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Abstract 

 

The unparalleled structural diversity of intermetallic compounds provides nearly unlimited potential 

for the discovery and optimization of materials with useful properties, such as thermoelectricity, super-

conductivity, magnetism, hydrogen storage, superelasticity, and catalysis. This same diversity, however, 

creates challenges for understanding and controlling the unpredictable structure of intermetallic phases. 

Moreover, the fundamental design principles that have proven so powerful in molecular chemistry do not 

have simple analogues for metallic, solid state materials. 

One of these basic principles is the concept of atomic size effects. Especially in densely packed crystal 

structures where the need to fill space is in competition with the atoms’ preferences for ideal interatomic 

distances, substitution of one element in a compound for another with similar chemical properties yet 

different atomic size can have dramatic effects on the ordering of the atoms (which in turn affects the 

electronic structure, vibrational properties, and materials properties). But because the forces that hold 

metallic phases together are less easily understood from a local perspective than covalent or ionic interac-

tions in other kinds of materials, it is usually unclear whether the atoms are organized to optimize stabiliz-

ing, bonding interactions or rather forced to be close together despite repulsive, steric interactions. 
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This dissertation details the development of a theoretical method, called Density Functional Theory-

Chemical Pressure (DFT-CP) analysis, to address this issue. It works by converting the distribution of 

total energy density from a DFT calculation into a map of chemical pressure through a numerical approx-

imation of the first derivative of energy with respect to voxel volume. The CP distribution is then carefully 

divided into contact volumes between neighboring atoms, from which it is possible to determine whether 

atoms are too close together (positive CP) or too far away from each other (negative CP). 

This technique is used in combination with the concept of structural plasticity (Berns, 2014) to 

demonstrate how complex intermetallic phases can be understood as a response of simpler structure types 

to the destabilizing buildup of CP. From this point of view, interfaces created in complex structures relieve 

the CP manifest in the more basic, parent structures. This is shown specifically for Ca36Sn23 relative to a 

hypothetical W5Si3-type Ca5Sn3 phase, LnMnxGa3 (Ln = Ho-Tm, x < 0.15) compared to unstuffed AuCu3-

type LnGa3 structures, and structural derivatives of CaCu5- and HoCoGa5-type compounds. 

As a direct result of the technical developments necessitated by these analyses on structural complex-

ity in intermetallics, a further connection is made in this thesis between the calculated CP schemes and 

the frequencies of vibrational modes in MgCu2-type CaPd2, the Cr3Si-type superconductor Nb3Ge, and 

CaCu5-type CaPd5. Local chemical interactions revealed by DFT-CP analysis are used to identify struc-

ture-property relationships for the pseudogap in the phonon density of states (DOS) of CaPd2, the higher 

critical temperature of Nb3Ge vs. Nb3Sn, and the wide diversity of structures based on the CaCu5 type. 
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Chapter 1. 

Introduction 

 

1.1.  The nature of atomic size 

The reassuring notion that matter has a certain size and shape breaks down when we examine chemi-

cal compounds at the atomic level, where the bizarre laws of quantum mechanics govern reality; they tell 

us that electrons cannot be pinned down to a definite location, making the volume (perhaps better de-

scribed as spatial influence) of atoms fundamentally ambiguous. Moreover, the outermost valence elec-

trons are not attributable to any one atomic nucleus. Instead, they are shared among atoms in a real mate-

rial, either locally in covalent bonds – as exemplified by the sp3-hybridized carbon network in diamond – 

or in delocalized interactions – such as described by the nearly free electron model of metals. 

For decades chemists have nonetheless invoked the idea of atomic size to rationalize empirical trends 

in physical phenomena as diverse as non-ideality in gases,1 steric effects in organic reactions,2 the Hume-

Rothery rules of solid solutions in alloys,3 structural distortions in perovskites,4-5 and phonon-scattering 

by guest atoms in thermoelectric materials.6-7 The practical utility of this concept has led to the tabulation 

of covalent, metallic, and ionic radii for most of the elements, oftentimes based on average interatomic 

distances. However, these radii are highly dependent on the chosen reference materials, because distances 

can vary widely from one substance to another. This is especially true in the solid state where the various 
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chemical preferences of the elements must be balanced against the essential need to fill space – without 

atoms getting too close to each other either. 

Despite this caveat, the idea of atomic size continues to be propagated, even in introductory chemistry 

curriculums, and indeed, the simplicity of the concept is its greatest asset. The crystal structure of most 

pure metals, like iron or gadolinium, can be readily understood by a close-packing of hard spheres of a 

single metallic radius. Likewise, diamond can be described as an assembly of tetrahedrally-coordinated 

balls of carbon atoms. Atomic radii work well to explain the structure in these two cases because all the 

atoms are working toward the same goal: pure metals are as dense as possible to optimize the long-range 

Ewald energy, and diamond has its characteristic structure to optimize strong covalent bonds. When at-

oms are in competition to optimize different types of chemical interactions within the same structure, 

however, empirical radii become far less useful. 

Such is the case for complex intermetallic phases, materials composed of two or more metals. Take, 

for example, the compound formed if elemental gadolinium, iron, and carbon are combined together in a 

particular ratio, Gd13Fe10C13. Even though it is composed of almost ⅔ metallic elements, it has one of the 

smallest known distances between iron atoms, suggestive of covalent Fe-Fe multiple bonds.8 Perhaps even 

more surprising is the crystal structure of NaCd2. Rather than forming an alloy with sodium and cadmium 

atoms randomly occupying the same sites in a close-packed lattice, the actual unit cell contains nearly 

1200 atoms and has a volume of about 28,500 Å3 (Figure 1.1).9-11 A compound as complicated as this one 

cannot be understood by a simple packing of spheres.12 

Inasmuch as the ability to determine what holds complex intermetallics together in such elaborate, 

long-range order is interesting for its own sake, it is also necessary; without basic theoretical models, there 
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is little hope of relating chemical composition to crystal structure, and without the ability to control struc-

ture, the pursuit of materials with enhanced and tunable properties is severely hindered (properties such 

as thermoelectricity,13 superconductivity,14 and catalysis15). It would be like trying to synthesize an organic 

molecule absent of any knowledge of Lewis structures or valence bond theory. 

 

 

Figure 1.1.  The giant, complex crystal structure of the intermetallic compound NaCd2. which has nearly 1200 atoms in its unit 

cell. Na atoms are shown in gray, Cd atoms in blue, and atoms at mixed sites in a weighted combination of gray and blue. Simple 

models of metallic atoms packing together to fill space efficiently fail to provide insight into such an intricate structure.

 

Because of this lack of simple bonding theory for intermetallics, quantum mechanical calculations 

would seem like the natural alternative: they do not require any prior assumptions about the chemical 

nature of a compound (e.g. if the atoms are held together by covalent, metallic, or ionic interactions) but 
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neither do they produce data that can be easily interpreted with intuitive chemical principles. As men-

tioned at the start of this Chapter, the tenants of quantum mechanics preclude a natural definition of 

atomic size. Even though all the necessary physical information should, in principle, be contained within 

the results of such a calculation, that information needs to be converted into something akin to the prac-

tical, empirical concept of atomic size in order to interpret the results with chemical intuition. 

 

1.2.  Connecting reality to theory 

In order to make progress toward this end, take a step back for a minute, and consider the essentially 

universal energy vs. distance curve shown in Figure 1.2a for the potential between two atoms. As the atoms 

approach each other from a long way apart (right to left on the abscissa), potential energy gradually de-

creases to a minimum at some ideal length, but at even shorter distances, the energy starts to exponentially 

increase as the core electrons on the two atoms overlap. This straightforward relationship between energy 

and interatomic distance for two isolated atoms makes the ideal distance easy to determine: whatever 

bond length is calculated to have the lowest total energy (using the term bond loosely). However, the 

situation becomes more ambiguous when there are many atoms interacting simultaneously. 

For simplicity’s sake, then, consider a uniform, two-dimensional layer of closest-packed atoms, as de-

picted in Figure 1.2b. Each atom is in an identical environment to every other one, meaning that it is pos-

sible for all interatomic distances to be optimized at the same time. In contrast, one of the gray atoms has 

been replaced by a smaller black one in Figure 1.2c. The six gray atoms around it have shifted closer to 

compensate for the change, but this movement also forces the gray atoms to be nearer to each other, 

shorter than their ideal in 1.2b. Since every interaction can no longer be optimized, internal stress occurs 
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in the structure: the black atom is too small for its coordination environment, but the six grey atoms are 

too large to get any closer. 

 

 

Figure 1.2.  An illustration of the connection between interatomic distance, energy, and chemical pressure. (a) The essentially 

universal potential for the interaction between two atoms. At some ideal distance, energy is minimized. (b) A two-dimensional 

layer of closest-packed atoms. All neighboring atomic contacts are equidistant to each other at the ideal length. (c) The same 

layer of atoms with one gray atom replaced by a smaller black one. Its six neighbors have shifted closer to compensate (blue 

lines), but in the process they have also become closer to each other (red lines). (d) The situation in (c) is represented by two 

potential energy curves with different ideal interatomic distances: longer for the gray contacts (red curve) and shorter for  the 

interaction between the black atom and a gray atom (blue curve). A compromise is reached at an intermediate distance, resulting 

in positive chemical pressure between gray atoms (negative slope on the red line) and negative chemical pressure all around the 

black atom (positive slope on the blue line).

 

The potential energy curves plotted in Figure 1.2d illustrate the situation in 1.1c. The red curve rep-

resents the energy between gray atoms, and the blue curve represents the interaction between the black 
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atom and its gray neighbors. Even though the two potentials suggest very different ideal distances, the 

actual interatomic distances in Figure 1.2c are equal (red and blue line segments), and thus, a forced com-

promise exists between the smaller black atom’s desire for contraction of the structure and the larger gray 

atoms’ desire for expansion to alleviate homoatomic repulsion. 

Up to this point, the black atom has been presupposed to be too small for its environment a priori, and 

then the effect that that would have on the local bond energy between neighboring atoms has been dis-

cussed. The opposite approach, though, is more pragmatic: calculate the energy among nearby atomic 

contacts to determine whether they are too close or too far from each other, and thus, whether they are 

too large or too small for their local coordination environments. 

However, while it may be standard to calculate the overall, total energy of a crystalline compound with 

current computational methods, there are two major issues in trying to determine the energy of specific 

atomic contacts. (1) Most components of the total energy cannot be neatly separated into contributions 

from individual atoms, and (2) the ideal energy between two atoms in any given chemical system is not 

known beforehand, so the bond energy alone – even if it could be extracted from the total energy – would 

not indicate whether interatomic distances are too long or too short. 
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1.3.  Chemical Pressure 

A solution to the second problem is suggested by the potential energy curve itself (Figure 1.2a). In 

order to determine whether a bond length is too long or too short for a pair of isolated atoms, the only 

necessary information is whether the interatomic distance falls to the left or to the right of the minimum 

energy, i.e. whether the slope of the potential at a given point on the curve is negative or positive, respec-

tively. An analytical solution for the slope would be quite difficult to ascertain in practice, but a numerical 

approximation of the first derivative requires only one additional energy calculation, by taking the differ-

ence in energy divided by the difference in distance. For a three-dimensional structure – where changing 

one interatomic distance affects many others – the analogous procedure is to take the difference in energies 

divided by the difference in unit cell volumes, one of which has been isotropically expanded or contracted 

to vary all interatomic distances simultaneously: 

𝑝𝑝𝑝𝑝ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = − �
𝜕𝜕𝜕𝜕𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝜕𝜕𝜕𝜕𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�
𝑆𝑆
≈ −

𝑈𝑈2 − 𝑈𝑈1
𝑉𝑉2 − 𝑉𝑉1

 

As Equation 1.1 shows, the change in total energy with respect to change in total volume corresponds 

to the macroscopic property of physical pressure (at fixed entropy),16 which typically sums to zero. For the 

purpose of approximating the first derivative of specific atomic contacts, however, the analogous localized 

quantity is deemed chemical pressure (CP): 

𝑝𝑝𝑝𝑝ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = �𝑝𝑝𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = � −�
𝜕𝜕𝜕𝜕𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝜕𝜕𝜕𝜕𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�
𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

≈ � −
𝑈𝑈2
𝑖𝑖𝑖𝑖 − 𝑈𝑈1

𝑖𝑖𝑖𝑖

𝑉𝑉2
𝑖𝑖𝑖𝑖 − 𝑉𝑉1

𝑖𝑖𝑖𝑖
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖≠𝑗𝑗

 

(1.1) 

(1.2) 
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Whereas physical pressure is the result of an externally applied force on a material, chemical pressure arises 

from the internal stress inherent to a crystal lattice. Positive CP indicates a steric repulsion between nearby 

atoms that favors expansion of the structure (such as between gray atoms in Figure 1.2c), and negative CP 

indicates an under-optimized bonding interaction that favors contraction of the structure (such as be-

tween the black and gray atoms). 

Now that a skeleton framework of how to convert total energy into information about interatomic 

distances has been discussed, the other major issue in Section 1.2 needs to be addressed: most compo-

nents of the total energy are not functions of individual atoms. Indeed, the definition of chemical pressure 

given in Equation 1.2 includes a currently undefined sum over the atoms and their pairwise interactions, 

but a partial solution can be found in a particular formulation of quantum mechanics called Density Func-

tional Theory (DFT).17-18 

DFT makes it possible to calculate most of the components of the energy on a grid of points in space 

as a function of the continuous electron density distribution instead of discreet atoms. This implies that 

Equation 1.2 can be rewritten in terms of three-dimensional grid points (volume elements called voxels) 

to create a map of the chemical pressure across the unit cell: 

𝑝𝑝𝑝𝑝ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = � 𝑝𝑝𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑥𝑥,𝑦𝑦,𝑧𝑧

≈ � −
𝑈𝑈2𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑈𝑈1𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑉𝑉2𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑉𝑉1𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑥𝑥,𝑦𝑦,𝑧𝑧

 

Equation 1.3 brings the CP method much closer to its original goal, but now the definition has lost the 

concept of atoms. 

(1.3) 
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As such, one final step is needed to recover the perspective of atomic interactions: allocation of the 

nearly continuous CP map among the atomic centers – bringing this discussion full circle. Everything up 

to this point was motivated by the fact that quantum mechanics does not have a natural way to specify the 

volume of an atom, and yet atomic boundaries must be chosen before the atoms’ more rigorous spatial 

influence can be determined with DFT-Chemical Pressure (DFT-CP) analysis. Therefore, much of the 

work described in the following chapters is focused on developing solutions to this crucial paradox. 

The efforts start with the demonstration of a space-partitioning scheme that largely negates the need 

to define atomic boundaries at all, instead defining contact volumes between pairs of neighboring atoms. 

This contact volume scheme undergoes increasingly more sophisticated refinements in later chapters, cul-

minating with a way to externally validate the resulting CP schemes with the phonon density of states. 

However, during this process of refining the contact volumes, insight into the softness or hardness of the 

phonon modes was gained almost on accident; the necessity of technical improvements to DFT-Chemical 

Pressure analysis led to a practical tool for identifying vibrational structure-property relationships in com-

plex intermetallic compounds. 

 

1.4.  Outline of thesis 

As already mentioned, a critical improvement to the DFT-CP methodology is introduced in the next 

chapter, in which the chemical pressure map is integrated over regions of space between atomic contacts 
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rather than around individual atoms. The utility of this switch to contact volumes – away from Voronoi 

cells and Bader basins – is demonstrated with Ca36Sn23, a structural derivative of the common W5Si3 type. 

The Ca36Sn23 structure is characterized by the insertion of a “defect” plane into the unit cell of the more 

basic structure that serves to relieve strong positive CP between Ca atoms. Additionally, isotropic core 

averaging is introduced as a way to reduce the amount of artificial CP around atomic centers in the map. 

In Chapter 3, DFT-CP is used to understand the chemical stability afforded by transition metal stuff-

ing atoms into an otherwise AuCu3-type lattice for several magnetic gallides, LnMnxGa3 (Ln = Ho-Tm, x 

< 0.15). The ability to “dope” transition metals into this set of compounds is rationalized by the need for 

shorter Ga-Ga interatomic distances, as evidenced by the prevalence of negative CP between them. The 

effect of the structural changes on the magnetic properties is also discussed, and some counterintuitive 

attributes are explained about strong negative CP, relative to the strong positive CP in Chapter 2. 

Major advancements to the DFT-CP methodology are described in detail in Chapter 4: most im-

portantly, core unwarping and Hirshfeld-inspired integration. Core unwarping replaced the isotropic core 

averaging procedure from Chapter 2 by explicitly correcting most of the artificial CP around atomic core 

regions through an interpolation of grid points to their original positions in the non-expanded/contracted 

unit cell. Likewise, Hirshfeld-inspired integration is an improved version of the contact volume scheme 

from Chapter 2 that uses atomic electron density profiles for determining the size and shape of the contact 

volumes, instead of a purely distance-based criterion. The dramatic effect of these changes on the CP 
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schemes of certain types of structures is demonstrated with several common AB2 and AB5 intermetallic 

phases. 

Another significant refinement of the Hirshfeld-inspired integration scheme is detailed in Chapter 5: 

phonon-calibrated ionic profiles. Whereas Hirshfeld-inspired integration in Chapter 4 accounted for the 

natural difference in the spatial extent of atoms for different elements, the use of ionic profiles – instead of 

neutral-atom electron density profiles – allows for differentiation between atoms of the same element that 

are in distinct chemical environments. The charges of the ionic profiles for a Laves phase, CaPd2, are cali-

brated to its phonon density of states, providing external validation of the resulting CP scheme. In turn, 

the CP scheme is used to interpret the full set of phonon modes at the Γ point in terms of local atomic 

interactions. Specific CP features, especially CP quadrupoles, are connected to soft and hard atomic mo-

tions. This knowledge is then applied to explain the trend in critical temperatures for the superconductor 

Nb3Ge and related materials, and to understand the wide diversity of structural derivatives that exist based 

on the CaCu5 structure type. 

Finally in Chapter 6, DFT-CP is once again applied to some transition metal gallides, ScTGa5 (T = 

Fe, Co, Ni), in demonstration of how the CP approach can be combined with reversed approximation 

Molecular Orbital (raMO) theory to probe the stability range of a particular structure type in terms of 

both atomic size and electron count simultaneously. The two analyses are used together to draw connec-

tions with more complex gallium compounds, rationalizing an entire series of structures that does not exist 

for the analogous indium superconductors. 
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The appendices provide Supporting Information for the chapters, including DFT-optimized geome-

tries of structures, computational parameters, and various technical considerations not included in the 

main chapters. Also included is the current source code for the CP analysis program. Recent developments 

have made it possible to use DFT calculations as input for the CP program that are spin-polarized or use 

Generalized Gradient Approximation (GGA) exchange-correlation functionals, although none of the CP 

schemes in this text required those functionalities. 

It remains to be seen what insights DFT-Chemical Pressure analysis could bring to other kinds of solid-

state materials. In principle, the CP methodology should be applicable to any system where a DFT calcu-

lation gives reliable results, because despite the technical complexities, it simply converts the existing en-

ergy data into chemical pressures between the atoms. By extracting local atomic interactions from the total 

energy, it restores the chemically intuitive concept of atomic size – revealing whether atomic contacts are 

too close or too far apart from each other – from unintuitive quantum mechanical calculations. Chemical 

Pressure analysis, while still young and untested in certain ways, has nonetheless provided a way forward 

toward understanding the origins of structural complexity in intermetallics, and moreover, toward identi-

fying the complex connections between crystal structure and materials properties. 
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Chapter 2. 

First-Principles Elucidation of Atomic Size Effects Using DFT-Chemical Pres-

sure Analysis: Origins of Ca36Sn23’s Long-Period Superstructure 

This chapter has been published: Engelkemier, J.; Berns, V. M.; Fredrickson, D. C. J. Chem. Theory Com-
put. 2013, 9, 3170-3180. The specific analyses detailed in this chapter were the work of Engelkemier, but 
contributions to the general theoretical developments described below and to the preparation of the 
manuscript were made by both Berns and Engelkemier.

 

2.1.  Abstract 

The space requirements of atoms are empirically known to play key roles in determining structure and 

reactivity across compounds ranging from simple molecules to extended solid state phases. Despite the 

importance of this concept, the effects of atomic size on stability remain difficult to extract from quantum 

mechanical calculations. Recently, we outlined a quantitative yet visual and intuitive approach to the the-

oretical analysis of atomic size in periodic structures:  the DFT-Chemical Pressure (DFT-CP) analysis. In 

this Chapter, we describe the methodological details of this DFT-CP procedure, with a particular empha-

sis on refinements of the method to make it useful for a wider variety of systems. A central improvement 

is a new integration scheme with broader applicability than our earlier Voronoi cell method: contact vol-

ume space-partitioning. In this approach, we make explicit our assumption that the pressure at each voxel 
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is most strongly influenced by its two closest atoms. The unit cell is divided into regions corresponding to 

individual interatomic contacts, with each region containing all points that share the same two closest at-

oms. The voxel pressures within each contact region are then averaged, resulting in effective interatomic 

pressures. The method is illustrated through the verification of the role of Ca-Ca repulsion (deduced ear-

lier from empirical considerations by Corbett and coworkers) in the long-period superstructure of the 

W5Si3-type exhibited by Ca36Sn23. 

 

 

Figure 2.0.  Intense chemical pressure between the calcium atoms in Ca5Sn3 can be identified in 2-D maps (left) and projec-

tions onto spherical harmonics. This pressure is relieved on altering the structure to increase the distance between calcium 

atoms, forming Ca36Sn23. 

 

2.2.  Introduction 

The concept of atomic size is frequently evoked in the rationalization of experimentally observed 

chemical phenomena. Examples across the broad spectrum of chemistry include the non-ideality of gases,1 

steric repulsion between alkyl groups influencing the outcomes of organic reactions,2 the radius ratio rules 
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for rationalizing the crystal structures of ionic salts,3,4 and the vibrational freedom of rattling atoms in clath-

rate- or skutterudite-based thermoelectric materials.5,6 Despite its rich history, the space requirement of 

atoms remains essentially an empirical notion, largely based on observed interatomic distances and the 

compilation of these observations in tables of atomic radii. While methods exist  for partitioning space 

between atoms, as offered by Bader’s Quantum Theory of Atoms in Molecules,7,8 theoretical approaches 

are needed for determining how a structure’s stability is affected by the encroachment of one atom upon 

another atom’s domain. Such methods would be valuable for verifying the role of atomic sizes indicated by 

empirical observations, and elucidating the specific ways in which these sizes wield their influence. 

For solid state inorganic compounds this need is pressing, particularly for intermetallic phases.  Since 

the pioneering work of Hume-Rothery, atomic size has been recognized as a key factor in the structural 

preferences of intermetallics.9-12 More recently, there has been an emerging theme of size effects interacting 

with electronic factors to determine the observed structural chemistry.13-17 Investigating such interactions 

is quite challenging, however, as the absence of bonding schemes tying composition to geometry makes it 

difficult to distinguish close contacts supported by substantial bonding from those that are in fact repulsive 

but forced together by the constraints of atomic packing. 

We recently outlined an approach for revealing local interatomic pressures that arise in such circum-

stances: the DFT-Chemical Pressure (CP) analysis,18 which offers theoretical insights into size effects and 

how they emerge from an electronic context. The DFT-CP analysis can be viewed as a chemical applica-

tion of the concept of stress density,19-24 in which the total pressure of a system is spatially resolved into a 

pressure map. Our approach differs from previous work in this area in two respects. First, rather than de-

riving analytical relationships between the ground state wavefunctions and the stress density, we focus on 



18 
 

 

developing a practical interface with electronic structure programs, particularly the freely-available, open 

source ABINIT package.25,26 This is achieved by taking the simpler method of numerically differentiating 

energy density grids obtained from a calculation’s output. The second difference is in our emphasis on the 

interpretation of the pressure maps. In moving away from considerations of the formalism of stress densi-

ties toward visualization of the conflicts underlying them, vivid schemes for the stability of intermetallic 

structures arise that are capable of inspiring new experimental endeavors. 

In this Chapter, we build on our earlier outline of the DFT-CP analysis. In the process of describing 

the methodological details of this approach, we will present improvements that develop the DFT-CP anal-

ysis into a generally usable tool for the analysis of bonding optimization in solid state materials. These 

improvements include a more meaningful treatment of the pressures observed in the regions of the ion 

cores, and a more reliable method for dividing space between the atoms during the integration of the pres-

sure maps. In addition, we will demonstrate the application of this improved analysis to an intermetallic 

system with interesting structural chemistry: that of the superstructure variants of the W5Si3 structure type 

in the Ca-Sn system. 

 

2.3.  Our model system 

As we develop the DFT-CP method in this Chapter, we will use the complex crystal structure of 

Ca36Sn23 (Figure 2.1) as a model system.27,28 This compound belongs to a family of intermetallics adopting 

long-period superstructures of the common W5Si3 structure type (Figure 2.1a).27-34 The W5Si3 parent 

structure is easily visualized as a checkerboard arrangement of columns of Si-centered W square antiprisms 
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and columns of W-centered Si tetrahedra. These two column types extend along the c-axis, with the square 

antiprisms and tetrahedra of each column linked through shared faces and edges, respectively. 

 

 

Figure 2.1.  The crystal structure of Ca36Sn23, whose stability has been attributed to the Ca-Ca repulsion that would occur in 

its W5Si3-type parent structure. (a) The structure of W5Si3. (b) The Ca36Sn23 structure, which is generated through the 

introduction of planar defects into the W5Si3-type at regular intervals perpendicular to c.

 

In Ca36Sn23 and a number of other phases, defect variants of the W5Si3 type are adopted in which planar 

interfaces are inserted perpendicular to c (as shown on the right side of Figure 2.1b). At each of these in-

terfaces, the progression along the columns of square antiprisms is interrupted by the incorporation of a 

cube. The columns of tetrahedra are similarly interrupted, with coordination of the interfacial Ca atoms 
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changing from tetrahedral to octahedral. In Ca36Sn23, these interfaces occur at regular intervals of six 

square-antiprisms along c, corresponding to three unit cells of the W5Si3 basic structure. For other mem-

bers of this family, other interface distributions are observed (Figure 2.2). In the structures of Ca31Sn20 and 

Pu31Pt20, the interface layers are separated from each other by slabs of the W5Si3 type five square antiprisms 

thick. For Y3Rh2 and Ca16Sb11, the slab thickness decreases to respectively three and two square antiprisms. 

 

Figure 2.2.  A family of long-period superstructures of the W5Si3 type with regularly spaced planar interfaces perpendicular to 

the c axis. 
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The gradual shrinking of the W5Si3-type domains across this series is an impressive illustration of the 

structural flexibility obtained in intermetallic phases, and raises the question of what driving forces moti-

vate such progressions. For this particular series, Corbett and coworkers have provided a plausible expla-

nation for the instability of the simple W5Si3 type in, for instance, the Ca-Sn system: in a hypothetical 

Ca5Sn3 phase, the neighboring Ca atoms in the tetrahedral chains would be expected to have unusually 

short distances to each other (3.3 Å, by our estimation; see Figure 2.3), suggesting that the Ca atoms may 

be too large for their coordination environment.34 The interfaces in the observed superstructures in this 

series could serve to alleviate interatomic repulsion at such contacts. 

 

 

Figure 2.3.  The model of Corbett et al. for the instability of the W5Si3-type structures in phases with large electropositive atoms 

at the W-type positions, illustrated with Ca5Sn3. The placement of Ca in the edge-sharing tetrahedral chains running along c 

leads to uncomfortably close Ca-Ca contacts. The superstructures of the W5Si3 type observed in these systems are hypothesized 

to relieve interatomic repulsion at these contacts. 
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Atomic size thus appears to be playing a part in the structural series of Figure 2.2. How might electronic 

structure calculations be used to support and inform this view? Over the course of this paper, we will see 

that the DFT-Chemical Pressure analysis provides a first-principles approach to this problem, which re-

veals in graphical and intuitive terms not only the Ca-Ca repulsion in a hypothetical W5Si3-type basic struc-

ture, but also its release upon moving to the observed Ca36Sn23 structure. A first step will be introducing 

some improvements to the original DFT-CP scheme described earlier, which makes the method more 

amenable to systems with atoms of very different sizes and valence electron counts. 

 

2.4.  Computational procedures 

For all calculations on Ca36Sn23 and a hypothetical W5Si3-type Ca5Sn3 phase, two planewave-based 

DFT codes were used because of their complementary strengths. The Vienna Ab initio Simulation Pack-

age (VASP)35,36 was used for the geometrical optimization of the two structures due to the highly efficient 

potentials provided with the package, requiring relatively low energy cut-offs. The geometrical optimiza-

tions were performed in two steps: first the ion positions were optimized within a unit cell of fixed dimen-

sions, then all structural parameters were optimized simultaneously. All calculations used the local-density 

approximation (LDA), and were carried out in the high precision mode, corresponding to an energy cutoff 

of 106.4 eV. The calculations employed 4×4×8 and 4×4×2 Monkhorst-Pack k-point meshes37 for Ca5Sn3 

and Ca36Sn23, respectively, and the ultrasoft pseudopotentials provided with the package.38 

The ABINIT package25,26 was used for generating the necessary data for the DFT-CP analysis of the 

VASP-optimized structures, because of the exquisite degree of detail and transparency in its output. For 
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each structure, the raw data for the CP analysis was obtained through three single-point calculations span-

ning a volume range of 0.6%. The calculations employed the LDA exchange-correlation functional of 

Goedecker, Teter, and Hutter,39 and the Hartwigsen-Goedecker-Hutter (HGH) pseudopotentials pro-

vided with the package.40 The energy cutoff was set to 816 eV for the calculations on Ca36Sn23 and Ca5Sn3 

when the valence-only Ca HGH potential was used. For Ca5Sn3, calculations were also carried out using 

the semicore Ca HGH potential; here the energy cutoff was set to 1088 eV. These values were found to 

converge the energy of formation of the hypothetical Ca5Sn3 phase to less than 0.5 meV/atom. Monkhorst-

Pack k-point meshes37 distributing 4×4×2 and 4×4×8 points through the Brillouin zone were used for the 

Ca36Sn23-type and W5Si3-type phases, respectively. The spacing of the voxels (determined by the fast Fou-

rier transform grids) was set to 108×108×192 and 108×108×72 grids for Ca36Sn23 and Ca5Sn3, respectively. 

 

2.5.  Creating chemical pressure maps 

To set-up the discussion of our improvements to the DFT-Chemical Pressure (CP) scheme and its 

application to Ca36Sn23, let’s briefly review the method. The basis of the DFT-CP analysis is the electronic-

packing frustration model (Figure 2.4) for the interaction of electronic interactions and atomic size in con-

densed matter systems.41,42 Dense atomic packing constraints can lead to correlations between interatomic 

distances within a structure. Such correlations make it difficult to independently optimize the interactions 

between different pairs of atoms. The size of atoms becomes manifest when the formation of a chemical 

bond at one contact requires shortening at other contacts for which there is not sufficient electronic sup-

port. Such tension would be expected to result in non-optimal interatomic distances (Figure 2.4b) and 
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local pressures acting between the affected atoms, which might be referred to with the term chemical pres-

sure (CP) to distinguish them from physical pressures exerted on the system externally. 

 

 

Figure 2.4.  Non-ideal interatomic distances and local chemical pressures resulting from electronic packing frustration (EPF). 

(a) A schematic illustration of the electronic packing frustration model. Reproduced from Ref. 39 with the permission of the 

American Chemical Society. (b) The compromise between the need for contraction along some contacts (A) and expansion 

along others (B) leads to non-optimal distances. The slope of the energy vs. distance curves at the observed distance is related 

to a local pressure acting at that contact. 

 

The formalism of the quantum mechanical stress density19-23 offers one approach for determining how 

such pressures are distributed in a crystal structure. In the DFT-CP analysis, a simpler avenue is taken, in 
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(2.3) 

which the structure is divided into a grid of voxels (small finite volume elements) and the pressure experi-

enced by each voxel is calculated as follows. 

We begin with the expression for the total energy for a system calculated with Kohn-Sham DFT:43 
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In this expression, the terms under the integral represent the kinetic energy of the system and the local 

contributions to the potential energy, measured relative to the reference state of an exchange-correlation-

free homogeneous electron gas interacting with the ion cores. Outside the integral, the EEwald+Eα terms 

together give the energy of that reference state, and Enonlocal provides the potential energy resulting from any 

nonlocal components of the atomic pseudopotentials (an additional term E-kT·Entropy can be added to correct 

the total energy from any smearing of the band occupancies about the Fermi energy). 

The next step in the determination of the DFT-CP distribution is to recognize that the Etotal expression 

has the form of the integral over an energy density plus a remainder: 
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which can be represented more conveniently for numerical work as a sum over an grid of voxel energies 

plus a remainder: 
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(2.4) 

where Nvoxels is the number of voxels into which the unit cell volume (Vcell) is divided, and Vvoxel is the volume 

of each voxel, i.e. Vvoxel = Vcell/Nvoxels. 

Once the total energy is mapped spatially in this way, a similar spatial distribution of the pressure is 

obtained by taking the negative derivative of Etotal with respect to Vcell: 
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so that the total pressure experienced by the structure, P, becomes resolved into an average over the voxel 

pressures (Pvoxel,n) plus a remainder pressure arising from the components of the total energy.44 In practice, 

this differentiation is performed numerically by constructing energy grids from the output of ABINIT 

calculations25,26 on a structure at two slightly different volumes, taking the difference, and dividing by the 

difference in voxel volumes. 

What then is the Premainder term? In Section A.1 of the Supporting Information, we describe how in prin-

ciple the pressure contributions from EEwald, Eα, and Enonlocal can be apportioned among the atoms or intera-

tomic regions of the structure. However, in each case, one encounters an unacceptable degree of ambiguity 
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in applying the procedure which leads to unreliable results. Through work with several intermetallic sys-

tems, we have concluded that the best treatment of Premainder is also the simplest: we consider it as corre-

sponding to a homogeneous background pressure, which can then be added to each of the voxel pressures. 

 

 

Figure 2.5.  Cross-sections of the chemical pressure (CP) map of a hypothetical W5Si3-type Ca5Sn3, taken through the x=0 

plane. The cross-sections are shown (a) before and (b) after flattening of the spherically symmetric oscillations emanating from 

the ion cores. Black contours corresponding to CP=0 are overlaid on the map. See text for details. 

 

For metallic phases lacking localized bonds, the pressure grids resulting from this procedure tend to 

have high-magnitude features near the nuclear positions, occurring in the midst of relatively flat negative 

background pressure. This is illustrated for a hypothetical W5Si3-type phase Ca5Sn3 (the parent structure 

of the more complex Ca36Sn23 structure we discussed above) in Figure 2.5a. Here, cross-sections of the CP 
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map are taken perpendicular to the a-axis and centered on the unusually close Ca-Ca contacts. The pres-

sures in the map are indicated using colors ranging from dark blue (-900 GPa) to red (+2100 GPa). The 

most vivid variations in color occur near the nuclear positions, where negative pressures at the atom cen-

ters give way to intense positive pressures slightly further out, arranged in a ring for the Sn and in a cross 

for the Ca. As the distance from the nuclei increases, the voxel pressures gradually converge on a relatively 

flat background pressure. 

 

2.6.  Isotropic core component averaging 

The presence of strong CP oscillations emanating from the ion cores poses a number of problems for 

the interpretation of the CP maps. First, the magnitudes of the pressures encountered during these undu-

lations dwarf those appearing in the interatomic regions of the map. This makes more subtle features of 

the map difficult to detect. A second undesirable aspect of these oscillations is that they tend to mask any 

directional dependence of the pressures in the core region, as might emerge from an interatomic interac-

tion. Finally, as the core region contains both large positive and negative pressures, it is difficult to gauge 

the net pressure near the nucleus. As we are using pseudopotentials, the question of how seriously to take 

these oscillations is important. They occur largely in the pseudopotential core regions, where the corre-

spondence is weakest between the true wavefunctions of the system and the pseudo-wavefunctions of the 

calculation. In other words, their specific forms are artificial products of the atomic pseudopotentials. 

The form of the pseudopotential near the core is typically chosen to be mathematically convenient 

while still reproducing key atomic properties. Likewise, we can substitute the oscillatory CP features with 
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(2.5) 

(2.6) 

(2.7) 

a simpler CP distribution that captures the same net pressure and directional dependence upon integra-

tion over the core region. In order to accomplish this, we have developed an isotropic core component aver-

aging procedure for use in the generation of DFT-CP maps. 

We begin by choosing a radius for the core region of an atom, typically about 1.0 Å. The voxels within 

this distance of the nuclear position will be subject to this procedure while all others will be left un-

changed. Next, the pressure for any voxel in the core region, say the nth voxel in the grid, is written in terms 

of its deviation from the average P for that voxel's distance from the nucleus, rn-ion = | n,voxelr – ionR


 |: 
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In other words, the core voxel pressures are written as the sum of an anisotropic function, representing the 

directional dependence of the core pressures, and a spherically symmetric function. 

The oscillations around the core occur predominantly in the latter function, the isotropic core com-

ponent. These can be removed by simply replacing the values of this function with its average within the 

core region: 
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In this way, the modified voxel pressures are calculated as 
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Under this transformation, both the anisotropic component and the average of the isotropic function 

are left unchanged. As such, the net pressure within the core region and the directional dependence are 

preserved. 

In Figure 2.5b, we replot the DFT-CP cross-section of the hypothetical Ca5Sn3 structure through the 

x=0 layer, this time with the isotropic core component averaging applied with core radii of 0.8 Å for Ca 

and 1.3 Å for Sn. For both atom types, there is significant reduction in the variation of pressures in the core 

region. In the case of Sn, the ripples of color are now replaced with a virtually uniform cyan, corresponding 

to a slightly positive pressure, distributed over large circles with pixilated edges. This pixilation marks the 

discontinuous change in the CP distribution upon leaving the averaged core region. This offers a much 

more straightforward view of the Sn's core pressures than the untreated CP map of Figure 2.5a: the Sn 

cores have net positive pressures which are essentially isotropic. 

The Ca cores in this plot become similarly smoother. Upon averaging over the spherically symmetric 

components, the blue cores at the atom centers disappear, yielding a distribution that is uniformly posi-

tive. A highly anisotropic character to the Ca core also becomes more apparent. Red spots appear just 

above and below the Ca nuclear pressures, indicating colossal positive pressures of 1800 GPa. These pos-

itive CP features lie along the unusually short Ca-Ca contacts of the structure (2.96 Å in our LDA-DFT 

optimized geometry), to which Corbett and coworkers attributed the nonexistence of this com-

pound. This is the first of several indications we will see in the DFT-CP analysis of this system of the truly 

repulsive nature of the interactions at these contacts. 

Another difference between the CP maps of Figures 2.5a and 2.5b is notable. Upon removing the os-

cillatory character of the core pressures, the pressure range seen in the structure shrinks from 3000 GPa 
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(2.8) 

down to 2250 GPa. This 750 GPa reduction in the pressure range captured by the color map allows for a 

greater contrast between features in the space outside of the cores, although in this case the repulsive char-

acter of the Ca-Ca contacts remains the most striking aspect of the map. 

 

2.7.  Integration and projections of the CP distribution around atoms  

The results of the isotropic core component averaging described in the last section reinforce the view 

of the CP distribution as consisting of core regions with net positive pressure immersed in a background 

of negative pressure. Interpreting the overall pressure exerted by the interatomic contacts on each atom 

then requires an integration of the pressure map and its directionality around the atom’s position. 

The angular dependence of the pressure distribution surrounding an atom plays a central role here. 

Because of this, we will now describe in detail our procedure for determining the pressures experienced by 

the atoms along different directions. This process begins with a projection of the CP distribution onto 

spherical harmonics as follows: 

∑=
n

nnl.mnvoxel,atomn,
atomvoxels,

lm )φ,(θYPw
N

1
a

     

where wn,atom is the fraction of voxel n’s pressure that is attributed to the atom in question, Nvoxels,atom = ∑nwn,atom 

is the number of voxels belonging to the atom, and (θn, ϕn) are the angular components of the spherical 

polar coordinates of voxel n with the origin being the atom’s nucleus. The projections alm can be used to 

reconstruct this angular distribution—or the chemical pressure anisotropy, CPaniso(θ, ϕ), of the atom—

where all pressure contributions are now mapped onto the unit sphere: 
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with lmax being the l index of the highest order spherical harmonics to be included in the projection. 

 The interpretation of this function is made clear by taking a closer look at the a00 coefficient. As Y0,0 = 

1/(4π)½, a00 is simply calculated as 
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where Patom is the nominal average pressure experienced by the atom. The summation of terms giving rise 

to the CPaniso(θ, ϕ) function then begins as 
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In this way, the higher order terms describe how the CP anisotropy function differs from a sphere whose 

radius is proportional to the average pressure of the atom. 

The role of the 1/4π factor in Equation 2.11 can be understood by taking the integral of the function 

over the unit sphere. In this case all of the higher-order terms integrate to zero, and we are left with 
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(2.13) 

(2.14) 

The integral thus recovers the average pressure for the atom. The factor sin(θ)dθdϕ/4π can then be 

thought of as a weight in averaging over the sphere. 

We now arrive at a straightforward means of interpreting the numerical values of the CPaniso(θ, ϕ) func-

tion: Multiplying the function by 4π yields the net pressure experienced along each direction,  Patom(θ, ϕ), 

i.e. 
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Once the Patom(θ, ϕ) function is calculated, it can be easily represented graphically using radial plots, as 

in Figure 2.6. In these images, a CP surface is plotted on each atom, with the distance of the atom to a point 

on the surface with coordinates (θ, ϕ) being proportional to the magnitude of the CP experienced along 

that direction. The signs of the pressures are given by the color of the surface. Black features in the plots 

correspond to directions along which contraction is favorable (evoking the image of a black hole pulling 

inwards on its surroundings). Lobes in white indicate directions for which expansion is desired (by anal-

ogy with the bright radiance of white hot stars). 

There are two parameters involved in the creation of such plots: the lmax value and the form of the 

weighting scheme leading to the wn,atom values. lmax simply determines to what detail the angular distribu-

tions of the CP map is captured. From our experience, setting lmax beyond 4 or 5 substantially increases the 

processing time without leading to any significant changes in the qualitative pressure schemes. For this 

reason, we use 4 here for the upper limit. The selection of the scheme for distributing the voxel pressures 

among the atoms is a more involved issue, and is the focus of the next section. 
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2.8.  The contact volume integration scheme 

In the projections of the CP map described above, a key parameter is the way in which the structure is 

divided among the atoms. For the Sr-Ag and Ca-Ag structures we examined earlier,18 we tested several 

schemes for this, including the use of fixed spheres around the atomic positions, the division of space into 

Voronoi cells45 (wn,atom=1 if voxel n is within the Voronoi cell of the atom), and the atomic domains revealed 

through the use of Bader’s Quantum Theory of Atoms in Molecules.7,8 For these cases, the Voronoi cell 

approach provided results that were easiest to interpret, in that the CP surfaces on pairs of atoms agreed 

most closely in their signs and magnitudes along the vector separating them. Unresolved is whether the 

Voronoi scheme works in all cases, and if not, what would provide a more robust partitioning of space. 

In Figure 2.6a, we explore this question by showing CP anisotropy surfaces calculated for a W5Si3-type 

Ca5Sn3 phase, the hypothetical parent to the complex Ca36Sn23 structure, integrated with the Voronoi 

scheme. The results are shown using two Hartwigsen-Goedecker-Hutter pseudopotentials for Ca available 

with the ABINIT package, to explore how stable the CP picture is to changes in the modeling of the core 

regions of the atom. The calculation leading to the image in the left panel employed the semicore Ca po-

tential, in which the usual Ca 4s2 set of valence electrons is expanded to include lower energy 3p6 and 3s2 

electrons, for a total of 10 valence electrons/Ca atom. The right panel shows the result using the valence-

only potential, in which just the Ca 4s2 electrons are considered explicitly. 

Similarities and differences between the two plots occur. In both cases, the surfaces on the tetrahe-

drally-coordinated Ca atoms exhibit white lobes pointing across the shared tetrahedral atoms toward their 

Ca neighbors. This indicates that positive, repulsive pressures occur at these contacts, as is consistent with 

the unusually short Ca-Ca distances here (2.94 Å in our LDA-DFT optimized structures). However, the 
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shapes of these calcium CP surfaces differ dramatically. For the Ca semicore calculation, triangular positive 

pressure lobes, resembling the bodies of squid, point toward the neighboring Ca atoms. In the valence-

only Ca result, long, nearly cylindrically symmetric lobes appear in these places instead. Additional posi-

tive pressure features occur around the equator of the CP anisotropy surfaces. 

The remaining features in the plot are more difficult to interpret. The Sn atoms appear with black 

bulbous surfaces, but whose relative sizes and shapes vary between the two plots. For the two results a 

similar story emerges of Ca-Ca repulsion against a backdrop of the other interactions, but the inconsisten-

cies indicate that the Voronoi approach is rather sensitive to the details of the treatment of the core region. 

A more basic drawback of using the Voronoi approach in this system can be seen by beginning with 

points on the black Sn surfaces in either image and following some of these directions toward the neigh-

boring Ca atoms. In many cases the black Sn surfaces point to white features on Ca surfaces. Along the Ca-

Sn contacts, then, we see desires for contraction on the Sn and for expansion on the Ca. Missing here is an 

immediate answer to the issue of whether these Ca-Sn contact distances are too long or too short.

Unlike the Ca-Ag and Sr-Ag structures we examined earlier, it appears that drawing boundaries be-

tween atomic cells at the mid-points between contacts is too crude of an assumption for this system. One 

could imagine moving the boundaries back and forth to make the atomic cells better reflect the relative 

sizes of the atoms. Such a procedure is included in our latest version of the CPintegrate program, using the 

additively-weighted Voronoi method.45 We have found, however, that this approach is of limited use, par-

ticularly when examining combinations of atoms with very different numbers of core-like electrons in their 

valence sets. 
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Figure 2.6.  The dependence of the chemical pressure (CP) anisotropies of atoms in the hypothetical Ca5Sn3 structure on the 

method of dividing voxels among the atoms, employing Ca pseudopotentials treating semicore electrons explicitly (left 

column) and as part of the pseudopotential core (right column). The CP distribution around each atom is shown as a radial 

plot, with the distance between the atom’s nucleus and a point on the surface being proportional to the pressure magnitude 

along that direction. The color of the surface indicates the sign of the pressure: black for negative, white for positive. The plots 

are shown for results obtained when (a) dividing space into the Voronoi cells of the atoms, (b) dividing space into contact 

volumes, within which the distributions are averaged before carrying out the projections, and (c) applying the contact volume 

scheme to a CP map that has undergone isotropic core component averaging. The final method yields the greatest agreement 

between the two calculations using different models for the Ca core. The scales of the CP surfaces in the various panels are 

chosen for maximum clarity rather than consistency. 
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A first step toward a more generally useful integration scheme is to clearly express our assumptions 

about how the CP map should be interpreted. While the pressure calculated for each voxel in the unit cell 

is a function of the full electronic structure of the compound, we expect that the atoms closer to a voxel 

will play larger roles in determining its pressure. For the purposes of interpreting the CP map in terms of 

pair-wise interatomic interactions, we will assume that a voxel’s pressure is an expression of the interaction be-

tween its two closest atoms. The involvement of other atoms in that voxel’s pressure will appear as modula-

tions to the degree of optimization of that specific interatomic interaction. 

Once this assumption is articulated, a straightforward approach emerges to obtaining CP anisotropy 

surfaces that are reflective of the net interactions between an atom and its neighbors. We begin by dividing 

the unit cell into regions of space whose voxels are associated with the same interatomic contact, regions 

which we will refer to as contact volumes. We then average the pressures of the voxels within each contact 

volume to obtain average interatomic pressures.46 Next, in order to evenly distribute the pressures between 

the atoms at each contact, the individual voxel pressures are replaced with the average pressures for their 

contact volumes. Finally, the voxels are assigned with a weight of one half to both atoms of their contacts, 

and the projections described in the last section are carried out. 

The CP anisotropy surfaces resulting from the application of this contact volume integration scheme 

are presented in Figure 2.6b, where the agreement between the semicore Ca and valence-only Ca results is 

substantially improved. In particular, the shapes of the positive pressure lobes along the short Ca-Ca con-

tacts are now quite similar. Also, the placement of these black and white lobes now appears to be coordi-

nated between the atoms. In going through the structure contact by contact, one finds that in each case the 

CP anisotropy surfaces on both sides of interatomic vectors are the same color. In particular, the majority 
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of the contacts between atoms of different layers along the c-direction appear with black CP lobes. These 

contacts are overly long and call for the contraction of the structure’s c-axis. Such contraction is prevented, 

of course, by the strained Ca-Ca contacts within the tetrahedral chains. 

The largest difference between the semicore and valence-only results is perhaps in the CP surfaces on 

the Sn atoms with square-antiprismatic coordination. For the semicore calculation, functions resembling 

dz2 orbitals appear on these Sn atoms, with black lobes pointing up and down toward the Sn atoms in 

neighboring antiprisms, and a white torus of positive pressure directed at the surrounding Ca atoms. On 

moving to the valence-only result, these Sn CP anisotropy surfaces virtually vanish. In looking closely at 

the image, a tiny black dumbbell is barely visible at each of these sites. 

This difference can be partially bridged with the application of the isotropic core component averaging 

procedure discussed earlier. This is shown in Figure 2.6c using the core radii of 0.8 and 1.3 Å for Ca and 

Sn, respectively. The vertical lobes of dz2-like surfaces for the Sn atoms in the semicore calculation have 

grown at the expense of the torus, leading to a surface more closely approximating a black dumbbell. Mean-

while, the black dumbbell of the valence-only calculation has grown closer to the sizes of the black lobes 

on the semicore result. 

At this point, one could imagine making refinements on the contact volume scheme to further im-

prove the agreement between the two choices of pseudopotentials. Indeed, the assumption that each voxel 

is influenced by its two closest atoms is crude in several ways. It neglects the differing sizes of atoms of 

different elements, and has the potential to coarsely cut off the influence of other neighboring atoms that 

might be only slightly further out. In the newest version of our CPintegrate program, we have included 
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preliminary code for a scheme in which Hirshfeld weights47 are used in determining the relative im-

portance of the contacts that a voxel could participate in. For Ca5Sn3, this yields pictures similar to those 

of Figure 2.6c, but the option is still under development. 

Even with its simplistic assumptions, the contact volume scheme offers a much clearer picture of the 

competing interactions within Ca5Sn3 than the Voronoi scheme. In the application of the DFT-CP method 

to a number of intermetallic phases, we have seen that these results are representative: in each case the 

contact volume integration scheme provides a chemically-meaningful interpretation of the CP map. 

 

2.9.  Chemical pressure analysis of Ca36Sn23 

In the above sections, we worked through the technical details of the DFT-CP analysis and refine-

ments to the method to improve its generality. Having built this foundation, we will now demonstrate the 

use of this approach in the theoretical investigation of the experimentally-deduced role of size-effects in 

solid state structures. As a model system we will use the superstructure series based on the insertion of 

planar interfaces into the W5Si3 type (Figures 2.1 and 2.2). The driving force for such superstructure or-

dering was hypothesized by Corbett et al. to be the presence of overly short contacts between the larger, 

more electropositive atoms in the centers of the edge-sharing tetrahedra in the basic structure (Figure 2.3). 

As a first step in exploring this idea, let’s look again at the CP distribution in a hypothetical W5Si3-type 

Ca5Sn3 phase, as would arise from removing the interfaces from the Ca36Sn23 or Ca31Sn20 structures. In 

Figure 2.7a, we show the LDA-DFT optimized structure of this phase (using the valence-only Ca pseudo-

potential), overlaid with its atomic CP anisotropy surfaces. 
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Figure 2.7.  Comparison of the DFT-chemical pressure (CP) distributions in (a) a hypothetical W5Si3-type Ca5Sn3 phase, and 

(b) the observed superstructure variant Ca36Sn23. See the caption of Figure 2.6 for plotting conventions. The CP surfaces of 

panels a and b are plotted at the same scale, allowing direct comparison of their features. 

 

For the most part, the features of the plot appear very small. The exception occurs in the chains of 

edge-sharing tetrahedra: for the Ca atoms at the tetrahedral centers, large white lobes are pointing up and 

down toward the Ca atoms in the neighboring tetrahedra (right panel). These are the largest lobes in the 

structure, corresponding to a positive pressure of 176 GPa. As these lobes occur along the Ca-Ca contacts 

in the tetrahedron chains, this suggests that the Ca-Ca distances within these chains are overly short. 

Expansion of the structure to alleviate these positive pressures would then be desirable. However, such 

a response is prevented by the remainder of the structure, which appears decorated by small, black negative 
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pressure features. These results confirm the model of Corbett and coworkers of the W5Si3 structure type 

being destabilized by the presence of large electropositive atoms in the tetrahedron centers. 

How might the insertion of interfaces relieve these positive pressures experienced by the tetrahedrally-

coordinated Ca atoms? Symmetry plays a role in the CP situation of these atoms. The contacts above and 

below each Ca are equivalent by the mirror planes of the W5Si3 type’s space group, I4/mcm. Moving up-

wards away from the Ca atom below would increase the positive pressures along the contact above, and 

vice versa. The insertion of a defect plane either above or below a Ca atom would break this stalemate by 

providing open space for the atom to move into. 

In Figure 2.7b, we test this expectation by plotting the CP anisotropy surfaces for the Ca36Sn23 struc-

ture, in which interfaces cut the Ca5Sn3 structure into 3-unit-cell-thick slabs. The right panel of Figure 2.7b 

focuses on the region near one of the interfaces. Red bars are used to connect the Ca atoms corresponding 

to tetrahedrally-coordinated Ca atoms in the hypothetical Ca5Sn3 phase. Along these red bars, the vertical 

white lobes corresponding to Ca-Ca repulsion have essentially vanished, with the exception of those fur-

thest from the interface at the top and bottom of the panel. 

As is shown in Figure 2.8, a comparison of the Ca coordination environment in the tetrahedral chain 

in the hypothetical Ca5Sn3 phase with those in Ca36Sn23 allows for this chemical pressure release to be 

framed in familiar chemical terms. In Ca5Sn3, these atoms lie at the centers of edge-sharing tetrahedra of 

Sn. As is well-known from Pauling’s rules,48 the shared edges between tetrahedra force the tetrahedral cen-

ters into close proximity. The tetrahedral coordination environments of large atoms are thus expected to 

avoid fusing at edges. It would appear that Ca@Sn4 tetrahedra lie in this category. 
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Figure 2.8.  Chemical pressure release in the chains of Ca-centered tetrahedra on going from (a) the hypothetical W5Si3-type 

Ca5Sn3 to (b) the observed structure of Ca36Sn23. Note that on going from (a) to (b) larger Ca-Ca distances are achieved by 

replacing edge-sharing tetrahedra with edge-sharing octahedra. As in Figure 2.7, the same scale is used for all CP surfaces. For 

plotting conventions, see the caption to Figure 2.6. 

 

In the corresponding regions of Ca36Sn23, a simple solution to the issue of Ca-Ca repulsion is found. 

Each interface bisects a Ca-Ca pair in the tetrahedral chain and places four additional Sn atoms between 

them. Through the incorporation of these Sn atoms, the edge-sharing tetrahedral arrangement is con-

verted to a pair of edge-sharing octahedra. This configuration is expected to be much less sterically de-

manding: the ideal Sn-Ca-Sn angles in these polyhedra decrease from 109.5° in the tetrahedra to 90° in the 

octahedra. As a result, the polyhedral edges occur further out from the centering Ca atoms, and the Ca-Ca 
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distances between neighboring polyhedra are substantially increased. This provides relief to the repulsive 

CPs between the Ca atoms at the interface (between which no positive CP lobe is apparent in Figure 2.8b), 

but also to the Ca atoms deeper in the W5Si3-type slabs which are free to relax toward the space provided 

by the octahedral Ca atoms. 

In the Ca-Sn system, the appearance of planar interfaces in the W5Si3 type, as in Ca36Sn23 and Ca30Sn21, 

can thus be seen as driven by chemical pressure. The picture which emerges from this analysis confirms 

the insightful model of Corbett et al. for this family of superstructure phases, and illustrates how DFT-CP 

analysis allows for the theoretical investigation and confirmation of hypotheses based on atomic size ef-

fects. 

 

2.10.  Conclusions 

In this paper, we develop the idea behind DFT-chemical pressure (CP) analysis into a general tool for 

analyzing the role atomic size has in shaping the structures of solid state materials. We described several 

improvements over our earlier outline of the method, including (1) the use of isotropic core component 

averaging to make the essential CP features in the ion core regions more apparent in the CP maps, and (2) 

the creation of the contact volume integration scheme, in which interatomic interactions appear as mutu-

ally attractive or repulsive from the points of view of the participating atoms. The revised DFT-CP ap-

proach was then applied toward revealing the origin of the Ca36Sn23 structure, a superstructure variant of 

the W5Si3 type. 
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  Our analysis of Ca36Sn23 confirmed the empirically-derived model of Corbett et al. for this family of 

structures: a hypothetical W5Si3-type Ca5Sn3 phase would have chains of edge-sharing Ca-centered Sn tet-

rahedra, i.e. (CaSn4/2)∞, which would enforce unreasonably short Ca-Ca distances. Large positive CPs oc-

cur along these Ca-Ca contacts, indicating that the distances are indeed overly short. An advantage of the 

DFT-CP approach is that further details can be seen in how these distances are constrained by the remain-

der of the structure. For Ca36Sn23, the predominant features apart from the short Ca-Ca contacts are small 

black lobes pointing along a variety of interactions. Such details provide clarity and precision to the useful 

concept of “matrix effects.”49-51 

The DFT-CP analysis joins a number of other theoretical tools for extracting chemical insight from 

electronic structure results on solid state structures. Methods in common use include the crystal orbital 

overlap and Hamiltonian population analyses (COOP and COHP);52-54 the electron localization function 

(ELF) and its successor, the electron localization indicator (ELI);55-59 and the analysis of electron density 

features using the quantum theory of atoms and molecules (QTAIM).7,8 How does the DFT-CP analysis 

relate to these analytical tools? 

A common feature of each of the other tools listed above is that they explore the presence or strength 

of bonding interactions in a system with a given geometry. For example, the COHP analysis for a contact 

quantifies the strength of that interatomic interaction, and whether this interaction would be strengthened 

or weakened by a change in the electron count of the compound. Similarly an ELI analysis reveals at what 

points in the structure electron pairs tend to be localized, which can then be correlated with the presence 

of bonds or lone-pairs. 
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The DFT-CP analysis provides complementary information: by determining the pressures at work at 

each interatomic contact, it reveals to what extent the bonding strength is optimized with respect to inter-

atomic distances. Examining the geometrical arrangements made by these pressures throughout a struc-

ture can point to where frustration arises in the optimization of these interactions, and where structural 

transformations may be necessary. These insights may contribute to materials design principles, growing 

out of a tighter integration of the roles of electronics and atomic sizes in our understanding of solid state 

compounds. 
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Chapter 3. 

Filling in the Holes: Structural and Magnetic Properties of the Chemical Pres-

sure Stabilized LnMnxGa3 (Ln = Ho-Tm; x < 0.15) 

This chapter has been published: Fulfer, B. W.; McAlpin, J. D.; Engelkemier, J.; McCandless, G. T.; Pres-
tigiacomo, J.; Stadler, S.; Fredrickson, D. C.; Chan, J. Y. Chem. Mater. 2014, 26, 1170-1179. The theoret-
ical analysis in this chapter was the work of Engelkemier and Fredrickson. All of the experimental meas-
urements and results were made by Chan and coworkers.

 

3.1.  Abstract 

Single crystals of LnMnxGa3 (Ln = Ho–Tm; x < 0.15) were grown from a Ga self-flux. These compounds 

crystallize in a variant of the AuCu3 structure type where Mn partially occupies the Ga6 octahedral holes. 

Introduction of the Mn guest atoms allows for modulation of the structures and magnetic properties of 

their hosts: While TmGa3 orders antiferromagnetically at ~4.2 K, TmMnxGa3 (x = 0.05, 0.10) remains 

paramagnetic down to 1.8 K. Ho and Er analogs order antiferromagnetically, with effective moments and 

Néel temperatures, respectively, decreasing and increasing as a function of Mn concentration. DFT-

chemical pressure analysis elucidates the trends in the stability of LnGa3 AuCu3-type phases and their 

stuffed derivatives. Guest atom insertion supports expansion of the filled octahedra, allowing relief of neg-

ative chemical pressures in surrounding Ga-Ga contacts. 
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Figure 3.0.  The crystal structure of newly synthesized LnMxGa3 (x < 0.15) compounds can be understood as partially occu-

pied Y4MnGa12-type structures. Chemical Pressure (CP) analysis of the AuCu3-type Ga octahedra in the 4-1-12 phases reveal 

CP stabilization between Ga-Ga contacts in unstuffed octahedra due to the structural effect of stuffing Mn atoms in neighbor-

ing octahedra. 

 

3.2.  Introduction 

A central problem in the field of materials chemistry is the ability to rationally tune the physical prop-

erties of a compound, so that it may be tailored to specific applications. For alloys and intermetallic phases, 

this process is complicated by the diverse ways in which phases may respond to chemical substitution, 

including phase segregation, structural progressions, and the formation of unexpected compounds. A po-

tential model system for studying how the properties of intermetallics may be controlled is offered by the 

AuCu3 structure type and its derivatives. Despite being one of the simplest inorganic crystal structures, the 

four atom unit cell of the AuCu3 type underlies remarkable physical properties. This is illustrated by CeIn3 

which exhibits magnetically mediated superconductivity at the critical temperature (Tc) ~ 0.2 K at 27 

kbar.1,2 Furthermore, the AuCu3-type is able to accommodate transition metal (M) atoms in its octahedral 

holes which could be used to the tune properties of these compounds.3-8 
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Indeed, the presence and occupation pattern of the M guest atoms has been observed to have profound 

effects on the physical properties of these compounds. The simplest stuffing pattern is given by the 

Y4PdGa12-type Ln4MGa12 phases (Ln = Lanthanide or similar electropositive element; M = transition 

metal), in which M occupies one quarter of the interstitial sites in the body centers of the LnGa3 basic 

cells.3 Examples include Er4PtGa12 and Ho4PtGa12 whose magnetoresistance values reach the unusually 

high levels of 220 and 900 %, respectively.6 Meanwhile, Y4FeGa12 is a weak itinerant ferromagnet with an 

ordering temperature of 36 K.7 

Multiple reports indicate that other stuffing patterns can also arise, often with an effect on the mag-

netic properties of the material. Ln4FeGa12 (Ln = Y, Tb-Er) adopt the ordered Y4PdGa12 structure type 

except for the Er member, Er4Fe0.67Ga12, which exhibits Ga site splitting and two Fe sites that are partially 

occupied.8 For Y4MnxGa12-yGey (x = 0.74-1.00, y = 0-4.0), Mn occupancy varies as a function of Ge con-

centration (y).9 At y = 4.0, the Mn site is near full occupancy (x = 0.95), and the phase is paramagnetic. 

However, at decreased Ge concentration (y = 1.0), the Mn occupancy decreases to x = 0.90, and the com-

pound exhibits strong ferromagnetism with TC = 223 K.9 

Given the variety of structures arising on the Ln4MGa12 compounds and the ways in which the M 

atoms affect the magnetic properties of their hosts, we were inspired to synthesize the Ln4MnGa12 ana-

logues of these compounds, and examine the driving forces leading to guest atom incorporation by these 

structures. In this Chapter, we describe a joint experimental and theoretical endeavor pursuing these aims. 

We present the crystal growth parameters, structural characterization, magnetic properties for high quality 

single crystals of LnMnxGa3 (Ln = Ho-Tm; x < 0.15), and electronic structure calculations using the DFT-

chemical pressure analysis to explore the role Mn plays in stabilizing these compounds. 
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3.3.  Experiment section 

Synthesis.  Single crystals of LnMnxGa3 (Ln = Ho-Tm) were grown from their constituent elements 

(> 99.9 % purity and used as received). Elements (Ln:Mn:Ga) were combined in three different reaction 

ratios – 1:0:15, 1:0.1:20, and 1:0.2:20 (combined weight of reactants was ~ 1 g) – to study the effect of 

varying Mn concentration. For each sample, the elements were placed in an alumina crucible, covered in 

quartz wool, and backfilled with ~ 1/5 atm of Ar in a fused silica tube prior to sealing the tube. All samples 

were heated to 1150 °C at a rate of 100 °C/h, held at 1150 °C for 5 h, slowly cooled to 550 °C at a rate of 5 

°C/h, and finally cooled to 300 °C at a rate of 100 °C/h. When the temperature reached 300 °C, the sam-

ples were removed from the furnace, inverted with the crucible opening facing down, and centrifuged to 

remove excess Ga flux. Additional Ga adhering to the reaction products was removed by repeated soni-

cation in hot water. The syntheses yielded high quality single crystals with cubic morphology, the largest 

of which were approximately 3 mm across a crystalline face. 

Elemental Analysis.  Elemental analysis of LnMnxGa3 (Ln = Ho-Tm; x < 0.15) single crystals was 

performed via energy-dispersive spectroscopy (EDS) using an EDAX detector fitted to a FEI Quanta 200 

scanning electron microscope with an accelerating voltage of 15 kV. Single crystals were thoroughly pol-

ished prior to analysis in order to minimize the presence of possible surface impurities. At least 3 polished 

single crystals were taken per batch, each of which was analyzed at several points ( ≥ 7) for a period of no 

less than 30 s to ensure good crystal homogeneity. The atomic percentages were normalized to Ln. The 

results for compounds grown from reaction ratios of 1:0.2:20 (Ln:Mn:Ga) are Ho1.00(2)Mn0.12(1)Ga2.80(5), 

Er1.00(6)Mn0.09(3)Ga2.67(10), and Tm1.00(8)Mn0.10(3)Ga2.70(16), while normalized results for samples from the 

1:0.1:20 ratio are Ho1.00(7)Mn0.071(18)Ga2.75(12), Er1.00(6)Mn0.087(17)Ga2.69(13), and Tm1.00(5)Mn0.087(17)Ga2.70(10). 
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While there is some deviation from the compositions determined from single crystal X-ray refinement, the 

data obtained confirm the incorporation of Mn into the AuCu3-type frameworks. We also note that the 

compositions are consistently Ga poor relative to the expected Ln:Ga ratio of 1:3. As the crystals were 

obtained from Ga-rich fluxes, we attribute this to the semi-quantitative nature of the EDS measurements 

(estimated error bar = 10%), rather than to vacancies of the Ga sublattices.

Structure Determination.  Single crystal samples were cut to appropriate sizes (exact dimensions 

given in Tables 3.1-3.9) and mounted on glass fibers with epoxy. The crystals were then screened by col-

lecting X-ray diffraction data sets with an Enraf Nonius KappaCCD single crystal diffractometer equipped 

with Mo Kα radiation (α = 0.71073 Å) and graphite monochromator. This data was sufficient for the re-

finement of the structures of ErGa3 and TmGa3 (Tables 3.1-3.3). Due to the possibility of supercell for-

mation in the Ln-M-Ga compounds,8,9 additional data with higher intensities were collected with a Bruker 

Kappa Apex II diffractometer equipped with a Mo Kα (λ = 0.71073) source and a TRIUMPH mono-

chromator. Collection of additional data, cell refinement, and data reduction were accomplished with the 

Bruker APEX2 software package. Crystallographic models for LnMnxGa3 (0 < x < 0.15) were derived from 

data sets collected using the Bruker Kappa Apex II diffractometer (Tables 3.4 and 3.9). 

Diffraction data from samples grown with the reaction ratio 1:0.2:20 of Ln:Mn:Ga were indexed to a 

~ 4 Å unit cell of the AuCu3 structure type. Samples grown from all other reaction ratios (1:15 of Ln:Ga 

and 1:0.1:20 of Ln:Mn:Ga) were also indexed to primitive ~ 4 Å cubic unit cells, indicative of the AuCu3 

structure type. Additional reflections suggesting supercell ordering were not evident. Systematic absences 

were also consistent with compounds crystallizing in the 𝑃𝑃𝑃𝑃3𝑚𝑚 space group, of the AuCu3 structure type, 

rather than the 𝐼𝐼𝐼𝐼3𝑚𝑚 space group of the Y4PdGa12 structure type. Preliminary crystallographic models 
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were obtained via direct methods with SIR9710 and were refined with SHELXL97,11 or JANA2006.12  

Isosurfaces of the Fourier electronic densities were visualized with the program VESTA 3.13 

Magnetic Property Measurements.  Single crystals were selected from LnMnxGa3 (Ln = Ho-Tm; x 

< 0.15) samples, all of which exhibited a cubic habit. In preparation for magnetic properties measurements, 

the crystals were polished on all of their faces and oriented using a single crystal X-ray diffractometer. Mag-

netic properties data were then obtained using a Quantum Design Magnetic Property Measurement Sys-

tem (MPMS). Magnetization as a function of temperature was measured in zero field cooled conditions 

from 1.8 – 30 K in an applied field of 100 Oe and from 1.8 – 390 K in an applied field of 1000 Oe. Field-

dependent magnetization measurements were conducted at 2 K from 0 – 7 T. 

Electronic Structure Calculations.  DFT-Chemical pressure analyses14-16 were performed for geo-

metrically optimized AuCu3-type phases LnGa3 (Ln = Sc, Y, La), and the Yb4PdGa12-type phases Y4MGa12 

(M = Fe, Mn), based on the output of LDA-DFT calculations made with the ABINIT17,18 program, as de-

scribed previously. For the ABINIT calculations, the norm-conserving pseudopotentials of Hartwigsen, 

Goedecker, and Hutter (HGH) were employed,19 along with the LDA exchange correlation functional of 

Goedecker, Teter, and Hutter.20 The calculations on AuCu3-type and Yb4PdGa12-type phases used Γ-cen-

tered 9×9×9 and 5×5×5 k-point grids, respectively. The energy-cut offs were set to 55 Ha for LaGa3, YGa3, 

Y4MnGa12, and Y4FeGa12, and 70 Ha for ScGa3. 

Chemical pressure maps were constructed from the ABINIT output using the program CPcalc_abinit. 

Isotropic core component averaging at this step was found to have little effect on the final overall results, 

and was not used. The integration was performed using the contact volume scheme14 with CPintegrate. 

Projections of pressures surrounding each atom were carried out on real spherical harmonics with l ≤ 5. 
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The most important theoretical parameter affecting the CP results is the choice of pseudopotential 

models for the atoms. The HGH pseudopotential set offers “semicore” and “valence-only” options of Sc, 

Y, Mn, Fe, and Ga, while for La only a semicore potential is available. The valence-only option corresponds 

to the chemically intuitive treatment of the Sc 4s/3d,Y 5s/4d, Mn 3d, Fe 3d, and Ga 4s/4p electrons as 

part of the valence set, while the semicore potentials also include deeper subshells of the atoms. Our ex-

perimentation with these options shows that the highly localized 3d electrons considered in the Ga semi-

core pseudopotential give rise to such large energy densities that they dominate the CP map using the 

current method for their generation. Methods for a better treatment of such intense core pressures are 

under development, but for the results presented in this paper, semicore pseudopotentials were used for 

Sc, Y, and La, while valence-only potentials were used for Ga, as well as for Mn and Fe. 

 

3.4.  Results and discussion 

The crystal structures of LnMnxGa3 (Ln = Ho, Er, Tm).  Our syntheses in the Ln:Mn:Ga systems 

(Ln = Ho, Er, Tm) were motivated by the prospect of using guest atoms to modulate the physical properties 

of AuCu3-type LnGa3 lattices. The products obtained from reaction ratios Ln:Mn:Ga of 1:0.1:20 and 

1:0.2:20 show several indications that such Mn incorporation is occurring. Inclusion of Mn in the structure 

leads to larger unit cell parameters and thus, longer Ln-Ln and Ln-Ga (Ln = Ho-Tm) distances. Peaks in 

the Fourier difference map from the single crystal X-ray diffraction data are also apparent on the 1b site 

(1/2, 1/2, 1/2), the preferred position for M atom incorporation (Figure 3.1). Refinements of the Mn 

occupancies at this site converge to ~ 0.05 for samples grown with a ratio of 1:0.1:20 (Table 3.5) and to ~ 

0.10-0.15 for samples grown with a ratio of 1:0.2:20 (Table 3.8). The Mn content thus varies with the Mn 
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loading of the sample, but the range is limited. Increasing the amount of Mn to 1:0.4:20 or 1:1:20 does not 

lead to an increased Mn concentration, and the upper bound for Mn content appears to be x ~ 0.15 for 

LnMnxGa3. 

 

 

 

Figure 3.1.  (a) M-Ga distances for Ln-M-Ga compounds. Cr and Fe distances were obtained from B. R. Slater et al.8 and B. L. 

Drake et al.,7 respectively. (b) TmMn0.10Ga3 unit cell, where Tm atoms are light gray spheres, Mn are orange spheres, Ga (3c) 

and Ga’ (6f) are green spheres. (c) TmMn0.05Ga3 unit cell, where Tm atoms are light gray, Mn are orange, and Ga are green. In 

(b) and (c) isosurfaces of the Fourier electron density are drawn at the level of 25 electrons/Å3. 
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Examination of the Fourier electron density indicates that the positions of the Ga atoms are affected 

by the presence or absence of Mn. For large Mn contents (x ~ 0.10-0.15), this response is large enough 

that split position model for the Ga is warranted (see Figure 3.1 and Tables 3.7-3.9). The first Ga site (0, 

1/2, 1/2) is occupied when Mn is not present on either side of the Ga atom, while the second Ga site 

(Gaˊ), at (±x, 1/2, 1/2), is occupied when Mn is present on one side, resulting in Mn-Gaˊ distances ~ 2.4 

Å (Table 3.9). These Mn-Gaˊ distances are very similar to M-Ga distances reported for ordered Y4PdGa12-

type Ln4MGa12 (Ln = Tb-Er; M = Cr, Fe; see Figure 3.1a) compounds, which show ordered incorporation 

of M atoms in a 2 × 2 × 2 supercell of the AuCu3 type (see Figure 3.2).7,8 The model is thus consistent with 

the Mn atoms having coordination environments that are locally similar to those in the Y4PdGa12-type 

compounds. However, few indications of superstructuring were evident in the diffraction data, and the 

crystallographic model outlined above describes compounds as having random occupancy of the holes 

due to insufficient Mn incorporation. 

For LnMn0.05Ga3, with its low Mn content, the range of Ga positions was small enough that a split po-

sition model was not needed. In fact, modeling two separate Ga sites led to higher R1 values than using a 

single Ga site with elongated anisotropic atomic displacement parameters (ADPs). Of course, modeling a 

single Ga site with ADPs that are elongated in the direction of Mn has a similar physical meaning to using 

a split model; when Mn is present, Ga is forced away to a reasonable distance of approximately 2.4 Å, which 

is represented by the Gaˊ site in the split model or the far ends of the elongated ellipsoid defined by the 

anisotropic ADPs. 

From this structural analysis, it is clear that stuffing the structure with Mn is accompanied by atomic 

displacements of the Ga. That these motions are not necessarily of an energetic detriment is illustrated by 
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the observation of the stuffed AuCu3-type phase HoMnxGa3, when HoGa3 itself does not adopt the AuCu3 

type. The availability of Mn in the Ho:Mn:Ga reactions seems to stabilize the AuCu3-type framework of 

HoMnxGa3 over the hexagonal β-HoGa3
21 phase. Guest atom incorporation can thus affect the stability of 

AuCu3-type lattices. In the next section, we will see how guest atoms can also influence the magnetic prop-

erties of these phases. 

 

 

Figure 3.2.  The crystal structure of (a) TmGa3 (AuCu3 type), and (b) Ho4FeGa12 (Y4PdGa12 type). Each crystal structure is 

depicted with cuboctahedra consisting of Ga atoms (green spheres) drawn around the Tm and Ho atoms (light gray spheres). 

The Fe atoms (orange spheres) occupy one fourth of the Ga6 octahedral holes of the HoGa3 basic structure. 

 

Magnetic Properties.  Temperature-dependent magnetic susceptibilities measured for single crystal-

line HoMnxGa3, ErMnxGa3, and TmMnxGa3 are shown in Figures 3.3a-c. For all three systems, the curves 

show a strong dependence on the Mn content, x, indicating that the presence of guest atoms has an influ-

ence on the magnetic properties. To quantify this effect, effective magnetic parameters where obtained for 

each compound by fitting its data above 50 K to a modified Curie-Weiss equations χ(T) = χo + C/(T - θ), 
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where C is the Curie constant, θ is the Weiss temperature, and χo is the temperature independent contri-

bution to the susceptibility (Table 3.10). The effects of Mn addition were also probed with field-depend-

ent magnetization data at 2 K (Figures 3.4a-c). In the following, we will discuss the resulting picture for 

how Mn modulates the properties of each LnMnxGa3 series individually, and then offer some possible ex-

planations. 

 

 

 

Figure 3.3.  Temperature-dependent magnetic susceptibility for LnMnxGa3 (Ln = Ho (a), Er (b), Tm (c)) at an applied field 

of 100 Oe. 

 

HoMnxGa3 (x < 0.15).  The effective magnetic moments of the HoMnxGa3 series are μeff = 10.616(4) 

μB/Ho for x = 0.077(11) and μeff = 10.15(1) μB/Ho for x = 0.164(6). The effective moment of the former 

is consistent with a free Ho3+ ion (μcalc = 10.61 μB), while the latter is approximately 0.5 μB/Ho less than 
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that of Ho3+. The values of θW similarly decrease as Mn increases. Maxima are present in the susceptibilities 

at TN = 8.4 K for HoMn0.077(11)Ga3 and TN = 7.7 K for HoMn0.152(10)Ga3, indicating the onset of long range 

antiferromagnetic order. These ordering temperatures compare well with the antiferromagnetic ordering 

temperatures of Ho4CrGa12 (TN = 7.5 K) and Ho4FeGa12 (TN = 9 K). When comparing these HoMnxGa3 

compounds with β-HoGa3 (TN = 6.15 K), it is apparent that the ordering temperature is higher for the Mn-

containing phases.22 This could be a result of an increased concentration of conduction electrons that is 

provided by Mn, which would enhance the RKKY interactions and increase the ordering temperature. 

 

 

 

Figure 3.4.  Field-dependent magnetization for LnMnxGa3 (Ln = Ho (a), Er (b), Tm (c)) collected at 2 K. Nonlinear portions 

of the data are marked with black arrows in panel (a). 

 

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

M
 (µ

B
/H

o)

H (T)

HoMn0.077(11)Ga3

HoMn0.152(10)Ga3.00(4)

T = 2 K
a)

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

M
 (µ

B
/E

r)

H (T)

T = 2 K ErGa3

ErMn0.041(12)Ga3

ErMn0.118(8)Ga3.00(4)

b)

0

1

2

3

4

5

0 1 2 3 4 5 6 7

M
 (µ

B
/T

m
)

H (T)

TmGa3

TmMn0.049(8)Ga3

TmMn0.095(10)Ga3.00(3)

T = 2 Kc)



62 
 

 

The magnetization of HoMn0.077Ga3 (Figure 3.4a) increases smoothly with applied field up to ~ 7 T 

and does not exhibit any saturation behavior. The magnetization of HoMn0.164Ga3 likewise increases with 

an applied field up to ~ 5.5 T, at which point the magnetization values begin to saturate. This behavior is 

similar to that seen in isothermal field-dependent magnetization data of Ho4MGa12 (M = Cr, Pd, Pt)6,8 

analogues. 

The addition of Mn also effects the multiple metamagnetic transitions exhibited by β-HoGa3 at T = 

1.37 K when a magnetic field is applied along the c-axis. As this metamagnetic behavior arises from inter-

planar and intraplanar Ho-Ho antiferromagnetic couplings in the hexagonal β-HoGa3 structure,22 the sta-

bilization of the cubic variant of HoGa3 by Mn incorporation would be expected to have a disruptive effect. 

Indeed, the field-dependent magnetization for the HoMnxGa3 samples indicates a near breakdown of the 

metamagnetic properties of the original binary phase. Some artifacts of metamagnetism can be seen in the 

non-linearity of the data for HoMn0.077Ga3, but they are absent for HoMn0.152Ga3 whose magnetization dis-

plays linear field dependence to ~ 5.5 T. 

ErMnxGa3 (x < 0.15).  ErGa3, ErMn0.041(12)Ga3, and ErMn0.118(8)Ga3 order antiferromagnetically at 2.9 

K, 3.3 K, and 3.1 K, respectively, while the effective magnetic moments are μeff = 10.095(4) μB/Er for 

ErGa3, μeff = 9.522(4) μB/Er for ErMn0.041(12)Ga3, and μeff = 9.494(7) μB/Er for ErMn0.118(8)Ga3. Similar to 

the Ho analogues, the effective magnetic moments of ErMnxGa3 are close to those calculated for a free 

Ln3+ ion (9.58 μB for Er3+), and decrease with increasing Mn concentration. Also mirroring the Ho ana-

logues is the increase in the ordering temperatures for Mn-containing compounds over non-Mn-contain-

ing compounds, though the magnitudes of the increases are much less pronounced. As mentioned above, 

this increase in TN could be due to the additional conduction electrons provided by Mn. 
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As in the Ho series, the ErMnxGa3 compounds show increasing magnetization values with increasing 

Mn content (Figure 3.4b). No hysteresis or saturation is observed up to an applied field of 7 T. 

TmMnxGa3 (x < 0.15).  The effective moments, μeff = 7.563(4) μB/Tm for TmGa3, μeff = 7.464(1) 

μB/Tm for TmMn0.049(8)Ga3, and 7.407(3) μB/Tm for TmMn0.095(10)Ga3, decrease with increasing Mn con-

centration similar to those of the HoMnxGa3 and ErMnxGa3 compounds, with TmGa3 having the closest 

effective moment to the calculated moment of the Tm3+ free ion (7.56 μB). Also, TmGa3 exhibits antifer-

romagnetic ordering at ~ 4.2 K, while TmMn0.049(8)Ga3 and TmMn0.095(10)Ga3 are paramagnetic down to 1.8 

K, which indicates that the addition of Mn to TmGa3 disrupts long range magnetic order. This behavior 

varies from that of the Ho and Er analogues previously discussed where the addition of Mn results in an 

increase of TN. 

Unlike the Ho and Er analogues, magnetization values for TmMnxGa3 (Figure 3.4c) decrease as the 

Mn concentration increases. The magnetization of TmGa3 exhibits a large and sudden increase from a 

value of about 0.3 μB/Tm to about 4 μB/Tm at an applied field of ~ 0.8 T, followed by a smooth linear 

increase all the way through 7 T. This has been attributed, through specific heat and thermal transport 

measurements, to a structural transition driven by quadrupolar pair interactions.23-27 This feature is dis-

tinctly absent from the field-dependent magnetization curves of Mn-containing TmMn0.049(8)Ga3 and 

TmMn0.095(10)Ga3, which show no hysteresis or saturation up to an applied field of 7 T. This is consistent 

with Mn incorporation disrupting the local environments of the Tm atoms. 

Interpretation of magnetic properties data.  For all three LnMnxGa3 series of compounds, the ef-

fective magnetic moment was found to decrease as Mn is incorporated into the structure. One explanation 

for this could be that the addition of Mn decreases the interaction strength between Ln atoms by increasing 
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the Ln-Ln interatomic distance, as has been noted by Mar and coworkers for the insertion of Sn into LnSb2 

phases.28,29 Another cause could be crystal electric field (CEF) effects.  Indeed, cubic LnGa3 (Ln = Er, Tm) 

phases adopting the AuCu3 structure type are known to exhibit unique magnetic properties resulting from 

CEF effects,25-27,30-32 and quadrupolar ordering.23-26,30-35 For TmGa3, two first order transitions occur in a 

very narrow temperature range: a tetragonal distortion driven by quadrupolar ordering at TQ = 4.29 K 

followed by an antiferromagnetic transition at TN = 4.26 K. At temperatures below 4 K, CEF splitting of 

the Tm3+ states results in a nonmagnetic ground state. Certainly the presence of Mn in the body center of 

the unit cell in LnMnxGa3 compounds would affect the CEF of the lanthanide, though the specific conse-

quences cannot be resolved without further experiments. 

DFT-Chemical pressure analysis of guest atom incorporation.  In the earlier sections of this paper, 

we have seen that several of the AuCu3-type LnGa3 phases can accommodate Mn guest atoms in their Ga6 

octahedra, and that the extent of this Mn incorporation modulates the magnetic properties of the host 

lattices. Understanding more about what makes this host-guest pairing favorable could provide insights 

into how similar structural modifications could be accomplished in other families of intermetallic com-

pounds. Previously, Slater et al. have shown through COHP analysis on Y4CrGa12 that guest atom incor-

poration can lead to favorable Ga-guest bonding.8 Another clue to the forces at work here can be seen in 

the crystal structures of the LnMnxGa3 phases described above, and the previously reported Y4PdGa12-type 

superstructures: The inclusion of a stuffing atom involves substantial displacement of the surrounding Ga 

atoms (Figures 3.1b-c), reflecting the need for a local expansion of the structure to accommodate the 

atomic size of the guest atom. 
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A recently developed theoretical approach to investigating such size effects is the DFT-chemical pres-

sure (CP) analysis,14,15 in which the results of DFT calculations are used to spatially resolve the total pres-

sure a phase experiences into a pressure map over the structure. Integration of the pressure map within 

regions corresponding to interatomic contacts provides a representation of the local pressures experienced 

by the atoms along those contacts. An analysis of these local pressures can reveal cases of electronic packing 

frustration,36 where contraction along contacts with negative pressures is prevented by steric hindrance at 

other contacts where the pressures are positive. The result is an array of chemical pressures, which can be-

come severe enough to force superstructure formation. 

Could chemical pressure effects be involved in the stuffing of the AuCu3 type with transition metals? 

To answer this, we began by examining the AuCu3-type LnGa3 phases with Ln = Sc, Y, and La, such that 

the full range of atomic sizes of the lanthanides is spanned with non-magnetic metals. Also captured by 

this series is a trend in the stability of the AuCu3 type: ScGa3 crystallizes with this structure type,37 and 

appears to refuse attempts to infuse it with guest atoms. YGa3, on the other hand, does not exist inde-

pendently,38 but can be templated by transition metal atoms in the formation of Y4PdGa12-type compounds 

such as Y4FeGa12.7 Finally, a LaGa3 AuCu3-type architecture is so far unobserved with or without stuffing 

atoms.39 

The DFT-CP distributions obtained for this series help us explain these observations (Figures 3.5a-

c). Following conventions established earlier, we represent the pressure distribution around each atom 

using a radial plot centered on that atom’s nuclear position. The distance of a point on the surface from the 

nucleus is proportional to the pressure magnitude calculated for that direction. The sign of the pressure is 

given by the color of the surface. Black lobes represent directions along which contraction is favorable 
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(negative pressure), which are intended to evoke the image of a black holes acting within the structure. 

White lobes indicate the opposite: positive pressures calling for the expansion of the lattice. 

 

 

Figure 3.5.  DFT-Chemical Pressure (CP) analysis for the AuCu3-type phases (a) ScGa3 (experimentally observed), (b) YGa3 

(hypothetical) and (c) LaGa3 (hypothetical). For (a)-(c), CP anisotropy surfaces are drawn for the three structures to scale. 

Black lobes on each atom correspond to directions of negative pressure (where contraction of the lattice would be favorable), 

while white lobes give directions along which the pressure is positive (where expansion would be favorable). (d)-(f) The con-

tact moduli (see text) for the corresponding structures using the same conventions. 

 

The three plots show similar arrangements of the lobes. The Ln atoms appear on the unit cell corners 

with white cuboidal surfaces. These atoms experience a nearly isotropic positive pressure, and are pushing 
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outwards on their surroundings. The Ga atoms at the unit cell face-centering positions bear complemen-

tary white lobes pointing toward the Ln neighbors, confirming the overly-short nature of the Ln-Ga con-

tacts. The remainder of the Ga CP surfaces is black, indicating negative pressure, and points along Ga-Ga 

contacts. 

These features tell of a tension between Ln-Ga and Ga-Ga interactions: the former is trying to expand 

the lattice while the latter is struggling to contract it. The equilibrium volume is reached when the two 

forces are balanced so that the net pressure is zero. While this tension is apparent in all three structures, 

the varying CP sizes across the series suggests variations in the conflict's severity, which may be connected 

to the observed structural chemistry. On moving from ScGa3 to YGa3 to LaGa3, the magnitudes of the 

features decrease. This trend indicates that the Ln atoms are being squeezed by the Ga sublattice with 

increasing strength on going from La to Y to Sc. 

At first glance, this appears to be counterintuitive. Sc is the smallest of the Ln atoms here; why should 

it be subject to the greatest positive pressures? This discrepancy can be resolved by looking at the nature 

of the Ga-Ga interactions in more detail, particularly at the distance dependence of the Ga-Ga CPs. In the 

bottom row of Figure 3.5, we show radial plots for the negative derivative of the CP anisotropy surfaces 

with respect to relative volume changes to the structure  (-V dCP/dV), which might be referred to as con-

tact moduli (named by analogy to the macroscopic bulk modulus), using the same plotting conventions. 

The colors of the surface here now represent whether the pressure would be expected to increase or de-

crease upon changes in the unit cell volume. As will be described in detail in a future publication, white 

and black lobes in these surfaces correspond to two different bonding regimes for interatomic interactions. 
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For white surfaces, the pressure becomes less positive as the volume is increased. This mirrors the expec-

tations of a harmonic potential: at very low volumes the pressure is large and positive, moves towards zero 

as the structure is expanded toward the equilibrium volume, and finally becomes negative as the equilib-

rium volume is exceeded. Such is the case in Figures 3.5d-f for the Ln-Ga interactions, and would be an-

ticipated for any overly-short contacts. 

Negative contact moduli, as are seen for the Ga-Ga interactions in Figures 3.5d-f, represent a very dif-

ferent situation: the pressure becomes more positive (or less negative) as the structure expands. While this 

seems contradictory, a familiar example can be found in the nearly universal shape of E vs. V curves for 

materials. Near the energy minimum, the curve is parabolic in shape corresponding to a positive contact 

modulus. As the volume is increased, however, the E vs. V curve begins to bend to shallower slopes, as-

ymptotically approaching a horizontal line where the distances are so large that the interatomic interac-

tions have become extinguished. Over this gradual decay, the pressure of the phase is actually becoming 

less negative as the structure expands. The contact moduli for interactions here are negative. 

The negative contact moduli of the Ga-Ga sublattice then indicate that the forces acting along the Ga-

Ga contacts are increasing as the distances decrease. Apparently, the Ga-Ga distances are so long relative 

to sum of the covalent radii that favorable interactions along these contacts are just beginning to be felt. In 

this case, larger negative chemical pressures between the Ga-Ga atoms in fact indicate more favorable in-

teractions, at least until the E vs. V inflection point where the contact moduli cross from negative to posi-

tive. 

From this point of view, the chemical pressure trends on going from La to Y to Sc can be readily inter-

preted. In LaGa3, the large size requirements of the La hold the Ga atoms apart to the extent that the Ga 
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atoms barely register the others' presence. Small negative CPs between the Ga atoms result. Switching the 

La atoms with the smaller Y allows for the Ga atoms to approach each other more closely. The Ga-Ga 

negative CP grows, and in the process, the Y is squeezed more tightly. This trend continues upon replacing 

Y with Sc, with greater bonding between the Ga atoms leading to more negative pressure within the Ga 

sublattice. 

These results are consistent with the experimental data on the thermodynamic stability of AuCu3-type 

phases in the La-, Y-, and Sc-Ga binary systems. Only ScGa3 is observed to form, where the Ln atom size 

is the smallest. The non-existence of La- and Y-analogs hints at a breaking point where Ga-Ga interactions 

are so stretched that competing phases are preferred. 

In the chemical pressure anisotropy surfaces of YGa3 and LaGa3, however, a method for stabilizing the 

AuCu3-type can be perceived. The negative CP lobes on the Ga atoms all point along the edges of octahe-

dra at the body-centering positions of the unit cell. This octahedral hole is then surrounded on all sides by 

negative CP features. Contraction of the octahedron would be one way to satisfy these negative CPs, but 

the octahedron is of course held open by the Ln-Ga interactions. Another way would be to simply fill the 

hole with something, much as the large void spaces of the CoSn structure type can accommodate guests 

to yield a variety of stuffed superstructures.40,41 From what we have seen above, it seems that late first-row 

transition metals can fill this role admirably. In fact, while YGa3 is unobserved, its Fe-stuffed derivative 

Y4FeGa12 is observed to crystallize in the Y4PdGa12 structure type (Figure 3.2b). 

The ways in which transition metal atom insertion can stabilize Ga-based AuCu3-type lattices is illus-

trated in Figure 3.6, in which the CP anisotropies and contact moduli of YGa3 are compared with those of 

Y4FeGa12 and a Y4PdGa12-type model of YMnxGa3. The M atom positions are indicated with large orange 
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spheres, made partially transparent to make the M CP features visible. Their insertion into the structure 

leaves many aspects of the CP scheme unchanged: the Ln-Ga contacts still bear positive CPs (and positive 

contact moduli), with the negative pressure being concentrated in the Ga sublattice, where the contact 

moduli are negative. 

 

 

Figure 3.6.  Driving forces for guest atom incorporation revealed through DFT-CP analysis. The top row shows CP anisotropy 

surfaces calculated for (a) AuCu3-type YGa3, (b) Y4PdGa12-type Y4FeGa12, and (c) Y4PdGa12-type Y4MnGa12. The bottom row, 

(d)-(f), presents the contact moduli for each structure. See the caption to Figure 3.5 for plotting conventions. 
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Substantial changes, however, are found in the ways the Ga negative pressures are distributed in the 

vicinity of the transition metal guest atoms. The transitional metal atoms themselves show very small CP 

lobes directed at their Ga neighbors and positive contact moduli, both indicators of nearly ideal distances. 

The surrounding Ga atoms show virtually no CP along the edges or toward the center of the octahedron. 

In effect, the over-extended Ga-Ga contacts of the unstuffed structure have been replaced with almost op-

timal transition metal-Ga interactions. The Mn@Ga6 unit thus appears to be an advantageous motif in 

itself, but it also has beneficial effects on its surroundings. As we saw earlier in Figure 3.1, accommodating 

the Mn guest atoms requires the expansion of the Ga6 host octahedra. This leads to the flattening of the 

neighboring, vacant octahedra, and the shortening of their edges. As these Ga-Ga contacts contract, larger 

negative pressures emerge as the distances move into the more attractive part of the Ga-Ga interaction 

potentials. Locally, the CP schemes in these compressed octahedra resemble the CP anisotropies of the 

Ga atoms in the experimentally observed ScGa3 phase. 

The M guest atoms thus play the role of structural supports when the Ln atoms are so large that the 

Ga-Ga contacts of a AuCu3-type phase become significantly stretched. They simultaneously replace overly 

long Ga-Ga contacts with essentially ideal M-Ga ones, and give the neighboring octahedra support for a 

tetragonal compression that shortens Ga-Ga contacts. In the Y4PdGa12 type, the placement of M atoms at 

the corners and body-centering positions of a 2×2×2 supercell of the AuCu3 structure type provides relief 

to all of the Ga atoms. Those Ga atoms that are not part of an octahedron hosting an M atom occur on 

octahedra that are compressed from opposite sides by a pair of M atoms. It is then easy to understand that 

if in YGa3 the Y atoms are too large for a stable Ga sublattice, the placement of Fe atoms into the phase as 

in the experimentally observed Y4PdGa12-type phase Y4FeGa12 could create a viable structure. 
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An open question is why the Mn series described in this paper should show a smaller extent of M 

incorporation than is seen in the Y4PdGa12-type phases. From the point of view of CP analysis, the conse-

quences of Fe and Mn insertion seem to be very similar (Figure 3.6). Coming to a conclusive answer here 

may require studying CP distributions in larger supercells with fewer transition metals, and perhaps the 

inclusion of spin-polarization (not yet available in the existing DFT-CP code). 

 

3.5.  Conclusions 

We have grown single crystals of LnMnxGa3 (Ln = Ho-Tm; x < 0.15). These compounds adopt a 

“stuffed” variant of the AuCu3 structure type when Mn is present, where Mn fractionally occupies the body 

center position of the unit cell, displacing the surrounding Ga atoms toward the neighboring void spaces. 

Subtle changes are identified in the magnetic parameters of LnMnxGa3 (Ln = Ho-Tm; x < 0.15) as the 

concentration of Mn changes. A decrease in the effective magnetic moments of these compounds occurs 

with increasing Mn concentration. The decrease in effective magnetic moment is accompanied by an in-

crease in magnetic susceptibility with increasing Mn concentration for Ho and Er analogues. 

These trends are attributed either to increases in the Ln-Ln interatomic distances as a function of Mn 

incorporation or to changing the crystal electric field (CEF) of Ln by adding Mn, though additional ex-

periments such as inelastic neutron scattering would be required to elucidate CEFs in these compounds. 

Mn-containing Ho and Er analogues order antiferromagnetically at slightly higher temperatures (TN > 7.7 

K and 3.1 K for HoMnxGa3 and ErMnxGa3, respectively) than do the non-Mn-containing analogues (TN = 

6.2 K and 2.9 K for β-HoGa3 and ErGa3, respectively). TmGa3 exhibits antiferromagnetic order around 4.2 

K due to CEF effects, whereas TmMnxGa3 compounds are paramagnetic down to 1.8 K. This is attributed 
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to a distortion of the Tm local environment upon the addition of Mn, which necessarily alters the CEF of 

Tm. Due to the range of Mn concentrations possible for LnMnxGa3 (Ln = Ho-Tm; x < 0.15), and the fact 

that CEF effects lead to interesting magnetic features in LnMnxGa3, these compounds present a good op-

portunity to study how CEFs are affected by structural perturbations. 

Using DFT-Chemical Pressure analysis, we have found that the source of this incorporation lies in the 

strained nature of the Ga sublattices of the LnGa3 structures. The insertion of guest atoms allows expan-

sion of the Ga sublattice around the guests, leading to compression of the neighboring Ga-Ga contacts. 

This picture may help identify void spaces accommodating to guest atoms in other structure types. 
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3.6.  Tables 

Table 3.1.  Crystallographic parameters for LnGa3 

ErGa3   TmGa3 

crystal data 

space group   𝑃𝑃𝑃𝑃3𝑚𝑚   𝑃𝑃𝑃𝑃3𝑚𝑚 

a (Å)    4.2149(10)  4.2027(10) 

V (Å3)    74.88(3)   74.23(3) 

Z    1   1  
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crystal size (mm3)   0.05 × 0.05 × 0.10  0.10 × 0.10 × 0.15 

θ  range (deg)   4.84-33.56  2.55-33.73 

μ (mm-1)    54.087   56.176 

data collection and refinement 

no. of collected reflections  1440   1155 

no. of unique reflections  71   69 

Rint    0.056   0.074   

h    -6 ≤ h ≤ 6   -6 ≤ h ≤ 6 

k    -4 ≤ k ≤ 4   -4 ≤ k ≤ 4 

l    -4 ≤ l  ≤ 4   -3 ≤ l  ≤ 4 

Δρmax (e Å-3)   0.798   1.375 

Δρmin (e Å-3)   -0.796   -1.690 

GoF    1.413   1.291 

extinction coefficient  0.039(5)   0.035(11) 

R1(F) for Fo
2 > 2σ(Fo

2) a  0.0134   0.0266 

Rw(Fo
2) b    0.0360   0.0765 

aR1 = Σ||Fo| - |Fc||/Σ|Fo| 
bwR2 = [Σw(Fo

2 - Fc
2)2/Σw(Fo

2)2]1/2; w = 1/[σ2(Fo
2) + (0.0190 P)2 + 0.1417 P] and w = 1/[σ2(Fo

2) + 
(0.0547 P)2]; P = (Fo

2 + 2 Fc2)/3 for ErGa3 and TmGa3, respectively. 
 

Table 3.2.  Atomic positions for LnGa3 

atom Wyckoff position x y z occupancy Ueq (Å2) 

ErGa3 

Er 1a 0 0 0 1 0.0054(2) 

Ga 3c 0 1/2 1/2 1 0.0097(3) 

TmGa3       

Tm 1a 0 0 0 1 0.0058(5) 

Ga 3c 0 1/2 1/2 1 0.0099(7) 

 

Table 3.3.  Selected interatomic distances (Å) of LnGa3 

interatomic distance ErGa3 TmGa3 

Ln–Ga (×12) 2.9804(2) 2.9718(5) 

Ln–Ln (×6) 4.2149(10) 4.2027(10) 
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Table 3.4.  Crystallographic parameters for LnMnxGa3 (x ≈ 0.05, data collected with the Bruker Kappa 
APEXII diffractometer) 

    HoMn0.077Ga3  ErMn0.041Ga3  TmMn0.049Ga3 

crystal data 

space group   𝑃𝑃𝑃𝑃3𝑚𝑚   𝑃𝑃𝑃𝑃3𝑚𝑚   𝑃𝑃𝑃𝑃3𝑚𝑚 

a (Å)    4.2387(2)   4.2303(3)  4.2085(4) 

V (Å3)    76.155(6)  75.703(9)  75.539(12) 

Z    1    1   1  

crystal size (mm3)   0.04 × 0.04 × 0.12  0.04 × 0.04 × 0.10  0.10 × 0.10 × 0.15 

θ  range (deg)   4.81-30.66  4.82-30.73  4.84-30.91 

μ (mm-1)    55.571   53.618   56.147 

data collection and refinement 

no. of collected reflections  986   1032   924 

no. of unique reflections  42   42   42 

Rint    0.0392   0.087   0.083   

h    -5 ≤ h ≤ 6   -6 ≤ h ≤ 6   -6 ≤ h ≤ 5 

k    -6 ≤ k ≤ 6   -5 ≤ k ≤ 6   -5 ≤ k ≤ 6 

l    -6 ≤ l  ≤ 6   -4 ≤ l  ≤ 4   0 ≤ l  ≤ 6 

Δρmax (e Å-3)   0.956   1.244   0.579 

Δρmin (e Å-3)   -0.584   -0.951   -0.596 

GoF    1.384   1.186   1.140 

extinction coefficient  0.181(12)  0.001(6)   0.046(4) 

R1(F) for Fo
2 > 2σ(Fo

2) a  0.0106   0.0202   0.0087 

Rw(Fo
2) b    0.0256   0.0484   0.0152 

aR1 = Σ||Fo| - |Fc||/Σ|Fo|    
bwR2 = [Σw(Fo

2 - Fc
2)2/Σw(Fo

2)2]1/2; w = 1/[σ2(Fo
2) + (0.0154 P)2 + 0.0367 P], w = 1/[σ2(Fo

2) + 0.6347 
P], and w = 1/[σ2(Fo

2) +  (0.0473 P)2  + 0.0202 P]; P = (Fo
2 + 2 Fc2)/3 for HoMn0.077(11)Ga3, and 

ErMn0.041(12)Ga3, and TmMn0.049(8)Ga3, respectively. 
 

Table 3.5.  Atomic positions for LnMnxGa3 (x ≈ 0.05) 

atom Wyckoff position symmetry x y z occupancy Ueq (Å2) 

HoMn0.077(11)Ga3       

Ho 1a m3m 0 0 0 1 0.0067(2) 

Mn 1b m3m 1/2 1/2 1/2 0.077(11) 0.012(7) 

Ga 3c 4/mmm 0 1/2 1/2 1 0.0154(3) 

Er 1a m3m 0 0 0 1 0.0076(5) 

Mn 1b m3m 1/2 1/2 1/2 0.041(12) 0.0076(5) 

Ga 3c 4/mmm 0 1/2 1/2 1 0.0150(5) 
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TmMn0.049(8)Ga3        

Tm 1a m3m 0 0 0 1 0.00578(15) 

Mn 1b m3m 1/2 1/2 1/2 0.049(8) 0.010(8) 

Ga 3c 4/mmm 0 1/2 1/2 1 0.01276(19) 

 

Table 3.6.  Selected interatomic distances (Å) for LnMnxGa3 (x ≈ 0.05) 

interatomic distance HoMn0.077Ga3 ErMn0.041Ga3 TmMn0.049Ga3 

Ln–Ga (×12)  2.9934(3) 2.9913(2) 2.9759(2) 

Ln–Mn (×8) 3.6661(3) 3.6635(2) 3.6447(2) 

Ln–Ln (×6) 4.2333(6) 4.2303(3) 4.2085(4) 

Mn–Ga (×6) 2.1166(3) 2.1153(2) 2.1042(2) 

 

Table 3.7.  Crystallographic parameters for LnMnxGa3 (x ≈ 0.10-0.15) 

    HoMn0.152(10)Ga3  ErMn0.118(8)Ga3  TmMn0.095(10)Ga3 

crystal data 

space group   𝑃𝑃𝑃𝑃3𝑚𝑚   𝑃𝑃𝑃𝑃3𝑚𝑚   𝑃𝑃𝑃𝑃3𝑚𝑚 

a (Å)    4.2351(2)  4.2351(2)  4.2195(2) 

V (Å3)    75.961   75.961(6)  75.125(6) 

Z    1   1   1  

crystal size (mm3)   0.01 × 0.06 × 0.06  0.01 × 0.05 × 0.06  0.01 × 0.06 × 0.08 

θ  Range (deg)   4.79-31.01  4.81-30.69  4.83-36.97 

μ (mm-1)    55.067   53.786   55.89 

data collection and refinement 

collected reflections  2870   1416   1512 

unique reflections   44   42   61 

Rint    0.055   0.0405   0.0434   

h    -5 ≤ h ≤ 6   -5 ≤ h ≤ 6   -7 ≤ h ≤ 6 

k    -6 ≤ k ≤ 5   -6 ≤ k ≤ 5   -6 ≤ k ≤ 6 

l    -6 ≤ l  ≤ 6   -6 ≤ l  ≤ 6   -5 ≤ l  ≤ 6 

Δρmax (e Å-3)   0.50   0.39   0.78 

Δρmin (e Å-3)   -0.52   -0.47   -0.56 

GoF    1.28   1.23   1.15 

extinction coefficient  0.322(15)  0.177(8)   0.065(7) 

R1(F) for Fo
2 > 2σ(Fo

2) a  0.0114   0.0095   0.0133 

Rw(Fo
2) b    0.0129   0.0095   0.0140 

aR1 = Σ||Fo| - |Fc||/Σ|Fo|    
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bwR2 = [Σw(Fo
2 - Fc

2)2/Σw(Fo
2)2]1/2; w = 1/[σ2(Fo

2) + (0.0001 P)2] for HoMn0.152(10)Ga3, w = 1/[σ2(Fo
2) + 

(0.000064 P)2] for ErMn0.118(8)Ga3, and w = 1/[σ2(Fo
2) + (0.0001 P)2] for TmMn0.095(10)Ga3; P = (Fo

2 + 2 
Fc2)/3. 
 

Table 3.8.  Atomic positions for LnMnxGa3 (x ≈ 0.10-0.15) 

atom Wyckoff position symmetry x y z occupancy Ueq (Å2) 

HoMn0.152(10)Ga3       

Ho 1a m3m 0 0 0 1 0.00788(13) 

Mn 1b m3m 1/2 1/2 1/2 0.152(10) 0.0062(17) 

Ga 3c 4/mmm 0 1/2 1/2 0.634(10) 0.0090(3) 

Gaˊ 6f 4mm 0.0804(18) 1/2 1/2 0.183(5) 0.0090(3) 

ErMn0.118(8)Ga3  

Er 1a m3m 0 0 0 1 0.00811(10) 

Mn 1b m3m 1/2 1/2 1/2 0.118(8) 0.0069(19) 

Ga 3c 4/mmm 0 1/2 1/2 0.680(9) 0.0092(2) 

Gaˊ 6f 4mm 0.0786(18) 1/2 1/2 0.160(4) 0.0092(2) 

TmMn0.095(10)Ga3       

Tm 1a m3m 0 0 0 1 0.00752(9) 

Mn 1b m3m 1/2 1/2 1/2 0.120(4) 0.010(2) 

Ga 3c 4/mmm 0 1/2 1/2 0.743(8) 0.0088(2) 

Gaˊ 6f 4mm 0.0759(19) 1/2 1/2 0.143(4) 0.0088(2) 

 

Table 3.9.  Selected interatomic distances (Å) for LnMnxGa3 (x ≈ 0.10-0.15) 

interatomic distance HoMn0.152Ga3 ErMn0.118Ga3 TmMn0.095Ga3 

Ln–Ga (×12)  3.0063(2) 2.9947(2) 2.9836(2) 

Ln–Gaˊ (×12) 3.0265(4) 3.0143(2) 3.0009(2) 

Ln–Mn (×8) 3.6820(2) 3.6677(2) 3.6542(2) 

Ln–Ln (×6) 4.2516(2) 4.2351(2) 4.2195(2) 

Mn–Ga (×6) 2.1258(2) 2.1176(2) 2.1098(2) 

Mn–Gaˊ (×6) 2.4744(4) 2.4606(2) 2.4309(2) 

 

Table 3.10.  Magnetic parameters for single crystalline LnMnxGa3 (Ln = Ho, Er, Tm) 

compound fit range (K) χo (×10-4)a θW (K)a TN (K) μeff (μB/Ln)a,b 
HoMn0.077(11)Ga3 50-390 -8.1(4) -17.26(5) 8.4 10.616(4) 
HoMn0.152(10)Ga3 50-390 19.9(9) -7.56(12) 7.7 10.15(1) 
ErGa3 50-390 0.3(4) -10.95(5) 2.9 10.095(4) 
ErMn0.041(12)Ga3 50-390 -2.2(3) -9.59(5) 3.3 9.522(4) 
ErMn0.118(8)Ga3 50-390 8.3(6) -8.59(9) 3.1 9.494(7) 
TmGa3 50-390 -3.30(9) -2.70(2) 4.2 7.563(2) 
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TmMn0.049(8)Ga3 50-390 -2.72(8) -2.641(16) - 7.464(1) 
TmMn0.095(10)Ga3 50-390 -3.0(2) -2.67(4) - 7.407(3) 

aUncertainties obtained from the fits to the modified Curie-Weiss law.  
bHo3+ μcalcd = 10.61 μB, Er3+ μcalcd = 9.58 μB, Tm3+ μcalcd = 7.56 μB 
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Chapter 4. 

Progress in Visualizing Atomic Size Effects with DFT-Chemical Pressure 

Analysis: From Isolated Atoms to Trends in AB5 Intermetallics 

This chapter has been published: Berns, V. M.; Engelkemier, J.; Guo, Y.; Kilduff, B. J.; Fredrickson, D. C. J. 
Chem. Theory Comput. 2014, 10, 3380-3392. The specific analyses detailed in this chapter were the work 
of Berns, but all authors made contributions to the general theoretical developments.

 

4.1.  Abstract 

The notion of atomic size poses an important challenge to chemical theory: empirical evidence has long 

established that atoms have spatial requirements, which are summarized in tables of covalent, ionic, metal-

lic, and van der Waals radii. Considerations based on these radii play a central role in the design and inter-

pretation of experiments, but few methods are available to directly support arguments based on atomic 

size using electronic structure methods. Recently, we described an approach to elucidating atomic size 

effects using theoretical calculations: the DFT-Chemical Pressure analysis, which visualizes the local pres-

sures arising in crystal structures from the interactions of atomic size and electronic effects. Using this ap-

proach, a variety of structural phenomena in intermetallic phases have already been understood in terms 

that provide guidance to new synthetic experiments. However, the applicability of the DFT-CP method 

to the broad range of the structures encountered in the solid state is limited by two issues: (1) the difficulty 
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of interpreting the intense pressure features that appear in atomic core regions, and (2) the need to divide 

space among pairs of interacting atoms in a meaningful way. In this Chapter, we describe general solutions 

to these issues. In addressing the first issue, we explore the CP analysis of a test case in which no core 

pressures would be expected to arise: isolated atoms in large boxes. Our calculations reveal that intense 

core pressures do indeed arise in these virtually pressure-less model systems, and allow us to trace the issue 

to the shifts in the voxel positions relative to atomic centers upon expanding and contracting the unit cell. 

A compensatory grid unwarping procedure is introduced to remedy this artifact. The second issue revolves 

around the difficulty of interpreting the pressure map in terms of interatomic interactions in a way that 

respects the size differences of the atoms and avoids artificial geometrical constraints. In approaching this 

challenge, we have developed a scheme for allocating the grid pressures to contacts inspired by the 

Hirshfeld charge analysis. Here, each voxel is allocated to the contact between the two atoms whose free 

atom electron densities show the largest values at that position. In this way, the differing sizes of atoms are 

naturally included in the division of space without resorting to empirical radii. The use of the improved 

DFT-CP method is illustrated through analyses of the applicability of radius ratio arguments to Laves 

phase structures and the structural preferences of AB5 intermetallics between the CaCu5 and AuBe5 struc-

ture types. 
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Figure 4.0.  Schematic illustration of chemical pressure in an AB5 compound of the AuBe5 structure type. On the left, we see a 

2-dimensional chemical pressure map, overlayed with key contact volumes. This new division of space enables analysis of the 

AuBe5 structure type, which is shown to be stabilized by a small atom on the A site. 

 

4.2.  Introduction 

While chemistry has long since stripped itself of the mysticism of the alchemists, its deep roots in ex-

perimental observation have led to a number of useful empirical concepts that have their own sort of po-

etry and allure, such as the chemical bond, electronegativity, and acidity. One goal of modern theoretical 

chemistry is the mapping of these notions to aspects of a compound’s electronic structure, in ways that are 

both theoretically rigorous yet honor the richness of their historical uses and connotations. Atomic size is 

perhaps one of the most problematic of these empirical ideas. Experience with molecular and solid state 

structures suggests that atoms have measurable sizes,1-3 yet the Schrödinger equation contains no terms 

involving atomic radii or explicit penalties for atoms encroaching upon each other. Indeed, the gradual and 

asymptotic decay of wavefunctions away from a system’s nuclei is far from conducive to the construction 

of clear-cut boundaries defining the space occupied by individual atoms.4 Given the importance of atomic 
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size arguments throughout chemistry, theoretical tools which overcome these challenges could be ex-

tremely beneficial to deepening the roles theory can play in the design of experiments. 

For inorganic solid state materials, the need for such theoretical methods for analyzing atomic size 

effects is particularly pressing, as can be seen in a quick survey of the recent literature. Atomic sizes or 

radius ratios are frequently invoked in discussions of the factors stabilizing particular crystal structures,5-16 

and in the interpretation of physical properties in terms of the presence of rattling atoms or interstitial 

spaces for guest atoms.17,18 Furthermore, the empirical concept of chemical pressure, in which elemental 

substitutions create local stresses in a crystal structure, has been used as a framework for understanding 

relationships between composition and properties.19-28 

While energy terms corresponding to atomic size effects are difficult to extract from an electronic 

structure calculation, we have recently found that their impact on stability can be productively inferred 

from a quantum mechanical adaptation of the chemical pressure concept just mentioned.29-32 The basis of 

this method is the recognition that the size requirements of atoms are most apparent when interatomic 

repulsion at one contact in a structure impedes bonding at other contacts. As the repulsion and bonding 

interactions cannot be optimized simultaneously, local stresses are expected to result which, unlike the 

atomic sizes themselves, can be evaluated naturally using quantum mechanics through such concepts as 

the stress density.33-38 

The DFT-CP analysis offers a way to examine these local pressures using the results of standard elec-

tronic structure calculations. The method uses the density and potential grids determined in the course of 

a DFT calculation to create maps of the pressure within crystal structures, which reveal points of frustra-

tion within those structures. This approach has been particularly fruitful in the study of the structural 
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chemistry of intermetallic phases, where it has offered explanations for such phenomena as the creation of 

complex structures through the insertion of planar interfaces into simpler ones,30,32 the formation of local 

icosahedral order in quasicrystal approximants,39,40 and the ability of some AuCu3-type lattices to accom-

modate guest atoms.41 

Over the course of these and other applications, we have found that there are still several issues limiting 

the range of applicability of the DFT-CP analysis: (1) the proper treatment of the intense pressures that 

are calculated to occur near the core regions of an atom, and (2) the best scheme to interpret the pressure 

maps in terms of interatomic interactions. 

In this Chapter, we will describe improved solutions to both of these challenges. Beginning with the 

CP calculations on individual atoms isolated in large unit cells, we will show that the introduction of an 

unwarping procedure to correct for the drift of the voxel positions relative to the nuclei upon expanding 

and contracting the unit cell can significantly reduce the severe pressures in the atomic core regions ob-

tained in the original procedure. Including this step in the generation of CP-maps allows for more subtle 

CP features to come to the foreground, and eliminates the need for our earlier isotropic core averaging 

technique. 

After describing this improved method for the construction of CP maps, we will then move to issues 

with their interpretation. As the CP distributions generally involve positive pressures near the core regions 

and negative pressures in the interstitial regions, evaluating the net pressure along a contact involves an 

averaging process over the voxels associated with that contact. The overall results are strongly tied to the 

scheme used in assigning these voxels to contacts. In our previous applications, we have found that assum-
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ing that a voxel’s pressure is determined by the contact between its two closest atoms often provided intu-

itive results. However, this purely geometrical construction does not always assign differing spheres of in-

fluence to atoms of vastly different sizes. In this Chapter, we present a more sophisticated approach in-

spired by the Hirshfeld method for calculating atomic charges,42 in which the electron density distributions 

of free atoms are used in determining which atoms will have the largest influence on a voxel’s pressure. 

In introducing these methodological improvements, we will make reference to structural trends in in-

termetallics that have been attributed to atomic size effects (Figure 4.1): the role of radius ratios in the 

Laves phases, and the transition from the CaCu5 type to the AuBe5 type for AB5 intermetallics with in-

creasingly small A atoms.43 Through the use of the updated DFT-CP method, the latter structural trend 

will become simply explained as a CP-driven transition in line with the pressure-distance paradox.4,44 We 

anticipate that these results could provide a foundation for analyses of the origins of a series of complex 

intermetallic phases built from the intergrowth of the AuBe5 and MgCu2 types, at compositions near which 

a CaCu5-type phase might be expected, such as YbCu4.5 with its giant 7,448-atom monoclinic unit cell.45-48 

 

4.3.  Computational procedures 

Electronic structure calculations for the geometrical optimization of crystal structures and the output 

of electron densities, kinetic energy densities, and components of the Kohn-Sham potentials were carried 

out with the ABINIT program.49,50 All calculations employed the density functional theory (DFT) with 

the local density approximation (LDA) of Goedecker, Teter, and Hutter,51 and the HGH atomic pseudo-

potentials.52 Further details, including the energy cut-offs, number of k-points used in the calculations, and 
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the optimized atomic coordinates of the intermetallic structures discussed in this Chapter, are given in the 

Supporting Information. 

 

 

Figure 4.1.  Structure types discussed in this Chapter whose stability ranges are empirically connected to atomic size: (a) The 

MgCu2 (cubic Laves phase) type. (b) The AuBe5 type. (c) The CaCu5 type. 

 

The output of the ABINIT calculations was used for the generation of CP maps through the scheme 

described below. The resulting CP maps were visualized with the program VESTA 3.53 The projections of 

the CP maps onto spherical harmonics were plotted with Matlab. Software for the calculation and integra-

tion of CP maps using the method described in this paper is available at our research group website 

(http://www.chem.wisc.edu/~danny). 

In the determination of Hirshfeld-inspired contact volumes, free atom electron densities were taken 

either from the ABINIT website, or calculated using the Atomic Pseudopotentials Engine (APE).54 
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4.4.  Grid unwarping near atomic centers 

The basis of the DFT-CP method lies in the ability of the DFT total energy to be at least partially 

represented as an integral over a spatially resolved energy density: 

𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷 = �𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟)𝑑𝑑𝑑𝑑 + 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

  

where Eremainder contains energetic contributions that are not easily traced to specific points in space, such 

as the Ewald energy and nonlocal components of the potential energy. Using the output of the ABINIT 

program, such an energy density function can be constructed in the form of discrete points on a grid, i.e. 

𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷    ≈ � 𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟𝑛𝑛)𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑛𝑛

= � 𝐸𝐸𝑛𝑛 +  𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑛𝑛

   

where Nvoxels and Vvoxel are respectively the number of voxels in the structure’s unit cell and the volume of 

each individual voxel. 

When we recall that pressure and total energy are related as P = ‒∂E/∂V, a straightforward approach 

to constructing pressure maps emerges. We can simply generate energy grids for a structure at volumes 

that are slightly contracted and expanded relative to the geometry of interest, and use the resulting energy 

difference at each voxel as the basis for the calculation of voxel pressures: 

𝑃𝑃𝑛𝑛 = −∂𝐸𝐸𝑛𝑛/ ∂𝑉𝑉  

The representation of the total energy as a sum over an energy grid then gives way to the net pressure 

experienced by a phase being expressed as the average over a pressure grid: 

 

(4.1) 

(4.2) 

(4.3) 
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𝑃𝑃 =  −
𝜕𝜕𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷
𝜕𝜕𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= − �
𝜕𝜕𝐸𝐸𝑛𝑛

𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝜕𝜕𝜕𝜕𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑛𝑛

−  
𝜕𝜕𝜕𝜕𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝜕𝜕𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

=
1

𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
� 𝑃𝑃𝑛𝑛

𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑛𝑛

−  𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  

In our applications of this procedure, we have found that a rather consistent result is obtained over a 

wide range of solid state compounds: the pressure maps are marked by intense pressures (of several TPa) 

near the core regions of the atoms, with much shallower features in the interstitial portions of the structure. 

The extreme magnitudes of these core pressures mean that success in the interpretation of the pressure 

map is strongly dependent on how the cores are divided among interatomic interactions. 

A key question here is whether the strong pressures in the core regions represent the interactions be-

tween atoms, or are instead an artifact of the pseudopotential models for the atoms or the procedure for 

the generation of the pressure maps. A simple way to answer this question is to consider a case in which 

interatomic interactions should be absent: isolated atoms. In Figure 4.2a, we show cross-sections of CP 

maps calculated for individual atoms placed in large unit cells, for which the interatomic distances are suf-

ficiently long (10 Å) that each atom should exhibit virtually no influence on its neighbors. Maps are shown 

for a variety of elements, but common features are present: the atomic position at the center of the map is 

clearly decorated with intense oscillating pressure features emanating from the atomic cores. Depending 

on the diffuseness of the valence electron wavefunctions, the scales of these features vary over a significant 

range: from 0.07 atomic units for the valence-only Ca pseudopotential, to 120 atomic units for the semi-

core Ga pseudopotential. In all but the shallowest pseudopotentials, pressures of more than 1 atomic unit 

are attained. When we recall that 1 atomic unit of pressure is equal to 96,000 GPa, it is apparent that they 

(4.4) 



90 
 

 

represent pressure responses that are incommensurately large relative to the minuteness of the perturba-

tions on these systems induced by a small expansion or contraction of the unit cell. 

Why should such strong pressures arise in the absence of interatomic interactions? An assumption of 

the above formulation of the DFT-CP approach is that upon changing a unit cell’s volume, the features of 

the potentials and electron density expand or contract along with the voxel grid.30 In this way, the pressure 

calculated for a specific voxel (Pn) is then related to the difference in energies calculated for that voxel in 

slightly expanded and contracted structures: 

𝑃𝑃𝑛𝑛𝐷𝐷𝐷𝐷𝐷𝐷−𝐶𝐶𝐶𝐶 ≈ −
𝐸𝐸𝑛𝑛+ − 𝐸𝐸𝑛𝑛−

𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+ − 𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−  

This may be expected to apply well to the regions in the interstitial spaces, where atoms are most re-

sponsive to changes in their surroundings. Near the atomic cores, however, where electrons cling tightly to 

the nuclei, such an assumption is harder to justify. In the cores, the depths of the atomic pseudopotentials 

are such that variations in the cell volume would represent only minor changes. The electron density would 

not be expected to migrate along with an expanded or contracted voxel grid. 

It would seem that a more careful consideration is needed for the high electron densities of the core 

regions. The pressure response at these points in space might be better approximated by assuming that a 

volume element of fixed size and position relative to the associated atomic core should be sampled for the 

expanded and contracted structure. 

This can be accomplished by supplementing the original DFT-CP methodology with an unwarping 

procedure. Consider energy density distributions calculated for the equilibrium geometry of a crystal 

structure, a slightly expanded structure, and a contracted structure, which we can represent respectively as 

(4.5) 
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 𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑜𝑜 (𝑟𝑟), 𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒+ (𝑟𝑟), and 𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒− (𝑟𝑟). If we then write the pressure of voxel n in terms of its relation-

ship to its nearby atom j (𝑟𝑟𝑛𝑛 =  ∆𝑟𝑟𝑛𝑛𝑜𝑜 + 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗
𝑜𝑜 ),  then the pressure at that point, assuming that the energy 

density does not dilate with the voxel grid, can be calculated as 

𝑃𝑃𝑛𝑛 ≈ −
�𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒+ �∆𝑟𝑟𝑛𝑛𝑜𝑜 + 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗

+ � − 𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒− �∆𝑟𝑟𝑛𝑛𝑜𝑜 + 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗
− ��𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑜𝑜

𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+ − 𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−  

Calculating pressures in this way is complicated by the fact that the energy densities obtained over the 

course of a CP calculation are expressed in terms of the discrete points of a voxel grid. The vectors  ∆𝑟𝑟𝑛𝑛𝑜𝑜 +

𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗
+  and ∆𝑟𝑟𝑛𝑛𝑜𝑜 + 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗

−  then often will lie in between grid points, and the energy densities at those 

points cannot be determined exactly. Trilinear interpolation, however, can be used to obtain an estimate 

based on the values for the surrounding voxels. The magnitude of the errors is then related to the fineness 

of voxel grid spacing relative to the complexity of the electron density function. 

This methodology is implemented in our current version of the program CPmap. The voxel energies 

for the expanded and contracted structure are first calculated according to Equation 4.2. The voxels are 

then associated with specific atomic cores, which can be done by specifying cutoff radii, using a Voronoi 

scheme,55 a more complicated division of space as offered by Bader’s QTAIM,56 or, as we will describe in 

more detail below, a Hirshfeld-type weighting.42 The voxel centers in the expanded (𝑟𝑟𝑛𝑛+) and contracted 

(𝑟𝑟𝑛𝑛−) structures are then shifted to their corresponding positions relative to their atom’s nuclear position 

as in the equilibrium volume structure (𝑟𝑟𝑛𝑛 =  ∆𝑟𝑟𝑛𝑛𝑜𝑜 + 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗
𝑜𝑜 ). Finally, the pressures at the voxel positions 

are calculated according to Equation 4.6. 

 

(4.6) 
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Figure 4.2.  DFT-Chemical Pressure (CP) maps for individual atoms isolated in large unit cells (cell edges of 10 Å). (a) Cross 

sections through the nuclear positions using the original DFT-CP scheme. (b) The corresponding CP maps calculated using 

the process for unwarping the energy grids near the atomic cores, plotted using the same color map as in (a). (c)  The unwarped 

maps with the color map adjusted to a narrower range. Note that the unwarping procedure significantly reduces the strong core-

like features around the atomic position (which should be essentially absent in these calculations on virtually isolated atoms). 

SC and VO refer to the semicore and valence-only versions of the atomic pseudopotentials, respectively, where applicable. Black 

contours trace isosurface levels at increments of 0.05 between -0.1 and 0.1 a.u. 
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As the shifts in the voxel positions represent a different sampling of the same energy density maps, this 

interpolation leads to only small changes to the total energy obtained by integrating over the voxel grid 

(ca. 0.05%). Any small residual pressure resulting from differences in the interpolation error for the ex-

panded and contracted structures is added homogeneously to the pressure map. 

 In Figure 4.2b-c, we illustrate the effect of applying this fixed core correction procedure to atoms iso-

lated in boxes. Figure 4.2b shows cross-sections of the pressure maps for the atoms drawn with the same 

color map as in Figure 4.2a. The correction leads to a substantial change in the pressure distribution. The 

original, strongly oscillating ripples of pressure are now replaced with flatter maps and less isotropic fea-

tures. Figure 4.2c focuses on narrower pressure ranges to allow the more subtle features of these maps to 

be visible. Here, it can be seen that the variations are in many cases more associated with the corners and 

faces of the unit cell than with the distance to the atomic core. 

 

4.5.  Grid unwarping between atoms 

Atoms in more realistic environments should also benefit from this type of core treatment. Figure 4.3a 

shows two-dimensional slices of CP maps calculated for a diverse array of intermetallic compounds. For 

most examples using the original method, the maps show the most intense pressures as nearly perfect cir-

cles around the atomic positions. These core regions are set against what appears to be a shallow, nearly 

homogeneous negative background pressure. As such features are reminiscent of our uncorrected treat-

ment of the atoms-in-boxes of Figure 4.2a, it seems likely that implementing grid interpolations here 

should lead to more meaningful CP maps. 
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For voxels near the cores of any given atom, the path to applying the above procedure is clear: the 

voxels can be assigned to their nearby atom, and then treated according to Equation 4.6. The situation 

becomes less clear for voxels deeper in the interstitial spaces between the atomic cores, where the energy 

density features might be expected to migrate to various degrees with the voxel grid as the structure is 

expanded and contracted. How should the unwarping process be applied to these regions? 

A voxel’s position in the equilibrium grid can be represented in terms of its placement relative to any 

of the atoms in the structure: 

𝑟𝑟𝑛𝑛 =  ∆𝑟𝑟𝑛𝑛,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 1
𝑜𝑜 + 𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 1

𝑜𝑜 = ∆𝑟𝑟𝑛𝑛,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 2
𝑜𝑜 + 𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 2

𝑜𝑜 = ⋯ 

As we move to the expanded or contracted volumes, the various atoms will shift to different positions, so 

that the various equalities of Eq. 6.7 cannot be satisfied simultaneously if we keep the ∆𝑟𝑟𝑛𝑛,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗
𝑜𝑜  vectors 

constant. Instead, we will need to decide to what degree each of the ∆𝑟𝑟𝑛𝑛,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗
𝑜𝑜  terms will be weighted in 

the determination of the 𝑟𝑟𝑛𝑛+ and 𝑟𝑟𝑛𝑛− vectors. 

One approach to determining these weights can be found in the Hirshfeld method for the extraction 

of atomic charges from electronic structure calculations.42 In the Hirshfeld approach, one begins with a 

hypothetical case in which the electron density of a compound is simply a superposition of free atom elec-

tron densities centered at the nuclear positions of a structure. The relative contributions from these free 

atom densities at a given point in space is then translated into relative weights for the apportioning of the 

true electron density between the atoms in the calculation of charges. The free atom electron densities 

thus serve as a measure of the distance dependence of each atom’s influence. 

(4.7) 
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Figure 4.3.  Cross sections for the DFT-CP maps of a variety of intermetallic phases calculated (a) before and (b) after the 

unwarping of the energy grids using the same color map, and (c) the unwarped maps plotted with more appropriately tailored 

color maps.    
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In a similar way, the Hirshfeld method for the atoms surrounding a voxel can be used in assigning 

weights to each of the equalities in Equation 4.7. We first define a Hirshfeld weight for the influence of 

atom j on the position of voxel n: 

𝑤𝑤𝑗𝑗,𝑛𝑛 =
𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗
𝐹𝐹𝐹𝐹 (𝑟𝑟𝑛𝑛𝑜𝑜)

∑ 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘
𝐹𝐹𝐹𝐹 (𝑟𝑟𝑛𝑛𝑜𝑜)𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑜𝑜𝑚𝑚𝑚𝑚

𝑘𝑘
    

where 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘
𝐹𝐹𝐹𝐹 (𝑟𝑟𝑛𝑛𝑜𝑜) gives the electron density at the position of voxel n calculated for a free atom of the 

proper element centered at the nuclear coordinates of atom k. 

Having defined these weightings, we can then use them in determining how much a voxel should main-

tain its position relative to each of the atomic centers as the cell is expanded and contracted for the calcu-

lation of CP maps: 

𝑟𝑟𝑛𝑛+ = � 𝑤𝑤𝑗𝑗,𝑛𝑛(∆𝑟𝑟𝑛𝑛,𝑗𝑗
𝑜𝑜 + 𝑟𝑟𝑎𝑎𝑎𝑎𝑜𝑜𝑚𝑚 𝑗𝑗

+ )
𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑗𝑗

  

𝑟𝑟𝑛𝑛− = � 𝑤𝑤𝑗𝑗,𝑛𝑛(∆𝑟𝑟𝑛𝑛,𝑗𝑗
𝑜𝑜 + 𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗

− )
𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑗𝑗

 

For voxels near an atomic core, the weight for that atom will dominate these averages, and the original 

atom-centered interpolation of the previous section is obtained. 

In performing this distortion of the voxel grid around the atom centers, the grid points are no longer 

uniformly distributed, and the voxel volumes become varied throughout the structure. The calculation of 

the voxel pressures then becomes slightly modified from Equation 4.6: 

𝑃𝑃𝑛𝑛 ≈ −
𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒+ (𝑟𝑟𝑛𝑛+)𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝑛𝑛+ − 𝜌𝜌𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒− (𝑟𝑟𝑛𝑛−)𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣,𝑛𝑛−

𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣+ − 𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣−  

(4.8) 

(4.9a) 

(4.9b) 

(4.10) 
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where the numerator involves the volumes of the specific voxel n in the expanded and contracted struc-

tures, and the denominator uses the average voxel volumes for the two structures. A discussion of the de-

termination of the voxel volumes in the distorted grid is provided in the Supporting Information.

Turning on the unwarping procedure (Figure 4.3b-c) significantly reduces the magnitudes of the pres-

sures of the core regions, allowing more subtle features in the interatomic regions to come more to the 

foreground. Also, in some cases, particularly La5Sn3 and CaAu5, the spherical character of the core regions 

has diminished, making the centers of the atoms appear more responsive to their surroundings. This is 

more consistent with the philosophy of pseudopotentials which aims to treat explicitly only those elec-

trons that are perceptibly affected by interatomic interactions as part of the valence set.

 

4.6.  Hirshfeld-inspired contact volumes 

In the previous section, we saw how the features of a CP map could be substantially clarified by intro-

ducing a step in which corresponding grid points of the expanded and contracted unit cells are shifted to 

the same position in space relative to an atom assigned to it. By implementing this procedure, the severe 

isotropic pressures appearing around the atomic cores are reduced, allowing more subtle features to come 

to the foreground. Even with this improvement, however, the CP distributions still largely consist of posi-

tive regions around the atomic centers that are immersed in a shallower negative background pressure. In 

examining the overall pressures at particular interatomic contacts, we will then need to examine the net 

effect of these core-like and interstitial pressures through the integration of the pressure map within do-

mains assigned to individual contacts. 
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In performing such an integration, the pressure between a pair of atoms will be given by 

𝑃𝑃𝑗𝑗𝑗𝑗𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = � 𝑤𝑤𝑗𝑗𝑗𝑗,𝑛𝑛𝑃𝑃𝑛𝑛

𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑛𝑛

  

where wjk,n is the fraction of the pressure at voxel n that is attributed to the interaction between atom j and 

atom k. The central challenge in carrying out the integrations in a meaningful way is then the determina-

tion of the proper weighting scheme, the set of wjk,n’s. In our recent applications of the DFT-CP method, 

we derived our choice of weights from an assumption that a voxel’s pressure is determined by the interac-

tion of its two nearest atoms, i.e. 

𝑤𝑤𝑗𝑗𝑗𝑗,𝑛𝑛 = �

1, 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑛𝑛
1
𝑚𝑚

, 𝑖𝑖𝑖𝑖 𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

0, 𝑖𝑖𝑖𝑖 𝑗𝑗 𝑜𝑜𝑜𝑜 𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑛𝑛

�    

This scheme is advantageous in its simplicity. However, as it is entirely based on geometrical construc-

tions, it neglects the differing ranges of influence of different atom types, and should be considered as only 

a first step toward a more realistic division of space between contacts. 

Over the course of our ongoing exploration of intermetallic phases using the DFT-CP method, we 

have found that for one large and important class of compounds, the Laves phases and their variants, re-

finements to the weighting scheme are particularly vital. In these AB2 compounds (see Figure 4.1a for one 

example), the A positions (usually occupied by a relatively electropositive element) form a diamond net-

work, a hexagonal diamond network, or an intergrowth of the two. The B atoms occupy the interstitial 

spaces of the A diamondoid framework, and form truncated tetrahedra (TT) around the A atoms. The 

resulting coordination environment around the A sites is known as a Friauf polyhedron, consisting of a TT 

of B atoms with A atoms sitting above the hexagonal faces of the TT. 

(4.11) 

(4.12) 
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The geometrical features of the Friauf polyhedron make it a challenging test case for the division of 

space among interatomic contacts. The A-A and A-B distances exhibit a ratio of 1.0445 (for the high sym-

metry MgCu2-type case), with the longer A-A lengths being consistent with the trend that the A sites are 

generally occupied by the larger atom type. However, using the distance-based criterion described above, 

the voxels inside the Friauf polyhedron will be assigned to the pairs of atoms to which they are closest. As 

the A-B interatomic distances are shorter than the A-A ones, these will tend to absorb more voxels, despite 

the A atoms being larger. 

This dominance of the A-B contacts in the voxel assignments has interesting consequences for the 

integrated CP schemes. In Figure 4.4a, we show the results for the MgCu2-type phase CaPd2,57,58 using the 

projection scheme described previously. Here, the distribution of voxel pressures around each atom is rep-

resented by radial surfaces around its nuclear position. The distance of a point on the surface from the 

nucleus is proportional to the sums of the voxel pressures along that direction, while the color of the sur-

face gives the sign of the pressure. Lobes in black point along directions where the pressure is negative, i.e. 

contraction would be favorable, while portions of the surfaces in white correspond to positive pressures, 

where the structure would prefer to expand. 

For the Friauf polyhedron of CaPd2 using the original geometrical construction of contact volumes, 

the white and black features are divided largely by element type. The Ca atoms appear as black tetrapods, 

with large negative pressure lobes pointing along the Ca-Ca contacts (red). These forces calling for the 

contraction of the lattice are counteracted by white, positive pressure lobes along the Pd-Pd contacts 

(blue), with the Ca-Pd contacts appearing to be relatively satisfied. This result is encouraging in the sense 
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that the heteroatomic interactions, the usual driving force for the formation of a binary phase from its ele-

ments, are well-optimized. 

However, inspection of the contact distances uncovers some counterintuitive aspects of this picture. 

Note that in the Ca-Ca/Pd-Ca distance ratio of 1.0445, the Ca-Ca contacts are only slightly longer than 

the Ca-Pd ones, despite the metallic radius of Ca being significantly larger than that of Pd (1.97 vs. 1.37 

Å59). As a consequence, the Ca-Ca distance is much shorter than the sum of the metallic radii (3.3257 vs. 

3.94 Å59). This distance is still within the ranges observed for Ca-Ca interactions in the Inorganic Crystal 

Structure Database,60,61 but would hardly be the occasion for large negative pressures demanding even 

closer Ca-Ca contacts. If anything, a positive pressure pushing toward distances more in-line with twice 

the metallic radius would be expected. 

A look at the volumes assigned to each contact in our integration provides an explanation for the ap-

pearance of these negative Ca-Ca pressures. In Figure 4.4b-c, we present a cross section of the DFT-CP 

map for CaPd2 taken through one of the Ca-Ca contacts, with the boundaries between contact volumes 

drawn in black. The contact volume of the Ca-Ca interaction appears here as a diamond between the two 

atoms. A brief glance reveals why negative pressures are assigned to this contact: whereas positive pressure 

features occur around both the Ca atoms of the contact, only the tips of the narrow corners of the contact 

volume reach into these regions. Instead, the contact volume contains mainly the negative pressure inter-

stitial space between the Ca atoms. The core regions themselves are dominated by Ca-Pd contact volumes. 

In other words, the Ca-Pd distances are short enough relative to the Ca-Ca ones that the distance cri-

terion grants them most of the Ca core voxels. As a result, only small positive pressure components are 

allocated to the Ca-Ca contacts, and negative pressures thus dominate despite the short Ca-Ca distances. 
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Figure 4.4.  Comparison of integrated DFT-CP anisotropies and contact volumes for CaPd2. (a) The DFT-CP distribution 

calculated for CaPd2 using the original contact volume (CV) scheme. (b) The DFT-CP distribution plotted together with a 

cross section of the original DFT-CP map. (c) The DFT-CP cross-section shown separately with the contact volume borders 

indicated. (d)-(e) The corresponding images generated using the Hirshfeld-inspired contact volume scheme (see text). In (a) 

and (d), the pressure distribution around each atom is represented by a radial plot, with the radial distance indicating the 

magnitude of the sum of voxel pressures along that direction. The sign of the pressure is indicated with color: black for negative 

(evoking the image of a black hole acting on the structure), white for positive. 
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Now that we see the origin of the Ca-Ca negative pressures, a way to correct the CP picture becomes 

apparent: the Ca-Ca contact volumes should be expanded into the Ca core regions to better reflect the 

larger size of the Ca atoms relative to Pd atoms. To do this, a change in the weighting scheme of Equation 

4.12 is needed that takes into account the differing electronic structures of Ca and Pd atoms. 

As for our grid-interpolation scheme above, the Hirshfeld approach can be adapted to this task, the 

essential change being that we are now assigning points in space to pairs of atoms rather than individual 

atoms. The influence of a contact on a point in space will depend on the sizes of the free atom electron 

densities for the two atoms at that point. A way of quantifying this is to consider the weights in Equation 

4.11 as being proportional to the products of the free atom (FA) electron densities for the atoms of the 

contact: 

𝑤𝑤𝑗𝑗𝑗𝑗,𝑛𝑛 ∝ 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗
𝐹𝐹𝐹𝐹 (𝑟𝑟𝑛𝑛) ∙ 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘

𝐹𝐹𝐹𝐹 (𝑟𝑟𝑛𝑛) 

In this way, every voxel would be shared among multiple contacts, with weights that are proportional to 

the overlaps between the FA electron densities for each contact. 

In experimenting with such integration schemes, we have found that following through with this 

Hirshfeld-based approach in its entirety leads to some issues with interpretation: it is difficult to see which 

points in space are influencing which contacts. Instead, it is more practical to keep the division of space 

into discrete contact volumes as in Equation 4.12, but using the products of FA electron densities as a guide 

to their construction. The corresponding weighting is then: 

𝑤𝑤𝑗𝑗𝑗𝑗,𝑛𝑛 =

⎩
⎨

⎧1, 𝑖𝑖𝑖𝑖 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 1
𝐹𝐹𝐹𝐹 (𝑟𝑟𝑛𝑛)𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 2

𝐹𝐹𝐹𝐹 (𝑟𝑟𝑛𝑛) 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗, 𝑘𝑘 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
1
𝑚𝑚

, 𝑖𝑖𝑖𝑖 𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

0, 𝑖𝑖𝑖𝑖 𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 1
𝐹𝐹𝐹𝐹 (𝑟𝑟𝑛𝑛)𝜌𝜌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 2

𝐹𝐹𝐹𝐹 (𝑟𝑟𝑛𝑛)  𝑛𝑛𝑛𝑛𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗,𝑘𝑘 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝⎭
⎬

⎫
 

(4.13) 

(4.14) 
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The result of using this Hirshfeld-inspired scheme is shown in Figure 4.4d-e. The Ca-Ca contact vol-

ume (Figure 4.4e) now reaches much deeper into the Ca cores so that a corner lies on each Ca nuclear 

position. The angle at each of these corners has also expanded to encompass more of the core’s volume. In 

fact, the core is now entirely divided between the four Ca-Ca contacts arranged in a tetrahedron around 

the central Ca atom. 

At first glance, the new contact volume boundaries do not appear to align with the prominent features 

of the Ca core regions. In the cross-section of Figure 4.4f, each Ca atom exhibits a pair of red bulges corre-

sponding to high positive pressures. Their directional character would lead us to think that they are asso-

ciated with particular interatomic interactions. However they are almost perfectly bisected by the borders 

of the CVs, rather than being centered within a specific CV. A deeper investigation of these features resolves 

this apparent discrepancy. As is illustrated in the Supporting Information, we have found that the highest 

pressures within the core regions tend to accumulate in the spaces lying between important interatomic 

interactions, rather than along them. The source of this is a negative pressure contribution arising from the 

overlap of the local pseudopotentials along the interatomic vector. The core regions not aligned with these 

vectors then tend to be the spaces where the positive core pressures are most prominent. 

The increased contribution from the Ca cores to the Ca-Ca contact volumes has a profound effect on 

the integrated CP distributions (Figure 4.4d). The Ca-Ca contacts now exhibit intense positive pressures 

that seem appropriate to the relatively short Ca-Ca distances. These positive pressures are balanced by the 

negative pressure lobes oriented along the Ca-Pd interactions. The Pd-Pd contacts, meanwhile, are largely 

devoid of CP features, indicating that the distances here are nearly optimal. 
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In comparing Figure 4.4a and 4.4d, it is somewhat surprising that they represent the same original CP 

map, and differ only in the integration scheme used. In what ways are they connected? To see their rela-

tionship to each other, it is helpful to note that the Ca-Ca contacts pass through hexagons of Pd atoms. 

The integrated pressures in this region of the structure will depend on the relative sizes and shapes of Ca-

Ca, Ca-Pd, and Pd-Pd contact volumes. In the original scheme, the size of the Pd atoms is overestimated 

relative to the Ca ones, which leads to the Ca-Pd and Pd-Pd volumes dominating the positive cores of the 

Ca and Pd atoms. The result is positive pressures along the Pd-Pd interactions and only small negative 

pressures along the Ca-Pd ones. 

In moving to the Hirshfeld-inspired scheme, the Ca-Ca volumes are increased at the expense of the 

Ca-Pd and Pd-Pd volumes. The contact volumes involving Ca then pick up more of the positive core pres-

sures, leading to large positive pressures between the Ca atoms, the removal of positive pressures from the 

Pd-Pd interactions, and only smaller changes to the Ca-Pd interactions (which lose core contributions 

from the Ca but gain them from the Pd). 

The better treatment of atomic sizes is not the only reason for which the revised CP scheme is attrac-

tive: it also corresponds closely with expectations based on the sphere-packing view of the Laves phases. 

Consider a MgCu2-type AB2 structure constructed from hard spheres with radius rA for the A atoms and rB 

for the B atoms. The high symmetry of the structure means that the distances are entirely determined by 

the length of the cubic unit cell edge, and no other degrees of freedom exist for adjusting the structure to 

accommodate the values of rA  and rB. If the B atoms are in contact with each other at an interatomic dis-

tance of 2 rB, then the surfaces of the A atoms touch each other when the rA/rB radius ratio is (3/2)1/2 = 

1.225. However, the surfaces of the A atoms would not touch those of the B atoms until rA/rB = (11/2)1/2-



105 
 

 

1 = 1.345. As such, bringing the A and B spheres in contact would require allowing the A atoms to slightly 

interpenetrate each other. 

We can now compare these radius ratios for that of the metallic radii for CaPd2, rCa/rPd = 1.97 Å/1.37 

Å = 1.44. For this ratio, having sphere surfaces touch at the Pd-Pd or Ca-Pd contacts would require the Ca 

spheres to overlap. In this situation, positive pressures could be expected to arise between the Ca atoms as 

the structure strives to achieve closer contacts along the Pd-Pd and Ca-Pd interactions. This picture agrees 

well with the CP scheme of Figure 4.4d-f. We anticipate that the revised CP scheme obtainable for Laves 

phases will offer opportunities to examine the driving forces for the creation of complex structures through 

the fragmentation of these simpler structures,62-70 and will improve our ability to discern the reasons for 

the intergrowth of Ca-Cd and Cd-Cu interactions in the Bergman-type quasicrystal approximant 

Ca10Cu2Cd27. 

It is important to mention, however, that this result is dependent on the use of a semicore Ca pseudo-

potential in which not only the Ca 4s but also 3p and 3s electrons are considered as part of the valence set. 

Using a “valence-only” Ca pseudopotential with just the 4s electrons treated explicitly leads to a CP 

scheme similar to Figure 4.4a regardless of what map generation and integration procedures are applied. 

We believe that this can be attributed to the relatively high ionicity expected for the CaPd2 phase. Indeed 

a Bader charge analysis using the BADER program71-73 of our valence-only electron density for this phase 

gives a charge on the Ca atoms of +1.7, indicating that only 0.3 electrons lie near the Ca cores. With so few 

valence electrons present on Ca atoms, it is understandable that the explicit inclusion of semicore electrons 

would be necessary to model the atom’s responses to its surroundings. From this, we arrive at a recommen-

dation that semicore potentials be used in cases where atoms are expected to be highly cationic. 



106 
 

 

Using the improved method including Hirshfeld-inspired contact volumes and interpolation within 

atomic cells, we have also been able to reproduce the conclusions of our earlier studies examining the sta-

bility of the complex Ca2Ag7 and Ca36Sn23 structures relative to simpler structural alternatives. In the re-

mainder of this Chapter, we will describe a different application of the DFT-CP method: determining the 

role of atomic size in the relative stabilities of competing structure types. Our focus will be on the structural 

preferences of AB5 structures for CaCu5- or AuBe5-type structures, for which atomic size has been consid-

ered a key factor. 

 

4.7.  Stability trends in AB5 intermetallics 

 In the previous sections of this paper, we described improvements to the DFT-CP method, and 

showed how they offer a CP scheme for the Laves phase CaPd2 that is in close accord with radius ratio 

considerations. Using the same implementation of the CP concept, it is also possible to explain the stability 

trends for another intermetallic structure type that is closely related to the Laves phases: the AuBe5 type. 

This AB5 structure type can be derived from the AB2 MgCu2-type by replacing every other A atom in the 

structure with a B atom, i.e. A2B4  ABB4 = AB5 (Figure 4.1b). For AB5 intermetallics with A being an 

alkaline earth or lanthanide and B being a late transition metal, the AuBe5 type appears to be in competi-

tion with the more common CaCu5 type. The factor determining the relative stabilities of these two struc-

ture types appears to be the relative sizes of A and B atoms,43 an effect that should be amenable to CP 

analysis. 

Let’s begin by examining the DFT-CP distribution for a representative of the AuBe5 type: CaAu5.74 In 

Figure 4.5, we present CP anisotropy surfaces for this structure calculated with the range of procedures 
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discussed in the previous section. First, in Figure 4.5a, we show the result using the original methodology 

without interpolation within atomic cells and using a geometrical construction for the contact volumes. In 

Figure 4.5b-c, we turn on either the interpolation procedure or the Hirshfeld-inspired determination of 

contact volumes (CVs). Finally, in Figure 4.5d, we use the fully improved method, with both the interpo-

lation and new contact volumes. 

 

 

Figure 4.5.  Comparison of DFT-CP anisotropy schemes calculated for CaAu5 using (a) the original methodology, (b) the 

improved map generation (with the unwarping procedure applied) but original geometrically constructed contact volumes, (c) 

the original map generation but the Hirshfeld-inspired contact volume determination, and (d) the improved methods for the 

both the creation of maps and contact volumes. See the caption to Figure 4.4 for plotting contentions. 

 

Using the original DFT-CP scheme, the integrated CP distribution closely resembles that obtained in 

this way for the Laves phase CaPd2 (Figure 4.4a), despite having replaced four Ca-Ca contacts with Ca-
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transition metal ones. Negative pressure lobes (black) point through the faces of the truncated tetrahedron 

just as in CaPd2, while the edges of the truncated tetrahedron itself are decorated with positive pressure 

lobes. The Ca atom, overall, has large negative pressure indicating that it would benefit from contraction 

of the lattice, which is prevented by positive pressures within the Au truncated tetrahedra. As such, this 

scheme predicts that the structure would be stabilized by replacing the Ca with a larger atom—which of 

course runs counter to the empirical trend of the AuBe5 type being observed for small A atoms. 

Turning on either the interpolation near atomic cores (Figure 4.5b) or the Hirshfeld-inspired CVs 

(Figure 4.5c), introduces qualitative changes to the CP distributions on the Ca@Au4 tetrahedron, but 

leaves the positive pressures between the Au atoms of the truncated tetrahedron largely intact. The most 

dramatic change occurs upon turning on both features of the improved DFT-CP method simultaneously 

(Figure 4.5d). Here, positive CP lobes point along all of the Ca-Au contacts, while negative CP is reserved 

for the Au-Au interactions with the longest interatomic distances. Unlike that of the original DFT-CP 

scheme, the final integrated result is in close agreement with experimental trends: the positive pressures 

surrounding the Ca atoms indicate that the stability of this structure will be largely dependent on having a 

relatively small atom at this position. 

In comparing Figure 4.5b and 4.5d, it is evident that the use of Hirshfeld-inspired CVs plays a signifi-

cant role in obtaining positive pressures on the Ca sites. As for CaPd2, a comparison of the CVs generated 

with the original and Hirshfeld-inspired schemes is helpful in seeing how these differences arise (Figure 

4.6). On moving from the MgCu2 type to the AuBe5 type, the relative interatomic distances are left un-

changed. Because of this, the Ca-Ca geometrically derived CV in CaPd2 (Figure 4.4b) is identical to the 

corresponding one in CaAu5 (Figure 4.6b), although now it corresponds to a Ca-Au CV. In the slice 
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through the structure of Figure 4.6, this CV appears as a diamond-shaped polygon. Only the narrow cor-

ners of this polygon cross into the positive core regions of the Ca and Au atoms, leading to a net negative 

pressure for the contact. 

As we switch to the Hirshfeld-inspired scheme, the larger size of the Ca atoms relative to Au will lead 

to the growth of the Ca-Au CVs at the expense of the Au-Au ones. Because the Ca is surrounded by Au 

atoms, in the shapes of the CVs near the Ca center are essentially unchanged. However, on the Au atoms, 

there is a marked expansion of the Ca-Au CVs into regions previously occupied by Au-Au ones (Figure 

4.6c,f). The Au-Ca CVs then acquire more of the positive core pressures on the Au atoms, leading to the 

overall positive CPs between the Ca atom and its neighbors. 

As we mentioned earlier, the positive pressures calculated for the Ca atom with the revised CP scheme 

(Figure 4.5d) suggest that the AuBe5 type would be stabilized by the replacement of relatively small atoms 

on this site. Whether a AuBe5 phase forms, however, is not just a factor of the favorability of that single 

phase, but will depend also on the free energy of the AuBe5-type compound relative to those with alterna-

tive structures (or multi-phase mixtures of compounds with an average A:B ratio of 1:5). For AB5 inter-

metallics formed between an electropositive metal such as an alkaline earth or lanthanide (for the A sites) 

and a late transition metal (for the B sites), the AuBe5 type has a fierce competitor:  the CaCu5 type (Figure 

4.1c). What does the improved DFT-CP approach predict about the relative virtues of these two structure 

types? 
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Figure 4.6.  Effect of the use of Hirshfeld-inspired contact volumes (CVs) on the integrated DFT-CP results for CaAu5 (AuBe5 

type). (a) Atomic DFT-CP anisotropy surfaces calculated for CaAu5 using the original geometrical definition of CVs. (b) The 

DFT-CP anisotropy surfaces drawn in the context of a cross section of the DFT-CP map with two Ca-Au CVs in the original 

scheme indicated. (c) The same cross section of the CP map as in (b) with additional CV borders drawn. (d)-(f) The 

corresponding plots obtained using the Hirshfeld-inspired CV scheme. Note that the CV borders are determined only to the 

resolution of voxel grid used in the CP calculation. The smooth curves drawn should thus be considered as approximate. See 

the caption to Figure 4.4 for an explanation of plotting conventions for the DFT-CP anisotropies. 
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In Figure 4.7, we present a comparison of the CP schemes calculated for the CaCu5- and AuBe5-type 

structures for two different compounds: CaCu5 and CaAu5, which are experimentally known to prefer the 

former and latter structure type, respectively (green boxes).74,75 The plots shown focus on the coordination 

environment of the Ca atoms (A site) as the relative size of the atom here has been perceived as a key factor 

in determining which structure type is adopted. In the CaCu5-type structures, this Ca environment con-

sists of an 18-coordinate hexagonal polyhedron built from the layering of honeycomb and kagome sheets 

of Cu/Au atoms. For the AuBe5-type structures, the Ca coordination environment is the same Friauf pol-

yhedron of Cu/Au atoms that we saw earlier in Figures 4.5 and 4.6. 

A comparison of the results for CaCu5 and CaAu5 reveals that, while differences occur in the sizes of 

the various lobes, the qualitative features of the CP plots are very similar between the phases of the same 

structure types. For both CaCu5-type compounds, the Ca atom’s CP surface has the shape of a dz2 orbital, 

with negative lobes pointing up and down, and a torus of positive pressure running around the middle. 

This shape can be interpreted as the Ca atom desiring shorter contacts to the Cu/Au atoms in the layers 

above and below it, but longer contacts to those in the same plane. Overall, the pressures on the Ca sites 

are negative (–389  GPa on CaCu5 and –21 in CaAu5), indicating that the combined effect of the 12 overly 

long contacts to the Cu/Au atoms above and below, outweighs the 6 overly short contacts in the plane. 

The net negative CP for the Ca could be relieved by the placement of a larger atom on this site, leading to 

the prediction that the stability of the phase is enhanced for larger A atoms. 

In both of the AuBe5-type phases, on the other hand, the Ca sites are subject to positive pressures, 

indicative of a desire for the expansion of the lattice. This driving force of enlarging the unit cell is resisted 

largely by the presence of negative pressure lobes between the Cu/Au atoms of the truncated tetrahedron 
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and the Cu/Au atoms on the diamondoid network, which like the Ca atoms lie in Friauf polyhedra. Due 

to the symmetry of the structure, the interatomic distances between the atoms in the Friauf polyhedra and 

their surroundings are the same, regardless of whether the position is occupied by a Ca atom or a Cu/Au 

one. As such, the structure would be best served by placing an atom on the Ca site with a size more similar 

to a Cu/Au atom, i.e. a smaller atom. 

 

 

Figure 4.7.  DFT-CP analysis of the AB5 structure types CaCu5 and AuBe5. (a) CaCu5 in the AuBe5 and CaCu5 types. (b) CaAu5 

in the same two structure types. Plotting conventions are given in the caption to Figure 4.4. 

 

From these considerations, we can conclude that the CaCu5 and AuBe5 structure types are indeed tai-

lored for a larger and smaller atom on the A atom positions, respectively. Let’s now examine how the CP 

results for the experimentally observed phases compare with the hypothetical ones. As a first step, we need 

to calibrate ourselves in terms of the significance of the sizes of the CP features in Figure 4.7a. The CP 
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lobes for the two CaCu5 phases in panel a are drawn to scale, as are the two CaAu5 phases in panel b. Be-

tween the panels a and b, it is not practical to show the plots at the same scale: Cu with its highly localized 

3d electrons generally shows inherently larger pressures numerically than Au, regardless of the structure. 

Instead panels a and b are scaled so that the relative features of the CaCu5- and AuBe5-type structures are 

maximally comparable. 

A good place to begin is a comparison of the two AuBe5-type phases. As we noted earlier, the CP fea-

tures are very similar between CaCu5 and CaAu5 in this structure type. However, a close examination of 

the Ca CP anisotropy surfaces for the two compounds reveals an important difference: in CaAu5 the pos-

itive pressures around the Ca are largely focused along the diamondoid network. The contacts between 

the Ca and the truncated tetrahedron are more satisfied, and in fact represent the interactions in the struc-

ture that are most optimized. Upon replacing the Au atoms with smaller Cu ones to create a AuBe5-type 

CaCu5 phase, we obtain a different situation. The smaller size of Cu translates into a larger relative size for 

the Ca, and now the positive pressures around the Ca are more uniformly distributed. 

By contrast, the replacement for Au with the smaller Cu atoms to make the CaCu5-type CaCu5 phase 

leads to a tighter coordination environment around the Ca. As a result, the size of the Ca CP features de-

creases in the CaCu5 type during this substitution, relative to those of the AuBe5-type phase of the same 

composition. 

These observations are in-line with the trend that moving from CaAu5 to CaCu5 increases the favora-

bility of the CaCu5 type relative to the AuBe5 type. What is more difficult to determine is where the cross-

ing point between the two structure types should occur. This difficulty, in fact, reflects one of the limita-

tions of the use of the DFT-CP method in comparing very different crystal structures. Chemical pressures 
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represent derivatives of the total energy with respect to structural perturbations, and not the magnitudes 

of the total energy itself. For structures that are closely related, such as a superstructure and the basic struc-

ture that it is derived from, the CPs are charting similar energy vs. distance curves for interatomic interac-

tions. As such, minimizing the CPs can be seen as a qualitative surrogate for the minimization of the total 

energy. For more distantly related structures, such as the CaCu5 and AuBe5 types, the energy vs. distance 

relationships may be expected to be quite different. We should then seek complementary methods, such 

as the crystal orbital Hamilton population,76 to measure the magnitudes of the bond strengths to go along 

with the derivatives provided by the DFT-CP analysis.        

 

4.8.  Conclusions 

The concept of chemical pressure offers a means to track the effects of atomic size on the electronic 

structure. In this Chapter, we have described advances in the generation of chemical pressure maps for 

solid state structures using the output of DFT calculations and the interpretation of these maps in terms 

of interatomic interactions. For the calculation of CP maps, we introduced a correction for the incompress-

ibility of atomic cores in which voxel positions between structures of different sizes are interpolated to the 

same position relative to the atom with which they are associated. The result is the large reduction of the 

isotropic core pressures (by factors of up to 15) that have proven so challenging to analyze in previous 

applications of the DFT-CP approach. 

We also introduced an improved scheme for assigning voxels to interatomic contacts for the integra-

tion of interatomic pressures: the use of Hirshfeld-inspired contact volumes. In this approach, the relative 

sizes of the free atom electron densities centered at the atomic positions within a crystal structure are used 
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to evaluate their relative degrees of influence on the pressure at a given voxel. The voxel is then assigned to 

the interaction between the pair of atoms whose influence is greatest on it. Through the use of the free 

atom electron density profiles, the differing size of the atoms becomes naturally incorporated into the con-

struction of contact volumes, unlike our earlier geometrical procedure. This formalism is also easily gen-

eralized: the radial electron density of the free atom could easily be replaced in the input to the CP pro-

grams with other relevant profile functions, such as the local energy component of the atomic pseudopo-

tentials. 

The utility of the improved DFT-CP approach was illustrated using several structures whose stability 

ranges have been associated with atomic size effects: the MgCu2 (cubic Laves phase), AuBe5, and CaCu5 

structure types. For the MgCu2-type CaPd2, the CP scheme obtained exhibited parallel features with the 

sphere-packing view of the Laves phases, and thus affirms the efforts of several researchers to apply and 

adapt radius ratio type analyses to this large family of compounds.2,77-79 In the case of competition between 

the AuBe5 and CaCu5 types for AB5 structures, our analyses confirmed the role of atomic size in stabilizing 

one phase over the other. A moderately sized A atom is predicted to experience positive pressures in the 

AuBe5 type, and negative pressures in the CaCu5 type. Relatively large A atoms are then expected to prefer 

the CaCu5-type, while smaller A atoms would prefer the AuBe5 type. 

We have already found that these advances in the DFT-CP method have made its use much more 

straightforward for a wide variety of intermetallic systems, and are looking forward to exploring its capa-

bilities through further applications. Motivated by the insights the method has provided regarding the fac-

tors influencing the stabilities of the Laves phases and the AB5 structure types, we are particularly excited 
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to see what it might reveal concerning the complex intergrowth structures of the AuBe5 and MgCu2 struc-

ture types in lanthanide-copper systems, some with thousands of atoms per unit cell.45-48 
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Chapter 5. 

Chemical Pressure Schemes for the Prediction of Soft Phonon Modes:             

A Chemist’s Guide to the Vibrations of Solid State Materials 

This chapter has been published under an open access license as an ACS Editors’ Choice article: Engelkemier, 
J.; Fredrickson, D. C. Chem. Mater. 2016, 28, 3171-3183. Although not authors, B. J. Kilduff and Y. Guo 
were influential in the development of the ionic profile method described in this chapter.

 

5.1.  Abstract 

The vibrational modes of inorganic materials play a central role in determining their properties, as is 

illustrated by the importance of phonon-electron coupling in superconductivity, phonon scattering in 

thermoelectric materials, and soft phonon modes in structural phase transitions. However, the prediction 

and control of these vibrations requires an understanding of how crystal structure and the stiffness of 

interatomic interactions are related. For compounds whose relationships between bonding and structure 

remain unclear, the elucidation of such structure-property relationships is immensely challenging. In this 

Chapter, we demonstrate how the Chemical Pressure (CP) approach can be used to draw visual and 

intuitive schemes relating the structure and vibrational properties of a solid state compound using the 

output of DFT calculations. We begin by illustrating how phonon band structures can validate the DFT-

CP approach. For some intermetallic crystal structures, such as the Laves phases, the details of the packing 
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geometries make the resulting CP scheme very sensitive to assumptions about how space should be 

partitioned among the interatomic contacts. Using the Laves phase CaPd2 as a model system, we 

demonstrate how the phonon band structure provides a reference against which the space-partitioning 

method can be refined. A key parameter that emerges is the ionicity of the crystal structure: the assumption 

of some electron transfer from the Ca to the Pd leads to a close agreement between the CP distribution 

and the major features of its phonon band structure. In particular, atomic motions along directions of 

positive CPs (indicative of overly short interatomic distances) contribute to high frequency modes, while 

those along negative CPs (corresponding to overly long distances) make up the lowest frequency modes. 

Finally, we apply this approach to Nb3Ge and CaPd5, for which low-frequency phonon modes correlate 

with superconductivity and a rich variety of superstructures, respectively. Through these examples, CP 

analysis will emerge as a means of predicting the presence of soft phonon modes in a crystal structure, and 

a guide to how elemental substitutions will affect the frequencies of these modes. 
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Figure 5.0.  The low-frequency phonon modes of Cr3Si type intermetallic compounds are connected to their critical 

temperatures, Tc’s, below which superconductivity is possible. Chemical Pressure (CP) analysis of the structure reveals chains 

of CP quadrupoles that predict lower phonon frequencies – and possibly higher Tc‘s – through elemental substitutions that 

exacerbate the positive CP between the chains of atoms. 

 

5.2.  Introduction 

Concepts relating structure and properties form the core inspiration behind the design of new 

materials. In thermoelectric materials, for example, the notion of a phonon-glass electron-crystal1 predicts 

that the introduction of structural motifs that selectively scatter phonons over electrons will enhance a 

material’s ability to exhibit an electrical voltage across a temperature gradient, and vice versa. This idea has 

led directly to the fruitful investigation of phases with rattling guest atoms, such as clathrates and stuffed 

skutterudites,2-6 as well as nanostructured materials whose domain boundaries serve to disrupt phonon-

mediated thermal conductivity.7,8 For many solid state materials, however, a clear link between structure 

and properties remains a distant prospect. The need for such connections is especially pressing for metals 

and intermetallic phases, where electronic structures usually described in k-space must be bridged with 

specific structural moieties in physical space. 
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This disconnect is particularly evident for vibrational properties. The presence of soft phonon modes 

in intermetallics has been identified as an essential contributor to thermoelectric performance,9-14 

superconductivity,15-17 unusual magnetic phenomena,18,19 magnetostriction,20,21 hydrogen diffusion,22,23 

and structural phase transitions.24-28 However, few methods exist for directly tying the presence of these 

phonon modes (represented in k-space, using the same irreducible representations of the crystal symmetry 

as the electronic wavefunctions) to specific geometrical arrangements of atoms. In this Chapter, we will 

demonstrate how such relationships between structure and vibrational properties can be quickly and 

vividly derived using Density Functional Theory-Chemical Pressure (DFT-CP) analysis. 

The DFT-CP method was originally developed to make sense of complex intermetallic structures 

whose formation appeared to be driven by conflicts between electronic and atomic size effects.29-32 

Following the concept of the quantum mechanical stress density,33-37 the approach converts the detailed 

output of the total DFT energy into spatially resolved maps of local pressure, which can be interpreted in 

terms of interatomic interactions. When applied to intermetallics, the DFT-CP analysis often reveals tense 

compromises in the atomic packing within crystal structures, in which various chemical pressures (CPs, 

local pressures induced by lattice constraints rather than an externally applied force) conflict in their 

desires for the structure to expand or contract (Figure 5.1). The tension can be become so severe as to 

drive structural rearrangements, including the formation of the local icosahedral order in Bergman- and 

Tsai-type quasicrystal approximants,38,39 the incorporation of stuffing atoms by AuCu3-type host lattices,40 

and the intergrowth of intermetallic and carbide domains in the Mn-Si-C system.41 
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Figure 5.1.  The MgCu2-type Laves phase CaPd2, a model system for the development of the DFT-Chemical Pressure (CP) 

method. (a) The cubic unit cell of CaPd2. (b) The DFT-CP scheme previously calculated for this phase.32 Here, the CP 

distribution around each atom is represented as a surface: the sum of the pressures an atom experiences along any given 

direction from an atomic center is shown by the distance of the surface from its nucleus along that direction. White lobes 

represent positive CP (where expansion is favored locally), while black lobes represent negative CP (where contraction is 

desired). 

 

As we will see in the following sections, the CP schemes that result from these analyses have 

implications that extend beyond the tendency for superstructure formation. Over a series of examples an 

intimate connection will take shape between a crystal structure’s CP scheme and its phonon band 

structure. First, we will demonstrate how the phonon band structure of a material can be used to validate 

the DFT-CP approach, using the cubic Laves phase structure (Figure 5.1a) as a model system. Then, we 

explore the reverse process, in which CP schemes predict aspects of the phonon band structure for two 

other phases: the superconductor Nb3Ge,42 whose soft phonon modes are implicated in the phase’s 

relatively high Tc of 23 K;43 and the CaCu5 type phase CaPd5,44 whose CP scheme provides the basis for a 

broad structural chemistry. 
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From these results, a self-consistency between phonon frequencies and CP lobes will emerge in which 

the phonon band structure provides a reference for the optimization of the DFT-CP approach and, in turn, 

the CP scheme offers a visual and chemically intuitive representation of the system’s vibrational properties. 

 

5.3.  The CaPd2 model system 

Our original motivation for considering a link between the CP scheme of a compound and its phonon 

band structure was to rigorously test the physical relevance of our interpretation of the CP method’s 

results. As illustrated in Figure 5.2, the raw output of a CP calculation consists of a spatially resolved map 

of local pressures, the average over which gives the net macroscopic pressure experienced by the 

compound (usually zero for a geometrically optimized structure). For most intermetallics, the major 

features in these maps are intense, overall positive pressures near the atomic cores and a relatively 

homogeneous negative pressure spread throughout the interstitial spaces. The interpretation of such maps 

in terms of interatomic interactions then involves dividing the continuous three-dimensional CP maps into 

discrete domains belonging to the interatomic contacts (Figures 5.2a and 5.2b). 

For many compounds, such as CaCu5-type and Cr3Si-type phases, the CP schemes obtained from the 

method are largely insensitive to how we divide space between interatomic contacts. In other cases, 

however, the situation is less clear-cut, and care must be taken to ensure the division is physically realistic. 

Particularly problematic have been the Laves phases, such as the MgCu2-type compound CaPd2 

(Figure 5.1a). AB2 Laves phases are classically described as tetrahedrally close-packed. In the MgCu2 type, 

this dense packing is built from a diamond network of A atoms (red) that is interpenetrated by a second 

diamond network built from vertex-sharing tetrahedra of B atoms (blue). 
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Figure 5.2.  Construction of chemical pressure (CP) schemes from the raw CP maps calculated for CaPd2, using different 

methods for dividing space between interatomic contacts. (a)-(b) A cross-section of the CP map of CaPd2 with borders 

outlined in black for the geometric contact volumes and Hirshfeld-inspired contact volumes. Pressure units for color map: 

atomic units. (c)-(d) The CP schemes obtained from projecting the average pressures within the contact volumes onto low-

order real spherical harmonics, shown here in the context of the raw CP map. Dark gray lines indicate the borders around two 

Ca-Ca contact volumes. (e)-(f) The resulting CP schemes shown separately from the map. See the caption to Figure 5.1 for 

plotting conventions. Adapted from Ref. 32 with the permission of the American Chemical Society. 
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In terms of sphere packing, this arrangement produces an intriguing frustration that makes this 

structure an excellent model system for the development of the DFT-CP method. If the nearest neighbors 

on the B sublattice are viewed as touching each other, limits become imposed on the space of the A atoms. 

At the A:B radius ratio of √3/2, neighboring A atoms come into contact with each other, and the inclusion 

of larger A atoms would require stretching the B-B distances. At no radius ratio do the A and B spheres 

touch without sphere overlap in the A or B sublattices. 

In the phase CaPd2, this tension is clearly present: The Ca:Pd radius ratio in CaPd2, calculated from 

empirical metallic radii, is 1.44, 66% larger than �3 2⁄ .45 This size mismatch leads to Ca-Ca distances of 

only 3.31 Å – quite short compared to 3.94 Å for the sum of the metallic radii.46 These unusual distances 

suggest that large internal stress between neighboring Ca contacts arises from the conflict between the 

space requirements of the Ca atoms and the optimal Ca-Pd and Pd-Pd bonding distances. 

While the packing frustration in this compound seems fairly straightforward from a geometrical 

perspective, seeing this effect in a CP scheme requires care in how the space of the structure is divided 

between interatomic contacts (Figure 5.2). Perhaps the simplest approach is to divide the CP map into 

regions according to which pair of atoms each grid point is closest to (the geometric contact volume 

method). Our early testing of this approach resulted in reasonable and insightful CP schemes for a number 

of structures,31,38,40 but a quite unexpected scheme for CaPd2 (Figure 5.2e): the signs and directionality of 

the CP lobes tell of Ca-Ca distances that are too long (black lobes between Ca atoms) and Pd-Pd distances 

that are too short (white lobes between Pd atoms).32 

An examination of the contact volumes constructed for the phase (Figures 5.2a and 5.2c) revealed that 

this effect had its origin in the neglect of the differing sizes of the atoms.32 Around each Ca atom, the 
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contacts to its Pd neighbors are somewhat shorter than its Ca neighbors. This situation leads to more of 

the volume around the Ca neighbors, including the strong positive pressures in their core regions (colored 

green and red in the CP maps of Figure 5.2), being assigned to Ca-Pd contact volumes rather than Ca-Ca 

ones. However, while the Ca-Ca distances are longer on an absolute scale, the situation appears very 

different when we consider the typical ranges of Ca-Ca and Ca-Pd distances. Factoring in the larger atomic 

radius of Ca, the Ca-Ca distance is quite short relative to those observed in other phases (while the Ca-Pd 

distance is fairly typical). As such it seems that the Ca-Ca contacts are underrepresented in the purely 

distance-based division of space into contact volumes. 

To counter this effect, we recently developed an integration scheme that takes into account that a larger 

atom should have a more far-reaching influence on its surroundings than a smaller one,32 inspired by the 

Hirshfeld approach to the calculation of atomic charges from an electron density distribution.47 Radial 

electron density profiles of free atoms are first mapped onto every atomic center in a structure. Then each 

voxel is assigned to the two atoms whose free atom electron density profiles are the highest at that point. 

Since the profiles for elements with larger atoms naturally decay with distance from the nucleus more 

slowly, the influence of larger atoms extends further than those of smaller atoms (compare the gray outlines 

in Figures 5.2c and 5.2d). 

After introducing this more physically-motivated process for dividing up space, we obtained the CP 

scheme in Figure 5.2f. The dominant features in the plot are long white lobes pointing along the Ca-Ca 

contacts, indicative of positive pressures acting between the Ca atoms. This driving force for the expansion 

of the structure is counteracted by smaller black features directed into the spaces between the Ca and Pd 

atoms. The CP scheme thus recovers our expectations from the short Ca-Ca distances. 
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One concern, however, is the circular nature of this development, in which empirical models are 

guiding the decision of whether an interpretation of a first principles result is reasonable. Is there another 

way that we could validate and refine the DFT-CP method without recourse to tables of atomic radii? 

Herein, we will see that the examination of the vibrational modes of a structure opens one such avenue. 

 

5.4.  Connecting chemical pressure to vibrational properties 

Let’s begin by examining more closely how the idea of local pressures acting between atoms can be 

connected to vibrational properties. The basis for our discussion is the typical energy vs. distance curve 

for an interatomic interaction as shown in Figure 5.3a, with one small variation to adapt this plot to CP 

analysis: rather than using distance as the dependent variable, we use the volume of space assigned to that 

pair of atoms in the structure, such as one of the contact volumes illustrated in Figure 5.2. 

The ideal separation of the atoms is represented by an energy minimum. As the space between the 

atoms decreases relative to this ideal, the system encounters a steep energetic penalty, resulting from Pauli 

repulsion between the electrons on the two atoms and Coulombic repulsion between the nuclei. Distances 

longer than the optimal length are also unfavorable, although the energetic cost for stretching a contact in 

this way increases comparatively slowly, as the system asymptotically approaches complete dissociation. 

A local pressure experienced in such an interatomic interaction can be obtained by taking the negative 

derivative of energy with respect to the volume allocated by the system to the interaction (Vcontact), i.e. local 

pressure = −∂E/∂Vcontact. At short ranges, this local pressure is positive, reflecting the favorability of allowing 

the structure to expand. As the atoms are moved apart, the local pressure becomes negative, reaching a 

minimum at the inflection point in the E(Vcontact) curve. It then weakens as the atoms become increasingly 
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independent of each other. Consequently, positive pressure consistently indicates a repulsive interaction, 

whereas negative pressures are more nebulous: they could be soothed by either contraction or elongation 

of interatomic distances. 

 

 

Figure 5.3.  The chemical pressure concept interpreted in terms of the essentially universal potential energy curve for 

interatomic interactions. (a) The interaction energy as a function of the volume shared between the two atoms (Vcontact), with a 

contact volume shown schematically as an inset. When the relative interatomic distances are held constant, each contact 

volume scales with the distance between the two atoms that share it. (b) The negative derivative of the energy, illustrating the 

connection between DFT energy and chemical pressure. Black and white spheres are used to emphasize the connection 

between points on the CP vs. Vcontact curve and the lobes of the CP surfaces used elsewhere in this Chapter. 
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As mentioned above, this relationship between the forces acting on contacts that are longer or shorter 

than the ideal should have consequences for the vibrational properties of a structure. When an atom is 

held at its equilibrium position by positive CPs, motions of the atom against any of those pressures will be 

sharply resisted by the nearly exponential rise in energy along that direction. Vibrations involving such 

displacements would be expected to have relatively high frequencies, with larger positive pressures 

corresponding to increased stiffness in the modes. 

Atoms held in place by opposing negative pressures, on the other hand, experience a very different 

potential energy surface. Moving an atom along a negative CP to shorten an overly-long contact should 

not face as high a degree of resistance from the opposing negative CP, as its pull should become weaker 

with increasing distance (once the inflection point in the E vs. Vcontact curve is passed). Thus vibrational 

modes with components along directions of negative CP are expected to be soft. In the following sections, 

we will see that – with some physically motivated adjustments to the CP integration method – these 

expectations are borne out by comparisons of the CP schemes for three intermetallic structures: the CaPd2 

model system, the superconductor Nb3Ge, and CaPd5, whose CP scheme underlies a diverse structural 

chemistry. 

 

5.5.  Calibration of the CP integration scheme 

Now that we have considered the qualitative connection between the CP scheme and vibrational 

properties for an interatomic interaction, we are in a position to test this relationship. We begin in Figure 

5.4 (left) with the calculation of the phonon band structure for CaPd2, whose CP scheme we illustrated 

before in Figure 5.2. The phonon frequencies stretch from 0 THz for the acoustic modes at Γ to just over 
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8 THz (mid-infrared), and run through reciprocal space in a complex pattern of bands, one for each of the 

18 positional degrees of freedom of the 6 atoms in the primitive unit cell. 

 

 

Figure 5.4.  The LDA-DFT phonon band structure and density of states (DOS) of CaPd2. The contributions of the Ca motions 

to the DOS are shaded in black, with the remainder corresponding to the Pd displacements. Note that motion of Pd atoms 

dominates the lowest and highest frequencies in the density of states. 

 

A general sense for how vibrations involving the various interaction types in the system (Ca-Ca, Ca-

Pd, and Pd-Pd) are distributed over these frequencies is available from the Density of States (DOS) of the 

band structure. The projected DOS for the Ca atoms (Figure 5.3 right, shaded in black) appears 

concentrated in the center of the distribution, straddling a deep minimum at about 5 THz and stretching 

from approximately 2 to 7 THz. Few contributions from the Ca atoms to the DOS occur either above or 

below this range, indicating that vibrations along the Ca-Pd and Ca-Ca interactions are mostly restricted 

to these frequencies. The remainder of the phonon DOS derives from motions of the Pd atoms, leading to 
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the conclusion that both the lowest and highest frequency modes in the structure are associated almost 

exclusively with the Pd sublattice. 

Using the considerations of the previous section, we can now compare these results to the expectations 

derived from the CP scheme of CaPd2 (Figure 5.2f). The key features of the CP scheme are large positive 

pressures between the Ca atoms, negative pressures along the Ca-Pd contacts, and essentially zero pressure 

between the Pd atoms. This suggests that the force constants should increase in the order of Ca-Pd < Pd-

Pd < Ca-Ca. Also given the smaller mass of Ca over Pd, we would expect that the highest frequency modes 

would involve mainly Ca-Ca contacts. 

The phonon DOS distribution, however, gives quite a different ordering of frequencies: soft Pd-Pd 

modes < Ca-Pd, Ca-Ca modes < hard Pd-Pd modes. This difference clearly indicates that there is a problem 

with the current CP scheme of CaPd2. For example, it is difficult to see how the highest frequency phonon 

modes could be dominated by Pd atoms when their CP features are entirely negative or neutral. Evidently, 

some adjustment to the method is necessary to bring the CP scheme in line with the phonon band 

structure. 

One place where refinements to the method are possible is in the use of electron density profiles for 

isolated atoms to model the influence of each atom on its surroundings. These profiles neglect the 

inevitable differences in the electronic structure of an atom that result from moving it from empty space 

to a condensed phase environment. These differences are perhaps most significant for cases where atoms 

of disparate electronegativities are combined, as in CaPd2, because it ignores the effects of ionic charge 

transfer. For CaPd2, a Bader charge analysis48 gives charges of +1.33 and -0.66 for Ca and Pd, respectively. 
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Thus our use of neutral electron density profiles for cationic Ca and anionic Pd likely over- and under-

estimate their effective sizes, respectively. 

To explore how these charges might affect the CP analysis, we carried out all-electron DFT 

calculations on free Ca and Pd ions with a range of charges, running from zero to the full Bader charges of 

CaPd2. As seen in Figure 5.5, the introduction of charges to the free atoms has systematic effects on the 

radial electron density profiles. Removing electrons from Ca atoms leads to the contraction of their 

profiles, since the remaining electrons feel a stronger pull toward the nucleus. This should then decrease 

the extent of its spatial influence in the interpretation of the CP map. For Pd atoms, adding electrons to 

create anionic character leads to the reverse: the expansion of the profile, which would create a longer-

range influence in the CP map. 

 

 

Figure 5.5.  The effect of charge on the electron density profiles for Ca and Pd used in the Hirshfeld-inspired CP integration 

scheme. (a) The introduction of positive charge on the Ca atom causes the profile to decay more quickly with distance from 

the nucleus. (b) Making the Pd anionic has the opposite effect, making its profile more diffuse. 
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In Figure 5.6a, we explore how using these charged electron density profiles in the interpretation of 

the CP map influences the resulting CP scheme. Upon introducing a small degree of ionicity (25% of the 

Bader charges), the distribution of positive and negative CPs is nearly unchanged; the major effect is the 

growth of negative CPs along the Ca-Pd contacts. As we increase the ionicity to 50%, this trend continues 

and is joined by the appearance of positive CPs along the Pd-Pd contacts. Going to 75%, however, creates 

a sudden change: the positive Ca-Ca CP lobes of the previous images have been replaced by equally large 

negative lobes. 

 

 

Figure 5.6.  The role played by ionic charge in the integrated CP scheme of CaPd2. (a) CP schemes calculated for CaPd2 using 

electron density profiles of Ca and Pd ions with charges ranging from 0% to 75% of those obtained from a Bader analysis of the 

phase. Note the drastic change in the results between ionicity values of 50% and 75%. (b) The sum of all contact volumes 

around the central Ca atom for the same series of ionicity values. Critical differences in the CP scheme correlate with the 

differing extents that these volumes reach into the core regions of the neighboring atoms. 

 

This progression of CP schemes can be understood from a simple comparison of the contact volumes 

at each ionicity value (Figure 5.6b). Shown in gray is the boundary surface of the sum of the contact 

volumes between the central Ca atom and its neighbors. Without any ionicity applied to the profiles, the 
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volume completely extends to envelop a quarter-share of the cores of the Ca neighbors and a substantial 

portion of those of the Pd neighbors. As a result, the positive pressures concentrated near atomic cores are 

being dominated by contact volumes involving Ca atoms. It is unsurprising then that no positive CP is 

seen along Pd-Pd contacts here. 

As the ionicity is increased, the Ca atom’s shrinking range of influence is evident in the contact 

volumes. At the 25% ionicity level, the boundaries have been pulled in slightly toward the central Ca atom, 

leading to a qualitatively similar but smaller domain. This contraction continues as we move to 50%, where 

the surface has receded to the point that it no longer fully surrounds the Pd centers. Pd-Pd positive 

pressures thus start to appear in the CP scheme. By 75% ionicity, the Ca cation has become effectively so 

small that its contact volumes do not even reach to the centers of the other Ca atoms. The Ca-Ca and Ca-

Pd contact volumes both capture only the negative background pressures in the spaces between atoms and 

essentially none of the positive pressure associated with the neighbors’ cores; the resulting CP scheme is 

similar to that obtained earlier using geometric contact volumes (Figure 5.2e). 

Comparison of these CP scheme results to the phonon DOS distribution offers the opportunity to 

assign an effective ionicity to the CaPd2 structure. The order of phonon frequencies in Figure 5.4 followed 

as: soft Pd-Pd motions < Ca-Pd, Ca-Ca motions < hard Pd-Pd motions. In choosing an ionicity which 

matches this arrangement, it appears that including too much and too little ionicity leads to opposite 

problems. For example, the use of high ionicity predicts that the Ca-Ca vibrations will have extremely low 

frequencies, while the low ionicity CP scheme suggests that the Ca-Ca motions will have high frequencies. 

Some intermediate value of the ionicity could then be expected to balance these two extremes. The best 

fit with our expectations from the phonon spectrum would then lie somewhere between 50% and 75% of 
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the total Bader charges. By scanning that region more closely, we found that the agreement is optimized in 

this case for an ionicity level of 55% (Figure 5.7a). 

 

 

Figure 5.7.  The CP scheme of CaPd2 obtained using an ionicity calibrated against the phonon DOS distribution (55% of the 

total Bader charges). (a) The unit cell, highlighting the coordination environment of a single Pd atom. (b) Predictions of the 

soft and hard motions of the Pd atoms derived from the CP scheme. 

 

This final CP scheme makes it clear how Pd motions can dominate both the softest and hardest 

phonon modes in the DOS: each Pd atom exhibits spatially separated positive and negative CP features. 

In view of Figure 5.7b, the positive CP lobes appear on each Pd atom directed toward its Pd neighbors 

above and below, while the negative CP contributions occur as a belt that wraps around the equator of the 

CP surface, corresponding to interactions with the Ca neighbors. The perpendicular orientations of these 
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opposite pressures are suggestive of strong anisotropy in the vibrational motions of the Pd atoms, with 

vertical motions in Figure 5.7b contributing to high-frequency modes, and perpendicular motions 

belonging to low-frequency ones. In the next section, we will see how these and similar considerations can 

be used to make sense of the 18 phonon bands of the system. 

 

5.6.  Chemical Pressure in the interpretation of phonon frequencies 

Now that we have calibrated CaPd2’s DFT-CP scheme against the general features of its phonon DOS, 

let’s examine how the CP scheme elucidates the individual phonon modes of the phase. As a first step, it is 

useful to compare the phonon DOS and band structure (Figure 5.4) to see which modes are needed to 

form a representative set. The vibrations at the Γ-point (0 0 0) are particularly advantageous in this regard: 

not only do they transform as irreducible representations of the full point symmetry of the structure, but 

also their frequencies align well with the major peaks in the DOS curve. As such, we will focus our 

discussion on how the atomic motions in these modes compare with the features of the CP scheme. 

To make this comparison, we plot in Figure 5.8 the atomic motions for the optical modes at Γ, with the 

relative motions of the atoms indicated with yellow arrows. These arrows are overlaid on the CP scheme 

of the phase, so that the direction of motion can be easily correlated with the CP lobes along those 

directions. First in the band structure at Γ is a triply-degenerate set at 0 THz. These modes are the Γ-

component of the acoustic bands, corresponding to the translation of the whole crystal along the a, b, and 

c axes; as such these modes are not shown in the figure. 
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Figure 5.8.  The movement of the atoms in CaPd2 for each of the optical modes at Γ, overlaid onto the CP scheme. The 

direction and relative amplitudes of the atomic motions are shown by yellow arrows. Note that in the low-frequency modes (a-

c) the arrows align exclusively with negative CP features, whereas they become increasingly directed along positive CP features 

in the higher-frequency modes (d-f). For clarity, motions whose relative amplitudes are smaller than the yellow arrow heads of 

the vectors have been omitted. 
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The first non-trivial vibrations are the three optical modes (Figure 5.8a) at 1.9 THz. These vibrations 

involve motions exclusively of the Pd atoms, as is anticipated by the DOS. The relative motions here can 

be easily interpreted when we recall that the Pd sublattice is formed from a diamond network of vertex-

sharing Pd4 tetrahedra. This vibrational mode corresponds to the twisting of this network through coupled 

rotations of the Pd4 tetrahedra around the a, b, and c lattice vectors. 

The location of this mode near the bottom of the band structure can be understood from the 

alignment of the motions with the CP features of the Pd atoms: the displacements of the individual Pd 

atoms are along directions of negative CP, soothing some of the overly long Ca-Pd contacts. In addition, 

these motions are almost orthogonal to the Pd atoms’ positive CP lobes; the coupled rotation of the Pd4 

tetrahedra leads to essentially no added strain on the overly-compressed Pd-Pd contacts. 

The next three optical modes (Figure 5.8b) at 3.8 THz also exhibit motions only along directions of 

negative CP: the entire Ca sublattice moves in lockstep along a, b, or c inside a nearly fixed Pd framework 

(which in fact undergoes a small, uniform counter-motion too small to represent clearly in the plot). These 

moderately soft modes prevent any already short Ca-Ca distances from contracting and push Ca atoms 

toward Pd atoms that are overly distant in the equilibrium geometry. The placement of these modes at a 

higher frequency than the previous set is likely due to the smaller mass of the Ca atoms. 

The third set of optical modes (Figure 5.8c) at 4.6 THz is two-fold degenerate and corresponds to two 

linearly-independent ways of shearing the tetrahedra of the Pd sublattice. In each case, the Pd atoms move 

along directions of negative pressure, which by itself gives these modes a low frequency, as in the 1.9 THz 

modes. However, the choreography between neighboring Pd atoms is less elegant here: In the course of 

travelling along the negative CP directions, some Pd-Pd contacts are contracted. 
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The character of the phonon modes changes substantially on going from these first three optical 

frequencies to the fourth at 6.0 THz (Figure 5.8d). The three-fold degenerate modes at this frequency 

consist of the out-of-phase version of Ca-sublattice motions of Figure 5.8b. Rather than moving in concert, 

Ca atoms in every other layer along a, b, or c (one for each of the three different members of the degenerate 

set) are moving in opposite directions inside of a nearly motionless Pd framework. While these motions 

occur along directions of negative pressure around the Ca atoms, leading to the shortening of some Ca-Pd 

distances, these motions also have strong components parallel to the positive CP lobes along the Ca-Ca 

contacts. In fact, linear combinations of these modes can be taken to create ones in which the primary 

motion is the oscillation of individual Ca-Ca contacts. 

At a slightly higher frequency of 6.1 THz, the penultimate triplet of modes mainly involves motions 

within the Pd sublattice (Figure 5.8e). Here, two Pd atoms in each tetrahedron move in an out-of-phase 

fashion toward the tetrahedral center, while the remaining two shift in response. The placement of this 

mode near the top of the phonon band structure can be rationalized by this being the first one in which 

the displacements of some of the Pd atoms have strong components along positive CP lobes. 

The correlation of motions along positive CPs with high frequencies is strikingly illustrated by the last 

mode at 8.3 THz (Figure 5.8f), which in fact is the highest frequency vibration in the whole band structure. 

All four Pd atoms in each tetrahedral unit simultaneously oscillate toward or away from the center of the 

tetrahedron. When they move together into the center, each Pd atom moves along the vector 

corresponding to the sum of three positive CP lobes on that side of the atom. Similar painful collisions are 

also encountered on the opposite swing of the vibration when the Pd4 unit expands: the expansion of one 
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tetrahedron correlates with the contraction of the four neighbors connected through vertex-sharing in the 

network. 

In summary, the CP scheme of CaPd2 provides a simple framework for understanding the phonon 

modes at the Γ point (Figure 5.9). The lowest frequency vibrations correspond to atomic motions that 

move along directions of negative pressure without significantly squeezing contacts marked by positive 

CPs. The hardest modes, in contrast, are those that involve atoms moving against positive CPs. 

Intermediate frequencies in the band structure represent cases where the relationship between the 

motions and negative or positive CP features is less straightforward. An intriguing correlation here with 

the DOS features is that the pseudogap at about 5 THz coincides with the separation between lower and 

higher frequency modes whose major motions are along negative and positive CP features, respectively. 

This situation mirrors the frequent appearance of bandgaps or pseudogaps in electronic structures at the 

transitions between bonding and antibonding states. 

The CP scheme for CaPd2 at this point serves as the basis for a simple relationship between its crystal 

structure and vibrational properties. The packing is frustrated by both the Pd-Pd and Ca-Ca contacts being 

forced to be shorter than their ideal distances as the structure struggles to provide sufficiently short 

distances for the Ca-Pd contacts. This leads to the Pd4 tetrahedra and Ca diamond network being fairly 

rigid, as distortions of them would lead to enhanced positive pressures along the Pd-Pd and Ca-Ca 

contacts. However, modes that can shrink some Ca-Pd distances without straining these rigid units are 

soft, including the coupled rotations of the Pd4 tetrahedra (in ways reminiscent of the coupled rotations of 

octahedra in perovskites49-51) and the rattling of the Ca sublattice as a whole in the space provided by the 

Pd sublattice. 
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Figure 5.9.  The major features of the phonon DOS of CaPd2 interpreted in terms of the compound’s CP scheme and selected 

phonon modes at the Γ point. Note that the deep pseudogap at ca. 5 THz coincides with the transition between modes with 

atomic motions along negative CP features and those whose motions exacerbate positive CPs. 

 

This example illustrates the potential of CP analysis to derive structure-property relationships for 

intermetallic phases. This result in itself, however, is a little cyclical in that the CP scheme was calibrated 

to reflect certain aspects of the phonon DOS distribution. In the next two sections, we will demonstrate 

how this approach can be extended to two additional examples without further adjustments to the CP 

analysis (using simply an ionicity level of 50%): a high-temperature superconductor and a simple structure 

type whose CP scheme forms the basis for a broad structural diversity. In both of these systems, we will 

again see soft phonon modes arising from CP distributions that place positive and negative CP features 

perpendicular to each other, to create d-orbital-like distributions that might be referred to as CP 

quadrupoles. 
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5.7.  Application to the superconductor Nb3Ge 

In our above analysis of CaPd2, we saw how a CP scheme can provide a visual link between the 

structural features of a compound and its vibrational properties. One area in which such a connection 

could support materials design is superconductivity. Phonon-electron coupling plays a key role in this 

phenomenon, as is formulated in the BCS model,52,53 since this coupling allows for the correlated motion 

of electrons across a material. In the McMillan equation derived from the BCS model, the strength of this 

coupling is related directly to the phonon DOS:  the coupling strength is inversely proportional to the 

expected mean squared phonon frequency, <ω2>.54,55 The presence of low-frequency modes should then 

influence the potential for superconductivity. To demonstrate how these low-frequency modes are 

anticipated with CP analysis, we consider the Cr3Si-type (A15) phase Nb3Ge, whose Tc of 23 K is one of 

the highest observed for intermetallic compounds.56-58 

Its crystal structure can be described as a body-centered cubic array of Ge atoms, which are surrounded 

by distorted icosahedra built from the crossing of Nb chains that run along the faces of the unit cell (Figure 

5.10). The CP scheme of this compound directly connects these structural features to expectations about 

where different atomic motions should contribute to the phonon spectrum. The positive pressures within 

the scheme are localized along the Nb chains, indicating that the Nb-Nb distance of 2.53 Å (in the LDA-

DFT optimized structure) is overly short for the degree of bonding between the atoms. This driving force 

for the expansion of the structure is countered by negative CPs at the remaining near-neighbor contacts, 

both the Nb-Ge interactions and the remaining Nb-Nb ones. 

Overall, the CP distribution around the Nb atoms bears a close similarity to what we saw before in the 

Pd atoms of CaPd2: positive CP lobes extend in opposite directions while negative CP features lie in the 
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perpendicular plane, creating a function reminiscent of a dz2 atomic orbital that reflects a strong 

quadrupole component to the CP distribution around the Nb atom. As before, this pattern can be 

expected to underlie low-frequency vibrations (Figure 5.10a): motions of the Nb atom in the direction of 

negative CP serve not only to shorten some overly-long Nb-Nb or Nb-Ge contacts but also to allow the 

atom to slide away from its overly close Nb neighbors in the same chain. 

 

 

Figure 5.10.  The connection between vibrational properties and structure revealed for the Cr3Si-type superconductor Nb3Ge 

using CP analysis. (a) The CP scheme of Nb3Ge (at an ionicity level of 50%) with schematic illustrations of low-energy atomic 

motions that it anticipates. (b) The LDA-DFT phonon band structure of Nb3Ge, along with an illustration of the softest optical 

mode at Γ overlaid on the CP scheme. 

 

These expectations are borne out by the LDA-DFT phonon band structure (Figure 5.10b), where one 

optical phonon frequency stands out as being 1.5 THz lower than all others at the Γ point. Overlaying the 
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atomic displacement vectors for this mode on the CP scheme reveals exactly the anticipated motions. In 

this three-fold degenerate vibrational level, the Nb atoms vibrate in a transverse fashion relative to the Nb 

chains, with the motions of Nb neighbors being out-of-phase with each other. For some of the chains, the 

displacements occur within the faces of the unit cell and predominately lead to transitory stabilization of 

some overly long Nb-Nb contacts, as occurs in the (010) planes for the mode in Figure 5.10b. In other 

chains, the motions are perpendicular to the cell faces, as in the (100) planes in Figure 5.10b, along the 

Nb-Ge negative CPs. 

The low frequency vibrational modes of Nb3Ge can thus be traced to the crowding of the Nb atoms in 

the chains running along the a, b, and c axes, which prevents the optimization of other interatomic 

interactions in the structure. This result provides a new interpretation of the role the Nb chains play in the 

superconductivity of the phase. Whereas previous researchers focused on the influence of short Nb-Nb 

distances in the electronic DOS distribution, 58,59 the DFT-CP analysis reveals that they also directly shape 

the soft phonon modes of the compound. 

The visual nature of the CP schemes offers suggestions for how the frequency of these low-lying 

modes could be influenced by perturbations to the structure. Consider, for example,  elemental 

substitution. Sn atoms are isoelectronic with Ge atoms, but are about 0.18 Å larger in terms of covalent 

radius. Replacing the Ge atoms in the structure with Sn atoms would lead to Nb-Sn contacts that are less 

over-extended relative to their original Nb-Ge ones. This CP relief would in turn place less strain on the 

Nb chains, weakening a key factor in the low frequency of the transverse Nb chain vibrations. In fact, an 

LDA-DFT phonon band structure on Nb3Sn indicates that the frequency of these modes is 2.81 THz, 0.59 
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THz higher than those of Nb3Ge. Given the desirability of small <ω2> values for superconductivity, it is 

not surprising that the Tc of Nb3Sn is then lower than that of Nb3Ge: 18 vs. 23 K.43,60 

There are, of course, some limits on how soft a phonon mode can get; such softening also enhances a 

phase’s susceptibility to structural phase transitions. Indeed, Nb3Ge itself is a metastable compound 

prepared through methods such as chemical vapor deposition,61,62 and several other Cr3Si-type 

superconductors were found to undergo a martensitic cubic-to-tetragonal phase transition near their 

critical temperatures.63,64 Taken to the extreme, a phonon mode can become so soft that its force constant 

becomes negative, leading to the frequency being imaginary. Here, following a phonon mode is 

energetically downhill, meaning that the formation of a superstructure is favorable. In the next section, we 

will see such a case, illustrating how the dynamic instability of a simple CaCu5-type structure points 

towards a diverse structural chemistry. 

 

5.8.  Phonons in the CaCu5 type: a precursor to structural complexity 

One of the first applications of the DFT-CP approach was to explain how atomic size effects in CaCu5-

type structures give rise to a wide range of structural derivatives. In that prior work, the structural diversity 

in these systems was traced to the relief of large negative pressure features the Ca atoms would experience 

in the hypothetical CaCu5-type phases CaAg5 and CaCd5. Since over the course of this Chapter we have 

seen a relationship emerge between negative CP and soft-phonon modes, one might wonder to what 

extent the structural diversity derived from the CaCu5 type can be connected to its phonon band structure. 

In this last case study, we will explore this possibility. 
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The CaCu5 structure type, exemplified here by CaPd5 (Figure 5.11a), is built from the alternation of 

Pd kagome nets and Pd honeycomb nets along the c axis. This alternation leads to a Pd sublattice based on 

vertex-sharing trigonal bipyramids. The Ca atoms reside in the hexagonal channels that result from this 

arrangement, each within an 18-coordinate cage of six Pd atoms above, six below, and six in the same plane. 

 

 

Figure 5.11.  Structure-properties relationships derived from CP analysis of the CaCu5-type phase CaPd5. (a) The crystal 

structure of CaPd5. (b) The phonon band structure reveals an extremely soft phonon mode at Γ (whose frequency becomes 

imaginary between Γ and A in the Brillouin zone). (c) Overlaying the atomic motions of this soft mode on the CP scheme 

shows that the coupled rotation of the triangles in the kagome net allow the Pd atoms to travel along directions of negative 

pressure without straining the overly-short contacts within those triangles. 
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An intense CP scheme results from this arrangement: the Ca atoms are held in place by equally strong 

negative pressures to the Pd atoms above and below (see the large black lobes pointing up and down along 

c in Figure 5.11b). Contraction of the lattice is prevented by positive Ca-Pd pressures along the in-plane 

contacts, weaker positive CPs between the Pd atoms in the kagome layers, and essentially optimized 

interactions between the Pd layers. 

The CP surfaces on these atoms highlight two motions that should be especially facile: the 

displacement of the Ca atom up or down along c would allow relief of the negative CPs in the direction of 

motion while bringing the Ca further from its overly-close Pd neighbors in the plane. Another easy motion 

would be for a Pd atom in the kagome network to follow one of its CP lobes by moving into the hexagonal 

opening between the Ca atoms, particularly if the vibration is coupled to that of other Pd atoms in the 

kagome net to avoid collisions along the Pd-Pd positive CPs. 

Between these two possibilities of the Ca or Pd atoms moving, the latter would be predicted to 

contribute to lower frequencies due to the larger weight of the atoms. In fact, at the Γ point, the first optical 

phonon modes involving the Pd motion in the kagome net appear at 0.37 THz, just barely above the 0 

THz acoustic modes. As is illustrated in Figure 5.11c, this mode corresponds to the coordinated rotation 

of the Pd triangles in the kagome net. Over the course of this vibration, each Pd atom moves along its axis 

of maximum negative CP, without the Pd-Pd contacts being significantly affected. The impact of this 

motion on the Ca atoms is profound: during each swing of the vibration, the symmetry between the six 

Pd atoms of the kagome net hexagons is broken to create a triangle of three close Pd neighbors for each Ca 

atom and three more distant ones; these near and distant Pd atoms then switch during the opposite swing. 
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This motion replaces six overly-long Ca-Pd contacts with three shorter ones, soothing the CPs on the Ca 

atoms. 

This mode becomes even softer if we move away from the Γ point. On following the band from Γ to A 

(0 0 ½), we see the phonon frequency drop until it reaches 0.53i THz (represented as a negative number 

on the plot) at A. Here, the motions within each kagome layer are identical to those at the Γ point, with 

the only difference being that the oscillations in the neighboring layers along c are now out-of-phase. The 

imaginary frequency for this mode arises from the force constant being negative, indicating that following 

this motion away from the starting geometry is actually stabilizing. These results suggest that any 

experimentally observed CaCu5-type CaPd5 structure would be dynamically unstable at 0 K but could 

possibly be stabilized by entropic effects at higher temperatures. 

The nature of these low frequency modes is closely connected to the observed structural derivatives 

of the CaCu5 type that exist in the Ca-Ag and Ca-Cd systems, where the small size of the Ca atoms relative 

to their coordination environments in the CaCu5 type would be exacerbated. In Ca2Ag7, the large negative 

CPs on the Ca atoms are relieved by dividing the CaCu5 type into slabs such that the slab interfaces replace 

hexagons of Ag atoms above or below the Ca atoms with pairs of Ag atoms at a nearly ideal distance.29,30 

The Ca coordination environments in Ca14Cd51 are stabilized in a similar way, with hexagons being 

replaced by Cd pairs or triangles.39 These structural transformations mirror the formation of triangles from 

hexagons in the low-frequency phonon mode of CaPd5, though in these cases the stoichiometries are also 

affected as Ag or Cd atoms are ejected from the structure relative to the original 1:5 stoichiometry. 

 In summary, a comparison of the CP scheme and phonon spectrum of CaPd5 reveals how a packing 

frustration in this structure gives rise to an extremely soft vibrational mode. The character of this mode 
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hints at the ways in which the local structure of this compound responds to elemental substitutions that 

intensify the structure’s CP scheme. Particularly, on moving from the Ca-Pd to the Ca-Ag or Ca-Cd system, 

the CaPd5 structure gives way to the more complicated Ca2Ag7 and Ca14Cd51 structures whose Ca 

coordination environments have collapsed from 18-coordinate in the CaCu5 type to 13-, 14-, or 15-

coordinate. The shapes for these newly formed polyhedra show strong similarities to the deformations 

created by the low-frequency mode of CaPd5. 

 

5.9.  Conclusions 

This Chapter has focused on developing a unified picture for two different aspects of solid state 

structures that are intimately connected but rarely studied together: the driving forces shaping the crystal 

structure of a material and the factors relating these structures to vibrational properties. We began by 

proposing that the phonon band structure of a material can serve as a reference for validating the DFT-CP 

method, a theoretical approach developed for explaining the complex structures of intermetallic phases. 

The validation of the CP scheme for CaPd2 then led us to the importance of properly accounting for the 

ionicity of a crystal structure in dividing the DFT-CP maps between interatomic interactions. Once this 

calibration was accomplished, the CP schemes of phases such as CaPd2, Nb3Ge, and CaPd5 opened paths 

to the interpretation of their phonon modes in terms of local interactions. 

Over the course of this work, the ionicity of a system was identified as a key parameter for obtaining 

physically meaningful CP schemes. It will be interesting to explore how the incorporation of this physical 

effect can enhance the applicability of the DFT-CP analysis to a broad range of solid state systems. In our 

applications thus far, we have found that an ionicity value of 50% of the Bader charges typically yields 
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physically meaningful results (which may be connected to the Bader charge analyses’ tendency to 

overestimate charges65). When applying this approach to new systems, however, it will be useful to test the 

dependence of the CP results on the value of this parameter. In most cases that we have examined, this 

dependence is slight, but where sharp changes are encountered (as in CaPd2), comparisons with phonon 

band structures can serve as a guide. 

Another emerging theme of this Chapter has been the ability of a compound’s CP scheme to serve as 

a guide to its phonon frequencies. In particular, atomic motions that move along directions of negative CP 

without shortening contacts with positive CPs contribute to low-frequency modes, while motions along 

positive CP features correspond to the highest frequency modes. One situation particularly suited to soft 

motions is the presence of atomic CP distributions with large quadrupole (l = 2) components, such that 

the surfaces resemble d-orbitals with positive and negative CP features at right angles to each other. In 

these cases, motions along negative CPs offer not only the temporary contraction of overly-long distances, 

but also the potential to reduce positive CPs, as was seen with particular clarity in Nb3Ge. 

The importance of these l=2 components offers a simple approach to designing low-frequency 

phonon modes, and perhaps promoting phonon-mediated properties: one can screen crystal structures 

for those whose CP features show strong quadrupole components, then carry out site substitutions to 

exacerbate the tension inherent in the CP scheme. For example, replacement of Ge atoms in Nb3Ge with 

smaller Si ones should lead to greater conflict between Nb-Nb repulsion and Nb-main group attraction, 

which would then soften the transverse vibrations along the Nb chains. In fact, the expectation is in-line 

with the as-of-yet unconfirmed prediction that the Tc of a defect-free Cr3Si-type Nb3Si phase could be as 

high as 35 K.66 
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Overall, the case studies presented here illustrate how CP analysis can provide a conceptual link 

between the intriguing crystal structures of intermetallic phases and their physical properties. We are 

looking forward to seeing how this approach can bring new insights to other solid state phenomena 

involving motions of atoms within crystal structures, such as the plasticity of metals and thermal 

conductivity. 

 

5.10.  Technical procedures 

DFT energy map generation. DFT-optimized structures and energies were obtained for CaPd2, Nb3Ge, 

and CaPd5 with the Abinit program,67-69 using the Teter 93 LDA exchange-correlation functional70 and 

Hartwigsen-Goedecker-Hutter norm-conserving pseudopotentials.71 The semicore potential was chosen 

for Ca because previous experience has shown that the valence-only pseudopotential is not always 

sufficient, particularly when Ca is significantly cationic. 

The three structures were optimized using a two-step procedure: first the ion positions were released 

in a fixed unit cell, then all geometrical parameters were relaxed simultaneously. Single point energy 

calculations were performed at the optimized volume and with isotropically expanded and contracted unit 

cells. The total volume range was 5% of the equilibrium unit cell volume, although the final CP scheme is 

rarely affected by the exact range as long as it is sufficiently large to avoid errors from numerical noise in 

the DFT calculations. For each single point calculation, 3D voxel grids of the kinetic energy density, 

electron density, and local components of the Kohn-Sham potential were output to be used as input data 

for DFT-CP analysis. 
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In setting the parameters for the Abinit calculations, the energy cut-offs were chosen such that the 

energy of formation of the compounds was converged to less than 4 meV per atom, and k-point grids were 

checked for convergence with respect to the final CP schemes. Additional technical details about the 

Abinit calculations, such as the specific k-point grids, energy cut-offs, and the coordinates of the optimized 

geometries, are given in the Supporting Information. 

Chemical Pressure map generation. DFT-CP analysis was carried out with our DFT-CP package. The 

CPmap module was used to first combine the potential and density maps from Abinit into total energy 

maps for the three individual unit cell volumes. Then a chemical pressure map was calculated by taking 

the negative difference in energy of each voxel between the expanded-volume energy map and the 

contracted-volume energy map, divided by the difference in voxel volumes. Core unwarping (with tricubic 

interpolation) was applied to the chemical pressure map to correct for the slight change in absolute 

position of the voxels relative to the ion cores in the different maps. 

Next the CPintegrate module was employed to divide the pressure map into contact volumes between 

atoms, using the Hirshfeld-inspired method as described in the Chapter. The average pressure was taken 

within each contact volume, and then each atom’s contributions to all of the contact volumes around it was 

projected onto low order, real spherical harmonic functions (up to l ≤ 4) centered on that atom. Using too 

few spherical harmonic functions (generally l ≤ 2) will limit the level of detail that can be resolved from 

the chemical pressure maps, but using too many functions (generally l > 6) complicate the visualization of 

the CP distributions. The CP scheme plots were prepared by our Matlab application, Figuretool. Contact 

volume surfaces were visualized with Vesta.72 
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Calculation of phonon frequencies. For comparison of phonon modes with the expectations of the CP 

schemes, the phonon band structures of CaPd2, Nb3Ge, and CaPd5 were calculated using the linear 

response method implemented in the Abinit package.73 First a high-quality wavefunction file was 

generated at the DFT-optimized geometry, using a Γ-centered k-point grid. The linear response of every 

atom in all three directions was found by a non-self-consistent calculation at a single q-point (reciprocal 

space for phonons). One such calculation was performed for a q-point corresponding to each k-point in 

the reference calculation. The Abinit utilities mrgddb and anaddb were used to derive the force constants 

from the linear response calculations. The phonon mode figures were created in Matlab with Figuretool. 

Creation of free ion profiles. To obtain atomic charges for the generation of free ion profiles – used by 

the CPmap and CPintegrate modules for core unwarping and contact volume determination, respectively 

– a separate set of calculations was carried out with DFT using the Vienna Ab initio Simulation Package 

(VASP).74,75 GGA-PAW potentials76 provided with the package were used for geometry optimization and 

charge analysis in the high precision mode. Core electron densities were output by VASP and used as 

reference input by the Bader program,77-80 with which the charge analysis was performed. 

Once the total Bader charges were determined for each element in the structure (using an average over 

the two symmetry-distinct Pd sites in CaPd2, whose charges were very similar), radial electron density 

profiles were generated by the Atomic Pseudopotential Engine (APE)81 for neutral atoms, ions at the full 

Bader charges, and ions at charges between these two extremes. For highly charged free anions, the 

convergence of the all-electron DFT wavefunctions was not always stable, but this could sometimes be 

addressed by turning using linear mixing or lowering the mixing parameter. However, we found that the 
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profiles calculated with a mixing parameter lower than about 0.03 were unreliable. Additional details are 

available in the Supporting Information. 
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Chapter 6. 

Electronic and Chemical Pressure Effects on the Stability Range of Intermetal-

lic Intergrowths: Pushing the Limits of the HoCoGa5 Type with ScTGa5       

(T = Fe, Co, Ni) 

This chapter is in preparation for publication: Engelkemier, J.; Green, L.; McDougald, R. N.; Chan, J. Y.; 
Fredrickson, D. C. Engelkemier and Fredrickson contributed the theoretical and structural analyses. 
Synthesis, crystallography, and resistance measurements are by Green, McDougald, and Chan.

 

6.1.  Abstract 

The immense structural diversity of Ln-T-E systems (Ln = lanthanide or similar early d-block element, T 

= transition metal, E = p-block element) offers opportunities for the observation of intriguing physical 

properties (e.g. magnetically mediated superconductivity and heavy fermion effects) but also the challenge 

of understanding how their structures can be guided for the optimization of these properties. In this Chap-

ter, we explore the factors stabilizing one member of this family: the HoCoGa5 structure type, comprising 

AuCu3-type LnGa3 slabs intergrown with fluorite-type TGa2 layers. We begin by probing the boundaries 

of its stability range through the growth and characterization of single crystals of ScTGa5 (T = Fe, Co, Ni), 

where Sc represents the smallest possible Ln-like atom, and the series over T provides variability in terms 

of electron count. After confirming that these compounds adopt the HoCoGa5 type and exhibit metallic 
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conductivity, we analyze their electronic structure using density functional theory (DFT) and DFT-

calibrated Hückel calculations. Through these analyses, the observed electron count range of the 

HoCoGa5 type is explained in terms of the 18-n rule, with n = 6 for the Sc atoms and n = 2 for the T sites. 

To account for the stability range with respect to atomic size, we carried out DFT-Chemical Pressure 

(DFT-CP) analysis on ScNiGa5. Its CP scheme displays negative pressures between the Ga atoms resulting 

from stretching of the Ga sublattice to accommodate the space requirements of the Sc and T atoms, which 

is consistent with HoCoGa5-type gallides only being observed when the Ln and T sites are occupied by 

relatively small atoms. From these conclusions, transitions to the related BaMg4Si3 and Ce2NiGa10 struc-

ture types at the edges of the HoCoGa5-type stability range are rationalized, demonstrating how the 18-n 

bonding scheme and CP concept can be used together to guide our understanding of Ln-T-E systems. 

 

6.2.  Introduction 

Since Hume-Rothery’s foundational work on metals and alloys, it has been understood that the same 

factors govern the structures of both molecular and intermetallic compounds: electron counts, atomic 

sizes, and electronegativity differences.1 However, while the steric, electronic, and electrostatic require-

ments of different molecular geometries are relatively well-understood, most metallic structures represent 

a larger challenge. Empirical observations often correlate the appearance of individual crystal structures to 

particular ranges of atomic size ratios and electron concentrations, as can be concisely represented with 

structure maps. One goal of designing metallic structures is to understand how the features of these struc-

tures lead to their locations in such maps. In this Chapter, we will illustrate how combining experiment 
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with recently developed theoretical methods can bring this understanding to a ternary structure of im-

portance for its ability to support superconductivity: the HoCoGa5 type. 

This structure type is one of a multitude that arises in Ln-T-E systems (Ln = lanthanide or similar early 

d-block element, T = transition metal, E = p-block element), which represent some of richest sources of 

truly ternary phases (where various elements have distinct coordination environments).2 For example, the 

phase diagram for Sc-Co-Ga, one of the systems to be considered here, lists 15 separate ternary com-

pounds – treacherous waters for those who would seek to navigate it with chemical principles. 

And yet, there are prospects of unique physical properties that might be revealed if the ability to guide 

the structures of these phases is acquired: the homologous series CemTIn3m+2 (T = Co, Rh, Ir) has already 

offered novel mechanisms of superconductivity. Their structures can be viewed in terms of simple inter-

growths of m-unit cell thick slabs of AuCu3-type CeIn3 with single layers of fluorite-type (or PtHg2-type) 

TIn2 layers. The CeIn3
3 (m = ∞) end member was the first Ce-based magnetically mediated superconduc-

tor to be discovered (TN = 10 K; Tc = 2.3 K).4,5 CeCoIn5
6 and CeIrIn5

7 (m = 1) are ambient superconduc-

tors below 2.3 K and 0.4 K, respectively,8,9 while the isostructural CeRhIn5
7 is superconducting under ap-

plied pressure (Tc = 2.1 K).10 Antiferromagnetic Ce2RhIn8
11 (m = 2), meanwhile, is likewise superconduct-

ing under applied pressure with a Tc of 2 K.12 Open questions are what factors stabilize the different mem-

bers of the series, and to what extent the details of the intergrowth influence their properties. 

The analogous gallides have not been as thoroughly explored for superconductivity, in part because 

there are no known Ce-containing homologues. For instance, while the HoCoGa5-type structure ( m = 1) 

forms for indides with practically all lanthanides, the corresponding gallides have been observed only for 

the late lanthanides. The formation of gallides with the Ho2CoGa8-structure type (m = 2) appears to be 
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similarly restricted.13 This inability to realize a whole series of gallium analogues to the LnmTIn3m+2 series 

– not to mention the trends in properties that they might exhibit – highlights the need for understanding 

of how atomic size and electron count together influence the stability of intermetallic structures. 

In this Chapter, we present a combined experimental and theoretical exploration of the stability range 

of the HoCoGa5 type. First we report single crystal structure solutions and electrical resistivity measure-

ments for ScTGa5 (T = Fe, Co, Ni), which extends the range of HoCoGa5-type gallides that have been 

structurally characterized. Through the identity of the T element, we also synthetically scan the structural 

stability with respect to electron concentration. 

We then present the results of two separate but complimentary theoretical methods: reversed approx-

imation Molecular Orbital (raMO) analysis to explain the observed electron count range in terms of the 

18-n rule,14,15 and Density Functional Theory-Chemical Pressure (DFT-CP) analysis16-18 to understand the 

effect of atomic size on the stability range of the rare earth elements. Finally, we make connections with 

other, more complex gallides and elucidate the competing factors that mark the boundaries of stability for 

each structure type, using the principles gleaned from examining the simpler HoCoGa5-type phases. 

 

6.3.  Experimental 

Synthesis.  Single crystals of ScTGa5 (T = Fe, Co, Ni) were made from their constituent elements by 

the self-flux growth method. Metals with lower melting points, such as gallium, can be used as the flux 

material, which enables metals with higher melting points to dissolve at lower temperatures.19-22 Sc (gran-

ules, 99.9%), T = Fe, Co, Ni (powder, 99.98%), and Ga (shot, 99.999%) were used as received. Sc, T, and 
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Ga were placed in an alumina crucible in a molar ratio of 1:1:20, topped with a second, inverted alumina 

crucible containing quartz wool, backfilled with about ⅓ atm of Ar, and sealed in a fused silica tube. The 

sealed vessels were heated to 1150 °C at a rate of 50 °C/h and held at that temperature for 72 hours, then 

cooled to 550 °C at a rate of 4 °C/h. Samples were then removed from the furnace, inverted, and centri-

fuged in order to separate the excess Ga flux from the single crystals. Residual Ga flux on the surface of the 

single crystals was removed by repeated sonication in hot water. 

Structure determination.  Single crystal X-ray diffraction data were collected on single crystal frag-

ments of ScTGa5 (T = Fe, Co, Ni). The fragments were cut into suitable sizes and mounted on glass fibers 

using a two-part epoxy. Data sets were collected on a Bruker D8 Quest Kappa single crystal X-ray diffrac-

tometer equipped with an IµS microfocus Mo Kα1 radiation source (λ = 0.71073 Å) operating at 50 kV 

and 1 mA, a HELIOS optics monochromator, and a CMOS detector. The collected data were corrected 

for absorption using the Bruker program SADABS (multi-scan method). Each dataset was indexed to a 

primitive tetragonal cell with dimensions of a ≈ 4.1 Å and c ≈ 6.6 Å. 

The systematic absences were consistent with the P4/mmm space group of the HoCoGa5 structure 

type. Initial models of the crystal structure were first obtained using SIR2008 (part of the IL MILIONE 

structure determination and refinement package)23 and refined using SHELXL2014.24 

After examining the data sets collected for each of the ScTGa5 analogues, large disagreeable reflections 

were identified in the refinement files for the model of the Fe analogue. Therefore, we chose to use the 

OMIT command to remove five reflections from the ScFeGa5 model, which resulted in a model statically 

similar to that of ScCoGa5 and ScNiGa5. The single crystal X-ray diffraction data collection and refined 

parameters for ScTGa5 (T = Fe, Co, Ni) are provided in Table 6.1. The atomic positions, Wyckoff site 
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symmetries, and atomic displacement parameters for the samples are given in Table 6.2. Table 6.3 contains 

selected interatomic distances. 

 

Table 6.1.  Crystallographic parameters for ScTGa5 (T = Fe, Co, Ni); Space group: P4/mmm, Z=1 

ScFeGa5   ScCoGa5   ScNiGa5 

a (Å)    4.1367(7)  4.1290(11)  4.1466(6) 

c (Å)    6.64220(17)  6.6034(16)  6.492(2) 

V (Å3)    113.66(4)  112.58(7)  111.63(5) 

crystal size (mm3)   0.2 × 0.3 × 0.4  0.04 × 0.1 × 0.1  0.06 × 0.08 × 0.3 

temperature (K)   298(2)   298(2)   298(2) 

θ  range (deg)   3.1 – 30.6  3.1 – 30.5  4.9 – 30.6 

μ (mm-1)    33.48   34.26   35.05 

no. of collected reflections  1207   912   783 

no. of unique reflections  130   135   134 

Rint    0.064   0.055   0.057   

h    -5 ≤ h ≤ 5   -4 ≤ h ≤ 5   -5 ≤ h ≤ 5 

k    -4 ≤ k ≤ 5   -5 ≤ k ≤ 4   -4 ≤ k ≤ 5 

l    -9 ≤ l  ≤ 9   -9 ≤ l  ≤ 6   -9 ≤ l ≤ 9 

Δρmax (e Å-3)   4.03   2.98   2.20 

Δρmin (e Å-3)   -3.90   -1.57   -4.00 

GoF    1.27   1.21   1.21 

extinction coefficient  0.99(11)   0.39(3)   0.48(4) 

R1(F) for Fo
2 > 2σ(Fo

2) a  0.046   0.030   0.040 

Rw(Fo
2) b    0.121   0.077   0.086 

aR1 = Σ||Fo| - |Fc||/Σ|Fo| 
bwR2 = [Σw(Fo

2 - Fc
2)2/Σw(Fo

2)2]1/2 
 

Elemental analysis.  Single crystals of ScTGa5 (T = Fe, Co, Ni) were characterized by electron disper-

sive spectroscopy (EDS) using a LEO 1530 VP SEM equipped with an EDAX detector operating with an 

accelerating voltage of 19 kV and a working distance of 11.3 mm. Multiple crystals from each batch were 
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examined. Spectra were integrated for 45 seconds, the results from 4 spots on the single crystal were aver-

aged, and atomic ratios were normalized to scandium. The elemental compositions of samples are as fol-

lows: Sc1.00(2)Fe0.95(2)Ga4.48(1), Sc1.00(1)Co1.06(5)Ga4.65(2), and Sc1.00(2)Ni1.33(3)-

Ga4.56(3). The disagreement between the structure models refined against the single crystal X-ray dif-

fraction data and the EDS data are attributed to the semiquantitative nature of EDS measurements. 

 

Table 6.2.  Atomic positions and lattice parameters 

atom x y z 

Sc 1a 0 0 0 

T 1b 0 0 ½ 

Ga1 1c ½ ½ 0 

Ga2 4i 0 ½ zGa2 

compound a (Å) c (Å) zGa2 

ScFeGa5 4.1367(7) 6.64220(17) 0.30336(13) 

ScCoGa5 4.1290(11) 6.6034(16) 0.30308(9) 

ScNiGa5 4.1466(6) 6.492(2) 0.29752(13) 

 

Table 6.3.  Selected interatomic distances (Å) 
 ScFeGa5 ScCoGa5 ScNiGa5 

within cuboctahedron 

Ga1-Ga2 2.8876(7) 2.8754(7) 2.8336(8) 

Sc-Ga1 (×4) 2.9251(5) 2.9196(8) 2.9321(4) 

Sc-Ga2 (×8) 2.8876(7) 2.8754(7) 2.8336(8) 

within rectangular prism 

Ga2-Ga2 (c-axis) 2.6123(17) 2.6006(14) 2.6290(19) 

Ga2-Ga2 (ab-plane) 2.9251(5) 2.9196(8) 2.9321(4) 

T-Ga2 (×8) 2.4462(6) 2.4399(6) 2.4549(6) 

between cuboctahedra and rectangular prism 

Sc-T 3.3211(1) 3.3017(8) 3.246(1) 
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Physical properties.  Single crystals of ScTGa5 (T = Fe, Co, Ni) were selected for electrical resistance 

measurements, which were carried out on a Quantum Design Physical Property Measurement System 

(PPMS) with current applied in the ab-plane of the sample. Data were collected over a temperature range 

of 2 to 290 K. Temperature dependent resistance measurements were performed using a four-probe con-

figuration. Electrical contacts were made by attaching platinum wires to the samples with silver epoxy. 

Electronic structure calculations.  Geometry optimizations of ScTGa5 (T = Fe, Co, Ni) were per-

formed with Density Functional Theory (DFT), using the Vienna Ab initio Simulation Package 

(VASP)25,26 for reversed approximation Molecular Orbital (raMO) analysis and ABINIT27-29 for DFT-

Chemical Pressure (CP) analysis. The optimizations were performed in two steps: first the atomic posi-

tions were relaxed in a fixed unit cell, and then all structural parameters were allowed to change simulta-

neously. 

VASP was used in the high-precision mode with the GGA-Projector Augmented Wave (PAW) poten-

tials30,31 provided with the package. Single-point energy calculations were performed in the optimized ge-

ometries to obtain electronic band structures and projected density of states (DOS) curves. Hückel pa-

rameters were calibrated to the DFT output with the eHtuner program.32 These parameters were used in 

simple Hückel calculations with YAeHMOP to generate Hamiltonian matrices. Then, raMO analysis and 

visualization were performed in MATLAB using our Figuretool application. 

To generate each CP scheme, three single-point energy calculations were performed, using ABINIT 

with norm-conserving Hartwigsen-Goedecker-Hutter pseudopotentials33 and the Teter 93 LDA ex-

change-correlational functional.34 One of these calculation was performed at an isotropically expanded 

unit cell volume, one at the optimized volume, and one at an isotropically contracted volume. For each 
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one, the components of the total Kohn-Sham potential, the electron density, and kinetic energy were out-

put, from which CP maps were generated within the Fredrickson group CP package. The CP schemes 

were visualized in MATLAB with our Figuretool application. Further computational details for each pro-

cedure, such as optimized geometries, k-point grids, energy cutoffs, total energies, Bader charges, and ionic 

profiles (generated by the Atomic Pseudopotential Engine)35 are provided in Appendix D. 

 

6.4.  Results and discussion 

Crystal growth and characterization.  Using the self-flux method with excess Ga, large crystals were 

obtained with sizes ranging from 1 to 5 mm across (Figure 6.1). The crystals were silver-colored with a 

metallic sheen. Elemental analysis of the crystals harvested with Energy Dispersive X-ray Spectroscopy 

confirmed compositions consistent with the targeted ScTGa5 (T = Fe, Co, Ni) phases. Based on the mass 

of the crystals obtained, the reaction yields were approximately 75%, 30%, and 15% for the Co, Ni, and Fe 

analogues, respectively. 

 

 

Figure 6.1.  A photograph of a large flux-grown crystal of ScCoGa5. 
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 Crystal structures of ScTGa5 (T = Fe, Co, Ni).  After selecting suitably sized fragments of the ScTGa5 

crystals, we collected single crystal X-ray diffraction data sets on them to confirm the structures of these 

compounds. As is reported in the Sc-T-Ga phase diagrams, our structure refinements found all three 

phases crystallize in the tetragonal HoCoGa5-structure type with space group P4/mmm.13,36 This structure 

can be simply visualized in terms of an intergrowth of slabs of the common AuCu3 and fluorite structure 

types (Figure 6.2): single unit cell-thick slabs of the AuCu3-type ScGa3 slabs of Sc@Ga12/4 cuboctahedra 

are interwoven in a 1:1 ratio with fluorite-type TGa2 layers of edge-sharing T@Ga4/2 rectangular prisms. 

 

 

Figure 6.2.  The crystal structures of ScTGa5 (T = Fe, Co, Ni), depicted as an intergrowth of AuCu3-type and fluorite-type 

slabs. (a) ScGa3 in the AuCu3 type. (b) A hypothetical fluorite-type NiGa2 phase. (c) The HoCoGa5-type structure of ScNiGa5. 

 

The four symmetry-distinct sites of the structures can be understood from this intergrowth picture 

(Table 6.1). The positions of the Sc and T sites are fixed by symmetry at the centers of the Ga cuboctahe-

dra and rectangular prisms, respectively. The Ga1 site, meanwhile, represents the Ga atoms in the middle 
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of the AuCu3-type slabs occurring at the centers of the (001) faces of the unit cell. Finally, the Ga2 site 

defines the square nets of Ga atoms at the “interface” of the cuboctahedra and the rectangular prisms. 

The z coordinate of the Ga2 site is the only parameter not fixed by symmetry and, together with the c 

lattice parameter, controls the thicknesses of the AuCu3- and fluorite-type slabs. Across the series T = Fe, 

Co, and Ni, the c parameter and Ga2 z coordinate conspire to create a slight contraction of the cuboctahe-

dra along the c-axis (evidenced by the longer Sc-Ga1 distances in Table 6.3 compared to Sc-Ga2 distances) 

with the heights going from 4.03 Å to 4.00 Å to 3.86 Å. As thickness of the fluorite-type slab is essentially 

constant at 2.614(14) Å, this contraction of the ScGa3 layers leads to a similar contraction in the Sc-T 

distances between slabs (contacts that will be important in our bonding analysis later) from 3.32 Å to 3.30 

Å to 3.24 Å. 

The interatomic distances for the remaining contacts are in accord with those observed for related 

phases. The eight Sc-Ga2 interatomic distances are comparable to Sc-Ga distances of binary compounds 

like ScGa,37 ScGa2,38 and ScGa3
39 (2.85-2.90 Å), but the four Sc-Ga1 distances are slightly longer. T-Ga 

distances are also typical of bond lengths in binary phases, such as FeGa3,40,41 CoGa3,40 and NiGa3
42 (2.36-

2.49 Å). 

Electrical Properties.  The temperature-dependent in-plane electrical resistance measurements for 

ScTGa5 (T = Fe, Co, Ni) are given in Figure 6.3. In all three cases, the measured resistance rises with in-

creasing temperature, a signature of metallic conductivity. The residual resistance of ScFeGa5, however, is 

almost twice that of the Co and Ni analogues. This observation, along with the low synthetic yield and the 

higher crystallographic R-factor (Table 6.1), indicates that the crystals of ScFeGa5 are of poorer quality. 
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Figure 6.3.  Normalized electrical resistance as a function of temperature for the ScTGa5 (T = Fe, Co, Ni) series. All three show 

typical metallic behavior. 

 

Preliminary electronic structure analysis.  Now that we have confirmed the crystal structures of 

these ScTGa5 phases, we are in a position to explore the factors stabilizing their structure type using elec-

tronic structure calculations. Their GGA-DFT density of states (DOS) distributions offer important clues 

here (Figure 6.4). For each ScTGa5 phase, the Fermi energy (EF) lies near a pseudogap at ca. -7 eV, just 

above a dense collection of T d-based states. The non-zero DOS value at the EF for all three compounds is 

consistent with their metallic conductivity, while the presence of the pseudogap is suggestive of a role for 

valence electron concentration in their stability. The EF for the T = Fe, Co, and Ni phases lies at the base, 

middle, and top of the pseudogaps, respectively, consistent with a rigid-band picture for the phases. As 

such, ScCoGa5 appears to be the most optimized of the three at 27 electrons per formula unit (3 for Sc + 

9 for Co + 3×5 for Ga). 
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Figure 6.4.  Electronic density of states (DOS) of ScTGa5 (T = Fe, Co Ni). The projected T component of the DOS is shaded 

in black. As the valence electron count increases, the Fermi energy goes from the bottom of the pseudogap for T = Fe, to the 

middle for T = Co, and to the top of it for T = Ni. 

 

Electron counting using the 18-n rule.  A simple rationale for the appearance of the pseudogap near 

this electron count is offered by 18-n rule recently demonstrated to underlie the ideal valence electron 

counts for many transition metal-containing intermetallics.15 In this bonding scheme, each transition metal 

atom (in this case both the Sc and T atoms, as we will see below) is envisioned as requiring 18-n electrons 

to achieve closed shell electron configurations, where n is the number of electron pairs that the transition 

metal atom shares covalently with its transition metal neighbors. From this perspective, the main group 

(E) atoms are viewed as contributing electrons to transition metal-centered orbitals, unless specific E-E 

contacts are identified as being non-interacting with the transition metal sites. 

An advantage of the 18-n approach is that, like the Zintl concept, it can be applied through an exami-

nation of the structure, even without an electronic structure calculation. For example, in the case of 

ScCoGa5, the total valence electron count of 27 falls far short of the 2×18 = 36 electrons necessary for both 
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Sc and Co atoms to have 18 electron configurations on their own (n = 0). Just as carbon can form four 

covalent bonds to satisfy the octet rule, however, ScCoGa5 might still be able to achieve an ideal electron 

count through the sharing of electron pairs along Sc-Sc, Sc-Co, or Co-Co contacts (n > 0). The typical 

mechanism by which this occurs is the isolobal bond, functioning with same nodal character as covalent σ 

and π transition metal-transition metal bonds, but with substantial delocalization over bridging E atoms. 

The HoCoGa5-type structure of the ScTGa5 phases offers several opportunities for such isolobal 

bonds to form. We’ll consider ScCoGa5 as a specific example. Each Sc and Co atom has a six Sc/Co neigh-

bors within a radius of 4.2 Å in a flattened octahedral arrangement (Figure 6.5). For the Co atoms, four of 

these neighbors are other Co atoms in the TGa2 layers at a distance of 4.13 Å, a distance that is long even 

for a Co-Co isolobal bond. However, the remaining two neighbors, Sc atoms in the ScGa3 slabs above and 

below along c, are only 3.30 Å away and are supported by four Ga atoms – an arrangement highly conducive 

to isolobal bonding. From this geometrical analysis, the T atoms can be assigned as n=2, requiring 16 elec-

trons for a filled 18-electron configuration. 

For the Sc atoms, the coordination by Sc and Co is similar, with two Sc-Co contacts each along c, and 

four neighbors perpendicular to c at a distance of 4.13 Å. While this 4.13 Å distance was long enough for 

us to discount the possibility of Co-Co interaction, the metallic radius of Sc is 0.37 Å larger than Co’s. 

Indeed, our earlier theoretical investigations generalizing the 18-n rule revealed that isolobal bonds are 

present at corresponding contacts in AuCu3-type ScGa3. In ScCoGa5, we thus consider the Sc atoms to 

have n=6. 
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Figure 6.5.  The reversed approximation Molecular Orbitals (raMOs) for ScNiGa5 generated to reproduce the s, p, and d 

valence atomic orbitals of a Sc or Ni atom. (a) Reproduction of the nine Sc s, p, d orbitals. Note the bonding contributions from 

the Sc neighbors in the s, px, py, dz2, and dx2-y2 raMOs, and from the two Ni neighbors along the c-axis in the s, pz, and dz2 raMOs. 

(b) The corresponding raMOs for a Ni atom in the structure. Almost no contributions are visible from neighboring Ni atoms, 

but bonding overlap occurs with the Sc neighbors along the c-axis in the s and pz raMOs. 
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Combining our analyses for the Sc and Co atoms, we obtain an ideal 18-n electron count for ScCoGa5 

of (18 ‒ 6 for Sc) + (18 ‒ 2 for Co) = 28 total electrons per formula unit. This is ½ electron per Sc/Co atom 

higher than the total electron count for ScCoGa5, but it matches the total electron count for ScNiGa5 where 

the EF lies at the top of the pseudogap in its DOS curve (Figure 6.4). In contrast, ScFeGa5 falls short of the 

ideal by 1 electron per transition metal atom, which helps to explain why its EF falls below the pseudogap. 

Confirmation of the 18-n picture using the reversed approximation Molecular Orbital (raMO) 

analysis.  We can test this bonding picture against the electronic structure of these phases using the re-

versed approximation Molecular Orbital (raMO) method, a recently developed theoretical technique. It 

works by using the occupied crystal orbitals from a DFT-calibrated Hückel calculation as the basis set for 

the calculation of a simple, local MO diagram hypothesized to play a role in the electronic structure. The 

more closely the resulting raMOs reproduce the model MOs, the better that model characterizes the com-

pound’s bonding. 

For filled 18-n electron configurations, a useful model MO diagram is the set of nine s, p, and d atomic 

orbital levels of the transition metal atom. In Figure 6.5, we show the raMO reconstructions of these or-

bitals for a Sc and a Ni atom in ScNiGa5, where the phase’s electron count matches that predicted by the 

18-n rule. 

For both the Sc and Ni atoms, the nodal characters of each of the s, p, and d atomic orbitals are well-

represented, indicating that an electron pair is associated with each of these functions. The raMOs differ, 

however, in terms of how localized each is to the central orbital that served to template its construction. 
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All of the Sc raMOs, as well as the Ni s and p ones appear delocalized through the coordination environ-

ment of the central atom, with positive orbital overlaps highlighting stabilizing interactions. These features 

show how the electron pairs assigned formally to the central atom in terms of 18-n rule counting are ac-

tively involved in bonding. The d orbitals on Ni, on the other hand, are highly localized with very little 

density on any other atoms, as expected for the nearly core-like character of the d orbitals of T atoms. 

 The bonding contributions from Sc or Ni neighbors in several of these raMOs are suggestive of 

isolobal bonds being present. This possibility can be explored further by attempting to localize the raMOs 

along specific Sc-Sc or Sc-Ni contacts through linear combinations. Given the octahedral arrangements of 

the Sc/Ni-Sc/Ni contacts, this localization is conveniently possible by making sp3d2 hybrids of the raMOs 

on the Sc or Ni sites (Figure 6.6). 

Through this process, six isolobal bonds are generated on the Sc site (two Ni-Sc and four Sc-Sc) and 

two Ni-Sc isolobal bonds on the Ni site. These functions follow closely our earlier conclusions of the Sc 

and Ni atoms being n=6 and n=2 centers, respectively, in the structure. The conclusion that ScNiGa5 is at 

an ideal electron count is in reasonable agreement with the position of the pseudogaps in the DOS distri-

butions of the ScTGa5 phases in Figure 6.4. The DOS minimum in these plots appears to occur somewhere 

between 27 (T = Co) and 28 (T = Ni) electrons per formula unit. 

We are now in a position to generalize this bonding picture to the larger family of HoCoGa5-type 

phases. To do this, we performed a survey of the gallides and indides adopting this structure type in the 

Inorganic Crystal Structure Database,43-45 leaving out those containing actinide elements (Figure 6.7). Of 

the compounds found in this search, ScFeGa5 is the only one that deviates from the ideal electron count 
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of 28 per formula unit by as much as 1 electron per Ln/T atom. The HoCoGa5-type thus shows a strong 

adherence to the 18-n rule. 

 

 

Figure 6.6.  Localized isolobal bonding functions in ScNiGa5 generated from linear combinations of the raMOs in Figure 6.5. 

(a) Six Sc-based isolobal bonds, two with Ni and four with its Sc neighbors through the square faces of the cuboctahedral 

coordination by Ga atoms. (b) Two isolobal bonds between Ni and its Sc neighbors along the c-axis. 
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Atomic size stability range explored through DFT-Chemical Pressure (DFT-CP) analysis.  In 

Figure 6.7, another trend is apparent that cannot be easily explained in terms of electron count: while 

HoCoGa5-type indides form for a wide range of Ln and T elements, the gallides are limited to 3d transition 

metals and smaller lanthanide elements, trends that seem to have more to do with atomic size than electron 

count. 

 

 

Figure 6.7.  The elements occurring in HoCoGa5-type gallides (blue), indides (red), or both (purple). Gallides have only been 

reported in combination with smaller lanthanides or early d-block elements, whereas indium compounds can incorporate both 

smaller and larger rare earth atoms, as well as larger transition metals. Actinide-containing phases have been excluded as our 

theoretical results cannot be easily extrapolated to such compounds. 

 

Clues to how atomic sizes may influence the favorability of the HoCoGa5 type can be found in our 

earlier CP analysis46 of the Y4PdGa12 structure type, which can accommodate larger transition metal atoms 

into the octahedral holes of a AuCu3-like YGa3 network (Figure 6.2a). A hypothetical “YGa3” phase was 

found to be destabilized by stretching of the Ga-Ga interactions due to the relatively large size of  the Y 

atoms. Filling ¼ of the octahedral holes with a transition metal provided relief in this situation by replacing 
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some of the overly-long Ga-Ga contacts with nearly ideal T-Ga ones, and creating shorter Ga-Ga distances 

in neighboring unstuffed octahedra through compression as the T atoms were accommodated. Perhaps 

similar stresses are at work in HoCoGa5-type gallides. 

Figure 6.8 shows the calculated CP scheme for ScNiGa5. As anticipated from the earlier results on the 

Y4PdGa12 type, we see negative pressures (black lobes) distributed along all Ga-Ga atoms, suggesting that 

their distances are stretched relative to their ideal values. The origin of this stretching of the Ga sublattice 

is evident in the CP features of both Ni (in green rectangular prisms) and Sc (in gray cuboctahedra). Ni 

and Sc experience positive CP along every direction (within the resolution of the plot, which includes 

components of the CP distribution from real spherical harmonics with l ≤ 4). 

This tension has clear implications for the stability range of the HoCoGa5 type. Already in ScNiGa5, 

where Sc and Ni are perhaps the smallest atoms to occupy their respective positions in HoCoGa5-type 

gallides, these atoms are somewhat too large for their coordination environments. Substituting a larger 

element for either the Sc or the Ni atoms would exacerbate this conflict, eventually leading to this structure 

type losing out to other competing geometries. 

Connections to broader structural chemistry.  The expected tension to emerge for large Ln atoms 

in HoCoGa5-type gallides provides a simple interpretation of a number of more complicated structures in 

Ln-T-Ga systems (Figure 6.9). One avenue for expanding the space around a large Ln atom without elon-

gating Ga-Ga interatomic distances would be to simply add additional Ga atoms to increase the coordina-

tion number of the Ln atom. The BaMg4Si3-type phase LaPdGa6
47 represents just such a mechanism: the 

vertex-sharing Ga atom in the plane of the Ln atoms in the HoCoGa5 type (Figure 6.9a) has been replaced 

by a Ga-Ga dumbbell that straddles the lanthanide layer (Figure 6.9b). La atoms are surrounded by 16 



182 
 

 

 

nearly equidistant Ga neighbors in a coordination polyhedron resembling that of Ba atoms in the BaAl4 

type, rather than 12 in a cuboctahedron. This expanded polyhedron appears much better adapted to oc-

cupation by a large atom. 

 

 

Figure 6.8.  The chemical pressure (CP) scheme for ScNiGa5. On each atom, a radial lobe representing the sums of the local 

pressures experienced along each direction. The surfaces are presented in black where the pressures are negative (calling for the 

contraction of the structure), and white for directions along which the pressures are positive (pushing toward expansion of the 

structure). Negative CPs between the Ga atoms and positive CPs emanating from the Sc and Ga atoms (centering the green and 

gray polyhedra) signal tension between strained Ga-Ga bonds and overly dense coordination environments for the Sc/Ni 

atoms. Substituting a larger atom onto either the Sc or Ni site would increase this tension. 

 



183 
 

 

 

 

Figure 6.9.  Derivatives of the HoCoGa5 type accommodating large Ln atoms. (a) The HoCoGa5-type structure of ScNiGa5, 

shown for comparison. (b) The BaMg4Si3-type structure of LaPdGa6. (c) The Ce2NiGa10-type structure of La2NiGa10. 

 

Of course, such a change in coordination environment and composition is not without electronic re-

percussions. The isolobal bond that would exist between Pd and La in the HoCoGa5 type is broken in the 

LaPdGa6 structure because of the extra distance between the atoms. Thus, the ideal 18-n count is raised 

from 28 electrons (with n = 2 for Pd and 6 for La) in the HoCoGa5 type to 32 (n = 0 for Pd, 4 for La) in 

LaPdGa6. This increase in ideal electron count is nearly accommodated by the addition of one Ga atom 

per formula unit, with the electron count from the stoichiometry being 31 electrons. 

Another alternate structure accommodating larger Ln atoms is exemplified by the Ce2NiGa10-type 

La2NiGa10
48 (Figure 6.9c). Once again, the cuboctahedron is replaced by a more expansive 16 coordinate 

cage, but now the slabs of Ln-centered polyhedra in the LaPdGa6 structure have doubled in thickness to 
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create larger regions of the BaAl4 structure type in La2NiGa10. The electron counting for this phase follows 

closely that of LaPdGa6 as the number of La and T neighbors for the sites is unchanged: n=4 for La and 

n=0 for Pd. These values predict an ideal electron count of 46 per formula unit, which matches that given 

by the stoichiometry. 

It may be somewhat surprising that Ga-Ga bonding has not entered into our electron counting, espe-

cially for the Ga-rich layer in La2NiGa10. As in many other structures following the 18-n rule, these com-

pound’s Ln-Ga and T-Ga interactions are so extensive that no Ga-Ga contacts are isolated from Ln or T 

atoms. In examining compounds with higher Ga content, however, such as those adopting the Ce2CuGa12 

type,49 we would need to search for additional electrons assigned to the Ga sublattices. 

Our conclusions regarding the factors stabilizing HoCoGa5 gallides and these more complex struc-

tures can be summarized in a structure map. In Figure 6.10, we plot the occurrence of these structures as a 

function of valence electron concentration (electrons per Ln/T atom) and the 3+ radius of the Ln element 

it contains. The known HoCoGa5-type phases and the m=2 members of the LnmTGa3m+2 homologous se-

ries it is part of appear here in the lower left side of the map, corresponding to low electron concentrations 

and small Ln atoms. The Ce2CuGa12- and BaMg4Si3-type phases, on the other hand, occur at the upper 

left,  where larger Ln atoms are able to occupy the larger 16-coordinate cages, and higher electron concen-

trations support the smaller number of isolobal bonds possible in these structures. 

This structure map also provides a context for viewing the three ScTGa5 compounds characterized in 

this Chapter. They significantly extend the observed boundary of stability for the HoCoGa5 type: by ½ of 

an electron per Ln/T atom in each direction, and by more than 0.1 Å in terms of ionic radius of the Ln 

element (excepting Hf NiGa5,50 whose structure was inferred from powder). The exceptional flexibility of 
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the ScTGa5 series may be connected to the small radius of its Sc atoms: the small size of Sc may allow closer 

Ga-Ga contacts desired by the CP scheme of the HoCoGa5 type than could be attained in analogues with 

larger Ln atoms. In turn, this reduced strain could add to the tolerance of the structure to non-ideal electron 

counts. 

 

 

Figure 6.10.  The stability range of Ln-T gallides based on the size of the Ln atom and valence electron concentration (electron 

count per Ln/T atom). Reported HoCoGa5-type phases are represented by circles, BaMg4Si3-type phases by triangles, and 

Ce2NiGa10-type phases by diamonds. Squares are for Ho2CoGa8-type compounds, the m = 2 member of the homologous series 

of which the HoCoGa5 type is the m = 1 member. Red symbols indicate when structures were assigned without refinement of 

the atomic parameters against diffraction data. The upper right of the plot, corresponding to high electron count and large Ln 

atoms, is occupied by the structural derivatives that replace Ln-centered cuboctahedra with larger Ga cages. The three ScTGa5 

phases studied in this Chapter represent extremes in electron count and atomic size for the HoCoGa5 type. 
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6.5.  Conclusions 

In this Chapter, we have explored the factors shaping the stability range of the HoCoGa5 type as a 

point of entry into the broader structural chemistry of Ln-T-E phases (Ln = lanthanide or early d-block 

element, T = transition metal, E = p-block main group element). We began with the growth of crystals of 

the ScTGa5 (T = Fe, Co, Ni) phases at the edge of this stability range, and confirmation of their HoCoGa5 

type structures and metallic conductivity. Theoretical calculations were then applied to elucidating the 

roles that valence electron concentration and atomic sizes play in these compounds. From these analyses, 

we traced the stability range of the HoCoGa5-type gallides to filling of 18-n electron configurations on the 

Ln and T atoms, and a tension between overly long Ga-Ga contacts and the size requirements of the Ln 

and T atoms. The latter effect provides a rationale for the absence of Ga analogues to the Ce-T-In series of 

superconductors, as well as for the alternative structures observed with larger coordination environments 

for the Ln atoms. 

The bonding picture for the Ln-T-E phases described here extends the applicability of the 18-n rule, 

which has so far mainly been applied to binary compounds. At the same time, these compounds raise an 

intriguing question concerning the various ways that the Ln atoms are incorporated into the 18-n bonding 

scheme. In this case, the Ln atoms appear as 18-n electron centers that participate in isolobal bonds, much 

as was found for early and mid-block transition metals in the AuCu3 and TiAl3 structure types.15,51 In other 

compounds, however, such as Gd13Fe10C13
52 and GdCoSi2,53 the Ln atoms are viewed as electron donors 

to T-based 18-n electron configurations. Determining the circumstances under which the Ln atoms take 

on these different roles could be an exciting subject for future research. 
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Another possible research direction is to explore how the insights derived here can be applied to the 

design of new compounds. For example, can phases with Ga12 cuboctahedra centered by larger Ln atoms 

be stabilized? Such a structure would need a mechanism to compensate for the severely over-extended Ga-

Ga contacts within the cuboctahedra. One possibility is offered by the Sm4Co3Ga12 structure type,54 in 

which some T atoms occupy the octahedral holes in AuCu3-type slabs of a Ho2CoGa8-type framework. 

However, from the work of Slater et al. on the stability range of this structure type,55 it seems that more 

extensive insertion of interstitials may be necessary to open the cuboctahedra enough to accommodate La 

or Ce. 
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Appendix A. 

Supporting Information for Chapter 2: 

First-Principles Elucidation of Atomic Size Effects Using DFT-Chemical Pres-

sure Analysis: Origins of Ca36Sn23’s Long-Period Superstructure 

The specific information given in this Chapter came from the work of Engelkemier, but contributions 
were made by both Berns and Engelkemier, particularly for the conclusions presented in Section A.1.

 

A.1.  Treatment of the Premainder components 

One question encountered in the development of the DFT-CP analysis is to what extent each of the 

terms of the DFT total energy can be mapped to an energy grid. The energetic terms contributing to Pre-

mainder in Equation 2.4 all share the feature that they are not easily represented as an integral of an energy 

density over the unit cell volume. However, in principle some of these terms can be divided to some de-

gree across a structure. Consider the Eα component of Etotal. This component of the total energy repre-

sents the difference in the stability provided to a homogeneous electron gas by the ion cores and the 

simple Coulomb potentials used in the calculation of EEwald: 
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As is evident from the above equation, the Eα contribution can be decomposed into a sum over terms 

corresponding to individual ions, which could then be mapped to the positions of these ions in space. 

The effort required to achieve this using the ABINIT program is minimal: the αj values for Equation A.1 

are given in the ABINIT output file for each pseudopotential with the label “epsatm.” The atomic contri-

butions to Eα are then obtained by multiplying the corresponding αj values by the average electron densi-

ty for the unit cell. 

Similar considerations apply to Enonlocal, which is built up from a sum of terms resulting from the dif-

ferential screening of s-, p-, d- and f- type orbital character around the individual ion cores in the system. 

While this is difficult to represent as a continuous function in 3D space, it should certainly be possible to 

distribute Enonlocal appropriately among the atoms of the structure. A more complicated procedure is nec-

essary here than for Eα. One begins by running a self-consistent field calculation on the structure of inter-

est to obtain the ground state electron density and wavefunctions. Then holding fixed this electron den-

sity, the wavefunctions, and their occupancies, one goes atom by atom through the structure and calcu-

lates the total energy resulting when each ion core is placed alone in the unit cell in the midst of this elec-

tronic structure. The Enonlocal term listed in the output for each atom then corresponds to the contribution 

from that atom to the nonlocal energy for the full structure. An annotated ABINIT input file for per-

forming this procedure is provided in Section A.2. 

(A.1) 
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Once the Eα and Enonlocal energies are resolved into atomic contributions, this information can be in-

corporated in the DFT-CP analysis by distributing these atomic terms among the voxel energies 

(Evoxel,n’s) of Equation 2.3. Here, we follow the argument of Filippetti and Fiorentini1 that the nonlocal 

energies are associated with the ion core regions, and as such can be localized to the space close to their 

corresponding nuclei. For each atom, we count the voxels that occur within a fixed radius of the nuclear 

position, and partition the atomic Eα and Enonlocal equally across these voxels. The specific value of the ra-

dius should have no effect on the results of the CP analysis as long as the volume it encloses does not 

cross the boundaries of the atomic cells used in the integration of the CP map, at least when isotropic 

core component averaging is used. 

In this way, the Eα and Enonlocal components of the DFT total energy can be moved from the Eremainder 

term of Equation 2.2 into the grid of voxel energies. Their incorporation into the pressure map then oc-

curs naturally through the differentiation of the energy grid with respect to volume (Equation 2.4). At 

this point, Premainder contains only contributions from the Ewald energy and the band occupancy smearing 

energy. 

As the band occupancy smearing energy is not localizable to any particular points in space, it is rea-

sonable to treat this unmapped pressure as homogenously distributed across the unit cell. EEwald, on the 

other hand, represents the electrostatic energy of a homogeneous electron gas surrounding an array of 

point charges, which involves both the total energy of all the ions interacting with the homogenous elec-

tron gas as well as a converging sum of the Coulomb repulsion between every pair of ions in an infinite 

crystal lattice, shown in Equation A.2. The Ewald energy has the form:2 
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In this equation, the divergent summation over the Coulombic interactions between charges in a lat-

tice is decomposed into a short range and long range components, which are best treated in real and re-

ciprocal space, respectively. The parameter η determines how steeply the short range interactions are ex-

tinguished with increasing distance (r), with the distance cut-off of the short range component roughly 

corresponding to η×r=2.0. Once and η value is chosen, the short range ion-ion portion of EEwald is at-

tributed to pairs of atoms, and the corresponding pressures can be applied to the contact volumes de-

scribed in the main text. 

We have now described how the largest energy components contributing to Premainder can be resolved 

spatially. In what ways does such a mapping influence the results of a DFT-CP analysis? In Figure A.1, we 

plot CP anisotropy surfaces for Ca5Sn3 with different combinations of Premainder terms included in the CP 

map, using the contact volume integration scheme. Two different pseudopotentials for Ca are used: the 

images in the left column were generated from calculations using the semicore Ca potential, while those 

on the right we made using the valence-only potential. Eα and Enonlocal energies were mapped to spheres of 

radius 0.3 Å around the nuclear positions, while an η value of 0.25 a0
-1 (corresponding to a cut-off dis-

tance of about 8 a0 or 4.2 Å) was used for the short-range EEwald contributions. 

All versions of the semicore calculations, including Figure 2.6c, show essentially identical results, re-

gardless of which additional terms are mapped. This high correspondence can be understood in that the 

semicore Ca pseudopotential, which explicitly models 10 electrons as valence as compared to 2 electrons 

in the valence-only pseudopotential, nearly completely captures the true core-electron effects of an all-

(A.2) 
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electron calculation in the vicinity of the Ca. In this case, the short-range Ewald repulsion between Ca 

cores is high and the Enonlocal and Eα corrections are small. 

The invariance of the semicore Ca results to the mapping of Premainder terms suggests that a reliable pic-

ture of the pressures at work in the hypothetical Ca5Sn3 structure has been obtained. From a practical 

point of view, then, we can judge the value of mapping the Premainder terms by their ability to bring agree-

ment between the semicore Ca picture and that obtained with the valence-only Ca pseudopotential. In 

other words, the mapping the remainder terms is useful if they correct for any missing core effects from 

using a smoother, valence-only pseudopotential. Somewhat surprisingly, this appears to not be the case. 

Moving down the valence-only results from Figures A.1a, to A.1b, to A.1c, and finally to Figure 2.6c, we 

see that the correspondence to the semicore picture increases as fewer Premainder terms are mapped. 

Why would this be? There are, in fact, good physical reasons why mapping the remainder terms 

could be problematic. The short-range EEwald pressure depends heavily on the choice of η value, which 

introduces a large ambiguity into the CP results. There is also an inherent ambiguity in the Eα and Enonlocal 

terms as well. While we have shown how to distribute these pressures to individual atoms, we have no 

way of determining their spatial directionality. Rather than arbitrarily mapping these values isotropically 

into the core regions, it seems more valid to treat them homogeneously across the entire unit cell. 
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Figure A.1.  The CP distribution around each atom is shown as a radial plot. See Figure 2.6 for details. The scale in the three semi-

core results is set to 150. For the valence-only plots, the scale of (a) is 1250 and the scales of (b) and (c) are both 2500. 

 

A.2.  ABINIT input file for the calculation of nonlocal energies atom by atom 
 
!Ca5Sn3 first nonlocal calculation for the conventional unit cell. 
 
!Changes for the nonlocal calculation: 
natom  1  !Only one atom is placed in the cell at a time. 
ndtset  32  !There is a separate calculation for each atom. 
nsym  1  !The symmetry is set to P1. 
ntypat  2 
znucl  20  50 
typat1  1  !The first 20 calculations are for Ca atoms. 
typat2  1 
typat3  1 
typat4  1 
typat5  1 
typat6  1 
typat7  1 
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typat8  1 
typat9  1 
typat10 1 
typat11 1 
typat12 1 
typat13 1 
typat14 1 
typat15 1 
typat16 1 
typat17 1 
typat18 1 
typat19 1 
typat20 1 
typat21 2  !The final 12 calculations are for Sn atoms. 
typat22 2 
typat23 2 
typat24 2 
typat25 2 
typat26 2 
typat27 2 
typat28 2 
typat29 2 
typat30 2 
typat31 2 
typat32 2 
 
!The fractional coordinates of each atom for separate calculations: 
xred1        0.5000000000       0.0000000000       0.2499999992 
xred2        0.5000000000       0.0000000000       0.7499999803 
xred3        0.0000000000       0.5000000000       0.7499999803 
xred4        0.0000000000       0.5000000000       0.2499999992 
xred5        0.4159988753       0.2844270151       0.5000000000 
xred6        0.2155730038       0.9159988377       0.0000000000 
xred7        0.7155730218       0.4159988753       0.5000000000 
xred8        0.0840011616       0.7844270151       0.5000000000 
xred9        0.5840011616       0.2844270151       0.0000000000 
xred10      0.9159988377       0.2155730038       0.5000000000 
xred11      0.4159988753       0.7155730218       0.0000000000 
xred12      0.2155730038       0.0840011616       0.5000000000 
xred13      0.7155730218       0.5840011616       0.0000000000 
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xred14      0.7844270151       0.9159988377       0.5000000000 
xred15      0.0840011616       0.2155730038       0.0000000000 
xred16      0.5840011616       0.7155730218       0.5000000000 
xred17      0.7844270151       0.0840011616       0.0000000000 
xred18      0.2844270151       0.5840011616       0.5000000000 
xred19      0.9159988377       0.7844270151       0.0000000000 
xred20      0.2844270151       0.4159988753       0.0000000000 
xred21      0.5000000000       0.5000000000       0.2499999992 
xred22      0.0000000000       0.0000000000       0.2499999992 
xred23      0.5000000000       0.5000000000       0.7499999803 
xred24      0.0000000000       0.0000000000       0.7499999803 
xred25      0.3427017685       0.8427018053       0.5000000000 
xred26      0.1572982504       0.3427017685       0.5000000000 
xred27      0.8427018053       0.3427017685       0.0000000000 
xred28      0.8427018053       0.6572982315       0.5000000000 
xred29      0.3427017685       0.1572982504       0.0000000000 
xred30      0.6572982315       0.1572982504       0.5000000000 
xred31      0.1572982504       0.6572982315       0.0000000000 
xred32      0.6572982315       0.8427018053       0.0000000000 
 
!The total charge in the unit cell for each calculation: 
charge1 -86 
charge2 -86          !The first 20 calculations involve a 
charge3 -86  !single Ca atom in a unit cell with 
charge4 -86  !the surrounding electronic structure 
charge5 -86  !arising from 20 Ca and 12 Sn atoms. 
charge6 -86  !The total number of electrons is 
charge7 -86  !20*2 + 12*4 = 88 electrons. The one 
charge8 -86  !Ca ion has a charge of +2, which makes 
charge9 -86  !the total charge in the cell -86. 
charge10 -86 
charge11 -86 
charge12 -86 
charge13 -86 
charge14 -86 
charge15 -86 
charge16 -86 
charge17 -86 
charge18 -86 
charge19 -86 
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charge20 -86 
charge21 -84        !The last 12 calculations involve a 
charge22 -84  !single Sn atom with a charge of +4, 
charge23 -84  !making the total cell charge -84. 
charge24 -84 
charge25 -84 
charge26 -84 
charge27 -84 
charge28 -84 
charge29 -84 
charge30 -84 
charge31 -84 
charge32 -84 
 
!The charge and kpoint distribution is held fixed: 
getwfk 1             !The wavefunction is read in from a 
prtwf 0   !previous calculation. 
getden 1             !The electron density is read in 
prtden 0  !from a previous calculation. 
nstep 0           !The wavefunctions are not updated. 
kptopt 0      !The kpoints are specified explicitly 
nkpt 12   !from the previous SCF calculation. 
kpt  0.1250000000     0.1250000000     0.0625000000 
        0.3750000000     0.1250000000     0.0625000000 
        0.3750000000     0.3750000000     0.0625000000 
        0.1250000000     0.1250000000     0.1875000000 
        0.3750000000     0.1250000000     0.1875000000 
        0.3750000000     0.3750000000     0.1875000000 
        0.1250000000     0.1250000000     0.3125000000 
        0.3750000000     0.1250000000     0.3125000000 
        0.3750000000     0.3750000000     0.3125000000 
        0.1250000000     0.1250000000     0.4375000000 
        0.3750000000     0.1250000000     0.4375000000 
        0.3750000000     0.3750000000     0.4375000000 
wtk  0.0625000000     0.1250000000     0.0625000000 
         0.0625000000     0.1250000000     0.0625000000 
         0.0625000000     0.1250000000     0.0625000000 
         0.0625000000     0.1250000000     0.0625000000 
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!These parameters are left unchanged: 
acell         1.8897261329       1.8897261329       1.8897261329  Bohr 
rprim    12.1986207140       0.0000000000       0.0000000000 
                  0.0000000000      12.1986207140       0.0000000000 
                  0.0000000000       0.0000000000       5.9549405940 
ecut    30.000000  Hartree 
tsmear  0.0050000  Hartree 
toldfe  0.0000000367493254  Hartree 
occopt  3 
nband  108 
ngfft  120 120 60 
 
!Changes for the second nonlocal calculation: 
!getwfk 3            !The wavefunction and density are read in for 
!getden 3  !the second volume of the CP calculation. 

 

A.3.  Optimized structures, total energies, and breakdowns of total pressures by energy terms 

Table A.1.  Unit cell parameters for the VASP optimized structures of Ca5Sn3 and Ca36Sn23 

 Ca5Sn3 Ca36Sn23 
a 12.1864342798648764 12.1519878572427977     
c 5.9489916024459149 22.1713863342970328 
 

Table A.2.  Reduced coordinates for atoms in VASP optimized structure of Ca5Sn3 

Atom type x y z 
Ca 0.5 0 0.25 
Ca 0.5 0 0.75 
Ca 0 0.5 0.75 
Ca 0 0.5 0.25 
Ca 0.415999 0.284427 0.5 
Ca 0.215573 0.915999 0 
Ca 0.715573 0.415999 0.5 
Ca 0.084001 0.784427 0.5 
Ca 0.584001 0.284427 0 
Ca 0.915999 0.215573 0.5 
Ca 0.415999 0.715573 0 
Ca 0.215573 0.084001 0.5 
Ca 0.715573 0.584001 0 
Ca 0.784427 0.915999 0.5 
Ca 0.084001 0.215573 0 
Ca 0.584001 0.715573 0.5 
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Ca 0.784427 0.084001 0 
Ca 0.284427 0.584001 0.5 
Ca 0.915999 0.784427 0 
Ca 0.284427 0.415999 0 
Sn 0.5 0.5 0.25 
Sn 0 0 0.25 
Sn 0.5 0.5 0.75 
Sn 0 0 0.75 
Sn 0.342702 0.842702 0.5 
Sn 0.157298 0.342702 0.5 
Sn 0.842702 0.342702 0 
Sn 0.842702 0.657298 0.5 
Sn 0.342702 0.157298 0 
Sn 0.657298 0.157298 0.5 
Sn 0.157298 0.657298 0 
Sn 0.657298 0.842702 0 

 

Table A.3.  Reduced coordinates for atoms in VASP optimized structure of Ca36Sn23 

Atom type x y z 
Ca 0.944181 0.788422 0.908049 
Ca 0.211578 0.944181 0.908049 
Ca 0.055819 0.211578 0.908049 
Ca 0.288422 0.444181 0.908049 
Ca 0.444181 0.711578 0.091951 
Ca 0.555819 0.288422 0.091951 
Ca 0.288422 0.444181 0.091951 
Ca 0.711578 0.555819 0.091951 
Ca 0.711578 0.555819 0.908049 
Ca 0.444181 0.711578 0.908049 
Ca 0.555819 0.288422 0.908049 
Ca 0.211578 0.944181 0.091951 
Ca 0.944181 0.788422 0.091951 
Ca 0.788422 0.055819 0.091951 
Ca 0.788422 0.055819 0.908049 
Ca 0.055819 0.211578 0.091951 
Ca 0.912902 0.784767 0.631103 
Ca 0.215232 0.912902 0.631103 
Ca 0.087098 0.215232 0.631103 
Ca 0.784767 0.087098 0.631103 
Ca 0.412902 0.715232 0.368897 
Ca 0.587098 0.284768 0.368897 
Ca 0.284768 0.412902 0.368897 
Ca 0.715232 0.587098 0.368897 
Ca 0.412902 0.715232 0.631103 
Ca 0.587098 0.284768 0.631103 
Ca 0.215232 0.912902 0.368897 
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Ca 0.912902 0.784767 0.368897 
Ca 0.784767 0.087098 0.368897 
Ca 0.087098 0.215232 0.368897 
Ca 0.284768 0.412902 0.631103 
Ca 0.715232 0.587098 0.631103 
Ca 0.787273 0.923357 0.760904 
Ca 0.076643 0.787273 0.760904 
Ca 0.212727 0.076643 0.760904 
Ca 0.923357 0.212727 0.760904 
Ca 0.287273 0.576643 0.239096 
Ca 0.712727 0.423356 0.239096 
Ca 0.423356 0.287273 0.239096 
Ca 0.576643 0.712727 0.239096 
Ca 0.287273 0.576643 0.760904 
Ca 0.712727 0.423356 0.760904 
Ca 0.076643 0.787273 0.239096 
Ca 0.787273 0.923357 0.239096 
Ca 0.923357 0.212727 0.239096 
Ca 0.212727 0.076643 0.239096 
Ca 0.423356 0.287273 0.760904 
Ca 0.576643 0.712727 0.760904 
Ca 0.416731 0.282083 0.5 
Ca 0.217917 0.083269 0.5 
Ca 0.916731 0.217917 0.5 
Ca 0.583269 0.717917 0.5 
Ca 0.782083 0.916731 0.5 
Ca 0.083269 0.782083 0.5 
Ca 0.717917 0.416731 0.5 
Ca 0.282083 0.583269 0.5 
Ca 0.834569 0.334569 0 
Ca 0.334569 0.165431 0 
Ca 0.165431 0.665431 0 
Ca 0.665431 0.834569 0 
Ca 0.5 0 0.872466 
Ca 0.5 0 0.127534 
Ca 0 0.5 0.127534 
Ca 0 0.5 0.872466 
Ca 0.5 0 0.721301 
Ca 0.5 0 0.278699 
Ca 0 0.5 0.278699 
Ca 0 0.5 0.721301 
Ca 0.5 0 0.571767 
Ca 0 0.5 0.428233 
Ca 0.5 0 0.428233 
Ca 0 0.5 0.571767 
Sn 0.153331 0.653331 0.638892 
Sn 0.653331 0.846669 0.638892 
Sn 0.846669 0.346669 0.638892 



203 
 
 

 

 

 

Sn 0.653331 0.846669 0.361108 
Sn 0.846669 0.346669 0.361108 
Sn 0.346669 0.153331 0.361108 
Sn 0.153331 0.653331 0.361108 
Sn 0.346669 0.153331 0.638892 
Sn 0.303398 0.196602 0.869386 
Sn 0.696602 0.803398 0.869386 
Sn 0.696602 0.803398 0.130614 
Sn 0.303398 0.196602 0.130614 
Sn 0.803398 0.303398 0.869386 
Sn 0.196602 0.696602 0.869386 
Sn 0.196602 0.696602 0.130614 
Sn 0.803398 0.303398 0.130614 
Sn 0.662822 0.162822 0.783678 
Sn 0.662822 0.162822 0.216322 
Sn 0.837178 0.662822 0.216322 
Sn 0.337178 0.837178 0.216322 
Sn 0.837178 0.662822 0.783678 
Sn 0.162822 0.337178 0.783678 
Sn 0.162822 0.337178 0.216322 
Sn 0.337178 0.837178 0.783678 
Sn 0.843035 0.656965 0.5 
Sn 0.343035 0.843035 0.5 
Sn 0.156965 0.343035 0.5 
Sn 0.656965 0.156965 0.5 
Sn 0.912088 0.587912 0 
Sn 0.587912 0.087912 0 
Sn 0.412088 0.912088 0 
Sn 0.087912 0.412088 0 
Sn 0.5 0.5 0.164275 
Sn 0.5 0.5 0.835725 
Sn 0 0 0.835725 
Sn 0 0 0.164275 
Sn 0.5 0.5 0.301163 
Sn 0 0 0.698837 
Sn 0.5 0.5 0.698837 
Sn 0 0 0.301163 
Sn 0.5 0.5 0.433748 
Sn 0 0 0.433748 
Sn 0.5 0.5 0.566252 
Sn 0 0 0.566252 
Sn 0.5 0.5 0 
Sn 0 0 0 
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Table A.4.  Data on the total energies and pressure components of structures considered (atomic units) 

 Ca5Sn3 (valence-only Ca) Ca5Sn3 (semicore Ca) Ca36Sn23 
total energy (ABINIT) -58.757676168 -778.16450094 -221.67674155 
total energy (VASP) -4.499800907  -16.869428852 
kinetic E pressure 0.0036552 0.003576 0.00354703 
local psp E pressure 0.0016288 0.037223 0.00165429 
Hartree E pressure -0.000597 -0.0125 -0.00060361 
exchange-correlation E pressure -0.000832 -0.00135 -0.00083634 
Ewald E pressure -0.003587 -0.02925 -0.00361534 
–kT × entropy pressure 3.99E-06 4.25E-06 0.00000386 
psp core E pressure 0.0011493 0.002326 0.00117043 
nonlocal psp E pressure -0.001513 7.58E-06 -0.00141023 
total pressure -9.2E-05 3.17E-05 -0.00008991 
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Appendix B. 

Supporting Information for Chapter 4: 

Progress in Visualizing Atomic Size Effects with DFT-Chemical Pressure 

Analysis: From Isolated Atoms to Trends in AB5 Intermetallics 

The specific information presented here came from the work of Berns, but contributions were made by 
all authors, especially for the theoretical analyses of the structures shown in Figures 4.2 and 4.3. Section 
B.3 was primarily the work of Berns. Section B.4 was primarily the work of Guo. 

 

B.1.  Detailed Technical Procedures 

The geometrical optimization of each structure was carried out in two steps: first the ionic positions 

were relaxed in a fixed unit cell, and then all structural parameters were released. Energy cutoffs for the 

planewave basis were set sufficiently high to converge the energy of formation to less than 0.5 meV/atom. 

Monkhorst-Pack k-point grids1 were constructed by specifying the ngkpt input parameter or by using the 

prtkpt utility. Unless otherwise specified, semicore HGH potentials2 (when available) were used for all 

atoms, with the exception of Pd, for which the valence-only version is most comparable to the semicore 

pseudopotentials of Cu, Ag and Au. Further details regarding the calculations are given in Table B.1, while 

the optimized structural parameters are listed in Tables B.2-B.11. 
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Once the optimizations were complete, three single-point calculations were performed over a span of 

3% about the optimal unit cell volume to prepare the electron densities, potentials, and kinetic energy 

densities needed for the creation of CP maps. The voxel spacing in the CP maps were derived from the 

fast Fourier transform grids used in the ABINIT calculations. The DFT-CP software is based on two 

programs used to calculate the CP maps, as well as integrate and project the CP distribution around each 

atom. CPmap generates the CP maps from the ABINIT single point calculations, and including the grid 

unwarping procedure described in the main text. The Hirshfeld-inspired integration scheme is 

implemented in the CPintegrate program, which was used to project the CP map onto real spherical 

harmonics (l ≤ 5) centered at the atomic positions. 

Table B.1.  Computational parameters and total energies 

Structurea Energy cutoff Number of unique k-points FFT grid Total energy 
Isolated Ca (SC) 35 Ha 1 150 × 150 × 150 -36.640997 Ha 
Isolated Ca (VO) 35 Ha 1 150 × 150 × 150 -0.668313 Ha 
Isolated La 40 Ha 1 150 × 150 × 150 -31.592133 Ha 
Isolated Cu 45 Ha 1 120 × 120 × 120 -46.910665 Ha 
Isolated Pd 40 Ha 1 150 × 150 × 150 -28.799283 Ha 
Isolated Cd 35 Ha 1 150 × 150 × 150 -45.998438 Ha 
Isolated Au 80 Ha 1 150 × 150 × 150 -33.160002 Ha 
Isolated Ga (SC) 80 Ha 1 150 × 150 × 150 -74.004191 Ha 
Isolated Ga (VO) 80 Ha 1 150 × 150 × 150 -2.149122 Ha 
SrAg5 50 Ha 15 150 × 150 × 120 -215.769000 Ha 
La5Sn3 40 Ha 4 108 × 108 × 108 -339.327910 Ha 
Ni3C 80 Ha 60 80 × 80 × 80 -234.948791 Ha 
NbGa3 50 Ha 18 75 × 75 × 75 -12.047973 Ha 
CaCu5 (CaCu5-type) 85 Ha 15 150 × 150 × 120 -277.195271 Ha 
CaCu5 (AuBe5-type) 85 Ha 10 150 × 150 × 150 -1108.722801 Ha 
CaAu5 (CaCu5-type) 30 Ha 15 150 × 150 × 120 -203.316309 Ha 
CaAu5 (AuBe5-type) 30 Ha 10 120 × 120 × 120 -813.277045 Ha 

a"Isolated” refers to a single atom placed in the center of a 10 Å cubic unit cell. See Tables B.2 and B.3. 
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B.2.  Structural parameters 

Table B.2.  Unit cell parameters for DFT-optimized structures (converted to conventional cells) 

Structure a b c α β γ 
All isolated atoms 10.00000 Å 10.00000 Å 10.00000 Å 90° 90° 90° 
SrAg5 5.55915 Å 5.55915 Å 4.54145 Å 90° 90° 120° 
La5Sn3 12.59205 Å 12.59205 Å 6.17215 Å 90° 90° 90° 
Ni3C 4.49667 Å 4.49667 Å 12.71836 Å 90° 90° 120° 
NbGa3 3.68337 Å 3.68337 Å 8.52030 Å 90° 90° 90° 
CaCu5 (CaCu5-type) 4.97267 Å 4.97267 Å 3.97010 Å 90° 90° 120° 
CaCu5 (AuBe5-type) 6.88885 Å 6.88885 Å 6.88885 Å 90° 90° 90° 
CaAu5 (CaCu5-type) 5.48234 Å 5.48234 Å 4.63381 Å 90° 90° 120° 
CaAu5 (AuBe5-type) 7.71309 Å 7.71309 Å 7.71309 Å 90° 90° 90° 

 

Table B.3.  Atomic coordinates for all single-atom calculations 

Element x y z 
any 0.50000 0.50000 0.50000 

 

Table B.4.  Atomic coordinates for ABINIT-optimized SrAg5 structure 

Element x y z 
Sr 0.00000 0.00000 0.00000 
Ag 0.33333 0.66667 0.00000 
Ag 0.66667 0.33333 0.00000 
Ag 0.50000 0.50000 0.50000 
Ag 0.00000 0.50000 0.50000 
Ag 0.50000 0.00000 0.50000 

 

Table B.5.  Atomic coordinates for ABINIT-optimized La5Sn3 structure (conventional cell) 

Element x y z 
La 0.08563 0.21856 0.00000 
La 0.58563 0.71856 0.50000 
La 0.00000 0.50000 0.25000 
La 0.50000 0.00000 0.75000 
La 0.78144 0.08563 0.00000 
La 0.28144 0.58563 0.50000 
La 0.50000 0.00000 0.25000 
La 0.00000 0.50000 0.75000 
La 0.91437 0.21856 0.50000 
La 0.41437 0.71856 0.00000 
La 0.41437 0.28144 0.50000 
La 0.91437 0.78144 0.00000 
La 0.28144 0.41437 0.00000 
La 0.78144 0.91437 0.50000 
La 0.21856 0.08563 0.50000 
La 0.71856 0.58563 0.00000 
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La 0.71856 0.41437 0.50000 
La 0.21856 0.91437 0.00000 
La 0.58563 0.28144 0.00000 
La 0.08563 0.78144 0.50000 
Sn 0.15987 0.65987 0.00000 
Sn 0.65987 0.15987 0.50000 
Sn 0.00000 0.00000 0.25000 
Sn 0.50000 0.50000 0.75000 
Sn 0.34013 0.15987 0.00000 
Sn 0.84013 0.65987 0.50000 
Sn 0.34013 0.84013 0.50000 
Sn 0.84013 0.34013 0.00000 
Sn 0.15987 0.34013 0.50000 
Sn 0.65987 0.84013 0.00000 
Sn 0.00000 0.00000 0.75000 
Sn 0.50000 0.50000 0.25000 

 

Table B.6.  Atomic coordinates for ABINIT-optimized NbGa3 structure (conventional cell) 

Element x y z 
Nb 0.00000 0.00000 0.00000 
Nb 0.50000 0.50000 0.50000 
Ga 0.00000 0.00000 0.50000 
Ga 0.50000 0.50000 0.00000 
Ga 0.00000 0.50000 0.25000 
Ga 0.50000 0.00000 0.75000 
Ga 0.50000 0.00000 0.25000 
Ga 0.00000 0.50000 0.75000 

 

Table B.7.  Atomic coordinates for VASP-optimized Ni3C structure (conventional cell) 

Element x y z 
Ni 0.33333 0.00000 0.25000 
Ni 0.66667 0.00000 0.75000 
Ni 0.00000 0.33333 0.25000 
Ni 0.00000 0.66667 0.75000 
Ni 0.66667 0.66667 0.25000 
Ni 0.33333 0.33333 0.75000 
Ni 0.00000 0.33333 0.08333 
Ni 0.33333 0.33333 0.58333 
Ni 0.66667 0.66667 0.41667 
Ni 0.66667 0.00000 0.58333 
Ni 0.33333 0.00000 0.41667 
Ni 0.00000 0.66667 0.58333 
Ni 0.66667 0.66667 0.08333 
Ni 0.00000 0.66667 0.91667 
Ni 0.33333 0.00000 0.08333 
Ni 0.33333 0.33333 0.91667 
Ni 0.00000 0.33333 0.41667 
Ni 0.66667 0.00000 0.91667 
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C 0.00000 0.00000 0.00000 
C 0.00000 0.00000 0.50000 
C 0.66667 0.33333 0.33333 
C 0.66667 0.33333 0.83333 
C 0.33333 0.66667 0.66667 
C 0.33333 0.66667 0.16667 

 

Table B.8.  Atomic coordinates for ABINIT-optimized CaCu5 structure (CaCu5-type) 

Element x y z 
Ca 0.00000 0.00000 0.00000 
Cu 0.33333 0.66667 0.00000 
Cu 0.66667 0.33333 0.00000 
Cu 0.50000 0.50000 0.50000 
Cu 0.00000 0.50000 0.50000 
Cu 0.50000 0.00000 0.50000 

 

Table B.9.  Atomic coordinates for ABINIT-optimized CaCu5 structure (AuBe5-type) 

Element x y z 
Ca 0.00000 0.00000 0.00000 
Ca 0.50000 0.50000 0.00000 
Ca 0.00000 0.50000 0.50000 
Ca 0.50000 0.00000 0.50000 
Cu 0.25000 0.25000 0.25000 
Cu 0.62500 0.62500 0.62500 
Cu 0.75000 0.75000 0.25000 
Cu 0.37500 0.37500 0.62500 
Cu 0.75000 0.25000 0.75000 
Cu 0.37500 0.62500 0.37500 
Cu 0.25000 0.75000 0.75000 
Cu 0.62500 0.37500 0.37500 
Cu 0.12500 0.12500 0.62500 
Cu 0.87500 0.87500 0.62500 
Cu 0.87500 0.12500 0.37500 
Cu 0.12500 0.87500 0.37500 
Cu 0.62500 0.12500 0.12500 
Cu 0.37500 0.87500 0.12500 
Cu 0.37500 0.12500 0.87500 
Cu 0.62500 0.87500 0.87500 
Cu 0.12500 0.62500 0.12500 
Cu 0.87500 0.37500 0.12500 
Cu 0.87500 0.62500 0.87500 
Cu 0.12500 0.37500 0.87500 
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Table B.10.  Atomic coordinates for ABINIT-optimized CaAu5 structure (CaCu5-type) 

Element x y z 
Ca 0.00000 0.00000 0.00000 
Au 0.33333 0.66667 0.00000 
Au 0.66667 0.33333 0.00000 
Au 0.50000 0.50000 0.50000 
Au 0.00000 0.50000 0.50000 
Au 0.50000 0.00000 0.50000 

 

Table B.11.  Atomic coordinates for ABINIT-optimized CaAu5 structure (AuBe5-type) 

Element x y z 
Ca 0.00000 0.00000 0.00000 
Ca 0.50000 0.50000 0.00000 
Ca 0.00000 0.50000 0.50000 
Ca 0.50000 0.00000 0.50000 
Au 0.25000 0.25000 0.25000 
Au 0.62500 0.62500 0.62500 
Au 0.75000 0.75000 0.25000 
Au 0.37500 0.37500 0.62500 
Au 0.75000 0.25000 0.75000 
Au 0.37500 0.62500 0.37500 
Au 0.25000 0.75000 0.75000 
Au 0.62500 0.37500 0.37500 
Au 0.12500 0.12500 0.62500 
Au 0.87500 0.87500 0.62500 
Au 0.87500 0.12500 0.37500 
Au 0.12500 0.87500 0.37500 
Au 0.62500 0.12500 0.12500 
Au 0.37500 0.87500 0.12500 
Au 0.37500 0.12500 0.87500 
Au 0.62500 0.87500 0.87500 
Au 0.12500 0.62500 0.12500 
Au 0.87500 0.37500 0.12500 
Au 0.87500 0.62500 0.87500 
Au 0.12500 0.37500 0.87500 

 

B.3.  Discussion of the prevalence of highly positive CP features in the atomic core regions that 

are oriented between internuclear vectors, rather than along them 

In Figure 4.4f, strong chemical pressure features are observed in the core regions of the Ca atoms. The 

directionality of these features would suggest that they arise from interatomic interactions, but they are 
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awkwardly oriented along the boundaries between contact volumes. This is in fact a specific example of 

an interesting trend that we have observed for a variety of phases, which we will now explore. In Figure 

B.1, we show isosurfaces of the CP maps generated for a series of structures, with the isosurface level set 

to a sufficiently high level that only the most intense, positive pressure features are visible. For all of the 

structures shown, the isosurfaces reveal lobes that are directed into interstitial spaces rather than along the 

interatomic contacts. 

For CaPd2 (Figure B.1a), the tetrapod of white pressure isosurfaces around each calcium atom point 

not to the nearest calcium neighbor, but to the centers of the triangular faces of the surrounding Pd 

truncated tetrahedron. This is echoed in Figure B.1b, where similar four-pronged pressures on the 

elemental silicon point into the interstices. On CrGa4 in the PtHg4 type3,4 (Figure B.1c), the octahedral 

arrangement of lobes around the Cr atoms appears to suggest positive pressures along Cr-Cr contacts, but 

the 5.5 Å bond length suggests this is quite far from a too-close contact (2 × dCr = 2 × 1.28 = 2.56 Å). 

Finally, the niobium atom in NbGa3
5 (Figure B.1d) exhibits these pressure features oriented toward the 

top and bottom square faces of a cuboctahedron of gallium atoms. These features point out of the ab plane 

of the Nb atom, in which the closest Nb-Ga contacts occur (2.65 Å vs 2.86 Å for out-of-plane contacts). 

What is the source of these features of the chemical pressure maps? 

A straightforward approach to investigating the origins of these features is to plot the contributions to 

the CP maps from specific terms in the total energy. For simplicity, we will pursue this approach here with 

just for elemental silicon, though the same could be carried out for all of the structures depicted in Figure 

4.1. 



212 
 

 

Figure B.1.  Positive chemical pressure is shown for a series of solid state structures. (a) CaPd2 in the MgCu2-type Laves phase 

at an isosurface value of 0.075 a.u. This is a 3-dimensional plot of the strongest positive features seen in Figure 4.4f. These 

positive pressure features point not between atomic contacts, but rather to the void spaces in the structure. The same trend can 

be seen for (b) elemental Si, plotted at an isosurface value of 0.022 a.u., (c) CrGa4 in the PtHg4 type, plotted at 0.083, and (d) 

NbGa3 in the TiAl3 type, plotted at 0.085. 

 

After examining separately each energetic contribution to the chemical pressure, we found that the 

major contribution to these positive pressure features was the local potential component of the total 

energy. In Figure B.2, we see the difference in the local potential on going from a slightly expanded 
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structure to a slightly contracted one. This is akin to computing only the local potential component of the 

chemical pressure, without multiplying by the electron density and dividing by the change in volume. 

 

 

Figure B.2.  The difference between the local potential surfaces of elemental silicon from the expanded unit cell volume to the 

contracted unit cell volume, corrected for distortion using CPmap. The (110) plane of the structure is depicted to capture the 

interatomic interactions. 

 

We note first that this function is non-positive over the entire unit cell. This implies that the potential 

becomes universally more negative as the cell contracts, with nearly zero change far from the nuclei. The 

largest changes are, in fact, between silicon atoms, implying a drastic deepening of the potential on 

contraction of the unit cell, as is expected for a model of overlapping potential wells. As the atoms are 

forced closer together, the overlap of the potentials increases, and electrons in the middle ground 

experience a stronger interaction with both nuclei. This strongly negative component lies directly in line 

with interatomic contact. When calculating the chemical pressure, the local component depicted in Figure 

B.2 provides a severe negative component between atoms, which counteracts the strong positive features 
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normally present in the core of the atom. The positive core features remain unopposed in the other 

directions around an atomic center, with the net result being the appearance of relatively intense positive 

pressure features appearing in the core regions away from the interatomic vectors for strong interactions. 

Figure B.3 shows the integrated results for the chemical pressure calculation on elemental silicon. Si-

Si contacts are nearly optimal, with only small white lobes pointing between them. No longer do we see 

the high positive pressures observed in Figure B.1b; in their place are negative lobes, pointing to interstitial 

voids within the diamond framework, better reflecting our chemical intuition of this structure. 

The integration step correctly disperses the strongly positive features (as seen in Figure 4.4f), resulting 

in interatomic pressures that well-represent the full interaction. 

 

 
Figure B.3.  The DFT-CP anisotropies calculated for elemental silicon. Pressures are near optimal between silicon atoms, as 

expected. Negative pressure features point towards void spaces in the structure. 
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B.4.  Voxel volume calculation in distorted grid 

Since the grid unwarping procedure leads to shifts of grid points relative to a uniform grid, the volume 

associated with each voxel is no longer constant. The calculation of the corrected voxel volumes is 

important for subsequent integration over the grids, but the computational cost for an exact calculation of 

voxel volumes can be prohibitive. Here we present the approximate calculation adopted in the CPmap 

program and demonstrate that it gives satisfyingly accurate results for small distortions of the grid. 

In the following discussion, we use ( , , ) ( )
x y z

x y z

x y z

p p p
q q q
r r r

≡ × ⋅ ≡p q r p q r to denote the triple product 

of three-dimensional vectors , ,p q r . 

For an undistorted grid, each voxel takes the shape of a parallelepiped, so its volume is simply given 

by 

𝑉𝑉𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = (𝒂𝒂𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ,𝒃𝒃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 , 𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

where , ,voxel voxel voxela b c  are the three edge vectors of the undistorted voxel parallelepiped. Here we take 

voxel 000 to be the voxel of interest, where 000 is its index x y zn n n  in the voxel grid. If we consider the 

coordinates of its six direct neighbors, it can be seen that 

𝑟𝑟100 − 𝑟𝑟1�00 = 2𝒂𝒂𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 , 𝑟𝑟010 − 𝑟𝑟01�0 = 2𝒃𝒃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 , 𝑟𝑟001 − 𝑟𝑟001� = 2𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣  

So we can write its voxel volume as an expression of the coordinates of its neighbors: 

𝑉𝑉000 = (𝒂𝒂𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ,𝒃𝒃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 , 𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) =
1
8

(2𝒂𝒂𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 , 2𝒃𝒃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 , 2𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

=
1
8

(𝒓𝒓100 − 𝒓𝒓1�00, 𝒓𝒓010 − 𝒓𝒓01�0, 𝒓𝒓001 − 𝒓𝒓001�) 
(B.1) 



216 
 

As will be shown in the discussion below, Equation B.1 can also be applied to approximately to the 

distorted grid. We will see that this equation captures the essential effect of distortion of neighboring 

voxels on a voxel’s volume, and also preserves (to first order) the sum of all voxel volumes as equal to the 

total unit cell volume. 

Lemma.  For a change in the position of any of the six direct neighbor voxels to 000, the first order 

change to 000V  (as defined by Equation B.1) will be  1
2 voxelVk ⋅∆ , where k∆  is the perturbation along the 

corresponding voxel edge vector away from 000. The other components of the displacement have only 

higher order effects. 

Proof.  In a distorted grid, any voxel may experience a perturbation
x y znn n

∆r , so we have 

𝑉𝑉′000 =
1
8
�(𝑟𝑟100 − 𝑟𝑟1�00) + (∆𝑟𝑟100 − ∆𝑟𝑟1�00), (𝑟𝑟010 − 𝑟𝑟01�0) + (∆𝑟𝑟010 − ∆𝑟𝑟01�0), (𝑟𝑟001 − 𝑟𝑟001�) + (∆𝑟𝑟001 − ∆𝑟𝑟001�)�

=
1
8
�2𝒂𝒂𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + (∆𝑟𝑟100 − ∆𝑟𝑟1�00), 2𝒃𝒃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + (∆𝑟𝑟010 − ∆𝑟𝑟01�0), 2𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + (∆𝑟𝑟001 − ∆𝑟𝑟001�)� 

Since the triple product is linear with respect to each variable, an expansion of Equation B.2 gives 

∆𝑉𝑉000 = 𝑉𝑉′000 − 𝑉𝑉000 

=
1
8

[(∆𝑟𝑟100 − ∆𝑟𝑟1�00, 2𝒃𝒃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 , 2𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) + (2𝒃𝒃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ,∆𝑟𝑟010 − ∆𝑟𝑟01�0, 2𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) + (2𝒂𝒂𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 , 2𝒃𝒃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ,∆𝑟𝑟001 − ∆𝑟𝑟001�)]

+ 2𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

=
1
8

[(∆𝑟𝑟100, 2𝒃𝒃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 , 2𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) + (2𝒃𝒃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ,∆𝑟𝑟010, 2𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) + (2𝒂𝒂𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 , 2𝒃𝒃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ,∆𝑟𝑟001)]

−
1
8

[(∆𝑟𝑟1�00, 2𝒃𝒃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 , 2𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) + (2𝒃𝒃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ,∆𝑟𝑟01�0, 2𝒄𝒄𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) + (2𝒂𝒂𝑣𝑣𝑜𝑜𝑥𝑥𝑥𝑥𝑥𝑥 , 2𝒃𝒃𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ,∆𝑟𝑟001�)]

+ 2𝑛𝑛𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎 ℎ𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

Here we focus only on the 
100

∆r  term, since the other five terms can be treated with a similar approach. 

If we rewrite 
100

∆r  as a linear combination of the three voxel edge vectors, i.e. 

(B.2) 

(B.3) 
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10010010 000 1ba voxel voxel voxec lk k k= + +∆ ∆ ∆ ∆a b cr  

the term becomes 

100 100

100 10

1

0

100 00
1 1( ) ( )
8 8

1 1 

, 2 , 2 , 2 , 2

,       ( )
8

2 ,2
2

voxel voxel a voxel voxel voxel voxel voxel

a voxel voxel voxel a voxe

b

l

ck k

V

k

k k

∆ = ∆ ∆+ +

⋅

∆

= ∆ = ∆

b c a b c b c

a b

r

c
 

That is, for voxel 100, only a perturbation along the voxela direction has a first order effect on the voxel 

volume of 1002
1

a voxelVk∆ ⋅ , while perturbation along voxelb  and voxelc  has no effect (it only introduces a 

shearing of the parallelepiped, which does not affect its volume). ∎ 

Proposition.  The change in total volume of all voxels as calculated using Equation B.1 in a distorted 

grid is second order with respect to the distortion. 

Proof.  We will still focus our discussion on voxel 100. Following from the lemma above, we only need 

to consider a movement along the voxela direction. Such a perturbation will change the volume of voxel 

000 by 1002
1

a voxelVk∆ ⋅ , but it also changes the volume of voxel 200 by 100
1
2 a voxelk V∆ ⋅− . Therefore the 

first order perturbations cancel out, so we are left with only the higher order terms in Equation B.3. It so 

follows that 

2

, ,
(| | )

x y z x y z
x y z

n n n n n n
n n n

V O∆ ∆=∑ r  

i.e. the change in total volume of all voxels in the unit cell is second order with respect to the distortion. ∎ 
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In all calculations carried out in this Article, the volumes of the voxels in the distorted grid add up to 

the unit cell volume within 0.00001 Å3. This threshold can be adjusted in the source code if testing to 

higher precision is desired. 
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Appendix C. 

Supporting Information for Chapter 5: 

Chemical Pressure Schemes for the Prediction of Soft Phonon Modes: A 

Chemist’s Guide to the Vibrations of Solid State Materials 

 

C.1.  Technical details 

Table C.1.  Computational parameters and total energies for CP calculations with ABINIT 

Structure Energy cutoff k-point vectorsa k-point shift FFT grid Total energy 
CaPd2 (LDA) 75.00 Ha  4   4  -4 0.5   0.5   0.5 128 × 128 × 128 -189.488440 Ha 
  -4   4  -4    
  -4   4   4    
Nb3Ge (LDA) 40.00 Ha  5   0   0 0.0   0.0   0.0 72 × 72 × 72 -39.346400 Ha 
   0   5   0    
   0   0   5    
CaPd5 (LDA) 80.00 Ha  5   0   0 0.0   0.0   0.5 96 × 96 × 80 -181.631403 Ha 
   0   5   0    
   0   0   6    

aThree vectors that define a real-space super-lattice whose reciprocal lattice defines the k-point grid 
 

Table C.2.  Computational parameters for response function calculations with ABINIT 

Structure Energy cutoff k-point grid k-point shift FFT grid q-points 
CaPd2 (LDA) 75.00 Ha 5 × 5 × 5 0.0   0.0   0.0 80 × 80 × 80 10 
Nb3Ge (LDA) 40.00 Ha 5 × 5 × 5 0.0   0.0   0.0 60 × 60 × 60 10 
CaPd5 (LDA) 80.00 Ha 5 × 5 × 7 0.0   0.0   0.0 80 × 80 × 72 20 
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Table C.3.  Computational parameters and total energies for Bader calculations with VASP 

Structure Energy cutoff k-point grid FFT grid Fine FFT grida Total energy 
CaPd2 (PAW-GGA) 5.17 Ha 12 × 12 × 12 34 × 34 × 34 54 × 54 × 54 -29.076115 eV 
Nb3Ge (PAW-GGA) 5.19 Ha 20 × 20 × 20 32 × 32 × 32 54 × 54 × 54 -72.316164 eV 
CaPd5 (PAW-GGA) 5.17 Ha 19 × 19 × 20 36 × 36 × 28 50 × 50 × 42 -30.297229 eV 

aThe second, finer FFT mesh around the atomic centers in the PAW method 

 

C.2.  Optimized structural parameters 

Table C.4.  Unit cell parameters for DFT-optimized structures (converted to conventional cell) 

Structure a b c α β γ 
CaPd2 (LDA) 7.56926 Å 7.56926 Å 7.56926 Å 90° 90° 90° 
CaPd2 (PAW-GGA) 7.73955 Å 7.73955 Å 7.73955 Å 90° 90° 90° 
Nb3Ge (LDA) 5.05050 Å 5.05050 Å 5.05050 Å 90° 90° 90° 
Nb3Ge (PAW-GGA) 5.15611 Å 5.15611 Å 5.15611 Å 90° 90° 90° 
CaPd5 (LDA) 5.25376 Å 5.25376 Å 4.38444 Å 90° 90° 120° 
CaPd5 (PAW-GGA) 5.34490 Å 5.34490 Å 4.47471 Å 90° 90° 120° 

 

Table C.5.  Fractional atomic coordinates for the ABINIT-optimized CaPd2 structure 

Element x y z 
Ca 0.00000 0.00000 0.00000 
Ca 0.50000 0.50000 0.00000 
Ca 0.50000 0.00000 0.50000 
Ca 0.00000 0.50000 0.50000 
Ca 0.25000 0.25000 0.25000 
Ca 0.75000 0.75000 0.25000 
Ca 0.75000 0.25000 0.75000 
Ca 0.25000 0.75000 0.75000 
Pd 0.62500 0.62500 0.62500 
Pd 0.12500 0.12500 0.62500 
Pd 0.12500 0.62500 0.12500 
Pd 0.62500 0.12500 0.12500 
Pd 0.37500 0.37500 0.62500 
Pd 0.87500 0.87500 0.62500 
Pd 0.87500 0.37500 0.12500 
Pd 0.37500 0.87500 0.12500 
Pd 0.37500 0.62500 0.37500 
Pd 0.87500 0.12500 0.37500 
Pd 0.87500 0.62500 0.87500 
Pd 0.37500 0.12500 0.87500 
Pd 0.62500 0.37500 0.37500 
Pd 0.12500 0.87500 0.37500 
Pd 0.12500 0.37500 0.87500 
Pd 0.62500 0.87500 0.87500 
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Table C.6.  Fractional atomic coordinates for the VASP-optimized CaPd2 structure 

Element x y z 
Ca 0.00000 0.00000 0.00000 
Ca 0.50000 0.50000 0.00000 
Ca 0.50000 0.00000 0.50000 
Ca 0.00000 0.50000 0.50000 
Ca 0.25000 0.25000 0.25000 
Ca 0.75000 0.75000 0.25000 
Ca 0.75000 0.25000 0.75000 
Ca 0.25000 0.75000 0.75000 
Pd 0.62500 0.62500 0.62500 
Pd 0.12500 0.12500 0.62500 
Pd 0.12500 0.62500 0.12500 
Pd 0.62500 0.12500 0.12500 
Pd 0.37500 0.37500 0.62500 
Pd 0.87500 0.87500 0.62500 
Pd 0.87500 0.37500 0.12500 
Pd 0.37500 0.87500 0.12500 
Pd 0.37500 0.62500 0.37500 
Pd 0.87500 0.12500 0.37500 
Pd 0.87500 0.62500 0.87500 
Pd 0.37500 0.12500 0.87500 
Pd 0.62500 0.37500 0.37500 
Pd 0.12500 0.87500 0.37500 
Pd 0.12500 0.37500 0.87500 
Pd 0.62500 0.87500 0.87500 

 

Table C.7.  Fractional atomic coordinates for the ABINIT-optimized Nb3Ge structure 

Element x y z 
Nb 0.25000 0.00000 0.50000 
Nb 0.75000 0.00000 0.50000 
Nb 0.50000 0.25000 0.00000 
Nb 0.50000 0.75000 0.00000 
Nb 0.00000 0.50000 0.25000 
Nb 0.00000 0.50000 0.75000 
Ge 0.00000 0.00000 0.00000 
Ge 0.50000 0.50000 0.50000 

 

Table C.8.  Fractional atomic coordinates for the VASP-optimized Nb3Ge structure 

Element x y z 
Nb 0.25000 0.00000 0.50000 
Nb 0.75000 0.00000 0.50000 
Nb 0.50000 0.25000 0.00000 
Nb 0.50000 0.75000 0.00000 
Nb 0.00000 0.50000 0.25000 
Nb 0.00000 0.50000 0.75000 
Ge 0.00000 0.00000 0.00000 
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Ge 0.50000 0.50000 0.50000 
 

Table C.9.  Fractional atomic coordinates for the ABINIT-optimized CaPd5 structure 

Element x y z 
Ca 0.00000 0.00000 0.00000 
Pd 0.33333 0.66667 0.00000 
Pd 0.66667 0.33333 0.00000 
Pd 0.50000 0.00000 0.50000 
Pd 0.00000 0.50000 0.50000 
Pd 0.50000 0.50000 0.50000 

 

Table C.10.  Fractional atomic coordinates for the VASP-optimized CaPd5 structure 

Element x y z 
Ca 0.00000 0.00000 0.00000 
Pd 0.33333 0.66667 0.00000 
Pd 0.66667 0.33333 0.00000 
Pd 0.50000 0.00000 0.50000 
Pd 0.00000 0.50000 0.50000 
Pd 0.50000 0.50000 0.50000 
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Appendix D. 

Supporting Information for Chapter 6: 

Electronic and Chemical Pressure Effects on the Stability Range of 

Intermetallic Intergrowths: Pushing the Limits of the HoCoGa5 type with 

ScTGa5 (T = Fe, Co, Ni) Phases 

The additional theoretical details and supplementary analyses detailed in this chapter are the work of 
Engelkemier and Fredrickson. 

 

D.1.  Additional computational details 

Table D.1.  Computational parameters and total energies of CP calculations with Abinit 

Structure Energy cutoff k-point grid k-point shift FFT grid Total energy 
ScFeGa5 (LDA) 155.00 Ha  6 × 6 × 4 0.5   0.5   0.5 108 × 108 x 108 -438.705286 Ha 
ScCoGa5 (LDA) 155.00 Ha  6 × 6 × 4 0.5   0.5   0.5 108 × 108 x 108 -446.229264 Ha 
ScNiGa5 (LDA) 155.00 Ha  6 × 6 × 4 0.5   0.5   0.5 108 × 108 x 108 -455.266418 Ha 
 

Table D.2.  Computational parameters of phonon calculations with Abinit 

Structure Energy cutoff k-point grid k-point shift FFT grid q-points 
ScFeGa5 (LDA) 135.00 Ha 5 × 5 × 3 0.0   0.0   0.0 90 × 90 x 135 12 
ScCoGa5 (LDA) 135.00 Ha 5 × 5 × 3 0.0   0.0   0.0 80 × 80 x 135 12 
ScNiGa5 (LDA) 135.00 Ha 5 × 5 × 3 0.0   0.0   0.0 90 × 90 x 135 12 
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Table D.3.  Computational parameters and total energies of raMO and Bader calculations with VASP 

Structure Energy cutoff k-point grid FFT grid Fine FFT grid* Total energy 
ScFeGa5 (PAW-GGA) 5.10 Ha 20 × 20 × 14 28 × 28 × 42 40 × 40 x 70 -31.606136 eV 
ScCoGa5 (PAW-GGA) 5.10 Ha 20 × 20 × 14 28 × 28 × 42 40 × 40 x 64 -30.838431 eV 
ScNiGa5 (PAW-GGA) 5.10 Ha 20 × 20 × 14 28 × 28 × 40 42 × 42 x 70 -29.262343 eV 
*The second, finer FFT-mesh around the atomic centers in the PAW method 

 

D.2.  Optimized structural parameters 

Table D.4.  Unit cell parameters for DFT-optimized structures 

Structure a b c α β γ 
ScFeGa5 (LDA) 4.05210 Å 4.05210 Å 6.49871 Å 90° 90° 90° 
ScCoGa5 (LDA) 4.04393 Å 4.04393 Å 6.48028 Å 90° 90° 90° 
ScNiGa5 (LDA) 4.06404 Å 4.06404 Å 6.48288 Å 90° 90° 90° 
ScFeGa5 (PAW-GGA) 4.14168 Å 4.14168 Å 6.66943 Å 90° 90° 90° 
ScCoGa5 (PAW-GGA) 4.13672 Å 4.13672 Å 6.64535 Å 90° 90° 90° 
ScNiGa5 (PAW-GGA) 4.18788 Å 4.18788 Å 6.58447 Å 90° 90° 90° 
 

Table D.5.  Fractional atomic coordinates for the Abinit-optimized ScFeGa5 structure 

Element x y z 
Sc 0.00000 0.00000 0.00000 
Fe 0.00000 0.00000 0.50000 
Ga 0.50000 0.50000 0.00000 
Ga 0.50000 0.00000 0.30339 
Ga 0.00000 0.50000 0.30339 
Ga 0.50000 0.00000 0.69661 
Ga 0.00000 0.50000 0.69661 

 

Table D.6.  Fractional atomic coordinates for the VASP-optimized ScFeGa5 structure 

Element x y z 
Sc 0.00000 0.00000 0.00000 
Fe 0.00000 0.00000 0.50000 
Ga 0.50000 0.50000 0.00000 
Ga 0.50000 0.00000 0.30477 
Ga 0.00000 0.50000 0.30477 
Ga 0.50000 0.00000 0.69523 
Ga 0.00000 0.50000 0.69523 

 

Table D.7.  Fractional atomic coordinates for the Abinit-optimized ScCoGa5 structure 

Element x Y z 
Sc 0.00000 0.00000 0.00000 
Co 0.00000 0.00000 0.50000 
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Ga 0.50000 0.50000 0.00000 
Ga 0.50000 0.00000 0.30240 
Ga 0.00000 0.50000 0.30240 
Ga 0.50000 0.00000 0.69760 
Ga 0.00000 0.50000 0.69760 

 

Table D.8.  Fractional atomic coordinates for the VASP-optimized ScCoGa5 structure 

Element x y z 
Sc 0.00000 0.00000 0.00000 
Co 0.00000 0.00000 0.50000 
Ga 0.50000 0.50000 0.00000 
Ga 0.50000 0.00000 0.30348 
Ga 0.00000 0.50000 0.30348 
Ga 0.50000 0.00000 0.69652 
Ga 0.00000 0.50000 0.69652 

 

Table D.9.  Fractional atomic coordinates for the Abinit-optimized ScNiGa5 structure 

Element x y z 
Sc 0.00000 0.00000 0.00000 
Ni 0.00000 0.00000 0.50000 
Ga 0.50000 0.50000 0.00000 
Ga 0.50000 0.00000 0.29973 
Ga 0.00000 0.50000 0.29973 
Ga 0.50000 0.00000 0.70027 
Ga 0.00000 0.50000 0.70027 

 

Table D.10.  Fractional atomic coordinates for the VASP-optimized ScNiGa5 structure 

Element x y z 
Sc 0.00000 0.00000 0.00000 
Ni 0.00000 0.00000 0.50000 
Ga 0.50000 0.50000 0.00000 
Ga 0.50000 0.00000 0.29904 
Ga 0.00000 0.50000 0.29904 
Ga 0.50000 0.00000 0.70096 
Ga 0.00000 0.50000 0.70096 
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D.3.  Chemical Pressure calibration to phonon modes and density of states 

 

 

Figure D.1.  The Chemical Pressure (CP) scheme for ScNiGa5 using ionic electron density profiles of free atoms. Sc atoms 
center the light gray cuboctahedron. Ni atoms center the green rectangular prisms. Ga atoms are connected by blue lines. The 
length of a CP lobe emanating from an atom indicates the intensity of the CP along that direction. White lobes represent 
positive CP, calling for the expansion of the structure, and black lobes represent negative CP, calling for contraction. (a) The 
CP scheme at 25% of the total charges calculated by Bader analysis. The scheme is qualitatively the same as the 0% result 
presented in Chapter 6, but the positive CP on the Sc atoms has noticeably decreased, particularly along the c-axis. Also, the 
positive CP on the Ni sites has increased relative to Sc. (b) The CP scheme at 50% of the total Bader charges. Small positive 
pressures still exist between Sc atoms, but negative pressure has grown in, pointing toward the four Ga contacts above and 
below. The Sc sites become completely surrounded by negative CP in (c) and (d), which correspond to the CP scheme at 
75% and 100% of the Bader charges, respectively. Because there is nothing in the phonon data to suggest that motions of Sc 
atoms along the c-axis are soft, the 0% CP scheme was chosen. In fact, the projected phonon DOS (Figure D.2) suggests that 
both Sc and Ni participate very little in the lower-frequency vibrations. See Figures D.3 and D.4 for further discussion. 

 

 

Figure D.2.  The LDA-DFT phonon band structures and density of states (DOS) for ScTGa5 (T = Fe, Co, Ni). For all three 
phases, the projected DOS (shaded in black) suggests that the movement of Ga atoms dominates the low-frequency phonon 
modes, which is in agreement with positive CP pointing in all directions on Sc and T sites and negative CP between Ga-Ga 
contacts in the 0% ionicity CP scheme (Figure 6.8). 
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Figure D.3.  The lower-frequency phonon modes calculated at the Γ point for ScNiGa5, plotted with the 0% ionicity CP 
scheme presented in Chapter 6. Ga atoms are connected by blue lines, Sc atoms center the cuboctahedra, and Ni atoms 
center the rectangular prisms. See Figure D.1 for CP plotting conventions. Yellow arrows represent the relative magnitude of 
motion among the atoms for a particular mode. Softer vibrations tend to correlate with motion along directions of high 
negative CP, especially when that motion is also orthogonal to positive CP (CP quadrupole). For example, Ga atoms move 
along negative CP into the holes of the fluorite-type layers in the mode at 2.81 THz. At 3.99 THz, even though some Sc and 
Ga atoms move closer along the c-axis, this mode demonstrates the principle of a CP quadrupole. Ga and Sc atoms in the 
same ab plane oscillate in opposite directions, relieving the positive CP in the plane while bring some Ga-Ga contacts closer 
together along c. 
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Figure D.4.  The higher-frequency phonon modes calculated at the Γ point for ScNiGa5, plotted with the 0% ionicity CP 
scheme presented in Chapter 6. Ga atoms are connected by blue lines, Sc atoms center the cuboctahedra, and Ni atoms 
center the rectangular prisms. See Figure D.1 for CP plotting conventions. Yellow arrows represent the relative magnitude of 
motion among the atoms for a particular mode. Harder vibrations tend to correlate with motion along directions of positive 
CP. Evidence that there should be positive CP between interplanar Sc and Ga atoms is given by the modes at 5.76, 6.14, and 
7.39 THz, in particular. 
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Appendix E. 

Source code for the DFT-CP analysis package 

The original DFT-CP analysis program was developed by Fredrickson. Engelkemier and Guo wrote 
later additions to the code. Guo was the primary developer of all the Core Unwarp and Map Integration 
functions. Engelkemier wrote most of the Symmetry, XC, and Main Helper functions, additionally 
organizing and annotating the code. Berns and Kilduff made essential contributions to the conceptual 
development of the DFT-CP method. 

 

E.1.  Annotated C code 

/* 

  CPmap, part of the Fredrickson Group DFT Chemical Pressure Package 

  Copyright (C) 2012-2016 by the Fredrickson Group at University of Wisconsin 

 

  This program is free software: you can redistribute it or modify it under the 

  terms of the GNU General Public License as published by the Free Software 

  Foundation, either version 3 of the License, or any later version. 

 

  This program is distributed in the hope that it will be useful, but WITHOUT 

  ANY WARRANTY; without even the implied warranty of MERCHANT-ABILITY or FITNESS 

  FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. 

 

  You should have received a copy of the GNU General Public License along with 

  this program. If not, see <http://www.gnu.org/licenses/>. 

 

  To cite DFT-Chemical Pressure or for further reading, see the following papers: 

  V.M. Berns, J. Engelkemier, Y. Guo, B.J. Kilduff, D.C. Fredrickson. JCTC. 2014, 10, 3380-3392. 

  J. Engelkemier, V.M. Berns, D.C. Fredrickson. J. Chem. Theory Comput. 2013, 9, 3170-3180. 

  D.C. Fredrickson. J. Am. Chem. Soc. 2012, 134, 5991-5999. 

*/ 

 

 

#include <stdlib.h> 

#include <stdio.h> 

#include <string.h> 

#include <math.h> 

#include <gsl/gsl_linalg.h> 

#include <gsl/gsl_matrix.h> 
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#include <gsl/gsl_sf_legendre.h> 

#include "/opt/etsf/include/xc.h" 

 

#define AU2GPA 29421.912 

#define L_MAX 7  /* higher than intended use */ 

#define NEQVOX 100 

#define NIONMAX 100 

#define NPOINTMAX 2000  /* radial density points */ 

#define ONETHIRD 0.333333333333333333333333333333 

#define PI 3.14159265358979323846264338328 

#define R_BOHR 0.52917721092  /* angstrom */ 

#define R_MAX 10.0  /* bohr */ 

#define STRMAX 100 

 

 

/* GLOBAL VARIABLES AND STRUCTURES */ 

 

char abinitname[STRMAX], abinitout[STRMAX], cpoutname[STRMAX]; 

int dshi=1, dseq=2, dslo=3, kam=0, kbm=0, kcm=0, ngx=0, ngy=0, ngz=0, prof_nmax[NIONMAX]; 

int errcount=0, isradii=0, ixc=0, lmax=6, nspin=1, occopt=0, rescp=1, scheme=1, xcpot[2]; 

int mapcore=1, maphart=1, mapkin=1, maploc=1, mapsym=1, mapxc=1; 

int printbin=0, printen=0, printhmap=0, printvmap=0, standard=1; 

double en_core[4], p_ealph[4], p_ewald[4], p_hart[4], p_kin[4], p_loc[4], p_nonloc[4], p_xc[4]; 

double logint[NIONMAX], logslope[NIONMAX], tolerance=0.01, volhi=0.0, voleq=0.0, vollo=0.0; 

double rhoprofile[NIONMAX][NPOINTMAX], rprofile[NIONMAX][NPOINTMAX]; 

double *** xnewup, *** ynewup, *** znewup, *** xnewdn, *** ynewdn, *** znewdn; 

FILE * cplog; 

 

struct CrystData { 

  int nion, zatomic[NIONMAX]; 

  double cella_x, cella_y, cella_z, cellb_x, cellb_y, cellb_z, cellc_x, cellc_y, cellc_z; 

  double corerad[NIONMAX], intCP[NIONMAX], intYlm[NIONMAX][L_MAX][2*L_MAX+1], voxcount[NIONMAX]; 

  double *** grid, entot, volcell, volvox, xcart[NIONMAX], ycart[NIONMAX], zcart[NIONMAX]; 

} denhi, deneq, denlo, etothi, etoteq, etotlo, kdenhi, kdeneq, kdenlo, pothi, poteq, 

  potlo, vhahi, vhaeq, vhalo, vhxchi, vhxceq, vhxclo, core, cp, cp_Y, temp, vxc, 

  gdenhi1, gdeneq1, gdenlo1, gdenhi2, gdeneq2, gdenlo2, gdenhi3, gdeneq3, gdenlo3, 

  denhi2, deneq2, denlo2, kdenhi2, kdeneq2, kdenlo2, pothi2, poteq2, potlo2, vhahi2, 

  vhaeq2, vhalo2, vhxchi2, vhxceq2, vhxclo2, core2, temp2, vxc2, gdenhi4, gdeneq4, 

  gdenlo4, gdenhi5, gdeneq5, gdenlo5, gdenhi6, gdeneq6, gdenlo6; 

 

struct SymMap { 

  int equiv[NIONMAX][NIONMAX], nequiv[NIONMAX], nsymel, symrel[100][3][3]; 

  double tnons[100][3]; 

} smap; 

 

struct HirshMap { 

  int atomid[NEQVOX], neighcount; 

  double chg[NIONMAX], wj[NEQVOX], xcart[NEQVOX], ycart[NEQVOX], zcart[NEQVOX]; 

} hmap; 

 

struct ContactVol { 

  int *** neighcount, *** neighcount2, *** neighkey[NEQVOX], *** ionmap[NEQVOX]; 

  double average[7][7][7][NIONMAX][NIONMAX], count[7][7][7][NIONMAX][NIONMAX]; 
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  double total[7][7][7][NIONMAX][NIONMAX], *** swj, *** swjk, *** wj[NEQVOX]; 

} vmap; 

 

 

/* SUPPORT FUNCTIONS */ 

 

int ElementName(int Z, char * name) { 

  /* called by: PrintAverage, ReadProfile, SetBubbles */ 

  /* calls: none */ 

  const char * element[119] = { 

    "&","H","He","Li","Be","B","C","N","O","F","Ne","Na","Mg","Al","Si","P","S","Cl","Ar", 

    "K","Ca","Sc","Ti","V","Cr","Mn","Fe","Co","Ni","Cu","Zn","Ga","Ge","As","Se","Br","Kr", 

    "Rb","Sr","Y","Zr","Nb","Mo","Tc","Ru","Rh","Pd","Ag","Cd","In","Sn","Sb","Te","I","Xe", 

    "Cs","Ba","La","Ce","Pr","Nd","Pm","Sm","Eu","Gd","Tb","Dy","Ho","Er","Tm","Yb","Lu", 

    "Hf","Ta","W","Re","Os","Ir","Pt","Au","Hg","Tl","Pb","Bi","Po","At","Rn", 

    "Fr","Ra","Ac","Th","Pa","U","Np","Pu","Am","Cm","Bk","Cf","Es","Fm","Md","No","Lr", 

    "Rf","Db","Sg","Bh","Hs","Mt","Ds","Rg","Cn","Uut","Fl","Uup","Lv","Uus","Uuo"}; 

  if (Z>=0 && Z<119) strncpy(name, element[Z], 4); 

  else strncpy(name, "Un", 4); 

  return 0; 

} 

 

int FinishLine(FILE * fptr) { 

  /* called by: CoreCorrection, ReadProfile */ 

  /* calls: none */ 

  char check; 

  int cont=0; 

  while (cont==0) { 

    check = fgetc(fptr); 

    if (check==10 || check==EOF) cont = 1; 

  } 

  if (check==EOF) return 1; 

  else return 0; 

} 

 

int ReadLine(FILE * fptr, char * newstr) { 

  /* called by: CalcKineticTF, PressureContrib */ 

  /* calls: none */ 

  char check; 

  int cont=0, counter=0; 

  while (cont==0) { 

    check = getc(fptr); 

    if (check==10) cont = 1; 

    else if (check==EOF) return 1; 

    *(newstr+counter) = check; 

    counter++; 

  } 

  *(newstr+counter-1) = 0; 

  return 0; 

} 
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int Getkm(struct CrystData * gridin) { 

  /* called by main */ 

  /* calls: none */ 

  double fa=0.0, fb=0.0, fc=0.0; 

  fa = pow((gridin->cellb_y*gridin->cellc_z-gridin->cellb_z*gridin->cellc_y), 2)+ 

    pow((gridin->cellb_z*gridin->cellc_x-gridin->cellb_x*gridin->cellc_z), 2)+ 

    pow((gridin->cellb_x*gridin->cellc_y-gridin->cellb_y*gridin->cellc_x), 2); 

  fb = pow((gridin->cellc_y*gridin->cella_z-gridin->cellc_z*gridin->cella_y), 2)+ 

    pow((gridin->cellc_z*gridin->cella_x-gridin->cellc_x*gridin->cella_z), 2)+ 

    pow((gridin->cellc_x*gridin->cella_y-gridin->cellc_y*gridin->cella_x), 2); 

  fc = pow((gridin->cella_y*gridin->cellb_z-gridin->cella_z*gridin->cellb_y), 2)+ 

    pow((gridin->cella_z*gridin->cellb_x-gridin->cella_x*gridin->cellb_z), 2)+ 

    pow((gridin->cella_x*gridin->cellb_y-gridin->cella_y*gridin->cellb_x), 2); 

  kam = (int)ceil(R_MAX/(gridin->volcell/sqrt(fa))); 

  kbm = (int)ceil(R_MAX/(gridin->volcell/sqrt(fb))); 

  kcm = (int)ceil(R_MAX/(gridin->volcell/sqrt(fc))); 

  printf("  Using supercell range %d %d %d\n", kam, kbm, kcm); 

  fprintf(cplog, "Supercell range: %d %d %d\n", kam, kbm, kcm); 

  if(kam>3 || kbm>3 || kcm>3) { 

    printf("\n  BAD NEWS: Unit cell too small or distorted!\n"); 

    fprintf(cplog, "\nTerminated because an appropriate supercell could not be found\n"); 

    fprintf(cplog, "Suggestion: check your files or decrease R_MAX and recompile\n"); 

    errcount++; 

    return 1; 

  } 

  return 0; 

} 

 

double Getwj(int atom, double dist) { 

  /* called by: CoordSearch, CoreUnwarp */ 

  /* calls: none */ 

  int start=0; 

  double xmax=0.0, xmin=0.0; 

  start = (int)ceil((log(dist+1.0e-6)-logint[atom])/logslope[atom]); 

  if (start<0) start = 0; 

  while (start<prof_nmax[atom] && rprofile[atom][start]<dist) start++; 

  while (rprofile[atom][start]>dist && start>0) start--; 

  if (start==0) { 

    if (rhoprofile[atom][0]<=0.0) { 

      printf("\n  BAD NEWS: Electron density profile for atom #%d is abnormal!\n", atom+1); 

      fprintf(cplog, "\nTerminated because density=%f at dist=%f for atom #%d is <= 0\n", 
rhoprofile[atom][0], dist, atom+1); 

      fprintf(cplog, "Suggestion: check your profiles for non-numerical data\n"); 

      errcount++; 

      return -1000.0; 

    } else return rhoprofile[atom][0]; 

  } 

  else if (start>=prof_nmax[atom]) { 

    printf("\n  CAUTION: The atomic density profiles are too short! Continuing anyway...\n"); 

    fprintf(cplog, "WARNING: atomic radial density profile for atom #%d should be longer than 
%.6e bohr\n", atom+1, dist); 

    errcount++; 

    return 0.0;  /* assume no density at long distance */ 

  } else {  /* interpolation between closest two points in radial profile */ 
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    xmin = rhoprofile[atom][start]; 

    xmax = rhoprofile[atom][start+1]; 

    return (xmin*(rprofile[atom][start+1]-dist)+xmax*(dist-rprofile[atom][start]))/ 

      (rprofile[atom][start+1]-rprofile[atom][start]); 

  } 

} 

 

int Cart2Sph(double x, double y, double z, double * r, double * theta, double * phi) { 

  /* called by: AverageContact */ 

  /* calls: none */ 

  *r = sqrt(x*x+y*y+z*z); 

  if (*r>0.0) { 

    *theta = acos(z / *r); 

    if (fabs(sin(*theta))>0.0) { 

      *phi = acos(x/(*r * sin(*theta))); 

      if(x/(*r * sin(*theta))>1.0) *phi = acos(1.0); 

      if(x/(*r * sin(*theta))<-1.0) *phi = acos(-1.0); 

      if(y<0.0) *phi = -*phi; 

    } else *phi = 0; 

  } else { 

    *phi = 0.0; 

    *theta = 0.0; 

  } 

  return 0; 

} 

 

 

/* VOXEL GRID FUNCTIONS */ 

 

int FixEdges(struct CrystData * gridin) { 

  /* called by: AverageContact, Bin2XSF, CalcVxc, CalcVxc1, CoreUnwarp, OutputXSF, SymmetrizeGrid 
*/ 

  /* calls: none */ 

  int jx=0, jy=0, jz=0, gridx=0, gridy=0, gridz=0; 

  for (jy=0; jy<=ngy; jy++) { 

    for (jx=0; jx<=ngx; jx++) { 

      gridin->grid[jx][jy][ngz] = gridin->grid[jx][jy][0]; 

    } 

  } 

  for (jz=0; jz<=ngz; jz++) { 

    for (jx=0; jx<=ngx; jx++) { 

      gridin->grid[jx][ngy][jz] = gridin->grid[jx][0][jz]; 

    } 

  } 

  for (jz=0; jz<=ngz; jz++) { 

    for (jy=0; jy<=ngy; jy++) { 

      gridin->grid[ngx][jy][jz] = gridin->grid[0][jy][jz]; 

    } 

  } 

  for (jz=0; jz<=ngz; jz++) { 

    gridin->grid[ngx][ngy][jz] = gridin->grid[0][0][jz]; 

  } 

  for (jy=0; jy<=ngy; jy++) { 

    gridin->grid[ngx][jy][ngz] = gridin->grid[0][jy][0]; 
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  } 

  for (jx=0; jx<=ngx; jx++) { 

    gridin->grid[jx][ngy][ngz] = gridin->grid[jx][0][0]; 

  } 

  gridin->grid[ngx][ngy][ngz] = gridin->grid[0][0][0]; 

  return 0; 

} 

 

double IntegrateGrid(struct CrystData * gridin) { 

  /* called by: CalcCP, GridStats, MapEntot */ 

  /* calls: none */ 

  int jx=0, jy=0, jz=0; 

  double sum=0.0; 

  for (jz=0; jz<ngz; jz++) { 

    for (jy=0; jy<ngy; jy++) { 

      for (jx=0; jx<ngx; jx++) { 

        sum += gridin->grid[jx][jy][jz]; 

      } 

    } 

  } 

  return (sum*gridin->volvox); 

} 

 

int ShiftGrid(struct CrystData * gridin, double num, struct CrystData * gridout) { 

  /* called by: CalcCP, CoreCorrection, GridStats */ 

  /* calls: none */ 

  int jx=0, jy=0, jz=0; 

  gridout->volvox = gridin->volvox; 

  for (jz=0; jz<=ngz; jz++) { 

    for (jy=0; jy<=ngy; jy++) { 

      for (jx=0; jx<=ngx; jx++) { 

        gridout->grid[jx][jy][jz] = gridin->grid[jx][jy][jz]+num; 

      } 

    } 

  } 

  return 0; 

} 

 

int ScaleGrid(struct CrystData * gridin, double factor, struct CrystData * gridout) { 

  /* called by: CalcCP, MapEntot */ 

  /* calls: none */ 

  int jx=0, jy=0, jz=0; 

  gridout->volvox = gridin->volvox; 

  for (jz=0; jz<=ngz; jz++) { 

    for (jy=0; jy<=ngy; jy++) { 

      for (jx=0; jx<=ngx; jx++) { 

        gridout->grid[jx][jy][jz] = gridin->grid[jx][jy][jz]*factor; 

      } 

    } 

  } 

  return 0; 

} 
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int PowerGrid(struct CrystData * gridin, int expon, struct CrystData * gridout) { 

  /* called by: GridStats */ 

  /* calls: none */ 

  int jx=0, jy=0, jz=0; 

  gridout->volvox = gridin->volvox; 

  for (jz=0; jz<=ngz; jz++) { 

    for (jy=0; jy<=ngy; jy++) { 

      for (jx=0; jx<=ngx; jx++) { 

        gridout->grid[jx][jy][jz] = pow(gridin->grid[jx][jy][jz], expon); 

      } 

    } 

  } 

  return 0; 

} 

 

int AddGrid(struct CrystData * gridin, struct CrystData * gridin2, struct CrystData * gridout) { 

  /* called by: MapEntot */ 

  /* calls: none */ 

  int jx=0, jy=0, jz=0; 

  gridout->volvox = gridin->volvox; 

  for (jz=0; jz<=ngz; jz++) { 

    for (jy=0; jy<=ngy; jy++) { 

      for (jx=0; jx<=ngx; jx++) { 

        gridout->grid[jx][jy][jz] = gridin->grid[jx][jy][jz]+gridin2->grid[jx][jy][jz]; 

      } 

    } 

  } 

  return 0; 

} 

 

int SubtractGrid(struct CrystData * gridin, struct CrystData * gridin2, struct CrystData * 
gridout) { 

  /* called by: CalcCP, MapEntot */ 

  /* calls: none */ 

  int jx=0, jy=0, jz=0; 

  gridout->volvox = gridin->volvox; 

  for (jz=0; jz<=ngz; jz++) { 

    for (jy=0; jy<=ngy; jy++) { 

      for (jx=0; jx<=ngx; jx++) { 

        gridout->grid[jx][jy][jz] = gridin->grid[jx][jy][jz]-gridin2->grid[jx][jy][jz]; 

      } 

    } 

  } 

  return 0; 

} 

 

int MultiplyGrid(struct CrystData * gridin, struct CrystData * gridin2, struct CrystData * 
gridout) { 

  /* called by: MapEntot */ 

  /* calls: none */ 

  int jx=0, jy=0, jz=0; 

  gridout->volvox = gridin->volvox; 

  for (jz=0; jz<=ngz; jz++) { 

    for (jy=0; jy<=ngy; jy++) { 
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      for (jx=0; jx<=ngx; jx++) { 

        gridout->grid[jx][jy][jz] = gridin->grid[jx][jy][jz]*gridin2->grid[jx][jy][jz]; 

      } 

    } 

  } 

  return 0; 

} 

 

int CopyStruct(struct CrystData * gridin, struct CrystData * gridout) { 

  /* called by: CPcalc */ 

  /* calls: none */ 

  int i=0; 

  gridout->cella_x = gridin->cella_x; 

  gridout->cella_y = gridin->cella_y; 

  gridout->cella_z = gridin->cella_z; 

  gridout->cellb_x = gridin->cellb_x; 

  gridout->cellb_y = gridin->cellb_y; 

  gridout->cellb_z = gridin->cellb_z; 

  gridout->cellc_x = gridin->cellc_x; 

  gridout->cellc_y = gridin->cellc_y; 

  gridout->cellc_z = gridin->cellc_z; 

  gridout->nion = gridin->nion; 

  gridout->volcell = gridin->volcell; 

  gridout->volvox = gridin->volvox; 

  for (i=0; i<gridin->nion; i++) { 

    gridout->corerad[i] = gridin->corerad[i]; 

    gridout->xcart[i] = gridin->xcart[i]; 

    gridout->ycart[i] = gridin->ycart[i]; 

    gridout->zcart[i] = gridin->zcart[i]; 

    gridout->zatomic[i] = gridin->zatomic[i]; 

  } 

  return 0; 

} 

 

int GridStats(struct CrystData * gridin, const char * str) { 

  /* called by: main */ 

  /* calls: IntegrateGrid, PowerGrid, ShiftGrid */ 

  int jx=0, jy=0, jz=0, nvox=0; 

  double min=1.0e7, max=-1.0e7, kurt=0.0, mean=0.0, sdev=0.0, skew=0.0, sum=0.0, var=0.0; 

  for (jz=0; jz<ngz; jz++) { 

    for (jy=0; jy<ngy; jy++) { 

      for (jx=0; jx<ngx; jx++) { 

        if (gridin->grid[jx][jy][jz]>max) max=gridin->grid[jx][jy][jz]; 

        if (gridin->grid[jx][jy][jz]<min) min=gridin->grid[jx][jy][jz]; 

      } 

    } 

  } 

  nvox = ngx*ngy*ngz; 

  sum = IntegrateGrid(gridin)/gridin->volvox; 

  mean = sum/(double)nvox; 

  ShiftGrid(gridin, -mean, &temp); 

  PowerGrid(&temp, 2, &temp); 

  sum = IntegrateGrid(&temp)/gridin->volvox; 
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  var = sum/(double)(nvox-1); 

  sdev = sqrt(var); 

  ShiftGrid(gridin, -mean, &temp); 

  PowerGrid(&temp, 3, &temp); 

  sum = IntegrateGrid(&temp)/gridin->volvox; 

  skew = sum/(double)(nvox-1)/pow(sdev, 3); 

  ShiftGrid(gridin, -mean, &temp); 

  PowerGrid(&temp, 4, &temp); 

  sum = IntegrateGrid(&temp)/gridin->volvox; 

  kurt = sum/(double)(nvox-1)/pow(sdev, 4)-3; 

  sum = IntegrateGrid(gridin)/gridin->volvox; 

  fprintf(cplog, "%s:\n    voxel volume: %12.6f\n max voxel value: %12.6f\n min voxel value: 
%12.6f\n       voxel sum: %12.6f\n            mean: %12.6f\n        variance: %12.6f\n        
skewness: %12.6f\n        kurtosis: %12.6f\n\n", 

    str, gridin->volvox, max, min, sum, mean, var, skew, kurt); 

  return 0; 

} 

 

 

/* SYMMETRY FUNCTIONS */ 

 

int SymAtoms(struct CrystData * gridin, struct SymMap * map) { 

  /* Calls: none */ 

  /* called by: main */ 

  int check=0, i=0, j=0, k=0; 

  double ax=gridin->cella_x, ay=gridin->cella_y, az=gridin->cella_z; 

  double bx=gridin->cellb_x, by=gridin->cellb_y, bz=gridin->cellb_z; 

  double cx=gridin->cellc_x, cy=gridin->cellc_y, cz=gridin->cellc_z; 

  double det=0.0, xf=0.0, yf=0.0, zf=0.0, xf2=0.0, yf2=0.0, zf2=0.0; 

  double coord_eqx[NIONMAX][100], coord_eqy[NIONMAX][100], coord_eqz[NIONMAX][100]; 

  for (i=0; i<NIONMAX; i++) map->nequiv[i] = 0; 

  for (i=0; i<gridin->nion; i++) { 

    for (j=0; j<gridin->nion; j++) { 

      map->equiv[i][j] = 0; 

    } 

  } 

  det = 1.0/(ax*by*cz-ax*cy*bz-bx*ay*cz+bx*cy*az+cx*ay*bz-cx*by*az); 

  for (k=0; k<map->nsymel; k++) { 

    for (i=0; i<gridin->nion; i++) { 

      xf = det*((by*cz-cy*bz)*gridin->xcart[i]+(cx*bz-bx*cz)*gridin->ycart[i]+(bx*cy-
cx*by)*gridin->zcart[i]); 

      yf = det*((cy*az-ay*cz)*gridin->xcart[i]+(ax*cz-cx*az)*gridin->ycart[i]+(cx*ay-
ax*cy)*gridin->zcart[i]); 

      zf = det*((ay*bz-by*az)*gridin->xcart[i]+(bx*az-ax*bz)*gridin->ycart[i]+(ax*by-
bx*ay)*gridin->zcart[i]); 

      xf2 = xf*map->symrel[k][0][0]+yf*map->symrel[k][0][1]+zf*map->symrel[k][0][2]+map-
>tnons[k][0]; 

      yf2 = xf*map->symrel[k][1][0]+yf*map->symrel[k][1][1]+zf*map->symrel[k][1][2]+map-
>tnons[k][1]; 

      zf2 = xf*map->symrel[k][2][0]+yf*map->symrel[k][2][1]+zf*map->symrel[k][2][2]+map-
>tnons[k][2]; 

      while (xf2<0.0) { xf2 += 1.0; } 

      while (fabs(xf2-1.0)<1.0e-6) { xf2 -= 1.0; } 

      while (yf2<0.0) { yf2 += 1.0; } 

      while (fabs(yf2-1.0)<1.0e-6) { yf2 -= 1.0; } 
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      while (zf2<0.0) { zf2 += 1.0; } 

      while (fabs(zf2-1.0)<1.0e-6) { zf2 -= 1.0; } 

      coord_eqx[i][k] = xf2; 

      coord_eqy[i][k] = yf2; 

      coord_eqz[i][k] = zf2; 

    } 

  } 

  for (i=0; i<gridin->nion; i++) { 

    for (k=0; k<map->nsymel; k++) { 

      for (j=0; j<gridin->nion; j++) { 

        xf = det*((by*cz-cy*bz)*gridin->xcart[j]+(cx*bz-bx*cz)*gridin->ycart[j]+(bx*cy-
cx*by)*gridin->zcart[j]); 

        yf = det*((cy*az-ay*cz)*gridin->xcart[j]+(ax*cz-cx*az)*gridin->ycart[j]+(cx*ay-
ax*cy)*gridin->zcart[j]); 

        zf = det*((ay*bz-by*az)*gridin->xcart[j]+(bx*az-ax*bz)*gridin->ycart[j]+(ax*by-
bx*ay)*gridin->zcart[j]); 

        if (fabs(coord_eqx[i][k]-xf)<0.01 && fabs(coord_eqy[i][k]-yf)<0.01 && 
fabs(coord_eqz[i][k]-zf)<0.01) { 

          map->equiv[i][j] = 1; 

        } 

      } 

    } 

  } 

  for (i=0; i<gridin->nion; i++) { 

    for (j=0; j<gridin->nion; j++) { 

      if (map->equiv[i][j]==1) map->nequiv[i]++; 

    } 

  } 

  return 0; 

} 

 

int CheckSym(struct SymMap * map) { 

  /* called by: SymmetrizeGrid */ 

  /* calls: none */ 

  char ngn[4]; 

  int i=0, j=0, halfflag[3], quartflag[3]; 

  for (i=0; i<map->nsymel; i++) { 

    for (j=0; j<3; j++) { 

      if (fabs(map->tnons[i][j]-0.5)<1.0e-10) halfflag[j] = 1; 

      else if (fabs(map->tnons[i][j]-0.25)<1.0e-10) quartflag[j] = 1; 

    } 

  } 

  for (j=0; j<3; j++) { 

    if (j==0) strncpy(ngn, "ngx", 3); 

    else if (j==1) strncpy(ngn, "ngy", 3); 

    else if (j==2) strncpy(ngn, "ngz", 3); 

    if (halfflag[j]==1 && quartflag[j]==1) fprintf(cplog, "%s FFT index must be divisible by 
4\n", ngn); 

    else if (quartflag[j]==1) fprintf(cplog, "%s FFT index must be divisible by 4 if it is 
divisible by 2\n", ngn); 

    else if (halfflag[j]==1) fprintf(cplog, "%s FFT index must be divisible by 2\n", ngn); 

    else fprintf(cplog, "%s FFT index has no symmetry restrictions\n", ngn); 

  } 

  return 0; 

} 
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int SymmetrizeGrid(struct CrystData * gridin, struct SymMap * map) { 

  /* called by: CalcCP */ 

  /* calls: CheckSym, FixEdges */ 

  int flag=0, i=0, jx=0, jy=0, jz=0, jx2=0, jy2=0, jz2=0; 

  double xf=0.0, yf=0.0, zf=0.0, xf2=0.0, yf2=0.0, zf2=0.0; 

  double voxspacing_xf=0.0, voxspacing_yf=0.0, voxspacing_zf=0.0; 

  voxspacing_xf = 1.0/(double)ngx; 

  voxspacing_yf = 1.0/(double)ngy; 

  voxspacing_zf = 1.0/(double)ngz; 

  for (jz=0; jz<=ngz; jz++) { 

    for (jy=0; jy<=ngy; jy++) { 

      for (jx=0; jx<=ngx; jx++) { 

        core.grid[jx][jy][jz] = 0.0;  /* temp voxel counter */ 

      } 

    } 

  } 

  for (i=0; i<map->nsymel; i++) { 

    for (jz=0; jz<ngz; jz++) { 

      zf = (double)jz/(double)ngz; 

      for (jy=0; jy<ngy; jy++) { 

        yf = (double)jy/(double)ngy; 

        for (jx=0; jx<ngx; jx++) { 

          xf = (double)jx/(double)ngx; 

          xf2 = xf*map->symrel[i][0][0]+yf*map->symrel[i][0][1]+zf*map->symrel[i][0][2]+map-
>tnons[i][0]; 

          yf2 = xf*map->symrel[i][1][0]+yf*map->symrel[i][1][1]+zf*map->symrel[i][1][2]+map-
>tnons[i][1]; 

          zf2 = xf*map->symrel[i][2][0]+yf*map->symrel[i][2][1]+zf*map->symrel[i][2][2]+map-
>tnons[i][2]; 

          jx2 = (int)(floor(xf2/voxspacing_xf+0.5)); 

          jy2 = (int)(floor(yf2/voxspacing_yf+0.5)); 

          jz2 = (int)(floor(zf2/voxspacing_zf+0.5)); 

          while (jx2<0) { jx2 += ngx; } 

          while (jx2>=ngx) { jx2 -= ngx; } 

          while (jy2<0) { jy2 += ngy; } 

          while (jy2>=ngy) { jy2 -= ngy; } 

          while (jz2<0) { jz2 += ngz; } 

          while (jz2>=ngz) { jz2 -= ngz; } 

          core.grid[jx][jy][jz] += gridin->grid[jx2][jy2][jz2]; 

          if (fabs(xf2/voxspacing_xf-0.5)<0.001) flag = 1; 

          else if (fabs(yf2/voxspacing_yf-0.5)<0.001) flag = 1; 

          else if (fabs(zf2/voxspacing_zf-0.5)<0.001) flag = 1; 

          if (flag==1) { 

            printf("\n  BAD NEWS: FFT grid is incommensurate with symmetry operation %d!\n", 
i+1); 

            CheckSym(&smap); 

            fprintf(cplog, "\nTerminated because FFT grid is not compatible with symmetry 
operation %d\n", i+1); 

            fprintf(cplog, "Suggestion: re-run Abinit with another ngfft based on the 
recommendations above\n"); 

            fprintf(cplog, "Or re-run CP with symmetry restoration turned off (not 
recommended)\n"); 

            errcount++; 

            return 2; 

          } 
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        } 

      } 

    } 

  } 

  for (jz=0; jz<ngz; jz++) { 

    for (jy=0; jy<ngy; jy++) { 

      for (jx=0; jx<ngx; jx++) { 

        gridin->grid[jx][jy][jz] = core.grid[jx][jy][jz]/(double)map->nsymel; 

      } 

    } 

  } 

  FixEdges(gridin); 

  return 0; 

} 

 

 

/* I/O FUNCTIONS */ 

 

int Bin2XSF(char binname[STRMAX], struct CrystData * gridin, struct CrystData * gridin2) { 

  /* called by: Den2XSF */ 

  /* calls: FixEdges */ 

  char codvsn[10], title[150]; 

  int bandtot=0, date=0, fform=0, headform=0, lmn_size=0, occopt_this=0; 

  int intxc=0, istwfkv=0, ixc_this=0, i=0, jx=0, jy=0, jz=0, k=0; 

  int natom=0, nbandv=0, ngfftx=0, ngffty=0, ngfftz=0, nkpt=0, npsp=0; 

  int npwarrv=0, nspden=0, nspinor=0, nsppol=0, nsym=0, ntypat=0; 

  int pertcase=0, pspcod=0, pspdat=0, pspso=0, pspxc=0, type=0, usepaw=0, usewvl=0; 

  int so_psp[NIONMAX], symafm[100], symrel[3][3][100], typat[NIONMAX]; 

  double ax_star=0.0, ay_star=0.0, az_star=0.0, bx_star=0.0; 

  double by_star=0.0, bz_star=0.0, cx_star=0.0, cy_star=0.0, cz_star=0.0; 

  double cellvol=0.0, ecut=0.0, ecutdg=0.0, ecut_eff=0.0, ecutsm=0.0, eigen=0.0, etotal=0.0; 

  double efermi=0.0, kptv=0.0, occ=0.0, qptnx=0.0, qptny=0.0, qptnz=0.0, residm=0.0; 

  double rprimd_ax=0.0, rprimd_ay=0.0, rprimd_az=0.0, rprimd_bx=0.0; 

  double rprimd_by=0.0, rprimd_bz=0.0, rprimd_cx=0.0, rprimd_cy=0.0, rprimd_cz=0.0; 

  double stmbias=0.0, tphysel=0.0, tsmear=0.0, wtkv=0.0, x=0.0, y=0.0, z=0.0, zionpsp=0.0, 
znuclpsp=0.0; 

  double nonlocalE_byatom[NIONMAX], nonlocalE_byatom_IM[NIONMAX], tnons[3][100], 
znucltypat[NIONMAX]; 

  FILE * fptr; 

  fptr = fopen(binname, "rb+"); 

  if (fptr==NULL) { 

    printf("\n  BAD NEWS: File %s not found!\n", binname); 

    fprintf(cplog, "\nTerminated because binary file %s not found\n", binname); 

    fprintf(cplog, "Suggestion: check your Abinit files or input options\n"); 

    errcount++; 

    return 1; 

  } 

  fread(&i, sizeof(int), 1, fptr); 

  i = fread(codvsn, sizeof(char), 6, fptr); 

  fread(&headform, sizeof(int), 1, fptr); 

  fread(&fform, sizeof(int), 1, fptr); 

  fread(&i, sizeof(int), 1, fptr); 

  fread(&i, sizeof(int), 1, fptr); 

  fread(&bandtot, sizeof(int), 1, fptr); 
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  fread(&date, sizeof(int), 1, fptr); 

  fprintf(cplog, "Start date of %s: %d\n", binname, date); 

  fread(&intxc, sizeof(int), 1, fptr); 

  fread(&ixc_this, sizeof(int), 1, fptr); 

  ixc = ixc_this;  /* global */ 

  fread(&natom, sizeof(int), 1, fptr); 

  gridin->nion = natom; 

  fread(&ngfftx, sizeof(int), 1, fptr); 

  fread(&ngffty, sizeof(int), 1, fptr); 

  fread(&ngfftz, sizeof(int), 1, fptr); 

  if (ngx!=0 || ngy!=0 || ngz!=0) { 

    if (ngx!=ngfftx || ngy!=ngffty || ngz!=ngfftz) { 

    printf("\n  BAD NEWS: Different numbers of voxels between datasets!\n"); 

    fprintf(cplog, "\nTerminated because not all FFT grids are equal\n"); 

    fprintf(cplog, "\nPrevious grid: %d %d %d, New grid for %s: %d %d %d\n", 

      binname, ngx, ngy, ngz, ngfftx, ngffty, ngfftz); 

    fprintf(cplog, "Suggestion: specify ngfft in Abinit input such that boxcut is ~2\n"); 

    errcount++; 

    return 2; 

    } 

  } 

  ngx = ngfftx;  /* global */ 

  ngy = ngffty;  /* global */ 

  ngz = ngfftz;  /* global */ 

  fread(&nkpt, sizeof(int), 1, fptr); 

  fread(&nspden, sizeof(int), 1, fptr); 

  fread(&nspinor, sizeof(int), 1, fptr); 

  fread(&nsppol, sizeof(int), 1, fptr); 

  nspin = nsppol;  /* global */ 

  if (nspinor!=1 || (nspin==2 && nspden!=2)) { 

    printf("\n  BAD NEWS: Spin-orbit coupling, non-scalar magnetism, or non-collinear magnetism 
detected!\n"); 

    fprintf(cplog, "\nTerminated because nspinor=1, or nsppol=2 and nspden is not 2\n"); 

    fprintf(cplog, "Suggestion: Check your files or re-run Abinit with different input 
options\n"); 

    errcount++; 

    return 3; 

  } 

  fread(&nsym, sizeof(int), 1, fptr); 

  smap.nsymel = nsym; 

  fread(&npsp, sizeof(int), 1, fptr); 

  fread(&ntypat, sizeof(int), 1, fptr); 

  fread(&occopt_this, sizeof(int), 1, fptr); 

  occopt = occopt_this;  /* global */ 

  fread(&pertcase, sizeof(int), 1, fptr); 

  fread(&usepaw, sizeof(int), 1, fptr); 

  fread(&ecut, sizeof(double), 1, fptr); 

  fread(&ecutdg, sizeof(double), 1, fptr); 

  fread(&ecutsm, sizeof(double), 1, fptr); 

  fread(&ecut_eff, sizeof(double), 1, fptr); 

  fread(&qptnx, sizeof(double), 1, fptr); 

  fread(&qptny, sizeof(double), 1, fptr); 

  fread(&qptnz, sizeof(double), 1, fptr); 

  fread(&rprimd_ax, sizeof(double), 1, fptr); 
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  gridin->cella_x = rprimd_ax; 

  fread(&rprimd_ay, sizeof(double), 1, fptr); 

  gridin->cella_y = rprimd_ay; 

  fread(&rprimd_az, sizeof(double), 1, fptr); 

  gridin->cella_z = rprimd_az; 

  fread(&rprimd_bx, sizeof(double), 1, fptr); 

  gridin->cellb_x = rprimd_bx; 

  fread(&rprimd_by, sizeof(double), 1, fptr); 

  gridin->cellb_y = rprimd_by; 

  fread(&rprimd_bz, sizeof(double), 1, fptr); 

  gridin->cellb_z = rprimd_bz; 

  fread(&rprimd_cx, sizeof(double), 1, fptr); 

  gridin->cellc_x = rprimd_cx; 

  fread(&rprimd_cy, sizeof(double), 1, fptr); 

  gridin->cellc_y = rprimd_cy; 

  fread(&rprimd_cz, sizeof(double), 1, fptr); 

  gridin->cellc_z = rprimd_cz; 

  cellvol = (rprimd_ax*(rprimd_by*rprimd_cz-rprimd_bz*rprimd_cy)-rprimd_ay* 

    (rprimd_bx*rprimd_cz-rprimd_bz*rprimd_cx)+rprimd_az*(rprimd_bx*rprimd_cy-
rprimd_by*rprimd_cx)); 

  gridin->volcell = cellvol; 

  gridin->volvox = cellvol/(ngx*ngy*ngz); 

  ax_star = 2*PI*(rprimd_by*rprimd_cz-rprimd_cy*rprimd_bz)/cellvol; 

  ay_star = -2*PI*(rprimd_bx*rprimd_cz-rprimd_cx*rprimd_bz)/cellvol; 

  az_star = 2*PI*(rprimd_bx*rprimd_cy-rprimd_cx*rprimd_by)/cellvol; 

  bx_star = 2*PI*(rprimd_cy*rprimd_az-rprimd_ay*rprimd_cz)/cellvol; 

  by_star = -2*PI*(rprimd_cx*rprimd_az-rprimd_ax*rprimd_cz)/cellvol; 

  bz_star = 2*PI*(rprimd_cx*rprimd_ay-rprimd_ax*rprimd_cy)/cellvol; 

  cx_star = 2*PI*(rprimd_ay*rprimd_bz-rprimd_by*rprimd_az)/cellvol; 

  cy_star = -2*PI*(rprimd_ax*rprimd_bz-rprimd_bx*rprimd_az)/cellvol; 

  cz_star = 2*PI*(rprimd_ax*rprimd_by-rprimd_bx*rprimd_ay)/cellvol; 

  fread(&stmbias, sizeof(double), 1, fptr); 

  fread(&tphysel, sizeof(double), 1, fptr); 

  fread(&tsmear, sizeof(double), 1, fptr); 

  fread(&usewvl, sizeof(int), 1, fptr); 

  fread(&i, sizeof(int), 1, fptr); 

  fread(&i, sizeof(int), 1, fptr); 

  for (i=0; i<nkpt; i++) fread(&istwfkv, sizeof(int), 1, fptr); 

  for (i=0; i<(nkpt*nsppol); i++) fread(&nbandv, sizeof(int), 1, fptr); 

  for (i=0; i<(nkpt); i++) fread(&npwarrv, sizeof(int), 1, fptr); 

  for (i=0; i<(npsp); i++) fread(&so_psp[i], sizeof(int), 1, fptr); 

  for (i=0; i<(nsym); i++) fread(&symafm[i], sizeof(int), 1, fptr); 

  for (i=0; i<(nsym); i++) { 

    fread(&symrel[0][0][i], sizeof(int), 1, fptr); 

    smap.symrel[i][0][0] = symrel[0][0][i]; 

    fread(&symrel[1][0][i], sizeof(int), 1, fptr); 

    smap.symrel[i][1][0] = symrel[1][0][i]; 

    fread(&symrel[2][0][i], sizeof(int), 1, fptr); 

    smap.symrel[i][2][0] = symrel[2][0][i]; 

    fread(&symrel[0][1][i], sizeof(int), 1, fptr); 

    smap.symrel[i][0][1] = symrel[0][1][i]; 

    fread(&symrel[1][1][i], sizeof(int), 1, fptr); 

    smap.symrel[i][1][1] = symrel[1][1][i]; 

    fread(&symrel[2][1][i], sizeof(int), 1, fptr); 
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    smap.symrel[i][2][1] = symrel[2][1][i]; 

    fread(&symrel[0][2][i], sizeof(int), 1, fptr); 

    smap.symrel[i][0][2] = symrel[0][2][i]; 

    fread(&symrel[1][2][i], sizeof(int), 1, fptr); 

    smap.symrel[i][1][2] = symrel[1][2][i]; 

    fread(&symrel[2][2][i], sizeof(int), 1, fptr); 

    smap.symrel[i][2][2] = symrel[2][2][i]; 

  } 

  for (i=0; i<(natom); i++) fread(&typat[i], sizeof(int), 1, fptr); 

  for (i=0; i<(nkpt); i++) { 

    fread(&kptv, sizeof(double), 1, fptr); 

    fread(&kptv, sizeof(double), 1, fptr); 

    fread(&kptv, sizeof(double), 1, fptr); 

  } 

  for (i=0; i<bandtot; i++) fread(&occ, sizeof(double), 1, fptr); 

  for (i=0; i<nsym; i++) { 

    fread(&tnons[0][i], sizeof(double), 1, fptr); 

    smap.tnons[i][0] = tnons[0][i]; 

    fread(&tnons[1][i], sizeof(double), 1, fptr); 

    smap.tnons[i][1] = tnons[1][i]; 

    fread(&tnons[2][i], sizeof(double), 1, fptr); 

    smap.tnons[i][2] = tnons[2][i]; 

  } 

  for (i=0; i<ntypat; i++) fread(&znucltypat[i], sizeof(double), 1, fptr); 

  for(i=0; i<natom; i++) { 

    type = typat[i]-1; 

    gridin->zatomic[i] = (int)znucltypat[type]; 

  } 

  for (i=0; i<nkpt; i++) fread(&wtkv, sizeof(double), 1, fptr); 

  fread(&i, sizeof(int), 1, fptr); 

  for (k=0; k<npsp; k++) { 

    fread(&i, sizeof(int), 1, fptr); 

    fread(title, sizeof(char), 132, fptr); 

    fread(&znuclpsp, sizeof(double), 1, fptr); 

    fread(&zionpsp, sizeof(double), 1, fptr); 

    fread(&pspso, sizeof(int), 1, fptr); 

    fread(&pspdat, sizeof(int), 1, fptr); 

    fread(&pspcod, sizeof(int), 1, fptr); 

    fread(&pspxc, sizeof(int), 1, fptr); 

    fread(&lmn_size, sizeof(int), 1, fptr); 

    fread(&i, sizeof(int), 1, fptr); 

  } 

  if (usepaw==0) { 

    fread(&i, sizeof(int), 1, fptr); 

    fread(&residm, sizeof(double), 1, fptr); 

    for (i=0; i<natom; i++) { 

      fread(&x, sizeof(double), 1, fptr); 

      fread(&y, sizeof(double), 1, fptr); 

      fread(&z, sizeof(double), 1, fptr); 

      gridin->xcart[i] = x*gridin->cella_x+y*gridin->cellb_x+z*gridin->cellc_x; 

      gridin->ycart[i] = x*gridin->cella_y+y*gridin->cellb_y+z*gridin->cellc_y; 

      gridin->zcart[i] = x*gridin->cella_z+y*gridin->cellb_z+z*gridin->cellc_z; 

    } 
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    fread(&etotal, sizeof(double), 1, fptr); 

    gridin->entot = etotal; 

    fread(&efermi, sizeof(double), 1, fptr); 

    fread(&i, sizeof(int), 1, fptr); 

  } else { 

    printf("\n  BAD NEWS: PAW pseudopotential detected!\n"); 

    fprintf(cplog, "\nTerminated because PAW pseudopotentials are not yet supported\n"); 

    fprintf(cplog, "Suggestion: re-run Abinit with norm-conserving pseudopotentials\n"); 

    errcount++; 

    return 4; 

  } 

  /* allocating memory for the voxel grid */ 

  gridin->grid = (double***)malloc((ngx+1)*sizeof(double**)); 

  for (jx=0; jx<=ngx; jx++) { 

    gridin->grid[jx] = (double**)malloc((ngy+1)*sizeof(double*)); 

    for (jy=0; jy<=ngy; jy++) { 

      gridin->grid[jx][jy] = (double*)malloc((ngz+1)*sizeof(double)); 

    } 

  } 

  if (nspin==2) { 

    gridin2->grid = (double***)malloc((ngx+1)*sizeof(double**)); 

    for (jx=0; jx<=ngx; jx++) { 

      gridin2->grid[jx] = (double**)malloc((ngy+1)*sizeof(double*)); 

      for (jy=0; jy<=ngy; jy++) { 

        gridin2->grid[jx][jy] = (double*)malloc((ngz+1)*sizeof(double)); 

      } 

    } 

  } 

  /* reading in the voxel grid values */ 

  fread(&i, sizeof(int), 1, fptr); 

  for (jz=0; jz<ngz; jz++) { 

    for (jy=0; jy<ngy; jy++) { 

      for (jx=0; jx<ngx; jx++) { 

        fread(&eigen, sizeof(double), 1, fptr); 

        gridin->grid[jx][jy][jz] = eigen; 

      } 

    } 

  } 

  FixEdges(gridin); 

  fread(&i, sizeof(int), 1, fptr); 

  if (nspin==2) { 

    fread(&i, sizeof(int), 1, fptr); 

    gridin2->volvox = gridin->volvox; 

    for (jz=0; jz<ngz; jz++) { 

      for (jy=0; jy<ngy; jy++) { 

        for (jx=0; jx<ngx; jx++) { 

          fread(&eigen, sizeof(double), 1, fptr); 

          gridin2->grid[jx][jy][jz] = eigen; 

          /* down density = total density - up density */ 

          gridin->grid[jx][jy][jz] = gridin->grid[jx][jy][jz]-gridin2->grid[jx][jy][jz]; 

        } 

      } 

    } 
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    FixEdges(gridin); 

    FixEdges(gridin2); 

    fread(&i, sizeof(int), 1, fptr); 

  } 

  fclose(fptr); 

  return 0; 

} 

 

int OutputXSF(FILE * fptr, struct CrystData * gridref, struct CrystData * gridout) { 

  /* called by: main, CoreUnwarp, Den2XSF, MapEntot */ 

  /* calls: FixEdges */ 

  int i=0, jx=0, jy=0, jz=0, linecount=0; 

  FixEdges(gridout); 

  fprintf(fptr, " DIM-GROUP\n"); 

  fprintf(fptr, " 3  1\n"); 

  fprintf(fptr, " PRIMVEC\n"); 

  fprintf(fptr, "%20.14f  %20.14f  %20.14f\n", gridref->cella_x*R_BOHR, gridref->cella_y*R_BOHR, 
gridref->cella_z*R_BOHR); 

  fprintf(fptr, "%20.14f  %20.14f  %20.14f\n", gridref->cellb_x*R_BOHR, gridref->cellb_y*R_BOHR, 
gridref->cellb_z*R_BOHR); 

  fprintf(fptr, "%20.14f  %20.14f  %20.14f\n", gridref->cellc_x*R_BOHR, gridref->cellc_y*R_BOHR, 
gridref->cellc_z*R_BOHR); 

  fprintf(fptr, " PRIMCOORD\n"); 

  fprintf(fptr, "%12d  1\n", gridref->nion); 

  for (i=0; i<gridref->nion; i++) fprintf(fptr, "%9d  %20.14f  %20.14f  %20.14f\n", 

    gridref->zatomic[i], gridref->xcart[i]*R_BOHR, gridref->ycart[i]*R_BOHR, gridref-
>zcart[i]*R_BOHR); 

  fprintf(fptr, " ATOMS\n"); 

  for (i=0; i<gridref->nion; i++) fprintf(fptr, "%9d  %20.14f  %20.14f  %20.14f\n", 

    gridref->zatomic[i], gridref->xcart[i]*R_BOHR, gridref->ycart[i]*R_BOHR, gridref-
>zcart[i]*R_BOHR); 

  fprintf(fptr, " BEGIN_BLOCK_DATAGRID3D\n"); 

  fprintf(fptr, " datagrids\n"); 

  fprintf(fptr, " DATAGRID_3D_DENSITY\n"); 

  fprintf(fptr, "%12d  %12d  %12d\n", ngx+1, ngy+1, ngz+1); 

  fprintf(fptr, " 0.0  0.0  0.0\n"); 

  fprintf(fptr, "%20.14f  %20.14f  %20.14f\n", gridref->cella_x*R_BOHR, gridref->cella_y*R_BOHR, 
gridref->cella_z*R_BOHR); 

  fprintf(fptr, "%20.14f  %20.14f  %20.14f\n", gridref->cellb_x*R_BOHR, gridref->cellb_y*R_BOHR, 
gridref->cellb_z*R_BOHR); 

  fprintf(fptr, "%20.14f  %20.14f  %20.14f\n", gridref->cellc_x*R_BOHR, gridref->cellc_y*R_BOHR, 
gridref->cellc_z*R_BOHR); 

  for (jz=0; jz<=ngz; jz++) { 

    for (jy=0; jy<=ngy; jy++) { 

      for (jx=0; jx<=ngx; jx++) { 

        linecount++; 

        fprintf(fptr, "  %20.14f", gridout->grid[jx][jy][jz]); 

        if (linecount==6) { 

          fprintf(fptr, "\n"); 

          linecount = 0; 

        } 

      } 

    } 

  } 

  fprintf(fptr, " END_DATAGRID_3D\n"); 
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  fprintf(fptr, " END_BLOCK_DATAGRID3D\n"); 

  return 0; 

} 

 

int Den2XSF(char name[STRMAX], int num, char type[STRMAX], struct CrystData * gridin, struct 
CrystData * gridin2) { 

  /* called by: ReadAll, ReadGradient */ 

  /* calls: Bin2XSF, OutputXSF */ 

  char denfile[STRMAX], xsffile[STRMAX]; 

  int check=0; 

  FILE * fptr; 

  snprintf(denfile, STRMAX, "%s_o_DS%d_%s", name, num, type); 

  check = Bin2XSF(denfile, gridin, gridin2);  /* always read from binary file */ 

  if (check!=0) return 1; 

  if (printbin==1) { 

    strncpy(xsffile, denfile, STRMAX); 

    strncat(xsffile, ".xsf", STRMAX); 

    fptr = fopen(xsffile, "w"); 

    OutputXSF(fptr, gridin, gridin); 

    fclose(fptr); 

    if (nspin==2) { 

      strncpy(xsffile, denfile, STRMAX); 

      strncat(xsffile, "2.xsf", STRMAX); 

      fptr = fopen(xsffile, "w"); 

      OutputXSF(fptr, gridin, gridin2); 

      fclose(fptr); 

    } 

  } 

  return 0; 

} 

 

int ReadProfile(struct CrystData * gridin) { 

  /* called by: CoreUnwarp */ 

  /* calls: ElementName, FinishLine */ 

  char element[STRMAX], profname[STRMAX]; 

  int i=0, j=0, k=0, stop[NIONMAX]; 

  FILE * fptr; 

  for (i=0; i<gridin->nion; i++) stop[i] = 0; 

  for (i=0; i<gridin->nion; i++) { 

    if (stop[i]==1) continue; 

    ElementName(gridin->zatomic[i], element); 

    if (smap.nequiv[i]>1) { 

      fprintf(cplog, "Enter the name of the Hirshfeld profile for atom #%d (%s, %d equivalent 
sites): ", 

        i+1, element, smap.nequiv[i]); 

    } else { 

      fprintf(cplog, "Enter the name of the Hirshfeld profile for atom #%d (%s, %d site): ", 

        i+1, element, smap.nequiv[i]); 

    } 

    retry_profile: 

    if (smap.nequiv[i]>1) { 

      printf("  Enter the name of the Hirshfeld profile for atom #%d (%s, %d equivalent sites): 
", 

        i+1, element, smap.nequiv[i]); 
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    } else { 

      printf("  Enter the name of the Hirshfeld profile for atom #%d (%s, %d site): ", 

        i+1, element, smap.nequiv[i]); 

    } 

    scanf("%s", profname); 

    fptr = fopen(profname, "r"); 

    if (fptr==NULL) { 

      printf("  Atomic radial density profile %s not found!\n", profname); 

      printf("  Enter the name again or press ctrl-c to quit\n"); 

      goto retry_profile; 

    } 

    fprintf(cplog, "%s\n", profname); 

    for (j=i; j<gridin->nion; j++) { 

      if (smap.equiv[i][j]!=1) continue; 

      k = 0; 

      while (FinishLine(fptr)==0) { 

        fscanf(fptr, "%lf %lf", &rprofile[j][k], &rhoprofile[j][k]); 

        k++; 

        if (k==NPOINTMAX) { 

          printf("\n  BAD NEWS: Density profile %s is bigger than expected!\n", profname); 

          fprintf(cplog, "\nTerminated because file %s is too long\n", profname); 

          fprintf(cplog, "Suggestion: increase NPOINTMAX and recompile\n"); 

          errcount++; 

          return 1; 

        } 

      } 

      fclose(fptr); 

      fptr = fopen(profname, "r"); 

      logint[j] = log(rprofile[j][0]); 

      logslope[j] = (log(rprofile[j][k-1])-log(rprofile[j][0]))/((double)k-1.0); 

      prof_nmax[j] = k; 

      stop[j] = 1; 

    } 

    fclose(fptr); 

  } 

  return 0; 

} 

 

int OutputWeight(struct CrystData * gridin, struct ContactVol * map, struct CrystData * gridout) 
{ 

  /* called by: main */ 

  /* calls: FixEdges, OutputXSF */ 

  char filename[STRMAX]; 

  int atom=0, i=0, jx=0, jy=0, jz=0; 

  double tempcp=0.0; 

  FILE * fptr; 

  for(i=0; i<map->neighcount[jx][jy][jz]; i++) { 

    printf("  Creating voxel weight map for atom %d\n", i+1); 

    for(jz=0; jz<ngz; jz++) { 

      for(jy=0; jy<ngy; jy++) { 

        for(jx=0; jx<ngx; jx++) { 

          atom = map->ionmap[i][jx][jy][jz]&127; 

          tempcp = 0.5*(map->swj[jx][jy][jz]-map->wj[atom][jx][jy][jz])*map-
>wj[atom][jx][jy][jz]; 
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          gridout->grid[jx][jy][jz] = tempcp/map->swjk[jx][jy][jz]; 

        } 

      } 

    } 

    FixEdges(gridout); 

    snprintf(filename, STRMAX, "%s-voxelweight-%d.xsf", cpoutname, i+1); 

    fptr = fopen(filename, "w"); 

    OutputXSF(fptr, gridin, gridout); 

    fclose(fptr); 

  } 

  return 0; 

} 

 

 

/* CORE UNWARP FUNCTIONS */ 

 

double CubicInterpolation(double x, double y1, double y2, double y3, double y4) { 

  /* called by: TricubicInterpolation */ 

  /* calls: none */ 

  double a=0.0, b=0.0, c=0.0, d=y2, apc=0.0, qapc=0.0; 

  b = 0.5*(y1+y3)-y2; 

  apc = 0.5*(y3-y1); 

  qapc = 0.5*(y4-4*b-d); 

  a = (qapc-apc)/3.0; 

  c = apc-a; 

  return (((a*x+b)*x+c)*x+d);  /* y = ax^3+bx^2+cx+d */ 

} 

 

double TricubicInterpolation(struct CrystData * gridin, struct CrystData * gridref, double x, 
double y, double z) { 

  /* called by: CoreUnwarp */ 

  /* calls: CubicInterpolation */ 

  int a1=0, a2=0, a3=0, a4=0, b1=0, b2=0, b3=0, b4=0, c1=0, c2=0, c3=0, c4=0; 

  double xf=0.0, yf=0.0, zf=0.0, y1=0.0, y2=0.0, y3=0.0, y4=0.0, y11=0.0, y12=0.0, y13=0.0, 
y14=0.0, y21=0.0; 

  double y22=0.0, y23=0.0, y24=0.0, y31=0.0, y32=0.0, y33=0.0, y34=0.0, y41=0.0, y42=0.0, 
y43=0.0, y44=0.0; 

  double delta=0.0, interpvalue=0.0, voxspacing_xf=0.0, voxspacing_yf=0.0, voxspacing_zf=0.0; 

  gsl_matrix * xf_to_r = gsl_matrix_alloc(3, 3); 

  gsl_vector * rf = gsl_vector_alloc(3); 

  gsl_vector * rcart = gsl_vector_alloc(3); 

  /* convert cartesian x, y, z to fractional xf, yf, zf */ 

  gsl_matrix_set(xf_to_r, 0, 0, gridref->cella_x); 

  gsl_matrix_set(xf_to_r, 0, 1, gridref->cellb_x); 

  gsl_matrix_set(xf_to_r, 0, 2, gridref->cellc_x); 

  gsl_matrix_set(xf_to_r, 1, 0, gridref->cella_y); 

  gsl_matrix_set(xf_to_r, 1, 1, gridref->cellb_y); 

  gsl_matrix_set(xf_to_r, 1, 2, gridref->cellc_y); 

  gsl_matrix_set(xf_to_r, 2, 0, gridref->cella_z); 

  gsl_matrix_set(xf_to_r, 2, 1, gridref->cellb_z); 

  gsl_matrix_set(xf_to_r, 2, 2, gridref->cellc_z); 

  gsl_vector_set(rcart, 0, x); 

  gsl_vector_set(rcart, 1, y); 

  gsl_vector_set(rcart, 2, z); 
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  gsl_linalg_HH_solve(xf_to_r, rcart, rf); 

  xf = gsl_vector_get(rf, 0); 

  yf = gsl_vector_get(rf, 1); 

  zf = gsl_vector_get(rf, 2); 

  gsl_matrix_free(xf_to_r); 

  gsl_vector_free(rf); 

  gsl_vector_free(rcart); 

  /* translate xf, yf, zf into central unit cell */ 

  xf -= floor(xf); 

  yf -= floor(yf); 

  zf -= floor(zf); 

  if (xf>0.999999) xf = 0.0; 

  if (yf>0.999999) yf = 0.0; 

  if (zf>0.999999) zf = 0.0; 

  /* determine voxels around xf, yf, zf */ 

  voxspacing_xf = 1.0/(double)ngx; 

  voxspacing_yf = 1.0/(double)ngy; 

  voxspacing_zf = 1.0/(double)ngz; 

  a2 = (int)(xf/voxspacing_xf); 

  a1 = (a2-1+ngx)%ngx; 

  a3 = (a2+1+ngx)%ngx; 

  a4 = (a2+2+ngx)%ngx; 

  b2 = (int)(yf/voxspacing_yf); 

  b1 = (b2-1+ngy)%ngy; 

  b3 = (b2+1+ngy)%ngy; 

  b4 = (b2+2+ngy)%ngy; 

  c2 = (int)(zf/voxspacing_zf); 

  c1 = (c2-1+ngz)%ngz; 

  c3 = (c2+1+ngz)%ngz; 

  c4 = (c2+2+ngz)%ngz; 

  delta = (xf-(double)a2*voxspacing_xf)/voxspacing_xf; 

  y11 = CubicInterpolation(delta, gridin->grid[a1][b1][c1], gridin->grid[a2][b1][c1], 

    gridin->grid[a3][b1][c1], gridin->grid[a4][b1][c1]); 

  y12 = CubicInterpolation(delta, gridin->grid[a1][b1][c2], gridin->grid[a2][b1][c2], 

    gridin->grid[a3][b1][c2], gridin->grid[a4][b1][c2]); 

  y13 = CubicInterpolation(delta, gridin->grid[a1][b1][c3], gridin->grid[a2][b1][c3], 

    gridin->grid[a3][b1][c3], gridin->grid[a4][b1][c3]); 

  y14 = CubicInterpolation(delta, gridin->grid[a1][b1][c4], gridin->grid[a2][b1][c4], 

    gridin->grid[a3][b1][c4], gridin->grid[a4][b1][c4]); 

  y21 = CubicInterpolation(delta, gridin->grid[a1][b2][c1], gridin->grid[a2][b2][c1], 

    gridin->grid[a3][b2][c1], gridin->grid[a4][b2][c1]); 

  y22 = CubicInterpolation(delta, gridin->grid[a1][b2][c2], gridin->grid[a2][b2][c2], 

    gridin->grid[a3][b2][c2], gridin->grid[a4][b2][c2]); 

  y23 = CubicInterpolation(delta, gridin->grid[a1][b2][c3], gridin->grid[a2][b2][c3], 

    gridin->grid[a3][b2][c3], gridin->grid[a4][b2][c3]); 

  y24 = CubicInterpolation(delta, gridin->grid[a1][b2][c4], gridin->grid[a2][b2][c4], 

    gridin->grid[a3][b2][c4], gridin->grid[a4][b2][c4]); 

  y31 = CubicInterpolation(delta, gridin->grid[a1][b3][c1], gridin->grid[a2][b3][c1], 

    gridin->grid[a3][b3][c1], gridin->grid[a4][b3][c1]); 

  y32 = CubicInterpolation(delta, gridin->grid[a1][b3][c2], gridin->grid[a2][b3][c2], 

    gridin->grid[a3][b3][c2], gridin->grid[a4][b3][c2]); 

  y33 = CubicInterpolation(delta, gridin->grid[a1][b3][c3], gridin->grid[a2][b3][c3], 

    gridin->grid[a3][b3][c3], gridin->grid[a4][b3][c3]); 
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  y34 = CubicInterpolation(delta, gridin->grid[a1][b3][c4], gridin->grid[a2][b3][c4], 

    gridin->grid[a3][b3][c4], gridin->grid[a4][b3][c4]); 

  y41 = CubicInterpolation(delta, gridin->grid[a1][b4][c1], gridin->grid[a2][b4][c1], 

    gridin->grid[a3][b4][c1], gridin->grid[a4][b4][c1]); 

  y42 = CubicInterpolation(delta, gridin->grid[a1][b4][c2], gridin->grid[a2][b4][c2], 

    gridin->grid[a3][b4][c2], gridin->grid[a4][b4][c2]); 

  y43 = CubicInterpolation(delta, gridin->grid[a1][b4][c3], gridin->grid[a2][b4][c3], 

    gridin->grid[a3][b4][c3], gridin->grid[a4][b4][c3]); 

  y44 = CubicInterpolation(delta, gridin->grid[a1][b4][c4], gridin->grid[a2][b4][c4], 

    gridin->grid[a3][b4][c4], gridin->grid[a4][b4][c4]);  

  delta = (yf-b2*voxspacing_yf)/voxspacing_yf; 

  y1 = CubicInterpolation(delta, y11, y21, y31, y41); 

  y2 = CubicInterpolation(delta, y12, y22, y32, y42); 

  y3 = CubicInterpolation(delta, y13, y23, y33, y43); 

  y4 = CubicInterpolation(delta, y14, y24, y34, y44); 

  delta = (zf-(double)c2*voxspacing_zf)/voxspacing_zf; 

  interpvalue = CubicInterpolation(delta, (double)y1, (double)y2, (double)y3, (double)y4); 

  return interpvalue; 

} 

 

int CoreUnwarp(struct CrystData * gridinup, struct CrystData * gridin, struct CrystData * 
gridindn, struct CrystData * gridoutup, struct CrystData * gridoutdn) { 

  /* called by: main */ 

  /* calls: FixEdges, Getwj, OutputXSF, ReadProfile, TricubicInterpolation */ 

  char str[STRMAX]; 

  int atom=0, check=0, count=0, ngcount=0, ngp=0, ngp0=0; 

  int i=0, jx=0, jy=0, jz=0, jx1=0, jy1=0, jz1=0, jx2=0, jy2=0, jz2=0, ka=0, kb=0, kc=0; 

  double dist=0.0, encoreup=0.0, encoredn=0.0, endelta=0.0, wfrac=0.0, wsum=0.0; 

  double upscale=0.0, dnscale=0.0, dxnewup=0.0, dynewup=0.0, dznewup=0.0, dxnewdn=0.0, 
dynewdn=0.0, dznewdn=0.0; 

  double volnew=0.0, voltotup=0.0, voltotdn=0.0, xtran=0.0, ytran=0.0, ztran=0.0; 

  double voxcenter_x=0.0, voxcenter_y=0.0, voxcenter_z=0.0, xc=0.0, yc=0.0, zc=0.0, xf=0.0, 
yf=0.0, zf=0.0; 

  double xdist1=0.0, ydist1=0.0, zdist1=0.0, xdist2=0.0, ydist2=0.0, zdist2=0.0, xdist3=0.0, 
ydist3=0.0, zdist3=0.0; 

  FILE * fptr; 

  for (jz=0; jz<=ngz; jz++) { 

    for (jy=0; jy<=ngy; jy++) { 

      for (jx=0; jx<=ngx; jx++) { 

        core.grid[jx][jy][jz] = 0.0;   /* placeholder grid */ 

        pothi.grid[jx][jy][jz] = 0.0;  /* placeholder grid */ 

        potlo.grid[jx][jy][jz] = 0.0;  /* placeholder grid */ 

        temp.grid[jx][jy][jz] = 0.0;   /* placeholder grid */ 

      } 

    } 

  } 

  upscale = pow(gridinup->volvox/gridin->volvox, ONETHIRD)-1.0; 

  dnscale = pow(gridindn->volvox/gridin->volvox, ONETHIRD)-1.0; 

  fprintf(cplog, "Began core unwarping\n"); 

  printf("  Interpolating between %d x %d x %d = %d voxels\n", ngx, ngy, ngz, ngx*ngy*ngz); 

  fprintf(cplog, "Interpolated %d x %d x %d = %d voxels\n", ngx, ngy, ngz, ngx*ngy*ngz); 

  printf("0%%"); 

  fflush(stdout); 

  /* for every voxel in the unit cell */ 
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  for (jz=0; jz<ngz; jz++) { 

    /* xf, yf, zf fractional coordinates */ 

    zf = (double)jz/(double)ngz; 

    for (jy=0; jy<ngy; jy++) { 

      yf = (double)jy/(double)ngy; 

      for (jx=0; jx<ngx; jx++) { 

        xf = (double)jx/(double)ngx; 

        /* voxel centers in cartesian coordinates */ 

        voxcenter_x = xf*gridin->cella_x+yf*gridin->cellb_x+zf*gridin->cellc_x; 

        voxcenter_y = xf*gridin->cella_y+yf*gridin->cellb_y+zf*gridin->cellc_y; 

        voxcenter_z = xf*gridin->cella_z+yf*gridin->cellb_z+zf*gridin->cellc_z; 

        /* prints percent completion */ 

        ngcount++; 

        ngp = ngcount*100/(ngx*ngy*ngz); 

        if (ngp!=ngp0) { 

          printf("\r%d%%", ngp); 

          fflush(stdout); 

        } 

        ngp0 = ngp; 

        /* for every unit cell in the supercell */ 

        hmap.neighcount = 0; 

        wsum = 0.0; 

        for (ka=-kam; ka<=kam; ka++) { 

          for (kb=-kbm; kb<=kbm; kb++) { 

            for (kc=-kcm; kc<=kcm; kc++) { 

              /* for every atom in cartesian coordinates */ 

              for (atom=0; atom<gridin->nion; atom++) { 

                xc = gridin->xcart[atom]+ka*gridin->cella_x+kb*gridin->cellb_x+kc*gridin-
>cellc_x; 

                yc = gridin->ycart[atom]+ka*gridin->cella_y+kb*gridin->cellb_y+kc*gridin-
>cellc_y; 

                zc = gridin->zcart[atom]+ka*gridin->cella_z+kb*gridin->cellb_z+kc*gridin-
>cellc_z; 

                dist = sqrt((voxcenter_x-xc)*(voxcenter_x-xc)+(voxcenter_y-yc)* 

                  (voxcenter_y-yc)+(voxcenter_z-zc)*(voxcenter_z-zc)); 

                /* if voxel is close enough to translated atom */ 

                if (dist<R_MAX) { 

                  /* determine hirshfeld-like weight for atom */ 

                  count = hmap.neighcount; 

                  hmap.wj[count] = Getwj(atom, dist); 

                  if (hmap.wj[count]==-1000.0) return 1; 

                  wsum += hmap.wj[count]; 

                  hmap.atomid[count] = atom; 

                  hmap.xcart[count] = xc; 

                  hmap.ycart[count] = yc; 

                  hmap.zcart[count] = zc; 

                  hmap.neighcount++; 

                  if (hmap.neighcount==NEQVOX) { 

                    printf("\n  BAD NEWS: The number of nearby atoms exceeds %d!\n", NEQVOX); 

                    fprintf(cplog, "\nTerminated because the number of atoms near voxel %d %d %d 
is larger than %d\n", 

                      jx, jy, jz, NEQVOX); 

                    fprintf(cplog, "Suggestion: increase NEQVOX or decrease R_MAX and 
recompile\n"); 

                    errcount++; 
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                    return 2; 

                  } 

                } 

              } 

            } 

          } 

        } 

        /* determine shift in voxel position for expanded and contracted datasets */ 

        dxnewup = 0.0; 

        dynewup = 0.0; 

        dznewup = 0.0; 

        dxnewdn = 0.0; 

        dynewdn = 0.0; 

        dznewdn = 0.0; 

        /* for a voxel near an atomic nuclei, wfrac=1 for that atom and dxnewup is the 

           x-vector between the equilibrium voxel center and the upscaled voxel such that 

           xnewup = equilibrium voxel position (cf. JCTC 2014, Eq 6) */ 

        for (i=0; i<hmap.neighcount; i++) { 

          wfrac = hmap.wj[i]/wsum;  /* cf. JCTC 2014, Eq 8 */ 

          if(wsum==0.0) { 

            printf("\n  BAD NEWS: A grid voxel was not interpolated!\n"); 

            fprintf(cplog, "\nTerminated because sum of hirshfeld-like atomic weights for voxel 
%d %d %d = zero\n", jx, jy, jz); 

            fprintf(cplog, "Suggestion: check the atomic density profiles or increase R_MAX and 
recompile\n"); 

            errcount++; 

            return 4; 

          } 

          /* vector distance between each voxel center and nearby atoms (cf. delta_r in Eq 7) 

             as a hirshfeld-weighted sum of each atom's influence, scaled either up or down 

             for the expanded or contracted dataset, respectively */ 

          dxnewup += wfrac*(hmap.xcart[i]-voxcenter_x)*upscale; 

          dynewup += wfrac*(hmap.ycart[i]-voxcenter_y)*upscale; 

          dznewup += wfrac*(hmap.zcart[i]-voxcenter_z)*upscale; 

          dxnewdn += wfrac*(hmap.xcart[i]-voxcenter_x)*dnscale; 

          dynewdn += wfrac*(hmap.ycart[i]-voxcenter_y)*dnscale; 

          dznewdn += wfrac*(hmap.zcart[i]-voxcenter_z)*dnscale; 

          /* hirshfeld charge analysis */ 

          hmap.chg[hmap.atomid[i]] += wfrac*gridin->grid[jx][jy][jz]*gridin->volvox; 

        } 

        /* expanded-volume cartesian voxel position plus the hirshfeld-weighted correction (cf. 
JCTC 2014, Eq 9a) */ 

        xnewup[jx][jy][jz] = xf*gridinup->cella_x+yf*gridinup->cellb_x+zf*gridinup-
>cellc_x+dxnewup; 

        ynewup[jx][jy][jz] = xf*gridinup->cella_y+yf*gridinup->cellb_y+zf*gridinup-
>cellc_y+dynewup; 

        znewup[jx][jy][jz] = xf*gridinup->cella_z+yf*gridinup->cellb_z+zf*gridinup-
>cellc_z+dznewup; 

        /* new interpolated energy at shifted voxel center */ 

        pothi.grid[jx][jy][jz] = TricubicInterpolation(gridoutup, gridinup, 

          xnewup[jx][jy][jz], ynewup[jx][jy][jz], znewup[jx][jy][jz]); 

        /* cf. JCTC 2014, Eq 9b */ 

        xnewdn[jx][jy][jz] = xf*gridindn->cella_x+yf*gridindn->cellb_x+zf*gridindn-
>cellc_x+dxnewdn; 
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        ynewdn[jx][jy][jz] = xf*gridindn->cella_y+yf*gridindn->cellb_y+zf*gridindn-
>cellc_y+dynewdn; 

        znewdn[jx][jy][jz] = xf*gridindn->cella_z+yf*gridindn->cellb_z+zf*gridindn-
>cellc_z+dznewdn; 

        potlo.grid[jx][jy][jz] = TricubicInterpolation(gridoutdn, gridindn, 

          xnewdn[jx][jy][jz], ynewdn[jx][jy][jz], znewdn[jx][jy][jz]); 

      } 

    } 

  } 

  printf(" Finished\n"); 

  /* reassign voxels with interpolated energies and shifted-grid volumes */ 

  for (jz=0; jz<ngz; jz++) { 

    for (jy=0; jy<ngy; jy++) { 

      for (jx=0; jx<ngx; jx++) { 

        xtran = 0; 

        ytran = 0; 

        ztran = 0; 

        /* jx1 and jx2 are neighboring voxel indices to jx */ 

        jx1 = (jx==0)? (xtran = 1, ngx-1) : (jx-1); 

        jy1 = (jy==0)? (ytran = 1, ngy-1) : (jy-1); 

        jz1 = (jz==0)? (ztran = 1, ngz-1) : (jz-1); 

        jx2 = (jx==ngx-1)? (xtran = 1, 0) : (jx+1); 

        jy2 = (jy==ngy-1)? (ytran = 1, 0) : (jy+1); 

        jz2 = (jz==ngz-1)? (ztran = 1, 0) : (jz+1); 

        /* assuming insignificant change in angles, the new volume of a voxel is 

           based on the shifted distance between neighboring voxel centers */ 

        xdist1 = xnewup[jx2][jy][jz]-xnewup[jx1][jy][jz]+xtran*gridinup->cella_x; 

        ydist1 = ynewup[jx2][jy][jz]-ynewup[jx1][jy][jz]+xtran*gridinup->cella_y; 

        zdist1 = znewup[jx2][jy][jz]-znewup[jx1][jy][jz]+xtran*gridinup->cella_z; 

        xdist2 = xnewup[jx][jy2][jz]-xnewup[jx][jy1][jz]+ytran*gridinup->cellb_x; 

        ydist2 = ynewup[jx][jy2][jz]-ynewup[jx][jy1][jz]+ytran*gridinup->cellb_y; 

        zdist2 = znewup[jx][jy2][jz]-znewup[jx][jy1][jz]+ytran*gridinup->cellb_z; 

        xdist3 = xnewup[jx][jy][jz2]-xnewup[jx][jy][jz1]+ztran*gridinup->cellc_x; 

        ydist3 = ynewup[jx][jy][jz2]-ynewup[jx][jy][jz1]+ztran*gridinup->cellc_y; 

        zdist3 = znewup[jx][jy][jz2]-znewup[jx][jy][jz1]+ztran*gridinup->cellc_z; 

        volnew = 0.125*(xdist1*(ydist2*zdist3-ydist3*zdist2)+xdist2* 

          (ydist3*zdist1-ydist1*zdist3)+xdist3*(ydist1*zdist2-ydist2*zdist1)); 

        voltotup += volnew; 

        core.grid[jx][jy][jz] = volnew; 

        /* divide by old volume and subtract old energy to replace their values, 

           cf. the numerator of Eq 10 in JCTC 2014 */ 

        endelta = pothi.grid[jx][jy][jz]*(volnew/gridinup->volvox)-gridoutup->grid[jx][jy][jz]; 

        gridoutup->grid[jx][jy][jz] += endelta; 

        encoreup -= endelta; 

        xdist1 = xnewdn[jx2][jy][jz]-xnewdn[jx1][jy][jz]+xtran*gridindn->cella_x; 

        ydist1 = ynewdn[jx2][jy][jz]-ynewdn[jx1][jy][jz]+xtran*gridindn->cella_y; 

        zdist1 = znewdn[jx2][jy][jz]-znewdn[jx1][jy][jz]+xtran*gridindn->cella_z; 

        xdist2 = xnewdn[jx][jy2][jz]-xnewdn[jx][jy1][jz]+ytran*gridindn->cellb_x; 

        ydist2 = ynewdn[jx][jy2][jz]-ynewdn[jx][jy1][jz]+ytran*gridindn->cellb_y; 

        zdist2 = znewdn[jx][jy2][jz]-znewdn[jx][jy1][jz]+ytran*gridindn->cellb_z; 

        xdist3 = xnewdn[jx][jy][jz2]-xnewdn[jx][jy][jz1]+ztran*gridindn->cellc_x; 

        ydist3 = ynewdn[jx][jy][jz2]-ynewdn[jx][jy][jz1]+ztran*gridindn->cellc_y; 

        zdist3 = znewdn[jx][jy][jz2]-znewdn[jx][jy][jz1]+ztran*gridindn->cellc_z; 

        volnew = 0.125*(xdist1*(ydist2*zdist3-ydist3*zdist2)+xdist2* 
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          (ydist3*zdist1-ydist1*zdist3)+xdist3*(ydist1*zdist2-ydist2*zdist1)); 

        voltotdn += volnew; 

        temp.grid[jx][jy][jz] = volnew; 

        endelta = potlo.grid[jx][jy][jz]*(volnew/gridindn->volvox)-gridoutdn->grid[jx][jy][jz]; 

        gridoutdn->grid[jx][jy][jz] += endelta; 

        encoredn -= endelta; 

      } 

    } 

  } 

  fprintf(cplog, "Interpolated unit cell vol: %.6e, %.6e\n", voltotup, voltotdn); 

  if (fabs(gridinup->volcell-voltotup)>1.0e-5 || fabs(gridindn->volcell-voltotdn)>1.0e-5) { 

    printf("\n  CAUTION: Interpolated unit cell volume has changed a lot! Continuing 
anyway...\n"); 

    fprintf(cplog, "WARNING: interpolated unit cell volumes: %f and %f\n", voltotup, voltotdn); 

    fprintf(cplog, "                      real cell volumes: %f and %f\n", gridinup->volcell, 
gridindn->volcell); 

    errcount++; 

  } 

  fprintf(cplog, "\n"); 

  /* record total change in average map value */ 

  en_core[0] = encoreup; 

  en_core[2] = encoredn; 

  FixEdges(gridoutup); 

  FixEdges(gridoutdn); 

  for (i=0; i<gridin->nion; i++) fprintf(cplog, "Hirshfeld charge on atom %d: %.6e\n", i+1, 
hmap.chg[i]); 

  fprintf(cplog, "\n"); 

  if (printhmap==1) {  /* output voxel map of new volumes */ 

    FixEdges(&core); 

    snprintf(str, STRMAX, "%s-upvox.xsf", cpoutname); 

    fptr = fopen(str, "w"); 

    OutputXSF(fptr, gridin, &core); 

    fclose(fptr); 

    FixEdges(&temp); 

    snprintf(str, STRMAX, "%s-dnvox.xsf", cpoutname); 

    fptr = fopen(str, "w"); 

    OutputXSF(fptr, gridin, &temp); 

    fclose(fptr); 

  } 

  return 0; 

} 

 

 

/* XC FUNCTIONS */ 

 

int ReadGradient() { 

  /* called by: IdentifyXC */ 

  /* calls: Den2XSF */ 

  fprintf(cplog, "\n"); 

  Den2XSF(abinitname, dshi, "GDEN1", &gdenhi1, &gdenhi4); 

  Den2XSF(abinitname, dshi, "GDEN2", &gdenhi2, &gdenhi5); 

  Den2XSF(abinitname, dshi, "GDEN3", &gdenhi3, &gdenhi6); 

  Den2XSF(abinitname, dseq, "GDEN1", &gdeneq1, &gdeneq4); 

  Den2XSF(abinitname, dseq, "GDEN2", &gdeneq2, &gdeneq5); 
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  Den2XSF(abinitname, dseq, "GDEN3", &gdeneq3, &gdeneq6); 

  Den2XSF(abinitname, dslo, "GDEN1", &gdenlo1, &gdenlo4); 

  Den2XSF(abinitname, dslo, "GDEN2", &gdenlo2, &gdenlo5); 

  Den2XSF(abinitname, dslo, "GDEN3", &gdenlo3, &gdenlo6); 

  if (errcount!=0) return 1; 

  return 0; 

} 

 

int IdentifyXC(int id) { 

  /* called by: main */ 

  /* calls: ReadGradient */ 

  /* list of one-to-one equivalent Abinit to LibXC functional IDs */ 

  int abinit2libxc[43] = { 0,20,10,0,0,0,0,0,0,0,0,101130,101,0,0,0, 

    161,162,0,0,0,0,0,0,0,0,163,164,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 }; 

  int check=0, i=0, isgga=0; 

  xc_func_type func; 

  xcpot[0] = 0; 

  xcpot[1] = 0; 

  if (id==0) { 

    printf("\n  BAD NEWS: No exchange-correlation potential detected!\n", abinitout); 

    fprintf(cplog, "\nTerminated because ixc=0\n"); 

    fprintf(cplog, "Suggestion: re-run Abinit with a different ixc or turn off exch-corr 
mapping\n"); 

    errcount++; 

    return 1; 

  } else if (id>42) { 

    printf("\n  BAD NEWS: Invalid exchange-correlation potential detected!\n", abinitout); 

    fprintf(cplog, "\nTerminated because ixc=%d > 42 is not defined by Abinit\n", ixc); 

    fprintf(cplog, "Suggestion: check Abinit files for discrepencies\n"); 

    errcount++; 

    return 2; 

  } else if (id>0 && abinit2libxc[id]==0) { 

    printf("\n  BAD NEWS: Exchange-correlation potential not supported!\n", abinitout); 

    fprintf(cplog, "\nTerminated because ixc=%d is not supported by CPpackage\n", ixc); 

    fprintf(cplog, "Suggestion: re-run Abinit with a different ixc or contact the Fredrickson 
Group\n"); 

    errcount++; 

    return 3; 

  } else { 

    if (id<0) {  /* not a built-in Abinit functional */ 

      xcpot[0] = -1*id/1000;  /* remove lowest three digits */ 

      xcpot[1] = -1*id-(xcpot[0]*1000);  /* remove highest three digits */ 

    } else { 

      xcpot[0] = abinit2libxc[id]/1000; 

      xcpot[1] = abinit2libxc[id]-(xcpot[0]*1000); 

    } 

    for (i=0; i<2; i++) { 

      if (i==0 && xcpot[0]==0) continue;  /* only three digits */ 

      if (nspin==2) check = xc_func_init(&func, xcpot[i], XC_POLARIZED); 

      else check = xc_func_init(&func, xcpot[i], XC_POLARIZED); 

      if (check!=0) { 

        printf("\n  BAD NEWS: Unrecognized XC functional!\n"); 

        fprintf(cplog, "\nTerminated because LibXC does not support the exchange-correlation 
functional: %d\n", xcpot[i]); 
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        fprintf(cplog, "Sugggestion: re-run Abinit with different ixc input\n"); 

        errcount++; 

        return 4; 

      } 

      isgga = xc_family_from_id(xcpot[i], NULL, NULL); 

      switch (isgga) { 

        case XC_FAMILY_LDA: 

          xc_func_end(&func); 

          break;  /* do not need electron density gradient */ 

        default: 

          check = ReadGradient(); 

          if (check!=0) return 5; 

          xc_func_end(&func); 

          goto bottom;  /* initialize gradient files only once */ 

      } 

    } 

    bottom: 

    return 0; 

  } 

} 

 

int CoreCorrection(struct CrystData * gridin, struct CrystData * coreout) { 

  /* called by: MapEntot */ 

  /* calls: FinishLine, ShiftGrid */ 

  char pspfile[STRMAX], str[200]; 

  int check=0, i=0, jx=0, jy=0, jz=0, jx1=0, jy1=0, jz1=0, k=0, stop=0; 

  int lloc=0, lmax_this=0, mmax=0, pspcod=0, pspxc=0, r2well=0; 

  int neps_atomvalues=0, zint=0, zused[120], zvalues[NIONMAX]; 

  double core_elec=0.0, fchrg=0.0, fraction=0.0, rchrg=0.0; 

  double core_r[500][120], core_rho[500][120], ddrho=0.0, drho=0.0, rho_core=0.0; 

  double d1=0.0, d2=0.0, delta=0.0, distsq=0.0, rmax[120], z=0.0, zion[NIONMAX]; 

  double xf=0.0, yf=0.0, zf=0.0, voxcenter_x=0.0, voxcenter_y=0.0, voxcenter_z=0.0; 

  FILE * fptr1; 

  FILE * fptr2; 

  for (i=0; i<120; i++) zused[i] = 0; 

  fptr1 = fopen(abinitout, "r"); 

  if (fptr1==NULL) { 

    printf("\n  BAD NEWS: File %s not found!\n", abinitout); 

    fprintf(cplog, "\nTerminated because file %s not found\n", abinitout); 

    fprintf(cplog, "Suggestion: check your Abinit files or input options\n"); 

    errcount++; 

    return 1; 

  } 

  while (stop==0) { 

    check = fscanf(fptr1, "%s", str); 

    if (check==EOF) stop = 1; 

    if (strncmp(str, "pspini:", 7)==0) { 

      fscanf(fptr1, "%s %s %s %s %s %s %s", str, str, str, str, str, str, pspfile); 

      FinishLine(fptr1); 

      FinishLine(fptr1); 

      FinishLine(fptr1); 

      fscanf(fptr1, "%s", str); 

      fscanf(fptr1, "%lf %lf", &z, &zion[neps_atomvalues]); 
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      zvalues[neps_atomvalues] = (int)z; 

      zint = (int)z; 

      FinishLine(fptr1); 

      fscanf(fptr1, "%d %d %d %d %d %d", &pspcod, &pspxc, &lmax_this, &lloc, &mmax, &r2well); 

      FinishLine(fptr1); 

      fscanf(fptr1, "%lf %lf", &rchrg, &fchrg); 

      rmax[zint] = rchrg; 

      FinishLine(fptr1); 

      if (fchrg!=0.0) { 

        fprintf(cplog, "Core correction detected on Z=%d pseudopotential\n", zint); 

        fprintf(cplog, "Reading core density from %s, lmax=%d, mmax=%d\n", pspfile, lmax_this, 
mmax); 

        zused[zint] = 1; 

        fptr2 = fopen(pspfile, "r"); 

        if (fptr2==NULL) { 

          printf("\n  BAD NEWS: File %s not found!\n", pspfile); 

          fprintf(cplog, "\nTerminated because file %s not found\n", pspfile); 

          fprintf(cplog, "Suggestion: check your Abinit files or input options\n"); 

          errcount++; 

          return 2; 

        } 

        for (i=0; i<18; i++) FinishLine(fptr2); 

        for (i=0; i<lmax_this+1; i++) { 

          FinishLine(fptr2); 

          for (k=0; k<mmax; k++) FinishLine(fptr2); 

        } 

        for (i=1; i<mmax+1; i++) { 

          fscanf(fptr2, "%lf %lf %lf %lf", &core_r[i][zint], &core_rho[i][zint], &drho, &ddrho); 

        } 

        fclose(fptr2); 

        core_r[0][zint] = 0.0; 

        core_rho[0][zint] = core_rho[0][zint]; 

        fprintf(cplog, "r_max = %.6e angstrom\n", rmax[zint]*R_BOHR); 

      } 

    } 

  } 

  fclose(fptr1); 

  coreout->volvox = gridin->volvox; 

  ShiftGrid(gridin, 0.0, coreout);  /* copies gridin grid onto coreout grid */ 

  for (i=0; i<gridin->nion; i++) { 

    zint = gridin->zatomic[i]; 

    if (zused[zint]==1) { 

      for (jz=-(ngz+1)/2; jz<ngz+(ngz+1)/2; jz++) { 

        zf = (double)jz/(double)ngz; 

        for (jy=-(ngy+1)/2; jy<ngy+(ngy+1)/2; jy++) { 

          yf = (double)jy/(double)ngy; 

          for (jx=-(ngx+1)/2; jx<ngx+(ngx+1)/2; jx++) { 

            xf = (double)jx/(double)ngx; 

            voxcenter_x = (xf)*gridin->cella_x+(yf)*gridin->cellb_x+(zf)*gridin->cellc_x; 

            voxcenter_y = (xf)*gridin->cella_y+(yf)*gridin->cellb_y+(zf)*gridin->cellc_y; 

            voxcenter_z = (xf)*gridin->cella_z+(yf)*gridin->cellb_z+(zf)*gridin->cellc_z; 

            distsq = sqrt((voxcenter_x-gridin->xcart[i])*(voxcenter_x-gridin->xcart[i])+ 

              (voxcenter_y-gridin->ycart[i])*(voxcenter_y-gridin->ycart[i])+ 

              (voxcenter_z-gridin->zcart[i])*(voxcenter_z-gridin->zcart[i])); 
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            if (distsq<rmax[zint]) { 

              jx1 = (jx+ngx)%ngx; 

              jy1 = (jy+ngy)%ngy; 

              jz1 = (jz+ngz)%ngz; 

              if (distsq==0.0) rho_core = core_rho[0][zint]; 

              else { 

                stop = 0; 

                k = 0; 

                while (stop==0) { 

                  k++; 

                  if (core_r[k][zint]>distsq) { 

                    /* linear interpolation between two closest mesh points */ 

                    d2 = core_r[k][zint]; 

                    d1 = core_r[k-1][zint]; 

                    delta = d2-d1; 

                    fraction = (distsq-d1)/delta; 

                    rho_core = fraction*core_rho[k][zint]+(1.0-fraction)*core_rho[k-1][zint]; 

                    stop = 1; 

                  } 

                } 

              } 

              coreout->grid[jx1][jy1][jz1] += rho_core/(4.0*PI); 

              core_elec += rho_core*coreout->volvox/(4.0*PI); 

            } 

          } 

        } 

      } 

    } 

  } 

  FixEdges(coreout); 

  fprintf(cplog, "   Added to core: %20.14f\n", core_elec); 

  return 0; 

} 

 

int CalcVxc1(struct CrystData * gridin, struct CrystData * gridout) { 

  /* called by: CalcVxc */ 

  /* calls: FixEdges */ 

  int jx=0, jy=0, jz=0; 

  double denom=0.0, numer=0.0, r_s=0.0; 

  static const double A0 = 0.4581652932831429; 

  static const double A1 = 2.217058676663745; 

  static const double A2 = 0.7405551735357053; 

  static const double A3 = 0.01968227878617998; 

  static const double B1 = 1.0; 

  static const double B2 = 4.504130959426697; 

  static const double B3 = 1.110667363742916; 

  static const double B4 = 0.02359291751427506; 

  for(jz=0; jz<ngz; jz++) { 

    for(jy=0; jy<ngy; jy++) { 

      for(jx=0; jx<ngx; jx++) { 

        /* 4/3*pi*r_s^3 = 1/rho; r_s = (3/(4*pi*rho))^1/3 */ 

        r_s = pow(3.0/(4.0*PI*gridin->grid[jx][jy][jz]), ONETHIRD); 

        numer = A0+A1*r_s+A2*pow(r_s, 2)+A3*pow(r_s, 3); 
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        denom = B1*r_s+B2*pow(r_s, 2)+B3*pow(r_s, 3)+B4*pow(r_s, 4); 

        gridout->grid[jx][jy][jz] = -numer/denom; 

      } 

    } 

  } 

  FixEdges(gridout); 

  return 0; 

} 

 

int CalcVxc(struct CrystData * gridin, struct CrystData * gridin2, int dsnum, struct CrystData * 
gridout, struct CrystData *gridout2) { 

  /* called by: MapEntot */ 

  /* calls: FixEdges */ 

  int check=0, i=0, id=0, jx=0, jy=0, jz=0; 

  double grad[1], gradx=0.0, grady=0.0, gradz=0.0, energy[1], sden[2]; 

  xc_func_type func; 

  for (jz=0; jz<ngz; jz++) { 

    for (jy=0; jy<ngy; jy++) { 

      for (jx=0; jx<ngx; jx++) { 

        gridout->grid[jx][jy][jz] = 0.0; 

        if (nspin==2) gridout2->grid[jx][jy][jz] = 0.0; 

      } 

    } 

  } 

  if (nspin==1 && xcpot[0]==0 && xcpot[1]==20) {  /* default Teter93 LDA functional */ 

    CalcVxc1(gridin, gridout); 

    return 0; 

  } 

  for (i=0; i<2; i++) { 

    if (i==0 && xcpot[0]==0) continue;  /* only three digits */ 

    else if (nspin==2) xc_func_init(&func, xcpot[i], XC_POLARIZED); 

    else xc_func_init(&func, xcpot[i], XC_UNPOLARIZED); 

    id = xc_family_from_id(xcpot[i], NULL, NULL); 

    switch (id) { 

      case XC_FAMILY_LDA: 

        for (jz=0; jz<ngz; jz++) { 

          for (jy=0; jy<ngy; jy++) { 

            for (jx=0; jx<ngx; jx++) { 

              if (nspin==2) { 

                sden[0] = gridin2->grid[jx][jy][jz];  /* alpha density */ 

                sden[1] = gridin->grid[jx][jy][jz];  /* beta density */ 

                xc_lda_exc(&func, 1, sden, energy); 

                gridout2->grid[jx][jy][jz] += energy[0]; 

              } else { 

                xc_lda_exc(&func, 1, &gridin->grid[jx][jy][jz], energy); 

                gridout->grid[jx][jy][jz] += energy[0]; 

              } 

            } 

          } 

        } 

        break; 

      case XC_FAMILY_GGA: 

      case XC_FAMILY_HYB_GGA: 

        for (jz=0; jz<ngz; jz++) { 
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          for (jy=0; jy<ngy; jy++) { 

            for (jx=0; jx<ngx; jx++) { 

              if(dsnum==dshi) { 

                if (nspin==2) {  // spin-polarized GGA results in wrong total energy 

                  sden[0] = gridin2->grid[jx][jy][jz]; 

                  sden[1] = gridin->grid[jx][jy][jz]; 

                  gradx = gdenhi4.grid[jx][jy][jz]; 

                  grady = gdenhi5.grid[jx][jy][jz]; 

                  gradz = gdenhi6.grid[jx][jy][jz]; 

                  grad[0] = gradx*gradx+grady*grady+gradz*gradz; 

                  xc_gga_exc(&func, 1, sden, &grad[0], &energy[0]); 

                  gridout2->grid[jx][jy][jz] += energy[0]; 

                } else { 

                  gradx = gdenhi1.grid[jx][jy][jz]; 

                  grady = gdenhi2.grid[jx][jy][jz]; 

                  gradz = gdenhi3.grid[jx][jy][jz]; 

                  grad[0] = gradx*gradx+grady*grady+gradz*gradz; 

                  xc_gga_exc(&func, 1, &gridin->grid[jx][jy][jz], &grad[0], &energy[0]); 

                  gridout->grid[jx][jy][jz] += energy[0]; 

                } 

              } 

              else if(dsnum==dseq) { 

                if (nspin==2) { 

                  sden[0] = gridin2->grid[jx][jy][jz]; 

                  sden[1] = gridin->grid[jx][jy][jz]; 

                  gradx = gdeneq4.grid[jx][jy][jz]; 

                  grady = gdeneq5.grid[jx][jy][jz]; 

                  gradz = gdeneq6.grid[jx][jy][jz]; 

                  grad[0] = gradx*gradx+grady*grady+gradz*gradz; 

                  xc_gga_exc(&func, 1, sden, &grad[0], &energy[0]); 

                  gridout2->grid[jx][jy][jz] += energy[0]; 

                } else { 

                  gradx = gdeneq1.grid[jx][jy][jz]; 

                  grady = gdeneq2.grid[jx][jy][jz]; 

                  gradz = gdeneq3.grid[jx][jy][jz]; 

                  grad[0] = gradx*gradx+grady*grady+gradz*gradz; 

                  xc_gga_exc(&func, 1, &gridin->grid[jx][jy][jz], &grad[0], &energy[0]); 

                  gridout->grid[jx][jy][jz] += energy[0]; 

                } 

              } 

              else if(dsnum==dslo) { 

                if (nspin==2) { 

                  sden[0] = gridin2->grid[jx][jy][jz]; 

                  sden[1] = gridin->grid[jx][jy][jz]; 

                  gradx = gdenlo4.grid[jx][jy][jz]; 

                  grady = gdenlo5.grid[jx][jy][jz]; 

                  gradz = gdenlo6.grid[jx][jy][jz]; 

                  grad[0] = gradx*gradx+grady*grady+gradz*gradz; 

                  xc_gga_exc(&func, 1, sden, &grad[0], &energy[0]); 

                  gridout2->grid[jx][jy][jz] += energy[0]; 

                } else { 

                  gradx = gdenlo1.grid[jx][jy][jz]; 

                  grady = gdenlo2.grid[jx][jy][jz]; 
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                  gradz = gdenlo3.grid[jx][jy][jz]; 

                  grad[0] = gradx*gradx+grady*grady+gradz*gradz; 

                  xc_gga_exc(&func, 1, &gridin->grid[jx][jy][jz], &grad[0], &energy[0]); 

                  gridout->grid[jx][jy][jz] += energy[0]; 

                } 

              }  /* grad[0] = square of vector magnitude of electron density gradient */ 

            } 

          } 

        } 

        break; 

      default: 

        printf("\n  BAD NEWS: Unrecognized XC functional!\n"); 

        fprintf(cplog, "\nTerminated because the XC potential was not recognized as an LDA or GGA 
functional\n"); 

        fprintf(cplog, "Sugggestion: re-run Abinit with a different XC functional or check that 
ixc=%d is correct\n", xcpot[i]); 

        errcount++; 

        return 1; 

    } 

    xc_func_end(&func); 

  } 

  FixEdges(gridout); 

  return 0; 

} 

 

 

/* MAP CALCULATION FUNCTIONS */ 

 

int CalcKineticTF(struct CrystData * gridin, int dsnum, struct CrystData * gridout) { 

  /* called by: MapEntot */ 

  /* calls: ReadLine */ 

  char line[500], str1[30], str2[30], str3[30]; 

  int check=0, i=0, jx=0, jy=0, jz=0, stop=0; 

  double E_core[dsnum], E_entropy[dsnum], E_ewald[dsnum], E_hartree[dsnum], E_int[dsnum]; 

  double E_kinetic[dsnum], E_locPsp[dsnum], E_nlPsp[dsnum], E_total[dsnum], E_xc[dsnum]; 

  double normKE=0; 

  FILE * fptr; 

  fptr = fopen(abinitout, "r"); 

  if (fptr==NULL) { 

    printf("\n  BAD NEWS: File %s not found!\n", abinitout); 

    fprintf(cplog, "\nTerminated because file %s not found\n", abinitout); 

    fprintf(cplog, "Suggestion: check your Abinit files or input options\n"); 

    errcount++; 

    return 1; 

  } 

  while (stop==0) { 

    check = ReadLine(fptr, line); 

    if (check==1) { 

      printf("\n  BAD NEWS: Energy data in %s not found!\n", abinitout); 

      fprintf(cplog, "\nTerminated because total free energy list #%d not found in %s\n", i+1, 
abinitout); 

      fprintf(cplog, "Suggestion: check %s or check if data matches format in CPpackage source 
code\n", abinitout); 

      errcount++; 
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      return 2; 

    } 

    if (strncmp(line, " Components of total free energy (in Hartree) :", 47)==0) { 

      fscanf(fptr, "%s %s %s %lf", str1, str2, str3, &E_kinetic[i]); 

      fscanf(fptr, "%s %s %s %lf", str1, str2, str3, &E_hartree[i]); 

      fscanf(fptr, "%s %s %s %lf", str1, str2, str3, &E_xc[i]); 

      fscanf(fptr, "%s %s %s %lf", str1, str2, str3, &E_ewald[i]); 

      fscanf(fptr, "%s %s %s %lf", str1, str2, str3, &E_core[i]); 

      fscanf(fptr, "%s %s %s %lf", str1, str2, str3, &E_locPsp[i]); 

      fscanf(fptr, "%s %s %s %lf", str1, str2, str3, &E_nlPsp[i]); 

      fscanf(fptr, "%s %s %s %lf", str1, str2, str3, &E_int[i]); 

      fscanf(fptr, "%s %s %lf" ,str1, str2, &E_entropy[i]); 

      fscanf(fptr, "%s %s %lf" ,str1, str2, &E_total[i]); 

      i++; 

    } 

    if (i==dsnum) stop = 1; 

  } 

  fclose(fptr); 

  for (jz=0; jz<ngz; jz++) { 

    for (jy=0; jy<ngy; jy++) { 

      for (jx=0; jx<ngx; jx++) { 

        normKE += pow(gridin->grid[jx][jy][jz], 5.0/3.0)*gridin->volvox; 

      } 

    } 

  } 

  for (jz=0; jz<=ngz; jz++) { 

    for (jy=0; jy<=ngy; jy++) { 

      for (jx=0; jx<=ngx; jx++) { 

        gridout->grid[jx][jy][jz] = E_kinetic[dsnum-1]*(pow(gridin->grid[jx][jy][jz], 
5.0/3.0)/normKE); 

      } 

    } 

  } 

  return 0; 

} 

 

int MapEntot(struct CrystData * denin, struct CrystData * denin2, struct CrystData * kdenin, 
struct CrystData * kdenin2, struct CrystData * potin, struct CrystData * potin2, struct CrystData 
* vhxcin, struct CrystData * vhxcin2, struct CrystData * vhain, struct CrystData * vhain2, int 
dsnum, double vol, struct CrystData * etotout) { 

  /* called by: main */ 

  /* calls: AddGrid, CalcKineticTF, CalcVxc, CoreCorrection, IntegrateGrid, MultiplyGrid, 
OutputXSF, ScaleGrid, SubtractGrid */ 

  char enfile[STRMAX]; 

  int check=0, jx=0, jy=0, jz=0; 

  double integ1=0.0, integ2=0.0; 

  FILE * fptr; 

  core.volvox = vol; 

  core2.volvox = vol; 

  temp.volvox = vol; 

  temp2.volvox = vol; 

  vxc.volvox = vol; 

  vxc2.volvox = vol; 

  fprintf(cplog, " Cell volume DS%d: %20.14f\n", dsnum, denin->volcell); 
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  if (nspin==2) fprintf(cplog, "  Electron count: %20.14f\n", 
IntegrateGrid(denin)+IntegrateGrid(denin2)); 

  else fprintf(cplog, "  Electron count: %20.14f\n", IntegrateGrid(denin));\ 

 

  if (mapkin==2) { 

    kdenin->volvox = vol; 

    if (nspin==2) { 

      AddGrid(denin, denin2, &temp); 

      check = CalcKineticTF(&temp, dsnum, kdenin); 

    } else check = CalcKineticTF(denin, dsnum, kdenin); 

    if (check!=0) return 1; 

  } 

  if (mapkin==1 || mapkin==2) { 

    if (nspin==2 && mapkin!=2) p_kin[dsnum-1] = IntegrateGrid(kdenin)+IntegrateGrid(kdenin2); 

    else p_kin[dsnum-1] = IntegrateGrid(kdenin); 

    fprintf(cplog, "  Kinetic energy: %20.14f\n", p_kin[dsnum-1]); 

  } 

 

  SubtractGrid(potin, vhxcin, potin); 

  if (nspin==2) { 

    SubtractGrid(potin2, vhxcin2, potin2); 

    AddGrid(potin, potin2, potin);  /* combine up and down pot from here on */ 

  } 

  if (maploc!=1) { 

    SubtractGrid(potin, potin, potin); 

    if (nspin==2) SubtractGrid(potin2, potin2, potin2); 

  } 

  if (nspin==2) { 

    AddGrid(denin, denin2, &temp2); 

    MultiplyGrid(potin, &temp2, &temp); 

  } else MultiplyGrid(potin, denin, &temp);  /* temp is vden here */ 

  p_loc[dsnum-1] = IntegrateGrid(&temp); 

  fprintf(cplog, "  V_local energy: %20.14f\n", p_loc[dsnum-1]); 

 

  if (mapxc==1) {  /* Vxc = epsilon(r) where Exc[rho] = integ(epsilon(r)*rho(r))dV */ 

    check = CoreCorrection(denin, &core);  /* for psuedopotentials with nonlinear core correction 
*/ 

    if (check!=0) return 2; 

    if (nspin==2) { 

      check = CoreCorrection(denin2, &core2); 

      if (check!=0) return 2; 

    } 

    check = CalcVxc(&core, &core2, dsnum, &vxc, &vxc2); 

    if (check!=0) return 3; 

  } else { 

    SubtractGrid(&vxc, &vxc, &vxc); 

    if (nspin==2) SubtractGrid(&vxc2, &vxc2, &vxc2); 

  } 

 

  if (maphart==1) { 

    ScaleGrid(vhain, 0.5, vhain); 

    AddGrid(potin, vhain, potin); 

    if (nspin==2) { 

      ScaleGrid(vhain2, 0.5, vhain2); 
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      AddGrid(potin, vhain2, potin); 

    } 

  } else { 

    SubtractGrid(vhain, vhain, vhain); 

    if (nspin==2) SubtractGrid(vhain2, vhain2, vhain2); 

  } 

  if (nspin==2) { 

    AddGrid(denin, denin2, &temp2); 

    MultiplyGrid(vhain2, &temp2, &temp);  /* vhain1 is empty */ 

  } else MultiplyGrid(vhain, denin, &temp); 

  p_hart[dsnum-1] = IntegrateGrid(&temp); 

  fprintf(cplog, "  Hartree energy: %20.14f\n", p_hart[dsnum-1]); 

 

  if (nspin==2) { 

    AddGrid(&core, &core2, &temp2); 

    MultiplyGrid(&temp2, &vxc2, &temp); 

  } else MultiplyGrid(&core, &vxc, &temp);  /* core = denin for HGH pseudopotentials */ 

  p_xc[dsnum-1] = IntegrateGrid(&temp); 

  fprintf(cplog, "Exch-corr energy: %20.14f\n", p_xc[dsnum-1]); 

  if (p_xc[dsnum-1]!=p_xc[dsnum-1]) {  /* undefined number */ 

    printf("\n  BAD NEWS: The electron density is sometimes negative!\n"); 

    fprintf(cplog, "\nTerminated because of negative values in the electron density file\n"); 

    fprintf(cplog, "Suggestion: re-run Abinit with higher ecut or less empty space in the unit 
cell\n"); 

    errcount++; 

    return 3; 

  } 

 

  if (nspin==2) { 

    AddGrid(denin, denin2, &temp2); 

    MultiplyGrid(potin, &temp2, potin); 

  } else MultiplyGrid(potin, denin, potin);  /* Vden(r) = V(r)*rho(r) potential energy density */ 

  AddGrid(potin, &temp, potin);  /* full potential including exchange-correlation */ 

  fprintf(cplog, "Potential energy: %20.14f\n", IntegrateGrid(potin)); 

  if (maploc==1 && IntegrateGrid(potin)>0.0) { 

    printf("\n  BAD NEWS: The potential energy is positive!\n"); 

    fprintf(cplog, "\nTerminated because total potential energy from DS%d is positive\n", dsnum); 

    fprintf(cplog, "Suggestion: check your Abinit files for inconsistencies\n"); 

    errcount++; 

    return 4; 

  } 

 

  if (mapkin==1 || mapkin==2) AddGrid(kdenin, potin, potin);  /* total energy density */ 

  if (nspin==2 && mapkin==1) AddGrid(kdenin2, potin, potin); 

  ScaleGrid(potin, denin->volvox, etotout);  /* etot = grid of total voxel energies */ 

  fprintf(cplog, "Total map energy: %20.14f\n\n", IntegrateGrid(etotout)); 

  if (printen==1) { 

    snprintf(enfile, STRMAX, "%s-emap%d.xsf", cpoutname, dsnum); 

    fptr = fopen(enfile, "w"); 

    OutputXSF(fptr, denin, etotout); 

    fclose(fptr); 

  } 

  return 0; 

} 
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double PressureContrib(struct CrystData * gridinup, struct CrystData * gridin, struct CrystData * 
gridindn, double pin_kin, double pin_loc, double pin_hart, double pin_xc, double * p_entropy, 
double * p_mapcore, double * pout_nonloc, double * pout_ewald, double * pout_ealpha, double * 
pout_kin, double * pout_loc, double * pout_hart, double * pout_xc) { 

  /* called by: CalcCP */ 

  /* calls: ReadLine */ 

  char check=0, i=0, line[500], stop=0, str1[30], str2[30], str3[30]; 

  double dV=0.0, pin_map=0.0, pin_nonmap=0.0, pin_tot=0.0; 

  double p_mapped=0.0, p_nonmapped=0.0, p_total=0.0; 

  double E_core[3], E_entropy[3], E_ewald[3], E_hartree[3], E_int[3]; 

  double E_kinetic[3], E_locpsp[3], E_nonlocpsp[3], E_total[3], E_xc[3]; 

  FILE * fptr; 

  fptr = fopen(abinitout, "r"); 

  if (fptr==NULL) { 

    printf("\n  BAD NEWS: File %s not found!\n", abinitout); 

    fprintf(cplog, "\nTerminated because file %s not found\n", abinitout); 

    fprintf(cplog, "Suggestion: check your files and input options\n"); 

    errcount++; 

    return 0.0; 

  } 

  while (stop==0) { 

    check = ReadLine(fptr, line); 

    if (check==1) { 

      printf("\n  BAD NEWS: Energy data in %s not found!\n", abinitout); 

      fprintf(cplog, "\nTerminated because total free energy list #%d not found in %s\n", i+1, 
abinitout); 

      fprintf(cplog, "Suggestion: check %s or check if data matches format in CPpackage source 
code\n", abinitout); 

      errcount++; 

      return 0.0; 

    } 

    if (strncmp(line, " Components of total free energy (in Hartree) :", 47)==0) { 

      fscanf(fptr, "%s %s %s %lf", str1, str2, str3, &E_kinetic[i]); 

      fscanf(fptr, "%s %s %s %lf", str1, str2, str3, &E_hartree[i]); 

      fscanf(fptr, "%s %s %s %lf", str1, str2, str3, &E_xc[i]); 

      fscanf(fptr, "%s %s %s %lf", str1, str2, str3, &E_ewald[i]); 

      fscanf(fptr, "%s %s %s %lf", str1, str2, str3, &E_core[i]); 

      fscanf(fptr, "%s %s %s %lf", str1, str2, str3, &E_locpsp[i]); 

      fscanf(fptr, "%s %s %s %lf", str1, str2, str3, &E_nonlocpsp[i]); 

      if (occopt==3) { 

        fscanf(fptr, "%s %s %s %lf", str1, str2, str3, &E_int[i]); 

        fscanf(fptr, "%s %s %lf", str1, str2, &E_entropy[i]); 

      } 

      fscanf(fptr, "%s %s %lf", str1, str2, &E_total[i]); 

      i++; 

    } 

    if (i==3) stop = 1; 

  } 

  fclose(fptr); 

  dV = gridindn->volcell-gridinup->volcell;  /* negative sign */ 

  *pout_kin = (E_kinetic[0]-E_kinetic[2])/dV; 

  *pout_hart = (E_hartree[0]-E_hartree[2])/dV; 

  *pout_xc = (E_xc[0]-E_xc[2])/dV; 

  *pout_ewald = (E_ewald[0]-E_ewald[2])/dV; 

  *pout_ealpha = (E_core[0]-E_core[2])/dV; 
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  *pout_loc = (E_locpsp[0]-E_locpsp[2])/dV; 

  *pout_nonloc = (E_nonlocpsp[0]-E_nonlocpsp[2])/dV; 

  *p_entropy = (E_entropy[0]-E_entropy[2])/dV; 

  *p_mapcore = (en_core[0]-en_core[2])/dV; 

  printf("\n  -----------SUMMARY OF CP PRESSURE CONTRIBUTIONS------------\n"); 

  fprintf(cplog, "-----------SUMMARY OF CP PRESSURE CONTRIBUTIONS------------\n"); 

  printf("  Mapped Contributions                 ABINIT         CPmap\n"); 

  fprintf(cplog, "Mapped Contributions                 ABINIT         CPmap\n"); 

  if (mapkin==1 || mapkin==2) { 

    printf("               kinetic E pressure  %12.8f  %12.8f\n", *pout_kin, pin_kin); 

    fprintf(cplog, "             kinetic E pressure  %12.8f  %12.8f\n", *pout_kin, pin_kin); 

    p_mapped += *pout_kin; 

    pin_map += pin_kin; 

  } 

  if (maploc==1) { 

    printf("             local psp E pressure  %12.8f  %12.8f\n", *pout_loc, pin_loc); 

    fprintf(cplog, "           local psp E pressure  %12.8f  %12.8f\n", *pout_loc, pin_loc); 

    p_mapped += *pout_loc; 

    pin_map += pin_loc; 

  } 

  if (maphart==1) { 

    printf("               Hartree E pressure  %12.8f  %12.8f\n", *pout_hart, pin_hart); 

    fprintf(cplog, "             Hartree E pressure  %12.8f  %12.8f\n", *pout_hart, pin_hart); 

    p_mapped += *pout_hart; 

    pin_map += pin_hart; 

  } 

  if (mapxc==1) { 

    printf("             exch-corr E pressure  %12.8f  %12.8f\n", *pout_xc, pin_xc); 

    fprintf(cplog, "           exch-corr E pressure  %12.8f  %12.8f\n", *pout_xc, pin_xc); 

    p_mapped += *pout_xc; 

    pin_map += pin_xc; 

  } 

  if (mapcore==1) { 

    printf("         -restore core E pressure    same as ->  %12.8f\n", -*p_mapcore); 

    fprintf(cplog, "       -restore core E pressure    same as ->  %12.8f\n", -*p_mapcore); 

    p_mapped += -*p_mapcore; 

    pin_map += -*p_mapcore; 

  } 

  printf("  -----------------------------------------------------------\n"); 

  fprintf(cplog, "-----------------------------------------------------------\n"); 

  printf("            Total mapped pressure  %12.8f  %12.8f\n\n", p_mapped, pin_map); 

  fprintf(cplog, "          Total mapped pressure  %12.8f  %12.8f\n\n", p_mapped, pin_map); 

  printf("  Non-mapped Contributions\n"); 

  fprintf(cplog, "Non-mapped Contributions\n"); 

  if (mapcore == 1) { 

    printf("          restore core E pressure    same as ->  %12.8f\n", *p_mapcore); 

    fprintf(cplog, "        restore core E pressure    same as ->  %12.8f\n", *p_mapcore); 

    p_nonmapped += *p_mapcore; 

    pin_nonmap += *p_mapcore; 

  } 

  if (mapkin!=1 && mapkin!=2) { 

    printf("               kinetic E pressure  %12.8f    <- same as\n", *pout_kin); 

    fprintf(cplog, "             kinetic E pressure  %12.8f    <- same as\n", *pout_kin); 
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    p_nonmapped += *pout_kin; 

    pin_nonmap += *pout_kin; 

  } 

  if (maploc!=1) { 

    printf("             local psp E pressure  %12.8f    <- same as\n", *pout_loc); 

    fprintf(cplog, "           local psp E pressure  %12.8f    <- same as\n", *pout_loc); 

    p_nonmapped += *pout_loc; 

    pin_nonmap += *pout_loc; 

  } 

  if (maphart!=1) { 

    printf("               Hartree E pressure  %12.8f    <- same as\n", *pout_hart); 

    fprintf(cplog, "             Hartree E pressure  %12.8f    <- same as\n", *pout_hart); 

    p_nonmapped += *pout_hart; 

    pin_nonmap += *pout_hart; 

  } 

  if (mapxc!=1) { 

    printf("             exch-corr E pressure  %12.8f    <- same as\n", *pout_xc); 

    fprintf(cplog, "           exch-corr E pressure  %12.8f    <- same as\n", *pout_xc); 

    p_nonmapped += *pout_xc; 

    pin_nonmap += *pout_xc; 

  } 

  printf("      non-mapped Ewald E pressure  %12.8f    <- same as\n", *pout_ewald); 

  fprintf(cplog, "    non-mapped Ewald E pressure  %12.8f    <- same as\n", *pout_ewald); 

  p_nonmapped += *pout_ewald; 

  pin_nonmap += *pout_ewald; 

  printf("              psp core E pressure  %12.8f    <- same as\n", *pout_ealpha); 

  fprintf(cplog, "            psp core E pressure  %12.8f    <- same as\n", *pout_ealpha); 

  p_nonmapped += *pout_ealpha; 

  pin_nonmap += *pout_ealpha; 

  printf("          nonlocal psp E pressure  %12.8f    <- same as\n", *pout_nonloc); 

  fprintf(cplog, "        nonlocal psp E pressure  %12.8f    <- same as\n", *pout_nonloc); 

  p_nonmapped += *pout_nonloc; 

  pin_nonmap += *pout_nonloc; 

  if (occopt==3) { 

    printf("             -kt*entropy pressure  %12.8f    <- same as\n", *p_entropy); 

    fprintf(cplog, "           -kt*entropy pressure  %12.8f    <- same as\n", *p_entropy); 

    p_nonmapped += *p_entropy; 

    pin_nonmap += *p_entropy; 

  } 

  printf("  -----------------------------------------------------------\n"); 

  fprintf(cplog, "-----------------------------------------------------------\n"); 

  printf("        Total non-mapped pressure  %12.8f  %12.8f\n\n", p_nonmapped, pin_nonmap); 

  fprintf(cplog, "      Total non-mapped pressure  %12.8f  %12.8f\n\n", p_nonmapped, pin_nonmap); 

  p_total = (E_total[0]-E_total[2])/dV; 

  pin_tot = pin_map+pin_nonmap; 

  printf("  Total Pressure                   %12.8f  %12.8f\n", p_total, pin_tot); 

  fprintf(cplog, "Total Pressure                   %12.8f  %12.8f\n", p_total, pin_tot); 

  printf("  -----------------------------------------------------------\n"); 

  fprintf(cplog, "-----------------------------------------------------------\n"); 

  if (fabs((p_total-pin_tot))>1.0e-5) { 

    printf("\n  BAD NEWS: Pressures from Abinit and CP disagree!\n"); 

    fprintf(cplog, "\nTerminated because pressures from Abinit and CPmap disagree\n"); 

    fprintf(cplog, "Suggestion: check your files for odd behavior\n"); 
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    errcount++; 

    return 0.0; 

  } 

  return pin_tot; 

} 

 

int CalcCP(struct CrystData * denin_up, struct CrystData * denin, struct CrystData * denin_dn, 
struct CrystData * etotin_up, struct CrystData * etotin_dn, struct CrystData * cpout) { 

  /* called by: main */ 

  /* calls: CopyStruct, IntegrateGrid, PressureContrib, ScaleGrid, ShiftGrid, SubtractGrid, 
SymmetrizeGrid */ 

  char cpfile[STRMAX]; 

  int check=0, i=0, stop=0, voxtot=ngx*ngy*ngz; 

  double dV=0.0, hart=0.0, kin=0.0, loc=0.0, ptot=0.0, xc=0.0; 

  double p_check=0.0, p_entropy=0.0, p_mapcore=0, p_remain=0.0; 

  FILE * fptr; 

  CopyStruct(denin, cpout);  /* copies geometric information */ 

  dV = etotin_dn->volvox-etotin_up->volvox;  /* smaller minus larger because p = -dE/dV */ 

  SubtractGrid(etotin_up, etotin_dn, cpout);  /* cpout is energy difference here */ 

  cpout->volvox = (etotin_up->volvox+etotin_dn->volvox)/2.0; 

  ScaleGrid(cpout, 1.0/dV, cpout); 

  p_remain = IntegrateGrid(cpout)/(cpout->volvox*voxtot); 

  if (mapcore==1 && mapsym==1) { 

    printf("  Restoring symmetry after interpolation\n"); 

    check = SymmetrizeGrid(cpout, &smap); 

    if (check!=0) return 1; 

    p_check = IntegrateGrid(cpout)/(cpout->volvox*voxtot); 

    if (fabs(p_remain-p_check)>1.0e-12) { 

      fprintf(cplog, "WARNING: total pressure changed after symmetrization\n"); 

      fprintf(cplog, " before: %20.14f\n", p_remain); 

      fprintf(cplog, "  after: %20.14f\n", p_check); 

      errcount++; 

      if (fabs(p_remain-p_check)<1.0e-5) printf("\n  CAUTION: Total pressure has changed! 
Continuing anyway...\n"); 

      else { 

        printf("\n  BAD NEWS: Total pressure has changed!\n"); 

        fprintf(cplog, "\nTerminated because symmetrization caused a change in pressure\n"); 

        fprintf(cplog, "Suggestion: check Abinit outfile for correct nsym, symrel, and tnons\n"); 

        return 2; 

      } 

    } 

  } 

  fprintf(cplog, "        dV/volume: %.6e\n", -dV/cpout->volvox); 

  fprintf(cplog, "CP before mapping: %.6e\n\n", p_remain); 

  p_kin[3] = p_kin[0]-p_kin[2]; 

  p_loc[3] = p_loc[0]-p_loc[2]; 

  p_hart[3] = p_hart[0]-p_hart[2]; 

  p_xc[3] = p_xc[0]-p_xc[2]; 

  kin = p_kin[3]/(dV*voxtot); 

  loc = p_loc[3]/(dV*voxtot); 

  hart = p_hart[3]/(dV*voxtot); 

  xc = p_xc[3]/(dV*voxtot); 

  ptot = PressureContrib(denin_up, denin, denin_dn, kin, loc, hart, xc, &p_entropy, &p_mapcore, 

    &p_nonloc[3], &p_ewald[3], &p_ealph[3], &p_kin[3], &p_loc[3], &p_hart[3], &p_xc[3]); 
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  if (ptot==0.0) return 3; 

  if (rescp==3 && mapcore==1) p_remain = p_mapcore; 

  else if (rescp==3) p_remain = 0.0; 

  else if (rescp==2) { 

    p_remain = -1.0*IntegrateGrid(cpout)/(cpout->volvox*voxtot); 

    fprintf(cplog, "Homogenous background pressure = %.6e\n", p_remain); 

  } else if (rescp==1) { 

    p_remain = 0.0; 

    if (mapkin!=1 && mapkin!=2) p_remain += p_kin[3]; 

    if (maploc!=1) p_remain += p_loc[3]; 

    if (maphart!=1) p_remain += p_hart[3]; 

    if (mapxc!=1) p_remain += p_xc[3]; 

    if (mapcore==1) p_remain += p_mapcore; 

    p_remain += p_entropy+p_ewald[3]+p_nonloc[3]+p_ealph[3]; 

  } 

  ShiftGrid(cpout, p_remain, cpout); 

  p_remain = IntegrateGrid(cpout)/(cpout->volvox*voxtot); 

  printf("  Average CP of map = %.6e  au\n", p_remain); 

  printf("                    = %.6e GPa\n\n", p_remain*AU2GPA); 

  fprintf(cplog, "Average CP = %.6e  au\n", p_remain); 

  fprintf(cplog, "           = %.6e GPa\n\n", p_remain*AU2GPA); 

  if (fabs(ptot-p_remain)>1.0e-5) { 

    printf("  BAD NEWS: Average mapped pressure does not match DFT results!\n"); 

    fprintf(cplog, "\nTerminated because averaged mapped pressure does not match total in Abinit 
outfile\n"); 

    fprintf(cplog, "Suggestion: check the Abinit outfile and potentials for odd behavior\n"); 

    errcount++; 

    return 4; 

  } 

  snprintf(cpfile, STRMAX, "%s-CP.xsf", cpoutname); 

  fptr = fopen(cpfile, "w"); 

  OutputXSF(fptr, denin, cpout); 

  fclose(fptr); 

  printf("  CP file %s is finished\n\n", cpfile); 

  return 0; 

} 

 

 

/* MAP INTEGRATION FUNCTIONS */ 

 

int SetBubbles(struct CrystData * gridin) { 

  /* called by: main */ 

  /* calls: ElementName */ 

  char element[STRMAX]; 

  int i=0, j=0, stop[NIONMAX]; 

  for (i=0; i<gridin->nion; i++) { 

    if (stop[i]==1) continue; 

    ElementName(gridin->zatomic[i], element); 

    if (smap.nequiv[i]>1) { 

      fprintf(cplog, "Enter a core radius for atom #%d in Angstrom (%s, %d equivalent sites): ", 

        i+1, element, smap.nequiv[i]); 

    } else { 

      fprintf(cplog, "Enter a core radius for atom #%d in Angstrom (%s, %d site): ", 

        i+1, element, smap.nequiv[i]); 
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    } 

    retry_radius: 

    if (smap.nequiv[i]>1) { 

      printf("  Enter a core radius for atom #%d in Angstrom (%s, %d equivalent sites): ", 

        i+1, element, smap.nequiv[i]); 

    } else { 

      printf("  Enter a core radius for atom #%d in Angstrom (%s, %d site): ", 

        i+1, element, smap.nequiv[i]); 

    } 

    scanf("%lf", gridin->corerad[i]); 

    if (gridin->corerad[i]<0.0) { 

      printf("  Invalid input. Please try again\n"); 

      goto retry_radius; 

    } 

    fprintf(cplog, "%f Angstrom = %f bohr\n", gridin->corerad[i], gridin->corerad[i]/R_BOHR); 

    gridin->corerad[i] = gridin->corerad[i]/R_BOHR; 

    for (j=i; j<gridin->nion; j++) { 

      if (smap.equiv[i][j]!=1) continue; 

      gridin->corerad[j] = gridin->corerad[i]; 

      stop[j] = 1; 

    } 

  } 

  return 0; 

} 

 

int CoordSearch(struct CrystData * gridin, struct ContactVol * map) { 

  /* called by: main */ 

  /* calls: Getwj */ 

  int atom=0, atom2=0, atom3[NEQVOX], index=0, i=0, j=0, jx=0, jy=0, jz=0; 

  int ka1=0, kb1=0, kc1=0, ka2=0, kb2=0, kc2=0, ka3[NEQVOX], kb3[NEQVOX], kc3[NEQVOX]; 

  int ka=0, kb=0, kc=0, check[NEQVOX], ngcount=0, ngp=0, ngp0=0, voxtot=ngx*ngy*ngz; 

  double dist=0.0, dmax=0.0, voxcenter_x=0.0, voxcenter_y=0.0, voxcenter_z=0.0; 

  double wj_temp[NEQVOX], wmax=0.0, wmax2=0.0, xf=0.0, yf=0.0, zf=0.0, xc=0.0, yc=0.0, zc=0.0; 

  printf("0%%"); 

  fflush(stdout); 

  /* every voxel in the unit cell */ 

  for (jz=0; jz<ngz; jz++) { 

    /* fractional coordinates */ 

    zf = (double)jz/(double)ngz; 

    for (jy=0; jy<ngy; jy++) { 

      yf = (double)jy/(double)ngy; 

      for (jx=0; jx<ngx; jx++) { 

        xf = (double)jx/(double)ngx; 

        /* cartesian coordinates */ 

        voxcenter_x = xf*gridin->cella_x+yf*gridin->cellb_x+zf*gridin->cellc_x; 

        voxcenter_y = xf*gridin->cella_y+yf*gridin->cellb_y+zf*gridin->cellc_y; 

        voxcenter_z = xf*gridin->cella_z+yf*gridin->cellb_z+zf*gridin->cellc_z; 

        for (i=0; i<NIONMAX; i++) check[i] = 0; 

        map->neighcount[jx][jy][jz] = 0; 

        map->neighcount2[jx][jy][jz] = 0; 

        map->swj[jx][jy][jz] = 0.0; 

        map->swjk[jx][jy][jz] = 0.0; 

        wmax=0.0; 
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        wmax2=0.0; 

        ngcount++; 

        ngp = ngcount*100/voxtot; 

        if (ngp!=ngp0) { 

          printf("\r%d%%", ngp); 

          fflush(stdout); 

        } 

        ngp0=ngp; 

        /* every unit cell in the supercell */ 

        for (ka=-kam; ka<=kam; ka++) { 

          for (kb=-kbm; kb<=kbm; kb++) { 

            for (kc=-kcm; kc<=kcm; kc++) { 

              /* every atom in cartesian coordinates */ 

              for (atom=0; atom<gridin->nion; atom++) { 

                xc = gridin->xcart[atom]+ka*gridin->cella_x+kb*gridin->cellb_x+kc*gridin-
>cellc_x; 

                yc = gridin->ycart[atom]+ka*gridin->cella_y+kb*gridin->cellb_y+kc*gridin-
>cellc_y; 

                zc = gridin->zcart[atom]+ka*gridin->cella_z+kb*gridin->cellb_z+kc*gridin-
>cellc_z; 

                dist = sqrt((voxcenter_x-xc)*(voxcenter_x-xc)+(voxcenter_y-yc)*(voxcenter_y-yc)+ 

                  (voxcenter_z-zc)*(voxcenter_z-zc)); 

                if (dist<R_MAX) {  /* if the voxel is close enough to the translated atom */ 

                  index = map->neighcount2[jx][jy][jz]; 

                  map->ionmap[index][jx][jy][jz] = ((ka+3)<<13)+((kb+3)<<10)+((kc+3)<<7)+atom; 

                  if (scheme==1) {  /* Hirshfeld weight */ 

                    map->wj[index][jx][jy][jz] = Getwj(atom, dist); 

                    if (map->wj[index][jx][jy][jz]==-1000.0) return 1; 

                  } else if (scheme==2) map->wj[index][jx][jy][jz] = R_MAX-dist+gridin-
>corerad[atom];  /* distance weight */ 

                  map->neighcount2[jx][jy][jz]++; 

                  if (map->neighcount2[jx][jy][jz]==NEQVOX) { 

                    printf("\n  BAD NEWS: The number of nearby atoms exceeds %d!\n", NEQVOX); 

                    fprintf(cplog, "\nTerminated because the number of atoms near voxel %d %d %d 
is larger than %d\n", 

                      jx, jy, jz, NEQVOX); 

                    fprintf(cplog, "Suggestion: increase NEQVOX or decrease R_MAX and 
recompile\n"); 

                    errcount++; 

                    return 2; 

                  } 

                } 

              } 

            } 

          } 

        } 

        for (i=0; i<map->neighcount2[jx][jy][jz]; i++) { 

          if(wmax<map->wj[i][jx][jy][jz]) { 

            wmax2 = wmax;  /* second highest weight */ 

            wmax = map->wj[i][jx][jy][jz];  /* highest weight */ 

          } else if (wmax2<map->wj[i][jx][jy][jz]) wmax2 = map->wj[i][jx][jy][jz]; 

          /* temporary value holders to prevent overwriting */ 

          ka3[i] = (map->ionmap[i][jx][jy][jz]>>13&7)-3; 

          kb3[i] = (map->ionmap[i][jx][jy][jz]>>10&7)-3; 

          kc3[i] = (map->ionmap[i][jx][jy][jz]>>7&7)-3; 
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          atom3[i] = map->ionmap[i][jx][jy][jz]&127; 

          wj_temp[i] = map->wj[i][jx][jy][jz]; 

        } 

        /* all pairs of atoms identified above near voxel jx, jy, jz */ 

        for (i=0; i<map->neighcount2[jx][jy][jz]; i++) { 

          ka1=ka3[i]; 

          kb1=kb3[i]; 

          kc1=kc3[i]; 

          atom=atom3[i]; 

          for (j=i+1; j<map->neighcount2[jx][jy][jz]; j++) { 

            ka2=ka3[j]; 

            kb2=kb3[j]; 

            kc2=kc3[j]; 

            atom2=atom3[j]; 

            /* if the weight product of the two atoms is within tolerance */ 

            if (wj_temp[i]*wj_temp[j]>=wmax*wmax2*(1.0-tolerance)) { 

              /* record individual atom information if not recorded before */ 

              if (check[i]==0) { 

                check[i] = 1; 

                index = map->neighcount[jx][jy][jz]; 

                map->neighkey[index][jx][jy][jz] = i; 

                map->ionmap[index][jx][jy][jz] = ((ka1+3)<<13)+((kb1+3)<<10)+((kc1+3)<<7)+atom; 

                map->swj[jx][jy][jz] += wj_temp[i]; 

                map->swjk[jx][jy][jz] += wj_temp[i]*wj_temp[i]; 

                map->neighcount[jx][jy][jz]++; 

              } 

              if (check[j]==0) { 

                check[j] = 1; 

                index = map->neighcount[jx][jy][jz]; 

                map->neighkey[index][jx][jy][jz] = j; 

                map->ionmap[index][jx][jy][jz] = ((ka2+3)<<13)+((kb2+3)<<10)+((kc2+3)<<7)+atom2; 

                map->swj[jx][jy][jz] += wj_temp[j]; 

                map->swjk[jx][jy][jz] += wj_temp[j]*wj_temp[j]; 

                map->neighcount[jx][jy][jz]++; 

              } 

              /* determines longest atom-to-voxel distance for the log file */ 

              xc = gridin->xcart[atom]+ka1*gridin->cella_x+kb1*gridin->cellb_x+kc1*gridin-
>cellc_x; 

              yc = gridin->ycart[atom]+ka1*gridin->cella_y+kb1*gridin->cellb_y+kc1*gridin-
>cellc_y; 

              zc = gridin->zcart[atom]+ka1*gridin->cella_z+kb1*gridin->cellb_z+kc1*gridin-
>cellc_z; 

              dist = sqrt((voxcenter_x-xc)*(voxcenter_x-xc)+(voxcenter_y-yc)*(voxcenter_y-yc)+ 

                (voxcenter_z-zc)*(voxcenter_z-zc)); 

              if (dist>dmax) dmax = dist; 

              xc = gridin->xcart[atom2]+ka2*gridin->cella_x+kb2*gridin->cellb_x+kc2*gridin-
>cellc_x; 

              yc = gridin->ycart[atom2]+ka2*gridin->cella_y+kb2*gridin->cellb_y+kc2*gridin-
>cellc_y; 

              zc = gridin->zcart[atom2]+ka2*gridin->cella_z+kb2*gridin->cellb_z+kc2*gridin-
>cellc_z; 

              dist = sqrt((voxcenter_x-xc)*(voxcenter_x-xc)+(voxcenter_y-yc)*(voxcenter_y-yc)+ 

                (voxcenter_z-zc)*(voxcenter_z-zc)); 

              if (dist>dmax) dmax = dist; 

            } 
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          } 

        } 

        /* S(wj*wk)=1/2*S(wj)^2-S(wj^2); faster than looping through all j*k atom combinations */ 

        map->swjk[jx][jy][jz] = 0.5*(map->swj[jx][jy][jz]*map->swj[jx][jy][jz]-map-
>swjk[jx][jy][jz]); 

      } 

    } 

  } 

  fprintf(cplog, "Longest contact within %.2lf bohr was %.2lf bohr away\n", R_MAX, dmax); 

  fprintf(cplog, "Adjust R_MAX and recompile to improve accuracy/speed as necessary\n", R_MAX, 
dmax); 

  printf(" Finished\n"); 

  return 0; 

} 

 

int AssignContact(struct ContactVol * map, struct CrystData * gridin) { 

  /* called by: main */ 

  /* calls: none */ 

  int atom=0, atom2=0, index=0, index2=0, ngcount=0, ngp=0, ngp0=0, voxtot=ngx*ngy*ngz; 

  int i=0, j=0, k=0, jx=0, jy=0, jz=0, ka=0, kb=0, kc=0, ka1=0, kb1=0, kc1=0, ka2=0, kb2=0, 
kc2=0; 

  double coeff=0.0, denom=0.0, numer=0.0, wmax=0.0, wmax2=0.0; 

  for (i=0; i<7; i++) { 

    for (j=0; j<7; j++) { 

      for (k=0; k<7; k++) { 

        for (atom=0; atom<gridin->nion; atom++) { 

          for (atom2=0; atom2<gridin->nion; atom2++) { 

            map->count[i][j][k][atom][atom2] = 0.0; 

            map->total[i][j][k][atom][atom2] = 0.0; 

          } 

        } 

      } 

    } 

  } 

  printf("0%%"); 

  fflush(stdout); 

  for (jz=0; jz<ngz; jz++) { 

    for (jy=0; jy<ngy; jy++) { 

      for (jx=0; jx<ngx; jx++) { 

        ngcount++; 

        ngp = ngcount*100/voxtot; 

        if (ngp!=ngp0) { 

          printf("\r%d%%", ngp); 

          fflush(stdout); 

        } 

        ngp0 = ngp; 

        wmax = -200.0; 

        wmax2 = -100.0; 

        for (i=0; i<map->neighcount2[jx][jy][jz]; i++) { 

          if (wmax<map->wj[i][jx][jy][jz]) { 

            wmax2 = wmax; 

            wmax = map->wj[i][jx][jy][jz]; 

          } else if (wmax2<map->wj[i][jx][jy][jz]) wmax2 = map->wj[i][jx][jy][jz]; 

        } 
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        /* every possible pair of atoms identified by CoordSearch */ 

        for (i=0; i<map->neighcount[jx][jy][jz]; i++) { 

          ka1 = (map->ionmap[i][jx][jy][jz]>>13&7)-3; 

          kb1 = (map->ionmap[i][jx][jy][jz]>>10&7)-3; 

          kc1 = (map->ionmap[i][jx][jy][jz]>>7&7)-3; 

          atom = map->ionmap[i][jx][jy][jz]&127; 

          index = map->neighkey[i][jx][jy][jz]; 

          for (j=i+1; j<map->neighcount[jx][jy][jz]; j++) { 

            ka2 = (map->ionmap[j][jx][jy][jz]>>13&7)-3; 

            kb2 = (map->ionmap[j][jx][jy][jz]>>10&7)-3; 

            kc2 = (map->ionmap[j][jx][jy][jz]>>7&7)-3; 

            atom2 = map->ionmap[j][jx][jy][jz]&127; 

            index2 = map->neighkey[j][jx][jy][jz]; 

            if (map->wj[index][jx][jy][jz]*map->wj[index2][jx][jy][jz]>=wmax*wmax2*(1.0-
tolerance)) { 

              /* weight of ions i*j compared to sum of all weight products at voxel jx, jy, jz */ 

              coeff = map->wj[index][jx][jy][jz]*map->wj[index2][jx][jy][jz]/map-
>swjk[jx][jy][jz]; 

              /* sum of each ion pair's total weight contributions within the supercell */ 

              map->count[ka2-ka1+3][kb2-kb1+3][kc2-kc1+3][atom][atom2] += coeff; 

              /* as map->count but weighted by the pressure at each voxel */ 

              map->total[ka2-ka1+3][kb2-kb1+3][kc2-kc1+3][atom][atom2] += coeff*gridin-
>grid[jx][jy][jz]; 

            } 

          } 

        } 

      } 

    } 

  } 

  printf(" Finished\n"); 

  /* every pair of atoms */ 

  for (atom=0; atom<gridin->nion; atom++) { 

    for (atom2=atom; atom2<gridin->nion; atom2++) { 

      /* every cell in the supercell */ 

      for (ka=-kam; ka<=kam; ka++) { 

        for (kb=-kbm; kb<=kbm; kb++) { 

          for (kc=-kcm; kc<=kcm; kc++) { 

            if (atom==atom2 && ka==0 && kb==0 && kc==0) continue;  /* skip self interaction */ 

            numer = map->total[ka+3][kb+3][kc+3][atom][atom2]+map->total[-ka+3][-kb+3][-
kc+3][atom2][atom]; 

            denom = map->count[ka+3][kb+3][kc+3][atom][atom2]+map->count[-ka+3][-kb+3][-
kc+3][atom2][atom]; 

            /* total CP contribution of every ion pair / total number of voxels within their 
influence */ 

            map->average[ka+3][kb+3][kc+3][atom][atom2] = (denom==0.0)? 0.0 : numer/denom; 

            map->average[-ka+3][-kb+3][-kc+3][atom2][atom] = (denom==0.0)? 0.0 : numer/denom; 

          } 

        } 

      } 

    } 

  } 

  return 0; 

} 
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int AverageContact(struct ContactVol * map, struct CrystData * gridin, struct CrystData * 
gridout) { 

  /* called by: main */ 

  /* calls: Cart2Sph, FixEdges */ 

  int i=0, j=0, jx=0, jy=0, jz=0, ka=0, kb=0, kc=0, ka2=0, kb2=0, kc2=0, l=0, m=0, voxcount=0; 

  int atom=0, atom2=0, index=0, index2=0, ngcount=0, ngp=0, ngp0=0, voxtot=ngx*ngy*ngz; 

  double coeff=0.0, cosmphi[L_MAX], sinmphi[L_MAX], tempcp=0.0, wmax=0.0, wmax2=0.0; 

  double costheta=0.0, voxel_r=0.0, voxel_theta=0.0, voxel_phi=0.0, Y00=0.0; 

  double voxcenter_x=0.0, voxcenter_y=0.0, voxcenter_z=0.0, xf=0.0, yf=0.0, zf=0.0; 

  for (i=0; i<gridin->nion; i++) { 

    gridout->voxcount[i] = 0; 

    gridout->intCP[i] = 0; 

    for (l=0; l<10; l++) { 

      for (m=0; m<l+1; m++) { 

        gridout->intYlm[i][l][2*m] = 0.0; 

        gridout->intYlm[i][l][2*m+1] = 0.0; 

      } 

    } 

  } 

  Y00 = gsl_sf_legendre_sphPlm(0,0,0); 

  printf("0%%"); 

  fflush(stdout); 

  for (jz=0; jz<ngz; jz++) { 

    zf = (double)jz/(double)ngz; 

    for (jy=0; jy<ngy; jy++) { 

      yf = (double)jy/(double)ngy; 

      for (jx=0; jx<ngx; jx++) { 

        xf = (double)jx/(double)ngx; 

        ngcount++; 

        ngp = ngcount*100/voxtot; 

        if (ngp!=ngp0) { 

          printf("\r%d%%", ngp); 

          fflush(stdout); 

        } 

        ngp0 = ngp; 

        tempcp = 0.0; 

        for (i=0; i<map->neighcount[jx][jy][jz]; i++) { 

          ka = (map->ionmap[i][jx][jy][jz]>>13&7)-3; 

          kb = (map->ionmap[i][jx][jy][jz]>>10&7)-3; 

          kc = (map->ionmap[i][jx][jy][jz]>>7&7)-3; 

          atom = map->ionmap[i][jx][jy][jz]&127; 

          index = map->neighkey[i][jx][jy][jz]; 

          for (j=i+1; j<map->neighcount[jx][jy][jz]; j++) { 

            ka2 = (map->ionmap[j][jx][jy][jz]>>13&7)-3; 

            kb2 = (map->ionmap[j][jx][jy][jz]>>10&7)-3; 

            kc2 = (map->ionmap[j][jx][jy][jz]>>7&7)-3; 

            atom2 = map->ionmap[j][jx][jy][jz]&127; 

            index2 = map->neighkey[j][jx][jy][jz]; 

            /* weighted sum of CP from all ion pairs */ 

            tempcp += map->wj[index][jx][jy][jz]*map->wj[index2][jx][jy][jz]* 

              map->average[ka2-ka+3][kb2-kb+3][kc2-kc+3][atom][atom2]; 

          } 

        } 
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        /* total CP from all ions pairs at voxel jx, jy, jz (normalized by total sum of weights) 
*/ 

        gridout->grid[jx][jy][jz] = tempcp/map->swjk[jx][jy][jz]; 

        for (i=0; i<map->neighcount[jx][jy][jz]; i++) { 

          atom = map->ionmap[i][jx][jy][jz]&127; 

          ka = (map->ionmap[i][jx][jy][jz]>>13&7)-3; 

          kb = (map->ionmap[i][jx][jy][jz]>>10&7)-3; 

          kc = (map->ionmap[i][jx][jy][jz]>>7&7)-3; 

          index = map->neighkey[i][jx][jy][jz]; 

          voxcenter_x = (xf-ka)*gridin->cella_x+(yf-kb)*gridin->cellb_x+(zf-kc)*gridin->cellc_x; 

          voxcenter_y = (xf-ka)*gridin->cella_y+(yf-kb)*gridin->cellb_y+(zf-kc)*gridin->cellc_y; 

          voxcenter_z = (xf-ka)*gridin->cella_z+(yf-kb)*gridin->cellb_z+(zf-kc)*gridin->cellc_z; 

          Cart2Sph(voxcenter_x-gridin->xcart[atom], voxcenter_y-gridin->ycart[atom], 

            voxcenter_z-gridin->zcart[atom], &voxel_r, &voxel_theta, &voxel_phi); 

          costheta = cos(voxel_theta); 

          for (m=1; m<lmax+1; m++) { 

            sinmphi[m] = sin(m*voxel_phi); 

            cosmphi[m] = cos(m*voxel_phi); 

          } 

          /* coeff = 1/2*[S(wj)-wj]*wj/S(wjk); sum of weight products involving ion j / total 
weight product */ 

          coeff = 0.5*(map->swj[jx][jy][jz]-map->wj[index][jx][jy][jz])*map-
>wj[index][jx][jy][jz]/map->swjk[jx][jy][jz]; 

          gridout->voxcount[atom] += coeff;  /* total number of voxels within atom's influence 
(divided by 2) */ 

          gridout->intCP[atom] += coeff*gridout->grid[jx][jy][jz];  /* integrated CP of atom */ 

          /* l=0, m=0 coefficient of spherical harmonics */ 

          gridout->intYlm[atom][0][0] += Y00*coeff*gridout->grid[jx][jy][jz]; 

          /* higher order spherical harmonic coefficients */ 

          if (voxel_r>0.0) { 

            for (l=1; l<lmax+1; l++) { 

              m = 0; 

              gridout->intYlm[atom][l][m] += gsl_sf_legendre_sphPlm(l, m, costheta)*gridout-
>grid[jx][jy][jz]*coeff; 

              for (m=1; m<l+1; m++) { 

                tempcp = 1.4142135*gsl_sf_legendre_sphPlm(l, m, costheta)*gridout-
>grid[jx][jy][jz]*coeff; 

                gridout->intYlm[atom][l][2*m-1] += tempcp*cosmphi[m]; 

                gridout->intYlm[atom][l][2*m] += tempcp*sinmphi[m]; 

              } 

            } 

          } 

        } 

      } 

    } 

  } 

  gridout->volvox = gridin->volvox; 

  FixEdges(gridout); 

  printf(" Finished\n\n"); 

  return 0; 

} 
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int PrintAverage(struct CrystData * gridin, struct CrystData * gridout) { 

  /* called by: main */ 

  /* calls: ElementName */ 

  char element[10]; 

  int atom=0; 

  double average=0.0; 

  for(atom=0; atom<gridin->nion; atom++) { 

    average = gridout->intCP[atom]/gridout->voxcount[atom]; 

    ElementName(gridin->zatomic[atom], element); 

    printf("  Atom %d (%s) Integration Results\n", atom+1, element); 

    printf("  around point (%.2f, %.2f, %.2f) Angstrom\n", gridin->xcart[atom]*R_BOHR, 

      gridin->ycart[atom]*R_BOHR, gridin->zcart[atom]*R_BOHR); 

    printf("  average over: %9.0f voxels\n", gridout->voxcount[atom]); 

    printf("  l=0 coefficient: %+.2e a.u.\n", gridout->intYlm[atom][0][0]/gridout-
>voxcount[atom]); 

    printf("  net pressure:    %+.2e a.u.\n", average); 

    printf("  %+22.2f     GPa\n\n", average*AU2GPA); 

    fprintf(cplog, "Atom %d (%s) Integration Results\n", atom+1, element); 

    fprintf(cplog, "around point (%.2f, %.2f, %.2f) Angstrom\n", gridin->xcart[atom]*R_BOHR, 

      gridin->ycart[atom]*R_BOHR, gridin->zcart[atom]*R_BOHR); 

    fprintf(cplog, "average over: %9.0f voxels\n", gridout->voxcount[atom]); 

    fprintf(cplog, "l=0 coefficient: %+.2e a.u.\n", gridout->intYlm[atom][0][0]/gridout-
>voxcount[atom]); 

    fprintf(cplog, "net pressure:    %+.2e a.u.\n", average); 

    fprintf(cplog, "%+22.2f     GPa\n\n", average*AU2GPA); 

  } 

  return 0; 

} 

 

int PrintCoeff(struct CrystData * gridin, struct CrystData * gridout) { 

  /* called by: main */ 

  /* calls: none */ 

  char filename[STRMAX]; 

  int atom=0, l=0, m=0; 

  FILE * fptr; 

  strncpy(filename, cpoutname, STRMAX); 

  strncat(filename, "-coeff", STRMAX); 

  fptr = fopen(filename, "w"); 

  for(atom=0; atom<gridin->nion; atom++) { 

    fprintf(fptr, "l_%dm_%d=  %20.14f\n", 0, 0, gridout->intYlm[atom][0][0]/gridout-
>voxcount[atom]); 

    for(l=1; l<lmax+1; l++) { 

      fprintf(fptr, "l_%dm_%dp=  %20.14f\n", l, 0, gridout->intYlm[atom][l][0]/gridout-
>voxcount[atom]); 

      for(m=1; m<l+1; m++) { 

        fprintf(fptr, "l_%dm_%dp=  %20.14f\n", l, m, gridout->intYlm[atom][l][2*m-1]/gridout-
>voxcount[atom]); 

        fprintf(fptr, "l_%dm_%dm=  %20.14f\n", l, m, gridout->intYlm[atom][l][2*m]/gridout-
>voxcount[atom]); 

      } 

    } 

  } 

  fclose(fptr); 

  return 0; 

} 
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/* MAIN HELPER FUNCTIONS */ 

 

int SetOptions() { 

  /* called by: main */ 

  /* calls: none */ 

  int ds_option=0, i=0; 

  fprintf(cplog, "Selected custom options:\n"); 

  fprintf(cplog, "Mapped following energy terms: "); 

  printf("  Map kinetic energy? [1=Yes] [2=Thomas-Fermi] "); 

  scanf("%d", &mapkin); 

  if (mapkin==1) fprintf(cplog, "kinetic "); 

  else if (mapkin==2) fprintf(cplog, "Thomas-Fermi kinetic "); 

  printf("  Map local energy?                    [1=Yes] "); 

  scanf("%d", &maploc); 

  if (maploc==1) fprintf(cplog, "local "); 

  printf("  Map Hartree energy?                  [1=Yes] "); 

  scanf("%d", &maphart); 

  if (maphart==1) fprintf(cplog, "hartree "); 

  printf("  Map exchange-correlation energy?     [1=Yes] "); 

  scanf("%d", &mapxc); 

  if (mapxc==1) fprintf(cplog, "exchange-correlation"); 

  printf("  Use core unwarping (recommended)?    [1=Yes] "); 

  scanf("%d", &mapcore); 

  if (mapcore==1) { 

    printf("  Restore symmetry (recommended)?      [1=Yes] "); 

    scanf("%d", &mapsym); 

  } 

  fprintf(cplog, "\n"); 

  if (mapsym==1 && mapcore==1) fprintf(cplog, "With hirshfeld-inspired core unwarping and 
symmetry restoration\n"); 

  else if (mapsym==1) fprintf(cplog, "With hirshfeld-inspired core unwarping\n"); 

  retrycp: 

  printf("  Add unmapped pressure homogeneously? [1=Yes] "); 

  scanf("%d", &rescp); 

  if (rescp!=1) { 

    printf("  Substract it homogeneously instead?  [2=Yes] "); 

    scanf("%d", &rescp); 

  } 

  if (rescp!=1 && rescp!=2) { 

    printf("  Ignore it instead (not recommended)? [3=Yes] "); 

    scanf("%d", &rescp); 

  } 

  if (rescp!=1 && rescp!=2 && rescp!=3) { 

    printf("  Invalid option. Please choose again\n"); 

    goto retrycp; 

  } 

  fprintf(cplog, "Choice to handle remaining pressure = %d\n", rescp); 

  retryscheme: 

  printf("  Partition scheme? [1=Hirshfeld] [2=Distance] "); 

  scanf("%d", &scheme); 

  if (scheme!=1 && scheme!=2) { 

    printf("  Invalid choice. Please try again\n"); 

    goto retryscheme; 

  } 
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  retrytolerance: 

  printf("  Percent tolerance?               [1=Default] "); 

  scanf("%lf", &tolerance); 

  if (tolerance<0.0 || tolerance>100.0) { 

    printf("  Tolerance out of bounds. Please try again\n"); 

    goto retrytolerance; 

  } else tolerance = tolerance/100.0; 

  fprintf(cplog, "Scheme=%d with l_max=%d and tolerance=%.2f%% was used\n", scheme, lmax, 
tolerance*100.0); 

  retrylmax: 

  printf("  Max l for spherical harmonics?   [6=Default] "); 

  scanf("%d", &lmax); 

  if (lmax<=0) { 

    printf("  Invalid input. Please choose again\n"); 

    goto retrylmax; 

  } else if (lmax>L_MAX) { 

    printf("\n  BAD NEWS: Max l=%d is higher than expected!\n", lmax); 

    fprintf(cplog, "\nTerminated because Max l=%d is >= than L_MAX=%d\n", lmax, L_MAX); 

    fprintf(cplog, "Suggestion: increase the value of L_MAX and recompile\n"); 

    errcount++; 

    return 1; 

  } 

  if (scheme==2) { 

    printf("  Enter core 'bubble' radii?           [1=Yes] "); 

    scanf("%d", &isradii); 

  } 

  printf("  Use datasets other than 1 through 3? [1=Yes] "); 

  scanf("%d", &ds_option); 

  if (ds_option==1) { 

    printf("  Enter the number of the expanded dataset:    "); 

    scanf("%d", &dshi); 

    printf("  Enter the number of the equilibrium dataset: "); 

    scanf("%d", &dseq); 

    printf("  Enter the number of the contracted dataset:  "); 

    scanf("%d", &dslo); 

    fprintf(cplog, "Datasets DS%d, DS%d, DS%d were used\n", dshi, dseq, dslo); 

  } 

  printf("  Output potential maps as XSF files?  [1=Yes] "); 

  scanf("%d", &printbin); 

  printf("  Output total energy maps?            [1=Yes] "); 

  scanf("%d", &printen); 

  if (mapcore==1) { 

    printf("  Output map of new voxel volumes?     [1=Yes] "); 

    scanf("%d", &printhmap); 

  } 

  printf("  Output voxel weight maps?            [1=Yes] "); 

  scanf("%d", &printvmap); 

  if (printbin==1) fprintf(cplog, "XSF files from binary potential files were output\n"); 

  if (printen==1) fprintf(cplog, "Intermediate energy maps were output\n"); 

  if (printhmap==1) fprintf(cplog, "Interpolated voxel maps were output\n"); 

  if (printvmap==1) fprintf(cplog, "Voxel weight maps were output\n"); 

  fprintf(cplog, "\n"); 

  printf("\n"); 

  return 0; 
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} 

 

int ReadAll() { 

  /* called by: main */ 

  /* calls: Den2XSF */ 

  Den2XSF(abinitname, dshi, "DEN", &denhi, &denhi2); 

  Den2XSF(abinitname, dseq, "DEN", &deneq, &deneq2); 

  Den2XSF(abinitname, dslo, "DEN", &denlo, &denlo2); 

  if (mapkin==1) { 

    Den2XSF(abinitname, dshi, "KDEN", &kdenhi, &kdenhi2); 

    Den2XSF(abinitname, dseq, "KDEN", &kdeneq, &kdeneq2); 

    Den2XSF(abinitname, dslo, "KDEN", &kdenlo, &kdenlo2); 

  } 

  Den2XSF(abinitname, dshi, "POT", &pothi, &pothi2); 

  Den2XSF(abinitname, dseq, "POT", &poteq, &poteq2); 

  Den2XSF(abinitname, dslo, "POT", &potlo, &potlo2); 

  Den2XSF(abinitname, dshi, "VHA", &vhahi, &vhahi2); 

  Den2XSF(abinitname, dseq, "VHA", &vhaeq, &vhaeq2); 

  Den2XSF(abinitname, dslo, "VHA", &vhalo, &vhalo2); 

  Den2XSF(abinitname, dshi, "VHXC", &vhxchi, &vhxchi2); 

  Den2XSF(abinitname, dseq, "VHXC", &vhxceq, &vhxceq2); 

  Den2XSF(abinitname, dslo, "VHXC", &vhxclo, &vhxclo2); 

  fprintf(cplog, "\n"); 

  if (errcount!=0) return 1; 

  volhi = denhi.volvox;  /* global */ 

  voleq = deneq.volvox;  /* global */ 

  vollo = denlo.volvox;  /* global */ 

  return 0; 

} 

 

int ErrorCheck(double vol1, double vol2, double vol3) { 

  /* called by: main */ 

  /* calls: none */ 

  int d1=0, d2=0, d3=0, d4=0, d5=0, d6=0, d7=0, d8=0; 

  int d9=0, d10=0, d11=0, d12=0, d13=0, d14=0, d15=0; 

  if (NIONMAX < deneq.nion) { 

    printf("\n  BAD NEWS: Too many atoms!\n"); 

    fprintf(cplog, "\nTerminated because nion (%d) > NIONMAX (%d)\n", deneq.nion, NIONMAX); 

    fprintf(cplog, "Suggestion: increase NIONMAX and recompile CPpackage\n"); 

    errcount++; 

    return 1; 

  } else if (vol1<=vol2 || vol2<=vol3) { 

    printf("\n  BAD NEWS: Negative or no change in volume!\n"); 

    fprintf(cplog, "\nTerminated because change in volume is not positive\n"); 

    fprintf(cplog, "DS1 vol=%20.14f \nDS2 vol=%20.14f \nDS3 vol=%20.14f\n", vol1, vol2, vol3); 

    fprintf(cplog, "Suggestion: check Abinit input file for discrepencies\n"); 

    errcount++; 

    return 2; 

  } else if (denhi.nion!=deneq.nion || deneq.nion!=denlo.nion) { 

    printf("\n  BAD NEWS: Unequal number of atoms between Abinit datasets!\n"); 

    fprintf(cplog, "\nTerminated because number of atoms is not equal\n"); 

    fprintf(cplog, "DS1 nion=%d, DS2 nion=%d, DS3 nion=%d\n", denhi.nion, deneq.nion, 
denlo.nion); 

    fprintf(cplog, "Suggestion: check your files for discrepencies\n"); 
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    errcount++; 

    return 3; 

  } 

  return 0; 

} 

 

int AllocAll(double vol1, double vol2, double vol3) { 

  /* called by: main */ 

  /* calls: none */ 

  int gridx=ngx+1, gridy=ngy+1, gridz=ngz+1, jx=0, jy=0; 

  core.grid = (double***)malloc(gridx*sizeof(double**)); 

  cp.grid = (double***)malloc(gridx*sizeof(double**)); 

  cp_Y.grid = (double***)malloc(gridx*sizeof(double**)); 

  etothi.grid = (double***)malloc(gridx*sizeof(double**)); 

  etoteq.grid = (double***)malloc(gridx*sizeof(double**)); 

  etotlo.grid = (double***)malloc(gridx*sizeof(double**)); 

  temp.grid = (double***)malloc(gridx*sizeof(double**)); 

  vxc.grid = (double***)malloc(gridx*sizeof(double**)); 

  if (mapcore==1) { 

    xnewup = (double***)malloc(gridx*sizeof(double**)); 

    ynewup = (double***)malloc(gridx*sizeof(double**)); 

    znewup = (double***)malloc(gridx*sizeof(double**)); 

    xnewdn = (double***)malloc(gridx*sizeof(double**)); 

    ynewdn = (double***)malloc(gridx*sizeof(double**)); 

    znewdn = (double***)malloc(gridx*sizeof(double**)); 

  } 

  if (mapkin==2) { 

    kdenhi.grid = (double***)malloc(gridx*sizeof(double**)); 

    kdeneq.grid = (double***)malloc(gridx*sizeof(double**)); 

    kdenlo.grid = (double***)malloc(gridx*sizeof(double**)); 

  } 

  if (nspin==2) { 

    core2.grid = (double***)malloc(gridx*sizeof(double**)); 

    temp2.grid = (double***)malloc(gridx*sizeof(double**)); 

    vxc2.grid = (double***)malloc(gridx*sizeof(double**)); 

  } 

  for (jx=0; jx<gridx; jx++) { 

    core.grid[jx] = (double**)malloc(gridy*sizeof(double*)); 

    cp.grid[jx] = (double**)malloc(gridy*sizeof(double*)); 

    cp_Y.grid[jx] = (double**)malloc(gridy*sizeof(double*)); 

    etothi.grid[jx] = (double**)malloc(gridy*sizeof(double*)); 

    etoteq.grid[jx] = (double**)malloc(gridy*sizeof(double*)); 

    etotlo.grid[jx] = (double**)malloc(gridy*sizeof(double*)); 

    temp.grid[jx] = (double**)malloc(gridy*sizeof(double*)); 

    vxc.grid[jx] = (double**)malloc(gridy*sizeof(double*)); 

    if (mapcore==1) { 

      xnewup[jx] = (double**)malloc(gridy*sizeof(double*)); 

      ynewup[jx] = (double**)malloc(gridy*sizeof(double*)); 

      znewup[jx] = (double**)malloc(gridy*sizeof(double*)); 

      xnewdn[jx] = (double**)malloc(gridy*sizeof(double*)); 

      ynewdn[jx] = (double**)malloc(gridy*sizeof(double*)); 

      znewdn[jx] = (double**)malloc(gridy*sizeof(double*)); 

    } 
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    if (mapkin==2) { 

      kdenhi.grid[jx] = (double**)malloc(gridy*sizeof(double*)); 

      kdeneq.grid[jx] = (double**)malloc(gridy*sizeof(double*)); 

      kdenlo.grid[jx] = (double**)malloc(gridy*sizeof(double*)); 

    } 

    if (nspin==2) { 

      core2.grid[jx] = (double**)malloc(gridy*sizeof(double*)); 

      temp2.grid[jx] = (double**)malloc(gridy*sizeof(double*)); 

      vxc2.grid[jx] = (double**)malloc(gridy*sizeof(double*)); 

    } 

    for(jy=0; jy<gridy; jy++) { 

      core.grid[jx][jy] = (double*)malloc(gridz*sizeof(double)); 

      cp.grid[jx][jy] = (double*)malloc(gridz*sizeof(double)); 

      cp_Y.grid[jx][jy] = (double*)malloc(gridz*sizeof(double)); 

      etothi.grid[jx][jy] = (double*)malloc(gridz*sizeof(double)); 

      etoteq.grid[jx][jy] = (double*)malloc(gridz*sizeof(double)); 

      etotlo.grid[jx][jy] = (double*)malloc(gridz*sizeof(double)); 

      temp.grid[jx][jy] = (double*)malloc(gridz*sizeof(double)); 

      vxc.grid[jx][jy] = (double*)malloc(gridz*sizeof(double)); 

      if (mapcore==1) { 

        xnewup[jx][jy] = (double*)malloc(gridz*sizeof(double)); 

        ynewup[jx][jy] = (double*)malloc(gridz*sizeof(double)); 

        znewup[jx][jy] = (double*)malloc(gridz*sizeof(double)); 

        xnewdn[jx][jy] = (double*)malloc(gridz*sizeof(double)); 

        ynewdn[jx][jy] = (double*)malloc(gridz*sizeof(double)); 

        znewdn[jx][jy] = (double*)malloc(gridz*sizeof(double)); 

      } 

      if (mapkin==2) { 

        kdenhi.grid[jx][jy] = (double*)malloc(gridz*sizeof(double)); 

        kdeneq.grid[jx][jy] = (double*)malloc(gridz*sizeof(double)); 

        kdenlo.grid[jx][jy] = (double*)malloc(gridz*sizeof(double)); 

      } 

      if (nspin==2) { 

        core2.grid[jx][jy] = (double*)malloc(gridz*sizeof(double)); 

        temp2.grid[jx][jy] = (double*)malloc(gridz*sizeof(double)); 

        vxc2.grid[jx][jy] = (double*)malloc(gridz*sizeof(double)); 

      } 

    } 

  } 

  etothi.volvox = vol1; 

  etoteq.volvox = vol2; 

  etotlo.volvox = vol3; 

  fprintf(cplog, "Allocated memory for calculated data grids\n\n"); 

  return 0; 

} 

 

int AllocInt(struct ContactVol * map) { 

  /* called by: main */ 

  /* calls: none */ 

  int gridx=ngx+1, gridy=ngy+1, gridz=ngz+1, i=0, jx=0, jy=0; 

  map->neighcount = (int***)malloc(gridx*sizeof(int**)); 

  map->neighcount2 = (int***)malloc(gridx*sizeof(int**)); 

  map->swj = (double***)malloc(gridx*sizeof(double**)); 
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  map->swjk = (double***)malloc(gridx*sizeof(double**));; 

  for (jx=0; jx<gridx; jx++) { 

    map->neighcount[jx] = (int**)malloc(gridy*sizeof(int*)); 

    map->neighcount2[jx] = (int**)malloc(gridy*sizeof(int*)); 

    map->swj[jx] = (double**)malloc(gridy*sizeof(double*)); 

    map->swjk[jx] = (double**)malloc(gridy*sizeof(double*)); 

    for(jy=0; jy<gridy; jy++) { 

      map->neighcount[jx][jy] = (int*)malloc(gridz*sizeof(int)); 

      map->neighcount2[jx][jy] = (int*)malloc(gridz*sizeof(int)); 

      map->swj[jx][jy] = (double*)malloc(gridz*sizeof(double)); 

      map->swjk[jx][jy] = (double*)malloc(gridz*sizeof(double)); 

    } 

  } 

  for(i=0; i<NEQVOX; i++) { 

    map->neighkey[i] = (int***)malloc(gridx*sizeof(int**)); 

    map->ionmap[i] = (int***)malloc(gridx*sizeof(int**)); 

    map->wj[i] = (double***)malloc(gridx*sizeof(double**)); 

    for(jx=0; jx<gridx; jx++) { 

      map->neighkey[i][jx] = (int**)malloc(gridy*sizeof(int*)); 

      map->ionmap[i][jx] = (int**)malloc(gridy*sizeof(int*)); 

      map->wj[i][jx] = (double**)malloc(gridy*sizeof(double*)); 

      for(jy=0; jy<gridy; jy++) { 

        map->neighkey[i][jx][jy] = (int*)malloc(gridz*sizeof(int)); 

        map->ionmap[i][jx][jy] = (int*)malloc(gridz*sizeof(int)); 

        map->wj[i][jx][jy] = (double*)malloc(gridz*sizeof(double)); 

      } 

    } 

  } 

  fprintf(cplog, "Allocated memory for integration maps\n"); 

  return 0; 

} 

 

int PrintResults(struct CrystData * gridin, struct CrystData * gridout) { 

  /* called by: main */ 

  /* calls: ElementName, OutputWeight, PrintCoeff */ 

  char element[10], filename[STRMAX]; 

  int i=0; 

  FILE * fptr; 

  strncpy(filename, cpoutname, STRMAX); 

  strncat(filename, "-averaged.xsf", STRMAX); 

  fptr = fopen(filename, "w"); 

  OutputXSF(fptr, gridin, gridout); 

  fclose(fptr); 

  PrintCoeff(gridin, gridout); 

  if (printvmap==1) OutputWeight(gridin, &vmap, gridout); 

  strncpy(filename, cpoutname, STRMAX); 

  strncat(filename, "-geo", STRMAX); 

  fptr = fopen(filename, "w"); 

  for (i=0; i<gridin->nion; i++) { 

    ElementName(gridin->zatomic[i], element); 

    fprintf(fptr, "%s  %20.14f  %20.14f  %20.14f\n", element, 

      gridin->xcart[i]*R_BOHR, gridin->ycart[i]*R_BOHR, gridin->zcart[i]*R_BOHR); 

  } 
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  fclose(fptr); 

  strncpy(filename, cpoutname, STRMAX); 

  strncat(filename, "-cell", STRMAX); 

  fptr = fopen(filename, "w"); 

  fprintf(fptr, "%20.14f  %20.14f  %20.14f\n", gridin->cella_x*R_BOHR, gridin->cella_y*R_BOHR, 
gridin->cella_z*R_BOHR); 

  fprintf(fptr, "%20.14f  %20.14f  %20.14f\n", gridin->cellb_x*R_BOHR, gridin->cellb_y*R_BOHR, 
gridin->cellb_z*R_BOHR); 

  fprintf(fptr, "%20.14f  %20.14f  %20.14f\n", gridin->cellc_x*R_BOHR, gridin->cellc_y*R_BOHR, 
gridin->cellc_z*R_BOHR); 

  fclose(fptr); 

  printf("  Projections finished\n"); 

  return 0; 

} 

 

 

/* MAIN FUNCTION */ 

 

int main(int argc, char * argv[]) { 

  /* calls: AllocAll, AssignContact, AverageContact, CalcCP, CoordSearch, CoreUnwarp, ErrorCheck, 

     GridStats, IdentifyXC, MapEntot, OutputXSF, PrintAverage, PrintResults, ReadAll, SetOptions 
*/ 

  char logname[STRMAX], option[STRMAX]; 

  int errchk=0; 

 

  printf("\n  FREDRICKSON GROUP DFT-CHEMICAL PRESSURE ANALYSIS\n"); 

  printf("  What is the prefix of your Abinit _o_ files? "); 

  scanf("%s", abinitname); 

  printf("  What is the name of your Abinit outfile?     "); 

  scanf("%s", abinitout); 

  printf("  Choose a name for your CP output files:      "); 

  scanf("%s", cpoutname); 

  snprintf(logname, STRMAX, "%s-cplog", cpoutname); 

  cplog = fopen(logname, "w"); 

  fprintf(cplog, "FREDRICKSON GROUP DFT-CHEMICAL PRESSURE ANALYSIS\n"); 

  fprintf(cplog, "Last modified: 8 March 2016\n"); 

 

  retry_default: 

  printf("  Would you like to use the defaults? [yes/no] "); 

  scanf("%s", &option); 

  if (option[0]=='N' || option[0]=='n') standard = 0; 

  else if (option[0]=='Y' || option[0]=='y') standard = 1; 

  else { 

    printf("  Invalid input. Please try again\n"); 

    goto retry_default; 

  } 

  printf("\n"); 

  fprintf(cplog, "Echo of input: %s %s %s %s\n", abinitout, abinitname, cpoutname, option); 

  fprintf(cplog, "All values are in a.u. unless otherwise noted\n\n"); 

  if (standard==1) { 

    fprintf(cplog, "Selected default options:\n"); 

    fprintf(cplog, "Map kinetic, local, hartree, and exchange-correlation energy terms\n"); 

    fprintf(cplog, "With hirshfeld-inspired core unwarping and symmetry restoration\n"); 

    fprintf(cplog, "And hirshfeld-inspired integration: l_max=%d and tolerance=%.2f%%\n\n", lmax, 
tolerance*100); 
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  } else { 

    errchk = SetOptions();  /* user input of custom settings */ 

    if (errchk!=0) goto end; 

  } 

 

  if (mapcore==1 || scheme==1) printf("  Reading files. Please wait a moment to enter profile 
names...\n"); 

  else printf("  Reading files\n"); 

  errchk = ReadAll();  /* assigns volhi, voleq, vollo */ 

  if (errchk!=0) goto end; 

  if (mapcore==1 || scheme==1 || isradii==1) SymAtoms(&deneq, &smap); 

  if (mapcore==1 || scheme==1) { 

    errchk = ReadProfile(&deneq);  /* radial electron density profiles */ 

    if (errchk!=0) goto end; 

  } 

  if (isradii==1) SetBubbles(&deneq);  /* bubble radii for distance-based contact volumes */ 

  if (mapxc==1) { 

    errchk = IdentifyXC(ixc);  /* determine which XC functional was used in Abinit */ 

    if (errchk!=0) goto end; 

  } 

  errchk = ErrorCheck(volhi, voleq, vollo);  /* check that volumes and ions make sense */ 

  if (errchk!=0) goto end; 

 

  printf("\n  Creating energy density maps\n"); 

  errchk = AllocAll(volhi, voleq, vollo);  /* allocate memory dynamically for voxel grids */ 

  errchk = MapEntot(&denhi, &denhi2, &kdenhi, &kdenhi2, &pothi, &pothi2, 

    &vhxchi, &vhxchi2, &vhahi, &vhahi2, dshi, volhi, &etothi); 

  if (errchk!=0) goto end; 

  errchk = MapEntot(&deneq, &deneq2, &kdeneq, &kdeneq2, &poteq, &poteq2, 

    &vhxceq, &vhxceq2, &vhaeq, &vhaeq2, dseq, voleq, &etoteq); 

  if (errchk!=0) goto end; 

  errchk = MapEntot(&denlo, &denlo2, &kdenlo, &kdenlo2, &potlo, &potlo2, 

    &vhxclo, &vhxclo2, &vhalo, &vhalo2, dslo, vollo, &etotlo); 

  if (errchk!=0) goto end; 

 

  errchk = Getkm(&deneq);  /* determines appropriate supercell */ 

  if (errchk!=0) goto end; 

  if (mapcore==1) { 

    printf("  Performing core unwarping\n"); 

    errchk = CoreUnwarp(&denhi, &deneq, &denlo, &etothi, &etotlo); 

    if (errchk!=0) goto end; 

  } 

 

  printf("\n  Creating chemical pressure map\n"); 

  errchk = CalcCP(&denhi, &deneq, &denlo, &etothi, &etotlo, &cp); 

  if (errchk!=0) goto end; 

  GridStats(&cp, "CP XSFfile stats");  /* calculates statistical values of the voxel grid */ 

  fclose(cplog);  /* close to ensure writing of CPmap log */ 

  cplog = fopen(logname, "a");  /* reopen for CPintegrate */ 

 

  errchk = AllocInt(&vmap);  /* allocate memory dynamically for integration grids */ 

  printf("  Creating list of coordination\n"); 

  errchk = CoordSearch(&cp, &vmap); 

  if (errchk!=0) goto end; 
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  printf("  Assigning %d x %d x %d = %d voxels to contact volumes\n", ngx, ngy, ngz, 
ngx*ngy*ngz); 

  AssignContact(&vmap, &cp); 

 

  printf("  Averaging within voxels\n"); 

  AverageContact(&vmap, &cp, &cp_Y); 

  PrintAverage(&cp, &cp_Y);  /* prints integrated CP to the screen and log file */ 

  PrintResults(&cp, &cp_Y);  /* makes all necessary files for Figuretool */ 

  GridStats(&cp_Y, "Averaged CP XSFfile stats"); 

 

  end: 

  if (errcount==0) { 

    printf("  Logfile %s is ready to view. Goodbye!\n\n", logname); 

    fprintf(cplog, "Normal exit without incident\n"); 

  } else { 

    printf("  Logfile %s is ready to view\n", logname); 

    if (errcount==1) printf("  There is %d warning\n\n", errcount); 

    else printf("  There are %d warnings\n\n", errcount); 

    fprintf(cplog, "\n***********************************************************\n"); 

    fprintf(cplog, "Random errors can occur when nproc is not a factor of nkpt\n"); 

    fprintf(cplog, "As a last resort re-run Abinit with 1 processor\n"); 

    fprintf(cplog, "***********************************************************\n\n"); 

    fprintf(cplog, "Last errchk value was %d\n", errchk); 

    if (errcount==1) fprintf(cplog, "Exited with %d warning\n", errcount); 

    else fprintf(cplog, "Exited with %d warnings\n", errcount); 

  } 

  fclose(cplog); 

  return 0;  /* memory deallocation is handled automatically by the OS */ 

} 
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