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This thesis covers the first demonstration of a single neutral atom qubit trapped in a blue detuned

optical dipole trap, and the use of this trap to trap Rydberg atoms. AT2 decoherence time of 42

ms is achieved; process tomography of a complete set of single qubit gates is performed to show a

gate fidelity of 70% to 80%; and a Rydberg trapping time longerthan the spontaneous decay time

is observed.

Three types of blue detuned bottle beam traps are designed and analyzed for different experimental

needs. The ponderomotive energy shifts of Rydberg states inthe bottle beam traps are numerically

calculated and a quasi-magic trapping method is presented.Atoms are cooled by a magneto-

optical trap. Single atoms are loaded into the crossed vortex bottle beam trap with a sub-Poissonian

number distribution. Two phase locked 457nm lasers are usedto coherently Rabi flop Cs atoms

between theF = 3 andF = 4 ground states via a two-photon Raman transition. A 459nm laser

and a 1038nm laser stabilized by high finesse cavities are used to drive a two photon transition
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Chapter 1

Introduction

1.1 Quantum Computer

As of 2012, the minimum feature size of an integrated circuitis 22nm, and the semiconduc-

tor industry is working towards the next 14nm node. With the size of a classical computer getting

smaller and smaller, it is natural for scientists to think about building a computer from single atoms

or electrons. As it turns out, a quantum computer is not just asmaller successor of a classical com-

puter, it sets itself completely apart due to the effects of quantum mechanics.

A quantum computer is a quantum system that uses quantum states (called qubits) to store infor-

mation and to carry out computation. A well defined qubit has aquantum state basis that is usually

labeled as|0〉 and|1〉. The qubit can be in state|0〉, |1〉, or in a superposition of these two states

a|0〉 + b|1〉, due to the quantum nature of the system. If we considerN qubits in a pure state, the

system could be represented bya0|0...00〉 + a1|0...01〉 + ... + a2N−1|1...11〉. That means we can

perform operations effectively on2N input numbers with only one input quantum state. Based on

this quantum parallelism, a quantum computer can solve certain problems much more effectively

than a classical computer. Listed below are some examples.

(1)searching in an unsorted list. With a quantum computer using Grover’s algorithm[Grover 97],

the time complexity isO(N1/2) with storage spaceO(logN), while with a classical computer the

complexity isO(N) in time, for a list of sizeN .

(2)factoring big numbers. On a quantum computer using Shor’s algorithm[Shor 94], it takes time

O((logN)3) to factor a large numberN , which is exponentially faster than any known algorithms

on a classical computer.
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Moreover, as in the original proposition of Richard Feynman, quantum computers are extremely

useful to run simulations of quantum many body systems[Blatt 12, Kassal 08, Abrams 97]. With

only a few hundred qubits, a quantum computer could beat any classical supercomputer available.

To qualify as a practical quantum computer, a system must satisfy the following requirements[DiVincenzo 01]:

(1)Scalable system with well characterized qubits

(2)Ability to initialize the system to a simple state

(3)Long decoherence times

(4)A universal set of quantum gates

(5)Qubit-specific state measurement capability

(6)Ability to interconvert stationary and flying qubits

(7)Ability to faithfully transmit flying qubits between locations

The last two requirements are related to quantum networks. Many quantum systems have been

studied to build a quantum computer. The most advanced ones are cold ions, superconduc-

tor circuits, quantum dots, linear optics, impurity vacancies and neutral atoms. Among them,

the cold ion system holds the record of fidelity so far (above 99%), and has implemented error

correction[Schindler 11], and quantum simulation with up to 5 qubits. The superconductor system

has demonstrated greatly improved decoherence time recently, with T2 ∼ 20µs compared with the

gate time of∼ 10ns[Paik 11], and it looks very promising in the future for implementing surface

codes[DiVincenzo 09]. The impurity vacancy system has demonstrated very long quantum infor-

mation storage times up to 180s[Steger 12, Maurer 12], whichmakes it very favorable to be used

as quantum storage.

1.2 Neutral atom QC

The most distinctive feature of the neutral atom system compared with the cold ion system is

the absence of strong Coulomb forces, so that coupling to stray fields is low. And compared with

the solid state systems, neutral atoms could be easily cooled to motional ground states, and the

coupling to the environment is weak. These features would suggest a long decoherence time for



3

a neutral atom quantum computer. In order for a large scale quantum computer to work, strong

qubit-qubit coupling is necessary. Two qubit gates in neutral atom systems can be implemented

by collisions[Jaksch 99], photon mediated gates in a high finesse cavity[Pellizzari 95], and strong

dipole-dipole interactions[Jaksch 00]. The collisional gate is relatively slow, and the photon medi-

ated gate is not easily scalable, so we are pursuing the dipole-dipole interaction gate mediated by

Rydberg levels.

The computational basis states we are using are the hyperfineground states of Cs (Figure 1.1),

which are separated by 9.2GHz. The clock states (mF = 0) are chosen because of their insensitiv-

ity to magnetic field fluctuations. A two photon Raman transition is used to coherently drive the

atom from state|1〉 to state|0〉, in order to be able to address the atoms individually.

The scaling of the Van der Waals interaction between two atomis very rapidV ∝ n11. By exciting

7P1/2

6S1/2

E1 E2

F =4e
F =3e

457nm

|1>

|0>

133Cs

9.2GHz

F1=4,m =0

F2=3,m

(a)

F=4, m=0
6S1/2

nLJ

459nm

1038nm

7P1/2

F

(b)

Figure 1.1 (a)Ground state Raman transition and (b)Rydbergexcitation of Cs used in
experiments.

the atoms to high lying Rydberg states, we can induce strong dipole-dipole interactions between

two nearby atoms. The Rydberg interaction occurs because ofeither a direct dipole-dipole inter-

action in a hybridizing electric field or by the Forster mechanism in zero electric field. Either way,

the interaction will result in a shift in the two-Rydberg-atom energy level byB. In the limit of large
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dipole-dipole frequency shift,B ≫ |ΩR|, whereΩR is the Rydberg excitation Rabi frequency, we

will get the Rydberg blockade. In the simple case of two atoms, the probability of exciting both

atoms to the Rydberg level isP = |ΩR|2
2B2 , which will be small whenB ≫ |ΩR|.

The Rydberg blockade mediated gate is performed by applyingthe pulse sequence shown in Fig-

ure 1.2: (1)aπ Rydberg pulse is applied on the control atom to excite it to the Rydberg level; (2)a

2π rotation is attempted on the target atom; (3)aπ pulse is used to bring the control atom back to

the ground state. Due to theπ phase change of a2π rotation, this sequence results in a controlled

phase gate. It can be converted to a CNOT gate by adding a Hadamard gate on the target atom be-

fore and after the controlled phase operation. And according to theoretical calculations[Zhang 12],

the intrinsic gate fidelity of such a neutral atom quantum system could be above 0.998. With this

(a)

/2 /2U
�

(b)

Figure 1.2 (a)Rydberg blockade mediated controlled phase gate, (b)CNOT gate constructed from
controlled phase gate.
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method, some previous experiments have demonstrated a CNOTgate with a measured population

probability fidelity of up to 0.92 and a gate time of6µs[Isenhower 10b, Isenhower 10a]. And the

entanglement of two neutral atoms via Rydberg blockade has been demonstrated with a Bell state

fidelity of F = 0.58 after correcting for background collisional losses[Zhang10].

1.3 Optical Dipole Trap

According to Grimm et al [Grimm 00], in a far detuned laser field, an atom experiences an

optical dipole potential

Udip = − 1

2ǫ0c
αI, (1.1)

whereα is the atomic polarizability, andI is the light intensity.

In a simplified two level system, the dipole potential and scattering rate can be expressed as

Udip(~r) =
3πc2

2ω3
0

Γ

∆
I(~r), (1.2)

Γsc(~r) =
3πc2

2h̄ω3
0

(

Γ

∆

)2

I(~r), (1.3)

whereω0 is the transition frequency, and∆ = ω − ω0 is the laser detuning. So if∆ < 0 (red

(a) (b)

Figure 1.3 (a)Red detuned and (b)blue detuned optical dipole trap.

detuned), the potential is lower where the intensity is higher, and the atom is attracted to high
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intensity regions, and if∆ > 0 (blue detuned), the atom is repelled to low intensity regions, as

shown in Figure 1.3.

Suppose we have a red detuned laser beam with a Gaussian intensity profile

Ired(x, y, z) = I0
e−2(x2+y2)/w2

f (z)

1 + z2/z2R
, (1.4)

where the Rayleigh rangezR = πw2
0/λ, and the waist size atz wf(z) = w0

√

1 + z2/z2R, with

a minimum beam waist sizew0. With a harmonic approximation, we get maximum trapping

potential|Um| = 1
2ǫ0c

|α|I0, and the oscillation frequencies areωx = ωy = 2
wf0

(

|Um|
m

)1/2

, ωz =
√
2

zR

(

|Um|
m

)1/2

. For an atom with temperatureTa, whose velocities and positions obeys the Maxwell-

Boltzmann distribution, the average light intensity it sees is

< I >red =
2ǫ0c

|α| < U >

≈ 2ǫ0c

|α| (|Um| −
1

2
mω2

x < x2 > −1

2
mω2

y < y2 > −1

2
mω2

z < z2 >)

=
2ǫ0c

|α|

(

|Um| −
3

2
kBT

)

.

(1.5)

If we have a blue detuned laser trap, with an intensity profilethat can be approximated by

Iblue(x, y, z) ≈
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2. (1.6)

The average light intensity the atom sees is about

< I >blue≈
2ǫ0c

|α|
3

2
kBT. (1.7)

Usually in experiments, the maximum trapping potential is much larger than the atomic tempera-

ture (|Um| > 10kBTa). We can immediately see that the average light intensity shining on the atom

in a blue detuned optical dipole trap is much smaller than that for a red detuned trap. This results

in

(1)less photon scattering;

(2)less laser noise induced heating;

(3)less differential AC Stark shifts of qubit levels due to laser intensity fluctuations.
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All these will contribute to longerT1 storage time and longerT2 decoherence time, which means

higher fidelity for our atomic qubit system. The improvements are significant especially when we

can cool the atomic temperature to a very low level so that trap laser noise is dominant, because

the majority of the decoherence is proportional to the average light intensity seen by the atom.

Another reason that makes a blue detuned trap favorable is related to Rydberg atoms. There is an

intrinsic flaw in using a red detuned optical dipole trap: while the ground state atoms have a posi-

tive polarizability and are attracted by the high intensitylaser beam, the high lying Rydberg levels

have a negative polarizability and are repelled by the trap.Excitation of an atom to the repulsive

Rydberg state during a gate cycle leads to heating and decoherence through entanglement of the

spin and motional states[Saffman 05]. It is possible to equalize the polarizability of ground and

Rydberg states with a red detuned light close to resonance, but there will be a high probability for

the atom to decay out of the computational basis. So it is necessary to use a blue detuned trap.

With a blue detuned optical dipole trap, we can have

(4)less heating and less decoherence due to entanglement ofthe spin and motional states and es-

cape out of the trap;

(5)longer Rydberg lifetime due to less photoionization from the trap light.

In this thesis, we will demonstrate a single Cs atom qubit trapped in such a blue detuned dipole

trap.
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Chapter 2

Bottle Beam Trap

A blue detuned optical dipole trap is basically a hollow low intensity region surrounded by

high intensity walls (bottle shaped).

Many groups have demonstrated trapping an ensemble of atomsin a blue detuned optical dipole

trap formed by: sheets of laser light[Davidson 95], an evanescent wave and a confining cylindrical

hollow beam along with the gravitational force[Ovchinnikov 97], a Laguerre-Gaussian doughnut

beam closed by two additional plugging beams[Kuga 97], passing a collimated beam through a

circular phase plate which imposes aπ phase difference between the central and outer part of

the beam[Ozeri 99], a rotating focused Gaussian beam[Friedman 00], a hollow beam formed by an

axicon[Kulin 01], a dark toroid converted from a Gaussian beam with a spatial light modulator(SLM)[Olson 07],

and destructively interfering two Gaussian beams with different waist sizes[Isenhower 09].

Because the atoms are confined at a point of low light intensity, long spin relaxation times[Ozeri 99,

Olson 07], small differential AC Stark shifts and long coherence times of the ground state hyperfine

superpositions of alkali atoms[Davidson 95, Sheng 12] havebeen observed in experiments. Blue

detuned optical dipole traps provide ideal circumstances for precision measurements, with possible

applications in atomic clocks[Davidson 95], the parity non-conservation measurements[Sheng 12],

quantum information, etc.

Most of the methods mentioned above are not easily applicable to create a micro-sized trap to trap

single atoms. The methods using sheets of laser beams or plugging beams impose a big challenge

in beam alignment; the time averaged dynamic trap does not work on the time scale of quan-

tum gates (∼ µs); the hollow beam formed by an axicon has complex interference structures. A

modification of theπ phase plate method using a SLM has demonstrated single atom trapping
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recently[Xu 10]. But SLMs may not handle high power at large detunings. A blue detuned optical

trap in a high finesse cavity is used to successfully trap single atoms[Puppe 07], but it is chal-

lenging to apply for scalable quantum computing. A 3-D arrayof single atoms has been trapped

in a blue detuned optical lattice[Nelson 07], but the three dimensional structure makes it hard to

address the atoms individually.

To accommodate the needs of our multi-qubit experiment, we have designed three types of such

bottle beam traps (BBT): (1) Gaussian interference BBT; (2)crossed vortex BBT; (3) Gaussian

lattice BBT[Zhang 11].
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Figure 2.1 (color online) Scalar polarizability of ground and Rydberg states of Rb and Cs. The
vector polarizability of the ground state is shown by the dashed lines.

First, we need to choose a proper wavelength. By inspecting Figure 2.1, it seems necessary to use

a 490nm laser to match the polarizability of the ground and Rydberg state of Cs. But as will be

shown in Chapter 3, matching of the polarizability does not necessarily mean matching of the AC

Stark shift. As high power 532nm light is readily available by commercial solid state pumped diode

lasers, we are using a 532nm laser (detuned by2π · 212THz for the Cs D2 line) in our single qubit

experiment. And because of limited power of fiber coupled 532nm light, we will use a smaller

detuning, 780nm (detuned by2π · 33THz for the Cs D2 line), for the multi qubit experiment.
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2.1 Gaussian Interference Bottle Beam

The first type of blue dipole trap we have tried is the Gaussianinterference bottle beam trap

(Gaussian BBT). It basically makes use of the destructive interference between two Gaussian

beams with different waist sizes [Isenhower 09].

2.1.1 Optical Setup

The optical setup is shown in Figure 2.2. A Gaussian input beam with waistw0 goes into a

Mach-Zehnder interferometer. The beam gets split at the first polarizing beam splitter. The result-

ing two beams go through the two arms of the interferometer, where telescope 1 of magnification

M1 and telescope 2 of magnificationM2 are located. When the two beams are recombined at the

50/50 beam splitter at the end, the waists becomew1 = M1w0 andw2 = M2w0 respectively. The

power ratio between the two beams is adjusted by the firstλ/2 waveplate, and the polarization di-

rections are set back to the same with the secondλ/2 waveplate. One of the outputs goes to a photo

detector to phase lock the optical path difference between the two arms. The other part is sent out

to be used as the trap (see [Isenhower 09] for experimental details). Because each beam splitter

introduces a phase shift ofπ/2, the two trap beams interfere destructively while the two feedback

beams interfere constructively. To phase lock the optical path, a small amplitude dithering voltage

of ∼10kHz is applied to the piezo element on one of the reflection mirrors, then the photo diode

signal goes in to the phase lock module, and the feedback output is sent back to the piezo element.

Since the two beams have different waist sizes, if the peak intensities of them are equal, the in-

tensity after interference would be zero only at the waist position, which becomes a bottle beam

trap.
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Figure 2.2 Optical setup of Gaussian BBT.

2.1.2 Trap Calculations

The light intensity can be calculated by

I(x, y, z) =
1

cǫ0
|E1

w1

w1(z)
exp(− r2

w2
1(z)

) exp(ikz + ik
x2 + y2

2R1(z)
− iζ1(z))

−E2
w2

w2(z)
exp(− r2

w2
2(z)

) exp(ikz + ik
x2 + y2

2R2(z)
− iζ2(z))|2.

(2.1)

From the properties of Gaussian beams,zR = πw2
0/λ, w(z) = w0

√

1 + ( z
zR
)2,R(z) = z +

z2R
z

,ζ(z) = arctan( z
zR
).

By adjusting the relative intensities of the two beams by thehalf waveplate, we can makeE1 = E2,

so the two beams completely cancel each other at~r = (0, 0, 0).

The expansion of the trapping potential around the center is

U(x, 0, 0) = −αP1(w
2
1 − w2

2)
2

cǫ0πw
6
1w

4
2

x4 +O(x5)

U(0, 0, z) = −αλ
2P1(w

2
1 − w2

2)
2

cǫ0π3w6
1w

4
2

z2 +O(z2)
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Keepingw1 constant, the lowest order coefficients are maximized whenq = w2/w1 =
√

(3 +
√
17)/2 ≃

1.89. Figure 2.3 and Figure 2.4 show some plots of the theoreticaltrapping potential and intensity

profiles for such a Gaussian interference BBT.

(a) (b)

Figure 2.3 Trapping depth in the xy and xz plane for Gaussian interference BBT,λ=780nm,
w1 = 2µm, w2 = 3.78µm, P=0.05W.

(a) (b) (c)

Figure 2.4 Intensity profile in different transverse planesfor Gaussian interference BBT,
λ=780nm,w1 = 2µm, w2 = 3.78µm, P=0.05W.
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2.2 Vortex Bottle Beam

The second type of trap is a crossed vortex bottle beam trap(vortex BBT). An optical vortex is

a zero of the optical field. Vortices are dark points in 2D fields and dark lines in 3D fields. The

integral of the phase of the field around the optical axis is aninteger multiple of2π (E ∝ eimφ,

the integerm is called topological charge), so the fields interfere destructively at the axis, creating

a vortex. Vortex beams have a helical wavefront like the one in Figure 2.5. They carry orbital

angular momentum ofmh̄. Vortex beams have been widely used in creating optical tweezers to

trap objects that would be repelled or damaged by conventional bright tweezers, or to actuate small

particles to move around the optical axis[Grier 03]; they are of interest to the quantum computing

community because of the infinite possibility of states withthe topological charges as compared to

the 0 and 1 states of conventional photonic qubits, so they can lead to faster data manipulation and

broader communication bandwidth; the angular momentum of them has been studied in quantum

entanglement[Dennis 09].

Vortex beams can be created by spiral phase plates, computergenerated holograms, and conversion

of Hermite-Gaussian modes. We are using a spiral phase platein our experiment.

(a) (b)

Figure 2.5 (a)A diagram showing a helical surface of equal phase with the Poynting vector
indicated by a curved line[Dennis 09], (b) a spiral phase plate.
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By crossing two vortex beams, we can create a bottle shaped blue detuned optical dipole trap.

Such a blue crossed vortex trap was first used by the Fatemi group as an effective way to dynam-

ically manipulate atomic clouds[Fatemi 07]. But their design requires precision alignment of the

two vortex beams which would be hard on theµm scale. So we modified the optical design to

Figure 2.6(the detailed lens layout is in Sec.A.1.2 in the appendix). We split one vortex beam to

Vortex Lens Calcite High NA Lens

w0

d

Telescope

Laser

Fiber

Vacuum cell

w

MOT

Figure 2.6 Creation of vortex BoB.

two identical parallel vortex beams by a beam displacer. Twoparallel beams will naturally cross

at the focal point of a focusing lens. By focusing two parallel vortex beams with a high numerical

aperture aspheric lens, we get aµm-sized crossed vortex bottle trap at the lens focus.

2.2.1 Laguerre-Gaussian Vortex Beam

Laguerre-Gaussian modes are one set of solutions to the paraxial Maxwell’s equation. They

can be approximately created by sending a Gaussian beam through a vortex lens (i.e. a phase

plate). By passing aTEM00 mode laser beam through a spiral phase plate, the beam gets a phase

modulation ofeiφ, but no modulation of the intensity. So the output beam is nota pure Laguerre-

Gaussian mode. But according to [Beijersbergen 94], 78.5% of the energy is in theLG01 mode.

So we will use pure Laguerre-Gaussian mode field distributions for our theoretical treatment of

the trap. More exact calculations of the field could be done bythe Collins-Huygens diffraction

integral method[Mawardi 11]. As shown in Sec. A.1.2, near the focus, the beam could very well

be described by a pureLG01 mode with a proper waist size.
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A Laguerre-Gaussian beam can be modeled by [Svelto 98]

E(r, φ, z) = E0

CLG
lp

w(z)
(

√
2r

w(z)
)|l| exp(− r2

w2(z)
)L|l|

p (
2r2

w2(z)
) exp(ikz + ik

r2

2R(z)
+ ilφ− i(2p+ |l|+ 1)ζ(z)).

(2.3)

The intensity

I(r, z) = I0(
CLG

lp

w(z)
)2(

2r2

w2(z)
)|l| exp(− 2r2

w2(z)
)(L|l|

p (
2r2

w2(z)
))2, (2.4)

whereI0 = P
w2

0
, CLG

lp =
√

2p!
π(l+p)!

, w(z) = w0
√

1 + ( z
zR
)2, zR =

πw2
0

λ
, R(z) = z +

z2R
z

, ζ(z) =

arctan( z
zR
).

The vortex bottle beam is made by focusing two parallelLGl=1
p=0 Laguerre-Gaussian beams to cross

at the focus of a high numerical aperture lens. The two beams are separated by a distanced

before focusing, with the same waist sizew1. They have perpendicular polarizations, so there is no

interference. After being focused by a lens with focal length f , the waist size becomesw0 =
fλ
πw1

,

the beams are rotated byθ = d
2f

clock and counter-clock wise. The intensity of the bottle beam

can be calculated by

I(x, y, z) =I(r =
√

y2 + (x cos θ + z sin θ)2, z = −x sin θ

+z cos θ) + I(r =
√

y2 + (x cos θ − z sin θ)2, z = x sin θ + z cos θ).
(2.5)

The expansion of trapping depth around the center is

U(x, 0, 0) = −2αP cos2 θ

cǫ0πw4
0

x2 +O(x4),

U(0, y, 0) = − 2αP

cǫ0πw4
0

y2 +O(y4),

U(0, 0, z) = −2αP sin2 θ

cǫ0πw4
0

z2 +O(z4).

Caculated trap profiles are show in Figure 2.7 and 2.8. Figure2.9 is the corresponding mea-

sured trap profile of the vortex BBT we have constructed in theexperiments. The parameters are

chosen to be the values we use in the experiment. The difference between measured and theoret-

ical profiles is due to experimental optics misalignment as explained in Sec. A.1.2. From Figure

2.11 we can see that the trap depth does not have a strong dependence on the tilt angleθ when

tan θ > 0.05, which makes it relatively easier to make.
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(a) (b)

Figure 2.7 Trapping depth in the xy and xz plane for vortex BoB, λ=532nm,d=6mm,f=34mm,
w0 = 3µm, P=0.3W, trapping depthTtrap = 192µK.

(a) (b) (c)

Figure 2.8 Intensity profile in different transverse planesfor vortex BoB,λ=532nm,d=6mm,
f=34mm,w0 = 3µm, P=0.3W.
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Figure 2.9 Measured(a) and theoretical(b) intensity profile in different transverse planes, and
reconstructed 3D profile for vortex BoB,λ=532nm,d=6mm,f=34mm,w0 = 3µm, P=0.3W.
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Figure 2.10 (a)Trap depths, (b)trap sizes, and (c)trap frequencies of crossed vortex BBT for
different waist size withθ = 5deg (tan θ = 0.088), λ=532nm, P=0.3W.
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Figure 2.11 (a)Trap depths, (b)trap sizes, and (c)trap frequencies of crossed vortex BBT for
differentθ with w0 = 3µm, λ=532nm, P=0.3W.

2.3 Gaussian Lattice Trap

The third type of blue detuned dipole trap we have used is the Gaussian lattice trap. Suppose

there are four Gaussian beams propagating parallel to each other, with positions and polarizations

as shown in Figure 2.12. Each beam has a waist size of several micrometers. Because of the small

waist, they diverge very fast, thus eventually overlap in space, forming a potential barrier. With the

d

d

w0

Figure 2.12 Optical setup of Gaussian lattice trap.

polarization configuration as in Figure 2.12, the light intensity can be calculated simply with the

standard Gaussian beam formula.

E(x, y, z) = E0
w0

w(z)
exp(− r2

w2(z)
) exp(ikz + ik

x2 + y2

2R(z)
− iζ(z)),

I(x, y, z) =
cǫ0
2
|E(x−d/2, y−d/2, z)+E(x+d/2, y+d/2, z)|2+|E(x+d/2, y−d/2, z)+E(x−d/2, y+d/2, z)|2.
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(a) (b) (c)

Figure 2.13 Intensity profile in different transverse planes for Gaussian lattice trap,λ=780nm,
d = 4µm, w0 = 1.56µm, P=50mW.

(a) (b)

Figure 2.14 Trapping depth in the xy and xz plane for Gaussianlattice trap,λ=780nm,d = 4µm,
w0 = 1.56µm, P=50mW.
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Figure 2.15 Gaussian lattice (a)trap depth, (b)potential at the trap center, and (c)the ratio between
the two, with different Gaussian beam waist,λ=780nm,d = 4µm, P=50mW.

The expansion of trapping depth around the center is

U(x, 0, 0) = −U0e
− d2

w2
0

(

1− 2w2
0 − d2

w4
0

x2
)

+O(x3),

U(0, 0, z) = −U0e
− d2

w2
0

[

1− λ2(w2
0 − d2)

π2w6
0

z2
]

+O(z3). (2.6)

2.4 Comparison of Three Traps

To compare the three types of traps, trap frequencies along different axes and trap depths are

listed in Table 2.1, all with the same laser power and some typical trap size.

Table 2.1 Trap Frequencies of the Dipole Traps for Cs 6s,λ = 780 nm, powerP = 50 mW for a)
Gaussian interference BBTw1 = 2 µm, w2 = 3.78 µm, b) crossed vortex BBTw0 = 3 µm,

θ = 8.6o, and c) Gaussian lattice trapw0 = 1.5 µm, d = 4 µm.

ωx/2π (kHz) ωy/2π (kHz) ωz/2π (kHz) U/kB (µK)

Gaussian Interference BBT 62.51 62.51 0.315 60

Vortex BBT 29.4 29.8 4.42 225

Gaussian Lattice 15.4 15.4 2.79 256
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2.4.1 Gaussian Interference BBT

The Gaussian interference BBT has the strongest radial confinement and is the closest to a

square well (∼ ρ4 dependence to the lowest order). But it has the least axial confinement and the

lowest trap depth with the same power. In addition, three of the main issues with Gaussian inter-

ference BBT are:

1) there needs to be a constant dithering of the piezo mirror for the phase lock, so the trap depth

is fluctuating at a frequency of several kHz, this could heat up the atom. Although it is possible

to make a lock without any modulation[Hansch 80, Bateman 10], this would add complexity to

the system, and the trap stability depends very much on the environment such as air currents and

vibrations.

2) we are losing a lot of the power to the photo detector. Taking into account the imperfect trans-

mission of the lens system, we were getting at most 35% of the the input power to the atom. So

the power efficiency of the trap is very low.

3) the requirements on the overlap of the optical axes and thewaist positions are strict. The final

focused beam waist is about2µm, and the Rayleigh length is about16µm. A lot of time needs to

be spent on making sure that each lens is added at the confocalposition, and aligning the directions

of the two beams very carefully before each experiment.

2.4.2 Vortex BBT

The vortex BBT has a relatively large tolerance on the beam size and beam separation, so it is

relatively easy to construct and is more stable over time. But it uses two beams that are separated by

more than 6mm for a lens of a diameter 20mm. This off-axis focusing could cause coma and other

aberrations, and thus poses a relatively high requirement on the lens quality. The most important

problem with it is that it is not easily scalable as explainedin Section 2.5. So we will not use this

type of trap to build our multi qubit Rydberg atom quantum computer.
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2.4.3 Gaussian Lattice BBT

The most obvious disadvantage of this type of trap is the non-zero light intensity at the trap

center. This could lead to decoherence between the two ground states of the atom because of

different AC Stark shifts. But if the detuning is large enough, the differential AC Stark shift would

be negligible. And as will be shown in Chapter 3, it is actually advantageous to have finite light

intensity at the trap center to suppress the differential ACStark shift between ground and Rydberg

states.

Another issue comes from interference. In the setup shown inFigure 2.12, each diagonal beam

pair have the same polarization, so they interfere. If we adda phase difference ofφ1 andφ2

for each beam pair respectively, the trap potential curves change with phases as in Figure 2.16.

The 2D potential map for the totally out of phase case is shownin Fig 2.17. We can see that

Figure 2.16 Trap potential with different phase differences for the Gaussian lattice BBT,
λ=780nm,d = 4µm, w0 = 1.56µm, P=50mW.

the phase difference has little effect in the x and y directions. In the z direction, if the phase

differences are close to the completely out-of-phase condition φ1 = π andφ2 = π, the trap loses

its confining property, and the atom could escape along the z axis, otherwise the trap depth is still

limited by the intensity on the xy plane. Since all of the fourbeams go through the same optics,

chances of them falling into the out-of-phase zone would be very small. Moreover, this issue

could be completely resolved by adopting a slightly different design as shown in Figure 2.17.c

[Saffman 12]. By combining two sets of beams with slightly different frequencies, the interference
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(a) (b)

d

d

w0

(c)

Figure 2.17 Trapping depth in the xy and xz plane for Gaussianlattice trap withφ1 = π,φ2 = π,
λ=780nm,d = 4µm, w0 = 1.56µm, P=50mW, and (c)optical setup of non-interfering Gaussian

lattice trap.

could be eliminated. But special care needs to be devoted to the alignment of the two sets of beams

in this scheme.

2.4.4 Summary

Table 2.2 summarizes the advantages and disadvantages of the three types of traps.

Table 2.2 Comparison of the Gaussian interference BBT, vortex BBT, and Gaussian lattice trap.

pros cons

Gaussian

Interference

BBT

square well like radial confinement weak axial confinement, low energy ef-

ficiency, need lock, low tolerance on

alignment precision

Vortex BBT easy to construct, stable not scalable, off-axis focusing

Gaussian Lat-

tice

easily scalable, one wall between

neighboring trap sites

non-zero intensity at trap center, hard

to align, phase induced trap depth fluc-

tuation
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2.5 Scalability

If we use a diffractive beam splitter to duplicate the trap, there is a limitation of how small an

aspect ratiod/wf we can get (whered is the site to site separation, andwf is the characteristic

waist size of the trap). The reason is explained in the rest ofthis section.

The schematic of the diffractive beam splitter setup is shown in Figure 2.18. By inserting a

fTelescope

M

diffraction BS

focusing lens

f

w1

w2 wf

d

Figure 2.18 Schematic for creating a trap array with a diffraction beam splitter.

diffractive beam splitter on the Fourier plane of the image plane, the input beam with a waist size

of w1 is split with a separation angle ofθ. The separation angle of a diffraction grating isθ = λ/l,

wherel is the grating period. After passing through some telescopesystem with magnificationM ,

the beam waist becomesw2 = Mw1, and the angle separation becomesθf = θ/M . With a final

focusing lens of focal lengthf , the final waist sizewf = fλ/(πw2), and trap separationd = fθf .

Then, the aspect ratio becomes

d

wf
=

fθ/M

fλ/(πMw1)
=
πw1θ

λ
=
πw1

l
. (2.7)

If we need an aspect ratio of 3 for example,w1/l = 3/π, which means the input beam of the

diffractive beam splitter sees less than 2 periods of the grating. This would greatly reduce the

beam quality of the output beams. Examples of the performance of the diffractive beam splitter for

different beam sizes are shown in Figure 2.19 and Figure 2.19. We can clearly see a better beam

quality when we move the grating very fast which means we are sampling more grating periods in
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effect, and the vortex beam becomes noisy when the aspect ratio is aboutπw1/l = 4.15. For a trap

with a high requirement of the beam phase and shape, like the vortex and Gaussian interference

BBTs, it would be impossible to get a small aspect ratio with adiffractive beam splitter. We will

have to use computer generated holograms to create the vortex array. With the Gaussian lattice

BBT, with less fine structures, the tolerance is larger, but the grating still could not go too far.

(a)

(b)

z=0 z=0, moving grating z=zR

Figure 2.19 Beam quality of of vortex beam arrays for different aspect ratio, with the HOLO-OR
MS-049-Q-Y-A beam splitterl = 87µm, λ = 532nm, (a)w1 = 115µm, (b)w1 = 154µm.

One way around the problem is to add some calcite beam displacers to double the beams on a

conjugate plane of the image plane, as shown in Figure 2.21.

This strategy would not work well for the vortex BBT, becausethe two vortex crossing beams

at each site would have the same polarization because of the additional calcites, causing phase fluc-

tuation dependent interference problems. But this scheme is naturally favorable for the Gaussian

lattice BBT design as shown in [Saffman 12]
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(a) (b)

Figure 2.20 Beam quality of Gaussian beam arrays for different aspect ratio, with the HOLO-OR
MS-049-Q-Y-A beam splitterl = 87µm, λ = 532nm, (a)w1 = 115µm, (b)w1 = 154µm.
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Figure 2.21 Schematic for creating a trap array with a calcite beam displacer and a diffraction
beam splitter.
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Chapter 3

Quasi-magic trapping of ground and Rydberg state atoms

The size of Rydberg atoms goes liken2a0. Highly excited Rydberg atomsn 100 have sizes well

on the order of our micron sized dipole trap. So the atom sees alight field with varying intensity

instead of a single intensity. In the case of the blue detuneddark trap, the light shift of the Rydberg

atom is not zero even when the atom stays still at the trap center. If there is intensity variation

across the trap lattice, spatial variance of this energy shift could contribute to decoherence.

3.1 Ponderomotive Energy of Rydberg Atoms

The light shift of Rydberg atoms could be calculated by considering the ponderomotive energy

of the electron.

The ponderomotive shift is the time averaged kinetic energyof a free electron in an oscillating

electric field. For a field of the formE cos(ωt), the ponderomotive energy is [Dutta 00]

UP =
e2|E|2
4meω2

(3.1)

where−e andme are the electron charge and mass respectively.

Intensity of a light field is

I =
cnǫ0
2

|E|2 (3.2)

wherec andn are the speed of light and refractive index respectively.

So the ponderomotive energy of a free electron can be rewritten as

UP =
e2

2mecǫ0ω2
I (3.3)
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Then the Hamiltonian of a Rydberg atom in an oscillating electromagnetic field can be written as

{HF + UP (~R + ~r)}ψ(~r; ~R) = ER(~R)ψ(~r; ~R), (3.4)

whereHF is the atomic Hamiltonian free of external field,~R is the center of mass coordinate of

the atom, and~r is the coordinate of the electron relative to the center of mass. Using the first order

perturbation theory, and supposing there is no degeneracy involved, the energy shift of Rydberg

atoms in statej is

∆ER
j (
~R) =

∫

d3rUP (~R + ~r)|ψ0
j (~r;

~R)|2

=
e2

2mecǫ0ω2

∫

d3rI(~R + ~r)|ψ0
j (~r;

~R)|2
(3.5)

This expression is valid provided the ponderomotive potential varies over distance scales that are

larger than the wavelength of the Rydberg electron. This is well satisfied for the potentials we

consider. Atn = 150, the electron wavelength is about50nm which is less than 10% of the

wavelength of the light creating the trap.

In addition it is necessary that the ponderomotive shift is everywhere small compared to the energy

spacing of Rydberg levels which scales as1/n3, with n the principal quantum number. Even for

the150s state, which is the highest we consider below, the closest state is146f7/2, which is 1.6mK

away. This is much larger than the trapping potentials of several hundredµK we are interested in.

3.2 Rydberg Wavefunction Calculation

The wavefunctionsψ0
j are calculated using a model pseudo potential method. The potential

form adopted here is [Robicheaux 97]

Vl(r) = −Zl(r)

r
− αd

2r4

[

1− e−(r/rc)3
]2

+
l(l + 1)

2r2
(3.6)

whereZl(r) = 1 + (Z − 1)e−α
(1)
l r + α

(2)
l reα

(3)
l r. Z is the charge of the atomic nucleus,αd =

15.81, rc = 2.0, and all the other parameters are listed in Table 3.1[communications with Francis

Robicheaux][Johnson 83]. The radial part of the Schrodinger equation is

− h̄2

2mr2
∂

∂r

(

r2
∂R(r)

∂r

)

+

(

V (r) +
l(l + 1)h̄2

2mr2
− E

)

R(r) = 0
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Table 3.1 Parameters for the Cs model potential (Equation 3.6).

l 0 1 2 3 4+

α
(1)
l 3.49625 3.73801 3.45092 3.43592 3.43592

α
(2)
l 9.57499 9.56664 9.52285 9.54285 9.54285

α
(3)
l 1.41409 1.34016 1.58147 1.62147 1.62147

Applying substitutionR(r) = u(r)
r

, andVeff(r) = V (r) + l(l+1)h̄2

2mr2
, the equation becomes

− h̄2

2m

d2u

dr2
+ (Veff(r)− E)u = 0

Because the wavefunction varies very fast withr, we can smooth the variation by adopting the

square root meshs =
√
r, r = s2, dr = 2sds, u(r) = v(s), du

dr
= dv

2sds
,d

2u
dr2

= d2v
4s2ds2

− 1
4s3

dv
ds

.

The equation becomes (using atomic units)

− 1

8s2
d2v

ds2
+

1

8s3
dv

ds
+
(

Veff(s
2)− E

)

v = 0 (3.7)

Using the inverse iteration method as in [Press 92] to find theeigenvaluesEk and eigenvectors~vk

afterk iterations
(

− 1

8s2
d2

ds2
+

1

8s3
d

ds
+ Veff(s

2)

)

discrete

~vk+1 − Ek~vk+1 = vk (3.8)

Ek+1 = Ek +
1

~vk · ~vk+1
(3.9)

Rewrite Eq 3.8 as

d2vk+1

ds2
− 1

s

dvk+1

ds
− 8s2(Veff(s

2)−Ek)vk+1 = −8s2vk (3.10)

According to the appendix of [Robicheaux 96], in general thesolution of a differential equation of

the form

y′′(x)− 1

x
y′(x)−A(x)y(x) = S(x)

can be propagated with a Numerov-type procedure

y(x+∆)

(

1− ∆

2x

)[

1− ∆2

12
A(x+∆)

]

− y(x)

[

2 + ∆2A(x)

(

5

6
− ∆2

4x2

)]

+y(x−∆)

(

1 +
∆

2x

)[

1− ∆2

12
A(x−∆)

]

= ∆2Q(x) +O(∆5)
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where

Q(x) =
1

12

(

1− ∆

2x

)

S(x+∆) +
1

12

(

1 +
∆

2x

)

S(x−∆) +

(

5

6
− ∆2

4x2

)

S(x)

The initial guess of the eigenenergyE0 is calculated from the quantum defect numbers [Lorenzen 84],

and the initial eigenvectorv0 is an arbitrary non-zero vector. By solving Eq 3.10 iteratively, the

results converge very fast to the real eigenvalues.

To verify our calculation of the wavefunctions, we reproduced the planewave photoionization cross

sections for Rb listed in [Saffman 05]. The fine structure of Cs adds less than 0.1% correction to

the ponderomotive energy shifts, so we ignore fine structurecorrections in the following sections.

Figure 3.1 shows some examples of the numerically calculated wavefunctions.

Figure 3.1 Wavefunctions of Cs Rydberg states calculated from the model potential method.

3.3 Ponderomotive Energy Shift in Bottle Beam Traps

Equation 3.5 is rewritten as

∆ER
j (x, y, z) =

e2

2mecǫ0ω2

∫

r2dr sin θdθdφI(x+ r sin θ cosφ, y + r sin θ sinφ, z + r cos θ)|R(r)Ylm(θ, φ)|2

(3.11)

The 3D integral can be numerically calculated with the triplequad() function in MATLAB. To

avoid oscillation problems, first the roots of the Hydrogen radial wavefunction are calculated,
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xn,1, xn,2, ..., xn,i, ..., then the integrals are evaluated in each subinterval and added together in the

end.

Figure 3.2 gives sample calculation results forns Rydberg levels withn = 100, 125, 150. We see

that asn increases the effective trapping potential gets smaller and smaller. This is because the

large electron wavefunction averages over the intensity distribution of the trap according to Eq.

(3.5) which washes out the potential minimum. If the trap parameters are not chosen correctly,

as is the case in Figure 3.2b), the trap could be repulsive forhigh n even thoughαe is negative.

Even when the trap is attractive for Rydberg states the ground to Rydberg trap shift for an atom at

R = 0 is not negligible. This shift increases withn and is proportional to the light intensity. In

an experiment with an array of traps this would imply that theRydberg excitation energy would

vary from site to site due to intensity variations across thearray. To minimize this effect we

seek trap parameters for which theR = 0 trap induced shift vanishes. We will refer to this in

what follows as “quasi-magic” trapping. A quasi-magic trapwill give an intensity independent

excitation shift for atoms at the trap center (or for atoms inthe motional ground state with slightly

different compensation parameters) and only a small shift for sufficiently cold atoms.

3.4 Magic Condition for Zero Temperature Atoms

Inspection of Figure 2.1 shows that apart from wavelengths that are very close to the second

resonance lines the magnitude of the ground state polarizability is larger than that of the Rydberg

state. Conversely Figure 3.2 shows that the trapping potential at R = 0 is larger for Rydberg

states than for ground states. This implies that we can balance theR = 0 trap shifts by adding a

constant background intensity that will shift the ground state potentials more than the Rydberg state

potentials. With the correct background intensityIm the differential shift will vanish. This is the

quasi-magic trapping condition. Note that if we were to use the wavelengths in Figure 2.1 where

the ground and Rydberg polarizabilities are equal (∼ 510nm), to compensate the ponderomotive

potential shift, we would have to add a relatively large background intensity. Atλ = 780 nm

the ground state polarizabilityα is about5.4× larger than that of the Rydberg stateαe which

reduces the power requirement for the background beam by this factor. It is possible to work even
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Figure 3.2 (color online) Potential energy of Cs ground andns Rydberg states in a) Gaussian
interference BoB, b) vortex BoB, and c) Gaussian lattice BoB. Trap parameters are: power

P = 50 mW for a) Gaussian interference BoBw1 = 2 µm, w2 = 3.78 µm, b) crossed vortex BoB
w = 3 µm, θ = 8.6o, and c) Gaussian lattice trapw = 1.5 µm, d = 4 µm.

closer to the first resonance line whereα/αe is even larger, but decoherence rates associated with

photon scattering and differential hyperfine shifts[Saffman 05, Kuhr 05] increase correspondingly.

In addition, it is relatively easy to get a high power laser source of 780 nm (frequency doubled

from an 1560 nm laser). We have therefore chosen780 nm for Cs as a viable working wavelength.

Using the ground state light shift

∆Ug = − αg

2ǫ0c
[IBoB(~R) + Im(~R)],

and the Rydberg state shift

∆UR =
e2

2ǫ0cmeω2
∫

d3r[IBoB(~R + ~r) + Im(~R + ~r)]|ψ0
j (~r;

~R)|2

the quasi-magic condition is simply∆Ug = ∆UR. Figure 3.3 shows an example of such a magic

condition for the crossed vortex BoB by adding a planewave compensation field.
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Figure 3.3 (color online) Energy shift compensation for thecrossed vortex BoB with a planewave
of intensityIm = 128 µW/µm2, w = 3 µm, θ = 8.6o, andP = 50 mW.

Although the additional power required for matching is small for a single site, the additional

light requirement becomes substantial if we consider a100× 100 or 1000× 1000 µm2 array. The

Gaussian lattice design presents an interesting alternative since the light intensity is naturally not

zero at the trap center. TheR = 0 intensity changes as we vary the waist size or separation of

the beams, and by judicious choice of parameters we can achieve the matching condition without

adding any additional plane wave. Note that the compensating intensity is in this case not uniform

but is spatially varying. Figure 3.4 shows such a self magic condition forn = 125. Figure 3.5 and

Table 3.2 list the self magic conditions for different n’s.

Table 3.2 Self-magic conditions for selected n states in a Gaussian lattice trap withλ = 780 nm,
d = 4 µm.

n 100 125 150

w0(µm) 1.3148 1.5575 1.73

For a ground state atom with a low temperature, we can estimate the average trap induced

shift between ground and Rydberg states by< dU >= 1
2

∑

i=x,y,z dUii(0, 0, 0) 〈r2i 〉, where the

mean square position of the atom found from the Virial theorem is < r2i >= kBT
2∂iiUg

, dUii =

∂ii(UR − Ug) andUg, UR are the ground and Rydberg state trapping potentials. Figure 3.6 shows

that the transition shift decreases nearly linearly with decreasing atom temperature. This shift

would be below 0.2 MHz for an atom temperature of 10µK which is readily achieved using
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Figure 3.4 (color online) Trapping potential (top row) and shift difference (bottom row) between
Cs6s and125s for a self-magic Gaussian lattice trap withλ = 780 nm, d = 4 µm, w = 1.56 µm,

andP = 50 mW.

polarization gradient cooling of Cs. The trapping depth of the Gaussian lattice BBT with the self-

magic condition is 304µK. In comparison, for the vortex BBT shown in Figure 3.2, with atrapping

depth of 225µK, the differential shift of125s state is about 0.8 MHz for an atom temperature of

0K.

3.5 Photoionization Rate of Rydberg Atoms

The photoionization rate of an atom is proportional to the light intensity as

W = σI/hν.
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Figure 3.5 Self-magic conditions for different nS states ina Gaussian lattice trap with
λ = 780 nm, d = 4 µm.
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Figure 3.6 Average transition shift between ground and 125sstates of Cs in Gaussian lattice trap
with d = 4 µm, w = 1.57 µm, P = 50 mW, andUtrap = kB × 300 µK.

For a uniform radiation field, the cross section can be calculated by [Saffman 05]

σω =
4π2ω

3c(2L+ 1)

∑

L′=L±1

Lmax|〈Ee, L
′|r|nL〉|2, (3.12)

whereEe is the energy of the free electronic state.
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3.5.1 Photoionization rate of Bottle Beam/Gaussian lattice

In a more general case, the cross section can be expressed as [Gallagher 94]

σ = 2π2 h̄2

m2
ec

2α
fif ,

whereα is the fine structure constant. The oscillator strength

fif =
2

h̄mω

1

2li + 1

∑

mi

∑

lf ,mf

|〈f | ~A · ~p|i〉|2 (3.13)

where initial state|i〉 = |ni, li, mi〉 is a Rydberg state with principle quantum numberni, final

state|f〉 = |Ef , lf , mf 〉 is a continuum state with energyEf = Ephoton + ERyd, ~A is the operator

of magnetic vector potential, and~p is the momentum operator. The magnitude ofA is normalized

to a unit peak intensity. Free electrons do not absorb photons. So even thoughkr ∼ kn2a0 ≫ 1

is large, we can ignore high terms ofr in calculating the matrix element. The quadrupole term is

included in case that the dipole term is vanishing at the center of a dark trap.

For a planewave field polarized in the x direction~A = ei
~k·~rx̂, Equation 3.13 can be approxi-

mated by

fif ≈ 2h̄

mω

1

2li + 1

∑

mi

∑

lf ,mf

|〈f |(px

+ikxxpx + ikyypx + ikzzpx|i〉|2
(3.14)

We can use the following relations to simplify the equation[Bethe 57].

~p = ih̄
m
[H,~r] (3.15)

xpx = im
2h̄
(Hxx− xxH) + 1

2
ih̄

ypx = 1
2
(pxy + xpy) +

1
2
(ypx − xpy) =

im
2h̄
(Hxy − xyH)− 1

2
lz

zpx = 1
2
(pxz + xpz) +

1
2
(zpx − xpz) =

im
2h̄
(Hxz − xzH) + 1

2
ly.

If we ignore the magnetic dipole term, Equation 3.14 becomes

fif ≈ 2mω

h̄

1

2li + 1

∑

mi

∑

lf ,mf

|〈f |(x+ ikx
2
x2 +

iky
2
xy +

ikz
2
xz)|i〉|2.
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For a complex field like the Gaussian lattice dipole field, we can decompose it into planewaves

A(~r) =
1

(2π)3

∫

d3~k g~ke
i~k·~r

g~k =

∫

d3~r A(~r)e−i~k·~r.

The oscillator strength can then be written as

fif ≈2mω

h̄

1

2li + 1

∑

mi

∑

lf ,mf

∣

∣

∣

∣

1

(2π)3

∫

d3~k g~k (〈x〉

+
ikx
2
〈xx〉 + iky

2
〈xy〉+ ikz

2
〈xz〉

)∣

∣

∣

∣

2

.

Figure 3.7 shows the photoionization rate for a 125s state Csatom in a Gaussian lattice trap which

satisfies the self magic condition. In the Fourier expansion, the continuous~k is discretized to a

30× 30× 30 grid, and the fidelity of the discretization can be verified bythe reconstruction of the

light field in Figure 3.8. The quadrupole term is making less than 3% correction to the final result

in the plot due to the non-zero light intensity at the trap center. The wavefunctions are calculated

with the same method as in Section 3.2. The radial part of the continuum state is normalized to

φEf ,lf →
√

2m

πh̄2ke
sin(ker + δ), asr → ∞.

whereke is the wavenumber of the free electron.

For comparison a Cs atom in a 1064 nm far off resonance trap created by a Gaussian beam

with the same trapping depth300 µK, I0 = 5.8 × 108 W/m2, would have a photoionization rate

of about2.4 s−1. So if the atom stays at the center of the Gaussian lattice trap, the photoionization

rate is almost an order of magnitude smaller than that in an equal depth red detuned trap.

3.5.2 Blackbody Radiation Photoionization

While the Stark shift of blackbody radiation(BBR) adds a uniform offset to the Rydberg fre-

quency, the photoionization induced by BBR could be large due to the small binding energy of
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Figure 3.7 Photoionization rate for 125s Cs in a 780nm self-magic Gaussian lattice dipole trap,
w0 = 1.56 µm, d = 4 µm, P = 50 mW, andUtrap = kB × 300 µK.
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Figure 3.8 (color online) Reconstructed field intensity by inverse Fourier transformation from
discretized Fourier components for a Gaussian lattice dipole trap,λ = 780nm,w0 = 1.56 µm,

d = 4 µm.

Rydberg atoms. Besides directly photoionizing the Rydbergatoms, BBR could also cause the Ry-

dberg level to redistribute before the ionization, which will be calculated for the decay of Rydberg

states in Chapter 7. So for now we are only considering the direct photoionization.

The BBR photoionization rate can be calculated by

WBBR = c

∫ ∞

ν0

ρ(ν, T )σ(ν)dν (3.16)
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whereν0 is the threshold frequency,σ(ν) is the photoionization cross section at frequencyν cal-

culated by Equation 3.12.ρ(ν) is the planck distribution of photon number densityρ(ν, T ) =

8πν2

c3
1

ehν/kBT−1
. The results are shown in Figure 3.9. The integration is donenumerically from

threshold frequency toνmax = 1.5T × 58.8GHz/K, with 100 evenly spaced intervals. We can

conclude that the photoionization rateWtrap ≪ WBBR ≪ ΓR, whereΓR is the radiative decay

time of Rydberg states. There is no need to worry about the photoionization induced by trap light.
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Figure 3.9 Blackbody radiation induced photoionization rate for Cs Rydberg states.
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Chapter 4

Experimental Setup

4.1 Magneto Optical Trap

Figure 4.1 (a)D2 line transition of Cesium and (b) setup of the magneto optical trap (MOT).

Figure 4.1 shows the setup of the Cs MOT. The cooling laser is locked to the D2F = 4 → F ′ =

3 andF = 4 → F ′ = 5 cross-over line, which is -226MHz from theF4 → F ′ = 5 resonance. We

then use a double pass AOM to shift the frequency closer to thecyclingF = 4 → F ′ = 5 transition

resonance. The double pass AOM path is after the cat-eye configuration as in [Donley 05]. During

the MOT loading phase, the cooling laser is detuning by -10MHz, by setting the AOM to 108MHz.

During the polarization gradient cooling (PGC) phase, the cooling laser is detuning by -30MHz or
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-50MHz, by setting the AOM to 98MHz or 88 MHz.

The MOT is in a rectangular vacuum glass cell. The cell is madeof 3mm thick pyrex glass.

The vertical beam has a beam waist about 2.3mm, with 1.5mW power during MOT loading phase.

The two horizontal beams have beam waists about 1.7mm with 0.7mW power in each beam during

MOT loading phase. So the total intensity is aboutIt = 24mW/cm2. Using the isotropic Cesium

D2 F = 4 → F ′ = 5 saturation intensityIsat = 2.7mW/cm2, the saturation parameter of the

MOT is aboutIt/Is = 8.9. The field gradient is about20G/cm in the vertical direction.

4.1.1 MOT Temperature

We use the free expansion method to measure the MOT temperature. The procedure is as fol-

lows: both the magnetic field gradient and laser beams are turned off for a varying amount of time

t, and the atom cloud freely expands. The beams are then turnedback on to take a snapshot of

the atom cloud (exposure time 1ms). The picture is fitted witha Gaussian profile. The assumption

is that the initial atom distribution follows the Gaussian shape of the trapping beams. The cloud

waist expands with time following the equation [Williams 09]

wx,y(t) = w0

√

1 +
4kBTx,y
mw2

0

t2 (4.1)

The pictures are taken with a Andor Luca camera, whose pixel size is8µm. The magnification of

the imaging system(AC254-100,LA1484 f300, Edmund NT49-386 f300 achromat, Figure 4.2) is

calibrated with the ASAF chart to be 3.73.

The Doppler temperature of Cs isTD = 125µK.The atom cloud temperature after the loading

phase (∆ = −10MHz) is about157µK. Then we use PGC to cool the atoms to sub-Doppler

temperature [Dalibard 89]. Although PGC with a high magnetic field gradient is possible, low

temperatures are only possible if the atom density is low[Drewsen 94]. We need a high atom den-

sity to load the bottle, so we use the optical molasses without the gradient field to do the PGC

cooling[Jersblad 00]. The timing sequence is as follows:

The MOT is loaded for about 1s with−10MHz detuning. Then the magnetic field gradient is



42

Figure 4.2 MOT imaging optics.

turned off, the laser detuning is switched to -30MHz, and laser intensity is decreased to do a first

stage PGC for 5ms. After this phase, the atom temperature is about 30µK.

If needed, a second stage PGC could be applied with the detuning -50MHz and lower intensity.

We can get atom cloud temperature as low as 4µK after the two-stage PGC.

4.1.2 Loading Time and Atom Density Measurements

Figure 4.3 shows a measurement of the MOT loading time at a pressure about1 × 10−9Torr.

The measured loading time is 1.7s. Usually we use a loading time of 700ms in our single atom

experiment. It means the atom density is 66% of the peak density we can get, which is dense

enough to give us 50% loading probability and a 1s cycle time.
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Figure 4.3 MOT loading time measurement,τ = 1.7s.
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Table 4.1 Calibration of Andor Luca camera (camera quantum efficiency @852nm taken into
account).

gain 1 10 50 100 200

count per 852nm photon0.177 1.49 6.40 7.94 10.4

To estimate the atomic density of the MOT, the counts to photon number conversion of the Luca

camera is calibrated with a femto-watt photodetector. Results are shown in Tab. 4.1. Transmission

of the pyrex vacuum cell glass is measured to beT (852nm) = 0.92, T (532nm) = 0.87. Using

these calibrations, we estimate the atom density of the MOT after the PGC is about1 × 109 ∼
1×1010/cm3. If we approximate the trap volume by4

3
πr2t rz, where the transverse radiusrt = 2µm,

and axial radiusrz = 10µm, 0.17 ∼ 1.7 atoms can be captured in the trap on average.

4.2 Optical Setup of the BoB Module

Figure 4.4 shows the layout of the crossed vortex bottle beamsetup. The parts in the green

dashed box are the optics to create the crossed vortex bottlebeam trap. The parts in the red box

are the optics of atom detection using a single photon counting module. The parts in the blue

box are the optics for coupling the ground state Raman 457nm or Rydberg 459nm and 1038nm

laser beams. All these optics are integrated to a single cagesystem, and mounted on a 3D transla-

tional stage. The final waist size of the 457/459nm beam is about 5.9µm, and the waist size of the

1038nm Rydberg beam is about2.8µm.

To align the different beams, we first move the cage away from the vacuum cell, and look at the

beams magnified by a microscope on a Sony camera. To align the atom detection module to the

bottle trap, an 852nm beam is sent backward through the photon collecting 1550nm single mode

fiber. Then the focus of this beam along with the focal spots ofthe 457/459nm and the 1038nm

beams is adjusted to overlap with the center of the bottle. Tooverlap the bottle trap with the atomic

cloud, we also make use of the backward 852nm light from the photon collecting fiber. First, the
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position of the MOT is pinned down on the Andor Luca camera screen. Then, the 852nm align-

ment beam is turned on, and the MOT beams are turned off, the Luca camera is exposed for about

1s to look at the alignment beam fluorescence. The 3D stage of the cage system is then adjusted

to move the focus of the 852nm beam to where the MOT is, and thisway the bottle trap is aligned

with MOT on the viewing plane of the camera. To overlap the bottle with the MOT on the third

direction, the MOT is turned back on and we use the alignment beam to blow away the MOT. The

fluorescence and blowaway steps are repeated until there is agood overlap.

4.3 Filtering Test

The 532nm dipole trap light is very strong with a power of up to0.5W at the atom. The

signal from a single atom is on the order of 100 photons. Although the trap light and the single

atom fluorescence are going in opposite directions, there could still be strong background from

the trap light. So special care is needed to filter out the green light from the Cs atom fluorescence

light. Table 4.2 lists several filter sets we have tested. Thetests were done in the optical setup of

Figure 4.4 with the tested filter set as the 852nm filter in the diagram. The photon counter used in

the experiments was the SPCM-AQR-13 single photon counter module, and the photon collection

fiber was a multimode fiber instead of the 1550nm SM shown in thediagram.

In Table 4.2, IF stands for the interference filter (part number Semrock FF01-832/37-25), the

Table 4.2 Performance of different filter combinations to filter out background light from the
532nm light in the atom detection path with 0.2W of 532nm light out of Verdi.

filter set no filter 1 IF 2 IFs 1 CG 1 CG and 1 IF 2 IFs and a prism

photon count frequency(kHz) 500 10 4 65 5 3

transmission of which at 532nm is measured to beT (532nm)2.5× 10−6; CG stands for the color

glass filter (part number Newport FSR-RG610), the transmission of which at 532nm is measured

to beT (532nm)3 × 10−4. If the background light due to the trap light is purely 532nmlight, we

would expect the detected photon numbers to scale as1 : T : T 2. But the testing results show
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that after adding the first filter, the background falls by a factor of 50, and additional filtering has a

small effect on the final photon counts. This suggests that there may be long wavelength light as a

result of turning on the green light.

The Verdi is pumped by 808nm light, so there could be some 852nm light mixed in the green

light. So we added a Semrock FF01-510/84-25 interference filter in front of the green fiber to

filter out any 852nm light from the Verdi. We also tried using aprism in front of the green fiber

to spectrally separate any 852nm light from the green. Thesehad little effect on the background.

So one explanation could be that 532nm light induces fluorescence in the 852nm range from the

vacuum cell or pollutants inside the vacuum.

4.4 Optical Pumping

An 894nm Vescent laser is used to optically pump the Cs atom tothe m=0 clock state. The

transition involved is shown in Figure 4.5. The 894nm laser is tuned on resonance with the

F = 4 → F ′ = 4 D1 transition of Cs, andπ polarized. In a bias field perpendicular to the

894nm beam, combined with the repumper beam, the atoms are pumped to the|F = 4, mF = 0〉
ground clock state.

4.4.1 Bias Magnetic Field

The two bias B field coils have a diameter of 70mm, and 13 turns each. They are separated by

85mm. With 1A of current, the calculated bias field would be 1.2 Gauss. In our experiments the

bias field is typically from 0.5 to 0.7 Gauss (0.75V to 1.00V controlling voltage).

4.5 State Detection

The ground state hyperfine levels are detected by an 852nm beam in resonant with the|6S1/2, F =

4〉 → |6P3/2, F = 5〉 transition. The 852nm will blow away the atoms in the|6S1/2, F = 4〉 from

the trap without affecting the atoms in the|6S1/2, F = 3〉 state. The waist size of the blowaway
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beam is 0.5mm and the beam power is 0.3mW. It can blow away the|F = 4〉 within 5µs.

If the numerical aperture of the asphere is large enough, thestates can also be detected non-

destructively by collecting scattered photons[Gibbons 11, Fuhrmanek 11], and measuring the ab-

sorption and phase shift of a weak strongly focused probe beam (see Appendix B for details).
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Figure 4.4 (a)Optical layout and (b)picture of the green crossed vortex bottle beam setup
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Figure 4.5 (a)Cesium transition line and (b) saturated absorption spectrum [Sacher] of the 894nm
optical pumping laser for the clock state.
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Chapter 5

Single Atom Loading

5.1 Timing Sequence

On

MOT beams

(-30MHz)

O!

(-10MHz)

state operation

bright trap

lifetime

 readout readoutMOT

dissipate
MOT loading PGC

(-50MHz)

10ms
20ms

100ms

BoB 

5ms

Figure 5.1 Timing sequence for single atom experiments in a vortex BoB.

Figure 5.1 is the timing sequence for a typical single atom loading experiment. For each cycle,

the MOT is loaded for 0.7 to 1 seconds with a MOT beam detuning of -10MHz. Then the MOT

gradient magnetic field is turned off, and the cooling laser frequency is switched to a larger detun-

ing and smaller intensity to do polarization gradient cooling (PGC). The lager the detuning, the

colder the atoms, but the lower the atom density. We typically use a detuning of 30MHz which

cools the atom down to about 20µK with a moderate atom density for BoB loading. After 5ms

of PGC, the BoB beam is turned on, and overlaps with the MOT for20ms to capture the atom. If

we leave the BoB always on, the atom would need to climb over a potential barrier to get into the

trap, which lowers the loading probability. Then the MOT beams are switched off for 20ms for the
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residual MOT to dissipate. After this, the photon counter isturned on for the first loading readout,

with the PGC cooling beams and the repumper. Experimental pulses, for example state operation

with the MOT beams off, and bright trap lifetime measurementwith the MOT beams on, follows

the readout. Then a second atom readout is applied to see if there is any atom left in the trap.

5.2 Results
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Figure 5.2 (a)Typical photon counter data for a lifetime measurement with cooling light on, and
continuous readout.(b)Histogram of photon counts for atomloading, integrated for 100ms,

loading probability=47%.

Typical photon counter data for a lifetime measurement on the bright BoB is shown in Figure

5.2(a)[Li 12], where a clear step between 1 atom signal and the background can be seen. Figure

5.2(b) is a typical histogram of atom loading in the crossed vortex BoBs. The photon counter

is integrated for 100ms for each data point. A maximum loading probability of 50% has been

observed when there is a good overlap between the MOT peak andBoB and a high atom density.

For a stochastic loading following Poisson distributionP (k) = Nke−N

k!
, the probability of loading

one atom isP (1) ≤ 36.8%. It is obvious we have a sub-Poissonian atom loading.

The loading histogram is fitted with a quasi-Poisson distribution over atom and photon numbers.

f(n) = A

k=1
∑

k=0

Nke−N

k!

1
√

2π(nbg + kn1atom)
exp(−(n− (nbg + kn1atom))

2

2(nbg + kn1atom)
), (5.1)
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wheref(n) is the number of events of gettingn counts on the photon counter. The fitting result is:

N = 0.76, nbg = 85, n1atom = 132.

We have not seen any two atom loading events. This could be understood by the collisional

blockade[Schlosser 01]. The Poisson distribution tells usthat the atom number should be dis-

tributed asPk = Nke−N

k!
. By photon assisted collisional blockade, atoms will be lost from the trap

in pairs. So we are left with one atom only if there are odd number of atoms in the trap originally.
∑∞

k=odd
Nke−N

k!
= 1

2
. We could load one atom half the time at most. This blockade effect could be

strong in the BoB, and it could have happened during the first 20ms when MOT and BoB overlaps,

so we do not see this process in the photon counter signal.

The number of photons counted by the photon counter for one atom in 100ms is typically100 ∼
200. With the readout beam intensityI = 2Isat and detuning∆ = −6Γ, the scattering rate is

about 20000/100ms. So the photon collection efficiency is about0.5% ∼ 1%. The asphere has an

effective focal lengthf = 34mm, and the aperture is about 24mm, so the collection angle is about

Ω/4π = 2.8%. Total transmission of the photon collecting optics is about 50%, and the quantum

efficiency of the photon counter at 852nm is about 50%. So we are expecting a photon collection

efficiency of about 0.7%.

Contributions to the background counts from different light sources are accounted for in Table 5.1.

The main source of background is the 852nm light scattered bybackground thermal Cs atoms, and

that is the main reason why the background counts do not stay constant from day to day in our

experiments.

Table 5.1 Photon sources for the background counts in the single atom readout signal. With
integration timet = 100ms, nbg ≈ 85.

background Cs atom

fluorescence

532nm trap

laser(0.4W)

cell glass scattering environmental light and

counter dark count

43 19 3 30
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5.3 Atom Temperature

We use the drop and recapture method to measure the atom temperature inside the trap. We run

a Monte-Carlo simulation to fit the recapture probability with experimental data.

Suppose the initial velocity of the atom obeys Maxwell-Boltzmann distribution of temperatureT0,

vi =
√

1
2πmkBT0

exp(−mv2i /2kBT0), wherei = x, y, z. During the drop process, we turn off the

dipole trap, the MOT beams and magnetic field for a time oft, then the atom undergoes a free

motion with the force of gravity alone. The final velocity is calculated to bevf , and the final

position is(xf , yf , zf ). Finally we turn the trap back on to recapture the atom, and the MOT beams

to see if the atom is still present in the trap. If the mechanical energy1
2
mv2f + U(xf , yf , zf) is

greater than the trap depth, or the atom has moved out of the trap region confined by the range, if

any one of the following equations is satisfied.

|xf | > xmax, |yf | > ymax, |zf | > zmax

∂U(xf , yf , zf )

∂x
xf < 0,

∂U(xf , yf , zf)

∂y
yf < 0,

∂U(xf , yf , zf)

∂z
zf < 0

(5.2)

wherexmax, ymax, zmax are pre-assigned trap sizes.

Figure 5.3 shows some drop-and-recapture temperature measurements. With one stage PGC (-

30MHz detuning), the atom temperature in the trap is about10µK, and by adding a second stage

PGC (-50MHz detuning) the atom temperature drops down to about 4µK.

5.4 Lifetime Measurement

The lifetime of an atom in the dark trap is measured with all the lasers off except the green trap

laser between two readout pulses. The lifetime in the brighttrap is measured with the PGC light

on between two readout pulses. Figure 5.4 shows some typicallifetime measurement curves. The

decaying time constant for different trap depth is summarized in Figure 5.5.

We can see that the lifetime in a 100µK bright trap is low. But as the trapping depth increases

to over 200µK, the lifetime stays about the same, and the lifetime with the cooling beams on is

smaller than that with the cooling beams off. This is probably because the temperature of the atom

is so small (∼ 20µK) compared with the trap depth that thermal escape is not the main contributor
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Figure 5.3 Temperature measurements of a single atom in a 200µK vortex BoB, (a) with one
stage PGC at detuning−6Γ, (b) with two stage PGC at detuning−6Γ and−10Γ.
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Figure 5.4 Lifetime of a single atom in a 380µK vortex BoB.

to the atom loss. As we will explain in the next section, the atom loss is mainly from collisions

with the background gas. If we turn off the cooling beams, there would be little possibility for the

atom to stay at the excited state. Ground state atoms have a smaller collisional cross section than

the excited state atoms, so the atom could stay in the trap longer. We can also infer that there is

little heating from the BoB laser, a main advantage of the bottle trap.
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Figure 5.5 Lifetime of a single atom in a vortex BoB for different trapping depth.

5.5 Collisional Atom Loss

The difference in lifetime in bright and dark traps can be explained by the different collisional

cross section of ground and excited state atoms.

The ground state atom interact with the background hot atoms(in ground state) via Van der Waals

potential with a Lennard-Jones form:

V (r) = −C6

r6
+
C12

r12
(5.3)

whenr is large compared with atom size, the higher order term couldbe ignored.

Due to the resonant interchange interaction betweens−p states, the atom in the6p3/2 state interact

with the hot atoms via potential

V (r) = −C3

r3
(5.4)

to the lowest order.

To get the collisional loss rate, we consider the following process[Bjorkholm 88].

Because the trapping potential is very small (200µK) compared to the kinetic energy of the hot

atom, we can assume the atom inside the trap to be at rest, and the interaction does not change the

trajectory of the hot atom. The collision only changes the transverse momentum of the hot atom,

thus transferring the same momentum to the trapped atom due to the conservation of momentum.
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Suppose the hot atom has a velocity ofvẑ, and the impact parameter isb in they direction, then

the momentum transfered to the trapped atom is

∆py =

∫

Fydt =

∫

∂V (x = 0, y = b, z)

∂y

dz

v

=
1

v

∫ +∞

−∞

∂V (x = 0, y = b, z)

∂y
dz

The potential is of the form

V (r) = −Cn

rn

∂V

∂y
= nCn

rn+2y (5.5)

so the momentum change can be calculated by

∆py =
nCnb

v

∫ +∞

−∞

1

b2 + z2

n+2
2

dz

=
nCn

vbn

∫ +∞

−∞
(1 + z2)−(n+2)/2dz

=
nCnan
vbn

(5.6)

wherean =
∫ +∞
−∞ (1 + z2)−(n+2)/2dz.

If this momentum change is larger than a critical valuepc =
√
2Umaxm, whereUmax is the trap

depth, the atom is lost from the trap. From this we can get a critical impact parameter

bc = (
nCnan
vpc

)
1
n (5.7)

The cross section of loss isπb2c(v). And the total loss rate is

Rn = πN

∫ ∞

0

vb2cf(v)dv (5.8)

whereN = P/kbT is the atom density of background Cs, and the thermal velocity distribution

f(v) =
√

2
π
( m
kbT

)3v2 exp(− mv2

2kbT
).

UsingC6 = 6330 andC3 = 13.22 [Niemax 75] in atomic units,P = 1.0 × 10−9 Torr,T = 300K,

assuming the fraction of the atom on the excited state is 1.5%, which is estimated byRcounter

QE×Γ
, with

photon counts per secondRcounter = 1500, quantum efficiency of the photon collection system
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QE = 0.1%, andΓ = 2π5.2×106/s, we get a lifetime estimate as follows. The data do not follow

the curve perfectly probably because the vacuum pressure isnot very stable.
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Figure 5.6 Calculated collisional atom lifetime in the trapwith the cooling light on (bright) and
off (dark), along with experimental lifetime data represented by error bar data points.

In our experiments, we usually use a80 ∼ 100ms gap time (for atom state manipulations)

between two atom100ms fluorescence reading pulses, in a200 ∼ 300µK trap. So the retention

at the end should be aboutexp(−0.1/5 − 0.1/3 − 0.1/3) = 93%. If the background pressure

is doubled, the retention is reduced to 84%. The retention wemeasured is usually in the range

of 80 ∼ 90%. But if we can shorten the time of each section to 10ms, the retention would only

change from 99% to 98% when the pressure is doubled. So increasing the overall speed is vital for

increasing the retention stability.



57

Chapter 6

Ground State Rabi

The qubits we are using are the ground state hyperfine manifolds of Cs. The rotations of

the qubits can be coherently driven by the direct transitionbetween the hyperfine levels with mi-

crowaves, or through higher order processes such as two photon Raman transitions. For the mi-

crowave method, in order to have single site addressabilityin a qubit array, additional optical or

gradient electric/magnetic fields need to be applied to the system to differentially shift the energies

of atoms at different positions[Weitenberg 11]. In our experiments, we are using a two-photon Ra-

man process via a third excited level (7P of Cs in this case) as shown in Figure. 6.1. To minimize

the error due to the spontaneous emissions from the excited level, the detuning∆ is set to be large

(∼50GHz).

For a coherent Raman Rabi flopping, the populations of state|1〉 = |6S1/2, F = 4〉 and state

|0〉 = |6S1/2, F = 3〉 evolve asc1(t)|1〉+ c2t|0〉. c1(t) andc2(t) are given by

(c1(t), c2(t))
T = U(t) (c1(0), c2(0))

T (6.1)

U(t) = e−i |Ω1|2+|Ω2|2

4δ
t





ei
∆12t

2

(

cos(Ω
′t
2 )− i∆

′

Ω′ sin(
Ω′t
2 )

)

−iei
∆12t

2
Ω∗

R

Ω′ sin(
Ω′t
2 )

−ie−i
∆12t

2
ΩR

Ω′ sin(
Ω′t
2 ) e−i

∆12t

2

(

cos(Ω
′t
2 ) + i∆

′

Ω′ sin(
Ω′t
2 )

)



 (6.2)

whereΩ1 andΩ2 are the single photon Rabi frequencies,δ = ∆1 + ∆2, the effective two photon

Rabi frequencyΩR =
Ω1Ω∗

2

δ
, ∆12 = ∆1 − ∆2 is the two photon detuning when ignoring any AC

Stark shifts,∆′ = ∆12 +
|Ω1|2−|Ω2|2

δ
is the two photon detuning taking into account AC Stark shift,

andΩ′ =
√

∆′2 + |ΩR|2.
The calculations of the Rabi frequencies need to be treated with great care. The following section

summarizes some relevant formulas.
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Figure 6.1 (a)Two photon Raman transition, (b)Raman transition of the Cs ground hyperfine
states.
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6.1 Rabi Frequency Calculation

Effective Rabi frequency

ΩR = Ω1Ω
∗
2/2∆0 (6.3)

Suppose state 1, 2 are coupled through state e,

Ω1,2 = e〈e|E1,2~ǫ1,2 · ~r|1, 2〉/h̄ (6.4)

The field amplitudes areE1,2 =
√

4P1,2

πǫ0cwxwy
. For particular hyperfine states|1〉 = |F1, m1〉, |2〉 =

|F2, m2〉, |e〉 = |Fe, me〉, the dipole matrix element could be reduced by Wigner-Eckart theorem

on a spherical tensor basis.

〈F ′, m′|rq|F,m〉 = 〈F ′||r||F 〉(−1)F
′−m′





F ′ 1 F

−m′ q m



 (6.5)

the rank 1 tensors arer±1 = ∓(x ± iy)/
√
2,r0 = z. We can further reduce the matrix element by

[Sobelman 92]

〈J1J2J ||Tk||J ′
1J2J

′〉 = (−1)J1+J2+J ′+k
√

(2J + 1)(2J ′ + 1)〈J1||Tk||J ′
1〉







J1 J J2

J ′ J ′
1 k







(6.6)

so

〈F ′||r||F 〉 =〈J ′||r||J〉(−1)F+J ′+1+I
√

(2F + 1)(2F ′ + 1)







J ′ F ′ I

F J 1







=〈L′||r||L〉(−1)F+J+J ′+L′+S+I
√

(2F + 1)(2J + 1)(2F ′ + 1)(2J ′ + 1)






L′ J ′ S

J L 1













J ′ F ′ I

F J 1







(6.7)



60

where







J1 J2 J3

J4 J5 J6







is the Wigner’s 6-J symbol.

In summary, in theL, S, J,mJ basis,

〈L′S ′J ′m′
J ||rq||LSJmJ〉 =〈L′||r||L〉cfs(L, S, J,mJ ;L

′, S ′, J ′, m′
J ; q)

cfs(L, S, J,mJ ;L
′, S ′, J ′, m′

J ; q) =(−1)J
′−m′

J+L′+S+J+1
√

(2J + 1)(2J ′ + 1)




J ′ 1 J

−m′
J q mJ











L′ J ′ S

J L 1







(6.8)

in theJ, I, F,mF basis,

〈J ′IF ′m′
F ||rq||JIFmF 〉 =〈L′||r||L〉chf(J, I, F,mF ; J

′, I, F ′, m′
F ; q)

chf(J, I, F,mF ; J
′, I, F ′, m′

F ; q) =(−1)F
′−m′

F+F+J+J ′+L′+S+I
√

(2F + 1)(2F ′ + 1)(2J + 1)(2J ′ + 1)




F ′ 1 F

−m′
F q mF











L′ J ′ S

J L 1













J ′ F ′ I

F J 1







(6.9)

The reduced matrix element

〈L′||r||L〉 = (−1)L
′
√

(2L+ 1)(2L′ + 1)





L′ 1 L

0 0 0



 〈L′|r|L〉 (6.10)

where〈L′|r|L〉 =
∫

r3drRL′(r)RL(r) The transformation from the hyperfine structure basis to the

fine structure basis can be done using the Clebsch-Gordan coefficients

|JIFmF 〉 =
∑

mJ

CFmF
J,mJ ;I,mF−mJ

|J,mJ ; I,mF −mJ〉 (6.11)

Specifically for the ground state Raman,the Rabi frequency can be calculated as follows. The

transitions involved are shown in Figure 6.1. Suppose the polarization state of the driving fields

E1,E2 can be written as

~ǫj = aj,0~e0 + aj,1~e1 + aj,−1~e−1 (6.12)

where~e0 = ẑ, ~e1 = − 1√
2
(x̂ + iŷ), and~e−1 = 1√

2
(x̂ − iŷ). E1 corresponds to the transition

|6S1/2, F1 = 4, mF1〉 → |7P1/2, Fe, mFe〉, andE2 corresponds to the transition|6S1/2, F2 =
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3, mF2〉 → |7P1/2, Fe, mFe〉. The Rabi frequency is

ΩR =
e2E1E∗

2

h̄2

∑

p,q,Fe

a1,pa∗2,qδmF1
+p,mF2

+q〈7P1/2, Fe,mFe = mF1
+ p|rp|6S1/2, F = 4, mF1

〉〈6S1/2, F = 3,mF2
|r−q|7P1/2, Fe,mFe = mF1

+ p〉
2∆Fe

=
Ω1,0Ω∗

2,0

2∆
(

∆

∆+∆hf,7P1/2

c3 + c4)

(6.13)

whereΩj,0 = ea0Ej〈7P1/2||r||6S1/2〉/h̄, ∆hf,7P1/2
= 2π × 377.4MHz is the hyperfine splitting of

7P1/2. The radial matrix element〈7P1/2|r|6S1/2〉 = 0.338[Vasilyev 02].

cFe =
∑

p,q=−1,0,1

∑

mFe

a1,pa
∗
2,qchf(J1, I, F1, mF1; Je, I, Fe, mFe; p)chf(Je, I, Fe, mFe; J2, I, F2, mF2;−q)

(6.14)

We are using two beams with the same polarization,mF1 = mF2 .

6.2 AC Stark shift

Since the hyperfine splitting of Cs ground states, 9.2 GHz, ison the same order of the detuning.
When calculating the AC Stark shift ,we should also considerthe coupling of7P1/2 to6S1/2, F = 4
viaE2, and7P1/2 to 6S1/2, F = 3 viaE1. The AC Stark shift can be calculated by

∆ac =
∑

j,p,Fe

e2E2
j a

2
j,p

4h̄2∆Fe

|〈7P1/2, Fe,mFe = mF1
+ p|rp|6S1/2, F1,mF1

〉|2 −
∑

j,p,Fe

e2E2
j a

2
j,p

4h̄2∆Fe

|〈7P1/2, Fe,mFe = mF1
+ p|rp|6S1/2, F2,mF2

〉|2

=
∑

j,p,Fe

|aj,p|2Ω2
j,0

|chf (J1, I, F1,mF1
;Je, I, Fe,mFe = mF1

+ p; p)|2
4∆j(7P1/2, Fe; 6S1/2, F1)

−
∑

j,p,Fe

|aj,p|2Ω2
j,0

|chf (J2, I, F2,mF2
;Je, I, Fe,mFe = mF2

+ p; p)|2
4∆j(7P1/2, Fe; 6S1/2, F2)

(6.15)

Figure 6.2(b) shows some sample calculations of the AC Starkshifts.

6.3 Raman Laser Setup

The laser setup for the Raman transition is shown in Figure 6.3. For each laser, the laser source

is a 914nm ECDL. The frequency of the laser is locked by the Pound-Drever-Hall technique to a

reference high finesse cavity (F ∼ 1500). Then most of the light is sent to a tapered amplifier

(TA) after which we get up to 400mW of 914 light. The optimum input power for the TA is about

45mW. The output of the TA is collimated and reshaped to obtain a beam closer to circular and

then matched into a bow-tie cavity used for second-harmonicgeneration (SHG). The SHG cavity

has four mirrors and a 2cm PPKTP crystal. The SHG gives us about 35mW of blue power. An
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Figure 6.2 Caculated Rabi frequency and AC Stark shift of ground state Raman transition, from
6S1/2, F = 4, mF = 0 to 6S1/2, F = 3, mF = 0 via 7P1/2, mF = 1, P1 = 1mW, P2 = 0.5mW,

w457 = 5.9µm.
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AMO is inserted to stabilize the power, and the zero order diffraction is the output. A double pass

AOM path is used in one of the lasers (back laser) to work as thefast feedback of the phase lock

loop. But half of the back laser power is lost in this double pass AOM setup. Before the lasers are

sent to a fiber, they are combined by a 50/50 beam splitter. Half of the power is sent out through a

fiber. The other half is sent to a fast photo detector. The detector outputs a beat signal of the two

blue lasers. Then the beat signal is mixed with af ∼ 9.2GHz reference RF signal generated by

a frequency generator. The error signal is feedback to the reference cavity and double pass AOM

of the back laser. This way the back laser is phase locked to the front laser with a frequency offset

equal to the hyperfine splitting of Cs6S1/2. The back laser (powerP2) frequency is set higher than

the front laser (powerP1) frequency.

We can get about 7mW of back laser and 14mW of front laser in front of the output fiber. The

power is 3+6mW after the fiber. Before going to the atom, another AOM is set up between two

fiber launchers to work as an on/off switch. The output after the last blue fiber is about 1+2mW,

70% of which gets to the atom eventually.

6.4 Experimental Results of TPS and RFE

At the beginning of our experiments, we usually initialize the atom into the|6S1/2, F = 4〉
state,(c1(0), c2(0)) = (1, 0). According to Equation 6.2, the probability of the atom in state

|6S1/2, F = 3〉 after a Rabi pulse of timet is given by

|c2(t)|2 =
∣

∣

∣

∣

ΩR

Ω′ sin(
Ω′t

2
)

∣

∣

∣

∣

2

So for a two photon spectrum scan with a fixed pulse lengtht, the retention (F = 3) can be fitted

with a sinc squared function. Figure 6.4 shows a typical TPS experimental results.

Figure 6.5 shows a typical ground state Rabi flopping curve.
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Figure 6.3 Laser setup for the Raman transition of the groundhyperfine states.
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w = 5.9µm, ∆ = 40GHz.

/2 =0.31MHz

0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

re
te
n
ti
o
n

t( s)

Figure 6.5 Rabi flopping of ground hyperfine states,P1 = 0.93mW, P2 = 0.47mW, w = 5.9µm,
∆ = 40GHz, fRF = 9.192620GHz, Rabi frequencyΩ/2π = 0.31MHz, amplitudeA = 0.95.
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6.5 T2 measurements

The coherence time is measured in the usual Ramsey fringe method: a π
2

pulse is applied to

prepare the atom into the superposition state; and then it left to freely precess in the trap for a time

of Tp; then a secondπ
2

pulse is applied before the final state measurement. The oscillation fringes

are measured for differentTps, and the oscillation amplitudes are exponentially fitted to interpolate

the T2 time in Figure 6.7. The T2 time we have measured is43± 9ms.
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Figure 6.6 Ramsey fringes for differentTp intervals.

6.6 Decoherence Factors

6.6.1 Motional Decoherence

One of the main factor for dephasing is the atomic motion. As the atom moves in the trap, it

experiences varying trapping light intensity, thus varying differential potential shifts for the|F =

4, mF = 0〉 and|F = 3, mF = 0〉 states. The differential shift is given by

h̄δ(x, y, z) = ηU(x, y, z) (6.16)
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Figure 6.7 T2 decoherence time fit.
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whereU(x, y, z) is the potential energy,η =
fhf

c/λBBT−c/λ0
= 4.34× 10−5. For an atom of tempera-

tureT , the energy distribution of the atom in the dipole trap obeysa three dimensional Boltzmann

distribution with probability density

p(E) =
E2

2(kBT )3
exp

(

− E

kBT

)

(6.17)

HereE = Ekin + U is the total energy of the atom. If the atom is cold enough and it is sitting

at the center of the trap, the trap can be approximated by a harmonic trap. According to the virial

theorem,< U >= E/2, so the average differential light shift for an atom with energyE is

δls =
ηE

2h̄
. (6.18)

The probability distribution of the light shift is

p(δls) =
K3

2
δ2ls exp(−Kδls), (6.19)

with K = 2h̄/(ηkBT ).

Starting with state|F = 4, mF = 0〉, (c1(0), c2(0)) = (1, 0), the state vector amplitude of state

|F = 3, mF = 0〉 after a Ramsey sequenceTp = t is

c2(t) = cos δt, (6.20)

where the two photon detuningδ = ∆AC − δls − δB with δB the quadratic Zeeman shift. So the

average Ramsey signal

c2(t) =

∫ 2Um

0

p(δls) cos [(∆AC − δls − δB)t] dδls

≈
∫ ∞

0

p(δls) cos [(∆AC − δls − δB)t] dδls

=
K3

(K2 + t2)3/2
cos [(∆AC − δB)t + κ(t,K)] ,

(6.21)

where,κ(t,K) = −3 arctan(t/K).

The1/e decoherence timeT ∗
2 can be calculated by

∣

∣

∣

K3

(K2+T ∗2
2 )3/2

∣

∣

∣

2

= 1/e (because we are measuring

|c2(t)|2 in experiments), and we get

T ∗
2 =

√

e1/3 − 1K = 0.63
2h̄

ηkBT
. (6.22)
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This is the same as that for the red detuned dipole trap[Kuhr 05]. In Figure 6.8(a) is the calculated

motional decoherenceT2 time for Cs atom in a 532nm BBT. For an atomic temperatureT = 4 ∼
5µK as we have measured,T ∗

2 = 55 ∼ 44ms.

6.6.2 Magnetic Field Fluctuations

For the clock transition from|F = 4, mF = 0〉 → |F = 3, mF = 0〉, the quadratic Zeeman

shift is given byδB = µ2B
2, where the coefficientµ2/2π = 427.45Hz/G2 for Cs. Suppose there

is Gaussian noises in the bias field,

p(B) =
1√
2πσB

exp
(

−(B − B0)
2/2σ2

B

)

(6.23)

The Ramsey visibility, ignoring the motional dephasing, is

< c2(t) > =

∫

p(δB) cos [(∆AC − δls − δB)t] dδB

=
1√
2πσB

∫ ∞

−∞
cos

[

(∆AC − δls − µ2B
2)t

]

e−(B−B0)2/2σ2
BdB

≈ 1√
2πσB

∫ ∞

−∞
cos

[

(∆AC − δls − µ2B
2
0 − 2µ2B0(B − B0))t

]

e−(B−B0)2/2σ2
BdB

=exp
(

−2σ2
Bµ

2
2B

2
0t

2
)

cos
[

(∆AC − δls − µ2B
2
0)t

]

.

(6.24)

So the1/e time for |c2(t)| is 1/
√
2µ2B0σB, and the1/e time for |c2|2

T2,B =
1

2µ2B0σB
. (6.25)

The results for different bias fields are shown in Figure 6.8(b). If we assume atomic temperature

T = 4µK, bias fieldB0 = 0.7G, and magnetic field fluctuationσB = 1.3mG, we will getT ∗
2 =

55ms, T2,B = 200ms, andT2 = 43ms.

6.7 Quantum Tomography

To characterize a quantum system experimentally, we need toperform some complex proce-

dures, called quantum tomography, to uniquely determine the input and output quantum states of

the system, and describe the quantum processes performed bythe system.
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Figure 6.8 Calculated (a)motional decoherenceT2 time for Cs atom in a 532nm BBT,
(b)decoherence caused by magnetic field fluctuations.
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6.7.1 State Tomography

Quantum state tomography is the procedure of experimentally determining an unknown quan-

tum state.

For single qubits, the Pauli matrices are

I ≡ σ0 =





1 0

0 1



 , σx =





0 1

1 0



 , σy =





0 −i
i 0



 , σz =





1 0

0 −1



 . (6.26)

The setσ0/
√
2, σx/

√
2, σy/

√
2, σz/

√
2 forms an orthonormal set of matrices with respect to the

Hilbert-Schmidt inner product, so any stateρ can be expanded as[Nielsen 00]

ρ =
tr(σ0ρ)σ0 + tr(σxρ)σx + tr(σyρ)σy + tr(σzρ)σz

2
. (6.27)

It is easy to see thattr(σ0ρ) andtr(σzρ) are the sum and difference respectively, ofP0 the popu-

lation in state|0〉 andP1 the population in state|1〉 in thez basis.tr(σxρ) andtr(σyρ) cannot be

directly obtained from measurements in thez basis, and we need to do some rotations first, using

the following identities.

σx = R†
y(−π/2)σzRy(−π/2),

σy = R†
x(π/2)σzRx(π/2),

(6.28)

where the rotation operators about thex, y, z axes are

Rx(θ) =





cos θ/2 −i sin θ/2
−i sin θ/2 cos θ/2



 , Ry(θ) =





cos θ/2 − sin θ/2

sin θ/2 cos θ/2



 , Rz(θ) =





e−iθ/2 0

0 eiθ/2



 .

(6.29)

So the density matrix of the quantum stateρ can be reconstructed from experimental observables

by

ρ =
(P0 + P1)Iσ0 + (P0 − P1)Ry(−π/2)σx + (P0 − P1)Rx(π/2)σy + (P0 − P1)Iσz

2
. (6.30)

To be more specific to our neutral atom experiments,Rx(θ) corresponds to a ground Rabi pulse of

t with θ = ΩRt, Rz(θ) corresponds to a free precession of timet with θ = ∆ACt, andRy(θ) =
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Rz(
π
2
)Rx(θ)Rz(−π

2
).

Due to experimental uncertainties and errors, a simple appliance of Equation 6.30 may not produce

a physically valid density matrix. Instead, a maximum likelihood estimator method is often used

to reconstructρ.

We did the state tomography for the initialized state after optical pumping,|1〉 = |F = 4, mF = 0〉.
The measured density matrix reconstructed from maximum likelihood is

ρmeas =





0.13 0.30− 0.12i

0.30 + 0.12i 0.84



 . (6.31)

The calculated fidelity measures with respect toρid =





0 0

0 1



 are

F
1/2
O = Tr

[

√√
ρmeasρid

√
ρmeas

]

= 0.92,

FO = Tr2
[

√√
ρmeasρid

√
ρmeas

]

= 0.84,

FD = 1− 1

2
Tr

[
√

(ρid − ρmeas)
† (ρid − ρmeas)

]

= 0.64.

(6.32)

6.7.2 Process Tomography

A quantum operation is a process that maps a quantum stateρ to an output stateE(ρ). If we

choose a set of operatorsOi, i = 1, ..., d2 andd = 2n for n qubit gates, which form a basis for the

set of any operator on the state space, then a quantum processon a qubit can be represented by aχ

matrix,

E(ρ) =
∑

jk

χjkOjρO
†
k. (6.33)

Experimentally, the quantum process can be characterized by performing quantum state tomog-

raphy onE(ρj) for a basis set of input states. For the single qubit gate process tomography, the

experimental sequence is performing state tomography after applying the gate on 4 different input

states from the set{|0〉, |1〉 (|0〉+ |1〉)/
√
2, (|0〉+ i|1〉)/

√
2}, and we choose the expansion opera-

torsO1, O2, O3, O4 to beσ0/
√
2, σx/

√
2, σy/

√
2, σz/

√
2. The4× 4 χ matrix can be reconstructed
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from this complete set of measurements. Figure 6.9 shows ourexperimental results and Table 6.1

is a summary of the fidelities.

Table 6.1 Process tomography results for single qubit gates. The fidelity measures used are
F

1/2
O = Tr

[√√
χmeasχid

√
χmeas

]

, FO = Tr2
[√√

χmeasχid
√
χmeas

]

,

FD = 1− 1
2
Tr

[

√

(χid − χmeas)
† (χid − χmeas)

]

.

Gate F
1/2
O FO FD

Rx(π) 0.83 0.69 0.67

Rx(π/2) 0.92 0.85 0.84

Ry(π) 0.90 0.80 0.79

Ry(π/2) 0.90 0.81 0.76

Rz(π/4) 0.88 0.77 0.76

average 0.89 0.78 0.76
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Figure 6.9χ matrices for the process tomography of different rotation gates.
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Chapter 7

Rydberg Excitation

One of the most important features of the blue detuned optical dipole traps is that they can trap

ground and Rydberg state atoms simultaneously. The Raithelgroup have demonstrated trapping

Rydberg atoms in an optical lattice by a lattice inversion immediately after laser excitation[Anderson 11].

But they only showed the trapping indirectly by the trap induced Rydberg energy shifts. In addi-

tion, with the lattice inversion method, we cannot trap ground and Rydberg state atoms simultane-

ously, and the inversion process could heat up the atom.

In this chapter, we will show some unambiguous measurementsof trapping single Rydberg atoms

in the blue detuned crossed vortex BBT.

7.1 Rabi Frequency

We use a two photon transition to excite the Cs to a Rydberg state. In the preliminary experi-

ments, we use aD state because it has a larger dipole moment and easier to detect compared with

aS state. The atomic levels involved are shown in Figure 7.1.

With the polarization setting as in Figure 7.1, the Rabi frequency could be calculated as

ΩR =
e2

h̄2

〈7P1/2, F = 4,mF = mF,g + 1|E1r1|6S1/2, F = 4,mF,g〉〈61D3/2,mJ |E2r−1|7P1/2, F = 4,mF = mF,g + 1〉
2∆

+
e2

h̄2

〈7P1/2, F = 3,mF = mF,g + 1|E1r1|6S1/2, F = 4,mF,g〉〈61D3/2,mJ |E2r−1|7P1/2, F = 3,mF = mF,g + 1〉
2(∆ +∆hf,7P1/2

)

=
Ω1,0Ω2,0

2∆
(

∆

∆+∆hf,7P1/2

c3 + c4)

(7.1)



76

F=4, m=0

m=-1/2, -3/2

6S1/2

61D3/2

459nm

1038nm

7P1/2

+

-

F=3e

F=4e

F

J

E1

E2

|J ,I,F ,m >g Fg
g

|L ,S,J ,m >r Jr
r

σ

σ

Δ

Figure 7.1 Two photon excitation of Cs Rydberg state.

whereΩ1,0 = ea0E1〈7P1/2||r||6S1/2〉/h̄, Ω2,0 = ea0E2〈61D3/2||r||7P1/2〉/h̄.

cFe =
∑

p,q=−1,0,1

a1,pa2,qchf(Jg, I, Fg, mFg ; Je, I, Fe, mFe = mF1 + p; p)





∑

mJe

C
Fe,mFe
Je,mJe ;I,mFe−mJe

cfs(Le, S, Je, mJe;Lr, S, Jr, mJr ; q)





(7.2)

∆ac =
e2

h̄2

|〈61D3/2,mJ |E2r−1|7P1/2, F = 4,mF = mF,g + 1〉|2 − |〈7P1/2, F = 4,mF = mF,g + 1|E1r1|6S1/2, F = 4,mF,g〉|2
4∆

+
e2

h̄2

|〈61D3/2,mJ |E2r−1|7P1/2, F = 3,mF = mF,g + 1〉|2 − |〈7P1/2, F = 3,mF = mF,g + 1|E1r1|6S1/2, F = 4,mF,g〉|2
2(∆ +∆hf,7P1/2

)

(7.3)

Figure 7.2 shows a sample calculation of Rabi frequency and AC Stark shift of two photon

excitation to61D3/2 Rydberg state, using the scheme in Figure 7.1. For a large detuning, the Rabi

frequency ofmJ = −3/2 is much smaller than that ofmJ = −1/2, so we will consider only the

mJ = −1/2 Rydberg state from now on.

7.2 TPS and RFE

The TPS scan in Figure 7.3 is done with the following laser settings:

the detuning∆/2π = 2GHz, 459nm laser powerP459 = 60 ∼ 70µW, waist sizew459 = 6µm,
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Figure 7.2 Calculated Rabi frequency and AC Stark shift of two photon excitation to61D3/2

Rydberg state via7P1/2, P459 = 65µW, w459 = 6µm, P1038 = 3.5mW, w1038 = 2.8µm,
∆/2π = 2GHz, (a)(b)mJ = −1/2, (c)(d)mJ = −3/2.
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1038nm laser powerP1038 = 3 ∼ 4mW, waist sizew1038 = 2.8µm, so that the calculated Rabi

frequencyΩ/2π = 0.76 ∼ 0.94MHz, and AC Stark shift∆AC/2π = 0.54 ∼ 0.75MHz.

The measured frequency is summarized in Table 7.1. The measured value is14.4 ∼ 13.8 MHz

above theory[Weber 87]. To account for the difference, we consider all the possible frequency

shifts:

1)Zeeman shift in the 0.7G bias field for61D3/2, mJ = −1/2 is 0.56MHz/G× 0.7G = 0.4MHz;

2)AC Stark shift∆AC/2π = 0.54 ∼ 0.75MHz;

3)green bottle trap shift is about∆bob = 0.34MHz;

4)differential dipole shift induced by the strong 1038nm laser,U = −2π10−6

c
(αcgs,1038,r−αcgs,1038,g)I1038 =

2.0 ∼ 2.7MHz, where the polarizabilityαcgs,1038,r = −76.9A3 for Rydberg states, andαcgs,1038,g =

187A3 for ground states.

These four factors add to3.27 ∼ 4.18MHz. So our measured transition frequency is about

9.61 ∼ 11.12MHz higher than the theoretical value.
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Figure 7.3 TPS scan of Cs Rydberg state61D3/2. (a)pulse sequence for detecting Rydberg state
with 1038nm laser photoionization, in which Rydberg excitation pulser = 0.6µs, high power

1038 ionization pulseri = 2µs, and a gap time ofrg = 10µs is used to enhance retention. (b)TPS
curve, withfcenter = 733.131± 0.043MHz, half line widthdf = 0.768MHz.

The RFE is measured with the same setting as the TPS experiment in Figure 7.3, with AOM

frequency set at 733.2 MHz, shown in Figure 7.4. The measuredRabi frequency is 0.4 MHz, as

compared with0.76 ∼ 0.94 MHz from calculations. The discrepancy could be due to that the
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Table 7.1 Measurement of transition frequency (in GHz) of
|6S1/2, F = 4, mF = 0〉 → |61D3/2, mJ = −1/2〉.

f918 f1038 f918,AOM fgr,measured fgr,theory fgr,measured − fgr,theory

326254.058029 288071.054 -0.7331∼ -0.7334 940577.70438 ∼
940577.70378

940577.690 0.0144 ∼ 0.0138

beams are slightly misaligned so the atom does not see the peak intensity, or the laser frequency is

off. In this experiment, the Rydberg state is detected by a single high power 1038nm photoioniza-

tion pulse, and the detection or excitation amplitude is 27%.

Figure 7.4 Rabi flopping between ground state6S1/2, F = 4, mF = 0 and Rydberg state
61D3/2, mJ = −1/2.

7.3 Photoionization Rate

In the experiments, we initially used high power 1038nm light to photoionization the Rydberg

atom as the state detection method. Then we used a high intensity 852nm beam to blow away the

ground state atom to detect Rydberg states. It is helpful to estimate the photoionization rate of the

Rydberg atom under these high intensity lasers. The photoionization cross section for a beam of
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wavelengthλ is

σ =
4π2hc

3λαmec2

∑

E=Er+h̄ω,L

L>

2Lr + 1
|RL,E

r |2 (7.4)

where the radial integral between the Rydberg stateΨr and the continuum stateφL,E is RL,E
r =

∫

Ψr(r)rφL,E(r)r
2dr, andL> is the larger ofLr andL. The results are in Figure 7.5. The cross
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Figure 7.5 Cross section of photoionization of Cs Rydberg states.

section of 1038nm photoionization for61D3/2 is about6× 10−5A2. So for the 75mW high power

1038 pulse we were using, the ionization rate is about19kHz. If a 2µs pulse is used, the possibility

of photoionization is about 4%. The detection efficiency in Figure 7.4 is more than that because

there is also strong dipole force on the Rydberg atom resulting in mechanical atom loss. So pho-

toionization using 1038nm laser is not a very effective way of detecting the Rydberg atoms.

In the following experiments, we used a strong resonant 852nm beam to blow away ground state

atoms. The beam power is about 0.4mW and it is focused to a waist size about100µm, so the
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photoionization rate and mechanical force are reduced toI852/I1038 = 4 × 10−6 of those when

using the 1038 beam. With this method, we got a cleaner signaland a detection efficiency about

40%.

Another interesting point to notice is that, if we look at thephotoionization cross sections for a

broader range of wavelengths in Figure 7.6, we can find minimaof photoionization for Rydberg

statesS1/2 andD3/2. These minima are called Cooper minima[Beterov 12]. These minima arise

from the cancellation of the radial integral for some transitions, depending on the overlap between

the wavefunctions of the initial and final quantum states of the atoms. An example is shown in

Figure 7.7. The relative radial matrix elementRrel in Figure 7.7(a) is defined as

Rrel(EnL→ E ′L′) =
R(EnL→ E ′L′)× (−2En)

−3/4 × |E ′ −En|5/3
0.418

, (7.5)

which varies more slowly withn than the radial matrix element.

The results are quite different from the data calculated in [Beterov 12]. In the calculations of the

S1/2 → P1/2 bound-free matrix element, our results show a single minimum nearE2 = 0.12 a.u.,

while in [Beterov 12], there are two minima at aroundE2 = 0.06 and 0.16 a.u., and the numerical

values are quite different (maximum is 0.25 in our plot and 0.6 in Figure 6(a) of [Beterov 12]). We

are using two different computation methods. The discrepancy may result from the possible fact

that one of the methods does not work well for bound-free matrix element calculations.

7.4 Rydberg Energy Shift in Bottle Beam Trap

With the ponderomotive potential theory in Chapter 3, we calculated the energy shift of Ry-

dberg states in the crossed vortex BBT, in Figure 7.8, with the actual experimental bottle beam

parameters. For state|61D3/2, mJ = −1/2〉, the shift is 0.34MHz.

To measure the energy shift in the BBT, we took the two photon spectra of Cs61D3/2 with the trap

on and off consecutively (Figure 7.9), by scanning the RF frequency of the 918 laser double pass

AOM. The Rydberg atoms are detected by blowing away the ground state atoms. The transition

frequency with trap on is (0.033+/-0.05)x4=0.13+/-0.2 MHzhigher than the frequency with trap
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Figure 7.6 Cross section of photoionization of Cs Rydberg states for different wavelengths.

off. The theoretical value 0.34MHz is right on the edge of experimental uncertainty range. More

data points with differentns are needed before any conclusion can be made.

7.5 Rydberg Lifetime

7.5.1 Decay of Rydberg States

The decay of Rydberg states is mainly due to spontaneous decay and black body radiation

(BBR) induced decay. The effective lifetime could be estimated by [Beterov 09]

τeff =

(

1

τ0
+ ΓBBR

)−1

(7.6)
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Figure 7.7 (a)Radial matrix element for transitions60F → nD, (b)relative radial matrix element
for transitions fromnS1/2 bound states toP1/2 free states.

The spontaneous decay lifetimeτ0, and the BBR induced decay rateΓBBR can be estimated by the

semiempirical formula

τ0 = τsn
σ
eff

ΓBBR =
A

nD
eff

2.14× 1010

exp(315780B/nC
effT )− 1

(s−1)
(7.7)

whereneff = n − δqd is the effective quantum number withδqd the quantum defect number. The

parameters for Cs are listed in Tab. 7.2.τ61d3/2 = 78.5µs.
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Figure 7.8 Ponderomotive energy shift of Rydberg states in the crossed vortex BBT, with trap
parametersλ=532nm,d=6mm,f=34mm,w0 = 3µm, P=0.4W.

(a) (b)

Figure 7.9 Two photon spectrum of Cs61D3/2, (a)with the BBT on,
fcenter = 367.514± 0.02MHz; (b)with BBT off, fcenter = 367.547± 0.03MHz.

Figure 7.15 shows the lifetime estimates of Cs Rydberg states.
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Table 7.2 Scaling coefficients of Cs in Equation 7.7, data taken from [Beterov 09].

S1/2 P1/2 P3/2 D3/2 D5/2

τs(ns) 1.2926 2.9921 3.2849 0.6580 0.6681

σ 3.0005 2.9892 2.9875 2.9944 2.9941

A 0.123 0.041 0.038 0.038 0.036

B 0.231 0.072 0.056 0.076 0.073

C 2.517 1.693 1.552 1.790 1.770

D 4.375 3.607 3.505 3.656 3.636
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Figure 7.10 Lifetime of Rydberg states, (a)0K lifetime, (b)blackbody lifetime at 300K,
(c)lifetime at 300K.

7.5.2 Model of Rydberg Atom Loss with Multiple Rydberg Ionization Pulses

Suppose the Rydberg atom decays at a rate ofΓr, the loss rate from the 1038 high power blow

away beam isΓ1038 (either from photoionization or mechanical pushing), the loss rate from the

532nm BoB isΓbob (either from photoionization or not trapping, as shown in Figure 7.11. Then

the Rydberg populationPr and ground state populationPg change with time according to

dPr

dt
= −(Γr + Γbob + Γ1038)Pr (7.8)

dPg

dt
= ΓrPr (7.9)
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The solution is

Pr(t) = Pr(t = 0)e−(Γr+Γbob+Γ1038)t (7.10)

Pg(t) =
Γr

Γr + Γbob + Γ1038
(1− e−(Γr+Γbob+Γ1038)t)Pr(t = 0) + Pg(t = 0) (7.11)

|r>

|g>

Figure 7.11 Model of Rydberg atom decay and loss.

Let us consider the pulse sequence in Figure 7.3(a). To simplify the model, suppose after each

Rydberg excitation pulse, the atom is at the Rydberg state with a fixed probabilityPr,0. So

Pr(t = 0) = Pr,0 (7.12)

Pg(t = 0) = Pg,0 = 1− Pr,0 (7.13)

DefineΓ1 ≡ Γr, Γ2 ≡ Γr +Γbob, andΓ3 ≡ Γr +Γbob +Γ1038. After the first high power ionization

pulse

Pr(t = ri) = Pr,0e
−Γ3ri (7.14)

Pg(t = ri) =
Γ1

Γ3
(1− e−Γ3ri)Pr,0 + Pg,0 (7.15)
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after the gap timerg,

Pr(t = ri + rg) = e−Γ3ri−Γ2rgPr,0

Pg(t = ri + rg) =
Γ1

Γ2
(1− e−Γ2rg)Pr(t = ri) + Pg(t = ri)

=
Γ1

Γ2
(1− e−Γ2rg)e−Γ3riPr,0 +

Γ1

Γ3
(1− e−Γ3ri)Pr,0 + Pg,0

= −Γr

Γ2
e−Γ3ri−Γ2rgPr,0 +

ΓrΓ1038

Γ2Γ3
e−Γ3riPr,0 −

Γbob + Γ1038

Γ3
Pr,0 + 1

Pt(t = ri + rg) =
Γbob

Γ2
e−Γ3ri−Γ2rgPr,0 +

ΓrΓ1038

Γ2Γ3
e−Γ3riPr,0 −

Γbob + Γ1038

Γ3
Pr,0 + 1

(7.16)

After 5 repetitions,

Pr(t = 5ri + 5rg) = (Pt(t = ri + rg))
4Pr(t = ri + rg)

Pg(t = 5ri + 5rg) = (Pt(t = ri + rg))
4Pg(t = ri + rg)

Pt(t = 5ri + 5rg) = (Pt(t = ri + rg))
5

(7.17)

What is left on the ground state eventually is

Pg,5(t = ∞) =
Γr

Γ2
Pr(t = 5ri + 5rg) + Pg(t = 5ri + 5rg)

=
Γr

Γ2
(Pt(t = ri + rg))

4Pr(t = ri + rg) + (Pt(t = ri + rg))
4Pg(t = ri + rg)

(7.18)

If we are using one pulse repetition

Pg,1(t = ∞) =
Γr

Γ2
Pr(t = ri + rg) + Pg(t = ri + rg)

=
ΓrΓ1038

Γ2Γ3
e−Γ3riPr,0 −

Γbob + Γ1038

Γ3
Pr,0 + 1

(7.19)

If the blowawayri is applied after the gap timerg,

Pr(t = rg) = Pr,0e
−Γ2rg

Pg(t = rg) =
Γ1

Γ2
(1− e−Γ2rg)Pr,0 + Pg,0

(7.20)
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Pr(t = rg + ri) = e−Γ2rg−Γ3riPr,0

Pg(t = rg + ri) =
Γ1

Γ3

(1− e−Γ3ti)e−Γ2rgPr,0 +
Γ1

Γ2

(1− e−Γ2rg)Pr,0 − Pr,0 + 1

= −Γr

Γ3

e−Γ2rg−Γ3riPr,0 −
ΓrΓ1038

Γ2Γ3

e−Γ2rgPr,0 −
Γbob

Γ2

Pr,0 + 1

Pt(t = rg + ri) =
Γbob + Γ1038

Γ3

e−Γ2rg−Γ3riPr,0 −
ΓrΓ1038

Γ2Γ3

e−Γ2rgPr,0 −
Γbob

Γ2

Pr,0 + 1

(7.21)

The final ground state atom probability could be again calculated with Equation 7.18.

Using this model, we fitted the experimental data to estimatedifferent lifetimes, Figure 7.12,7.13,

7.14. The best fit parameters arePr,0 = 0.8, τbob = 392µs, τ1038 = 15.7µs, assuming Rydberg

decay timeτr = 78.5µs.
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Figure 7.12 Rydberg lifetime model fit, varyingPr,0. (a)ri = 0, and 5 repetitions; (b)ri = 2µs,
gap timerg after 1038 pulseri, and 5 repetitions; (c)ri = 2µs, gap timerg before 1038 pulseri,

and 5 repetitions; (d)ri = 2µs, gap timerg after 1038 pulseri, 1 repetition, Shade area is the
experimental Rabi flopping amplitude uncertainty range.
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Figure 7.13 Rydberg lifetime model fit, varyingτbob = 1/Γbob. (a)ri = 0, and 5 repetitions; (b)
ri = 2µs, gap timerg after 1038 pulseri, and 5 repetitions; (c)ri = 2µs, gap timerg before 1038
pulseri, and 5 repetitions; (d)ri = 2µs, gap timerg after 1038 pulseri, 1 repetition, Shade area is

the experimental Rabi flopping amplitude uncertainty range.
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Figure 7.14 Rydberg lifetime model fit, varyingτ1038 = 1/Γ1038. (a)ri = 0, and 5 repetitions; (b)
ri = 2µs, gap timerg after 1038 pulseri, and 5 repetitions; (c)ri = 2µs, gap timerg before 1038
pulseri, and 5 repetitions; (d)ri = 2µs, gap timerg after 1038 pulseri, 1 repetition, Shade area is

the experimental Rabi flopping amplitude uncertainty range.
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7.5.3 Direct Lifetime Measurement with Ground State Blowaway

Then we did a more direct measurement of the lifetime with thefollowing pulse sequence:

1) apply a Rydbergπ pulse; 2) wait for a time gap oft (with the trap on or off), at the end of which

a ground state blowaway pulse of 5µs is applied to blow away theF = 4 ground state atom; 3) a

secondπ pulse is used to bring the atom back to ground state; 4) in the end, readout MOT beams

are turned on to check if there is any atom left in the trap.

The results are shown in Figure 7.15. By comparing the lifetime with and without the trap, it is

obvious that the bottle trap traps the Rydberg atom. One interesting point is that the lifetime with

the trap onτ = 102±17µs is actually longer than the natural decay lifetime of61D3/2 τr = 78.5µs.

The reason could be due to experimental errors, or the fact that the Rydberg atom does not decay

directly to the ground state which is detected eventually. To confirm the second reason, we did a

Monte Carlo simulation of the decaying process as shown in the next section.

(a) (b)

Figure 7.15 Lifetime measurement of Rydberg state61D3/2 with the bottle trap (a)on and (b)off.

7.5.4 Monte Carlo Simulation of Rydberg Decay

To simulate the decay process, we consider all the transition channels. The rate of spontaneous

transition betweennL andn′L′ is given by[Beterov 09]

A(nL→ n′L′) =
e2a20

3πǫ0h̄c3
ω3
nn′Lmax

2L+ 1
R2(nL → n′L′) (7.22)
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whereLmax is the larger ofL andL′, ωnn′ = |EnL − En′L′ |/h̄, and the radial matrix element

R(nL → n′L′) is calculated numerically with the method in Chap.3 (in atomic units). The black-

body radiation(BBR) induced transition rate is given by

W (nL→ n′L′) = A(nL→ n′L′)
1

exp(h̄ωnn′/kBT )− 1
(7.23)

We compared the numerically calculated lifetime values with the numbers given by Equation 7.7, in

Figure 7.16, in which1/τ0 = Γ0 =
∑

EnL>En′L′
A(nL → n′L′), ΓBBR =

∑

n′L′ W (nL → n′L′),

andτ = 1/(Γ0 + ΓBBR). It shows a pretty good agreement.

To do the Monte Carlo simulation, the spontaneous and BBR transition rates to all the other states
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Figure 7.16 Verification of the numerical lifetime calculation. (Solid lines represent calculated
values from the empirical Equation 7.7, and dotted lines represent numerical results).
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are first calculated for each state, fromn = 5 to n = 100, with angular quantum numberL ≤ 3.

Then decay process is simulated with a random number generator. For the Cs61D3/2 state in Fig-

ure 7.17 and 7.18, the maximum simulated time of decay is200µs with time stepdt = 0.1µs. A

total of 10000 atoms are simulated. To verify the parameters, a test is run with the assumption that

the Rydberg atom decays directly to the ground state. So the ground state population curve should

follow the simple curve ofPg(t) = 1 − exp(−t/τ61D3/2
), as shown in Figure 7.17. The actual

simulation results are in Figure 7.18. So the simulated timeconstant for the atom to decay back to

the ground state is143µs, greater than the natural decay time as expected. The average time the

atom spent on each state is shown in Figure 7.18(b).
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Figure 7.17 Verification of the Monte Carlo simulation, assuming Rydberg Cs atom61D3/2

decays directly the the ground state.

From the simulation results, we get a time constant of decaying to ground stateτ = 143µs.

Using the measured lifetime in Figure 7.15(a)τ = 102±17µs, we get a trap lifetimeτbob = 356µs,

with bounds210µs ≤ τbob ≤ 709µs, which is consistent with the analysis results in Section 7.5.2.
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Figure 7.18 Ground state population results of Monte Carlo decay simulation for Cs state
61D3/2, T = 300K, (a)ground state population, with blue dots representing the simulation, red

solid curve represents the lifetime curve, time constantτred = 77.5µs, τblue = 143µs, (b)the
average time the atom spent on each intermediate state before decaying to the ground state.
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Chapter 8

Summary

In summary, we have designed three types of bottle beam trap,and have demonstrated a

micrometer-sized crossed vortex BBT. It is shown that single Cs atoms could be loaded into the

BBT with 50% probability, and the atoms have lifetimes of several seconds and coherence times

as long as∼43ms, and single qubit gates can be performed on the trapped atoms with a fidelity of

around 70%.

We have theoretically investigated the effect of the BBTs onthe energies of Rydberg states, and

have come up with a scheme to reduce the differential AC Starkshifts between Rydberg and ground

levels.

We have also successfully excited trapped single Cs atoms tohigh lying Rydberg states, and have

demonstrated the Rydberg atoms could be trapped in the BBT for a time longer than their intrinsic

lifetime.

We can thus conclude that the BBT is a promising building block for Rydberg-mediated multi-qubit

quantum information experiments.
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Appendix A: Zemax Designs

A.1 Vortex Bottle Beam Trap

A.1.1 Aspheric Lens

The asphere we are using is custom made from Optimax. The parameters of the lens is listed

in Table A.1. The lens was originally designed for a different window glass (3mm BK7), so the

performance is not good for the 1.5mm pyrex window of the square cell. By adding a correction

lens, Thorlabs LA1908-A f=500mm spherical lens 50mm in front of the asphere, as shown in

Figure A.1, the lens focusing quality is greatly improved.

Table A.1 Parameters of the custom Optimax aspheric lens, CT=15mm, DIA=20mm, CA=18mm.

surface R Conic A4 A6

1 25.66 -1.5474 6.93e-6 -1.77e-9

2 INF - - -

A.1.2 Vortex Bottle System

Our goal is to get a waist size of2.5µm to 3µm at the final trap. Since the effective focal length

of the 500mm lens + asphere is about 34mm, that means we need a waist size of 2.3mm∼2mm

before the final focusing. To ensure no loss of information ofthe Laguerre-Gaussian beam, the

lens must cover at least the field forρ ≤ 4w0. Supposing the beam separation isd, then the lens

diameter must satisfyD > d+4w0. The clear aperture is 18mm, which meansd < 8mm. To allow

for some tolerance, we choosed = 6mm. The beam displacer displaces the beam by 3mm, so we

need a telescope of magnificationM = 2 after the displacer. Using a f=15.29mm collimating

aspheric lens, the maximum output Gaussian beam waist size is about 1.25mm, which is about

what we need. But the waist sizew0 of the final Laguerre-Gaussian beam could not be simply

calculated by the input Gaussian beam waistwin usingw0 = fλ/πwin as described in Figure A.2.
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Figure A.1 Performance of the focusing aspheric lens (a)before and (b)after adding a correction
lens.

We added a 75mm:60mm telescope in order to get a Laguerre-Gaussian beam well described by

w0 = 3µm.

Figure A.3 is the detailed layout of the optical system for making the vortex bottle beam trap.

The part number of thel = 1 vortex lens is HOLO/OR VL-209-Q-Y-A. It is made out of 3mm thick

fused silica. The part number of the calcite beam displacer is Karl Lambrecht MDBS512-V532.
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Figure A.2 (red)Intensity profile of a pureLG01 mode withw0 = 3µm; (blue)intensity profile
calculated from diffraction, with a Gaussian beam of waistwin = fλ/πw0 passing through a

spiral phase plate, and focused by a lens of focal lengthf ; (black)intensity profile calculated from
diffraction, with a Gaussian beam of waistwin = 1.3fλ/πw0 passing through a spiral phase plate,

and focused by a lens of focal lengthf .

It separates the beams with orthogonal polarizations by 3mm, and its thickness is 27mm. We did

Figure A.3 Layout of the optical system for making the vortexbottle beam trap.

a Physical Optics Propagation (POP) modeling in Zemax with the optics in Figure A.3, using the
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equations of Laguerre-Gaussian beams. The results are shown in Figure A.4. Big decentering and

tilting of the beam was observed when the beam was coming out of the fiber, due to the imperfect

angle of the fiber coupler. So we added to the simulation some tolerance of the lens decentering

and tilting. We can see from the simulation results that whenthe final beam waist is3µm, the

system can tolerate a large misalignment and still make a bottle. As the beam size gets smaller, the

requirement on the precision of alignment is higher. We decided to go with the3µm waist in our

experiments. The beam intensity profile across X and Y on the focus plane is shown in Figure A.5.
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(a) w0 = 3µm, no tolerance (b) w0 = 3µm, w/ tolerance

(c) w0 = 2µm, no tolerance (d) w0 = 2µm, w/ tolerance

Figure A.4 Zemax POP modeling of the crossed vortex BBT, (a)(c) are assuming the alignments
are perfect, (b)(d) include tolerances with up to 0.5mm lensdecentering and 0.5 deg lens tilting.
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Figure A.5 Measurement of the waist size of the final focused vortex beam (single beam),
(a)camera picture, (b)(c)1D intensity profile, measured data(black dots),theoretical calculation

from LG01 mode withw0 = 3µm(red line), and Zemax simulation(blue dashed).
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Appendix B: Electric Field of a Strongly Focused Gaussian Beam

B.1 Field behind the lens

Suppose the waist (w1) of the input Gaussian beam is at the front focal plane of the lens, and it

is right hand polarized. The electric field can be calculatedby

~E(ρ, z = −2f) = E0ε̂+e
−ρ2/w2

1 , (B.1)

whereE0 = 1
w1

√

4Pin

ε0πc
, ρ =

√

x2 + y2 andz = 0 is set at the back focal plane of the lens. Then

the field at the front surface of the lens is

~Efront(z = −f) = E1ε̂+e
−ρ2/w2

1e
ikf+ ikρ2

2R1
−i arctan f

zR , (B.2)

in whichE1 = E0
w0

w1
, zR = πw2

0/λ, w1 = w0

√

1 + (z/zR)2, andR1 = z(1 + (zR/z)
2).

And ideal lens should focus a plane wave such that it becomes apoint source at the focus. So it is

reasonable to assume the high N.A. lens introduces a spherical phase shift

ϕsp = exp(−ik
√

ρ2 + f 2 + ikf). (B.3)

Based on the projection of the~k vector, and the fact that this is a transverse mode, after going

through the lens the polarization of the light changes according to

ε̂±(ρ) →
1 + cos θ

2
ε̂± +

sin θe±iφ

√
2

ẑ +
cos θ − 1

2
e±2iφε̂∓, (B.4)

whereθ = arctan( ρ
f
).

The overall electric field at the back surface of the lens becomes

~Eback(ρ, φ, z = −f) = E1
1√
cos θ

(
1 + cos θ

2
ε̂+ +

sin θeiφ√
2

ẑ +
cos θ − 1

2
e2iφε̂−)

× exp(−ρ2/w2
1 + 2ikf − ik

√

ρ2 + f 2 +
ikρ2

2R1

− i arctan
f

zR
).

(B.5)
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Figure B.1 Electric field of a strongly focused Gaussian beam.

B.2 Paraxial Approximation

In the simple paraxial Gaussian beam model, in the confocal configuration, a input beam with

waist sizew1 is focused to a beam with a waist sizew2 = fλ/πw1 at the focus. So the field at the

focal plane can be calculated by

~Epara(ρ, φ, z = 0) = E0
w1

w2

ε̂+e
−ρ2/(w2)2+2ikf−i arctan f

zR
−i arctan f

z′
R . (B.6)

Here,z′R = π(w2)
2/λ.

B.3 Numerical Propagation To The Focus

For an EM field with cylindrical symmetry, we can expand the field by Debye expansion

~EF (ρ, φ, z) =
∑

µ

κµ ~Fµ(ρ, φ, z), (B.7)

where
∑

µ =
∫

dkt
∑

s

∑

m, kt is the transverse wave vector,m is an integer valued angular

momentum index, ands = ±1 is the helicity. The complete orthogonal set of modes~Fµ are

~Fµ(ρ, φ, z) =
1

4π

sk + kz
k

Jm−1(ktρ)e
ikzzei(m−1)φε̂+ − i

√
2

4π

kt
k
Jm(ktρ)e

ikzzeimφẑ

+
1

4π

sk − kz
k

Jm+1(ktρ)e
ikzzei(m+1)φε̂−,

(B.8)
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wherekz =
√

k2 − k2t .

For the electric field in Equation B.6, the field after the lenscould be numerically integrated by

~E(ρ, φ, z) =

∫

dkt
∑

s

∑

m

~Fµ = F+ε̂+ + Fz ẑ + F−ε̂−, (B.9)

in which

F+ =
∑

s=±1

∫ k

0

dkt
1

4π

sk + kz
k

J0(ktρ)e
ikzzκµ, (B.10)

Fz =
∑

s=±1

∫ k

0

dkt(−i)
√
2

4π

kt
k
J1(ktρ)e

ikzzeimφκµ, (B.11)

F− =
∑

s=±1

∫ k

0

dkt
1

4π

sk − kz
k

J2(ktρ)e
ikzze2iφκµ, (B.12)

and

κµ(kt) =E1e
2ikf−i arctan f

zR δm1πkt

∫ ∞

0

ρdρ
1√
cos θ

{(1 + cos θ

2
)
sk + kz

k
J0(ktρ) +

sin θ√
2

i
√
2kt
k

J1(ktρ)

+ (
cos θ − 1

2
)
sk − kz

k
J2(ktρ)} exp[−ik

√

ρ2 + f 2 + ikzf +
ikρ2

2R1
− ρ2/w2

1].

(B.13)

We can immediately see that on the axis whereρ = 0, J1(0) = 0,J2(0) = 0, only theF+ε̂+

term left. So the polarization on the optical axis after the lens is the same as that before the lens.

Some numerical integration results are shown in Figure B.2.At high focusing powers, the electric

field is more spread out than the field calculated from paraxial approximation

The field at the focal point has a simple analytical form

~E(ρ = 0, φ, z = 0) = −E1
ikf

4
exp

(

2ikf − i arctan
f

zR
+

f2

w2
1

− ikf2

2R1

)[

E 3

4

(
f2

w2
1

− ikf2

2R1
) + E 5

4

(
f2

w2
1

− ikf2

2R1
)

]

ε̂+,

(B.14)

whereEn(x) =
∫∞
1
e−xtt−ndt. The amplitude

EA = | ~E(ρ = 0, φ, z = 0)| =
√

πPin

ǫ0cλ2
f

w1
e

f2

w2
1

∣

∣

∣

∣

E 3
4
(
f 2

w2
1

− ikf 2

2R1
) + E 5

4
(
f 2

w2
1

− ikf 2

2R1
)

∣

∣

∣

∣

. (B.15)
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Figure B.2 Field at the focus for different focusing powers with λ = 852nm, f = 4.5mm, and
(a)(b)w1 = 1.1mm, (c)(d)w1 = 1.8mm, (e)(f)w1 = 2.7mm, and the field amplitudes are

normalized to|E1| on the front surface of the lens.
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B.4 Scattering Ratio

For a two level system, the scattering rate of single atom on alaser beam with intensityI and

detuning∆ is given by

Rsc =

(

Γ

2

)

I/Isat
1 + 4(∆/Γ)2 + (I/Isat)

.

In the limit of weak probe beam (I << Isat), the ratio of scattered power to the input power is

rsc =

(

h̄ωΓ

2Pin

)

I/Isat
1 + 4(∆/Γ)2

. (B.16)

If the atom is located at the focal point of the lens,I = cǫ0
2
E2

A. If the laser is near resonant, the

ratio simplifies to

rsc =

(

3cǫ0λ
2E2

A

4πPin

)

1

1 + 4(∆/Γ)2
. (B.17)

If we use the Gaussian paraxial approximation

Rsc =
3w2

1

f 2
. (B.18)

Figure B.3 Scattering ratio of strongly focused Gaussian beam of a single atom for different
waist sizes.
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B.5 Transmission and Phase Shift

In the far field limit, the dipole field radiated by the atom is

~Esc(~r) =
3EAe

i(kr+π/2)

2kr
[ε̂+ − (ε̂+ · r̂)r̂] iΓ

2∆ + iΓ
. (B.19)

At the output lens, the original field is

~EF (ρ, φ, z = f) =E1
1√
cos θ

(
1 + cos θ

2
ε̂+ − sin θeiφ√

2
ẑ +

cos θ − 1

2
e2iφε̂−)

exp(−ρ2/w2
1 + 2ikf + ik

√

ρ2 + f 2 − ikρ2

2R1

− i arctan
f

zR
+ iπ).

(B.20)

So the total electric field is

~Et = ~Esc + ~EF . (B.21)

If only the mode that is the same as the probe beam is collected, the peak electric field after the

second lens is

Eout = Ein

∫

z=f
k̂ · n̂dS( ~Esc + ~EF ) · ~E∗

F
∫

z=f
k̂ · n̂dS ~EF · ~E∗

F

= Ein(1 +
iΓ

2∆ + iΓ
·

∫

3E1EAe
−iπ/2−2ikf+i arctan f

zR
−ρ2/w2

1+
ikρ2

2R1
(1+cos θ)

4k
√

f2+ρ2
√
cos θ

cos θdS

∫ E2
1

cos θ
e−2ρ2/w2

L cos θdS
)

= Ein(1−
iΓ

2∆ + iΓ

3f 2

8w2
1

e
2f2

w2
1
− ikf2

R1 [E 3
4
(
f 2

w2
1

− ikf 2

2R1
) + E 5

4
(
f 2

w2
1

− ikf 2

2R1
)]2).

(B.22)

Transmission

T = |1− iΓ

2∆ + iΓ

3f 2

8w2
1

e
2f2

w2
1
− ikf2

R1 [E 3
4
(
f 2

w2
1

− ikf 2

2R1

) + E 5
4
(
f 2

w2
1

− ikf 2

2R1

)]2|2. (B.23)

Phase shift with respect to the probe beam going through the double lens system without any atom

trapped

∆ϕ = arg(1− iΓ

2∆ + iΓ

3f 2

8w2
1

e
2f2

w2
1
− ikf2

R1 [E 3
4
(
f 2

w2
1

− ikf 2

2R1

) + E 5
4
(
f 2

w2
1

− ikf 2

2R1

)]2). (B.24)
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Figure B.4 Transmission of strongly focused Gaussian beam for a single atom (a)at resonance
and (b)at different laser detunings.

Figure B.5 Phase shift of strongly focused Gaussian beam fora single atom at different laser
detunings.
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