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Abstract

The emergence of tightly integrated DRAM through embedded DRAM (eDRAM) or stacked
DRAM, provides a high-capacity data store near the high-speed logic die that many have
envisioned as an additional level of cache. Unfortunately, the large capacities afforded by
these caches create a tag tracking problem. Either small blocks require too many tags to
store them on the high-speed logic die or large blocks incur excessive conflicts.

This thesis presents Tag Tables, a technique for tracking tags that is especially suited
to large last-level caches. Tag Tables solve the tag tracking problem while achieving the
seemingly contradictory goals of maintaining small blocks, high associativity, and storage of
tags on the high-speed logic die. They accomplish these goals by exploiting the high spatial
locality exhibited by these high-capacity caches through a highly efficient mechanism for
tracking contiguous chunks of data allowing an average tag cost on the order of just a
few bits per block. Further, Tag Tables employ a dynamic page table structure to perform
tag checks, allowing them to adapt their structure to system operating characteristics.
By utilizing a Tag Table structure to administer a large DRAM-based cache, this thesis

shows that a system is able to achieve 56% speedup on a mix of mulitprogrammed and



xiii
multithreaded workloads relative to a baseline system without a DRAM cache, beating
prior state-of-the-art that stores the tags in the DRAM itself.

Beyond presenting the basic Tag Table mechanism, this thesis further explores unique
opportunities for optimizing tag checks in Tag Tables. These opportunities include the use
of Set Dueling to balance metadata and application data in memory, the application of a
unique reactive prefetching technique along with more traditional proactive techniques, and
the adaptation of techniques for accelerating page table walks such as lookaside buffers
and translation caches. Through the combination of these additional opportunities, Tag
Tables are capable of achieving better than 65% speedup over a baseline, no-DRAM-cache

system and 18% over the prior-state-of-the art.



1 Introduction

Recent technological advances incorporating dense DRAM close to the processing cores
of a computing system - namely embedded DRAM (eDRAM) and stacked DRAM (to
be discussed in more detail in Chapter 2) - provide unprecedented low-latency, high-
bandwidth data storage. While the capacities are large given their proximity to the core,
they are nevertheless unlikely to provide sufficient storage to replace main memory for all
but certain embedded applications as argued by Black et al. [9]. As such, recent products
such as IBM’s POWER? [39], Intel’s Haswell [20], and Microsoft’s XBOX 360 [2] along with
research proposals such as Loh and Hill’s Cache [33], Qureshi and Loh’s Alloy Cache [41],
and the Footprint Cache by Jevdjic, Volos, and Falsafi [27] have advocated their use as
additional levels of cache. Unfortunately, traditional tag tracking mechanisms are not

well-suited to these large capacities for most applications.



1.1 Previous Approaches

The small-allocation-unit cache represents the mechanism of choice for most of the history of
hardware caches. While very efficient at utilizing cache capacity by storing relatively small
blocks of data (typically 32B to 128B), it is prohibitively expensive to store the necessary
number of unique tags for these high-capacity caches which are expected to reach between
hundreds of megabytes to tens of gigabytes in the near future. For example, considering a
1GB cache with 64B blocks and 6B of tag per block, these traditional tag arrays require 96MB
of storage - infeasible on the SRAM-based logic die. As such, recent small-block-based
approaches have proposed storing the tags in the DRAM array themselves, necessitating
novel techniques for addressing the fundamental issue of high-latency DRAM accesses for
tag checks. Two prior tags-in-DRAM approaches for these large caches, to be discussed in
more detail in Chapter 2, Loh and Hill’s Cache [33] and Qureshi and Loh’s Alloy Cache [41],
both attempt to mitigate this issue by removing DRAM cache access from the critical
path on misses, either through an additional tracking structure on the logic die as in the
Loh-Hill Cache’s MissMap or through prediction as in the Alloy Cache. The Alloy Cache
further addresses DRAM access latency by also optimizing hit latency. While the Loh-Hill
Cache preserves a high level of associativity for its stacked DRAM cache, requiring the
acquisition of multiple DRAM blocks for all the tags in a set, the Alloy Cache advocates
a direct-mapped approach, requiring the acquisition of only an additional burst of data
across the bus to acquire the co-located tag information for a data block. Therefore, these

two competing proposals take different stances on the importance of hit rate and hit latency,



the importance of which is largely a function of application characteristics.

Alternatively, a tag tracking mechanism can be optimized for tag storage and thus avoid
the fundamental issue of accessing DRAM for tags by implementing large allocation units.
Whether simply a tag array with large blocks or a sectored approach allowing small block
fetch within the large allocation units (the sector), these mechanisms achieve much lower
tag storage overhead by reducing the number of tags, potentially allowing them to exist
in fast SRAM on the logic die. The drawback for these approaches comes from much
higher miss rates from cache conflicts created by these large allocations. While simply
increasing the block size is generally regarded as a poor design point due to the high
bandwidth demand (a whole large block must be fetched on every miss), sectored cache
approaches have recently been advocated as a viable solution to tag tracking for large
DRAM-based caches. The Footprint Cache proposed by Jevdjic et al. for one, adopts a
sectored cache design and extends it with a predictor for a request’s footprint [27]. Coupled
with the application characteristics of emerging scale-out workloads, which exhibit a high
degree of page access density (i.e., the number of subblocks accessed within a sector prior to
eviction) which reduce the rate of cache conflicts, the footprint predictor is able to prefetch
the subblocks expected to be accessed during the life of the sector based on past behavior
of the sector when allocated by the same PC and sector offset. While shown to work well
on the evaluated workloads, consuming relatively little SRAM capacity (<2 MB for a 256
MB cache), and proposing a useful prefetch mechanism, it is an open question - one that

will be investigated in Chapter 6 - how well a sectored cache approach will work on more



general applications.

1.2 Tag Table Features

What the Loh-Hill Cache and Alloy Cache do not exploit and the sectored cache is unable
to exploit effectively due to rigid sector boundaries, is that the capacities afforded by these
large DRAM caches result in increased spatial locality of blocks in the cache through longer
residency times. The effect of this spatial locality is the duplication of a significant number
of tag bits between blocks in the cache due to large contiguous regions - or “chunks” -
of main memory data eventually being present. In this thesis, we present Tag Tables, a
mechanism which is able to exploit this increased spatial locality and repeated tag bits
by storing them in a base-plus-offset encoding. Further, Tag Tables represent a dynamic
tracking structure that is adaptable to changing application characteristics through the

adoption of a page table data structure.

1.2.1 Compressed Block Storage

Partly inspired by Witchel, Cates, and Asanovi¢’s Mondrian Memory Protection [52], the
tag encoding utilized by Tag Tables is implemented similar to a sectored cache by storing
a base tag for a large region (i.e., the repeating bits) but then indicating the number of
contiguous blocks present past the base tag with a “Length” field as shown in Figure 1.1
as opposed to a bitvector as in a sectored cache. With this encoding, significant savings,

on the order of a sectored cache, can be achieved with Tag Tables, as will be quantified in



Tag Length
(~5B) (log,(Max Blocks))

Figure 1.1: Base-plus offset encoding utilized by Tag Tables to greatly reduce tag storage
requirement.

Tag Tag Tag Tag Tag Presence Tag Page Offset | Length
(26 bits) | (26 bits) | (26 bits) | (26 bi (20 bits) (64 bits) (20 bits) [ (6 bits) (6 bits)
0x0

0x67B5 0x67B5 0x67B5 0x67 O0x19E Ox7FFFFFF 0x19E 0x27

(a) (b) (c)

Figure 1.2: Example storage of tags for (a) traditional tag organizations, (b) a sectored cache,
and (c) a Tag Table.

Chapter 3, without the internal fragmentation or increased conflict rates of sectored caches.

To illustrate the point of repeated tag bits over various configurations, refer to Figure 1.2.
This figure compares the tag structures associated with a 256 MB cache with 64B blocks when
27 blocks associated with addresses 0x19ED400000 to 0x19ED400980 are being tracked.
In order to mimic the sort of configurations assumed for DRAM cache tag tracking, the
traditional cache is 64-way set associative, the sectored cache has 4KB sectors (leading to
64 blocks per sector), and the Tag Table cache utilizes 4KB rows. Further, the figure only
considers the information necessary for tracking presence, therefore no dirty bits, LRU
information, etc. are considered.

As the figure highlights, the traditional cache has a significant amount of repetition in
the tag bits of these contiguous blocks and indeed the figure does not even show all of the
tags necessary to track the data. While the sectored cache can help consolidate these bits, it

still requires a large bitvector to track the exact blocks that are present. A compressed Tag



Table entry can similarly consolidate these repeated bits but it can also more efficiently track
the blocks present within the region, consuming only log,(Max blocks tracked by an entry)
bits. These savings come at a cost of flexibility in that full enumeration as to the presence
of blocks is lost. Chapter 3 will describe and evaluate approaches to mitigate this effect for
workloads that exhibit less contiguity in cache blocks.

The extra “Page Offset” field in the figure in a Tag Table entry relative to the sectored tags
would be analogous to the sectored cache storing the sector number (0xD400) rather than
implying it with the tag array index. It is important to point out that this extra field helps
Tag Tables avoid the significant conflict issues encountered with sectored caches, which
are exacerbated by large sectors. These conflicts stem from the rigid sector boundaries
imposed by sectored caches and mean that any data from a memory region mapping to
the same sector in the cache that does not match the tags of the existing data must evict the
data currently present. Maintaining these bits in the entry allows Tag Tables to flexibly
place data in the cache and allows data from disparate memory locations to co-exist in the

same row /sector.

1.2.2 Dynamic Data Structure

Along with compressed storage of tags, Tag Tables leverage a forward page table data
structure in order to dynamically adjust to system runtime characteristics. Unlike traditional
tag arrays which must allocate enough storage for the tag and other metadata bits at design

time, a forward page table is created and modified over time, consuming more or less



storage overhead as necessary as application characteristics evolve. The application of
this structure allows Tag Tables to dynamically adapt to system characteristics during
runtime and facilitates the application of existing research into accelerating page walks
such as Translation Lookaside Buffers (TLBs) and translation caches, as will be explored in

Chapter 5.

1.2.3 Storage of Metadata

Finally, similar to a page table which stores its metadata in main memory, Tag Tables store
their metadata in the on-chip L3 cache rather than dedicated storage, further allowing
them to adapt their characteristics over time. This storage in the L3 cache allows for the
adaptation of caching policies to balance L3 and DRAM cache pressures to provide the best
configuration for application characteristics. Rather than having to statically determine the
appropriate L3 occupancy for metadata at design time, the dynamic page table structure
of Tag Tables allows the system to adjust caching policies dynamically to emphasize either
L3 capacity or DRAM cache capacity. Chapter 4 will adapt Set Dueling techniques to this
purpose, showing significant opportunity for transferring application working sets between
the L3 and DRAM caches based on the pressures they introduce. For example, a workload
with a primary working set that easily fits in the L3 cache and a secondary working set
that fits in the DRAM cache can afford to allocate more DRAM cache metadata in the L3
to ensure the secondary working set is covered. In contrast, a workload that pushes the

boundaries of the L3 can force a policy that devotes as much capacity as possible to the L3



while sacrificing DRAM cache data tracking. These adaptations are not possible with a

mechanism that statically allocates resources to tag tracking.

1.3 High Level Operation of Tag Tables

While the specific operation of Tag Tables will be explained in Chapter 3 and further refined
in the remaining chapters, Figure 1.3 combines the features so far discussed and provides
the high level operation. As mentioned, locating data in Tag Tables occurs as a walk in
a forward page table. Starting with a root pointer that must be maintained in a physical
register as with a traditional page table, the first bits of the address are utilized to index
into the proper entry of the root which in turn provides a pointer to the next level of the
table. The walk continues in this way until a leaf entry is found which encodes the row
offset associated with the address in a compressed format as described previously. This
row offset is analogous to a way in a traditional cache. With this information, the DRAM
cache can be accessed by concatenating this offset with portions of the address that are
analogous to set selection bits in a traditional cache, and represent the row associated with
the data. In this way, the exact location of the data in the cache is available. Misses are
indicated whenever a path to a leaf entry does not exist or the entry’s offset does not match
the access’s.

As an example of operation, consider access to the cache for address Ox19ED5AF140.
The walk will begin by indexing the root level with 0x1AF - the 9 bits just above the page

offset. This index will provide a pointer to the next appropriate level of the table, which is
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Figure 1.3: high level operation of Tag Tables.

then indexed by 0x16A. This continues until the leaf entry is found. As long as the leaf
entry contains location information for offset 0x5 - the page offset of this access - it is a hit
and the entry can provide the appropriate row offset of the data in the cache. Note, that the
offset of the entry need not be 0x5, but can instead be some value less if the offset plus the
length is greater than 0x5 due to the compressed storage enabled by the entries. Combined
with the row selection bits 0xX2D5AF, this offset identifies a unique block in the cache.

The astute reader may notice that the figure represents a page walk using bits in reverse
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of a traditional walk (e.g., the bits used to index the root of the table are the lowest-order bits
used in the walk, not the highest). This will be explained in Chapter 3 and is an important
design decision for Tag Tables which allows them to be more shallow and require fewer
traversals on average to determine block location.

The remainder of this thesis will elaborate on this high level description of Tag Tables,
propose optimizations, and evaluate the performance of a Tag Table structure for tracking
data in a large DRAM-based cache. Further, previous approaches for tracking data in
large caches will be described and evaluated relative to Tag Tables, revealing the benefit of

various design decisions and optimizations.

1.4 Thesis Contributions

The research presented in this thesis makes the following contributions:

* Proposes Tag Tables: Tag Tables are a novel SRAM tag design for large caches with
small block sizes that provide an average performance improvement of 58% from an
L4 DRAM cache versus a 42% speedup from Alloy Cache - the best prior approach -

and 10% from the Loh-Hill Cache.

* Proposes Set Scouting: Set Scouting is a novel extension to Set Dueling which allows
for selection among a range of policies not just two. Applied to the level of Tag Table

metadata allowed to be stored in a system’s L3 cache, Set Scouting provides a means
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to set a wide range of policies, providing in excess of 5% additional speedup over a

baseline Tag Table implementation.

¢ Evaluates the tradeoffs of large block sizes and varying associativity for large ca-
pacity caches: A simple first approach to supporting tags for large capacity caches,
large block sizes and reduced associativity allow for reduced tag storage overhead.

This thesis evaluates the effectiveness of this approach on general workloads.

¢ Evaluates the amenability of sectored-cache approaches for modern applications:
A more sophisticated extension of large block sizes, sectored caches decouple fetch
from allocation, allowing large sectors to be allocated and only small blocks to be
fetched. This organization replaces tags for each block in the sector with a single
bit, tracking tags at a sector granularity. While reducing bandwidth demand of
large block designs, this approach does not affect conflict rates, therefore this thesis

evaluates the effect of these conflicts on modern workloads.

¢ Evaluates Footprint Prediction opportunity on current, general workloads in a last
level cache: Spatial Footprint Prediction is a mechanism for improving the perfor-
mance of sectored caches by prefetching the data to a sector on allocation. While
effective for applications that have strong correlation between the instructions that al-
locate a sector, this thesis evaluates the degree to which modern, general applications

exhibit this behavior.

¢ Evaluates the effectiveness of virtual address translation mechanisms on Tag Ta-
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bles: Translation lookaside buffers (TLBs) and translation caches are techniques
utilized to accelerate address translations in a forward page table. This thesis evalu-
ates their applicability to Tag Tables, revealing TLB opportunity of more than 20%

over the workloads evaluated.

1.5 Thesis Organization

Chapter 2 follows to elaborate on previous work in the realm of tags for large capacity
caches beginning with a brief description of historical board-level caches, following with
recent technologies for creating large DRAM caches, and concluding with a survey of
contemporary techniques for tag tracking motivated by stacked-DRAM caches. Beginning
in Chapter 3, specific features and design decisions related to Tag Tables are introduced,
contrasting them with existing techniques for large capacity caches and evaluating their
effectiveness. Motivated by observations made during the performance analysis of the base-
line Tag Tables, Chapter 4 evaluates a dynamic mechanism to adjust L3 policies concerning
Tag Table metadata storage that utilizes the Set Dueling and novel Set Scouting techniques
to control the level of metadata pollution allowed in the L3 cache. In order to further
improve the operation of Tag Tables by utilizing existing techniques for accelerating virtual
to physical address translations, Chapter 5 presents adaptations of existing page table
techniques to Tag Tables such as translation lookaside buffers (TLBs) and translation caches.
Further optimizations for improving Tag Table performance by leveraging prefetching

techniques are presented in Chapter 6 to populate data in a DRAM cache prior to first
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reference. Finally, Chapter 7 concludes by summarizing key insights obtained through the
evaluation of Tag Tables and discusses potential avenues for future work or adaptations

based on these insights.
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2 Background

This chapter serves to present prior work on large capacity caches from historical on-board
caches, current designs utilizing embedded DRAM, and up to recent proposals anticipating

large cache storage facilitated by stacked DRAM.

2.1 Historical Board-level Caches

While large, fast DRAM-based caches have recently generated quite a bit of excitement and
spawned several recent research proposals and products, large caches - relative to on-chip
storage - are not without precedent. During the mid-1980’s, commercial and academic
computing systems made use of caches which provided significantly more storage than was
available on chip by incorporating separate memory chips, off the logic die, interfaced with
the system bus [23, 24]. Given their location, these board-level caches, contrary to current
DRAM-based caches which are largely valuable due to immense bandwidth, provided
limited bandwidth as they were frequently pin-limited and needed to share bandwidth

with a system bus. Further, the availability and preference of big, “dumb” memory chips to
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CacheTag Cache Set | ndex Block Offset
A AL AN
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Page Number Page Offset

Figure 2.1: Overlap bits used for page coloring (from [14]).

implement these caches meant they were simply used to store bits, not perform tag checks
or other complex logic. Instead, tag checking was performed on die resulting in the need
to communicate all tags across the system bus. In response, the caches were frequently
direct-mapped or implemented with some low degree of associativity to limit the amount
of metadata that needed to be transferred.

This decision to maintain little or no associativity in the cache led to such research
proposals as page coloring [11]. Page coloring addresses destructive cache interference
between processes that can be particularly prevalent when the cache has a low degree
of associativity. Coloring is performed at the operating system level by segmenting the
physical pages allocated to various processes such that the bits of overlap between the
physical page number and the set select bits (the page color) are consistent across all pages
allocated to a process as shown in Figure 2.1. In this way, specific regions of the cache can
essentially be reserved for various processes, avoiding destructive interference between
unrelated processes.

However, as time progressed and technology scaling allowed these caches to move on-
chip, such techniques became less relevant as the need to keep low degrees of associativity
was lifted. Caches continued to grow in capacity and associativity and techniques such

as parallel tag checks became relatively inexpensive and ubiquitous to allow checking of
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multiple tags in a set simultaneously. Tag storage increased linearly with respect to cache
capacity as block sizes remained relatively unchanged. Relatively little concern was paid
to the latency of tag checks and storage overhead of tags until high-capacity caches were

once again introduced with high-density DRAM-based caches.

2.2 Large DRAM Caches

Large DRAM caches in the literature come in two flavors: those based on embedded
dynamic random access memory (eDRAM) and those facilitated by die stacking, called
stacked DRAM. While stacked DRAM is largely an academic technology today, with
commercial examples still on the horizon [36], eDRAM has existed in commercial processors
since it was presented as the implementation of the L3 cache in the IBM BlueGene/L in
2004 [39] and the POWERY released in 2010 [12, 29], and is even present in Microsoft’s

XBOX 360 gaming console (which is powered by an IBM processor) [2].

2.2.1 Embedded DRAM

Embedded DRAM is fundamentally no different from traditional DRAM in the sense that
it stores data as charge in a capacitor with an access transistor to allow it to be read and
written. However, unlike traditional DRAM implementations whose density-optimized
process technology is incompatible with those used to create latency-optimized logic for
processors, eDRAM fabrication utilizes compatible techniques to allow the DRAM to be

embedded with the logic. While the two primary fabricators of eDRAM - Intel and IBM -
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utilize different techniques to perform this embedding, the fundamental capacitor-with-
access-transistor features remain the same, leading to storage densities 2-4x greater than
existing SRAM-based memories which require 6 or 8 transistors [12]. However, due to the
latency-optimized process used to create the access transistor, eDRAM cells leak at a much
greater rate than traditional DRAM, requiring refreshes up to 1000x more frequently [12,
51].

As mentioned, along with IBM, Intel has begun shipping eDRAM systems with their
recent Haswell processor family [20]. While a package-level offering as opposed to IBM’s
truly integrated, on-die approach, Haswell represents another high volume manufacturing
point for eDRAM and is likely just a starting point with future designs expected to use a
truly embedded approach [10, 30].

Both IBM and Intel implement their eDRAM with trench capacitors. Given the pro-
portional relationship between capacitance and plate area as shown in Equation 2.1 in
Figure 2.2, creation of a capacitor with planar plates on a silicon substrate in current process
technologies would consume excessive area in order to achieve reasonable capacitance
and thus retention times. Therefore, trench capacitors form their plates by creating a deep
trench in a substrate and creating one capacitor plate as a doped area around the trench
and the second is formed in the void of the trench with a dielectric barrier between the two
as shown in Figure 2.2. The IBM eDRAM trench capacitor for instance, has a greater than
35:1 aspect ratio, meaning the trench is 35 times deeper than it is wide [12], significantly

limiting its footprint on the silicon surface while achieving enough capacitance to be able
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Figure 2.2: Trench capacitor and capacitance equation.

to store sufficient charge.

Formation of Capacitors While the storage mechanism between Intel and IBM is the
same, the substrate in which it is created is different. For IBM, this substrate is the bulk
silicon itself [12], while Intel forms its trench capacitors in the interlayer dielectrics between
the metal interconnects above the silicon [10]. While the close integration between silicon
and the capacitor in IBM’s process can achieve very good access times, Intel’s decision
to create the trench in the interlayer dielectrics likely provides for better integration with
existing process techniques at the expense of access time. Further, by not interfering with
the silicon process, Intel can likely achieve greater density, taking away less silicon from

logic, and integrating at a later stage in the fabrication process.
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Figure 2.3: (a) 2.5D and (b) 3D die stacking of DRAM on top of high-speed logic (Recreated
from [33]).

2.2.2 Stacked DRAM

Contrary to eDRAM which is embedded in the high-speed logic die, stacked DRAM is
an application of 3D die stacking allowing the integration of disparate technologies [9, 32,
54]. In this way, both the logic die and the DRAM die can be fabricated in their optimal
processes, meaning certain concessions made in eDRAM such as high refresh rates can
be avoided. While 3D integration has been proposed as an opportunity for providing
high-speed communication between multiple logic dies by extending communication into
the third dimension, thereby reducing wire length [34, 40], initial commercial activity
appears focused on stacking dense DRAM on top of a high-speed logic and SRAM die.
Unfortunately, the capacities afforded by stacked DRAM are unlikely to be sufficient as a
system’s only data store for all but certain embedded applications, motivating its use as a
high-capacity cache [9].

Physically, interfacing multiple dies via stacking can occur either horizontally /2.5D [16]
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or vertically /3D [19, 53] as shown in Figures 2.3a and 2.3b. Further, the connections between
the dies are likely to consist of silicon interposers [9] or through-silicon vias (TSV) [45, 37],
respectively, providing relatively high bandwidth, low latency communication between

the two.

2.3 Tag Tracking for DRAM Caches

While eDRAM has been around for some time and board-level caches predated them, the
problem of tag tracking for large caches has only recently received significant research
interest with the promise of stacked DRAM. Perhaps this is due to the confluence of a large
number of blocks to be tracked relative to on-die capacity (a scenario that existed with
board-level caches) with the fact that what would previously be considered highly complex
on-chip operations (parallel tag checks, memory access predictors, etc.) are now mature,
well-understood mechanisms that architects feel comfortable manipulating. Or maybe it
is merely because there was so much more low hanging fruit in the days of board-level
caches that supporting large, high latency caches was relatively unimportant. Regardless,
this section serves to present recent promising proposals in the realm of tracking tags for
large DRAM-based caches, motivated by the promise of stacked DRAM that does not have
historic precedent whether for a board-level cache or eDRAM cache. These proposals span
a range of designs from a scaling up of recent on-chip designs with high associativity and
small block sizes, to a direct-mapped cache a la historical board-level caches, and finally to

a sectored approach.
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2.3.1 Loh-Hill Cache

The Loh-Hill Cache (L-H Cache) can be thought of as an approach to push the tag tracking
mechanism of recent last level caches (LLC) to a large DRAM-based cache [33]. By main-
taining support for “traditional” block sizes (on the order of 32B to 128B) and scaling up
associativity with capacity (32-way associativity for up to a 1GB cache), the L-H Cache
provides the sort of cache parameters one would expect with a simple scaling of cache
capacity. Of course concessions must be made to accommodate this step increase in cache
size, considering common LLC capacities are currently on the order of SMB to 16MB and
the L-H Cache considers 64MB to be the smallest size of interest for stacked DRAM caches.
Indeed, capacities in the few gigabytes have been announced for the similar Hybrid Mem-
ory Cube (HMC) technology [35]. The primary of these concessions is the storage of the
tags in the DRAM cache array itself. Considering a 256MB DRAM cache with 64B blocks
and 6B of tag for each block leads to 24MB of tag storage. Compared to typical LLC sizes,
this is clearly infeasible to store on the logic die, leading to the L-H Cache decision to store
them in the DRAM. In order to prevent the high latency of accessing the DRAM array for
tags from making a DRAM cache access even slower than a main memory access, the L-H
Cache makes two important design decisions, involving 1) exploiting open-row accesses
and 2) decoupling hit determination from block locating.

As mentioned earlier, the L-H Cache maintains a high degree of associativity. It does
this by considering all of the blocks in a DRAM cache row as a set, leading to 32-way

associativity given their 2KB rows and 64B blocks. This leads to the requirement to transfer
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Figure 2.4: Breakdown of latencies for a cache hit in the Loh-Hill Cache (Taken from [33]).

three 64B blocks of tags for every access!. By intelligently colocating these tag blocks in
the same set as the data, the L-H Cache is able to guarantee an open-row hit for all blocks
present in the cache, leading to operation as outlined in Figure 2.4, notably avoiding an
"ACT’ for the data access portion. In so doing, the precharge and activate latencies can be
avoided, eliminating approximately 16% of the cycles from the data access®. A secondary
effect of storing the tags in the DRAM row is that the associativity is effectively reduced
from 32-way to 29-way to account for the three blocks of tags.

Unfortunately, this open-row optimization only helps DRAM cache hits and does not
help misses, leading to significantly longer off-chip access times (an increase on the order
of 50 cycles while tags are checked). Therefore, the second key design decision in a L-H
Cache is to decouple the hit determination and the data location operations. In a typical
cache, the tag check not only reveals whether or not the access hits or misses but it also
indicates where the data is located in the cache as the way associated with the tag is the
same as the way associated with the data. In the L-H Cache a separate structure called a
“MissMap” is used to more quickly determine whether or not a cache access hits or misses

without the need to access the tags. Serialized with the tag check, it is only when this map

6B tags multiplied by 32 tags per set results in 192B of data or three 64B blocks
2Reduction in access cycles from 114 cycles to 96, as evaluated
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indicates that the access will hit that the cache will even access the tags and try to find the
data. This way, tag checks are eliminated from misses, replaced by a much lower latency
access to the MissMap.

The MissMap is implemented as a map, similar to the tags of a sectored cache, where
the page numbers are the key and a bitvector indicating the presence or absence of a block
is the value. Unlike a sectored cache however, the resulting location of the block in the
row is maintained by the tags not by its position in the page. In this way, the L-H Cache is
able to avoid internal fragmentation and conflict misses of a sectored cache since data from
conflicting memory locations can co-exist in the same sector of the data array.

As proposed, the MissMap is implemented by “carving off” a portion of the existing
on-chip L3 cache. Given a MissMap entry size of 12.5B (36 bits of tag plus 64 bits for the
bitvector), approximately 167,000 MissMap entries consume 2MB [33]. Therefore, a careful
balance must be struck between reduced L3 capacity and the ability of the MissMap to
track data in the DRAM cache. By enforcing the requirement that all blocks in the cache
must be tracked by the MissMap, any time a new entry needs to be allocated that would
require eviction of an existing entry, the blocks associated with the victim must be evicted.
This situation is encountered whenever more unique rows are present in the cache than
there are entries in the MissMap. Therefore, while too large of a MissMap will increase L3
miss rates, too few could prevent the DRAM cache from achieving full utilization. Through
evaluation, the MissMap is given 2MB of the 8MB L3 cache to balance L3 miss rates with

DRAM cache coverage over the evaluated workloads, though the authors concede that this
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Figure 2.5: DRAM cache row in an Alloy Cache showing the colocation of tags and data
(Taken from [41]).

value is highly application dependent.

2.3.2 Alloy Cache

The Alloy Cache is a stacked DRAM tag tracking proposal that returns to the roots of board-
level caches. Proposed as an optimization for hit latency, the Alloy Cache is implemented
as a direct-mapped cache similar to board-level caches, replacing the long latency tag check
of multiple blocks incurred by the L-H Cache with a simple check of a single tag, colocated
with the data as shown in Figure 2.5 [41]. In this way, the acquisition of three blocks of tags
necessary for a tag check in the L-H Cache is replaced with a single additional burst of
data on the bus to communicate the tag associated with the block. Considering 64B blocks,
a 16B-wide data bus, and 8B of tag data, the Alloy Cache requires five bursts on the data
bus versus the traditional four bursts.

Along with improving the latency of hits, a secondary objective of making the Alloy
Cache direct-mapped is to maximize bandwidth. By consuming the cache’s data bus

for three blocks of tag data only to receive a single block of application data, the L-H
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Cache is rather inefficient, achieving only 1.8x of the potential 8x bandwidth improvement
of a DRAM cache [41]. In contrast, the Alloy Cache is able to achieve 6.4x bandwidth
improvement by keeping the data bus busy transferring useful (i.e., non-tag) data more
often.

However, this organization does not address the added latency of the traditional Serial
Access Model (SAM) when accessing the DRAM cache for requests that eventually miss,
increasing the off-chip latency when the cache must be verified as a hit or miss before
issuing an off-chip request. This is not a significant problem for applications that have a
high hit rate in the DRAM cache, but can have a significant effect on those that frequently
miss. Therefore, the Alloy Cache introduces a Parallel Access Model (PAM) that issues main
memory requests in parallel with the cache access when it believes the access will miss. The
determination of the likelihood of a hit or miss is performed by small predictors that can be
queried first on an access when in PAM mode. If the predictor indicates that the access will
likely miss, an off-chip request is immediately issued to occur in parallel with the access
to the cache. Unlike the MissMap, these predictors do not have perfect knowledge of the
data in the cache, therefore the access must be made regardless of the predictor outcome
in order to avoid receiving stale data from memory. This predictor verification is off of the
critical path of misses however, so as long as the predictor is accurate, most misses can
complete without increasing the service time beyond the minimal single-cycle access of
the predictor itself.

In conclusion, relative to the L-H Cache, the Alloy Cache eschews associativity in order
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to improve hit latency by only accessing a single tag. This approach is advocated by a claim
that the capacities afforded these DRAM caches makes associativity relatively unimportant.
While the benefit of improved hit latency is not likely to be debated, given the 2:1 cache
rule of thumb that states that a 2-way cache is similar to a direct-mapped cache of double
capacity [22], the direct-mapped Alloy Cache is equivalent to a much smaller 29-way L-H
Cache. Even considering diminishing returns on increased associativity, it is questionable
whether this extreme reduction in associativity is worth the hit latency improvements
if hit rate is significantly affected. In fact, the replacement of the relatively long-latency
access of a MissMap (24 cycles as evaluated in [33]) with simple single-cycle predictor
in the Alloy Cache may be sufficient to make the highly associative L-H Cache a better
design point. While the predictor is not sufficient for determining if an access is a hit or
miss, and it does nothing to improve effective bandwidth into the DRAM cache (since
every request has to access the cache regardless of hit/miss), it does serve to remove the
penalty incurred for misses to a DRAM cache, similar to the MissMap but much faster, by
opportunistically issuing off-chip requests before accessing the cache. Perhaps a balanced
approach of moderate associativity on the order of one cache block’s worth along with a
memory access predictor provides a good balance of hit rate and hit latency between the

L-H and Alloy Caches.
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2.3.3 Footprint Cache

Finally, the Footprint Cache (FPC) is a sectored-cache approach to tracking data ina DRAM
cache [27]. Proposed as a tracking mechanism for some of the earliest cache implemen-
tations, sectored caches can greatly reduce the storage overhead of cache tags by only
associating a single tag for a large region of memory (a sector) and using a bitvector to
indicate which smaller blocks associated with the tag are actually present in the cache [1].
Unlike the MissMap however, which similarly identifies the data present in the cache by
using a tag to a large region, since data from multiple regions of memory which map to
the same sector can not co-exist in a sectored cache, there can be a significant increase in
evictions. These evictions occur when a reference to data that maps to the same sector
but with a different tag from the existing data stored in the sector causes the eviction of
the existing data, potentially creating a significant amount of writeback traffic if there are
many dirty blocks. Further, sectored caches can exhibit significant internal fragmentation
if few blocks associated with a sector are actually referenced.

The FPC proposal avoids a significant amount of the fragmentation and conflict issue
by applying the approach to a specific set of scale out workloads which exhibit a high degree
of page density which means they reference a significant number of blocks within a sector
between allocation and eviction. Further, the FPC includes a predictor for singletons, or
pages which only reference a single block before eviction, preventing allocation (and
subsequent victimization of existing data) for the sector, simply forwarding the data when

received. This of course requires a non-inclusive cache policy since otherwise lack of a
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Figure 2.6: The Footprint History Table utilized by the Footprint Cache (Taken from [27]).

particular block of data is not allowed.

The cost of this prediction is relatively small as it builds on another major feature of the
FPC, the footprint predictor. Proposed originally as a prediction mechanism for a sectored
L1 cache, the footprint predictor opportunistically fetches the blocks that will be referenced
in a sector (the sector’s “footprint”) on allocation in the hopes that they will be subsequently
referenced and already present (i.e., will be usefully prefetched) [31]. Since a sectored cache
causes eviction of all existing blocks in the sector on allocation, such a prediction merely
has an effect on cache fill bandwidth since it will not cause any additional data evictions.
Similar to the original proposal, the FPC incorporates a footprint history table (FHT) as
shown in Figure 2.6, which is indexed by the allocating reference’s offset in the sector along
with the program counter (PC) value that referenced it, which itself is retained in the tags
of the sector during its lifetime in the cache. The values associated with this index are then
the corresponding bitvector of referenced blocks present when the sector was last evicted.
The intuition is that the blocks that are referenced within a sector will be stable from one
allocation to the next, assuming the allocation occurs from the same instruction and with
the same initial offset. As will be shown in Chapters 3 and 6, the applicability of these

footprint predictions do not necessarily hold for general workloads, but scale-out workloads
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exhibit a strong correlation between data accessed and the accessing instruction [48]. Since
the bandwidth imposed by the mechanism is highly dependent on the accuracy of the
predictor, Chapter 6 will quantify the effect of increased bandwidth, coupled with poor

prediction for many general workloads.

2.4 Summary

This chapter first discussed the similarity between large DRAM-based caches and board-
level caches of the past. Next, it reviewed the embedded DRAM and stacked DRAM
technologies which make these dense, high speed caches possible. Finally, it concluded
with a survey of existing proposals for tracking the tags required for managing these
high-capacity caches, representing widely disparate views on the importance of such

fundamental cache properties such as block size, associativity, and latency to access tags.
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3 Tag Tables

As discussed in Chapter 2, the capacities possible with DRAM-based caches lead to a tag
tracking problem. Either excessive storage is required for the tags if traditional block sizes
are utilized (32B to 128B) or fragmentation issues limit application performance when large
block sizes are utilized to mitigate tag storage. This chapter will describe the fundamental
features of Tag Tables that facilitate tracking of traditionally-sized cache blocks with storage
requirements competitive with large-granularity designs. In this way a Tag Table design is
capable of realizing the performance potential of a cache with small blocks while keeping

tag storage low enough to be maintained on the latency-optimized logic die itself.

3.1 Motivation

Standard tag array designs have relatively few parameters available to tailor their structure
to system operating characteristics (e.g., block size, associativity) and none are easily adapt-
able at run time. Instead, this inflexibility necessitates extensive offline characterization of

expected workloads during the design stage in order to create an acceptable tag tracking
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Figure 3.1: Performance of various cache configurations for a 256 MB L4 cache. Shaded
area indicates desirable region of improved bandwidth-delay with practical SRAM cost.
Results shown for the PARSEC canneal benchmark normalized to a baseline with no L4.
structure for the widest possible set of operational characteristics. While many proposals
currently exist in the realm of caching to overcome these static constraints, they do so
merely by providing a semblance of adaptivity through the addition of various structures
and do not address the underlying inflexibility of the substrate [42, 43, 44]. In order to avoid
these compromises, this section first investigates a more flexible substrate for tracking tags
that itself has a distinguished track record of tracking metadata for large memories - the
forward page table. The section continues by evaluating the opportunities and limitations
of an oft-considered, decades-old mechanism for limiting tag overhead - sectored caches -
to not only highlight the need to shift the baseline tracking mechanism to something more
flexible but to identify potential for compressing the storage required for tags.

Figure 3.1 presents the “Bandwidth-Delay product” (BDP) achieved versus the tag stor-
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age overhead of a broad range of DRAM cache tag storage configurations. The compound
BDP metric attempts to quantify the major benefits sought with caching: reduced off-chip
bandwidth and improved application performance through high speed data access, where
a lower value is better. The shaded area at the bottom left of the figure captures designs that
have lower BDP than a baseline without a DRAM cache, and have a reasonable (defined
here as 6MB) SRAM cost for tags.

Along with the Loh-Hill Cache ((3)), the Alloy Cache (@), and Tag Table (gJ) configura-
tions, a family of curves is presented in the figure for a large-allocation-unit mechanism
that attempts to reduce tag overhead by increasing block size. The graph clearly shows that
this approach - which evaluates block sizes from 64B to 512B - fails to achieve good per-
formance, either consuming too much off-chip bandwidth to fetch its large blocks and/or
incurring too many misses due to false conflicts. In contrast, the Loh-Hill Cache, the Alloy
Cache, and Tag Tables all reside within the desirable portion of the graph with the Tag
Table configuration providing the best BDP (Section 3.5.4 will discuss the main features
that distinguish Tag Tables from both the Alloy Cache and Loh-Hill Cache).

Further, while the Tag Table configuration exists to the right of the Alloy Cache, indicat-
ing increased SRAM storage requirement, this is the complete tag storage overhead (i.e.,
no tag information needs to consume DRAM cache capacity). In addition, the Tag Table
achieves its performance without any prediction or SRAM-based hit/miss determination
structures as the other three state-of-the-art techniques rely on and can in fact be extended

by any one of a number of prediction schemes (Chapter 6 will investigate the opportunity
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spatial footprint prediction might have for Tag Tables).

3.1.1 Page Tables

Motivated by Figure 3.1, this section begins to develop a more compact storage mechanism
for large cache tags by arguing that any extension of a traditional tag array will be unable
to exploit runtime features of the system to achieve storage savings because they impose a
static storage requirement. Regardless of the state of the cache, the one-to-one mapping of
cache blocks to tags in a traditional tag array means that it must provision storage equal to
the product of the number of blocks in the cache and the storage required per tag. This
teature is analogous to another mechanism for tracking memory metadata - the inverted
page table (IPT). Similar to the tag array, the IPT has a one-to-one mapping of physical pages
to entries and imposes a static storage requirement proportional to the number of physical
pages. Unlike a traditional tag array however, a page table has an alternate implementation
to the IPT - the forward page table (FPT) - that only requires storage relative to the number
of mapped pages. In other words, no storage overhead is incurred for a memory page that is
unmapped in an FPT. Therefore, as a starting point for developing a more robust solution to
tag storage for large caches, opportunities for adapting the FPT mechanism are investigated
which provides the flexibility to adapt to application behavior on demand.

At a high level, the replacement of a traditional tag array by a page table implementation
is straightforward and follows the operation outlined by Figure 3.2. Upon access, a tag

check occurs as a virtual address translation does in a forward page table through indexing
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Figure 3.2: High level operation of a forward-page-table-based implementation of cache
tags. The set selection and tag check occurs implicitly with the walk, culminating in a hit
in the leaf if it is found (which indicates the way associated with the tag if set associative)
and a miss if any entry on the path is missing.

the various levels of the table with appropriate bits of the access’s address. The “walk”
terminates when either all bits are exhausted and a leaf entry is found - storing the way
associated with the tag, if the cache is associative - or the branch terminates prematurely
indicating a miss. In the end, all bits of the address above the block offset have been used
to arrive at a unique location in the table for the address. This operation is analogous to
the page table where all of the bits of the address above the page offset are used to traverse
to a unique leaf. A miss would then trigger insertion of the data in the cache and tracking
of the tag in the table by extending the branch to a leaf and storing the appropriate way in

the leaf. The identification of a victim is unchanged from a traditional cache (e.g., selection

of the least recently used member of the set). In and of itself, this is not a fundamental
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improvement as the system would still need to be provisioned for a worst-case, fully
occupied cache at design-time. Further, the combination of multiple levels and way storage
in the leaf is not inherently less expensive than a traditional tag structure, but it provides
a starting point that is free from inflexible storage requirements and opens up a path to

exploit system operating characteristics in order to realize reduced storage requirements.

3.1.2 Sectored Caches

As a first step toward realizing compressed tag storage, lessons from sectored caches - a
tag tracking mechanism for some of the earliest cache implementations - are investigated.
Sectored caches are a simple mechanism that rely on spatial locality of data in the cache to
effectively reduce the overhead of storing tags for large contiguous regions - or “chunks” -
of data by storing only one full tag for a region - a sector - of the cache along with a bitvector
indicating which of the blocks represented by the tag are actually present [1].

As mentioned previously, such an approach is particularly beneficial for applications
that exhibit a very high degree of spatial locality or page access density [27]. As long as a very
high proportion of the blocks covered by a tag are actually present, the cache achieves most
of the performance available with more fine-grained tags with much less overhead. The
problem arises when there is not enough locality to densely populate the region covered
by a tag, leading to a much higher rate of evictions when blocks from conflicting tags are
referenced. Indeed, most cache designs in the decades since sectored caches were first

introduced have eschewed their use because many applications do not exhibit the density
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Figure 3.3: Cumulative proportion of DRAM cache rows with less than or equal to a given
number of unique tags.

necessary to realize their benefit.

In order to investigate the feasibility of sectored cache designs for large DRAM caches
for systems running modern applications, the number of unique tags in a given DRAM
cache row is measured as a proxy for the locality available for a sectored cache’s large tags.
The number of unique tags is determined through simulation of multi-threaded PARSEC
and multi-programmed SPEC workloads on a direct-mapped Alloy Cache [41], capturing
a snapshot of the unique tags present in a row at the end of simulation (details of the
simulation parameters are given in Section 3.5). Presented in Figure 3.3, this evaluation

indicates that modern applications exhibit a wide range of locality characteristics. The
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figure relates the cumulative proportion of the cache’s rows that exhibit a given x-value’s
number of unique tags. For instance, mcf has nearly 40% of its cache’s rows with more than
8 unique tags (60% of the rows have less than or equal to 8 tags). The page size investigated
is 4 KB and it can be seen that for many applications, most rows in the cache have very few
unique tags as evidenced by the sharp slope in the graph for low values of unique tags,
identifying them as potentially good candidates for a sectored cache. A significant number
of other applications however, such as mcf and omnetpp, unfortunately exhibit few rows
with high locality as evidenced by their graph’s relatively flat growth at low unique tag
counts. Finally, despite indications that perhaps many applications may benefit from a
sectored tag approach, i.e. those with steep slopes to the left end of the graph, it should
be noted that for a 256MB cache, 64B blocks and 256B per sector (i.e., 4 blocks per sector)
the storage overhead of the tag array is still 5MB. This penalty grows near-linearly with
cache size (neglecting the minor change in tag size per sector due to larger caches) resulting
in much higher cost as cache size increases. Together, this data justifies the absence of
sectored cache designs in current cache implementations due to its severe penalty of several
important application types and motivates the identification of a more robust mechanism

for reducing the storage requirement of cache tags.

3.2 Compressed Entries

Motivated by the results of Figure 3.3 which indicate a range of spatial locality within a

cache both over rows within the cache and from application to application, this section
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Figure 3.4: (a) Basic & (b) Expanded Entry Formats.

presents a space-efficient entry type that can robustly adapt to these different scenarios.
While the figure shows that the rigidly imposed spatial locality required by a sectored cache
does not map well to many applications, it also indicates that there is significant opportunity
if a sectored-tag-like approach were available for some applications and regions of the
cache. In order to realize such a robust tracking mechanism, the use of a “base-plus-offset”
encoding for tracking regions of memory in the cache is employed. In Tag Tables, rather
than impose a static sector size and track the blocks within the sector using a bitvector,
this encoding instead tracks “chunks” of data, where a chunk is a region of the cache
where the data present is contiguous in their addresses. In this way, the storage of the tag
associated with the bottom block of the region and the length of the chunk is sufficient to
indicate exactly which blocks are present and where they are located (i.e., contiguously
with each other from the base up to the base plus the length). Such an encoding can be
seen in Figure 3.4a, showing a field for a simple tag followed by a field that indicates the
number of contiguous blocks existing beyond that base.

Unlike a bitvector which requires a bit for every block, this length indication only

requires log,(Max. no. blocks) bits. The tradeoff of course, is that this encoding cannot
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track a range with “holes” (i.e., non-present blocks within the chunk) in it. To address this
issue, a hybrid approach utilizing some number of chunk representations greater than
one as shown in Figure 3.4b can be used, allowing the representation of holes implicitly
in the gaps between chunks. In this format, in addition to the tag and length previously
discussed, an “offset” specification must also be used that relates the first block of the
chunk to the tag of the entry. For example, an “offset” of 4" indicates that the first block of
the chunk exists four blocks beyond the base block identified by the tag.

When combined with the forward page table structure proposed in Section 3.1.1, by
replacing the simple way-identifying entries proposed at the leaf of the page table with
these compressed entries, this structure frees the tag tracking mechanism from a one-to-one
mapping of blocks present in the cache to leaf entries in the page table structure. This
then allows amortization of the inherently larger entries over a greater range of blocks.
Section 3.5 will quantify this amortization by showing that the average number of blocks

tracked per entry is actually quite high for those applications in the benchmark set.

3.3 Operation

This section serves to combine the structures motivated and introduced by the previous
sections into one coherent structure and provides examples to more concretely describe
each component. The basic structure tracks tags in a large cache and operates - at a high
level - as a forward page table with tag checks implicit with a walk of the table.The exact

location of data is stored in compressed form at leaf entries with base-plus-offset encoding
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Figure 3.5: Modified high level operation, specific to a 1GB DRAM cache with 4KB rows
and 64B blocks, accessed by 48-bit addresses, highlighting the design decisions presented
in Section 3.3.1.

and misses are either implied by failure to find a complete path to a leaf or by a block not

residing in any of the leaf entry’s chunks.

3.3.1 High Level
Figure 3.5 presents modifications to the baseline operation presented in Section 3.1.1.
Walk Bit Selection Unlike a traditional page table, a Tag Table reverses the order of the

bits used to index various levels in order to utilize the high entropy bits for set selection.

Utilizing high order bits for upper levels of a page table is advantageous for translating
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virtual to physical addresses by allowing page size to be implied by a translation’s location
in the table. A Tag Table however, does not benefit from such support and indeed, can gain
significant advantage by reversing the order of the bits selected as will be discuss in the
next paragraph and in Section 3.4.2.

Figure 3.5 shows this mapping with low order bits selected to index the upper levels of
the table. This is analogous to using low order bits to select a set in a traditional cache with
many of the same memory level parallelism opportunities, such as separating spatially local
accesses. However, unlike the high level structure presented in Figure 3.2, the “Page offset”
bits - just above the “Block offset” - are not used in the walk. This means that spatially local
data, within and aligned on a main memory row boundary, are present in the same row of
the DRAM cache as well, maximizing the potential for open row hits which is an important
tfeature for row-buffer-based designs. The compressed entries facilitate this decision by

including the page offset in the definition of a chunk.

Page Roots One important opportunity of the Tag Table’s tree structure and reverse
walk, is the ability to infer data location based on the path traversed through the tree. As
Figure 3.5 shows, by evenly dividing the number of bits required to uniquely identify a row
- loga (Number of Rows) - across some number of upper levels of the table, all of the entries
associated with a given row of the cache can be completely isolated to a specific subtree
of the Tag Table. The roots of these subtrees are called “page roots” and correspond to
the pointers in the first level of the table (Lvl 1) in Figure 3.5. They are uniquely identified

through the two sections of the address highlighted as the “Row Selection Bits” in the figure.
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Given that all the blocks within a main memory row map to the same row in the DRAM
cache as discussed above, these bits are analogous to the set selection bits of a traditional
tag array where each DRAM cache row is equivalent to a set. As will be discussed in
the next section, this analogy extends to placement in the DRAM cache in that blocks are

allowed to be placed flexibly anywhere within their appropriate DRAM cache row.

3.3.2 Insertion

As with any cache, insertion of data is a fundamental issue for Tag Tables. Due to the
structure of the compressed entries, Tag Table efficiency is significantly impacted by the
location of data. If placed intelligently, large contiguous chunks can be created, amortizing
the cost of an entry as multiple blocks can be tracked by merely incrementing the length.
If placed poorly, this opportunity is missed and the inherently larger entries relative to a
traditional tag can result in a structure that is much larger than even a traditional tag array.

Procedurally, insertion involves first building a bitvector representing all of the blocks
present in the current block’s DRAM cache row. Thanks to the page roots discussed in
Section 3.3.1, building this bitvector is isolated to the leaves associated with the current
block’s page root where traversal to each leaf and setting of all bits in the vector associated
with the blocks tracked in the leaf’s chunks is sufficient to populate the bitvector. While
this may seem like a costly event, Section 3.4.1 will present an optimization that can reduce
this cost when it is known that there is only one entry associated with the DRAM cache

row. In such a case, building the bitvector only requires inspecting the chunks of this single
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entry as opposed to potentially multiple traversals. Indeed, as will be shown in Section 3.5,
relatively few entries are frequently necessary per DRAM cache row, limiting the traversals
needed to create the bitvector.

Following population of the bitvector, the Tag Table attempts to find a location for
insertion by emphasizing extension of existing chunks if such a chunk exists (i.e., either the
base or top of the chunk is contiguous with the inserted block) and the bitvector indicates
the appropriate position is free in the row. If an existing chunk cannot be identified to
extend, the Tag Table falls back to either randomly choosing an existing empty location
if one exists, or randomly selecting a victim from the existing blocks. While there are
potentially many improvements that can be made to this mechanism (more sophisticated
replacement algorithms, etc.), simulation has shown this simple approach works reasonably
well, thus investigation into more sophisticated approaches is left for future work.

Further, while insertion can be a high latency event, particularly in the situation where
a page root has many leaf entries, it occurs off of the critical path (i.e., data from the request
is passed on to the L3 in parallel with the DRAM cache insertion) and follows the already
high latency miss event that triggered the fill, thus its impact on performance is negligible.
In addition, while not evaluated for this proposal, it can be envisioned - for increased
storage cost - that each page root entry can maintain its own persistent bitvector, simply
updating it on insertions and evictions, removing the need to dynamically re-build it from
scratch on each insertion.

The remainder of this section provides discussion on additional issues related to inser-
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tion decisions and identifies choices made in the proposed implementation to maximize

the presence of contiguous chunks and limit the worst-case size of the structure.

Associativity Prior work on DRAM cache tags have taken varying approaches on the
topic of associativity. Loh and Hill for one, choose to allow associativity up to the number
of blocks in a DRAM cache row, less those blocks required to store tag information (three
blocks as presented) [33]. This is a key design point for their proposal as they rely on
the guaranteed page-open state the tag check provides them to limit hit latency. Since
the row is already open, there is no advantage in their design to limit the associativity,
and indeed there is benefit to maintaining associativity, even in such large caches, as
Figure 3.1 highlights. The Alloy Cache on the other hand, explicitly eliminates associativity
to optimize hit latency. Since the relative cost of accessing the tags necessary for supporting
associativity is so high in the Loh-Hill cache, the Alloy cache argues there is substantial
benefit to be realized by limiting the number of tag checks. Given the Tag Table’s location
on-chip in SRAM however, it suffers from a tag access penalty much more in-line with
other on-chip caches which have determined that the cost of associativity is justified (an
observation substantiated by Figure 3.1).

Therefore, for the insertion of data in a Tag-Table-administered cache, associativity
similar to the Loh-Hill cache is maintained in that placement of data is valid anywhere
within a DRAM cache row. While there is no benefit of a guaranteed open row access,
there is essentially no advantage, latency-wise, by restricting data to any particular location

within the row. Instead, high associativity is particularly important in an inclusive cache
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Figure 3.6: Detailed diagram of a compressed entry capable of tracking 4 contiguous chunks
of data associated with a tag. Bits correspond to 1GB cache with 4KB rows and 64B blocks
associated with a 4-level Tag Table that utilizes 9 bits to index each level.

system beyond the inherent hit rate benetfits of associativity which will be discussed in
more detail in Section 3.5.4.

In order to support this associativity, Tag Table compressed entries are provisioned to
be able to fully track the blocks in a DRAM cache row. This means, that for 4KB pages and
64B blocks, each offset and length field must be 6 bits wide. This leads to the updated entry
format presented in Figure 3.6 whose new fields will be described fully in the summary
of this section (Section 3.3.4), but notably convey the 6-bit offset and length fields and
introduce the “Row Offset” field which relates the page offset of the base of the chunk
to the actual location in the DRAM cache row for that block. For example, consider the
situation where a block at page offset of 0x4 (relative to the base tag of the entry) is placed
at location 0x8 in the actual DRAM row (i.e., 8 blocks from the base of the cache row). In
this case, the chunk associated with the page offset will have the value ‘0x4” in the “Page
Offset” field (assuming it is the base of the chunk) and the value ‘0x8” in the “Row Offset”
field. This way, when a subsequent walk traverses to this entry with a page offset of 0x4, it
will know that its data is physically located at block 0x8 of the appropriate DRAM cache
row. Note, that if the page offset was 0x5 for an access, assuming it was present in the cache

(implying a “length” of the chunk >1), the row offset returned from the query would be
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0x9.

Limiting Chunks Finally, in order to accommodate the limited chunk specification im-
posed by the compressed entries, Tag Tables implement a simple eviction mechanism to
maintain no more than four chunks per tag. This operation occurs when an access results
in adding data in a distinct chunk within an entry that is already tracking four chunks
and functions by finding and evicting the shortest chunk (i.e., the one with the least length
tield). The unique compressed entries allow for an alternative mechanism however, by
prefetching the blocks existing in a “gap” between existing chunks, allowing two chunks to

merge into one instead. Investigation of that mechanism is reserved for Chapter 6, however.

3.3.3 Locating Metadata

The final major design point to discuss relates to the physical location of the metadata
that comprises the Tag Table, where metadata refers to the data that is required in order
to logically create the Tag Table: the compressed entries and the pointers to intermediate
levels. In a traditional tag array, this metadata is the tags themselves. Section 3.5 will show
that the compressed entries and forward page table format is capable of tracking the data
in a very large cache with conventional block sizes (64B) with a storage overhead on the
order of a fraction of a typical L3 cache capacity for the application behaviors we study
(on the order of 1 - 2MB for a 256MB cache), therefore it is practical to consider on-chip
implementations of storage structures for this metadata. While it would be possible to

dedicate a structure by carving out a portion of the L3 cache as is proposed for the MissMap
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in the Loh-Hill cache [33], Tag Tables instead locate metadata dynamically in the L3, tagging
it as such to differentiate it from actual application data. This means that upon creation
of a new entry or pointer in the Tag Table, the data associated with it (pointer value, tag,
offsets, lengths, etc.) are stored via a write to the L3 and flagged as metadata.

This metadata is allowed to compete with real application data without restriction up
to a high watermark. The high watermark is enforced on a per-set basis and limits the number
of ways in the set that can be occupied at any given time with metadata. This restriction
is placed to prevent excessive pollution by metadata that could otherwise severely harm
application performance. This is particularly a concern in the situation where the L3 cache
is capable of storing the major portions - if not all - of the application’s working set (a
situation not that uncommon for typical L3 cache sizes and many applications). Since
metadata effectively reduces the capacity of the L3 for application data, such pollution

could result in the working set no longer fitting, severely impacting performance.

3.34 Summary

In common operation, the Tag Table as proposed is referenced upon every cache access
as is done with a traditional tag array. Similar to traditional tag arrays, this reference can
be done serially or in parallel with data access. Upon access, the Tag Table is traversed as
a forward page table with pre-defined portions of the address used to index the various
levels of the table as shown in Figure 3.5. If the traversal encounters an invalid entry at any

point, the access is a miss. A miss can also be indicated if the traversal does not hit at the
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valid entry that matches the access’s tag. Hit determination can be performed once a valid
entry matching the access’s tag is found through the use of a few adders and comparators.
Specifically, once an entry is extracted from a metadata block in the L3, each chunk is
evaluated in turn. First, using a 6-bit adder, the page offset of the top block of the chunk is
computed. This is followed by two comparators that check if the access’s offset is within
the range of the chunk by testing individually if the offset is greater than or equal to the
bottom block and less than or equal to the top block. Finally, the output of the comparators
are fed to a 2-input AND gate that indicates a hit on the chunk when both comparators’
operations are true. Also, similar to tag checks in traditional arrays, area, power, and speed
can be traded off by comparing multiple chunks in parallel.

Upon a hit, the Tag Table returns the row offset associated with the access by subtracting
the access’s page offset from the page offset field of the chunk and adding it to the row
offset field. This row offset is analogous to the way specification in the simplified operation
presented in Section 3.1.1 and identifies the specific location of the data in the row. Finally,
by concatenating this row offset with the access’s “Row Selection Bits,” the exact location of
the data in the DRAM cache is determined and associativity to the degree of the number of
blocks in a cache row (e.g., 64-way associativity for a cache with 4KB rows and 64B blocks)
is realized. Given the dozens of core cycles already expended on the given access, the few
additional cycles for these adder and comparator operations do not contribute significantly
to performance. This is shown in Section 3.5 where these latencies are taken into account.

This direct data access is in contrast to tags-in-DRAM approaches that require the DRAM
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itself to be accessed before being able to know unambiguously whether and/or where
the data is in the cache, providing our Tag Table with significant power and performance
advantages.

Finally, the dirty bit of the compressed entries is unchanged from the dirty bits in other
implementations and serves to identify which chunks contain data that is modified from

main memory and need to be written back on eviction.

3.4 Opportunities and Optimizations

While previous sections have developed a functional tag tracking structure with com-
pression facilitated by base-plus-offset encoded entries and on-demand block tracking
through a forward page table, significant opportunities exist for improved performance. In
particular, the multiple accesses required for a full page table traversal can be particularly
detrimental to both power and performance. Specifically, since Tag Table metadata is
tracked in the L3, each level traversed corresponds to an L3 access and its associated latency

and energy.

3.4.1 Reducing Levels Traversed

The primary mechanism employed to reduce the average number of levels traversed in the
Tag Table is the allowance of flexible placement of compressed entries. This means that
the Tag Table is not required to place compressed entries in the last level of the Tag Table

and instead is allowed to place them at any other intermediate node on the correct path if
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it does not result in ambiguity. Such an ambiguity guarantee is encountered whenever a
traversal terminates on an incomplete path prior to reaching a leaf node. In such a situation,
it is guaranteed that no other data exists in the cache that takes the same path through the
tree, so there is no need to extend the current branch to a leaf, instead it is acceptable to
create a compressed entry at the current level for the new data maintaining a tag in the
entry to disambiguate any subsequent accesses.

As an example, consider the first accesses to a cache upon initialization. Since no entries
currently exist in the table, the first access will miss in the root. Therefore, upon insertion
there is no need to fully traverse to a leaf, instead the compressed entry can be created at the
associated root index. This in turn, necessitates the tracking of tag data to allow subsequent
accesses that index the same entry to disambiguate themselves with the existing entry.
This means that bits of the address that must be maintained as a tag correspond to those
portions of the address that have not yet been used to traverse the table. In the case of
a collision at the root, this corresponds to the three fields of the address associated with
the Lvl 1, Lvl 2, and Lvl 3 indices as shown in Figure 3.5. This flexible placement further
necessitates the “Type” bit in the compressed entries because location in the table no longer
implies the type of entry encountered (i.e., whether the entry is a pointer to a subsequent
level or a compressed entry).

A useful second-order effect of this flexible placement is observed when inserting new
data (as discussed in Section 3.3.2). In the case where an insertion’s walk terminates above

a page root due to this optimization, a full traversal of a tree is unnecessary for building
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the bitvector of blocks present in the row, needing only to set the bits associated with the
blocks tracked in the chunks of the terminating entry.

In addition to this upper-level placement of entries, investigation into the use of transla-
tion caching to “skip” intermediate levels of the table that are frequently traversed [5] will

be presented in Chapter 5.

3.4.2 Colocating Metadata

In addition to reducing the average number of L3 accesses for metadata, the Tag Table
structure provides an additional means for optimizing metadata retrieval. Assuming a
system with a shared L3 that is physically composed of multiple, distributed slices, it is
possible with the Tag Table’s tree structure to partition it in such a way that the metadata
associated with a partition of the table be co-located with the L3 slice that would trigger its
access. If the bit interleavings associated with each slice of the L3 are static and known at
initialization, it is a simple matter to maintain those portions of the Tag Table on the paths
associated with a given slice at the L3 slice itself. This opportunity frees the structure from
the long latency accesses previously assumed for DRAM cache metadata, specifically the
24 cycles assumed for the MissMap [33]. Instead, considering a ring-based, 8-core CMP
system, with one L3 slice per core, L3 accesses consist of 1) communicating a request to
and returning data from the proper slice, 2) accessing the tag information in that slice,
and 3) accessing the associated data (on a hit). Therefore, utilizing a uni-directional ring

for inter-core communication, the communication portion of the latency comes to 16 core
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cycles round-trip on average assuming the network operates at core frequency and only
requires two cycles per hop (1 cycle for switch traversal and 1 for link traversal). Following
communication, accessing tags for a 1 MB bank of SRAM takes 2 core clock cycles, while
data access requires 6 core cycles as determined by CACTI [50] for a 32 nm SRAM process,
rounded up to the nearest whole cycle. In total, these latencies are consistent with the 24
cycles assumed in prior proposals. However, each access of the Tag Table for metadata

takes only the 8 cycle serial tag and data access time consumed within the L3 bank.

3.5 Evaluation

Evaluation of the performance of the Tag Table structure is performed in this section by
comparing it against a baseline configuration of a recent server chip (Intel Gainestown based
on the Nehalem architecture) with configuration details provided in Table 3.1. Performance
of two prior state-of-the-art tags-in-dram approaches - the Alloy Cache and the Loh-Hill
Cache - are also performed to place Tag Tables in perspective. From these analyses, the main

contributors to Tag Table’s improved performance over the prior proposals are illustrated.

3.5.1 Simulation Infrastructure

In order to simulate sufficiently large regions of applications to exercise such large DRAM
caches, a trace-based simulator is utilized that implements an abstract core model along
with detailed models of the memory hierarchy above the L3 cache (i.e., the L3 cache, the

L4 DRAM cache, and main memory). Traces are generated using the Pin-based Sniper
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Processors & SRAM Caches
Number of Cores 8
Frequency 3.2GHz
Width 4
L1 Icache (Private) 32 KB, 4-way;, 4 cycles
L1 Dcache (Private) 32 KB, 8-way;, 4 cycles
L2 (Private) 256 KB, 8-way, 11 cycles
L3 (shared) 8 MB, 16-way, 24 cycles

Stacked DRAM
Size 256MB
Block Size 64 B
Page Size 4 KB
Tag Table Associativity 64-way
(4KB pages / 64 B blocks)
Bus frequency 1.6GHz (DDR 3.2 GHz)
Channels 4
Banks 16 per Rank
Bus width 128 bits per Channel
Page Policy Close Page
Metadata Access Lat. 8 cycles
PRE/ACT Latency 36 cycles (18 ACT + 18 CAS)
Data Transfer 4 cycles
Off-chip DRAM

Bus frequency 800 MHz (DDR 1.6 GHz)
Channels 2
Ranks 1 per Channel
Banks 8 per Rank
Row buffer size 4 KB
Bus width 64 bits per Channel
tCAS-tRCD-tRP-tRAS 9-9-9-36

Table 3.1: System Configuration.

simulator [13] utilizing a Gainestown configuration with private L1 and L2 caches and
a shared L3 that interfaces with main memory. Traces consist of those accesses seen by
the L3 cache, grouped into epochs for coarse-grain dependency tracking as described by

Chou et al. [15]. These traces are then consumed in a second phase by a simulator that
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incorporates the abstract core model utilizing the trace’s epoch notations for proper issue
cadence, issuing requests directly to a detailed L3 cache. Misses and dirty writebacks
from the L3 are then fed to either a DRAMSIm?2 [46] interface that performs detailed
main memory modeling - when simulating the baseline, no L4, system - or to a detailed
L4 DRAM cache for DRAM cache configurations. When implementing an Alloy Cache,
parallel access prediction (PAM) is implemented utilizing a perfect 0-cycle memory access
predictor, allowing DRAM cache misses to be issued to main memory in parallel with the
DRAM cache tag access. Further, the Alloy Cache configurations are not penalized for their

additional burst of traffic for tag data over the DRAM cache data bus.

3.5.2 Workloads and Methodology

Cache configurations are evaluated on the applications of both the PARSEC benchmark suite
utilizing the native input sets [8] and the SPEC 2006 suite utilizing the reference input set
executing in rate mode that exhibit better than 2x performance improvement with a perfect
L3 cache. The first 10 million L3 accesses in the regions of interest (ROI) are simulated for
all benchmarks. For SPEC, the ROl is the primary 1 billion instruction simpoint [47] (i.e.,
the 1 billion instruction slice that contributes the most to overall execution), while PARSEC
utilizes the hooks in the integrated benchmarks of Sniper to identify the beginning of the
parallel region of execution as the ROL

Virtual to physical address mapping for the workloads is accomplished through a

random, first-touch translation mechanism to simulate long-running system characteristics.
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Figure 3.7: Results for 256MB DRAM Cache.

Warm cache state is ensured by restoring L3 and DRAM cache state through a memory
timestamp record mechanism [4]. For PARSEC this structure is created during trace gen-
eration and dumped immediately prior to entering the ROI. For SPEC this structure is
created by simulating the 1 billion instruction simpoint immediately prior to the evaluated

simpoint.

3.5.3 Overall Results

Figure 3.7 presents the speedups achieved by system configurations with either the Tag
Table, Alloy Cache, or Loh-Hill Cache managing a 256MB L4 DRAM cache relative to a
baseline system that interfaces the 8MB L3 directly with main memory (i.e., no DRAM
cache). Overall, this graph shows an average speedup of 56% for Tag Tables relative to the
41.5% achieved by the Alloy Cache and 10.6% for the Loh-Hill Cache. Further, it shows the

L3 miss rates on the secondary y-axis that both a baseline system achieves with full access
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to the L3 and a Tag Table system achieves with metadata pollution in the L3, showing that
the impact is minor. Notably though, the miss rate increases can be seen to frequently track
the workloads where Tag Tables achieve lesser speedup relative to the Alloy Cahe, leading
to the conclusion that metadata pollution can be a non-trivial factor for some workloads,
causing them to access the DRAM cache more than they otherwise would. As we will
show later in Figure 3.9 with the DRAM cache miss rates however, these L3 miss rates are
compensated for by substantially improved DRAM cache miss rates.

In addition to providing the average depth of the tree as mentioned previously, Table 3.2
provides further high-level details, summarizing many key metrics for evaluating Tag
Tables. From left to right, these metrics are the average number of blocks tracked per entry,
the percentage of the L3 occupied by Tag Table metadata, the average depth of the Tag
Table tree, and the average number of L3 accesses for metadata required by each DRAM
cache access (i.e., the number of levels traversed per access). Together these statistics show
that applications exhibit a range of behaviors that a Tag Table is able to dynamically adapt
to without consuming an excessive amount of L3 capacity (less than 25% in all cases).
Further, given this L3 occupancy relative to the number of tags tracked in the DRAM cache
leads to an average cost of 3.18 bits per tag lending credence to the claim that Tag Table’s

compressed entries can significantly reduce tag storage overhead.
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Bench- Blocks L3 Occu- Tree ,
mark /Entry pancy Depth Lols Acc'd
bwaves 47.6 16.6% 2.01 1.13
gcc 43.8 16.7% 2.03 1.71
gems 33.9 22.7% 2.09 1.85
Ibm 56.7 13.4% 2.01 1.57
libgntm 28.0 24.9% 2.03 1.35
mcf 30.6 24.9% 2.02 1.65
milc 45.7 16.7% 2.19 1.45
omnet 25.0 24.4% 2.04 1.96
soplex 44.2 17.6% 2.05 1.7
sphinx 46.5 16.5% 2.02 1.76
canneal 38.7 20.4% 2.16 1.99
strmclstr 28.6 23.7% 2.03 1.53

Table 3.2: Impact of Design Decisions on a 256 MB DRAM Cache.

3.5.4 Distinguishing Tag Table Features

In order to understand the key characteristics driving the improved performance of Tag
Tables relative to the Alloy and Loh-Hill Caches, Figure 3.8 presents a breakdown of first-
order effects leading to the improvement in the mcf benchmark'. While mcf is chosen as
the illustrative example, other benchmarks are significantly similar in terms of relative
importance of the various factors.

As the figure shows, the primary differentiator between Tag Tables and the Alloy Cache
is the improved DRAM Cache hit rate, accounting for about three-quarters of the improve-
ment. A non-trivial additional factor however, is the improved off-chip DRAM service time
allowed by reduced off-chip traffic, accounting for the remainder of the difference. Finally,

the figure also takes into account the small effect of reduced L3 capacity of a Tag-Table-

'The mcf benchmark is chosen due to the fact that it shows relatively large improvements from Loh-Hill
to Alloy to Tag Tables, providing more graphical room to present the changes
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Figure 3.8: Illustrative breakdown of key characteristics resulting in Tag Table performance
relative to Alloy and Loh-Hill caches.

based system relative to Alloy due to metadata pollution. The low value of this negative
contribution highlights the robustness of using the L3 replacement mechanism and high
watermark setting to store Tag Table metadata as opposed to a dedicated structure.

For the Loh-Hill Cache, the primary differentiator is easily the difference in tag check
latency created by the need to access additional blocks of tag data in order to determine
location, accounting for about nine-tenths of the difference. These additional blocks also
create the remaining effect, the somewhat decreased hit rate due to lower associativity
available by occupying a number of ways with tag information.

To quantify the hit rate component, which is a major factor for both Alloy Cache and
Loh-Hill Cache comparisons, Figure 3.9 shows the miss rates observed in terms of misses

per 1,000 instructions (MPKI) in the DRAM cache for the three configurations. As the figure
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Figure 3.9: Miss Rates of Various Tag Tracking Mechanisms.

shows, the associativity maintained by both the Loh-Hill Cache and Tag Tables results in
very similar miss rates that are effective at avoiding a significant number of cache misses

relative to the direct-mapped Alloy Cache.

3.5.5 Number of Chunks

Figures 3.10a and 3.10b show the effect of changing the number of chunks each entry
is capable of tracking, normalized to the 2-chunk value. While the first figure (3.10a)
represents ideal improvement when the change in entry size is not taken into account (i.e.,
entry size is kept at its 4-chunk size of 96 bits - or conservatively, 4 entries per L3 block),
the second figure (3.10b) takes into account the fewer metadata blocks that can be stored
per L3 block?. Looking only at the first figure, it can be seen that increasing the ability of
entries to encode more “gaps” between chunks, ignoring the pollution effect, provides the

expected application speedup (note: bwaves” wildly varying behavior is likely noise due to

2The size of entries is rounded to the nearest power-of-2 bytes when increasing the number of chunks
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Figure 3.10: Sensitivity of Tag Tables to the number of chunks each entry can maintain, (b)
with and (a) without taking changes in entry size into account.
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Figure 3.11: Effect on L3 miss rate (per 1K instructions) when increasing the entry size.

its very low DRAM cache miss rate as shown in Figure 3.9). When considering the more
realistic second figure however, interaction between L3 metadata pollution and the more
flexible chunk tracking is apparent. Reflected in Figure 3.11, the increase in L3 miss rate
reflects a strong correlation with application slowdown for those applications that exhibit
slowdown in Figure 3.10b, such as omnetpp.

Altogether, these graphs reveal a complex interaction between the ability of Tag Table
entries to encode more gaps and approach the sectored cache ideal of full enumeration, and
the increased L3 pollution these larger entries cause. Chapter 4 will re-visit this analysis
when Set Dueling is incorporated to dynamically adapt L3 metadata pollution policies, but
for a basic Tag Table, the decision on the correct number of chunks to support per entry is

highly application-dependent.
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3.6 Summary

In summary, this chapter outlined the detailed operation of a baseline Tag Table tracking
mechanism. It showed that Tag Tables are a robust and dynamically adaptable solution to
the tag tracking problem for large capacity caches with traditional block sizes. The specific
features of Tag Tables allow a system to utilize a large capacity DRAM cache to achieve an
average speedup of greater than 58% for a range of multithreaded and multiprogrammed
workloads. Unlike previous proposals for small-block DRAM caches, Tag Tables are
realizable with a storage requirement suitable for implementation on the speed-optimized
SRAM logic die. This small storage footprint is accomplished through the combination
of the on-demand nature of a forward page table and compressed base-plus-offset entry
encoding. Relative to prior state-of-the-art approaches, Tag Tables outperform the Alloy

Cache by 10% and the Loh-Hill Cache by 44%.
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4 Set Dueling

Asrevealed in Chapter 3, the decision to maintain Tag Table metadata in the L3 cache comes
at the cost of reduced effective L3 capacity for application data. This cost is apparent in
Figure 3.7 in the increased L3 MPKI for nearly all workloads. However, effective L3 capacity
for application data is not the only consideration as highlighted by Figure 3.10b, which
indicates complex interactions between L3 metadata pollution and the ability of Tag Table
entries to track more ranges. Therefore, metadata occupancy of the L3 involves a careful
balance between L3 and DRAM cache capacities. Further, whether metadata is considered
merely L3 pollution or whether it is a more valuable quantity is highly dependent on
system operating characteristics which can change from application to application and
even from phase to phase within applications.

While the static high watermark setting for metadata in the L3, discussed in Section 3.3.3,
and the standard L3 replacement policy can help dynamically balance these competing
factors, this data gives indication that opportunity remains for a more intelligent mechanism
to adapt runtime policies regarding Tag Table metadata in the L3. Therefore, in addition to

the high watermark setting which protects application data from metadata pollution, this
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chapter will investigate a low watermark setting which protects metadata from application
data. Further, it will explore the ability of Set Dueling to accurately adjust these settings to
dynamically adapt the balance of metadata and application data in the L3.

Previous work in Set Dueling has shown that it can be very effective at making binary
decisions, selecting between competing policies in the cache [43, 44], therefore it should be
capable of choosing between two static high and low watermark setting pairs (i.e., a metadata-
centric policy and a application-centric policy). However, it would be advantageous for a
Tag Table system to do more than simply chose between two levels of metadata pollution,
therefore this chapter will not only evaluate the ability of Set Dueling to select between
two watermark setting configurations, but propose a novel adaptation, called Set Scouting,

to allow it to modify policies over a range of values.

4.1 Background

This section presents prior work on Set Dueling to include its initial proposal along with
follow-on work that extended it to its current state. This provides background knowledge
on prior implementations and use cases for understanding how it can be adapted to balance

Tag Table metadata in an L3 cache.

4.1.1 Sampling Based Adaptive Replacement

A Set Dueling approach was first proposed and applied as a mechanism for dynamically

adapting caching policies in a system advocating a memory-level parallelism (MLP) aware
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replacement algorithm [44]. In this system, Set Dueling is used to select between a default
least recently used (LRU) cache replacement policy and linear (LIN), that incorporates
memory-level parallelism metrics to determine the victim when inserting new data. In
this approach, it is advocated that isolated misses in the cache - or misses that cannot be
overlapped with others - are relatively more important to avoid than misses that occur with
multiple others. In order to quantify the level of isolation any particular miss encounters,
the authors introduce an mlp-cost metric that quantifies the number of additional misses
that the cache was servicing while the miss-under-investigation was active in the cache’s
miss status handling register (MSHR) waiting for its data and the time required to receive
that data. The LIN policy then determines a victim through a linear function of recency
(the relative location of the block in the LRU chain) and mlIp-cost.

Specifically, mlp-cost is calculated in this system while the request is present in the
cache’s MSHR waiting for data. Every cycle, the system increments an mlp-cost field in
every active entry in the MSHR, inversely proportional to the number of active entries. For
instance, if there is only one active entry in the MSHR, the mlp-cost field of that entry will
be incremented 4x as much as it would be if it was active with three others. Upon receipt
of the data and insertion into the cache (causing the MSHR entry to become inactive), the
tag of the block is appended with an additional 3-bit quantized value corresponding to
the mlp-cost incurred while waiting for the fill. In this way, misses that are satisfied with
many others and/or are satisfied quickly will have a lower value for their mlp-cost. Then,

when it comes time to choose a victim they are more likely to be evicted to the point that
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they may not have to travel to the end of the LRU chain before the mechanism determines
they are less valuable to keep. Isolated misses, on the other hand - those misses that were
not satisfied along with others - will have higher values for milp-cost and be less likely to be
replaced.

As with many replacement proposals, while LIN works well for a portion of the studied
applications, certain others are negatively affected. Those applications which do not have
stable MLP characteristics - where the likelihood of a given block incurring a miss with
others varies over time - are those that prefer the standard LRU policy.

Therefore, the authors propose “Sampling Based Adaptive Replacement” (SBAR) as
a lightweight mechanism to dynamically adjust the cache policy between LRU and LIN.
In this system, some subset of the cache’s sets are chosen as leader sets and augmented
with an additional tag directory and a saturating counter called the “tournament selector”
(TSEL). The additional tag directory acts as a sort of shadow directory and implements
LRU in order to track the number of hits an LRU-based set would incur while the data of
the set is actually controlled by the main directory which implements LIN. The remaining
sets in the cache are follower sets and implement a replacement policy as determined by
the MSB of the TSEL.

The TSEL is updated on every access to a leader set. When one directory (either the
primary LIN directory or shadow LRU directory) results in a hit and the other a miss, the
tournament selector is incremented (in the case of a LIN hit) or decremented (in the case

of an LRU hit) by the value of mlp-cost when the miss completes. In this way, the TSEL is
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updated relative to the costs of the misses of the two policies and the MSB determines the
replacement policy followed by the follower sets. If the TSEL MSB is 1’ they implement

LIN, otherwise they implement LRU.

4.1.2 Dynamic Insertion Policy

A second paper, advocating adaptive insertion policies, extends Set Dueling to its current
state-of-the-art [43]. Set Dueling is again utilized to select between two competing cache
replacement policies but this time, as opposed to affecting victim selection, the proposed
policy modifies insertion policies, advocating placing newly inserted blocks into positions
other than most-recently used (MRU) in the LRU chain, a position that avoids thrashing
in streaming workloads or workloads otherwise too large to fit in the cache. With this
“Bimodal Insertion Policy” (BIP) in effect, incoming blocks are usually placed in the LRU
position (with a very small, random probability otherwise) and only promoted to MRU if
there is a subsequent re-reference before eviction.

Not surprisingly and as with the previous proposal, BIP is not a universally good match
for all applications. Indeed BIP is primarily advantageous for a relatively small set of
applications - those that exhibit either streaming behavior (i.e., no re-use) or have working
sets that cannot fit in the cache. Therefore, the authors utilize Set Dueling to dynamically
select the proper global policy for the cache with a “Dynamic Insertion Policy” (DIP), that
selects between BIP insertion and MRU insertion dependent on the characteristics exhibited

by the running application.
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The major adaptation to Set Dueling in this work relative to SBAR is to do away with
the shadow directory and instead identify two competing collections of cache sets (called
the dedicated sets), each statically configured for one of the two policies. As long as the
number of dedicated sets configured for the lesser-performing policy is not too great, this
rigid configuration is not likely to adversely affect performance. Of course care must be
taken to make sure that enough sets are assigned to each competing policy so as to make
an accurate decision on the global policy. The paper performs an analytical evaluation to
determine the correct number of sets utilizing the central limit theorem, concluding that 32
to 64 sets are sufficient to provide reasonable confidence (>95%) that the best global policy
is selected. This result is notably independent of the size of the cache. Instead, the main
determining factor is a ratio between the average difference between sets implementing
the two policies and standard deviation exhibited by the dedicated sets.

In this system, instead of a single set tracking both policies, the cache is broken up
into multiple constituencies, with each constituency having one dedicated set assigned to each
competing policy and the remaining sets following the “Policy Selector” (PSEL). The PSEL
is equivalent to the TSEL in SBAR with the exception that it is merely incremented /decre-
mented by one to track the raw difference in hits between the two dedicated - and competing
- sets in the constituency and does not incorporate any MLP cost.

In order to assign sets to constituencies and identify the dueling sets within the con-
stituencies, DIP utilizes a complement-select policy. With this policy, the most significant

log,(K) bits (where K is half the number of dedicated sets) serve as the constituency ID while
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Figure 4.1: Example operation and set assignment in DIP (Taken from [43]).

the least significant log, (N/K) bits identify the constituency offset (where N is the number of
sets in the cache). Sets whose constituency offset bits equal their constituency ID bits are then
assigned to implement LRU, while those for which the complement of their constituency offset
bits are equal to their constituency ID bits implement BIP. By way of example, the paper
considers a cache with 1,024 sets with 64 dedicated sets (32 for BIP, 32 for LRU). Since there
are 10 set selection bits (log,(1,024)), the upper 5 bits (logz(32)) determine the constituency
ID while the lowest 5 bits determine the constituency offset. This leads to the situation where
Set 0 and every 33rd set are LRU and Set 31 and every 31st set are BIP. Figure 4.1 provides

a simple example for a 16-set cache.
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4.2 Application to Tag Tables

Applying Set Dueling to Tag Tables utilizes distinct high and low watermark settings as the
competing policies, allowing metadata occupancy in the L3 to provide feedback as to the
best decision. While the high watermark setting of the baseline Tag Table proposal is shown to
be effective at limiting the occupancy of metadata in the L3, certain workloads, particularly
when the entry size is increased by tracking more chunks as shown in Figure 3.10b, can
benefit from consuming more of the L3 in order to track more data in the DRAM cache.
In order to understand those situations where increased L3 metadata occupancy can
be advantageous, it is first important to review application working sets and their affect
on various levels in the cache hierarchy. As Jaleel investigates in depth for the SPEC
CPU2000 and SPEC CPU2006 Benchmark Suites, applications can exhibit several degrees
of working set size [26]. This can be seen when simulations sweep the cache size parameter
and the cache miss rate is observed to decrease rapidly in response to some larger cache
size, creating a “knee” in the graph. For instance wupwise, in Figure 4.2 exhibits one knee
around 4MB indicating the primary working set is approximately 4MB in size, which
could correspond to a frequently executed inner loop. A second knee however can be seen
around 32MB, indicating a secondary working set that could correspond to an outer loop.
Therefore, one situation where increased L3 pollution can be advantageous is when it
allows a secondary working set to fit in the DRAM cache as long as a primary working set
is not prevented from fitting in the L3 in response. For example, if the primary working set

size of wupwise of 4MB plus the metadata pollution is still less than the L3 cache capacity,
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Figure 4.2: Visible knees in cache miss rate as capacity increases indicates various working
set sizes (Taken from [26]).

application performance will not be negatively impacted. Beyond that, if the increase in
pollution results in the DRAM cache tracking more data such that it now covers 32MB,
application performance will be improved since the secondary working set will be available
in the relatively fast DRAM cache (with respect to main memory) and requests will have to
go off-chip less frequently.

Therefore, a new mechanism is introduced to the Tag Table, the low watermark, which
protects Tag Table metadata in the L3 cache by preventing application data from evicting
metadata below a certain value per set. While there is no requirement for the set to allocate
a minimum storage for metadata in the case where the Tag Table does not require the low
watermark, it does prevent insertion of new application data from evicting a metadata block
- even if it is in the LRU position - if such an act would cause the metadata occupancy to
drop below the low watermark. Instead, the non-metadata block in the set closest to the

LRU position would be chosen for eviction.
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Policy Low Watermark | High Watermark
Application-Centric 0 1/4 ways
Metadata-Centric 1/4 ways 1/2 ways

Table 4.1: Tag Table L3 metadata dueling policies.

4.2.1 Set Dueling

Similar to LIN and BIP, for reasons mentioned above related to working set sizes, the
enforcement of a low watermark will not be universally advantageous, nor is a set value for
the high watermark, for that matter. Therefore, Set Dueling is proposed to achieve dynamic
adjustment of these values based on cache performance. Since the baseline Set Dueling
approach has been shown to work well at deciding between two opposing policies, the first
approach is to apply it to select between two low and high watermark pairs - a metadata-
centric policy and an application-centric policy. These two policies are outlined in Table 4.1
and quantify the fraction of the ways in a set that can be allocated to metadata. For instance,
given the 16-way set associative L3 cache assumed for our baseline, the metadata-centric
policy would enforce a low watermark setting of 4 and high watermark setting of 8. This
means that no more than 8 block locations in any given set may be occupied by metadata
and also that application data may not evict metadata to fewer than 4 blocks.

Beyond the specific policies of interest, Tag Tables present one major deviation from
previous proposals utilizing Set Dueling. In previous proposals, policies were being
selected that resulted in the best operation of the cache implementing the dueling. In other
words, a given cache was comparing the performance of the dueling sets to determine

which one was resulting in the fewest or least costly misses and chose that policy globally
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to optimize the overall cache hit rate. In Tag Tables, Set Dueling is instead used to select the
best policy for the system, which could actually degrade the L3 hit rate. In fact, increasing
metadata in the L3 will never improve the performance of the L3, it can only harm. Set
Dueling can therefore help in the situations where the harm to the L3 of increased metadata
occupancy is outweighed by its benefit to the system (i.e., the improvement in the DRAM
cache hit rate).

How to quantify the “benefit to the system” itself is a challenge. While it is a simple
matter to count hits between dueling sets in prior applications, it is not clear what is best for
Tag Tables. Although a mechanism could be envisioned which incorporates DRAM cache
hit rate feedback at the L3, as an initial implementation, a simpler self-sacrificing mechanism
was implemented instead that requires no external information. In this self-sacrificing
design, the global policy is opportunistically selected as the high (metadata-centric) policy
if it does not significantly harm L3 hit rates. In other words, even if the sets implementing
the metadata-centric policy performed worse, it would still be chosen as the global policy
if it was not too much worse, therefore the L3 would choose to sacrifice its own hit rate in
the hopes that it would aid the DRAM cache.

Beyond the concessions necessary for lack of system-level feedback, Set Dueling in Tag
Tables is consistent with the system utilized by DIP as describe in Section 4.1.2. Specifically,
some number of dedicated sets are assigned to implement the competing policies, half to the
application-centric policy and the other half to the metadata-centric policy. Given the large

number of sets in the DRAM cache configurations (from 16K for a 64MB DRAM cache up
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to 256K for a 1GB DRAM cache), the following evaluation conservatively selects the upper
bound from the analytical evaluation in [43] - 64 sets - to be configured as dedicated sets - 32

to the application-centric policy and 32 to the metadata-centric policy.

4.2.2 Set Scouting

Unlike application in BIP and DIP however, applying two distinct policies to the Tag Table
for Set Dueling is somewhat arbitrary since there are 153 possible combinations of high and
low watermark values'. Therefore this section extends traditional Set Dueling by proposing
and evaluating a set “scouting” policy.

Set Scouting may be best described by way of analogy. Consider the situation of a
caravan, flanked on either side by scouts. The job of the scouts is to find the best path
for the caravan, so they ride along trails on their assigned side. Over time, the scouts can
compare the path they are traversing relative to the caravan to determine if they are on a
better path. If so, the caravan can transition to the new path, the scout that found the new
path moves farther off to maintain about the same distance from the caravan, and the scout
on the opposite path moves somewhat closer in the same direction, not wanting to be too
far from the main group. In this way, all three categories of traveler (each of the scouts and
the main caravan) can give feedback to the others on the ease of their path.

We can implement a similar approach in a cache by adapting Set Dueling such that

the follower sets (the caravan) do not have the same policy as either of the dedicated sets (the

!Considering either setting can take a value in the range of 0 to 16 and that the high watermark can be no
less than the low watermark for any configuration
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scouts) and by also tracking the effectiveness of the follower sets” policy by assigning one
follower set from each constituency to be the follower representative. In order to compare the
follower sets effectiveness versus the scouts, an additional PSEL is introduced such that the
follower representatives can compare their performance relative to the low scouts and the
high scouts separately. Then in operation, misses to the follower representative decrement
the PSELs and misses to the scouts increment their respective PSEL, therefore once a PSEL
MSB becomes "1, a policy transition is triggered. This transition differs from traditional Set
Dueling in that it does not merely change the policy of the follower sets, but also changes
the policy of the scouts to ensure that scouts are always exploring different settings from
the followers. During this transition, the follower sets adopt the policy of the scout that
triggered the transition (unchanged from traditional Set Dueling), the scout that triggered
the transition moves to a more extreme policy (by halving their distance from their most
extreme setting), and the remaining scout modifies their policy in the same direction as the
others. Specific modifications to each category’s policy will be described by way of example
in the following paragraph. In addition, following a transition, the PSELs must be reset in
such a way as to prevent thrashing (i.e., rapidly bouncing between policies due to noise
immediately following a transition). Therefore, the PSEL reset point is chosen to be 1/4 the
maximum value, thereby giving a buffer before either scout can trigger another transition,
making it more likely to indicate a valuable transition, not just noise immediately following
a prior transition. Further, the policy of the scout sets are selected such that they do not

match the policy of the followers. This is contrary to traditional Set Dueling where the
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global setting matches one of the two competing policies.

For example, consider initialization of policies such that the scout sets implement the
competing policies in Table 4.1 (consistent with binary Set Dueling) while the follower
sets are initialized to a midway point. While the exact specification of the midway point
is arbitrary (and could even be more extreme than one or both of the scout policies),
the evaluation in Section 4.3 will assume an initial low watermark setting of ‘0" and high
watermark setting of 1/2 the set’s ways for the follower sets. Then during operation, if one of
the scouts causes their PSEL MSB to become set a transition is triggered. Specifically, if the
low scout sets its PSEL MSB first following initialization, the follower sets will transition
to its policy (i.e., the application-centric policy the low sets were initialized with). The low
scout, which triggered the transition, will halve its distance to its most extreme setting. In
the case of the low scout, the extreme setting is '0’, therefore the low watermark remains
unchanged (it is already '0’) and the high watermark becomes "2’ (halfway between the initial
"4’ and '0’). The high scout will move in the same direction as the followers and the low
scout (i.e., they will reduce the value of both of their watermarks) by modifying them to be
halfway between their current setting and the follower sets’ new setting. Therefore the high
scout settings will be modified to be "2’ for the low watermark setting (halfway between its
current value of "4” and the follower sets’ ’0") and their high watermark setting will become
‘6" (halfway between '8” and '4’). Finally, both PSELs in a constituency are reset to 1/4 of
their maximum value (e.g., 512 for an 11-bit PSEL, consistent with the PSEL size evaluated

in [43] for 64 dueling sets).
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Figure 4.3: Results of binary Set Dueling with varying number of chunks per entry. Benefit
of Set Dueling are the top portions of the bars.

4.3 Evaluation

4.3.1 Dueling Evaluation

Initial evaluation assumes traditional, binary Set Dueling, the results of which are shown
in Figure 4.3 for a range of entries that can track from 2 to 16 distinct chunks as evaluated
in Section 3.5.5. This stacked bar chart reflects the speedups achieved for various chunk
numbers when increased entry size was taken into account along with the additional
speedup on top due to Set Dueling. As can be seen, Set Dueling can lead to non-trivial
improvement over the baseline system. For applications such as mcf and sphinx in particular,
Set Dueling achieves the expected outcome of having a greater effect on performance as
the entry size is increased. Due to the increased L3 capacity pressure of these larger entries,
it is relatively more important to include a control mechanism in the amount of pollution

they are allowed to create.
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(b)
Miss rate effects of Set Dueling on the (a) L3 and (b) DRAM Caches.

The workload omnet is an interesting outlier in these results, not only in the fact that it

exhibits the highest improvements with Set Dueling when there are few chunks - specifically

from 2 to 6 - but also in the fact that they achieve relatively more improvement when fewer

chunks are supported, not more. This is due to the significant improvement in DRAM

cache hit rate at these low chunk number configurations as shown in Figure 4.4b which is

not present when there are more chunks due to the fact that the entry size increases once

the seventh chunk is added. This increase in entry size leads to the workload switching to

a metadata protection policy for a lesser proportion of the runtime.
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Beyond giving indication to the performance of omnet, Figures 4.4a and 4.4b highlight
the mechanism by which Set Dueling affects Tag Table performance, namely that it allows
L3 capacity to be traded for DRAM cache capacity. Given the implementation of Set Dueling
in Tag Tables, specifically that the default policy is to not protect metadata in the L3, the
only way that it can affect system performance is by sacrificing L3 hit rate for DRAM
cache hit rate (i.e., there is not a scenario where it can improve L3 hit rate). Therefore, the
lack of improvement in any L3 hit rates is expected and the negligible degradation occurs
only with applications that exhibit an improvement in DRAM cache hit rate, indicating
the L3 sacrificed some of its own performance for the DRAM cache. Also due to this
self-sacrifice and lack of actual feedback between the L3 and the DRAM cache, the figures
further show the situations such as canneal and bwaves where there is actually a slight
degradation in L3 hit rate without a subsequent improvement in the DRAM cache hit rate.
This corresponds to almost imperceptible degradation in overall performance for those
benchmarks in Figure 4.3 in the 4-chunk configurations (approximately 0.5% slowdown
for both).

Overall, these figures indicate that Set Dueling can have a non-negligible effect on the
performance of Tag Tables by adding additional control at the L3 for adapting metadata

occupancy.
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Figure 4.5: Results of Set Scouting with varying number of chunks per entry beyond that
achieved with traditional, binary Set Dueling.

4.3.2 Scouting Evaluation

Figure 4.5 presents the additional benefit possible by implementing Set Scouting over Set
Dueling. Beginning with a baseline of Set Dueling - the bottom portion of the stacked bars
- the top portion of the stacked bars represent the additional performance achieved with
Set Scouting. As expected, there is additional benefit when the L3 is allowed to select from
a range of values for the low and high watermark settings, though it is relatively small
ranging up to near 5% in the most extreme case. Further, the L3 and DRAM cache hit rates
are relatively unchanged except for small improvements consistent with those workloads

that achieved relatively more performance with Set Scouting relative to Set Dueling.
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4.4 Summary

This chapter investigated the opportunity of adapting Set Dueling concepts to improve
Tag Table performance. Due to the decision to store Tag Table metadata in the L3 cache, a
careful balance needs to be struck between L3 capacity for application data and capacity
for Tag Table metadata. The standard LRU replacement policy of the cache accomplishes
this goal to a point by evicting metadata that has not been accessed for a long time but the
long residency time of blocks in a DRAM cache means that useful data can be retained for
a significant amount of time without being accessed and LRU can cause useful metadata to
be excessively evicted. Therefore, this chapter first presented a configurable low watermark
mechanism to protect metadata from eviction in the L3 despite not being referenced often.
However, since applications can vary significantly in terms of how relatively important
L3 capacity is versus DRAM cache capacity, this chapter further proposed an adaptation
of Set Dueling to dynamically adjust both watermark settings in response to runtime
characteristics and found that it can achieve significant improvement up to 17% with an
average of 5% over all benchmarks with generally more opportunity when entry sizes are
larger due to tracking more distinct chunks. Finally, given the range of watermark values
that can be selected, a novel extension to Set Dueling, Set Scouting was proposed that
allows modification of policies over a range which can extend the benefit of Set Dueling by

a few additional percentage points for certain applications.



82

5 Translation Caching

This chapter discusses techniques for limiting the number of levels traversed in a forward
page table structure. These techniques not only include relatively small translation looka-
side buffers (TLBs), but also the caching of pointers to intermediate levels of the table in
order to accelerate walks after a TLB miss. Given its page table-based structure, these tech-
niques are naturally applicable to Tag Tables, thus this chapter evaluates their opportunities

for accelerating the tag check process of a Tag Table.

5.1 Key Concepts

Before discussing existing techniques for accelerating page walks and how they may be
applied to Tag Tables, it is important to review a few fundamental concepts related to ad-
dress translation. The following sections serve to present a brief overview on the operation
of TLBs and translation caches along with a walkthrough of a page table walk in order
to define terminology for subsequent sections and ensure understanding of foundational

concepts.
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5.1.1 Translation Lookaside Buffers

A TLB is a map structure accessed first in the virtual-to-physical address translation process
where the key is a virtual page number and the associated value is a physical page number.
A TLB caches the recently translated mappings in a relatively small table, allowing it
to quickly provide the virtual address translation associated with a memory operation
without incurring the very long latencies associated with a page table access. This is
critically important for allowing L1 cache accesses to complete quickly since a full walk
of the page table requires multiple memory accesses. This is due to the fact that the
metadata that composes a page table exists in memory itself, therefore the page walk
requires accessing memory for every intermediate level of the table.

In current latency-optimized designs, L1 caches are implemented as virtually indexed,
physically tagged (VIPT), necessitating a virtual address translation, and thus TLB access,
prior to checking tags but allowing set activation to occur in parallel with the translation.
This means the proper set - or index - can be identified and activated in the cache using
bits of the virtual address without having to wait for the translation to complete. However,
the translation must still finish in no more time than it takes to activate the set, providing
the proper bits for the tag check, to avoid becoming a bottleneck. This, in turn, provides a
constraint on the acceptable latency for a TLB lookup which subsequently places a limit on
the size of a TLB.

This size and latency interplay involves an important tradeoff. In addition to increasing

the latency to perform a check, increasing the size of the TLB also increases its “reach” [49].
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This “reach” refers to the effective range of memory that the translations can provide
mappings to, so while a smaller TLB may be desirable for cache access purposes, limiting
the reach may result in more TLB misses, necessitating a long-latency page walk. In the
case of a 256-entry TLB for 4KB pages, the reach corresponds to 1IMB. Therefore, any given
TLB in a system which may be composed of multiple cores - each having their own TLB
- can only map a subset of current last-level caches (LLC) which are typically multiple
megabytes.

Such latency/reach tradeoffs have led to various compromises in TLB design that mirror
the sorts of compromises seen in general caches including the use of multiple levels of
TLB, set-associative versus fully-associative design points, as well as supporting multiple
granularities of translations (i.e., super pages or huge pages) which are roughly analogous
to cache block sizing tradeoffs.

Fundamentally, the effectiveness of a TLB at preventing address translations from
stalling processor operation lies in the rate at which it hits, thus providing the appropriate
tag bits in time for the L1 tag check. In addition to the reach previously mentioned, the
locality of reference present in applications plays a major role in this hit rate. Specifically, if
an application accesses several data locations in each page mapped by the TLB - in other
words, it has high access density - it will be much more effective than if the application
sparsely accesses the mapped pages. While some noteworthy exceptions exist (such as
large databases), many applications exhibit high access density with respect to TLB entries,

leading to high temporal locality. Further, following the first access to a block in a page,
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many subsequent blocks in the same page are likely to be referenced (spatial locality),
allowing a single entry in the TLB, allocated by one access, to satisfy the translations for

many following requests.

5.1.2 Translation Caching

Beyond opportunities for fast translations provided by TLBs, recent designs from both
Intel and AMD have incorporated structures to accelerate the page walks incurred on a
TLB miss [6, 25]. These structures both allow the page walk hardware to begin the walk
at some intermediate level in the page table by “skipping” the root and potentially other
intermediate levels. Due to the high temporal locality in upper levels of the page table,
these caches can be especially effective at skipping the initial levels, while their effectiveness
is somewhat reduced for the lower levels.

Figure 5.1 provides a diagram of the high-level operation of a translation cache. In this
example, a translation that misses in the TLB, which would traditionally begin performing a
page walk by indexing into the root level of the page table, now first accesses the translation
cache. If recent accesses have traversed shared high level paths, the translation cache will
have pointers to intermediate nodes allowing the walk to start at them rather than the
root. In this example, the request is able to skip the root and second level of the page table
and directly access the third level because previous walks have already traversed them,
reducing the page walk to two traversals.

While Intel’s Paging-Structure Caches [25] and AMD’s Page Walk Caches [6] express
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Figure 5.1: High-level overview of translation cache operation.

distinct points in the design space, Barr, et. al. generalize the concept, referring to the

structures as “translation caches,” and enumerate additional points [5].

5.1.3 Page Walk Primer

Before continuing with examples of specific translation cache designs, a brief background
on the steps involved in translation is in order. Much of the operation will be familiar from
the description of a Tag Table walk, but particular details are important for understanding
specific characteristics of various translation cache designs.

In current x86-64 processors, a 48-bit virtual address consists of the page offset - which

for 4KB pages consists of the bottom 12 bits - and the virtual page number (VPN) - the
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remaining 36 upper bits. The goal of translation then consists of determining the physical
page number (PPN) associated with the VPN. Following translation, this PPN is concate-
nated with the page offset to identify the precise location of the data in the memory.

As mentioned previously, since the metadata that comprises a page table itself is stored
in memory;, this translation actually requires performance of multiple memory accesses.
Translation of this VPN to a PPN consists of traversing - or “walking” (hence the term “page
walk”) - four levels of page table, each level indexed by 9 bits of the VPN, in decreasing
order (e.g., the first level is indexed by the most significant 9 bits of the VPN). Each of the
steps in this walk then correspond to the acquisition of a block of data from the memory
hierarchy which contain some portion of the metadata that comprises a level in the page
table.

Using the translation of virtual address 0x5¢8315¢c2016 shown in Figure 5.2 as an
example, the first memory access is triggered by the need to access the portion of the top-
level table (“L4” in the figure) which will give the pointer to the appropriate L3 table. The
memory location for this access is determined by concatenating the PPN of the top-level
(or root) table, which is stored in the CR3 register, with the top 9 bits of the VPN (“0b9” in
the figure). The data returned from this access (the PPN “042” shown in entry “0b9” of
the L4 table in the figure) in turn, provides the base address of the next level table in the
tree that is on the path to the final translation (the “L3” table shown). Translation then
continues by appending the next 9 most significant bits of the VPN to this PPN until all

bits of the VPN are exhausted or a “NUL” entry is located. Similar to a Tag Table, “NUL”



CR3

L4

HA |

Register
(ppn:613)  opg

0b9
Oba

ppn: 136

ppn: 042

ppn: NUL

L3

00b
00c
00d

ppn: NUL

ppn: 125

ppn: 3af

L1

88

c1| ppn: 829
L2 0c2| ppn: b12
- 0c3| ppn: 614
0dd| ppn: 378
ae| ppn: 508
Oaf| ppn: NUL L1
Oc1| ppn: 484
Data
0c2 g
ppn: 123 —>Page
L2 0c3| ppn: 978
Obd| ppn:a00 |——————» Large
Obe| ppn: NUL Data Page
Obf| ppn: 211 > L1
0c1| ppn: 406
0c2| ppn: 327
0c3| ppn: e63 |—» Data
Page

Figure 5.2: Page walk example for 0x5c8315cc2016 (from [5]).

indicates no translation exists for the VPN. If instead, the walk terminates in an L1 entry

with valid data, the data corresponds to the desired PPN and the walk completes.

As with generic application data, data acquired from a page table walk can be cached

in certain designs. For instance, one commercial example allows page table metadata to be

cached in the L2 [7], accelerating subsequent walks involving this path.

5.2 Background

5.2.1 AMD'’s Page Walk Cache

The acceleration achieved by obtaining page table data from the L2 cache is the motivating

factor behind AMD’s Page Walk Cache. Rather than have page table metadata compete

with application data in the L2, the Page Walk Cache serves as a private cache just for this
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Figure 5.3: Sample entries in a Unified Page Table Cache (UPTC), the structure exemplified
by AMD’s Page Walk Cache (from [5]).

metadata. Categorized as a “Unified Page Table Cache” (UPTC) by Barr, et. al., this struc-
ture, shown in Figure 5.3, stores the 40-bit PPN along with the 9-bit index corresponding
to a recent access on the path of a page walk. As the figure shows, again for an access
to 0x5c8315cc2016, the access to the root, consisting of PPN 613 (from the CR3 register)
concatenated with the index 0b9 led to the PPN 042 for the following level of the table.
This, in turn, combined with index 00c, led to PPN 125 for the third level of the table and so
on until the translation was complete. With this information, subsequent accesses which
walk any portion of this path will be able to quickly locate metadata on the path by merely
accessing this small, fast, dedicated cache without accessing any portion of the system

memory hierarchy.

5.2.2 Intel’s Paging-Structure Caches

Unlike the Page Walk Cache, Intel takes a “path” approach to translation caching with their
Paging-Structure Cache, accessing only with bits of the virtual address. Further, instead of
creating a single structure for entries associated with all levels of the page table (a “unified”

approach), the Paging-Structure Cache implements a “split” approach by utilizing separate
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Figure 5.4: Sample entries in a Split Translation Cache (STC), the structure exemplified by
Intel’s Paging-Structure Cache (from [5]).

structures for each level. Shown in Figure 5.4, Barr, et. al. define this as a “Split Translation
Cache” (STC). In this scheme, each structure is indexed in parallel using the appropriate
bits of the virtual address (e.g., the top three 9-bit chunks access the “L2 entries” cache).
When complete, a priority select mechanism chooses the valid “Next Page” result furthest
down the tree by emphasizing hits to the “L2 entries” cache and working up, effectively

performing a “longest prefix match” operation by selecting the longest path.

5.2.3 Translation Path Cache

The longest prefix match operation utilized by the STC is the same operation utilized by
the Translation Path Cache (TPC) defined by Barr, et. al. as a translation cache design not
exemplified by any commercial offering. The TPC combines the unified storage structure of
the UPTC along with the virtual address indexing of the STC to create a fast, space efficient
structure by storing full translation paths as keys and multiple columns representing the

related PPN'’s into the page table indicated by the associated prefix, as shown in Figure 5.5.
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1af 16a 067 0b9 073 _
1af 16a 052 009 073 164

root

Figure 5.5: Example operation of the translation path cache. Longest prefix matching
returns a pointer to a leaf entry (highlighted result in ‘L3 addr’ column) for the access,
bypassing the three intermediate levels.

As an example of operation, Figure 5.5 illustrates an access for address 0x19ED5AF000,

with its constituent bits displayed in the appropriate fields. Although potentially multiple

entries can provide pointers to intermediate page table levels - as shown by both entries

in the figure - the TPC selects that entry and the column corresponding to the matched

length of the prefix as the output of the translation cache, allowing the walk to start at the

tarthest level possible.
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5.3 Application to Tag Tables

Application of the preceding concepts related to TLBs and translation caches represent
several distinct opportunities for Tag Tables. First of all, the operation of a TLB can be
easily adapted to Tag Tables by similarly implementing a table structure that is queried
at the beginning of an access and returns the location of data in the DRAM cache if it
or its neighboring blocks have recently been accessed. This page offset lookaside buffer
(POLB) can be realized in a Tag Table by mapping an address to a compressed entry. This
physical-address-to-entry mapping is therefore analogous to a traditional TLB'’s virtual-
address-to-physical-address mapping. While it could be envisioned that an access to the
TLB be at a block granularity as opposed to an entry (i.e., an index consists of the entire
address and the value is a single block offset), storing a large entry is similar to the large
region a page encompasses for a TLB, which is crucial for high performance operation.
Further, in order to make accesses fast the lookaside buffer should be set associative, as
current TLBs.

Second, regarding adaptation of translation caching, any of the preceding designs - or
any of those in Barr, et. al. that were not mentioned - could conceivably be selected for
accelerating Tag Table walks. Due to the space efficiency of the Translation Path Cache
however, and the fact that Barr, et. al. reveal relatively little practical performance difference
between the various designs, the evaluation of this chapter will explore the application of
the Translation Path Cache to Tag Tables. Adaptation of such a structure is straightforward

to Tag Tables, with appropriate bits of a request’s address being used to index the cache as
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shown in Figure 5.5.

5.4 Evaluation

This section evaluates the implementation of a page offset lookaside buffer (POLB) and
a translation cache on the performance of a Tag Table system. They are implemented in
isolation, either evaluating the performance of a POLB or the performance of a translation
cache, never together. Further, it is assumed that these structures must be accessed prior to
initiating a walk, therefore their latency can not be overlapped with any other operation in
the Tag Table. For the POLB, regardless of size, the assumed latency is two cycles while the
translation caches are assumed to take 4 cycles. While a 2-cycle POLB or 4-cycle translation
cache may be optimistic, results below will show this point is moot since even the assumed

latencies are incapable of providing significant advantage.

54.1 POLBs

Figure 5.6 presents the impact of a very large, highly associative (8K entry, 16-way) POLB
on the performance of a Tag Table system. The results are normalized to a baseline Tag
Table system without any translation optimizations, showing there is no benefit to be had.
Indeed, there is minor slowdown experienced by many applications. The reason for this
is a very low POLB hit rate due to low locality at such a distant cache level. Further, the
difference in latency between a POLB hit (2 cycles) and an average Tag Table walk (~14

cycles) is relatively small when compared to the difference in latency between a TLB and
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Figure 5.6: Speedup achieved with an 8K, 16-way page offset lookaside buffer.

page table.

5.4.2 Translation Caching

Figure 5.7 presents the rather uncompelling speedups achieved by a system implementing
the translation path cache as previously described to allow Tag Table walks to initiate at
intermediate levels of the table when considering a large 2K-entry structure. Similar to the
POLB, the relatively low locality leads to low hit rates. Further, unlike the POLB which
can be effective even when replacing a walk that only requires a single level by trading in
an 8-cycle lookup with a 2-cycle lookup, even when the translation cache hits, it is only
significantly valuable when it replaces a rather long walk with a significantly shorter one.
Given the relatively shallow nature of Tag Tables however, this opportunity is rather rare.
Instead, even when effective, the translation cache can frequently only improve a 2-level,
16-cycle access by reducing it to a 12-cycle access (access time of the translation cache

plus accessing the leaf), resulting in only 25% improvement versus the 4x improvement
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Figure 5.7: Speedup achieved with a 2K-entry translation cache.

capable by the POLB. Further, though these results do not include a POLB, a system with
a POLB would provide even less opportunity for translation caching since most of the
temporal locality that a translation cache could exploit would also be exploitable by a POLB.
Therefore, when it comes to incorporating accelerating walks in a Tag Table system, it likely

only makes sense to pick one of the two techniques.

5.5 Summary

This chapter has shown that the significantly different operation and design decisions of
Tag Tables make them much less amenable to existing techniques for accelerating page
walks for a traditional page table. Largely due to the low locality of reference at such a
distant cache level, neither approach is frequently capable of accelerating accesses. This
low hit rate is even more problematic in Tag Tables relative to a traditional page table due
to the fact that there is relatively little opportunity to begin with. Due to the shallow tables

facilitated by the upper level entries described in Chapter 3 and the location of metadata in



96

a collocated L3 bank, the difference between a POLB or translation cache hit is relatively

insignificant and overshadowed by the high miss rate.
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6 Prefetching

Prefetching techniques have long existed to help reduce cache misses by identifying likely
blocks to fetch ahead of demands for the data. This sort of “proactive” data acquisition
has been shown to be helpful in all levels of the cache hierarchy, even utilizing relatively
simple heuristics like next-line or simple strides.

Tag Table’s unique data structure introduces new limitations and new opportunities for
prefetching. Due to their base-plus-offset encoding and non-static storage requirement, the
additional consideration of tag storage cost needs to be accounted for when prefetching
into a cache administered by a Tag Table. However, this encoding can also provide a new
prefetching heuristic. Complementing existing “proactive” prefetching techniques, Tag
Tables can also incorporate “reactive” prefetching. Instead of utilizing shortest chunk
eviction as implemented by the baseline proposal in Section 3.3.2, when confronted with
the situation of needing to track more distinct chunks than an entry can provide, Tag Tables
can instead prefetch the blocks that represent the gap between existing chunks. In this way,
the two separate chunks can be combined into one, freeing a chunk specification (a specific

example to illustrate this will be presented in Section 6.2).
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6.1 Background

Hardware-based, data prefetching techniques (as opposed to software-based and/or in-
struction prefetching approaches) can be broadly classified into three categories: stride

and/or stream, address-correlating, and spatial-correlating.

6.1.1 Stride and Stream Prefetchers

The most commonly implemented form of hardware-based prefetching in commercial
processors is the stride-based prefetcher [18]. Introduced by Baer and Chen, the original
stride-based prefetcher utilized a “reference prediction table” (RPT) as shown in Figure 6.1
to track the recent strides and addresses associated with various program counter (PC)
values along with a simple state machine to indicate when a particular entry was untrained,
training, or trained [3]. Indexed by the PC of the associated load/store instruction, the RPT
indicates the last address accessed by the PC, the stride associated with it, and the training
state (as determined by the associated state machine). On first reference (i.e., no entry
associated with the PC), an entry is assigned in the training state, recording the current
address. On subsequent access, the stored value of “last address” is compared with the
current address and an address-delta is computed and stored in the RPT in the “Stride”
field. If an entry is in the training state and the stored delta matches the difference between
a current access and the “Last Address,” the entry transitions to the trained state. Upon
entering this state, the prefetcher then begins to issue speculative fetches up to the depth of

the prefetch, where the depth refers to the number of consecutive addresses to fetch at the
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Figure 6.1: The reference prediction table used to identify strides in [3] (Taken from [21]).

given stride. For instance, on an access for address 0x1000 with a trained stride of 0x4 and

a depth of 4, the addresses 0x1004, 0x1008, 0x100c, and 0x1010 will additionally be fetched.

6.1.2 Address-Correlating Prefetchers

The Markov prefetcher is a widely cited address-correlating prefetcher that utilizes a
Markov model to track the various states a given “trigger” may transition to and their
relative likelihood. A “trigger” may be an address, a PC value, or a delta between requests.
Figure 6.2 provides an example of a Markov graph using addresses as triggers, where -
for instance - a request for address ‘A’ has a 50% chance of being followed by a request for
address 'C” and a 50% chance of being followed by a request for address 'B’. With a Markov
prefetcher, the first-order depth concept of the stride-based prefetcher is replaced with a
width. Rather than issue a number of requests down a chain of addresses, the Markov
prefetcher issues requests based on the probability that the current trigger will transition
to different states in the graph (though it may also traverse the graph and issue a depth of

requests). For instance, if a miss address corresponds to trigger ‘A’, the Markov prefetcher
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Figure 6.2: Markov Graph and Correlation Table (Taken from [38]).

may issue requests for addresses corresponding to triggers ‘B” and 'C’ since the graph

indicates there’s a 50% likelihood each that those addresses will be seen in the near future.

6.1.3 Spatially-Correlated Prefetchers

Spatially-correlated prefetchers take advantage of repetitive patterns of data access with
respect to relative offsets of memory occurring near to each other in time [18]. These
repeated patterns of access frequently arise due to abstractions in high-level programming
paradigms (e.g., accessing various fields in objects or database records).

One early spatially-correlated prefetcher is the “Spatial Footprint Predictor” (SFP), which
leverages correlations between the instructions that issue memory operations (determined
by their PC value) and the data address’s offset from the base of a large region [31]. Applied
in the context of a sectored cache (where the large region is a sector), the SFP attempts to
prefetch all data into a sector that will be referenced before it is evicted. This is accomplished
when, upon first reference to a sector (i.e., a request for a block whose tag does not match the
tag of the existing data in the sector, called a nominating reference in [31]), the SFP attempts

to prefetch all of the blocks that were usefully referenced during the sector’s last lifetime in



101

Figure 6.3: The Spatial Footprint Predictor mechanism (Taken from [18]).

the cache, as tracked in a pattern history table. Shown in Figure 6.3, this pattern history
table is an associative structure that can be indexed either by the first reference’s PC (i.e.,
the PC value of the block that allocates the sector or the nominating instruction per [31]),
the first reference’s address, or a combination. Evaluation in the original paper - which is
corroborated by evaluation of the Footprint Cache [27] - finds that a simple combination of
the upper bits of the PC along with the lower bits of the data address results in the best
accuracy. On insertion, these bits are stored along with the sector’s tag. Upon eviction
of the sector, the table is updated by indexing it with this value retained in the tag and a
bitvector indicating the blocks that received a demand reference during the current lifetime

of the sector is stored.

Footprint Cache

The Footprint Cache is a recent application of SFP to a DRAM-based cache [27]. As discussed
in Chapter 2, the low tag storage overhead of sectored caches makes them attractive for
DRAM caches. Unfortunately, the evaluation in Chapter 3 reflecting the number of unique
tags present in the sets of a cache, as shown in Figure 3.3 indicates this organization is not

a good fit for many workloads, with many referencing relatively few blocks per sector (i.e.,
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the workloads exhibit low “page density” [27]). However, if considering systems with a
limited domain, such an approach may be beneficial. The Footprint Cache does just that by
evaluating a sectored cache approach utilizing SFP on “scale-out workloads” [27]. Unlike
more general workloads, “scale-out workloads” exhibit high page density, therefore the
Footprint Cache is able to achieve impressive performance utilizing a sectored approach
augmented with SFP. With the exception of evaluating page-sized sectors (1 KB to 4 KB), the
prefetcher utilized in the Footprint Cache is a direct adaptation of the SFP and highlights
its effectiveness for large DRAM caches, therefore Section 6.2 will evaluate Tag Tables
extended with “proactive” prefetching utilizing SFP and will evaluate SFP on more general

workloads.

6.2 Application to Tag Tables

In this section, the specific application of both reactive and proactive prefetching is pre-
sented as applied to Tag Tables. Given their distinctive structure relative to any prior
work on prefetching, application of existing prefetching methods for proactive prefetching
requires specific adaptation to Tag Tables. Further, the reactive prefetching presented is a

unique opportunity made possible by this distinctive structure.

6.2.1 Reactive Prefetching

In order to describe the scenario that triggers a reactive prefetch in Tag Tables, consider

the DRAM cache row presented in Figure 6.4 when the cache attempts to insert the “New
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Figure 6.4: Example compressed entries associated with a DRAM cache row.

Block” which maps to Entry 1 (the entry corresponding to the green/light blocks). Since
Entry 1 is already tracking four chunks, there is no room to add the new block. The reactive
prefetch mechanism addresses this problem by identifying the least gap between Entry 1’s
segments and prefetches data to fill it. In this example, that gap exists between Chunks
3 and 4 with a distance of two blocks (0x2E and 0x2F). Therefore, the blocks with offsets
0x2E and 0x2F associated with the entry can be fetched from main memory and inserted
allowing Chunk 4 to merge with Chunk 3. The end result is an increment of Chunk 3’s
“length” field by 0xA (to 0x12) to accommodate the two prefetched blocks and the eight
blocks previously tracked by Chunk 4, leaving Chunk 4 free to track the newly inserted
data.

The procedure to determine this least gap can occur following the bitvector population
and victim determination of insertion as described in Section 3.3.2 and consists of a number
of 6-bit adders, one for each chunk, to determine the upper value of each chunk. Following

this, the output of the adders (the top block of each chunk) is subtracted, again using 6-bit
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subtractors, from the base of the next chunk and fed into a 3-input comparator which
chooses the smallest input (from the three chunk gaps). From this identification of the least
gap, the actual blocks to prefetch can be easily determined by fetching a number of blocks
beyond the top of the lower chunk equal to the value of the least gap.

As with insertion, although this operation consumes additional cycles, it occurs off the
critical path and following an already long latency miss to acquire the fill data. Further,
it only involves serializing two addition operations and a 6-bit comparison and thus is

assumed to have negligible effect on performance.

6.2.2 Proactive Prefetching

Following successful adaptation of spatial footprint prediction (SFP) to a sectored DRAM
cache in Footprint Caches [27], this section describes similar adaptation of SFP to Tag Tables.
Since DRAM cache rows are the Tag Table’s analogy to the Footprint Cache’s sectors, a
simple adaptation of SFP to Tag Tables would involve storing the state of entries upon their
eviction in the Footprint History Table (FHT) and prefetching all blocks associated with a
tull entry on the first subsequent request for a block that maps to it. Unlike the Footprint
Cache (and sectored caches in general) however, in a Tag Table multiple entries may be
tracking data in the same DRAM cache row, therefore prefetching all blocks in an entry
can lead to excessive evictions. While this flexibility in tracking multiple blocks that would
conflict with each other in a sectored cache is generally a strength of Tag Tables, frequently

improving its hit rate significantly by not incurring false conflicts, it limits the potential for
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Tag Table SFP prefetching. Therefore, in a Tag Table adaptation of SFP, Tag Tables instead
only prefetch on a chunk granularity. In other words, on a Tag Table access that requires
allocation of an entry, the FHT is indexed by the PC and offset of the request and only the
predicted blocks in any returned entry that are associated with the demand miss’s chunk
are prefetched.

For example, consider a miss for address 0x19ed5af140, triggered by the instruction
at the program counter (PC) value of 0x4000 as shown in Figure 6.5 with the associated
FHT state, assuming no blocks currently exist in the row with the same tag (0x19ed5af1).
Therefore, a new entry must be allocated associated with the tag. After determining the
miss and issuing the fill request for 0x19ed5af140, the Tag Table accesses the FHT with
0x19ed5af14000 (the tag of the request concatenated with the PC), retrieving the associated
entry (5:3/20:5/32:7/3f:1) indicating the presence of offset 0x5 and the 3 following blocks,
offset 0x20 and the following 5 blocks, offset 0x32 with the following 7, and offset 0x3f by
itself; representing the status of Chunks 1, 2, 3, and 4 respectively upon the entry’s last
eviction. While there are many blocks associated with this entry, in order to limit evictions
as mentioned previously, the Tag Table only issues prefetches for the blocks in the chunk
associated with offset 0x5 (the offset associated with 0x19ed5af140). In this case, that is
Chunk 1. Therefore blocks at offset 0x6 and 0x7 from the tag are also issued to memory as
prefetches (0x19ed5af180 and 0x19ed5af1c0). Note, the FHT only needs to store the page
offsets and lengths from the initial entry since the dirty and row offset fields are specific to

the location and state of the data in the cache and the wvalid, type, and tag bits are either
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Footprint History Table
Index (Tag + PC) Entry
0x19ed5af14000 5:3/20:5/32:7/3f:1
0x19ed5af14000

Figure 6.5: Example state of Footprint History Table when request for address 0x19ed5af140
is received. The second column retains relevant information from an entry at the time of
its previous eviction, namely the page offsets and lengths of the chunks.

implicit with their presence in the table (i.e., not valid and compressed entry) or are part of
the table’s index. Therefore, the storage required for an FHT in a Tag Table implementation
is less than the FHT utilized in Footprint Caches, which was already negligible at 144KB
for a 16K entry table [27]. This is due to the fact that entries only consume 48 bits (6 bits for

the offset and 6 bits for the length for each chunk) while the bitvector needed for Footprint

Caches is 64 bits long for the 64 possible subblocks in a sector.

6.3 Evaluation

6.3.1 Reactive Prefetching

This section presents the opportunity available when the baseline Tag Table policy of
shortest chunk eviction is replaced with prefetching of the least gap between chunks, also
known as “reactive prefetching” per Section 6.2.1. Presented as speedup relative to a
baseline Tag Table system that utilizes shortest chunk eviction, Figure 6.6 indicates this

opportunity is frequently insignificant, but can range into the 5% - 7% region for workloads
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Figure 6.6: Speedup observed when changing Tag Table policy from eviction of shortest
chunk to prefetching the least gap to maintain the correct number of chunks per entry.

such as Ibm, mcf, and soplex. Overall, while it may not present a substantial opportunity,
depending on the complexity of implementing the mechanism as described in Section 6.2.1,

it may be a worthwhile opportunity.

6.3.2 Opportunity of Proactive Prefetching

Before evaluating the specific ability of spatial footprint prediction (SFP) to improve the
performance of applications executing on systems utilizing DRAM caches, this section
presents a limit study on the available opportunity for prefetching in sectored and Tag
Table caches with a general workload set. This opportunity can be quantified by evaluating
a system that models perfect prediction, meaning all subsequently referenced blocks
are fetched to a prefetching region (a sector for sectored caches and a chunk for Tag
Tables) following an allocating (i.e., triggering) request. This means that all references
to a prefetching region following the allocating request hit. This is accomplished in the

model by returning a hit for any reference to a prefetching region that is already allocated
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Figure 6.7: Speedup possible versus baseline system without DRAM cache with perfect
prefetching in a Footprint Cache system with (“FP Ideal”) and without (“FP Null”) predic-
tion and a Tag Table system with (“TT Ideal”) and without (“TT Null”) prediction.

(e.g., if the tag of the allocated sector matches the request’s sector tag, the request is
considered a hit). Further, it means that the appropriate bandwidth pressure off-chip is
modeled by prefetching an appropriate number of blocks. In the model, this second goal
is accomplished through an initial profiling simulation with a baseline sectored or Tag
Table configuration that does not implement prefetching but instead generates a histogram
of the number of present blocks in a sector or contiguous blocks in a chunk on eviction.
Subsequent simulation implementing perfect prediction then generates a random number
of prefetches to issue along with allocating fetches consistent with this histogram.

Figure 6.7 presents the results of this study for Sectored and Tag Table systems with
and without prefetching, utilizing “Ideal” or “Null” prediction, respectively. The results
reflect the speedup available over a baseline system as compared against in Section 3.5
which does not have a DRAM cache and instead interfaces its L3 cache with main memory.

Notably, these results indicate there is substantial opportunity for prefetching even when
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considering increased bandwidth pressure. Therefore, the following sections can indicate

how much of this opportunity is realized by the particular SFP scheme.

6.3.3 Spatial Footprint Prediction with General Workloads

This section serves to evaluate the ability of spatial footprint prediction to prefetch the
data that will be referenced in a sector when running general workloads in a system with
a DRAM cache before evaluating the approach applied specifically to Tag Tables in the
subsequent section. This is a similar approach to that taken by the Footprint Cache but
applied to more general workloads.

Figure 6.8 presents the speedup achieved by a system utilizing SFP over a standard
sectored cache with 4KB sectors and 64B lines leading to 64 blocks per sector. While
exhibiting modest speedups in some benchmarks with Ibm, libgntm, and milc notably in
the 10% range, the average speedup of just 4% and the slowdown of omnet is somewhat
disappointing.

Figure 6.9 helps explain the root of these disappointing results by presenting the accu-
racy of the predictor. Since a block in the DRAM cache can be categorized in two meaningful
dimensions with respect to prefetching: 1) whether or not they were prefetched and 2)
whether or not they were demanded, there are four combinations of these dimensions
that represent the possible states of the blocks on eviction - when the graph'’s statistics are
updated. Three of these states are useful in evaluating the predictor accuracy: 1) that a

block is demanded and prefetched, 2) that it is demanded but not prefetched, and 3) that
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Figure 6.8: Speedup observed by use of Footprint Predictor on a sectored cache.
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Figure 6.9: Accuracy of the Footprint Predictor over evaluated workloads, showing number
of correctly predicted (“Covered”), Overpredicted, and Underpredicted blocks following
sector allocation.

it is prefetched but not demanded'. These states lead to the three stacked categories of
the graph, “Covered,” “Underpredicted,” and “Overpredicted,” respectively. “Covered”
references represent the ideal where prediction properly indicates a block will be referenced
and issues a prefetch such that the data is present when the demand reference is seen

(i.e., it is timely). “Underpredictions” represents both demands that are not predicted and

therefore not prefetched and demands that are predicted but do not receive fill data in time

!For the sake of evaluating prediction accuracy, it is not interesting to consider those blocks that are
neither demanded nor prefetched
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Figure 6.10: Relative DRAM cache misses per 1K instructions with Footprint Prediction.

(i.e., late prefetches). Finally, “Overpredictions” are those blocks that are prefetched but
never referenced and merely serve to increase the bandwidth demand on main memory.

Altogether, while some benchmarks achieve high coverage with low overpredictions -
not surprisingly headlined by Ibm and libgntm which achieved two of the best speedups -
many of the remaining benchmarks have significant overprediction rates. This overpre-
diction leads to significant increase in DRAM bandwidth demand, in turn increasing
main memory latency and subsequently slowing the system down relative to one without
prediction.

While overall speedup results are disappointing and many workloads exhibit significant
overfetching, Figure 6.10 indicates that prefetching is at least accomplishing the primary
first-order goal of reducing DRAM cache miss rates. As shown and expected from the
high “Covered” rate in Figure 6.9, DRAM cache miss rates can be substantially reduced
with prefetching, even considering these reductions do not account for late prefetches (i.e.,

prefetches that do not return data in time are considered misses). Therefore, it is clear that
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Figure 6.11: Speedup observed by use of Footprint Predictor on a Tag Table.

the only significant impediment to better performance with SFP-based prefetching is the
significant overfetching rate. Given this conclusion, an adaptation that mitigates this effect
could help substantially. While not investigated in this work, it can be envisioned that a
throttling mechanism could be helpful. For instance if a feedback mechanism were present
that let the system know when significant overfetching was occurring, it could adjust to
reduce the amount of blocks prefetched. Whether the reduction in “Coverage” would be
worth this concession is unclear, but would be an interesting study that is saved for future

work.

6.3.4 Tag Table Prediction

Continuing by applying SFP to Tag Tables results in similarly disappointing results. As
mentioned earlier, the application of proactive prefetching to a Tag Table encounters much
different operating characteristics than application to sectored caches since, unlike a Tag
Table, prefetching within a sector cannot displace useful data since the allocation of the

sector itself already cleared the sector. In contrast, Tag Tables frequently must select a victim
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in order to make room for prefetched data, leading to a tradeoff between the usefulness
of the victim versus the prefetched block. Consistent with the prediction accuracy in the
previous section, this results in additional penalty for Tag Tables, leading to the ability
of SFP to improve performance of only benchmark - libgntm - as shown in Figure 6.11.
With the exception of DRAM cache miss rates, the bandwidth and prediction accuracy
results of the Tag Table with SFP is very similar to that achieved by the sectored cache.
The DRAM cache miss rates on the other hand, are largely unchanged from the baseline
system, indicating a canceling effect between useful prefetches and evictions created by

useless prefetches.

6.4 Summary

This chapter proposed and evaluated prefetching techniques in a Tag Table system. Along
with adaptation of spatial footprint prediction (SFP) - a prefetching technique consistent
with the goals of prior work that attempts to provide data to the cache prior to first ref-
erence - it further presented a reactive prefetching mechanism. This reactive mechanism
is presented as an alternative to eviction of shortest chunks for maintaining correctness
in a Tag Table system with respect to limiting the number of chunks tracked by an entry
that utilizes prefetching of the shortest gap between chunks. It is this unique ability of Tag
Tables - to reduce tag storage overhead by tracking more blocks - that ends up providing the
greatest benefit. While limited to only a few percent improvement, it is a simple mechanism

for correctness that is capable of improving performance beyond that achieved by a more
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destructive approach for correctness.

Beyond reactive prefetching, analysis of proactive prefetching in the form of SFP reveals
significantly different characteristics with general workloads than those results achieved
with “scale-out workloads.” While the initial evaluation of perfect prediction indicated sig-
nificant opportunity for prefetching, SFP was unable to effectively capture this opportunity,
indeed resulting in slowdown for all but a few workloads in the sectored configuration
which exhibit very minor speedup. Not surprisingly, the lack of correlation between instruc-
tions and data in general workloads leads to relatively poor prediction and subsequently
low performance. Further, SFP would appear to have little practical value to a Tag Table
system targeted at general workloads (though evaluation of the Footprint Cache indicates
that it may be worthwhile if the system were targeted to “scale-out workloads” [27]). In-
stead, further investigation into proactive prefetching for Tag Tables may be more fruitful
if more general stride or address-correlating prefetchers were investigated which may be

better able to capture the opportunity.
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7 Conclusion

Large caches relative to the capacity available on a high-speed logic die are re-emerging
as a challenge for computer architects. This has initiated a period of rediscovery of prior
techniques proposed in an age of large board-level caches and spawned the discovery of
new approaches. Whether implemented as trench capacitors on the logic die itself as in
embedded DRAM (eDRAM) or existing as a separate DRAM chip, tightly integrated to
the logic die through 3D die stacking technology, the availability of high-capacity, DRAM-
based caches appear to be a design consideration for the foreseeable future. Fundamental
to the designs to support these large caches is the mechanism by which data is tracked in
the cache since a simple scaling up of existing techniques encounters substantial issues.
These issues center on the storage and latency of accessing the tags for locating data in the
cache. These tags are either too big to store on-die, requiring a vast reduction in storage
overhead or they may be stored in the DRAM array themselves but then the issue of access
latency becomes a major concern.

Prior techniques to leverage this big, fast data store by efficiently tracking the tags has

spawned a range of proposals. From early proposals to simply scale the block size with
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the cache size in order to maintain the tags on the logic die [17, 28, 28] to more advanced
techniques leveraging sectored cache concepts and prefetching a la the Footprint Cache [27],
significant work has been done to keep the tags on-die. On the other end of the spectrum,
approaches such as the Loh-Hill Cache [33] and Alloy Cache [41] argue that block sizes
must remain small in order to efficiently utilize this greater cache capacity and avoid false
conflicts and fragmentation, thus the tags need to be stored in the DRAM. However, even
these tags-in-DRAM approaches have taken divergent paths on fundamental design choices.
While the Loh-Hill Cache advocates maintenance of associativity, the Alloy Cache advocates
for a direct-mapped, hit-latency-optimized approach similar to the design decisions of past
board-level caches, arguing that the capacity afforded these caches make associativity less

important.

7.1 Summary

In order to tackle the fundamental issue of tag tracking for large DRAM-based caches, this
thesis has presented Tag Tables, a dynamic mechanism for tracking tags in a cache. Though
specifically designed for large-capacity, DRAM-based caches, it is a generally applicable tag
tracking structure that incurs little storage overhead and can adapt to runtime characteristics
of the system. Therefore, it is conceivably applicable to even smaller caches if adaptation
or storage overhead are important concerns.

Tag Tables further advocate the importance of quickly accessing tags by storing them

on the high-speed logic die, but also argue that small block sizes and associativity are
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important, putting them at odds with prior techniques. Tag Tables are able to address these
seemingly contradictory goals with compressed tag storage leveraging the intuition of long
residency of blocks in the cache leading to many contiguous blocks with many repeating
tag bits. By encoding this repetition into a base-plus-offset encoding, Tag Tables are able to
achieve significant storage savings on the order of a sectored cache. Further, the dynamic
nature of a forward page table is utilized to allow on-demand allocation of tag storage
metadata, allowing the Tag Tables to adapt to runtime characteristics of the system and
trade off DRAM cache tracking capacity for other on-die commodities such as L3 capacity.

Through this thesis, it has been shown that Tag Tables are capable of exceeding the
performance of existing state-of-the-art proposals for tracking data in a large capacity cache.
Further, through additional optimizations, this advantage can be extended. Namely, Set
Dueling was first shown to be effective in Chapter 4 at selectively protecting Tag Table
metadata in the L3 cache to allow for increased DRAM cache capacity when the L3 cache is
not undergoing significant capacity pressure itself. This protection of metadata resulted in
modest improvement for certain workloads that was amplified in systems utilizing bigger
Tag Table entries in order to track more distinct chunks. Further, Set Dueling was adapted
and a novel Set Scouting technique was proposed that increased the benefit achievable by
Set Dueling by a small additional amount for certain workloads.

Next, the application of translation lookaside buffers (TLBs) in the form of page offset
lookaside buffers (POLBs) were shown in Chapter 5 to provide significant benefit when

sized on the order of at least a few hundred entries. By significantly reducing the tag check
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Figure 7.1: Combined effect of all useful Tag Table optimizations relative to baseline system
as proposed in Chapter 3.

time of Tag Tables from a minimum of an L3 cache data access to two cycles, these POLBs
were capable of improving performance by more than 20% on average with 1K entries.
It should be noted that, unlike other advantageous optimizations presented which rely
on intrinsic features of the Tag Table structure, the POLB is easily adaptable to other tag
tracking techniques. Therefore, the most significant optimization uncovered for Tag Tables
could be similarly applied to prior proposals in the realm of tag tracking.

Finally, prefetching in the form of reactive prefetching to maintain the maximum number
of chunks trackable by an entry was shown to provide small, but non-negligible perfor-
mance improvement in Chapter 6. Unlike proactive prefetching which is the type most
commonly associated with prefetching, reactive prefetching exploits a unique feature of
Tag Tables - that tracking more blocks can result in less storage overhead - by bringing in
additional blocks to allow existing disjoint chunks to join and be trackable by a single entry.

Figure 7.1 presents the performance of a Tag Table system with all of the aforementioned
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valuable optimizations included relative to the baseline system presented in Chapter 3,
outlined in Table 3.1. The optimized system evaluated consists of the baseline system
augmented with a 1K-entry POLB, Set Scouting, and reactive prefetching to maintain a

maximum number of chunks in entries.

7.2 Future Work

While this thesis presents extensive evaluation into the structure and opportunities of Tag
Tables, additional work could be done to extend or adapt it. Further, throughout the course
of this work, several alternatives and additional opportunities were considered related to
various Tag Table structures and operations. This section serves to enumerate several of

these observed opportunities for further study regarding Tag Tables.

7.2.1 Chunk Specification

As proposed, a chunk in Tag Tables is encoded with an offset and a length. If instead, two
offsets were encoded - one representing the bottom of the chunk and the other the top -
certain operations may be less complex. While not taken into account in evaluations, certain
proposed microarchitectural features of Tag Table operations have indicated the addition
of adders to determine the top block of a given chunk. Specifically reactive prefetching
of the shortest gap between chunks as presented in Chapter 6, relies on 6-bit adders to
determine the top of the chunks in the entry for comparison with the base of the following

chunk. If instead the top of the chunk were stored, these adders would not be necessary.
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7.2.2 Combining Tag Tables with the System Page Table

Considering the reach of the translation lookaside buffers (TLBs) in current systems relative
to the capacity of DRAM caches as discussed in Section 5.1.1, it would seem that many
DRAM cache accesses may follow from TLB misses. While it is entirely possible that
temporal locality prevents this from being the case (i.e., enough references within a small
set of pages are responsible for a majority of the DRAM cache accesses over a window
of time), if it in fact does happen that many accesses follow a TLB miss, incorporation
of Tag Tables into the existing system’s page table may be advantageous. Rather than
allocating separate resources to implement a Tag Table, it may be possible to just extend the
translation stored in the leaves of the page table to indicate which blocks are located in the
DRAM cache and the way they are located at. If indeed a page walk would have occurred
in the common case anyway, not only are no additional on-chip resources devoted to tag
tracking for the DRAM cache, but no additional latency is incurred as the location will
be known before the DRAM cache is even accessed. Further, this may not be limited to
just a DRAM cache. Given the relative reach of existing TLBs and rapidly increasing LLC
sizes, it may be that eventually many LLC accesses will occur after a page walk has been
performed. Granted, this is much less likely than with a DRAM cache and indeed TLBs

will likely grow in response to LLCs, but it may be worth investigating.
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Figure 7.2: (a) Good, (b) bad, and (c) worse scenarios for exception tracking.

7.2.3 Encoding Exclusions in Entries

With the data presented here, corroborating the intuition that large caches will frequently
store large contiguous chunks of data, dependent on application characteristics, it may be
fruitful to explore the storage of exceptions in Tag Table entries. Consider, for instance, a row
of the cache with all contiguous data except for one block. Instead of using two entries - one
for all of the contiguous data which exists in two chunks and one for the lone block - a single
entry could be allocated that indicates that all of the data in the particular row corresponded
to a given tag, except for a chunk that contained that lone block. Implementing such an
encoding would require an additional bit per entry indicating whether it was a standard
entry or an exception entry.

While seemingly a good fit for this extreme example, it has not yet been investigated

due to the belief that in the much more common case, exceptions will require more entries
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and that even that one extra bit per entry would not likely be useful. This belief stems
from the observation that unless the present (i.e., the non-exception) blocks are at the
front and back of the row (i.e., they are present at offset 0x0 and offset 0x3f) then it will
require tracking more chunks. Take the example in Figure 7.2a. For this row, it will be less
costly to encode exceptions because they only correspond to two chunks while the present
blocks correspond to three. If, on the other hand, the row was like Figure 7.2b or worse,
like Figure 7.2¢, it would require equal or even more chunks to encode the state. While
not evaluated quantitatively, it would seem that situations from Figure 7.2b and 7.2c are
relatively more common than Figure 7.2a, therefore this idea has not yet been investigated

further.

7.2.4 Prefetching

While spatial footprint prediction (SFP) was not shown to work well with Tag Tables
and general workloads, it may be that other prefetching techniques would work better.
Considering that SFP is specifically targeted to sectored caches which have the nice property
of not creating evictions if a footprint is prefetched, it was not well-suited to Tag Tables.
However, Tag Tables have much more in common with traditional caches in that respect.
Therefore, given the fact that assumptions and constraints are not as drastically different
between the two, it might be better to adapt prefetching techniques that have been shown to
work well with traditional small-block-sized caches. Specifically, incorporation of a stride

prefetcher [3] or even a global history buffer [38] could provide the sort of prefetching
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targets that would be valuable enough to justify the creation of additional victims.

7.2.5 Splitting Entries

If an insertion would cause an existing entry to track more than the number of chunks
supported by a single entry (four in the baseline), it may be possible to instantiate a second
entry for the tag and utilize the chunks in this new entry to begin tracking additional
data. This opportunity potentially provides a third solution to the chunk limitation beyond
simple eviction and reactive prefetching. The dynamic nature of Tag Tables, based on the
page table structure, makes this a plausible option, contrary to the rigid storage of data in
other tag tracking structures.

Since a single additional bit per entry can be used to indicate that an additional entry
exists, the remaining implementation issue becomes how to locate the second entry. Con-
ceivably, a sort of linked list could be created from one entry to another, but provisioning
for the cost of storing a pointer to a separate memory location in all entries would be
prohibitively expensive. Perhaps instead of full pointers, just indices into a table could be
used. Then - assuming that the additional entry would be allocated in the same level as
the current entry exists - the stored offset could then simply trigger an additional access
into the table at the current level. This additional access would specifically be a second
data access into the L3 for a metadata block. Although, perhaps an optimization could be
to attempt to allocate this new entry at an index that would exist in the parent’s metadata

block, eliminating this second L3 access.
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In the case of a subsequent reference walking to their proper leaf entry but encountering
one of these “squatter” entries, a simple tag check can indicate that the entry does not
belong where it is stored. It can then be moved to a new empty entry, requiring an update
of the original entry, whose overflow caused the instantiation of the current problematic
entry in the first place. This locating of the parent entry should be simply accomplished by
indexing the table with the tag of the “squatter.” This update again requires an additional

access of the L3 for a metadata block, one that cannot be conceivably optimized.

7.3 Closing Remarks

Two primary features of the research presented in this thesis make me optimistic as to
its future relevancy: 1) it is based on technology that has a relatively high probability of
seeing widespread adoption and 2) at its core, Tag Tables are an adaptation of an existing,
well-known technique for tracking memory. Both of these features I believe, are common
research proposal pitfalls that result in them failing to achieve their desired relevancy.
First, concerning technology Tag Tables are primarily contingent on the adoption of
DRAM-based caches. While it is not strictly limited to these caches - and can indeed be
valuable to any high-capacity cache - the assumptions influencing Tag Table design deci-
sions were all made with the application to tracking tags for a DRAM-based cache in mind.
Fortunately, the presence of eDRAM on existing commercial products and widespread
industrial support for stacked DRAM means that the availability of high-capacity, high-

bandwidth DRAM to future processors is relatively likely. Further, the fact that two distinct



125

technologies could be independently possible of providing this data store makes it even
more likely. Unfortunately for many other research proposals of the recent past - phase
change memory comes immediately to mind - this robust technological basis is not so rosy.

Second, the fact that Tag Tables - at their core - adopt a ubiquitous and well-known
structure in the page table means that their implementation would be well-understood and
relatively non-disruptive, particularly since they can be incrementally realized. Such an
incremental adoption could first involve only the very basic features of Tag Table design
and evolve over multiple generations to incorporate the more advanced features such as
compressed entries, etc. For instance, an initial implementation could merely perform a
tag check as a walk of a forward page table, tracking only the “way” of the data in leaf
entries and only allowing leaves to exist at levels reached after utilizing all bits of the
address. Storage of the metadata could be in main memory, just as a standard page table
and even small translation caches - which would be relatively more useful in this scenario
- could be included to mitigate the long walks. An evolution of the design could then
incorporate compressed entries and storage of the metadata in the on-chip cache. This
process could continue - or not, depending on performance of the simple techniques - for
many generations until what would initially be highly disruptive would be well-understood
and simple to realize.

While I am generally pragmatic and somewhat cynical, I hope that together these two
features mean that tracking tags in large caches will remain a relevant problem that Tag

Tables help to solve. Whether or not I personally work on solving it is unclear but it would
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be exceptionally gratifying if at some point hindsight indicates that this work represented

a meaningful contribution to the tracking of cache tags.
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