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ABSTRACT

The standard multiple outcome prediction task is solved either through multi-
label or multi-class machine learning algorithms presented with a single dataset.
However, applications exist in which appropriate subsampling of the original
dataset, depending on the label, is critical to producing high-quality predictions.
We present a solution to this version of the multiple outcome prediction task that
we call high-throughput machine learning, wherein for each predictive outcome, an
appropriate training dataset is first subsampled from the original training data and
then a model is learned.

This dissertation considers the application of high-throughput machine learning
to the task of predicting all diagnostic outcomes from an electronic health record
(EHR) dataset. For each diagnosis, we identify appropriate case and control patients
and then train a machine learning classifier to predict that particular diagnosis. We
additionally introduce the dynamic definition refinement algorithm to automatically
identify appropriate pre-requisite control diagnoses on a per-outcome basis. For
example, in the task of predicting diabetic retinopathy, we can automatically learn
that diabetes should be the control diagnosis.

We consider several applications of high-throughput machine learning and ad-
dress their associated challenges. The primary contribution of this work provides
a performance benchmark for predicting all diagnoses from 1-month to 20-years
in advance. We consider cases where data is Incorporated from multiple health-
care systems and provide a cryptographic approach for preserving privacy in this
environment. Additionally, we combine a high-throughput inspection of feature
importances with a literature-derived knowledge base to identify novel diagnostic
uses of laboratory tests. Finally, we consider the multi-class prediction setting
and explore a new performance measure for the evaluation of such classifiers.
Ultimately, this dissertation aims to show that high-throughput machine learn-
ing provides meaningful gains beyond the standard one-off model construction
approach.



1 INTRODUCTION

Around the globe, individuals and governments are keenly interested in reducing
the costs of healthcare while improving its outcomes. A key component for making
such an improvement is for both patients and clinicians to accurately assess patient
health risks. Concurrently, the use of electronic health records (EHRs) for electroni-
cally capturing patient healthcare encounters has risen dramatically (Hsiao et al.,
2014). Consequently, disease prediction tools that can leverage EHR data to assess
patient risk have garnered significant attention. Machine learning algorithms have
become increasingly prevalent components of such disease prediction tools.

Many of the existing applications of machine learning to healthcare have focused
on individual tasks such as predicting cardiovascular disease risk (Dawber et al.,
1951) or the appropriate warfarin dosage for a patient IWPC, 2009). In recent
years, healthcare systems have been incorporating these models into their clinical
workflows. For example, the use of a machine learning algorithm to predict severe
sepsis has been shown to improve patient outcomes (Shimabukuro et al., 2017).
However, each of these models must be carefully tuned and evaluated, particularly
if they are to be translated to a healthcare system. This approach makes it extremely
challenging to construct a broad scale view of patient outcomes, as it would require
carefully building thousands of models for each of the possible diagnoses. Yet,
there are benefits to constructing such a predictive landscape, as it could be used to
identify patterns amongst diseases, or critical health states such as obesity /diabetes
that greatly increase risk across many diseases, or assist in the discovery of new
medical knowledge by inspection of the learned models.

For construction of such a predictive landscape, we may wish to employ the
machine learning approach of multi-label classification which is applicable when
there are multiple outcomes we wish to predict and a particular instance, in this
case a patient, could have one or more of them. One way of performing multi-label
classification is to use a model like a neural network that is capable of predicting
more than one label at once. While there are a variety of approaches to performing

multi-label classification, they all rely on providing the learning algorithm(s) a



single set of shared training data. This can be problematic for a healthcare set-
ting, as the inclusion of some patients in the training of a model may reduce the
generalizability and/or interpretibility of a model. Therefore, we require a new
methodology capable of ensuring that each outcome is appropriately modeled
without requiring careful hand-tuning of each model. In this dissertation, we build
upon one multi-label machine learning approach, where each task has its own
model. Our extension includes a selection phase for each prediction task prior
to model learning. This selection phase subsamples a shared larger dataset by
identifying appropriate learning examples for the learning task.

In this dissertation, we present the concept of high-throughput machine learning
which is a specialized version of multi-label classification where each task has
its own model. In high-throughput machine learning, we construct a pipeline,
that with minimal manual intervention, can both 1) select the appropriate training
examples and control criteria where appropriate, and 2) train a model to predict
that task using the selected training data. This differs from a one-off multi-label
classification where there is no selection of training examples. Such a pipeline can
be readily applied to the task of predicting a large set of health outcomes where each
event needs specialized controlling criteria. For example, while we may always
wish to control for age and sex when predicting diagnoses, we may only wish
to control for pregnancy stage when predicting a pregnancy complication. This
dissertation additionally contributes the approach of dynamic definition refinement,
a methodology for automatically learning potential appropriate control criteria on
a per-prediction-task basis. For example, dynamic definition refinement can learn
that when predicting a diabetic retinopathy, a potential complication of diabetes,
both positive and negative examples should already be diabetic patients.

In this dissertation, we apply high-throughput machine learning to the task of
predicting all diagnoses in a large healthcare system with more than 1.5 million
patients’” electronic health records. We build several predictive models per diagno-
sis ranging from predicting 1-month to 20-years in advance. We explore trends in
these models across major chapters of the diagnostic hierarchy as well as temporal
patterns. We then consider three tasks where high-throughout machine learning



can be leveraged or extended. First, we present a high-throughput approach for
learning new medical knowledge from models by combining their feature impor-
tances with a text-mining-extracted knowledge base from PubMed literature. Next,
we explore the use of machine learning approaches learning from multiple hos-
pital sites and present an approach to ameliorate the privacy concerns inherent
to sharing healthcare data. Finally, we present a novel approach for evaluating
multi-class classification models motivated by the prediction of health events that
could be one of multiple outcomes. Ultimately, this dissertation is concerned with
the application of machine learning algorithms to healthcare data at large scales,

be they quantity of data, tasks, and/or institutions.

1.1 Thesis Statement

Using the high-profile setting of medicine and electronic health records, this disser-

tation supports the following thesis:
High-throughput machine learning yields insights not gleaned from standard

one-off or multi-label modeling.

1.2 Document Organization

My dissertation is organized as follows.

Chapter 1 presents the overarching opportunity for applying high-throughput
machine learning to medical data.

Chapter 2 presents background on machine learning and the multiple areas of

healthcare we apply it to.

Chapter 3 shows hows machine learning can be used to both predict and better
understand a single disease, Calciphylaxis.



Chapter 4 introduces the concept of high-throughput machine learning and its
application in the prediction of thousands of diagnoses.

Chapter 5 discusses the need for privacy preserving machine learning algo-

rithms when incorporating data from multiple hospitals.

Chapter 6 presents a use of high-throughput machine learning to identify novel
diagnostic uses of laboratory tests.

Chapter 7 presents a new measure for evaluating multi-class machine learning
models motivated by inherently multi-class medical prediction tasks.

Chapter 8 provides a summary of the dissertation and its key contributions.

Chapter 9 provides supplementary tables and proofs for this dissertation.



2 BACKGROUND

This dissertation presents research at the nexus of machine learning and healthcare.
As such, this chapter presents the necessary background and context to understand
the significance of the contributions. In Section 2.1 we present background on the
use of electronic health records and the type of data they store. In Section 2.2 we
present high-level background on the field of machine learning and algorithms
that are heavily used in this dissertation. Section 2.3 provides a survey of some
of the notable applications of machine learning to healthcare data. In Section 2.4
we discuss learning multiple outcomes using machine learning and examples of
healthcare tasks that would require such an approach. Finally, Section 2.5 explores
the privacy challenges inherent in using healthcare data from both individual

healthcare institutions and when combining data from multiple institutions.

2.1 Electronic Health Record Data

The use of EHRs to digitize patient data has quickly become common practice in
healthcare systems in the United States (Hsiao et al., 2014). This exponential growth
has been fueled both by advances in computational power and EHR software as
well as government incentives and regulations through the Health Information
Technology for Economic and Clinical Health (HITECH) Act of 2009. Now, a
typical U.S. healthcare system stores and interacts with patient data almost entirely
in a digital fashion. This change has provided unprecedented opportunities for
secondary use of EHR data, including applying machine learning algorithms to
predict disease diagnosis and outcome.

Healthcare systems can vary greatly in how their EHR systems are implemented.
Some use a single vendor, such as Epic or Cerner, for all of their departments and
systems. Others employ a “best-of-breed” approach choosing the best product
on a per-department/system basis. A “best-of-breed” approach can result in re-

quiring careful integration of systems. Because of the variance in implementation



Diagnoses
MHN  Date Diagnosis
1357  6/3/97 Type Il Diabetes

1357  6/3/97 High Blood Pressure
1357 8/15/97  Hypercholesterolemia

Laboratory
MHN Date Test Value
1357 6/3/97  Blood Glucose 142
1357 8/15/97 Total Cholesterol 297

Vitals
MHN Date Test Value
1357 6/3/97 Systolic BP 152
1357 6/3/97 Diastolic BP 103

Table 2.1: Synthetic data illustrating the tabular nature of EHR data for a toy patient with
medical history number (MHN) 1357.

by healthcare systems, this background will focus solely on how the Marshfield
Clinic (Marshfield, WI) has structured their EHR, as that is most relevant to the
work presented in this document. The Marshfield Clinic utilizes (as of this writing)
a single system, “Cattails”, to record their EHR data. Cattails stores patient data
as a series of tables as illustrated by the synthetic EHR patient data in Table 2.1.
While Table 2.1 shows only diagnoses, labs, and vitals, EHRs also store procedures,
medications, vitals, notes, images, etc.

EHR data often cannot be taken at face value and may contain errors that need
to be corrected before any generalizations can be made from the data. One of
the most common errors present is the entry of codes for “rule-out diagnoses”.
Consider the case of a patient entering the emergency room complaining of a severe
headache: the physician may be concerned that this patient has a head injury
requiring immediate treatment and will need to perform a computed tomography
(CT)-scan of the patient’s head and neck to confirm or rule out this suspicion.
However, the patient’s insurance company may require a diagnosis prior to allowing
payment for the CT-scan resulting in a diagnosis of concussion on the patient’s

record. Should the scan come back negative for concussion it may still be the case



that the diagnosis of concussion remains on the patient’s record as it was needed for
billing purposes. Here, the diagnosis of concussion was a rule-out diagnosis; the
diagnosis represented a necessary step in the physician’s workup of the patient, but
not the reality of the patient’s health. Rule-out diagnoses are a serious issue when
labeling patient data and thus they must be addressed via electronic phenotyping of
EHR data. Electronic phenotyping is the task of identifying the patterns amongst
a set of variables that indicate a particular phenotype (for example a diagnosis).
While electronic phenotyping is useful for handling rule-out diagnoses, it has many
additional and important uses. A simples rule for phenotyping is the “rule-of-2”
stating that any diagnosis on a record that appears twice or more (on two separate
days) is likely to be legitimate. There are many more advanced forms of electronic
phenotyping utilizing rule learning to label patient records (Peissig et al., 2014;
Pathak et al., 2013) including by committee (eMEREGE; Overhage et al., 2012).

2.2 Machine Learning

Machine learning, an area of computer science that grew out of artificial intelligence,
is broadly focused on a class of algorithms capable of ‘learning” from data (Mitchell,
1997). While algorithms that work with various and exotic types of data do exist,
the vast majority of algorithms expect data that is in a matrix format. This matrix
is said to be composed of samples (rows) and features (columns). A sample is an
individual observation and each observation has associated features. For example,
in a data set of hotel reservations a sample may be a particular reservation and
features may include the customer name, room, dates of stay, and rental rate.
Machine learning algorithms are roughly divided into ‘unsupervised” and ‘su-
pervised” algorithms based on the task of interest and the type of data available .
Unsupervised machine learning algorithms are generally focused on learning pat-
terns amongst the various samples in the data based upon their features. Clustering
is a common unsupervised machine learning task wherein we wish to partition our
original data set into subsets of samples. Ideally, the samples in a particular subset

are more similar to one another than they are to the samples in other subsets. In an



unsupervised task, our data set, D = {x'V}I'_, has n samples, where a particular
sample, xV is a vector with m features. In supervised learning, there is a target
variable, y, that we are interested in predicting by using previous data that we
have collected. In supervised learning, our data set, D = {(xV),y)}* , contains
pairs of samples and labels, with each label y V) serving as the target variable for its
associated sample, x'V). If y is a continuous variable we call this task “regression”;
if y is a discrete variable with a finite number of values we call this task “classifica-
tion”. The research presented in this dissertation is focused on classification tasks,
and hence in this chapter we present background on two common classification

algorithms: logistic regression and random forests.

2.2.1 Logistic regression

Logistic regression, unlike its moniker, is a machine learning algorithm used for
classification tasks in which each sample has an associated binary label. Commonly,
binary classification algorithms can be used to answer yes/no questions such as
“Should we purchase advertising in this particular city?”, or “Does this patient have
heart disease?” Logistic regression, one of the simplest classification algorithms,
models the probability that an instance will take on a particular label given the
observed features, P(y = 1 | x). This probability is a soft classification that can
be converted to a hard label by thresholding the probability space. The logistic

regression model is described in Equation 2.1

1
1+ e
The vector w is learned by fitting the model to some available training data.

y= (2.1)

For the jth feature in our dataset, D, wj is a coefficient that, if positive, indicates
that larger values of x; increase the probability that y is of the positive class, and if
negative, indicates that larger values of x; decrease the probability that y is of the
positive class. It is standard to include an intercept variable x, = 1 for all instances.
When wy > 0, it is more likely that the instance belongs to the positive class when

no information is known about that instance (that is, x = 0). The coefficient vector,



w is learned by minimizing cross-entropy, or log-loss, detailed in equation 2.2.
Procedurally, a gradient descent algorithm can be used to efficiently compute a w
that minimizes cross-entropy. Here f,, (x'!) is the evaluation of Equation 2.1 when

parameterized by a given w, thatis P(yY =1 | x(V; w).

Jw) = - Costlf(x),y'") @2)
i=1

—log (f(x)), ify=1.
—log (1 —f,(x)), ify=0.

Cost(fn(x,y) =

A common variant of logistic regression includes a penalty function in the form
of a regularizer. These penalty terms are a function of the learned weight vector, w,
and are used to prevent overfitting. Two popular choices of regularizers are the [,
penalty, known as LASSO (Tibshirani, 1996), and the L, penalty, known as ridge
regression (Hoerl and Kennard, 1970). In LASSO-penalized logistic regression,
sparsity is encouraged in the learned weight vector; in this way, an L; penalty not
only combats overfitting but also serves as a feature selection phase. Equation
2.3 is the LASSO-penalized logistic regression loss function which adds the L;
penalty to the cross-entropy error in Equation 2.2. Minimizing Equation 2.3 requires
replacing standard gradient descent with either coordinate descent or a proximal
method such as the “Iterative Shrinking-Threshold Algorithm (ISTA)” to account
for the lack of a derivative whenever a coefficient changes sign. Ridge logistic
regression incorporates an L, penalty to combat overfitting by encouraging smaller
weights. Equation 2.4 is the ridge logistic regression loss function which can be
minimized using standard gradient descent. Both Equations 2.3 and 2.4 incorporate
a parameter, A, which controls the strength of the penalty; larger choices of A result
in stronger effects from the regularization. It is standard to tune the value of A on

some held-aside validation data during the model training process.

L(w) = J(w) + Alwl (2.3)
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L(w) = J(w) + Alwl; (2.4)

2.2.2 Random forests

Ensemble machine learning methods have proven to perform very well in practice
(Opitz and Maclin, 1999). An ensemble combines the predictions of multiple base
learners through some (potentially weighted) voting scheme to produce a single
prediction. Learning theory has shown that successful ensembles are comprised of
base learners with uncorrelated errors. That is, given two random base learners in
the ensemble, if the first learner forms an incorrect prediction, the second learner
isn't much more likely to form an incorrect prediction.

One very successful ensemble method is random forests, which is comprised
of multiple decision trees as the base learners (Breiman, 2001). Given a dataset,
D = {(x¥,y"} , a random forest constructs k decision trees {T;}*_,. Prior to
building a given tree, T, a new dataset, D, is formed by selecting n samples with
replacement from D. This method, known as bootstrapping, increases the variety
of trees learned and thus reduces error correlation among the trees. To further
reduce correlation, for each tree (or in an alternative formulation, at each split),
only a uniformly, randomly-selected subset of features is considered. Random
forests have been shown to be one of the best performing classification algorithms
(Fernandez-Delgado et al., 2014).

The construction of a particular tree in the forest, T;, occurs by iteratively splitting
its associated bootstrapped training data D;. At each node in the tree, a true/false
split test is learned based on one of the features of the dataset. Those instances
that satisfy the test proceed down one branch and the remaining instances proceed
down the second branch. The split test at each node is chosen during the training
process by first randomly selecting a subset of the m features to consider. The
number of features considered at each split, f, is a forest-wide hyper-parameter
of the random forest that can be used to control the learning algorithm. Amongst

these f features, the feature f; that best separates the positive and negative examples
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from one another is selected. Typically, for classification tasks, either Gini impurity
or information gain is used as the selection criterion, though alternative criteria
exist for different variants of the random forest algorithm. The samples in T;
are iteratively split in this binary fashion until either some stopping condition is
met (some minimum number of samples per leaf node), or until a node has only
examples from one class. Once the learning algorithm has finished splitting the
instances in D;, the training of tree T; is complete. This process is repeated for
each of the k trees in the forest, each with its own bootstrapped D. The prediction
process for random forests involves taking an instance x, and for each tree starting
at the root, following branches according to split tests, and then receiving a label at
a leaf. Thus, each x receives k predictions, one per tree, and the soft-classification
from the random forest is the fraction of the k trees that label it positive. Much like
logistic regression this soft-classification can be converted to a hard label by the

use of a threshold.

2.3 Machine Learning and Healthcare

In recent years, the use of EHRs in healthcare systems has grown substantially
(Hsiao et al., 2014). This wealth of data has created an unprecedented opportunity
for the use of computational approaches to not only augment existing knowledge of
various diseases but also produce predictive models to assess patient risk. Diseases
such as breast cancer (Gail et al., 1989) and myocardial infarction (Weiss et al.,
2012) have already been successfully modeled through the use of machine learning
algorithms. In the context of healthcare data, machine learned models can be used
to predict the disease risk of a patient based on the information present in their
health record. In some cases, the models produced by a machine learning algorithm
can be manually inspected to understand which variables suggest different patient
outcomes.

While a variety of machine learned models have been used for healthcare appli-
cations, there is often emphasis placed on interpretability, that is, understanding
how and why a model makes its predictions Doshi-Velez and Kim (2017). This
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often lends favor to naturally interpretable models such as LASSO-penalized lo-
gistic regression (Tibshirani, 1996). However, LASSO-penalized logistic regression
can produce interpretable, but not credible, models when there are co-linearities
in the data (Wang et al., 2018). One of the most common risk assessment tools
currently used in practice was a result of the epidemiological Framingham heart
study (Dawber et al., 1951). This study resulted in a multitude of logistic regression
based risk calculators including a tool for the prediction of coronary heart diseases
(Wilson et al., 1998). These tools were created with the express purpose of assisting
healthcare providers in evaluating the cardiovascular risk of patients based on their
current and historic health. Models such as logistic regression have the benefit
of providing an intelligible tool for both patient and physician. An interpretable
model is thus often appealing for translation into clinical applications. One does
not need to fully understand logistic regression to understand that the coefficients
of the Framingham model, w, indicate protective and aggravating factors in the
development of cardiovascular disease. While less popular with healthcare data,
there have been efforts to explain model predictions for any type of model (includ-
ing non-linear models). For example, Ribeiro et al. (2016) introduced the approach
of “Local Interpretable Model-Agnostic Explanations” (LIME).

It is worth distinguishing between two similar, but unique tasks that apply
machine learning to EHR data: electronic phenotyping and disease prediction/di-
agnosis. The task of electronic phenotyping involves labeling a patient as positive or
negative for a history of the particular disease(s). As EHR data can have errors and
often cannot be taken at face value, the task of electronic phenotyping aims to better
label patient EHR data. Whereas electronic phenotyping is inherently retrospective,
disease prediction and diagnosis is a prospective task. Given a patient’s health
history, a researcher or physician may wish to use machine learning to identify
health risks and /or diagnoses of a patient based on their complaints. The tasks of
electronic phenotyping and disease prediction/diagnosis can be complementary
to one another. A model that is learned to diagnose a patient will often perform

better if it is learned from phenotyped data.
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24 Learning Multiple Outcomes

Machine learning problems are typically divided into classification or regression
tasks, where a classification problem requires assigning a category, or label, to
an instance, and a regression problem requires predicting a numerical value for
an instance. Within classification problems there is typically a division between
binary classification tasks with two categories and problems with k > 2 categories.
Classification problems with k > 2 categories are divided into multi-label problems,
where 1 <=j <= k of k labels could be assigned, and multi-class problems, where
only 1 of k categories can be correct. An example of multi-label learning is predicting
which of k possible diseases a patient has, as they could well have more than one. An
example of a multi-class problem is predicting which one of several manufacturers

made a car based on an image.

2.4.1 Multi-label classification

While the typical application of machine learning to EHR data has focused on a
single disease or small subset of diseases, some researchers have begun to look at
machine learning tasks considering many diseases at once. These multi-disease
tasks typically utilize multi-label learning algorithms, as human disease is inher-
ently a multi-label domain. There are two common approaches for multi-label
learning: 1) transformation methods where the problem is transformed to one of
producing multiple binary classifiers, and using those for labeling, and 2) algo-
rithm adaptation methods that utilize an algorithm to directly output multi-label
predictions (Tsoumakas and Katakis, 2007). There are many approaches to problem
transformation, and they vary on both how the original multi-labeled training data
are manipulated, and the number of classifiers that are produced in the transformed
problem. One common approach to problem transformation is to produce k classi-
fiers, one for each of the k classes (Boutell et al., 2004). The training data labels for
this approach are manipulated on a per-classifier basis. When predicting the jth
of k classes, any example that has label j is considered positive, and any example
without label j is considered negative. On the other hand, problem transformation
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methods manipulate the original training data to produce multiple binary classi-
fiers, while algorithm adaptation methods manipulate originally binary classifiers
to produce multi-label output. The tree based approach proposed by Clare and
King (2001) adapts the C4.5 algorithm such that it learns multi-label output. A
variety of other learning algorithms have also been adapted for multi-label learning.
While most applications of machine learning to EHR data have focused on a
single or a small subset of diseases, there has been some work regarding larger,
more diverse, sets of diseases. Miotto et al. (2016) utilized deep learning to create
new representations of patient data and then compared those new representations
on prediction tasks for a variety of diseases. Similarly, Rajkomar et al. (2018) used
a deep network representation of EHR data (from hospital stays) and performed
a variety of prediction tasks including in-hospital mortality, unplanned hopsital
readmission, and discharge diagnosis prediction. While Rajkomar et al. (2018)
predicted many thousands of diagnosis codes, they did not perform any automated
phenotyping or case/control selection as we do in Chapter 4. Che et al. (2015)
explored the retrospective task of high-throughput electronic phenotyping through
the use of deep-learning. Ho et al. (2014) also performed high-throughput electronic
phenotyping but through the use of sparse non-negative tensor factorization.

2.4.2 Multi-class Classification

Multi-class classification algorithms are used to model tasks where an instance
can belong to one of k > 2 distinct categories. Some classification algorithms are
naturally compatible with a multi-class setting such as neural networks where the
final layer can be made up of k output nodes, one for each class. Then, the output
node with the highest score can be selected as the label. k—nearest neighbors needs
no adjustment as it is a lazy learner that will simply label the query instance based
on the neighbors selected from the training data (which itself is inherently multi-
class). Additionally, decision trees and random forests are also naturally multi-class
classifiers as long as the splitting criterion used is appropriate for a multi-class
setting. Both information gain and Gini impurity, two common splitting criteria for
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tree-based learners, are naturally compatible with multi-class settings.

However, while not all two-class classifiers can be gracefully extended to the
multi-class setting, it is still possible to use these classifiers by means of converting
the multi-class problem into many binary class problems. Three common decom-
position techniques are one-versus-all (Sejnowski and Rosenberg, 1987), all-versus-all
(Hastie and Tibshirani, 1998), and error-correcting output codes (Dietterich and Bakiri,
1995). In the one-versus-all approach, k binary classifiers are trained to distinguish
one of the classes versus any of the other classes. A test instance is then classified
by choosing the class which has the highest score amongst all k models. The all-
versus-all approach builds k(k — 1)/2 binary classifiers, one for each unique pair of
classes. During the prediction phase, a test instance is run through all classifiers
and for each class, a score is assigned by summing the individual scores of the k — 1
classifiers to which it belongs. Then, the class with the highest score is assigned
as the label for the test instance. The error-correcting output codes approach assigns
each class a “codeword” which is a binary string of length m. Then, m binary
classifiers are trained where positive and negative instances are assigned based on
each of the k codewords. A new instance is classified by applying each of the m
models to the instance and choosing the codeword whose hamming distance is

closest to the m model outputs.

2.5 Machine Learning, Privacy, and Healthcare

Nowadays, machine learning models are deployed for prediction in many privacy
sensitive scenarios (e.g., personalized medicine or genome-based prediction). A
classic example is disease diagnosis, where a model predicts the risk of a disease for
a patient by simply looking at his/her health records. Such models are constructed
by applying learning methods from the literature to specific data collected for
this task (the training data—instances for which the outcome is known—such
as health records of patients phenotyped or labeled for a given disease). Prior
experience in machine learning model training suggests that having access to a

large and diverse training dataset is a key ingredient in order to enhance the efficacy
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of the learned model, e.g. IWPC, 2009). A large training dataset can be created
by merging several silos of data collected locally by different entities. Therefore,
sharing and merging data can result in mutual gain to the entities involved in the
process and, finally, to the broader community. For example, hospitals and clinics
located in different cities across a country can locally collect clinical data that is then
used to run a collaborative analysis with the potential to improve the healthcare
system of the entire country. However, in privacy sensitive scenarios, sharing
data is hindered by significant privacy concerns and legal regulations (e.g., Health
Insurance Portability and Accountability Act (HIPAA) laws in the United States
and General Data Protection Regulation (GDPR) for the European Union). In the
example described before, sharing clinical data directly competes with the need
for healthcare providers to protect the privacy of each patient and respect current
privacy policies and laws.

Based on the preceding discussion, we often face the following dilemma: share
data to improve accuracy, or keep data and information secret to protect pri-
vacy? Notice that de-identification cannot resolve this standoff: several works
(Homer et al., 2008; Narayanan and Shmatikov, 2008) demonstrated that sharing
de-identified data is not a secure approach since in many contexts the potential
for re-identification is high. More sophisticated anonymization criteria (e.g., k-
anonymity, l-diversity, t-closeness, etc.) were proposed by the database community.
While arguably better than de-identification, all such “syntactic” approaches work
only in presence of assumptions regarding the adversary’s background knowledge.
Conversely, cryptographic tools can guarantee perfect privacy of shared data in
more general situations. For example, a number of privacy-preserving training algo-
rithms have been proposed since the seminal paper of Lindell and Pinkas (Lindell
and Pinkas, 2000) introduced this concept in 2000. These algorithms use advanced
cryptographic tools in order to allow different parties to run known learning al-
gorithms on the merge of local datasets without revealing the actual data. This
approach guarantees privacy at the price of high communication and computation
overhead. Once the model is learned, we face another privacy problem: using the
model to compute a prediction for new instances while both the model and the
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instances data are sensitive information privately held by different parties. This
problem can be solved using again cryptographic tools, and an algorithm designed
for this task is called privacy-preserving scoring. In conclusion, a solution that uses
the current tools to guarantee privacy at all levels (e.g., for the data providers, model
providers, model users) deploys two privacy-preserving systems, a first one for
training and a second one for scoring. It should be noted that even the prediction
for a given patient could potentially reveal some information about the training
patients. While differential privacy (Dwork and Roth, 2014) can address this con-
cern, it comes at the cost of incorporating noise into training that can reduce model
efficacy (Fredrikson et al., 2014). Differential privacy is beyond the scope of the
present work.
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3  SINGLE DISEASE PREDICTION: CALCIPHYLAXIS

In this chapter we begin by exploring the task of predicting a single disease, Calci-
phylaxis, through the use of machine learning. We present several tasks that are
part of the overall machine learning process, including model selection, feature
engineering, and nested cross-validation. Moreover, we demonstrate how a ma-
chine learning algorithm can be used to better understand a disease through the
use of feature importance inspection. This chapter serves as a primer on the use
of machine learning for disease prediction and is meant to serve as a foundation
for the task of predicting thousands of diseases using high-throughput machine

learning as presented in Chapter 7.

3.1 Background

Calciphylaxis, also known as Calcific Uremic Arteriolopathy (CUA), is a highly
morbid disorder that presents with necrotic lesions of the skin resultant from
ischemia caused by calcification of the small and medium sized arteries (Coates
et al., 1998). The mortality rate of Calciphylaxis has been measured in excess of
50% following one year from initial diagnosis (Weenig et al., 2007). One of the most
commonly associated comorbidities with Calciphylaxis is Chronic Kidney Disease
(CKD) (Coates et al., 1998). In particular, Calciphylaxis is found most often among
patients in the late stages of CKD and end stage renal disease (ESRD) (Coates et al.,
1998). While Calciphylaxis was originally named by Hans Selye in 1962, there
is still much that is unknown about its risk factors. Known risk factors include:
CKD, ESRD, mineral and bone disorders, diabetes mellitus, hyperphosphatemia,
female gender, obesity, warfarin use, and ethnicity (Sowers and Hayden, 2010).
Furthermore, to the best knowledge of the authors of this work, there are no risk
assessment models currently used in practice for identifying patients at risk for
development of Calciphylaxis.

In recent years, the use of electronic health records (EHRs) in healthcare systems
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has grown substantially (Hsiao et al., 2014). This wealth of data has created unprece-
dented opportunity for the use of computational approaches to not only augment
existing knowledge of various diseases, but also produce predictive models to
assess patient risk. Diseases such as breast cancer (Gail et al., 1989) and myocardial
infarction (Weiss et al., 2012) have already been successfully modeled through the
use of machine learning algorithms. Machine learning, a branch of artificial intelli-
gence, focuses on producing algorithms that learn rules or relationships about a
particular set of variables to predict the value or outcome of an unknown variable.
In the context of healthcare data, machine learned models can be used to predict
the disease risk of a patient based off of the information present in their health
record. In some cases, the models produced by a machine learning algorithm can
be manually inspected to understand which variables suggest different patient
outcomes. In this chapter, we present the use of two machine learning algorithms,
lasso-penalized logistic regression (Tibshirani, 1996) and random forests (Breiman,
2001), in the context of prediction and risk factor analysis for Calciphylaxis. We
present these methodologies on several sub-populations of CKD and ESRD and
show that they produce strong prediction of Calciphylaxis.

3.2 Experimental Methodology

Data

Our dataset is comprised of patients who visited the Marshfield Clinic, a health
care system that serves Northern and Central Wisconsin. Data include diagnosis
codes, in the forms of both ICD-9 and ICD-10 codes, demographic information,
laboratory values, vitals readings, procedures, and medications present on patient
records. These values were gathered for patients who were identified as case or
control patients for our experiments. Case patients were manually identified by
their attending surgeon, who confirmed Calciphylaxis diagnosis via inspection of
patient records and histological examination of excised tissue. Control patients
were required to have no diagnosis codes indicative of Calciphylaxis in their records
including ICD-9 codes 275.49 and 709.1, and ICD-10 codes L95.9 and E83.59. Ad-
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| | Any Stage | Stage 3 | Stage 4 | Stage 5 | ESRD |
ICD-9 Code(s) 585-585.9 585.3 585.4 585.5 | 585.6
ICD-10 Code(s) || N18-N18.9 | N18.3 | N18.4 | N18.5 | N18.6

# Cases 38 10 15 12 17
# Controls 363 100 148 117 165
Total Patients 401 110 163 129 182

Table 3.1: Included diagnosis codes and number of cases and controls included in each
experimental condition.

ditional criteria were included for control patients that were dependent upon the
various experiments we completed. In all experiments, we attempted to match up
to 10 cases for each control. We chose a 10-to-1 ratio based on the small number
of confirmed cases. We present research on 5 different CKD patient populations:
patients with any stage of CKD, referred to as any stage, patients with stage 3 CKD
(stage 3), patients with stage 4 CKD (stage 4), patients with stage 5 CKD (stage 5),
and patients with stage 5 CKD requiring chronic dialysis, which we will refer to as
end stage renal disease (ESRD). Further details of these patient populations are in
Table 3.1.

In addition to our experimentation based on stage of chronic kidney disease, we
explored the effects of binary versus continuous feature representations. The raw
dataset was structured such that each non-demographic variable, e.g., a particular
lab test, had a value for the number of times the patient had received that particular
variable on their record. The counts for each variable were done from the start
of the patient’s record until an experiment-specific date, e.g., their first entry of a
particular stage of chronic kidney disease. One potential concern about using count
data is the likelihood of chronically sick patients to have an increased number of
healthcare encounters. In this way, uncorrelated variables that are recorded often
such as a height measurement vital could become inappropriately correlated with
disease status. This was of particular concern as Calciphylaxis tends to occur in
much sicker patients. For this reason, we also explored the use of binary features.
We constructed these features by setting any non-demographic feature value to 1 if



21

the patient had ever had it entered on their record, and 0 if they had never had it
on their record. In the case of continuous features, we simply scaled the counts for
each feature to be between 0 and 1, which was of use when comparing the relative

importance of features when evaluating our models.
Model Construction Methods

Our preliminary research into predicting Calciphylaxis began with matching
Calciphylaxis positive cases with controls who were not positive for Calciphylaxis.
Candidate controls had no Calciphylaxis diagnosis codes on their records, and
a minimum of 10 unique diagnosis codes on their records. The minimum data
requirement was implemented to ensure sufficient data for prediction. We selected
up to 10 controls for each case with the requirement that the control and case
have the same gender, and birthdates within 30 days of one another. Additionally,
controls were required to have data both before and after the diagnosis date of
Calciphylaxis for the case patient. In this way, we attempted to ensure that the
control patient was alive at the time of the case patient’s diagnosis and was negative
for Calciphylaxis. Both case and control data were right censored 30 days prior to
the diagnosis date of the Calciphylaxis patient.

These initial experiments resulted in modest predictive models with an over-
whelming quantity of the predictive features related to CKD. Because CKD showed
such a strong relationship with Calciphylaxis, we wanted models that could differ-
entiate between CKD patients and guide us in understanding why certain CKD
patients go on to develop Calciphylaxis while others don’t. We additionally wanted
to explore how well Calciphylaxis could be predicted, and how far in advance.
While we were interested in risk of Calciphylaxis for patients at any stage of CKD,
we found we had insufficient data to build predictive models for stages 1 and 2, as
these had less than 10 cases each. To these ends we produced predictive models of
Calciphylaxis among 5 different types of patients: any stage of CKD, stage 3 CKD,
stage 4 CKD, stage 5 CKD, and stage 5 CKD requiring chronic dialysis (ESRD).

We further explored the predictive capacities of two different models: random

forests and logistic regression. Random forest models are well known for both their
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strong accuracy and their resilience to high dimensional data. Furthermore, random
forests are capable of capturing nonlinear interactions in data. While random
forests are strong predictors, they are often difficult to interpret, and interpretation
is often critical in a healthcare context. For this reason, we additionally explored
logistic regression models. Because logistic regression is not inherently resilient
to high dimensional data, we employed lasso-penalized logistic regression, which
utilizes an L1-regularization term in the objective function of the model to penalize
features that were only marginally informative and to encourage a small set of
strongly predictive features in the final model. This is necessary not only to obtain
comprehensible models but also to obtain accurate ones, as the various types of
CKD we explore have between 5,000 to 10,000 unique features present on the
records of the patients and logistic regression without some form of dimensionality
reduction can perform very poorly in such situations. The L1 or “lasso” penalty is
a widely-used approach to dimensionality reduction in regression.

For both the random forest and the logistic regression models we performed a
case-control matched leave-one-case-out cross validation. For each experiment we
chose k-folds, one fold for each of the k case patients and its matching controls. In
this procedure, for each round of cross validation one fold was chosen to be left
out and was comprised of a single case patient and the up to 10 control patients
matched with it. In the case of random forests, models were constructed using
the remaining training data. We built 500 decision trees for each forest and used
the square root of the number of features as the number of features to consider at
each split. Trees were grown to leaf purity where possible and splits were chosen
via Gini gain that was calculated in a balanced fashion in that case patients were
weighted more heavily such that their total combined weight equaled that of the
control patients.

For logistic regression we performed an additional layer of internal leave-one-
case-out cross validation to tune the penalty coefficient for the L1 regularization
term. In this tuning procedure we consider 10 different penalty values logarith-
mically spaced between 10~* and 10*. Each penalty value was evaluated via an

internal cross validation layer and the optimal penalty value was chosen based on
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the performance of the various models as judged by a weighted accuracy measure-
ment that ensured equal combined weights for the cases and the controls. Thus, for
each external cross-validation fold the remaining folds were used to select a penalty
value and a new predictive model was trained on those folds and finally evaluated
on the original held out fold. Logistic regression models were all constructed using
a balanced class weight approach similar to that employed in the random forest
models.

For each of the 20 pairs of experimental condition and model, e.g. predicting
CKD stage 4 with random forests using binary features, we repeated the model
construction 30 times. These replications were done because random forests are
stochastic by nature, and logistic regression may have multiple equally good so-
lutions to their optimization problem, both of which can produce varying results
across multiple runs from the same data set. In this way, we were able to better

estimate the predictive quality achieved under each experimental condition.
Model Evaluation Methods

Model evaluation is done quantitatively via the construction of receiver operat-
ing characteristic (ROC) curves and precision recall (PR) curves. We primarily use
the area under the ROC curve (AUC-ROC) as a numerical evaluation for the quality
of our models. We do this because AUC-ROC provides a metric of efficacy that is
unbiased by class skew of a dataset. Because we attempt to achieve a 10-to-1 control
to case ratio this may not be representative of the true population skew, and thus
we provide a fairer analysis of our results via ROC-curves (Boyd et al., 2012). We
demonstrate PR-curves for our best performing algorithm for completeness, but do
not use them in ranking the quality of the models. Both ROC-curves and PR-curves
were constructed for each model in a similar fashion. For a single repetition of a
single experiment we first produced a vector of predicted probabilities correspond-
ing to model estimated risk for each patient. We produced this vector during the
leave-one-case-out k-fold cross validation by using the model built on the training
folds to predict the labels of the test fold. Our final predicted probability vector

was the union of these predictions as each patient was only in a test fold once.
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From these predicted probabilities and the true class labels we constructed either a
ROC- or PR- curve in the typical fashion. Then across the 30 repetitions for each
experiment, we performed vertical averaging of the 30 resulting curves to yield a
final curve.

For each of the five experimental conditions, we wish to know which of the
four models performed best. We evaluated model performance via a sign test and
evaluated 12 hypotheses which were of the form: “Binary feature random forest is
significantly better than binary feature logistic regression”. These twelve hypothesis
were all of the unique ordered pairs of the four models types drawn without
replacement. For each experimental condition we chose an experiment-wide p-
value of o« = 0.05 as our threshold for significance. We performed a Bonferroni
correction and required p; < 0.05/12 for an individual hypothesis to be significant.
If a particular model was significantly better than the three other models, then we
considered it to be the best model for that experimental condition.

Our p-values for each hypothesis were calculated via the aforementioned sign
test, the details of which we provide now. Because the 30 repetitions for each
experimental condition and model are not truly independent from one another, we
cannot use bootstrapping to calculate confidence intervals on our AUCs. Instead,
we use a sign test to determine if a particular model is correct more often than
another model a statistically significant number of times. For each model we first
construct an ROC-curve in the fashion described above. To convert the probabilities
from each algorithm to labels, we choose a threshold corresponding to an 80% true
positive rate, or recall, for our algorithms. Because of the serious nature and high
mortality rate of Calciphylaxis we chose 80% recall to reflect the significant cost
difference between false negatives and false positives. Thus, for each experiment
the threshold corresponding to 80% recall was used to label predictions as either
positive or negative. For every patient we then checked the label assigned by both
models and its true label, if both models assigned the same label, that patient was
considered a tie and not counted, however if the models differed then if the first
model received either a win or a loss if it was correct or incorrect respectively. Then,

each hypothesis was tested by first counting n,yin s, the number of times the first
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model predicted a patient correctly and the second model predicted that patient
incorrectly, and ni,ss, the converse statement. Finally, we calculate the cumulative
distribution of the binomial function Binom(n,yins, Nioss, 0.5) to determine a p-
value for a particular hypothesis.

We perform a qualitative evaluation of our models by inspecting the top per-
forming features returned from our models. In the case of logistic regression, the
top features are those with the highest absolute value of their coefficients. In the
case of random forests, we used the approach detailed in Breiman 1984 to determine

feature importance values via the Gini importance (Breiman, 1984).

3.3 Results

In general, we find that we achieve superior performance predicting Calciphylaxis
from a specific stage of CKD compared to an arbitrary stage. We present in Figure
3.1 a grouped bar plot detailing model performance by stage of CKD and choice of
model and feature set. We note that in general random forests outperform logistic
regression and that use of binary features roughly outperforms use of continuous
features. In Table 3.2 we present the precise ROC-AUC values achieved in each
experiment. In two of the five experimental conditions we found random forests
with binary features to outperform the other three approaches with a statistically
significant difference.

Given the strong performance of random forests using binary features, we
chose to visualize the ROC- and PR-curves for this particular model and feature
engineering scheme across the five experimental conditions and present this in
Figure 3.2. We note that the models predicting CKD at a specific stage appear to
be clustered together and roughly separated from the ROC-curve representing
prediction at an arbitrary stage of CKD. Additionally, there appears to be some
separation between the PR-curve representing prediction of ESRD as compared to
the other stages of CKD.

Additionally, for each of the five experimental conditions, we present in Table

3.3 the top 10 features used in prediction for the binary feature random forest.
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Figure 3.1: Mean ROC-AUC achieved on the 20 experimental predictions for the task of
predicting Calciphylaxis.

We note that many of these features are strongly related to many already known
risk factors for Calciphylaxis. Additionally, these features are suggestive that we
successfully control for CKD, as few CKD related features appear among the top
features for these models. Furthermore, we find that there may be some temporal
confounding, as the feature “Prescription transmit via erx system” is present in the
top ten features for both stage 4 and stage 5 models. This particular feature can
appear when a model is attempting to distinguish cases and controls temporally, as
the introduction of electronic transmission of prescriptions can be used to infer if a
patient’s data is from a more recent period by inspecting if this feature is present
on their record.
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| | RF Bin. | RF Cont. | LR Bin. | LR Cont. |

Any Stage || 0.7377 | 0.7248 | 0.7126 0.7335
Stage 3 0.8487 | 0.8492 | 0.7940 0.7897
Stage 4 0.8718 | 0.7907 | 0.7901 0.6349
Stage 5 0.7960 | 0.7702 | 0.7076 0.6892

ESRD 0.8575 | 0.8377 | 0.7450 0.7501
Average 0.8223 0.7945 0.7499 0.7195

Table 3.2: AUC-ROC values for each experimental condition and algorithm. For each
experimental condition, the algorithm that performed best is highlighted in bold if it is
statistically significantly better than the other three algorithms as determined by a sign
test. Note that just binary random forests achieved statistical significance and did so in
two experimental conditions. For CKD stage 4 binary random forests outperformed its
competitors with p < 3.78e — 4. For ESRD stage 4 binary random forests outperformed its
competitors with p < 1.92e — 4.

3.4 Discussion

In this work we explored prediction of Calciphylaxis at various stages of CKD,
through the use of random forest or logistic regression models and either binary or
continuous features. We find that overall prediction of Calciphylaxis is achievable
with strong results and note that in each of the experimental conditions in which we
predict Calciphylaxis during a specific stage of CKD, we find at least one model with
a AUC-ROC of nearly 0.8 or above. Such AUC-ROC values suggest models of high
quality capable of predicting Calciphylaxis with reasonable efficacy. Given the high
mortality rate of Calciphylaxis, we feel that early prediction of Calciphylaxis would
be of great benefit for physicians who wish to monitor patient risk. In particular,
we find some of our strongest results when predicting Calciphylaxis using binary
feature random forests for the experimental conditions of stages 3 and 4 where
patients have moderate to advanced CKD.

It is worth noting that for a given task and feature type, random forests nearly
always outperformed logistic regression. We feel that this is likely due to the ability
for random forests to capture nonlinear interactions in data. Furthermore, for a
given task and model type, binary features achieved AUC-ROC values that were
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ROC and PR Curves for Binary Feature Random Forest
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Figure 3.2: ROC- and PR-Curves for binary feature random forest across the five experi-
mental conditions.

typically equal to or better than those achieved with the use of continuous features.
This is of interest as our constructions for binary and continuous features ensured
that continuous features had strictly greater information. For every feature other
than age, the binary feature could be obtained from the continuous feature by
thresholding such that a continuous feature of value 0 becomes a binary feature
of value 0, and a continuous feature of value anything greater than 0 becomes a
binary feature of value 1. In the case of random forests this could be expressed as
splitting on a particular continuous feature, f;, with f; > 0 being the logical test
for indicating which branch to choose. The poorer performance from continuous
features suggests that there may be some overfitting occurring. By using binary
features, we are limiting the expressiveness of our models, and such an action could
cause improvement in the case of a model that is overfitting.

In our analysis of the top performing features for the various models and ex-
perimental conditions, we found that features could be grouped roughly into one
of three categories: previously known Calciphylaxis risk factors, indicators of
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Table 3.3: Ranking of 10 top random forest model features for each of the 5 CKD experiments:
any CKD stage, stage 3 CKD, stage 4 CKD, stage 5 CKD, and ESRD. For each experiment,
feature importance values were averaged first across each of the k-folds for cross-validation,
and then those values were averaged across the 30 repetitions completed to produce a final
importance value for each feature.
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potential confounding in the model, or potential Calciphylaxis risk factors with
minimal or no previous support. Of those risk factors for Calciphylaxis that are
previously discovered, our models pick up most strongly on obesity and its related
risks, anemia/low iron, and hyperparathyroidism. It is worth noting that we see
minimal use of CKD features, which suggests that our method for controlling for
CKD was largely successful. There are some features which suggest either temporal
confounding. In particular, the feature “Prescription transmit via erx system” is
likely being used to separate patients by how recently they visited the Marshfield
Clinics. Such a feature can be exploited during cases of temporal confounding as
the use of an electronic prescription transmittal system is a relatively recent addition
to workflows in healthcare systems. Finally, we find some of our top features are
related to liver disease and/or liver function, a relationship that is not strongly
established with Calciphylaxis. In particular, we see both various liver function
labs and testing for hepatitis B as strong features for predicting Calciphylaxis.

3.5 Conclusion

Patients suffering from late stage CKD and ESRD are known to be at a much
higher risk for Calciphylaxis (Coates et al., 1998), a vascular disorder with a one-
year mortality rate in excess of 50% (Weenig et al., 2007). By identifying at risk
patients, we provide an opportunity for these patients to take actions to mitigate
their risk factors and avoid a potentially deadly disease. Additionally, by modeling
Calciphylaxis to predict patient risk, we invite the opportunity to discover more
about the potential risk factors of what is a poorly understood disease. In this work
we explored prediction of Calciphylaxis at various stages of CKD, through the use
of random forest or logistic regression models and either binary or continuous
features. From this work, we found that random forests using binary features
tended to outperform other methodologies and that we could typically predict
Calciphylaxis with strong efficacy. Furthermore, we found that our models not
only largely exploited known risk factors for Calciphylaxis, but also found some

evidence for a previously unsupported connection to liver function and hepatitis.



31

We note that our results show these models to be of high quality and intend to
explore potential for translating these models to a clinical setting, where they could
be used to identify patients who are of higher risk for developing Calciphylaxis.

3.6 Summary

In this work we demonstrated a machine learning pipeline as applied to a single
healthcare condition. It is standard in these cases to perform some combination of
tfeature engineering, model selection and validation. Moreover, in the healthcare
domain it is often advantageous to inspect these models both for the validation of
their quality and for their potential insights into the condition of interest. However,
this methodology is time consuming and does not scale well to the prediction of
the thousands of interesting health events that exist. For this reason, in Chapter 4

we turn our attention to the task of predicting many diseases at once.
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4 HIGH-THROUGHPUT MACHINE LEARNING FROM ELECTRONIC

HEALTH RECORDS

41 Introduction

Much of the existing literature related to predicting disease risks via machine
learning algorithms focuses on single diseases or small subsets of diseases (Gail et al.,
1989; Weiss et al., 2012; Huang et al., 2014; Himes et al., 2009). Small-scale learning
tasks often allow for manual selection of the features used by the learning algorithm
and manual definition of the cases and controls. However, the framework to predict
a single disease is not sufficient to assess risks for the thousands of possible illnesses
a patient can face. The current paradigm, of each publication or tool targeting a
specific disease, creates a labyrinth of different implementations and data collection
assumptions. Therefore, to answer the question of how well all diagnoses can be
predicted, we cannot simply aggregate the existing models of varying approach
and data source but must rather produce a single pipeline capable of to predict
all diagnoses at once using the same set of rules, assumptions, and data source.
Although there has been some work that has predicted multiple patient diagnoses,
to the best of our knowledge it has either been done to test representations of patient
data (Miotto et al., 2016) or in the context of a retrospective phenotyping task (Che
et al., 2015), to “predict” or specify who really had an event such as an MI, rather
than who will have the event in the current year. We believe that our work is greater
in breadth than the previous research and that we are the first to produce a machine
learning pipeline that attempts to learn thousands of unique models predicting the
various diagnosis risks a patient may receive in the future.

We hypothesize that it is possible to predict nearly all disease risks simulta-
neously at a competitive level of performance. We call the approach of learning
thousands of predictive models at once “high-throughput machine learning,” and
we call the application of the approach to predicting risks for many diagnosis codes

from EHR data “pan-diagnostic machine learning.” To test our hypothesis that
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accurate pan-diagnostic machine learning is possible, we produced a machine
learning pipeline that builds a unique model for each diagnosis code in the 9th
revision of the International Classification of Disease (ICD-9) (ICD-9 codes were
used rather than ICD-10 because (1) we initiated this study before our data source,
Marshfield Clinic Health System (MCHS), switched to ICD-10 in October, 2015,
and (2) all historical data were coded in ICD-9). A future incorporation of ICD-10
codes would require a standard lexicon, such as the Systematized Nomenclature of
Medicine — Clinical Terms (SNOMED CT), that is capable of handling both ICD-9
and ICD-10 codes. Although ICD-9 codes primarily serve billing purposes and do
not always correspond with diseases, they are useful for both their ubiquitous and
often standardized presence in healthcare systems and the fundamental role they
play in phenotyping patients. The pipeline is general enough to be run on ICD-10
codes, with very little modification once sufficient longitudinal data is available.
In this chapter, we present a high-throughput machine learning pipeline that
learns diagnosis-specific models for risk prediction. Starting with only EHR data,
the pipeline learns one model per diagnosis code. Our modeling approach auto-
matically learns appropriate case-control matching rules, including controlling
for pre-existing conditions, for each diagnosis code. Furthermore, each model
learns rules about which populations of patients are appropriate for the model to
be applied to. In this way, our pipeline would automatically learn that a model
predicting 10-year Alzheimer’s disease risk should not be applied to adolescents.
While our pipeline is designed to require minimal intervention to allow for ease of
use, it is also highly customizable and can accommodate prior knowledge such as
phenotyping rules for user-specified case-control definitions. We showcase such an
example with custom rules for identifying individual pregnancies when predicting
pregnancy complications. In this work we present the results of our pipeline using
data from the MCHS and introduce a new dataset of performance measures and
variable importance values for tens of thousands of clinical prediction tasks. More-
over, the code for this pipeline is made publicly available so that it may be readily

applied to data from other healthcare entities.
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4.2 Methods and Materials

Electronic Health Record Data
Data preparation, de-identification, and patient consent

Our dataset consisted of the demographics, diagnoses, labs, procedures, and vitals
of 1.5 million patients who received care at the MCHS. Prior to sharing the data,
the MCHS fully de-identified all data by not only removing any protected health
information (PHI) but also by de-identifying codes and values. All names for ICD-9
codes, procedures, lab tests, and vital measurements were de-identified, and a
separate mapping file was produced. Additionally, the values for lab and vital
measurements were first mapped to a reference range and then de-identified. The
mapping files for re-identifying data were used only for summary statistics and
to properly analyze results and produce figures. The UW-Madison Institutional
Review Board (IRB) deferred to the MCHS IRB under the Wisconsin IRB consortium
and waiver of consent was obtained from the MCHS IRB.

Pre-processing data

Patients with insufficient data were removed from the dataset. Our original dataset
was comprised of some 1.5 million patients of which 1.1 million met our data mini-
mum requirement. We removed patients with fewer than four distinct diagnoses
recorded over their lifetime or whose medical data did not span multiple entry
dates. This was done to help ensure patients in the dataset received regular care
at MCHS. If a patient did not have both a sex and date of birth recorded, then
he/she also was removed from the dataset. Our dataset also contained many ICD-9
codes not related to diseases. These non-disease codes included ICD-9 procedure
codes and codes beginning with the letter "E” or "V’. E-codes describe the external
cause of a disease or injury and V-codes do not pertain to disease or injury and
are used for supplementary documentation purposes. We did not build predictive
models for V-codes, E-codes, or ICD-9 procedure codes, though these data were
kept as candidate (input) features in the training data. Additionally, we did not
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build predictive models for two major categories in the ICD-9 hierarchy: “Perinatal
Diseases” (ICD-9 codes 760-779) as there was insufficient data in the records of
newborns to predict disease, and “Symptoms, Signs, And Ill-Defined Conditions”
(ICD-9 codes 780-799) as these are not diseases and were outside of the scope of

this research.

Feature Extraction

Patient EHR data in a research data warehouse is distributed across many tables
in a relational database, with tables for diagnoses, labs, vitals, procedures, de-
mographics, etc. Furthermore, each patient’s health record can be viewed as an
irregularly-sampled timeline of medical events. In order to use random forests, we
needed to convert this rich, irregular patient data into a single relational table with
one row, or record, per patient, and with patient features arranged by column. To
accomplish this, all features were divided into multiple counts of events occurring
within time ranges. The time ranges we used were “last 1 year”, “last 3 years”, “last
5 years”, and “ever” (Lantz, 2016). These time ranges are relative to a specific date,
that is prior to a case patient’s first entry of a diagnosis of interest. For example,
a surgical procedure 6 months prior to a diagnosis we are predicting would add
a single count to all four columns for that surgical procedure feature in a given
patient’s row. Lab value event counts within a time range were further subdivided
based on outcome (normal, abnormal, high, low etc.).

Different lab tests have varying numbers of associated outcomes; for example,
one test’s result could be continuous while another could be discrete, such as either
normal or abnormal. All continuous lab results were first discretized by the MCHS
using reference ranges. We then constructed one feature per (test, reference-value)
tuple, and each such unique tuple received separate counts for the four time ranges.
For example, a blood sodium measurement would have separate time range counts
for values of normal, high, low, etc. The process of discretizing the continuous lab
values and counting (test, reference-value) tuples as unique features was also done

for vitals (e.g. high/low systolic blood pressure).
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Pan-Diagnostic Machine Learning Experiments

While our system can use a wide variety of possible machine learning algorithms,
we employ random forests (Breiman, 2001), which form a prediction by taking a
majority vote amongst an ensemble of decision trees. Random forests are known
for their competitive accuracy (Caruana and Niculescu-Mizil, 2006) and resilience
to high-dimensional data (Breiman, 2001); because of their use of decision trees,
they can capture some non-linear interactions of multiple variables without the
need to predefine interaction terms; because of their ensemble nature, they are
more robust against overfitting than are individual decision trees (Breiman, 2001).
There are many alternative popular options for tree-based ensemble learners, such
as Extremely Randomized Trees (Geurts et al., 2006) and XGBoost (Chen and
Guestrin, 2016). Our dataset consisted of the labs, vitals, diagnoses, procedures,
and demographic information of 1.1 million patients from the MCHS which serves
patients in the Northern and Central regions of Wisconsin. Using these data, we
set out to predict all disease-specific ICD-9 code risks prior to patient diagnosis.
The models can be constructed to make predictions for arbitrary user-defined time-
periods prior to diagnosis. In this work, we explore how predictive performance
varies with time by evaluating models constructed to predict initial diagnosis
at seven different time windows: 1-month, 6-months, 2-years, 5-years, 10-years,
15-years, and 20-years. It is worth noting that predicting health events with a
long forecast window is likely to truly be a disease risk prediction, whereas a
shorter window such a 1-month could be considered a blend of risk prediction and
diagnosis, as the patient may be undiagnosed for a disease they physiologically
already have. Of course, where the shift from risk prediction to diagnosis occurs is
disease-specific. Additionally, we wished to explore the relationship between model
efficacy and disease type and did so by leveraging the disease categories present in
the ICD-9 hierarchy. We evaluated model performance by measuring Area Under
the Receiver-Operating Characteristic Curve (AUC) via ten-fold cross-validation, a
robust form of hold-out testing commonly used for evaluation in machine learning.

A recurring challenge we faced in many steps of the pan-diagnostic machine
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learning pipeline was the need for algorithms to be general, flexible, and able
to automatically account for differences in the disease mechanisms and affected
populations of different diagnoses. Several diagnosis codes required specialized
refinements to our general approach for case-control matching (see Case-control
matching and Dynamic definition refinement), to avoid artificially high accuracies
for trivial reasons. This arose when predicting risks for diseases that are compli-
cations of preexisting states of health. For example, when predicting risk for a
pregnancy complication, we wish to match a case with a control who is not only
female, but also pregnant, and specifically at a similar stage of pregnancy. Simply
choosing each control to be of the same age and sex as the case makes prediction
artificially easy, because pregnancy and pregnancy-stage become accurate predic-
tive features. To automatically determine if a diagnosis requires a set of preexisting
diagnoses we created a novel approach which we call “dynamic definition refine-
ment” (DDR) (see Dynamic Definition Refinement). For each diagnosis code, DDR
learns a set of prerequisite diagnoses that we require both the case and control to
have on their record prior to the prediction date. For example, DDR would learn a
rule that a patient who has a diabetic complication should previously have diabetes
on their record, and hence any matched control should also have diabetes on their
record.

Building random forests

To construct the random forest models from summary table data and to calcu-
late AUCs we used scikit-learn 0.16.1, an open source machine learning library
(Pedregosa et al., 2012). We used scikit-learn’s implementation of the Random-
ForestClassifier. For each model, 500 trees were constructed and 10% of features
were randomly selected as candidates for each split. All other model specifications
were default and are listed in Table 9.1 for completeness.

For each ICD-9 code a separate random forest model was trained on a minimum
of 1,000 and a maximum of 10,000 randomly selected case-control paired patients
sampled from the dataset of 1.1 million patients. While we chose a maximum of
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10,000 patients due to computational constraints, many of our models certainly
would have benefited from the use of additional case patients, or even a greater
control to case patient ratio. We randomly sampled a maximum of 10,000 case-
control paired patients by first randomly selecting a case patient, and then randomly
selecting a control patient that met the criteria that follow. If a code did not meet the
minimum of 1,000 case-control paired patients, it was not modeled. We note that
while there were 22,396 unique ICD-9 codes present in our dataset, the majority
of these were very infrequently used for diagnosis during clinical care either due
to redundancy or lack of prevalence of the corresponding disease. By requiring a
minimum of 1,000 case-control paired patients we built at most 3,586 models for a
given truncation window. Cases were considered positive for a diagnosis if the ICD-
9 code appeared two or more times in the patient’s record ('rule of two’) (Rasmussen
et al., 2014). Controls paired to cases must have never had the diagnosis being
modeled recorded in their record. Cases and controls were also required to have the
same sex and no more than a 30-day difference in date of birth. Further matching
criteria were utilized and are detailed in the Dynamic Definition Refinement (DDR)
and Break Point Analysis (BPA) methods sections. After matching, we identified a
truncation date for each pair of case-control patients based on the date of the first
entry of the diagnosis of interest on the case patient’s record and the length of the
truncation window. If day t was when the case patient had their first entry of the
diagnosis being predicted, and the window length is w, then any data following day
t —w was excluded from the training data. This truncation is essential to prevent
class label information from leaking into the training data, which would bias
resulting estimates of model performance on future patients, specifically making
them overly-optimistic. Even more aggressive truncation was applied when we
tested prediction ability even further in advance, requiring truncation from one year
to 20 years prior to the event to be predicted. Before carrying out cross-validation
for a given prediction task, unsupervised feature selection was employed to retain
only features populated for greater than 1% of patients (without regard to case
vs. control label). In this work, we chose to use cross-validation rather than the
out-of-bag (OOB) estimates for our random forest models because OOB error can in
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some cases provide an incorrect assessment of model performance (Mitchell, 2011).

Case-control matching

During case-control matching, two patients are considered to have a sufficiently
close date of birth if the date of birth of the control patient is within 30 days of that
for the corresponding case patient. We did not consider case patients or control
patients where the patient’s date of birth would be after the truncation date, e.g., we
would not train on an adolescent’s data when building a model to predict 20-years
in advance. Furthermore, we considered the concept of a last known contact or
the most recent data point in a patient’s record. We required that control patients
have a last known contact greater than or equal to the date of diagnosis of the
case patient. This helps ensure that the control patient had the potential of being

diagnosed but was not.

Dynamic definition refinement (DDR)

Due to the massive number of models built, it would be infeasible for a human to
individually develop a prerequisite diagnosis list for each model. Therefore, we
developed DDR to perform most this work, which we could then inspect and update.
The DDR approach involves two stages: an algorithmic stage to identify potential
prerequisite diagnoses and a manual stage to correct over- or under-controlled
diagnoses. While a serious effort was made to choose realistic controls for each
disease and only predict appropriate ICD-9 codes, we realize that pan-diagnostic
machine learning is not without limitations and some of the models we produced
may still be somewhat overly optimistic, influenced in part by limitations of the
ICD-9 hierarchy.

For each diagnosis code, DX;, DDR first identifies all diagnosis-positive patients
(established via “rule of two”). Among these patients the algorithm considers
all ICD-9 codes on their records prior to their entry of DX;. Any diagnosis code
that occurred in at least 85% of the case (positive) patients became a candidate
prerequisite diagnosis for DX;. To prevent controlling for ICD-9 codes that describe
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healthcare encounters, DDR does not consider a specific subset of very general
ICD-9 codes (see Table 9.4). We found that these general (non-diagnosis-specific)
algorithmic refinements were largely effective, but a small number of the pregnancy
complication codes failed to have pregnancy as a prerequisite diagnosis. Therefore,
we manually added ICD-9 V22 (Normal Pregnancy) as a prerequisite diagnosis for
all pregnancy complication codes (ICD-9 630-679).

Predicting pregnancy-related complications

Case-control matching for pregnancy complications required additional considera-
tion beyond the standard date of birth, sex, 'rule of two’, and DDR-control that all
of the other codes received. To ensure cases and controls are in similar stages of
pregnancy, we required that their pregnancies must have begun within two weeks
of one another. The beginning and end dates of a pregnancy, which we use to
define the ‘pregnancy era’, were determined via the use of break point analysis
using the 'segmented” package for R (Muggeo, 2003, 2008). Across all patients with
two or more V-22 (Normal Pregnancy) ICD-9 codes, the time gaps between adjacent
codes were calculated. These times gaps were then used by break point analysis
(Kuang et al., 2016) to calculate a threshold for determining if two adjacent codes
in a patient’s record belonged to the same pregnancy. Breakpoint analysis returned
a threshold of 84 days, which is the maximum amount of time two adjacent preg-
nancy codes on a given patient’s record can be spaced from one another and still
belong to the same pregnancy era. This threshold value was used to determine
the unique pregnancy eras, and their associated start dates, for each patient with
two or more V-22 ICD-9 codes. Finally, a case-control pair was matched with the
additional constraint that their pregnancy eras began within 14 days of one another.
This enforces the simple notion that case-control pairs should roughly be in the

same stage of pregnancy.
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Truncation date analysis

The experimental results presented in Figure 4.1 were generated via kernel density
estimation (KDE) (Parzen, 1962) using the function and parameters detailed in
Table 9.2. For these results, we do not show confidence intervals on the density
estimates of the AUC distributions as they are very tight. The maximum achievable
95% confidence interval with 500 cases and 500 controls is AUC +0.036, and with
5,000 cases and 5,000 controls is AUC £0.011 (see the simulated prospective study
analysis section for details on calculating AUC confidence intervals). For this reason,

confidence intervals are not included in Figures 4.1 or 4.2.

High-throughput construction of models

In order for models to be constructed in a reasonable amount of time, we used
the University of Wisconsin ab.“ Madison’s HTCondor framework (Thain et al.,
2005). HTCondor is an open-source high-throughput computing infrastructure
that distributes work among many execute nodes running in parallel. We used
HTCondor version 8.5.1 which allows for encryption of data transferred to and
from worker nodes. Since a separate model is built for each ICD-9 code, pan-
diagnostic machine learning can easily be partitioned into parallel tasks by assigning
a separate machine to build a predictive model for each diagnosis code. Our
term “high-throughput machine learning” acknowledges our intellectual debt
to the computing philosophy of HTCondor and the high-throughput computing
environment provided by UW-Madison’s Center for High-Throughput Computing
(CHTC).

Simulated Prospective Study
Simulated prospective study design

We simulated a prospective study by randomly selecting a test cohort of patients
and forming predictions across all diagnoses for these patients over a one-year

period. We chose to perform our study during the calendar year of 2014 as this
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maximized the amount of usable training data for building predictive models. A
test cohort was generated by randomly selecting 100,000 patients who had at least
one contact with the Marshfield Clinic in the calendar year of 2013 and were not
known to be deceased at the end of 2013. This was done to simulate how a health
system would perform a prospective study, by first identifying a cohort of active
patients to follow.

Two sets of ICD-9 code models were built using pan-diagnostic machine learning
with a I-month prediction window and a 6-month prediction window. These mod-
els were constructed in the same fashion as the models built for the pan-diagnostic
machine learning experiments. Training data for each model was produced by
randomly selecting a set of patients using 1:1 case-control matching, as well as
adhering to the prerequisite diagnoses established by DDR. Additionally, no pa-
tients present in the testing cohort were a part of the training data. All training
data following the calendar year of 2013 were truncated to prevent leakage of any
information.

For each ICD-9 code model, a subset of the testing cohort was selected based on
eligibility criteria, to avoid overly-optimistic accuracy estimates from predicting
for patients for whom such predictions are trivial to make correctly. The eligibility
criteria were determined by the case patients chosen for training the model and
included the following: 1) the test patient must have all DDR prerequisite diagnoses,
2) the test patient must have been aged between the 1st and 99th percentile of ages
of the training case patients, and 3) the test patient must have been of the same sex
as the majority of the training case patients if there was a 99% or greater proportion
of one sex. This ensured that the results of our models were not artificially elevated
by testing on patients who would not have been considered for this diagnosis in
a healthcare setting (e.g. prostate cancer for women, or Alzheimer’s disease for
an adolescent). Each eligible test patient received a score from the model as their
predicted value and their true value was indicated by entries on their record during
the year of 2014.
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Simulated prospective study analysis

The results of the prospective study yielded, for each modeled ICD-9 code and
the subset of the testing cohort eligible for the model, the risk scores as predicted
by the model on this subset, and the corresponding ground truth indicating if a
given patient received the predicted code during the calendar year of 2014. For
each diagnosis code, we required that there be sufficient patients to construct both
a 1-month and 6-month predictive model. For a given patient and ICD-9 code,
the risk for that patient was calculated as the maximum of the risks predicted
by the 1-month and 6-month models. In this way, we roughly predict risk in
the 1-year window of our study. Like the analysis performed for the experiment
shown in Figure 4.1, we use KDE to visualize the distribution of model AUCs in the
simulated prospective study. However, the models produced in the first experiment
had a minimum of 500 case and 500 control patients each. That amount of data
is large enough to produce very good estimates of the AUC for each model. In
the prospective study, there were significantly less positive patients for each ICD-9
code, with the majority of models having less than 10 patients who received the
code during 2014. Fewer patients, in combination with heavy class skew, led us to
much less tight estimates of AUC for each model; hence for the prospective trial,
we also show 95% confidence intervals of AUC for each model. To compute these
confidence intervals, we first calculated the standard deviation using the formula
(Bamber, 1975) in Equation 4.1, where n, and n,, are the number of positive (case)
and negative (control) patients respectively, and AUC represents the AUC of a

particular model.

(4.1)

o=

J AUC(1 — AUC) + (np — 1)(Pyny — AUC?) + (1 — 1)(Pyyyy — AUC?)
MpTn

P _A—UC P _ZA—UCZ
Y2 AUC WY1 4 AUC
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We then computed the upper and lower bounds of the two-sided 95% confidence
interval as AUC +z 50 where z,, was calculated via the percent point function for
the normal distribution N(0,1). As AUC can only take on values between 0 and
1, bounds were truncated at 0 and 1: computed lower bounds below 0 were set
to 0, and computed upper bounds above 1 were set to 1. We then produced two
additional KDE distributions of the lower and upper bound AUC values. Note
that some of these confidence interval densities, in addition to the density of AUC
scores, have a small mass outside of the 0,1 range due to kernel density estimation,
specifically the use of a Gaussian kernel to estimate the densities. This confidence
interval calculation requires that the number of positive and negative examples not
be too small or else the AUC may not be normally distributed. For this reason, we
required each diagnosis code to have a minimum of 30 case and 30 control patients
in the study cohort to be included in the results of this work. We retained a total
of 2,538 models that contributed to the results presented in Figure 4.3A, and 2,130
models that for Figure 4.3B.

Figures 4.3A and 4.3B differ based on the inclusion (A) or exclusion (B) of
so-called repeat diagnoses. In Figure 4.3B we predict a diagnosis for a patient
only if that patient has never had this diagnosis on their record. In this way we
are performing a similar task to our original experiments presented in Figures
4.1 and 4.2. However, in Figure 4.3B we predict an outcome for a patient even
if they have had that diagnosis before. There are many acute diseases for which
an additional code corresponds to a unique event separate from previous entries;
however, there are also many other diseases for which this is not true. Including
only first diagnoses may be somewhat pessimistic for some diseases, but including
repeat diagnoses for all diseases is certainly overly optimistic. We believe the true
aggregate performance falls somewhere between the two.

In-depth analysis of high impact diseases

In Figure 4.4 we present an in-depth analysis of the models produced for three
high impact diseases. The results for each model included only patients who met
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the model’s eligibility criteria and had no entries of the ICD-9 code prior to 2014.
For each disease, we generated a modified Kaplan-Meier curve, a ROC-curve, and
a PR-curve. The modified Kaplan-Meier curve details the relationship between
time since prediction (start of 2014) and the fraction of patients yet to receive the
diagnosis. The ROC-curve depicts the relationship between the false positive rate
and the true positive rate as the threshold is varied. The PR-curve shows the
relationship between precision (positive predictive value) and recall (sensitivity, or
true positive rate) as the threshold is varied.

Additional Details
Additional software tools used

Our pan-diagnostic machine learning code also makes use of NumPy (Van Der
Walt et al., 2011) and Pandas (McKinney, 2010). Figures were constructed using
matplotlib (Hunter, 2007) and seaborn (Waskom et al.).

4.3 Results

Prediction quality depends on disease category and time window

We demonstrated the efficacy of the pan-diagnostic machine learning pipeline on
the tasks of predicting diagnosis risks at the seven different time windows. The
prediction window of 1 month is achieved by truncating all training data following
the date 1 month prior to the case patient’s diagnosis; each control patient for a given
ICD9 code belongs to a case-control pair and has his/her data truncated at the same
date as does the case patient. An analogous process is executed for the six other
prediction time windows. We observed mean AUCs ranging from 0.803 + 0.062,
across the 3,586 1-month models, to 0.524 + 0.028 across the 3,288 20-year models.
Fewer models were constructed at the 20-year window than at the 1-month window.
Because we required a minimum number of case-control pairs that all have data

prior to the truncation window, some models had sufficient patients for the 1-month
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window but not the 20-year window. We use KDE to visualize and compare the
distributions of model performances when predicting at the several time intervals
(Figure 4.1). Additionally, we investigated how the predictive accuracy varies across
and within the fifteen different highest-level chapters, or diagnosis categories, of
the ICD hierarchy (Figure 4.2), using the 1-month and 6-month prediction time
windows.

We see in Figure 4.1 that the majority of diagnoses (with sufficient data) can be
predicted 1-month in advance with an AUC of 0.8 or greater. We note an inverse
relationship between the length of the prediction window and the quality of the
model. This observation is likely owed to the decrease in number of patients
available for long term predictions, the smaller amount of data these patients have
as we necessarily have access to less of their records, and the importance of a
patient’s recent health state on their immediate future. Interestingly, there are some
diagnoses which can predict with AUC at or above 0.7 even 20 years in advance.
These diagnoses were largely ocular disorders and congenital anomalies.

Encapsulated in Figure 4.1 are the AUC scores of some 24,462 models across
the 7 different truncation windows. While this figure provides a high-level un-
derstanding of the general trends of how predictive efficacy varies with time, and
while Figure 4.2 delves deeper in presenting how individual diagnostic chapters
vary from one another, there is a tremendous opportunity for exploring the results
of this work in greater detail. For example, each random forest model has feature
importance (Breiman, 2001) values corresponding to an estimate of how valuable
a particular health event is in predicting a diagnosis. These variable importance
values might be used to better understand both individual diseases and how differ-
ent diseases relate to one another. Furthermore, a more fine-tuned approach could
be taken to the analysis by exploring a subset of diagnoses or how the prediction
of a single diagnosis code changes over time. Due to the wealth of opportunities
for additional research, we publish alongside this work a dataset containing the
AUC and feature importance values for all 24,462 models contributing to Figure
4.1. We believe that this dataset will be both a source for additional research and a
baseline of comparison for other prediction strategies in future research. We note
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AUC Density Estimate by Truncation Date

% 1 month - 0.803
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Figure 4.1: Comparison of Kernel Density Estimate (KDE) of AUC Distributions by Trunca-
tion Date. The shaded regions show the KDE distributions of AUC for the models built
to predict ICD-9 codes at various time intervals ranging from 1 month to 20 years prior
to first diagnosis. Note the significant performance increase attributed to an additional
data leading up to diagnosis. Additionally, we find it of interest that these distributions
are approximately normal. Some of the distributions, in particular those predicting far in
advance, have a heavy right tail stretching well into AUCs of 0.7 and greater.

that because the random forest algorithm is stochastic that the feature importance
values are as well (that is they can vary between runs). However, with a sufficient
number of trees, such variance is minimal. Nevertheless, it is critical to inspect
the features returned as a sanity check on the model, and thus in Table 4.1 we
present top feature importances for three models predicting common health condi-
tions: acute myocardial infarction, lung cancer, and influenza. We find that these
models are largely using reasonable features matching known risk factors for their

respective conditions.
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Table 4.1: Feature importance values for three common diseases. We present the top 10
unique features for each model, i.e., if a feature was useful in more than one time window,
it was collapsed into a single feature for clarity. Note that while we controlled for age, sex,
and date of birth, these features are consistently top predictors and they still have value
through interactions which other features. Features seen in the acute myocardial infarction
model match known risk factors. Of interest is the “Procedure Cytopathology, Pap Smear”
feature in lung cancer; we believe this feature is useful as it is a proxy for sex and also is a
procedure only performed at specific ages. Similarly, we believe the ICD-9 367, seen in two
of the models, may act as a useful proxy for age as eyesight worsens with age. The influenza
model shows a mix of respiratory related features and features suggesting regular contact
with the healthcare system (office visits and blood collection). We believe that features
suggesting greater contact with the healthcare system may be used to differentiate sicker

patients from healthier patients, which could indicate a greater risk for influenza.

Rank | 410.4 Acute Myocardial | 162.9 Lung Cancer | 487.1 Influenza (AUC
Infarction (AUC 0.703) | (AUC 0.728) 0.836)
1 Date of Birth Date of Birth Date of Birth
2 Age Age Age
3 ICD-9 410.9 Unspecified | ICD-9 305.1 Nondepen- | ICD-9 465 Acute Upper
Essential Hypertension | dent Tobacco Use Disor- | Respiratory Infections
der
4 ICD-9 414 Ischemic | ICD-9 305 Nondepen- | Procedure Office Visit
Heart Disease dent Abuse of Drugs
5 ICD-9 305.1 Nondepen- | ICD9 496 Chronic Air- | ICD-9 V72 Special Inves-
dent Tobacco Use Disor- | way Obstruction tigations and Examina-
der tions
6 Sex ICD-9 518 Other Dis- | ICD-9 780 General
eases of Lung Symptoms
7 ICD-9 305 Nondepen- | Sex Procedure Routine
dent Abuse of Drugs Venipuncture Collec-
tion
8 ICD-9 786 Respiratory | ICD-9 786.6 Swelling, | ICD-9 462  Acute
System and Other Chest | Mass, or Lump in Chest | Pharyngitis
Symptoms
9 ICD-9 367 Disorders of | ICD-9 518.8 Other Dis- | ICD-9 490 Bronchitis
Refraction and Accom- | eases of Lung
modation
10 ICD-9 786.5 Chest Pain | Procedure Cytopathol- | ICD-9 367 Disorders of
ogy, Pap Smear Refraction and Accom-
modation
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Figure 4.2: (Continued on the following page.)
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Figure 4.2: Split Violin Plot Comparing Kernel Density Estimates of AUC Distribution by
Truncation Date and ICD-9 Diagnosis Group. Across each diagnosis group a comparison
of KDE distributions of AUC is shown for censor dates of 1 and 6 months in the blue and
green curves respectively. The number of codes predicted at 1 month and 6 months are
listed respectively. The largest decrease in performance is among pregnancy complications
where the mean AUC drops from 0.772 £ 0.075 at 1 month to 0.697 + 0.077 at 6 months.
Additionally, note the bi- and sometimes tri-modal nature of distributions, suggesting that
many of these categories may have interesting clusters within them.

Translational Validation via Simulated Prospective Study

In addition to evaluation by cross-validation in our case-control samples, to better
estimate the accuracy of pan-diagnostic machine learning if it were employed in
a clinical setting, we performed a simulated prospective study. The goal of this
experiment was to gain insight into the potential efficacy of the models if used in
a live healthcare setting, by simulating the translation of our pan-diagnostic risk
prediction system.

In our initial pan-diagnostic machine learning experiments we intentionally use
a one-to-one case-control matching scheme. Because the lifetime incidence rates
for diseases vary greatly from disease to disease, a 1-to-1 ratio can skew certain
evaluation metrics such as precision and recall. Therefore, we utilized a truly
random sample in our simulated prospective study to demonstrate results without
case-control matching. Our prospective study ran during the calendar year of 2014
and followed 100,000 randomly selected patients who had visited the Marshfield
Clinic at least once during 2013 and were alive as of the study start (see Simulated
prospective study design in Methods and Materials).

The prospective study assessed the predictive quality under two different
paradigms, given the complexities in disease mechanisms. These paradigms ad-
dressed first diagnoses vs. repeat diagnoses. Some illnesses may be coded multiple
times over a patient’s life, but each diagnosis may be independent of one another
(e.g., influenza), while other, chronic diseases may be coded multiple times as part
of disease treatment (e.g., diabetes). We see higher performance when including
repeat diagnoses as compared to the first entry of a code, illustrating the higher
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difficulty of predicting risks for first-time diagnoses. Figure 4.3 shows a detailed
view of the distribution of model efficacies when including or excluding repeat di-
agnoses. Only models corresponding to diagnosis codes with at least 30 case and 30
control patients in the 100,000-patient cohort were included in the prospective study
evaluation. This minimum patient requirement was put in place as our evaluation
metric, AUC, becomes unstable when one class has a small number of samples. For
the task of predicting new diagnoses, we find that the prospective study shows a
slight decrease in performance as compared to the models showcased in our initial
experiments shown in Figure 4.1. In our initial experiments with 1:1 case-control
matching we achieved a mean AUC of 0.702 predicting diagnoses 2 years in advance.
In the simulated prospective study, we see a mean AUC of 0.697 predicting over the
course of a year. One potential explanation for this decreased AUC is the inclusion
of patients who did not return during the study year in the evaluation data set. We
included these patients in the evaluation set as their exclusion would provide a
biased view of the results.

Limitations of our Experiments

While receiver operating characteristic (ROC) curves are arguably the most common
summary of predictive ability in both machine learning and medicine, a weakness
(and a strength) is that they are not sensitive to disease incidence, or the natural
“class skew” of cases to controls. In many domains with strong class skew, such as
information retrieval and web search, precision-recall (PR) curves are used instead.
Nevertheless, PR curves are less appropriate for comparing the results of many
disease risk models at once because their different class skews can artificially make
one disease look easier to predict than another. But for any one disease at a time,
they can provide useful insights, so we explore PR curves and other metrics further
in the next subsection®, in the context of a few specific diseases of interest.
Another limitation of even our prospective trial is that we do not compare our
predictive models with current clinical practice, to see if any of them would currently

improve clinical care. A true, randomized prospective trial could provide such a
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Figure 4.3: Comparison of KDEs of AUC Distributions by Minimum Number of Positive
Patients and Inclusion of Repeat Diagnosis. In Figures A and B, the blue region represents
the KDE distribution of AUC scores for models in the simulated prospective study; the
green and red dotted lines represent the upper and lower bounds of the 95% CI respectively.
A, 2,538 models with mean AUC 0.774, 95% CI [0.730, 0.819]; including repeat diagnoses.
B, 2,130 models with mean AUC 0.697, 95% CI [0.643, 0.751]; including only first diagnoses.
While including test patients who previously received the diagnosis provides a more
optimistic distribution of AUC density, a conservative estimate of model efficacy would

only include evaluation on new diagnoses.

comparison but is beyond the scope of our present work; our present work simply
shows how well all coded diagnoses can be predicted across different lengths of time
into the future. A few such predictive models have in fact already been translated
into the clinic by others, such as the Framingham model for cardiovascular risk
(Dawber et al., 1951), the Gail model for breast cancer risk (Gail et al., 1989), and
models used in the emergency room such as Charlson comorbidity index (Charlson
etal., 1987). These models were constructed by human-selected features and logistic
regression, rather than the full EHR and random forests. While the latter approach
often yields slightly more accurate models than the former approach (Weiss et al.,
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2012; Lantz, 2016), models such as the Framingham risk score and the Gail model
include identified input features and features found in text, and also use such data
for improved phenotyping, while our modeling approach used only de-identified
coded data for privacy reasons (Gail et al., 1989; Dawber et al., 1951). Before a
clinical trial and translation, each of our models could almost certainly benefit

significantly from being retrained with the inclusion of such data.

A Closer Look at Some Specific Diagnosis Models

In addition to the coarse analysis of our simulated prospective study, we present
a deeper analysis of predicting the initial entry of three high impact diagnoses:
type II diabetes (Zimmet et al., 2001), chronic kidney disease (CKD) (Levey et al.,
2005), and acute myocardial infarction (MI) (Tunstall-Pedoe et al., 1994) in Figure
4.4. Most notable from this analysis is the often tenuous relationship between ROC
curve performance and PR curve performance. In learning tasks with high class
skew (e.g., relatively rare diagnoses) ROC curves, which are skew independent,
can give a much more optimistic picture of the results than do PR curves, which
are skew dependent. We would like to aggregate PR areas as we did ROC areas in
Fig 1, but because each ICD-9 code has a unique skew, aggregating PR areas across
diagnoses is inappropriate (Boyd et al., 2012); therefore, instead we use these three
individual PR curves to illustrate the limitations of our models despite their high

overall distribution of ROC areas.

4.4 Discussion

This research introduces the concept of high-throughput machine learning and
demonstrates its successful application to the task of predicting patient diagnosis
risks, which we call pan-diagnostic machine learning. Additionally, we demonstrate
an automated procedure for translation of these models into practice wherein
appropriate subpopulations are automatically identified for each model. We find
that many coded diagnoses can be predicted with reasonable performance — AUC
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Figure 4.4: In-Depth Analysis of High Impact Diseases. Figures A-C, D-F, and G-I analyze
Type II Diabetes (ICD-9 250.00), Chronic Kidney Disease (CKD) (ICD-9 585), and Acute
MI (ICD-9 410) respectively. In all figures, blue, green, red, and purple dots correspond to
the prediction thresholds of 0.6, 0.7, 0.8, and 0.9 respectively. A, Kaplan-Meier Curve for
Type Il Diabetes depicting the relationship between months since prediction and percent
of predicted positives that had not received an entry of ICD-9 250.00 in the study year.
B, ROC-Curve for Type Il Diabetes with overlaid operating points corresponding to risk
thresholds identified in A. C, PR-Curve for Type II Diabetes with overlaid operating points
corresponding to risk thresholds identified in A. D, Kaplan-Meier Curve for CKD. E, ROC-
Curve for CKD. F, PR-Curve for CKD, note the poor performance in comparison to E. G,
Kaplan-Meier Curve for Acute MI. H, ROC-Curve for Acute MI. I, PR-Curve for Acute ML
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greater than 0.8 — at least one month prior to diagnosis as shown in Figure 4.1. As
we attempt to predict diagnosis risks further in advance, we become less confident
in the quality of our predictions. We do, however, note that even 20 years prior
to the first diagnosis, we can still predict with some efficacy the first entry of
diagnosis codes categorized as congenital disorders (ICD-9 320-389) and diseases
of the nervous system and sense organs (ICD-9 740-759). Amongst the 43 models
predicting congenital anomalies, 10 were above 0.6 AUC (23%) at this timeframe;
amongst the 506 models predicting diseases of the nervous system and sense organs,
30 were above 0.6 AUC (5.6%). Many of the highest performing models, in both
congenital and nervous categories, were related to ocular disorders.

Of additional interest are the differences in predictive performance amongst
models when stratified by the disease categories of the ICD-9 hierarchy as presented
in Figure 4.2. The multi-modal distributions of some of these categories suggest
that some of these categories can be further partitioned by predictive quality, such
as those models predicting mental disorders or pregnancy complications at the
1-month window. We believe there are additional insights to gain from further
analysis of these diagnoses. With a simulated prospective study, we estimate the
translational efficacy of a pan-diagnostic machine learning pipeline in the healthcare
setting. We note that the performances of these models under this evaluation
methodology are slightly pessimistic as compared to the performances achieved in
a 10-fold cross validation.

We introduce a new medical dataset consisting of the AUC scores and feature
importance values of the 24,482 predictive models belonging to Figure 4.1. We
believe that this dataset will be of interest both as a baseline for comparison for
future work that predicts diagnoses and as a data source that can be mined for
relationships amongst diagnoses and health record events. Many of our open
questions such as which diagnoses cluster together on predictive quality and how
predictive efficacy changes over time can be investigated with this dataset.

The limitations of this research fall largely into two categories: those that are
opportunities for improvements to various steps in our high-throughput machine
learning pipeline, and those that arise from the aggregation of unique prediction
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tasks both in model building and evaluation. As the focus of this work is on the
introduction of high-throughput machine learning and generating a baseline for
the performance of predicting diagnosis code risks, we believe there are some
areas of our pipeline that, while functional, could be improved to produce even
higher quality models. For example, in place of rule-of-n for case-control definition,
more advanced forms of electronic phenotyping (Peissig et al., 2014) could be used.
Future work could additionally incorporate existing disease ontologies to group
together ICD-9 codes. Doing so would both provide computational benefits and
aggregate codes into disease-specific models. Because our pipeline is flexible and
modular, these enhancements could be easily created and incorporated into future
research. Furthermore, it would be interesting to compare the results of this work
to a multi-label learning task wherein a single model outputs risks for all diagnoses.
This multi-label approach would allow us to leverage differences between diag-
noses that co-occur versus those that occur independently. We additionally note
that some limitations arise when creating general rules for the construction and
evaluation of thousands of models. For example, by picking a single prediction time
window, e.g. 6-months, there are some diagnoses for which we are losing valuable
data and others for which we would have preferred an even more greatly truncated
window. For example, truncating by 6-months may be too strict for the prediction
of an acute disease such as influenza, but may be too short of a window in the case
of predicting a disease whose symptoms mount gradually leading to diagnosis,
such as Parkinson’s disease. While we present a variety of truncation windows
between 1-month and 20-years for this reason, we do not have a data-driven method
to automatically determine the appropriate truncation window for a given diag-
nosis. A final limitation of this work is the difficulty in analyzing the quality of
any particular model relative to the current quality achieved at a clinic. Because
we do not have baseline AUC values for how well healthcare providers can predict
these diagnoses, it is impossible to make claims on the impact of any particular
model. It is possible that a model with an AUC of 0.6 for one disease would be
of more value than a model with an AUC of 0.8 for another disease if healthcare
providers currently cannot predict the first disease at all, but can perfectly predict
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the second. This limitation is not unique to our work and it emphasizes the impor-
tance of clinical trials when considering the translation of any decision support tool
into the clinic. Finally, we note that because our dataset is comprised of patients
belonging to the North/Central region of Wisconsin, the models learned in this
work have a population-based bias. For example, because model quality is affected
by availability of training data, our models are sensitive to the prevalence of the
modeled diseases in our particular population. Moreover, generalizing these results
or applying these models to a population with a different demographic make-up
would be inappropriate.

In this chapter, we demonstrate that a single system can predict risks for thou-
sands of different coded diagnoses. Perhaps the most important contribution of this
study is to provide an initial baseline for how accurately the wide range of disease
phenotypes can be predicted from EHR data. We believe this is a step toward a
much broader incorporation of machine learning-based prediction into clinical

care.

4.5 Summary

In this chapter we introduced and explored the use of high-throughput machine
learning methods to learn models for thousands of diseases and multiple time
points. We showed that by predicting thousands of diseases at once we can re-
veal a rich landscape of prediction quality across different levels of the diagnostic
hierarchy. We believe that there are several exciting avenues for the extension of
high-throughput machine learning to additional data types, prediction tasks, and
applications. For this reason, the remaining chapters of this thesis are all organized
as distinct extensions or applications of high-throughput machine learning.

Learning models using data from multiple hospital sites

Whereas in this chapter we build our pipeline on a single set of EHR data, there are

many reasons for which we may wish to build models using data from multiple
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sites. Even with the millions of patients in the Marshfield Clinic EHR system, there
are some rare conditions for which there are so few examples it can be challenging
to accumulate enough data to learn a strong model. In these cases we may wish
to incorporate additional data from other healthcare systems. However, there are
both privacy and business reasons that hospitals may not wish to openly share their
patient data with one another. Therefore, in Chapter 5 we present a cryptographic
solution to such a challenge in which multiple hospitals can collaboratively learn a
model in a secure fashion that does not require the sharing of data.

Discovery of new medical knowledge using high-throughput machine

learning feature importances

When applying machine learning to healthcare data it is often highly important
to know that the model not only performs well but also that it is using sensible
features to make its decision. For this reason, we showed in this chapter the feature
importances for a handful of these models. However, if a feature is heavily relied
on but not congruent with current medical knowledge it may be that the model has
discovered a hitherto unknown relationship. Such relationships may provide valu-
able medical insight. Hence, in Chapter 6 we explore an approach for identifying
candidate epidemiological relationships between diagnoses and laboratory tests.

Evaluating models for multi-class classification tasks

In this chapter, we constructed thousands of predictive models for two-class classi-
fication problems that were predicting whether or not a patient had a particular
disease. However, there are some conditions that share the same constellation of
symptoms for which it would be valuable to construct a multi-class classification
model. These models could answer questions such as “Does this patient have
Parkinson’s Disease, Alzheimer’s Disease, or no disease?” However, the evaluation
of such multi-class models cannot use the standard AUC measure which is only
valid for two classes. Existing multi-class performance measures have key flaws

such as failing to properly score perfectly separated examples, interpretability dif-
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ficulties, and combinatorial computational time complexities. For this reason, in
Chapter 7 we introduce a new multi-class performance measure that adheres to
those critical properties of AUC. We apply this new measure for the multi-class

task of predicting the diagnosis of one of seven different digestive cancers.
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5  PRIVACY-PRESERVING COLLABORATIVE PREDICTION USING

RANDOM FORESTS

Increasing the available training data for a machine learning algorithm improves
its overall generalization performance. However, the EHR data from a particular
healthcare system only grows as the services are needed by the patients. This
implies that any significant increase in training data must necessarily come from
the inclusion of additional EHR data from other healthcare systems. However, such
efforts are met with many privacy and business concerns that discourage separate
healthcare systems from openly sharing data with one another. Hence, there is a
need for machine learning algorithms that can learn from siloed data without ever
sharing the data amongst the parties. In Chapter 5 we introduce such an approach
by constructing a privacy preserving random forest that utilizes cryptographic

tools to ensure security.

5.1 Introduction

In this work, we notice that for ensemble methods, for which the learned model is
formed by a set of more basic models and the prediction for a new instance is
computed by blending together the basic predictions, there can be an easier and
more efficient solution that needs only one system; we refer to this solution as the
“locally learn then merge” approach. Each entity with a local data silo (i.e., providers)
can train its own local model M;, and then the prediction given by these models can
be merged at the moment when the scoring for a new (eventually private) instance
is computed. That s, a user with input x getsy = ®(M;(x), ..., M(x)) for a specific
merging function @. Here M;(x) indicates the prediction of the local model M; for
the instance x. In this approach, privacy concerns coming from data sharing in the
training phase are not present since, clearly, local training does not require data
sharing. Moreover, there is no overhead for the training phase (this is run as in the
standard machine learning scenario), while the final prediction can benefit from
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Figure 5.1: Overview of the new “locally learn then merge” approach in the cloud model.
The providers upload the encrypted models to the server and then go off-line. The server
is on-line to answer to the prediction requests of the user.

merging the local predictions via the function ®. On the other hand, accuracy loss
(with respect to a model learned from the merged data) and information leakage
can happen during the merging/scoring phase. In particular, a challenge remains
with this simple and elegant approach to collaborative machine learning: if we want
to guarantee model and user’s input privacy (i.e., the user learns y and no other
information on the models M;, the providers learn nothing about x), then even
after the training phase each provider must maintain its own on-line server and
communicate with the client and the other providers each time a new prediction
is requested. Since in a real-world scenario (i.e., healthcare environment), this
requirement can be cumbersome to implement, we design our system in the cloud
model, where the computation of the prediction from the local models is outsourced
to a central server and providers are not required to be on-line during the scoring
process (Fig. 5.1). Since we do not require the server to be trusted, each model M, is
sent to the server in encrypted form (i.e., [M;]). Once this is done, the providers (e.g.,
clinics) can go off-line and when a user (e.g., medical research institution) requires
access to the models to compute predictions for new data, the server communicates
with it and computes the answer from the encrypted models.

In this work, we specify and evaluate the “locally learn then merge” paradigm
in the cloud model for a widely-used ensemble method: random forests. Random
forests (Breiman, 2001) are among the most accurate and widely-used machine
learning ensemble models and are employed across a variety of challenging tasks,
including predictive modeling from clinical data (Lantz, 2016), that are character-
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ized by high dimension and variable interactions, or other non-linearities in the
target concept. A random forest is a collection of simple decision trees. By the use
of different trees, a random forest can capture variable interactions without the
need for the learner to know or guess all relevant interactions ahead of time in order
to represent them with new variables (interaction terms); by their ensemble nature,
random forests effectively reduce the over-fitting often observed with ordinary de-
cision tree learning. A less-recognized advantage of random forests is that they can
be learned in a distributed manner. In this circumstance, separate random forests
can easily be learned locally by entities with data silos, and then the prediction
for a new instance is computed as the arithmetic mean of the predictions of all the
trees in the locally trained random forests (i.e., the merging function @ is the arith-
metic mean). We design a system implementing this approach for random forest
using standard and fast cryptographic primitives. While our scheme is efficient
even for forests of many trees, not surprisingly its run-time and communication
complexity grow exponentially with maximum tree depth in a forest. Therefore
we also provide empirical evidence that across a variety of data sets and tasks,
increasing the number of trees can effectively make up for any accuracy or AUC lost
by incorporating a stringent limit on tree depth, such as 8 or even 6. Related Work:

There is an extensive research that propose privacy-preserving training (Brisimi et al.,
2018) protocols and few of them focus on training decision tree. After that, Lindell
and Pinkas (2000) presented a system for two data-providers, Xiao et al. (2005) and
Samet and Miri (2008) considered the case of more than two providers. While the
former works consider horizontally partitioned data, another line of work (Vaidya
etal., 2008; de Hoogh et al., 2014) assumes data that are vertically partitioned among
two or more data holders. Lastly, Vaidya et al. (2014) proposed a method to learn
and score random trees in a privacy preserving manner. Like our approach, their
approach requires encryption-based collaboration to make predictions. Unlike our
approach, their approach also requires interaction and collaboration at training
time. One party proposes a random tree structure, and all parties must contribute

information to the distributions at the leaf nodes. In our approach, learning is
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completely independent for each party, and hence training is much faster. An
advantage of Vaidya et al. is the ability to also address vertically partitioned data.
Privacy-preserving scoring protocols for decision trees have been designed using
different cryptographic tools (e.g., levelled homomorphic encryption (Bost et al.,
2015), LHE (Tai et al., 2017), secret-sharing (De Cock et al., 2017), OT-channels
(Joye and Salehi, 2018)). Backes et al. (2017) improved and extended to random
forests the algorithm presented by Brickell et al. (2007) Another line of research
focuses on constructing differentially private decision trees, see for example the work
of Jagannathan et al. (2012) and Rana et al. (2015). Our approach is orthogonal to
differential privacy since we consider a different threat model.

5.2 Methods: Decision Trees (DTs) and Random
Forests (RFs)

Decision trees (DTs) are a nonparametric

machine learning model used for both @
classification and regression problems. @ @
While there are a myriad of algorithms

for constructing DTs, we focus here on @ @ e @
describing the model representation of Prilx1,%x2) = (x1 = 1)(x2 — 1)
the scoring procedure. A decision tree Poa(x1,%2) = (x1 = 1)(x2 +1)
(DT), T, can be viewed as mapping a Pas(x1,%3) = (x1 +1)(x3 — 1)
column vector x = (x[1],...,x[n])" of Pra(x1,%3) = (x1 +1)(x3 +1)

features to a prediction value y. In prac- Figure 5.2: Polynomial representation of a
tice, we assume that T is represented as depth 2 complete DT.

a directed acyclic graph with two types

of nodes: splitting nodes which have children, and leaf nodes which have no children.
Moreover, T has a single root node, which is also a splitting node, that has no
parents. For an input x € R", we traverse the tree T starting from the root and
reach a leaf. Each splitting node N; is defined by a pair (ji, ti) where j; is an index
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in{1,...,n}and t; € R is a threshold value. In the root-leaf path, at node i we
take the right branch if x[j;] > t;. Otherwise, we take the left one. Thus, each
splitting node N; is associated with the function Ni(x) = e; - x —t; and the value
n; = sign(N;i(x)) (where - is the standard row-by-column multiplication). Here the
vector e; is the column vector in R™ with all zeros except for a 1 in position i and
e/ is its transpose. Moreover, if x € R, then sign(x) = 1if x > 0 and sign(x) = —1
otherwise. In this way we traverse the tree and we reach a leaf node. The i-th leaf
node is associated with the label {;, which is defined to be the prediction of the
query x that reaches the i-th leaf (i.e., y = T(x) = {;). The format of the labels {{; };
depends on the specific machine learning problem (regression, multiclass classi-
fication or binary classification). In this work, we assume {; € [0, 1] representing
the probability of x being classified as + in a binary classification problems with
labels {+, —}. The depth of a tree is the maximum number of splitting nodes visited
before reaching a leaf. In general, DTs need not be binary or complete. However,
all DTs can be transformed into a complete binary tree by increasing the depth
of the tree and introducing “dummy” splitting nodes. Without loss of generality,
here we only consider complete binary DTs. A complete binary tree of depth d has
24 leaves and 29 — 1 splitting nodes. Random forests (RFs), proposed by Breiman
(2001), are an ensemble learning algorithm that are based on DTs. An ensemble
learner incorporates the predictions of multiple models to yield a final consensus
prediction. More precisely, a random forest RF consists of m trees, Ty, ..., T, and
scoring RF on input x means computingy = - 5> ", T;(x). Let d be the maximum
of the depths of the trees in RF, we refer to d and m as the hyperparameters of the
forest.

Polynomial representation: We can represent a tree using polynomials. Let T be a
complete binary tree of depth d, then we associate each leaf with the product of d
binomials of the form (x; — 1) or (x; + 1) using the following rule: in the root-leaf
path, if at the node N; left turn is taken, choose (x; —1) otherwise choose (x;+1). We
indicate with P4 the polynomial of degree d corresponding to the i-th leaf. Notice
that P4 ; contains only d variables, out of the 2¢ — 1 total possible variables (one
for each splitting node). We call J4; the set of indices of the variables that appears
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in Py; and we write P4 ;((x;)jeg,) to indicate this; in Fig. 5.2, 1,1 = J,, = {1,2}
and Jo3 = Jo4 = {1,3}. Now T(x) can be computed by evaluating the polynomials

..........

for the index i for which Pg:((n;)jes,)) # 0, then T(x) = ;-.

Methods: Cryptographic Tools

A linearly-homomorphic encryption (LHE) scheme is defined by three algorithms: The
key-generation algorithm Gen takes as input a security parameter and outputs the
pair of secret and public key, (sk, pk). The encryption algorithm Encis a randomized
algorithm that takes pk and an input x, and outputs a ciphertext, ¢ < Encyi(x).
The decryption algorithm Dec is a deterministic function that takes sk and c, and
recovers the original input x with probability 1 over Enc’s random choice. The
standard security property (semantic security) states that it is infeasible to gain
extra information about an input when given only its ciphertext ¢ and the public
key. Moreover, we have the homomorphic property: informally, linear functions
of encrypted data can be computed without decrypting (e.g., from Encpy (x;) and
Encpk(x2) we can compute Encyi(x; + x;) without knowing x; and x,). Efficient
instantiations of this primitive are known (Joye and Libert, 2013). In the design of
the privacy-preserving system presented later on in this work, we will deploy the
secure comparison protocol Tlsc. The latter (Giacomelli et al., 2018) is a modification
of the protocol presented by Kerschbaum and Terzidis (2006) and has the following
structure: party 1 has an encryption of an integer a, while party 2 knows the
corresponding secret key. They run the protocol and the output is a multiplicative
sharing of the sign of a and no extra information about a. In particular, party 1
receives a share « € {—1, +1} and party 2 receives a share 3 € {—1, 41} such that
o} = sign(a) and the knowledge of only one share gives no information on sign(a).
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5.3 Results: the Proposed System

In this section we describe our system, where the prediction for a new instance is
computed using the RFs trained by different and mutually distrustful parties on
their local data silos. We start by describing the role of the parties involved and the
security model.

Providers: There are t providers, the k-th one, Py, has a forest RF,, = {Tf,..., T¥ }
with m,c DTs; we assume that the forest hyperparameters (m, and maximum tree
depth dy) are public values, while the description of the trees is the secret input of
Py to the system. The providers have no output.

Server: The server has no input and no output; it is trusted to handle neither
private data nor proprietary models. Its function is providing reliable software and
hardware to store encrypted version of the models RF, and handling prediction
request from the user in real-time.

User: Its secret input is an instance x € R™ and the output is the prediction for x
according to all the trees T (n is public); more precisely, the user’s output from
the systemisy = 2 3 | 12;““1T]k x) withm =my + -+ + my.

We assume that all the parties involved are honest-but-curious (i.e., they always
follow the specifications of the protocol but try to learn extra information about
other parties, secret input from the messages received during the execution of the
protocol) and non-colluding (e.g., in real world applications, physical restrictions
or economic incentives can be used to assure that the server has no interest in
colluding with another party). Using the cryptographic tools described before
and other standard tools, we design a system where only the user gets to know y
and it gets no other information about the private models held by the providers.
Moreover, the providers and the server gain no information about the input x. The
system we present has two phases: an off-line phase, during which each provider
uploads an encrypted form of its forest to the server, and an on-line phase, during
which the prediction for a specific input x is computed by the server and the user.
Notice that the off-line phase is independent of the actual input of the user and
needs to be executed only once (i.e., when the providers join the system). After
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that, the providers can leave the system and the server will manage each prediction
request. In particular, for each request, a new on-line phase is executed by the
server together with the user making the request (it is possible to have more than
one user requesting predictions). Each phase is described below:

Off-line Phase: The goal of this phase is to transmit all the trees to the server,
but in encrypted form. That is, the server will know the public hyperparameters
of each locally learned forest but have no knowledge about the specific structure
of the trees in the forests (i.e., it does not know the indices i;, the thresholds t;,
or the leaf values {;). This is achieved by having each provider execute a new
model-encryption procedure we design (Giacomelli et al., 2018). Using this, the Py
encrypts the thresholds and leaf values and hides the vectors e;, using a standard
PRF (pseudorandom function); then it sends the encrypted forest to the server; after
this Py can leave the system. We indicate the encrypted forest, which is a collection
of encrypted trees, with the notation {[Tjk =1 m,-

On-line Phase: For each prediction request, this phase is executed. A user with
input x joins the system sending Encpi (x) to the server. Now, the user and the server
run the tree evaluation protocol Trg for each encrypted tree [T] of the forests that
were uploaded to the server. This protocol returns an additive sharing of T]-k(x)
(i.e., the server gets the share rf € [0,1] and the user gets the share s}< € [0,1] such
that Tjk(x) = s}< + T}‘ and the knowledge of only one share does not reveal T].k(x)).

m ok

Finally, the server sends the sumr =3 | _, 20T

to the user, which computes y as (s 4+ 1)/m, wheres = 5 |, 2% sf° is the sum of

of its shares (one for each tree)

the user’s shares. The security of our system against a honest-but-curious server
follows from the security of the encryption scheme: all the messages received by
the server are ciphertexts. Moreover, the user does not learn any extra information
about the local models since it does not see the individual predictions (i.e., for each
tree the user only see the share s).

High level description of protocol Tltg (more details in the full version (Gia-
comelli et al., 2018)): Recall that, given a tree T and an input x, finding the index
i* such that the polynomial P4 ;- evaluates 0 on the values {n;}; is equivalent to
compute T(x) (i.e., T(x) = {;-). Therefore, finding i* is sufficient in order to then


http://www.cs.wisc.edu/~dpage/PrivateForests.pdf
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compute an additive sharing of T(x). In the privacy-preserving scenario, the main
challenges in doing this are: 1) First of all, notice that neither the server or the
user can see i* in the clear, indeed knowing the index of the reached leaf can leak
information about the inputs and the tree structure (when more than a request
is made). We solve this using a simple tree randomization stratagem that hides i*
for the user (i.e., the user gets to know i* for a tree T’ equivalent to T but with
nodes randomly permuted by the server) and a standard cryptographic tool called
oblivious transfer that hides i* for the server (i.e., once that the user gets i* for T’, the
oblivious transfer protocols allows it to receive {;- without revealing i* to the server);
2) Then observe that neither the server or the user can see the {n;}; in the clear,
indeed also these values can leak information about x or T. To solve this we use the
homomorphic property of the underlying LHE “, the secure comparison protocol
ITsc and an algebraic property of the polynomials {Pg,:};. Since each n; = Nj(x) is a
linear function of x, the server can compute Encpi (N;(x)) from Encpi(x) (assuming
that the underlying scheme is an LHE scheme); then the server and the user run
protocol Tsc: the server is party 1 with a = N;(x) and the user is party 2; at the
end they know «; and (3, respectively and such that o;3; = n;. However, the
value n; is kept secret. Finally, notice the following: for eachi=1,..., 24 we have
Pa,i((Bj)jes,) H o = Pai((nj)jes,) and therefore P4 i((1n;)jes,) = 0 if and only if

jed;
P4,i((Bj)jes;) = 0. This implies that i* can be computed locally by the user that

knows {f3;};.

Complexity of the system in terms of cryptographic operations: During the off-line
phase, the providers run the model-encryption procedure to encrypt their models
RFy, -+, RF;. Assume that RFy has hyperparameters dy and my, then for Py the
model-encryption procedure costs ©(my 29¢) encryptions. Moreover, Py sends to
the server my 24! ciphertexts. The complexity of the on-line phase is dominated
by the m repetitions of protocol ITrg. The latter requires ©(n 2¢) operations (©(2¢)
for the user and ©(n 24) for the server) and generates ©(2¢) ciphertexts exchanged

* A party (different form the server) runs Gen(k), makes pk public and safely stores sk. The
user needs to authenticate itself with this party in order to get the secret key sk. Notice that the role
of this party can be assumed by the user itself or by one or more of the providers.
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among the server and the user to score a tree of depth d on an instance with n
features. Therefore, the on-line phase has complexity proportional to n m 24, where
d = maxy di. Finally, notice that many steps of our system can be easily run in
parallel. For example, the m needed instances of protocol TTtg can be executed

concurrently.

Discussion: Random Forest (RF) Hyperparameters

Since the depth and number of trees (i.e. model hyperparameters) affect the effi-
ciency of our system, we provide here an empirical demonstration that bounding
them can be done without adversely affecting the prediction efficacy.

Bounded depth: Typically, during the training phase a RF is grown such that
each tree may split in a greedy fashion without concern for the depth of the trees.
We provide here an empirical inspection of the effect of bounding the depth to a
maximum value d on the efficacy (AUC value) of the learned forest. We utilize
the public Kent Ridge Colon-cancer dataset from the UCI repository (reference in
Table 5.2) and we looked at various combinations of d and the number of trees
in the forest, m. Specifically, we consider values of d in {1,2,...,28,30} and 25
different choices of m in {1, 5, 10, 25, 50, 100, 200, 300, . . ., 1900, 2000}. For each pair
of values, we performed 30 replicates of a RF model construction and evaluation
process. For each model, the construction began with choosing a random 70% of
the data to serve as training data and the remaining 30% as testing data. A model
was then built with the specified hyperparamters and AUC was measured on the
testing data. In Fig. 5.3 we present the results of this investigation as a heatmap. For
this task even a maximum depth of 6 was competitive with larger depth choices if
300 trees are considered. This suggests that while the standard learning algorithm
may greedily grow trees very deeply, the overall performance is not substantially
impacted by bounding the maximum depth.

Tuning methodology: Common practice for training machine learning algorithms
involves some selection method for determining a choice for the hyperparame-

ters. One standard selection method is a grid-based search wherein a researcher
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Figure 5.3: Heatmap of mean AUC values for various combinations of d and m. The gray
line indicates m2¢ = 21°. The gold star indicates the best overall combination of d and
m (AUC=0.823), the silver diamond indicates the best overall combination constrained
by m2¢ < 215 (AUC=0.809). The silver diamond is also on the colorbar indicating the
corresponding AUC.
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will predefine some set of choices for each hyperparameter and then compute
the cross product of these sets and choose the combination that maximized the
AUC of the model. For example, for RF, we pick the hyperparameters as d*, m* =
arg max gm)ep xMAUC(RF(d, m)), where RF(d, m) is a RF trained with hyperpa-
rameters d and m, AUC(-) is the AUC of a given RF on some held aside validation
data and D, M are fixed sets. However, this procedure searches all combinations
of d and m, whereas we are interested in controlling the value m 24 because the
overhead of our system its directly proportional to it. Therefore, between two hyper-
parameters choices giving the same efficacy, we are interested to choose the one that
produces smaller overhead. In other words, our approach for tuning is the following;:
we fix a value s and then we maximize the model efficacy constrained to choosing
the hyperparameters d and m in the set Qs ={(m,d) € Z* x Z* | m2¢ < s}. The
gray line in Fig. 5.3 depicts the boundary of Qs when s = 2! and dictates that
choices above it are too large, and choices below are of acceptable overhead. Even if
the number of acceptable choices is relatively small compared to the total number
of combinations, it is worth noting that we saw competitive performance as both
depth and number of trees exceeded some minimum choices. This suggests that
we may be able to achieve both good performance and small overhead.

5.4 Performance: Efficacy

To conclude our work, we want to experimentally validate our system. First, we
study the effect of the “locally learn then merge” approach on the prediction accu-
racy. In particular, we want to compare the accuracy of the proposed method with
the one of the standard “merge then learn” approach’. We provide an empirical
investigation of this in two fashions: across three disease prediction tasks using
EHR data from the Marshfield Clinic in Marshfield, WI, and across five predictions
tasks from the UCI database.

’If there are no privacy concerns, parties can simply share their data with one another and learn
a single model. Otherwise a privacy-preserving training algorithm can be used to achieve the same
result.
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Real EHR Data. We consider the tasks of predicting three diseases one month in
advance: Influenza (ICD-9 487.1), Acute Myocardial Infarction (ICD-9 410.4), and
Lung Cancer (ICD-9 162.9). Each dataset was comprised of up to 10,000 randomly
selected case-control matched patients on age and date of birth (within 30 days),
with cases having 2 or more positive entries of the target diagnosis on their record
and the control having no entries (rule of 2). Data for each case-control pair were
truncated following 30-days prior to the case patient’s first diagnosis entry to
control for class-label leakage. Features were comprised of patient demographics,
diagnoses, procedures, laboratory values and vitals. Unsupervised feature selection
was performed on a per-disease basis first with a 1% frequency-based filter to
remove very uncommon features and then followed up with principal component
analysis to reduce the overall dimension of the data to 1,000 (this was done to
improve the performance speed of our algorithm). For each of the three diseases,
we constructed, as a performance baseline, a RF model with 500 trees, a maximum
depth of 8, and 10% of features considered at each split in the tree. Models were
trained on 90% of the data and tested on a held aside 10%. We compared these
baseline models (i.e., “merge then learn” approach) with our “locally learn then
merge” approach by again constructing a forest with the same hyperparameters
except the training data were partitioned between two simulated providers each
with 45% of the original data that were used to train two smaller forests of 250
trees each and then merged together. Model performance was measured using the
area under the receiver operating characteristic curve (AUC), a common machine
learning accuracy metric. We present in Table 5.1 both the dataset information
and results of our experimentation. We find that the AUC achieved on partitioned
data for these three tasks is less than the shared data. While this efficacy loss
is meaningful, it is possible that with the additional data providers it may be
mitigated.

UCI Datasets. We use five UCI datasets (references in Table 5.2) to investigate
the effect of the number of providers sharing data on the performance of a RF.
To simulate a dataset being shared amongst t providers, we randomly split each
UCI dataset into t equal sized and unique chunks, Dy, ..., Dy, with each chunk


https://archive.ics.uci.edu/ml/datasets.html
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ICD-9 | Disease Samples | Features | Base AUC | LLM AUC || Prediction Time (s)
487.1 | Influenza 10,000 8,211 0.8011 0.7640 105.37+14.70

4104 | Acute MI 9,284 9,136 0.6797 0.6658 121.7549.43

162.9 | Lung Cancer | 10,000 9,021 0.6313 0.5786 125.94+8.19

Table 5.1: Efficacy testing results for 3 EHR datasets. Number of features are calculated
before applying PCA (post-PCA selected the top 1,000 components). Base AUC refers to a
forest learned on the whole dataset (“merge then learn” approach) and LLM AUC refers to
a forest learned in our “locally learn then merge” fashion. Prediction Time refers to the
mean+std time required for our system to return a prediction for a single patient query.

belonging to a single provider. Each chunk was then split into a training (70%
of the data) and testing set (30% of the data), i.e. D; = Train; U Test;. We then
learned models in three different ways. To simulate the effect of “zero sharing” (i.e.,
providers with silo data do not share data or models), provider i learns a forest on
Train; and tests on Test; achieving AUC; with the average silo AUC taken as the
mean across all t providers. Each forest was learned with 50 trees of maximum
depth 8. To simulate the effect of “locally learn then merge”, each provider learns
a RF on their own training data, the forests are merged together, and the AUC is
calculated on the merged testing data, U; Test;. Again, each provider learned 50 trees
of maximum depth 8 and the final merged forest being of size 50 t trees. To simulate
the effect of a merged dataset (“merge the learn”) we learn a single forest with 50 t
trees and maximum depth 8 from U; Train; and then evaluate the AUC on U; Test;.
This process was repeated 50 times to produce confidence intervals and performed
for each of the five datasets in Table 5.2 across five choices of t € {2,3,4,5,6}. We
present the results of these experiments in Fig. 5.4. We see from it that the effect of
locally learning the merging has neither a strictly positive or negative effect on the
quality of the model. Indeed, our results indicate that the effect is dataset dependent.
Therefore, we believe that it would be critical for a provider to investigate how the
quality of their predictions are impacted by merging their learned models with

another hospital system as compared to using their own data.
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Figure 5.4: Effect of locally learning then merging compared to learning from a merged
dataset. Subfigures B-F shows on the datasets of Table 5.2 how AUC is impacted by
the number of providers. The dashed, solid and dotted lines shows AUC values for the
locally learn then merge, the zero-sharing and the merge then learn approach, respectively.
Subfigure A shows the AUC difference between the locally learn then merge and merge
then learn (positive values indicate an improvement using our approach).
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5.5 Performance: Efficiency

Implementation details. To test efficiency (i.e., bandwidth and running time) we
implemented our proposed system in Python3.5.2. As underlying LHE we use
Joye-Libert’s scheme (Joye and Libert, 2013) with M = Zyu and 100-bit security.
We assume all inputs are real number with absolute value less or equal to 2 - 10°
and at most 3 digits in the fractional part. To convert them into values in M, we
multiply each value by 10°. This allows to represent all inputs with 21-bits values
(we represent negative values using the upper half of Zy:) and avoid overflow
in the secure comparison protocol. The (Zld)-OT protocol for 20148-bit strings is
implemented (Naor and Pinkas, 1999) using d calls to a standard (%) -OT protocol
(i.e., emp-toolkit) for 100-bit strings and 2d calls to a PRF (i.e., AES;55). We provide
an empirical investigation of the efficiency in two fashions: using a commodity
machine and using the HTCondor system.

Commodity machine. We report the performance of our system executed on a
commodity machine (60GB memory and 48core CPU, Intel Xeon CPU E5-2680 v3)
for the UCI datasets of Table 5.2 in the setting described before (i.e. each provider
knows a RF with 50 trees of maximum depth 8). Several tasks in the implementation
were parallelized by multi-threading; all the timing values are averaged on five
repetitions of the same experiment. Table 5.2 (last two columns on the right) reports
the running time of the model-encryption procedure executed by one provider
during the off-line phase; it also reports the size of the encrypted model obtained
via this procedure. The number n of features influences both results, however even
for the high dimensional cases (i.e., thousands of features) the encrypted model
has size less than 1 GB and is produced in less than a minute. The on-line phase of
our system consists of three steps: first, the user submits its encrypted input to the
server. Clearly, the performance of this step is influenced only by the encryption
scheme used and by the dimension of the input (i.e., number of features n). In
our experiments, even for the largest value of n, this step takes less than a second
(e.., 0.17 seconds for n = 7129). Then, the server and the user execute m times the
protocol Tltg to evaluate each tree in the merge of all the forests. Fig. 5.5 illustrates


https://github.com/emp-toolkit
https://research.cs.wisc.edu/htcondor/index.html

76

samples features | Model-encryption
Time (s) Size (MB)
Australian 609 14 0.84 7.96
Breast cancer 569 30 0.90 9.6
Spambase 4601 57 1.01 12.35
Colon cancer 62 2000 10.57 210.54
Leukemia 72 7129 41.7 733.69

Table 5.2: References for the UCI datasets. The last two columns show the overhead of the
off-line phase of our system.

the performance of this part (the most expensive one in the on-line phase): The
two graphs on the left depict the running time of the protocol Tltg run on 50t
trees as function of the parameter t, number of providers; the results are dataset
dependent since the server executes ©(n 2¢) cryptographic operations. The graph
on the right of Fig. 5.5 reports the size of the messages exchanged by the server and
the user as function of t. This value is not influenced by n (dataset size) and it only
increases linearly with the number of trees; in our experiment, even for 300 trees the
bandwidth required is always less than 60 MB. In the last step of the on-line phase,
the server and the user sum their shares; the overhead of this step is independent
of n and influenced only by the total number of trees (e.g., in our experiment this
needs less than 8 ms for 300 trees).

HTCondor. The experiments for the real EHR data were executed using the
HTCondor system, a high-throughput computing architecture that we utilized
in a “master-worker” fashion. For each forest, one tree was learned as a separate
“job” exploiting the heavy parallelization available to RFs. Thus, both training and
prediction were performed in a high-throughput manner. We report the running
time of the on-line phase in this setting in the last column on the right of Table 5.1.
We find that this parallelized version of our algorithm allows us to provide near
real-time interactions as predictions are returned on average within two minutes
of providing a query to the system. We believe that this would be reasonably fast
enough to support the workflow of a physician who wishes to query the model for
a patient.
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Figure 5.5: Performance of protocol TTtg on (50 x # of Providers) trees of depth 8 for the
datasets of Table 5.2.

5.6 Conclusion

We propose a new approach for computing privacy-preserving collaborative predic-
tions using random forests. Instead of a system composed by a training algorithm,
which usually has high overhead in the privacy-preserving setting, followed by
a scoring algorithm, we propose a system based on locally learning and then
privacy-preserving merging. To avoid the need for providers to be on-line for each
prediction request, we instantiate the new approach in the cloud model. That is, an
untrusted server collects the locally trained models in encrypted form and takes
care of scoring them on a new private instance held by the user. Our system is
secure in the honest-but-curious security model and extending it to the malicious
model, especially for a corrupted server, is an interesting direction for future work.
We evaluate the performance of our system on real-world datasets, the experiments
we conducted show that (1) the efficacy of the new approach is dataset depen-
dent; we intend to pursue this future work by applying our methodologies data
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from multiple hospital systems, and (2) the efficiency is influenced by the forest
hyperparameters, and by the number of features n, which is given by the specific
application; avoiding the dependency on n is another interesting direction that

may lead more efficient implementation of this new approach.
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6 MACHINE LEARNING ASSISTED DISCOVERY OF NOVEL
PREDICTIVE LAB TESTS USING ELECTRONIC HEALTH RECORD

DATA

In Chapter 4 we introduced the concept of high-throughput machine learning as
a means of learning models for many thousands of diagnoses at once. Each of
these random forest models can be partially understood by inspecting the feature
importances learned by the forests. Amongst these features are laboratory tests that
may be of some clinical value in diagnosis and / or better understanding the modeled
disease. In some cases, these laboratory tests were not previously mentioned in the
literature and thus may be of medical value. In this chapter, we introduce a high-
throughput approach to identification of novel predictive lab tests by combining

these feature importances with a literature derived knowledge base.

6.1 Introduction

Epidemiological studies associating changes in biological markers (often measured
by laboratory tests) and disease states are an invaluable tool for better understanding
disease mechanism, such as the Framingham heart study (Dawber et al., 1951).
Moreover, many diagnostic criteria exploit such associations by testing for abnormal
changes in the associated biological marker. For example, the diagnostic criteria for
Type II diabetes (a metabolic disorder that impacts how the cells uptake glucose)
includes a measurement of fasting blood glucose levels. The benefits of a well
performed epidemiological study are clear, but such studies can be time-consuming,
expensive, and like any scientific study they require some intuition of the link
searched for. Further, not all hypothesized associations will be borne out in the
data, and thus the higher the quality of initial hypothesis, the more likely the
study yields valuable medical information. In this work, we attempt to generate a

ranked set of high-quality candidate hypotheses through a combination of machine
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learning, text-mining based literature searches, and traditional logistic regression
analysis.

Our method identifies “novel predictive lab tests,” which we define as a previ-
ously unknown association between a given disease state and a given biological
marker (measurable by a laboratory test) that changes prior to diagnosis. Our
approach hinges on the assumption that a novel diagnostic lab test is 1) useful
for predicting a given diagnosis (via a machine learning model) and 2) not cur-
rently discussed in published medical literature on PubMed. Using these criteria
we hypothesize that given a set of candidate diagnoses, we can generate a set of

high-quality novel diagnostic lab tests in a five step procedure:

1. For each diagnosis, produce a machine learning model to predict it, and select
the top k lab tests used for prediction by their feature importance.

2. Map the clinic-used name for each diagnosis and lab test to the literature-
used name (clinic names in our data source commonly used names and

abbreviations that may not have been found in literature).

3. Perform automated text-mining to search for literature associations between
diagnoses and lab tests. This provides a pseudo knowledge-base of known

diagnostic lab tests.

4. Rank novel diagnostic lab tests in a way that encourages high predictive

usefulness and low literature presence.

5. Evaluate the top candidates with traditional logistic regression analysis to
only retain hypotheses that are statistically significant both with and without

inclusion of potential confounders.

The use of Electronic Health Records (EHRs) to digitally capture patient health
encounters has grown substantially in recent years (Hsiao et al., 2014). This has
created unprecedented opportunity for secondary use of EHR data in combination
with machine learning algorithms to build predictive models for critical patient
health events such as breast cancer (Gail et al., 1989) or heart attack (Dawber et al.,
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1951) risk. Machine learning algorithms flexibly learn relationships in a data set
without the need for hard coded rules. In this work we first utilize a machine
learning algorithm, specifically random forests (Breiman, 2001), to build predictive
models of disease for which we are interested in finding novel diagnostic lab tests.
Random forests work by forming an ensemble of multiple decision trees, each
learned on a randomly bootstrapped sample of the original dataset. They are well
known for their strong predictive performance (Caruana and Niculescu-Mizil, 2006)
and resilience to applications with very large numbers of features (Breiman, 2001)
(which is true of EHR data).

While machine learning algorithms can give a quantitative prediction, or even a
confidence of the prediction, one of their common critiques is interpretability. That
is, machine learning algorithms do not offer reasoning along with their predictions.
One way that data scientists can interpret machine learned models is by observing
which features most impact their predictions. The random forest algorithm has
support for “feature importances” (Breiman, 2001) which provide a window into
the model by ranking the contribution of each feature to the construction of the
model. In random forests, feature importances are non-negative values for which
larger values suggest a greater contribution of that feature towards prediction. In
this work, we use feature importances to discover potential novel predictive lab
tests.

While a researcher might consider conducting manual literature searches to
validate potential novel discoveries from a trained model, the size and exponential
growth in scientific literature (Pautasso, 2012; Bornmann and Mutz, 2015) make
this approach infeasible. The literature search space to validate tens or hundreds
of lab tests across tens or hundreds of diagnoses is too large for an individual
to reasonably explore. We therefore use a text mining approach to search for
associations between diagnoses and lab tests. For this work, we rely on KinderMiner,
a previously developed algorithm designed to filter and rank a list of target terms by
their association in the literature with a key phrase of interest (Kuusisto et al., 2017).
In our particular application, a diagnosis name is the key phrase of interest, and
the names of important lab features are the target terms to be ranked by association
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with the diagnosis. In contrast to the original intent of KinderMiner, which is to
rank the target terms by their positive association with the key phrase within the
literature, we are looking for labs deemed useful for prediction, but which are not
already well known in the literature. Thus, we modify KinderMiner to suit our
needs by instead filtering and ranking terms by significant lack of association with
the diagnosis in the literature.

In this work, we demonstrate our proposed method of identifying novel pre-
dictive lab tests by gathering a set important diagnoses and their most predictive
lab tests from machine learning models. We then use text mining to filter and
rank hypothesized predictive lab tests based on negative association within the
literature. Finally, we evaluate the top hypotheses proposed by our method and
find several to be promising candidates for further investigation. In the following
sections we specifically describe the pipeline: the selection of diagnoses and labs,
the construction of predictive models, text mining based filtration and ranking, and
final evaluation of the hypotheses.

6.2 Selection of Diagnoses and Lab Tests

To select the set of important diagnoses to consider, we started with the 100 most
common diagnoses by patient count in our EHR dataset. We then manually filtered
out diagnoses that we considered unlikely to be diagnosed via lab tests or that were
effectively a restatement of an abnormal lab value. For example, we removed ICD-9
code 719.46 (Pain in joint; lower leg) because it is likely a result of a mechanical
ailment, and we removed ICD-9 code 272 (Pure hypercholesterolemia) because it
is a diagnosis of an abnormal lab value. We also manually curated our diagnosis
descriptions to better reflect what we would expect to find in the literature and
to include synonyms. For example, “gout; unspecified” became just “gout” and
“dysthymic disorder” became “dysthymic disorder” or “dysthymia.” See Table 6.1

for our final chosen list of 69 diagnoses and the search terms we used for each.
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Table 6.1: The 69 diagnoses that we considered along with all search terms we used for
each. Alias search terms are separated by semicolons.

ICD Code Diagnosis Name Curated Search Terms
162.9 Malignant neoplasm of bronchus and malignant lung cancer
lung; unspecified site
1749 Malignant neoplasm of breast (female); un- malignant breast cancer
specified site
2749  Gout; unspecified gout
300.01 Anxiety state; unspecified anxiety; gad; generalized anx-
iety disorder
300.4 Dysthymic disorder dysthymic disorder; dys-
thymia
305.1 Tobacco use disorder tobacco use
309.28 Adjustment disorder with mixed anxiety adjustment disorder
and depressed mood
314.00 Attention deficit disorder of childhood attention deficit disorder
without mention of hyperactivity
314.01 Attention deficit disorder of childhood attention deficit hyperactivity
with hyperactivity disorder; adhd
327.23 Obstructive sleep apnea (adult) (pediatric) obstructive sleep apnea
362.51 Nonexudative senile macular degenera- senile macular degeneration
tion of retina
366.10 Unspecified senile cataract senile cataract; senile cataracts
366.16 Nuclear sclerosis nuclear sclerosis
367.0 Hypermetropia hypermetropia; farsighted-
ness; hyperopia; farsighted
367.1 Myopia myopia
367.4 Presbyopia presbyopia
372.30 Unspecified conjunctivitis conjunctivitis
379.21 Vitreous degeneration vitreous degeneration
382.9 Unspecified otitis media otitis media
388.70 Unspecified otalgia otalgia
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ICD Code Diagnosis Name Curated Search Terms
389.9 Unspecified hearing loss hearing loss
410.71 Acute myocardial infarction; subendocar- acute myocardial infarction;
dial infarction; initial episode of care heart attack; subendocardial
infarction
411.1 Intermediate coronary syndrome intermediate coronary syn-
drome
413.9 Other and unspecified angina pectoris angina
414  Other forms of chronic ischemic heart dis- chronic ischemic heart disease
ease
4241 Aortic valve disorders aortic valve disorder
427.31 Atrial fibrillation atrial fibrillation; afib
427.89  Other specified cardiac dysrhythmias cardiac dysrhythmia
4279 Unspecified cardiac dysrhythmia cardiac dysrhythmias
428.0 Congestive heart failure; unspecified congestive heart failure
43491 Unspecified cerebral artery occlusion with  ischemic stroke
cerebral infarction
4409 Generalized and unspecified atherosclero- atherosclerosis
sis
4439 Unspecified peripheral vascular disease ~ peripheral vascular disease
461.9 Acute sinusitis; unspecified acute sinusitis
462 Acute pharyngitis acute pharyngitis
465.9 Acute upper respiratory infections of un- acute upper respiratory infec-
specified site tion
466.0 Acute bronchitis acute bronchitis
472.0 Chronic rhinitis chronic rhinitis
473.9 Unspecified sinusitis (chronic) chronic sinusitis
4779  Allergic rhinitis; cause unspecified allergic rhinitis; hay fever; sea-
sonal allergies
486 Pneumonia; organism unspecified pneumonia
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ICD Code Diagnosis Name Curated Search Terms
490 Bronchitis; not specified as acute or bronchitis
chronic
49390 Asthma; unspecified; unspecified status asthma
496 Chronic airway obstruction; not elsewhere chronic airway obstruction
classified
521.00 Unspecified dental caries dental caries; dental cavity
530.81 Esophageal reflux esophageal reflux; gerd
558.9  Other and unspecified noninfectious gas- non-infectious gastroenteritis;
troenteritis and colitis noninfectious gastroenteritis;
non-infectious colitis; nonin-
fectious colitis
562.10 Diverticulosis of colon (without mention colon diverticulosis
of hemorrhage)
564.0 Unspecified constipation constipation
564.1 Irritable bowel syndrome irritable bowel syndrome
57420 Calculus of gallbladder without mention gallbladder calculus; gall-
of cholecystitis or obstruction stones; gallstone
584.9 Acute kidney failure; unspecified acute kidney failure; acute re-
nal failure
585.3 Chronic kidney disease; Stage III (moder- stage 3 chronic kidney disease;
ate) ckd stage 3
592.0 Calculus of kidney kidney calculus; kidney stone;
nephrolithiasis
593.9  Unspecified disorder of kidney and ureter ~ kidney disorder; ureter disor-
der
599.0 Urinary tract infection; site not specified  urinary tract infection
600.0 Hypertrophy (benign) of prostate benign prostate hypertrophy
611.72 Lump or mass in breast breast mass; breast lump
616.10 Unspecified vaginitis and vulvovaginitis ~ vaginitis; vulvovaginitis
625.3 Dysmenorrhea dysmenorrhea
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ICD Code Diagnosis Name Curated Search Terms
626.2 Excessive or frequent menstruation excessive menstruation; fre-
quent menstruation; menor-
rhagia; polymenorrhea; hyper-
menorrhea
627.2 Symptomatic menopausal or female cli- symptomatic =~ menopause;
macteric states symptomatic menopausal
6929 Contact dermatitis and other eczema; due contact dermatitis; eczema
to unspecified cause
702.0 Actinic keratosis actinic keratosis
706.1 Other acne acne
709.9 Unspecified disorder of skin and subcuta- skin disorder
neous tissue
723.4 Brachial neuritis or radiculitis NOS brachial neuritis
724.4 Thoracic or lumbosacral neuritis or radi- thoracic neuritis; thoracic
culitis; unspecified radiculitis; lumbosacral
neuritis; lumbosacral radiculi-
tis; thoracic radiculopathy;
lumbosacral radiculopathy
729.1 Unspecified myalgia and myositis myalgia; myositis

To select the lab tests to consider, we assembled the union of the top 10 most

important lab features (according to our random forest models) from each of our

69 chosen diagnoses. There was substantial overlap of important features between

diagnoses, leaving us with a total of 52 different lab features from our EHR dataset.

Just as with the diagnoses, we curated the lab test names to better reflect what we

would expect to find in the literature and to include synonyms. See Table 6.2 for

our list of 52 lab tests and the search terms we used for each.
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Table 6.2: The 52 lab tests that we considered along with all search terms we used for each.
Alias search terms are separated by semicolons.

Lab Name Curated Search Terms

ALT (GPT) alanine aminotransferase

AST (GOT) aspartate aminotransferase test
Anion Gap anion gap

Bacteriuria Screen (Esterase)

Bacteriuria Screen (Nitrate)

Bicarbonate (CO2)

Bilirubin, Total-Neonatal
Calcium

Chloride (Cl)

Cholesterol

Creatinine, Blood

Culture Organism

Differential Segment Neut-Segs
Direct Bilirubin

Glom Filter Rate (GFR), Est
Glucose

HDL Cholesterol

Hematocrit (Hct)

Hemoglobin (Hgb)

Low Density Lipoprotein(LDL-C)
MCH

MCHC

Mean Corpuscular Volume (MCV)
Phosphorus

Platelet Count (Plt)

Potassium (K)

bacteriuria esterase; bacteriuria screen; bacteri-
uria test

bacteriuria nitrate; bacteriuria screen; bacteri-
uria test

blood bicarbonate; blood co2; serum bicarbon-
ate; serum co2

neonatal bilirubin; neonatal bile

blood calcium; serum calcium

blood chloride; serum chloride

cholesterol blood; serum cholesterol

blood creatinine; serum creatinine

culture organism

segmented neutrophils; segmented pmn

direct bilirubin; conjugated bilirubin

estimated glomerular filtration rate; egfr

blood glucose; serum glucose

high density lipoprotein; hdl cholesterol
hematocrit

hemoglobin

low density lipoprotein; 1d1 cholesterol

mean corpuscular hemoglobin

mean corpuscular hemoglobin concentration
mean corpuscular volume

blood phosphorus; serum phosphorus

platelet count

blood potassium; serum potassium
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Table 6.2: (continued)

Lab Name

Curated Search Terms

Prothrombin Time (PT)-INR

Rapid Strep Antigen

Red Blood Cell (RBC) Count
Red Cell Distribute Width(RDW)
Sodium, Bld (Na)

Thyroid Stimul Hormone-Mfld
Total Cholesterol/HDL Ratio
Triglycerides

Unconjugated Bilirubin

Urea Nitrogen,Bld

Uric Acid,Bld
Urinalysis-Coarse Gran
Urinalysis-Color
Urinalysis-Fine Gran
Urinalysis-Hyaline
Urinalysis-RBC
Urinalysis-Renal Epi
Urinalysis-Spec Type
Urinalysis-Specific Gravity
Urinalysis-Turbidity

Urine Bile

Urine Blood

Urine Ketones

Urine Urobilinogen

Urine pH

White Blood Cell Count (WBC)

prothrombin time; international normalized ra-
tio

rapid strep test

red blood cell count

red cell distribution width

blood sodium; serum sodium

thyroid stimulating hormone
cholesterol ratio

triglycerides blood; triglycerides serum
unconjugated bilirubin

urea nitrogen blood; serum urea nitrogen
uric acid blood; uric acid serum

urine coarse granular casts

urine color

urinary cast fine

urine hyaline

urine red blood cell

renal epithelial cells urine

urinalysis specimen

urine specific gravity

urine turbidity

urine bile; urine bilirubin

urine blood

urine ketones

urine urobilinogen

urine ph

white blood cell count
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6.3 Predictive Models and Feature Importance

For each of the 69 diagnoses of interest we constructed a random forest model using
case-control matched patient EHR data from Marshfield Clinic in Wisconsin. We
phenotyped cases and controls from the EHR data using the “rule of 2” with cases
having 2 or more entries of the diagnosis on their record and controls having no
entries. We matched cases and controls based on age and date of birth (within 30
days) and we truncated all data for a case-control pair following 30 days prior to the
case patient’s first entry of the diagnosis of interest. In this fashion we generated
5,000 case-control pairs (a total of 10,000 patients). Our patient data included
demographics, diagnoses, labs, vitals, and procedures. Demographic features
included age, sex, and date of birth. We summarize this information in Table 6.3.
For all features except demographics, we extracted the features as counts in the time
windows: 1-year, 3-years, 5-years, and ever. In this manner, our features were of the
form “4 influenza diagnoses in the last 3-years”, or “2 high blood glucose labs in the
last 1-year”. We used the random forest implementation from the Python package
scikit-learn (Pedregosa et al., 2012) version 0.15. Each forest was trained with 500
trees and 10% of the features randomly selected at each split. We chose these setting
a priori, as our prior research has performed well with these choices. All other
settings for the forest used default parameters. We extracted feature importance
values using scikit-learn’s built in functionality which uses the standard random

forest feature importance calculation method (Breiman, 2001).

Table 6.3: Demographic summary for the Marshfield electronic health record population.

Characteristic = Women Men Total

n 565,011 (51.5%) 532,083 (48.5%) 1,097,094
Mean age, yrs 46.7 +=25.7 449 £+ 255 45.8 £ 25.6
<18y.0 84,917 (15.0%) 98,183 (18.5%) 183,100 (16.7%)
18-39 y.o. 157,827 (27.9%) 137,967 (25.9%) 295,794 (27.0%)
40-59 y.o. 132,280 (23.4%) 123,642 (23.2%) 255,922 (23.3%)
> 60 y.o. 189,987 (33.6%) 172,291 (32.4%) 362,278 (33.0%)
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6.4 Text-Mining

We modified the KinderMiner algorithm for the text mining portion of this work to
determine which diagnostic lab tests are likely novel in the literature. KinderMiner
filters and ranks a list of target terms by their association with a key phrase of inter-
est. It accomplishes this through simple string matching and document counting
within a given text corpus. For each search, the user must specify the key phrase
representing a concept of interest along with the list of target terms to be filtered
and ranked by their association with the key phrase. KinderMiner then searches
a given text corpus for article counts matching the target terms and key phrase.
Specifically, it computes a contingency table of counts for each target term. For each
target term, KinderMiner computes the number of articles containing both, either,
and neither of the target term and key phrase. The result of this procedure is a list of
contingency tables of document counts, one table for each target term. KinderMiner
then performs a one-sided Fisher’s exact test on each contingency table, filtering

out target terms that do not demonstrate statistically-significant co-occurrence with

Target Terms cholesterol blood .. | bacteriuria
. R . hematocrit .
ratio sodium nitrate
Key Phrase “Breast mass”
Output Rank 1. Compute article count contingency table

2. Filter terms by one-sided Fisher Exact test

Term Total+2
3. Sort terms by ———F————
Key Phrase & Term+1

Example ((“blood” AND “sodium”) OR (“serum” AND “sodium”))
AND ((“breast” AND “mass”) OR (“breast” AND “lump”))
Term ~ Term Total
Key Phrase 13 15,389 15,402
— Key Phrase 55,191 | 25,838,509 | 25,893,700
Total 55,204 | 25,853,898 | 25,909,102

55,204+2

One-sided FET p: 7.28¢-5 Sort Ratio: = 3,943.29

Figure 6.1: Visual example of our modified KinderMiner, with contingency table and disas-
sociation Fisher’s Exact Test (FET) analysis of the diagnosis key phrase “breast mass” and the
lab target term “blood sodium.” Target terms are filtered by significance of disassociation
with the key phrase and then sorted by the inverted co-occurrence ratio.
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the key phrase according to a specified p-value threshold. Finally, the remaining
target terms are ranked by the co-occurrence ratio, which is the number of articles
in which a target term co-occurs with the key-phrase divided by the total number
of articles in which the target term appears.

In this work, we make four modifications to the original KinderMiner algorithm
(see Figure 6.1 for a visual representation). First, while the original KinderMiner
algorithm finds exact string matches for target terms and key phrases, we extend
this by breaking target terms and key phrases into their constituent tokens and
matching on all tokens in any order or location within the document. For example,
in the original KinderMiner a key phrase like “stage 3 chronic kidney disease”
would need to match that string exactly to be counted and would not match the
similar phrase “chronic kidney disease, stage 3.” Our modification breaks this key
phrase into five tokens (“stage”, “3”, “chronic”, “kidney”, and “disease”) which
must all be present in the document, but which do not need to match exactly in the
original phrasing order.

Second, we extend KinderMiner to accommodate alias matching for target terms
and key phrases. For example, we may expand a target term like “blood sodium”
with an alias like “serum sodium.” Similarly, we can expand a key phrase like
“breast mass” with an alias like “breast lump.” This is important for key phrases
and target terms that may be referred to in multiple ways within the literature.

Third, in contrast to the original goal of KinderMiner, we wish to identify targets
that are negatively associated with the key phrase in the literature. To accomplish
this, we modify KinderMiner’s filtration step by changing the one-sided Fisher’s
exact test to the opposite side test, thereby testing for significant negative association
between each target term and key phrase.

Fourth, we also change how KinderMiner ranks the final filtered set of associa-
tions. KinderMiner typically ranks results by the co-occurrence ratio, the proportion
of articles in which both the key phrase and target term occur over all articles in
which the target term occurs. This is useful because it gives a rough estimate of the
magnitude of association between the key phrase and the target term. In this work,

we instead use the inverted co-occurrence ratio because it gives a rough estimate
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of the disassociation. When computing this ratio, we also add a pseudo-count of
one to each of the article counts for when the key phrase and term co-occur, and
when the target term appears without the key phrase. We add these pseudo-counts
because it is not rare to find a significant disassociation when there are zero articles
in which the term and key phrase co-occur.

As part of the filtration step, KinderMiner requires a p-value threshold for
the Fisher’s exact test. While the original KinderMiner paper used 0.00001 in all
cases, we loosen that threshold to 0.05 for our work. Because there are already
few candidate lab-diagnosis pairs that appear unexpectedly disassociated in the
literature, we care more about getting sufficient candidate discoveries than filtering
out false positives.

KinderMiner also requires a text corpus to search. We constructed our text cor-
pus from the National Library of Medicine’s MEDLINE /PubMed publicly available
citation records (US National Library of Medicine). We downloaded the annual
baselines in XML format, parsed, and then ingested them into an Elasticsearch index
(version 2.4.6). Our initial ingest of the 2017 annual baseline was performed in June
and July 2017, and we updated to the 2018 baseline in November 2017. The dataset
contains 27,947,480 citation records, with the abstracts indexed by Elasticsearch
using two analysis chains. The default analysis that we use for all of the searches
in our work is Elasticsearch’s standard analyzer, which applies a grammar-based
tokenizer and lowercase filter to the text. We then use the Elasticsearch Query
Domain Specific Language to construct each of our queries in JSON. Altogether, a
search for the key phrase “breast mass” (with alias “breast lump”) and target term
“blood sodium” (with alias “serum sodium”) would be equivalent to the following:

((“‘breast’’ AND ‘‘mass’’) OR (‘‘breast’’ AND ‘‘lump’’)) AND ((‘‘blood’’
AND ‘‘sodium’’) OR (‘‘serum’’ AND ‘‘sodium’’))

Hypothesis Ranking and Evaluation

Once we have gathered a set of hypothesized lab-diagnosis pairs to consider, we

must rank them to help prioritize the best candidates for further investigation.
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Figure 6.2: The odds ratios and confidence intervals of all 20 lab-diagnosis hypotheses.
Includes odds ratios for both with (right, red) and without (left, blue) covariates.

Recall that we initially rank lab-diagnosis pairs by the inverted co-occurrence ratio.
While this provides a lab test ranking for a particular diagnosis, we have several
hypotheses from different diagnoses and we want to identify the most promising
hypotheses overall. To do this, we construct a combined rank score defined as the
product of a literature score and a feature score. For the literature score, we simply
use the inverted co-occurrence ratio, which takes on large values when a lab is
infrequently mentioned with a diagnosis. For the feature score, we use the feature
importance of the lab value in the diagnosis model multiplied by the number
of features in that diagnosis model (as to not bias models with small numbers
of features). The product of the literature score and feature score thus gives a
combined estimate of the novelty and the diagnostic importance of the lab.

With all the lab-diagnosis pairs ranked, we consider the top 20 hypotheses in
more detail. To evaluate each candidate, we perform logistic regression analyses on
the same dataset that was used to train the random forest. First, for each hypothesis,
we perform a logistic regression with the diagnosis as the response variable and the
laboratory test as the sole covariate. We use this to calculate the odds ratio of the
lab in question. Second, we assess the odds ratio of the lab test in the presence of
potential confounders. Finally, we perform manual literature search for important

findings and decide if each is in fact novel.

To select potential confounders for a given diagnosis, we perform L1-regularized



94

Table 6.4: Summary and logistic regression odds ratios for the top 20 hypotheses. We
compute the odds ratio of the lab test for a given hypothesis in two ways: as the sole
covariate, “Odds”, and including potential confounders, “Adjusted Odds”. For both odds
ratio calculations, we present the 95% confidence interval and bold 4 of the top 20 hypotheses
whose 95% confidence intervals exclude 1.0 and whose odds are in the same direction, both

before and after including confounders.

Key ICD-9 Diagnosis Lab Test Odds Adjusted Odds

A 702.0  Actinic Keratosis Glucose 1.4[1.3,1.5] 0.67 [0.6, 0.74]

B 702.0  Actinic Keratosis Creatinine, Blood 1.4[1.2,1.6] 0.78 [0.67,0.9]

C 3674  Presbyopia Glucose 2.0[1.8,2.1] 0.9510.84, 1.1]

D 600.0  Benign Prostate Hyper- LDL Cholesterol 1.6[1.5,1.8] 0.89[0.79, 1.0]
trophy

E 702.0  Actinic Keratosis Sodium, Bld (Na) 1.6[1.2,2.1] 0.85[0.61, 1.2]

F 1629  Malignant Lung Can- LDL Cholesterol 1.1[1.0,1.2] 0.84 [0.76, 0.93]
cer

G 461.9 Acute Sinusitis HDL Cholesterol 1.9 [1.6, 2.2] 1.41[1.2,1.7]

H 461.9  Acute Sinusitis LDL Cholesterol 1.8[1.5,2.2] 1.2[1.0,1.5]

I 472.0  Chronic Rhinitis Glucose 2.1[1.8, 2.5] 1.41[1.2,1.7]

J 1629  Malignant Lung Can- HDL Cholesterol 1.0[0.94,1.1] 0.72 [0.65, 0.8]
cer

K 496 Chronic Airway Ob- LDL Cholesterol 1.1[1.0,1.3] 0.74 [0.66, 0.82]
struction

L 521.00 Dental caries LDL Cholesterol 0.95[0.85,1.1] 0.87[0.78,0.97]

M 4619  Acute Sinusitis Hemoglobin (Hgb) 2.1[1.6,2.6] 0.97[0.75, 1.3]

N 4739  Chronic Sinusitis Hemoglobin (Hgb) 2.6 [2.1,3.3] 1.210.93, 1.6]

@) 367.0  Hypermetropia Hemoglobin (Hgb) 1.7 [1.4,2.0] 0.77 [0.62, 0.96]

P 461.9 Acute Sinusitis Cholesterol 2.1[1.8, 2.4] 1.4 [1.2, 1.6]

Q 496 Chronic Airway Ob- Triglycerides 1.3[1.1,1.5] 0.81[0.7, 0.94]
struction

R 530.81 Esophageal Reflux- WBC Count 1.9[1.7,2.2] 0.93[0.79, 1.1]
Gerd

S 1629  Malignant Lung Can- Cholesterol 1.1[1.0,1.2] 0.8[0.71, 0.89]
cer

T 466.0  Acute Bronchitis Cholesterol 2.1[1.8, 2.3] 1.3 [1.1, 1.5]
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logistic regression on a feature set containing demographics, laboratory tests, and
the top-level, whole integer ICD-9 codes. Moreover, our features for laboratory
tests and demographics are binary features capturing if the patient did or did not
have an entry of a particular health event in the last one year. We perform the
L1-regularized logistic regression with scikit-learn (Pedregosa et al., 2012) and
choose the minimum number of covariates greater than or equal to five by slowly
increasing the regularization parameter. Note that as the cases and controls for
this data were already age and sex matched we do not see these as discovered
confounders. We then use these five (or more) selected features as confounders
in logistic regression analysis (with R version 3.3.1) where we compute the odds
ratio (and 95% confidence interval) of the lab in question both with an without the
identified confounders. If the lab in question has an odds ratio that both maintains
the same sign in both evaluations, and if the 95% confidence interval for both
odds ratios exclude 1.0 (no change in odds), then we consider the hypothesis to be
corroborated by the logistic regression analysis.

6.5 Results and Discussion

In Table 6.4 we present, in rank order, the top 20 hypotheses found between labs
and diagnoses. In Figure 6.2 we plot the odds ratios of all 20 hypotheses both
with and without potential confounders. We find that four of the 20 hypotheses
passed the secondary logistic regression analysis and maintained an odds ratio
95% confidence interval above 1.0 both with and without potential confounders. In
all hypotheses except one, hypothesis L, we see that the inclusion of confounders
either diminishes or even reverses the trend found without confounders. For the
four bolded hypotheses that passed our logistic regression analysis, we present in
Table 6.5 the covariates selected by the L1-regularized logistic regression.

The four hypotheses that met our odds ratio criteria for further consideration
effectively represented three distinct hypotheses: cholesterol for acute sinusitis,

cholesterol for acute bronchitis, and blood glucose for chronic rhinitis. While we
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Table 6.5: Covariates included as potential confounders for the 3 diagnoses included in the
four hypotheses that passed the regression analysis. A minimum of five covariates were
identified for each diagnosis, with Chronic Rhinitis including a sixth covariate as there was
no L1 penalty that achieved five.

Acute Sinusitis Chronic Rhinitis Acute Bronchitis

V72: Examination 461: Acute Sinusitus V72: Examination

Lab: Hemoglobin 473: Chronic Sinusitis Lab: MCHC

786: Respiratory Symptoms  V72: Examination Lab: Hemoglobin

465: Acute URI 465: Acute URI 786: Respiratory Symptoms
462: Acute Pharyngitis 493: Asthma 465: Acute URI

786: Respiratory Symptoms

expected to find few hits by design, we manually searched PubMed for articles
related to these findings.

First, manual literature search for an association between cholesterol and acute
sinusitis did not turn up direct associations. It did, however, turn up several hits
for cholesterol granuloma of the maxillary sinus, which describes cysts containing
cholesterol crystals and other fluids surrounded by fibrous tissue (Chao, 2006).
Symptoms are vague, and there are only two noted specific symptoms: clear golden
yellow antral washout fluid, and washout containing cholesterol crystals. A family
history of hypercholesterolemia was noted in one study (Dilek et al., 1997). This
tangential association between cholesterol and sinus ailments within the litera-
ture, suggests to us that this discovered hypothesis is a promising lead for further
investigation.

Second, literature search for an association between cholesterol and chronic
bronchitis turned up two relevant studies. One study notes that low plasma lipid
levels, particularly HDL cholesterol, is indicative of bacterial infection, and that low
total cholesterol is predictive of adverse outcomes in patients with lower respiratory
infections (Gruber et al., 2009). Another study suggests that lipid levels in airway
mucus may be diagnostic for infection (Bhaskar et al., 1987). While the presence of
these studies suggests prior awareness of an association, the literature is limited
and can be viewed as confirmatory of our approach.

Third, literature search for an association between blood glucose and chronic
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rhinitis turned up one study. The study suggests that some antihistamine medi-
cations may affect blood glucose levels (Lal, 2000). If true, this indicates that our
hypothesis may instead be a confounded result of patients with chronic rhinitis
having abnormal blood glucose as a result of antihistamine prescription, rather than
blood glucose being predictive of rhinitis. Given the limited literature, however,

the hypothesis may still warrant further investigation.

6.6 Conclusion

In this work, we propose a high-throughput pipeline for generating high-quality
hypotheses for novel lab tests to predict diagnoses. We test our pipeline on a
large electronic health record dataset and the PubMed corpus and, after manual
evaluation, find several promising hypotheses in the top candidates.

One limitation of this work is the current need for manual mapping of diagnosis
and lab terms to curated search terms. We expect that future work incorporating
standardized naming and coding schemes in EHR datasets may obviate this need
or that the process may be automated more completely in the future. This would
facilitate higher throughput of diagnostic lab discovery by allowing us to run our
pipeline on all diagnoses and all laboratory tests rather than a subset.

Our pipeline leverages the latent knowledge and patterns present in electronic
health record data and the PubMed corpus to identify potentially interesting epi-
demiological findings. However, our proposed method does not eliminate the need
for experimental design and further investigation of findings. On the contrary,
it augments this process, and we argue that it represents a valuable addition by
assisting with the prioritization of experiments when identifying biomarkers of
disease.
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7/ AUC MU: A PERFORMANCE METRIC FOR MULTI-CLASS

MACHINE LEARNING MODELS

In Chapters 3 and 4 we present disease prediction tasks in which we are interested
in whether a patient will or will not present with a particular disease. However,
there are some conditions that share the same constellation of symptoms for which
it would be valuable to construct a multi-class classification model. These mod-
els could answer questions such as “Does this patient have Parkinson’s Disease,
Alzheimer’s Disease, or no disease?” However, the evaluation of such multi-class
models cannot use the standard AUC measure which is only valid for two classes.
Existing performance measures have key flaws such as failing to properly score
perfectly separated examples, interpretability difficulties, and combinatorial compu-
tational time complexities. Therefore, in this chapter we introduce a new multi-class
performance measure that adheres to those critical properties of AUC. We apply
this new measure for the multi-class prediction task of seven different digestive

cancers.

7.1 Introduction

The area under the Receiver Operating Characteristic (ROC) curve, commonly
referred to as the AUC, is ubiquitous in machine learning, yet it is limited to
classification tasks with only two classes. There have been a variety of prior attempts
to extend AUC to the multi-class setting but there is no consensus on the appropriate
way to proceed. Multi-class AUC analogs must deal with new challenges in both
computational complexity and decisions of which properties of the binary AUC
are most important to preserve. Current approaches largely fall into two camps:
those that are theoretically rooted and those that are focused on ease of use. We
believe that the community has implicitly stated a preference for practicality, as
the most widely used measure, M, introduced by (Hand and Till, 2001), is an easy
to use multi-class AUC analog. However, in our work we show that M can fail to
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return a score of 1 (perfect performance), even when for every example a model
gives the correct label the highest probability.
In our work we first consider those properties of AUC that we believe to be most

critical to its use and interpretation. The properties are based on work by Fawcett
(2006).

1. If a model gives the correct label the highest probability on every example,
then AUC =1

2. Random guessing on examples yields AUC = 0.5

3. AUC is insensitive to class skew

We note that these three properties are all a consequence of the relationship
between AUC and the Mann Whitney U-Statistic (Hanley and McNeil, 1982). The
U-statistic, and hence the two-class AUC, is the probability the model will correctly
rank two instances of difference classes. Therefore, rather than generalizing the
ROC curve to handle K > 2 classes as others have done before, we instead turn our
attention to generalizing the U-statistic for K > 2. We call our measure AUC,, using
the Greek letter mu (i) as an abbreviation for “multi-class U-statistic.”

In Section 7.2 we present a survey of prior work performed on extending AUC
to the multi-class setting. In Section 7.3 we present background on the U-statistic
form of AUC, multi-class AUC, and partition matrices (a tool we use in computing
AUC,)). In Section 7.4 we formulate the AUC,, statistic. In Section 7.5 we provide
several theoretical results for AUC,, and we also demonstrate some special cases
for AUC,,. In Section 7.6 we present an empirical evaluation of three multi-class
AUC measures on the task of predicting one of seven digestive cancers. Finally,
in Section 7.7 we provide concluding remarks on the work and some interesting
future directions.
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7.2 Prior Work on Multi-Class AUC

Prior work on extending AUC to the multi-class setting has focused on both the
theoretical aspects of the problem and producing useable measures for real world
problems. Interestingly, one of the earliest works in this area was a theoretical
piece by Srinivasan (1999) who proved which classifiers may be optimal in an n-
dimensional ROC space. Given a set of possible hard-labeling multi-class classifiers,
it was shown that regardless of the choice of misclassification cost matrix, the
optimal classifier lies on the convex hull of the n-dimensional ROC “surface”.
This is an extension of a known property of AUC that was shown by Provost and
Fawcett (1997); that is, we may consider only those classifiers on the convex hull
of the ROC curve regardless of the misclassification costs. While Srinivasan (1999)
did not suggest how one would construct such an n-dimensional ROC space, the
contributions were useful for future work.

A reasonable notion for the construction of a multi-class analog of AUC is that if
in the two-class case we integrate under the ROC curve, then for the K-class case we
should integrate under the ROC surface. This resulted in work on computing the
volume under the ROC surface (VUS), though there is a disagreement on exactly
how one should construct an ROC surface. In the two-class case, an ROC curve is
plotted using the true positive rate and false positive rate values that are derived
from the 2 x 2 confusion matrix. In general, a problem with K classes has a K x K
confusion matrix from which we would construct the ROC surface. Two schools
of thought arose on how to construct an ROC surface. Mossman (1999) believed
that one needed only K dimensions for construction of the ROC surface, while Ferri
et al. (2003) believed that K(K — 1)-dimensions were necessary.

While a VUS-based approach is a reasonable extension to AUC, it suffers greatly
from both computational complexity and interpretability. Both the construction
of the ROC surface and computation of its volume are computationally intense
problems. Lane (2000) notes that finding the convex hull of N points in d dimen-

d
sions requires O(N log N 4 N'2/) time. This makes finding the ROC surface itself
challenging for problems with even a moderate number of classes and instances. Be-
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Figure 7.1: The M measure proposed by (Hand and Till, 2001) can yield a result much
less than 1 even when a model assigns the correct label the highest probability on every
example. In this figure, the larger outside equilateral triangle is the space of all possible
model outputs and is known as the 2-simplex. Consider three model predictions plotted on
the 2-simplex, 13(1) , 15(2) ,and f)(3) , belonging to classes 1, 2, and 3 respectively. We divide
the simplex using the argmax partitioning, that is, a prediction is assigned to the class
for which it has the highest probability. The points are separable and correctly classified,
however, M returns a value of 0.67 for this example, suggesting the model quality is much
closer to random guessing than it is to perfect performance. This behavior is also true of
the metric proposed by Provost and Domingos (2000).
cause of this, both Mossman (1999) and Ferri et al. (2003) choose to approximate the
points on the ROC surface, which ultimately leads to inexact and underestimated
volume. Further, even with an exact computation of volume, VUS no longer adheres
to the same scale that AUC does, namely when AUC is 1 a classifier is perfect and
when AUC is 0.5 it is equivalent to random guessing. VUS-based approaches have
scales that get increasingly smaller as the number of classes grows and this makes
interpreting how good a multi-class model is with VUS a challenge.

Perhaps it is for these reasons that the most widely used multi-class AUC ap-
proach is not VUS-based but rather an average of pairwise AUCs amongst the k

classes. Hand and Till (2001) propose the measure M, an easy to compute and
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class-skew insensitive performance measure for multi-class problems. However,
M loses many of the properties that we believe are crucial for successful use and
interpretation. Most importantly M can return values much less than 1 even when
all points are correctly labeled. Consider the example in Figure 7.1 where three pre-
dictions, p'V, p'?, and p*, are all correctly classified using the standard argmax
rule. For each pair of classes, i and j, M considers all points whose true label is
ior j, and computes the AUC amongst these instances twice, once with the ith
component considered positive, and once with the jth component considered posi-
tive. These two calculations can yield different results and thus in cases such as
Figure 7.1, M can return a score as low as 0.67 even though the points are perfectly
labeled. Finally, M loses the elegance of a simple probabilistic interpretation as it is
no longer equivalent with the U-statistic. That is, M is not the probability that two
random instances will be ranked correctly.

While not nearly as widely used, Provost and Domingos (2000) proposed another
method of extending AUC to the multi-class domain. Their approach performs a
weighted average of K one-versus-all calculations of AUC for each of the individual
class probabilities. However, because this approach weighs each individual AUC
calculation by its class weight, it is inherently sensitive to class skew and thus
violates Property 3. Additionally, like M it does not satisfy Property 1 and can
return values less than 1 even when all examples would be accurately labeled using
the argmax rule. Using the example in Figure 7.1, the method proposed by Provost

and Domingos (2000) would also return a value of 0.67.

7.3 Background

Here we provide background material necessary for our derivation of AUC,,. First,
in Section 7.3 we discuss the relationship of AUC and the aforementioned Mann-
Whitney U-statistic. The U-statistic is a metric based on the ranking of probabilistic
model predictions from the two-class case. We then discuss in Section 7.3 how the
probabilistic predictions of a model differs when there are more than 2 classes as

multi-class predictions are specified as categorical distributions. Finally, in Section
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7.3 we discuss partition matrices and decision boundaries, two tools that we use

eventually use to rank categorical distributions.

AUC and the Mann-Whitney U-Statistic

True to its moniker, AUC is most commonly understood as an integration under
the ROC curve. The Mann-Whitney U-statistic relationship shows a probabilistic
interpretation of AUC. That is, AUC is the probability that a random instance whose
label is positive will receive a higher ranking than a random instance whose label
is negative. Let Y* and Y~ represent the sets of model predictions for positive and
negative instances respectively (e.g. if §(*) € Y*, then §(V) is some probability in
[0,1], and the true label y*) for instance x*) is positive). Further, let n, = [Y*|and
n_ = |Y~| be the number of positive and negative instances respectively. Then we

can calculate AUC as specified in Equation 7.1,

AUC = u_n+n_ Z Z (g 06)y, (7.1)

Dey+gliley-

where I(-) is a modified indicator function that returns 1 if the argument is
positive, 0 if the argument is negative, and 0.5 if the argument is 0.

Multi-Class Classification Models and Predictions

Whereas binary classification problems are concerned with labeling an instance
as one of two categories, we call a task where an instance can belong to one of K

categories a multi-class classification problem.

Definition 7.1. M is a multi-class model over a domain X of possible examples that maps
each x € X to a categorical distribution p = [P, ..., Px]", where p; is the probability x
belongs to category j. The domain of possible model predictions for a task with K classes is
described by the (K — 1)—simplex, Ax_4. Figure 7.1 shows A, along with 3 different p
model outputs.
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Figure 7.2: A partitioning of the 2-simplex, A, for a 3-class classification problem. Here we
show the argmax partitioning, A, and the decision boundaries it induces. The regions with
blue circles, green pluses, and red crosses are assigned to classes 1, 2, and 3 respectively.

While in two-class tasks a scalar threshold is used to map p to a label, we need
more complex tools for a multi-class task. With K > 2 classes, we now must define
a partitioning of the (K — 1)—simplex that maps a categorical distribution, p, to
a hard label. That is, we divide Ax_; into K regions corresponding to values of p
that map to each of the K labels. Consider Figure 7.2 where we demonstrate what a
partitioning of the 2-simplex looks like for a classification task with three classes.

Partition Matrices and Decision Boundaries

Recall that in Equation 7.1, the U-statistic computation involves ranking of predic-
tions for two instances of different classes. Thus, extending the U-statistic to K > 2
classes requires some way of ranking the categorical distributions outputted by a
multi-class model. We propose the use of a partition matrix, which divides the prob-

ability space of model outputs into distinct labeling regions. The partition matrix is
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analogous to a threshold value in the two-class case and it has been shown that the
two-class threshold can be derived from a 2 x 2 partition matrix (O’Brien et al., 2008).
The misclassification cost matrix, that specifies the cost of mislabeling an instance
of one label as another, is in fact a partition matrix. In general, a partition matrix is
any matrix that divides the probability space into labeling regions for each of the
K classes. We note the connection between the partition matrix and the decision
boundaries learned by a linear-kernel multi-class SVM (Weston and Watkins, 1999).
Both the linear-kernel multi-class SVM and the partition matrix produce K regions,
each corresponding to a class. However, a linear-kernel multi-class SVM divides
the feature space whereas the partition matrix divides a probablity space, Ax_.
Moreover, a partition matrix has at least one equal-risk point, where all classes are
equally likely, whereas a multi-class SVM may produce solutions with no equal-risk
point. Here we present background on partition matrices and their relationship
with calculating AUC. The work presented by O’Brien et al. (2008) relies heavily on
partition matrices, and their study provides many useful properties, proofs, and
definitions. We restate some of their results (Definitions 7.2 and 7.3) as they are

useful building blocks for our work.

Definition 7.2. Partition matrix: Let A be a K x K matrix and let Ay; be the cost of
classifying an instance as class 1 when its true class is j. Then A defines a partition on the
(K —1)—simplex and induces decision boundaries between the K classes.

Further, as shown in (O’Brien et al., 2008), any partition matrix A can be ex-
pressed by some other matrix A’ with the properties A{; =0Viand A{; # 0 Vi # j.
From here forward, when referring to a partition matrix we assume it is in this form
with all diagonal entries zero.

Definition 7.3. Decision boundary: A decision boundary between class i and class j,
i #£ j, is the hyperplane that separates the two classes in Ax_1. The decision boundary
is calculated using the partition matrix to solve for the hyperplane of solutions that have
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equal costs if assigned to class i or class j.

K K
D> Aixpr=) Ajxbx (7.2)
k=1 k=1

Here, Py is the kth element of the categorical distribution P, i.e., the probability that the
instance belongs to class k.

An equivalent formulation of Equation 7.2 can use dot products and may be
written as A;.p = A;.P.

Definition 7.4. Argmax partition matrix, A: When the costs in a partition matrix are
1 everywhere except the diagonal where they are 0, we call this the argmax partition matrix.
It is so named because the label it assigns to any prediction, P, is arg max, Px. Because
we reference this heavily in this work, we give it a special identifier: A.

Figure 7.3 shows how the choice of partition matrix can change not just the label
of a point, but in fact reverse the orientation of two points. By this we mean that
two points that are both correctly labeled (correctly oriented with respect to the
decision boundary) with one partition matrix, can become incorrectly labeled with

another partition matrix.

7.4 Algorithm Derivation

In this section we derive the formula for AUC,,. We wish for AUC,, to be a multi-
class extension of the U-statistic presented in Equation 7.1. Thus, AUC, must
compute the probability that two random instances from different classes are ranked
correctly by a model. However, recall that in multi-class classification our model
output p is a categorical distribution which makes extending the concept of ranking
unclear. What does it mean for one categorical distribution to be of a “higher rank”
than another? We must provide some means to map a categorical distribution to

a scalar value which can be used for ranking. In Section 7.4 we demonstrate how
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Figure 7.3: The choice of partition matrix can reverse the labeling of two points. Consider
first the argmax partitioning of A, using A, shown in solid lines. Then p'!) and p?) are
assigned to the correct classes, 1 and 2 respectively. Now consider an alternative partitioning
shown in dashed lines. Now p'!) is assigned to class 2, while p?) is assigned to class 1.
The first choice of partition matrix correctly labels both points, while the second choice
of partition matrix incorrectly labels both points. It is also possible to choose a partition
matrix that labels one point correctly and one point incorrectly.

such rankings can be performed using a partition matrix. Then, in Section 7.4 we

use this method of ranking to derive the expression for AUC,,.

Ranking Categorical Distributions

The intuition behind our approach is most easily described through an analogy to
standard linear kernel support vector machines (SVMs). A linear SVM generates a
decision hyperplane which divides the feature space into two regions, one where
instances are labeled as positive and the other negative. The further an instance is
from the decision hyperplane the more confident the SVM is in its label. In this
way, model confidence for an SVM is measured by the orthogonal distance of an

instance to the decision hyperplane. Similarly, when ranking two instances from
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different classes, we use the decision hyperplane between those two classes that is
derived from the partition matrix.

Recall that Equation 7.2 describes the decision boundary as a set of categorical
distributions for which the expected cost of labeling an instance as class i or class j
isequal. Let v = A;. — A, then v'p = 0 is the equation of the hyperplane and
an equivalent formulation of Equation 7.2. This decision boundary divides our
(K — 1)—simplex into two regions, one where we are more confident to label an
instance class 1 and one where we are more confident to label an instance class j.
If v'p is positive, then we see it is more costly to assign the label of class i than
class j. The more positive v'p, the larger the difference in cost, and therefore the
more favorable a labeling class j becomes. Therefore, v provides a way to rank
various points in terms of their cost difference between assignments of class i and j.
It should be noted that v' is the orthogonal vector to our equal-cost hyperplane
and v'p is proportional to the length of the projection of p onto v'. We are in
essence calculating an unscaled orthogonal distance of our prediction, p, to the
equal cost hyperplane. This scalar value provides the ranking that is the critical
piece that is needed to extend the indicator function I in Equation 7.1 and thus
derive multi-class AUC.

We now show how to determine if two model outputs are ranked correctly in a
multi-class problem. Let p'") and pU’ be the categorical output of our model for
two instances x(*) and x). Further, without loss of generality, let the true classes of
x'V and x) be classes 1 and 2 such that y) = [1,0,...,0]" and yU) =[0,1,...0]"
are the true class vertices on the (K — 1)—simplex for these two instances. Let A be
our partition matrix. We first calculate our normal vector to our decision boundary
asv' = A;. — A,.. Note that v'y!) and v'y? are the unscaled distances of our
class vertices from the hyperplane. This provides us the “correct” orientation of two
points projected onto v'. That is, if vy(Y) > vTy0), thenif vIp; > v'p; we know
that our model correctly ranked the two points. Figure 7.4 illustrates an example of
this projection and how we can use our partition-matrix-derived decision boundary
to induce rankings on multi-class predictions. We can efficiently compute if two

points are ranked correctly through the introduction of an orientation function.
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Figure 7.4: A depiction of how the partition-matrix-derived decision boundary, v = 0,
(in cyan) can be used to induce a ranking of categorical distributions. The normal vector to
the decision hyperplane, v’ (shown in red), provides a means to rank points in the simplex.
The dot product of v! with the true labels and model outputs form an un-normalized
projection onto v' and thus a means of ranking categorical distributions. The ranking of
p1 and P, is correct here as their orientation with respect to the decision boundary is the
same as the orientation of their labels y(!) and y(?).

Definition 7.5. An orientation function, O, returns a positive value if the predictions are

ranked correctly, a negative value if they are ranked incorrectly, and 0 if their rank is tied.
O(y(i),y()’)’p(i),p(j),VT) — (VT(y(i) —ym))(vT(f)m _p(i))) (7.3)

AUC,

Here we detail our derivation of AUC,, as an extension of the U-statistic such that
we satisfy Properties 1-3 listed in Section 7.1. We restate the two-class U-statistic,
Equation 7.1, for reference.
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We begin by modifying the indicator function, I, so that it is compatible with
multi-class model outputs. Recall that I returns 1 if two instances are ordered cor-
rectly, 0 if they are ordered incorrectly, and 0.5 if there is a tie in their rank. We utilize
the orientation function described in Equation 7.3 as the new argument for 1. Now,
for two instances indexed by i and j from different classes, IO (y "), yU), pt), pi), vT),
will indicate if the two instances are ordered correctly, incorrectly, or tied. However,
we note that O requires the two class decision hyperplane normal vector, v', as an
argument. What is the right choice of v'? To answer this question we refer to Prop-
erty 1, that if all instances are labeled according the their highest probability, then
AUC,, should return a score of 1. We note that this division of the (K — 1)-simplex
is exactly the argmax partitioning, and thus we argue that A is the appropriate
partition matrix to use in AUC,, . We later show in the proof in Section 7.5, if
there is no a priori preference of a particular partition matrix, A is the appropriate
choice. We further show in Section 7.5 how to compute an alternative formulation
of AUC,, when there is a preference for a particular partition matrix. From here
forward, unless otherwise specified we assume that the decision boundaries used
when calculating AUC,, are derived from A.

For a problem with K classes, let us first consider, without loss of generality, two
classes i < j < K. Similar to (Hand and Till, 2001), we aim to construct a separability
measure between i and j; we call this measure S(1,j). Let D(i), and D(j) be the sets
of all instances whose true label is i and j respectively. Further, let n;, n; be the

number of instances in each set respectively. Then we define,

.. 1 . A .
(i) =—— 3 o'y, pl),p)vh).
Y aeD(1),beD ()

If K = 2, then S(i,j) reduces to the U-statistic, and thus AUC. We discuss and
prove this equivalence in Section 7.5.

Next we turn our attention to Property 3, that AUC,, should be insensitive to
class skew. While in the two-class case if two instances from different classes are
randomly selected we always get equal representation from both classes (one from
each class). However, if instances are randomly selected from different classes when
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Table 7.1: Comparison of the various multi-class metrics discussed in this work: VUS-3
(Mossman), VUS (Ferri), H&T (Hand and Till), P&D (Provost and Domingos), and AUC,,.
A |/ indicates a proven property, a x indicates a proven absence of a property, and a “?”
indicates an unknown. Not only is AUC,, the only metric to preserve Properties 1, 2, and 3,
but also its time complexity is as fast or faster than all other methods.

VUS-3 VUS H&T P&D AUC,,
Perfect =1 Vv X X X V
Random = 0.5 X X vV vV V
Skew Insensitive ? ? Vv X Vv

Time Complexity exponential exponential polynomial polynomial polynomial

K > 2, we are more likely to sample classes with more instances. For this reason, we
construct AUC,, such that each choice of 1 and j is weighted equally. This approach
is inspired by how (Hand and Till, 2001) construct their measure M such that it is
also class skew insensitive. The final formulation for AUC,, is as follows.

2 .
AUC,, = K=T > S(i5) (7.4)

i<

Comparison of Algorithms

In Table 7.1 we present a comparison of AUC,, to the four other multi-class clas-
sification metrics presented in this work (Mossman, 1999; Ferri et al., 2003; Hand
and Till, 2001; Provost and Domingos, 2000). Of these five metrics, AUC,, is the
only one to preserve the three critical properties of AUC: 1) a perfect classification
results in a score of 1, 2) random guessing results in a score of 0.5, and 3) skew
insensitivity. Moreover, AUC,, has time complexity that is equal or faster than all
other algorithms. In Section 7.5 we present a variety of theoretical analyses and

proofs for these claims.
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7.5 Algorithm Analysis and Extensions

In this section we provide several properties of AUC,,, as well as several extensions
for special cases. In calculating AUC,, we use the argmax partition matrix, A, yet a
partition matrix is notably absent in the two-class case for calculation of AUC. Thus,
we provide a proof that the calculation of AUC with only two classes is a special
case that does not require a partition matrix. Further, we present a corollary of this
theorem showing that AUC,, simplifies to the standard two-class AUC when there
are only two classes. We then present a proof that when there are K > 2 classes a
partition matrix is required. In Appendix A, we provide proofs that AUC,, satisfies
Properties 1, 2, and 3. Finally, we present two special cases of AUC,, for domains in
which there is a strong concern about misclassification costs and/or skew.

Partition Matrices and AUC

The reader has likely noted that the requirement of a partition matrix seems unnat-
ural, since the standard AUC measure does not require any information about a
threshold or partition matrix (the former derivable from the latter). Recall though,
as demonstrated in Figure 7.3, that the choice of partition matrix influences the
ranking of points and thus AUC,, is sensitive to the choice of partition matrix. In
Theorem 7.6 we claim that for two-class classification problems we do not require a
partition matrix as the the relative ranking of two points is indifferent to choice of
partition matrix. This theorem is proved in Appendix A.

Theorem 7.6. Let M be a model trained to perform a binary classification task. Let A be
a 2 x 2 partition matrix with diagonal zeros and all other entries positive. Then A has no
effect on the ranking of predictions from M

A desirable corollary of Theorem 7.6 is that AUC,, simplifies to the two-class
AUC presented in Equation 7.1. This corollary is proved in Appendix A.

Corollary 7.7. When K = 2, AUC,, simplifies to the Mann-Whitney U-statistic formu-
lation of AUC.
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When there are more than 2 classes, the choice of partition matrix can impact
the ranking of instances and thus it is necessary to specify the partition matrix in
calculating AUC,,. In Figure 7.3 we showed that the choice of a partition matrix
can affect how two instances are ranked in the 3-class case. We claim in Theorem
7.8 that for any K > 2 we must provide a partition matrix to rank predictions and

we prove this theorem and Appendix A.

Theorem 7.8. Let M be a model trained for a multi-class classification task with K > 2
classes. Then the ranking of predictions from M is not independent of the choice of K x K

partition matrix, hence calculating AUC,, requires a partition matrix.

The Argmax Partition Matrix

In Section 7.4 we argue that A is a good choice as it satisfies Property 1. Here we
claim that if there is no a priori preference for choice of partition matrix, then A is
the appropriate choice as it is the expectation over all possible partition matrices.
Theorem 7.9, states that the expectation over all partition matrices, uniformly
distributed, is the argmax partition matrix, A. We prove this theorem in Appendix
A.

Theorem 7.9. The expectation over all partition matrices, uniformly distributed, for a task
with K classes is the argmax partition matrix, A, where A;; = 0 Viand Ai,j =1Vi#]j.

Unsurprisingly, choosing uniform misclassification costs results in an argmax
partitioning of Ax_;. That is, when we have no knowledge of misclassification costs,

we label an instance with the category which contains the highest probability in p.

Time Complexity of AUC,,

The time complexity of AUC,, is O(Knlogn) when using the argmax partition
matrix, A, where K is the number of classes, and 1 is the number of instances. This
is equivalent to the time complexity of M proposed by (Hand and Till, 2001). While
(Fawcett, 2006) claims that M has a complexity of O(K*nlogn), we show that the
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bound is in fact tighter and that the complexity is O(Knlogn). The derivation of
both of these results is in Appendix A.

Extensions of AUC,,

Motivated by the initial important properties we listed for AUC, we use the argmax
partition matrix, A, in the calculation of AUC,,. While we believe for most cases
our initial presentation of AUC,, is a suitable measure, there are exceptions. It is
not uncommon for domains to have highly skewed class distributions or unequal
misclassification costs between classes. AUC,, can be easily modified to accommo-
date both of these scenarios and thus we present two such extensions. In Section
7.5 we show that for tasks with unequal misclassification costs one can incorporate
an alternative partition matrix when calculating AUC,,. In Section 7.5 we show an
alternative formulation of AUC,, that can account for class skew in problems where
this may be desirable in the performance measure.

Use of an Alternative Partition Matrix

Recall that in the calculation of AUC,, we rely on the orientation function presented
in Equation 7.3. This function ranks two instances based on the two-class decision
boundary derived from the partition matrix. In the standard calculation of AUC,,,
we use A to perform ranking. Thus, we note that it is straightforward to use an
alternative partition matrix in this calculation as well. (O’Brien et al., 2008) note that
if the partition matrix is the misclassification cost matrix for a particular domain,
then instances will be labeled in such a manner as to minimize the expected cost for
a given instance. Therefore, if the misclassification cost matrix is well established
for a particular domain, it may be appropriate then to use that as the partition
matrix in place of A. We show in Appendix A that using an alternative partition
matrix has time complexity to O(Kn(K + logn)).
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Incorporating Class Skew into AUC,,

Like Hand and Till (2001), we believe that a multi-class extension of AUC should
be insensitive to class skew and thus AUC,, is designed to remove the effects of
any skew. However, there are tasks with heavy class skew where this property
may become problematic. Therefore, we provide here an alternative formulation of
AUC,, that incorporates a weight for each pair of classes. For a task with K classes,
let i < j < K be the class labels for two different classes. Letn = n; + ...1ng
be the number of total instances %nlcll number of instances in each class and let

i

fl=2 ;_;nn;. Finally, let w;; =

be the weight assigned for classes i and j.
Here, w; ; is the probability that a pair of instances randomly selected from different
classes belong to class i and class j. Then, we formulate the class skew sensitive
formulation, AUCfL, as follows.

AUC;, = Y wi;S(i,5) (7.5)
i<j
This alternative formulation of incorporates the natural class skew in the dataset
as the weighting factor for each separability function, S(i,j). We note that while

n.

. 1 . . . .

choosing w; ; = —— is a natural option, any weighting scheme may be used so
fl

longas ) ;_;wi; =1so that AUC}Sl is still bounded between 0 and 1.

7.6 Empirical Comparisons

This section presents an empirical investigation of the three computationally tractable
multi-class measures: H&T (Hand and Till, 2001), P&D (Provost and Domingos,
2000), and AUC,,. Consider the task of predicting digestive cancer in one of seven
locations (esophagus, stomach, colon, rectum/anus, liver, gallbladder, and pan-
creas). As discussed in Section 7.2, H&T and P&D are prone to calling a pair of
correct predictions a tie, and thus under-reporting the multi-class AUC. For the task

of predicting digestive cancer location, AUC,, returns a score that is significantly
higher than H&T (p=2.3e-32) and P&D (p=7.7e-34).
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Table 7.2: Dataset details for patients included in the digestive cancer multi-class study:.
Note that ICD-9 codes 152, 158, and 159 had no patients with these diagnoses.

ICD-9 Code Location Count (%)
150 Esophagus 1,253 (7.7%)

151 Stomach 1,171 (7.2%)

153 Colon 7,899 (48.5%)

154 Rectum/Anus 2,574 (15.8%)

155 Liver 922 (5.7%)

156 Gallbladder 487 (3.0%)

157 Pancreas 1,989 (12.2%)
Total All 16,292 (100%)

Experimental Design

We consider the task of predicting the location of digestive cancers one month prior
to diagnosis. The study included patients based on the diagnoses present on their
patient record in the digestive cancer chapter of the ICD-9 hierarchy (codes 150-159).
For a particular digestive cancer code, for example ICD-9 150, patients were labeled
as positive for that diagnosis if they both satisfied the rule-of-2 and had no entries
of other digestive cancers on their record prior to the diagnosis of interest (ICD-9
150 in the example). Patient EHR data was sampled from the same dataset used in
Chapter 4 and records were summarized into feature vectors using the procedure
detailed in that chapter. Table 7.2 contains details of the patient population used in
this study:.

The following model training and evaluation procedure was repeated 30 times
and consisted of a data splitting phase, a model training phase, and a model
evaluation phase. The 16,292 patient samples were split into a training set (70%)
and testing set (30%) via a random assignment that preserved the class percentages
in both datasets. A random forest model with 500 trees was trained using the same
parameters used for the models in Chapter 4. Recall that random forests naturally

extend to multi-class tasks, and thus there was no need to make adjustments when
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switching from a binary to multi-class domain. Probability vectors, in the form
of categorical distributions, were predicted for the testing data. Scores were then
computed for the three computationally tractable multi-class AUC measures: H&T,
P&D, and AUC,,.

Experimental Results

The mean scores across the 30 repetitions were 0.623 for H&T, 0.612 for P&D, and
0.662 for AUC,,. ANOVA with repeated measures was used as a statistical test
to calculate if there was a significant difference amongst the three means. The
p-value of 2.1e-58 was below the threshold of o« = 0.05. To test if the mean score of
AUC,, was significantly higher than the mean score of H&T or P&D, two two-sided
paired t-tests were performed. Significance was tested at o« = 0.025 which was
chosen using a Bonferroni correction to account for the two tests performed such
that the experiment-wide « = 0.05. The mean of AUC,, was significantly higher
than both H&T (p2.3e-32) and P&D (p=7.7e-34).

7.7 Conclusion

In this chapter we introduce AUC,,, a multi-class classification performance mea-
sure that aims to maintain the many desirable properties of AUC. Prior work focused
on multi-class analysis of volume under the ROC surface has proven to be computa-
tionally intensive and requires stochastic sampling methods for computation (Ferri
et al., 2003; Mossman, 1999; Srinivasan, 1999; Lane, 2000). These measures are not
well suited to large datasets or tasks such as hyper-parameter tuning that require
fast calculation of the model quality. The most popular approach as of the time of
this writing, that does not utilize an ROC surface, is the measure M introduced by
Hand and Till (2001). However, as we demonstrated in Figure 7.1, M can return
values much less than 1 even when all predictions are separable and would be
labeled correctly following the common argmax labeling rule. Thus, we employ an
alternative approach to multi-class AUC that is motivated by the relationship of
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AUC and the Mann Whitney U-statistic, and through this relationship we derive
AUC,,, a measure that is easy to compute and interpret.

We provide several theoretical observations of AUC,, and some extensions for
domains with particular concern regarding misclassification costs and class skew.
We prove in Theorems 7.6 and 7.8 that while a partition matrix is not needed for
two-class AUC, it is needed for ranking model outputs for more than two classes.
As the argmax labeling rule is common in multi-class problems, we suggest that
the use of the argmax partition matrix is the appropriate choice for most tasks and
thus we use this in our computation of AUC,,. However, we also note in Section
7.5 that an alternative partition matrix can and should be used in domains with
known unequal misclassification costs. We additionally present in Section 7.5 an
alternative of AUC,, that can intentionally incorporate class skew where this may
provide a more sensible evaluation of the model performance.

An empirical comparison of AUC,, , H&T, and P&D was performed in Section
7.6 on the task of evaluating a multi-class digestive cancer model. The significantly
higher mean for AUC,, as compared to H&T and P&D supports the claim that both
H&T and P&D can under-score an algorithm. We assert that this is due to H&T
and P&D incorrectly calling a pair of instances a tie, even when the instances are
correctly labeled, as shown in the example in Figure 7.1.

There are several exciting avenues for analysis of AUC,,. While empirical confi-
dence intervals and p-values can be calculated through a bootstrap approach, it
would be interesting to see if there exist closed-form solutions for AUC,, as they do
for the binary AUC. Additionally, we note that the calculation of AUC,, involves
two dot products and that if either of these dot-products are 0 then the ranking
of two instances is tied. This could become troublesome for tasks with very high
numbers of classes as the probability of orthogonality between two random vectors
increases with dimension. Whether AUC,, is susceptible to this or not is a matter
for future exploration and could suggest that the U-statistic is not a reliable measure
of model performance for tasks with large numbers of classes.

By naturally extending the Mann-Whitney U-statistic, we both introduce a new
method for computing multi-class AUC and provide several theoretical observa-
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tions on how AUC,, behaves in multi-class tasks. We believe that a renewed interest
in performance metrics for multi-class machine learning models is warranted, as
many interesting problems in machine learning are not binary class problems. Ul-
timately, we claim that AUC,, is a fast, reliable and easy to interpret method for

assessing the performance of a multi-class classification model.
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8 CONCLUSION

In this thesis we introduced high-throughput machine learning, an extension of one-
off multi-label classification wherein each label requires special consideration for
the training data. We presented groundwork for high-throughput machine learn-
ing with a particular focus on healthcare domain applications. High-throughput
machine learning differs from typical multi-output tasks in that its goal is to utilize
the trained models to learn larger scale meta-information about the individual
predictive models. By constructing one model per prediction task we can combine
both the predictions and feature importances of these models with ancillary domain
information to identify trends that emerge across multiple prediction tasks. This
dissertation addressed the opportunities, challenges, and limitations of performing
high-throughput machine learning.

This thesis claims that high-throughput machine learning yields insights not
gleaned from standard one-off or multi-label modeling. In Chapter 3 we began by
presenting the procedure for predicting a single medical condition in Calciphylaxis.
We motivated and described the need for high-throughput machine learning in
Chapter 4 where we showed how predicting all diagnoses can identify both how
prediction quality changes across the hierarchy of diseases as well as temporally. In
Chapter 5 we considered the unique privacy challenges of healthcare data and our
focus on large scale machine learning approaches, and presented a cryptographic
approach to random forest model learning where multiple parties with siloed data
wish to collaborate on learning a single model. We then presented an additional
task for high-throughput machine learning in Chapter 6 where the learned feature
importances of the models could be used to identify candidate epidemiological
hypotheses for novel diagnostic uses of existing laboratory tests. Finally in Chapter
7, we explored prediction tasks where a multi-class approach is appropriate and
showed that the current methodologies for evaluating performance are insuffi-
cient and hence we proposed a new means of evaluating such multi-class models.
Therefore, this thesis has both introduced high-throughput machine as an efficient
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method for constructing many thousands of unique predictive models, and show-
cased how high-throughput machine learning can provide unique insights when
applied to the high-profile context of healthcare data.
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O APPENDIX

A Proofs for AUC Mu

Properties of AUC,,
Here we show that AUC,, satisfies the properties we listed in Section 7.1.
Theorem 1. AUC,, has the following properties:

1. If a model gives the correct label the highest probability on every example, then
AUC, =1

2. Random guessing on examples yields AUC,, = 0.5
3. AUC,, is insensitive to class skew

Proof. Property 1. Let M be a multi-class classification model for a task with K
classes and let n be the number of examples in the test set. Property 1 assumes
that for all n instances M assigns the correct label the highest probability. The
formula for AUC,, is an average over separability functions between pairs of classes.
Consider the separability function S(i,j) between classes i < j < K. Let p(®) and
p®) be predictions for instances from classes i and j respectively. Further, let v’
be the normal vector to the decision hyperplane between classes i and j derived
from the argmax partition matrix A. As p(¢) and p(®) are labeled correctly we have
1(O(y'®),y™®),pl@) p®) yT)) = 1 as the instances are oriented correctly. We have
n; and n; instances from classes i and j respectively. Then S(i,j) = 1 for any pair
of classes i and j.

.. 1 - a () =
S(i,§) = > oy, y®™,pl,p™,vh).

nin;
Y aeD(1),beD()

There are K(K — 1) /2 choices of unordered pairs of i and j and thus K(K —1)/2
choices of S(1,j), each of value 1.
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Therefore, if a model gives the correct label the highest probability on every
example, then AUC,, = 1.

Property 2: Random guessing yields AUC,, = 0.5. If a model randomly guesses
the prediction for all points, then any two predictions are equally likely to be
oriented correctly or incorrectly via Equation 7.3. Then, for any separability function
S(i,j) = 0.5 from the modified indicator function, I. As AUC, is an unweighted
average of separabilities functions over all choices of i and j, the average of all
separability functions is 0.5. Therefore, if a model randomly guesses for all points,
then AUC,, = 0.5.

Property 3: AUC,, is insensitive to class skew. AUC,, is an unweighted average
over separability functions. Each separability function, S(i,j), can be computed
using the standard two class AUC algorithm by first ranking all instances in classes
i and j by using the two-class decision boundary derived from the partition matrix.
As AUC is insensitive to class skew, so too are the individual separability functions.
The calculation of AUC,, is an unweighted average of each S(i,j), and thus changes
in class skew will not change the value of AUC,, . Therefore, AUC,, is insensitive
to class skew. N

Partition Matrix

Theorem 2. Let M be a model trained to perform a binary classification task. Let A be a
2 x 2 partition matrix with diagonal zeros and all other entries positive. Then A has no
effect on the ranking of predictions from M

Proof. A typical binary classification model will output a single value, e.g. §'V = v,
corresponding to the probability of an instance belonging to one of the two classes

(typically the positive class). Here we will use an equivalent model output in
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its categorical distribution form, e.g. p*) = [u,1 — u]. Let x'¥) and xU) be two
instances with the true labels of these two instances y'! = [1,0] and yU) = [0, 1].
Let p(V) = [u,1 —u] and pU) = [v,1 — v] be the predicted categorical distributions

for x() and xU) respectively. Recall that in the standard calculation of AUC, if u > v
then x'V) and xU) are ranked correctly. We define our partition matrix, A, with

o, 3 > 0, following the rules presented in Section 7.3.

[

Without loss of generality, let the first class be our positive class and the second
class be our negative class. We calculate our orthogonal vector to our hyperplane
v = [—B, «]. We can now plug in our values into Equation 7.3 to inspect how our
orientation function is influenced by our choice of A. We calculate (yV) —y0)) =
[1,—1] and (p¥) — pU)) = u —v,v —ul. Further, vT (y) —yU)) = —(B + «) and
T

A

vi(pW —pi)) = (B + «)(v —u). Our final expression yields (B + o)*(uw — v). This
expression is only positive when u > v. Thus, the orientation is solely determined
by uand v, and that if u > v our orientation is correct. This is the same result as the
standard AUC calculation and we therefore conclude that binary classification is a

special case for the calculation of AUC that does not require a partition matrix. [

Corollary 3. When K = 2, AUC,, simplifies to the Mann-Whitney U-statistic formula-
tion of AUC.

Proof. Let x'Y and xU) be two instances with the true labels of these two instances
y" =[1,0land yU) =[0,1]. Let p'Y) = [u, 1—u] and pY) = [v, 1—v] be the predicted
categorical distributions for x(*) and xU) respectively. As shown in the proof of
Theorem 7.6, p') and pU) will be ranked correctly only if u > v. This is exactly
the test performed in Equation 7.1, the Mann-Whitney U-statistic version of AUC.
Therefore, when K = 2, AUC,, is equivalent to AUC. O

Theorem 4. Let M be a model trained for a multi-class classification task with K > 2
classes. Then the ranking of predictions from M is not independent of the choice of K x K
partition matrix, hence calculating AUC,, requires a partition matrix.
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Proof. Assume that the AUC,, for M is independent of the choice of partition matrix,
A, for the task. Then for any two points, p') and pU), the ranking of these points
is not changed by A. We show that there is at least one counterexample to our
assumption for any K > 2. We first show this for K = 3 and then describe how this
can be easily generalized to choices of K > 3.

LetK =3, pV) = [5,.45,.05]T, pU) = .35, .4,.25]T, and y!) = [1,0,0]7, y) =
[0,1,0". Let A and A’ be two partition matrices. Let A;. = [0,1,1] and A,. =
[1,0,1]. We find v' = [-1,1,0] and O(yV,y", V), p0),vT) = 0.2 showing that
our points are oriented correctly. Now let A{,. =10,4,1] and Aé/, =[1,0,1]. We find
v/ =[-1,4,0]and O(y'¥,y®), 1, pli), v'T) = —0.25 showing that our points are
oriented incorrectly. Therefore, for K = 3 there exists at least one pair of points
whose ranking is dependent on the choice of partition matrix. This can be readily
generalized to K > 3 by padding Os to the end of the vectors p'V, pU), y(V), and
y(iJ. 0

Theorem 5. The expectation over all partition matrices, uniformly distributed, for a task

with K classes is the argmax partition matrix, A, where Ai,i = 0Viand Ai,j =1Vi#j.

Proof. Let A be the set of all K x K partition matrices with diagonal elements zero
and off-diagonal elements positive. Now let A be a partition matrix drawn randomly
according to a uniform distribution, U, from A. Consider two off diagonal elements
in A, Ay; and Ay with (i,j) # (k,1). We find that Ey A;; = Ey Ag,1 as there is
exactly one other A’ € A where A{,]. = A1, A1 = Ay, and all other elements
equal. Therefore, if the expectation of any two random off-diagonal elements in
A are equal, then the expectations of all off-diagonal elements in A is equal. Let
Ey Aij = o; then A is equal to 6A, where A is the argmax partition matrix with
uniform misclassification costs. As noted in (O’Brien et al., 2008), A, induces the
same partitioning as A. Because we chose A at random from A, we find that E A

is the argmax partition matrix with uniform misclassification costs. ]

Time Complexity

Time Complexity of AUC,, Using Argmax Partition Matrix A
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Here we compute the time complexity of AUC,, when the argmax partition
matrix, A is used. Let K be the number of classes and n = n + ... ng be the total
number of instances, and the number of instances for each class respectively. Com-
puting AUC,, requires K(K — 1) /2 repetitions of computing a separability function
between an unordered pair of classes. We breakup the time complexity calculation
into two parts; we first calculate the time complexity of a single separability function
S(1,j), and then we use this to calculate the time complexity of AUC,,.

We calculate the time complexity of S(i,j) by first noting its relationship with
AUC. §(i,j) shares an equivalence to AUC as it is the probability that two instances
are ranked correctly by first using the two class decision boundary, v'p = 0, to map
the categorical predictions to scalar values that can be ranked. As such, the time to
compute S(i,j) is the time to perform the mapping and then the time to calculate the
AUC. There are n; +n; predictions for each S(i, j) computation, and mapping these
categorical distributions to scalar values involves a dot product between two vectors
of dimension K. This procedure would normally be of complexity O(K(n; +n;)),
however we next show that when using the argmax matrix this can be performed
in time O(n; +n;). All elements in A are 1 except the diagonal entries which are 0.
Thus all elements of vI = A;. — A; . are 0 except vT; = —1 and v'; = 1. Thus we
may calculate vTp = p; — pi, which is a constant time calculation for each of the
n; + n; instances. We next compute S(i,j) by calculating the AUC of these ranked
instances, and using the AUC time complexity result from (Fawcett, 2006). The time
complexity of computing AUC with n; + n; instances is O((n; +n;) log(n; +n;)).
Thus, time complexity to calculate S(i,j) is O((n; + n;) log(ni + n;)) as the time
complexity of the ranking is dominated by the complexity of calculating the AUC
of the ranked points.

The time complexity for AUC,, can be determined by summing the time com-

plexities for each of the K(K —1)/2 choices of i and j.
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O() (ni+mny)log(ni +mn;))
i<j
We note here thatlog(n;+n;) < lognasn;+n; < nand we use this relationship
so that we may pull this term out of the sum.

< O(lognZni + 1)
i<j
Next we note that for a given n; it appears in the sum K — 1 times as it shows
up each time it class i is paired with one of the other K — 1 classes. We therefore

exchange the two sums

K
= O(lognZ(K —1)ny)
i=1

= O(logn(K—1)n)

Therefore, the time complexity of AUC,, is O(Knlogn).

Time Complexity of AUC,, With Any Partition Matrix

For the general case of computing AUC,, with any partition matrix, A, the
time complexity is O(Kn(K + logn)). When computing the time complexity of
AUC,, using A, we noted that A had the special property that dot products could
be performed in constant time. This characteristic is not true for all choices of A
and thus in general the ranking of points has complexity O(K(n; + n;)). Therefore,
computing S(i,j) has complexity O((n; +n;)(K +log(n; + n;))). Finding the total
time complexity of AUC,, can be done in the same manner as the computation
above, however this time we substitute K 4-log n for K + log(n; + n;) and pull the
former term out of the sum. Therefore, the time complexity of AUC,, for a general
choice of A is O(Kn(K +logn)).

Time Complexity of M

The measure, M, proposed by (Hand and Till, 2001) is claimed to have a time
complexity of O(K?nlogn) by (Fawcett, 2006). An additional contribution of our
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work is to show that the time complexity of this measure is in fact O(Knlogn). The
calculation follows almost identically our approach for computing the complexity
of AUC,, using the argmax partition matrix. Let K be the number of classes and

n = n; +...ng be the total number of instances, and the number of instances for
each class respectively.

M=) A(,j)
i<j
Here, A(i,j) is computed by averaging two AUC calculations each with n; +n; in-
stances. Therefore, the time complexity of computing A(i,j) is O((n; + n;) log(n +
n;)). The expressions of M and AUC,, differ only in their separability functions
A(i,j) and S(i,j). As these functions have the same time complexity, the overall
algorithms do as well. Therefore, the time complexity of M is O(Knlogn).



B Tables for High-Throughput Machine Learning

Table 9.1: Parameter values used to construct RandomForestClassifier

Parameter Value
n_estimators 500
criterion ‘gini’
max_depth None
min_samples_split 2
min_samples_leaf 1
min_weight_fraction_leaf 0.0
max_features 0.1
max_leaf_nodes None
bootstrap True
oob_score False
n_jobs 1
random_state None
verbose 0
warm_start False
class_weight None
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Table 9.2: Parameter values input to the function seaborn.kdepolot to construct Figures 4.1

and 4.3
Parameter Value (Fig. 4.1) Value (Fig. 4.3) Value (Fig 4.3 CI)
shade True True False
vertical False False False
kernel ‘gau’ ‘gau’ ‘gau’
bw 0.008 ‘scott’ ‘scott’
gridsize 100 100 100
clip None None None
legend True False False
cumulative False False False
shade_lowest True True True
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Table 9.3: Parameter values input to the function seaborn.violinplot to construct Figure 4.2

Parameter Value (Fig. 4.2)
hue_order None

bw 0.2
cut 2
scale ‘area’

scale_ hue True
gridsize 100

width 0.8
inner None
split True
orient "
linewidth None
color None
palette ‘muted’

saturation 0.75
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Table 9.4: ICD-9 Diagnosis codes not allowed to be used as a prerequitie diagnosis in DDR.

Code Description

89 Diagnostic Interview, Consultation, and Evaluation

V20  Health supervision of infant or child

V24  Postpartum care and examination

V25  Encounter for contraceptive management

V28  Encounter for anteatal screening of mother

V29  Observation and evaluation of newborns for suspected conditions
not found

V51  Aftercare involving the use of plastic surgery

V56  Encounter for dialysis and dialysis catheter care

V58  Encounter for other and unspecified procedures and aftercare

V60  Housing household and economic circustances

V61  Other family circumstances

V62  Other psychosocial circumstances

V63  Unavailability of other medical facilities for care

V64  Persons encountering health services for specific procedures not
carried out

V65  Other persons seeking consultation

V66  Convalescence and palliative care

V67  Follow-up examination

V68  Encounters for administrative purposes

V69  Problems related to lifestyle

V70  General medical examination

V71  Observation and evaluation for suspected conditions not found

V72 Special investigations and examinations

V73 Special screening examination for viral and chlamydial diseases

V74  Special screening examination for bacterial and spirochetal dis-
eases

V75  Special screening examination for other infectious diseases

V76  Special screening for malignant neoplasms

V77  Special screening for endocrine nutritional metabolic and immu-
nity disorders

V78  Special screening for disorders of blood and blood-forming organs

V79  Special screening for mental disorders and developmental handi-
caps

V80  Special screening for neurological eye and ear diseases

V81  Special screening for cardiovascular respiratory and genitourinary
diseases

V82  Special screening for other conditions
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