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ABSTRACT

Embedded multicore devices often require high performance with minimal power consumption; many systems

use dedicated hardware units to meet these constraints. However, embedded systems have also become increasingly

multi-purpose and must be able to execute a wide range of applications – some of which might not yet be known at

design time. It is therefore difficult to choose an appropriate mix of dedicated hardware that meets a device’s size,

cost, and capability constraints. A reconfigurable hardware (RH) coprocessor is a potential solution, as it is highly

effective at accelerating a variety of different tasks (which need not necessarily be known in advance), and does so

using less energy than general-purpose processors.

In this thesis, I propose a reconfigurable computing system-on-chip that combines general-purpose processor

core(s) with a reconfigurable coprocessor. Applications executing on this system use the RH to accelerate commonly-

executed functions. In this thesis, I first describe the communication model used between the processor(s) and RH

coprocessor. I then describe the programming interface applications use to access the RH, and show that my model

allows applications to securely access the RH coprocessor without requiring operating system intervention – greatly

reducing the overhead of using the coprocessor. Because of this, my RH coprocessor can even accelerate tasks (or

kernels of an application) whose execution time (when running in software) is measured in hundreds of cycles.

After establishing the platform, I examine how my proposed system performs, and propose extensions to the

system to further improve system performance. In this thesis, I will demonstrate that, when using my coprocessor

memory interface, workloads executing across eight processor cores and the shared RH fabric perform ∼ 95% as well

as they would on an idealized system where the coprocessor has zero-cycle access to shared memory. Additionally,

I examine the impact hybrid RH/software applications have on software-only applications, and propose a mechanism

that prevents streaming RH applications from polluting shared levels of the system’s cache; this simple modification

improved the performance of software-only applications by up to 32%. I also examine the behavior of software-

only applications coscheduled alongside hybrid RH/software applications on simultaneous multithreaded processors,

showing that they perform up to∼ 95% as fast as they do when a multicore system executes the two applications. This

is much faster than two software applications can run when coscheduled together, but not as fast as a multicore machine
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because the hybrid application still requires CPU resources to execute, slowing down the coscheduled software-only

application

Finally, I examine methods that allow multicore RH systems to better utilize RH resources, allowing systems

with limited RH resources to perform nearly as well as systems containing more RH resources. I first show that

hybrid applications that call the same RH kernel can better utilize the RH by sharing the configured resources. On

eight-processor systems executing eight copies of the same applications, workloads that shared configured RH kernels

performed 97.4% as well as systems that did not, despite the fact that shared systems required ∼ 1
8 th of the RH

resources. I also examined a modified RH kernel scheduling algorithm that periodically determines which RH kernels

should be loaded on the RH at any given time. This new scheduling algorithm could better select which RH kernels

should be configured on multicore systems. I show that this new scheduler always performs as good, or better than the

previous scheduler, and in extreme cases can result in RH allocations that improve system performance by over 2x.

In this thesis, I examine many of the design choices involved in creating a multicore RH computing system, and

examine how a modern operating system should present the RH resources to user applications. I then demonstrate

that such a system provides the performance required in next-generation computing application, while providing the

programmability and flexibility to accelerate many different application domains, and even offer performance im-

provements to applications not considered when the chip was first fabricated. By doing this, embedded systems man-

ufacturers can make faster, more capable products that consume less energy. Additionally, the hardware in these new

devices will be able to adapt to new applications that are created after the device has shipped, allowing all applications

to be accelerated by the processor, and not just the applications that the processor was optimized for.
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Chapter 1

Introduction

The ever-increasing demand for faster and more capable embedded computing systems presents a continual chal-

lenge to computer architects. Although process technology improvements increase the number of transistors that can

fit on a single chip, it is not always clear how those transistors can best improve system performance. Previously,

computer architects used aggressive pipelining, out-of-order processing, and superscalar designs to improve the per-

formance of individual processor cores [98, 59]. However, these techniques are no longer sufficient causing many

computer architects to examine multicore and multithreaded design approaches [98, 78, 62, 49] to improve system

throughput for parallel workloads.

Although these new multicore systems can improve the performance of parallel applications, or execute multiple

applications simultaneously, this is often done at the expense of single-threaded performance. Even when these sys-

tems execute multithreaded workloads, single-threaded performance can be a limiting factor due to an imbalance in

how much work each thread must compute [78]. This often results in processor cores sitting idle waiting for another

core to finish executing a long-running thread. Amdahl’s law limits the execution time of a multithreaded application

to that of its slowest thread [62], further motivating the need to accelerate single threads of execution. Increasing the

performance of all processor cores uniformly will cause every thread to execute faster, but may not be the best solution

because doing this increases the power consumption of every core.

This thesis focuses instead on the use of a reconfigurable coprocessor to accelerate individual threads within

a workload. Applications on these systems execute primarily on a general-purpose processor; however the most

compute-intensive sections of an application (referred to as kernels in this thesis) can execute on the coprocessor.

Offloading this computation to a coprocessor can result in reduced energy consumption and/or faster execution.

The use of reconfigurable hardware as a coprocessor provides the flexibility to create new accelerators after the

system has been developed and the chips have been fabricated. The development of heterogeneous systems-on-chip

often starts years before the chip is used in actual products. Because of this, the full set of applications that might

execute on the processor may not be known at design time. In this thesis, I present a system model for integrating an

on-chip reconfigurable hardware (RH) coprocessor for multicore and multithreaded systems, and examine the related

system infrastructure necessary to support the RH coprocessor.
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1.1 Contributions

In this thesis I make the following contributions:

• Design and evaluation of an on-chip RH coprocessor interface that can access the processor’s cache-coherent

memory hierarchy using virtual memory addresses.

• Implementation of a mechanism allowing applications to directly access and use configured RH kernels without

OS intervention or violating process isolation.

• Reduction of RH kernel overhead such that an application can efficiently query, execute, and poll RH kernels,

which allows short-running kernels (executing under 100 processor cycles) to still obtain speedups.

• Determined that:

– RH coprocessors and general-purpose processors should share at least one level of the cache hierarchy to

facilitate the transfer of data between the two.

– An L1 cache attached to the RH coprocessor does not greatly improve coprocessor performance, but does

significantly reduce the dynamic energy consumption of the RH’s memory accesses.

– Multicore RH computing systems need a hardware TLB miss handler to improve memory performance.

– A shared memory interface between the RH coprocessor and the cache hierarchy is scalable to at least

eight cores, with eight-core workloads obtaining ∼ 95% of their performance when using a zero-latency

RH coprocessor memory.

• Implemention of a mechanism to prevent RH kernels whose memory request exhibit streaming behavior, and

have little cache locality, from polluting shared cache levels. This improves performance of coscheduled SW-

only threads by up to 32%.

• Creation of SMT processor extensions that allow RH kernels to execute at almost full speed while allowing

coscheduled threads to execute at ∼ 95% of their single-core performance when coscheduled alongside an

application that continuously executes long-running RH kernels.

• Creation of methods for sharing configured RH kernels between multiple applications to allow systems with

limited RH resources to better allocate the RH fabric. Eight-core systems that shared RH kernels were 97.4%

as fast as systems with unlimited hardware, while using only one-eighth of the RH fabric resources.

• Modified a reconfigurable hardware kernel scheduling algorithm to better allocate kernels when reconfigurable

resources are constrained. This scheduler always performs as good, or better than scheduling algorithms created

for related projects when used on multicore processors.
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1.2 Thesis Organization

My thesis can be broken down into roughly three parts. The first part of the thesis focuses on my system model, and

how hybrid RH/software applications perform on single processor systems. In Chapter 2 I examine some of the prior

work that led to the research I performed in this thesis, including an overview of heterogeneous systems, how these

systems can use RH, and prior RH systems. Chapter 3 describes the reconfigurable computing system proposed in this

thesis. Chapter 4 examines the programming model I developed to allow communication between the OS, applications

and RH kernels, as well as the methods I developed to eliminate much of the latency inherent in accessing hardware

coprocessors on systems maintaining process-isolation. Chapter 5 examines the benchmarks and methodology used

to evaluate the proposed platform. In Chapter 6 I examine the execution of RH kernels, comparing the memory access

patterns of the RH kernels with the same kernels, when executing on traditional CPUs. I then apply this knowledge to

develop communication mechanisms that allow RH kernels to transfer data with the general-purpose processors on a

single core system.

The second part of this thesis focuses on the scalability and performance of the reconfigurable coprocessor in

multicore and multithreaded systems. Chapter 7 examines the performance of this new multicore reconfigurable

computing platform, and examines the performance when the OS coschedules software-only applications alongside

hybrid RH/software applications. Chapter 8 examines the impact of coupling an RH coprocessor with a simultaneous

multithreaded processor, focusing on the impact of coscheduling hybrid RH/software applications alongside software-

only applications. In both of these chapters, I present platform extensions that improve overall system performance.

Next, this thesis examines how to efficiently allocate limited RH computing resources on multicore systems. In

Chapter 9 I propose extensions to the system model that allow one more more copies of an RH kernel to be (safely)

shared between simultaneously executing threads. I then compare the performance of systems using the sharing

mechanism both with systems containing “sufficient” reconfigurable resources, as well as those with limited resources

that do not permit sharing. In Chapter 10 I examine alternative methods for allocating RH resources, addressing

shortcomings of prior scheduling algorithms used on multiprocessor reconfigurable systems. Finally, in Chapter 11 I

illustrate the performance benefits of using a single RH fabric instead of a partitioned one.

The remaining chapters further analyze the results from this thesis. Chapter 12 compares the performance of the

proposed reconfigurable computing system with that of a system containing a SIMD processor. Chapter 13 discusses

the impact of this research on other coprocessor architectures and how techniques developed for this thesis can both

increase the performance of other heterogeneous system-on-chip architectures, as well as how to adapt the proposed

programming interface to these architectures. Finally, Chapter 14 summarizes the contributions made in this thesis.
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Chapter 2

Background and Prior Work

Reconfigurable computing systems combine one or more general-purpose processors with a reconfigurable hard-

ware (RH) fabric. Embedded systems designers use RH for many different purposes: interfacing processors with

external hardware peripherals, creating dedicated coprocessors that accelerate a specific function or task, etc [30, 47].

This thesis examines systems that use RH to accelerate various tasks or functions.

2.1 Heterogeneous Computing

The idea of using heterogeneous compute resources in a computing platform is not new [75]. Computing systems

always contained some heterogeneous resources; however, in the past these resources provided “distinct” functionality

often associated with I/O (network cards, sound cards, graphics adapters, modems, etc). Modern embedded systems

use heterogeneous processing elements much more extensively, often to accelerate computations [75].

Many previous heterogeneous embedded systems implemented a single application, or a specific set of applica-

tions, and had strict power and cost constraints. Because of this, system designers attempt to maximize application

performance and minimize the system’s energy consumption by tailoring the system to the algorithms within the

application. In some of these systems, entire applications execute on custom hardware ASIC (Application Specific

Integrated Circuit) coprocessors. Other heterogeneous systems different algorithms within an application or set of

application to a mixture of digital signal processors, vector processors, general-purpose processors, and/or other spe-

cialized processors. By executing computations on the resource optimized for the computation, heterogeneous systems

can obtain higher performance while consuming less energy.

Modern computing systems often use high-performance graphic processing units (GPUs) as a form of heteroge-

neous computing. GPUs are highly parallel devices that perform graphics calculations orders of magnitude faster

than a general-purpose CPU. More recently, researchers have used GPUs to perform general-purpose computations

[112, 31]. In these systems, programmers use new programming languages such as CUDA [31] and OpenCL [112]

to design accelerators that use the SIMD (single instruction multiple data) processors within the GPU to accelerate

different algorithms [100, 1].
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Although the offloading of computation onto GPUs is an important example of heterogeneous computing, mod-

ern embedded systems (and future “general-purpose” systems are likely to) take advantage of many other types of

heterogeneous resources. For instance, many smart phones and other high performance mobile devices contain tens

of heterogeneous resources on them, including video encoder/decoders, support for various wireless standards (3G,

802.11, etc), mp3 and speech encoder/decoders, etc. In the past, general-purpose computing systems often relegated

these heterogeneous coprocessors to I/O tasks, with most computation occurring on the CPU. However, general-

purpose systems are also starting to use heterogeneous coprocessors as computational accelerators. More recently,

researchers have examined the impact that the increasing number of transistors on a chip has on power consumption

[38], and predict that future chips will not be able to power all of their transistors at the same time, resulting in “dark

silicon”. Single-chip heterogeneous systems help solve the problems of dark silicon by only powering CPU cores

and/or compute accelerators needed to perform a given task. In my proposed system, RH kernels and/or CPUs are

often idle, allowing them to easily be put into low-power modes.

2.2 Coprocessor Models

Cascaval et. al [20] described a taxonomy of different coprocessor accelerator architectures and their program-

ming models, focusing on the latency of the different interconnection strategies they use, as well as how applications

executing on the system interact with the coprocessor. This analysis examined architectures ranging from instruction

set extensions (such as floating point units) that are directly integrated into a processor’s microarchitecture, up to

distributed coprocessors that communicate over a packet-switched network such as ethernet.

For example, ISA extensions requiring new functional units on a CPU usually communicate using the processor’s

register file or shared memory. They also have a very fine granularity, performing a single, or very few operations per

call. Custom instructions often perform a very small and specific task, allowing compilers to more easily generate the

appropriate instructions.

At the other extreme, a coprocessor communicating over a network, or by I/O interfaces such as PCI express

or USB, operates very differently. In attached coprocessor systems, the application must directly request to use the

coprocessor, and the coprocessor often runs asynchronously with respect to the host processor. On systems with

protected memory, user applications cannot directly access the coprocessor, and the OS is responsible for setting up the

hardware, transferring data, and starting the coprocessor’s execution. The processor and the coprocessor usually have

their own unique physical memory, requiring direct memory access (DMA) transfers to share data with one another.

Because of these high setup costs, as well as the relatively large latency between a CPU and an off-chip coprocessor,

short-running tasks cannot execute efficiently on the coprocessor, and these latencies can end up decelerating an

application.

In addition to these two “coprocessor” models, the survey [20] examines a loosely coupled model where the copro-

cessor(s) use a shared (often cache-coherent) memory and may or may not be directly coupled into the programming
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Cell/B.E., GPUs, and the Intel Larrabee. We discuss
classes of programming models later in this paper.

• Because of their inherent morphable nature, FPGA-based
accelerators may require multiple programming models.
Obviously, the programming model of the accelerator
emulated through an FPGA would be a direct match.
However, because of the FPGA characteristics, such
models are not necessarily the most efficient. For
example, FPGAs provide a high degree of SIMD
parallelism. While they can be programmed like GPUs, it
is more effective to program them at the level of bit-level
parallelism.

Based on the preceding discussion of existing accelerators,
Figure 1 places them along two dimensions: 1) the degree of
coupling between the accelerator and the main processor and
2) the invocation granularity in processor cycles. We
discretize the notion of Bdegree of coupling[ based on the
system attach point: functional unit, memory bus, I/O bus, or
network. The ranges along the Binvocation granularity[ axis
are representative and should be considered as guidelines
rather than hard numbers. Unsurprisingly, accelerators tend
to fall along the diagonal of this graph.

Programming models for accelerators
A critical aspect of exploiting accelerators efficiently is
programming. In general, the more details of the hardware

architecture that are exposed, the greater the control
programmers have over these devices. However, greater
control means increased complexity in programming. The
goal in this section is to provide an overview of existing and
proposed techniques that are used for programming
accelerators. Using our taxonomy, it becomes quite easy to
reason which programming techniques are suited for different
types of accelerators, as well as estimate the level of
system support that has to be designed to enable these
techniques. Figure 2 depicts this important tradeoff.

Figure 2.

Complexity tradeoff: The simpler the programming model, the higher
the burden on the user to exploit accelerators.

Figure 1.

Invocation granularity and latency versus CPU coupling. (GPU: graphics processing unit; RNIC: RDMA-enabled network interface controller; TOE:
TCP offload engine; FPU: floating-point unit.)

5 : 6 C. CAS$CAVAL ET AL. IBM J. RES. & DEV. VOL. 54 NO. 5 PAPER 5 SEPTEMBER/OCTOBER 2010

Figure 2.1 Figure from Cascaval et al. [20] illustrating the relationship between the invocation latency and the
interface necessary for various types of accelerator architectures (boxes), and the ovals show examples of the different

types of accelerators (Comp: compression; TOE: TCP offload engine; RNIC: RDMA network interface controller)

model. Examples of these devices can include on-die acceleration engines for cryptography, compression, and check-

sums. Figure 2.1 shows the latency and coprocessor interface of several coprocessor accelerators [20].

As more components can be integrated on the same chip, coprocessor communication latency decreases dramati-

cally, altering some of the characteristics of the described coprocessor model. Systems-on-chip (such as those designed

for smart phones and tablet computing [97]) fall into this category. In these platforms, communication between the

CPU and coprocessor is faster than when the coprocessor is located off-chip, reducing operations that once took thou-

sands of cycles to only tens of cycles – almost approaching the latency of a functional unit within a processor core.

Recently, general-purpose processors have also started to resemble systems-on chips. In AMD’s Fusion processors

[18] and Intel’s Sandy Bridge processors [67], the previously off-chip GPU is now located on the same die as the CPU.

To date, most single-chip heterogeneous architectures have taken a conservative approach to coupling accelerators

with the CPU cores, relying on many of the same interfaces used for off-chip accelerators [111]. Although this method

simplifies backward compatibility and reduces the communication latency between the coprocessor and processor, it is

limited by the protocols established for off-chip accelerators. Accessing these on-chip coprocessors typically requires

OS interventions. This often resulting in multiple memory copies to move data between address spaces. These

operations can take thousands of cycles, despite the fact that the CPU and coprocessor can exchange data in the tens

of cycles [96, 95, 111]. In this thesis I show that these overheads are often unnecessary, and RH kernels can be safely

used by user-application with minimal overhead.
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Stillwell et al. [111] provide an example of the data flow in a typical coprocessor architecture. In these systems,

the OS controls the coprocessor for security purposes. When an application wishes to use an accelerator, it must first

copy the data that the coprocessor will use into a buffer, and make an OS system call. Then the OS initiates a DMA

transfer to the hardware coprocessor. However, memory pages resident in an application’s virtual memory address

space are not guaranteed to be available at all times, and the OS must ensure that all of the data transferred by the

DMA engine is both resident in physical memory, and will not be swapped out while the hardware is executing. To do

this, the OS copies the data from user space into a buffer that exists in kernel space [16, 111]. Alternatively, if a large

amount of data must be transferred, the OS instead pins the relevant memory pages in physical memory. However,

in this instance the OS must modify multiple data structures within the OS both before and after the DMA transfer,

which also adds significant overhead. When an application initiates a task on a coprocessor, it can either continue

performing other computations in parallel with the accelerator or block to the OS until the accelerator informs the OS

that it is done.

In this traditional coprocessor model, the accelerated algorithm executing on the coprocessor is not “done” when

it finishes its computation; it must still transfer the resultant data back to the processor’s memory space using a DMA

transfer. The destination memory is likely in the OS’s address space, so when the DMA transfer is complete, the OS

then has to copy this data back into the application’s address space. All of these extra memory copies, as well as the

OS system calls, impose a significant penalty on accelerator performance [96, 95, 111]. Although many of these tasks

can be overlapped to reduce overall latency, this is really only possible for long-running accelerators (executing for

millions of processor cycles) [20]. For this class of accelerator, the performance gains from moving an accelerator

on-chip are relatively minimal – the latency between the coprocessor and processor, although large when compared

to the processor’s cycle time, is small in comparison to the total runtime of the coprocessor. Therefore, to maximize

the usefulness and performance of on-chip coprocessors, system designers need to provide a new interface to use the

coprocessor that eliminates much of the overhead inherent in traditional coprocessor communication.

2.3 Reconfigurable Hardware Overview

In general, RH fabrics can be categorized as either coarse-grained or fine-grained [30]. In fine-grained RH fabrics,

such as field programmable gate arrays (FPGAs), operations on single-bit data are very efficient, while operations on

larger blocks of data tend to be slower and consume more energy [30, 115, 3]. In contrast, coarse-grained fabrics

operate primarily on word-sized blocks of data, and often cannot efficiently handle single-bit data operations [56].

Commercially available RH devices typically contain a fine-grained reconfigurable fabric in the form of an FPGA

[30, 131, 5]. In these devices, the hardware is divided into configurable logic blocks containing one or more lookup

tables (LUT) and flip-flops. The LUTs within each logic block can be reconfigured to implement any function of

its inputs (there are usually between four and six inputs), and the LUT’s outputs can optionally be fed through the

block’s flip-flops [115]. These configurable logic blocks are connected to a highly reconfigurable network that provides
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communication between different logic blocks. FPGAs also incorporate more coarse-grained blocks into their network,

such as block RAMs and multipliers interspersed throughout the RH fabric [131, 5]. These coarse-grained blocks use

less area, less power, and operate at a faster clock frequency than would be achievable if these same structures had

been implemented using the FPGA’s logic blocks. More recent research has also looked into integrating floating point

units into the fabric [11].

Coarse-grained RH architectures configure larger more complex computational structures such as entire ALUs [56,

77]. The lower flexibility of a limited set of operations that process word-sized data requires far fewer configuration

bits compared to fine-grained architectures. Routing is also performed at a coarser granularity; however, because of

this, coarse-grained architectures tend to be inefficient when dealing with single-bit control signals.

The work presented in this thesis does not rely on any particular form of RH, and instead focuses on how the

RH communicates with the rest of the system. The RH fabric in this thesis is generic, and not tied to a specific RH

architecture. Chapter 3.3 describes the RH fabric that I use to model the RH kernels simulated in this work.

2.4 Reconfigurable Computing

Although there are many types of heterogeneous coprocessors in use today, this thesis focuses on RH coprocessors.

Unlike traditional coprocessor architectures, RH coprocessors adapt to the changing demands of the system, only

implementing the currently-needed hardware. They can therefore accelerate applications that were not originally

envisioned when the system was first designed.

A reconfigurable computing system combines general-purpose processor(s) with an RH fabric. Applications ex-

ecute as software (SW) on the general-purpose processor(s) and use the RH to accelerate compute-intensive portions

(kernels) of their execution. In this thesis, I refer to applications that use RH accelerators as hybrid RH/SW applica-

tions. These hybrid applications take advantage of the strengths of both the RH and general-purpose processor(s). The

bulk of these applications (overall control flow, exceptional conditions, rare execution paths etc) are written as soft-

ware, and only the most compute-intensive kernels are also implemented in RH. Hybrid RH/SW applications consume

less RH area, and have lower development costs than applications designed to run entirely in RH. In the reconfigurable

computing system proposed in this thesis, the OS selects whether an individual kernel executes on the RH or on the

general-purpose processor [55]. Figure 2.2 shows an example of the execution of a portion of a hybrid RH/SW ap-

plication containing three kernels. In this example, the three kernels are all accelerated to varying degrees, and the

software’s execution time remains constant.

Hybrid RH/SW applications often obtain similar performance to full-RH applications, but with the flexibility of

software (more modes of operation, highly configurable execution). Additionally, only implementing smaller and less

complex hardware modules in the RH reduces the development time of hybrid applications. This methodology also

allows the OS more flexibility when selecting which kernels to configure on the RH (many smaller kernels versus

fewer larger kernels).
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Figure 2.2 Example execution of a hybrid RH/SW application containing three RH kernels.

2.5 Existing Reconfigurable Computing Systems

Researchers have proposed many previous systems that coupled general-purpose processors with a RH fabric

[133, 10, 130, 82, 79, 57, 51, 86, 7, 28]. There are two primary types of hybrid RH/SW systems: CPUs containing RH

functional units, and CPUs with an attached RH coprocessor [30, 47]. A third type of system implements soft-core

processors directly on the RH fabric [108]. Because these systems use the RH as either a coprocessor or as a functional

unit, they can be classified accordingly. In this section I examine how processors communicate with the RH on existing

reconfigurable computing systems.

Processors with an RH functional unit allow for the creation of custom instructions on the RH [133, 10, 130, 86,

79, 28]. These RH functional units are relatively easy to use in software, and communication tends to be “directly”

handled through the processor’s register file. Because, many of these devices do not allow the RH to directly access

memory the processor is needed to manage the RH’s input and output data [86, 130, 10, 133]. This limits the RH’s

I/O bandwidth, and complicates sharing the RH across multiple processor cores.

Other reconfigurable computing systems incorporate the RH as a peer of the processor(s). In these systems, the

CPU often uses the system bus or a peripheral bus to communicate with the RH [82, 57, 51, 21, 120, 121, 77].

Because the system must write data out on a bus, latency between the processor and RH is much greater than in a

reconfigurable functional unit approach, resulting in larger setup overheads. Although these RH coprocessors work

well for long-latency coprocessor operations, they cannot efficiently accelerate kernels with short execution times due

to this overhead [51]. The work in this thesis focuses on the creation of an RH coprocessor rather than using the RH

in a functional unit.

In some RH coprocessor systems, the RH can directly access the processor’s physical memory [82, 57, 51, 77]. In

other systems, the RH accesses a private physical memory, or must communicate through buffers attached to he RH

[21, 120, 121]. In both cases, a software routine produces and copies data into the RH’s address space, and then must

consume the RH’s output data. In some systems, buffers in the RH’s address space can be used in a hardware pipeline

to allow multiple RH kernels to share data independently of the SW. However, SW routines often provides data to
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the first hardware module and receive results from the last module in the pipeline. The overhead associated with SW

routines producing and consuming these buffers can both slow down the system and increase its energy consumption.

Synchronizing the host processor(s) with the RH kernel(s) is also a difficult challenge. Although it is relatively

simple to stall the host processor when executing an RH kernel, designing a system (and applications) that allow

hardware and software to execute concurrently is more difficult [21, 7]. The SCORE system [21] facilitates such

synchronization by using built in buffers that automatically stall both hardware kernels and software threads when

their input buffer is empty, or their output buffer is full. Other work focuses on a more traditional thread-based

synchronization model. The hthreads system [7] adds hardware-level support for using many of the synchronization

primitives in the software pthreads library from a hardware thread, allowing hardware threads to communicate with

SW threads and/or other hardware threads.

Several systems that share the processor bus also allow the RH to initiate DMA transfers, alleviating some of the

burden from the main processor [82, 111]. One major drawback with DMA-like communication paradigms is that

they either require OS intervention, or expose the processor’s physical memory directly to the RH kernels. Although

these approaches can work on specialized systems, general-purpose systems require more flexibility. Prior research

has suggested that the OS should facilitate hardware-software communication using dedicated hardware structures

[127, 120, 40] or through a form of message passing [93]. Chapter 2.7.1 examines these methods in more detail.

2.6 Dynamic Reconfiguration

One of the biggest advantages RH has over traditional ASICs is that it can be dynamically reconfigured to im-

plement new functionality. This has been used extensively to allow systems to adapt not only to changing standards

(implementing RH accelerators for functionality unknown when the chip was originally fabricated), but can also be

used to reconfigure the hardware based on runtime behavior of the application(s) currently executing on the system.

Many commercially-available RH devices such as field programmable gate arrays (FPGAs) have been designed

primarily as ASIC replacements. These devices are often used for hardware designs that were not economical to imple-

ment as custom ASICs, as well as prototyping new hardware designs. Many of these systems are statically configured

when powered on, only “updating” the hardware to fix potential bugs or add new functionality. Although these “static”

reconfigurable devices have gained significant traction in the market, they do not fully exploit the reconfigurable nature

of the device.

Because of this, many FPGAs were difficult to efficiently use in a dynamically reconfigurable system. Many of

these devices have little or no support for “partial” reconfiguration. Therefore if the system wants to reconfigure any of

the hardware on the device, it must first stop all execution on the RH, and reconfigure the entire device. This method of

reconfiguration can greatly slow down the the entire system if it only needs to swap out a single kernel on the device.

Although commercial support for dynamically reconfigurable devices has traditionally been minimal, many differ-

ent research groups have proposed partially reconfigurable systems [57, 51, 133, 35]. Some of these systems examined
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the use of “relocatable” hardware blocks [29, 123, 73]. This allows previously place and routed hardware modules to

be configured in different positions on the device. On these systems, only a single configuration of the RH kernel is

needed, rather than having separate configurations of the RH kernel for every possible placement of the device. More

recently, commercial FPGA vendors started adding support for partial reconfiguration [131, 4], allowing portions of

the FPGA to be reconfigured while other portions of the RH operate.

2.7 Operating System Support

2.7.1 OS Support For Communication

Wigley et al. [127] designed an early operating system (OS) for RH processors. This work suggests that the

OS should provide an interface for communicating between application components. It also stated that this interface

needs to exist in hardware for performance reasons. However, the implementation of such a feature was left for

future work. Nollet et al. [93], provided OS support for using message passing between the processor and RH. The

hardware determined the exact implementation of the message passing, however they did not allow for the RH to

directly communicate with main memory.

Lubbers et al. [83] examined how an RH kernel could directly access portions of the OS’ API. Similarly, the

HybridOS [73] system provided support for applications to use the OS’ APIs. In addition, this work examined the

tradeoffs involved in using the OS to access the RH kernels. Similar to the HiPPAI work [111], they found that the

overhead of the OS, and the data transfers required when using it significantly slowed down the operation of RH

kernels.

some research has also examined how to allow RH coprocessors to access virtual memory. Vuletic et al. extended

the Altera Excalibur rSoC [6] platform to support RH virtual memory access [121, 120]. In this work, the RH issued

memory requests to the local address space of its parent process. A window management unit (WMU) cached multiple

pages of the processor’s memory in a memory buffer attached to the RH . If the RH issued a memory request to an

address that is not cached in this buffer, the WMU copied the entire page of data from memory into the buffer,

facilitating a buffer communication scheme similar to that used in the SCORE system [21].

While using virtual memory windows allow for a more transparent buffer management than that used in the SCORE

system [21], they still do not efficiently support random access to main memory due to the large costs associated

with copying entire pages of memory. This coarse grain (page-level) sharing of memory between processors and

reconfigurable units simplifies the interface design, but results in larger memory latencies for applications that access

small amounts of memory from different pages.
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Like the work from Vuletic et al. [120, 121], my work allows the RH to directly access virtual memory addresses,

but at a cache-line granularity. Other recent research also allows coprocessors cache-line level access to virtual mem-

ory. The HiPPAI project [111] added support to the RH coprocessor so that it could translate virtual memory addresses;

however, this aspect of my work predated that project [43].

2.7.2 OS Support for Dynamic Reconfiguration

There are many different ways that a system can allocate the RH fabric amongst RH kernels. In Resano et al.

[103] applications issued “hints” so that the system could prefetch RH kernels before using them. This method relies

on the programmer knowing which kernels will be used next and knowing how much RH is available on the system.

Additionally, it does not scale well to systems where multiple processors share an RH fabric. In my work, the OS is

responsible for selecting which RH kernels should be configured on the RH.

My work uses the RH scheduler designed in Fu et al. [39, 42, 41, 40]. This scheduler periodically evaluates

which RH kernels should be loaded in the following time interval by examining applications recent past behavior [42].

This scheduler assumes that application behavior in the next interval will be similar to the previous one, and therefore

attempts to select the kernels that would have provided the greatest benefit during the previous scheduling interval.

When intervals are short (on the order of milliseconds), application behavior for the upcoming interval is likely to be

similar to its behavior in the previous interval due to the stability of program phases [42].

This scheduler dynamically profiles the execution usage of all kernels, and uses a knapsack-based algorithm to

determine which kernels would provide the most value by being configured on the RH (knapsack) [72]. The scheduler

uses an exact knapsack solver because the problem size is sufficiently small that it does not create significant overhead.

Additionally, due to the constraints of the problem, the exact solution can be solved in pseudo-polynomial time. In this

algorithm, the cost of a kernel is equal to the amount of RH that it occupies. Fu et al. [40] examined several functions

to calculate the “value” of a kernel. At the time, the best-performing value function measured the application speedup

that a kernel would provide, assuming all other kernels executed in software. This scheduler used the number of

times software called a kernel, its execution time in software, and its execution time in RH to estimate the application

speedup that would be obtained when using a given RH kernel. In Chapter 10, I propose a new RH kernel scheduler

optimized for multicore reconfigurable computing platforms.

2.8 Summary

This chapter examined many of the previous reconfigurable computing systems, and the methods that the general-

purpose processor(s) use to communicate with the RH and vice versa. The works covered in this section provide the

background needed to understand how the design decisions made for the reconfigurable computing systems proposed

in this thesis. Many of the chapters in this thesis will perform a more detailed examination of prior work relevant to

the experiments examined in the chapter.
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Chapter 3

System Model

This chapter describes a new RH coprocessor architecture, and the basics of how it operates. Section 3.1 gives

a brief overview of the system. Section 3.2 describes the design of the general-purpose processor(s) used in this

system. Section 3.3 describes the organization of the RH coprocessor. Next, this chapter describes the two ways

that the CPU(s) and RH coprocessor communicate. Section 3.4 describes how the RH coprocessor accesses the shared

memory hierarchy, and Section 3.5 describes how CPU(s) can directly load/store values to the RH coprocessor. Section

3.6 describes the simulation platform used to develop and test the reconfigurable computing system. Finally, Section

3.7 discusses some of the shortcomings of the proposed reconfigurable computing model, and examines future work

that could be done to better refine the system.

3.1 System Overview

In this thesis, I propose a reconfigurable computing system that directly couples one or more processor cores with a

reconfigurable fabric. Figure 3.1 illustrates how two general-purpose processors can share a RH fabric in my proposed

system.

In this model of reconfigurable computing, the RH acts as a coprocessor. However, unlike many traditional copro-

cessors, the RH interconnects with the processor using a low-latency interconnect, and user-applications can directly

communicate with the coprocessor. This new platform shares properties of coprocessors that communicate via the

memory bus, as well as those of functional units within a CPU core.

Most communication between the RH and cpus is done using a shared memory hierarchy. This memory is coherent

between the CPU(s) and RH, however RH kernels executing on the RH coprocessor can only access data in their virtual

memory address space, preventing them from directly accessing physical memory. In addition to this shared virtually-

addressable memory, RH kernels have a limited direct communication with the processor cores allowing kernels to

query and setup RH kernels (amongst other functions).



14

L2 Cache
2MB

L1 
Cache

L1 Cache

Reconfigurable
FabricCPU

RH Controller

RAM

L1 
Cache

CPU

Figure 3.1 High-level model of a chip containing two general-purpose CPU cores, and a shared RH fabric.

3.2 Processor Model

The microprocessor design used in my system are similar to those currently in high end embedded systems such

as the ARM Cortex A9, or the Octeon MIPS64 core [9, 22] which can both contain multiple cache-coherent processor

cores. Due to the constraints of the simulation platform (see Chapter 3.6), I simulate an UltraSparc processor core

instead of an ARM or MIPS architecture more commonly found in embedded systems. However, the simulated

processor(s) perform similarly to the referenced high end embedded processors.

Table 3.1 shows the configuration parameters of the simulated UltraSparc processor cores. All of the simulations

performed for this thesis use this model, unless otherwise specified. The systems had enough DDR2 RAM to contain

the working sets of all the executing applications, avoiding swapping memory out to disk. The L2 cache uses a point

to point network to connect it to the CPU cores, as well as the RH controller. This means every core (as well as the

RH controller) has a fixed L2 latency, regardless of the number of cores in the system.

3.3 Reconfigurable Coprocessor

The RH coprocessor consists of two primary components: a set of RH tiles that can be configured independently,

and an RH controller that allows the RH tiles to communicate with the rest of the system. RH kernels occupy one

or more RH tiles. Each RH tiles can be configured independently, however the system may only configure one tile

at a time (all other requests are queued). The tiles are interchangeable such that all of the tiles in the system appear

the same; therefore a placed and routed circuit can be configured to occupy any set of RH tiles in the system. RH

kernels configured on the tiles use the concept of “virtual hardware”, which allows the OS to select whether a kernel
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Frequency 900 MHz

L1 D/I-Cache size 32 KB

L1 Associativity 4-way

L1 Latency 2 cycles

Unified L2 cache size 2 MB

L2 Associativity 16-way

L2 Latency ∼16 cycles

Cache line size 64 bytes

Memory Model 450MHz DDR 2

Issue Width 2

Instruction Window Entries 32

Table 3.1 Simulated Processor Configuration.

is executed on the RH coprocessor, or executes in SW [17]. The RH tiles are shared amongst all of the processor’s in

the system, and the advantages of sharing a RH fabric are fully elaborated in Section 11.

The work in this thesis, does not concern itself with the detailed design of the actual RH fabric, and instead focuses

on how multiple processor cores can best use the shared RH fabric. Because of this, the architecture of an RH tile is

not limited to just FPGA-like hardware [30, 47], but could alternatively be elements of GPUs [100, 25], custom arrays

of processors [19], vector processors, or any other type of “configurable” heterogeneous resources. In this thesis, I

modeled the RH coprocessor as an FPGA-like device to obtain performance/area estimates,

I modeled the RH tiles on the fabric found on the Xilinx Virtex-5 FPGA. Each tile contains 256 Virtex-5 slices, one

Virtex-5 DSP unit and two Virtex-5 block RAMs. These resources correspond to roughly 1% of the Xilinx Virtex-5

LX155 FPGA [131]. We synthesized, and place and routed each RH kernel on the Virtex-5 device to obtain both the

maximum clock frequency that it can run at, as well as the number of tiles that it occupied.

Figure 3.2 shows how the systems may select to configure three RH kernels simultaneously on the RH coprocessor.

Although the kernels in the figure are “contiguous” on the RH fabric, this is done for clarity only, and the system

imposes no restrictions on the placement of RH kernels on the RH tiles. Each tile has its own independent clock,

allowing RH kernels with different clock rates to execute simultaneously. A series of FIFOs that can operate across

multiple clock domains [8] handles synchronization between the RH kernels and the rest of the system. Section

3.4 describes the FIFOs in more detail. Although we do not consider all of the potential issues involved with the

independent placement of kernels, or the organization of the FIFOs used to communicate between the RH kernels and

the rest of the system, Section 3.7 examines these problems in more detail, and proposes potential solutions to the

problems.
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Figure 3.2 Interconnection of the memory hierarchy, stream controllers, and the configured RH kernels on a shared
RH fabric.

3.4 Shared Memory Communication

Communication between the RH kernels and the processor core(s) occurs primarily through a cache-coherent

shared memory hierarchy using a MOESI protocol. This model ensures that all coherent nodes see the same data in

memory [59]. Most contemporary multiprocessor systems communicate using a shared memory. Although alternative

communication schemes can get buy using only message passing, on a multicore platform, this limits the flexibility of

the system. Cache coherent systems can easily and efficiently implement message passing APIs, but the reverse is not

true [58, 70].

In addition to supporting shared memory, all of the memory that the RH kernels can access is virtually addressable.

Because of this, programmers doe not have to explicitly transfer data into dedicated buffers, or worry about whether

data is contiguous in physical memory. Using virtual memory provides process isolation because RH kernels cannot

directly access physical memory, preventing kernels from accessing data owned by another process or the OS. Most

modern operating systems for both high-end embedded systems, and desktop computing systems require process

isolation. Although other methods exist for providing process isolation, virtual memory is the most common method

in modern systems.

An RH controller facilitates all communication between the RH kernels and the CPUs or the memory hierarchy.

RH kernels executing on the RH fabric use the RH controller to issue memory requests to the virtually-addressable,
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cache-coherent memory subsystem. In most of the tested systems, the RH controller communicates directly with its

own private L1 cache, however the RH controller can interface with the memory hierarchy at any point.

Kernels on our system use a “streaming” model of computation, similar to the model proposed in the SCORE

system[21]; however the streams read/write to their parent process’ virtual address space, and not directly to other

kernels or scratchpad memories. RH kernels communicate with the RH controller using a stream controller that

generates memory addresses, and buffers data for each “stream” of data that the kernel requires. Figure 3.2 shows how

the stream controllers interact with the rest of the system. The stream controllers were designed for reading windows

of data, representing one- or two-dimensional arrays of data in memory. The stream controller’s address generators

are based on the ones in the MoM-2 system [61], where they proved to be useful for many different streaming and

media processing applications. The current set of possible address generator parameters has been sufficient for all of

the existing benchmarks; if future kernels require more complex addressing patterns, modifications would need to be

made to the design of the address generator [61, 52, 81, 53]. Application software is responsible for “programming”

the stream controller’s address generation units. Chapter 4.2 provides details on how applications both configure, and

use these stream controller parameters.

Each tile in the system contains a single stream controller capable of loading/storing data from one of five different

input/output streams (five FIFOS). The stream controller’s address generation logic is time-multiplexed with each of

its five attached FIFOs; only one of the FIFOs can issue a request to the RH controller per (processor) clock cycle.

Each request can be up to 32 bytes in length, and does not have to be word-aligned. Each stream can have up to

eight entries queued within it (eight-deep FIFO). Not all requests can be serviced immediately. The RH controller

can service up to two memory requests per cycle, however each stream controller can only issue a single memory

request per cycles. Because the RH kernels execute at a slower clock frequency than the stream controllers; a stream

controller can issue memory requests from multiple streams during a single kernel clock cycle, limiting the advantage

of serving more requests per cycle. Section 3.7.1 discusses some of the potential problems with the stream controller

organization, and suggests possible future work to better optimize the hardware.

Figure 3.2 illustrates how the RH kernels communicate with the rest of the system. In this example, there are three

kernels configured on the RH fabric, using a total of nine tiles. A system with nine tiles has nine available stream

controllers; for simplicity only the three that are needed (one per kernel) are shown. Kernel A has four input streams

and one output stream, Kernel B has a single input and single output stream, and Kernel C contains two input streams

and a single output stream. Because each stream controller can service up to five streams, only one stream controller

is needed per kernel. During each processor clock-cycle, the RH controller can start processing up to two memory

requests from the various stream controllers. A round-robin scheduler selects which RH kernels (amongst those that

are active) is allowed to issue a request. This method ensures that all kernels have “equal” access to memory. The RH

controller can queue up to sixteen outstanding memory requests at a time. When the queue is full, RH kernels cannot

issue memory requests until at least one pending request completes.
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Figure 3.3 Illustration of the ring-based network used for direct communication between the RH controller and the
CPUs on an 8 processor system, in this figure, each R corresponds to a router capable of forwarding packets to all of

its neighbors

The RH controller also performs additional operations on data before forwarding the request to the cache. First,

the controller translates the virtual memory address into a physical memory address. Chapter 4 outlines how these

translations are performed. The controller then determines if the request straddles a cache line. If it does, a cache

alignment unit splits the request into multiple load or store operations that it will issue to the cache. When a cache

request is serviced and returned to the RH controller, the cache alignment unit combines data from multiple loads (if

necessary) into a single data unit, aligns the data, and sends it back to the appropriate stream buffer.

3.5 Direct Communication

The previously-described shared memory access mechanism for CPU-RH communication works well for long-

latency data transfers initiated by the RH kernels, but cannot efficiently handle all of the communication between the

CPU and the RH kernels. Therefore I added support for an additional communication mechanism that uses memory-

mapped I/O; this I/O space allows applications to directly issue commands and submit queries to an RH kernel. This

form of communications is primarily used to initialize RH kernels, query if a kernel is present on the RH fabric, and

to determine if an RH kernel has finished executing.

A dedicated on-chip ring network handles the direct communication between the CPUs and the RH kernels [14].

Figure 3.3 illustrates what this network looks like. Each link on the network takes one cycle to traverse, and each

packet spends at least one cycle at each router to forward the packet (the routers are designated by an R). Each link on

the network is bidirectional, and only one packet can traverse down each link (in each direction) at a time. To simplify

the design of the network, each router had unlimited buffers; however in practice this network is very lightly loaded,

and buffering along the links is rarely used. Each node on the network can only send out a single packet each cycle.

Likewise, each node can only receive a single packet every cycle. This effectively limits the rate that the RH controller

can respond to requests from the processor cores.
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All loads and stores issued from a CPU to the RH controller’s address space are sent over this network. This

model, assumes that stores to the RH controller require only one directional traffic, and loads to the RH controller

must traverse the links to the RH controller, process the data for a cycle, and then send the resultant data back across

the network.

In addition to allowing the applications to query the status of RH kernels, this network can also be used to read

back a single-word value from an RH kernel that has finished its execution. Chapter 6.6 examines the impact that

direct access to RH kernels has on the execution time of RH kernels, and describes how this is implemented.

Although using such a network might be overkill for communication on one and two-processor systems (where

a point-to-point network would be simpler and provide better performance), on four- and eight-processor systems

some form of network would likely be necessary. Additionally, on real systems, it is likely the this network would be

combined with the existing cache coherency networks, making better use of limited resources. However the imple-

mentation and analysis of such a system is left for future work.

3.6 Simulation Platform

To perform the experiments in this thesis, I developed Alexandrite, a custom full-system simulation platform that

models the proposed reconfigurable computing system. Some of the initial infrastructure was provided by Fu et al.

[39]. This early platform concentrated on measuring the impact of scheduling RH kernels on a single-core processor.

Because of this, the modeling of the RH kernels, and the communication between the RH kernels and the rest of the

system was of a secondary importance. I have greatly expanded upon this infrastructure, concentrating on providing a

more detailed memory interface that models the interactions that a multi-core system might have with a reconfigurable

coprocessor.

I initially developed Alexandrite to model a RH coprocessor on a single-core platform [43, 45], but later expanded

upon it to model multicore systems [44, 46]. This simulation platform models the performance of single chip systems

containing one or more UltraSparc processors, the reconfigurable hardware, the RH kernel’s access to main memory,

and the direct communication between the CPU(s) and the RH controller.

Alexandrite uses the Simics [84] platform to provide functional accuracy of the host processor(s). GEMS 2.1 [87]

provides Simics with extensions that model the timing of the out-of-order superscalar processor(s) (Opal) as well as

the cache-coherent memory hierarchy (Ruby). The simulator used the Alexandrite module in conjunction with GEMS

to simulate the behavior of the processor cores, cache-coherent memory hierarch, RH controller, stream controllers,

and the configured RH kernels.

Alexandrite models the timing of the RH kernels by using Verilator [110], which translates the Verilog kernels into

steppable C++ modules. Verilated modules functionally simulate the kernel faster than would be possible using event-

based simulation of Verilog code. The Verilated modules includes timing hooks, allowing the simulator to step the

hardware through its operation. Verilated modules also include communication hooks that interface with the modeled
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Figure 3.4 Block diagram of the Alexandrite reconfigurable computing simulator.
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stream controllers, providing data to the RH kernels. Alexandrite issues these memory requests to Ruby’s timing-

accurate cache-coherent memory model. An overview of the execution flow of the simulator can be seen in Figure

3.4.

Because clock frequencies of RH kernels are generally slower than the clock frequency of the host processor(s),

Alexandrite ticks the RH kernel’s clock forward less frequently than the clock of the host processor(s). For example,

if the RH kernel executes at 300MHz, and the host processor executes at 900MHz, Alexandrite will tick the RH kernel

once every three CPU cycles. This allows Alexandrite to accurately model the relative execution speeds of the RH and

software. The exact clock multiplier depends on the achievable clock frequency of the synthesized RH kernel.

3.7 System Limitations

Not all of the problems encountered when creating a platform from scratch were able to be adequately solved in my

research. Two unsolved problems remain that need to be addressed for this system to be implementable. The first is the

design and placement of the stream controllers that transmit data between the RH kernels and the RH controller, and

the second, related problem, involves the placement of RH kernels that span multiple RH tiles. This section examines

these problems in depth, proposing multiple potential solutions for each.

3.7.1 Stream Controller Allocation

In the current system, each stream controller contains an address generator, and five FIFOs that that contain eight

entries of up to 32-bytes in size. Each RH tile in the system contains a single stream controller, simplifying the

interconnection between a tile and the stream controller.

However directly mapping a stream controller to each RH tile results in an inefficient allocation of resources. All

of the RH kernels used in this work require a very limited number of input and output streams. Most only required one

or two input streams, and a single output stream (only one of the RH kernels required more than two input streams).

These requirements are unrelated to the size (in tiles) of the RH kernel in question; a kernel occupying 13 tiles is likely

to have the same number of input and output streams as a kernel occupying a single tile. In these situations, many

of the stream controller resources go unused, resulting in wasted resources. Additionally, although a handful of RH

kernels use streams with 32-byte data (the maximum data size of the FIFOs), most require only a fraction of this, many

only accessing eight bytes of data at a time. These factors result in a large portion of the FIFO’s SRAM bits going

unused. This system would also require more I/O “pins” between an RH tile and its associated stream controller than

could realistically be placed on the chip. The current system would require 1280 data “pins” to connect each stream

controller with its associated RH tile, despite the fact that none of the examined RH kernels use more than 512 data

“pins” (and this is for a kernel that occupies five RH tiles). The most “pins” used by an RH kernel that occupies only

a single RH tile is 320, therefore, the vast majority of data “pins” go unused, resulting in a large amount of wasted

resources.
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In a real system, a more efficient allocation of stream controllers and data wires would be required. The current

system assumes that the stream controllers’ FIFOs are implemented using “hard” logic (non-reconfigurable), however

it might be better to use the block RAMs associated with each RH tile to implement the FIFOs (these block RAMs

would require some modification to support asynchronous access required for data to travel between both the RH

controller’s and the RH tile’s clock domains [8]). In such a system, a single “hard” address generator could be

associated with each RH tile or each tile could use a “soft” address generator that uses resources on the RH (such as

the DSP block). In this scenario, a limited number of “pins” would be available to connect the RH controller to the

RH tile. Logic to select which “stream” the data is from could either be provided on separate “pins”, or each stream

could have its own unique set of data “pins”.

Another potential optimization to the stream controllers would be the creation of a “reconfigurable” FIFO. Many

kernels do not require a FIFO that operates on 32-byte data entries. Instead, smaller FIFOs could be linked together

to create a single larger FIFO. This optimization could help deal with the wasted space in each FIFO, but wouldn’t

address the problem of unused stream controllers associated with each RH tile.

Although these solutions can make for a more efficient stream controller, they still have their own forms of waste.

Another potential solution would be to have a limited pool of stream controllers that can be used at a given time.

When an RH kernel is initialized it would have to specify not only how many tiles it requires, but also how many

stream controller resources it requires. Later, when the OS determines which RH kernels should be loaded onto the

RH fabric, it would have to take into consideration both the number of tiles, and the number of stream controller

resources required by an RH kernel. The OS could also be unaware of the stream controller allocation, and instead a

static pool of stream controllers could be available for use by all of the RH kernels that are currently configured. The

RH controller could dynamically allocate these stream controllers to an RH kernel when it is first requested. If an RH

kernel is requested when there aren’t enough stream controllers available to support it, the system would either have

to delay execution of the RH kernel, or execute a software alternative. Because many RH kernels are only executing a

fraction of the time they are configured (See Chapter 5.1), this could result in a better allocation of resources, although

it would likely come with its own share of problems.

Much future work is needed to investigate how to allocate the stream controllers to the RH kernels. The work

in this thesis, focuses on the viability of the platform as a whole, and so it has ignored some of the implementation

details involved in the stream controller’s allocation, relying instead on a simplistic model that is able to estimate the

performance of the RH kernels, and their associated applications.

3.7.2 RH Kernel Placement

In the current system, RH kernels can occupy any set of tiles on the RH fabric. However, implementing this on

a system would require a crossbar to interconnect all of the tiles on the system. Although this is feasible for systems
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with a small number of tiles, it would likely be infeasible for larger systems. Better ways to partition RH kernels

across multiple tiles and place them on the tiles are therefore needed.

Although much research has targeted the placement, routing, and packing of separate circuits on an FPGA, this

is often done as an offline analysis [126]. Real-time reconfiguration of devices is currently in its infancy. Newer

FPGAs have tools to allow for the reconfiguration of portions of the chips, but these tools often require separate place

and routes for every position on the chip that a circuit might be located [126, 125, 123], although other research has

examined the issues involved with moving pre-placed and routed circuits to a different portion of a reconfigurable

device [91, 54].

Unlike typical FPGA systems, the RH computing system described in this thesis is partitioned into multiple tiles

that can be individually configured. This is similar to prior work that partitioned single circuits across multiple FPGAs

[99]. A similar procedure could be done for on chip tiles, however this would complicate the tool flow, as partitioning

must be considered. Additionally, it is not currently known how much bandwidth would be required between the RH

tiles on the chip, or how best to organize them [122].

One potential solution requires that the tiles are laid out in a one-dimensional array, and each RH kernel occupies

a contiguous set of tiles. However, depending on how many tiles are available on the system, and the average number

of tiles each RH kernel occupies, this could result in fragmentation of the RH fabric, and require the OS to “move” RH

kernels that are currently configured to make room for more RH kernels. Depending on the system design, moving an

RH kernel could require a complete reconfiguration of the RH kernel, making the RH kernel temporarily inaccessible.

Obtaining the best performance in such a system might require a more advanced OS scheduling algorithm that takes

into account the current placement of kernels, and the number of tiles that would be displaced when deciding on a new

scheduler allocation.

Another potential solution to this new scheduling problem is to use a thresholding algorithm to prevent the OS

from reconfiguring the RH fabric if a new allocation of kernels does not obtain a large enough speedup over the

current allocation. The scheduler could then periodically perform a “global” schedule that wouldn’t use thresholding

to select the best RH kernel selection/placement. Such a thresholding scheme would likely improve performance on

the current system, however if the system required RH kernels to be placed in adjacent tiles, the threshold value would

need to be larger to avoid thrashing of the RH fabric. Although this would present an imperfect solution, depending

on the workload, such a system might perform similar to the current system.

Evaluating the best way to handle the communication between tiles and the placement of RH kernels on the tiles

require extensive future work. However, these problems are not insurmountable. Much of the work presented in

this thesis was done to first justify the use of a RH computing system, and also show that the memory and system

arrangement is feasible for future multicore systems. Without this justification being in place, there is little incentive

to examine the best ways to handle inter-tile communication, and the placement of RH kernels on the tiles.
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Chapter 4

Application Programming Interface

The use of a reconfigurable hardware (RH) coprocessor requires a rich interface to enable communication between

the user applications, the RH kernels, the RH controller, and the operating system (OS). This chapter describes the

communication mechanisms used to communicate between the RH and processor(s), discusses the security issues

involved in the communication, and discusses the mechanisms used to ensure that contiguous packets are received int

he order that they are sent.

Access to physically configured RH kernels is abstracted using the concept of “virtual” RH kernels [32, 40, 39].

Virtual/physical RH kernels are similar to the usage of virtual memory, however, unlike virtual memory, when a

requested kernel is not configured on the RH fabric, the software (SW) can instead elect to execute a SW-only version

of the RH kernel. This avoids the long latencies associated with reconfiguring the device. When the OS configures a

physical RH kernel, it updates the associated virtual kernel so that it maps to the configured physical kernel. Section

4.3 describes how the OS configures a physical RH kernel, and performs the mapping of virtual to physical kernels.

In Chapter 9 a single physical kernel can be shared by multiple virtual RH kernels. Therefore the mapping of physical

to virtual RH kernels is not always one to one. The RH controller will then map these actions onto the appropriate

physical kernel (if applicable).

All communication between a user application and the RH fabric takes place using virtual RH kernels. This limits

the application’s access to the physical hardware while still allowing user applications to obtain the status of an RH

kernel, setup the RH kernel, tell it to execute, and determine if the physical RH kernel is still executing. In contrast, the

OS is given full access to all of the virtual and physical RH kernels, allowing trusted access to the physical hardware.

4.1 Memory-Mapped I/O Segments

The CPU(s) use memory-mapped I/O to access the RH controller, as well as the actual RH kernels. Memory-

mapped I/O is commonly used to communicate with devices, however this communication is normally done through

the OS. In this thesis, I use memory-maps to allow user applications “direct” access to RH kernels that they have

requested. This is similar to the work done in the SHRIMP project [15, 34]. Multiple memory segments are defined in

this work to allow for process separation. Separating the memory into segments allows the OS to perform actions on
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RH kernels that cannot be performed by individual applications. This means user application can only access a subset

of operations that the RH controller can handle. Additionally, these memory segments mean that an application can

only access virtual RH kernels assigned to it.

At least two different memory segments are needed to support both physical and virtual RH kernels. However, in

this work, it was found that using four separate memory segments allows for a much cleaner application programming

interface (API). These memory segments are the global segment, physical segment, virtual segment, and the virtual

OS (VOS) segment.

Each of these segments are of different sizes, depending on how many entries are required. However, because

the page size on the UltraSparc platform is 8KB, the memory segments are divided on 8KB boundaries. Although

this might seem larger than necessary (when taking into consideration the number of required entries), these memory

segments only correspond to a portion of the processor’s address space, and does not have to correspond with physical

memory.

4.1.1 Global Memory Segment

The first memory segment is the global segment that is used to set and retrieve global attributes of the RH controller.

This segment corresponds to a single page of “memory” and is primarily used when the OS first initializes the RH

controller. For instance, the OS uses this segment to query how many tiles are on the system (allowing a single device

driver to support multiple devices, each containing a varying number of RH tiles). Interrupt routines associated with

the RH controller also use this segment to determine the cause of an interrupt.

4.1.2 Physical Memory Segment

The physical memory segment must be able to access each physical kernel that could exist on the RH fabric. Each

page in this segment represents a single physical RH kernel. Because a configured kernel must occupy at least one tile

on the RH, the maximum number of “entries” in the physical memory segment is the number of tiles on the system

(with each entry occupying a single page of the physical RH kernel’s memory segment).

The physical memory segment is used by the OS to perform operations on a physical RH kernel. For instance, in

a real system, this memory segment would be used to specify the address, and length of the configuration bitstream

of an RH kernel. It would also be used to specify which tiles on the system the configuration should occupy. Any

operation directly associated with a physical RH kernel is mapped into this memory segment.

4.1.3 Virtual Memory Segment

A portion of the the virtual memory segment is mapped to an application when the application first initializes

an RH kernel (see Section 4.2). Each page of the segment corresponds to a single virtual RH kernel. This segment

contains user-accessible parameters that an RH kernel needs to operate, allowing an application to read back if a
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kernel is available, set stream controller parameters, start an RH kernel, and query if a kernel has finished operating.

For details on how these steps are done, see Section 4.2 .

Each kernel in the system is assigned a single 8KB page of the virtual memory segment. Because hardware is

needed to support each virtual kernel on the system, a hard limit is placed on the number of virtual RH kernels that a

system can contain. Therefore this memory segment contains a single page for each virtual kernel that can exist in the

system.

4.1.4 Virtual OS Memory Segment

Although a memory segment for each virtual RH kernel already exists, this is not sufficient to handle all of the

operations that can be performed on an RH kernel. This is because portions of the virtual memory segment are mapped

into user applications’ address spaces. Therefore user applications can access all parameters associated with a mapped

virtual RH kernel. However, the OS must be able to perform additional operations on virtual RH kernels that the user

application should not be able to perform.

We therefore created a separate VOS memory segment that allows the OS to access portions of a virtual RH kernel

that user applications cannot access. Pages in this memory segment are only mapped into the OS’ address space,

and are primarily used to map virtual RH kernels to physical RH kernels, to initialize the virtual kernel’s memory

management unit (MMU), and to gather statistics about a virtual RH kernel that can be used to schedule which RH

kernels should be configured on the device.

4.2 Initializing and Using RH Kernels

An RH kernel must be initialized by the OS before it can be used by an application. To do this, the application first

opens up a virtual kernel device that is created in the /dev/ directory when the OS boots up. Once the “file” is opened,

the application writes a structure containing the RH kernel’s information to the file. The OS uses this information to

setup the virtual kernel on the RH controller, initialize the virtual kernel’s MMU data, specify the type of kernel that

is to be used, etc. After the OS sets up the virtual kernel, execution is transferred back to the requesting application.

Next, the application must request a “memory-map” of the file that it opened. The OS will then map the 8KB

page virtual kernel memory-map to the requesting application’s address space that the application can use to access

the virtual RH kernel. Access to this returned virtual kernel memory-map will be referred to as loading and storing

data to/from a virtual RH kernel.

Once the application has obtained the virtual kernel, it is ready to be used. Because the OS is responsible for

deciding which RH kernels are loaded on the RH fabric at a given time, the application must check to see if the RH

kernel is available on the RH before using it. The application does this by reading back a value from the “Kernel

Status” offset of the virtual RH kernel.
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1 do
2 Status = QUERYRH(V irtualKernel)
3 while (KERN BUSY(Status))
4 if (NOT CONFIGURED(Status))
5
6 Software Routine. . .
7 else
8 INITKERNPARAMS(...)
9 LAUNCHKERN(V irtualKernelID)

10 WAITKERNDONE(V irtualKernelID)

Figure 4.1 Pseudocode illustrating how an application accesses a virtual RH kernel, and launches it if it is available.

The kernel can currently be in one of three states: Available, Not Configured, or Busy. The Busy state indicates that

the RH kernel is currently configured on the fabric, however another application is executing on the physical RH kernel

(for details on how multiple applications can share an RH Kernel see Chapter 9). If the kernel is in the Available state,

the RH controller will “reserve” the RH kernel for the requesting application. When an RH kernel is reserved, another

application cannot access it (it will be in the Busy state), and it cannot be deconfigured until the RH kernel has finished

executing (however the OS can tell the RH kernel to automatically deconfigure itself when it is done executing).

Figure 4.1 shows pseudocode for the typical usage of an RH kernel. In this example, if the RH kernel is busy, the

application will wait until the hardware is available. If the kernel is not present on the RH, a SW version of the kernel

is executed instead, and if the RH kernel is available, the application initializes and executes the RH kernel.

Before executing a kernel, many different parameters must be initialized. In particular, each of the stream con-

trollers associated with the RH kernel must be initialized. Each stream controller currently requires the programmer

to set 13 different variables to be useable. However, many of these variables are either fixed for the kernel (never

change), or are the same during a single instance of a program’s execution. For example, many of the video processing

kernels always look at 8x8 blocks of data, and always execute for the same number of iterations. This part of the

kernel never changes. However, these kernels also need to know how “wide” the frame of data they are looking at

is so that the stream controller can calculate the correct stride between consecutive rows in the frame. This portion

of the kernel is dependent upon the video being encoded, however, once this value is set, it is unlikely to change

throughout the kernel’s execution. The remaining parameters (such as the start memory address of the data a kernel is

consuming/producing) are likely to change every time the kernel is called.

Because many of the parameters do not change often, multiple optimizations have been made to the stream con-

trollers that allows them to be used without resetting all of the parameters contained in them. This saves multiple

cycles each iteration, and in the case of some of the short-running Xvid kernels, performance on the RH would be
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much worse if all of these parameters had to be set for each stream controller (in many cases, the overhead of setting

all these parameters is even greater than just the kernel’s SW execution time).

The first optimization allows an RH kernel developer to set “default” values for each of the stream controllers

parameters. This way the application does not have to initialize static stream controller parameters. Secondly, the RH

kernel’s stream controllers cache all of their parameters between calls to them. This cache is only cleared (to default

values) when an RH kernel is reconfigured on the RH fabric, or if kernel sharing is enabled, and the physical RH

kernel was last used by a different application as described in Chapter 9.

To accommodate this second optimization, a kernel can be in a fourth status when requested by an application:

Available but not initialized. When an RH kernel is in this state, the kernel is still reserved, however the application

should ensure that all of the stream controllers are reinitialized. With these optimizations in place, the application only

sets the parameters that change between calls to the kernel. Many kernels only need to update the memory address

that each of the kernel’s stream controllers access data from.

After all of the stream controllers, and the RH kernel itself has been initialized, the application can start executing

the RH kernel. This is done by writing to the StartKernel offset in the virtual RH kernel. Once the kernel starts execut-

ing, applications can poll the status of the virtual RH kernel to see if the RH kernel has finished executing. Although

applications could continue executing useful code while also executing on the RH coprocessor, the applications exam-

ined in this work do not do this because it would require significantly altering the application source code. Such an

expensive redesign is unlikely to be done for many of the short-running RH kernels used in this work.

RH kernel continue executing until all of their output stream controllers have finished processing their data, or the

RH kernel sends the RH controller a done signal. However, the RH controller does not mark an RH kernel as done,

and “unreserve” it until all of the kernel’s outstanding memory requests have been committed to the cache hierarchy.

This acts as an implicit memory barrier, ensuring that memory is updated when a SW application reads back that the

kernel is done.

4.3 OS Control of the RH Kernels

The OS is responsible for the control of the physical RH kernels. The OS must be able to initialize RH kernels,

configure the RH kernels, and later respond to interrupts generated by the RH controller on behalf of RH kernels.

Most of the OS communication with the RH controller takes place using the base, physical, and virtual OS memory

maps. Whenever the OS accesses a virtual or physical RH kernel, the OS first obtains a lock on the device to ensure

atomicity of the OS’ actions.

The OS is first invoked when an application opens up a virtual RH kernel from the /dev/ directory. During this

routine, the OS checks to see if the virtual kernel has been opened by another application. If it hasn’t been, the OS

sets up the device, and modifies the appropriate OS structures so future requests will be answered properly. The OS

also initializes the virtual RH kernel with the RH controller. In doing this, it sets the PID of the application, as well as
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the location of the application’s translation storage buffer (TSB) and page table address of the application. These are

stored using the virtual OS address space associated with the opened virtual kernel. In Section 4.5, the these structures

are used to help translate virtual memory addresses issued from RH kernels.

The OS also implements a “write” routine so that the application can write information about the requested RH

kernel to the OS. This structure contains run times of the RH kernels (both in software as well as hardware), the size

of the RH kernel (in tiles), the type of RH kernel (in a real system this would correspond to a bitstream file), as well

as the number of equivalent instructions it takes for the SW to run the RH kernel (for detailed information on the

equivalent instructions metric see Chapter 5.3). These values are saved in the OS and written out to the kernel’s virtual

OS address space.

The next routine the OS implements is the memory map routine. In this routine, the OS determines the physical

memory address of the virtual RH kernel, and maps it to a single page of virtual memory in the requesting application’s

address space; allowing the user application “direct” access to their virtual RH kernels.

The last step when initializing a virtual RH kernel is to setup an address translation thread. The behavior of this

thread is described in Section 4.5.

The OS is also responsible for deciding which RH kernels should be loaded on the RH at a given time, and

subsequently configuring the selected virtual RH kernels onto the physical RH. Configuring a selected RH kernel on

the RH is a fairly straightforward process that can be done dynamically at runtime (as described in Chapter 2.7.2),

or statically when an application initializes the kernel. To start the configuration process, the OS needs to know the

virtual RH kernel to configure, the bitstream configuration of the physical RH kernel, as well as the physical kernel

position that the RH kernel will be configured on. The OS then tells the RH controller to configure the physical RH

kernel at the appropriate location on the RH. This causes the RH controller to queue up the kernel in its configuration

slot, and will start the configuration of the RH kernel as soon as possible. The OS than writes to the VOS address space

of the virtual RH kernel to update which physical RH kernel it corresponds to. Once the RH controller has finished

configuring the RH kernel, an application that requests the kernel will be informed that the RH kernel is configured,

and ready to use.

The OS also has the capability of querying RH kernels to read back statistics about the execution of the RH kernels.

This is done to provide the OS with a more accurate picture of the RH kernel’s execution time when compared to the

time stated when the kernel is initialized. This prevents an application from saying that an RH kernel is much more

valuable than it really is so that it will be more likely to be configured, resulting in better allocation of the application’s

kernels (but a worse overall allocation of kernels) [41]. To support this, the OS reads back the average time the

kernel takes when executing in both hardware and software, and the number of times the RH kernel was called both

in hardware and software. The OS is also able to reset these values. These values are all located in the VOS address

space.
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4.4 Hardware Support

Unlike most hardware, the RH controller was designed to interact directly with “non-privileged” applications, and

must take extra precautions to protect system memory. For the system to operate correctly, the RH controller must be

able to answer all requests to memory segments corresponding to it, forwarding them to the appropriate portion of the

RH controller when appropriate.

Therefore, the RH controller must be able to keep track of all of the physical RH kernels, as well as all of the

virtual RH kernels in the system. Because of limited device constraints, this puts a hard limit on the total number of

virtual kernels in the system. However future research could examine methods that would allow the RH controller

to support more virtual RH kernels by dumping the contents of known RH kernels to known main memory locations

(provided by the OS). For now, the number of total virtual and physical kernels that can exist in the system is set to be

far greater than the number of RH kernels used in any of the workloads.

4.4.1 Support for the RH Controller’s Memory Segments

The hardware to support the RH controller’s memory segments is separated into three categories: hardware to

handle virtual RH kernels, hardware for the physical RH kernels, and hardware to respond to requests to the RH

controller itself.

Requests to the base memory segment are often fairly simplistic requests. The most common is used to find out

which virtual RH kernel caused a TLB miss. This can be handled by a single register that is updated upon a TLB miss.

The details of the TLB miss handler are described in Section 4.5. Other requests to the global address region are either

to hard coded values (such as the number of tiles contained in the system), or are used for debugging of the simulation

platform.

Memory requests corresponding to virtual (both virtual and VOS memory segments) RH kernels are more difficult

to handle, as each virtual RH kernel can be in many different states, and many requests addressed to a virtual RH

kernel must be forwarded to the physical RH kernel that is associated with the kernel. Each virtual RH kernel is either

available on the RH, or not. Therefore, they must keep track of which physical RH kernel they are associated with.

Although a virtual kernel can be associated with multiple physical RH kernels, in this work, the first of these physical

kernels was designated to be the “master” physical kernel. Other copies of the kernel are linked from physical copies

of the kernel (see Section 9).

4.4.2 Querying RH Kernels

When a kernel is first queried it is put into a “reserved” state. To do this, the RH controller must keep track of

which physical kernel the virtual kernel is currently executing on (this way it does not have to check all potential

physical kernels that it could correspond to). If this value is not set, then the kernel is not currently reserved. When a
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kernel is reserved, many requests will be forwarded to the physical kernel which will handle them appropriately (such

as storing the values to the stream controllers). Most requests to a “unreserved” kernel are undefined, and will be sent

a NULL response.

RH kernels execute on the physical RH, but applications query the status of virtual RH kernels to determine if the

physical RH kernel is still executing. Therefore, when a physical kernel has completed its execution, it informs its

owning virtual RH kernel that it is done. When doing this it will pass any “buffered” value that an application might

request after the kernel has completed to the virtual RH kernel. The virtual RH kernel then marks the RH kernel as

unreserved, and can later respond to requests for the buffered value.

Different strategies have been examined to determine how an application should check when a kernel has finished

its execution. In a naive implementation, the owning thread could continuously query the RH controller to determine

if the kernel has finished executing. Although this method works well, and can return results relatively fast, it requires

extensive communication on the interconnection network between the RH controller and the processors (this intercon-

nection network is described in detail in Chapter 3.5). These messages require extra power, and can, in larger systems

executing many hybrid RH/SW applications, saturate the network, causing network performance to plummet [14].

To optimize these queries, the RH controller queues requests that are querying when the RH kernel has finished its

execution. In this scenario, the RH controller will buffer a query for up to 200 cycles to wait and see if the RH kernel

finishes its execution. If the RH kernel is not done executing after 200 cycles, the RH controller will return that the

RH kernel is not done executing. The RH controller does not have infinite buffering capability, and can only buffer a

single request per virtual RH kernel. Therefore, a modification must also be made to the CPU to prevent it from issuing

multiple requests querying the RH kernel at the same time. This logic stalls requests issued to the RH controller if

there is already an outstanding request to the same address. The logic is similar to that required to combined multiple

loads into a single, wider L1 cache request [129], however, instead of forwarding the data to the different loads, a

subsequent load is stalled until the first load is finished. Upon finishing the first load, the second can than be issued.

In multithreaded applications, only one thread should issue queries to see if an RH kernel is done executing.

By performing these optimizations to the query logic, in the common case, RH kernels can immediately return

when they have finished executing, requiring only the return-trip latency of the direct-communication latency, rather

than the full request latency. Additionally, far fewer requests need to be sent over the network to inform an RH kernel

has finished its execution. In the case of short-running RH kernels (those that usually execute in under 200 cycles),

branch prediction can be improved, and the processor can resume its execution faster once the RH kernel is done

executing. Using this technique for stalling RH kernel queries improves the performance of the simulated RH kernels,

however, this thesis does not present these results.
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4.4.3 Configuring RH Kernels

Hardware support is also needed for the RH controller to change which physical RH kernels are loaded on the RH

fabric. The OS informs the RH controller to change a physical kernel configuration by setting a new address/length

pair to the kernel configuration bitstream offset. After doing this, the hardware is responsible for loading the new

configuration bit stream.

To do this, the RH controller must first have a mechanism to queue up multiple physical kernel configuration

requests. The RH controller then checks the first entry in the queue to make sure the physical kernel is done executing

(the OS must ensure that no virtual kernels point to a physical kernel before it initiates a deconfiguration request). Once

the old kernels are finished deconfiguring, the RH controller can start loading the new physical kernel’s bitstream from

main memory (the OS is responsible for ensuring that the bitstream is located in contiguous physical memory pages).

Hardware support is also needed in the virtual RH kernels to check if the physical RH kernel that they are associated

with has actually been configured. This can be done by having the virtual RH kernel poll the physical RH kernel when

it is queried. An additional optimization could be made where the virtual RH kernel does not perform this check after

acknowledging that the RH kernel is loaded as long as the physical kernel value on the virtual kernel is not changed

by the OS.

4.5 RH Kernel Virtual Address Translation

When RH kernels access memory, the RH controller is responsible for translating the issued virtual memory

addresses. This is done using a TLB that is shared by all of the physically configured RH kernels. If a valid translation

cannot be found in the RH controller’s TLB, the RH controller interrupts the CPU to obtain a translation. The OS

then executes a custom interrupt handler, described in pseudo-code in Figure 4.2. On multi-core systems, the RH

controller interrupts the host CPU that is running the application that requested the RH kernel to reduce the impact of

page translation interrupts on the performance of other processes executing on the system.

The interrupt routine was designed to mimic the trap routine that the UltraSparc processor enters upon a software

TLB miss, however the interrupt routine must first read back which virtual RH kernel caused the miss from the RH

controller’s base memory segment. The routine then reads back the virtual memory address that caused the miss. Like

normal TLB misses during software operation, the routine first checks the UltraSparc’s TSB for the faulting address.

If the address is not mapped in the TSB, the interrupt handler walks the page table to find the translation. For some of

the studies performed for this thesis, the RH controller directly accessed the RH kernel’s TSB, for details on how this

is done, and its impact on performance, see Chapter 7.3

Interrupt routines in Linux have limited capabilities: they cannot block (to the OS) waiting for input like a normal

process can. Therefore, on a page table miss, the interrupt handler is unable to retrieve the faulting page from disk

(or wherever it may be) [104]. Because of this, the RH kernels rely on the user application to handle page faults. To
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INTHANDLER(MissAddr, IsRead)

1 hash = TSBHASH(MissAddr)
2 if (TSBhash.Addr = MissAddr)
3 if (VALID(TSBhash.phys)
4 return TSBhash.phys
5 phys = PAGETABLEWALK(MissAddr)
6 if (VALID(phys))
7 return phys
8 WAKEUP(FaultHandlerThread,MissAddr, IsRead)

FAULTHANDLERTHREAD(MissAddr, IsRead)

1 while (1)
2
3 if (IsRead)
4 tmp = ∗MissAddr
5 else ∗MissAddr = ∗MissAddr
6 INTHANDLER(MissAddr, IsRead)
7 SLEEP()

Figure 4.2 Interrupt handler routine that is called upon a TLB-miss in the RH controller.
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handle page faults, user applications spawn a fault-handler thread when initializing the RH kernel (applications only

need to spawn a single fault handler thread regardless of how many RH kernels the application has). This thread waits

in a loop that blocks to the OS until the interrupt routine experiences a page table miss. On a page table miss, the

interrupt handler awakens this fault-handler thread. After waking up, the fault-handler thread queries the OS for the

logical address of the faulting load or store, and attempts to read or write from it (as appropriate). Upon accessing

this address, the thread will produce a page fault that invokes the OS’ page fault handler. After the thread has finished

reading/writing from the faulting address the fault-handler thread blocks to the OS once again. The OS will then

provide the page translation to the RH controller so that the address can be added to the shared TLB.

Unfortunately, this method is slower than if the interrupt routine fully handled the page fault. However, in a well-

tuned application, page faults should be a rare occurrence. Additionally, page faults are already extremely expensive

to handle (on the order of multiple milliseconds) [109], so the extra time required to swap in the fault-handler thread

should not result in significant additional overhead.

After translating an address (whether within the interrupt routine or the fault-handler), the OS sends the translated

address to the RH controller. The RH controller stores this address inside its TLB, and reissues the virtual address

translation.

4.6 Memory Ordering on the Reconfigurable Hardware

On this system, the RH acts very much like a peer of the processor cores from the viewpoint of main-memory.

Both processor cores and the RH kernels share virtually addressable memory, and both can use the processor’s cache

subsystem to store data that is frequently reused.

However, in the current system the RH kernels cannot operate on their own, and require support from an associated

SW thread. Application software is expected to launch RH kernels, determine when the kernels are done executing,

and ensure data is ready for the RH kernels to process before starting the RH kernel. Because of this, we optimized

our system for performance at the expense of ensuring loads and stores issued by the RH kernels are ordered properly.

Once requests are issued to the cache subsystem, they maintain total store ordering, however this is not the case within

the RH controller. This is problematic because the RH kernels should calculate the same values that would have been

calculated by software. If the memory accesses in the system are not consistent, loads and stores can be reordered with

respect to one another, and a load may read back “stale” data from memory. This can result in race conditions where

the CPU and RH kernel contain data that is logically inconsistent [59].

Although the processors, and caches support total store ordering, the RH kernels support a much weaker release

consistency model where access to memory is acquired when the CPU launches the RH kernel, and is released when

an RH kernel has finished executing. To ensure that hybrid RH/SW applications will execute properly on this platform

data accesses made within the RH system or between the CPU and RH must be repeatable if the same test was run

again.
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Because our RH system ensures no ordering of data loads and stores made by RH kernels, we have placed restric-

tions upon how RH kernels can access main-memory to ensure that our hybrid RH/SW applications are data race free.

To provide for this, a RH kernel can never write data that it will later read, as this could result in a read after write haz-

ard [59], where the data read back does not match the data the kernel previously wrote out. RH kernels can easily work

around this problem by internally caching any data they will need later before committing it back to memory (data can

be read from memory multiple times, as long as it is not read again after the kernel writes to it), however this was not

necessary for the RH kernels used in this thesis. Additionally, RH kernels are not allowed to directly communicate

with concurrently executing RH kernels. If they did, a race condition could occur where kernel A writes data first to

memory location 1, and then to memory location 2. A second kernel B might read back these values, first reading

the new value from location 1, and then reading the old value from location 2. Therefore software programmers must

ensure that RH kernels do not read data that is being produced by a currently executing RH kernel. However, this is

only necessary on multithreaded applications, because, as I will explain below, the SW in our system spin-waits while

an RH kernel is executing as a method of providing the release consistency model used in CPU RH communication.

In a multithreaded system, threads generally cannot write to data memory unless they have an exclusive lock on the

data [109], so by extension the RH kernels called by each thread would not be reading data that another thread has an

exclusive lock on.

In addition to ensuring our RH kernels were data race free, we also had to ensure that communication between the

SW and RH kernels was data race free. Because our RH kernels followed a release consistency model, the RH kernels

must have complete control of the memory they accesses during their execution, and the SW application must have

complete control over that memory when it executes. To prevent SW from reading back stale data from finished RH

kernels, we placed an implicit memory barrier at the end of each RH kernel (when releasing the RH kernels access to

memory). This prevents SW from reading back that an RH kernel is done until all of the kernel’s memory accesses have

been serviced by the cache subsystem; ensuring that the RH kernel properly releases its access to memory. Therefore,

as long as the application SW does not read data that is currently being processed by an RH kernel, or output by an

RH kernel, the hybrid RH/SW application is data race free, and will execute correctly. This is implicitly the case

in our system, as the SW applications spin-wait while executing RH kernels, which prevents the SW from accessing

any of the data the RH kernels are processing. In our multithreaded application we locked the data being written by

individual threads, or theRH kernels launched by the thread. This ensures that other SW threads cannot access the data

that another RH kernel writes (and the RH kernel likewise cannot read data being written by other SW threads).

In future systems, it is possible that limited forms of store ordering could be utilized within the RH controller,

however the optimizations made in the stream controllers make complete ordering of stores extremely difficult. Future

work could also examine the use of special atomic primitives and barriers within the RH kernels that would allow

multiple RH kernels to safely communicate.
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4.7 Library and OS Support

To support this reconfigurable computing system, I have developed a Linux kernel module, as well as a C library

(LibRH) that implements all of the communication between the user applications, the OS, and the RH controller.

Using these modules allows application developers to create new RH kernels without having to concern themselves

with the direct RH/SW communication necessary to use the RH kernels.

The Linux device driver handles the initialization and configuration of RH kernels. It also performs all of the

actions discussed in Section 4.3, and services interrupts from the RH controller. The module was developed for the

2.6.17 version of the Linux kernel.

The library SW API consists of a set of functions and macros that user applications can use to abstract away the

details of the communication with the RH kernels. This library is responsible for initializing RH kernels, automatically

spawning a single page table miss handler thread (see Section 4.5) for the application, and allows for the initialization

and calling of RH kernels.

The C library uses a LibRH structure to represent an RH kernel. This structure keeps track of the file descriptor

for the virtual RH kernel that was opened, and contains a pointer to the virtual RH kernel memory map that the library

uses. Additionally, it encapsulates access to the stream controllers in a C-style, presenting the application developer

with an array of structures representing the stream controller. Using this allows applications to set fields in the stream

controller in the same style that they would change values in any structure (for example, the user could change the

starting address of stream 0 of a kernel by the following line of code: KERNEL->Streams[0]->StartAddr=Value).
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Chapter 5

Benchmarks, Workloads, and Testing Metrics

I tested a range of applications on my system to model “real-world” workloads. To do this, I developed multiple

hybrid RH/SW benchmarks, and combined them with software-only benchmarks to evaluate the performance of the

reconfigurable computing platform.

This chapter first describes the benchmarks used in this work (Section 5.1). Then, Section 5.2 discusses how I

combined these benchmarks to create “realistic” system workloads. Finally, Section 5.3 describes some of the metrics

used to evaluate the research performed in this thesis.

5.1 Benchmarks

I evaluate the proposed reconfigurable computing system using a variety of benchmark applications. Because the

execution model of the platform differs from that of traditional software-only applications, I heavily modified many

of the benchmarks so that they executed efficiently on the platform. This section first describes how I developed these

benchmarks (Section 5.1.1). Then it examines the hybrid benchmarks that have actually been implemented. Finally it

describes the software-only benchmarks used in some of the experiments performed in this thesis.

5.1.1 Benchmark Development

Developing benchmarks to execute on the proposed reconfigurable computing platform required a significant

amount of work beyond designing the interface and API described in Chapter 4. Most of the benchmarks started

from open-source software-only applications, which simplified the development process.

I only ported applications likely to be executed on a high-end embedded reconfigurable platform to my new plat-

form. To create these benchmarks, I first decided which portions of the application should be accelerated by the RH

fabric. To do this, I executed the software versions of the benchmarks using the GNU profiler (gprof). This allowed me

to determine which functions in the application represent the majority of the application’s execution. I used a worksta-

tion computer to perform the Initial profiling of the applications. For these measurements, custom SIMD instructions

were disabled, because we envision the RH coprocessor being used in place of a SIMD unit. Although this machine
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was much faster than the target embedded platform, the approximate distribution of runtimes of each function in the

application tends to be similar across platforms, providing a rough estimate of the application’s runtime distribution.

After profiling the application, I evaluated candidate portions of the application to determine the suitability of

creating RH kernels for them. This process involved carefully examining the functions that represented the largest

percentage of the application’s execution time (based on gprof’s measurements). This often involved examining not

only the function shown in gprof, but also the functions that called the candidate function. This is because C functions

don’t always translate directly into RH kernel implementations. Additionally, in some instances it was easier to create

a Verilog implementation of only a portion of a C function, allowing similar application coverage with simpler RH.

If the candidate kernel was deemed suitable for a RH implementation, we created a Verilog implementation of the

kernel.

To create a Verilog implementation of the kernels, I modified the software to output test input vectors (and the

corresponding outputs) that could be input into the verilog test bench. Once we created fully working and tested

Verilog implementations of an application’s kernels, I modified the software’s source code to call the newly created

RH kernels.

For some kernels, this process was straightforward, as the Verilog kernel was as a drop-in replacement for all,

or most of a standalone C function. In these situations, all that I only needed to add code that used the LibRH API

(Chapter 4.7) to call the RH kernel where appropriate. In other cases, this proved to be a more difficult challenge.

For instance, the hardware implementation of the FDCT kernel in Xvid scales the output in a very different manner

than the software version. Therefore, I had to modify a later portion of the application to detect if the SW or the RH

generated the inputs, applying different scaling appropriately. In other RH kernels, I created new buffers to facilitate

the transfer data to/from the RH kernel.

The benchmarks developed for this work, including their RH kernels are all part of the ERC Bench (embedded

and reconfigurable computing benchmarks) project [24]. Some of these benchmarks were developed specifically for

the work done in this thesis, while others have existed in varying states of readiness, and were modified to run on

the Alexandrite simulation platform. In the future, it is likely that RH can be developed using “high-level” hard-

ware description languages that can create hardware implementations from a high level description of an algorithm,

or software code [37, 112]. Additionally, a hardware software codesign environment could allow developers to di-

rectly include hardware and software modules in the same project, simplifying the design and test of hybrid RH/SW

applications.

5.1.2 Hybrid RH/SW Benchmarks

This thesis analyzes the performance of four hybrid RH/SW benchmarks: Xvid encoding, Tremor decoding, AES

encryption, and a WiMaX back-end receiver. Table 5.1 describes the RH kernels used in these applications, including

their size (in tiles), clock frequency, percent of their host applications execution time (when running in SW), percent
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Application & Kernels Area (tiles)
Frequency

(MHz)

Percent of
SW-only

exec

Percent of
Hybrid

execution

SW
Runtime
(cycles)

Average
RH

Speedup

Xvid

SAD8 1 500 31.4% 8.6% 652 8.5x
SAD16 1 475 10.0% 1.8% 2,274 15.7x
interpolate 8x8 6-
tap 4 225 7.6% 3.1% 8,950 6.9x

FDCT 9 225 6.4% .89% 19,063 20.4x
interpolate8x8
avg-4 1 450 6.2% 1.1% 2,061 12.5x

interpolate8x8
avg-2 1 500 4.3% 1.1% 1,444 8.7x

transfer 8 to 16
sub 1 500 2% .75% 990 7.7x

total 18 NA 68.6% 24% NA NA
AES 5 225 99.9% 99.9% 247,000 17.2x

Tremor mDCT 5 150 32.5% 2.4% 127,622 21.2x

WiMaX
DFT 12 300 7.1% .53% 56,086 41.1x
Viterbi 12 67 62.0% 1.9% 491,342 100.5x
total 24 NA 69.1% 2.4% NA NA

Table 5.1 Breakdown of the kernels used in the hybrid RH/SW benchmarks, when executing on the RH coprocessor
platform (data is not given for SW runtime and average RH speedup for full applications, as these metrics are used to

describe individual kernels).

of host application’s time spent executing the kernel during hybrid RH/SW execution, the SW runtime, and the overall

application speedup on a single processor baseline system that contained 2MB of L2 cache, and sufficient RH tiles to

fit all of the benchmark’s RH kernels. I calculated these values after enabling all of the optimizations described in this

thesis, so the results in Table 5.1 represent the best runtimes these kernels had on a single-core version of the platform.

The Xvid benchmark uses the Xvid 1.0.3 encoder to encode videos using the MPEG-4 advanced simple profile,

and contains seven different RH kernels that cover ∼69% of the application’s software runtime. All of the simulations

that run the Xvid benchmark encode the same 720x400 input video, however each copy of the benchmark might be

encoding a different portion of the video frame. The xvid encoder encoded multiple frames of the input video before

I created checkpoints of workloads to ensure that I only measured Xvid’s steady-state behavior.

The Xvid benchmark is an example of a hybrid RH/SW application that exhibits different phases of execution,

where each phase of execution calls a different subset of the application’s RH kernels. In the first phase of execution,

the encoder calls the interpolate 8x8 6-tap kernel to create interpolated images of the video frame. The second phase

repeatedly calls the SAD16 routine across the image to obtain an estimate of the motion vectors used in the next phase.

The third phase performs the motion estimation. This phase regularly calls the SAD8 kernel, and also calls both the

interpolate 8x8 average-2 and interpolate 8x8 average-4 kernels to estimate the value of subpixels. In the last phase of

execution, the video is encoding into a bitstream. This phase calls 0the FDCT kernel to transform the video, and the

transfer 8 to 16 sub function to transfer data between macro blocks in the video streams..
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The Tremor benchmark decodes Ogg/Vorbis music files for playback. This benchmark contains a single RH kernel

that performs the modified discrete cosine transform.

The AES benchmark is an example of a high-bandwidth streaming application that encrypts a single large file

(much larger than the cache on the system). Applications that handle secure information commonly use the AES

encryption algorithm. The hybrid application contains a single kernel that represents the vast majority of execution.

Each call to the AES kernel encrypts 8KB of data (either in RH or in software). When simulating AES, the plaintext

input data, as well as the buffer containing the output data is pre-loaded in main memory (but not the cache) to ensure

that the data is found in the process page table. This enables the measurement of AES’s steady-state behavior, and not

artifacts of the beginning of its execution.

Unlike the other hybrid benchmarks examined in this thesis, I developed the WiMax back end receiver benchmark

specifically for heterogeneous multicore systems. The operations performed in the WiMaX receiver are common to

many different software defined radio protocols. I used a reference receiver WiMaX receiver developed in Matlab

[74] to model the WiMaX back end receiver. Because I did develop a front end receiver, the control signals necessary

to change the data rate were not implemented. In the current implementation of the WiMaX benchmark, a single

packet of data is continuously processed in the same mode of operation. This benchmark is multithreaded, spawning

threads for the DFT, denormalizing, demodulating, deinterleaving, Viterbi decoding, Reed-Solomon decoding, and

derandomizing stages of the WiMax back end receiver.

When possible, existing library code was used to perform the operations contained in the pipeline stages of the

WiMaX backend. The DFT uses the KISS FFT library, which implements a fixed-point version of the DFT algorithm.

Viterbi decoding and Reed-Solomon decoding uses Phil Karn’s Forward Error Correction library. The other modules

use custom C routines to implement their functionality. The hardware implementation of the DFT kernel uses a

modified version of one generated using the Spiral project [94].

5.1.3 Software-only Benchmarks

In addition to the four hybrid RH/SW benchmarks, some of the workloads contained SW-only benchmarks. I

used a subset of the SPEC 2006 integer benchmarks [60] for the SW-only benchmarks, including mcf, gobmk, and

xalancbmk. mcf is a benchmark that models the scheduling and routing of a fleet of vehicles using a network simplex

algorithm. gobmk is a solver for the game of Go, and is representative of AI algorithms that a game might contain.

xalancbmk is an xslt processor that transforms xml documents into html. I chose these benchmarks because they

have different memory access patterns and they are similar to software applications that might execute on a high-end

embedded platform.
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5.2 Workloads

Many of the evaluated systems contained multiple processor cores, so I created workloads that run multiple bench-

marks simultaneously. I created workloads containing a combination of the benchmarks for One-, two-, four-, and

eight-processor systems to ensure every CPU on the system was busy..

In an attempt to make the workloads more “realistic”, only certain benchmarks were executed simultaneously.

In particular, all of the workloads contain at most one copy of the Tremor benchmark, and at most one copy of the

WiMaX benchmark. This is because real systems are unlikely to play back multiple audio files simultaneously, or

process multiple WiMaX streams simultaneously.

The workloads used in this thesis, will be referred to by the number of copies of each benchmark followed by the

first letter of the benchmark, with a hyphen to separate the benchmarks. Therefore 2X- 4A-1T-1W refers to a workload

containing two copies of Xvid, four copies of AES, one copy of Tremor, and one copy of WiMaX. For any workloads

where SW-only is included, it indicates that three separate workloads were executed, each containing one of the SW-

only benchmarks. All of the workloads were simulated for 2-billion cycles (just over two seconds of wall clock time)

to get a measure of the workloads steady-state behavior. Unless otherwise specified, the same checkpoint was used

for each workload, regardless of how the system executing it was setup. Therefore (at least initially) the systems will

execute the exact same code, at the same point in time, allowing direct comparisons between the different system

models.

5.3 Testing Metrics

When executing these workloads, a handful of metrics were used to compare the relative performance of different

systems. These metrics are based off those proposed in Rupnow et. al [106].

I measured the performance of single benchmarks within a workload using the equivalent instructions per cycle

(EIPC) metric. This metric is similar to the IPC metric used in traditional processors. The equivalent instruction count

(EIC) of the benchmark is needed to calculate the benchmarks normalized EIPC (NEIPC). The EIC measures how

many instructions the application would have executed for if the application executed everything in SW. This EIC is

then divided by the number of cycles that the benchmark executed for to obtain the EIPC. The EIPC metric is often

used in this thesis for comparing performance of a single application within a workload.

However, on many workloads, this metric is not sufficient for comparing performance, and instead we use the

NEIPC metric. Because workloads can contain multiple threads executing across multiple processors, it is important

to normalize each of the benchmarks to “spread-out” the OS’ overhead amongst all of the benchmarks (and not just

the benchmark the OS interrupts the most). This is done by summing up the number of cycles each of the benchmarks

in the workload executed for, and dividing it by the total number of cycles the simulation ran for times the number of

processors in the simulation. This gives us the “efficiency” of the workload, representing the percent of time an average
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thread in the workload was performing actual work, and not in the OS. To calculate the NEIPC of each benchmark,

the efficiency of the workload was multiplied with the workload’s EIPC. Equation 5.1 illustrates how I performed this

calculation.

NEIPCi =
EICi

Cyclesi
×

∑
i Cyclesi

NumProcessors× TotalCycles
(5.1)

The NEIPC of each application in a workload is useful, but it can be cumbersome to compare each benchmark

individually for each of the many tests that were executed. To do this, I calculated the geometric mean of the workload’s

benchmark’s NEIPC values. This allows the direct comparison of values across different system models.
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Chapter 6

Cache Organizations for Reconfigurable Computing Systems

Cache-coherent reconfigurable coprocessor’s memory systems can be designed in many different ways. However,

in all of these designs, an ordering point is necessary so that the system can ensure that the memory the RH copro-

cessor accesses contains the same data that other CPUs would see. This chapter examines multiple different cache

organizations, and analyzes how the cache organizations impact the performance of both the RH coprocessor, and the

general-purpose processor.

I first examine the difference between RH kernel memory accesses and CPU memory accesses. Then, I propose

various different cache topologies and compare the performance of systems using these different cache topologies and

examine the impact of the cache size on performance. Then I examine the dynamic energy consumption of the memory

hierarchy for each of the topologies. Finally, I propose changes to the access model that allow the CPU to directly

access the results of RH kernels; allowing some of the RH kernel’s memory requests to bypass the cache hierarchy

altogether.

6.1 How Do RH Kernel Memory Accesses Differ From a CPUs?

RH kernels in this system access memory in a very different manner than traditional CPUs. For instance, RH

kernel load/store operations tend to operate on larger data sizes than a general-purpose processor. In this system, an

RH kernel can access up to 32 Bytes on a single load/store operation. In contrast, standard microprocessor load/store

operations operate on word-sized data; allowing them to access one, two, four, or eight bytes of data in a single cycle.

Because of this, RH kernels often require fewer memory accesses to perform the same operation.

In addition, RH kernels can store more of their data internally. When a general purpose processor executes an

algorithm, many of the memory accesses it makes are to state variables contained on the application’s stack. These

accesses tend to hit in the processor’s L1 cache due to both spatial and temporal locality. In an RH kernel, many of

these memory accesses are unnecessary because the RH kernel implicitly keeps track of these variables. In addition,

some algorithms will repeatedly access the same data memory values when performing computations. RH kernels are

much more likely to cache this operational data internally, requiring fewer memory accesses.
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Figure 6.1 CPU/RH topology where the RH and the CPU share a single L1 cache.

Because of this, it is anticipated that an RH kernel will require fewer cache accesses than its software counterpart.

It is also expected that RH kernels will have a higher L1 miss rate; although it is still likely that an RH kernel will have

fewer L1 cache misses than the kernel’s SW implementation. To examine this, I modeled a single CPU system where

both the RH and CPU share a single L1 cache. This is similar to the Molen processor proposed in [79]. Figure 6.1

illustrates how this topology might look on a single processor system. Although this model is overly optimistic with

respect to the cache’s latency (and has further issues when scaling to multicore processors), it allows us to directly

compare the L1 cache hit rate of kernels when executed in the RH, and on general purpose processors.

I first use this shared-L1 topology, to compare the L1 cache’s hit-rate between the RH and SW implementations of

the kernels. Figure 6.2 shows the L1 data cache’s hit rate for all of the RH kernels used in the tested applications. As

expected, the SW versions of these kernels had substantially better hit rates than the RH versions. Figure 6.3 shows

the number of L1 cache misses per 1,000 equivalent instructions both when the kernels executed in SW, as well as

on the RH. The RH implementations tend to have similar hit rates for short-running kernels, and for the long-running

kernels (mDCT, FFT, Viterbi, FDCT) I observed significantly lower hit rates due to the ability of the RH to locally

cache data. These results show that the RH kernel’s lower L1 hit rate is due to both the reduced number of accesses

made by RH kernels, and the greatly reduced execution time of the RH kernels.

Although the RH kernels are capable of generating many more requests per cycle than the SW, this rarely happens

in the kernels that I tested. Figure 6.4 shows how many L1 data requests each kernel generated per cycle for both the

RH and SW implementations. This figure shows that most of the RH kernels generate far fewer requests per cycle than

SW versions of the same kernel. In particular, the highly data-parallel algorithms accessed the cache ∼1/5th as often

as the software would. The only exceptions to this general rule of thumb occurred in some of the Xvid kernels. Many
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Figure 6.2 L1 data cache hit rate for the kernels when executed by RH and by SW

of these kernels read in the same data as the SW versions of the kernels, and only use the data in a single operation.

Therefore both the RH and the SW only have to read this data in a single time. Because of this, many of the requests

rates are similar to those of the SW, and in the case of AVG2, the RH kernel requests slightly more data per cycle than

the SW.

This data suggests that the kernels would not “overload” a standard cache hierarchy, and even suggests that a single

cache has enough bandwidth to handle multiple RH kernels that are running simultaneously. Chapter 7 will examine

the scalability of the cache hierarchy, however this chapter focuses on how the cache hierarchy should be designed.

6.2 Examined Cache Topologies

Although previous work showed that sharing one or more cache levels between cores on a processor [9, 63] allows

for the effective sharing of data on a multicore processor, it is unclear if this will hold true in RH computing systems.

In this section I propose multiple different ways that a RH coprocessor can use shared-memory to communicate with

a general-purpose processor.

I examined a variety of topologies to determine whether particular cache levels are advantageous for RH perfor-

mance. For all tested topologies, the CPU always has a private L1 cache and either a shared or private L2 cache. The

RH’s cache hierarchy varies more significantly than the CPU’s cache hierarchy, both in terms of number of cache levels

and sizes. Table 6.1 lists the nine cache topologies examined in this work. All designs have a 2-cycle L1 access time

and require 13 additional cycles for L2 accesses. In shared L2 hierarchies, if a request from the RH misses in the L2

cache, but is located in the CPU’s L1 cache, the access will require an additional 8-15 cycles (varying due to queuing

delays). In split L2 hierarchies, if the data is not found in the RH’s L2 cache, but is in the CPU’s L1 or L2 cache, it

requires an additional 40-50 cycles to check/update the cache directory, submit the request to the CPU’s L2 cache, and
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Figure 6.3 Number of L1 data cache misses per 1,000 equivalent instructions

transfer the data between the caches. These latencies are calculated by GEMS (discussed in Section 3.6) and include

the timing of the coherence messages needed to perform these operations. I modified the GEMS simulator to provide

timing support for the structurally asymmetric topologies that were tested. For example, requests in topologies lacking

an RH L1 cache that hit in the L2 incur a latency of only 13 cycles, the number of cycles it normally takes to transfer

data between the L1 and L2 caches.

In some of these topologies, the RH uses a small spatial locality buffer instead of an L1 cache. This buffer is

similar to an L1 cache, however it is much smaller (2KB vs 32KB), more associative (16-way vs 4-way), and has a

single-cycle latency. The goal of this buffer is to exploit the spatial locality found in many RH kernel memory requests

without the overhead of a full cache. In general, the I did not modify the CPU’s cache hierarchy apart from exploring

both private and shared (with the RH) L2 caches. All other variations are to the RH’s cache hierarchy, and include

eliminating either or both the L1 or L2 cache levels, and comparing shared to private L2 caching. The total L2 cache

size in the topologies is always 2MB; if it is split, the CPU and RH each have a 1MB private L2 cache. When the RH

does not have an L2 cache, the CPU contains a 2MB private L2 cache.

6.3 Performance

This study examines the performance of the four hybrid RH/SW benchmarks described in Chapter 5.1. I measured

the performance on all of the topologies listed in Table 6.1, and compare them with the performance on the “ideal”

architecture (SL1). Figure 6.6 shows the ratio of each cache topology’s performance to that of SL1. I chose this

comparison to normalize the results for all of the applications. In all situations, the SL1 topology performed as

good or better than the other topologies. This figure shows that most of the applications were not overly-sensitive to
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Figure 6.5 Some of the cache hierarchies examined in this thesis
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Name Description

SL1 “Ideal” model where the RH coprocessor and CPU share
a single L1 cache, and the rest of the memory hierarchy.

SL2-PL1 Shared 2MB L2 cache, the CPU and RH each have a pri-
vate L1 cache.

SL2-NoL1 Shared 2MB L2 cache, the CPU has a private L1 cache,
the RH does not have an L1 cache.

SL2-NoL1-B Shared L2 cache, the CPU has a private L1 cache, the RH
has a spatial locality buffer instead of an L1 cache.

PL2-PL1 The CPU and RH each have their own private L1 and
1MB L2 caches.

PL2-NoL1 The CPU and RH each have private 1MB L2, CPU has
private L1, RH has no L1.

PL2-NoL1-B The CPU has a private L1 and L2 cache; the RH has a
small spatial locality buffer plus a private L2 cache.

NoL2-PL1 The CPU has a private L1 and 2MB L2 cache; the RH
has a single cache level the size of the CPU’s L1 cache.

NoL2-NoL1 CPU has private L1 and 2MB L2 cache; the RH has a
spatial locality buffer instead of a cache.

Table 6.1 The nine shared-memory cache topologies that were tested. L2 cache sizes are given, the RH’s L1 cache
size is 32KB unless otherwise stated.

the cache topology selected, however the Xvid benchmark showed a wide variance of performance on the different

topologies.

The AES benchmark was essentially unaffected by the choice of topology due to its highly streaming nature and

because it did not reuse data brought into the caches. Furthermore, because each AES memory access is 32 bytes, and

a cache line is 64 bytes, improved data locality has limited benefit.

Likewise, the Tremor benchmark was relatively unaffected by the cache topology used because the mDCT kernel

uses static memory buffers for its data. Although the cost of moving this data across caches is non-zero, the mDCT

kernel executes for a relatively long time, allowing the stream controllers to hide much of this latency. From the

software’s perspective, a small penalty is associated with accessing data written into this buffer, but because the kernel

does not represent the majority of the application’s execution time, and Tremor must perform a significant amount of

computation on the data, the cost of moving it makes up a very small percentage of Tremor’s overall execution time.

Figure 6.6 shows that split topologies perform slightly worse than shared topologies on the Tremor benchmark. This

is primarily due to the extra time required to copy data buffers between the RH and the CPU’s caches.

The WiMaX application also saw very little change in performance due to the cache topology used. This is due to

multiple factors. First the RH kernels execute for a relatively long time, so the stream controllers can hide the majority

of the kernel’s memory latency. Additionally, the RH kernels (in particular the Viterbi kernel) performs a significant

amount of computation on each byte brought into it. Because WiMaX is multithreaded, when executing on a single-

processor system, the data produced by any given stage in the overall computation is unlikely to be in the L1 cache
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Figure 6.6 Performance of each cache topology normalized to the performance of SL1 for each of the hybrid RH/SW
benchmarks

during the next stage of computation. This means that the data produced by a kernel is unlikely to be in the CPU’s

L1 cache regardless of whether the kernel ran in SW or on the RH. Like in Tremor, the split topologies performed

a little worse than shared topologies due to the extra latency required to transfer the data between the caches. In

these two benchmarks it was also observed that NoL2PL1 performed slightly better than PL2PL1. This is because the

NoL2PL1 topology allowed the software access to a larger L2 data cache, increasing its performance. However, as

these software applications are not overly sensitive to the L2 cache size (in the 1MB-2MB range), this only provided

a small performance boost over the topologies with a private L2 cache.

Unlike AES, Tremor, and WiMaX, Xvid contains multiple RH kernels, many of which execute for a short period

of time. When these kernels execute, their stream controllers are unable to prefetch the data ahead of time. Because

of this, the performance of the Xvid kernels varies greatly depending upon the cache’s performance. This shows that

for the Xvid benchmark, it is important to consider the cache organization of the system.

Figure 6.7 shows the percentage of Xvid memory requests (CPU and RH) that missed in all cache levels and had

to retrieve data from main memory. The NoL2-NoL1 topology had a significantly higher miss rate because the RH

has only a very small (2K) buffer. Having just a 32KB L1 cache (and no L2) significantly improved the RH cache

miss rate. Topologies with a shared L2 cache had the fewest main memory requests. In the private L2 topologies, data

may be replicated between the two private caches; the shared L2 topologies have the same total L2 size, but with no

replication a larger number of unique addresses fit in the L2, allowing Xvid to have a lower cache miss rate in shared

topologies
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Figure 6.9 Cache topology’s effect on non-kernel performance within Xvid.

Xvid performance varies noticeably across the different topologies. Although at a macro level, Xvid is a streaming

application that processes a single frame of data at a time, there is still a great deal of data reuse when processing a

given frame, and much of the processing is interleaved between the software and the RH. The high degree of CPU-RH

communication results in higher performance for shared L2 topologies compared to those with private L2s or no RH

L2. One interesting result, seen in Figure 6.6, is that the NoL2PL1 topology outperformed the PL2PL1 topology. To

examine the cause of this unexpected outcome, the speedup of each individual kernel in the hybrid applications is first

examined.

Figure 6.8 shows the speedups of each of Xvid’s kernels on each of the examined cache topologies. This figure

shows that the performance of most of the kernels was the same on many of the different topologies, although, a

consistent drop in performance is seen for split topologies. Additionally, topologies where the RH has no cache

performed significantly worse on most of the kernels. However nothing in the speedups of these kernels would suggest

why the NoL2PL1 topology would outperform the PL2PL1 topology.

If the RH kernel’s are not performing significantly better, than the difference in performance must be due to the

non-kernel portions of Xvid’s execution. Figure 6.9 shows the relative performance of the non-kernel portions of Xvid

when compared to the same non-kernel portions of a SW-only execution of Xvid. In most of the topologies, the non-

kernel portions of Xvid took longer to execute than they did in the SW-only execution of Xvid. The only exception

to this is in the SL1 hierarchy. This is because the RH kernels in SL1 are loading the same working-set data into the

CPU’s (and RH’s) L1 cache as the SW-only execution would; however the RH kernels do not have to load some of

the unnecessary control data into the cache. The difference in performance between the non-kernel execution of Xvid

in SW and SL1 is only .66%. On other topologies performance in the non-kernel parts of the benchmark was worse

than the SW-only tests. This is because data written by the RH kernels that is requested in the non-kernel sections of
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the application will not be found in the processor’s L1 cache. Topologies with a shared L2 cache performed relatively

similar to each other, although topologies without a full L1 cache outperformed those with one in the non-kernel

sections. This is because the data written by the RH kernels is more likely to be found in the L2 cache when the CPU

requests it. This saves time when transferring the data to the CPU, and results in the .78% performance improvement

SL2NoL1 has over SL2PL1 in the non-kernel portions.

In the non-kernel sections of Xvid, topologies where the RH had a private L2 cache performed worse than those

containing a single shared L2 cache. This is due to two factors, the size of the CPU’s L2 cache, as well as the extra

time required to transfer data between the RH’s caches and the CPU’s caches. The performance of the non-kernel

portions of NoL2-PL1 explain why the overall performance of NoL2-PL1 outperformed PL2. In the accelerated

version of Xvid, the non-kernel portions of the application dominate the application’s runtime, and therefore a 4.22%

performance improvement in the non-kernel section explains why NoL2PL1 outperforms PL2.

These results reinforce the notion that a shared L2 cache is important for application performance; the large

amount of RH-CPU communication benefits from reduced communication latency and increased bandwidth. Private

L2 caches make it much more difficult to retrieve data that is located in the other L2 cache, or its associated L1

caches. These results also show that using a shared L1 cache between the CPU and RH will result in the best overall

performance. However, while this approach can be done in single-CPU scenarios, the scaling of such a topology

to multiple processors is difficult. It would also require more dramatic changes to the CPU’s architecture (as the

CPU tends to load word-sized data from the cache while the RH kernels can request much larger sized data), and

could potentially introduce additional latency to the L1 cache. Because the performance of the SL1 topology is not

significantly better than SL1-PL1, these improvements are reduced further), for the work done in the remainder of this

thesis, SL2-PL1 architectures will be used.

6.4 Cache Sizing

When considering using a shared cache hierarchy for transferring data between RH kernels and the CPU, it is

important to examine how the new hybrid applications react to the sizing of the system’s caches. This section examines

the cache sizing’s impact on both the RH kernel’s execution, as well as on the SW applications. This work suggests that

L1 cache size makes almost no difference on overall performance, and even for Xvid, SL2-NoL1-B only performed

∼3% worse than SL2-PL1. Therefore, I did not expect that changing the RH’s private L1 cache size would greatly

change overall performance. Figure 6.10 shows Xvid’s EIPC as I varied the size of RH’s L1 cache between 2KB and

128KB (in these experiments the CPU’s L1 cache size was fixed at 32KB). This shows that Xvid’s performance rapidly

levels off when the RH’s L1 cache is larger than 8KB in size. Increasing the cache’s size to 128KB did not noticeably

speedup Xvid, suggesting that the RH’s L1 cache size may not need to be as large as the CPU’s to obtain similar

performance. However, it is unknown how the RH’s L1 cache should be sized when it is shared amongst additional
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Figure 6.10 SL2-PL1 Xvid speedup as the RH’s L1 cache size is varied

CPU cores that could execute multiple RH kernels simultaneously. The impact of the RH’s cache size on the other

workloads was also tested; however, little change in performance was seen as the RH’s L1 cache size varied.

My experiments also suggest that the performance of the RH kernels and the SW-only portions of Xvid improve

dramatically as the L2 cache is varied. In Split L2 topologies, performance of the non-kernel sections reduced signif-

icantly due to the “halving” of the CPU’s L2 cache. To test the L2 cache’s impact on performance, I varied the L2

cache size between 256KB and 8MB. On the AES, WiMaX, and Tremor workloads, I saw no noticeable change in the

performance based on the L2 cache size. Therefore, this section will focus on Xvid, which makes extensive use of the

processor’s L2 cache.

Figure 6.11 shows the relative performance of each of Xvid’s kernels, the non kernel portions, as well as the overall

performance of the application as the size of the on-chip L2 cache was varied. The performance in these figures is

normalized to that of a system containing a 1MB L2 cache. One surprising result of this study is that the hybrid

RH/SW system was more sensitive to the L2 cache’s size than SW-only execution. Increasing the L2 cache size from

1MB to 8MB increased Xvid’s performance by 3.6% on SW-only systems, and by 8.6% on hybrid systems.

The reasons for this are two fold. Figure 6.11(a), shows that, with a few exceptions, the non-kernel portions of

Xvid’s execution are more sensitive to the cache size than most of the kernels. The only exceptions are the 6-tap

kernel, and the transfer kernel. However, as shown in Chapter 5.1, the 6-tap kernel makes up ∼7.3% of overall

execution time, and the transfer kernel only occupies 2.3% of execution time. Because the transfer kernel is the only

kernel that performs significantly better than the non kernel portions when the cache size was increased, it is clear that

the overall benefit obtained by increasing the L2 cache size is due to the non-kernel execution. However, on a SW-only

version of Xvid (with a 2MB L2 cache), this accounts for only 31.4% of total execution, so the speedup of the full

application’s execution is limited.

Two factors greatly impacted the hybrid system’s execution time: first the kernels were sped up by a greater degree

as the L2 cache size was increased, and the non-kernel portions of the application made up a larger percent of overall
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execution time. In particular, SAD16, SAD8, and the transfer kernel were greatly sped up by increasing the cache

size. Two factors account for these kernel’s performance increasing so significantly. First, these kernels execute for a

very short time, so the RH’s stream controllers do not have adequate time to prefetch data for them. Secondly, these

kernels access a lot of data that is likely to be found in main memory. Both the hybrid and the SW-only execution of

the kernels are likely to generate the same number of cache misses, however because the RH kernels base execution

time is so much shorter, a fixed latency penalty is much larger (in terms of percentage of execution) for the RH kernels

than for the SW kernels. The transfer 8 to 16 kernel also experiences a significant number of cache misses, both in the

SW-only and the hybrid execution. Increasing the L2 cache size greatly increased the transfer kernel’s performance,

yielding a speedup of 1.48x with a 2MB L2 cache, and of just over 2x for systems with both 4MB and 8MB L2 caches.
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Figure 6.11 Relative performance of SW-only and hybrid execution as the L2 cache size (with a baseline of a 2MB
L2 cache) is varied

These results show that although the performance of RH kernels and applications are not heavily dependent on

the size of the RH’s L1 cache, the L2 cache’s size can influence their execution to a greater degree. They also show

that the L2 cache sizing influenced hybrid Xvid’s performance more than it did the SW-only execution. This suggests

that it is still important for hybrid RH/SW systems to maintain a large L2 cache, both for the purpose of legacy

SW-only applications, and also to further accelerate hybrid RH/SW applications. However, due to the large die size

of L2 caches, it might make sense for future reconfigurable computing systems to trade L2 cache size for increased

reconfigurable computing resources. Although doing this would reduce the performance of hybrid applications, the
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Figure 6.12 Energy consumption of the cache hierarchy for each of the tested topologies.

benefits of RH acceleration for hybrid applications far outweighs the performance losses that they would experience

due to a smaller L2 cache size.

6.5 Power

Although system performance is a key metric when choosing a cache topology, energy consumption is also a con-

sideration, particularly in embedded devices. Therefore, I modified the simulator to keep track of the cache hierarchy’s

energy consumption.

Cacti 5.3 [114] was used on a 65nm technology node to model the relative memory access energy for all of the

caches used in the topologies as well as the spatial locality buffers. The L1 cache was configured with two read/write

ports and the L2 had a single read/write port. Based on these parameters, a 2MB 16-way associative L2 cache access

consumes almost 10 times the energy of a 32KB 4-way associative L1 access (.077nJ versus .769nJ). Accessing data

from the DDR2 main-memory is even more expensive, consuming almost 50 times more energy than accessing the

2MB L2 cache(36nJ)[90]. These numbers suggest that, for power efficiency, it is important to obtain as much data as

possible from small caches, and to minimize accesses to main memory.

I modified the simulator to keep track of memory accesses in an attempt to estimate the energy consumption of

the memory hierarchy. In this model, every data memory access requires an L1 cache access except for those from

RH cache topologies that lack an L1 data cache (SL2NoL1 for instance). Loads that missed in the L1 cache count as

a read from the L1 plus a read from the L2, and a write to the L1 cache. However, due to limitations of the simulation

infrastructure, it could not be determined whether a load that missed in the L1 cache was found in the L2 cache, or had

to be read back from another CPU’s L1 cache instead. However, errors accounting from this should be minimal, as the

energy requirements for an additional L1 cache access are much smaller than those required for the L2 cache access.
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Stores made into the cache hierarchy were a bit harder to measure. Upon a store L1 miss (that hit in the L2 cache),

the energy of an L1 write was added, as well as an L2 read (as the data must be read back from the L2 cache). The

simulator also counted the number of L1 writebacks, and each of these counted those as L2 writes.

The simulator counted load and store main memory requests to the DDR2 memory directly from the memory

controller. Using these values, I calculated the total energy consumption of the memory hierarchy for each cache

topology. These energy consumption values do not take into account the energy required to transmit data across the

chip, and instead only focus on the access energy. Although this study does not measure all of the energy consumption

in the cache topologies, they are more than adequate for showing the general trend in energy consumption for each

of the topologies. Because each cache topology executed a different number of equivalent instructions, the energy

consumption of each hierarchy was normalized relative to that required to execution two billion cycles of the SW-only

version of Xvid.

Figure 6.12 shows the total dynamic energy consumption of the memory hierarchy for the full hybrid Xvid bench-

mark (CPU and RH) for each cache topology. Examining this figure shows that most of the topologies (with the

exception of NoL2PL1 which required a tremendous number of memory requests) used less dynamic memory energy

than the software when performing the same work. This is due in a large part to the greatly reduced number of requests

to the L1 cache. It also shows that the RH should access an L1 cache, or even a spatial locality buffer if only to reduce

the number of L2 cache accesses required. In this case, the SL2NoL1 topology used 20% more memory hierarchy

energy to perform the same work as the SL2PL1 topology. Although some of this is due to the better performance of

SL2PL1, the majority of this increase is from the increased number of L2 cache accesses.

These results suggest that a RH cache topology should contain an L1 cache to limit the dynamic energy used in

the memory hierarchy. Having a 32KB L1 cache attached to the RH reduced the dynamic energy consumption of the

memory hierarchy by 20%. Although this is nowhere near the amount that would be saved by a SW-only application

(not having an L1 cache would greatly increase the energy consumption of such an application’s execution), it is still

a significant figure. Because an L1 cache is fairly small in comparison to an L2 cache (and because the RH does not

need as large of an L1 cache), the RH kernels examined in this thesis should not directly access an L2 cache. Even

when the kernel’s L1 cache hit rates are low, as is the case for many of the RH kernels, an L1 cache reduces overall

dynamic power of the system.

6.6 Reading Data Directly From The RH Kernels

Although the shared memory access for CPU-RH communication works well for long-latency data transfers ini-

tiated by the RH kernels, this is not always the best way to communicate data between the CPUs and RH kernels.

As described in Chapter 3.5, the CPU can issue commands and requests to the RH kernels using an on chip data

network. This allows for relatively low-latency communication between the CPU and RH when transferring small

amounts of data between them. In examining the RH kernels, I realized that this network would also be ideal for
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Figure 6.13 Performance improvements of SAD kernels when the CPU directly reads back values from them.

reading back single data values from an RH kernel. For instance, the SAD8 and SAD16 kernels used in the Xvid

application (described in Chapter 5.1) read in multiple words of data (suitable for submitting memory requests di-

rectly to main-memory) but produce only a single word of data as a result. Writing a single word to a cache-coherent

memory-hierarchy is relatively expensive (in terms of latency); especially if the data is being written to a cache line

that is also present in another cache (this is likely because this data is used by both the RH kernel and the application

software). Additionally, reading back this data from the software requires additional cache coherency transitions, as

the RH’s cache will contain an exclusive copy of the data. These latencies can greatly reduce the absolute performance

of the SAD kernels.

Therefore I extended the pure shared-memory communication model to allow RH kernels to use an alternate form

of communication with their host CPUs. I implemented this by attaching a single word of memory to each virtual RH

kernel, and associating this buffer with the virtual kernel’s memory segment. When an application reads back that the

RH kernel is done executing, the application issues a memory request to read back this word of data, bypassing the

cache coherency transitions required had the data been written into the cache hierarchy.

This mechanism is currently only used in the SAD8 and SAD16 kernels. All of the other kernels generate a larger

amount of data, and therefore write it straight to the cache hierarchy. To test the impact of bypassing the shared

memory subsystem in these two kernels, the Xvid benchmark were ran again on all of the tested topologies when the

SAD kernels could read directly read back the resultant data. These simulations used the exact same checkpoints as

the original runs, so the data can be directly compared to the tests where the CPUs had to read back the result values

from the memory subsystem.
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Figure 6.14 Overall Xvid performance improvements when the CPU directly reads back values from them.

Figure 6.13 shows the performance improvement seen in the SAD kernels when data was directly transferred. The

direct performance improvements in these RH kernels is only part of the overall improvement in system performance.

The non-kernel portions of the application are also able to execute faster, further speeding up the application. Examin-

ing these numbers shows a relatively moderate speedups on shared cache topologies, and much larger improvements

on split topologies. This is because the cache transitions required to transfer data are much more expensive on split

cache topologies. Reducing this latency will greatly reduce the kernel’s runtimes.

Figure 6.14 shows the overall application performance improvement when the SAD kernels could directly transfer

data to the CPUs. As expected, SL1 has almost identical performance in both cases (the cost of having to access the

shared data from the CPU’s own L1 cache is negligible). For most of the SL2 topologies, performance gains are∼2%.

On split topologies this increases dramatically, though still not enough to offset the drop in performance seen when

using a split cache topology.

Because of this, it is recommend that kernel designers examine their kernels, and when appropriate, allow the

applications to read singleton values directly from the RH kernels, bypassing the shared cache. This is particularly

important when using “short” kernels that only execute for 100s of cycles. In the case of SAD8 and SAD16, the

cache coherency transitions can, in certain instances dominate the runtime of the kernels. Avoiding this overhead is

highly advisable, and this method allows the software to directly access the RH kernels with a minimum change to the

programming model, and no changes to the data path that already exists between the RH kernels and the CPU(s).
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6.7 Conclusion

This chapter examined the difference in memory accesses between RH kernels and general purpose processors.

Using this knowledge, I examined the performance impact of the cache topology on hybrid RH/SW applications.

Although the performance of some of the applications was relatively unaffected by the cache topology chosen, the

performance of Xvid changed greatly based on the cache topology used.

In the examination of the cache topologies, I showed that using a topology containing a shared L2 cache was key

for obtaining the best performance. This is due to a combination of the fact that the SW-only aspects of the application

could make better usage of the L2 cache than the RH kernels, and because of the much smaller latencies incurred

when accessing data in a shared L2 cache. I also showed that the performance of a hybrid RH/SW application did not

decrease significantly as the size of the RH’s L1 cache was reduced. Topologies where the RH connected to a 2KB

spatial locality buffer performed similarly to those with a full 32KB L1 cache.

However, despite the fact that the RH kernels did not need an L1 cache to obtain similar performance to topologies

containing one, the L1 cache was important, as it reduced the overall energy consumption of the memory hierarchy. It

therefore seems to be a fair tradeoff to connect a reasonably sized L1 cache to the RH controller.

This chapter demonstrated that some of the applications can benefit from being able to read data directly back from

the RH kernel. Bypassing the cache coherent memory hierarchy altogether for some memory accesses provides signif-

icant performance improvements to some of the RH kernels. Although these benefits are greatest on cache topologies

containing private L2 caches (or where the RH does not connect to an L2 cache), a 2% application performance

improvement was still obtained on a cache topology with a shared L2 cache, and private (32KB) L1 caches.

Because of these observations, I use the SL2-PL1 cache topology in the rest of the work performed in this thesis. If

an application is likely to perform its best on this topology on single processor systems, it is reasonable to assume that

on a multiprocessor system, this topology would also be the best. Additionally, throughout the rest of this thesis, the

Xvid benchmark will always use the on-chip CPU-RH network to read back data from the SAD8 and SAD16 kernels,

bypassing the cache hierarchy altogether.
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Chapter 7

Scaling to Multicore Systems

This chapter builds upon the work in Chapter 6, extending the model of reconfigurable computing to devices that

contain multicore processors. This chapter first examines how the memory subsystem’s performance scales as more

processors share the RH fabric. It then examines tradeoffs in the memory sub-system design, including the ability of

the RH controller’s TLB to translate memory addresses on multicore platforms. The chapter then examines how the

performance of the RH coprocessor’s memory interface scales when an increasing number of CPU cores shares the

RH coprocessor.

Once the performance of hybrid RH/SW applications on this multi-core system is establish, this chapter examines

the performance of software-only applications that execute alongside multiple hybrid RH/SW applications. Hybrid

systems will likely need to execute legacy software-only applications. Furthermore, even though the runtime of an

application may be dominated by one or more kernels in the original software version, when accelerated by RH, these

kernels take less time to execute, and thus represent a smaller percentage of the accelerated application execution

time. Thus it is important to know to what degree the RH kernels’ memory requests hamper the performance of

software code. In future systems, an RH-aware OS scheduler could even use this information when deciding both

what applications to run simultaneously, as well as how much CPU time should be allocated to each application [42].

It is anticipated that software code will perform worse when executed alongside hybrid RH/SW applications than

when executed only with other software code. Accelerated kernels require accelerated access to memory, potentially

evicting other application’s data from shared caches. I examine the impact of hybrid RH/SW applications on software-

only applications in Chapter 7.3.2 and propose a mechanism to limit the impact that high-bandwidth streaming RH

kernels have on system performance are then proposed and evaluated.

7.1 Prior Work

The best way to couple multiple processor cores with an on-chip reconfigurable hardware (RH) coprocessor has

not been examined extensively. Watkins et. al [124] proposed a reconfigurable multicore architecture that shared a

specialized programmable logic (SPL) fabric between multiple cores. However, in this work, cores communicated

with the SPLs using dedicated FIFOs, and did not directly share memory. Although this work discussed multiple ways
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Benchmark two-cores four-cores eight-cores

Xvid 2 0 1 1 1 0 0 0 0 1 0 0 4 0 2 1 3 0 1 8 0 2 4 7 3 0

AES 0 2 0 1 0 1 1 0 1 0 0 0 0 4 2 1 0 3 1 0 8 4 4 0 2 7

Tremor 0 0 0 0 1 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0

WiMaX 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0

SW-only 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1

Table 7.1 A listing of the benchmarks executed in each of the executed workloads for two-, four-, and eight-core
systems.

to use their communication primitives, it did not discuss the speed of their interface, or how the interface scaled with

the number of processor cores.

Chen et. al [26] proposes a multicore reconfigurable ISA, where a separate RH unit is directly attached to each

processor core. The dual-core system thus acts like two separate reconfigurable processors, so the communication

between a processor and RH is no different than on a single- core system. Similarly, Williams et. al [128] and Syed et

al [113] created a multicore reconfigurable computing system the used the message passing interface (MPI) to facilitate

communication between processor cores. This work implemented an MPI system on a reconfigurable fabric, however

this work did not examine the use of MPI from an RH accelerator (although, an RH kernel could technically use the

interface). Additionally, the processors did not share the RH fabric, and the system allocated the RH fabric statically

at design time.

In Yan et. al [132], a reconfigurable multicore processor is also examined. In this work, a multicore reconfigurable

computing system is designed. This system contains multiple reconfigurable processor units are combined with mul-

tiple processor cores. However, communication is handled using local buffers, and no data is given on the efficiency

of their communication infrastructure.

7.2 Application Workloads

This chapter uses a combination of the hybrid RH/SW and the SW-only benchmarks described in Chapter 5.1 to

create workloads that will run on two-, four-, and eight-core systems. Each workload contains as many benchmarks

as there are processor cores to create realistic workloads for high-performance embedded systems. I simulated these

workloads to determine how the system’s performance scales with an increasing number of processors.

Table 7.1 shows the number of copies of each hybrid benchmark that were in each of the workloads that I tested.

Cells with a zero in them imply that no copy of that benchmark was executed. Columns that include the SW-only

benchmarks indicate that I created three workloads; each containing one of the SW- only benchmarks, and all of the

workloads included the other hybrid RH/SW benchmarks. I refer to workloads to by the number of copies of each
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Description Area mm2 Read Energy (nJ)

32-entry fully-associative TLB .031 .015

64-entry fully-associative TLB .053 .025

128-entry fully-associative TLB .101 .050

256-entry fully-associative TLB .186 .090

32KB 4-way associative L1 cache .550 .057

Table 7.2 Area and read energy for different TLB and cache configurations

benchmark followed by the first letter of the benchmark, with a hyphen to separate the benchmarks. Therefore 2X-

4A-1T-1W refers to a workload containing two copies of Xvid, four copies of AES, one copy of Tremor, and one copy

of WiMaX.

7.3 Results

Because this work’s goal is to determine how the performance of our reconfigurable computing platform scales

with an increasing number of RH kernels, I attempted to maximize the impact of the RH kernels on the memory

subsystem. To achieve this, my system has sufficient RH tiles available to fully accelerate every RH kernel requested

by the workloads. In later chapters of this thesis, I will examine how the OS can make better usage of limited RH

resources on multicore systems. The workloads examined in this chapter are all executed for two-billion processor

cycles on all of the different system setups

7.3.1 Hardware TLB Miss Handler

In [43] I proposed a method for handling TLB misses in the RH controller. This method involved interrupting

the processor to obtain virtual memory addresses, and is described in Chapter 4.5. In that work, whenever a memory

request’s virtual address could not be found in the RH kernel’s TLB, the RH controller would interrupt the CPU to

obtain a translation. However, this work was originally performed on a single processor platform, and thus it was

unclear how this method would scale to multiple processor systems.

When I extended my platform to use with multicore processors, some workloads had extremely poor performance

due to TLB thrashing. In examining the bevavior, I saw that interrupting a CPU to provide an address translation is a

relatively expensive operation, taking about 400 cycles on most workloads (in workloads with many TLB misses, this

number is reduced due to caching effects). This is an order of magnitude longer than the time it takes to handle software

TLB misses on the platform (approximately 20-40 cycles). Because of the problems associated with TLB thrashing,

I found that the sizing, and policy for filling the RH controller’s TLB can be very important to the performance of

hybrid RH/SW applications.



63

!"#$% &"'(%

("))%

("()%

("!)%

("#)%

("*)%

("$)%

("')%

("&)%

("+)%

(",)%

!"))%

!-
%

!.
%

(-
/(
0
%

(-
/(
.%

(-
/(
1%

(.
/(
0
%

(.
/(
1%

(1
/(
0
%

*-
%

*.
%

!-
/!
.%

(-
/(
./
(1
/(
0
%

+-
%

+.
%

!-
/*
./
(1
/(
0
%

*-
/*
.%

!"
##
$%

"&

#!%

'*%

(!+%

!$'%

Figure 7.1 Workload speedup using proposed HW-based TLB miss handler instead of interrupting the CPU

Although larger TLBs may avoid thrashing on these specific workloads, larger TLBs are more expensive, and

future application mixes could still cause TLB thrashing. To demonstrate the tradeoffs involved in selecting different

sized TLBs, I used Cacti 5.3 [114] to model the caches and TLBs (at 65nm) used in the system. Table 7.2 shows both

the read energy and area of various sized TLBs as well as the 32KB L1 cache for comparison. This table shows that

a 256-entry fully associative TLB is 6 times bigger, and consumes 6 times more energy per access than a 32-entry

fully-associative TLB. Furthermore, a lookup in a 256-entry TLB requires 1.58x the power of an L1 cache (32KB,

4-way associative) access, and occupies 34% of the area of the 32KB, 4-way associative L1 data caches. These results

indicate that increasing the TLB size is not a good solution to prevent TLB thrashing.

Instead of just increasing the size of the RH controller’s TLB, I added a hardware TLB miss handler to the RH con-

troller to improve the performance of the RH controller’s memory subsystem. On the simulated UltraSparc platform,

I modeled a hardware structure that could access the (already existing) translation storage buffer (TSB) lookup from

memory. The TSB is a software construct resembling a very-large direct-mapped TLB. The simplistic structure of the

TSB makes the hardware to calculate the new address very simple. The TSB can be up to 1MB in size, allowing it to

hold 64K entries, enough to cover 512MB of an application’s virtual address space. In the (relatively rare) event that

the address cannot be translated in the TSB, the RH controller interrupted the CPU to perform the address translation.

Although TSBs are not present on many other computer ISAs, hardware pagetable walks can be implemented on most

of these platforms [68, 64]. By implementing the hardware TSB lookup, I reduced the average latency of a TLB miss
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to between 10 and 40 cycles, depending on the workload (workloads with higher TLB hit rates tend to take longer to

perform a TSB translation and vice-versa).

All of the results reported (including those already reported in Chapter 6) use the hardware TSB miss handler.

Because the hardware TSB lookups have a much greater impact on the performance of multicore systems, I do not

examine the performance advantage of using the hardware TLB midd handler on single-processor systems.

Figure 7.1 shows the performance advantage of using the HW TLB miss handler for systems containing TLBs

of various sizes across all of the hybrid RH/SW workloads. Workloads that used the new HW TLB miss handler

always outperformed those executing on a system that used the software-based interrupt routine. Workloads containing

WiMaX in particular performed better with a HW TLB miss handler. This is because WiMaX is a multithreaded

application, and the OS must regularly swap out WiMaX threads. When this happens, the OS flushes the RH controllers

TLB, which in turn causes a sequence of compulsory TLB misses. Many workloads that contained the WiMaX

benchmark saw no benefit at all from increasing the size of the TLB because the OS would flush the TLB so frequently

that it could never be filled.

A couple of the workloads presented had extremely poor performance when not using the hardware TLB miss

handler. In particular, the 4X workload performed poorly on a system with a 32-entry TLB, and the 8X workload

performed very poorly when executing on a system with a 64-entry workload. In the later case, the performance was

so bad that the Xvid applications actually performed worse than the SW-only baseline. In these two cases significant

TLB thrashing occurred. By enabling the hardware TSB lookup mechanism, the applications ran much closer to their

theoretical maximum performance as will be shown in the next section.

For most workloads, the speedup of using the hardware TSB lookup mechanism ranged between 1% and 15%.

Because the hardware TSB lookup is a relatively minor addition to the reconfigurable computing platform proposed in

this work, it is highly recommended that future reconfigurable computing systems where RH kernels directly access

virtual memory have a fast method to translate memory addresses; only relying on the OS to perform the translation

in rare circumstances.

7.3.2 Multiprocessor Performance

This section determines how efficient the memory subsystem in the reconfigurable computing platform outlined

in Chapter 3 is. In particular it compares the platform against one containing an ideal RH memory subsystem. In the

platform containing a ideal RH memory subsystem all RH kernel memory requests (including those generated by the

HW TLB miss handler) were serviced in a single processor clock cycle. The ideal platform also contained a very large

TLB, and used the hardware TLB miss handler described in Chapter 7.3.1.

On the ideal platform, each time a RH kernel issues a memory request, a prefetch for the data was issued to the

memory subsystem. Although the data is immediately written to the RH kernel, these prefetch requests operate like

normal cache requests. Therefore, these prefetch requests acted to preload data that might by used by the CPU at a
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Figure 7.2 The “efficiency” of the hybrid RH/SW workloads on the proposed reconfigurable computing platform

later time. This is useful because most of the hybrid RH/SW benchmarks communicate with their host processor using

shared memory, and data written by an RH kernel is likely to be read by the processor in the near future. Issuing these

prefetches helps to ensure that the SW portions of hybrid applications have good performance. In this ideal platform’s

baseline, the performance of the CPUs memory hierarchy is not ideal, and CPU-initiated memory requests (including

those needed to access the RH controller) have their usual latency. It is important to note that this “ideal” system

still observes the same latency when initiating requests with the RH kernels. All communication over the network

described in Chapter 3.5 occurs at the same speed for both the normal, and ideal systems.

I used the performance of this “ideal” workload to calculate the “efficiency” of the workload, which is the ratio of

the actual performance of the workload to that of the workload containing an “ideal” memory system. Equation 7.1

shows how I computed this value.

Efficiency =
NEIPCworkload

NEIPCideal
(7.1)

Figure 4 shows the efficiency of the hybrid workloads running on the RH computing platform. Performance of the

RH system described in Chapter 3 was very good; approaching that of a system where the RH has immediate access

to the memory hierarchy. Most of the workloads obtained between 95% and 99.9% of the ideal limit performance for

this shared memory organization, with the only exception being the 8A workload.

When examining the 8A workload, it becomes apparent that the bottleneck was not the RH controller’s memory

subsystem, but rather the inability of the chip’s memory subsystem to supply the RH kernels with data. This issue

would occur on any RH computing platform that using the same main-memory structure. To overcome this slowdown
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Figure 7.3 SW-only benchmark “efficiency” when run alongside hybrid RH/SW workloads

in performance, the system would need a higher performance memory subsystem with potentially lower main-memory

latency, greater bandwidth, and/or a more-optimized memory controller. However, in this study, the 8A workload was

intended to represent peak streaming capability, and was not necessarily representative of the data patterns observed

in real workloads.

With the exception of workloads containing only AES benchmarks, no further degradation of performance was

seen as the number of processors was increased from two to eight. This suggests that the RH memory interface can

scale to at least eight CPU cores without a problem, illustrating that the same RH controller used on a single processor

system can also be used on multicore systems.

7.3.3 Impact on Software-Only Applications

The final multicore study of this chapter examines the impact that hybrid applications have when run alongside

traditional SW-only applications. The performance of these SW-only applications is important not only on legacy

systems that are executing hybrid applications alongside SW-only applications, but also on systems that exclusively run

hybrid applications. This is because non-kernel code often dominates the runtime of accelerated hybrid applications.

To determine this impact, I calculated the EIPC of each SW-only benchmark both when executing alongside fully

accelerated hybrid RH/SW applications, as well as when the hybrid applications executed entirely in software. The

ratio of these two EIPC values represents the efficiency of the software-only benchmarks. Unlike previous experiments,

these tests are not using the normalized EIPC values when comparing the speed of the SW-only application.
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The primary reason for using the EIPC for measuring performance is because of the behavior of the WiMaX

hybrid RH/SW benchmark. In calculating the NEIPC value, the overhead of the OS is distributed equally amongst all

applications. This works well when applications are given different time slices by the OS, and when the vast majority

of the time spent in the OS is “overhead” that should be charged to the system as a whole. However, in the case of the

WiMaX benchmark, this assumption no longer holds true. Due to the multithreaded nature of this benchmark, much

time is spent swapping threads and handling some of the synchronization between the threads. This overhead can be

directly attributed to the WiMaX application’s execution, and therefore should not be evenly distributed amongst all

of the applications.

If I distributed this overhead amongst all of the applications (as the NEIPC metric does), then, if using the NEIPC

metric, it would appear that every application on the system performed worse because the WiMaX application spent

more time in the OS. All of the SW-only benchmarks executing alongside WiMaX executed for approximately the

same number of cycles regardless of whether WiMaX was accelerated. However, the calculated NEIPC value when

executing a RH-accelerated version of WiMaX was much lower due to WiMaX spending more time in the OS. To

avoid this problem, I use the EIPC metric to measure the performance of the SW-only application in these workloads.

This provides a more accurate evaluation of the SW-only applications’ performance.

Figure 7.3 shows the efficiency of the SW-only workloads run alongside hybrid RH/SW applications. The SW-

only applications perform worse when run alongside hybrid RH/SW applications. Unsurprisingly, these SW-only

workloads performed even worse as the number of the hybrid RH/SW applications executing on the system increased.

In particular, SW-only applications perform worse when run alongside workloads containing the AES benchmark. The

AES benchmark continuously reads and writes large blocks of memory, overwriting potentially useful data located in

the L2 cache. When accelerated, the AES application reads and writes significantly more data in a given span of time,

exacerbating L2 cache evictions.

Because the AES kernel has little temporal cache locality, it is not useful for the processor to cache the data that the

AES kernel accesses in the L2 cache. Therefore an extension to the reconfigurable computing system was made that

allowed input or output streams from an RH kernel to declare themselves to be “streaming” with no temporal locality.

The system marks all cache lines accessed from theses streams with a flag that tells the cache controller to evict those

lines first if an eviction is necessary. This modification is relatively simple, only requiring one extra bit to be sent to

the cache. When this bit is set, the cache does not update the least recently used field of the cache, causing the cache

to think that the line is still the oldest line in its associativity set, and thus the one that should be evicted if needed.

Applications can inform the RH controller that an input or output stream is “non-cacheable” by marking a field in the

virtual kernel’s memory segment. Only the AES kernel used the non-cacheable flag is only used because all of the

other kernels have some form of temporal locality, and thus, their performance would be degraded by using this flag.

General-purpose processors often contain special prefetch instructions that inform the processor that the data has

little temporal locality, and can be flushed. Unlike prefetch instructions in traditional computer systems, the streaming
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flag in the RH coprocessor is associated with all loads from a given stream and do not require additional instruc-

tions that could potentially slow down execution. Additionally, because RH coprocessors have accelerated memory

accesses, the usage of a streaming flag is even more important than on general-purpose processors.

Figure 7.4 shows the performance improvement of the SW-only thread when the AES kernel’s memory accesses

are non-cacheable. Using this flag greatly creased the performance of SW-only applications; for example, in the case

of SW benchmarks running alongside seven copies of RH-accelerated AES, performance improved by almost 30%.

In some cases this was actually better than the performance of the SW-only benchmark when the AES applications

executed only in software, where it would still cause unnecessary evictions, but at a slower rate than the accelerated

version.

In this graph, the 3X-2A-1T-1W workload seems strange when mcf is running. At first glance, it appears that

enabling the non-cacheable flag actually decreased the workloads performance, as mcf performed worse than when

this flag wasn’t enabled. However, the reason for this can be explained by examining the performance of the hybrid

RH/SW applications in the workload. This performance can be seen in Figure 7.5. In the case of the 3X-2A-1T-1W

workload running with mcf, the performance of the hybrid applications increased by over 2% due to the superior

performance of the hybrid Xvid applications. Because the Xvid applications could perform better, more pressure was

put on main memory, increasing latency. Additionally, the Xvid applications used up more of the processor’s shared

L2 cache.

Another advantage of using the non-cacheable flag is that it did not adversely impact the performance of the AES

benchmarks. In all of the runs, AES had nearly identical performance regardless of whether it’s data was cached.

I also observed that using the streaming flag also accelerated, to a lesser degree, other hybrid RH/SW applications

executing on the system. These performance numbers show that application developers should consider the impact of

their RH kernels on other applications, and if possible, annotate RH kernel data streams as streaming or streaming,

as appropriate. Doing this can, in the extreme case, improve the performance of SW-only applications by as much as

30%.

7.4 Scalability Conclusions

This chapter examined how the performance of my proposed reconfigurable computing system scales with the

number of processor cores using it. It also examined some of the issues encountered when scaling to eight processor

cores.

The results presented in this chapter have shown that although using the OS to obtain TLB translations was suf-

ficient on a single processor system, hardware translation techniques are necessary on multicore systems to obtain

high performance. When using hardware to perform the TLB translations, the workloads executing on the system

performed quite well. Even on eight-cpu systems, most of our workloads performed within 95% of their ideal per-

formance. This shows that the shared memory model used in our RH coprocessor scales well to eight cores, and that
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the ability of RH kernels to access the memory subsystem is not a limiting factor. This is important not only for our

system, but also future accelerator platforms that might use a shared memory model.

Additionally, we have shown that streaming RH kernels can greatly impact the performance of other applications

running on other processors in the system. However, if the loads and stores issued from these RH kernels are marked

as non-cacheable, the impact of these kernels on SW-only systems can be greatly reduced. Future RH computing

systems should therefore implement a policy to prevent kernels with little cache locality from overwriting useful data

in the processor’s cache.

Overall, this chapter demonstrated the usefulness of the proposed multicore reconfigurable computing system. Our

proposed coprocessor can accelerate multiple applications almost as efficiently as it can a single one. Additionally,

due to the reduced rate of memory accesses from RH kernels, the memory subsystem can easily handle the added

load of additional processor cores. This helps to prove the viability of our coprocessor, illustrating that a shared mem-

ory coprocessor can have high performance, even when multiple processors are all executing short-running kernels

simultaneously.
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Chapter 8

Reconfigurable Computing on Simultaneous Multithreaded Processors

Previous chapters of this thesis have dealt with the design of an RH coprocessor, and examined its performance on

multicore systems. Although multicore systems have become common, it is also important to examine how this shared

reconfigurable coprocessor performs on other multithreaded platforms. This chapter examines the performance of

SW-only applications coscheduled alongside hybrid RH/SW applications on simultaneous multithreaded (SMT) pro-

cessors. Additionally, it proposes extensions to the processor to more efficiently share the processor core’s resources,

helping to balance the performance of hybrid threads with SW-only threads.

8.1 Prior Work

SMT processors differ from more commonly found CMP processors because an SMT system allows multiple

threads of execution to share a single processor core’s resources [116, 118, 36]. By sharing many of the resources

contained within an out-of-order superscalar processor amongst multiple threads, greater throughput can be obtained

without a major increase in the size of the processor cores [76, 116, 118, 36]. Additionally, SMT processors obtain high

performance of single-threaded applications (when running in isolation), as well as good performance of multithreaded

applications.

In a typical superscalar processor, many of the processor core’s functional units are idle at any given time. This

occurs both because an application’s instruction mix rarely utilizes all of the processor’s functional units, and because

long-latency events, such as cache misses, delay the processor from executing subsequent instructions that are depen-

dent on the long-latency instruction. SMT processors allow additional threads to use functional units (as well as other

processor resources) that are not currently being used by other instructions. Although each thread executing on an

SMT processor cannot operate as fast as it could if executing alone on the processor core, the aggregate performance

amongst all threads is higher.

Although prior work extensively examined SMT platforms, little work has been done to combine these platforms

with reconfigurable computing. Uhrig et. al [119] integrated a MOLEN-based [79] reconfigurable coprocessor on a

real-time SMT system, focusing on allowing the prioritization of memory requests from the RH coprocessor. However

this work did not analyze the performance impact of sharing the processor resources between SW-only applications
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and hybrid RH/SW applications. Mamidi et. al [85] augmented an interleaved multithreaded processor with a recon-

figurable functional unit. This work focused on software-defined radio applications, and the use of the RH fabric to

accelerate tasks within them. Although it provided mechanisms for different threads to access the RH, results were

only presented for single applications executing at a time.

A survey described the existing models for multithreaded reconfigurable computing exist, OS support for the

architectures, and methods for scheduling tasks to the RH [134]. Although this survey provides a broad overview, it

did not examine the performance of both hybrid applications or SW-only applications coscheduled alongside hybrid

applications.

8.2 Execution of Hybrid RH/SW workloads on SMT Processors

Due to the ability of SMT processors to share processor resources, they seem like an ideal match for the reconfig-

urable computing applications examined in this thesis. In these applications, a thread executing an RH kernel waits

in a spin loop until the kernel has finished executing. On processor cores that can only execute a single-thread at a

time, this results in wasted processor time and under-utilized resources. Although the currently active thread could

be swapped out during an RH kernel’s execution, this would not be feasible during the execution of most our RH

kernels because the kernels’ RH runtimes are often less than the time required for the OS to perform a full context

switch [109]. Because a hybrid thread requires few of the processor’s functional units during its execution, I anticipate

that coscheduled threads should perform better than if the SW-only thread was scheduled alongside another SW-only

threads.

I configured the SMT processor used in this study exactly like the single-threaded processor core described in

Chapter 3, but with two copies of the thread state (register file, etc). In this SMT processor, both threads share the

32-entry instruction window, and are each guaranteed at least one entry in the window. The processor’s fetch unit

fetches new instruction from from the thread containing the fewest number of entries in the shared instruction window.

However, if only one of the threads can fetch instructions in a given cycle, that thread will be granted access to the

core’s fetch unit, regardless of how many entires in the instruction window it is using.

This study executes each of the hybrid benchmarks alongside each of the SW-only benchmarks, examining a total

of twelve different workloads. I executed each workload (both in SW-only mode as well as hybrid RH/SW mode) on

both a two-threaded SMT processor, and a dual-core CMP system, and use multiple different comparison metrics to

relate the performance of both the coscheduled SW-only thread, as well as that of the entire workload.

The first measurement used will be referred to as the efficiency of the coscheduled SW-only thread, which is

the ratio of the EIPC of the coscheduled SW-only thread on the SMT processor to its performance on the CMP

processor1. Figure 8.1 shows the cosecheduled threads’ efficiency for each of the workloads, both when everything

1The EIPC is used when comparing single thread performance in a multithreaded workload for the same reasons given in Chapter 7.3.3.
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Figure 8.1 Efficiency of the coscheduled SW-only thread’s performance

runs in software, and when accelerating all of the hybrid application’s RH kernels. The second measurement computes

the overall workload efficiency by calculating the ratio of the geometric means of the NEIPC of the workloads on the

SMT processor to that on the CMP processor. This measurement is shown in Figure 8.2.

These graphs show an unexpected trend; despite the fact that AES spends 99.9% of its execution time in an

RH kernel, SW-only threads coscheduled alongside AES perform far worse than those coscheduled alongside other

applications. I expected that SW-only threads running alongside a thread in an RH kernel would have performance

similar to that when the thread runs on its own private processor core, because the hybrid thread will not make use of

the core’s functional units. Therefore, I decided to further analyze of the workloads containing the AES benchmark.

Although the AES thread does not use the processor’s shared execution units often, it could still occupy a large

portion of the processor’s shared instruction window. Figure 8.3 shows the percent of the 32-entry instruction window

that, on average, the AES thread occupied on the SMT processor. Despite the fact that the AES thread only occupied

about 40% of the core’s instruction window entries when everything executed in software, during hybrid execution,

the AES thread used nearly 90% of the core’s instruction window entries.

During the AES kernel’s execution, many of the AES benchmark’s instructions in the instruction window were

loads to query whether the RH kernel had finished its execution. Each of these instructions has a large latency, waiting

up to 200 cycles for the RH kernel to finish. Additionally, because the branch performance of AES was quite good

the processor rarely had to flush its instruction window. Although the fetch unit would not fetch the AES thread’s

instructions when the coscheduled thread could also fetch instructions, AES could quickly fill up most of the window

when its coscheduled SW-only thread could not fetch instructions. Once an AES instruction was placed in the window,
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Figure 8.2 Efficiency of the overall workload’s performance
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it was likely to sit idle in the queue for a long time. Although hybrid RH/SW applications were not using the core’s

functional units very often, they managed to fill up much of the processor’s shared instruction window.

8.3 Limiting RH thread’s Resource Usage

Although sharing an instruction window between applications makes sense for many workloads, it can result in a

poor allocation of resources when applications experience a long stall event. Tullsen et. al [117] experienced a similar

problem when ordinary software threads had long-latency events such as a cache miss. This work examined mecha-

nisms that flushed an application’s instruction window upon suspected cache misses. In two-processor workloads they

found that using this mechanism could greatly improve performance when one of the coscheduled threads experienced

many cache misses.

I therefore implemented a similar scheme to prevent threads executing on the RH from monopolizing shared

processor resources. However, unlike detecting cache misses as examined in [117], is is trivial for the processor to

detect RH kernel execution. As described in Chapter 4.4.2, applications in the system spin-wait while RH kernels

execute. During this spin loop, the SW issues requests to the RH controller to determine if the RH kernel is done. The

RH controller buffers these requests for up to 200 cycles, and only one request can be outstanding at a time. Therefore,

these instructions are likely to be stalled in the pipeline for a long time.

In this section, I examine multiple methods that help prevent threads executing in an RH kernel from monopolizing

the processor core’s shared instruction window. Because RH kernel execution can be detected earlier than cache

misses, our stalling mechanisms elected to not fully flush the thread’s pipeline as was done in Tullsen’s prior work

[117]. In Section 8.3.2 I will show that slowing down a thread’s execution too soon can reduce the performance of RH

kernels, so I elected not to fully flush stalled thread’s pipelines.

8.3.1 Dynamic Fetch Stalling While Executing RH Kernels

The first method employed to improve performance of coscheduled applications on an SMT processor is dynamic

fetch stalling. This policy prevented thread from fetching instructions when they had an active kernel query request.

When the outstanding kernel query returned, the hybrid thread could resume fetching instructions. Additionally, fetch

stalling was disabled upon any exception (interrupt, TLB miss, etc) to prevent starvation.

Figure 8.4 shows the performance improvement (using the EIPC metric) that dynamic fetch stalling has on SW-

only threads coscheduled alongside hybrid RH/SW applications. Performance of the SW-only threads were always

improved by the usage of this mechanism. More important than just the performance of SW-only threads however, is

overall system performance. Figure 8.5 shows the percent change in the workload’s NEIPC performance when using

the dynamic fetch stall mechanism. This shows that not only was the SW-only thread accelerated, but performance of

the entire workload was better when using dynamic fetch stalling.
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Figure 8.4 Percent improvement of coscheduled benchmarks’ EIPC when using dynamic fetch stalling
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(b) Workloads’ efficiency

Figure 8.6 Efficiency of coscheduled threads and workloads when using dynamic fetch stalling

Using the dynamic fetch stalling mechanism improved performance of threads coscheduled alongside AES much

more than that of threads coscheduled alongside the other hybrid RH/SW benchmarks. This is due to the fact that the

AES benchmark consists of a single RH kernel that is called repeatedly. Preventing this thread from occupying the

core’s instruction window, when the AES kernel is executing, can greatly improve the performance of coscheduled

threads. Even for the other hybrid workloads, the performance of both the coscheduled SW-only benchmark, as well

as the workloads as a whole improved when enabling dynamic fetch stalling, however the performance improvement

was nowhere near as dramatic due to the short execution time of many of the other kernels, and the (relatively) small

percentage of overall execution time spent in the RH kernels.

Figure 8.6 shows the efficiency of the coscheduled thread when using dynamic fetch stalling. I calculated the

efficiency measurements the same as I did in Section 8.2. When enabling dynamic fetch stalling, threads coscheduled

alongside AES outperformed the same threads when AES ran purely in software. However, with the other hybrid

RH/SW benchmarks, coscheduled threads sometimes performed slightly worse than when everything ran in software.

This can be explained by the behavior of the RH kernels. Many of the kernels (particularly in Xvid) performed

poorly when executed on an out-of-order superscalar processor. Because of this, an SMT processor could better take

advantage of coscheduling another thread alongside it during those times, improving overall performance. When

hybrid execution is enabled, the coscheduled thread is now more likely to be executing alongside code that performs

better on out-of-order processors. This results in slightly worse performance for the coscheduled thread. Although

the coscheduled thread also executes alongside the hybrid benchmark during the execution of RH kernels, this time is
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Figure 8.7 Performance improvement of SW-only coscheduled thread when using both dynamic and static fetch
stalling instead of just dynamic fetch stalling

a relatively small portion of overall execution, and thus cannot improve performance enough to offset the difference.

Additionally, many of the RH kernels in the Xvid workload execute for a very short time, so they do not execute long

enough for the dynamic fetch stall mechanism to significantly impact the hybrid thread’s instruction window usage.

8.3.2 Improved Fetch Stalling

Although disabling the ability of a thread to fetch new instructions while waiting for an RH kernel to execute

helps the performance of coscheduled applications, it does not do enough to minimize the stalled thread’s instruction

window usage. In particular, threads coscheduled alongside AES only achieved ∼ 93% of their CMP performance.

I therefore evaluated further methods to stop a stalled thread from using the instruction window. In this section, I

introduce a second mechanism to help improve the performance of coscheduled threads.

I refer to this new mechanism as static fetch stalling, and changes the method the processor used to select which

thread to fetch from. When using the modified fetch mechanism, the processor reduces a hybrid thread’s fetch priority

as soon as an RH kernel is reserved, causing SW-only threads to always have priority. This mechanism comes into

effect as soon as the hybrid thread reserves an RH kernel, and does not wait until the application has started executing

on the RH fabric to take effect.

On its own,static fetch stalling is not particularly useful because it still allows hybrid threads to fill up the processor

core’s shared instruction window during RH kernel execution. However, when used in conjunction with the stalling

technique described previously, it can help further improve the performance of coscheduled threads. Figure 8.7 shows
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Figure 8.8 Performance improvement of workloads when using both static and dynamic fetch stalling instead of just
using dynamic fetch stalling

the performance improvement of the coscheduled threads’ EIPC when using both static and dynamic fetch stalling

over just using dynamic fetch stalling.

Performance of threads coscheduled alongside AES and Xvid improved when the system used both static and

dynamic fetch stalling. Performance gains for each software-only benchmark was around 2%. For both the WiMax

and Tremor benchmarks, performance of coscheduled threads does not change significantly when using static fetch

stalling, because the accelerated versions of both Tremor and WiMax spend little of their execution time in RH kernels.

Although static fetch stalling always improved performance of the coscheduled SW-only thread, it does not always

improve the performance of the workload as a whole. Figure 8.8 shows the performance “improvements” of the

workloads when using both static and dynamic fetch stalling compared to just using dynamic fetch stalling. Although

AES workloads’ performance improved all around, Xvid’s performance actually decreases significantly. Many of the

RH kernels in Xvid execute for a very short time period; slowing their fetch means that it takes longer to start some of

the RH kernels, and thus it will take longer to complete the kernel’s execution. Figure 8.9 shows the efficiency of the

AES workloads when using all of the different fetch mechanisms.

Using static fetch stalling improved the performance of coscheduled SW-only, however it also increased the run-

time of the RH kernels. This increase in RH kernels’ runtimes is relatively constant, causing it to impact short-running

kernels much greater than long-running kernels. With this in mind, I created a new fetch mechanism that dynamically

decided whether to apply static fetch stalling
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Figure 8.9 Efficiency of thread coscheduled alongside hybrid AES for the three proposed systems

This policy used the weighted average of an RH kernels’ execution time to determine how long each call to an RH

kernel executes for, and only enabled static fetch stalling when the kernel’s runtime was expected to be over 1,000

cycles. Otherwise the CPU only used dynamic fetch stalling. This new fetch stalling mechanism allowed applications

coscheduled alongside applications that executed long-running RH kernels to perform at nearly the same speed as they

do on a CMP processor, while hybrid applications with shorter-running RH kernels were not penalized through the

use of static fetch stalling

The results from these runs are not shown. The performance of workloads containing the AES benchmark was the

same as when using both dynamic and static fetch stalling. The other workloads performed the same as they did in

Section 8.3.1. Although I chose the 1,000 cycle number arbitrarily for this policy, it managed to accelerate workloads

containing long-running RH kernels, while not degrading the performance of workloads containing short-running RH

kernels. A more thorough study across a wider range of workloads is needed to know exactly when the fetch priority

should be reduced, however this has been left for future work.

8.4 Conclusions

This chapter showed that SMT platforms can very efficiently execute hybrid RH/SW threads. However, modifica-

tions to the processor are needed to prevent hybrid thread’s from filling up the shared instruction window. Unlike prior

work work that examined flushing the pipeline upon a cache miss [117] , we chose to instead modify the fetch policies

to prevent threads from monopolizing the shared instruction window. This was possible because we did not need to
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wait to predict if an instruction was a long-latency cache misses, but rather knew if long-latency RH kernels were ex-

ecuting. Through the usage of a new fetch policy, the performance of SW-only threads improved while not degrading

hybrid RH/SW threads performance. Future RH systems that execute long-running RH kernels should consider using

SMT processors to better utilize processor resources. Using such systems can results in performance similar to CMP

systems, but using a fraction of the area, and with lower power consumption.

Although this chapter showed the results of coscheduling two threads together on a single core system, it did not

attempt to examine the complexities of a multicore SMT system. On such a system, the OS should be aware of which

threads are likely to execute RH kernels, how long their RH kernels execute for, and what percent of hybrid execution

is spent in the RH kernels. This way, the OS could better select which hybrid applications should execute together.

Not using this information could result in a poor balancing of workloads. For instance, on a dual core two-way SMT

system (two cores, each executing two threads) running two copies of a SW-only application, and two copies of AES,

scheduling the two AES threads on the same core would likely result in worse overall performance than if each core

executed an AES thread, and a SW-only thread. Much future work is still needed to determine which applications

should be coscheduled together, building upon the work done in [105].
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Chapter 9

RH Kernel Sharing on Multicore Systems

In this thesis I first examined how a RH kernel should communicate with the general-purpose processors in a

single-processor system (Chapter 6). It then extended this model to multiprocessor systems, examining workload

behavior as I increased the number of applications and processors in the system (Chapter 7). I designed these studies

to examine the RH’s memory subsystem. Therefore, every RH kernel was physically configured on the RH fabric to

maximize the strain placed on the memory subsystem.

However, in a real reconfigurable computing system, the RH will likely be a constrained resource, and it is unlikely

that all of the RH kernels belonging to all of the applications can fit on the RH at one time. These constrained systems

require policies to allocate the RH to the various RH kernels. One way to allocate resources is to have the OS

dynamically allocate the RH resources as discussed in Chapter 2 (and reexamined in Chapter 10). Although this

method can be quite effective at selecting which RH kernels are configured, if multiple applications are executing

the same RH kernels, it may not be the best method for allocating the limited RH resources. This chapter shows

that sharing configured RH kernels amongst the applications results in better performance than our dynamic kernel

scheduling algorithm.

9.1 Motivation and Prior Work

With multicore processors becoming prevalent in both embedded and desktop computing, application developers

must make their applications multithreaded if they wish to maximize performance. Many of these multithreaded

applications will exploit a type of parallelism called single program multiple data (SPMD), where each thread of

execution runs the same set of operations on different data. In this scenario, rather than requiring each thread to have

its own unique copy of physical RH kernels, threads could theoretically share a single set of configured RH kernels,

stalling execution of a thread if it attempts to use an RH kernel that is currently in use by another thread. Doing this

can increase the utilization of the RH kernels, and provide a more efficient allocation of the limited RH resources
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In addition to applications that exploit SPMD parallelism, RH kernel sharing can be useful in systems that

concurrently execute multiple copies of the same application. This could happen in a network appliance encrypt-

ing/decrypting multiple streams of data, or a set-top box processing multiple video streams. In these instances, multi-

ple copies of the same or similar processes need the same RH kernel designs. By sharing these configured resources,

it is likely that similar performance could be obtained (compared to having sufficient hardware for every RH kernel)

using a fraction of the RH resources.

Sharing of RH kernels would also be useful in a software-defined radio (SDR) platform [101]. SDR platforms use

programmable processors (often combined with accelerators) to implement wireless algorithms. The WiMaX backend

receiver described in Chapter 5.1.2 is an example of an SDR algorithm. In these systems, the processors implement

a variety of different radio protocols. In some instances, WiFi tethering of a cell phone for instance, it is necessary

to concurrently process multiple wireless protocols simultaneously. Because many wireless protocols use the same

basic algorithmic components (FFT, Viterbi or Turbo encoders, reed-solomon encoding/decoding etc) accelerators

configured for one SDR protocol might also be able to be used by other wireless protocols.

For most of these applications, it is unlikely that any single RH kernel makes up the majority of the application’s

accelerated execution time. Therefore, at any given point in time, most RH kernels are idle. For example, in a case

where a kernel makes up 95% of the current phase of an application’s execution when unaccelerated, the acceleration

provided by an RH implementation of the kernel means the kernel will be idle much of the time. If the RH kernel

was 20x faster than the software version of the kernel, the RH kernel would be idle over 50% of the time. In this

scenario, two threads could still make use of the RH kernel (assuming the overhead of switching the RH kernel

between applications is minimal), waiting for access when the other application is using the kernel. However, even in

a worst case scenario where an application always requests the RH kernel just after another application has requested

it, the RH kernel will still provide a 10x speedup, and the application will have an overall speedup of 6.9x instead of

10.3x. However, in scenarios where the RH kernel is not in greater demand than it is available, a thread is equally

likely to request the in-use RH kernel at the start of its execution as it is at the end of the kernel’s execution. Therefore

the average wait time is likely to be half the RH kernel’s runtime, as I will verify in Chapter 9.3. Using this new wait

time, the kernel speedup would be closer to 13.3x, and the application speedup would be 8.2x. For kernels that account

for a smaller percentage of the application’s execution time, the “penalty” for sharing an RH kernel will be even less,

as the kernel is unlikely to be requested while another application is using it..

Although prior work examined the sharing of hardware resources, these works do not fully consider the impact of

sharing configured RH kernels amongst applications. Chan et al. [23] describe a mechanism for sharing cryptographic

coprocessors between multiple applications. User processes request access to an agent that virtualizes requests to a

fixed set of cryptographic coprocessors. However, this system is specialized for encryption, and did not implement

process isolation for the coprocessors’ memory accesses.
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In the time since I first published a method of sharing RH kernels [44], Intel has released their Quick Assist [66]

hardware abstraction layer. Quick Assist is designed to handle many of the challenges of coupling a high-performance

computing system with FPGA coprocessors. The Quick Assist API provides mechanisms for sharing configured RH

kernels between applications. However, they do not describe how they isolate applications sharing a configured RH

kernel or examine the impact of “over-subscribed” kernels and how to deal with them.

More recently, Sun Microsystems T1 and T2 processors share cryptographic coprocessors amongst multiple thread

contexts on a processor core [65]. Modified cryptographic libraries provide hooks to use cryptographic accelerators

on systems that support them, otherwise a software-only version of the library executes. Each processor core has its

own cryptographic coprocessor, however, these cores are multithreaded, so the hardware must support the sharing of

these accelerators. Process isolation between threads is preserved by flushing any data stored in the cryptographic core

whenever it has finished executing.

9.2 Sharing RH Kernels

Sharing configured RH kernels allows multiple copies of the same or similar applications to share previously

configured RH resources [44]. In this chapter, I examine the impact of sharing RH kernels between applications using

the Xvid benchmark. In the Xvid benchmark, no single RH kernel represents the majority of application runtime. The

most dominant kernel in unaccelerated Xvid is SAD8, which accounts for ∼31% of Xvid’s runtime. If all kernels are

hardware-accelerated, the percent of execution changes—the faster-running hardware version of SAD8 accounts for

∼8.6% of the accelerated Xvid’s runtime. The SAD8 accelerator is therefore idle for ∼91.4% of the time, provided it

remains configured in RH.

Although the OS could elect to reconfigure the hardware for another purpose during this time, this is actually

not effective in all cases, as the time required to reconfigure the RH kernels is often larger than the time between

kernel calls. The execution of Xvid helps to illustrate this point. The largest phase of Xvid’s execution is the motion

estimation routine. This routine accounts for nearly half of the accelerated Xvid’s runtime and regularly calls the

SAD8, Avg2, and Avg4 kernels. The time between kernel calls is short (orders of magnitude shorter than the time

required to reconfigure the hardware), and the time between calls is data-dependent, making it difficult to predict

which RH kernels should be scheduled onto the hardware. Therefore, to best accelerate this phase of execution, all

of these RH kernels need to be configured in hardware at the same time. In other words, despite the fact that none of

these kernels makes up a significant portion of Xvid’s accelerated runtime, they all must be loaded ∼50% of the time

to accelerate their respective computations. Because of this, on multicore machines, an RH kernel scheduler may be

forced to not load some of the RH kernels for their entire phase of execution to leave room on the RH fabric for other

kernels that the RH kernel scheduler finds more useful (even though they may only be in use a small fraction of the

time).
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Sharing the RH kernels amongst the different threads or applications that need their functionality can dramatically

improve the utilization of these kernels. For instance, if two instances of Xvid are executing, a single physical copy of

each RH kernel could be shared so that both instances of Xvid can benefit from them.

9.2.1 RH Kernel Sharing Implementation

RH kernel sharing can be added to the RH computing system describe in Chapter 3 by making a few simple

modifications to the RH controller (I described the RH controller in Chapter 3.3). First, I modified the information

that the RH controller stores about each physical RH kernel so that it keeps track of the most recent process to use it,

and whether or not the physical RH kernel is currently executing. This allows the RH Controller to delay access to a

kernel if it is in use by another thread.

RH kernels are accessed using the mechanism described in Chapter 4.2, and applications “spin” wait when a shared

RH kernel is in use by another application. I selected this mechanism because even when eight processors are in the

same phase of execution, it is relatively unlikely that the spin wait time plus the execution time of the accelerated kernel

would be greater than the software runtime (as shown in Chapter 9.3, the “spin” time for the most used RH kernels is

rarely much larger than the RH kernels’ execution time). In the event that an application queries an RH kernel that is

busy, the RH controller queued the request internally for up to 200 cycles to see if the physical RH kernel becomes

available. This optimization is similar to the optimization mentioned in Chapter 4.4.2 that delays packets requesting if

an RH kernel is done. Queuing RH availability request packets also reduces the network traffic between the processor

cores and the RH controller, and also reduces the latency seen when the RH controller notifies an application that the

RH kernel is available.

When the RH Controller grants a thread access to a kernel, it sets a special reserve bit associated with the physical

RH kernel (physical and virtual RH kernels are described in detail in Chapter 4). The RH kernel stays reserved until it

has completed execution, at which point it signals the RH Controller to clear the reserve bit.

If the requested virtual RH kernel differs from the virtual RH kernel that previously reserved the physical RH ker-

nel, the RH Controller clears all cached stream controller parameter. This prevents threads from accessing parameters

set by other processes, helping to preserve process isolation. If the RH controller flushes the stream controller’s param-

eters, the executing application must reinitialize the stream parameters. This functionality is provided by modifying

the routine that queries if the RH kernel is available. Instead of just indicating if the kernel is ready, it also indi-

cates if the stream controller parameters have been flushed. If so, the software must reinitialize the stream controller

parameters.

9.2.2 RH Kernel Sharing Test Cases

I examined six different test cases were used to determine the effect of RH kernel sharing. At the two extremes

are the no RH and sufficient RH (sufficient) cases that will be used as baselines in this chapter. In no RH, multiple
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Allocation # RH Tiles Description

No RH 0 All the copies of Xvid execute in software

Sufficient 18/36/72 All copies of Xvid have a unique copy of all the RH kernels (2p/4p/8p)

Sharing 18 All copies of Xvid share a single copy of every RH kernel, waiting for access

Static 18 A static allocation of the RH kernels is given to all of the copies of Xvid

Dynamic 18 Every 2mS the OS dynamically decides which RH kernels should be loaded

One 18 One of the Xvid encoders has access to the RH, others do not

Table 9.1 Methods used to allocate the RH, the number of tiles needed for the allocation method, and a brief
description of how the RH was allocated.

software-only Xvid processes are executed, and the sufficient RH case models a system where there are enough RH

resources to allow every executing Xvid process to have its own unique set of physical RH kernels. In other words,

this case fully accelerates all RH kernels, and configured RH resources are not shared. This case is therefore an upper

bound on the performance benefit that is achievable with kernel sharing.

The remaining tests in this chapter limit the RH resources to some degree. For example, in the “one accelerated”

(one) simulation, the OS configures a single copy of the Xvid kernels on the RH, and these kernels are only accessible

to a single instance of Xvid (other instances of Xvid execute entirely in software). The static schedule (static) case

models a situation where kernels are not shared, and uses a static analysis scheduling algorithm to decide which

physical RH kernels should be configured. For this case, the system contained the same number of tiles (18) required by

the“ one accelerated” case. However, rather than implementing one of each kernel type, the kernel scheduler described

in Chapter 2.7.2 chooses which kernels will provide the best overall benefit. In addition to the static-scheduling

runs, I compared the performance of the sharing system against a dynamically-generated scheduler (dynamic) that

periodically runs the dynamic kernel scheduling algorithm (every 2ms) [40]1. Finally, in shared kernels (shared),

the OS configured a single physical copy of each RH kernel, however all of the Xvid processes share all of these

configured RH kernels. This test case used the sharing mechanisms described earlier to share the physical RH kernels.

Table 9.1 provides an overview of how each experiment allocated the RH.

We ran each test case on three different test platforms, one where two processors execute two instances of Xvid,

one with four processors executing four instances of Xvid, and one with eight processors running eight instances of

Xvid. This allows us to examine the impact of sharing RH kernels as the number of processes competing for access to

the RH kernels is increased.

1Although all tests containing statically configured RH kernels use the same checkpoints, simulations using dynamically scheduled kernels had
to use a different checkpoint. This is because dynamically configured kernels have a very different OS’ state than kernels that are statically allocated,
resulting in different execution paths. This makes it physically impossible to reuse the checkpoints without causing the OS and/or the RH controller
to be in an inconsistent state. However, because Xvid’s runtime is relatively consistent over a long enough time span (and the checkpoints were
from similar points in the applications’ execution), the differences in the two checkpoints should be minimal.
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Figure 9.1 Xvid’s speedup over no RH for each of the test cases.

9.3 Sharing Performance

Figure 9.1 shows the performance of the test cases on both two- and four-processor systems. These results show

that sharing a single copy of the configured Xvid RH kernels results in system performance that is close to that

of a system where each application has its own unique copy of the RH kernels, achieving ∼ 98.5% of sufficient

RH’s performance for both two- and four-processor systems. Only on eight-processor systems did the performance

degrade noticeably, obtaining only 89% of the performance of sufficient RH. In addition, all of the sharing cases

outperformed the statically and dynamically allocated hardware. In particular, as the number of processor cores

increased, the performance advantage over the scheduled RH cases increased. This is because none of the RH kernels

are in extremely high demand, so sharing the RH kernels can provide high performance.

This figure also shows that although dynamic scheduling is quite effective when executing on a two-core system,

as the system is scaled up to four and eight cores, performance suffers. I expected this, as the demand for the RH

has increased, while available resources have stayed constant. Although the same thing happens when sharing RH

kernels (the demand for each RH kernel increases as the number of applications accessing them increases), as Figure

9.1 shows, this dropoff occurs at a later point than for dynamic scheduling. Although dynamically scheduling the

RH fabric provides coarse grain sharing of limited resources, sharing configured RH kernels exploits a more fine-

grained sharing of the resources. Unlike the dynamic system, the shared system does not have to periodically perform

a relatively expensive scheduling operation or suffer from the very large cost associated with reconfiguring kernels

located on the RH. This allows the sharing system model to outperform dynamic allocation of the RH resources.

Additionally, as will be shown in Chapter 9.4, by using a few additional resources, performance of shared RH kernels

can be improved significantly.
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Figure 9.2 How often there was contention for shared Xvid kernels, and how long the waiting application had to wait
to obtain access.
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There are many important things to take into consideration when examining the impact of RH kernel sharing. It

is useful to know how often an application had to “wait” to access an RH kernel because the associated physical RH

kernel was in use. Figure 9.2(a) shows the percent of calls to each RH kernel where the application had to wait at least

one cycle to obtain access to the RH kernel. This graph shows that there was rarely much contention when accessing

most of the RH kernels. For two- and four-processor simulations, applications had to wait ∼ 13% of the time they

called the SAD8 kernel. All other RH kernels were immediately available over 97% of the time. In eight-processor

simulations, waiting was more common due to the increased contention for all of the RH kernels. In particular,

applications that wished to use the SAD8 kernel had to wait almost 40% of the time. Also, applications that wished to

use the interpolate 8x8 6-tap and the SAD16 kernel had to wait about 15% of the time.

However, just knowing how often an application waits to access an RH kernel does not tell the entire story; it is

also important to know how long the application waited to access the RH kernel. Figure 9.2(b) shows the percent of

each RH kernels’ average runtime an application spent waiting when a kernel was not immediately available. This

figure shows that the wait time for most RH kernels was approximately half of the RH kernels runtime. This makes

sense, because most of the time, there will be exactly two threads2 competing for access to the resource. Assuming

applications call the RH “randomly”, they are equally likely to overlap during all periods of execution, resulting in a

wait time of ∼ 50% of the kernel’s hardware execution time.

The only exception to this is the interpolate 8x8 6-tap kernel. When calls to this kernel had to wait to access the

RH, they tended to wait for the entire execution of the RH kernel. This is because when Xvid is in the interpolation

phase of its execution, it calls this kernel hundreds of times, performing almost no calculations between subsequent

calls. Therefore, if two copies of Xvid are in this phase of execution at the same time, they will continuously compete

for access to the kernel. Because only one copy of Xvid can gain access to the kernel at a time, the other copy of Xvid

will have to wait for the first application to finish executing the RH kernel before it can start its own execution. This

situation will continue to repeat until one of the copies of Xvid finishes the interpolation phase of its execution.

The time spent spin-waiting for an RH kernel to become available is only part of the overhead associated with

busy RH kernels. When RH kernels are relatively uncontested, the applications will predict that the RH kernel will get

executed. However, if there is a lot of variability in whether the RH kernel will be available, the processor’s branch

predictors are more likely to mispredict that an RH kernel is not available when it really is (if the branch predictor

predicts that the kernel is available when it is not, the penalty is not very great, as the pipeline flush will occur while

the processor is stalled waiting for the RH kernel). Although the impact of this is minimized by the fact that the RH

controller will not immediately return that an RH kernel is busy, instead stalling a request for up to 200 cycles to see if

the physical kernel becomes available. If the RH kernel is available within this time period, the RH controller returns

that the RH kernel is available even though it was not available when the processor initially requested the RH kernel.

2Although it is is possible for more than one thread to be waiting for the RH kernel at the same time, in situations where the RH kernel is rarely
busy, it is highly unlikely that another thread will already be waiting for the RH kernel.
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Additionally, the application must “reset” any cleared stream controller parameters (if not using the default values).

Combined, these stalls mean that a busy RH kernel can greatly increase the average runtime of the shared RH kernel.

When examining this data, it is clear that Xvid’s RH kernels can be shared rather effectively by two and four

applications executing on multicore systems without a significant drop in system performance. However, as the number

of applications (and cores) sharing the RH kernels increases, some of the RH kernels can become bottlenecks. In

particular, the SAD8 kernel suffered from poor performance when more applications shared the RH kernels. When

up to eight applications could be requesting the SAD8 kernel at a time, the average execution time of this RH kernel

increased. Because the RH kernel took longer to execute, it now represented a larger percentage of the application’s

execution time. This further increased the chance that yet another copy of Xvid would request the SAD8 kernel at

the same time; further reducing performance, and resulting in a SAD8 execution time that was twice that of sufficient

RH’s SAD8 execution time.

Counting the time spent waiting for the RH kernel to become available, the eight copies of Xvid combined spent

over three billion cycles in the SAD8 kernel. This was longer than the total time that the simulations executed for (two

billion cycles). SAD8’s reduction in performance (due to time spent waiting), combined with its large percentage of

overall execution time make it responsible for the majority of the slowdown experienced when sharing RH kernels. I

refer to shared kernels whose performance suffers greatly (such as SAD8’s) as “over-subscribed” kernels.

9.4 Kernel Pooling

Virtual
Kernel 0

Virtual
Kernel 1

Virtual
Kernel 2

Virtual
Kernel 3

Physical
Kernel A

Physical
Kernel B

Virtual Kernel: 0 Unassigned

Physical
Kernel C

Virtual Kernel: 3

Figure 9.3 Mapping virtual kernels to physical ones using kernel pools
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Figure 9.4 SAD8 kernel’s speedup when varying the number of SAD8 kernels on the system, and configuring a
shared single copy of all other kernels

To counter the problem of “over-subscribed” kernels,I augmented the system with kernel “pools”. Kernels pools

are groups of multiple copies of physical RH kernels shared by all of the processes that have requested that type of RH

kernel. I implemented these kernel pools by modifying the method that the RH Controller allocates RH kernels. When

an application attempts to access a virtual RH kernel, the RH controller first checks if any corresponding physical

kernels exist on the RH and if any of them are free. If multiple physical RH kernels are available, the RH Controller

attempts to reserve the physical RH kernel that the application last accessed.

Figure 9.3 depicts a set of virtual kernels and their mapping to physical kernels in the kernel pool. Virtual kernels

mapped to the same physical kernel cannot use the same physical kernel simultaneously. In this figure there are four

virtual RH kernels, and three physical RH kernels. Virtual kernel 0 is assigned to physical kernel A, and virtual kernel

1 is currently not associated with any physical kernels. Virtual kernels 2 and 3 over time have shared physical kernels

B and C. Currently, however, virtual kernel 3 is assigned to physical kernel C, and virtual kernel 2 is unassigned.

I examined the benefit of kernel pools by executing the same workloads as before, but with a varying number of

physical SAD8 kernels configured on the RH. Figure 9.4 shows the speedup of the SAD8 kernel (compared to the

execution time of No RH) as we configured more physical copies of the SAD8 kernel. This graph shows that adding a

second copy of the SAD8 kernel improves the performance of SAD8 on two- and four-processor machines (on par with

the performance of sufficient RH), and greatly improves performance on 8-processor machines. On eight-processor

systems, adding a second physical copy of the SAD kernel increases performance from 50.3% of its performance with

sufficient RH to 92.3% of that performance. Adding more copies of the SAD8 kernel on eight-processor systems

brought the kernel’s performance to be on par with that of the sufficient RH system, showing that pooling RH kernels

can increase the performance of over-subscribed kernels.
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Figure 9.5 Xvid performance when all of the RH kernels are shared, but multiple copies of the SAD8 kernel were
pooled together to decrease the demand on the RH kernel.

Figure 9.5 shows that overall Xvid performance improves when pooling multiple copies of the SAD8 kernel . On

two- and four-processor systems, adding a second copy of the SAD8 kernel brought performance up to the same level

as sufficient RH. On the eight-processor system, adding a second copy of SAD8 increased performance significantly,

but even when eight copies of SAD8 were configured on the RH, overall performance was still only 97.5% of the

sufficient RH case. Because the SAD8 kernel is only a single tile in size, the cost of configuring an extra SAD8 kernel

is minimal compared to the cost of adding all of the RH kernels, making it worthwhile to configure at least two copies

of this RH kernels on eight-processor systems. To further increase the performance of the eight-processor workload,

the system would need to enable RH kernel pools of the interpolate 8x8 6-tap kernel and possibly the SAD16 kernel

in addition to the pools of SAD8 kernels. Doing this would likely bring performance to the same level as sufficient

RH, but would use significantly more resources than just sharing an additional one or two copies of the SAD8 kernel.

However, this would still obtain significantly better performance than dynamically scheduling the RH fabric with the

same number of tiles.

9.5 Kernel Sharing Conclusions

This chapter examined the allocation of limited RH fabric resources on multicore reconfigurable computing sys-

tems. In this work, I examined both existing ways that the OS can allocate the RH resources (static scheduling,

dynamics scheduling, and one RH), and compared their performance to a new method I developed to share configured

RH resources. In this work, I show that multiple copies of the same application can be best served by configuring a

single copy of every RH kernel, and sharing them amongst all the applications.
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I also showed that many RH kernels can be effectively shared by multiple applications without reducing the per-

formance of the kernels. this is because it is unlikely that another application will be using the configured RH resource

when it is requested. However, in other instances, I saw that the performance of RH kernels that are in high demand

suffered greatly when shared by all of the applications executing on the system. To help prevent these RH kernels from

degrading system performance, I pooled multiple copies of a configured RH kernel together and shared them amongst

all applications executing on the system. Through the use of kernel pooling, application performance could be greatly

improved using minimal extra resources.

This work suggests that future systems that are likely to execute multiple copies of the same or similar applica-

tions should implement the mechanisms proposed in this chapter to safely and securely share configured RH kernels.

Sharing these RH kernels can result in performance similar to that of having sufficient RH to fully accelerate every

application, while using only a fraction of the resources.

This chapter first showed how multiple applications executing on a reconfigurable computing system can safely

share multiple copies of a single physical RH kernel. The additional hardware required to support this is minimal

in systems like ours that distinguish the virtual RH kernels that an application is allowed to directly access from the

physical RH kernels that are implemented on the reconfigurable fabric. Because of this, only a few additional bits

of storage had to be added to each virtual and physical RH kernel to support the sharing and pooling of physical RH

kernels.

This chapter also showed that sharing RH kernels can allow a very efficient usage of limited RH resources, even

performing better than a dynamic RH kernel scheduler to the tested situations. It then examined situations where a

shared RH kernel can become “oversubscribed”, limiting the performance of the application. However, this limitation

on performance can easily be overcome by using pools of RH kernels that are high demand. Using pools of shared

RH kernels can greatly improve the performance of oversubscribed kernels, bring performance close to that of a

system that had sufficient RH such that all of the requested RH kernels could have their own unique copy of the RH

kernel configured on the RH fabric. This work showed that for a hybrid RH/SW application containing multiple RH

kernels, multiple physically configured RH kernels can be shared amongst multiple copies of the application without

significantly impacting performance.
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Chapter 10

Scheduling RH Kernels on Multicore Systems

Previous work examined methods to dynamically schedule RH kernels (see Chapter 2.7.2). In this prior work, the

OS periodically evaluated which RH kernels should be configured on the RH fabric in order to maximize performance

[40, 41, 107]. To perform this operation, the OS must read back how many times each kernel was called (whether the

kernel was configured or not) and then use that information, in combination with the kernels software runtime, and

RH speedup to determine which RH kernels should be loaded at a given time. Much of this previous work focused on

selecting RH kernels for single processor systems. However, when multicore reconfigurable computing systems used

this scheduler, the RH kernel scheduler did not always select the RH kernels that maximized system performance [48].

The interdependence of RH kernels caused performance to decline.

This chapter reexamines the RH kernel scheduler proposed in [40], and observes when it selects the “wrong” RH

kernels. After examining the cause of the original schedulers shortcomings, this chapter proposed a new hierarchical

RH kernel scheduler that properly handles the interdependence of RH kernels. In this chapter, I examine the perfor-

mance of the new hierarchical RH kernel scheduler under a variety of situations, and compare it to that of the original

RH kernel scheduler.

10.1 Shortcomings of Existing RH Scheduling Methods

The knapsack solver in the earlier kernel scheduling work assumes that kernel values are both additive and inde-

pendent. However, that work did not fully examine the implications of running multiple applications that each contain

multiple RH kernels, on a multiprocessor system. In these situations, the real application speedup contributed by

each kernel depends on which other kernels from the same applications are also accelerated by the RH. The fact that

kernel values are actually interdependent breaks the knapsack solver, causing it to sometimes select one kernel when

another would provide more total acceleration to the system. The speedup of individual RH kernels could also be

interdependent due to increased data locality, but this type of interdependence is an issue for future work. This chapter

only examines the effects of kernel interdependence; therefore the runtimes of individual kernel calls in this work are

unaffected by the RH allocation; only the rate at which the applications’ call kernels changes.
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Application Kernel Num Calls TSW TRH Size (tiles) Independent Application Speedup

1
A 90 10,000 1,000 1 5.26x

B 20 5,000 1,000 1 1.09x

2 C 30 10,000 2,000 1 1.32x

Table 10.1 Example of two applications executing on a dual- processor system. All kernel execution times are listed
as a count of CPU cycles.

Table 10.1 illustrates an example of a situation where the interdependence of RH kernels causes the original

knapsack solver to select a set of RH kernels that does not maximize overall system performance. In this example, two

applications execute on a system containing two RH tiles. If a scheduler used the independent application speedup

value function it would select kernel A from application 1 and kernel C from application 2, resulting in a speedup of

5.26x for application 1, and 1.32x for application 2. However, had the scheduler instead chosen both of application

1’s kernels, application 1’s speedup would be 9.09x, and application 2s would be 1x (executing entirely in software).

Accelerating kernel A causes application 1 to execute kernel B more frequently, and vice-versa. The total system

speedup (calculated using the geometric mean) is higher for the second option, indicating a greater benefit to overall

system performance. Although the knapsack solver exactly solved the problem it was given, the interdependent kernel

values meant that the value of each RH kernel did not reflect its actual value, causing the knapsack solver to select RH

kernels that do not maximize performance.

Another issue with the prior scheduling approach relates to the fact that the knapsack scheduler optimizes for the

sum (arithmetic mean) of speedups the RH provides to the applications. However, a system-level scheduler may in-

stead want to optimize for the geometric mean of application speedups, which has been suggested as a better method

for aggregating overall system performance [88, 27]. The geometric mean strikes a balance between the arithmetic

mean, which generally targets maximum single-application performance, and the harmonic mean, which targets min-

imum variance of application performance.

10.2 Example Problematic Scheduling Cases

In this section I compare the scheduling decisions and resulting performance of both the original scheduler as

well as an optimal scheduler, which, for the purposes of this chapter, is defined as a scheduler that, based on the

dynamically-profiled system behavior for the previous scheduling interval, selects the RH kernels that would maximize

system performance for an identical interval (same applications in the same program phases). This allocation may

not be optimal if the behavior in the next interval differs. However, the goal is to evaluate whether or not the the

scheduler selects the best solution for the given data, and not to evaluate whether past behavior accurately models

future behavior. Thus, for the remainder of this chapter, when the word optimal is used, it refers to a scheduler that
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Variable Description

Pk Percent of application time (for the current phase of execution) that kernel k executes for in software.

Sk Speedup that the RH implementation of kernel k has over its software implementation.

PALL Percent of application’s software execution time (for the current phase) covered by RH kernels

TSWk
Execution time of kernel k in software

TRHk
Execution time of kernel k on the RH

Nk Number of times kernel k was called in the previous interval

Table 10.2 Some of the variables used in this chapter.

behaves as described above. For this study, the examined problems each represent a single scheduling interval, and

the system can only re-allocate RH at the start of the interval.

In this chapter, I use a simplified model of hybrid RH/SW applications to focus on the issues involved when

scheduling for multicore systems. Because of this, kernels have a constant runtime both when executing in software,

and when executing on the RH. Additionally, the remaining SW-only portions of an application have a constant execu-

tion time regardless of what other applications are executing, or what RH kernels might be configured on the hardware.

I calculated the speedups assuming that the next interval of execution has the same ratio of calls to the RH kernels, and

that all of the selected RH kernels are available for the entire interval. These simplifications isolate the impact of the

scheduling algorithm on performance, allowing the direct comparison between the two RH kernel schedulers. It is left

to future work to examine the impact of these other factors on the scheduler’s performance. I use multiple variables in

this chapter to describe the behavior of applications, and their kernels. Table 10.2 lists many of the variables that will

be used in this chapter.

To demonstrate situations where the original scheduler chooses a suboptimal allocation, I examine a scenario

where two identical applications execute concurrently. In this scenario, each application contains two RH kernels

(A and B). The RH implementation of each kernel occupies a single tile on the RH fabric, and the system contains

exactly two tiles. Thus, for the given interval, the scheduler can select two of the four kernels for acceleration. For

the first several examples I only evaluate situations where, in isolation, kernel A provides more application speedup

than kernel B. In these examples, PA and PB represent the percent of execution time that the application spent in

those kernels when executing entirely in software. Combined, they represent the percent of the application that can

potentially be accelerated. SA and SB refer to the speedup of the RH implementation of these kernels over their

software implementations. Note that the requirement that kernel A provides more application speedup than kernel B

does not dictate that SA is greater than SB , but rather that the combination of SA and PA provide more speedup than
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the combination of SB and PB . Equation 10.1 shows the condition under which kernel A provides a better speedup

than kernel B.

1− PA +
PA

SA
≤ 1− PB +

PB

SB
(10.1)

For the tests performed in this section, I set the value of an RH kernel to it’s independent application speedup. The

equation for this speedup is based off Amdahl’s law, and is given in Equation 10.2. Although there are many different

ways to calculate the value of an RH kernel , these other value functions also suffer from interdependencies amongst

RH kernels. Chapter 10.3 examines an alternative value function, and explains why it also fails due to interdependent

kernels.

IndependentApplicationSpeedup =
1

1− Pk + Pk

Sk

(10.2)

In the examples discussed in this section, the scheduler must choose between configuring kernel A for both ap-

plications, or configuring both kernel A and kernel B for one application and neither for the other application. The

scheduler will never select kernel B for both applications because it provides less speedup to the application than ker-

nel A. In this example, the original RH scheduler will always select the first option, configuring one copy of kernel A

for each application, because the calculated value of kernel A is greater than that of kernel B. Equation 10.3 expresses

the condition under which it is better to only accelerate the one application; it compares the geometric means of over-

all application performance for each option described above. In this equation, the left side represents the geomean

of system performance when accelerating a single application, and the right side represents the geomean of system

performance when accelerating a single kernel from each application.

1√
1− PA − PB + PA

SA
+ PB

SB

<
1

1− PA + PA

SA

(10.3)

To demonstrate when this condition can occur, PA was set to PB . In this case, the minimum speedup kernel B

must have (SB) for the inequality of Equation 10.3 to hold is found. Figure 10.1 shows the value of SB as I varied

both PA and PB (which are equal in value). The required SB value does not grow linearly with an increase in SA for

any of the tested coverage values. As total coverage grows, the required SB also decreases for a fixed value of SA.

Figure 10.2 takes a different approach, and fixes PB at 30% while varying both PA and SA. The smallest SB

needed for the original scheduler to select a non-optimal set of RH kernels is found for each PA and SA combina-

tion.This graph shows that if PB is constant, SB increases as PA increases, but also that as PA + PB → 100%, the

minimum problematic SB actually decreases because overall possible application speedup increases. For instance,

when PA equals 40% and SA equals 10x, SB only needs to be 4.3x to cause the original kernel scheduler to produce

a suboptimal schedule. When PA is very small, the wrong kernels are selected even for small values of SA. However,

when PA is much smaller than PB , it becomes increasingly unlikely that kernel A will be more useful than kernel B.
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Figure 10.1 Conditions under which the old scheduler selects RH kernels that do not maximize system performance,
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Figure 10.3 Performance difference between original and optimal scheduler when PA = 45% and PB = 35%

Although these graphs show that the original scheduler computes suboptimal allocations in some situations, they

do not indicate the effect that these suboptimal schedules have on overall system performance. Figure 10.3 illustrates

the performance degradation caused by using the original RH scheduler. In this figure, PA is fixed at 45% and PB is

35%, for a combined application coverage of 80%. For this experiment, kernel A is no longer constrained such that it

provides a greater application speedup than kernel B. This graph shows that the old scheduler performs worse relative

to the optimal scheduler as the kernel speedups increase. The performance degradation is over 12% when SA and SB

are both 10x, and is almost 17% when SA and SB are both 20x. In other experiments, I varied both PA and PB and

saw that the performance difference between the original schedulers decision and the right decision increased as the

total application coverage increased (PA + PB → 100%).

10.3 Alternative Value Functions

In the previous Section, the original knapsack scheduler used the independent application speedup value function

given in Equation 10.2. However, this is not the only method that a knapsack scheduler could use to calculate an RH

kernel’s value. Multiple different value function were evaluated in Fu et. al [40], with the best performing being the

MCKP TP value function. This value function is equivalent to the independent application speedup algorithm, which,

as I showed in the previous section,did not create optimal selections.
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The value function for an RH kernel scheduler should directly reflect the benefit that an RH kernel has on the

system. In this work the RH kernel scheduler’s goal is to maximize the performance of the system as a whole.

Therefore the scheduler does not consider fairness, power, or any other number of factors that could be of benefit to

the system. Any value function that the RH kernel scheduler uses should therefore directly reflect the performance

benefit to the individual applications. One alternative to the independent application speedup value function is the

cycles saved value function shown in Equation 10.4. This function is relatively straightforward, and shows the value

of using an RH kernel as the number of cycles that would have been “saved” if the kernel executed on the RH instead

of in SW.

CyclesSavedk = Nk × (TSWk
− TRHk

) (10.4)

On first glance, this value function might appear to work in all cases, however it suffers from the same problem that

the independent application speedup value function suffers from. This function calculates the number of cycles saved

for a single kernel assuming that the application performs a given amount of work. When an RH kernel accelerates

the application, the application performs more work during the same amount of time. This means that when the RH

accelerates even a single kernel within an application, the number of cycles saved calculated using Equation 10.4 is

not correct, because the the RH kernel would be called more often (increasing Nk), causing the application to perform

more work. Within a single application, this is not a big deal, because the number of times the application calls a

kernel is scaled by a constant factor (the overall application speedup) for all of the kernels in the application. This

means that this value function still selects the optimal set of RH kernels when the system is executing a single thread.

When the system is executing multiple threads, the cycles saved value function may not obtain the correct solution

because the “scaling factor” for the number of times an RH kernel has been called would be different amongst the

various threads. This could result in a kernel with what appears to be a small number of cycles saved improving

overall system performance more than one with a larger number of cycles saved value. This is similar to the example

in Table 10.1 where a kernel with a relatively small independent application speedup was shown to be more useful

than a kernel with a larger independent application speedup.

When reevaluating the value function, I made another observation: if all applications executing on the system

contain only a single RH kernel, than the independent application speedup is the actual speedup of the application.

This is because the actual application speedup cannot change because the scheduler cannot select another RH kernel

belonging to the application. Because of this, the independent application metric can be used to exactly solve the

scheduling problem when each application on the system contains only a single RH kernel. This fact will be useful

when coming up with the hierarchical RH kernel scheduler in the next section of this chapter.

Although an RH kernel scheduler could be developed that dynamically calculates the value of the set of RH

kernels selected each time it compared one selection to another, this would result in a problem that would not fit

into the knapsack framework. Although the knapsack problem is in general an NP complete problem [72], when the
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1 for each Application A
2 for each RH kernel k in A
3 V aluek = TimesCalledk × (TSWk

− THWk
)

4 ImplementationsA = KNAPSACK APP(A)
5 for each implementation I in ImplementationsA
6 TotalV alueA[TilesI ] =

CyclesA
CyclesA−CyclesSavedI

7 Sched = MODIFIED MCKP(TotalV alue,A)

Figure 10.4 Pseudocode describing the hierarchical RH kernel scheduler. KNAPSACK APP computes the knapsack
solution for an individual application; MODIFIED MCKP combines the knapsack solutions into a single schedule.

weight of each object is a constant non-negative integer, a dynamic programming solution exists that can be solved

in pseudo-polynomial time. Because of this, the existing knapsack solver’s runtime is proportional to the number of

kernels in the system times the maximum weight that can fit in the knapsack. Using a generalized knapsack solver to

get around the problems associated with kernel interdependence would result in a solver that could be much slower

than the current implementation. Solving such an NP complete problem would be infeasible for systems containing

many kernels (8-CPU systems can easily have 50 or more kernels).

10.4 New Hierarchical RH Kernel Scheduler

Due to kernel value interdependence, the original knapsack RH scheduler does not produce optimal (as defined in

Chapter 10.2) RH allocations when multiple applications, each containing multiple kernels, execute simultaneously.

However, using the properties from the different value functions in Chapter 10.3, I decomposed the scheduler into two

successive knapsack problems that combined, produce an optimal allocation of RH kernels. Figure 10.4 illustrates

how I broken the problem down into multiple steps

First, I applied the knapsack solver to each application individually. Next, the OS calculated the value for each

kernel in the application using the cycles saved function given in Equation 10.4. The knapsack solver then exactly

determines which RH kernels should be loaded for each possible tile allocation for the application. One side-effect of

the dynamic programming implementation of the knapsack solver is that, when calculating the solution for a given tile

count it determines the knapsack solution at each smaller tile count. This means that the scheduler retains intermediate

solutions that can be used in the next step to quickly determine which RH kernels each application should implement

when they are allocated a set number of tiles.

The second level of the algorithm, uses a modified multi-choice knapsack problem (MCKP) solver [72] to find

the overall best set of kernels for the total available RH tiles. The MCKP chooses not only which items to include in

the knapsack, but also which version of those items to include (at most one version of a given item can be chosen).

The second stage combines the possible application versions (the solutions calculated in the first stage) to find the
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best global RH allocation solution. The “weight” of each possible application version is equal to the number of tiles

it occupies, and the value of each version is the total application speedup provided by the combination of kernels it

represents. This application speedup can easily be determined and is static at each potential tile size.

However, these changes alone do not allow the scheduler to exactly solve for the best mix of RH kernels. The

knapsack solver maximizes the sum of values given it. Although this would be adequate if the goal was to maximize

the average application performance, it does not optimize for the geometric mean of application performance. There

are multiple ways to modify the algorithm to maximize the geometric mean of application speedups. One approach

is to modify the values of each “implementation” of the application. Instead of setting these values to the speedup of

the application implementation, they could be set to the log of the application’s speedup. Doing this would cause the

MCKP solver to actually maximize the products of application speedup because the addition of logs is equivalent to

multiplication of the base numbers.

Using the log method is not ideal for a number of reasons. Calculating the log of a number can be relatively

expensive, and when using fixed point calculations, as required in Linux kernel code, precision will be reduced,

resulting in kernels that don’t have the same speedup appearing equal after calculating their log. To get around these

issues, we used a modified MCKP solver that instead optimized for the maximum product of values, rather than sum

of values. This modification to the dynamic programming solution was relatively simple, and results in as good of

speedups as using the log method. Making this change to the second-level MCKP solver enabled the new hierarchical

RH kernel scheduler to select the RH kernels that maximize the geometric mean of each application’s performance.

10.5 Setup

Prior chapters in this thesis used the Alexandrite full system simulation platform to analyze the performance of

new features. Similarly, I also implemented the hierarchical RH kernel scheduler in the Linux kernel on the simulated

system. I did this to verify that the scheduler worked on a real system, and to to ensure that the overhead of the new

hierarchical RH kernel scheduler was similar to that of the original RH kernel scheduler. Although this full system

simulation platform is extremely useful for some tests, it is also extremely slow, and provides far more detail than

needed to analyze the performance of the schedulers.

In this chapter, I evaluate millions of different application scenarios to ensure that the hierarchical scheduler pro-

duces the correct results not only on the workloads already developed, but also on future workloads that may be

encountered. This expansive of an evaluation is not feasible on the Alexandrite simulation platform. Furthermore, my

goal was to test whether or not the scheduler makes the correct decisions based on the input data given it, rather than

specifically motivating reconfigurable computing as a platform for acceleration. Therefore I used a simplified testbed

to evaluate the hierarchical RH kernel scheduler.
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10.5.1 Simulation Infrastructure

This work relies on a new simulation testbed designed to both generate synthetic workloads and analyze the

resultant performance of the workloads when the RH kernel scheduler selects which RH kernels are loadedr. Millions

of synthetic workloads can be generated on this simplified simulation testbed, a feat which would not be feasible on the

full- system cycle-accurate Alexandrite simulation platform. Testing on so many workloads ensures that the scheduler

functions correctly not only for the actual workloads that have been developed, but also for other workloads that may

be encountered in the future. Using these synthetic workloads allows the modeling of a very large number of different

simulations where kernel value interdependency could have an effect.

The simulation testbed used to verify the hierarchical RH kernel scheduler focuses only on the scheduling problem

itself; modeling the RH kernel allocations produced by the periodic RH kernel schedulers across a large range of

tile sizes. This testbed generated synthetic workloads containing multiple applications that are representative of real

hybrid RH/SW applications. This testbed also performs the necessary scheduling operations for each workload to

determine which RH kernels each scheduler would select at each tile size. The testbed randomly generates a set of

kernels for each application in the workload. Each kernel has associated with it, the number of times it was called, its

runtime in software, the runtime of the kernel when executed on the RH fabric (normalized to a count of CPU cycles),

and the number of tiles that the kernel occupies.

The data generated about each application (and kernel) is the same data that a scheduler executing on a real system

would use. Using this data, the testbed calculates the kernel allocation for the generated profile data, using both the

original and hierarchical kernel scheduler. The testbed then estimates the workload performance for each selected

kernel allocation.

10.5.2 Workload Generation

I generated fifteen million workloads to model the execution of two-, four-, and eight-processor systems (five

million each). Each workload includes as many hybrid RH/SW applications as there are processors in the system. Like

the hybrid RH/SW benchmarks described in Chapter 5.1, the main control flow of these applications is in software,

with compute intensive kernels being able to execute on the RH fabric if selected. Each application spends the majority

of its unaccelerated execution time in its kernels, and each kernel in the application has a meaningful impact on

application performance when implemented in RH. This approach models the fact that designers are only likely to

implement kernels that represent a significant portion of runtime and achieve a significant speedup when executed on

the RH fabric.

For each application, I first genarated the PALL value (the percent of that applications software execution that

could be accelerated in RH). Because the PALL value is very influential on the overall performance of the scheduler,

I created multiple sets of tests with different distributions of PALL. Regardless of the range of PALL, I used a
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Parameter Distribution Mean Range

PALL Normal varies varies

Number of kernels in application Normal varies [1,varies]

Sk Log-normal 12x [2x,53x]

Kernel Size Log-normal 4 [1,13]

Table 10.3 Parameters used to generate the synthetic applications

normal distribution to select the PALL values. I set the mean and standard deviation of this range such that 99.7%

of the application’s PALL values fit within the range used (values generated outside that range were clipped). For

the baseline test I set PALL to be between 50% and 100%. This range gives a mean of 75%, and is similar to many

of the hybrid RH/SW workloads examined in Chapter 5.1. I also simulated workloads with a PALL range between

90% and 100% and an average PALL of 95%. I did this to see how the hierarchical RH kernel scheduler performs on

applications that are very amenable to RH acceleration.

I selected the number of kernels in each application using a normal distribution between one and a factor multiplied

by the application’s PALL value. The test generated generated the number of kernels (NumKerns) such that applica-

tions that have a large coverage are more likely to have more RH kernels. Although this is not the case for the AES

benchmarks examined in Chapter 5.1, AES is a special case because the entire application executes inside a single

kernel. In real systems, a kernel like AES is more likely to be used in conjunction with other code that produces data

that needs to be encrypted. Xvid works as a much better example of a hybrid RH/SW application. The RH coverage

of Xvid is dependent on how many compute-intensive functions in the application have RH implementations. In most

of the tests, I used a multiplication factor of 10, so if an application had PALL = 100%, it would contain between one

and ten RH kernels with a mean of five. However, in some of the workloads, I modified this factor to examine how the

number of RH kernels in an application impacts the performance of the RH kernel schedulers.

Next the testbed determined the coverage, size, and speedup of the individual kernels in each application. The sum

of the coverages of the kernels in an application must sum to the PALL chosen for that application. To calculate kernel

coverages for an application, PREMAIN (the coverage remaining to be included in one or more kernels) is initially

set to PALL. The testbed then iterates over NumKernels, and for each kernel K generates PKERNEL (the coverage

of the individual kernel) using a normal distribution in the range [2%, PREMAIN − (2% × (NumKernels −K))].

The testbed assigns the last kernel in the application a coverage of PREMAIN . This method produces applications

that tend to contain one or two kernels that correspond to the majority of the time spent in kernels, along with multiple

kernels that account for a smaller portion of the application’s execution.

The testbed generated the speedup of each RH kernel using a log-normal distribution with an expected value of

12 and a standard deviation of 7.1. Thus most kernels will have close to, but slightly below a 12x speedup, and a few
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(a) Percent of time the hierarchical scheduler outperformed baseline
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(b) Performance improvement when hierarchical scheduler was better

Figure 10.5 Advantage of the hierarchical RH kernel scheduler over the original RH kernel scheduler when PALL is
in the range of [50%,100%], and the kernel multiplier factor is 10

will have much higher speedups. The testbed clipped the speedup values such that they are between 2x and 53x. This

models actual kernel speedups seen in the hybrid RH/SW applications in Chapter 5.1 where many RH kernels have

speedups of less than 10x and a few have much larger speedups.

Finally, the testbed generates each RH kernel’s size using a log-normal distribution with an expected value of four

tiles and a standard deviation such that 99.7% of values are between one tile (the minimum allowed), and thirteen

tiles. The testbed rounded fractional tile count down to the next-lowest integer. This creates a distribution with many

small RH kernels and a few very large ones, similar to the distributions seen in the benchmarks presented in Chapter

5.1. The testbed does not correlate the size of the RH kernel with the speedup of the kernel, because this has not been

observed in the hybrid RH/SW benchmarks examined in Chapter 5.11

10.6 Results

In the baseline case, workloads have a PALL in the range of [50%, 100%], and a kernel multiplier factor of 10

(when PALL = 100%, there will be between one and ten RH kernels in each application, with an average of 5).

Figure 10.5(a) shows the percent of cases where the new scheduler chose an allocation that resulted in a better system

performance than the old scheduler. For the remaining cases, both schedulers generated the same schedules. When

1Although, alternate implementations of the same RH kernel are likely to be faster when they occupy more area, large and small kernels tend to
have a similar distribution of speedups.
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(b) Performance improvement when hierarchical scheduler was better

Figure 10.6 Advantage of the hierarchical RH kernel scheduler over the original RH kernel scheduler when PALL is
in the range of [50%,100%], and the kernel multiplier factor is 5

few RH tiles were available, many kernels would not fit on the RH fabric, constraining the scheduling decision. Thus,

the two schedulers are more likely to choose the same allocation than they would if more tiles were available. As more

RH tiles are added to the system, the new scheduler has more room with which to leverage the performance benefits

of interdependent kernels. The old scheduler does not perceive these interactions, and thus cannot make use of them.

As the number of RH tiles further increases, more of the kernels simultaneously fit in RH (in many cases, all of the

kernels can fit on the RH), reducing the number of different possible allocations and increasing the likelihood that the

old scheduler will make the right decision. This figure also shows that systems containing more processors are more

likely to produce schedules that differ between the original and hierarchical RH kernel schedulers. This is because

systems containing more processors have far more possible schedules to choose from, increasing the likelihood that

processors will have interdependent kernels that do not get properly selected when using the old scheduler.

Figure 10.5(b) shows the performance improvement of the hierarchical scheduler over the original scheduler in the

cases where the two schedulers produced different schedules2. Performance followed a similar trend for two-, four-,

and eight-processor workloads. These plots also followed the same trend observed in Figure 10.5(a), with the biggest

difference in performance occurring when the workloads were most likely to have different schedules. Unlike Figure

10.5(a) however, workloads containing more processors performed better than those containing few processors. This

2For all of the performance results in this chapter, only data for situations where more than .1% of cases had differing schedules are shown. For
situations where less than .1% of the tested cases showed a performance difference, the performance improvement was set to 0%.
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(b) Performance improvement when hierarchical scheduler was better

Figure 10.7 Advantage of the hierarchical RH kernel scheduler over the original RH kernel scheduler when PALL is
in the range of [50%,100%], and the kernel multiplier factor is 25

is because in workloads containing many processors, kernel interdependence is likely to only impact the scheduling

of a couple of the applications. Therefore the other applications will likely be relatively unaffected. Due to the fact

that I measured performance using the geometric mean, the performance difference on most of these eight-processor

workloads is likely to be less than they would on a two-processor workload. In general, the more processors the system

contains, the more important it is to use a hierarchical RH kernel scheduler.

In the next tests I constructed the workloads differently to examine the impact that having more or less RH kernels

in each application has on overall system performance. In Figure 10.6 the kernel multiplier factor was decreased to

five. Therefore, applications in these workloads have approximately half as many kernesl in them as the workloads

examined in Figure 10.5. Similarly in Figure 10.7, I increased the kernel multiplier factor to 25, increasing the number

of RH kernels in each application by approximately 2.5x. Comparing these graphs, a trend emerges showing that the

more RH kernels an application has, the more likely the schedules are to be different. This is because applications

with more kernels are more likely to have interdependent kernels. When the kernel multiplier is low, applications are

more likely to have only a single kernel. In these cases it is impossible for kernels to be interdependent.

More importantly, these graphs show that the difference in performance between the hierarchical RH kernel sched-

uler and the original RH kernel scheduler is likely to be much greater when applications contain few kernels. When

applications contain few kernels, adding a single kernel to the application (when one already exists), is likely to have
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a bigger impact on performance than if the application contained many RH kernels. Applications with many RH ker-

nels are likely to contain many kernels that cover only a small portion of the application’s execution time. If these RH

kernels are interdependent, the hierarchical RH kernel scheduler will perform better than the original RH kernel sched-

uler, however the difference in performance will be less because the added RH kernel(s) will not impact application

performance as drastically.

In addition to adjusting the number of RH kernels that are in each application, I also adjusted the range of PALL.

Figure 10.8 PALL shows the results of the system when using a PALL in the range [90%,100%]. This is representative

of applications that have a much larger portion of their software execution time covered by RH kernels, and are likely

to have larger application speedups than applications with low PALL values. Increasing this value both increased

the probability that the hierarchical RH kernel scheduler would outperform the original scheduler, and increased the

performance benefit that the hierarchical RH kernel scheduler could achieve. The is due to having slightly more

kernels available (increasing the chance that the hierarchical scheduler outperforms the old one), and the increase in

application coverage. Increasing the coverage of the application means each RH kernel covers more of the application,

and applications are likely to have very large speedups. Adding a kernel that covers 5% of the software’s execution

time to an application that already has 90% of its execution covered by configured RH kernels is likely to have a much

bigger impact on the application’s performance than adding the same kernel to an application that only has 75% of its

software-only execution covered by configured RH kernels.

Figure 10.9 shows the impact of increasing the application’s PALL value, while simultaneously decreasing the

kernel multiplier factor. Doing this increases both the probability that the schedulers will produce different schedules,

and increases the performance difference between them. The effect of both increasing PALL and decreasing the total

number of RH kernels appear to be additive in nature. This figure shows a relatively extreme example of difference in

performance between the two RH kernel schedulers.

10.7 Hierarchical Scheduler Conclusions

In this chapter, I first examined the original RH kernel schedulers, and noted that it could generate non-ideal

solutions to the scheduling problem when executing workloads where multiple applications containing multiple RH

kernels. This was because the performance benefit of an RH kernel depends on what other RH kernels the application

is using. I then examined why this happens to help come up with a solution to the problem.

I found that properties of the RH kernel scheduler allowed it to always generate the correct schedulers under

certain controlled conditions. Because of this, I could reformulate the scheduling problem into two separate knapsack

problems. This new hierarchical RH kernel scheduler always outperformed the original RH kernel scheduler. In

examining the results, I saw that the performance advantage of using the new RH kernel scheduler was great on

systems containing more cores because of the increased likelihood that applications on these systems would contain

dependent RH kernels that altered the scheduling decision of the original RH kernel scheduler. Therefore future



109

!"#
$!"#
%!"#
&!"#
'!"#
(!"#
)!"#
*!"#
+!"#
,!"#
$!!"#

!# %(# (!# *(# $!!# $%(# $(!#

!"
#$
"%

&'
()
'*
+,
",
'

-./",'

+-# '-# %-#

(a) Percent of time the hierarchical scheduler outperformed baseline

!"#
$"#
%"#
&"#
'"#
("#
)"#
*"#
+"#
,"#
$!"#

!# %(# (!# *(# $!!# $%(# $(!#

!"
#$
%#
&
'(

)"
*+&

,#
%-
"&

"(
.*

/01"2*

+-# '-# %-#

(b) Performance improvement when hierarchical scheduler was better

Figure 10.8 Advantage of the hierarchical RH kernel scheduler over the original RH kernel scheduler when PALL is
in the range of [90%,100%], and the kernel multiplier factor is 10

!"#
$!"#
%!"#
&!"#
'!"#
(!"#
)!"#
*!"#
+!"#
,!"#
$!!"#

!# $!#%!#&!#'!#(!#)!#*!#+!#,!#$!!#

!"
#$
"%

&'
()
'*
+,
",
'

-./",'

+-# '-# %-#

(a) Percent of time the hierarchical scheduler outperformed baseline

!"#
$"#
%"#
&"#
'"#
(!"#
($"#
(%"#
(&"#
('"#

!# (!#$!# )!# %!# *!#&!# +!# '!# ,!#(!!#

!"
#$
%#
&
'(

)"
*+&

,#
%-
"&

"(
.*

/01"2*

'-# %-# $-#

(b) Performance improvement when hierarchical scheduler was better

Figure 10.9 Advantage of the hierarchical RH kernel scheduler over the original RH kernel scheduler when PALL is
in the range of [90%,100%], and the kernel multiplier factor is 5
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multicore systems should use the new hierarchical RH kernel scheduler to obtain the best performance from the RH

coprocessor.

Although this work illustrated the usefulness of the proposed hierarchical RH kernel scheduler, if multiple copies

of the same application were executing, or multiple applications contained the same kernel(s), this scheduler might

not best utilize the RH fabric. This is because sharing these RH kernels, as was done in Chapter 9 , could result in

better system performance. Future work is necessary to evaluate schedulers that recognize the presence of shared

RH kernels, and estimates system performance when sharing these kernels. However, the added complexity of this

problem means that is unlikely to fit nicely within the knapsack framework. It is likely that a heuristic-based scheduler

would be required to perform the scheduling operations necessary within a reasonable amount of time.
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Chapter 11

Sharing an RH Fabric

Although this thesis has, up till now, focused on multicore platforms that contain a single shared RH fabric, I

have not yet presented data to justify why the RH fabric should be shared by all of the CPU cores. Intuitively,

sharing a RH fabric seems logical, particularly on systems that execute a mix of hybrid RH/SW applications alongside

traditional software-only workloads. By sharing the RH on these systems, RH space is not “wasted” when one of

the cores executes software-only code. For example if a system has two cores, and is only executing one hybrid

RH/SW application, the single hybrid application can make use of the entire RH fabric. This would not be possible

if each core had its own private RH fabric. In this situation, it is clear that having a shared RH fabric can result in

better performance, however it is unclear how advantageous this strategy is on systems executing only hybrid RH/SW

applications.

This chapter addresses these oversights, and compares systems that share a RH fabric with those that don’t. In

particular, it examines the performance improvements of using the dynamic RH kernel scheduler on a shared fabric

has over a partitioned RH fabric. By performing this analysis, I better justify the design decision of using a single

shared RH fabric in the proposed multicore RH computing system.

11.1 System Properties

Chapter 2 examined many different ways that CPU could communicate with the RH fabric on a single-chip shared-

memory system. For the purpose of this study, I only consider systems similar to the one proposed in Chapter 3. In this

system, direct communication between the CPU and the RH fabric uses the direct-communication network to query

RH kernels and determine if they have finished executing, and the shared cache hierarchy is used for all other data

transfers.

Figure 11.1 shows some of the ways that I could partition the RH across multiple processor cores. This chapter

examines not only the simple dual core cases where the cores share a single RH fabric (Figure 11.1(a)) or where each

core has its own private RH fabric (Figure 11.1(b)), but also situations where multiple cores share one or two RH

fabrics. For example, Figures 11.1(c) and 11.1(d) show two different ways four CPUs share an RH fabric. Note, this

chapter only examines situations where N cores share an RH fabric, or N
2 cores share a partitioned RH fabric.
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(a) Example network topology when two processor cores

share a single RH fabric
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(b) Example network topologies when two processor cores each have a single

RH fabric
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(c) Example network topologies when four processor cores share a single RH fabric

CPU RH CPU

RRR

CPU RH CPU

RRR

(d) Example network topologies when four processor cores share two RH fabrics

Figure 11.1 Examples of different ways the processor cores can access the RH on both two- and four-processor
systems
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Distance Additional Latency (processor cycles)

2 3

3 6

4 10

5 13

6 15

7 18

8 20

Table 11.1 Additional latency experienced by RH kernels that are more than one hop away from the RH fabric

This chapter compares systems that contain two-, four-, eight-, and sixteen-processor cores. In the first set of

experiments, the runtime of RH kernels is constant regardless of how many CPU cores share the RH fabric. Under

this baseline, systems with an RH fabric shared by all of the processor cores always performs as good as, or better

than systems with a partitioned RH fabric . The remainder of the systems consider the impact of the additional

direct-communication latency needed on systems using a shared RH fabric. Because RH kernels only use the direct

communication mechanism at the beginning and end of an RH kernel’s execution, I have set the latency to access

this buffer to a constant value, regardless of an RH kernel’s execution time. Therefore this latency will be far more

pronounced on RH kernels with short execution times.

I used the “distance” between the RH controller and the CPU in question to calculate the direct communication

latency. Although different RH kernels could experience different penalties for accessing this network (for instance,

it is slightly greater in the SAD8 kernel than many others), I used a constant value in this study for all RH kernels

of the same distance. I estimated these constants by evaluating the impact of the distance between the RH controller

and CPU cores on the runtime of RH kernels on the Alexandrite platform. Table 11.1 shows the additional number of

processor cycles added to each configured RH kernel’s execution time based on the RH’s fabric’s distance from the

processor core that initiated the RH kernel.

The experiments in this chapter do not model the impact that the number of processor cores (and subsequently

RH kernels) sharing an RH fabric have on the execution time of the actual RH kernels. I chose to do this because

the multicore experiments performed in Chapter 7 do not show a significant slowdown in most of the workload’s

“efficiency” beyond that which exists on single and dual-processor systems.

11.2 Setup

A modified version of the simulation infrastructure developed in Chapter 10 measured the performance of the

different system setups examined in this chapter. This allowed for the examination of a wide variety of scenarios at
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Parameter Distribution Mean Range

PALL Normal .75 [.5,1]

Number of kernels in application Normal varies [1,varies with a maximum of 10]

Sk Log-normal 12x [2x,53x]

Kernel Size Log-normal 4 [1,13]

RH Kernel Runtime Normal varies varies

Table 11.2 Parameters used to generate the synthetic applications

a level of detail that focuses on the ability of the RH kernel scheduler to select appropriate RH kernels when using a

shared RH fabric as well a partitioned one.

I setup the simulations for these experiments similar to those in Chapter 10. Table 11.2 lists the parameters I used

to generate the synthetic workloads. These workloads added a new parameter to the setup: RH kernel runtime. This is

the runtime of the kernel when executed on the RH fabric. This value was needed because the static communication

latency overhead impacts RH kernels with short execution times the most. The testbed generated the RH kernel’s

runtime using a normal distribution in one of four ranges: [50, 2000], [75, 1000], [75, 500], and [75, 200]. I selected

to use the distribution of 50 to 2,000 cycles because those are similar to the distribution of RH kernel runtimes seen

in the RH kernels described in 5.1, but I also examine lower values to show the effect on systems where the setup and

finish time of the RH kernels can dominate their execution.

The testbed generated workloads for two-, four-, eight-, and sixteen- core RH computing systems. Each workload

contained as many hybrid RH/SW applications as there were cores on the system. Once the testbed generated each

workload, it measured the performance on both systems with a shared and partitioned RH fabric. In cases with a

partioned RH fabric, each partition contained half of the RH tiles that the single shared RH fabric had. Therefore

both systems contained an equal number of tiles of the RH fabric. The testbed generated 250,000 workloads for each

system, allowing the examination of a wide range of synthetic benchmarks.

11.3 Results

Figure 11.2 shows the speedup when using a single shared RH fabric over a partitioned one for two-, four-, eight-,

and sixteen-processor workloads. For this test, I set the runtimes of each RH kernel to a constant value, regardless of

how far the RH was from the CPU core.This graph shows that partitioning a system with few processor cores has the

greatest impact on performance. As more processor cores share a single RH fabric, the penalty for splitting the RH

fabric into partitions is greatly reduced. This is because the performance characteristics of a multiple applications are

likely to be similar to other collections of applications, even if individual applications performance characteristics can

vary significantly.
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Figure 11.2 Performance advantage of using a shared RH fabric over a partitioned RH fabric when discounting
communication overhead

Experiments with each of the other processor core counts followed similar trends. The performance advantage of

sharing the RH fabric is greatest when few RH fabric tiles are available in the system, peaking when only two tiles

are available. This peak is caused because many RH kernels cannot fit on fabrics containing few RH tiles, whereas

on a shared fabric a single RH kernel could be configured. The remainder of the performance difference is due to

having a larger selection of RH kernels to choose from when selecting RH kernels. As more RH tiles are available,

the performance difference drops. With few processor cores, this performance drop-off is rapid, however in systems

containing many cpu cores, the drop-off is delayed significantly, with relatively even performance across a wide range

of tile sizes (only dropping significantly when sufficient RH resources are available such that all of the RH kernels can

fit simultaneously).

Figure 11.3 shows the impact of varying the average RH kernel runtime on the speedup of using a shared RH

fabric over a partitioned fabric. These graphs are very similar to that of Figure 11.2, however, the performance of the

partitioned applications is slightly higher than the shared fabric when sufficient RH resources are available. This is due

to the increased latency larger systems experience when accessing the RH kernels. Figure 11.3(d), presents an extreme

case, where the average runtime of the RH kernels is greatly reduced, to the point where the RH kernel runtimes are

similar to the SAD kernels in the Xvid benchmark. This is an important data point, as it shows that even for workloads

containing only short-running RH kernels, the shared RH fabric outperforms the partitioned fabric at most tile sizes

that are appropriate for the number of processors sharing the RH fabric. In this extreme case, the sixteen-processor

core workloads performed ∼ 1% worse when using a shared fabric with sufficient RH resources. However, when

operating with smaller tile counts (which are more likely to be available on systems), the shared fabric outperformed
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(a) Speedup when RH kernels runtimes are in the range of 50–2,000

CPU cylces
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(b) Speedup when RH kernels runtimes are in the range of 75–1,000

CPU cycles
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(c) Speedup when RH kernels runtimes are in the range of 75–500

CPU cycles
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(d) Speedup when RH kernels runtimes are in the range of 75–200

CPU cycles

Figure 11.3 Speedup of a fully shared RH fabric versus one where the RH fabric is split into two partitions when
varying the runtimes of the RH kernels.
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the partitioned fabric, albeit by a much lesser degree when compared to systems that executed RH kernel’s with shorter

average runtimes.

11.4 Shared RH Fabric Conclusions

This chapter analyzed the impact of sharing a RH fabric amongst all processor cores in the system versus parti-

tioning the fabric so that only half of the processor cores can access it at a time. This data shows that an optimized

dynamic RH kernel scheduler allows processors that share an RH fabric to obtain higher performance than processors

that use a partitioned fabric. These results have also shown that, even when RH kernels have very short execution

times (only a couple hundred of cycles), the penalty for using an RH coprocessor located further away is more than

offset by the improved performance of a dynamic RH kernel scheduler. Using a private RH fabric for each core is not

a good idea in systems where RH resources are constrained, because a dynamic RH kernel scheduler can obtain much

better performance on shared fabrics. However, as the number of processors on the system increases, the performance

advantage of using a single shared fabric is minimized (compared with partitioning the fabric in two). Because of

this, systems with limited RH resources should share their RH resources amongst as many processor cores as feasible.

If they must partition the RH fabric, they should attempt to still share each RH coprocessor amongst at least four

processor cores.
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Chapter 12

Comparison with Vector Processors

Single instruction multiple data (SIMD) or vector instruction extensions are commonly used to accelerate general-

purpose processors. The SIMD instructions work by running multiple copies of an instruction in parallel. For instance,

a 64-bit SIMD instruction can execute eight 8-bit additions at the same time. The most well known of these instruction

extensions are the MMX and SSE instruction set extensions for the x86 architecture. However, many common general-

purpose processors support SIMD extensions, including the ARM Neon, Power PC Altivec, and UltraSparc VIS

extensions. SIMD instruction. These SIMD extensions sets have proven to be very useful in many application domains,

particularly in multimedia processing [102, 80].

12.1 SIMD Performance

In this chapter, I compare the performance of RH kernel accelerators with SIMD accelerators on the x86 platform.

Table 12.1 lists the platforms that I examined.

12.1.1 Xvid Performance

The first tests I performed were from the Xvid 1.0.3 video encoder. I profiled all of the Xvid kernels listed in

Chapter 5.1, including: SAD8, SAD16, FDCT, Transfer 8 to 16, Average-2, Average-4 and interpolate 8x8 6-tap

kernels. Each of these kernels had two different implementations, the “standard” one written in C, and an assembly-

optimized version that took advantage of the x86 processor’s SIMD extensions.

Vendor Model Speed

Intel Core i7 2.8GHz

Intel Pentium 4 3.66GHz

Intel Atom N280 1.66GHz

AMD Opteron 1.6GHz

Table 12.1 Processors used for the SIMD comparison
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Figure 12.1 Vector coprocessor speedups for various Xvid kernels when executing on PC hardware.

Figure 12.1 shows the performance of each RH kernel on each of the tested SIMD platforms. The SIMD speedup

of each kernel varied across platforms due to the varying ability of each processor’s core to exploit instruction-level

parallelism in the unoptimized C-code. This section focuses on the Atom processor’s performance because it is

designed for the high-end embedded market. Therefore the processor’s performance is likely to closely resemble

the CPU cores modeled in this work. Because of this, its SIMD unit should more closely resembles one that would

compete with the proposed RH coprocessor.

I used the speedup of the SIMD kernels on the Atom processor to estimate the “SIMD-accelerated” execution

time of each kernel in Xvid. To do this, I set each kernel’s SIMD runtime to be its unaccelerated runtime on the

simulated platform divided by the speedup of the kernel using SIMD acceleration on the Atom platform. Using

these new runtimes, I calculated the SIMD-accelerated runtime that the Xvid application would be likely to have

on the processor cores described in this thesis. In this SIMD model, the non-kernel portions of Xvid executed at

the same speed as they originally did. This is in contrast to the non-kernel portions of hybrid RH/SW applications,

which, as Chapter 6.3 showed, ran slightly slower. Although the Xvid encoder used in this study contained SIMD-

accelerated versions of kernels besides the seven examined in this thesis, these additional kernels did not have RH

kernel counterparts (although such kernels could be implemented), and are therefore not included. This allows for a

fair comparison between the existing RH kernels and the SIMD versions of the same hardware kernels.

Figure 12.2 shows the breakdown of Xvid’s execution on both the modeled SIMD system and a reconfigurable

computing system with sufficient RH tiles to hold all the RH kernels simultaneously. Using the RH coprocessor

reduced Xvid’s execution more than the modeled SIMD extensions did, resulting in a reduced execution time. In
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Figure 12.3 Speedup of reconfigurable computing system as I varied the number of RH tiles available
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Figure 12.4 Vector speedups when running the Viterbi encoder on PC hardware (RH speedup is 100x)

particular, the RH accelerated the SAD8, SAD16, and the average-4 kernels to a larger degree. This shows that, despite

the fact that the x86 SIMD units have instructions designed specifically for multimedia processing, RH coprocessors

can still outperform them.

Although this comparison shows the RH’s performance advantage when all of the RH kernels can be loaded si-

multaneously, this scenario is not always realistic. In many reconfigurable computing systems, the RH is a constrained

resource, and not every RH kernel can fit simultaneously. Figure 12.3 shows Xvid’s performance as the number of RH

tiles on the system increases when using the RH kernel scheduler described in Chapter 2.7.2. This graph shows that

the RH coprocessor system outperforms the SIMD system whenever there are at least 4 RH tiles available. However,

as we convert more kernels to both SIMD and RH implementations, this tradeoff point is likely to change.

12.1.2 Viterbi Performance

I also examined the performance of the Viterbi algorithm on both the modeled SIMD and RH systems. Figure 12.4

shows Viterbi’s speedups when using SIMD-optimized algorithms generated by the Spiral project [33]. These results

shows that Viterbi’s performance scales as I increased the width of the SIMD unitis increased, achieving a speedup of

over 10x when using 16-way SIMD instructions. Although these results seem quite impressive, the RH implementation

of Viterbi achieved a speedup of over 100x on the proposed reconfigurable computing platform, despite running at a

clock frequency of only 67MHz when executing on the RH fabric. In this comparison, it is clear that the Viterbi

algorithm can be accelerated much more effectively using a RH coprocessor instead of a SIMD coprocessor. In

addition, due to the reduced clock frequency, and greatly reduced execution time, the Viterbi algorithm is likely to

consume much less energy on the RH.
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12.2 Limitations of SIMD Processors

Although prior work has proven that SIMD ISA extensions usefulness for many classes of applications, they are not

useful for all applications. SIMD processors are designed to accelerate coarse-grained parallelism when applications

execute the same instruction sequences on many data inputs. They do not tend to perform well on other applications

that exploit more fine-grained parallelism, or that require extensive data-dependent loads and/or stores. In contrast,

RH has been able to show impressive speedups across a wide range of applications [47].

For instance, many cryptographic algorithms fail to take advantage of the highly parallel nature of SIMD copro-

cessors. The advanced encryption standard (AES) algorithm, for example, relies on many bit-level manipulations that

are not amenable to vector acceleration [69]. Although impressive speedups have been achieved on AES by tweaking

the algorithm to the architecture, this has not relied heavily on SIMD instructions, as the AES algorithm requires an

extensive number of data-dependent load instructions to read data in from table lookups [12, 50]. Other research has

looked into using bitsliced implementations of AES [89]. These have managed to have impressive gains, and appear

to scale with SIMD width; but they have some significant drawbacks. In current implementations using 128-bit SIMD

registers, performance is ∼ 40% faster than a traditional software algorithm, and appears to scale with bit-width,

although, they only compared 64-bit and 128-bit bit-sliced implementations in this study. However, using a bitsliced

implementation of AES requires extensive reformatting of data to interleave it for bit-sliced execution, and requires

fixed-size data (2048 byte blocks) to achieve this speedup. Because of the inability of standard SIMD instructions to

greatly accelerate AES, system designers have instead added custom instructions to accelerate the algorithm [92].

12.3 Conclusions

In this section I examined the performance of various algorithms on both SIMD and RH coprocessors. I demon-

strated that, even when SIMD units execute multimedia algorithms, RH coprocessors can obtain better performance.

In other algorithms, such as Viterbi, RH’s performance was much higher than that of the SIMD unit. I examined other

algorithms that were poor candidates for SIMD implementations. Because of this, RH coprocessors are an attractive

option for accelerating applications.

Although the development time for SIMD kernels tends to be lower than that of RH kernels, SIMD kernels often

require hand-optimized assembly that is also difficult to develop and validate. The development time of current RH

kernels tends to be limited by the tool chain available. This tool chain has been primarily designed for developing

ASIC-replacements using FPGA technology. Because of this, design-time is not as important as minimizing the size

and power consumption of the circuits, and maximizing the circuit’s performance. However, through the use of better

tools, and higher-level hardware description languages the development-time of RH kernels can be reduced [13, 7].

Recent hardware description languages have been designed to convert small sections of code into RH implementations.
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Even though these kernels may not run for as long as routines on traditional off-chip coprocessors, I have demonstrated

that my reconfigurable coprocessor works remarkably well with such kernels.

Additionally, using SIMD units and a RH coprocessor are not mutually exclusive ideas. In a processor containing

both SIMD units and a RH coprocessor, the RH coprocessor could be primarily used for algorithms that perform

poorly on SIMD units (for example, AES), or where the SIMD units cannot accelerate the algorithm sufficiently for

the application (Viterbi).
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Chapter 13

Broader Impact

Although this thesis has specifically targeted RH coprocessors, many of the techniques developed in this research

can be applied to other accelerator technologies. Moving forward, it is likely that no single accelerator technology

will be ideal for all application and usage domains. Prior work examined using custom ASIC coprocessors, SIMD

vector processors, GPUs, massively parallel processor arrays, and other techniques to accelerate computation. In this

chapter I will briefly examine some of these technologies and describes how the research performed for this thesis is

applicable to other systems.

13.1 Use with ASIC Coprocessors

Much of the research presented in this thesis can directly be applied to on-chip custom “ASIC” coprocessors by

replacing RH kernels with hard kernels implemented on the chip. In particular, the cache and memory organization

used in my thesis could directly be applied to ASIC coprocessors, and many of the ideas proposed in my work [43, 45]

have since been examined for the use in generic coprocessor architectures [111].

Using a shared cache architecture similar to the one I proposed in Chapter 6 allows for a fast communication

path between the processor(s) and any type of coprocessor. Additionally, using the cache-coherent communication

model allows the coprocessor to “naturally” access the data it needs, without having to rely on specialized buffers

or memory fences when communicating with their host process. This also simplifies the allocation of the hardware,

because the OS does not have to specially allocate coprocessor memory into user space, or be used to transfer data

into a dedicated buffer associated with the coprocessor The idea of using cache-coherent coprocessors has even been

gaining momentum in industry, with ARM’s Cortex A9 processor [9] allowing up to four processors to share a coherent

memory with a custom hardware accelerator through the use of their “accelerator coherence port”.

My work also allows coprocessors to access to the virtual memory subsystem, providing methods to translate

virtual to physical addresses within the RH controller (Chapter 3). In most modern operating systems, user applications

cannot directly access physical memory, limiting what can be done on a copocessor without OS intervention. Although

short-executing accelerators could be implemented that uses only registers for communication, such an accelerator

would be core-specific, or require separate register sets for each processor in the system. An alternative model could
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use the OS as an intermediary to access the custom hardware accelerator, however such a technique can be significantly

slower, and limits the performance of the accelerator [111]. The techniques outlined in my thesis can be applied to on-

chip hardware accelerators, allowing applications to directly access a coprocessor without violating process isolation.

Custom ASICs can also directly make use of my work on sharing configured RH kernels [44]. New high-

performance embedded devices are likely to contain multiple general-purpose CPU cores, and they will need a way

to share the coprocessor resources. These coprocessor resources would likely be shared by every application in the

system. Therefore these systems could take advantage of mechanisms, developed for this thesis, to safely share copro-

cessor resources, arbirtrate access to the coprocessors, and methods to query the coprocessors status.

13.2 Use with Vector Processing Units

Although much of this thesis directly applies to ASIC coprocessors, much of it can also be applied to other types

of coprocessor architectures. Vector processors are one potential use for this work. In recent systems, vector, or

SIMD units tend to be used as extensions to the processor’s ISA. Because of this, they are are not shared by multiple

processors and so they do not need special provisions to access memory. Although SIMD coprocessors can be shared

in SMT systems, this sharing is no different than sharing any other function unit within a processor [36, 118].

However, there are plenty of reasons to want to share SIMD units amongst multiple processors. AMD’s Bulldozer

architecture will do this, however sharing is limited to two processors due to latency constraints. A more relevant

example of sharing SIMD units can be seen in IBM’s Cell architecture [71]. In the cell microarchitecture, multiple

“synergistic processing elements” (SPEs) are shared amongst a small number of CPUs. Each SPE contains 128-bit

SIMD unit, and has access to its own private scratchpad memory, and a DMA engine. This system shares multiple

SPEs amongst general-purpose processor cores; however, the usage of DMA engines and scratchpad memories com-

plicate process isolation, forcing application designers to directly manage the communication between the processing

elements.

It is conceivable that a future SIMD architecture could build upon the work of this thesis, coupling one or more

vector processor units with their own private L1 cache. This would allow coprocessor codes to execute in the same

virtual address space as the original code, without relying on the OS to transfer control to the coprocessor. Applications

executing across the host processor, and the SIMD units would not have to explicitly transfer data between the units.

In systems containing a large on-chip L2 or L3 cache, indirectly accessing the memory hierarchy through an L1 cache

can allow the vector units to access data without having to access (high latency/energy) main memory.

Future vector coprocessors might also involve design tradeoffs making them less functional compared to those

on current systems. In a future system, a small instruction scratchpad memory could be attached to a vector unit;

providing an instruction stream that allows the coprocessor to operate on data contained in a scratchpad memory or

large register file. An attached stream controller, similar to the one used in this work could load data to/from a small

scratchpad memory or register file attached to the coprocessor. Extensions to the coprocessor would be necessary,
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as it is likely that the processor would want to have more direct control over data access patterns. However, using a

stream controller like the one proposed is advantageous to DMA engines as they provide a more fine-grained ability

to access memory, reducing the need for the CPU to populate buffers or reprogram a DMA engine to obtain new data.

Additionally, the data alignment unit could improve performance to unaligned regions of memory.

With on-chip shared SIMD units, there is no reason that each kernel would have to execute for tens of thousands

of cycles at a time to be useful. Using a model similar to the one in this thesis, a SIMD unit could be programmed

to accelerate very short kernels in an application’s execution, possibly taking the place of only hundreds of processor

instructions. This is similar to the number of “equivalent instructions” executed in many of the Xvid benchmark’s

kernels.

It might also be useful to have multiple of these SIMD units shared amongst all of the processor in the system. This

way multiple CPUs can use the SIMD units simultaneously. In this model it might prove useful to combine multiple

units with an L1 cache, and a SIMD controller that handles the memory requests from the various stream controllers.

Using an attached L1 cache (rather than direct access to the rest of the memory hierarchy) is likely to be beneficial to

the energy consumption of these systems, reducing the number of memory accesses to more power-hungry levels of

the cache hierarchy. Mechanisms similar to those proposed in Chapter 4 could be used to arbitrate access to the SIMD

coprocessors, and these units could be shared using the techniques examined in Chapter 9.

13.3 Use with GPUs

Most GPUs are structured similarly to very wide vector processors. Currently, they tend to be integrated on separate

chips due to area and power concerns; however on mobile devices, systems-on-chips readily integrate GPUs with

general-purpose processors (amongst other devices) on a single die [97]. Additionally, in the “desktop” computing

market GPUs are now commonly integrated on the same die as the CPUs[18, 67].

Although GPUs have mostly been used to accelerate graphics computations, in recent years there has been in-

creased interest in using GPUs to accelerate general-purpose tasks. Many of the techniques developed in this thesis

can also be used to better interface CPUs with on-chip general-purpose GPUs (GPGPUs).

GPUs currently use a separate address space from applications, and often use a separate physical memory to hold

their own data. Therefore memory transfers between the GPU and the CPU require OS intervention. However, unlike

the RH coprocessors examined in this work, it is unlikely that high-performance GPUs will want to exclusively use

the CPU’s memory hierarchy because graphics operations have been fine tuned to make extensive use of a streaming

computation model optimized around fast dedicated memories connected to the GPU. It is, however, possible that

future GPUs could directly access both their own local memories and the CPU’s memory. Under such a model, the

GPU could access the CPU’s memory space to directly obtain data for graphics processing, and could use this same

memory for accessing data needed to accelerate GPGPU applications.
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Current GPGPU systems do not have a strong need for virtually-addressable memory, because only a single ap-

plication can execute at a time. Because of this, the OS uses a form of cooperative multitasking that allows multiple

threads to share the device. However, current work has demonstrated that GPGPU resources can be better allocated

when multiple applications can execute on the GPU at the same time [1, 2]. If multiple tasks are allowed to execute

on the GPU at the same time, memory protection would be a major concern.

Current GPGPU systems are based on an off-chip coprocessor model [20], and the programming model assumes

that this is the case. Because of this, current GPGPU kernels must execute for a relatively long time to amortize the

setup costs. These costs typically involve allocating memory on the GPU, and using the OS to transfer data to the

GPU’s memory both before and after the kernel has finished its execution. In systems where the GPU is integrated

on the same die as the CPU, alternative approaches to communicating between the CPU and GPU might be beneficial

[111]. Such a system could take advantage of a cache coherent virtually addressable memory for the same reason a

SIMD coprocessor might. This would simplify data transfer between applications and GPGPU accelerators, and even

allow shorter-running kernels to use the GPU, greatly reducing the overheads associated with OS initiated GPGPU

accelerators. Additionally, techniques developed in this thesis could allow for applications to access GPGPU kernels

without relying on system calls to the OS.

13.4 Use with Massively Parallel Processor Arrays

The coprocessor architecture proposed in this thesis could also be used with arrays of simple processors. Such

devices have been implemented in real products such as the Ambric processor that contains an array of 336 32-bit

RISC processors [19]. These devices are currently used as an alternative to FPGAs. In the Ambric chip, a config-

urable interconnect allows cores to communicate with each other. This interconnect can be reconfigured, allowing the

implementation of different kernels on the chip.

Although these chips have primarily been used as off chip accelerators, such massively parallel processor arrays

could easily be used within the system model presented in this thesis. Instead of having each tile consist of an FPGA-

like fabric, each tile could be an array of simplistic processors. A high level interconnect could then allow processors

in different “tiles” to communicate with each other. The OS would then allocate resources to the accelerators based

on their requirements. In this model, few direct changes would be needed to my architecture, and most of the work

presented in this thesis would directly apply to such a system.

13.5 Usefulness of scheduling

Although much of my work can be directly applied to other types of accelerator architectures, my scheduling work

cannot be so easily applied. One of the primary motivators behind scheduling what is configured on an RH fabric

is that the configuring the RH fabric is an expensive operation – much too expensive to continuously change what is
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configured. Because of this, prior work has examined what applications should have access to the RH fabric at a given

time. In these architectures, RH kernels often need to be configured for relatively long (order of ms) time periods to

amortize the reconfiguration cost

In other accelerator architectures, the coprocessor may not require reconfiguration at all (e.g., if using ASIC co-

processors), or the reconfiguration latency may be quite small (e.g., a context switch to load new instructions in a

software-based accelerator. In these situations, it might make sense for applications to use a more fine-grained sharing

of the resources, possibly allocating them on demand.

However for many workloads, scheduling of such resources can still result in superior performance. For instance,

if one application could obtain much higher performance by using a SIMD accelerator, it might be better to exclusively

reserve the accelerator for this applications, preventing other applications from using the resource, even if it is currently

idle.

To really gauge the usefulness of such scheduling, it is likely that much future work needs to be done. It is my

belief that a scheduler for coprocessor devices needs to be more dynamic than those developed for RH systems due

to the relatively long reconfiguration latency. However the scheduler should still consider the impact of sharing single

accelerators, or possibly pools of accelerators between multiple applications. In this scenario, the problem could even

start to resemble the scheduling decisions that might be necessary for scheduling a RH fabric when multiple copies of

the same, or similar applications are executing that could use the same coprocessor resources.

Although the exact scheduling methodologies used in my research might not apply to all of the other coprocessor

technologies, I believe they will help provide a framework from which newer, more advanced schedulers could improve

upon when scheduling coprocessors that can rapidly be “reconfigured”.
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Chapter 14

Conclusion

Consumers are demanding faster, smaller, more power-efficient embedded devices that are increasingly multi-

purpose, with functionality that is not always known at design time. To help meet these needs, computer architects

have been looking toward heterogeneous systems that integrate more functionality on a single chip. In this thesis

work, a new reconfigurable computing architecture has been developed that provides programmers with the ability to

dynamically accelerate applications through the use of the on-chip reconfigurable fabric.

Although many different reconfigurable computing architectures have been researched in the past, most of these

systems had focused on single-core systems, many of which included the RH as an off-chip coprocessor. This thesis

builds upon these previous systems to create a novel multicore reconfigurable computer architecture. This new system

has been designed from the ground up to take advantage of the low latency and high bandwidth available on a single

chip. To support the low-latency communication available on a single-chip platform, a new programming model

was introduced that allow for applications to safely and efficiently access the coprocessor. In addition, multiple

optimizations were made to the programming model to allow for a more efficient usage of the shared reconfigurable

hardware fabric.

In doing this research, I have made great strides toward creating a shared reconfigurable coprocessor optimized for

multicore systems. The following are the systems implemented to perform this research:

• I developed a coprocessor platform that allowed low-latency (less than 20 cycles at 1GHz) communication

between CPU cores and a shared RH fabric.

• I created a programming interface that allows applications to safely access RH kernels assigned to it without

invoking the OS.

• I created mechanisms to share configured RH kernels amongst multiple applications.

• I created a new, optimized RH kernel scheduler to better select which RH kernels should be configured on

multicore systems.

By creating these new systems, and extensions to RH computing, I showed the following:
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• Sharing at least one level of cache between the processor and RH coprocessor reduces communication latency

between the two.

• RH coprocessors should have at least a small L1 cache, as it can greatly reduce the dynamic energy consumption

of the memory hierarchy.

• A hardware TLB miss handler can greatly increase the performance of multicore RH computing systems.

• When eight cores execute hybrid RH/SW applications, my platform performs ∼ 95% as well as a system where

the RH kernels access a zero latency memory.

• Preventing data-intensive, streaming RH kernels from polluting shared caches can improve the performance of

coscheduled SW-only applications by up to 32%.

• When SMT processors implement RH-kernel-aware thread selection logic, threads coscheduled alongside an

application repeatedly executing long-running RH kernels obtain ∼ 95% of their performance when executing

on a dual core system alongside the same RH application.

• By sharing configured RH kernels amongst multiple applications, a constrained RH fabric can be used much

more efficiently. On an eight-core system that shared RH kernels, applications performed 97.4% as fast as a

system containing almost eight times more RH (where each application had its own copy of each kernel).

• A RH coprocessor using my interface can perform as good, or better than dedicated SIMD units; even when

executing multimedia algorithms that SIMD functional units have been optimized for.

Through these contributions, I have shown that combining a reconfigurable coprocessor with multiple processor cores

on a shingle chip provides a flexible and powerful processing platform that can help meet the needs of tomorrow’s

computing tasks.
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