Machine Learning Applications in Material Science Problems

by

Mingren Shen

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Materials Science and Engineering)

at the

University of Wisconsin- Madison

2021

Date of final oral examination: 11/15/2021
The dissertation is approved by the following members of the Final Oral Committee:

Dane Morgan, Professor, Department of Materials Science and Engineering
Izabela Szlufarska, Professor, Department of Materials Science and Engineering
Maria K. Chan, Scientist, Center for Nanoscale Materials of Argonne National
Laboratory

Victor Zavala, Professor, Department of Chemical and Biological Engineering
Paul Evans, Professor, Department of Materials Science and Engineering



Abstract

Machine learning tools have the potential to provide a new solution for problems in
material science community. In this thesis, I will present my works about applying machine
learning methods to solve two typical material sciences problems, one is the defect detection
problem and another one is the X-ray image pattern problem. Chapter 1 is an introduction of the
thesis that states the goal of this thesis and key concepts learned in my Ph.D. study. Chapter 2 talks
about the important background knowledge about machine learning, deep learning, and computer
vision which are frequently used later. In Chapter 3, three deep learning based defect analysis
systems are discussed for TEM/STEM images or videos. Those models prove the ability of deep
learning models and show the potential of applying them to solve defect detection problems. In
Chapter 4, we introduce a deep learning based classifier that can assist the interpretation of X-ray
image patterns which paves the way to better understand the patterns. Chapter 5 summarize other
published work I completed at UW-Madison which were not closely related to material science
but shared the general theme of this thesis. Finally, in Chapter 6, a summary and future of work is

present.
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Chapter 1 : General Introduction

1.1 Overview of the Thesis

This thesis is comprised of six chapters. Chapter 1 provides a brief introduction of the work
contained here, which introduces the overview and objectives of this thesis. Chapter 2 focuses on
a description of the key theoretical concepts, mechanisms, and approaches of three important
methods, machine learning (ML), deep learning (DL), and computer vision (CV), used in this
thesis. In Chapter 3, we discussed how to apply deep learning models, Faster Regional
Convolutional Neural Networks (Faster R-CNN)!, You Only Look Once (YOLO)?, and Mask
Regional Convolutional Neural Networks (Mask R-CNN)?, to solve the defect detection problem
in electron microscopy images and videos. Chapter 4 expands the deep learning vision tools to
explore the coherent X-ray imaging problems. In Chapter 5, other research achievements that are
not material science oriented I completed in UW-Madison are discussed. Chapter 6 is about a

summary of the whole thesis and future directions that are worth exploring.

1.2 Motivation for the current investigation

Material scientists usually rely on three categories of tools which can be roughly called
theoretical methods, experimental methods, and computational methods to discover new materials
and study their properties. However, since 2012, machine learning and deep learning based tools
or called the data-driven methods or materials informatics are becoming more and more popular
in the science community which is even called the Four Paradigms of Science*>. This change is
mainly due to three driving factors including, cheaper and more powerful hardware like Graphics

Processing Unit (GPU) and Tensor Processing Units (TPUs), bigger and easy to access data like



Materials Genome Initiative (MGI)”®, and more efficient and smarter algorithm like back-

propagation and convolutional (CNN), and recurrent (RNN) neural networks®!°,

1.3 Thesis Objectives

Motivated by the growing success of data driven and deep learning based methods, in this
thesis, I will present how to apply three different deep learning models called Faster R-CNN,
YOLO, and Mask R-CNN to detect objects in electron microscopy images or videos and build
mappings between coherent X-ray imaging patterns with sample information like number density.
The goal of this thesis is to prove that we can benefit from data driven methods like deep learning

and machine learning to study material science problems.

1.4 Key Lessons learned when applying ML to material sciences

Before we discuss details about machine learning and how to apply it to material sciences,
I want to review three important lessons I learned during my Ph.D. study. It is critical to build
basic principles about how to apply machine learning and deep learning since we want to benefit
from the advantages of ML and avoid the shortcomings.

Applying ML methods belongs to the study of computer sciences so common wide-used
practices of computer science and software engineering e.g., unit testing, version control, and
interface design are also useful, but it is not the focus of this thesis and we recommend readers to
read pieces of literature listed for more information!!"!>, Besides knowledge from software
engineering, some special lessons related with applying ML to material sciences problems are
worth discussions. Below I listed three important tips that help me most and I will discuss them

one by one.



No Free Lunch Theorem

Since the growing success of ML methods, researchers tend to apply ML to new problems
without any hesitations, however, in the ML community, there is a famous lesson called
No Free Lunch Theorem which states that there is no best algorithm for all problems in
optimization and due to the close relationship between optimization and ML, no best
algorithm works for all ML problems!®. Luckily, we don’t need to build an ML algorithm
that works best for all problems, with certain assumptions and constraints of problem
spaces, we shall be able to pick the algorithm that works best in current constraints. When
applying ML into material sciences, we shall keep in mind and reflect on the problem
design repeatedly, what is the final goal of the study, what is the type of problem we are
studying, and finally, what is the assessments metrics in our study. For example, if the final
problem needs thorough explanations, then decision trees might be better than complex
neural networks although more and more explanation tools are developed for neural
networks such as SHapley Additive exPlanations (SHAP) values!'”!8, the decision tree

algorithm is still the most efficient tool to explain the working mechanism of ML!%-20,

Domain Knowledge Matters

Due to the rapid development of ML tools, once domain-related data is obtained, it is
usually easy to launch a ML study and generate some results. However, how to understand
these results? Are they useful? What is the insight or guidance we can provide? For
example, based on your ML model you can well predict a certain property of material but

in the material and science community, people want you to better explain why this model



work and how to understand the working mechanisms from the physical principal level.
An extended example might be physics around 1900. If you follow the common practice
in ML, it would be easy for you to conclude that there are no more important tasks to do
which, as Lord Kevin said, “nothing new in physics and only more precise measurements
might be needed and only two dark clouds still shown in the sky of physics™?!. And we all
know the following story, these two dark clouds turned out to yield special relativity and
quantum mechanics?!. There are two different methodologies here, exploration, finding
new things, and exploitation, fitting already known. And a common trend in the ML
community is always trying to fit things as precise are possible and sometimes outliers are
easily ignored. However, in the material sciences community, sometimes those outliers are

the key which might be useless in one metric but valuable in another metric.

Data Matters

Algorithm, Hardware Improvements, and Dataset Growth are well recognized as the
driving forces of the success of deep learning recently®. However, if your time or resources
are limited, I highly recommend growing the dataset as the first option of solutions,
especially for material science problems. ML and DL are essentially learning things from
the dataset so if the dataset is problematic or small, the power of algorithms is also limited
or biased. As the famous saying goes, “Garbage In, Garbage Out”, so do the ML models.
And if time and resources permit, using simulation or other computational methods to
generate a clean labeled dataset will be the most important key to building a successful ML

project in material science and related projects.



Chapter 2 : Backgrounds

2.1 Chapter Abstract

In this chapter, I will present a short introduction to three aspects of key background
knowledge that are important for this thesis. In Section 2.2, a short introduction of machine
learning is provided, in Section 2.3, one special type of machine learning tasks called deep
learning is provided, and finally, in Section 2.4, a specific problem called computer vision is

discussed and currently the majority of methods in computer vision is deep learning based.

2.2 Machine learning

According to Mitchell, machine learning is defined as, for certain task 7 and performance
measure P, an algorithm that can learn from past experience E to increase its performance measure
P for task T?%. For example, a classification task T could be classifying images of dogs and cats,
and performance measure P would be the accuracy that defined as correct classified testing images
over the total number of testing images, and then the experience E would be the training process
of feeding a group of already labeled images of cats and dogs into the algorithms saying neural
network that could improve its performance measure P using back-propagation methods??.
Machine learning has a lot of details that are clearly out of the scope of a thesis, so I refer readers
to the nice introduction paper by Prof. Jordan and Prof. Mitchell as a starting point?.

There are multiple ways to categorize machine learning methods and one of the widely
used categorizations is dividing machine learning methods into 3 categories based: supervised
learning, unsupervised learning, and reinforcement learning?’. And in this thesis, I mainly use
supervised learning so I will briefly discuss it here. In supervised learning, for each instance of

training sample X;, it will have a predefined label or value assigned to it called y;. the learning



process is to learn a proper mapping between X and y. For example, for the classifier for images
of cats and dogs, each image will have the label to tell the ML algorithm whether the image
contains dogs or cats, and the learning process can improve its weights based on the error between

true label and prediction.

2.3 Deep Learning

Deep learning typically uses a combination of multiple layers of nodes called neural
networks to extract the intrinsic structure of input data to build a mapping between the intrinsic
structure and targeted output’. With advancements in GPU computing powers, accumulation of

carefully labeled large scale datasets, e.g. ImageNet?*

, and better optimization algorithms like
backpropagation, deep learning-based models have shown great success in different tasks such as

automatic driving, speech synthesis, and image classifications’, even outperforming humans in

many tasks such as the board game Go?*. Deep learning has also been widely used in material

science?® and achieves good performances including predicting properties of materials®’-%,

identifying material phase transitions?”, and automating the analysis of TEM/STEM data3%-3¢,

2.4 Computer Vision

One of the most successful applications of deep learning is computer vision, where the
ultimate goal is teaching a computer to do the image-related task(s) like finding which object is
contained in an image (object detection) and which pixel belongs to different objects (image
segmentation)?’. Since a breakthrough in the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) was made in 2012, the deep Convolutional Neural Network (CNN) based



approach has demonstrated its success in many image-related tasks®’. There are nice books®3?

about the detailed techniques and progress of computer vision. In this thesis, we focus on one
specific problem of computer vision, object detection and tracking, which means teaching the
computer to know the types and positions of objects contained in images or videos. And we refer
the readers to those good reviews for more details®740:41,

For the object detection problem (trying to find the location and category of all the
objects contained in an image), which is also the focus of Chapter 3, there are two general
categories of methods: two-stage methods and one-stage methods*’. For a two-stage method like
Faster R-CNN*2, the object detector will first propose some candidate bounding boxes containing
the object location information and then classify the category of those candidate bounding boxes.
One-stage methods like YOLO will output the object location and category at the same time®*.
Typically, two-stage methods are slower but more accurate than one-stage methods. YOLO is
one of the most widely used one-stage methods and offers speed, accuracy, and fast engineering
application potentials®’. The key ideas of YOLO are dividing the whole image (or video frames)
into grids and predicting the location and the category of the potential bounding boxes with a set
of pre-defined anchor boxes in each cell of the grid*. Other widely used models for object
detection problems are U-Net Family and Transformer Family methods. In U-Net, the network
has a U shape structure where the left branch would encode the key information into a smaller
inner vector space and the right branch would decoder the inner representation to generate pixel
level segmentation maps*~*¥. U-Net is easy to implement and good at working with small
datasets and thus is popular in medical image applications®. Transformer based methods using
positional encoding to split each image into patches and align these patches into ordered

sequences to apply natural language processing methods for the object detection problem and



Transformer family methods are actively studied in computer vision community now since it

could easily encode global information and correlations into object detection mechanism>°->2,



Chapter 3 : Defect Detection

3.1 Chapter Abstract

Defect detection in material is counting the number of different types of defects and
collecting their geometric information such as total area, mean radius from electron microscopy
images. Defect detection is important since it can reflect the property changes in materials. For
example, the simplified dispersed barrier hardening model can help calculate the hardening due to
defects>. In practice, defect detection is mainly done by humans to calculate the number and
distribution of each defect type in each image and then summarize the corresponding hardening
due to defects. But this process is tedious, error-prone, bias-involved, and non-reproduced. In this
chapter, I will present three deep learning based defect analysis systems, Faster R-CNN, YOLO,

and Mask R-CNN I developed to help alleviate the difficulty of defect detection.

3.2 Defect Analysis of STEM/TEM Images
3.2.1 Introduction

Analyzing the locations and sizes of defects in materials that have undergone irradiation
is a widely used application of electron microscopy. In such studies, the key properties are the
total number and distribution of each type of defect. Typical defects of interest include grain
boundaries, precipitates, dislocation lines, dislocation loops, stacking fault tetrahedra, cavities
(voids, bubbles), and co-called “black-spot” defects, which are small defect clusters of
interstitials and sometimes vacancies®*>°, For this study, we focus on the dislocation loops
formed within a ferritic alloy, where the loops exist on specific habit planes that manifest

themselves with different morphologies due to the projection of a 3D volume imaged using
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EM?>®, Typical microstructural images of irradiated ferritic steels contain four prominent types of
defects: (1) open ellipse loops (single ring edge), (2) open ellipse loops (double ring edges), (3)
closed solid elliptical loops, (4) closed circular solid dots>®. Figure 3.2.1 shows a sample STEM
image containing all four morphologies of loops obtained from a ferritic alloy irradiated in a

materials test reactor.

Figure 3.2.1. Selected bright field scanning transmission electron microscopy (STEM) image of
an irradiated ferritic alloy showing four common morphologies of dislocation loops: (1) open
ellipse loops (single ring edge), (2) open ellipse loops (double ring edges), (3) closed elliptical

solid loops, (4) closed circular solid dots. Open single edge ellipse loops (1) are dislocation loops
with a Burgers vector of %o / 2 (111). Open double edge ellipse loops (2) and closed elliptical
solid loops (3) are dislocation loops with a Burgers vector of a,(100). Closed circular solid dots
(4) are black dot defects with a Burgers vector of either ao/ 2 (111) or ao(100). Image size:

Primary image is 290 x 290 nm; inset scales arbitrary.
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3.2.2 Methods

In this section, we used a modern deep learning-based object detection model called
Faster Regional CNN (Faster R-CNN)*2, a widely used deep learning based object detection
model®’. We use the Faster R-CNN to develop an automatic defect detection system for all four
morphologies commonly observed in irradiated steels with a body-centered cubic structure and
then additional post-processing to analyze their geometrical information (specifically, size and
areal density). This paper serves to demonstrate the power of deep learning-based computer
vision models for material image studies and suggests the possibility that most aspects of defect
analysis may soon be practically automated, and many, if not all, handcrafted feature-based
methods may be replaced by deep learning methods.

Faster R-CNN is a CNN based end-to-end deep learning object detection model that
outputs both the object position and its class*’. As shown in Figure 3.2.2, Faster R-CNN is a
two-stage detector where the region proposal network (RPN) proposes Region of Interest (ROI),
and the following ROI regressor and classifier will fine tune the final output results including the
size and position of the object contained bounding boxes and the corresponding object label*?.
Given an image, the shared convolutional layers will extract a feature map from the input image
by performing a series of convolution and max pooling operations. Then based on the extracted
feature map, the RPN will put a set of predefined anchor boxes on the feature map and output the
probability of whether the anchor box belongs to an object of interest or plain background. It
worth mentioning that RPN ignores the specific object class of each bounding box and the
following ROI regressor and classifier are responsible for the specific class and refined location
of the objects. The refining network predicts certain object labels and refines the size and

position of each bounding box based on the feature map generated by the ROI-pooling layers*.
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The RPN and ROI components are trained jointly to minimize the loss function sums from both
of them*?. After the Faster R-CNN module A, those images with detected defects are sent to

module B to extract geometric information such as defect diameters, as shown in Figure 3.2.2.

Module A : Faster R-CNN

-
assifier
CONV ->|’ - |ff--> -
*
I Region Proposal
Network

Layers

Bounding Box
Regressor

Geometry
Fitting
Algorithms

Module B:
Analysis ¥

Property
Analysis

Figure 3.2.2. Schematic flow chart of proposed deep learning based automated detection
approach. Input micrograph images go through the pipeline of Module A—Faster R-CNN
Detector, Module B—Image Property Analysis. After Module A, the loop locations and
bounding boxes are identified and then for each identified bounding box, geometry fitting

algorithms are called to determine the defect shape and size in Module B.

3.2.2.1 Data Set Collection

Data set collection was completed as part of a large-scale effort to characterize iron-
chromium-aluminum (FeCrAl) materials neutron-irradiated within the High Flux Isotope Reactor
at Oak Ridge National Laboratory. The dataset comprises a series of published*-*%° and

unpublished data. The data collection was completed over 3 years and spanned a range of
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different FeCrAl alloys, including model, commercial, and engineering-grade alloys irradiated to
light water reactor—relevant conditions (e.g., <15 displacements per atom and temperatures of

nominally 285-320°C). Images generation are described in more details in Li et al*.

3.2.2.2 Data Set Preparation

We used ImageJ06!

, an open-source software for analysis of scientific images, to
manually label all the training and testing data set. And since STEM images are gray scale and
ChainerCV®? expects input images with RGB channels, some modifications are necessary. We
use the direct STEM image gray scale for the R channel. Then we use modifications of the
original image gray scale for the G and B channels. Specifically, following Li et al.*?, for G we
use a local contrast enhancement of the original gray scale channel saturated to
maximum/minimum and for B we use a Gaussian bluer filter of the original gray scale STEM
images. For the local contrast enhancement in channel G, we use the Contrast Limited Adaptive
Histogram Equalization (CLAHE), a common algorithm used for local contrast enhancement that
makes local detail of STEM image enhanced even in regions that are darker or lighter than most
of the image. The Gaussian filter used in channel B represents cases where there might be noises
or blurring in the STEM images. The parameters used for CLAHE® and Gaussian blur®* are all
from the default parameter setting of scikit-images and details can be found in the references
given here for these methods. The purpose of adding two more channels in this way is to
improve the model performance and make the model more robust by providing more information
about various contrast levels or blurring.

For the training and testing on the Faster R-CNN model, a total of 165 STEM images of

irradiated ferritic alloys were collected and labeled. The images were taken at different
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experimental conditions of temperature and irradiation damage level so that the data includes
varying defect sizes, shapes, and areal density. We constructed the ground truth labeling by
giving each image in the dataset to at least two groups of at least two researchers per group who
together labeled each image in that dataset. In some cases, no absolute consensus could be
reached on whether a feature was a defect and/or what type it had, in which case a best effort was
made based on group discussion.

The test dataset was randomly selected from the complete image dataset, so that the
training and test were split by approximately 10:1 ratio. The training dataset was then augmented
to 918 images in total, which could provide more training instances without spending more
manpower on labeling. The data is augmented by rotating and/or flipping each image in the

training set, a standard method previously well established to improved results in some cases®.

3.2.2.3 Model Training

The Faster R-CNN model used VGG-16 as its backbone architecture and we adopted the
module provided by ChainerCV®? as the Module A in Figure 3.2.2 and using watershed
function provided by OpenCV*®® as the second module. The initial weights of Faster R-CNN was
loaded from the pre-trained weights from ImageNet which is a common practice in the deep
learning training strategy®’ called transfer learning. Although ImageNet is trained for image
classification, not object detection, there are enough similarities in key features to support
effective transfer learning of weights. Transfer learning can reduce the amount of data and
training time required for good performance®’. The Faster R-CNN module was optimized with
Stochastic Gradient Descent (SGD) on a single Nvidia GeForce GTX 1080 GPU. The best hyper

parameter set was found by performing hyperparameter search of learning rate from 107 to 10



15

and we adjust the needed iteration numbers correspondingly. The best choice of hyper parameter
is a decayed learning rate starting from 10 and each 20000 iterations the learning rate will
decay to one tenth of the previous one. In total 90000 iterations were performed, and a learning

loss curve is shown in Figure 3.2.3. The geometry extraction module needed no training.
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Figure 3.2.3. A typical loss curve for Faster R-CNN training.

3.2.2.4 Model Testing

After the Faster R-CNN module was trained, there were still two important
hyperparameter associated with accuracy analysis: the threshold IoU value and the confidence
score. IoU stands for Intersection over Union and is an evaluation metric used to measure the
performance of object detection models®’. ToU is calculated from the ratio of overlap area of a
ground truth bounding box and a predicted bounding box to the area of union of two bounding
boxes. The range of IoU is from 0 to 1 where 0 means no overlap found between two bounding

boxes and 1 means the two bounding boxes are perfectly overlapping. The threshold IoU is the
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value used to judge the prediction quality of the overlapping of ground truth bounding boxes and
prediction bounding boxes. A higher threshold IoU requires more accurate location prediction of
the bounding box detector, which will generally reduce performance, but lower the threshold loU
could lead a predicted bounding box to being assigned to no defect or the wrong defect. And
another important hyperparameter is the threshold confidence score, a value from 0.0 to 1.0 used
by Faster R-CNN internally to discard low confidence proposals in the RPN, and it can change
the total number of outputs of Faster R-CNN. We used grid search of the threshold IoU and
confidence score to search the best choice of these two values based on maximizing the F1
scores, with confidence score from the list [0.001, 0.005, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,
0.35, 0.4, 0.45, 0.5, 0.55, 0.6] and the threshold IoU from the list [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9]. We selected 0.25 as the confidence score for Faster R-CNN and showed the

performance changes with 0.4 threshold IoU in Figure 3.2.5.

3.2.2.5 Geometry Fitting of Analysis Module

After the Faster R-CNN module was performed on specific image, the analysis module
was called to obtain shape and size of the defect contained in bounding box. As shown in the
third column in Figure 3.2.4, the approach fits the defect with elliptical contours to estimate their
actual shapes and diameters. The approach uses the watershed algorithm to identify the pixels
that make up the defect contour and then fit those to an ellipse. The watershed algorithm is a
widely used technique for image segmentation purposes that views any gray scale image as a
topographic surface where the high (e.g., white) pixel values represent peaks while the low (e.g.
black) pixel values denotes valleys. The algorithm tries to grow the region areas by flooding the

valleys and where different regions meet with each other are the watershed lines needed for
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image segmentation®®. Watershed methods were applied to find the boundary between defect
pixels and background pixels. We followed the official tutorial from OpenCV for performing the
watershed and details of the approach can be found there®. We then fit the boundaries found
from the Watershed algorithm to an ellipse. This fitting was done to match the approach used by
the radiation defect analysis community, obtain a well-defined shape with simple geometric
descriptors, and smooth out the otherwise rather rough boundaries found by the Watershed
algorithm. The fitting was done with OpenCV’s fitE11lipse () function”. All codes were
based with OpenCV® and by applying the second module we could get precise information
about the defects' position, size, and orientations. The diameters and areas of defects are defined
as follows, where a and b are half the lengths of major and minor axes of the ellipse. The
diameter of the a/2<111> and a<100> defects are defined as 2a. The diameter of the black dot is
defined as twice the square root of (ab). The area of all defects is defined as mab. The areal

density is the sum of defect areas in a set of images divided by the total area of the set of images.

3.2.3 Results

To assess the machine predictions, four types of approaches were taken. The first
approach was a qualitative comparison of machine to human labeled images, where we looked
for large fractions of errors, e.g., more than 40%, and for trends in errors that might indicate a
major issue but made no attempt to quantify agreement. This assessment tests all aspects of the
model as it compares to the ground truth human results, which include the bounding box
predictions (the defect detection part of Module A in Figure 3.2.2), the defect type
identifications (the categorization part of Module A in Figure 3.2.2), and the geometric shape

determination (Module B in Figure 3.2.2). The second assessment approach was a quantitative
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assessment of the ability to identify a defect, regardless of defect types. This assessment tested
the defect detection part of Module A (see Figure 3.2.2). This assessment was a binary
categorization problem and success was quantified with precision, recall, and F1 score. The third
assessment was a quantitative assessment of the ability to identify a defect type once a defect had
been correctly identified and tested the categorization part of Module A (see Figure 3.2.2). This
assessment was a three-category categorization problem and was quantified using the confusion
matrix with precision, recall and F1 calculated for each class. Finally, the fourth assessment was
a quantitative assessment of the ability to quantify the geometric properties of defects. This
assessment tested the geometric analysis of Module B (see Figure 3.2.2) and compared machine
and human predictions of average and standard deviations in size and areal density for each
defect type. We discuss each of the four assessments below and label them assessment 1-4 for
clarity. In all cases the comparisons are made on the test data set described in Methods Section.
Assessment 1. After feeding the images into the Faster R-CNN detectors, the resulting

detections were plotted on the original images. As shown in Figure 3.2.4, the red circles
represent the dislocation loops with a Burgers vector of a0/2 (111) (Type 1 in Figure 3.2.1),

while the yellow and blue circles represent ay(100) direction loops (Type 2 and 3 in Figure
3.2.1) and “black dot” defects (Type 4 in Figure 3.2.1) respectively. The data from both human-
labeled and machine detected results are plotted in the same manner. To a human observer the
machine results show strong correlation of bounding box location, defect type identification, and
defect shape with the ground truth human labeling which indicates the effectiveness of the
proposed automatic defect detection system.

Assessment 2. The performance of the detection part of Module A (see Figure 3.2.2) of

the trained model was evaluated in terms of precision, recall, and F1 score by comparing the
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detected result with the human labeled result of the 12-image testing set, as shown in Figure
3.2.5. The precision describes the percentage of all machine-predicted bounding boxes that are
judged to have correct positions, and the recall value describes the percentage of all human
labeled defects that are identified as in a bounding box by the machine algorithm. F1 is the
harmonic mean of the precision and recall which can be used to assess the overall performance
of the defect location task*’. The IoU (Intersection over Union) method was used to determine if
a given defect was identified by a bounding box and is described within the provided Methods
section. The cutoff IoU, which must be exceeded to consider the bounding box to have identified
the defect, is a hyperparameter that can be fine-tuned based on the purpose of the object
detection task*’. Figure 3.2.5 showed a drop in performance as the cutoff IoU increased. This
trend agreed with expectations as the higher cutoff loU meant it was harder for the predicted
bounding box to be judged successful. However, setting the cutoff IoU to an extremely small
threshold could lead to the problem that the predicted bounding boxes are associated with defects
for which only a small part of the defect is in the bounding box, which will likely cause problems
in the defect identification (Module B) of our model. As a compromise, for all the further
assessments in this paper, we used cutoff [oU = 0.4 to determine when the machine predictions
were considered to match a given defect. This choice kept nearly optimal performance of the

detector (based on Figure 3.2.5) and an adequately demanding standard for predictions.
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GT

Ellipse
Pred
Ellipse

Figure 3.2.4. Selected data images to show the detector performance and the fitted ellipse of our
automatic analysis system. These three test images are selected from the test dataset of 12 images
(see Methods). The “Ground Truth (GT)” shows the bounding box and ellipse human labeling
(colored by defect type), the “Prediction (Pred) Box™ shows the predicted bounding boxes
(colored by defect type), and the “Prediction (Pred) Ellipse” shows the resulting fits to the

specific defect geometry (colored by defect type as described in the text).
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Figure 3.2.5. Summary of defect location recognition performance of all types of defects
evaluated using precision and recall metrics, regardless of defect types. The test set contained 12

images, and, for all IoU (Intersection over Union) values and we used a threshold confidence

score 0.25 for Faster R-CNN output. (See Method Section).

Assessment 3. Table 3.2.1 shows the confusion matrix of the predictions made by Faster
R-CNN detector evaluating its capability to correctly categorize defects. Each row in the
confusion matrix represents a class that is predicted by the detector, and each column represents
a class labeled by human researchers. The diagonal elements of the table represent the correct
classification made by the detector and off diagonal elements represent errors of different types.
We also show the percentage accuracy of each type of defect in parentheses. The 76%, 87%, and
94% accuracy indicates that once the Faster R-CNN model locates the defect, it can classify the

type of defect based on their morphology within the image with good accuracy, although some
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improvement of the 76% value is likely possible for the a,(100) loops. We also report the
classification performance using precision, recall and F1 score in Table 3.2.2. Given inherent
errors of human performance we take scores for precision, recall and F1 of 0.78 as
approximately the upper limit that can be obtained with the present labeling. Table 3.2.2 shows
F1 from about 0.65 to 0.78, which demonstrates significant capabilities but is likely less than can

be achieved, suggesting opportunities for further improvements.

Table 3.2.1. Summary of the classification performance for each type of defects at cutoff loU
0.4. Values in parenthesis give the % each number represents of the total number of defects in

that class as determined by the human labeling.

29/2(111) Loop Black Dot a¢(100) Loop

a/2(111) Loop 239 (87.2%) 21 14
Black Dot 17 416 (94.3%) 8
a(100) Loop 33 13 166 (78.3%)

Table 3.2.2. The performance report for each class.

20/2(111) Loop Black Dot a9(100) Loop
Precision 0.73 0.65 0.62
Recall 0.83 0.71 0.72

F1 0.78 0.68 0.67
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Assessment 4. The second Module provides geometric in formation for each defect
through fitting ellipses. While the fits can provide a range of detailed information, we are
particularly interested in the arithmetic mean and the associated standard deviation of the defect
diameter as well as the areal density in an image for each type of defect. These values are
commonly quoted values in literature within irradiated materials studies. Table 3.2.3 compares
the human labeled arithmetic mean diameters and areal densities to the ones predicted by the
automatic analysis system. The discrepancy of arithmetic mean diameter between the human
labeled ground truth and predictions is within 10% in all cases, which is considerably less than
might be expected for variation among different humans’! and we consider a strong success.
Furthermore, the errors in arithmetic mean diameters are in the range 0.7-1.1 nm, which
corresponds to a range of two to nine pixels (based on the range 0.14nm/pixel to 0.87nm/pixel
for our test data). The errors of about 1 nm correspond to about 5-10% for our data which is
somewhat larger than might be expected from direct labeling errors on 10-15nm. Thus, it is
unlikely that any human labeling is meaningfully accurate to much below this level. However,
the human and machine learning black dot radii do not fall within a 95% confidence interval,
suggesting that the algorithm does not yield the same means as the human ground truth. Some
errors will come from the machine detection (failures in precision and recall, see Figure 3.2.5)
and defect type assignment (see Table 3.2.1). Additional errors are associated with intrinsic
errors in the machine and human ellipse labeling, where both have some uncertainty due to
ambiguity or variances in the morphology of defects in images. Some defects are not well fit by
an ellipse (e.g., some have a more rectangular shape, as can be seen in Figure 3.2.4), making this
form of labeling difficult for both human and machine. Another error to consider is that as the

number of pixels per feature goes down, the intrinsic error due to the resolution (pixel/nm) will



artificially go up. For instance, a 100 nm loop where the resolution is 1 pixel/nm where the

labeling is off by 1 pixel will yield a 1% error. If the labeling is off by 1 pixel for a 5 nm loop,
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the error will be 20% even though the per pixel error is the same. Seeing as the black dots are all

small arithmetic mean diameter (<10 nm), they will intrinsically have a higher error compared to

the other classes where the diameters are 2-3 times larger.

Table 3.2.3. Comparison of arithmetic mean defect diameter and standard deviation of mean

loop diameter between ground truth labeling and our automatic analysis model prediction with

an IoU of 0.4. The values in parenthesis are the relative percentage error between ground truth

human labelling results and the automatic analysis results.

Ground Truth Automatic Analysis Model
Standard Standard
Arithmetic Arithmetic
Defect Deviation of Areal Deviation of Areal
Mean Mean
Type Mean density Mean Density
diameter diameter
Diameter (m?) Diameter (m?)
(nm) (nm)
(nm) (nm)
ao/ 2
23.1 2.21x10M
(111) 224 0.7 1.77x1014 0.8
(3.1%) (24.9%)
Loop
9.1 4.98x10'
Black Dot 8.2 0.1 3.41x10 0.2
(10.9%) (46.0%)
20(100) 224 1.79x10'
20.3 0.8 1.32x10'4 09
Loop (10.3%) (35.6%)
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3.2.4 Discussion

The above results demonstrate that that the trained model potentially performs well
enough to replace human in a workflow on similar types of data. The precision and recall values
for assessing detection in the range 62-83% which are comparable or less than human variation”!
from previous assessments. The machine defect type misidentifications are at the level of 10-
25% (see Table 3.2.1), and a significant fraction of this variation may also be due to ground truth
ambiguities or errors. The final machine predicted diameters are within a nanometer,
approximately 2 pixels in images, which is a level of error that is considered negligible in terms
of impact on material properties. To further clarify that the error is negligible for our defect
population we have done a sensitivity analysis based on previous studies of hardening from

L. 53

loops. As discussed in Field et al. > simple dispersed barrier hardening models suggest that the

hardening under irradiation from loops is of the form Ao, = A Vd where A is a constant and d is

the diameter of the defect. Now consider an error in diameter d defined as ¢ The fractional error
in Ag,, due to the error ¢is (Aay (d+¢) —Ag, (d)) / Ao, (d) = £/(2d), where the approximate

equality holds for € « d. For = 1.7 nm (which is 2 pixels for our largest pixel sizes, see
below) and d = 21.4 nm (our average sizes of a/2<111> and a<100> defects), we get the

fractional error in Agy, as 1.7 nm /(2 * 21.4 nm) = 0.04, which is well within the uncertainty of

such microstructure-based analysis. However, for smaller defects this percentage error could
clearly become larger. The errors of diameter between ML results and human results appear to be
approximately symmetrically distributed in positive and negative directions and independent of
defect density. Furthermore, previous studies indicate that the differences of arithmetic mean
diameter between different human labelers can be comparable or larger than values found here

between the ML and human results*2. The discrepancy in areal densities is somewhat larger than
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might be intuitively expected just from the percentage error in the arithmetic mean diameters.
However, additional errors are introduced by the exact definition of areal density (see Methods
section) and the additional errors introduced by the imperfect precision and recall.

While the exact performance of the present automated approach compared to different
human researchers is difficult to determine rigorously there is no doubt that the present approach
is much more consistent. Previous studies have shown that different labelers tend to label defects
in different ways and even the same person may label the same defects differently even after a
short break®>7!, Such issues can make any given data analysis somewhat unreliable and make it
difficult to integrate results across different teams and or time periods in larger analysis efforts.
However, once a machine learning model is properly trained, it will yield a unique and
reproducible labeling for every image. If the community could converge on a single or small
number of models this could greatly increase the reproducibility in labeling of STEM
experiments. That said, models trained on different data and/or different human labeling could
give different predictions, so establishing community accepted models is an important part of
using these approaches to obtain more consistent results.

The approach applied here is readily scalable to very large data sets. Analyzing a single
image with our model on a reasonable state of the art GPU (NVIDIA's GeForce GTX 1080
GPU) takes about 0.1s, so analyzing all the images in a typical experiment can be done easily in
minutes, even less if multiple GPUs are used and as GPU and related processors (e.g., TPU)
continue to get faster. As large scale distributed cloud service provider like Google, Amazon
and Microsoft are providing cloud service for deep learning applications with GPU machines’?,
it would be easy to scale to process even larger amount of data. Furthermore, significant speedup

can likely be obtained if desired. We developed the system with the Python code language and
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the ChainerCV deep learning framework, both of which were chosen for ease of development
not for the high-performance in deployment. Replacing Python with C/C++ or using high-
performance deep learning frameworks, e.g. Caffe’®, could potentially accelerate the prediction
speed of the current model. In particular, the deep learning community is actively designing new
methods to accelerate the running speed of model e.g. model compression, weight sharing, or
parameter pruning’* which could also boost the speed of ours. As an example of how fast deep
learning Al algorithms can be, researchers from Google have recently applied deep learning
models for cancer diagnosis on data during the actual process of conducting an optical
microscopy experiment’’.

The approach applied here is also readily adapted to new defect types and systems. The
present model was trained with only a relatively small amount of training data due to the use of
transfer learning®’. With only modest additional data sets (e.g., on the scale of thousands of
defects or possibly fewer) and a few rounds of further training, researchers could likely extend
the present model to more defects (e.g., separating the two orientations of 111 loops or adding
voids, preexisting dislocations, etc.), different imaging conditions (e.g., changes in microscopes,
imaging modes, orientation, focus, etc.), and different materials (e.g. other metal alloys).

There are several areas where significant improvements may be obtainable. The first is
that the use of real-world data in the study has led to significant time spent labeling and
introducing unavoidable human biases and errors into the deep learning model and its
assessment. However, it is possible that simulated images could be both more accurately labeled
and generated in large volume, potentially allowing much more accurate models to be trained.

The second area where significant improvement is likely is that deep learning methods

for object detection continue to evolve rapidly. In particular, deep learning segmentation
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models®’, which learn a label for every pixel, could be equally or more accurate and remove the
step of fitting contours in a bounding box to get geometric information. Such an approach was
applied recently to automatically detect information about dislocation lines, precipitates and

voids in STEM images*?.

3.2.5 Summary

This study demonstrated a practical deep learning based automatic STEM image defect
detection system implemented by incorporating Faster R-CNN for detection and watershed flood
algorithm for geometry fitting. Compared with other models proposed before, our model reduced
the training effort by utilizing only one module for detection and expanded capability to
simultaneously recognize multiple classes of defects. The approach developed here achieved
reasonably reliable performance, with an F1 score of 0.78, and predicted sizes and areal densities
within the uncertainty of results from human researchers. The automated analysis on NVIDIA's
GeForce GTX 1080 GPU processor is about 0.1 s/image, hundreds of times faster than human
analysis (=1 minute/image), and trivially parallelizable and scalable on more processors. The
model can also be readily extended to new defects, systems, and conditions with modest training
requirements. Thus, our approach provides an accurate, efficient, reproducible, scalable, and
extensible method which could replace or greatly enhance human analysis in future studies
related to STEM images.

We believe that this framework can be used on many defects and other STEM features
simultaneously, eventually providing a general tool for automated analysis across many STEM
applications. This study demonstrated a practical deep learning based automatic STEM image

defect detection system implemented by incorporating Faster R-CNN for detection and
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watershed flood algorithm for geometry fitting. Compared with other models proposed before,
our model reduced the training effort by utilizing only one module for detection and expanded
capability to simultaneously recognize multiple classes of defects. The approach developed here
achieved reasonably reliable performance, with an F1 score of 0.78, and predicted sizes and areal
densities within the uncertainty of results from human researchers. The automated analysis on
NVIDIA's GeForce GTX 1080 GPU processor is about 0.1 s/image, hundreds of times faster
than human analysis (>1 minute/image), and trivially parallelizable and scalable on more
processors. The model can also be readily extended to new defects, systems, and conditions with
modest training requirements. Thus, our approach provides an accurate, efficient, reproducible,
scalable, and extensible method which could replace or greatly enhance human analysis in future
studies related to STEM images.

We believe that this framework can be used on many defects and other STEM features
simultaneously, eventually providing a general tool for automated analysis across many STEM

applications.

3.3 Defect Analysis of STEM/TEM Videos
3.3.1 Introduction

Transmission Electron Microscope (TEM) has widely been used to characterize a material
or material system since TEM provides resolution limits at or below common microstructural
features of interest. Recently, a surge in the use of in-situ TEM techniques has occurred, partially
due to the advent of digital capture devices. In-situ TEM experiments have a distinct advantage
over ex-situ experiments as they allow researchers to study materials’ intrinsic properties and

responses as external conditions are manipulated such as temperature, pressure, and type of
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reaction cells!. In material science, in-situ TEM is frequently used to shed light on challenging
problems like elucidating mechanisms for catalysis, atomic behavior during material reactions,
and nanoscale property changes under loads’s”’.

The value extracted from an in-situ TEM experiment requires careful analysis of the
observed processes. For many of these experiments, this analysis includes dynamically detecting
features present in the microstructure and analyzing the microstructural evolution in each frame
of the experiment, typically captured in a digital video form. For decades, quantification of
defects in in-situ TEM data has been completed by humans, which is tedious, time-intensive,
error-prone, biased, and impractical to scale. For example, a typical manual workflow of
counting defects in TEM images requires an experienced researcher carefully going through
every frame for different types of defects and labeling objects in the images one by one. Such
manual analysis typically takes many minutes per frame (e.g., in this study, we found it takes
about 20 to 60 minutes to process 1 frame, depending on the complexity of the TEM images).
Typical in-situ TEM experiments can generate tens to hundreds of frames of video data per
minute, so a long video can rapidly become impractical to analyze. Moreover, the labeling
quality also depends on the attentiveness of researchers, which may be reduced after spending
hours on this repetitive work. Furthermore, other factors such as researchers’ proficiency and
personal preference when analyzing TEM images contribute to inaccurate or at least inconsistent
labeling. Human interpretations are often required for analyzing TEM images that the same
researcher may give different labeling results at different times. The above observations imply
that manual counting and analyzing methods are hard to scale and prone to human-based errors.

In the future, the demand for better TEM analysis methods will only grow, as recent advances in
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TEM equipment, e.g., high-speed cameras, and fast microprocessors will keep accelerating the
rate of data acquisition’’.

Automatic analysis of TEM/STEM data, especially identifying microstructural defects, is
a long-standing pursuit of both the academic community and the industrial sector. To
automatically analyze defects contained in TEM/STEM images, various methods have been
applied, such as matching key-points in different regions of interest’®, applying different

thresholding values to segment different defects”-*

, representing the texture of various targeted
structures by the bag of visual words (BoW)?3! or synthesizing artificial image dataset®?, and
using traditional machine learning methods, e.g., k-means clustering, to find defects contained in
TEM/STEM images’!. To the best of our knowledge, these methods are only semi-automatic in
that they still require extensive human knowledge and time to apply to a given system, and each
new material system requires a significant new investment to find an effective approach.
Recently, modern deep learning methods have been applied to solve the defect identification
problem in static TEM/STEM image data’!-33, suggesting this is a promising approach that could
be reliable and highly flexible across many materials and problems. However, deep learning
approaches have not yet been applied to the problem of automatic detection and analysis of

defects contained in in-situ TEM video. Imaging-related research around TEM/STEM video

processing is very active, but has focused on other areas, such as structure reconstruction®?,

image quality improvement®##>, and video alignment®®.

In this work, we focus on the specific task of adapting the deep learning based YOLOv3
model into an automated framework for analyzing in-situ TEM video data. Specifically, we
focus on the problem of detection and analysis of radiation-induced dislocation loops generated

by an in-situ ion irradiation TEM device, the Intermediate Voltage Electron Microscope (IVEM)
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housed at Argonne National Laboratory (ANL). This in-situ ion irradiation TEM device
introduces controlled ion beams into a TEM to achieve a high number of atomic displacements
per atom (dpa) to mimic the irradiation environment a material will experience in nuclear
reactors, satellites, or space stations®’. The device enables co-irradiation and observation of

radiation-induced defects using diffraction-based contrast while the material is being irradiated.

3.3.2 Methods

The in-situ ion irradiation TEM video-based data used within this study has been
previously studied and analyzed using the common typical human analysis method®’. Extensive
details on experimental design, human analysis, and resulting materials effects have been
previously published®’. Here, we only present the most pertinent details for context. We selected
one of the four model samples (Fe-18Cr-3Al) from the previous study for the current study, but
the YOLO-based methods can be easily generalized to other samples or different material
systems. The Fe-18Cr-3Al in-situ ion irradiation TEM video-based dataset was generated by
performing in-situ irradiation using the IVEM-Tandem Facility at ANL with a pre-thinned TEM
specimen titled to the g=011 strong two-beam conditions with a frame rate of 15 frames per
second using a Gatan 622 video camera. The irradiation was performed using 1 MeV Kr*™" ions
up to 2.5 dpa at a constant temperature of 320°C and a dose rate of 8.3x10* dpa/s. Note, dpa is a
measure of the damage or energy imparted into the system and it is known that ion bombardment
at the dpa ranges observed generate embrittling defects in Fe-based alloys>-*8, Under these
radiation conditions, it was expected that two dislocation loop types would form, one with a
Burgers vector of a/2(111) and the other with a(100) ®’. Under the strong bright-field two-beam

condition used where g=011 and the deviation parameter, sg, close to zero, only a fraction of
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a/2(111) and a{100) loops are visible in TEM. To enable direct comparison to the previous

55,56, we

human-based analysis where multiple g-vectors were used for detection and analysis
applied a fractional visibility constant 7/4 to make YOLO detection results comparable with
published results using other g conditions®’. Defect size was estimated by assuming the defects
are elliptical and the defect size is the length of major axes of the ellipse. The video image size is
1344 pixel x 962 pixel with 2.6884 pixel/nm conversion factor which gives the physical size as
500.0 nm x 357.8 nm. The video consisted of 1175 frames which were linearly related to dpa and
time through Equation 1 which means each frame corresponds to 1.75 seconds.

dpa

8 x 10~*

[(Frame Number) X 1.6466]
dpa = 0.8534 + 1175 = 0.8534 + (Frame Number) x 0.00140

Time (s) =

Equation 1

The video data was acquired via frame-by-frame image registration to eliminate sample
drift and relevant camera movement. Since there is no landmark frame or feature that can be
used to align the video across the whole irradiation dose range, the video was divided into
smaller batches for primary image registration, and the final sets from the previous batch were
used to carry over the alignment®®®, The alignment was done by frame registration based on the
selected landmark frame with a template matching and slice alignment plugin®.

We opted not to use any previous data labeling and decided to label the data ourselves for
this project to establish the ground truth data. This choice was because we did not have the exact
pixel positions of each defect in the previous study by Haley, et al®’. We followed the labeling
process that has been used in other studies®?. The ground truth data was labeled by two trained

researchers and they checked each other’s labeling and explanations for 3 frames before labeling
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the real data via an open-source software called ImageJ. Their labeling will be treated as
ground truth in this study.

The YOLOV3 model was adopted from an open GitHub repository
(https://github.com/qqwweee/keras-yolo3). To train the model, we first converted the pretrained
darknet53 weight via COCO dataset into Keras format and then modified the final class number
to our defect number, which was one class in our case since we treated all a/2(111) and a(100)
loops as the same type of defect. This single class approach was necessary as Burgers vector
determination is not possible using only the g=011 condition in the video. We then applied the
transfer learning technique to fine-tune the model by freezing the first 245 layers of YOLOv3
and training the last 7 layers®’. The in-situ ion irradiation TEM video data in this study was
composed of 1176 frames and 21 frames were selected and labeled. The sampling was done at
random except an effort was made to assure that the sampled frames were approximately
uniformly distributed throughout the full set. Among the sampled 21 frames, 15 frames were
used for training (trained on 12 frames and validated on 3 frames) and 6 frames were used for
testing, where these 6 frames were not seen by the YOLO model during training. The model was
trained on GeForce GTX 1080 for 18300 epoch and the learning rate of Adam optimizer was
switched between 10 and 10 with batch size equal to 4 and Non-Max Suppression (NMS) IoU
equals 0.45 to find the optimal weights. Real-time data augmentation operations, e.g., left-right
flip, changing hue, saturation, lightness, were applied for the training dataset to enrich the dataset
and enhance the performance of the CNN for variations in defect contrast, size, and morphology
in the video data set. Real-time augmentation works by augmenting at each training epoch,

generating new augmented images in each epoch.
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3.3.3 Results

We first tested the performance of the trained YOLO model qualitatively by comparing
the detection result of testing frames to that of the ground truth labeling visually, as shown in
Figure 3.3.1. In general, the automated machine learning program labeled results agreed with the
ground-truth labeling by humans, except for certain ambiguous grey spots and when there
existed several touching adjacent loops. A zoomed-in comparison between the ground truth
labeling and YOLO predictions is shown in Figure 3.3.2. The model was also run on the whole
in-situ ion irradiation TEM video. In general, the YOLO model successfully detected nearly all

the dislocation loops.

Dpa 1.0-1.5, F1 = 0.86

07 .50

Dpa 1.5-2.0, F1=0.88 Dpa 2.0-2.5, F1=0.88
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Figure 3.3.1. Selected images from the test dataset for various damage doses (e.g. time scale).
Subfigure (a), (b), and (c) are the ground truth labeling developed by two researchers, while
subfigure (d), (e), and (f) are labeled by the automated machine learning program. Here, (a) and

(d) are for frame number 120, (b) and (e) are for frame number 472, and (c) and (d) are for frame
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number 824. 1 frame increment equates to about 0.00140 dpa, see Equation 1. F1 score compares

the machine detection results with human labeling of each column separately.

Figure 3.3.2.The visualized comparison of the human labeling results (blue boxes) to the YOLO

detector results (yellow boxes) for frame number 824.

The initial qualitative comparison was encouraging so additional quantitative analysis
was conducted. The statistics of the model performance were examined based on the metrics of
precision and recall and their harmonic mean which is also called the F1 score. The precision,
recall, and F1 score were generated using the six test images that were never used in the training
process. The test was iterated with different cut-off Intersection-over-Union (cut-off IoU) values
as shown in Figure 3.3.3. Here and elsewhere in the paper the IoU refers to the ratio of the area

of overlap (intersection) to the combined areas (union) of predicted and ground truth bounding
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boxes. The cut-off IoU refers to the threshold above which a predicted bounding box is
considered as a candidate match for a ground truth bounding box. Predicted bounding box
matches are assigned by building a matrix of all IoU values between all predicted and ground
truth bounding boxes and making assignments between predicted and ground truth defects using
the highest IoU in the whole matrix. When an assignment is made all the matrix entries
associated with those predicted and ground truth bounding boxes are removed from the matrix
and the process is repeated. This approach provides a unique assignment and effectively assigns
the highest overlapping predictions to the appropriate ground truth boxes. In general, a lower cut-
off IoU means higher tolerance on the discrepancy between the machine labeled region and the
human-labeled region, which agrees with the trend shown in Figure 3.3.3, indicating that the
performance of the trained model increased as the cut-off IoU decreased.

We selected a cut-off IoU = 0.15 to assess the performance of our model. This value is
lower than usually used in machine learning classification problems, but we believe is reasonable
for the following reasons. Many defects are small so a shift of just a few pixels in the size and/or
center of the ellipse can lead to significantly reduced overlap in bounding boxes. Such shifts are
likely within the realm of the uncertainty of human labelers, and of course, the YOLO algorithm
makes some location errors, so relatively small cut-off IoU can occur even when two bounding
boxes are clearly finding the same defect ellipse. Furthermore, from the density calculation

showed below, defects are typically much farther away than their size, with a typical distance at

the 2.5 dpa (where defect density is 3x10'¢ cm™) of about = 32 nm. This

1
V3 x 10%6cm—3
separation length scale makes it unlikely that boxes of sizes ~ 6-10 nm (the median defect size)

on a side will be assigned to the wrong defect just due to allowing a modest overlap.
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The F1 score obtained for the cut-off IoU = 0.15 is very encouraging as scores in the
range of 0.85 to 0.95 are typically considered very good for object detection results®!-*2.

Furthermore, at this cut-off IoU, our 6 testing images are all reasonably accurately modeled, with

F1 scores ranging from 0.83 to 0.93.
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Figure 3.3.3. The performance of the YOLO detector with different cut-off loU thresholds.

The developed YOLO model was run on each frame of the in-situ TEM video to extract
geometry information of each visible defect for the duration of the experiment. After obtaining
the geometry and position of each defect per frame, we used this information to extract defect
properties, such as median size and number density. Such properties of materials are widely used
in the nuclear materials field from which the dataset originated and provide insights into the
interplay between the imparted damage and the change in microstructure. We picked four typical

frames and compared the machine learning prediction results with ground-truth labeling. Those 4
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frames were not used in training and testing the machine learning model. We first compared
defect density. Defect density is important for many materials properties and for nuclear
materials as it is strongly correlated to mechanical properties, e.g., through the dispersed barrier
model’*?*. Loop density comparisons between machine learning results and our labeling results
are summarized in Figure 3.3.4. The densities of defects per frame were determined via machine
learning (ML) method and manual labeling for ground truth by dividing the total number of the
loops by the volume of the sample for each frame. The sample was treated as a rectangle bulk
with dimensions of 416.6 x 264 x 75 nm? and both results were corrected based on the loop

invisibility for the given imaging condition.
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Figure 3.3.4. Loop number density from the whole TEM video. The plot compares the loop
number density obtained from the ground truth labeling done by experts in this study and the
result obtained from the machine learning detector. All the data shown on the plot uses the
corrected proposed density, which is 7/4 of the raw density (see Sec. Material and methods). The

sudden drops in the late stage are an artifact arising from camera motion.

Both techniques for analyzing the in-situ videos showed a general trend of increasing
loop density with irradiation dose (time) which was expected based on general radiation effect
theory and previous analysis of the experiment®. Overall, machine learning results were close to
the ground truth labeling results throughout all frames, varying at most 12% compared with

ground truth labeling at the four measured points data in Figure 3.3.4. We believe that the
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observed discrepancy between machine learning and ground truth data in Figure 3.3.4 is likely
comparable to different researchers’ preferences in labeling ambiguous loops and perhaps cannot
be significantly improved without more consistent labeling. It is noteworthy that the sudden
drops observed in the late stages arise from abrupt stage movements that rapidly alter the field-
of-view and momentarily artificially reduce the effective number of loops observed. This effect
is similar to camera movements in the traditional sense.

After obtaining the density of defects from the machine learning detector, we then used a
watershed fitting method to determine the morphology statistics of defects. Since all images were
recorded with metadata to allow for pixel to physical distance conversions, we could predict the
geometric information of each detected defect based on the pixels involved in the defect. We
used the watershed algorithm provided within OpenCV?®’ to determine the defect pixels and their
boundary. Watershed is a commonly used image segmentation method, which divides different
objects with watershed lines and then, based on the contour found, extracts precise information
about the defects' position, size, and orientations®®. We used OpenCV’s marker-based watershed
algorithm. This method requires users to initially label pixels according to their belonging to one
of two categories, referred to as the “sure object” and “sure background”. The sure objects and
background were found by applying a thresholding method, specifically Otsu's binarization and
Distance Transformations. To remove noise, we use a morphological opening operation with a
3x3 kernel. We followed the official tutorial from OpenCV, and more details can be found
there®. Watershed found boundaries of defects and backgrounds, but the boundaries were not
very smooth. OpenCV’s fitEllipse () function was called to fit the needed defects and the
major axis length of the fitted ellipse was defined as the defect size. Detailed fitting results with a

cropped region of interests are provided in the Data and Code Dissemination section. The
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machine learning results of the defect size distributions were compared to ground truth labeling
in Figure 3.3.5. Although differences were observed in defect median size of each frame in
Figure 3.3.5, investigation indicated that these differences did not exceed 13.0% difference in
median size, and the average difference is only 5.5% and the standard deviation of difference is
5.3% across all doses investigated. The exact formula used to calculate these statistics is given in
the Supplemental Information (SI) Section 1. These results indicated that a well-trained machine
learning based model could be used for loop detection and analysis and achieve human-like
performance comparable or better than the large differences that can be expected by manual
labelling*2. The boxplot comparison provided in Figure 3.3.5 showed the viability of the
machine learning results. At the same time, it needs to be emphasized again that the true strength
of such a technique lies in its ability to detect defect information for every frame quickly and

accurately instead of just focusing on a small subset of frames.

Ground Truth Labeling Data Machine Learning Analysis Data

25 25
20 ) 20
€ - € :
= N | = H
15+ . — I 15 - -
.g + ] : 1 .g | T T
7] 1 ' ! n : | | !
§ T S0 T | L O
810! I Sq40 I
S 10 - I S 10 | 1 1
) I )
s 1 l T s 1
T | ! |
5 . . | 5 ; | :
L n L L ) ! I I
e
0 ‘ ‘ 0 ‘ | §
1.0 1.5 2.0 25 1.0 1.5 2.0 2.5
Dose (dpa) Dose (dpa)

Figure 3.3.5. Box plot comparing the distribution of median size for two methods the ground

truth labeling done by experts in this study, and the result from machine learning detector. All
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distributions are separately analyzed and compared by their irradiation condition, which is 1.0,

1.5, 2.0, and 2.5 dpa.

Figure 3.3.6 shows the size distribution for the entire duration of the in-situ ion
irradiation TEM experiment where, for each frame, the blue line represents the median of loop
size, the top of the gray boundary indicates the third quartile of loop size distribution and the
bottom of the gray boundary indicates the first quartile of loop size distribution. With the YOLO-
based machine learning detector, we could extract data generated in every frame and investigate
the material properties with hundreds of times more data than previously collected by hand for
this data set (the data collected by hand are the red points shown for four different typical dpa
values where these four points are not seen in training data, with red lines connecting them as a
guide to the eye). The large amount of analyzed data makes subtle trends easy to identify. For
example, although there are some noises, a clear trend can be seen in Figure 3.3.6 that the
median size, Q1, and Q3 increased as the dose value increased from 0.83 to 2.3 dpa and
remained stable from 2.3 to 2.5 dpa. Such a result agreed with the relationship found in Haley et

al.¥’.
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Figure 3.3.6. Change in size distribution as a function of irradiation dose based on machine
learning detection. It can be found that the median size (Blue line), first quartile Q1 (Upper gray
boundary), and third quartile Q3 (Lower gray boundary) increase as the dose increases when the

dose is from 0.83 to 2.3 dpa. Median size, Q1, and Q3 stabilize above ~2.3 dpa. Red lines
connect the red points that represent the ground truth labeling of median size (circle), first
quartile Q1 (triangle), and third quartile Q3(diamond) of 4 typical frames to provide a guide to

the eye.

One of the most exciting applications enabled by automated data analysis of in-situ TEM
data is the ability to track all defects as a function of time (i.e., frame). With this application in
mind, we developed a tracking module based on YOLO output to track defect motion in the data.
Since video is sequential images in time, we can track defects by counting and measuring their
sizes across frames to discover their evolution in morphology and mobility under irradiation.

This process is usually called object tracking in computer vision studies and is important for
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applications such as surveillance and security systems, traffic monitoring, human-computer
interaction, etc®. One of the most widely used methods for object tracking is tracking-by-

detection, also called tracking-by-repeated-recognition”®*’

. In this method, tracking is achieved
by detecting targets in consecutive image frames with trained object detectors and linking
detected objects across frames to generate the tracking results, e.g., trajectory or motion data®’.
We used Trackpy, a Python package for particle tracking, to link the detected objects generated
by the machine learning detector. Trackpy implemented the algorithms first developed for
colloidal particles by John C. Crocker and David G. Grier”® in Interactive Data Language (IDL)
and the algorithm worked well for both non-interacting and interacting systems®. Trackpy is
widely used in the soft matter community for tracking the movement of particle-like objects e.g.,
colloidal particles or cells in microscopy videos or images. A typical workflow of Trackpy can
be split into three steps: (1) Locating Particles, (2) Refining Location Estimates, and (3) Linking
Locations into Trajectories’®. In the first step general features of particles like diameter,
maximum size, and separations are used to locate all peaks of brightness in the image which
includes the initial object coordinates. Subsequently, more pixel-level information is used to
distinguish real particles from spurious ones. Finally, the locations of particles in each image are
matched with corresponding locations in later images to yield the whole trajectories. The
tracking module is a powerful tool to obtain several important statistics relating to the motion
and evolution of defects. When combined with automatic labeling, it provides a new way to
study defect dynamics under irradiation at a fidelity not possible using previous methods. We
demonstrated this advantage by two case-studies using the tracking algorithms: (i) studying
defect evolution and trajectory of interesting defects and (ii) extracting statistics of individual

defect mobility e.g., diffusion coefficients.
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To study defect evolution and trajectory of interesting defects, we first showed the size
change of an individual defect, then compared the trajectories of the slowest moving defect and
the fastest moving defects, and finally, showed the landscape of defect moving trajectories. In
Figure 3.3.7, a defect was shown to undergo significant size change as the dose increased. With
the help of the tracking module based on the YOLO and Trackpy package, a full history
description of a defect’s size change was recorded to illustrate the evolution of the defect. The
defect size change is shown in Figure 3.3.8 which clearly indicated that defect size increased as
radiation dose (dpa) increased.

Figure 3.3.7 and Figure 3.3.8 show the ability to extract a single defect growth evolution
as part of this in-situ TEM experiment. It is interesting to note that the shape/trend of the growth
rate for individual defects varied, with some showing unconstrained linear growth and others
showing asymptotic growth, and even some showing growth followed by shrinkage. Although
not the focus of this study, we believe the different growth curves for individual defects could be
attributed to local variation in the direct vicinity of the defect, and these variations could promote
or retard growth under irradiation. Significantly more analysis of the data would be required to
evaluate the postulated mechanism. But even at the level of the analysis presented here, the

power of such individual defect tracking is obvious.
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Figure 3.3.7. Reduced field-of-view bright-field TEM images of a single dislocation loop

growing under increasing irradiation dose of 1.28 displacements per atom (dpa), 1.72 dpa, 1.95
dpa, and 2.35 dpa for a)-d) respectively. The highlighted loop shows the dynamic change in

contrast necessary for the tracking model to detect and quantify. The defect id (51) was assigned

by Trackpy.
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Figure 3.3.8. The size change of a single typical defect, which is the same defect shown in

Figure 3.3.7.

Since the individual history of every defect was obtained, it was straightforward to

examine defects with interesting behaviors. For example, as shown in Figure 3.3.9, our tracking
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module could determine the motion of very slow-moving (Figure 3.3.9(a)) and fast-moving

(Figure 3.3.9(b)) defects.

Figure 3.3.9. Trajectories of two typical defects throughout their lifespan. (a) represents a typical
defect that has close to minimum diffusion coefficient value. Figure (b) represents the defect that
has a nearly maximum diffusion coefficient. Each yellow circle center represents a specific
location of the defect in certain frames, and the set of locations are plotted on a single image to

show the relative movement. The defect id is assigned by Trackpy.

The spatial distribution of defect trajectories was also an interesting property that was
determined and is shown in Figure 3.3.10. It is noteworthy that in the original video source, due
to thermal expansion of material and TEM user operations under irradiation, the viewable area
adjusted somewhat over time. This movement is an artifact of the in-situ experiment, but the
Trackpy package corrected for these artificial movements enabling us to target only the real

movement of each defect.
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(b)

Figure 3.3.10. The trajectory of typical defects detected in TEM video. The movement of this

type of defect is roughly cyclic, so the trajectory is not a single line but rather a small group of

points. Results were generated by Trackpy. Subfigure (b) is a zoomed-in result of the red

Since we knew each defect’s position and time stamp, an effective two-dimensional

rectangle in subfigure (a).

diffusion coefficient (Defr) can be determined. Diffusion of defects is an important property of

defect behavior in nuclear materials

the following relationship:

Note that Der is not a true diffusion coefficient as we make no effort to correct for the

eff —

100
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. We calculated this effective diffusion coefficient using

two-dimensional projection of the three-dimensional defect motion, which can be complicated by

the exact angle of the sample and the detailed motion of the defect. Our goal for this work is
merely to demonstrate the ability to track trajectories through the combination of YOLO and

tracking tools, not to perform detailed analysis to extract physically meaningful diffusion

coefficients. To perform the analysis, we choose 345 consecutive frames (from 1176 total) over

which the camera appears to be very steady. These frames are from frame numbers 461 to 805,
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corresponding to dpa values from 1.50 to 1.98. Only the regions away from the edges of the
figure are used to avoid defects appearing and disappearing due to small changes in the image
region. Specifically, we consider only the region with Y position from 200 to 1450 pixels and X
position from 250 to 2150 pixels where the original size of the image is 1728 pixels in the Y-axis
and 2412 pixels in the X-axis. We find a total of 741 defects in Trackpy, which is significantly
larger than the number of defects in a given frame. This larger value is due to the fact that defects
have a finite lifetime due to their appearing over time and, in some cases, disappearing, which
leads to more tracked defects than actual defects in the analysis. Our average lifetime is 54
frames. While some of the defects may actually appear and disappear, many of these events are
clearly artifacts due to Trackpy inadvertently assigning multiple global IDs to the same defect,
which effectively causes one defect to disappear and another to appear even when it has not
actually done so. Such errors make our defect counts inaccurate from TrackPy but do not lead to
incorrect estimates of the defect’s Defr. To illustrate the values of the diffusion coefficients, in
Figure 3.3.11 we show the distribution of Defr as a function of binned defect median sizes. We
used “median defect size” as a defect would have different sizes in each frame where it is
identified, either due to small changes in size estimates from the numerical analysis or due to the
defect growing during the irradiation. We then calculated the average D+ of defects that fall into
the same bin, where we have 50 bins from 2 nm to 18 nm. While this figure illustrates the type
of correlation one can explore with the automated data analysis, in this case we find no

statistically meaningful trend with defect size.
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Figure 3.3.11. The distributions of the effective diffusion coefficient Deff calculated by Trackpy
as a function of the defect median defect size. The data is presented as a histogram with each bin
of width 0.32 nm, giving 50 bins from 2 nm to 18 nm. The height for each bin is the mean Deff
of all defects in that bin. Error bars are the standard deviation of the mean. We use “median
defect size” as a defect will have different sizes in each frame where it is identified, either due to
small changes in size estimates from the numerical analysis or due to the defect growing during
the irradiation. No error bars are given for bins with just one defect as the errors cannot be

readily estimated.

3.3.4 Discussion

To further validate the detection results generated and analyzed by ML methods we
developed in this study, we compared our results with those previously completed by Haley et.
al. who investigated the same TEM video with conventional manual analysis method®’. Based on

the comparisons, we concluded that the results generated by our ML method are close to those
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determined by human experts. For example, the discrepancy between the ML generated loop
density differs from the results in Haley et al. by at most 38%. And the difference can be largely
attributed to the researchers’ preferences, as different experts may have different labeling
preferences for ambiguous objects. Likewise, the difference between statistics of median size
distribution from ML and Haley et al. did not exceed 32% difference in the mean size, 24%
difference in median size, and 30% in the standard deviation across all doses investigated.

It is important to be sure that the model is robust to at least some reasonable levels of
noise. To test the sensitivity of the model we used scikit-image (https://scikit-

image.org/docs/dev/api/skimage.util.html#skimage.util.random_noise) to add Poisson, Salt and

Pepper, and Gaussian additive noises to the test images. We calculated the precision, recall, and
F1 scores from the model for a range up to quite significant added noises and the impact on the
performance is less than 20% in the F1 score for all cases. This impact is relatively minor and
suggests our model is quite insensitive to noise.

Since the YOLO object detection model performance is lower for very small objects!?!,
there exists a threshold of defect size below which our model cannot detect a defect. Similarly,
there is a defect size below which human labelers do not label a feature as a defect. It is
important that the human lower limit is larger than the YOLO lower limit or otherwise we will
systematically fail to identify very small defects. The human labeling threshold value was
estimated as 7.24 pixels (2.69 nm) based on the lower limit in our labeled data. The YOLO
object detection algorithm finds defects as small as 1.86 nm, so YOLO is able to find defects as
small as any human chooses to label.

Although the performance of the detector we used was quite accurate for defect

recognition in TEM video, improvements to the model are needed. Errors likely could be
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reduced by more extensive optimization. For example, in the training, we only used default
anchor box settings and K-means clustering of bounding box sizes in training data could be a
better way to find the best set of anchor boxes. Also, more data augmentation operations could
be applied e.g, rotation, adding noises, and cropping or affine transformation to achieve better
performance. Errors could also be reduced by removing biases and ambiguities in the labeling.
For example, it was often unclear how to establish the ground truth labeling of closely distributed
objects with no significant white space between two centers.

It should also be noted that the images used in this study are of very high quality, with
limited noise and few confounding contributions (e.g., surface oxide), and undergo fairly modest
changes during the irradiation (e.g., few defects move significant distances). The high-quality
and modest changes of the images almost certainly help the model performance and subsequent
defect tracking. Furthermore, we focus our model on only one type of defect, a single category of
dislocation loop, to reduce the burden of labeling and focus on the most prevalent defects in the
images. Many samples will have other types of defects (and some are even present in our images,
e.g., dislocation lines), and tracking these is an important area for future study. While there is
nothing intrinsically limiting YOLO to just one defect type (YOLO could be extended to 9000
classes of objects!'??), what we studied in this paper is a very simple case. To fully assess the
general effectiveness of our approach and develop a broadly applicable tool, the model needs to
be demonstrated on many more data sets with multiple defect types, varying image and sample
quality, and more complex defect evolution during irradiation. However, the present deep
learning model is a powerful proof of principle and suggests that a broader program may be

successful and have a major impact on the defect detection community.
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For future study directions, we think two major directions are worthy of investment. One
is creating high labeling quality data sets. For example, in this study, we combine a/2(111) and
a(100) loops together to alleviate the labeling burden, but it will be more informative if we can
differentiate these two types. Such high-quality labeled data does not necessarily have to come
from experiments and synthetic data can have many advantages. For example, image simulation,
such as the multi-slice method, can generate high-quality images filled with known types of
defects!'®. This method can help avoid the tedious, error-prone labeling process. Synthetic
images might also be generated with deep learning methods such as Generative Adversarial
Networks (GANs)!%4105 which are powerful tools for generating images similar to an existing
set. GAN generation might be done in such a way that labeling is automatic, creating an almost
unlimited supply of high-quality labeled synthetic images or converting images collected from
different conditions to the condition for which our model is trained, allowing the community to
better utilize limited labeled data!®®-198, The second direction worth exploring is to apply the
analysis system developed in this paper to TEM devices to provide real-time statistics and even
direct labeling of defects (e.g., with a fitted ellipse) in images to guide users during experiments.
This approach is similar to the real-time Augmented Reality (AR) methods that have proven to
be useful in biological microscopy studies’. This combination will provide a straightforward,

real-time output of deep learning analyzed results for TEM studies and the material community.

3.3.5 Summary
In summary, the present work shows that if the accuracy obtained here can be extended to
more general and complex data, these deep learning tools are a potentially transformative

methodology for the TEM community. The YOLO based system developed in this study
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provides an automatic, fast, and reliable quantitative analysis of both position and morphological
evolution of defects in frame level. Furthermore, the YOLO based system can help researchers
track the motion of defects, which will allow new levels of dynamical analysis. Furthermore, the
approach is easy to use and adapt to other sets of experiments. The speed of YOLO means that it
can be used in real time to adjust experimental conditions (e.g., dpa, temperature) or imaged
regions (e.g., near grains boundaries vs. inside grains), providing a critical tool to support real-
time TEM video analysis for material property exploration. We anticipate this YOLO based
analyzing system will significantly enhance the capabilities of in-situ TEM/STEM image

analysis.

3.3.6 Data and Code Dissemination
All data and code files are stored in the Materials Data Facility!%-!'9 at DOI: 10.18126/n9dj-
5mkO0. They are described in detail below.

e Raw Data: In the folder Raw_Data, we provide the original TIFF format video and the
converted 1176 JPG images of each frame and the cropped center region of interest 1176
JPG images.

e Labeled Data: In the folder Training_and Testing Dataset, we provide the labeled data
and the data is already put into the TRAIN folder and TEST folder. One needs to put the
full path to these directories in the YOLO labeling file (called “train.txt” in our codes).

e Code: In the code folder we provide the codes. Specifically, we provide all the codes we
used in organized into Test, Train, and Trackpy subfolders of the Code folder, based on

their respective applications.
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e Fitted Defects Contour Results: We provided the fitted defects of original size videos and
cropped region of interest as MP4 videos in the FittedDefects video folder.

e Plotting Figures and Data: In the folder YOLO_Figures, we provided all the scripts and
data we used to plot figures shown in this paper, and subfolders are named by the index

of figures.

We also provide all codes in user-friendly IPython notebooks through GitHub at

https://github.com/uw-cmg/DefectSTEMVideoAnalysis.

3.4 Mask R-CNN

Both Faster R-CNN based(Section 3.2) and YOLO based(Section 3.3) defect analysis
system is bounding box oriented, meaning the output of the deep learning system is bounding box
around defects which is called object detection in computer vision, and the exact geometry
information needs to be extracted by pixel segmentation algorithm like watershed. However, Mask
R-CNN, an object segmentation model, is able to output object class labels for all pixels following
the exact end-to-end style!!!. We labeled the dataset used in Section 3.2 and Section 3.3, and
trained the Mask R-CNN model provided in the Detectron2 package which was developed by the
Facebook AI Research (FAIR) team!!2. Example output was visualized in Figure 3.4.1. We can
find Mask R-CNN provides pixel-level class labels and the results agrees with human labeling
quite well.

We have submitted this work in October 2021 which is under review now and the Arxiv

link is here, https://arxiv.org/abs/2110.08244. Although I prepared the data and ran the model
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analysis as part of this work the bulk of it was completed by Dr. Ryan Jacobs, so a detailed analysis

of Mask R-CNN performance is not discussed further in this thesis.
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Ground Truth Predicted

Figure 3.4.1. Examples of labeled ground truth (left columns) and Mask R-CNN predicted (right
column) images. The red, yellow, and blue masks denote 111 loops, 100 loops and black dot

defects, respectively. The predictions shown here were made with IoU=0.3.
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3.5 Conclusions
Three deep learning based defect analysis system has been built and it paves a way for
material scientists to apply state-of-the-art object detection and segmentation models to better

accommodate the on-going deluge of microscopic images or videos!!3.
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Chapter 4 : Machine learning for interpreting coherent X-ray imaging patterns

4.1 Chapter Abstract
In this work, we developed a deep learning classifier system that could extract number
density from coherent X-ray image patterns and this work presents a prototype work for better

understanding the image patterns.

4.2 Introduction
X-ray imaging has been widely used by many researchers in material sciences e.g.
investigating micro, nano or even atomics scale structures''* or mechanisms!!>, studying dynamics

or correlation behaviors!!¢-118

, revealing nebulous phenomena in complex material systems e.g.
complex fluid'!” and metallic glass'?® and other areas e.g. medical imaging'?!, geosciences!??. One
of the most important recent advances in X-ray imaging is utilizing coherent x-ray light sources to
investigate behavior on the femtosecond time domain and structure on interatomic length scales.
Such characterization is enabled by development of X-ray sources such as advanced synchrotron
sources, X-ray free electron lasers, and high harmonic generation sources!'?*!2%, For example, those
new X-ray imaging methods can visualize the chemical composition in nanoscale resolution!%,

126

study 3D lattice dynamics in gold nanocrystals'*®, and shed light on complex systems like

biological system e.g. showing 3D mass density distribution of a whole, cell'?” or reconstructing

128 However, due to the

3D structure of the giant mimivirus particle from diffraction patterns
complexity of interactions between sample and coherent X-rays, the imaging results, called X-ray

imaging patterns, are difficult to interpret. It is particularly challenging to extract information about

the molecular structure from images, and such reconstructions to date have often relied on
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significant approximations and simplified models e.g., using phase retrieval algorithms to iterate

129.130 or alternating projections'3! ,angles or sample positions!32.

between real and reciprocal space
It is therefore of interest to ask whether recent developments in image analysis using machine
learning might aid in the interpretation of X-ray imaging patterns. In this study, we proposed to
build a deep learning system that classifies the coherent X-ray image patterns according to their
micro-scale structural information, the total number of disks contained in each image pattern or
more specific the disk number density. Although other physical or chemical values might also be
of interest, we choose disk number density since it is quick and easy to test e.g., only disk number
needs to be counted. To reduce development difficulty and move quickly to build working
prototype, we focused on 2D system not the actual 3D real experiment dimension. The classifier
was trained in simulated coherent X-ray image patterns without any assumptions or simplification
of samples and the results suggested that it was possible to use machine learning tools to corelating
coherent X-ray imaging patterns, k-space information, to structural or particle distribution
information e.g., disk number density, real-space information which was typically hard to obtain.

The method directly builds a mapping between real-space sample information e.g., disk number

density and the k-space coherent X-ray imaging.

4.3 Methods

We used forward simulation methods to generate coherent X-ray speckle pattern images
of a model 2D disk system and then trained a Convolutional Neural Network (CNN) model
called Resnet-50 to classify the X-ray images into different categories corresponding to their disk

numbers. The workflow pipeline of this approach is shown in Figure 4.3.1.
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Dataset Generation Model Training Model Prediction & Interpretation
" Real Space Speckle Pattern ( 2 3 18 19 20
N-disk System Images

Classification Results
|

Class Activation Map

Figure 4.3.1. Flow chart of machine learning system which includes dataset generation, model
training and model prediction and interpretation. The generated speckle pattern images were fed
into the Resnet-50 classifier system and then classification results of the speckle pattern based on
real-space number of disks and the corresponding class activation map to indict which region of

the speckle pattern image contributes most to the final classification of speckle pattern images.

The 2D system used in our study was 2000 x 2000 in reduced unit with respect to define
1 pixel as unit in k-space and the total area of disks is 2 X T X 90 X 90 where 90 is radius of the

two-disk system. For an n-disk system the radius of each disk was set to preserve the total area of

2X90%X90 __

disks, which requires r = \/ \/ 1612100 . Then the n disks were randomly placed into the

n
2D system without overlap of disks. For a select set of studies focused on polydispersity which
further modified the disk radii to create a polydisperse disk system. To create a polydisperse disk
system, the single radius system of n disks was modified by sampling the radii from a Gaussian
distribution of given mean (3 in our settings) and standard deviation (1 in our settings) with the
constraint that the total area of disks is kept the same as the original single radius n-disk system.
The given mean and standard deviation were chosen arbitrarily. To achieve the poly-dispersed
distribution, we needed to sample disk radii from Gaussian distribution with the same total 7-
disk area constraint. We assume the » disks radii have a common factor called k and each radius

could be expressed as kC;, so the total n-disk area constraint could be written as



63

k(C,+ Cyo+ C3+ - + C,) = 16200 where C; is sampled from the Gaussian distribution
(with negative values rejected) and k is the common factor needed to be calculated by
summarizing the n sampled C; and once k is obtained, the radius of #n disks can be gotten using
the equation r; = m .

To generate X-ray imaging pattern data, we use a Fourier Transform program to covert
the 2D n-disk system of real space to the k space images. Since the k space image could be
infinite, we truncate the image into size of 513x513 pixels. In Figure 4.3.2, we show real space

and corresponding k space images for select n-disk systems (n =2, 3, 6, 10, 15, 20). In total we
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Figure 4.3.2. Real space images and corresponding X-ray speckle pattern, arbitrarily tailored to

highlight the speckle patterns, images of six typical 2D disk system where (a) for 2-disk system,
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(b) for 3-disk system, (c) for 6-disk system, (d) for 10-disk system, (e) for 15-disk system, and

(f) for 20-disk system.

After getting the X-ray speckle pattern images, some preprocessing was needed to delete
easy hints about disk number before feed into the machine learning system as we want the
machine learning system to find some intrinsic and hidden pattern in the speckle pattern images
not to find easy hints to take a shortcut to classify X-ray speckle pattern images. For example,
the pixel of and around the center pixel is and is near the Fourier transformer of g = 0
competent which is a direct reflection of the area of scatters which may reveal the number of
disks in the system, so we blocked the 11 pixels times 11 pixels center region of X-ray image
speckle pattern to avoid this easy hint. This is also a common practice used by experimentalists
in real world since the center pixel is too bright and hence makes it harder for detectors to better
track X-ray patterns'32, And standardization was applied to each image to make sure the pixel
intensity of all speckle pattern images should have the same zero mean and unit variance.

In this work, we proposed to use the widely used CNN model called ResNet-50 to
classify the speckle pattern images based on the number of disks. ResNet!*3!34 is a family of
deep learning model that uses identity mappings to overcome the performance degradation
problem of stacking more layers'3. It is the first deep learning model that achieved lower than
human level error rate in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
2015 competition?*. For this work, we created each 1000 different random configurations of disk
position for 19 different disk number systems. In total, we have 19,000 X-ray speckle pattern
images and among them, 15200 images were used for training, 1900 images were used for

validation, and the remaining 1900 images were used for testing. And for the 1900 images, each
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disk number system has 100 images which were randomly selected from the 1000 total images of
that disk number system. And for training and validation set were randomly split from the left
17100 images. ResNet-50 model was written in Keras!*¢ with TensorFlow!3? as the backend
engine and the training was using Adam optimizer with default setting of Keras and typical
training was conducted 200 epochs with batch size of 40 unless early stopped if the changes were
smaller than 0.00001 for 40 epochs.

To fully understanding the working of the X-ray imaging classifier system, we introduced
the Gradient-weighted Class Activation Mapping (Grad-CAM) as a visual tool to help diagnose
the classifier results. Grad-CAM is a technique to generate ‘visual explanations’ for
Convolutional Neural Network (CNN)-based classification models by utilizing the gradients of
any specific class with respect to penultimate (pre Dense layer) Conv layer output to produce the
high-resolution class-discriminative localization map that highlights the important regions for
final classification decisions!*®. Grad-CAM is one variant of Class Activation Mapping
(CAM)'3? tools that is widely used in interpreting CNN based classifier systems'4%-148 and Grad-
CAM is able to be applied to a wide variety of CNN based models'*®. We used Grad-CAM
function provided by Keras-Vis package to generate Grad-CAM maps of X-ray imaging

classifier systems'#.

4.4 Results
We first present the non-polydispersity system results, e.g., all beads were with the same
sizes and then we show the polydisperse system results, e.g., all bead sizes were following a

Gaussian distribution (the construction of the polydisperse system was discussed in Section 4.3).
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4.4.1 Non-Polydispersity System Results

We showed the non-polydispersity classification results of 19 different disk number in
Figure 4.4.1.1. Figure 4.4.1.1 demonstrates that the classification algorithm works well, and
misclassification only happens once in beads number 19 and only shows a small error of 17 instead
of 19. This one error is the only misclassification in 1900 testing cases. The cross-class accuracy
is nearly 99.9% which demonstrates the capacity of Resnet-50 based deep learning classification
system for coherent X-ray imaging patterns.

To better understand the mechanism by which the machine learned network identifies
disk number from X-ray diffraction image we plotted the Grad class-activation map (Figure
4.4.1.2). For space consideration we only showed the even bead number cases in the text and the
remaining Grad-CAM examples can be found in the Supplemental Information (SI). Although
the specific rules used by the deep learning classifier remain unclear, we found that in this
problem Grad-CAM could aid the interpretation of classifying results by indicating the
highlighted regions of X-ray image patterns or features that could assist human understanding
e.g., for certain classes center region seems more useful than conners.

In examples above, we focused on 257x257 pixel size as the coherent X-ray imaging
inputs, and it is important to know that whether different size of inputs will change the
classification results. Since k space could be extended to infinite, so truncations were needed,
and different size of image sizes was setting a limit of real space signals e.g., signals caused by
small distances would be filtered out. Hence it was important to know, how the classifier system
works in different frequency ranges. We showed the confusion matrix of 513x513 pixel size

inputs in Figure 4.4.1.3 which shows little changes compared to Figure 4.4.1.1. The drop of



performance is very small which indicates 257x257 is enough for our classification problems

even though larger size of inputs has more information.
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In summary, the deep learning classifier works for identifying the number of disks from

coherent X-ray imaging patterns in our model non-polydispersity systems.
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Figure 4.4.1.2. Grad Class Activation Map Examples of non-polydispersity systems where (a),
(b), (¢), (d), (e), (1), (g), (h), (1), (j) corresponding to beads number 2, 4, 6, 8, 10, 12, 14, 16, 18,

20.
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Figure 4.4.1.3. Confusion Matrix of non-polydispersity system classification results using

513x513 as input coherent X-ray image size.

4.4.2 Polydispersity System Results

In previous section, we presented results of the deep learning classifier for coherent X-ray
imaging patterns in non-polydisperse systems. However, the non-disperse setting is ideal and
nearly impossible to obtain in real world settings, so to further test the capacity of the classifier,
we retrained the model and tested it on a polydisperse dataset, and the results are shown below.
In Figure 4.4.2.1, we show the confusion matrix of the polydisperse classifier. We can see there
is a significant performance drop compared to non-polydisperse results. To better illustrate the

cases where the classifier has errors, we made sure each class has the same number, 100 in our



70

setting, of testing images. Then in Table 4.4.2.1, we showed class specific precision, recall, F1

scores. The cross-class precision, recall and F1-score are all 0.89 due to the drop of performance

in large bead number systems e.g., Bead number 14 to 20.
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Figure 4.4.2.1. Confusion Matrix of polydispersity system classification results using 257x257

as input coherent X-ray image size.

Table 4.4.2.1. Classification performance for different polydispersity bead numbers.

Beads Numbers

precision recall

F1-score

Beads_02

1

1 1
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Beads_03 1 1 1

Beads_04 1 0.99 0.99
Beads_05 1 1 1

Beads_06 0.98 1 0.99
Beads_07 1 0.99 0.99
Beads_08 0.99 1 1

Beads_09 1 0.99 0.99
Beads_10 1 1 1

Beads_11 0.99 1 1

Beads_12 0.98 1 0.99
Beads_13 1 0.98 0.99
Beads_14 0.79 0.67 0.72
Beads_15 0.6 0.58 0.59
Beads_16 0.71 0.82 0.76
Beads_17 0.88 0.81 0.84
Beads_18 0.8 0.66 0.72
Beads_19 0.54 0.58 0.56
Beads_20 0.64 0.78 0.71

To better understand the reasoning why classifier performances dropped for larger bead
numbers, we checked the Grad-CAM plots (shown in Figure 4.4.2.2). In Figure 4.4.2.2, as the
beads number went up, the features in Grad-CAM would be difficult to distinguish which

reflected the drop of deep learning classifier performance. One possible reason could be that
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polydispersity would generate more scattering centers of different sizes and thus reduces the

contrast associated with peaks in patterns of coherent X-ray imaging and hence made it difficult

to learn about correct patterns for larger bead numbers!!”.

Priciass=Beads_02,pred=Besds_02) = 1.00, 0.00, 0,00, 0.00, 0,00, 0.00, 0,00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00

(a) (b)
(e) (f)
(8) (h)
(i) — (i)

Priclass=Beads_04,pred=Beads_06) = 0.00, 0,00, 0.22, 0,00, 0.78, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00

B o w3 0 20

Priciass=Beads_10,pred=Beads_10) = 0.00, 0,00, 0,00, 0,00, 0,09, 0.00, 0.09, 0.00, 1,00, 0.00, 0.00, 0.09, 0.00, 0,09, 0.00, 0.00, 0.00, 0.00, 0.00

Figure 4.4.2.2. Grad Class Activation Map Examples of polydispersity systems where (a), (b),

(c), (d), (e), (D), (g), (h), (1), (j) corresponding to beads number 2, 4, 6, 8, 10, 12, 14, 16, 18, 20.

4.5 Conclusions

We have developed a deep learning based model to identify disk number by classification

from coherent X-ray imaging patterns of a two dimensional disk model system. The classifier

was tested for cases with and without dispersity and it shown to be effective in both, although
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systems with dispersity show significant errors depending on the scale of the dispersity. We also
sought to understand the mechanisms of the deep learning classifier with Grad-CAM. The Grad-
CAM analysis showed that certain features contained in X-ray image patterns could aid the
interpretation and understanding of the classification results. Overall, our results demonstrate
that without applying complex experimental procedures e.g., taking multiple images in different
angles or positions for phase retrieval or pre-defined assumptions of samples, we could directly
extract real space sample information like number density from k-space X-ray image patterns
generated by Fourier Transforms and there are few tools to link information between real space
and image spaces!' %131,

As a proof-of-concept study, our approach has some limitations that needs to be solved
by future studies. First, real coherent X-ray images have noises due to both environments,
devices, detectors etc. and the impacts of noise on the classification will need to be assessed,
although it is likely that it does not represent a fundamental challenge. We expect that enough
data with well-enough controlled noise will obtain robust models, as found for most of the data
here. Second, currently, our model fails in larger bead number polydispersity system, which is at
least in part since many beads with different sizes blur peaks and thus make it hard to discover
patterns. This problem could potentially be solved by adding more training images for larger
bead numbers. A closely related third limitation is that it is still unclear what kinds of training are
needed to enable extraction of useful data e.g., how many training images are needed to train a
successful pattern extraction model and can such training data be practically obtained. Finally,
we note a fourth limitation and major limitation, which is that our system is a model 2D system.
This approach needs to be tested on data of 3D systems and if possible, tested with real-world

experimental data e.g., colloid system which is easy to track and investigate®®.
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Chapter 5 : Other UW-Madison Research Summary

5.1 Chapter Abstract

In this chapter, I will summarize my research that is not the core part of this thesis but the
skills I learned and used are the same and they are a part of my Ph.D. research experience. A Ph.D.
study is a long journey and I have spent time across different departments and worked in
multidisciplinary studies. Those are all valuable experiences and closely connected to the general
machine learning research theme of my thesis. I will briefly summarize each research effort and

more details could be found from the published papers.

5.2 Medical ML

I worked with Dr. Meghan Lubner of UW-Health to develop and evaluate machine
learning algorithms that can help radiologists to delineate cancers using non-invasive CT-based
radiomics for renal cell carcinoma (RCC)!? and pancreatic cysts (PCs)!'*3. And the published
papers are listed below,

] Awe, Adam M., Michael M. Vanden Heuvel, Tianyuan Yuan, Victoria R. Rendell,
Mingren Shen, Agrima Kampani, Shanchao Liang, Dane D. Morgan, Emily R. Winslow, and
Meghan G. Lubner. "Machine learning principles applied to CT radiomics to predict mucinous
pancreatic cysts." Abdominal Radiology (2021): 1-11.

] Gurbani, Sidharth, Dane Morgan, Varun Jog, Leo Dreyfuss, Mingren Shen,
Arighno Das, E. Jason Abel, and Meghan G. Lubner. "Evaluation of radionics and machine
learning in the identification of aggressive tumor features in renal cell carcinoma (RCC)."

Abdominal Radiology (2021): 1-11.
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I also helped develop GAN-based segmentation tools that can help segmentation problems
for multi-domain MRI images and the published paper is listed below,

] Liu, Yilin, Gregory R. Kirk, Brendon M. Nacewicz, Martin A. Styner, Mingren
Shen, Dong Nie, Nagesh Adluru, Benjamin Yeske, Peter A. Ferrazzano, and Andrew L. Alexander.
“Harmonization and Targeted Feature Dropout for Generalized Segmentation: Application to
Multi-site Traumatic Brain Injury Images.” In Domain Adaptation and Representation Transfer
and Medical Image Learning with Less Labels and Imperfect Data, pp. 81-89. Springer, Cham,

2019.

5.3 Material Informatics

I also worked with undergraduate students from Informatics Skunkworks to apply machine
learning methods for predicting material properties e.g., flash point and the published paper is
listed below,

] Xiaoyu Sun, Nathaniel J. Krakauer, Alexander Politowicz, WeiTing Chen, Qiying
Li, Zuoyi Li, Xianjia Shao, Alfred Sunaryo, Mingren Shen, James Wang, Dane Morgan.
“Assessing Graph based Deep Learning Models for Predicting Flash Point.” Molecular Informatics

(2020), 39, 1900101.

5.4 BioPhysics
Before joining Prof. Morgan’s group for Ph.D., I also did laboratory rotations in Prof.
Qiang Cui’s lab, now a Professor at Boston University, where I researched on soft matter physics

in DNA!* and colloids!>*~!57 and the published papers are listed below,
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| Luo, Guan-Zheng, Ziyang Hao, Liangzhi Luo, Mingren Shen, Daniela Sparvoli,
Yuqing Zheng, Zijie Zhang et al. “N 6-methyldeoxyadenosine directs nucleosome positioning in
Tetrahymena DNA.” Genome biology 19, no. 1 (2018): 200.

| Mingren Shen, Rui Liu, Ke Chen, and Mingcheng Yang. “Diffusive-Flux-Driven
Microturbines by Fore-and-Aft Asymmetric Phoresis.” Physical Review Applied 12, no. 3 (2019):

034051.

5.5 Conclusions

The papers listed in this chapter might not be material science related but they provided
great experiences to learn new things and apply all physical, mathematical, computational,
machine learning tools I have learned. I listed them here as they are also part of my Ph.D. study

and they all helped me to complete the thesis main theme in various ways.
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Chapter 6 : Summary and Future Work

6.1 Summary

In this thesis, we discussed two aspects about applying deep learning models to material
science studies e.g., finding the location and geometry of different defect clusters in irradiated
steels and mapping k-space X-ray image patterns with real space sample information without
complex iterative algorithms. We show that a deep learning based analysis system has a
performance comparable to human analysis with relatively small training data sets. This study
proves the promising ability to apply deep learning to assist the development of automated data
analysis data and paves the way for fast, scalable, and reliable analysis systems for massive
amounts of modern material science data.

The research contained Chapter 3 regarding the using deep learning models e.g., Faster R-
CNN, YOLO, Mask R-CNN to analyze defects in microscopy images or videos of alloys is
summarized in this section. Our work shows that automatically detecting and tracking interesting
microstructures and properties contained in TEM images and videos is viable and opens new doors
for evaluating materials microstructure changes and dynamics in human labeling hardly achieved
accuracy and consistency.

The contained Chapter 4 regarding the using deep learning models to extract sample
information from coherent X-ray imaging patterns in this section. Our work shows deep learning
can build the relationship between real space sample information e.g., number density and k-space
images, and visualization methods like Class Activation Maps can help people identify important
regions which could be a useful way to understand the hidden information in coherent X-ray image

patterns.
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6.2 Future Work

As shown in this thesis, specific questions are selected to test the ability to apply deep

learning tools to material science problems. While the prominent potential of such an approach is

demonstrated, some future developments are needed to fully utilize this powerful approach.

Three possible directions are given here:

Dataset Generation

Currently, in the defect analysis project, manual labeling data was used to train deep
learning models, however, human errors and biases will be avoided in the trained
models. Furthermore, human labeling made it difficult to extend deep learning models
to new types of tasks that might not have efficient resources or methods to label data
by humans. Possible solutions might be using simulation or other automatic generation

methods to generate datasets!®

with labels or developing methods that do not need
certain labels but rely on inner structures of data e.g., deep image prior uses realistic

image priors from a single image itself to guide image restoration'>°.

Model Optimization and Serving
All deep learning models present in this thesis are not optimized for high-performance
consideration, e.g., automatic neural network searching'®®, model compression and

162

acceleration!®!, and model pruning!®?. Those optimizations could significantly improve

model speed and accuracy and hence help scale up of usage. And another important
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future direction would be establishing the common sharing practice of codes and
models. More and more people in the material science community are involving deep
learning studies which raise reproducible and portable issues between different model
implementations. Model serving of a collection of easy-to-use, standardized, and high-
performance deep learning models with pre-trained weights would be a tremendous
help for scientists and engineers in material sciences and other areas. Common tools

used by tech companies like Google Colab!é* and Kubeflow!®*

based on top of
Kubernetes for MLOps'® could be a good starting point to learn from and some model

serving websites like TensorFlow-Serving!'®, ModelHub.AI'” and DLHub!®® are

gradually used by the scientific community now.

e Domain Knowledge Integration
Once the data and models are obtained, we can always train or build some ML or DL
models but how to make sure it contributes new information, knowledge, or insights
for the scientific community is a different and sometimes difficult question that needs
domain experts and knowledge'®®. And more specifically, could we embed or involve

domain knowledge into machine learning models to accelerate learning!’® and improve

172 173

accuracy!’!. Physics-informed neural networks!”? or Physics-guided neural networks

and other methods!'’™* have shown a promising way to integrate physics and material

information into ML or DL models'’2.

Although limited machine learning and deep learning applications are discussed in this

thesis, the potential of such an approach is demonstrated. For future developments, more easy-to-
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generate and easy-to-label data, more standardized ways to share models, and more efficient

integration methods of ML/DL with physics information are needed.
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