
G R A P H - B A S E D M O D E L I N G A N D S I M U L AT I O N O F
C Y B E R - P H Y S I C A L S Y S T E M S

by

jordan h. jalving

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Chemical Engineering)

at the

UNIVERSITY OF WISCONSIN-MADISON

2020

Date of final oral examination: July 10, 2020

The dissertation is approved by the following members of the Final Oral Committee:

Victor M. Zavala, Associate Professor, Chemical and Biological Engineering
Reid Van Lehn, Assistant Professor, Chemical and Biological Engineering
Ophelia Venturelli, Assistant Professor, Chemical and Biological Engineering
James Luedtke, Professor, Industrial and Systems Engineering

c© Copyright by Jordan H. Jalving 2020

All Rights Reserved

i

To the most amazing dog. The one, the only, Cash Monroe.

ii

A C K N O W L E D G M E N T S

I would like to acknowledge everyone who inspired and helped me in the pursuit of a
doctoral degree. First and foremost, I thank my advisor, Prof. Victor M. Zavala for his
guidance and support all these years. There were many instances throughout my time
here where my focus strayed heavily into tangential software development activities and
Victor kept me grounded in the important research questions (which ultimately produced
better software).

I would like to acknowledge everyone in the Zavalab research group for all of their sup-
port and friendship over these last five years. I would particularly like to thank Apoorva
Sampat and Ranjeet Kumar for spending all the late nights in the office with me working
on model predictive control assignments. I would also like to thank Prof. Alex Dowling
and Prof. Yankai Cao for their mentorship early on in the program for which I would
have struggled considerably without. I am certainly grateful for having the chance to col-
laborate with Sungho Shin who provided tremendous help in creating new optimization
solvers and helping me to better develop my own research.

I am also grateful for the valuable input from my defense committee: Prof. Reid Van
Lehn, Prof. Ophelia Venturelli, and Prof. Jim Luedtke. I continue to find new interesting
research topics related to this thesis and their input was extremely helpful towards com-
ing up with new future research ideas.

During my time at UW-Madison, I received considerable help and support from my col-
laborators at Argonne National Laboratory. In that regard, I would like to acknowledge
Kibaek Kim for his mentorship during my summer spent there and for helping to produce
the initial prototype of the Plasmo.jl software package. I would also like to acknowledge
Eric Tatara for his valuable input in the application of Plasmo.jl for infrastructure mod-
eling, as well as Charles Macal and Megan Clifford for their continuous support to further
develop the Plasmo.jl platform.

I thank all of my family members for being supportive during my time here. I especially
thank my older brother Jonathan for being a continuous role model throughout my life
and for convincing me to pursue a doctoral degree despite my original resistance to do
so. I would also like to thank my work mentor Dr. Timothy Laska for getting me inter-

iii

ested in research and computation before I attended graduate school. Before I met Tim, I
had no idea what research really was and I would never have pursued a PhD if it wasn’t
for his influence and support.

This doctoral degree was funded by awards from both the National Science Foundation
and the Department of Energy. I gratefully acknowledge the financial support from U.S.
Department of Energy (DOE), Office of Science, under Contract No. DE-AC02-06CH11357

and the DOE Office of Electricity Delivery and Energy ReliabilityâĂŹs Advanced Grid
Research and Development program at Argonne National Laboratory. I am also grateful
for the financial support from the National Science Foundation under award NSF-EECS-
1609183.

Most of all, I thank my strongest supporters – Cash the dog and Marilyn my fiancée – for
supporting me through the entirety of my time in Madison while living 1,525 miles away
in Miami. Those warm sun-filled visits kept me going through the coldest Wisconsin
winters.

Jordan H. Jalving
Madison, WI

July 2020

iv

C O N T E N T S

list of figures viii

list of tables xii

abstract xiii

1 introduction 1
1.1 Cyber-Physical Systems . 1

1.2 Prominent Modeling and Simulation Approaches 4

1.2.1 Modeling Physical Aspects . 4

1.2.2 Modeling Cyber Aspects . 5

1.3 Research Objectives . 5

1.4 Thesis Overview . 6

1.5 Graph Notation . 7

2 graph-based modeling for physical systems 9
2.1 Introduction . 9

2.2 OptiGraphs . 12

2.2.1 Representation . 12

2.2.2 Model and Data Management . 13

2.2.3 Hierarchical Graphs . 15

2.3 Software Framework: Modeling with Plasmo.jl 17

2.3.1 Basic Syntax . 17

2.3.2 Hierarchical Modeling Syntax . 21

2.3.3 Overview of Modeling Functions . 26

2.4 Case Study: State Estimation in a Natural Gas Network 26

2.4.1 Problem Overview . 27

2.4.2 OptiGraph Modeling Approach . 30

2.4.3 State Estimation Results . 34

2.4.4 Model Reduction . 37

2.4.5 Model Reduction Results . 38

v

3 decomposing optimization problems 41
3.1 Introduction . 41

3.2 Partitioning and Manipulating OptiGraphs 47

3.2.1 Hypergraph Partitioning . 47

3.2.2 OptiGraph Manipulation . 50

3.3 Algorithms . 50

3.3.1 Linear Algebra Decomposition . 51

3.3.2 Overlapping Schwarz Decomposition 54

3.4 Software Framework: Decomposition with Plasmo.jl 57

3.4.1 Partitioning a Dynamic Optimization Problem 59

3.4.2 Using Graph Topology Functions . 63

3.5 Case Study: Decomposition of a Natural Gas Optimal Control Problem . . 65

3.5.1 Problem Setup . 65

3.5.2 Modeling and Partitioning . 68

3.5.3 Results . 72

3.6 Case Study: Overlapping Domain Decomposition of a DC Power Grid . . . 72

3.6.1 Problem Setup . 73

3.6.2 Modeling, Partitioning, and Expansion 74

3.6.3 Results . 75

3.7 Appendix: DC OPF OptiGraph Implementation 77

4 modeling large-scale infrastructure systems 79
4.1 Introduction . 79

4.2 Natural Gas Optimization Model . 81

4.3 Case Study: Coordinated Gas and Electric Systems 83

4.3.1 Problem Overview . 83

4.3.2 Implementation . 86

4.3.3 Results . 86

4.4 Case Study: Space-Time Decomposition of a Large-Scale Natural Gas Net-
work . 88

4.4.1 Problem Overview . 88

4.4.2 Implementation . 89

4.4.3 Results . 91

4.5 Comparison with Simulation-Based Approaches 93

4.5.1 Simulation-Based Optimization . 94

4.5.2 Direct Transcription Optimization . 95

4.5.3 Hybrid SB-DT Optimization . 96

4.6 Case Study: Hybrid Optimization for a Large-Scale Natural Gas Network . 98

4.6.1 Problem Overview . 98

4.6.2 Implementation . 99

4.6.3 Results . 100

vi

5 graph-based modeling for cyber systems 104
5.1 Introduction . 104

5.2 Computing Graphs . 105

5.2.1 Representation . 105

5.2.2 Connections with OptiGraphs . 107

5.2.3 State-Space Description . 108

5.2.4 Task Scheduling and Timing . 112

5.3 Software Framework: PlasmoCompute.jl . 113

5.3.1 Overview of Modeling Functions . 113

5.3.2 Example: Simulating Centralized Control of a Reactor System . . . 114

5.4 Case Study: Simulating Cooperative Control 116

5.4.1 Problem Setup . 117

5.4.2 Implementation . 118

5.4.3 Results . 120

5.5 Appendix: Reactor System Study Model . 124

5.5.1 Model Equations . 124

5.5.2 Simulation Tasks . 126

6 distributed algorithm simulation 128
6.1 Introduction . 128

6.2 Distributed Optimization and Machine Learning 129

6.2.1 Distributed Benders Decomposition 130

6.2.2 Distributed Stochastic Gradient Descent 134

6.3 Case Study: Simulating Distributed Benders Decomposition 139

6.3.1 Problem Overview . 139

6.3.2 Implementation . 140

6.3.3 Results . 142

6.4 Case Study: Simulating Stochastic Gradient Descent Variants 143

6.4.1 Problem Overview . 144

6.4.2 Implementation . 145

6.4.3 Results . 146

6.5 Appendix: Case Study Models . 150

6.5.1 Benders Case Study Model . 150

6.5.2 Stochastic Gradient Descent Implementation 154

7 conclusions and future directions 157
7.1 Contributions . 157

7.2 Future Research Directions . 159

A natural gas network models 163
A.1 Model Nomenclature . 163

A.1.1 Sets . 163

A.1.2 Parameters . 164

vii

A.1.3 Variables . 165

A.2 Junctions . 166

A.2.1 Model Equations . 166

A.2.2 Junction OptiGraph . 167

A.3 Compressors . 168

A.3.1 Model Equations . 168

A.3.2 Compressor OptiGraph . 170

A.4 Pipelines . 171

A.4.1 Model Equations . 171

A.4.2 Approximate Euler Pipeline OptiGraph 177

A.5 Network Connections . 178

A.5.1 Model Equations . 179

A.5.2 Network OptiGraph . 179

bibliography 181

viii

L I S T O F F I G U R E S

1.1 Representation of a cyber-physical system. 2

1.2 Depiction of complexity that arises in modeling complex physical systems. . . 3

1.3 Depiction of complexity that arises in modeling complex cyber systems. 4

1.4 Graph representations. A simple graph (left) with three nodes and three sim-
ple edges. A hypergraph (middle) with three nodes, three edges and one
hyperedge. A multigraph (right) with three nodes and five directed edges. . . 8

2.1 Representation of a simple OptiGraph. The depicted OptiGraph contains three
OptiNodes connected by four Optiedges . 13

2.2 Depiction of Model and Data Management Functions with an OptiGraph. . . . 15

2.3 Example hierarchical OptiGraphs. In the left figure, the subgraphs are coupled
through the global edge e0. In the right figure the subgraphs are coupled to
the global node n0. 17

2.4 Output visuals for Code Snippet 2.1. Graph topology obtained with plot func-
tion (left) and graph matrix representation obtained with spy function (right). 20

2.5 Output visuals for Code Snippet 2.3 showing hierarchical structure of an OptiGraph
with three subgraphs connected by a global edge. 24

2.6 Output visuals for Code Snippet 2.4 showing hierarchical structure of an OptiGraph
with three subgraphs connected by a global node. 25

2.7 Multi-pipeline system used for state estimation problem. 28

2.8 Modeling the multi-pipeline system with an OptiGraph. 31

2.9 Simulated transient. Demand step (top), flow profiles (middle), and pressure
profiles (bottom). 32

2.10 State estimation setup for multi-pipeline system. 33

2.11 Estimation error with N = 2 for no prior information (I) (left), no initial prior
information (II) (middle), and initial steady-state prior (III) info (right). 35

2.12 Comparison of simulated flow profile (top) and reconstructed state with N = 2
using no-initial-prior (II) (middle) and the steady-state prior (III) (bottom) . . . 36

2.13 Swapping out models in the multi-pipeline system. 37

2.14 Error profiles for estimator with different model approximations for N = 10.
Quasi-static (left), Approximate Euler (middle), and Full Euler (right). 39

2.15 Computational performance for model approximations. 40

ix

3.1 Depiction of a regional natural gas system and possible partitions of the corre-
sponding optimal control problem. The network layout of the system (left), the
system split into eight network partitions (middle), and the system represented
by three time partitions (right). 44

3.2 Depiction of unfolded natural gas system optimal control problem. Space un-
folding of the optimal control problem (left) and space-time unfolding of the
optimal control problem with 24 time periods (right). 45

3.3 Network topology of coupled gas and electric systems (left), the space repre-
sentation of the optimal control problem (middle), and the space-time repre-
sentation of the coupled optimal control problem with 24 time periods (right).
The gas and electric systems are colored red and blue respectively. 46

3.4 Typical graph representations used in partitioning applications. A hypergraph
(left) can be projected to a standard graph (middle) or a bipartite graph (right). 49

3.5 Depiction of the core OptiGraph partitioning capabilities. (Left) A partition
with nine OptiNodes, (middle) the corresponding OptiGraph containing three
subgraphs, and (right) the subgraphs aggregated into three new OptiNodes. . 49

3.6 Depiction of topology-based OptiGraph manipulation capabilities. (Left) query-
ing incident edges to a subgraph, (middle) querying a subgraph neighborhood,
and (right) expanding a subgraph. 50

3.7 An OptiGraph expressed as a block structure (left) and an OptiGraph with
subgraphs which induces a nested block structure (right) 51

3.8 Depiction of Schwarz Algorithm. The original graph containing two subgraphs
(SG1 and SG2) connected by edge e2 (left), and the graph with expanded sub-
graphs (SG ′1 and SG ′2) (right). The expanded subgraphs overlap at nodes n3

and n4. 58

3.9 Output visuals for Code Snippet 3.1 showing graph structure of dynamic op-
timization problem. 61

3.10 Output visuals for Code Snippet 3.2 showing partitions and reordering of dy-
namic optimization problem. 62

3.11 Output visuals for Code Snippet 3.4 showing aggregated graph of dynamic
optimization problem. 64

3.12 Output visuals for Code Snippet 3.5 showing overlapping subgraphs of dy-
namic optimization problem. 66

3.13 Multi-pipeline system depiction for optimal control problem. 67

3.14 Unfolding gas network components. 68

3.15 Graph depictions of optimal control problem. The unfolded components (top)
with blue junctions, green compressors, and grey pipelines. The partitioned
hypergraph (bottom) colored with 13 distinct partitions. 70

3.16 Computational times for the solution of unstructured gas pipeline formulation
with Ipopt and for the solution of the structured formulation using PIPS-NLP. 72

3.17 Depiction of DC OPF problem with four partitions. The original calculated
partitions with εmax = 0.1 (left) and the corresponding overlap partitions with
ω = 10 (right). 76

x

3.18 Comparison of Schwarz algorithm for different values of overlap ω and maxi-
mum partition imbalance εmax . 76

4.1 Depiction of Large-Scale Gas Network . 81

4.2 Coupled gas and electric infrastructure systems. The red network corresponds
to the natural gas system and blue network corresponds to the power grid
system. 85

4.3 Sample generator gas demands (blue) and realized gas delivery (green) for
uncoupled setting (I), data exchange setting (II), and fully coupled setting (III). 87

4.4 Graph depictions of the natural gas network optimal control problem. The
graph is colored by the physical network components (top left), by 8 time
partitions (top right), by 8 network partitions (bottom left), and by 8 space-
time partitions (bottom right). 90

4.5 Partitioning results with 48 partitions. Imbalance versus the number of linkcon-
straints and final imbalance (left) and the distribution of subproblem sizes for
select imbalance parameters (right). 92

4.6 Representation of information exchanged in one iteration of a simulation-
based optimizer. 95

4.7 Representation of iterations performed using direct transcription with an interior-
point solver such as Ipopt. 96

4.8 Depiction of information exchange between an OptiGraph and a simulation-
based optimizer. 97

4.9 Select forecasted demand profiles used for hybrid optimization study. The true
(high-resolution) demands (solid green lines) and approximate (coarsened) de-
mands (dashed blue lines). 100

4.10 Comparison of pressure violations. 101

4.11 Comparison of path profiles for DT-NLP (dashed blue lines) and Hybrid-NLP
(solid green lines) strategies for select compressors. 102

4.12 Verification of discrete compressor decisions using hybrid strategy for select
compressors. 103

5.1 Depiction of a ComputingGraph with three nodes and six edges. Node n1 com-
putes taskn1 using the data attributes (x, y, and z) and updates the value of
attribute y. Similarly, node n2 computes taskn2 and updates attribute x, and
node n3 computes taskn3 and updates attribute z. Attribute values are commu-
nicated between nodes using edges. 107

5.2 A simple state machine with three states (x1, x2, x3), three action signals (u1, u2, u3),
and five possible state transitions. 109

5.3 Implementation of a node manager Mn (left) and an edge manager Me (right).
Action signals trigger transitions between states and can include transitions
that return to the same state. 112

5.4 An example execution of the ComputingGraph in Figure 5.1. Computing times
and communication delays are captured using action signals. 113

xi

5.5 Reactor separator process and partitioning into MPC controllers. 117

5.6 Simulated MPC architectures: centralized (left), decentralized (middle) and
cooperative (right). 118

5.7 Simulation results for MPC architectures. Centralized MPC converges to the
set-point despite the computing delays (top panels). Decentralized MPC does
not converge to the set-point (middle panels). Cooperative MPC exhibits com-
munication complexity but converges to the centralized MPC solution (bottom
panels). 122

5.8 Simulation results for cooperative MPC failures. Cooperative MPC converges
to the set-point despite long computing delays (top panels). Cooperative MPC
stabilizes the system after MPC1 loses communication with MPC2 and MPC
3 (middle panels). Cooperative MPC stabilizes the system after MPC1 fails
(bottom panels). 123

6.1 Hypothetical computing architecture executing Benders decomposition. CPU
4 executes the solution of the Benders master problem and receives solutions
from the subproblems. CPUs 1, 2, and 3 execute the solution of the scenario
subproblems. 133

6.2 Topology of simulated architecture for stochastic gradient descent. The server
node updates parameters given evaluated gradients. The learner nodes com-
pute gradients given a current set of parameters and data. 135

6.3 Simulation of Benders decomposition using different numbers of CPUs (top
panel shows one CPU while bottom panel shows sixteen CPUs). Red tasks
correspond to the master problem execution time, grey tasks represent sub-
problem execution time and orange dots represent the receive_solution task
which is simulated with zero computing time. 143

6.4 Samples of MNIST data set images corresponding to the digits 0,1,4,5, and 9. . 144

6.5 Communication patterns and convergence results of different stochastic gradi-
ent descent algorithmic variants. 148

6.6 Comparison of algorithmic variant performance for stochastic gradient descent. 149

xii

L I S T O F TA B L E S

2.1 Overview of OptiGraph construction and management functions in Plasmo.jl. 26

2.2 Estimator Parameters and Variables . 29

3.1 Overview of core partitioning and topology functions in Plasmo.jl. 59

4.1 PIPS-NLP results for different problem partitions 93

4.2 Overview of Hybrid Optimization Results . 101

5.1 Overview of ComputingGraph construction and management functions in Plas-
moCompute.jl. 114

5.2 Target steady-state and parameters for reactor-separator system 125

5.3 Initial conditions for simulation of reactor-separator system 126

A.1 Sets . 164

A.2 Parameters and units . 165

A.3 Variables and units . 166

xiii

A B S T R A C T

This dissertation presents new computational abstractions to model complex behaviors
in cyber-physical systems. The need to model cyber-physical systems is becoming in-
creasingly important, but capturing their underlying behavior in a coherent fashion is
technically challenging. Physical aspects of cyber-physical systems are described by alge-
braic equations that contain complex dependencies, and cyber aspects are described by
algorithms that require capturing complex communication topologies and computational
timings.

To address these challenges, this dissertation first presents a new algebraic modeling
framework called the OptiGraph. The OptiGraph captures physical connectivity in com-
plex optimization (physical) models, enables the construction of hierarchical optimiza-
tion structures, and facilitates systematic modeling and manipulation capabilities. The
OptiGraph also facilitates the decomposition of complex optimization problems which
enables the exploitation of advanced parallel optimization solvers and algorithms.

Next, this dissertation presents a new modeling abstraction to capture cyber aspects
called the ComputingGraph. The ComputingGraph captures complex cyber behaviors such
as latency and asynchronous communication which can be used to evaluate the per-
formance of various distributed control algorithms that execute in real-time subject to
delays and failures. The ComputingGraph can also be used to simulate and benchmark
distributed algorithms which run on heterogeneous computing architectures.

The proposed abstractions are scalable and are used as the backbone of open-source
Julia-based software packages called Plasmo.jl (which implements the OptiGraph) and
PlasmoCompute.jl (which implements the ComputingGraph). With the developed pack-
ages, this dissertation tackles challenging problems that include the optimization of large-
scale infrastructure systems, the evaluation of complex distributed control architectures,
and the simulation of distributed optimization and machine learning algorithms.

1

Chapter 1
I N T R O D U C T I O N

In this chapter, we present the overall objectives of the considered research problem. We

introduce cyber-physical systems and discuss the primary challenges that arise in model-

ing such systems. We also summarize existing modeling paradigms that target different

aspects of cyber-physical systems and present new graph-based modeling concepts. We

finally provide some background information and graph terminology used throughout

the dissertation.

1.1 Cyber-Physical Systems

Emerging problems in complex systems are becoming more cyber-physical in nature, in

the sense that a physical system is driven by decisions made by a cyber (or computing)

system [81]. As an example, a chemical process can be considered a physical system

that is driven by decisions made by a control system, which is in turn a cyber system

comprised of devices (e.g., sensors, controllers, actuators) that execute diverse computing

tasks (e.g., data processing and control action computation) and that exchange signals

and data (e.g., measurements and actions) through a communication network. As an-

other example, consider Figure 1.1 which realizes a cyber-physical system that consists of

a physical natural gas network that is driven by a distributed control system. In this de-

piction, the natural gas system is comprised of physical equipment (pipelines, junctions,

2

and compressors) and is driven by a cyber system comprised of three control systems

that exchange information and drive the gas network through control signals. The de-

vices that execute the tasks of a control system form a computing architecture, similar in

spirit to a parallel computing cluster in which processors are connected through a com-

munication network. Modeling and simulating the behavior of cyber-physical systems is

Control System

signals

controls

controls

controls

Physical System Cyber System

signals

signals

data

data

Control System

Control System

Figure 1.1: Representation of a cyber-physical system.

becoming increasingly important but it is technically challenging. In particular, emerging

paradigms such as distributed and high performance computing are drastically changing

the landscape of decision-making architectures driven by the need to process increasingly

larger amounts of data in a distributed manner while making decisions faster and in a

more scalable manner. Cyber-physical architectures also need to balance diverse issues

3

such as economic performance, safety, data privacy, as well as computing and communi-

cation latency and failures. For instance, failure of a computing device (e.g., a sensor) can

lead to significant losses in performance or to full collapse of the physical system.

Much of the challenge in modeling and simulating cyber-physical systems arises from

their underlying physical and cyber elements which are difficult to capture in a coherent

way. For instance, the behavior of a physical system is expressed in the form of algebraic

equations while the behavior of a cyber system is expressed mathematically in the form

of algorithms. In the case of realistic large-scale systems, the physical equations can pro-

duce complex space-time dependencies which are difficult to manage and exploit. For

instance, the left side of Figure 1.2 depicts a seemingly straightforward physical system

to model (a line through time), but the underlying algebraic structure on the right re-

veals considerable complexity. Moreover, in modeling a cyber system, one must consider

the fact that algorithms are executed under highly heterogeneous and dynamic comput-

ing architectures that exhibit complex computing and communication protocols and logic

(e.g., synchronous and asynchronous) and associated time delays [80] such as depicted in

Figure 1.3.

Space-Time Physical System Space-Time Algebraic Structure

Figure 1.2: Depiction of complexity that arises in modeling complex physical systems.

4

Control System 2 Control System 3

Control System 1

Physical
System

Cyber System Topology

1

Physical System

2

3

Time

Cyber System Timings

Figure 1.3: Depiction of complexity that arises in modeling complex cyber systems.

1.2 Prominent Modeling and Simulation Approaches

This dissertation ultimately presents new graph-based modeling abstractions that target

the modeling and simulation of cyber-physical systems. Graph-based representations

(such as pictured in Figure 1.4) have appeared in diverse modeling platforms over the

last few decades owing to their flexible approach for representing complex structures

and relationships.

1.2.1 Modeling Physical Aspects

In the context of modeling and optimization over physical systems, graph-based abstrac-

tions are promising because they provide a flexible modeling paradigm to analyze com-

plex structures and they facilitate model processing and manipulation tasks. For example,

early chemical process modeling utilized sequential modular and equation-based flow-

sheeting tools which used graph-theoretical insights to express equations in a modular

form and to facilitate object-oriented software implementations, analysis, and algorithmic

development [133]. Such developments are the basis of powerful simulation environments

such as Ascend [101], AspenPlus, and gPROMS [40]. Graph-theoretical concepts have also

been widely used for expressing and processing algebraic models in platforms such as

5

AMPL [47], GAMS [33], AIMMS [17], CasADi [9], JuMP [37], and Pyomo [59]. The Modelica

[48] simulation platform also uses graph concepts such as modularity and inheritance to

instantiate and simulate complex systems.

1.2.2 Modeling Cyber Aspects

In the context of modeling and simulating cyber systems, the most popular framework

is by far Simulink [89]. Simulink uses graph concepts to express cyber systems with

blocks of operators which represent computing tasks and are connected by communica-

tion channels between input and output ports. Simulink provides a consistent representa-

tion of the dynamics that arise in cyber systems but it is challenging to create large-scale

models. Agent-based modeling platforms can also be used to simulate cyber systems;

under this abstraction, agents make decisions and communicate under channels [86] in

the same spirit as information flow in a graph. Popular agent-based simulation tools

include RePast [96, 30], MASON [85], and Swarm [92]. Agent-based platforms often target

scalable model development, but it is often challenging to capture the timing aspects that

arise in cyber systems (e.g. latency and delays) using agent-based approaches. Popular

agent-based simulation tools include RePast [96, 30], MASON [85], and Swarm [92].

1.3 Research Objectives

As discussed, graph concepts pervade many powerful modeling paradigms and frame-

works and graph-based modeling is promising for its ability to manage and analyze the

complexity that arises in cyber-physical systems. While the aforementioned physical and

cyber modeling tools exploit such graph concepts to facilitate their implementation, they

do not use a coherent abstraction, which is key to extensibility. Consequently, typical

abstractions are implemented in ad-hoc fashion and/or target very specific engineering

domains such as control systems, networks, and chemical processes.

This dissertation introduces new graph-based abstractions that facilitate the diverse

6

modeling and simulation approaches needed to model complex cyber-physical systems.

To this end, we seek to develop general abstractions to model cyber-physical systems that

are intuitive and extensible. More specifically, we propose the concept of an OptiGraph

to facilitate modeling of optimization problems over physical systems and the concept

of a ComputingGraph to facilitate the simulation of cyber systems. The graph abstrac-

tions exploit physical and communication topologies to facilitate model construction, data

management, and analysis.

With our goal to introduce powerful new modeling abstractions, this dissertation seeks

to accomplish the following objectives:

• to present the novel graph-based abstraction called the OptiGraph to model opti-

mization problems over complex physical systems

• to introduce the ComputingGraph abstraction to capture computation and commu-

nication aspects to simulate cyber systems

• to present the open-source software frameworks Plasmo.jl and PlasmoCompute.jl

which implement the OptiGraph and ComputingGraph abstractions and show such

abstractions facilitate extensible modeling syntax

• to provide detailed case studies that demonstrate the above abstractions in challeng-

ing problems in infrastructure optimization and distributed algorithm simulation

1.4 Thesis Overview

This dissertation is organized as follows. We first introduce and highlight the capabilities

of the OptiGraph abstraction in Chapters 2 and 3. In Chapter 2 we present the OptiGraph

representation and show how it can model complex optimization problems in physical

systems and perform data and model manipulation tasks. We also introduce the corre-

sponding software Plasmo.jl and provide a challenging state estimation case study for

a natural gas network to demonstrate the presented modeling capabilities. In Chapter 3

7

we present decomposition capabilities with the OptiGraph and Plasmo.jl. We show how

the OptiGraph is a natural interface to use partitioning tools to decompose optimization

problems and interface with advanced decomposition-based optimization solvers.

Next, Chapter 4 discusses large-scale optimization approaches in infrastructure net-

works and presents challenging case studies. This chapter utilizes OptiGraph concepts to

model a large-scale coupled infrastructure problem, and to decompose the inherent space-

time structure in an optimal control problem. This chapter also shows how the OptiGraph

facilitates the creation of interfaces with high-fidelity simulation tools and provides a case

study that combines the presented optimization approaches with a mature commercial

simulator.

Chapter 5 introduces the ComputingGraph to model and simulate computing and tim-

ing aspects that arise cyber systems. This chapter also introduces the associated software

framework PlasmoCompute.jl and provides a case study that shows how to simulate real-

time model predictive control architectures and study computational and communication

failures.

Finally, Chapter 6 uses ComputingGraph concepts with PlasmoCompute.jl to perform

distributed algorithm simulation. We discuss the challenges that arise in implementing

distributed optimization and machine learning algorithms, and show how different dis-

tributed algorithm variants can be developed and simulated with a ComputingGraph. We

close with Chapter 7 where we highlight major contributions and discuss future research

avenues in cyber-physical systems.

1.5 Graph Notation

Throughout this dissertation we commonly refer to graph concepts to express the pro-

posed abstractions. As such, it helpful to introduce background and notation which we

follow throughout each chapter. A graph G(N , E) is described by a collection of nodes

N and edges E . The set of nodes that belong to a specific graph G are denoted using the

8

(a) Graph (b) Hypergraph (c) Multigraph

Figure 1.4: Graph representations. A simple graph (left) with three nodes and three
simple edges. A hypergraph (middle) with three nodes, three edges and one hyperedge.
A multigraph (right) with three nodes and five directed edges.

syntax N (G) and the elements are denoted by the index n ∈ N (G). Similarly, the set of

edges that belong to G are denoted by E(G) the edge elements are given using e ∈ E(G).

The set of supporting nodes of an edge e (nodes that the edge connects) are denoted as

N (e) ⊆ N and the set of supporting edges for a node n (edges connected to the node)

are given by E(n) ⊆ E . In a standard graph, two nodes are connected by an edge e. For

example, nodes n1 and n2 are connected by the single edge e1 in the left panel of Figure

1.4. In a hypergraph, multiple nodes can be connected by a single edge. Hypergraphs

are useful for describing algebraic structures of systems. For example, the middle panel

in Figure 1.4 is a hypergraph that contains an edge e4 that connects all three nodes. In

a multigraph, multiple edges can connect two nodes (the supporting nodes N (e) may

correspond to more than one edge).

Connectivity between nodes and edges is usually expressed in terms of the incidence

matrix A ∈ R|N |×|E| (where the notation |S| for set S denotes its cardinality). For an

undirected standard graph we have An,e = 1 if n ∈ N (e) or e ∈ E(n). For a standard

undirected graph we have ∑n∈N An,e = 2 for all e ∈ E (because in a standard graph an

edge only has two supporting nodes). The degree of a node n is the number of edges

connected to the node and can be computed as deg(n) = |E(n)| = ∑e∈E |An,e|. The set

of nodes connected to node n (without counting self-loops) is denoted as N (n) and for a

standard graph we have that |N (n)| = |E(n)|.

9

Chapter 2

G R A P H - B A S E D M O D E L I N G F O R P H Y S I C A L S Y S T E M S

This chapter explores challenges that arise in creating optimization problems over com-

plex physical systems. We introduce a new graph-based modeling abstraction called the

OptiGraph which facilitates the flexible representation of optimization models and pro-

vides capabilities to manage complex creation, processing, and data management tasks.

We introduce the associated software framework called Plasmo.jl which implements the

OptiGraph abstraction and we showcase the presented capabilities with a case study in

state estimation.

2.1 Introduction

A key contribution of this dissertation is the introduction of the OptiGraph [69] as a new

modeling paradigm for optimization. At its core, the OptiGraph is a graph-based modeling

abstraction that facilitates the creation, processing, analysis, and decomposition of com-

plex optimization models using graph concepts. This abstraction stems from the idea that

an optimization model can be represented as a graph. Specifically, an optimization model

can be represented as a collection of algebraic functions (constraints and objectives) that

are connected via variables which naturally forms a graph. Such graph-based concepts

are not necessarily new; graph representations of optimization models are used in mod-

10

eling environments to perform automatic differentiation and model processing tasks [46].

The underlying graph structure of an optimization model is also implicitly communi-

cated to solvers in the form of sparsity patterns of constraint, objective, and derivative

matrices. However, these graph representations operate at a level of granularity that is

not particularly useful to a modeler.

Fundamentally, the OptiGraph extends from algebraic and object-oriented modeling

paradigms. In an optimization context, most modeling approaches adhere to an algebraic

modeling paradigm wherein a model is assembled by adding functions and variables

(e.g., using packages such as GAMS, AMPL, Pyomo, or JuMP). In contrast, the object-oriented

paradigm assembles models by adding blocks of functions and variables. The object-

oriented paradigm is widely used in engineering communities to perform simulation

using packages such as Modelica, AspenPlus, and gProms [48, 90, 36]. An important

observation is that object-oriented modeling more naturally lends itself to the expression

and exploitation of problem structures because the underlying graph is progressively

built by the modeler. For instance, packages such as AspenPlus use the underlying graph

structure induced by blocks to partition the model and communicate it to a decomposition

algorithm. In a sense, object-oriented modeling could be considered as a form of graph-

based modeling.

In an OptiGraph, an optimization model is treated as a hierarchical graph. At a given

level, a graph comprises a set of nodes and edges; each node contains an optimization

model (with variables, objectives, constraints, and data) and each edge captures connec-

tivity between node models. Importantly, the optimization model in each node can be

expressed algebraically (as in a standard algebraic modeling language) or as a graph

(which enables the creation of hierarchical graphs). This provides flexibility to capture

both algebraic and object-oriented modeling paradigms under the same framework. The

abstraction naturally exposes problem structure to algorithms and provides a modular

approach to construct models. Such modularization enables collaborative model build-

ing, independent processing of model components (e.g., automatic differentiation), and

11

data management. The OptiGraph can naturally capture a wide range of problem classes

such as stochastic optimization (a graph is a tree), dynamic optimization (a graph is a

line), networks (a graph is the network itself), PDE optimization (a graph is a mesh),

and multi-scale optimization (a graph is a meshed tree). Moreover, an OptiGraph can be

constructed by combining graphs from different classes (e.g., stochastic PDE optimiza-

tion). The OptiGraph is thus more general than graph-based abstractions that target spe-

cific problem classes such as network optimization and control [60, 71, 94, 127, 58]. The

OptiGraph also generalizes abstractions used in simulation packages such as Modelica,

AspenPlus, and gProms, which are tailored to specific physical systems. Finally, the hi-

erarchical nature of an OptiGraph can be communicated to decomposition solvers or the

graph can be collapsed into a standard optimization model that can be solved with off-

the-shelf solvers (e.g., Gurobi [57] or Ipopt [130]).

In the context of software, graph-based representations have been adopted in modeling

environments for specific problem classes. For instance, SnapVX [58] uses a graph topol-

ogy to formulate network optimization problems and solves them using the alternating

direction method of multipliers (ADMM) [20], DISROPT is a Python-based environment

that performs distributed network optimization [41], and DeCODe [8] automatically creates

graph representations of optimization models created with Pyomo and uses community

detection to find partitions for use with decomposition algorithms.

In the spirit of providing software that captures OptiGraph capabilities, this chapter

also presents the Julia-based package Plasmo.jl [68, 69]. Plasmo.jl provides model-

ing syntax to systematically create hierarchical graph models and integrates with the

algebraic language JuMP.jl [37] to facilitate the expression of connectivity between node

models. A key feature of Plasmo.jl is that it provides useful data processing capabilities

to facilitate model reduction tasks and re-use (e.g. for real-time optimization applications)

[66] and provides an interface to decomposition-based solvers (this is discussed more in

Chapter 3).

12

2.2 OptiGraphs

In this section we introduce the mathematical formulation of the OptiGraph and show

how it facilitates data and model management tasks over complex optimization problems.

2.2.1 Representation

The OptiGraph is composed of a set of OptiNodes N (each embedding an optimization

model with its local variables, constraints, objective function, and data) and a set of Op-

tiEdges E (each embedding a set of linking constraints) that capture coupling between

OptiNodes such as depicted in Figure 2.1. The OptiGraph is denoted as OG(N , E) and

contains the optimization model of interest. The OptiEdges E are hyperedges that con-

nect two or more OptiNodes which makes the OptiGraph adhere to an undirected hyper-

graph representation (i.e. the hypergraph in Figure 1.4b). Whenever clear from context,

we simply refer to the OptiGraph as graph, to the OptiNodes as nodes, and to OptiEdges

as edges. We denote the set of nodes that belong to OG as N (OG) and the set of edges as

E(OG). The topology of the underlying hypergraph is encoded in the incidence matrix

A ∈ R|N |×|E|, where the notation |S| denotes cardinality of set S . The neighborhood of

node n is denoted as N (n) and this is the set of nodes connected to n. The set of nodes

that support an edge e are denoted as N (e) and the set of edges that are incident to node

n are denoted as E(n).

The optimization model associated with an OptiGraph can be represented mathemat-

ically as:

min
{xn}n∈N (OG)

∑
n∈N (OG)

fn(xn) (Objective) (2.1a)

s.t. xn ∈ Xn, n ∈ N (OG), (Node Constraints) (2.1b)

ge({xn}n∈N (e)) = 0, e ∈ E(OG). (Link Constraints) (2.1c)

13

Figure 2.1: Representation of a simple OptiGraph. The depicted OptiGraph contains three
OptiNodes connected by four Optiedges

.

Here, {xn}n∈N (OG) is the collection of decision variables over the entire set of nodes

N (OG) and xn is the set of variables on node n. Function (2.1a) is the graph objective

function which is given by the sum of objective functions fn(xn), (2.1b) represents the

collection of constraints over all nodes N (OG), and (2.1c) is the collection of linking con-

straints over all edges E(OG). Here, the constraints of a node n are represented by the

set Xn while the linking constraints induced by an edge e are represented by the vec-

tor function ge({xn}n∈N (e)) (an edge can contain multiple linking constraints). Here we

assume that the graph objective is obtained via a linear combination of the node objec-

tives but other combinations are possible (e.g., to handle conflict resolution formulations

wherein nodes represent different stakeholders). In addition, we assume that coupling

between nodes arises in the form of complicating constraints but the definition of compli-

cating variables is also possible (coupling variables can always be represented as coupling

constraints via lifting procedures).

2.2.2 Model and Data Management

Besides model construction, there are several other key advantages of using the OptiGraph.

In particular, component models are isolated from the graph topology. A benefit of this

14

is that it is possible to apply automatic differentiation or convexification techniques (or

other processing techniques) to each component OptiNode n ∈ N (OG) separately, which

often results in computational savings. It is also possible to exchange component models

in a graph without altering the core topology. Moreover, model definitions remain local

to an OptiNode and it is thus possible to reuse a component model template in multiple

OptiNodes without having to alter definitions (which is not easy to do in algebraic mod-

eling languages such as AMPL or GAMS). This feature enables modularity and re-usability

and enables the implementation of models as parametric functions of data. To highlight

this, we consider the following model graph representation:

min
{xn}n∈N (OG)

∑
n∈N (OG)

fn(xn, ηn) (2.2a)

s.t. xn ∈ Xn(ηn), n ∈ N (OG), (2.2b)

ge({xn}n∈N (e)) = 0, e ∈ E(OG). (2.2c)

where ηn is an input data (attribute) vector associated with the model of node n. This

modularization approach also facilitates the implementation of warm-starting procedures,

which is key in control or estimation applications [66]. The output data (solution at-

tributes) structure inherits the structure of the OptiGraph, thus facilitating analysis and

post-processing.

Figure 2.2 visualizes some of the data management functions one might perform with

an OptiGraph. For instance, after creating (and solving) an OptiGraph, one could swap

out underlying OptiNode component models (blue lines in the figure), one could update

data which may inherently change the underlying model (red lines in the figure), or one

might use the partial solution of an OptiNode to warm-start a new optimization problem

(green lines in the figure).

15

Solution
Warm-Start

New Data

Swap out Model

 Updated
 OptiGraph

OptiGraph

Figure 2.2: Depiction of Model and Data Management Functions with an OptiGraph.

2.2.3 Hierarchical Graphs

A key novelty of the OptiGraph is that it can cleanly represent hierarchical structures.

This feature enables expression of models with multiple embedded structures and en-

ables modular model building (e.g., by merging existing models). To illustrate this,

consider we have the Optigraphs OG i,OG j each with their own local nodes and edges.

We assemble these low-level OptiGraphs (subgraphs) to build a high-level OptiGraph

OG({OG i,OG j},Ng, Eg). We use the notation OG(N , E) to indicate that the high-level

graph has nodes N = Ng ∪ N (OG i) ∪ N (OG j) and edges E = Eg ∪ E(OG i) ∪ E(OG j).

Here, Eg are global edges in OG (connect nodes across low-level graphs OG i,OG j but are

not elements of such subgraphs) and Ng are global nodes in OG (can be connected to

nodes in low-level graphs but that are not elements of such subgraphs). For every global

edge e ∈ Eg, we have that N (e) ∈ N (OG i), N (OG j), and Ng where N (OG i)∩N (OG j)∩

Ng = ∅. In other words, the edges Eg only connect nodes across low-level graphs OG i

and OG j or between global nodes Ng in OG and low-level graphs. Consequently, if we

16

treat the elements of a node set N as a graph (i.e., we combine subgraphs into a single

OptiNode), we can represent OG({OG i,OG j}, Eg,Ng) as OG(N , E). This nesting proce-

dure can be carried over multiple levels to form a hierarchical graph.

The formulation given by Equation (2.1) can be extended to describe a hierarchical

graph with an arbitrary number of subgraphs. This is shown in Equation (2.3) where we

again denote that {xn}n∈N (OG) represents the collection of variables over the entire set of

nodes in the OptiGraph. Equation (2.3a) denotes the sum of OptiNode objective functions

for every node in the graph (including nodes in subgraphs), Equation (2.3b) captures the

constraints over all of the OptiNodes in the graph, Equation (2.3c) represents the linking

constraints over the edges for each subgraph (including nested subgraphs) and Equation

(2.3d) captures the highest level global linking constraints. Here, we use the notation

SG ∈ AG(OG) to indicate that the subgraph elements SG are part of the recursive set

of subgraphs in OG (i.e., the set contains all subgraphs in the graph). Specifically, we

define the mapping AG : OG → {SG1,SG2,SG3, ...,SGN} where N is the total number of

subgraphs in OG.

min
{xn}n∈N (OG)

∑
n∈Ng(OG)

fn(xn) + ∑
SG∈AG(OG)

∑
n∈N (SG)

fn(xn) (2.3a)

s.t. xn ∈ Xn, n ∈ Ng(OG) ∪ {N (SG),SG ∈ AG(OG)} (Node Constraints) (2.3b)

ge({xn}n∈N (e)), e ∈ E(SG),SG ∈ AG(OG) (Subgraph Links) (2.3c)

ge({xn}n∈N (e)), e ∈ Eg(OG). (Graph Links) (2.3d)

Figure 2.3 depicts examples of graphs with subgraph nodes. In Figure 2.3a we have a

graph OG that contains three subgraphs SG1,SG2,SG3 with a total of nine nodes (three

in each subgraph). The graph OG contains a global OptiEdge that connects to local nodes

in the subgraphs. Figure 2.3b also shows a hierarchical graph OG with three subgraphs

SG1,SG2,SG3 and nine total nodes. This graph OG contains a global node n0 that is

connected to nodes in the subgraphs. This type of structure arises when there is a parent

17

(master) optimization problem that is connected to children subproblems.

(a) An OptiGraph with a global OptiEdge (b) An OptiGraph with a global OptiNode

Figure 2.3: Example hierarchical OptiGraphs. In the left figure, the subgraphs are coupled
through the global edge e0. In the right figure the subgraphs are coupled to the global
node n0.

2.3 Software Framework: Modeling with Plasmo.jl

We now find it informative to introduce Plasmo.jl, a graph-based modeling package

developed in the Julia language. Plasmo.jl implements the graph models described by

(2.1) and (2.3) and illustrated in Figures 2.1 and 2.3. This section covers basic syntax and

shows how to modify OptiGraph models and create hierarchical models.

2.3.1 Basic Syntax

In the Plasmo.jl implementation, an OptiNode encapsulates a Model object from the

JuMP.jl modeling language. This harnesses the algebraic modeling syntax and process-

ing functionality of JuMP.jl. An OptiEdge object encapsulates the linking constraints that

define coupling between the nodes.

18

Example 1 : Creating an OptiGraph

We start with the simple example given by (2.4) to demonstrate OptiGraph syntax:

min yn1 + yn2 + yn3 (Objective) (2.4a)

s.t. xn1 ≥ 0, yn1 ≥ 2, xn1 + yn1 ≥ 3 (Node 1 Constraints) (2.4b)

xn2 ≥ 0, xn2 + yn2 ≥ 3 (Node 2 Constraints) (2.4c)

xn3 ≥ 0, xn3 + yn3 ≥ 3 (Node 3 Constraints) (2.4d)

xn1 + xn2 + xn3 = 5 (Link Constraint) (2.4e)

In this model, equations (2.4b), (2.4c), and (2.4d) represent individual node constraints

and (2.4e) is a linking constraint that couples the three nodes. We formulate and solve

this optimization model as shown in Snippet 2.1. We import Plasmo.jl into a Julia

session on Line 1 as well as the off-the-shelf linear programming solver GLPK [87] to solve

the problem. We define graph1 (an OptiGraph) on Line 5 and then create three OptiNodes

on Lines 8-24 using the @optinode macro. We also use the @variable, @constraint, and

@objective macros (extended from JuMP.jl) to define node model attributes. Next, we

use the @linkconstraint macro on Line 27 to create a linking constraint between the three

nodes. Importantly, this automatically creates an underlying OptiEdge. This feature is key,

as the user does not have to express the topology of the graph (it is automatically created

as linking constraints are added). In other words, the user does not need to provide

an adjacency matrix (which can be highly complex). We lastly solve the problem using

the GLPK optimizer on Line 30. Since GLPK does not exploit graph structure, Plasmo.jl

automatically transforms the graph into a standard linear programming format. We query

the solution for each variable using the value function on Line 33 which accepts the

corresponding node and variable we wish to query. Another important feature is that

the solution data retains the structure of the OptiGraph, and this facilitates query and

analysis. We note that the syntax presented here is similar to that used in JuMP.jl but

19

operates at a higher level of abstraction. The structure of an OptiGraph can be visualized

using functions extended from Plots.jl. We layout the OptiGraph topology on Line 39

using the plot function and we plot the underlying adjacency matrix structure on Line

44 using the spy function. Both of these functions can accept keyword arguments to

customize their appearance. The matrix visualization also encodes information on the

number of variables and constraints in each node and edge. The results are depicted

in Figure 2.4; the left figure shows a standard graph visualization which draws an edge

between each pair of nodes if they share an OptiEdge, and the right figure shows the

matrix representation where labeled blocks correspond to nodes and blue marks represent

linking constraints that connect their variables. The node layout helps visualize the overall

connectivity of the graph while the matrix layout helps visualize the size of nodes and

edges.

20

Code Snippet 2.1: Creating and Solving an OptiGraph in Plasmo.jl
1 using Plasmo
2 using GLPK
3 using Plots
4
5 graph1 = OptiGraph()
6
7 #Create three OptiNodes
8 @optinode(graph1,n1)
9 @variable(n1, y >= 2)

10 @variable(n1,x >= 0)
11 @constraint(n1,x + y >= 3)
12 @objective(n1, Min, y)
13
14 @optinode(graph1,n2)
15 @variable(n2, y)
16 @variable(n2,x >= 0)
17 @constraint(n2,x + y >= 3)
18 @objective(n2, Min, y)
19
20 @optinode(graph1,n3)
21 @variable(n3, y)
22 @variable(n3,x >= 0)
23 @constraint(n3,x + y >= 3)
24 @objective(n3, Min, y)
25
26 #Create link constraint between nodes (automatically creates an optiedge on graph1)
27 @linkconstraint(graph1, n1[:x] + n2[:x] + n3[:x] == 5)
28
29 #Optimize with GLPK
30 optimize!(graph1,GLPK.Optimizer)
31
32 #Query Solution
33 value(n1,n1[:x])
34 value(n2,n2[:x])
35 value(n3,n3[:x])
36 objective_value(graph1)
37
38 #Visualize graph topology
39 plt_graph1 = plt_graph1 = Plots.plot(graph1,node_labels = true,
40 markersize = 60,labelsize = 30, linewidth = 4,
41 layout_options = Dict(:tol => 0.01,:iterations => 2));
42
43 #Visualize graph adjacency
44 plt_matrix1 = Plots.spy(graph1,node_labels = true,markersize = 30);

n1

n2

n3

0 1 2 3 4 5 6
Node Variables

0

1

2

3

4

Co
ns

tra
in

ts 1

2

3

Figure 2.4: Output visuals for Code Snippet 2.1. Graph topology obtained with
plot function (left) and graph matrix representation obtained with spy function (right).

21

Example 2 : Modifying an OptiGraph

The OptiGraph created in Snippet 2.1 can be modified in a modular fashion. For example,

in Code Snippet 2.2 we now load in the Ipopt optimizer on Line 2 and we swap out node

n1 with a new node new_n1 that contains a nonlinear constraint on Lines 4 through 12.

We also specifically warm-start the values on node n2 (as opposed to on every node) on

Lines 15 through 18 and we optimize the updated graph on Line 21.

Code Snippet 2.2: Modifying an OptiGraph

1 #Load Ipopt optimizer
2 using Ipopt
3
4 new_n1 = OptiNode()
5 @variable(new_n1, y >= 4)
6 @variable(new_n1, x >= 0)
7 @NLnodeconstraint(new_n1,exp(x + y) >= 3)
8 @objective(new_n1,Min,x+y)
9 @variable(new_n1, y >= 4)

10
11 #Swap out node n1 in graph1 with new_n1
12 swap_node!(graph1,n1,new_n1;preserve_links = true)
13
14 # Collect all variable values on n2
15 n2_values = value.(Ref(n2),all_variables(n2))
16
17 # Warm start the values on node n2
18 set_start_value.(all_variables(n2),n2_values)
19
20 #optimize the updated problem with Ipopt
21 optimize!(graph1,Ipopt.Optimizer)

2.3.2 Hierarchical Modeling Syntax

In this section, we show how to perform hierarchical modeling with an OptiGraph in

Plasmo.jl.

Example 3: Hierarchical Graph with a Global Edge

A powerful feature of the OptiGraph is that it manages its own nodes and edges in a

self-contained manner (without requiring references to other higher-level graphs). Conse-

quently, we can define subgraphs independently (in a modular fashion) and these can be

coupled together by using global edges or nodes defined in a high-level graph. A key

benefit of this paradigm is that each node can have its own syntax (syntax does not need

22

to be consistent or non-redundant over the entire model). This is a fundamental difference

compared to other algebraic modeling languages (where syntax has to be consistent and

non-redundant over the entire model). The formulation in Example (2.5) illustrates how

to express hierarchical connectivity using a global edge. Equation (2.5a) is the summation

of every node objective function in the graph; (2.5b), (2.5c) and (2.5d) describe node con-

straints; (2.5e), (2.5f), and (2.5g) represent linking constraints within each subgraph; and

(2.5h) defines a linking constraint at the higher level graph (that links nodes from each

individual subgraph). Formulation (2.5) can be expressed as a hierarchical OptiGraph us-

ing the add_subgraph! function. This functionality is shown in Code Snippet 2.3, where

we extend graph1 from Code Snippet 2.1. We create a new graph called graph2 on Line 2

and setup nodes and link them together on Lines 4 through 17. We also construct graph3

in the same fashion on Lines 20 through 34. Next, we create graph0 on Line 37 and add

graphs graph1, graph2, and graph3 as subgraphs to graph0 on Line 39. We add a linking

constraint to graph0 that couples nodes on each subgraph on Line 41 and solve the graph

on Line 43. We present the graph visualization in in Figure 2.5. Here we can see the hi-

erarchical structure of the OptiGraph and the local and global coupling constraints. This

structure is compatible with that shown in Figure 2.3a.

min ∑
i=1:9

yni (Node Objectives) (2.5a)

s.t. xni ≥ 0, yni ≥ 2, xni + yni ≥ 3, i ∈ {1, 2, 3} (Subgraph 1 Constraints) (2.5b)

xni ≥ 0, yni ≥ 2, xni + yni ≥ 5, i ∈ {4, 5, 6} (Subgraph 2 Constraints) (2.5c)

xni ≥ 0, yni ≥ 2, xni + yni ≥ 7, i ∈ {7, 8, 9} (Subgraph 3 Constraints) (2.5d)

xn1 + xn2 + xn3 = 3 (Subgraph 1 Link Constraint) (2.5e)

xn4 + xn5 + xn6 = 5 (Subgraph 2 Link Constraint) (2.5f)

xn7 + xn8 + xn9 = 7 (Subgraph 3 Link Constraint) (2.5g)

xn3 + xn5 + xn7 = 10 (Global Link Constraint) (2.5h)

23

Example 4: Hierarchical Graph with a Global Node

We can express hierarchical connectivity within a OptiGraph by defining a global node

that is connected with subgraph nodes. Formulation (2.6) illustrates this idea; this is

analogous to (2.5) where we have removed the high level linking constraint (2.5h) and

have replaced it with a high level node (2.6h) and three linking constraints that couple

the graph it to its subgraphs (2.6i). The implementation of formulation in (2.6) is shown

in Code Snippet 2.4. Here, we assume that we already have graph1, graph2, and graph3

defined from Snippets 2.1 and 2.3. We recreate graph0 and setup the node n0 on Lines 2

through 7. We add subgraphs graph1, graph2, and graph3 on Lines 10 through 12 like in

the previous snippet, and add linking constraints that connect node n0 to nodes in each

subgraph on Lines 15 through 17. We solve the newly created graph0 on Line 20 and

present the visualization in Figure 2.6. This structure is compatible with that shown in

Figure 2.3b.

min ∑
i=1:9

yni (Objective) (2.6a)

s.t. xni ≥ 0, yni ≥ 2, xni + yni ≥ 3, i ∈ {1, 2, 3} (Subgraph 1 Constraints) (2.6b)

xni ≥ 0, yni ≥ 2, xni + yni ≥ 5, i ∈ {4, 5, 6} (Subgraph 2 Constraints) (2.6c)

xni ≥ 0, yni ≥ 2, xni + yni ≥ 7, i ∈ {7, 8, 9} (Subgraph 3 Constraints) (2.6d)

xn1 + xn2 + xn3 = 3 (Subgraph 1 Link Constraint) (2.6e)

xn4 + xn5 + xn6 = 5 (Subgraph 2 Link Constraint) (2.6f)

xn7 + xn8 + xn9 = 7 (Subgraph 3 Link Constraint) (2.6g)

xn0 ≥ 0 (Graph Constraint) (2.6h)

xn0 + xn3 = 3, xn0 + xn5 = 5, xn0 + xn7 = 7 (Global Link Constraints) (2.6i)

24

Code Snippet 2.3: Hierarchical Connectivity using Global Edge
1 #Create low−level graph2
2 graph2 = OptiGraph()
3
4 @optinode(graph2,n4)
5 @variable(n4, x >= 0); @variable(n4, y >= 2)
6 @constraint(n4,x + y >= 5); @objective(n4, Min, y)
7
8 @optinode(graph2,n5)
9 @variable(n5, x >= 0); @variable(n5, y >= 2)

10 @constraint(n5,x + y >= 5); @objective(n5, Min, y)
11
12 @optinode(graph2,n6)
13 @variable(n6, x >= 0); @variable(n6, y >= 2)
14 @constraint(n6,x + y >= 5); @objective(n6, Min, y)
15
16 #Create graph2 link constraint
17 @linkconstraint(graph2, n4[:x] + n5[:x] + n6[:x] == 5)
18
19 #Create low−level graph 3
20 graph3 = OptiGraph()
21
22 @optinode(graph3,n7)
23 @variable(n7, x >= 0); @variable(n7, y >= 2)
24 @constraint(n7,x + y >= 7); @objective(n7, Min, y)
25
26 @optinode(graph3,n8)
27 @variable(n8, x >= 0); @variable(n8, y >= 2)
28 @constraint(n8,x + y >= 7); @objective(n8, Min, y)
29
30 @optinode(graph3,n9)
31 @variable(n9,x >= 0); @variable(n9, y >= 2)
32 @constraint(n9,x + y >= 7); @objective(n9, Min, y)
33 #Create graph3 link constraint
34 @linkconstraint(graph3, n7[:x] + n8[:x] + n9[:x] == 7)
35
36 #Create high−level graph0
37 graph0 = OptiGraph()
38 #Add subgraphs to graph0
39 add_subgraph!(graph0,graph1); add_subgraph!(graph0,graph2); add_subgraph!(graph0,graph3)

40 #Add link constraint to graph0 connecting its subgraphs
41 @linkconstraint(graph0,n3[:x] + n5[:x] + n7[:x] == 10)
42
43 optimize!(graph0,GLPK.Optimizer) #Optimize with GLPK

n1n2

n3

n4

n5

n6

n7

n8

n9

0 5 10 15
Node Variables

0

3

6

10

13

Co
ns

tra
in

ts

n1
n2

n3

n4
n5

n6

n7
n8

n9

Figure 2.5: Output visuals for Code Snippet 2.3 showing hierarchical structure of an
OptiGraph with three subgraphs connected by a global edge.

25

Code Snippet 2.4: Hierarchical Connectivity using Global Node
1 #Create graph0
2 graph0 = OptiGraph()
3
4 #Create a node on graph0
5 @optinode(graph0,n0)
6 @variable(n0,x)
7 @constraint(n0,x >= 0)
8
9 #Add subgraphs to graph0

10 add_subgraph!(graph0,graph1)
11 add_subgraph!(graph0,graph2)
12 add_subgraph!(graph0,graph3)
13
14 #Create link constraints on graph0 connecting it to its subgraphs
15 @linkconstraint(graph0,n0[:x] + n3[:x] == 3)
16 @linkconstraint(graph0,n0[:x] + n5[:x] == 5)
17 @linkconstraint(graph0,n0[:x] + n7[:x] == 7)
18
19 #Optimize with GLPK
20 optimize!(graph0,GLPK.Optimizer)

n0

n1

n2

n3

n4

n5 n6

n7

n8

n9
0 5 10 15

Node Variables

0

4

8

12

16

Co
ns

tra
in

ts

n0

n1
n2

n3

n4
n5

n6

n7
n8

n9

Figure 2.6: Output visuals for Code Snippet 2.4 showing hierarchical structure of an
OptiGraph with three subgraphs connected by a global node.

26

Function Description
OptiGraph() Create a new OptiGraph object.
@optinode(g::OptiGraph,expr::Expr) Create OptiNodes using Julia expression
@linkconstraint(graph::OptiGraph,expr::Expr) Create linking constraint between nodes in g using expr
add_subgraph!(g::OptiGraph,sg::OptiGraph) Add subgraph sg to g
getoptinodes(g::OptiGraph) Retrieve local OptiNodes in g
getoptiedges(g::OptiGraph) Retrieve local OptiEdges in g
getlinkconstraints(g::OptiGraph) Retrieve linking constraints in g
getsubgraphs(g::OptiGraph) Retrieve subgraphs in g
all_optinodes(g::OptiGraph) Retrieve all OptiNodes in g (including subgraphs)
all_optiedges(g::OptiGraph) Retrieve OptiEdges in g (including subgraphs)
all_linkconstraints(g::OptiGraph) Retrieve all linking constraints in g (including subgraphs)
all_subgraphs(g::OptiGraph) Retrieve all subgraphs in g (including subgraphs)
OptiNode() Create a new OptiNode, but do not add it to a graph
add_node!(g::OptiGraph,node::OptiNode) Add the node to g
swap_node!(g::OptiGraph,n1,n2) Swap out n1 with n2 in g
swap_graph!(g::OptiGraph,sg1,sg2) Swap out subgraph sg1 with sg2 in g

Table 2.1: Overview of OptiGraph construction and management functions in Plasmo.jl.

2.3.3 Overview of Modeling Functions

In addition to the graph construction functions presented in the previous examples (@optinode,

@linkconstraint, add_subgraph!), it is also possible to query an OptiGraph object to

retrieve its attributes. Table 2.1 summarizes the main Plasmo.jl functions used to cre-

ate and inspect an OptiGraph. We inspect the nodes, edges, linking constraints, and

subgraphs using getoptinodes, getoptiedges, getlinkconstraints, and getsubgraphs

functions, and we can collect all of the corresponding graph attributes using recursive ver-

sions of these functions (all_nodes, all_edges, all_linkconstraints and all_subgraphs).

It is also possible to modify and swap out individual nodes (or subgraphs) with OptiNode(),

add_node!, swap_node!, and swap_graph! functions.

2.4 Case Study: State Estimation in a Natural Gas Network

The OptiGraph modeling capabilities are best expressed with a realistic case study. We

conclude this chapter with a detailed case study that demonstrates how data and model

management capabilities in the OptiGraph facilitate formulating a challenging estimation

problem for a natural gas pipeline system. Throughout this section we refer to the equa-

27

tions that describe the pipeline system (e.g. dynamic flows and equipment models) in a

general sense and the detailed model equations we refer to are described in Appendix

A. We also present the corresponding Plasmo.jl model implementation that shows the

hierarchical construction of the model.

This case study examines the problem of state estimation (also called data assimilation

in some fields) in a natural gas network using the OptiGraph. Our goal is to model a

gas pipeline network and develop a state estimation scheme that estimates the internal

transient pipeline pressure and flow profiles using limited pressure sensor information

available at pipeline and compressor junctions.

2.4.1 Problem Overview

Figure 2.7 depicts the modeled system and includes some of the notation we use to de-

scribe the gas network. The network consists of sets of junctions j ∈ J and links ` ∈ L.

Each junction j may contain sets of gas supplies s ∈ Sj and/or gas demands d ∈ Dj. The

links can be divided into sets of pipeline links ` ∈ Lp and compressor links ` ∈ Lc such

that the complete set of links is given by L := Lp ∪ Lc. The sketch in Figure 2.7 consists

of a straight line of 13 pipelines with 11 compressors resulting in 25 total junctions (this

setup is called a gunbarrel in gas network operations). Junction j1 includes a single gas

supply (gas injection) and junction j25 contains a single gas demand (gas withdrawal).

Pressure at each junction at each time period t is given by θj,t and the flows and pressures

we seek to estimate at time t are given by {p`,t,k}`∈Lp,k∈X and { f`,t,k}`∈Lp,k∈X respectively

where X is a set of spatial points defined along each pipeline.

The proposed problem incorporates detailed physical models (which are highly non-

linear PDEs) and complex constraint sets. The estimation problem we develop is inher-

ently ill-posed due to the infinite-dimensional nature of the states (flows and pressures

along the length of the pipelines) which leads to instability of the proposed estimator.

To circumvent this issue, we employ a moving horizon strategy that utilizes initial prior

28

supply demand

Figure 2.7: Multi-pipeline system used for state estimation problem.

information using an easily-computable steady-state. Using the OptiGraph, we intend to

model the gas network and use its data management features to implement the estimator

algorithm using prior information and sensor data. We also derive approximate trans-

port models and show that the OptiGraph can trade out different model components to

analyze trade-offs between estimation accuracy and computational performance.

In the state estimation setting for gas networks, typical sensor measurements include

the pressures at nodal junctions (compressor suction and discharge are usually measured)

and the flows directed in and out of supplies and demands (purchase and sell prices are

calculated using these flow measurements) [45]. In this study, we assume that only pres-

sure measurements are available and we demonstrate that such information is sufficient

to infer the internal state of the pipelines. For simplicity of implementation we also as-

sume sensor measurement noise is sufficiently filtered, but applying such output filtering

in an optimization-based estimator is straightforward [137]. We consider sensor measure-

ments distributed over a historical (finite) time horizon consisting of N sampling times

of equal length δ = ti − ti−1. At sampling time ti, we define the past time window Ti =

{ti−N , ti−N+1, ..., ti}. For convenience, we also define the set T̄i =Ti \ {ti}. Using a history

of measurements over Ti we seek to estimate the current state at time ti. Specifically, at

sampling time ti, we estimate the current state using the pressure sensor history θm
J ,Ti

.

In addition, we assume that measurements for the control (input) variables are available

such as the compression ratios ηm
Lc,Ti

(these can also be inferred from suction and dis-

charge pressures). We use Im
Ti

to denote all the sensor information over time window

29

Ti. With this information we estimate the dynamic states (pe
Lc,Ti ,X , f e

Lc,Ti ,X) as well as the

algebraic states (se
S ,Ti

and de
D,Ti

). We use I e
Ti

= (pe
Lc,Ti ,X , f e

Lc,Ti ,X , se
S ,Ti

, de
D,Ti

) to denote the

estimated state trajectory. Table 2.2 summarizes some of the relevant terms for the state

estimation problem.

Table 2.2: Estimator Parameters and Variables

Parameter Description
N Number of horizon points
i Interval number
ti Sample time
Ti Set of times {ti−N ...ti}
θm
J ,Ti

Measured junction pressure history at ti

pLp,X Pressure profile prior
fLp,X Flow profile prior
pe
Lp,X ,Ti

Estimated pressure history
f e
Lp,X ,Ti

Estimated flow history

We use a spatiotemporal discretization scheme to cast the developed estimation prob-

lem as a large-scale and sparse nonlinear programming problem (NLP). The states are

estimated at sampling time ti by solving the following optimization (estimation) prob-

lem:

min ∑
`∈Lp

∑
k∈X`

(
(p`,ti−N ,k − p`,k)

2 + (f`,ti−N ,k − f `,k)
2
)
+ ∑

t∈Ti

∑
j∈J

(θj,t − θm
j,t)

2 (2.7a)

s.t. Junction Limits (A.1) (2.7b)

Compressor Equations (A.3) (2.7c)

Pipeline Equations (A.21) (2.7d)

Boundary Conditions (A.29) (2.7e)

Junction Conservation (A.29) (2.7f)

The state estimation problem (2.7) is solved at each sample time ti according the al-

30

gorithm given by 2.1. In the algorithm, we initialize the estimator with a prior guess of

the dynamic flow and pressure states and a window (horizon) of the most recent system

measurements. At each time ti we obtain sensor measurements (for each junction), solve

the estimator problem, and carry the estimate and solution data forward to initialize the

next prior and warm-start the Ipopt solver. We study three distinct prior initialization

strategies.

• (I) No prior: No prior initialization is used. We drop the first term in (2.7a).

• (II) No initial prior: The first term in (2.7a) is only dropped in the first sampling

time.

• (III) Steady-state prior: A steady-state solution is computed using the first mea-

surement and used as a prior in (2.7a).

Algorithm 2.1 state estimation

Given N, prior information Ī , and warm-start Î .

Set sampling time i← 0 and time window Ti ← {ti−N : ti}.

loop

Obtain sensor information Im
Ti

from system.

Solve estimator problem (2.7) I e
Ti
← OG(Im

Ti
, Ī , Î).

Update warm-start information Î ← I e
Ti

.

Update sampling time i← i + 1 and time window Ti ← {ti−N : ti}.

Update prior information Ī ← I e
ti−N

.

end loop

2.4.2 OptiGraph Modeling Approach

Developing the gas network model for the estimator in challenging in its own right be-

cause of the need to incorporate complex sets of equations. Moreover, our state estimation

problem requires the repetitive solution of an ill-posed optimization problem (due to the

31

Figure 2.8: Modeling the multi-pipeline system with an OptiGraph.

infinite dimensional state) which creates a complex computational workflow where input

data and solution data need to be dynamically updated. To facilitate the implementation

of our estimator, we use the OptiGraph and Plasmo.jl which allows us to express the

complex model construction and data workflow. In particular, Plasmo.jl enables the cre-

ation of component models that are independent of the graph structure of the problem

(e.g., the gas network topology). For instance, pipeline segments can be represented as

individual subgraphs containing the transport equations. Particularly, each pipeline can be

represented as an OptiGraph wherein the contained OptiNodes capture the pipeline state

variables (pressures and flows at each point on a space-time grid). Similarly, junction

models are represented by subgraphs with associated OptiNodes containing the junction

states and operating limits. Figure 2.8 more clearly demonstrates how the OptiGraph

captures the structure of our estimation problem. In this figure, subgraphs are used

to represent two junctions and a pipeline (j3,j4, and `p2) where the OptiEdges capture

the linking constraints that couple these models (in this case we only show the pipeline

boundary conditions). The modular modeling abstraction also facilitates data management

because the input and output data of the component models remains modularized. In

32

Figure 2.9: Simulated transient. Demand step (top), flow profiles (middle), and pressure
profiles (bottom).

our implementation we also use the OptiGraph data aspects to facilitate warm-starting

subsequent solutions of the estimation problem.

Figure 2.9 summarizes some simulation data we employ for the case study. The net-

work is at steady-state at t1 (given by a constant flow profile) and experiences a sudden

gas withdrawal at the demand junction j25 at time t10 that induces a complex dynamic

transient that triggers a forward propagating wave. At time t40, the demand returns to

its original state, which results in a backward propagating wave. Towards the end of the

time horizon, the system is pressurized to return the total line-pack to its original value.

This produces the final dynamic flow profile at t96 (t f inal).

Figure 2.10 depicts how we dynamically update the OptiGraph model to implement

the state estimation algorithm according to strategy (III). Every time we solve the OptiGraph

estimation problem at time ti, we use the obtained estimate I e
ti−N to generate a prior in

33

Sensor Data

Estimation Problem Estimation Problem Estimation Problem

Sensor Data

New
Estimate

Prior
Information

Warmstart

New
Estimate

Warmstart

Sensor Data

Warmstart

Figure 2.10: State estimation setup for multi-pipeline system.

(2.7) for the next problem at time ti+1, and we use the solution I e
Ti

as a warm-start. Code

Snippet 2.5 details how this can be achieved in Plasmo.jl for strategy (III)). Line 1 loads

Plasmo.jl and Ipopt (which we use to solve the estimation problem). Lines 3 through

5 load files which define network and measurement data, as well as functions we use to

construct and manage gas network OptiGraphs. Line 8 uses network_data to construct

the gas network OptiGraph using the function in Snippet A.4 (defined in Appendix A.5.2)

and Line 12 sets the optimizer. Lines 15 through 18 calculate a steady-state solution using

the first interval of measurement data to use as a prior and Lines 22 through 36 exe-

cute the estimation algorithm. Within the loop, Lines 34 and 35 perform the warm-start

procedure.

34

Code Snippet 2.5: State estimation implementation for gas network in Plasmo.jl

1 using Plasmo, Ipopt
2
3 include("network_data.jl") # defines network_data
4 include("measurement_data.jl") # defines measurement_data
5 include("optigraph_functions.jl") # defines "set_ss_equations!" and "

update_estimation_problem!" functions
6
7 # Create the gas network using Code Snippet
8 network = create_gas_network(network_data) A.4
9 pipelines = network[:pipelines]

10
11 # Set Ipopt optimizer for the network
12 set_optimizer(network,Ipopt.Optimizer)
13
14 # Solve steady state problem to obtain prior information
15 set_ss_equations!(network,measurement_data[1])
16 optimize!(network)
17 p_prior = [value.(Ref(pipeline),pipeline[:px]) for pipeline in pipelines]
18 f_prior = [value.(Ref(pipeline),pipeline[:fx]) for pipeline in pipelines]
19
20 N = 10 #define horizon length
21 # Begin estimation loop
22 for j = 1:T # loop over sampling times
23 # create estimation problem
24 update_estimation_problem!(network,measurement_data[j],p_prior,f_prior,N)
25
26 # solve the estimation problem
27 optimize!(network)
28
29 # update the prior terms with the latest estimate
30 p_prior = [value.(Ref(pipeline),pipeline[:px][2]) for pipeline in pipelines]
31 f_prior = [value.(Ref(pipeline),pipeline[:fx][2]) for pipeline in pipelines]
32
33 # update warm−start information
34 result_values = value.(Ref(network),all_variables(network))
35 set_start_value.(all_variables(network),result_values)
36 end

2.4.3 State Estimation Results

The results of our study show that managing prior information is key to the estimator

convergence. Remarkably, using the correct prior initialization leads to convergence for

every studied horizon length (even for a short horizon of N = 2). Figure 2.11 presents the

estimation errors with no prior information (I), with no initial prior information (II), and

with an initial steady-state prior (III) for N = 2. We recall that in the case of (I) , the prior

term in (2.7a) is dropped at all sampling times while in the case of (II), it is only dropped

in the first sampling time (we assume that no information is initially available but this is

updated at later sampling times using the state prediction).

It is clear that the error levels of (I) are drastically improved by using prior informa-

35

25 50 75
Timestep

10 4

10 3

10 2

10 1

100

101

102

Es
tim

at
e

Er
ro

r
p, tj

f, tj

25 50 75
Time Step

10 4

10 3

10 2

10 1

100

101

102

p, tj

f, tj

25 50 75
Time Step

10 4

10 3

10 2

10 1

100

101

102

p, tj

f, tj

Figure 2.11: Estimation error with N = 2 for no prior information (I) (left), no initial prior
information (II) (middle), and initial steady-state prior (III) info (right).

tion (II and III) and that the (III) provides the best performance. This highlights that,

if the pipeline system is at rest at the beginning of the horizon, using an initial steady-

state prior is sufficient to track the state during the dynamic transient. This result has

important practical implications because most real pipeline systems are indeed returned

to rest conditions nearly every day. Interestingly, even if no initial prior is used, the esti-

mator is able to track the states and the errors decrease to the same levels of (III) for the

flow profiles. The error level for the pressure profiles do not decrease to the same levels

but remain fairly small. Under approach (II) however, we run the risk that the estima-

tion problem cannot be solved due to ill-posedness. Consequently, we conclude that the

steady-state approach provides a more reliable way to initialize the prior.

Figure 2.12 compares the flow profile from the original simulation with the estimated

profile using (II) and (III) for N = 2. Notice the initial error profile of (II) corresponds

36

0 50 100 150
Distance [km]

40

42

44

46

48

50

Fl
ow

[sc
m

*1
04

hr
]

t1

t10

t40

tfinal

0 50 100 150
Distance [km]

40

42

44

46

48

50

Fl
ow

[sc
m

*1
04

hr
]

t1

t10

t40

tfinal

0 50 100 150
Distance [km]

40

42

44

46

48

50

Fl
ow

[sc
m

*1
04

hr
]

t1

t10

t40

tfinal

Figure 2.12: Comparison of simulated flow profile (top) and reconstructed state with
N = 2 using no-initial-prior (II) (middle) and the steady-state prior (III) (bottom)

37

Full Resolution Euler

Approximate Euler Quasi-Static Approximation

Figure 2.13: Swapping out models in the multi-pipeline system.

with its estimate error in Figure 2.11. While there is considerable error at t1 (the black line)

the error converges by time t10 (the red line). In contrast, the flow profiles corresponding

to the steady-state prior are visually indistinguishable with the true values.

2.4.4 Model Reduction

With both accuracy and computational considerations, we also quantify the effect of us-

ing approximate models in the estimator formulation with the steady-state prior (III). Per-

forming such a study is facilitated using the model swapping capabilities of the OptiGraph

as shown in Figure 2.13. Given a fixed network topology, one can create models of dif-

ferent resolution by simply swapping component models (e.g., the Euler equations (A.9)

can be exchanged with the approximate equations (A.14) or quasi-static approximations

(A.24). Here, we show that the system modeled according to Figure 2.13 can be easily

updated to experiment with different model formulations for the pipelines.

38

2.4.5 Model Reduction Results

Figure 2.14 compares the estimation error for the different approximations relative to the

true state of the full-resolution Euler equations (A.9). In particular, we consider the ap-

proximate Euler (A.14) model and the quasi-static approximation (A.24) with N = 10. As

can be seen, the approximate Euler achieves reasonably accurate estimates and the quasi-

static approximation shows significant deviations towards the initial and final sampling

times. This is likely because the quasi-static approximation neglects the advection term

∂t(ρv) in the momentum balance, which is in fact significant during strong transients.

We also compare computational times at select sampling times (time steps) for the

three different model approximations in Figure 2.15. The approximate Euler reduces

the computational time by one half whereas the quasi-static time improvements over

the approximate Euler are marginal. This figure also demonstrates the computational

speedups using warm-starting where on average, the warm-started solution is about 10

times faster than the first time step solution (at t = 1). We conclude that such model

reduction and warm-starting techniques are key to creating robust estimators, and this is

facilitated by using the OptiGraph framework.

39

25 50 75
Time Step

10 5

10 4

10 3

10 2

10 1

100

Es
tim

at
e

Er
ro

r

p, tj

f, tj

25 50 75
Time Step

10 5

10 4

10 3

10 2

10 1

100

p, tj

f, tj

25 50 75
Time Step

10 5

10 4

10 3

10 2

10 1

100

p, tj

f, tj

Figure 2.14: Error profiles for estimator with different model approximations for N = 10.
Quasi-static (left), Approximate Euler (middle), and Full Euler (right).

40

Full Resolution
Approximate Euler
Quasi-Static

Figure 2.15: Computational performance for model approximations.

41

Chapter 3

D E C O M P O S I N G O P T I M I Z AT I O N P R O B L E M S

In Chapter 2 we introduced the OptiGraph and showcased how it can be used to model

hierarchical optimization structures and perform helpful data operations. This chapter

expands on the OptiGraph paradigm and shows how such a graph-based abstraction

naturally exploits graph analysis and partitioning capabilities to decompose optimiza-

tion problems and harness distributed computing architectures and decomposition algo-

rithms.

3.1 Introduction

Advances in decomposition algorithms and computing architectures continue to expand

the complexity and scale of optimization problems that can be solved [72]. Success-

ful applications span problems in financial planning [51], supply chain scheduling [88],

enterprise-wide management [54], infrastructure optimization [73], and network control

[106]. Decomposition algorithms in optimization seek to address computational bot-

tlenecks by exploiting model structures [111, 136, 23, 32, 24]. Well-known algorithms

to exploit structures at the problem level include Lagrangian decomposition [43], Ben-

ders decomposition [110], Dantzig-Wolfe decomposition [12], progressive hedging [132],

Gauss-Seidel [121], and the alternating direction method of multipliers (ADMM) [20].

42

Fundamentally, these algorithms seek to solve the original problem by solving subprob-

lems defined over subproblem partitions and by coordinating subproblem solutions via

communication of primal-dual information. Decomposition structures can also be ex-

ploited at the linear-algebra level (i.e. inside optimization solvers) and include block

elimination and preconditioning strategies (e.g. such as Schur and Riccati decompo-

sitions) [52, 72, 109, 105]. In linear-algebra decomposition schemes, the original opti-

mization problem is solved by using a general algorithm (e.g., interior-point, sequential

quadratic programming, or augmented Lagrangian) and decomposition occurs during

the computation of the search step within the algorithm.

The efficient use of decomposition algorithms relies on the ability to communicate

model structures in a flexible manner. Surprisingly, the development of modeling envi-

ronments that support the use and development of decomposition algorithms has re-

mained rather limited. As a result, decomposition algorithms have been mostly used

to tackle models that exhibit rather obvious structures such as in stochastic optimization

[124, 84, 63], network optimization [119], dynamic optimization [15], and hierarchical

optimization [53]. Existing modeling environments that support structured modeling in-

clude the structure-conveying modeling language (SML) [31], which extends AMPL [46])

which conveys structures in the form of variable and constraint blocks. Pyomo [59] is a

Python-based modeling package that also enables the expression of structures in the form

of variable and constraint blocks and provides a modeling template called PySP [132] to

create and solve multi-stage stochastic programs with progressive hedging and Benders

decomposition. Within the Julia language, StuctJuMP [64] and StochasticPrograms.jl

[15] are extensions of JuMP.jl [37] that express stochastic optimization structures.

An issue that arises in using structured modeling frameworks is that identifying

blocks that are suitable for a decomposition algorithm (and a corresponding computing

architecture) is not a trivial task. For instance, we may wish to identify blocks that have

sparse external connectivity to reduce the amount of inter-block coupling [109], or we

might want to ensure that the blocks are of similar size (to avoid load imbalance issues)

43

[78] if we execute on a parallel computer. Existing structured modeling environments

lack the capabilities to tackle these issues.

To further highlight some of the challenges that arise in decomposing structured prob-

lems, consider the natural gas network depicted in the left panel of Figure 3.1. This

is a regional gas transmission system that contains 215 pipelines, 16 compressors, and

172 junction points [29]. The problem has an obvious structure induced by the network

topology which conveys connectivity between components (pipelines, compressors, and

junctions). Hidden in this representation, however, is the complex internal connectivity

present in the components induced by variables and constraints that capture physical

coupling (e.g., conservation of mass, energy, and momentum). The issue here is that

there is a severe imbalance in the complexity of the components. Pipelines might contain

partial differential equations to capture flow while compressors contain simpler algebraic

equations (this observation was briefly touched upon with Figure 2.8). Moreover, the net-

work representation hides connectivity of the components across time, which gives rise to

complex space-time coupling. Intuitively, we could decompose the model spatially by ex-

ploiting the network topology, as shown in the middle panel of Figure 3.1b. This approach

unfortunately, does not account for inner component complexity and results in partitions

with unequal sizes (i.e. disparate numbers of variables and constraints). This gives rise

to load balance issues that can limit the advantages of parallel computation. To deal with

this issue, we could decompose the problem temporally, as shown in the right panel of

Figure 3.1c. This approach leads to well-balanced partitions (every partition is a copy

of the network), but it also leads to significantly more coupling between partitions. The

high degree of coupling limits scalability of algorithms since increased coupling usually

requires more communication and slows down convergence. One would intuitively ex-

pect that there exist partitions that can balance coupling and load balancing (by traversing

space-time and exploiting inner block complexity). Identifying such partitions, however,

requires unfolding of the model structure. Figure 3.2a provides a visual rendering of the

spatial representation of the natural gas system that unfolds inner component connec-

44

tivity. Here, the size of the clusters gives an initial indication of component complexity.

Figure 3.2b further unfolds temporal connectivity between components and this clearly

reveals interesting (but complex) space-time structures. Determining effective partitions

from such structures requires of advanced graph partitioning techniques.

(a) Network Topology (b) Network Partition (c) Time Partition

Figure 3.1: Depiction of a regional natural gas system and possible partitions of the
corresponding optimal control problem. The network layout of the system (left), the
system split into eight network partitions (middle), and the system represented by three
time partitions (right).

A key benefit of the OptiGraph paradigm presented in Chapter 2 is that it naturally

captures inner component complexity in optimization models and as such it can take ad-

vantage of powerful graph partitioning techniques to decompose optimization problems.

For instance, graph partitioning tools such as Metis [75] and Scotch [100] provide algo-

rithms to analyze problem structure and automatically identify suitable partitions that

can be used by decomposition algorithms. In concise terms, graph partitioning seeks

to decompose a domain described by a graph such that communication between subdo-

mains is minimized subject to load balancing (i.e., the domains are about the same size).

The most ubiquitous graph partitioning applications have been used to parallelize scien-

45

(a) Space Unfolding (b) Space-Time Unfolding

Figure 3.2: Depiction of unfolded natural gas system optimal control problem. Space
unfolding of the optimal control problem (left) and space-time unfolding of the optimal
control problem with 24 time periods (right).

tific simulations [113], perform sparse-matrix operations [56], and precondition systems

of PDEs [114]. Hypergraph partitioning generalizes graph partitioning concepts to effec-

tively decompose non-symmetric domains [35] and includes popular tools such hMetis

[76] and PaToH [28]. In the context of decomposing optimization problems, graph repre-

sentations have been used to partition network problems using graph coloring techniques

[138] and block partitioning schemes [139], and bipartite graph representations have been

used to permute linear programs [42] into block diagonal form to enable parallel solu-

tion. Hypergraph partitioning has been used to decompose mixed-integer programs to

formulate Dantzig-Wolfe decompositions [131, 13] using hMetis and PaToH. Community

detection approaches have been used to automate structure identification in general op-

timization problems by maximizing modularity and with this enable higher efficiency of

decomposition algorithms [95, 128, 7].

In Chapter 2 we showed how to use OptiGraphs to build complex hierarchical optimiza-

tion models. This hierarchical graph-based modeling is what fundamentally enables the

46

OptiGraph to unfold component complexity to exploit partitioning. To further motivate

the types of capabilities enabled by hierarchical graph modeling, we take the natural-

gas network in Figure 3.1 and we couple it to an electrical network, as shown in Figure

3.3a. Using an OptiGraph, the natural gas graph and the electrical power graph can be

built independently and then coupled to construct a higher level combined (hierarchi-

cal) graph. This graph structure can then be communicated to a graph visualization tool

which allows the graph to be analyzed using different representations. In the left panel

we see a traditional representation of infrastructure coupling (that hides temporal and

component coupling), whereas the middle and right panels unfold spatial and spatio-

temporal coupling. The space-time graph contains over 100,000 nodes and 300,000 edges

and reveals that there exist many non-obvious structures that might be exploited from a

computational standpoint.

(a) Coupled Networks (b) Space Unfolding (c) Space-Time Unfolding

Figure 3.3: Network topology of coupled gas and electric systems (left), the space repre-
sentation of the optimal control problem (middle), and the space-time representation of
the coupled optimal control problem with 24 time periods (right). The gas and electric
systems are colored red and blue respectively.

47

3.2 Partitioning and Manipulating OptiGraphs

Chapter 2 discussed how the OptiGraph facilitates systematic construction of complex hi-

erarchical optimization models using a bottom-up approach. More specifically, we showed

how to construct an OptiGraph and add subgraphs to create hierarchical structures. In

this section, we show how to create OptiGraph structure using a top-down approach using

graph partitioning.

3.2.1 Hypergraph Partitioning

The OptiGraph is, at its core, a hypergraph. As such, it can naturally exploit hypergraph

partitioning capabilities. In this section we focus on hypergraph partitioning concepts but

our discussion also applies to standard graph partitioning frameworks (a hypergraph can

be projected to different standard graph representations). Hypergraph partitioning has

received significant interest recently because it naturally represents complex non-pairwise

relationships and more accurately captures such coupling compared to traditional graphs.

Popular hypergraph partitioning tools include the well-known hMetis and PaToH pack-

ages, as well as the comprehensive Zoltan software suite which provides hypergraph

partitioning algorithms for C, C++, and Fortran applications. More recent frameworks

have made advances to create large-scale hypergraphs [70], improve hypergraph parti-

tioning speed [91], and create high-quality hypergraph partitions [112]. To provide an

overview of hypergraph partitioning techniques, we use notation that is similar to that of

an OptiGraph. A hypergraph contains a set of hypernodes N (H) and hyperedges E(H)

where we denote the hypergraph containing hypernodes and hyperedges as H(N , E). In

hypergraph partitioning, one seeks to partition the set of nodes N (H) into a collection P

of at most k disjoint subsets such that P = {P1, P2, ..., Pk} while minimizing an objective

function over the edges such as (3.1a) or (3.1b) subject to a balance constraint (3.1c) (such

that partitions are roughly the same size).

48

Φcut(P) = ∑
e∈Ecut(P)

w(e) (3.1a)

Φcon(P) = ∑
e∈Ecut(P)

w(e)(λ(e)− 1) (3.1b)

1
k ∑

n∈N (H)

s(n)− εmax ≤ ∑
n∈Pi

s(n) ≤ 1
k ∑

n∈N (H)

s(n) + εmax, ∀i ∈ {1, ..., k} (3.1c)

Here, Φcut and Φcon are the most prominent hypergraph partitioning objectives (called

the minimum edge-cut and minimum connectivity), where Ecut(P) is the set of cut edges

of the partitions in P (i.e., all edges that cross partitions defined by P). The formulation in

(3.1) introduces edge weights w(e)→ R+ for each edge e ∈ E(H) and node sizes s(n)→

R+ for each node n ∈ N (H) which can be used to express problem specific attributes

to the partitioner. For instance, large edge weights can be used to express tight coupling

or high communication volume and node sizes can be used to represent computational

load. The objective (3.1b) includes the connectivity value λ(e) which denotes the number

of partitions connected by a hyperedge e. We also define the parameter εmax > 0 in

(3.1c) which specifies the maximum imbalance tolerance of the partitions. Lower values

of εmax enforce more equal-sized partitions and higher values allow for disparately sized

partitions (the size of a partition is the sum of the size of its nodes).

The hypergraph is an intuitive representation for an OptiGraph but other representa-

tions are possible. The hypergraph in Figure 3.4a can be projected to a standard graph

representation (shown in Figure 3.4b) or to a bipartite representation (shown in Figure

3.4c). Standard graph representations can utilize mature partitioning tools such as Metis

or community detection strategies. The ability to project to different graph represen-

tations provides flexibility to experiment with different partitioning techniques. In the

remainder of this chapter we utilize the hypergraph representation to partition with, but

we highlight that a broader range of partitioning strategies can be captured using an

OptiGraph.

49

(a) Hypergraph

(b) Standard Graph (c) Bipartite Graph

Figure 3.4: Typical graph representations used in partitioning applications. A hypergraph
(left) can be projected to a standard graph (middle) or a bipartite graph (right).

(a) OptiGraph Partitions (b) OptiGraph Subgraphs (c) Aggregated Subgraphs

Figure 3.5: Depiction of the core OptiGraph partitioning capabilities. (Left) A partition
with nine OptiNodes, (middle) the corresponding OptiGraph containing three subgraphs,
and (right) the subgraphs aggregated into three new OptiNodes.

Here we discuss specific partitioning capabilities offered by the OptiGraph framework

where Figure 3.5 depicts the basic partitioning concepts. Using a hypergraph partitioner

(such as the ones mentioned earlier), an OptiGraph can be split into distinct partitions

which can then be used to form subgraphs. The formed subgraphs can then be combined

(aggregated) into stand-alone OptiNodes. For example, Figure 3.5a contains three parti-

tions P1,P2, and P3, Figure 3.5b shows the corresponding subgraphs SG1,SG2, and SG3

created from the partitions, and Figure 3.5c depicts aggregated OptiNodes n′1,n′2, and n′3

which represent optimization subproblems.

50

(a) Incident Edges (b) Neighborhood (c) Expanding a Subgraph

Figure 3.6: Depiction of topology-based OptiGraph manipulation capabilities. (Left)
querying incident edges to a subgraph, (middle) querying a subgraph neighborhood,
and (right) expanding a subgraph.

3.2.2 OptiGraph Manipulation

The OptiGraph also offers topology-based manipulation which can, for instance, be used

to modify subgraph structures and formulate subproblems for algorithms. Figure 3.6

depicts three core topology functions we commonly use in the OptiGraph framework. We

can query the incident edges (Figure 3.6a) to a set of OptiNodes (or a subgraph) to inspect

couplings (i.e. inspect incident linking constraints). We can also obtain the neighborhood

(Figure 3.6b) around a set of OptiNodes to inspect an expanded problem domain, and we

can consequently expand (Figure 3.6c) a subgraph into a larger domain and generate the

corresponding subproblem.

3.3 Algorithms

The OptiGraph is a flexible abstraction that facilitates the communication of problem

structure to different decomposition strategies. The structure of an OptiGraph can be

exploited at a problem level, wherein the decomposition strategy treats OptiNodes as opti-

mization subproblems that have their solutions coordinated to solve the entire OptiGraph

(such as in Benders, Lagrangian, and ADMM algorithms), or the the OptiGraph struc-

ture can be exploited at the linear-algebra level using block structures that naturally arise

51

Figure 3.7: An OptiGraph expressed as a block structure (left) and an OptiGraph with
subgraphs which induces a nested block structure (right)

from the graph topology (e.g. the block and nested block structures in Figure 3.7). At

the linear-algebra level, the decomposition strategy is executed within a general optimiza-

tion algorithm to compute a search step. In this case, the decomposition strategy treats

OptiNodes as linear systems that arise from the optimality conditions of the subproblems

and coordinates their solutions to find a solution of the linear system associated with the

optimality conditions of the entire OptiGraph.

In the rest of this section we show how to use the OptiGraph to explain structures at

the linear-algebra and problem levels. Particularly, we explain how the OptiGraph is used

to formulate the block partitions and linear systems in an interior point algorithm, as well

as how to formulate an advanced overlapping Schwarz decomposition scheme that uses

the graph structure at the problem level.

3.3.1 Linear Algebra Decomposition

It is well-known that block structures can be exploited by linear algebra operations within

interior-point algorithms. For instance, continuous problems with the partially-separable

structure described by Formulation (2.1) induce structured linear algebra kernels that can

be solved using tailored techniques such as Schur decomposition. We can express the

continuous variant of the graph Formulation (2.1) (from Chapter 2) with feasible sets of

52

the form Xn := {x | cn(x) = 0} which gives rise to the Karush-Kuhn-Tucker (KKT)

system given by:

∑
n∈N (OG)

(
∇xn fn(xn) +∇xn cn(xn)λn

)
+ ∑

e∈E(OG)
∇{xn}n∈N (e)

ge({xn}n∈N (e))λe = 0, (3.2a)

cn(xn) = 0, n ∈ N (OG), (3.2b)

ge({xn}n∈N (e)) = 0, e ∈ E(OG). (3.2c)

Here, we recall that N (e) denotes the nodes that support edge e. For ease of presentation,

we omit terms associated with barrier functions in (3.2) which exist in the presence of

inequality constraints. Upon linearization of (3.2), the system of algebraic equations gives

rise to the block-bordered KKT system given by:



Kn1 Bn1

Kn2 Bn2

. . .
...

Kn|N | Bn|N |

BT
n1

BT
n2

. . . BT
n|N |





∆wn1

∆wn2

...

∆wn|N |

∆λE(OG)


= −



rn1

rn2

...

rn|N |

rE(OG)


. (3.3)

Here, ∆wn := (∆xn, ∆λn) is the primal-dual step for the variables and constraints

on node n and ∆λE(OG) is a vector of steps corresponding to the dual variables on the

OptiEdges in OptiGraph OG, where ∆λE(OG) := {∆λe}e∈E(OG). We also define

Kn :=

 Wn JT
n

Jn 0

 ,

as the block matrix corresponding to OptiNode n where Wn = ∇xn,xnL is the Hessian of

the Lagrange function of (2.1) and Jn := ∇xn cn(xn) is the constraint Jacobian. We define

53

coupling blocks Bn as

Bn :=

 Qn 0

0 0

 ,

where Qn := ∇xn{ge({xn′}n′∈E(n))}e∈E(OG). If all of the linking constraints in the graph

are linear, Qn reduces to ΠT
n where Πn is the matrix of coefficients corresponding to the

OptiEdges incident to node n (which corresponds to the incidence matrix of the underly-

ing hypergraph).

Schur Decomposition

The block-bordered structure described in (3.2) can be exploited using Schur decomposi-

tion [73] or block preconditioning strategies [25, 109]. The typical Schur decomposition

algorithm is described by (3.4) in terms of the OptiGraph abstraction where S is the schur

complement matrix.

S = − ∑
n∈N (OG)

BT
n K−1

n Bn (3.4a)

S∆λE(OG) = ∑
n∈N (OG)

BT
n K−1

n rn − rE(OG) (3.4b)

Kn∆wn = Bn∆λE(OG) − rn (3.4c)

Step (3.4a) requires factorizing the linear system associated to each OptiNode (Kn)

and computes the Schur complement contribution BT
n K−1

n Bn on each node (possibly in

parallel). After each contribution is computed (each requires performing a sparse factor-

ization), the total Schur complement matrix S is created and factorized to solve the linear

system (3.4b) (in serial) and take a step in the OptiEdge dual variables (λE(OG)). Step

(3.4c) solves for the OptiNode primal-dual step ∆wn given the OptiEdge dual step (also

possibly in parallel).

54

General Schur decomposition exhibits two major computational bottlenecks. Forming

the contributions BT
n K−1

n Bn is expensive when there are many columns in Bn (the number

of columns corresponds to the number linking constraints incident to node n). More-

over, if the node blocks have different sizes, the factorization of the blocks Kn can create

load imbalance and memory issues. Second, factorizing the Schur matrix S is challenging

when there are many linking constraints because this matrix is dense or is composed of

dense sub-blocks. Consequently, it is important to control the amount of coupling be-

tween the blocks. The OptiGraph topology directly corresponds with the size of the block

matrices that appear in Schur decomposition and thus can be manipulated to facilitate

computational efficiency. Specifically, the partitioning of an OptiGraph can be used to

accelerate Schur decomposition.

3.3.2 Overlapping Schwarz Decomposition

Overlapping Schwarz is a flexible decomposition strategy that can be exploited at linear

algebra or problem levels [49, 120] and has been used to solve dynamic and network op-

timization problems [123, 119]. At the problem level, the overlapping Schwarz algorithm

decomposes a graph structure over overlapping partitions and solves subproblems that ex-

change primal-dual information using the overlapping regions. The presence of overlap is

key to improve the convergence rate of the algorithm which improves exponentially with

the size of the overlapping region [120]. The Schwarz scheme is flexible in the sense that

the size of overlap can be controlled to trade-off subproblem complexity (e.g. computa-

tion time and memory) with convergence speed. If the overlap becomes the entire graph,

the algorithm solves the entire problem at once (and converges in one iteration). When

the overlap is zero, the algorithm operates as a standard Gauss-Seidel scheme which ex-

hibits slow convergence (or no convergence at all). The Schwarz algorithm thus spans

fully centralized and fully decentralized extremes in its execution.

55

Development of Schwarz Algorithm

The Schwarz algorithm iteratively solves subproblems associated with overlapping sub-

graphs. In particular, we first construct expanded subgraphs {SG ′i}N
i=1 from the subgraphs

{SG i}N
i=1 obtained from OptiGraph partitioning. This procedure can be performed by

expanding the subgraphs and adding OptiNodes within a prescribed distance ω ≥ 0. The

optimization subproblems for the expanded subgraph SG ′i can be formulated as:

min
{xn}n∈N (SG′i)

∑
n∈N (SG ′i)

fn(xn)− ∑
e∈I1(SG ′i)

(λk
e)

Tge({xn}n∈N (e)∩N (SG ′i), {x
k
n}n∈N (e)\N (SG ′i))

(3.5a)

s.t. xn ∈ Xn, n ∈ N (SG ′i), (3.5b)

ge({xn}n∈N (e)) = 0, e ∈ E(SG ′i), (3.5c)

ge({xn}n∈N (e)∩N (SG ′i), {x
k
n}n∈N (e)\N (SG ′i)) = 0, e ∈ I2(SG ′i). (3.5d)

In this formulation, the dual variables for (3.5c) and (3.5d) are denoted by λe, N (SG ′i) is

the set of nodes in subgraph SG ′i, and the superscript (·)k denotes the iteration counter.

For representation we denote I1 and I2 as two separate sets of incident edges where

I := I1 ∪ I2. With this distinction, I(SG ′i) is the set of edges incident to SG ′i (i.e. edges

that contain a node in another subgraph) and I1 and I2 denote how the incident linking

constraints are formulated within the subproblem using either primal or dual coupling.

In our formulation, (3.5a) is the subproblem objective which is the sum of node objec-

tive functions contained in the expanded subgraph SG ′i where we have added the dual

penalties from the incident dual linking constraints on edges e ∈ I1(SG ′i), and (3.5d)

represents primal constraints we have added from the edges e ∈ I2(SG ′i). In this way,

the incident linking constraints can be directly incorporated into the subproblem as lo-

cal constraints, or they can be included in the objective function as a dual penalty (this

assigning procedure can be important to the algorithm performance). The primal-dual

solution of the other subproblems obtained from the previous iteration, in particular

56

{{xk
n}n∈N (e)\N (SG ′i)}e∈I(SG ′i) and {λk

e}e∈I1(SG ′i), also enter into the subproblem formula-

tion. The Schwarz algorithm achieves convergence with this exchange of information.

We note that the solution of each of the subproblems i = {1, 2, · · · , N} can be performed

in parallel.

An important step in the Schwarz algorithm is the restriction of the subproblem so-

lution. One obtains the primal-dual solution {x∗n}n∈N (SG ′i) and {{λ∗e }e∈E(SG ′i)∪I2(SG ′i)} by

solving (3.5). A key observation is that the solutions from different subproblems overlap

(the solution for overlapping nodes may appear in multiple subproblems). We thus use a

restriction step to eliminate the multiplicity. In particular, we discard the part of the solu-

tion associated with the nodes that are acquired by subgraph expansion. The restriction

step can be expressed as:

∀i ∈ {1, 2, · · · , N}, {xk
n}n∈N (SG i), {λ

k
e}e∈E(SG i) ← solution of (3.5).

Next, the primal-dual residual at any Schwarz iteration k is evaluated according to the

residual to the KKT system for (3.6). We define rk,Pr
e as the primal residual of the linking

constraints on edge e at iteration k, and rk,Du
e as the dual residual of the linking constraints

on edge e. In the OptiGraph context, the primal error evaluates the linking constraints in

the higher level graph e ∈ E(OG), and the dual error evaluates the consensus of the dual

values of the expanded subgraphs that contain the edge e. The formal definition of the

residuals is given by:

rk,Pr
e := ge({xk

n}n∈N (e)), e ∈ E(OG), (3.6a)

rk,Du
e := λk

e(SG ′i)− λk
e(SG ′j), e ∈ E(OG). (3.6b)

and the termination criteria for the algorithm can be set as follows:

stop if: max
e∈E(OG)

‖rk,Pr
e ‖∞, max

e∈E(OG)
‖rk,Du

e ‖∞ ≤ εtol (3.7)

57

where εtol is the prescribed convergence tolerance.

The Schwarz algorithm can be expressed using syntax that closely matches that of

the OptiGraph abstraction, as shown in Algorithm 3.1. Figure 3.8 also depicts how

primal-dual information is exchanged in the overlapping subgraph scheme using a sim-

ple OptiGraph. The figure depicts a simple graph that contains two subgraphs SG1 and

SG2 and one edge e2 that connects the subgraphs (e2 ∈ E(OG)). The right side of Figure

3.8 shows the expanded subgraphs SG ′1 and SG ′2. In the illustration, edge e1 is incident

to subgraph SG ′2 and communicates primal information (i.e. it is in the set I2(SG ′2)), and

edge e3 is incident to subgraph SG ′1 and communicates dual information to subgraph

SG ′1 (i.e. it is in the set I1(SG ′1)).

Algorithm 3.1 Schwarz Algorithm for Solving an OptiGraph

Input graph OG, non-expanded subgraphs {SG1, ...,SGN} and expanded subgraphs

{SG ′1, ...,SG ′N}.

Initialize x0, λ0

Formulate subproblems in (3.5)

while termination criteria not satisfied do

for i = 1 : N (in parallel) do

Retrieve {{xk
n}n∈N (e)\N (SG ′i)}e∈I(SG ′i) and {λk

e}e∈I1(SG ′i) and update subproblems.

Solve subproblem (3.5) to obtain {xk+1
n }n∈N (SG i), {λ

k+1
e }e∈E(SG i)

end for

Compute {rk,Pr
e }e∈E(OG), {rk,Du

e }e∈E(OG) and evaluate termination criteria (3.7).

end while

3.4 Software Framework: Decomposition with Plasmo.jl

In Section 2.3 we introduced the basic modeling functions in Plasmo.jl and showed how

it used hierarchical graph structures to construct optimization problems. This section in-

58

(a) (b)

Figure 3.8: Depiction of Schwarz Algorithm. The original graph containing two sub-
graphs (SG1 and SG2) connected by edge e2 (left), and the graph with expanded sub-
graphs (SG ′1 and SG ′2) (right). The expanded subgraphs overlap at nodes n3 and n4.

troduces the corresponding syntax to partition OptiGraphs and use graph manipulation

functions to develop decomposition algorithms. To perform hypergraph partitioning we

use the KaHyPar [112] hypergraph partitioner through the KaHyPar.jl interface. KaHyPar

targets the creation of high quality partitions and offers a straightforward C library inter-

face which facilitates its connection with Plasmo.jl. Throughout our examples we use

the default KaHyPar configuration which uses a direct multilevel k-way algorithm with

community detection initialization.

Table 3.1 summarizes the core graph partitioning and manipulation functions in Plasmo.jl.

The gethypergraph function returns a hypergraph object (extends a LightGraphs.jl ob-

ject [116]) and reference_map maps the hypergraph elements back to the OptiGraph (i.e.

hypergraph node indices are mapped back to OptiNodes). We also introduce a Partition

object that describes how to formulate subgraphs within a graph. As we will show, the

Partition object is an intermediate interface to formulate subgraphs in a general way.

59

Functions and Descriptions
Create a hypergraph representation of graph.
hypergraph,ref = gethypergraph(graph::OptiGraph)
Create a Partition given an OptiGraph, a vector of integers and a mapping ref_map.
partition = Partition(graph::OptiGraph,vector::Vector{Int},mapping::Dict{Int,OptiNode})
Reform graph into subgraphs using partition.
make_subgraphs!(graph::OptiGraph,partition::Partition)
Combine subgraphs in graph such that n_levels of subgraphs remain.
aggregate(graph::OptiGraph,n_levels::Int)
Retrieve incident OptiEdges of OptiNodes in graph.
incident_optiedges(graph::OptiGraph,nodes::Vector{OptiNode})
Retrieve neighborhood within distance of nodes.
neighborhood(graph::OptiGraph,nodes::Vector{OptiNode},distance::Int)
Retrieve a subgraph from graph including neighborhood nodes within distance of sg.
expand(graph::OptiGraph,sg::OptiGraph,distance::Int)

Table 3.1: Overview of core partitioning and topology functions in Plasmo.jl.

3.4.1 Partitioning a Dynamic Optimization Problem

To demonstrate the partitioning capabilities in Plasmo.jl, we use a simple dynamic opti-

mization problem [121] given by (3.8).

min
{x,u}

T

∑
t=1

x2
t + u2

t (3.8a)

s.t. xt+1 = xt + ut + dt, t ∈ {1, ..., T − 1} (3.8b)

x1 = 0 (3.8c)

xt ≥ 0, t ∈ {1, ..., T} (3.8d)

ut ≥ −1000, t ∈ {1, ..., T − 1} (3.8e)

Here, x is a vector of states and u is a vector of control actions which are both indexed

over the set of time indices t ∈ {1, ..., T}. Equation (3.8a) minimizes the state trajectory

with minimal control effort (energy), (3.8b) describes the state dynamics, and (3.8c) is the

initial condition. This problem can be formulated using an OptiGraph as shown in Code

Snippet 3.1 (in much the same way as the examples in Section 2.3). We define the number

of time periods T = 100 and create a disturbance vector d (data) on Lines 1 through 4. In

60

our implementation we create separate sets of nodes for the states and controls on Lines

10 and 11, but it is also possible to define nodes for each individual time interval and add

state and control variables to the resulting nodes. Having control over this granularity is

convenient for expressing what can be partitioned (i.e. features defined in an OptiNode

will remain in the same partition). Next we setup the state and control OptiNodes on

Lines 14 through 29, we use a linking constraint to capture dynamic coupling on Line 32

and we show how to solve the problem with Ipopt on Line 37. We visualize the graph

topology and matrix in Figure 3.9. The layouts depict a linear graph the matrix has no

obvious structure.

We partition the graph using KaHyPar, as shown in Code Snippet 3.2. In this snip-

pet, Line 2 imports the KaHyPar interface and Line 5 creates a hypergraph representation

of the OptiGraph using gethypergraph. We also return a reference_map which maps

the hypergraph elements back to the original OptiGraph. Line 8 performs hypergraph

partitioning using KaHyPar with a maximum imbalance (εmax) of 10% and Line 11 cre-

ates a Partition object using the resulting partition vector and the reference_map. Line

14 creates subgraphs in the graph using the Partition object and the make_subgraphs!

function. We visualize the topology and matrix of the partitioned problem on Lines 16

and 19 which are shown in Figure 3.10. This reveals eight distinct partitions and their cor-

responding coupling. The partitions are well-balanced and the matrix is now rearranged

into a banded structure that is typical of dynamic optimization problems (partitioning

automatically induces reordering). Plasmo.jl can also use other graph representations

to perform partitioning. For instance, it is possible to create a traditional graph repre-

sentation, as shown in Code Snippet 3.3, and partition it with Metis. The reference_map

can then be used to obtain the original OptiGraph elements to create a graph Partition.

We could also partition less intuitive representations (e.g., such as a bipartite graph) in

the same way. The partitioning procedure shown here can also be repeated to create an

arbitrary number of subgraph levels (inducing a multi-level hierarchical structure).

61

Code Snippet 3.1: Construction of dynamic optimization problem (3.8)
1 using Plasmo, Plots, Ipopt
2
3 T = 100 #number of time points
4 d = sin.(1:T) #disturbance
5
6 #Create an OptiGraph
7 graph = OptiGraph()
8
9 #Add nodes for states and controls

10 @optinode(graph,state[1:T])
11 @optinode(graph,control[1:T-1])
12
13 #Add state variables
14 for (i,node) in enumerate(state)
15 @variable(node,x)
16 @constraint(node, x >= 0)
17 @objective(node,Min,x^2)
18 end
19
20 #Add control variables
21 for node in control
22 @variable(node,u)
23 @constraint(node, u >= -1000)
24 @objective(node,Min,u^2)
25 end
26
27 #Initial condition
28 n1 = state[1]
29 @constraint(n1,n1[:x] == 0)
30
31 #Dynamic coupling
32 @linkconstraint(graph,[t = 1:T-1],state[t+1][:x] == state[t][:x] +
33 control[t][:u] + d[t])
34
35 #Optimize with Ipopt
36 ipopt = Ipopt.Optimizer
37 optimize!(graph,ipopt)
38
39 #Plot result structure
40 plt_graph4 = plot(graph,
41 layout_options = Dict(:tol => 0.1,:iterations => 500),
42 linealpha = 0.2,markersize = 6)
43
44 plt_matrix4 = spy(graph)

0 50 100 150 200
Node Variables

0

75

150

224

299

Co
ns

tra
in

ts

Figure 3.9: Output visuals for Code Snippet 3.1 showing graph structure of dynamic
optimization problem.

62

Code Snippet 3.2: Creating subgraphs using hypergraph partitioning with KaHyPar

1 #Import KaHyPar interface
2 using KaHyPar
3
4 #Create a hypergraph representation of the OptiGraph
5 hypergraph,reference_map = gethypergraph(graph)
6
7 #Perform hypergraph partitioning using KaHyPar
8 node_vector = KaHyPar.partition(hypergraph,8,imbalance = 0.1)
9

10 #Create a Partition object
11 partition = Partition(graph,node_vector,reference_map)
12
13 #Create subgraphs using the partition object and reference_map
14 make_subgraphs!(graph,partition)
15
16 plt_graph5 = plot(graph,
17 layout_options = Dict(:tol => 0.01,:iterations => 500),
18 linealpha = 0.2,markersize = 6,subgraph_colors = true);
19 plt_matrix5 = spy(graph,subgraph_colors = true);

0 50 100 150 200
Node Variables

0

75

150

224

299

Co
ns

tra
in

ts

Figure 3.10: Output visuals for Code Snippet 3.2 showing partitions and reordering of
dynamic optimization problem.

63

Code Snippet 3.3: Creating a subgraph partition using graph partitioning with Metis

1 #Import the Metis interface
2 using Metis
3
4 #Retrieve underlying hypergraph from dynamic opt problem graph
5 simple_graph,reference_map = getcliquegraph(graph)
6
7 #Run Metis direct k−way partitioning with a 8 maximum of partitions
8 node_vector = Metis.partition(simple_graph,8,alg = :KWAY)
9

10 #Create a Partition object using node vector and reference_map
11 partition = Partition(node_vector,reference_map)
12
13 #Create subgraphs using Partition object
14 make_subgraphs!(graph,partition)

The OptiNodes in a graph can be aggregated to form larger nodes, as shown in Figure

3.5c. Aggregation is key for communicating subproblems to decomposition algorithms

that operate at different levels of granularity. Aggregation can also collapse an entire

graph into a single node, producing a standard optimization problem to be solved with

an off-the-shelf solver (such as was done in Chapter 2). Code Snippet 3.4 shows how to

aggregate the graph of the dynamic optimization problem into a new aggregated graph

with eight OptiNodes. We create a new combined graph new_optigraph on Line 2 by

using aggregate on the graph from Snippet 3.2. We provide the integer 0 to the function

to specify that we want zero subgraph levels which converts the eight subgraphs into

OptiNodes. For hierarchical graphs with many levels, it is possible to define how many

subgraph levels we want to retain. The graph and matrix layouts are plotted for the

aggregated model on Lines 5 and 8 and these are shown in Figure 3.11.

3.4.2 Using Graph Topology Functions

We now demonstrate graph topology functions by computing overlapping partitions for

the dynamic optimization example. This is shown in Code Snippet 3.5. Here, Line 2

obtains subgraphs from the OptiGraph graph created in Snippet 3.2, Line 8 determines

and returns the OptiEdges incident to the OptiNodes in the first subgraph sg1, and Line

12 returns the complete neighborhood around the same of OptiNodes within a distance

of two. On Line 16, we broadcast the expand function (using dot syntax expand.() and

64

Code Snippet 3.4: Aggregating nodes in an OptiGraph
1 #Combine the subgraphs in graph into OptiNodes in a new OptiGraph
2 aggregated_graph,ref_map = aggregate(graph,0)
3
4 #plot the graph a matrix layouts of the aggregated OptiGraph
5 plt_graph6 = plot(aggregated_graph,
6 layout_options = Dict(:tol => 0.01,:iterations => 10),
7 node_labels = true,markersize = 30,labelsize = 20,node_colors = true)
8 plt_matrix6 = spy(aggregated_graph,node_labels = true,node_colors = true)

1'

2'

3'
4'

5'

6'

7'
8' 0 50 100 150 200

Node Variables

0

75

150

224

299

Co
ns

tra
in

ts

1'

2'

3'

4'

5'

6'

7'

8'

Figure 3.11: Output visuals for Code Snippet 3.4 showing aggregated graph of dynamic
optimization problem.

65

Ref as typical in Julia) to create a new set of subgraphs, each expanded by a distance

of two. Line 19 plots the layout of graph with the expanded subgraphs as is shown in

Figure 3.12. This shows eight distinct partitions (each with a unique color) where the

larger markers represent nodes that are part of multiple subgraphs (these are also the

average color of their containing subgraphs). Figure 3.12 shows the corresponding matrix

layout where highlighted columns indicate that the OptiNode appears in other subgraph

blocks. The overlapping partitions can be used in decomposition algorithms such as the

Schwarz algorithm presented in Section 3.3.2.

3.5 Case Study: Decomposition of a Natural Gas Optimal Control

Problem

This case study demonstrates how we can use OptiGraph partitioning to decompose the

space-time structure of an optimal control problem and exploit the Schur decomposition

strategy presented in Section 3.3.1.

3.5.1 Problem Setup

We consider the system of connected pipelines in series shown in Figure 3.13 (this is the

same pipeline system used in Section 2.4). This linear network includes a gas supply at

one end, a time-varying demand at the other end, and twelve compressor stations. The

gas junctions connect thirteen pipelines which forms an OptiGraph with a linear topology.

66

Code Snippet 3.5: Using Graph Topology Functions
1 #Get the current subgraphs in graph
2 subgraphs = getsubgraphs(graph)
3
4 #Query the first subgraph
5 sg1 = subgraphs[1]
6
7 #Query the edges incident to the nodes in sg1
8 incident_edges = incident_edges(graph,all_nodes(sg1))
9

10 distance = 2
11 #Query the nodes within distance 2 of sg1
12 nodes = neighborhood(graph,all_nodes(sg1),distance)
13
14 #Broadcast expand function to each subgraph.
15 #Obtain vector of expanded subgraphs
16 expanded_subgraphs = expand.(Ref(graph),subgraphs,Ref(distance))
17
18 #Plot the expanded subgraphs
19 plt_graph7 = plot(graph,expanded_subgraphs,
20 layout_options = Dict(:tol => 0.01,:iterations => 1000),
21 markersize = 6,linealpha = 0.2)
22 plt_matrix7 = spy(graph,expanded_subgraphs)

0 50 100 150 200 250
Node Variables

0

92

184

277

369

Co
ns

tra
in

ts

Figure 3.12: Output visuals for Code Snippet 3.5 showing overlapping subgraphs of dy-
namic optimization problem.

67

supply demand

Figure 3.13: Multi-pipeline system depiction for optimal control problem.

min
{η`,t, f target

d,t }
`∈Lc,d∈D,t∈T

∑
`∈Lc
t∈T

α`P`,t − ∑
d∈D
t∈T

αd f target
d,t (3.9a)

s.t. Junction Limits (A.1) (3.9b)

Compressor Equations (A.3) (3.9c)

Pipeline Equations (A.21) (3.9d)

Initial Condition (A.22) (3.9e)

Refill Line-Pack (A.23) (3.9f)

Boundary Conditions (A.29) (3.9g)

Junction Conservation (A.28) (3.9h)

In contrast to the estimation problem 2.7 in Section 2.4, this study seeks to solve an

optimal control problem that maximizes revenue over a 24 hour time period given a fore-

casted demand profile. (3.9) represents the optimal control problem where (3.9a) denotes

the objective function which maximizes revenue by controlling compressor actions and

demand deliveries. In this formulation, α` and P`,t are the compression cost ($/kW), and

compression power for compressor ` at time t, and αd and f target
d,t are the demand price

and target demand flow for demand d at time t. (3.9b) captures junction pressure limits,

supply flows, and demand flows, (3.9c) describes compressor equations and limits, (3.9d)

68

defines discretized pipeline equations for mass and momentum, (3.9e) denotes the initial

condition of the partial differential equations, and (3.9f) requires the optimizer to refill

the line-pack (gas inventory) in each pipeline at the end of the operating horizon. (3.9g)

and (3.9h) describe boundary conditions on each pipeline and mass conservation at each

junction respectively. The details of the summarized equations are found in Appendix A.

3.5.2 Modeling and Partitioning

For our implementation we use the the OptiGraph functions found in Appendix A to build

junction, compressor, and pipeline OptiGraphs (i.e. Code Snippets A.1, A.2, and A.3), and

specifically use Code Snippet A.4 to construct the gas network optimal control problem.

Once we have constructed an OptiGraph representation of the optimal control problem,

we can use hypergraph partitioning to decompose the resulting space-time structure. This

highlights a key feature of the OptiGraph is that its hierarchical style of modeling makes

it possible to unfold the component structure which facilitates partitioning. This idea is

depicted more clearly in Figure 3.14 In this figure, we show how compressors, junctions,

and pipelines are represented as distinct subgraphs that contain OptiNodes representing

states in time and these subgraphs are connected in a higher level (network) OptiGraph.

Compressor
OptiGraph

Junction
OptiGraph

Pipeline
OptiGraph

Figure 3.14: Unfolding gas network components.

We solve the optimal control problem using two strategies. We:

69

• (I) Aggregate and solve the complete problem (with Ipopt): We aggregate all of

the nodes and edges to produce a large optimization problem which ignores the

graph structure.

• (II) Partition and solve with general Schur decomposition (with PIPS-NLP): We

exploit hypergraph partitioning to enable a parallel Schur decomposition scheme

and solve with the PIPS-NLP parallel solver.

Code Snippet 3.6 depicts how straightforward it is to partition the problem. Line 2 im-

ports the KaHyPar hypergraph partitioner, Line 5 formulates a hypergraph representation,

and Lines 8 through 10 setup weight vectors we use for the nodes and edges (we weight

nodes by their number of variables and edges by their number of linking constraints).

We partition the hypergraph on Line 14 (into 13 partitions), we create a Partition ob-

ject on Line 17, and we produce new subgraphs on Line 20 and finally we aggregate the

subgraphs on Line 23.

Code Snippet 3.6: Partitioning the gas network optimal control problem

1 #Import the KaHyPar interface
2 using KaHyPar
3
4 #Get they hypergraph representation of the gas network
5 hypergraph,ref_map = gethypergraph(gas_network)
6
7 #Setup node and edge weights
8 n_vertices = length(vertices(hypergraph))
9 node_weights = [num_variables(node) for node in all_nodes(gas_network)]

10 edge_weights = [num_link_constraints(edge) for edge in all_edges(gas_network)]
11
12 #Use KaHyPar to partition the hypergraph
13 node_vector = KaHyPar.partition(hypergraph,13,configuration = :edge_cut,
14 imbalance = 0.01, node_weights = node_weights,edge_weights = edge_weights)
15
16 #Create a model partition
17 partition = Partition(gas_network,node_vector,ref_map)
18
19 #Setup subgraphs based on partition
20 make_subgraphs!(gas_network,partition)
21
22 #Aggregate the subgraphs into OptiNodes
23 new_graph , aggregate_map = aggregate(gas_network,0)

The partitioned optimal control problem is visualized in Figure 3.15. The top figure

(Figure 3.15a) depicts the unfolded components for the complete problem (this is equiv-

alent to the representation in Figure 3.14) and the bottom figure (Figure 3.15b) shows the

problem partitioned into 13 distinct partitions.

70

(a) Unfolded components

(b) Partitioned optimal control problem

Figure 3.15: Graph depictions of optimal control problem. The unfolded components
(top) with blue junctions, green compressors, and grey pipelines. The partitioned hyper-
graph (bottom) colored with 13 distinct partitions.

Plasmo.jl includes an interface to the structure-exploiting interior-point solver

PIPS-NLP called PipsSolver.jl. PIPS-NLP provides the general Schur decomposition

strategy described in Section 3.3.1 and performs parallel computations via MPI. We high-

light that PIPS-NLP was created to solve large-scale stochastic programming problems

that exhibit a well-defined two-level tree structure (i.e. a single first stage problem cou-

pled to second stage subproblems). With the OptiGraph, we can convert general graph

structures into this format (e.g., via aggregation and partitioning). To solve with PIPS-NLP

we communicate the new_graph created in Snippet 3.6 to the solver as shown in Snippet

3.7 to solve in parallel.

71

Code Snippet 3.7: Solving an OptiGraph model in parallel with PIPS-NLP

1 using Distributed
2 using MPIClusterManagers
3
4 # specify, number of mpi workers
5 manager=MPIManager(np=2)
6 # start mpi workers and add them as julia workers too.
7 addprocs(manager)
8
9 #Setup the worker environments

10 @everywhere using Plasmo
11 @everywhere using PipsSolver #Solver interface to PIPS−NLP
12
13 #get the julia ids of the mpi workers
14 julia_workers = collect(values(manager.mpi2j))
15
16 #Use the pips−nlp interface to distribute the OptiGraph among workers
17 #Here, we create the variable pips_graph on each worker
18 remote_references = PipsSolver.distribute(new_graph,julia_workers,
19 remote_name = :pips_graph)
20
21 #Solve with PIPS−NLP
22 @mpi_do manager begin
23 using MPI
24 PipsSolver.pipsnlp_solve(pips_graph)
25 end

Snippet 3.7 also presents a standard template for setting up distributed computing

environments to use PipsSolver.jl which is worth discussing. Line 1 imports the

Distributed module, which is a Julia package for performing distributed computing.

On Line 2 we import the MPIClusterManagers package which allows us to map MPI ranks

(used by PIPS-NLP) with Julia worker CPUs. We create a manager object and specify that

we want to use 2 workers on Line 5 and we add the Julia workers on Line 7. Next we

setup the model and solver environments for the added workers on Lines 10 and 11 and

create a reference to the julia workers by querying the manager on Line 14. We distribute

the OptiGraph (named new_graph) among the workers in Line 18 using the function pro-

vided by PipsSolver. This function sets up the relevant graph nodes on each worker and

creates the graph named pips_graph on each worker (internally this function inspects the

OptiGraph and allocates OptiNodes to worker CPUs). Finally, we use the mpi_do func-

tion from MPIClusterManagers to execute MPI on each worker and solve the graph. Each

worker executes the pipnlp_solve function and communicates using MPI routines within

PIPS-NLP.

72

3.5.3 Results

For our comparison, the resolution of the spatial discretization mesh of the pipeline PDEs

is gradually increased to produce optimization problems that span the range of 100,000

to 2 million variables. Figure 3.16 compares the performance of the two approaches. The

partitioned problem (II) can be solved with near-linear scaling whereas the aggregated

problem solved with Ipopt (I) scales cubically. This result highlights the scalability that

can be achieved using the partitioning approach (II), but approach (I) still benefits from

having a structured solution (which we exploited in the case study in Section 2.4).

Figure 3.16: Computational times for the solution of unstructured gas pipeline formula-
tion with Ipopt and for the solution of the structured formulation using PIPS-NLP.

3.6 Case Study: Overlapping Domain Decomposition of a DC

Power Grid

This case study demonstrates how we can use OptiGraph partitioning and topology ma-

nipulation to pose a complex power network problem to the Schwarz overlapping domain

73

decomposition scheme described in Section 3.3.2.

3.6.1 Problem Setup

We consider a 9,241 bus test case obtained from pglib-opf (v19.05) [10]. We denote a power

grid as a network Net(V ,Lg) containing a set of electric buses V that connect grid links

(power lines) ` ∈ Lg. Each electric bus i ∈ V can include generators q ∈ Ωi and serves

a total power load PL
i . The total set of generators is given by Ω such that

⋃
i∈V Ωi = Ω.

The network is described by the DC power flow equations [126] given by (3.10) where

(3.10a) seeks to minimize the total generation cost and voltage angle difference where β

is a regularization parameter. (3.10b) enforces energy conservation, and (4.2c) and (4.2d)

denote limits on power generation and voltage angles. In this formulation, vi is the bus

voltage angle for each bus i ∈ V , Pq is the power generation from generator q with cost

coefficients cq,1 and cq,2 and lower and upper limits Pq and Pq, and v`,j and v`,k are the

inlet and outlet voltage angles on transmission line ` with ramp limit v`. We also define

Lrec(i) as the set of power links received by bus i and Lsnd(i) as the set of links sent from

bus i. The power flow on line ` is defined by (4.2b), where Y` is the branch admittance

for line `, v`,j is the source bus voltage angle and v`,k is the destination bus voltage angle.

src(`) denotes the source bus of line ` and dst(`) is destination bus for line `. We denote

the voltage angles on the set of reference buses in (4.2e) where V re f is the set of reference

buses.

74

min
{vi}i∈V
{Pq}q∈Ω

∑
q∈Ω

(
cq,1Pq + cq,2P2

q

)
+

β

2 ∑
`∈Lg

(v`,j − v`,k)
2 (3.10a)

s.t. ∑
q∈Ωi

Pq + ∑
`∈Lrec(i)

P` − ∑
`∈Lsnd(i)

P` = PL
i , i ∈ V (3.10b)

v`,j = vsrc(`), v`,k = vdst(`), ` ∈ Lg (3.10c)

P` = Y`(v`,j − v`,k), ` ∈ Lg (3.10d)

Pq ≤ Pq ≤ Pq, q ∈ Ω (3.10e)

− v` ≤ v`,j − v`,k ≤ v`, ` ∈ Lg (3.10f)

vi = vre f
i , i ∈ V re f (3.10g)

3.6.2 Modeling, Partitioning, and Expansion

We construct the DC OPF model with Code Snippet 3.9 (provided in Section 3.7), which

produces an optimization problem with over 100,000 variables and constraints. We parti-

tion the produced OptiGraph using KaHyPar and then create subgraphs, expand them, and

solve the problem using SchwarzSolver.jl (which implements the overlapping Schwarz

algorithm).

Code Snippet 3.8 demonstrates how we carry out partitioning using a maximum im-

balance of 10% and an overlap size of ω = 10. Line 1 imports KaHyPar and Line 6 creates

a hypergraph and ref_map which we use for partitioning. Lines 9 through 11 query the

graph for edge weights and node sizes, Line 15 partitions the DC OPF problem, and Lines

18 and 21 create a Partition and use it to define subgraphs for the problem. Once we

have subgraphs, we perform a subgraph expansion on Line 27 and execute the Schwarz

solver on Line 31. We tell the solver how to treat linking constraints with the keyword

arguments primal_links and dual_links which denote how subproblems are formu-

lated. We provide primal_links a vector of power flow linking constraints and provide

dual_links a vector of voltage angle linking constraints The constraints that are specified

75

as primal_links are treated as direct constraints while the constraints in dual_links are

incorporated as dual penalty as described in (3.5).

Code Snippet 3.8: Partitioning and Formulating Overlapping Subproblems

1 using KaHyPar
2 using Ipopt
3 using SchwarzSolver
4
5 #Get the hypergraph representation of the gas network
6 hypergraph,ref_map = gethypergraph(dcopf)
7
8 #Setup node and edge weights
9 n_vertices = length(vertices(hypergraph))

10 node_weights = [num_variables(node) for node in all_nodes(dcopf)]
11 edge_weights = [num_link_constraints(edge) for edge in all_edges(dcopf)]
12
13 #Use KaHyPar to partition the hypergraph
14 node_vector = KaHyPar.partition(hypergraph,4,configuration = :edge_cut,
15 imbalance = 0.1, node_weights = node_weights,edge_weights = edge_weights)
16
17 #Create a partition object
18 partition = Partition(dcopf,node_vector,ref_map)
19
20 #Setup subgraphs based on partition
21 make_subgraphs!(dcopf,partition)
22
23 distance = 10
24 subgraphs = getsubgraphs(dcopf)
25
26 #Expand the subgraphs
27 sub_expand = expand.(Ref(dcopf),subgraphs,Ref(distance))
28
29 ipopt = Ipopt.Optimizer
30
31 schwarz_solve(dcopf,sub_expand,primal_links = power_links,
32 dual_links = [angle_i;angle_j]],
33 sub_optimizer = ipopt,max_iterations = 100,tolerance = 1e-3)

3.6.3 Results

Figure 3.17 depicts the original and overlapping partitions obtained from Snippet 3.8

(visualized using Gephi). We experiment with different values for maximum imbalance

and overlap and obtain the results in Figure 3.18. We see that the Schwarz algorithm fails

to converge with an overlap value of one (for any imbalance value) which is consistent

with the convergence analysis in [123], but a sufficient overlap of 10 produces smooth

convergence (for each imbalance value). We also observe that larger partition imbalance

results in faster convergence (with sufficient overlap) which is likely due to the smaller

edge cut and fewer linking constraints that need to be satisfied. We thus see that the

trade-offs of imbalance and coupling are complex and differ under different settings.

76

DC OPF Partitions Partition 1 Overlap Partition 2 Overlap

Partition 3 Overlap Partition 4 Overlap

Figure 3.17: Depiction of DC OPF problem with four partitions. The original calculated
partitions with εmax = 0.1 (left) and the corresponding overlap partitions with ω = 10
(right).

0 25 50 75 100
Iteration

4.5×10

5.0×10

5.5×10

6.0×10

6.5×10

7.0×10

Ob
je

ct
iv

e
Va

lu
e

 = 1, _max = 0.01
 = 1, _max = 0.1
 = 1, _max = 1.0
 = 10, _max = 0.01
 = 10, _max = 0.1
 = 10, _max = 1.0

0 25 50 75 100
Iteration

10 3

10 2

10 1

100

101

102

Pr
im

al
 E

rro
r

0 25 50 75 100
Iteration

101

102

103

104

105

Du
al

 E
rro

r

Figure 3.18: Comparison of Schwarz algorithm for different values of overlap ω and
maximum partition imbalance εmax

77

3.7 Appendix: DC OPF OptiGraph Implementation

The DC optimal power flow model is implemented in Code Snippet 3.9. Line 1 loads

the bus system using data from the pglib-opf library, Line 4 creates the OptiGraph, Lines

7 and 8 create nodes for each bus and transmission line in the network, and Line 11

assigns relevant data to each bus and line node using a load_data! function. The DC

OPF model is constructed in the same fashion as described in earlier examples where

Lines 14 through 55 setup variables and constraints on each OptiNode and we add linking

constraints to enforce power conservation and voltage angle connections.

78

Code Snippet 3.9: Creating the DC OPF Problem

1 include("ogplib_data.jl")
2
3 #Create graph based on network
4 grid = OptiGraph()
5
6 #Create bus and power line nodes
7 @optinode(grid,buses[1:N_buses])
8 @optinode(grid,lines[1:N_lines])
9

10 #Load data and setup bus and line mappings
11 load_data!(lines,buses)
12
13 #Setup line OptiNodes
14 for line in lines
15 bus_from = line_map[line][1]
16 bus_to = line_map[line][2]
17 delta = line.ext[:angle_rate]
18 @variable(line,va_i,start = 0)
19 @variable(line,va_j,start = 0)
20 @variable(line,flow,start = 0)
21 @constraint(line,flow == B[line]*(va_i - va_j))
22 @constraint(line,delta <= va_i - va_j <= -delta)
23 @objective(line,Min,gamma*(va_i - va_j)^2)
24 end
25
26 #Setup bus OptiNodes
27 power_links = []
28 for bus in buses
29 va_lower = bus.ext[:va_lower]; va_upper = bus.ext[:va_upper]
30 gen_lower = bus.ext[:gen_lower]; gen_upper = bus.ext[:gen_upper]
31
32 @variable(bus,va_lower <= va <= va_upper)
33 @variable(bus,P[j=1:ngens[bus]])
34 @constraint(bus,[j = 1:ngens[bus]]gen_lower[j] <= P[j] <= gen_upper[j])
35
36 lines_in = node_map_in[bus] ; lines_out = node_map_out[bus]
37
38 @variable(bus,power_in[1:length(lines_in)])
39 @variable(bus,power_out[1:length(lines_out)])
40
41 @constraint(bus,power_balance, sum(bus[:P][j] for j=1:ngens[bus]) -
42 sum(power_in) + sum(power_out) - load_map[bus] == 0)
43 @objective(bus,Min,sum(bus.ext[:c1][j]*bus[:P][j] +
44 bus.ext[:c2][j]*bus[:P][j]^2 for j = 1:ngens[bus]))
45
46 #Link power flow
47 p1 = @linkconstraint(grid,[j = 1:length(lines_in)],
48 bus[:power_in][j] == lines_in[j][:flow])
49 p2 = @linkconstraint(grid,[j = 1:length(lines_out)],
50 bus[:power_out][j] == lines_out[j][:flow])
51 push!(power_links,p1) ; push!(power_links,p2)
52 end
53
54 #Link voltage angles
55 @linkconstraint(grid,angle_i[line = lines],line[:va_i] ==
56 line_map[line][1][:va])
57 @linkconstraint(grid,angle_j[line = lines],line[:va_j] ==
58 line_map[line][2][:va])

79

Chapter 4

M O D E L I N G L A R G E - S C A L E I N F R A S T R U C T U R E S Y S T E M S

This chapter uses the OptiGraph concepts presented in Chapters 2 and 3 to model and

solve large-scale infrastructure optimization problems. We discuss existing challenges in

modeling infrastructure systems and provide case studies that illustrate the benefits of

the OptiGraph approach.

4.1 Introduction

The modeling and optimization of large-scale infrastructure systems is becoming increas-

ingly important as their day to day operation becomes more complex. The dynamic be-

havior that has resulted from the continuous addition of intermittent generation sources

(e.g. such as wind and solar) in the power grid and the increased stresses on power and

gas systems due to natural and man-made hazards has necessitated flexible and scalable

modeling approaches [102]. As an extreme example, the 2014 polar vortex exposed many

operational inefficiencies and vulnerabilities in regional natural gas and power systems

which resulted in failed natural gas deliveries to key power facilities which resulted in

significant lost generation (35 GW at a value of lost load of 5000 $/MW h [3]). The need

to create optimization models to design, operate, and analyze complex infrastructure

networks is apparent, but such advances have remained technically challenging.

80

In the context of natural gas networks, optimization models need to capture both

slow and fast transient effects using partial differential equations [26]. Such transient

effects arise from sudden demand withdrawals that propagate throughout the network

and consequently affect gas delivery to power plants and grid operations [118]. Devel-

oping large-scale gas network models is challenging because of the need to incorporate

complex sets of equations over sophisticated pipeline networks and equipment that span

thousands of miles. It is also important to consider long time horizons to develop robust

control policies which lead to challenging large-scale nonlinear optimization problems.

Coupling infrastructure models poses yet another layer of complexity to manage. The

equations that describe physical elements can be drastically different between systems

which complicates the development of modeling tools to experiment with different model

representations. For example, the power grid modeling field tends to use sophisticated

simulation tools [99], but they lack the capabilities to integrate with high-fidelity gas

pipeline simulators [1]). Interfacing different simulation tools becomes prohibitive be-

cause they often do not use coherent data structures. Such disparate structures result

from the need to capture different physical equations and numerical techniques.

To tackle these issues, this chapter presents modeling approaches using the OptiGraph

to model large-scale infrastructure systems. We show how the OptiGraph abstraction

developed in Chapters 2 and 3 can be used to model coupled large-scale systems, and how

it facilitates decomposition-based solutions for large-scale problems. We also show how

it can interface with commercial tools to implement hybrid optimization strategies that

produce high-fidelity solutions. The rest of this chapter is organized as follows. Section

4.2 presents a large-scale natural gas network we use for each of our considered problems,

Section 4.3 uses the OptiGraph to model a coupled gas-electric power system, and Section

4.4 uses OptiGraph partitioning to decompose the space-time structure of the gas network

to solve a a large-scale optimal control problem. Section 4.5 provides an overview of

simulation-based optimization approaches to solve natural gas problems which are used

in commercial packages, and Section 4.6 provides a case study that combines simulation-

81

based approaches with our developed OptiGraph models.

4.2 Natural Gas Optimization Model

Throughout the rest of this chapter we utilize the natural gas system shown in Figure 4.1

[29]. This system includes 4 gas supplies, 153 time-varying gas demands, 215 pipelines,

and 16 compressor stations resulting in 172 total junction points. Our considered natural

Junction/Demand
Junction

Junction/Supply
Compressor
Pipeline

Figure 4.1: Depiction of Large-Scale Gas Network

gas system is governed by the equations described in Appendix A (and touched upon

in Chapters 2 and 3), but we briefly present some of the notation here for convenience.

The gas system can be modeled as a network of junctions and links Net(J ,L). The set

of junctions j ∈ J connect links and include gas supplies (injections) Sj and demands

(withdrawals)Dj. The set of links L is composed of both pipeline links Lp and compressor

links Lc such that L := Lp ∪Lc. We also specify the set of time periods as T := {1, ..., 24}

for a 24 hour horizon. Our model implementation is analogous to the approach we

used in Chapters 2 and 3. Each component of the system is modeled as a stand-alone

OptiGraph with OptiNodes distributed over time and we connect them in a higher level

82

OptiGraph to form the complete network optimal control problem. We highlight again

that this modular construction is a key benefit of the OptiGraph approach because it

allows different infrastructure components to be developed separately (e.g., by different

people).

Formulation (4.1) represents the optimal control problem we use throughout this

chapter. (4.1a) denotes the objective function which seeks to maximize the total gas net-

work revenue φgas by minimizing total compressor cost and maximizing target demand

deliveries. Here, α` and P`,t are the compression cost ($/kW), and compression power

for compressor ` at time t, and αd and f target
d,t are the demand price and target demand

flow for demand d at time t. The optimal control problem includes terms which rep-

resent physical equations and operational constraints. Equation (4.1b) captures junction

pressure limits, supply flows, and demand flows, (4.1c) describes compressor equations

and limits, (4.1d) defines discretized pipeline equations for mass and momentum, (4.1e)

denotes the initial condition of the partial differential equations, and (4.1f) requires the

optimizer to refill the line-pack (gas inventory) in each pipeline at the end of the operating

horizon. Equations (4.1g) and (4.1h) describe boundary conditions on each pipeline and

mass conservation at each junction respectively. The details of the summarized equations

are found in Appendix A.

83

min
{η`,t, f target

d,t }
`∈Lc,d∈D,t∈T

φgas := ∑
`∈Lc
t∈T

α`P`,t − ∑
d∈D
t∈T

αd f target
d,t (4.1a)

s.t. Junction Limits (A.1) (4.1b)

Compressor Equations (A.3) (4.1c)

Pipeline Equations (A.21) (4.1d)

Initial Condition (A.22) (4.1e)

Refill Line-Pack (A.23) (4.1f)

Boundary Conditions (A.29) (4.1g)

Junction Conservation (A.28) (4.1h)

4.3 Case Study: Coordinated Gas and Electric Systems

This case study demonstrates how an OptiGraph can be used to model and solve a large-

scale coupled gas-electric infrastructure system.

4.3.1 Problem Overview

For our study, we take the regional natural gas system presented in Section 4.2 (and

depicted in Figure 4.1) and we couple it to a regional electric power grid that consists of

2522 transmission lines, 1908 buses, 870 electric loads, and 225 generators (of which 153

are gas-fired). The power grid operator seeks to solve the optimal power flow problem

84

given by (4.2).

min
{Pq,t,vi,t}

q∈Ω,i∈V ,t∈T

φgrid := ∑
q∈Ω
t∈T

αq,tPq,t (4.2a)

s.t. P`,t = Y`(v`,t,j − v`,t,k), ` ∈ Lg, t ∈ T (Power Flow) (4.2b)

Pq ≤ Pq,t ≤ Pq, q ∈ Ω, t ∈ T (Generation Limits) (4.2c)

− v` ≤ v`,j,t − v`,k,t ≤ v`, ` ∈ Lg, t ∈ T (Voltage Angle Limits) (4.2d)

vi,t = vre f
i,t , i ∈ V re f , t ∈ T (Reference Buses) (4.2e)

∑
q∈Ωi

Pq,t + ∑
`∈Lrec(i)

P`,t − ∑
`∈Lsnd(i)

P`,t = PL
i,t, i ∈ V , t ∈ T (Bus Conservation) (4.2f)

v`,j,t = vsrc(`),t, v`,k,t = vdst(`),t, ` ∈ Lg, t ∈ T (Line Connections) (4.2g)

This problem is also called the direct-current (DC) optimal power flow problem and is

almost equivalent to the formulation in Section 3.6 except we have added the time periods

t ∈ T and use a simpler objective function. In this problem, we simply seek to minimize

the total generation cost over the time horizon subject to meeting all of the power loads

by manipulating power generation and voltage angles Pq,t and vi,t.

The two problems described by (4.1) and (4.2) can be coupled at gas generators with

the equations given by (4.3).

f target
d,t = f grid

d(q) , d ∈ Dgas, t ∈ T (Couple Demands) (4.3a)

f grid
d(q) ≤ fd,t, d ∈ Dgas, t ∈ T (Limit Generator Output) (4.3b)

Here, Dgas is the set of gas-fired generators in the power grid network and f grid
d(q) is the

generator demand target for demand d. Hence, (4.3a) couples the demand targets, and

(4.3b) limits the generator capacity based on the actual delivered demand flows. Figure

4.2 visually depicts the complexity that is involved in coordinating the two systems. In

the left figure we show how tightly integrated the coupled networks are, and in the

right figure we show the information that is exchanged between two potential network

85

operators.

For this study, we consider three primary settings to evaluate coordination strategies

between the two systems. These are:

• (I) Uncoupled: The power system solves (4.2) and communicates gas generator

demands ({ f target
d,t }d∈Dgas,t∈T) to the natural gas operator. The natural gas operator

seeks to make deliveries and balance system line-pack by solving (4.1).

• (II) Data Exchange: We obtain the solution of setting (I), but after we solve (4.1), we

communicate the deliveries that the gas operator is able to make to gas generators

({ fd,t}d∈Dgas,t∈T) back to the power operator. The power operator resolves (4.2) given

the available gas.

• (III) Fully Coupled: We solve the linked formulation given by coupling (4.2) and

(4.1) with (4.3). In this formulation, the natural gas generators are effectively treated

as dispatchable loads to the gas operator.

(a) Coupled system

Generator Gas
Demands

Gas Deliveries

(b) Data exchange between systems

Figure 4.2: Coupled gas and electric infrastructure systems. The red network corresponds
to the natural gas system and blue network corresponds to the power grid system.

86

4.3.2 Implementation

To model the coupled system we use an OptiGraph wherein we represent each indi-

vidual infrastructure system as a self-contained subgraph. Code Snippet 4.1 shows how

we can use Plasmo.jl to create the coupled system corresponding to setting (III). In

fact, a key benefit of using Plasmo.jl is that it naturally facilitates coupling different

infrastructure systems [67]. In this snippet, Line 2 creates an OptiGraph which we call

combined_system and we then add separate subgraphs that separately model the natu-

ral gas and grid networks. On Line 7 we create a new expression called Pgend in the

grid_network OptiGraphs which converts generator power generation (in mega-watts) to

natural gas demand (in mass flow units). Lines 10 through 16 use OptiGraph linking con-

straints to couple the two systems at the higher level combined_system graph. We note

that we use some helpful expressions defined for each system subgraph (e.g. fdemands

and fdeliver).

Code Snippet 4.1: Creating a fully coupled infrastructure problem in Plasmo.jl

1 #Create an OptiGraph for the combined natural gas and electric systems
2 combined_system = OptiGraph()
3 add_subgraph!(combined_system,gas_network)
4 add_subgraph!(combined_system,grid_network)
5
6 #Add expression to the natural gas demands for power grid generators
7 @expression(grid_network,Pgend[t=1:nt,q=1:n_gens],pow_to_gas*grid_network[:Pgen][q,t])
8
9 #Link generator gas demands to the natural gas system

10 for d in gas_network[:demands]
11 q = demand_map[d]
12 @linkconstraint(combined_system,[t = 1:nt], gas_network[:fdemands][d,t]
13 == grid_network[:Pgend][q,t])
14 @linkconstraint(combined_system,[t = 1:nt], grid_network[:Pgend][q,t]
15 <= gas_network[:fdeliver][d,t])
16 end
17 #Optimize the combined system
18 optimize!(combined_system,ipopt)

4.3.3 Results

Figure 4.3 shows time profiles for the requested and delivered gas demands for two

generators under the uncoupled (I) setting (left figure), the data exchange (II) setting

(middle figure), and the fully coupled (III) setting (right figure). In setting (I) we observe

87

that the natural gas demands from the grid system system (shown by the blue line) cannot

be met by the gas deliveries (shown by the green line). However, if the delivery shortfalls

are communicated back to the grid operator, we see that the gas-fired generators have

adjusted their gas demands and re-optimized their operation based on actual realized

gas delivery. We lastly solve the more computationally intensive fully coupled problem

(according to Code Snippet 4.1) and observe that all of the original gas demands are met

as shown in the right side of Figure 4.3. In fact, the fully coupled setting results in no gas

shortfalls. We highlight that the fully coupled problem can be warm-started using the

solution from the decoupled problem following the approaches given in Chapter 2. and

this can be used to solve the coupled problem robustly.

0 5 10 15 20 25
0

1

2

3

4

G
en

er
at

or
 1

 F
lo

w
 [

SC
M

/h
∗

10
−

4]

0 5 10 15 20 25
0

1

2

3

4

0 5 10 15 20 25
0

1

2

3

4

0 5 10 15 20 25
Hour

0

1

2

3

4

5

6

7

8

G
en

er
at

or
 2

 F
lo

w
 [

SC
M

/h
∗

10
−

4]

0 5 10 15 20 25
Hour

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25
Hour

0

1

2

3

4

5

6

7

8

Uncoordinated Data Exchange Coordinated

Figure 4.3: Sample generator gas demands (blue) and realized gas delivery (green) for
uncoupled setting (I), data exchange setting (II), and fully coupled setting (III).

88

4.4 Case Study: Space-Time Decomposition of a Large-Scale Nat-

ural Gas Network

A key aspect of complex infrastructure models (such as the coupled system in the pre-

vious study) is that they exhibit the spatiotemporal structures we discussed in Chapter 3.

Such structures can effectively be exploited in computation, but the main challenge is ob-

taining a suitable decomposition that can be communicated to a parallel solver. This case

study extends upon the study presented in Section 3.5 and more rigorously explores par-

titioning strategies for the optimal control problem over the natural gas system in Figure

4.1.

4.4.1 Problem Overview

Now that we have constructed an OptiGraph representation of the natural-gas network

optimal control problem (described by Equation (4.1)) we can use the hypergraph parti-

tioning approaches presented in Section 3.2 to explore various decomposition strategies

and their effect on computational performance. We formulate the optimal control prob-

lem to track time-varying demand withdrawal and minimize compression costs over a

24-hour time horizon. The optimization problem we produce contains 432048 variables,

427512 equality constraints, and 3887 inequality constraints. Capturing the space-time

structure of Formulation (4.1) is seemingly complex but it is straightforward to do so

with an OptiGraph because each pipeline can be treated independently.

Figure 3.2b depicts the graph structure induced by the space-time nature of this prob-

lem. Our goal is to identify efficient partitions that traverse space-time to efficiently

solve the problem using Schur decomposition in PIPS-NLP (as described in Section 3.3.1).

For our implementation, each component of the system is modeled as a stand-alone

OptiGraph with OptiNodes distributed over time and we connect these in a high-level

graph to form the complete problem. We use the capabilities of Plasmo.jl to experiment

89

with different partitioning strategies and with this analyze trade-offs between coupling,

imbalance, and memory use.

4.4.2 Implementation

For our implementation, each component of the system is modeled as a stand-alone

OptiGraph with OptiNodes distributed over time and we connect these in a high-level

graph to form the complete problem. We refer to the Code Snippets A.1, A.2, and A.3,

and A.4 in Appendix A which detail how each component model is constructed and

connected.

Figure 4.4 visualizes the graph structure of the optimal control problem and shows

different partitions that can be obtained. Figure 4.4a shows the OptiGraph components we

assembled in the above code snippets with pipeline nodes depicted in grey, compressor

nodes in green, and junctions in blue. Figure 4.4b depicts a pure time partition of the

problem with 8 partitions (each with a different color). Partitioning in time is a reasonable

approach to the optimal control problem, but we will see that the produced partition is

intractable to solve using a general Schur complement approach. This problem can also

be partitioned purely as a network wherein we consider the partition of the network

components themselves (as opposed to the structure of the optimal control problem)

which is shown in Figure 4.4c. The network partition is physically intuitive but it does

not capture the true mathematical structure of the problem nor consider computational

aspects.

We highlight that both time and network partitioning approaches can be performed

using the partitioning framework (by manually defining a partition vector), but the value

of the OptiGraph is that we can efficiently obtain space-time partitions to produce the par-

tition shown in Figure 4.4d. While visually similar to the network partition, the space-time

partition produces considerably less coupling (748 linkconstraints versus 1800) which is

advantageous since the number of linkconstraints corresponds to the size of the matrix in

90

(a) Modeled Components (b) Time Partitions

(c) Network Partitions (d) Space-Time Partitions

Figure 4.4: Graph depictions of the natural gas network optimal control problem. The
graph is colored by the physical network components (top left), by 8 time partitions (top
right), by 8 network partitions (bottom left), and by 8 space-time partitions (bottom right).

91

Equation (3.4b). Moreover, the pure time partition produces considerable coupling (over

80000 links) which makes Schur decomposition infeasible.

We perform partitioning in the same way we did in Code Snippet 3.6 to produce

new OptiGraphs with partitions we can distribute and solve with PIPS-NLP. To solve with

PIPS-NLP we follow the exact same setup used in Snippet 3.7 using PipsSolver and dis-

tribute the OptiGraph between workers to solve in parallel. We experiment with different

numbers of partitions and imbalance values and explore how the PIPS-NLP algorithm

performs. Table 4.1 details the results obtained where we vary the number of partitions

|P| (8, 24, and 48) and the maximum imbalance value εmax (between 0.01 and 1.0). Figure

4.5 shows the effect of increasing the maximum imbalance for the 48 partition case on

the true final imbalance the partitioner produced (ε f inal) and the total number of linkcon-

straints. For the most part the maximum and final imbalances ε f inal display a one-to-one

relationship but there are distinct intervals wherein the final imbalance flattens out. We

also see that nominal values of maximum imbalance (less than 25%) reduce the number

of linkconstraints considerably after which greater values produce diminished decreases.

We also show the distribution of subproblem sizes for a few select maximum imbalance

values in Figure 4.5b for reference.

4.4.3 Results

For each run we note the true imbalance KaHyPar produced ε f inal , the sum of the edge

weights sum(w(E)) (which corresponds to the number of linkconstraints), the maximum

node size max({s(n)}n∈N (OG)) (which corresponds to the node with the most variables),

as well as the average and maximum number of node connections (i.e. the number of

linkconstraints incident to a node). For timing results we observe the time spent building

the KKT system tbuild (i.e. the time to build Equation (3.4b)), the time spent factorizing

the Schur Complement matrix t f ac (i.e. the time to solve Equation (3.4b)) and the total

time spent inside PIPS-NLP tpips.

92

0.00 0.25 0.50 0.75 1.00
Maximum Imbalance (max)

3000

3500

4000

4500

5000

5500

of
 L

in
k

Co
ns

tra
in

ts
of Link Constraints
Final Imbalance

0.00

0.25

0.50

0.75

1.00

Fi
na

lI
m

ba
la

nc
e

(
fin

al
)

(a)

0 10 20 30 40
Partitions

0

5000

10000

15000

20000

of

 V
ar

ia
bl

es

max = 0.01

0 10 20 30 40
Partitions

0

5000

10000

15000

20000

of

 V
ar

ia
bl

es

max = 0.1

0 10 20 30 40
Partitions

0

5000

10000

15000

20000

of

 V
ar

ia
bl

es

max = 0.75

0 10 20 30 40
Partitions

0

5000

10000

15000

20000

of

 V
ar

ia
bl

es

max = 1.0

(b)

Figure 4.5: Partitioning results with 48 partitions. Imbalance versus the number of
linkconstraints and final imbalance (left) and the distribution of subproblem sizes for
select imbalance parameters (right).

The first rows of Table 4.1 show results with 8 partitions and also include the cases for

the time and network partitions corresponding to Figures 4.4b and 4.4c. As expected, the

high degree of coupling in these partitions is computationally prohibitive: the time par-

tition can not solved (with Schur complement decomposition) and the network partition

requires over 2 hours. Significant improvement is achieved using the KaHyPar partitioner

where even a 1% imbalance is over twice as fast as the network partition. Increasing the

imbalance parameter to 50% results in better performance (the average and maximum

number of columns in Bn decreases), but increasing it to 60% results in diminished speed,

despite producing a similar partition. Interestingly, allowing too much maximum imbal-

ance can result in ill-conditioned subproblems and motivates investigating other graph

metrics that might inform the partitioner.

The second and third sets of rows present the results using 24 and 48 partitions with

24 CPUs. Increasing the maximum imbalance for the 24 partition case results in dimin-

ished algorithm performance (due to the bottleneck building the KKT system). This is

because either the node connectivity increases (for the 10% imbalance), the maximum

93

Partition εmax ε f inal (# Links) (Largest Node) (# Incident Links)
mean , max

tbuild
(sec)

t f ac
(sec)

tpips
(sec)

| P | = 8

Proc = 8

time 0.0 87505 60567 21877 , 24940 - - -
network 0.41 1800 85248 459 , 1368 7236 56 7505

0.01 0.0073 748 61008 205 , 316 2944 6.3 3115

0.5 0.37 434 83202 121 , 218 2269 1.7 2475

0.6 0.37 458 83202 124 , 218 2862 1.9 3069

| P | = 24

Proc = 24

0.01 0.01 2889 20390 259 , 431 1746 273 2117

0.1 0.1 2748 22200 256 , 529 1934 236 2270

1.0 0.99 1572 40080 127 , 362 2279 54 2447

| P | = 48

Proc = 24

0.01 0.01 5472 10194 245 , 482 2029 1769 3954

0.1 0.1 4560 11104 210 , 440 1871 1031 3054

0.75 0.75 3182 17642 151 , 387 2126 368 2670

1.0 0.98 2978 19985 143 , 480 1826 298 2247

Table 4.1: PIPS-NLP results for different problem partitions

subproblem size increases (for the 100% imbalance), or there is some ill-conditioning of

the subproblems. In contrast, increasing the imbalance for the 48 partition case results in

computational improvement. This is because more linking constraints (more overall cou-

pling) shifts the bottleneck step to factorizing the Schur complement and drastic speedups

result from reducing the degree of coupling.

4.5 Comparison with Simulation-Based Approaches

This section addresses some of the limitations that arise using the presented optimization

models in this chapter. Thus far, we demonstrated OptiGraph capabilities to create cou-

pled infrastructure models and to experiment with different partitioning approaches. The

gas network models we have formulated adhere to what is called direct-transcription (DT)

optimization. Within this paradigm, the physical dynamics (e.g. our PDE equations for

mass and momentum) are encoded as constraints within the optimization problem which

is solved with a general optimization solver (such as Ipopt or PIPS-NLP). To make our

DT models more tractable from a computational standpoint, we made considerable phys-

ical assumptions (e.g. ideal gas assumptions, constant friction factors, no flow reversals).

Such assumptions are common in DT approaches, but they can lead to uncertainty about

model fidelity. In contrast, typical industry approaches in infrastructure modeling (and

94

specifically in gas network modeling) use high fidelity models using simulation-based

(SB) approaches. SB approaches however, can suffer from long computation times and

creating SB models is often a nontrivial and intensive task.

The rest of this section provides a summary of DT and SB approaches and introduces

hybrid strategies that interface our presented optimization approaches with a high-fidelity

simulation-based framework. We discuss the key benefits of hybrid optimization strate-

gies and how they enable experimentation with diverse model formulations (e.g. using

the OptiGraph) that can be refined using high fidelity simulation-based tools.

4.5.1 Simulation-Based Optimization

Industrial optimization approaches tend to target what is called the simulation-based (SB)

paradigm. within this paradigm, successive simulations are coupled with optimization

strategies to find optimal operating plans. A key aspect of this approach is that simulation

tasks can harness high-fidelity simulators and perform optimization separately. SB ap-

proaches also build upon existing simulation packages that contain rich feature sets (and

that often devote considerable effort in describing the functionality needed for accurate

simulation with real equipment).

The key concept behind SB approaches is to perform repeated simulations of a dy-

namic model with different decision/input values (e.g. controller values) to identify a set

of decisions that minimizes/maximizes a cost function (e.g. minimize energy useage or

maximize system revenue) where the trial inputs are updated using a derivative-based or

derivative-free optimization solver. The SB approach is intuitive, but repeated solutions

of large complex dynamic systems can become computationally expensive and simula-

tions (using time-stepping solvers) can fail at poor trial control values (e.g., that lead to

non-physical states). In addition, techniques to compute derivatives are often limited in

practice to computation of single gradients rather than full constraint Jacobians.

Equation (4.4) represents the general SB formulation, also depicted in Figure 4.6. In

95

OptimizerTransient
Simulation

violations

derivatives

best input

cost

Figure 4.6: Representation of information exchanged in one iteration of a simulation-
based optimizer.

this formulation S(u) represents the result of a simulation (e.g. the physical state of the

system x) given inputs u, f (u, S(u)) represents the cost associated with the simulation

result, and g(u, S(u) represents resulting violations. The simulation results are commu-

nicated to an optimizer which can use derivative information to calculate new inputs u+

that it communicates back to the simulator.

min
u

f (u, S(u)) (Cost) (4.4a)

s.t. lb ≤ g(u, S(u)) ≤ ub (Limits) (4.4b)

4.5.2 Direct Transcription Optimization

The OptiGraph models we present in this chapter adhere to the DT optimization paradigm.

In this approach, we seek to find the inputs and physical states simultaneously that mini-

mize/maximize a cost function according to Formulation (4.5).

min
x,u

f (x, u) (Cost) (4.5a)

s.t. lb ≤ g(x, u) ≤ ub (Limits) (4.5b)

h(x, u) = 0 (Dynamic equations) (4.5c)

96

Optimal Trajectory

Optimizer
Iterations

Initial Trajectory

Figure 4.7: Representation of iterations performed using direct transcription with an
interior-point solver such as Ipopt.

Here, u represents inputs/decisions and the states x (physical states of the system) are

now included directly within the optimization formulation. The term (4.5a) evaluates the

system cost given the state and input trajectories, the expression (4.5b) represents limits

on the inputs and states (e.g. physical limits of equipment), and the expression (4.5c)

explicitly encodes the discretized simulation dynamics as a constraint within the opti-

mization problem. The DT approach can be described as a series of internal iterations

from an initial state (possibly non-physical) and iterates to find an optimal solution that

minimizes the cost and that satisfies the dynamics and constraints all-at-once. This pro-

cedure is summarized in Figure 4.7. Our OptiGraph formulations of our infrastructure

models in this chapter adhere to the description of Formulation (4.5).

In contrast to the SB approach, DT approaches (especially using an OptiGraph) offer

more modeling flexibility and the potential to add otherwise intractable features (such

as integer decision variables) to nonlinear physical equations. However, as discussed, DT

approaches usually require the use of simplified physics models, fixed time steps, or ideal

thermodynamic properties. Such fidelity limitations tend to be considered unacceptable

in many simulation contexts (e.g. when trying to capture fast transient effects).

4.5.3 Hybrid SB-DT Optimization

SB and DT approaches can be used to solve much the same problems. For instance, both

approaches can be used to compute policies for operational plans over long horizons and

97

Simulation
Model

Simulation
Based

Optimizer

Violations OptiGraph

Optimization
Solver

Policy

High Fidelity Solution

Warm-start
Jacobians

Figure 4.8: Depiction of information exchange between an OptiGraph and a simulation-
based optimizer.

can include time-varying effects. While SB approaches can obtain higher fidelity, they can

take considerable time to find solutions that satisfy operational constraints. In contrast,

DT approaches are more generalizable in the types of constraints and variables that they

can handle (e.g. integer decisions).

The proposed hybrid optimization strategies combine SB and DT approaches and

specifically make use of the OptiGraph model management capabilities to facilitate com-

plex data workflows. For example, solutions obtained from DT can be communicated to a

SB optimizer for high-fidelity verification and refinement to reduce constraint violations

that result from simplifications. A SB optimizer can provide violation information to a

DT model to guide the selection of constraint back-off terms, or it can provide high fi-

delity solution information to perform linearization strategies on a per-component basis

(this is greatly facilitated using an OptiGraph). Constraint Jacobians can also be com-

puted for specific sets of equipment and given to the SB optimizer to aid in obtaining

tighter constraint satisfaction in fewer iterations. Figure 4.8 depicts the types of informa-

tion an OptiGraph (or a general DT framework) might exchange with a simulation-based

framework.

98

4.6 Case Study: Hybrid Optimization for a Large-Scale Natural

Gas Network

This section concludes the chapter by showing how DT optimization approaches (using

the OptiGraph) can benefit in a hybrid optimization setting. We show how the hybrid

setting benefits from both the generalizable qualities inherent to DT approaches and the

high-fidelity afforded by SB.

4.6.1 Problem Overview

We use the optimal control model described by (A.21) for our natural gas network (Figure

4.1) for which we refer to as the DT-NLP model for this study. To make the problem more

interesting from an operational standpoint we increase the optimization horizon to 72

hours (T := {1, ..., 72}) which creates a multi-day operational problem.

We additionally explore a discrete-decision optimization model that incorporates bi-

nary decision variables (compressors can be on or off). Discrete-decision models have

garnered considerable interest in gas network optimization, but they require solving a

mixed-integer nonlinear program (MINLP) which is intractable for large-scale problems.

As such, we develop a reduced linearized natural gas model which we call the DT-MILP

model described by Formulation (4.6). The details of the linearization for this model can

be found in Section A.4 in Appendix A. Within the hybrid setting, we seek to quantify

the performance of the DT-MILP model to implement discrete decisions.

99

min
{η`,t, f target

d,t }
`∈Lc,d∈D,t∈T

φgas := ∑
`∈Lc
t∈T

α`P`,t − ∑
d∈D
t∈T

αd f target
d,t (4.6a)

s.t. Junction Limits (A.1) (4.6b)

Supply Pressure Ramping (A.2) (4.6c)

Discrete Compressor Equations (A.4)(A.5)(A.8) (4.6d)

Compressor Ramping (A.7)(A.5) (4.6e)

Linearized Pipeline Equations (A.27) (4.6f)

Boundary Conditions (A.29) (4.6g)

Junction Conservation (A.28) (4.6h)

4.6.2 Implementation

For our implementation we create both DT-NLP and DT-MILP models using the OptiGraph

with approximate (coarse) demand forecasts (blue lines in Figure 4.9) and solve with

Ipopt and Gurobi respectively. We use coarsened forecast data to pose computational

tractable models over the long time horizon. For the pure SB strategy, we fix the gas

deliveries based on true (fine) demand forecasts (green lines in Figure 4.9) and seek to

minimize the compressor work subject to our optimization constraints (junction pressures

and line-pack targets) and solve with the Synergi Gas GTO commercial SB optimizer. The

SB optimizer makes consecutive simulation runs and calculates new compressor controls

at each iteration (as depicted by Figure 4.6). For each hybrid strategy, we pass compressor

discharge setpoints from the corresponding DT solution (which again uses coarsened de-

mand forecasts) to the SB optimizer (which uses fine demand forecasts and higher fidelity

modeling with more realistic physics). Using these setpoints, the SB optimizer first com-

putes a physically accurate solution that corrects all the modeling simplifications of the

DT model, and then computes any remaining operational violations. In this case study

100

0 20 40 60
Time [Hour]

2
3
4
5
6
7
8

[SC
M

*1
04

hr
]

Demand 1

0 20 40 60
Time [Hour]

5.5

6.0

6.5

7.0

7.5

[SC
M

*1
04

hr
]

Demand 4

0 20 40 60
Time [Hour]

4.5

5.0

5.5

6.0

6.5

[SC
M

*1
04

hr
]

Demand 10

0 20 40 60
Time [Hour]

4.5

5.0

5.5

6.0

6.5

[SC
M

*1
04

hr
]

Demand 16

Figure 4.9: Select forecasted demand profiles used for hybrid optimization study. The
true (high-resolution) demands (solid green lines) and approximate (coarsened) demands
(dashed blue lines).

the hybrid strategy ends at this point, but the SB optimizer could be allowed to further

adjust compressor controls to improve the solution with respect to any violations found.

To create the linearized pipeline model (for the DT-MILP setting) we use a steady-state

OptiGraph model (A.26) with added time-coupling, and we use Jacobian information to

linearize the model around each space-time discretization point to retain as much model

accuracy as possible (again, the details are given by (A.21)).

4.6.3 Results

An overview of the simulation results are given in Table 4.2. Figure 4.10 also compares

the produced pressure violations (for all 172 junctions over the time horizon) for each

optimization strategy and shows that no setting produced extreme violations. We first

101

Strategy Total Work
(kW-hr)

Line-Pack Change
(%)

Max Violation
(bar)

Demand Shortfall
(%)

Total Time
(minutes)

SB 4.48E5 +0.58 2.41 0 172 (GTO)
DT-NLP 7.23E5 +1.26 - 0 8.1 (Ipopt)
Hybrid-NLP 6.44E5 +1.40 1.03 0 9.9 (8.1 Ipopt + 1.8 GTO)
DT-MILP 6.56E5 +2.10 - 1.93 38 (Gurobi)
Hybrid-MILP 8.05E5 -0.44 7.58 0 41.8 (38 Gurobi) + (3.8 GTO)

Table 4.2: Overview of Hybrid Optimization Results

draw attention to the purely SB result which produces the lowest total work (4.48E5

kW-hr), but it requires considerable computation time because the GTO optimizer has to

perform many time-consuming high-fidelity simulations. The SB result also produces

noticeable pressure violations. To achieve the least overall work the pure SB strategy

exploits compressor bypass (reverse flow through compressors) which the DT strategies

do not incorporate (flow reversal is challenging to model in the DT setting). However, the

SB optimizer does not support minimum power limits (this is a challenging constraint to

implement in SB optimization) which are helpful from an operational standpoint and the

DT strategies incorporate this constraint almost trivially.

Simulation-Based DT-NLP Hybrid-NLP DT-MILP Hybrid-MILP

Ju
n
ct
io
n

Figure 4.10: Comparison of pressure violations.

The DT-NLP result requires drastically less computation time (about 8 minutes with

Ipopt), and produces no violations by design (constraints have to be satisfied in a DT

optimization problem). The Hybrid-NLP verifies the DT-NLP solution using the SB op-

102

timizer which only requires an additional two minutes. Notably, the hybrid strategy

produces very small violations (about 1 bar at the worst) and the compressor operation is

remarkably comparable to the DT-NLP result as depicted in Figure 4.11. The agreement

demonstrates benefits of the hybrid strategy. The DT-NLP model can be easily modified,

and it’s assumptions are reasonable enough such that the SB optimizer can find a high

fidelity solution fairly quickly.

Figure 4.11: Comparison of path profiles for DT-NLP (dashed blue lines) and Hybrid-NLP
(solid green lines) strategies for select compressors.

We finally look at the Hybrid-MILP strategy and see that the results are quite encour-

aging. The DT-MILP model produces the desirable discrete behavior which is tracked

by the corresponding Hybrid-MILP strategy as shown in Figure 4.12. The DT-MILP pro-

duces demand shortfalls (failed gas deliveries) but Hybrid-MILP is able to leverage sys-

tem line-pack to up the deliveries. The Hybrid-MILP requires considerable computation

103

time (it took Gurobi 38 minutes to close to a 1% gap), and reveals noticeable violations,

but enhancements could certainly be made to the DT model to improve these results.

0 20 40 60
Time [hr]

0

717

1433

2150
Po

we
r [

kW
]

Compressor 4

0 20 40 60
Time [hr]

0

1108

2215

3323

Po
we

r [
kW

]

Compressor 11
Hybrid-MILP
DT-MILP

0 20 40 60
Time [hr]

0

1441

2882

4323

Po
we

r [
kW

]

Compressor 12

0 20 40 60
Time [hr]

0

1149

2298

3447
Po

we
r [

kW
]

Compressor 15

Figure 4.12: Verification of discrete compressor decisions using hybrid strategy for select
compressors.

104

Chapter 5

G R A P H - B A S E D M O D E L I N G F O R C Y B E R S Y S T E M S

Thus far, Chapters 2, 3, and 4 have focused on modeling the physical aspects (specifi-

cally modeling optimization problems) that arise in cyber-physical systems. This chap-

ter introduces an abstraction to model and simulate cyber systems which we call the

ComputingGraph.

5.1 Introduction

Simulating cyber systems requires capturing dynamic and logical aspects that arise in

real-time decision-making such as time delays, computing/processing latency and fail-

ures, and asynchronicity. For example, we might be interested in predicting how a given

control system will perform on an architecture that contains sensors and computing de-

vices with limited processing capabilities (and thus long delays) or how a distributed

optimization algorithm will perform on a distributed-memory computing cluster com-

pared to a single central processing unit (CPU). Communication aspects are particularly

challenging to capture in cyber systems, since they often involve complex topologies and

communication frequencies (call back to Figure 1.3).

As mentioned in Chapter 1, the most widely used tools to simulate cyber-physical

aspects are Simulink and agent-based modeling platforms. The ComputingGraph offers

105

advantages over Simulink and agent-based tools in that it handles cyber features such

as communication delays, latency, and synchronous/asynchronous computing and in-

formation exchange in a more coherent fashion. This chapter presents ComputingGraph

concepts and is organized as following. Section 5.2 introduces the ComputingGraph, dis-

cusses its underlying representation, and shows how the ComputingGraph captures the

cyber aspects in cyber-physical systems. Section 5.3 presents the corresponding software

framework called PlasmoCompute.jl and provides a helpful example to demonstrate its

syntax. Section 5.4 provides an interesting case study in distributed model predictive

control to illustrate the ComputingGraph capabilities, and Section 5.5 provides extra case

study details.

5.2 Computing Graphs

This section presents the basic elements of the ComputingGraph and shows how the ab-

straction facilitates the modeling and simulation of cyber systems.

5.2.1 Representation

A ComputingGraph is a directed multigraph (remember Figure 1.4c) that we denote as

CG(N , E) and that contains a set of ComputeNodes N (CG) (which perform computing

tasks) and CommunicationEdges E(CG) (which communicate attributes between nodes).

A ComputeNode n ∈ N (CG) contains a set of attributes An and computing tasks Tn.

The attributes An represent node data and tasks Tn are computational procedures that

operate on and/or change attributes. In other words, a computing task maps attributes (a

task takes attribute data and processes it to create other attribute data). This interpretation

resembles that of a manufacturing process, which takes raw material to generate products.

Each task task ∈ Tn in the ComputingGraph requires a given execution time ∆θtask. A

CommunicationEdge e ∈ E(CG) contains a set of attributes Ae associated with its support

nodes N (e). Communicating attributes between nodes involves a communication delay

106

∆θe. The collection of computing and communication tasks comprises an algorithm (also

known as a computing workflow in the computer science community). Consequently, a

ComputingGraph seeks to facilitate the creation and simulation of algorithms.

The ComputingGraph contains a global clock tCG and each node has an internal local clock

tn. The clocks are used to manage and schedule computing tasks and communication. For

any task executed at time t, its attributes become updated at clock time t + ∆θtask. Like-

wise, for any edge e that communicates its attribute at time t, the destination attribute

value is updated with the source attribute value at time t + ∆θe. Under the proposed ab-

straction, computing and communication tasks can be synchronous (a task is not executed

until all attributes are received) or asynchronous (a task is executed with current values).

This enables capturing a wide range of behaviors seen in applications.

The computing and communication times ∆θtask and ∆θe can represent true times

(times required by the computing devices executing the tasks) or virtual times (times re-

quired by hypothetical devices executing tasks). In other words, the proposed abstraction

allows the simulation of algorithms on virtual (hypothetical) computing architectures.

This is beneficial when we lack access to actual sophisticated computing architectures

(such as a large-scale parallel computer or an industrial control system) but we wish pre-

dict how an algorithm will execute under such architecture. Moreover, this allows us to

analyze the behavior of algorithms under extreme events that might involve communica-

tion or computation failures and with this test their resilience.

Both nodes and edges use the concept of state managers to manage task behavior (e.g.,

determining when a task has been completed) and to manage communication (e.g., de-

termining when data is sent or received). This representation resembles that used in

process scheduling and has interesting connections with automata theory and discrete

event simulation [4, 2]. These connections can be exploited to derive a coherent state-space

representation (we discuss this further in Section 5.2.3).

Figure 5.1 depicts an example ComputingGraph containing three nodes and six edges.

Each node contains a single task which takes local attribute values x, y, and z as input and

107

updates one of their values. For example, taskn1 processes its attributes and updates the

value of attribute y. The nodes communicate attribute values with each other using the six

edges. For instance, attribute y is communicated to both nodes n2 and n3 which updates

the value of y on these respective nodes. We use the superscript + to denote that the

attribute may be updated after a given time (to capture computing and communication

delays).

Figure 5.1: Depiction of a ComputingGraph with three nodes and six edges. Node n1
computes taskn1 using the data attributes (x, y, and z) and updates the value of attribute
y. Similarly, node n2 computes taskn2 and updates attribute x, and node n3 computes
taskn3 and updates attribute z. Attribute values are communicated between nodes using
edges.

5.2.2 Connections with OptiGraphs

It is helpful to highlight the differences and synergies between a ComputingGraph and the

OptiGraph presented in Chapters 2 and 3. In a ComputingGraph, nodes contain a dynamic

components (computing tasks) while in an OptiGraph, nodes contain a static components

(algebraic models). Moreover, in a ComputingGraph an edge connects attributes (dynam-

ically) while in an OptiGraph an edge connects algebraic variables (statically). Under a

108

ComputingGraph abstraction, the solution of an OptiGraph is considered a computing task.

Consequently, a ComputeNode might use an OptiGraph to perform an optimization task

or a ComputingGraph might be an algorithm for solving a given OptiGraph. For instance,

for the former, we might create a ComputingGraph that executes a control algorithm and

use an OptiGraph to model the physical system under the actions of the control system.

For the latter, we might create a ComputingGraph that executes a solution algorithm (e.g.,

Bender decomposition) to solve OptiGraph. These capabilities enable the simulation of

complex cyber-physical systems. We also highlight that computing tasks are general and

might involve procedures that go beyond the solution of OptiGraphs such as forecasting,

data analysis, learning, solving optimization problems (that are not expressed as graphs),

and so on.

5.2.3 State-Space Description

The computation and communication logic provided by the ComputingGraph is driven by

an underlying state manager abstraction wherein transitions in task states are triggered by

input signals. This representation conveniently captures computing and communication

latency and is flexible and extensible. In this section, we provide details on how state

managers facilitate the implementation of ComputingGraphs.

Node and edge managers use states and signals to manage task computation and at-

tribute communication. The use of managers is motivated by state machine abstractions

from automata theory [21, 18], which are often used in control-logic applications [39].

State machines are also used to manage logical behaviors in Simulink [22] and agent-

based simulation frameworks [98]. State machines can be used to represent actions that

trigger transitions in task states. Figure 5.2 presents a simple state machine with three

states, three signals, and five possible transitions between states.

In a ComputingGraph, a node manager Mn oversees the state of node tasks. Such tasks

are specified by the user in the form of functions. Each node has an associated tuple

109

Figure 5.2: A simple state machine with three states (x1, x2, x3), three action signals
(u1, u2, u3), and five possible state transitions.

(Xn,Un,Yn, fn, gn) where Xn is the set of states, Un is the set of action signals, Yn ⊆ An is

the set of broadcast (output) attributes, fn : Xn×Un → Xn is the state transition mapping,

and gn : Yn → Yn is the attribute update mapping. The node dynamic evolution is

represented as a system of the form:

x+n = fn(xn, un) (5.1a)

η+
n = gn(ηn). (5.1b)

Here, the next state x+n = fn(xn, un) is the result of the mapping from the current state xn

and a given action signal un. Every state transition (un, xn)→ x+n also triggers a transition

in the attribute values ηn → η+
n (i.e., tasks update attributes). Action signals can also be

sent to the state managers of other nodes in the form of attributes.

The proposed abstraction can incorporate an arbitrary number of states and actions

but here we provide an example of a basic set of states and actions that can be considered

110

in an actual implementation:

Xn := (idle, executing_task, finalized_task) (5.2a)

Un := (execute_task, finalize_task, attribute_updated, attribute_received).

(5.2b)

At any given point in time, a node manager can be in one of the states in Xn. The

set of signals recognized by the manager are Un and these will trigger (depending on the

current state) a transition between states. Such signals include, for instance, execute_task

or attribute_received. The set of broadcast targets (that receive created signals) are the

node itself and all of its outgoing edges E(n). Hence, a node can send signals (in the form

of attributes) to itself or its outgoing edges.

Using the sets defined in (5.2), we can define a transition mapping fn(·) as:

executing_task← (idle, execute_task) (5.3a)

finalized_task← (executing_task, finalize_task) (5.3b)

idle← (finalized_task, back_to_idle). (5.3c)

In (5.3) we can see, for instance, that a task transitions to the executing_task state when it

receives the corresponding execute_task signal and it transitions to the finalized_task

state when it is executing a task and receives a signal to finalize such task. The signals

to execute or finalize a task are generated by user-defined attributes. For instance, a

user-defined attribute consisting of a flag such as convergence or max_iterations can

generate a finalize task signal that in turn triggers a state transition.

An edge manager Me can be defined in the same way as a node manager with as-

sociated states and signals for communication. A possible implementation of an edge

111

manager includes the following states and actions:

Xe := (idle, communicating, all_received) (5.4a)

Ue := (attribute_updated, communicate, attribute_sent, attribute_received).

(5.4b)

An edge can send signals to itself or its supporting nodes N (e) in the form of its at-

tributes. Using the sets defined in (5.4), we can define a transition mapping fe(·) of the

form:

communicating← (idle, communicate) (5.5a)

all_received← (communicating, all_received) (5.5b)

idle← (all_received, back_to_idle). (5.5c)

The mappings in (5.5) closely reflect the node transition mapping in (5.3). An edge tran-

sitions to the communicating state when it receives a communicate signal and transitions

to the all_received state when it receives the all_received signal (indicating that all

sent attributes were received).

Figure 5.3 depicts the node and edge manager transition mappings (5.3) and (5.5) with

additional transitions. This figure highlights that action signals can trigger self-transitions

wherein nodes or edges loop back to their original state. For instance, a node can transi-

tion back to the executing_task state when it receives the signal attribute_updated

and an edge can transition back to the communicating state when it receives either

attribute_sent or attribute_received signals. Self-transitions allow attribute updates

to occur during task execution or edge communication.

112

Node state manager Edge state manager

Figure 5.3: Implementation of a node manager Mn (left) and an edge manager Me (right).
Action signals trigger transitions between states and can include transitions that return
to the same state.

5.2.4 Task Scheduling and Timing

A ComputingGraph implementation needs to capture timings and order of task execu-

tion and attribute communication. These timings can be managed using a discrete-event

queue wherein items in the queue are evaluated in an order based on their scheduled

time [44]. The ComputingGraph specifically uses a signal-queue wherein action signals are

evaluated based on their scheduled evaluation time.

Figure 5.4 illustrates an example execution of the ComputingGraph from Figure 5.1.

Node n1 computes taskn1 (which requires compute time ∆θtaskn1
) after which the value of

attribute y is sent to the corresponding attribute y on nodes n2 and n3 (which each re-

quires communication time). The compute and communication times are expressed using

signals. For instance, when taskn1 completes its execution, it produces a finalize taskn1

signal with a delay ∆θtaskn1
to capture the computation time. Equivalently, when edge e1

that connects node n1 to node n2 communicates attribute y, it produces the y_received

signal with a delay ∆θe1 .

113

Figure 5.4: An example execution of the ComputingGraph in Figure 5.1. Computing times
and communication delays are captured using action signals.

5.3 Software Framework: PlasmoCompute.jl

This section introduces PlasmoCompute.jl, a Julia-based software package that imple-

ments the ComputingGraph abstraction to simulate cyber system behaviors. We introduce

the basic syntax and functions required to create a ComputingGraph simulation and pro-

vide a simple example that simulates a centralized model predictive control system.

5.3.1 Overview of Modeling Functions

Table 5.1 highlights the key functions and macros used used to implement ComputingGraph

capabilities. After creating a new ComputingGraph object (using a ComputingGraph() con-

structor), the provided macros can be used to setup topology, computational tasks, and

communication. The @computenode macro is used to create ComputeNodes after which

we can assign attributes and computing tasks to the node using the @attributes and

@computetask macros. The communication topology can created using the @connect

macro which creates CommunicationEdges between attributes.

Other functions are used to manage a ComputingGraph simulation. For instance schedule!

114

Function Description
cg = ComputingGraph() Create a new ComputingGraph object.
@computenode(cg::ComputingGraph,expr::Expr) Create a ComputeNode using an expression
@attributes(node::ComputeNode,expr::Expr) Create attributes on node using an expression
@computetask(node::ComputeNode,expr::Expr) Create a ComputeTask on node using an expression
@connect(node::ComputeNode,expr::Expr) Create a CommunicationEdge between attributes
getcomputenodes(cg::ComputingGraph) Retrieve ComputeNodes in cg
getcommedges(cg::ComputingGraph) Retrieve CommunicationEdges in cg
value(attribute::ComputeAttribute) Retrieve current value of attribute
getcurrenttime(cg::ComputingGraph) Retrieve the current clock time of cg
schedule!(cg::ComputingGraph,task::Computetask,time) Schedule an execute signal on task at time
step!(cg::ComputingGraph) Evaluate the next signal in cg
execute!(cg::ComputingGraph,stop_time::Float64) Execute cg until stop_time
plot_trace(cg::ComputingGraph) Plot the trace output of cg

Table 5.1: Overview of ComputingGraph construction and management functions in Plas-
moCompute.jl.

queues an execute signal to occur at a prescribed global clock time, step! advances the

simulation by evaluating the next signal in the queue, and execute! executes the simula-

tion to the prescribed stop_time.

5.3.2 Example: Simulating Centralized Control of a Reactor System

To demonstrate basic ComputingGraph syntax using PlasmoCompute.jl we pose a sim-

ple model predictive control example for a two-reactor system with a separator. The

reactor setup is depicted by Figure 5.5 [125] and the details of the system are given in

Sections 5.4 and 5.5. For this problem, we seek to simulate the real-time performance of a

centralized controller that attempts to stabilize the system after changing plant-wide op-

erating setpoints. We denote the key behavior of our simulation setup with Computing

Graph 5.1 which is presented in the same spirit we would do so for an algorithm (i.e. a

ComputingGraph is something that can be executed like an algorithm).

For our setup we denote the ComputeNode pl (the plant) which contains the tasks and

attributes to simulate the reactor system. The attributes consist of the plant state x and

the injected control input upl . The node executes a single task run_plant which runs

continuously as a result of the trigger: Updated(x) (i.e. the task reschedules every time it

advances the reactor state). We also denote a single node called mpc which contains tasks

115

and attributes corresponding to a single plant-wide MPC controller. The controller node

contains the attributes for the control action (umpc) and the current measurement (ympc) as

well as a single task that computes the control action control_action which is triggered

every time it receives a new measurement.

The CommunicationEdges e1 and e2 represent the attribute connections between the

two nodes. Edge e1 connects the plant state xpl to the controller measurement ympc where

communication is triggered continuously (every time the edge evaluates the Sent(xpl)

signal and waits θwait). Edge e2 connects the controller input attribute umpc to the plant

input upl which is triggered every time the controller updates umpc.

Computing Graph 5.1 Centralized Control

1: Plant Node (pl)
2: Attributes: Apl := (upl , x)
3: Tasks: T pl := (run_plant)
4: run_plant: Task 5.3, triggered by: Updated(x)

5: MPC Controller (mpc)
6: Attributes: Ampc := (umpc, ympc)
7: Tasks: T mpc := (control_action, receive_policy)
8: control_action: Task 5.4, triggered by: Received(y)

9: Edge e1 := xpl → ympc send on: Sent(xpl), wait: θwait
10: Edge e2 := umpc → upl , send on: Updated(umpc)

Computing Graph 5.1 can be implemented in PlasmoCompute.jl as depicted in Code

Snippet 5.1. Line 2 creates the ComputingGraph object (graph), Lines 5 through 8 setup

the plant node (pl) with attributes and its compute task, and Lines 11 through 13 setup

the mpc node and add attributes and tasks. Lines 16 through 19 connect the attributes be-

tween the two nodes and setup activation triggers, Line 22 executes the ComputingGraph,

and Line 25 plots a trace of the first 300 seconds of execution.

116

Code Snippet 5.1: Simulating Centralized Control with PlasmoCompute.jl

1 #Create a computing graph
2 graph = ComputingGraph()
3
4 #Create plant simulation node
5 @computenode(graph,pl)
6 @attributes(pl,x,u)
7 @computetask(pl,run_plant,triggered_by=Updated(x))
8 schedule!(graph,run_plant,time = 0) #initialize computing graph
9

10 #Create MPC controller node
11 @computenode(graph,mpc)
12 @attributes(mpc,u_inject,y)
13 @computetask(mpc,control_action,triggered_by=Received(y))
14
15 #Connect plant to MPC controller
16 @connect(graph,pl[:x] => mpc[:y], delay=30, send_on = Sent(pl[:x]), send_wait=60,

start=5)
17
18 #Connect MPC controllers to plant
19 @connect(graph,mpc[:u_inject] => pl[:u], delay=30, send_on=Updated([mpc[:u]))
20
21 #Execute computing graph
22 execute!(graph,5000)
23
24 #Plot the trace of the execution
25 plt = plot_trace(graph,0:300)

The results of the centralized controller setup are depicted in the next section (Section

5.4). Figure 5.7a shows the first 300 seconds of execution and 5.7b shows that the tem-

perature of both reactors and the separator is successfully stabilized despite the real-time

communication and computational delays.

5.4 Case Study: Simulating Cooperative Control

This case study demonstrates how a ComputingGraph can be used to simulate the behav-

ior of a distributed control architecture that includes computation and communication

delays. The key objective of this study is to simulate how such delays impact the actual

behavior of the physical reactor system as well as how communication and controller

failures might realize in the real-time system.

117

5.4.1 Problem Setup

We again consider the reactor-separator system in Figure 5.5 which is a standard appli-

cation for evaluating distributed model predictive control (MPC) algorithms. The system

consists of two reactors in series where the reaction A → B → C takes place and a

separator which separates out a product stream and recycle. The system is described by

twelve states: the weight fractions of A and B in each unit, the unit heights, and the unit

temperatures. The manipulated inputs are the flow rates Ff 1, Ff 2, F1, F2, F3, FR, and heat

exchange rates Q1, Q2, and Q3. Once again, the details of the system are given in Section

5.5

MPC 1 MPC 2 MPC 3

Figure 5.5: Reactor separator process and partitioning into MPC controllers.

The behavior of the physical reactor system (the plant) shown in Figure 5.5 is sim-

ulated under three different MPC architectures. We first consider the centralized MPC

architecture (Figure 5.6a) which we evaluated in Section 5.3.2. As discussed earlier, in

this architecture every output is sent to a central MPC controller which computes all con-

trol actions for the plant. We also consider a decentralized control architecture that consists

of three MPC controllers (one for each unit) and simulate their behavior when they do

118

not communicate (Figure 5.6b) and when they cooperate by communicating their state and

intended control actions (Figure 5.6c). Complex performance, computation, and com-

munication trade-offs arise under the three MPC architectures studied. In particular, the

centralized scheme achieves best performance when the computing and communication

delays are short (which might not be achievable in large systems). On the other hand,

the performance of decentralized schemes might be worse than centralized but comput-

ing delays are expected to be shorter as well. Analyzing such trade offs is facilitated

by the ComputingGraph, since this captures communication and computing times while

simultaneously advancing the plant simulation. The proposed framework also captures

asynchronous behavior of the decentralized and cooperative schemes. In particular, the

controllers might inject their control actions as soon as they complete their computing

tasks (as opposed to waiting when all of them are done).

(a) Centralized (b) Decentralized (c) Cooperative

Figure 5.6: Simulated MPC architectures: centralized (left), decentralized (middle) and
cooperative (right).

5.4.2 Implementation

Computing Graph 5.2 specifies the setup for the cooperative MPC algorithm. The plant

node pl contains the task run_plant which advances the state of the system from the cur-

rent clock time to the time of the next action signal. The plant node includes attributes u1,

u2, and u3 (which are the control actions received from the MPC controllers) and x (which

are the plant states). The plant node is self-triggered by updating xpl , which allows the

119

task to run continuously (i.e., the task run_plant constantly updates the attribute xpl).

The plant state is communicated to each MPC node at a constant sampling time. The edges

that connect the plant state attribute xpl to each MPC node will trigger when sending

its source attribute (with a given waiting time θwait). The MPC nodes nmpc,1, nmpc,2, and

nmpc,3 each execute their task control_action which computes a control action by solv-

ing an optimization problem using attributes from the rest of the MPC controllers and

from the plant. If they have completed enough coordination iterations, they each update

their attribute uinject, which triggers communication into the plant. Otherwise, they each

update their control trajectory upn and exchange their attributes. This triggers the MPC

node task receive_policy, which manages the MPC trajectory exchange. Additionally,

we specify logic to handle the case when the attributes {upi , (i 6= n)} are received while

a node n is busy executing a task. When this occurs, the triggered task is queued and

triggered once the controller finishes its current task (or every task queued before it).

Computing Graph 5.2 Cooperative Control

1: Plant Node (pl)
2: Attributes: Apl := (u1, u2, u3, x)
3: Tasks: T pl := (run_plant)
4: run_plant: Task 5.3, triggered by: Updated(x)

5: MPC Nodes (n = {1, 2, 3})
6: Attributes: An := (uinject, y, up1 , up2 , up3 , iter, f lag)
7: Tasks: T n := (control_action, receive_policy)
8: control_action: Task 5.4, triggered by: Received(y) or Updated(f lag)
9: receive_policy: Task 5.5, triggered by: Received(upi), i 6= n

10: Edges E1 := xpl → yn, n = {1, 2, 3}, send on: Sent(xpl), wait: θwait
11: Edges E2 := un,inject → upl,n, n = {1, 2, 3}, send on: Updated(un,inject)
12: Edges E3 := un,pn → ui,pn , n = {1, 2, 3}, i 6= n, send on: Updated(un,pn)

Code Snippet 5.2 details the implementation of Computing Graph 5.2 for cooperative

control (in much the same way Snippet 5.1 is constructed besides the increased complex-

ity). Lines 2 through 26 create a ComputingGraph, add ComputeNodes, attributes, and tasks,

and setup the appropriate triggers. Lines 29 through 31 make connections between the

120

plant and the controllers, and Lines 34 through 36 connect the controllers to each other

(to perform cooperative communication). Finally, Line 39 executes the cooperative control

simulation.

Code Snippet 5.2: Simulating Cooperative Control with PlasmoCompute.jl

1 #Create a computing graph
2 graph = ComputingGraph()
3
4 #Create plant simulation node
5 @computenode(graph,pl)
6 @attributes(pl,x,u1,u2,u3)
7 @computetask(graph,pl,run_plant,triggered_by=Updated(x))
8 schedule_task(graph,run_plant,time = 0) #initialize graph
9

10 #Reactor 1 MPC
11 @computenode(graph,n1)
12 @attributes(n1,u_inject,y,u_p1,u_p2,u_p3,iter,flag)
13 @computetask(graph,n1,control_action_r1,triggered_by=[Received(y),Updated(flag)])
14 @computetask(graph,n1,receive_policy,triggered_by=Received(u_p2,u_p3),

trigger_during_busy=:queue_task)
15
16 #Reactor 2 MPC
17 @computenode(graph,n2)
18 @attributes(n2,u_inject,y,u_p1,u_p2,u_p3,iter,flag)
19 @computetask(graph,n2,control_action_r2,triggered_by=[Received(y),Updated(flag)])
20 @computetask(graph,n2,receive_policy,triggered_by=Received(u_p1,u_p3),

trigger_during_busy=:queue_task)
21
22 #Separator MPC
23 @computenode(graph,n3)
24 @attributes(n3,u_inject,y,u_p1,u_p2,u_p3,iter,flag)
25 @computetask(graph,n3,control_action_sep,triggered_by = [Received(y),Updated(flag)])
26 @computetask(graph,n3,receive_policy,triggered_by=Received(u_p1,u_p2),

trigger_during_busy=:queue_task)
27
28 #Connect plant to MPC controllers
29 @connect(graph,pl[:x]=>[n1[:y],n2[:y],n3[:y]],delay=30,send_on=Sent(pl[:x]),

send_wait=60,start=5)
30 #Connect MPC controllers to plant
31 @connect(graph,[n1[:u_inject],n2[:u_inject],n3[:u_inject]]=>[pl[:u1],pl[:u2],pl[:u3

]],delay=30,send_on=Updated([n1[:u_inject],n2[:u_inject],n3[:u_inject]]))
32
33 #Connect MPC controllers to perform cooperation
34 @connect(graph,n1[:u_p1]=>[n2[:u_p1],n3[:u_p1]],send_on=Updated(n1[:u_p1]))
35 @connect(graph,n2[:u_p2]=>[n1[:u_p2],n3[:u_p2]],send_on=Updated(n2[:u_p2]))
36 @connect(graph,n3[:u_p3]=>[n1[:u_p3],n2[:u_p3]],send_on=Updated(n3[:u_p3]))
37
38 #Execute computing graph
39 execute!(graph,5000)

5.4.3 Results

Figure 5.7 presents the simulation results for each MPC algorithm. The centralized MPC

communication pattern (5.7a) shows the communication delays between the plant and

the controller (grey arrows), the time required to compute the control action (the purple

121

bar), and highlights how the plant state advances continuously while computation and

communication tasks execute. Despite the delays enforced for the controller, centralized

MPC is able to drive the state to the set-point (Figure 5.7b) as we discussed in Section 5.3.2.

Decentralized MPC does not require communication between controllers and computing

times are decreased (Figure 5.7c) but we observe that the set-point cannot be reached

(Figure 5.7d). This is because this approach does not adequately capture multi-variable

interactions. Finally, cooperative MPC has a more sophisticated communication strategy

(Figure 5.7e) but we observe that this helps mimic the performance of centralized MPC

(Figure 5.7f).

We also use the ComputingGraph to simulate the effects of control system failures.

Particularly, we look at the cooperative control case and simulate three distinct scenar-

ios where we (i) artificially increase controller computation times, (ii) shut down the

CommunicationEdges between MPC1 and the other controllers at time 250, and (iii), shut

down controller MPC1 at time 250. Figure 5.8 depicts the results for each scenario. For

the case with long computation times the system still stabilizes (albeit producing a less

smooth state profile) as shown in Figure 5.8a and 5.8b. The cooperative system also

handles the communication failure despite an initially non-smooth controller response

as depicted in Figures 5.8c and 5.8d. Most surprisingly, we see that the system appears

to recover despite the failure of MPC3 which highlights the robustness of cooperative

control policies (the other controllers save the system). This highlights a powerful aspect

of using the ComputingGraph for simulations. With a modest amount of effort, we were

able to simulate various policies and failures subject to limitations that would arise in the

real-time system.

122

(a) Centralized communication (b) Centralized state profile

(c) Decentralized communication (d) Decentralized state profile

(e) Cooperative communication (f) Cooperative state profile

Figure 5.7: Simulation results for MPC architectures. Centralized MPC converges to
the set-point despite the computing delays (top panels). Decentralized MPC does not
converge to the set-point (middle panels). Cooperative MPC exhibits communication
complexity but converges to the centralized MPC solution (bottom panels).

123

(a) Long computation (b) Long computation state profile

(c) Failed communication (d) Failed communication state profile

(e) Failed controller (f) Failed controller state profile

Figure 5.8: Simulation results for cooperative MPC failures. Cooperative MPC converges
to the set-point despite long computing delays (top panels). Cooperative MPC stabilizes
the system after MPC1 loses communication with MPC2 and MPC 3 (middle panels).
Cooperative MPC stabilizes the system after MPC1 fails (bottom panels).

124

5.5 Appendix: Reactor System Study Model

5.5.1 Model Equations

The model for the plant is given by the following set of differential equations:

dH1

dt
=

1
ρA1

(Ff 1 + FR − F1) (5.6)

dxA1

dt
=

1
ρA1H1

(Ff 1xA0 + FRxAR − F1xA1)− kA1xA1

dxB1

dt
=

1
ρA1H1

(FRxBR − F1xB1) + kA1xA1 − kB1xB1

dT1

dt
=

1
ρA1H1

(Ff 1T0 + FRTR − F1T1)−
1

Cp
(kA1xA1∆HA + kB1xB1∆HB) +

Q1

ρA1CpH1

dH2

dt
=

1
ρA2

(Ff 2 + F1 − F2)

dxA2

dt
=

1
ρA2H2

(Ff 2xA0 + F1xA1 − F2xA2)− kA2xA2

dxB2

dt
=

1
ρA2H2

(F1xB1 − F2xB2) + kA2xA2 − kB2xB2

dT2

dt
=

1
ρA2H2

(Ff 2T0 + F1T1 − F2T2)−
1

Cp
(kA2xA2∆HA + kB2xB2∆HB) +

Q2

ρA2CpH2

dH3

dt
=

1
ρA3

(F2 − FD − FR − F3)

dxA3

dt
=

1
ρA3H3

(F2xA2 − (FD + FR)xAR − F3xA3)

dxB3

dt
=

1
ρA3H3

(F2xB2 − (FD + FR)xBR)− F3xB3)

dT3

dt
=

1
ρA3H3

(F2T2 − (FD + FR)TR − F3T3) +
Q3

ρA3CpH3
,

where for i = {1, 2} we have:

kAi = kA exp
(
− EA

RTi

)
, kBi = kB exp

(
− EB

RTi

)
.

125

The recycle and weight fractions are given by:

FD = 0.01FR, xAR =
αAxA3

x3
, xBR =

αBxB3

x3

x3 = αAxA3 + αBxB3 + αCxC3, xC3 = (1− xA3 − xB3).

The target steady-state (set-point) is described by the parameters in Table 5.2 and the

initial operating condition is given in Table 5.3.

Table 5.2: Target steady-state and parameters for reactor-separator system

Parameter Value Units Parameter Value Units
H1 16.1475 m A1 1.0 m2

xA1 0.6291 wt A2 1.0 m2

xB1 0.3593 wt A3 0.5 m2
T1 387.594 K ρ 1000 kg/m3

H2 12.3137 m Cp 4.2 kJ/kgK
xA2 0.6102 wt xA0 0.98 wt
xB2 0.3760 wt T0 359.1 K
T2 386.993 K kA 2769.44 1/s
H3 15.0 m kB 2500.0 1/s
xA3 0.2928 wt EA/R 6013.95 kJ/kg
xB3 0.67 wt EB/R 7216.74 kJ/kg
T3 387.01 K ∆HA -167.4 kJ/kg
Ff 1 6.3778 kg/s ∆HB -139.5 kJ/kg
Q1 26.0601 kJ/s αA 5.0 –
Ff 2 6.8126 kg/s αB 1.0 –
Q2 5.0382 kJ/s αC 0.5 –
FR 56.7989 kg/s
Q3 5.0347 kJ/s
F1 63.1766 kg/s
F2 69.9892 kg/s
F3 12.6224 kg/s

For the 3 MPC controllers, we have the following outputs and inputs:

126

Table 5.3: Initial conditions for simulation of reactor-separator system

STATE Value Units Input Value Units
H1 25.4702 m Ff 1 1.1866 kg/s
xA1 0.1428 wt Q1 29.0597 kJ/s
xB1 0.7045 wt Ff 2 7.0263 kg/s
T1 415.944 K Q2 5.1067 kJ/s
H2 5.4703 m FR 11.6962 kg/s
xA2 0.3653 wt Q3 5.09834 kJ/s
xB2 0.5307 wt F1 12.8828 kg/s
T2 399.303 K F2 19.9091 kg/s
H3 15.0 m F3 8.0960 kg/s
xA3 0.1565 wt
xB3 0.67 wt
T3 399.364 K

y1 = [H1, xA1, xB1, T1], u1 = [Ff 1, Q1, F1]

y2 = [H2, xA2, xB2, T2], u2 = [Ff 2, Q2, F2]

y3 = [H3, xA3, xB3, T3], u3 = [FR, Q3, F3].

Each MPC controller uses a quadratic cost function with weights:

Qy1 = diag(100, 10, 100, 0.1) Qy2 = diag(10, 10, 100, 0.1) Qy3 = diag(1, 10, 105, 0.1)

Ryi = diag(100, 100, 100), i = {1, 2, 3}.

The differential equations are discretized using an Euler scheme with a time horizon of

N = 20 and a time step ∆ t = 30.

5.5.2 Simulation Tasks

The cooperative MPC computation tasks are defined in Tasks 5.3, 5.4, and 5.5. Task 5.3

simulates the plant forward in time from the current computing graph time to the time

127

of the next signal in the computing graph queue and updates the attribute x. Task 5.4

computes the open-loop control trajectory for MPC controller n and updates its control

injection uinject if it has completed enough iterations and updates its control policy upn

if it has not. Task 5.5 checks whether the MPC controller has received updates from the

other MPC controllers and updates the flag indicator f lag if it has received both inputs.

Task 5.3 run_plant(computing graph G,node n)

1: Get graph clock value tnow: Current clock time
2: Get graph clock value tnext: Next signal time
3: Get node attributes {u1, u2, u3}: Received MPC controller actions
4: Get node attribute x: Plant state
5: Simulate plant (5.6) update attribute x ← simulate_plant(u1, u2, u3, x, tnow, tnext)

Task 5.4 control_action(node n)

1: Get node attribute itermax
2: Get node attribute y: Received plant measurement
3: Get node attribute uinject: Current injected control from MPC controller
4: Get node attributes {upi , i 6= n}: Received control actions from other MPC controllers

5: Get node attribute iter: Current cooperative iteration
6: Calculate control action: ucalc ← compute_control_action(yn, upi , i 6= n)
7: Update iteration count: iter ← iter + 1
8: if iter = itermax then
9: Update injected control: update attribute uinject ← ucalc

10: iter ← 1
11: else
12: Update control: update attribute upn ← ucalc
13: end if

Task 5.5 receive_policy(node n, attribute upi)

1: Get node argument upi : Received neighbor controller actions
2: Get node attribute f lag : Flag that control action is ready to compute
3: if Received both policies({upi , i 6= n}) then
4: update attribute f lag
5: end if

128

Chapter 6

D I S T R I B U T E D A L G O R I T H M S I M U L AT I O N

In Chapter 5 we presented the ComputingGraph abstraction and demonstrated how it

facilitates the simulation of real-time cyber-physical systems over distributed communi-

cation topologies. This chapter further explores the computing aspects afforded by the

ComputingGraph. Particularly, we explore how it can be used to develop and simulate

distributed algorithms for optimization and machine learning applications.

6.1 Introduction

Continuous software and hardware advances have made it possible to deploy massively

parallel scientific applications over increasingly larger sets of distributed computing re-

sources. A key underlying aspect of many parallel applications is the development and

implementation of algorithms that need to utilize increasingly complex distributed dy-

namic and heterogeneous computing environments. Consequently, there is an increasing

need to have the capabilities to simulate algorithms that run on high-performance com-

puting (HPC) architectures to quantify their performance and to identify bottlenecks that

arise due to load-imbalance and communication latency.

Realistically simulating algorithm performance on real distributed architectures is,

however, extremely nontrivial [5, 93]. Communication aspects are particularly challeng-

129

ing to capture in computing (i.e. cyber) systems since they often involve complex topolo-

gies and frequencies (see Figure 1.3 in Chapter 1). Research in HPC simulation tends to

target very specific applications such as simulating computing task scheduling techniques

[11] or improving communication in large distributed networks [134]. Throughout this

chapter, we intend to show that the ComputingGraph presented in Chapter 5 naturally

captures the topology and timing aspects needed to simulate distributed algorithms. For

instance, we show how it can be used to develop and benchmark distributed optimization

algorithms under multi-core architectures compared to using a single central processing

unit (CPU). We also show how the ComputingGraph facilitates the development of asyn-

chronous algorithm variants which form the basis of many machine learning applications.

The rest of the chapter is organized as follows. Section6.2 provides an overview of the

challenges in implementing distributed algorithms for optimization and machine learn-

ing applications. Specifically, Section 6.2 discusses distributed Benders decomposition

for solving two-stage stochastic optimization problems and introduces the distributed

stochastic gradient descent (SGD) algorithm for training machine learning classification

models. Section 6.3 presents a case study where we use a ComputingGraph to simu-

late distributed Benders decomposition on a multi-core system and Section 6.4 uses a

ComputingGraph to experiment with different distributed SGD variants.

6.2 Distributed Optimization and Machine Learning

The increasing size and complexity of modern data sets has motivated efforts to solve

challenging problems in the optimization and machine learning fields that harness mas-

sive amounts of data or that exhibit extremely high dimensionality. Examples of such

problems include solving large-scale stochastic optimization problems [16] and train-

ing data intensive machine learning classification models [20]. Developing efficient dis-

tributed algorithms offers a means to tackle such challenging problems by exploiting mas-

sively parallel computing architectures [14]. Consequently, the development of efficient

130

distributed algorithms that better harness parallel architectures will have key implications

towards tackling optimization and machine learning problems that involve large-scale

distributed data sets.

The remainder of this section presents an overview of distributed Benders decom-

position for stochastic optimization and highlights the challenges that still arise in the

distributed implementation of this classic decomposition algorithm. We then present a sum-

mary of distributed stochastic gradient descent (SGD) and discuss the challenges in exe-

cuting its distributed algorithmic variants.

6.2.1 Distributed Benders Decomposition

Benders decomposition is one of the most widely used approaches to solve two-stage

stochastic optimization problems. The main idea behind the two-stage problem is to opti-

mize decisions (variables) subject uncertainty that may realize in the future. We can make

decisions both before this uncertainty realizes (called a first stage problem), and after

the realization of uncertainty (called the second stage, or recourse function). The typi-

cal practice in the two-stage paradigm is to approximate uncertainty with a probability

distribution of random variables (e.g. using a forecast of the future) and sample a finite

number of scenarios (which enter into the optimization problem as data). In this sec-

tion we provide a somewhat high level overview of Benders decomposition for two-stage

problems and then discuss its distributed implementation.

Overview of Benders Decomposition

Here we provide a quick overview of the Benders decomposition algorithm. This overview

omits much of the algorithm details and so we refer the interested reader to [104] for a

recent comprehensive review and construction of the algorithm. For our overview we use

a simple two-stage optimization problem where we denote a finite set of scenarios (data)

as ξ ∈ Ξ that capture uncertainty where each ξ is a specific realized scenario. For ease of

presentation we also consider a simple linear two-stage stochastic program described by

131

(6.1a).

φ =min
x

cTx + ∑
ξ∈Ξ

pξ Qξ(x) (6.1a)

s.t. Ax = b, x ∈ R
n1
+ (6.1b)

In this formulation, c is a vector of coefficients, x is a vector of first-stage decision vari-

ables, and pξ is the probability that each specific scenario ξ realizes. This formulation

also uses a standard recourse function Qξ(x) given by:

Qξ(x) =min
y

qT
ξ y (6.2)

s.t. Wξy = hξ − Tξ x, y ∈ R
n2
+ (6.3)

where the scenario data ξ are captured in {qξ , Wξ , hξ , Tξ} which describe the second stage

objective function and constraints. In Benders decomposition, we iterate between the

solution of a master problem (corresponding to the first stage) and its subproblems (the

second stage) where we denote the iteration counter as k. The Benders master problem

corresponding to (6.1a) can be given by (6.4a)

(MP) : φk = min
x,{θξ}ξ∈Ξ

cTx + ∑
ξ∈Ξ

pξθξ (6.4a)

s.t. Ax = b, x ∈ R
n1
+ (6.4b)

θξ ≥ (πξ)T(hξ − Tξ x), πξ ∈ V̂ξ,k, ξ ∈ Ξ (6.4c)

where θξ represents cuts added to the master problem for scenario ξ for subproblem

constraints that are violated (i.e. scenarios where we have the solution θ̂ξ ≤ Qξ(x̂k)).

Here, πξ comes from the subproblem dual solution and V̂ξ,k represents the history of

dual solutions received by the master problem up to iteration k.

Each subproblem (SP) of the Benders decomposition algorithm can be solved accord-

ing to: Qξ(x̂k) = maxπ{πT(hξ − Tξ x̂k) : πTWξ = qξ} which can be formulated into the

132

linear program given by (6.5a).

(SP) : Qξ(x̂k) =min
y

qT
ξ y (6.5a)

s.t. Wξy = hξ − Tξ x̂k, y ∈ R
n2
+ (6.5b)

Here, the dual solution π̂ξ,k is obtained from the subproblem and is used to update

the master problem (i.e. V̂ξ,k = {V̂ξ,k−1, π̂ξ,k}) if any constraints in (6.5a) are violated.

The Benders algorithm iterates between the master and subproblems until a convergence

criteria is achieved.

Parallel Benders Decomposition

The most prominent parallel variant of Benders decomposition is based on a synchronous

master-subproblem paradigm in which a master processor coordinates with sub-processors

to solve the two-stage optimization problem [82]. An example of such a communication

topology is depicted in Figure 6.1. Here, we show a hypothetical computing architecture

consisting of four CPUs where CPUs 1,2, and 3 solve subproblem solutions (i.e. solve

(6.5a)) given scenarios (data) ξ1, ξ2, ξ3 and a master problem solution x̂, and return solu-

tion data s1, s2, s3 to CPU 4 which creates new cuts and solves the master problem (i.e.

solves (6.4a)).

The synchronous variant of Benders decomposition using a master processor and set

of N := {1, ..., N} worker CPUs that solve scenario subproblems is described in Algo-

rithm 6.1. The algorithm uses computing tasks implemented in the functions

solve_subproblem, receive_solution, and solve_master. The function

solve_subproblem computes a subproblem solution s for a given scenario data sample

ξ ∈ Ξ using the current master solution x̂. Here, the master solution x̂, the scenario

data ξ, and the subproblem solution s are data attributes that are communicated be-

tween the master and the worker CPUs. The solve_subproblem function activates the

receive_solution task on the master node, which stores subproblem solutions into the

133

Figure 6.1: Hypothetical computing architecture executing Benders decomposition. CPU
4 executes the solution of the Benders master problem and receives solutions from the
subproblems. CPUs 1, 2, and 3 execute the solution of the scenario subproblems.

set S, updates the set of cuts C, and checks how many scenario subproblems have been

solved. If all subproblems are completed, it triggers the execution of the solve_master

task using the current set of solution data S and cuts C. Otherwise, it triggers the ex-

ecution of the solve_subproblem task on a worker processor. When solve_master is

executed, it takes subproblem solution attribute s to update the master attribute x̂ and

stops the computing graph if convergence is achieved. If not converged, it empties the

solution set S and activates the solve_subproblem tasks for each worker again, which will

then obtain new subproblem attributes.

While seemingly straight-forward, maximizing the parallel efficiency of Benders de-

composition is not trivial. The synchronous algorithm given by Algorithm 6.1 can suffer

from significant load imbalance (particularly when an iteration of the master problem

takes considerable computation time). To alleviate this, communication between the mas-

ter and subproblems can be performed asynchronously such that the master problem re-

solves before all sub-processors have communicated their solutions. There should also be

consideration for the allocation of subproblems which can be done in a static or dynamic

134

Algorithm 6.1 (Synchronous Benders)

1: function solve_subproblem (x̂, ξ)
2: Given the master solution x̂ and scenario ξ, evaluate sub-problem solution s
3: Activate receive_solution(s) on the master node
4: end function

5: function receive_solution(s)
6: Given subproblem solution s, store solution S← s, and update cuts C
7: if All subproblems complete then
8: Activate solve_master(S, C) on the master node
9: else

10: Get new scenario ξ from scenario set Ξ
11: Activate solve_subproblem(x̂, ξ) on worker node
12: end if
13: end function

14: function solve_master(S, C)
15: Given solution data S and cuts C, update master solution x̂
16: Empty solution data S← {}
17: if converged then
18: STOP
19: else
20: for n = 1, ..., N do
21: Get scenario ξn from set Ξ
22: Activate solve_subproblem(x̂, ξn) on worker node
23: end for
24: end if
25: end function

26: Initialize variable values and scenario set Ξ
27: Activate solve_master on master node

fashion. Specifically, batches of subproblems can be assigned to CPUs before algorithm

execution (static allocation), or they can be assigned to CPUs on the fly (dynamic alloca-

tion) based on their availability.

6.2.2 Distributed Stochastic Gradient Descent

Stochastic gradient descent (SGD) [19] is the backbone of most state-of-the-art machine

learning algorithms. The SGD algorithm has frequently demonstrated its capability to

135

solve large convex learning problems with lots of data [135], but it faces the same chal-

lenges as discussed with Benders decomposition with respect to its distributed imple-

mentation [103]. Traditional SGD algorithm implementations are run in serial using a

single CPU, but such implementations are prohibitively slow when dealing with mas-

sive data sets. A solution that has proved successful in recent years is to parallelize the

training across many learners (e.g. CPUs). This method was first used at a large-scale in

the Google DistBelief project [34] which used a central parameter server (PS) to aggre-

gate gradients computed by learner nodes (see Figure 6.2). While parallelism dramatically

speeds up training, distributed machine learning frameworks face several challenges such

as straggling learners and gradient staleness [38]. For example, distributed SGD when

run in a synchronous manner, suffers from delays in waiting for the slowest learners (i.e.

stragglers). Asynchronous methods can alleviate stragglers, but cause gradient staleness

(gradients evaluated with old PS parameters) that can adversely affect convergence.

Server

Learner Learner

Learner

update
parameters

calculate
gradients

calculate
gradients

calculate
gradients

Figure 6.2: Topology of simulated architecture for stochastic gradient descent. The server
node updates parameters given evaluated gradients. The learner nodes compute gradi-
ents given a current set of parameters and data.

SGD typically solves the minimization problem of an empirical risk function given by

136

(6.6)

min
w

φ(w) :=
1

Ns

Ns

∑
j=1

f (w, ξ j) (6.6)

where ξ j denotes the jth data point with j ∈ {1, ..., Ns} where Ns is the total number of

samples. In this function, w is a vector of parameters, and f (w, ξn) is a loss function (e.g.

such as mean squared error or cross entropy). The SGD algorithm iteratively minimizes

this objective function by updating the parameter vector w in the opposite direction of

the gradient of φ(w) at each iteration k of the algorithm according to (6.7)

wk+1 = wk − η∇φ(wk) = wk − η

Ns

Ns

∑
j=1
∇ f (wk, ξ j) (6.7)

where η in this case is the learning rate. In practice, the calculation of ∇ f (wk, ξ j) is

often expensive, and so it is common to use batches of samples and compute the average

gradient. We can specify the set of batches as ξb ∈ {ξb1, ξb2..., ξbB} where B is the total

number of batches. We assume a constant batch size m for all batches. Thus, in the case

for b = 1, we would have ξb1 := {ξ1, ..., ξm} if we ordered the samples sequentially.

Fully Synchronous Variant

With our definitions so far, we can pose the synchronous parameter update for SGD given

by (6.8)

wk+1 = wk − η

B

B

∑
j=1

g(wk, ξk
bj) (6.8)

where g(wk, ξk
bj) = 1

m ∑ξ∈ξk
bj
∇ f (wk, ξ) is the average gradient for the batch of samples

ξk
bj for the given parameter vector w at iteration k. A description of the synchronous

algorithm is given by Algorithm 6.2. In essence, this algorithm has the parameter server

(PS) allocate batches to the learners and then activates the compute_gradient function on

each learner with the initial parameter vector w. Each learner starts computing gradients

137

for its set of batches and activates the update_gradient function on the PS after each batch

is computed. The learners compute gradients until they run through all of their allocated

batches of samples. Once the PS receives every gradient, it updates the parameters w with

update_parameters and then re-activates the compute_gradient function on each learner.

Fully Asynchronous Variant

The fully synchronous update described by Equation (6.8) and Algorithm 6.2 is prone

to stragglers (gradients that require long computation times) and communication bot-

tlenecks (waiting for gradients to arrive at the PS). To alleviate bottlenecks, the fully

asynchronous variant can be used to improve parallel efficiency by using the update rule

given by (6.9).

wk+1 = wk − ηg(wτ(k), ξk
b) (6.9)

With this update rule, the parameter server updates the parameters every time a gradient

is received. Here, ξk
b simply denotes the batch that is used for the kth update, and τ(k)

denotes the iteration index for the parameters that were taken from central PS to calculate

the gradient. Thus we have τ(k) ≤ k which means that the parameter update may use

old (stale) gradients.

K-Batch Asynchronous Variant

Asynchronous SGD can achieve almost perfect parallel efficiency, but typically at the cost

of instability or a considerable number of iterations. The purely asynchronous variant is

also known to achieve higher error-floors compared to the synchronous variant (i.e. it

cannot reduce the loss as much as synchronous SGD). The K-batch asynchronous update

rule given by (6.10) provides a trade-off between the two extreme variants.

wk+1 = wk − η

K

K

∑
j=1

g(wτ(j,k), ξk
bj) (6.10)

138

Algorithm 6.2 (Synchronous Distributed SGD)

1: function compute_gradient(w,ξb)
2: Given parameter vector w, retrieve batch ξb, store current parameter w and compute

average gradient g
3: Activate update_gradients(g) on PS
4: if not all batches complete then
5: Increment batch counter count+ = 1 on learner n
6: Activate compute_gradient(w) on learner n
7: else
8: Reset batch counter count = 1 on learner n
9: end if

10: end function

11: function update_gradients(g)
12: Given average gradient g, store gradient G ← g
13: if All gradients received then
14: Activate update_parameters(w,G) on PS
15: end if
16: end function

17: function update_parameters(w,G)
18: Given current parameters w and gradients G, update w according to (6.8)
19: Empty gradients G ← {}
20: Evaluate loss function with new w
21: if tolerance reached then
22: STOP
23: else
24: for n = {1, ..., N} do
25: Retrieve first batch ξb on each learner n
26: Activate compute_gradient(w) on each learner n
27: end for
28: end if
29: end function

30: Initialize parameter vector w and set of gradients G → {}
31: Allocate batches {ξbj}j∈{1,...,B} to learners n = {1, ..., N}
32: for n = {1, ..., N} do
33: Activate compute_gradient(w) on each learner n
34: end for

For this update rule, we have the PS wait for the first K batches of gradients to return

before updating the parameters w. We again denote ξk
bj as the j − th batch used at the

k− th iteration (such as in the synchronous case), but we now have τ(j, k) which denotes

139

the iteration index of the parameters w that were used to compute gradients on the j−

th batch where τ(j, k)k. We thus have that g(wτ(j,k), ξk
bj) = 1

m ∑ξ∈ξk
bj
∇ f (wτ(j,k), ξ) is the

average gradient of the loss function evaluated over the mini-batch ξk
bj based on the stale

value of the parameter wτ(j, k). For K = 1, the K-Batch asynchronous variant is exactly

equivalent to fully asynchronous SGD variant given by (6.9) and for K = B this variant

becomes the purely synchronous variant given by (6.8)

6.3 Case Study: Simulating Distributed Benders Decomposition

This section presents a case study that demonstrates how to use a ComputingGraph to

simulate distributed Benders decomposition on different computing architectures (i.e.

different numbers or types of CPUs). As such, we show how the ComputingGraph allows

us to experiment with algorithms that are subject to different CPU architectures or to

random computing loads from other jobs that increase computing latency in the CPUs.

6.3.1 Problem Overview

The problem under study is a resource allocation stochastic program given by (6.14) in

Section 6.5. This stochastic program can be decomposed with Benders decomposition

into a master problem (6.15) and a set of subproblems (6.16) defined for a set of sampled

scenarios ξ ∈ Ξ. Algorithm 6.1 can be modeled and simulated using a ComputingGraph

which allows us to simulate the effect of computing and communication delays on the

performance of the Benders scheme. on a hypothetical parallel computer (such as depicted

by Figure 6.1). Under this abstraction, the master node solves the master problem and

a set of n ∈ {1, ...N} subnodes (CPUs) solve the set of Ξ of scenario subproblems. For

our setup a parent ComputeNode allocates scenarios to the available children nodes dy-

namically (by keeping track of which ones are available and which ones are busy solving

another scenario subproblem). The children communicate their solutions and cutting

plane information to the parent node once they are done solving their subproblem.

140

6.3.2 Implementation

The simulation of the Benders algorithm (Algorithm 6.1) can be expressed in terms of

nodes, tasks, and attributes following the setup provided in ComputingGraph 6.1. We

use a master node m with attributes defined in Line 2 which include the solution to the

master problem x̂ and the scenario data {ξ1...ξN} which are communicated to available

subnodes n ∈ {1, ..., N}. The master node also contains tasks (Line 3) analogous to

the functions in Algorithm 6.1 to execute the master problem (solve_master) and to

receive solutions from subnodes (receive_solution). The details of each task and what

attributes it updates can be found in Section 6.5. The solve_master task is triggered by the

attribute f lag shown in line 4. The task solves the master problem (6.15) using the master

node attributes and updates the attributes for the master solution x̂ and scenarios {ξ1...ξN}.

The updated attributes trigger edge communication to the subnodes (lines 10 and 11). The

receive_solution task is executed when any solution attribute sn is received from the

connected subnode n. This task determines whether the solve_master task is ready to

run again and either updates the attribute f lag (which triggers solve_master) or updates

the corresponding scenario attribute ξn with a new scenario to send back to subnode

n. Each subnode n computes its task solve_subproblem when it receives its scenario

attribute ξ. The solve_subproblem task updates s, which triggers communication to the

attribute sn on the master node m (line 12).

The implementation of the ComputingGraph in PlasmoCompute.jl for the case of three

subnodes is shown in Code Snippet 6.1. Lines 2 through 11 create the graph, add the

master node with its attributes and tasks (solve_master and receive_solution). Lines

15 through 24 add subnodes to the graph, each with a solve_subproblem task that is ex-

ecuted after receiving scenario data ξ (line 18). Finally, communication edges are created

between attributes (lines 21-23) and the graph is executed on Line 26 until it terminates

(i.e., a task calls Stop(graph) such as shown in Code Snippet 6.1). It is also possible to

simulate to a pre-determined time by providing an argument to execute!(). Also note

141

Computing Graph 6.1 (Synchronous Benders)

1: Master Node (m)
2: Attributes: Am := (x̂, S, C, f lag, {s1, ..., sN}, {ξ1, ..., ξN})
3: Tasks: T m := (solve_master, receive_solution)
4: solve_master: runs Task 6.1, triggered by: Updated(f lag)
5: receive_solution: runs Task 6.2, triggered by: Received(sn), n ∈ {1, ..., N}

6: Sub Nodes (n ∈ N)
7: Attributes: An := (x̂, ξ, s)
8: Tasks: T n := (solve_subproblem)
9: solve_subproblem: runs Task 6.3, triggered by: Received(ξ)

10: Edges E1 := x̂m → x̂n, n ∈ {1, ..., N}, send on: Updated(x̂m)
11: Edges E2 := ξm,n → ξn, n ∈ {1, ..., N}, send on: Updated(ξm,n)
12: Edges E3 := sn → sm,n, n ∈ {1, ..., N}, send on: Updated(sn)

that the solve_master and solve_subproblem tasks are given default compute times as

the true compute time of their execution (compute_time =: walltime). We set a communi-

cation delay of 0.005 seconds from the master node to the subnodes (but it is also possible

to make delay time a function of the attributes communicated or to experiment with

different delays to evaluate the effect of communication overhead).

142

Code Snippet 6.1: PlasmoCompute.jl snippet for simulating Benders decomposition.

1 #Create a computing graph
2 graph = ComputingGraph()
3
4 N = 3 #number of subnodes
5 #Add the master node (m)
6 @computenode(graph,m)
7 @attributes(m,x,C,flag,ξ[1:N],s[1:N])
8 @computetask(m,run_master, compute_time = :walltime, triggered_by=Updated(flag))
9 @computetask(m,receive_solution[i = 1:N], compute_time = 0, triggered_by=Received(s[i]))

10 #Provide an initial signal to start the algorithm
11 schedule(graph, m[:run_master], time = 0)
12
13 subnodes = @computenode(graph,subnodes[1:N])
14
15 for node in subnodes
16 #Add subnodes (n = 1:N) to solve sub−problems
17 @attributes(subnode,x,ξ,s)
18 @computetask(subnode,solve_subproblem, compute_time = :walltime,triggered_by=

Received(ξ))
19
20 #Connect attributes between master and subnodes
21 @connect(graph,m[:x] => n[:x],send_on=Updated(m[:x]))
22 @connect(graph,m[:ξ][i] => n[:ξ],send_on=Updated(m[:ξ][i]),delay=0.005)
23 @connect(graph,n[:s] => m[:s][i],send_on=Updated(n[:s]))
24 end
25 #Execute the computing graph
26 execute!(graph)

6.3.3 Results

Figure 6.3 summarizes the simulation results of the Benders algorithm as we increase

the number of CPUs available in the computing architecture (we consider cases with

N = 1, 4, 8, and 16 CPUs). We can see that, with a communication delay of 0.005 seconds

from the master to the subnodes, using one CPU has a shorter total solution time than

using four CPU nodes (due to the communication overhead). Executing the algorithm

on 8 and 16 CPU nodes, however, results in algorithm speed up (reduction in computing

latency overcomes communication latency). This illustrates how ComputingGraph can help

to predict trade-offs between computing and communication latency. For instance, the

results predict that the proposed Benders scheme only benefits from parallelization when

the number of CPUs is sufficiently large. We again highlight that the parallel architectures

evaluated are hypothetical (the actual simulation of the algorithm was executed on a single

CPU). In other words, PlasmoCompute.jl simulates the behavior of the Benders algorithm

143

on a virtual computing environment.

C
P
U

C
P
U

C
P
U

C
P
U

Figure 6.3: Simulation of Benders decomposition using different numbers of CPUs (top
panel shows one CPU while bottom panel shows sixteen CPUs). Red tasks correspond to
the master problem execution time, grey tasks represent subproblem execution time and
orange dots represent the receive_solution task which is simulated with zero comput-
ing time.

6.4 Case Study: Simulating Stochastic Gradient Descent Variants

For this case study we investigate the trade-offs between the distributed SGD variants

presented in Section 6.2.2 to train a regression model on a multi-learner system.

144

6.4.1 Problem Overview

For our problem, we seek to train a set of parameters w (i.e. weights) for a regression

model using distributed SGD. We use a standard data set from the MNIST [79] database

which contains hand-drawn images of the digits 0-9 (depicted in Figure 6.4) with Ns total

samples (i.e. we have ξ ∈ {ξ1, ..., ξNs}) and we create 9 batches of samples ({ξb1, ..., ξb9})

which we statically allocate between the learners.

Figure 6.4: Samples of MNIST data set images corresponding to the digits 0,1,4,5, and 9.

For our classification model we use a normalized softmax regression function given

by (6.11) to classify the individual hand-drawn images and determine which digit (label)

the image corresponds to.

mwi(ξ j) :=
ewT

i ξ j

∑10
i=1 ewT

i ξ j
, i = {1, ..., 10} (6.11)

Here, we have that mwi(ξ j) returns the normalized probability (between 0 and 1) that the

sample (image) ξ j belongs to label i (i.e. whether the image is a 1,2,3,etc...). It is often

typical to include a bias parameter bi (such that we would have wT
i ξ j + bi in our model)

but we assume it is zero to simplify the presentation.

To train the model parameters, we use a standard cross entropy loss function with

regularization. The composite cross entropy function is given by (6.12):

f (w, ξ j) := −
10

∑
i=1

y(ξ j, i)ln(mwi(ξ j)) (6.12)

where y(ξ j, i) → {0, 1} is a binary indicator that returns 1 if label i is correct for sample

ξn and 0 otherwise. Thus, the complete loss function evaluated for all of the samples is

145

given by:

φ(w) :=
1

Ns

N

∑
j=1

f (w, ξ j) + β |w|22 (6.13)

where β is a regularization parameter that helps prevent over-fitting.

6.4.2 Implementation

We develop a ComputingGraph in the same fashion as we did for the Benders case study

in Section 6.3. We create the graph with ComputeNodes and assign tasks to the nodes as

described in Computing Graph 6.2. Line 2 defines attributes for the PS such as its current

parameters wps, a set of gradients G, a trigger attribute f lagps, and attributes for gradients

it receives from each learner node{gps,1, ..., gps,N}. Lines 3, 4, and 5 define compute tasks

for the parameter server that handle the update of parameters and receiving computed

gradients. Likewise, Lines 6 through 10 setup attributes and tasks for each learner node.

The learners contain attributes for received parameters wn, calculated gradients gn, a

trigger attribute for calculating said gradients f lagg, as well as Wn which represents a

queue that contains pairs of parameters and local batches to evaluate. Lastly, Line 11

connects the PS parameter attribute to each learner and Line 12 connects learner gradients

to the PS. The tasks described here can be found in Section 6.5.2

We implement Computing Graph 6.2 using PlasmoCompute.jl with Code Snippet 6.2.

Line 2 create the ComputingGraph object, and Lines 4 through 11 setup the parameter

server ps with its attributes, tasks, and triggers. Lines 13 through 25 setup the learner

nodes where we note that we initialize the execution of the graph by scheduling edge

communication on Line 24 for each edge that connects ps to a learner. We note that we

use the machine learning package Flux.jl [65] to retrieve the MNIST data set, setup our

loss function, and evaluate gradients (as shown Code Snippet 6.4 in Section 6.5.2).

146

Computing Graph 6.2 (K-Batch Asynchronous Stochastic Gradient Descent)

1: Parameter Server (ps)
2: Attributes: Aps := (wps, G, f lagps, {gps,1, ..., gps,N}
3: Tasks: T ps := (update_parameters, receive_gradient)
4: update_parameters: runs Task 6.5, triggered by: Updated(f lagps)
5: receive_gradient: runs Task 6.4, triggered by: Received(gps,n), n ∈ {1, ..., N}

6: Learners (n ∈ {1, ..., N})
7: Attributes: An := (wn, gn, f lagn, Wn)
8: Tasks: T n := (calculate_gradient)
9: receive_parameters: runs Task 6.6, triggered by: Received(wn), n ∈ {1, ..., N}

10: calculate_gradient: runs Task 6.7, triggered by: Updated(f lagn)

11: Edges E1 := wps → wn, n ∈ {1, ..., N}, send on: Updated(wps)
12: Edges E2 := gn → gps,n, n ∈ {1, ..., N}, send on: Updated(gn)

Code Snippet 6.2: PlasmoCompute.jl snippet for simulating stochastic gradient descent.

1 #Create a computing graph
2 graph = ComputingGraph()
3
4 N = 3 #number of learners
5 #Add the parameter sever (ps)
6 @computenode(graph,ps)
7 @attributes(ps,w,G,flag,g[1:N])
8 @computetask(ps,update_parameters, compute_time = :walltime,
9 triggered_by=Updated(flag))

10 @computetask(ps,receive_gradient[i = 1:N], compute_time = 0,
11 triggered_by=Received(g[i]))
12
13 @computenode(graph,learners[1:N])
14 for (i,node) in enumerate(learners)
15 #Add subnodes (n = 1:N) to solve sub−problems
16 @attributes(node,w,g,flag)
17 @computetask(node,compute_gradient, compute_time = :walltime,
18 triggered_by=Updated(flag))
19
20 #Connect attributes between master and subnodes
21 edge = @connect(graph,ps[:w] => n[:w], send_on=Updated(ps[:w]), delay = 1)
22 @connect(graph,n[:g] => ps[:g][i], send_on=Updated(n[:g]))
23
24 schedule!(graph, edge, time = 0)
25 end
26 #Execute the computing graph
27 execute!(graph)

6.4.3 Results

Figure 6.5 summarizes the simulation results for the different algorithmic variants. The

top figures (6.5a and 6.5b) show the trace plot and convergence results for the syn-

147

chronous variant. We observe a smooth convergence profile, but the trace plot depicts

considerable idle time due to the communication overhead. The middle figures (6.5c and

6.5d) show the results of the asynchronous variant where we see the parallel efficiency is

vastly improved (the learners and server are always running their computations). How-

ever, we also observe instability with in the convergence profile which suggests the variant

could fail to converge without reliable training data. The K-Asynchronous variant (with

K = 4) is shown at the bottom (Figures 6.5e and 6.5f) which falls between the purely

synchronous and asynchronous variants. We observe a smooth convergence profile akin

to the synchronous variant and almost the same parallel efficiency as the asynchronous

variant.

Figure 6.6 directly compares the convergence and wall-time performance for the three

variants. We see that although the synchronous algorithm demonstrates the fastest pos-

sible convergence with respect to iterations, it takes an order of magnitude more com-

putational time (wall-time) to achieve the same loss value as the asynchronous case. To

achieve a log loss value of 0, the synchronous variant requires almost 2 hours whereas

the asynchronous variant only requires 2 minutes. From a machine learning standpoint,

both algorithm variants can be considered undesirable. The long computation time re-

quired for the synchronous variant makes training large models prohibitive whereas the

instability of purely asynchronous variant could cause issues with convergence. The

K-Asynchronous variant strikes a balance between the synchronous and asynchronous

extremes. The algorithm convergence is almost indistinguishable from the purely syn-

chronous case and the instability has been eliminated.

We note that this study only scratches the surface of what types of SGD simulations

are possible with a ComputingGraph. For instance, it would be straight-forward to imple-

ment dynamic data allocation and adaptive learning rates. It would also be possible to

simulate other SGD variants that use more complex communication topologies such as in

[107].

148

(a) Synchronous Trace (b) Synchronous Convergence

(c) Asynchronous Trace (d) Asynchronous Convergence

(e) K=4 Trace (f) K=4 Convergence

Figure 6.5: Communication patterns and convergence results of different stochastic gra-
dient descent algorithmic variants.

149

Iterations Wall-time

Figure 6.6: Comparison of algorithmic variant performance for stochastic gradient de-
scent.

150

6.5 Appendix: Case Study Models

This Section provides extra model details for the case studies presented in this Chap-

ter. Section 6.5.1 provides the study model used for the Benders case study, as well

as the compute tasks used for its ComputingGraph. This section also includes a sample

PlasmoCompute.jl implementation of a compute task. Section 6.5.2 provides the compute

tasks used for the SGD case study as well as an example PlasmoCompute.jl implementa-

tion.

6.5.1 Benders Case Study Model

The model for the two-stage stochastic resource management optimization problem is:

min
x,z,y ∑

ξ∈Ξ
∑
f∈F

p f (ξ)u f (ξ) (6.14)

s.t. ∑
a∈AB

caxa + ∑
j∈B

hjzj ≤ Budget

vj = γj + zj + ∑
a∈rec(AB ,j)

xa − ∑
a∈snd(AB ,j)

xa j ∈ B

qj(ξ) = vj − ∑
a∈snd(AF ,j)

ya(ξ) j ∈ B

∑
a∈snd(AF , f)

ya(ξ) + u f (ξ) ≥ d f (ξ) f ∈ F ,

where Ξ is a set of realized scenarios, B is a set of bases each containing resources,

F is a set of districts with resource demands, A is a set of arcs connecting bases and

districts, AB ⊆ A is the set of arcs between bases, and AF is the set of arcs between bases

and districts. Parameter p f (ξ) is the probability that scenario ξ realizes at district f and

variable u f (ξ) is the unmet demand at district f after dispatch decisions are made for

scenario ξ. Variable x ∈ R|AB | is a first stage decision to move resources between bases,

z ∈ R|B| is a first stage decision to purchase resources at bases, and variable y ∈ R|AF | is

151

a second stage decision to dispatch resources to districts after realizing district demands.

Parameter γj is the initial amount of resources in base j, vj is the amount of resources

in base j after making transfers, variable qj(ξ) is the amount of resources in each base

after dispatching to districts for scenario ξ, and parameter d f (ξ) is the resource demand

of district f for scenario ξ.

Problem (6.14) is reformulated to conduct Benders decomposition by decomposing it

into a master problem and subproblem for each scenario. The master problem is given

by:

min
x,z,θcut

θcut (6.15)

s.t. ∑
a∈AB

caxa + ∑
j∈B

hjzj ≤ Budget

vj = γj + zj + ∑
a∈rec(AB ,j)

xa − ∑
a∈snd(AB ,j)

xa, j ∈ B

xa ≥ 0, a ∈ A

zj ≥ 0, j ∈ B

vj ≥ 0, j ∈ B

θcut ≥ 0

θcut ≥ c(x), c ∈ C,

where θcut is a variable to enforce cutting planes and C is the set of cutting planes added

to the master problem. The subproblem is a function of the master solution variable ŵ

152

and scenario ξ and is given by (6.16).

Q(v̂, ξ) := min
y ∑

f∈F
p f (ξ)u f (6.16)

s.t. qj = ŵj − ∑
a∈snd(AF ,j)

ya, j ∈ B

∑
a∈snd(AF ,j)

ya + u f ≥ d f (ξ), f ∈ F

qj ≥ 0, j ∈ B

ya ≥ 0, a ∈ AF

u f ≥ 0, f ∈ F .

Compute Tasks

For our Benders setup in Computing Graph 6.1, we denote the master node as m which

contains two tasks described by Task 6.1 and Task 6.2. Each subnode in the graph consists

of a single task described by Task 6.3. Task 6.1 runs the master problem (6.15) and updates

the first stage solution x̂ (which contains all first-stage variables) and checks whether con-

vergence has been satisfied. If not satisfied, it updates the master node scenario attributes

{ξ1, ..., ξN} with the first N values from the scenario set Ξ. Task 6.2 runs when the master

node receives an update to a solution attribute sn. The task checks whether every solu-

tion has returned, and if true, it updates the flag attribute f lag, which indicates that the

master problem is ready to be solved. If not all subproblem solutions have returned, the

task updates the attribute ξn with the next scenario in Ξ. Task 6.3 solves the subproblem

(6.16) given a first stage solution x̂ and a scenario ξ and updates the subnode solution

attribute s.

153

Task 6.1 solve_master (computing graph CG,node m)

1: Get node attribute C: Set of current master problem cuts
2: Get node attribute S: Set of solutions received from sub-problems
3: Get node attribute Ξ: Set of sample scenarios
4: Get node attribute x̂: Master problem solution attribute
5: Get node attributes {ξ1, ..., ξN}: Scenarios to subnodes N
6: Solve (6.15): update attribute x̂ ← solve_master_problem(C)
7: if problem_converged(x̂, S): then
8: Stop Computing Graph G
9: else

10: Start sending new scenarios: update attributes{ξ1, ..., ξN} ← Ξ[1 : N]
11: end if
12: Empty current solutions: set S← {}

Task 6.2 receive_solution(node m, attribute sn)

1: Get node attribute S: Set of solutions received from sub-problems
2: Get node attribute Ξ: Set of sample scenarios
3: Get argument sn: Solution from subnode n
4: Get node attribute ξn, n ∈ N : Subnode n scenario attribute
5: Get node attribute f lag: Flag that master problem is ready to solve
6: push to S← get_objective_value(sn)
7: push to C ← compute_new_cut(sn)
8: if all_scenarios_complete(S) then
9: Master problem is ready: update attribute f lag

10: else
11: Send new scenario to node n : update attribute ξn ← new_scenario(Ξ)
12: end if

Task 6.3 solve_subproblem(node n)

1: Get node attribute x̂: Master solution received on subnode n
2: Get node attribute ξ: Scenario received on subnode n
3: Solve (6.16): update attribute s← solve_subproblem(x̂, ξ)

PlasmoCompute.jl Implementation

Code Snippet 6.3 depicts how to define the master problem task in PlasmoCompute.jl.

One argument is typically needed: a reference to a node to retrieve and update attributes,

but a reference to the ComputingGraph can be provided for access to the graph clock

(or global graph attributes) to terminate the computation. For example, line 3 retrieves

the attribute value for the set of master problem cuts to solve the master problem, and

154

updates the master solution in line 6.

Code Snippet 6.3: Creating the solve_master compute task in PlasmoCompute.jl

1 # function implementing master task.
2 function solve_master(graph::ComputingGraph,node::ComputeNode)
3 C = node[:C]
4 S = node[:S]
5 solution = solve_master_problem(C)
6 node[:solution] = solution
7
8 #Convergence check.
9 lower_bound = objective_value(solution) #compute the lower bound given the master solution

10 upper_bound = compute_upper_bound(S) #compute the upper bound from sub−problem solutions
11 if converged(lower_bound,upper_bound)
12 Stop(graph)
13 end
14 Ξ = node[:Ξ]
15 #Start allocating scenarios. Each scenario update will trigger communication to the subnode.
16 ξ = node[:ξ] #retrieve array of outgoing scenarios
17 for i = 1:N
18 ξ[i] = Ξ[i]
19 end
20 end

6.5.2 Stochastic Gradient Descent Implementation

Here we provide details relating to the SGD case study in Section 6.4.

Compute Tasks

The compute tasks to receive gradients, receive parameters, compute gradients, and up-

date parameters in Section 6.4 are given by Tasks 6.4, 6.5, 6.4, and 6.7. The implemented

algorithm allocates sample batches to the learners up front. Thus we use xin to denote

the batches that belong to learner n. For instance, if we allocated batches 1,2, and 3 to

learner n, we would have ξn := {ξb1, ξb2, ξb3.

Task 6.4 runs on the parameter server (node ps) which uses node data from ps and

stores the received gradient gn in the set of gradients G. If at least K gradients have been

received, the task updates the f lagps which triggers Task 6.5. Task 6.5 uses the current

set of gradients G to update the current parameters wps and evaluates the loss function

to check tolerance to decide whether to terminate the ComputingGraph execution.

Task 6.6 runs on each learner node n ∈ {1, ..., N}. This task queries the attribute wn

155

(the most recently received parameters), and adds the parameters along with the batches

allocated to the learner ξn to the set Wn which contains pairs of batches and parameters

to evaluate gradients with. If the queue Wn was originally empty, the task updates the

parameter f lagn which triggers Task 6.7. Finally, Task 6.7 computes the gradient of the

loss function (6.13) and updates the attribute gn. If there are still batches to evaluate in

the queue Wn, the task updates f lagn which re-triggers the task to evaluates the next

gradient.

Task 6.4 receive_gradient(node ps, attribute gn)

1: Get node attribute G: Set of gradients received from learners
2: Get argument gn: Gradient received from learner n
3: Get node attribute f lagps: Flag that master problem is ready to solve
4: push to G ← value(gn)
5: if K_gradients_received(CG) then
6: Ready to update parameters: update attribute f lagps
7: end if

Task 6.5 update_parameters(graph CG,node ps)

1: Get node attribute G: Set of gradients received from learners
2: Get node attribute wps: Current parameters
3: Update parameters: update attribute wps ← solutionto (6.7)
4: Evaluate loss function (6.13)
5: if within_tolerance(w, Ξ): then
6: Stop CG
7: end if
8: Empty current gradients: set G ← {}

Task 6.6 receive_parameters(learner n)

1: Get node attribute wn: Current received parameter
2: Get node attribute Wn: Queue of batches to evaluate on n
3: push to Wn ← {ξn, wn}: Add new batches to evaluate with latest parameter wn
4: if not_started(n): then
5: Get node attribute f lagn: Flag that learner should compute next gradient
6: update attribute f lagn: Update to trigger Task 6.7
7: end if

156

Task 6.7 compute_gradient(node n)

1: Pop next batch {ξb, w} from queue Wn
2: Compute gradient of loss function (6.13) with {ξb, w}: update attribute gn
3: if not_empty(W): then
4: Get node attribute f lagn: Flag that learner should compute next gradient
5: update attribute f lagn: Update to trigger Task 6.7
6: end if

PlasmoCompute.jl Implementation

Code Snippet 6.4 shows how the compute_gradient task (Task 6.7) is implemented in

PlasmoCompute.jl. Line 1 imports the Flux.jl machine learning package and Line 4

pops the next batch-parameter pair from the queue node[:W]. Lines 8 through 13 setup

the loss function, Line 16 compute the gradient over the batch, Line 22 updates the

node[:gradient] attribute, and Lines 25 through 27 update the node[:flag] attribute

if there are still batches to evaluate in node[:W] which re-triggers the task.

Code Snippet 6.4: Creating compute_gradient task for SGD case study

1 using Flux
2 function compute_gradient(node::ComputeNode)
3 #Get current parameter values and data
4 task_data = popfirst!(node[:W])
5 W,b,X,Y = task_data
6
7 #Create our model to train.
8 W = param(W)
9 b = param(b)

10 layer(x) = W*x .+ b
11 m = Chain(layer,softmax)
12 lambda = 0.01
13 loss(x, y) = crossentropy(m(x), y) + lambda*norm(W)^2
14
15 #Calculate average gradient
16 gradients = Tracker.gradient(() -> loss(X, Y), params(W, b))
17
18 #Collect the gradient and the parameters used to calculate it
19 grad_result = [gradients,W,b]
20
21 #update gradient_result attribute
22 node[:gradient] = grad_result
23
24 #Update attribute to evaluate next batch in the task queue
25 if !isempty(node[:W])
26 trigger!(node[:flag])
27 end
28 end

157

Chapter 7

C O N C L U S I O N S A N D F U T U R E D I R E C T I O N S

We conclude this dissertation by highlighting the key contributions and discuss some

new directions that build on the presented research.

7.1 Contributions

The primary contributions of this dissertation stem from newly presented modeling ab-

stractions and their corresponding software implementations to solve challenging prob-

lems pertaining to cyber-physical systems.

Modeling and Decomposition with OptiGraphs

In Chapter 2 we presented the OptiGraph, a graph-based modeling abstraction that pro-

vides flexibility to systematically model optimization problems. A key benefit we showed

is that the OptiGraph exploits modularity concepts to build up hierarchical optimization

models and performs diverse data management tasks. We showed how the OptiGraph

can be used to model challenging estimation problems and facilitates diverse modeling

tasks such as warm-starting and model reduction.

In Chapter 3, we showed how the OptiGraph abstraction facilitates automatic decompo-

sition strategies. Moreover, we showed how the abstraction naturally facilitates decompo-

158

sition at both the linear algebra and problem levels and can be used to create interfaces

to new decomposition solvers and develop new algorithms.

Fundamentally, the OptiGraph is a em new modeling paradigm to create optimization

problems. By expressing optimization problems with OptiGraphs, it opens up possibili-

ties to create new solvers and to tackle challenging problems by exploiting decomposition.

Cyber Simulation with ComputingGraphs

In Chapter 5 we introduced the ComputingGraph, a new abstraction to simulate the real-

time computing aspects that arise in cyber systems. The ComputingGraph generalizes com-

puting concepts and works at a high-level of abstraction to capture asychronous timing

aspects within complex communication topologies. We showed how the ComputingGraph

can be used to simulate the real-time behavior in a cooperative control system and explore

the effects of communication and controller failures.

Chapter 6 further expanded on the simulation aspects afforded by he ComputingGraph

and showed how it can simulate distributed algorithms on heterogeneous architectures.

Specifically, we showed how the ComputingGraph can be used to simulate algorithm scal-

ing for distributed Benders decomposition and how it can benchmark different variants

of stochastic gradient descent to train machine learning models.

In a similar spirit to the OptiGraph, the ComputingGraph exploits modular develop-

ment concepts to develop algorithms that target distributed computing architectures. The

abstraction facilitates new algorithmic advances and offers a new paradigm to analyze

and develop algorithms that target distributed computing systems.

Software: Plasmo.jl and PlasmoCompute.jl

A major contribution of this dissertation is the presentation of new software platforms to

model and simulate cyber-physical systems. Developing such software is key to utilizing

new abstractions and approaching these problems in a scalable way.

Throughout Chapters 2,3, and 4 we showcased Plasmo.jl, a Julia-based package that

159

implements the OptiGraph. Plasmo.jl uses expressive syntax to model hierarchically

optimization problems and to perform automatic decomposition. The package enables

the use of different graph analysis and visualization tools and provides interfaces to use

a broad range graph partitioning tools and decomposition solvers.

In Chapters 5 and 6 we demonstrated the ComputingGraph implementation in PlasmoCompute.jl.

We showed how PlasmoCompute.jl uses concise statements to model and simulate real-

time cyber systems and provides a powerful framework to study distributed control sys-

tems and develop distributed algorithms.

7.2 Future Research Directions

There are broad research opportunities that stem from the ideas presented in this disser-

tation.

Exploiting Graph Properties for Decomposition

Chapter 3 demonstrated how to partition OptiGraphs using powerful graph partitioning

tools such as Metis and KaHyPar. Exploiting such graph partitioning tools creates new

possibilities for using decomposition-based solvers, but it is limited to expressing prob-

lem characteristics strictly in the form of edge weights and node sizes. The OptiGraph

framework motivates the development of more customized graph partitioning algorithms

that work directly with optimization problem attributes (such as accounting for integer

variables). There is also considerable interest in exploiting descriptive graph properties

such as community structures and spanning trees within the partitioning framework. The

current OptiGraph framework also motivates the development of partitioning algorithms

that calculate overlap directly for overlapping domain decomposition algorithms as op-

posed to performing subgraph expansion.

Modeling Extensions and Algorithm Development

A key obstacle to the adoption of new state-of-the-art parallel optimization solvers is

the lack of a coherent interfaces to use them. This dissertation showed how Plasmo.jl

160

interfaces to parallel solvers such as PIPS-NLP and facilitates distributed algorithm devel-

opment with an overlapping Schwarz solver. Consequently, Plasmo.jl presents oppor-

tunities to utilize new solvers such as DSP [77] a dual-decomposition solver for stochastic

optimization, and SNGO [24], a Julia-based global solver for nonlinear stochastic programs.

It also motivates the adoption of new solvers that use advanced Schur decomposition

strategies to solve massive nonlinear problems [108]. In this regard, the OptiGraph could

be a natural interface to use solvers such as BELTISTOS [74] which exploits specialized

time decomposition structures that arise in Schur decomposition.

Another key obstacle in parallel optimization is the lack of parallel modeling capabil-

ities. Parallel modeling becomes important in instances when the optimization model

itself is too large to fit in memory, such as with stochastic programs with many scenarios.

Scenario-based optimization problems can be modeled in parallel using StructJuMP and

MPI, but more complex structures (such as those with many linking constraints) are more

challenging to implement in a parallel modeling framework. In this context, the Parallel

Structured Model Generator (PSMG) [55] is one of the only frameworks that performs par-

allel model generation which works with structured conveying modeling language (SML)

[31]. PSMG focuses on efficient distributed memory design to achieve parallel generation,

but it requires solvers to perform subproblem distribution and load balancing based on

a well-defined model structure. Parallel modeling extensions in Plasmo.jl would facili-

tate modeling, partitioning, and parallel generation tasks in a more systematic interactive

framework using the OptiGraph.

Simulating High Performance Computing Architectures

There has been considerable research towards designing energy efficient algorithms [6] that

execute on large-scale data and computing centers. Such research seeks to reduce the

considerable electricity costs of large-scale computing centers (which far exceed the costs

of computing hardware). Simulating the energy requirements of an algorithm however,

requires a highly granular representation of the underlying computing architecture. By

far, the most popular framework to simulate HPC systems is SimGrid [27] which is a

161

simulation toolkit to study algorithm scheduling for distributed computing applications.

SimGrid has developed considerably over the last 20 years, but it can be considered fairly

low-level which is restrictive when experimenting with new algorithmic ideas such as

simulating power consumption.

The development of energy efficient algorithms can greatly benefit from new comput-

ing abstractions that work at a higher level such as the ComputingGraph. In this regard,

there is a need to develop a hierarchical ComputingGraph in a similar spirit to the hier-

archical OptiGraph. A hierarchical representation of the ComputingGraph could naturally

capture heterogeneous architectures. For instance, a subgraph within a ComputingGraph

could represent the elements of a graphical processing unit (GPU) which in turn could

connect to other computing elements at a higher level of the graph. Such advances mo-

tivate further development of PlasmoCompute.jl to capture more specific HPC elements

such as shared memory systems and more detailed communication effects such as mem-

ory and network bandwidth.

Swarm-Based Systems and Co-Simulation

Lastly, there are interesting opportunities to extend ComputingGraph capabilities to tackle

the simulation of swarm-based systems [83, 115]. Such systems can contain thousands

of devices that exhibit complex communication patterns which drive their underlying

physical behavior. Consequently, the flexible modeling and simulation of swarm-based

systems can open up new interesting research directions in cyber-physical systems. For

instance, swarm-based modeling could allow for the simulation of sophisticated hierar-

chical control architectures that involve combinations of centralized/decentralized sub-

systems [122]. Swarm-based modeling could also facilitate the high-fidelity simulation of

autonomous vehicles [117] which requires capturing both physical and cyber behaviors

among many devices in a coherent way. Moreover, devices could also represent biolog-

ical agents which could allow for the simulation of interactions within large biological

communities [129].

In a sense, swarm-based systems can be described as highly distributed cyber-physical

162

systems, which in turn makes simulating their performance challenging. One possible ap-

proach to simulate swarm-based systems is to decompose the underlying system within

a co-simulation [50] framework, which could perform the simulation in a distributed man-

ner. Co-simulation offers promising tools to model and simulate swarm-based systems

in a flexible way (e.g. the dynamics of each device can be simulated independently), but

establishing a general co-simulation framework that can capture swarm-based behaviors

has proven to be challenging. Such a framework needs to capture complex communica-

tion among the participating devices and needs to facilitate the synchronization between

continuous and discrete dynamic behaviors that arise in swarm-based systems. Further

development of the ComputingGraph could lead to a more generalizable co-simulation

abstraction that enables the scalable simulation of complex swarm-based systems.

163

Appendix A

N AT U R A L G A S N E T W O R K M O D E L S

This Appendix is organized as follows. Section A.1 summarizes the model nomenclature

to describe optimization problems over natural gas networks. Sections A.2 and A.3 de-

scribe model equations and implementations of junctions and compressors, and Section

A.4 details the equations and implementation for different pipeline model formulations.

Lastly, A.5 describes the network connections that couple the presented models.

A.1 Model Nomenclature

Here we introduce model nomenclature used throughout this dissertation to describe

natural gas networks.

A.1.1 Sets

The relevant sets are described in Table A.1. J is the set of junctions in the gas network,

D is the set of demands (gas withdrawals), and S is the set of supplies (gas injections).

The set of demands and supplies that belong to a specific junction is denoted Dj and Sj

respectively. The junctions are connected by links denoted L throughout the network.

The set of links that denote pipelines is given by Lp and the set of links that denote

compressors is denoted as Lc. Lastly, the set of spatial discretization points for each link

164

is given by X , and set of temporal discretization points is given by T . It is possible to

define separate spatial discretization sets for each pipeline (i.e. {X`, ` ∈ Lp}), but this

dissertation simply applies the single set X to each pipeline link.

Table A.1: Sets

Set Description Elements
J Set of gas network nodes j ∈ J
S Set of gas supplies s ∈ S
D Set of gas demands d ∈ D
Dj Set of gas demands on junction j d ∈ Dj
Sj Set of gas supplies on junction j s ∈ Sj
L Set of gas network pipelines ` ∈ L
Lp Set of network pipeline links Lp ⊆ L
Lc Set of network compressor links Lc ⊆ L
X Set of spatial discretization points k ∈ X
T Set of temporal discretization points t ∈ T

A.1.2 Parameters

Assuming ideal gas behavior, the square of the speed of sound in the gas c2, the friction

factor for each pipeline link λ`, the isentropic expansion coefficient γ, and the compres-

sion coefficient β can be computed from the following

c2 =
γzRTgas

M

λ` =

(
2log10

(
3.7D`

ε`

))−2

, ` ∈ Lp

γ =
cp

cv

β =
γ− 1

γ

where z is the compressibility factor of the gas, R is the universal gas constant, M is

the gas molar mass, Tgas is the gas temperature, ε` is the pipe rugosity for each pipeline

link, cv is the gas heat capacity at constant volume, and cp is the gas heat capacity at

165

constant pressure. We also have the following auxiliary constants which we use to define

the scaled equations in A.13 given by the following

c1,` =
c2

A`

αp

α f
c2,` = A`

α f

αp
c3,` =

8λ`c2A`

π2D5
`

αp

α f
c4 =

1
α f

cpTgas

where A` is pipeline cross sectional area, αp and α f are scaling coefficients, and D` is

pipeline diameter. Table A.2 provides an overview of the parameters and units defined

for gas network models.

Table A.2: Parameters and units

Parameter Description Units
∆x,∆t Space and time discretization interval length m, s
c Speed of sound in gas m/s
cp, cv Gas heat capacity for constant pressure and volume 2.34kJ/kgK, 1.85kJ/kgK
γ, z Isentropic expansion coefficient and compressibility −
R Universal gas constant 8314J/kmolK
M Gas molar mass 18kg/kmol
ρn Gas density at normal conditions 0.72kg/m3

T Gas temperature K
L, D, A Pipeline length, diameter, and cross sectional area m, m, m2

λ, ε Friction factor and pipe rugosity −, m
α f Scaling factor for flow 3600

1x104ρn
[=] SCMx104/h

kg/s
αp Scaling factor for pressure 1x10−5bar/Pa
c1 Auxiliary constant bar/s

SCMx104/h m
c2 Auxiliary constant SCMx104/h−s

bar/s
c3 Auxiliary constant bar

SCMx104−s/h m
c4 Auxiliary constant kW

SCMx104/h

A.1.3 Variables

All units pertaining to natural gas networks in this dissertation are given in SI units unless

otherwise noted. Table A.3 defines the variables and units used throughout the presented

gas network models.

166

Table A.3: Variables and units

Variable Description Units
t Time s
x Spatial dimension m
ρ Density kg/m3

v Velocity m/s
V Volumetric flow rate m3/s
p Pressure bar
f Mass flow rate kg/s
f in
` Pipe inlet flow kg/s

f out
` Pipe outlet flow kg/s

fs Supply flow kg/s
fd Demand flow kg/s
θj Junction Pressure bar
∆θ Boost Pressure bar
η Boost Ratio −
P Compressor Power kW
m Line-pack kg

A.2 Junctions

Gas junctions are primarily what connect pipelines and equipment (i.e. compressors) in a

natural gas network. In the context of day to day operations, operators seek to maintain

junction pressures within prescribed limits.

A.2.1 Model Equations

The gas junction model is given in discrete form and is described by (A.1), where θj,t

is the pressure at junction j and time interval t. θ j is the lower pressure bound for the

junction, θ j is the upper pressure bound, f target
j,d,t is the target gas demand flow for demand

d on junction j at time t, and f j,s is the available gas generation from supply s on junction

j.

167

θ j ≤ θj,t ≤ θ j, j ∈ J , t ∈ T (A.1a)

0 ≤ f j,d,t ≤ f target
j,d,t , d ∈ Dj, j ∈ J , t ∈ T (A.1b)

0 ≤ fs,t ≤ f j,s, s ∈ Sj, j ∈ J , t ∈ T (A.1c)

For some optimization models it is useful to enforce pressure ramping limits on sup-

ply junctions.

−∆θs ≤ θj(s),t+1 − θj(s),t ≤ ∆θs, s ∈ S , t ∈ T (A.2)

where ∆θs is a pressure ramping limit on supply s and j(s) denotes the junction that

corresponds to supply s.

A.2.2 Junction OptiGraph

Code Snippet A.1 shows how to create the junction OptiGraph. We define the function

create_junction_model on Line 2 which accepts junction specific data and the number

of time periods nt. We create the OptiGraph (graph) on Lines 3 through 26 where we add

an OptiNode for each time interval and then create the variables and constraints for each

node in a loop. We also use the JuMP specific @expression macro to refer to expressions

for total gas supplied, total gas delivered, and total cost for convenience. The junction

model is returned from the function on Line 29.

168

Code Snippet A.1: Creating a gas junction model-graph

1 #Define function to create junction model−graph
2 function create_junction_model(data,nt)
3 graph = OptiGraph()
4
5 #Add model−node for each time interval
6 @node(graph,nodes[1:nt])
7
8 #query number of supply and demands on the junction
9 n_demands = length(data[:demand_values])

10 n_supplies = length(data[:supplies])
11
12 #Loop and create variables, constraints, and objective for each model−node
13 for (i,node) in enumerate(nodes)
14 @variable(node, data[:pmin] <= pressure <= data[:pmax], start = 60)
15 @variable(node, 0 <= fgen[1:n_supplies] <= 200, start = 10)
16 @variable(node, fdeliver[1:n_demands] >= 0)
17 @variable(node, fdemand[1:n_demands] >= 0)
18
19 @constraint(node,[d = 1:n_demands],fdeliver[d] <= fdemand[d])
20
21 @expression(node, total_supplied, sum(fgen[s] for s = 1:n_supplies))
22 @expression(node, total_delivered,sum(fdeliver[d] for d = 1:n_demands))
23 @expression(node, total_delivercost,sum(1000*fdeliver[d] for d = 1:n_demands))
24
25 @objective(node,Min,total_delivercost)
26 end
27
28 #Return the junction OptiGraph
29 return graph
30 end

A.3 Compressors

Compressors institute the primary control decisions in a natural gas network. In day to

day operations, operators manipulate compressors to boost natural gas pressure to make

deliveries and manage total system line-pack.

A.3.1 Model Equations

Isentropic Compressor

We use an ideal isentropic compressor model given by (A.3). (A.3a) describes the com-

pressor boost where η`,t,pin
`,t, and pout

`,t are the compression ratio, suction pressure, and

discharge pressure at time t, and (A.3b) denotes the ideal power requirement where P`,t

is power at time t. (A.3c) defines mass flow rate through the compressor and uses the

169

dummy variables f in
`,t and f out

`,t to be consistent with the pipeline model in Section A.4.

pout
`,t = η`pin

`,t, ` ∈ Lc, t ∈ T (A.3a)

P`,t = cp · T · f`,t

(pout
`,t

pin
`,t

) γ−1
γ

− 1

 , ` ∈ Lc, t ∈ T (A.3b)

f`,t = f in
`,t = f out

`,t , ` ∈ Lc, t ∈ T (A.3c)

Discrete Compressor Decisions

For some problems it is sensible to use a more simplified compressor description that

removes the nonlinear terms. For instance, the mixed-integer linear formulation in Section

4.6 uses (A.4) where (A.4a) describes linear compressor boost (as opposed to the more

realistic compression ratio) and (A.4b) is the same as in (A.3).

pout
`,t = pin

`,t + ∆p`,t, ` ∈ Lc, t ∈ T (A.4a)

f`,t = f`,t,in = f`,t,out, ` ∈ Lc, t ∈ T (A.4b)

We can enforce discrete compressor decisions using the formulation in (A.5). Here we

have introduced the binary variables {y`,t}`∈Lc,t∈T which denote whether compressor `

is on or off at time period t. Equations (A.5b) and (A.5c) force boost pressures to be zero

when the compressor is off, and operating between boost limits ∆pL
` and ∆pU

` otherwise.

y`,t ∈ {0, 1} ` ∈ Lc, t ∈ T (A.5a)

∆p`,t ≤ y`,t∆pU
` , ` ∈ Lc, t ∈ T (A.5b)

∆p`,t ≥ y`,t∆pL
` , ` ∈ Lc, t ∈ T (A.5c)

It is also useful to specify compressor ramping limits for the linear case (such limits

are helpful in models that do not adequately capture dynamic behavior). Compressor

discharge pressure ramp limits are given by (A.6) where ∆pout
`,t represents the ramp limit

170

on the discharge pressure. It is also possible to set ramping limits on suction, boost

pressures, or compression ratios which may depend on specific compressor operating

modes.

−∆pout
`,t ≤ pout

`,t+1 − pout
`,t ≤ ∆pout

`,t , ` ∈ Lc, t ∈ T (A.6)

Equation (A.7) represents conditional ramping, such that discharge pressure ramp limits

are only active if the compressor is on.

y`,t → (A.6), ` ∈ Lc, t ∈ T (A.7)

Lastly, Equation (A.8) represents minimum up and down times which helps to avoid

solutions where compressors are turns on and off in quick succession.

t+UT−1

∑
i=t

y`,i ≥ UT(y`,t − y`,t−1), ` ∈ Lc, t ∈ TUT (A.8a)

t+DT−1

∑
i=t

w`,i ≥ DT(w`,t − w`,t−1), ` ∈ Lc, t ∈ TDT (A.8b)

Here, UT is the maximum up time and DT is the maximum down time in terms of

number of time intervals. We also define TUT = {1, ..., tN−UT + 1} and TDT = {1, ..., tN−

DT + 1} for convenience where tN is the final time interval in T .

A.3.2 Compressor OptiGraph

The compressor OptiGraph construction is straightforward as shown in Code Snippet A.2

for the isentropic model (A.3). Line 1 defines a function to create a compressor OptiGraph

given data and nt. Lines 3 through 16 create the compressor OptiGraph by creating nodes,

variables, and constraints. Lines 19 and 20 define expressions to refer to flow in and out

of the compressor, and Line 23 returns the created OptiGraph.

171

Code Snippet A.2: Creating a compressor OptiGraph

1 function create_compressor_model(data,nt)
2 #Create compressor model−graph
3 graph = OptiGraph()
4 @node(graph,nodes[1:nt])
5
6 #Setup variables, constraints, and objective
7 for node in nodes
8 @variable(node, 1 <= psuction <= 100)
9 @variable(node, 1 <= pdischarge <= 100)

10 @variable(node, 0 <= power <= 1000)
11 @variable(node, flow >= 0)
12 @variable(node, 1 <= eta <= 2.5)
13 @NLnodeconstraint(node, pdischarge == eta*psuction)
14 @NLnodeconstraint(node, power == c4*flow*((pdischarge/psuction)^om-1))
15 @objective(node, Min, cost*power*(dt/3600.0))
16 end
17
18 #Create references for flow in and out
19 @expression(graph,fin[t=1:nt],nodes[t][:flow])
20 @expression(graph,fout[t=1:nt],nodes[t][:flow])
21
22 #Return compressor OptiGraph
23 return graph
24 end

A.4 Pipelines

This section presents pipeline equations to describe the dynamic transport throughout gas

networks. For all of the pipeline models we assume isothermal flow through horizontal

pipeline segments with constant pipe friction and no flow reversals.

A.4.1 Model Equations

Full Isothermal Euler

We first present what are called the Euler equations to describe mass and momentum

conservation in gas pipelines. The original conservation equations are presented in [97]

and take the form given in (A.9)

∂ρ`(t, x)
∂t

+
∂(ρ`(t, x)v`(t, x))

∂x
= 0 (A.9a)

∂(ρ`(t, x)v`(t, x))
∂t

+
∂(ρ`(t, x)v`(t, x)2 + p`(t, x))

∂x
= − λ`

2D
ρ`(t, x)v`(t, x) |v`(t, x)| , (A.9b)

172

where notation and units are defined in Tables A.2 and A.3. Here, the link diameter

is D` and the friction coefficient is λ`. The states of each link vary in space and time

and are given by the gas density ρ`(t, x), gas velocity v`(t, x), and gas pressure p`(t, x).

From these fundamental quantities we can derive expressions for transversal area A`,

volumetric flow q`(t, x), and mass flow rate f`(t, x) given by (A.10).

A` =
1
4

πD2
` (A.10a)

q`(t, x) = v`(t, x)A` (A.10b)

f`(t, x) = ρ`(t, x)v`(t, x)A`. (A.10c)

For an ideal gas, the density and pressure are related by the gas speed of sound c (A.11):

p`(t, x)
ρ`(t, x)

= c2 (A.11)

Typically, gas pipeline operators monitor pressure and mass flow rate since they can

be directly measured. To represent the transport equations in terms of these states, we

use relations (A.10) and (A.11) to cast (A.9) into (A.12). The final form of the transport

equations is given by (A.12)

∂p`(t, x)
∂t

+
c2

A`

∂ f`(t, x)
∂x

= 0, ` ∈ Lp (A.12a)

∂ f`(t, x)
∂t

+
2c2

A`

f`(t, x)
p`(t, x)

∂ f`(t, x)
∂x

− c2

A`

f`(t, x)2

p`(t, x)2
∂p`(t, x)

∂x
+ A`

∂p`(t, x)
∂x

= −8c2λ`A`

π2D5
`

f`(t, x)
p`(t, x)

| f`(t, x)| , ` ∈ Lp

(A.12b)

We can improve the numerical behavior of formulation (A.12) by scaling pressure and

flow variables. We use the constants c1,`, c2,` and c3,` defined in Section A.1 and cast the

173

Euler equations into the scaled form given by (A.13).

∂p`(t, x)
∂t

= −c1,`
∂ f`(t, x)

∂x
, ` ∈ L (A.13a)

∂ f`(t, x)
∂t

= −2 · c1,`
f`(t, x)
p`(t, x)

∂ f`(t, x)
∂x

+ c1,`
f`(t, x)2

p`(t, x)2
∂p`(t, x)

∂x

− c2,`
∂p`(t, x)

∂x
− c3,`

f`(t, x)
p`(t, x)

| f`(t, x)| , ` ∈ Lp. (A.13b)

The transport equations are highly nonlinear and computationally challenging to solve,

particularly when large networks and long time horizons are considered. Here we present

different approximate models proposed in literature [62] which are used in Section 2.4.

Approximate Euler

The euler equations can be approximated by dropping the the momentum term ∂x(ρv2)

which has a negligible effect on dynamics, and the states ρ and v can be converted into

mass flow rate f and pressure p to produce the formulation in (A.14).

∂p`(t, x)
∂t

+ c1,`
∂ f`(t, x)

∂x
= 0, ` ∈ Lp (A.14a)

∂ f`(t, x)
∂t

+ c2,`
∂p`(t, x)

∂x
+ c3,`

f`(t, x)
p`(t, x)

| f`(t, x)| = 0. ` ∈ Lp (A.14b)

This is a coupled set of wave equations for flow and pressure with a nonlinear source

term. This system is easier to solve than the Euler equations but it is still a challenging

hyperbolic equation. The flow and pressure variables can also be used to define boundary

conditions for the link flows. The flow boundaries are given by (A.15)

f`(t, L`) = f out
` (t), ` ∈ Lp (A.15a)

f`(t, 0) = f in
` (t), ` ∈ Lp. (A.15b)

(A.15c)

174

Pressure boundaries are defined by the following conditions:

p`(t, L`) = pout
` (t) ` ∈ Lp (A.16)

p`(t, 0) = pin
` (t) ` ∈ Lp (A.17)

Each pipeline may also include a steady-state initial condition:

c1,`
∂ f`(0, x)

∂x
= 0 ` ∈ Lp (A.18a)

c2,`
∂p`(0, x)

∂x
+ c3,`

f`(t, x)
p`(t, x)

| f`(t, x)| = 0 ` ∈ Lp, (A.18b)

and an operational constraint to return its line-pack back to its starting inventory:

m`(T) ≥ m`(0) ` ∈ Lp. (A.19)

Here, the amount of line-pack in any pipeline segment m` can be computed as:

m`(t) =
A`

c2

∫ L`

0
p`(t, x)dx. (A.20)

For implementation, these PDEs are discretized in space-time by using finite differences

to produce (A.21)

p`,t+1,k − p`,t,k

∆t
= −c1,`

f`,t+1,k+1 − f`,t+1,k

∆x`
, ` ∈ Lp, t ∈ T , k ∈ X`, (A.21a)

f`,t+1,k − f`,t,k

∆t
= −c2,`

p`,t+1,k+1 − p`,t+1,k

∆x`
− c3,`

f`,t+1,k | f`,t+1,k|
p`,t+1,k

, (A.21b)

` ∈ Lp, t ∈ T , k ∈ X`

f`,t,Nx = f out
`,t , ` ∈ Lp, t ∈ T (A.21c)

f`,t,1 = f in
`,t, ` ∈ Lp, t ∈ T (A.21d)

p`,t,Nx = pout
`,t , ` ∈ Lp, t ∈ T (A.21e)

p`,t,1 = pin
`,t, ` ∈ Lp, t ∈ T (A.21f)

175

We can also express a steady-state initial condition according to (A.22). Such a condition

is typical in natural gas optimal control problems since operators typically seek to return

the system to steady-state every day.

f`,1,k+1 − f`,1,k

∆x
= 0, ` ∈ Lp, k ∈ X` (A.22a)

c2,`
p`,1,k − p`,1,k

∆x
+ c3

f`,1,k | f`,1,k|
p`,1,k

= 0, ` ∈ Lp, k ∈ X` (A.22b)

The line-pack constraint can also be approximated in discrete form by (A.23).

m`,t =
A`

c2

Nx

∑
k=1

p`,t,k∆x`, ` ∈ Lp, t ∈ T (A.23a)

m`,Nt ≥ m`,1, ` ∈ Lp. (A.23b)

Quasi-Static Approximation

The quasi-static approximation [61] can also be derived from the isothermal Euler equa-

tions. We obtain this form by neglecting the momentum ∂x(ρv2) term and the partial

derivative ∂t(ρv). This gives the following formulation given by (A.24)

∂p`(t, x)
∂t

+ c1,`
∂ f`(t, x)

∂x
= 0 (A.24a)

c2,`
∂p`(t, x)

∂x
+ c3,`

f`(t, x)
p`(t, x)

| f`(t, x)| = 0 (A.24b)

This form of the Euler equations is mostly used as an approximation to capture long-term

(planning) behavior and can be used as a proxy to capture situations under which the gas

network is under "calm" conditions.

Steady-State Model

The steady-state version of the Euler conditions is given by (A.25). Steady-state models

do not capture important dynamic behaviors in natural gas pipelines, and they cannot be

used to manipulate line-pack, but they are often useful long term for planning problems

176

or for incorporating into time-coupled steady-state formulations.

c1,`
∂ f`(t, x)

∂x
= 0 (A.25a)

c2,`
∂p`(t, x)

∂x
+ c3,`

f`(t, x)
p`(t, x)

| f`(t, x)| = 0 (A.25b)

The steady-state equations can be presented in discrete form with (A.26).

c1,`
f`,t,k+1 − f`,t,k

∆x`
= 0, ` ∈ Lp, t ∈ T , k ∈ X ` (A.26a)

c2,`
p`,t,k+1 − p`,t,k

∆x`
+ c3,`

f`,t,k

p`,t,k
| f`,t,k| = 0, ` ∈ Lp, t ∈ T , k ∈ X ` (A.26b)

Linearized Pipeline Model

Using a linearized representation of pipeline dynamics introduces considerable model

simplifications, but such assumptions can be incorporated into discrete decision formula-

tions which can be used to pose computationally tractable mixed-integer linear programs.

A linearized model based on the steady state model (A.26) is given by (A.27).

c1,`
f`,t,k+1 − f`,t,k

∆x`
= 0, ` ∈ Lp, t ∈ T , k ∈ X ` (A.27a)

c2,`
p`,t,k+1 − p`,t,k

∆x`
+ c3,`R`,t,k = 0, ` ∈ Lp, t ∈ T , k ∈ X ` (A.27b)

R`,t,k =

(
∇ f ∗`,t,k ,p∗`,t,k

f 2
`,t,k

p2
`,t,k

)T
 f`,t,k − f ∗`,t,k

p`,t,k − p∗`,t,k

 , ` ∈ Lp, t ∈ T , k ∈ X` (A.27c)

In this formulation, R`,t,k captures the linearized friction factor term in the momentum

equation (A.27b). In this formulation, we linearize around the point { f ∗`,t,k, p∗`,t,k}`∈Lp,t∈T ,k∈X`

which can be taken from the solution of a higher fidelity physical model.

177

A.4.2 Approximate Euler Pipeline OptiGraph

We express the pipeline model for Approximate Euler case as an OptiGraph with OptiNodes

distributed on a space-time grid. Specifically, the nodes of each pipeline OptiGraph

form a Nt × Nx grid wherein pressure and flow variables are assigned to each node.

Flow dynamics within pipelines are then expressed with linking constraints that describe

the discretized PDE equations for mass and momentum using finite differences. Code

Snippet A.3 constructs the pipeline OptiGraph. Line 1 defines a pipeline function that

takes pipeline specific data, the number of time points to use (nt), and the number of

space points (nx). Lines 3 through 25 create the pipeline OptiGraph using data and adds

OptiNodes in the form a space-time grid on Line 10. Lines 28 through 42 define linking

constraints that represent the discretized pipeline dynamic equations.

178

Code Snippet A.3: Creating a pipeline OptiGraph

1 function create_pipeline_model(data,nt,nx)
2 #Unpack data
3 c1 = data[:c1]; c2 = data[:c2]; c3 = data[:c3]
4 dx = data[:pipe_length] / (nx - 1)
5
6 #Create pipeline model−graph
7 graph = OptiGraph()
8
9 #Create grid of optinodes

10 @node(mg,grid[1:nt,1:nx])
11
12 #Create variables on each node in the grid
13 for node in grid
14 @variable(node, 1 <= px <= 100)
15 @variable(node, 0 <= fx <= 100)
16 @variable(node,slack >= 0)
17 @NLnodeconstraint(node, slack*px - c3*fx*fx == 0)
18 end
19
20 #Setup dummy variable references
21 @expression(mg,fin[t=1:nt],grid[:,1][t][:fx])
22 @expression(mg,fout[t=1:nt],grid[:,end][t][:fx])
23 @expression(mg,pin[t=1:nt],grid[:,1][t][:px])
24 @expression(mg,pout[t=1:nt],grid[:,end][t][:px])
25 @expression(mg,linepack[t=1:nt],c2/A*sum(grid[t,x][:px]*dx for x in 1:nx-1))
26
27 #Finite differencing. Backward difference in time from t, Forward difference in space from x.
28 @linkconstraint(mg, press[t=2:nt,x=1:nx-1],
29 (grid[t,x][:px]-grid[t-1,x][:px])/dt +
30 c1*(grid[t,x+1][:fx] - grid[t,x][:fx])/dx == 0)
31
32 @linkconstraint(mg, flow[t=2:nt,x=1:nx-1],(grid[t,x][:fx] -
33 grid[t-1,x][:fx])/dt == -c2*(grid[t,x+1][:px] -
34 grid[t,x][:px])/dx - grid[t,x][:slack])
35
36 #Initial steady state
37 @linkconstraint(mg,ssflow[x=1:nx-1],grid[1,x+1][:fx] - grid[1,x][:fx] == 0)
38 @linkconstraint(mg,sspress[x = 1:nx-1], -c2*(grid[1,x+1][:px] -
39 grid[1,x][:px])/dx - grid[1,x][:slack] == 0)
40
41 #Refill pipeline linepack
42 @linkconstraint(mg,linepack[end] >= linepack[1])
43 return graph
44 end

A.5 Network Connections

The network connections define the topology that connect junctions and equipment links

(i.e. pipelines and compressors). Specifically, the network equations express mass conser-

vation around each junction and boundary conditions for pipelines and compressors.

179

A.5.1 Model Equations

Mass conservation around each junction j is given by (A.28a)

∑
`∈Lrec(j)

f out
`,t − ∑

`∈Lsnd(j)
f in
`,t + ∑

s∈Sj

f j,s,t − ∑
d∈Dj

f j,d,t = 0, j ∈ J (A.28a)

where we define Lrec(j) and Lsnd(j) as the set of receiving and sending links to each

junction j respectively. Equations (A.29a) and (A.29b) define pipeline and compressor

link boundary conditions.

pin
`,t = θrec(`),t, ` ∈ L, t ∈ T (A.29a)

pout
`,t = θsnd(`),t, ` ∈ L, t ∈ T (A.29b)

Here, θrec(`),t and θsnd(`),t are the receiving and sending junction pressure for each link

` ∈ L at time t.

A.5.2 Network OptiGraph

The network structure can be induced with an OptiGraph by using a higher level graph to

capture (A.28) and (A.29). Code Snippet A.4 formulates the complete gas network optimal

control model. We create the OptiGraph gas_network on Line 8 and add the component

OptiGraphs on Lines 13 through 32. Once we have the multi-level subgraph structure we

create linkconstraints at the gas_network level on Lines 35 through 60 which impose the

junction conservation and boundary conditions for the network links (the pipelines and

compressors).

180

Code Snippet A.4: Formulating the complete gas network OptiGraph

1 function create_gas_network(net_data)
2 pipe_data = net_data[:pipeline_data]
3 comp_data = net_data[:comp_data]
4 junc_data = net_data[:junc_data]
5 pipe_map = net_data[:pipe_map]; comp_map = net_data[:comp_map]
6
7 #Create OptiGraph for entire gas network
8 network = OptiGraph()
9 network[:pipelines] = [];network[:compressors] = [];network[:junctions] = []

10 j_map = Dict()
11
12 #Create device OptiGraphs and setup data structures
13 for j_data in junc_data
14 junc= create_junction_optigraph(j_data)
15 add_subgraph!(network,junc); push!(network[:junctions],junc)
16 j_map[j_data[:id]] = junc
17 junc[:devices_in] = []; junc[:devices_out] = []
18 end
19 for p_data in pipe_data
20 pipe = create_pipeline_optigraph(p_data); push!(network[:pipelines],pipe)
21 add_subgraph!(network,pipe);
22 pipe[:junc_from] = j_map[p_data[:junc_from]]
23 pipe[:junc_to] = j_map[p_data[:junc_to]]
24 push!(pipe[:junc_from][:devices_out],pipe); push!(pipe[:junc_to][:devices_in],

pipe)
25 end
26 for c_data in comp_data
27 comp = create_compressor_optigraph(c_data)
28 add_subgraph!(gas_network,comp); comp[:data] = c_data
29 comp[:junc_from] = j_map[c_data[:junc_from]]
30 comp[:junc_to] = j_map[c_data[:junc_to]]
31 push!(comp[:junc_from][:devices_out],comp); push!(comp[:junc_to][:devices_in],

comp)
32 end
33
34 #Link pipelines in gas network
35 for pipe in network[:pipelines]
36 junc_from,junc_to = [pipe[:junc_from],pipe[:junc_to]]
37 @linkconstraint(network,[t = 1:nt],pipe[:pin][t] == junc_from[:pressure][t])
38 @linkconstraint(gas_network,[t = 1:nt],pipe[:pout][t] == junc_to[:pressure][t])
39 end
40
41 #Link compressors in gas network
42 for comp in network[:compressors]
43 junc_from,junc_to = [comp[:junc_from].comp[:junc_to]]
44 @linkconstraint(network,[t = 1:nt],comp[:pin][t] == junc_from[:pressure][t])
45 @linkconstraint(network,[t = 1:nt],comp[:pout][t] == junc_to[:pressure][t])
46 end
47
48 #Link junctions in gas network
49 for junc in network[:junctions]
50 devices_in = junc[:devices_in]; devices_out = junc[:devices_out]
51
52 flow_in = [sum(device[:fout][t] for device in devices_in) for t = 1:nt]
53 flow_out = [sum(device[:fin][t] for device in devices_out) for t = 1:nt]
54
55 total_supplied = [junction[:total_supplied][t] for t = 1:nt]
56 total_delivered = [junction[:total_delivered][t] for t = 1:nt]
57
58 @linkconstraint(gas_network,[t = 1:nt], flow_in[t] - flow_out[t] +
59 total_supplied[t] - total_delivered[t] == 0)
60 end
61 return gas_network
62 end

181

B I B L I O G R A P H Y

[1] Syngeri gas. URL https://www.dnvgl.com/services/

hydraulic-modelling-and-simulation-software-synergi-gas-3894.

[2] Discrete Event Simulation, pages 519–554. Springer US, Boston, MA, 2006. ISBN 978-

0-387-30260-7. doi: 10.1007/0-387-30260-3_11. URL https://doi.org/10.1007/

0-387-30260-3_11.

[3] January 2014 FERC Data Request. Technical report, ISO New England Inc, 01 2014.

[4] Ashish Agarwal and Ignacio E Grossmann. Linear coupled component automata

for milp modeling of hybrid systems. Computers & Chemical Engineering, 33(1):162–

175, 2009.

[5] K. Ahmed, J. Liu, A. Badawy, and S. Eidenbenz. A brief history of hpc simulation

and future challenges. In 2017 Winter Simulation Conference (WSC), pages 419–430,

2017.

[6] Susanne Albers. Energy-efficient algorithms. Commun. ACM, 53(5):86âĂŞ96, May

2010. ISSN 0001-0782. doi: 10.1145/1735223.1735245. URL https://doi.org/10.

1145/1735223.1735245.

[7] Andrew Allman, Wentao Tang, and Prodromos Daoutidis. Towards a Generic Al-

gorithm for Identifying High-Quality Decompositions of Optimization Problems.

In Computer Aided Chemical Engineering. 2018. doi: 10.1016/B978-0-444-64241-7.

50152-X.

https://www.dnvgl.com/services/hydraulic-modelling-and-simulation-software-synergi-gas-3894
https://www.dnvgl.com/services/hydraulic-modelling-and-simulation-software-synergi-gas-3894
https://doi.org/10.1007/0-387-30260-3_11
https://doi.org/10.1007/0-387-30260-3_11
https://doi.org/10.1145/1735223.1735245
https://doi.org/10.1145/1735223.1735245

182

[8] Andrew Allman, Wentao Tang, and Prodromos Daoutidis. Decode: a community-

based algorithm for generating high-quality decompositions of optimization prob-

lems. Optimization and Engineering, 06 2019. doi: 10.1007/s11081-019-09450-5.

[9] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl.

CasADi – A software framework for nonlinear optimization and optimal control.

Mathematical Programming Computation, In Press, 2018.

[10] Sogol Babaeinejadsarookolaee, Adam Birchfield, Richard D. Christie, Carleton Cof-

frin, Christopher DeMarco, Ruisheng Diao, Michael Ferris, Stephane Fliscounakis,

Scott Greene, Renke Huang, Cedric Josz, Roman Korab, Bernard Lesieutre, Jean

Maeght, Daniel K. Molzahn, Thomas J. Overbye, Patrick Panciatici, Byungkwon

Park, Jonathan Snodgrass, and Ray Zimmerman. The power grid library for bench-

marking ac optimal power flow algorithms, 2019.

[11] Olivier Beaumont, Lionel Eyraud-Dubois, and Yihong Gao. Influence of Tasks

Duration Variability on Task-Based Runtime Schedulers, February 2018. URL

https://hal.inria.fr/hal-01716489. Research report on the Influence of Tasks

Duration Variability on Task-Based Runtime Schedulers.

[12] Martin Bergner, Alberto Caprara, Alberto Ceselli, Fabio Furini, Marco E. Lübbecke,

Enrico Malaguti, and Emiliano Traversi. Generic dantzig-wolfe reformulation of

mixed integer programs. 2011.

[13] Martin Bergner, Alberto Caprara, Alberto Ceselli, Fabio Furini, Marco E Lübbecke,

Enrico Malaguti, and Emiliano Traversi. Automatic dantzig–wolfe reformulation

of mixed integer programs. Mathematical Programming, 149(1):391–424, feb 2015.

ISSN 1436-4646. doi: 10.1007/s10107-014-0761-5. URL https://doi.org/10.1007/

s10107-014-0761-5.

[14] Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed computation: nu-

merical methods. 2003.

https://hal.inria.fr/hal-01716489
https://doi.org/10.1007/s10107-014-0761-5
https://doi.org/10.1007/s10107-014-0761-5

183

[15] Martin Biel and Mikael Johansson. Efficient stochastic programming in julia, 2019.

[16] John R. Birge and Franois Louveaux. Introduction to Stochastic Programming. Springer

Publishing Company, Incorporated, 2nd edition, 2011. ISBN 1461402360.

[17] J. Bisschop. AIMMS - Optimization Modeling, 2006.

[18] Benedikt Bollig, Marie Fortin, and Paul Gastin. Communicating Finite-State Ma-

chines and Two-Variable Logic. arXiv preprint arXiv:1709.09991, 2017. URL http:

//arxiv.org/abs/1709.09991.

[19] LÃl’on Bottou. Large-scale machine learning with stochastic gradient descent. In in

COMPSTAT, 2010.

[20] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Dis-

tributed optimization and statistical learning via the alternating direction method of

multipliers. Found. Trends Mach. Learn., 3(1):1âĂŞ122, January 2011. ISSN 1935-8237.

doi: 10.1561/2200000016. URL https://doi.org/10.1561/2200000016.

[21] Daniel Brand and Pitro Zafiropulo. On Communicating Finite-State Machines. Jour-

nal of the ACM, 30(2):323–342, 1983. ISSN 00045411. doi: 10.1145/322374.322380.

URL http://portal.acm.org/citation.cfm?doid=322374.322380.

[22] M S Branicky and S E Mattsson. Simulation of Hybrid Systems. Lecture Notes in

Computer Science, 1273:31–56, 1997.

[23] Braulio Brunaud and Ignacio E Grossmann. Perspectives in Multilevel Decision-

making in the Process Industry. 4(3):1–34, 2017. ISSN 2095-7513. doi: 10.15302/

J-FEM-2017049.

[24] Yankai Cao and Victor M Zavala. A scalable global optimization algorithm for

stochastic nonlinear programs. doi: 10.1007/s10898-019-00769-y.

http://arxiv.org/abs/1709.09991
http://arxiv.org/abs/1709.09991
https://doi.org/10.1561/2200000016
http://portal.acm.org/citation.cfm?doid=322374.322380

184

[25] Yankai Cao, Carl D. Laird, and Victor M. Zavala. Clustering-based preconditioning

for stochastic programs. Computational Optimization and Applications, 64:379–406,

2016.

[26] Richard G Carter. Pipeline optimization: dynamic programming after 30 years. In

PSIG Annual Meeting. Pipeline Simulation Interest Group, 1998.

[27] H. Casanova. Simgrid: a toolkit for the simulation of application scheduling. In

Proceedings First IEEE/ACM International Symposium on Cluster Computing and the

Grid, pages 430–437, 2001.

[28] Ümit Çatalyürek and Cevdet Aykanat. PaToH (Partitioning Tool for Hyper-

graphs), pages 1479–1487. Springer US, Boston, MA, 2011. ISBN 978-0-387-

09766-4. doi: 10.1007/978-0-387-09766-4_93. URL https://doi.org/10.1007/

978-0-387-09766-4{_}93.

[29] Nai Yuan Chiang and Victor M. Zavala. Large-scale optimal control of inter-

connected natural gas and electrical transmission systems. Applied Energy, 168:

226–235, 2016. ISSN 03062619. doi: 10.1016/j.apenergy.2016.01.017. URL http:

//linkinghub.elsevier.com/retrieve/pii/S0306261916000362.

[30] Nicholson Collier and Michael North. Parallel agent-based simulation with Repast

for High Performance Computing. Simulation, 89(10):1215–1235, 2013. ISSN

17413133. doi: 10.1177/0037549712462620.

[31] Marco Colombo, Andreas Grothey, Jonathan Hogg, Kristian Woodsend, and Jacek

Gondzio. A structure-conveying modelling language for mathematical and stochas-

tic programming. Mathematical Programming Computation, 2009. ISSN 18672949. doi:

10.1007/s12532-009-0008-2.

[32] Antonio J. Conejo, Enrique Castillo, Roberto Mínguez, and Raquel García-Bertrand.

Decomposition techniques in mathematical programming: Engineering and science applica-

tions. 2006. ISBN 3540276858. doi: 10.1007/3-540-27686-6.

https://doi.org/10.1007/978-0-387-09766-4{_}93
https://doi.org/10.1007/978-0-387-09766-4{_}93
http://linkinghub.elsevier.com/retrieve/pii/S0306261916000362
http://linkinghub.elsevier.com/retrieve/pii/S0306261916000362

185

[33] GAMS Development Corporation. General Algebraic Modeling System (GAMS)

Release 24.2.1. Washington, DC, USA, 2013. URL http://www.gams.com/.

[34] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V.

Le, Mark Z. Mao, MarcâĂŹAurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang,

and Andrew Y. Ng. Large scale distributed deep networks. In Proceedings of the

25th International Conference on Neural Information Processing Systems - Volume 1, NIP-

SâĂŹ12, page 1223âĂŞ1231, Red Hook, NY, USA, 2012. Curran Associates Inc.

[35] Karen D. Devine, Erik G. Boman, Robert T. Heaphy, Rob H. Bisseling, and Umit V.

Catalyurek. Parallel hypergraph partitioning for scientific computing. In 20th In-

ternational Parallel and Distributed Processing Symposium, IPDPS 2006, 2006. ISBN

1424400546. doi: 10.1109/IPDPS.2006.1639359.

[36] Alexander W Dowling and Lorenz T Biegler. A framework for efficient large scale

equation-oriented flowsheet optimization. Computers & Chemical Engineering, 72:

3–20, 2015.

[37] Iain Dunning, Joey Huchette, and Miles Lubin. Jump: A modeling language

for mathematical optimization. SIAM Review, 59(2):295–320, 2017. doi: 10.1137/

15M1020575.

[38] Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, and Priya Nag-

purkar. Slow and stale gradients can win the race: Error-runtime trade-offs in

distributed sgd. In AISTATS, 2018.

[39] E.W. Endsley and M. Tilbury. Modular finite state machines for logic con-

trol. IFAC Proceedings Volumes, 37(18):393–398, 2004. ISSN 14746670. doi: 10.

1016/S1474-6670(17)30778-4. URL http://linkinghub.elsevier.com/retrieve/

pii/S1474667017307784.

[40] Process Systems Enterprise. gPROMS, 1997-2018. URL www.psenterprise.com/

gproms.

http://www.gams.com/
http://linkinghub.elsevier.com/retrieve/pii/S1474667017307784
http://linkinghub.elsevier.com/retrieve/pii/S1474667017307784
www.psenterprise.com/gproms
www.psenterprise.com/gproms

186

[41] Francesco Farina, Andrea Camisa, Andrea Testa, Ivano Notarnicola, and Giuseppe

Notarstefano. Disropt : a python framework. (638992):1–14.

[42] Michael C Ferris and Jeffrey D Horn. Partitioning mathematical programs for par-

allel solution. Mathematical Programming, 80(1):35–61, jan 1998. ISSN 1436-4646. doi:

10.1007/BF01582130. URL https://doi.org/10.1007/BF01582130.

[43] Marshall L. Fisher. APPLICATIONS ORIENTED GUIDE TO LAGRANGIAN RE-

LAXATION. Interfaces, 1985. ISSN 00922102. doi: 10.1287/inte.15.2.10.

[44] George S. Fishman. Principles of Discrete Event Simulation. John Wiley & Sons, Inc.,

New York, NY, USA, 1978. ISBN 0471043958.

[45] S. Folga. Natural Gas Pipeline Technology Overview. Technical Report 4, 2008.

[46] R. Fourer, D. M. Gay, and B. Kernighan. AMPL: A Mathematical Programming Lan-

guage, page 150âĂŞ151. Springer-Verlag, Berlin, Heidelberg, 1989. ISBN 0387508422.

[47] Robert Fourer, David M Gay, Murray Hill, Brian W Kernighan, and T Bell Labora-

tories. AMPL : A Mathematical Programming Language. 1990.

[48] Peter Fritzson and Peter Bunus. Modelica – a general object-oriented language for

continuous and discrete-event system modeling. In IN PROCEEDINGS OF THE

35TH ANNUAL SIMULATION SYMPOSIUM, pages 14–18, 2002.

[49] Andreas Frommer and Daniel B. Szyld. An algebraic convergence theory for re-

stricted additive schwarz methods using weighted max norms. SIAM Journal on

Numerical Analysis, 39(2):463–479, 2002. ISSN 00361429. URL http://www.jstor.

org/stable/3062006.

[50] Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and Hans

Vangheluwe. Co-simulation: a Survey. ACM Computing Surveys, 51(3):Article 49,

2018. ISSN 03600300. doi: 10.1145/3179993. URL http://cordis.europa.eu/

project/rcn/194142{%}0Ahttps://doi.org/10.1145/3179993.

https://doi.org/10.1007/BF01582130
http://www.jstor.org/stable/3062006
http://www.jstor.org/stable/3062006
http://cordis.europa.eu/project/rcn/194142{%}0Ahttps://doi.org/10.1145/3179993
http://cordis.europa.eu/project/rcn/194142{%}0Ahttps://doi.org/10.1145/3179993

187

[51] Jacek Gondzio and Andreas Grothey. Parallel Interior Point Solver for Structured

Quadratic Programs: Application to Financial Planning Problems. J. Annals of Op-

erations Research, 152(1):319–339, 2006. doi: 10.1007/s10479-006-0139-z.

[52] Jacek Gondzio and Robert Sarkissian. Parallel interior-point solver for structured

linear programs. Mathematical Programming, 2003. ISSN 00255610. doi: 10.1007/

s10107-003-0379-5.

[53] Ignacio Grossman. Global Optimization. Springer, 2013.

[54] Ignacio E. Grossmann. Advances in mathematical programming models for

enterprise-wide optimization. Computers and Chemical Engineering, 47:2–18, 2012.

ISSN 00981354. doi: 10.1016/j.compchemeng.2012.06.038. URL http://dx.doi.

org/10.1016/j.compchemeng.2012.06.038.

[55] Andreas Grothey and Feng Qiang. PSMG-A Parallel Structured Model Generator

for Mathematical Programming. Workingpaper, Optimization Online, 2014.

[56] Anshul Gupta, George Karypis, and Vipin Kumar. Highly scalable parallel algo-

rithms for sparse matrix factorization. IEEE Transactions on Parallel and Distributed

Systems, 8(5):502–520, 1997. ISSN 10459219. doi: 10.1109/71.598277.

[57] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2020. URL http:

//www.gurobi.com.

[58] David Hallac, Christopher Wong, Steven Diamond, Rok Sosic, Stephen Boyd, and

Jure Leskovec. SnapVX: A Network-Based Convex Optimization Solver. Journal of

Machine Learning Research, 0:1–5, 2017. ISSN 15337928. URL http://arxiv.org/

abs/1509.06397.

[59] William E. Hart, Carl D. Laird, Jean-Paul Watson, David L. Woodruff, Gabriel A.

Hackebeil, Bethany L. Nicholson, and John D. Siirola. Pyomo–optimization modeling

in python, volume 67. Springer Science & Business Media, second edition, 2017.

http://dx.doi.org/10.1016/j.compchemeng.2012.06.038
http://dx.doi.org/10.1016/j.compchemeng.2012.06.038
http://www.gurobi.com
http://www.gurobi.com
http://arxiv.org/abs/1509.06397
http://arxiv.org/abs/1509.06397

188

[60] Seongmin Heo, Srinivas Rangarajan, Prodromos Daoutidis, and Sujit S. Jogwar.

Graph reduction of complex energy-integrated networks: Process systems applica-

tions. AIChE Journal, 2014. ISSN 00011541. doi: 10.1002/aic.14341.

[61] M Herty, J. Mohring, and V. Sachers. A new model for gas flow in pipe networks.

Mathematical Methods in the Applied Sciences, 33(7):845–855, 2010. ISSN 01704214.

doi: 10.1002/mma.1197. URL http://doi.wiley.com/10.1002/mma.1197.

[62] Michael Herty. Multi âĂŞ scale modeling and nodal control for gas transportation

networks. (Cdc):4585–4590, 2015. ISSN 07431546. doi: 10.1109/CDC.2015.7402935.

[63] Jens Hübner, Martin Schmidt, and Marc C Steinbach. Optimization techniques

for tree-structured nonlinear problems. Computational Management Science, 2020.

ISSN 1619-6988. doi: 10.1007/s10287-020-00362-9. URL https://doi.org/10.1007/

s10287-020-00362-9.

[64] Joey Huchette, Miles Lubin, and Cosmin Petra. Parallel algebraic modeling for

stochastic optimization. In Proceedings of HPTCDL 2014: 1st Workshop for High Perfor-

mance Technical Computing in Dynamic Languages - Held in Conjunction with SC 2014:

The International Conference for High Performance Computing, Networking, Storage and

Analysis, 2014. ISBN 9781479970209. doi: 10.1109/HPTCDL.2014.6.

[65] Michael Innes, Elliot Saba, Keno Fischer, Dhairya Gandhi, Marco Concetto

Rudilosso, Neethu Mariya Joy, Tejan Karmali, Avik Pal, and Viral Shah. Fash-

ionable modelling with flux. CoRR, abs/1811.01457, 2018. URL http://arxiv.org/

abs/1811.01457.

[66] Jordan Jalving and Victor M Zavala. An optimization-based state estimation frame-

work for large-scale natural gas networks. Industrial & Engineering Chemistry Re-

search, 57(17):5966–5979, 2018. ISSN 0888-5885. doi: 10.1021/acs.iecr.7b04124.

[67] Jordan Jalving, Shrirang Abhyankar, Kibaek Kim, Mark Hereld, and Victor M.

Zavala. A graph-based computational framework for simulation and optimisa-

http://doi.wiley.com/10.1002/mma.1197
https://doi.org/10.1007/s10287-020-00362-9
https://doi.org/10.1007/s10287-020-00362-9
http://arxiv.org/abs/1811.01457
http://arxiv.org/abs/1811.01457

189

tion of coupled infrastructure networks. IET Generation, Transmission & Distribution,

pages 1–14, 2017. ISSN 1751-8687. doi: 10.1049/iet-gtd.2016.1582. URL http://

digital-library.theiet.org/content/journals/10.1049/iet-gtd.2016.1582.

[68] Jordan Jalving, Yankai Cao, and Victor M Zavala. Graph-based modeling and sim-

ulation of complex systems. Computers & Chemical Engineering, 125:134–154, 2019.

doi: https://doi.org/10.1016/j.compchemeng.2019.03.009.

[69] Jordan Jalving, Sungho Shin, and Victor M. Zavala. A graph-based modeling ab-

straction for optimization: Concepts and implementation in plasmo.jl, 2020.

[70] Wenkai Jiang, Jianzhong Qi, Jeffrey Xu Yu, Jin Huang, and Rui Zhang. HyperX:

A Scalable Hypergraph Framework. IEEE Transactions on Knowledge and Data Engi-

neering, 2018. ISSN 10414347. doi: 10.1109/TKDE.2018.2848257.

[71] Sujit S. Jogwar, Srinivas Rangarajan, and Prodromos Daoutidis. Reduction of com-

plex energy-integrated process networks using graph theory. Computers and Chemi-

cal Engineering, 2015. ISSN 00981354. doi: 10.1016/j.compchemeng.2015.04.025.

[72] Jia Kang, Yankai Cao, Daniel P. Word, and C. D. Laird. An interior-point method

for efficient solution of block-structured NLP problems using an implicit Schur-

complement decomposition. Computers and Chemical Engineering, 2014. ISSN

00981354. doi: 10.1016/j.compchemeng.2014.09.013.

[73] Jia Kang, Naiyuan Chiang, Carl D Laird, and Victor M Zavala. Nonlinear program-

ming strategies on high-performance computers. In Decision and Control (CDC),

2015 IEEE 54th Annual Conference on, pages 4612–4620. IEEE, 2015.

[74] Juraj Kardos, Drosos Kourounis, and Olaf Schenk. Structure-Exploiting Interior

Point Methods. ArXiv, 2019.

[75] George Karypis and Vipin Kumar. A Fast and High Quality Multilevel Scheme for

Partitioning Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):359–392,

http://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2016.1582
http://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2016.1582

190

1998. ISSN 1064-8275. doi: 10.1137/S1064827595287997. URL http://epubs.siam.

org/doi/10.1137/S1064827595287997.

[76] George Karypis and Vipin Kumar. Multilevel k-way hypergraph partitioning. In

Proceedings of the 36th Annual ACM/IEEE Design Automation Conference, DAC ’99,

pages 343–348, New York, NY, USA, 1999. ACM. ISBN 1-58113-109-7. doi: 10.1145/

309847.309954. URL http://doi.acm.org/10.1145/309847.309954.

[77] Kibaek Kim and Victor M Zavala. Algorithmic innovations and software for the

dual decomposition method applied to stochastic mixed-integer programs. 2016.

[78] Kibaek Kim, Cosmin G Petra, and Victor M Zavala. An asynchronous bundle-trust-

region method for dual decomposition of stochastic mixed-integer programming.

SIAM Journal on Optimization, 29(1):318–342, 2019.

[79] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[80] Edward A Lee. Cyber physical systems: Design challenges. In 11th IEEE Symposium

on Object Oriented Real-Time Distributed Computing (ISORC), pages 363–369. IEEE,

2008.

[81] Jay Lee, Behrad Bagheri, and Hung-An Kao. A cyber-physical systems architecture

for industry 4.0-based manufacturing systems. Manufacturing Letters, 3:18–23, 2015.

[82] Jeff Linderoth and Stephen Wright. Decomposition algorithms for stochastic pro-

gramming on a computational grid. Computational Optimization and Applications,

2003. ISSN 09266003. doi: 10.1023/A:1021858008222.

[83] Yuri K. Lopes, Stefan M. Trenkwalder, André B. Leal, Tony J. Dodd, and Roderich

Groß. Supervisory control theory applied to swarm robotics. Swarm Intelligence, 10

(1):65–97, 2016. ISSN 19353820. doi: 10.1007/s11721-016-0119-0.

http://epubs.siam.org/doi/10.1137/S1064827595287997
http://epubs.siam.org/doi/10.1137/S1064827595287997
http://doi.acm.org/10.1145/309847.309954

191

[84] Miles Lubin, Cosmin G. Petra, and Mihai Anitescu. The parallel solution of dense

saddle-point linear systems arising in stochastic programming. Optimization Meth-

ods and Software, 2012. ISSN 10556788. doi: 10.1080/10556788.2011.602976.

[85] Sean Luke, Claudio Cioffi-revilla, Liviu Panait, Keith Sullivan, and Gabriel Balan.

MASON: A Multi-Agent Simulation Environment. pages 1–18. doi: 10.1177/

0037549705058073.

[86] C M Macal and M J North. Tutorial on agent-based modeling and simulation.

Proceedings of the 2005 Winter Simulation Conference, Vols 1-4, pages 2–15, 2005. doi:

10.1109/wsc.2005.1574234.

[87] Andrew Makhorin. GNU Linear Programming Kit Version 4.32, 2000–2012. URL

http://www.gnu.org/software/glpk/glpk.html.

[88] Christos T. Maravelias. General framework and modeling approach classification

for chemical production scheduling. AIChE Journal, 2012. ISSN 00011541. doi:

10.1002/aic.13801.

[89] MATLAB Simulink Toolbox. Matlab simulink toolbox, 2018.

[90] Sven Erik Mattsson, Hilding Elmqvist, and Martin Otter. Physical system modeling

with modelica. Control Engineering Practice, 6(4):501–510, 1998.

[91] Christian Mayer, Ruben Mayer, Sukanya Bhowmik, Lukas Epple, and Kurt Rother-

mel. Hype: Massive hypergraph partitioning with neighborhood expansion. 2018

IEEE International Conference on Big Data (Big Data), pages 458–467, 2018.

[92] Nelson Minar, Roger Burkhart, Chris Langton, Manor Askenazi, et al. The swarm

simulation system: A toolkit for building multi-agent simulations. 1996.

[93] Ali Mohammed, Ahmed Eleliemy, Florina M. Ciorba, Franziska Kasielke, and Ioana

Banicescu. An approach for realistically simulating the performance of scientific

applications on high performance computing systems. ArXiv, abs/1910.06844, 2019.

http://www.gnu.org/software/glpk/glpk.html

192

[94] Manjiri Moharir, Lixia Kang, Prodromos Daoutidis, and Ali Almansoori. Graph

representation and decomposition of ODE/hyperbolic PDE systems. Computers and

Chemical Engineering, 2017. ISSN 00981354. doi: 10.1016/j.compchemeng.2017.07.

005.

[95] M. E.J. Newman. Modularity and community structure in networks. Proceedings of

the National Academy of Sciences of the United States of America, 2006. ISSN 00278424.

doi: 10.1073/pnas.0601602103.

[96] Michael J North, Nicholson T Collier, Jonathan Ozik, Eric R Tatara, Charles M

Macal, Mark Bragen, and Pam Sydelko. Complex adaptive systems modeling with

Repast Simphony. Complex Adaptive Systems Modeling, 1(1):3, 2013. ISSN 2194-

3206. doi: 10.1186/2194-3206-1-3. URL http://casmodeling.springeropen.com/

articles/10.1186/2194-3206-1-3.

[97] A. Osiadacz. Simulation of transient gas flows in networks. International Journal

for Numerical Methods in Fluids, 4(1):13–24, 1984. ISSN 10970363. doi: 10.1002/fld.

1650040103.

[98] Jonathan Ozik, Nick Collier, and Repast Development. Repast statecharts guide. 8

(3):1–41, 1994.

[99] Bruce Palmer, William Perkins, Yousu Chen, Shuangshuang Jin, David Callahan,

Kevin Glass, Ruisheng Diao, Mark Rice, Stephen Elbert, Mallikarjuna Vallem, and

Zhenyu Huang. Gridpack: A framework for developing power grid simulations

on high performance computing platforms. In Proceedings of the 2014 Fourth Inter-

national Workshop on Domain-Specific Languages and High-Level Frameworks for High

Performance Computing, WOLFHPC âĂŹ14, page 68âĂŞ77, USA, 2014. IEEE Com-

puter Society. ISBN 9781467367578.

[100] Francois Pellegrini. Distillating knowledge about scotch. In Uwe Naumann,

Olaf Schenk, Horst D. Simon, and Sivan Toledo, editors, Combinatorial Scien-

http://casmodeling.springeropen.com/articles/10.1186/2194-3206-1-3
http://casmodeling.springeropen.com/articles/10.1186/2194-3206-1-3

193

tific Computing, number 09061 in Dagstuhl Seminar Proceedings, Dagstuhl, Ger-

many, 2009. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany. URL

http://drops.dagstuhl.de/opus/volltexte/2009/2091.

[101] Peter C Piela. ASCEND : an object-oriented computer environment for modeling

and analysis . 1990.

[102] Edgar C. Portante, James A. Kavicky, Brian A. Craig, Leah E. Talaber, and

Stephen M. Folga. Modeling electric power and natural gas system interdepen-

dencies. Journal of Infrastructure Systems, 23(4):04017035, 2017. doi: 10.1061/(ASCE)

IS.1943-555X.0000395.

[103] S. Pu, A. Olshevsky, and I. C. Paschalidis. Asymptotic network independence in

distributed stochastic optimization for machine learning: Examining distributed

and centralized stochastic gradient descent. IEEE Signal Processing Magazine, 37(3):

114–122, 2020.

[104] Ragheb Rahmaniani, Teodor Gabriel Crainic, Michel Gendreau, and Walter Rei. The

benders decomposition algorithm: A literature review. European Journal of Opera-

tional Research, 259(3):801 – 817, 2017. ISSN 0377-2217. doi: https://doi.org/10.

1016/j.ejor.2016.12.005. URL http://www.sciencedirect.com/science/article/

pii/S0377221716310244.

[105] Christopher V Rao, Stephen J Wright, and James B Rawlings. Application of

interior-point methods to model predictive control. Journal of optimization theory

and applications, 99(3):723–757, 1998.

[106] James B. Rawlings and David Mayne. Model predictive control: Theory and design. 2

edition, 2018.

[107] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hog-

wild: A lock-free approach to parallelizing stochastic gradient descent. In

http://drops.dagstuhl.de/opus/volltexte/2009/2091
http://www.sciencedirect.com/science/article/pii/S0377221716310244
http://www.sciencedirect.com/science/article/pii/S0377221716310244

194

J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Wein-

berger, editors, Advances in Neural Information Processing Systems 24, pages

693–701. Curran Associates, Inc., 2011. URL http://papers.nips.cc/paper/

4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.

pdf.

[108] Daniel Rehfeldt, Hannes Hobbie, David Schönheit, Ambros M. Gleixner, Thorsten

Koch, and Dominik Möst. A massively parallel interior-point solver for linear en-

ergy system models with block structure. 2019.

[109] Jose S Rodriguez, Carl D Laird, and Victor M Zavala. Scalable preconditioning

of block-structured linear algebra systems using ADMM. Computers and Chemical

Engineering, 133:106478, 2020. ISSN 0098-1354. doi: 10.1016/j.compchemeng.2019.

06.003. URL https://doi.org/10.1016/j.compchemeng.2019.06.003.

[110] N. V. Sahinidis and I. E. Grossmann. Convergence properties of generalized benders

decomposition. Computers and Chemical Engineering, 1991. ISSN 00981354. doi:

10.1016/0098-1354(91)85027-R.

[111] Riccardo Scattolini. Architectures for distributed and hierarchical Model Predictive

Control - A review, 2009. ISSN 09591524.

[112] Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke, Peter Sanders,

and Christian Schulz. k-way hypergraph partitioning via n-level recursive bisection.

In 18th Workshop on Algorithm Engineering and Experiments, (ALENEX 2016), pages

53–67, 2016.

[113] Kirk Schloegel, George Karypis, and Vipin Kumar. Graph Partitioning for High-

Performance Scientific Simulations, page 491âĂŞ541. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 2003. ISBN 1558608710.

[114] Christian Schulz, Sebastian Korbinian Bayer, Christoph Hess, Christian Steiger,

Marvin Teichmann, Jan Jacob, Fellipe Bernardes-lima, Robert Hangu, and Sergey

http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
http://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
https://doi.org/10.1016/j.compchemeng.2019.06.003

195

Hayrapetyan. Course notes: Graph partitioning and graph clustering in theory and

practice, 2015.

[115] William Lewis Scott. Optimal evasive strategies for groups of interacting agents

with motion constraints. Automatica, 94:26–34, 2018.

[116] James Fairbanks Seth Bromberger and other contributors. Juliagraphs/light-

graphs.jl: an optimized graphs package for the julia programming language, 2017.

URL https://doi.org/10.5281/zenodo.889971.

[117] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-

fidelity visual and physical simulation for autonomous vehicles. In Marco Hutter

and Roland Siegwart, editors, Field and Service Robotics, pages 621–635, Cham, 2018.

Springer International Publishing. ISBN 978-3-319-67361-5.

[118] M. Shahidehpour, Yong Fu, and T. Wiedman. Impact of natural gas infrastructure

on electric power systems. Proceedings of the IEEE, 93(5):1042–1056, 2005.

[119] S. Shin, T. Faulwasser, M. Zanon, and V. M. Zavala. A parallel decomposition

scheme for solving long-horizon optimal control problems. In 2019 IEEE 58th Con-

ference on Decision and Control (CDC), pages 5264–5271, 2019.

[120] S. Shin, V. M. Zavala, and M. Anitescu. Decentralized schemes with overlap for

solving graph-structured optimization problems. IEEE Transactions on Control of

Network Systems, 2020.

[121] Sungho Shin and Victor M Zavala. Multi-grid schemes for multi-scale coordination

of energy systems. Energy Markets and Responsive Grids, 2018.

[122] Sungho Shin and Victor M Zavala. Multi-grid schemes for multi-scale coordination

of energy systems. In Energy Markets and Responsive Grids, pages 195–222. Springer,

2018.

https://doi.org/10.5281/zenodo.889971

196

[123] Sungho Shin, Mihai Anitescu, and Victor M. Zavala. Overlapping schwarz decom-

position for constrained quadratic programs, 2020.

[124] Marc C. Steinbach. Tree-sparse convex programs. Mathematical Methods of Operations

Research, 2003. ISSN 14322994. doi: 10.1007/s001860200227.

[125] Brett T. Stewart, James B. Rawlings, and Stephen J. Wright. Hierarchical cooperative

distributed model predictive control. In Proceedings of the 2010 American Control

Conference, ACC 2010, 2010. ISBN 9781424474264. doi: 10.1109/acc.2010.5530634.

[126] J Sun and Tesfasion L. Dc optimal power flow formulation andsolution using quad-

progj, 2010.

[127] Wentao Tang and Prodromos Daoutidis. Network decomposition for distributed

control through community detection in inputâĂŞoutput bipartite graphs. Journal

of Process Control, 2018. ISSN 09591524. doi: 10.1016/j.jprocont.2018.01.009.

[128] Wentao Tang, Andrew Allman, Davood Babaei Pourkargar, and Prodromos Daou-

tidis. Optimal decomposition for distributed optimization in nonlinear model pre-

dictive control through community detection. Computers & Chemical Engineering,

111:43–54, 2017. ISSN 00981354. doi: 10.1016/j.compchemeng.2017.12.010. URL

http://linkinghub.elsevier.com/retrieve/pii/S0098135417304416.

[129] Ophelia S Venturelli, Alex V Carr, Garth Fisher, Ryan H Hsu, Rebecca Lau, Ben-

jamin P Bowen, Susan Hromada, Trent Northen, and Adam P Arkin. Deci-

phering microbial interactions in synthetic human gut microbiome communities.

Molecular Systems Biology, 14(6):e8157, 2018. doi: 10.15252/msb.20178157. URL

https://www.embopress.org/doi/abs/10.15252/msb.20178157.

[130] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-

point filter line-search algorithm for large-scale nonlinear programming. 106(1):

25–57, 2006. ISSN 00255610. doi: 10.1007/s10107-004-0559-y.

http://linkinghub.elsevier.com/retrieve/pii/S0098135417304416
https://www.embopress.org/doi/abs/10.15252/msb.20178157

197

[131] Jiadong Wang and Ted Ralphs. Computational Experience with Hypergraph-Based

Methods for Automatic Decomposition in Discrete Optimization. In Carla Gomes

and Meinolf Sellmann, editors, Integration of AI and OR Techniques in Constraint Pro-

gramming for Combinatorial Optimization Problems, pages 394–402, Berlin, Heidelberg,

2013. Springer Berlin Heidelberg. ISBN 978-3-642-38171-3.

[132] Jean Paul Watson, David L. Woodruff, and William E. Hart. PySP: Modeling and

solving stochastic programs in Python. Mathematical Programming Computation,

2012. ISSN 18672949. doi: 10.1007/s12532-012-0036-1.

[133] Arthur W Westerberg and Peter C Piela. Equational-based process modeling. AS-

CEND project, xx:1–76, 1994.

[134] Jeremiah J. Wilke, Joseph P. Kenny, Samuel Knight, and Sebastien Rumley.

Compiler-assisted source-to-source skeletonization of application models for sys-

tem simulation. In Rio Yokota, Michèle Weiland, David Keyes, and Carsten Trinitis,

editors, High Performance Computing, pages 123–143. Springer International Publish-

ing, 2018.

[135] R. Xin, S. Kar, and U. A. Khan. Decentralized stochastic optimization and machine

learning: A unified variance-reduction framework for robust performance and fast

convergence. IEEE Signal Processing Magazine, 37(3):102–113, 2020.

[136] Victor M. Zavala. New Architectures for Hierarchical Predictive Control. IFAC-

PapersOnLine, 49(7):43–48, 2016. ISSN 24058963. doi: 10.1016/j.ifacol.2016.07.214.

URL http://dx.doi.org/10.1016/j.ifacol.2016.07.214.

[137] Victor M Zavala and Lorenz T Biegler. Optimization-based strategies for the op-

eration of low-density polyethylene tubular reactors: Moving horizon estimation.

Computers & Chemical Engineering, 33(1):379–390, 2009.

[138] Stavros A Zenios. A distributed algorithm for convex network optimization prob-

lems. Parallel Computing, 6:45–56, 1988.

http://dx.doi.org/10.1016/j.ifacol.2016.07.214

198

[139] Stavros A. Zenios and Mustafa Pinar. Parallel Block-Partitioning of Truncated New-

ton for Nonlinear Network Optimization. SIAM Journal on Scientific and Statistical

Computing, 1992. ISSN 0196-5204. doi: 10.1137/0913068.

	Title
	Copyright
	Dedication
	Acknowledgments
	Contents
	 List of Figures
	 List of Tables
	 Abstract
	1 Introduction
	1.1 Cyber-Physical Systems
	1.2 Prominent Modeling and Simulation Approaches
	1.2.1 Modeling Physical Aspects
	1.2.2 Modeling Cyber Aspects

	1.3 Research Objectives
	1.4 Thesis Overview
	1.5 Graph Notation

	2 Graph-Based Modeling for Physical Systems
	2.1 Introduction
	2.2 OptiGraphs
	2.2.1 Representation
	2.2.2 Model and Data Management
	2.2.3 Hierarchical Graphs

	2.3 Software Framework: Modeling with Plasmo.jl
	2.3.1 Basic Syntax
	2.3.2 Hierarchical Modeling Syntax
	2.3.3 Overview of Modeling Functions

	2.4 Case Study: State Estimation in a Natural Gas Network
	2.4.1 Problem Overview
	2.4.2 OptiGraph Modeling Approach
	2.4.3 State Estimation Results
	2.4.4 Model Reduction
	2.4.5 Model Reduction Results

	3 Decomposing Optimization Problems
	3.1 Introduction
	3.2 Partitioning and Manipulating OptiGraphs
	3.2.1 Hypergraph Partitioning
	3.2.2 OptiGraph Manipulation

	3.3 Algorithms
	3.3.1 Linear Algebra Decomposition
	3.3.2 Overlapping Schwarz Decomposition

	3.4 Software Framework: Decomposition with Plasmo.jl
	3.4.1 Partitioning a Dynamic Optimization Problem
	3.4.2 Using Graph Topology Functions

	3.5 Case Study: Decomposition of a Natural Gas Optimal Control Problem
	3.5.1 Problem Setup
	3.5.2 Modeling and Partitioning
	3.5.3 Results

	3.6 Case Study: Overlapping Domain Decomposition of a DC Power Grid
	3.6.1 Problem Setup
	3.6.2 Modeling, Partitioning, and Expansion
	3.6.3 Results

	3.7 Appendix: DC OPF OptiGraph Implementation

	4 Modeling Large-Scale Infrastructure Systems
	4.1 Introduction
	4.2 Natural Gas Optimization Model
	4.3 Case Study: Coordinated Gas and Electric Systems
	4.3.1 Problem Overview
	4.3.2 Implementation
	4.3.3 Results

	4.4 Case Study: Space-Time Decomposition of a Large-Scale Natural Gas Network
	4.4.1 Problem Overview
	4.4.2 Implementation
	4.4.3 Results

	4.5 Comparison with Simulation-Based Approaches
	4.5.1 Simulation-Based Optimization
	4.5.2 Direct Transcription Optimization
	4.5.3 Hybrid SB-DT Optimization

	4.6 Case Study: Hybrid Optimization for a Large-Scale Natural Gas Network
	4.6.1 Problem Overview
	4.6.2 Implementation
	4.6.3 Results

	5 Graph-Based Modeling for Cyber Systems
	5.1 Introduction
	5.2 Computing Graphs
	5.2.1 Representation
	5.2.2 Connections with OptiGraphs
	5.2.3 State-Space Description
	5.2.4 Task Scheduling and Timing

	5.3 Software Framework: PlasmoCompute.jl
	5.3.1 Overview of Modeling Functions
	5.3.2 Example: Simulating Centralized Control of a Reactor System

	5.4 Case Study: Simulating Cooperative Control
	5.4.1 Problem Setup
	5.4.2 Implementation
	5.4.3 Results

	5.5 Appendix: Reactor System Study Model
	5.5.1 Model Equations
	5.5.2 Simulation Tasks

	6 Distributed Algorithm Simulation
	6.1 Introduction
	6.2 Distributed Optimization and Machine Learning
	6.2.1 Distributed Benders Decomposition
	6.2.2 Distributed Stochastic Gradient Descent

	6.3 Case Study: Simulating Distributed Benders Decomposition
	6.3.1 Problem Overview
	6.3.2 Implementation
	6.3.3 Results

	6.4 Case Study: Simulating Stochastic Gradient Descent Variants
	6.4.1 Problem Overview
	6.4.2 Implementation
	6.4.3 Results

	6.5 Appendix: Case Study Models
	6.5.1 Benders Case Study Model
	6.5.2 Stochastic Gradient Descent Implementation

	7 Conclusions and Future Directions
	7.1 Contributions
	7.2 Future Research Directions

	A Natural Gas Network Models
	A.1 Model Nomenclature
	A.1.1 Sets
	A.1.2 Parameters
	A.1.3 Variables

	A.2 Junctions
	A.2.1 Model Equations
	A.2.2 Junction OptiGraph

	A.3 Compressors
	A.3.1 Model Equations
	A.3.2 Compressor OptiGraph

	A.4 Pipelines
	A.4.1 Model Equations
	A.4.2 Approximate Euler Pipeline OptiGraph

	A.5 Network Connections
	A.5.1 Model Equations
	A.5.2 Network OptiGraph

	 Bibliography

