous results. The 

uncertainty generated can give a warning about this kind of inconsistency. Fig. 3.13 shows the 

brain extraction performance of the proposed method with the same parameters (trained with the 
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50 subjects in fold 1 and using the same 3D CRF parameters) on 5 different testing sets. The 

original data in fold 2 are most consistent with the training data, and this set had the best 

performance. When the fold 2 data were rotated by increasingly larger amounts, the inconsistency 

of them against the training set was larger, and the brain extraction results were worse. Since the 

data collected on the older scanner were also slightly inconsistent with the training data due to 

slight contrast differences and age and gender differences between different subject groups, the 

results were also slightly worse. Fig. 3.14 shows the corresponding uncertainty behavior. When 

the testing set is inconsistent with the training set, the total uncertainty is higher. The more 

inconsistency there is, the more the total uncertainty increases. 

 

 
Fig. 3.13. Evaluation scores in boxplots for the original fold 2 data, rotated fold 2 data and data from 
another site. In the figure points are drawn as outliers with red ‘+’ symbols, if they are greater than 

q3+1.5(q3-q1) or less than q1-1.5(q3-q1), where q1 and q3 are the first and third quartiles respectively. 
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Fig. 3.14. Total uncertainty generated by Bayesian SegNet for the original fold 2 data, rotated fold 2 data 
and data from another site in boxplots. In the figure points are drawn as outliers with red ‘+’ symbols, if 
they are greater than q3+1.5(q3-q1) or less than q1-1.5(q3-q1), where q1 and q3 are the first and third 

quartiles respectively. 

 

3.4 Discussion 

A new fully-automated brain extraction method is proposed as a combination of deep probabilistic 

neural network and fully connected 3D conditional random field, for the challenging task of brain 

extraction in nonhuman primates. The brain extraction results of the 100-subject dataset suggest 

that the proposed method can achieve higher accuracy and superior performance compared to 

state-of-the-art methods, as is measured by many different metrics. In addition, the proposed 

method is also highly time-efficient for a single prediction of a couple of minutes, with the 

facilitation of parallel computation. 

The difficulties of nonhuman primate brain extraction are mainly due to the unique anatomical 

structures, especially the adipose tissue behind the eyes, the sharp curvature of the frontal lobe and 
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generally more muscular and bony structures (Rohlfing et al., 2012a). For the competing nondeep-

learning based methods, the brain extraction results are in good agreement with previous published 

studies (Wang et al., 2014). Edge detection methods and gradient based methods, like BSE and 

AFNI, can easily fail on the adipose tissue behind the eyes because of their proximity to the brain 

and high contrast to surrounding tissues (Iglesias et al., 2011; Wang et al., 2014). Algorithms 

involving surface expansion or deformable techniques, like BET and HWA, usually reach a result 

that either misses the frontal lobe, or includes areas out of the brain, because of the sharp curvature 

of the frontal lobe (Fennema-Notestine et al., 2006; Shattuck et al., 2001). Template registration 

based methods, like ROBEX and NMT, highly depend on the accuracy of registration. Since every 

subject must have its own anatomical specificity, which can be highly unique, given significant 

differences in age, gender and health conditions, the registration often has flaws. (Roy et al., 2017).  

In the deep learning based methods, BSegNet is better than SegNet due to the involvement of 

Monte Carlo dropout training and testing (Kendall et al., 2015b), and BSegNetCRF is better than 

BSegNet since fully connected 3D CRF makes it possible to refine the probability results in a fully 

3D context. BSegNetCRF, LiviaNet and VNet are all 3D methods using different strategies to take 

the 3D context into consideration. BSegNetCRF refines the results from a 2D neural network with 

3D CRF; LiviaNet unstacks the original 3D volumes into small 3D patches for the 3D network; 

VNet downsamples the original 3D volumes and processes the whole downsampled 3D volume 

with the 3D network. The results show that BSegNetCRF outperforms LiviaNet and VNet in this 

application, and there could be multiple possible reasons for this. Directly processing large 3D 

images on current GPUs is very challenging due to the limit of GPU memory, so the design of a 

3D network has to be relatively light and shallow to reduce the memory request from the network 

parameters. Even so, to process the 3D input, either a patch-based strategy or downsampling still 
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need to be used. A 3D Patch-based strategy reduces the network’s receptive field, so it is usually 

used for segmenting small structures. For regions as large as nonhuman primate brains, small 

regional errors can be caused. Meanwhile, downsampling can affect the results directly. LiviaNet 

and VNet also use different network designs, such as number of layers, stride and loss function, 

and these differences could also be the potential reasons for the performance differences in this 

application.  

Overall, compared with nondeep-learning based methods, deep learning uses the training process 

to capture the features of the dataset with the help of a subset of manually labeled brains as the 

prior knowledge. This gives deep learning the ability to segment very complex structures. For 

brain extraction, it can exclude the complex ventricle structures within the brain in a manner as 

the manual labels are defined in the training stage (Kleesiek et al., 2016). Meanwhile, deep learning 

also offers more flexibility in brain extraction since one can define the brain region as preferred 

by the training labels, for example, including or excluding certain parts of the brain, like the brain 

stem or cerebellum. 

As a convolutional encoder-decoder network, Bayesian SegNet reaches a balance of being both 

deep and light, which makes it a powerful tool in brain extraction. For being deep, it has 13 

convolutional layers, 13 deconvolutional layers and 26 corresponding ReLU layers, which makes 

it deep enough to extract high level features with a considerable receptive field, while possessing 

sufficient nonlinearity to build the transformation from the original images to the brain extraction 

labels (Badrinarayanan et al., 2015a). However, usually a deep neural network suffers from an 

enormous number of parameters to train, which has a high cost in terms of GPU memory, and time 

in training and predicting, and can also result in overfitting. In terms of also being light, Bayesian 

SegNet elegantly uses the pooling indices in the maximum pooling layers to perform the nonlinear 
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upsampling in the corresponding upsampling layers. This eliminates the need for training in all the 

upsampling steps and makes the upsampled maps sparse. Moreover, it also uses small 

convolutional filters and no fully connected layers. All these features make it small in terms of the 

number of trainable parameters and efficient in terms of both the memory cost and computational 

time (Badrinarayanan et al., 2015b; Liu et al., 2017).  

Being different from other deep learning based neural networks applied to brain extraction, 

Bayesian SegNet is a probabilistic neural network, so it has the ability to provide the uncertainty 

of the network on each prediction, as well as predict accurate labels for all pixels (Kendall et al., 

2015a). It is important for a predictive system to generate model uncertainty as a part of the output, 

since meaningful uncertainty measurement is important for decision-making, especially 

biomedical applications where accuracy is extremely important. To replace any manual procedures 

with deep learning based methods means the conventional ground truth is not available any more 

in a real prediction, so an output including the confidence of the model on each specific case 

becomes very important. The uncertainty offered by Bayesian SegNet meets this very need. In a 

routine procedure implemented by Bayesian SegNet, every output uncertainty will be checked 

automatically against an empirical threshold to determine whether the result can be trusted or 

human intervention should be started. In our exploration of the uncertainty generated by Bayesian 

SegNet, we demonstrated that the behavior of the uncertainty generated by Monte Carlo dropout 

sampling matches our expectation very well. The uncertainty tends to increase and deviate more 

from subject to subject, as the size of the training set decreases, the inconsistency of training labels 

increases, or the inconsistency between the training set and testing set increases (Fig. 3.9-3.12). 

Considering each training process takes about 12 hours, we only studied a few training set sizes 

and mismatching label numbers. In addition, although the training process always drives the loss 
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to converge, the training procedure itself is a stochastic process. A more thorough study of the 

behavior of the uncertainty, and to what extent the training process affects the uncertainty, are 

future research topics. In terms of the inconsistency between training and testing sets, there are 

several possible solutions to improve the robustness of the method. One is to make the training set 

more like the testing test. For example, to predict randomly rotated data, the training set can also 

be randomly rotated before training, or all the training and testing data can be aligned to a template 

before training and testing to make the model more robust. The other solution is to use transfer 

learning (Pan and Yang, 2010). To predict the data from another site or using another pulse 

sequence, the trained network can be further finetuned with a small subset of this kind of 

inconsistent data before the real prediction. 

The combination of fully connected 3D CRF takes the probability maps from Bayesian SegNet’s 

2D predictions and moves forward to predictions in a fully 3D context. Because of the limitation 

of current GPU memory, and the huge data size of brain images, it is currently challenging to make 

fully 3D predictions through deep learning on a single GPU (Wachinger et al., 2017). Thus, we 

chose the 2D neural network to meet the GPU memory limitation without compromising the 

network performance, while making the whole 2D slice available for training and predicting. Then, 

we involve fully connected 3D CRF to implement a complete 3D prediction taking into account 

all the information from the entire original brain volume. Results shown from Fig. 3.3, 3.4 and 3.6 

demonstrate the improvement made by the combination of this fully 3D process to the deep 

learning alone method. In addition, there can be errors in the direct results from deep learning 

based methods due to the imperfection and inconsistency of manual labeling. Fully-connected 3D 

CRF can fix these errors to some extent by taking into account the contrast and distance of all the 

connections in the original 3D image (shown in Fig. 3.5 and 3.6). The parameters of fully 
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connected 3D CRF were empirically selected. To achieve the optimal performance, the weights 

for the result of deep learning, image intensity and voxel distance need to reach a balance. If the 

result of deep learning is over weighed, the effect of CRF’s refinement won’t be realized, and the 

result will be similar to that from deep learning. If the image intensity or voxel distance is over 

weighed, then the deep learning portion will be underemphasized, and the result could be worse 

than that from deep learning. As each of the parameters changes, the Dice coefficient will change 

gradually. 

There are also some limitations in our study. To simulate the typical parameter-selecting procedure, 

we didn’t carry out subject specific parameter selection, nor did we perform a grid search in the 

parameter space. It is possible that the performance of these methods can be improved with these 

strategies, however, they are very time consuming, and thus, impractical (Kleesiek et al., 2016). 

Another limitation is that we only studied the periadolescent rhesus monkeys. The structure of a 

nonhuman primate’s skull and the amount of muscle tissue change dramatically across 

development, and infant monkeys are being used more and more in neuroscience studies (Kourtzi 

et al., 2006; Livingstone et al., 2017). Currently we are collecting brain MR images of rhesus 

monkeys across the whole age spectrum to test our method and investigate how transfer learning 

can be applied across different age groups. Future study also includes the possibility of combining 

the third-dimensional information (Xu et al., 2017) and image noise information (Kendall and Gal, 

2017) of MRI brain volumes into the network. These approaches may further improve the 

performance of brain extraction. 
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3.5 Conclusion 

In conclusion, we proposed and evaluated a new fully-automated brain extraction method 

integrating Bayesian SegNet and fully connected 3D CRF for nonhuman primate MRI brain 

images. Being different from previous designs, our approach is not only able to generate accurate 

and rapid brain extraction in a fully 3D context, but it also involves a probabilistic convolutional 

neural network that can output the uncertainty of the network on each prediction. This can greatly 

facilitate current large-scale MRI based neuroscience, neuroimaging and psychiatry studies on 

nonhuman primates. 
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Chapter 4 

 

Bayesian Conditional GAN for MRI Brain 
Image Synthesis 

 

 

4.1 Introduction 

Image synthesis is an important topic in the field of medical imaging, and many techniques in all 

levels of medical image processing can be categorized into the field of image synthesis. With 

image synthesis techniques, MR images can be reconstructed from the data collected in the k-space 

(Zhu et al., 2018), image denoising can be achieved by generating images with low noise from the 

images with high noise (Jiang et al., 2018), and the resolution of an image can be improved from 

a low resolution image, which is also called super-resolution (Sanchez and Vilaplana, 2018). 

Sparse reconstruction can significantly shorten the scanning time, and freeze the motion for 

dynamic imaging, while denoising and super-resolution can immensely improve the image quality 

for diagnosis. With image synthesis techniques, we can even further generate the image of one 
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modality from the image in another modality, or synthesis images across different contrast 

mechanisms, for example: generating CT images from MR images (Guerreiro et al., 2017; Roy et 

al., 2014), or synthesizing T2w MR images from T1w MR images (Jog et al., 2017). The former 

example can reduce the patient’s radiation dose and generating CT images when CT scanner is not 

available, for example in a PET/MR scanner (Liu et al., 2018). The later example can reduce the 

total scan time of the clinical protocol. 

In medical neuroimaging, compared with other modalities, MRI can deliver high resolution, 3D 

images with a variety of contrast mechanisms in a radiation free manner. Many pulse sequences 

have been designed to capture different tissue contrast mechanisms for different diagnosis 

purposes. For example, the pulse sequence of Magnetization Prepared Gradient Echo (MPRAGE) 

(Deichmann et al., 2000) provides a heavily T1-weighted contrast, which is useful to visualize the 

cortex and subcortical structures, while the Fluid Attenuated Inversion Recovery (FLAIR) (Hajnal 

et al., 1992) is a kind of T2w sequence, which is good at catching the white matter lesions in 

normal white matter and is widely used for imaging multi-sclerosis patients (Simon et al., 2006). 

Depending on certain diseases and the diagnosis requirements, multiple MR pulse sequences can 

be acquired during a single MRI session to get a comprehensive information about the brain 

anatomy and function. In this situation, MR inter-contrast image thesis has the potential to reduce 

the total scan time and cost. If an unacquired MR contrast is found to be useful, inter-contrast 

image synthesis is also able to generate it retrospectively. 

The purpose of this work is to build a deep learning based model to increase the accuracy in image 

synthesis as well as generating model uncertainty for each synthesized image in MR contrast 

transformation. In this study, we propose Bayesian conditional GAN with concrete dropout and a 
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model recalibration method to increase the accuracy in image synthesis and improve the calibration 

of the uncertainty generated. 

In comparison to previous image synthesis studies, our study has several novel aspects. First, we 

propose Bayesian conditional GAN as the main image synthesis engine for this task. As a Bayesian 

neural network it can not only synthesize the image in the target contrast but also generate the 

uncertainty map for the synthesized image as well.  The uncertainty map can be the source that our 

judgement on whether the synthesized image can be trusted or not is based on.  Second, we use 

concrete dropout in the Bayesian neural network instead of the conventional Monte Carlo dropout 

(Gal and Ghahramani, 2016). As a gradient-tuned dropout, the dropout rate of concrete dropout 

can converge to its optimal value during the training stage. This eliminates the complex grid search 

procedure to find the best dropout rate for each Monte Carlo dropout layer, and also ends up with 

a better calibrated uncertainty. Finally, we incorporate a model recalibration method as a post-

processing approach in the model to further improve the calibration of the posterior distribution of 

the predicted voxel values and the corresponding model uncertainties. 

The accuracy and robustness of the model were evaluated on the challenging application of T1w 

to T2w brain tumor image synthesis. We hypothesize that the Bayesian conditional GAN with 

concrete dropout and model recalibration is suitable for the inter-contrast MR brain image 

synthesis with accurate predictions and well-calibrated uncertainties, which can reflect the 

confidence levels of the model on the predictions.  
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4.2 Material and Methods 

4.2.1 Dataset and Preprocessing 

This work used the T1w and T2w MR brain volumes of 102 pre-operative subjects of The Cancer 

Genome Atlas (TCGA, cancergenome.nih.gov) Glioblastoma Multiforme (GBM) collection. The 

data were released by the international multimodal BRAin Tumor Segmentation challenge 

(BRATS 2018, https://www.med.upenn.edu/sbia/brats2018/) (Menze et al., 2015) through The 

Cancer Imaging Archive (TCIA, www.cancerimagingarchive.net). The brain images were 

collected from 8 institutions with 3T scanners of different vendors and having different MR 

imaging sequence implementations. The data were distributed after preprocessing. All the brain 

volumes were co-registered to the same anatomical template with affine registration, and then were 

resampled into the same 1 mm3 resolution. Finally, all the brain volumes were skull-stripped. 

Detailed patient information, scanner information and imaging information for each image can be 

found in (Bakas et al., 2017).  

4.2.2 Bayesian Conditional GAN 

Conditional GAN (Isola et al., 2016) is an accurate and consistent approach to synthesize images. 

To make it also have the ability of generating model uncertainty for each prediction, we propose 

to convert it into a Bayesian neural network. In the framework of Bayesian deep learning, all the 

variables in the neural network and the predicted results are treated as random variables following 

certain distributions. The training purpose of Bayesian deep learning is to estimate the posterior 

distribution ( | , )p X Yω  of the weights in the neural network, which is usually intractable. Thus, a 

weight distribution ( )qθ ω  with the a parameter set θ  is used to approximate the intractable 

https://www.med.upenn.edu/sbia/brats2018/
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posterior, and the training procedure is equivalent to minimizing the KL divergence between them 

(Gal and Ghahramani, 2015).  

 ( ) ( ( ) || ( | , ))KL q p X Yθθ ω ω=   (4.1) 

With the techniques in variational inference and Monte Carlo integration, the KL divergence in 

Eq. 4.1 can be simplified as the following loss function (Gal and Ghahramani, 2015):  

 

( , )( ) log ( | ( )) ( ( ) || ( ))g
i i

i S

N p y f x KL q p
M

θ
θθ ω ω

∈

= − +∑    (4.2) 

where N is the total number of observations and M is the number of observations used in the current 

training step. ( , )g θ   is the collection of the weight random variables in the Bayesian neural 

network with the collection of the weight matrices, θ , and the collection of the random variables, 

 , which follow Bernoulli distributions. ix  is the ith input data and iy  is the ground truth of the 

ith input data. ( , ) ( )g
if xθ   is the predicted result from the forward pass of the Bayesian neural 

network. It can be proved that the training of a Bayesian neural network is equivalent to the training 

of a conventional neural network with the dropout regularization and the square of the l2 norm 

regularization of the weight matrices in the conventional neural network (Gal and Ghahramani, 

2015). Therefore, by plugging in dropout layers, the conventional conditional GAN can be 

changed into a Bayesian conditional GAN. 

During the testing stage, unlike the dropout layers in a conventional neural network, the dropout 

layers in a Bayesian neural network will still function in the forward passes. This procedure is 

called dropout testing, and it is equivalent to sampling the posterior distribution of the predicted 

random variables (Gal and Ghahramani, 2016).  
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 * * * * * * * *( | , , ) ( | , ) ( ) : ( | )p y x X Y p y x q d q y xθ θω ω ω≈ =∫   (4.3) 

Given the assumption that these predicted random variables follow normal distributions, we can 

use the mean and the variance of the predicted values from multiple forward passes as the unbiased 

estimators of the mean and variance of the distributions of the predicted random variables. The 

mean can be used as the final prediction result of the input data, and variance can be used as the 

model uncertainty for the prediction (Gal and Ghahramani, 2016). 

4.2.3 Concrete dropout 

One drawback of the conventional Monte Carlo dropout is that the dropout probability is a 

hyperparameter, and need to be tuned manually. Grid-searching over the entire space of dropout 

probabilities for all the dropout layer is exhausting work and will cost an immense amount of 

computation power. Moreover, the predicted posterior distribution * *( | , , )p y x X Y  in dropout 

testing can be affected by the dropout probability. Thus, the accuracy of the final predicted result 

and the calibration of the model uncertainty can also be greatly influenced by the hand-tuned 

dropout probability. 

Given the assumption that the prior of the weights, ( )p ω , also follows normal distribution, the KL 

divergence in the simplified loss function, Eq. 4.2, can be proved to be proportional to the 

following equation (Gal et al., 2017):  

 22
2

1( ( ) || ( )) (1 ) ( )
2DropoutLayers

KL q p l p M K pθ ω ω ∝ − −∑    (4.4) 

where the sum is calculated over all the dropout layers; l is a hyperparameter; p is the dropout 

probability; M is the weight matrix in the layer before the dropout layer; K is the number of input 
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channels for the dropout layer; ( )p  is the entropy of a Bernoulli random variable with the 

probability p: 

 ( ) : log (1 ) log(1 )p p p p p= − − − −   (4.5) 

The entropy term in the regularization only depends on the dropout probability, which means it 

will be completely ignored when the weights of the network are the only variables to be optimized. 

However, it enables a gradient-tuned dropout probability when the dropout probability is part of 

the optimization variables. This means the dropout probability will converge to its optimal value 

as the training proceeds. This spares the effort of a grid-search for the optimal dropout probability 

for each dropout layer, and will also result in a better calibration of the predicted posterior and the 

model uncertainty. The whole structure of a Bayesian conditional GAN with concrete dropout is 

illustrated in Fig. 4.1. 

 
Fig. 4.1. Illustration of the structure of a Bayesian conditional GAN. 

 

Since the derivative of the KL divergence term, ( ( ) || ( ))KL q pθ ω ω , need to be calculated with 

respect to p during the back propagation, we use the concrete distribution relaxation of dropout’s 

discrete Bernoulli distribution, which reparametrizes the distribution as the following (Gal et al., 

2017): 
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 1( (log log(1 ) log( ) log(1 )))z sigmoid p p u u
t

= − − + − −   (4.6) 

where t is the hyperparameter, temperature, and (0,1)u   . This concrete relaxation of the 

dropout operation is referred to as concrete dropout (Gal et al., 2017). With it we can optimize the 

dropout probability in the training stage of a Bayesian neural network. 

4.2.4 Model Recalibration 

The image synthesis in this work is achieved by the proposed Bayesian conditional GAN, and the 

predicted posterior and the corresponding model uncertainty are generated by the concrete dropout. 

However, as a variation inference technique, Bayesian deep learning cannot guarantee the absolute 

accuracy of the predicted posterior and the model uncertainty. Thus, to further improve the 

accuracy of the predicted posterior and the model uncertainty, we propose to incorporate a model 

recalibration procedure for Bayesian deep learning.  

Based on its probabilistic definition in Bayesian statistics, a 95% credible interval should be able 

to catch the value of interest (e.g. ground truth) with a 95% probability. With probabilistic 

calibration and a calibration dataset, the predicted posterior can be mapped to the true distribution, 

which can accurately reflect the probabilistic definition of credible interval. In the Bayesian deep 

learning model for image synthesis, for each voxel t the model generates a posterior distribution, 

a probability density function (PDF), targeting the ground truth value ty  during the testing stage. 

The PDF can be converted to a cumulative distribution function (CDF), tF , which can be used to 

perform the model’s probabilistic recalibration (Kuleshov et al., 2018):  
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where 1( ) : inf{ : ( )}t tF p y p F y− = ≤  is the quantile function. From Eq. 4.7 it can be seen that the 

model recalibration procedure maps the probability of the CDF of the predicted posterior to the 

real probability that the ground truth values of the voxels in the calibration dataset fall in the 

corresponding credible interval. This exactly follows the probabilistic definition of credible 

interval. The model recalibration procedure should calibrate all the p values for the Bayesian deep 

learning model according to the calibration dataset after the training of the Bayesian deep learning 

model. Then, during the testing time the predicted posteriors from the Bayesian deep learning 

model can be mapped to the calibrated posteriors. 

4.2.5 Experiments 

Before doing image synthesis, each subject’s original 3D brain volume was dissembled along the 

longitudinal (superior-inferior) axis into a stack of 2D images, and then each 2D image was 

normalized to [0,1]. Before sent to Bayesian conditional GAN, all the T1w images and T2w images 

were resampled to the size of 286×286 with bilinear interpolation. Since all the subjects have brain 

tumors at different locations with different sizes, a 256×256 window was randomly shifted within 

the 286×286 brain image to cut a 256×256 image to send to the Bayesian conditional GAN at each 

iteration as a data augmentation approach. The Bayesian conditional GAN used a UNet-like 

(Ronneberger et al., 2015) convolutional encoder-decoder network as the generator and a CNN 

with 5 convolutional layers as the discriminator. Concrete dropout layers were plugged into the 

network structure after the 2nd, 3rd and 4th transposed convolutional layers. Batch normalization 

was used in the network, and a batch size of 16 was used during the training stage. A combination 
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of the conditional GAN loss, the l1 norm between the synthesized image and the ground truth, and 

the regularization of the KL divergence term, ( ( ) || ( ))KL q pθ ω ω , Eq. 4.4, was used as the loss 

function. A weight of 100 was used as the weights for both the l1 norm and the KL divergence 

term in the loss function. Within the KL divergence term a weight of 1e-6 was used for the network 

weight regularization term and a weight of 1e-5 was used for the concrete dropout regularization 

term. The hyperparameter, temperature, t, in the concrete distribution relaxation was set as 0.1. 

The Bayesian conditional GAN was trained by the Adaptive Moment Estimation (ADAM) 

(Kingma and Ba, 2014) algorithm with a fixed learning rate of 0.0002 and the momentum: 1 0.5β =  

and 2 0.999β = . After 40 epochs of training, there was no obvious improvement of the loss, and 

the network weights from the 40th epoch was used for the following tests. After prediction, all the 

synthesized images and the ground truth images were normalized to the range of [0,255] for later 

visualization and result analysis. 

The whole processing pipeline was implemented on the platform of PyTorch (Paszke et al., 2017) 

based on the original work of conditional GAN (Isola et al., 2016). All the training and testing of 

the proposed method and the evaluation of other compared methods was performed on a 

workstation hosting 2 Intel Xeon(R) E5-2620 v4 CPUs (8 cores, 16 threads @2.10GHz) with 64 

GB DDR4 RAM and an Nvidia TITAN Xp GPU with 12 GB GPU memory. The workstation runs 

a 64-bit Linux operation system.  

In the 102 subjects, 82 subjects were used for training and 20 subjects were used for testing. The 

image synthesis performances and the generated model uncertainties of the Bayesian conditional 

GANs with the concrete dropout and the conventional Monte Carlo dropout were compared. For 

Monte Carlo dropout a dropout rate of 0.5 was used. In the neural network structure, the positions 
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of the Monte Carlo dropout layers were the same as those of the concrete dropout layers, but no 

KL divergence term was used in the loss function for the Monte Carlo dropout. In the model 

recalibration procedure, the training dataset was used for the model recalibration. No obvious 

overfitting was observed. 

4.3 Results 

4.3.1 Image Synthesis: Prediction Accuracy and Model Uncertainty 

The image synthesis accuracy of the proposed Bayesian conditional GAN with concrete dropout 

was evaluated and compared with that of the Bayesian conditional GAN with Monte Carlo dropout. 

In Fig. 4.2 the boxplots of the root mean square (RMS) errors of each subject’s synthesized brain 

volumes were shown. Overall, the brain volumes synthesized with concrete dropout is more 

accurate than those with Monte Carlo dropout. A two-sided paired t-test was performed to compare 

the performance of the two methods, and the p-value of 0.0186 shows that the synthesized brain 

images with concrete dropout are significantly more accurate than the ones synthesized with Monte 

Carlo dropout at the 0.05 significance level. 
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Fig. 4.2. Accuracy of the synthesized images. The boxplots of the RMS errors of the synthesized brain 
volumes for the subjects in the testing dataset are shown. The accuracy of the synthesized images by 

Bayesian conditional GAN with Monte Carlo dropout and concrete dropout were compared. The dropout 
rate of the Monte Carlo dropout was set as 0.5. In this figure, the points with red ‘+’ symbols are drawn as 

outliers, if they are greater than q3+1.5(q3-q1) or less than q1-1.5(q3-q1), where q1 and q3 are the first 
and third quartiles respectively. 

 

Fig. 4.3 shows the image synthesis results of a representative subject at 3 different slices. The 

original T1w image, the ground truth T2w image, the synthesized T2w image, the absolute error 

map between the prediction and the ground truth, and the uncertainty map for both methods are 

shown. In general, the synthesized T2w images can accurately reflect the brain anatomic structures 

in the real T2w images. However, there are also regions with relatively large image synthesis errors. 

For example, in slice 1 the upper left edge of the brain and the lower right spot in the brain marked 

by the green arrows in the absolute error maps show relatively large synthesis errors, and the 

uncertainty maps generated by both methods catch these regions with large distribution standard 

deviations or uncertainties, which are also marked by the green arrows. In slice 2, it can be 

observed that over all the uncertainty maps generated by both methods can catch the regions with 

large errors in the absolute error maps. However, the uncertainty map generated by Monte Carlo 

dropout has a hot spot around the upper left edge of the brain, but the error in corresponding region 
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in the error map is not very large. In addition, if we look into the details of the absolute error maps 

and the uncertainty maps of both methods, the model uncertainty of each voxel may not always be 

directly proportional to the corresponding synthesis error in the error map. This is mainly because 

by definition higher model uncertainty only means that the model is not very confident about the 

prediction and there is a higher chance for the model to make a prediction with a large error, but 

this does not mean that the model will definitely make a prediction with a large error at this voxel. 

In slice 3, we can see that both methods’ uncertainty maps catch the high error region in the center 

of the tumor, but miss the high error region around the edge of the tumor. The possible reason for 

this is that the brain tumor of every subject in the training dataset has a different shape, location 

and contrast, and it’s challenging for the model to catch the consistency among them. 
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Fig. 4.3. Image synthesis results of a representative subject at 3 different slices. The original T1w image, 
the ground truth T2w image, the synthesized T2w image, the absolute error map between the prediction 

and the ground truth and the uncertainty map for both methods are shown. 

 

4.3.2 Relationship between Prediction Accuracy and Model Uncertainty 

By definition a voxel with high model uncertainty only means the model is not confident about the 

prediction on it, and the voxel has a higher chance to get a large prediction error. With this 
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definition, we cannot relate model uncertainty to prediction accuracy directly, but their relation 

should become stronger with large number of predictions and dimension reduction calculations, 

e.g. sum or average. Therefore, we plot out the accuracy versus uncertainty relations at 3 different 

levels in Fig. 4.4. For the voxel level, we plot the absolute error between the ground truth voxel 

value and the predicted value against the standard deviation (std) of the predicted posterior 

distribution. Since for each 3D brain volume the number of voxels in the brain region is huge, we 

only plot out the data in the brain region for a representative subject. For the slice level and the 

volume level, we plot the normalized root mean square error (nRMSE) of the predicted slice or 

3D volume respectively against the normalized std (nSTD) of that slice or 3D volume. The 

definition of nRMSE and nSTD are: 

 

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where y  and y  are the ground truth and the predicted value for a single voxel respectively; 
2,φ
  

denotes the l2 norm over the brain region φ  in that slice or 3D volume; std is the standard deviation 

of the predicted posterior distribution of a single voxel, and it is used as the model uncertainty for 

that voxel; Nφ  is the total number of voxels in the brain region φ  in that slice or 3D volume. From 

Fig. 4.4 we can find that, as the analysis goes to a more summary level, the relation between the 

prediction accuracy and the generated uncertainty becomes stronger. This holds true for both 

methods. This means that as a clue for the prediction error, the uncertainty of a voxel may not 
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work very well, but the uncertainty of a subject’s 3D image volume has much stronger proportional 

relation with the prediction error. 
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Fig. 4.4. Relationship between the prediction accuracy and the model uncertainty at different levels. For 
both methods the error VS uncertainty observations were plotted at the voxel level, the slice level and the 
volume level. For the voxel level, the absolute error and the sdt of the predicted posterior are used. For the 
slice level and the volume level, the nRMSE and the normalized std are used. The voxel level plots only 

include all the voxels from a representative subject. The slice level plots and the volume level plots 
include all the slices and volumes in the tesing dataset respectively. 

 

4.3.3 Model Uncertainty Evaluation 

Since the model uncertainty generated is not necessarily directly proportional to the prediction 

error by its definition. The better metrics to evaluate the uncertainty generated are the precision 

recall plot and the uncertainty calibration plot. Fig. 4.5 is the precision recall plot for both methods, 

which shows how the prediction RMS error of the predictive model changes as the voxels with 

uncertainty larger than various percentile thresholds are removed. For example, on the recall axis, 

the point 1 means that all the voxels in the testing dataset are taken into account when the RMS 

error is calculated, and 0.9 means the RMS error is calculated without the top 10% voxels with the 

largest model uncertainty values in the testing dataset. First, as we can see, for both curves the 

RMS error decreases as voxels with uncertainties larger than various percentile thresholds are 

removed from the RMS error calculation. Since both curves monotonically decreasing as voxels 

with relatively large uncertainties are removed, this means that the RMS error of voxels with 

smaller uncertainties are also smaller, and that for both methods the RMS error correlates with the 

model uncertainty generated with a large number of predictions and the dimension reduction 

calculation, RMS error. In addition, both curves decrease faster, and the absolute values of the 

gradients become larger, as the same number of voxels with higher model uncertainties are 

removed. Second, at each recall value – each model uncertainty percentile threshold – the 

prediction RMS error achieved by the concrete dropout is smaller than that by the Monte Carlo 

dropout. This means that the model of Bayesian conditional GAN with concrete dropout is more 
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accurate than the model with Monte Carlo dropout in this application at each model uncertainty 

percentile threshold. 

 
Fig. 4.5. Precision recall plot for Bayesian conditional GANs with Monte Carlo dropout and concrete 

dropout. 

 

To analyze the quality of the uncertainty generated by the Bayesian conditional GANs, we studied 

the uncertainty calibration plot of the models on the testing data. To generate the uncertainty 

calibration plot, we select a number of probabilities with equal intervals in the CDF of the predicted 

posterior for each voxel. Then the frequency of the ground truth values of all the voxels falling 

below the corresponding quantiles of each selected probability is treated as the true probability. 

The definition of the selected probability and the true probability is the same as the p and f in Eq. 

4.7. Then, we can plot out the true probabilities against the selected probabilities as the uncertainty 

calibration plot. The uncertainty generated with better quality should be closer to the diagonal line, 

y = x. Fig. 4.6 shows the uncertainty calibration plots for Bayesian conditional GANs with Monte 

Carlo dropout and concrete dropout. As we can see the uncertainty calibration plots from both 

methods have error in their scales, and this can be corrected by the model recalibration procedure 
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later. However, the uncertainty calibration plot of the Monte Carlo dropout misses the central point 

(0.5, 0.5), which is marked by a green point in the figure, and the whole curve is not symmetric to 

the central point. This means that compared to the true posterior distribution, the posterior 

predicted by the Monte Carlo dropout is shifted and distorted. First, by distortion, the predicted 

posterior doesn’t align with the normal distribution assumption well. Second, the median of the 

predicted posterior is not the median of the true distribution. If we use the median, which is the 

same value as the mean in a normal distribution, as the final prediction result, the prediction will 

end up with a large prediction error. In contrast, the uncertainty calibration plot of the concrete 

dropout catches the central point and is symmetric to the central point. Although it also has an 

error in the scale, this can be corrected with the model recalibration procedure. 

 
Fig. 4.6. Uncertainty calibration plot for Bayesian conditional GANs with Monte Carlo dropout and 

concrete dropout. A perfect calibration of the uncertainty corresponds to the diagonal line, y = x, shown in 
gray in the figure. The central point (0.5, 0.5) is marked as a green asterisk. The expected confindence 

level is the probability in the predicted posterior distribution, and the true confindence level is the 
oberserved true frequency in the data. 
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4.3.4 Model Recalibration 

To further improve the quality of the uncertainty generated by the models we incorporated the 

model recalibration procedure after training the Bayesian conditional GANs. Instead of using a 

separate calibration dataset, we used the training dataset for model recalibration, and no obvious 

overfitting was observed. After training, predictions were made on the training dataset. With the 

ground truth of the training dataset the relationship between the selected probability p in the 

predicted posterior and the true probability, the observed frequency, f, can be calibrated according 

to Eq. 4.7. Then, in the prediction on the testing dataset, the probabilities in the predicted posterior 

was mapped to the true probabilities according to the calibrated relationship between them. In Fig. 

4.7, the uncertainty calibration plots before and after the model recalibration procedure are 

illustrated for both methods. As we can see, for both methods the uncertainty calibration plots are 

closer to the diagonal line after model recalibration. This means that the model recalibration 

approach can improve the accuracy of the predicted posterior as well as the generated model 

uncertainty. By calculating the RMS error between the uncertainty calibration plot after model 

recalibration and the y = x line, we can see that after model recalibration the calibration error of 

concrete dropout (RMS error = 0.2868) is still smaller than that of Monte Carlo dropout (RMS 

error = 0.3783). 
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Fig. 4.7. Uncertainty calibration plot for Bayesian conditional GANs with Monte Carlo dropout and 

concrete dropout, before and after model recalibration. The point (0.5, 0.5) is marked as a green asterisk. 
The expected confindence level is the probability in the predicted distribution, and the true confindence 

level is the oberserved true frequency in the data. 

 

4.4 Discussion 

A new image synthesis model is proposed using Bayesian conditional GAN as the main image 

synthesis engine for the challenging application of MR brain tumor image synthesis. With the 

framework of Bayesian deep learning the proposed method can generate the posterior distribution 

of each voxel value for the synthesized image, which gives it the ability to make predictions as 

well as generate model uncertainties for the predictions. The use of concrete dropout enables the 

gradient-tuned dropout probability and results in more accurate prediction and uncertainty. By 

involving the model recalibration approach the calibration quality of the predicted posterior and 

the generated model uncertainty is further improved. The proposed method was applied to the 

challenging task of MR brain tumor image synthesis. In comparison with the model with the 
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conventional Monte Carlo dropout, the superior performance of the proposed method was 

validated. 

As we can see in Fig. 4.2 and 4.5, the prediction accuracy of the Bayesian conditional GAN with 

concrete dropout is significantly better than that with Monte Carlo dropout. The possible reason is 

that the concrete dropout technique offers each dropout layer a gradient-tuned dropout probability 

which can converge to its optimal value during the training of the network. This optimal dropout 

probability can help the Bayesian deep learning model reach a higher accuracy than the dropout 

rate set by experience in the Monte Carlo dropout. At the same time, the concrete dropout changes 

the hyperparameter, dropout rate, in the forward model to a variable in the loss function for training 

and saves the time for grid-searching the optimal value of dropout rate. This also makes the model 

more robust than the model with empirical dropout rate.  

In more details, the optimal dropout probability reached by concrete dropout can make the 

Bayesian deep learning model generate more accurate posterior distributions during the testing 

time, which is shown in Fig. 4.6, and that is why it can end up with a higher prediction accuracy. 

In Fig. 4.6, the error in the scale of calibration plot is not important, since we can still get a correct 

prediction when using the mean of the posterior as the final prediction. When the std of the 

posterior is used as the uncertainty, the uncertainty is only affected by a scale value. However, the 

shift or distortion of the calibration plot will end up with a wrong final prediction if the mean or 

median of the posterior is used as the final prediction result, since the final prediction result 

calculated is no more the median in the true distribution. The distortion of the calibration plot will 

also make the std uncertainty inaccurate and hard to correct. In Fig. 4.7, we can see that the error 

in the scale of the calibration plot can be easily corrected with the model recalibration procedure. 
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The shift and distortion in the calibration plot can also be corrected to some extent, but still will 

result in a slightly larger RMS error in the calibration plot after model recalibration. 

The current workflow of artificial intelligence based research in the field of medical imaging looks 

like this: a deep learning model is trained on a training dataset, and then it will be applied to a 

testing dataset to make predictions. The prediction results will be compared with the ground truth 

given by radiologists. Obviously, various kinds of inconsistency will cause errors in the prediction: 

e.g. the inconsistency within the training dataset, the inconsistency between the training dataset 

and the testing dataset, etc. Therefore, if a trained AI is distributed to different hospitals and works 

by itself in the daily clinical routine, we won’t have the ground truth any more, and we won’t know 

whether the predictions made by the AI can be trusted or not. Bayesian deep learning based models 

solve this problem by generating model uncertainty information for each prediction. Whenever the 

model uncertainty is above a certain threshold, human intervention can be started to double check 

the case, or more information of the patient can be required for the AI to make a more confident 

prediction. By its definition, the model uncertainty may not directly reflect whether a prediction 

has a small error or a large error, but it suggests the possibility of a small or large error in the 

prediction. This means by having a large number of predictions and with the dimension reduction 

calculation we can get an averaged uncertainty having stronger correlation with the prediction 

accuracy. In Fig. 4.3 and 4.4, it is shown that at the voxel level the model uncertainty may not be 

directly proportional to the prediction absolute error, which will make it harder for us to locate the 

voxels with possible large prediction errors. However, at the slice level and the volume level the 

proportional relationship is much stronger, we can at least locate the slice or the brain volume that 

likely have a large prediction error. 
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There are also some limitations in this study. To have a more complete understanding of the 

performance we still need to compare our methods with many conventional image synthesis 

models. Another limitation is that we only applied our method to the application of MR brain 

tumor image synthesis from T1w to T2w images. The performance of the method can be different 

on different applications, so more experiments are still needed to verify the performance and the 

characteristics of the proposed method. In addition, by including more information in the input 

data, deep learning based methods have a higher chance to generate more accurate results. For 

example, instead of using only T1w MR images to synthesize T2w images. T1w and T2-FLAIR 

images can be used together to synthesize T2w images, or T1w, T2w and PDw images can be used 

together to synthesize T2-FLAIR images. Since more information is offered, and T1, T2 and 

proton density are the 3 basic tissue properties for MR tissue contrasts, the image synthesis 

accuracy achieved by deep neural network can be higher. These studies will be included in our 

future work. 

4.5 Conclusion 

This study presents a new Bayesian deep learning based image synthesis model, Bayesian 

conditional GAN, which can not only accurately synthesize MR neuroimages but also generate 

uncertainty maps for the synthesized images. The model takes advantage of the concrete relaxation 

of the Bernoulli distribution and the KL divergence regularization term in the loss function of 

Bayesian deep learning for gradient-tuned dropout probabilities, and ends up with higher image 

synthesis accuracy and more accurate model uncertainty. Moreover, the incorporation of the model 

recalibration method further improves the model uncertainty calibration. The successful 



91 
 

application of the proposed method to the MR brain tumor image synthesis suggests that the 

method can be further applied to other fields of medical image synthesis. 
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Chapter 5 

 

Bayesian Deep Neural Network for Brain 
Functional Connectivity Gender Prediction 

 

 

5.1 Introduction 

The difference in brain structure and function between genders has been a durative topic in the 

field of neuroscience, and has an important role in determining differences between genders in 

various psychological and behavioral processes (Gong et al., 2011). For example, it has been 

known for a long time that males and females are different in memory, language, emotion, 

perception, navigation and other cognitive categories (Cahill, 2006). At the same time, both 

structural and functional brain differences between genders have been found in various modalities 

(Cosgrove et al., 2007; Gong et al., 2011), and brain gender differences widely exist not only in 

healthy subjects but also in subjects with different kinds of brain disorders, including autism 

(Alaerts et al., 2016), depression (Orgo et al., 2016) and Alzheimer’s disease (Malpetti et al., 2017) 
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etc. Thus, analyzing the brain differences between genders can help improve the understanding of 

the neurobiological mechanisms behind different gender-related psychological and behavioral 

processes. Furthermore, for brain disorders that manifest differences between genders, knowledge 

of brain differences may help to provide a deeper understanding of the psychopathology and aid 

in the development of related treatments.  

In the recent past, tremendous progress has been made in the field of artificial intelligence because 

of the surge of the deep learning methods (Krizhevsky et al., 2012a; LeCun et al., 2015) and the 

rapid advance of parallel computing (Coates et al., 2013; Schmidhuber, 2015). Due to its ability 

of accurate prediction, deep learning has been quickly applied to the field of MR neuroimaging. 

CNN has been successfully applied to segmentation and classification tasks based on structural 

MR images. Several patch-based 3D CNNs were proposed to segment the subcortical regions of 

the brain (Dolz et al., 2017) and brain lesions (Kamnitsas et al., 2017). Bayesian CNN was 

combined with fully connected conditional random field to perform brain extraction and generate 

corresponding uncertainty maps for non-human primates (Zhao et al., 2018). CNN was also 

combined with support vector machine to classify the overall survival time of brain tumor patients 

(Nie et al., 2016). 

At the same time DNN is more suitable for the prediction with brain functional connectivity (FC) 

as input. (Kim et al., 2016) used DNN to classify schizophrenia patients against healthy controls 

with an accuracy of 85.8% and investigated multiple DNN configurations’ effects on the predicting 

accuracy. Several groups have applied DNN based methods to the diagnosis of Alzheimer’s 

disease (Liu et al., 2014; Suk et al., 2015; Hu et al., 2016; Bhatkoti and Paul, 2016) and showed 

improvement over traditional methods. (Hazlett et al., 2017) used a combination of DNN and 
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support vector machine to study the brain development of infants at high risk for autism spectrum 

disorder. A more comprehensive review can be found in (Vieira et al., 2017). 

In neuroscience it is not only the prediction accuracy, but also the underlying features that drive 

the accurate predictions, that are of great interest. However, DNN is often treated as a black box, 

and it is challenging to understand its classification mechanism and extract the important features. 

In this study, we propose a novel feature extraction and ranking method for DNN and apply it to 

the study of brain FC gender difference to verify the method’s effectiveness and study its 

characteristics.  

There are two purposes of this work. One is to use deep learning and Bayesian deep learning based 

methods to perform gender prediction, related feature extraction and model uncertainty generation 

from the resting state brain FC at multiple scales. The other is to build a framework for testing the 

reliability, repeatability and robustness of the prediction accuracy, the extracted FC features and 

the model uncertainty. Gender prediction can also serve as a basic testbed to verify and compare 

these methods’ performance to conventional methods and study the characteristics of these 

methods for further neuroscience applications. 

First, we propose to utilize the highly nonlinear model of DNN to predict gender from brain FC. 

The trend of the prediction accuracy of DNN at different scales of brain FC was investigated in 

comparison with that of the linear SVM. Second, instead of treating each connection in the 

connectivity matrix as a single feature, with DNN the features are extracted as connectivity 

patterns in the whole connectivity matrix. We propose a method to rank the extracted high-level 

male and female features based on their contributions to the prediction and studied how much 

prediction accuracy the several most important features can preserve. Third, Bayesian deep 

learning was further applied to the FC based gender prediction. The prediction accuracies at 
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multiple dropout rates were compared with the conventional weight averaging technique. The 

behavior of the model uncertainty generated by Bayesian deep learning for each prediction was 

also studied. Finally, the repeatability and robustness of all the results were tested through 50 

randomly permuted cross validations in all the DNN structures and scales of brain FC studied. All 

the tests were done on the high-quality large-scale dataset of the HCP (Van Essen et al., 2013) 

S1200 release (https://www.humanconnectome.org) at multiple brain connectivity scales derived 

from different numbers of ICA components. A full comparison was also made between different 

DNN structures and commonly used machine learning methods. 

5.2 Material and Methods 

5.2.1 Dataset and Preprocessing 

The rs-fMRI data of 1003 healthy adults (age: 22~37; 53.2% female) having 4 complete runs in 

the HCP S1200 release were used for this study (S. Smith et al., 2013). According to the HCP data 

dictionary, the term “gender” is used instead of “sex” (https://wiki.humanconnectome.org). While 

“gender” and “sex” are different, participants in the HCP were asked a number of demographic 

questions, including “gender” (HCP S1200 release reference manual, 

https://www.humanconnectome.org). We therefore use the term “gender” in this study to conform 

with the HCP nomenclature. All the data were collected on the customized Siemens Skyra 3T MRI 

scanner for the HCP with a standard 32-channel Siemens receive head coil. A multi-band gradient-

echo EPI sequence was used for the rs-fMRI with the imaging parameters: TE = 33.1ms, TR = 

720ms, Flip Angle = 52°, Multi-band factor = 8. Each subject underwent 4 rs-fMRI runs in 2 

sessions. The duration of each run was 14 minutes 33 seconds, and each run was reconstructed 

into 1200 3D volumes of 104×90 in-plane matrix size and 2×2 mm2 in-plane pixel size with 72 

https://www.humanconnectome.org/
https://wiki.humanconnectome.org/
https://www.humanconnectome.org/
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slices and 2 mm slice thickness. Table 5.1 is a summary of the demographics, brain volumes and 

motion measurements of the male and female groups of subjects involved in this study. 

Table 5.1. Summary of the demographics and measurements of the subjects used. 
 

Male 
(Mean ± std) 

Female 
(Mean ± std) 

p-value 

Demographics    
    Number (%) 469 (46.76%) 534 (53.24%)  
    Ethnicity (Caucasian/%) 365 (77.83%) 393 (73.60%)  
    Age (year) 27.87 ± 3.65 29.45 ± 3.61 <0.001 
    Education (year)* 14.87 ± 1.74 15.05 ± 1.79 0.092 
    Handedness 61.04 ± 43.48 70.97 ± 43.23 <0.001 
    Weight (pound)* 189.64 ± 34.77 155.95 ± 35.50 <0.001 
    Blood pressure: systolic (mmHg)* 128.00 ± 13.25 119.40 ± 13.00 <0.001 
    Blood pressure: diastolic (mmHg)* 78.20 ± 10.38 74.74 ± 10.46 <0.001 
Neuropsychological measurement    
    Fluid intelligence: PMAT24_A_CR* 17.72 ± 4.59 16.41 ± 4.73 <0.001 
    Fluid intelligence: PMAT24_A_SI* 2.42 ± 3.63 3.40 ± 3.90 <0.001 
    Fluid intelligence: 
PMAT24_A_RTCR* 17235 ± 9421 14754 ± 8825 <0.001 

Brain volume (cm3) 
(Gray matter + White Matter + CSF) 

1215 ± 96 1063 ± 85 <0.001 

Motion (mm) 
(Movement_RelativeRMS_mean) 

0.0862 ± 0.0346 0.0876 ± 0.0346 0.218 

* Missing values from some subjects were removed in the calculations. 

Handedness: [-100,100], positive numbers indicate more right-handedness; Fluid intelligence: measured 
with Penn Progressive Matrices (Bilker et al., 2012); PMAT24_A_CR: number of correct responses; 
PMAT24_A_SI: total skipped items; PMAT24_A_RTCR: median reaction time for correct responses; 
Brain volume: results from FreeSurfer (http://freesurfer.net/); Motion: temporal mean of the root mean 
squire of the relative motion, results from HCP minimal preprocessing pipeline (Glasser et al., 2013); for 
more detailed definitions, please refer to the HCP Data Dictionary for the 1200 Subjects Release 
(https://wiki.humanconnectome.org). 

 

All the data were preprocessed by the HCP minimal preprocessing pipeline (Glasser et al., 2013) 

including distortion correction, field map correction, motion correction and spatial normalization. 

After the gradient distortion correction, head motion of the rs-fMRI data was corrected by 

registration to the single-band reference image collected at the beginning of each run. Then the 

http://freesurfer.net/
https://wiki.humanconnectome.org/
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spatial distortion caused by B0 was corrected with field maps, and the single-band reference image 

was further registered to the T1w structural image. All the preceding transforms were concatenated 

and applied to the original rs-fMRI images and the images were resampled into 2mm MNI space. 

Finally, global intensity normalization was done, and non-brain areas were masked out (S. Smith 

et al., 2013). The HCP multi-modal surface matching algorithm (MSM-ALL) (Robinson et al., 

2014) was used during the preprocessing to improve the inter-subject registration of cerebral cortex 

with the areal features derived from myelin maps, resting state network and rs-fMRI visuotopic 

maps. The artifacts within the rs-fMRI data were further removed with ICA-FIX (Griffanti et al., 

2014; Salimi-Khorshidi et al., 2014) and regression of 24 confound time series derived from 

motion estimation (including 6 rigid-body parameters, their derivatives and the squares of all the 

12).  

Spatial group-ICA (Hyvarinen, 1999; Beckmann and Smith, 2004) was applied to the data in the 

grayordinate space following group-PCA (Smith et al., 2014) to get ICA based parcellations. Since 

larger number of components in ICA leads to more and smaller parcels and vice versa, group-ICA 

was used to decompose the data into several different levels: 25, 50, 100, 200 and 300 components, 

to analyze brain connectivity at different scales. The associated average blood-oxygenation-level-

dependent (BOLD) time series for each subject’s ICA components can then be obtained through 

multiple-spatial-regression of the 4D rs-fMRI data against the group-ICA spatial maps. Then the 

brain connectivity matrix for each subject was calculated using the Pearson’s correlation 

coefficient from the concatenated 4 runs’ ICA component time series.  

The preprocessing steps were performed by the HCP, and the connectivity matrices released in the 

HCP S1200 Extensively Processed fMRI Data (https://www.humanconnectome.org/study/hcp-

young-adult/document/extensively-processed-fmri-data-documentation) were used in this study. 

https://www.humanconnectome.org/study/hcp-young-adult/document/extensively-processed-fmri-data-documentation
https://www.humanconnectome.org/study/hcp-young-adult/document/extensively-processed-fmri-data-documentation
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Each connectivity matrix was Fisher’s r-to-z transformed and normalized to a matrix with zero 

mean and unit variance to be used as the input of the deep learning classifier. For comparison, the 

connectivity matrices from the template based parcellation were also calculated. After the ICA-

FIX step, the average BOLD time series were extracted from the 330-parcel HCP multi-modal 

cortical parcellation (Glasser et al., 2016) and the 49-parcel FreeSurfer (http://freesurfer.net/) 

subcortical parcellation in the grayordinate space (https://balsa.wustl.edu/WK71) (Van Essen et 

al., 2017). Then, the matrices were Fisher’s r-to-z transformed and normalized as above. 

5.2.2 Deep Neural Network 

Deep learning is a kind of mathematical model originally inspired by the biological neural system 

and then widely used for artificial intelligence tasks due to its extraordinary performance (LeCun 

et al., 2015). As a kind of artificial neural network, DNN usually contains multiple hidden layers 

that are fully connected layers. The structure of a typical DNN with three hidden layers is shown 

in Fig. 5.1. To simulate the behavior of biological neurons (London and Häusser, 2005), the value 

of the kth neuron in layer l+1 of DNN, 1l
kA + , equals the nonlinearly transformed linear combination 

of neurons lA  in layer l with a bias l
kb . The sigmoid function ( )sgm x  is a commonly used 

nonlinear transformation in DNN, since it maps a real-valued input to (0,1), which can represent 

the firing rate of a neuron. 

 

1 1, 1,

1 1,0 1,0

( )
( )

( ) 1/ (1 )

l l l l l l
k k k

k k k
x

A sgm W A b
A sgm W X b
sgm x e

+ + +

−

= +

= +

= +

  (5.1) 

1,l l
kW +  and 1,l l

kb +  are the weight matrix and bias, respectively, for layer l pointing to the kth neuron 

in layer l+1. 

http://freesurfer.net/
https://balsa.wustl.edu/WK71
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In the last layer L, for classification the softmax function is used as the nonlinear transformation 

to map the real-valued score for each class into normalized estimated class probabilities, and a 

categorical cross entropy loss function with elastic net regularization of the weights is used to train 

the DNN. 

 

1, 21, 1, 1,
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ˆˆ , arg min ( ) log ( )
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l l
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=

∑∑ ∑ ∑

∑
  (5.2) 

( ) log ( )i i
k

p k q k∑  is the cross entropy between the estimated class probability ( )q k  and the true 

probability distribution ( )p k  for the ith input in the batch. β  and γ  are the weights for the l1 

norm and l2 norm regularization of the weights in the DNN respectively. , 1 1 , 1( ) L L L L L
k kS k W A b− − −= +  

is the real-valued score for the kth class in the last layer. In addition to preventing overfitting, the 

l1 norm and l2 norm regularization is also used based on the assumptions of the human neural 

system. l2 norm regularization is used to penalize peaky weight vectors and favor diffuse weight 

vectors, since we are looking for connectivity patterns for males and females and want the whole 

connectivity matrix taken into consideration. Meanwhile, l1 norm is used to drive the weight vector 

sparse, since only a subset of the connections is assumed to be finally relatively useful for the 

gender prediction. In addition, a dropout layer is also used following each hidden layer to prevent 

overfitting. 
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Fig. 5.1. Illustration of the structure of a typical DNN with 3 hidden layers for classifing 2 classes. 

 

5.2.3 Deep Neural Network Feature Extraction and Ranking 

In the field of neuroscience, knowing which features matter most in a prediction is as important as 

reaching a high accuracy in the prediction, and at the same time reaching a high accuracy is a 

necessary condition to make the features extracted meaningful. In this study instead of extracting 

the features based on comparing the group differences of all the input features, we use the 

framework of extracting features from a high-accuracy prediction model to extract the most 

important FC patterns from the DNN used for gender classification. Based on the DNN high-level 

feature extraction approach in the previous study (Kim et al., 2016), we further developed the 

feature extraction mechanism in DNN, and proposed a method to extract and rank the features 

based on their contributions to the final classification.  

Unlike the feature extraction approaches in other statistical or machine learning models (e.g. 

logistic regression, SVM etc.), which usually use the weight for each individual predictor variable 

to reflect the importance of the predictor variable in the prediction, our method looks for the most 
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important predictor variable patterns in the input for each class as features. Specifically, in the 

experiments in this study, our method extracts and ranks the male and female FC patterns of the 

whole connectivity matrix instead of several individual functional connections. 

The weight vectors between the input layer and the 1st hidden layer can be considered as 

convolutional kernels. There are the same number of convolutional kernels as the neurons in the 

1st hidden layer, and these kernels are trained to extract the FC patterns which are most helpful on 

classifying different classes from the input connectivity matrices. 1,0
kW  is the convolutional kernel 

pointing to the kth neuron in the 1st hidden layer, and only the connectivity matrices X  having a 

similar pattern can make the product 1,0
kW X  large. 1,0

kb  is the bias added to the product towards the 

kth 1st-hidden-layer neuron. The biases are also trained to optimize the classification task, and 

each of them serves as the baseline of the corresponding product between the input and the 

convolutional kernel. Then, the sigmoid function is used to map the real-value convolution result 

to the activation 1
kA , which is in the range (0,1). The more an activation is close to 1, the more the 

FC pattern in the input connectivity matrix is similar to the trained convolutional kernel’s pattern. 

The whole set of activations of the 1st hidden layer can be understood as the evaluation on how 

much each kind of pattern 1,0
kW  a specific input X  has, while between the 1st and 2nd hidden layers 

the convolutional kernels 2,1
kW  are used to look for a certain combination of these patterns for the 

activation 2
kA . 2,1

,k jw  is a weight in the convolution kernel 2,1
kW  pointing to the kth neuron in the 2nd 

hidden layer from the jth neuron in the 1st hidden layer. The absolute value of the weight 2,1
,k jw  

determines the importance of the corresponding pattern 1,0
jW , and the sign of 2,1

,k jw  means whether 

the pattern 1,0
jW  is preferred to appear in the combination or not. If the absolute value of 2,1

,k jw  is 
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very small, then regardless of whether the corresponding pattern 1,0
jW  appears or not in the input, 

the product 2,1 1
,k j jw A  will not make much difference on the activation 2

kA  in the higher layer. Since 

all the activations are positive values in the range (0,1), a large positive weight 2,1
,k jw  will generate 

a relatively large positive product 2,1 1
,k j jw A  and lead the activation 2

kA  in the higher layer closer to 

1, while a large negative weight value will lead the activation more towards 0. When it comes to 

the higher hidden layers, the higher level of combinations of the patterns are evaluated for the 

classification task. 

The key part of the DNN structure for extracting and ranking the features for each class in the 

proposed method is between the last hidden layer and the softmax layer. In the application of 

gender classification, there are only two classes, male and female. Each activation, L
jA , in the last 

hidden layer L will be multiplied by the weights 1,
,

L L
M jw +  and 1,

,
L L
F jw +  respectively towards the male 

and female neurons, and the baselines 1,
,

L L
M jb +  and 1,

,
L L
F jb +  will also be added to them to get the scores 

1, 1,( ) L L L L L
M MS M W A b+ += +  and 1, 1,( ) L L L L L

F FS F W A b+ += + . The two scores compete with each other 

and the input will be classified into the class with the larger score, which means the difference 

between each 1,
,

L L
M jw +  and 1,

,
L L
F jw +  pair determines whether the high-level FC pattern represented by 

L
jA  is used as a male feature or a female feature, and how important it is for the whole DNN 

classification model. If the difference 1, 1,
, ,

L L L L
M j F jw w+ +−  is positive, then the corresponding high-level 

FC pattern is the feature looked for in a subject’s connectivity matrix to identify one as a male and 

vice versa. Meanwhile, the larger the absolute value of the difference is, the more important feature 

the corresponding FC pattern is in the DNN model for identifying genders, since compared with 

other FC patterns, the appearance of this FC pattern in a subject’s connectivity matrix contributes 
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more to the total difference between the final scores. Therefore, the absolute value of the difference 

1, 1,
, ,

L L L L
M j F jw w+ +−  can be sorted to rank the importance of the high-level features for both male and 

female classes. Since a high-level feature 1l
kF +  can be treated as the combination of lower-level 

features:  

 
1 1,

,

1 1,0

l l l l
k k j j

j J

k k

F w F

F W

+ +

∈

=

=

∑
  (5.3) 

then any high-level feature can be finally represented by the combination of the FC patterns at the 

original input level (Kim et al., 2016). 1
kF  is the kth feature at the original input level, which equals 

to the kth convolutional kernel between the input layer and the 1st hidden layer. J is a set of features 

and their corresponding weights. It can be the universal set including all the features and weights, 

or a subset including only the weights having relatively large absolute values by a threshold and 

the corresponding features. 

5.2.4 Bayesian Deep Learning and Bayesian Deep Neural Network 

Bayesian DNN is implemented by adding dropout layers in the network structure and using 

dropout in both training and testing (Srivastava et al., 2014; Gal and Ghahramani, 2016). A dropout 

rate in the range (0,1) is set beforehand for each dropout layer, and the neurons in the preceding 

layer are randomly set to zero at the dropout rate in every iteration during training or in every 

forward pass during testing. Dropout training offers Bayesian DNNs extra regularization against 

overfitting (Srivastava et al., 2014), while dropout testing can be viewed as sampling the posterior 

distribution of the predicted label probabilities over the Bayesian DNN weights (Gal and 

Ghahramani, 2016). 



104 
 

In dropout training, given the training dataset X and the label set Y, the posterior distribution of the 

network weights W, ( )| ,p W X Y , can be obtained through an approximating distribution, ( )q W , 

made with variational inference, and ( )q W  can be inferred by minimizing the KL divergence (Gal 

and Ghahramani, 2015): 

 ( ) ( )( || | , )KL q W p W X Y   (5.4) 

In dropout testing, to predict the label *y  for the data *x , the posterior distribution can be inferred 

by Monte Carlo (MC) dropout testing. In practice, T times of stochastic forward passes are 

performed and each time a network weight subset ˆ
tW  is sampled (Gal and Ghahramani, 2015). 

 
* * * * * *
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T
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=

≈ ≈ ∑∫   (5.5) 

The mean of the sampled probabilities is used as each label’s predicted probability, and the 

variance of them is used as the model uncertainty on each prediction. The uncertainty generated 

by MC dropout testing can reflect the confidence of the model on each prediction and is 

particularly useful for the applicability evaluation of the trained model on the testing dataset. In 

comparison, the conventional weight averaging testing uses the weights multiplied by the 

corresponding retaining probabilities (1 - dropout rate) during testing time and can only make 

predictions (Srivastava et al., 2014; Gal and Ghahramani, 2016). 

5.2.5 Experiments 

5.2.5.1 Gender Prediction from Multi-Scale Functional Connectivity 
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To verify and study the performance and characteristics of DNN models and the proposed feature 

extraction and ranking method, we used the application of FC gender prediction and gender related 

FC feature extraction as a testbed for experiments. First, to understand the prediction performance 

of DNN models at different scales of brain connectivity, we used the connectivity matrices derived 

from different numbers of ICA components: 25, 50, 100, 200, 300 components, as the input for 

the DNN classifier. In case the structure of the DNN also has a significant influence on the 

prediction accuracy, the performances of DNNs with different numbers of hidden layers and 

different numbers of neurons in each layer were also studied. DNNs with 1, 2, 3 hidden layers and 

20, 50, 100, 200 neurons in the first hidden layer, and half number of neurons in the following 

hidden layers were used for training and testing. For example, the DNN with 3 hidden layers and 

20 neurons in the 1st hidden layer has 10 neurons in the 2nd and 3rd hidden layers, while the DNN 

with 1 hidden layer and 20 neurons only has a 1st hidden layer with 20 neurons. Since the number 

of neurons in the following hidden layers controls the number of combined features used for 

classification, using a smaller number of neurons in the higher hidden layers is based on the 

assumption that a smaller number of 1st hidden layer features’ combinations are enough as higher-

level features for the classification, and this can dramatically reduce the parameter space of the 

DNN model. The training and testing were carried out in a two-fold cross validation manner on 

the 1003 subjects (502 subjects in one fold and 501 in another), and 50 randomized permutations 

were performed on how to divide the training and testing datasets. A three-way ANOVA using an 

overdispersed binominal logistic regression was used to test the factors of number of ICA 

components, number of DNN hidden layers and number of neurons in the DNN layer and their 

interactions on prediction accuracy. Post hoc testing was also performed following ANOVA to 
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determine the prediction accuracies of which parameter combinations were significantly different 

from one another. 

Then, to compare with conventional machine learning models, SVMs with linear and order-2 

polynominal kernels were also studied for gender prediction. To compare with the ICA based 

functional connectivity, connectivity matrices derived from the template based parcellation, the 

combination of the 330-parcel HCP multi-modal cortical parcellation (Glasser et al., 2016) and the 

49-parcel FreeSurfer (http://freesurfer.net/) subcortical parcellation in the grayordinate space 

(https://balsa.wustl.edu/WK71) (Van Essen et al., 2017), were also used to predict gender. 50 

randomized permutations of 2-fold cross validations were also done respectively for these 

comparative methods, and related statistical tests were also performed. 

All the DNNs with different structures were trained with the SGD algorithm. The learning rate 

varies from 0.05 to 0.8 and number of iterations varies from 40 to 300, depending on the DNN 

structure and the size of the input vector (the number of input FC connections in different numbers 

of ICA components) to make all the training procedures converge around the loss of 0.1. β  and 

γ  were set as 10-6 and 10-4 respectively while a dropout rate of 0.2 was set for the last hidden layer 

in all the DNN models. All DNN models were implemented in Python with the libraries Keras and 

Tensorflow, and the SVM models were implemented with the package scikit-learn. All the training 

and testing were performed on a workstation hosting 2 Intel Xeon(R) E5-2620 v4 CPUs (8 cores, 

16 threads @2.10GHz) with 64 GB DDR4 RAM and two GPUs: an Nvidia GTX980Ti GPU with 

6 GB memory and an Nvidia TITAN Xp GPU with 12 GB memory. A 64-bit Linux operation 

system ran on the workstation. 

5.2.5.2 DNN Feature Extraction and Robustness Evaluation 

http://freesurfer.net/
https://balsa.wustl.edu/WK71
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After the gender prediction and related statistical analysis, we extracted and ranked the FC features 

for gender classification with the proposed method, studied their robustness and analyzed the 

feature differences between males and females. First, to verify the proposed feature-ranking 

method, we used several individual high-level male and female feature pairs ranked at different 

importance levels to make predictions on the training dataset itself, and compared the cross entropy 

loss achieved by each of these feature pairs. Second, we studied the relationship between the 

prediction accuracy and the number of learned important feature pairs involved in the prediction 

by investigating how much prediction accuracy the DNN model can preserve by using only a few 

most important (only the several highly important) high-level feature pairs during prediction. Third, 

the repeatability of the features learned from each DNN structure was also studied. All these 

experiments were done on all the DNN structures and all the numbers of ICA components in all 

the 50 randomly permuted cross validations. Finally, based on the results of these experiments, the 

extracted FC features from the selected DNN models were plotted to visualize the differences 

between males and females. 

5.2.5.3 Bayesian Deep Learning and Monte Carlo Dropout Testing 

To study the performance of Bayesian deep learning, MC dropout was performed on the previously 

trained 3-hidden-layer DNNs with the 3rd hidden layer dropped out in dropout testing. The 

prediction accuracies of several different dropout rates were studied, and the prediction accuracy 

of weight averaging testing was also compared. The behavior of the uncertainty generated by 

Bayesian deep learning on the application of image segmentation was already studied in previous 

research (Zhao et al., 2018). To verify the validity of the model uncertainty generated by Bayesian 

DNN in the classification application, in this study we also investigated the model uncertainty’s 

behavior by making tests on the data generated with varying levels of male/female uncertainty. In 
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the testing dataset of each cross validation fold, 200 female subjects and 200 male subjects were 

randomly selected and referred to as the female subset and the male subset. Then, 200 0.75-female-

0.25-male subjects were made up by linearly combining the connectivity matrices in the female 

and male subsets and referred to as the 0.75-female-0.25-male subset. Each subject’s connectivity 

matrix in the 0.75-female-0.25-male subset is the sum of 0.75 times a random connectivity matrix 

from the female subset and 0.25 times a random connectivity matrix from the male subset, and 

each connectivity matrix in the female and male subsets was used only once. In a similar manner, 

the 0.5-female-0.5-male subset and the 0.25-female-0.75-male subset were also created. In each 

cross validation, the prediction accuracy and corresponding model uncertainty on all the 5 subsets 

were generated by the Bayesian DNNs with the 3rd hidden layer followed by a dropout layer. 

Based on the previous experiment, to keep both the prediction accuracy and enough variation a 

dropout rate of 0.5 was selected. Since the Bayesian deep learning models are trained with only 

the real female and male subjects, and the made-up subjects have more uncertainty in the data 

themselves, on the made-up subsets the prediction accuracies of the Bayesian DNNs are supposed 

to be lower and the corresponding model uncertainties are supposed to be higher.  

5.3 Results 

5.3.1 Gender Prediction from Multi-Scale Functional Connectivity 

The performances of DNNs with various model structures on gender prediction at different scales 

of brain FC were evaluated, and the SVMs with linear kernel and order-2 polynomial kernel were 

also compared. In Fig. 5.2 the mean and standard deviation of the accuracies across the 50 

randomized cross validation permutations are plotted. The accuracy in each permutation is the 

prediction accuracy on the 1003 HCP subjects evaluated from the 2-fold cross validation. As is 
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seen in Fig. 5.2, as the number of ICA components increases, the scale of the brain FC under 

investigation becomes finer, and the gender prediction accuracy increases and gradually plateaus. 

For the predictions from the same scale of FC but different DNN structures, the prediction 

accuracies are relatively close. The accuracy of the SVM prediction also goes up and gradually 

plateaus as the FC scale becomes more and more detailed. In the comparison between DNN and 

linear SVM, DNNs’ predictions have an advantage with small numbers of ICA components. As 

the number of ICA components increase, the prediction accuracy of the linear SVM catches up, 

and becomes better than the DNNs with large numbers of ICA components. The order-2 

polynomial SVM is slightly better than the linear SVM for 25-component ICA. For larger numbers 

of ICA components the linear SVM is better than the order-2 polynomial SVM. The prediction 

accuracies for DNNs and SVMs on the brain FC derived from the template based parcellation were 

also shown in Fig. 5.2 for reference. Although there are 330 cortical parcels and 49 subcortical 

parcels in total, the prediction accuracies are much smaller than the predictions for the 100-

component ICA. All the exact mean and standard deviation values in Fig. 5.2 are shown in the 

Appendix B Table B1 and B2. 
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Fig. 5.2. The mean and standard deviation of the prediction accuracies across the 50 cross validation 
permutations for each kind of predictive model and each kind of input. L – number of hidden layers in the 
DNN model; N – number of neurons in the first hidden layer of the DNN, the number of neurons in each 

of the rest hidden layers is half of this number. 

 

The corresponding statistical tests were also carried out to show the significance of the differences 

between the reported accuracies. First, a three-way ANOVA test using an overdispersed binomial 

model was performed on the accuracies generated by DNNs on different scales of FC derived from 

different numbers of ICA components. Due to the inclusion of interactions in the model, type II 

ANOVA was used on the 3 factors: the ICA component number, the DNN hidden layer number 

and the DNN neuron number. The ANOVA test was performed in a hierarchical manner with the 

full model including all the interactions at the beginning. The factor of ICA component number is 

significant with a p-value << 0.001, and interaction between the ICA component number and layer 

number is significant with a p-value << 0.001. (All the p-values reported in this study are two-

sided.) Other factors and interactions are not significant at the 0.05 significance level. Multiple 

comparison was done for the significant interaction in the post hoc analysis with the Tukey 

adjustment. For all the 105 pairwise comparisons, the differences between different ICA 

component numbers are significant with Tukey corrected p-values < 0.01, regardless of the other 

factors. The differences within the group having the same ICA component number are mainly 

insignificant at the 0.05 significance level, except that in the 25-component ICA group the 

difference between the 2-layer and 1-layer DNNs is significant (Tukey corrected p-value < 0.01), 

and in the 100-component ICA group the difference between 2-layer and 1-layer DNNs (Tukey 

corrected p-value = 0.0366) and the difference between 3-layer and 1-layer DNNs (Tukey 

corrected p-value < 0.01) are also significant. Second, another two-way ANOVA test using an 

overdispersed binomial model was carried out to compare the 1-hidden-layer DNN with 20 

neurons against the linear SVM across all numbers of ICA components. Type II ANOVA was used 
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on the 2 factors of the ICA component number and the prediction method (1-hidden-layer 2-neuron 

DNN vs. linear SVM). Both factors and the interaction are significant (p-values << 0.001). To 

investigate the significance of the difference between DNN and linear SVM at each FC scale, 

uncorrected post hoc testing p-values were reported in Table 5.2. With the conservative Bonferroni 

correction, the difference for the 100-component ICA is insignificant at the 0.05 significance level, 

and difference for the 200-component ICA is also insignificant at the 0.01 significance level. The 

mean difference and the p-value in the table also show that, for small number of ICA components 

(large scale FC) DNN is more accurate than linear SVM. As the number of ICA components 

increases, the accuracy of linear SVM catches up and finally surpasses DNN. This means different 

models can have different advantages at different FC scales. 

Table 5.2. Multiple comparisons between DNN and linear SVM at each FC scale. 

ICA  
Component

s 

Prediction Accuracy Mean Difference 
(DNN-SVM) 

P-value 
(uncorrected) 

25 1.456E-02 5.214E-13 
50 7.298E-03 2.447E-05 
100 -3.490E-03 1.157E-02 
200 -3.829E-03 2.215E-03 
300 -5.184E-03 1.127E-05 

 

5.3.2 DNN Feature Extraction and Robustness Evaluation 

The proposed feature ranking method is verified by the comparison of the cross entropy loss 

obtained from each feature pair in predicting the training data. The male and female features in the 

last hidden layer of each DNN were extracted and ranked by their contributions to the difference 

between the final male and female scores. Then, predictions were made with the 1st, 2nd, 3rd, 4th 

and 5th most highly ranked male-female feature pair in each DNN respectively on the training data 
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themselves. The cross entropy loss achieved by each of these high-level feature pairs for each 

DNN structure and each number of ICA components in all the 50 randomly permuted cross 

validations the are shown in Fig. 5.3. In all the situations, as the rank of the feature pair goes higher, 

the lower cross entropy loss it can get when predicting the training data. This means the more 

highly ranked feature is better at making the predicted label distribution similar to the ground truth 

distribution and, therefore, the importance and contribution of the features ranked by the proposed 

method in the DNN model are verified.  
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Fig. 5.3. The cross entropy loss achieved by a single high-level male and female feature pair of different 
importance on the training dataset. ‘1’, ‘2’, ‘3’, ‘4’, ‘5’ are the importance levels of the feature pairs, 

which mean the most, 2nd, 3rd, 4th and 5th highly ranked feature pair in the last hidden layer. In this figure 
and all the figures having boxplots, the points with red ‘+’ symbols are drawn as outliers, if they are 

greater than q3+1.5(q3-q1) or less than q1-1.5(q3-q1), where q1 and q3 are the first and third quartiles 
respectively. 

 

The relationship between the prediction accuracy and number of learned features used in the 

prediction was also studied, and the results are shown in Fig. 5.4.  For each kind of DNN structure 

and number of ICA components, only a subset of the most important male and female features in 

the last hidden layer learned from the training dataset were kept in the DNN model for the 

prediction on the testing dataset. The most important 1, 2, 5 and 10 male and female feature pairs, 

which have the largest weight differences towards the final male and female neurons were used 

for each prediction in all the 50 randomly permuted cross validations, and the resulting accuracies 

were compared with those from the predictions with all the feature pairs. As is shown in Fig. 5.4, 

in general for all the DNN structures and numbers of ICA components, as the number of important 

feature pairs used in the prediction increases accumulatively, the more accuracy the DNN can 

recover compared to the prediction made by all the features. This is because all the features in a 

certain DNN are trained to work together to reach the highest prediction accuracy (lowest loss), 

and the more complete the DNN model is, the more accuracy can be preserved. It is shown that in 

Fig. 5.4 several predictions with fewer features have slightly higher accuracy than the predictions 

made by more features. This could be caused by the slight inconsistency of the internal features 

between the training and testing datasets. In the Appendix B Fig. B1 and B2, predictions were also 

made with the same subsets of learned features on the training dataset. As the number of features 

used increases, the prediction accuracy increases monotonically and the prediction loss decreases 

monotonically. Fig. 5.4 also shows that in the task of predicting gender from brain FC, the most 

important feature pair can usually recover the majority of the prediction accuracy achieved by all 
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the features. (For example, for the 1-hidden-layer 20-neuron DNN at the scale of 25 ICA 

components, a median accuracy of 0.795 is achieved by using only the single most important 

feature pair vs. a median accuracy of 0.827 when using all the features.) 

 
Fig. 5.4. Prediction accuracy recovered by the several most important high-level male and female feature 
pairs in the predicitons on the testing dataset. ‘1’, ‘2’, ‘5’ and ‘10’ mean that the predictions were made 
by the most important 1, 2, 5, 10 male and female feature pairs in the last hidden layer respectively. ‘A’ 

means the predictions were made by all the features. 
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To study the robustness and repeatability of the most important high-level male and female 

features extracted by different neural network structures for each FC scale, the correlations 

between the features across all the 50 randomly permuted cross validations were calculated and 

are shown in Fig. 5.5. As the neural network gets deeper, the correlation becomes higher, which 

means that the repeatability of the most important high-level feature is higher. This is true for all 

the FC scales and numbers of network neurons, although for the 25-ICA-component FC, the 

differences in correlations from a 2-hidden-layer networks compared to a 3-hidden layer networks 

are minimal. In addition, as the number of ICA components increases, the correlation generally 

decreases. 
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Fig. 5.5. Correlations of the most important high-level features across all the 50 randomly permuted cross 
validations for each neural network structure, number of ICA component and gender. For each number of 
neuron, hidden layer and ICA component, male and female features in the highest level hidden layer were 

extracted and ranked with the proposed method. The correlations of the highliest ranked features were 
calculated across the 50 randomly permuted 2-fold cross valadtions (each boxplot shows the correlations 

between 100 extracted features). 
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Considering both the accuracy that can be preserved by the most important feature pairs and the 

repeatability of these feature pairs in the randomly permuted cross validations, the most important 

high-level brain FC feature pairs extracted by the 200-neuron 2-hidden-layer DNN from the 25-

component ICA connectivity matrices and those by the 200-neuron 3-hidden-layer DNN from the 

50-component ICA connectivity matrices are shown in Fig. 5.6. First, from Fig. 5.6 it can be seen 

that the group means of the male and female connectivity matrices are similar, and the connectivity 

patterns of the group means are basically consistent for different number of ICA components. 

Second, the extracted high-level features by DNN of different genders basically have reversed 

patterns. This is because DNN is trained to discriminate these 2 genders by looking for the relative 

pattern difference in their connectivity inputs. This is true regardless of the number of ICA 

components. Third, the difference of the extracted most important high-level features between 

genders captures some of the characteristic patterns in input group mean difference, but does not 

exactly match the input group mean difference. The feature extracted by DNN is trained to 

maximize the gender prediction accuracy by searching for certain FC patterns in every input, but 

the group mean difference cannot reflect the variance or subject-level fingerprint patterns across 

all the subjects. 
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Fig. 5.6. The most important high-level brain FC feature pairs extracted by DNN. (A) DNN: 200-neuron 

2-hidden-layer network; input: 25-component ICA connectivity matrices. (B) DNN: 200-neuron 3-
hidden-layer network; input: 50-component ICA connectivity matrices. Each group mean of the input is 
also shown for comparison. SC, subcortical; CC, cognitive control; DM, default-mode; CB, cerebellar; 

VIS, visual; AUD, auditory; SM, somatomotor. 

 

In Fig. 5.6 the most important male and female features extracted by DNN are the most highly 

ranked high-level FC patterns DNN looks for to make accuracy predictions. For both 25 and 50 
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ICA components, females have stronger DM-DM, CC-VIS connections, relatively weaker CC-

DM connections, and both stronger and weaker connections in CC-CC (in the black boxes in Fig. 

5.6). These findings are consistent with the previous studies (S. M. Smith et al., 2013; Zhang et al., 

2018). In Fig. 5.6 the most important female-male feature differences learned by DNN also show 

some different patterns for these 2 different FC input scales, for example: the 50-ICA-component 

feature difference shows stronger and weaker female connections in CB-CB, VIS-VIS, CB-CC, 

VIS-CC and SM-VIS, whereas the 25-ICA-component feature difference shows stronger female 

connections in VIS-CC, VIS-DM and a weaker female connection in SM-CC.  

5.3.3 Monte Carlo Dropout Testing and Bayesian Deep Learning 

The prediction accuracies of Bayesian deep learning with MC dropout testing at the dropout rates: 

0.2, 0.5, 0.9 and the extreme dropout rate R2, which only retains 2 neurons, were studied and 

compared with the prediction accuracy of weight averaging testing. The results in Fig. 5.7 show 

that in general the accuracies achieved by MC dropout testing at low dropout rates (0.2, 0.5) are 

comparable with the accuracy of weight averaging testing on gender classification. As the dropout 

rate goes up to extreme large values (0.9, R2), the accuracy of MC dropout testing tends to decrease. 

The decreasing is especially obvious for the Bayesian DNN with large number of neurons at the 

dropout rate R2. 

Further, the behavior of the uncertainty generated by Bayesian deep learning was also studied by 

performing MC dropout on the real and made up subsets in dropout testing. Fig. 5.8 shows that for 

the 3-hidden-layer Bayesian DNNs trained with the real female and male data, as the uncertainty 

within the testing data increases, the prediction accuracy decreases and the corresponding 
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uncertainty increases. This is true for all the numbers of neurons and all the numbers of ICA 

components. 

 
Fig. 5.7. Prediction accuracy VS dropout rate of MC dropout testing in 3-hidden-layer Bayesian DNNs 

with the 3rd hidden layer dropped out in all the 50 randomly permuted cross validations for each number 
of neurons and each number of ICA components. R2 means the dropout rate was set to only retaining 2 

neurons; S stands for the result by weight averaging technique during testing. The networks used are 
previously trained 3-hidden-layer DNNs with the dropout rate of 0.2 on the 3rd hidden layers in dropout 

training. 

 

 
Fig. 5.8. Prediction accuracy and model uncertainty of Bayesian DNN with MC dropout testing on 

different testing subsets in all the 50 randomly permuted cross validations for each number of neurons and 
each number of ICA components. F – real female subsets; F1 – 0.75-female-0.25-male subsets; FM – 0.5-
female-0.5-male subsets; M1 – 0.25-female-0.75-male subsets; M – real male subsets. For the purpose of 

calculation, the labels of the FM subsets were set as female. Previously trained 3-hidden-layer DNNs 
were used for this experiment, and in MC dropout testing 0.5 dropout rate was set on the 3rd hidden 

layers. 
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5.4 Discussion 

In this present study, a novel deep learning based feature extraction and ranking method was 

developed and applied to the task of gender prediction and related feature extraction from resting 

state brain functional connectivity. First, the classification performance of DNN was evaluated 

with different network depths and different number of neurons at different scales of brain FC. The 

prediction accuracy of DNN was also compared with that of SVMs at different brain FC scales. 

Second, the proposed feature extraction and ranking method gives a better understanding of 

DNN’s prediction mechanism, and is able to extract the highly important FC features for the 

prediction to build the relationship between brain FC and genders. The robustness and repeatability 

of the features from different network structures and scales of brain FC were also studied. Third, 

Bayesian deep learning was applied to the brain FC gender prediction. The prediction accuracy 

with different dropout rates in MC dropout testing and the behavior of the uncertainty generated 

by Bayesian DNN were also studied at different brain FC scales. In summary, the experiments on 

the 1003-subject HCP dataset suggest that the results are highly related to the scale of brain FC 

under investigation.  

Since gender is one of the very basic physiological and psychological properties of human beings 

(Gong et al., 2011), gender prediction from brain FC on the large-scale high-quality HCP data can 

serve as a very basic case to verify and study the performance and characteristics of DNN for 

further neuroscience applications. From the prediction results in Fig. 5.2 and the following 

statistical analysis, it can be seen that the results from DNNs with different depths and different 

number of neurons are very similar. In the comparison between DNN and linear SVM, the results 

show that DNN is much more accurate than linear SVM when the number of ICA components is 

small. As the number of ICA components increases the accuracy of linear SVM catches up. This 
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illustrates that the nonlinear DNN and the linear SVM have different advantages at different FC 

scales. The possible reason for this is the change of the amount of signal and noise in the FC input. 

When the number of ICA components is small, the signal and noise in the FC is highly reduced, 

and in this situation the nonlinear DNN model is better at taking the limited signal for accurate 

prediction. When the number of ICA components is large, the signal is highly redundant but the 

noise is also greater, and in this case the linear model has more advantages. This trend about the 

linear and nonlinear methods can also be verified through the comparison between the linear SVM 

and the nonlinear (order 2 polynomial) SVM. Therefore, this study shows that no model is the best 

for every situation, and that for predictions using brain FC as input the scale of brain FC should be 

taken into consideration. In the comparison between the ICA based FC and the template based FC, 

the ICA based FC can reach a better result with a smaller number of components, which means in 

terms of increment of the signal noise ratio ICA is more efficient than the template based 

parcellation. 

In the proposed feature ranking method, the importance of the extracted high-level features were 

ranked by their contributions to the difference between the male score and the female score in the 

softmax layer. Since the cross entropy loss in a prediction reflects how the predicted probability 

distribution over the classes is similar to the ground truth probability distribution, experiments 

were performed to compare the cross entropy loss achieved by each high-level feature pair on the 

training data.  Fig. 5.3 shows that a more highly ranked high-level feature pair can reach a lower 

cross entropy loss for various DNN structures and inputs, which proves that the importance and 

contribution of the more highly ranked feature pair is higher. This result verifies the effectiveness 

and robustness of the proposed DNN feature extraction and ranking method.  
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Fig. 5.4 shows that as the number of the important high-level features involved in the DNN model 

increases accumulatively according to their ranks, the prediction accuracy that can be recovered 

towards the full DNN model also increases. For the application of FC gender prediction, the most 

important feature pair in various network structures can recover the majority of the accuracy 

achieved by the full DNN model for all scales of FC input. This is especially true for the networks 

with more layers and more neurons, which means the redundancy levels of the high-level features 

in these networks are relatively high. Thus, the ranking method offers us a way to focus on the 

most important feature pairs in the application of FC gender prediction instead of checking all the 

hundreds of features learned by DNN. Also, Fig. 5.4 shows with more lower-level features the 

most important high-level feature pair in a deep network can recover the accuracy of the whole 

DNN model better. For the 2-hidden-layer and 3-hidden-layer DNNs, there are large 

improvements of prediction accuracies recovered with the most important feature pair from 20-

neuron DNNs to 50-neuron DNNs. However, the improvement is not as clear for further increasing 

the number of low-level features (from 50 to 100 and 200 neurons). This is likely because for a 

specific application, there is a certain number of useful lower-level features making the main 

contribution to the final prediction accuracy, and each high-level feature is a combination of all 

the low-level features. When the number of lower-level neurons is not enough, increasing it will 

let a high-level feature combine more useful low-level features to make more accurate predictions. 

After the certain number is reached, adding more low-level features only increases the redundancy 

of the network and does not result in much increase in the prediction accuracy recovered by a high-

level feature. 

The features extracted by DNN during gender classification can only be generalized as the features 

for brain FC gender classification if they are highly robust and repeatable to different subject 
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groups, otherwise they are more reflective of the features for a specific sample group rather than 

the features for the whole population. Thus, we investigated the repeatability of the most important 

feature pairs in all the randomly permuted cross validations for each kind of DNN structure and 

input FC scale. Fig. 5.5 shows that as the network gets deeper, the correlation of the most important 

high-level feature pair gets higher, which means the repeatability of it gets higher. This is because 

in DNN features of the input are learned hierarchically by hidden layers of different depths, and 

each high-level feature learned by a deeper hidden layer is constituted of many different low-level 

features (Lee et al., 2008, 2009; Kim et al., 2016). Since the number of classes to predict is 

relatively small, in real world applications the number of distinct low-level features needed are 

much more than that of distinct high level features to make accurate predictions. Thus, the most 

important high-level features across different training group are more likely to be similar. Also, as 

the number of ICA components increases, the repeatability of the most important high-level feature 

generally decreases. This could be because as the dimension of the input increases, more 

information is contained in the data, and more detailed differences among different training 

datasets can be described by the high-dimensional input. This result also shows a potential 

downside to using higher numbers of ICA components in classification. That is, while higher 

numbers of ICA components result in improved classification accuracy, the repeatability of the 

features that drive this classification is lower. Conversely, using a lower number of ICA 

components for classification results in slightly lower classification accuracy, but the patterns of 

connectivity that drive the classification are more consistent and thus more meaningful for the 

subsequent interpretation of group differences.  

Although for the application of FC gender prediction DNNs of different depths can achieve similar 

accuracies in Fig. 5.2, Fig. 5.4 and 5.5 show that deeper network structures still have advantages 
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on the accuracy recovery and repeatability of the most important feature pair. Based on the those 

results in Fig. 5.4 and 5.5, the most important male and female high-level features from two 

selected DNNs and brain FC scales are shown in Fig 5.6. First, it can be seen that the characteristic 

patterns presented by the most important female-male feature differences in both FC scales have 

similar parts. Both of them captured the relatively high DM-DM and CC-VIS connections, 

relatively low CC-DM connections and both high and low connections in CC-CC as the female 

FC features, which means these are very important features for the FC gender classification. These 

patterns are consistent with the results from previous studies (S. M. Smith et al., 2013; Zhang et 

al., 2018). Also, the most important female-male feature differences are not all the same across 

these 2 FC scales, and there are several possible reasons: the input FC group mean patterns are not 

all the same across these 2 FC scales; different parts of FC can have different importance in the 

predictions at different FC scales. To achieve the highest prediction accuracy, all the learned 

features should be combined together to make the decision, since all the features are trained to 

work together to achieve the best performance. In addition, in Fig. 5.6 the female-male feature 

differences extracted by DNN capture some of the patterns in the female-male group mean 

differences, but not all the large group mean differences. This is because the features extracted by 

the DNN are the highly important ones for the model to make accurate classification, but not all 

the large group mean differences are important for the classification, since no standard deviation 

information is reflected in the group mean differences.  

Bayesian DNN can not only make predictions but also report the model uncertainty on each 

prediction. The prediction accuracies of Bayesian DNN at different dropout rates in Fig. 5.7 show 

that in the application of FC gender prediction Bayesian DNN with MC dropout testing can reach 

the same level of prediction accuracy as the conventional DNN with weight averaging testing as 
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long as the dropout rate is not too low. Thus, 0.5 dropout rate was selected based on the tradeoff 

between accuracy and variation to test the behavior of the uncertainty generated. As is seen in Fig. 

5.8, the model uncertainty increases as the uncertainty within the testing data increases, which 

matches the expectation. Since the uncertainty generated by Bayesian DNN can help with picking 

up the testing subjects whose predictions the model is not very confident about based on the 

knowledge learned from the training data. In real neuroimaging and neuroscience predication 

practices, such as classifying the Alzheimer’s disease, locating the source of epilepsy, or predicting 

the effect of a treatment, we can be aware of the uncertainty level of each prediction, and start 

other procedures to consolidate the highly uncertain prediction results. 

There are also some limitations in our study. Based on the results from the previous studies (S. M. 

Smith et al., 2013; Zhang et al., 2018), we did not regress out the potential confounds from the 

HCP brain FC data when classifying gender from brain FC. (Zhang et al., 2018) showed in their 

study that regressing out the confounds, such as brain volume, in gender prediction with partial 

least squares regression did not affect the predictive performance much, and the important FC 

connections involved in the gender prediction and the brain volume prediction were generally 

different. (S. M. Smith et al., 2013) also discussed in their study that since males and females all 

have stronger and weaker connections in the important FC features involved in the gender 

prediction, which is also seen in our study, the gender classification is unlikely to be driven 

primarily by the gross group differences, such as the difference in brain volume. In our study each 

input connectivity matrix was also normalized to zero mean and unit variance with no gross 

asymmetry between the male and female groups.  
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5.5 Conclusion 

The present study successfully verified the feasibility of using DNN to predict gender from the 

resting state brain FC. The predictions under different scales of brain FC illustrate that the 

performance of DNN is highly related to the scale of brain FC, and the comparison between the 

nonlinear DNN model and the linear SVM model suggests that to achieve the best prediction result 

during model selection, the scale of the input brain FC should be taken into consideration. The 

proposed DNN feature extraction and ranking method provides a new understanding of the DNN 

model and manages to build the relationship between the input brain FC and the output gender. 

Bayesian DNN was also applied for the first time to a neuroscience classification problem, and 

showed how well the model uncertainty generated reacts to the uncertainty within the data. We 

believe that based on the success of the DNN and Bayesian DNN models in the FC gender 

prediction on the large-scale HCP data, these models can be further applied to other fields of 

neuroscience. 
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Chapter 6 

 

Conclusion and Future Works 

 

 
This work developed deep learning and Bayesian deep learning based models for MR 

neuroimaging. The original purpose of this work is to make the whole MR neuroimaging pipeline 

more accurate, robust and efficient. With the facilitation of deep learning models, the prediction 

accuracy of various applications in neuroimaging was improved compared with the conventional 

methods. Bayesian deep learning models further give deep learning models the ability of 

generating model uncertainty for the predictions, which makes these procedures more robust to 

meet the strict requirement of medical imaging applications. Last but not the least, deep learning 

and Bayesian deep learning based models make the processing pipeline in MR neuroimaging fully 

automated. Together with the help of the advance technology in parallel computing and GPU, 

these models can immensely improve the efficiency in medical imaging. 

Specifically, the development of the deep learning and Bayesian deep learning models in this work 

focus on 3 computer vision applications in the field of MR neuroimaging: image segmentation, 

image synthesis, and feature extraction. 
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First, this work presented a novel tool combining Bayesian CNN and fully connected 3D CRF to 

perform brain extraction on nonhuman primates. Bayesian CNN’s prediction accuracy is 

significantly higher than the traditional gradient-based and registration-based brain extraction 

methods, and the conventional CNN models. The refinement of the results by fully connected 3D 

CRF further improved its accuracy. Another important additional value offered by Bayesian CNN 

is its ability to generate model uncertainty for each prediction, which can give us a clue whether 

the predicted result can be trusted or not, and it is extremely important for the applications in 

medical imaging. We studied the behavior of the uncertainty generated in various situations, and 

it is always able to reflect the inconsistency within the training data or between the training data 

and the testing data. Base on this model’s success in nonhuman primate brain extraction, we 

believe its application can be expanded to other image segmentation applications in medical 

imaging. 

Second, we proposed a novel image synthesis model – Bayesian conditional GAN with concrete 

dropout and model recalibration, and applied it on the challenging task of brain tumor image 

synthesis. The verification of the proposed method through synthesizing T2w MR brain tumor 

images from the corresponding T1w images proves that Bayesian conditional GAN is an accurate 

and consistent approach for the task of image synthesis. With concrete dropout, the gradient-tuned 

dropout probability is enabled, and it is much more efficient than the hand-tuned dropout rate in 

Monte Carlo dropout. Concrete dropout also results in higher predication accuracy and better 

calibrated uncertainty. The involvement of the model recalibration approach further improves the 

calibration of the uncertainty generated by Bayesian deep learning. The relationship between the 

prediction accuracy and the generated model uncertainty was also studied. Although by definition 

it is not necessary that they are directly proportional to each other, with the increase of the number 
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of observations and the dimension reduction calculation, a stronger correlation was found between 

them. 

Third, deep neural network models were investigated to study the functional connectivity gender 

difference. The performance of DNN and SVM were compared on the brain functional 

connectivity gender prediction with brain connectivity as input at various levels. DNN is more 

accurate than SVM when the number of ICA components is small, and SVM’s accuracy catches 

up as the number of ICA components increases. In the research field of neuroscience, the model’s 

ability to extract useful features that make accurate predictions is as important as making accurate 

predictions itself. Thus, we proposed a feature extraction and ranking method for DNN, which can 

extract and rank the connectivity patterns based on their contributions to the final prediction. The 

contributions of the features ranked at different levels were validated through the cross entropy 

loss achieved by them. The robustness of the features extracted by different DNN structures at 

different connectivity levels was also studied. Dropout testing was also applied on gender 

prediction to generate model uncertainties for predictions. The behavior of the model uncertainty 

also matches our expectation. 

6.1 Future Work 

Although this work includes many necessary parts towards the original goal of making the whole 

processing pipeline of neuroimaging more accurate, robust and efficient. There are still many more 

topics that could be investigated to expand this work and strengthen the conclusions in the 

applications of image segmentation, synthesis and classification in the field of medical imaging. 

The following sections will discuss the potential deep learning research directions that can further 

improve MR neuroimaging. 
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6.1.1 Image Segmentation 

Currently, deep learning based image segmentation methods highly depend on the characteristic 

of the data in the training set. For example, if the age group of the training dataset is slightly 

different from that of the testing dataset, the prediction error for the testing dataset will increase 

dramatically. Data augmentation and transfer learning are possible solutions to fix this problem to 

some extent. To effectively transfer a learned model to slightly different dataset will require 

investigation on efficient methods in data augmentation and transfer learning. 

Different segmentation tasks also have different requirements on the features of deep learning 

models. Amygdala is a very important anatomic structure in the brain, and the change of its shape 

and volume is highly related to many brain disorders. The automatic segmentation of amygdala is 

very challenging, since it is a very small structure. Limited by the GPU memory CNN can hardly 

have a large receptive field as well as keep a high resolution at the same time. Therefore, a duo-

pathway CNN may be the solution for the segmentation of ultra-small structures. One pathway is 

aimed at keeping the original resolution with smaller receptive field, and another pathway is aimed 

at enlarging the receptive field to get more contexts for the target with compromised resolution. 

There are also many sources of uncertainty in the final prediction result. The Bayesian deep 

learning model we used only formulates the model uncertainty. Noise in the data may also cause 

errors and uncertainty in the prediction (Kendall and Gal, 2017). To have a more thorough 

uncertainty model will also help to make the uncertainty generated more accurate and have 

stronger correlation with the prediction accuracy. 

Currently, due to the limitation on GPU memory, there is no way for deep learning based models 

to hold the full 3D brain volumes during training. Thus, the images are usually processed in slices 

or little cubes, and then refined in the full 3D space with algorithms having lighter memory 
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requirement. Either the slice based or cube based deep learning models will lose information in 

the full 3D. Therefore, Duo-pathway or multi-pathway deep learning model can be used to take 

advantage of the information in each dividing way. 

6.1.2 Image synthesis 

Image synthesis is a very important technique in the field of medical imaging. With it inter-

modality image translation, image denoising, artifact removing, super resolution and even sparse 

reconstruction can all be achieved. We only investigated the image synthesis from T1w to T2w 

brain MR image. The model proposed in this thesis can be adjusted to all the applications 

mentioned above. For example, CT images can also be synthesized from MR images. In this way 

CT images can be generated for MR-Linac, and it can be used for treatment planning in human 

oncology without the acquisition of real CT images and the registration between CT images and 

MR images. Using MR images to synthesize CT images can reduce the patient dose at the same 

time. CT images can also be synthesized from the PET or MR images acquired from a PET/MR 

scanner, and then the synthesized CT images can be used for the PET attenuation correction. For 

image reconstruction, with the help of deep learning, the data needed in the acquisition domain 

can be dramatically reduced, and thus the acquisition can be fastened. In this way, dynamic 

imaging will become possible. 

In addition to the frame work of Bayesian deep learning with concrete dropout other models, 

including ensemble methods (Lakshminarayanan et al., 2016), can also generate uncertainty for 

each prediction. A comparison between Bayesian deep learning based methods, other uncertainty 

generation models and the conventional models will give us a clearer understanding about their 

performances and the pros and cons for each method. Moreover, in this work, we only validated 

the proposed method on the image synthesis of brain tumor data, experiments on traumatic brain 
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data, brain data with brain disorders and healthy brain data will also give us a better overall 

understanding about the performance of the proposed method. 

6.1.3 Classification 

In this work, the DNN was compared with SVM on brain connectivity gender classification, and 

both models have advantages in different situations. Applying DNN based models to classify brain 

disorders versus healthy controls with the brain connectivity from rs-fMRI may let us find more 

key applications for this model, as the reported findings in the classification of schizophrenia (Kim 

et al., 2016). For the proposed feature extraction and ranking method, it can help with extracting 

the important connectivity patterns the model looks for in each subject’s connectivity matrix for 

making correct predictions. Therefore, this method can also be used to extract important functional 

connectivity patterns in different age groups and in different species to help us better understand 

the related brain functional connectivity changes in each stage of the development of the brain and 

the brain functional connectivity differences across species. 
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Appendix A: Additional Figures for MRI 
Brain Extraction 

 

 

 
Fig. A1. Hausdorff distance on each subject from different brain extraction methods. 
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Fig. A2. Hausdorff distance in boxplots from different brain extraction methods. In the figure points are 
drawn as outliers with red ‘+’ symbols, if they are greater than q3+1.5(q3-q1) or less than q1-1.5(q3-q1), 

where q1 and q3 are the first and third quartiles respectively. 

 

 
Fig. A3. Sensitivity and specificity on each subject from different brain extraction methods. 
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Fig. A4. Sensitivity and specificity in boxplots from different brain extraction methods. In the figure 

points are drawn as outliers with red ‘+’ symbols, if they are greater than q3+1.5(q3-q1) or less than q1-
1.5(q3-q1), where q1 and q3 are the first and third quartiles respectively. 
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Fig. A5. Averaged false positive map for compared methods. For display purposes, the natural logarithm 

of the averaged map collapsed (averaged) along each axis is shown. 
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Fig. A6. Averaged false negative map for compared methods. For display purposes, the natural logarithm 

of the averaged map collapsed (averaged) along each axis is shown. 
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Appendix B: Additional Tables and Figures 
for Functional Connectivity Gender 
Prediction 

 

 

Table B1. The mean of the prediction accuracies across the 50 randomized cross validation permutations 
for each kind of predictive model and each kind of input. L – number of hidden layers in the DNN model; 

N – number of neurons in the first hidden layer of the DNN, the number of neurons in each of the rest 
hidden layers is half of this number. 

 ICA25 ICA50 ICA100 ICA200 ICA300 Template 
L:1 N:20 0.8262 0.8790 0.9229 0.9373 0.9437 0.9146 
L:1 N:50 0.8260 0.8786 0.9235 0.9370 0.9434 0.9129 

L:1 N:100 0.8268 0.8783 0.9239 0.9369 0.9433 0.9130 
L:1 N:200 0.8281 0.8786 0.9237 0.9370 0.9427 0.9097 
L:2 N:20 0.8301 0.8767 0.9213 0.9371 0.9446 0.9144 
L:2 N:50 0.8318 0.8751 0.9205 0.9361 0.9432 0.9137 
L:2 N:100 0.8316 0.8764 0.9213 0.9350 0.9425 0.9134 
L:2 N:200 0.8314 0.8766 0.9215 0.9355 0.9418 0.9122 
L:3 N:20 0.8288 0.8761 0.9214 0.9368 0.9443 0.9142 
L:3 N:50 0.8300 0.8767 0.9198 0.9357 0.9434 0.9114 
L:3 N:100 0.8301 0.8770 0.9198 0.9350 0.9433 0.9126 
L:3 N:200 0.8300 0.8763 0.9202 0.9354 0.9414 0.9123 

SVM-linear 0.8116 0.8717 0.9264 0.9411 0.9489 0.9214 
SVM-poly2 0.8144 0.8527 0.8956 0.9256 0.9311 0.8922 
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Table B2. The standard deviation of the prediction accuracies across the 50 randomized cross validation 
permutations for each kind of predictive model and each kind of input. L – number of hidden layers in the 
DNN model; N – number of neurons in the first hidden layer of the DNN, the number of neurons in each 

of the rest hidden layers is half of this number. 

 ICA25 ICA50 ICA100 ICA200 ICA300 Template 
L:1 N:20 0.0094 0.0076 0.0068 0.0053 0.0061 0.0086 
L:1 N:50 0.0091 0.0077 0.0068 0.0060 0.0067 0.0079 

L:1 N:100 0.0091 0.0067 0.0062 0.0054 0.0061 0.0078 
L:1 N:200 0.0100 0.0076 0.0066 0.0060 0.0061 0.0084 
L:2 N:20 0.0101 0.0072 0.0075 0.0060 0.0070 0.0089 
L:2 N:50 0.0106 0.0078 0.0065 0.0062 0.0064 0.0078 
L:2 N:100 0.0106 0.0084 0.0067 0.0061 0.0063 0.0081 
L:2 N:200 0.0103 0.0074 0.0061 0.0056 0.0063 0.0080 
L:3 N:20 0.0094 0.0068 0.0067 0.0063 0.0069 0.0086 
L:3 N:50 0.0106 0.0069 0.0068 0.0050 0.0060 0.0080 
L:3 N:100 0.0100 0.0071 0.0071 0.0066 0.0061 0.0084 
L:3 N:200 0.0109 0.0070 0.0067 0.0053 0.0061 0.0081 

SVM-linear 0.0102 0.0090 0.0074 0.0061 0.0069 0.0093 
SVM-poly2 0.0111 0.0109 0.0068 0.0057 0.0064 0.0087 
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Fig. B1. Prediction accuracy recovered by the several most important high-level male and female feature 
pairs in the predictions on the training dataset. ‘1’, ‘2’, ‘5’ and ‘10’ mean that the predictions were made 
by the most important 1, 2, 5, 10 male and female feature pairs in the last hidden layer respectively. ‘A’ 

means the predictions were made by all the features.. 
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Fig. B2. The cross entropy loss achieved by the several most important high-level male and female 

feature pairs in the predictions on the training dataset. ‘1’, ‘2’, ‘5’ and ‘10’ mean that the predictions were 
made by the most important 1, 2, 5, 10 male and female feature pairs in the last hidden layer respectively. 

‘A’ means the predictions were made by all the features. 
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