
TOWARDS INTERACTIVE METHODS FOR GATHERING INSIGHTS FROM DATA

by

Jianqiao Zhu

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2019

Date of final oral examination: 01/18/2019

The dissertation is approved by the following members of the Final Oral Committee:

Jignesh Patel, Professor, Computer Sciences, UW-Madison

Paraschos Koutris, Assistant Professor, Computer Sciences, UW-Madison

Theodoros Rekatsinas, Assistant Professor, Computer Sciences, UW-Madison

Mark Craven, Professor, Biostatistics and Medical Informatics, UW-Madison

© Copyright by Jianqiao Zhu 2019

All Rights Reserved

i

To my wife, daughter and parents.

ii

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisor Prof. Jignesh Patel.

This dissertation would not have been possible without all his guidance, encouragement and help.

Prof. Patel has a great personality that has influenced me a lot. He is energetic, optimistic, insightful

and is always with great willpower. It was really my fortune to work with him and learn from him.

Meanwhile, sincerely thanks Prof. Somesh Jha for his advising on knowledge and skills related to

the programming language and compiler aspects.

I am grateful to University of Wisconsin-Madison and particularly the Computer Sciences de-

partment. I had a good life and study experience in UW-Madison. Our department has a great

faculty with excellent courses and research resources. I would also like to thank our graduate co-

ordinator Angela Thorp for her many helps throughout my graduate study. Also many thanks to all

CS staff who have helped me a lot on various administrative matters.

I would like to thank many of my friends for their accompanying throughout the graduate life.

Thank my colleagues Harshad Deshmukh, Navneet Potti, Saket Saurabh, Rathijit San, Zhiwei Fan,

Zuyu Zhang and Dylan Bacon for the great collaboration on various projects and research work.

I would like to acknowledge the National Science Foundation and the DARPA Transparent Com-

puting program as they have funded most of my graduate research. One chapter of this disseration

is based on the system we have built for the TC program, and it is really great experience to work

with people from the TC program and development such a novel and intersting system.

During the years in UW-Madison, I met the most important person in my life – Yuqi. Yuqi is also

a PhD student studying in UW-Madison and it is really a gift of life that I have ever met her. Now

we have married and had our dearest daughter.

Thanks my parents for their understanding and support for the many years of my graduate

study. Thanks all my family members who have cared me a lot during these years before I could

finally graduate from schools. Finally, a special thank to my uncle for taking me to his office often to

have access to a computer when I was young. There I developed my interests on computer systems

and programs, and my domain expertise started converging towards a degree of Computer Science

since then.

iii

Abstract

Big Data technologies are now widely adopted by enterprises to aid knowledge discovery and de-

cision making. To support modern data applications, contemporary relational database systems

(RDBMSs) have been augmented and even redesigned to better support large-scale analytical query

processing. Typically, the end user is an analyst who interacts with the system in a “compose query

– execute query – interpret output – compose new query based on insights from the output” loop.

The key aspects of this paradigm is to allow the analyst to discover insights from the underlying

data as efficiently and effectively as possible.

In this dissertation, we focus on a high-performance relational data platform, Quickstep, and

propose two components to reduce query execution time for complex join queries and facilitate

interactive analysis on provenance graph data, respectively, thus contributing to improving the

productivity of the end users in each analytical scenario.

First, we introduce a novel query execution strategy called LIP for robust query processing. LIP

collapses the space of left-deep query plans for star schema warehouses down to almost a single

point near the optimal plan. In addition to this robustness benefit, it also significantly speeds

up query execution in the left-deep subplan space. Besides the immediate application of LIP, we

believe our work opens a novel approach to the notion of “robustness”, one that is focused on query

execution strategies possibly tailored to corresponding query plan (sub-)spaces.

Second, we build on top of Quickstep a new system called QuickGrail that supports efficient

and effective querying on large provenance graphs. The QuickGrail system comes together with

an expressive domain-specific query language that allows a human analyst to evaluate complex

filter / lineage / path / pattern matching queries to yield possibly very large subgraphs as inter-

mediate results, and do set operations such as union, intersection, subtraction on the subgraphs.

The intermediate results can be efficiently concretized and used as inputs for subsequent iterations

of exploratory analyses. We explain in detail the underlying implementations that support all the

QuickGrail operations with high performance, robustness and scalability.

iv

Contents

Abstract iii

1 Introduction 1

2 Quickstep Query Optimizer and Execution Engine 4

2.1 Data Model and Query Language . 4

2.2 System Overview . 4

2.3 Query Optimizer . 5

2.4 Query Execution . 6

2.4.1 Threading Model . 6

2.4.2 Work Order-based Scheduler . 7

3 Improving the Evaluation of Join Queries on Star Schema Databases 10

3.1 Introduction . 10

3.2 Preliminaries . 13

3.2.1 Star Schema and Left-deep Join Trees . 14

3.2.2 Modeling Performance Without LIP . 16

3.2.3 Robustness . 19

3.2.4 Bloom Filter . 20

3.3 Lookahead Information Passing . 21

3.3.1 Adaptive Reordering of Lookahead Filters . 22

3.3.2 Robustness Through LIP . 25

3.3.3 Insights from the Analytical Model . 28

3.4 Evaluation . 29

3.4.1 Choice of Bloom Filter Configuration . 30

3.4.2 Robustness to Join Order Selection . 31

3.4.3 Handling Skew and Correlation . 32

v

3.4.4 Importance of Adaptiveness . 33

3.4.5 Applying LIP to Subplans . 34

3.5 Related Work . 34

3.6 Conclusions and Future Work . 36

4 Additional Query Optimization: Drop Early, Drop Fast 37

4.1 Partial Predicate Push-down . 37

4.2 Exact Filters: Join to Semi-join Transformation . 38

4.3 Conclusions and Future Work . 40

5 Provenance Graph Analytics Using the Quickstep/Grail Approach 41

5.1 Introduction . 41

5.2 Preliminaries . 42

5.2.1 The Property-Graph Data Model . 43

5.2.2 Provenance Graph . 43

5.2.3 Querying a Provenance Graph . 43

5.2.4 Main Challenges . 45

5.3 Our Approach . 47

5.3.1 The QuickGrail Language . 48

5.3.2 Relational Storage . 51

5.3.3 Grail Low-level Instructions . 53

5.3.4 Generate GLL Instructions from Graph Expressions 59

5.3.5 Graph Pattern Matching . 62

5.4 Experiments . 67

5.4.1 System Configuration . 68

5.4.2 Analysis Workflow and Outcome . 68

5.4.3 Comparing Performance With Neo4j . 72

5.5 Conclusions and Future Work . 74

6 Summary 75

vi

List of Tables

3.3 Summary of notation used in Sections 3.2 and 3.3 . 15

5.12 The core set of Grail low-level instructions. 54

5.14 Dataset statistics. 67

5.15 Table of activities for one attack in Engagement 4. 68

5.17 Analysis workflow for tr1 (yellow) part in Figure 5.16. Note that for each command,

the |V| and |E| columns stand for the number of result vertices and result edges. . . 70

5.18 Analysis workflow for tr1 (yellow) part in Figure 5.16 (continued). 71

5.20 Performance comparisons on scan operations. 72

5.21 Performance comparisons on a lineage query that starts from a “libselinux.so” vertex

and finds all descendants up to various max depths. In this table DNF means that

the query did not finish within 1 hour. 73

5.22 Performance comparisons on a query that finds all paths from a “ssh” node to any

“firefox” node within various max depths. In this table DNF means that the query

did not finish within 1 hour. 73

vii

List of Figures

2.1 The Quickstep architecture. 5

2.2 The Quickstep query optimizer architecture. 6

2.3 Plan DAG for the sample query . 7

3.1 All 24 possible left-deep query plans for SSB Query 4.3 in increasing order of execu-

tion time. 11

3.2 Query 4.3 from Star Schema Benchmark and two left-deep query plans for it. 12

3.4 Comparison of optimal execution times for Query 4.3 using different Bloom filter

configurations . 30

3.5 Execution times for SSB queries in group 1. 31

3.6 Execution times for the Star Schema Benchmark queries for groups 2–4, with and

without LIP. 32

3.7 Execution times for sampled join orders of some queries in the synthetic workload. . 32

3.8 Execution times for fixed and adaptive lookahead filter probe ordering. 33

3.9 Left-deep star join subplan in TPCH Query 8, and execution times of all 675 possible

query plans. 35

4.1 Query plan variations for SSB Query 4.1 . 39

5.1 The left figure (a) shows an example provenance subgraph containing 4996 vertices

and 12207 edges, which is part of an overall graph of 10 million vertices and 33

million edges. The right figure (b) shows the detailed annotations of 2 vertices

connected by 3 edges from (a). 42

5.3 Example graph pattern that represents a potential infiltration into a server, and the

corresponding pattern matching query written in QuickGrail language. 45

5.4 The QuickGrail architecture. 47

5.13 Query graph built from Query 5.1. 63

5.16 The overall diagram for the activities described in Table 5.15. 69

viii

5.19 Analysis outcome for tr1 (yellow) part in Figure 5.16. 71

1

Chapter 1

Introduction

Big Data technologies are now widely adopted by enterprises to aid knowledge discovery and deci-

sion making. A common data platform for this task is a relational data platform, and this setting is

the focus of the proposed thesis.

To support modern data applications, contemporary relational database systems (RDBMSs)

have been augmented and even redesigned to better support large-scale analytical query process-

ing. Unlike traditional transactional workloads, analytical query processing features complex and

long-running queries on large (by size/volume) datasets. Typically, the end user is an analyst who

interacts with the system in a “compose query – execute query – interpret output – compose new query

based on insights from the output” loop. The key aspects of this paradigm is to allow the analyst to

discover insights from the underlying data as efficiently and effectively as possible.

To work with a database system in this analytical data processing scenario, the productivity of

the data analyst can be greatly improved if the system can be enhanced with features to accelerate

the interactive loop. There are two avenues for efficiency improvements. The first is system effi-

ciency and the second is human efficiency. Methods for system efficiency improvement target query

processing and query optimization mechanisms to improve the speed with which queries are evalu-

ated. Methods for human efficiency improvement target the expressive power and code reusability

of the query language surface, as well as the consumption of the output of queries. This thesis aims

to target specific problems along both these efficiency dimensions.

The larger backdrop of this thesis is the Wisconsin Quickstep project. Quickstep is a RDBMS that

targets modern hardware settings that consists of multi-core, multi-socket, and large main-memory

configurations. Such configurations are increasingly common, and Quickstep aims to deliver high-

performance out-of-the-box in such settings. At its core, Quickstep implements a collection of rela-

tional algebraic operators, using efficient algorithms for each operation. This “kernel” can be used

to run a variety of applications. These applications include traditional SQL analytics (a.k.a. Data

2

Warehousing), but can also include other analytical application classes. These other classes are

graph analytics, many propositional machine learning algorithms, and relational learning. These

applications can be supported as they can be mapped to an underlying relational algebra (using

methods such as [18, 50, 23, 26]).

To set the stage for the core part of this thesis, the building block is a SQL optimization and

execution framework that can be used both to improve the efficiency with which traditional SQL

queries are executed and to server as a computational platform where a broader category of appli-

cations can be built on top of. Chapter 2 describes the Quickstep query optimizer and execution

engine that have been built as part of this thesis.

We propose two additional components in this thesis to reduce query execution time for com-

plex join queries and facilitate interactive analysis on provenance graph data, respectively, thus

contributing to improving the productivity of the end users in each analytical scenario. Specific

details are as follows.

First, we propose a novel query evaluation strategy named Lookahead Information Passing (LIP)

to accelerate join processing. Complex analytical queries typically involve many join operations to

combine data from multiple tables, where the order in which tables are joined often dramatically

affects performance. It is standard technique for the query optimizer to use dynamic programming

to search through the plan space, based on a cost model, to find the best join ordering. However,

optimizers may at times miss the optimal plan, with sometimes disastrous impact on performance.

Nevertheless, even with the optimal plan, the processing of joins in complex queries still often take

a dominant amount of time due to the great number of hash-table lookups and intermediate result

table materialization (in memory). LIP is a technique that can both improve the time efficiency

and space footprint of a query plan that contains many hash joins. As its name suggests, LIP looks

ahead for each operator in the query plan and aggressively applies semijoin optimization to push

the selectivities from future joins down, via LIP filters – typically implemented as Bloom filters, to

be applied as early as possible. Moreover, LIP effectively collapses the optimization space of certain

classes of query plans, thus reduces the query optimization overhead and increases the robustness to

cardinality estimation errors. This aspect of the thesis is described in Chapter 3.

In addition to LIP, we further introduce two query optimization techniques in Chapter 4 under

an unifying theme of eliminating redundant computation and materialization using “drop early,

drop fast” approaches. The first technique pushes down certain disjunctive predicates more aggres-

sively than is common in traditional query processing engines. The second technique transforms

certain joins into cache-efficient semi-joins using exact filters. An exact filter can be pushed down as

a kind of LIP filter where the original join or semi-join gets completely eliminated. Both techniques

improve Quickstep’s performance on data warehousing workloads.

3

Second, we build a system named QuickGrail on top of Quickstep to support interactive ex-

ploration on large provenance graphs. The basic types of queries to a provenance graph are filter,

lineage and path queries, and (as far as we know) many existing systems cannot even efficiently

handle these basic queries on large graphs. The QuickGrail system comes together with a domain-

specific query language that allows a human analyst to filter the graph to yield (possibly very large)

subgraphs as intermediate results, and do subgraph manipulations such as graph union, intersection,

subtraction, as well as finding paths among subgraphs. The queries are guaranteed to be fulfilled in

a timely manner so that the analyst can interactively and iteratively dig through a provenance graph

using typical problem-solving techniques such as trial-and-error and divide-and-conquer. Further-

more, QuickGrail also supports a class of pattern matching queries for extracting complex connec-

tion patterns. Though it is known that the general graph pattern problem is NP-hard, we alleviate

the problem by allowing false positive results when a query is not acyclic. The processing time of

a pattern matching query is linear to (each of) the graph size, query size and certain configurable

parameters, so that the overall query processing time is bounded and predictable.

4

Chapter 2

Quickstep Query Optimizer and

Execution Engine

In this chapter, we first briefly describe the Quickstep data model and query language, then intro-

duce its query optimizer. Finally, we describe in detail Quickstep’s execution engine and explains

how it utilizes the high degree of parallelism offered by modern processors.

2.1 Data Model and Query Language

Quickstep uses the standard relational data model, and SQL as the query language. Currently,

the system supports the following basic types: INTEGER (32-bit signed), BIGINT/LONG (64-bit

signed), REAL/FLOAT (IEEE 754 binary32 format), DOUBLE PRECISION (IEEE 754 binary64 for-

mat), fixed-point DECIMAL, fixed-length CHAR strings, variable-length VARCHAR strings, DATETIME

/ TIMESTAMP (with microsecond resolution), date-time INTERVAL, and year-month INTERVAL.

2.2 System Overview

The architecture of Quickstep is shown in Figure 2.1. The system has a SQL parser that converts the

input query into a syntax tree, which is then transformed by an optimizer into a physical plan. The

optimizer first converts the syntax tree into a logical plan, and uses a rules-based approach [21]

to transform the logical plan into an optimal physical plan. The query optimizer is described in

Section 2.3.

The catalog manager keeps track of the logical and physical schemas of the database. Currently,

the catalogs keep simple statistics, including estimated table cardinalities, distinct values for each

5

Figure 2.1: The Quickstep architecture.

attribute, as well as the minimum and maximum values for numerical attributes. More sophisti-

cated statistics such as histograms are planned for addition in the future. The catalog manager

can export the schema information for use in external systems such as a stand-alone optimizer like

Orca [44] or Apache Calcite [13].

The execution plan, in the form of a directed acyclic graph (DAG) of relational operators, is

created by the optimizer and sent to the scheduler. The current relational operator library contains

the implementation of various relational operators including selection, projection, joins (equi-joins,

semi-joins, anti-joins and outer-joins), aggregation, sorting, and top-k.

The storage manager organizes the data into large multi-MB blocks. Each block contains tuples

from a single table, and is treated as a “mini-database.” Different blocks, even within the same

table, may have different physical organizations. The external view of each block is that of a bag

of tuples, and query processing simply invokes set-oriented methods on each block. This design

allows for the physical schema of each block to evolve independently. There are no global indices

in Quickstep; instead indices are also self-contained within blocks. Different block formats are

supported including column stores and row stores (see [14] for more details). The default layout

is a column store.

2.3 Query Optimizer

The Quickstep query optimizer has a modular architecture. It is based on a sequence of rules that

incrementally transform a parse tree into an efficient execution DAG of relational operators. This

architecture is illustrated in Figure 2.2.

Similar to the approach outlined in [21], these rules operate on different intermediate repre-

sentations: the logical and physical query plan trees. Each rule transforms the query plan tree by

either annotating it or changing its structure. During query optimization, the rules are applied in a

fixed sequence. The final execution DAG is passed to the scheduler for execution. The sequence of

6

Logical	plan

Physical	plan

Logical	to	physical	
mapper

Symbol	 resolver

Execution	generator

Parse	tree

Execution	DAG	of
relational	operators

Logical
optimization	 rules

Physical
optimization	 rules

Cost	model

Figure 2.2: The Quickstep query optimizer architecture.

rules can be extended simply by adding a new transformation function in the appropriate position

in the sequence.

All logical optimization rules are heuristic-based. Physical optimization rules can be either

heuristic-based or cost-based. Typical heuristic-based optimizations such as filter pushdown, pro-

jection collapsing, and projection pushdown are implemented as one-pass tree traversals. Some

complex optimizations such as subquery unnesting, join order optimization, and LIP filter planning

require multiple traversals of the query plan tree and use auxiliary data structures within the rules.

2.4 Query Execution

To fully utilize the high degree of parallelism offered by modern processors, Quickstep complements

its block-based storage design with a work order-based scheduling model (cf. Section 2.4.2) to

obtain high intra-query and intra-operator parallelism.

2.4.1 Threading Model

The Quickstep execution engine consists of a single scheduler thread and a pool of workers. The

scheduler thread uses the query plan to generate and schedule work for the workers. When multiple

queries are concurrently executing in the system, the scheduler is responsible for enforcing resource

allocation policies across concurrent queries and controlling query admittance under high load.

7

SELECT SUM(sales)

FROM Product P NATURAL JOIN Buys B

WHERE B.buy_month = 'March'

AND P.category = 'swim'

(a)

Product Buys

Build	
Hash	

σ	 σ	

ϒ	

Probe	
Hash	

Drop	 Hash	
Table	

Print	

Drop	 ϒ	
	 Table	

Query Result

Drop	 σ	
Outputs	

Drop	 Join	
Output	

Pipeline breaking
Non-pipeline breaking

(b)

Figure 2.3: Plan DAG for the sample query

The workers are responsible for executing the relational operation tasks that are scheduled.

Each worker is a single thread that is pinned to a CPU core (possibly a virtual core), and there

are as many workers as cores available to Quickstep. The workers are created when the Quickstep

process starts, and are kept alive across query executions, minimizing query initialization costs.

The workers are stateless; thus, the worker pool can elastically grow or shrink dynamically.

2.4.2 Work Order-based Scheduler

The Quickstep scheduler divides the work for the entire query into a series of work orders. In this

subsection, we first describe the work order abstraction and provide a few example work order

types. Next, we explain how the scheduler generates work orders for different relational operators

in a query plan, including handling of pipelining and internal memory management during query

execution.

The optimizer sends to the scheduler an execution query plan represented as a directed acyclic

graph (DAG) in which each node is a relational operator. Figure 2.3 shows the DAG for the example

query shown below. Note that the edges in the DAG are annotated with whether the producer

operator is blocking or permits pipelining.

8

Work Order

A work order is a unit of intra-operator parallelism for a relational operator. Each relational operator

in Quickstep describes its work in the form of a set of work orders, which contains references to

its inputs and all its parameters. For example, a selection work order contains a reference to its

input relation, a filtering predicate, and a projection list of attributes (or expressions) as well as a

reference to a particular input block. A selection operator generates as many work orders as there

are blocks in the input relation. Similarly, a build hash work order contains a reference to its input

relation, the build key attribute, a hash table reference, and a reference to a single block of the

input build relation to insert into the hash table.

Work Order Generation and Execution

The scheduler employs a simple DAG traversal algorithm to activate nodes in the DAG. An active

node in the DAG can generate schedulable work orders, which can be fetched by the scheduler. In

the example query, initially, only the Select operators (shown in Figure 2.3 using the symbol σ)

are active. Operators such as the probe hash and the aggregation operations are initially inactive

as their blocking dependencies have not finished execution. The scheduler begins executing this

query by fetching work orders for the select operators. Later, other operators will become active as

their dependencies are met, and the scheduler will fetch work orders from them.

The scheduler assigns these work orders to available workers, which then execute them. All

output is written to temporary storage blocks. After executing a work order, the worker sends a

completion message to the scheduler, which includes execution statistics that can be used to analyze

the query execution behavior.

Implementation of Pipelining

In our example DAG (Figure 2.3), the edge from the Probe hash operator to the Aggregate operator

allows for data pipelining. As described earlier, the output of each probe hash work order is written

in some temporary blocks. Fully-filled output blocks of probe hash operators can be streamed to

the aggregation operator (shown using the symbol γ in the figure). The aggregation operator can

generate one work order for each streamed input block that it receives from the probe operator,

thereby achieving pipelining.

The design of the Quickstep scheduler separates control flow from data flow. The control flow

decisions are encapsulated in the work order scheduling policy. This policy can be tuned to achieve

different objectives, such as aiming for high performance, staying with a certain level of concur-

rency/CPU resource consumption for a query, etc. In the current implementation, the scheduler

9

eagerly schedules work orders as soon as they are available.

Output Management

During query execution, intermediate results are written to temporary blocks. To minimize internal

fragmentation and amortize block allocation overhead, workers reuse blocks belonging to the same

output relation until they become full. To avoid memory pressure, these intermediate relations

are dropped as soon as they have been completely consumed (see the Drop σ Outputs operator in

the DAG). Hash tables are also freed similarly (see the Drop Hash Table operator). An interesting

avenue for future work is to explore whether delaying these Drop operators can allow sub-query

reuse across queries.

10

Chapter 3

Improving the Evaluation of Join

Queries on Star Schema Databases

Query optimizers and query execution engines cooperate to deliver high performance on complex

analytic queries. Typically, the optimizer searches through the plan space and send a selected plan

to the execution engine. However, optimizers may at times miss the optimal plan, with sometimes

disastrous impact on performance. Complementary to prior work on improving robustness in query

optimization, in this chapter, we develop the notion of robustness of a query evaluation strategy

with respect to a space of query plans. We also propose a novel query execution strategy called

Lookahead Information Passing (LIP) that is robust with respect to the space of (fully pipeline-able)

left-deep query plan trees for in-memory star schema data warehouses. LIP ensures that execution

times for the best and the worst case plans are far closer than without LIP. In fact, any plan in

that space is theoretically guaranteed to execute in near-optimal time. We empirically validate

these claims using benchmark workloads as well as synthetic workloads that include skew and

correlation. With LIP we make an initial foray into a novel way of thinking about robustness from

the perspective of query evaluation, where we develop strategies (like LIP) that collapse plan sub-

spaces in the overall global plan space. Such techniques can be used both to immunize against

poor plan selection by an optimizer, as well as to increase the efficiency of plan space search in an

optimizer (since entire sub-spaces collapse to have identical execution times).

3.1 Introduction

Relational database management systems (RDBMSs) have a unique internal organization where

query execution can be viewed as a composition of basic relational algebraic (RA) operations. This

underlying framework allows RDBMSs to examine equivalent RA compositions during the query

11

optimization phase, examining and picking a plan that leads to efficient query execution. This

aspect of being able to manipulate RA expressions is crucial to the RDBMSs’ ability to execute

complex queries efficiently even on large databases.

Query optimization, however, is a complex task. Work on query optimization is nearly as old

as research in RDBMSs. Decades of research in this area have yielded a plethora of techniques for

plan enumeration, cardinality and cost estimation, and dynamic query optimization. Despite these

remarkable advancements, it is well known [29, 41] that query optimizers still falter in some cases,

producing query plans that have disastrously worse performance than optimal.

Rather than directly improving the capability of query optimizers, in this work, we take an

approach that is complementary to most prior work in query optimization. The question we seek

to address is: Can we develop query execution techniques that dramatically reduce the impact of a

poor choice of a query plan? Thus, the big picture view of our approach is to focus on developing

efficient query evaluation techniques that increase the robustness of query plans, by mitigating as

much as possible issues related to bad plan selection within a subspace of plans. To scope the work

even further, in this chapter we focus primarily on increasing the robustness of plans to errors in

join order selection.

Lookahead Information Passing (LIP), the query evaluation strategy that we propose in this

work, is targeted at the common scenario of star schema data warehouses. In such workloads,

a natural space of “good” plans for a query optimizer is that of fully pipeline-able left-deep join

trees. For instance, consider Query 4.3 in the Star Schema Benchmark, shown in Figure 3.2. Fig-

ures 3.2a and 3.2b show two of the 24 possible left-deep query plans for this query, resulting from

all permutations of the 4 dimension tables in the query.

Figure 3.1 illustrates how the use of LIP increases robustness in query processing. The execution

times of the naive evaluation strategy (without using our proposed techniques), marked using

● ●

0

1

2

3

0 5 10 15 20 25

Query plans

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
) ●●Naive LIP

Figure 3.1: All 24 possible left-deep query plans for SSB Query 4.3 in increasing order of

execution time.

12

SELECT d_year, s_city, p_brand1,

SUM(lo_revenue - lo_supplycost) AS profit1

FROM date, customer, supplier, part, lineorder

WHERE lo_custkey = c_custkey

AND lo_suppkey = s_suppkey

AND lo_partkey = p_partkey

AND lo_orderdate = d_datekey

AND c_region = 'AMERICA'

AND s_nation = 'UNITED STATES'

AND (d_year = 1997 OR d_year = 1998)

AND p_category = 'MFGR#14'

GROUP BY d_year, s_city, p_brand1

ORDER BY d_year, s_city, p_brand1;

⋈
LINEORDER σ(CUSTOMER)

⋈ σ(PART)

σ(DATE)

σ(SUPPLIER)

𝛾

⋈
⋈⋈ =		Join

𝛾 =		Aggregation

(a)

⋈
LINEORDER

σ(CUSTOMER)

⋈ σ(PART)

σ(DATE)

σ(SUPPLIER)⋈
⋈

𝛾

(b)

Figure 3.2: Query 4.3 from Star Schema Benchmark and two left-deep query plans for it.

diamonds, can be anywhere from 1.1s to 2.7s, depending on the join order selected. On the other

hand, the execution times using LIP are all within 0.1s of each other (well within the variance of

execution times for any particular query plan). Further, not only does LIP have negligible overhead,

we actually see an improvement in performance for typical queries. For instance, in 8 of the 13 SSB

queries, the query plan using the LIP technique had an execution time better than the best query

plan without using LIP.

In essence, the LIP technique consists of two key components. First, we pass succinct filter data

structures (such as Bloom filters) from the “outer” relation in all the joins to the inner one. We can

thus approximately pre-filter the fact table (inner relation) before performing the join operation,

greatly speeding it up. For the case of a hash join, for instance, this optimization reduces both the

number of hash table probes required as well as the cost of materializing intermediate results in a

vectorized query execution engine such as ours. Second, we use an adaptive reordering algorithm

that dynamically converges to the optimal ordering in which the outer relation filters are applied.

Note that the filter structures can be built as part of the hash table build operator, and their

application can be folded into the first hash table probe operator. Thus, a query optimizer does not

need to alter the plan to make use of our technique. For this reason, LIP is an execution technique

that is independent of the query optimization method.

The idea of passing a filter between the two sides of a join operation in the LIP technique bears

resemblance to the well-known semi-join optimization. However, to the best of our knowledge,

ours is the first work to aggressively use this optimization across multiple joins in a join tree. For

this reason, the benefit of semi-join optimization for robust query processing has not been noted

13

in literature. It is also important to note that the adaptive reordering phase of the LIP technique is

crucial for both reducing sensitivity to estimation errors as well as speeding up performance. In fact,

without this reordering, there is only a marginal improvement in robustness, largely overweighed

by the additional cost of building and applying these filters.

In this work, we introduce a novel approach to robust query processing: one that focuses on

query execution techniques that are immune to poor choices made by the query optimizer. In this

initial foray, we have limited the scope to star schema data warehouses and left-deep query plans.

LIP is also applicable to left-deep join tree subplans within larger query plans, as we demonstrate

(in Section 3.4.5) using an example query from the TPCH benchmark.

While we admittedly address a simple scenario in this initial work on robustness of query execu-

tion strategies, we are able to present elegant analytical results that we find at once insightful and

intuitive. We believe that these insights will allow us to tackle more complex scenarios in future

work. Finally, we hope that others in the community will join us in exploring this line of research

into the important problem of robust query processing strategies.

We now summarize the contributions made in this chapter.

1. A formal definition for the robustness of a query evaluation strategy, along with a simple ana-

lytical model that allows us to derive closed-form results about performance and robustness in

a plan space under different evaluation strategies.

2. A specific strategy, Lookahead Information Passing, that dramatically increases robustness to

errors in join order selection, with little overhead (and often, improved performance), for the

case of left-deep query plans in a star schema data warehouse.

3. Theoretical guarantees (based on the simple models) for the claims about robustness and near-

optimality.

4. Some notes about implementation issues that had to be addressed in order to apply these tech-

niques in a high-performance main memory analytics database system.

5. Empirical evaluation of LIP, including a new synthetic data and query generator that allows us

to study the impact of skew and correlation on execution times.

3.2 Preliminaries

We begin this section by defining the star schema. We scope the analysis in this chapter to the

plan space consisting of left-deep join trees for select-project-join (SPJ) queries in such a schema,

operating in an in-memory setting. Then, we use a cost model to evaluate the performance of

plans in this space, without using LIP. The results from this baseline analysis allow us to formally

define the notion of robustness that we use in the rest of the chapter. Finally, we provide a brief

14

introduction to Bloom filters, the key data structure used in our implementation of LIP.

3.2.1 Star Schema and Left-deep Join Trees

Data warehouses used for decision support systems often follow the Kimball method [27] which

results in a star schema. In this chapter, we focus on this important pattern.

A star schema consists of a fact table F , often containing information about events such as sales

and shipments, as well as a set of N dimension tables {D1, D2, . . . , DN}, containing additional de-

scriptive attributes such as details about customers or products. The dimension tables are typically

orders of magnitude smaller than the fact table, and are related to it through primary key - foreign

key constraints.

In developing the LIP technique and its theoretical guarantees, we limit our focus to the se-

lection and primary key - foreign key join operations in SPJ queries, since this component often

dominates the total query execution time. Such a query involving n ≤ N of these dimension tables

is represented by the relational algebraic expression:

F ./ σ(D1) ./ σ(D2) .// σ(Dn) (3.1)

All the notation used throughout this chapter is summarized in Table 3.3. Note that for no-

tational convenience, we have dropped the selection predicate on F , though our results do not

depend on this assumption. We also add that while our presentation in this chapter deals only

with SPJ queries, our methods are applicable to SPJ subplans within larger queries as well, as we

illustrate using an example from the TPCH benchmark in Section 3.4.5.

Given a query in this declarative form, it is up to an optimizer to determine the best execution

plan to compute the results. Note that the fact table typically has a much larger cardinality than

the dimension tables, and the only key constraints are between the fact and dimension tables. This

observation implies that the optimal join order is highly likely to use the fact table as the “outer”

relation in every join. For instance, in the case of a hash join, the fact table must be on the probe

side.

We can visualize such a plan as a left-deep tree of joins. Such left-deep trees allow for full

pipelining of the query results and are generally the optimal plan shape for queries of this type. We

further scope the chapter to only examine query plans with this shape.

Example 1 The Star Schema Benchmark (SSB) [39] is a widely used variation of the TPC-H bench-

mark, and is a star schema data warehouse. The benchmark database consists of a fact table LINEORDER

and four dimension tables, with foreign key constraints between the LINEORDER table and each of the

dimension tables. There are 13 queries in the benchmark, split into 4 groups, and each query is of the

15

form select-project-join-aggregate. For instance, Figure 3.1 shows the Query 4.3, which involves joins

between all the tables in the database. As noted above, there can be a number of left-deep plans for a

specific query. Two such plans as shown in Figures 3.2a and 3.2b for Query 4.3.

Category Notation Meaning Remarks

Star Schema

F fact table
see expression in

Equation 3.1
D1, ..., DN dimension tables

n number of joins in the query plan

Bloom Filter

r bit array size: number of bits per inserted object configured by

query optimizerk number of hash functions

ε false positive rate see Equation 3.12

Query Plans

1, 2, ..., n join order D1, D2..., Dn represents any ar-

bitrary join order

1′, 2′, ..., n′ optimal join order (its reverse is the worst join

order) see Section 3.2.2

P12...n query plan in the naive evaluation strategy with-

out LIP

Pb, Pw best and worst naive query plans

B12...n query plan using LIP, but no adaptive reordering
see Section 3.3.2

Bb, Bw best and worst query plans with LIP, no adaptive

reordering

Cost Model

1 cost per tuple for predicate evaluation and hash

table insertion or probe

see Section 3.2.2

β relative cost of Bloom filter insertion or probe

σ1, ..., σn selection predicate and join selectivities

σmin, σmax minimum and maximum selectivities among σi
BuildCost(·) cost of selection, and building hash table and

bloom filter

HashTableProbeCost(.) cost of probing hash tables in LIP strategies

T(·) total cost of query plan

BloomProbeCost(·) cost of probing Bloom filters see Section 3.3.2

Table 3.3: Summary of notation used in Sections 3.2 and 3.3

While structurally similar, these plans can have widely varying execution times, depending on the

selectivities of the predicates appearing in the query. For example, the predicate on CUSTOMER table

in SSB Query 4.3 has a selectivity of 20%, whereas that on DATE is 28%. Simply scheduling the

join between LINEORDER and CUSTOMER before that with DATE (as in Figure 3.2a rather than

Figure 3.2b) would result in about 6% fewer hash table probes in total.

16

Each permutation of the dimension tables, called a join order, results in a distinct left-deep

query plan. Thus there are exponentially many (in fact, n!) different query plans under considera-

tion by the optimizer. Given a permutation π : {1, 2, ..., n} → {1, 2, ..., n}, we can use the notation

Pπ(1)π(2)...π(n) to refer to the query plan corresponding to the join orderDπ(1), Dπ(2), ..., Dπ(n). How-

ever, without loss of generality, we will use the plan P12...n in our analysis.

A query optimizer must estimate the selectivities of the predicates in order to pick the best join

order. In real world data, unlike in benchmark databases, it has been observed that there is a lot

of skew in the data distribution within a column, and that column values are often correlated with

each other. Accurate selectivity estimation under such a scenario remains a challenge despite years

of research.

3.2.2 Modeling Performance Without LIP

The primary focus of this chapter is the effect of join order selection on the performance of star

schema key join queries. To obtain a baseline, we first model the performance of query plans that

do not use the LIP technique. We refer to this as the naive evaluation strategy.

For the analysis below, we focus on the star schema SPJ query shown in Equation 3.1. Without

loss of generality, we pick the plan P12...n as an arbitrary left-deep hash join tree for this query. In the

theoretical results below, we have assumed that all data in the tables is independent and uniformly

distributed. Under this assumption, the selectivity of the join between F and Di is equal to the

selectivity of the predicates on Di. Our experiments in Section 3.4.3 show that this assumption

does not affect the efficacy of LIP in handling real-world data with skew and correlation.

Cost Model

Let us use a simple model to derive the costs for the different operations in the execution of the

query plan P12...n. In this model, we assign unit cost each per tuple to the operations of checking

whether it satisfies a selection predicate, inserting it into a hash table, and probing whether it is

contained in the hash table.

As an example, consider a query with only one dimension table D containing 100 tuples. If

10 tuples pass the selection predicate and are inserted into a hash table, the total cost of these

operations in our model is 100 (for selection) +10 (for insertion) = 110 units. If this hash table is

probed using a fact table containing 1000 tuples, the probe cost is 1000 units and the total cost for

the naive evaluation strategy is 1110 units.

For brevity and clarity of exposition, we have refrained from generalizing this per-tuple cost

model to incorporate the number of attributes in the tuple or the size of the hash table. We also

17

omit the cost of materializing intermediate join results, instead assuming that it is folded into the

unit probe cost. These assumptions are most justified for columnar query execution engines that

apply late materialization.

Hash Table Build Phase

In the naive evaluation strategy, we first apply the selection predicates on the dimension tables and

then build hash tables on the results. Denoting the selectivity of the predicate on Di by σi, the build

cost is:

BuildCost(P12...n) =
n∑
i=1

(1 + σi)|Di| (3.2)

Note that this cost is the same for all join orders.

Hash Table Probe Phase

Next, we probe each of the hash tables in the join order specified by the plan. Let us assume the

selectivity of the join predicate between F and Di is also σi. Then, the cost of probing the hash

table on D1 using F is |F |, and the result has a cardinality σ1|F |. The subsequent probes have costs

σ1|F |, σ1σ2|F | and so on. Letting σ0 = 1, the hash table probe cost in our model can be written as:

HashTableProbeCost(P12...n) =

n∑
i=1

σ0σ1...σi−1|F | (3.3)

Bounds on Cost of Any Plan

The total cost T (P12...n) of this plan is the sum of the build and the probe cost terms.

T (P12...n) = BuildCost(P12...n) + HashTableProbeCost(P12...n)

=
n∑
i=1

(1 + σi)|Di|+
n∑
i=1

σ0σ1...σi−1|F | (3.4)

It is intuitively clear (and can be proved by induction on n) that the HashTableProbeCost above

is minimized when the probes are done in ascending order of selectivities, and maximized when

using descending order. These sorted join orders therefore also have the minimal (or maximal)

total costs, since the BuildCost is independent of the join order. Let us denote the best (minimal

cost) join order by the sequence 1′, 2′, ..., n′ and the corresponding plan P1′2′...n′ by Pb. Then, the

worst (maximal cost) join order is the reverse sequence n′, ..., 2′, 1′, and we denote Pn′...2′1′ as Pw.

Let us also use σmin = σ1′ and σmax = σn′ to denote the minimum and maximum selectivities.

σmin = σ1′ ≤ σ2′ ≤ ... ≤ σn′ = σmax (3.5)

18

Replacing each of the selectivity factors σi for i > 0 in the summation in Equation 3.3 above

with σmax gives us an upper bound for the cost of any plan.

HashTableProbeCost(P12...n) ≤
n−1∑
j=0

σjmax|F |

=
1− σnmax

1− σmax
|F | (3.6)

Similarly, we can get a lower bound for the cost any plan by substituting σmin.

HashTableProbeCost(P12...n) ≥
n−1∑
j=0

σjmin|F |

=
1− σnmin
1− σmin

|F | (3.7)

Note that the bounds in Equations 3.6 and 3.7 depend on the lowest and highest selectivities,

and they apply to any plan (i.e., any join order).

Robustness: Cost Difference Between Plans

Recall that the BuildCost is the same for all join orders. Thus, the difference in total cost between

any two join orders is just the difference between their HashTableProbeCosts. This cost difference

between the best and the worst plans is:

T (Pw)− T (Pb) =
n−1∑
i=1

(
σn′ ...σ(n−i+1)′ − σ1′ ...σi′

)
|F | (3.8)

In Section 3.2.3 below, we will formally define a notion of robustness that depends on this

cost difference. Note that this equation has n − 1 difference terms in the summation. We will

now find a lower bound for this expression in terms of σmax − σmin. The ith difference term above

is the difference between the terms σn′ ...σ(n−i+1)′ and σ1′ ...σi′ , each a product of i factors. The

larger term σn′ ...σ(n−i+1)′ is the product of the largest i factors, i.e., the last i selectivities in the

sequence 1′, 2′, ..., n′. The smaller term σ1′ ...σi′ is the product of the smallest i factors, i.e., the first

i selectivities in the sequence 1′, 2′, ..., n′.

To obtain an upper bound, we begin by replacing all the i− 1 factors apart from the first factor

σn′ in the larger term with the corresponding i − 1 smaller factors from the other term. Then, we

replace these i− 1 factors by the smallest selectivity σ1′ .

σn′σ(n−1)′ ...σ(n−i+1)′ − σ1′σ2′ ...σi′ ≥ (σn′ − σ1′)σ2′ ...σi′

≥ (σn′ − σ1′)σi−11′

19

Plugging the above bound into Equation 3.8, we get the following lower bound:

T (Pw)− T (Pb) ≥
n−1∑
i=1

σi−11′ (σn′ − σ1′)|F |

=
1− σn−1min
1− σmin

(σmax − σmin)|F | (3.9)

3.2.3 Robustness

We will see that, in general, the difference in execution cost between the worst and the best plans

grows linearly with the size of the fact table. Further, it also grows with the spread of selectivities of

the predicates used in the query, i.e., σmax − σmin, because intuitively, errors in join order selection

are more disastrous to performance when the selectivities are more different from each other. In

fact, if we assume that the selectivities (and hence cardinalities) are estimated with some error

tolerance δ, i.e., if each estimate σ̂i is within δ of actual σi, then we expect the worst plan to be

worse than the best in proportion to δ.

Our cost model does not incorporate the second order effects such as the size of the hash table

on probe cost and the impact of number of output attributes on materialization cost. In the special

case when the predicate selectivities are all similar, σmax − σmin is negligibly small or even 0, and

these second order effects dominate the cost difference between plans. Addressing this shortcoming

of our model is left out of scope of this chapter. Consequently, we assume that σmax − σmin is non-

zero in the definitions below.

To make this notion more concrete, let us formally define robustness such that we can use it to

compare different query evaluation strategies.

Definition 1 Θ-Robustness: An evaluation strategy E is said to be Θ-robust with respect to a plan

space P if the maximum deviation in performance of any plan in P (including the worst plan Ew) from

the best one Eb, normalized by the fact table cardinality and spread of selectivities in a query, is at most

Θ.

T (Ew)− T (Eb)
(σmax − σmin)|F |

≤ Θ, σmax 6= σmin (3.10)

Definition 2 θ-Fragility: An evaluation strategy E is said to be θ-fragile with respect to a plan space

P if the maximum deviation in performance of any plan in P (including the worst plan Ew) from the

best one Eb, normalized by the fact table cardinality and spread of selectivities in a query, is at least θ.

θ ≤ T (Ew)− T (Eb)
(σmax − σmin)|F |

, σmax 6= σmin (3.11)

20

By Equation 3.9 above, the naive (non-LIP) evaluation strategy is θ-fragile with respect to the

space of left-deep hash join trees, for θ =
1−σn−1

min
1−σmin

.

For robustness, we want to pick an evaluation strategy which guarantees that mistakes made

by the query optimizer are not too expensive. But a θ-fragile strategy such as the naive strategy

necessarily has a large spread in performance between the best and worst plans, particularly when

θ is large. Thus, such a strategy adds fragility to plan selection. On the other hand, a Θ-robust

strategy guarantees that even the worst plan in the plan space is not much more expensive than

the optimal, particularly when Θ is small. In Section 3.3, we will develop such a Θ-robust strategy

that makes plan selection more robust.

3.2.4 Bloom Filter

A Bloom filter [10] is a probabilistic data structure that succinctly represents a set. It is used to

maintain approximate information about membership in the set. When probed to test for member-

ship of an object in the set, if the Bloom filter returns false, then the object is guaranteed not to

be a members of the set. It is also guaranteed to return true for all members of the set. But the

filter may also wrongly return true for objects that are not members. The probability of such false

positives, denoted ε, can be fixed by appropriately configuring the filter.

A Bloom filter consists of a configurable number of bits in a bit array, as well as a configurable

number k of hash functions. These k hash functions can be thought of as mapping each object into

k bit positions in the bit array. To insert an object into the filter, we set the k bits at the positions

indicated by the k hash functions. To test whether an object is in the filter, we check whether all

of the corresponding k bit positions are set. If any of these k bit positions is unset, then we can be

sure that the object is not in the set. But it is possible that all these k bits are set even though the

object had never been inserted, resulting in a false positive.

Optimal Configuration: If the Bloom filter bit array size is configured to be r bits per object

inserted into the filter, then the rate of such false positives is [34]:

ε '
(

1− e−k/r
)k

(3.12)

Based on Equation 3.12, one can derive the theoretically optimal configuration of the Bloom filter

for a given target false positive rate. For instance, to get a false positive rate of 1%, we can use

a Bloom filter with about 9.6 bits per object (regardless of the size of the object) and 6 hash

functions.

21

3.3 Lookahead Information Passing

In this section, we first introduce Lookahead Information Passing (LIP), and then show the benefits

of the LIP evaluation strategy for robustness as well as performance.

The key insight behind the LIP strategy is that in the space of left-deep join trees for star schema

queries, a suboptimal plan schedules less selective joins before selective ones. Such a plan incurs

additional cost relative to the optimal one due to extra hash table probes for tuples that are filtered

out in the later joins.

Thus, we can mitigate this cost by forwarding information about later join predicates to ear-

lier ones in the plan. Such a lookahead filter can be forwarded from the build tables involved in

downstream joins to the probe table, where they can be applied prior to performing the hash table

probe. The resulting hash table probes now involve far fewer tuples.

The LIP strategy is summarized in the algorithm below.

1. For each dimension table in the join tree, we build both a hash table as well as a succinct filter

data structure like a Bloom filter on the selection result.

2. We then simultaneously probe all these filters using the selection result of the fact table, main-

taining hit/miss statistics.

3. We adaptively reorder the filters during the probe, using the estimated selectivity. For a good

choice of filter configuration, the result of this multiway filter probe is roughly equal to the final

output result, albeit possibly with a few false positives. We describe this algorithm in more detail

in Section 3.3.1.

4. Subsequently, we probe the hash tables and eliminate the false positives as well as collect build-

side attributes required for further processing.

Thus, using succinct filter data structures (such as a Bloom filter), we can greatly reduce the

hash table probe cost (which is the dominating cost term) in such multi-join queries. In fact, as

we show in Section 3.3.3, there are even fewer hash table probes than in the optimal plan using

naive evaluation. However, we bear the additional cost of building and probing the LIP filter itself.

On balance, we still see a speedup since the LIP data structures (Bloom filters in this context) are

more space-efficient than hash tables, and are more likely to fit in the processor caches, minimizing

probe costs.

The small size of such filters also allows us to dynamically reorder their probes based on their

observed selectivities. This adaptive reordering ensures that the number of probes to the filters is

close to the number of hash table probes required in the optimal join order, regardless of the join

order picked by the optimizer. In fact, nearly all join orders exhibit roughly the same execution

time, and that time is roughly equal to the optimal execution time (or better).

22

We present an analytical cost model in Section 3.3.2 to support the claims made above. In

Section 3.4, we corroborate these findings using empirical results as well.

For convenience, the LIP technique is described here using Bloom filters and hash joins, though

neither choice is essential for the technique. Further, we limit our focus to the in-memory setting,

where there is enough memory to hold the hash tables and all the selected tuples for each dimen-

sion table in the query in memory. Such settings are not uncommon in high-performance analytic

environments. (We note that the overall framework can be expanded to cover the case when inter-

mediate data has to be spilled to disk.The LIP technique is likely to be even more beneficial in this

scenario, given that it dramatically reduces the size of intermediate relations. This is a direction for

future work.)

3.3.1 Adaptive Reordering of Lookahead Filters

Motivation

In the LIP strategy, the lookahead filters from the dimension tables are probed by the fact table

tuples prior t1o probing the join hash table, thereby greatly reducing the number of hash table

probes. However, this gain comes at the cost of additional probes into the lookahead filters. Even

though these probes are less expensive than hash table probes, they can still become a significant

component of the overall execution time if their ordering is poorly chosen. For instance, if we

always apply the lookahead filters in the same order as the join order, then a plan with a bad join

order will cause a large number of tuples to be used for probing the low-selectivity filters, only to

have them be dropped in the following high-selectivity filter probes. Ultimately, such a scenario

leads to low robustness.

We now summarize the algorithm we use to mitigate this issue, followed by some implemen-

tation notes. Then, we use an analytical model to prove that the algorithm has fast convergence.

Experimental results supporting the need for adaptiveness are presented in Section 3.4.4.

Algorithm Summary

Algorithm 1 shows how we dynamically adapt the lookahead filter probe order to mitigate the

additional cost due to a bad fixed ordering. We maintain hit/miss statistics for all probes into each

of the lookahead filters. Periodically, these statistics are used to estimate the observed selectivity

of the underlying filters, called the miss rate here. Sorting the lookahead filters by their miss rates

ensures that subsequent probes occur on the most selective filter first, then the next most selective

filter, and so on. Since the convergence is usually very fast, the number of lookahead filter probes

performed is therefore roughly the same as the number of hash table probes in the optimal (minimal

23

cost) join order, regardless of the join order selected by the query optimizer. Thus, this adaptive

reordering is a crucial contributor to the robustness and the near-optimality properties of LIP.

Algorithm 1: Filtering with adaptive reordering

Input: filters – an array of m lookahead filters

tuples – an array of n tuples

Output: indices of tuples that pass filtering

results← ∅
foreach f in filters do

count[f]← 0

miss[f]← 0
batch_size← 64

n← |tuples|
loc← 0

while loc < n do
probe_batch← an array of tuple indices from loc to min(loc + batch_size, n)− 1

foreach f in filters (in order) do
result_batch← ∅
foreach i in probe_batch do

if f contains tuples[i] then
result_batch← result_batch ∪ {i}

count[f]← count[f] + |probe_batch|
miss[f]← miss[f] + |probe_batch| - |result_batch|
probe_batch← result_batch

Sort filters in ascending order of miss[f]
count[f]

results← results ∪ probe_batch

loc← loc + batch_size

batch_size← batch_size × 2

return results

Critical Implementation Aspects

We have implemented the LIP technique in the Quickstep RDBMS, whose storage subsystem hori-

zontally partitions each table into small blocks of a few megabytes each. The algorithm above is run

for each such block in the fact table. We begin the probe by creating a small batch probe_batch of

a few hundred tuples. We then probe the first lookahead filter f using the batch of tuples, keeping

24

statistics about the number of probes, and hits/misses in an auxiliary data structure. The tuples

whose keys are found to be hits in f (including false positives) are written into a result_batch,

which is then used to probe the next filter in bulk. After all the filters have been probed using the

first batch, we sort the filters in ascending order of their miss rates, computed from the hit/miss

statistics in the auxiliary data structures. This new ordering is used for the next cycle of batched

probes.

The batching of tuples in the algorithm is necessary for efficiency because the aggregate size

of all lookahead (Bloom) filters is often larger than the processor cache size. The probes are most

cache-efficient when we allow one filter at a time to warm up the cache and become cache-resident

by consecutively probing it with tuples in a batch. Note another implementation detail: to avoid

the cost of copying tuples between probe_batch and result_batch, we only use a single batch data

structure containing tuple references. Our execution engine performs the lookahead filter probes

as part of the hash join probe operator for the bottom-most join in the query plan. After all the

filters have been probed using a batch, the resulting tuples are used to probe the bottom-most hash

table. The remaining hash tables are only probed after an entire output block is produced.

While large batch sizes benefit from cache residence of the Bloom filters, they slow down the

convergence rate of the adaptive algorithm, since reordering is only done between batches. To

balance the two effects, we adapt the batch sizes by iteratively doubling it at the end of every cycle,

along with the adaptive reordering. Both the batch size and the lookahead filter order are reset

after completing all the probes for a given storage block of the fact table.

Convergence Rates

To examine the convergence procedure in our model, we assume that join predicates are inde-

pendent and that the tuples in a block are randomly distributed. The independence assumption

ensures that the observed miss rate of a given filter does not depend on which filters were probed

prior to it. The random distribution assumption ensures that, within a block, observed miss rates

for the tuples at the beginning of a block are roughly the same as those for tuples anywhere else

in the block. Note that this assumption does not require the tuples in the entire table to be ran-

domly distributed: for instance, the adaptive algorithm can gracefully deal with partitioned tables

or biases in the order of insertion of tuples into the fact table.

Under the above assumptions, according to the law of large numbers, the observed miss rate

for the ith filter converges to its selectivity, say γi. Note that in the case of a Bloom filter, this γi
includes both the selectivity of the predicate on the corresponding dimension table, as well as a

(configurable) false positive rate. Consider the probability that, after probing using Ni tuples, the

observed miss rate γ̂i is off from γi by more than a factor δ. Modeling the observed miss rate as a

25

Binomial random variable with mean γi, using Chebyshev’s inequality we can derive that:

Pr

(
1− δ < γ̂i

γi
< 1 + δ

)
≥ 1− γi
Niγiδ2

We see that the observed miss rate for a filter converges to its true selectivity at a rate propor-

tional of the number of tuples used to probe the filter.

Note that this number of probes for the ith filter within a batch depends on the selectivities of

the prior filters, in that highly selective prior filters 1, 2, ..., (i−1) may result in too few tuples being

used to probe the ith filter. We have not had found this to be an issue in practice. Instead, for

typical selectivities in the range 5% to 25%, we have found that the ordering of the filters converges

to the optimal in just 3-4 adapter cycles. For instance, if the true selectivity γ = 0.10, then after

examining 3, 800 tuples, the estimation error δ is less than 5% with 95% probability.

3.3.2 Robustness Through LIP

Next, we derive analytical results for the performance and robustness of the LIP evaluation strategy,

similar to the results derived in Section 3.2.2 for the naive evaluation strategy.

Corresponding to the plan P12...n in the naive evaluation strategy, consider the equivalent plan

B12...n that uses LIP to whittle down the fact table before probing the hash tables in the order

defined by the subscript sequence.

Cost Model

Let us model the per-tuple cost of a Bloom filter insertion or probe by a factor β relative to the unit

cost for per-tuple hash table operations.

As an example, consider a query with only one dimension table D containing 100 tuples. Sup-

pose 10 tuples pass the selection predicate and get inserted into the hash table and Bloom filter.

The total cost of these operations in our model is 100 (for selection) + 10 (for hash table insertion)

+ 10 β (for Bloom filter insertion) = 110 + 10β units. If the Bloom filter is probed using a fact

table containing 1000 tuples, the probe cost is 1000β units. Assuming a false positive rate of 10%

for the filter, the probe results in 200 selected tuples, rather than the ideal 100 (extra 10% of 1000

tuples). These 200 tuples are then used to probe the hash table at a cost of 200 units. Thus, the

total cost of this plan using the LIP technique is 310 + 1010β units.

Hash Table and Bloom Filter Build Phase

In the LIP evaluation strategy, we first apply the selection predicates on the dimension tables and

build both a hash table and a Bloom filter on each result. The total cost for these operations is

26

independent of the selected join order and is given by:

BuildCost(B12...n) =
n∑
i=1

(1 + σi + βσi)|Di| (3.13)

Implementation note: In a multithreaded execution environment, each Bloom filter must be

constructed in parallel by multiple threads. It is clear that simply making every writer thread

acquire an exclusive mutex lock before writing to a Bloom filter causes a huge drop in scalability

of query processing. In fact, this Bloom filter build phase can easily become the bottleneck for the

entire query. Instead, we use a parallel Bloom filter construction algorithm that uses the fact that

insertions into the Bloom filter are commutative and associative. Each thread, while scanning the

input dimension table, constructs its own thread-local copy of the Bloom filter. All these local filters

have the same configuration, set by the query optimizer. Finally, all the thread-local filters for a

particular table are unioned together using the bitwise-OR operation on the bit array.

Bloom Filter Probe Phase

Recall from Section 3.2.4 that as a probabilistic data structure, the Bloom filter has a certain false

positive rate, say ε, that we can appropriately configure. Consider the Bloom filter built on the

selection result of the dimension table Di. If we probe this filter using some N tuples from F , we

would expect to obtain hits for not only the σiN tuples truly passing the predicate, but also up to

εN false positives. Of course, only at most N tuples can be hits, notwithstanding the false positive

rate. Thus the selectivity of this Bloom filter is max(1, σi + ε). For simplicity, we will assume that

σi + ε < 1 hereafter.

The next step in the strategy is to probe all the Bloom filters, along with adaptive reordering

of the filters. As we have shown in Section 3.3.1, the adaptive reordering algorithm converges

quickly to the optimal ordering of Bloom filters. This ordering is the same as the increasing order

of selectivities, which is also the optimal ordering we have seen before for hash table probes.

As before, we denote this ordering by the sequence 1′, 2′, ..., n′. We ignore the negligibly small

overhead of the probes and adaptive algorithm until convergence. Thus the BloomProbeCost is:

BloomProbeCost(B12...n) =

[
1 +

n−1∑
i=1

(σ1′ + ε)...(σi′ + ε)

]
β|F | (3.14)

Note that this cost has the optimal selectivity order 1′, 2′, ..., n′ on the right hand side, but is inde-

pendent of the selected join order 1, 2, ..., n. We note in passing that instead of probing the Bloom

filters adaptively, if the join order were to be used for probing, then this cost term would no longer

be independent of the join order. In fact, in that case, this cost term would actually dominate the

overall query execution cost, greatly impacting robustness.

27

Hash Table Probe Phase

Regardless of the order of the Bloom filter probes above, the probes result in a final relation of size

(σ1 + ε)...(σn + ε)|F |, which we use to probe the n hash tables built earlier. After probing the first

hash table at a cost of (σ1 + ε)(σ2 + ε)...(σn + ε)|F | units, we eliminate the false positives obtained

from the corresponding first Bloom filter, so that the resulting cardinality is σ1(σ2 + ε)...(σn + ε)|F |.
Continuing this line of reasoning (and setting σ0 = 1 for convenience), we get:

HashTableProbeCost(B12...n) =

n∑
i=1

σ0σ1...σi−1(σi + ε)...(σn + ε)|F | (3.15)

If we ignore the terms that are O(ε2) or higher powers of ε, we can simplify the above equation

to:

HashTableProbeCost(B12...n) ' σ1σ2...σn|F |
n∑
i=1

1 + ε
(1

σi
+

1

σi+1
+ ...+

1

σn

)
(3.16)

This HashTableProbeCost is minimized when the probes are done in ascending order of selectivity

1′, 2′, ...n′ and maximized when using the descending (reverse) order. Thus, we see that replacing

each of the terms in the inner summation of the above equation with σn′ = σmax gives us a lower

bound for the HashTableProbeCost of any plan with LIP.

HashTableProbeCost(B12...n)

≥ σ1σ2...σn|F |
n∑
i=1

1 + ε

(
1

σn′
+

1

σn′
+ ...+

1

σn′

)

= σ1σ2...σn|F |
n∑
i=1

1 + ε
n− i+ 1

σn′

= σ1σ2...σn|F |

[
n+

ε

σmax

n(n+ 1)

2

]
(3.17)

Substitution with σ1′ = σmin in the inner terms gives us the following upper bound for the cost

of any plan in this strategy.

HashTableProbeCost(B12...n) ≤ σ1σ2...σn|F |

[
n+

ε

σmin

n(n+ 1)

2

]
(3.18)

Robustness: Cost Difference Between Plans

The total cost T (B12...n) for any plan is the sum of the three cost terms above. Since the first two

terms are both independent of the join order, the difference between the total costs for any two

plans is only due to the difference in the HashTableProbeCost terms. We can use the above upper

28

bound for the best query plan Bb and the lower bound for the worst query plan Bw to bound the

difference between the HashTableProbeCosts of any two plans in this strategy.

T(Bw)− T(Bb) ≤
1

2
σ1σ2...σnεn(n+ 1)

[
1

σmin
− 1

σmax

]
|F | (3.19)

Key Result: From Equation 3.19, it is clear that LIP with adaptive reordering is a Θ-robust

evaluation strategy, for

Θ =
1

2

σ1σ2...σn
σminσmax

εn(n+ 1) (3.20)

3.3.3 Insights from the Analytical Model

LIP Makes Plans More Robust

Using Equation 3.9 in Section 3.2.3, we showed that the naive evaluation strategy without LIP is

θ-fragile with respect to the space of left-deep hash join trees, for θ =
1−σn−1

min
1−σmin

. On the other hand,

using Equation 3.19 above, we showed that LIP with adaptive reordering is Θ-robust with respect

to the same plan space, for Θ given by Equation 3.20.

Usually, the selectivities σi are fairly small, lying in the range of 5% to 30%. In such a scenario,

the product of n − 2 selectivities in Θ bound for LIP strategy is likely to be much smaller than

the factor quadratic in the number of joins n. Further, the false positive error rate ε can be made

arbitrarily small by appropriately configuring the Bloom filter. In fact, it can even be made 0 by

using an exact LIP data structure (such as a bitmap). To illustrate this point, let us take an example

query with n = 6 joins with selectivities 5%, 10%, ..., 30%. Then, Pw and Pb have a cost difference

of at least 0.21|F | units, whereas Bw and Bb have a cost difference of at most 0.002|F |.
From this discussion, it is clear that LIP theoretically guarantees robustness, whereas the naive

evaluation strategy is likely to make plan selection much more fragile.

LIP Makes Plans Nearly Optimal

The above discussion shows that the LIP technique dramatically improves the robustness of query

plans by ensuring that the difference in execution cost between the worst and best plans is very

small. We now consider how a LIP query plan compares to the optimal query plan using naive

evaluation. Using similar methods as above, we can get a lower bound for the total cost of the

optimal naive query plan Pb, as well as an upper bound for the worst LIP query plan Bw.

29

T (Pb) ≥
n∑
i=1

(1 + σi)|Di|+
1− σnmin
1− σmin

|F | (3.21)

T (Bw) ≤
n∑
i=1

(1 + σi + βσi)|Di|+
1− (σmin + ε)n

1− (σmin + ε)
β|F |+ σ1σ2...σn

[
n+

ε

σ1′

n(n+ 1)

2

]
|F | (3.22)

In the above bounds, we see that the BuildCosts differ by
∑n

i=1 βσi|Di|. Since the dimension

tables are typically much smaller than the fact table, particularly after application of a selection

predicate, this cost difference is usually a small fraction of the optimal cost.

As noted before, in the BloomProbeCost(Bw), the second term (ε) can be made very small, so

that this term is roughly β times HashTableProbeCost(Pb). This is because as long as the false

positive rate ε is small, we make roughly the same number of probes into the Bloom filter in any

query plan using LIP with adaptive reordering as we make into the hash tables in the optimal naive

query plan Pb. However, due to its small size, the Bloom filter is likely to be cache resident and

hence make the probes much faster, i.e., β � 1. But, there is a tradeoff here as making ε smaller

by increasing the Bloom filter size or number of hash functions also makes β larger (i.e., probes

become more expensive).

Finally, as we have discussed before, the product of selectivities in the upper bound for Hash-

TableProbeCost(Bw) is typically small enough to render the term a negligibly small fraction of the

total cost of the optimal plan, despite the quadratic dependence on the number of joins n.

Summing the three terms, we see that T (Bw) is typically at least as small as T (Pb), and is often

better. In other words, not only is an LIP query plan guaranteed to run in approximately the time

for the optimal LIP query plan, it is also nearly always as good as (and often better than) the optimal

naive query plan. Our empirical evaluation in Section 3.4 also confirms these theoretical insights.

3.4 Evaluation

All the experiments presented in this section were performed using the Quickstep database engine,

which is an in-memory relational DBMS. The experiments were run on a machine with 160GB of

main memory and dual socket Intel Xeon E5-2660 v3 processors, with 10 physical cores per socket

(i.e. 40 virtual cores with hyperthreading). Hyperthreading was turned on.

We used three datasets for the experiments: a) Star Schema Benchmark (SSB) [39] at scale

factor 100 (i.e., database size roughly 100 GB), b) a synthetic dataset to stress different data

parameters, and c) TPC-H at scale factor 100. For the experiments below, unless stated otherwise,

we use the SSB dataset.

30

In all the experiments, the buffer pool was large enough to contain the entire working set

in memory. All reported query execution times are averages of 5 successive runs. Since we are

interested in how robust our techniques make the query execution times, we enhanced the query

optimizer to produce all possible join orders for each query. All joins were performed using hash

joins, where the fact table was used to probe the hash tables built using the result of predicate

evaluation on the dimension tables.

All experiments involving LIP used Bloom filters configured to have 1 identity hash function and

size 8 bits per tuple estimated in the dimension table (after selection). This configuration choice is

explained in Section 3.4.1 below.

3.4.1 Choice of Bloom Filter Configuration

While LIP can use various filter data structures, in this paper, we focused on Bloom filters. The

configuration of a Bloom filter is defined by its size (number of bits in the bit array) and the

number and choice of hash functions used in building or probing it. These parameter choices affect

not only its false positive rate (denoted ε in this paper) but also the computational cost of operations

on it (denoted β). The false positive rate can be obtained from the configuration using theoretical

closed-form results [34]. However, in this paper, we are interested in the overall execution cost for

a query, which depends on both these factors. Therefore, we use empirical analysis to optimize the

choice of Bloom filter configuration for this in-memory database context.

Figure 3.4 shows the optimal execution time (i.e., for the best join order) among all 24 possible

join orders for SSB Query 4.3, for different Bloom filter configurations. (Results for other queries

are similar, and in the interest of space, we only present results for Query 4.3.) The four curves

in the figure show the execution times when the number of hash functions used for building and

probing the Bloom filter is varied from 1 through 4. The x-axis for the plots is the size of the Bloom

filter, as a ratio of the estimated cardinality of the selection result for the dimension table it is based

●

●
● ● ● ●

0

1

2

3

4

2 4 6 8 10

Bloom filter size (num bits per tuple)

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

● 1 Hash Fn
2 Hash Fns
3 Hash Fns
4 Hash Fns

Figure 3.4: Comparison of optimal execution times for Query 4.3 using different Bloom filter

configurations

31

on, i.e., the number of bits in the Bloom filter per tuple used to build the corresponding hash table.

It is clear that the best performance is obtained using just a single hash function, and about

8-10 bits per tuple. Further, the performance of the query is not sensitive to the size of the Bloom

filter near this optimal size. This latter observation justifies the use of our technique even when the

estimated cardinality of the table may be erroneous.

The fact that a single hash function gives the best performance at all Bloom filter sizes may

seem surprising at first, particularly in light of the fact that theoretical results suggest that about 3

hash functions are required to get a low false positive rate. A deeper analysis using code profiling

and CPU performance counters indicated that the main factor in the running time using LIP is the

cache miss rate for the Bloom filter probing. If we use k hash functions, we make k lookups into the

Bloom filter bit array for every positive tuple (those in the set), and 2-3 probes for the negative ones

(those not in the set). Each lookup is a random reference which, for some of the larger dimension

tables (i.e., larger bit array), is likely to be a cache miss. Choosing just a single hash function

significantly reduces the cache miss rate.

Another factor that determines performance of the LIP approach is the choice of the hash func-

tions. In our experiments with various different hash function families, we found that the identity

hash function yields the best performance for this dataset. The results in Figure 3.4 are for the first

hash function being an identity function, and the others being variants of Knuth’s multiplicative

hash functions [28]. More complex hash functions, while more “ideal” in a theoretical sense, were

found to be too computationally inefficient in the case of this dataset.

3.4.2 Robustness to Join Order Selection

For each query in the SSB workload, we enumerated all possible join orders and ran them with and

without LIP. Figure 3.5 shows the execution times for the first three queries (group 1) which have

only one join. For the other queries, Figure 3.6 compares running times for all 24 join orders. In

Figure 3.6, the execution times of query plans without using LIP is shown using diamonds, on the

left in each subfigure, and they are connected to the execution times of query plans when using LIP

●

●

●

Query 1.1 Query 1.2 Query 1.3

700

750

800

850

900

 Without LIP With LIP Without LIP With LIP Without LIP With LIP

E
xe

cu
tio

n
tim

e
(m

s)

Figure 3.5: Execution times for SSB queries in group 1.

32

●●●●●● ●●●●●● ●●●●●●

●●●●●●
●●●●●● ●●●●●● ●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●

Query 2.1 Query 2.2 Query 2.3 Query 3.1 Query 3.2 Query 3.3 Query 3.4 Query 4.1 Query 4.2 Query 4.3

0

5

10

15

 Naive LIP Naive LIP Naive LIP Naive LIP Naive LIP Naive LIP Naive LIP Naive LIP Naive LIP Naive LIP

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Figure 3.6: Execution times for the Star Schema Benchmark queries for groups 2–4, with and

without LIP.

(the latter is shown using circles).

In the naive strategy, we see that for all queries where there are multiple possible join orders

(i.e., excepting the queries in group 1), there are several query plans that are far worse than the

optimal one. For instance, in case of Query 4.1, the worst plan (18.1s) is more than 6× worse than

the best plan (2.9s), and 10 of the 24 possible join orders have a running time at least double the

optimal. On the other hand, the LIP strategy is much more robust to the join order. For the same

query 4.1, all the 24 query plans have times within 5% of each other.

It is also remarkable that for most queries, the execution time of even the worst query plan

using LIP is smaller than (or within the experimental error bounds) of the best query plan without

LIP. In fact, comparing the total execution time for the entire benchmark, even choosing the worst

query plan for every query along with LIP is better (17.4s) than choosing the optimal query plan

for every query without LIP (17.6s), and far better than the worst plan for every query (90.9s).

3.4.3 Handling Skew and Correlation

In addition to the experiments using SSB, we also use a synthetic workload to stress-test our imple-

mentation using a large number of tables of widely-varying sizes, containing data with skew and

correlation.

●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●●

Query 01 Query 02 Query 03 Query 04 Query 05 Query 06 Query 07 Query 08 Query 09 Query 10

0

5

10

15

 Naive LIP Naive LIP Naive LIP Naive LIP Naive LIP Naive LIP Naive LIP Naive LIP Naive LIP Naive LIP

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

Figure 3.7: Execution times for sampled join orders of some queries in the synthetic workload.

33

●●●●●● ●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●
●●●●●●

Query 3.2 Query 3.3 Query 4.2 Query 4.3

0.0

0.5

1.0

1.5

2.0

 Fixed Adaptive Fixed Adaptive Fixed Adaptive Fixed Adaptive
E

xe
cu

tio
n

tim
e

(s
ec

on
ds

)

Figure 3.8: Execution times for fixed and adaptive lookahead filter probe ordering.

The synthetic data generator creates a star schema database consisting of a fact table and n

dimension tables (we set n = 12). Each dimension table has three columns, one integer primary

key and two character columns with 25 distinct values each. They vary in size (4 each have sizes

in ratio 1:10:100). The fact table has a primary key and all 12 foreign keys and is 10x larger than

the largest dimension table. The total database size is about 10 GB.

Each value in the character columns consists of a prefix and a suffix. The prefix is always

picked uniformly, whereas the suffix is picked uniformly in half the tables and, in the rest, using

an inverse exponential distribution (as in [41]). Further, in half the dimension tables, the two

character column values are correlated, sharing the same prefix with probability 0.80. In the rest

of the tables, these columns are independent. The foreign keys in the fact table are independent

and uniformly distributed. The 12 dimension tables are obtained using all possible combinations

of size, distribution and correlation above.

We ran 20 synthetically generated queries on this dataset, each joining the fact table with a

random subset of the dimension tables using an appropriate randomly generated equality predicate.

On average, each query contains six dimension tables.

For each query, we randomly sampled 26 different join orders from the plan space. Each join

order was executed with and without LIP. Figure 3.7 shows the execution times for some of these

queries (we omit the rest due to space constraints).

For every query, the best plan in the sample set had an execution time between 200 and 400ms.

Using LIP improved the best time for each query by about 13% on average. Only three of the queries

were negatively impacted, with a 4% slowdown at worst. More importantly from the perspective of

robustness, the average difference in execution times between the worst and best plans went down

from 14 seconds without LIP to just 150 ms with LIP.

3.4.4 Importance of Adaptiveness

In this experiment, we ran each SSB query using all possible join orders, with the order of LIP filter

probing either fixed or chosen adaptively using Algorithm 1.

34

Figure 3.8 shows the resulting execution times for some selected queries. Overall, adaptive

execution imposes little overhead (at most 8%). However, in some queries, such as queries 3.2

and 3.3, adaptiveness is crucial for maintaining robustness. For instance, for a particular join order

for query 3.2, when we changed the bloom filter probes to be adaptive rather than the same fixed

ordering as the join order, the slowdown from the optimal ordering dropped from 57.6% to just

6.3%. These results support our claim in Section 3.3.2 that adaptive reordering is a critical part of

the robustness-enhancing property of the LIP technique.

3.4.5 Applying LIP to Subplans

Throughout this paper, we have limited our focus to left-deep join trees for star schemas. However,

the LIP technique is more generally applicable to subplans with this pattern in larger query plans.

To demonstrate this wider applicability, we picked Query 8 from the TPCH benchmark (scale factor

100) and applied LIP to star join subplans within each of the 675 query plans enumerated for this

query by our optimizer.

Figure 3.9a shows one of the subplans following this pattern. While we have used LINEITEM

as the “fact” table, the “dimension” tables in this pattern are themselves subplans having the same

primary key as the ORDERS, PART and SUPPLIER tables. Note that while ORDERS is usually

considered a fact table in the TPCH schema, for the purpose of LIP application, it can be considered

as a dimension table due to the primary key - foreign key constraint between it and the LINEITEM

table.

Figure 3.9b illustrates the gain in robustness using a box plot. With the naive execution strategy,

the running times for this query varied from 2.1 s to 58 s, whereas LIP reduced this spread to

between 1.3 s and 7.4 s. In addition to this 9× reduction in the difference between running times

of plans, every query plan also saw an improvement in performance, with speedups varying from

1.20× to 18× (geometric mean of speedups was 4.0). In fact, 25% of the query plans ran faster

with LIP than the optimal plan with naive evaluation.

3.5 Related Work

We organize the related work in five groups, and discuss each group below.

Bloom filters. First introduced in [10], Bloom filters have been used extensively in distributed

database systems to minimize I/O and network transmission costs [30, 4, 12], as well as in semi-

join optimization [9, 47, 30, 4, 12, 22, 43] to accelerate joins. In this chapter, we use bloom filters

in LIP and also explore the impact of its parameters when used with LIP.

35

Sideways information passing (SIP). The semi-join reduction [9, 47, 30, 4, 12] accelerates a

single join by passing a filter from one side to the other. SIP strategies and magic sets transfor-

mation, first introduced in [8], consider the space of semi-join reductions and associated query

rewriting techniques. There has been much follow-on work in this space, including the use of

greedy heuristics [15, 36] and cost-based approach [42].

Our proposed LIP strategy can be considered a special case of the general SIP strategies, though

with the additional crucial component of adaptive filter reordering. Further, LIP also bears consid-

erable likeness to adaptive information passing [25]. However, to the best of our knowledge ours

is the first work to focus on the robustness benefits of SIP, as well as the ability to get near-optimal

performance from all plans in the subspace under consideration. We supported these claims using

both theoretical and empirical results.

Adaptive reordering of filters. Prior work has shown the benefits from reordering of predicates

in relational and stream processing. If selectivities are known exactly, then the optimal filter order-

ing can be derived directly [24]. Otherwise, learning-based approaches [3, 7] can be used. Our use

of adaptive reordering of lookahead filters is inspired by these approaches. However, we focused

our implementation efforts on ensuring low-overhead adaptation, as well as cache-sensitive bulk

application of the filters. These implementation details are crucial to the fast convergence rate as

well as the robustness benefits of LIP.

Robust query execution. The notion of robustness in query optimization has been well studied

in the literature [49]. Proposed techniques include correcting cardinality estimates though sam-

pling [5] or runtime feedback [45], dynamically switching between a candidate set of plans at

runtime [17], as well as runtime re-optimizations [32, 6]. We consider our work to be comple-

mentary to such techniques. Whereas these techniques require a redesign of the query optimizer

(in addition to any changes in the execution engine), our proposed LIP approach attempts to en-

tirely avoid changes to the query optimizer, using query evaluation to immunize against selectivity

⋈
LINEITEM

⋈

⋈

σ(ORDERS …)⋈

σ(SUPPLIER …)⋈

σ(PART …)⋈

(a)

●
●●

●

●

●●
●●●●●
●●
●●
●●
●●

0

20

40

60

Naive LIP

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(b)

Figure 3.9: Left-deep star join subplan in TPCH Query 8, and execution times of all 675 possible

query plans.

36

estimation errors.

Worst-case optimal join algorithms. The result that LIP makes all plans nearly optimal may

be considered related to the class of worst-case optimal join (WCOJ) algorithms [48, 16, 37] that

essentially look at all join relations at the same time. However, we note that there is not much

linkage between LIP and the WCOJ algorithms. The WCOJ algorithms particularly target full con-

junctive queries that are cyclic, and try to bound the total evaluation time by the overall output

size. However, under a star schema where we evaluate joins between the fact table and multiple

dimension tables, the WCOJ algorithms will be suboptimal compared to LIP, due to its overhead in

building heavy hash [37] or B-tree [48] indices, or sorting [16] all the relations.

3.6 Conclusions and Future Work

In this chapter we have introduced a query execution strategy called LIP that collapses the space of

left-deep query plans for star schema warehouses down to almost a single point near the optimal

plan. In addition to this robustness benefit, it also significantly speeds up query execution in this

important subplan space. We have demonstrated these claims through theoretical and empirical

results. Besides the immediate application of LIP, we believe our work opens a novel approach to

the notion of “robustness”, one that is focused on query execution strategies possibly tailored to

corresponding query plan (sub-)spaces.

In future work, we hope to generalize these ideas about robustness and the specific LIP strategy

to more complex schemas and query plan shapes. We will also explore how this new approach to

robustness impacts query optimization.

37

Chapter 4

Additional Query Optimization: Drop

Early, Drop Fast

In this chapter, we introduce two additional query optimization techniques. Both techniques im-

prove Quickstep’s performance on data warehousing workloads (such as the SSB and the TPC-H

benchmarks). Moreover, the second technique is crucial to the performance of the QuickGrail sys-

tem, as we will introduce in Chapter 5.

Below, we first describe a technique that pushes down certain disjunctive predicates more ag-

gressively than is common in traditional query processing engines. Then, we describe how certain

joins can be transformed into cache-efficient semi-joins using exact filters. An exact filter can be

pushed down as a kind of LIP filter where the original join or semi-join gets completely eliminated.

The unifying theme that underlies LIP and these two query optimization methods is to eliminate

redundant computation and materialization using “drop early, drop fast” approaches: aggressively

pushing down filters in a query plan to drop redundant rows as early as possible, and using efficient

mechanisms to pass and apply such filters to drop them as fast as possible.

4.1 Partial Predicate Push-down

While query optimizers regularly push conjunctive (AND) predicates down to selections, it is diffi-

cult to do so for complex, multi-table predicates involving disjunctions (OR). Quickstep addresses

this issue by using an optimization rule that pushes down partial predicates that conservatively

approximate the result of the original predicate.

Consider a complex disjunctive multi-relation predicate P in the form P = (p1,1 ∧ · · · ∧ p1,m1)∨
· · · ∨ (pn,1 ∧ · · · ∧ pn,mn), where each term pi,j may itself be a complex predicate but depends only

on a single relation. While P itself cannot be pushed down to any of the referenced relations (say

38

R), we show how an appropriate relaxation of P , P ′(R), can indeed be pushed down and applied

at a relation R.

This predicate approximation technique derives from the insight that if any of the terms pi,j in

P does not depend on R, it is possible to relax it by replacing it with the tautological predicate

> (i.e., TRUE). Clearly, this technique is only useful if R appears in every conjunctive clause in P ,

since otherwise P relaxes and simplifies to the trivial predicate >. So let us assume without loss of

generality that R appears in the first term of every clause, i.e., in each pi,1 for i = 1, 2, . . . , n. After

relaxation, P then simplifies to P ′(R) = p1,1∨p1,2∨ . . .∨p1,n, which only references the relation R.

The predicate P ′ can now be pushed down to R, which often leads to significantly fewer re-

dundant tuples flowing through the rest of the plan. However, since the exact predicate must later

be evaluated again, such a partial push down is only useful if the predicate is selective. Quick-

step uses a rule-based approach to decide when to push down predicates, but in the future we

plan to expand this method to consider a cost-based approach based on estimated cardinalities and

selectivities instead.

Our experiments show that the partial predicate push-down technique improves the perfor-

mance of two queries in the TPC-H [46] benchmark. In particular, for TPC-H at scale factor 100,

the technique improves Query 07 by a speedup of 6X and improves Query 19 by a speedup of 4X.

There is a discussion of join-dependent expression filter pushdown technique in [11], but the

overall algorithm for generalization, and associated details, are not presented. The partial predicate

push-down can be considered a generalization of such techniques.

Note that the partial predicate push down technique is complimentary to implied predicates

used in SQL Server [33] and Oracle [40]. Implied predicates use statistics from the catalog to

add additional filter conditions to the original predicate. Our technique does not add any new

predicates, instead it replaces the predicates from another table to TRUE.

4.2 Exact Filters: Join to Semi-join Transformation

A new query processing approach that we introduce in this chapter is to identify opportunities

when a join can be transformed to a semi-join, and to then use a fast, cache-efficient semi-join

implementation using a succinct bitvector data structure to evaluate the join(s) efficiently. This

bitvector data structure is called an Exact Filter (EF), and we describe it in more detail below.

To illustrate this technique, consider the SSB [38] query Q4.1 (see Figure 4.1a). Notice that in

this query the part table does not contribute any attributes to the join result with lineorder, and

the primary key constraint guarantees that the part table does not contain duplicates of the join

key. Thus, we can transform the lineorder – part join into a semi-join, as shown in Figure 4.1b.

39

⋈
lineorder σ(supplier)

⋈ σ(customer)

σ(part)

date

𝛾

⋈
⋈

(a) Original query plan

⋉
lineorder σ(supplier)

⋉ σ(customer)

σ(part)

date

𝛾

⋈
⋈

(b) Plan using join to semi-join

transformation

⋈
lineorder σ(customer)

date

𝛾

⋈bloom	filter

σ(part)

σ(supplier)
exact	filters

(c) Final plan using exact filters to

eliminate joins

Figure 4.1: Query plan variations for SSB Query 4.1

During query execution, after the selection predicate is applied on the part table, we insert each

resulting value in the join key (p_partkey) into an exact filter. This filter is implemented as a

bitvector, with one bit for each potential p_partkey in the part table. The size of this bitvector

is known during query compilation based on the min-max statistics present in the catalog. (These

statistics in the catalog are kept updated for permanent tables even if the data is modified.) The EF

is then probed using the lineorder table where the original join gets completely eliminated. The

same optimization also applies to the supplier table and Figure 4.1c shows the final optimized

plan.

The implementation of semi-join operation using EF rather than hash tables improves perfor-

mance for many reasons. First, by turning insertions and probes into fast bit operations, it elimi-

nates the costs of hashing keys and chasing collision chains in a hash table. Second, since the filter

is far more succinct than a hash table, it improves the cache hit ratio. Finally, the predictable size

of the filter eliminates costly hash table resize operations that occur when selectivity estimates are

poor.

The same optimization rule also transforms anti-joins into semi-anti-joins, which are imple-

mented similarly using EFs.

As with the previous section, we use the SSB 100 scale factor dataset to do the experiments.

(The results for the TPC-H dataset is similar.) The LIP and EF techniques together provide a nearly

2X speedup for the entire benchmark. The LIP and semi-join transformation techniques individually

provide about 50% and 20% speedup respectively. While some queries do see a slowdown due to

the individual techniques, the application of both techniques together always gives some speedup.

In fact, of the 13 queries in the benchmark, 8 queries see at least a 50% speedup and three queries

see at least 2X speedup. The largest speedups are in the most complex queries (group 4), where

we see an overall speedup of more than 3X.

40

4.3 Conclusions and Future Work

In this chapter, we have described additional query optimization techniques that eliminate redun-

dant computation and materialization under a “drop early, drop fast” theme. The techniques in-

clude aggressive push-down of certain disjunctive predicates and cache-efficient semi-joins using

exact filters.

There is a never ending search for even more sophisticated query optimization techniques. And

looking at optimizing queries with a very large number of joins and aggregation is a direction of

future work. Examining if machine learning methods can help in query optimization or if methods

like LIP can be extended even further is likely to be a interesting research direction.

41

Chapter 5

Provenance Graph Analytics Using the

Quickstep/Grail Approach

5.1 Introduction

In this chapter, we look into designing an efficient query processing engine for interactive explo-

ration on large provenance graphs.

The larger background lies in the DARPA Transparent Computing (TC) program. The TC pro-

gram aims to develop technologies that record and preserve the provenance of system elements/-

components and the interactions and causal dependencies among these components, and perform

intrusion detection and forensic analysis based on the provenance to counter various types of cyber

threats.

One of the technical challenges that the TC program presents is to store and efficiently query

high-volumes of provenance data structured in a graph data model called provenance graph. The

provenance data arrive in high velocity. A single server can produce 100 million provenance graph

vertices and edges per day, and in typical scenarios we want to query the graph within an one-week

or one-month span.

The basic types of queries to the provenance graph are filter, lineage and path queries. The filter

queries find vertices/edges that satisfy certain constraints (predicates) on annotations. The lineage

queries find all ancestors or descendents in the graph starting from a collection of vertices. The

path queries find all possible vertices and edges on any path between two collections of vertices.

Unfortunately, existing systems cannot even effectively handle the basic lineage and path queries.

On one hand, due to the power-law nature of real-world provenance graphs, one extra hop on the

graph may geometrically expand the number of combinations of possible paths. Thus for systems

using traditional path traversal algorithms (e.g. [1, 2]) it is totally unpredictable whether a single

42

vertexId :
cdm.type :
cmdLine :

cwd :
name :
pid :
ppid :

startTimestamp :

2092652

SUBJECT_PROCESS
sudo chsh s/bin/bash admin
/home/admin
sudo

24646

24628

1542036989754

vertexId :
cdm.type :

path :
permission :

type :

74073

FILE_OBJECT_FILE
/etc/shadow
640

Object

edgeId :
cdm.type :
threadId :

timestamp :
type :

6920022

EVENT_OPEN
24646

1542036989878

SimpleEdge

edgeId :
cdm.type :
threadId :

timestamp :
type :

6920023

EVENT_MMAP

24646

1542036989878

SimpleEdge

edgeId :
cdm.type :
threadId :

timestamp :
type :

6920026

EVENT_CLOSE
24646

1542036989878

SimpleEdge

(a) (b)

Figure 5.1: The left figure (a) shows an example provenance subgraph containing 4996 vertices

and 12207 edges, which is part of an overall graph of 10 million vertices and 33 million edges.

The right figure (b) shows the detailed annotations of 2 vertices connected by 3 edges from (a).

lineage query may come back in a few seconds, or just do not finish (DNF) for one day. On the other

hand, systems designed for handling large-scale power-law graphs (e.g. [19, 31, 20]) mainly use

the Gather-Apply-Scatter (GAS) computation model that is effective for data mining and machine

learning workloads. It is unclear whether the GAS model can be adapted well to handle the path

queries and more generally the pattern matching queries.

In this chapter, we propose a system called QuickGrail that have efficient implementations of the

filter, lineage and path operations, together with fast manipulation of intermediate result graphs.

We then use these basic operations as building blocks to further efficiently support a class of graph

pattern matching queries. With all these functionalities, the QuickGrail system can both server as

a layer to retrieve data for upstream analysis, and server as a tool for interactive exploration on

provenance graphs.

5.2 Preliminaries

We begin this section by introducing property graphs, which is the underlying logical data model

used for representing graphs throughout the chapter. Then, we scope our focus to a domain of

graphs called provenance graphs, and refine a space of queries that our system needs to support for

43

provenance graph analysis.

5.2.1 The Property-Graph Data Model

Property graph is a general and widely used logical data model for structuring graph data. The

data model is supported by many existing graph database systems, such as Neo4j, Apache Giraph,

and GraphLab (now Turi).

A property graph is simply composed of a collection of vertices and directed edges, where each

vertex and each edge is associated with a set of key-value pairs called properties (or annotations).

Besides, an optional schema can be defined to constraint the property domain, such as the possible

combination of key names and data types.

Figure 5.1b shows an example property graph. The vertices and edges each contain property

pairs such as “name:sudo” and “threadId:24646”. Note that the two vertices have different

sets of property keys and we visualize them with different shapes and colors.

Besides the syntactic representation, the properties in Figure 5.1b are also associated with cer-

tain domain-specific semantics that are interpreted as provenance information. In the next sections

we introduce provenance graphs and the related analytical demands in detail.

5.2.2 Provenance Graph

Provenance is a term that is used within a wide range of fields, such as Art, Law, Archaeology,

Anthropology, etc., and Computer Science. Though the precise meaning varies in different contexts,

the term roughly means the history (origin, relation, causality, lineage) of objects and activities.

There are different ways of organizing provenance information. One standardization effort is

the Open Provenance Model (OPM) [35]. OPM defines provenance graph as the data model for

structuring provenance information, which can be viewed as a property graph constrained by a

schema on property key names and value domains. In this thesis we consider provenance graphs

that conform to a slight variance of OPM.

Here we still use Figure 5.1 as an example. Note that there are two vertices in the graph. One

vertex stands for a process and the other stands for a file. The three edges record activities (open,

mmap, close) of the process on the file, at different time points.

5.2.3 Querying a Provenance Graph

The queries to a provenance graph can be high-level, vague and descriptive, such as

Detect in an enterprise-level system provenance all potentially compromised ac-

counts and track related suspicious activities.
(4.2.A)

44

Or they can be low-level, explicit and operational, such as

Find all the vertices that have remote IP address as 128.104.222.140 and show all

descendants of these vertices that are within 2 hops where the edges have times-

tamps within time interval [t1, t2].

(4.2.B)

In this thesis, we will focus on a collection of low-level style operations on provenance graphs.

The operations allow a human analyst to filter the graph to yield (possibly very large) subgraphs as

intermediate results, and do subgraph manipulations such as graph union, intersection, subtraction,

as well as finding paths among subgraphs. The operations should be fulfilled in a timely manner

so that the analyst can interactively and iteratively dig through a provenance graph using typical

trial-and-error and divide-and-conquer methods.

Below Listing 5.2 shows an example script that does the analysis described by (4.2.B). The

script is written in the QuickGrail language which we will introduce in detail in Section 5.3. The

analysis is done step by step, where at each step an operation is performed to either derive a new

graph from existing graphs, or to examine intermediate results so that a human analyst can decide

the subsequent exploration actions.

From the base (i.e. overall) graph,

find all vertices that have remote IP address as 128.104.222.140,

and denote the result (all-vertices) subgraph as $ip.

$ip = $base.getVertex(remoteAddress = '128.104.222.140';

Show summarized information about graph $ip,

e.g. number of vertices, annotation statistics.

describe $ip

Get a subgraph out of the base graph by selecting edges

that have timestamps between 100 and 200.

$slice = $base.getEdgeWithEndpoints(timestamp >= 100 and timestamp <= 200)

Within $slice, find all descendants that are within 2 hops of each vertex in $ip.

$descendents = $slice.getLineage($ip, 2, 'desc');

Export graph $descendents in a format that is ready for visualization,

and mark those vertices which are also in graph $ip with red color.

visualize $descendents $ip.attr('color', 'red');

Listing 5.2: A script that performs analysis (4.2.B) using QuickGrail language.

Moreover, on top of the primitive operations, we also consider a class of powerful pattern match-

ing queries that make things easier for digging out complex connection patterns. Though it is known

that the general graph pattern matching problem is NP-hard, we alleviate the problem by allowing

false positive results when a query is not acyclic.

45

128.104.222.140 128.104.222.150:8888

/bin/bash [root]

ifconfig

/etc/shadow

chsh

SomeServer
listen

connect (tcp)

call (sudo)

launch

read

call

(a)

with $base max depth 5

match remote ->* server ->* serverProcess

->* chsh ->* bash

and bash ->* ifconfig

and bash ->* shadow

and remote.remoteAddress = '128.104.222.140'

and server.localAddress = '128.104.222.150'

and server.localPort = 8888

and serverProcess.* LIKE '%SomeServer%'

and chsh.* LIKE '%chsh%'

and bash.* LIKE '%/bin/bash%'

and ifconfig.* LIKE '%ifconfig%'

and shadow.* LIKE '%/etc/shadow%'

as $matchedGraph;

(b)

Figure 5.3: Example graph pattern that represents a potential infiltration into a server, and the

corresponding pattern matching query written in QuickGrail language.

Figure 5.3a shows an example connection pattern that represents a potential infiltration into a

server, and Figure 5.3b is the corresponding pattern matching query written in QuickGrail that ex-

tracts all matched vertices and edges from the underlying provenance graph. The pattern matching

query can be read as

Find within the base graph all possible combinations of vertices {remote, server, serverPro-

cess, chsh, bash, ifconfig, shadow}, such that “remote” has a path to “server”, and “server”

has a path to “serverProcess”, and . . . , and vertex “remote” has annotation “remoteAd-

dress” with value “128.104.222.140”, and . . . , where each path has a max depth of 5.

Finally union all the possible result vertices and the paths among them as specified by the

query into result graph $resultGraph.

Note that each edge in pattern 5.3a is usually an “abstract” edge that is indeed a path without the

semantic information (such as “connect” and “listen”), so that the example query does not contain

edge predicates. More details on pattern matching queries will be described in Section 5.3.1.

5.2.4 Main Challenges

By now, we have introduced a collection of operations/queries for interactively analyzing the prove-

nance graph data. Our main challenge is to build a system (named QuickGrail) that supports these

analytical queries with high performance, robustness and scalability. The three characteristics are

closely related and are all critical towards achieving interactiveness:

46

• High performance means that under a typical workload, an individual operation should be

completed within a few seconds whenever possible. This is usually the response time bound

for a human analyst to keep attention and maintain productivity when involved in an inter-

active session.

• Robustness requires that the processing time of a batch of queries be linear or sublinear to

(each of) the graph size, query size and certain configurable parameters, so that the overall

query processing time is bounded and predictable. Specifically, one counterexample is general

join processing in relational databases, where the sizes of intermediate states and output

could grow much larger than the size of input.

• Scalability means that we can retain high performance by investing more computational re-

sources when the workload volume grows. In this thesis, we focus on a scale-up setting where

the system scales on a single machine with regard to the number of available CPU cores and

the size of main memory.

Here is an overview of our approach to achieve the required system characteristics. We build

the QuickGrail system on top of the Quickstep RDBMS. Graph operations and pattern matching

queries are finally translated into SQL queries to be executed by Quickstep. Specifically:

(a) Predicates on graph properties are translated into Quickstep scans plus subgraph union/in-

tersection/subtraction operations.

(b) Path queries and subgraphs operations are translated into iterative or nested semi-joins in

Quickstep, which are then evaluated with the help of LIP (Lookahead Information Passing)

and EF (Exact Filters).

(c) Each individual operation in class (a) and (b) are inherently fast, robust and scalable by virtue

of the guarantees from Quickstep’s scan and semi-join operators. Meanwhile, we encapsulate

the operations in (a) and (b) as Grail Low-level Instructions (GLL instructions).

(d) Graph pattern matching queries are categorized as easy (acyclic) queries and hard queries.

We build an optimizer that transforms an easy pattern matching query to a sequence of GLL

instructions where the number of instructions is linear to query size (i.e. number of atomic

clauses in the query), so that the overall processing time is bounded and predictable.

For hard queries that fall into the category of arbitrary graph pattern matching, note that

the problem is in general NP-hard so exact answers are hard to get. We allow the system to

return false positive results and allow user to specify a number-of-iterations parameter k, so

that the overall processing time is linear to k times the query size, and the larger the k the

47

more accurate the results. Finally, even though false positives exist, the results are usually

greatly reduced in size compared to the original graph, and can be fed as input into other

systems which are designed to handle hard queries well but not capable of working with very

large graphs.

5.3 Our Approach

In this section, we will describe in detail our techniques of building an analytical processing system

QuickGrail that delivers high performance, robust and scalable querying on provenance graph data.

Figure 5.4 shows the overall QuickGrail architecture. The system is built on top of the Quickstep

RDBMS and graphs are stored inside Quickstep as relational tables. Each QuickGrail query may

derive new subgraph tables that are stored in Quickstep, or export existing subgraph tables in

specified formats as result to the user. A simple garbage collection mechanism is utilized to remove

unreferenced subgraph tables on a per-query basis.

Quickstep RDBMS

Parser
&

Resolver

Logical Plan

Execution Generator

Logical
Optimizations

Low-level
Optimizations

Runtime Environment
&

Interpreter

Query
Result

Table
StatisticsBase Graph

Streaming Data

Result

SQL
Queries

Query

g1 = scan_vertex(base_graph, localAddress = '10.0.0.1')
g2 = scan_vertex(g1, localPort = 1234)
g3 = scan_vertex(base_graph, * LIKE '%firefox%')
g4 = find_paths(g2, g3, maxdepth = 10)
...

Grail Low-level Instructions

Figure 5.4: The QuickGrail architecture.

During query processing, the system first parses a QuickGrail query into a logical plan. The

logical plan is then transformed and optimized mainly to make the query’s graph pattern matching

components ready for code generation. After that, the execution generator traverses the logical

plan trees and generates a sequence of Grail Low-level (GLL) instructions accordingly. The GLL

instructions in general conform to the Single Static Assignment (SSA) form and thus many stan-

dard data flow optimizations (such as deadcode elimination, common subexpression elimination,

48

strength reduction, copy propagation) can be conveniently applied. In fact, a number of useful

optimizations can be done either at the logical plan stage or at the GLL stage, but optimization

rules for the later stage are easier to write.

Finally, the system has an interpreter that executes the GLL instructions in sequencial order.

Each instruction has its implementation in QuickGrail’s host language (e.g. Java or Python) that

may issue one or more SQL queries to the Quickstep RDBMS via socket or RPC connection, and

retrieves Quickstep responses as necessary.

The contents in this section are organized as follows. We first introduce the QuickGrail language

by examples. Then describe the underlying storage of the base graph and the derived subgraphs in

Quickstep. We then list a core set of the GLL instructions and present the underlying implementa-

tions in detail. We also analyze the time cost of each GLL instruction by diving deep into Quickstep’s

execution. After that, we briefly describe how to translate QuickGrails’ graph expressions into a se-

quence of GLL instructions and show a core part of the translation algorithm. Finally, we explain

how to handle graph pattern matching and discuss some of the query optimization techniques.

5.3.1 The QuickGrail Language

In this subsection we introduce the core set of QuickGrail queries. The key entities in the Quick-

Grail language are subgraphs, where most of the queries take subgraphs as input and yield a new

subgraph as result. The result subgraph can be persisted and referenced by a graph variable.

In the QuickGrail language model, we assume that there is a single base graph that represents

the ground data which grows in an append-only manner. All subgraphs are derived from this

base graph and the vertices and edges must be exact subsets of the base graph, that is to say, no

mutations. Throughout the section we will use words “subgraph” and “graph” alternatively and

they actually both refer to subgraphs of the single base graph.

Furthermore, to better explain the semantics of QuickGrail operations, we briefly formalize the

notion of the base graph and the subgraphs, as follows.

Below we organize the queries into five categories and walk through them by examples.

Filter vertice and edges by annotations

This category of queries creates a new subgraph by applying an annotation predicate to the input

graph’s vertices or edges. The predicate can be value comparisons, string pattern matchings, or

compositionally the logical conjunction, disjunction and negation of predicates. Listing 5.6 shows

two examples.

49

From the base graph, find all edges that have property "timestamp" value between

100 and 200, and denote the result graph as $a.

$a = $base.getEdgeWithEndpoints(timestamp > 100 and timestamp < 200);

From the subgraph $a, find all vertices in $a that have any annotation value

matching regular expression pattern 'pid12\d+', and denote the result graph as $b.

$b = $a.getVertex(* REGEXP 'pid12\d+');

Listing 5.5: Example vertex filtering and edge filtering queries.

Subgraph operations

There are only three subgraph operations: union (+), intersection (&) and subtraction (−). As the

name indicates, each of the operations just applies the corresponding set operation to the underlying

sets of vertices and edges, respectively, from the input graphs. Listing 5.6 shows an example.

Get subgraph $e by union $a with the intersection of $b and $c,

then subtract the vertices and edges from $d.

$e = $a + ($b & $c) - $d;

Listing 5.6: Example subgraph operations.

Note that graph subtraction may yield dangling edges in the result graph, and we consider a

graph with dangling edges valid in QuickGrail. The user may use subsequent queries to either

remove dangling edges or attach endpoint vertices.

Path queries

A path query finds within an overlay graph all paths from one set of source vertices to another set of

destination vertices within a specified max path length, and returns the overall collection of vertices

and edges on those paths as a result graph.

Note that the result of a QuickGrail path query is different from that of a typical relational path

query, where the later one’s result is a table of (source, destination) vertex pairs.

Moreover, one special case of a path query where one argument includes all the vertice in the

overlay graph is the lineage query, as Listing 5.7 shows.

Pattern matching queries

Pattern matching queries allow users to specify multiple annotation / path constraints in one place,

and find results that satisfy all the constraints. Listing 5.8 shows an example.

50

Within the overlay graph $g, find all the possible paths from any vertex in $a

to any vertex in $b within 5 hops, and union these paths as the result graph $c.

$c = $g.getPaths($a, $b, 5);

Within the overlay graph $c, find all descendants of $a that is within 1 hop.

Note that the result graph also include paths along the lineage and this query

is actually equivalent to "$d = $c.getPath($a, $c, 1);"

$d = $c.getLineage($a, 1, 'desc');

Listing 5.7: Example path query and lineage query.

1 with $U

2 max depth 5

3 match a -[e]->* b

4 and b ->{1..3} c

5 and a.remoteAddress = '128.104.222.140'

6 and (c.cmdLine LIKE '%/bin/bash%' or c.name = 'ssh')

7 and e in $V

8 as $matchedGraph

9 set $a = {a}, $b = {b}, $c = {c};

Listing 5.8: Example pattern matching query.

There are 3 groups of components in a pattern matching query: the global constraints, the body,

and the output specifications. Below we introduce these components using the example query in

Listing 5.8.

The global constraints are query-wide and are applied to all components in the body of a query.

Specifically, in Listing 5.8 lines 1-2, “with $U” says that the query should only look at subgraph $U,

and “max depth 5” says that all path components in the body constraints have a default max depth

of 5 unless explicitly overwritten.

The body constraints (Listing 5.8 lines 3-7) constitute the major part of the query that comprise

of logical compositions (i.e. conjunction, disjunction, negation) of atomic constraints on free vari-

ables. Each free variable, depending on its surrounding context, stands for a vertex or a set of edges

to be pattern matched. For example, in Listing 5.8, a, b, c are vertex variables and e is an edge

variable.

Each atomic constraint can be a path specification, an annotation predicate, or a containment

constraint. In Listing 5.8, lines 3-4 are path specifications saying that vertex a should have a path

of any length through edges e to vertex b, and vertex b should have a path of length between 1 and

3 to vertex c. Lines 5-6 are annotation predicates on vertices a and c, and line 7 is a containment

constraint saying that edges e should be from subgraph $V.

51

The semantics of a pattern matching query is to find all possible combinations of bindings to

each free variable such that the constraints are all satisfied. In fact, despite of the global constraints,

the edge constraint and the path length constraints, we can express Listing 5.8 as a first-order logic

(e.g. datalog) query:

Q(a, b, c) :- Path(a, b), Path(b, c),

VertexAnnotation(a, 'remoteAddress', '128.104.222.140')

VertexAnnotation(c, 'cmdLine', ca),

(ca LIKE '%/bin/bash%' ; ca = 'ssh').

But again note that the output of a QuickGrail pattern matching query is not likeQ(a, b, c) which

is a relation of all possible combinations of free variables. Instead, it returns the overall collection of

vertices and edges on all involved paths as a result graph (Listing 5.8 Line 8), and projections of the

result graph on each of the free variables (Listing 5.8 Line 9). In fact, this weakened result format is

one key design choice to make pattern matching queries computationally tractable, because results

in relational form such as Q(a, b, c) can have as many as |V |m rows, where |V | is the number of

vertices in the result graph, and m is the number of free variables in a query. In our practical

workloads, the ad-hoc results during exploratory analysis can often contain more than millions of

vertices so that even m = 2 is not tractable for the |V |m bound.

5.3.2 Relational Storage

The QuickGrail system stores four types of conceptual entities in the underlying Quickstep RDBMS:

the base graph, the subgraphs, the auxiliary annotations, and a symbol table. Each entity may be

represented by one or more tables. Below we go through them in detail.

Storage of the base graph

QuickGrail represents the base graph with four relational tables: vertices, edges, vertices_annotations,

and edges_annotations. Listing 5.9 shows the detailed SQL schema definition. Each vertex or edge

in the base graph simply takes one row in the vertices or edges table, and may use multiple rows

in the vertices_annotations or edges_annotations table to encode the associated annotations, respec-

tively. Moreover, the two annotation tables use dictionary encoding to compress the columns so

that the storage redundancy from duplicated id’s and key’s are minimized.

The way that QuickGrail structures the two annotation tables is also known as the entity-

attribute-value representation or vertical representation, as opposed to the horizontal representa-

tion where annotation keys become names of multiple columns and then all annotation values of

52

CREATE TABLE vertices (

"id" integer PRIMARY KEY

);

CREATE TABLE edges (

"id" integer PRIMARY KEY,

"src" integer FOREIGN KEY REFERENCES vertices(id),

"dst" integer FOREIGN KEY REFERENCES vertices(id)

);

CREATE TABLE vertices_annotations (

"id" integer FOREIGN KEY REFERENCES vertices(id),

"key" text,

"value" text

);

CREATE TABLE edges_annotations (

"id" integer FOREIGN KEY REFERENCES edges(id),

"key" text,

"value" text

);

Listing 5.9: SQL schema definition of the base graph.

a vertex or edge are packed into one row. We note that there are certain pros and cons with each

choice, and we made the current choice due to the vertical representation’s support for efficient

wildcard scans, e.g. “find all vertices where any annotation matches pattern '%ssh%'”, which are

very often seen in our target workloads.

Nevertheless, QuickGrail decouples annotation tables from all GLL instructions except the two

filter instructions scan_vertices and scan_edges (details about GLL instructions will be introduced

in Section 5.3.3). Thus it suffices to just implement one more version of the two GLL instructions

to support both vertical and horizontal representations of annotation tables, to tackle respective

querying demands. We consider this support and related optimizations as future work.

Storage of the subgraphs

A QuickGrail subgraph is simply represented as two collections of ids referencing the base graph’s

vertices and edges tables. Listing 5.10 shows the detailed SQL schema definition.

There can be many subgraphs stored in Quickstep and each subgraph is associated with a unique

name. The name is allocated automatically by QuickGrail (typically as auto-increment numbers)

and in Listing 5.10 the example subgraph’s name is “1234”.

53

CREATE TABLE subgraph_vertices_1234 (

"id" integer FOREIGN KEY REFERENCES vertices(id)

);

CREATE TABLE subgraph_edges_1234 (

"id" bigint FOREIGN KEY REFERENCES edges(id)

);

Listing 5.10: SQL schema definition of a subgraph with name “1234”.

Auxiliary annotations

The auxiliary annotations for a subgraph are recorded with two tables, as Figure 5.11 shows. The

two tables cannot be queried and are used only for attaching additional information to subgraph

vertices and edges that control output formatting. That is, for example, the color and shape of each

vertex in a subgraph that is exported in JSON format to be visualized by certain frontend tools.

CREATE TABLE aux_vertices_annotations_1234 (

"id" integer FOREIGN KEY REFERENCES vertices(id),

"key" text,

"value" text

);

CREATE TABLE aux_edges_annotations_1234 (

"id" integer FOREIGN KEY REFERENCES edges(id),

"key" text,

"value" text

);

Listing 5.11: SQL schema definition of auxiliary annotations for a subgraph.

Symbol table

The symbol table simply stores key-value string pairs. It is used to persist certain states in Quickstep

so that the QuickGrail server becomes stateless. The states include all the mappings from graph

variables to subgraph names, and an auto-increment counter for allocating subgraph names.

5.3.3 Grail Low-level Instructions

The core set of GLL instructions are listed in Table 5.12. In this subsection we will describe the

detailed implementation of each instruction with pseudo-code algorithms that emit SQL queries.

54

Besides, we will also explain how the emitted SQL queries are evaluated in Quickstep and analyze

the underlying performance. Note that a key point for understanding performance is that each GLL

instruction only contains sem-joins but no regular joins at all.

Category GLL Instruction Explanation

Scan

scan_vertices(Gin, Psql, Gout) Filter subgraph Gin on its vertex or edge anno-

tations with a SQL predicate Psql, and get result

subgraph as Gout.

scan_edges(Gin, Psql, Gout)

Subgraph

ops

union(Gin1, Gin2, Gout) Union / intersect / subtract subgraphs Gin1 and

Gin2, and get result subgraph as Gout.
intersect(Gin1, Gin2, Gout)

subtract(Gin1, Gin2, Gout)

Path

Find within the overlay subgraph Goverlay all

paths from vertices in subgraph Gsrc to vertices

in subgraph Gdst, with path length no greater

than dmax, and get the overall collection of ver-

tices and edges on those paths as result sub-

graph Gout.

Here find_ancestors and find_decendants can be

viewed as special cases of find_paths where ei-

ther Gsrc or Gdstis equivalent to Goverlay.

find_paths(Goverlay, Gsrc, Gdst, dmax, Gout)

find_ancestors(Goverlay, Gstart, dmax, Gout)

find_decendants(Goverlay, Gstart, dmax, Gout)

Table 5.12: The core set of Grail low-level instructions.

Scan operations on annotations

The implementation of the two scan operations scan_vertices and scan_edges are shown as Algorithm

2. Note that there are actually separate scripts for each operation. But here for conciseness we just

put them in one place using a “switch” statement.

Now we elaborate a discussion on performance. Conceptually there are three stages in Quick-

step for evaluating the SQL query in Algorithm 2.

1. Join the subgraph table with the base graph’s annotation table to concretize the annotation

key-value pairs.

2. Filter the key-value pairs using predicate Psql.

3. Project and deduplicate on the id column and insert into the result subgraph table.

With the exact-filter (EF) technique as described in Section 4.2, we remark that Step 1 will be

transformed into an EF probe operation where Quickstep builds a bit-vector from the subgraph

table and uses it to filter the base graph’s annotation table before evaluating predicate Psql in Step

2. So that the semi-join operation is completely eliminated and the overall CPU cost of the first two

55

Algorithm 2: Scan operations

Input: operation – scan operation name

Gin – name of the input subgraph

Psql – text representation of the filtering predicate

Gout – name of the output subgraph

switch operation do

case "scan_vertex" do

executeSQL

INSERT INTO subgraph_vertices_Gout

SELECT DISTINCT id FROM vertices_annotations

WHERE Psql AND id IN (SELECT id FROM subgraph_vertices_Gin);

case "scan_edge" do

executeSQL

INSERT INTO subgraph_edges_Gout

SELECT DISTINCT id FROM edges_annotations

WHERE Psql AND id IN (SELECT id FROM subgraph_edges_Gin);

steps is roughly

(Cbuild-ef + Cpredicate) · |Gin|+ Cprobe-ef · |Abase|

where Cpredicate is the average cost of evaluating the filtering predicate Psql on a single annotation

row, Cbuild-ef is the average cost of inserting a value into a bit-vector, Cprobe-ef is the average cost of

probing a value in a bit-vector, |Gin| is the total number of rows in the input subgraph’s vertices

(or edges) table, and |Abase| is the total number of rows in the base graph’s vertices_annotation (or

edges_annotation) table. Meanwhile, the overall cost of Step 3 is roughly

(Cdeduplicate + Cmaterialize) · |Gout|

where Cdeduplicate is average cost of obtaining a deduplicated integer id and Cmaterialize is the average

cost of materializing an integer id.

In fact, the evaluation time of a scan operation is either dominated by the predicate term

Cpredicate · |Gin| that is bounded by the size of the input subgraph, or dominated by the probe

term Cprobe · |Abase| that is a constant, depending on how large the input subgraph is. In whatever

situation, the cost factors Cpredicate and Cprobe-ef are sufficiently small so that every scan query can be

finished within a bounded and predictable time, i.e. within a few seconds under typical workloads.

Subgraph operations

The implementations of the subgraph operations union, intersection, and subtraction are shown

as Algorithm 3. Again for conciseness we put the three operations in one place using a “switch”

56

Algorithm 3: Subgraph union, intersection and subtraction

Input: operation – subgraph operation name

Gin1 – name of the first input subgraph

Gin2 – name of the second input subgraph

Gout – name of the output subgraph

foreach Ctype in {"vertices", "edges"} do

switch operation do

case "union" do

executeSQL

INSERT INTO subgraph_Ctype_Gout

SELECT id FROM subgraph_Ctype_Gin1

UNION

SELECT id FROM subgraph_Ctype_Gin2;

case "intersection" do

executeSQL

INSERT INTO subgraph_Ctype_Gout

SELECT id FROM subgraph_Ctype_Gin1

WHERE id IN (SELECT id FROM subgraph_Ctype_Gin2);

case "subtraction" do

executeSQL

INSERT INTO subgraph_Ctype_Gout

SELECT id FROM subgraph_Ctype_Gin1

WHERE id NOT IN (SELECT id FROM subgraph_Ctype_Gin2);

statement.

It is easy to see that all the three operations have time complexities that are linear to the total

size of the input graphs. More importantly, with the EF technique, we can eliminate the semi-joins

(i.e. the IN clause) in the SQL queries, so that the evaluation time for intersection / subtraction

operation is roughly

Cprobe-ef · |Gin1|+ Cbuild-ef · |Gin2|

which can be an order of magnitude faster than an ordinary hash semi-join’s

Cprobe-ht · |Gin1|+ Cbuild-ht · |Gin2|

where Cbuild-ef is the average cost of inserting a value into a bit-vector, Cprobe-ef is the average cost

of probing a value in a bit-vector, Cbuild-ht is the average cost of inserting a value into a hash table,

and Cprobe-ht is the average cost of probing a value in a hash table.

57

Path queries

The evaluation process of a path query is divided into three stages, as Algorithm 4 and (continued)

Algorithm 5 show.

The first stage creates and initializes four temporary tables memo_edges, curr_vertices, next_vertices,

reachable_vertices for storing intermediate states.

The second stage is an iterative process that retrieves all reachable vertices backwardly starting

from the destination vertices. The iterative process is essentially a breadth-first traversal on the

overlay graph. All reachable vertices are stored into the reachable_vertices table and all edges that

have been traversed are stored into the memo_edges table.

By doing an intersection between the reachable_vertices table from Stage 2 and the original

source vertices, we now obtain a subset of source vertices Sreachable that have at least one path to

some of the destination vertices. Then the third stage traverses forwardly on the memo_edges table

starting from Sreachable, and retrieves all vertices and edges that are forwardly reachable as final

results. Moreover, a constraint on depth is applied in Algorithm 5 to omit paths that have lengths

longer than the specified max depth.

It is easy to see that the overall evaluation time of a path query is bounded by

dmax · (Tstage2 + Tstage3)

where Tstage2 and Tstage3 are the per-iteration evaluation time of the SQL queries in Stage 2 and

Stage 3, respectively.

Here we borrow the discussion from the previous scan operations and subgraph operations parts,

and just remark that the SQL queries in the iterations are optimized with the EF technique so that

the per-iteration evaluation time is linear to the size of the base graph’s edge table. Therefore, the

overall evaluation time of a path query is bounded by

c · dmax · |Ebase|

where c is some constant factor, dmax is the max depth, Ebase is the base graph’s edge table.

The key point about the time bound is that c · |Ebase| is very robust under real workloads. For

every depth d, a user can gain empirical experience about the maximum possible time cost that

will grow linearly with d, regardless of the path query characteristics (e.g. input graph sizes and

potential output graph size). In Section 5.4 we will see that this robustness is not the case for the

graph database system Neo4j, where the same path query can finish within 1 second for depth 3,

but cannot finish within 1 hour for depth 5.

58

Algorithm 4: Find all paths between two collections of vertices

Input: Goverlay – name of the overlay subgraph

Gsrc – name of the subgraph of source vertices

Gdst – name of the subgraph of destination vertices

dmax – max path depth

Gout – name of the output subgraph

/* Stage 1. Initialize the intermediate tables. */

executeSQL

CREATE TABLE memo_edges(src INT, dst INT, depth INT);

CREATE TABLE curr_vertices(id INT);

CREATE TABLE next_vertices(id INT);

CREATE TABLE reachable_vertices(id INT);

INSERT INTO curr_vertices SELECT id FROM subgraph_vertex_Gdst;

/* Stage 2. Start from the destination vertices and do backward flooding. */

dactual ← dmax

for D ← 1 to dmax do

executeSQL

INSERT INTO memo_edges

SELECT src, dst, D FROM edge

WHERE id IN (SELECT id FROM subgraph_edge_Goverlay)

AND dst IN (SELECT id FROM curr_vertices);

TRUNCATE TABLE next_vertices;

INSERT INTO next_vertices

SELECT DISTINCT src FROM edge

WHERE id IN (SELECT id FROM subgraph_edge_Goverlay)

AND dst IN (SELECT id FROM curr_vertices);

TRUNCATE TABLE curr_vertices;

INSERT INTO curr_vertices

SELECT id FROM next_vertices

WHERE id NOT IN (SELECT id FROM reachable_vertices);

INSERT INTO reachable_vertices SELECT id FROM curr_vertices;

C ← executeSQL

(
SELECT COUNT(*) FROM curr_vertices;

)
if C = 0 then

dactual ← D

break

/* The code for Stage 3 (forward tracing) is continued in Algorithm 5 due to space constraint. */

59

Algorithm 5: Find all paths between two collections of vertices (continued)

/* Stage 3. Start from all source vertices that are backward reachable from the destination vertices,
* trace through the “memo_edges” table and accumulate the final result vertices and edges. */

executeSQL

TRUNCATE TABLE curr_vertices;

TRUNCATE TABLE next_vertices;

INSERT INTO curr_vertices

SELECT id FROM subgraph_vertices_Gsrc

WHERE id IN (SELECT id FROM reachable_vertices);

INSERT INTO subgraph_vertices_Gout SELECT id FROM curr_vertices;

for D ← 1 to dactual do

executeSQL

INSERT INTO next_vertices

SELECT DISTINCT dst FROM memo_edges

WHERE src IN (SELECT id FROM curr_vertices)

AND depth + D - 1 <= dactual;

INSERT INTO subgraph_edges_Gout

SELECT id FROM edge

WHERE src IN (SELEXT id FROM curr_vertices)

AND dst IN (SELEXT id FROM next_vertices)

AND id IN (SELECT id FROM subgraph_edges_Goverlay);

TRUNCATE TABLE curr_vertices;

INSERT INTO curr_vertices

SELECT id FROM next_vertices

WHERE id NOT IN (SELECT id FROM subgraph_vertices_Gout);

INSERT INTO subgraph_vertices_Gout SELECT id FROM curr_vertices;

C ← executeSQL

(
SELECT COUNT(*) FROM curr_vertices;

)
if C = 0 then

break

5.3.4 Generate GLL Instructions from Graph Expressions

In this subsection we briefly describe how graph expressions in the QuickGrail language gets com-

piled into GLL instructions. That is, for example, we can write a single composite expression as

$d = $a + ($b & $c).getVertex(pid = 100)

but the underlying evaluation would require multiple GLL instructions to achieve the corresponding

semantics. In fact, assume that $a, $b, $c are mapped to subgraphsG1, G2, G3 in the symbol table,

respectively, then QuickGrail will translate the expression into a sequence of GLL instructions as

60

intersect(G2, G3, G4)

scan_vertices(G4, "key"='pid' and "value"='100', G5)

union(G1, G5, G6)

set_symbol('$d', G6)

Algorithm 6: Generate GLL instructions from QuickGrail expressions

Input: R – graph expression tree root

Output: result subgraph name Gresult

and a sequence I of GLL instructions that generates Gresult

I ← []

Function GraphExpressionCodeGen(E)

switch E.type do

case "union" or "intersect" or "subtract" do
Gin1 ← GraphExpressionCodeGen(E.firstOperand)

Gin2 ← GraphExpressionCodeGen(E.secondOperand)

Gout ← allocateNewGraphName()

I ← I ∪ { GLL instruction with name as E.type and arguments (Gin1, Gin2, Gout) }
return Gout

case "getPath" do
Goverlay ← GraphExpressionCodeGen(E.overlay)

Gsrc ← GraphExpressionCodeGen(E.firstOperand)

Gdst ← GraphExpressionCodeGen(E.secondOperand)

dmax ← E.thirdOperand

Gout ← allocateNewGraphName()

I ← I ∪ { find_paths(Goverlay, Gsrc, Gdst, dmax, Gout) }
return Gout

case "getVertex" or "getEdge" do
Gin ← GraphExpressionCodeGen(E.overlay)

return AnnotationPredicateCodeGen(E.type , Gin, E.firstOperand)

case "variable" do
return lookupSymbolTable(E.name)

/* Note: function “AnnotationPredicateCodeGen()” is shown in Algorithm 7 due to space constraint. */

Gresult ← GraphExpressionCodeGen(R)

return Gresult, I

61

Algorithm 7: Generate GLL instructions from QuickGrail expressions (continued)

Function AnnotationPredicateCodeGen(Etype, Gin, P)

switch P .type do

case "and" do
Gmid ← AnnotationPredicateCodeGen(Etype, Gin, P .firstOperand)

return AnnotationPredicateCodeGen(Etype, Gmid, P .secondOperand)

case "or" do
Gin1 ← AnnotationPredicateCodeGen(Etype, Gin, P .firstOperand)

Gin2 ← AnnotationPredicateCodeGen(Etype, Gin, P .secondOperand)

Gout ← allocateNewGraphName()

I ← I ∪ { union(Gin1, Gin2, Gout) }
return Gout

case "not" do
Gmid ← AnnotationPredicateCodeGen(Etype, Gin, P .firstOperand)

Gout ← allocateNewGraphName()

I ← I ∪ { subtract(Gin, Gmid, Gout) }
return Gout

case "comparison" do
K ← the annotation key name in comparison predicate P

P ← replace all occurrences of K in P with string constant “value”

Gout ← allocateNewGraphName()

inst_name← “scan_vertex” or “scan_edge” according to Etype

I ← I ∪ { inst_name(Gin, “key = K and T”, Gout) }
return Gout

The translation process is analogous to the process of allocating (an unlimited amount of) vir-

tual registers and generating SSA IRs in typical compilers. In QuickGrail, a graph expression is first

parsed as an expression tree, where each tree node belongs to one type of QuickGrail operations

(such as union, intersect, getVertex, getPaths), and children of a tree node are operands to the oper-

ation. Then, the execution generator translates the expression tree in a bottom-up manner, where

the visit to a tree node returns a subgraph that stands for the result of evaluating the expression

rooted at that tree node. Algorithm 6 and (continued) Algorithm 7 show details about this recursive

translation process.

62

5.3.5 Graph Pattern Matching

In this subsection, we introduce how QuickGrail evaluates pattern matching queries. Specifically,

QuickGrail translates each pattern matching query into a sequence of m GLL instructions, where m

is linear to the number of atomic constraints in the query.

To ease the discussion while still capture the core ideas, we begin with a simplified form of

pattern matching queries that are essentially conjunctive queries. Later we will explain how to gen-

eralize the techniques to support a rich collection of functionalities, such as disjunction, negation,

and path depth constraints.

Problem formalization

Now we introduce some formalism by considering pattern matching queries represented in the

conjunctive form

Q = A1 ∧ · · · ∧An

where each atomic term Ai is either a path formula or a domain constraint.

Here, a path formula is a binary relation of the form

PathGoverlay,Gsrc,Gdst(x, y)

such that for every pair of (x, y) there exists a path from x to y in the overlay graph Goverlay, and

additionally x is also in graph Gsrc and y is also in graph Gdst.

Meanwhile, a domain constraint is a unary relation

DG(x)

such that x is in D if and only if vertex x is in graph G.

We further define the (vertex-only) projection graph of query Q on variable x as

Px(Q) = {x | x ∈ P (x) where P (x) :– Q.}

Then our goal is to efficiently evaluate

Px(Q), for each variable x that appears in query Q

For example, let’s consider a simple QuickGrail pattern matching query

63

with $G

match a ->* b ->* c

and a in $A and b in $B and c in $C

as $R

set $Ra = {a}, $Rb = {b}, $Rc = {c};

Then the global constraint and the body of the query can be written into the conjunctive form

Q(a, b, c) :– Path$G,$G,$G(a, b) ∧ Path$G,$G,$G(b, c) ∧D$A(a) ∧D$B(b) ∧D$C(c) (Query 5.1)

and our objective is to find result vertices as $Ra = Pa(Q), $Rb = Pb(Q), and $Rc = Pc(Q). Note

that the example QuickGrail query also requires finding an overall result graph $R. This can be

generated “theoretically” by re-evaluating each path query on the result vertices and concatenate

the path graphs together, and it is actually done more efficiently in QuickGrail as side-products

during the process of obtaining result vertices.

Solve a conjunctive query

In this part we describe how QuickGrail evaluates Px(Q) for each variable x in a query Q. In fact,

in the case that Q is an acyclic query, the problem can essentially be solved by computing the full

reduction of Q on each term where there exists a classical algorithm [9] that uses only semi-joins

and the time cost is linear to the total input table cardinality times the number of atomic terms in

Q. Our approach is a variant of the algorithm in [9], nevertheless the additional challenge is that

• The path formula is a virtual (a.k.a. IDB) relation whose cardinality can be as large asO(|V |2),
where |V | is the total number of vertices in input graphs. In many cases it is not computa-

tionally feasible to materialize such a path relation. Instead, we slightly modify Algorithm 4

to just efficiently compute Px(Path ···(x, y)) and Py(Path ···(x, y)). Thus, traditional semi-joins

cannot be done between two path formulae.

Now we elaborate the details of our approach. Given a conjunctive query Q, we first build

a query graph from Q by creating a node for each variable in Q. Then for each path formula

Path ···(x, y) in Q we create an edge between nodes x and y. Finally, we attach each domain

constraint D(x) in Q as labels to the corresponding node x. Figure 5.13 shows an example graph

that is built from Query 5.1.

ba c

Figure 5.13: Query graph built from Query 5.1.

64

We define Query Q to be acyclic if its query graph is acyclic. In this part we only consider acyclic

and fully connected query graphs, which are essentially trees. We will explain how to handle cycles

and disconnected components later in this subsection.

Given an acyclic and connected query graph, we now choose a node (which node to choose

leaves as an optimization task) from the graph to be the root, then reshape the graph into an

ordinary tree so that each tree node is either a leaf node or an intermediate node that has a number

of children. For example, by choosing b as the root we can reshape the graph in Figure 5.13 into a

tree where b has two children a and c that are leaf nodes.

Then we do a bottom-up (post-order) traversal followed by a top-down (pre-order) traversal of

the tree. During the bottom-up traversal, we compute for each node x the answers of Px(Qx),

where Qx is the subquery that is comprised of all the nodes and edges rooted at x. During the

top-down traversal, we compute for each node x the final answers Px(Q), where Q is the overall

query. We describe details of each traversal below.

Define Qx to be the subquery of all nodes and edges rooted at node x in the query tree, we have

the recursive definition

Qx = DGx
(x) ∧

 ∧
y ∈ children(x)

E(x, y) ∧Qy(y)

where DGx

(x) is the domain constraint for variable x saying that x should be also in graph Gx.

Each E(x, y) is the path formula represented by the edge between node x and child node y.

For any queries Q1(x), . . . , Qm(x), from basic set theory it is easy to see that

Px

(∧
i

Qi(x)

)
=
⋂
i

Px (Qi(x))

Thus we have

Px(Qx) = Px
(
DGx

(x)
)
∩

 ⋂
y ∈ children(x)

Px (E(x, y) ∧Qy(y))

= Gx ∩

 ⋂
y ∈ children(x)

Px
(
Ey∈Py(Qy)(x, y)

)
where E y∈Py(Qy)(x, y) is the original path formula between node x and child node y, plus the

additional constraint that y should also be in graph Py(Qy).
The key observation on the above formula is that we have completely eliminated any form of

joins between path relations. Note that E(x, y) has the form of either

PathGoverlay,Gsrc,Gdst(x, y) or PathGoverlay,Gsrc,Gdst(y, x)

65

Then Px
(
Ey∈Py(Qy)(y)

)
can be efficiently evaluated in QuickGrail as a basic path query that is

either

PathGoverlay,Gsrc,Gdst∩Py(Qy)(x, y) or PathGoverlay,Gsrc∩Py(Qy),Gdst(y, x)

depending on the actual path direction between x and y.

Therefore, in the first round of bottom-up traversal, we have computed for each variable x

the answers Px(Qx), where all the computations can be encoded as GLL intersection / find_paths

instructions, and the overall number of instructions generated are linear to number of nodes and

edges in the query graph.

For the second round of top-down traversal that retrieves for each variable x the final answers

Px(Q), we just remark that the idea is similarly transforming joins into intersections and push

vertex domain constraints into path queries, and omit the description and proof here.

Handle disconnected and/or cyclic conjunctive query graphs

The approach we described in previous subsection assumes that the conjunctive query graph is

connected and acyclic. In this subsection we describe how to relax the two restrictions.

The handling of a disconnected query graph is simple. We first evaluate separately each con-

nected component and obtain result vertices for each variable. Then, if any variable has empty

results, then the results for all variables are all empty. Otherwise, since each variable must belong

to only one connected component, we just collect all variables together and return the results for

each of them.

The handling of a cyclic query graph is hard and in general we cannot guarantee to return

exact results. We allow users to submit cyclic queries and still evaluate the queries with linear

time complexity by making a compromise that the results may contain false positives (but must not

omit true results). Our approach is first to let K be a parameter which has default value 2 and is

configurable by the user in a pattern matching query. Then we decompose the query graph into

components where each component is acyclic, and do K iterations of evaluations on each acyclic

component. At the end of each iteration, we intersect the results from all components for each

variable.

Support disjunction and negation

Disjunctions are simply handled by unioning the results from each disjunctive component. Note

that after bringing in disjunction, the top-level conjunctive query may contain composite terms

that involve more than two variables, where we actually represent the query graph as a hypergraph

and we omit the details in this thesis. During the bottom-up and top-down evaluation, if an edge

66

in the query graph represents a composite term (e.g. a disjunction), then the child node results are

pushed into each component of the disjunction, and then recursively evaluate each component and

union the results back.

Negations must be supported with care since a naive evaluation may drop true results in our

settings. In QuickGrail we support a negated clause only if the clause contains at most one free

variable. To evaluate a negated clause for variable x, the clause itself without negation is first

evaluated to obtain vertices G, then we do a subtraction between the global constraint graph and

G as the results for variable x.

Support path depth constraints

To support path depth constraints, we simply extend a path formula to accept four parameters

PathGoverlay,Gsrc,Gdst,dmax(x, y)

where the additional dmax is the max depth parameter that is properly handled by our implemen-

tation of the GLL path instruction. Note that adding this parameter won’t affect the nice property

that a single path query is monotonic. Thus the techniques we described in this section naturally

apply to the extended path formula.

Optimize evaluation order of conjunctive queries

Recall that when solving an acyclic conjunctive query we need to choose a node as root for the

query tree. Different choices of the root node would result in different execution costs. On the

other hand, though this problem looks similar as join order optimization, we note that the plan

space is expected to be robust due to the semi-join nature of all path queries. Currently for each

conjunctive query tree we simply chooses the center node so that the maximum distance from the

central node to other nodes is minimized. We consider it a future work to further reason about the

cost model and design algorithms to choose the best root nodes.

Eliminate redundant computations

There are two more interesting optimizations that are related to graph pattern matching but im-

plemented within the GLL layer.

First recall that we generate GLL instructions that find results for all the free variables in a

pattern matching query. However, a pattern matching query usually only specifies a subset of the

free variables to be returned (or even no variable to return, in the case that the query returns the

overall matched graph). In this situation, we can do a live variable analysis followed by a dead code

67

elimination on the GLL instructions and remove all instructions whose output graphs are not used

later.

Besides, during graph pattern matching, many of the generated GLL intersection and union

instructions are redundant. For example, the unoptimized instructions often intersect a graph G

with the base graph, which is guaranteed to have the results as G itself. The generated instructions

may also intersect graphs G2 and G3, where G3 is previously obtained by intersecting G1 and G2

– in this case we can avoid the intersection between G2 and G3 and just return G3. Therefore,

QuickGrail does a dataflow analysis that infers the containment relationship among output graphs,

and use this information to eliminate unnecessary intersection and union GLL instructions.

5.4 Experiments

Our datasets come from the DARPA Transparent Computing (TC) program. The datasets have been

generated from multiple engagements. During each engagement, one or more servers were running

with provenance collection middlewares so that system activities were reported as provenance

graphs into a central database, and TC program’s evaluation team simulated a few attacks to the

servers, expecting that the details of the attacks can be recorded by the provenance system and ei-

ther detected at real-time or revealed by offline analysis. Table 5.14 shows the detailed information

of each dataset.

Datasets Storage Size # Vertices # Edges

TC Engagement 2 15 GB 32925145 126763008

TC Engagement 3 79 GB 171756475 888148452

TC Engagement 4.tr1 4.0 GB 9480021 33256223

TC Engagement 4.tr2 5.0 GB 12087984 41391198

TC Engagement 4.het 3.1 GB 6717955 26201034

Table 5.14: Dataset statistics.

We note that TC is a big program where many teams collaborate. We refine our tasks to prove-

nance graph storage and low-level offline analytics (instead of real-time event detection or high-

level analyses where machine learning approaches may apply).

More specifically, for each engagement the evaluation team provides a “ground truth” docu-

ment of attack activities plus its visualized representation (see Table 5.15 and Figure 5.16 as an

example). The documents provide important information about the attack but are unfortunately

often inaccurate. Note that the inaccuracy is not a deliberately placed challenge. Instead it is due

68

to differences in the way that the evaluation team views the attack process and the way that the

reporter system organizes provenance information. Some connections are of reverse directions and

some information may be even not recorded by the reporter system. Thus our TC-specific task

is to verify whether each activity described in the ground truth document exists in the collected

provenance graph data, and then extract all related connection patterns from the graph.

5.4.1 System Configuration

For the experiments, we use a server with two Intel Xeon E5-2660 v3 2.60 GHz (Haswell EP)

processors and a total of 160GB ECC memory. Each processor has 10 cores and 20 hyper-threading

hardware threads. The machine runs Ubuntu 14.04.1 LTS. Each processor has a 25MB L3 cache,

which is shared across all the cores on that processor. Each core has a 32KB L1 instruction cache,

32KB L1 data cache, and a 256KB L2 cache.

5.4.2 Analysis Workflow and Outcome

In this section, we demonstrate the usage of QuickGrail to analyze one attack scenario in Engage-

ment 4. Note that there are multiple attack scenarios in each of the engagements, and we have

used QuickGrail to successfully analyze all the attack scenarios in all the engagements. Neverthe-

less in this thesis it suffices to just go through one analysis in detail and the workflows are similar

for analyzing other attacks.

Below Table 5.15 shows the “ground truth” activities provided by the TC program’s evaluation

team, and Figure 5.16 shows the corresponding pattern diagram.

Time Session Actor Action Object

09:51 ssh 128.55.12.167 connect (ssh) [tr1] ssh

09:51 ssh [tr1] ssh call [tr1] netstat

09:51 ssh [tr1] ssh write [tr1] LD_PRELOAD

09:53 ssh [tr1] LD_PRELOAD update [tr1] /lib/libselinux.so

09:54 ssh [tr1] ssh call [tr1] fuser

09:54 ssh [tr1] fuser kill [tr1] /home/admin/launchmyserver.sh

· · · · · · · · · · · · · · ·

Table 5.15: Table of activities for one attack in Engagement 4.

69

Figure 5.16: The overall diagram for the activities described in Table 5.15.

Now we aim to accomplish three tasks:

1. Verify whether each activity described by ground truth exists in the provenance graph data.

2. If any entity or activity is missing, try to find potential causes (e.g. the entity has a different

name in the provenance data, the activity linkage is not as illustrated in ground truth).

3. Finally, extract and visualize all the found entities and activities as a subgraph from the prove-

nance graph.

Table 5.17 shows part of the real workflow of our analysis on the data. It is an interactive

and iterative process. We begin with vertex scans on known information, and try to find paths

among different groups of vertices. Depending on the result size of a path query, we may want

to increase or decrease the maximum path depth to see if we can obtain the desired results or

observe something interesting in an trail-and-error manner. Meanwhile, we will also apply divide

and conquer techniques that try to match just part of the overall pattern, and then combine different

pieces together using graph union operations.

The final outcome of our analysis is shown as Figure 5.19. Note that some endpoints in the

pattern diagram cannot be found in the actual data, so they are not in the result graph.

70

Queries Explanation |V| |E|
Time

(ms)

$startIp = $base.getVertex(* = '128.55.12.167');
Find all the vertices that have IP ad-

dress 128.55.12.167
5 0 381

$libselinux = $base.getVertex(path like '%libselinux%');

$lmserver = $base.getVertex(path like '%launchmyserver%');

$ssh = $base.getVertex(name = 'ssh');

$etcHosts = $base.getVertex(path = '/etc/hosts ');

...

Similarly check the existence of all

the vertices in Figure 5.16. Note

that some queries may return empty

results (e.g. “LD_PRELOAD” is not

found in any vertex).

6

1

34

1

. . .

0

0

0

0

. . .

395

386

415

367

. . .

$ip2lib = match $startIp −>{..10} $libselinux;

Check if there are paths from $startIp

vertices to $libselinux vertices. Use

an initial max path depth of 10.
1075485 6286496 10015

$ip2lib = match $startIp −>{..3} $libselinux;

From the previous step we know that

there are paths but results are too

many. Now reduce the max depth

and try again.

6 2320 3987

visualize $ip2lib .collapseEdge('cdm.type');

Looks like we have got an interesting

result graph $ip2lib. Now visualize it

and check the details. Also collapse

the edges before visualization since

there are too many of them.

6 16 429

$somePath = match ...

Similarly check whether paths exist

among different pairs of end points,

e.g. $startIp to $etcHosts, $startIp

to $lmserver, etc. This is a repeated

process and the analyzer may spend

a few minutes here.

$relevantLib = $libselinux & $ip2lib;

$libAnc1 = match m −>{..1} $relevantLib;

$libAnc2 = match m −>{..2} $relevantLib;

$libAnc5 = match m −>{..5} $relevantLib;

Since we haven’t found the

“LD_PRELOAD” keyword where the

corresponding vertex should have

a path to “/lib/libselinux.so”. Now

we want to explore what are the

ancestor nodes of libselinux.

1

28

324

2084408

0

63

480

2776055

247

511

788

2208

$processes =

match a −> b

and (a."cdm.type" = 'SUBJECT_PROCESS'

or a ."cdm.type" = 'SUBJECT_UNIT')

and (b."cdm.type" = 'SUBJECT_PROCESS'

or b."cdm.type" = 'SUBJECT_UNIT');

For some of the paths, from domain

knowledge we know that it would be

better to look at only “Process” nodes

in the path. So we extract a subgraph

from the base graph where the nodes

all represent processes.

2846074 4347752 5786

Table 5.17: Analysis workflow for tr1 (yellow) part in Figure 5.16. Note that for each command,

the |V| and |E| columns stand for the number of result vertices and result edges.

71

Queries Explanation |V| |E|
Time

(ms)

match $startIp −> startIpProc

and startIpProc −[$processes]−>* p1 −> $libselinux

and startIpProc −[$processes]−>* p2 −> $lmserver

and startIpProc −[$processes]−>* p3 −> $etcHosts

and startIpProc −[$processes]−>* p4 −> $etcShadow

and chsh −[$processes]−>* startIpProc

and $sshIp −> p5 −[$processes]−>* chsh

and $tcpdump −[$processes]−>* chsh

and $ifconfig −[$processes]−>* chsh

and chsh.name = 'chsh'

as $result ;

After we have confirmed the pair-

wise connectivity among groups of

vertices, we are now ready to put the

constraints together. Due to space

consideration we just show an all-

in-one query that brings in all the

constraints. But note that the ac-

tual workflow is still an trial-and-

error process, where we accumula-

tively add more and more constraints

into one pattern matching query.

41 110 61453

Table 5.18: Analysis workflow for tr1 (yellow) part in Figure 5.16 (continued).

Figure 5.19: Analysis outcome for tr1 (yellow) part in Figure 5.16.

72

5.4.3 Comparing Performance With Neo4j

In this subsection we compare with Neo4j on the performance of scan, lineage, and path queries.

For pattern matching queries, we note that Neo4j failed to finish the evaluation of most queries we

used to analyze the TC datasets due to some reasons that would be shown and explained when we

look at lineage/path queries below.

Scan operations

For scan operations, we just pick three predicates where each predicate is representative in its own

kind. Table 5.20 shows the predicates and performance of both QuickGrail and Neo4j (no indexes

are used). Note that the performance difference falls in the range of 16X∼22X, and the speedup

comes from Quickstep’s efficient and parallel execution of table scans.

Predicate Kind
Neo4j

Time (ms)

QuickGrail

Time (ms)

Find all vertices where “remoteAddress” equals

’128.55.12.167’
Equal comparison 8888 381

Find all vertices where “path” matches regular

expression ’.*libselinux.*’
String pattern matching 8848 395

Find all edges where timestamp is between

1542033097 and 1542036549
Range scan 45560 2822

Table 5.20: Performance comparisons on scan operations.

Lineage and path queries

Table 5.21 and Table 5.22 show performance comparisons between QuickGrail and Neo4j on ex-

ample lineage/path queries, respectively. Note that lineage queries are just special cases of path

queries, thus we would have similar observations about performance characteristics in both tables.

In Table 5.21, we show performance of both systems on a lineage query that starts from a single

“libselinux.so” vertex and finds all descendants with regard to each specified max depth. The |V|

and |E| columns in the table record the total number of reachable descendant vertices and the

total number of edges along the way. We can observe that Neo4j is extremely fast for handling

initial small depths up to 3. However, increasing the depth to 4 causes Neo4j to spend 802 seconds,

and increasing the depth to 5 causes Neo4j to not finish within 1 hour. That is, adding depth by

1 has resulted in an 802134/259 = 3097 X slow down. This drastic degradation of performance is

73

Max depth |V| |E|
Neo4j

Time (ms)

QuickGrail

Time (ms)

1 28 63 5 625

2 324 480 15 791

3 3451 14642 259 1064

4 75764 153664 802134 1375

5 2084408 2776055 DNF 2210

10 6434609 20816463 DNF 5917

20 6547507 21058826 DNF 8688

50 6547507 21058826 DNF 8712

Table 5.21: Performance comparisons on a lineage query that starts from a “libselinux.so” vertex

and finds all descendants up to various max depths. In this table DNF means that the query did

not finish within 1 hour.

Max depth |V| |E|
Neo4j

Time (ms)

QuickGrail

Time (ms)

1 0 0 6 2499

2 0 0 16 4336

3 0 0 942 5016

4 139 560 270848 6129

5 324 994 DNF 6863

10 1251182 7142131 DNF 11772

20 1405968 7886718 DNF 16114

50 1406785 7889555 DNF 24767

Table 5.22: Performance comparisons on a query that finds all paths from a “ssh” node to any

“firefox” node within various max depths. In this table DNF means that the query did not finish

within 1 hour.

74

due to the typical path traversing algorithm that is implemented in these systems, which essentially

enumerates all possible combinations of paths. Thus by adding depth 1, the time cost is multiplied

by a factor F that can be as large as the total number of out-edges for all collected vertices. Thus

it is not surprising that F can be as great as 3097. In contrast, QuickGrail shows a robust and

predictable performance curve. It has fixed overheads even for small depths, but the total time cost

keeps growing linearly even when the depth is very large. Note that Section 5.3.3 has explained

these performance characteristics for QuickGrail in detail.

Table 5.22 shows a similar performance pattern for path queries and we note that the reasoning

is the same as we discussed on lineage queries.

5.5 Conclusions and Future Work

In this chapter, we have introduced a system called QuickGrail to support efficient and effective

querying on large provenance graphs. The system comes with a domain-specific querying language

that fits into interactive exploration on provenance graphs. The functionalities include evaluation

of composite filter / lineage / path / pattern matching queries, and flexible subgraph manipula-

tions. The QuickGrail system is designed to be fast, robust and scalable to meet the demands of

interactiveness and to improvement the productivity of human analysts.

Nowadays graph analytics is increasingly being used in enterprises. Looking at more sophisti-

cated graph pattern matching, including automatic anomaly detection, and in a scalable way is a

direction for future work.

75

Chapter 6

Summary

In this thesis, we have introduced techniques that facilitate interactive analyses on large volume

of data under application scenarios of both traditional data warehousing and provenance graph

analytics. We utilize a high-performance RDBMS, Quickstep, as a common computational platform

to achieve the objectives.

For traditional data warehousing, we have introduced a novel query execution strategy called

LIP for robust query processing. LIP collapses the space of left-deep query plans for star schema

warehouses down to almost a single point near the optimal plan. In addition to this robustness

benefit, it also significantly speeds up query execution in this important subplan space. We have

demonstrated these claims through theoretical and empirical results. Besides the immediate appli-

cation of LIP, we believe our work opens a novel approach to the notion of “robustness”, one that is

focused on query execution strategies possibly tailored to corresponding query plan (sub-)spaces.

In addition to LIP, we have proposed two additional query optimization techniques that elimi-

nate redundant computation and materialization under a “drop early, drop fast” theme. The tech-

niques include aggressive push-down of certain disjunctive predicates and cache-efficient semi-joins

using exact filters. Our experiments show that the techniques significantly improve the performance

of both SSB benchmark queries and TPC-H benchmark queries where applicable.

In future work, we hope to generalize the ideas about robustness and the specific LIP strategy

to more complex schemas and query plan shapes. We will also explore how this new approach

to robustness impacts query optimization. On the other hand, there is a never ending search for

even more sophisticated query optimization techniques. Looking at optimizing queries with a very

large number of joins and aggregation is a direction of future work. Examining if machine learning

methods can help in query optimization or if methods like LIP can be extended even further is likely

to be a interesting research direction.

For provenance graphs analytics, we have introduce a system called QuickGrail that supports

76

efficient and effective querying on large provenance graphs. The QuickGrail system comes together

with an expressive domain-specific query language that allows a human analyst to evaluate complex

filter / lineage / path queries and a class of pattern matching queries to yield possibly very large

subgraphs as intermediate results, and do set operations such as union, intersection, subtraction

on the subgraphs. The intermediate results can be efficiently concretized and be conveniently

referenced as inputs for subsequent iterations of exploratory analyses. We have explained the

underlying implementations that support all the QuickGrail operations with high performance,

robustness and scalability, and demonstrated the claims with experiments. Our experiment datasets

come from the DARPA Transparent Computing (TC) program, and we have used QuickGrail to

successfully extract the desired patterns for all the attack scenarios in all the TC engagements.

Nowadays graph analytics is increasingly being used in enterprises. In future work, it is a direc-

tion for us to consider more sophisticated graph pattern matching, including automatic anomaly

detection, in a scalable way.

77

Bibliography

[1] Neo4j. https://neo4j.com.

[2] OrientDB. https://orientdb.com.

[3] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query processing. In SIGMOD

’00, pages 261–272, New York, NY, USA, 2000. ACM.

[4] E. Babb. Implementing a relational database by means of specialzed hardware. ACM Trans.

Database Syst., 4(1):1–29, Mar. 1979.

[5] B. Babcock and S. Chaudhuri. Towards a robust query optimizer: A principled and practical

approach. In Proceedings of the 2005 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’05, pages 119–130, New York, NY, USA, 2005. ACM.

[6] S. Babu, P. Bizarro, and D. DeWitt. Proactive re-optimization. In Proceedings of the 2005 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’05, pages 107–118, New

York, NY, USA, 2005. ACM.

[7] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and J. Widom. Adaptive ordering of

pipelined stream filters. In SIGMOD ’04, pages 407–418, New York, NY, USA, 2004. ACM.

[8] C. Beeri and R. Ramakrishnan. On the power of magic. In PODS, pages 269–284, 1987.

[9] P. A. Bernstein and D.-M. W. Chiu. Using semi-joins to solve relational queries. J. ACM,

28(1):25–40, Jan. 1981.

[10] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. CACM, 13:422–426,

1970.

[11] P. A. Boncz, T. Neumann, and O. Erling. TPC-H analyzed: Hidden messages and lessons

learned from an influential benchmark. In 5th TPC Technology Conference, TPCTC, pages 61–

76, 2013.

https://neo4j.com
https://orientdb.com

78

[12] K. Bratbergsengen. Hashing methods and relational algebra operations. In VLDB ’84, pages

323–333, San Francisco, CA, USA, 1984. Morgan Kaufmann Publishers Inc.

[13] Apache Calcite. https://calcite.apache.org, 2016.

[14] C. Chasseur and J. M. Patel. Design and evaluation of storage organizations for read-

optimized main memory databases. PVLDB, 6(13):1474–1485, 2013.

[15] M.-S. Chen, H.-I. Hsiao, and P. S. Yu. On applying hash filters to improving the execution of

multi-join queries. The VLDB Journal, 6(2):121–131, May 1997.

[16] S. Chu, M. Balazinska, and D. Suciu. From theory to practice: Efficient join query evaluation in

a parallel database system. In Proceedings of the 2015 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’15, pages 63–78, New York, NY, USA, 2015. ACM.

[17] A. Dutt and J. R. Haritsa. Plan bouquets: A fragrant approach to robust query processing.

ACM Trans. Database Syst., 41(2):11:1–11:37, May 2016.

[18] J. Fan, A. G. S. Raj, and J. M. Patel. The case against specialized graph analytics engines. In

CIDR, 2015.

[19] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph: Distributed graph-

parallel computation on natural graphs. In Presented as part of the 10th USENIX Symposium

on Operating Systems Design and Implementation (OSDI 12), pages 17–30, Hollywood, CA,

2012. USENIX.

[20] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica. Graphx: Graph

processing in a distributed dataflow framework. In 11th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 14), pages 599–613, Broomfield, CO, 2014. USENIX

Association.

[21] G. Graefe. Encapsulation of parallelism in the volcano query processing system. In SIGMOD,

pages 102–111, 1990.

[22] G. Graefe. Query evaluation techniques for large databases. ACM Comput. Surv., 25(2):73–

169, June 1993.

[23] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek, K. S. Ng, C. Wel-

ton, X. Feng, K. Li, and A. Kumar. The madlib analytics library or MAD skills, the SQL. PVLDB,

5(12):1700–1711, 2012.

https://calcite.apache.org

79

[24] J. M. Hellerstein and M. Stonebraker. Predicate migration: Optimizing queries with expensive

predicates. SIGMOD Rec., 22(2):267–276, June 1993.

[25] Z. G. Ives and N. E. Taylor. Sideways information passing for push-style query processing. In

ICDE ’08, pages 774–783, Washington, DC, USA, 2008. IEEE Computer Society.

[26] A. Jindal, P. Rawlani, E. Wu, S. Madden, A. Deshpande, and M. Stonebraker. VERTEXICA:

your relational friend for graph analytics! PVLDB, 7(13):1669–1672, 2014.

[27] R. Kimball and M. Ross. The data warehouse toolkit: the complete guide to dimensional model-

ing. John Wiley & Sons, 2011.

[28] D. E. Knuth. The art of computer programming, volume 3: sorting and searching. Addition

Wesley, 1973.

[29] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How good are query

optimizers, really? VLDB, 9(3):204–215, Nov. 2015.

[30] L. F. Mackert and G. M. Lohman. R* optimizer validation and performance evaluation for

distributed queries. In VLDB ’86, pages 149–159, San Francisco, CA, USA, 1986. Morgan

Kaufmann Publishers Inc.

[31] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski.

Pregel: A system for large-scale graph processing. In SIGMOD, SIGMOD ’10, pages 135–146,

New York, NY, USA, 2010. ACM.

[32] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh, and M. Cilimdzic. Robust query

processing through progressive optimization. In SIGMOD ’04, pages 659–670, New York, NY,

USA, 2004. ACM.

[33] Microsoft. Implied predicates and query hints. https://blogs.msdn.microsoft.com/

craigfr/2009/04/28/implied-predicates-and-query-hints/, 2009.

[34] M. Mitzenmacher and E. Upfal. Probability and computing: Randomized algorithms and prob-

abilistic analysis. Cambridge University Press, 2005.

[35] L. Moreau, B. Clifford, J. Freire, J. Futrelle, Y. Gil, P. Groth, N. Kwasnikowska, S. Miles,

P. Missier, J. Myers, B. Plale, Y. Simmhan, E. Stephan, and J. V. den Bussche. The open

provenance model core specification (v1.1). Future Gener. Comput. Syst., 27(6):743–756,

June 2011.

https://blogs.msdn.microsoft.com/craigfr/2009/04/28/implied-predicates-and-query-hints/
https://blogs.msdn.microsoft.com/craigfr/2009/04/28/implied-predicates-and-query-hints/

80

[36] T. Neumann and G. Weikum. Scalable join processing on very large rdf graphs. In SIGMOD,

pages 627–640, 2009.

[37] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join algorithms: [extended

abstract]. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of

Database Systems, PODS ’12, pages 37–48, New York, NY, USA, 2012. ACM.

[38] P. O’Neil, E. O’Neil, and X. Chen. The star schema benchmark. http://www.cs.umb.edu/

~poneil/StarSchemaB.pdf, Jan 2007.

[39] P. O’Neil, E. O’Neil, X. Chen, and S. Revilak. The star schema benchmark and augmented fact

table indexing. In Technology Conference on Performance Evaluation and Benchmarking, pages

237–252. Springer, 2009.

[40] Oracle. Push-down part 2. https://blogs.oracle.com/in-memory/push-down:

-part-2, 2015.

[41] T. Rabl, M. Poess, H.-A. Jacobsen, P. O’Neil, and E. O’Neil. Variations of the star schema

benchmark to test the effects of data skew on query performance. In ACM/SPEC International

Conference on Performance Engineering, pages 361–372. ACM, 2013.

[42] P. Seshadri, J. M. Hellerstein, H. Pirahesh, T. Y. C. Leung, R. Ramakrishnan, D. Srivastava, P. J.

Stuckey, and S. Sudarshan. Cost-based optimization for magic: Algebra and implementation.

In SIGMOD, pages 435–446, 1996.

[43] L. Shrinivas, S. Bodagala, R. Varadarajan, A. Cary, V. Bharathan, and C. Bear. Materialization

strategies in the vertica analytic database: Lessons learned. In ICDE, pages 1196–1207. IEEE,

2013.

[44] M. A. Soliman, L. Antova, V. Raghavan, A. El-Helw, Z. Gu, E. Shen, G. C. Caragea, C. Garcia-

Alvarado, F. Rahman, M. Petropoulos, F. Waas, S. Narayanan, K. Krikellas, and R. Baldwin.

Orca: a modular query optimizer architecture for big data. In SIGMOD, pages 337–348, 2014.

[45] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. Leo - db2’s learning optimizer. In

Proceedings of the 27th International Conference on Very Large Data Bases, VLDB ’01, pages

19–28, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[46] T. P. P. C. (TPC). Tpc benchmark h (decision support) standard specification revision

2.17.1. http://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_

v2.17.1.pdf, Nov 2014.

http://www.cs.umb.edu/~poneil/StarSchemaB.pdf
http://www.cs.umb.edu/~poneil/StarSchemaB.pdf
https://blogs.oracle.com/in-memory/push-down:-part-2
https://blogs.oracle.com/in-memory/push-down:-part-2
http://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v2.17.1.pdf
http://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-H_v2.17.1.pdf

81

[47] P. Valduriez and G. Gardarin. Join and semijoin algorithms for a multiprocessor database

machine. ACM Trans. Database Syst., 9(1):133–161, Mar. 1984.

[48] T. L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In ICDT, 2014.

[49] S. Yin, A. Hameurlain, and F. Morvan. Robust query optimization methods with respect to

estimation errors: A survey. SIGMOD Rec., 44(3):25–36, Dec. 2015.

[50] Q. Zeng, J. M. Patel, and D. Page. Quickfoil: Scalable inductive logic programming. PVLDB,

8(3):197–208, 2014.

	Abstract
	Introduction
	Quickstep Query Optimizer and Execution Engine
	Data Model and Query Language
	System Overview
	Query Optimizer
	Query Execution
	Threading Model
	Work Order-based Scheduler

	Improving the Evaluation of Join Queries on Star Schema Databases
	Introduction
	Preliminaries
	Star Schema and Left-deep Join Trees
	Modeling Performance Without LIP
	Robustness
	Bloom Filter

	Lookahead Information Passing
	Adaptive Reordering of Lookahead Filters
	Robustness Through LIP
	Insights from the Analytical Model

	Evaluation
	Choice of Bloom Filter Configuration
	Robustness to Join Order Selection
	Handling Skew and Correlation
	Importance of Adaptiveness
	Applying LIP to Subplans

	Related Work
	Conclusions and Future Work

	Additional Query Optimization: Drop Early, Drop Fast
	Partial Predicate Push-down
	Exact Filters: Join to Semi-join Transformation
	Conclusions and Future Work

	Provenance Graph Analytics Using the Quickstep/Grail Approach
	Introduction
	Preliminaries
	The Property-Graph Data Model
	Provenance Graph
	Querying a Provenance Graph
	Main Challenges

	Our Approach
	The QuickGrail Language
	Relational Storage
	Grail Low-level Instructions
	Generate GLL Instructions from Graph Expressions
	Graph Pattern Matching

	Experiments
	System Configuration
	Analysis Workflow and Outcome
	Comparing Performance With Neo4j

	Conclusions and Future Work

	Summary

