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 Abstract  

Machine learning tools have the potential to provide a new solution for problems in 

material science community. In this thesis, I will present my works about applying machine 

learning methods to solve two typical material sciences problems, one is the defect detection 

problem and another one is the X-ray image pattern problem. Chapter 1 is an introduction of the 

thesis that states the goal of this thesis and key concepts learned in my Ph.D. study. Chapter 2 talks 

about the important background knowledge about machine learning, deep learning, and computer 

vision which are frequently used later. In Chapter 3, three deep learning based defect analysis 

systems are discussed for TEM/STEM images or videos. Those models prove the ability of deep 

learning models and show the potential of applying them to solve defect detection problems. In 

Chapter 4, we introduce a deep learning based classifier that can assist the interpretation of X-ray 

image patterns which paves the way to better understand the patterns. Chapter 5 summarize other 

published work I completed at UW-Madison which were not closely related to material science 

but shared the general theme of this thesis. Finally, in Chapter 6, a summary and future of work is 

present. 
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Chapter 1 : General Introduction 

 

1.1 Overview of the Thesis 

This thesis is comprised of six chapters. Chapter 1 provides a brief introduction of the work 

contained here, which introduces the overview and objectives of this thesis. Chapter 2 focuses on 

a description of the key theoretical concepts, mechanisms, and approaches of three important 

methods, machine learning (ML), deep learning (DL), and computer vision (CV), used in this 

thesis. In Chapter 3, we discussed how to apply deep learning models, Faster Regional 

Convolutional Neural Networks (Faster R-CNN)1, You Only Look Once (YOLO)2, and Mask 

Regional Convolutional Neural Networks (Mask R-CNN)3, to solve the defect detection problem 

in electron microscopy images and videos. Chapter 4 expands the deep learning vision tools to 

explore the coherent X-ray imaging problems. In Chapter 5, other research achievements that are 

not material science oriented I completed in UW-Madison are discussed.  Chapter 6 is about a 

summary of the whole thesis and future directions that are worth exploring.  

 

1.2 Motivation for the current investigation 

Material scientists usually rely on three categories of tools which can be roughly called 

theoretical methods, experimental methods, and computational methods to discover new materials 

and study their properties. However, since 2012, machine learning and deep learning based tools 

or called the data-driven methods or materials informatics are becoming more and more popular 

in the science community which is even called the Four Paradigms of Science4,5. This change is 

mainly due to three driving factors including, cheaper and more powerful hardware like Graphics 

Processing Unit (GPU) and Tensor Processing Units (TPUs)6, bigger and easy to access data like 
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Materials Genome Initiative (MGI)7,8, and more efficient and smarter algorithm like back-

propagation and convolutional (CNN), and recurrent (RNN) neural networks9,10.  

 

1.3 Thesis Objectives 

Motivated by the growing success of data driven and deep learning based methods, in this 

thesis, I will present how to apply three different deep learning models called Faster R-CNN, 

YOLO, and Mask R-CNN to detect objects in electron microscopy images or videos and build 

mappings between coherent X-ray imaging patterns with sample information like number density. 

The goal of this thesis is to prove that we can benefit from data driven methods like deep learning 

and machine learning to study material science problems.  

 

1.4 Key Lessons learned when applying ML to material sciences  

Before we discuss details about machine learning and how to apply it to material sciences, 

I want to review three important lessons I learned during my Ph.D. study. It is critical to build 

basic principles about how to apply machine learning and deep learning since we want to benefit 

from the advantages of ML and avoid the shortcomings. 

Applying ML methods belongs to the study of computer sciences so common wide-used 

practices of computer science and software engineering e.g., unit testing, version control, and 

interface design are also useful, but it is not the focus of this thesis and we recommend readers to 

read pieces of literature listed for more information11–15. Besides knowledge from software 

engineering, some special lessons related with applying ML to material sciences problems are 

worth discussions. Below I listed three important tips that help me most and I will discuss them 

one by one. 
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• No Free Lunch Theorem 

Since the growing success of ML methods, researchers tend to apply ML to new problems 

without any hesitations, however, in the ML community, there is a famous lesson called 

No Free Lunch Theorem which states that there is no best algorithm for all problems in 

optimization and due to the close relationship between optimization and ML, no best 

algorithm works for all ML problems16. Luckily, we don’t need to build an ML algorithm 

that works best for all problems, with certain assumptions and constraints of problem 

spaces, we shall be able to pick the algorithm that works best in current constraints. When 

applying ML into material sciences, we shall keep in mind and reflect on the problem 

design repeatedly, what is the final goal of the study, what is the type of problem we are 

studying, and finally, what is the assessments metrics in our study. For example, if the final 

problem needs thorough explanations, then decision trees might be better than complex 

neural networks although more and more explanation tools are developed for neural 

networks such as SHapley Additive exPlanations (SHAP) values17,18, the decision tree 

algorithm is still the most efficient tool to explain the working mechanism of ML19,20.   

 

• Domain Knowledge Matters 

Due to the rapid development of ML tools, once domain-related data is obtained, it is 

usually easy to launch a ML study and generate some results. However, how to understand 

these results? Are they useful? What is the insight or guidance we can provide? For 

example, based on your ML model you can well predict a certain property of material but 

in the material and science community, people want you to better explain why this model 
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work and how to understand the working mechanisms from the physical principal level. 

An extended example might be physics around 1900. If you follow the common practice 

in ML, it would be easy for you to conclude that there are no more important tasks to do 

which, as Lord Kevin said, “nothing new in physics and only more precise measurements 

might be needed and only two dark clouds still shown in the sky of physics”21. And we all 

know the following story, these two dark clouds turned out to yield special relativity and 

quantum mechanics21.  There are two different methodologies here, exploration, finding 

new things, and exploitation, fitting already known. And a common trend in the ML 

community is always trying to fit things as precise are possible and sometimes outliers are 

easily ignored. However, in the material sciences community, sometimes those outliers are 

the key which might be useless in one metric but valuable in another metric.  

 

• Data Matters 

Algorithm, Hardware Improvements, and Dataset Growth are well recognized as the 

driving forces of the success of deep learning recently9. However, if your time or resources 

are limited, I highly recommend growing the dataset as the first option of solutions, 

especially for material science problems. ML and DL are essentially learning things from 

the dataset so if the dataset is problematic or small, the power of algorithms is also limited 

or biased. As the famous saying goes, “Garbage In, Garbage Out”, so do the ML models. 

And if time and resources permit, using simulation or other computational methods to 

generate a clean labeled dataset will be the most important key to building a successful ML 

project in material science and related projects.  
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Chapter 2 : Backgrounds 

2.1 Chapter Abstract 

In this chapter, I will present a short introduction to three aspects of key background 

knowledge that are important for this thesis. In Section 2.2, a short introduction of machine 

learning is provided, in Section 2.3, one special type of machine learning tasks called deep 

learning is provided, and finally, in Section 2.4, a specific problem called computer vision is 

discussed and currently the majority of methods in computer vision is deep learning based. 

 

2.2 Machine learning 

According to Mitchell, machine learning is defined as, for certain task T and performance 

measure P, an algorithm that can learn from past experience E to increase its performance measure 

P for task T22. For example, a classification task T could be classifying images of dogs and cats, 

and performance measure P would be the accuracy that defined as correct classified testing images 

over the total number of testing images, and then the experience E would be the training process 

of feeding a group of already labeled images of cats and dogs into the algorithms saying neural 

network that could improve its performance measure P using back-propagation methods22.  

Machine learning has a lot of details that are clearly out of the scope of a thesis, so I refer readers 

to the nice introduction paper by Prof. Jordan and Prof. Mitchell as a starting point23. 

There are multiple ways to categorize machine learning methods and one of the widely 

used categorizations is dividing machine learning methods into 3 categories based: supervised 

learning, unsupervised learning, and reinforcement learning23.  And in this thesis, I mainly use 

supervised learning so I will briefly discuss it here. In supervised learning, for each instance of 

training sample 𝑋!, it will have a predefined label or value assigned to it called 𝑦!. the learning 
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process is to learn a proper mapping between 𝑋 and 𝑦. For example, for the classifier for images 

of cats and dogs, each image will have the label to tell the ML algorithm whether the image 

contains dogs or cats, and the learning process can improve its weights based on the error between 

true label and prediction.  

 

2.3 Deep Learning 

Deep learning typically uses a combination of multiple layers of nodes called neural 

networks to extract the intrinsic structure of input data to build a mapping between the intrinsic 

structure and targeted output9. With advancements in GPU computing powers, accumulation of 

carefully labeled large scale datasets, e.g. ImageNet24, and better optimization algorithms like 

backpropagation,  deep learning-based models have shown great success in different tasks such as 

automatic driving, speech synthesis, and image classifications9, even outperforming humans in 

many tasks such as the board game Go25. Deep learning has also been widely used in material 

science26 and achieves good performances including predicting properties of materials27,28, 

identifying material phase transitions29, and automating the analysis of TEM/STEM data30–36.   

 

2.4 Computer Vision 

One of the most successful applications of deep learning is computer vision, where the 

ultimate goal is teaching a computer to do the image-related task(s) like finding which object is 

contained in an image (object detection) and which pixel belongs to different objects (image 

segmentation)37. Since a breakthrough in the ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) was made in 2012, the deep Convolutional Neural Network (CNN) based 
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approach has demonstrated its success in many image-related tasks37.  There are nice books38,39 

about the detailed techniques and progress of computer vision. In this thesis, we focus on one 

specific problem of computer vision, object detection and tracking, which means teaching the 

computer to know the types and positions of objects contained in images or videos. And we refer 

the readers to those good reviews for more details37,40,41. 

For the object detection problem (trying to find the location and category of all the 

objects contained in an image), which is also the focus of Chapter 3, there are two general 

categories of methods: two-stage methods and one-stage methods37. For a two-stage method like 

Faster R-CNN42, the object detector will first propose some candidate bounding boxes containing 

the object location information and then classify the category of those candidate bounding boxes. 

One-stage methods like YOLO will output the object location and category at the same time43. 

Typically, two-stage methods are slower but more accurate than one-stage methods. YOLO is 

one of the most widely used one-stage methods and offers speed, accuracy, and fast engineering 

application potentials37. The key ideas of YOLO are dividing the whole image (or video frames) 

into grids and predicting the location and the category of the potential bounding boxes with a set 

of pre-defined anchor boxes in each cell of the grid43.  Other widely used models for object 

detection problems are U-Net Family and Transformer Family methods. In U-Net, the network 

has a U shape structure where the left branch would encode the key information into a smaller 

inner vector space and the right branch would decoder the inner representation to generate pixel 

level segmentation maps44–48. U-Net is easy to implement and good at working with small 

datasets and thus is popular in medical image applications49. Transformer based methods using 

positional encoding to split each image into patches and align these patches into ordered 

sequences to apply natural language processing methods for the object detection problem and 
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Transformer family methods are actively studied in computer vision community now since it 

could easily encode global information and correlations into object detection mechanism50–52.   
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Chapter 3 : Defect Detection 

 

3.1 Chapter Abstract 

Defect detection in material is counting the number of different types of defects and 

collecting their geometric information such as total area, mean radius from electron microscopy 

images. Defect detection is important since it can reflect the property changes in materials. For 

example, the simplified dispersed barrier hardening model can help calculate the hardening due to 

defects53. In practice, defect detection is mainly done by humans to calculate the number and 

distribution of each defect type in each image and then summarize the corresponding hardening 

due to defects. But this process is tedious, error-prone, bias-involved, and non-reproduced. In this 

chapter, I will present three deep learning based defect analysis systems, Faster R-CNN, YOLO, 

and Mask R-CNN I developed to help alleviate the difficulty of defect detection. 

 

3.2 Defect Analysis of STEM/TEM Images 

3.2.1 Introduction 

Analyzing the locations and sizes of defects in materials that have undergone irradiation 

is a widely used application of electron microscopy. In such studies, the key properties are the 

total number and distribution of each type of defect. Typical defects of interest include grain 

boundaries, precipitates, dislocation lines, dislocation loops, stacking fault tetrahedra, cavities 

(voids, bubbles), and co-called “black-spot” defects, which are small defect clusters of 

interstitials and sometimes vacancies54,55. For this study, we focus on the dislocation loops 

formed within a ferritic alloy, where the loops exist on specific habit planes that manifest 

themselves with different morphologies due to the projection of a 3D volume imaged using 
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EM56. Typical microstructural images of irradiated ferritic steels contain four prominent types of 

defects: (1) open ellipse loops (single ring edge), (2) open ellipse loops (double ring edges), (3) 

closed solid elliptical loops, (4) closed circular solid dots56. Figure 3.2.1 shows a sample STEM 

image containing all four morphologies of loops obtained from a ferritic alloy irradiated in a 

materials test reactor.  

 

 

Figure 3.2.1. Selected bright field scanning transmission electron microscopy (STEM) image of 

an irradiated ferritic alloy showing four common morphologies of dislocation loops: (1) open 

ellipse loops (single ring edge), (2) open ellipse loops (double ring edges), (3) closed elliptical 

solid loops, (4) closed circular solid dots. Open single edge ellipse loops (1) are dislocation loops 

with a Burgers vector of 𝑎" 2' 〈111〉.  Open double edge ellipse loops (2) and closed elliptical 

solid loops (3) are dislocation loops with a Burgers vector of 𝑎"〈100〉. Closed circular solid dots 

(4) are black dot defects with a Burgers vector of either 𝑎" 2' 〈111〉 or 𝑎"〈100〉. Image size: 

Primary image is 290 ´ 290 nm; inset scales arbitrary. 
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3.2.2 Methods 

In this section, we used a modern deep learning-based object detection model called 

Faster Regional CNN (Faster R-CNN)42, a widely used deep learning based object detection 

model57. We use the Faster R-CNN to develop an automatic defect detection system for all four 

morphologies commonly observed in irradiated steels with a body-centered cubic structure and 

then additional post-processing to analyze their geometrical information (specifically, size and 

areal density). This paper serves to demonstrate the power of deep learning-based computer 

vision models for material image studies and suggests the possibility that most aspects of defect 

analysis may soon be practically automated, and many, if not all, handcrafted feature-based 

methods may be replaced by deep learning methods.  

Faster R-CNN is a CNN based end-to-end deep learning object detection model that 

outputs both the object position and its class42.  As shown in Figure 3.2.2, Faster R-CNN is a 

two-stage detector where the region proposal network (RPN) proposes Region of Interest (ROI), 

and the following ROI regressor and classifier will fine tune the final output results including the 

size and position of the object contained bounding boxes and the corresponding object label42.  

Given an image, the shared convolutional layers will extract a feature map from the input image 

by performing a series of convolution and max pooling operations. Then based on the extracted 

feature map, the RPN will put a set of predefined anchor boxes on the feature map and output the 

probability of whether the anchor box belongs to an object of interest or plain background. It 

worth mentioning that RPN ignores the specific object class of each bounding box and the 

following ROI regressor and classifier are responsible for the specific class and refined location 

of the objects. The refining network predicts certain object labels and refines the size and 

position of each bounding box based on the feature map generated by the ROI-pooling layers40. 
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The RPN and ROI components are trained jointly to minimize the loss function sums from both 

of them42. After the Faster R-CNN module A, those images with detected defects are sent to 

module B to extract geometric information such as defect diameters, as shown in Figure 3.2.2. 

 

 

Figure 3.2.2. Schematic flow chart of proposed deep learning based automated detection 

approach. Input micrograph images go through the pipeline of Module A—Faster R-CNN 

Detector, Module B—Image Property Analysis. After Module A, the loop locations and 

bounding boxes are identified and then for each identified bounding box, geometry fitting 

algorithms are called to determine the defect shape and size in Module B. 

 

3.2.2.1 Data Set Collection 

Data set collection was completed as part of a large-scale effort to characterize iron-

chromium-aluminum (FeCrAl) materials neutron-irradiated within the High Flux Isotope Reactor 

at Oak Ridge National Laboratory. The dataset comprises a series of published53,58,59 and 

unpublished data. The data collection was completed over 3 years and spanned a range of 
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different FeCrAl alloys, including model, commercial, and engineering-grade alloys irradiated to 

light water reactor–relevant conditions (e.g., <15 displacements per atom and temperatures of 

nominally 285–320°C).  Images generation are described in more details in Li et al32. 

 

3.2.2.2 Data Set Preparation 

We used ImageJ60,61, an open-source software for analysis of scientific images, to 

manually label all the training and testing data set. And since STEM images are gray scale and 

ChainerCV62 expects input images with RGB channels, some modifications are necessary. We 

use the direct STEM image gray scale for the R channel. Then we use modifications of the 

original image gray scale for the G and B channels. Specifically, following Li et al.32, for G we 

use a local contrast enhancement of the original gray scale channel saturated to 

maximum/minimum and for B we use a Gaussian bluer filter of the original gray scale STEM 

images. For the local contrast enhancement in channel G, we use the Contrast Limited Adaptive 

Histogram Equalization (CLAHE), a common algorithm used for local contrast enhancement that 

makes local detail of STEM image enhanced even in regions that are darker or lighter than most 

of the image. The Gaussian filter used in channel B represents cases where there might be noises 

or blurring in the STEM images. The parameters used for CLAHE63 and Gaussian blur64 are all 

from the default parameter setting of scikit-images and details can be found in the references 

given here for these methods. The purpose of adding two more channels in this way is to 

improve the model performance and make the model more robust by providing more information 

about various contrast levels or blurring. 

For the training and testing on the Faster R-CNN model, a total of 165 STEM images of 

irradiated ferritic alloys were collected and labeled. The images were taken at different 
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experimental conditions of temperature and irradiation damage level so that the data includes 

varying defect sizes, shapes, and areal density. We constructed the ground truth labeling by 

giving each image in the dataset to at least two groups of at least two researchers per group who 

together labeled each image in that dataset. In some cases, no absolute consensus could be 

reached on whether a feature was a defect and/or what type it had, in which case a best effort was 

made based on group discussion.  

The test dataset was randomly selected from the complete image dataset, so that the 

training and test were split by approximately 10:1 ratio. The training dataset was then augmented 

to 918 images in total, which could provide more training instances without spending more 

manpower on labeling. The data is augmented by rotating and/or flipping each image in the 

training set, a standard method previously well established to improved results in some cases65.  

 

3.2.2.3 Model Training 

The Faster R-CNN model used VGG-16 as its backbone architecture and we adopted the 

module provided by ChainerCV62 as the Module  A in Figure 3.2.2 and using watershed 

function provided by OpenCV66 as the second module. The initial weights of Faster R-CNN was 

loaded from the pre-trained weights from ImageNet which is a common practice in the deep 

learning training strategy67 called transfer learning. Although ImageNet is trained for image 

classification, not object detection, there are enough similarities in key features to support 

effective transfer learning of weights. Transfer learning can reduce the amount of data and 

training time required for good performance67. The Faster R-CNN module was optimized with 

Stochastic Gradient Descent (SGD) on a single Nvidia GeForce GTX 1080 GPU. The best hyper 

parameter set was found by performing hyperparameter search of learning rate from 10-3 to 10-6 
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and we adjust the needed iteration numbers correspondingly. The best choice of hyper parameter 

is a decayed learning rate starting from 10-4 and each 20000 iterations the learning rate will 

decay to one tenth of the previous one. In total 90000 iterations were performed, and a learning 

loss curve is shown in Figure 3.2.3. The geometry extraction module needed no training. 

 

 

Figure 3.2.3. A typical loss curve for Faster R-CNN training. 

 

3.2.2.4 Model Testing 

After the Faster R-CNN module was trained, there were still two important 

hyperparameter associated with accuracy analysis: the threshold IoU value and the confidence 

score.  IoU stands for Intersection over Union and is an evaluation metric used to measure the 

performance of object detection models57.  IoU is calculated from the ratio of overlap area of a 

ground truth bounding box and a predicted bounding box to the area of union of two bounding 

boxes. The range of IoU is from 0 to 1 where 0 means no overlap found between two bounding 

boxes and 1 means the two bounding boxes are perfectly overlapping. The threshold IoU is the 
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value used to judge the prediction quality of the overlapping of ground truth bounding boxes and 

prediction bounding boxes. A higher threshold IoU requires more accurate location prediction of 

the bounding box detector, which will generally reduce performance, but lower the threshold IoU 

could lead a predicted bounding box to being assigned to no defect or the wrong defect. And 

another important hyperparameter is the threshold confidence score, a value from 0.0 to 1.0 used 

by Faster R-CNN internally to discard low confidence proposals in the RPN, and it can change 

the total number of outputs of Faster R-CNN. We used grid search of the threshold IoU and 

confidence score to search the best choice of these two values based on maximizing the F1 

scores, with confidence score from the list [0.001, 0.005, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 

0.35, 0.4, 0.45, 0.5, 0.55, 0.6] and the threshold IoU from the list [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 

0.8, 0.9]. We selected 0.25 as the confidence score for Faster R-CNN and showed the 

performance changes with 0.4 threshold IoU in Figure 3.2.5. 

 

3.2.2.5 Geometry Fitting of Analysis Module 

After the Faster R-CNN module was performed on specific image, the analysis module 

was called to obtain shape and size of the defect contained in bounding box. As shown in the 

third column in Figure 3.2.4, the approach fits the defect with elliptical contours to estimate their 

actual shapes and diameters.  The approach uses the watershed algorithm to identify the pixels 

that make up the defect contour and then fit those to an ellipse. The watershed algorithm is a 

widely used technique for image segmentation purposes that views any gray scale image as a 

topographic surface where the high (e.g., white) pixel values represent peaks while the low (e.g. 

black) pixel values denotes valleys. The algorithm tries to grow the region areas by flooding the 

valleys and where different regions meet with each other are the watershed lines needed for 
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image segmentation68. Watershed methods were applied to find the boundary between defect 

pixels and background pixels. We followed the official tutorial from OpenCV for performing the 

watershed and details of the approach can be found there69. We then fit the boundaries found 

from the Watershed algorithm to an ellipse. This fitting was done to match the approach used by 

the radiation defect analysis community, obtain a well-defined shape with simple geometric 

descriptors, and smooth out the otherwise rather rough boundaries found by the Watershed 

algorithm. The fitting was done with OpenCV’s fitEllipse()function70. All codes were 

based with OpenCV66 and by applying the second module we could get precise information 

about the defects' position, size, and orientations. The diameters and areas of defects are defined 

as follows, where a and b are half the lengths of major and minor axes of the ellipse. The 

diameter of the a/2<111> and a<100> defects are defined as 2a. The diameter of the black dot is 

defined as twice the square root of (ab). The area of all defects is defined as pab.  The areal 

density is the sum of defect areas in a set of images divided by the total area of the set of images. 

 

3.2.3 Results 

To assess the machine predictions, four types of approaches were taken.  The first 

approach was a qualitative comparison of machine to human labeled images, where we looked 

for large fractions of errors, e.g., more than 40%, and for trends in errors that might indicate a 

major issue but made no attempt to quantify agreement. This assessment tests all aspects of the 

model as it compares to the ground truth human results, which include the bounding box 

predictions (the defect detection part of Module A in Figure 3.2.2), the defect type 

identifications (the categorization part of Module A in Figure 3.2.2), and the geometric shape 

determination (Module B in Figure 3.2.2). The second assessment approach was a quantitative 
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assessment of the ability to identify a defect, regardless of defect types. This assessment tested 

the defect detection part of Module A (see Figure 3.2.2). This assessment was a binary 

categorization problem and success was quantified with precision, recall, and F1 score. The third 

assessment was a quantitative assessment of the ability to identify a defect type once a defect had 

been correctly identified and tested the categorization part of Module A (see Figure 3.2.2).  This 

assessment was a three-category categorization problem and was quantified using the confusion 

matrix with precision, recall and F1 calculated for each class. Finally, the fourth assessment was 

a quantitative assessment of the ability to quantify the geometric properties of defects. This 

assessment tested the geometric analysis of Module B (see Figure 3.2.2) and compared machine 

and human predictions of average and standard deviations in size and areal density for each 

defect type. We discuss each of the four assessments below and label them assessment 1-4 for 

clarity. In all cases the comparisons are made on the test data set described in Methods Section. 

Assessment 1. After feeding the images into the Faster R-CNN detectors, the resulting 

detections were plotted on the original images. As shown in Figure 3.2.4, the red circles 

represent the dislocation loops with a Burgers vector of 𝑎0 2! 〈111〉 (Type 1 in Figure 3.2.1), 

while the yellow and blue circles represent 𝑎"〈100〉 direction loops (Type 2 and 3 in Figure 

3.2.1) and “black dot” defects (Type 4 in Figure 3.2.1) respectively. The data from both human-

labeled and machine detected results are plotted in the same manner. To a human observer the 

machine results show strong correlation of bounding box location, defect type identification, and 

defect shape with the ground truth human labeling which indicates the effectiveness of the 

proposed automatic defect detection system.   

Assessment 2. The performance of the detection part of Module A (see Figure 3.2.2) of 

the trained model was evaluated in terms of precision, recall, and F1 score by comparing the 
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detected result with the human labeled result of the 12-image testing set, as shown in Figure 

3.2.5. The precision describes the percentage of all machine-predicted bounding boxes that are 

judged to have correct positions, and the recall value describes the percentage of all human 

labeled defects that are identified as in a bounding box by the machine algorithm. F1 is the 

harmonic mean of the precision and recall which can be used to assess the overall performance 

of the defect location task40. The IoU (Intersection over Union) method was used to determine if 

a given defect was identified by a bounding box and is described within the provided Methods 

section. The cutoff IoU, which must be exceeded to consider the bounding box to have identified 

the defect, is a hyperparameter that can be fine-tuned based on the purpose of the object 

detection task40. Figure 3.2.5 showed a drop in performance as the cutoff IoU increased. This 

trend agreed with expectations as the higher cutoff IoU meant it was harder for the predicted 

bounding box to be judged successful. However, setting the cutoff IoU to an extremely small 

threshold could lead to the problem that the predicted bounding boxes are associated with defects 

for which only a small part of the defect is in the bounding box, which will likely cause problems 

in the defect identification (Module B) of our model. As a compromise, for all the further 

assessments in this paper, we used cutoff IoU = 0.4 to determine when the machine predictions 

were considered to match a given defect.  This choice kept nearly optimal performance of the 

detector (based on Figure 3.2.5) and an adequately demanding standard for predictions. 

 



 
 

 
 

20 

 

Figure 3.2.4. Selected data images to show the detector performance and the fitted ellipse of our 

automatic analysis system. These three test images are selected from the test dataset of 12 images 

(see Methods).  The “Ground Truth (GT)” shows the bounding box and ellipse human labeling 

(colored by defect type), the “Prediction (Pred) Box” shows the predicted bounding boxes 

(colored by defect type), and the “Prediction (Pred) Ellipse” shows the resulting fits to the 

specific defect geometry (colored by defect type as described in the text).  
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Figure 3.2.5. Summary of defect location recognition performance of all types of defects 

evaluated using precision and recall metrics, regardless of defect types. The test set contained 12 

images, and, for all IoU (Intersection over Union) values and we used a threshold confidence 

score 0.25 for Faster R-CNN output. (See Method Section). 

 

Assessment 3.  Table 3.2.1 shows the confusion matrix of the predictions made by Faster 

R-CNN detector evaluating its capability to correctly categorize defects. Each row in the 

confusion matrix represents a class that is predicted by the detector, and each column represents 

a class labeled by human researchers. The diagonal elements of the table represent the correct 

classification made by the detector and off diagonal elements represent errors of different types.  

We also show the percentage accuracy of each type of defect in parentheses. The 76%, 87%, and 

94% accuracy indicates that once the Faster R-CNN model locates the defect, it can classify the 

type of defect based on their morphology within the image with good accuracy, although some 
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improvement of the 76% value is likely possible for the 𝑎"〈100〉 loops. We also report the 

classification performance using precision, recall and F1 score in Table 3.2.2. Given inherent 

errors of human performance we take scores for precision, recall and F1 of 0.78 as 

approximately the upper limit that can be obtained with the present labeling. Table 3.2.2 shows 

F1 from about 0.65 to 0.78, which demonstrates significant capabilities but is likely less than can 

be achieved, suggesting opportunities for further improvements. 

 

Table 3.2.1. Summary of the classification performance for each type of defects at cutoff IoU 

0.4. Values in parenthesis give the % each number represents of the total number of defects in 

that class as determined by the human labeling. 

 a0/2〈𝟏𝟏𝟏〉 Loop Black Dot a0〈𝟏𝟎𝟎〉 Loop 

a/2〈𝟏𝟏𝟏〉 Loop 239 (87.2%) 21 14 

Black Dot 17 416 (94.3%) 8 

a〈𝟏𝟎𝟎〉 Loop 33 13 166 (78.3%) 

 

Table 3.2.2. The performance report for each class. 

 a0/2〈𝟏𝟏𝟏〉 Loop Black Dot a0〈𝟏𝟎𝟎〉 Loop 

Precision 0.73 0.65 0.62 

Recall 0.83 0.71 0.72 

F1 0.78 0.68 0.67 
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Assessment 4. The second Module provides geometric in formation for each defect 

through fitting ellipses. While the fits can provide a range of detailed information, we are 

particularly interested in the arithmetic mean and the associated standard deviation of the defect 

diameter as well as the areal density in an image for each type of defect. These values are 

commonly quoted values in literature within irradiated materials studies. Table 3.2.3 compares 

the human labeled arithmetic mean diameters and areal densities to the ones predicted by the 

automatic analysis system. The discrepancy of arithmetic mean diameter between the human 

labeled ground truth and predictions is within 10% in all cases, which is considerably less than 

might be expected for variation among different humans71 and we consider a strong success. 

Furthermore, the errors in arithmetic mean diameters are in the range 0.7-1.1 nm, which 

corresponds to a range of two to nine pixels (based on the range 0.14nm/pixel to 0.87nm/pixel 

for our test data). The errors of about 1 nm correspond to about 5-10% for our data which is 

somewhat larger than might be expected from direct labeling errors on 10-15nm. Thus, it is 

unlikely that any human labeling is meaningfully accurate to much below this level. However, 

the human and machine learning black dot radii do not fall within a 95% confidence interval, 

suggesting that the algorithm does not yield the same means as the human ground truth. Some 

errors will come from the machine detection (failures in precision and recall, see Figure 3.2.5) 

and defect type assignment (see Table 3.2.1). Additional errors are associated with intrinsic 

errors in the machine and human ellipse labeling, where both have some uncertainty due to 

ambiguity or variances in the morphology of defects in images. Some defects are not well fit by 

an ellipse (e.g., some have a more rectangular shape, as can be seen in Figure 3.2.4), making this 

form of labeling difficult for both human and machine.  Another error to consider is that as the 

number of pixels per feature goes down, the intrinsic error due to the resolution (pixel/nm) will 
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artificially go up. For instance, a 100 nm loop where the resolution is 1 pixel/nm where the 

labeling is off by 1 pixel will yield a 1% error. If the labeling is off by 1 pixel for a 5 nm loop, 

the error will be 20% even though the per pixel error is the same. Seeing as the black dots are all 

small arithmetic mean diameter (<10 nm), they will intrinsically have a higher error compared to 

the other classes where the diameters are 2-3 times larger. 

 

Table 3.2.3. Comparison of arithmetic mean defect diameter and standard deviation of mean 

loop diameter between ground truth labeling and our automatic analysis model prediction with 

an IoU of 0.4. The values in parenthesis are the relative percentage error between ground truth 

human labelling results and the automatic analysis results. 

Defect 

Type 

Ground Truth  Automatic Analysis Model 

Arithmetic 

Mean 

diameter 

(nm) 

Standard 

Deviation of 

Mean 

Diameter 

(nm) 

Areal 

density 

(m-2) 

Arithmetic 

Mean 

diameter 

(nm) 

Standard 

Deviation of 

Mean 

Diameter 

(nm) 

Areal 

Density 

(m-2) 

a0/2

〈𝟏𝟏𝟏〉 

Loop 

22.4 0.7 1.77´1014 
23.1 

(3.1%) 
0.8 

2.21´1014 

(24.9%) 

Black Dot 8.2 0.1 3.41´1014 
9.1 

(10.9%) 
0.2 

4.98´1014 

(46.0%) 

a0〈𝟏𝟎𝟎〉 

Loop 
20.3 0.8 1.32´1014 

22.4 

(10.3%) 
0.9 

1.79´1014 

(35.6%) 
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3.2.4 Discussion 

The above results demonstrate that that the trained model potentially performs well 

enough to replace human in a workflow on similar types of data. The precision and recall values 

for assessing detection in the range 62-83% which are comparable or less than human variation71 

from previous assessments. The machine defect type misidentifications are at the level of 10-

25% (see Table 3.2.1), and a significant fraction of this variation may also be due to ground truth 

ambiguities or errors. The final machine predicted diameters are within a nanometer, 

approximately 2 pixels in images, which is a level of error that is considered negligible in terms 

of impact on material properties. To further clarify that the error is negligible for our defect 

population we have done a sensitivity analysis based on previous studies of hardening from 

loops. As discussed in Field et al. 53 simple dispersed barrier hardening models suggest that the 

hardening under irradiation from loops is of the form ∆𝜎$ = 𝐴	√𝑑 where A is a constant and d is 

the diameter of the defect. Now consider an error in diameter d defined as e. The fractional error 

in ∆𝜎$ due to the error e is 3∆𝜎$(𝑑 + 𝜀) − ∆𝜎$(𝑑)9 ∆𝜎$(𝑑) ≈ 𝜀 (2𝑑)⁄' , where the approximate 

equality holds for 𝜖	 ≪ 	𝑑. For e = 1.7 nm (which is 2 pixels for our largest pixel sizes, see 

below) and d = 21.4 nm (our average sizes of a/2<111> and a<100> defects), we get the 

fractional error in ∆𝜎$ as 1.7 nm / (2 * 21.4 nm) ≈ 0.04, which is well within the uncertainty of 

such microstructure-based analysis. However, for smaller defects this percentage error could 

clearly become larger. The errors of diameter between ML results and human results appear to be 

approximately symmetrically distributed in positive and negative directions and independent of 

defect density. Furthermore, previous studies indicate that the differences of arithmetic mean 

diameter between different human labelers can be comparable or larger than values found here 

between the ML and human results32. The discrepancy in areal densities is somewhat larger than 
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might be intuitively expected just from the percentage error in the arithmetic mean diameters. 

However, additional errors are introduced by the exact definition of areal density (see Methods 

section) and the additional errors introduced by the imperfect precision and recall.  

While the exact performance of the present automated approach compared to different 

human researchers is difficult to determine rigorously there is no doubt that the present approach 

is much more consistent. Previous studies have shown that different labelers tend to label defects 

in different ways and even the same person may label the same defects differently even after a 

short break32,71. Such issues can make any given data analysis somewhat unreliable and make it 

difficult to integrate results across different teams and or time periods in larger analysis efforts. 

However, once a machine learning model is properly trained, it will yield a unique and 

reproducible labeling for every image. If the community could converge on a single or small 

number of models this could greatly increase the reproducibility in labeling of STEM 

experiments. That said, models trained on different data and/or different human labeling could 

give different predictions, so establishing community accepted models is an important part of 

using these approaches to obtain more consistent results. 

The approach applied here is readily scalable to very large data sets. Analyzing a single 

image with our model on a reasonable state of the art GPU (NVIDIA's GeForce GTX 1080 

GPU) takes about 0.1s, so analyzing all the images in a typical experiment can be done easily in 

minutes, even less if multiple GPUs are used and as GPU and related processors (e.g., TPU) 

continue to get faster.  As large scale distributed cloud service provider like Google, Amazon 

and Microsoft are  providing cloud service for deep learning applications with GPU machines72, 

it would be easy to scale to process even larger amount of data. Furthermore, significant speedup 

can likely be obtained if desired. We developed the system with the Python code language and 
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the ChainerCV deep learning framework, both of which were chosen for ease of development 

not for the high-performance in deployment. Replacing Python with C/C++ or using high-

performance deep learning frameworks, e.g. Caffe73, could potentially accelerate the prediction 

speed of the current model. In particular, the deep learning community is actively designing new 

methods to accelerate the running speed of model e.g. model compression, weight sharing, or 

parameter pruning74 which could also boost the speed of ours. As an example of how fast deep 

learning AI algorithms can be, researchers from Google have recently applied deep learning 

models for cancer diagnosis on data during the actual process of conducting an optical 

microscopy experiment75.  

The approach applied here is also readily adapted to new defect types and systems. The 

present model was trained with only a relatively small amount of training data due to the use of 

transfer learning67. With only modest additional data sets (e.g., on the scale of thousands of 

defects or possibly fewer) and a few rounds of further training, researchers could likely extend 

the present model to more defects (e.g., separating the two orientations of 111 loops or adding 

voids, preexisting dislocations, etc.), different imaging conditions (e.g., changes in microscopes, 

imaging modes, orientation, focus, etc.), and different materials (e.g. other metal alloys). 

There are several areas where significant improvements may be obtainable. The first is 

that the use of real-world data in the study has led to significant time spent labeling and 

introducing unavoidable human biases and errors into the deep learning model and its 

assessment. However, it is possible that simulated images could be both more accurately labeled 

and generated in large volume, potentially allowing much more accurate models to be trained.  

The second area where significant improvement is likely is that deep learning methods 

for object detection continue to evolve rapidly. In particular, deep learning segmentation 
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models57, which learn a label for every pixel, could be equally or more accurate and remove the 

step of fitting contours in a bounding box to get geometric information. Such an approach was 

applied recently to automatically detect information about dislocation lines, precipitates and 

voids in STEM images33. 

 

3.2.5 Summary 

This study demonstrated a practical deep learning based automatic STEM image defect 

detection system implemented by incorporating Faster R-CNN for detection and watershed flood 

algorithm for geometry fitting. Compared with other models proposed before, our model reduced 

the training effort by utilizing only one module for detection and expanded capability to 

simultaneously recognize multiple classes of defects. The approach developed here achieved 

reasonably reliable performance, with an F1 score of 0.78, and predicted sizes and areal densities 

within the uncertainty of results from human researchers. The automated analysis on NVIDIA's 

GeForce GTX 1080 GPU processor is about 0.1 s/image, hundreds of times faster than human 

analysis (≥1 minute/image), and trivially parallelizable and scalable on more processors. The 

model can also be readily extended to new defects, systems, and conditions with modest training 

requirements. Thus, our approach provides an accurate, efficient, reproducible, scalable, and 

extensible method which could replace or greatly enhance human analysis in future studies 

related to STEM images.  

We believe that this framework can be used on many defects and other STEM features 

simultaneously, eventually providing a general tool for automated analysis across many STEM 

applications. This study demonstrated a practical deep learning based automatic STEM image 

defect detection system implemented by incorporating Faster R-CNN for detection and 
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watershed flood algorithm for geometry fitting. Compared with other models proposed before, 

our model reduced the training effort by utilizing only one module for detection and expanded 

capability to simultaneously recognize multiple classes of defects. The approach developed here 

achieved reasonably reliable performance, with an F1 score of 0.78, and predicted sizes and areal 

densities within the uncertainty of results from human researchers. The automated analysis on 

NVIDIA's GeForce GTX 1080 GPU processor is about 0.1 s/image, hundreds of times faster 

than human analysis (≥1 minute/image), and trivially parallelizable and scalable on more 

processors. The model can also be readily extended to new defects, systems, and conditions with 

modest training requirements. Thus, our approach provides an accurate, efficient, reproducible, 

scalable, and extensible method which could replace or greatly enhance human analysis in future 

studies related to STEM images.  

We believe that this framework can be used on many defects and other STEM features 

simultaneously, eventually providing a general tool for automated analysis across many STEM 

applications. 

 

3.3 Defect Analysis of STEM/TEM Videos 

3.3.1 Introduction 

Transmission Electron Microscope (TEM) has widely been used to characterize a material 

or material system since TEM provides resolution limits at or below common microstructural 

features of interest. Recently, a surge in the use of in-situ TEM techniques has occurred, partially 

due to the advent of digital capture devices. In-situ TEM experiments have a distinct advantage 

over ex-situ experiments as they allow researchers to study materials’ intrinsic properties and 

responses as external conditions are manipulated such as temperature, pressure, and type of 
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reaction cells1. In material science, in-situ TEM is frequently used to shed light on challenging 

problems like elucidating mechanisms for catalysis, atomic behavior during material reactions, 

and nanoscale property changes under loads76,77. 

The value extracted from an in-situ TEM experiment requires careful analysis of the 

observed processes. For many of these experiments, this analysis includes dynamically detecting 

features present in the microstructure and analyzing the microstructural evolution in each frame 

of the experiment, typically captured in a digital video form. For decades, quantification of 

defects in in-situ TEM data has been completed by humans, which is tedious, time-intensive, 

error-prone, biased, and impractical to scale. For example, a typical manual workflow of 

counting defects in TEM images requires an experienced researcher carefully going through 

every frame for different types of defects and labeling objects in the images one by one. Such 

manual analysis typically takes many minutes per frame (e.g., in this study, we found it takes 

about 20 to 60 minutes to process 1 frame, depending on the complexity of the TEM images).  

Typical in-situ TEM experiments can generate tens to hundreds of frames of video data per 

minute, so a long video can rapidly become impractical to analyze. Moreover, the labeling 

quality also depends on the attentiveness of researchers, which may be reduced after spending 

hours on this repetitive work. Furthermore, other factors such as researchers’ proficiency and 

personal preference when analyzing TEM images contribute to inaccurate or at least inconsistent 

labeling. Human interpretations are often required for analyzing TEM images that the same 

researcher may give different labeling results at different times. The above observations imply 

that manual counting and analyzing methods are hard to scale and prone to human-based errors. 

In the future, the demand for better TEM analysis methods will only grow, as recent advances in 
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TEM equipment, e.g., high-speed cameras, and fast microprocessors will keep accelerating the 

rate of data acquisition71.   

Automatic analysis of TEM/STEM data, especially identifying microstructural defects, is 

a long-standing pursuit of both the academic community and the industrial sector. To 

automatically analyze defects contained in TEM/STEM images, various methods have been 

applied, such as matching key-points in different regions of interest78, applying different 

thresholding values to segment different defects79,80, representing the texture of various targeted 

structures by the bag of visual words (BoW)81 or synthesizing artificial image dataset82, and 

using traditional machine learning methods, e.g., k-means clustering, to find defects contained in 

TEM/STEM images71. To the best of our knowledge, these methods are only semi-automatic in 

that they still require extensive human knowledge and time to apply to a given system, and each 

new material system requires a significant new investment to find an effective approach. 

Recently, modern deep learning methods have been applied to solve the defect identification 

problem in static TEM/STEM image data31–33, suggesting this is a promising approach that could 

be reliable and highly flexible across many materials and problems. However, deep learning 

approaches have not yet been applied to the problem of automatic detection and analysis of 

defects contained in in-situ TEM video. Imaging-related research around TEM/STEM video 

processing is very active, but has focused on other areas, such as structure reconstruction83, 

image quality improvement84,85, and video alignment86.  

In this work, we focus on the specific task of adapting the deep learning based YOLOv3 

model into an automated framework for analyzing in-situ TEM video data. Specifically, we 

focus on the problem of detection and analysis of radiation-induced dislocation loops generated 

by an in-situ ion irradiation TEM device, the Intermediate Voltage Electron Microscope (IVEM) 



 
 

 
 

32 

housed at Argonne National Laboratory (ANL). This in-situ ion irradiation TEM device 

introduces controlled ion beams into a TEM to achieve a high number of atomic displacements 

per atom (dpa) to mimic the irradiation environment a material will experience in nuclear 

reactors, satellites, or space stations87. The device enables co-irradiation and observation of 

radiation-induced defects using diffraction-based contrast while the material is being irradiated. 

 

3.3.2 Methods 

The in-situ ion irradiation TEM video-based data used within this study has been 

previously studied and analyzed using the common typical human analysis method87. Extensive 

details on experimental design, human analysis, and resulting materials effects have been 

previously published87. Here, we only present the most pertinent details for context. We selected 

one of the four model samples (Fe-18Cr-3Al) from the previous study for the current study, but 

the YOLO-based methods can be easily generalized to other samples or different material 

systems. The Fe-18Cr-3Al in-situ ion irradiation TEM video-based dataset was generated by 

performing in-situ irradiation using the IVEM-Tandem Facility at ANL with a pre-thinned TEM 

specimen titled to the g=011 strong two-beam conditions with a frame rate of 15 frames per 

second using a Gatan 622 video camera. The irradiation was performed using 1 MeV Kr++ ions 

up to 2.5 dpa at a constant temperature of 320°C and a dose rate of 8.3x10-4 dpa/s. Note, dpa is a 

measure of the damage or energy imparted into the system and it is known that ion bombardment 

at the dpa ranges observed generate embrittling defects in Fe-based alloys53,88. Under these 

radiation conditions, it was expected that two dislocation loop types would form, one with a 

Burgers vector of a/2〈111〉  and the other with a〈100〉 87. Under the strong bright-field two-beam 

condition used where g=011 and the deviation parameter, sg, close to zero, only a fraction of 
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a/2〈111〉 and a〈100〉 loops are visible in TEM. To enable direct comparison to the previous 

human-based analysis where multiple g-vectors were used for detection and analysis55,56, we 

applied a fractional visibility constant 7/4 to make YOLO detection results comparable with 

published results using other g conditions87. Defect size was estimated by assuming the defects 

are elliptical and the defect size is the length of major axes of the ellipse. The video image size is 

1344 pixel x 962 pixel with 2.6884 pixel/nm conversion factor which gives the physical size as 

500.0 nm x 357.8 nm. The video consisted of 1175 frames which were linearly related to dpa and 

time through Equation 1 which means each frame corresponds to 1.75 seconds. 

𝑇𝑖𝑚𝑒	(𝑠) = 	
𝑑𝑝𝑎

8	 ×	10%&

𝑑𝑝𝑎 = 0.8534 +
[(𝐹𝑟𝑎𝑚𝑒	𝑁𝑢𝑚𝑏𝑒𝑟) × 1.6466]

1175 = 0.8534 + (𝐹𝑟𝑎𝑚𝑒	𝑁𝑢𝑚𝑏𝑒𝑟) × 0.00140
 

Equation 1 

The video data was acquired via frame-by-frame image registration to eliminate sample 

drift and relevant camera movement. Since there is no landmark frame or feature that can be 

used to align the video across the whole irradiation dose range, the video was divided into 

smaller batches for primary image registration, and the final sets from the previous batch were 

used to carry over the alignment86,89. The alignment was done by frame registration based on the 

selected landmark frame with a template matching and slice alignment plugin90.  

 We opted not to use any previous data labeling and decided to label the data ourselves for 

this project to establish the ground truth data. This choice was because we did not have the exact 

pixel positions of each defect in the previous study by Haley, et al87. We followed the labeling 

process that has been used in other studies32. The ground truth data was labeled by two trained 

researchers and they checked each other’s labeling and explanations for 3 frames before labeling 
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the real data via an open-source software called ImageJ60. Their labeling will be treated as 

ground truth in this study.  

 The YOLOv3 model was adopted from an open GitHub repository 

(https://github.com/qqwweee/keras-yolo3). To train the model, we first converted the pretrained 

darknet53 weight via COCO dataset into Keras format and then modified the final class number 

to our defect number, which was one class in our case since we treated all a/2〈111〉 and a〈100〉 

loops as the same type of defect. This single class approach was necessary as Burgers vector 

determination is not possible using only the g=011 condition in the video. We then applied the 

transfer learning technique to fine-tune the model by freezing the first 245 layers of YOLOv3 

and training the last 7 layers67. The in-situ ion irradiation TEM video data in this study was 

composed of 1176 frames and 21 frames were selected and labeled.  The sampling was done at 

random except an effort was made to assure that the sampled frames were approximately 

uniformly distributed throughout the full set. Among the sampled 21 frames, 15 frames were 

used for training (trained on 12 frames and validated on 3 frames) and 6 frames were used for 

testing, where these 6 frames were not seen by the YOLO model during training. The model was 

trained on GeForce GTX 1080 for 18300 epoch and the learning rate of Adam optimizer was 

switched between 10-4 and 10-5 with batch size equal to 4 and Non-Max Suppression (NMS) IoU 

equals 0.45 to find the optimal weights. Real-time data augmentation operations, e.g., left-right 

flip, changing hue, saturation, lightness, were applied for the training dataset to enrich the dataset 

and enhance the performance of the CNN for variations in defect contrast, size, and morphology 

in the video data set. Real-time augmentation works by augmenting at each training epoch, 

generating new augmented images in each epoch. 
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3.3.3 Results 

We first tested the performance of the trained YOLO model qualitatively by comparing 

the detection result of testing frames to that of the ground truth labeling visually, as shown in 

Figure 3.3.1. In general, the automated machine learning program labeled results agreed with the 

ground-truth labeling by humans, except for certain ambiguous grey spots and when there 

existed several touching adjacent loops. A zoomed-in comparison between the ground truth 

labeling and YOLO predictions is shown in Figure 3.3.2. The model was also run on the whole 

in-situ ion irradiation TEM video. In general, the YOLO model successfully detected nearly all 

the dislocation loops.  

 

Figure 3.3.1. Selected images from the test dataset for various damage doses (e.g. time scale). 

Subfigure (a), (b), and (c) are the ground truth labeling developed by two researchers, while 

subfigure (d), (e), and (f) are labeled by the automated machine learning program. Here, (a) and 

(d) are for frame number 120, (b) and (e) are for frame number 472, and (c) and (d) are for frame 
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number 824. 1 frame increment equates to about 0.00140 dpa, see Equation 1. F1 score compares 

the machine detection results with human labeling of each column separately. 

 

Figure 3.3.2.The visualized comparison of the human labeling results (blue boxes) to the YOLO 

detector results (yellow boxes) for frame number 824. 

The initial qualitative comparison was encouraging so additional quantitative analysis 

was conducted. The statistics of the model performance were examined based on the metrics of 

precision and recall and their harmonic mean which is also called the F1 score. The precision, 

recall, and F1 score were generated using the six test images that were never used in the training 

process. The test was iterated with different cut-off Intersection-over-Union (cut-off IoU) values 

as shown in Figure 3.3.3. Here and elsewhere in the paper the IoU refers to the ratio of the area 

of overlap (intersection) to the combined areas (union) of predicted and ground truth bounding 
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boxes. The cut-off IoU refers to the threshold above which a predicted bounding box is 

considered as a candidate match for a ground truth bounding box. Predicted bounding box 

matches are assigned by building a matrix of all IoU values between all predicted and ground 

truth bounding boxes and making assignments between predicted and ground truth defects using 

the highest IoU in the whole matrix. When an assignment is made all the matrix entries 

associated with those predicted and ground truth bounding boxes are removed from the matrix 

and the process is repeated. This approach provides a unique assignment and effectively assigns 

the highest overlapping predictions to the appropriate ground truth boxes. In general, a lower cut-

off IoU means higher tolerance on the discrepancy between the machine labeled region and the 

human-labeled region, which agrees with the trend shown in Figure 3.3.3, indicating that the 

performance of the trained model increased as the cut-off IoU decreased.  

We selected a cut-off IoU = 0.15 to assess the performance of our model. This value is 

lower than usually used in machine learning classification problems, but we believe is reasonable 

for the following reasons. Many defects are small so a shift of just a few pixels in the size and/or 

center of the ellipse can lead to significantly reduced overlap in bounding boxes. Such shifts are 

likely within the realm of the uncertainty of human labelers, and of course, the YOLO algorithm 

makes some location errors, so relatively small cut-off IoU can occur even when two bounding 

boxes are clearly finding the same defect ellipse. Furthermore, from the density calculation 

showed below, defects are typically much farther away than their size, with a typical distance at 

the 2.5 dpa (where defect density is 3x1016 cm-3) of about '
√)	×	'"!",-#$	$ = 32	nm. This 

separation length scale makes it unlikely that boxes of sizes ~ 6-10 nm (the median defect size) 

on a side will be assigned to the wrong defect just due to allowing a modest overlap.   



 
 

 
 

38 

The F1 score obtained for the cut-off IoU = 0.15 is very encouraging as scores in the 

range of 0.85 to 0.95 are typically considered very good for object detection results91,92. 

Furthermore, at this cut-off IoU, our 6 testing images are all reasonably accurately modeled, with 

F1 scores ranging from 0.83 to 0.93.   

 

 

Figure 3.3.3. The performance of the YOLO detector with different cut-off IoU thresholds. 

The developed YOLO model was run on each frame of the in-situ TEM video to extract 

geometry information of each visible defect for the duration of the experiment. After obtaining 

the geometry and position of each defect per frame, we used this information to extract defect 

properties, such as median size and number density. Such properties of materials are widely used 

in the nuclear materials field from which the dataset originated and provide insights into the 

interplay between the imparted damage and the change in microstructure. We picked four typical 

frames and compared the machine learning prediction results with ground-truth labeling. Those 4 
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frames were not used in training and testing the machine learning model. We first compared 

defect density. Defect density is important for many materials properties and for nuclear 

materials as it is strongly correlated to mechanical properties, e.g., through the dispersed barrier 

model53,93. Loop density comparisons between machine learning results and our labeling results 

are summarized in Figure 3.3.4. The densities of defects per frame were determined via machine 

learning (ML) method and manual labeling for ground truth by dividing the total number of the 

loops by the volume of the sample for each frame. The sample was treated as a rectangle bulk 

with dimensions of 416.6 x 264 x 75 nm3 and both results were corrected based on the loop 

invisibility for the given imaging condition. 
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Figure 3.3.4. Loop number density from the whole TEM video. The plot compares the loop 

number density obtained from the ground truth labeling done by experts in this study and the 

result obtained from the machine learning detector. All the data shown on the plot uses the 

corrected proposed density, which is 7/4 of the raw density (see Sec. Material and methods). The 

sudden drops in the late stage are an artifact arising from camera motion. 

Both techniques for analyzing the in-situ videos showed a general trend of increasing 

loop density with irradiation dose (time) which was expected based on general radiation effect 

theory and previous analysis of the experiment94. Overall, machine learning results were close to 

the ground truth labeling results throughout all frames, varying at most 12% compared with 

ground truth labeling at the four measured points data in Figure 3.3.4. We believe that the 
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observed discrepancy between machine learning and ground truth data in Figure 3.3.4 is likely 

comparable to different researchers’ preferences in labeling ambiguous loops and perhaps cannot 

be significantly improved without more consistent labeling. It is noteworthy that the sudden 

drops observed in the late stages arise from abrupt stage movements that rapidly alter the field-

of-view and momentarily artificially reduce the effective number of loops observed. This effect 

is similar to camera movements in the traditional sense.  

After obtaining the density of defects from the machine learning detector, we then used a 

watershed fitting method to determine the morphology statistics of defects. Since all images were 

recorded with metadata to allow for pixel to physical distance conversions, we could predict the 

geometric information of each detected defect based on the pixels involved in the defect. We 

used the watershed algorithm provided within OpenCV95 to determine the defect pixels and their 

boundary. Watershed is a commonly used image segmentation method, which divides different 

objects with watershed lines and then, based on the contour found, extracts precise information 

about the defects' position, size, and orientations68. We used OpenCV’s marker-based watershed 

algorithm. This method requires users to initially label pixels according to their belonging to one 

of two categories, referred to as the “sure object” and “sure background”. The sure objects and 

background were found by applying a thresholding method, specifically Otsu's binarization and 

Distance Transformations. To remove noise, we use a morphological opening operation with a 

3x3 kernel. We followed the official tutorial from OpenCV, and more details can be found 

there69. Watershed found boundaries of defects and backgrounds, but the boundaries were not 

very smooth. OpenCV’s fitEllipse() function was called to fit the needed defects and the 

major axis length of the fitted ellipse was defined as the defect size. Detailed fitting results with a 

cropped region of interests are provided in the Data and Code Dissemination section. The 
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machine learning results of the defect size distributions were compared to ground truth labeling 

in Figure 3.3.5. Although differences were observed in defect median size of each frame in 

Figure 3.3.5, investigation indicated that these differences did not exceed 13.0% difference in 

median size, and the average difference is only 5.5% and the standard deviation of difference is 

5.3% across all doses investigated. The exact formula used to calculate these statistics is given in 

the Supplemental Information (SI) Section 1. These results indicated that a well-trained machine 

learning based model could be used for loop detection and analysis and achieve human-like 

performance comparable or better than the large differences that can be expected by manual 

labelling32. The boxplot comparison provided in Figure 3.3.5 showed the viability of the 

machine learning results. At the same time, it needs to be emphasized again that the true strength 

of such a technique lies in its ability to detect defect information for every frame quickly and 

accurately instead of just focusing on a small subset of frames. 

 

Figure 3.3.5. Box plot comparing the distribution of median size for two methods the ground 

truth labeling done by experts in this study, and the result from machine learning detector. All 
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distributions are separately analyzed and compared by their irradiation condition, which is 1.0, 

1.5, 2.0, and 2.5 dpa. 

Figure 3.3.6 shows the size distribution for the entire duration of the in-situ ion 

irradiation TEM experiment where, for each frame, the blue line represents the median of loop 

size, the top of the gray boundary indicates the third quartile of loop size distribution and the 

bottom of the gray boundary indicates the first quartile of loop size distribution. With the YOLO-

based machine learning detector, we could extract data generated in every frame and investigate 

the material properties with hundreds of times more data than previously collected by hand for 

this data set (the data collected by hand are the red points shown for four different typical dpa 

values where these four points are not seen in training data, with red lines connecting them as a 

guide to the eye). The large amount of analyzed data makes subtle trends easy to identify. For 

example, although there are some noises, a clear trend can be seen in Figure 3.3.6 that the 

median size, Q1, and Q3 increased as the dose value increased from 0.83 to 2.3 dpa and 

remained stable from 2.3 to 2.5 dpa. Such a result agreed with the relationship found in Haley et 

al.87.  
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Figure 3.3.6. Change in size distribution as a function of irradiation dose based on machine 

learning detection. It can be found that the median size (Blue line), first quartile Q1 (Upper gray 

boundary), and third quartile Q3 (Lower gray boundary) increase as the dose increases when the 

dose is from 0.83 to 2.3 dpa. Median size, Q1, and Q3 stabilize above ~2.3 dpa. Red lines 

connect the red points that represent the ground truth labeling of median size (circle), first 

quartile Q1 (triangle), and third quartile Q3(diamond) of 4 typical frames to provide a guide to 

the eye. 

One of the most exciting applications enabled by automated data analysis of in-situ TEM 

data is the ability to track all defects as a function of time (i.e., frame). With this application in 

mind, we developed a tracking module based on YOLO output to track defect motion in the data. 

Since video is sequential images in time, we can track defects by counting and measuring their 

sizes across frames to discover their evolution in morphology and mobility under irradiation. 

This process is usually called object tracking in computer vision studies and is important for 
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applications such as surveillance and security systems, traffic monitoring, human-computer 

interaction, etc96. One of the most widely used methods for object tracking is tracking-by-

detection, also called tracking-by-repeated-recognition96,97. In this method, tracking is achieved 

by detecting targets in consecutive image frames with trained object detectors and linking 

detected objects across frames to generate the tracking results, e.g., trajectory or motion data97.  

We used Trackpy, a Python package for particle tracking, to link the detected objects generated 

by the machine learning detector. Trackpy implemented the algorithms first developed for 

colloidal particles by John C. Crocker and David G. Grier98 in Interactive Data Language (IDL) 

and the algorithm worked well for both non-interacting and interacting systems99. Trackpy is 

widely used in the soft matter community for tracking the movement of particle-like objects e.g., 

colloidal particles or cells in microscopy videos or images. A typical workflow of Trackpy can 

be split into three steps: (1) Locating Particles, (2) Refining Location Estimates, and (3) Linking 

Locations into Trajectories98. In the first step general features of particles like diameter, 

maximum size, and separations are used to locate all peaks of brightness in the image which 

includes the initial object coordinates. Subsequently, more pixel-level information is used to 

distinguish real particles from spurious ones. Finally, the locations of particles in each image are 

matched with corresponding locations in later images to yield the whole trajectories. The 

tracking module is a powerful tool to obtain several important statistics relating to the motion 

and evolution of defects. When combined with automatic labeling, it provides a new way to 

study defect dynamics under irradiation at a fidelity not possible using previous methods. We 

demonstrated this advantage by two case-studies using the tracking algorithms: (i) studying 

defect evolution and trajectory of interesting defects and (ii) extracting statistics of individual 

defect mobility e.g., diffusion coefficients.  
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 To study defect evolution and trajectory of interesting defects, we first showed the size 

change of an individual defect, then compared the trajectories of the slowest moving defect and 

the fastest moving defects, and finally, showed the landscape of defect moving trajectories. In 

Figure 3.3.7, a defect was shown to undergo significant size change as the dose increased. With 

the help of the tracking module based on the YOLO and Trackpy package, a full history 

description of a defect’s size change was recorded to illustrate the evolution of the defect. The 

defect size change is shown in Figure 3.3.8 which clearly indicated that defect size increased as 

radiation dose (dpa) increased.   

Figure 3.3.7 and Figure 3.3.8 show the ability to extract a single defect growth evolution 

as part of this in-situ TEM experiment. It is interesting to note that the shape/trend of the growth 

rate for individual defects varied, with some showing unconstrained linear growth and others 

showing asymptotic growth, and even some showing growth followed by shrinkage. Although 

not the focus of this study, we believe the different growth curves for individual defects could be 

attributed to local variation in the direct vicinity of the defect, and these variations could promote 

or retard growth under irradiation. Significantly more analysis of the data would be required to 

evaluate the postulated mechanism. But even at the level of the analysis presented here, the 

power of such individual defect tracking is obvious. 
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Figure 3.3.7. Reduced field-of-view bright-field TEM images of a single dislocation loop 

growing under increasing irradiation dose of 1.28 displacements per atom (dpa), 1.72 dpa, 1.95 

dpa, and 2.35 dpa for a)-d) respectively. The highlighted loop shows the dynamic change in 

contrast necessary for the tracking model to detect and quantify. The defect id (51) was assigned 

by Trackpy. 

 

Figure 3.3.8. The size change of a single typical defect, which is the same defect shown in 

Figure 3.3.7. 

Since the individual history of every defect was obtained, it was straightforward to 

examine defects with interesting behaviors. For example, as shown in Figure 3.3.9, our tracking 
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module could determine the motion of very slow-moving (Figure 3.3.9(a)) and fast-moving 

(Figure 3.3.9(b)) defects. 

 

Figure 3.3.9. Trajectories of two typical defects throughout their lifespan. (a) represents a typical 

defect that has close to minimum diffusion coefficient value. Figure (b) represents the defect that 

has a nearly maximum diffusion coefficient.  Each yellow circle center represents a specific 

location of the defect in certain frames, and the set of locations are plotted on a single image to 

show the relative movement.  The defect id is assigned by Trackpy. 

The spatial distribution of defect trajectories was also an interesting property that was 

determined and is shown in Figure 3.3.10. It is noteworthy that in the original video source, due 

to thermal expansion of material and TEM user operations under irradiation, the viewable area 

adjusted somewhat over time. This movement is an artifact of the in-situ experiment, but the 

Trackpy package corrected for these artificial movements enabling us to target only the real 

movement of each defect. 
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Figure 3.3.10. The trajectory of typical defects detected in TEM video. The movement of this 

type of defect is roughly cyclic, so the trajectory is not a single line but rather a small group of 

points. Results were generated by Trackpy. Subfigure (b) is a zoomed-in result of the red 

rectangle in subfigure (a). 

Since we knew each defect’s position and time stamp, an effective two-dimensional 

diffusion coefficient (Deff) can be determined. Diffusion of defects is an important property of 

defect behavior in nuclear materials100. We calculated this effective diffusion coefficient using 

the following relationship: 

𝐷.// =
|𝑟(𝑡 + 𝜏) − 𝑟(𝑡)|0

4 ∗ 𝜏  

Note that Deff is not a true diffusion coefficient as we make no effort to correct for the 

two-dimensional projection of the three-dimensional defect motion, which can be complicated by 

the exact angle of the sample and the detailed motion of the defect. Our goal for this work is 

merely to demonstrate the ability to track trajectories through the combination of YOLO and 

tracking tools, not to perform detailed analysis to extract physically meaningful diffusion 

coefficients. To perform the analysis, we choose 345 consecutive frames (from 1176 total) over 

which the camera appears to be very steady. These frames are from frame numbers 461 to 805, 
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corresponding to dpa values from 1.50 to 1.98. Only the regions away from the edges of the 

figure are used to avoid defects appearing and disappearing due to small changes in the image 

region. Specifically, we consider only the region with Y position from 200 to 1450 pixels and X 

position from 250 to 2150 pixels where the original size of the image is 1728 pixels in the Y-axis 

and 2412 pixels in the X-axis. We find a total of 741 defects in Trackpy, which is significantly 

larger than the number of defects in a given frame. This larger value is due to the fact that defects 

have a finite lifetime due to their appearing over time and, in some cases, disappearing, which 

leads to more tracked defects than actual defects in the analysis. Our average lifetime is 54 

frames. While some of the defects may actually appear and disappear, many of these events are 

clearly artifacts due to Trackpy inadvertently assigning multiple global IDs to the same defect, 

which effectively causes one defect to disappear and another to appear even when it has not 

actually done so. Such errors make our defect counts inaccurate from TrackPy but do not lead to 

incorrect estimates of the defect’s Deff. To illustrate the values of the diffusion coefficients, in 

Figure 3.3.11 we show the distribution of Deff as a function of binned defect median sizes. We 

used “median defect size” as a defect would have different sizes in each frame where it is 

identified, either due to small changes in size estimates from the numerical analysis or due to the 

defect growing during the irradiation. We then calculated the average Deff of defects that fall into 

the same bin, where we have 50 bins from 2 nm to 18 nm.  While this figure illustrates the type 

of correlation one can explore with the automated data analysis, in this case we find no 

statistically meaningful trend with defect size.  
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Figure 3.3.11. The distributions of the effective diffusion coefficient Deff calculated by Trackpy 

as a function of the defect median defect size. The data is presented as a histogram with each bin 

of width 0.32 nm, giving 50 bins from 2 nm to 18 nm. The height for each bin is the mean Deff 

of all defects in that bin. Error bars are the standard deviation of the mean. We use “median 

defect size” as a defect will have different sizes in each frame where it is identified, either due to 

small changes in size estimates from the numerical analysis or due to the defect growing during 

the irradiation. No error bars are given for bins with just one defect as the errors cannot be 

readily estimated. 

 
3.3.4 Discussion 

To further validate the detection results generated and analyzed by ML methods we 

developed in this study, we compared our results with those previously completed by Haley et. 

al. who investigated the same TEM video with conventional manual analysis method87. Based on 

the comparisons, we concluded that the results generated by our ML method are close to those 
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determined by human experts. For example, the discrepancy between the ML generated loop 

density differs from the results in Haley et al. by at most 38%. And the difference can be largely 

attributed to the researchers’ preferences, as different experts may have different labeling 

preferences for ambiguous objects. Likewise, the difference between statistics of median size 

distribution from ML and Haley et al. did not exceed 32% difference in the mean size, 24% 

difference in median size, and 30% in the standard deviation across all doses investigated. 

It is important to be sure that the model is robust to at least some reasonable levels of 

noise. To test the sensitivity of the model we used scikit-image (https://scikit-

image.org/docs/dev/api/skimage.util.html#skimage.util.random_noise) to add Poisson, Salt and 

Pepper, and Gaussian additive noises to the test images. We calculated the precision, recall, and 

F1 scores from the model for a range up to quite significant added noises and the impact on the 

performance is less than 20% in the F1 score for all cases. This impact is relatively minor and 

suggests our model is quite insensitive to noise.  

Since the YOLO object detection model performance is lower for very small objects101, 

there exists a threshold of defect size below which our model cannot detect a defect. Similarly, 

there is a defect size below which human labelers do not label a feature as a defect. It is 

important that the human lower limit is larger than the YOLO lower limit or otherwise we will 

systematically fail to identify very small defects. The human labeling threshold value was 

estimated as 7.24 pixels (2.69 nm) based on the lower limit in our labeled data. The YOLO 

object detection algorithm finds defects as small as 1.86 nm, so YOLO is able to find defects as 

small as any human chooses to label. 

Although the performance of the detector we used was quite accurate for defect 

recognition in TEM video, improvements to the model are needed. Errors likely could be 
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reduced by more extensive optimization. For example, in the training, we only used default 

anchor box settings and K-means clustering of bounding box sizes in training data could be a 

better way to find the best set of anchor boxes. Also, more data augmentation operations could 

be applied e.g, rotation, adding noises, and cropping or affine transformation to achieve better 

performance. Errors could also be reduced by removing biases and ambiguities in the labeling. 

For example, it was often unclear how to establish the ground truth labeling of closely distributed 

objects with no significant white space between two centers.  

It should also be noted that the images used in this study are of very high quality, with 

limited noise and few confounding contributions (e.g., surface oxide), and undergo fairly modest 

changes during the irradiation (e.g., few defects move significant distances). The high-quality 

and modest changes of the images almost certainly help the model performance and subsequent 

defect tracking. Furthermore, we focus our model on only one type of defect, a single category of 

dislocation loop, to reduce the burden of labeling and focus on the most prevalent defects in the 

images. Many samples will have other types of defects (and some are even present in our images, 

e.g., dislocation lines), and tracking these is an important area for future study. While there is 

nothing intrinsically limiting YOLO to just one defect type (YOLO could be extended to 9000 

classes of objects102), what we studied in this paper is a very simple case. To fully assess the 

general effectiveness of our approach and develop a broadly applicable tool, the model needs to 

be demonstrated on many more data sets with multiple defect types, varying image and sample 

quality, and more complex defect evolution during irradiation. However, the present deep 

learning model is a powerful proof of principle and suggests that a broader program may be 

successful and have a major impact on the defect detection community. 
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For future study directions, we think two major directions are worthy of investment. One 

is creating high labeling quality data sets. For example, in this study, we combine a/2〈111〉 and 

a〈100〉 loops together to alleviate the labeling burden, but it will be more informative if we can 

differentiate these two types. Such high-quality labeled data does not necessarily have to come 

from experiments and synthetic data can have many advantages. For example, image simulation, 

such as the multi-slice method, can generate high-quality images filled with known types of 

defects103. This method can help avoid the tedious, error-prone labeling process. Synthetic 

images might also be generated with deep learning methods such as Generative Adversarial 

Networks (GANs)104,105, which are powerful tools for generating images similar to an existing 

set. GAN generation might be done in such a way that labeling is automatic, creating an almost 

unlimited supply of high-quality labeled synthetic images or converting images collected from 

different conditions to the condition for which our model is trained, allowing the community to 

better utilize limited labeled data106–108. The second direction worth exploring is to apply the 

analysis system developed in this paper to TEM devices to provide real-time statistics and even 

direct labeling of defects (e.g., with a fitted ellipse) in images to guide users during experiments. 

This approach is similar to the real-time Augmented Reality (AR) methods that have proven to 

be useful in biological microscopy studies75. This combination will provide a straightforward, 

real-time output of deep learning analyzed results for TEM studies and the material community.  

 

3.3.5 Summary 

In summary, the present work shows that if the accuracy obtained here can be extended to 

more general and complex data, these deep learning tools are a potentially transformative 

methodology for the TEM community. The YOLO based system developed in this study 
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provides an automatic, fast, and reliable quantitative analysis of both position and morphological 

evolution of defects in frame level. Furthermore, the YOLO based system can help researchers 

track the motion of defects, which will allow new levels of dynamical analysis. Furthermore, the 

approach is easy to use and adapt to other sets of experiments. The speed of YOLO means that it 

can be used in real time to adjust experimental conditions (e.g., dpa, temperature) or imaged 

regions (e.g., near grains boundaries vs. inside grains), providing a critical tool to support real-

time TEM video analysis for material property exploration. We anticipate this YOLO based 

analyzing system will significantly enhance the capabilities of in-situ TEM/STEM image 

analysis. 

 

3.3.6 Data and Code Dissemination 

All data and code files are stored in the Materials Data Facility109,110 at DOI: 10.18126/n9dj-

5mk0. They are described in detail below.  

• Raw Data: In the folder Raw_Data, we provide the original TIFF format video and the 

converted 1176 JPG images of each frame and the cropped center region of interest 1176 

JPG images. 

• Labeled Data: In the folder Training_and_Testing_Dataset, we provide the labeled data 

and the data is already put into the TRAIN folder and TEST folder. One needs to put the 

full path to these directories in the YOLO labeling file (called “train.txt” in our codes).  

• Code: In the code folder we provide the codes. Specifically, we provide all the codes we 

used in organized into Test, Train, and Trackpy subfolders of the Code folder, based on 

their respective applications. 
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• Fitted Defects Contour Results: We provided the fitted defects of original size videos and 

cropped region of interest as MP4 videos in the FittedDefects_video folder. 

• Plotting Figures and Data: In the folder YOLO_Figures, we provided all the scripts and 

data we used to plot figures shown in this paper, and subfolders are named by the index 

of figures.  

 

We also provide all codes in user-friendly IPython notebooks through GitHub at 

https://github.com/uw-cmg/DefectSTEMVideoAnalysis. 

 

3.4 Mask R-CNN 

Both Faster R-CNN based(Section 3.2) and YOLO based(Section 3.3) defect analysis 

system is bounding box oriented, meaning the output of the deep learning system is bounding box 

around defects which is called object detection in computer vision, and the exact geometry 

information needs to be extracted by pixel segmentation algorithm like watershed. However, Mask 

R-CNN, an object segmentation model, is able to output object class labels for all pixels following 

the exact end-to-end style111. We labeled the dataset used in Section 3.2 and Section 3.3, and 

trained the Mask R-CNN model provided in the Detectron2 package which was developed by the 

Facebook AI Research (FAIR) team112. Example output was visualized in Figure 3.4.1. We can 

find Mask R-CNN provides pixel-level class labels and the results agrees with human labeling 

quite well. 

We have submitted this work in October 2021 which is under review now and the Arxiv 

link is here, https://arxiv.org/abs/2110.08244. Although I prepared the data and ran the model 
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analysis as part of this work the bulk of it was completed by Dr. Ryan Jacobs, so a detailed analysis 

of Mask R-CNN performance is not discussed further in this thesis. 
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Figure 3.4.1. Examples of labeled ground truth (left columns) and Mask R-CNN predicted (right 

column) images. The red, yellow, and blue masks denote 111 loops, 100 loops and black dot 

defects, respectively. The predictions shown here were made with IoU=0.3. 
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3.5 Conclusions 

Three deep learning based defect analysis system has been built and it paves a way for 

material scientists to apply state-of-the-art object detection and segmentation models to better 

accommodate the on-going deluge of microscopic images or videos113.  
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Chapter 4 : Machine learning for interpreting coherent X-ray imaging patterns 

 

4.1 Chapter Abstract 

In this work, we developed a deep learning classifier system that could extract number 

density from coherent X-ray image patterns and this work presents a prototype work for better 

understanding the image patterns. 

 

4.2 Introduction  

X-ray imaging has been widely used by many researchers in material sciences e.g. 

investigating micro, nano or even atomics scale structures114 or mechanisms115, studying dynamics 

or correlation behaviors116–118,  revealing nebulous phenomena in complex material systems e.g. 

complex fluid119 and metallic glass120 and other areas e.g. medical imaging121, geosciences122. One 

of the most important recent advances in X-ray imaging is utilizing coherent x-ray light sources to 

investigate behavior on the femtosecond time domain and structure on interatomic length scales. 

Such characterization is enabled by development of X-ray sources such as advanced synchrotron 

sources, X-ray free electron lasers, and high harmonic generation sources123,124. For example, those 

new X-ray imaging methods can visualize the chemical composition in nanoscale resolution125,  

study 3D lattice dynamics in gold nanocrystals126, and shed light on complex systems like 

biological system e.g. showing 3D mass density distribution of a whole, cell127 or reconstructing 

3D structure of the giant mimivirus particle from diffraction patterns128. However, due to the 

complexity of interactions between sample and coherent X-rays, the imaging results, called X-ray 

imaging patterns, are difficult to interpret. It is particularly challenging to extract information about 

the molecular structure from images, and such reconstructions to date have often relied on 
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significant approximations and simplified models e.g., using phase retrieval algorithms to iterate 

between real and reciprocal space129,130 or alternating projections131 ,angles or sample positions132. 

It is therefore of interest to ask whether recent developments in image analysis using machine 

learning might aid in the interpretation of X-ray imaging patterns. In this study, we proposed to 

build a deep learning system that classifies the coherent X-ray image patterns according to their 

micro-scale structural information, the total number of disks contained in each image pattern or 

more specific the disk number density. Although other physical or chemical values might also be 

of interest, we choose disk number density since it is quick and easy to test e.g., only disk number 

needs to be counted. To reduce development difficulty and move quickly to build working 

prototype, we focused on 2D system not the actual 3D real experiment dimension. The classifier 

was trained in simulated coherent X-ray image patterns without any assumptions or simplification 

of samples and the results suggested that it was possible to use machine learning tools to corelating 

coherent X-ray imaging patterns, k-space information, to structural or particle distribution 

information e.g., disk number density, real-space information which was typically hard to obtain. 

The method directly builds a mapping between real-space sample information e.g., disk number 

density and the k-space coherent X-ray imaging. 

 

4.3 Methods 

We used forward simulation methods to generate coherent X-ray speckle pattern images 

of a model 2D disk system and then trained a Convolutional Neural Network (CNN) model 

called Resnet-50 to classify the X-ray images into different categories corresponding to their disk 

numbers. The workflow pipeline of this approach is shown in Figure 4.3.1.  
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Figure 4.3.1. Flow chart of machine learning system which includes dataset generation, model 

training and model prediction and interpretation. The generated speckle pattern images were fed 

into the Resnet-50 classifier system and then classification results of the speckle pattern based on 

real-space number of disks and the corresponding class activation map to indict which region of 

the speckle pattern image contributes most to the final classification of speckle pattern images. 

The 2D system used in our study was 2000 x 2000 in reduced unit with respect to define 

1 pixel as unit in k-space and the total area of disks is 2 × 𝜋 × 90	 × 90 where 90 is radius of the 

two-disk system. For an n-disk system the radius of each disk was set to preserve the total area of 

disks, which requires 𝑟 = 	\0×1"×1"
2

= \'30""
2
	. Then the n disks were randomly placed into the 

2D system without overlap of disks. For a select set of studies focused on polydispersity which 

further modified the disk radii to create a polydisperse disk system. To create a polydisperse disk 

system, the single radius system of n disks was modified by sampling the radii from a Gaussian 

distribution of given mean (3 in our settings) and standard deviation (1 in our settings) with the 

constraint that the total area of disks is kept the same as the original single radius n-disk system. 

The given mean and standard deviation were chosen arbitrarily. To achieve the poly-dispersed 

distribution, we needed to sample disk radii from Gaussian distribution with the same total n-

disk area constraint. We assume the n disks radii have a common factor called 𝑘 and each radius 

could be expressed as 𝑘𝐶!, so the total n-disk area constraint could be written as 
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𝑘(𝐶' +	𝐶0 +	𝐶) +	⋯⋯	+	𝐶2) = 16200 where 𝐶! is sampled from the Gaussian distribution 

(with negative values rejected) and k is the common factor needed to be calculated by 

summarizing the n sampled 𝐶! and once 𝑘 is obtained, the radius of n disks can be gotten using 

the equation 𝑟! =	`𝐶! 	× 	𝑘.  

To generate X-ray imaging pattern data, we use a Fourier Transform program to covert 

the 2D n-disk system of real space to the k space images. Since the k space image could be 

infinite, we truncate the image into size of 513x513 pixels. In Figure 4.3.2, we show real space 

and corresponding k space images for select n-disk systems (n = 2, 3, 6, 10, 15, 20). In total we 

consider 19 cases given by n = 2-20. 

 

Figure 4.3.2. Real space images and corresponding X-ray speckle pattern, arbitrarily tailored to 

highlight the speckle patterns, images of six typical 2D disk system where (a) for 2-disk system, 
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(b) for 3-disk system, (c) for 6-disk system, (d) for 10-disk system, (e) for 15-disk system, and 

(f) for 20-disk system. 

 

After getting the X-ray speckle pattern images, some preprocessing was needed to delete 

easy hints about disk number before feed into the machine learning system as we want the 

machine learning system to find some intrinsic and hidden pattern in the speckle pattern images 

not to find easy hints to take a shortcut to classify X-ray speckle pattern images. For example, 

the pixel of and around the center pixel is and is near the Fourier transformer of  𝑞 = 0 

competent which is a direct reflection of the area of scatters which may reveal the number of 

disks in the system, so we blocked the 11 pixels times 11 pixels center region of X-ray image 

speckle pattern to avoid this easy hint. This is also a common practice used by experimentalists 

in real world since the center pixel is too bright and hence makes it harder for detectors to better 

track X-ray patterns132. And standardization was applied to each image to make sure the pixel 

intensity of all speckle pattern images should have the same zero mean and unit variance. 

In this work, we proposed to use the widely used CNN model called ResNet-50 to 

classify the speckle pattern images based on the number of disks. ResNet133,134 is a family of 

deep learning model that uses identity mappings to overcome the performance degradation 

problem of stacking more layers135. It is the first deep learning model that achieved lower than 

human level error rate in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 

2015 competition24. For this work, we created each 1000 different random configurations of disk 

position for 19 different disk number systems. In total, we have 19,000 X-ray speckle pattern 

images and among them, 15200 images were used for training, 1900 images were used for 

validation, and the remaining 1900 images were used for testing. And for the 1900 images, each 
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disk number system has 100 images which were randomly selected from the 1000 total images of 

that disk number system. And for training and validation set were randomly split from the left 

17100 images. ResNet-50 model was written in Keras136 with TensorFlow137 as the backend 

engine and the training was using Adam optimizer with default setting of Keras and typical 

training was conducted 200 epochs with batch size of 40 unless early stopped if the changes were 

smaller than 0.00001 for 40 epochs.  

To fully understanding the working of the X-ray imaging classifier system, we introduced 

the Gradient-weighted Class Activation Mapping (Grad-CAM) as a visual tool to help diagnose 

the classifier results. Grad-CAM is a technique to generate ‘visual explanations’ for 

Convolutional Neural Network (CNN)-based classification models by utilizing the gradients of 

any specific class with respect to penultimate (pre Dense layer) Conv layer output to produce the 

high-resolution class-discriminative localization map that highlights the important regions for 

final classification decisions138. Grad-CAM is one variant of Class Activation Mapping 

(CAM)139 tools that is widely used in interpreting CNN based classifier systems140–148 and Grad-

CAM is able to be applied to a wide variety of CNN based models138. We used Grad-CAM 

function provided by Keras-Vis package to generate Grad-CAM maps of X-ray imaging 

classifier systems149. 

 

4.4 Results 

We first present the non-polydispersity system results, e.g., all beads were with the same 

sizes and then we show the polydisperse system results, e.g., all bead sizes were following a 

Gaussian distribution (the construction of the polydisperse system was discussed in Section 4.3). 
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4.4.1 Non-Polydispersity System Results 

 

We showed the non-polydispersity classification results of 19 different disk number in 

Figure 4.4.1.1. Figure 4.4.1.1 demonstrates that the classification algorithm works well, and 

misclassification only happens once in beads number 19 and only shows a small error of 17 instead 

of 19. This one error is the only misclassification in 1900 testing cases. The cross-class accuracy 

is nearly 99.9% which demonstrates the capacity of Resnet-50 based deep learning classification 

system for coherent X-ray imaging patterns.  

 To better understand the mechanism by which the machine learned network identifies 

disk number from X-ray diffraction image we plotted the Grad class-activation map (Figure 

4.4.1.2). For space consideration we only showed the even bead number cases in the text and the 

remaining Grad-CAM examples can be found in the Supplemental Information (SI). Although 

the specific rules used by the deep learning classifier remain unclear, we found that in this 

problem Grad-CAM could aid the interpretation of classifying results by indicating the 

highlighted regions of X-ray image patterns or features that could assist human understanding 

e.g., for certain classes center region seems more useful than conners.  

In examples above, we focused on 257x257 pixel size as the coherent X-ray imaging 

inputs, and it is important to know that whether different size of inputs will change the 

classification results. Since k space could be extended to infinite, so truncations were needed, 

and different size of image sizes was setting a limit of real space signals e.g., signals caused by 

small distances would be filtered out. Hence it was important to know, how the classifier system 

works in different frequency ranges. We showed the confusion matrix of 513x513 pixel size 

inputs in Figure 4.4.1.3 which shows little changes compared to Figure 4.4.1.1. The drop of 
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performance is very small which indicates 257x257 is enough for our classification problems 

even though larger size of inputs has more information. 

In summary, the deep learning classifier works for identifying the number of disks from 

coherent X-ray imaging patterns in our model non-polydispersity systems. 

 

 

Figure 4.4.1.1. Confusion Matrix of non-polydispersity system classification results using 

257x257 as input coherent X-ray image size. 
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Figure 4.4.1.2. Grad Class Activation Map Examples of non-polydispersity systems where (a), 

(b), (c), (d), (e), (f), (g), (h), (i), (j) corresponding to beads number 2, 4, 6, 8, 10, 12, 14, 16, 18, 

20. 
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Figure 4.4.1.3. Confusion Matrix of non-polydispersity system classification results using 

513x513 as input coherent X-ray image size. 

 

4.4.2 Polydispersity System Results 

In previous section, we presented results of the deep learning classifier for coherent X-ray 

imaging patterns in non-polydisperse systems. However, the non-disperse setting is ideal and 

nearly impossible to obtain in real world settings, so to further test the capacity of the classifier, 

we retrained the model and tested it on a polydisperse dataset, and the results are shown below. 

In Figure 4.4.2.1, we show the confusion matrix of the polydisperse classifier. We can see there 

is a significant performance drop compared to non-polydisperse results. To better illustrate the 

cases where the classifier has errors, we made sure each class has the same number, 100 in our 
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setting, of testing images. Then in Table 4.4.2.1, we showed class specific precision, recall, F1 

scores. The cross-class precision, recall and F1-score are all 0.89 due to the drop of performance 

in large bead number systems e.g., Bead number 14 to 20. 

 

Figure 4.4.2.1. Confusion Matrix of polydispersity system classification results using 257x257 

as input coherent X-ray image size. 

 

Table 4.4.2.1. Classification performance for different polydispersity bead numbers. 

Beads	Numbers	 precision	 recall	 F1-score	

Beads_02	 1	 1	 1	
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Beads_03	 1	 1	 1	

Beads_04	 1	 0.99	 0.99	

Beads_05	 1	 1	 1	

Beads_06	 0.98	 1	 0.99	

Beads_07	 1	 0.99	 0.99	

Beads_08	 0.99	 1	 1	

Beads_09	 1	 0.99	 0.99	

Beads_10	 1	 1	 1	

Beads_11	 0.99	 1	 1	

Beads_12	 0.98	 1	 0.99	

Beads_13	 1	 0.98	 0.99	

Beads_14	 0.79	 0.67	 0.72	

Beads_15	 0.6	 0.58	 0.59	

Beads_16	 0.71	 0.82	 0.76	

Beads_17	 0.88	 0.81	 0.84	

Beads_18	 0.8	 0.66	 0.72	

Beads_19	 0.54	 0.58	 0.56	

Beads_20	 0.64	 0.78	 0.71	

 

To better understand the reasoning why classifier performances dropped for larger bead 

numbers, we checked the Grad-CAM plots (shown in Figure 4.4.2.2). In Figure 4.4.2.2, as the 

beads number went up, the features in Grad-CAM would be difficult to distinguish which 

reflected the drop of deep learning classifier performance. One possible reason could be that 
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polydispersity would generate more scattering centers of different sizes and thus reduces the 

contrast associated with peaks in patterns of coherent X-ray imaging and hence made it difficult 

to learn about correct patterns for larger bead numbers117.  

 

Figure 4.4.2.2. Grad Class Activation Map Examples of polydispersity systems where (a), (b), 

(c), (d), (e), (f), (g), (h), (i), (j) corresponding to beads number 2, 4, 6, 8, 10, 12, 14, 16, 18, 20. 

 

4.5 Conclusions 

We have developed a deep learning based model to identify disk number by classification 

from coherent X-ray imaging patterns of a two dimensional disk model system. The classifier 

was tested for cases with and without dispersity and it shown to be effective in both, although 
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systems with dispersity show significant errors depending on the scale of the dispersity. We also 

sought to understand the mechanisms of the deep learning classifier with Grad-CAM. The Grad-

CAM analysis showed that certain features contained in X-ray image patterns could aid the 

interpretation and understanding of the classification results. Overall, our results demonstrate 

that without applying complex experimental procedures e.g., taking multiple images in different 

angles or positions for phase retrieval or pre-defined assumptions of samples, we could directly 

extract real space sample information like number density from k-space X-ray image patterns 

generated by Fourier Transforms and there are few tools to link information between real space 

and image spaces150,151.  

 As a proof-of-concept study, our approach has some limitations that needs to be solved 

by future studies. First, real coherent X-ray images have noises due to both environments, 

devices, detectors etc. and the impacts of noise on the classification will need to be assessed, 

although it is likely that it does not represent a fundamental challenge. We expect that enough 

data with well-enough controlled noise will obtain robust models, as found for most of the data 

here. Second, currently, our model fails in larger bead number polydispersity system, which is at 

least in part since many beads with different sizes blur peaks and thus make it hard to discover 

patterns. This problem could potentially be solved by adding more training images for larger 

bead numbers. A closely related third limitation is that it is still unclear what kinds of training are 

needed to enable extraction of useful data e.g., how many training images are needed to train a 

successful pattern extraction model and can such training data be practically obtained.  Finally, 

we note a fourth limitation and major limitation, which is that our system is a model 2D system. 

This approach needs to be tested on data of 3D systems and if possible, tested with real-world 

experimental data e.g., colloid system which is easy to track and investigate98. 
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Chapter 5 : Other UW-Madison Research Summary  

 

5.1 Chapter Abstract 

In this chapter, I will summarize my research that is not the core part of this thesis but the 

skills I learned and used are the same and they are a part of my Ph.D. research experience. A Ph.D. 

study is a long journey and I have spent time across different departments and worked in 

multidisciplinary studies. Those are all valuable experiences and closely connected to the general 

machine learning research theme of my thesis. I will briefly summarize each research effort and 

more details could be found from the published papers. 

 

5.2 Medical ML 

I worked with Dr. Meghan Lubner of UW-Health to develop and evaluate machine 

learning algorithms that can help radiologists to delineate cancers using non-invasive CT-based 

radiomics for renal cell carcinoma (RCC)152 and pancreatic cysts (PCs)153. And the published 

papers are listed below, 

■ Awe, Adam M., Michael M. Vanden Heuvel, Tianyuan Yuan, Victoria R. Rendell, 

Mingren Shen, Agrima Kampani, Shanchao Liang, Dane D. Morgan, Emily R. Winslow, and 

Meghan G. Lubner. "Machine learning principles applied to CT radiomics to predict mucinous 

pancreatic cysts." Abdominal Radiology (2021): 1-11. 

■ Gurbani, Sidharth, Dane Morgan, Varun Jog, Leo Dreyfuss, Mingren Shen, 

Arighno Das, E. Jason Abel, and Meghan G. Lubner. "Evaluation of radionics and machine 

learning in the identification of aggressive tumor features in renal cell carcinoma (RCC)." 

Abdominal Radiology (2021): 1-11. 
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I also helped develop GAN-based segmentation tools that can help segmentation problems 

for multi-domain MRI images and the published paper is listed below, 

■ Liu, Yilin, Gregory R. Kirk, Brendon M. Nacewicz, Martin A. Styner, Mingren 

Shen, Dong Nie, Nagesh Adluru, Benjamin Yeske, Peter A. Ferrazzano, and Andrew L. Alexander. 

“Harmonization and Targeted Feature Dropout for Generalized Segmentation: Application to 

Multi-site Traumatic Brain Injury Images.” In Domain Adaptation and Representation Transfer 

and Medical Image Learning with Less Labels and Imperfect Data, pp. 81-89. Springer, Cham, 

2019. 

 

5.3 Material Informatics 

I also worked with undergraduate students from Informatics Skunkworks to apply machine 

learning methods for predicting material properties e.g., flash point and the published paper is 

listed below, 

■ Xiaoyu Sun, Nathaniel J. Krakauer, Alexander Politowicz, WeiTing Chen, Qiying 

Li, Zuoyi Li, Xianjia Shao, Alfred Sunaryo, Mingren Shen, James Wang, Dane Morgan. 

“Assessing Graph based Deep Learning Models for Predicting Flash Point.” Molecular Informatics 

(2020), 39, 1900101. 

 

5.4 BioPhysics 

Before joining Prof. Morgan’s group for Ph.D., I also did laboratory rotations in Prof. 

Qiang Cui’s lab, now a Professor at Boston University, where I researched on soft matter physics 

in DNA154 and colloids155–157 and the published papers are listed below, 
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 ■ Luo, Guan-Zheng, Ziyang Hao, Liangzhi Luo, Mingren Shen, Daniela Sparvoli, 

Yuqing Zheng, Zijie Zhang et al. “N 6-methyldeoxyadenosine directs nucleosome positioning in 

Tetrahymena DNA.” Genome biology 19, no. 1 (2018): 200. 

■ Mingren Shen, Rui Liu, Ke Chen, and Mingcheng Yang. “Diffusive-Flux-Driven 

Microturbines by Fore-and-Aft Asymmetric Phoresis.” Physical Review Applied 12, no. 3 (2019): 

034051. 

 

5.5 Conclusions 

The papers listed in this chapter might not be material science related but they provided 

great experiences to learn new things and apply all physical, mathematical, computational, 

machine learning tools I have learned. I listed them here as they are also part of my Ph.D. study 

and they all helped me to complete the thesis main theme in various ways. 
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Chapter 6 : Summary and Future Work 

 

6.1 Summary 

In this thesis, we discussed two aspects about applying deep learning models to material 

science studies e.g., finding the location and geometry of different defect clusters in irradiated 

steels and mapping k-space X-ray image patterns with real space sample information without 

complex iterative algorithms. We show that a deep learning based analysis system has a 

performance comparable to human analysis with relatively small training data sets. This study 

proves the promising ability to apply deep learning to assist the development of automated data 

analysis data and paves the way for fast, scalable, and reliable analysis systems for massive 

amounts of modern material science data.  

The research contained Chapter 3 regarding the using deep learning models e.g., Faster R-

CNN, YOLO, Mask R-CNN to analyze defects in microscopy images or videos of alloys is 

summarized in this section. Our work shows that automatically detecting and tracking interesting 

microstructures and properties contained in TEM images and videos is viable and opens new doors 

for evaluating materials microstructure changes and dynamics in human labeling hardly achieved 

accuracy and consistency.   

The contained Chapter 4 regarding the using deep learning models to extract sample 

information from coherent X-ray imaging patterns in this section. Our work shows deep learning 

can build the relationship between real space sample information e.g., number density and k-space 

images, and visualization methods like Class Activation Maps can help people identify important 

regions which could be a useful way to understand the hidden information in coherent X-ray image 

patterns.   
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6.2 Future Work 

As shown in this thesis, specific questions are selected to test the ability to apply deep 

learning tools to material science problems. While the prominent potential of such an approach is 

demonstrated, some future developments are needed to fully utilize this powerful approach.  

 

Three possible directions are given here: 

 

• Dataset Generation 

Currently, in the defect analysis project, manual labeling data was used to train deep 

learning models, however, human errors and biases will be avoided in the trained 

models. Furthermore, human labeling made it difficult to extend deep learning models 

to new types of tasks that might not have efficient resources or methods to label data 

by humans. Possible solutions might be using simulation or other automatic generation 

methods to generate datasets158 with labels or developing methods that do not need 

certain labels but rely on inner structures of data e.g., deep image prior uses realistic 

image priors from a single image itself to guide image restoration159. 

 

• Model Optimization and Serving 

All deep learning models present in this thesis are not optimized for high-performance 

consideration, e.g., automatic neural network searching160, model compression and 

acceleration161, and model pruning162. Those optimizations could significantly improve 

model speed and accuracy and hence help scale up of usage. And another important 
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future direction would be establishing the common sharing practice of codes and 

models. More and more people in the material science community are involving deep 

learning studies which raise reproducible and portable issues between different model 

implementations. Model serving of a collection of easy-to-use, standardized, and high-

performance deep learning models with pre-trained weights would be a tremendous 

help for scientists and engineers in material sciences and other areas. Common tools 

used by tech companies like Google Colab163 and Kubeflow164 based on top of 

Kubernetes for MLOps165 could be a good starting point to learn from and some model 

serving websites like TensorFlow-Serving166, ModelHub.AI167 and DLHub168 are 

gradually used by the scientific community now. 

 

• Domain Knowledge Integration 

Once the data and models are obtained, we can always train or build some ML or DL 

models but how to make sure it contributes new information, knowledge, or insights 

for the scientific community is a different and sometimes difficult question that needs 

domain experts and knowledge169. And more specifically, could we embed or involve 

domain knowledge into machine learning models to accelerate learning170 and improve 

accuracy171. Physics-informed neural networks172 or Physics-guided neural networks173 

and other methods174 have shown a promising way to integrate physics and material 

information into ML or DL models172. 

 

Although limited machine learning and deep learning applications are discussed in this 

thesis, the potential of such an approach is demonstrated. For future developments, more easy-to-
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generate and easy-to-label data, more standardized ways to share models, and more efficient 

integration methods of ML/DL with physics information are needed.  
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