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DETUNED BOTTLE BEAM
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This thesis covers the first demonstration of a single neatoan qubit trapped in a blue detuned
optical dipole trap, and the use of this trap to trap Rydbéogna. AT, decoherence time of 42

ms is achieved; process tomography of a complete set ofesipulit gates is performed to show a
gate fidelity of 70% to 80%; and a Rydberg trapping time lortban the spontaneous decay time

is observed.

Three types of blue detuned bottle beam traps are desigeghatyzed for different experimental
needs. The ponderomotive energy shifts of Rydberg statég inottle beam traps are numerically
calculated and a quasi-magic trapping method is presenddms are cooled by a magneto-
optical trap. Single atoms are loaded into the crossedxbudtle beam trap with a sub-Poissonian
number distribution. Two phase locked 457nm lasers are tssedherently Rabi flop Cs atoms
between the” = 3 and F' = 4 ground states via a two-photon Raman transition. A 459ner las
and a 1038nm laser stabilized by high finesse cavities am tasdrive a two photon transition

between the grounfl = 4, mr = 0 state and a Rydberg state.

These preliminary results of long coherence time and Rypbapping time in the bottle beam
trap set the ground work for future work on building a qubragrwith blue detuned optical dipole

traps.
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Chapter 1
Introduction

1.1 Quantum Computer

As of 2012, the minimum feature size of an integrated ciru22nm, and the semiconduc-
tor industry is working towards the next 14nm node. With tize ®f a classical computer getting
smaller and smaller, it is natural for scientists to thinkattbuilding a computer from single atoms
or electrons. As it turns out, a quantum computer is not jgshaller successor of a classical com-
puter, it sets itself completely apart due to the effectsusfrqum mechanics.

A gquantum computer is a quantum system that uses quantues $talled qubits) to store infor-
mation and to carry out computation. A well defined qubit hgs@ntum state basis that is usually

labeled ag0) and|1). The qubit can be in state),

1), or in a superposition of these two states
a|0) + b|1), due to the quantum nature of the system. If we consieubits in a pure state, the
system could be represented &y0...00) + a;|0...01) + ... + ayn_;|1...11). That means we can
perform operations effectively d¥ input numbers with only one input quantum state. Based on
this quantum parallelism, a quantum computer can solvaioeproblems much more effectively
than a classical computer. Listed below are some examples.

(1)searching in an unsorted list. With a quantum computergu&rover’s algorithm[Grover 97],
the time complexity i€)(N'/2) with storage spac@(log V), while with a classical computer the
complexity isO(N) in time, for a list of sizeV.

(2)factoring big numbers. On a quantum computer using Skadgorithm[Shor 94], it takes time
O((log N)3) to factor a large numbe¥, which is exponentially faster than any known algorithms

on a classical computer.



Moreover, as in the original proposition of Richard Feynmguantum computers are extremely
useful to run simulations of quantum many body systems{BR2t Kassal 08, Abrams 97]. With
only a few hundred qubits, a quantum computer could beat lasgical supercomputer available.
To qualify as a practical guantum computer, a system musftgéte following requirements[DiVincenzo 01]:
(1)Scalable system with well characterized qubits

(2)Ability to initialize the system to a simple state

(3)Long decoherence times

(4)A universal set of quantum gates

(5)Qubit-specific state measurement capability

(6)Ability to interconvert stationary and flying qubits

(7)Ability to faithfully transmit flying qubits between lations

The last two requirements are related to quantum networkanyMjuantum systems have been
studied to build a quantum computer. The most advanced amesadd ions, superconduc-
tor circuits, quantum dots, linear optics, impurity vadascand neutral atoms. Among them,
the cold ion system holds the record of fidelity so far (abo9&9® and has implemented error
correction[Schindler 11], and quantum simulation with aptqubits. The superconductor system
has demonstrated greatly improved decoherence time tgosith 7, ~ 20us compared with the
gate time of~ 10ns[Paik 11], and it looks very promising in the future for ilmmenting surface
codes[DiVincenzo 09]. The impurity vacancy system has detrated very long quantum infor-
mation storage times up to 180s[Steger 12, Maurer 12], wimakes it very favorable to be used

as quantum storage.

1.2 Neutral atom QC

The most distinctive feature of the neutral atom system @yegwith the cold ion system is
the absence of strong Coulomb forces, so that coupling &y §iglds is low. And compared with
the solid state systems, neutral atoms could be easily @dolenotional ground states, and the

coupling to the environment is weak. These features woulgiesst a long decoherence time for



a neutral atom quantum computer. In order for a large sca@tgm computer to work, strong
qubit-qubit coupling is necessary. Two qubit gates in ra@wtom systems can be implemented
by collisions[Jaksch 99], photon mediated gates in a higksfia cavity[Pellizzari 95], and strong
dipole-dipole interactions[Jaksch 00]. The collisionaleyis relatively slow, and the photon medi-
ated gate is not easily scalable, so we are pursuing theedbpble interaction gate mediated by
Rydberg levels.

The computational basis states we are using are the hypegriimd states of Cs (Figure 1.1),
which are separated by 9.2GHz. The clock states & 0) are chosen because of their insensitiv-
ity to magnetic field fluctuations. A two photon Raman trapositis used to coherently drive the
atom from statel) to state0), in order to be able to address the atoms individually.

The scaling of the Van der Waals interaction between two asorery rapidV oc n'l. By exciting
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Figure 1.1 (a)Ground state Raman transition and (b)Rydéesijation of Cs used in
experiments.

the atoms to high lying Rydberg states, we can induce strgy@eddipole interactions between
two nearby atoms. The Rydberg interaction occurs becausihar a direct dipole-dipole inter-
action in a hybridizing electric field or by the Forster meatisan in zero electric field. Either way,

the interaction will result in a shift in the two-Rydbergaat energy level by3. In the limit of large



dipole-dipole frequency shifi3 > |Qz|, whereQ is the Rydberg excitation Rabi frequency, we
will get the Rydberg blockade. In the simple case of two ataimes probability of exciting both

_ 19r/?
— 92B2

atoms to the Rydberg level i3 which will be small wherB > |Qpg|.

The Rydberg blockade mediated gate is performed by appthiegulse sequence shown in Fig-
ure 1.2: (1)ar Rydberg pulse is applied on the control atom to excite it ®oRlydberg level; (2)a
2 rotation is attempted on the target atom; (8)pulse is used to bring the control atom back to
the ground state. Due to thephase change ofar rotation, this sequence results in a controlled
phase gate. It can be converted to a CNOT gate by adding a Hadayate on the target atom be-
fore and after the controlled phase operation. And accgriditheoretical calculations[Zhang 12],

the intrinsic gate fidelity of such a neutral atom quantumesyscould be above 0.998. With this
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Figure 1.2 (a)Rydberg blockade mediated controlled phasg ¢o)CNOT gate constructed from
controlled phase gate.



method, some previous experiments have demonstrated a @ii®@with a measured population
probability fidelity of up to 0.92 and a gate time @fs[Isenhower 10b, Isenhower 10a]. And the
entanglement of two neutral atoms via Rydberg blockade Bas demonstrated with a Bell state

fidelity of F' = 0.58 after correcting for background collisional losses[Zha0Y

1.3 Optical Dipole Trap

According to Grimm et al [Grimm 00], in a far detuned laserdjehn atom experiences an
optical dipole potential

1
= ———al, 1.1
Udp 2€0Ca ( )

whereq is the atomic polarizability, and is the light intensity.

In a simplified two level system, the dipole potential andtscang rate can be expressed as

3rc2 T

Udip(T) = 2—%&](7’_‘), (1.2)
3rc? (T\? .

Loc(r) = ﬂ(g) I(7), (1.3)

wherewy is the transition frequency, aml = w — wy is the laser detuning. So ik < 0 (red

() (b)
Figure 1.3 (a)Red detuned and (b)blue detuned optical elipap.

detuned), the potential is lower where the intensity is aigland the atom is attracted to high



intensity regions, and i\ > 0 (blue detuned), the atom is repelled to low intensity regj@as
shown in Figure 1.3.
Suppose we have a red detuned laser beam with a Gaussiasitinfeofile

2@ +y?) /w3 (2)

1+22/2%

Liea(z,y,2) = Iy (1.4)

where the Rayleigh range; = mwi/\, and the waist size at w(z) = wo\/1 + 22/2%, with
a minimum beam waist size,,. With a harmonic approximation, we get maximum trapping

. I . 1/2
potential|U,,,| = 51-|a|ly, and the oscillation frequencies are = w, = -2 (M> LW, =

w o m

1/2 , " "
*Z/—f (%) . For an atom with temperatuf&, whose velocities and positions obeys the Maxwell-
Boltzmann distribution, the average light intensity its&e
2
<I >peq= “eoe <U >
|al

2600

2
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If we have a blue detuned laser trap, with an intensity prttfiée can be approximated by

1 1 1
—(|Up| — mw < 2? >—§mw <y >—§mw < 22>) (1.5)

1 1 1
Lyue(2,y, 2) = —mwia® + —mw.y® + ~mw?z’. (1.6)

2 2 2
The average light intensity the atom sees is about

20 3
< T >y %#:BT (1.7)

Usually in experiments, the maximum trapping potential ischmlarger than the atomic tempera-
ture (U,,| > 10kgT,). We can immediately see that the average light intensityirsipon the atom
in a blue detuned optical dipole trap is much smaller thahfthrea red detuned trap. This results
in

(1)less photon scattering;

(2)less laser noise induced heating;

(3)less differential AC Stark shifts of qubit levels due agér intensity fluctuations.



All these will contribute to longet’; storage time and longéf, decoherence time, which means
higher fidelity for our atomic qubit system. The improvenseaite significant especially when we
can cool the atomic temperature to a very low level so that lxaer noise is dominant, because
the majority of the decoherence is proportional to the ayefight intensity seen by the atom.
Another reason that makes a blue detuned trap favorabléiedeo Rydberg atoms. There is an
intrinsic flaw in using a red detuned optical dipole trap: lihe ground state atoms have a posi-
tive polarizability and are attracted by the high intensiiger beam, the high lying Rydberg levels
have a negative polarizability and are repelled by the tEagitation of an atom to the repulsive
Rydberg state during a gate cycle leads to heating and desateethrough entanglement of the
spin and motional states[Saffman 05]. It is possible to Beggidhe polarizability of ground and
Rydberg states with a red detuned light close to resonantéhére will be a high probability for
the atom to decay out of the computational basis. So it isgsarg to use a blue detuned trap.
With a blue detuned optical dipole trap, we can have

(4)less heating and less decoherence due to entanglemiret gpin and motional states and es-
cape out of the trap;

(5)longer Rydberg lifetime due to less photoionizatiomirthe trap light.

In this thesis, we will demonstrate a single Cs atom qubpgea in such a blue detuned dipole

trap.



Chapter 2

Bottle Beam Trap

A blue detuned optical dipole trap is basically a hollow lavtensity region surrounded by
high intensity walls (bottle shaped).
Many groups have demonstrated trapping an ensemble of atoablue detuned optical dipole
trap formed by: sheets of laser light[Davidson 95], an esaaet wave and a confining cylindrical
hollow beam along with the gravitational force[Ovchinnika7], a Laguerre-Gaussian doughnut
beam closed by two additional plugging beams[Kuga 97], ipgss collimated beam through a
circular phase plate which imposesragpohase difference between the central and outer part of
the beam[Ozeri 99], a rotating focused Gaussian beam|fraed0], a hollow beam formed by an
axicon[Kulin 01], a dark toroid converted from a Gaussiaarbevith a spatial light modulator(SLM)[Olson 07]
and destructively interfering two Gaussian beams witreddiht waist sizes[Isenhower 09].
Because the atoms are confined at a point of low light intgrsitg spin relaxation times[Ozeri 99,
Olson 07], small differential AC Stark shifts and long cadrare times of the ground state hyperfine
superpositions of alkali atoms[Davidson 95, Sheng 12] Heeen observed in experiments. Blue
detuned optical dipole traps provide ideal circumstangeprecision measurements, with possible
applications in atomic clocks[Davidson 95], the parity rammservation measurements[Sheng 12],
guantum information, etc.
Most of the methods mentioned above are not easily appédaliireate a micro-sized trap to trap
single atoms. The methods using sheets of laser beams @ipdugeams impose a big challenge
in beam alignment; the time averaged dynamic trap does ndt wio the time scale of quan-
tum gates € us); the hollow beam formed by an axicon has complex interfegestructures. A

modification of ther phase plate method using a SLM has demonstrated single aapmirtg



recently[Xu 10]. But SLMs may not handle high power at largéuhings. A blue detuned optical

trap in a high finesse cavity is used to successfully traplsiatpms[Puppe 07], but it is chal-

lenging to apply for scalable quantum computing. A 3-D awégingle atoms has been trapped
in a blue detuned optical lattice[Nelson 07], but the thremeshsional structure makes it hard to
address the atoms individually.

To accommodate the needs of our multi-qubit experiment, ave lhbesigned three types of such
bottle beam traps (BBT): (1) Gaussian interference BBT;cf®ssed vortex BBT; (3) Gaussian
lattice BBT[Zhang 11].

5s-6p 5p-50d 6s-7p  6p-50d

\ I
—_ 0 ) 0 II
(;n( w\ 87Rb O“Z( =~ 133CS
— -20 A?N — -20 : 0(50d)
2 2 .
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3 40 o) S50 5 | oo 4(68412) X10
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£ L |
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wavelength (um) wavelength (um)

Figure 2.1 (color online) Scalar polarizability of grounadaRydberg states of Rb and Cs. The
vector polarizability of the ground state is shown by thehgalslines.

First, we need to choose a proper wavelength. By inspecigu&2.1, it seems necessary to use
a 490nm laser to match the polarizability of the ground andliRyg state of Cs. But as will be
shown in Chapter 3, matching of the polarizability does remtassarily mean matching of the AC
Stark shift. As high power 532nm light is readily availabledoammercial solid state pumped diode
lasers, we are using a 532nm laser (detuneiy212THz for the Cs D2 line) in our single qubit
experiment. And because of limited power of fiber coupledrs32ight, we will use a smaller

detuning, 780nm (detuned Byt - 33THz for the Cs D2 line), for the multi qubit experiment.
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2.1 Gaussian Interference Bottle Beam

The first type of blue dipole trap we have tried is the Gaussiterference bottle beam trap
(Gaussian BBT). It basically makes use of the destructiverfierence between two Gaussian

beams with different waist sizes [Isenhower 09].

2.1.1 Optical Setup

The optical setup is shown in Figure 2.2. A Gaussian inputrbedth waistw, goes into a
Mach-Zehnder interferometer. The beam gets split at thiggiiiarizing beam splitter. The result-
ing two beams go through the two arms of the interferometkegre/telescope 1 of magnification
M, and telescope 2 of magnificatidd, are located. When the two beams are recombined at the
50/50 beam splitter at the end, the waists became- M;w, andw, = Myw, respectively. The
power ratio between the two beams is adjusted by theXji3tvaveplate, and the polarization di-
rections are set back to the same with the secgzdvaveplate. One of the outputs goes to a photo
detector to phase lock the optical path difference betwieemvto arms. The other part is sent out
to be used as the trap (see [Isenhower 09] for experimentaillgle Because each beam splitter
introduces a phase shift af/2, the two trap beams interfere destructively while the twexifeack
beams interfere constructively. To phase lock the optia#h pa small amplitude dithering voltage
of ~10kHz is applied to the piezo element on one of the reflectionons, then the photo diode
signal goes in to the phase lock module, and the feedbackibstpent back to the piezo element.
Since the two beams have different waist sizes, if the pewngities of them are equal, the in-
tensity after interference would be zero only at the waisifpmn, which becomes a bottle beam

trap.
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Figure 2.2 Optical setup of Gaussian BBT.

2.1.2 Trap Calculations

The light intensity can be calculated by

1 2 2 .2
I,,2) = oo B s exp(— s explibe + ik s — i1 (2)
o - 1 | e ) (2.1)
—Egm exp(—w%(z) ) exp(ikz + ka —i(a(2))|%.

From the properties of Gaussian beams,= 7w3/\, w(z) = wom,R(z) =z +
%C(z) = arctan(%).
By adjusting the relative intensities of the two beams byhdléwaveplate, we can make = Es,
so the two beams completely cancel each othér-at(0, 0, 0).

The expansion of the trapping potential around the center is

O‘PI(UJ%_UJ%)Q 4 5
U(x,0,0) = — O
(,0,0) ot 0(a”)

>\2P 2 .,2)\2
U002 = ~AAMZW] 2 oy

cepmIwiwy
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Keepingw, constant, the lowest order coefficients are maximized whenu, /w, = 1/ (3 + v/17)/2 ~
1.89. Figure 2.3 and Figure 2.4 show some plots of the theordtiapping potential and intensity

profiles for such a Gaussian interference BBT.
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Figure 2.3 Trapping depth in the xy and xz plane for Gaussiterference BBTA=780nm,
wy = 2pm, wy = 3.78um, P=0.05W.
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Figure 2.4 Intensity profile in different transverse plaf@sGaussian interference BBT,
A=780nm,w; = 2um, we = 3.78um, P=0.05W.
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2.2 \ortex Bottle Beam

The second type of trap is a crossed vortex bottle beam wepf/BBT). An optical vortex is
a zero of the optical field. Vortices are dark points in 2D fe#hd dark lines in 3D fields. The
integral of the phase of the field around the optical axis isnéeger multiple of2r (F o« ™2,
the integern is called topological charge), so the fields interfere desively at the axis, creating
a vortex. Vortex beams have a helical wavefront like the anEigure 2.5. They carry orbital
angular momentum af.i. Vortex beams have been widely used in creating optical 2enseto
trap objects that would be repelled or damaged by conveaitimight tweezers, or to actuate small
particles to move around the optical axis[Grier 03]; they @frinterest to the quantum computing
community because of the infinite possibility of states i@ topological charges as compared to
the 0 and 1 states of conventional photonic qubits, so theyezal to faster data manipulation and
broader communication bandwidth; the angular momenturherhthas been studied in quantum
entanglement[Dennis 09].
Vortex beams can be created by spiral phase plates, congauterated holograms, and conversion

of Hermite-Gaussian modes. We are using a spiral phaseiplate experiment.

(a) (b)

Figure 2.5 (a)A diagram showing a helical surface of equabkphwith the Poynting vector
indicated by a curved line[Dennis 09], (b) a spiral phaséegpla
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By crossing two vortex beams, we can create a bottle shapeddetuned optical dipole trap.
Such a blue crossed vortex trap was first used by the Fatemp@® an effective way to dynam-
ically manipulate atomic clouds[Fatemi 07]. But their dgsrequires precision alignment of the
two vortex beams which would be hard on the scale. So we modified the optical design to

Figure 2.6(the detailed lens layout is in Sec.A.1.2 in theesplix). We split one vortex beam to

Fiber Vortex Lens Calcite High NA Lens
Telescope Vacuum cell
—_—
— — — d Ch )(
Wo
—_— Il

MOT

Laser

Figure 2.6 Creation of vortex BoB.

two identical parallel vortex beams by a beam displacer. pa@llel beams will naturally cross
at the focal point of a focusing lens. By focusing two pataltatex beams with a high numerical

aperture aspheric lens, we get@-sized crossed vortex bottle trap at the lens focus.

2.2.1 Laguerre-Gaussian Vortex Beam

Laguerre-Gaussian modes are one set of solutions to theiglakéaxwell’s equation. They
can be approximately created by sending a Gaussian beangthevortex lens (i.e. a phase
plate). By passing & F M,, mode laser beam through a spiral phase plate, the beam getsa p
modulation ofe’?, but no modulation of the intensity. So the output beam isanotire Laguerre-
Gaussian mode. But according to [Beijersbergen 94], 78.6#eenergy is in thd.GG,; mode.
So we will use pure Laguerre-Gaussian mode field distribstior our theoretical treatment of
the trap. More exact calculations of the field could be donéhieyCollins-Huygens diffraction
integral method[Mawardi 11]. As shown in Sec. A.1.2, nearfthicus, the beam could very well

be described by a puteGy; mode with a proper waist size.
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A Laguerre-Gaussian beam can be modeled by [Svelto 98]

Cﬁ,G V2r r? 272 _ P _ _
E(r,¢,z) = Eow(z) (w)\l\ eXp(—wQ(z) )Lg'(wz(z))exp(zk‘z + zkm +ilp —i(2p+ |l + 1)((2)).
(2.3)
The intensity e
B Cy 2r? | B 272 u, 2r
1) = (P P expl ) (S, @2.4)
wherel, = w%, Cho = 7r(l2Tp!p)!’ w(z) = w0, /14 (£)% zr = ﬂng R(z) = z + % ((2) =

arctan().

The vortex bottle beam is made by focusing two pardl@;;lo Laguerre-Gaussian beams to cross
at the focus of a high numerical aperture lens. The two beamseparated by a distande
before focusing, with the same waist size They have perpendicular polarizations, so there is no
interference. After being focused by a lens with focal lénfjtthe waist size becomesg, = nf—zi

the beams are rotated ly—= % clock and counter-clock wise. The intensity of the bottlare

can be calculated by

I(z,y,2) =I(r = \/y?+ (xcosf + zsin )2, z = —xsin b 25

+zcos0) + I(r = +/y? + (xcosh — zsinh)2, z = xsin f + z cos ).
The expansion of trapping depth around the center is

2aPcos® 6
———x

_ 4
U(JI, 07 O) - CEQ’TFU)% _'_ O(l’ )7
2P
U(O7 Y, 0) = _ceowwé‘yz + O(y4)7
2a.P sin® 6
U(0,0,Z) = _Tﬂwézz +O(Z4)

Caculated trap profiles are show in Figure 2.7 and 2.8. FigL#es the corresponding mea-
sured trap profile of the vortex BBT we have constructed inetkgeriments. The parameters are
chosen to be the values we use in the experiment. The differeetween measured and theoret-
ical profiles is due to experimental optics misalignmentxgdaened in Sec. A.1.2. From Figure
2.11 we can see that the trap depth does not have a strongddgeenon the tilt anglé when

tan @ > 0.05, which makes it relatively easier to make.
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Figure 2.7 Trapping depth in the xy and xz plane for vortex BeE532nm,d=6mm, f=34mm,
wp = 3um, P=0.3W, trapping depth,,., = 192uK.

z=2pm z=12pum z=22pum

y(pm)
y(um)
y(pm)

-10 -5 0 5
x(um)

(@)

10 -10 -5 0 5 10 -10 -5 0 5 10
X(pm)

X(pum)
(b) (©)
Figure 2.8 Intensity profile in different transverse plafegs/ortex BoB,A=532nm,d=6mm,
f=34mm,wy, = 3um, P=0.3W.
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(b)

Figure 2.9 Measured(a) and theoretical(b) intensity prafildifferent transverse planes, and
reconstructed 3D profile for vortex BoB=532nm,d=6mm, f=34mm,w, = 3pum, P=0.3W.
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Figure 2.10 (a)Trap depths, (b)trap sizes, and (c)trapufrgies of crossed vortex BBT for
different waist size witld = 5deg (tan # = 0.088), A=532nm, P=0.3W.
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Figure 2.11 (a)Trap depths, (b)trap sizes, and (c)trapuéegies of crossed vortex BBT for
differentd with wy = 3pum, A=532nm, P=0.3W.

2.3 Gaussian Lattice Trap

The third type of blue detuned dipole trap we have used is #igs&an lattice trap. Suppose
there are four Gaussian beams propagating parallel to ébheh with positions and polarizations
as shown in Figure 2.12. Each beam has a waist size of sevieraimeters. Because of the small

waist, they diverge very fast, thus eventually overlap iacgp forming a potential barrier. With the

d

P
> = .
e "

Figure 2.12 Optical setup of Gaussian lattice trap.

polarization configuration as in Figure 2.12, the light imgi#y can be calculated simply with the
standard Gaussian beam formula.
2 2 2

B Wo r , LT +Y ,
E(z,y,z2) = EOM exp(—w2—<z>) exp(tkz + ka —i¢(2)),

I(z,y,2) = ?|E($—d/2, y—d/2,z)+E(x+d/2,y+d/2, z)|2+|E(x+d/2, y—d/2, z2)+E(x—d/2,y+d/2, z)|2.
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Figure 2.13 Intensity profile in different transverse pkfer Gaussian lattice trap=780nm,
d = 4pm, wy = 1.56pum, P=50mW.
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Figure 2.14 Trapping depth in the xy and xz plane for Gaudsidice trap,\=780nm,d = 4um,
wo = 1.56m, P=50mW.
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Figure 2.15 Gaussian lattice (a)trap depth, (b)potentileatrap center, and (c)the ratio between
the two, with different Gaussian beam waist780nm,d = 4um, P=50mW.

The expansion of trapping depth around the center is

_d2 Qw2 — 2
U(z,0,0) = —Upe “8 (1— w‘;ﬂ x2)+0(x3),
0
42 20,2 12
U0,0,2) = —Upe B [1— A (:gw().d) 2]+O(z3) (2.6)
0

2.4 Comparison of Three Traps

To compare the three types of traps, trap frequencies alifegetht axes and trap depths are

listed in Table 2.1, all with the same laser power and somieayfrap size.

Table 2.1 Trap Frequencies of the Dipole Traps for Cs\6s,780 nm, powerP = 50 mW for a)
Gaussian interference BBi#; = 2 um, wy, = 3.78 um, b) crossed vortex BBy = 3 um,
6 = 8.6, and c) Gaussian lattice tragp = 1.5 ym, d = 4 pm.

w, /21 (KHZ) | w, /27 (kHZ) | w, /27 (kHZ) | U/kp (1K)
Gaussian Interference BBT 62.5 62.5 0.315 60
\Vortex BBT 29.4 29.8 4.42 225
Gaussian Lattice 15.4 15.4 2.79 256
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2.4.1 Gaussian Interference BBT

The Gaussian interference BBT has the strongest radialneanént and is the closest to a
square well £ p* dependence to the lowest order). But it has the least axidineament and the
lowest trap depth with the same power. In addition, thrednefrhain issues with Gaussian inter-
ference BBT are:

1) there needs to be a constant dithering of the piezo miarmthie phase lock, so the trap depth
is fluctuating at a frequency of several kHz, this could hgathe atom. Although it is possible
to make a lock without any modulation[Hansch 80, Bateman ¥ would add complexity to
the system, and the trap stability depends very much on tieoement such as air currents and
vibrations.

2) we are losing a lot of the power to the photo detector. Tgkito account the imperfect trans-
mission of the lens system, we were getting at most 35% offt@enput power to the atom. So
the power efficiency of the trap is very low.

3) the requirements on the overlap of the optical axes andétigt positions are strict. The final
focused beam waist is aboitm, and the Rayleigh length is abol@um. A lot of time needs to
be spent on making sure that each lens is added at the copfesitibn, and aligning the directions

of the two beams very carefully before each experiment.

2.4.2 \ortex BBT

The vortex BBT has a relatively large tolerance on the beamand beam separation, so it is
relatively easy to construct and is more stable over timeitBigses two beams that are separated by
more than 6mm for a lens of a diameter 20mm. This off-axis $owyicould cause coma and other
aberrations, and thus poses a relatively high requiremeth@lens quality. The most important
problem with it is that it is not easily scalable as explaime&ection 2.5. So we will not use this

type of trap to build our multi qubit Rydberg atom quantum porter.
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2.4.3 Gaussian Lattice BBT

The most obvious disadvantage of this type of trap is the zesn-light intensity at the trap
center. This could lead to decoherence between the two drstates of the atom because of
different AC Stark shifts. But if the detuning is large enbuthe differential AC Stark shift would
be negligible. And as will be shown in Chapter 3, it is actyalllvantageous to have finite light
intensity at the trap center to suppress the differentialSA&tk shift between ground and Rydberg
states.

Another issue comes from interference. In the setup showiguare 2.12, each diagonal beam
pair have the same polarization, so they interfere. If we agihase difference af, and ¢
for each beam pair respectively, the trap potential curtesmge with phases as in Figure 2.16.

The 2D potential map for the totally out of phase case is shiowfig 2.17. We can see that

3s0p 1 20000 ]
—— $1=0°, ¢2=0°

| —— $1=90°, 42=0°

300
250 1 1500+
$1=90°, $2=90°
$1=180°, $2=0°
1 —— ¢1=180°, $2=90°
—— $1=180°, $2=180°

2 200F
1000},

U(uK)

2

=150}
100 5000

50F -

X(um) z(pum)

Figure 2.16 Trap potential with different phase differenf the Gaussian lattice BBT,
A=780nm,d = 4um, wy = 1.56um, P=50mW.

the phase difference has little effect in the x and y diredioln the z direction, if the phase
differences are close to the completely out-of-phase tmmdp, = 7= and¢, = =, the trap loses
its confining property, and the atom could escape along thxész @herwise the trap depth is still
limited by the intensity on the xy plane. Since all of the ftaélams go through the same optics,
chances of them falling into the out-of-phase zone would &g wmall. Moreover, this issue
could be completely resolved by adopting a slightly difféardesign as shown in Figure 2.17.c

[Saffman 12]. By combining two sets of beams with slightlifetient frequencies, the interference
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(©)

Figure 2.17 Trapping depth in the xy and xz plane for Gaudsidice trap withy; = 7,0 = ,
A=780nm,d = 4um, wy = 1.56um, P=50mW, and (c)optical setup of non-interfering Gaussian

lattice trap.

could be eliminated. But special care needs to be devotétalignment of the two sets of beams

in this scheme.

2.4.4 Summary

Table 2.2 summarizes the advantages and disadvantagesthfele types of traps.

Table 2.2 Comparison of the Gaussian interference BBTexdBT, and Gaussian lattice trap.

pros cons

Gaussian square well like radial confinement | weak axial confinement, low energy €
Interference ficiency, need lock, low tolerance @
BBT alignment precision

Vortex BBT easy to construct, stable

not scalable, off-axis focusing

Gaussian Lat:

tice

easily scalable,

one wall betweg

neighboring trap sites

2mon-zero intensity at trap center, ha

to align, phase induced trap depth fly

tuation

—
1

n
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2.5 Scalability

If we use a diffractive beam splitter to duplicate the trdqgre is a limitation of how small an
aspect ratial/w,; we can get (wherd is the site to site separation, ang is the characteristic
waist size of the trap). The reason is explained in the retislection.

The schematic of the diffractive beam splitter setup is shawFigure 2.18. By inserting a

focusing lens
diffraction BS f

Wi 08 Telescope B
M

Figure 2.18 Schematic for creating a trap array with a diffoam beam spilitter.

diffractive beam splitter on the Fourier plane of the imap, the input beam with a waist size
of wy is split with a separation angle 6f The separation angle of a diffraction gratingis- \/I,
wherel is the grating period. After passing through some telessgpem with magnification/,
the beam waist becomes, = Mw,, and the angle separation becories= 6/M. With a final
focusing lens of focal lengtffi, the final waist sizev; = f\/(7w,), and trap separatioch= 0.
Then, the aspect ratio becomes

d fO/M  mwi  mw

w = P e = A = @7

If we need an aspect ratio of 3 for example,/! = 3/7, which means the input beam of the
diffractive beam splitter sees less than 2 periods of thémgra This would greatly reduce the
beam gquality of the output beams. Examples of the performahthe diffractive beam splitter for
different beam sizes are shown in Figure 2.19 and Figure 2\M©can clearly see a better beam

guality when we move the grating very fast which means we amgéing more grating periods in
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effect, and the vortex beam becomes noisy when the asprcisraboutrw, /I = 4.15. For a trap
with a high requirement of the beam phase and shape, likeditexvand Gaussian interference
BBTSs, it would be impossible to get a small aspect ratio witlifractive beam splitter. We will
have to use computer generated holograms to create thex\arsgy. With the Gaussian lattice

BBT, with less fine structures, the tolerance is larger, batgrating still could not go too far.

z=0 z=0, moving grating Z=Zr

Figure 2.19 Beam quality of of vortex beam arrays for différ@spect ratio, with the HOLO-OR
MS-049-Q-Y-A beam splittet = 87pm, A = 532nm, (a)w; = 115um, (b)w; = 154um.

One way around the problem is to add some calcite beam desgléx double the beams on a
conjugate plane of the image plane, as shown in Figure 2.21.

This strategy would not work well for the vortex BBT, becatise two vortex crossing beams
at each site would have the same polarization because ddtligomal calcites, causing phase fluc-
tuation dependent interference problems. But this schematurally favorable for the Gaussian

lattice BBT design as shown in [Saffman 12]
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(@)

Figure 2.20 Beam quality of Gaussian beam arrays for diftegispect ratio, with the HOLO-OR
MS-049-Q-Y-A beam splittet = 87pm, A = 532nm, (a)w; = 115um, (b)w; = 154pum.

focusing lens
Calcite BD diffraction BS f

Telescope
M

Figure 2.21 Schematic for creating a trap array with a calogtam displacer and a diffraction
beam splitter.
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Chapter 3

Quasi-magic trapping of ground and Rydberg state atoms

The size of Rydberg atoms goes likéa,. Highly excited Rydberg atoms100 have sizes well
on the order of our micron sized dipole trap. So the atom sdighiafield with varying intensity
instead of a single intensity. In the case of the blue detudiagkitrap, the light shift of the Rydberg
atom is not zero even when the atom stays still at the trapecetitthere is intensity variation

across the trap lattice, spatial variance of this energy ebiilld contribute to decoherence.

3.1 Ponderomotive Energy of Rydberg Atoms

The light shift of Rydberg atoms could be calculated by coeshg the ponderomotive energy
of the electron.
The ponderomotive shift is the time averaged kinetic enefgg free electron in an oscillating

electric field. For a field of the fornt' cos(wt), the ponderomotive energy is [Dutta 00]

2 2
P € |E|
— 3.1
u 4mew? (3.1)
where—e andm,, are the electron charge and mass respectively.
Intensity of a light field is
=9 gp (3.2)
2
wherec andn are the speed of light and refractive index respectively.
So the ponderomotive energy of a free electron can be rewrits
2
L (3.3)

2mceguw?
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Then the Hamiltonian of a Rydberg atom in an oscillating etenagnetic field can be written as
{Hp + U (R + 7} R) = EYR) (7 R), (3.4)

where H. is the atomic Hamiltonian free of external field,is the center of mass coordinate of
the atom, and'is the coordinate of the electron relative to the center adsnblsing the first order

perturbation theory, and supposing there is no degenenaojved, the energy shift of Rydberg
atoms in statg is

ABMR) = [ U (B Pl R
(3.5)

62

— o [ I D R
This expression is valid provided the ponderomotive paeraries over distance scales that are
larger than the wavelength of the Rydberg electron. Thisal satisfied for the potentials we
consider. Atn = 150, the electron wavelength is abokinm which is less than 10% of the
wavelength of the light creating the trap.

In addition it is necessary that the ponderomotive shifvesywhere small compared to the energy
spacing of Rydberg levels which scaleslds?, with n the principal quantum number. Even for
the150s state, which is the highest we consider below, the closat &146 f7 /5, which is 1.6mK

away. This is much larger than the trapping potentials oésshhundred.K we are interested in.

3.2 Rydberg Wavefunction Calculation

The Wavefunctionsﬂ;? are calculated using a model pseudo potential method. Ttemial

form adopted here is [Robicheaux 97]

W) = -2 0 [y o)ty LD (3.6)

o 2t 2r2
whereZ,(r) = 1+ (Z — 1)6‘%(1)7" + al(z)reagml Z is the charge of the atomic nucleusg; =
15.81, r. = 2.0, and all the other parameters are listed in Table 3.1[conirations with Francis

Robicheaux][Johnson 83]. The radial part of the Schrodiegeation is

hzﬁ(ﬁg&»+<wm+&iﬂﬁ—E)Mﬂ:0

" 2mr2 or or 2mr?



Table 3.1 Parameters for the Cs model potential (Equati®n 3.
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l 0 1 2 3 4+
oV | 3.49625| 3.73801| 3.45092| 3.43592| 3.43592
a!? | 9.57499| 9.56664| 9.52285| 9.54285| 9.54285
a!¥ | 1.41409| 1.34016| 1.58147| 1.62147| 1.62147

Applying substitutionR(r) = “02 andV,(r) = V(r) + ‘D% the equation becomes

h? d%u

I dr2 + (‘/;ff(r> - E)U =0
Because the wavefunction varies very fast withwe can smooth the variation by adopting the

2 2
square root mesh= \/r, r = s%, dr = 2sds, u(r) = v(s), & = 2 du — dv _ Ld

The equation becomes (using atomic units)
1 d*v 1 dv
8s2ds?  8s®ds

Using the inverse iteration method as in [Press 92] to fincetgenvaluesy, and eigenvectors,

+ (Veff<82) - E) v=>0 (37)

afterk iterations

T8de Tasds V) e Bl = &9
1
Ek+1 — Ek + = . (39)
Vg * Vk+1
Rewrite Eq 3.8 as
dzvk 1 dvk
T g~ 85 (Veps(5%) = Eivps = —85u, (3.10)

According to the appendix of [Robicheaux 96], in generaldbleition of a differential equation of

the form

() ~ /() ~ Alay(a) = 5(z)

can be propagated with a Numerov-type procedure

ye+4) (1 - %) [1 - %A(x + A)} — y(x) {2 + A2A(x) (% _ ﬁ)}

42

tylz — A) (1 + %) [1 - %A(m - A)] = A2Q(z) + O(AY)
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Qlz) 11—2 (1 2) S(:B+A)+1—12 <1+ i) S(x— A) + <%—4§2) S(z)
The initial guess of the eigenenergy is calculated from the quantum defect numbers [Lorenzen 84]
and the initial eigenvectay, is an arbitrary non-zero vector. By solving Eq 3.10 iteralipy the
results converge very fast to the real eigenvalues.
To verify our calculation of the wavefunctions, we reproéldthe planewave photoionization cross
sections for Rb listed in [Saffman 05]. The fine structure efadds less than 0.1% correction to
the ponderomotive energy shifts, so we ignore fine structanections in the following sections.

Figure 3.1 shows some examples of the numerically calallassefunctions.

50s 100s 150s
¥(r)

0:01 MM\ ““\J ,\ /

. r(um) . . . .
o6 52025 fem ¢ ()
I |
M | s‘
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0.005 (i

" L I I I T un]) I I L L L
/63 04 05 06 ( 15 20 25 fkm) \5 ¢ tlum)
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\h W

Figure 3.1 Wavefunctions of Cs Rydberg states calculated the model potential method.

3.3 Ponderomotive Energy Shift in Bottle Beam Traps

Equation 3.5 is rewritten as

62

AE]R(x, Y,2) = /rzdr sin 0dOdpI (x + rsinf cos ¢,y + rsin O sin ¢, z + 1 cos ) |R(1) Y (6, o) >

2Mmeceqw?
(3.11)
The 3D integral can be numerically calculated with the &tplad() function in MATLAB. To

avoid oscillation problems, first the roots of the Hydrogeadial wavefunction are calculated,
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Tn1,Tn2, ..., Tni, ..., then the integrals are evaluated in each subinterval atelceibgether in the
end.

Figure 3.2 gives sample calculation results/#erRydberg levels witm = 100, 125, 150. We see
that asn increases the effective trapping potential gets smalldrsamaller. This is because the
large electron wavefunction averages over the intensgiridution of the trap according to Eq.
(3.5) which washes out the potential minimum. If the trapapagters are not chosen correctly,
as is the case in Figure 3.2b), the trap could be repulsiviifgrn even thoughy, is negative.
Even when the trap is attractive for Rydberg states the gréaRydberg trap shift for an atom at
R = 0 is not negligible. This shift increases withand is proportional to the light intensity. In
an experiment with an array of traps this would imply that Byelberg excitation energy would
vary from site to site due to intensity variations across dhy. To minimize this effect we
seek trap parameters for which tRe = 0 trap induced shift vanishes. We will refer to this in
what follows as “quasi-magic” trapping. A quasi-magic trajpl give an intensity independent
excitation shift for atoms at the trap center (or for atomthamotional ground state with slightly

different compensation parameters) and only a small shritdifficiently cold atoms.

3.4 Magic Condition for Zero Temperature Atoms

Inspection of Figure 2.1 shows that apart from wavelendths @re very close to the second
resonance lines the magnitude of the ground state poldrigab larger than that of the Rydberg
state. Conversely Figure 3.2 shows that the trapping pateattR = 0 is larger for Rydberg
states than for ground states. This implies that we can baldreR = 0 trap shifts by adding a
constant background intensity that will shift the grouratsipotentials more than the Rydberg state
potentials. With the correct background intenditythe differential shift will vanish. This is the
guasi-magic trapping condition. Note that if we were to usewavelengths in Figure 2.1 where
the ground and Rydberg polarizabilities are equal510nm), to compensate the ponderomotive
potential shift, we would have to add a relatively large lgaokind intensity. At\ = 780 nm
the ground state polarizability is about5.4x larger than that of the Rydberg staig which

reduces the power requirement for the background beam $&¥aittior. It is possible to work even
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Figure 3.2 (color online) Potential energy of Cs ground andRydberg states in a) Gaussian
interference BoB, b) vortex BoB, and c) Gaussian lattice Bb8p parameters are: power
P =50 mW for a) Gaussian interference BaB = 2 um, wy, = 3.78 um, b) crossed vortex BoB
w = 3 um, § = 8.6°, and c) Gaussian lattice trap= 1.5 ym, d = 4 pym.

closer to the first resonance line whergx, is even larger, but decoherence rates associated with
photon scattering and differential hyperfine shifts[Saim®5, Kuhr 05] increase correspondingly.
In addition, it is relatively easy to get a high power laseurse of 780 nm (frequency doubled
from an 1560 nm laser). We have therefore chd&#mm for Cs as a viable working wavelength.

Using the ground state light shift

Qg

AU, =~ [Ipon(R) + Lu(R)),

2€9C

and the Rydberg state shift

62

AUg =

 2epcmow?
/d?’r[IBoB(é +7) + Ln(B + D)0 (7 R)|?

the quasi-magic condition is simplU, = AUfg. Figure 3.3 shows an example of such a magic

condition for the crossed vortex BoB by adding a planewavepensation field.
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Figure 3.3 (color online) Energy shift compensation for¢hessed vortex BoB with a planewave
of intensity/,, = 128 yW /um?, w = 3 um, 6 = 8.6°, andP = 50 mW.

Although the additional power required for matching is drfad a single site, the additional
light requirement becomes substantial if we considestax 100 or 1000 x 1000 xm? array. The
Gaussian lattice design presents an interesting alteensitice the light intensity is naturally not
zero at the trap center. THe = 0 intensity changes as we vary the waist size or separation of
the beams, and by judicious choice of parameters we canvactiie matching condition without
adding any additional plane wave. Note that the compergsatiansity is in this case not uniform
but is spatially varying. Figure 3.4 shows such a self magmition forn = 125. Figure 3.5 and

Table 3.2 list the self magic conditions for different n’s.

Table 3.2 Self-magic conditions for selected n states inas&an lattice trap with = 780 nm,
d =4 pm.

n 100 | 125 | 150
wo(pm) | 1.3148| 1.5575 1.73

For a ground state atom with a low temperature, we can edithat average trap induced

shift between ground and Rydberg statesbylU >= 537, dU;(0,0,0) (r7), where the

mean square position of the atom found from the Virial theoie < r? >= 2’5?59, dU;; =

0;;(Ur — Uy) andUy, Uy, are the ground and Rydberg state trapping potentials. &igir shows
that the transition shift decreases nearly linearly witlbrdasing atom temperature. This shift

would be below 0.2 MHz for an atom temperature of AR which is readily achieved using
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Figure 3.4 (color online) Trapping potential (top row) amifisdifference (bottom row) between
Cs6s and125s for a self-magic Gaussian lattice trap with= 780 nm, d = 4 pm, w = 1.56 um,
andP = 50 mW.

polarization gradient cooling of Cs. The trapping depthhef Gaussian lattice BBT with the self-
magic condition is 304 K. In comparison, for the vortex BBT shown in Figure 3.2, witinepping
depth of 22K, the differential shift ofl25s state is about 0.8 MHz for an atom temperature of
oK.

3.5 Photoionization Rate of Rydberg Atoms
The photoionization rate of an atom is proportional to tigatintensity as

W =ol/hv.
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Figure 3.5 Self-magic conditions for different nS statea {Baussian lattice trap with
A =780 nm, d = 4 pm.
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Figure 3.6 Average transition shift between ground and 2&es of Cs in Gaussian lattice trap

with d = 4 pm, w = 1.57 pym, P = 50 mW, andUy,,, = kg x 300 uK.

For a uniform radiation field, the cross section can be catedl by [Saffman 05]

42w

- Lnas|(E., L'lrInL)|? 3.12
30(2L+1) LZ ‘< ) |T‘n >| 7 ( )

'=L+1

Oy —

wherekF, is the energy of the free electronic state.
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3.5.1 Photoionization rate of Bottle Beam/Gaussian latte

In a more general case, the cross section can be expressedlagher 94|

whereq is the fine structure constant. The oscillator strength

2
fﬁ—7mw2l+1§:§:\fw~ﬂ| (3.13)

m; lf my

where initial statei) = |n;,l;, m;) is a Rydberg state with principle quantum numbegrfinal
state|f) = |Ey, lf, my) is a continuum state with energy; = Eppoton + Erya, Ais the operator
of magnetic vector potential, antis the momentum operator. The magnitudeda normalized
to a unit peak intensity. Free electrons do not absorb plsotS8o even thoughr ~ kn2ay > 1
is large, we can ignore high termsofn calculating the matrix element. The quadrupole term is
included in case that the dipole term is vanishing at theeresfta dark trap.

For a planewave field polarized in the x directidn= ek T, Equation 3.13 can be approxi-

mated by

mi lgmy (3.14)
tikyps + ikyyps + ik.zpy|i) |

We can use the following relations to simplify the equati®ethe 57].

p = 2[H, 7] (3.15)
TPy = Y (Hax — zaH) + ik
ype = s(pey + apy) + S(ype — py) = 2 (Hay — xyH) — 11,
1 !
2 2

2py = 2(pez +ap.) + 3(2pp — xp.) = B (Haz — xzH) + 31,

If we ignore the magnetic dipole term, Equation 3.14 becomes

_ 2mw xz ik, ik, Nt

m; lyp,my
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For a complex field like the Gaussian lattice dipole field, we decompose it into planewaves

— 1 " k7
A(F) = ok /d?’l{:g,;ek

g = / &7 A(P)e "7,

The oscillator strength can then be written as

2mw 1 1 -
e D I Pl
L s T l ‘(%)3/ 9¢ ((2)
mi Lf,mg

2

ik, ik, ik,
+7<x:c> + 7<xy> + 7<xz>)

Figure 3.7 shows the photoionization rate for a 125s stat®#@mn in a Gaussian lattice trap which
satisfies the self magic condition. In the Fourier expansioa continuous: is discretized to a
30 x 30 x 30 grid, and the fidelity of the discretization can be verifiedy reconstruction of the
light field in Figure 3.8. The quadrupole term is making ldsmt3% correction to the final result
in the plot due to the non-zero light intensity at the trapteenThe wavefunctions are calculated
with the same method as in Section 3.2. The radial part ofdh&rmuum state is normalized to

2m

pon sin(ker +9),asr — oo.
™ e

PEpi, —

wherek, is the wavenumber of the free electron.

For comparison a Cs atom in a 1064 nm far off resonance tragiettdy a Gaussian beam
with the same trapping dept0 K, I, = 5.8 x 10® W/m?, would have a photoionization rate
of about2.4 s~1. So if the atom stays at the center of the Gaussian lattipetina photoionization

rate is almost an order of magnitude smaller than that in aaletepth red detuned trap.

3.5.2 Blackbody Radiation Photoionization

While the Stark shift of blackbody radiation(BBR) adds afarmn offset to the Rydberg fre-
guency, the photoionization induced by BBR could be large ©duthe small binding energy of
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Figure 3.7 Photoionization rate for 125s Cs in a 780nm salfimGaussian lattice dipole trap,

wop = 1.56 pm, d = 4 pm, P = 50 mW, andUy,ap, = kp x 300 uK.
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Figure 3.8 (color online) Reconstructed field intensity liyeirse Fourier transformation from

discretized Fourier components for a Gaussian latticel@ifpap,\ = 780nm,wy = 1.56 pm,
d =4 pm.

Rydberg atoms. Besides directly photoionizing the Rydla¢ogns, BBR could also cause the Ry-
dberg level to redistribute before the ionization, whicli i calculated for the decay of Rydberg
states in Chapter 7. So for now we are only considering theetiphotoionization.

The BBR photoionization rate can be calculated by

Wgpr = C/OO p(v, T)o(v)dv (3.16)

Yo
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wherev, is the threshold frequency,v) is the photoionization cross section at frequenaal-
culated by Equation 3.12p(v) is the planck distribution of photon number density, 7)) =
%m The results are shown in Figure 3.9. The integration is dwumaerically from
threshold frequency to,,.., = 1.57 x 58.8GHz/K, with 100 evenly spaced intervals. We can
conclude that the photoionization rdté,,, < Wppr < I'r, wherel'y is the radiative decay

time of Rydberg states. There is no need to worry about theopsrozation induced by trap light.

200/
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Figure 3.9 Blackbody radiation induced photoionizaticie far Cs Rydberg states.
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Chapter 4

Experimental Setup

4.1 Magneto Optical Trap
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Figure 4.1 (a)D2 line transition of Cesium and (b) setup efrttagneto optical trap (MOT).

Figure 4.1 shows the setup of the Cs MOT. The cooling laseclsdd to the DZ' = 4 — F’
3andF =4 — F' = 5 cross-over line, which is -226MHz from thié4 — F’ = 5 resonance. We
then use a double pass AOM to shift the frequency closer toytleng F' = 4 — F’ = 5 transition
resonance. The double pass AOM path is after the cat-eyegooation as in [Donley 05]. During
the MOT loading phase, the cooling laser is detuning by -1@Miy setting the AOM to 108MHz.
During the polarization gradient cooling (PGC) phase, thdiog laser is detuning by -30MHz or
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-50MHz, by setting the AOM to 98MHz or 88 MHz.

The MOT is in a rectangular vacuum glass cell. The cell is mafdgmm thick pyrex glass.
The vertical beam has a beam waist about 2.3mm, with 1.5mV¢pduring MOT loading phase.
The two horizontal beams have beam waists about 1.7mm withW. power in each beam during
MOT loading phase. So the total intensity is abfut 24mW /cm?. Using the isotropic Cesium
D2 F = 4 — F’ = 5 saturation intensity,,; = 2.7mW /cm?, the saturation parameter of the

MOT is aboutl; /I, = 8.9. The field gradient is abo@0G /cm in the vertical direction.

4.1.1 MOT Temperature

We use the free expansion method to measure the MOT tempeerdtiue procedure is as fol-
lows: both the magnetic field gradient and laser beams amedusff for a varying amount of time
t, and the atom cloud freely expands. The beams are then tbawkdon to take a snapshot of
the atom cloud (exposure time 1ms). The picture is fitted wi@aussian profile. The assumption
is that the initial atom distribution follows the Gaussidrape of the trapping beams. The cloud
waist expands with time following the equation [Williams]09

AkgT,

wm7y<t) = Wy 1 —|— With (41)
0

The pictures are taken with a Andor Luca camera, whose pzeliss;m. The magnification of
the imaging system(AC254-100,LA1484 300, Edmund NT48-8800 achromat, Figure 4.2) is
calibrated with the ASAF chart to be 3.73.

The Doppler temperature of Cs'13, = 125uK.The atom cloud temperature after the loading
phase A = —10MHz) is about157uK. Then we use PGC to cool the atoms to sub-Doppler
temperature [Dalibard 89]. Although PGC with a high magnégld gradient is possible, low
temperatures are only possible if the atom density is loeyzen 94]. We need a high atom den-
sity to load the bottle, so we use the optical molasses wittiaigradient field to do the PGC
cooling[Jersblad 00]. The timing sequence is as follows:

The MOT is loaded for about 1s with 10MHz detuning. Then the magnetic field gradient is
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Figure 4.2 MOT imaging optics.

turned off, the laser detuning is switched to -30MHz, anédastensity is decreased to do a first
stage PGC for 5ms. After this phase, the atom temperatubmist 8Q.K.
If needed, a second stage PGC could be applied with the dgtu8OMHz and lower intensity.

We can get atom cloud temperature as low @K 4fter the two-stage PGC.

4.1.2 Loading Time and Atom Density Measurements

Figure 4.3 shows a measurement of the MOT loading time atsspre about x 10~°Torr.
The measured loading time is 1.7s. Usually we use a loadng @f 700ms in our single atom
experiment. It means the atom density is 66% of the peak tyewsi can get, which is dense

enough to give us 50% loading probability and a 1s cycle time.

O‘H‘l‘“‘2””3””4””5”‘
(s

Figure 4.3 MOT loading time measurement-= 1.7s.
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Table 4.1 Calibration of Andor Luca camera (camera quantficiency @852nm taken into
account).

gain 1 10 | 50 | 100 | 200
count per 852nm photon0.177| 1.49| 6.40| 7.94| 10.4

To estimate the atomic density of the MOT, the counts to pihotonber conversion of the Luca
camera is calibrated with a femto-watt photodetector. Reave shown in Tab. 4.1. Transmission
of the pyrex vacuum cell glass is measured td/§852nm) = 0.92, T'(532nm) = 0.87. Using
these calibrations, we estimate the atom density of the MIBEF the PGC is about x 10° ~
1x10'/cm?®. If we approximate the trap volume Hyrr7r., where the transverse radiys= 2,m,

and axial radius, = 10um, 0.17 ~ 1.7 atoms can be captured in the trap on average.

4.2 Optical Setup of the BoB Module

Figure 4.4 shows the layout of the crossed vortex bottle beetup. The parts in the green
dashed box are the optics to create the crossed vortex betila trap. The parts in the red box
are the optics of atom detection using a single photon cogntiodule. The parts in the blue
box are the optics for coupling the ground state Raman 457mRydberg 459nm and 1038nm
laser beams. All these optics are integrated to a single £ggjem, and mounted on a 3D transla-
tional stage. The final waist size of the 457/459nm beam isiteh®;:m, and the waist size of the
1038nm Rydberg beam is abaugum.

To align the different beams, we first move the cage away ft@wvacuum cell, and look at the
beams magnified by a microscope on a Sony camera. To aligridhredeetection module to the
bottle trap, an 852nm beam is sent backward through the ploatitecting 1550nm single mode
fiber. Then the focus of this beam along with the focal spothef457/459nm and the 1038nm
beams is adjusted to overlap with the center of the bottl@veolap the bottle trap with the atomic

cloud, we also make use of the backward 852nm light from tleqgrhcollecting fiber. First, the
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position of the MOT is pinned down on the Andor Luca cameraesar Then, the 852nm align-
ment beam is turned on, and the MOT beams are turned off, tb@ tamera is exposed for about
1s to look at the alignment beam fluorescence. The 3D stageafage system is then adjusted
to move the focus of the 852nm beam to where the MOT is, andudnysthe bottle trap is aligned
with MOT on the viewing plane of the camera. To overlap thelbatith the MOT on the third
direction, the MOT is turned back on and we use the alignmeatbto blow away the MOT. The

fluorescence and blowaway steps are repeated until theigoischoverlap.

4.3 Filtering Test

The 532nm dipole trap light is very strong with a power of up0téW at the atom. The
signal from a single atom is on the order of 100 photons. Aigtothe trap light and the single
atom fluorescence are going in opposite directions, thentdciill be strong background from
the trap light. So special care is needed to filter out therglight from the Cs atom fluorescence
light. Table 4.2 lists several filter sets we have tested. t€bts were done in the optical setup of
Figure 4.4 with the tested filter set as the 852nm filter in tlagihm. The photon counter used in
the experiments was the SPCM-AQR-13 single photon counteiuhe, and the photon collection
fiber was a multimode fiber instead of the 1550nm SM shown irdthgram.

In Table 4.2, IF stands for the interference filter (part nem8emrock FF01-832/37-25), the

Table 4.2 Performance of different filter combinations tiefibut background light from the
532nm light in the atom detection path with 0.2W of 532nmf{ight of Verdi.

filter set nofilter | LIF | 21IFs| 1CG| 1 CG and 1 IF| 2 IFs and a prism
photon count frequency(kHz) 500 10 4 65 5 3

transmission of which at 532nm is measured td®832nm)2.5 x 10~%;, CG stands for the color
glass filter (part number Newport FSR-RG610), the trangomssf which at 532nm is measured
to beT'(532nm)3 x 107, If the background light due to the trap light is purely 532kght, we

would expect the detected photon numbers to scale :ag' : 72. But the testing results show
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that after adding the first filter, the background falls by@daof 50, and additional filtering has a
small effect on the final photon counts. This suggests tlaetmay be long wavelength light as a
result of turning on the green light.

The Verdi is pumped by 808nm light, so there could be some B5ght mixed in the green
light. So we added a Semrock FF01-510/84-25 interferentss fit front of the green fiber to
filter out any 852nm light from the Verdi. We also tried usingrésm in front of the green fiber
to spectrally separate any 852nm light from the green. Theddittle effect on the background.
So one explanation could be that 532nm light induces fluerese in the 852nm range from the

vacuum cell or pollutants inside the vacuum.

4.4 Optical Pumping

An 894nm Vescent laser is used to optically pump the Cs atothean=0 clock state. The
transition involved is shown in Figure 4.5. The 894nm lasetuned on resonance with the
F =4 — F' = 4 D1 transition of Cs, and- polarized. In a bias field perpendicular to the
894nm beam, combined with the repumper beam, the atoms arpqulito the F' = 4, mp = 0)

ground clock state.

4.4.1 Bias Magnetic Field

The two bias B field coils have a diameter of 70mm, and 13 tuask.€They are separated by
85mm. With 1A of current, the calculated bias field would b2 Gauss. In our experiments the

bias field is typically from 0.5 to 0.7 Gauss (0.75V to 1.00\ntolling voltage).

45 State Detection

The ground state hyperfine levels are detected by an 852nmibeasonant with thésS, /», ' =
4) — |6P;9, F' = 5) transition. The 852nm will blow away the atoms in §6¢, », /' = 4) from

the trap without affecting the atoms in th&5, », F' = 3) state. The waist size of the blowaway
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beam is 0.5mm and the beam power is 0.3mW. It can blow awalfthe 4) within 5us.
If the numerical aperture of the asphere is large enoughstidiies can also be detected non-
destructively by collecting scattered photons[GibbonsFuhrmanek 11], and measuring the ab-

sorption and phase shift of a weak strongly focused probml§sae Appendix B for details).
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Figure 4.4 (a)Optical layout and (b)picture of the greersseal vortex bottle beam setup
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Chapter 5
Single Atom Loading

5.1 Timing Sequence

(-TOMH2z) (-50MHz)
MOT beams MOT loading | | MOT | |
| | dissipate, |
E E | i stz:ate operation
1 T : T T
off : : L On |
1 1 | I I
i : L l
1 1 | ] ]
I [} ( > | |
< —>20ms|  «———>
-10ms. «— 100ms -

Figure 5.1 Timing sequence for single atom experiments iorsex BoB.

Figure 5.1 is the timing sequence for a typical single atoadiog experiment. For each cycle,
the MOT is loaded for 0.7 to 1 seconds with a MOT beam detuning@VIHz. Then the MOT
gradient magnetic field is turned off, and the cooling lasegdiency is switched to a larger detun-
ing and smaller intensity to do polarization gradient cogl{PGC). The lager the detuning, the
colder the atoms, but the lower the atom density. We typiaade a detuning of 30MHz which
cools the atom down to about 20K with a moderate atom density for BoB loading. After 5ms
of PGC, the BoB beam is turned on, and overlaps with the MOR@ns to capture the atom. If
we leave the BoB always on, the atom would need to climb overtanpial barrier to get into the

trap, which lowers the loading probability. Then the MOT imseare switched off for 20ms for the
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residual MOT to dissipate. After this, the photon counteursed on for the first loading readout,
with the PGC cooling beams and the repumper. Experimentsépufor example state operation
with the MOT beams off, and bright trap lifetime measuremeitih the MOT beams on, follows

the readout. Then a second atom readout is applied to sesrdfiany atom left in the trap.

5.2 Results

Photon Counts

300
2501 | | ﬂ ”‘ﬁ “W 1 atom
200 fﬁ' ‘ \

150 L mn l wll \ ‘ ‘

! w d ‘ WJ/ w 0 atom 2 atoms
100 | 1
" | L
| ‘ L L ¢100ms 300 400 500
0 200 400 600 800 Photon Counts

(a) (b)

Figure 5.2 (a)Typical photon counter data for a lifetime meament with cooling light on, and
continuous readout.(b)Histogram of photon counts for dtmading, integrated for 100ms,
loading probability=47%.

Typical photon counter data for a lifetime measurement erbtiight BoB is shown in Figure
5.2(a)[Li 12], where a clear step between 1 atom signal aadé#tkground can be seen. Figure
5.2(b) is a typical histogram of atom loading in the crossetex BoBs. The photon counter
is integrated for 100ms for each data point. A maximum loggrobability of 50% has been

observed when there is a good overlap between the MOT peaRa@B@&nd a high atom density.

For a stochastic loading following Poisson distributi®f%) = N’“g[”, the probability of loading
one atom isP(1) < 36.8%. Itis obvious we have a sub-Poissonian atom loading.

The loading histogram is fitted with a quasi-Poisson distrdn over atom and photon numbers.

k=1
Nke=N 1 (n . (nb + kg ))2
= A e o g atom : 51
f<n) kZZO k' \/27T(nbg + knlatom) Xp( 2(nbg _'_ knlatom) ) ( )
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wheref(n) is the number of events of gettimgcounts on the photon counter. The fitting result is:
N = 0.76, npg = 85, niatom = 132.

We have not seen any two atom loading events. This could berstwdbd by the collisional
blockade[Schlosser 01]. The Poisson distribution tell$had the atom number should be dis-

tributed asp;, = ¢

N

. By photon assisted collisional blockade, atoms will be fasm the trap

in pairs. So we are left with one atom only if there are odd neindd atoms in the trap originally.
> e odd % = 1. We could load one atom half the time at most. This blockatkeetould be
strong in the BoB, and it could have happened during the fist2when MOT and BoB overlaps,
so we do not see this process in the photon counter signal.

The number of photons counted by the photon counter for ayma at 100ms is typicallyi00 ~
200. With the readout beam intensify = 21,,; and detuning\ = —6I", the scattering rate is
about 20000/100ms. So the photon collection efficiency @it 5% ~ 1%. The asphere has an
effective focal lengthf = 34mm, and the aperture is about 24mm, so the collection angleoistab
Q/4m = 2.8%. Total transmission of the photon collecting optics is atifi®6, and the quantum
efficiency of the photon counter at 852nm is about 50%. So wegpecting a photon collection
efficiency of about 0.7%.

Contributions to the background counts from differentiigburces are accounted for in Table 5.1.
The main source of background is the 852nm light scatterdzhbkground thermal Cs atoms, and
that is the main reason why the background counts do not stastant from day to day in our

experiments.

Table 5.1 Photon sources for the background counts in tiggesatom readout signal. With
integration timg = 100ms, ny, ~ 85.

background Cs atom532nm trap| cell glass scattering | environmental lightand
fluorescence laser(0.4W) counter dark count
43 19 3 30
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5.3 Atom Temperature

We use the drop and recapture method to measure the atomrsgorpenside the trap. We run
a Monte-Carlo simulation to fit the recapture probabilitgtwexperimental data.
Suppose the initial velocity of the atom obeys Maxwell-Boiann distribution of temperatutlg,
v = ,/m exp(—muv?/2kgT,), wherei = x,y, z. During the drop process, we turn off the
dipole trap, the MOT beams and magnetic field for a time,dhen the atom undergoes a free
motion with the force of gravity alone. The final velocity ialculated to bey,, and the final
position is(z ¢, yr, z¢). Finally we turn the trap back on to recapture the atom, aedt®@T beams
to see if the atom is still present in the trap. If the mechanémergy;mvs + Uz, yy, zy) is
greater than the trap depth, or the atom has moved out ofapeegion confined by the range, if

any one of the following equations is satisfied.

|xf| > Tmazxs |yf| > Ymaz, |Zf| > Zmax

8U(xf,yf,zf)x aU({L'f,yf,Zf)y <0 8U([L’f,yf,2f)z <0
Ox dy ’ !

0z
Wherezx, oz, Ymazs 2mas @re pre-assigned trap sizes.

(5.2)
<0,

Figure 5.3 shows some drop-and-recapture temperatureune@asnts. With one stage PGC (-
30MHz detuning), the atom temperature in the trap is alhoui<, and by adding a second stage
PGC (-50MHz detuning) the atom temperature drops down tatads.

5.4 Lifetime Measurement

The lifetime of an atom in the dark trap is measured with alldsers off except the green trap
laser between two readout pulses. The lifetime in the biigit is measured with the PGC light
on between two readout pulses. Figure 5.4 shows some tyjpetahe measurement curves. The
decaying time constant for different trap depth is sumnearin Figure 5.5.

We can see that the lifetime in a 1@& bright trap is low. But as the trapping depth increases
to over 200uK, the lifetime stays about the same, and the lifetime with¢boling beams on is
smaller than that with the cooling beams off. This is propdigcause the temperature of the atom

is so small & 204K) compared with the trap depth that thermal escape is not &we contributor
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Figure 5.3 Temperature measurements of a single atom in aR@0rtex BoB, (a) with one
stage PGC at detuning6I’, (b) with two stage PGC at detuninrgsl” and—10I".
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Figure 5.4 Lifetime of a single atom in a 33& vortex BoB.

to the atom loss. As we will explain in the next section, thenatoss is mainly from collisions
with the background gas. If we turn off the cooling beamstetveould be little possibility for the
atom to stay at the excited state. Ground state atoms havelkespollisional cross section than
the excited state atoms, so the atom could stay in the tragefoWe can also infer that there is

little heating from the BoB laser, a main advantage of thél&atap.
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Figure 5.5 Lifetime of a single atom in a vortex BoB for difbat trapping depth.
5.5 Collisional Atom Loss

The difference in lifetime in bright and dark traps can belaxyed by the different collisional
cross section of ground and excited state atoms.
The ground state atom interact with the background hot atonggound state) via Van der Waals

potential with a Lennard-Jones form:

Ce C
Vi) = -—=2 4+ =2

76 rl2

(5.3)

whenr is large compared with atom size, the higher order term cbelgynored.
Due to the resonant interchange interaction betweep states, the atom in thg; , state interact
with the hot atoms via potential

V(ir)=—— (5.4)

to the lowest order.

To get the collisional loss rate, we consider the followinggess[Bjorkholm 88].

Because the trapping potential is very smalD(uK) compared to the kinetic energy of the hot
atom, we can assume the atom inside the trap to be at reshantéraction does not change the
trajectory of the hot atom. The collision only changes tlaasiverse momentum of the hot atom,

thus transferring the same momentum to the trapped atonodhe tonservation of momentum.
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Suppose the hot atom has a velocityvéf and the impact parametertisn the y direction, then

the momentum transfered to the trapped atom is

Apyz/Fydt:/aV(gJ:O’y:b’z)%

oy v
1 [T 0V (x = =
:_/ (2=0y=b2)
U)o oy
The potential is of the form
Vi) =-%
ov
8—y = fﬁ’;y (5.5)
so the momentum change can be calculated by
nCpb [T 1 %
Ap, = ” /_oo P dz
“+oo
:nCn/ (1—|—22)_(n+2)/2d2’ (56)
vb™ J_
_nC’nan
b

wherea,, = fjozo (14 22)~(n+2)/24,
If this momentum change is larger than a critical vaiue= /2U,,,..m, whereU,,,... is the trap
depth, the atom is lost from the trap. From this we can gettearimpact parameter

nCha,

) (5.7)

bc:<

The cross section of lossi9?(v). And the total loss rate is
R, = WN/ vb? f(v)dv (5.8)
0

whereN = P/k,T is the atom density of background Cs, and the thermal velaligtribution

Fv) = \/2(5%)3% exp(— g27).

UsingCs = 6330 andC5 = 13.22 [Niemax 75] in atomic unitsP = 1.0 x 10~° Torr, T' = 300K,

assuming the fraction of the atom on the excited state is v%eh is estimated b%E—yF with

photon counts per secomd.,...... = 1500, quantum efficiency of the photon collection system
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QF = 0.1%, andl’ = 275.2 x 105/s, we get a lifetime estimate as follows. The data do not follow

the curve perfectly probably because the vacuum pressuac igery stable.

6 [ i "
i - - I dark trag
_— — I

T — - ]
1 bright trag

lifetime(s)
w

Ttrap(uK)

Figure 5.6 Calculated collisional atom lifetime in the tragph the cooling light on (bright) and
off (dark), along with experimental lifetime data repreteehby error bar data points.

In our experiments, we usually uses@ ~ 100ms gap time (for atom state manipulations)
between two atom00ms fluorescence reading pulses, irR@ ~ 300uK trap. So the retention
at the end should be aboettp(—0.1/5 — 0.1/3 — 0.1/3) = 93%. If the background pressure
is doubled, the retention is reduced to 84%. The retentiom&asured is usually in the range
of 80 ~ 90%. But if we can shorten the time of each section to 10ms, thentiein would only
change from 99% to 98% when the pressure is doubled. So siogethe overall speed is vital for

increasing the retention stability.
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Chapter 6

Ground State Rabi

The qubits we are using are the ground state hyperfine mdsifal Cs. The rotations of
the qubits can be coherently driven by the direct transitietween the hyperfine levels with mi-
crowaves, or through higher order processes such as twompfRaman transitions. For the mi-
crowave method, in order to have single site addressahmlityqubit array, additional optical or
gradient electric/magnetic fields need to be applied toybtem to differentially shift the energies
of atoms at different positions[Weitenberg 11]. In our expents, we are using a two-photon Ra-
man process via a third excited levé of Cs in this case) as shown in Figure. 6.1. To minimize
the error due to the spontaneous emissions from the exeiet] the detuning\ is set to be large
(~50GHz).

For a coherent Raman Rabi flopping, the populations of state= (65, /., F' = 4) and state
|0) = |6S1/2, F' = 3) evolve as:; (t)|1) + ¢2t]0). ¢1(t) andcy(t) are given by

(er(t), ea(t)" = U (1) (er(0), e2(0))" (6.1)

Uiy ity 675 (cos(5h) — iy sin() —iet 5 g sin(t) .
= 48 .
0= et sin($1) o1 (cos(L1) +i5; sin(LY)) 62

9 2 2 9 2

where(2; and(2, are the single photon Rabi frequenciés: A; + A,, the effective two photon

0103

Rabi frequencylr = —

, A1 = Ay — A, is the two photon detuning when ignoring any AC
Stark shifts A’ = A5 + w is the two photon detuning taking into account AC Stark shift
andQ’ = /A2 + Q2.

The calculations of the Rabi frequencies need to be treaitkcweat care. The following section

summarizes some relevant formulas.
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Figure 6.1 (a)Two photon Raman transition, (b)Raman ttemmsof the Cs ground hyperfine
states.



59

6.1 Rabi Frequency Calculation

Effective Rabi frequency
Qr = 005 /2A, (6.3)

Suppose state 1, 2 are coupled through state e,
QLQ = €<€‘E172€»172 . T_"Il, 2>/7—l (64)

4P 2

TEQCWz Wy

The field amplitudes ar&’, » = . For particular hyperfine statés) = |Fy,m;), [2) =
|Fy,me), |e) = |F., m.), the dipole matrix element could be reduced by Wigner-Edkesorem
on a spherical tensor basis.

-m' q¢ m

. F 1 F
(F' ' rg| Fym) = (F'|[r||F)(=1)" ™ ( ) (6.5)

the rank 1 tensors are., = F(z + iy)/v/2,70 = z. We can further reduce the matrix element by
[Sobelman 92]

/ S J T
(T2 [ Til | Sy J2T') (1)J1+J2+J+'“\/(2J+1)(2J’+1)<J1TkJ{>{ Jt J! 2 } (6.6)
1

SO

, JOF
(Flrl[F) =l 7 (=) @2F + 1) (2F + 1) { }
F J 1

=(L||r||L)(=1)FHIHTHEESHL JQF 4 1) (20 + 1)(2F + 1)(2J" + 1) (6.7)

r Jg s JF T
J L 1 F J 1
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JvoJy Js | :
where is the Wigner’s 6-J symbol.

Jy Js I
In summary, in thd., S, J, m; basis,

(L'S"T'm;||rg||LSImy) =(L'||r||L)css(L, S, Jymy; L' S, T mlys q)

crs(L, S, Jymy; IS, T mly; q) =(—1) =t EHSHIHL Jo 7 1 1) (207 +1) 6.8)
J 1 J L J s
-m/; q my J L 1
intheJ, I, F, mp basis,

(JTFE'mp||r || JIFmp) =(L||r||L)cn(J, I, Fymp; J' 1, F' mls; q)

cng (LI, Fymp; J' I, F i q) =(—1)F —me PRI LHSTL /O F + 1) (2F + 1)(27 + 1)(2J' + 1)

F' 1 F L J S J F T
—my g mp J L 1 F J 1
(6.9)
The reduced matrix element
/ o L' 1 L ,
(L'||r]|L) = (-1) \/(2L+1)(2L’+1) (L'|r|L) (6.10)
0 0

where(L'|r|L) = [ r*drR. (r)R.(r) The transformation from the hyperfine structure basis to the

fine structure basis can be done using the Clebsch-Gordé#iceods

Jmyilmp—my

[JIFmp) =Y _Cyme \J,my; I, mp —my) (6.11)
my

Specifically for the ground state Raman,the Rabi frequeaaybe calculated as follows. The
transitions involved are shown in Figure 6.1. Suppose tharjzation state of the driving fields

E,, E5 can be written as

E;- = aj7oé’0 + aj,lé’l + aj7_1é’_1 (612)
whereéy = 2, &, = —75(2 + i), andé_, = 5(¢ — ig). E) corresponds to the transition

6512, F1 = 4,mp,) — |TPi)2, F.,mp,), and £, corresponds to the transitidfs, o, [> =
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3,mr,) — |TPi 2, F.,mr,). The Rabi frequency is

6mF1+P’mF2+¢Z(7P1/27F€7mFe =mp, +p‘7”p|631/2,F = 4,mp1>(65’1/2,F = 3,mp2\r7q\7P1/2,Fe,mFe =mpg, +p>
2Ap,

BB} 5 a1,pas g
=0
P,q,Fe

21,093 A

2A A+Ahf,7Pl/2

c3+cq)

(6.13)
where(); o = eagE; (TP, 2||r]|651/2) /], Apgrp,,, = 21 x 377.4MHz is the hyperfine splitting of
7Py 5. The radial matrix elemen P, 5|65, 2) = 0.338[Vasilyev 02].

Cr, = Z Zal,pa;qchf(‘]lylvFlva1;Jev[7FeymFe;p)Chf(J87]7Fevae;J27]7F27mF2;_Q)
p,q=—1,0,1 mp,

(6.14)

We are using two beams with the same polarizatiop, = mg,.

6.2 AC Stark shift

Since the hyperfine splitting of Cs ground states, 9.2 GHam ithe same order of the detuning.
When calculating the AC Stark shift ,we should also condidecoupling off P, , 1065, 5, F' = 4
via E,, and7P; ;, 1065/, F' = 3 via ;. The AC Stark shift can be calculated by

e’E3a? e2F2%a?
Age = Z WA;”’M?H/Q,F&W& =mp, + plrpl6S1 /2, Fi,mp)|* — Z 4h2JA;’p 7Py )2, Fe,mp, = mp, +plrpl|6S1 /2, Fa,mp,)|?
7,0, F e j.p,F, e
= Z |a; ‘292 lenf(J1, I, F1,mp,; Je, I, Fe,mp, = mp, + p;p)|? Z la |292 lenf(J2, 1, Fo,mpy; Je, I, Fe,mp, = mp, + p;p)|?
j,p,F. o Ay (7P1/2 Fe; 651/2 Fl) G.p,Fe P 40 (7P1/2 Fe; 651/2 FQ)

(6.15)

Figure 6.2(b) shows some sample calculations of the AC Staifts.

6.3 Raman Laser Setup

The laser setup for the Raman transition is shown in FigueFor each laser, the laser source
is a 914nm ECDL. The frequency of the laser is locked by thenBdbrever-Hall technique to a
reference high finesse cavity(~ 1500). Then most of the light is sent to a tapered amplifier
(TA) after which we get up to 400mW of 914 light. The optimurpuirt power for the TA is about
45mW. The output of the TA is collimated and reshaped to abaabeam closer to circular and
then matched into a bow-tie cavity used for second-harmgamneration (SHG). The SHG cavity
has four mirrors and a 2cm PPKTP crystal. The SHG gives usta&®muaW of blue power. An
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Figure 6.2 Caculated Rabi frequency and AC Stark shift ofigdostate Raman transition, from
651/2, F = 4,mp =0to 651/2, F = B,mp =0 Via7P1/2,mF =1, P1 = 1mW, P2 = 0.5mW,
W47 = 59LLH1
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AMO is inserted to stabilize the power, and the zero orddratifion is the output. A double pass
AOM path is used in one of the lasers (back laser) to work asatefeedback of the phase lock
loop. But half of the back laser power is lost in this doubleAOM setup. Before the lasers are
sent to a fiber, they are combined by a 50/50 beam splittef.dfithe power is sent out through a
fiber. The other half is sent to a fast photo detector. Thectimt®utputs a beat signal of the two
blue lasers. Then the beat signal is mixed witfi & 9.2GHz reference RF signal generated by
a frequency generator. The error signal is feedback to fleeergce cavity and double pass AOM
of the back laser. This way the back laser is phase lockecdetrdit laser with a frequency offset
equal to the hyperfine splitting of @, ». The back laser (power,) frequency is set higher than
the front laser (powep,;) frequency.

We can get about 7mW of back laser and 14mW of front laser intfob the output fiber. The
power is 3+6mW after the fiber. Before going to the atom, ago&OM is set up between two
fiber launchers to work as an on/off switch. The output atterlast blue fiber is about 1+2mW,

70% of which gets to the atom eventually.

6.4 Experimental Results of TPS and RFE

At the beginning of our experiments, we usually initialipe tatom into thg6S5, o, [’ = 4)
state, (¢1(0), c2(0)) = (1,0). According to Equation 6.2, the probability of the atom iatst
654 /2, F' = 3) after a Rabi pulse of timeis given by

So for a two photon spectrum scan with a fixed pulse lengtie retention £ = 3) can be fitted

with a sinc squared function. Figure 6.4 shows a typical TR&emental results.

Figure 6.5 shows a typical ground state Rabi flopping curve.
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Figure 6.4 Two photon spectrum of the ground Raman tramsitwith fitted f. = —13kHz,
Qg = 53kHz. The beam parameters afe = 0.93mW, P, = 0.47mW with some misalignment,
w = 5.9um, A = 40GHz.

Q/21m=0.31MHz

retention

Figure 6.5 Rabi flopping of ground hyperfine states= 0.93mW, P, = 0.47mW, w = 5.9um,
A = 40GHz, frr = 9.192620GHz, Rabi frequency? /27 = 0.31MHz, amplitudeA = 0.95.
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The coherence time is measured in the usual Ramsey fringeodhe&; pulse is applied to

prepare the atom into the superposition state; and theft ibl&eely precess in the trap for a time

of T,,; then a secong pulse is applied before the final state measurement. Thitaci fringes

are measured for differeff},s, and the oscillation amplitudes are exponentially fitteahterpolate

the T2 time in Figure 6.7. The T2 time we have measured i 9ms.

"I A=0.82+/-0.08 i~ ! A=0.62+/-0.06 ! | A=0.68+-0.00 P
%\ { / % ] \% } \f \
g0 00 //% % g | / f
© 0a \% / | ® 0 \\\ {/ \ %// © o \\} i \\\i
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Figure 6.6 Ramsey fringes for differeny intervals.

6.6 Decoherence Factors

6.6.1 Motional Decoherence

One of the main factor for dephasing is the atomic motion. lesgtom moves in the trap, it
experiences varying trapping light intensity, thus vagyififferential potential shifts for thgF' =
4, mp = 0) and|F = 3, mp = 0) states. The differential shift is given by

hé(x,y,z) =nU(x,y, 2)

(6.16)
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Figure 6.7 T2 decoherence time fit.
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whereU (z, y, z) is the potential energy, = C/AB?ﬁ = 4.34 x 107°. For an atom of tempera-
tureT, the energy distribution of the atom in the dipole trap okejlsree dimensional Boltzmann

distribution with probability density

E? E
p(E) = mexp (_k:B—T) (6.17)

Here &' = E,;, + U is the total energy of the atom. If the atom is cold enough &l sitting
at the center of the trap, the trap can be approximated byradmac trap. According to the virial

theorem< U >= F/2, so the average differential light shift for an atom with eyyeF is

nk
=1 A
b = o2 (6.18)
The probability distribution of the light shift is
K3
p<5ls) = 75l23 eXp(_K5l3)7 (619)

with K = 2h/(nkgT).
Starting with state ' = 4, mp = 0), (¢1(0),c2(0)) = (1,0), the state vector amplitude of state

|F' = 3, mp = 0) after a Ramsey sequenép= ¢ is
co(t) = cos dt, (6.20)

where the two photon detuninig= A, - — d;; — d5 With § the quadratic Zeeman shift. So the

average Ramsey signal
2Um
Cg(t) :/ p(éls) COS [(AAC — 5l5 — 53)15] d(Sls
0

~ / P(61s) €08 [(Aac — b1y — G)f] déis 6.21)
0

KS
RCETD A [(Aac — 6p)t + K(t, K)],

where,x(t, K) = —3 arctan(t/K).
2

Thel/e decoherence timg; can be calculated b{yL,/2 = 1/e (because we are measuring

(K?+T57)

lea ()% in experiments), and we get

2h
Ty = /3 1K = 0.63 . 6.22
2 € kT ( )
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This is the same as that for the red detuned dipole trap[Kbhrlf Figure 6.8(a) is the calculated
motional decoherencg, time for Cs atom in a 532nm BBT. For an atomic temperafiire 4 ~

5uK as we have measuréetly = 55 ~ 44ms.

6.6.2 Magnetic Field Fluctuations

For the clock transition from/" = 4, mp = 0) — |F = 3, mp = 0), the quadratic Zeeman
shift is given bydz = 1, B2, where the coefficient, /2r = 427.45Hz/G? for Cs. Suppose there

is Gaussian noises in the bias field,

1
V2rop

The Ramsey visibility, ignoring the motional dephasing, is

p(B) = exp (—(B — By)*/20%) (6.23)

< cot) > = /p(cSB) cos [(Aac — 6is — dp)t] dip

1 00
/ cos [(Aac — 61 — paB2)t] e B0V /275 4B

21?03 - (6.24)
~ Ccos [(AAC — 815 — Mo B3 — 29 By(B — Bo))t] o~ (B=B0)*/20% 1 3
V2mopg /_OO

=exp (—20%;1333752) cos [(AAC — 05 — M2B§)t] :

So thel /e time for |cy(t)| is 1/v/2u2 Boo s, and thel /e time for |c,|?

1

=\ 6.25
21 Byop ( )

15 B

The results for different bias fields are shown in Figurel®).8(f we assume atomic temperature
T = 4uK, bias fieldBy, = 0.7G, and magnetic field fluctuations = 1.3mG, we will getT; =
55ms, Th p = 200ms, and7, = 43ms.

6.7 Quantum Tomography

To characterize a quantum system experimentally, we nepdrform some complex proce-
dures, called quantum tomography, to uniquely determiaertput and output quantum states of

the system, and describe the quantum processes perfornikd bystem.
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Figure 6.8 Calculated (a)motional decohereigéime for Cs atom in a 532nm BBT,
(b)decoherence caused by magnetic field fluctuations.
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6.7.1 State Tomography

Quantum state tomography is the procedure of experimgrdatermining an unknown quan-

tum state.

For single qubits, the Pauli matrices are

10 01 0 —1 1 0
I =o0y= Oy = Oy = L0, = . (6.26)
0 1 10 i 0 0 —1

The setao/\/i, ax/\/ﬁ, ay/\/i az/\/§ forms an orthonormal set of matrices with respect to the

Hilbert-Schmidt inner product, so any statean be expanded as[Nielsen 00]

_tr(oop)og + tr(owp)oy + tr(oyp)oy + tr(o.p)o,
= : ,

(6.27)

It is easy to see that(oyp) andtr(o,p) are the sum and difference respectivelyFofthe popu-
lation in statel0) and P; the population in statfl) in the z basis.tr(oyp) andtr(oyp) cannot be
directly obtained from measurements in thbasis, and we need to do some rotations first, using
the following identities.

0, = Ri(~7/2)0.R,(~7/2), (6.28)

0, = Rl(7/2)0.R,(7/2),

where the rotation operators about the, ~ axes are

cosf/2  —isinf/2 cosf/2 —sinf/2 e 2 0
R.(0) = » Ry (0) = , R=(0) = | :
—isinf/2  cosf/2 sinf/2  cosf/2 0 e?2
(6.29)
So the density matrix of the quantum statean be reconstructed from experimental observables
by

(Po+ Pi)roo + (Po — Pi)Rry(—n/2)02 + (Po — P1)Ry(n/2)0y + (Po — P1) 10
5 )

. (6.30)

To be more specific to our neutral atom experimeRtgf) corresponds to a ground Rabi pulse of

t with 8 = Qgt, R.(#) corresponds to a free precession of timeith § = A ,ct, andR,(6) =
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R.(5)Ro(0)Ro(~3).
Due to experimental uncertainties and errors, a simpldapge of Equation 6.30 may not produce
a physically valid density matrix. Instead, a maximum likebd estimator method is often used
to reconstrucp.

We did the state tomography for the initialized state affgioal pumping|1l) = |F = 4, mp = 0).

The measured density matrix reconstructed from maximuetilikod is

0.13 0.30 — 0.12¢
Pmeas = . (631)
0.30 + 0.12¢ 0.84

00
The calculated fidelity measures with respect;to= ( ) are
0 1

FC1)/2 =Tr |:\/\/pmcaspid\/pmcas:| =0.92,

FO = TI'2 [\/\/ﬂmoasﬂid\/ﬂmcasi| = 0847 (632)

1
FD =1- §Tr [\/(Pld - pmeas)]L (Pid - pmeas):| = 0.64.

6.7.2 Process Tomography

A quantum operation is a process that maps a quantumstatan output staté’(p). If we
choose a set of operatais, i = 1, ..., d?> andd = 2" for n qubit gates, which form a basis for the
set of any operator on the state space, then a quantum protasgubit can be represented by a

matrix,
E(p) =Y xjx0;pO}. (6.33)

ik
Experimentally, the quantum process can be characteriggubtiorming quantum state tomog-
raphy onE(p;) for a basis set of input states. For the single qubit gateggtomography, the
experimental sequence is performing state tomographyatdying the gate on 4 different input
states from the sgtj0), [1) (]0) + [1))/+/2, (|0) +i|1))/+/2}, and we choose the expansion opera-
torsOy, Oy, O3, 04 to beay /2, 0./v/2, 0,/V/2, 0./v/2. The4 x 4 y matrix can be reconstructed
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from this complete set of measurements. Figure 6.9 showsxparimental results and Table 6.1

is a summary of the fidelities.

Table 6.1 Process tomography results for single qubit gates fidelity measures used are
Fé/Q =Tr [\/\/Xmeaind\/Xmeast FO = TI'2 [\/\/Xmeaind\/XmeasJ )

FD =1- %TI' |:\/(X1d - Xmeas)]L (Xid - Xmeas):| .

Gate | FY?| Fo | Fp
R,(r) | 0.83|0.69|0.67
R.(m/2) | 0.92| 0.85| 0.84
R,(7) |0.90|0.80|0.79
R,(r/2) | 0.90|0.81|0.76
R.(w/4) | 0.88|0.77| 0.76
average | 0.89| 0.78| 0.76




74

Real part of the ideal X matrix Imaginary part of the ideal x matrix
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Real part of the measured x matrix Imaginary part of the measured x matrix

(€) R.(m/4)

Figure 6.9 y matrices for the process tomography of different rotatiateg.
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Chapter 7

Rydberg Excitation

One of the most important features of the blue detuned dputipale traps is that they can trap
ground and Rydberg state atoms simultaneously. The Ratbap have demonstrated trapping
Rydberg atoms in an optical lattice by a lattice inversiomiediately after laser excitation[Anderson 11].
But they only showed the trapping indirectly by the trap ioeld Rydberg energy shifts. In addi-
tion, with the lattice inversion method, we cannot trap gwband Rydberg state atoms simultane-
ously, and the inversion process could heat up the atom.

In this chapter, we will show some unambiguous measurenoémitspping single Rydberg atoms

in the blue detuned crossed vortex BBT.

7.1 Rabi Frequency

We use a two photon transition to excite the Cs to a Rydbetg.slia the preliminary experi-
ments, we use & state because it has a larger dipole moment and easier & detepared with
a S state. The atomic levels involved are shown in Figure 7.1.

With the polarization setting as in Figure 7.1, the Rabi @ieracy could be calculated as

i <7P1/2,F =4, mp= mpg + 1|E17‘1|651/2,F = 47mF,g)<61D3/27mJ|E27°_1|7P1/2,F =4, mp = mpg + 1>

2r =00 2A
é <7P1/2,F = 3,mF = mF_,g =+ 1|E1T1|6Sl/2,F = 4,mFﬂg><61D3/2,m,]|E27’71|7P1/2,F = 3,mF = mpyg + 1>
B2 2(A + Angrpy,,)
291,092,0 A

c3+c¢
2A (A+Ahf,7pl/23 1)

(7.1)
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mz=-1/2, -3/2

6105, IL..S.Jr.m, >

6512

[ Jg:1,Fg,me >
F=4, m=0 ’

Figure 7.1 Two photon excitation of Cs Rydberg state.

Whel’te,o = €CLOE1 <7P1/2||7’H651/2>/7—l, 9270 = ea0E2 <61D3/2||7’H7P1/2>/h

CF, = E a1p2,qChf(Jg, I, Fg,mp,; Je, I, Foymp, = mp, + p;p)
pyq:_17071

(7.2)
Fe,m e . .
E CJe,m(Z;I,mpe—mJeCfS(L87 Sa Jea my,; Lrv Sa Jrv myj,.; Q)

mJe

7% |<61D3/2,m,]|E27’,1|7P1/2,F =4, mp = mpg + 1>|2 — |<7P1/2,F =4, mp = mpg + 1|E17’1|6S1/2,F = 4,mF_,g>|2

ac _h2 AA
i |<61D3/2,m,]|E27’,1|7P1/2,F =3, mp = mpg + 1>|2 — |<7P1/2,F =3, mp = mpg + 1|E17’1|6S1/2,F = 4,mF_,g>|2
2 2(A+ Angrpy,,)

(7.3)

Figure 7.2 shows a sample calculation of Rabi frequency a@dstark shift of two photon
excitation to61Ds, Rydberg state, using the scheme in Figure 7.1. For a largmidef, the Rabi
frequency ofm; = —3/2 is much smaller than that of; = —1/2, so we will consider only the

my; = —1/2 Rydberg state from now on.

7.2 TPSand RFE

The TPS scan in Figure 7.3 is done with the following lasetirsgs:
the detuningA /27 = 2GHz, 459nm laser poweP,s9 = 60 ~ 70uW, waist sizew,s9 = 6um,
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Figure 7.2 Calculated Rabi frequency and AC Stark shift af plioton excitation t61.Ds,
Rydberg state Viapl/g, Pisg = 65,UW, Wy59 = 6,UH1, Pioss = 3.5mW, wqg3s = 28,um,

A/21 = 2GHz, (@)(b)m, = —1/2, ©)(d)mn, = —3/2.
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1038nm laser poweP; g3z = 3 ~ 4mW, waist sizew;p3zs = 2.8uum, SO that the calculated Rabi
frequency)/2m = 0.76 ~ 0.94MHz, and AC Stark shif\ s¢ /27 = 0.54 ~ 0.75MHz.

The measured frequency is summarized in Table 7.1. The mezhsalue isl4.4 ~ 13.8 MHz
above theory[Weber 87]. To account for the difference, wesater all the possible frequency
shifts:

1)Zeeman shift in the 0.7G bias field 6t D3/, m; = —1/2is 0.56MHz/G x 0.7G = 0.4MHz;
2)AC Stark shiftA 4o /27 = 0.54 ~ 0.75MHz;

3)green bottle trap shift is abo,, = 0.34MHz;

4 differential dipole shiftinduced by the strong 1038nselal/ = —W(acgs,logg,r—acgs,logg,g)11038 =
2.0 ~ 2.7MHz, where the polarizability.,s 1035 - = —76.9A° for Rydberg states, and.,s 1035, =
187A3 for ground states.

These four factors add t8.27 ~ 4.18MHz. So our measured transition frequency is about

9.61 ~ 11.12MHz higher than the theoretical value.

Retention
o

1038 f rgF F F F
459 ( ( ( ( ( 07

r _Ryc_;ibe_rg excitation pulse 0 730 752 754 7é 758
f; ionization pulse
9 gap time AO

(@) (b)

Figure 7.3 TPS scan of Cs Rydberg st@td);». (a)pulse sequence for detecting Rydberg state
with 1038nm laser photoionization, in which Rydberg exaiapulser = 0.6us, high power
1038 ionization pulse; = 2us, and a gap time of, = 10us is used to enhance retention. (b)TPS
curve, With f.c,se, = 733.131 £ 0.043MHz, half line widthdf = 0.768MHz.

The RFE is measured with the same setting as the TPS expé¢iimigigure 7.3, with AOM
frequency set at 733.2 MHz, shown in Figure 7.4. The meaduedd frequency is 0.4 MHz, as

compared with).76 ~ 0.94 MHz from calculations. The discrepancy could be due to that t



Table 7.1 Measurement of transition frequency (in GHz) of
‘651/2,}71 = 4,mF = O> — |61D3/2,mJ = —1/2>
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fo18

f1038

fo18,40M

fgr,measured

fgr,theory

fgr,measured - fgr,theory

326254.058024

) 288071.054

-0.7331~ -0.7334

940577.70438 ~ | 940577.690

940577.70378

0.0144 ~ 0.0138

beams are slightly misaligned so the atom does not see thargeasity, or the laser frequency is

off. In this experiment, the Rydberg state is detected byglsihigh power 1038nm photoioniza-

tion pulse, and the detection or excitation amplitude is 27%

0.8

0.6

0.4

Digitized and normalized signal

0.2r

Q/21m=0.4MHz
A=0.27

0.0
0.0

I
0.5

I I
25 3.0

Figure 7.4

7.3 Photoionization Rate

Rabi flopping between ground statg,,, I’ = 4, mp = 0 and Rydberg state
61D3/2, my = —1/2

In the experiments, we initially used high power 1038nmftlighphotoionization the Rydberg

atom as the state detection method. Then we used a highiigt8B2nm beam to blow away the

ground state atom to detect Rydberg states. It is helpfudtimate the photoionization rate of the

Rydberg atom under these high intensity lasers. The phatzzitbon cross section for a beam of
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wavelengthh is

= — ———|R>” 7.4
3lam,.c? Z 2L, + 1 |2 (7.4)

E=FE,+hw,L

where the radial integral between the Rydberg sigt@and the continuum statg;,  is RHF =

[ 9, (r)rér p(r)ridr, and L. is the larger ofL, and L. The results are in Figure 7.5. The cross
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Figure 7.5 Cross section of photoionization of Cs Rydbeaitest

section of 1038nm photoionization f6t D, is about6 x 10-°A2. So for the 75mW high power
1038 pulse we were using, the ionization rate is ali®ktlz. If a 2us pulse is used, the possibility
of photoionization is about 4%. The detection efficiency igufe 7.4 is more than that because
there is also strong dipole force on the Rydberg atom reguiti mechanical atom loss. So pho-
toionization using 1038nm laser is not a very effective whgtedecting the Rydberg atoms.

In the following experiments, we used a strong resonant 8b2eam to blow away ground state

atoms. The beam power is about 0.4mW and it is focused to & giaes aboutl00;m, so the
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photoionization rate and mechanical force are reducefstg 193z = 4 x 107¢ of those when
using the 1038 beam. With this method, we got a cleaner saahh detection efficiency about
40%.

Another interesting point to notice is that, if we look at thi@otoionization cross sections for a
broader range of wavelengths in Figure 7.6, we can find mirafrghotoionization for Rydberg
statesS; » and Ds/,. These minima are called Cooper minima[Beterov 12]. Thesénma arise
from the cancellation of the radial integral for some tréinas, depending on the overlap between
the wavefunctions of the initial and final quantum stateshefatoms. An example is shown in
Figure 7.7. The relative radial matrix eleme®)t,; in Figure 7.7(a) is defined as

R(E,L — E'L') x (-2E,)™%* x |E' — E,]>/*
0.418 ’

Rya(E,L — E'L) = (7.5)

which varies more slowly with than the radial matrix element.

The results are quite different from the data calculated@etérov 12]. In the calculations of the
S1/2 — P15 bound-free matrix element, our results show a single minimearE, = 0.12 a.u.,
while in [Beterov 12], there are two minima at arouhg = 0.06 and 0.16 a.u., and the numerical
values are quite different (maximum is 0.25 in our plot ar@lif.Figure 6(a) of [Beterov 12]). We
are using two different computation methods. The discrepamay result from the possible fact

that one of the methods does not work well for bound-free imatement calculations.

7.4 Rydberg Energy Shift in Bottle Beam Trap

With the ponderomotive potential theory in Chapter 3, wewalted the energy shift of Ry-
dberg states in the crossed vortex BBT, in Figure 7.8, withabtual experimental bottle beam
parameters. For stalélDs/,, m; = —1/2), the shift is 0.34MHz.

To measure the energy shiftin the BBT, we took the two phopetsa of C$1 D3, with the trap
on and off consecutively (Figure 7.9), by scanning the REUeancy of the 918 laser double pass
AOM. The Rydberg atoms are detected by blowing away the gtratisite atoms. The transition
frequency with trap on is (0.033+/-0.05)x4=0.13+/-0.2 Miigher than the frequency with trap
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Figure 7.6 Cross section of photoionization of Cs Rydbeatgstfor different wavelengths.

off. The theoretical value 0.34MHz is right on the edge oferkpental uncertainty range. More

data points with differents are needed before any conclusion can be made.

7.5 Rydberg Lifetime
7.5.1 Decay of Rydberg States

The decay of Rydberg states is mainly due to spontaneouy @echblack body radiation
(BBR) induced decay. The effective lifetime could be estedaby [Beterov 09]

1 —1
Teff = (T_o + FBBR) (7.6)
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Figure 7.7 (a)Radial matrix element for transitigtid” — n.D, (b)relative radial matrix element
for transitions fromm.S; , bound states té, ), free states.

The spontaneous decay lifetimg and the BBR induced decay rdigzr can be estimated by the

semiempirical formula

o
T0 = Tsneff

r A 2.14 x 10 () (7.7)
= S
PER T 0D exp (3157808 /nG,, T) — 1

wheren.;r = n — d,q IS the effective quantum number with, the quantum defect number. The

parameters for Cs are listed in Tab. 7244, , = 78.5us.
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Figure 7.15 shows the lifetime estimates of Cs Rydbergstate
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Table 7.2 Scaling coefficients of Cs in Equation 7.7, datarigkom [Beterov 09].

S1/2 Py P35 | Dszjp | Dsjo
7s(NS) | 1.2926| 2.9921| 3.2849| 0.6580| 0.6681
o 3.0005| 2.9892| 2.9875| 2.9944| 2.9941
A 0.123 | 0.041 | 0.038 | 0.038 | 0.036
B 0.231 | 0.072 | 0.056 | 0.076 | 0.073
C 2517 | 1.693 | 1.552 | 1.790 | 1.770
D 4,375 | 3.607 | 3.505 | 3.656 | 3.636
sooc LI s s g
400 60C o / ggE A
2 300¢ > Z 7 ?_;AOC // > " Qa0 //‘/ o = =
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Figure 7.10 Lifetime of Rydberg states, (a)OK lifetime klackbody lifetime at 300K,
(c)lifetime at 300K.

7.5.2 Model of Rydberg Atom Loss with Multiple Rydberg lonization Pulses

Suppose the Rydberg atom decays at a raie. gthe loss rate from the 1038 high power blow
away beam id' 35 (either from photoionization or mechanical pushing), theslrate from the
532nm BoB isl'y,, (either from photoionization or not trapping, as shown igufe 7.11. Then
the Rydberg populatiof, and ground state populatidf) change with time according to

dPp,

dt
dP,

dt

= —(I'y + Tpop + Tioss) B (7.8)

= TP, (7.9)



86

The solution is

P.(t) = P.(t=0)e TrtloostTiozs)t (7.10)

L,
Pt = fopogp (e e e B = 0) £ Pt =0)  (711)

1038nm
Notedetedotelc = %
r1038
rbo
I
l9>

Figure 7.11 Model of Rydberg atom decay and loss.

Let us consider the pulse sequence in Figure 7.3(a). To gyntipé model, suppose after each

Rydberg excitation pulse, the atom is at the Rydberg stateavixed probability”, ;. So

P(t=0) = P, (7.12)
P(t=0) = P,o=1— Py (7.13)

Definel'; =T, 'y = I, + ['yop, @andl’s = ') + Ty + 1038 After the first high power ionization
pulse
P(t=1;) = Poe 5" (7.14)
Pt=mr) = —(1—e )P+ Py (7.15)
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after the gap time,,

P(t=mri+ Tg) = e‘FW’i—FW’gpn0

P(t=r;+ry) = %(1 —e P (t =1;) + Pyt = 1))
= E(1 —er2me)esTip o 4 E(1 —e P+ Py (7.16)
Iy I3
_ _?_;e—rgri—rzrgpw 4 FICI;;OSS e Tip ) Lpop ﬂ;:losg P+ 1
P(t=r;+ry = FFL:be_FS”_F?Tng + F;£;0338 e_FS”Pw - Fbo%:m?’sﬂ,o +1

After 5 repetitions,

Pr(t = 5ri + 5rg) = (Pt = 1t 79)) ' Polt = 7 + 1)

P,(t =5r; +51,) = (Pt =1 +71,)' Pyt = r; + 1) (7.17)
Pi(t =5r; +5r,) = (Pt =1 +1,))°
What is left on the ground state eventually is
L,
P,s(t=00) = F—Pr(t = b5r; + bry) + Py(t = 5r; + bry)
2
L,
= F_Z(Pt(t =i+ Tg))4pr(t =ri+ry) + (Bt =ri+ Tg))4pg(t =ri+71g)
(7.18)
If we are using one pulse repetition
L'y
Pit=00)= =P (t=ri+ry) + Pt =r;+1y)
I (7.19)
_ [, T'1038 o Tarip Lpop + F1038P 1
F2F3 r,0 Fg r,0
If the blowawayr; is applied after the gap time,
P.(t=1,) = P.oe "
(7.20)

T
Pyt =1ry) = F_:(l - e_FQTg)Pr,o + Pyo
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Po(t =rg+1) = e NP

I I
Pyt =r,+71;) = - e Tty Torop oy - e TPy — Po+1
Fa b (7.21)
L rr Tars ' Tioss _r Tyop :
= e TeeTanp  Tr M08 tuyp o Cbbp g
T, ¢ 0T, ¢ 0T, frot
Fvob + 11038 1oy —Dar, ' Thoss _r Tyop
Pyt =1y + 1) = 2T 108 TargTanp  Sr L0 Targp o Zbbp g
t( 7“9 + r ) Fg € ,0 FQFg € ,0 FQ ,0 +

The final ground state atom probability could be again cated with Equation 7.18.

Using this model, we fitted the experimental data to estirddterent lifetimes, Figure 7.12,7.13,
7.14. The best fit parameters afey, = 0.8, 75 = 392us, T03s = 15.7us, assuming Rydberg
decay timer, = 78.5us.
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Figure 7.12 Rydberg lifetime model fit, varyig . (a)r; = 0, and 5 repetitions; (b), = 2us,
gap timer, after 1038 pulse;, and 5 repetitions; (e); = 2us, gap timer, before 1038 pulse;,
and 5 repetitions; (d); = 2us, gap timer, after 1038 pulse;, 1 repetition, Shade area is the
experimental Rabi flopping amplitude uncertainty range.
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pulser;, and 5 repetitions; (d); = 2us, gap timer, after 1038 pulse;, 1 repetition, Shade area is

the experimental Rabi flopping amplitude uncertainty range
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pulser;, and 5 repetitions; (d); = 2us, gap timer,, after 1038 pulse;, 1 repetition, Shade area is
the experimental Rabi flopping amplitude uncertainty range
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7.5.3 Direct Lifetime Measurement with Ground State Blowavay

Then we did a more direct measurement of the lifetime witHfdHewing pulse sequence:
1) apply a Rydberg pulse; 2) wait for a time gap a@f(with the trap on or off), at the end of which
a ground state blowaway pulse qisis applied to blow away thé’ = 4 ground state atom; 3) a
secondr pulse is used to bring the atom back to ground state; 4) innfdereadout MOT beams
are turned on to check if there is any atom left in the trap.
The results are shown in Figure 7.15. By comparing the tifetivith and without the trap, it is
obvious that the bottle trap traps the Rydberg atom. Onedstieg point is that the lifetime with
the trap onr = 102+17pus is actually longer than the natural decay lifetim&oD;, 7, = 78.5us.
The reason could be due to experimental errors, or the fattile Rydberg atom does not decay
directly to the ground state which is detected eventualtycdnfirm the second reason, we did a

Monte Carlo simulation of the decaying process as shownam#éxt section.

1.0 T 10t
§ 0.6 1=102+/-17ps % 0.6 1=17.6+/-2.1ps
% 0.4+ } - E 0_47{R
0.2+ \}\\\i . % % -2 0.2} \i\ L 1
0.0k . . \é PR P -wry e S S ) 0.0 . ¢ ] ﬁf"’ii‘fij—‘igé—i—f—,i 1
50 100 150 ( )200 250 300 350 ’ 20 40 ( )60 80 100
t(ps t(us

(@) (b)

Figure 7.15 Lifetime measurement of Rydberg stdt®;,, with the bottle trap (a)on and (b)off.

7.5.4 Monte Carlo Simulation of Rydberg Decay

To simulate the decay process, we consider all the trangihannels. The rate of spontaneous

transition between L andn’L’ is given by[Beterov 09]

A(nL = n'L') = GGy Lomaa R2(nL — n'L) (7.22)
3meghcd 2L+ 1
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where L, is the larger ofL and L', w,,, = |E,; — E,/|/h, and the radial matrix element
R(nL — n’L') is calculated numerically with the method in Chap.3 (in dtoomits). The black-
body radiation(BBR) induced transition rate is given by

1
exp(hwp [kpT) — 1

W(nL — n'L') = A(nL — n'L)) (7.23)

We compared the numerically calculated lifetime valueswie numbers given by Equation 7.7, in
Figure 7.16, inwhich /7o = To = > .5, A(nL = n'L'), Tppr = 3., W(nL — n'L’),
andr = 1/(I'g + I'pgr). It shows a pretty good agreement.

To do the Monte Carlo simulation, the spontaneous and BB#itian rates to all the other states
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Figure 7.16 Verification of the numerical lifetime calcudet. (Solid lines represent calculated
values from the empirical Equation 7.7, and dotted linesasgnt numerical results).
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are first calculated for each state, fram= 5 to n = 100, with angular quantum numbér < 3.
Then decay process is simulated with a random number genefarr the C$1D;, state in Fig-
ure 7.17 and 7.18, the maximum simulated time of dec&plgs with time stepdt = 0.1us. A
total of 10000 atoms are simulated. To verify the parametetsst is run with the assumption that
the Rydberg atom decays directly to the ground state. Sorthand state population curve should
follow the simple curve of?(t) = 1 — exp(—t/7e1p,,,), @s shown in Figure 7.17. The actual
simulation results are in Figure 7.18. So the simulated tiorestant for the atom to decay back to
the ground state i$43us, greater than the natural decay time as expected. The a&vérag the

atom spent on each state is shown in Figure 7.18(b).

1.0F ]
0.8 //
' e

Pground
o
N

0 1000 200 300 40C  50C
t(us)

Figure 7.17 Verification of the Monte Carlo simulation, assug Rydberg Cs atortil D,
decays directly the the ground state.

From the simulation results, we get a time constant of decpio ground state = 143us.
Using the measured lifetime in Figure 7.15ta) 1024+ 17us, we get a trap lifetime;,,, = 356s,

with bound=210us < 7,0, < 709us, which is consistent with the analysis results in Secti@nZz.
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Figure 7.18 Ground state population results of Monte Caglmagt simulation for Cs state
61D/, T = 300K, (a)ground state population, with blue dots representiegstmulation, red
solid curve represents the lifetime curve, time constant= 77.5us, Tywe = 143us, (b)the

average time the atom spent on each intermediate statehifoaying to the ground state.
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Chapter 8

Summary

In summary, we have designed three types of bottle beam #nagh,have demonstrated a
micrometer-sized crossed vortex BBT. It is shown that €r@$ atoms could be loaded into the
BBT with 50% probability, and the atoms have lifetimes ofey@ seconds and coherence times
as long as~43ms, and single qubit gates can be performed on the trappet avith a fidelity of
around 70%.

We have theoretically investigated the effect of the BBTdlmnenergies of Rydberg states, and
have come up with a scheme to reduce the differential AC Stafts between Rydberg and ground
levels.

We have also successfully excited trapped single Cs atomgldying Rydberg states, and have
demonstrated the Rydberg atoms could be trapped in the BBA time longer than their intrinsic
lifetime.

We can thus conclude that the BBT is a promising buildingkfoc Rydberg-mediated multi-qubit

guantum information experiments.
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Appendix A: Zemax Designs

A.1 \Vortex Bottle Beam Trap
A.1.1 Aspheric Lens

The asphere we are using is custom made from Optimax. Thenpéees of the lens is listed
in Table A.1. The lens was originally designed for a difféaremdow glass (3mm BK7), so the
performance is not good for the 1.5mm pyrex window of the sgjgall. By adding a correction
lens, Thorlabs LA1908-A f=500mm spherical lens 50mm in frohthe asphere, as shown in

Figure A.1, the lens focusing quality is greatly improved.

Table A.1 Parameters of the custom Optimax aspheric lens1&fim, DIA=20mm, CA=18mm.

surface| R Conic A4 A6
1 25.66| -1.5474| 6.93e-6| -1.77e-9
2 INF - - -

A.1.2 \Vortex Bottle System

Our goal is to get a waist size Bf5um to 3m at the final trap. Since the effective focal length
of the 500mm lens + asphere is about 34mm, that means we neatstasize of 2.3mm2mm
before the final focusing. To ensure no loss of informatiomhef Laguerre-Gaussian beam, the
lens must cover at least the field for< 4w,. Supposing the beam separationljghen the lens
diameter must satisf§p > d+4w,. The clear aperture is 18mm, which meadns 8mm. To allow
for some tolerance, we chooge= 6mm. The beam displacer displaces the beam by 3mm, so we
need a telescope of magnificatidh = 2 after the displacer. Using a f=15.29mm collimating
aspheric lens, the maximum output Gaussian beam waistsiaieaut 1.25mm, which is about
what we need. But the waist size of the final Laguerre-Gaussian beam could not be simply

calculated by the input Gaussian beam waistusingw, = f\/mw;, as described in Figure A.2.
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Aperture Dia=14mm, EFFL=32.3mm, NA=0.21 Aperture Dia=14mm, EFFL=33.6mm, NA=0.204

Spot Diagram

Biry Radius: 1.501 pm
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Polychromatic Diffraction MTF Polychromatic Diffraction MTF
5/1/2012 5/1/2012
Data for 0.5320 to 0.5320 um. Data for 0.5320 to 0.5320 um.
Surface: Image Surface: Image
focusing lens_alone.ZMX focusing lens.zmx
Configuration 1 of 1 Configuration 1 of 1

(a) (b)

Figure A.1 Performance of the focusing aspheric lens (ajeedind (b)after adding a correction
lens.

We added a 75mm:60mm telescope in order to get a Laguerrss@@aubeam well described by
Wy = 3pum.

Figure A.3 is the detailed layout of the optical system fokimg the vortex bottle beam trap.
The part number of the= 1 vortex lens is HOLO/OR VL-209-Q-Y-A. It is made out of 3mmchi
fused silica. The part number of the calcite beam displexc&arl Lambrecht MDBS512-V532.
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Figure A.2 (red)Intensity profile of a puilezy; mode withw, = 3um; (blue)intensity profile
calculated from diffraction, with a Gaussian beam of waigt= f\/mw, passing through a
spiral phase plate, and focused by a lens of focal lerfig{black)intensity profile calculated from
diffraction, with a Gaussian beam of waist, = 1.3 f\ /7w, passing through a spiral phase plate,
and focused by a lens of focal length

It separates the beams with orthogonal polarizations by 3amah its thickness is 27mm. We did

Verdi 532nm Laser

fiber

126.516
D. N | N — B N 4
GT M2

beam displacer

C260TME-A AC254-060-A AC254-075-A vortex lens

=15.29 =60 =75
216.368 195 |
50 AC254-150-A AC254-075-A
=150 f=75

custom LA1908-A
asphere =500

Figure A.3 Layout of the optical system for making the vortbettle beam trap.

a Physical Optics Propagation (POP) modeling in Zemax viighaptics in Figure A.3, using the
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equations of Laguerre-Gaussian beams. The results areshdwgure A.4. Big decentering and
tilting of the beam was observed when the beam was comingfahediber, due to the imperfect
angle of the fiber coupler. So we added to the simulation saheeaince of the lens decentering
and tilting. We can see from the simulation results that wtenfinal beam waist i8,m, the
system can tolerate a large misalignment and still maketéebdts the beam size gets smaller, the
requirement on the precision of alignment is higher. Wedktito go with the3um waist in our

experiments. The beam intensity profile across X and Y ondbed plane is shown in Figure A.5.
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y(um)
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-5 0 5
X(um)

(a) wg = 3um, no tolerance (b) wo = 3um, w/ tolerance

y(um)
y(um)

-5 0 5 -5 0 5
X(pm) X(um)

(c) wy = 2um, no tolerance (d) wg = 2pm, W/ tolerance

Figure A.4 Zemax POP modeling of the crossed vortex BBT¢ja(e assuming the alignments
are perfect, (b)(d) include tolerances with up to 0.5mm bentering and 0.5 deg lens tilting.
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Figure A.5 Measurement of the waist size of the final focusatex beam (single beam),
(a)camera picture, (b)(c)1D intensity profile, measurdd(tdack dots),theoretical calculation
from LGy, mode withw, = 3um(red line), and Zemax simulation(blue dashed).
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Appendix B: Electric Field of a Strongly Focused Gaussian Beam

B.1 Field behind the lens

Suppose the waist.() of the input Gaussian beam is at the front focal plane ofé¢hs,land it

is right hand polarized. The electric field can be calculéed
E(pv Z = _2f) = E06A+6_p2/w%7 (Bl)

whereE, = - /282, p = /2% +y2 andz = 0 is set at the back focal plane of the lens. Then

w1

the field at the front surface of the lens is

— . zkp2_4 f
Efront<z — _f) — Elé+e—92/w%€zkf+ 5k, —tarctan R, (BZ)

inwhich By = Ey2, 2g = mwg /A, wi = woy/1 + (2/2r)?, andRy = 2(1 + (2r/2)?).
And ideal lens should focus a plane wave such that it becorpesasource at the focus. So it is

reasonable to assume the high N.A. lens introduces a sphphase shift

Psp = eXp(_ik V p2 + f2 + 'ka) (83)

Based on the projection of thie vector, and the fact that this is a transverse mode, afterggoi

through the lens the polarization of the light changes atingrto

1 0 in Peti® 0—1 .
£ (p) - o8t e Smg e (B.4)
wheret) = arctan(%).
The overall electric field at the back surface of the lens bexo
- 1 1+cosf sinfe®  cosf —1 .,
FEroer(p, 0,2 =—f)=E ér + 24 e _
back (0, @ f) 1 m( 9 + /2 9 ) (©5)
ikp? '

x exp(—p? /w? + 2ikf —ik\/p? + f2 + —=— — darctan —).
2R1 ZR
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Figure B.1 Electric field of a strongly focused Gaussian heam

Er

B.2 Paraxial Approximation

In the simple paraxial Gaussian beam model, in the confan#iguration, a input beam with
waist sizew, is focused to a beam with a waist size = f\/mw; at the focus. So the field at the

focal plane can be calculated by

— —p? /(w2)2+2ik f—i arctan =L —i arc an#

Epam(ﬂ, b 2= 0) EOﬂA p?/(w2)?+2ik f tan o= t = (B.6)
Herezy, = m(wq)?/ .

B.3 Numerical Propagation To The Focus

For an EM field with cylindrical symmetry, we can expand thédfiey Debye expansion
Z kuFu(p, 0, 2), (B.7)

where}® = [dk 3,3, k: is the transverse wave vector, is an integer valued angular

momentum index, ansl= +1 is the helicity. The complete orthogonal set of moﬂésare

fktj (kt ) ikoz zmqb
Am k (B.8)

- 1 sk+ k.
F.(p,¢,2) Ry

1 sk —k, ik gi(m R
FP— Jmt1(kep)e hazgilmtl)og_,

Jm—1(kep)e’=7elmDog, —
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wherek, = \/k? — k2.

For the electric field in Equation B.6, the field after the lensld be numerically integrated by

E(p,¢,2) = /dktZZﬁu —Fé,+F2+F¢é_, (B.9)
in which
1 sk+k, ,
F, = Z/ ki1 i + 2 Jolkep)e™ ki, (B.10)
s==+1
2k )
F.=Y_ / dky(— £—tJl(/c p)etzemey (B.11)
s==+1
1 k k, o
=3 / dhi— % gy (kep)et=2eB,, (B.12)
s==%1
and
ik f—i arctan - o0 1 1+ cosf sk+k, sin 6 iv/2k,
ku(ke) =Eqe “R Oy Thy Pdpm{( 9 ) 2 Jo(kep) + N Ji(kep)
0

cosf — 1 sk —k, , , ikp?
+( 5 ) : J2(ktp)}exp[—zk\/p2+f2—i—zsz—i-2—]%—p2/wf].

(B.13)

We can immediately see that on the axis where 0, J;(0) = 0,J5(0) = 0, only the F', £,
term left. So the polarization on the optical axis after theslis the same as that before the lens.
Some numerical integration results are shown in Figure Bt high focusing powers, the electric

field is more spread out than the field calculated from palaxproximation

The field at the focal point has a simple analytical form

20 o ik f fo P ks 2 ikf? 2 ikf?
E(p—O,qb,z—O)——ElTeXp<21k7f—zarctanz——|—w—%—2R1 E%(w—%—2R1)+E%(w% 2R1) 1
(B.14)
whereE, (z) = [° e *'t""dt. The amplitude
= ™l | 5 2 ikf? f2 ik f?
Ea=|E(p=0 =0)| = Es(— — Es(— — . B.15
A= 1B =0.02 =01 = [T Lo py L8R sy L BE L @




112

1000
, 1000 : , ‘
[ -
— paraxial approx —— paraxial approx
8oor —1IF,| 1 800 CF) f
z
R IR
600/ 600!
I} o
400} 400
200 200¢
0 _ _ ‘ ‘ ‘
-5 0 5 —?00 -50 0 50 100
p(um) z(um)
(@) (b)
3000 3000 :
—IF,
2500¢ /\ |~ paraxial approx 2500t [\ |——paraxial approx||
[~ | IR AT .
2000/ /N H 2000 R
W 15001 1 I 1500
1000F 1000f
500 500
0 ‘ ‘
%S 20 -20 0 20 40
z(um)
() (d)
6000 ‘ ~ ‘ 6000 ‘ @ ‘
[ IR (T
5000f [\ | paraxial approx|  goq0l ‘\‘ | |——paraxial approx||
[~ IR I
‘\‘ z
4000| I 4000] R
W 30001 1 10 3000f
20001 2000F
1000F 1000f
0 ‘ ‘
-2 -1 0 1 2 —%0 -10 0 10 20
p(um) z(um)
(e) ®

Figure B.2 Field at the focus for different focusing powerdwm = 852nm, f = 4.5mm, and
(@)(byw; = 1.1mm, (c)(dyw; = 1.8mm, (e)(fhw; = 2.7mm, and the field amplitudes are
normalized tg £, | on the front surface of the lens.
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B.4 Scattering Ratio

For a two level system, the scattering rate of single atom laser beam with intensity and

detuningA is given by

R - (E) I/Isat
N2 TH4A(A/T)2 4 (I L)
In the limit of weak probe beanT (<< I,,), the ratio of scattered power to the input power is

[ hwl I/ 1sq
Toe = (2Pm) T 4(A/ T (B.16)

If the atom is located at the focal point of the ledis= <2 £7. If the laser is near resonant, the

INEE 1
T“‘( AnPy, ) 14 4(A/T)? (B17)

If we use the Gaussian paraxial approximation

ratio simplifies to

2
_ 3wyi

RSC — ?.

(B.18)

Scattering Ratio

E— Gaussian

Rsc

B Green's Theorem

wm/f

Figure B.3 Scattering ratio of strongly focused Gaussiambef a single atom for different
waist sizes.
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B.5 Transmission and Phase Shift

In the far field limit, the dipole field radiated by the atom is

. 3EA6i(kr+7r/2) i
E — > — (L -V | ——. B.1
At the output lens, the original field is
- 1 1+cosf sinfe®  cosf—1 .
Er(p, ¢,z = f)=E Ep — 4 ez _
exp(—p?/wi + 2ik f + ik\/p? + f2 — —=— — jarctan kA + ).
ZR
So the total electric field is
E, = E,. + Ep. (B.21)

If only the mode that is the same as the probe beam is colletttepeak electric field after the

second lens is

~

k- 2dS(Ee + Er) - E

Eout = EZn = = = —
Joey k- 1dSER - E},
f3E E e_m/z_zikfﬂaman%_ﬁ/w%“z%f _ (4cosh)  1epdS
= Ein(1+ i e Ak/[2+p?Vcos 0 )
in 2A + I f COS%B —2p2 Jw? cos 0dS
I f2 2f2 zkf2 f2 Zkf2 f2 Z]{Zfz )
== Ezn 1 E_ <y E_ J .
( 2A+ZF8U}1 H i(w% 2R1)+ i(w% 2R1)] )
(B.22)
Transmission
Al f2 2f2 Zkf2 f2 Zku f2 zk;f2 -
== Es(* — . B.23
| 2A+Zr8w1 [ %(w% 2R1)+ Z(w% 2R, )] | ( )

Phase shift with respect to the probe beam going throughatield lens system without any atom

trapped

T 32 Ak 2 ikf?
1

- Z) Es (L —
2A + 4T Suw? " [%(w% 2R

2 ks

%) (B.24)

E
>+ %(w% 2R1

Ap = arg(1l —



115

Transmls‘swn at Resonance Transmission at Different Detuning When w;/f=0.35
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Figure B.4 Transmission of strongly focused Gaussian beara $ingle atom (a)at resonance
and (b)at different laser detunings.
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Figure B.5 Phase shift of strongly focused Gaussian beaia $orgle atom at different laser
detunings.



	thesis title page
	Siyuan_Zhang_thesis



