
STATISTICAL METHODS DEVELOPMENT FOR THE ANALYSIS OF SINGLE CELL

RNA-seq Data

by

Xiuyu Ma

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Statistics)

at the

UNIVERSITY OF WISCONSIN–MADISON

2020

Date of final oral examination: 05/04/2020

The dissertation is approved by the following members of the Final Oral Committee:

Michael A. Newton, Professor, Statistics, Biostatistics and Medical Informatics
Christina Kendziorski, Professor, Biostatistics and Medical Informatics
Bret Larget, Professor, Statistics, Botany
Anru Zhang, Assistant Professor, Statistics
Qiongshi Lu, Assistant Professor, Biostatistics and Medical Informatics

c© Copyright by Xiuyu Ma 2020

All Rights Reserved

i

Contents

Abstract 1

1 Introduction 1

1.1 Differential Distribution Testing . 2

1.2 Scalability . 4

1.3 Multiple Conditions Differential Distribution Testing 4

2 6

2.1 Background . 6

2.2 Modeling . 10

2.2.1 Data structure, sampling model, and parameters 10

2.2.2 Method structure and clustering . 15

2.2.3 P (Aπ|y, z) . 17

2.2.4 P (Mg,π|X, z) . 21

2.3 Numerical experiments . 22

2.3.1 Synthetic data . 22

2.3.2 Empirical study . 24

2.3.3 Bursting . 27

2.3.4 Time Complexity . 28

2.4 Asymptotics of the Double Dirichlet Mixture . 29

2.5 Compositional model for more than two conditions 30

ii

2.5.1 Method . 30

2.6 Concluding remarks . 32

3 34

3.1 Background . 34

3.2 The statistical problem . 36

3.3 Pruning . 38

3.4 Crowding issue . 44

3.5 Full algorithm . 46

3.6 Results . 46

3.6.1 Benchmarks with small K . 46

3.6.2 Synthetic data, larger K . 48

3.6.3 Empirical study . 49

3.7 Summary and discussion . 53

Appendices 55

A.1 Proof of Theorem 2.2.1 in Chapter 2 . 56

A.2 Randomizing distances for approximate posterior inference 57

A.3 Empirical datasets . 59

A.4 Proof of Theorem 2.2.2 in Chapter 2 . 60

A.5 EBSeq . 60

A.6 modalClust . 62

A.7 Randomized K−means . 65

A.8 Selecting K . 67

A.9 Double Dirichlet Mixture . 67

A.10 Numerical Experiments . 72

A.11 Robustness . 79

A.12 Posterior consistency . 82

A.13 EBSeq margin . 85

iii

A.14 Proofs of Lemma 3.3.1 and Theorem 3.3.1 86

A.15 Computational details . 92

A.16 simulation details . 93

iv

List of Tables

1 Empirical properties of partitions in several data sets. Nsamples, Nunits are numbers

of samples and units . 40

2 Properties of two-group Bayes factor filtering in two example data sets 42

3 Empirical properties of selected partitions in three example data sets. 42

4 Average run time comparison, 20 samples per group, 10000 genes. EM iteration for

EBSeq.v1 is set to 5 . 48

A5 Data sets used for the empirical study of scDDboost 59

A6 Single-condition data sets used in the random-splitting experiment. 59

A7 Datasets used for empirical study . 76

A8 Datasets used for null cases, as cells are coming from same biological condition,

there should not be any differential distributed genes, any positive call is false positive 78

v

List of Figures

2.1 Genes involved in cell-cycle that are identified by scDDboost, but not standard ap-

proaches, as differentially distributed between cell-cycle phases G1 and G2/M in

human embryonic stem cells. Density estimates on the left show expression data

(log2 scale) of three genes identified by scDDboost at 5% FDR, but not similarly

identified by MAST, scDD, and DESeq2. Prior studies have shown that the expres-

sion of BIRC5, CKAP2, and HMMR is dependent on the phase of cell-cycle, sug-

gesting that these subtle shifts are not false positives. Heatmap (right) shows these

three genes among 137 other cell-cycle genes (GO:0007049) identified exclusively

by scDDboost, with expression from low (blue) to high (red). Cells (columns) are

clustered by their genome-wide expression profiles into distinct cellular subtypes,

as indicated by the color panel. 9

2.2 Proportions of K = 7 cellular subtypes in two different conditions. Aggregated

proportions of subtypes 3 and 4, subtypes 2, 5, and 6, and subtypes 1, and 7 remain

same across conditions, while individual subtype frequencies change. Depending

on the changes in average expression among subtypes, these frequency changes

may or may not induce changes between two conditions in the marginal distribution

of some gene’s expression. 13

vi

2.3 Directed acyclic graph structure of the compositional model and partition-reliant

prior. The plate on the right side indicates i.i.d. copies over cells c, conditionally

on mixing proportions and mixing components. Observed data are indicated in

rectangles/squares, and unobserved variables are in circles/ovals. 14

2.4 True positive rate (vertical) of four DD detection methods in 12 synthetic-data set-

tings (horizontal). Settings are labeled forK/θ/γ and ranked by scDDboost values.

Each method is targeting a 5% false discovery rate (FDR). The plot shows average

rates over replicate simulated data in each setting. 23

2.5 False discovery rate (vertical) of methods in settings (horizontal, same order) from

Figure 2.4 . 24

2.6 Proportion of DD genes at 5% FDR threshold with respect to total number of genes

identified by each method. Ranked by scDDboost list size 25

2.7 False positive counts at 5% FDR threshold by several methods on 5 random splits

of 9 single-condition data sets from Appendix Table A8 26

2.8 Genes are grouped by their pattern of differential expression across subtypes as in-

ferred by the EBseq computation within scDDboost for three example datasets. Cu-

mulative distribution functions of the log-scale size statistic for all genes identified

by scDDboost are plotted; red is the subset uniquely identified by scDDboost; blue

are those also identified by the comparison methods (MAST, scDD, or DESeq2).

Sets of similarly-patterned genes tend to be larger (horizontal axis, log size) for

genes uniquely identified by scDDboost (red) compared to other DD genes (blue),

at 5% FDR. 27

2.9 Absolute values of log fold changes of bursting parameters tend to be larger for

1758 genes uniquely identified by scDDboost (red) compare to other 2983 genes

(blue) at 5% FDR . 28

vii

3.1 Illustration of equal-handle algorithm, o1, ..., o5 are groups on the equal chain. we

sequentially merge two groups having the smallest Bayes factor(strongest evidence

for having equal mean) to build a dendrogram. Red line is the threshold where we

choose to break down the chain. There are two clusters, groups within the same

cluster having same mean. The state between clusters become uncertain. Thus we

have two patterns now 1) o1 = o2 = o3 = o4 = o5 and 2) o1 = o2 6= o3 = o4 = o5 44

3.2 simulation setting: 200 samples each group, 20000 genes in total. We choose num-

ber of groups K to be either 15 or 20. Blocks of genes are generated from Chinese

restaurant process, genes within the same block will have same DE patterns. x-axis

label ”A”, ”B”, ”C” represent 3 parameters setting (α0) of the Chinese restaurant

process governing total number of patterns underneath (here roughly 200, 400 and

600 patterns for each case). Under each choice of (K,α0), we simulated 10 datasets.

Here are the boxplots of the 10 datasets. Fig a presents the coverage percentage, Fig

b presents the extra patterns we selected but does not belong to the set of true un-

derlying DE patterns. Fig c presents the average ARI(adjusted rand index) between

the MAP pattern and true pattern. Fig d presents the standard deviation of ARI. Fig

e presents the number of underlying DE patterns across the genome. Fig f presents

the computation time (minutes) . 50

3.3 Heat-map of the mean expression on log scale across groups at those genes with one

MAP pattern, genes are filtered by mean expression bigger than 0.5. The blocks are

groups shared same mean. The top bar plot shows the number of cells each group

ordered within each block, the right barplot shows the ordered marginal mean across

all cells. Data are mouse cortex cells from (Hrvatin et al., 2018) 51

3.4 Umap of PBMC data, left considering whole genome. Top right considering those

genes identified to have all equal means across cell types, bottom right considering

those genes identified to have maximum a specific posterior pattern 52

viii

3.5 Cumulative distribution of transcripts at two genes ”Anp32a” and ”BC030499”.

Cells shared same mean are pooled. Using data from RETINA (Shekhar et al.,

2016), bipolar cells from mouse . 53

3.6 Heatmap of estimated log fold change v.s. posterior probabilities that two groups

are DE using data (Hrvatin et al., 2018). Both the log fold change and posterior

estimated are normalized by deducting corresponding mean and dividing by cor-

responding standard deviation. Given a gene, there are two matrices, one for log

fold change and one for posterior probability of DE over all possible pair of groups.

We average those matrices over all genes. All values are normalized by demean

and divided by standard deviation. Upper triangle is for averaged log fold change

and lower triangle is for averaged posterior of DE. We observe consistency between

those two heatmaps, which demonstrates large differences are corresponding to high

probability of DE while small differencs are corresponding to low probability of DE. 54

A7 Adjusted RAND index of clusterings generated by randomizing distances. We in-

vestigate the variation of clustering given by random weighting through 8 datasets

and each dataset we are using 100 random distances. 66

A8 Comparison between random weighting scheme and Dirichlet-process procedure.

Top: heatmap of probabilities that two elements belong to the same class given the

whole data. Bottom: scatterplot of these posterior probabilities (left), and adjusted

RAND index comparing to the underlying true class label (right). 68

A9 First two principal components of transcripts under different parameters for simu-

lated data. Horizontal axis refers to first component, vertical axis refers to second

component. Different parameters resulted in different degree of separation of sub-

types. We have 4 different settings for hyper-parameters of simulation, each setting

has ten replicates. From left to right, the associated hyper-parameters are (0.1,0.4),

(-0.1,0.3), (0.3,0.5), (-0.1,1). Here we have 3 subtypes 72

A10 Similar plots as Appendix Figure A9, but for 7 subtypes 73

A11 Similar plots as Sumpplementary Figure A9, but for 12 subtypes 73

ix

A12 P (EDg|X, y) given by scDDboost (horizontal) versus empirical Wasserstein dis-

tance (vertical). Genes associated with boxes from left to right havingP (EDg|X, y)

range from 0 - 0.2, 0.2 - 0.4, 0.4 - 0.6, 0.6 - 0.8, 0.8 - 1. For simulation cases with

parameters in the format: number of clusters / shape / scale 74

A13 Roc curve of the 12 simulation settings, under each setting, TPR and FPR are aver-

aged over ten replicates, generally scDDboost performs better than other methods 75

A14 P (EDg|X, y) given by scDDboost versus empirical Wasserstein distance. Genes

associated with boxes from left to right having P (EDg|X, y) range from 0 - 0.2,

0.2 - 0.4, 0.4 - 0.6, 0.6 - 0.8, 0.8 - 1, data used: FUCCI 77

A15 PDD change under different number of subtypesK for dataset DEC-EC (GSE75748).

We select K = 4, which also stabilize the PDD. 80

A16 PDD under K = 5 vs. K = 6 for dataset DEC-EC (GSE75748). PDD without

randomization (left) vs. PDD with randomization (right). scDDboost gained

robustness through random weighting. 80

A17 Under NULL case, using dataset EMTAB2805, when using too big K we may

lose FDR control (black dashed line shows proportion of false positive identified by

scDDboost under 0.05 threshold, while validity score stabilized after K > 2 . . . 81

A18 Four subtypes of cells, simplexes of (φ, ψ) satisfying different constraints. 85

x

Acknowledgments

My principal thanks are due to my advisor Prof. Michael A. Newton. The genesis of this dissertation

owes much to Prof. Newton’s idea. Intriguing as the problem appear, their solution entails numerous

challenges,many of which are unseen in the literature. Throughout my years as doctoral student,

Prof. Newton has lent invaluable assistance to my efforts in solving these problems. Further, his

great tastes in research topics and deep thoughts in statistical methods benefit me a lot during my

stay in Madison. He is also very supportive on students’ decisions and generous to give advice. It

is my honor and pleasure to work with Prof. Newton during my graduate study.

I would like to thank Prof. Christina Kendziorski, who is one of the committee members, for giving

me a lot of useful suggestions for improving and better presenting the methodologies.

I would also express my thanks to other committee members, Prof. Bret Larget, Prof. Anru Zhang

and Prof. Qiongshi Lu, for sharing valuable insights on this research.

A debt of gratitude is also owed to my parents for their ongoing support. I also thank my girlfriend

Jiyuan Fang for her unwavering support.

1

Abstract

Single-cell analysis is a rapidly evolving approach to characterize genome-wide gene expression at

the individual cell level. Overcoming unique variational structure underlying the data and studying

cellular heterogeneity require statistical tools. In this dissertation, I develop and improve statisti-

cal methods focus on identifying genes with differential distributions across conditions. The first

method uses a compositional structure which explicitly accounts for the cellular subtypes to char-

acterize gene expression as a mixture over subtypes and quantify the distributional change between

conditions. We also extend the distributional comparison to more than two conditions.

The second method accelerates the inference for patterns of how means are varied among multiple

groups. It scales up the first method when more mixing components are considered.

The first method, called scDDboost, introduces an empirical Bayesian mixture approach and

leverages cell-subtype structure revealed in cluster analysis in order to boost gene-level information

on expression changes. Cell clustering informs gene-level analysis through a specially-constructed

prior distribution over pairs of multinomial probability vectors; this prior meshes with available

model-based tools that score patterns of differential expression over multiple subtypes. We derive

an explicit formula for the posterior probability that a gene has the same distribution in two cel-

lular conditions, allowing for a gene-specific mixture over subtypes in each condition. Advantage

is gained by the compositional structure of the model, in which a host of gene-specific mixture

components are allowed, but also in which the mixing proportions are constrained at the whole cell

level. This structure leads to a novel form of information sharing through which the cell-clustering

results support gene-level scoring of differential distribution. The result, according to our numerical

2

experiments, is improved sensitivity compared to several standard approaches for detecting distri-

butional expression changes. The compositional model has great flexibility and we further extend it

to more than two conditions.

The second method called EBSeq.v2 accelerates a widely used package EBSeq. The number of

patterns for equivalent/differential means among groups grows fast with the number of groups. It

introduces challenge for memory and computation. We provide a pruning algorithm to eliminates

unlikely patterns that we can assess through preliminary checks over local Bayes factors. Further

improvements are gained through a more efficient one-step EM for hyperparameters optimization

and codes implementation in C++.

1

Chapter 1

Introduction

Statistical methods are widely used in genomics and molecular biology because they provide a

reasoned approach to describing the complicated patterns of variation in experimental data. High-

dimensional data are now routinely measured on cells from various biological systems, and such

data expose limitations of existing statistical methodology. Comparative statistical tests, such as

Student’s t-test, when applied to each dimension of high-dimensional data tend to be underpowered,

as they overlook collective properties of the system. Model-based statistical procedures provide one

approach to improve operating characteristics, and this fact has guided work presented in this thesis.

We are focused on the analysis of so-called RNA-Seq data. Such data aim to measure the abundance

in biological samples of various molecular species of ribonucleic acid (RNA). These molecules are

critical mediators of genetic information, and their measurement through modern sequencing tech-

nology has become a central to all sorts of biomedical investigations, from basic to translational to

clinical studies. Single-cell RNA-seq(scRNA-seq) is a revolutionary tool to measure genome-scale

transcripts at the individual cell level. The scRNA-seq data provides higher resolution that mea-

sures distribution of expression levels for each gene across a population of cells than the traditional

profiling method, bulk RNA-seq, which measures average expression level for each gene. Such

increased resolution demonstrates heterogeneity between cells and allows researchers to uncover

new and potentially unexpected biological discoveries. With the development of technology, a wide

variety of large-scale scRNA-seq approaches have been developed (Svensson et al. (2018)) to study

2

the biological systems more thoroughly. Because of the scale and the unique variation structure un-

derlying the scRNA-seq data, statistical and computational challenges must be addressed to prevent

inaccurate conclusions and to optimize novel discovery. One general problem is to compare tran-

scripts between cells from different conditions and identifying those differences provides valuable

insights into the complex biological systems, ranging from cancer genomics to diverse microbial

communities (Hwang et al., 2018). This thesis focus on this general problem and presents three

contributions that address some challenges in the single-cell data.

1.1 Differential Distribution Testing

From bulk RNA-seq data, interest lies in comparing average expression levels between different

biological conditions. The differential expression test can be used to identify genes with certain

properties. For scRNA-seq data, testing for difference remains important, but it is not sufficient to

describe the difference only in terms of mean. scRNA-seq data presents different characteristics

that requires a new definition for differential expression analysis. For example, due to the small

number and low capture efficiency of RNA molecules in single cells (Saliba et al., 2014), many

transcripts tend to be missed during the reverse transcription. As a result, we may observe that some

transcripts are highly expressed in one cell but are missed in another cell. This phenomenon is de-

fined as a “drop-out” event, which results a high prevalence of zero in the data. Also recent studies

have shown that gene expression in a single cell is a stochastic process and that gene expression

values in different cells are heterogeneous (Elowitz et al., 2002), which results in the gene-level

multimodality. Those characteristics brought about more subtle changes for transcripts rather than

change of average expression, such as differential proportion and differential modality, which are

demonstrated to be biological meaningful.(Korthauer et al., 2016a, Wang et al., 2019).

Previous widely used methods for bulk data, such as DESeq and EdgeR, can be applied to

scRNA-seq data but they do not consider the underlying characteristic. New statistical methods,

such as MAST (Finak et al., 2015), D3E (Delmans and Hemberg, 2016) and scDD (Korthauer et al.,

3

2016a) are developed to account for those characteristics, but they are gene-specific tests that the

information from other genes are not used when the tests are performed for one gene. Potentially,

the sensitivity of testing for difference can be improved by allowing information sharing among

genes.

The first contribution provides a test for distributional change of transcripts to capture those sub-

tle differences between conditions. Specifically, we use an empirical Bayesian mixture approach to

score genes for evidence of distributional changes, which we call it scDDBoost. We leverage

the fact that cells populate distinct, identifiable subtypes determined by lineage history, epigenetic

state, the activity of various transcriptional programs, or other distinguishing factors. Such subtype

information may be injected into the transcripts profile for genome and can be inferred via other

clustering methods, for example, SC3 (Kiselev et al. (2017)), CIDR (Lin et al. (2017)) and ZIFA

(Pierson and Yau (2015)). A gene’s marginal distribution is modeled as mixture of cells with mix-

ing structure determined by the subtype label. The mixture model is flexible and approximates a

wide variety of distributions well, further, it accounts for other characteristics of single-cells data,

e.g. high prevalence of zero counts and gene-level multimodality. The compositional model un-

derlying scDDBoost provides a novel way of information sharing, as the celluar subtypes, which

are inferred by clustering utilizing the expression data from whole genome, inform the analysis of

gene-level expression. After identification of subtypes, our method combine two parts of computa-

tion, first is to quantify how the proportions of subtypes varies across conditions. The second is to

quantify how the mean expression varies across subtypes, which faces a computational bottleneck.

We address the issue in our next contribution. We show that scDDBoost increases power of testing

under control of false discovery rate through simulation and empirical studies. More details can be

found in chapter 2.

4

1.2 Scalability

The second contribution is to improve EBSeq (Leng et al., 2013), a method of inference for multi-

group differential expression analysis. Specifically, givenK groups of expression data, an empirical

Bayes mixture model is applied to infer the patterns of how those means varies among groups for

each gene. It has proven useful in many studies, including studies of development, viral transcrip-

tion and cancer (Louro et al., 2020, Newhouse et al., 2017, Lee et al., 2020). EBSeq is most often

used when K = 2, the multi-group feature is less frequently deployed, however it serves as a key

component for scDDBoost, where in general K ≥ 3 are expected, to characterize the difference

between cellular subtypes that is used for analysis of distributional change. With the advance in

large-scale sequencing technology, more cells are produced and likely to introduce big K. A com-

putational bottleneck arises if we consider all possible patterns, which are equal in number to the

Bell number of partitions of K objects (Gardner, 1978). For even moderate K, the memory and

time costs of EBSeq become excessive. We first provide a pruning algorithm, where we identify

those patterns that are negligible for the final inference through some preliminary check and remove

them from the compute-intensive part of the code. Secondly, we apply a more efficient optimization

scheme for the parameters and implement the codes in C++. We use numerical studies to demon-

strate our implementation greatly improve the performance of EBSeq. More details can be found

in Chapter 3.

1.3 Multiple Conditions Differential Distribution Testing

In order to get better understanding of some biological process, scientist increased the number of

experiments and profiled transcripts over time to capture the underlying dynamics. These so-called

time-course scRNA-seq is useful in understanding differences in differentiation maturity (Trapnell

et al. (2014a), Qiu et al. (2017)). The time-course data after some pre-processing, for example,

trajectory inference method is typically applied to organize the cells into a pseudotemporal ordering

that is concordant with the development trajectory (Trapnell et al., 2014b), are then used to discover

5

genes that are associated with the lineages in the trajectory, or presenting difference between lin-

eages, to illuminate the underlying biological processes.

The third contribution is to generalize the comparison for distributional change to more than two

conditions. We provides a framework allowing testing for change of distributions along the process.

Assuming we have data collected at T conditions(timepoints) labelled as 1, ..., T and the corre-

sponding marginal distribution of a gene g are f1
g , ..., f

T
g . Adopting the mixture modeling idea from

scDDboost, marginal distribution f ig is determined by how cellular subtypes are mixed at condi-

tion i. We extend the framework of scDDboost to quantify changes of subtypes proportions over

time and score the intensity of each pattern of distributional change. More details are provided in

Chapter 4.

It is important to continue improving and developing statistical methods to study and test the bi-

ological signal especially as sequencing technologies continue to progress and experiments become

more complex.

6

Chapter 2

A Compositional Model to Assess

Expression Changes From Single-Cell

RNA-Seq Data1

2.1 Background

The ability to measure genome-wide gene expression at single-cell resolution has accelerated the

pace of biological discovery. Overcoming data analysis challenges caused by the scale and unique

variation properties of single-cell data will surely fuel further advances in immunology (Papalexi

and Satija (2017)), developmental biology (Marioni and Arendt (2017)), cancer (Navin (2015)), and

other areas (Nawy (2013)). Computational tools and statistical methodologies created for data of

lower-resolution (e.g., bulk RNA-seq) or lower dimension (e.g., flow cytometry) guide our response

to the data-science demands of new measurement platforms, but they remain inadequate for efficient

knowledge discovery in this rapidly advancing domain (Bacher and Kendziorski (2016)).

An important feature of single-cell studies that could be leveraged better statistically is the fact

that cells populate distinct, identifiable subtypes determined by lineage history, epigenetic state, the
1This chapter is a reformated version of Technical Report 655795 at bioRxiv, written jointly with co-authors Drs. C.

Kendziorski, K. Korthauer, and M.A. Newton. We are currently revising it for the Annals of Applied Statistics.

7

activity of various transcriptional programs, or other distinguishing factors. Extensive research on

clustering cells has produced tools for identifying subtypes, including SC3 (Kiselev et al. (2017)),

CIDR (Lin et al. (2017)) and ZIFA (Pierson and Yau (2015)). We hypothesize that such subtype in-

formation may be usefully utilized in other inference procedures in order to improve their operating

characteristics.

Assessing the magnitude and statistical significance of changes in gene expression associated

with changes in cellular condition has been a central statistical problem in genomics. New tools

specific to the single-cell RNA-seq data structure, including MAST (Finak et al. (2015)), scDD

(Korthauer et al. (2016b)), and D3E (Delmans and Hemberg (2016)), have been deployed to address

this problem. These tools respond to scRNA-seq characteristics, such as high prevalence of zero

counts and gene-level multimodality, but they do not fully exploit cellular-subtype information.

Our proposed method measures changes in a gene’s marginal mixture distribution and acquires

sensitivity to a variety of distributional effects by how it integrates gene-level data with estimated

cellular subtypes. It is implemented in software in the R package scDDboost 2.

Through the compositional model underlying scDDboost, subtypes inferred by clustering

inform the analysis of gene-level expression. The proposed methodology merges two lines of com-

putation after cell clustering: one concerns patterns of differential expression among the cellu-

lar subtypes, and here we take advantage of the powerful EBseq method for detecting patterns

in negative-binomially-distributed expression data (Leng et al. (2015)). The second concerns the

counts of cells in various subtypes; for this we propose a Double-Dirichlet-Mixture distribution to

model the pair of multinomial probability vectors for subtype counts in two experimental conditions.

Further elements are developed, on the selection of the number of subtypes and on accounting for

uncertainty in the cluster output, in order to provide an end-to-end solution to the differential distri-

bution problem. We note that modularity in the necessary elements provides some methodological

advantages. For example, improvements in clustering may be used in place of the default clustering

without altering the form of downstream analysis. Also, by avoiding Markov chain Monte Carlo,

scDDboost computations are relatively inexpensive for a Bayesian procedure.
2http://github.com/wiscstatman/scDDboost/

8

To set the context by way of example, Figure 2.1 highlights the ability of scDDboost to sense

subtype composition changes and thus detect subtle gene expression changes between conditions.

The three panels on the left compare expression from 91 human stem cells known to be in the G1

phase of the cell cycle, as well as from 76 such cells known to be in the G2/M phase (Leng et al.

(2013)) in three genes (BIRC5, HMMR, and CKAP2), which we happen to know from prior studies

have differential activity between G1 and G2/M (Li and Altieri (1999), Sohr and Engeland (2008),

Dominguez et al. (2016)). Several standard statistical tools applied to the data behind Figure 2.1 do

not find the observed differences in any of these genes to be statistically significant when controlling

the false discovery rate (FDR) at 5%, but scDDboost does include these genes on its 5% FDR list.

Considering prior studies, these subtle distributional changes are probably not false discoveries. The

right panel in Figure 2.1 shows these three among many other genes also known to be involved in

cell-cycle regulation but not identified by standard tools as altered between G1 and G2/M at the 5%

FDR level. The color panel provides insight into why scDDboost has identified these genes. For

this data set, six cellular subtypes were identified in the first step of scDDboost (colors red, blue,

green, and orange are visible). These subtypes have changed in their proportions between G1 and

G2/M; there is a lower proportion of red cells and a greater proportion of orange cells in G2/M,

for example. These proportion shifts, which are inferred from genome-wide data, stabilize gene-

specific statistics that measure changes between conditions in the mixture distribution of expression,

and thereby increase power. We note that scDDboost agrees with other statistical tools on very

strong differential-distribution signals (not shown), but it has the potential to increase power for

subtle signals owing to its unique approach to leveraging cell subtype information.

9

Figure 2.1: Genes involved in cell-cycle that are identified by scDDboost, but not standard ap-
proaches, as differentially distributed between cell-cycle phases G1 and G2/M in human embryonic
stem cells. Density estimates on the left show expression data (log2 scale) of three genes identified
by scDDboost at 5% FDR, but not similarly identified by MAST, scDD, and DESeq2. Prior stud-
ies have shown that the expression of BIRC5, CKAP2, and HMMR is dependent on the phase of
cell-cycle, suggesting that these subtle shifts are not false positives. Heatmap (right) shows these
three genes among 137 other cell-cycle genes (GO:0007049) identified exclusively by scDDboost,
with expression from low (blue) to high (red). Cells (columns) are clustered by their genome-wide
expression profiles into distinct cellular subtypes, as indicated by the color panel.

Numerical experiments on both synthetic and published scRNA-seq data bear out the incidental

finding in Figure 2.1, that scDDboost has sensitivity for detecting subtle distribution changes.

In these experiments we take advantage of splatter for generating synthetic data (Zappia et al.

(2017)) as well as the compendium of scRNA-seq data available through conquer (Soneson and

Robinson (2017)). Additional numerical experiments show a relationship between scDDboost

findings and more mechanistic attempts to parameterize transcriptional activation (Delmans and

10

Hemberg (2016)). Finally, we establish first-order asymptotic results for the methodology.

2.2 Modeling

2.2.1 Data structure, sampling model, and parameters

In modeling scRNA-seq data, we imagine that each cell c falls into one of K > 1 classes, which we

think of as subtypes or subpopulations of cells. For notation, zc = kmeans that cell c is of subtype k,

with the vector z = (zc) recording the states of all sampled cells. Knowledge of this class structure

prior to measurement is not required, as it will be inferred as necessary from available genomic data.

We expect that cells arise from multiple experimental conditions, such as by treatment-control status

or some other factors measured at the cell level, but we present our development for the special case

of two conditions. Notationally, y = (yc) records the experimental condition, say yc = 1 or yc = 2.

Let’s say condition j measures nj =
∑

c 1[yc = j] cells, and in total we have n = n1 + n2 cells in

the analysis. The examples in Section 3 involve hundreds to thousands of cells. Further let

tjk = tjk(y, z) =
∑
c

1[yc = j, zc = k] (2.1)

denote the number of cells of subtype k in condition j and Xg,c denote the normalized expression

of gene g in cell c. This is one entry in a typically large genes-by-cells data matrix X . Thus, the

data structure entails an expression matrix X , a treatment label vector y, and a vector z of latent

subtype labels.

We treat subtype counts in the two conditions, t1 = (t11, t
1
2, · · · , t1K) and t2 = (t21, t

2
2, · · · , t2K),

as independent multinomial vectors, reflecting the experimental design. Explicitly,

t1|y ∼ MultinomialK(n1, φ) and t2|y ∼ MultinomialK(n2, ψ) (2.2)

for probability vectors φ = (φ1, φ2, · · · , φK) and ψ = (ψ1, ψ2, · · · , ψK) that characterize the

populations of cells from which the n observed cells are sampled. This follows from the more basic

sampling model: P (zc = k|yc = 1) = φk and P (zc = k|yc = 2) = ψk.

11

Our working hypothesis, referred to as the compositional model, is that any differences in the

distribution of expression Xg,c between yc = 1 and yc = 2 (i.e., any condition effects) are at-

tributable to differences between the conditions in the underlying composition of cell types; i.e.,

owing to φ 6= ψ. We suppose that cells of any given subtype k will present data according to a dis-

tribution reflecting technical and biological variation specific to that class of cells, regardless of the

condition yc of the cell. Some care is needed in this, as an overly broad cell subtype (e.g., epithelial

cells) could have further subtypes that show differential response to some treatment, for example,

and so cellular condition (treatment) would then affect the distribution of expression data within the

subtype, which is contrary to our working hypothesis. Were that the case, we could have refined the

subtype definition to allow a greater number of population classes K in order to mitigate the prob-

lem of within-subtype heterogeneity. A risk in this approach is that K could approach n, as if every

cell were its own subtype. We find, however, that data sets often encountered do not display this

theoretical phenomenon when considering a broad class of within-subtype expression distributions.

We revisit the issue in Section 5, but for now, we proceed assuming that cellular condition affects

the composition of subtypes but not the distribution of expression within a subtype.

Within the compositional model, let fg,k denote the sampling distribution of expression mea-

surement Xg,c assuming that cell c is from subtype k. Then for the two cellular conditions, and at

some expression level x, the marginal distributions over subtypes are finite mixtures:

f1
g (x) =

K∑
k=1

φkfg,k(x) and f2
g (x) =

K∑
k=1

ψkfg,k(x).

In other words, Xg,c|[yc = j] ∼ f jg and Xg,c|[zc = k, yc = j] ∼ fg,k.

We say that gene g is differentially distributed, denoted DDg and indicated by f1
g 6= f2

g , if

f1
g (x) 6= f2

g (x) for some x, and otherwise it is equivalently distributed (EDg). Motivated by findings

from bulk RNA-seq data analysis, we further set each fg,k to have a a negative-binomial form, with

mean µg,k and shape parameter σg, as in (Leng et al. (2013), Anders and Huber (2010), Love et al.

(2014a) and Chen et al. (2018)). This choice is effective in our numerical experiments though it is

not critical to the modeling formulation. The use of mixtures per gene has proven useful in related

12

model-based approaches (e.g., Finak et al. (2015); McDavid et al. (2014); Huang et al. (2018)).

We seek methodology to prioritize genes for evidence of DDg. Interestingly, even if we have

evidence for condition effects on the subtype frequencies, it does not follow that a given gene will

have f1
g 6= f2

g ; that depends on whether or not the subtypes show the right pattern of differential

expression at g, to use the standard terminology from bulk RNA-seq. For example, if two subtypes

have different frequencies between the two conditions (φ1 6= ψ1 and φ2 6= ψ2) but the same aggre-

gate frequency (φ1 +φ2 = ψ1 +ψ2), and also if µg,1 = µg,2 then, other things being equal, f1
g = f2

g

even though φ 6= ψ. The fact is so central that we emphasize:

Key issue: A gene that does not distinguish two subtypes will also not distinguish the cellular

conditions if those subtypes appear in the same aggregate frequency in the two conditions, regardless

of changes in the individual subtype frequencies.

We formalize this issue in order that our methodology has the necessary functionality. To do

so, first consider the parameter space Θ = {θ = (φ, ψ, µ, σ)}, where φ = (φ1, φ2, · · · , φK) and

ψ = (ψ1, ψ2, · · · , ψK) are as before, where µ = {µg,k} holds all the subtype-and-gene-specific ex-

pected values, and where σ = {σg} holds all the gene-specific negative-binomial shape parameters.

Critical to our construction are special subsets of Θ corresponding to partitions of the K cell sub-

types. A single partition, π, is a set of mutually exclusive and exhaustive blocks, b, where each block

is a subset of {1, 2, · · · ,K}, and we write π = {b}. Of course, the set Π containing all partitions π

of {1, 2, · · · ,K} has cardinality that grows rapidly with K. We carry along an example involving

K = 7 cell types, and one three-block partition taken from the set of 877 possible partitions of

{1, 2, · · · , 7} (Figure 3.2). For any partition π = {b}, consider aggregate subtype frequencies

Φb =
∑
k∈b

φk and Ψb =
∑
k∈b

ψk,

and extend the notation, allowing vectors Φπ = {Φb : b ∈ π} and similarly for Ψπ. Recall the

partial ordering of partitions based on refinement, and note that as long as π is not the most refined

partition (every cell type is in its own block), then the mapping from (φ, ψ) to (Φπ,Ψπ) is many-

13

Figure 2.2: Proportions of K = 7 cellular subtypes in two different conditions. Aggregated pro-
portions of subtypes 3 and 4, subtypes 2, 5, and 6, and subtypes 1, and 7 remain same across
conditions, while individual subtype frequencies change. Depending on the changes in average ex-
pression among subtypes, these frequency changes may or may not induce changes between two
conditions in the marginal distribution of some gene’s expression.

to-one. Further, define sets

Aπ = {θ ∈ Θ : Φb = Ψb ∀b ∈ π}. (2.3)

and

Mg,π = {θ ∈ Θ : µg,k = µg,k′ ⇐⇒ k, k′ ∈ b, b ∈ π}. (2.4)

Under Aπ there are constraints on cell subtype frequencies; under Mg,π there is equivalence in the

gene-level distribution of expression between certain subtypes. These sets are precisely the struc-

tures needed to address differential distribution DDg (and it complement, equivalent distribution,

EDg) at a given gene g, since:

Theorem 2.2.1. Let Cg,π = Aπ ∩Mg,π. For partitions π1 6= π2, Cg,π1 ∩ Cg,π2 = ∅. Further, at

14

any gene g, equivalent distribution is

EDg =
⋃
π∈Π

Cg,π.

With additional probability structure on the parameter space, we immediately obtain from The-

orem 1 a formula for local false discovery rates:

1− P (DDg|X, y) = P (EDg|X, y) =
∑
π∈Π

P (Aπ ∩Mg,π|X, y) . (2.5)

Local false discovery rates are important empirical Bayesian statistics in large-scale testing (Efron

(2007); Muralidharan (2010); Newton et al. (2004)). For example, the conditional false discovery

rate of a list of genes is the arithmetic mean of the associated local false discovery rates. The par-

tition representation guides the construction of a prior distribution (Section 2.3) and a model-based

method (Section 2.2) for scoring differential distribution. Setting the stage, Figure 2.3 shows the

dependency structure of the proposed compositional model and the partition-reliant prior specifica-

tion.

Figure 2.3: Directed acyclic graph structure of the compositional model and partition-reliant prior.
The plate on the right side indicates i.i.d. copies over cells c, conditionally on mixing proportions
and mixing components. Observed data are indicated in rectangles/squares, and unobserved vari-
ables are in circles/ovals.

15

Key to computing the gene-specific local false discovery rate P (EDg|X, y) is evaluating prob-

abilities P (Aπ ∩Mg,π|X, y). The dependence structure (Figure 2.3) implies a useful reduction of

this quantity, at least conditionally upon subtype labels z = (zc). For each subtype partition π and

gene g,

Theorem 2.2.2. P (Aπ ∩Mg,π|X, y, z) = P (Aπ|y, z)P (Mg,π|X, z).

In what follows, we develop the modeling and computational elements necessary to efficiently

evaluate inference summaries (2.5) taking advantage of Theorems 1 and 2. Roughly, the method-

ological idea is that subtype labels z have relatively low uncertainty, and may be estimated from

genome-wide clustering of cells in the absence of condition information y (up to an arbitrary la-

bel permutation). The modest uncertainty in z we handle through a computationally efficient ran-

domized clustering scheme. Theorem 2 indicates that our computational task then separates into

two parts given z. On one hand, cell subtype frequencies combine with condition labels to give

P (Aπ|y, z). Then gene-level data locally drive the posterior probabilities P (Mg,π|X, z) that mea-

sure differential expression between subtypes. Essentially, the model provides a specific form of

information sharing between genes that leverages the compositional structure of single-cell data in

order to sharpen our assessments of between-condition expression changes.

2.2.2 Method structure and clustering

To infer subtypes, we leverage the extensive research on how to cluster cells using scRNA-seq data:

for example, SC3 (Kiselev et al. (2017)), CIDR (Lin et al. (2017)), and ZIFA (Pierson and Yau

(2015)). We propose distance-based clustering on the full set of profiles in a way that is blind to the

condition label vector y, in order to have as many cells as possible to inform the subtype structure.

We investigated several clustering schemes in numerical experiments and allow flexibility in this

choice within the SCDDBOOST software. Associating clusters with subtype labels ẑc estimates the

actual subtypes zc, and prepares us to use Theorems 1 and 2 in order to compute separate posterior

probabilities P (Aπ|y, ẑ) and P (Mg,π|X, ẑ) that are necessary for scoring differential distribution.

The first probability concerns patterns of cell counts over subtypes in the two conditions, and has

16

a convenient closed form within the double-Dirichlet model (Section 2.3). The second probability

concerns patterns of changes in expected expression levels among subtypes, and this is also con-

veniently computed for negative-binomial counts using EBSeq (Leng et al. (2013)). Algorithm 1

summarizes how these elements combine to get the posterior probability of differential distribution

per gene, conditional on an estimate of the subtype labels.

Algorithm 1 SCDDBOOST-CORE

Input:

GENES by CELLS expression data matrix X = (Xg,c)

cell condition labels y = (yc)

cell subtype labels (estimated) ẑ = (ẑc)

Output: posterior probabilities of differential distribution from estimated subtypes
1: procedure SCDDBOOST-CORE(X, y, ẑ)
2: number of cell subtypes K = length(unique(ẑ))
3: subtype differential expression: ∀g, π compute P (Mg,π|X, ẑ) using EBSeq
4: cell frequency changes: ∀π compute P (Aπ|y, ẑ) using Double Dirichlet model
5: posterior probability: ∀g, P (EDg|X, y, ẑ)←

∑
π
P (Mg,π|X, ẑ)P (Aπ|y, ẑ)

6: return ∀g, P (DDg|X, y, ẑ) = 1− P (EDg|X, y, ẑ)
7: end procedure

We invoke K−medoids (Kaufman and Rousseeuw (1987)) as the default clustering method

in scDDboost, and customize the cell-cell distance by integrating two measures. The first as-

sembles gene-level information by cluster-based-similarity partitioning (Strehl and Ghosh (2003)).

Separately at each gene, modal clustering (Dahl (2009a) and Appendix A.6) partitions the cells,

and then we define dissimilarity between cells as the Manhattan distance between gene-specific

partition labels. A second measure defines dissimilarity by one minus the Pearson correlation be-

tween cells, which is computationally inexpensive, less sensitive to outliers than Euclidean distance,

and effective at detecting cellular clusters in scRNA-seq (Kim et al. (2018)). The default cluster-

ing in scDDboost combines these two measures by weighted average, with wC = σP
σC+σP

and

wP = 1 − wC , where wC , σC , wP , σP are the weights and standard deviations of cluster-based

distance and Pearson-correlation distance, respectively. The software allows other distances; in any

case the final distance matrix is denoted D = (di,j).

17

Any clustering method entails classification errors, and so ẑc 6= zc for some cells. To mitigate

the effects of this uncertainty, scDDboost averages output probabilities from SCDDBOOST-CORE

over randomized clusterings ẑ∗. These are not uniformly random, but rather are generated by ap-

plying K−medoids to a randomized distance matrix D∗ = (di,j/wi,j), where wi,j are non-negative

weights wi,j = (ei + ej), and where (ei) are independent and identically Gamma distributed de-

viates with shape â/2 and rate â, and where â is estimated from D. (Thus wi,j is Gamma(â, â)

and has unit mean.) The distribution of clusterings induced by this simple computational scheme

approximates a Bayesian posterior analysis, as we argue in the Appendix, where we also present

pseudo-code for the resulting scDDboost Algorithm 5. Averaging over results from randomized

clusterings gives additional stability to the posterior probability statistics (Appendix Figure A10).

Computations become more intensive the larger is the number K of cell subtypes. Version 1.0

of scDDboost is restricted to K ≤ 9; we consider further computational strategies in Section 5.

Inferentially, taking K to be too large may inflate the false positive rate (Appendix Figure A11).

The approach taken in scDDboost is to set K using the validity score (Ray and Turi (2000)),

which measures changes in within-cluster sum of squares as we increase K. Our implementation,

in Appendix A.8, shows good operating characteristics in simulation.

2.2.3 P (Aπ|y, z)

We introduce the Double Dirichlet Mixture (DDM), which is the partition-reliant prior p(φ, ψ)

indicated in Figure 2.3, in order to derive an explicit formula for P (Aπ|y, z). We lose no generality

here by defining Aπ = {(φ, ψ) : Φb = Ψb ∀b ∈ π}, rather than as a subset of the full parameter

space as in (2.3). Each Aπ is closed and convex subset of the product space holding all possible

pairs of length-K probability vectors.

We propose a spike-slab-style mixture prior with the following form:

p(φ, ψ) =
∑
π∈Π

ωπ pπ(φ, ψ). (2.6)

Each mixture component pπ(φ, ψ) has supportAπ; the mixing proportions ωπ are positive constants

18

summing to one. To specify component pπ, notice that onAπ there is a 1-1 correspondence between

pairs (φ, ψ) and parameter states:

{
(φ̃b, ψ̃b,Φb), ∀b ∈ π

}
, (2.7)

where

φ̃b =
φb
Φb
, ψ̃b =

ψb
Ψb
, and Φb =

∑
k∈b

φk =
∑
k∈b

ψk = Ψb.

For example, φ̃b is a vector of conditional probabilities for each subtype given that a cell from the

first condition is one of the subtypes in b.

We introduce hyperparameters α1
k, α

2
k > 0 for each subtype k, and set βb =

∑
k∈b
(
α1
k + α2

k

)
for any possible block b. Extending notation, let αjb be the vector of αjk for k ∈ b, βπ be the vector

of βb for b ∈ π, φb and ψb be vectors of φk and ψk, respectively, for k ∈ b, and Φπ and Ψπ be the

vectors of Φb and Ψb for b ∈ π. The proposed double-Dirichlet component pπ is determined in the

transformed scale by assuming Ψπ = Φπ and further:

Φπ ∼ DirichetN(π)[βπ] (2.8)

φ̃b ∼ DirichletN(b)[α
1
b] ∀b ∈ π

ψ̃b ∼ DirichletN(b)[α
2
b] ∀b ∈ π

where N(π) is the number of blocks in π and N(b) is the number of subtypes in b, and where all

random vectors in (2.8) are mutually independent. Mixing over π as in (2.6), we write (φ, ψ) ∼

DDM
[
ω = (ωπ), α1 = (α1

k), α
2 = (α2

k)
]
.

We record some properties of the component distributions pπ:

Property 1: In pπ(φ, ψ), ψ and φ are dependent, unless π is the null partition in which all subtypes

constitute a single block.

19

Property 2: With k ∈ b, marginal means are:

Eπ (φk) =
α1
k∑

k′∈b α
1
k′

βb∑
b′∈π βb′

and Eπ (ψk) =
α2
k∑

k′∈b α
2
k′

βb∑
b′∈π βb′

.

Recall from (2.1) the vectors t1 and t2 holding counts of cells in each subtype in each condition,

computed from y and z. Relative to a block b ∈ π, let tjb =
∑

k∈b t
j
k, for cell conditions j = 1, 2,

and, let tjπ be the vector of these counts over b ∈ π. The following properties refer to marginal

distributions in which (φ, ψ) have been integrated out of the joint distribution involving (2.2) and

the component pπ.

Property 3: t1 and t2 are conditionally independent given y, t1π and t2π.

Property 4: For j = 1, 2,

pπ(tj |tjπ, y) =
∏
b∈π

{[
Γ(tjb + 1)∏
k∈b Γ(tjk + 1)

][
Γ(
∑

k∈b α
j
k)∏

k∈b Γ(αjk)

][∏
k∈b Γ(αjk + tjk)

Γ(tjb +
∑

k∈b α
j
k))

]}

Property 5:

pπ(t1π, t
2
π|y) =

[
Γ(n1 + 1)Γ(n2 + 1)∏
b∈π Γ(t1b + 1)Γ(t2b + 1)

] [
Γ(
∑

b∈π βb)∏
b∈π Γ(βb)

] [∏
b∈π Γ(βb + t1b + t2b)

Γ(n1 + n2 +
∑

b∈π βb)

]
.

Let’s look at some special cases to dissect this result.

Case 1. If π has a single block equal to the entire set of cell types {1, 2, · · · ,K}, then tjb = nj

for both j = 1, 2, and Property 5 reduces, correctly, to pπ(t1π, t
2
π|y) = 1. Further,

pπ(tj |tjπ, y) =

[
Γ(nj + 1)

Γ(nj +
∑K

k=1 α
j
k)

][
Γ(
∑K

k=1 α
j
k)∏K

k=1 Γ(αjk)

][
K∏
k=1

Γ(αjk + tjk)

Γ(tjk + 1)

]

which is the well-known Dirichlet-multinomial predictive distribution for counts tj (Wagner and

Taudes (1986)). E.g, taking αjk = 1 for all types k we get the uniform distribution

pπ(tj |tjπ, y) =
Γ(nj + 1)Γ(K)

Γ(nj +K)
.

Case 2. At the opposite extreme, π has one block b for each class k, so φ = ψ. Then

20

pπ(tj |tjπ, y) = 1, and further, writing b = k,

pπ(t1π, t
2
π|y) =

[
Γ(n1 + 1)Γ(n2 + 1)∏K
k=1 Γ(t1k + 1)Γ(t2k + 1)

][
Γ(
∑K

k=1 βk)∏K
k=1 Γ(βk)

][∏K
k=1 Γ(βk + t1k + t2k)

Γ(n1 + n2 + βk)

]
.

which corresponds to Dirichlet-multinomial predictive distribution for counts t1 + t2 since t1 and

t2 are identical distributed given (φ, ψ) in this case. These properties are useful in establishing:

Theorem 2.2.3. DDM is conjugate to multinomial sampling of t1 and t2:

(φ, ψ)|y, z ∼ DDM
[
ωpost = (ωpost

π), α1 + t1, α2 + t2
]

where

ωpost
π ∝ pπ(t1|t1π, y) pπ(t2|t2π, y) pπ(t1π, t

2
π|y)ωπ. (2.9)

The target probability P (Aπ|y, z) is an integral of the posterior distribution in Theorem 3. To

evaluate it, we need to contend with the fact that sets {Aπ : π ∈ Π} are not disjoint. Relevant

overlaps have to do with partition refinement. Recall that a partition πr is a refinement of a partition

πc if for any b ∈ πc there exists s ⊂ πr such that ∪
b′∈s

b′ = b. We say πc coarsens πr when πr refines

πc. Any partition both refines and coarsens itself, as a trivial case. Generally, refinements increase

the number of blocks. If subtype frequency vectors (φ, ψ) satisfy the constraints in Aπr then they

also satisfy the constraints of any πc that coarsens πr: i.e., Aπr ⊂ Aπc . Refinements reduce the

dimension of allowable parameter states. For the double-Dirichlet component distributions Pπ, we

find:

Property 6: For two partitions π̃ and π, Pπ̃ (Aπ|y, z) = 1[π̃ refines π].

This supports the main finding of this section:

P (Aπ|y, z) =
∑
π̃∈Π

ωpost
π̃ 1[π̃ refines π]. (2.10)

21

2.2.4 P (Mg,π|X, z)

We leverage well-established modeling techniques for transcript analysis, including (Leng et al.

(2013), Kendziorski et al. (2003b), and Jensen et al. (2009)), which characterize equivalent or dif-

ferential expression in terms of shared or independently drawn mean effects. Let Xg,b denote the

subvector of expression values at gene g over cells c with zc = k for which subtype k is part of

block b of partition π. Conditioning on subtype labels z = (zc), we assume that under Mg,π:

1. between blocks: subvectors {Xg,b : b ∈ π} are mutually independent,

2. within blocks: for cells mapping to block b, observations Xg,c are i.i.d.

3. mean effects: for each block b, there is a univariate mean, µg,b, shared by cells mapping to

that block. a priori these means are i.i.d. between blocks.

These assumptions imply a useful factorization marginally to latent means,

P (Xg|Mg,π, z) =
∏
b∈π

f(Xg,b), (2.11)

where f is a customized density kernel. In our case we use EBseq from (Leng et al. (2013)): the

sampling distribution of Xg,c is negative binomial, and f becomes a particular compound multi-

variate negative binomial formed from integrating uncertainty in the block-specific means (see Ap-

pendix A.5). Through its gene-level mixing model, EBseq also gives estimates of {P (Mg,π|z)}:

the proportions of genes governed by any of the different patterns π of equivalent/differential ex-

pression among subtypes. With these estimates and (2.11) we compute by Bayes’s rule:

P (Mg,π|X, z) ∝ P (Mg,π|z)
∏
b∈π

f(Xg,b).

The proportionality is resolved by calculating over all partitions π.

22

2.3 Numerical experiments

2.3.1 Synthetic data

We used splatter (v. 1.2.0) to generate synthetic scRNA-seq data for which the DD status of

genes is known (Zappia et al. (2017)), thereby allowing us to measure operating characteristics of

scDDboost. Our hypothetical two-condition comparison involved 17421 genes, 10% of which

exhibited actual shifts in distribution between two conditions. We entertained 12 different param-

eter settings encoding these distributional shifts, varying the number of subtypes K, the subtype

frequency profiles (φ, ψ), as well as the splatter-specific parameters θ and γ controlling lo-

cation and scale characteristics of expression levels. These settings cover a range of scenarios we

might expect to see in practice. Two replicate data sets were simulated under each parameter setting.

Further details are in Appendix A.10.

Figures 2.4 and 2.5 summarize the true positive rate and false discovery rate of scDDboost

compared to three other methodologies: MAST (v. 1.4.0), scDD (v. 1.2.0), and DESeq2 (v. 1.18.1).

scDDboost exhibits very good operating characteristics in this study, as it controls the FDR in all

cases while also delivering a relatively high rate of true positives in all cases.

23

● ● ● ●

●
●

●

●

● ●

●

●

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

T
P

R

● ● ● ●
●

●

●

●

●

●

●

●

● ● ● ● ● ●

●

●
●

●

●

●

● ● ● ● ● ●

●

●

●

●

●

●

12
/−

0.
1/

0.
3

12
/0

.1
/0

.4

7/
−

0.
1/

0.
3

7/
0.

1/
0.

4

7/
0.

3/
0.

5

12
/0

.3
/0

.5

3/
−

0.
1/

0.
3

12
/−

0.
1/

1

7/
−

0.
1/

1

3/
0.

1/
0.

4

3/
0.

3/
0.

5

3/
−

0.
1/

1

MAST
DESeq2
scDD
scDDboost

Figure 2.4: True positive rate (vertical) of four DD detection methods in 12 synthetic-data settings
(horizontal). Settings are labeled for K/θ/γ and ranked by scDDboost values. Each method is
targeting a 5% false discovery rate (FDR). The plot shows average rates over replicate simulated
data in each setting.

24

● ● ●

●

● ● ● ●
●

●

●

●

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

F
D

R

● ● ●

●

●

●

●

●

●

●

● ●

● ● ● ● ● ●

●

●

●

●

●

●

● ● ● ● ● ●

●

●
●

●

●

●

12
/−

0.
1/

0.
3

12
/0

.1
/0

.4

7/
−

0.
1/

0.
3

7/
0.

1/
0.

4

7/
0.

3/
0.

5

12
/0

.3
/0

.5

3/
−

0.
1/

0.
3

12
/−

0.
1/

1

7/
−

0.
1/

1

3/
0.

1/
0.

4

3/
0.

3/
0.

5

3/
−

0.
1/

1

MAST
DESeq2
scDD
scDDboost

Figure 2.5: False discovery rate (vertical) of methods in settings (horizontal, same order) from
Figure 2.4

2.3.2 Empirical study

We applied scDDboost to a collection of previously published data sets that are recorded at

conquer (Soneson and Robinson (2017)). Though not knowing the truly DD genes, we can ex-

amine how scDDboost output compares to output from several standard methods. We selected

12 data sets from conquer representing different species and experimental settings and involving

hundreds to thousands of cells. Appendix Table A7 provides details. Figure 2.6 compares methods

in terms of the size of the reported list of DD genes at the 5% FDR target level. We see a consis-

tently high yield of scDDboost among the evaluated methods. For reference, one of these data

sets (GSE64016) happens to be the data behind Figure 2.1, where we know from other information

that some of the uniquely identified genes are likely not to be false positives.

25

●

●
●

●

●

●

●

●
●

●

●

●

0.
0

0.
1

0.
2

0.
3

0.
4

P
ro

po
rt

io
n

of
 D

D
 g

en
es

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●
●

● ●

●
●

●
●

● ●

●

●

● ●

G
S

E
48

96
8

G
S

E
94

38
3

G
S

E
52

52
9

G
S

E
63

81
8

E
M

TA
B

28
05

G
S

E
79

10
2

G
S

E
64

01
6

G
S

E
74

59
6

G
S

E
45

71
9

G
S

E
71

58
5

G
S

E
75

74
8

G
S

E
84

46
5

MAST
DESeq2
scDD
scDDboost

Figure 2.6: Proportion of DD genes at 5% FDR threshold with respect to total number of genes
identified by each method. Ranked by scDDboost list size

To check that the increased discovery rate of scDDboost is not associated with an increased

rate of false calls, we applied it to a series of random splits of single-condition data sets (Appendix

Table A8). Figure 2.7 confirms a very low call rate in cases where no changes in distribution are

expected.

26

●●●●● ●● ●● ●● ●●● ● ●●●● ● ●●● ●● ●●●● ●●● ●● ●●●● ●● ●● ● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●● ● ●

●

●●

●

● ● ●●●

●

● ●

●

●● ● ●● ● ●●

●

● ● ●●● ●● ●

●

●●●● ●●●● ● ●●

●

●●●● ●● ● ● ●●●● ● ●● ● ●●● ●●● ●● ●●●● ● ●● ●●●● ● ●●●● ●0

500

1000

1500

MAST DESeq2 scDD scDDboost

N
um

be
r

of
 F

al
se

 P
os

iti
ve

s

●

●

●

●

MAST
DESeq2
scDD
scDDboost

Figure 2.7: False positive counts at 5% FDR threshold by several methods on 5 random splits of 9
single-condition data sets from Appendix Table A8

We conjecture that scDDboost gains power through its novel approach to borrowing strength

across genes; i.e., that the genomic data are providing information about cell subtypes and mixing

proportions, leaving gene-level data to guide gene-specific mixture components. One way to drill

into this idea is to consider how many genes have similar expression characteristics to a given

gene. By virtue of the EBseq analysis inside scDDboost, we may assign each gene to a set

of related genes that all have the same highest-probability pattern of equality/inequality of means

across the subtypes. Say π̂g = argmaxπP (Mg,π|ẑ, X). In Figure 2.8, we show that compared

to DD genes commonly identified by multiple methods (blue), the set sizes for genes uniquely

identified by scDDboost (red) tend to be larger. Essentially, the proposed methodology boosts

weak DD evidence when a gene’s pattern of differential expression among cell subtypes matches a

large number of other genes.

27

GSE52529 GSE71585 GSE75748

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0.00

0.25

0.50

0.75

1.00

others

uni

Figure 2.8: Genes are grouped by their pattern of differential expression across subtypes as inferred
by the EBseq computation within scDDboost for three example datasets. Cumulative distribution
functions of the log-scale size statistic for all genes identified by scDDboost are plotted; red is the
subset uniquely identified by scDDboost; blue are those also identified by the comparison methods
(MAST, scDD, or DESeq2). Sets of similarly-patterned genes tend to be larger (horizontal axis, log
size) for genes uniquely identified by scDDboost (red) compared to other DD genes (blue), at 5%
FDR.

2.3.3 Bursting

Transcriptional bursting is a fundamental property of genes, wherein transcription is either negligi-

ble or attains a certain probability of activation (Raj and van Oudenaarden (2008)). D3E (Delmans

and Hemberg (2016)) is a computationally intensive method for DE gene analysis rooted in mod-

eling the bursting process. It considers transcripts as in the stationary distribution from an exper-

imentally validated stochastic process of single-cell gene expression (Peccoud and Ycart (1995)).

Three mechanistic parameters (rate of promoter activation, rate of promoter inactivation, and the

conditional rate of transcription given an active promoter) characterize the model, which allow

distributional changes between conditions without changing the mean expression level. For genes

identified as DD by scDDboost in dataset GSE71585, either uniquely or in common with compar-

ison methods, Figure 2.9 shows changes of these bursting parameters. Interestingly, genes uniquely

identified by scDDboost are associated with more significant changes between estimated bursting

parameters compared to commonly identified genes. This finding and similar findings on other data

sets (not shown) provide some evidence that scDDboost is able to detect biologically meaningful

changes in the expression distribution.

28

0
2

4
6

8
10

ch
an

ge
 o

f b
ur

st
in

g
pa

ra
m

et
er

s

promoter activation promoter inactivation rate of transcription

others
unique

Figure 2.9: Absolute values of log fold changes of bursting parameters tend to be larger for 1758
genes uniquely identified by scDDboost (red) compare to other 2983 genes (blue) at 5% FDR

2.3.4 Time Complexity

Run time complexity of scDDboost is dominated by the cost of clustering cells and of running

EBSeq to measure differences between subtypes. Recall the notation that n for number of cells,

G for number of genes and K for number of subtypes. Our distance-based clustering of n cells

measuringG genes requires on the order ofG×n2 operations (see Appendix A.6). Further, EBSeq

uses summed counts within each subtype for each gene to compute its density kernel, and there are

Bell(K) differential patterns to compute, where Bell counts the partitions ofK. Our implementation

29

scDDboost efficiently deals with large n under moderate K. We have imposed the computational

limit K ≤ 9 in scDDboost (v. 1.0). In a typical case involving 20000 genes and 200 cells, using

50 of randomized distances, scDDboost is relatively efficient for K ≤ 6 requiring less than 15

CPU minutes on, for example, a quad-core 2.2 GHz Intel Core i7 with 16 Gb of RAM. The same

data might require 20 to 40 CPU hours when K = 9. In Section 5 we mention some opportunities

to improve this speed.

2.4 Asymptotics of the Double Dirichlet Mixture

Summary statistics P (Aπ|y, z), from Section 2.3, are amenable to a first-order asymptotic analysis

that provides further insight into DDM model behavior. The fact that support setsAπ for component

distributions pπ(φ, ψ) are not disjoint becomes an important issue. Consider distinct partitions π1

and π2 of subtypes {1, 2, · · · ,K}, and recall that N(π) counts the number of blocks in partition π.

In case π2 refines π1, then N(π1) < N(π2), and we also know that Aπ2 ⊂ Aπ1 , since refinement

imposes additional constraints on the pair (φ, ψ) of probability vectors. If the data-generating state

(φ, ψ) ∈ Aπ2 , one might ask how posterior probability mass tends to be allocated among the other

mixture components whose support sets also contain this state. The question is addressed by the

following:

Theorem 2.4.1. Let π1 and π2 denote two partitions for which N(π1) < N(π2) and Aπ1 ∩

Aπ2 is non-empty. Let (φ, ψ) ∈ Aπ1 ∩ Aπ2 denote the data generating state for subtype labels

z1, z2, · · · , zn given i.i.d. Bernoulli condition labels y1, y2, · · · , yn, and recall the posterior mixing

proportions ωpost
π from equation (2.9) with hyper-parameters αji ≥ 1 for i = 1, · · · ,K, j = 1, 2.

Then

ωpost
π1

ωpost
π2

−→a.s. 0 as n −→∞.

Essentially, mixing mass is transferred to components associated with the most refined partition

consistent with a given parameter state. To be precise, let H(φ, ψ) = {π : (φ, ψ) ∈ Aπ} record all

the partitions associated with one state. Typically, there is a most refined partition, π∗ = π∗(φ, ψ),

30

such that

Aπ∗ =
⋂

π∈H(φ,ψ)

Aπ. (2.12)

This always happens when K ≤ 3. In Appendix A.12 we characterize the exceptional set of states

where (2.12) does not hold. Notably, if (2.12) does hold for state (φ, ψ), then for any π ∈ H(φ, ψ),

using Theorem 4 and (2.10), we have

P (Aπ|y1, · · · , yn; z1, · · · zn) −→a.s. 1 as n −→∞.

This provides conditions under which we expect good performance for large numbers of cells.

2.5 Compositional model for more than two conditions

Many scRNA data are measured through more than 2 conditions. The ability to perform tests for

multiple conditions has potential to better analyze the data. We present a framework allowing

inference for various patterns of how those distributions are varied under multiple conditions. Using

the compositional model, the pattern of differential/equivalent distributions can be fully determined

by the pattern of means and pattern of aggregated proportions. We extended the double Dirichlet

prior in section 2.2 to infer patterns of aggregated proportions under more than two conditions.

2.5.1 Method

Assuming we have data from conditions 1, ..., T , denoted as X1, ..., XT . Recall f ig is marginal

density of gene g at condition i. A pattern of distributional changes can be represented as

Dg,∆ = {f ig = f jg ,∀i, j ∈ b,∀b ∈ ∆}

Where ∆ is a partition for conditions. We use ∆ to distinguish with π, which is the partition

for subtypes. Any two conditions from the same block have identical distribution and any two

31

conditions from different blocks have differential distribution. Assume there is K subtypes over the

T conditions. Recall fg,i is the sampling distribution for expression value at gene g from subtype

i. Let φji be proportion of subtype i at condition j. We have the marginal density of a gene in one

condition

f jg =
K
Σ
i=1
φjifg,i

As the mixing components are common to conditions, whether f ig = f jg is fully attributed to how the

mixing proportions are changed. Recalling that there is no distributional change if the aggregated

proportions remain the same on block of subtypes sharing the same distribution. Let φj = (φji) be

the vector for proportions in condition j and Φj
b =

∑
i∈b
φji be the aggregated proportions over block b

in condition j. Consider patterns of aggregated proportions

Aπ,∆ = {∀b1 ∈ ∆,∀j1, j2 ∈ b1, ∀b2 ∈ π,Φj1
b2

= Φj2
b2
} (2.13)

Recalling that patterns of means are

Mg,π = {θ ∈ Θ : µg,k = µg,k′ ⇐⇒ k, k′ ∈ b, b ∈ π} (2.14)

Further, we denote the most coarse partition and the most refined partition for conditions as ∆C =

{1, ..., T},∆R = {{1}, ..., {T}}. Similarly we have πC for the most coarse partition of subtypes.

We have a theorem

Theorem 2.5.1. Let Ω = {(µ, φ1, ..., φT), µ ∈ RK , φj ∈ RK} be the whole parameter space, then

the patterns of distributional change can be characterized as

Dg,∆ =



⋃
π 6=πC

Mg,π ∩Aπ,∆ if ∆ 6= ∆C,∆R⋃
π
Mg,π ∩Aπ,∆ if ∆ = ∆C

Ω \
⋃

∆′ 6=∆

Dg,∆′ if ∆ = ∆R

32

We propose a spike-slab-style mixture for (φ1, ..., φT), i.e.

p(φ1, ..., φT) = Σ
π

Σ
∆
ωπ,∆pπ,∆(φ1, ..., φT)

To specify pπ,∆, similar in section 2.2, there is a 1-1 correspondence between (φ1, ..., φT) and

parameter states:

{(φ̃jb1 ,Φ
b2
b1
, j ∈ b2), b1 ∈ π, b2 ∈ ∆}

where

φ̃jb1 =
φjb1
Φb2
b1

, for i ∈ b2, and Φb2
b1

=
∑
i∈b
φji for j ∈ b2

For example, φ̃jb1 is a vector of conditional probabilities for each subtype given that a cell from the

condition j is one of the subtypes in b1.

We introduce hyperparameters α1
i , ..., α

T
i > 0 for any subtype i, and set βb2b1 = Σ

j∈b2
Σ
i∈b1

αji for any

subtype block b1 and condition block b2. Extending notation, Let αjb1 be the vector of αji , i ∈ b1,

βb2π be the vector of βb2b1 , b1 ∈ π, and Φb2
π be the vector of Φb2

b1
, b1 ∈ π. Then pπ,∆ is determined in

the transformation scale with

Φb2
π ∼ DirichletN(π)[β

b2
π]

φ̃jb1 ∼ DirichletN(b1)[α
j
b1

] ∀b1 ∈ π

2.6 Concluding remarks

We have presented scDDboost, a tool for detecting differentially distributed genes from scRNA-

seq data, where transcripts are modeled as a mixture of cellular subtypes. The methodology links

established model-based techniques with novel empirical Bayesian modeling and computational

33

elements to provide a powerful detection method showing comparatively good operating character-

istics in simulation, empirical, and asymptotic studies.

In the software and numerical experiments we made specific choices, such as to use mixtures

of negative binomial components per gene, and to use K-medoids clustering on particular cell-cell

distances. These choices have evident advantages, but the model structure and theory developed

in Section 2 carry through for other cases. Future experiments could study other formulations

within the same schema; for example there may be cell-cell distances that better capture the intrinsic

dimensionality of expression programs, including, perhaps distances based on diffusions (Haghverdi

et al. (2015)) or the longest-leg path distance (Little et al. (2017)). Future experiments could also

further assess operating characteristics when the number of cells is very large and the number of

reads is relatively small, as may arise with unique molecular identifiers (Chen et al. (2018)). Further,

assuming a compositional structure to drive model-based computations may not be restrictive, since

it allows great flexibility in the form of each gene/condition-specific expression distribution (as

coded, they are finite mixtures of negative binomials).

EBSeq currently presents a computational bottleneck for scDDboost, since it searches all

partitions of K and encodes a hyper-parameter estimation algorithm that scales poorly with K.

Several approximations present themselves that may redress the problem, since, in the mixture

model context, only patterns π corresponding to relatively probable expression-change patterns over

subtypes have a big impact on the final posterior inference. Even resolving this bottleneck there

are advantages to having K small compared to n. Numerical experiments (see Appendix) show

increased false discoveries when K is over-estimated. But accurate estimation with large K would

not be expected to provide much improved power, since that depends on accurate estimation of

subtypes and their frequencies which relies on K being relatively small compared to n.

34

Chapter 3

Improved EBSeq: 1

3.1 Background

Since their introduction over twenty years ago, technologies to measure genome-wide gene expres-

sion have revolutionized science and medicine. The resulting data have had a major impact on

statistical sciences as well, by introducing challenges arising from ”small n, large p” datasets. One

of the central statistical challenges has been the differential expression problem: namely, how do

we identify genes whose expression levels vary significantly across biological conditions? Dozens

of methods have been developed toward this end and a few have endured. For RNA-Seq data, the

empirical Bayesian hierarchical modeling approach, encoded in R package EBSeq has a number

of advantages owing to how it captures variation characteristics of genes and isoforms and how it

scores differential expression over two or more conditions (Leng et al., 2013, Leng and Kendziorski,

2019). It has proven useful in hundreds of studies including studies of development (Louro et al.,

2020, Sanders and Cartwright, 2015, Yoon et al., 2017, Sabbagh et al., 2018), viral transcription

(Newhouse et al., 2017, O‘Grady et al., 2017, Baños-Lara et al., 2018, Zhang et al., 2017), and

cancer (Lee et al., 2020, Song et al., 2018, Son et al., 2017, Yang et al., 2016). The most common

use of EBSeq is to score differential expression between two biological conditions. The package’s

multi-condition feature is less frequently deployed; but recently it has been recognized that EB-
1This chapter is a reformated version of a manuscript written jointly with co-authors Drs. C. Kendziorski and M.A.

Newton, and prepared for the Journal of Statistical Software

35

Seq multi-condition scores are uniquely suited to characterizing multiple cellular subtypes from

the growing body of single-cell RNA-seq data (Ma et al., 2019). The work reported here is moti-

vated by the need to improve computational performance of the multi-condition calculations within

the original system, say EBSeq.v1, which at the time of writing is version 1.26.0 at Bioconduc-

tor(Huber et al., 2015) In addition to some basic code improvements, we deploy in EBSeq.v2 a new

algorithmic approach to determining multi-condition differential expression scores.

With samples from K biological conditions, EBSeq.v1 calculates posterior probability scores

for various patterns of differential expression among these conditions. Typically the null pattern, in

which expected expression is the same across all groups, receives the highest score, on the average

over genes; the software can consider many patterns. A computational bottleneck arises if we ask

the code to consider all possible patterns, which are equal in number to the Bell number, BK , of

partitions of K objects (Gardner, 1978). For even moderate K, the memory and time costs of

EBSeq.v1 become excessive. Section 2 describes an alternative pruning/clustering algorithm which

leverages the finding that many of the differential expression patterns will have small mixing rates;

and we can know this without fitting the full model. By identifying patterns that are probably

inconsequential to the final inferences, we remove them from other compute-intensive parts of the

code and improve the overall operating characteristics, as demonstrated in a battery of benchmark

tests in Section 3.3.

EBSeq.v2 improves the performance of EBSeq.v1. In addition to improved handling of group

partitions indicated above and discussed in Section 2, the core code is converted to C++ and adopts

open-source, peer-reviewed, and fast libraries Eigen and Boost for internals (Guennebaud et al.,

2010, Boost, 2015). We also modify the EM algorithm by changing how the hyperparameters

are recomputed in each cycle. We substitute the Nelder-Mead optimization (optim from package

stats) with a single gradient step within each EM update. The overall effect of these changes is to

dramatically improve the performance of EBSeq in the multi-group setting.

36

3.2 The statistical problem

For each inference unit in the system, we have real-valued measurements X = {Xi} for a sam-

ple index i = 1, 2, · · · , n, as well as discrete sample labels, say yi, taking values in a label set

{1, 2, · · · ,K}. The labels refer to different sampling groups, or conditions, that underly the mea-

surements, and we are especially interested in the case when K exceeds 2. In applications of

interest we expect K to be small compared to n, perhaps in the tens when n is in the hundreds

to thousands. Statistical inference is focused on evaluating hypotheses about the unknown mean

values µk = E(Xi|yi = k). For example, in the case of K = 4 groups, we have B4 = 15 different

patterns of equality and inequality among the group means, a few of which are:

H0 : µ1 = µ2 = µ3 = µ4

H1 : µ1 6= µ2 = µ3 = µ4

H2 : µ1 6= µ2 6= µ3 = µ4, µ1 6= µ3.

The set of partitions of {1, 2, · · · ,K} is in one-one correspondence with the set of such hypotheses

regarding equalities and inequalities among the means. More specifically, for a partition π = {b}

composed of mutually disjoint blocks b ⊂ {1, 2, · · · ,K}, we say that mean vector µ = (µk)

satisfies pattern π if µj = µk whenever j, k ∈ b for some b ∈ π and also if µj 6= µk whenever j

and k are in different blocks. Thus, for example, H0 above corresponds to π = {{1, 2, 3, 4}}, and

H1 corresponds to π = {{1}, {2, 3, 4}}. In the remainder, we use notation Mπ to denote the the

constraint (i.e., hypothesis) on the mean vector associated with partition π:

Mπ =
{
µ ∈ RK : µj = µk ⇐⇒ j, k ∈ b, b ∈ π

}
.

Notice that any mean vector µ is an element of exactly one of these subsets, and, considering all

partitions,

RK =
⋃
π

Mπ.

37

The use of partition/pattern structures for expected values appears in many statistical problems.

They are a central feature of Dirichlet-process mixture computations (MacEachern, 1998), various

Bayesian clustering algorithms (Quintana and Iglesias, 2003, Heller and Ghahramani, 2005), as well

as empirical Bayesian methodologies for genomic applications, such as the EBSeq tool introduced

earlier, and a similar tool for microarray-based data, EBarrays (Kendziorski et al., 2003a).

In empirical Bayesian applications, there are very many inference units (genes), and for each

sample i there is a measurement on every unit. The methodology entails both discrete and contin-

uous mixing over the parameter space in order to deliver posterior probability scores for each unit:

plocal,π = P (Mπ|X, y). We use the subscript ‘local‘ to remind us that the the probability is local

to the particular unit (e.g., gene), in the same way that the local false discovery rate is local to each

testing unit in large-scale inference (Efron, 2005). The discrete mixing further involves probabilities

estimated for the whole system, pglobal,π. By the use of maximum likelihood estimation, the fitted

probabilities satisfy:

pglobal,π = meanunits (plocal,π)

The conditional independence assumptions behind EBSeq induce a product-partition form on plocal,π:

with Xb = {Xi : yi = k, and k ∈ b} denoting all nb measurements on a given unit (gene) from

samples i whose condition status yi maps them to a block b of partition π,

plocal,π ∝ pglobal,π

∏
b∈π

f(Xb).

The proportionality is resolved by summing over all BK partitions, which presents a computational

challenge even for moderateK. In EBarrays, the joint predictive mass f(x) takes either a compound

Gamma form or a log-normal form; our focus is to improve EBSeq, which brings empirical Bayes

methodology to RNA-Seq data. In EBSeq, f(x) takes a special form as a Beta mixture of Negative

Binomial (NB) mass functions. These distributional choices respond to properties and variance

38

characteristics of RNA-Seq data, and also lead to a convenient closed-form predictive mass function:

f(x) =
[m∏
i=1

(
xi + γ − 1

xi

)]Beta(α+mγ, β + Σm
i=1xi)

Beta(α, β)
(3.1)

EBSeq.v1 sets hyperparameters α, β, and γ as well as mixing rates pglobal,π using both local data

on the unit and global data on from all units. See Appendix A.13 for additional details.

3.3 Pruning

EBSeq.v1 fits a mixture over all BK partitions. Even if this were computationally feasible for mod-

erately large K, we expect in applications that very many, perhaps most, of these partitions would

contribute a negligible amount to the fitted model. We propose a pruning algorithm that uses filter-

ing statistics to identify partitions that are likely to carry most of the mixture mass without the need

to fit the mixture over all partitions. The algorithm works by selecting probable partitions at each

unit and taking their union as our global pool of partitions possibly of much smaller size than BK .

Consider first a single inference unit (gene) and the group sample means µ̂ = (µ̂1, ..., µ̂K):

µ̂k =

∑n
i=1Xi1[yi = k]∑n
i=1 1[yi = k]

and let r = (r1, ..., rK) represent the rank of µ̂, i.e. rk is the position of µ̂k in the permutation

rearranging µ̂ into ascending order. We use an overlap concept that was also used in (Dahl, 2009b)

to trim partitions in a modal clustering application. Two sets E1 and E2 of finite and integer

elements overlap if E1 contains a number between the smallest and largest numbers of E2, or vice

versa. For example, E1 = {1, 3} overlaps with E2 = {2}, but E1 = {1, 2} and E2 = {3}

do not overlap. Relative to a partition π = {b}, consider sets of indices Ar(b) = {rk, k ∈ b}.

Compatibility: A partition π is compatible with an empirical rank r if either π contains only one

block or if for any two different blocks b1, b2 ∈ π, Ar(b1), Ar(b2) do not overlap. For example

with K = 4, and the empirical ordering µ̂1 < µ̂2 < µ̂3 < µ̂4 corresponds to rank r = (1, 2, 3, 4).

39

The partitions compatible with r, and their corresponding hypotheses, are

{{1, 2, 3, 4}} µ1 = µ2 = µ3 = µ4

{{1}, {2, 3, 4}} µ1 6= µ2 = µ3 = µ4

{{1, 2}, {3, 4}} µ1 = µ2 6= µ3 = µ4

{{1, 2, 3}, {4}} µ1 = µ2 = µ3 6= µ4

{{1, 2}, {3}, {4}} µ1 = µ2 6= µ3 6= µ4

{{1}, {2, 3}, {4}} µ1 6= µ2 = µ3 6= µ4, µ1 6= µ4

{{1}, {2}, {3, 4}} µ1 6= µ2 6= µ3 = µ4, µ1 6= µ3

{{1}, {2}, {3}, {4}} All µs are distinct,

while, for example, µ1 = µ3 6= µ2 = µ4, i.e., {{1, 3}, {2, 4}}, is not compatible with r. In fact, for

the set Cg of partitions π that are compatible with the empirical ranks at unit g, we find:

Lemma 3.3.1. The cardinality of Cg is |Cg| = 2K−1.

Compatible partitions vary from unit to unit, and over the full system there may still be close to

BK different partitions that are compatible for at least one unit. But compatibility is a useful first

property to consider as we filter the total number of partitions to a manageable number.

Sampling theory offers one argument in support of considering compatible partitions when the

total number of samples n is large compared to the number of groups K. Then, deviations µ̂ − µ

tend to be relatively small. For the pattern Mπ corresponding to µ, π is not compatible with the

empirical ranks only if for some pair of groups j and k, we have µj < µk and also µ̂j > µ̂k. By the

law of large numbers, this event is increasingly improbable as n increases.

We investigate compatibility empirically by running EBSeq.v1 in three example data sets where

K is sufficiently small that computations are feasible: GSE45719 (Deng et al., 2014), GSE57872

(Patel et al., 2014), GSE74596 (Engel et al., 2016a). For each data set, Table 1 reports

pcompatible = meang

(
Σ

π∈Cg
plocal,π

)
,

40

which measures the posterior probability mass of compatible partitions in a fitted model. Compat-

ible partitions cover most of the mixture mass in these cases. Table 1 also reports N95%, which

measures the concentration of local posterior probability mass over the full set of partitions. Specif-

ically, at each unit g we consider the most probable partitions and we count how few of these are

required to capture at least 95% of the local probability mass, we then average over units to get

N95%. We also keep track of Nc,95%, which measures the average number of compatible partitions

within the set capturing at least 95% local mass. Notice that Nc,95% and N95% are much smaller

than |Cg| = 2K−1, but we we seek still further pruning to have a manageable number of partitions

when considering all units at once.

Data Set Nsamples Nunits K pcompatible BK N95% Nc,95%

GSE45719 110 27083 4 95% 15 4.9 3.56
GSE74596 114 23337 6 82% 203 13.11 6.57
GSE52529 143 22112 7 85% 877 40.5 21.2

Table 1: Empirical properties of partitions in several data sets. Nsamples, Nunits are numbers of
samples and units

A key observation is that some pairs of groups present strong information that we can use

to filter partitions. For example, at typical levels of variation seen in RNA-Seq data, observing

µ̂j = 10, µ̂k = 1000 at two groups would suggest µj 6= µk, and we may not lose much by dropping

partitions π asserting the opposite: µj = µk. Such information is measured by a Bayes factor

comparing differential mean with equivalent mean, namely

Dj,k =
P (X{j,k}|µj 6= µk, y)

P (X{j,k}|µj = µk, y)
=
f(Xj)f(Xk)

f(X{j,k})

whereX{j,k} represents vector of all expression values at a given unit for samples from groups j and

k and f is the predictive density function from (3.1). If the two-group Bayes factor is sufficiently

extreme (small or large), we are guided about partitions that may be dropped or included before

doing a a full mixture computation.

In restricting to compatible partitions Cg, the two-group Bayes factors are relevant to pairs of

41

groups that are adjacent after ranking by empirical mean. Let oi be the antirank representing the

group label having ith smallest sample mean. Then each π ∈ Cg is set by filling either 6= or = into

the slots of equation (3.2),

µo1 µo2 µoK . (3.2)

These K − 1 slots may be assessed using two-group Bayes factors. To identify a unit specific

set of pruned partitions Sg, we consider three assignment states for each slot in (3.2): (equivalent,

differential, and uncertain) based on the Bayes factor and a user-specified threshold t1 > 0.

log(Doi,oi+1) > t1 =⇒ µoi 6= µoi+1

log(Doi,oi+1) < −t1 =⇒ µoi = µoi+1

−t1 < log(Doi,oi+1) < t1 =⇒ uncertain

Any partitions consistent with the filled-in (3.2) constitute a restricted (i.e. pruned) set of partitions

Sg ⊂ Cg. The user-specified threshold t1 gauges the size of Sg, with larger t1 being more inclusive

and smaller values being more restrictive. We say NUC,g is the number of uncertain positions at

unit g, and we take S = ∪gSg to be the selected set of partitions to be used in the full model-fitting

computation. We say Nselected = |S|. To prevent some corner case, we also provide users options to

upperbound the number of uncertainty positions at each unit, details can be found in the appendix

A.15

Algorithm 2 provides pseudo-code for the pruning algorithm of one unit.

To investigate the pruning algorithm we ran it on two example data sets that are too large for

EBSeq.v1: Hrvatin (Hrvatin et al., 2018), Retina (Shekhar et al., 2016), and we set the threshold

t1 = 1. Table 2 shows that units NUC,g is quite small for this threshold setting.

We also consider the pruning method in the smaller examples from Table 1. Here we can

calculate the overall mixture mass (from the full model and EBSeq.v1) that is associated with the

42

Data Set Nsamples Nunits K mean NUC,g max NUC,g Nselected BK (million)

Hrvatin 2164 17228 12 0.016 4 354 4.2
Retina 15551 22156 14 0.008 4 527 190.9

Table 2: Properties of two-group Bayes factor filtering in two example data sets

selected set of partitions: pS = Σ
π∈S

pglobal,π. Table 3 confirms that the pruning algorithm is finding

dominant mixture components.

Data Set Nselected BK pS

GSE45719 15 15 1
GSE74596 126 203 0.99
GSE52529 227 877 0.88

Table 3: Empirical properties of selected partitions in three example data sets.

There is no theoretical guarantee that pruning will retain the true, data-generating partitions.

However, We take the union of local selected partitions to construct global pool, which make it

less likely to miss a true signal. And we have theorem 3.3.1 partially supporting consistency of

our selection rule. Namely it tells if the Bayes factor of the two adjacent groups is favorable for

differential means. Then the partition maximizing the plocal,π will also have differential means for

this two groups. The regularity conditions for theorem 3.3.1 essentially requiring µ̂oi+1 − µ̂oi ≥

O(1
min(noi ,noi+1)), which is easily satisfied given moderate size of samples.

Theorem 3.3.1. If some regularity conditions are satisfied (see appendix). Then if Doi,oi+1 > 1,

the partition π∗ = argmax plocal,π must have adjacent group oi and oi+1 to be classified in different

groups

43

Algorithm 2 PRUNING FOR ONE UNIT

Input:

expression data at one gene Xg

subtype label y = (yi)

threshold t1 for Bayes factor

threshold t2 to filter small mean values

threshold K∗ for number of uncertainty positions

hyperparameters (α, β)

Output: Sg: pruned partitions for gene g
1: procedure PRUNING(Xg, y, t1, t2,K

∗, α, β)
2: group sample means: µ̂← Xg, y
3: empirical ordering of µ̂: o← µ̂
4: groups sizes: no
5: initialize state between adjacent groups: ST, STj ← uncertain
6: uncertain positions: UC ← {}
7: for oj in o1 to oK−1 do
8: if max(µ̂oj , µ̂oj+1) < t2 then
9: STj ←=

10: else
11: Doj ,oj+1 ← calculate two-group Bayes factor from(µ̂oj , µ̂oj+1 , noj , noj+1 , α, β)
12: if log(Doj ,oj+1) > t1 then
13: STj ←6=
14: else if log(Doj ,oj+1) < −t1 then
15: STj ←=
16: else
17: UC ← UC ∪ {oj}
18: end if
19: end if
20: end for
21: NUC ← min(K∗, |UC|)
22: UC∗ ← positions with smallest NUC absolute value of log Bayes factors in UC.
23: Sg ← use ST and UC∗ to generate
24: end procedure

44

3.4 Crowding issue

In contrast to pruning, we also want to prevent the scenario that too few patterns are selected. This

could happen when there is a long chain of equal states, which we called crowding phenomena.

µoj = µoj+1 = µoj+2 ... = µok

Even though the Bayes factors for adjacent groups can be significant favorable for equal states,

but the difference between head and tail of the chain may be big. In the pruning part, we do

not compare groups when they are not adjacent. This may induce contradiction. For example,

Doj ,oj+1 , Doj+1,oj+2 are small and favorable for equivalent state, we have µoj = µoj+1 = µoj+2 .

However Doj ,oj+2 may support uncertain or differential states. To further check the difference

between µoj and µoj+2 , we provide an ”equal-handle” algorithm to further investigate such equality

chains and break them down to sub partitions when necessary. The algorithm adopts the idea for

agglomerative hierarchical clustering. We iteratively check the state of adjacent groups with the

smallest Bayes factor along the chain. If the state is equal, we combine them to form a new group.

Otherwise we break the chain. Figure 3.1 demonstrate the algorithm on an equality chain of length

5. Algorithm 3 gives the equal-handle pseudo-code.

Figure 3.1: Illustration of equal-handle algorithm, o1, ..., o5 are groups on the equal chain. we
sequentially merge two groups having the smallest Bayes factor(strongest evidence for having equal
mean) to build a dendrogram. Red line is the threshold where we choose to break down the chain.
There are two clusters, groups within the same cluster having same mean. The state between clusters
become uncertain. Thus we have two patterns now 1) o1 = o2 = o3 = o4 = o5 and 2) o1 = o2 6=
o3 = o4 = o5

45

Algorithm 3 EQUALHANDLE FOR ONE UNIT

Input:

expression data at one gene Xg

subtype label y = (yi)

positions for chain of equal states õ = (oj , ...ok)

vector of Bayes factors for adjacent elements along the chain Dõ = (Doj ,oj+1 , ...Dok−1,ok)

threshold t1 for Bayes factor

Output: updated Sg
1: procedure EQUALHANDLE(Xg, y,De, e, t1)
2: while min | log(De)| > t1 do
3: pick j∗ such that Doj∗ ,oj∗+1

= min(Dõ)
4: update õ by merging group oj∗ and oj∗+1

5: update Dõ by recalculating Bayes factor between the merged group and its adjacent
groups.

6:

7: end while
8: if |õ| > 1 then
9: mark state between groups that are not merged as uncertain

10: else
11: return
12: end if
13: end procedure

46

3.5 Full algorithm

EBSeq.v2 works as follows: the global pool of partitions is determined by pruning and equalhandle,

then EM algorithm is applied to estimate the parameters. We improve the optimization within the

EM iterations. EBSeq.v1 does a full optimization within each M-step to update the hyper param-

eters (α, β) and the mixing rates pglobal,π. There is a closed formula for updated mixing rates but

hyperparameter optimization by optim is more compute intensive. EBSeq.v2 uses one gradient step

toward the optimal solution within each EM iteration. Numerical experiments in Section 3 demon-

strate the two methods produce comparable results. Further, EBSeq.v1 is implemented primarily in

R, which, like any other interpreted language, is relatively slow for intensive computing. We deploy

core components of EBSeq.v2 in C++ for efficiency.

In some applications of EBSeq, we may be able to further prune partitions by pglobal,π. For

example, in single cell study, many papers argue that the transcripts have a lower dimensional

structure (Lopez et al., 2018). The co-expression characteristics of genes is a potential explanation

and a consequence is that the true partitions will present themselves in quite a few genes and thus

pglobal,π can not be too small. Thus, we provide an option for users to prune more aggressively,

which is achieved by iteratively throwing out partitions with small pglobal,π after each run of EM.

The complete framework is presented as Algorithm 4.

3.6 Results

We compare package versions EBSeq.v2 and EBSeq.v1 on benchmark data sets where the number

of groups K is small. We go on to assess the performance of EBSeq.v2 in both synthetic and

empirical data sets where K is larger.

3.6.1 Benchmarks with small K

We check EBSeq.v2 on the benchmark data sets built into EBSeq.v1. Since K ≤ 3 in these cases,

we use no pruning in deploying EBSeq.v2, and so this tests speed and the effect of hyper-parameter

47

Algorithm 4 EBSEQ.V2
Input:

GENES by SAMPLES expression data {Xg,i}

sample subtype labels y = (yi)

threshold t1 for Bayes factor

threshold t2 to filter small mean values

threshold t3 for further trimming

threshold K∗ for number of uncertainty positions

minimum length Le of equality chain for doing equal-Handle

initial values for hyper parameters α(0), β(0)

Output: final selected partitions S, matrix of {plocal,π}
1: procedure EBSEQ2(Xg,c, y, t1, t2, t3,K

∗, Le)
2: for gene in Genome do
3: Sg ← run pruning algorithm
4: if there is equality chain with length > Le then
5: updated Sg ← run equal-Handle algorithm
6: end if
7: end for
8: S ← ∪gSg
9: p

(0)
global,π ←

1
|S| ,uniform initialization

10: t = 0, number of iterations.
11: repeat
12: if t > 0 then
13: if p(t)

global,π < t3 then

14: p
(t)
global,π ← 0

15: end if
16: end if
17: E-step: p(t+1)

local,π ← p
(t)
global,πP (X|Mg,π, y, α

(t), β(t))

18: M-step: α(t+1), β(t+1) updated by one step gradient ascent.
19: M-step: p(t+1)

global,π ← mean(p
(t+1)
local,π)

20: t = t+ 1
21: until convergence criterion is met
22: end procedure

48

optimization differences between the algorithms. The proposed method expects normalized data:

if input raw data, we provide a median normalization (Love et al., 2014b). Basically, function

MedianNorm calculates the size factors that are further used for normalization and are passed in the

EBTest function. EBSeq.v2 inherits all the functions from version 1.

The first example contains 1000 genes with 2 groups and 5 samples per group. We found that the

correlation between the estimations of posterior of DE under two versions is 0.995.

We also consider another example, where we have 500 genes with 3 groups and 2 samples per

group. At each gene, we consider the patterns π with maximum plocal,π under the two algorithms

and use adjusted rand index (ARI) to measure their similarity. The average ARI over genes is 0.961,

which also confirms the compatibility between the two versions of EBSeq. We increase the number

of simulated genes to 10000 and compare the running time of two algorithms under K = 2, 3. Even

at small K, EBSeq.v2 is a lot faster than EBSeq.v1 (Table 4)

EBSeq version K Average Run Time (minutes)

v1 2 3.3
v2 2 0.05
v1 3 45
v2 3 0.05

Table 4: Average run time comparison, 20 samples per group, 10000 genes. EM iteration for
EBSeq.v1 is set to 5

3.6.2 Synthetic data, larger K

We use the Chinese restaurant process (CRP) over both genes and samples to simulate synthetic ex-

pression data with plausible variation characteristics. Each setting has 20000 units and 200 samples

per group; details are in Appendix A.16.

We evaluate the performance of EBSeq.v2 with four metrics: coverage, extra patterns, scores

and time. Let A be the set of patterns selected by EBSeq.v2, and B be the true underlying patterns.

Coverage is |A ∩ B|/|B|, extra patterns is |A \ B|. Coverage measures how well we can capture

the underlying patterns. Extra patterns measures the efficiency, namely how many extra patterns

49

we are not able to filter out. For each gene, there is an underlying pattern πg and an estimated

pattern π′g maximizing the posterior. We also consider adjusted Rand index (ARI) between πg and

π′g to measure the accuracy of our estimation. Time is the CPU time of running EBSeq.v2. The

computation was done using a single core 2.4GHz Intel Xeon E5645 with 126 Gb of RAM.

Figure 3.2 shows the results for 15 and 20 groups (1.38 billion and 51.7 trillion patterns). Our

pruning algorithm covers almost every true patterns (Figure 3.2a). The ARI scores are close to 1

with small standard deviation (Figure 3.2c,3.2d), which shows our algorithm can accurately identify

the true patterns. The number of extra patterns and time are acceptable and a great improvement to

make the problem doable (Figure 3.2b,3.2e).

3.6.3 Empirical study

We apply EBSeq.v2 to three unique-molecule-index (UMI)-based scRNA-seq data sets. The first

one is a mouse visual cortex dataset in which 47, 209 cells were classified into main cell types and

subtypes through extensive analysis (Hrvatin et al., 2018). We preprocessed the data and consider

a subset of n = 2164 cells and K = 12 cell types. Figure 3.3 showed log mean expression of

each cell types at the genes favorable for a specific DE pattern, We can clearly see the differences

between the four blocks and similarity within each block.

The second dataset contains cells from K = 10 purified populations derived from peripheral

blood freely available from 10X Genomics, where 1,000 cells were sampled randomly from each

cell type and combined to form a n = 10, 000-cell data set. We carried out UMAP visualizations of

the cells considering whole genome versus considering genes favorable for specific patterns(Figure

3.4). In the UMAP plot, cells are clustered together if we use those genes favorable for equivalent

expression across all cell types. On the other hand, if we use genes favorable for other DE pattern,

the projection reflected the difference of means between blocks.

The third dataset contained n = 27, 499 mouse retinal bipolar cells, we used cluster annotation

from K = 14 cell types from the author (Shekhar et al., 2016). We randomly selected 2 genes

”Anp32a” and ”BC030499” favorable for 2 patterns and show the cumulative distribution functions

across the blocks (Figure 3.5). In the cdf plot, we observe distributional differences between cells

50

A B C

0.
97

0
0.

98
0

0.
99

0
a

co
ve

ra
ge

●

A B C

10
00

15
00

20
00

25
00

b

nu
m

be
r

of
 e

xt
ra

 p
at

te
rn

s

●

●

A B C

0.
96

0
0.

97
0

0.
98

0

c

av
er

ag
e

A
R

I

●

A B C

0.
08

5
0.

09
5

0.
10

5
0.

11
5

d

sd
 o

f A
R

I

●

A B C

20
0

30
0

40
0

50
0

60
0

e

nu
m

be
r

of
 D

E
 p

at
te

rn
s

K = 15
K = 20

●

●

A B C

15
20

25
30

35

f

tim
e

in
 m

in
ut

es

Figure 3.2: simulation setting: 200 samples each group, 20000 genes in total. We choose number
of groups K to be either 15 or 20. Blocks of genes are generated from Chinese restaurant process,
genes within the same block will have same DE patterns. x-axis label ”A”, ”B”, ”C” represent 3
parameters setting (α0) of the Chinese restaurant process governing total number of patterns under-
neath (here roughly 200, 400 and 600 patterns for each case). Under each choice of (K,α0), we
simulated 10 datasets. Here are the boxplots of the 10 datasets. Fig a presents the coverage percent-
age, Fig b presents the extra patterns we selected but does not belong to the set of true underlying
DE patterns. Fig c presents the average ARI(adjusted rand index) between the MAP pattern and
true pattern. Fig d presents the standard deviation of ARI. Fig e presents the number of underlying
DE patterns across the genome. Fig f presents the computation time (minutes)

51

presenting differential means.

1 2 3 4
E

xc
L5

_2

E
xc

L4
_3

E
xc

L5
_3

E
xc

L5
_1

E
xc

L2
3_

1

H
ip

E
xc

L2
3_

2

S
ub

E
xc

L4
_2

E
xc

L4
_1

E
xc

L6

R
S

P

0
200
400

size

0 2 4 6 8

mean

log mean expression

−2
−1
0
1
2

Figure 3.3: Heat-map of the mean expression on log scale across groups at those genes with one
MAP pattern, genes are filtered by mean expression bigger than 0.5. The blocks are groups shared
same mean. The top bar plot shows the number of cells each group ordered within each block, the
right barplot shows the ordered marginal mean across all cells. Data are mouse cortex cells from
(Hrvatin et al., 2018)

To further check the overall performance of EBSeq.v2, we consider another metric of consis-

tency. Namely, we have empirical fold change of means over any two groups. We also have our

52

Figure 3.4: Umap of PBMC data, left considering whole genome. Top right considering those genes
identified to have all equal means across cell types, bottom right considering those genes identified
to have maximum a specific posterior pattern

posterior estimates of groups i and j having differential means as P (µi 6= µj |X) = Σ
π∈Πi,j

plocal,π

where Πi,j is the collection of partitions that i and j belongs to different blocks. We average the

empirical fold change and the posterior estimates over whole genome. From Figure 3.6, the upper

triangle(averaged log fold change) is quite similar to the lower triangle(averaged posterior esti-

mates).

53

Figure 3.5: Cumulative distribution of transcripts at two genes ”Anp32a” and ”BC030499”. Cells
shared same mean are pooled. Using data from RETINA (Shekhar et al., 2016), bipolar cells from
mouse

3.7 Summary and discussion

We have presented algorithms to accelerate and scale up EBSeq, a tool to score genes according to

likely pattern of differential expression they display over two or more biological conditions. The

pruning algorithm reduces the size of the mixture and serves as core for the acceleration when the

number of conditions is moderately large. We worked out a theoretical result that partially supports

the consistency of the pruning. The equal-handle algorithm deals with a corner case and keeps the

model sensitive to the difference between groups. Through simulated and empirical examples we

demonstrate the efficiency and accuracy of the new EBSeq.v2 tool.

Technologies and tools for RNA-seq data are still developing, and large-scale datasets com-

posed of complex cell types are expected. Understanding patterns of mean expression among a lot

of cell types can be an essential unit for many analysis, e.g. identifying genes with distributional

changes across multiple conditions. Currently, negative binomial model approximates gene expres-

sion data well. One possible extension is to incorporate other densities (e.g. Gamma and log normal

distribution) into EBSeq.v2 as they may better fit some data.

54

−2

−1

0

1

2

Figure 3.6: Heatmap of estimated log fold change v.s. posterior probabilities that two groups are DE
using data (Hrvatin et al., 2018). Both the log fold change and posterior estimated are normalized
by deducting corresponding mean and dividing by corresponding standard deviation. Given a gene,
there are two matrices, one for log fold change and one for posterior probability of DE over all
possible pair of groups. We average those matrices over all genes. All values are normalized by
demean and divided by standard deviation. Upper triangle is for averaged log fold change and lower
triangle is for averaged posterior of DE. We observe consistency between those two heatmaps, which
demonstrates large differences are corresponding to high probability of DE while small differencs
are corresponding to low probability of DE.

Computational details

The results in this paper were obtained using R 3.5.1 with the packages Rcpp 0.12.11, RcppEigen 0.3.2.9.0,

BH 1.69.0-1. R itself and all packages used are available from the Comprehensive R Archive Net-

work (CRAN) at https://CRAN.R-project.org/.

https://CRAN.R-project.org/

55

Appendices

56

A.1 Proof of Theorem 2.2.1 in Chapter 2

If θ ∈
⋃
π∈Π [Aπ ∩Mg,π], then there exists a partition π for which θ ∈ Aπ and θ ∈ Mg,π. By

construction

f1
g (x) =

K∑
k=1

φkfg,k(x) =
∑
b∈π

∑
k∈b

φkfg,k(x) =
∑
b∈π

Φbfg,k∗(b)(x),

where k∗(b) indexes any component in b, since all components in that block have the same compo-

nent distribution owing to constraint Mg,π. Continuing, using the constraint θ ∈ Aπ,

f1
g (x) =

∑
b∈π

Ψbfg,k∗(b)(x) = f2
g (x) ∀x.

That is, θ ∈ EDg.

If θ ∈ EDg, then f1
g (x) = f2

g (x) for all x. Noting that both are mixtures over the same set of

components {fg,k}, let {hg,l : l = 1, 2, · · · , L} be the set of distinct components over this set, and

so

f1
g (x) =

k∑
k=1

φkfg,k(x) =
L∑
l=1

cg,l(φ)hg,l(x) =
L∑
l=1

cg,l(ψ)hg,l(x) = f2
g (x)

where

cg,l(φ) =

K∑
k=1

φk1[fg,k = hg,l] cg,l(ψ) =

K∑
k=1

ψk1[fg,k = hg,l]. (3)

Finite mixtures of distinct negative binomial components are identifiable (Proposition 5 from Yakowitz

and Spragins (1968)), and so the equality of f1
g and f2

g implies cg,l(φ) = cg,l(ψ) for all l =

1, 2, · · · , L. Identifying the partition blocks bl = {k : fg,k = hg,l}, and the partition π̃ = {bl},

we find θ ∈ Aπ̃ ∩Mg,π̃. The accumulated probabilities in (3) correspond to Φπ̃ and Ψπ̃, which are

equal on Aπ̃.

57

A.2 Randomizing distances for approximate posterior inference

One way to frame the subtype problem is to suppose that subtype labels z = (zi) satisfy z = f(∆),

where ∆ = (δi,j) is a n × n matrix holding true, unobservable distances, such as δi,j between

cells i and j, and that f is some assignment function, like the one induced by the K−medoids

algorithm. Then posterior uncertainty in z would follow directly from posterior uncertainty in ∆.

On one hand, we could proceed via formal Bayesian analysis, say under a simple conjugate prior in

which 1/δi,j ∼ Gamma(a0, d0), for hyperparameters a0 and d0, and in which the observed distance

di,j |δi,j ∼ Gamma(a1, a1/δi,j). This would assure that δi,j is the expectation of di,j , with shape

parameter a1 affecting variation of measured distances about their expected values. Not accounting

for any constraints imposed by both D and ∆ being distance matrices, we would have the posterior

distribution 1/δi,j |D ∼ Gamma(a0 + a1, d0 + a1di,j). For any threshold c > 0, we would find

P (δi,j ≤ c|D) = P

(
U ≥ d0 + a1di,j

c(a0 + a1)

)
(4)

where U ∼Gamma(a0 + a1, a0 + a1)

Alternatively, we could form randomized distances d∗i,j = di,j/wi,j where wi,j is the analyst-

supplied random weight distributed as Gamma(â, â) as in Section 2.2. Notice that

P (d∗i,j ≤ c|D) = P (wi,j > di,j/c|D)

which is also an upper tail probability for a unit-mean Gamma deviate with shape and rate equal to

â. Comparing to (4), by setting â to equal a0 + a1, and if a0 and d0 are relatively small, we find

P (d∗i,j ≤ c|D) ≈ P (δi,j ≤ c|D).

In other words, the randomized distance procedure is providing approximate posterior draws of the

underlying distance matrix. In spite of limitations of this procedure for full Bayesian inference,

it provides an elementary scheme to account for uncertainty in subtype allocations. Numerical

experiments in Appendix make comparisons to a full, Dirichlet-process-based, posterior analysis.

58

Pseudo-code of scDDboost

Algorithm 5 SCDDBOOST

Input:

GENES by CELLS expression data matrix X = (Xg,c)

cell condition labels y = (yc)

number of cell subtypes K

number of randomized clusterings nr

Output: posterior probabilities of differential distribution
procedure SCDDBOOST(X, y,K, nr)

2: distance matrix: D = dist(X)← pairwise distances between cells (columns of X)
hyper-parameters (a0, a1, d0)← hyper(D). Set â = a0 + a1.

4: repeat
Gamma noise vector: e, with components ∼ Gamma(â/2, â)

6: randomized distance matrix: D∗ ← D/(e1T + 1eT)
ẑ∗ ← K−medoids(D∗)

8: P ∗ ← SCDDBOOST-CORE(X, y, ẑ∗)
until nr randomized distance matrices

10: return ∀genes g, P (DDg|X, y) = 1
nr

∑
D∗ P

∗
g

end procedure

59

A.3 Empirical datasets

Data set Conditions # cells Organism Ref

GSE94383 0 min unstim vs 75min stim 186,145 human Lane et al. (2017)
GSE48968-GPL13112 BMDC (2h LPS stimulation) vs 6h LPS 96,96 mouse Shalek et al. (2014)
GSE52529 T0 vs T72 69,74 human Trapnell et al. (2014c)
GSE74596 NKT1 vs NTK2 46,68 mouse Engel et al. (2016b)
EMTAB2805 G1 vs G2M 95,96 mouse Buettner et al. (2015)
GSE71585-GPL13112 Gad2tdTpositive vs Cux2tdTnegative 80,140 mouse Tasic et al. (2016)
GSE64016 G1 vs G2 91,76 human Leng et al. (2015)
GSE79102 patient1 vs patient2 51, 89 human Kiselev et al. (2017)
GSE45719 16-cell stage blastomere vs mid blastocyst cell 50, 60 mouse Deng et al. (2014)
GSE63818 Primordial Germ Cells, develop- mental stage: 7 week ges-

tation vs Somatic Cells, developmental stage: 7 week ges-
tation

40,26 mouse Guo et al. (2015)

GSE75748 DEC vs EC 64, 64 human Chu et al. (2016)
GSE84465 neoplastic cells vs non-neoplastic cells 1000, 1000 human Darmanis et al. (2017)

Appendix Table A5: Data sets used for the empirical study of scDDboost

Data set Condition # cells

GSE63818null 7 week gestation 40
GSE75748null DEC 64
GSE94383null T0 186
GSE48968-GPL13112null BMDC (2h LPS stimulation) 96
GSE74596null NKT1 46
EMTAB2805null G1 96
GSE71585-GPL13112null Gad2tdTpositive 80
GSE64016null G1 91
GSE79102null patient1 51

Appendix Table A6: Single-condition data sets used in the random-splitting experiment.

60

A.4 Proof of Theorem 2.2.2 in Chapter 2

Proof. [Proof of Theorem 2] Recall θ = (φ, ψ, µ, σ). Through the graphical structure of our

model (Figure 3), given n1 and n2 numbers of cells within each condition, we note that z1, z2 are

multinomial draws, also given φ and ψ. Also given z, Xg,c is sampled through NB(µg,zc , σg), and

only depends on (µ, σ). Thus P (X, y, z|θ) = P (y, z|φ, ψ)P (X|z, µ, σ), and also (µ, σ) and (φ, ψ)

are independent a priori given π. By Bayes’s rule (and always conditioning on π),

P (θ|X, y, z) ∝ P (X, y, z|θ)P (θ)

P (X, y, z|θ)P (θ) = P (y, z|φ, ψ)P (X|z, µ, σ)P (µ, σ|z)P (φ, ψ)

P (φ, ψ|y, z) ∝ P (y, z|φ, ψ)P (φ, ψ)

P (µ, σ|X, z) ∝ P (X|z, µ, σ)P (µ, σ|z)

Thus P (θ|X, y, z) ∝ P (φ, ψ|y, z)P (µ, σ|X, z)

It thus follows by integration over the parameter space thatP (Aπ ∩Mg,π|X, y, z) = P (Aπ|y, z) P (Mg,π|X, z) .

A.5 EBSeq

Here we recall some key elements from Leng et al. (2013) on the model behind EBSeq, which

we adapt to get P (Mg,π|X, z). Suppose we have K subtypes, let XI
g = XI

g,1, · · · , XI
g,S1

denote

transcripts at gene g from subtype I, I = 1, · · · ,K. The EBSeq model assumes that counts within

subtype I are distributed as Negative Binomial: XI
g,s|rg,s, qIg ∼ NB(rg,s, q

I
g). Due to sample-

specific size factor in the raw counts, r is made sample-specific. However, we are dealing with

normalized counts rather than raw counts in EBSeq, we instead make r shared at gene level across

all samples, i.e. XI
g,s|σg, qIg ∼ NB(σg, q

I
g)

P (XI
g,s|σg, qIg) =

(
Xg,s + σg − 1

Xg,s

)
(1− qIg)X

I
g,s(qIg)σg

61

and µIg,s = σg(1− qIg)/qIg ; For ease in later deriving the density kernel f , we use q rather than µ to

parameterize the NB.

Following Leng et al. (2013), we assume a prior distribution on qIg : qIg |α, βg ∼ Beta(α, βg).

The hyperparameter α is shared by the whole genome and βg is gene-specific. We force the size

factor to be 1 for all cells and use the same procedure as EBSeq to estimate the shape parameter σg.

Namely, we have

1. gene-level sample mean mg = 1
n

∑n
s=1Xg,s, where n = n1 + n2 is the total number of cells

2. average of sample variances over subtypes vg = 1
K

∑K
I=1 v

I
g .

3. vIg is the unadjusted sample variance for subtype I , i.e. vIg = 1
nI

∑
s,zs=I

(Xg,s−mI
g)

2 where

mI
g is the sample mean within subtype I and nI is the number of cells within subtype I .

We estimate the pooled over-dispersion rate by og =
vg
mg

and obtain σg = mg
og

1−og from the first

moment of NB. Our aim is to quantify the expression pattern among K groups:

Mg,π = {θ ∈ Θ : µg,k = µg,k′ ⇐⇒ k, k′ ∈ b, b ∈ π}.

For example, if K = 3, there are 5 expression patterns, which may be written equivalently in terms

of parameters q:

P1 : q1
g = q2

g = q3
g

P2 : q1
g = q2

g 6= q3
g

P3 : q1
g 6= q2

g = q3
g

P4 : q1
g = q3

g 6= q2
g

P5 : q1
g 6= q2

g 6= q3
g and q1

g 6= q3
g

62

In a pattern where two groups I and J share the same qg the counts from these groups are essentially

pooled: i.e. XI,J
g |σg, qg ∼ NB(σg, qg), qg|α, βg ∼ Beta(α, βg). The prior predictive function is

f(XI,J
g) =

∫ 1
0 P (XI,J

g |rg, qg) ∗ P (qg|α, βg)dqg =
[S∏
s=1

(Xg,s+σg−1
Xg,s

)]Beta(α+ΣSs=1σg ,β
g+ΣSs=1Xg,s)

Beta(α,βg) .

Consequently, the prior predictive function for P1, · · · , P5 takes a convenient form if we further

treat the distinct q’s as independently drawn from the common Beta mixing distribution:

hg1(Xg) = f(X1,2,3
g)

hg2(Xg) = f(X1,2
g)f(X3

g)

hg3(Xg) = f(X1
g)f(X2,3

g)

hg4(Xg) = f(X1,3
g)f(X2

g)

hg5(Xg) = f(X1
g)f(X2

g)f(X3
g)

where hgk(Xg) = P (Xg|Mg,πk , z) for the associated pattern πk. Then the marginal distribution of

count vector Xg is
5
Σ
k=1

pkh
g
k(Xg), where the mixing mass pk = P (Mg,π|z) is shared by all genes.

Then, the posterior probability of an expression pattern k is obtained by:

pkh
g
k(Xg)

5
Σ
l=1
plh

g
l (Xg)

.

In the optimization for determining the hyperparameters (α, βg, p), we use EM for the mixing

proportions and we use in each cycle a single gradient ascent step for α and βg, in contrast to a full

root-finding step used by EBSeq.

A.6 modalClust

In this section, we review and extend Dahl’s modal clustering procedure (Dahl (2009a)). This

extension is part of the default cell clustering method of scDDboost. It operates on data from one

63

gene at a time, and extends to Poisson-distributed observations the modal-clust procedure.

Product Partition Model (PPM): Let X = (X1, X2, ..., Xn) be a vector of data (say at one gene).

Given a partition π = {S1, · · · , Sq}, where Si are disjoint subsets of {1, 2, · · · , n} and
⋃q
i=1 Si =

{1, 2, · · · , n}, a PPM for X entails

p(X|π) =

q∏
i=1

f(XSi)

where XSi is the vector of observations corresponding to the items of component Si. The compo-

nent likelihood f(XS) is defined for any non-empty component S and can take many forms. The

partition π, which clusters cells, is the parameter we are interested in. Other parameters that may

have been involved in the model are integrated out. (Note the partition here has no relation to the

partition of subtypes, as, e.g. in Figure 3.)

When the prior distribution for a partition π also takes a product form then so does the pos-

terior. We aim to compute the MAP partition (maximizing the posterior p(π|X) ∝ p(X|π)p(π))

to be used as an initial estimated clustering. Dahl (2009a) demonstrated that by some choice of

f and prior of π, we can reduce the time complexity of finding the MAP partition to O(n2). The

crucial condition for f is the non-overlapping condition: if XS1 and XS2 are overlapped in the

sense that min{XS2} < max{XS1} < max{XS2} or min{XS1} < max{XS2} < max{XS1}, let

XS∗1
and XS∗2

be the sets of swapping one pair of those overlapped terms and keep the other un-

changed. Then f(XS1)f(XS2) ≤ f(XS∗1
)f(XS∗2

). Here we confirm the non-overlapping condition

for Poisson-Gamma observations.

Under the non-overlapping condition of density kernel f , the MAP partition π satisfies that for

any two blocks b1, b2 ∈ π, either max
i∈b1

(Xi) ≤ min
j∈b2

(Xj) or min
i∈b1

(Xi) ≥ max
j∈b2

(Xj). Thus we reduce

the solution space and reduce the time complexity. In the Poisson-Gamma model we have:

Xi|π, λ ∼ Poisson(Xi|λ1I{i ∈ S1}+ · · ·+ λqI{i ∈ Sq})

π ∼ p(π)

λj ∼ Gamma(α0, β0)

64

where p(π) ∝
q∏
i=1
η0Γ(|Si|). Integrate out λ, f(XS) is obtained as:

f(XS) =
βα

(|S|+ β)
Σ
i∈S

Xi+α

Γ(Σ
i∈S
Xi + α)

Γ(α)

1∏
i∈S
Xi

To apply modal-clustering on Poisson-Gamma model, we need to show the kernel f(XS) satisfies

the non-overlapping condition.

Proof. if XS1 and XS2 are overlapping, without loss of generality, we assume min{XS2} <

max{XS1} < max{XS2}, and we swap max{XS1} with min{XS2} and keep the rest unchanged

or we could also swap max{XS1} with max{XS2}. We denote the new set formed by swap of

max{XS1} with min{XS2} as S∗1 and S∗2 and swap of max{XS1} with max{XS2} as S∗∗1 , S∗∗2

accordingly.

Then we need to show at least one of the following happens

f(XS∗1
)f(XS∗2

) ≥ f(XS1)f(XS2) (5)

f(XS∗∗1
)f(XS∗∗2

) ≥ f(XS1)f(XS2) (6)

Let a = max{XS1}, b = min{XS2} and c = max{XS2}. h1 = Σ
i∈S1

Xi−a and h2 = Σ
i∈S2

Xi−b,

n1 and n2 are the number of elements in S1 and S2. Then

f(XS∗1
)f(XS∗2

) ≥ f(XS1)f(XS2)

⇐⇒

Γ(h1 + a+ α)

(n1 + β)h1+a+α

Γ(h2 + b+ α)

(n2 + β)h2+b+α
≤ Γ(h2 + a+ α)

(n2 + β)h2+a+α

Γ(h1 + b+ α)

(n2 + β)h1+b+α

⇐⇒

Γ(h1 + a+ α)

Γ(h1 + b+ α)

Γ(h2 + b+ α)

Γ(h2 + a+ α)
≤ (

n1 + β

n2 + β
)a−b

The left hand side of the above formula is LHS1 = (h1+b+α)...(h1+a−1+α)
(h2+b+α)...(h2+a−1+α) by the property of

65

Gamma function and that Xi are integers.

Similarly,

f(XS∗∗1
)f(XS∗∗2

) ≥ f(XS1)f(XS2)

⇐⇒

Γ(h2 + c+ α)

Γ(h2 + a+ α)

Γ(h1 + a+ α)

Γ(h1 + c+ α)
≤ (

n2 + β

n1 + β
)c−a

The left hand side of above formula is LHS2 = (h2+a+α)...(h2+c−1+α)
(h1+a+α)...(h1+c−1+α) .

If h1 ≤ h2, then LHS1 ≤ (h1+a−1+α
h2+a−1+α)a−b and LHS2 ≤ (h2+c−1+α

h1+c−1+α)a−b.

So if h1+a−1+α
h2+a−1+α ≤

n1+β
n2+β then (12) holds, if h2+c−1+α

h1+c−1+α ≤
n1+β
n2+β then (13) holds.

We multiply those two inequalities, and find that h1+a−1+α
h2+a−1+α∗

h2+c−1+α
h1+c−1+α = h1+a−1+α

h1+c−1+α∗
h2+c−1+α
h2+a−1+α ≤

1 as c > a and h1 ≤ h2. But n1+β
n2+β ∗

n1+β
n2+β = 1. At least one equality holds, consequently at least

one of (12) and (13) holds.

The proof for case h1 > h2 follows similarly.

A.7 Randomized K−means

In this section, we consider parameters for the distribution of random weights and some properties

the induced distribution over cell clusterings. Referring to the appendix in the main paper, to find

the value of a0, a1 and d0, we have the marginal likelihood of di,j

P (di,j |a0, a1, d0) =
Γ(a0 + a1)

Γ(a0)Γ(a1)

da00 d
a1−1
i,j aa11

(d0 + a1 ∗ di,j)a0+a1

We estimate d0 by treating di,j ≈ ∆i,j and based on the mean-variance ratio (E(1/∆i,j)
Var(1/∆i,j)

= d0),

d0 can be approximately estimated by moments of 1/di,j . Then we obtain a0, a1 from maximizing

marginal density of di,j . The MLE estimators are obtained through nlminb function in R. One

issue that arises is that the default value for tolerance rate of stopping is 1e-10, which yields large

value of a1 + a0 and results in non-randomness of our weighting matrix. To avoid this issue, we set

66

tolerance rate as 1e-3 to obtain moderate deviation from D (Appendix Figure A7).

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
R

I

G
S

E
63

81
8

G
S

E
52

52
9

G
S

E
74

59
6

G
S

E
79

10
2

G
S

E
48

96
8

G
S

E
45

71
9

G
S

E
64

01
6

G
S

E
71

58
5

Appendix Figure A7: Adjusted RAND index of clusterings generated by randomizing distances.
We investigate the variation of clustering given by random weighting through 8 datasets and each
dataset we are using 100 random distances.

We plot the ARI (adjusted RAND index) between randomly generated clusterings to the cluster-

ing from the original distances across eight datasets. The boxplots indicate that random weighting

is inducing substantial variation in the distribution of cell partitions.

We also check validity of random weighting by comparing it to Dirichlet-process-based cluster-

ing (Jara et al. (2011)) on a simulated dataset. We simulate one-dimensional data X from a mixture

of 5 normal distributions with different means and same variance (µ = (−6,−2, 0, 2, 10), σ = 1).

We compare clustering results between random weighting and Bayesian clustering using the Dirich-

67

let process prior (using DPpackage) in terms of posterior probabilities that two elements belong

to the same class given the whole data. We also compare accuracy of the two procedures by looking

at the ARI comparing to true class label (Appendix Figure A8). We find that random weighting

scheme closely matches the distributional features of the Dirichlet-process computation, and, in this

case, tends to put more mass close to the data-generating partition.

A.8 Selecting K

In this section, we give the criterion to select the number of subtypesK. We implement a procedure

inspired by validity, as defined in Ray and Turi (2000). We consider a modified validity=

intra
inter , where intra = 1

N

K
Σ
i=1

Σ
x∈Ci
||x − zi||2, inter = mean(||zi − zj ||2), i, j = 1, 2, ...K, and zi

is the center (medoid) of cluster i. intra is the average of distance of a point to the center of its

corresponding cluster, which measures the compactness of clusters. inter is the average distance

between centers, which measures the separation between clusters. In the original paper inter was

defined as minimum distance between medoids (Ray and Turi, 2000). Here, we instead use the

average for smoothness. By minimizing validity (contrary to what the name suggests) we aim

for small intra-cluster distance and large inter-cluster distance. We find empirically that validity

is monotonic decreasing with K and this trend stabilizes when K is sufficiently big. We select the

first K satisfying validityK < ε. We set the default value of ε to be 1, as we found this yields

good performance in simulation.

A.9 Double Dirichlet Mixture

In this section, we give proofs for the properties of DDM in Section 2.3 of the main paper. Using

notation from the main paper, we have density functions:

pπ(φ, ψ) = qπ(Φπ,Ψπ)
∏
b∈π

[
p(φ̃b)p(ψ̃b)

]

68

Bayes Random weight (divisors)

●

●●●

●●
●

●

●●●
●

●● ●

● ●
●

●

●

●

● ●

●

●●

● ●●●●
●

●

●●● ●●●●●●
●

●●●

●

●●●

●●

●

●

●●●

●

●● ●

●
●

●

●

●

●

● ●

●

●●

●

●●●●

●

●

●●

●

●●●

●●

●

●

●●●●●

●

●●●

●

● ●●

●●

●

●

●●●

●

●● ●

●
●

●

●

●

●

● ●

●

●●

●

●●●●

●

●

●●

●

●●●

●●

●

●

●●●●●

●

●●●

●

●● ●

●●

●

●

●●●

●

●● ●

●
●

●

●

●

●

● ●

●

●●

●

●●●●

●

●

●●

●

●●●

●●

●

●

●●●●●

●

●●●

●

●●●

●●
●

●

●●●
●

●● ●

● ●
●

●

●

●

● ●

●

●●

● ●●●●
●

●

●●● ●●●●●●
●

●●●

●

●●●

● ●

●

●

●●●

●

●● ●

● ●
●

●

●

●

● ●

●

●●

● ●●●●
●

●

●●● ●●●●●●
●

●●●

●

●●●

●●

●

●

●●●

●

●● ●

● ●
●

●

●

●

● ●

●

●●

●●●●● ●

●

●●● ●●●●●●
●

●●●

●

●●●

●●

●

●

●●●

●

●●●

●
●

●

●

●

●

● ●

●

●●

●

●●●●

●

●

●●

●

●●●

●●

●

●

●●●●●

●

●●●

●

●●●

●●

●

●

●●●

●

●● ●

● ●
●

●

●

●

● ●

●

●●

● ●●●●
●

●

●●● ●●●●●●
●

●●●

●

●●●

●●

●

●

● ●●

●

●● ●

● ●
●

●

●

●

● ●

●

●●

● ●●●●
●

●

●●● ●●●●●●
●

●●●

●

●●●

●●

●

●

●● ●

●

●● ●

● ●
●

●

●

●

● ●

●

●●

● ●●●●
●

●

●●● ●●●●●●
●

●●●

●

●●●

●●

●

●

●●●

●

●● ●

● ●
●

●

●

●

● ●

●

●●

● ●●●● ●

●

●●● ●●●●●●
●

●●●

●

●●●

●●

●

●

●●●

●

●● ●

●
●

●

●

●

●

● ●

●

●●

●

●●●●

●

●

●●

●

●●●

●●

●

●

●●●●●

●

●●●

●

●●●

●●

●

●

●●●

●

● ●●

●
●

●

●

●

●

● ●

●

●●

●

●●●●

●

●

●●

●

●●●

●●

●

●

●●●●●

●

●●●

●

●●●

●●

●

●

●●●

●

●● ●

●
●

●

●

●

●

● ●

●

●●

●

●●●●

●

●

●●

●

●●●

●●

●

●

●●●●●

●

●●●
●

●●●

●●●

●

●●●●

●●●

●
●

●

●

●

●

● ●●

●●

●

●●●●

●

● ● ●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●●
●

●●
●●

●●● ●●● ●●●●
●

●

●●●●

●

●●●
●●

●●●●●●●●●●●●●●●
●

●●●

●●
●

●

●●●
●

●●●

●
●

●

●

●

●

● ●

●

●●

●

●●●●

●

●

● ●

●

●●●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●●

●●●
●

●●
●●●●●●●●●●●●●

●

●●●●

●

●●● ●●
●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●

●
●

●

●

●

●

●●

●
●●

●

●●●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●●●

●●
●

●

●●●
●

●●●

●
●

●

●

●

●

● ●

●

●●

●

●●●●

●

●

● ●

●

●●●

●●

●

●

●●●

●
●

●

● ●
●

●
●●

●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●
●

●●●

●●
●

●

●●●
●

●●●

●
●

●

●

●

●

● ●

●

●●

●

●●●●

●

●

● ●

●

●●●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●●

●●●
●

●●
●●●●●●●●●●●●●

●

●●●●

●

●●● ●●●●●●●●●●●●●●●●●

●

●●●

●●
●

●

●●●
●

●●●

●
●

●

●
●

●

● ●

●

●●

●

●●●●

●●

● ●

●

●●●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●●

●●● ●●● ●●●●●●●●●●●●●
●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●

●●●

●●●

●

●●●●

●●●

●
●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●●

●

●
●

●
●

●●●
●

●●

●

●●●

●

●

● ●●●

●

●

●●

●
●

●●●●●●●●●●●●●●● ●

●●●

●●●

●

●●●●

●●●

●
●

●

●

●

●

● ●

●

●●

●

●●●●

●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●
●

●
●

●●●
●

●●

●

●●●

●

●

●●●●

●

●

●●

●
●

●●●●●●●●●●●●●●●

●

●●●

●●
●

●

●●●
●

●●●

●
●

●

●

●

●

● ●

●

●●

●

●●●●

●

●

●●

●

●●●

●●

●

●

●●●

●
●

●

● ●
●

●
●●

●●● ●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●

●

●●●

●●
●

●

●●●
●

●●●

●
●

●

●
●

●

● ●

●

●●

●

●●●●

●●

● ●

●

●●●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●●

●●● ●●● ●●●●●●●●●●●●●
●

●●●●
●

●●●●●●●●●●●●●●●●●●●●

●

●●●

●●
●

●

●●●
●

●●●

●
●

●

●
●

●

● ●

●

● ●

●

●●●●

●●

● ●

●

●●●

●
●

●

●

●
●●

●

●

●

●
●

●

●

●●

●●● ●●● ●●●●●●●●●●●●●
●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●●

●
●●

●

●●●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ●

●●●

●●●

●

●●●●

●●●

●
●

●

●

●

●

● ●

●

●●

●

●●●●

●

●

● ●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●●

●

●
●

●
●

●●●
●

●●

●

●●●

●

●

●●●●

●

●

●●

●
●

●●●●●●●●●●●●●●● ●

●●●

●●●

●

●●●●

●●●

●
●

●

●

●

●

●●

●

●●

●

● ●●●

●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●
●

●
●

●●●
●

●●

●

●●●

●

●

●●●●

●

●

●●

●
●

●●●●●●●●●●●●●●●●

●●●

●●●

●

●●●●

●●●

●
●

●

●

●

●

●●

●

●●

●

●● ●●

●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●
●

●
●

●●●
●

●●

●

●●●

●

●

● ●●●

●

●

●●

●
●

●●●●●●●●●●●●●●● ●

●●●

●●●

●

●●●●

●●●

●
●

●

●

●

●

●●

●

●●

●

●●● ●

●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●
●

●
●

●●●
●

●●

●

●●●

●

●

●●●●

●

●

●●

●
●

●●●●●●●●●●●●●●●
●

●●●

●●●

●

●●●●

●●●

●
●

●

●

●

●

● ●●

●●

●

●●●●

●

● ● ●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●●
●

●●
●●

●●● ●●● ●●●●
●

●

●●●●

●

●●●
●●

●●●●●●●●●●●●●●●

●

●●●

●●
●

●

●●●
●

●●●

●
●

●

●

●

●

● ●

●

●●

●

●●●●

●

●

●●

●

●●●

●●

●

●

●●●

●
●

●

●●
●

●
●●

●●● ●

●●●

●●●

●

●●●●

●●●

●
●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●
●

●
●

●●●
●

●●

●

●●●

●

●

●●●●

●

●

●●

●
●

●●●●●●●●●●●●●●● ●

●●●

●●●

●

●●●●

●●●

●
●

●

●

●

●

●●

●

●●

●

●●●●

●

●

● ●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●
●

●
●

●●●
●

●●

●

●●●

●

●

●●●●

●

●

●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●●

●
●●

●

●●●●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●● ●

●●●

●●●

●

●●●●

●●●

●
●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●
●

●
●

●●●
●
●●

●

●●●

●

●

●●●●

●

●

●●

●
●

●●●●●●●●●●●●●●● ●

●●●

●●●

●

●●●●

●●●

●
●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●
●

●
●

●●●
●

●●

●

●●●

●

●

●●●●

●

●

●●

●
●

●●●●●●●●●●●●●●●●

●●●

●●●

●

●●●●

●●●

●
●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●
●

●
●

●●●
●

●●

●

●● ●

●

●

● ●●●

●

●

●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●●

●
●●

●

●●●●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●
●

●●

●●●

●

●●●●

●

●

●●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●●●

●●●

●

●●●●

●●●

●
●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●●

●

●
●

●
●

●●●
●

●●

●

●●●

●

●

● ●●●

●

●

●●

●
●

●●●●●●●●●●●●●●●
●

●●●

●●
●

●

●●●
●

●●●

●
●

●

●

●

●

● ●

●

●●

●

●●●●

●

●

●●

●

●●●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●●

●●●
●

●●
●●●●●●●●●●●●●

●

●●●●

●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●●

● ●●

●

●●●●

●

●

●●

●

●● ●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

● ●●

●●

● ●●

●

●●●●

●
●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●
●

●

●●

●●●

●

●●●●

●
●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●●

●
●●

●

●●●●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●●

●
●●

●

● ●●●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●●●

●●●

●

●●●●

●●●

●
●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●●●

●

●
●

●
●

●●●
●

●●

●

●●●

●

●

● ●●●

●

●

●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●
●

●●

● ●●

●

●●●●

●

●

●●

●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●●

●
●●

●

● ●●●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●

●
●

●

●

●

●

●●

●
●●

●

●●●●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

● ●●
●●

●●●

●

●●●●
●●

●●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●●

●
●●

●

●●●●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●●

●
●●

●

●●●●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

● ●●
●●

●●●

●

●●●●
●●

●●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

●●● ●●●●●

●

●●●●●● ●●

●

●● ●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●
●

●●● ●●●●●
●

●●●●●● ●●

●

●● ●
●

●

●●

●

●

●

● ●
●

●

●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●
●

●

●●

●●●

●

●●●●

●
●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

● ●●
●●

●●●

●

● ●●●
●●

●●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

● ●● ●●●●●

●

●●●●●● ●●

●

●● ●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●
●

●

●●

● ●●

●

● ●●●

●
●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

● ●●

●●

●●●

●

●●●●

●
●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

● ●● ●●●●●

●

●●●●●● ●●

●

●● ●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

● ●● ●●●●●

●

●●●●●● ●●

●

●● ●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●
●

●●● ●●●●●
●

●●●●●● ●●

●

●● ●
●

●

●●

●

●

●

● ●
●

●

●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

● ●●
●●

●●●

●

●●●●
●●

●●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

●●● ●●●●●

●

●●●●●● ●●

●

●● ●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●
●

●●● ●●●●●
●

●●●●●● ●●

●

●● ●
●

●

●●

●

●

●

● ●
●

●

●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

● ●●

●●

●●●

●

●●●●

●●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

●●● ●●●●●

●

●●●●●● ●●

●

●● ●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●
●

●●● ●●●●●
●

● ●●●●● ●●

●

●● ●
●

●

●●

●

●

●

● ●
●

●

●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

● ●● ●●●●●

●

●●●●●● ●●

●

●● ●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

● ●●

●●

●●●

●

●●●●

●
●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●●

● ●●

●

●●●●

●

●

●●

●

●● ●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●
●

●●● ●●●●●
●

●●●●●● ●●

●

●● ●
●

●

●●

●

●

●

● ●
●

●

●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

● ●● ●●●●●

●

●●●●●● ●●

●

●● ●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●
●

●●● ●●●●●
●

●●●●●● ●●

●

●● ●
●

●

●●

●

●

●

● ●
●

●

●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

● ●● ●●●●●

●

●●●●●● ●●

●

●● ●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●●

● ●●

●

●● ●●

●

●

●●

●

●● ●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

● ●●

●●

●●●

●

●●●●

●●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

● ●● ●●●●●

●

●●●●●● ●●

●

●● ●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

● ●● ●●●●●

●

●●●●●● ●●

●

●● ●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

● ●●

●●

●●●

●

●●●●

●
●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●
●

●

●●

●●●

●

●●●●

●
●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●

●●●

●●●●●●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ABayes

A
bo

ot

●●●●●●●

Control

Random_Dist

Bayes_MCMC

0.0 0.2 0.4 0.6

adjusted Rand index to true clustering

Appendix Figure A8: Comparison between random weighting scheme and Dirichlet-process proce-
dure. Top: heatmap of probabilities that two elements belong to the same class given the whole data.
Bottom: scatterplot of these posterior probabilities (left), and adjusted RAND index comparing to
the underlying true class label (right).

with

qπ(Φπ,Ψπ) =
Γ(
∑

b∈π βb)∏
b∈π Γ(βb)

[∏
b∈π

Φβb−1
b

]
1 [Φπ = Ψπ]

69

and

p(φ̃b) =
Γ(
∑

k∈b αk)∏
k∈b Γ(αk)

∏
k∈b

φ̃αk−1
k , p(ψ̃b) =

Γ(
∑

k∈b αk)∏
k∈b Γ(αk)

∏
k∈b

ψ̃αk−1
k .

These serve as key components for proving DDM properties.

Proof. [Proof of Property 1] When φ and ψ only satisfy the coarsest constraint:
∑K

i=1 φi =∑K
i=1 ψi = 1, then φ and ψ are independently Dirichlet distributed. Finer constraints will lead to

dependency between φ and ψ as there is a proper subset b of π such that
∑

i∈b φ =
∑

i∈b ψ, which

make P (φ|ψ) 6= P (φ).

Proof. [Proof of Property 2] By the law of total expectation, Eπ(φk) = Eπ(Eπ((φk|Φb)) =

Eπ(E
φ̃b

(φ̃k)) = E
φ̃b

(φ̃k)EΦ(Φb) where b is the block containing subtype index k. Since φ̃b ∼

DirichletN(b)[α
1
b] and Φπ ∼ DirichletN(π)[βπ], we have E

φ̃b
(φ̃k) =

α1
k∑

k′∈b α
1
k′

, EΦ(Φb) = βb∑
b′∈π βb′

and Eπ(φk) =
α1
k∑

k′∈b α
1
k′

βb∑
b′∈π βb′

. The case for Eπ(ψk) is similar.

Proof. [Proof of Property 3] t1/t1π is independent of t2/t2π conditioning on t1π and t2π by the neu-

trality property of Dirichlet distribution

Proof. [Proof of Property 4] For j = 1, 2, let T jb be the vector of tjk such that k ∈ b. Recall

tjb =
∑

k∈b t
j
k. Without loss of generality, we consider the case condition j = 1. At the support of

pπ, for different blocks, T 1
b |φ̃b are mutually independent. Then we have factorization:

pπ(t1|t1π, y) =
∏
b∈π

p(T 1
b |t1b , y)

and right hand side prior predictive function can be obtained by integrating out φ̃b. Namely

p(T 1
b |t1b , y) =

∫
φ̃b

p(T 1
b |φ̃b)p(φ̃b)dφ̃b

=

{[
Γ(tjb + 1)∏
k∈b Γ(tjk + 1)

][
Γ(
∑

k∈b α
j
k)∏

k∈b Γ(αjk)

][∏
k∈b Γ(αjk + tjk)

Γ(tjb +
∑

k∈b α
j
k))

]}

given the prior Dirichlet[α1
b] of φ̃b and that p(T 1

b |φ̃b) is a multinomial(φ̃b) distribution.

70

Proof. [Proof of Property 5] t1π and t2π, given the condition label y, are independent and identically

distributed with t1π|Φ ∼ multinomial(Φ). Thus

pπ(t1π, t
2
π|y) =

∫
Φ
p(t1π|Φ)p(t2π|Φ)p(Φ)dΦ

=

[
Γ(n1 + 1)Γ(n2 + 1)∏
b∈π Γ(t1b + 1)Γ(t2b + 1)

] [
Γ(
∑

b∈π βb)∏
b∈π Γ(βb)

] [∏
b∈π Γ(βb + t1b + t2b)

Γ(n1 + n2 +
∑

b∈π βb)

]
.

As prior of Φ is Dirchlet[β] and nj =
∑

b∈π t
j
b for j = 1, 2.

To prove Property 6, we need a fact about dimensionality of the intersection of two Aπ’s.

Lemma .0.1. If π2 is not a refinement of π1 then Aπ1 ∩Aπ2 is a lower dimensional subset of Aπ2 .

Proof. [Proof of Lemma 1] To formalize the problem in linear algebra, we consider the vector

space R2K , and define a map from block to vector in RK :g(b) = vb, where ith component of vb is

1 if i ∈ b and 0 otherwise.

Let V1, V2 denote the orthogonal space of φ − ψ when (φ, ψ) ∈ ∩Aπ2 , Aπ2 , Aπ1 ,. Notice that

dim(Aπ1 ∩ Aπ2) = dim(φ − ψ) + dim(ψ) = K − dim(V1) + K − 1 = 2K − dim(V1) − 1,

dim(Aπ2) = 2K − dim(V2) − 1, dim(V2) = N(π2). Assuming π1 = {b11, · · · , b1s}, and π2 =

{b21, · · · , b2t }. The corresponding vectors are v1
1, · · · , v1

s and v2
1, · · · , v2

t . We claim there must be a

b1i ∈ π1 whose corresponding vector v1
i is linear independent with v2

1, · · · , v2
t . If not, for every v1

i

there exists αi1, · · · , αit such that

v1
i =

t∑
j=1

αijv
2
j (∗)

If b2j∩b1i 6= ∅, then v1
i ∗v2

j > 0 and we multiply v2
j on both sides of (*), we obtain v1

i ∗v2
j = αij(v

2
j)

2,

as v2
p ∗ v2

q = 0 if p 6= q. This implies αij > 0. Consider x = g(b2j \ b1i). We have x ∗ v1
i = 0 and

multiply x on both sides of (*) to obtain αijv
2
j ∗x = 0. Thus x must be the zero vector and b2j \b1i = ∅,

which implies b2j ⊂ b1i . That is to say when b2j ∩ b1i 6= ∅, b2j must be a subset of b1i . So b1i is the union

of some blocks in π2. This implies π2 is a refinement of π1, which is a contradiction. Consequently,

there exists b ∈ π1 whose vb is linear independent with vb′ , ∀b′ ∈ π2. Thus the dim(V1) is is at least

N(π2) + 1, dim(Aπ1 ∩Aπ2) < dim(Aπ2).

71

Proof. [Proof of Property 6] For any π, P (Aπ, |y, z) =
∑̃
π∈Π

∫
Aπ
ω

post
π̃ dφdψ, notice the support of

ω
post
π̃ is Aπ̃. By Lemma 1, we know if π̃ does not refine π, then

∫
Aπ
ω

post
π̃ dφdψ is an integral on

lower dimension set and vanishes. if π̃ refines π, then
∫
Aπ
ω

post
π̃ dφdψ =

∫
Aπ̃
ω

post
π̃ dφdψ = ω

post
π̃ .

We have P (Aπ, |y, z) =
∑̃
π∈Π

ω
post
π̃ 1[π̃ refines π].

Proof. [Proof of Theorem 3] Recall the DDM prior: p(φ, ψ) =
∑

π∈Π pπ(φ, ψ). By Bayes’s

rule p(φ, ψ|y, z) ∝ p(φ, ψ, y, z) =
∑

π∈Π p(y, z|φ, ψ)pπ(φ, ψ)ωπ and the 1-1 map from (φ, ψ) to

(φ̃, ψ̃,Φ), we have

p(y, z|φ, ψ)pπ(φ, ψ) = p(y, z|φ̃, ψ̃,Φπ)p(φ̃)p(ψ̃)p(Φπ)

when (φ, ψ) ∈ Aπ. Let us denote right hand side of the above equation as Uπ, then

Uπ = ωπA1A2A3

K∏
k=1

(φ̃k)
t1k+α1

k(ψ̃k)
t2k+α2

k

∏
b∈π

(Φb)
t1b+t

2
b+βb ,

where A1 is the product of normalizing terms from multinomial distribution of z1 and z2, A1 =

Γ(n1+1)Γ(n2+1)∏2
j=1

∏K
k=1 Γ(tjk+1)

, and A2 is the product of normalizing terms from Dirichlet distribution of φ̃ and

ψ̃, A2 =
Γ(

∑K
k=1 α

1
k+1)Γ(

∑K
k=1 α

2
k+1)∏2

j=1

∏2
k=1 Γ(αjk+1)

, and A3 is the normalizing term from Dirichlet distribution

of Φπ, A3 =
Γ(

∑
b∈π βb+1)∏

b∈π Γ(βb+1) . Looking at the indices of φ̃, ψ̃ and Φ, we can decompose Uπ as a

product of three Dirichlet densities with a normalizing term. Namely Uπ = Cπ ∗ f1f2f3, where

f1 ∼ Dirichlet[α1 + t1], f2 ∼ Dirichlet[α2 + t2] and f3 ∼ Dirichlet[β + t1 + t2]. Considering the

normalizing factors for densities f1, f2 and f3, and multiplying them with A1, A2 and A3, we have

Cπ = pπ(t1|t1π, y) pπ(t2|t2π, y) pπ(t1π, t
2
π|y)ωπ. Consequently, we have

(φ, ψ)|y, z ∼ DDM
[
ωpost = (ωpost

π), α1 + t1, α2 + t2
]

and ωpost
π ∝ pπ(t1|t1π, y) pπ(t2|t2π, y) pπ(t1π, t

2
π|y)ωπ.

Notice in DDM, we restricted β = α1 + α2.

72

A.10 Numerical Experiments

Synthetic Data

In this section we look more closely at the synthetic data generated using splatter. We use PCA

plots to show the subtle changes underlying each subtype of simulated data and we demonstrate

consistency of estimated distributional changes based on scDDboost and Wasserstein distance.

Finally, ROC curves illustrate that scDDboost has favorable operating characteristics.

We first look at the PCA plots of the simulated data (Appendix Figure A9, A10, A11). For

K = 7 and 12, in each scenario there were some subtypes nested in the 2d PCA projection and

the distributional change of transcripts becomes difficult to detect. scDDboost benefits from the

compositional structure and is more sensitive to those subtle changes.

●●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●
●

●

●
●

●

●
● ●

●

●●

●

●

●

● ●

●

● ●
●●

●

●
●

●

●

● ● ●
●
●

●

●●
●

●
●

●

●

●
●

●

●

●

● ●

●

●
● ●

● ●

●

●

●

●

●
●●

●●
●
●

●

●

●

●
●

●●
●

●

●
●●

●
●

●

●

●●
●

●

● ●

●

●
●

●

●
●

●
● ●●

●
● ●

●● ●

●
●●

●
●

●

●●
●

●
●

●

●

●

●●

●

●
●

●●

●

●

●
●

●
●

●
●●● ●

●

●

●

●●
●

●

●●

●

●
●
● ●

●

●

●● ●
●●

●

●

●

●● ●

●

●

●

●

●

●

● ●

● ●
●

●

●

●

●

●●

● ●
●

●

●

●

●

●
●

●

●

●

●●●●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●
● ●
●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●
● ●● ●

●
●

●
●●

●

●
●

●
● ●

●

●

●● ●
●

●
●

●
●●

●
●

●
●

●

●

●● ●
●

●

●

●

●

●

●

●

●
●

●

●
●●●●

●

● ●●

●

●

●

● ●● ●● ● ●●●
●●●●

●

● ●
● ●
●

●
●
●

●
●

●●
●

●
●
●

●

● ●●
●

●
●● ●●

●

●
●●

●

● ●
●
● ●●

●

●

●
● ●

●
●● ●●
●

●

●● ●

●

●

●

●

●●

●
●

● ●
●

●

●

●

●
●●

●

●

●●
●

●

●

●
● ●

●

●
●

●● ●●

●
●

●● ●
●

●

●

● ●
●●

●

●

●

●

●
●

● ●
●

●
●

●

●● ●
●

●
●●● ●

●

●●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●●

●●

●●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●
●

●

●

●

●

●
●

●
●● ●

●

● ●

●

●

●
●●

●

●
●

●
●

●

●●

●

● ●

●

● ● ●●

●

●

●

●

● ● ●
●

●

●
●●

●

● ●●
●

●

●
● ●

●
●

●

●

●
● ●

●●

●

●

●

● ●

●● ●
●●

●

●

●

●
●

●

●
● ●

● ●

●●

●
●

●
●●

●
●●●

●
●

●

●

●

●
●

●

●

●

●●

● ●
●

●

●● ●

●

● ●

●●●

●

●
●●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

● ● ●
●

●
●

●●

●
●

●

●

●

●
● ●

●
●●●

●
●
●

●

●

●

●

●
●

●

●

●
●

●
●●●

●
●

●

●

● ●●● ●

●

●
●

●

●

●

●
●
●

●

●
● ● ●

● ●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●●
●

●
●

●● ●
●●

●
●
●

●

●
●

●
●

●

●

●
●

● ●● ●●●

●●

●
●

●●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●●●●
●

●

●

●
●

●

●

●

●

● ●● ●●

●

●

●●
●●●●●●
●

●
●

●●
●
● ●

●
●●● ●●

●●
● ●

●● ●

●●
●●

●● ●
●

●

●

●●●
●●

●

●

●● ●●
●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●●
● ●

●

●

●

●

●

●
● ●●●

●

●
●

●

●●
●

●

●

●
●

●
●●

●

● ●●
●

●●

●

● ● ●●
●

●

●

●

● ●

●

●
●

●
●

●

●

●

●●
● ●●● ●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

● ●

●

● ●

●●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●● ●

●

●
●

●

●

● ●

●
●

● ●●●

●

●
●●

●

●
●

●

●

●

●

●
● ●●

●

●●

●

● ●

●
● ●●

●

●

●

● ●

●
●

●

●●
●

●
●

●

●

●
●

●

●
●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●● ●

●

●

●● ●

●

●
●

●

●●●●
●

●

●

●●

●●
●

●

●
●●

●

●

●

●

●● ●

●

●
●

●

●●

●

●
●

●●

●

●

●
● ●

●

●

●

●
●●

● ●

●

●●

●
●

●

●

●

●

●●
●

●
●

●●

●
●

●

●
●●

●
●

●●
●

●

●

●

●●
●

●

●
●●

●
●● ●

●

●

●● ●●
●

●

●

●
●● ●

●

●●
●

●

●● ● ● ●
●

● ●
●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●
●●●●

●
●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●● ●●

●

●

●

●
●

●
●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
● ●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●● ●
●● ●●

●
●● ●

●
●

●

● ●● ● ●

●

● ●
● ●

●

●
●●

●●
●

●
●●

●

●

●● ●
●

●

●

●

●

●

●
●

●●
●

●●
●
●●

●

●
●

●

●

●

●

● ●
●

●● ● ●●● ●●●●
●
●

●● ●●● ●●
● ● ●●

● ●●●● ●
●●●

● ●
●

●

●●● ●●
●

●
●

●
● ●● ●

●

●●
●● ●●

●
● ●

●

●●
●

●

●

●

●

●
●

●●
● ●

●

●

●

●● ●●
●

●●●●
●

●

●●
●

●

● ●
●

●
●●

●
● ●● ● ●●

●

● ● ●● ●

●

●

●

● ●
●

●

●
● ●

●

●
● ●●● ●

●● ●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●●

●

●

● ● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

● ●●

●

●

●

●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●●
●

●

●

●● ●

●

●
●

●

●

● ●

●
●

● ●●●

●

●
●●

●
●●

●

●

●

●

● ●
●

●

●

●●
●

● ● ●● ●●●●

●

●
●

● ●

●
●●

●

●●

●

●

● ●
●

●●

●

●● ● ●

●

●

●

●●

●

●

●

● ●

●

●● ●

●

●

●● ●
●

●
●●

●●●
●● ●

●

●●
●●

●

●

●
●●

●

●

●

●

●
●

●

●

● ●

●

●●

●

● ●
●●

●
●

● ●
●

●
● ●● ●●●

●

●

●●

● ● ●

●
●

●
●●

●
●

●●
●

●

●
●

●

●●● ●●●
●

●

●

●

●●

●

●

● ●● ●●● ●●

●

●● ●●
●

●

●

●
●● ●

●

●●●

●

●● ● ● ●
●

●
●●

●

●
●

● ● ●
●

●

●

●

● ●

●

●

●

●●●●

●

●●●

●

●●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●●●●

●
●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●
●

●
● ●

●

●● ●
●

●

●

●

●

●

●● ●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●

●●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●
●

●●
●● ●●● ●

●●

●

● ●
● ● ●

●

● ●●
●

●
●●

●
●● ●

●

●● ●

●

●●
●

●

●

●

●

●

●

●● ●●

●

●●●●●

●

●
●●

●

●

●

● ●● ●● ●
●

●● ●
●●●●● ●● ●●● ●● ● ●

●
●
●

●
●●

● ●
●

●● ● ●●
●

●●●
●

●
●

●
●

●● ●● ●

●

●● ●● ●●
●

● ●

●

●
●

●

●

●

●

●

●●

●●
●

●
●

●
●

●
● ●●

●●
●●●

●

●

●
●

●

●

● ●
●● ●● ●●

●

● ● ●
●

●

● ●
●

● ●

●

●

●

●
●

●

●
●● ●

●

●●
●

●● ●●● ●

●

●●
●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●● ●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●●
●

●

●●

●
●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●●

●

● ●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●●

●

●

●
●

●

●
●

●

●●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

Appendix Figure A9: First two principal components of transcripts under different parameters for
simulated data. Horizontal axis refers to first component, vertical axis refers to second component.
Different parameters resulted in different degree of separation of subtypes. We have 4 different
settings for hyper-parameters of simulation, each setting has ten replicates. From left to right, the
associated hyper-parameters are (0.1,0.4), (-0.1,0.3), (0.3,0.5), (-0.1,1). Here we have 3 subtypes

We observed consistent measurements of distributional change by scDDboost and Wasser-

stein distance (Appendix Figure A12). Lower probabilities of equivalent distributed are associated

73

●

●

●

● ●●
●●

●●

●

●
●

●

●

●

●
● ●●

●

●●

●●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

● ●
●

●

●

●

●
●

●
●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●
●

● ●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●●
●

●

●
●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●
●

●

●

●
● ●

●

●●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●
● ●●

●

●

●

●

●

●

●

●

● ●

●
●●●

●
●

●●
●

●

●

●
●

●●

●

●

●
●

●

●●●
●

●

● ●
●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●
●

●

●
●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●● ●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●
●

●● ●

●●

●
●●

●
●

●

●●

●
●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●●
●●

●

●
●

●

●
●

●

●
●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●
●

● ● ●

●

●●

●
●

●

●

●

●●
●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
●

●
●
●

●

●

●

●

●● ●

● ●

●

● ●●●●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●● ●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●●

●
●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●
●

●

●●

●

●

●

●

●
●

● ●

●

●●● ●
●

●

●

●
●

●

●●
● ●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●●●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
● ●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●●

● ●
●

●

●

●●

●

●

●

●

● ●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●● ●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●●

●

● ●●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●●

●●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

● ●

●

●

●
●

●

●
●

●
●

● ●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

● ● ●

●

●

●

●
●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●
●
●● ●

●
●●

●

●
●●

●

●

●
● ●

●

●

●●

●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
● ●

●
●●

●

●

●

●
●

●
● ●

●

●●● ● ●

●

●

●

●
●

●●

●

●
●

● ●

●●
● ● ●

●
●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●
● ●

●
●

●

●

●●

●

●

●

●● ●
●

●

●●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●● ●
● ●

●

●

●

●
●●●
●

●

●

●

●

●
●

●

●●
● ●
●
●

●

●

●

●

●●
●

●

● ●
●

●

●

●
●

●● ●

● ●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●●
● ●

●●

●●

●

● ●

●

●●
●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

● ●●

●

●

●

●

●

● ●

●

●
●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●●

●

●
●●

●

●

●

●

●
●

●

●
●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●
●

●

● ●

●

●
●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●
●

●●●●

●

●●

●●

●

●

●

●

●

●●
● ●

●
●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●
●●

●
●●

●

●
●● ●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●● ●

●
●

● ●● ●
●

●
●

●

●●
●●

●

●

●●● ●
●

●

●
●

●

●

●

●●●

●

●
●
●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●●

●●●

●
●

●

●
●

●

●●

●

●

●●
●●

●

●
● ●

●

●

●
●

●

● ●

● ●
● ●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●
●●

●

●

●

●●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●● ●
●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●

●

● ●

●

● ● ●● ●● ●
●

●

● ●●
●

●

●● ●●

●

●●

●●

●

●

●

●

●

● ●

●

●● ●

●

●

●

● ●

●
●●

●

●

●

●

●●●
●

●

●●● ●
●

●

●

●● ●●● ●
●●

● ●

●●
●

● ●●
●

● ●

● ●

●●

●

●

● ●
●●

●●

● ●

●

●

●

●

●

●
●●

●

● ●
●●●

●

●

●●

●

●

●

●● ●●

●

●●

●

●

●● ●● ●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●●

●

●

●

●

●
● ● ●

●

●

●

●

●●●
● ●

●

● ●

●

●●

●

●●● ●●●●

●

●

●

●●●

●

● ●●
●

●

●
●

●● ●

● ●●

●

● ●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●● ● ●●●

●●

●

● ●

●

●●● ●

●

●●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

● ● ●

●

●

●

●

● ●●

●●

●

●

●

● ●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

● ●

●

●●

●

●●●
●

●

●

●

● ●

●

● ●●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●
●

●

● ●

●

●● ●

●

●

●
● ●●

●

●

●

●

●

●

●

●

● ●

●
●●● ●● ●●●

●

●

●

●

●●

●

●

●

●

●

●●
●

● ●
●● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●
●● ●

●

●

●

●

●●

●

●

●●
●●

● ●●

●

●●● ●

●

●

●

●
●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●●
●

● ●

●
●

●
●●

●

●

●

●
●

●●
●●

●

●

●●
●

●
●

●

●
●

●

●

●

●●
●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
● ● ●

●

●

●

●

●●

●

●

●●
●●

●

●
●

●

●
●

●

●●

●

●

●●
●●

●

●

●

●
●

●

●
●

●

●
●

●
● ● ●

●●

●
●

●

●

●

●●
●

●

●

●

● ●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●●

●
●
●●

●

●

●

●●
●

● ●

●

● ●●●
●

●●

●

●

●

●

●
●

●●
●

●● ● ●
●

●

●

●●

●●

●●

●

●

●

●●

●

●

●

●●
●

●●
●●

●

●

●●

●

● ●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●●

●
● ●

● ●
●

●

●
●

●

●

●

●

Appendix Figure A10: Similar plots as Appendix Figure A9, but for 7 subtypes

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●●

●

●
●

●

●●

●

●

● ●

●

●
●

●

●

●
●

●
● ●● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●
●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●
●●●
●●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

● ●

●

●
●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

● ●

●

●●

●●

●

●

●

●

●
●

●

●
● ●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

● ●●
●

●

●

●
●

●

●

●

● ● ●

●
●

●

●

●
● ●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●● ●

●

●

●

●

●
●
●

●●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●
●●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

● ●
●

●
●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●●

●

●

●

●
●

●
●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●

●
●

●

●
●
●

●

●

●

●

● ● ●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●

● ●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

● ● ●

● ●

●
● ●

●
●

●● ●

●

●

● ●

●

●

●
●

●

●
●

●

●●

● ●
●●

●

● ● ●

●
●●

●
●

● ●

●

● ●
●

●

●
●

●●

●

●

●

●

●

●
● ●

● ●

●

●●
●

●
●

●
●

●●

●

●
●

●
●●

●●

●

● ●

●

●

●

●

●

●

●
●●●

●

●
●

●●

●

●
●

●

●

●

●● ●

●
●

●

●

●
●

●

●

●
● ●●

●

●

●

●

●●

●
●

●

●●
●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

● ●
●

●

● ●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●
●

●

●
●

●

● ●

●

●

●
●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

● ●

●
●

●

●

●

●●
●

● ●
●

●

●

●
●

●

●
●

●

●

●● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●
●● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●
●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●
●●

●
●

●●

● ●

●

●

●

●●

● ●

●

●
●

●

●●● ●
●

●
●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●
●

●

●

●
● ●●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●●●
● ●●●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

● ●● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●●

●

●
●

●●

●

●

●

●

●
●

●
●●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●
●●

●●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●
●

●
●

●
● ●

●

●

●

●●

●

●
●

●
●●

●
●

●

●

●
●
●
●

●●

●

●

● ●

●
●

●
● ●

●● ●

●
● ●

●

●
●

●

●
● ●

● ●
●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●●

●

●
●● ●● ●
●

● ●

●

●

●

●

●

●

●

●●
●

●

●
●●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●● ●

●

●
●

●

●

●

●
●●

●

●●
●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●● ●

●

●●

●

●
●

●

●

●

●

●

●
● ●●●
● ●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

● ●

●●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●● ● ●

●●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●
●

●● ●●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●●
●
●

●
●

●
●

●

●

●

●
●

●
● ●● ●

●●

● ●
●

●

●

●

●●●
● ●

●● ●
●●●

●
●

●
●
●

●●

●

●

●

●

● ●
●

●

●●

●●

●
●
●

●

●

● ●
●

●
●

●

●
●

● ●●
●
●

●● ●
● ● ●

●●
●●

●

●
●

●
●

●

●

●

●
●●

●
●

●

●
● ●

●●● ●●

●

●

●
●

●●
●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●
●

●
●

●●● ●
●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●●●
●
● ●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●●●
●

●●●● ●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

● ●
●

●

●
●

●

●●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●●●

●

●
●
●●

●

●
●

●

●

●

●

●
●●

●

●

●●
●

●
●●

●●
●

●

●

●

●

●

● ●

●

●

●

●●

●

●

● ●
●

●

●

●

●

● ●

●

● ●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●
●

●

●

●● ●●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

● ●●

●

●

● ●
●

●

●

●

●● ●
● ● ●
●

●
●●● ●● ●

●

●●

●

●
●

●
●●

●●●

●

●

●●
●●

●
●

●

●

●● ● ●
●

●
●●

●

●●
●

●
● ●●
●

● ● ● ●●

●

●

● ●
●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●●

●
●

●

●●
●

●
●

●
●

●
●

●

●●

●

●

●

●

●
●

●
●●
●

●

●

●

● ● ●●
●

●

●

●

●
●

●

●
●

●●
●
●

●●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●● ●
●

●

●

●

●

●
●●

● ●●
●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●● ●●

●

●

●

● ●●

●
●

●

● ●●●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●
●

●●

●

●
●

●●

●
●

●

● ●

●

●
●

●

●

●

●

●
● ●

●

●

●

●●
●●

●

●

●●

●

●

●●

●

●

●

●

●
● ●●●● ●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●
●

●● ●●
●

●

●

●
●

●
● ●

● ●
●

●

● ●

●

●

●

●●

● ●
●

● ●
●● ●

●

●●

●●●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●● ●
●

●

●

●

●

●

●
●● ●

●●
●●●

●

●

●

●

●●
●

● ●

●

●
●

● ●

●

● ●●●●●●
●●

● ●
●

●

● ● ●
● ●

●
● ●

●●
● ●

●

●

●

●
●
●●

● ●●
● ●●
●● ●

● ●●
●●● ●●

●

●

● ●
●

●

●
●

●●

● ●●

●

●

● ●
●

●
●

●

●●● ●●●●
●● ●●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●
●●●●

●

● ●●●●●
●

●

●

●

●
●

●●●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●●

●●●
●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●●
●● ●●

●

Appendix Figure A11: Similar plots as Sumpplementary Figure A9, but for 12 subtypes

with bigger distances.

74

●

●

●●
●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●

●

●
●

●
●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●
●

●

●
●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●●

●

●
●●
●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●

●

●●●●

●

●

●●
●●

●

●●

●

●

●
●●

●

●

●

●
●●●
●●●
●●

●

●

●●

●

●

●
●
●

●

●

●

●●●●●●
●
●●●

●

●●
●●●
●

●

●
●●●●●
●
●
●●
●
●
●●●
●●

●

●●●●
●●●
●
●

●
●●

●
●●

●

●●●●
●
●
●
●

●
●

●●●

●

●

●

●●
●

●
●●●
●
●
●

●

●

●
●
●
●
●
●●●●

●

●●●
●
●

●●

●

●●●●●

●

●●

●

●
●
●
●

●

●
●●
●
●●●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●
●●

●

●●●
●●
●
●●●●

●

●
●

●

●

●

●

●●
●
●●●
●●●●●

●

●●●●●●●

●

●●

●

●
●●●●●

●

●

●
●

●

●

●●

●

●●
●
●
●●

●

●
●●●

●

●

●

●●
●
●●

●

●

●●●●
●●●●●

●
●●●
●
●●●
●
●●●
●
●
●

●

●
●●●

●

●

●

●

●

●
●
●●●●●

●

●
●●●
●
●●
●●

●

●

●

●●

●

●
●
●
●
●
●

●
●

●

●

●
●●●

●

●●●●●

●

●
●
●●
●
●
●

●

●

●

●
●●
●●

●

●●

●

●

●

●

●

●
●●

●
●
●
●●●●●●●●

●

●
●
●●
●

●

●●●●
●

●

●

●

●
●●
●●●●
●
●●
●

●

●

●

●

●

●

●●
●

●

●●
●●

●

●
●●

●

●●●
●
●●●●
●

●

●●●
●
●●

●

●●●

●

●

●

●
●●●
●
●●●
●
●●●

●

●
●●

●

●●●●●
●
●●

●

●●●
●
●●

●
●

●

●●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●●
●

●

●●

●

●
●●
●
●●
●
●●
●

●

●●●
●
●

●
●●

●
●

●●
●●

●
●

●

●

●

●
●
●●
●
●

●

●

●●●

●

●●●
●●●●
●

●

●

●

●

●

●

●
●
●
●

●●●
●
●●
●
●
●●●●

●

●

●
●

●

●
●
●

●

●●●●●

●

●

●

●

●

●●
●

●

●●●

●
●●
●●●●

●

●

●●●●●●

●

●●●●

●
●

●●

●

●
●●●●
●

●●

●

●●
●

●
●
●●
●
●●●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●
●●●

●

●
●

●

●●●
●
●

●

●●●●

●

●●

●

●
●

●

●●●●●●●

●

●
●

●

●
●

●

●

●

●
●
●●●

●
●●●
●

●

●●
●
●
●

●
●●
●●●●●●

●●

●

●

●

●
●

●

●

●●

●

●

●●

●

●●
●●

●

●

●

●

●●

●

●●
●

●

●
●
●●●●●●●

●

●●●
●
●
●●

●●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●●●●●●

●

●
●

●

●

●

●

●

●

●
●●●

●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●
●
●

●●●
●
●

●

●●●

●
●
●

●
●●

●●

●

●

●●

●

●●

●
●

●●
●
●

●

●●

●

●

●

●
●●

●
●

●●

●
●
●

●

●
●●

●
●●
●●●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●
●

●
●
●
●

●

●

●●

●

●
●
●●
●

●

●●●●●●
●

●

●
●●●

●

●
●

●

●●●●
●●●

●

●
●●●
●

●

●
●
●

●

●●

●

●

●

●●
●
●●

●

●●

●●

●

●

●
●
●
●●●●

●

●

●

●
●

●

●

●●

●
●

●

●●

●

●●
●●●

●

●●

●

●
●●

●

●

●
●

●●

●

●

●

●●

●

●

●●

●

●

●●
●
●
●

●

●●●

●

●●
●●●●
●
●●

●●

●

●●

●●

●
●●
●●●

●

●●●

●

●

●

●

●●
●●

●

●

●
●●

●
●

●

●

●●●
●
●

●

●

●

●

●
●

●

●●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●
●
●●●

●

●

●●

●●

●

●

●

●

●

●

●
●

●●

●

●

●
●●

●

●
●

●

●●
●

●●

●

●●

●●

●
●

●●
●

●
●

●

●

●

●●

●●
●
●●

●●

●
●

●

●
●
●
●

●
●●

●
●

●

●
●

●

●●
●
●
●

●

●
●●●
●

●

●

●
●●
●●●●●
●

●

●

●

●

●

●

●

●●●

●
●

●

●

●●
●

●

●

●●

●
●
●●
●●●●
●●●

●

●

●

●

●

●

●

●
●●●●●

●

●

●●
●●
●

●
●
●
●

●

●
●
●

●
●

●

●
●●●

●
●

●
●●

●

●

●
●●
●
●
●

●●●
●
●●●

●

●
●
●
●●

●●●●
●●●●●
●
●
●
●●

●

●

●●●●
●

●
●

●

●

●●

●

●●
●

●
●●●●●●
●
●
●
●

●
●
●

●

●●
●
●
●
●

●●●●●●●●

●●

●●
●

●

●●

●

●●

●

●●
●●●
●●●●●

●

●

●
●●●
●
●●

●

●●
●
●

●

●●●●●●

●

●

●
●
●

●
●
●●
●

●

●

●

●

●
●

●

●
●●●●
●

●●●

●●
●●
●●●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●●●
●
●
●●

●

●
●●●●

●
●

●

●
●
●
●
●

●●

●

●

●

●●
●
●

●●
●●

●

●
●●

●

●

●

●●

●

●●●●

●

●
●

●

●

●●●●

●
●
●

●

●
●
●
●●

●

●

●●

●

●

●●
●
●
●●

●

●
●●●

●
●

●

●●●

●

●
●

●
●●●

●
●●
●●●

●

●

●

●

●

●

●

●

●●●
●●●
●
●

●

●●
●

●
●

●●
●
●

●
●

●

●

●

●
●●●

●

●
●

●●●●

●●

●

●
●●●
●
●●
●

●

●

●

●●

●

●
●●
●
●

●

●●

●

●

●●
●●●●●
●●
●
●
●

●
●
●
●
●
●●
●●
●●
●●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●●●●
●
●
●
●

●
●
●●
●●●●

●

●●

●

●

●

●
●
●
●●
●
●●●●
●●
●

●

●●

●
●●●●●●

●
●
●●
●
●●
●
●
●

●

●●
●●

●●
●●

●
●●
●●

●

●

●

●

●

●

●

●

●

●●

●●
●●●
●
●

●●

●

●

●●●●

●
●

●

●●
●

●

●

●
●

●●●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●●

●

●●
●
●

●

●
●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●●●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●
●●
●●

●

●

●

●
●●
●

●●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●●●

●

●
●

●

●●

●●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●
●
●●

●

●

●

●

●●
●
●

●●
●
●

●

●●
●
●

●
●
●
●
●●●●●

●●

●●●●

●

●
●
●●
●●●●
●
●●

●

●
●
●
● ●●

●●
●
●●

●

●●●●●●●
●●●●
●●●
●●●

●

●●●
●●●●
●
●
●
●
●●
●●

●
●●●

●

●●●
●
●●
●
●●
●
●●●
●●●●●●
●
●

●

●●
●●●●●
●
●●

●

●●●●●●●
●●●

●

●
●
●

●●●●●●●●●●●●●
●●

●

●●●●

●

●●●●●●●●●●

●
●
●
●
●●●
●●●●

●

●●
●●●●
●●●●
●
●●

●

●

●

●●

●

●
●●●●●
●
●

●

●
●●
●
●●

●

●

●

●
●
●
●
●●
●

●●●●

●

●●
●
●

●

●●

●
●●●●●●●●●●●

●

●
●

●

●

●●●●

●

●●

●

●●●●

●

●
●●●●●●

●

●●●●●●●●

●
●
●
●●●

●

●●●
●
●

●●

●

●●

●

●

●●

●
●
●
●

●
●

●●
●

●●

●

●●●
●●●●●●●●
●

●

●

●

●●●●●●●

●

●●
●

●

●

●
●
●●●

●

●

●
●●●●●●
●●
●●

●

●
●●●
●

●

●

●
●●

●

●
●●●

●
●
●●●
●
●●

●

●●●●●●●
●
●●
●

●●
●●●●●●●●

●

●

●
●
●
●
●

●

●

●

●

●●●●●
●

●

●
●

●

●●
●●

●

●●●●
●
●●●
●

●

●●●●●●
●●●
●
●

●

●●●
●
●●●●●
●●
●

●●●●●

●

●●●

●

●●●

●

●●
●
●●
●●●

●

●●●
●

●●●
●
●●●
●
●

●

●●
●

●●

●●
●

●

●●

●●●●

●
●

●

●

●

●

●

●

●
●●
●●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●●

●
●●

●●●

●

●

●
●
●●
●
●

●● ●●
●
●
●
●
●
●●
●●●
●
●●

●
●●●
●
●
●●

●
●
●

●
●

●
●

●

●●●●●●

●

●●●
●
●

●

●●

●

●
●
●●
●
●●●
●●

●

●

●

●

●●
●●●

●

●

●●●●
●
●
●

●
●
●●
●

●

●
●●
●

●

●

●

●
●●

●

●

●●●●●

●

●

●
●●
●
●●●
●●
●●

●●

●

●●●

●

●
●
●●●

●

●●●●
●●
●

●

●
●
●●
●
●●●
●
●

●

●

●●●●●●
●●
●
●
●●

●

●●●●●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●●
●
●●●
●
●
●
●●●
●
●
●
●●●
●●
●●●●
●●●
●

●

●

●

●

●
●
●

●

●
●

●●
●
●

●

●

●

●●

●

●●●●

●
●
●

●

●●●●●
●●●●●●
●

●

●●

●

●

●
●

●

●
●
●

●●

●
●

●

●

●
●
●
●

●

●●
●●●●●
●
●●●●●●●●

●
●●●

●

●
●
●●
●●●●●
●●

●●
●

●

●
●●

●

●
●●

●

●

●

●●
●●●●
●

●

●●●●●

●

●●

●

●

●

●

●

●

●●●●

●

●●●●●●●
●
●

●

●●

●

●●
●
●●●
●

●

●●●
●
●●●●
●
●
●
●
●●
●

●
●●●

●

●
●●
●

●

●●●●
●
●
●●
●

●
●
●●●
●●●●

●

●
●
●

●
●●
●●●●

●

●

●●

●

●●

●

●

●
●
●●●●

●

●

●

●
●
●●

●

●

●

●●

●

●●

●

●
●

●

●●●●●●
●●
●
●
●

●

●

●

●

●

●●
●●

●
●
●
●
●●●

●

●●●
●●●●●●●●●

●

●

●

●●

●

●

●
●●
●
●●
●

●

●

●●
●

●

●●
●

●

●●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●
●●

●●
●

●

●

●
●

●

●

●
●
●

●

●●

●
●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●
●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●●

●
●
●

●

●

●●●

●●

●●

●
●

●
●●

●

●

●
●
●

●●
●
●

●

●
●

●

●

●

●

●

●
●
●

●

●

●
●

●●

●

●

●

●

●●

●

●
●●
●

●

●

●

●

●
●
●●●

●

●●

●

●
●●

●

●

●●●
●●●●
●

●

●●

●

●

●●●●●

●

●

●

●
●

●
●
●
●
●

●

●
●

●

●●●

●

●
●
●

●

●●●●

●

●●
●●
●
●
●

●

●●●

●

●●●●
●●●
●

●●●
●●
●
●
●●●●
●●
●
●●
●
●●
●

●
●●

●●●●●●
●●●●●●●
●

●
●
●

●●●
●

●

●●●●
●
●●●●●

●

●●●

●

●

●

●●●●

●

●●

●

●●

●●●
●●
●●●●●

●

●●
●●●●

●

●●

●

●●
●
●

●

●
●●
●
●

●

●

●

●●●
●

●

●

●
●●
●
●
●

●●
●●●

●

●
●
●●●●

●

●
●●
●
●●●●●
●●
●●●
●●●●
●
●
●●●
●
●●
●

●

●

●

●
●
●
●

●●

●

●
●
●●

●

●

●●●●●●●●●●●●

●
●

●●●●

●●
●●
●
●

●

●●●●

●

●

●

●●●
●
●

●

●

●

●

●

●●
●

●

●●

●

●●●●
●●●●

●

●●

●

●

●

●●
●

●
●
●
●●●
●●
●
●

●
●
●●●
●
●●
●

●

●●
●●

●

●
●

●

●

●
●

●

●●
●

●

●
●●

●

●●●●●

●

●
●
●

●

●●

●

●

●

●●●

●

●
●
●

●●●
●

●

●●●●
●●
●

●

●●●●
●●

●

●●

●●●

●

●

●

●
●●●

●

●

●●

●
●

●
●
●●●●
●
●●

●

●●
●
●

●
●●●
●
●
●●

●

●

●

●●●

●
●
●
●●●●
●●

●

●●
●●

●

●●

●
●

●●●
●

●

●

●
●

●

●●●●
●
●●●●
●●

●

●

●●

●●●●●
●●●
●
●

●

●●
●

●
●●
●●
●●●●●
●●
●
●●

●

●
●

●

●

●

●
●●●

●

●●●

●

●●
●

●

●
●●
●

●

●

●

●●
●●
●●
●●
●●

●

●

●●

●

●●
●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●
●
●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●●
●●●
●

●

●

●

●

●

●
●

●

●

●
●
●●●

●

●

●
●
●●●

●

●
●●

●

●●●
●●
●
●
●
●
●

●

●

●

●●
●●

●
●●●

●
●●
●
●●●●
●
●●
●

●
●
●●

●

●
●
●●●

●

●
●
●

●
●
●●

●
●
●
●

●

●

●●●●●●
●●●●
●

●

●
●
●

●

●
●●
●

●

●

●

●●●●●
●●●●●

●

●
●
●
●
●

●●●
●●●
●

●

●
●
●●●●●

●
●●
●

●

●●
●
●●
●●●
●●
●●●

●●

●
●●

●

●●
●

●●
●
●
●●
●●●

●
●

●

●
●
●

●●
●
●●●●
●●●●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●

●●
●●
●●
●

●

●
●
●●
●

●

●●

●

●
●●●
●
●

●

●

●
●●
●●
●●

●

●
●●
●
●

●
●●
●●●

●

●
●
●●
●
●
●
●●
●
●
●
●●
●

●

●

●

●●●

●
●

●●

●

●
●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●
●

●

●●●
●
●

●

●

●

●●●

●

●

●●
●

●
●

●

●

●

●

●

●
●●●

●
●

●

●●

●●
●
●●●

●

●●

●

●●
●
●●●
●
●●

●

●●

●

●
●●
●●
●

●

●
●

●

●

●
●
●
●

●

●●
●
●
●
●●

●

●

●

●●●●●
●●
●
●
●●●●

●

●

●●●●●●●●

●

●

●●●
●●

●

●
●●

●

●

●

●

●
●
●●●

●

●●
●
●

●●●●

●

●
●●
●
●

●

●

●

●●●●

●

●

●●●

●

●●●●●
●

●

●●●

●

●
●

●

●

●
●●●●

●

●

●
●

●

●
●

●

●
●

●
●
●

●

●

●

●
●

●

●

●

●
●

●

●
●●
●
●●●●●
●
●

●
●

●
●●

●

●

●●
●●

●

●

●

●●

●

●●●●●●●

●

●

●

●●●
●●●
●

●

●

●●

●
●●
●

●
●●

●

●
●
●●●
●

●●
●

●

●●
●●●●●
●

●

●
●

●

●
●
●●
●
●
●●●●

●

●
●
●
●

●

●●
●●●

●

●
●●

●

●

●

●
●

●
●

●

●●●●
●
●

●

●

●

●

●●●
●
●●

●

●

●
●
●●

●

●●●●●

●

●●●●●
●
●

●

●
●

●
●
●

●

●

●

●

●●●●●

●

●●
●●

●

●
●

●

●●
●●●●●●

●

●

●

●
●●
●●●●
●
●●

●
●

●

●

●●●
●
●
●
●●
●●●●
●●●●●
●●
●
●●●
●●
●
●
●
●
●
●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●
●
●
●
●

●

●

●

●●
●
●

●

●●●●●

●

●

●

●
●

●

●

●

●●
●●
●●●

●

●

●

●

●

●●

●

●●

●

●●●●
●●●●

●
●
●●
●

●

●
●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●●

●

●

●●
●●
●

●

●
●●

●

●●●

●

●●●●●
●
●●●

●
●
●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●
●

●

●
●
●
●
●
●
●●●●

●

●●●●
●
●

●

●

●

●

●●
●●
●●
●●●

●

●●●●

●

●
●●
●

●

●●●
●
●●

●
●

●●●
●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●●●
●

●

●●●●

●

●
●●
●
●●●●
●
●●

●

●

●

●

●

●
●

●
●●●●●
●
●●●●●●●

●

●
●
●

●

●●●

●
●

●●●●●●
●●●●
●
●●●

●

●

●

●

●

●

●
●

●

●
●●●

●

●
●●
●

●●

●

●

●
●

●

●
●●●●●

●

●

●

●
●

●

●

●●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●●

●

●●

●

●
●●
●

●●

●●

●

●
●

●●
●
●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●
●●

●●

●

●

●

●●●

●
●●

●

●
●

●

●●

●

●

●
●

●

●
●●

●

●
●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●●

●
●●

●

●

●

●

●

●

●
●

●

●●
●
●●●

●

●●

●
●

●

●

●
●●

●

●●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●●

●
●●

●

●

●

●

●●●

●

●
●

●●●●

●
●●●
●
●

●●
●
●
●

●

●

●●
●●

●●

●●
●

●
●●
●●

●●
●
●
●

●

●●

●●●

●●●●
●●
●●

●
●●●●●
●●
●
●

●

●●

●●

●
●●
●
●●

●
●●●

●

●
●●
●

●

●●●●
●

●●
●●●●
●

●

●
●●●
●
●

●

●

●●
●
●
●●●●
●●●●
●
●
●●●

●

●●

●

●●●●
●
●
●

●
●
●

●

●

●

●●●●
●●

●

●

●●●●
●●●●

●

●
●

●
●

●
●

●●

●

●
●●●●
●
●
●●●
●
●●●●●●●●●●
●
●●

●

●●●●●●●●●●
●

●
●●

●●
●
●

●

●●●●
●

●

●

●
●●
●
●●●●●●
●
●●●

●

●●
●
●●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●
●●
●
●
●
●

●

●●●
●
●

●

●
●
●

●

●

●●●●
●●

●
●

●●
●
●●

●

●

●
●

●

●

●

●●●●●
●
●●
●
●

●

●
●
●●●●

●
●

●

●●
●●●●

●
●●●
●●●

●

●●●●●●

●

●●●●●●
●
●●●
●
●

●●●

●

●
●●●●
●
●●●●

●

●●●●

●

●●
●●

●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●●

●

●

●

●
●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●
●

●

●●

●●

●

●●

●

●

●
●

●
●

●

●

●

●●●● ●
●
●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●●
●●

●

●

●

●
●●●●
●
●

●

●

●

●

●●
●

●

●
●
●
●
●●
●●

●

●●
●●●
●●

●

●●●

●

●

●
●
●

●

●●
●
●

●

●

●
●●
●●

●

●●●●
●
●

●●●●●●

●

●●

●

●

●

●●●
●●
●

●●●

●

●

●

●●
●
●●
●

●

●

●
●
●●

●

●●●●
●
●
●
●●
●
●

●

●

●

●●●
●
●●

●
●●●●

●

●

●

●

●

●

●
●

●
●
●●

●

●
●

●

●●

●
●

●

●

●●●●●
●

●

●
●
●
●●●●
●
●
●

●

●
●●
●●●
●●
●●
●

●

●
●●

●

●

●

●

●●●
●
●●●●●

●

●
●
●●
●

●

●

●
●●
●
●●

●

●●●
●●●

●●●

●

●

●

●●
●
●

●●

●

●

●

●
●●
●●●●

●

●●
●
●
●●●
●

●●●

●

●

●
●●

●

●

●●●●
●
●
●●

●

●●

●

●

●●

●●
●

●
●
●●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●●●●

●
●

●●
●
●●
●

●
●●

●●

●

●

●

●

●

●●●
●●
●
●

●

●

●

●
●

●

●●

●
●

●
●
●

●
●●
●●

●

●
●

●●
●

●
●

●●
●
●●
●●

●

●

●

●

●

●
●

●

●

●●●
●

●

●

●
●●
●●●

●

●●●
●
●●

●
●
●

●●●
●
●●●●●
●
●

●

●●
●

●●

●

●
●●●
●●
●●

●●●
●●
●

●

●●
●
●●●●
●

●

●

●

●
●

●

●
●●
●
●●

●
●●
●

●

●●

●

●

●

●
●●

●
●●
●
●

●

●●
●
●●

●

●●
●

●●

●

●
●●

●
●

●●

●

●●

●

●
●●●
●
●●●

●

●●●
●
●

●●
●

●

●

●

●

●

●

●●
●

●

●●
●

●

●●●●

●●
●

●

●

●

●
●●

●

●●●●

●

●

●●

●

●
●
●●
●●
●

●

●
●
●
●●●

●

●

●●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●●

●

●

●

●●●●
●

●●
●●
●
●●
●

●

●●

●

●
●
●
●

●
●●
●
●
●

●

●●

●
●

●

●

●

●●●

●●

●

●

●

●

●
●

●●●●●●
●●

●

●●

●

●●

●

●
●
●
●
●

●

●●

●

●

●●

●

●

●

●

●●
●
●●●●●

●

●

●●
●
●
●
●

●●

●●

●

●

●

●

●

●●

●

●
●
●●

●●

●●●

●●●

●

●
●
●●●

●

●●
●

●

●
●

●

●

●

●

●
●
●

●

●●

●

●●

●

●

●
●
●●●
●

●

●

●

●

●

●
●
●

●

●
●●●
●●
●●●●●
●●

●

●●
●

●

●●
●
●●

●●

●

●

●

●●●

●

●

●

●

●●

●
●

●

●
●
●●
●

●
●

●

●

●●

●●

●

●

●

●
●
●●

●

●

●●
●●●
●
●●●●●●●●

●●
●
●

●

●

●
●

●

●
●

●
●
●
●●●
●

●

●

●

●

●

●●

●

●
●●●●●
●●●

●

●●●●
●●●●●●

●●●●

●

●

●
●
●●●●●
●

●

●

●

●
●

●●
●●●
●

●
●
●●

●●
●●
●

●

●
●●

●

●●●
●
●

●

●●●
●

●

●●
●
●●

●

●●●●

●

●

●

●

●

●●●●
●
●

●

●
●

●

●●●●●

●

●●●●●
●
●●

●
●

●●
●●
●●●●●●●
●

●

●

●
●
●●
●
●

●

●●●●●

●

●

●
●
●

●
●
●●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●
●

●
●
●

●
●

●

●●●●

●

●

●

●

●

●●
●

●

●
●
●●

●

●●

●

●
●●●

●●

●●●

●

●●
●
●

●●●
●

●●

●

●●

●

●●
●
●
●●
●●●
●●

●

●

●

●●●●

●

●

●
●

●●

●
●
●

●

●

●

●
●●
●
●
●●
●●

●
●
●

●
●

●
●

●
●●●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●●●

●

●

●

●

●●

●

●

●

●

●
●

●
●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●
●

●

●●

●●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●
●●
●

●●
●
●
●
●●
●
●

●

●●●

●
●

●
●
●

●
●●
●

●●

●●●●●

●

●

●
●
●
●●

●
●
●

●●
●
●
●●
●●

●

●
●●
●
●
●●●
●

●

●

●

●
●●●

●

●
●

●

●●●
●●
●
●●●

●

●

●

●●

●

●
●●
●●●●●
●●

●

●

●

●

●
●

●●●

●

●●

●

●●

●

●●●●
●

●

●●

●

●

●
●
●

●

●
●

●

●

●

●
●
●●
●
●
●●●●

●●

●

●

●

●

●
●●
●●
●
●●
●●●
●●●
●●
●●●

●●●●●●

●

●
●●●●

●●●

●●

●

●
●●

●

●
●
●●

●●

●

●

●

●
●
●
●●●
●

●

●
●
●●
●●
●●
●●

●

●●●
●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●●

●
●●●

●

●

●

●

●
●●

●
●
●●
●●
●

●

●●●
●
●

●

●

●●●
●
●

●

●

●

●

●●●

●

●

●

●●●

●

●●●

●

●●●●●●●
●
●

●

●
●●●
●
●●

●

●●
●

●

●●●●

●

●●●
●

●
●

●

●●

●

●

●

●
●

●

●●
●●●

●

●

●●

●

●●

●

●
●

●

●●●
●●

●
●

●

●●
●

●

●●●

●

●
●
●
●

●

●

●

●

●

●

●●
●●

●

●

●●
●

●
●●

●●
●●●
●
●

●●

●

●
●●

●
●
●
●●●

●

●●
●

●

●
●●

●

●●●

●

●●
●●
●●●

●

●●
●
●
●
●●●

●

●

●

●

●

●●
●●
●

●

●●

●

●●

●

●●●

●

●
●●●●
●
●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●
●
●

●●

●

●

●

●●●
●
●
●
●
●●●●●

●
●
●●●●

●

●

●

●●●

●

●

●

●●
●●
●

●

●●

●

●
●●

●

●●●
●
●
●●●

●

●

●

●
●

●

7/−0.1/0.3 7/−0.1/1 7/0.1/0.4 7/0.3/0.5

3/−0.1/0.3 3/−0.1/1 3/0.1/0.4 3/0.3/0.5

12/−0.1/0.3 12/−0.1/1 12/0.1/0.4 12/0.3/0.5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0

1

2

3

0

1

2

3

4

0

1

2

3

4

0

1

2

3

0

1

2

3

4

0

1

2

3

4

0

2

4

6

0

2

4

0

2

4

0

1

2

3

0

1

2

3

4

0

1

2

3

4

Appendix Figure A12: P (EDg|X, y) given by scDDboost (horizontal) versus empirical Wasser-
stein distance (vertical). Genes associated with boxes from left to right having P (EDg|X, y) range
from 0 - 0.2, 0.2 - 0.4, 0.4 - 0.6, 0.6 - 0.8, 0.8 - 1. For simulation cases with parameters in the
format: number of clusters / shape / scale

75

ROC curves for the simulated data in Appendix Figure A13. Each sub-figure is averaged over

ten replicates under the same parameters setting. scDDboost tends to outperform other methods .

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Deseq2 MAST scDD scDDboost

Appendix Figure A13: Roc curve of the 12 simulation settings, under each setting, TPR and FPR
are averaged over ten replicates, generally scDDboost performs better than other methods

76

Empirical Study

In this section, we provide details of the empirical datasets and also demonstrate consistency to

Wasserstein distance on one dataset FUCCI (Leng et al., 2015).

Data sets Details for the datasets used in the empirical studies with the estimated number of sub-

types K are shown in Appdenix Table A7.

Data set Conditions Number of
cells/condi-
tion

Organism Ref K

GSE94383 0 min unstim vs 75min stim 186,145 human (Lane et al.,
2017)

9

GSE48968-
GPL13112

BMDC (2h LPS stimulation) vs 6h
LPS

96,96 mouse (Shalek et al.,
2014)

4

GSE52529 T0 vs T72 69,74 human (Trapnell
et al., 2014c)

7

GSE74596 NKT1 vs NTK2 46,68 mouse (Engel et al.,
2016b)

7

EMTAB2805 G1 vs G2M 95,96 mouse (Buettner
et al., 2015)

6

GSE71585-
GPL13112

Gad2tdTpositive vs
Cux2tdTnegative

80,140 mouse (Tasic et al.,
2016)

4

GSE64016 G1 vs G2 91,76 human (Leng et al.,
2015)

6

GSE79102 patient1 vs patient2 51, 89 human Kiselev et al.
(2017)

4

GSE45719 16-cell stage blastomere vs mid
blastocyst cell

50, 60 mouse (Deng et al.,
2014)

4

GSE63818 Primordial Germ Cells, develop-
mental stage: 7 week gestation
vs Somatic Cells, developmental
stage: 7 week gestation

40,26 mouse (Guo et al.,
2015)

6

GSE75748 DEC vs EC 64, 64 human (Chu et al.,
2016)

5

GSE84465 neoplastic cells vs non-neoplastic
cells

1000, 1000 human (Darmanis
et al., 2017)

9

Appendix Table A7: Datasets used for empirical study

For the first 11 datasets in Appendix Table A7 we use all the cells within that condition under

same batch. The last one is the largest dataset we explored containing 3589 cells and comparing

neoplastic cells (1091 cells) vs non-neoplastic cells (2498 cells). We randomly sampled 1000 cells

from each condition, because it takes a lot of time for DESeq and scDD to compute when using

all the samples and we conjecture that 1000 cells each condition would be enough to represent the

77

heterogeneity. We run the comparison on those subsamples instead and found DESeq identified

significantly smaller numbers of positives than other methods. It is intuitive that we are more likely

to encounter subtle changes when we have large samples, and only considering mean shifts would

have limited power.

We also observed consistent distributional change measurements by scDDboost and Wasser-

stein distance (Appendix Figure A14).

●

●

●
●

●●

●●●●

0.0

2.5

5.0

7.5

PED

Lo
g

sc
al

e
of

 W
as

se
rs

te
in

 d
is

ta
nc

e

Appendix Figure A14: P (EDg|X, y) given by scDDboost versus empirical Wasserstein distance.
Genes associated with boxes from left to right having P (EDg|X, y) range from 0 - 0.2, 0.2 - 0.4,
0.4 - 0.6, 0.6 - 0.8, 0.8 - 1, data used: FUCCI
.

Datasets used for generating the Null cases are shown in Appendix Table A8.

78

Data set Conditions Number of cells/condi-
tion

Organism

GSE63818null 7 week gestation 20,20 mouse
GSE75748null DEC 32, 32 human
GSE94383null T0 93, 93 human
GSE48968-
GPL13112null

BMDC (2h LPS stimulation) 48,48 mouse

GSE74596null NKT1 23,23 mouse
EMTAB2805null G1 48,48 mouse
GSE71585-
GPL13112null

Gad2tdTpositive 40,40 mouse

GSE64016null G1 46,45 human
GSE79102null patient1 26, 25 human

Appendix Table A8: Datasets used for null cases, as cells are coming from same biological condi-
tion, there should not be any differential distributed genes, any positive call is false positive

79

A.11 Robustness

In this section, we demonstrate change of the posterior probability of DD under different K, and

also the robustness provided by random weighting. We also give an example where very large K

inflates FDR.

The number of subtypes K is an important parameter. Taking K too small may end up under-

fitting such that cells within same subtype can still be very different, the mean expression change

among subtypes is incapable to capture the marginal distribution change. This would lead to re-

duced power. Too large K may end up overfitting such that two subtypes can be very similar. Given

that we have a fixed number of cells, allowing more clusters will not only increase the burden of

computation but decrease the certainty of our inference on DE pattern. Empirically we find that

taking K ≤ 10 is often sufficient (Appendix Table A7). In any case, we note here that K affects the

posterior probability of DD (PDD).

To demonstrate the change of PDD over different K, we present an example using dataset

GSE75748. When we increase K, the variance of the differential term PDDK+1 − PDDK keeps

decreasing and PDD keeps increasing. Our selection criterion (K = 5) happens to choose K such

that change between PDDK+1 and PDDK is small while not inflating PDD. We generally obtain

stable validity score and PDD simultaneously (Appendix Figure A15). In addition, the random

weighting scheme helps by smoothing PDD (Appendix Figure A16).

scDDboost as the potential to lose FDR control if K is not maintained at a sufficiently small

value. Appendix Figure A17 shows what happens as K increases in one case, other factors staying

constant. In our simulation study, we note that the validity score method was always conservative,

and did not lead to overestimating K.

80

Appendix Figure A15: PDD change under different number of subtypes K for dataset DEC-EC
(GSE75748). We select K = 4, which also stabilize the PDD.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

(0,1]

(1,5]

(5,10]

(10,Inf]

Appendix Figure A16: PDD under K = 5 vs. K = 6 for dataset DEC-EC (GSE75748). PDD
without randomization (left) vs. PDD with randomization (right). scDDboost gained robustness
through random weighting.

81

EMTAB2805

K

2 3 4 5 6 7

0
0.05

0.5

1

1.5
Validity Score
False Discovery Rate

Appendix Figure A17: Under NULL case, using dataset EMTAB2805, when using too big K we
may lose FDR control (black dashed line shows proportion of false positive identified by scDDboost
under 0.05 threshold, while validity score stabilized after K > 2

82

A.12 Posterior consistency

In this section, we prove Theorem 4 and we discuss a case when condition (12) fails. The density

of DDM is computed by product or ratio over several gamma functions. We use a crucial lemma

which gives us an approximation to the gamma function, namely

Lemma .0.2. For x ≥ 1, x
x−c

ex−1 ≤ Γ(x) ≤ xx−1/2

ex−1 , where c = 0.577215... is the Euler-Mascheroni

constant.

Proof. [Proof of Lemma 2] By (Li and ping Chen, 2007), we have xx−c

ex−1 ≤ Γ(x) ≤ xx−1/2

ex−1 for

x > 1 and now we added the case when x = 1,Γ(x) = 1 so that both sides will include the equality

case.

We have another lemma.

Lemma .0.3. If (φ, ψ) ∈ Aπ1 ∩Aπ2 , follow the conditions in Theorem 1 then

ωpost
π1

ωpost
π2

a.s.−−−→
n→∞

0 if N(π1) < N(π2)

Proof. [Proof of Lemma 3] Recall ωpost
π ∝ pπ(t1|t1π, y) pπ(t2|t2π, y) pπ(t1π, t

2
π|y)ωπ and

RHS = g(π, α, β, n1, n2)f(π, t1, t2, α, β) and ω
post
π1

ω
post
π2

= g(π1,α,β,n1,n2)
g(π2,α,β,n1,n2)

f(π1,t1,t2,α,β)
f(π2,t1,t2,α,β)

where

g(π, t1, t2, α, β) =
[2∏
j=1

∏
b∈π

Γ(Σk∈bα
j
k)∏

k∈b Γ(αjk)

]Γ(n1 + 1)Γ(n2 + 1)∏
b∈π Γ(βb)

Γ(Σb∈πβb)

Γ(n1 + n2 + Σb∈πβb)

f(π, t1, t2, α, β) =
[2∏
j=1

∏
b∈π

1∏
k∈b Γ(tjk + 1)

∏
k∈b Γ(αjk + tjk)

Γ(tjb + Σk∈bα
j
k)

]∏
b∈π

Γ(βb + t1b + t2b)

For notational simplicity, we use the abbreviation g(π), f(π) to substitute

g(π, α, β, n1, n2), f(π, t1, t2, α, β). We take log on ω
post
π1

ω
post
π2

, denote it as LR. LR = lng(π1) −

lng(π2) + lnf(π1) − lnf(π2). Denote C(π1, π2, α, β) = lng(π1) − lng(π2), C(π1, π2, α, β) does

not change with sample size n1, n2 and is a constant determined by partition π1, π2 and hyper pa-

rameters α, β. For further convenience of notation let h(x) = lnΓ(x) and γjb = Σk∈bα
j
k. Denote

83

R(π1, π2, t
1, t2, α, β) = lnf(π1) − lnf(π2). And removing the common part of f(π1) and f(π2),

we have

R(π1, π2, t
1, t2, α, β) = d(π1, t

1, t2, α, β)− d(π2, t
1, t2, α, β)

where

d(π, t1, t2, α, β) = Σ
b∈π

h(βb + t1b + t2b)−
2
Σ
j=1

Σ
b∈π

h(tb + γjb)

Recall βb = γ1
b +γ2

b and from Lemma 2, (x−c)ln(x)−x+1 ≤ h(x) ≤ (x−1/2)ln(x)−x+1

we have

d(π, t1, t2, α, β) ≥ Σ
b∈π

(βb + t1b + t2b − c)ln(βb + t1b + t2b)−
2
Σ
j=1

Σ
b∈π

(tjb + γjb − 1/2)ln(tjb + γjb) +N(π)

(7)

d(π, t1, t2, α, β) ≤ Σ
b∈π

(βb + t1b + t2b − 1/2)ln(βb + t1b + t2b)−
2
Σ
j=1

Σ
b∈π

(tjb + γjb − c)ln(tjb + γjb) +N(π)

(8)

RHS of (4) = Σb

[
(t1b + γ1

b)ln(1 +
t2b + γ2

b

t1b + γ1
b

) + (t2b + γ2
b)ln(1 +

t1b + γ1
b

t2b + γ2
b

)

+(1− c)ln(βb + t1b + t2b)− 1/2(ln(1 +
t2b + γ2

b

t1b + γ1
b

) + ln(1 +
t1b + γ1

b

t2b + γ2
b

))
]

+N(π)

By Taylor expansion at x = 1, ln(x + 1) = ln2 + 1/2(x − 1) − 1/8(x − 1)2 + g(ξ)(x − 1)3,

where g(ξ) is the reminder term of form 1
3(1+ξ)3

for 0 < ξ < x For a fixed n1, n2, we have

RHS of (4) = (n1 + n2)ln2− Σb∈π(1/8(X1
b +X2

b)

+g(ξb)(Y
1
b + Y 2

b)) + T (π) +N(π)

84

whereX1
b =

(t1b−t
2
b+γ

1
b−γ

2
b)2

t1b+γ
1
b

,X2
b =

(t1b−t
2
b+γ

1
b−γ

2
b)2

t2b+γ
2
b

, Y 1
b =

(t1b−t
2
b+γ

1
b−γ

2
b)3

(t1b+γ
1
b)2

, Y 2
b =

(t1b−t
2
b+γ

1
b−γ

2
b)3

(t2b+γ
2
b)2

and T (π) = Σb∈π
[
(1− c)ln(βb + t1b + t2b)− 1/2(ln(1 +

t2b+γ
2
b

t1b+γ
1
b
) + ln(1 +

t1b+γ
1
b

t2b+γ
2
b
))
]

Similarly

RHS of (5) = (n1 + n2)ln2− Σb∈π(1/8(X1
b +X2

b)

+g(ξb)(Y
1
b + Y 2

b)) + U(π) +N(π)

U(π) = Σb∈π
[
(2c− 1/2)ln(βb + t1b + t2b)− c(ln(1 +

t2b+γ
2
b

t1b+γ
1
b
) + ln(1 +

t1b+γ
1
b

t2b+γ
2
b
))
]

Using above inequalities, we have

R(π1, π2, t
1, t2, α, β) ≤ U(π1)− T (π2)− 1/8(Σb∈π1(X1

b +X2
b)− Σb∈π2(X1

b +X2
b))

+Σb∈π1g(ξb)(Y
1
b + Y 2

b)− Σb∈π2g(ξb)(Y
1
b + Y 2

b)

Y j
b =

((t1b−t
2
b+γ

1
b−γ

2
b)/
√
n))3/

√
n

((tjb+γ
j
b)/n)2

, by LLN the denominator goes to a constant and by CLT in the

numerator (t1b − t2b + γ1
b − γ2

b)/
√
n → (t1b − t2b)/

√
n →

√
n[(t1b/n − Φb) − (t2b/n − Ψb)], which

converges to a normally distributed random variable when Φb = Ψb. So Y j
b is op(1). Similarly,

Xj
b =

((t1b−t
2
b+γ

1
b−γ

2
b)/
√
n)2

tjb+γ
j
b/n

is asymptotically gamma (χ-square) distributed. g(ξb) has bounded

variance, U(π1)− T (π2) = −ln(n) if N(π2) < N(π1) as ln(βb + t1b + t2b)− ln(βb′ + t1b′ + t2b′) =

ln(
βb+t

1
b+t

2
b

n)− ln(
βb′+t

1
b′+t

2
b′

n)→ O(1) a.s., which completes the proof.

Proof. [Proof of Theorem 4]

Recall
∑

π∈Π ω
post
π = 1 and P (Aπ|y, z) =

∑
π̃∈Π ω

post
π̃ 1[π̃ refines π]. If (φ, ψ) /∈ Q, for all the

Aπ covers (φ, ψ) there is one finest π∗ with the largest N(π∗) and every other π that (φ, ψ) ∈ Aπ

is coarser than π∗. Theorem 4 now follows by Lemma 3.

Under some choices of (φ, ψ), condition (12) could fail.

In Appendix Figure A18, there are four subtypes, the rectangle with magenta boundary is a simplex

85

Appendix Figure A18: Four subtypes of cells, simplexes of (φ, ψ) satisfying different constraints.

Aπ1 = {(φ, ψ) : φ1 + φ2 = ψ1 + ψ2}, the rectangle with blue boundary is another simplex

Aπ2 = {(φ, ψ) : φ1 + φ3 = ψ1 + ψ3}. The green line refers to Aπ3 = {(φ, ψ) : φ1 = ψ1, φ2 =

ψ2}, the yellow line refers to Aπ4 = {(φ, ψ) : φ1 = ψ1, φ3 = ψ3}. the purple line refers to

O = {(φ, ψ) : φ1 + φ2 = ψ1 + ψ2, φ1 + φ3 = ψ1 + ψ3}, which is the intersection of Aπ1 and

Aπ2 , and finally the black dot which is the intersection of those three lines refers to the simplex

with finest partitions, φi = ψi,∀i = 1, · · · , 4. When (φ, ψ) is from the purple line except the black

dot, condition (12) would fail as there is not a finest π∗ of H(φ, ψ). This may be of theoretical

interest, but the practical implications of this finding are negligible as further computations have

demonstrated.

A.13 EBSeq margin

A core computation is to evaluate the joint probability mass f of input data recordings X =

(X1, · · · , Xm) that have a common, unknown, mean, whose value is integrated out (i.e., contin-

uous mixing). In EBSeq, we integrate a Negative Binomial mass function, NB(q, γ), which has

86

mean qγ/(1− q), against a Beta prior for q.

f(x) =

∫ 1

0

m∏
i=1

[p(xi|γ, q)] p(q|α, β) dq

where x|γ, q is a Negative Binomial(γ, q) distribution and q|α, β is a Beta(α, β) distribution. The

result is reported in (3.1). In this representation, the expression data X are expected to be normal-

ized and the shape parameter γ is common across samples. Thus the conditional mean µ is fully

determined by q.

In EBSeq, hyperparameters are estimated for each unit, α is shared across all units. In gen-

eral, different units may have different β values, but depending on the data structure, there will be

blocking of units. For example, when the units are isoforms. Isoforms from the same host gene

are treated as a block and share a common β. The global hyperparameters parameters (α, β), and

the mixing rates pglobal,π are estimated in an EM algorithm using data on all samples and all units

(Dempster et al., 1977).

A.14 Proofs of Lemma 3.3.1 and Theorem 3.3.1

Proof of Lemma 3.3.1

Proof. Without loss of generality, we label groups so sample means are ordered, µ̂1 ≤ ... ≤ µ̂K ,

and the rank vector r = (1, 2, ...,K), and therefore Ar(b) = b. Denote the number of blocks in π

as N(π). For any compatible π, if N(π) > 1, then by definition, any two distinct bj , bk ∈ π. We

have bj and bk are not overlapping, which means either max bj < min bk or max bk < min bj .

Without loss of generality, let b1, ..., bN(π) be the blocks with max(b1) < ... < max(bN(π)).

We say vi = min(bi) and wi = max(bi) for i = 1, 2, ..., N(π). Then there is a way of assigning 6=

or = between µ̂j and µ̂j+1 for j = 1, ...,K − 1 to represent π (equation 3.2), namely if N(π) > 1,

we assigning 6= between µ̂wi and µ̂vi for i = 1, ..., N(π) − 1, and assign = for the rest slots. If

N(π) == 1, we assign = to all slots.

87

Also for any assignment of 6= and = between µ̂j and µ̂j+1. There is a compatible partition cor-

responding to it. It is a 1-1 correspondence between compatible partitions and assignment between

ranked estimated means. There is K − 1 slots Thus there is 2K−1 possible ways.

To prove Theorem 3.3.1, let us further decompose predictive functions in Equation (3.1). With-

out loss of generality, we label groups ‘1‘ and ‘2‘ with and for j = 1, 2 denote by xj the vector of

nj sample measurements in group j at the unit on test. Write:

log {f(x1,2)} = φ(α+ (n1 + n2)γ) + φ(β + n1µ̂2 + n2µ̂2)

− φ(α+ (n1 + n2)γ + β + n1µ̂2 + n2µ̂2) + φ(α) + φ(β)− φ(α+ β)

log {f(x1)f(x2)} = φ(α+ n1γ) + φ(β + n1µ̂1)− φ(α+ n1γ + β + n1µ̂1)

+ φ(α+ n2γ) + φ(β + n2µ̂2)− φ(α+ β + n2γ + n2µ̂2) + 2(φ(α) + φ(β)− φ(α+ β))

log(D1,2) = log {f(x1)f(x2)} − log {f(x1,2)}

:= g(n1, n2, µ̂1, µ̂2, α, β, γ)

where φ(x) = log Γ(x), and µ̂j =
∑

i xi1[yi = j]/nj .

Lemma .0.6, which is a key part of the proof, describes monotonicities of g with respect to

different input variables. To prove Lemma .0.6, we have Lemma .0.4, which gives an approxima-

tion to the derivative of φ that is the key component in g, and Lemma .0.5, which provides useful

inequalities to handle the logarithm.

Lemma .0.4. Digamma function, defined as the (using natural base) derivative of the gamma func-

tion:

ψ(x) =
d

dx
φ(x) =

d

dx
log(Γ(x)) (9)

Through Binet’s second integral for the gamma function, ψ(x) can be rewritten as

ψ(x) = log(x)− 1

2x
− 2

∫ ∞
0

tdt

(t2 + x2)(e2πt − 1)
(10)

88

Further to handle the term, we have Lemma .0.5

Lemma .0.5. For x > 0,

log(x) ≥ x− x2

2
(11)

log(x) ≤ x (12)

Lemma .0.6. Regularity conditions:

A) γ ≥ C0, C0 =
∫∞

0
4t

e2πt−1
dt ≈ 0.0075

B) µ̂2 − µ̂1 ≥ C1, C1 = γ+α+β
n1

+ γ+α
n2

C) γµ̂2 −
(
γ + α

n2

)
µ̂1 ≥

(
1
n1

+ 1
n2

)
(α+ γ + C2), C2 = 2

n2

(
1 + α/n2+γ

β/n2+µ̂2

)
D) 1

n2

{
1
n2

(
4 µ̂2µ̂1 + 4 γ

µ̂1

)
− 2γβ−µ̂1αγ (µ̂2 − µ̂1)

}
< (µ̂2 − µ̂1)2

Under these regularity conditions, the two-group Bayes factor, g is:

a) Monotone decreasing for µ̂1, fix the others

b) Monotone increasing for µ̂2, fix the others

c) Monotone increasing for n1, fix the others

d) Monotone increasing for n2, fix the others

Proof.

For simplicity, let Sj = njµ̂j , Rj = njγ, j = 1, 2. To prove a), the derivative for µ̂1 is

∂g

∂µ̂1
= n1 {ψ(β + S1)− ψ(α+R1 + β + S1)

−ψ(β + S1 + S2) + ψ(α+ β + S1 + S2 +R1 +R2)} .

89

Using Lemma .0.4 and after some simplification and reorganizing, we have

∂g

∂µ̂1
= H1 +H2 +H3

H1 = log

{
(1 +

n1n2r(µ̂1 − µ̂2) +R2β − S2α

(α+R1 + S1 + β)(β + S1 + S2)

}
≤ 0

H2 ≤ −
1

2

{
(αS2 +R1S2 − β2)R2 + (2R1 + 2α− β)S1S2

(β + S1)(β + S1 + S2)(α+ β +R1 + S1)(α+ β +R1 +R2 + S1 + S2)

}
≤ 0

H3 = −
∫ ∞

0

2t

e2πt − 1

{
γ

t2 + (α+R1 +R2 + β + S1 + S2)2
+

µ̂1

t2 + (β + S1)2

− µ̂1

t2 + (β + S1 + S2)2
− µ̂1

t2 + (α+R1 + β + S1)2

}
dt.

Overall, ∂g
∂µ̂1

is dominated by H1 and is non-positive. The intuition is that H1 ∼ Op(1), while H2

and H3 are op(1), where Op and op are the big O and small O notations.(Bachmann, 1894). Thus,

H1 goes to some constant and H2, H3 go to 0 when the sample size is large.

To prove b), the derivative for µ̂2 is

∂g

∂µ̂2
= n2(ψ(β + S2)− ψ(α+R2 + β + S2)

− ψ(β + S1 + S2) + ψ(α+ β + S1 + S2 +R1 +R2))

which is symmetric to ∂g
∂µ̂1

, and we have

∂g

∂µ̂2
= H4 +H5 +H6

H4 = log

{
1 +

n1n2γ(µ̂2 − µ̂1) +R1β − S1α

(α+R1 + S1 + β)(β + S1 + S2)

}
≥ 0

H5 ≤ −
1

2

{
(αS1 +R2S1 − β2)R1 + (2R2 + 2α− β)S1S2

(β + S2)(β + S1 + S2)(α+ β +R2 + S2)(α+ β +R1 +R2 + S1 + S2)

}
≤ 0

H6 = −
∫ ∞

0

2t

e2πt − 1

{
γ

t2 + (α+R1 +R2 + β + S1 + S2)2
+

µ̂2

t2 + (β + S2)2

− µ̂2

t2 + (β + S1 + S2)2
− µ̂2

t2 + (α+R2 + β + S2)2

}
dt.

90

∂g
∂µ̂2

is dominated by H4, when the regularity conditions are met. To prove c), the derivative for n1

is

∂g

∂n1
= γψ(α+R1) + µ̂1ψ(β + S1)− (γ + µ̂1)ψ(α+R1 + β + S1)− γψ(α+R1 +R2)

− µ̂1ψ(β + S1 + S2) + (γ + µ̂1)ψ(α+R1 +R2 + β + S1 + S2)

Using Lemma .0.4 and after some simplification and reorganizing, we have

∂g

∂n1
= H7 +H8 +H9

H7 = γ log

(
1 +

T1 − T2

1 + T2

)
− µ̂1 log

(
1 +

T1 − T2

T1T2 + T2

)
H8 =

γ

2

(
T1

α+ β +R1 +R2 + S1 + S2
− T2

α+ β +R1 + S1

)
+
µ̂1

2

(
1

T1(α+ β +R1 +R2 + S1 + S2)
− 1

T2(α+ β +R1 + S1)

)
H9 = −

∫ ∞
0

2t

e2πt − 1

{
γ

t2 + (α+R1)2
+

µ̂1

t2 + (β + S1)2

− γ + µ̂1

t2 + (α+R1 + β + S1)2

+
γ

t2 + (α+R1 +R2)2
+

µ̂1

t2 + (β + S1 + S2)2

− γ + µ̂1

t2 + (α+ β +R1 +R2 + S1 + S2)2

}
dt,

where T1 = β+S1+S2

α+R1+R2
, T2 = β+S1

α+R1
. Using Lemma .0.5, we have

H7 ≥ r

{
T1 − T2

1 + T2
− 1

2

(
T1 − T2

1 + T2

)2
}
− µ̂1

T1 − T2

T1T2 + T2

Notice T1 − T2 =
µ̂2−µ̂1−(β

n1
−αµ̂2
R1

)

(r+
α+R1
n2

)(α
R1

+1)
≥ 0. By regularity condition B). Using this, we have

H7 ≥
T1 − T2

(1 + T1)2

1

α+R1 +R2

{
γ

2
n2(µ̂2 − µ̂1) + (γβ − µ̂1α) +O

(
1

n1

)}
=
n2(µ̂2 − µ̂1)(γ2n2(µ̂2 − µ̂1) + γβ − µ̂1α)

(α+ β +R1 +R2 + S1 + S2)2(α
R1

+ 1)
+ o

(
1

n2
1

)

91

with positive coefficient. The first part of H8,

γ

2

(
T1

α+ β +R1 +R2 + S1 + S2
− T2

α+ β +R1 + S1

)
=
γ

2

R2
1S2 − 2R2R1S1

(α+R1)(α+R1 +R2)(α+ β +R1 +R2 + S1 + S2)(α+ β +R1 + S1)
+ o

(
1

n2
1

)

The second part of H8

µ̂1

2

(
1

T1(α+ β +R1 +R2 + S1 + S2)
− 1

T2(α+ β +R1 + S1)

)
=

−S2R
2
1 − 2S2S1R1

(α+ β +R1 +R2 + S1 + S2)(β + S1 + S2)(β + S1)(α+ β +R1 + S1)
+ o

(
1

n2
1

)
.

So we have

H8 =
−2S2S1R1 − 2R2S1R1

(α+ β +R1 +R2 + S1 + S2)(β + S1 + S2)(β + S1)(α+ β +R1 + S1)
+ o

(
1

n2
1

)

By regularity condition D, we have H7 +H8 ∼ O(1
n2
1
) ≥ 0, and H9 ∼ o(1

n2
1
). So the derivation is

positive when n1 is large. Proof of d) is similar and details are omitted.

The regularity conditions essentially require the difference between the sample means of two

groups being bigger than some threshold, that is µ̂2−µ̂1 > O(1
min(n1,n2)). Once there is a sufficient

difference, Lemma .0.6 states that two-group Bayes factor is monotone function with respect to

those inputs µ̂1, µ̂2, n1, n2. Roughly speaking, the two-group Bayes factor is monotone increasing

with the difference between the sample means and the sample sizes.

Proof of Theorem 3.3.1.

Proof. Without loss of generality, let x1, · · · , xK be vectors of data at one unit with group labels

sorted from smallest to largest by the sample means. If for some j < K, we have the two-group

Bayes factor favoring differential means between groups j and j + 1,then Dj,j+1 > 1. Denote Πe

as the set of partitions assigning equivalent means between group j and j + 1 and let Πd = Π \Πe

be set of partitions assigning differential means. As for those partitions assigning equivalent means,

we can merge xj , xj+1 into one group and view Πe as partitions for K−1 elements, |Πe| = BK−1,

92

while |Πd| = BK − BK−1, and so |Πe| < |Πd|. There is an injection mapping from Πe to Πd.

Namely, for any π ∈ Πe, there is π′ ∈ Πd having the following property: ∀b ∈ π,we have b ∈ π′ as

well if j /∈ b, let b1 ∈ π be the block containing j and j + 1. We can always uniquely split b1 into

two disjoint blocks b2, b3 ∈ π′, where j is the element with maximal sample mean in b2 and j + 1

is the element with minimal sample mean in b3.

Recalling condition labels in y, we have

P (x|Mπ′ , y)

P (x|Mπ, y)
=
f(xb2)f(xb3)

f(xb2,b3)
= exp(g(µ̂b2 , µ̂b3 , nb2 , nb3 , α, β, γ)). (13)

where the left hand side ratio only depends on the data from blocks b2 and b3. We treat xb2 and xb3

as two ”new groups”, thus the ratio in the middle is also a two-group Bayes factor, where we have

bigger difference in sample means: µ̂b2 ≤ µ̂j and µ̂b3 ≥ µ̂j+1. Also we have more sample sizes:

nb2 ≥ nj and nb3 ≥ nj+1. By Lemma .0.6, we have
f(xb2)f(xb3)

f(xb2,b3) ≥ Dj,j+1 > 1, which means for

any π ∈ Πe, there is π′ ∈ Πd such that P (x|Mπ′ , y) > P (x|Mπ, y). Thus, partitions with maximal

P (x|Mπ, y) must assign differential means between groups j and j + 1.

A.15 Computational details

Number of groups K

For all the empirical examples used in Section 2, their group number K is determined via clustering

analysis in scDDboost (Ma et al., 2019)

Hyperparameters of two-group Bayes factor

Under different hyperparameters the final selected partitions S may vary. To measure the similarity

between two sets of partitions S1 and S2, we have the metric:

I =
|S1 ∩ S2|
|S1 ∪ S2|

93

The default value of α is 0.4, and β is set to 2 for all units.

αβ 1 2 3

0.3 0.97 0.93 0.91

0.4 0.9 1 0.94

0.5 084 0.91 0.97

tableI for comparing different hyperparamters to the default setting (α = 0.4, β = 2). Results are

averaged over data sets GSE74596 and GSE57872

The scale of α and β are determined by estimations from EBSeq.v1 applied on benchmark data

sets built into it and an empirical data GSE45719.

Number of uncertain positions

We provide an option to limit the number of uncertain positions. Users can specify a upper bound

U∗ for NUC,g, which is shared by all the units. Let K∗g = min(NUC,g, U
∗). Then for unit g, we

keep the smallest K∗g uncertain positions in terms of the absolute value of two-group Bayes factor

in the log scale.

A.16 simulation details

In the simulation, we set 200 samples per group, 20000 units (genes) in total. It is biologically

plausible that a DE pattern can be shared by several units, so we assign blocks to units and units

belong to the same block have same pattern. The blocks is generated from a Chinese restaurant

process (CRP) with strength and discount parameter (α0, α1) (Aldous et al., 2006). Namely

Pr(Ci = c | C1, . . . , Ci−1) =



α0 +Bα1

θ + i− 1
if c ∈ new block,

|b| − α1

α0 + i− 1
if c ∈ b;

(14)

94

Where C1, ..., Ci are the cluster label for elements 1, ...i. B is the number of blocks, |b| is the

number of elements inside that block. We set α1 = 1 and use α0 to control the number of blocks.

After we obtain the blocking structure of genes, the next step is to generate partitions of groups and

assign them to those blocks of genes. One challenge is that the size of possible partitions increases

rapidly, for example when K = 15, there is 1.38 billion partitions, makes it impossible to directly

sample from the population. Again, we use CRP to generate partitions. The remaining problem is

to assign partitions to blocks of genes. We observe that in the expression data, partitions π with

big plocal,π for most genes have small number of blocks and thus are coarse. Therefore, we use a

monotone mapping, for example, big block of units will be associated with coarse partitions and

small block of units will get fine partitions. We use entropy to measure the complexity(fineness) of

a partition. That is, for a partition π, we have the entropy: −Σb log(|b|Σb|b|)
|b|

Σb|b| , it reaches minimum

when all samples belong to a single block and reaches maximum when every sample forms a distinct

block. We assign the patterns with low entropy to big blocks. At each unit, counts are sampled from

a Beta mixture of Negative Binomial (NB) distributions.

95

References

Aldous, D. J., Ibragimov, I. A., and Jacod, J. (2006). Ecole d’Ete de Probabilites de Saint-Flour

XIII, 1983, volume 1117. Springer.

Anders, S. and Huber, W. (2010). Differential expression analysis for sequence count data. Genome

Biology 11, R106–R106.

Bacher, R. and Kendziorski, C. (2016). Design and computational analysis of single-cell rna-

sequencing experiments. Genome Biology 17, 63.

Bachmann, P. (1894). Die analytische zahlentheorie, volume 2. Teubner.

Baños-Lara, M. D. R., Zabaleta, J., Garai, J., Baddoo, M., and Guerrero-Plata, A. (2018). Compar-

ative analysis of mirna profile in human dendritic cells infected with respiratory syncytial virus

and human metapneumovirus. BMC research notes 11, 432.

Boost (2015). Boost C++ Libraries. http://www.boost.org/. Last accessed 2015-06-30.

Buettner, F., Natarajan, K. N., Casale, F. P., Proserpio, V., Scialdone, A., Theis, F. J., Teichmann,

S. A., Marioni, J. C., and Stegle, O. (2015). Computational analysis of cell-to-cell heterogeneity

in single-cell rna-sequencing data reveals hidden subpopulations of cells. Nature Biotechnology

33, 155 EP –.

Chen, W., Li, Y., Easton, J., Finkelstein, D., Wu, G., and Chen, X. (2018). Umi-count modeling and

differential expression analysis for single-cell rna sequencing. Genome Biology 19, 70.

http://www.boost.org/

96

Chu, L.-F., Leng, N., Zhang, J., Hou, Z., Mamott, D., Vereide, D. T., Choi, J., Kendziorski, C.,

Stewart, R., and Thomson, J. A. (2016). Single-cell rna-seq reveals novel regulators of human

embryonic stem cell differentiation to definitive endoderm. Genome Biology 17, 173.

Dahl, D. B. (2009a). Modal clustering in a class of product partition models. Bayesian Anal. 4,

243–264.

Dahl, D. B. (2009b). Modal clustering in a class of product partition models. Bayesian Anal. 4,

243–264.

Darmanis, S., Sloan, S. A., Croote, D., Mignardi, M., Chernikova, S., Samghababi, P., Zhang, Y.,

Neff, N., Kowarsky, M., Caneda, C., Li, G., Chang, S. D., Connolly, I. D., Li, Y., Barres, B. A.,

Gephart, M. H., and Quake, S. R. (2017). Single-cell rna-seq analysis of infiltrating neoplastic

cells at the migrating front of human glioblastoma. Cell reports 21, 1399–1410.

Delmans, M. and Hemberg, M. (2016). Discrete distributional differential expression (d3e) - a tool

for gene expression analysis of single-cell rna-seq data. BMC Bioinformatics 17, 110.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data

via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological) 39,

1–22.

Deng, Q., Ramsköld, D., Reinius, B., and Sandberg, R. (2014). Single-cell rna-seq reveals dynamic,

random monoallelic gene expression in mammalian cells. Science 343, 193–196.

Dominguez, D., Tsai, Y.-H., Gomez, N., Jha, D. K., Davis, I., and Wang, Z. (2016). A high-

resolution transcriptome map of cell cycle reveals novel connections between periodic genes and

cancer. Cell Research 26, 946 EP –.

Efron, B. (2005). Local false discovery rates.

Efron, B. (2007). Size, power and false discovery rates. Ann. Statist. 35, 1351–1377.

Elowitz, M. B., Levine, A. J., Siggia, E. D., and Swain, P. S. (2002). Stochastic gene expression in

a single cell. Science 297, 1183–1186.

97

Engel, I., Seumois, G., Chavez, L., Samaniego-Castruita, D., White, B., Chawla, A., Mock, D.,

Vijayanand, P., and Kronenberg, M. (2016a). Innate-like functions of natural killer t cell subsets

result from highly divergent gene programs. Nature immunology 17, 728–739.

Engel, I., Seumois, G., Chavez, L., Samaniego-Castruita, D., White, B., Chawla, A., Mock, D.,

Vijayanand, P., and Kronenberg, M. (2016b). Innate-like functions of natural killer t cell subsets

result from highly divergent gene programs. Nature Immunology 17, 728 EP –.

Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A. K., Slichter, C. K., Miller,

H. W., McElrath, M. J., Prlic, M., Linsley, P. S., and Gottardo, R. (2015). Mast: a flexible

statistical framework for assessing transcriptional changes and characterizing heterogeneity in

single-cell rna sequencing data. Genome Biology 16, 278.

Gardner, M. (1978). Mathematical Games. Scientific American 238, 24–30.

Guennebaud, G., Jacob, B., et al. (2010). Eigen v3. http://eigen.tuxfamily.org.

Guo, F., Yan, L., Guo, H., Li, L., Hu, B., Zhao, Y., Yong, J., Hu, Y., Wang, X., Wei, Y., Wang, W.,

Li, R., Yan, J., Zhi, X., Zhang, Y., Jin, H., Zhang, W., Hou, Y., Zhu, P., Li, J., Zhang, L., Liu, S.,

Ren, Y., Zhu, X., Wen, L., Gao, Y. Q., Tang, F., and Qiao, J. (2015). The transcriptome and dna

methylome landscapes of human primordial germ cells. Cell 161, 1437–1452.

Haghverdi, L., Buettner, F., and Theis, F. J. (2015). Diffusion maps for high-dimensional single-cell

analysis of differentiation data. Bioinformatics 31, 2989–2998.

Heller, K. A. and Ghahramani, Z. (2005). Bayesian hierarchical clustering. In Proceedings of the

22nd international conference on Machine learning, pages 297–304.

Hrvatin, S., Hochbaum, D. R., Nagy, M. A., Cicconet, M., Robertson, K., Cheadle, L., Zilionis, R.,

Ratner, A., Borges-Monroy, R., Klein, A. M., et al. (2018). Single-cell analysis of experience-

dependent transcriptomic states in the mouse visual cortex. Nature neuroscience 21, 120–129.

Huang, M., Wang, J., Torre, E., Dueck, H., Shaffer, S., Bonasio, R., Murray, J. I., Raj, A., Li, M.,

98

and Zhang, N. R. (2018). Saver: gene expression recovery for single-cell rna sequencing. Nature

Methods 15, 539–542.

Huber, W., Carey, V. J., Gentleman, R., Anders, S., Carlson, M., Carvalho, B. S., Bravo, H. C.,

Davis, S., Gatto, L., Girke, T., et al. (2015). Orchestrating high-throughput genomic analysis

with bioconductor. Nature methods 12, 115.

Hwang, B., Lee, J. H., and Bang, D. (2018). Single-cell rna sequencing technologies and bioinfor-

matics pipelines. Experimental & molecular medicine 50, 1–14.

Jara, A., Hanson, T., Quintana, F., Müller, P., and Rosner, G. (2011). Dppackage: Bayesian semi-

and nonparametric modeling in r. Journal of Statistical Software, Articles 40, 1–30.

Jensen, S. T., Erkan, I., Arnardottir, E. S., and Small, D. S. (2009). Bayesian testing of many

hypotheses x many genes: A study of sleep apnea. Ann. Appl. Stat. 3, 1080–1101.

Kaufman, L. and Rousseeuw, P. (1987). Clustering by means of medoids. North-Holland.

Kendziorski, C., Newton, M., Lan, H., and Gould, M. (2003a). On parametric empirical bayes

methods for comparing multiple groups using replicated gene expression profiles. Statistics in

medicine 22, 3899–3914.

Kendziorski, C. M., Newton, M. A., Lan, H., and Gould, M. N. (2003b). On parametric empirical

bayes methods for comparing multiple groups using replicated gene expression profiles. Statistics

in Medicine 22, 3899–3914.

Kim, T., Chen, I. R., Lin, Y., Wang, A. Y.-Y., Yang, J. Y. H., and Yang, P. (2018). Impact of similarity

metrics on single-cell rna-seq data clustering. Briefings in Bioinformatics page bby076.

Kiselev, V. Y., Kirschner, K., Schaub, M. T., Andrews, T., Yiu, A., Chandra, T., Natarajan, K. N.,

Reik, W., Barahona, M., Green, A. R., and Hemberg, M. (2017). Sc3: consensus clustering of

single-cell rna-seq data. Nature Methods 14, 483 EP –.

99

Korthauer, K. D., Chu, L.-F., Newton, M. A., Li, Y., Thomson, J., Stewart, R., and Kendziorski,

C. (2016a). A statistical approach for identifying differential distributions in single-cell rna-seq

experiments. Genome Biology 17, 222.

Korthauer, K. D., Chu, L.-F., Newton, M. A., Li, Y., Thomson, J., Stewart, R., and Kendziorski,

C. (2016b). A statistical approach for identifying differential distributions in single-cell rna-seq

experiments. Genome Biology 17, 222.

Lane, K., Van Valen, D., DeFelice, M. M., Macklin, D. N., Kudo, T., Jaimovich, A., Carr, A.,

Meyer, T., Pe’er, D., Boutet, S. C., and Covert, M. W. (2017). Measuring signaling and rna-seq

in the same cell links gene expression to dynamic patterns of nf-b activation. Cell Systems 4,

458–469.e5.

Lee, C.-J., Ahn, H., Jeong, D., Pak, M., Moon, J. H., and Kim, S. (2020). Impact of mutations

in dna methylation modification genes on genome-wide methylation landscapes and downstream

gene activations in pan-cancer. BMC Medical Genomics 13, 1–14.

Leng, N., Chu, L.-F., Barry, C., Li, Y., Choi, J., Li, X., Jiang, P., Stewart, R. M., Thomson, J. A., and

Kendziorski, C. (2015). Oscope identifies oscillatory genes in unsynchronized single-cell rna-seq

experiments. Nature Methods 12, 947 EP –.

Leng, N., Dawson, J. A., Thomson, J. A., Ruotti, V., Rissman, A. I., Smits, B. M. G., Haag, J. D.,

Gould, M. N., Stewart, R. M., and Kendziorski, C. (2013). Ebseq: an empirical bayes hierarchical

model for inference in rna-seq experiments. Bioinformatics 29, 1035–1043.

Leng, N., Dawson, J. A., Thomson, James A.and Ruotti, V., Rissman, A. I., Smits, B. M. G., Haag,

J. D., Gould, M. N., Stewart, R. M., and Kendziorski, C. (2013). EBSeq: an empirical Bayes

hierarchical model for inference in RNA-seq experiments. Bioinformatics 29, 1035–1043.

Leng, N. and Kendziorski, C. (2019). EBSeq: An R package for gene and isoform differential

expression analysis of RNA-seq data. R package version 1.24.0.

100

Li, F. and Altieri, D. C. (1999). The cancer antiapoptosis mouse survivin gene. Cancer Research

59, 3143.

Li, X. and ping Chen, C. (2007). Inequalities for the gamma function. In 2007), Art. 28. [ONLINE:

http://jipam.vu.edu.au/ article.php?sid=842.

Lin, P., Troup, M., and Ho, J. W. K. (2017). Cidr: Ultrafast and accurate clustering through impu-

tation for single-cell rna-seq data. Genome Biology 18, 59.

Little, A. F., Maggioni, M., and Murphy, J. M. (2017). Path-based spectral clustering: Guarantees,

robustness to outliers, and fast algorithms.

Lopez, R., Regier, J., Cole, M. B., Jordan, M. I., and Yosef, N. (2018). Deep generative modeling

for single-cell transcriptomics. Nature Methods 15, 1053–1058.

Louro, B., Marques, J. P., Manchado, M., Power, D. M., and Campinho, M. A. (2020). Sole head

transcriptomics reveals a coordinated developmental program during metamorphosis. Genomics

112, 592–602.

Love, M. I., Huber, W., and Anders, S. (2014a). Moderated estimation of fold change and dispersion

for rna-seq data with deseq2. Genome Biology 15, 550.

Love, M. I., Huber, W., and Anders, S. (2014b). Moderated estimation of fold change and dispersion

for rna-seq data with deseq2. Genome biology 15, 550.

Ma, B. X., Korthauer, K., Kendziorski, C., and Newton, M. A. (2019). A compositional model to

assess expression changes from single-cell rna-seq data. bioRxiv .

MacEachern, S. N. (1998). Computational methods for mixture of dirichlet process models. In

Practical nonparametric and semiparametric Bayesian statistics, pages 23–43. Springer.

Marioni, J. C. and Arendt, D. (2017). How single-cell genomics is changing evolutionary and

developmental biology. Annual Review of Cell and Developmental Biology 33, 537–553. PMID:

28813177.

101

McDavid, A., Dennis, L., Danaher, P., Finak, G., Krouse, M., Wang, A., Webster, P., Beechem, J.,

and Gottardo, R. (2014). Modeling bi-modality improves characterization of cell cycle on gene

expression in single cells. PLOS Computational Biology 10, e1003696–.

Muralidharan, O. (2010). An empirical bayes mixture method for effect size and false discovery

rate estimation. Ann. Appl. Stat. 4, 422–438.

Navin, N. E. (2015). The first five years of single-cell cancer genomics and beyond. Genome

Research 25, 1499–1507.

Nawy, T. (2013). Single-cell sequencing. Nature Methods 11, 18 EP –.

Newhouse, D. J., Hofmeister, E. K., and Balakrishnan, C. N. (2017). Transcriptional response to

west nile virus infection in the zebra finch (taeniopygia guttata). Royal Society open science 4,

170296.

Newton, M. A., Noueiry, A., Sarkar, D., and Ahlquist, P. (2004). Detecting differential gene expres-

sion with a semiparametric hierarchical mixture method. Biostatistics 5, 155–176.

O‘Grady, T., Baddoo, M., and Flemington, E. K. (2017). Analysis of ebv transcription using high-

throughput rna sequencing. In Epstein Barr Virus, pages 105–121. Springer.

Papalexi, E. and Satija, R. (2017). Single-cell rna sequencing to explore immune cell heterogeneity.

Nature Reviews Immunology 18, 35 EP –.

Patel, A. P., Tirosh, I., Trombetta, J. J., Shalek, A. K., Gillespie, S. M., Wakimoto, H., Cahill,

D. P., Nahed, B. V., Curry, W. T., Martuza, R. L., et al. (2014). Single-cell rna-seq highlights

intratumoral heterogeneity in primary glioblastoma. Science 344, 1396–1401.

Peccoud, J. and Ycart, B. (1995). Markovian modeling of gene-product synthesis. Theoretical

Population Biology 48, 222–234.

Pierson, E. and Yau, C. (2015). Zifa: Dimensionality reduction for zero-inflated single-cell gene

expression analysis. Genome Biology 16, 241.

102

Qiu, X., Mao, Q., Tang, Y., Wang, L., Chawla, R., Pliner, H. A., and Trapnell, C. (2017). Reversed

graph embedding resolves complex single-cell trajectories. Nature Methods 14, 979–982.

Quintana, F. A. and Iglesias, P. L. (2003). Bayesian clustering and product partition models. Journal

of the Royal Statistical Society: Series B (Statistical Methodology) 65, 557–574.

Raj, A. and van Oudenaarden, A. (2008). Nature, nurture, or chance: stochastic gene expression

and its consequences. Cell 135, 216–226.

Ray, S. and Turi, R. H. (2000). Determination of number of clusters in k-means clustering and

application in colour image segmentation.

Sabbagh, M. F., Heng, J. S., Luo, C., Castanon, R. G., Nery, J. R., Rattner, A., Goff, L. A., Ecker,

J. R., and Nathans, J. (2018). Transcriptional and epigenomic landscapes of cns and non-cns

vascular endothelial cells. Elife 7, e36187.

Saliba, A.-E., Westermann, A. J., Gorski, S. A., and Vogel, J. (2014). Single-cell rna-seq: advances

and future challenges. Nucleic acids research 42, 8845–8860.

Sanders, S. M. and Cartwright, P. (2015). Patterns of wnt signaling in the life cycle of podocoryna

carnea and its implications for medusae evolution in hydrozoa (cnidaria). Evolution & develop-

ment 17, 325–336.

Shalek, A. K., Satija, R., Shuga, J., Trombetta, J. J., Gennert, D., Lu, D., Chen, P., Gertner, R. S.,

Gaublomme, J. T., Yosef, N., Schwartz, S., Fowler, B., Weaver, S., Wang, J., Wang, X., Ding,

R., Raychowdhury, R., Friedman, N., Hacohen, N., Park, H., May, A. P., and Regev, A. (2014).

Single-cell rna-seq reveals dynamic paracrine control of cellular variation. Nature 510, 363 EP

–.

Shekhar, K., Lapan, S. W., Whitney, I. E., Tran, N. M., Macosko, E. Z., Kowalczyk, M., Adiconis,

X., Levin, J. Z., Nemesh, J., Goldman, M., et al. (2016). Comprehensive classification of retinal

bipolar neurons by single-cell transcriptomics. Cell 166, 1308–1323.

103

Sohr, S. and Engeland, K. (2008). Rhamm is differentially expressed in the cell cycle and downreg-

ulated by the tumor suppressor p53. Cell Cycle 7, 3448–3460.

Son, J. C., Jeong, H. O., Park, D., No, S. G., Lee, E. K., Lee, J., and Chung, H. Y. (2017). mir-10a

and mir-204 as a potential prognostic indicator in low-grade gliomas. Cancer informatics 16,

1176935117702878.

Soneson, C. and Robinson, M. D. (2017). Bias, robustness and scalability in differential expression

analysis of single-cell rna-seq data. bioRxiv .

Song, X., Tang, T., Li, C., Liu, X., and Zhou, L. (2018). Cbx8 and cd96 are important prognos-

tic biomarkers of colorectal cancer. Medical science monitor: international medical journal of

experimental and clinical research 24, 7820.

Strehl, A. and Ghosh, J. (2003). Cluster ensembles — a knowledge reuse framework for combining

multiple partitions. J. Mach. Learn. Res. 3, 583–617.

Svensson, V., Vento-Tormo, R., and Teichmann, S. A. (2018). Exponential scaling of single-cell

rna-seq in the past decade. Nature Protocols 13, 599–604.

Tasic, B., Menon, V., Nguyen, T. N., Kim, T. K., Jarsky, T., Yao, Z., Levi, B., Gray, L. T., Sorensen,

S. A., Dolbeare, T., Bertagnolli, D., Goldy, J., Shapovalova, N., Parry, S., Lee, C., Smith, K.,

Bernard, A., Madisen, L., Sunkin, S. M., Hawrylycz, M., Koch, C., and Zeng, H. (2016). Adult

mouse cortical cell taxonomy revealed by single cell transcriptomics. Nature Neuroscience 19,

335 EP –.

Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N. J., Livak,

K. J., Mikkelsen, T. S., and Rinn, J. L. (2014a). The dynamics and regulators of cell fate decisions

are revealed by pseudotemporal ordering of single cells. Nature Biotechnology 32, 381–386.

Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N. J., Livak,

K. J., Mikkelsen, T. S., and Rinn, J. L. (2014b). The dynamics and regulators of cell fate decisions

are revealed by pseudotemporal ordering of single cells. Nature biotechnology 32, 381.

104

Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N. J., Livak,

K. J., Mikkelsen, T. S., and Rinn, J. L. (2014c). The dynamics and regulators of cell fate decisions

are revealed by pseudotemporal ordering of single cells. Nature biotechnology 32, 381–386.

Wagner, U. and Taudes, A. (1986). A multivariate polya model of brand choice and purchase

incidence. Marketing Science 5, 219–244.

Wang, T., Li, B., Nelson, C. E., and Nabavi, S. (2019). Comparative analysis of differential gene

expression analysis tools for single-cell rna sequencing data. BMC bioinformatics 20, 40.

Yakowitz, S. J. and Spragins, J. D. (1968). On the identifiability of finite mixtures39, 209–214.

Yang, F., Lv, S.-X., Lv, L., Liu, Y.-H., Dong, S.-Y., Yao, Z.-H., Dai, X.-x., Zhang, X.-H., and

Wang, O.-C. (2016). Identification of lncrna fam83h-as1 as a novel prognostic marker in luminal

subtype breast cancer. OncoTargets and therapy 9, 7039.

Yoon, K.-J., Ringeling, F. R., Vissers, C., Jacob, F., Pokrass, M., Jimenez-Cyrus, D., Su, Y., Kim,

N.-S., Zhu, Y., Zheng, L., et al. (2017). Temporal control of mammalian cortical neurogenesis by

m6a methylation. Cell 171, 877–889.

Zappia, L., Phipson, B., and Oshlack, A. (2017). Splatter: simulation of single-cell rna sequencing

data. Genome Biology 18, 174.

Zhang, Q., Zeng, L.-P., Zhou, P., Irving, A. T., Li, S., Shi, Z.-L., and Wang, L.-F. (2017). Ifnar2-

dependent gene expression profile induced by ifn-α in pteropus alecto bat cells and impact of

ifnar2 knockout on virus infection. PloS one 12,.

	Abstract
	Introduction
	Differential Distribution Testing
	Scalability
	Multiple Conditions Differential Distribution Testing

	
	Background
	Modeling
	Data structure, sampling model, and parameters
	Method structure and clustering
	P(A|y,z)
	P(Mg,|X,z)

	Numerical experiments
	Synthetic data
	Empirical study
	Bursting
	Time Complexity

	Asymptotics of the Double Dirichlet Mixture
	Compositional model for more than two conditions
	Method

	Concluding remarks

	
	Background
	The statistical problem
	Pruning
	Crowding issue
	Full algorithm
	Results
	Benchmarks with small K
	Synthetic data, larger K
	Empirical study

	Summary and discussion

	Appendices
	Proof of Theorem 2.2.1 in Chapter 2
	Randomizing distances for approximate posterior inference
	Empirical datasets
	Proof of Theorem 2.2.2 in Chapter 2
	EBSeq
	modalClust
	Randomized K-means
	Selecting K
	Double Dirichlet Mixture
	Numerical Experiments
	Robustness
	Posterior consistency
	EBSeq margin
	Proofs of Lemma 3.3.1 and Theorem 3.3.1
	Computational details
	simulation details

