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ABSTRACT 

Many challenges facing humanity operate at the continental and global scales, pushing 

researchers to address environmental questions at such spatial scales. For issues of global change 

and biogeochemical cycles in inland waters, building a large-scale understanding of the extent 

and processes of inland waters is an important to predict and address present and future 

challenges.  

In this work, I take the focus off any single lake and instead work at the lake population scale. 

This forced me to break new research ground, synthesize new datasets, and re-examine existing 

theories at a new scale. In Chapter 2, I synthesized and examined a new dataset of lakes in the 

U.S. and went beyond lake surface area. By improving our understanding of lake shoreline, I 

improved our understanding of how lakes are linked to their landscapes. In Chapter 3, I broke 

new ground by building a simple mathematical model of lake population morphology and 

process, giving researchers a simple and powerful tool for conceptualizing lake population 

morphology and process. In Chapter 4, I used a large-scale dataset and a fractal model of lakes to 

examine how different processes can result in different observed distributions of lakes. While 

theory points to a fractal world, we hypothesize that scale-dependent processes alter the 

underlying distributional form, altering the observed distribution of lakes. Lastly, with Chapter 5, 

I examined water temperature trends at a new scale and found that small lakes have a muted 

response to climate change than larger lakes.  

More work is required to make global limnology accepted and recognized by the broad field of 

limnologists. To get there, new tools, datasets and broad-scale concepts are all required.  
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CHAPTER 1 – INTRODUCTION 

OVERVIEW 

There is much to learn about the role of lakes in processes at continental and global scales. 

Limnological research has taken advantage of the well-defined boundaries of individual 

ecosystems, focusing on lakes surrounded by “large areas of inhospitable land” (Arnott et al. 

2006). But today, many challenges facing humanity operate at the continental and global scale, 

challenging policymaker’s decision making and pushing researchers to ask relevant questions 

crossing ecosystem boundaries and at large spatial scales. While large scale work is somewhat 

new to limnology, historically many disciplines have operated at continental and global scales. 

Climatology (Rohli and Vega 2011), oceanography (Talley et al. 2011), and demography (Cox 

1970) are all examples. Without clear borders, such disciplines have necessarily worked at large 

spatial scales for decades. With regards to limnology, some have warned that the field has fallen 

behind others and not turned our broad knowledge of aquatic system function into answers to 

large-scale scientific and societally relevant questions (Jumars 1990; Reid and Beeton 1992). 

Recent work has begun showing how important the cumulative role lake ecosystems may play in 

global-scale systems (Ludwig et al. 1996; Cole et al. 2007; Lewis 2011). These studies have 

defined the emergence of global limnology, which strives to upscale our understanding of 

aquatic services and processes to continental and global scales (Downing 2009). 

Importantly, a new perspective on data sharing is required to make the sort of cross-site, large-

scale datasets available to a new generation of researchers. The work currently undertaken by the 

likes of the Global Lake Ecological Observatory Network (GLEON) and Cross Scale 

Interactions (CSI) limnology are a few, but not yet enough, examples of the kind of data sharing, 

collaborative efforts that are required. With data and tool sharing in mind, the tools and datasets 
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used and developed throughout the course of this work are all published and freely available 

through sites referenced in each chapter. With resources available online, all figures and result in 

this manuscript could be replicated and reproduced. 

Research into understanding aquatic system process at the global scale is entering an age of rapid 

growth. Internet-based communications and data sharing technologies have eased data sharing 

and collaboration across large spatial scales. With the right network of people today, large 

datasets could be collected from every corner of the globe in only a few days. Transit times and 

physically moving data are constraints of the past. In addition, large and spatially comprehensive 

datasets released by governments, research groups and non-governmental organizations are now 

freely available to any researcher with an internet connection. Just a few examples relevant to 

limnology include the USGS National Hydrography Dataset (nhd.usgs.gov), the EPA National 

Lakes Assessment dataset (water.epa.gov), and the work currently undertaken by GLEON and 

CSI Limnology groups. As global environmental challenges continue, advances in 

communications, computing and access to spatially-distributed datasets may help us tackle them 

head-on. 

A critical underlying piece of information needed to understand lakes globally is a reliable, well 

understood measurement of the very existence and spatial extent of lakes in order to upscale 

process. While some work has been done to quantify the total number and surface area of lakes 

globally (Meybeck 1995; Kalff 2002), only recently have those numbers been updated based on 

new, globally cohesive datasets (Downing et al. 2006). This work has had a large impact, but 

some questions still remain over the abundance, size distribution, and total surface area of lakes 

globally. There is evidence that the distribution of lakes may not follow a Pareto distribution 

across all size classes, an underlying assumption used in current estimates of lake number and 
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extent (Seekell and Pace 2011). In addition, new lake and reservoir datasets have suggested that 

both the overall abundance and surface area of lakes may have been overestimated (McDonald et 

al. 2012). Both of these studies show that the greatest uncertainty lies in quantifying the number 

and extent of small lakes and ponds. Understanding the differences presented in these studies is 

critical to upscaling process, especially with so much uncertainty in small lakes and ponds, 

which may have roles disproportionate to their surface area (Hanson et al. 2007; Downing 2010; 

Kastowski et al. 2011). 

With only a few exceptions, studies of lake abundance at the global scale have focused on the 

estimate of total lake surface area and number, without addressing any other morphological 

characteristics, including volume and total perimeter that may be of use to better understand the 

role and potential importance of lakes globally. Robert Wetzel described in his 1990 Baldi 

memorial lecture what the distribution of world lakes might look like (Wetzel 1990). Since then, 

his description of the lake area versus abundance distribution has turned out to be strikingly 

accurate (Downing et al. 2006). But a lake is not defined only by its surface. Wetzel’s description 

included the two other primary dimensions of lake morphology, the total volume (as described 

by mean depth) and the total shoreline length which he describes using the pelagic to littoral 

ratio. To-date, there has been little work examining the large-scale distribution of lake volume or 

perimeter, with the exception of a few regional studies which examined the distribution of lake 

volume or depth and related them to lake area and indices of the surrounding landscape 

topography (Sobek et al. 2007; Hollister and Milstead 2010; Hollister et al. 2011). These types of 

relationships may be critical in scaling lentic process to large scales when the volume of millions 

of lakes across the globe is not empirically known and must be estimated from available 

landscape and spatial information. 
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The three key morphological features in terms of the dimensionality of their units can be used as 

a simple conceptual model. Perimeter is 1-D, surface area, 2-D, and volume is 3-D. Surface area, 

the most commonly examined dimension, scales significantly with many processes, and 

processes are often reported in a per-unit area basis. For example, irradiative energy exchange, 

gas exchange, and primary productivity all scale significantly with the total surface area of a lake 

(Lewis 2011). Lake volume strongly affects the water residence time, relating to many in-lake 

processes. For example, volume, and by extension, depth has been show to affect nutrient 

dynamics, primary production, organic matter mineralization, and sedimentation (Hamilton and 

Jr 1990; Algesten et al. 2003; Jeppesen et al. 2005). Lastly, lake perimeter describes the amount 

of aquatic-terrestrial interface and thus, will scale with processes which transfer materials 

between aquatic and terrestrial ecosystems (Gasith and Hasler 1976; Preston et al. 2008) as well 

as the amount of littoral surface area, informing the balance between littoral and pelagic lake 

processes (Vadeboncoeur et al. 2008). 

Understanding morphology is not the end-goal of global limnology. Morphology is a stepping-

stone to better understanding processes in lakes that society is interested in predicting and 

understanding. One current issue of societal concern is the future of inland waters in a globally 

changing climate. Climate change impact on lakes may be translated through lake watersheds 

(Schindler 2009), changes to incoming hydrology (Mortsch and Quinn 1996), or may come in 

the form of direct changes to lake thermal structure and temperature (Livingstone 2003). Most 

work on the influence of climate change on lake temperature has focused on the surface waters 

of the largest lakes globally (Coats et al. 2006; Austin and Colman 2007; Hampton et al. 2008; 

Schneider and Hook 2010). 
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Individual lakes will not all have the same responses to climate change. Large lakes have been 

shown to respond strongly to a changing climate, with ice-albedo feedbacks potentially 

amplifying the climate signal (Austin and Colman 2007). The small lake response to climate 

change has not been well studied. Published work suggests that small lakes may respond 

differently to external climate forcing. For example, small lakes tend to have higher DOC 

concentrations (Hanson et al. 2007), resulting in different vertical distributions of thermal energy 

(Read and Rose 2013). Small lakes are often well sheltered from wind (Markfort et al. 2010) and 

tend to be shallower, on average, than larger lakes (Sobek et al. 2011). Lastly, small lakes have 

different drivers of turbulence and mixing than large lakes (Read et al. 2012). 

IN THIS DISSERTATION 

This dissertation is the product of several years’ work to answer some questions that arise when 

trying to understand lake morphology and process at the continental scale. There are many 

unanswered questions and much progress yet to be made, but the field is now further along than 

it was a few years ago.  

In Chapter 2, I undertook a large-scale analysis of the shoreline morphology of lakes. Past 

studies have already begun building a picture of lake morphology measured as lake surface area 

(Downing et al. 2006; McDonald et al. 2012). The goal of this chapter was to build an 

understanding of the large-scale morphological characteristics of lake populations, specifically 

lake perimeter. The chapter was published in the journal, Freshwater Biology in 2013 (Vol. 59, 

Issue 2). 

In Chapter 3, I built a simple, mathematical model for lake populations based on the Pareto 

distribution that could be used to help quickly understand and conceptualize the distribution of 
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lake morphological features as well as some processes across large population of lakes. The 

chapter is in press in the journal, Inland Waters (2014).  

In Chapter 4, I simulate how scale-specific processes, such as evaporation or terrestrialization, 

could affect the shape of the lake size-abundance distribution. These simulations are based on an 

underpinning fractal landscape that has been hypothesized to be the underlying origin of lake 

population distributions. This chapter is in preparation to be submitted to JGR: Earth Surface. 

In Chapter 5, I examine water temperature trends across a large population of lakes in 

Wisconsin for which observations are available. With this work, I find that low wind-driven 

buoyancy flux during the spring in small lakes reduces downward energy flux into the bottom 

waters, preventing small lake bottom temperatures from warming due to changes in springtime 

conditions. The chapter is currently in preparation for the journal Geophysical Research Letters.  
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Summary 

1. Quantifying lake biogeochemical processing at broad spatial scales requires that we scale 

processes along with physical metrics. Past work has primarily scaled lentic processes using 

estimates of lake surface area. However, many processes important to lakes, such as material, 

energy and biological fluxes and biogeochemical cycling, scale with lake perimeter.  

2. We estimate the total lake perimeter for the contiguous United States (U.S.) and examine the 

sensitivity of this estimate to measurement resolution. At the original mapping resolution, lakes 

in the contiguous U.S. have a total perimeter of over 1.8 million km.  

3. The change in measured perimeter versus measurement resolution for the contiguous U.S. had 

a log-log slope (also known as the fractal dimension) of -0.21, generally less than previously 

reported estimates. With changing observation resolution, total measured perimeter was most 

sensitive to the inclusion or exclusion of small lakes, not shoreline complexity. 

4. The total aquatic-terrestrial interface in lakes is less than one tenth that of streams and rivers, 

which collectively account for over 21 million km of shoreline in the contiguous U.S. This study 

further describes the distribution of lake perimeter and proposes a technique that can contribute 

to understanding continental-scale processes. 
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Introduction 

Despite estimates that suggest lakes comprise only a small fraction of the Earth’s surface 

relative to terrestrial and ocean environments (between 2 and 4% of total terrestrial surface area; 

Kalff 2002; Downing et al. 2006), they play a significant role in the global carbon cycle (Dean & 

Gorham 1998; Lewis 2011). However, quantifying aquatic processes at continental and global 

scales is inherently difficult because few fluxes into and out of lakes can be directly observed 

(Battin et al. 2009). For lakes, measurements from a relatively small number of systems have 

been upscaled to regions by using lake surface area as a scalar for inferring large-scale fluxes and 

process (Tranvik et al. 2009; Lewis 2011). While area is an appropriate scalar for many 

processes, other processes, such as those dependent upon connectivity to terrestrial systems, may 

benefit from scaling with lake perimeter. 

Many important material fluxes and ecosystem processes occur at or near the perimeter 

of lakes. For example, terrestrial organic carbon subsidizes high rates of secondary production in 

littoral zones (Hershey et al. 2006; Francis & Schindler 2009) and may provide substantial 

organic substrates to pelagic consumers, such as zooplankton, especially in small lakes (Cole et 

al. 2011). Allochthonous subsidies that occur at the lake ecosystem interface, such as leaf litter 

input, have been recognized to scale with lake perimeter (Gasith & Hasler 1976; Preston et al. 

2008).  

Areas immediately adjacent to the perimeter, namely the littoral and riparian zones, are 

also important sites for biological activity and biogeochemical processing. Littoral zones are 

often hotspots of methane and nitrous oxide emissions (Wang et al. 2006; Bergström et al. 

2007), as well as benthic primary productivity (Vadeboncoeur et al. 2008). In large lakes, 93% 

of species inhabit shallow, nearshore littoral zones (Vadeboncoeur, McIntyre & Vander Zanden 
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2011). The importance of nearshore littoral habitat is also apparent in links between decreased 

abundance of coarse woody debris and a decreased yellow perch density (Helmus & Sass 2008) 

and fish production capacity (Schindler, Geib & Williams 2000). Perhaps because of the 

importance of littoral habitat, shoreline development factor (SDF; Kalff 2001), a metric of 

shoreline complexity, has been a useful correlate of fish density and diversity (Drake & Pereira 

2002; Scheuerell & Schindler 2004; Guy & Willis 2011). These examples are a partial 

representation of the work examining phenomena at the lakeshore, which has long been known 

to be important to ecosystem function (Wetzel 1990; Schindler & Scheuerell 2002; McClain et 

al. 2003; Strayer & Findlay 2010). 

Recent work showing that aquatic-terrestrial boundaries are critical interfaces between 

ecosystems and that lakes are hotspots for material flux and processing in the landscape 

(Williamson et al. 2008; Karlsson et al. 2010; Buffam et al. 2011) suggests that focusing on the 

aquatic-terrestrial boundary may provide a useful approach to scaling. Advancing our 

understanding of the roles lakes play in the broader landscape requires that we better quantify 

littoral and perimeter extents and gain further understanding of the uncertainties of these 

estimates. Examining the spatially explicit distribution of total lake perimeter, in addition to lake 

area, could highlight different regional characteristics of lakes compared to examining lake area 

alone. 

To quantify the fluxes and processes at the aquatic-terrestrial boundary at broad spatial 

scales, we first need to quantify the extent of interface and examine the sources and implications 

of uncertainties in those estimates. Part of the uncertainty in lake perimeter derives from the 

fractal nature of lake shoreline (Mandelbrot 1979; Kent & Wong 1982). The measured perimeter 

of a fractal shoreline does not converge with increasing measurement resolution. Under a fractal 
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paradigm, a lake cannot be said to have a specific perimeter measurement that is absolute; rather, 

it has an observed perimeter that varies with measurement resolution. Despite this, observed 

perimeter has proven useful directly and as a component in SDF calculations in multiple studies 

(Drake & Pereira 2002; Scheuerell & Schindler 2004; Guy & Willis 2011).  These studies 

suggest that perimeter observations, when measured at similar resolutions, are comparable and 

convey useful ecological information despite being sensitive to measurement resolution. 

In this study, we explore the distribution and total length of lake perimeter for a 

geographically extensive data set with consistent resolution covering the contiguous United 

States (U.S.). We examine how lake perimeter can be quantified at large scales and how its 

spatial distribution differs from the spatial distribution of lake surface area. We use the U.S. 

Geological Survey’s (USGS) National Hydrography Dataset to estimate the total length of the 

land-water interface contributed by lakes in the U.S. and then compare different perimeter 

estimation techniques to address the following questions: What is the total U.S. lake perimeter 

and how is it distributed across the U.S.? How does the extent of lake shoreline compare with 

that of rivers and streams? How sensitive is our estimate of perimeter to measurement 

resolution? What are the implications for our understanding of lake SDF? By answering these 

questions, we can begin to better understand the importance of lakes at the interface with their 

adjacent ecosystems and how that scales to broad spatial extents.  
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METHODS 

The dataset examined was the USGS National Hydrography Dataset (retrieved January 

2012, http://nhd.usgs.gov).  This combines multiple surveys through time, using the resulting 

high resolution USGS topographical maps to delineate aquatic boundaries (Simley & Carswell 

2009). While a variety of resolutions are available, only 1:24,000 was used in this analysis. The 

dataset covers the area of all 48 U.S. contiguous states, including Washington D.C. Because they 

are not completely contained within the U.S., we chose to exclude the Laurentian Great Lakes 

for this analysis. 

We extracted all lake, reservoir and pond polygons from the GIS dataset. Because the 

dataset does not distinguish between artificial or natural lakes and ponds, no distinction was 

made for this analysis and all water bodies hereafter are collectively referred to as lakes. The 

elevation component of these polygons was removed using ArcGIS (ESRI ArcGIS v10.1). For 

simplicity, all island data were excluded from the results presented here, though we discuss the 

small resulting bias. Duplicate polygons were identified and removed using the permanent 

identifier field included with the data. All calculations were completed using the Mathworks 

Mapping Toolbox (v2010b; Mathworks, Natick, United States), which adds geographic 

information functionality to Matlab. A single-point location for each lake was defined as the 

centroid of the lake boundary polygon. 

To examine perimeter while considering the issue of a fractal lake perimeter, we 

estimated perimeter using two complexity-insensitive and repeatable techniques. First, a 

theoretical minimum perimeter (Pmin) was established by calculating the perimeter of a circle 

with the same area as each lake using: 

              (1) 

http://nhd.usgs.gov/
http://mathworks.com/
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where A is the total area of the individual lake (Kalff 2001). This represents the absolute 

minimum perimeter, on a flat plane, required to encompass a given area (spherical coordinates 

could reduce Pmin further, though for the size scale of lakes examined here, the difference is 

negligible). Second, a resolution-specific perimeter was calculated using a simple yardstick 

method based on Mandelbrot (1979). With this method, a fixed-length line-segment was 

progressively "walked" along the polygon until reaching the start point (Fig. 1). This simulated a 

perimeter estimate at specific and adjustable mapping resolutions. The yardstick length was 

varied across a range of values (25 to 1600 m) to examine the sensitivity of the perimeter 

estimate to measurement resolution. To compare the sensitivity of perimeter estimate to previous 

studies, the slope of the relationship between log-perimeter and log-yardstick length was 

calculated using least-squares regression, based on Kent and Wong (1982). Lastly, we calculated 

the maximum observed perimeter of each polygon (Pobs) by using the full-resolution data and 

summing the lengths of each polygon segment. Shoreline development factor (SDF) was 

calculated using the equation: 

    
 

      
    (2) 

where A is area and P is perimeter. The perimeter measurement technique used in SDF 

calculations (Pobs or the yardstick method) is indicated where discussed. Calculations of 

perimeters, area and centroid were fast for any single polygon, but because of the high number of 

lakes and high polygon resolution, calculations became computationally intensive. This and 

other geostatistical calculations were accelerated by use of a computer cluster. HTCondor 

software (Thain, Tannenbaum & Livny 2005) was used to distribute this task. 
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 The extents of stream and river shorelines were calculated from the National 

Hydrography Dataset using the same technique as the fractal-naïve perimeter (Pobs). Only 

features classified with a type of Stream/River (USGS Feature #460) were included. This feature 

type includes intermittent, ephemeral and perennial streams and rivers, but excludes features 

such as underground streams and canals. The shoreline length of small streams, represented in 

the dataset by polyline objects, was estimated as the length of the lines doubled to account for 

both sides of the stream. The shoreline of larger rivers, which are stored in the dataset as 

polygons, was calculated directly as the observed perimeter of the polygons (Pobs) on the WGS84 

datum. 

Maps of lake abundance (number km
-2

), area (percent cover) and shoreline density (m 

km
-2

) were created by dividing the area of the U.S. into equal-area cells (cell size: 50 km
2
).  Each 

lake's attributes were assigned to a cell based on its unique single-point location and statistics 

were calculated for lake density and percent cover in each cell.  Where a lake's area exceeded 

that of a single cell, the full lake shape was split into overlapping cells based on the amount of 

overlapping area. Cumulative distributions of lake number, area and perimeter as a function of 

lake area were used to evaluate general attributes of the entire U.S. lake population. 

To aid future work in this area, we have released useful derived datasets on the web. 

While the data are freely available from the USGS, the National Hydrography Dataset's large 

size makes analyses challenging. To encourage additional research in this area, we have released 

the extracted perimeter data set. It is available at the data repository hosted by the North 

Temperate Lakes – Long-Term Ecological Research website at http://lter.limnology.wisc.edu. 

  

http://lter.limnology.wisc.edu/
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RESULTS 

Applying no size cutoff beyond the underlying sampling resolution (~0.07 hectares; 

McDonald et al. 2012), the dataset contained 5,800,000 lakes distributed over 8,000,000 km
2
 of 

contiguous U.S. land area. Between quantification techniques, total perimeter estimates ranged 

from 1,200,000 (Pmin) to 1,880,000 km (Pobs). Including the shoreline of islands increased Pobs by 

3% to 1,940,000 km. Due to their small contribution, islands were excluded for subsequent 

analyses to simplify calculations. Applying minimum surface area cutoffs of 0.1 and 1 ha 

reduced Pobs to approximately 1,700,000 and 900,000 km respectively. Lakes below 1 ha (often 

used as the cutoff for ‘small’ lakes) accounted for only 7.8% of the total lake area but 

represented 23.6% of the total lake shoreline (Pobs). Although the Laurentian Great Lakes were 

not included in this study, their inclusion would represent a minor increase of between 1 and 2% 

to total lake shoreline of U.S. contiguous states.  

Perennial rivers and streams had a combined shoreline length of 5,810,000 km. 

Ephemeral and intermittent streams and rivers had shoreline length totaling 15,560,000 km. 

Combined, all rivers and streams in U.S. contiguous states had over 21,370,000 km of shoreline. 

Lakes were unevenly distributed across the contiguous U.S., with distinct differences in 

patterns for shoreline, abundance and surface area (Fig. 2). Lake abundances (number km
-2

) were 

highest in the southeastern Great Plains, in the highlands between the lower Mississippi and 

Alabama/Tombigbee River valleys and in the Ohio River Valley region (Fig. 2b). The spatial 

pattern for lakeshore distribution appeared similar to that of abundance, but suggests an even 

greater extent of regions with high shoreline density (Fig. 2a). Classically identified lake districts 

(Upper Midwest, Northeast) did not have notably high lake abundances at the continental scale, 

but were shoreline-rich and area-rich (Fig. 2a; 2c). Topography and aridity had clear influences 

on lake distribution, as low gradient regions in the eastern U.S. were lake-rich while the 
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Colorado plateau and Great Basin regions in the west were comparably lake-poor. While state 

boundaries have little ecological or geological significance, they are the spatial units at which 

much of policy and management is enacted. To that end, we included a state-by-state breakdown 

of lakes and their characteristics (Table 1). Texas had the highest number of lakes (998,000), 

resulting primarily from its large size and, to a lesser degree, from its above average lake density 

(1.44 lakes km
-2

). Of all states, Louisiana had the highest surface area covered by lakes (7.5%). 

Maryland and Nevada represented the extremes of lake density with 3.9 and 0.05 lakes km
-2

 

respectively and Maryland’s high density of lakes was also associated with the highest Pobs 

density at 1,100 m km
-2

. 

Small lakes made a disproportionally large contribution of shoreline length to the overall 

distribution, regardless of measurement technique. The size-distribution of Pobs and Pmin (the two 

extremes) differed, with Pobs having slightly more skew towards large size classes compared to 

Pmin (Fig. 3). The difference between the distributions of Pobs and Pmin is a function of differences 

in average shoreline development factor (SDF) across lake size classes, because it is defined as 

the ratio between the two perimeters (SDF = Pobs/Pmin). Lakes larger than 1 km
2

 had a median 

SDF of 2.3 while lakes smaller than 1 km
2
 had median SDF of 1.14. Lastly, the contribution of 

different lake size-classes to total lake area was skewed toward the larger lakes, though the 

distribution was somewhat even across size-classes larger than 0.01 km
2
. 

Total perimeter of the lake population decreased with increasing yardstick length (Fig. 4) 

with a linear slope between log-yardstick length and log-perimeter (also known as the fractal 

dimension) of -0.62. Much of the sensitivity of total perimeter to yardstick length was due to the 

loss of small lakes when the yardstick became too long to be contained even once in the lake 

polygon (Fig. 5). To exclude sensitivity due to the loss of small lakes, the population of larger 
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lakes was examined. A sub-population of the dataset was chosen based on the coarsest yardstick 

resolution (3,200 m), so the lakes would be comparable across the full range of yardstick lengths. 

In the lake size bins in which no lakes were excluded due to yardstick length, sensitivity to 

resolution had an average log-perimeter, log-yardstick length slope of -0.2, less than the entire 

population’s sensitivity (Fig. 6).  
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DISCUSSION 

While the distribution of total lake surface in the U.S. is skewed towards larger lakes 

(McDonald et al. 2012), lake perimeter is strongly skewed towards small lakes, with lakes 

smaller than 1 hectare contributing almost 23% to Pobs. This indicates that processes that scale 

with total perimeter or occur primarily in the littoral or riparian zone may, at a lake-population 

level, be skewed strongly towards small lakes and ponds. This skew towards smaller lakes has 

further implications. Although previous work found that the fraction of total surface area 

contributed by lake size-classes increases with decreasing size (Downing et al. 2006), a more 

recent analysis of a dataset including a greater lake size range found that small lakes in the U.S. 

contribute a decreasing fraction to total surface area (McDonald et al. 2012). Regardless of the 

relative contribution of small versus large lakes to total area, both studies reported similar 

estimates of total area. In contrast, our estimates of perimeter have higher uncertainty because of 

the importance of small lakes in the perimeter distribution, and small lakes are more difficult to 

quantify at broad spatial scales.   

Calculating Pmin from the perimeter of an equal area circle provides a useful lower 

boundary for perimeter estimates. The absolute minimum perimeter possible for lakes in the U.S. 

contiguous states, Pmin (1,200,000 km), was approximately 36% less than Pobs. Differences 

between Pobs and Pmin are sensitive to the mapping resolution used and future estimates would 

probably increase when higher resolution mapping products are used. Despite sensitivity to 

resolution, most estimates of lake perimeter in previous studies (e.g., Kent & Wong 1982; Riera 

et al. 2000; Sharma & Byrne 2011) were measured using maps at similar or coarser resolutions 

than this study, meaning their perimeter estimates would fall between Pobs and Pmin presented 

here. 
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The difference between the distributions of Pmin and Pobs across lake area is indicative of a 

bias in observed shoreline development factor (SDF) as a function of lake size. This is more 

apparent if eqn. 2 is rewritten as: 

    
    

    
  (3) 

If average SDF were constant across lake sizes, Pobs and Pmin would have similar 

distributions across lake size. Any difference in how Pmin and Pobs are distributed across lake size 

must indicate a shift in average SDF. In lakes of the U.S. contiguous states, the contribution to 

total Pobs is higher in large lakes than would be predicted if there were a constant SDF across 

sizes. This means that on average, large lakes have higher observed SDFs than smaller lakes. 

This result is also apparent if the population is split and compared, as lakes smaller than and 

larger than 1 km
2
 have median SDFs of 1.1 and 2.3, respectively.  

While a positive trend in SDF across lake sizes has been observed previously (Hanson et 

al. 2007), it is unclear whether the trend represents a fundamental change in the morphology of 

lake shoreline or is simply a product of fixed mapping resolution applied to a large size range of 

lakes. The fixed mapping resolution could result in a smaller lake always presenting a lower 

observed SDF than a larger lake, even if their geometries were identical, scaled copies. For 

example, if a large lake’s perimeter outline contained a small feature like a peninsula, and the 

same outline was scaled down but mapped at the same resolution, the peninsula feature would 

eventually become too small to be mapped and would no longer be part of the outline. This 

simplification would decrease the observed SDF without a change in actual shoreline 

complexity. To examine this potential issue in our analysis, we used a version of the yardstick 

perimeter measurement method. By pinning the characteristic measurement length to a constant 
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proportion of Pmin, we simulated a measurement resolution relative to the size of the lake. With 

this method, smaller features were neglected for larger lakes, virtually scaling the mapping 

resolution to the lake size. This technique changed the median SDF of lakes smaller than 1km
2
 

from 1.14 to 1.13 and lakes larger than 1km
2
 from 2.3 to 1.5. While the median SDF for large 

lakes using the size-relative measurement resolution is still higher than smaller lakes (1.5 and 

1.13, respectively), this increase in parity highlights a potential challenge when using SDF to 

compare lakes of large size difference. Counter intuitively, this issue is exacerbated by consistent 

measurement resolution. Further work is required to better understand the sensitivity of SDF 

across mapping resolutions and lake sizes, especially if SDF is to be used in studies comparing 

lakes with large ranges in size. 

Compared to rivers and streams, lakes make up a small fraction of the total aquatic-

terrestrial interface. Intermittent and perennial streams and rivers combined have an order of 

magnitude greater aquatic-terrestrial interface than lakes (21,370,000 km and 1,880,000 km of 

shoreline, respectively). The per-unit shoreline flux of material is often used to measure and 

upscale loading rates into aquatic systems (e.g., Conners & Naiman 1984; Preston et al. 2008). 

This suggests that systems with greater total interface (like streams versus lakes) may contribute 

more to collective flux into aquatic systems, and our estimate of total aquatic-terrestrial interface 

is important to accurately upscale fluxes. However, shoreline loading and methods for measuring 

these loads may differ between lakes and streams and not all fluxes may be sensitive to shoreline 

extent, confounding this simple scaling approach. For example, particulate organic carbon 

loading, one flux often published as a shoreline-specific rate, has reported rates generally of 

similar magnitude for streams and lakes (Gasith & Hasler 1976; Webster & Meyer 1997). While 

lake and stream fluxes are measured using in-water open-top traps, the lateral fluxes in streams 
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often include a lateral transport trap not used in lakes. Whole-stream transport for streams is 

sometimes inferred from small-scale lateral transport traps scaled across many kilometers of 

shoreline. Particulate organic carbon loading is a clear example of a flux that is sensitive to 

shoreline length, since the dominant source of this material is often shoreline vegetation 

(Malanson & Kupfer 1993).  On the other hand, if materials entering a lake are derived from the 

catchment as a whole (e.g., nutrient loading in well-drained agricultural basins; Fraterrigo & 

Downing 2008), then shoreline length may be a poor scalar for loading rates. Finally, it may also 

be the case that real differences in ecosystem morphometry affect shoreline flux. Convolution on 

the scale of a few metres may not be significant while larger convolution on the scale of 100s of 

metres may be enough to affect overall transport magnitudes. Understanding the differences 

among ecosystems in terrestrial-aquatic fluxes and the relevant scales of shoreline complexity 

may be an important element in improving our overall estimate of carbon fluxes between inland 

waters and their surrounding landscapes.  

The spatial distributions of lake abundance, area and perimeter have distinct differences 

despite similarities in general trends. Our spatially explicit maps of abundance and percent lake 

cover, which display the USGS National Hydrography Dataset data at a resolution of 50 km
2
 as 

opposed to coarse aggregations based on ecoregion (McDonald et al. 2012), highlight fine-scale 

spatial distributions. Smith et al. (2002) reported a remarkably high density of lakes in the 

southern and central Great Plains region. The authors argued that such high densities probably 

resulted from human activities based on the absence of past lake-creating geological processes 

and are manifestations of both agricultural land use and negative water balance in these areas. A 

similar spatial distribution is apparent in the abundance and shoreline densities we present. The 

significance of lentic habitat creation is even more striking when viewed in terms of shoreline 
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distribution. Pond and reservoir construction has created a broad mid-continental region with 

extensive shoreline and littoral habitats that were virtually non-existent before European 

settlement (Smith et al. 2002). In the spatial distribution of percent lake cover, this high density 

is not as apparent because lakes in the southern and central Great Plains region are small and 

contribute disproportionally more to perimeter and abundance than to area. The spatial 

distributions of lake area, perimeter and abundance follow general trends while deviating notably 

in certain regions due to significant biases in average lake size and potentially in shoreline 

convolution. This is especially relevant when considering the spatial distribution of processes 

that may scale with lake area or perimeter (e.g., CO2 efflux versus shoreline carbon loading), 

knowing now that the distributions of area and perimeter are not equivalently distributed across 

lake size classes. We leave further exploration of the spatial distribution to the reader by way of 

the publically available dataset (http://lter.limnology.wisc.edu). 

Differences in lake area to perimeter ratio across lake size classes is driven by two 

processes, the increase in SDF with increasing lake size and the purely geometric, non-linear 

scaling of perimeter with changing area of Pmin (Pmin = 2π
0.5

A
0.5

). Geometric scaling of a circular 

lake would tend to increase the area to perimeter ratio with increasing lake size, while increasing 

SDF with increasing lake size would tend to decrease the area to perimeter ratio. Despite 

observing increasing SDF with increasing lake size, the geometric scaling across lake size 

dominates over differences in SDF. The mean area to perimeter (Pobs) ratio in larger lakes (10-

100 km
2
) was 448, significantly higher than 31, the mean in smaller lakes (size range of 0.01-0.1 

km
2
). This difference occurs despite larger lakes having generally more convoluted shorelines 

(higher SDF) that would tend to decrease their area to perimeter ratio. Despite lake size 

dominating the range seen in perimeter to area ratio, we do not claim that shoreline complexity is 
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irrelevant when considering differences between lakes. While there has been some work relating 

shoreline complexity to a variety of lake process and characteristics, such as fish populations 

(Johnson et al. 1977) and terrestrial input of nutrients (Gasith & Hasler 1976), further links may 

be found in the large, geographically distributed lake datasets becoming increasingly available 

(e.g., the U.S. Environmental Protection Agency National Lakes Assessment). 

A pattern of decreasing total perimeter with decreasing measurement resolution is 

consistent with the idea that lake shorelines are fractal and that estimates of length will increase 

with increasing mapping resolution, as represented by shorter yardstick length. Unlike previous 

studies that focused on a small number of larger lakes (Kent & Wong 1982), we applied the 

yardstick method to the entire population, yielding an overarching view of lake perimeter 

sensitivity to measurement resolution. Strikingly, the large increase in total shoreline with 

decreasing measurement coarseness is influenced more by the inclusion of small lakes than by 

shoreline complexity. Coarser measurement resolution excluded small lakes that were not big 

enough to be measured. The contribution of small lakes to total shoreline is eliminated with 

measurement resolutions of 800 and 3200 m. 

Our interpretation of the relationship between overall perimeter and measurement 

resolution can be improved by removing small lakes from the data set. When all lakes are 

included, the relationship between total perimeter and measurement resolution has a slope of -

0.62, which indicates that doubling measurement resolution increases total perimeter by about 

50%.  When only larger size bins (i.e., bins in which no lakes are lost across measurement 

resolution) are used, then the sensitivity due to shoreline convolution alone can be examined.  In 

this case the average slope is -0.2, which indicates that a doubling of measurement resolution 

increases total perimeter by 15%. This slope estimate is not confounded by the loss of small 
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lakes with coarser measurement resolution and suggests that perimeter estimates for a given lake, 

on average, may not be as sensitive to measurement resolution as previously reported.  It is 

difficult to compare these results to other published work because the measurement sensitivity of 

shoreline is not well represented in the literature. One such study concerning lakes found slopes 

ranging from -0.1 to -0.16, though the relationships between observed perimeter and resolution 

also contained a second linear relationship with steeper slopes (-0.27 to -0.64; Kent & Wong 

1982). At the large scale, we did not find such a secondary relationship, though we did not 

exhaustively examine individual lakes, and our data covered a different region. Our results are 

probably more comparable to large-scale measurements of ocean shoreline complexity. For 

example, the Hausdorff dimension of the coast of Great Britain is reported as 1.25 (Mandelbrot 

1967). To convert it to a log-log slope of perimeter versus resolution, we subtract the Hausdorff 

dimension from one, giving us a slope of -0.25, similar to the collective slope of the lake 

shoreline of U.S. contiguous states. 

Our study suggests that small lakes contribute more to total aquatic-terrestrial interface 

than large lakes. We highlight spatial patterns and a distribution of lake perimeter that differs 

from the distribution of lake surface area and lake population. These findings change the 

paradigm of the relative roles of small versus large lakes for processes that may scale with 

perimeter as opposed to surface area, such as terrestrial carbon input. The total aquatic-terrestrial 

interface in lakes is less than one tenth that of streams when using comparable mapping products, 

highlighting the importance of streams when describing processes occurring at or across this 

boundary. While the use of these estimates to upscale ecosystem processes was beyond the scope 

of this paper, combining measurements of shoreline with estimates of shoreline fluxes and 

process may contribute to improving estimates of aquatic processes at continental scales. 
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TABLES 

TABLE 1: SUMMARY STATISTICS OF LAKE NUMBER, AREA, PERCENT WATER COVER, DENSITY AND TOTAL SHORELINE 

LENGTH FOR THE US AND INDIVIDUAL STATES. 

  Perimeter Area    

State Name Total 
Lake (#) 

Total (km) Median 
(m) 

Total 
(km2) 

Median 
(m2) 

Percent 
Water 

Lake 
Density (# 
km

-2
) 

Shoreline 
Density 
(m km

-2
) 

TOTAL 5,819,000 1,883,000 155 132,995 1410 1.65% 0.72 234 
Alabama 96,000 41,000 191 2,648 2080 1.95% 0.71 305 
Arizona 37,000 10,000 154 596 1460 0.20% 0.13 37 
Arkansas 176,000 54,000 135 2,827 1160 2.05% 1.28 393 
California 91,000 42,000 183 6,050 1810 1.43% 0.22 99 
Colorado 112,000 27,000 144 1,203 1250 0.45% 0.42 103 
Connecticut 20,000 6,000 142 290 1140 2.02% 1.42 445 
Delaware 9,000 3,000 176 114 1580 1.77% 1.51 544 
Florida 205,000 93,000 236 7,368 2910 4.33% 1.2 550 
Georgia 129,000 61,000 294 2,986 4610 1.94% 0.84 399 
Idaho 35,000 12,000 137 1,915 1110 0.88% 0.17 59 
Illinois 157,000 48,000 153 1,603 1350 1.07% 1.05 320 
Indiana 95,000 25,000 143 819 1210 0.87% 1.01 275 
Iowa 115,000 27,000 145 759 1280 0.52% 0.79 189 
Kansas 231,000 51,000 149 1,495 1340 0.70% 1.09 242 
Kentucky 190,000 38,000 125 1,161 1010 1.11% 1.82 367 
Louisiana 178,000 92,000 192 10,130 1910 7.47% 1.31 684 
Maine 31,000 23,000 181 4,015 1660 4.38% 0.35 261 
Maryland 37,000 10,000 157 355 1410 3.69% 3.89 1119 
Massachusetts 27,000 11,000 157 686 1390 2.51% 0.99 408 
Michigan 45,000 36,000 342 5,403 5150 2.16% 0.18 144 
Minnesota 127,000 77,000 176 11,181 1870 4.97% 0.57 343 
Mississippi 253,000 68,000 154 2,255 1450 1.80% 2.02 543 
Missouri 330,000 67,000 121 2,157 970 1.19% 1.83 373 
Montana 126,000 51,000 209 3,849 2160 1.01% 0.33 134 
Nebraska 117,000 39,000 201 1,272 2000 0.63% 0.58 198 
Nevada 14,000 9,000 144 2,137 1220 0.75% 0.05 32 
New Hampshire 16,000 7,000 166 785 1470 3.24% 0.66 322 
New Jersey 33,000 13,000 189 509 1780 2.25% 1.48 602 
New Mexico 71,000 18,000 157 894 1510 0.28% 0.23 59 
New York 81,000 34,000 163 4,324 1490 3.06% 0.58 245 
North Carolina 94,000 32,000 189 1,721 1900 1.23% 0.68 232 
North Dakota 176,000 74,000 246 4,697 3330 2.57% 0.96 408 
Ohio 99,000 25,000 149 842 1270 0.73% 0.86 220 
Oklahoma 387,000 88,000 138 3,775 1200 2.09% 2.14 486 
Oregon 59,000 21,000 134 2,598 1060 1.02% 0.23 83 
Pennsylvania 93,000 22,000 140 827 1170 0.69% 0.78 190 
Rhode Island 4,000 1,000 159 102 1420 2.56% 1.12 468 
South Carolina 46,000 21,000 230 1,765 2680 2.13% 0.56 262 
South Dakota 150,000 62,000 208 4,218 2220 2.11% 0.76 312 
Tennessee 126,000 37,000 119 2,757 920 2.53% 1.16 342 
Texas 998,000 243,000 139 10,909 1150 1.57% 1.44 350 
Utah 42,000 17,000 130 6,895 1050 3.14% 0.19 81 
Vermont 12,000 3,000 135 265 1080 1.07% 0.5 160 
Virginia 78,000 24,000 161 936 1470 0.84% 0.71 225 
Washington 45,000 19,000 174 2,120 1640 1.15% 0.25 105 
West Virginia 29,000 6,000 121 167 900 0.27% 0.47 98 
Wisconsin 83,000 42,000 185 4,300 1730 2.53% 0.49 251 
Wyoming 91,000 28,000 163 2,027 1500 0.80% 0.36 111 
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FIGURE CAPTIONS 

Figure 1: Yardstick method for calculating the perimeter of a fractal shoreline. The "yardstick" 

(black) as it is walked along the polygon (gray). This example is part of the Lake 

Mendota (Wisconsin) polygon and uses a yardstick length of 200m. 

Figure 2: Maps of (a) areal distribution of lake shoreline (shoreline m km
-2

), (b) lake density (# 

lakes km
-2

) and (c) percent of area covered by lakes (% lake cover). 

Figure 3: The relative contribution of each size class to total Area, Pobs and Pmin. , based on non-

extrapolated USGS data. 

Figure 4: The sensitivity of total shoreline length to the yardstick length used. 

Figure 5: The sensitivity of total perimeter to measurement resolution across all lake size classes. 

Yardstick length indicated by line color. 

Figure 6: Comparison of sensitivity of the perimeter estimate to measurement resolution of only 

those size-bins that lose no lakes across all yardstick lengths (lakes 9.8 km
2
 and larger). 

The legend indicates the lower bound of each lake-size bin. 
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Abstract 

With lake abundances in the thousands to millions, creating an intuitive understanding of the 

distribution of morphology and processes in lakes is challenging. To improve researchers’ 

understanding of large-scale lake processes, we developed a parsimonious mathematical model 

based on the Pareto distribution to describe the distribution of lake morphology (area, perimeter 

and volume). While debate continues over which mathematical representation best fits any one 

distribution of lake morphometric characteristics, we recognize the need for a simple, flexible 

model to advance understanding of how the interaction between morphometry and function 

dictates scaling across large populations of lakes. These models make clear the relative 

contribution of lakes to the total amount of lake surface area, volume, and perimeter. They also 

highlight the critical thresholds at which total perimeter, area, and volume would be evenly 

distributed across lake size-classes having Pareto slopes of 0.63, 1, and 1.12, respectively. These 

models of morphology can be used in combination with models of process to create overarching 

“lake population” level models of process. To illustrate this potential, we combine the model of 

surface area distribution with a model of carbon mass accumulation rate. We found that even if 

smaller lakes contribute relatively less to total surface area than larger lakes, the increasing 

carbon accumulation rate with decreasing lake size is strong enough to bias the distribution of 

carbon mass accumulation towards smaller lakes. This analytical framework provides a relatively 

simple approach to upscaling morphology and process that is easily generalizable to other 

ecosystem processes. 

Key Words: Power-laws, Lake Morphology, Upscaling, Small Lakes, Macrosystems  
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INTRODUCTION 

There is growing interest in better understanding the role of inland waters in carbon and nutrient 

cycles at broad scales (Bennett, Carpenter, and Caraco 2001; Cole et al. 2007; Harrison et al. 

2008; Tranvik et al. 2009). To develop science incorporating lakes into large-scale cycles, some 

have argued for increased efforts in the field of global limnology, defined as “quantifying and 

understanding the role of continental waters in the functioning of the biosphere” (Downing 

2009). A key challenge for this rapidly evolving research arena is discovering and understanding 

regular patterns in process rates across aquatic ecosystems in order to facilitate upscaling.  

An emergent lesson from global limnology is that lake size matters. Lakes with surface areas that 

differ by orders of magnitude (which we describe here as lakes in different “size-classes”) 

sometimes have substantially different area-normalized process rates. Gas exchange (Read et al. 

2012) and organic carbon burial (Downing et al. 2008; Kastowski, Hinderer, and Vecsei 2011) 

are two examples of processes with rates predicted in part by lake size. Such process with rates 

tied to lake area can be especially amenable for upscaling because unlike variables that cannot be 

remotely-sensed, the size and abundance are known with reasonable certainty for all but the 

smallest of lakes (McDonald et al. 2012). To upscale process estimates, models linking lake 

process with lake size are often combined with empirical lake size-abundance distributions. 

However, information on the number of small lakes is often missing. These gaps may represent a 

substantial source of error, as small water bodies can have particularly high rates for some 

processes, such as C storage or efflux (Downing et al. 2008; Read et al. 2012). To fill in such 

gaps, lake size-abundance models based on the Pareto distribution have been used to extrapolate 

unobserved small lake size-class abundances (e.g., Downing et al. 2008; Kastowski, Hinderer, 

and Vecsei 2011; Lewis 2011).  
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There are additional applications of lake size-abundance models beyond filling gaps in 

observation. Specifically, these models greatly simplify large and cumbersome datasets that 

contain information on many thousands (Lehner and Doll 2004) to millions (Downing et al. 

2006) of lakes. When such a model approximates the full population to within a desired level of 

accuracy, the simplified mathematical form provides an easily manipulated representation, 

compared to a large empirical dataset, of the population and its key characteristics. At the first 

level, the mathematical form of the model can be modified to describe the relative contribution 

of key morphological characteristics (lake area, perimeter, and volume) of different lake size-

classes. We refer to these models describing the relative contribution of different lake sizes to 

area, perimeter, and volume “morphology scaling relationships” (MSRs). These MSRs can 

provide a convenient and powerful mathematical representation of key components of the 

hydrosphere. MSRs may be combined directly with models of process to scale process to the full 

population of lakes. This concept is similar to the use of large-scale steady-state approximations 

of ocean dynamics to communicate key physical phenomenon in oceans (Brown et al. 1989). 

Such steady-state approximations are not directly used in modeling quantitative ocean process, 

but are useful in communicating and understanding important phenomenon (e.g., Ekman 

transport and the Sverdrup balance). Similar simplified models for lakes may offer a new and 

unique opportunity for understanding the collective behavior of these aquatic ecosystems at 

continental and global scales. 

In this paper, we examine the applicability of the Pareto distribution as a simplified model of the 

lake size-abundance relationship within the continental United States. We show how additional 

models can be derived from the lake size-abundance distribution to describe, with minimal error, 

the distribution of morphology, as perimeter and volume, across almost the entire size range of 
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lakes to create MSRs. Finally, we use a published model of carbon mass accumulation rate to 

show how MSRs can be combined with models of process to create simple models describing 

process for the whole population of U.S. lakes, though any large population of lakes could be 

used. We use these morphology and process models to answer the following questions. How do 

lake size and abundance combine to create MSRs of lake area, perimeter, and volume? What are 

the critical parameters in the lake size-abundance distribution that would modify our 

understanding of the relative contribution of small versus large lakes to total estimates of global 

aquatic morphology? At what rate does process need to scale with lake size in order to change 

our view regarding the contribution of small versus large lake size-classes to total continental-

scale processes? 

METHODS 

Empirical Relationships 

For an empirical lake population dataset, we used the United States Geological Survey's (USGS) 

National Hydrography Dataset (NHD; retrieved January 2013, http://nhd.usgs.gov).  We used the 

data derived from high-resolution USGS topographical maps (1:24,000-scale) (Simley and 

Carswell 2009) and excluded Alaska and Hawaii due to the differing resolution of data available. 

While the dataset covers all 48 continental U.S. states, the Laurentian Great Lakes were not 

included in our analysis as their low number substantially reduces the applicability of 

population-level process simplifications and estimates. 

From the NHD, we extracted all lake, reservoir, and pond polygons. State boundaries had 

overlapping coverage so we discarded identical polygons as duplicates. For all polygons, area 

and perimeter were calculated using the Mathworks Mapping Toolbox functionality (v2011a; 

http://mathworks.com). To avoid issues with missing or unobserved small lakes, only those with 

http://nhd.usgs.gov/
http://mathworks.com/
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surface areas greater than 0.01 km
2
 (1 hectare) were included here. For a more detailed analysis 

and geographical visualization of the NHD data, see (McDonald et al. 2012) and (Winslow et al. 

2014). 

Previous descriptions of lake size-abundance have used a Pareto distribution (Downing et al. 

2006). The Pareto distribution  

)1()(   AxApdf m    (1) 

is defined by two parameters, the scale parameter (xm), and the shape parameter (α). xm defines 

the minimum variable value of A, the values of the population of interest (in our case, A is lake 

area) and α is the exponent of the power law. To estimate α, we used the maximum likelihood 

estimator (MLE) 




n

m

i

x

X

n

1

ln

̂ (2) 

where n is the number of observations, ̂  is the maximum likelihood estimate for the 

population’s α, xm is the minimum value from the population of interest and Xi is the examined 

population variable, in this case, lake area (equation from Rytgaard 1990). Lastly, we used the 

NHD dataset to calculate a relationship between lake area and perimeter. The relationship was 

fitted using a non-linear, least-squares exponential fit of area versus perimeter to estimate the 

exponential relationship parameters. 
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Extending the Pareto distribution 

We can use the Pareto probability density function (Eq. 1) to derive a number of functions that 

help highlight the relative contribution of different lake size-classes to the global distribution of 

lake area, volume, and perimeter, as well as biogeochemical processes that scale with these 

morphological parameters. When used as a size-abundance model, the Pareto probability density 

function gives the fraction of total lakes at a given size lake, which can be described roughly as:  

)()( AnApdf     (3) 

where n is the number of lakes for a given lake area, A. The fraction of lakes in each size-class 

multiplied by the area of that class (n*A) gives us the relative total area contributed by that size-

class, analogous to weighting the probability density function by lake area. Because of its 

relative ease of observation, lake area is the most commonly used parameter for large-scale 

lacustrine biogeochemistry estimates. To derive an equation for the lake area-distribution across 

lake size-classes, we multiply the size-abundance equation for the Pareto probability distribution 

by area and integrate: 


 dAAAxAA mdens *)( )1(   (4) 

The result gives an equation we can use to evaluate the relative contribution to total lake area 

(Adens) across different lake size-classes. Because we want to focus on the relative contributions 

of different lake size-classes and emphasize simplicity, we combine all constant terms into a 

single term, C: 

 1CAAdens    (5) 

Combining the constant terms into C greatly improves the presentation of relationship and helps 

highlight the important, area-dependent terms. For comparing process contribution of differently 
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sized lakes, the absolute magnitude of the function is not important. Rather, how it scales across 

lake size-classes is the critical attribute. 

With a few modifications, the same methods are applicable to lake perimeter. Because the 

distribution is formulated from the observed relationship between lake abundance and surface 

area, we first need a relationship between area and perimeter. We are unaware of any published 

empirical relationships between perimeter and surface area, so we make the most conservative 

assumption possible: that a circle with the given area adequately represents lake perimeter, which 

represents the lowest bound for perimeter of a given area. This relationship can easily be derived 

from the equations of a circle: 

½)(2 AP    (6) 

where P is perimeter. To get the perimeter distribution across lake sizes, we combine the 

equation of a circle’s perimeter (Eq. 6) with that of the Pareto distribution (Eq. 1) and again 

combine all constants into the term C. Integrating, we get:  

-½)( CAAPdens   (7) 

where all constants are again subsumed into the C coefficient.  

Lastly, while volume predicted from area alone results in relatively high uncertainty (±57% 

relative standard deviation of predicted versus observed volume (Sobek, Nisell, and Fölster 

2011)), creating a similar model for volume is useful to contrast with area and perimeter 

distributions. To formulate the equation for volume distribution across lake sizes, we need to 

substitute in a published relationship between area and volume into Eq. 5. Because we are 

unaware of any published relationships for the U.S., we use a relationship based on lakes in 

Sweden (V ~ A
1.12

) (Sobek, Nisell, and Fölster 2011). Substituting into Eq. 5, we get: 
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-1.12)( CAAVdens    (8) 

The derived MSRs for perimeter and volume were compared with observations by comparing the 

predicted fraction with the empirical distribution derived from the NHD continental U.S. dataset. 

The observations summed into decadal lake size bins (e.g., 1 to 10 km
2
) and the model results 

and residuals were plotted for comparison. 
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RESULTS AND DISCUSSION 

The Pareto distribution and simple scaling laws can help us understand how lakes of different 

sizes contribute to total perimeter, area, and volume. For example, while it is unclear whether 

small lakes contribute more than large lakes to the total surface area globally (Downing et al. 

2006; McDonald et al. 2012), using the Pareto distribution and some simple calculus, we can 

illustrate how sensitive our inferences about total surface area are to our estimate of α. One can 

think of the distribution of lake surface area as a balance between decreasing area and increasing 

abundance with decreasing area. If lake abundance increases faster than area decreases, then total 

surface area in each size-class will increase (Figure 1). Conversely, if lake abundance does not 

increase quickly enough, then total surface area in each size-class will decrease, substantially 

altering our understanding of small versus large lake roles. Eq. 5 illustrates this tradeoff. 

Using Eq. 5, it can be easily demonstrated how our perspective on the contribution of small 

versus large lakes can depend on the value of α. The critical threshold for area is when α equals 

1, resulting in an exponent of zero. An exponent of zero makes the contribution to total area by 

each size-class unrelated to area. Knowing this critical threshold helps explain the different 

results found by past studies of the examined contribution of total lake surface area by lake size-

class. Past work has calculated α = 1.06 empirically from larger lakes of the globe (Downing et 

al. 2006), while others have found  α = 0.92 for a more complete size range of the continental 

U.S. lake population (McDonald et al. 2012). Despite the two estimates of α being of seemingly 

similar magnitude, they fall on opposite sides of the critical α cutoff. If α is less than 1, as 

reported by McDonald et al. and also found here (α = 0.92, Figure 2), the exponent of area in Eq. 

5 is positive and larger lakes make an increasing contribution to the total surface area of lakes. If 

α is greater than 1, the exponent is negative, resulting in a decreasing contribution to global 
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surface area of lakes with increasing area. The deviation from linearity in the large lakes likely 

represents the edge effects of the continent, where a large lake has a higher likelihood of 

intersecting the continental edge and therefore not forming a lake (Goodchild 1988).  

The perimeter MSR is described by Eq. 7, yielding a critical threshold for an even distribution of 

perimeter across all size-classes of α = 0.5 when lake shape is simplified to a circle. An α = 0.5 

would produce a zero exponent for the area term and thus a constant perimeter density across all 

size-classes. In studies that have estimated values of α (Hamilton et al. 1992; Downing et al. 

2006; Kastowski, Hinderer, and Vecsei 2011; McDonald et al. 2012) as well as here, α estimates 

are consistently >> 0.5, suggesting that the distribution of perimeter is skewed strongly towards 

small lakes. The contribution of any processes that scale proportionally to perimeter, such as 

particulate organic carbon (POC) import (Gasith and Hasler 1976), would be skewed towards 

small, rather than large lakes.  

Using an empirical relationship between area and lake perimeter instead of a circular lake 

assumption can improve accuracy of the perimeter MSR. The non-linear least-squares 

exponential fit of area versus perimeter for continental U.S. lakes gave a slope of 0.63 (Figure 3). 

This result suggests large lakes have, on average, higher perimeters relative to their areas than 

would be predicted if lakes had a constant geometrically-scaled proportion of area to perimeter. 

Compared to a circular-lake assumption, steeper area to perimeter slope reduces the skew of 

perimeter towards small lakes, though the difference is not large enough to change the small-lake 

skew of perimeter. The U.S. NHD lakes-based MSR of perimeter would be: 

-0.63)( CAAPdens   (9) 
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Because there is no published relationship for lake area to volume for the contiguous U.S., we 

used the published relationship based on Swedish lakes for demonstration (Sobek, Nisell, and 

Fölster 2011). Using the published model for Swedish lakes, the critical threshold for an even 

distribution of volume across all size-classes would be α = 1.12, higher than previous α 

estimates. The α values reported for Eq. 8 for large collections of lakes are consistently < 1.12, 

which demonstrates that volume is likely skewed strongly towards larger lakes. To improve our 

mathematical model for the continuous U.S. and other beyond, future work examining area-

volume relationships of other geographic regions is required. 

For lake area and perimeter, the estimates made by the MSRs can be compared to a large-scale 

empirical lake distribution. Like any model, the desired accuracy is dependent on the scope and 

application. As in this case, when the geographic scope is very large (continental U.S.), even 

models that make predictions to within an order of magnitude may be useful. For each size-class, 

we compared the model results for contribution of each size-class to area and perimeter with the 

empirical results (Figure 4). For all size-classes between 0.01 km
2
 and 1000 km

2
, the estimates of 

area were within 4% of the empirical values. For perimeter, all bins were within 7% of the 

empirical measurements. Caution should be taken when extrapolating these models below lakes 

of 0.01 km
2
 as it is unclear if the power-law model accurately describes abundance below that 

size-class (McDonald et al. 2012).   

The distributions of area, perimeter, and volume strongly differ across size-classes and the 

understanding of how area is distributed is sensitive to the estimate of α (Figure 5). The 

differences between distributions of key lake morphological features suggest that some processes 

are likely to scale differently across lake size. This difference leads to shifts in the balance 

among processes in lakes of different size-class. Such shifts in process balance with lake area 
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have been hypothesized to occur where processes such as primary and secondary production 

(scaling with surface area) interact with the lateral import and export of materials (scaling with 

perimeter) (Gasith and Hasler 1976; Vander Zanden and Gratton 2011). These differences in lake 

morphology distributions may have serious implications for how key processes in large-scale 

carbon cycling are distributed across lakes of different sizes. For example, if carbon import 

scales with perimeter while CO2 evasion scales with area, is carbon import from the surrounding 

terrestrial ecosystem skewed towards small lakes while export to the atmosphere is skewed 

towards larger lakes?  

The direct use of the Pareto distribution can be helpful in understanding how processes scale 

across lake sizes. By combining Eq. 5 and a relationship of process rate with lake area (an area-

rate relationship), we can create a combined, overarching model with a simple form that 

estimates the relative contribution of each lake size-class to total process. Processes that have a 

power-function lake area-rate relationship are often represented in the literature as a log-

transformed linear relationship. Such an area-rate relationship takes the form: 

AFF o    (10) 

Where F is the process rate with units dependent on the process being described, Fo is a linear 

scaling parameter (i.e., the intercept), A is lake area, and β is the parameter that scales the process 

rate with lake area. Care should be taken when fitting the β parameter. Non-linear fitting 

techniques, as opposed to log transformed linear regression which often distorts error, tend to be 

more robust and should be favored (Motulsky and Ransnas 1987). Because we want to examine 

how the process is distributed across lakes of different sizes, we focus on the exponent of lake 

area, β. This exponent, when negative, indicates an increasing process rate with decreasing lake 
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area. Combining this area-rate relationship (Eq. 10) with the MSR for area (Eq. 5) yields a 

function that scales process across lake sizes: 

 1)( ACFAF odens   (11) 

The key result of Eq. 11 comes from the exponent of area, which indicates the direction of areal 

skew in the process (towards or away from large lakes). To re-iterate the key point, a positive 

exponent would result in larger lakes making a larger relative contribution. A negative exponent 

would indicate that small lakes contribute more to the overall process magnitude. An exponent at 

or very near zero would suggest no scaling with area and thus an equal contribution of all lake 

size-classes.  

 

What does our current understanding of the lake size-abundance distribution mean for the 

distribution of process across lake size-classes? The most recently published lake size-abundance 

slope parameter estimate is α = 0.92 (McDonald et al. 2012). As discussed previously, α < 1 

means smaller lakes contribute less to total surface area than larger lakes. Despite this, process 

rates do not have to scale strongly with lake size to have an equal contribution across all lake 

sizes. For a given process to have an equal contribution across all lake sizes, the process scaling 

parameter (β) would only need to be -0.08, which would make the exponent of area zero (from 

Eq. 11: 1 - 0.92 + 0.08). To put this finding into perspective, β = -0.08 would imply that the 

process rate in a 0.01 km
2
 lake is ~2 times higher than in a 100 km

2
 lake. If β < -0.08, small lakes 

would contribute a larger fraction to the overall process than larger lakes. 

 

A published example of such a process is carbon mass accumulation rate (CMAR) in European 

lakes (Kastowski, Hinderer, and Vecsei 2011). This work has found that organic carbon burial 
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rates correlated with area, watershed slope, and percent cropland cover (Kastowski, Hinderer, 

and Vecsei 2011). The relationship was described by the equation: 

%)(*017.0)(*194.0)ln(*217.000.1)ln( croplandslopearealakeCMAR       (12) 

 

This equation shows that ln-CMAR varied with log-lake area with a slope of -0.217. If we use 

this β for CMAR and a published size-abundance slope (α = 0.92) in Eq. 11, we get a scaling 

equation for CMAR: 

177.0CACMAR  (13) 

The resulting equation (Eq. 13) has a negative area exponent, meaning that CMAR over the 

distribution of lakes is skewed towards smaller lakes (Figure 6). With α = 0.92, the further β is 

from -0.08, the more skewed towards large or small lakes the distribution of the process 

becomes. Using a relationship between lake area and carbon burial with β = -0.298 calculated 

from small eutrophic lakes in Iowa, U.S.A. (Downing et al. 2008), the distribution becomes even 

more strongly skewed toward smaller lakes (Figure 6). This skew suggests that despite being 

generally less studied than large lakes (Downing 2010), understanding small lakes is important to 

estimating the large-scale storage of carbon in the world’s lakes. Unfortunately, carbon 

sedimentation in small lakes is highly variable, with commonly cited studies reporting maximum 

observed rates ranging over several orders of magnitude, from around 280 gC m
-2

 y
-1

 

(Mulholland and Elwood 1982) to as high as 10,000 gC m
-2

 y
-1

 (Downing et al. 2008). The 

importance of small lakes, combined with high rate uncertainty and high abundance, will require 

novel research and ideas in the future to constrain large-scale carbon storage in small lakes. 
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CONCLUSIONS 

This modeling framework represents a unique and simple approach to describe distributions of 

morphology and process across a population of lakes. While the quantification of morphology 

and process will always require detailed computational work using empirical data, this 

mathematical approach helps researchers form a more intuitive understanding of large 

populations of lakes while maintaining some quantitative aspects. With these equations and the 

calculated and published estimates of the relationship between area, perimeter, and volume, the 

critical thresholds for the Pareto slope where morphological characteristics would be evenly 

distributed across lake size-classes are 1 for area and 0.63 for perimeter. The volume relationship 

has the highest uncertainty and when better estimates are available, the equation for volume 

should be updated. Despite this uncertainty, using the available published relationship for 

demonstrative purposes (Sobek, Nisell, and Fölster 2011) results in a critical Pareto slope 

threshold of 1.12 for volume. Given a Pareto slope parameter of between 1.06 and 0.92, it is 

likely that larger lakes contribute relatively less to total perimeter and more to total volume 

(compared to the contribution from small lakes). The skew of the area distribution is dependent 

on the Pareto slope parameter, though the more recent estimate of 0.92, derived from a dataset 

spanning a large range of lake sizes, suggests smaller lakes contribute a decreasing fraction to 

total surface area. Despite the likely skew of surface area towards larger lakes, processes can 

offset the skew by having a process rate that increases with decreasing lake size, requiring a 

critical exponential slope with lake size of only -0.08 or less. The carbon mass accumulation is 

one such example, with published exponential slopes from -0.217 to -0.298, which results in a 

skew of carbon accumulation contribution towards smaller lakes. These simple mathematical 
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tools will help bring quantitative, global limnological thinking to a broader group of students and 

researchers. 
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FIGURE LEGENDS 

Figure 1. Lake size and abundance tradeoff. 

 The tradeoff between decreasing size and increasing abundance in lake distributions can have 

two results, an overall decreasing contribution to total lake area with smaller size or an 

increasing contribution. (a) Shows the size-abundance distribution for two different 

published Pareto slope parameters, both showing increasing abundance with decreasing 

size. (b) Shows that while the size-abundance distributions themselves may not appear 

strikingly different, the result is two different views on the relative contribution of small 

versus large lakes.  

Figure 2. Maximum likelihood size-abundance Pareto fit 

NHD lakes size-abundance distribution with the maximum likelihood fit of the Pareto 

distribution. 

Figure 3.Power-law lake area to perimeter relationship. 

The power-law area to perimeter relationship of lakes in the continental U.S. A non-linear 

exponential fit is shown with slope 0.63, close to the theoretical relationship defined by 

the relationship between the area and perimeter of a circle (slope 0.5).  

Figure 4. Comparison of lake morphology model to empirical dataset. 

Comparison of the observed continental U.S. dataset with the Pareto-based model. The 

difference between observed and modeled for any bin of area and perimeter did not 

exceed 4% and 7% respectively. 

Figure 5. Lake size-class contributions to total area, perimeter and volume. 

Percent contribution of total for each lake size-class to total lake area, perimeter, and volume 

based on equations 7-9 for the range of published α values. (1.06 from Downing et al. 

(Downing et al. 2006) and 0.85 from Mcdonald et al. (McDonald et al. 2012)). 

Figure 6. Percent contribution to total C Burial for each lake size-class. 

Percent contribution to total C Burial for each lake size-class. Gray bars are calculated using β = 

-0.217 estimated from European lakes (Kastowski, Hinderer, and Vecsei 2011). Black 

bars were calculated using β = -0.298 estimated from eutrophic lakes in Iowa, U.S.A. 

(Downing et al. 2008). 
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CHAPTER 4 - LAKES ON A FRACTAL LANDSCAPE: ALTERNATIVE 

MECHANISMS EXPLAIN DEVIATIONS FROM THE PARETO DISTRIBUTION 

FOR LAKES 

Winslow LA, M Cardiff, PC Hanson, TH Leach, EH Stanley 

Target Journal: Journal of Geophysical Research: Earth Surface 

KEY POINTS 

1. Fractal landscapes can reproduce the lake size-abundance distribution and the power-law 

relationships of lake area vs. volume, and perimeter, though the area-volume and area-

perimeter exponents could not be concurrently matched on a single landscape. 

2. Large lake abundance tends to fall below power-law predictions due to large lakes having 

a high likelihood of intersecting the landscape boundary.  

3. Simple, scale-specific models improve similarity of lakes on a fractal landscape with the 

U.S. lake distribution.  
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ABSTRACT 

The processes that create and modify terrestrial lakes are well known. Glaciation, landslides, and 

thermokarst processes, among others, are known to create lakes on earth. Conversely, 

sedimentation, terrestrialization, and water seepage have been identified as a few processes that 

can eliminate existing lakes. To-date, little work has examined how these processes affect the 

observed lake size-abundance distribution. Here we use a fractal model to generate populations 

of lakes and compare the resulting morphological characteristics with those of observed lake 

populations. We apply three scale-specific processes that eliminate lakes as alternative models 

for explaining the observed lake distribution shape. We found that lakes on a fractal surface have 

generally similar characteristics and patterns of area, perimeter and volume when compared to 

observed lakes. However, the specific exponents for the relationships of area vs. perimeter and 

volume tended to be steeper for fractal surfaces. The difference in fitted exponents can be 

explained by the loss of fine-scale features in observed lakes when compared with fractal 

surfaces and lakes. These relationship exponents varied across fractal terrains generated with 

different underlying roughness coefficient. However, no single roughness coefficient could be 

chosen to concurrently match the lake area-volume and area-perimeter relationships. On the 

fractal surfaces, due to edge effects, large lake abundance tended to be deficient when compared 

to the small lake abundance. Lastly, of the three scale-specific processes applied to the 

distribution, terrestrialization fit the observed data the best.  

 

INDEX TERMS AND KEYWORDS 

Lakes, power-laws, geomorphology, global limnology, fractal surfaces 
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1. INTRODUCTION 

Near the front cover of almost every Limnology textbook comes a chapter on the “Origin of 

Lakes” that describes the well-known and well-vetted local scale processes such as glaciation, 

tectonics and landslides that result in lake creation. Not addressed in most texts is how these 

processes result in the observed shape of the distribution of lakes at landscape to global 

geographic scales. Empirical studies have characterized the general nature of the size distribution 

and abundance of lakes at the continental [McDonald et al., 2012] and global scales [Lehner and 

Doll, 2004; Downing et al., 2006]. This work often reports distributions that are power-law 

(Pareitan) in form, despite noted deviations from a pure power law. How the processes modify 

that underlying power-law distribution at the landscape-level remain largely unexplored.  

Understanding the mechanisms that generate observed lake populations is useful for several 

reasons. Such understanding could improve estimates of lake extent and distribution into areas 

lacking high resolution hydrologic maps. Currently, quantifying the role of lakes in global 

processes is challenged by the uncertainty in total lake abundance and area [Lewis, 2011]. Better 

understanding of the mechanisms that impact the lake distribution could also help improve 

predictions of climate change impacts on lakes. As distributions of precipitation, runoff and 

evaporation change in response to climate, the spatial distribution of lakes will likely change. 

Lastly, identifying mechanisms that create and remove lakes from the landscape could help us 

understand the natural fate of lakes as biologic and geologic processes proceed through time. The 

currently observed lake distribution is the result of a continuously active process of lake 

formation and destruction. Landscapes recently renewed through processes, such as glaciation or 

uplift, may have different lake distributions than older landscapes [e.g., Englund et al., 2013], 
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especially if the formation or destruction mechanisms act preferentially on smaller or larger 

lakes.  

While studies have focused on describing lake distributions, there is much to be learned about 

connecting distributions to physical and biological processes. Downing et al. [2006] examined 

the size-abundance distribution of lakes in a variety of locations and identified a population well 

described by a Pareto distribution. They used this Pareto distribution assumption to extrapolate 

small lake abundance from a database of the globe’s largest lakes to estimate the total population 

and surface area of lakes, but that work did not explore mechanistic underpinning for a Pareto 

lake distribution. In subsequent work, Seekell and Pace [2011] showed that if a Pareto 

distribution did not accurately describe the lake size-abundance distribution, then extrapolating 

from only the largest lakes could result in highly erroneous estimates of the number of small 

lakes globally. This log-normal hypothesis was refuted by work using a continental-scale, high-

resolution lake dataset, which showed that while the distribution seems to deviate from a Pareto 

distribution, it does not deviate as strongly as would be predicted if the distribution were log-

normal [McDonald et al., 2012; Winslow et al., 2014]. Nonetheless, an analysis of this 

continental dataset called into question the original assumption of a pure Paretian lake 

distribution and reported a reduced estimate of the total global abundance and area of lakes. 

Finally, recent work by Seekell et al. [2013] suggests that the lake distribution has an underlying 

Pareitan distribution when the population examined is restricted to lakes existing at the mean 

landscape elevation. However, this conclusion is based on a small population (~100 lakes) and 

the authors did not apply a hypothesis test designed specifically for power-laws [Clauset et al., 

2009].  
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Most work at the lake population level has focused on the relationship between area and 

abundance, with relatively little attention paid to volume and perimeter. While early work 

conceptually introduced the relationships between different aspects of lake-population 

morphology [Wetzel, 1990], it lacked empirical grounding. Lake volume and perimeter has been 

examined separately at large-scales [Sobek et al., 2011; Winslow et al., 2014], but how the three 

dimensions of lake morphology relate across the full landscape remains unexplored.  

The fractal nature of landscape geomorphology may provide a means for resolving differences in 

interpretation of the observed lake distribution and could help link different dimensions of lake 

morphology. Many landforms and surface processes that shape the earth’s surface generally obey 

fractal statistics by presenting power-law distributions [Mandelbrot, 1983; Turcotte, 1992]. This 

observed landscape with fractal characteristics is the template on which terrestrial lakes form. 

Given a fractal surface, a near-perfect Pareto distribution of lakes can be generated by flooding 

the surface’s depressions [Goodchild, 1988]. Such a model produces realistic power-law 

distributions of lake size-abundance (Figure 1), though it lacks deviations seen in the small and 

large lake tails of the observed distribution (Figure 2). 

One way to generate deviations from a power-law distribution is to apply a scale-dependent 

process. A scale-dependent process would either act to alter the observed population in a specific 

size range while leaving the rest of the population unaltered, or act across the full population 

disproportionally to lake area. How scale-dependent processes affect the shape of the lake size-

abundance distribution has not been directly examined in the literature. However, published 

evidence hints at scale-dependent processes that may lead to the size-specific loss of lake 

abundance or area. Lake abundance may be reduced in a size-selective way by sedimentation, 

which would tend to fill small, shallow lakes more quickly than larger lakes [Englund et al., 
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2013]. Power-law distributions in non-lake topographic depressions suggest that in some regions,  

there is a potential for a Pareto distribution of small lakes, but drying or draining prevents their 

perennial existence [Le and Kumar, 2014]. Biological processes, such as the encroachment of 

peat mats in northern boreal zone lakes (terrestrialization), could alter existing lakes and their 

apparent area, or even eliminate them altogether [Roach et al., 2011]. Real landscapes have finite 

area that constrain geomorphological features at their boundaries. Depressions that would form 

large lakes have a higher likelihood of intersecting the landscape edge and not being formed 

[Goodchild, 1988]. For continental-scale distributions, the continental edge may represent such a 

boundary. Furthermore, the distribution of U.S. lakes may not represent a single landscape with a 

single overarching distribution; rather it might be better described as a mosaic of landscapes with 

different underlying characteristics. To our knowledge, these mechanisms have not been 

incorporated into an analytical framework that accurately recreates the observed lake size 

distribution. 

To investigate the underlying mechanisms that explain the observed distribution of lakes, we ask 

three questions. Can lakes on a fractally generated landscape re-create the observed distribution 

of lakes in the U.S., and how do the fractal lakes’ perimeter and volume distributions compare to 

the observed distributions? How might a suite of scale-specific mechanisms be added to fractal 

scaling to explain deviations from the Pareto distribution in the observed data? Can different 

interpretations of the lake size-abundance distribution be resolved by a process-modified fractal 

lake distribution? Answering these questions can help rectify some of the conflicting results 

reported and bring greater understanding to landscape-level patterns in lake morphology and 

distribution. 

2. METHODS 
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2.1.1 FRACTAL LAKES 

The fractal landscape was generated using a diamond-square surface generating algorithm. While 

there are numerous implementations of this algorithm, we used a freely available implementation 

for Matlab [Viswanathan, 2001]. The algorithm requires a numerical roughness coefficient that 

represents a moderator of the random process. When this index increases in size, it produces 

terrains with higher elevation ranges (i.e. a “rougher” landscape). For the diamond-square 

algorithm, the landscape width needs to be a 2
n 

+ 1, where n is an integer (width and height were 

equal). From this point forward, we omit the “+1” when describing the landscape size.  We 

generated landscapes in several ways to examine different questions. One, to create a single, 

large landscape with a single, large lake population, we generated a landscape with width 2
12

. 

Larger landscapes were constrained by computation time and memory availability. Two, to 

examine how the lake distribution was affected by edge effects and variability between randomly 

generated landscapes, we generated 100 random landscapes with width 2
10

. Lastly, on a 

landscape of width 2
10

, we varied the roughness coefficient from 0.01 (mountainous) to 1 (very 

flat) to examine its impact on resulting fractal lake morphology. Because the dimensions of the 

generated landscapes lack real units, a convenient way to interpret the landscape is based on the 

size range of lakes which can be generated. The largest landscape, 2
12

, resulted in lakes which 

spanned 5 orders of magnitude in size. For contrast, the U.S. lake distribution spans about 7 

orders of magnitude, 9 if the Laruentian Great Lakes are included, so the largest generated 

landscape is roughly similar to the extent of a small U.S. state.  For brevity, we call lakes that 

reside in these fractal landscapes, “fractal lakes”. 

With the generated landscapes, we applied the algorithm of Goodchild [1988], designed to 

mimic the “filling” of all potential basins to the point of overflowing. The algorithm applied 
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three rules; 1) the edge of the landscape was considered an infinite sink, meaning that no edge 

cell could be part of a lake, 2) fluid could travel across adjacent grid cells of equal or less 

elevation and 3) all local minima were filled until the edge of the landscape was reached. Lakes 

were considered full when further increase in water level intersected an outflow cell. No virtual 

rivers or streams were recorded, though the algorithm could be modified to include them. All 

connected flooded grid cells were considered a single lake. Each lake was then analyzed to 

determine surface area, volume and perimeter. All units reported for fractal lakes are arbitrary 

and herein referred to as virtual units (VU), which represents the width of a single cell on the 

fractal landscape. For example, the smallest lakes have an area of one and perimeter of four.  

2.1.2 SCALE-DEPENDENT PROCESSES 

We considered three different scale-dependent models applied to the fractal lake distributions. 

Each of these models had a single free parameter that defined its magnitude. The parameter 

values were selected to show a range of observable impacts on the population.  However, caution 

should be used in the interpretation of the parameter values, as they were chosen for effect on the 

fractal lake populations and not derived from literature values. For models that showed 

interesting results, we compared the model parameter values with estimated values from the 

literature. The first and simplest model mimicked the effects of sedimentation or evaporation 

applied evenly to all lakes on the landscape and acted to remove lakes from the landscape 

proportionally to their volume [Brooks and Hayashi, 2002]. The second scale-dependent model 

applied to the lake distributions simulated terrestrialization. In some regions, lakes experience 

edge encroachment through the growth of a surrounding peat mat [Roach et al., 2011]. To mimic 

this process, our algorithm removed lake pixels based on a depth threshold (from 1 to 50% of the 

maximum simulated lake depth), thereby simulating the growth of moss, beginning in shallower 
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areas and progressing into deeper areas. The last scale-specific model was a simple groundwater 

seepage model. To simulate the water table, we created a smoothed version of the overlying 

landscape using a 2-dimensional moving average window width area 200 VU
2
. This virtual 

groundwater surface was shifted downward by a variable amount to simulate areas with different 

groundwater depths. Where lakes currently existed and the moving average intersected the 

terrain surface, the lake was retained. In areas where the terrain surface did not intersect the lake 

bottom, the lake was considered “dry” and removed from the population [modeled after Kratz et 

al., 1997]. 

2.2.1 LAKE OBSERVATION DATA 

For power-law analyses and to compare the fractally derived lake distributions to existing lakes, 

we used the National Hydrography Dataset available from the U.S. Geological Survey. We 

excluded lakes in Hawaii and Alaska and used only lakes in the contiguous U.S., excluding the 

Laurentian Great Lakes (except where noted). To compare the U.S. lakes distribution to the 

fractal lake distribution, a minimum size cutoff of 0.01 km
2
 was used. It was difficult to identify 

lakes below that size based on the original mapping resolution, and data below that cut-off is 

considered unreliable [McDonald et al., 2012]. For other analyses, different cutoffs were used 

and noted with the results. Further information on this dataset and collection methods can be 

found in Winslow et al., [2014] and McDonald et al., [2012].  

Bathymetric data were collected from the state natural resource agencies of Wisconsin, 

Minnesota and Nebraska. Combined, there were 1319 unique lakes. The original sources vary, 

with some data based on modern acoustic-sounding techniques and others derived from hand-

drawn survey maps. When not already in a digital format, data were digitized, georeferenced, 

and converted to a raster map of depths with a spatial resolution of 5 meters. From these raster 
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maps, lake volume and area was directly calculated using R (v2.15.2) and the raster package 

[Hijmans, 2014].  

2.3 ANALYSES 

To test if a distribution could have been generated from an underlying power-law, we used a 

semi-parametric approach, which improves significantly over using R
2
 values in evaluating the 

fit of data to a power-law [Clauset et al., 2009]. A hundred fractal populations were generated 

(width of each landscape: 10
10

 VU) to examine the variability in lake generation of the random 

landscape-generating process. Each resulting population was fit and tested using the Clauset et 

al., [2009] fitting and power-law hypothesis testing methods.  

To test the large-lake, landscape-boundary hypothesis that predicts many smaller fractal surfaces 

combined would be large-lake deficient due to boundary effects, we combined 100 smaller 

fractal lake populations and fit the full population in two contrasting ways. One, the slope 

parameter was fit to the full population of lakes to see what Pareto slope parameter would be 

estimated for the whole. Two, the full population was combined, but only lakes with areas 

greater than 10
3
 VU were fit. This mimicked the difference between fitting the full size range of 

lakes at a large scale [McDonald et al., 2012] and fitting only the largest lakes of a population 

[Downing et al., 2006].  

To compare the shapes of the observed U.S. lakes population, we normalized the distributions to 

eliminate differences in the range of lake sizes and number of lakes. This was necessary to 

normalize units between the fractal lake distribution and the observed distribution. To determine 

which scale-dependent model best described the existing distribution, we used the two-sample 
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Kolmogorov–Smirnov (KS) test. Before calculation, we log-transformed the lake area values and 

then normalized the observed and modeled lake populations using the following equation: 

      
           ))

             ))
  [eq. 1] 

where X is the set of lake areas. The denominator is the mean absolute deviation of the set of lake 

areas. This is similar to the standard normal transform, but less sensitive to outliers and non-

normal distributions. From this test, we used the KS statistic as an index of observed distribution 

similarity, where smaller numbers indicate higher similarity.  

3. RESULTS 

3.1 FRACTAL LAKES 

The single, large fractal landscape (width 2
12

, roughness 0.7) generated a surface with 434,000 

lakes. The lakes covered 6,236,000 VU
2
 in total, 37% of the total landscape area. Lakes on the 

fractal surface ranged in area from 1 to 626,000 VU
2
. The generated lake distribution passed the 

semi-parametric power-law test (p<0.05) and had a Pareto slope parameter of 0.95. The 

regression slope of lake area to perimeter was 0.66 and the slope of lake area to volume was 

1.27. As-generated, the fractal surface elevations had a standard deviation of 14.2 VU.  

The lake populations from 100 randomly generated fractal surfaces (width 2
10

, roughness 0.7) 

helped to describe the expected variability of key parameters due purely to random differences 

across landscapes, These 100 lake populations had an average Pareto slope of 1.008 with a range 

from 0.85 to 1.13. The relationships of area with volume and perimeter were highly constrained, 

having medians of 0.66 ±0.002 and 1.27± 0.005 respectively. Landscape elevation standard 

deviation showed large variability, ranging from 10.7 to 28.7 with a median of 15.9. Of the 100 
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randomly generated lake populations on fractal surfaces (width 2
10

, roughness 0.7), 9 lake 

populations were rejected by the semi-parametric power-law test (p<0.05) applied to lake areas.  

It was difficult to determine how landscape elevation standard deviation varied with the 

roughness coefficient as standard deviation varied greatly across landscapes with the same 

underlying landscape generation parameters. To examine how standard deviation changed with 

roughness coefficient, an additional 100 fractal landscapes were generated with a different 

roughness coefficient (0.4). These landscapes had a median standard deviation of 20.4 and 

ranged from 16.2 to 29.5. Other morphological aspects had lower variability and matched the 

results of our cross-roughness analysis based on single generated landscapes.  

3.2 COMPARING FRACTAL AND OBSERVED LAKE POPULATIONS  

For the observed U.S. distribution, the regression slopes of area vs abundance, perimeter and 

volume were similar to the fractal landscapes (Figure 3). The size-abundance Pareto slope for 

lakes in the contiguous U.S. is 0.92 (0.85 with no size cutoff [McDonald et al., 2012]). The 

contiguous U.S. relationship of area to perimeter had an exponent of 0.58, less than the values 

from the fractal lakes (0.66). The empirical relationship between area and volume deviated 

furthest from the relationship found on the fractal landscape (1.15 and 1.27 respectively), though 

this is the empirical relationship based on data from only three of the states in the contiguous 

U.S. (Wisconsin, Minnesota, Nebraska). Because of the limited spatial extent of available 

bathymetric data, this result may not be representative of the lakes in the contiguous U.S. It is 

unclear how our results would change if a U.S.-scale dataset were available.  

The area to volume and area to perimeter relationship exponents depend on the fractal landscape 

roughness (Figure 4). The perimeter exponent decreased while the volume exponent increased 
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with an increasing roughness coefficient. Because a large abundance of very small lakes may be 

influencing the observed relationships, the model was also fit to only lakes larger than 100 VU
2
. 

Those exponents showed the same trend with roughness, though the estimated values were more 

sensitive to changes in the landscape roughness coefficient. 

While most fractal landscape lake distributions were statistically indistinguishable from a power-

law, the populations often had a visible negative deviation in the large-tail of the distribution, 

suggesting that large lakes are missing from the populations.  When the lakes from 100 

individual landscapes are combined, mimicking a fragmented landscape, the missing large lakes 

become apparent (Figure 5). When only the large tail of the distributions is fit (> 10
4
 VU

2
), the 

Pareto slope is steeper than when fit to the whole population (1.3 vs 1.01 respectively, Figure 5).  

The three scale-dependent models varied in their effects on the lake size-abundance distribution 

(Figure 6). The simplest effect was from the evaporation/sedimentation model (Figure 6b). When 

lakes were removed from the distribution based on their volume, the small lake abundances 

quickly drop to zero which can be seen as the flattening of the cumulative distribution. Large 

lakes are not affected until the magnitude of the evaporation/sedimentation process is very large. 

Terrestrialization (Figure 6a) had an effect that could be seen across the lake size-abundance 

distribution, though it has the strongest effect on small lakes. Little to moderate encroachment 

tended to fill in small lakes, reducing their abundance. Unlike the evaporation/sedimentation 

process, small lakes were not eliminated from the distribution. 

Across all three scale-dependent models, terrestrialization created the lake size-abundance most 

similar to the observed lake population (Table 1). With a depth cutoff of 2.8 VU, 
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terrestrialization had the lowest reported KS value of 0.14, a substantially better fit than the 

fractal population without any scale-specific modification (KS: 0.28).  

4. DISCUSSION 

4.1 FRACTAL AND OBSERVED LAKE MORPHOLOGY 

While fractal landscapes should result in power-law lake distributions [Goodchild, 1988], some 

of our landscapes had lake populations that differed significantly from a power law. From 100 

the randomly generated landscapes, it was surprising that 9 lake populations were rejected by the 

power-law test (p < 0.05). Because this technique has not previously been applied to lake 

distributions, it is unclear if such a false negative rate is to be expected, or if the hypothesis test 

is too conservative when applied in this situation. For our landscapes, the rejected populations 

may be a result of true biases of the population from a power-law due to reduced large lakes 

abundances on a surface with boundaries (discussed below), or may suggest the test is overly 

conservative for large numbers of observations.  

The Pareto slope of the area distribution is an important feature of the lake population that 

defines the relative contribution of large and small lakes to the total population area, perimeter 

and volume. A slope of 1.0 is the critical point where the relative contribution by large and small 

lakes to total lake area is balanced. Slopes above and below 1.0 describe populations skewed 

towards large or small lakes [Winslow et al., n.d.]. Empirical studies have reported regionally 

differing slopes, varying from 0.56 to 1.10 [McDonald et al., 2012]. The 100 fractal landscapes 

with the same roughness coefficient, differing only due to random processes, generated lake 

populations with Pareto slopes that varied from 0.85 to 1.13. This suggests that some slope 

variability can be attributed to random variation alone, not to changes to the underlying 

generation mechanism. However, the variability range from observed datasets is higher than for 
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the fractal terrains, suggesting underlying differences between regional lake distributions that go 

beyond random variability. This is not surprising considering the large climactic and geological 

differences across the observed datasets examined [McDonald et al., 2012]. The steeper overall 

average Pareto slope for fractal lakes (fractal: 1.01 observed: 0.92) suggests the contiguous U.S. 

has relatively fewer small lakes than would be predicted with a fractal lake model alone. Scale-

dependent processes preferentially affecting small lakes may explain the observed discrepancy 

from a fractal lake distribution. 

Lake area vs. volume and perimeter also showed relationships comparable to those estimated 

from observed lake populations (Figure 3). Large lakes tended to have disproportionately longer 

perimeters and larger volumes than small lakes, comparable to results from the U.S. and Sweden  

[Sobek et al., 2011; Winslow et al., 2014]. The relationship exponents of area vs perimeter and 

volume were steeper for fractal lakes. Because a steeper slope in these morphology relationships 

is driven by a high abundance of fine-scale features (e.g., shoreline convolution and lakes of 

small volume), the exponent differences between the fractal and observed relationships indicate 

the fractal population has more fine-scale features. The steeper area to perimeter slope (fractal: 

0.66 observed: 0.58) can only be explained by longer perimeters in the fractal population’s large 

lakes as small lakes have a bottom limit to perimeter. This suggests the large fractal lakes have 

finer-scale shoreline features than observed lakes. The steeper slope of area to volume (fractal: 

1.27 observed: 1.15) may be a result of shallower lakes on the fractal landscape than would be 

unlikely to exist in reality (mean depth c. 0.01 VU, roughly equivalent to 1 cm). These lakes can 

be seen at the small end of the area to volume regression (green line, figure 3a). Overall, fractal 

lakes display more fine-scale features than the observed lake population, an important difference 

potentially pointing to key processes driving observed lake morphology. Scale-specific processes 



82 

 

that that act to eliminate and modify morphology at the population scale can help explain the 

differences between observed and fractal lakes.  

The results from the fractal surfaces helps inform why landscape roughness broadly predicts the 

relationship between lake area and volume, but fails to improve individual lake volume 

estimates. Reported results have shown that when predicting lake volume, only lake area is a 

significant predictor, though broadly, the area-volume relationship exponent is higher in areas of 

rougher terrain [Sobek et al., 2011, S. Oliver, personal communication, July 2014]. On our fractal 

surfaces, the underlying roughness coefficient is a very good predictor of the lake area-volume 

relationship exponent, with higher values for rougher terrain due to smaller lakes being 

disproportionately deeper. This is similar to the significantly higher lake area-volume coefficient 

found in a mountainous region by Sobek et al., [2011]. Despite the good relationship of 

roughness coefficient with lake area-volume exponent, the standard deviation of landscape 

elevation is highly variable across individual landscapes generated using the same roughness 

coefficient. Therefore, at a fine scale, the observed landscape roughness is a poor predictor of the 

relationship between lake area and volume. This suggests that for terrestrial lake populations, 

immediately surrounding landscape characteristics may not improve models of lake volume, but 

at large-scales, roughness will help predict the relationship exponent between lake area and 

volume. To better understand how broad-scale landscape roughness predicts the lake area-

volume relationship, more comprehensive and geographically-distributed datasets of lake volume 

are needed. 

4.2 SCALE-DEPENDENT PROCESSES 

The lack of large lakes given the number of small lakes in the fractal lake populations is a result 

of edge effects. Due to their size, depressions that would form large lakes have a high probability 
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of intersecting the landscape boundary and flow off the edge thus forming a small lake, or not 

forming a lake at all [Goodchild, 1988]. Combining 100 lake populations generated on smaller 

landscapes into one larger population highlights the outcome of this process (Figure 5). Globally, 

land effectively has boundaries at the edges of all continents. Large rivers may also form 

additional boundaries where, without erosion, large lakes may have formed. These boundary 

effects combine to reduce the number of large lakes otherwise predicted by small lake abundance 

and a power-law distribution. Because of their low abundance in the distribution, large lakes 

have relatively little impact on Pareto distribution fits spanning the entire size-range. Fits 

estimated from a large-biased population will be adversely affected by this boundary bias. 

The three scale-dependent models resulted in lake distributions with different shapes and key 

features. The evaporation/sedimentation model has generally the simplest result, completely 

eliminating small lakes preferentially from the lake distribution. This tendency to eliminate small 

lakes from the population may be somewhat unrealistic as sedimentation rates can be highly 

variable across different lakes [Downing et al., 2008]. A variable sedimentation rate would be 

difficult to parameterize on the fractal landscape, but would likely result in a less complete 

elimination of small lakes. Groundwater seepage had a gradually changing effect across small to 

medium sized lakes, and had little effect on the largest lakes. Small to medium sized lakes were 

strongly impacted as they had higher densities in higher landscape positions. The largest lakes 

had lower elevations, meaning even with a strongly depressed virtual water table, they remained 

unchanged. The resulting populations had the least amount of curvature in the distribution, acting 

more to change the slope while maintaining a linear shaped distribution. This has an interesting 

parallel with the U.S. lake distribution, which does not have a slope of 1.0 [Winslow et al., n.d.], 

as would generally be predicted by an unaltered fractal lake distribution. Instead, in the central 
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portion of the distribution, the population displays a near-linear relationship with a slope of 0.92 

(Figure 2). Lastly, terrestrialization created the most curved distributions. This curvature is a 

result of the encroachment growth eliminating small lakes, but replacing them with lower 

abundance medium sized lakes turned into small lakes.   

While we did not link the fractal landscape units directly to observational units, it is useful to 

ground-truth the magnitude of the best fitting scale-dependent process found here. To do that, we 

look at the results of the terrestrialization model fit and compare the relative magnitude of 

terrestrialization depth and median lake depth with published literature values. The cutoff value 

that resulted in the best terrestrialization model was 2.8 VU. This means that all fractal lake area 

with a depth of less than 2.8 VU was considered filled and no longer counted as lake. On the 

affected fractal landscape, the median simulated lake depth was 1.4 VU, and so depth of 

terrestrialization was greater than the median lake depth. In a lake district with a high amount of 

terrestrialization, the Northern Highland Lake District (NHLD), mean observed lake depth is 3.9 

meters [Hanson et al., 2007], while estimated mean region-wide peat depth is 2.1 meters [Buffam 

et al., 2010]. Furthermore, the fractal lake median depth of 1.4 VU is based on the original, 

unmodified fractal lakes. A more comparable metric would be the median depths for lakes 

remaining after the terrestrialization process has been applied (7.4 VU). So an average peat depth 

below, but near the median lake depth is plausible. Furthermore, the landscape roughness of the 

NHLD and the fractal terrain used for the models is similar, with elevation standard deviations of 

18.5 VU and 16.7 meters respectively. This suggests that the vertical processes and morphology 

described on the fractal surface (volume and terrestrialization related to depth) may represent 

realistic scales. 

4.3 RESOLVING DIFFERENT REPORTED GLOBAL LAKE ESTIMATES 
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The underlying reasons for differences in reported global lake abundances are based on the 

landscape boundary effect on the large-lake end of the distribution. When the Pareto distribution 

is fit to large global lakes over 10km
2
, the slope is 1.06 [Downing et al., 2006] but when the 

Pareto slope is fit to a larger area range of lake in the U.S., the value is 0.85 [McDonald et al., 

2012]. This flattening of the distribution substantially reduces the number of small lakes that 

would be predicted from a given number of large lakes, meaning that the estimate made by 

Downing et al., [2006] based on extrapolating large lakes is almost certainly an over-estimate of 

abundance and surface area. More accurate estimates of global processes can likely be made 

using the global values estimated by McDonald et al., [2012]. Furthermore, process estimates 

that are based on a pure Pareto-distribution assumption [Winslow et al., n.d.; Kastowski et al., 

2011] may underestimate the contribution of large lakes.  

Differences in the relationships of key lake morphology, such as area vs volume, may be a result 

of different topographical roughness. Additionally, difficulty in estimating the underlying 

roughness coefficient from the standard deviations of landscape elevation may explain why such 

measures of roughness seem to improve individual lake volume predictions very little [Sobek et 

al., 2011]. Despite this, the low variability in relationships between lake area, perimeter and 

volume on landscapes with a single roughness coefficient suggest that underlying roughness is 

an important factor in controlling the relationships between lake area, perimeter, and volume. 

While information may not improve models predicting the volume of any single lake, large-

scale, regional estimates of roughness may improve models of lake volume at such broad scales. 

It is unclear if lake-specific estimates of volume can be substantially improved. The curation of a 

continental-scale database of bathymetry would improve this and other large-scale limnological 

analyses. 



86 

 

5. CONCLUSIONS 

We found that lakes on a fractal surface have generally similar characteristics and patterns of 

area, perimeter and volume when compared to observed lakes. However, the specific exponents 

for the relationships of area vs. perimeter and volume tended to be steeper for fractal surfaces. 

The difference in fitted exponents can be explained by the loss of fine-scale features in observed 

lakes when compared with fractal surfaces and lakes. These relationship exponents varied across 

fractal terrains generated with different underlying roughness parameters.  However, no single 

roughness parameter could be chosen to concurrently match the lake area-volume and area-

perimeter relationships. The landscape roughness coefficient predicted the relationship between 

lake area and volume, though standard deviation of landscape elevation was too variable to be 

used as an observable proxy for landscape roughness.  

Examining lakes on fractal surfaces helps resolve differences in reported results among large-

scale lake abundance studies and provides insight into how different small-lake scale-dependent 

processes modify the shape of the size-abundance distribution (Figure 7). Due to edge effects, 

large lake abundance tended to be deficient when compared to the small lake abundance. This 

deviation would explain reported overestimates in small lake abundance based on large-lake 

population extrapolation. Small lake deviations from a pure fractal distribution can be in-part 

explained by scale-specific processes applied to the distribution, with terrestrialization fitting the 

observed data best. Further work is required to understand how these processes, among others, 

apply to different regions and lake populations to create the currently observed lake distribution. 
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TABLES 

Table 1: KS statistics for the three scale-dependent models and different model parameters 

examined. 

Process Model 
Parameter 

KS Value 

Drying 0.1 0.18 

Drying 0.4 0.20 

Drying 1.6 0.17 

Drying 2.4 0.25 

Groundwater -13 0.18 

Groundwater -9 0.19 

Groundwater -5 0.18 

Groundwater -1 0.20 

Moss 0.4 0.34 

Moss 1.2 0.16 

Moss 2.8 0.14 

Moss 3.2 0.15 
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FIGURE CAPTIONS 

Figure 1: Theoretical lake distribution based on filling depressions on a fractally generated 

landscape. The lakes shown on the landscape (A) and the size-abundance distribution (B). 

Figure 2: Size abundance distribution of contiguous U.S. lakes, excluding the Laurentian Great 

Lakes, showing deviation from a pure power-law distribution. 

Figure 3: Comparison of how key morphological features scale across the population of observed 

(blue) and fractal (green) lakes. (a) The volume to area relationships, (b) the perimeter to area 

relationships and (c) the lake abundance distribution. The line positions on the x axis are 

arbitrary for fractal lakes and offset to prevent overlap. 

Figure 4: Relationship between landscape roughness and the exponent for (a) area to perimeter 

relationship and (b) area to volume relationship for lakes on fractal landscapes. The dashed lines 

show the fitted exponent estimates for U.S. Lakes.  

Figure 5: Power-law fits to the size abundance distribution of the combined population of 100 

random fractal landscapes (size: 2
10

, roughness: 0.7). The three lines show the difference 

between Power-law fits based on the whole population versus fits to only the largest lakes.  

Figure 6: The different effects of scale-dependent processes on the lake size-abundance 

distribution for lakes generated on a fractal landscape. For each process, multiple relative 

magnitudes are plotted.  

Figure 7: The regions of the lake size-abundance distribution that deviate from a pure Pareto 

distribution and the relevant scale-dependent processes that are discussed here 
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ABSTRACT (<150) 

[1] Water temperature observations were collected from 142 lakes across Wisconsin, U.S.A. to 

examine variation in temperature of lakes exposed to similar regional climate. Whole lake water 

temperatures increased across the state from 1990 to 2012, with an average trend of 0.055 °C yr
-1

 

± 0.01 °C yr
-1

. In large (> 0.5km
2
) lakes, the positive temperature trend was similar across all 

depths. In small lakes (<0.5 km
2
), the warming trend was restricted to shallow waters, with no 

significant temperature trend observed in water >0.5 times the maximum lake depth. The 

differing response of small versus large lakes is likely a result of wind sheltering reducing 

turbulent mixing magnitude in small lakes. These results demonstrate that numerically dominant 

small lakes respond differently to climate change than large lakes, suggesting that current 

predictions of impacts to lakes from climate change may require modification. 

1. INTRODUCTION 

Most research addressing the impacts of global warming on lake temperature has focused on 

relatively large lakes, while neglecting to test whether small lakes show similar responses. New 

techniques for estimating lake surface temperature using satellite infrared imagery are 

constrained by image resolution, and as a result, a recent global analysis by Schneider and Hook 

[2010] focused solely on warming trends in lakes larger than 500 km
2
. Long-term records of in-

situ temperature measurements are also more common for large lakes and have revealed 

warming patterns in the largest lakes in the world [O’Reilly et al., 2003; Austin and Colman, 

2007; Hampton et al., 2008]. Examples of warming analyses in medium-sized lakes include 

lakes with areas of 65km
2 
[Livingstone, 2003], 13.3 km

2
 [Carvalho and Kirika, 2003], and  0.77 

km
2
 [Tanentzap et al., 2008]. Comparatively fewer long-term temperature data collection efforts 

exist for smaller inland lakes, especially lakes smaller than 0.5 km
2
. Exceptions to this pattern 
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include long-term monitoring programs for lake districts that include small lakes [Mannio and 

Vuorenmaa, 1995; Schindler et al., 1996; Magnuson et al., 2006]. Because the majority of lakes 

in the world are small [Downing et al., 2006; Winslow et al., 2014], analyses of climate change 

impacts restricted to large lakes may not capture temperature trends representative of the 

majority of the world’s lakes. 

The physical and chemical attributes that tend to differentiate small lakes from large lakes are 

also important controls on water temperatures and may influence warming trends. Small lakes 

tend to have higher DOC concentrations [Hanson et al., 2007], resulting in different vertical 

distributions of thermal energy due to faster extinction of light in the water column [Read and 

Rose, 2013]. Small lakes are often well sheltered from wind [Markfort et al., 2010] and 

consequently, have less wind-driven turbulent mixing that large lakes [Read et al., 2012]. Lastly, 

lake size is correlated with several geometric properties of lakes, as small lakes typically have 

less complex morphometry [Winslow et al., 2014] and shallower depths [Sobek et al., 2011]. 

These factors may interact in complex ways to change how energy is gained, stored and lost in 

lakes. As a result, small lakes may express different thermal responses to climate warming than 

larger lakes.  

Small lake research has lagged behind the study of large lakes for much of the past century 

[Downing, 2010], resulting in a knowledge deficit about small lakes and their response to long-

term change. To bring a greater understanding of the impacts climate change may have on 

smaller, infrequently monitored lakes, we examine water temperature trends in a large population 

of lakes across the state of Wisconsin, U.S.A. We address the following questions: How have 

water temperatures changed across a population of lakes in Wisconsin? Do temperature trends 
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differ with lake size, depth or water clarity? By answering these questions, we can better 

understand how climate change impacts the large and diverse population of the world’s lakes. 

2. DATA 

The water temperature data used in this study were from the Wisconsin Department of Natural 

Resources (WDNR) and the North Temperate Lakes Long-term Ecological Research (NTL-

LTER) program. The WDNR maintains a record of lake monitoring data including observations 

collected by both WDNR staff and citizen volunteers from around the state. The sampling 

frequency and temporal extent of the WDNR data varies between lakes, though the majority of 

data were collected between 1990 and 2013. NTL-LTER data are split geographically across 

Wisconsin, covering 7 lakes in the north and 4 lakes in the south, with bi-weekly and monthly 

sampling throughout the open water and ice-covered seasons respectively. The northern NTL-

LTER lakes data span 1984-2013 while the southern lakes have data from 1994-2013. 

Combined, the dataset contained 889 lakes, which was later reduced to 142 lakes based on a set 

of criteria discussed below. 

Depth and clarity data were collected from a variety of sources, and lake surface area and 

elevation were calculated from WDNR hydrography geospatial dataset. Maximum depth (Zmax) 

was provided by the WDNR and NTL-LTER. When missing from lakes in the WDNR database, 

Zmax was manually digitized from historical bathymetric maps. Satellite-derived Secchi depth (an 

index of water clarity) estimates were provided by the WDNR (lakesat.org) and were based on 

Landsat imagery [methods of Torbick et al., 2013].  

3. TREND ANALYSIS 

3.1 SEN’S SLOPE ESTIMATOR 
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 We examined both the overall temperature trend across 142 lakes and trends across gradients of 

observation depth, season, and lake characteristics. Because the data set is large and observations 

were made by a variety of people, we chose a trend analysis technique that is relatively 

insensitive to outliers to mitigate the influence of possible errors in the data that may arise from 

transcription or observation errors. The Theil-Sen slope estimator (referred to here as Sen’s 

slope) is a non-parametric technique for estimating trends that is robust to outliers and non-

normality based on Kendall’s tau rank correlation. Sen’s slope is defined as the median of a set 

of slopes that join all permutations of observations [Sen, 1968]. We refer to this set of slopes (B) 

as a set of “paired-sample slopes”. 

In its original form, the Sen’s slope estimator cannot be used on single timeseries containing a 

seasonal component. For example, if the original Sen’s slope were applied to water temperature 

observations, some of the paired-sample slopes would be the result of comparing temperatures 

from January with temperatures from July. To account for this, the seasonal Sen’s slope 

estimator was developed [Hirsch et al., 1982]. In the seasonal version, observations are grouped 

by a seasonal component (often month) and paired-sample slopes are calculated only between 

observations from the same season. The equation for the seasonal paired-sample slope (bijk) is: 

     
       

       
 

where y is the observed value, t is time, i is the start index, j is the end index, k is the seasonal 

identifier index. The overall slope is then defined as the median of all bijk paired-sample slopes. 

To examine the trends across all observed lakes, we extended the seasonal estimator to create a 

seasonal, cross-site estimator. We extended the seasonal Sen’s slope estimator by adding a 
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location identifier so that only temperatures collected at the same location and season were 

compared. The resulting equation for the cross-site, seasonal paired-sample slope (bijks) is: 

      
         

         
 

where s is the location identifier index.  

To analyze the trends across Wisconsin lakes, we used the cross-site seasonal Sen’s slope 

estimator. While the seasonal identifier is often delineated based on the sampling month, this can 

cause issues in months where the season is rapidly changing. For example, in Wisconsin, lake 

water temperatures often change rapidly in September, meaning that early-September 

observations will typically be much warmer than late-September observations. To avoid pairing 

such temperatures for assessment of annual temperature trends, we defined each sample’s season 

as the week of the year, an approach that results in fewer paired-sample slopes but reduces the 

issues of calculating slopes across longer periods of rapid change. Sample location was defined 

as a specific lake at a specific depth rounded to the nearest whole meter. The resulting paired-

sample slopes were each linked with attributes (specifically: start and end year, season and 

location) which allowed us to aggregate the samples along key gradients. 

3.2 Air temperature trend analysis 

We estimated the statewide average air temperature trend for the state of Wisconsin for 

comparison with water temperature trends. We retrieved statewide yearly average air 

temperatures from the Wisconsin State Climatology Office originally calculated by the National 

Climatic Data Center as of May 2014. The trend in the statewide annual mean air temperature 

was calculated using the original Sen’s slope analysis [Sen, 1968] for observations from 1990 to 
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2013. 

3.2 Water temperature trend analysis 

The complete dataset contained 352,000 temperature observations from 889 lakes, but these 

observations were not evenly distributed across lakes or years. The total number of lakes was 

reduced to 142 as follows.  The cross-site, seasonal Sen’s slope results could also be biased 

towards lakes and time periods with more observations. While there were observations from all 

years from 1970 to 2012, the majority were collected after 1990. To prevent bias caused by 

uneven sampling across years, only data after 1990 were included. So that each lake contributed 

the same number of paired-sample slopes, 800 paired-sample slopes were sub-sampled randomly 

without replacement. All lakes with insufficient observations were dropped. A cutoff of 800 was 

selected to maximize the overall number of slopes in the analysis. A larger cutoff reduced the 

lake count more than the larger sub-sample increased the overall number of slopes. Similarly, a 

smaller cutoff reduced the number of slopes contributed by each lake more than it increased the 

number of lakes included. Overall, 113,600 paired-sample slopes and 142 lakes remained.  

To compare depth-specific temperature trends in lakes with different maximum depths, a relative 

depth for each sample was calculated by normalizing the sample’s observed depth to the max 

observed depth of the lake, resulting in a relative depth metric spanning from zero to one where 

zero is the surface and one is the maximum depth of sampling. “deep water” temperatures were 

defined as relative depths > 0.5 while “shallow water” temperatures were defined as relative 

depths <= 0.5.  

To examine the overall sensitivity of our estimates to a specific set of sampled lakes and time 

periods, we randomly sampled from the remaining 142 lakes 1000 times and ran the cross-site 
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Sen’s slope analysis on the random subset. For each random subset, we dropped 30% of the lakes 

and randomly sampled without replacement 800 paired-sample slopes. This eliminated bias due 

to different total number of observations between lakes and normalized the contribution of each 

lake on the final result. With the 1000 random subsets we performed two analyses. To examine 

how trends change across lake area, the median slope and median lake area was calculated across 

a 30-lake window applied to lakes sorted by area. A Loess regression was calculated across the 

full set of median slopes and areas. To contrast large and small lakes, a cutoff of 0.5 km
2
 was 

selected based on a visual inspection of the relationship between lake surface area and 

temperature trend. To compare how trends differ across depth, median trends were calculated for 

shallow and bottom waters in large and small lakes for each subset. 95% confidence intervals 

were defined as the 95
th

 percentile ranges of the randomized results.  

5. RESULTS 

Wisconsin lakes are warming. Across all lakes and all depths, temperature increased at a median 

rate of 0.055 ± 0.01 °C yr
-1

. Larger lakes warmed faster than smaller lakes (Figure 1). Across all 

depths, water temperature in large lakes (>0.5 km
2
) increased by a median of 0.06 °C yr

-1 
while 

that of small lakes (<0.5 km
2
) increased by a median of 0.02 °C yr

-1
. Between 1990 and 2013, 

statewide annual average air temperature increased at an estimated rate of 0.067 °C yr
-1

. 

Depth-specific temperature trends depended on lake size. The warming rates for large lakes were 

consistent across all depths, but the deeper waters of small lakes were not warming at a rate 

significantly different from zero (Figure 2). In lakes larger than 0.5 km
2
, the median trends for 

shallow and deep waters were 0.056 °C yr
-1

 and 0.05 °C yr
-1

 respectively and were not 

significantly different (p > 0.05). In small lakes, the median trends for shallow and deep waters 

were 0.03 °C yr
-1 

and 0 °C yr
-1

 respectively and were significantly different (p < 0.01). Large and 
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small lakes exhibited similar ranges of water clarity, max depth, elevation, latitude and longitude 

(Table 1).  

6. DISCUSSION 

Our analysis reveals important size-dependent differences in the lake thermal responses of lakes 

to climate change even when subjected to similar regional climate drivers. Many investigators 

have examined the impact of climate change on water temperatures in lakes, but this study is the 

first to examine temperature trends across the lake depth profile for a large number of lakes 

spanning a wide range of surface areas. In particular, we found that small lakes (< 0.5 km
2
 in 

surface area) respond differently to climate forcing than large lakes. Large lake warming was 

consistent throughout the water column and small lakes were warming only in the shallow 

waters. The different behavior of these small lakes has relevance to the full distribution of U.S. 

lakes as they represent 99% of lakes by number and 30% of lake surface area [Winslow et al., 

2014]. These differences in full-depth warming patterns are important for predicting the impacts 

of climate change on both biogeochemical cycles [Marotta et al., 2014] and the distribution and 

available habitat for fishes [Ficke et al., 2007].  

Deep and shallow water temperatures are controlled by climate at different times of year. 

Although shallow waters respond to climate throughout the open water season, the temperatures 

of bottom waters in stratified lakes are controlled by springtime conditions  preceding 

stratification onset [Kalff, 2002]. In large lakes, warmer springtime shallow temperatures are 

mixed downwards by periodic mixing events, but in small lakes the warming climate signal was 

not transferred to the bottom waters, as they likely lacked sufficient turbulent mixing fluxes 

[Read et al., 2012].  
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Lakes with areas of approximately 0.5 km
2
 are in a size range of rapid transition in wind 

sheltering. Wind sheltering is exponentially related with lake size and changes quickly in lakes 

with areas between 0.1 and 1 km
2
 [See figure 4 in Hondzo and Stefan, 1993]. Lakes in forested 

regions, such as many of the lakes in Wisconsin, can have higher wind sheltering than would be 

predicted by fetch alone [Markfort et al., 2010]. For lakes in the size range where wind 

sheltering changes rapidly, bottom water temperatures may be especially sensitive to changes in 

drivers of wind sheltering. For example, Tanentzap et al., [2008] found that increasing canopy 

height and decreasing clarity resulted in cooling bottom waters despite regional climate 

warming. The area of the lake examined (0.77 km
2
) was within the highly sensitive 0.1-1 km

2
 

range. While we report a transition of 0.5 km
2
 between warming lakes and lakes with a muted 

climate signal, there is likely a range of areas across which multiple factors, including fetch, 

depth, and water clarity, control the coupling between the climate signal and water temperature. 

Larger datasets, including lakes with high diversity in sheltering, depth, and water clarity would 

be necessary to improve our understanding of how different lake characteristics moderate the 

transmission of warming climate signals into the bottom waters of small lakes.  

The strength of stratification for this population of lakes increased during the study period. To 

evaluate stratification, we examined how density trends diverged in surface and bottom waters 

by calculating density from temperature [Read et al., 2011], assuming zero salinity, and applying 

the same cross-site, seasonal Sen’s slope analysis. The stratification trend for large lakes was due 

to the nonlinearity of the water temperature and density relationship. Differences between 

warming rates in shallow and deeper depths were not significant (p > 0.05; Fig 2), but the 

nonlinear relationship between temperature and thermal expansion of water resulted in a 

significant trend in stratification strength. Stratification trends in small lakes were driven by the 
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combined effects of density nonlinearity and significant differences in the cross-depth 

temperature trend (p < 0.01). Regardless of lake size, these results further support hypotheses 

that lake stratification strength will increase in response to climate change [Livingstone, 2003; 

Hadley et al., 2013].  

While these cross-lake patterns are likely applicable to lakes in other temperate regions lakes, 

there may be exceptions. Small lakes that are very shallow or very clear may allow for sufficient 

turbulence to mix the warming climate signal to bottom waters [Folkard et al., 2007]. Similarly, 

large lakes of extreme depth or strong haline stratification may lack sufficient mixing to connect 

bottom waters to the surface warming signal [Hamblin et al., 1999]. The results shared here are 

exclusively from temperate lakes subjected to winter ice cover. Lakes with different properties or 

lakes in different regions may show different warming patterns.  

Our lake population shows a temperature trend similar to other studies [Livingstone, 2003; 

Schneider and Hook, 2010]. When trends are aggregated across multiple lakes, then average 

reported temperature trends were 0.45 ± 0.011 °C yr
-1

 [Schneider and Hook, 2010]. Whereas, 

temperatures for some individual lakes have been reported to increase more rapidly [Austin and 

Colman, 2007; Schneider et al., 2009]. Spatial climate variability may explain differences in 

reported lake trends. Comparing our results with those from Lake Michigan, a lake in closer 

proximity and similar latitude to Wisconsin, yields similar reported trends (0.078 ± 0.036 and 

0.051 ± 0.034 °C yr
-1

)
 
[Austin and Colman, 2007]. 

 

7. CONCLUSION 
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The outcomes of this study identify the importance of lake size and the concomitant influence of 

fetch-dependent turbulent processes on temperature trends.  While our results are in general 

agreement with previous findings for surface waters [Schneider and Hook, 2010], we 

demonstrate how temperature trends in small lakes diverge from expectations based on studies of 

larger lakes. A warming signal was not detected in the deeper waters of small lakes, likely 

because small lakes have lower turbulent mixing and transfer less of the climate signal to deeper 

waters. Large lakes, with greater magnitude of turbulent mixing, showed consistent warming 

across all depths. The difference in response to climate change by lakes of different sizes must be 

considered when estimating future impact of climate change on a global lake population 

dominated by small lakes.   
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FIGURES AND TABLES

 

Figure 1: Median temperature trends across different lake sizes. Black line is a loess regression 

through all random subsets. The dataset was randomly sampled 1000 times to eliminate potential 

bias introduced by any single lake or dataset. Gray points are median temperature slope and 

median lake area for a moving window of 30 lakes for each random sample. X-axis is log scaled.  
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Figure 2: Median temperature trends for shallow (relative depth < 0.5) and deep (relative depth > 

0.5) waters split into large and small lake populations (0.5 km
2
 cutoff). The dataset was 

randomly sampled 1000 times to eliminate bias introduced by any single lake or dataset. All 

random subsample medians shown (circles) with overall median (diamond) and 95
th

 percentile 

limits indicated (lines).  
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Table 1: Key characteristics of lakes represented in dataset. Format shown is median [minimum, 

maximum]. 

Lake Characteristics Large Lakes (> 0.5 km
2
) Small Lakes (< 0.5 km

2
) 

Number (#) 118 24 

Area (km
2
) 2.1 [0.51,  533] 0.32 [0.006, 0.49] 

Zmax (m) 15 [2.4, 72] 11 [2.5, 20] 

Secchi Depth (m) 2.6 [0.5, 8.2] 3.3 [0.8, 5.6] 

Elevation (m) 360 [180, 527] 295 [248, 537] 

Latitude (°N) 45.5 [42.6, 46.5] 44.7 [42.8, 46] 

Longitude (°E) 89.6 [87.2, 92.6] 89.2 [88, 92.6] 
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APPENDIX A - SMALL LAKES SHOW MUTED CLIMATE CHANGE SIGNAL 

IN DEEP-WATER TEMPERATURES 

by Luke A. Winslow, Jordan S. Read, Gretchen J.A. Hansen, Paul C. Hanson 
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A.1 TEMPERATURE TRENDS ACROSS SEASONS 

 While the focus of this manuscript is on a broad-scale examination of water temperature 

trends in lakes, the variability of individual lake responses and how temperature trends may 

differ seasonally are important to consider. This variability is of interest from a mechanistic 

perspective, and also in how it may affect the performance of the cross-site, seasonal Sen’s slope 

method. Here, we present further exploration into the seasonal and cross-site patterns of 

temperature trends in Wisconsin lakes.  

A.1.1 SEASONAL TRENDS 

 As seasonal Sen’s slope can be affected by seasonal differences in trends [Hirsch et al., 

1982], we examined our dataset to see if seasonality in trends could introduce bias into the 

overall results. We plotted trends grouped by week of the year (Figure S1 and found no 

discernable seasonal pattern in trend. The large uncertainties and extreme values in the early and 

late year trends are likely due to the small number of observations in these seasons and should be 

ignored. Throughout the rest of the year, there is no clear season or month with clearly different 

trends that would affect the overall results presented. Further work is required to understand the 

specific drivers of the temperature trends and why they are so seasonally consistent. 

A.1.2 MONTHLY AIR AND WATER TEMPERATURE CHANGES CORRELATED 

 Inter-annual climate variability offers a natural gradient temperature to help understand 

how these lakes respond to climate variability. To determine how inter-annual variability in air 

temperatures within specific seasons correlated with inter-annual variability in water 

temperatures within seasons and across different depths, we built a month-specific, inter-annual 

variability comparison. 
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 Because our data are span many different lakes, we could not simply correlate annual 

water temperature with air temperature and instead built the analysis around our cross-site 

seasonal Sen’s slope method. We tested how the inter-annual variability month-specific water 

temperatures correlated with the inter-annual variability of month-specific water temperatures 

(e.g., how differences in June water temperatures correlated with differences in June air 

temperatures). To do this, we used monthly mean air temperatures for the state of Wisconsin and 

calculated paired-sample slopes for each month for all permutations of years. For the lakes, we 

used our calculated paired-sample slopes, split them into shallow water and deep water slopes 

using a relative depth cutoff of 0.5 and further split them into large and small lakes by an area 

cutoff of 0.3 km
2
. For each group, the month-specific, inter-annual water temperature slopes 

across all lakes was joined with the inter-annual air temperature slopes. This allowed us to 

examine how inter-annual variability in air temperature for any month of the year predicts the 

inter-annual variability in water temperature for any month. For example, inter-annual variability 

in air temperature in March was correlated with variability in water temperature for months 

March to December to see if water temperature variability in later months is predicted by March 

air temperatures. For each pair of months, the Pearson’s correlation coefficient was calculated 

and plotted on a grid with color indicating the strength of correlation. The correlation direction 

was ignored. 

 The inter-annual air and water temperature analysis highlighted several important points. 

First, surface water temperatures across examined large and small lakes are generally driven by 

immediate, month-to-month climate (Figure S2a-b). The strong correlations along the diagonal 

show that surface water variability is driven by the same month’s climate variability while 

previous months have little explanatory power. This is in contrast to findings from Lake 
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Superior, showing strong correlation between springtime ice conditions and summertime 

temperatures [Austin and Colman, 2007]. Our results suggest that the surface water temperatures 

in these lakes have little thermal inertia and respond relatively quickly to changing 

meteorological drivers.  

 While surface waters show little memory, bottom water temperatures in large lakes show 

substantial memory of springtime conditions (Figure S2c). Air temperature variability in the 

months of both March and April shows considerable influence on bottom-water temperatures. 

This influence extends through the stratified period. Conversely, air temperature variability has 

little influence on bottom water temperatures during the commonly stratified period (May to 

August). This confirms long-understood concepts of physical limnology (Some classic 

references). Lastly, small-lake bottom water temperatures show little correlation with climate 

variability of any month (Figure S2d). The lack of connectedness to climate helps explain the 

lack of climate signal shown in the manuscript’s analysis. 

A.2 CROSS-LAKE TRENDS 

 The analysis presented in this manuscript aggregates observations from a large number of 

lakes to focus on broad-scale, cross-lake pattern and does not focus on patterns in any individual 

lake. Despite the broad-scale focus, showing individual-lake trends and presenting detail on a 

small number of well-studied lakes helps present the pattern seen at the broad scale.  

 Figure S3 shows the depth-specific trends for three lakes with almost three decades of 

consistently sampled and calibrated water temperature data from the North Temperate Lakes 

Long Term Ecological Research group. In the two large-lake examples (Figure S3a-b), the 

median temperature change is consistent across depths, with an overall median value of 0.046 °C 
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yr
-1

 for Trout Lake (a) and 0.05 °C yr
-1

 for Sparkling Lake (b). For the lake under 0.5 km
2
, 

Crystal Lake (c), the trend was similar in the surface waters, changing towards a trend of 0 

between depths of 9 to 12 meters. Overall median trend of Crystal lake is 0.018 °C yr
-1

, though 

this value is the combination of the steeper trends in shallow waters and near-zero trends in deep 

waters. Splitting the lake into shallow and deep waters, the median trend for shallow depths (< 

9m) and for deep depths (> 12m) are 0.05 and 0 °C yr
-1

 respectively. The deviation in trend in 

Sparkling lake (Figure S3b) between depths of 7 to 10 meters corresponds with the generally 

observed thermocline depth and may indicate a deepening trend in upper mixed layer of the lake, 

though we did not explore it in detail. 

 Calculating lake-specific trends for all 142 lakes is challenged by the heterogeneous 

nature of the dataset. While some of the lakes are very consistently sampled throughout the 

season, others have observations for only one or two times in the year. These lakes with low 

numbers of observation yielded highly variable median trends. Figure S4 shows a map of the 

lakes in the analysis and uses color to indicate median overall temperature trend. Lake specific 

trends were highly variable (25% and 75% quantiles: -0.027 and 0.187) and included lakes with 

both positive and negative trends. The 39 lakes with large numbers of observations (large circles) 

showed more constrained lake-specific trends (25% and 75% quantiles:  0.006 and 0.1 °C yr
-1

) 

than all 142 lakes, though the median trend was the same for both groups. This large variability 

in lake-specific trends shows how the cross-site seasonal Sen’s slope method allowed us to use 

more of the dataset for the overall trend analysis than would have been possible if trends were 

calculated at the individual lake scale.  
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A.4 FIGURES 

 

Figure S1: Median paired-value slopes grouped by the week of the year. Lines show 95% 

confidence intervals calculated using the method described by [Hirsch et al., 1982].The 

winter and late fall edges of the year have fewer observations and show higher variability 

in the medians. 
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Figure S2: Relationship between inter-annual variability in water temperature (x-axis) and 

state-wide air temp (y-axis). (a-b) Show shallow water temperatures while (c-d) show 

bottom water temperatures. Darker red indicates strong correlation while yellow/blue 

indicates weak or no correlation. Direction of correlation is not shown. 
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Figure S3: Median paired-sample slope trends grouped by relative depth for two exemplar 

lakes. (a) Shows trends from Trout Lake (area: 15.6 km
2
, average Secchi: 4.7 m), (b) 

Sparkling Lake (area: 0.6 km
2
, average Secchi: 6.2 m) and (c) Crystal Lake (area: 0.4 km

2
, 

average Secchi: 7.5 m). All lakes are from the North Temperate Lakes, Long-Term 

Ecological Research site, are in close proximity (within 20 km) and have routinely sampled 

and calibrated observations spanning 30 years from 1985 to 2014. 
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Figure S4: Map of lake-specific temperature trends. Small points are lakes with less than 

3,000 paired-sample slopes. Large points are lakes with greater than 3,000 paired-sample 

slopes. Grey points are lakes with median trends that fell outside of ± 0.5 °C yr-1. 
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