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abstract

Recent advances in emerging Internet-of-Things (IoT) devices, Artificial Intelligence
(AI), and machine learning (ML) algorithms have paved the way for sophisticated
human representation. Human shapes and actions can be sensed and interpreted
through various sensor modalities, enabling high-impact applications. However,
the choice of sensing modality directly affects the quality and accuracy of the cap-
tured human representation. Therefore, it is critical to investigate various sensing
modalities and algorithm choices and adapt suitable human representation to tar-
get applications. Moreover, the complexity and diversity of human representation
also necessitate exploring advanced computational models capable of generating
realistic and detailed human features. By employing generative models, we can
effectively simulate and manipulate human attributes, enabling us to generate novel
samples and explore the vast space of possible human representations. This opens
up new opportunities for studying and understanding the intricate complexities
and diversities of human representation. To better study and interpret these varied
human representations, we conduct research in the following main areas:

(i) We explore the potential of emerging sensing modalities such as inertial
sensors, RGB-Depth cameras, and millimeter-Wave (mmWave) radar in applications
including gait monitoring, human activity recognition, and human pose estimation.
In this regard, we present MGait: a model-based gait monitoring technique, MARS:
mmWave-based human pose estimation for rehabilitation, and mRI: a multi-modal
3D human pose estimation dataset.

(ii) We design algorithm pipelines to pre-process the raw sensing signals effec-
tively, train and test deep learning models. Smart algorithm design choices ensure
the models are lightweight and can adapt well to unseen scenarios. To this end,
we propose Fuse: fast and scalable human pose estimation using mmWave point
cloud, and a transfer learning algorithm for human activity recognition.

(iii) Finally, we propose Panohead: a 3D generative model that enable high-
quality, view-consistent image synthesis of human heads in 360°. This work ex-
tends the 3D human head modeling capabilities of generative adversarial networks
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(GANs) from a limited frontal view to a full 360° view, opening up new possibilities
for novel 3D human representation and downstream tasks such as style-mixing
and inferencing the full-head from a single facial image.



1

1 introduction

The accelerated growth of emerging technologies, including Internet-of-Things
(IoT) devices, Artificial Intelligence (AI), and machine learning (ML) algorithms,
has kindled the evolution of sophisticated forms of human representation. The
concept of ‘human representation’ refers to the capture and description of various
human attributes and behaviors through sensor data. Notably, these representations
can encapsulate multiple aspects of human beings, such as body posture, facial
expressions, behavior patterns, and psychological states. Such characterizations
enable machines to better comprehend and interpret human behavior, fostering
more natural and effective human-machine interactions.

The different facets of human form and activities can be sensed and deciphered
through numerous novel sensor modalities, including RGB-D cameras [7, 8, 9, 10,
11, 12], inertial sensors [13, 14, 15, 16, 17, 18], and millimeter-Wave (mmWave)
radar [19, 20, 21, 22]. These sensory data generate rich human representations
that fuel high-impact applications, from 3D human generation [5, 4] and human
pose estimation [11, 18, 19] to early disease diagnosis and prognosis via constant
monitoring of vital signals [23].

Healthcare emerges as a leading field of application for human representation,
a fact underscored by the global increase in the aging population and the parallel
rise in health-related issues. These trends have ignited a surge of research interest
within both industrial [24, 25] and academic circles [26, 27]. Major technological
firms have, in response, significantly increased their R&D investment into wearable
devices intended for mobile activity and health monitoring. As an illustration,
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Apple integrates health-related features into their widely used products like the
Apple Watch, thereby bridging the gap between wearable technology and clinical
research tools [25]. Moreover, Google’s acquisition of Fitbit, a leading wearable
technology company, in 2021 showcases the burgeoning race among major tech
companies to establish a foothold in AI-enabled healthcare [24].

Remote activity and health monitoring applications, predicated on emerging
human representation, have the potential to provide invaluable insights [23]. Con-
sequently, these applications can enhance people’s quality of life, by utilizing ap-
plications across a broad spectrum of healthcare domains, encompassing but not
limited to electroencephalogram (EEG) [28, 29, 30, 31], human activity recogni-
tion [32, 33], gait monitoring [34, 35], and human pose estimation [36, 37, 21].
Advanced machine learning algorithms can analyze motion and physiological data
collected from wearable sensors locally and in real-time, thus enabling applications
like irregular rhythm notifications, early warning sign detections, and fall mon-
itoring. Beyond their immediate benefits, these applications also serve as initial
steps towards diagnosing, prognosing, and rehabilitating movement disorders
such as Parkinson’s Disease (PD) and stroke [23]. The potential of these tools in
revolutionizing personalized and preventative healthcare systems is immense.

Despite the promising potential, the emerging field of human representation
faces significant challenges that need to be addressed. These challenges can be
categorized into two main areas: sensing modalities and algorithm designs.

The first challenge lies in the diverse range of sensing modalities available for
capturing human representation. There are intrusive modalities, such as wearable
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devices with inertial measurement units (IMUs), as well as non-intrusive modalities,
such as RGB cameras or millimeter-wave radar. Each modality has its own precision,
environmental requirements, and power consumption characteristics. Therefore, it
becomes crucial to explore and identify the most suitable modalities for specific
applications. The choice of sensing modality directly affects the quality and accuracy
of the captured human representation, making it essential to investigate the trade-
offs between different modalities and their compatibility with target use cases.

The second challenge pertains to algorithm design, particularly in scenarios
where the applications need to run on edge devices. In such cases, the chosen algo-
rithms should be lightweight to ensure efficient execution on resource-constrained
devices. Additionally, these algorithms should possess the capability to generalize
well to unseen user data, as training specific users’ data for edge devices is often
challenging. Therefore, the algorithms need to be smart and adaptable, enabling
them to learn from limited training data and generalize effectively to a larger user
population. Striking the right balance between lightweight processing and general-
izability is crucial to ensure the successful deployment of human representation
applications on edge devices.

Beside the two main challenges, another crucial aspect to consider is the explo-
ration of generative models, which play a vital role in enhancing our understanding
and capabilities in representing human representation. The applications mentioned
earlier, such as human activity recognition and human pose estimation, primarily
fall under the category of discriminative models. These models focus on learning
the relationship between input data (sensor measurements) and corresponding
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outputs (activity labels or pose estimates). They excel at classifying or predicting
specific human behaviors or attributes based on observed patterns in the data. How-
ever, to gain a deeper understanding of human representation, it is equally crucial
to explore generative models. Generative models aim to capture the underlying
distribution of the data and generate new samples that are indistinguishable from
the real data. In the context of human representation, generative models can play
a significant role in uncovering the latent factors that shape human features and
behaviors, and in generating realistic and detailed human representations that go
beyond what can be directly observed in the data. Furthermore, generative models
can enhance our ability to handle missing or incomplete data, as they can fill in
gaps and generate plausible completions based on learned representations.

1.1 Contributions

Novel applications, such as human gait monitoring and pose estimation, have
emerged through the utilization of emerging sensing modalities. These advance-
ments enable innovative approaches to remote healthcare, providing valuable
insights into human movements and facilitating personalized care. This disserta-
tion explores three high-impact healthcare applications leveraging diverse sensing
modalities.

Movement disorders, such as Parkinson’s disease, affect more than 10 million
people worldwide [38]. Gait analysis is a critical step in the diagnosis and reha-
bilitation of these disorders. Specifically, step and stride lengths provide valuable
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insights into the gait quality and rehabilitation process. However, traditional ap-
proaches for estimating step length are not suitable for continuous daily monitoring
since they rely on special mats and clinical environments. To address this limitation,
this dissertation presents MGait, a novel and practical step-length estimation tech-
nique using low-power wearable bend and inertial sensors. Experimental results
show that the proposed model estimates step length with 5.49% mean absolute
percentage error and provides accurate real-time feedback to the user.

Rehabilitation plays a vital role in motor disorder treatment, typically performed
under clinical expert supervision [39, 40]. To overcome challenges related to com-
muting, expert shortages, and healthcare costs, innovative solutions are required
to enable patients to perform prescribed exercises at home. Human pose estima-
tion (HPE) is a substantial component of these programs since it offers valuable
visualization and feedback based on body movements. Camera-based systems
have been popular for capturing joint motion. However, they have high-cost, raise
serious privacy concerns, and require strict lighting and placement settings. This
dissertation proposes MARS, a mmWave-based assistive rehabilitation system for
motor disorders to address these challenges. MARS provides a low-cost solution
with a competitive object localization and detection accuracy. It first maps the 5D
time-series point cloud from mmWave to a lower dimension. Then, it uses a con-
volution neural network (CNN) to estimate the accurate location of human joints.
MARS can reconstruct 19 human joints and their skeleton from the point cloud
generated by mmWave radar. We evaluate MARS using ten specific rehabilitation
movements performed by four human subjects involving all body parts and obtain
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an average mean absolute error of 5.87 cm for all joint positions.
A range of sensors, including RGB-D cameras [7, 8, 9, 10, 11, 12], mmWave

radars [19, 20, 21, 22], and wearable inertial sensors [13, 14, 15, 16, 17, 18], have been
extensively explored for HPE. Despite previous efforts on datasets and benchmarks
for HPE, few dataset exploits multiple modalities and focuses on home-based health
monitoring. To bridge this gap, this dissertation presents mRI, a multi-modal 3D
human pose estimation dataset with mmWave, RGB-D, and Inertial Sensors. Our
dataset consists of over 160k synchronized frames from 20 subjects performing
rehabilitation exercises and supports the benchmarks of HPE and action detection.
We perform extensive experiments using our dataset and delineate the strength of
each modality. We hope that the release of mRI can catalyze the research in pose
estimation, multi-modal learning, and action understanding, and more importantly
facilitate the applications of home-based health monitoring.

In the pursuit of achieving advanced human representation, algorithm designs
play a crucial role in extracting meaningful insights from the available sensor
data. Specifically, these algorithms need to exhibit energy efficiency to ensure
their feasibility on edge devices. Additionally, they must possess the intelligence
and adaptability to learn from limited training data and effectively generalize
their understanding to a broader user population. This dissertation highlights
two algorithm designs that pave the way for more efficient and accurate human
representation in various applications.

The use of mmWave radar technology holds great promise for high-resolution
human pose estimation, offering cost-effective and computationally efficient capa-
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bilities [19, 20, 21, 22]. However, mmWave data point cloud, the primary input
for processing algorithms, is inherently sparse and contains less information com-
pared to alternative sources like video frames. To address these challenges, the
dissertation presents FUSE, a fast and scalable human pose estimation framework.
FUSE leverages a combination of multi-frame representation and meta-learning
techniques, enabling efficient and accurate estimation of human joint coordinates.
Experimental evaluations demonstrate that FUSE outperforms current supervised
learning approaches, adapting to unseen scenarios approximately four times faster
and achieving accurate human pose estimates with minimal error.

Traditionally, human activity recognition (HAR) involves training a classifier
offline using known user data and applying the same classifier to new users [41].
However, this approach often results in reduced accuracy for new users with
different activity patterns. To address this challenge, the dissertation introduces a
transfer learning framework for HAR. The framework leverages representational
analysis to identify common features that can be transferred across users, allowing
for improved generalizability. By transferring the reusable portion of the offline
classifier to new users and fine-tuning the user-specific features, the framework
achieves significant accuracy improvements and reduces training time. Moreover,
the proposed framework demonstrates reduced power and energy consumption
while maintaining or surpassing the accuracy achieved by training from scratch.

Generative models serve as a valuable approach to enriching the comprehension
of human representation, complementing the insights derived from discriminative
methods. Synthesis and reconstruction of 3D human face and head has gained
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increasing interests in computer vision and computer graphics recently [42, 5, 4].
Existing state-of-the-art 3D generative adversarial networks (GANs) for 3D hu-
man head synthesis are either limited to near-frontal views or hard to preserve
3D consistency in large view angles. This dissertation proposes PanoHead, the
first 3D-aware generative model that enables high-quality view-consistent image
synthesis of full heads in 360◦ with diverse appearance and detailed geometry
using only in-the-wild unstructured images for training. At its core, we lift up
the representation power of recent 3D GANs and bridge the data alignment gap
when training from in-the-wild images with widely distributed views. Specifi-
cally, we propose a novel two-stage self-adaptive image alignment for robust 3D
GAN training. We further introduce a tri-grid neural volume representation that
effectively addresses front-face and back-head feature entanglement rooted in the
widely-adopted tri-plane formulation. Our method instills prior knowledge of 2D
image segmentation in adversarial learning of 3D neural scene structures, enabling
compositable head synthesis in diverse backgrounds. Benefiting from these designs,
our method significantly outperforms previous 3D GANs, generating high-quality
3D heads with accurate geometry and diverse appearances, even with long wavy
and afro hairstyles, renderable from arbitrary poses. Furthermore, we show that our
framework can reconstruct full 3D heads from single input images for personalized
realistic 3D avatars.

In summary, this dissertation makes the following contributions:

• Present MGait, a model-based gait monitoring technique [34],

• Present MARS, a mmWave-based human pose estimation framework for
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rehabilitation [36],

• Present mRI, an open-source multi-modal 3D human pose estimation dataset [43],

• Present FUSE, fast and scalable human pose estimation using mmWave point
cloud [37],

• Present a transfer learning algorithm using representation analysis for human
activity recognition [33], and

• Present Panohead, a 3D generative model for 360◦ human head synthesis [44]

The rest of the dissertation is organized as follows. The literature survey is
discussed in Chapter 2. Chapter 3 presents MGait, the model-based gait analysis
using wearable bend and inertial sensors. MARS and mRI are presented in Chapter 4
and Chapter 5, respectively. FUSE and transfer learning algorithm for HAR are
presented in Chapter 6 and Chapter 7, respectively. Chapter 8 presents Panohead,
a novel approach to synthesize and generate 3D human head using generative
models and neural radiance field. Finally, Chapter 9 concludes this dissertation
with directions for future work.
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2 literature review

2.1 Research Intersection of Modalities, Algorithms,

and Applications in Human Representation

To fully unlock the potential of emerging human representation, wearable tech-
nology serves as a crucial enabler, given its agility in sensing, real-time process-
ing capabilities, and user-friendly nature. This notion is further substantiated by
breakthroughs in both academia [45, 27, 26, 23] and industry [25, 24]. However,
the constraints of wearable devices, such as their small size and cost limitations,
significantly limit battery capacity, making energy a major hurdle for wearable
technology to become ubiquitous. Consequently, low power design and effective
energy harvest&management [46, 47, 48, 49, 50, 51] are significant challenges to
the widespread adoption of wearable devices. Although not directly addressed in
this dissertation, the role of wearable technology and its energy management are
essential to realize the broader vision of comprehensive human representation.

This dissertation seeks to provide a comprehensive exploration of emerging
trends in human representation, focusing on three interconnected domains: sens-
ing modalities, algorithms, and applications. At its core, human representation
encapsulates various facets of our humanity, ranging from body posture and facial
expressions to behavior patterns and psychological states. To capture these rich
and insightful representations, it is critical to harness and effectively process data
from various innovative sensing modalities. These include RGB-Depth cameras,
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inertial sensors, and wireless sensor technologies such as mmWave radar.
Once human form and activities are transformed into digital representations,

they serve as the catalyst for a multitude of innovative and impactful human-
centric applications. Notable among these are human activity recognition [27],
gait recognition [52, 35], and pose estimation [11, 18, 53]. By offering insights
into early disease diagnosis and prognosis, these applications hold the potential to
significantly enhance the quality of life for individuals [23].

Powering these processes and applications necessitate the development and
application of intelligent, lightweight, and generalizable algorithms. We focus on
transfer learning [54] and meta-learning [55], given their demonstrated effective-
ness and widespread popularity in the field.

This chapter will expand the literature reviews into three focused sections reflect-
ing these three domains. We will begin by charting the development of emerging
sensing modalities, followed by a discussion on the role of smart algorithms, with
an emphasis on transfer learning and meta-learning. The final section will delve
into high-impact applications, spotlighting human activity recognition, gait recog-
nition, pose estimation, and the generation of 3D human. By doing so, we aim to
illuminate the profound interconnections among sensing modalities, algorithms,
and applications in the broad context of human representation.
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2.2 Emerging Sensing Modalities

Vision

Computer Vision (CV) offers an accurate representation of the real world using
true-color images or videos. The primary goal of using vision-based approaches
in human-centered application is to help machine understand human actions and
activities. RGB video camera [56, 57], depth camera [58, 59, 60], and motion capture
system [57, 60] are the major devices have been used in this area. In [56], Ar et
al. present Home-based Physical Therapy Exercises (HPTE) dataset which targets
therapy actions. The Kinect camera is used in this study to provide video and
depth streams to the user. One of the outputs of this approach is the binary image
that indicates the body shape. They give eight shoulder and exercise movements
but without any joint or skeleton information. In 2015, researchers developed a
system and released a dataset named EmoPain that has both body joint information
and face videos [57]. These systems use RGB cameras often has limitation due to
environmental noise, and lens distortion [61].

Besides the RGB video-based approach, Microsoft Kinect and Kinect V2 [61]
provide depth cameras to extract the human joints information. Kinect uses an
RGB and infra-red camera, while Kinect V2 uses a Time of Flight (ToF) camera to
capture the information. The Kinect family has become one of the popular ways
to obtain the ground truth label for training due to its convenience, low cost, and
accurate performance [58, 19, 22].



13

Inertial Sensors

Wearables like inertial sensors (IMUs) play an essential role in human sensing. IMU
is relatively robust to different environmental settings since sensing is not interfered
with by light conditions or visibility. Thus, it is more practical for occlusions or
baggy clothing scenarios. In addition, the explainability of IMUs-based method is
promising since every IMU is placed in a fixed position of a person, thus accounting
for specific limbs’ movements. As one of the earliest studies in this field, [62]
estimate human pose using 17 IMUs, and a Kalman filter is employed for all the
measurements. It comprehensively defined 17 IMUs on a person, thus achieving
accurate human pose estimation. However, the large number of IMUs require
long setup times and make it uncomfortable for users. Marcard et al. proposed
Sparse Inertial Poser (SIP) [16]: Automatic 3D Human Pose Estimation from Sparse
IMUs. This work provides a new method to estimate the human pose using only six
IMUs. By exploiting a statistical body model and jointly optimizing posture over
continuous time frames to fit both orientation and acceleration data, SIP achieves
positional errors of 3.9 cm. A follow-up work [15] combines IMUs and a moving
camera to estimate multiple human poses in challenging outdoor scenes robustly.
Wang et al. propose a biomechanical model that takes knee bending into account
and uses data obtained from a total of four low power IMUs placed on both legs to
estimate step length and gait asymmetry [63].
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Wireless Sensors

Unlike wearables, wireless sensors using Wi-Fi, Radio-Frequency, and mmWave are
non-intrusive, which is more user-friendly. Early applications of wireless sensors
focused on classification [64], localization [65], and obstacle detection [66] prob-
lems that do not require a high resolution. For example, a mmWave radar-based
indoor human activity recognition technique is proposed in [64]. It recognizes
five different activities: boxing, jumping, jumping jacks, squats, and walking with
more than 90% accuracy. Sugimoto et al. [66] present an obstacle detection method
consisting of occupancy-grid representation and a segmentation method that di-
vides the radar data. Similarly, Lemic et al. [65] propose a localization system
that determines a mobile node’s location using the flight time and arrival angles
obtained by all the mmWave devices. In summary, early wireless sensors only
requires a coarse-grained representation due to applications’ simplicity.

However, it requires a fine-grained representation when we aims to reveal the
nature of human motion (e.g., 3D joint coordinates) for emerging applications.
Zhao et al. [19] propose a technique that uses radio-frequency (RF) antenna arrays
reconstructs up to 14 body parts, including head, neck, shoulders, elbows, wrists,
hip, knees, and feet. They compute 4D (time and three spatial axes) RF tensors
using a 64-element antenna array with 60cm × 18cm area. The massive customized
antenna arrays enrich the input representation, but the large size and high cost
significantly hinder practicality.

Recent mmWave radar-based pose estimation techniques use point cloud rep-
resentation from commercial radar devices like Texas Instrument (TI) xWR1x43.
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Sengupta et al. [22] propose mmPose, a human pose estimation technique that
constructs the skeleton using mmWave point cloud and a forked-CNN architecture.
They use two radar devices and sum up the point values in the feature map level
to overcome the sparse representation of the point cloud. Xue et al. [21] present
the mmMesh technique to construct human mesh using mmWave point cloud. It
employs a human shape model to strengthen the ability of deep learning models
to predict human shape with fewer points. However, none of the prior techniques
address a fundamental problem: sparsity of mmWave point cloud data. Our pro-
posed work FUSE (Chapter 6) adequately resolves the issue by temporally fusing
the mmWave point cloud.

2.3 Smart Algorithms

Meta Learning

Meta-learning has recently gained momentum because it can help ML models
adapt to unseen scenarios faster with a few training iterations [55, 67, 68]. The
meta-learning concept was first proposed in [69]. It focuses on learning a strategy
that generalizes to related yet unseen tasks from similar task distributions. It is
first trained with a batch of tasks and learning rules designed to facilitate learning
new tasks using only a few training iterations. In this way, the model employs
the parameters sensitive to new samples, expediting generalization to new tasks.
A variety of approaches focus on learning the best initialization of the network
then fine-tuning it with the new task [55, 67, 68]. Finn et al. propose a popular
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algorithm MAML [55], which tries to find the optimal initialization of the network
directly. The idea of MAML is that model is trained on a batch of tasks, such that it
can optimize model parameters sensitive to new tasks with very few data samples.
MAML is model-agnostic, and it does not introduce any learned parameters for
meta-learning. It is soon followed by [67, 68]. FOMAML [67] is a variant of MAML.
It ignores the second derivative terms used in MAML’s gradient descent algorithm.
Reptile [68] is very similar to FOMAML in the sense that it also only uses first-order
gradient information. But it does not require a training-test split for each task. A
few studies have recently applied meta-learning to point cloud [70, 71]. Puri et al.
[70] use MAML to solve the point cloud-based object classification and show it
achieves similar accuracy with fewer data samples. Similarly, Li et al. [71] propose
few-shot meta-learning on point cloud for indoor semantic segmentation. However,
both studies focus on the lidar point cloud, and their applications only involve
simple classification and semantic segmentation. Our proposed FUSE (Chapter 6)
is work applying meta-learning to human pose estimation using mmWave point
cloud.

Transfer Learning

Transfer learning aims to leverage the information learned in one domain to improve
the accuracy in a new domain [72]. The information used for transfer includes the
weights of a classifier [73, 74, 75], features [76], and instances of data [77]. The
transfer can occur between different applications or between different scenarios of
a single application [72]. A popular example of transfer learning between applica-
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tions is medical imaging [78, 79] where CNNs trained for classifying ImageNet [80]
are adapted to classify medical images. Similarly, transfer learning for new sce-
narios includes adaptation to a new device [81], classes [82], domains [30, 83] or
users [84].

One of the fundamentals aspects of transfer learning is identifying what infor-
mation to transfer. Prior work addressed parameter transfer [85], feature repre-
sentation transfer [86, 87], and data instance transfer [77]. We focus on parameter
transfer literature since the proposed approach uses parameter transfer as well.
Oquab et al. [85] design a method to reuse layers trained with one dataset to com-
pute mid-level image representation for images in another dataset. Yosinski et
al. [88] empirically quantify the generality versus specificity of neurons in each
layer of a deep convolutional neural network for the ImageNet [80] dataset. They
show that the features in the initial layers are general in that they are applicable to
multiple image recognition tasks. Morcos et al. [89] directly analyze the hidden
representations of each layer in CNN by using canonical correlation analysis (CCA),
which enables comparing learned distributed representations between different
neural networks layers and architectures.

Transfer learning has been applied successfully in fields such as medical imaging
classification and computer vision [79, 90, 91, 92]. Salem et al. [79] present an
approach to transfer a CNN from image classification to electrocardiogram (ECG)
signal classification domain. Similarly, Raghu et al. [90] explore properties of
transfer learning from natural image classification networks to medical image
classification.Quattoni et al. [91] show that prior knowledge from unlabeled data
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is useful in learning a new visual category from few examples. The authors develop
a visual-category learning algorithm called sparse prototype learning that can learn
an efficient representation from a set of related tasks while taking advantage of
unlabeled data.

One of the challenges in human activity recognition (HAR) algorithms is that
the data available at design time may not be representative of the activity patterns of
new users. As a result, the accuracy can degrade for new users [93]. Recent research
has used transfer learning to address this issue [94, 54, 93]. The survey by Cook et
al. [54] presents how different types of transfer learning have been used for HAR.
Ding et al. [93] perform an empirical study to analyze the performance of transfer
learning methods for HAR and find that maximum mean discrepancy method is
most suitable for HAR. A CNN-based method to transfer learned knowledge to
new users and sensor placements is presented in [95]. The authors empirically
determine the number of layers to transfer based on the accuracy obtained after
transferring. However, this method is not scalable since the training has to be
repeated each configuration of the transfer. Rokni et al. [94] use transfer learning
to personalize a CNN classifier to each user by retraining the classification layer
with new users. However, the authors do not provide any insight into the number
of layers that can be transferred between users and how it benefits the learning for
new users. In contrast, our proposed work (Chapter 7) perform representational
analysis using CCA to determine layers that need to be fine-tuned for new users.
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2.4 Novel Applications

Human Gait Recognition

Gait analysis is vital for enabling a variety of cyper physical systems (CPS) ap-
plications, such as feedback for patients under treatment, prediction of possible
movement disorders [96, 97], athlete assessment, fall detection [98], and numerous
other augmented and virtual reality applications. For this reason recent work has
focused on using wearable sensors to estimate step length, which is a very important
parameter in gait analysis [99, 63, 100, 101, 102, 103].

Table 2.1 summarizes state-of-the-art step length estimation techniques that are
closest to our work. Wu et al. place two IMU dev-kits on the ankles of the subjects
to estimate step length, using an inverted pendulum model with 3.69% MAPE
[100]. Their model does not consider knee and hip joints. Instead, it employs
ankle-mounted motion sensors to calculate the step length using the leg length
and the sine of the leg’s orientation. However, the error reported in their study is
for the total walking distance, not for individual step lengths. Since positive and
negative errors in individual step lengths cancel out, this reporting choice shows
lower MAPE. For example, the proposed MGait technique MAPE decreased by
1% to 2% if we consider the total walking distance. Since the model assumes a
single segment for each leg, it is able to calculate the step length using only two
IMUs. Consequently, the power consumption of this approach is lower, compared
to other more complicated approaches. Their approach also requires a Kinect V2
setup to estimate leg lengths of the subjects in their study. We do not include it
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Table 2.1: A compilation of previous related work on gait analysis (“–” means the
results are not reported)

Ref Step Length Err. Stride Length Err. Velocity Err. Sensor Type Sensor
Count

User
Feed.

Wearable
Form-factor

Power
(mW)

RMSE MAPE RMSE MAPE RMSE MAPE
[63] 5.5 cm - - - - - MPU-6050 IMU 4 ✗ ✓ 36.10

[100] - 3.69% - - - - MPU-9150 IMU 2 ✗ ✗ 18.53
[102] - <10% - - - - Smartphone accel. 1 ✗ ✗ -
[99] 4.1 cm 4.75% 6.3 cm 3.70% 0.07 m/s 4.23% High Cost UWB,

MPU-6050 IMU 2+2 ✗ ✓ 145.20

[103] - <5% - <5% - - MPU-6050 IMU,
MPU-9250 IMU 3+4 ✗ ✓ 64.13

GAITRite [104] - <2% - <1% - <1% GR* Proprietary >10k ✗ ✗ -
MGait (Chapter 3) 4.3 cm 5.47% 6.24 cm 3.90% 0.03 m/s 2.33% MPU-9250 IMU,

Bendlabs 1-Axis 2+2 ✓ ✓ 16.97

in the sensor type since it does not contribute to the model calculation. Pepa et al.
utilize accelerometers in smartphones and develop an app to collect motion data.
They also use an inverted pendulum model and estimate step length with less than
10% MAPE [102]. None of these studies provide stride length and gait velocity
estimates, which are two other main parameters used for gait function analysis
[52].

A recent work addresses the limitations in the previous studies, by using four
high-cost ultra-wideband (UWB) distance sensors and four IMUs on the back and front
of both feet [99]. It employs a geometrical trapezoid distance model and estimates
step length with 4.1 cm RMSE and 4.75% MAPE. However, the high processing
requirements of the data from eight sensors increase the complexity and the power
consumption of the system. Another recent study places two IMUs on the feet,
two IMUs on the shanks, two IMUs on the thighs, and one IMU on the pelvis,
using a total of seven IMUs [103]. It uses a Kalman filter framework to calculate
the orientation of each sensor. Since they use seven IMUs, the proposed approach
is not practical, and the power consumption of the system is high, due to a large
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number of sensors and their processing cost.
In summary, none of these studies targets real-time feedback to the user and

considers the system power consumption. In contrast to all of these approaches, our
proposed MGait (Chapter 3) estimates the key gait parameters with the minimum
number of IMUs and low-power bend sensors (one on each leg), and a low power
micro-controller using a novel closed-form expression. It achieves accurate step
length, stride length, and gait velocity. Low power consumption and processing
requirements of MGait can enable the first low-cost, low power, and wearable CPS
for gait analysis with user-feedback functionality.

Human Activity Recognition

Human activity recognition is a critical component in a range of health and activity
monitoring applications [105, 106, 107]. It provides valuable insight into movement
disorders by allowing health professionals to monitor their patients in a free-living
environment [108, 109, 110]. HAR is also the first step towards understanding gait
parameters, such as step length and gait velocity, which are also used in movement
disorder analysis and rehabilitation [34, 111, 112, 113]. In addition, HAR is used
for obesity management and promoting physical activity among the public. Due to
these high-impact applications of HAR, it has received increased research attention
in recent years [114, 115]. One of the challenges in HAR algorithms is that the data
available at design time may not be representative of the activity patterns of new
users. As a result, the accuracy can degrade for new users [93].
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Human Pose Estimation

3D Human pose estimation (HPE) refers to detecting and tracking human body
parts or key joints (e.g., wrists, shoulders, and knees) in the 3D space. It is a funda-
mental and crucial task in human activity understanding and movement analysis
with numerous application areas, including rehabilitation [60, 116, 56, 58], profes-
sional sports [117], augmented/virtual reality, and autonomous driving [118].

Marker-based optical motion capture (MoCap) systems are often used to ac-
quire accurate 3D body pose [9, 57, 60]. Optical MoCap systems require attaching
reflective markers to the body and are quite costly, thus are limited to laboratory
settings. Recently, MoCap systems based on body-worn IMUs have been devel-
oped [14, 17, 16, 13, 119]. They are considerably cheaper yet at a cost of tracking
accuracy due to drifting [120].

Besides marker-based MoCap, Marker-less MoCap has received much attention.
Depth cameras are often used for pose estimation [121], yet are limited by their
sensing range (within 5 meters). Recent effort has focused on pose estimation
using RGB cameras. With the help of machine learning, 3D joints can be estimated
from a single RGB image [122], or from several RGB images from different viewing
angles captured by multiple cameras [11, 12, 17], or from a sequence of RGB
frames within a video [123]. However, RGB cameras are easily affected by poor
light conditions, and raise privacy concerns for home-based monitoring. More
recently, mmWave-based pose estimation, including radio frequency sensing, has
emerged as a promising solution [20, 19, 22, 21, 36]. A mmWave-based solution
has demonstrated comparable accuracy to RGB and depth cameras, yet excels at
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privacy-preserving and long working range.
High-quality datasets with annotations are crucial for the advancement of pose

estimation. Table 2.2 summarizes mainstream HPE datasets. Some of the early
effort focuses on 2D HPE (e.g., COCO [7] and MPII [8]), or 3D HPE a single
modality (e.g., 3DHP with images, mmPose [22] with mmWave, and MPI08 [17]
with IMU). More recent works combines multiple modalities for 3D HPE. For
example, Human3.6M [9] contains RGB images and depth maps of 11 professional
actors performing 17 daily activities, coupled with ground-truth 3D poses from
optical MoCap. RF-Pose3D [19] presents the first study to use radio frequency
sensing for 3D HPE, together with a dataset of both RGB images and radio signals.
MoVi [119] incorporates both IMU signals and RGB frames, as well as ground-truth
3D poses from MoCap, and presents a benchmark for both 3D HPE and human
activity recognition.

To the best of our knowledge, our proposed mRI (Chapter 5) is the first HPE

dataset with the most comprehensive set of sensing modalities, including RGB, depth,
IMU, and mmWave. In addition, mRI fills the vacancy of standardized mmWave-based

human pose estimation, as all current mmWave-based HPE datasets are either not
open-sourced or without proper keypoints annotations and RGB references.

Moving forward, the results of 3D HPE can be used by skeleton-based action
recognition [124, 10] to localize and recognize actions in time, broadening its
applications in health monitoring [125, 126] and human behavior analysis [127].
Our dataset provides action annotations and we evaluate using the estimated pose
for temporal action localization [128].
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Table 2.2: Summarization of relevant HPE datasets

Dataset Sensing Modalities # of
Subjects

# of
Seqs

# of
Actions

# of
Synced Frames

Annotations
RGB Depth IMU mmWave Action 2DKP 3DKP

COCO [7] ✓ - - - - - - 104k - ✓ -
MPII [8] ✓ - - - - 24k 410 25k ✓ ✓ -
MPI-INF-3DHP [12] ✓ - - - 8 16 8 1.3M - ✓ ✓
Human3.6M [9] ✓ ✓ - - 11 839 17 3.6M ✓ ✓ ✓
CMU Panoptic [11] ✓ ✓ - - 8 65 5 154M - ✓ ✓
NTU RGB+D [10] ✓ ✓ - - 40 56k 60 4M ✓ ✓ ✓

3DPW [14] ✓ - ✓ - 7 60 - 51k - ✓ ✓
MPI08 [17] ✓ - ✓ - 4 24 24 14k - - ✓
TNT15 [13] ✓ - ✓ - 1 - 5 14k ✓ - ✓
MoVi [119] ✓ - ✓ - 90 1044 21 712k ✓ ✓ ✓
RF-Pose [20]† ✓ - - ✓ 100 - 1 - ✓ ✓ -
RF-Pose3D [19]† ✓ - - ✓ >5 - 5 - ✓ ✓ ✓
mmPose [22]† - - - ✓ 2 - 4 40k ✓ - ✓
mmMesh [21]† ✓ - - ✓ 20 - 8 3k ✓ - ✓
MARS [36] - - - ✓ 4 80 10 40k ✓ - ✓

Reiss et al. [116] - - ✓ - 9 - 18 3.6M ✓ - -
HPTE [56] ✓ ✓ - - 5 240 8 100k ✓ - ✓
EmoPain [57] ✓ - - - 50 - 11 33k ✓ - ✓
AHA-3D [58] ✓ - - - 21 79 4 170k ✓ - ✓
UI-PRMD [60] ✓ - - - 10 100 10 60k ✓ - ✓

mRI (Chapter 5) ✓ ✓ ✓ ✓ 20 300 12 160k ✓ ✓ ✓

HPE promises to capture complex body movement naturally occurring in daily
activities or prescribed by clinicians, and thus offers a promising vehicle to inform
treatment and to quantify the progress of treatment. In particular, human pose
estimation plays an increasingly important role in healthcare applications, such
as remote rehabilitation training [129, 130]. The current mainstream rehabilita-
tion treatment involves a physical therapist supervising the patients in person.
In contrast, HPE-based health monitoring systems can help clinicians correct pa-
tients’ movements or instruct them remotely. Individual sensing modality has been
previously considered, including RGB camera [56, 57], depth camera [58, 59, 60],
IMUs [116], and MoCap [57, 60]. Reiss et al. [116] presents a dataset monitoring
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physical activities with three IMUs and a heart rate monitor. The home-based
physical therapy exercises (HPTE) dataset [56] uses Kinect to record video and
depth streams while users perform eight therapy actions. The EmoPain dataset [57]
captures both joint information and face videos to classify the pain level based on
the emotion in the rehabilitation movements. The AHA-3D [58] dataset contains
79 skeleton videos recorded by Kinect for four healthcare activities. Similarly, the
UI-PRMD [60] dataset captures common physical rehabilitation exercises using
the Kinect and Vicon MoCap. Similar to these works, mRI focuses on rehabilitation
exercises, and provides the most comprehensive set of sensing modalities while
remaining competitive in its scale. To the best of our knowledge, our proposed
MARS (Chapter 4) is the first work performs home-based rehabilitation through
mmWave-based human pose estimation.

3D Human Generation

All of the aforementioned applications primarily rely on discriminative models,
which focus on learning the relationship between sensor measurements and corre-
sponding outputs such as activity labels or pose estimates. However, the exploration
of generative models offers an equally valuable perspective for enriching our un-
derstanding of human representation, complementing the insights derived from
discriminative methods. Generative models play a crucial role in enhancing our
comprehension of human representation by capturing the underlying distribution
of the data and generating new samples that are virtually indistinguishable from
real data. This approach provides valuable capabilities for data augmentation,
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completion, and the creation of novel human representations. By filling in missing
information and simulating diverse scenarios, generative models can effectively
address challenges associated with limited or incomplete data.

3D-aware generative models have recently seen rapid progress, fueled by the
integration of implicit neural representation in 3D scene modeling and Generative
Adversarial Networks (GANs) for human face synthesis [2, 131, 132, 5, 133, 4,
3]. Given the impressive progress of GANs on 2D image generation [134, 135,
136, 137], many studies have attempted to extend them to 3D-aware generation.
These GANs aim to learn a generalizable 3D representation from 2D image a
collections. For face synthesis, Szabo et al. [138] first proposed using vertex position
maps as the 3D representation to generate textured mesh outputs. Shi et al. [139]
proposed a self-supervised framework to convert 2D StyleGANs [135] into 3D
generative models, although its generalizability is bounded by its base 2D StyleGAN.
GRAF [2] and pi-GAN [131] are the first to integrate NeRF into 3D GANs. However,
their performance is limited by the intense computation cost of forwarding and
backwarding a complete NeRF. Many recent studies [42, 132, 3, 140, 4, 141, 5,
133, 142, 143, 144] have attempted to improve the efficiency and quality of such
NeRF-based GANs. Specifically, EG3D [5] introduces tri-plane representation that
can leverage a 2D GAN backbone for generating efficient 3D representation and
is shown outperforming other 3D representations [144]. Parallel to these works,
another thread of studies [145, 146, 147, 143] have been working on controllable
3D GANs that can manipulate the generated 3D faces or bodies. In strong contrast
to previous studies, our proposed PanoHead (Chapter 8) is the first 3D GAN
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framework that enables view-consistent and high-fidelity full-head image synthesis
with detailed geometry, renderable in 360◦. It opens up new possibilities for human
representation and downstream tasks such as style mixing and inferencing the
full-head from a single view RGB image.
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3 mgait: model-based gait analysis using wearable

bend and inertial sensors

3.1 Background, Motivation and Contributions

Movement disorders are one of the leading causes of functional disability in the
elderly population. More than 10 million people worldwide suffer from movement
disorders, such as Parkinson’s disease (PD); more than 1,200,000 patients are ex-
pected to be diagnosed with PD in the United States by the year 2030 [148, 26]. Gait
impairment and instability are among the most common symptoms in movement
disorder patients and stroke survivors [149]. Therefore, gait function analysis plays
an important role in treatment and rehabilitation.

Gait function analysis provides valuable insight into a patient’s symptoms and
rehabilitation, by evaluating metrics, such as step length, stride length, and gait
velocity [52, 99]. In particular, step length is used to analyze the symmetry of gait.
While step length remains nearly constant for a healthy person, it varies as the left
and right feet alternate for a patient with gait asymmetry. This difference is used
as an important feature to evaluate the symmetry of gait and monitor the progress
of rehabilitation [52].

Several clinical studies use the GAITRite system [104], a pressure-sensitive walk-
ing mat, to analyze the gait parameters [150, 151, 152]. While GAITRite can provide
a 98%-99% accuracy, it cannot be used to continuously monitor the patient’s gait
after they leave the clinic. To address this limitation, recent work employs wearable
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sensors for gait analysis [63, 99, 100]. Most of these studies mount a number of
inertial motion units (IMU), which typically incorporate a 3-axis accelerometer
and a 3-axis gyroscope, on the leg to collect acceleration and rotation data when
a person is walking. However, these approaches need to employ either a large
number of sensors [99, 103] or are evaluated using a high-cost IMU (over a few
thousand dollars) [101], which is not practical for daily use. Therefore, there is
a critical need for simple and intuitive models to estimate gait parameters using
relatively few sensors. This chapter presents a wearable cyber-physical system
(CPS), called MGait, that combines physiological sensors, energy-efficient local
processing, and real-time user feedback. We implement MGait on a knee sleeve, as
shown in Figure 3.1 and demonstrate that it achieves the following goals:
Functionality: Enable continuous daily monitoring and real-time feedback with 95%
average accuracy without relying on any clinical environment and experimental
infrastructure.
Power-performance: Achieve real-time operation and mW-range operation using
only one pair of IMUs and low-power bend sensors for the first time in literature.

We meet these goals with two sensors per leg and commercial-off-the-shelf
components that can be integrated with a total cost of less than $160, in contrast to
techniques that use sensors and equipment with over one order of magnitude higher
cost. A stretchable bend sensor mounted on the back of the knee measures the knee
angle, while an IMU sensor above the knee measures the swing of the hip on each
leg, as shown in Figure 3.1. Data from the bend and IMU sensors are processed
locally in real-time to obtain these angles. We propose a novel biomechanical model
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Figure 3.1: (a) Wearable setup used for gait analysis (b) Magnified view of the
sensors

and derive a closed-form expression that computes the step length using the angle
data. Using only our closed-form expression and sensor data leads to over 10%
estimation error due to sensor offset and measurement noise. We reduce this error
significantly using a novel two-step nonlinear regression technique. Thorough
experimental evaluations with seven subjects show that the proposed approach
achieves a 5% mean absolute percentage error (MAPE) with this optimization. In
addition, we also present a recursive least square estimation technique that can
tune the proposed model in the field. Finally, we employ the proposed model to
derive other commonly used clinical metrics, including stance time, swing time,
gait velocity, and stride length.

In summary, the major contributions of this chapter include:

• An energy-efficient wearable cyber-physical system for real-time gait analysis
and step length estimation.
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• A novel analytical modeling approach and a closed-form expression for esti-
mating step length, stride length, stance time, swing time, and gait velocity.

• A thorough experimental evaluation, including offline and online estimation,
with seven subjects and a new dataset.

3.2 Overview of Gait Cycle and MGAIT Approach

3.2.1 Gait Cycle Definition and Segmentation

Accurate step length modeling requires a clear understanding of the periodic gait
cycle and two key angles (All the angles and the length of the limbs in the following text

are considered on the sagittal plane unless otherwise specified.):
Knee Angle (β) is the angle formed at the joint of the thighs and legs, as shown

in Figure 3.1(a). It ranges between 0 (when the leg is straight) and ≈50 (during
the swing).

Hip Angle (α) is the angle formed by the inner thigh and the vertical axis, as
shown in Figure 3.1(a). It is positive (≈40) when the thigh is in front of the torso
and negative when the thigh is behind the torso, as shown in Figure 3.2(a).

Knee and hip angles change periodically during the gait cycle. For the front
limb, the hip and knee angles are denoted by αf and βf, respectively. Similarly, the
hip and knee angles of the back limb are denoted using αb and βb, respectively.
There are four key events and two stances [153, 154], as marked in Figure 3.2(a):

1. Initial Contact: At the beginning of the gait cycle, the foot just touches the
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Figure 3.2: Overview of a gait cycle and MGait framework

ground. The knee angle of the front leg (the left leg shaded in Figure 3.2(a))
reaches its first minimum and the hip angle is close to its maximum, as shown
with markers A and B, respectively.

2. Opposite foot-off : The opposite leg (the right leg in Figure 3.2(a)) starts lifting
from the ground. After this point, the right leg is in a forward swing, until it
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strikes the ground. The angles in this stance are denoted by markers C and D.

3. Opposite foot-strike: At this point, the right leg completes the swing (i.e., one
complete step) and touches the ground. The right leg is in front of the torso
while the left leg is behind the torso. Thus, the knee angle of the right leg is
at a minimum, as shown with the marker E in Figure 3.2(a).

4. Foot-off : The hip angle of the left leg reaches its minimum value. The left also
starts its swing forward for the next step. This stance is shown using markers
G and H.

These four events of one leg belong to its stance phase. The period from foot-off
to the next initial contact is the swing phase.

3.2.2 Flow of the MGait Approach

The goal of the MGait approach is to model and estimate the step length and
relevant parameters using the setup shown in Figure 3.1(a). We place a bend
sensor vertically aligned to the backside of the knee when the subject is standing.
To measure the knee angle with the best accuracy, the midpoint of the bend sensor
is adjusted at the knee level. The IMU is placed on the hip, perpendicular to the
ground when the subject is standing. Accelerometer and gyroscope data from the
IMU are used to calculate the hip angle. We process the angle data to find the
major events in the gait cycle, as outlined in Figure 3.2(c). Specifically, we find the
points {A, B, C, D} for the first step and {E, F, G, H} for the second step plotted
in Figure 3.2(a). The angles at these points are used to calculate the step length
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components d1–d4 shown in Figure 3.2(b). These components are used by the
MGait approach to compute the step length, stride length, and gait velocity. The
details of the analytical model to compute the step length, stride length, and gait
velocity are presented in Section 3.4.

3.3 Hip and Knee Angle estimation

3.3.1 Sensor Calibration and Data Pre-processing

Due to changing environment, sensor data is noisy and drift prone. For instance,
angle measured by the bend sensor for the resting state can vary with time and
IMU sensors may have offsets. To calibrate the sensors, we instruct the users to
stand still with a straight leg for a few seconds before the experiment. During this
period, we record the sensor readings and find their median values as the offsets.
We then subtract the offsets from the sensor data during actual use. For example,
the self-calibration ensures that the IMU measures only the gravity when the user
stands in a straight position.

After calibrating the sensors, we apply a downsampling and smoothing filter
to reduce noise in the data. For each sensor, we obtain the downsampled and
smoothed samples as:

ss[Mk] =
1

2M
M(k+1)∑

i=M(k−1)+1
s[i] (3.1)

where ss is the smoothened data stream, M is the downsampling factor, k is the
sample index, and s is the data stream before filtering. The IMU and bend sensor
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sampling rates are 250 Hz and 100 Hz, respectively. Since the fastest gait is less
than 10 Hz, we downsample the data to 25 Hz, which is sufficient, considering the
Nyquist rate. The specifications of sensors before and after filtering are shown in
Table 3.1.

Table 3.1: Sensors specifications

Sensor
range

Sampling
rate (Hz)

Sampling rate after
median filter (Hz)

Accelerometer ±8g 250 25
Gyrometer ±250dps 250 25
Bending sensor ±180° 100 25

3.3.2 Knee Angle Computation and Visualization

The output of the bend sensor (located at the back of the knee) is the angle displace-
ment experienced by the sensor, as illustrated in Figure 3.1(a). Sample knee angle
data from our experiments is visualized in Figure 3.3(a). A comparison between
the raw and filtered data shows that the averaging filter smooths out the variations
in the data. The knee angles reach a maximum of about 50–55° as the leg swings.
Another key observation is that the angles of the two legs exhibit approximately
50% phase shift when walking. This is expected for healthy subjects, since their
steps are of similar length.
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3.3.3 Hip Angle Computation and Visualization

We find the hip angle using the IMU sensor located right above the knee, as shown
in Figure 3.1(a). There are several approaches to filter the accelerometer and
gyroscope samples from the IMU and obtain the hip angle. Among these, we
compared the performance of the complementary filter [155] and the Madgwick
filter [156], which are the most commonly used techniques. Since the Madgwick
filter outperforms the complementary filter in terms of the ability to converge and
the smoothness, we used it in the final implementation. The Madgwick filter uses
a quaternion representation of the accelerometer samples and applies a gradient
descent algorithm to calculate the error in the direction of the gyroscope samples.
By compensating for the error, it accurately estimates the orientation of the IMU
even during motion, without being affected by gyroscopic drift [156].

Figure 3.3(b) plots left and right hip angles during walking. The hip angles
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forming hip angle (c) after the Madgwick filter

vary between a minimum of about -10° to a maximum of 35° and exhibit a 50%
phase difference, as expected. We also show inputs and outputs of the Madgwick
filter in Figure 3.4. Specifically, the Madgwick filter takes the accelerometer and
gyroscope data shown in Figures 3.4(a) and 3.4(b) as inputs. Using these inputs, it
generates the smoothed hip angles, as shown in 3.4(c).
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3.3.4 Finding the Key Events during the Gait Cycle

We need to identify the key gait cycle events, such as initial contact and foot-off,
to convert the knee and hip angles into step length. From our gait cycle analysis,
we know that these events occur when the knee angle is at a minimum for one
leg (point A in Figure 3.2(a)), while the hip angle is at a minimum for the other
(point D in Figure 3.2(a)). To obtain the minimum values, we continuously monitor
the five-point derivative of the two angles. A minimum is marked whenever the
derivative changes from negative to positive or zero to positive. After detecting
the minimum of the knee angle, we designate the corresponding leg as the front
limb for the current step. We then call the knee angle βf and hip angle αf for
the front limb. For example, the knee angle βf and hip angle αf in Figure 3.2(a)
correspond to points A and B. We then wait for the minumum of the hip angle
to occur in the other leg, which is referred to as the “back limb”. At this point,
the knee angle βb and the hip angle αb for the back limb corresponds to points
C and D in Figure 3.2(a). The angle values are then plugged into our analytical
model to estimate the step length, as detailed in Section 3.4. This process is repeated
continuously, where front and back limbs alternate.

3.4 Proposes Gait Analysis Model

3.4.1 Parameter Definitions

MGait estimates the step length, stride length, and gait velocity defined below in
real-time.
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Step Length is the distance between the front and back feet, when the front limb
is in the initial contact stance and the back limb is in the foot-off stance.

Stride Length is the distance between two foot strike stances of the same leg.
Stance Time stands for the period that from the foot touches the ground to the

same foot leaves the ground.
Swing Time stands for the period that from the foot leaves the ground to the

same foot touches the ground.
Gait Velocity is the ratio of the stride length and the time taken to complete one

stride.

3.4.2 Gait Parameter Estimation

We represent the stances during a step by the geometric stick diagram shown in
Figure 3.5. The left side of each drawing shows the front limb in the initial contact
stance, while the right side shows the back limb in the foot off position. There are
two cases of the stick diagram, depending on the position of the back limb. In
the first case shown in Figure 3.5(a), the back limb is extended behind the torso
of the subject. In contrast, the upper part of the back limb aligns with the torso
of the subject in the second case shown in Figure 3.5(b). We consider these two
cases separately, since they change how the various components of the step length
contribute to the model.

The step length is a function of the length of the leg of the subject. The length
of the leg between the gluteus (hip) and popliteus point (knee joint) is denoted
by l1, as shown in Figure 3.5(a). The length of the leg from the popliteus to the
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calcaneus point (ankle) is given by l2. We then consider the knee and hip angles
formed by both legs in the stick model. Using these definitions, we can express the
step length as a sum of five components shown in Figure 3.5. Next, we describe the
definitions of each of these components.
d1: The d1 component is the projection of the front leg on the ground. Figure 3.5(a)
shows that the angle formed by the vertical line and the leg is αf − βf. Using this
angle, the value of d1 is written as:

d1 = l2 sin(αf − βf) (3.2)

d2: d2 is the projection of the front thigh to the ground. Since the angle formed by
the thigh and the vertical axis is given by αf, the projection is:

d2 = l1 sin(αf) (3.3)
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d3: d3 is the projection of the back thigh to the ground. Since the angle formed by
the thigh and the vertical axis is given by αb, the projection is:

d3 = l1 sin(−αb) (3.4)

There is a negative sign in Equation 3.4 to account for the two cases shown in
Figure 3.5(a) and Figure 3.5(b). In Figure 3.5(a), the d3 has to be added to obtain
the total step length. Therefore, we must ensure that the sign of d3 is positive. By
our definition of the hip angle, αb is negative in Figure 3.5(a) because it is behind
the torso. The inclusion of a negative sign in Equation 3.4 ensures that d3 is positive.
Conversely, in Figure 3.5(b) d3 overlaps with d4 and d5. Consequently, it has to be
subtracted from the step length. In this case, αb is positive because it is in front of
the torso. Hence, we obtain a negative sign for d3, ensuring its subtraction from the
total step length.
d4: d4 is the projection of the back leg to the ground. Similar to d1, we first need
to calculate the angle between the back leg and the vertical line from the knee to
the ground. In case of Figure 3.5(a), the magnitude of this angle is given by the
sum of angles αb and βb, whereas for Figure 3.5(b) the magnitude is given by
the difference of βb and αb. The sign of βb is always positive, while the sign of
αb is negative in Figure 3.5(a) and positive in Figure 3.5(b). Therefore, when we
consider the signs of the respective angles, the resulting angle between the back
leg and the vertical line becomes (βb − αb). Hence, the projection is expressed as:

d4 = l2 sin(βb − αb) (3.5)
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d5: d5 is given by the diameter of the subject’s thigh below the gluteus. It is included,
since the stick diagram does not cover the width of the user’s leg. It is measured at
the beginning to personalize the model to each user.
Adding d1–d5 the total step length is obtained as:

D = l2 sin(αf − βf) + l1 sin(αf) + l1 sin(−αb) + l2 sin(βb − αb) + d5 (3.6)

After obtaining the step length, we calculate the stride length by adding the lengths
of two consecutive steps. We compute the gait velocity by dividing the length of
a sequence of five strides by the time. The stride time is obtained by subtracting
two consecutive timestamps obtained when finding the minimums, as described in
Figure 3.2(b).

3.4.3 Real-time User Feedback

Gait analysis is commonly used in patient rehabilitation and health monitoring.
Therefore, providing feedback to the users about any abnormalities in gait is a
crucial aspect of gait analysis. To this end, we provide the following feedback
to the user in real-time. Note that real-time feedback is optional, and users can
always choose offline analysis of the gait after their trial. Some users with func-
tional disabilities might find it uncomfortable if the buzzer or the LED is always on.
Therefore, we enable logging the gait data during the whole trial and provide the
batch least square algorithm users can use to analyze their gait patterns offline. We
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emphasize that the proposed feedback mechanism is tested only with healthy sub-
jects mimicking the limping behavior due to difficulty in accessing actual patients.
Nevertheless, these studies can pave the way for applying the proposed algorithms
to real patients. As our future work, we plan to collect the users’ feedback, improve
the framework’s robustness, and test it with actual patients, e.g., those suffering
from the freezing of gait (FoG).
Gait Asymmetry Detection: Patients with movement disorders often have different
left and right step lengths [157]. Therefore, we include gait asymmetry as one of
the feedbacks that we provide to the user. We notify the user of gait asymmetry
using a buzzer on our device. The buzzer sounds an audible alarm to the user such
that they can take appropriate action to correct the gait asymmetry.
Gait Velocity Reduction Detection: Falling is among the primary causes of death
in the elderly population [98].

Change in the gait velocity over a long period is considered as a significant cue
to predict future falls [98, 96]. MGait keeps track of the gait velocity of each patient
and notifies the patient or the healthcare provider, if there is a specific trend in the
decrease of gait velocity that can be identified as a potential risk of fall.
Step/Stride Length Reduction Detection: Reduced stride/step length is one of
the most prominent features of various movement/motor disorders in the elderly
population, especially in Parkinson’s Disease (PD) patients [158].

Therefore, we keep track of the user’s moving average step/stride length and
notify the user if there is a significant reduction in step length using an LED on our
device.
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Feedback Algorithm: Gait asymmetry and step/stride length reduction can be
detected by observing the trend of step length over time. In a healthy walking
pattern, left-to-right step length and right-to-left step length are similar in length.
In contrast, when gait asymmetry and step/stride length reduction are present,
one step is shorter than the other. That is, the difference between left-to-right and
right-to-left step length is larger than healthy walking. Using the insights, we
design the feedback algorithm using the percentage gait asymmetry in strides.

The percentage gait asymmetry is employed as a metric to determine if a stride
is asymmetric. The first step of our algorithm is to calculate the percentage gait
asymmetry in a stride. The percentage gait asymmetry is defined in Equation 3.7:

Gaitiasym =

∣∣Li
left − Li

right

∣∣
0.5 × (Li

left + Li
right)

× 100% (3.7)

, where i is the stride count and L is the step length of a stride. Li
right represents the

ith right step length, and the similar explanation applies for the left situation. The
percentage gait asymmetry quantifies the difference between the left and right steps
length in the same stride. If the difference exceeds a threshold, we then identify that
this is an asymmetric stride. The value of the difference threshold has to be chosen
carefully to avoid false positives. Since percentage gait asymmetry involves the
normalization operation itself, it accurately reveals the percentage left-to-right step
length difference even for subjects with different height and static parameters (l1,
l2, and d5). Our dataset shows that the percentage gait asymmetry in normal
step length when walking is less than 20%. To avoid extra false alarms, in our
implementation, we choose the threshold as 25%. At the same time, all steps length
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and step speed data are logged. By using the proposed algorithm, the users can
analyze their gait patterns offline.

3.5 Experimental Evaluation

3.5.1 Experimental Setup

Wearable Device: MGait framework uses the wearable setup shown in Figure 3.1(a).
The magnified view of the wearable setup is shown in Figure 3.1(b). It consists
of a wearable bend sensor [159] and a Texas Instruments CC2650 Sensortag [160].
We sample the bend sensor and sensortag at 100 Hz and 250 Hz, respectively. The
proposed gait analysis technique is implemented on the TI Sensortag to enable
runtime analysis and user feedback.
User Studies: We collected data from a total of seven subjects (S1–S7), following
an official protocol approved by the IRB board of our institution. The information,
including the static parameters (l1, l2, and d5), height, age, and gender of 7 subjects,
are shown in Table 3.2. Each subject participated in six trials. Four of the six trials
were regular free walking with normal pace, whereas in the remaining two the
subjects were asked to imitate limping, resulting in a total of 806 steps. In addition
to the empirical data, we also proposed a method to generate additional data. The
synthetic data generation augments the data collected from the 7 subjects to create
a richer dataset for further research. Both empirical and synthetic data will be
released to the public, along with this paper.

Accurate step length reference is critical to evaluating MGait. For most of the
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experiment, subjects walked on a 7-meter long white paper roll. We rubbed the
bottom of the subject’s shoes with washable ink. The marks left on the paper are
then used to capture the user steps. After each trial, the distances between the
marks on the paper are recorded as step lengths. For the last two subjects, we
employed the GAITRite [104] system to obtain the step length reference.

Across all the experiments, the recorded ranges for step length, stride length,
and gait velocity are 25–78 cm, 69–156 cm, and 0.60–1.27 m/s respectively. We also
measure the stance time and the swing time of our dataset. Stance time of gait
stands for the period that from the foot touches the ground to the same foot leaves
the ground. Swing time of gait stands for the period that from the foot leaves the
ground to the same foot touches the ground. The dataset’s stance time and swing
time ranges are 0.38—0.75 s and 0.23—0.54 s, respectively. Generally, 60% of one
gait period is stance time, while 40% is swinging time. The step length distribution
in our experimental data is as follows. 80% of the step lengths are between 60 cm
and 70 cm, 9% of them fall into 50 cm to 60 cm range, 6% are shorter than 50 cm,
finally and 5% of them are longer than 70 cm. Similarly, 76% of the stride lengths
are from between 120 cm and 140 cm, 11% of them vary from 100 cm to 120 cm,
7 of them are shorter than 100 cm, and 6% of them are longer than 140 cm. We
also perform a statistical analysis on our dataset. For each subject’s step length
and stride length, we calculate the mean and standard deviation. Moreover, a 95%
confidence interval is computed. The detailed results are shown in Table 3.2.
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Table 3.2: Overview of the dataset for each subject. std represents standard deviation
and CI represents confidence interval.

Static param.
l1/l2/d5 (cm)

Height
(cm) Age Gender Step length (cm) Stride length (cm)

Mean ± std CI Mean ± std CI
S1 30/45/14 193 23 M 61.33 ± 6.65 60.31 - 62.35 122.87 ± 11.07 120.46 - 125.29
S2 25/40/15 175 26 M 61.75 ± 13.39 57.67 - 65.82 123.50 ± 25.41 112.23 - 134.76
S3 29/40/16 188 26 M 73.37 ± 3.83 72.10 - 74.65 146.66 ± 6.20 143.58 - 149.74
S4 27/33/12 170 29 M 58.21 ± 13.56 53.98 - 62.44 116.42 ± 25.33 104.89 - 127.96
S5 20/25/15 163 26 F 48.05 ± 6.58 46.42 - 49.68 96.65 ± 11.57 92.48 - 100.82
S6 28/40/16 181 25 M 60.47 ± 2.89 60.19 - 60.75 121.01 ± 5.29 120.28 - 121.74
S7 22/28/22 158 25 F 57.76 ± 5.35 56.14 - 59.39 115.53 ± 10.36 110.4 - 120.13

3.5.2 Offline and Online Estimation of Static Parameters

The proposed model has three user-specific static parameters: length of the thigh
(l1), length of the leg (l2), and hip diameter (d5). Since measuring them is subject
to human error, we employ both offline batch processing and online least squares
regression models to determine these parameters.

Batch Least Square Estimation

Batch processing is a common method used in the least square estimation. For our
step length estimation problem, batch processing is an effective solution when the
gait analysis is performed offline. For instance, a patient can walk for a few minutes,
while measuring the golden step length reference. The collected data then can be
used to reduce the measurement error by tuning the model.

We employ a nonlinear least square estimation to solve the problem. First,
we measure their nominal values by hand and record them as lnom

1 , lnom
2 ,dnom

5 .
We then use our test data and these nominal values to formulate the following
regression problem:
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minimize
N∑
i=1

||Dref,i −Di(l1, l2,d5)||
2

subject to 0.9 × lnom
1 ⩽ l1 ⩽ 1.1 × lnom

1

0.9 × lnom
2 ⩽ l2 ⩽ 1.1 × lnom

2 (3.8)

0.9 × dnom
5 ⩽ d5 ⩽ 1.1 × dnom

5

where N is the number of steps used for regression and Dref,i is the step length
reference for ith step. The objective in Equation 3.8 minimizes the sum of squared
error between Dref,i and our estimate Di obtained with Equation 3.6 using the
measured angles (αf, αb, βf, βb). We constrain the optimization variables l1, l2,
and d5 within 10% of their nominal values to ensure that they do not overfit to
unrealistic values. As an example, the parameters of S1 are 30.0, 45.0, and 12.0
cm initially. After the regression, they are corrected as 33.0, 42.1, and 13.2 cm,
respectively. This method is used once for each subject to find their static parameters.

Recursive Least Square Estimation

It is also useful to fine-tune the model in real-time after it is deployed, since this can
help the proposed system to adapt to a particular person. Batch processing is not
appropriate for this purpose as it requires offline processing. Therefore, we also
introduce a Recursive Least Square (RLS) estimation framework that can calibrate
the static parameters for a given user.

We can represent the step length in Equation 3.6 as a linear equation with the
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input features as:

h[n] =


sin(αf[n]) − sin(αb[n])

sin(αf[n] − βf[n]) + sin(βb[n] − αb[n])

1

 , (3.9)

where n is the time index. Similarly, the model coefficients become the static
parameters we aim to estimate:

w =

[
l1 l2 d5

]T
(3.10)

When the step length model needs to be updated, e.g., for a new user, the system
operates in a calibration mode. In this mode, the user is asked to walk on a line
with a constant step length. During this time, the RLS filter estimates the step
length as a product of h[n] and w, which are given Equation 3.10 and Equation 3.9,
respectively. This estimate is subtracted from the reference step length to find the
modeling error. Then, this error is then used to update the parameter estimates w

using an RLS technique with stability guarantees [161].
Experimental results show that the RLS method improves the step length estima-

tion accuracy by about 3% on average. It is effective in reducing the measurement
error online, especially for subjects with a high initial error rate. Table 3.3 shows the
error in step length estimation using offline and online method. For instance, S2 and
S5 have 16.44% and 16.01% initial MAPE, respectively. Applying RLS estimation,
the MAPE are reduced by 7.54% and 8.05%, respectively. Figure 3.6 shows how
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Figure 3.6: Visualization of how (a) l1, (b) l2, and (c) d5 online updating and
converging to the batch LS result and the (d) absolute percentage error of step
length estimation using RLS for one subject.

static parameters and the error converge online, as steps increases. The RLS model
converges to its final values within five steps. The accuracy of RLS converges also
to the batch LS when it is applied to all subjects. This shows that the RLS approach
is effective for estimating the static parameters at runtime.
Offline vs. Online Calibration: The online calibration (Section 3.5.2) can expedite
the MGait framework to adjust to new users, but it requires the user to walk in a
straight line with a constant step length. However, patients with movement dis-
abilities may be unable to walk in a straight line. In this case, the offline calibration
(Section 3.5.2) may be preferred, as it does not require the user to walk in a straight
line with a constant step length. The user will only walk a few trials without any
restriction to do the offline calibration.
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Table 3.3: Error in step length estimation using offline and online method (without
angle correction). RLS represents recursive least square, MAPE represents mean
absolute percentage error, and RMSE means root mean square error.

Initial After Batch LS After RLS
MAPE

(%)
RMSE
(cm)

MAPE
(%)

RMSE
(cm)

MAPE
(%)

RMSE
(cm)

S1 6.38 4.03 5.80 3.65 6.28 3.99
S2 16.44 12.15 8.55 6.34 8.90 6.60
S3 7.17 4.53 6.88 4.31 6.93 4.38
S4 7.65 4.99 5.89 3.75 5.95 3.79
S5 16.01 8.03 7.94 3.99 7.96 3.99
S6 8.70 5.25 8.07 4.86 8.66 5.22
S7 7.88 4.47 7.69 4.35 7.66 4.35
Avg. 10.03 6.21 7.26 4.46 7.47 4.62

3.5.3 Analysis of Error Distribution of Angle Measurements

The angle measurements are also subject to error, due to the noisy nature of the
sensors. Furthermore, sensors may experience a systematic bias, due to their
positioning. This difference should be accounted for in the models to ensure an
accurate estimation of the step length. To compensate for these errors, we solve
the nonlinear regression problem given in Equation 3.8 again, by using the static
parameters found in Section 3.5.2. This time, we let the knee and hip angles in
Equation 3.6 become free variables. That is, the estimation for the ith step is changed
as Di(αf,αb,βf,βb) in the problem formulation in Equation 3.8. Similarly, these
parameters are constrained within 10% of their nominal values given by the average
of our observations, following the same methodology as in Section 3.5.2.

The output of the nonlinear regression gives the average knee and hip angles
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Figure 3.7: Illustration of the error distribution after removing sensor bias.

that provide the minimum estimation error. Hence, we use the difference between
these values and our observations as the measurement bias. For instance, the
nonlinear regression finds the hip angle of the forward leg at the initial contact
point as αf = 24.8° for Subject 5. The same value is 22.5° in our observation dataset.
Consequently, we compute the bias as -2.3°. We rectify the sensor bias, by subtract-
ing these empirically determined values from the knee and hip angles found in
real-time. After correcting the bias, the error between the best fit and our measured
values become zero-mean, as demonstrated in Figure 3.7.

3.5.4 Accuracy Evaluation

We use 70% of the steps collected from a subject for regression (Sections 3.5.2 and
3.5.3) and the remaining 30% for evaluating accuracy. The errors reported in this
section use the corrected static parameters and angle distributions. The average
MAPE in step length estimation is about 10.03%, when we use the user measurements

without any error correction. The error is reduced to about 7.26% with the fitting
of user-specific parameters, as shown in Figure 3.8. It is reduced further to about
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5.49%, when we remove the offset in angle measurements.
In particular, the MAPE for Subjects 2 and 5 drops by more than 10%, since they

had a higher initial error due to inaccurate limb measurements.
We then evaluate the accuracy for step length, stride length and gait velocity

for each subject. Each row in Table 3.4 corresponds to a different subject, while the
columns show the MAPE and RMSE in step length, stride length, and gait velocity,
respectively. The MAPE and RMSE for step length range from 3.63% to 6.91% and
2.83 cm to 5.48 cm, respectively. The error rates are lower for stride length and gait
velocity estimations. Specifically, the maximum MAPE in stride length and gait
velocity is 6.40% and 3.59%, respectively. We note that the RMSE value for stride
length seems larger, since each stride consists of two steps. In summary, the results
show that the proposed model is able to accurately estimate gait parameters with
lower power consumption overheads.

We also compare the proposed approach to simpler techniques, such as inte-
grating the acceleration twice while the feet are in motion [162]. Even after passing
the raw data through a low-pass filter, double integration of acceleration leads to a
MAPE of 13.5%, significantly higher than MGait.

3.5.5 Evaluation of Real-Time User Feedback

User feedback on gait quality plays a critical role in patient rehabilitation and health
monitoring. For instance, feedback on unequal step lengths is an important part
of rehabilitation of patients with a leg injury. Similarly, gait speed is an important
indicator in movement disorders.



54

0%

5%

10%

15%

20%

S1 S2 S3 S4 S5 S6 S7 Avg.

M
A

PE
 (%

)

Initial Fit1 Fit2

Figure 3.8: Mean absolute percentage error in step length estimates

Table 3.4: Error in step length, stride length, and velocity with angle correction.
MAPE represents mean absolute percentage error, and RMSE means root mean
square error.

Step Length Stride Length Velocity
MAPE

(%)
RMSE
(cm)

MAPE
(%)

RMSE
(cm)

MAPE
(%)

RMSE
(m/s)

S1 5.76 4.53 4.48 6.55 3.33 0.04
S2 3.63 3.35 3.93 7.56 0.77 0.01
S3 6.91 5.48 3.89 6.54 1.64 0.02
S4 5.94 4.51 3.71 6.48 2.06 0.03
S5 4.38 2.83 1.99 2.66 0.94 0.01
S6 5.31 3.61 4.79 6.61 2.73 0.05
S7 6.51 4.24 6.40 7.72 3.59 0.06
Avg. 5.49 4.08 4.17 6.30 2.15 0.03

An example of the user feedback for one subject given by MGait is shown in
Figure 3.9. Figure 3.9(a) shows the left step length estimation, (b) shows the right
step length estimation, and (c) shows the absolute percentage error of the left-to-
right difference in strides of continuous walking. MGait provides user feedback
as soon as the step lengths are asymmetric and the percentage gait asymmetry in
a stride exceeds the threshold of 25%, as shown in Figure 3.9. The subject starts
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walking, aiming for walking with symmetric steps in strides. After 78 strides, the
subject starts making one regular step, followed by a short step (Gait asymmetry).
MGait keeps track of the percentage gait asymmetry in a stride. Since there are no
abnormalities in the first 150 steps, MGait does not produce any user feedback. The
percentage gait asymmetry in the stride is larger than the threshold of 25% at 78th

strides. After this point, MGait waits for five steps and compares the average step
length before and after the change in variance. Since the percentage gait asymmetry
in the stride exceeds 25%, MGait raises feedback. Specifically, the user is notified
using a buzzer and an LED.

We evaluated all seven subjects using this feedback algorithm. Overall, 25 strides
out of 403 strides are obtained while the user was walking with gait asymmetry. The
precision, recall, and f1 score of predicting limping are 1, 0.73, and 0.85, respectively.

3.5.6 Sensors Sustainability and Power Analysis

The reliability of the sensors is crucial for MGait’s practicality. In this subsection,
we evaluate both sensors’ sustainability under continuous monitoring.

Sensor drift

This study is the first work introducing wearable bend sensors to the gait monitoring
system. The readers might be interested in the sensing drift of the bend sensor
since it is a common problem for all sensors. To this end, a systematic evaluation
is performed using a robotic motor joint. We employ a robotic joint performing a
60 sinusoidal movement at 1Hz, attach the bending sensor to the joint, and record
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Figure 3.9: Gait asymmetry detection. (a) shows the left step length estimation,
(b) shows the right step length estimation, and (c) shows the percentage gait
asymmetry in strides. The grey dot line shows the threshold.

the sensing data. The experiment lasts 1.5 hours, a time interval that is enough to
cover most of the single clinical therapy session. Figure 3.10 shows that the range
of the sensor is initially from 1 to 52. After 45 minutes, the sensor shows a sensing
range from -2 to 53. At the end of the experiments, the sensor exhibits a sensing
range from -2 to 59. The result indicates that the sensor is reasonably stable in the
1.5 hours of experiments. The sensor drift might be from the friction or the sensors’
poor attachment with the joint as time goes on. Also, sports sleeves may slip down
after long periods of usage. Therefore, we suggest users align the sports sleeve and
calibrate the sensor before each trial to get better performance.
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Power evaluation

Low-power operation is crucial for MGait to offer a long-term gait monitoring
solution [163]. To explore the power consumption of MGait, we measure the actual
current consumption of the bending sensors and the IMUs. First, we power the
bending sensor with a 150 mAh @ 3.3 V battery and connect a sensing resistor in
series to it. Then we turn the sensor on and start sensing. We record the voltage on
the resistor and calculate the current drawn by the sensor. Since the resistor’s value
is low, the drawn current is essentially the sensor’s current consumption. We follow
the same steps to measure the IMU’s current consumption. Figure 3.11 shows the
power consumption results. We observe that, for the bending sensor, the average
of initial and idle current (the solid line) consumption is 0.5 mA and the sensing
current (the dashed line) is about 2.3 mA. The idle current consumption of the IMU
is 0.5 mA, while its sensing current is about 3.5 mA. Therefore, when connected to
a 150 mAh lithium-ion battery, the bending sensor can run more than 12 days in
idle mode, 65 hours in the sensing mode. Similarly, the IMU can run more than 12
days in the idle mode and 43 hours in sensing mode.
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4 mars: mmwave-based assistive rehabilitation system

for smart healthcare

4.1 Background, Motivation and Contributions

Rehabilitation is the process of recovering a patient’s health condition to its normal
state after a period of illness. The sequelae of central nervous system disorders, such
as Parkinson’s disease (PD) and cerebrovascular diseases (e.g., stroke), afflict more
than 10 million people worldwide. According to recent studies, patients can recover
up to 91% functional ability if they start the rehabilitation within three months of
the stroke [39]. Similarly, PD patients must follow regular rehabilitation treatments
to maximize their functional ability and minimize secondary complications [40].
There is also a strong interplay between mental well-being and maintaining phys-
ical activity [164]. These examples demonstrate the importance of rehabilitation
treatment to regain patients’ quality of life.

The current mainstream rehabilitation treatment involves a physical therapist
who supervises the patients in person. The supervision aims to guide the patients to
perform specific movement exercises and give feedback to ensure their correctness.
Individualized attention from an expert is certainly favorable, but it also incurs
a high cost due to critical dependence on experts, dedicated infrastructure, and
patients’ commute. Indeed, the Covid-19 pandemic experience has further demonstrated

the growing importance of developing alternatives to in-person care. Home-based reha-
bilitation systems are needed to address this urgent need. These systems must
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allow patients to perform prescribed movement exercises at home while receiving
feedback. In this way, they can complement the therapists by enabling daily prac-
tices between clinic visits, which can be weeks apart. During these practices, they
can monitor whether the patients perform the movements correctly and adjust the
intensity. For example, when a patient lifts the arm or the thigh, the system must
tell if it is high enough and guide patients to improve the movements.

Home-based patient monitoring systems use predominantly two approaches:
wearable sensors- and video-based systems [165, 166, 167, 27]. One of the main ad-
vantages of wearable systems is their independence from environmental factors. For
instance, it does not matter whether the patients perform the rehabilitation exercise
indoors or outdoors as long as they wear the sensors. Also, sensor measurements
can be very accurate when appropriately placed. However, recent studies show that
frequent charging requirements and discomfort hinder the users from using the
wearables [168, 26]. Moreover, multiple sensors are required to capture full-body
motion, e.g., account for wrist, arm, and legs simultaneously. The video-based sys-
tems tackle some of the drawbacks of wearable systems. They usually use an RGB
video camera, depth camera, or other motion capture systems, such as Microsoft
Kinect [121] and Intel RealSense sensors [169]. The user only needs to perform
some actions in front of a camera instead of wearing multiple sensors. Besides,
video-based methods can reconstruct multiple essential body parts, such as the
neck, wrist, shoulder, and ankle [170]. Then, they can model real-time skeleton
movement by connecting these points [61, 170]. However, video-based systems
also face critical challenges that limit their practicality. First, they require a strict
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environment setting, such as lighting and camera placement, which significantly
affects accuracy. Second, privacy is a more complex issue since many users do
not want to share their camera access and videos. Consequently, the challenges
discussed in this paragraph limit the use of video-based rehabilitation assistive
systems at home.

With the recent advances in mmWave technology, Radio Frequency (RF) imag-
ing has emerged as a promising technique that can address the limitations of
wearable and video-based rehabilitation systems [171]. Small form-factor and
low-power mmWave radars have become commercially available [172]. These
devices provide a high-resolution 3D point cloud representation, which can be
processed locally using edge artificial intelligence (AI) algorithms to reconstruct
human motion. Since they generate and transmit RF signals towards the target,
they can maintain a robust operation under poor lighting and weather conditions.
They also address privacy concerns since mmWave radar signals do not involve
any video images or facial information. However, existing mmWave radar techniques

have primarily been limited to object detection and target localization since it represents the

scene with a reflection point cloud instead of the true color image [65, 35].
This chapter proposes a novel real-time mmWave-based Assistive Rehabilitation

System (MARS) to monitor patient movements in home environments accurately
and provide real-time feedback. MARS tracks the patient movement using a low-
cost mmWave radar [172]. Unlike prior work that uses the point cloud for activity
recognition and localization [173, 65, 35, 64], our novel pre-processing algorithms
and convolutional neural network (CNN) design convert the radar point cloud to
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3D joint coordinates. This unique capability enables MARS to produce real-time skeleton

movements without using any video images or facial information. Hence, its output
is compatible with more expensive and complex video-based systems. Further-
more, MARS supports angle and speed estimations of limbs as well as posture
correction. We evaluated MARS empirically by performing experiments with 70

minutes of exercise data (40,083 frames) from ten popular rehabilitation movements. We
also collected reference data using Microsoft Kinect V2 sensor [121] during these
experiments. Experimental results show that MARS accurately estimates the 3D
coordinates of 19 joints with only 5.87 cm mean absolute error (MAE). For more
details about comparative results, please refer to Section 4.4.2. MARS also offers
joint angle and velocity estimation as the feedback of the rehabilitation movements.
The average MAE of MARS in the knee and the elbow angle estimation is 6◦ and 12◦,
respectively. Finally, we implement the proposed approach on the Nvidia Jetson
Xavier-NX board [174].

Our experiments show that MARS can process well over 9,000 frames per second
with less than 500 µJ energy consumption per frame. Hence, it can be used reliably
for home-based rehabilitation systems.

In summary, the major contributions of this chapter are as follows:

• A low-cost and low-power mmWave-based assistive rehabilitation system
that accurately reconstructs 19 human joints and skeleton movements using
mmWave point cloud data,

• A novel pre-processing method that transforms the raw 5D time-series point
cloud with irregular length and random order to a 3D 5-channel stacked
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feature map; a CNN for processing the proposed feature map to 3D spatial
coordinates of human joints,

• A first-of-its-kind rehabilitation movement dataset using mmWave point cloud,
including 70 minutes of ten distinct rehabilitation movements performed by
four human subjects with 19 human joints data and 40,083 labeled frames
and their video demonstrations to the public,

• Experimental evaluations show, on average, about 5 cm localization error in
3D space, and 6◦ error for the knee angle, and 12◦ error for the elbow angle.

4.2 mmWave primer

Frequency Modulated Continuous Wave (FMCW) mmWave radar has recently
attracted significant attention, especially in automotive and industrial applications.
The fundamental component of FMCW is a chirp signal, which is a sinusoid wave
whose frequency increases linearly with time [175, 176, 177]. Due to this character-
ization, a chirp signal is typically displayed by a linear frequency versus time plot,
as illustrated in the top left part of Figure 4.1. The chirp signal is uniquely defined
by its start frequency (fc), duration (Tc), and bandwidth (B). The bandwidth to
duration ratio gives the chirp slope (S), i.e., the rate at which the signal frequency
increases (S = B/Tc).

The FMCW radar synthesizes a sequence of chirp signals to form a frame.
For instance, Figure 4.1 illustrates a frame with N back-to-back chirp signals. It
transmits the chirp frame using a transmitter (TX) antenna. If any object is in the
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Figure 4.1: Overview of the mmWave imaging system.

vicinity, it reflects off the chirp frame. Then, the FMCW radar receives the reflected
signals at the receiver (RX) antennas. Note that both TX- and RX-signals are chirps
with different instantaneous frequencies and phases. A mixer module in the radar
processes these signals to produce an intermediate frequency (IF) signal [175], which
is another sinusoid with the following instantaneous frequency (fIF) and phase
(ϕIF):

fIF = fTX − fRX, ϕIF = ϕTX − ϕRX (4.1)

Suppose only one object reflects the chirp frame with distance d from the radar.
The round-trip delay of the received signal can be found as τ = 2d/c, where c is
the speed of light. Since the received signal is a replica of the transmitted frames
delayed by τ, the frequency of the IF signal will be St− S(t− τ) = Sτ. That is, the
IF signal has a single tone when only one object reflects the chirp signal. We can
find the frequency of this tone as Sτ = 2dS/c. When the chirp frame is reflected
from multiple objects or different parts of the body, the mixer will produce an IF
signal with multiple tones, a.k.a., beat frequencies. FMCW radar chips extract the
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IF signal tones by computing frequency spectrum using the fast Fourier transform
(FFT), as depicted in Figure 1. As in the single object case, the frequency of each
tone is proportional to the distance of the corresponding object. The IF signal is
processed in the digital domain to map the tones into range bins using a range FFT

process [177]. Note that the range resolution is inversely proportional to the chirp
bandwidth:

dres =
c

2B (4.2)

where c is the speed of light and B is the chirp bandwidth.
Another essential metric besides the range is the velocity of the detected objects.

FMCW radars compute the velocity using the phase changes in the IF signal across
multiple chirps. This process converts small displacements of the object to a phase
difference in the IF signal. As in the range detection case, there may be multiple
objects with equal distance from the radar but with different relative velocities. The
chirps in the transmitted and received frames (N chirps in Figure 1) are processed
by a second FFT, called Doppler-FFT [177], to resolve the velocity of different objects.
After this step, the radar can produce a range-Doppler heat map to detect object
velocities. The velocity resolution of the radar is inversely proportional to the frame
time as:

vres =
λ

2NTc
(4.3)

where λ is the wavelength, N is the number of chirps, and Tc is the time between
two chirps. For instance, vmax is 39 m/s given Tc is 25 µs, which is significantly
faster than human motion. Finally, the FMCW radar filters out the noise interfer-
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ence using a noise elimination algorithm, such as the built-in constant false alarm
rate (CFAR) [178], used in this work.

The last metric estimated by the radar is the angle of arrival (AoA). AoA is
defined as the angle of a reflected signal with the horizontal plane [179]. An-
gle estimation requires at least two RX antennas and it is calculated by θres =

λ/NRXNTXdcos(θ), where λ is the wavelength, NRX is the number of receiver an-
tennas, NTX is the number of transmitter antennas, d is the distance between two
consecutive receiver antenna, and cos(θ) is the cosine of the angle between two
receivers. Note that the resolution is often quoted assuming that d = λ

2 and θ = 0,
such that θres = 2

NRXNTX
(radians) [180]. The radar chip estimates the angle of

arrival by using the phase change in the 2D-FFT peak caused by the different dis-
tances from the object to each antenna. This FFT is referred to as the angle FFT,
which outputs the azimuth angle divided by elevation angle.

Finally, the radar receives multiple RX signals back for all the chirps the TX
antennas sends. Each object (or body part) that reflects an RX signal is referred to as
a point. For each point pi in the frame, the radar chip calculates its 3D coordinates
by using the result of range FFT after the noise elimination algorithm. Moreover,
it computes the Doppler velocity and reflection intensity. Multiple points within
each frame form the point cloud, which is formatted as follows:

pi = {xi,yi, zi,Di, Ii}, i ∈ [0,NP] (4.4)

where xi, yi, zi represents the spatial coordinates of the point, Di denotes the
Doppler velocity, Ii denotes the signal intensity, and NP denotes the total number



67

Table 4.1: List of major parameters and variables related to mmWave and their
values in this work.
Symbol Description Values Symbol Description Values
fc Starting frequency 77 GHz θres Angle resolution 9.55◦

Tc Chirp duration 32 µs NRX No. of RX antennas 4
B Bandwidth 3.20 GHz NP Maximum points detectable per frame 64
S Slope of chirp 100 MHz/µs fIF Frequency of IF signal NA
N No. of chirps per frame 96 ϕIF Phase of IF signal NA
dres Range resolution 4.69 cm τ RX signals time difference NA
vmax Maximum Velocity 5.69 m/s Di the ith point’s Doppler velocity NA
vres Velocity resolution 0.35 m/s Ii the ith point’s reflection intensity NA
xi,yi, zi 3D coordinates of

the ith point NA pi
Point representation of
the ith point NA

NTX No. of TX antennas 3

of points in this frame. Note that NP will be zero, i.e., there will not be any points
when no object is detected. On the contrary, the number of detected points can
exceed the radar chip’s capacity if too many signals are reflected. Therefore, radar
chips limit the maximum value NP can take.

The radar parameters used in this study are shown in Table 4.1. In our work, the
first 64 reflected points are processed, i.e., NP = 64. The IWR1443 radar sensor is
configured with three TX antennas and four RX antennas. The frame duration and
sampling rate are set to 100 ms and 2.49 Msps, respectively. With these parameters,
the radar has a maximum detection range of 3.37 m, maximum detection velocity
of 5.69 m/s, a range resolution of 4.69 cm, and velocity resolution of 0.35 m/s. For
more mmWave radar details, we refer the readers to recent tutorials [177, 176, 180].
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4.3 Overview of MARS framework

This section presents the proposed MARS framework that processes the raw mmWave
point cloud data to provide rehabilitation feedback to the user. To provide accurate
and relevant feedback, MARS tracks the following fundamental attributes in real-
time: The 3D position (x,y, z coordinates) and velocity (along x,y, z dimensions) of
19 joints, four key angles, as listed in Table 4.2. Furthermore, it provides correction
feedback on ten commonly used postures shown in the last row of Table 4.2. MARS
accomplishes these tasks by following the following steps outlined in Figure 4.2:

1. Use an FMCW radar to collect point cloud data, as described in Section 4.2,

2. Pre-process the point cloud to construct robust and delay-invariant features
(Section 4.3.1),

3. Infer 3D joint positions using the new features and a CNN architecture (Sec-
tion 4.3.2),

4. Produce user feedback by converting the 3D joint positions to joint velocity
and angle estimations (Section 4.3.3).

4.3.1 Point Cloud Pre-Processing

Input data: Challenges and reformatting

The primary input to MARS is a point cloud arranged as five-dimensional (5D)
time-series data. Each point consists of the x,y, z coordinates of the points that
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Figure 4.2: Overview of proposed MARS framework and its interaction with radar
and Kinect V2.

Table 4.2: MARS provides 3D joint positions and the velocity of 19 joints listed in
the first row. It also estimates the angles in the second row and provides posture
correction feedback for ten movements in the last row.

3D joint position estimation SpineBase, SpineMid, Neck, Head, SpineShoulder,
ShoulderLeft, ElbowLeft, WristLeft,
ShoulderRight, ElbowRight, WristRight,
HipLeft, KneeLeft, AnkleLeft, FootLeft,
HipRight, KneeRight, AnkleRight, FootRight

3D joint velocity estimation

Angle estimation Left elbow, Right elbow, Left knee, Right knee

Posture correction feedback

Left upper limb extension, Right upper limb extension,
Both upper limbs extension,
Left front lunge, Right front lunge, Squat,
Left side lunge, Right side lunge,
Left limb extension, Right limb extension.

reflected the TX-signal (x,y, z), Doppler velocity D, and the reflection intensity I,
as described in Section 4.1. The FMCW radar stores the first NP points to form a
data frame (in this work NP=64, as shown in Table 4.1). If fewer than NP body
parts reflect the chirp signals, fewer than 64 points will be received. In these cases,
the rest of the frame is padded with zeros to obtain a uniform size (NP × 5) input
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frames.
Figure 4.3 depicts a sample input frame from different perspectives. The tri-

angle marker represents the radar location, which is also set at the origin (0, 0, 0).
Figure 4.3(a) shows that point positions in 3D, while the other plots show their pro-
jections to 2D coordinates. Similarly, Figure 4.3(a) illustrates the Doppler velocity,
which indicates the relative velocity from the detected point to the radar. Finally,
the colors in the figures represent the energy intensity of the reflected signals.

Figure 4.3: mmWave point cloud representation for one frame. (a), (b), (c), and
(d) shows the 3D view, front view, side view, and top view, respectively.
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Feature generation for CNN

Note that the reflected chirp signals arrive at the radar in random order due to slight
variations in the body posture and round-trip delay, as illustrated in Figure 4.4(a).
Therefore, the order of the points in a frame is random, i.e., the same point may
be in different positions across consecutive frames. Although CNNs have a decent
shift, scaling, and rotation invariance, random data ordering poses a challenge to
CNN design. Furthermore, the input data must have a fixed shape. To address
these issues, we propose a pre-processing algorithm that consists of sorting and
matrix transformation. We sort the points in each frame in ascending order of x,
y, and z coordinates. The points are sorted first based on their x coordinates in
ascending order. At the second level, the points with the same x coordinate are
sorted by their y coordinates. Finally, for the data points with the same x and y
coordinates, we sort them by z coordinates in ascending order, as illustrated in
Figure 4.4(b). Note that this sorting does not change the distances between the
points since we only change the order of the inputs to the CNN.

After the sorting phase, the dimension of the input features is 64×5, i.e., the
input data is arranged as a column vector with 64 rows each with 5 features. The
transformation converts 64 rows into an 8x8 square matrix in the row-major order,
similar to images commonly used in CNNs. Thus, the transformation reshapes
the same data while preserving the values from the 64×5 matrix to an 8×8×5 data
structure. Since there are five dimensions (x, y, z coordinates, Doppler velocity,
reflection intensity), we end up with five channels, each with an 8×8 feature map.
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Figure 4.4: Input data (a) before and (b) after sorting.

Handling out-of-range “ghost images”

mmWave radar imaging can sometimes generate a point called “ghost image” that
is outside the range of interest [181]. In assistive rehabilitation systems, the user
is standing within a fixed distance away from the radar sensor. Hence, we divide
the generated point cloud into two classes: in-range and out-of-range. The in-range
point cloud is defined by lower and upper bounds on each dimension. In our
implementation, we use the following ranges: x ∈ {−1 m, 1 m} (horizontal width),
y ∈ {0, 3 m} (depth), and z ∈ {−1 m, 1 m} (vertical height). The points within
these boundaries are considered in-range, while others are marked as out-of-range
points. The out-of-range points are highlighted by rectangles in Figure 4.3 for
illustration. The out-of-range points (i.e., ghost images) are inevitable in real
application scenarios due to scattering. Therefore, MARS marks and includes out-
of-range points in training and inference. Section 4.4.3 presents quantitative results
and discusses the implications of this choice.
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4.3.2 CNN Architecture Design

The next step is converting the feature maps depicted in Figure 4.3 into actual 3D
joint positions. This challenging task is accomplished using a CNN architecture
that outputs the x, y, and z coordinates of 19 joints, as illustrated in Figure 4.5.
The input layer of the CNN takes the stacked 5-channel feature map as the input.
Two consecutive convolution layers follow the input layer with 16 and 32 channels,
respectively. After performing the convolutions, the data is passed to a flattening
layer that generates the input vector for the fully connected (FC) layers. The first
FC layer is with 512 neurons. The final output of CNN contains 57 neurons, which
stand for 3D coordinates for the 19 joints. All activation functions are Relu except
for the final FC layer, where we use linear activation. Finally, four dropout layers
with probabilities of 0.3 and 0.4 are employed after the convolution layers and the
fully connected layers to avoid excessive dependency on specific neurons.

The design choice of including Batch Normalization (BN) and max-pooling or
leaving them out is vital in developing a CNN. The BN layer is commonly used to
avoid significant data distribution changes after each mini-batch called “internal
covariate shift.” The max-pooling layer is used to maintain the feature invariance
after image translation, rotation, and scaling by taking the maximum of a particular
region. It also reduces model parameters while avoiding overfitting and improving
the generalization ability of the model. MARS implements BN layers after the
second convolution layer and the fully connected layers. We choose not to have a
max-pooling layer since it loses local information, which is essential for the spatial
coordinates regression task. We discuss these choices and present a comprehensive
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quantitative evaluation in Section 4.4.3.

Ground truth and loss function

Training the proposed CNN architecture requires the ground truth, i.e., the refer-
ence positions of the target joint positions. In this work, we use a Kinect V2 sen-
sor [121] to capture the reference coordinates. The Kinect sensor and the mmWave
radar are placed on the same table, next to each other. This placement does not
lead to spatial offsets in the y and z-axis between two sensors since their y and
z coordinates are identical. However, there is a spatial offset. Firstly, the x-axis
in the Kinect sensor’s reference frame is inverted with respect to the mmWave
radars x-axis. Thus, we take the additive inverse of all x-axis values during the
pre-processing stage. Secondly, there is still a 3 cm offset in the x-axis since the
sensors are placed next to each other. We do not manually calibrate this offset
since the CNNs have decent shift-invariance. CNN itself can learn the spatial offset
between the mmWave sensor and the Kinect sensor. The Kinect sensor’s sampling
rate is fixed at 30Hz, while the radar’s frame duration is 100ms. Hence, we align the
radar and the Kinect sensor data frame by frame. The frame alignment is achieved
by connecting both devices to the same laptop and timestamping the data frames
from each device. We find the closest timestamp in the Kinect sensor for each radar
data frame and pair it with the radar data as its label1.

For a given data frame, let xi, yi, and zi be the reference coordinates of joint i,
1 ⩽ i ⩽ NJ from the Kinect sensor, where NJ is the number of tracked joints.

1The time difference between a data-label pair is less than 5ms by using the proposed time
alignment method.
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Figure 4.5: Point cloud pre-processing and CNN architecture

Similarly, let the corresponding estimates from MARS be x̂i, ŷi, and ẑi, respectively.
We define the loss function as the mean squared error (MSE) between the reference
positions and the estimations as follows:

Losscoor =

∑NJ

i=1(xi − x̂i)
2 +

∑NJ

i=1(yi − ŷi)
2 +

∑NJ

i=1(zi − ẑi)
2

3NJ

(4.5)

An illustration of MARS estimating 19 human joints from the mmWave radar is
shown in Figure 4.6. From left to right, the subfigure represents the point cloud
generated by radar, estimation from MARS, and the ground truth from the Kinect
V2 sensor. We observe that MARS reconstructs 19 human joints accurately. We
show only five of the ten rehabilitation movements due to space limitation. The
remaining five movements look very similar since they are mirrored versions of
the same movements. A live demo can be found on our GitHub page, where the dataset is

released [182].
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Figure 4.6: Demo of MARS reconstructing human joints from point cloud for both
upper limb extension, right front lunge, squat, left side lunge, and left limb extension.
From left to right, it shows radar point cloud, MARS estimation, and ground truth,
respectively. The accuracy of the estimations are analyzed in Section 4.4.
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4.3.3 Rehabilitation Movement Feedback to User

Velocity estimation

The CNN presented in Section 4.3.2 produces the 3D coordinates of 19 joints listed
in Table 4.2. The next step is deriving the velocity of these joints. We find each
joint’s velocity by dividing its distance between two consecutive frames by the frame
duration. One example is shown in Figure 4.7(d) for the squat movement. We first
find the complete squatting frame (shown in solid line in Figure 4.7 (d)). Then,
the corresponding positions in the previous frame are found. Finally, the ratio of
the distance between two consecutive frames and frame duration gives the joint
velocities. The ground truth velocity is derived using consecutive ground truth
3D coordinates reported by the Kinect sensor and their sampling times. For the
squat example, the spinebase joint’s velocity is used for evaluating the squat speed.
In general, users can observe every joint’s velocity when they perform different
movements and adjust their pace accordingly.

Joint angle estimation

The joint coordinates found by the CNN are also used to find the angles between
critical joints. This work focuses on the four most commonly used joint angles:
right and left elbow angles, right and left knee angles, as listed in Table 4.2. The
elbow angle is found using the shoulder, elbow, and wrist positions, as illustrated
in Figure 4.7. We first calculate the skeleton length between the shoulder and elbow
and the length between the elbow and wrist using their 3D coordinates. Then, the
angle is obtained by using triangulation from the law of cosines. We follow the same
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Figure 4.7: Angle estimation by MARS during squat movements. (a), (b), (c),
(d) shows the 3D view, front view, side view, and a zoomed in version with the
estimated angles and speed

procedures to calculate the knee angle using the hip, knee, and ankle positions. The
ground truth angle is computed using the ground truth 3D coordinates reported
by the Kinect sensor. As an example, Figure 4.7(d) illustrates a squat movement.
We observe that the elbow and knee angles are 98◦ and 62◦, respectively, for the
complete squat.

Posture correction

Therapists can define specific rehabilitation movements for a given user, such as the
squat movement illustrated in Figure 4.7. Then, the correctness of a movement
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can easily be defined by setting acceptable ranges for relevant joints’ velocities and
angles. For example, the knee angles are essential for the squat movement. Thus,
the user can set acceptable ranges for the knee angles, such as 55◦–65◦ when the
legs are stretched the most.

While the user performs the movements, MARS tracks the knee angles, as
described in Section 4.3.3. Then, it compares the joint positions and angles to the
acceptable ranges specified by the user (e.g., +/- 10% around ideal positions). The
reconstructed skeleton is shown to the user with a transparent dash-line before the
user’s movement satisfies the acceptable range target, as shown in Figure 4.7 (d).
The skeleton visualization becomes a solid line after the joint coordinates, angle,
and velocities reach the set goals. The system can also support a sound played or a
visual cue as feedback that indicates successful completion of the exercise.

4.4 Experimental Evaluation

4.4.1 Experimental Setup and Dataset

mmWave radar: The radar processing is performed on Texas Instruments (TI)
IWR1443 Boost mmWave radar [172]. We use a Matlab Runtime implementation
from TI [183] for the data acquisition. The detailed configuration and radar param-
eters are summarized in Table 4.1. The device is connected to a laptop through the
UART interface. It starts acquiring the data from the Matlab Runtime using a frame
duration of 100 ms. Note that the frame duration can be set to different values for
different applications. Due to the bandwidth limitation, the least frame duration
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we can set is 33.3 ms, equivalent to the 30 Hz sampling rate. We chose 100 ms
(i.e., 10 Hz sampling rate) since it is enough for measuring human movement (the
frequency of most voluntary human movements spans from 0.6 to 8 Hz [184]). The
average power consumption of IWR1443 mmWave radar tested at power terminals
is 2.1 W [185]
Kinect V2 sensor [121]: The ground truth reference is obtained using Microsoft
Kinect V2. Both Kinect and radar are placed on a 1 m tall table while the subjects
perform the instructed movements two meters away from the table. The Kinect V2
sensor is connected to a laptop through the USB port using an adaptor. It captures
images with a 30 Hz sampling rate. Then, the images are processed using Matlab to
identify the 3D coordinates of 19 human joints listed in Table 4.2. These positions
are used as the labels during training and reference points for testing, as described
in Section 4.3.2. The Kinect reference system requires a 12V 2.67A power adapter
to work.
Hardware measurements: We implemented the proposed MARS framework, in-
cluding all the pre-processing steps and the proposed CNN, on the Nvidia Jetson
Xavier NX Development Kit [174]. The execution time and power measurements
are presented in Section 4.4.5.
Open-source training and test datasets: We collected training and test data through
user-subject studies, following an official protocol approved by our institution’s IRB
board. Each subject performed the ten movements listed in Table 4.2 (five of them
are illustrated in Figure 4.6). This set of movements enables us to evaluate both
the upper and lower body joints and associated angles. Each user performed each
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movement for two minutes, i.e., approximately 20 minutes of data is collected in
total. As a result, we obtained close to 10,000 data frames per user. Each frame con-
tains data for 19 joints. Furthermore, the Kinect V2 reference data points have three
dimensions, while the data points from the radar have five dimensions (3D coordi-
nates, Doppler velocity, and reflection intensity). Hence, our reference data set from
Kinect and radar contain close to 570K (10,000×19×3) and 950K (10,000×19×5)
points for each subject, respectively. We emphasize that this is a large-scale dataset
with a comparable size to other similar studies. More importantly, it is the first

rehabilitation movement dataset using mmWave point cloud with well-labeled joints. Since
home-based assistive rehabilitation systems, like MARS, are user-specific, evalua-
tions even on one user are representative. Regardless, we repeated the evaluations
with four different users to obtain a total of 2.28 million reference data points from
Kinect V2 and 3.81 million data points from mmWave data. We plan to release this
dataset to the public through Github [182] together with the existing demo.
CNN training details: We implemented the proposed CNN using Tensorflow
2.2.0 [186] with Keras 2.3.4 [187]. We use the Adam [188] as the optimizer with
an initial learning rate of 0.001. The CNN is trained with a batch size of 128 for
150 epochs, where the validation loss converges at 0.01. Aiming for a personalized
model, we split the data time-wise for training, validation, and testing. First, each
movement data is divided into 60% (24,066 frames)-20% (8,033 frames)-20% (7,984
frames). Then, we take the first 60% of it for training, the next 20% for validation,
and the last 20% for testing. We choose to use the 60%-20%-20% ratio instead of the
fixed-length since some data is not exactly two minutes. These frames add up to
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2.28 million data points from Kinect V2 and 3.81 million data points from radar, as
described under the dataset. The training is performed on AMD RyzenTM 7 3800X
8-Core 3.9 GHz and Nvidia RTX2080 with 8GB of graphics memory.

4.4.2 Accuracy of 3D Joint Position Estimation

Table 4.3 shows the detailed localization error for the 19 human joint points, il-
lustrated in Figure 4.6. We use the mean absolute error (MAE), and root mean
squared error (RMSE) metrics to evaluate MARS. To eliminate the system errors,
we train ten different models and take the average. This methodology is applied to
all quantitative results reported in this paper. The average MAE for all 19 joints is

Table 4.3: Average localization error for 19 human joints position.
X (Horizontal) (cm) Y (Depth) (cm) Z (Vertical) (cm) Average (cm)
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

SpineBase 5.67 8.22 3.55 4.96 5.96 7.83 5.06 7.00
SpineMid 6.16 8.90 3.07 3.97 6.80 8.94 5.34 7.27
Neck 6.78 9.80 3.39 4.32 7.58 9.97 5.92 8.03
Head 7.37 10.57 3.69 4.69 8.20 10.68 6.42 8.65
ShoulderLeft 6.92 9.91 3.39 4.39 6.88 9.00 5.73 7.77
ElbowLeft 7.52 10.23 4.37 6.00 8.19 10.74 6.69 8.99
WristLeft 10.34 13.76 5.07 6.80 13.57 18.14 9.66 12.90
ShoulderRight 6.75 9.69 3.78 5.05 7.04 9.21 5.86 7.98
ElbowRight 7.96 10.71 4.73 6.74 8.41 10.93 7.03 9.46
WristRight 10.74 14.18 5.22 7.26 14.14 18.68 10.03 13.37
HipLeft 5.63 8.13 3.56 4.99 5.84 7.67 5.01 6.93
KneeLeft 5.56 8.10 4.09 5.63 3.25 4.53 4.30 6.09
AnkleLeft 6.27 8.83 4.29 6.18 2.47 4.49 4.34 6.50
FootLeft 6.59 9.36 4.84 7.01 3.04 5.14 4.82 7.17
HipRight 5.55 8.04 3.66 5.06 5.91 7.77 5.04 6.96
KneeRight 6.11 8.53 4.38 5.83 3.60 5.33 4.70 6.57
AnkleRight 6.92 9.42 4.43 6.10 2.74 5.37 4.69 6.96
FootRight 7.38 9.99 4.57 6.51 3.22 5.81 5.05 7.44
SpineShoulder 6.62 9.57 3.22 4.10 7.40 9.72 5.75 7.80
MARS 19 points Avg. 6.99 9.79 4.07 5.56 6.54 8.94 5.87 8.10
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6.99, 4.07, 6.54 cm for x-, y-, and z-axes, respectively. Similarly, the average RMSE
of x-, y-, and z-axes are 9.79, 5.56, and 8.94 cm, respectively. In general, the x- and
z-axes have larger errors than the y-axis since our movements involve intensive
horizontal and vertical displacement of all body parts. In contrast, the error along
the y- axis is minimal (3.07 cm–5.22 cm) due to the smaller displacement in depth.

The mean average absolute error of most joints is smaller than 8 cm. The most
notable exceptions are the right and left wrist joints. An intuitive explanation is
that joints related to hands need a higher resolution to localize. Since the mmWave
radar’s range resolution is 4.69 cm@3.20 GHz as mentioned in Section 4.2, it is
challenging for the model to reconstruct these points. Since estimating human pose
from mmWave point cloud is a relatively new research area, there are only a few
studies to compare with [22]. MARS achieves 5% lower error with only half model
parameters than the method proposed in [22], as explained in Section 4.4.3. By
searching similar research areas, we note that the accuracy of MARS is competitive
with the human pose estimation techniques [189]. Hence, MARS can provide
reliable user feedback in home-based rehabilitation systems.

4.4.3 Ablation Study

We performed extensive ablation studies to demonstrate the necessity of each
component in MARS and justify the design choice adopted by MARS.
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Using out-of-range point clouds during training

As described in Section 4.3.1, some radar data frames may contain out-of-range
points, also referred to as ghost images. It is possible to train MARS by including

or excluding the out-of-range points, which constitute about 2% of all frames. To
evaluate each choice’s effectiveness, we first train the model with the frames that
only contain the in-range point clouds (i.e., out-of-range points are excluded). Then,
we obtain a different CNN model by using all frames. We observe that the model
trained with all point clouds performs slightly better than the one trained with
only in-range point clouds, as shown in Table 4.4. The out-of-range point clouds
add noise to the inputs, making the CNN more robust. Furthermore, out-of-range
points are inevitable during real use cases. Therefore, we conclude that they should
be included in the training data.

Table 4.4: Comparison of average localization error for 19 human joints position
between models trained with different point cloud range.

X (Horizontal) (cm) Y (Depth) (cm) Z (Vertical) (cm) Average (cm)
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

With "in-range" point cloud 7.75 10.73 4.18 5.79 7.11 9.63 6.35 8.72
With all point cloud 6.99 9.79 4.07 5.56 6.54 8.94 5.87 8.10

Different feature channels and projection for CNN

As discussed in Section 4.3.1, we have an 8× 8 feature map for each channel, includ-
ing x,y, z coordinates, Doppler velocity, and reflection intensity. We can combine
and stack these feature maps in different ways to obtain a stacked feature map for
the CNN. To find out the best option, we train different CNNs with four different
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stacked feature maps and refer to the CNNs as Configuration-1, Configuration-2,
Configuration-3, and Configuration-4. Configuration-1 represents the CNN trained
with feature maps only stacked with x,y, z three channels. Configuration-2 repre-
sents the CNN trained with feature maps stacked with x,y, z, and Doppler velocity,
four channels. Configuration-3 represents the CNN trained with feature maps
stacked with x,y, z, and reflection intensity, four channels. Finally, Configuration-4

represents the CNN trained with feature maps stacked with x,y, z, Doppler velocity,
and reflection intensity, five channels.

We observe that the Configuration-1 model has the worst performance due to a
lack of Doppler velocity and reflection intensity information, as shown in Table 4.5.
Configuration-2 and Configuration-3 has slightly better performance since Doppler
velocity or intensity information is introduced. Configuration-4 performs the best
since the 5-channel feature maps contain all the information, including x,y, z with
both Doppler and intensity. Note that because of weight sharing in CNN, adding
channels in input only increases negligible parameters in the model, as shown in
Table 4.5. We then apply Configuration-4 in MARS.

A recent prior study, mmPose [22], projects the point cloud to two different
planes as features and then concatenates them. However, the projection step in-
creases the number of parameters hence increases the computation cost. Decompos-
ing features into different projections increases the model parameters linearly since
we need to perform the convolution multiple times for each decomposed feature
map and then concatenate them. To analyze the effect of projections, we implement
the mmPose model [22] and compare it with MARS. To make a fair comparison, we
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Table 4.5: Comparison of average localization error for 19 human joints position
across models trained with different feature channels.

X (Horizontal) (cm) Y (Depth) (cm) Z (Vertical) (cm) Average (cm)

MAE RMSE MAE RMSE MAE RMSE MAE RMSE No. of
parameters

Configuration-1 7.37 10.37 4.64 6.48 7.06 9.77 6.36 8.87 1,094,827
Configuration-2 7.33 10.20 4.37 6.02 7.00 9.52 6.23 8.58 1,094,971
Configuration-3 6.94 9.80 4.46 6.08 6.62 9.10 6.01 8.33 1,094,971
Configuration-4 6.99 9.79 4.07 5.56 6.54 8.94 5.87 8.10 1,095,115
mmPose[22] 6.80 10.21 4.79 6.67 6.94 9.86 6.18 8.91 2,281,739

reduce mmPose’s feature map size from 16×16 to 8×8 since the maximum number
of points per frame NJ is 64 in our dataset. As shown in Table 4.5, the CNN used in
MARS has 1,095,115 parameters, which is half of 2,281,739 in mmPose. Moreover,
the MAE of the 3-axis localization error of MARS is 5.87 cm, lower than 6.18 cm
of mmPose. The result shows that MARS feature generation reduces the model
complexity while obtaining higher performance. We also emphasize that mmPose
requires two radars, while MARS uses only one radar, making it more practical
and easier to use. Furthermore, MARS handles complex rehabilitation movements,
whereas mmPose is developed to analyze joint movements during walking.

CNN architecture design

Section 4.3.2 presented the use of BN and max-pooling concepts in CNN architec-
tures. This section justifies incorporating or excluding BN and max-pooling by
training different models with or without them. We first train the model without
BN and max-pooling as the baseline. Then, we train another model called “Baseline
with BN”, which adds a BN layer after each convolution layer and fully connected
layer. Similarly, we train another model called “Baseline with max-pooling”, which
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adds a max-pooling after the convolution layers. Finally, we train a model called
“Baseline with both”, which adds a max-pooling layer after each BN layer except
the final BN layer after the fully connected layer. We observe that the “Baseline
with BN” gives the best result and “Baseline with both” gives the worst, similar to
the baseline, as shown in Table 4.6. BN successfully avoids the internal covariate
shift. Max-pooling is not a good option because our model maps mmWave points
to the joints point such that this task is essentially a mapping regression problem.
Max-pooling introduces information loss when taking the local maximum of the
features such that the model cannot leverage every joint’s coordinates accurately.
We then decide to keep only BN in MARS.

Table 4.6: Comparison of average localization error for 19 human joints positions
position across models trained using CNN architecture with different components.

X (Horizontal) (cm) Y (Depth) (cm) Z (Vertical) (cm) Average (cm)
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Baseline 7.52 10.55 4.84 6.65 7.36 10.05 6.57 9.08
Baseline with BN 6.99 9.79 4.07 5.56 6.54 8.94 5.87 8.10
Baseline with max-pooling 7.63 10.38 4.65 6.64 7.15 9.57 6.48 8.86
Baseline with both 7.44 10.20 4.45 6.09 7.22 9.81 6.37 8.70

Training with user-specific or aggregate data

Our dataset contains close to 10,000 frames per user, which alone is sufficient to
train custom user-specific models. This section moves one step forward to analyze
the ability of MARS to generalize to multiple users, considering that several people
in the same household can use a shared setup.

To this end, we investigate the performance between the model trained with
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individual users and all users. Using the same CNN architecture, we first train the
models with individual user data then train a model with all users. The first four
rows in Table 4.7 summarize the MAE and RMSE for the test data when the CNN is
trained for a single user. We observe that the maximum MAEs for the x-, y-, z-axes
are 8.25 cm, 5.23 cm, and 6.56 cm, respectively. The fifth row shows that the MAE
and RMSE average across all subjects. The corresponding average MAE and RMSE
across all subjects and dimensions are 6.29 cm and 8.40 cm, respectively.

The last row in Table 4.7 shows the MAE and RMSE when a single model is
trained using data from all users. The resulting modeling errors are very similar to
the performances of user-specific models for each subject. We also note that the
model trained for all users has a slightly higher MAE of 6.54 cm along the z-axis
than x-axes. This behavior is attributed to the height differences between all our
subjects (160 cm-192 cm) since the z-axis represents the vertical dimension. Overall,
these results show that multiple people in the same household can easily use a
shared MARS profile. We also note that multiple user profiles can also be used
depending on the user preference.

Table 4.7: Comparison of average localization error for 19 human joints position
between models trained with individual user and all users.

X (Horizontal) (cm) Y (Depth) (cm) Z (Vertical) (cm) Average (cm)
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Subject 1 (M) 8.01 10.78 5.23 6.70 6.56 9.08 6.60 8.85
Subject 2 (M) 7.80 10.31 4.95 6.57 5.37 7.41 6.04 8.10
Subject 3 (M) 8.25 10.80 4.82 6.42 6.13 8.07 6.40 8.43
Subject 4 (F) 7.58 10.34 5.08 6.89 5.70 7.45 6.12 8.23
Avg. of all subjects 7.91 10.56 5.02 6.65 5.94 8.00 6.29 8.40
All subjects 6.99 9.79 4.07 5.56 6.54 8.94 5.87 8.10
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4.4.4 Joint Angle Estimation

The angle estimation is essentially a nonlinear transformation of the coordinate
estimations. Therefore, the estimation error in the joint angle is related to the local-
ization error trend. The average MAE of MARS in estimating left elbow angle, right
elbow angle, left knee angle, and right knee angles are 12◦, 13◦, 7◦, 6◦, respectively.
We observe that the elbow angles have a higher error than the knee angles, as
summarized in Table 4.8. The higher error stems from using the WristLeft and
WristRight joint positions to calculate the elbow angles. Since these two joints have
higher estimation errors, as discussed in Section 4.4.2, they increase the error in the
elbow angle estimates. Moving the users closer to the radar might reduce this error
since the radar can detect more hands-related points, but the system may also lose
the entire body’s aspect. Further improvement of elbow angle estimates will be
considered in our future work.

Table 4.8: MAE of MARS joint angle estimation.

MAE of Left Elbow MAE of Right Elbow MAE of Left Knee MAE of Right Knee
12◦ 13◦ 7◦ 6◦

4.4.5 Power and Execution Time Analysis

MARS’s ability to run on hardware within acceptable power and execution time
is crucial for its practicality on low-power edge devices [190, 191]. To evaluate
this ability, we implemented MARS on Nvidia Jetson Xavier NX Development
Kit [174]. The board has a 6-core ARM CPU, 384 Nvidia CUDA cores, and 48 tensor
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processing units.
We focus on real-time model inference since the training is usually done using

more powerful computing resources, and inference is more meaningful during
rehabilitation exercises. The computing power of edge devices varies widely. To
do a comprehensive study considering most use-cases, we set five different hard-
ware configurations with different numbers of active CPU cores and maximum
CPU/GPU operating frequencies, as shown in the upper part of Table 4.9. We
sort five configurations in descending order of computation power. For different
configurations, the total inference time for all 40,083 frames ranges from 2.5 s to 4.1 s,
as shown in Table 4.9. The total CPU and GPU power consumption decreases from
3921.4 mW to 1950.6 mW as we move from Config. 1 to Config. 5. The correspond-
ing total power consumption decreases from 6865.2 mW to 4700.2 mW. We find the
average inference time and energy consumption by dividing these measurements
into the total number of frames (40,083). The average frame processing time ranges

Table 4.9: Power and latency results for model inference of MARS on Jetson Xavier
NX.

Config. 1 Config. 2 Config. 3 Config. 4 Config. 5
Online CPU 2 2 4 4 6
Max CPU frequency (MHz) 1900 1500 1400 1200 1400
Max GPU frequency (MHz) 1100 800 1100 800 1100
Total time (second) 2.5 3.2 3.7 3.9 4.1
CPU-GPU power (mW) 3921.4 2366.8 2075.7 1968.1 1950.6
Total power (mW) 6865.2 5211.4 4854.4 4723.1 4700.2
Total energy (J) 17.3 16.5 17.9 18.2 19.4
Time per frame (µs) 64.4 81.1 94.4 98.9 105.6
Energy per frame (µJ) 442.3 422.9 458.3 467.5 496.4
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from 64.4 µs to 105.6 µs, which shows that MARS can process well over 9,000 frames
per second with less than 500 µJ energy consumption per frame. These results show
that MARS provides a high-performance and energy-efficient solution for reliable
and privacy-preserving home-based rehabilitation.
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5 mri: multi-modal 3d human pose estimation dataset

using mmwave, rgb-d, and inertial sensors

5.1 Background, Motivation and Contributions

Many existing studies rely heavily on processing RGB frames from color cameras
for human pose estimation [7, 8, 9, 10, 11, 12]. RGB image and video frames are
the most common input types since they offer an non-invasive approach for HPE.
However, the image quality depends heavily on the environmental setting, such
as light conditions and visibility [36]. Moreover, using image and video data
poses significant privacy concerns, especially in a household environment. Finally,
the data-intensive nature of real-time video processing requires computationally
powerful equipment with high cost and energy consumption.

(b)(a) (c) (e)(d)

Figure 5.1: Overview of all modalities and annotations in mRI dataset. (a) 2D
human keypoints with bounding box on RGB image, (b) 3D mmWave point cloud,
(c) 3D human skeletons, (d) IMU rotations, (e) depth image.

Frame quality, privacy, and computational power drawbacks of video pro-
cessing can be addressed by emerging complementary sensor modalities, such as
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lidar, millimeter wave (mmWave) radar [36, 21, 19], and wearable inertial sen-
sors [13, 14, 15, 16, 17, 18, 33], The point cloud from lidar overcomes frame quality
and privacy challenges. However, it has a high cost and computation power re-
quirements to process the data, making it unsuitable for indoor applications such
as rehabilitation. In contrast, mmWave radar can generate high-resolution 3D point
clouds of objects while maintaining low cost, privacy, and computational power
advantages. Similarly, wearable inertial sensors provide accurate rotation and ac-
celeration information regarding joints with low cost and computational power
requirements [14, 15, 16, 33], yet at a price of body worn sensors.

High-quality and large-scale datasets provide a vital foundation for algorithm
development. To catalyze research in HPE, this chapter (mRI) combines mmWave
radar, RGB-Depth (RGB-D), and Inertial sensors to exploit their complementary
advantages. We present a comprehensive 3D human pose estimation dataset per-
formed by 20 human subjects, consisting of more than 160k synchronized frames
from three sensing modalities. The contributions and unique aspects of mRI are as
follows:

• Multiple Sensing Modalities. mRI consists of mmWave point cloud, RGB
frames, depth frames, and inertial signals. The experimental data is captured
using a commercial low-power, and a low-cost mmWave radar, two depth
cameras, and six high-accuracy inertial measurement units (IMUs). All sen-
sors are temporally synchronized and spatially calibrated. To the best of
our knowledge, mRI is the first dataset that combines these complementary
modalities.
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• Healthcare Movements Focus. We use ten clinically-suggested rehabilitation
movements that involve the upper body, lower body, and the major muscles
related to human mobility, as described in Section 5.2.2. These movements
are crucial for patients to recover from sequelae of central nervous system
disorders, such as Parkinson’s disease (PD) and cerebrovascular diseases
(e.g., stroke). Hence, the mRI dataset can serve as a reference from healthy
subjects, while the experimental methodology can enable future studies with
patients.

• Flexible Data Format and Extensive Benchmarks. We release the raw syn-
chronized and calibrated sensor data and a comprehensive set of benchmarks
for 2D/3D human pose estimation and action detection using multiple modal-
ities (see Section 5.3). The proposed end-to-end pipeline pre-processes the
raw data into the point cloud, features, and 2D/3D keypoints. In addition,
all manually-labeled actions annotations and 3D human key points ground
truth are released to public, as detailed in Section 5.2.2.

• Low-Power & Low-Cost Requirements. Widespread use of home-based
rehabilitation depends critically on the affordability and operating cost of the
deployed systems (see Section 5.2.1). Our mRI dataset and findings pave the
way to sustainable systems with low-power and low-cost sensors and edge
devices. For example, only mmWave radar and IMU sensors can be used in
the field after they are trained with all three modalities (including RGB-D) in
a clinical environment.
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5.2 Overview of mRI Dataset

mRI includes 3D point cloud from mmWave, RGB frames and depth maps from RGB-
D cameras, joints rotations and accelerations from wearable IMU sensors, as well
as annotations of 2D keypoints, 3D joints, and action labels of 12 clinically relevant
movements. mRI consists of 300 time-series sequences with 160K synchronized
frames and more than 5M total data points from all sensors, from 20 subjects.
We hope that our dataset will contribute to the multi-modal machine learning
community, and facilitate applications of HPE for rehabilitation and other healthcare
problems. In what follows we describe the hardware system to capture the data
and the data collection process.

5.2.1 Capturing Multi-Modal Signals for Human Pose Estimation

To capture multi-modal data, we designed a sensor system composed of one
mmWave radar, two sets of RGB and depth cameras, and six wearable IMUs. De-
tailed specifications and features of all sensors are shown in Table 5.1. The mmWave
radar and two Kinect V2 sensors are placed on a desk 2.4 m away from the sub-

Table 5.1: Comparison across sensors. #: Number of sensors. Freq.: Sampling
frequency. Con.: Type of connection to the host PC. Privacy indicates privacy-
preserving ability. Anti-interference represents how much it is affected by environ-
mental factors like non-ideal lighting.

# Freq. Con. Power Privacy↑ Anti-inter.↑ Intrusive Output
mmWave [172] 1 10 Hz Wired 2.1 W ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ No Point cloud

RGB [121] 2 30 Hz Wired 16 W ⋆ ⋆ No RGB frame
Depth [121] 2 30 Hz Wired 16 W ⋆⋆ ⋆⋆ No Depth and infra-red frame
IMU [192] 6 50 Hz BLE 120 mW ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Yes Accelerations and quaternions



96

(f)(e)

RGB 
camera1

mmWave radar

Depth 
camera1

RGB 
camera2

Depth 
camera2

Antennas

(a) (b)

Two Kinect V2

(c)

(d)

2.4 m

Figure 5.2: Overview of the experimental setup. (a) shows all non-intrusive sensors,
including mmWave radar, two RGB, and depth cameras. (b) shows a zoom-in
version of the mmWave radar and its antennas. The front and back views of the
IMU are shown in (c) and (d), respectively. (e) and (f) show the front and back
view of the subject standing as a “T pose” with six IMUs and zoom-in views of
IMUs. The gray dash line boxes in (a), (e), and (f) represent the position of non-
intrusive sensors.

ject, wearing six IMU sensors, as shown in Figure 5.2. We now describe the data
capturing for each modality and the synchronization across modalities.

Point cloud from mmWave radar. A Texas Instruments (TI) IWR1443 Boost
mmWave radar [172] is used to obtain the mmWave point cloud. 3D mmWave
point cloud is generated by Frequency Modulated Continuous Wave (FMCW) radar
using multiple transmit (Tx) and receiver antennas (Rx) configuration [36, 22, 19].
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The radar emits a chirp signal, a sinusoid wave whose frequency increases linearly
with time. Then the reflected signals are received at the Rx antenna side. The range,
velocity and angle resolutions are computed with the received data using range

FFT, Doppler FFT, and angle estimation algorithms, respectively. After the constant
false alarm rate (CFAR) algorithm eliminates the noise, a point cloud capturing
object shape and movement is constructed as

Pi =
(
xi,yi, zi,di, Ii

)
, i ∈ Z, 1 ⩽ i ⩽ N (5.1)

where xi, yi, zi are the spatial coordinates of the point, di represents the Doppler
velocity, Ii denotes the signal intensity, and N = 64 represents the total number
of points in a given frame. To further increase the density of the point cloud, we
follow [37] to fuse points from three consecutive frames, i.e., increasing the number
of points per frame from 64 to 192.

The radar is connected to the host PC through the UART interface. We modify
a Matlab Runtime implementation from TI [183] for the data acquisition. The
sampling rate is set to 10 Hz since it is sufficient for measuring human movement
(the frequency of most voluntary human movements spans from 0.6 to 8 Hz [184]).

RGB and depth frames from RGB-D cameras. Two Microsoft Kinect V2 [121]
sensors are used to capture RGB and depth frames. Kinect V2 has a high precision
color camera and infra-red camera, generating color and depth frame with a resolu-
tion of 1920 × 1080 and 512 × 424, respectively. We modified the software from
libfreenect21 to generate aligned color, depth, and infra-red frames with the global

1https://github.com/OpenKinect/libfreenect2

https://github.com/OpenKinect/libfreenect2
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timestamp from two Kinect V2 sensors. We calibrate the two cameras using the
Matlab camera calibration toolbox [193]. The center of the RGB camera 1, as shown
in Figure 5.2 (a) is selected as the origin of the world coordinate system.

Joints rotations and accelerations from wearable IMUs. Six Wit-motion BWT901CL
IMUs [192] are used to capture the rotation and acceleration of the human joints.
In our experiments, the IMUs are tightly attached to the left wrist, right wrist, left
knee, right knee, head, and pelvis of the subject to capture the complete information
about the human body, as shown in Figure 5.2(e) and (f). Each IMU contains a
3-axis accelerometer, 3-axis gyrometer, and 3-axis magnetometer as the sensing
unit. The raw output data from the sensors are accelerations, angular velocity, Euler
angle, and magnet field values. Based on these values, we extract joint quaternion
and 3-axis acceleration following [194, 18] as they fully specify the body pose and
movement. The IMUs connect to the host PC via a USB-HID device using the BLE
protocol with a sampling rate of 50 Hz (see Table 5.1), ensuring low-latency data
transmission with multiple devices.

Sensors synchronization. All sensors are connected to the same host PC, al-
lowing global timestamps from the host attached to each data point from different
sensors. We then synchronize all data points using these global timestamps. Since
mmWave radar has the lowest sampling rate, we use its timestamp as the basic
timestamp. For each timestamp in mmWave radar, we find the timestamp in other
sensors with the minimum absolute difference between itself and the mmWave
timestamp and align them. The time difference between sensors is less than 5 ms
with the proposed time alignment method. Finally, the synchronized data across
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all modalities have the same number of data points.

5.2.2 Data Collection, Annotation, and Visualization

In this section, we explain the details of data collection, annotation, and visualiza-
tion.

Rehabilitation exercises. We consider 12 movements related to rehabilitation
exercises covering the entire human body. The first ten rehabilitation movements
are modified from [60, 36]. Figure 5.3 shows all movements: (a) left upper limb
extension, (b) right upper limb extension, (c) both upper limb extension, (d) left
front lunge, (e) right front lunge, (f) squat, (g) left side lunge, right side lunge,
(h) left limb extension, and right limb extension. The 11th and 12th movement
are stretching and relaxing in free forms (i), and walking in a straight line (j),
respectively. These two movements are meant to increase the diversity of the
dataset, as the 11th movement is determined by each subject and the 12th movement
features a global displacement. The duration of each type of movement is around
one minute per subject. To calibrate the IMUs, we require the subject to perform a
“T Pose” at the beginning of each recording.

Participant recruitment and consent. To conduct human subject study, we
obtained an approval from the IRB at the university. Our participants were recruited
locally and all experiments were carried out in a laboratory setting. Before each
session, a researcher introduces the research goal, experiment procedure, and
potential risk via both verb communication and video tutorials. The participant is
free to raise questions before he or she sign the consent form, and is free to withdraw
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j)

Figure 5.3: Overview of all movements in mRI, as described in Section 5.2.2. The
mirror movements of (g) and (h) are not shown due to limited space.

from the study at any time. We refer more details to our Ethic statements.
20 healthy participants consented and managed to perform the study. There are

13 males and 7 females, with an average age of 24.1±4.4 and a height of 175.6±9.3 cm.
Obtaining human body pose. We now describe how we derive 2D keypoints

and 3D joints given our sensor data. Without using MoCap, our solution is a
combination of 2D keypoint detection (body parts), 3D triangulation (joints), and
an optimization-based refinement.

• First, we use HRNet [195] (with bounding boxes from Mask RCNN [196])
to detect 2D keypoints of human body parts in all RGB frames from both
cameras.
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• Next, we triangulate two sets of 2D keypoints captured at the same time
yet from different cameras, using camera parameters obtained via camera
calibration. The results are a set of 3D body joints (17 in total following COCO
format).

• Finally, we refine the 3D joints in each video by solving an optimization
problem. Our optimization minimizes 2D reprojection error, imposes equal
bone length constraint for all frames, and enforces temporal smoothness of
the 3D joints.

Specifically, our refinement step solves the following optimization problem

min
{pi}

Z∑
i=1

(∥∥Plpi − ql
i

∥∥+ ∥Prpi − qr
i∥
)
+

bonelist∑
j

∥∥Bj −median(B)
∥∥+

Z−1∑
i=1

∥∥pi+1 − pi

∥∥ ,

(5.2)

where {pi} is the set of 3D joints of size Z, ql
i and qr

i are the 2D keypoints from the
left and right camera, respectively. Pl and Pr are the camera projection matrix for the
left and right camera, respectively. {Bj} is a set of bone length defined by connecting
a subset of the joints (e.g., wrist to elbow, elbow to shoulder). The first term
represents the re-projection errors of the two cameras. The second term enforces
equal bone length across all frames in the same video (i.e., the same subject). And
the third term imposes temporal smoothness of the 3D joint coordinates. More
details, including both quantitative and qualitative results, can be found in the
supplement. After the optimization, we re-project the 3D joints to 2D and thus
update the 2D keypoints.
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Keypoints quality. To validate the reliability of the obtained 3D joints, we report
the reprojection error of the derived 3D joints by comparing their 2D projections
to human annotated 2D keypoints. Specifically, we randomly sample 50 video
frames from our dataset, manually annotate the 2D keypoints for each frame,
and calculate the error between the projected 3D joints and the annotated 2D
keypoints, following [8]. The mean absolute percentage error (MAPE) is 1.5%,
and the percentage of correct keypoints thresholded at 50% of the head segment
length (PCKh) is 98.9.

Annotating actions in videos. We also provide annotations of the 12 move-
ments for each video. The multi-media annotation tool ELAN [197] is employed to
annotate the videos. For each video sequence, we manually label the start and end
timestamp and the category of the 12 different movements.

5.3 Evaluation and Benchmarks

We introduce a standardized evaluation pipeline of using our dataset for 3D human
pose estimation and human action detection. We use latest models to benchmark
the performance of each modality and discuss their results.

5.3.1 3D Human Pose Estimation

Our main benchmark is 3D HPE. We now describe our experiment protocol, evalu-
ation metrics, and the method we used, followed by the presentation of our results.

Experiment protocol. We consider two settings of data splits. Setting 1 (S1



103

Random Split): A random split of 80% and 20% of all data is used as the training
and testing set, respectively. Setting 2 (S2 Split by Subjects): A randomly selected
subset (80%, i.e., 16 out of 20) of the subjects is used for training, while the rest
are for testing. S1 mimics a case where personalized HPE model is possible, while
S2 evaluates across-subject generalization. For each setting, we randomly sample
three splits and report the averaged results.

Further, we also define two evaluation protocols based on the design of our
movements, as mentioned in Section 5.2.2. Protocol 1 (P1) consists of all 12 move-
ments, including stretching and relaxing in free forms and walking. While Protocol

2 (P2) only considers the first ten rehabilitation movements. Such protocols help
us investigate the robustness of the model in terms of fixed/free form movement.

Evaluation metrics. We adopt Mean Per Joint Position Error (MPJPE) and
Procrustes Analysis MPJPE (PA-MPJPE), widely used in human body pose esti-
mation [9], as the main metrics. MPJPE represents the mean Euclidean distance
between ground truth and prediction for all joints. MPJPE is calculated after align-
ing the root joints (the pelvis) of the estimated and ground truth 3D pose. PA-MPJPE
is MPJPE after being aligned to the ground truth by the Procrustes method [198],
a similarity transformation including rotation, translation, and scaling. We also
report additional metrics such as joint angles provided in the supplement.

Methods. We conduct 3D human pose estimation using mmWave, RGB, and
IMUs separately using latest methods. Here we briefly introduce the methods
considered in our evaluation and refer to our supplement for more implementation
details.
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• mmWave: We use the data processing pipeline and model from [36] that
learns a convolutional neural network on the 5D point cloud to regress the
3D joints. The model is trained from scratch on our dataset, and outputs the
3D joints in the global coordinates system.

• RGB: We adopt the model from [123], where 2D keypoints from a sequence
of frames are “lifted” into 3D joints (in the camera coordinate system) using
a convolutional neural network. We use the pre-trained model from [123].
As the pre-trained model outputs a different set of joint, we only evaluate on
a subset that intersects with our set of joints.

• IMUs: We employ the feature processing method from [18], with a convo-
lutional neural network trained to regress rotations relative to a root joint
(e.g., pelvis) using data from IMUs. The model is trained from scratch on our
dataset.

Results and discussion. Table 5.2 shows the 3D HPE results for mmWave,
RGB, and IMUs. Under S1 and P1, mmWave-based HPE achieves 163 and 94 mm
for MPJPE and PA-MPJPE, respectively. The metrics are further reduced to 125
and 74 mm for P2. IMU-based HPE obtains MPJPE and PA-MPJPE of 87 and
60 mm, respectively, under S1 and P1. Figure 5.4 shows visualization comparison
of estimation across different modalities.

Under S2, mmWave-based HPE performs similarly to S1, while IMU-based
HPE obtains worse results than S1. This is because the sensing data from IMU is
more fine-grained on the joints while mmWave grasps more information about
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Table 5.2: 3D human pose estimation results for mmWave, RGB, and IMUs. We
report the mean and standard deviation of joint errors averaged across multiple
splits under both our settings (S1 & S2).

Protocol 1 Protocol 2
Modality Setting MPJPE (mm)↓ PA-MPJPE (mm)↓ MPJPE (mm)↓ PA-MPJPE (mm)↓

mmWave S1 163.3±9.1 94.1±3.6 125.1±2.4 74.1±1.0
S2 186.6±23.8 97.3±7.8 126.6±11.3 75.0±7.1

RGB S1 116.9±0.1 66.8±0.2 115.0±0.1 64.4±0.1
S2 120.1±3.7 67.5±1.9 118.4±3.8 64.7±1.4

IMUs S1 80.2±12.6 51.9±1.9 40.9±1.0 28.4±0.9
S2 147.4±18.4 74.5±5.9 94.3±13.8 54.0±4.9

body trunk, which is not too subject-specific. As a result, the IMU-based model is
more sensitive to different subjects. We can observe that for all modalities S2 yields
higher standard deviations than S1 since the difference between subjects is much
more significant than random split, between train and test set. Similarly, P1 yields
higher standard deviations than P2 since all movements in P2 are fixed positions,
which makes the model learning the keypoints distribution easier.

RGB-based HPE achieve 116 and 66 mm MPJPE and PA-MPJPE for P1 under S1.
Both data-split yield similar results. To compare, the same model achieves 36 mm
PA-MPJPE on Human3.6M dataset. However, the model is trained and evaluated
on Human3.6M while it is only evaluated on mRI without any fine-tuning. We
leave fine-tuning the model on mRI as future work. In summary, all modalities
perform reasonably well on our dataset.

Result visualization. We further visualize sample results of 3D pose estimation
from different modalities in Figure 5.4.
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Figure 5.4: Visualization of sample pose data and results during left front lunge.

5.3.2 Skeleton-based Action Detection

Moving forward, we explore using the estimated 3D joints for temporal action
detection in untrimmed videos — the simultaneous localization and recognition
of action instance in time. Specifically, given an input untrimmed video, temporal
action localization seeks to predict a set of action instances with varying size. Each
instance is defined by its onset, offset, and action labels.

Experiment protocol. We consider the more challenging setting S2, where a
model is tasked to detect actions performed by subjects not presented in the training
set. Here each movement type defines one action category. Similar to our HPE
experiments, we evaluate on both P1 (12 categories) and P2 (10 categories focusing
on rehabilitation exercises). Importantly, we consider using individual modalities
and all combinations of these modalities (e.g., RGB+IMU or RGB+mmWave). To
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combine multiple modalities, 3D joint data from each modality at every time step
is concatenated, and the resulting sequence is fed into the model.

Evaluation metrics. Following prior work [128], we report the mean average
precision (mAP) at multiple temporal intersection over union (tIoU) thresholds
([0.5:0.05:0.95]). tIoU is defined as the intersection over union between two temporal
windows, i.e., the 1D Jaccard index. Given a tIoU threshold (e.g., 0.75), mAP
computes the mean of average prevision across all action categories. An average
mAP is also reported by averaging the mAP scores across all tIoUs.

Method. We make use of a latest method — ActionFormer [199] for temporal
action detection. ActionFormer develops a Transformer based model and achieves
state-of-the-art results across action detection benchmarks. Specifically, we feed
the model with a sequence of estimated 3D poses from different modalities at a
sampling rate of 2 Hz, and train the model from scratch on our dataset.

Results and discussion. Table 5.3 summarizes the results from three modalities
and their combinations averaged across all splits. Overall, all modalities perform
fairly well, with mAP scores around 90%. Under P1, IMUs data have the best results
with 93.4% mAP, and outperform the RGB frames and radar signals by 1.9% and
6.4%, respectively. Under P2, both IMUs data and RGB frames perform equally well
with improved mAP (around 95%). The RGB frames achieve a major improvement
when evaluated under P2. It is interesting to cross reference the results of HPE
and action detection. While RGB frames have lower joint errors under S2 and P1,
they have slightly worse results on action detection. On the other hand, IMUs data
perform consistently well on action detection in P1 and P2.
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Table 5.3: Action detection results with mmWave (W), RGB (R), IMUs (I), and
their combinations. We report the mean and standard deviation of mAP averaged
across 3 splits under our setting 2 (S2).

mAP↑
Protocol 1 Protocol 2

Modality tIoU=0.50 tIoU=0.75 tIoU=0.95 average tIoU=0.50 tIoU=0.75 tIoU=0.95 average
mmWave (W) 98.22±3.08 97.59±4.17 29.02±6.31 87.04±4.89 99.00±1.73 97.21±2.41 31.11±15.34 87.55±3.61
RGB (R) 100.00±0.00 99.14±0.75 44.80±10.55 91.56±2.08 100.00±0.00 100.00±0.00 59.87±8.12 95.07±1.46
IMUs (I) 100.00±0.00 100.00±0.00 53.55±12.39 93.46±2.30 100.00±0.00 100.00±0.00 60.13±6.82 94.89±1.39

W+R 100.00±0.00 100.00±0.00 55.71±11.20 94.17±1.58 100.00±0.00 100.00±0.00 59.89±15.18 95.09±2.14
W+I 100.00±0.00 100.00±0.00 56.53±12.23 94.38±1.70 100.00±0.00 100.00±0.00 62.42±5.65 95.26±1.08
I+R 100.00±0.00 99.61±0.67 60.10±11.97 94.54±1.45 100.00±0.00 100.00±0.00 61.10±8.46 94.80±1.28
W+R+I 100.00±0.00 100.00±0.00 60.62±8.42 94.88±1.75 100.00±0.00 100.00±0.00 66.16±10.89 95.83±1.50

Further combining the modalities results in a noticeable performance boost. It
is probably not surprising that using all three modalities yields the best results,
outperforming the best single modality by 1.4% (P1) and 0.8% (P2) in average mAP
and with most gains in mAP under tIoU=0.95 (+7.1% for P1 and +6.0% for P2).
Fusing any of the two modalities leads to improved performance than the best of
the constituting modality, except the combination of IMUs+RGB under P2. These
results demonstrate a first step towards multi-modal learning with our dataset.

mmWave radar is less invasive than IMU sensors and offers better privacy than
RGB cameras. While in its infancy for human sensing, this modality presents an
emerging solution for home-based health monitoring. Part of our goal in this paper
is to explore mmWave radar for human sensing by comparing its performance
to other common modalities. The results indicate that mmWave radar leads to
compelling performance for both human pose estimation and action localization.
While its results are worse than those with RGB cameras or IMU sensors, mmWave
radar might still be preferred for privacy-sensitive applications.
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5.4 Ethics Statement

The human subject studies reported in this paper was reviewed and approved by
the IRB committee at the University of Wisconsin-Madison. Each participant was
informed about the research project and signed the consent form. The data has
been de-identified with facial information blurred in all videos and participant ID
anonymized, and made publicly available to facilitate future research.

To the best of the authors’ knowledge, this work does not disadvantage any
person directly. The authors do acknowledge that any pose estimation and activity
recognition method can potentially be used with malicious intent, such as tracking
user movements. If the human pose estimation/human activity understanding
algorithms are directly used to make decisions for patients, potential failures in
the classification would affect the users’ quality of life. Therefore, the data and
insights on patient activity must be verified by health professionals before making
any decisions.
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6 fuse:fast and scalable human pose estimation using

mmwave point cloud

6.1 Background, Motivation and Contributions

Human pose estimation can be performed by processing image, video, lidar (light
detection and ranging), or mmWave radar data. The most common input type
is RGB image and video frames since they offer accurate real-world representa-
tions using true color. However, the RGB frame quality depends heavily on the
environmental setting, such as light condition and visibility. The lidar point cloud
is a powerful alternative that overcomes these challenges. However, it has high
cost and significant processing requirements, making them unsuitable for indoor
applications such as rehabilitation. In contrast, mmWave radar can generate high-
resolution 3D point clouds while maintaining low-cost and power advantages [200].

Using mmWave point cloud for human pose estimation faces two major chal-
lenges. First, mmWave point cloud is significantly sparser and less informative
compared to video and lidar point cloud data. For example, humans can easily
recognize the object and its details from video and lidar point cloud, while it is
almost impossible for people to interpret the mmWave point cloud representation
accurately. Second, the amount of labeled mmWave data lags severely behind video
and lidar point cloud data. However, ML algorithms need a large amount of data
to learn the generalization to new scenarios. For example, human pose estimation
techniques must easily generalize to new users not included during training. Hence,
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there is a critical need for approaches that can perform well with fewer data points to harness

the potential of mmWave data. This capability can enable home-based applications
with significantly lower computation requirements since fewer data samples and
training efforts are needed.

Meta-learning has recently gained momentum because it can help ML mod-
els adapt to unseen scenarios faster with a few training iterations. It focuses on
learning a strategy that generalizes to related yet unseen tasks from similar task
distributions [55, 67]. It is first trained with a batch of tasks and learning rules
designed to facilitate learning new tasks using only a few training iterations. In
this way, the model employs the parameters sensitive to new samples, expediting
generalization to new tasks. The meta-learning concept fits the mmWave point
cloud context very well since the amount of labeled training mmWave data is sub-
stantially smaller than video and lidar point cloud data. Hence, it can be a crucial
enabler for mmWave radar point cloud-based human pose estimation with a few
data samples and training iterations.

This chapter presents FUSE, a fast and scalable human pose estimation technique
using mmWave point cloud. FUSE estimates the coordinates of 19 joints on the
human body using mmWave point cloud as the input. Its first component is a novel
point cloud pre-processing method that fuses sparse frames to construct multi-
frame data representations. Multi-frame representation enriches the sparse point
cloud representation, reducing the mean absolute error (MAE) on the human pose
estimation task by 34%, as demonstrated in Section 4.2. This method can easily be
integrated into existing mmWave radar-based techniques as a pre-processing step
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to boost their performance without affecting other parts. The second component is
a meta-learning framework that enables FUSE to adapt to the unseen data within
a few epochs. Experimental results show that FUSE can converge to the optimal
state in just five epochs, which is 4× faster than prior approaches.

In summary, the major contributions of this chapter are as follows:

• An effective point cloud pre-processing method that enhances mmWave point
cloud representation by frame fusion,

• A meta-learning framework that significantly enhances the ability to general-
ize and adapt to unseen scenarios,

• Experimental evaluations that show 7 cm MAE in estimating joint coordinates
with 4× fewer training iterations than prior approaches.

6.2 Overview of FUSE

This section first provides a brief background on mmWave human pose estimation.
Then, it presents the proposed FUSE framework that consists of point cloud pre-
processing and meta-learning steps, as described in Figure 6.1.

6.2.1 Shortcomings of state-of-the-art techniques

Prior mmWave pose estimation techniques focus on improving ML model accuracy
for an existing set of users or movements. However, two critical aspects are ignored
in these studies. First, they do not consider improving the sparse point cloud
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Figure 6.1: Overview of the proposed FUSE framework

representation. For example, Zhao et al. [19] designed large antenna arrays to
enrich the radar data. Similarly, Sengupta et al. [22] use two mmWave radars and
sum up their information. However, increasing the area or the number of antennas
does not address the fundamental challenge. Instead, it increases the cost and
makes deployment harder. Second, these studies rely on offline model training
and testing. This choice is not practical since ML models need to quickly adapt to
unseen scenarios in different application scenarios such as autonomous driving and
rehabilitation. Thus, it is crucial to have an initial model that can fastly converge
with any new data samples. To address these challenges, we propose a framework
that enhances the point cloud representation and adapts to the unseen scenarios
faster with a few training iterations.

6.2.2 Multi-Frame Point Cloud Representation

As the sole data source to pose estimation, the point cloud must contain sufficient
information to enable CNNs to extract the features, thus predicting accurate joint
coordinates. However, current mmWave point cloud solutions only offer up to
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hundreds of points for one frame due to the limited number of antennas on the
commercial mmWave radar [21]. For illustration, Figure 6.2(a) shows a video
frame of a subject performing squat movement. With 512X424 frames (217K pixels),
this frame can also be easily interpreted by humans. In strong contrast, the corre-
sponding mmWave point cloud has only 64 3D points (192 data points) in a frame,
i.e., almost 1000x fewer data points, as shown in Figure 6.2(b). Consequently, it is
harder for ML algorithms to extract information from this representation.

The redundancy in video frames is often eliminated by using residual frames
(i.e., differences between consecutive frames), which emphasize the changes due
to motion [201]. Indeed, Figure 6.2(c) illustrates that residual frames preserve the
relevant information, facilitating feature extraction by ML algorithm. mmWave
radar faces precisely the opposite problem: we must enrich a severely sparse repre-
sentation as opposed to reducing redundancy. Therefore, for the first time in literature,

we propose to fuse multiple sparse point cloud frames to synthesize a richer representation.
As illustrated by Figure 6.2(d), the proposed multi-frame approach significantly
improve the interpretability compared to a single mmWave point cloud frame.
Unlike a single-frame point cloud frame in Figure 6.2(b), multi-frame point cloud
representation accurately captures the shape in the upper body. For example, we
can see there are more points around the main body and arm area.

Let TS > 0 be the sampling period of the target mmWave radar (in this work,
TS = 100 ms). The kth frame f[k] in the point cloud contains the points collected
during time interval

[
kTs, (k + 1)Ts

)
for k ∈ Z+. Hence, we can express The kth
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frame f[k] as:
f[k] =

[
P1[k],P2[k], . . . ,PN[k]

]
∀k ∈ Z+ (6.1)

where Pi[k] is the ith point in frame k for 1 ⩽ i ⩽ N. Then, we fuse M consecutive
frames by concatenating them as follows:

F[k] =
{
f[k−M], f[k− (M− 1)], . . . , f[k], . . . , f[k+M− 1], f[k+M]

}
(6.2)

where M is a meta parameter that controls the number of fused frames. For instance,
M = 1 implies fusing three frames as F[k] = {f[k − 1], f[k], f[k + 1]}. This simple
yet powerful idea significantly enhances the information content as interpretability
even with M = 1, as shown in Figure 6.2(d). Quantitative analysis in Section 6.3.2
demonstrates that our proposal can significantly improve the results of prior studies
that employ mmWave point cloud data.

Figure 6.2: Visualization comparison of (a) one RGB frame, (b) a single-frame
point cloud, (c) RGB residual frame, (d) proposed multi-frame point cloud.
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6.2.3 Meta-Learning for Human Pose Estimation

Meta-learning, also known as “learning to learn”, aims at training a model on a
variety of tasks such that it can solve new learning tasks using only “few training
samples”. In our context, consider that a learning model, such as a CNN, is trained
using an initial set of users and prescribed movements. If new users or movements
are introduced, traditional techniques would either need to train models from
scratch or adapt the model using incremental learning [33, 202]. Learning from
scratch is highly inefficient, while the latter approach is an after-thought. In strong

contrast, we construct the initial model by explicitly maximizing its ability to adapt to new

users and movements using only a few training samples. This capability is achieved
by choosing model parameters sensitive to new samples, thereby ensuring that
the gradient-based online learning rule can rapidly progress with new data. In
this way, FUSE adapts to unseen scenarios quickly and estimates joint coordinates
accurately after fine-tuning with a few training iterations.

mmWave meta-learning setup

This section defines the parameters and terminology used for meta-learning.

Definition 6.1 (Training data, Dtrain). The training data is the set of all fused frames

F[k],k ⩾ 1 constructed using the point cloud frames as defined by Equation 6.2, i.e.,

Dtrain =
⋃
k

F[k] (6.3)

Instead of directly using individual samples in Dtrain, meta-learning generates
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tasks and uses them for learning as described next.

Definition 6.2 (Task, T). We define task T a set of fused frames uniformly sampled from

the training data, i.e., T ∼ Dtrain.

Next, we present the proposed offline meta-training and online fine-tuning
techniques.

Offline Meta-Training

After constructing the training data Dtrain, we train the initial model using meta-
learning using Algorithm 1. The algorithm starts with randomly initializing the
model parameters θ. Then, it starts performing the meta-training iterations (lines
2–12). Each iteration i starts with uniformly sampling a batch of tasks from the
training data: Ti ∼ Dtrain (line 3). Then, the inner loop (lines 4–10) operates on
these tasks. We first randomly choose a subset of tasks in the batch, and denote
them as support tasks Tsup

i . The support tasks are used to update the intermediate
model parameters in each iteration using gradient descent:

θ′
i = θ− α∇θLT

sup
i

(gθ) (6.4)

where α is the sample− level learning rate. Our implementation uses the mean
absolute error in joint coordinates (i.e., L1 distance) as the loss function, but other
functions such as L2 can also be used (line 7). Unlike traditional supervised learning
techniques, meta-learning samples next a set of query tasks Tqry

i (line 8) similar to
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the selection of the support tasks. Then, the loss function for the query tasks are
found for the model updated on line 7 (line 9).

After going over all tasks in Ti, the model updates its initial parameters θ using the
summation of the loss on each query task Tqry

i , as shown in the following equation:

θ = θ− β∇θ

∑
T

qry
i

LT
qry
i

(gθ′
i
) (6.5)

Note that the initial parameters θ are only updated once after all Ti are done for
a meta-training iteration. Also, in strong contrast to traditional transfer learning,
these parameters are updated using the intermediate parameters obtained from Tsup

but the loss evaluated from Tqry. In transfer learning, the initial parameters θ are
updated using the intermediate parameters and the loss obtained from the same
tasks. This crucial difference is why meta-learning can find the most sensitive
parameters to the new data samples.

Online Fine-Tuning Phase

So far, we presented the construction of the initial meta-learned model using the
available training data. Suppose a new user or movement, which is absent from the
training data, is introduced in the field, i.e., after the trained model is deployed. Our
goal is to use few training samples denoted by Dtest to update the initial model. We
emphasize that the cardinality of the test data is |Dtest| << |Dtrain|. Section 6.3.3
validates this claim and shows that the size of the required test data is 4× smaller
than that required by supervised techniques.
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Algorithm 1: Meta-training for mmWave point cloud
Input: Dtrain, gθ (untrained model), β (meta-learning rate)
Output: ML model that computes human joint coordinates using mmWave

point cloud.
1 Initialize the parameters θ of the ML model gθ

2 for each meta-training iteration do
3 Sample a batch of tasks: Ti ∼ Dtrain

4 for all Ti do do
5 Sample support tasks from Ti : Tsup

i ⊂ Ti

6 Compute the gradient ∇θLT
sup
i

(gθ)

7 Update parameters θ′
i = θ− α∇θLT

sup
i

(gθ)

8 Sample query tasks Tqry
i ⊂ Ti

9 Evaluate LT
qry
i

(gθ′
i
) using parameters θ′

i

10 end
11 Update the initial parameters θ = θ− β∇θ

∑
T

qry
i

LT
qry
i

(gθ′
i
)

12 end

We use Dtest to perform the fine-tuning and testing to evaluate our meta-trained
model’s performance. The model takes a part of Dtest to perform forward pass
and back-propagation to fine-tune. Then, we use the other part of Dtest only to
perform inference and evaluate the model. The exact procedure to split the data is
described with the implementation in Section 6.3.1. Ideally, only fine-tuning for a
few iterations should be enough since the model learns the generalization of the
point cloud. In summary, the fine-tuning phase does not require any extra steps,
facilitating online usage.
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6.3 Experimental Evaluations

6.3.1 Experimental Setup and Baseline Model

Human Pose Estimation Data: We employ an open-source mm-Wave point cloud
dataset (MARS [36]) to evaluate the proposed FUSE framework. The dataset con-
sists of 40,083 labeled frames (defined in Equation 6.1) collected using TI IWR1443
Boost mmWave radar [200]. The frames correspond to 10 distinct rehabilitation
movements performed by four human subjects in front of the mmWave radar and
Microsoft Kinect V2 sensor. The reference coordinates of 19 joints are found using
Kinect V2 and added as labels to the mmWave data at a 10 Hz sampling rate. Then,
each movement data is individually split into 60% training, 20% validation, and
20% test sets.
Baseline ML model: We implement the CNN trained with the MARS dataset [36]
as the baseline model to ensure a fair comparison. It has two convolution layers
with Rectified Linear Unit (ReLU) activations, followed by two FC layers, with a
total model of 1,095,115 parameters. The number of neurons of two FC layers is 512
and 57, respectively. Here, the output values of the final 57 neurons represent 19
human joints coordinates values in x, y, z-axes. The proposed CNN trained using
the FUSE framework has the same dimensions and model size for a fair comparison.
Implementation details: We implemented all baseline and meta-learning ap-
proaches using PyTorch 1.8.1 [203]. The training and testing are performed on a
Nvidia GeForce RTX 3090 graphic card with 24GB of memory. The meta-learning
approach is based on MAML-PyTorch implementation [204]. Our results can be
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reproduced using the following hyper-parameter values: 20,000 meta-training itera-
tions, 32 tasks sampled for each iteration, sample-level learning rate α = 0.1, task-level

meta-learning rate β = 0.001. During meta-training, each support task and query
task Ti samples 1,000 frames from Dtrain randomly. We use 200 frames from Dtest

to fine-tune and the all rest frames from Dtest to evaluate the performance. Finally,
MAE (i.e. the L1 loss) loss function and Adam optimizer [205] are employed for
calculating the loss and updating the gradients.

6.3.2 Multi-Frame Fusion of Point Cloud Data

Fusing multiple frames enriches the information content of the mmWave point.
To study the impact of frame the fusion alone, this section uses the baseline CNN
architecture, the default 60% - 20% - 20% data split, and training parameters (128
batch size and 150 epochs). We conduct experiments on three settings: single-frame
(baseline), fuse three frames, and fuse five frames.

Table 6.1 summarizes the average MAE in predicting the joint coordinates with
and without multi-frame fusion. Without changing any other parameters, fusing
three frames consistently decreases the average MAE along x−, y−, and z−axis, and
average MAE reduction from 5.5 cm to 3.6 cm. Fusing more frames does not
continuously improve the accuracy since redundancy is introduced. Specifically,
we observe that fusing three frames outperforms a single frame by 1.9 cm margin
(34%). This improvement is impressive since achieving similar savings without
frame fusion would require a significant increase in the model complexity.

These controlled experiments show that fusing multiple frames enhances the
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point cloud representation, thus improving the performance of human pose esti-
mation. Hence, it can boost the performance of existing mmWave radar techniques
without affecting the ML models they employ. In the rest, we fuse three frames
since it leads to significant savings with negligible overhead.

Table 6.1: MAE of the baseline model under different frame fusion settings.

X (cm) Y (cm) Z (cm) Average (cm)
Single-frame 6.4 3.6 6.5 5.5

Fuse 3 Frames 4.2 2.5 4.4 3.6
Fuse 5 Frames 6.9 4.1 5.5 5.5

6.3.3 Convergence Time and Accuracy Evaluation

Data splitting

To examine the ability of FUSE to adapt to new scenarios, this experiment splits
the dataset to capture the worst-case scenario. The training and validation sets
exclude all data from one particular movement (“right limb extension”) and one of the
users (user 4). With this split, the test data (Dtest) seen only during fine-tuning
has only 749 frames, justifying our claim about few samples available online. In
contrast, the training data (Dtrain) consists of 29,225 frames from the remaining
nine movements and users. A more comprehensive leave-one-out experiment is
left for future work due to space and execution time considerations.
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Quantitative results

Fine-tuning is a commonly used method in transfer learning [202] to test a model’s
ability to adapt to new data samples. It fine-tunes all layers or part of a pre-trained
model with new data samples [202]. We conduct experiments for both cases:
fine-tuning all layers and only the last FC layer with its activation.
Fine-tune all layers: Figure 6.3 shows the MAE comparison between baseline and
FUSE model fine-tuned for all layers. The baseline model achieves a remarkable
MAE of 6.7 cm after the initial training with the original data available offline, as
shown in Figure 6.3(a). In contrast, the proposed FUSE model starts with 12.4 cm
MAE since it is optimized for generalization rather than fitting to known cases.
Indeed, FUSE achieves almost 6.0 cm MAE after only 5 fine-tuning epochs with the
new data. We emphasize that both the baseline model and FUSE are fine-tuned using the

new data, which is not included in the initial training. The extra data improves FUSE’s
performance even on the original training dataset. After fine-tuning, the MAE of
FUSE stabilizes at about 9.4 cm for the original data (Figure 6.3(a)) and 4.0 cm for
the new user data (Figure 6.3(b)).

Figure 6.3(b) also shows that the baseline model can be effectively fine-tuned
for the new data. In strong contrast to FUSE, the improved performance comes at a
steep penalty for the original data, as shown by the solid line in Figure 6.3(b). As
the baseline model adapts to new data, it forgets the original one, implying that it
tends to overfit rather than learn the trends.

In summary, FUSE is able to achieve 6.0 cm MAE, ∼3 cm lower than the base-
line with only 5 epochs fine-tuning. With 26 epochs, as a red circle shown in



124

Figure 6.3(b), baseline approach is able to achieve 4.6 cm, which is comparable to
4.3 cm for FUSE model. However, it is at the expense of forgetting the original data.
The MAE for original data reaches 10.6 cm, as summarized in Table 6.2 (columns
labeled “All layers”), since the baseline model do not learn the generalization. After
that, the baseline approach just keep memorizing the new data and forgetting the
original data.

Figure 6.3: MAE comparison between baseline and FUSE model for fine-tuning all
layers.

Table 6.2: MAE comparison between baseline and FUSE model. Results of both
fine-tuning all layers and only the last layer are presented in the table..

All layers Last layer
baseline FUSE baseline FUSE

5 epochs Original 6.4 7.6 6.5 9.0
New 9.0 6.0 9.6 8.3

Intersection Original 10.6 6.6 7.2 8.2
New 4.6 4.3 7.1 7.0

50 epochs Original 18.7 6.4 31.0 7.8
New 2.0 3.9 3.9 6.0
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Fine-tune the last layer: Figure 6.4 shows the MAE comparison between the
baseline and FUSE model when only the last fully connected layer is fine-tuned.
It shows a very similar pattern with fine-tuning with all layers, as summarized in
Table 6.2 (columns labeled “last layer”). With only 5 epochs of fine-tuning, the
FUSE model achieves 8.3 cm MAE, 1.3 cm lower than the baseline. With 16 epochs,
as shown with a red circle in Figure 6.4(b), the baseline approach can achieve
7.1 cm, which is comparable to 7.0 cm for FUSE model. However, it is at the expense
of forgetting the original data, as the MAE for original data reaches 7.2 cm. The
baseline approach memorizes the new data and forgets the original data to adapt
to new scenarios. Compared to fine-tuning all layers, fine-tuning only the last layer
yields a higher error for new data and significantly worse forgetting trend. The
results show that fine-tuning with all layers can help the model adapt to unseen
scenarios since FUSE learns the generalization.

In summary, FUSE enhances the mmWave point cloud representation, thus
improving the human pose estimation performance significantly. In addition, FUSE
adapts to the unseen data within five epochs. This is 4× faster than the baseline

Figure 6.4: MAE comparison between baseline and FUSE model for fine-tuning the
last layer.
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approach that needs at least 20 epochs to achieve the same performance, at the
expense of forgetting the original data.
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7 transfer learning for human activity recognition

using representational analysis of neural networks

7.1 Background, Motivation and Contributions

Most HAR techniques start with collecting sensor data from users available at
design time [41]. This data is used to train a classifier for the activities of interest.
Then, the trained classifier is used by new users, whose data is not available for
training. This approach assumes that the HAR classifiers can be transferred across
different user sets. However, this assumption may not hold in general as activity
patterns can change with age, gender, and physical condition. Hence, lack of model
personalization can limit the accuracy [206]. For instance, Figure 7.1 shows the
stretch sensor data during walking for four users in our experimental dataset. There
is a significant variation both in the range of sensor values and the data patterns.
Furthermore, the activity patterns may vary over time even for a given user due to
progression of symptoms, injury, or other physical changes. These variations can
significantly reduce the recognition accuracy for new users as we demonstrate in
this paper. Therefore, classifiers designed offline must adapt to changing data patterns of

new and existing users to achieve high classification accuracy.
Training classifiers from scratch for new users is expensive due to data storage

and computational requirements. It is challenging especially for low-power wear-
able and mobile devices, which are the most common platforms for HAR [114, 41].
Moreover, training from scratch for a particular user loses generalization capability
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Figure 7.1: Comparison of stretch sensor [1] data of four users for a single step
during walk. There is a significant change in both the range of values and data
pattern. The grey dashed lines show different instances of the same activity, while
the red line shows a representative activity window for each user.
and robustness due to overfitting [89]. In contrast, transfer learning with a common
feature set can carry over generalization capabilities from offline stage and fine-tune
user-specific features after deployment to improve training efficiency.

This chapter first demonstrates that HAR classifiers designed offline cannot
be transferred as a whole to an arbitrary set of users. Then, it presents the first
systematic study to determine how to transfer the offline knowledge and adapt
HAR classifiers to individual users. We show not only the feasibility of transferring
the offline classifier, but also determine which parts can be transferred to minimize
the time and energy required for customization. Furthermore, we demonstrate these
benefits on a mobile hardware board using five datasets. This study is performed
using convolutional neural networks (CNNs) due to their ability to produce broadly
applicable features from raw input data. We use canonical correlation analysis
(CCA) [89] to evaluate the distance between the layers of CNNs trained with
different sets of users. Our analysis leads to a theoretically grounded and practical
HAR classifier framework validated on hardware. It achieves high accuracy and
significant savings in training time by fine-tuning the deeper layers that differentiate
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users while transferring the earlier layers.
The proposed approach is validated using five public datasets [27, 207, 208, 209,

210]. We first divide the users in each dataset into multiple clusters to evaluate
the effect of transfer learning for unseen user clusters. In a challenging scenario,
the clusters have to be as separated as possible such that the classifier can only
learn the patterns from the users in the training set. For instance, the four users
in Figure 7.1 belong to different clusters. To this end, we generate user clusters
both randomly (for average-case) and using k-means clustering [211] (for the most
challenging scenario). Next, a CNN classifier is trained for each user cluster. After
analyzing the similarity between the CNNs trained with different user clusters,
the weights are transferred between user clusters and the dissimilar layers are fine-
tuned. Extensive evaluations for the w-HAR dataset show that in the worst case,
transferring weights and fine-tuning the last layer achieves accuracy that is same
as the accuracy obtained by training from scratch while reducing the computation
during training by 66%. Finally, we implement the proposed approach on the
Nvidia Jetson Xavier-NX board [174]. Our experiments show up to 68% energy
and 43% power consumption savings. These results demonstrate the practicality of
the proposed technique on low-power edge devices.

In summary, the major contributions of this chapter are:

• An empirical demonstration which shows that HAR classifiers designed of-
fline cannot be transferred to an arbitrary set of users,

• A systematic analytical study that reveals that deeper (typically last two)
layers of HAR classifiers capture user-specific information, while the first
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three to four layers provide general features,

• Extensive experimental evaluations using five datasets that show up to 43%
and on average 14% higher accuracy compared to the accuracy without using
transfer learning for new users.

• Hardware experimental evaluations that demonstrate up to 68% energy and
43% power consumption savings.

7.2 Underlying HAR framework and datasets

Most HAR approaches start with data from wearable inertial sensors or a smart-
phone to record the data when the user is performing the activities of interest.1

After collecting the sensor data, the next step is to pre-process and segment the
sensor data for feature generation. The most common approach in literature for
segmentation is to divide the data into one to ten-second windows with a 50%
overlap between consecutive windows [207, 213, 209]. Then, the data within each
window is processed to generate the features for the classifier. A variety of classi-
fiers, such as neural networks, decision trees (DT), random forest (RF), support
vector machine (SVM), and k-nearest neighbors (KNN), have been used for HAR.
Since previous approaches use different datasets and activities for evaluation, a
direct comparison to our approach is not possible. For a fair comparison, we use
the five datasets in this paper on commonly used HAR algorithms. Table 7.1 shows

1Video cameras are also used for HAR [212], but we focus on HAR using wearable sensors and
smartphones.
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the accuracy of these approaches on the w-HAR dataset. The first row shows the
accuracy when the classifier is tested on the users available during training and we
refer it to the classifier accuracy with users in test set. The second row shows the
accuracy for new users and we refer it to the classifier accuracy with users in cross-
test set. All the classifiers achieve a high accuracy on the users available for training,
however the accuracy drops significantly when tested on new users. The accuracy
drop is minimum for the CNN classifier. This shows that CNN has more potential
to generalize by producing broadly applicable features in the convolutional layers.
Furthermore, CNNs can be easily fine-tuned at runtime for new subjects using the
proposed transfer learning approach. This is much more challenging for other ap-
proaches. Indeed, the state-of-the-art sensor-based HAR techniques Convnet [214]
and Iss2Image [215] employ CNN classifier similar to our choice. They report 95%
and 96% accuracy for the UCI HAR [207] dataset, respectively. This level of accu-
racy is higher than the alternative classifier shown in Table 7.1. In summary, our
own comparisons reported in Table 7.1 and state-of-the-art techniques [214, 215]
justify choosing a CNN classifier for HAR.

Table 7.1: Comparison of classifiers

KNN SVM DT RF CNN
Classifier accuracy with users in the test set (%) 90 89 97 96 98
Classifier accuracy with users in the cross-test set (%) 58 61 52 42 76

The CCA distance, which is used to measure similarity between two networks,
is a function of the underlying training data. Therefore, we will use a broad range
of HAR datasets for both presenting the proposed transfer learning approach (in
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Figure 7.2: Overview of the transfer learning approach for HAR

Section 7.3) and its evaluation (in Section 7.4). The rest of this section overviews these

datasets since they are used in the following section.

Wearable HAR dataset (w-HAR) [27]: The w-HAR dataset contains data of 22
users performing seven (jump, lie down, sit, stand, stairs down, stairs up, and walk)
and transitions between them. The data is collected using an 3-axis accelerometer
and a wearable stretch sensor. The raw data from the users is segmented into
activity windows and labeled such that each window contains a single activity.
Overall, the dataset contains 4470 windows. Using these windows, the dataset
generates discrete wavelet transform (DWT) of the accelerometer data and fast
Fourier transform (FFT) of the stretch sensor data. These DWT and FFT features are
then supplemented with the minimum and maximum values of the stretch sensor
data, and activity window duration to generate 120 features for each window. We
use the default feature set provided by the dataset in our analysis.
UCI HAR dataset [207]: The UCI HAR consists of data from 30 users who per-
formed six activities (lie down, sit, stand, stairs down, stairs up, and walk) while
wearing a smartphone on the waist. The dataset records readings from the ac-
celerometer and gyroscope sensors in the smartphone. The dataset provides 561
time and frequency domain features for each activity window of 2.56 s. We use the
default feature set provided by the dataset in our analysis.
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UCI HAPT dataset [208]: This is an updated version of the UCI HAR dataset where
the authors added information about postural transitions, such as stand-to-sit and
sit-to-stand. Similar to the UCI HAR dataset, the HAPT dataset provides 561 time
and frequency domain features for each activity.
UniMiB dataset [210]: The UniMiB SHAR is a dataset of acceleration samples
acquired with an Android smartphone. The dataset includes nine physical activities
performed by 30 subjects. The dataset provides pre-processed windows for user
activities. We generate DWT and FFT features, resulting in 450 features for each
window.
WISDM dataset [209]: The WISDM dataset consists of data from 36 subjects who
performed six activities (Walking, Jogging, Upstairs, Downstairs, Sitting). The dataset
records readings from the accelerometer and gyroscope sensors. Following the
authors’ recommendation, we use 10 s windows to generate 5424 activity win-
dows from the raw data. Then, we produce the DWT and FFT features for the
accelerometer data in each window, resulting in 405 features for each window.

7.3 Transfer Learning for HAR

7.3.1 Flow of the proposed transfer learning approach

This subsection overviews the flow of the proposed approach illustrated in Fig-
ure 7.2. Then, the remaining subsections describe each step in more detail.

1. The feature data in each dataset is split into multiple clusters using k-means
clustering. The clustering ensures that users across different clusters are more
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dissimilar than the random partitioning.

2. Train a CNN classifier for each user cluster (UC) obtained in step 1. The
accuracy obtained in this step is the baseline accuracy for each UC, since the
training data is available at design time.

3. Evaluate the accuracy for unseen UCs using the classifiers trained in step 2.
The accuracy obtained in this step is referred to as the cross-UC accuracy. This
step also calculates the CCA distance between trained CNNs.

4. Transfer the CNN weights between UCs and fine-tune the layers that provide
distinguishable information for each UC. Finally, evaluate the accuracy after
fine-tuning the CNN layers.

The rest of this section details these steps.

7.3.2 Clustering users with distinct activity patterns

The first step in the proposed framework is partitioning the users into clusters.
Clustering ensures that users in separate clusters have as distinct activity patterns
as possible, as illustrated in Figure 7.1. Hence, we can analyze the benefits and
efficiency of transfer learning under more challenging conditions than random
partitioning. We employ the following steps to obtain the user clusters.
Representative window for each user: Each user has multiple windows for the
same activity since the collected data is segmented before feature generation. For
example, one-minute-long walking data is divided into 60 activity windows, as-
suming a one-second segment duration. Furthermore, activity data may be coming
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Figure 7.3: The architecture of CNN. The layers annotated at the bottom are used
in CCA distance.
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Figure 7.4: The accuracy of the CNNs tested with different UCs for the w-HAR
dataset. The red star shows the accuracy of the UC used training while the triangles
show cross-UC accuracy.

from different experiments with small differences in sensor locations. As a result,
there are variations in the features across different windows, even for a given user
and activity. To bypass the variations across windows and facilitate clustering, we
identify a representative window for each activity of each user. For example, consider
our first dataset with 22 users and 8 activities. To obtain the representative win-
dows we first extract all the activity windows for a given user and activity (e.g.,
all windows labeled as “walk” for user-1). Then, we compute the mean Euclidean
distance from each window to all other windows for this user-activity pair. A large
distance means that the corresponding window is more likely to be an outlier. In
contrast, the window with the smallest mean distance to the other windows is
marked as the representative window for the corresponding user-activity pair, as
illustrated with red lines in Figure 7.1.
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k-means clustering: The previous process results in one representative window for
each activity for each user. That is, each of the 22 users has 8 representative windows
(one for each activity) in our dataset with 22 users and 8 activities. Next, we
compute the mean correlation distance [216] between the representative windows
across different users for each activity.

A small distance means that the activity pattern of the user is similar to other
users. Conversely, a larger distance implies that the user’s activity pattern is sepa-
rated from the other users. The distance to other users for each activity is stored as
a multidimensional vector whose length is equal to the number of activities in the
dataset.

Finally, the distance vectors are used with the k-means algorithm [211] to gen-
erate user clusters that are as separated as possible.

Based on our empirical observations of the data, we choose four clusters each
for the five datasets we use in this paper.

7.3.3 Baseline classifier training for each user cluster

CNN for HAR: We design a CNN for each input dataset to recognize the activities in
the respective dataset, as shown in Figure 7.3. For each dataset, the data dimensions
are different while the structure remains the same. The input layer of the CNN
takes the feature vectors as the input in the form of a 2-dimensional (2D) image.
This is followed by two convolutional layers, max-pooling, and flatten layers. After
flattening the data, we feed it to the two fully connected (FC) layers before applying
the softmax activation to classify the activity. Additional details on the structure of
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the CNN and training parameters are presented in Section 7.3.6.
CNN accuracy evaluation: The CNN shown in Figure 7.3 is trained for each UC
obtained in the previous section. We use 60% data of each UC for training while
20% data is used for cross-validation during training. We train 10 networks with
each UC with different initialization such that we can analyze both CCA distance
and accuracy on an average basis. Next, we analyze the accuracy of the CNN for
the UCs not seen during training using all the data of the unseen UCs. Figure 7.4
shows the average accuracy of CNNs trained with each of the four UCs obtained
from our dataset and tested on the other three. First, we see that the CNNs achieve
a high accuracy on 20% test data of the UC used for training. However, there is
a significant reduction in cross-UC accuracy. For example, the accuracy for UC 2
when tested on CNNs trained with UC 1 is only about 52%. Similar behavior is
observed for other UCs as well, with the accuracy drop ranging from 10%–40%.
This shows that the CNN is only able to learn the data pattern of the current UC and
it cannot generalize other UCs with distinct activity patterns. In the next section,
we analyze the distance between networks trained with different UCs to gain better
insight into the representations learned by the CNN. Additional details on the
accuracy and cross-UC accuracy of other datasets are presented in Appendix A.

7.3.4 Analysis of distance between trained networks

Background on CCA Distance: We employ CCA to analyze the distance between
different networks and understand the representational similarity between network
layers [89].
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CCA has been successfully used to analyze neural network similarities for
medical imaging [90], language models [217], and speech recognition [218]. It
analyzes the representational similarity between networks by analyzing the ordered
output activations of neurons on a set of inputs, instead of working on the network
weights directly. Taking the activation vectors of neurons from two layers (trained
with different UCs or with different initializations) as inputs, CCA first finds the
linear combinations of the activations such that they are as correlated as possible.
Once the correlations are obtained, they are used to compute the distance between
the two activation vectors, i.e., between the two layers [89].

For illustration, let L1 and L2 be two matrices that represent two intermediate
outputs of neural network layers. We denote the covariance matrices of L1 and L2
as ∑L1,L1 and ∑

L2,L2, respectively. Similarly, ∑L1,L2 denotes the cross-covariance
matrix of L1 and L2. To find the canonical correlation coefficient, we need to solve
a singular value decomposition shown in the following equation 7.1:

∑−1/2

L1,L1

∑
L1,L2

∑−1/2

L2,L2
= UΛV (7.1)

where U, V are the unitary matrices, and Λ is a rectangular diagonal matrix with
non-negative real numbers on the diagonal. Then, the canonical correlation coeffi-
cient ρ corresponds to the largest singular value of Λ. To make a distance measure,
we define 1 − ρ as the CCA distance between L1 and L2. This definition assumes
that all CCA vectors are equally important to the representations at layer L1 and L2.
Otherwise, ρ will have to be a weighted average. A more detailed description can
be found in [89]. In this work, we employ the implementation proposed in [89] to
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analyze the distance between the CNNs trained for HAR.
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Figure 7.5: The CCA distance between CNNs trained with (a) UC 1, (b) UC 2, (c)
UC 3, and (d) UC 4 from the w-HAR dataset when tested on all the four UCs. The
final "softmax" is after FC2. Since FC2 and softmax have the same CCA distance,
we denote it as "softmax" to keep it consistent. All the CCA figures follow the same
convention.
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Figure 7.6: Comparison of accuracy between original and fine-tuned CNN for the
w-HAR dataset.

Distance between networks trained with same UC: To analyze which layers gen-
eralize between users, we calculate the mean CCA distance between the networks
trained with the same UC. To this end, 10 CNNs with different initializations are
trained with the training data of each UC. Next, we find the mean pairwise CCA
distance between the corresponding layers of the 10 CNNs trained with each UC.

Figure 7.5 shows the mean CCA distance among NNs trained with 4 UCs with
the w-HAR dataset. Each sub-figure in Figure 7.5 shows the distance between
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networks trained with a single UC when tested on all the four UCs. For example,
Figure 7.5(a) shows the mean distance for the 10 networks when they are trained
on UC 1 and tested on all four user clusters. The figure shows that for the first
four layers of the CNN (two convolution layers, one max-pooling layer, and one
dropout layer), the mean CCA distance is low regardless of the input UC. Moreover,
the distances are almost equal for all the four UCs. This shows that in the first
four layers learn features that are similar for all the users in the dataset. To further
validate this behavior, we calculate the pairwise CCA distance with features of (UC
1 + UC 2), (UC 1 + UC 3), and (UC 1 + UC 4) on networks trained with UC1. For
each of these cases, the CCA distance follows a pattern similar to Figure 7.5.

The networks start to diverge for different UCs from the first fully connected
layer. The largest divergence is seen at the softmax layer where the distance is
lowest for the UC used for training. This means that the fully connected layers
extract information that is specific to each UC and do not generalize to other UCs.
We observe a similar trend for the other datasets as well. In addition to this, we also
calculate the CCA distance between networks trained with different UCs (e.g., the
distance between CNNs trained with UC 1 and UC 2). The analysis of the distance
from this perspective helps in understanding the similarity between networks
trained with users that have distinct activity patterns. The details of this analysis
are presented in Appendix B.
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7.3.5 Transferring the NN and fine-tuning

CCA distance analysis reveals that the convolutional layers provide general features
while the deeper layers provide the most distinguishing information. We use this
insight to optimize the transfer learning process and improve the training time for
new UCs. Specifically, we transfer the weights of the first four layers from a trained
CNN to a network targeting another UC. Then, the deeper layers are fine-tuned
with the data of the new UC. The fine-tuning process uses 60% of the new UC’s data
for training, 20% data for validation and the remaining 20% for testing. Following
this process, we are able to avoid training the convolutional layers, thus saving a
significant amount of computations. We evaluate the accuracy after fine-tuning
under two scenarios: 1) fine-tune the last FC layer and 2) fine-tune the last two
FC layers. Figure 7.6 shows that the accuracy for new UCs improves significantly
after fine-tuning either the last FC layer or last two FC layers for w-HAR dataset.
With fine-tuning of one layer, we obtain on average 18% accuracy improvement.
Specifically, the accuracy for UC 2 improves from 52%, 64%, and 75% to 90%, 92%,
and 91%, respectively. When we fine-tune the last two layers, the accuracy improves
to 95% for all UCs.

7.3.6 CNN training details

We design a convolutional neural network (CNN) for each of the input datasets to
recognize the activities, as shown in Figure 4. The feature vector is first converted to
an image to be used as the input to the CNN. The dimensions of the image for each
dataset are shown in the second column of Table 7.2. The input layer is followed by
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two convolutional layers with 32 and 64 channels, respectively. After performing
the convolutions, the data is passed to a max-pooling layer to extract the most
distinguishable features. It is then followed by a flattening layer that generates the
input vector for the fully connected (FC) layers. One FC layer with 128 neurons
and relu activation is included in the CNN. To avoid excessive dependency on
certain neurons, two dropout layers with a probability of 0.25 and 0.5 are employed
after the max-pooling layer and fully connected layers, respectively. Finally, an
output layer with the softmax activation performs the activity classification. The
dimensions of each CNN layer for the five datasets are shown in Table 7.2.

We use Tensorflow 2.2.0 [186] with Keras 2.3.4 [187] to train the CNNs. Cate-
gorical cross-entropy is employed as the loss during training. The algorithm used
for training is the Adadelta [219] optimizer with an initial learning rate of 0.001
and a decay rate of 0.95. We train the CNNs for 100 epochs using a batch size of
128. The training is performed on Nvidia Tesla GPU V100-SXM2 with 32 GB of
memory. The details on training time are provided in Section 7.4.2.

Table 7.2: Data dimensions for five datasets

Input Conv1 Conv2 Max-pooling Flatten FC1 FC2 Softmax
w-HAR (4, 30, 1) (4, 30, 32) (2, 28, 64) (1, 14, 64) 896 128 8 8
UCI HAR (33, 17, 1) (33, 17, 32) (31, 15, 64) (15, 7, 64) 6720 128 6 6
UCI HAPT (33, 17, 1) (33, 17, 32) (31, 15, 64) (15, 7, 64) 6720 128 12 12
UniMiB (25, 18, 1) (25, 18, 32) (23, 16, 64) (11, 8, 64) 5632 128 9 9
WISDM (27, 15, 1) (27, 15, 32) (25, 13, 64) (12, 6, 64) 4608 128 6 6
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7.4 Experimental Evaluations

7.4.1 Accuracy analysis

The analysis performed in the previous sections showed results with user clusters
that are designed to be as distinct as possible. In this section, we validate the
transfer learning approach on randomly generated user clusters. To this end, we
first generate 200 random user splits from the w-HAR dataset. Each user split
contains four user clusters, in line with previous sections. We then train 5 CNNs
for each cluster and test their cross-UC accuracy before applying transfer learning.
The first column in Figure 7.7 shows the distribution of the cross-UC accuracy. The
minimum cross-UC accuracy is 65% for all the UCs among 200 random user splits.
We also show the minimum accuracy for the k-means clustering using a red dot.
The minimum accuracy with k-means is 52%, which is lower than the minimum
accuracy for all random user splits. This experimentally shows that our k-means
clustering approximates the worst-case scenario well, where the users are as distinct
as possible. Next, we fine-tune the last one and two layers of the CNNs to capture
the information specific to each user cluster, as shown in the second and third
columns of Figure 7.7, respectively. We also analyze the accuracy for 100 randomly
chosen UCs and convergence for the UCI HAR and UCI HAPT datasets, respectively.
Figures 7.9 and 7.11 show that the median accuracy obtained for the 100 random
clusters is similar to the accuracy obtained from the k-means clustering. This is in
line with the results from the w-HAR dataset. The classification accuracy improves
significantly after the fine-tuning process. Specifically, the median accuracy after
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fine-tuning one layer is 93%, while it further increases to about 95% by fine-tuning
last two layers. These median accuracies are very close to the accuracy obtained for
the k-means clustering. This shows our k-means clustering is representative of a
wide range of randomly generated user clusters. We also note that some UCs achieve
a higher accuracy after fine-tuning when compared to the k-means clustering. This
is because the users in these clusters have similar features. Conversely, some UCs
have lower accuracy after fine-tuning because the user cluster that CNN fine-tuned
with does not have all the activities present in the tested user cluster.

All convolution layers have a lower CCA distance compared to the deeper layers.
These experimental results prove that only fine-tuning the deeper layers is enough
to obtain decent accuracy in HAR for different UCs. We also see 2% to 5% accuracy
degradation for extra 3 and 6 convolution layers CNN compared to the baseline
shallow CNN since simply adding convolution layers in CNN causes overfitting.
This result implies that it is proper to choose shallow CNN regarding the sensor-
based HAR problem.

In summary, the proposed transfer learning approach of fine-tuning the deeper
layers of the network significantly improves the classification accuracy. This shows
that the proposed transfer learning approach provides accuracy improvements for
multiple datasets.

7.4.2 Training time, loss and convergence analysis

Transfer learning provides benefits in training speed and convergence when com-
pared to training from scratch for new user clusters. Figure 7.8(a) shows the
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comparison of training time between the baseline and proposed transfer learning
approach on w-HAR dataset. The transfer learning approach has both a higher
starting accuracy and lower convergence time with respect to the baseline on w-
HAR dataset. Specifically, fine-tuning one layer converges to 93% in about 1.6 s,
which is 66% lower than the baseline approach of training from scratch. When
two layers of the CNN are fine-tuned, the accuracy is higher than the baseline
with a small increase in the training time. Similar results are observed for the
loss in Figure 7.8(b) where the starting loss with transfer learning is 65% lower
when compared to the baseline. The loss at the end of training is also lower with
the transfer learning approach. Figure 7.10(a) shows the comparison of training
time between the baseline and proposed transfer learning approach on UCI HAR
dataset. The transfer learning approach has both a higher starting accuracy and
lower convergence time compared to the baseline. Specifically, when two layers of
the CNN are fine-tuned, the accuracy is the same as the baseline with 63% lower
training time. Similar results are observed for the loss in Figure 7.10(b) where the
starting loss with transfer learning is 64% lower than the baseline. The loss at the
end of training is also lower with the transfer learning approach. Figure 7.12(a)
and Figure 7.12(b) show the corresponding results for the UCI HAPT data set. In
this case, we observe that the training time is 56% lower, while the starting loss is
90% lower. In summary, this shows that the general features transferred from a
trained CNN aid in learning the activities of new users.



147

7.4.3 Energy and power consumption analysis

This section analyzes the energy and power consumption of the proposed approach
since the ability to run on low-power mobile devices is critical for its practicality.
To enable this analysis, we implemented it on the Nvidia Jetson Xavier NX Devel-
opment Kit [174]. This board has a 6-core ARM CPU, 384 Nvidia CUDA cores, and
48 tensor processing units.

Table 7.3: Summary of power and energy consumption of the proposed approach
when compared to training from scratch.

Training from scratch Fine-tune 1 layer Fine-tune 2 layers
w-HAR UCI-HAR WISDM w-HAR UCI-HAR WISDM w-HAR UCI-HAR WISDM

Configurations 4 UCs 4 UCs * 4 FT 4 UCs * 4 FT
CPU+GPU Power (W) 1.93 5.20 4.69 1.27 2.40 2.26 1.30 3.81 2.29
Total SoC Power (W) 3.26 7.15 6.56 2.51 4.10 3.91 2.58 5.55 3.98
Exec. Time per Case (s) 28.08 59.66 28.80 17.72 33.48 18.50 18.74 37.84 20.12
Energy per Case (J) 91.76 427.00 189.15 44.63 137.33 72.42 48.45 210.01 80.28
Power Saving (%) N/A 23 43 40 21 22 39
Energy Saving (%) N/A 51 68 62 47 51 58

Table 7.4: Summary of power and energy consumption of the proposed approach
when compared to training from scratch.

Training from scratch Fine-tune 1 layer Fine-tune 2 layers
UCI-HAPT UniMiB UCI-HAPT UniMiB UCI-HAPT UniMiB

Configurations 4 UCs 4 UCs * 4 FT 4 UCs * 4 FT
CPU+GPU Power (W) 5.47 4.41 2.52 2.00 3.21 2.16
Total SoC Power (W) 7.36 6.34 4.24 3.54 4.92 3.86
Exec. Time per Case (s) 58.67 39.97 32.79 22.39 37.00 24.72
Energy per Case (J) 431.89 253.38 139.04 79.39 182.05 95.44
Power Saving (%) N/A 42 33 44 39
Energy Saving (%) N/A 68 58 69 62
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Methodology: We evaluate the power and energy consumption of training the
CNN under the following scenarios:

1. Train the classifier on the board from scratch for all 4 UCs in each dataset.
Then, find the average energy and power consumption.

2. Fine-tune only one or two layers using the proposed transfer learning ap-
proach. Repeat the experiments for all UC combinations and datasets.

In both cases, we repeat the training ten times and take the average to suppress
runtime variations.
Results: Table 7.3 shows the power and energy consumption comparisons for
w-HAR, UCI, and WISDM datasets, while the results for other datasets are in
Table 7.4. The proposed transfer learning approach achieves 21%–43% and 47%–
68% reduction in the power and energy consumption, respectively. For instance, if
we fine-tune one layer for the UCI-HAR dataset instead of training from scratch, we
achieve 68% savings in energy consumption. Table 7.4 shows the power and energy
consumption comparisons for UCI-HAPT and UniMiB datasets. The proposed
transfer learning approach achieves 33%–44% and 58%–59% reduction in the power
and energy consumption, respectively. These results show that the transfer learning
approach shown in this paper provides an efficient mechanism to adapt HAR
classifiers for new users among all datasets.
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8 panohead: geometry-aware 3d full-head synthesis in

360◦

8.1 Background, Motivation and Contributions

Photo-realistic portrait image synthesis has been a continuous focus in computer vi-
sion and graphics, with a wide range of downstream applications in digital avatars,
telepresence, immersive gaming, and many others. Recent advances in Generative
Adversarial Networks (GANs) [134] has demonstrated strikingly high image syn-
thesis quality, indistinguishable from real photographs [135, 136, 137]. However,
contemporary generative approaches operate on 2D convolutional networks with-
out modeling the underlying 3D scenes. Therefore 3D consistency cannot be strictly
enforced when synthesizing head images under various poses.

To generate 3D heads with diverse shapes and appearances, traditional ap-
proaches require a parametric textured mesh model [220, 221] learned from large
3D scan collections. However, the rendered images lack fine details and have limited
perceptual quality and expressiveness. With the advent of differentiable rendering
and neural implicit representation [222, 223], conditional generative models have
been developed to generate more realistic 3D-aware face images [224, 225, 226, 227].
However, those approaches typically require multi-view image or 3D scan supervi-
sion, which are hard to acquire and have limited appearance distribution as those
are usually captured in controlled environments.

3D-aware generative models have recently seen rapid progress, fueled by the
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integration of implicit neural representation in 3D scene modeling and Genera-
tive Adversarial Networks (GANs) for image synthesis [2, 131, 132, 5, 133, 4, 3].
Among them, the seminal 3D GAN, EG3D [5], demonstrates striking quality in
view-consistent image synthesis, trained only from in-the-wild single-view image
collections. However, these 3D GAN approaches are still limited to synthesis in
near-frontal views.

In this chapter, we propose PanoHead, a novel 3D-aware GAN for high-quality
full 3D head synthesis in 360◦ trained from only in-the-wild unstructured images.
Our model can synthesize consistent 3D heads viewable from all angles, which is
desirable by many immersive interaction scenarios such as digital avatars and
telepresence. To the best of our knowledge, our method is the first 3D GAN approach
to achieve full 3D head synthesis in 360◦.

Extending 3D GAN frameworks such as EG3D [5] to full 3D head synthesis poses
several significant technical challenges: Firstly, many 3D GANs [5, 4] cannot sepa-
rate foreground and background, inducing 2.5D head geometry. The background,
formulated typically as a wall structure, is entangled with the generated head in 3D
and therefore prohibits rendering from large poses. We introduce a foreground-aware

tri-discriminator that jointly learns the decomposition of the foreground head in 3D
space by distilling the prior knowledge in 2D image segmentation.

Secondly, while being compact and efficient, current hybrid 3D scene represen-
tations, like tri-plane [5], introduce strong projection ambiguity for 360◦ camera
poses, resulting in ‘mirrored face’ on the back head. To address the issue, we present
a novel 3D tri-grid volume representation that disentangles the frontal features with
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the back head while maintaining the efficiency of tri-plane representations.
Lastly, obtaining well-estimated camera extrinsics of in-the-wild back head

images for 3D GANs training is extremely difficult. Moreover, an image alignment
gap exists between these and frontal images with detectable facial landmarks. The
alignment gap causes a noisy appearance and unappealing head geometry. Thus, we
propose a novel two-stage alignment scheme that robustly aligns images from any view
consistently. This step decreases the learning difficulty of 3D GANs significantly. In
particular, we propose a camera self-adaptation module that dynamically adjusts
the positions of rendering cameras to accommodate the alignment drifts in the back
head images.

Our framework substantially enhances the 3D GANs’ capabilities to adapt to
in-the-wild full head images from arbitrary views. The resulting 3D GAN not
only generates high-fidelity 360◦ RGB images and geometry, but also achieves
better quantitative metrics than state-of-the-art methods. With our model, we
showcase compelling 3D full head reconstruction from a single monocular-view
image, enabling easily accessible 3D portrait creation.

In summary, our main contributions are as follows:

• The first 3D GAN framework that enables view-consistent and high-fidelity
full-head image synthesis with detailed geometry, renderable in 360◦. We
demonstrate our approach in high-quality monocular 3D head reconstruction
from in-the-wild images.

• A novel tri-grid formulation that balances efficiency and expressiveness in
representing 3D 360◦ head scenes.
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• A foreground-aware tri-discriminator that disentangles 3D foreground head
modeling from 2D background synthesis.

• A novel two-stage image alignment scheme that adaptively accommodates
imperfect camera poses and misaligned image cropping, enabling training of
3D GANs from in-the-wild images with wide camera pose distribution.

8.2 Methodology

8.2.1 PanoHead Overview

To synthesize realistic and view-consistent full head images, we build PanoHead
upon a state-of-the-art 3D-aware GAN, EG3D [5], due to its efficiency and synthesis
quality. Specifically, EG3D leverages StyleGAN2 [136] backbone to output a tri-
plane representation that represents a 3D scene with three 2D feature planes. Given
a desired camera pose ccam, the tri-plane is decoded with a MLP network and
volume rendered into a feature image, followed by a super-resolution module to
synthesize a higher resolution RGB image I+. Both the low and high resolution
images are then jointly optimized by a dual discriminator D.

In spite of EG3D’s success in generating frontal faces, we found it to be a much
more challenging task to adapt to 360◦ in-the-wild full head images for the following
reasons: 1) foreground-background entanglement prohibit large pose rendering, 2)
strong inductive bias from tri-plane representation causes mirroring face artifacts
on the back head, and 3) noisy camera labels and inconsistent cropping of back
head images. To address these problems, we introduce a background generator
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Figure 8.1: Overview of proposed PanoHead method.

and a tri-discriminator for decoupling foreground and background (Section 8.2.2),
an efficient yet more expressive tri-grid representation while still being compatible
with StyleGAN backbone (Section 8.2.3), and a two-stage image alignment scheme
with an self-adaptation module that dynamically adjusts rendering cameras during
training (Section 8.2.4). The overall pipeline for our model is illustrated in Figure 8.1.

8.2.2 Foreground-Aware Tri-Discrimination

A typical challenge of state-of-the-art 3D-aware GANs, like EG3D [5], is the en-
tangled foreground with the background of synthesized images. Regardless of
the highly detailed geometry reconstruction, directly training the 3D GAN from
in-the-wild RGB image collections, such as FFHQ [135], results in a 2.5D face, as il-
lustrated in Figure 8.2 (a). Augmenting with image supervisions from the side and
back of the head helps build up the full-head geometry with reasonable back head
shapes. However, it does not solve the problem because the tri-plane representation
itself is not designed to represent separated foreground and background.
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To disentangle the foreground from the background, we first introduce an
additional StyleGAN2 network [136] to generate 2D backgrounds at the same
resolution of raw feature image Ir. During volume rendering, the foreground mask
Im can be obtained by:

Ir(r) =

∫∞
0
w(t)f(r(t))dt, Im(r) =

∫∞
0
w(t)dt, (8.1)

w(t) = exp
(
−

∫ t

0
σ(r(s))ds

)
σ(r(t)), (8.2)

where r(t) represents a ray emitted from the rendering camera center. The fore-
ground mask is then used to compose a new low-resolution image Igen:

Igen = (1 − Im)Ibg + Ir, (8.3)

which is fed into the super-resolution module. Note that the computation cost of
background generator is insignificant since its output has a much lower resolution
than the tri-plane generator and super-resolution module.

Simply adding a background generator does not fully decouple it from the
foreground since the generator tends to synthesize foreground content in the back-
ground. Thus, we propose a novel foreground-aware tri-discriminator to supervise
the rendered foreground mask along with the RGB images. Specifically, the input
of the tri-discriminator has 7 channels, composed with a bilinearly-upsampled RGB
image I , a super-resolved RGB image I+ and single-channel upsampled foreground
mask Im+. The additional mask channel allows the 2D segmentation prior knowl-
edge to be back-propagated into the density distribution of the neural radiance field.
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(a)

(b)

(c)

Figure 8.2: Geometry and RGB images from dual-discrimination (a) and
foreground-aware tri-discrimination (b, c). EG3D (a) fails to decouple the back-
ground. PanoHead’s tri-discrimination offers both background-free geometry (b)
and background-switchable full head image synthesis (c).

Our approach reduces the learning difficulty in shaping the 3D full head geome-
try from unstructured 2D images, enabling authentic geometry ((Figure 8.2 (b)))
and appearance synthesis of a full head composable with various backgrounds
(Figure 8.2 (c)). We note that in constrast from ENARF-GAN [143] that employs a
single discriminator for RGB images composed of synthesized foreground and back-
ground images using a dual-generated mask, our tri-discriminator better ensures
view-consistent high-resolution outputs.

8.2.3 Feature Disentanglement in Tri-Grid

The tri-plane representation, proposed in EG3D [5], offers an efficient representa-
tion for 3D generation. The neural radiance density and appearance of a volume
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Figure 8.3: Comparison between tri-plane (a) and tri-grid (b) architecture in Z

axis.

point are obtained by projecting its 3D coordinate over three axis-aligned orthogo-
nal planes and decoding the sum of three bilinearly interpolated features with a
tiny MLP. However, when synthesizing a full head in 360◦, we observe tri-plane is
limited in expressiveness and suffers from mirroring-face artifacts. The problem
is even pronounced when the camera distribution of the training images is unbal-
anced. The root cause is the inductive bias originating from tri-plane projection,
where one point on a 2D plane has to represent features of different 3D points. For
example, a point on the front face and a point on the back hair will be projected
to the same point on the XY plane PXY (orthogonal to Z axis), as illustrated in
Figure 8.3 (a). Although the other two planes should theoretically provide comple-
mentary information to alleviate this projection ambiguity, we found it not the case
when there is less visual supervision from the back or when the structure of the
back head is challenging to learn. The tri-planes are prone to borrow features from
the front face to synthesize the back head, referred to as mirroring-face artifacts
here (Figure 8.4(a)).

To reduce the inductive bias of the tri-plane, we lift its formulation into a higher
dimension by augmenting tri-plane with an additional depth dimension. We call
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(a)

(b)

Figure 8.4: Images synthesis with tri-plane and tri-grid (D = 3). Due to the
projection ambiguity, tri-plane representation (a) can generate good-quality front
face image yet with a ‘mirrored face’ on back head, while our tri-grid representation
synthesizes high-quality back head appearance and geometry (b).

this enriched version as a tri-grid. Instead of having three planes with a shape of
H×W × C with H and W being the spatial resolution and C being the number of
channel, each of our tri-grid has a shape of D×H×W×C, where D represents the
depth. For instance, to represent spatial features on the XY plane, tri-grid will have
D axis-aligned feature planes PXY

i , i = 1, . . . ,D uniformly distributed along the Z

axis. We query any 3D spatial point by projecting its coordinate onto each of the tri-
grid, retrieving the corresponding feature vector by tri-linear interpolation. As such,
for two points sharing the same projected coordinates but with different depths, the
corresponding feature would be likely to be interpolated from non-shared planes
(Figure 8.3 (b)). Our formulation disentangles the feature presentation of the
front face and back head and therefore largely alleviates the mirroring-face artifacts
(Figure 8.4).

Similar to tri-plane in EG3D [5], we can synthesize the tri-grid as 3 ×D feature
planes using the StyleGAN2 generator [135]. That is, we increase the number of
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output channels of the original EG3D backbone by D times. Thus, tri-plane can be
regarded as a naïve case of our tri-grid representation with D = 1. The depth D of
our tri-grid is tunable and larger D offers more representation power at the cost of
additional computation overhead. Empirically we find a small value of D (D = 3)
is sufficient in feature disentanglement while still maintaining its efficiency as a 3D
scene representation.

8.2.4 Self-Adaptive Camera Alignment

For adversarial training of our full head in 360◦, we need in-the-wild image ex-
emplars from a much wider range of camera distribution than the mostly frontal
distribution, as in FFHQ [135]. Although our 3D-aware GAN is only trained from
widely-accessible 2D images, the key to the best quality training is accurate align-
ment of visual observations across images labeled with well-estimated camera
parameters. While a good practice has been established for frontal face images
cropping and alignment based on facial landmarks, it has never been studied in pre-
processing large-pose images for GAN training. Both camera estimation and image
cropping are no longer straightforward due to the lack of robust facial landmarks
detection for images taken from the side and back.

To resolve the aforementioned challenge, we propose a novel two-stage process-
ing. In the first stage, for images with detectable facial landmarks, we still adopt
the standard processing where the faces are scaled to a similar size and aligned at
the center of the head using state-of-the-art face pose estimator 3DDFA [228]. For
the rest of the images with large camera poses, we employ a head pose estimator
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(b)

(a)

Figure 8.5: Image synthesized without (a) and with the camera self-adaptation
scheme(b). Without it, the model generates misaligned back head images, leading
to a defective dent in back head.

WHENet [229] that provides a roughly-estimated camera pose, and a human de-
tector YOLO [230] with a bounding box centered at the detected head. To crop the
images at a consistent head scale and center, we apply both YOLO and 3DDFA on a
batch of front-face images, from which we adjust the scale and translation of the
head center of YOLO with constant offsets. This approach enables us to pre-process
all head images with labeled camera parameters and in a consistent alignment to a
large extent.

Due to the presence of various hairstyles, there is still inconsistency in the
alignment of back head images, inducing significant learning difficulties for our
network to interpret the complete head geometry and appearance (see Figure 8.5
(a)). We, therefore, propose a self-adaptive camera alignment scheme to fine-
tune the transformation of volume rendering frustum for each training image.
Specifically, our 3D-aware GAN associates each image with a latent code z that
embeds the 3D scene information of geometry and appearance, which can be
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synthesized at a view of ccam. ccam might not align well with the image content
for our training images; so, it is hard for the 3D GAN to figure out a reasonable
full head geometry. Therefore we co-learn a residual camera transformation ∆ccam

mapped from (z, ccam) together with our adversarial training. The magnitude of
∆ccam is regularized with a L2 norm. Essentially, the network dynamically self-
adapts the image alignment with refined correspondence across different visual
observations. We note that this is only possible credited to the nature of 3D-aware
GAN that can synthesize view-consistent images at various cameras. Our two-
stage alignment enables 360-degree view-consistent head synthesis with authentic
shape and appearance, learnable from diverse head images with widely distributed
camera poses, styles, and structures.

8.3 Experimental Evaluations

8.3.1 Datasets and Baselines

We train and evaluate our framework on a balanced combination of FFHQ [135],
K-hairstyle dataset [231], and an in-house large-pose head image collection. FFHQ
contains 70K diverse high-resolution face images, yet mainly fall in the absolute yaw
range from 0◦ to 60◦, assuming up-front camera pose corresponds to 0◦. We augment
the FFHQ dataset with 4K back-head images from K-hairstyle dataset and 15K in-
house large-pose images with diverse styles, ranging from 60◦ to 180◦. For brevity,
we name this dataset combination as FFHQ-F. We refer to the supplementary paper
for more dataset analysis and network training details.
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We compare against state-of-the-art 3D-aware GANs including GRAF [2], EG3D [5],
StyleSDF [4], and GIRAFFEHD [3]. All baselines are retrained from the same FFHQ-
F dataset. We measure the quality of generated multiview images and geometry
both quantitatively and qualitatively.

8.3.2 Qualitative Comparisons

360◦ Image Synthesis. Figure 8.6 visually compares the image quality against the
baselines, all trained with FFHQ-F, by synthesizing images from five different views,
ranging the yaw angle from 0 to 180◦. GRAF [2] fails to synthesize compelling
head images and its background is entangled with foreground head. StyleSDF [4]
and GIRAFFEHD [3] are able to synthesize realistic frontal face images but in low
perceptual quality when rendered from a larger camera pose. Without explicit
reliance on camera labels, we suspect the above methods have difficulty in interpret-
ing the 3D scene structures by themselves directly from images with 360◦ camera
distribution.

We observe that EG3D [5] is able to synthesize high-quality view-consistent
frontal head images before rotating the view to the side or even the back. Mirroring
face artifacts are clearly observable from the back, due to the tri-plane’s projection
ambiguity and the entangled fore-background. The method proposed in [6] builds
personalized full-head NeRF at the extra cost of multi-view supervision. Regardless
of its good quality images at all views, the model itself is not a generative model.
In strong contrast, our model generates superior photo-realistic head images for

all camera poses while retaining multi-view consistency. It delivers photo-realism
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Yaw: 0° 45° 90° 135° 180° Yaw: 0° 45° 90° 135° 180°

(a) Baselines: GRAF, GIRAFFEHD, StyleSDF, EG3D, a full-head NeRF (b) PanoHead with different seeds

Figure 8.6: Qualitative comparison between GRAF [2], GIRAFFEHD [3],
StyleSDF [4], EG3D [5], multi-view supervised NeRF [6] (different methods from
top to bottom on left side), and our PanoHead (right). Except [6], all models are
trained on FFHQ-F.

with fine details at diverse appearances, ranging from shaved head with glasses
to long curly hairstyles. To better appreciate our multi-view full-head synthesis,
please refer to our supplementary video for more comprehensive visual results.
Geometry Generation. Figure 8.7 compares the visual quality of the underly-
ing 3D geometry extracted by running Marching Cubes algorithms [232]. While
StyleSDF [4] generates decent appearances of the front face, the complete geometry
of the head is noisy and broken. EG3D presents detailed geometry of front face
and hair, but either with background concrete entangled (Figure 8.2(a)) or with a
hollowed back head (Figure 8.7). In contrast, our model can consistently generate
high-fidelity background-free 3D head geometry even with various hairstyles.
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Table 8.1: Metrics comparison across all baselines. For segmentation MSE, only
GIRAFFEHD and PanoHead decouple the background and foreground. For ID
score, GRAF’s low-quality images lead to facial detection failure.

GRAF GIRAFFEHD StyleSDF EG3D Ours
FID-all ↓ 68.2 37.3 78.5 6.2 5.4
MSE (10−2) ↓ N/A 42.6 N/A N/A 9.1
ID ↑ N/A 0.39 0.41 0.74 0.74

8.3.3 Quantitative Results

To quantify the visual quality, fidelity, and diversity of the generated images, we
employ Frechet Inception Distance (FID) [233] of 50K real and fake image samples.
We measure the multi-view consistency using the identity similarity score (ID)
by calculating the average Adaface [234] cosine similarity score from paired syn-
thesized face images rendered from different camera poses. Note that this metric
can only be applied to those images with detected facial landmarks. We assess
mean square error (MSE) to calculate the accuracy of the generated segmentation
against the mask obtained with DeepLabV3 ResNet101 network [235]. Table 8.1
compares these metrics across all baselines and our method. We observe that our
model outperforms other baselines consistently from all perspectives. Refer to
supplemental material for metrics definition and implementation details.

To evaluate the image quality at different views, we employ FID and Inception
Score (IS) [236] for synthesized images with only back poses (|yaw| ⩾ 90◦), front
poses (|yaw| < 90◦), and all camera poses. FID measures on the similarity and
diversity of real and fake image distributions while IS focuses more on the image
quality itself. Our GAN model follows EG3D for the main backbone, where the
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Table 8.2: Ablation studies on different components. +seg. means with foreground-
aware tri-discrimination. +self-adpat. means with camera self-adaptation scheme.
All are trained with FFHQ-F

EG3D +seg. +seg.&self-adapt.
tri-plane tri-grid tri-grid

FID-back ↓ 50.4 44.1 44.0 40.9
FID-front ↓ 6.6 5.0 5.5 5.4

FID-all ↓ 6.2 5.2 5.2 5.4
IS-back ↑ 4.3 3.9 4.2 4.4
IS-front ↑ 3.9 4.1 4.1 4.1

IS-all ↑ 3.8 4.0 4.0 4.1
Runtime ↓ 1 1.14× 1.26× 1.28×

tri-plane generator is conditioned on a camera pose. We observe that such a de-
sign leads to biased image synthesis quality toward the conditioning camera pose.
Specifically, when conditioning on the front view, our generator achieves inferior
quality for synthesizing the head images from the back, and vice versa. However,
when calculating FID-all, the conditioning camera is always the same as the render-
ing view. Therefore the generator could still achieve an excellent FID-all score even
though the quality of generated heads might degenerate in unseen views. Hence,
the original FID metrics (FID-all and FID-front) can hardly thoroughly reflect the
overall generation quality of full heads in 360◦. To alleviate this issue, we propose
FID-back, where we condition on the front view but synthesize the images from the
back. It leads to higher FID scores but reflects the quality in 360◦ image synthesis
better.

We perform an ablation study on our method to quantitatively evaluate the effi-
cacy of each individual component (Table 8.2). As shown in the second column, we
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Figure 8.7: PanoHead achieves high-quality complete head geometry whereas
StyleSDF [4] and EG3D [5] produce 3D noises or hallowed heads.

notice a significant quality boost after adding the foreground-aware discrimination
for all cases, compared with the original EG3D. That indicates the prior segmen-
tation knowledge largely ease the network learning difficulty of 3D heads from
in-the-wild image collections. Frontal face synthesis quality is comparable among
all methods given the strong supervision from the large amount of well-aligned
frontal images. However, for the back head, decoupling foreground and back-
ground largely improves the synthesis quality. In addition, changing tri-plane to
tri-grid representation further enhances the image quality. With tri-discrimination,
tri-grid, and camera self-adaption scheme altogether, PanoHead achieves the lowest
FID-back and the highest IS for back head generation. As reflected in the row
of run-time analysis, our novel component only introduces minor computation
overhead, but with significant image synthesis quality improvements. Note that
the frontal image quality is superior to the back head, largely due to the significant
learning difficulty in various hairstyles and unstructured back-head appearances.
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Target Projected Random Camera Poses

Figure 8.8: Single-view reconstruction from different camera poses. The first column
shows the target images, second column projected RGB images and reconstructed
3D shapes using GAN inversion, last two columns rendered images from any given
camera poses.

8.3.4 Single-view GAN Inversion

Figure 8.8 demonstrates full-head reconstruction from a single-view portrait using
PanoHead’s generative latent space. To achieve that, we first perform an optimiza-
tion to find the corresponding latent noise z for the target image using pixel-wise
L2 loss and image-level LPIPS loss [237]. To further improve reconstruction quality,
we perform pivotal tuning inversion (PTI) [238] to alter the generator parameters
with a fixed optimized latent code z. From a single-view target image, PanoHead
not only reconstructs photo-realistic image and high-fidelity geometry but also
enables novel-view synthesis in 360◦, including large pose and back head.
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8.4 Discussion

Limitations. While PanoHead exhibits excellent images and shapes quality from
360◦, it still contains minor artifacts, e.g. in the teeth area. Similar to the origi-
nal EG3D, flickering texture issue is also noticeable in our model. Switching to
StyleGAN3 [239] as the backbone would help preserve high-frequency details. In
practice, we also observe more noticeable flickering artifacts with a higher swapping
probability of the conditional camera pose. We set this value to 70% as opposed to
50% in EG3D since we empirically find it enhances 360◦ rendering quality but at
the minor cost of flickering texture artifacts. Another observation is that it lacks
finer high-frequency geometric details, e.g. hair tips. We leave it as future work to
quantitatively evaluate our geometric quality such as using depth maps. Finally,
although PanoHead is able to generate diverse images in terms of gender, races,
and appearances, reliance on training with only several datasets combination still
makes it suffer from data bias, to some extent. In spite of our data collection effort,
large-scale full-head annotated training image dataset is one of the most critical
directions to facilitate full-head synthesis research. We anticipate such datasets can
resolve some of the limitations aforementioned.
Ethical considerations. PanoHead is not specifically designed for any malicious
uses, yet we do realize that the single-view portrait reconstruction could be manip-
ulated, which might pose a social threat. We do not encourage the method being
used for violating others’ rights in any forms.
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9 conclusions and future directions

The swift advancement of emergent technologies, encompassing IoT devices, AI,
and ML, has sparked the evolution of sophisticated forms of human representation.
Human representation, broadly speaking, involves capturing and describing vari-
ous human attributes and behaviors via sensor data. Such representations have
the capacity to encapsulate manifold aspects of human existence, including body
posture, facial expressions, behavior patterns, and psychological states. Insightful
and transformative human-centered applications can be materialized through the
comprehension and manipulation of human representation. However, this being
an incipient field, we are still some distance from attaining a comprehensive and
accurate understanding of human representation.

In this regard, this dissertation addresses major technical and adaptation chal-
lenges and presents three foundational aspects concerning human representation: i)
the examination of emerging sensing modalities, where we undertake a comprehen-
sive investigation of the strengths and limitations of various modalities, selecting
the most appropriate one for each specific application; ii) the design of intelligent
algorithms, which covers the entire process from raw sensor data preprocessing
to deep learning model training, with an emphasis on lightweight designs that
can readily adapt to unseen users and scenarios; iii) the exploration of innovative
applications, with a particular focus on healthcare.

The subsequent sections of this thesis detail six studies aimed at these objectives.
Firstly, we introduce MGait, an innovative and practical step-length estimation
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technique that utilizes low-power wearable bend and inertial sensors. Experimen-
tal outcomes indicate that the proposed model estimates step length with a 5.49%
mean absolute percentage error, providing precise real-time feedback to the user.
Secondly, we propose MARS, the first mmWave-based assistive rehabilitation sys-
tem employing human pose estimation, enabling home-based rehabilitation tasks
while preserving users’ privacy and meeting low-power requirements. Thirdly, we
present mRI, a multi-modal 3D human pose estimation dataset that for the first
time systematically explores human pose estimation and action localization tasks
using both intrusive modalities (IMU) and non-intrusive modalities (mmWave
and RGB-D).

Regarding algorithm design, we present FUSE, a fast and scalable human pose
estimation framework that combines multi-frame representation and meta-learning
techniques, enabling efficient and accurate estimation of human joint coordinates.
We also propose a transfer learning framework for human activity recognition that
leverages representational analysis to identify common features transferable across
users, thereby improving generalizability.

Lastly, we explore generative models for human representation and introduce
PanoHead, the first-ever 3D-aware generative model capable of synthesizing high-
quality, view-consistent images of humans heads in 360◦ with varied appearances
and detailed geometry.

In summary, this dissertation addressed several critical gaps in obtaining and
understanding human representation by making the following contributions:

• Present MGait, a model-based gait monitoring technique [34],
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• Present MARS, a mmWave-based human pose estimation framework for
rehabilitation [36],

• Present mRI, an open-source multi-modal 3D human pose estimation dataset [43],

• Present FUSE, fast and scalable human pose estimation using mmWave point
cloud [37],

• Present a transfer learning algorithm using representation analysis for human
activity recognition [33], and

• Present Panohead, a 3D generative model for 360◦ human head synthesis [44]

9.1 Future Directions

Looking ahead, there are several potential avenues for future research and explo-
ration. These range from improvements in sensor modality understanding and
integration, to synergies with emerging hardware, to utilizing large models. In
each of these areas, innovation and new developments could significantly impact
our ability to create more comprehensive human representations.
Self-supervised learning and multi-modal sensing: The interplay between these
two areas can offer invaluable insights in improving human representation models.
What makes this particularly exciting is the potential for learning cross-modal
semantics. For example, what does an IMU signal’s pattern say about the lan-
guage or emotion of the individual? How can we use visual cues to decode un-
derlying mmWave data? By jointly learning these different modalities under a
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self-supervised paradigm, we can build robust human representation models that
could function efficiently even with limited labeled data. Additionally, I envision
a future where one modality could augment the learning of another, allowing
for robustness in environments where certain data modalities may be sparse or
unavailable.
Synergizing with Emerging Hardware: In the realm of envisioning the future, it’s
fascinating to consider the possiblities of deploying smart algorithms on emerging
hardwares that make comprehensive human representation a reality. We’re on
the cusp of witnessing a era of hardware innovations that could serve as viable
platforms for this deployment. For instance, the advent of smart textiles – cloth-
ing embedded with technology that can interact with the wearer’s environment –
offers promising prospects. These devices could provide a seamless interface for
capturing human representation data in an unobtrusive and user-friendly manner.
Similarly, the emergence of energy-harvesting wearables, such as those harnessing
power from solar sources or even the kinetic energy of human motion, provide
exciting opportunities for sustainability and constant uptime, bypassing traditional
limitations of battery life. While algorithmic innovation indeed forms the bedrock
of advancements in human representation, it’s the revolution at the hardware level
that could truly democratize its benefits, making them palpable in the daily lives of
individuals.
Utilizing large-scale models: The rapid evolution of large language models (LLM)
and large vision models (LVM) offers an unprecedented opportunity for complex
human representation tasks. We are now at a stage where these models can internal-
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ize and generate a massive body of semantic, visual, and sensor-based information,
providing a rich reservoir of priors for any task. Armed with large models, we could
in turn deepen our understanding of human representation, even manipulating
and editing various attributes to suit our needs.

As we continue to innovate and make advancements in these directions, it’s es-
sential to be mindful of potential ethical implications. As we develop better human
representations, issues related to privacy, consent, and data misuse may become
more critical. Developing strategies to address these concerns while pursuing more
accurate and comprehensive representations will be a key challenge for future work
in this field.
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[230] Marina Ivašić-Kos, Mate Krišto, and Miran Pobar. Human detection in
thermal imaging using YOLO. In Proc. 2019 5th Int. Conf. Comput. Technol.
Appl., pages 20–24, 2019.

[231] Taewoo Kim, Chaeyeon Chung, Sunghyun Park, Gyojung Gu, Keonmin Nam,
Wonzo Choe, Jaesung Lee, and Jaegul Choo. K-hairstyle: A large-scale korean
hairstyle dataset for virtual hair editing and hairstyle classification. In 2021
IEEE Int. Conf. Image Process., pages 1299–1303. IEEE, 2021.

[232] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution
3D surface construction algorithm. ACM siggraph Comput. Graph., 21(4):163–
169, 1987.

[233] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler,
and Sepp Hochreiter. Gans trained by a two time-scale update rule converge
to a local nash equilibrium. NeurIPS, 2017.

[234] Minchul Kim, Anil K Jain, and Xiaoming Liu. AdaFace: Quality Adaptive
Margin for Face Recognition. In Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., pages 18750–18759, 2022.

[235] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam.
Rethinking atrous convolution for semantic image segmentation. arXiv Prepr.
arXiv1706.05587, 2017.

[236] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Rad-
ford, and Xi Chen. Improved techniques for training gans. NeurIPS, 2016.

[237] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang.
The unreasonable effectiveness of deep features as a perceptual metric. In
cvpr, pages 586–595, 2018.

[238] Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel Cohen-Or. Pivotal
Tuning for Latent-based Editing of Real Images. ACM TOG, 2021.



200

[239] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Alias-Free Generative Adversarial Networks.
NeurIPS, 2021.


	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Contributions

	Literature Review
	Research Intersection of Modalities, Algorithms, and Applications in Human Representation
	Emerging Sensing Modalities
	Smart Algorithms
	Novel Applications

	MGAIT: Model-Based Gait Analysis Using Wearable Bend and Inertial Sensors
	Background, Motivation and Contributions
	Overview of Gait Cycle and MGAIT Approach
	Hip and Knee Angle estimation
	Proposes Gait Analysis Model
	Experimental Evaluation

	MARS: mmWave-based Assistive Rehabilitation System for Smart Healthcare
	Background, Motivation and Contributions
	mmWave primer
	Overview of MARS framework
	Experimental Evaluation

	mRI: Multi-modal 3D Human Pose Estimation Dataset using mmWave, RGB-D, and Inertial Sensors
	Background, Motivation and Contributions
	Overview of mRI Dataset
	Evaluation and Benchmarks
	Ethics Statement

	FUSE:Fast and Scalable Human Pose Estimation using mmWave Point Cloud
	Background, Motivation and Contributions
	Overview of FUSE
	Experimental Evaluations

	Transfer Learning for Human Activity Recognition using Representational Analysis of Neural Networks
	Background, Motivation and Contributions
	Underlying HAR framework and datasets
	Transfer Learning for HAR
	Experimental Evaluations

	PanoHead: Geometry-Aware 3D Full-Head Synthesis in 360
	Background, Motivation and Contributions
	Methodology
	Experimental Evaluations
	Discussion

	Conclusions and Future Directions
	Future Directions

	Bibliography

