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Abstract

In educational and psychological assessments, attending to item response process can be use-

ful in understanding and improving the validity of measurement. This dissertation consists

of three studies each of which proposes and applies item response theory (IRT) methods for

modeling and understanding cognitive/psychological response process in assessment. The

first study presents a noncompensatory multidimensional IRT model that reflects underlying

components for solving passage-based items in reading comprehension tests. The second

study proposes a mixture item response tree (IRTree) model that accommodates the possibil-

ity of a mixture of respondents exhibiting different response processes in responding to rating

scale items. The third study examines systematic differences in response process across fast

and slow item responses by attending to both content trait and response style and their pos-

sible differential influences across response types. Each study introduces different modeling

approaches for incorporating item response process and discusses their practical implications.

The dissertation as a whole contributes to understanding item response process in both cogni-

tive and noncognitive assessments.
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1 Introduction

Measurement is without question a fundamental and crucial component in education and psy-

chology. Through applications of measurement models, we are able to understand individual

differences in attributes, abilities, and experiences through latent constructs, such as person-

ality or intellectual proficiencies. Assessments have particularly provided stakeholders in

education with meaningful bases for evaluation and decision-making in improving education

policy and practice. For instance, schools and teachers regularly use assessment results to

diagnose student learning strengths and weaknesses, monitor student learning progress, and

plan interventions and remediations. Also, educators and policymakers have used large-scale

assessment data to evaluate education policy, assess the quality and effectiveness of education

systems, and identify factors promoting high-quality education.

Assessments can be distinguished into a cognitive or noncognitive assessment depending

on which constructs are being measured. Cognitive assessments measure intellectual skills

or cognitive ability constructs, such as literacy, numeracy, information processing, reason-

ing, and problem-solving skills. On the other hand, noncognitive assessments in education

measure behaviors, attitudes, and mindsets related to socio-emotional learning constructs and

learning experiences. While cognitive assessments have had a long history in education sys-

tems, noncognitive assessments have only recently become of growing interest and impor-

tance due to the increased emphasis on noncognitive aspects of learning in education. As

both cognitive and noncognitive constructs are acknowledged as important factors contribut-

ing to educational and life success, many national and international assessments such as the



2

Programme for International Student Achievement (PISA), Trends in International Mathemat-

ics and Science Study (TIMSS), and National Assessment of Educational Progress (NAEP)

nowadays measure both construct types. Measuring both forms of constructs can help us

achieve a comprehensive understanding of student learning and development.

In both cognitive and noncognitive assessments, it is often useful to attend to the psycho-

logical processes that may be involved in item responses. Though it is possible to measure

latent constructs without understanding the underlying item response process, we can improve

the measurement of constructs and better inform about respondents and items by attending

to how individual respondents arrived at final item responses. Measurement models incorpo-

rating item response process can provide a basis for more informative feedback (e.g., which

aspect(s) of items a respondent is having difficulty solving) and for improving the validity of

assessments by helping us understand what is really being measured and whether any unin-

tended process is interfering with the measurement of intended-to-be-measured construct. In

this respect, there has been a growing interest in understanding and modeling item response

processes, especially with the recent advancement in statistical computations and increased

use of computer-based tests. More recent attention has also focused on the importance of

understanding response process for interpretation of latent metrics used for scoring and the

measurement of score gains (Bolt & Liao, 2022).

This dissertation comprises three studies examining psychometric modeling approaches

that allow a better reflection of the underlying cognitive/psychological response process and/

or behaviors that individuals may exhibit when responding to items in cognitive or noncog-

nitive assessments. The first study focuses on cognitive assessments, specifically reading
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comprehension tests, while the latter two studies focus on noncognitive assessments in which

rating scales are used. Each study provides a critical view on existing approaches of modeling

item responses, and proposes and evaluates alternative modeling approaches that can improve

our understanding of item response process.

The three studies are each presented as a chapter. In Chapter 2, I propose a noncom-

pensatory item response theory (IRT) model that is sensitive to the response processes in-

volved in reading comprehension tests where test items are organized around passages. In

contrast to compensatory models commonly applied to passage-based test structure (e.g., test-

let and bifactor models), this model incorporates a noncompensatory interaction between two

underlying components to solving passage-based items, and thus, provides a potentially psy-

chologically meaningful representation of item response processes that goes beyond simply

accounting for statistical dependence among items within passages. My study evaluates the

model in comparison to a bifactor model, and further demonstrates the practical implication

and usefulness of the model through a real data application.

In Chapter 3, I investigate response behavior heterogeneity across individuals by propos-

ing a mixture item response tree (IRTree) model that incorporates the possibility of a mixture

of respondents following different underlying response processes in the use of a rating scale to

respond to noncognitive test items. The model specifically accounts for a mixture of respon-

dents exhibiting and not exhibiting response styles, namely, content-irrelevant tendencies to

select particular response categories (Paulhus, 1991). The study provides critical insight into

IRTree models (Böckenholt, 2012; De Boeck & Partchev, 2012; Jeon & De Boeck, 2016)

which have been promoted as an intuitive and flexible statistical framework to model item
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response processes. Through simulation and empirical studies, I demonstrate the presence

of response process heterogeneity in actual data and highlight the measurement problems we

encounter when we assume all respondents conform to one response process.

In Chapter 4, I extend the investigation of item response process heterogeneity in noncog-

nitive assessments with the use of process data, specifically response time data. This study

empirically examines systematic differences in item-person interactions across fast and slow

item responses in rating scale measurement, attending to both the intended-to-be-measured

content trait and unintended-to-be-measured response styles. Through real data illustrations,

the study demonstrates simultaneous relevance of both the content trait and response styles

on response times and discusses implications for using response time information in noncog-

nitive assessments.

While each of the three studies apply different psychometric modeling approaches to

different types of assessments, the common goal is to develop a better understanding of item

response process and behaviors in assessments. By extension, a primary objective of this dis-

sertation is to provide demonstrations and frameworks for modeling item response processes

which can ultimately lend insight into individual differences in measurement, contribute to

diagnostic assessment, and enhance the overall validation of test items and tests. The follow-

ing chapters will present the three studies in more detail followed by overall conclusions and

future directions for research.
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2 Noncompensatory MIRT for Passage-Based Tests 1

2.1 Introduction

A passage-based test structure is commonly used for measuring cognitive proficiencies such

as reading comprehension and analytical reasoning. Items in such tests are organized around

passages, where a group of items related to a common passage is often referred to as a testlet

(Wainer & Kiely, 1987). Passage-based tests tend to violate the local independence assump-

tion of item response theory (IRT) when traditional unidimensional IRT models are fit, and,

thus, can produce biased parameter estimates and standard errors (Bradlow et al., 1999; De-

Mars, 2006; Ip, 2000; Ip et al., 2013; Sireci et al., 1991; Thissen et al., 1989; Wainer &

Thissen, 1996). Variants of testlet and bifactor models are often applied to address such viola-

tions, and their use in the context of various measurement applications have been extensively

studied and developed (Bradlow et al., 1999; Cai et al., 2011; DeMars, 2006; Gibbons &

Hedeker, 1992; Holzinger & Swineford, 1937; Li et al., 2006; Wainer et al., 2007). Impor-

tantly, there are different ways of addressing local dependence, not all of which entail mul-

tidimensionality (Ip, 2010; Yen, 1993). When viewed from a multidimensional IRT (MIRT)

perspective, however, testlet and bifactor models incorporate general and specific factors, of-

ten viewed as the intended proficiency dimension (e.g., reading proficiency) and nuisance

dimensions (e.g., content of passage), respectively. Such models fit within the category of

compensatory MIRT models in the sense that the general and specific factors are assumed
1This chapter is an adapted version of Kim et al. (2022) published in Psychometrika and has been reproduced

here with the permission of the copyright holder.
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to interact additively. As a consequence, the influence of the general and specific factors

function in compensating ways under these models (e.g., a high level of passage-specific

knowledge offsets a lack of reading proficiency that is independent of the passage, and vice

versa).

As an alternative, this chapter suggests it may bemore appealing for many passage-based

tests to assume a conjunctive form of interaction. Maris (1995) demonstrated the potential

to estimate a model involving separable latent components that underlie response processes

through a conjunctive Rasch model (basically a noncompensatory MIRT model), a model-

ing form also presented by Embretson (1984) and Whitely (1980). This study seeks to show

how Maris (1995)’ approach can be adapted to a passage-based test where passage-based

items are affected by passage-related and passage-independent components that may interact

in a noncompensatory way. For example, in a reading comprehension test, it is conceiv-

able to separate underlying components related to a comprehension of the reading passage

(i.e., passage-related) and processing of the specific item (i.e, passage-independent). Correct

responses can be expected only if both components are successfully executed suggesting a

noncompensatory interaction of the components. Specifically, to correctly respond to an item

such as “What is the main idea of the passage?”, an examinee is required (1) to read and

process the passage sufficiently well to understand the main idea, AND (2) to have a passage-

independent understanding of what the concept of a main idea is. It is difficult to envision

proficiencies underlying these components compensating for each other in the way reflected

by a compensatory model.

Based on the idea above, I present a noncompensatory MIRT model for passage-based
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tests (Note that noncompensatory models are sometimes alternatively referred to as partially

compensatory models, e.g., Reckase, 2009; like others, I choose the term “noncompensatory”

to emphasize that compensation of proficiencies does not occur within any statistical com-

ponent). A noncompensatory approach has several primary advantages. First, as described

above, it arguably provides a more accurate account of the underlying cognitive processes/

components involved in responses to passage-based items. Beyond accounting for statisti-

cal dependence across items from the same passage, a noncompensatory representation can

provide a psychologically meaningful representation of how respondents arrive at a correct

response. Second, from a statistical standpoint, the model yields distinct difficulty parameters

for each component (and associated dimension), which is not possible within compensatory

MIRT models (Bolt & Lall, 2003). I suggest that the potential to attach separate difficulty

parameters to components makes it easier to understand and communicate how the distinct

components of a passage-based item separately contribute to the overall difficulty of the item,

a feature that may be particularly appealing for test developers and practitioners. Third and

finally, the noncompensatory model proposed in this study provides a way of addressing re-

cent concerns over the tendency of the bifactor model to overfit data (Bonifay & Cai, 2017;

Bonifay et al., 2017). As will be shown, a conjunctive Rasch representation consistently en-

tails one fewer parameter per item compared to the bifactor model; I use simulation and a

real data application to study the degree to which the simpler noncompensatory model can

nevertheless provide a close comparable fit.

The remainder of this chapter is organized as follows. First, the subsequent two sections

provide an overview of the bifactor model, its application to passage-based tests, and the pro-
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posed noncompensatory alternative model. I next present a fully Bayesian approach to the

estimation of each model. I evaluate the parameter recovery of the noncompensatory model,

as well as the capacity of the bifactor and noncompensatory models to fit datasets generated

from each of the models while also attending to the overfitting feature of the bifactor model.

Moreover, I demonstrate the way each model ultimately captures the relative influence of

passage-independent and passage-related components on items. Lastly, I consider both mod-

els in a real data application and examine the similarities across models in how they quantify

the relative contributions of passage-related components to items. I specifically demonstrate

the value of the noncompensatory model in separating the sources of overall item difficulty

by examining the relationship between item type and the relative difficulty of the two compo-

nents.

2.2 A Bifactor MIRT Approach for Passage-Based Tests

Many standardized tests have a passage-based structure where a group of items is associated

with a common stimulus. An example is a reading comprehension test where several items

are based on a common reading passage. Passage-based tests often produce local item depen-

dence when a traditional unidimensional IRT model is fit. Bifactor MIRT models (Cai et al.,

2011; Gibbons & Hedeker, 1992; Holzinger & Swineford, 1937) and related testlet models

(Wainer et al., 2007) have received much attention as a way of accounting for passage-related

local dependence both due to their frequently good empirical fit as well as recent advances

related to their estimation (e.g., Cai et al., 2011; Rijmen, 2009) that can make the models

practical even in cases of high dimensionality. In this study, I mainly consider the bifactor
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model, as it can be viewed as a generalization of the testlet model (DeMars, 2006; Li et al.,

2006).

Assume a passage-based test withK passages having a total of I items, where each item

is associated with exactly one passage. The bifactor model introduces a single general factor

θ0 andK mutually orthogonal specific factors θk (k = 1, · · · , K). The probability of correct

response to an item i (from passage k) is given by:

P (Ui(k) = 1 | θ0, θk) =
1

1 + exp{−(ai0θ0 + aikθk + di)}
(2.1)

where Ui(k) = 1 denotes a correct response to item i (from passage k), ai0 and aik are, respec-

tively, the item discrimination parameters for the general and specific factors, and di is an

intercept parameter. Each item loads on the general factor and exactly one specific factor. As

a result, the bifactor MIRT model effectively provides a decomposition of an item’s shared

latent item variance with respect to a dimension measured by all items (i.e., general factor θ0)

and a dimension specific to the passage on which the item is based (i.e., specific factor θk).

The bifactor model can be viewed as a compensatoryMIRTmodel in that the general and

specific factors interact such that an increase in one factor can compensate for a deficiency in

the other, with the degree of compensation affected by the magnitudes of the discrimination

parameters. This compensatory nature of the model can be clearly seen from the linear combi-

nation of the factors in Equation (2.1). The model attaches separate discrimination parameters

to each factor. Naturally, the relative size of discrimination parameters across dimensions (i.e.,

aik/ai0) helps us understand the magnitude of the specific factor effect relative to the general
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factor effect for each item. Note the bifactor model reduces to the two-parameter version of

a testlet model if this ratio for items is fixed to a common value within passages (DeMars,

2006; Li et al., 2006). Due to its compensatory nature, the bifactor model cannot uniquely

identify the item difficulty for each dimension. Instead, each item can be viewed as having

a single multidimensional difficulty parameter (MDIFF), defined as −d/
√
a′a where d is the

intercept and a is the vector of discrimination parameters for the item that effectively scale

the intercept (Reckase, 2009).

One empirical observation from the application of bifactor models to passage-based tests

is the tendency for certain item types to demonstrate a higher degree of passage-related de-

pendence than others (Li et al., 2006). This result is apparent from systematically higher

discrimination estimates seen on the specific factors relative to the general factor (i.e., large

aik/ai0), indicating the items are more “influenced” by the specific factor. Examples of such

item types in the reading comprehension test studied by Li et al. (2006) include Inference

or Main Idea items, which usually require a deeper level of passage-related processing. By

contrast, item types such as Vocabulary in Context generally required a lower level of passage-

related processing. It is important to note that these results are derived from the patterns of

discrimination estimates for the general and specific factors in the bifactor model. Thus, the

results speak less directly to the relative difficulties of the two processes/components (i.e.,

passage-related and -independent) on solving the item. I, therefore, consider a noncompen-

satory approach as attractive in part due to its potential to separately estimate the difficulty of

each component.
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2.3 Noncompensatory Model for Passage-Based Tests

A Passage-Based Noncompensatory Model (PB-NM) is proposed below as an alternative to

the bifactor model. I assume the presence of two underlying components to solving each

passage-based item, a first component connected to the processing of the passage (and the

extraction of all needed information from the passage for the particular item) and a second

component related to passage-independent requirements of the item. The two passage-related

and passage-independent components can take place in any order and need not be viewed as

sequential. For a given item i (from passage k), a passage-based ability θpk (k = 1, · · · , K)

is assumed to underlie the first component while a general ability θg is assumed to underlie

the second passage-independent component. As items from the same passage likely entail the

extraction of different information, the first passage-related component is modeled as distinct

across items (even though based on the same θpk). As a result, the probability of correct

response to item i (from passage k) can be written as:

P (Ui(k) = 1 | θg, θpk) = P (Xip = 1 | θpk)P (Xig = 1 | θg) (2.2)

whereXip = 1 andXig = 1 denote the successful execution of passage-related and -independent

components, respectively, for item i. The product of the two terms implies that both compo-

nents need to be successfully performed to produce a correct response, and the overall proba-

bility of correct response on the item cannot exceed the minimum of the two terms, reflecting

a noncompensatory interaction of the two components. A graphical representation to help

understand the model (Ackerman, 1996) is shown in Figure 2.1. Due to the noncompensatory
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nature of the model, the item surface plot of the PB-NM has curved (as opposed to linear)

equiprobable contour lines.

Figure 2.1
Illustration of a Surface Plot (Left) and a Contour Plot (Right) for Correct Response
Probability of an Item Under the Passage-Based Noncompensatory Model (PB-NM)

Note. θg = Passage-independent ability; θp = Passage-related ability.

As for the bifactor model, each examinee has a single general proficiency θg and K

passage-related proficiencies θpk. It is assumed that the ability related to the passage, θpk,

stems from the general proficiency, θg, with a passage-specific shift (as might be due, for

example, to the content of the passage involved). The noncompensatory structure in Equation

(2.2) can use different parametric forms for the two components. In this study, I use a Rasch

model to represent each component. The PB-NM, therefore, can be specified as:

P (Ui(k) = 1 | θg, θpk) =
1

1 + exp{−(θpk − bip)}
× 1

1 + exp{−(θg − big)}
(2.3)
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where bip and big are, respectively, item difficulty parameters for passage-related and passage-

independent components of item i. Note that beyond adapting the functional form of the bifac-

tor approach, the PB-NM simultaneously seeks to reduce its parameterization, following the

findings of Bonifay and Cai (2017) and Bonifay et al. (2017). Thus, from another perspective,

the presented model examines whether an adequate account of the psychometric functioning

of passage-based items can be achieved using two (as opposed to three) parameters per item.

As implied above, an appealing aspect of the noncompensatory representation in com-

parison to the bifactor representation is the potential to characterize the component processes

in terms of the difficulties of the two components. The notion of using difficulty differences

across dimensions to understand measurement of the dimensions has also been considered in

relation to the multidimensional latent trait model (MLTM; Whitely, 1980) where the nature

of items can be explained by attending to differences in the relative difficulties of items across

dimensions. As observed for a different noncompensatory model in Bolt and Lall (2003), I

anticipate a close empirical relationship between the difficulty estimates of the PB-NM and

discrimination estimates of the bifactor model. It is specifically expected that the relative size

of the item parameters across two dimensions under the PB-NM and the bifactor model may

similarly represent the relative influence of passage-related and passage-independent compo-

nents on item scores. As the difficulty representation under the PB-NM can be viewed as

more immediately interpretable by applied practitioners, a high correspondence between the

parameters under the two models may also support the noncompensatory approach. In addi-

tion, with two parameters (as opposed to three) per item, the PB-NM is expected to mitigate

some of the concerns of overfit under the bifactor model (Bonifay & Cai, 2017; Bonifay et al.,
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2017).

As an additional note, I clarify that the PB-NM is different from the noncompensatory

testlet model presented by Jiao et al. (2017) that also considers a noncompensatory interaction

between proficiencies. The noncompensatory testlet model (Jiao et al., 2017) deals with the

local dependence across items by assuming noncompensatory interactions across passage pro-

ficiencies. The PB-NM, however, attends to a noncompensatory interaction between passage-

related and passage-independent components in solving passage-based items.

2.4 Bayesian Estimation Algorithm

The PB-NM and the bifactor model are fitted using a fully Bayesian approach through a

Markov Chain Monte Carlo (MCMC) algorithm. For purposes of estimation, proficiency pa-

rameter θpk in the PB-NM is re-parameterized as θg+ηpk, where ηpk is normalized within sub-

ject. Specifically, η′pk is sampled fromNormal(θjg, σ
2
pk) and ηpk = η′pk − 1

K

∑K
k=1 η

′
pk. Thus,

θg and θpk will tend to correlate positively across subjects with ηpk representing a shift in pro-

ficiency reflecting a passage effect. The prior distributions used for parameters of the PB-NM

are: θg ∼ Normal(0, 1), η′pk ∼ Normal(θg, σ
2
pk), big ∼ Normal(0, 1), bip ∼ Normal(0, 1),

and 1/σ2
pk ∼ Gamma(1, 1).

A similar parameterization is applied to the proficiencies of the bifactor model to make

the algorithms for the two models similar. I define θk = θ′k − 1
K

∑K
k=1 θ

′
k and sample θ′k

from Normal(θ0, σ
2
k) so as to enforce orthogonality between the general and specific fac-

tors. Note that the specific factor θk is, thus, uncorrelated with the general factor θ0 and

is distinct from the passage-related factor θpk in the PB-NM, rather having a similarity to
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the passage-specific shift parameter in the PB-NM. Prior distributions for the bifactor model

were specified as: θ0 ∼ Normal(0, 1), θ′k ∼ Normal(θ0, σ
2
k), ai0 ∼ logNormal(0, 0.25),

aik ∼ logNormal(0, 0.25), di ∼ Normal(0, 1), and 1/σ2
k ∼ Gamma(1, 1).

For both the PB-NM and the bifactor model, I simulated 10 parallel chains where initial

values were randomly generated from the prior distributions of the parameters. For each

simulated chain, the first 20,100 iterations are ignored (100 as adaptive phase iterations and

the next 20,000 as burn-in iterations) and the samples from a subsequent 20,000 iterations are

monitored to construct posterior distributions. A thinning interval of 10 iterations was used,

so 2,000 iterations from the respective chain (2,000×10=20,000 iterations in total) were used

to define the posterior distributions of the parameters. These analyses were implemented in

JAGS (Just Another Gibbs Sampler) 4.3.0 (Plummer, 2017) using R (R Core Team, 2020)

through jagsUI (Kellner, 2019). In addition to visual inspection of the sampling chains, the

Gelman-Rubin diagnostic R2 (Gelman & Rubin, 1992) was used as a convergence criterion.

2.5 Simulation Study

A small scale simulation was conducted to examine both (1) parameter recovery for the PB-

NM, and (2) the empirical relationship between the PB-NM and the bifactor model parameter

estimates when fitted to common datasets. Through the simulation, I seek to show that the

PB-NM is in fact estimable for passage-based tests under the types of conditions commonly

observed when fitting bifactor models. Similar to Bolt and Lall (2003), I also seek to show

that proportional differences in general and specific factor discriminations under the bifactor

model similarly emerge as differences in difficulties under PB-NM, and vice versa.
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Data were generated from both the PB-NM and the bifactor model following Equations

(2.3) and (2.1). For the PB-NM, the general proficiency parameter θg was generated from

Normal(0, 1) and the passage-related proficiency θpk was defined as θg + ηpk, where ηpk =

η′pk− 1
K

∑K
k=1 η

′
pk and η′pk were generated fromNormal(θg, σ

2
pk). The variance parameter σ2

pk

was generated fromGamma(1, 1) and the big and bip for both components were independently

generated from Uniform(−3, 3). The generating distributions for bifactor parameters were

[θ0, θ1, · · · , θK ] ∼ MVN(0, I), ai0 ∼ Uniform(0.5, 2.5), aik ∼ Uniform(0.5, 2.5), and

di ∼ Uniform(−2, 2). These parameter distributions were chosen to produce varying com-

binations of item parameters across the two dimensions. I believe such distributions can, to

some extent, reflect the varying passage-based item types often used for reading comprehen-

sion tests, and may or may not be applicable to other types of passage-based tests not having

such characteristics. Besides the two generating models, my simulation design considered

factors of sample size (N = 1000, 2500) and number of items per passage (Ni/p = 4, 6, 9),

holding the total number of items to 36. All three factors were crossed, yielding 12 conditions.

Ten datasets were generated for each simulation condition.

I fitted both the PB-NM and bifactor model to each dataset. One of the ten datasets gener-

ated under the PB-NM for the condition having 4 items per passage and 2,500 examinees did

not converge when the PB-NM was fitted, seemingly due to a dimension switching problem

(Bolt & Lall, 2003). Such an observation suggests that non-convergence can possibly happen

if the two proficiencies across the dimensions are highly correlated or are difficult to distin-

guish; in my case, the small variance of passage-specific shift parameter corresponding to the

passage-related factor as well as the small number of items per passage (both of which make
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it difficult to detect passage effects) likely produced the problem. Some possible solutions to

resolve the convergence issue in practice could include simplifying the PB-NM model (e.g.,

fix the variance of passage-related factor to be identical across passages) or imposing ordinal

constraints on the item difficulty parameters across components to prevent dimension switch-

ing. In this study, the non-converging case was excluded when deriving the results as it was

the only replication that produced a problem. I focused on three primary outcomes from these

analyses: item parameter recovery for the PB-NM (when data were generated from the PB-

NM), the relative fit of each model to each dataset, and the relationships between the resulting

difficulty and discrimination estimates across models.

2.5.1 Item Parameter Recovery for the PB-NM

The recovery of item difficulty parameters under the PB-NM was examined in two ways. Be-

cause of the interest in interpreting the relative difficulty of the components, I first examined

the recovery of the within-item difference in difficulty parameters across dimensions. Specif-

ically, the correlation of the estimates and parameters for the difference in difficulties of the

two components (i.e., bdiff,i = bp − bg) was obtained under each simulation condition. I also

inspected the recovery of individual item difficulty parameters by deriving bias and the root

mean square error (RMSE) indices defined as

Bias i =
1

R

R∑
r=1

b̂icr − bic (2.4)
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and

RMSE i =

√√√√ 1

R

R∑
r=1

(b̂icr − bic)2 (2.5)

where b̂icr denotes item i’s difficulty estimate for component c (i.e., p or g) from the rth dataset,

and R denotes the total number of replications in each cell (10 in this study).

2.5.2 Comparison of the PB-NM and the Bifactor Model

I compared the fit of the two models under each data generating condition using the deviance

information criteria (DIC). The DIC penalizes model complexity by adding an effective

number of parameters (pD) term to the mean deviance (i.e.,DIC = D(θ)+ pD). I further ex-

amined the degree of correspondence seen between the parameter estimates of the two models

in their characterization of the relative influence of passage-related and passage-independent

components on item performance. I specifically examined the relationship between thewithin-

item difference in difficulty estimates (̂bdiff,i) under the PB-NM and the within-item relative

discrimination estimates, calculated as the log of the ratio of specific to general factor dis-

crimination estimates, under the bifactor model (i.e., âratio,i = log(âik/âi0)), by deriving the

correlation of the two indices across items.

2.6 Simulation Results

The findings of the simulation study are organized into subsections focusing on the parameter

recovery of PB-NM, model fit comparisons of the PB-NM against the bifactor model, and the

relationship between the within-item parameter differences for the two models.
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2.6.1 Item Parameter Recovery

Table 2.1 and Figure 2.2 illustrate parameter recovery results for the PB-NM. The results

make apparent a couple of issues. First, as expected, item parameters are recovered better

when there is a larger number of respondents. Recovery is also consistently better when there

is a relatively large number of items per passage, which in the current simulation design also

directly corresponds to a smaller overall number of dimensions. This result is not surprising

given that with a larger number of items per passage, the passage-related dimensions become

better estimated and, hence, the ability to distinguish difficulty levels across items within

those dimensions is seemingly better. The number of respondents, however, seems to be the

more critical factor.

It is also observed from Figure 2.2 that the bias likely occurs because the parameter

estimates are shrunk to the prior mean of 0. Moreover, the bias appears greater for easier

components, particularly for those items that are difficult on the other component (see Fig-

ure A1 in Appendix A). This result is consistent with DeMars (2016)’ findings that, when

factors are highly correlated, the direction and magnitude of the bias in difficulty parameters

are influenced by the relative size of difficulties across dimensions. As in Figure A1, DeMars

(2016)’ results specifically show that the easier component is positively biased while the more

difficult component is negatively biased, and the bias increases as the discrepancy between

difficulties across dimensions gets larger, especially for the easier component. Given the non-

compensatory interaction of the components as well as the positively correlated trait factors,

I suspect this may be due to the difficult component reducing the information available for
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Table 2.1
Recovery of Item Difficulty Parameters for Passage-Based Noncompensatory Model
(PB-NM)

N Criterion Ni/p

4 6 9

1,000

corr(bdiff,i, b̂diff,i) 0.663 0.885 0.891
Absolute
bias

b̂p 0.702 0.549 0.479
b̂g 0.720 0.537 0.471

RMSE b̂p 0.799 0.662 0.618
b̂g 0.797 0.628 0.593

2,500

corr(bdiff,i, b̂diff,i) 0.910 0.974 0.969
Absolute
bias

b̂p 0.336 0.287 0.165
b̂g 0.340 0.225 0.148

RMSE b̂p 0.473 0.398 0.310
b̂g 0.451 0.304 0.266

Note. The correlation coefficients are averaged across replications. The absolute bias and
RMSE are averaged across items. N = The number of respondents; Ni/p = The number of
items per passage; bp = Passage-related difficulty; bg = Passage-independent difficulty; bdiff,i
= Difference in difficulty parameters across dimensions (bp − bg); b̂diff,i = Difference in diffi-
culty estimates across dimensions (b̂p − b̂g); RMSE = Root mean square errors.

estimating the difficulty parameter for the “easy” component, a result also discussed byMaris

(1995).

Furthermore, it appears that the capability to interpret the difference in item difficulties

under the PB-NM, as conveyed by corr(bdiff,i, b̂diff,i), is relatively well-achieved, especially

when the sample size is large. In five of the six conditions considered, the correlation exceeds

.88. The one exception concerns conditions with a smaller number of items per passage (4)

and smaller sample size (1000), where the correlation drops to .66.
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Figure 2.2
The Bias of Estimates of Difficulty Parameters Under the Passage-Based Noncompensatory
Model (PB-NM), Fitted to Data for Each Generating Condition

Note. N = The number of respondents;Ni/p = The number of items per passage; bp = Passage-
related difficulty; bg = Passage-independent difficulty.

2.6.2 Model Fit Comparison with Bifactor Model

Table 2.2 reports DIC comparison results for the PB-NM and the bifactor model. As can be

seen in the table, the bifactor model consistently has a larger pD, indicating a greater model

complexity, than the PB-NM. This observation is consistent with the overfitting tendencies
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of the model (Bonifay & Cai, 2017; Bonifay et al., 2017). The pD consistently shows larger

discrepancies between models as the number of items per passage reduces (and thus, under

this simulation design, the larger number of dimensions in the overall model). As anticipated,

in terms of both mean deviance and DIC values, the PB-NM always fit better for the data

generated under the PB-NM. For data generated under the bifactor model, the bifactor model

consistently fit better in terms of mean deviance, but only with respect to DIC when there

was a sufficiently large number of items per passage (i.e., larger than 4). When there was a

small number of items per passage (= 4), the PB-NM had smaller DIC. This implies that,

with a small number of items per passage and, thus, more overall dimensions, the cost of

complexity may exceed the value of increased fit under the bifactor model even when the

bifactor model is the generating model. It would appear that, under such conditions, the PB-

NM can effectively capture the nature of the passage-related dependence while reducing the

overfit that occurs under the bifactor model.

2.6.3 Comparison of Relative Item Parameter Estimates

Despite their different statistical representations, the PB-NM and the bifactor model are sus-

pected to provide similar information regarding the relative effects of passage-related and

passage-independent factors on item responses. Table 2.3 reports the mean correlations ob-

served between the difference in difficulty estimates (̂bdiff,i) under the PB-NM and the relative

discrimination estimates (âratio,i) under the bifactor model. As anticipated, high correlations

were observed. While a consistent effect of the manipulating factors is not observed (note that

by holding the overall number of items constant, increasing the number of items per passage
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Table 2.2
Averaged Mean Deviance and Deviance Information Criterion (DIC) Across 10
Replications, for Passage-Based Noncompensatory Model (PB-NM) and Bifactor Model,
Fitted to Data for Each Generating Condition

Condition Fitted
model

Generating model

N Ni/p
PB-NM Bifactor model

pD D(θ) DIC pD D(θ) DIC

1,000

4 PB-NM 9518.3 23936.9 33455.2 12669.5 31140.2 43809.6
Bifactor 11769.9 23967.7 35737.6 14969.8 29934.0 44903.8

6 PB-NM 6722.9 26492.7 33215.6 7462.0 29963.8 37425.8
Bifactor 7160.9 26618.2 33779.1 7726.9 28726.4 36453.3

9 PB-NM 3978.8 26593.4 30572.2 4825.4 30881.4 35706.7
Bifactor 4438.9 26662.8 31101.6 4899.3 29851.7 34751.0

2,500

4 PB-NM 27501.9 64361.6 91863.5 31137.6 75952.2 107089.8
Bifactor 43572.0 64817.6 108389.7 37033.7 72656.9 109690.6

6 PB-NM 18774.6 65855.9 84630.5 18330.2 82153.0 100493
Bifactor 20704.9 66553.5 87258.4 19638.6 79733.0 99371.5

9 PB-NM 11254.4 55688.7 66943.1 11304.9 84208.6 95513.5
Bifactor 11644.4 56150.2 67794.6 11899.7 81469.6 93369.4

Note. The smaller value of DIC is emboldened. N = The number of respondents; Ni/p =
The number of items per passage; pD = The effective number of parameters; D(θ) = Mean
deviance.

decreases the number of passages, and vice versa), the correlations are larger than 0.67 under

all conditions. There also appear to be slightly higher correlations between estimates when

the data are generated from the PB-NM than the bifactor model, a result that is likely due to

the additional item parameter per item included under the bifactor model. Overall, however,

the consistently high correlations imply that difficulty parameters of the PB-NM and discrim-

ination parameters of the bifactor model provide similar information regarding the relative

size of passage-related effects in the items.
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Table 2.3
Correlation Between the Difference in Difficulty Estimates (̂bdiff,i) Under the Passage-Based
Noncompensatory Model (PB-NM) and the Relative Discrimination Estimates (âratio,i)
Under the Bifactor Model, Averaged Across 10 Replicated Datasets for Each Data
Generating Condition

N Ni/p
Generating model

PB-NM Bifactor

1,000
4 0.852 0.882
6 0.838 0.742
9 0.876 0.808

2,500
4 0.872 0.668
6 0.930 0.782
9 0.950 0.713

Note. N = The number of respondents; Ni/p = The number of items per passage.

2.7 Real Data Illustration

2.7.1 Methods

The real data application considers a reading comprehension test administered as part of a

university placement test at a Midwestern university. The dataset includes 36 items adminis-

tered to 22,510 students coming from a quite homogeneous population with not much ethnic

diversity. The 36 items are nested in 8 reading passages; the number of items corresponding

to passages 1 through 8 are respectively 4, 5, 4, 5, 5, 4, 4, and 5. In this study, I used responses

from 2,500 randomly sampled students to reduce computational burden. The reading compre-

hension test consists of items categorized by several types, including Literal Comprehension

(LC), Main Idea (MI), Inference (INF), Vocabulary in Context (VOC), Rhetorical Strategy

(RS), Development (DEV), Tone (TON), and Logical Reasoning (LR). Example questions

for each item type are given in Appendix B.
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I evaluated the presence of local dependence among items within passages by examining

the Jackknife Slope Index (JSI; Edwards et al., 2018) under a unidimensional two-parameter

logistic (2PL) model. The JSI is a recently proposed tool for diagnosing the potential presence

of local dependence between pairs of items. Edwards et al. (2018) has reported that it has

high power and reasonably low Type I error rates in comparison to other indices such as Q3

(Yen, 1984) and G2 (W. H. Chen & Thissen, 1997). The JSI values were produced using

mirt (Chalmers, 2012) in R (R Core Team, 2020) and 15 item pairs were flagged as locally

dependent in the reading comprehension test data. Most of the flagged item pairs (12 out of 15)

occurred within passages suggesting a presence of local item dependence within passages. I

also compared the model fit across unidimensional models (i.e., Rasch and 2PL models) and

the bifactor model to confirm the existence of local item dependence. As shown in Table

A1, the superior model fit of the bifactor model supported the presence of meaningful local

dependence among items.

After confirming the presence of local dependence in the data, I fitted each of (1) the PB-

NM and (2) the bifactor model using the same fully Bayesian estimation approach described

above. Then I compared the model fit using the deviance information criterion (DIC) values

and, as in the simulation, also compared models in terms of their parameter estimates. In

addition, I tried to confirm whether the component difficulty estimates conform to the the-

oretical expectations in terms of the different item types. It was anticipated that some item

types would consistently have higher or lower difficulties on the passage-related component

relative to that of the passage-independent component. For example, item types such as Main

Idea should show higher difficulty on the passage-related component due to the clear need
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for passage comprehension, whereas Vocabulary items will likely show greater relative diffi-

culty on a passage-independent component due to the reduced need for comprehension of the

passage.

2.7.2 Results

Table 2.4 provides empirical comparative fit results for the PB-NM and the bifactor model.

While the bifactor model shows a slightly lower mean deviance, as in the simulation results,

the difference is more than offset by its complexity, and the likelihood of overfitting the data

is apparent. The PB-NM, thus, appears at least as good as the bifactor model in explaining

these data, a result consistent with what was seen in the simulation results. A preference for

the PB-NM may particularly hold when the number of items per passage is small, where the

overfit of the bifactor model is most noticeable.

Table 2.4
A Model Fit Comparison for Passage-Based Noncompensatory Model (PB-NM) and
Bifactor Model, for Reading Comprehension Test Data

Model pD D(θ) DIC

PB-NM 24475.1 87488.1 111963.2
Bifactor Model 37756.5 86031.9 124414.6

Note. The smaller value of Deviance Information Criterion (DIC) is emboldened. pD = The
effective number of parameters; D(θ) = Mean deviance.

As in the simulation, a close relationship between item parameter estimates across the PB-

NM and the bifactor model was also observed. The difference in difficulty estimates (̂bdiff,i)

under the PB-NM and the relative discrimination estimates (âratio,i) derived from the bifactor

model were highly correlated (correlation = 0.848). Thus, items with a high relative bifactor
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discrimination on the specific factor (i.e., high âratio,i) tended to have a high difficulty on

the passage-related factor compared to the passage-independent factor (i.e., high b̂diff,i) under

the PB-NM. This indicates that, irrespective of the overall item difficulty, the item having

a relatively difficult passage-related component (in comparison to the passage-independent

component) is likely to be an item with a large passage effect, and vice versa.

The results also suggested an association between item type and the relative size of

within-item parameter estimates under both models. Figure 2.3 displays a scatterplot of the

relative discriminations (âratio,i) under the bifactor model and difficulty differences (̂bdiff,i) un-

der the PB-NMwith item type labels. Similar to the results under the bifactor model in Li et al.

(2006), item types such as Vocabulary and Rhetorical Strategy, not expected to have a strong

passage-related influence, were mostly located in the lower left part of the plot. This indi-

cates that these items have relatively small passage-specific discriminations and easy passage-

related components under both the bifactor model and PB-NM, respectively. Alternatively,

item types such as Main Idea and Inference which are expected to show stronger passage-

related influence, tend to be found in the upper right part of the plot. At the same time, there

are individual cases where the Vocabulary and Inference items, respectively, have somewhat

more difficult and easier passage-related components relative to the passage-independent com-

ponent. Such instances likely reflect cases where Vocabulary items may ask about a word

whose meaning is more dependent on context, or in the case of inference an item whose pas-

sage is easier to understand.

The analysis of variance (ANOVA) results in Table 2.5 statistically confirms the asso-

ciation by showing that the means of the relative size of item parameters do differ across



28

Figure 2.3
A Plot of Difference in Difficulty Estimates (̂bdiff,i) Under the Passage-Based
Noncompensatory Model (PB-NM) Against Relative Discrimination Estimates (âratio,i)
Under the Bifactor Model with Item Type Labels, for Reading Comprehension Test Data

Note. LC = Literal comprehension; MI = Main idea; INF = Inference; VOC = Vocabulary in
context; RS = Rhetorical strategy; DEV = Development; TON = Tone; LR = Logical reason-
ing.

item types under both models. Note that I did not include items types of Deviation, Logical

Reasoning, and Tone in the analyses because there was only one item measured for each of

those item types. In Figure 2.4, boxplots of the b̂diff,i and âratio,i are shown for each item type

under the two models. It is consistently observed from the figure that item types such as Main

Idea and Inference have high b̂diff,i and âratio,i under the two models, while item types such

as Vocabulary and Rhetorical Strategy have low values. The mean values (shown as red X)

also appear to have a very similar pattern across the two models, again illustrating that the

difference in difficulties under the PB-NM and the relative discriminations under the bifactor

model distinguish the items in similar ways.
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Table 2.5
The Analysis of Variance (ANOVA) Results for Testing Differences in the Means of
Difference in Difficulty Estimates (̂bdiff,i) and the Means of Relative Discrimination
Estimates (âratio,i) Across Item Types, Each Under the Passage-Based Noncompensatory
Model (PB-NM) and the Bifactor Model

SS df MS F p

Bifactor Between 3.52 4 0.88 4.85 0.0043
Within 5.09 28 0.18

PB-NM Between 31.58 4 7.90 6.51 0.0008
Within 33.96 28 1.21

Figure 2.4
Boxplots of Relative Discrimination Estimates (âratio,i) Under the Bifactor Model and
Difference in Difficulty Estimates (̂bdiff,i) Under the Passage-Based Noncompensatory Model
(PB-NM), for Each Item Type, for Reading Comprehension Test Data

Note. Red cross indicates the mean value. LC = Literal comprehension; MI = Main idea; INF
= Inference; VOC = Vocabulary in context; RS = Rhetorical strategy; DEV = Development;
TON = Tone; LR = Logical reasoning.

Figure 2.5 further illustrates how the PB-NM isolates the sources of item difficulty and

their relationship to item type. Here the items are identified by item type. Items that are

difficult in a classical sense and have a p-value (i.e., proportion correct) smaller than the me-

dian p-value are denoted in red. This plot shows the ability of the PB-NM to differentiate the
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component difficulties of each item, and from the plot, we can identify which component is

making the item more difficult, particularly for items in red. We can see, for example, that a

Vocabulary item at the bottom right was difficult because of a difficult passage-independent

component, in spite of an easy passage-related component. By contrast, a Main Idea item on

the top left was difficult due to a difficult passage-related component despite having an easy

passage-independent component. Such a separation of the difficulties conforms to our ex-

pectations given the greater or less passage-processing demands associated with certain item

types. Specifically, item types such as Main Idea and Inference are generally located above

the line, meaning that passage-processing for item solving is relatively more demanding, and

item types such as Vocabulary are below the line, indicating that passage-processing is rel-

atively less demanding. Thus, for the former item types, the overall item difficulty is often

largely determined by the passage-related difficulty but not much by the passage-independent

difficulty (especially for difficult items), and vice versa for the latter item types (see Figure

A2).
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Figure 2.5
A Scatter Plot of Passage-Related Difficulty and Passage-Independent Difficulty Under the
Passage-Based Noncompensatory Model (PB-NM) with Item Type Labels, Difficult Items
with Low p-Values (i.e., Smaller than the Median) Denoted in Red

Note. p-Value = Classical item difficulty (proportion-correct). LC = Literal comprehension;
MI = Main idea; INF = Inference; VOC = Vocabulary in context; RS = Rhetorical strategy;
DEV = Development; TON = Tone; LR = Logical reasoning.

In summary, the PB-NM seemed to return nearly equivalent fit for the reading compre-

hension passage-based test data with less complexity than the bifactor model. The relative

size of item estimates derived from the PB-NM and the bifactor model were found to be highly

correlated, and these values were closely related to item types in theoretically expected ways.

Specifically, while the overall difficulty of the item is reflected by overall higher b parameters

in the PB-NM model, the relative difference in the b parameters across components corre-

sponds to the relative discriminations of the items on the general versus specific proficiency

traits. Thus, it would appear that the PB-NM preserves useful information about the relative

effects of passage-related and passage-independent proficiencies on item performance, and in
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a way (e.g., in terms of item difficulty) that is intuitively more interpretable than the bifactor

approach.

2.8 Discussion and Conclusion

Local item dependence often arises when items are clustered around passages within a test.

Among several approaches to modeling the local dependence (Cai et al., 2011; Gibbons &

Hedeker, 1992; Hoskens & De Boeck, 1997; Ip, 2002; Thissen et al., 1989; Wainer et al.,

2007), the bifactor model has been found to be a useful strategy. One of the appealing fea-

tures of the bifactor model is the potential to examine the extent to which individual items are

sensitive to specific versus general factors (Li et al., 2006). However, the need to interpret

such effects in relation to discrimination parameters, as opposed to difficulty parameters under

a componential IRT approach, may make the bifactor model less easily interpreted by prac-

titioners. Arguably, a noncompensatory perspective allows practitioners to better appreciate

the likely presence of two correlated components in solving passage-based items, as virtu-

ally all items can be understood as requiring some level of passage comprehension and some

level of passage-independent item interpretation. Moreover, from a statistical perspective, the

bifactor approach tends to overfit the data (Bonifay & Cai, 2017; Bonifay et al., 2017).

Another potentially questionable feature of the bifactor approach follows from its sta-

tistical representation as a compensatory MIRT model. Although the ability to empirically

distinguish between compensatory and noncompensatory interactions is difficult if not im-

possible, there may be good reason to speculate that noncompensatory interactions provide

a closer match to the components underlying passage-based items. Intuition would suggest
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that if the level of general reading proficiency is not sufficient, the potential for high passage-

related proficiencies being able to completely offset the deficiency seems implausible.

For these reasons, this study suggested a noncompensatory approach, PB-NM, as an al-

ternative and examined how well the passage-related and passage-independent characteristics

of items are interpreted and recovered under each model. The simulation and real data anal-

yses results demonstrate that the PB-NM effectively captures the variability in item-specific

dependencies on passage-related and passage-independent proficiencies in a similar way to

the bifactor model, albeit through a difficulty-based, as opposed to discrimination-based, rep-

resentation. Further, in terms of number of model parameters (and effective number of pa-

rameters in a Bayesian analysis), the PB-NM model is less complex than the bifactor model

and, thus, less prone to overfit, an issue seen especially in cases where there is a small num-

ber of items for each passage, resulting in a larger number of passage-specific dimensions

in this study. The real data analyses results also demonstrate that the PB-NM confirms the

theoretically expected relationships between item types and difference in difficulties across

the components, supporting its use in place of the bifactor model when seeking to understand

the passage-related effects of items.

We can conceive of several possible applications where the PB-NM may be useful. One

application is differential item functioning (DIF) assessment, where the possibility of un-

derstanding DIF in a passage-based item may be enhanced by thinking of the two different

sources of item difficulty as also reflecting distinguishable sources of DIF. For example, it is

possible that DIF in a passage-based item might occur either due to (1) a greater difficulty in

one respondent group of processing the passage sufficiently well, or (2) a greater difficulty
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in understanding the question posed by the item (for reasons unrelated to passage process-

ing). Moreover, as multiple items measure the same passage-based factor, it would also be

possible to study differential bundle functioning in a way that separates passage-related from

passage-independent influences, potentially increasing statistical power for such studies. A

second area of application relates to the cognitive modeling of subprocess difficulty parame-

ters. Explanatory models of item difficulty can naturally be applied to each subprocess within

the proposed model, allowing for a better understanding of the contributing factors to item

difficulty. Along these lines, models of item generation for fixed passages seemingly may

also be more plausible under a noncompensatory MIRT framework.

We can view the noncompensatory approach as also being in line with the emerging in-

terests in the application of sequential tree-based models as measurement models (e.g., De

Boeck & Partchev, 2012; Jeon & De Boeck, 2016). Although the PB-NM proposed in this

study does not explicitly require sequential processing, its noncompensatory features are con-

sistent with such representations. In this respect, I believe the proposed model may also find

useful applications in simulation based measurement tasks where common distinguishable

proficiencies are measured within an item across simulation tasks, and where the capability

to identify the relative difficulties of the component processes with a particular simulation

task is useful. Another application would be to tests for which cognitive diagnostic models

(CDMs) are applied, due to the noncompensatory interactions assumed among skills, albeit

here with continuous as opposed to discrete proficiencies being invoked. In such contexts, the

ability to attach a distinct difficulty to the process associated with each invoked skill would

lead to an enhanced understanding about the psychometric functioning of the item.
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Future work might not only consider applications such as those described above, but

also explore more carefully the conditions necessary to make noncompensatory models more

estimable with passage-based tests. It has been clear from previous studies of noncompen-

satory MIRT models (e.g., Bolt & Lall, 2003) that the additional dimensions (in this case,

the passage-based dimensions) must be sufficiently strong for the noncompensatory model

to be estimable. The results from this study similarly imply that a dimension switching prob-

lem can possibly occur when passage-related dimensions in the data are weak, such as due

to small amounts of variance in the passage-related factors, few items per passage, or limited

variability in the difficulties of items across dimensions. This suggests the model and estima-

tion algorithm proposed in this study should always be applied with appropriate caution, and

a further exploration of necessary conditions for applying the model would be useful.

There is naturally also a potential for other forms of multidimensionality to be present

in the data, as might be attributed to the variable item types or disproportionate associations

among passages, for example. Such additional sources of dimensionality could interfere with

the noncompensatory approach, or alternatively become added components to the model. Fur-

ther simulation work along the lines of Luecht and Ackerman (2018) could prove useful in

this regard. We can also further seek to exploit other empirical relationships between compen-

satory and noncompensatory models. For example, Bolt (2019) demonstrated how a bifactor

model provides a potentially convenient alternative to cognitive diagnostic models (CDMs)

that model item responses in relation to a potentially large number of skill attributes, despite

the likelihood that the items would only measure the most difficult of the required attributes.

The possibility of moving back-and-forth between models seemingly allows users to exploit
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the model type that makes the most sense in a particular context without worrying too much

about substantial differences in model fit.

Such an application would be better supported by more detailed study of how well the

PB-NM and associated Bayesian estimation algorithm recovers the examinee proficiency pa-

rameters. In this study, I did not evaluate proficiency estimation specifically, nor how the

PB-NM and bifactor model adjust the standard errors of proficiency estimates to account for

passage-related dependence. As this is often an important feature of testlet models, com-

paring the models in terms of proficiency estimation would also provide useful insights for

understanding the relationship between the models.

Moreover, I did not consider the possibility of having lower asymptotes in the models

while including lower asymptotes may better represent responses on multiple-choice items.

The studied models, thus, could be evaluated in the presence of estimated non-zero lower

asymptotes as is often done when multiple-choice items are involved, such as in the real data

analysis of this study. Also, the ability to compare the effects of passage related dimensions

across items from different passages is subject to scaling decisions in regard to the passage-

related factors. This issue, which applies both to the bifactor and PB-NM models, implies

that the way in which passage-related difficulty or discrimination is defined and compared to

the general factor can be affected by how the latent variance of the passage-related factors is

defined. The effects of these scaling decisions will be more pronounced if there is substantial

heterogeneity in passage-related variance across passages. It would be interesting to study

how scaling decisions influence examining the effects of passage-related factor in different

ways for PB-NM and bifactor model. Finally, the real data application in this study is perhaps
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simplistic in its assumptions of a single general reading comprehension proficiency. It is

conceivable that this ability varies depending on the type of reading passage, and that more

attention could be given as to how different passage types (e.g., narrative versus expository)

might involve statistically distinguishable reading skills.
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3 A Mixture IRTree Model for Extreme Response Style:

Accounting for Response Process Uncertainty 2

3.1 Introduction

Response styles have long been recognized as a threat to the validity of measurement. By def-

inition, response styles refer to systematic tendencies to select response categories in ways

that are unrelated to the content of item/test (Paulhus, 1991). One of the most frequently

observed response styles is extreme response style (ERS), which refers to the tendency to

over-select extreme response categories (de Jong et al., 2008; Greenleaf, 1992). ERS is desir-

able to measure not only because of its frequent and statistically detectable presence but also

due to its potential to contaminate the estimation of the content trait. Ignoring the possibil-

ity that extreme responses can be due to ERS may yield an under- or over-estimation of the

content trait. Moreover, extreme response styles tend to correlate with other respondent char-

acteristics. Specifically, many researchers have found that both individual- and country-level

variables such as sociodemographic, personality and cultural characteristics can correlate with

ERS (Austin et al., 2006; C. Chen et al., 1995; de Jong et al., 2008; Greenleaf, 1992; Johnson

et al., 2005; Meisenberg and Williams, 2008; Naemi et al., 2009; see Van Vaerenbergh and

Thomas, 2012 for more details). Such correlations open the potential for ERS to contribute

bias to the estimated relationships between the content trait and other criterion variables.

Item response tree (IRTree) models have recently become a popular methodological ap-
2This chapter is an adapted version of Kim and Bolt (2021) published in Educational and Psychological

Measurement.
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proach for the measurement of response styles (Böckenholt, 2012; Böckenholt and Meiser,

2017; Jeon and De Boeck, 2016; Khorramdel and von Davier, 2014; Park and Wu, 2019;

Plieninger and Meiser, 2014). Central to the application of such models is the assumption

of a sequential process by which respondents arrive at chosen response categories. IRTree

models (Böckenholt, 2012; De Boeck and Partchev, 2012; Jeon and De Boeck, 2016) charac-

terize the underlying response processes associated with response selection using a sequential

decision tree structure where item response theory (IRT) measurement models represent the

outcomes at each decision node. For example, responses to a four-category item with cate-

gories “1 = Strongly Disagree, 2 = Disagree, 3 = Agree, and 4 = Strongly Agree” might be

specified as a two-stage selection process involving three decision nodes. At the first deci-

sion node (i.e., first stage), the respondent chooses whether to agree or disagree with the item

based on their content trait, while at a second stage, the respondent decides on the extremity

of agreement/disagreement based on their ERS. The outcome at each node is binary, with

respondents moving to the second node only if choosing to disagree at the first node, and

moving to the third node only if choosing to agree at the first node. By individually aligning

the content and response style traits with different response nodes, the IRTree model separates

the sources of information contributing to estimates of the content and response style traits,

thus, making each easier to estimate.

An implicit assumption of IRTree models is that a single response process is assumed

for all respondents. That is, both the decision tree structure and the nature of the underlying

traits involved at each decision node are assumed to be the same across respondents. This as-

sumption, however, might be questioned to the extent that different respondents could choose
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the same response category for different reasons. We might anticipate, for example, that for a

certain subset of respondents, selection of the extreme categories at the second stage is not due

to a response style, but is instead a further manifestation of their underlying content trait (as

the item/test developer presumably intends). In this respect, this chapter proposes a mixture

IRTree approach that attends to the possible heterogeneity in response processes across respon-

dents. Through a simulation study, I evaluate the mixture IRTree model and examine how the

mixture approach accounts for the presence of a mixture of respondents exhibiting different

response processes. The mixture IRTree model is also applied to actual data to demonstrate

the presence of response process heterogeneity in self-report rating scale items, and further

illustrate how the mixture IRTree model can accommodate the possibility that different traits

may be relevant for different respondents in explaining their response category selection.

3.2 Model

In this section, a mixture IRTree model attending to a mixture of respondents resorting to dif-

ferent response processes in responding to 4-point Likert scale items is presented. To develop

a mixture model, two different IRTree models are considered: ERS and ordinal (ORD) IRTree

models. Below I describe statistical representations of the two IRTree models and how these

two models are combined into a latent mixture model.

3.2.1 IRTree Model for Extreme Response Style: The ERS IRTree Model

As briefly described in the introduction, an IRTree model that accounts for ERS for responses

to a 4-point Likert scale item (i.e., ERS IRTree model) is commonly specified as a two-stage
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process with three decision nodes involved. Figure 3.1 shows a graphical representation of the

decision tree structure for the model. A common approach to translating an IRTree model to

a statistical representation makes use of pseudo-items that correspond to the binary outcome

at each decision node. I denote the outcome at decision node k for respondent j on item

i as pseudo-item Y ∗
ijk, where a value of 1 typically corresponds to the decision reflecting a

higher level of the trait underlying that node. Consequently, for the IRTree model in Figure

3.1, an “Agree” decision at the first node is coded as Y ∗
ij1 = 1 while a “Disagree” decision

is coded as Y ∗
ij1 = 0 as a respondent possessing a high level of content trait (which underlies

the first node) would tend to “agree” to the statement. At Nodes 2 and 3, Y ∗
ij2 = 1 and

Y ∗
ij3 = 1 correspond to the selection of extreme responses (i.e., “Strongly agree” or “Strongly

disagree”), and Y ∗
ij2 = 0 and Y ∗

ij3 = 0 to selection of non-extreme responses (i.e., “Agree” or

“Disagree”) because ERS underlies the second and third nodes. This implies that responses

to each category in Figure 3.1 can be recoded into three pseudo-items that correspond to the

three decision nodes. For example, a response of “2 = Disagree” can be recoded to 0 for both

Y ∗
ij1 and Y ∗

ij2, and missing (“NA”) for Y ∗
ij3 (as respondents who disagree at Node 1 will not go

through Node 3).
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Figure 3.1
Illustration of an Extreme Response Style (ERS) Item Response Tree (IRTree) Model for
Responses to a 4-Point Likert-Type Scale Item

Given this coding of pseudo-items, the probability of an outcome at a decision node is

represented using an IRT model. In this study, I assume a two-parameter logistic (2PL) model

for all nodes. For decision node k = 1, the probability of an outcome would be

P (Y ∗
ij1 = 1) =

exp(ai1θj + bi1)

1 + exp(ai1θj + bi1)
(3.1)

where θj denotes the content trait, while for nodes k = 2 and 3, it would be

P (Y ∗
ijk = 1) =

exp(aikηj + bik)

1 + exp(aikηj + bik)
(3.2)

where ηj denotes the extreme response style trait. Note that the models are expressed using the

slope-intercept parameterization where the aik denotes item discrimination parameters and bik

denotes intercept (difficulty-related) parameters. The aik and bik are allowed to differ across
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nodes, with aik assumed to be positive. An assumption of local independence across nodes

makes the probability of selecting a particular categorym equal to the product of probabilities

of responses to pseudo-items across the three nodes:

P (Yij = m) =P (Y ∗
ij1 = y∗ij1)P (Y ∗

ij2 = y∗ij2)P (Y ∗
ij3 = y∗ij3)

=
exp[y∗ij1(ai1θj + bi1)]

1 + exp(ai1θj + bi1)
×

[exp[y∗ij2(ai2ηj + bi2)]

1 + exp(ai2ηj + bi2)

]1−y∗ij1

×
[exp[y∗ij3(ai3ηj + bi3)]

1 + exp(ai3ηj + bi3)

]y∗ij1
(3.3)

where y∗ijk for each node k combine to render a final response of m. The probability of

selecting “2=Disagree” category, for instance, would be

P (Yij = 2) = P (Y ∗
ij1 = 0)P (Y ∗

ij2 = 0) =
1

1 + exp(ai1θj + bi1)
× 1

1 + exp(ai2ηj + bi2)

(3.4)

3.2.2 An Alternative Model: The Ordinal (ORD) IRTree Model

As an alternative to the ERS IRTree model, I consider a model that assumes a similar sequen-

tial process, but where the content trait underlies decisions made at all three nodes. As a

result, the general tree presentation in Figure 3.1 still applies, but the decisions made at the

second stage (Nodes 2 and 3) are assumed to be influenced by θ (content trait) as opposed

to η (ERS). Figure 3.2 illustrates the resulting Ordinal (ORD) IRTree model now having a

binary outcome at Decision Nodes 2 and 3 that implies a selection of the higher of the two

successive categories (as opposed to the most extreme of the options). Therefore, the binary

outcome at the second node is reversed compared with the ERS model in Figure 3.1. Specif-
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ically, “Disagree” corresponds to Y ∗
ij2 = 1 and “Strongly disagree” corresponds to Y ∗

ij2 = 0

in this ORD model (as a respondent with a higher level of the content trait is more likely to

choose “Disagree” than “Strongly Disagree”).

Figure 3.2
Illustration of an Ordinal (ORD) Item Response Tree (IRTree) Model for Responses to a
4-Point Likert-Type Scale Item

The outcome at each decision node is consequently modeled as

P (Y ∗
ijk = 1) =

exp(aikθj + bik)

1 + exp(aikθj + bik)
(3.5)

for k = 1, 2, 3 where θj denotes the content trait for respondent j and aiks are constrained to

be positive. The item parameters aik and bik are separately estimated for each node as in the

ERS model.

Note that the same pseudo-items created for the ERS model can also be applied in fitting

the ORDmodel. However, because the outcome for Node 2 is reversed under the ORDmodel
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compared with the ERS model (i.e., Y ∗
ij2 = 1 under the ERS model corresponds to the lower

category “Strongly Disagree” rather than the higher score category “Disagree”), the outcome

for the second node can be specified as

P (Y ∗
ij2 = 1) = 1− exp(ai2θj + bi2)

1 + exp(ai2θj + bi2)
=

1

1 + exp(ai2θj + bi2)
=

exp(−ai2θj − bi2)

1 + exp(−ai2θj − bi2)

(3.6)

for the ORD model using the pseudo-item created under the ERS model. In this way, each

of the ERS and ORD IRTree models can be fitted to the same pseudo-items. Similar to the

ERS IRTree model, an assumption of local independence across nodes makes the probability

of selecting categorym under the ORD model equivalent to

P (Yij = m) =
exp[y∗ij1(ai1θj + bi1)]

1 + exp(ai1θj + bi1)
×

[exp[y∗ij2(−ai2θj − bi2)]

1 + exp(−ai2θj − bi2)

]1−y∗ij1

×
[exp[y∗ij3(ai3θj + bi3)]

1 + exp(ai3θj + bi3)

]y∗ij1 (3.7)

where y∗ij1 refers to the pseudo-item responses as defined under the ERS tree in Figure 3.1.

3.2.3 A Mixture of ERS and ORD IRTree Models

The ORD model is naturally a competitor to the ERS model and could be statistically com-

pared with the ERS IRTree model. However, when both models are viewed as applicable

across a population of respondents, a mixture IRTree model can be formulated in which each

of the ERS and ORD IRTree models defines a latent class in the mixture. Under a mixture

representation, each respondent is assumed to have a latent membership in either the ERS or
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ORD class across all item responses. As can be seen in Figures 3.1 and 3.2, the two classes are

distinguished by whether the decisions at Stage 2 (Nodes 2 and 3) are affected by the content

trait θ or an extreme response style trait η. In order to link metrics of the content trait across

classes, I constrain the ORD and ERS IRTree models to share a common latent trait θ (i.e.,

content trait) at the first node and have identical item parameters for that first pseudo-item

across classes. The item parameters for Nodes 2 and 3 are allowed to vary across classes and

are separately estimated for the two classes. Consequently, the mixture IRTree model can be

written as

P (Yij = m) =
exp[y∗ij1(ai1θj + bi1)]

1 + exp(ai1θj + bi1)

×

{[exp[y∗ij2(ai2,ERSηj + bi2,ERS)]

1 + exp(ai2,ERSηj + bi2,ERS)

]1−y∗ij1
[exp[y∗ij3(ai3,ERSηj + bi3,ERS)]

1 + exp(ai3,ERSηj + bi3,ERS)

]y∗ij1 }2−zj

×

{[exp[y∗ij2(−ai2,ORDθj − bi2,ORD)]

1 + exp(−ai2,ORDθj − bi2,ORD)

]1−y∗ij1
[exp[y∗ij3(ai3,ORDθj + bi3,ORD)]

1 + exp(ai3,ORDθj + bi3,ORD)

]y∗ij1 }zj−1

(3.8)

where zj denotes the class membership parameter of respondent j (1 = ERS class, 2 = ORD

class), y∗ij1 denotes pseudo-item responses recoded under the ERS model, aik,ERS and bik,ERS

for k = 2, 3 represent item parameters of Nodes 2 and 3 for the ERS class, and aik,ORD and

bik,ORD for the ORD class. We can observe from the right-hand side of the Equation 3.8 that

the first part (i.e., the probability for the first node) stays the same for both classes but either

the second or the third part drops out depending on the class membership zj a respondent has.

For instance, when a respondent belongs to the ORD class (zj = 2), the second part drops
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out and the third part stays in the equation as the exponents 2 − zj and zj − 1, respectively,

become 0 and 1. In contrast, when a respondent is in the ERS class (zj = 1), the third part

drops out and the second part stays in the equation.

Table 3.1 summarizes the pseudo-item outcomes that correspond to each item category

response and the probability of responses at each node for each model (class) in the mixture

model. I present the pseudo-item outcomes created under the ERS model and, therefore, use

Equation 3.6 for the probability at Node 2 for the ORD model.

Table 3.1
A Summary of Information for the Mixture Item Response Tree (IRTree) Model

Node

(trait)

Psuedo-item for categorym (y∗ijk) Class

membership (zj)

Model

[P (Y ∗
ijk = y∗ijk)]m = 1 m = 2 m = 3 m = 4

Y ∗
1 (θ) 0 0 1 1 Both(1,2) exp[y∗ij1(ai1θj+bi1)]

1+exp(ai1θj+bi1)

Y ∗
2 (η) 1 0 NA NA ERS(1) exp[y∗ij2(ai2,ERSηj+bi2,ERS)]

1+exp(ai2,ERSηj+bi2,ERS)

Y ∗
2 (θ) 1 0 NA NA ORD(2) exp[y∗ij2(−ai2,ORDθj−bi2,ORD)]

1+exp(−ai2,ORDθj−bi2,ORD)

Y ∗
3 (η) NA NA 0 1 ERS(1) exp[y∗ij3(ai3,ERSηj+bi3,ERS)]

1+exp(ai3,ERSηj+bi3,ERS)

Y ∗
3 (θ) NA NA 0 1 ORD(2) exp[y∗ij3(ai3,ORDθj+bi3,ORD)]

1+exp(ai3,ORDθj+bi3,ORD)

3.3 Simulation Analyses

The mixture IRTree model and its estimation using a fully Bayesian estimation algorithm

are evaluated with simulated data. I focus on evaluating how well the model identifies the

mixture of classes (both at respondent and sample levels) and recovers item and respondent
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parameters. Below I describe data simulation process/conditions and how the generated data

are analyzed.

3.3.1 Data Simulation

The ERS and ORD IRTree models in Equations 3.3 and 3.7, respectively, are used to generate

response patterns for respondents in Classes 1 (ERS class) and 2 (ORD class). Responses for

a total of 1,000 respondents to 15 four-response category items are generated. The proportion

of respondents in each class is systematically varied: (P1, P2) = (1.0, 0.0), (0.7, 0.3), (0.5,

0.5), (0.7, 0.3), and (0.0, 1.0) as a simulation factor, where P1 and P2, respectively, denote

the proportion of respondents in the ERS and ORD classes. Ten data sets are generated for

each condition for replication purposes; accordingly, 50 data sets (10 replications × 5 condi-

tions) are generated in total. For each respondent, item category responses are simulated as

outcomes of a sequential response process corresponding to the IRTree model of their respec-

tive class. Then the category responses are recoded into pseudo-items as defined under the

ERS IRTree model. The overall data generation process can be summarized in the following

steps:

Step 1. Generate person parameter θj (content trait) and ηj (ERS) for 1,000 respondents

independently from Normal(0, 1), assuming that θj and ηj are uncorrelated.

Step 2. Generate item parameters aikc and bikc across three nodes (k = 1, 2, 3) for 15

items in each of the two classes (c = 1(ERS), 2(ORD)), respectively, as Uniform(0.5, 2)

and Uniform(−3, 3). The item parameters for the first node were generated to be identical

across the two classes (ai1,ERS = ai1,ORD, bi1,ERS = bi1,ORD) while the parameters for the
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second and third nodes were independently generated for each class.

Step 3. Assign class membership parameters (zj) for respondents according to the mix-

ture proportion condition (i.e., [P1, P2]) being considered. I assigned the first 100P1% of the

respondents to Class 1 (ERS class) and the rest to Class 2 (ORD class).

Step 4. Calculate the probability of each respondent selecting category m(= 1, 2, 3, 4)

using Equation 3.8. For instance, for a respondent in ERS class (zj = 1), the probability of se-

lecting categorym is calculated by plugging in the generated parameter values for aij,ERS and

bij,ERS and pseudo-item outcome values corresponding to categorym for y∗ijk in this equation:

exp[y∗ij1(ai1θj+bi1)]

1+exp(ai1θj+bi1)

[
exp[y∗ij2(ai2,ERSηj+bi2,ERS)]

1+exp(ai2,ERSηj+bi2,ERS)

]1−y∗ij1
[
exp[y∗ij3(ai3,ERSηj+bi3,ERS)]

1+exp(ai3,ERSηj+bi3,ERS)

]y∗ij1
. Four probabil-

ity values (corresponding to four response categories) for each respondent are calculated.

Step 5. Generate multinomial responses from 1,000 respondents to 15 items, using the

probabilities calculated in the previous step.

Step 6. Transform the categorical responses to pseudo-items based on the ERS tree

structure, as shown in Table 3.1. (Recall that the ORD tree structure can be fitted to ERS tree

pseudo-items by forcing the discrimination parameter at the second node to be negative as

opposed to positive; see Equation 3.6.) The final data set consequently has binary responses

from 1,000 respondents to 45 pseudo-items (15 items × 3 nodes) with the irrelevant pseudo-

items coded as missing.

Step 7. Repeat Steps 5 and 6 within each condition to generate 10 data sets for each

mixing proportion condition.

Step 8. Repeat Steps 3 through 7 for each of the mixing proportion conditions.
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3.3.2 Analyses

I fit the IRTree mixture model involving ERS and ORD classes to each of the generated

data sets using a Bayesian (Markov chain Monte Carlo) estimation algorithm using JAGS

(Just Another Gibbs Sampler) 4.3.0 (Plummer, 2017). To run JAGS from the R software (R

Core Team, 2019), the jagsUI package (Kellner, 2019) is used. The prior distributions for

the item parameters aikc and bikc are, respectively, logNormal(0, 1) and Normal(0, 1). For

person parameters, θj and ηj are each assumed to independently follow a prior distribution of

Normal(0, 1)while the class membership parameter zj is assumed to beCategorical(p1, p2)

withDirichlet(α1, α2) as a prior for the vector of hyperparameters (p1, p2). I set α1 = α2 = 1

to make the prior uniformly distributed and noninformative. For each simulated data set, 10

chains are run where for each chain the total number of iterations is set to 25,100. Standard

convergence criteria (i.e., Gelman–Rubin R2; Gelman and Rubin, 1992) are used to support

the successful convergence. The first 100 iterations are used for adaptation and a subsequent

5,000 iterations are discarded as burn-in. Every 10th subsequent value in the simulated chains

are retained (i.e., thinning interval = 10 iterations), implying that a total of 2,000 iterations are

used from each of the 10 chains to produce posterior distributions of the model parameters.

The mean values of the univariate posterior distributions are used as parameter estimates.

To compare the mixture IRTree model against the use of a single IRTree model, I also

separately fit the ERS and ORD IRTree models to the same datasets to examine whether the

mixturemodel emerges as superior in the presence of two classes. The same prior distributions

as used in the mixture model are applied for the corresponding parameters under each single
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IRTree model. Due to the reduced complexity of these models, five chains are run for each

analysis and a total of 15,100 iterations for each chain. The first 100 and 5,000 iterations are

discarded as adaptive and burn-in iterations, respectively. The resulting posterior distributions

are constructed from the 10,000 post burn-in iterations again using a thinning interval of 10,

implying a total of 1,000 iterations from five respective chains for determination of parameter

estimates.

3.4 Simulation Results

3.4.1 Model Fit Comparisons

I first compared the fit of the mixture IRTree model with that of the single ERS and ORD

IRTree models. The deviance information criteria (DIC) for the models, obtained from the

first simulated data set, are reported in Table 3.2. The DIC is calculated as the sum of the

mean deviance to a penalty based on the complexity of the model (the effective number of

parameters, denoted as pD). As expected, for the data sets that only contained respondents

from one of the two classes, that is (P1, P2) = (1.0, 0.0), (0.0, 1.0), the IRTree model that

corresponds to the correct class returned the lowest DIC value indicating the best model

fit, while the mixture model returned the lowest DIC value for all conditions involving a

mixture of the two classes. The same pattern of findings was observed across all 10 of the data

sets, suggesting that the mixture IRTree model correctly emerges as superior in the presence

of conditions in which both the ERS and ORD classes are present for different respondent

subpopulations.
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Table 3.2
Deviance Information Criterion (DIC) Results for the Mixture, ERS, and ORD IRTree
Models for Five Different Mixture Proportion Conditions, First Simulated Data Set for Each
Condition

Fitted
model

Class mixing proportion condition (P1, P2)

(1.0, 0.0) (0.7, 0.3) (0.5, 0.5) (0.3, 0.7) (0.0, 1.0)

pD DIC pD DIC pD DIC pD DIC pD DIC

Mixture 2529 29107 2583 28948 2402 29051 2169 28433 1359 27519
ERS 2308 28898 2439 30932 2486 31718 2406 31391 2719 30228
ORD 1249 31726 1256 32422 1264 32125 1195 30662 1201 27374

Note. The smallest DIC values for each condition is in boldface. ERS = Extreme response
style; ORD = Ordinal; pD = Effective number of parameters; AIC = Akaike Information Cri-
terion.

3.4.2 Estimation of Latent Proportions and Classification Accuracy

The ability of the mixture IRTree model to correctly capture the mixture of respondents in the

data can also be inspected by looking at how well the model estimates the mixing proportion

parameters (p1, p2) and the respondent class memberships (zj). I evaluated recovery in terms

of the bias and root mean square errors (RMSEs) of the estimates of the latent proportions.

Specifically,

Bias = E(p̂1r)− p1 =
1

rep

rep∑
r=1

p̂1r − p1 (3.9)

RMSE =
√

E[(p̂1r)− p1)2] =

√√√√ 1

rep

rep∑
r=1

(p̂1r − p1)2 (3.10)

where p̂1r denotes the estimate of the proportion parameter p1 obtained from the rth simulation

data set, and rep denotes the total number of replications for each condition (in this case 10).
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As can be seen in Table 3.3, the bias and RMSE are all very small (less than 0.01) using

the fully Bayesian estimation approach, indicating that the mixture model estimates the true

proportion of respondents in each class accurately. At the respondent level, the estimate of

class membership (ẑj) lies between 1 and 2, and reflects the probability of belonging to each

class. For example, if a respondent’s estimated class membership is 1.3, this means that

the probability of belonging to Class 2 (ORD class) for the individual is 0.3 and to Class

1 (ERS class) is 0.7. Respondents are thus assigned to Class 1 if their ẑj is smaller than

or equal to 1.5 and Class 2 if their ẑj is larger than 1.5. I evaluate the accuracy of such a

classification by calculating the proportion of correctly assigned respondents to each class

(i.e., hit rate). The average hit rate across the 10 replicated data sets within each condition

is presented in the right two columns of Table 3.3. The hit rates are larger than 90% for all

conditions, although accuracy decreases slightly as the proportion of respondents in the class

decreases. For instance, the hit rate for the ERS class is 99.97%when all the respondents in the

data are in the ERS class, but decreases to 91.37% when the proportion of respondents in the

ERS class reduces to 0.3. These overall results suggest that the proposed modeling approach

assigns the respondents to their correct classes with high accuracy provided the number of

respondents in the class is sufficiently large.

3.4.3 Recovery of Pseudo-Item Parameters

I also examined how well the mixture model recovers the pseudo-item parameters. Table 3.4

displays the bias and RMSE of the item parameters aikc and bikc for each class (c = 1, 2)

averaged over items and nodes. The values derived from the single IRTree models are also
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Table 3.3
Bias and Root Mean Square Error (RMSE) of the Estimated Latent Proportion p̂1 and
Classification Accuracies (Average Hit Rates) Across Five Different Mixing Proportion
Conditions
Condition
(P1, P2)

Posterior latent proportion p̂1 Average hit rate (%)

Bias RMSE P(ẑj ≤1.5|zj = 1) P(ẑj>1.5|zj = 2)

(1.0, 0.0) -0.003 0.003 99.97 -
(0.7, 0.3) -0.006 0.009 96.51 92.53
(0.5, 0.5) -0.002 0.009 94.64 96.14
(0.3, 0.7) -0.003 0.008 91.37 97.89
(0.0, 1.0) 0.002 0.002 - 100.00

presented as criteria (baseline) for evaluation. The mixture model produces nearly the same

levels of bias and RMSE for pseudo-item discrimination and difficulty parameters as those

of the single IRTree models when the proportion of respondents under the corresponding

model is 1. For the intermediate mixing proportion conditions, the mixture model always

produces smaller bias and RMSE compared with the single IRTree models, suggesting that

the mixture model provides a superior estimation of the pseudo-item parameters. In addition,

the mixture model seems to recover well the item parameters for a given class even when

there is only a small proportion of respondents in the class. For instance, when the proportion

of respondents in ERS class is only 0.3, the bias and RMSE of aik1(aERS) estimates produced

from the mixture model are, respectively, 0.133 and 0.263, whereas the ERS model produced

larger values, presumably because, under the ERS model, information from respondents who

are in the ORD class are also applied in estimating the item parameters.
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Table 3.4
Bias and Root Mean Square Error (RMSE) of the Item Parameter Estimates Across Mixture,
ERS and ORD IRTree Models by Mixing Proportion Condition.
Parameter
Estimate

Condition
(P1, P2)

Biasa RMSE

MIX ERS ORD MIX ERS ORD

âik1(âERS)

(1.0, 0.0) 0.072 0.071 - 0.184 0.183 -
(0.7, 0.3) 0.082 0.253 - 0.208 0.328 -
(0.5, 0.5) 0.097 0.445 - 0.234 0.504 -
(0.3, 0.7) 0.135 0.547 - 0.324 0.605 -
(0.0, 1.0) 0.323 0.483 - 0.365 0.551 -

âik2(âORD)

(1.0, 0.0) 0.339 - 0.660 0.398 - 0.704
(0.7, 0.3) 0.107 - 0.542 0.296 - 0.595
(0.5, 0.5) 0.093 - 0.418 0.258 - 0.467
(0.3, 0.7) 0.086 - 0.283 0.222 - 0.343
(0.0, 1.0) 0.064 - 0.065 0.185 - 0.184

b̂ik1(b̂ERS)

(1.0, 0.0) 0.071 0.072 - 0.155 0.156 -
(0.7, 0.3) 0.076 0.370 - 0.168 0.417 -
(0.5, 0.5) 0.092 0.558 - 0.213 0.603 -
(0.3, 0.7) 0.133 0.720 - 0.263 0.762 -
(0.0, 1.0) 0.927 0.998 - 0.949 1.035 -

b̂ik2(b̂ORD)

(1.0, 0.0) 0.971 - 1.007 0.998 - 1.037
(0.7, 0.3) 0.152 - 0.752 0.274 - 0.784
(0.5, 0.5) 0.128 - 0.610 0.257 - 0.646
(0.3, 0.7) 0.102 - 0.459 0.198 - 0.496
(0.0, 1.0) 0.079 - 0.080 0.158 - 0.159

Note. MIX = Mixture IRTree model; ERS = Extreme response style IRTree model; ORD =
Ordinal IRTree model.
a The absolute values of bias are averaged over items and nodes.

3.4.4 Precision (Posterior Standard Deviations) of Respondent Parameter Estimates

Appendix C displays results in terms of the bias and RMSE of respondent parameter recovery

(for both θ and η). Importantly, the use of the mixture IRTree model is seen to result in

a recovery of respondent θ estimates that is equivalent to that observed when applying the

correct model to the respondent’s data. In other words, under the mixture IRTree model, the



56

recovery of θ for ORD respondents is as good as it is when applying the single ORD IRTree

model, and likewise, the recovery for ERS respondents is as good as when applying the single

ERS IRTree model. Similarly, for the η estimates, recovery for ERS respondents under the

mixture IRTree model is as good as when applying the ERS model. (Note that recovery of the

η for ORD respondents is consistently poor under both models, as the items do not measure

η for this class of respondents.) As a result, the application of a mixture approach seemingly

renders accurate trait estimates with respect to the relevant traits for the respondent’s actual

response process.

Of particular interest in the current application, however, is the way in which the mixture

approach represents the precision of the respondent parameter estimates. As suggested in

the introduction, an anticipated consequence of applying the mixture IRTree model is that it

will appropriately account for the uncertainty present in respondent parameter estimates due

to the uncertainty of the respondent’s response process. As seen in Figure C2 in Appendix

C, both the mixture and ERS models produce equivalently large errors for many of the η

estimates. One of the differences between the mixture and ERS models is that the mixture

model attends to the uncertainty of the estimates due to the uncertain response process whereas

the ERS model does not. Figure 3.3 displays kernel-smoothed functions of the relationship

between the respondent parameters and their corresponding posterior standard deviations (the

Bayesian equivalent of standard errors of estimates). The left plot shows the posterior standard

deviations for θ, the right plot for η. For the content trait θ, it can be observed from the left

panel in Figure 3.3 that the mixture model produces lower posterior standard deviations than

those from the ERS model across all levels of θ, a result that can be attributed to the capacity
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of the mixture model to extract additional information about θ from Nodes 2 and 3 when the

respondent is in the ORD class. At the same time, the mixture model generally produces

higher posterior standard deviations than those of the ORD model, a result that is due to

some respondents actually being in the ERS class, as well as the uncertainty regarding class

membership for many of the respondents.

Figure 3.3
Average Posterior Standard Deviations (PSDs) of θ and η in Relation to the Parameters, for
Mixture and Single IRTree Models, for (P1, P2) = (0.5, 0.5) Condition

For the posterior standard deviations of η, I initially note that because only the mixture

and ERS models actually estimate η, the result for the ORD model is a constant value of 1.

This reflects that from a Bayesian perspective, the posterior standard deviation of η would

be 1, the standard deviation of the prior, for all respondents in the ORD class as the data

provide no information about η. The right panel of Figure 3.3 further shows that the mixture

model returns higher posterior standard deviations across all levels of η in comparison to the

ERS model. This result is as expected for two primary reasons: First, the mixture model
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produces large posterior standard deviations of η for those respondents who belong to the

ORD class (where η is unmeasured), and second, the uncertainty of class membership makes

the estimates of η less precise even for those belonging to the ERS class.

To evaluate the accuracy of the precision of estimates, I examined the proportion of

the 95% credible intervals that contain the true parameter values for each parameter under

each modeling approach, as shown in Table 3.5. From the leftmost columns of the table, it

is shown that the ERS and mixture models provide accurate 95% credible intervals for the θ

parameters, indicating that the mixture model accurately reflects the estimation of θ; however,

the intervals under the ORD model are consistently in the lower 90s, suggesting inaccuracy.

Recalling from Figure 3.3 that the posterior standard deviations were consistently lower for

the mixture model than the ERS model, it would thus appear that the credible intervals for

the mixture model are best (probably narrower intervals than for the ERS model with similar

accuracy).

Table 3.5
The Proportion of 95% Credible Intervals for θ and η That Contain True Parameters, for the
Mixture, ERS, and ORD IRTree Models Across Mixing Proportion Conditions
Condition
(P1, P2)

θ η

MIX ERS ORD MIX ERS ORDa

(1.0, 0.0) 0.952 0.952 0.938 0.940 0.940 0.944
(0.7, 0.3) 0.951 0.950 0.913 0.942 0.835 0.944
(0.5, 0.5) 0.954 0.953 0.919 0.945 0.718 0.944
(0.3, 0.7) 0.954 0.952 0.915 0.941 0.688 0.944
(0.0, 1.0) 0.953 0.953 0.952 0.944 0.830 0.944

Note. MIX = Mixture IRTree model; ERS = Extreme response style IRTree model; ORD =
Ordinal IRTree model.
a 0.025th and 0.975th quantiles of normal distribution are used for the interval.
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From the rightmost three columns in Table 3.5, it is likewise seen that the intervals de-

rived from the mixture model mostly include η (about 94%) whereas the ERS model more

frequently returns rates much lower, especially in the presence of a near equal split in class

sizes. Thus, by attending to the uncertainty of the η estimates, the mixture model appears to

produce more accurate credible intervals than the ERS model. In summary, when a mixture

is simulated to be present, it is only by modeling the data as a mixture that we can obtain

accurate estimates and credible intervals for the respondent parameters.

3.5 Real Data Application

The mixture model was also fitted to actual data to demonstrate the presence of a mixture

of respondents in self-report rating scale items as well as to show a real-world illustration

of the results seen in the simulation. The data were collected through a survey from the

Trends in International Mathematics and Science Study (TIMSS) 2015 (for Grade 8). I used

responses from 1,000 randomly sampled respondents from the U.S. administration of the nine

items for the Students Like Learning Mathematics (SLM) scale. Each item was rated using

four response categories: disagree a lot, disagree a little, agree a little, and agree a lot. I

converted the item scores to pseudo-item responses based on the ERS IRTree model and fitted

the mixture model to the data using JAGS (Plummer, 2017) with the same specifications as

for the simulation analyses reported above. As in the simulation analyses, the single ERS and

ORD IRTree models were also fitted.

I validated the presence of a mixture by comparing the model fit and examining the esti-

mated latent proportions for each class as well as estimated class memberships of individuals
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in the mixture model. The comparative model fits are provided in Table 3.6. As can be seen,

the mixture IRTree model produces the smallest DIC value, suggesting a better fit in compari-

son to the other two single IRTree models. Also, it is observed from the leftmost two columns

in Table 3.7 that the latent proportions for each class estimated from the mixture model are

about 0.3 (ERS class) and 0.7 (ORD class), respectively, roughly agreeing with the proportion

of respondents actually classified to each class (as can be seen in the rightmost two columns

in Table 3.7).

Table 3.6
Deviance Information Criterion (DIC) Results of the Mixture, ERS, and ORD IRTree Models
for TIMSS SLM Scale Data

Model Mixture ERS ORD

pD 2636.5 2206.7 1330.3
DIC 15357.7 15441.17 15391.48

Note. The smallest DIC value is in bolface. TIMSS = Trends in International Mathematics
and Science Study; SLM = Students Like Learning Mathematics; ERS = Extreme response
style IRTree model; ORD = Ordinal IRTree model; pD = Effective number of parameters.

Table 3.7
Estimated Latent Proportions and the Number of Respondents Classified to ERS and ORD
Classes for TIMSS SLM Scale Data

Posterior latent proportions Number of classified respondents

ERS class (p̂1) ORD class (p̂2) ERS class (ẑj ≤1.5) ORD class (ẑj>1.5)

0.320 0.680 227 773

Note. TIMSS = Trends in International Mathematics and Science Study; SLM = Students
Like Learning Mathematics; ERS = Extreme response style IRTree model; ORD = Ordinal
IRTree model.

To illustrate the implications of applying single or mixture IRTree models to the data

with a mixture of respondents, some example response patterns and their corresponding trait
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estimates are provided in Table 3.8. Note that the ERS and mixture IRTree models provide

estimates of both θ and η, while the ORD model only provides an estimate of θ (η estimates

could also naturally be reported as the mean, 0, standard deviation, 1, as defined by the prior

distribution). The mixture model also provides the estimated probability of class membership

for each respondent. The estimated probabilities of being in ORD class for Respondents 4 and

141, who selected all 1s or 4s, indicate that it is highly likely that they chose extreme responses

due to their low or high content trait θ. The probabilities, however, are not equal to 1 because

there still is a possibility that they selected all 1s or 4s due to their ERS. On the other hand,

Respondents 244 and 74 have a low probability of belonging to the ORD class, implying that

it is highly likely that these responses are influenced by their ERS. Specifically, selecting

options only from both ends (1s and 4s) may reflect a high ERS while selecting a middle

category from only one direction (all 3s) reflects a low ERS (i.e., tendency to avoid extreme

responses). The probabilities for both cases also do not equal to 0, reflecting the possibility

of selecting extreme responses due to their content traits.
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Table 3.8
Example Response Patterns for TIMSS SLM Scale Data and Corresponding Content and Response Style Trait Posterior Means
and Standard Deviations, Derived From the Mixture, ERS, and ORD IRTree Models

ID Responses
Mixture ERS ORD

Prob(Class2) θ̂ (PSD(θ)) η̂ (PSD(η)) θ̂ (PSD(θ)) η̂ (PSD(η)) θ̂ (PSD(θ))

603 221112211 0.713 -0.956 (0.439) 0.096 (0.863) -1.411 (0.553) 0.159 (0.250) -0.866 (0.192)

4 111111111 0.866 -1.789 (0.538) 0.196 (1.087) -1.423 (0.551) 1.477 (0.556) -1.922 (0.496)

141 444444444 0.871 1.815 (0.555) 0.212 (1.099) 1.297 (0.581) 1.542 (0.557) 1.997 (0.511)

527 141111111 0.188 -1.075 (0.404) 1.253 (0.897) -1.041 (0.414) 1.477 (0.570) -1.427 (0.338)

244 144111111 0.004 -0.774 (0.309) 1.541 (0.564) -0.784 (0.314) 1.510 (0.578) -1.128 (0.260)

74 333333333 0.032 1.255 (0.600) -1.133 (0.655) 1.301 (0.577) -1.263 (0.584) 0.314 (0.189)

90 223333222 0.559 -0.187 (0.190) -0.526 (1.015) -0.243 (0.203) -1.329 (0.586) -0.159 (0.165)

Note. TIMSS = Trends in International Mathematics and Science Study; SLM = Students Like Learning Mathematics; ERS = Ex-
treme response style IRTree model; ORD =Ordinal IRTree model; Prob(Class2) = Estimated probability of belonging to ORD class;
PSD = Posterior standard deviation.
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The differences observed in the posterior means and standard deviations across models

for the example patterns highlight some important differences between the mixture and single

IRTree models. First, in comparing Respondents 4 and 603, the content trait estimates (θ̂)

under the ERS model show no real difference between respondents, as the only information

about the content trait is extracted fromNode 1, and the two response patterns reflect identical

outcomes for all items at Node 1 (i.e., Y ∗
i,4,1 = Y ∗

i,603,1 = 0 for all i). However, under both

the ORD and mixture IRTree models, where Nodes 2 and 3 have the potential to contribute

information to estimating θ, we can see differences such that Respondent 4 shows a lower

content trait estimate than 603, as expected. A similar pattern of relationships is observed for

Respondents 141 and 74. Thus, unlike the ERS model, the mixture model might be viewed

as beneficial in allowing some information about the content trait to be extracted from the

selection of extreme response categories.

Another aspect of using the mixture is seen when comparing the η̂ for the mixture and

ERSmodels. Note that the ERS estimates (η̂) under the mixture model are pulled substantially

closer to the prior mean (0) relative to the ERS model (except for Respondent 244 where

the uncertainty of class membership is minimal), a consequence of the greater uncertainty

regarding response style under the mixture model. Similarly, the posterior standard deviations

of η are also seen to be larger under the mixture representation. These effects are particularly

seen for Respondents 4 and 141. Note that while each of these respondents consistently selects

the most extreme response option, the possibility under the mixture representation that such

response patterns may also be due to extreme levels on the content trait makes the pattern less

informative about extreme response style. As a result, extreme response style trait estimates
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(η̂) are obtained under the mixture that are between the estimates under the single ERS IRTree

model and the prior means (0). Such uncertainty of response process is also reflected in the

content trait estimates (θ̂) under the mixture model that lie between the estimates under the

single ERS and ORD IRTree models. Also, higher posterior standard deviations are observed

under the mixture due to this uncertainty.

This change in posterior means and standard deviations of η shows how the mixture

IRTree model takes into account the uncertainty of the respondent’s class memberships. How-

ever, in certain instances, despite the presence of the mixture, class membership is quite clear,

and this shrinkage effect is more minimal. An illustration is seen in comparing Respondents

527 and 244, each of whom select options from both extremes of the rating scale (both 1 and

4). For Respondent 244, who selects twice from the opposite end of the rating scale (4) rel-

ative to the modal response (1), the PSD of η does not get much larger in comparison to the

ERS class, as the evidence for ERS is strong even in the application of a mixture model. For

Respondent 527, who selects only once from the opposite end of the rating scale, the evidence

is less strong, and the PSD of η is a little larger in comparison to that seen for the ERS class.

Figure 3.4 displays kernel-smoothed functions of the relationship between the posterior

standard deviations (i.e., standard errors) of respondents’ person parameters and the respon-

dents’ probability of belonging to the ORD class. The probability of ORD class membership

indicates the uncertainty of the respondent’s true class membership. Note that the curve for θ

under the mixture model is quite consistently between those of the single tree ORD and ERS

models, closer to the ERS model when the probability of being in the ORD class is low (see

left panel). The mixture curve gets closer to the ORD model when the posterior probability
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of class membership is high. The curve lies between the two other curves (ERS and ORD) for

the intermediate posterior probability of class membership values. Note that for η the PSD

curve under the ORD model is drawn as a straight line at the value of 1, the standard devia-

tion of the prior distribution of η. The mixture model produces progressively larger PSDs of

η as the probability of belonging to ORD class increases, showing how the uncertainty of the

response style estimates is substantially affected by the reduced certainty of membership in

the ERS class. The single ERS IRTree model, in contrast, does not consider such uncertainty,

and as a result reports η estimates with inflated levels of precision, as was observed in the

simulation study.

Figure 3.4
Average Posterior Standard Deviations (PSD) of θ and η in Relation to the Posterior
Probability of ORD Class Membership, for the Mixture and Single IRTree Models, for
TIMSS SLM Scale Data

Note. TIMSS = Trends in International Mathematics and Science Study; SLM = Students
Like Learning Mathematics; ERS = Extreme response style; ORD = Ordinal.

In summary, the pattern of results observed in the real data resembles quite closely the

effects seen in the simulation. The assumption of a single class IRTreemodel, whether an ERS
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IRTree or an ORD IRTree, overstates the precision of the estimated respondent traits when

both response processes may be present in the respondent population. The use of a single

IRTree model should thus be supported by evidence of its validity across all respondents; the

results suggest that a mixture may likely be present, in which case model estimates should be

sensitive to the unknown class to which the respondent belongs.

3.6 Conclusions

IRTree models have become a popular way of measuring response styles for self-report rat-

ing scale assessments. Such models associate a response process (represented in the form

of a decision-making tree) with content and response style traits that underlie the different

decision-making nodes within the tree. The separation of traits across nodes enhances the

ability to measure response style traits but comes at the cost of assuming the same response

process (associated with the same traits across respective steps in the process) for all respon-

dents.

In this chapter, I demonstrate through a real data application the likelihood that no single

IRTree may best characterize all respondents, and that a better representation of the response

process may be achieved by allowing a mixture of trees. I demonstrate this possibility in the

context of a commonly used IRTree model for extreme response style by considering also an

alternative IRTree model that assumes the content trait is relevant at all decision nodes. The

better comparative fit of the mixture model confirms such a mixture. Some of the more imme-

diate implications of the mixture relate to the precision with which the content and response

style traits are assumed to be measured. I suggest that the likely presence of a mixture intro-
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duces what should be viewed as the core challenge in attempts to measure response styles such

as ERS, namely the uncertainty that exists as to whether the selection of an extreme response

category is due to the content trait, a response style, or some combination of these factors.

Through a mixture IRTree model approach, it becomes possible to see how the uncertainty

of class membership impacts the estimation of both the content and response style traits. As

expected, the extreme response styles tend to show larger posterior standard deviations (i.e.,

standard errors of estimates) when allowing for a mixture. I contend that this uncertainty,

already an implicit part of both mixture IRT (von Davier & Rost, 1995) and multidimensional

IRT (Bolt & Johnson, 2009) approaches to measuring response style, is important to consider

when psychometric models are used to measure response styles. As Adams et al. (2019) note,

attending to this uncertainty has various practical implications related to the design survey

instruments, in particular, the value of having psychometrically heterogeneous items, as well

as the relevance of having external criteria (e.g., anchoring vignettes, content-heterogeneous

items) to more accurately measure response styles.

Although not explored in this chapter, a mixture tree representation arguably brings the

IRTree methodology closer to that observed with mixture and multidimensional IRT models

of response style. Future comparative studies of response style methods in this context would

be useful. Along these lines, Meiser et al. (2019) also demonstrate the possibility that the

outcome at a single decision tree node might be influenced simultaneously by both a content

trait and a response style trait. In a similar way, such a model might also be anticipated to

return reduced precision in the estimated response style trait due to the less certain roles the

content and response style traits play in response category selection.
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Of course, despite the use of a mixture model in this study, it is also conceivable that

for an individual respondent the causes of extreme responses may also vary within a single

respondent across items. For example, a respondent may for some items select an extreme

category as a result of the content trait, and for other items a response style. This possibility

was not considered in this article. It may be difficult to model such behavior unless a test is

sufficiently long. Another issue not considered in this study concerns the potential for bias

in the estimates of latent traits when failing to account for a true mixture. It is not difficult

to envision scenarios whereby not only will precision be misestimated, but the trait estimates

themselves become biased when a mixture is present but is not accounted for. I leave such

investigation to future study.

In conclusion, I suggest that regardless of the methodology chosen in modeling response

style, more attention should be devoted not just to focus on point estimates of content and

response style traits returned but also the precision of those estimates. Such attention can

make apparent where response styles can and cannot be successfully measured and will also

make more apparent how different approaches to measuring response style may differ.
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4 Evaluating Psychometric Differences Between Fast Ver-

sus Slow Responses on Rating Scale Items 3

4.1 Introduction

Recent advances in technology have fostered the use of computer-based assessments in ed-

ucation and psychology. Unlike traditional paper-and-pencil tests, computer-based assess-

ments enable the collection of process data in addition to item scores, potentially providing

construct-relevant information about how individuals interact with items. Examples of pro-

cess data include log data such as mouse clicks, timestamps, keystrokes, and action sequences

(e.g., navigation between pages) as well as other types of information such as eye movement

and brain imaging data. Because process data is naturally collected during assessments while

not interfering with response process (respondents are nonreactive to the recording of pro-

cess data), it provides opportunities for researchers to understand the underlying cognitive,

behavioral, and psychological response process contributing to the final item responses.

The amount of time a respondent spends to solve or respond to an item is one of the most

common forms of process data. Response time has been extensively studied especially in re-

lation to cognitive measures, often with a goal to understand cognitive processes underlying

response behavior (for an overview see De Boeck and Jeon, 2019). However, there has not

been as much research examining the use of response times with noncognitive assessments

(Henninger and Plieninger, 2021; Ranger, 2013). Oftentimes noncognitive assessments mea-
3This chapter is an adapted version of Kim and Bolt (2022) presented at the annual meeting of the National

Council on Measurement in Education (NCME).
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sure traits related to personality, behaviors, and attitudes by asking respondents to self-report

to items using Likert-type rating scales. One concerning feature of this format is that the scales

may be interpreted and used differently across respondents. This makes the item responses

on rating scales often affected by response styles which refer to tendencies to over- or under-

select specific response categories (Paulhus, 1991). Two of the most frequently observed

response styles are extreme response style (ERS; the tendency to prefer extreme categories)

and midpoint response style (MRS; the tendency to prefer a midpoint category).

Previous studies of rating scalemeasures imply that response times depend on the content

trait. Ranger (2013) and Ranger and Ortner (2011) suggest that response times are generally

shorter if the item response is more probable considering the content trait and psychometric

characteristics of the item. For instance, on a rating scale from extremely disagree to extremely

agree, a respondent with a high content trait level will be expected to select a category reflect-

ing a high level of the trait (e.g., extremely agree) faster than a category that is unlikely (e.g.,

extremely disagree). This is largely in line with the findings in other studies demonstrating

that fast responses are likely to occur when respondents have a strong self-schema relevant

to the item content (Markus, 1977), which facilitates automated response processing (Akrami

et al., 2007; Fazio et al., 1986; Holden et al., 1991). If a respondent has an accessible and

strong trait relevant to item content, clear self-knowledge about the trait can lead to a high

confidence and certainty about the response and, thus, the response can be given more easily

and quickly (Arndt et al., 2018; Germeroth et al., 2015; Grant et al., 1994; Hanley, 1965).

Henninger and Plieninger (2021), on the other hand, have recently illustrated that response

times also depend on response styles. Their findings demonstrate that responses are faster
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when a respondent provides a response style-driven response. For example, respondents with

a high ERS level generally respond faster when selecting extreme response categories and are

slower for their nonextreme responses.

In this chapter, I explore the simultaneous relevance of the content trait and response

styles on the association of item responses and response times in rating scales. Given that

a primary purpose in modeling response times in relation to the content trait may be to un-

derstand the potential usefulness of response times toward improved trait estimation, it is

important to understand how, if at all, response styles may interfere with such applications. I

specifically look at how item response processes (attending to both content trait and response

styles) differ across response times by examining psychometric differences across fast versus

slow responses. Using several noncognitive assessment datasets, it is empirically illustrated

whether and how fast versus slow responses may involve different item-person interactions.

I specifically use residual item response times (after accounting for item and person effects)

to classify each item-by-person response into a relatively fast or slow response class and in-

spect if there is any systematic difference in item properties across the two classes. The use of

residual response times can provide insights into understanding the response behavior/process

heterogeneity that may be present within respondents across response times.

The idea of this study parallels the approaches adopted in recent studies on cognitive

assessments that have modeled local dependencies between item responses (i.e., response ac-

curacy) and response times by allowing a heterogeneity in model parameters across response

times (Bolsinova et al., 2017; DiTrapani et al., 2016; Molenaar & De Boeck, 2018; Partchev

& De Boeck, 2012). These studies consistently found systematically varying item charac-
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teristics across slower and faster responses which indirectly speak to the different cognitive

processes involved across response times. In a similar way, I intend to understand how re-

sponse times may imply different things in rating scale assessments. It is expected that such

an investigation can help to reveal the potential of response times in rating scale measurement

for informing about respondents’ response processes and ultimately improving the estimation

of the content traits.

The remainder of this chapter is organized as follows. First, I describe an item response

theory (IRT) model, specifically a multidimensional nominal response model (MNRM), that

can attend to both content trait and response styles in rating scale assessments. I then demon-

strate the way in which each item-by-person response is classified into a fast or slow response

class and how the model is fitted to estimate separate item parameters for different response

classes. Followed by the descriptions of data and how it was analyzed, I evaluate whether

a separate estimation of item parameters can improve the model fit. I next provide an illus-

tration of systematic differences in item parameter estimates across fast and slow responses,

particularly focusing on item discrimination estimates on the content trait and response styles.

I further demonstrate how the relative differences in discrimination estimates between fast

versus slow responses vary across the content trait and response styles. Lastly, the results of

this study are discussed providing insights into understanding response processes for slower

and faster responses.
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4.2 Multidimensional Nominal Response Model (MNRM) for Response

Styles

In noncognitive self-report rating scale assessments, item responses are often reflective of

both the intended-to-be-measured content trait and unintended-to-be-measured response styles

such as extreme response style (ERS) and midpoint response style (MRS). One common and

flexible item response theory (IRT) approach that can attend to both the content trait and re-

sponse styles is a multidimensional nominal response model (MNRM; Bolt & Johnson, 2009;

Falk & Cai, 2016; Falk & Ju, 2020; Thissen & Cai, 2016). The MNRM is a multidimensional

extension of Bock (1972)’s nominal response model for polytomous items, introducing addi-

tional factor(s) to account for response style(s). The general form of MNRM (Thissen & Cai,

2016) can be specified as :

P (Yji = k|θ1, θ2, ..., θD) =
exp(ai1sk1θj1 + ai2sk2θj2 + ...+ aiDskDθjD + cik)∑K

m=1 exp(ai1sm1θj1 + ai2sm2θj2 + ...+ aiDsmDθjD + cim)

(4.1)

where P (Yji = k) is the probability that respondent j(= 1, 2, ..., J) selects category k(=

1, 2, ..., K) for item i(= 1, 2, ..., I). In this model, θjd represents respondent j’s latent trait d(=

1, 2, ..., D); aid is item i’s discrimination parameter for latent trait θjd; and cik is a category-

specific intercept parameter for category k of item i. The latent traits of the model are defined

through scoring function parameter skd for each category k and latent trait θjd. The content

trait and response styles can thus be defined in themodel by assigning specific values to skd, as

will be described shortly. In this study, for identification purposes, the first category intercept
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parameter for each item is fixed to 0 (i.e., ci1 = 0) and the latent factors are assumed to follow

a multivariate normal distribution with the mean and variance of each factor set to 0 and 1,

respectively.

The MNRM is a compensatory multidimensional IRT (MIRT) model that can assume

item responses are influenced by both content trait and response styles in an additive way. As

noted, each latent trait achieves its interpretation through its repective scoring function sd =

[s1d, s2d, ..., sKd]which represents the relationship between item categories and the latent trait.

For instance, for an item measured on a 4-point Likert scale (K = 4), where we can expect

both content trait and extreme response styles (ERS) to affect the item responses (D = 2),

the two distinct dimensions can be defined through the functions s1 = [0, 1, 2, 3] and s2 =

[1, 0, 0, 1], respectively. Note that the first scoring function implies high scores reflect high

levels of the latent trait, while the second scoring function implies that extreme scores reflect

higher levels of the latent trait. For item responses on rating scales with a middle category

(e.g., 5-point rating scale items), midpoint response styles (MRS) can also be considered

and defined by specifying a scoring function such as s = [0, 0, 1, 0, 0]. The specification

of scoring function sd and corresponding latent traits is often largely based on substantive

theory; in this case, I rely on the well-documented prevalence of ERS and MRS in rating

scale instruments. Note that defining scoring functions distinctively across dimensions (i.e.,

less similar/redundant) can help disentangle content trait and response styles dimensions and

lessen the difficulty in the estimation and interpretation of the latent dimensions (Falk & Cai,

2016; Falk & Ju, 2020). When these scoring functions are specified, we can also estimate

item discrimination parameter aid for each latent trait and item to quantify the overall effect
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of corresponding latent trait θd on item responses.

4.3 Distinguishing Fast Versus Slow Responses

To separately estimate item parameters for slow and fast responses, I first classify each item re-

sponse into a fast or slow response class. Such a dichotomization of response times is based

on the hypothesis that respondents would show different response behaviors depending on

whether they responded fast or slow, adopting different response processing modes (e.g., au-

tomatic/spontaneous versus deliberate/controlled). To define item responses into fast or slow,

I use residual response time in which item and person effects are removed. Through the use

of residual response times, we can account for the effects of items and persons on response

times and allow each respondent and item to have relatively fast and slow responses irrespec-

tive of the respondents’ baseline response speed (e.g., reading speed, cognitive processing

speed) and item attributes (e.g., item length, item complexity). It thus enables us to examine

what response times within individuals imply, which can potentially lend insight into how

individuals behave differently across items dependent on response times.

To this end, I consider an intercept-only cross-classified multilevel model treating each

item response time as a value nested within items and respondents (having multiple member-

ships) and partial out item and respondent random effects. Specifically, the cross-classified
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model characterizes response times (RT) as

log(RTji) = β0 + ui + uj + eji (4.2)

ui ∼ N(0, σ2
u1
)

uj ∼ N(0, σ2
u2
)

eji ∼ N(0, σ2
e)

where β0 is the model intercept, ui and uj each represents item (i) and respondent (j) random

effects, and er denotes the residual response time for respondent j and item i. The response

times are log-transformed to resolve the skewness of the response time data. I use the lme4

package (Bates et al., 2015) in R (R Core Team, 2021) to estimate the model.

Using residual response time eji for each item response, I define each item-by-respondent

response as fast or slow. It is classified as fast if eji is below 0 and slow if eji is above 0. Thus,

as can be seen in Figure 4.1, responses are defined as fast (blue cross) if the response time is

shorter than the expected response time based on the item intensity and person speed (filled

circle), and slow (red cross) if the response time is longer than expected. The advantage of

this approach is that it allows all respondents and items to provide data under fast and slow

conditions, thus making it possible to link the separate calibrations of fast and slow responses.

Once the distinction of fast and slow item responses has been defined, the dataset can

be represented as a mix of fast and slow response classes. To understand psychometric differ-

ences related to response times, item parameters for the two classes are separately estimated
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Figure 4.1
An Example Illustration of Fitted (Filled Circles) and Observed (Blue or Red Cross
Symbols) Log Item Response Time (RT) Within an Individual Across Items

by fitting the MNRM to data treating fast and slow responses as though they come from dif-

ferent items. Effectively, I merge each set of fast and slow responses as shown in Figure 4.2

and fit the model to the combined data. As can be observed from the figure, the resulting data

has a doubled test length with exactly half of the item responses missing for each respondent,

as each one of respondent’s item responses is either in the fast or slow response type. Im-

portantly, each respondent’s latent traits are assumed invariant across response types so as to

link the item parameter estimates across fast and slow response classes relying on a common

respondent design.
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Figure 4.2
An Example Illustration of Data Structure for a Combined Dataset of Fast and Slow
Responses

Note. I = Number of items; J = Number of respondents. NA denotes missing values. The
first I items (colored in red) are for slow responses and the latter I items (colored in blue) are
for fast responses.

4.4 Methods

4.4.1 Data

I used three empirical datasets containing both item responses and response times to examine

psychometric differences across slow and fast responses. Each dataset was accessed from

www.openpsychometrics.org. The datasets result from three different online personality tests:

the Fisher Temperament Inventory (FTI), the Big-Five Personality Test, and the Multidimen-

sional Introversion-Extraversion Scales (MIES). Specific details of each test are described

below.

Fisher Temperament Inventory (FTI) The Fisher Temperament Inventory (FTI) consists

of 56 items measuring four broad temperament scales: Curious/Energetic, Cautious/Social
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Norm Compliant, Analytical/Tough-minded, and Prosocial/Emphathetic. Sixteen items are

used to measure each scale. The items are measured on a 4-point Likert rating scale (1 =

Strongly Disagree, 2= Disagree, 3 = Agree, 4 = Strongly Agree) and were presented to each

respondent in a random order. The accessed data was collected in 2019 containing item re-

sponse and response time information (in milliseconds) from 4,967 respondents who had re-

sponded to an optional survey at the end of the assessment.

Big-Five Personality Test The Big-Five Personality Test measures five personality factors

(Extraversion, Agreeableness, Conscientiousness, Emotional Stability, and Openness) based

on the Big-Five FactorMarkers (Goldberg, 1992) from the International Personality Item Pool

(IPIP). The test has 50 items in total (10 items for each dimension) and includes a number

of reverse-worded items. Item responses are 5-point Likert ratings (1=Disagree, 3=Neutral,

5=Agree) and are presented in the same order to all respondents. The accessed data was

collected from 2016 to 2018 and contains item responses and response times from 1,015,341

respondents who had agreed to provide their data for research use.

Multidimensional Introversion-Extraversion Scales (MIES) The Multidimensional In-

troversion -Extraversion Scales (MIES) test consists of 91 items measuring traits expected

to show substantial differences between introverts and extraverts. The test includes reverse-

worded items. Item responses are 5-point Likert ratings (1=Disagree, 2=Slightly disagree,

3=Neutral, 4=Slightly agree, 5=Agree) and are administered in a random order for each re-

spondent. The accessed data contains responses from 7,188 respondents who had consented
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to provide their responses for research use.

Data preparation For each dataset, I initially carried out a two-step procedure for data

cleaning. First, I removed the cases from the same IP address (indicating a duplicate submis-

sion or submissions from a shared network) for FTI and Big-Five Personality Test datasets,

which had such information available. Second, item responses with extremely long or short

response times were eliminated because such responses likely indicate invalid responses that

may distort the results (Henninger & Plieninger, 2021; Mayerl, 2013). I treated item responses

with log-response times that deviated more than ±2.5 standard deviation from the mean log-

response times as outliers and removed them. After cleaning the data, I reverse-coded items

that were reverse worded in the Big-Five Personality Test and MIES. To reduce the computa-

tional burden, I randomly sampled 2,000 respondents from each dataset for further analyses.

4.4.2 Analyses

The three datasets were each analyzed based on the approach described in Section 4.3 which

I hereinafter refer to as response time class analysis. Note that, as already explained, the

classes here are classes of item-by-person responses (not classes of items or persons) and are

manifest classes (not latent classes). For model evaluation purposes, I also fitted the original

MNRM as a baseline model, estimating a single set of item parameters for an item using

all item responses. By comparing the two approaches, it can be evaluated whether allowing

differences in item-person interaction across fast versus slow responses improves model fit.

As the three datasets had different numbers of content traits and response categories,
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the specifications of the MNRM fitted to each data were slightly different. For FTI data,

the model incorporated four different content traits (corresponding to each of the four sub-

scales) and ERS because four response categories are used in the test. The scoring func-

tions were thus specified as s1 = s2 = s3 = s4 = [0, 1, 2, 3] and s5 = [1, 0, 0, 1] for the con-

tent traits and ERS dimensions, respectively, and discrimination parameters for the content

traits were constrained in a way that allows each item to only load on the content trait mea-

sured by the item. As to the Big-Five Personality Test and MIES data which involve five

response categories, the content, ERS, and MRS traits were simultaneously considered. For

the Big-Five Personality Test data, five different content traits corresponding to the five per-

sonality factors were assumed, while a single content trait was assumed for the MIES data.

As a result, the scoring functions for the content, ERS, and MRS traits were respectively

s1 = s2 = s3 = s4 = s5 = [0, 1, 2, 3, 4], s6 = [1, 0, 0, 0, 1], and s7 = [0, 0, 1, 0, 0] for the Big-

Five Personality Test data and s1 = [0, 1, 2, 3, 4], s2 = [1, 0, 0, 0, 1], and s3 = [0, 0, 1, 0, 0] for

the MIES data.

For model estimation, the Metropolis-Hastings Robbins-Monro (MH-RM) algorithm

(Cai, 2010a, 2010b; Monroe & Cai, 2014; Yang & Cai, 2014), which can handle high dimen-

sional estimation with greater efficiency, was used. I used mirt package (Chalmers, 2012) in

R (R Core Team, 2021) for this purpose. As previously mentioned, the latent factors were

assumed to follow a multivariate normal distribution with the mean and variance for each di-

mension fixed to 0 and 1, respectively. The correlations among the dimensions were allowed

to be estimated. The intercept parameter for the first category was set to 0 across all items for

model identification.
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I first compared the model fit of under the response time class analysis to that of the base-

line model which does not separately estimate item parameters across fast and slow responses.

Two model fit indices were used for the comparisons: the Akaike information criterion (AIC)

and Bayesian information criterion (BIC). Confirming that a separate estimation of item pa-

rameters can improve the model fit, the estimated item parameters were compared across re-

sponse classes for each dataset to consider any systematic differences in the estimates. Then,

I further investigated how such differences varied across latent traits.

4.5 Results

The findings are presented in three subsections. I show the model fit comparison results,

present systematic differences found in item parameter estimates across fast and slow response

class, and further illustrate how these differences vary across the content and response styles

traits. In this results section, I denote the content trait factor as θ, extreme response style trait

factor as “ERS”, and midpoint response style trait factor as “MRS” for convenience.

4.5.1 Model Fit

The estimated correlations among the content (θ) and response style traits (ERS and MRS)

were first examined. For the FTI data, ρθ,ERS ranged from −.159 to .132 depending on the

subscale; for BIG5 data, ρθ,ERS ranged from−.234 to .024, ρθ,MRS ranged from−.073 to .112,

and ρERS,MRS = .052; for MIES data, ρθ,ERS = .016, ρθ,MRS = −.053, and ρERS,MRS =

0.184. Such low correlation estimates indicate that the response style dimensions appeared to

be largely distinct from each other and the content traits.
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Table 4.1 presents the model fit of the response time class analysis in comparison to the

baseline model. As can be seen from the table, the response time class analysis produced

lower AIC and BIC values compared to the baseline model for all three datasets, indicating a

better model fit. Such results suggest that fast and slow responses are associated with different

psychometric characteristics, a result seen previously with cognitive test instruments.

Table 4.1
Model Fit Comparisons Between the Response Time (RT) Class Analysis and the Baseline
Model, for Fisher Temperament Inventory (FTI), Big-five Personality Test (BIG5), and
Multidimensional Introversion-Extroversion Scales (MIES) Data

Data Model AIC BIC

FTI Baseline 231294.9 232919.2
RT class analysis 226284.2 229476.6

BIG5 Baseline 246980.5 249058.4
RT class analysis 244995.0 249033.3

MIES Baseline 480088.0 483672.6
RT class analysis 467343.1 474495.4

Note. AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion.

4.5.2 Differences in Item Parameter Estimates Across Fast and Slow Responses

Inspecting the differences in item parameter estimates across fast and slow response classes,

a systematic difference was observed in item discrimination estimates on both the content

trait and response styles. Figure 4.3 presents scatterplots of discrimination estimates derived

from fast versus slow responses for each latent trait (i.e., content traits and response styles)

for each dataset. Note that item discrimination estimates across fast and slow responses can

be directly compared because the same respondents are present across the response classes,

and respondent trait parameters are assumed to be invariant. We can see from the plots in
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Figure 4.3 that the points consistently lie above the diagonal, indicating that discrimination

estimates on content trait as well as response styles (ERS and MRS) are consistently higher

for fast responses compared to slow responses.

Figure 4.3
Comparisons of the Estimated Item Discrimination Parameters on Content Trait (θ) and
Response Styles (ERS and MRS) Across Fast and Slow Responses, for Fisher Temperament
Inventory (FTI), Big-five Personality Test (BIG5) Personality Test, and Multidimensional
Introversion-Extraversion Scales (MIES) Data
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Such a systematic difference in discrimination estimates across slow and fast responses

implies that faster responses are simultaneously more reflective of both the content trait and

response styles than slower responses. To examine this in more detail, I looked at response

time distributions of responses at individual level. Figure 4.4 provides an illustration of some

example distributions of residual response times for each response category within individu-

als with different levels of content trait and response styles. As expected, it is observed that

responses matching to the levels of the content trait and response styles are generally given

faster than other responses. For example, respondents with high or low content trait level

tended to give faster responses on extreme response categories in the direction corresponding

to their trait level (as can be seen in plots a, d, e, and f). As to the response styles, respondents

with high ERS levels generally selected extreme categories faster than nonextreme categories

(see plots b, c, e, and f) and those with high and lowMRS levels tended to select the midpoint

category relatively faster (c and f) and slower (b and d), respectively. One important obser-

vation is that the plots exhibit simultaneous effects of the content trait and response styles

on response times. Respondents shown in plots (b) and (c) illustrate simultaneous effects of

the two response styles (ERS and MRS) on response times, while plots (d), (e), and (f) show

simultaneous effects of the content trait and response styles. All in all, the plots in Figure 4.4

consistently demonstrate that faster responses (under the dotted horizontal line at 0) do better

reflect the respondents’ content trait and response styles levels, as implied from the higher

item discrimination estimates for faster responses.

In addition to the discrimination parameters, I was also interested in looking at differ-

ences in category intercept estimates across fast versus slow responses. For this purpose, I
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Figure 4.4
Example Distributions of Residual Log Response Time (RT) for Each Response Category
Selection Within Individuals Selected from Multidimensional Introversion-Extraversion
Scales (MIES) Data

Note. θ = Content Trait; ERS = Extreme Response Style; MRS = Midpoint Response Style.

compared the mean and variance of item scores for slow and fast responses, which are easier

to interpret while providing similar information to that of the category intercepts. As shown

in the scatterplots of item mean scores for fast versus slow responses in Figure 4.5 (plots a,

b, and c), fast responses tended to show lower mean scores when items were more difficult

(i.e., items more difficult to agree with), but higher mean scores as items became easier. As

to the variance of item responses, it appeared that the variance of fast responses relative to

that of slow responses was generally larger for items with overall mean scores (across slow

and fast responses) near the center of the scale (i.e., 2.5 for FTI and 3 for BIG5 and MIES

data), and it reduced as the mean score either increased or decreased (see plots d, e, and f

in Figure 4.5). These results consistently suggest that faster responses likely involve more
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extreme responses than slower responses, a result consistent with previous studies illustrating

the association between fast response times and extreme ratings (Casey & Tryon, 2001; Grant

et al., 1994; Kuiper, 1981).

Figure 4.5
Comparisons of Item Mean Scores Across Fast and Slow Responses For Each Dataset
(upper) and Ratio of Item Score Variance for Fast and Slow Responses Plotted Against Item
Mean Scores For Each Dataset (lower)

4.5.3 Relative Differences in Discriminations Across Fast and Slow Responses

I further compared relative differences in discrimination estimates for fast versus slow re-

sponses across the content and response style traits. Specifically, the log of the ratio of dis-

crimination estimates from fast to slow responses (= log(afast/aslow)) on each latent trait

was obtained and compared to examine which latent factor shows a greater difference in the

influence on item responses across fast and slow responses. Figure 4.6 demonstrates how
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the relative differences in item discriminations between fast and slow responses differ across

the content trait (θ), ERS, and MRS for each dataset. As discussed above, for most items,

log(afast/aslow) values are above 1 for all latent traits in all three datasets indicating that slow

responses are less affected by both the content trait and response styles than fast responses.

The values, however, generally seem to be larger for response styles traits (i.e., ERS andMRS)

compared to the content trait (θ). This indicates that the relative amount of information that

fast responses contain compared to slow responses is greater for response styles than content

trait implying that respondents tend to behave differently across fast and slow responses more

in relation to response styles than to the content trait.

Moreover, between the two response styles, the MRS tended to have a larger difference

in fast and slow discrimination estimates compared to the ERS. In other words, the relative

amount of information fast responses possess compared to slow responses appeared to be gen-

erally greater for MRS. This is possibly because fast midpoint responses are mainly reflective

of MRS whereas fast extreme responses may often contain mixed information about the con-

tent trait and ERS. Specifically, responses on a midpoint category usually take longer as they

are cognitively more demanding and are associated with unclear, ambiguous items (Kulas &

Stachowski, 2009). It is highly probable that fast responses on a midpoint category are due

to a high level of MRS (Henninger & Plieninger, 2021) providing less contaminated infor-

mation on MRS. On the other hand, fast responses on extreme categories can be given either

due to extreme levels of content trait or/and a high level of ERS, which makes it difficult to

separate/distinguish the mixed effects of the two traits on fast extreme responses.
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Figure 4.6
Comparisons of the Relative Discrimination Estimates for Fast Versus Slow Responses in
Relation to Content Trait (θ) and Response Styles (ERS and MRS), for Fisher Temperament
Inventory (FTI), BIG5 Personality Scale, and Multidimensional Introversion-Extraversion
Scales (MIES) Data.
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4.6 Conclusion and Discussion

Due to the increased use of computer-based assessments, response times are now a common

and accessible form of process data that can provide useful information for understanding

underlying response processes or behaviors. As there has not yet been much research in-

vestigating response times with rating scale measures, this chapter explored the association

between item responses and response times in noncognitive assessments by attending to two

types of traits that have been found relevant in previous studies. Ranger (2013) and Ranger

and Ortner (2011) showed how item response times are influenced by the content trait level,

while Henninger and Plieninger (2021) demonstrated the impact of response styles on item

response times.

This study emphasizes the simultaneous effects of the content trait and response styles

on response times in rating scale measurement through real data applications. Following par-

allel work with cognitive assessments, I examined psychometric differences between fast and

slow responses and showed how items display different psychometric properties contingent

on whether the item response is faster or slower than expected. In particular, systematically

higher item discriminations are seen for faster responses on both the content trait and response

styles, indicating that faster item responses are generally more influenced by the content trait

as well as response styles. Further, response styles appear to have a stronger influence on re-

sponse times than the content traits, as evidenced by the greater difference in discriminations

between fast and slow responses for the response style traits. Such findings imply that respon-

dents tend to behave differently across items depending on whether they responded slower or
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faster, especially in relation to response styles.

These findings are consistent with previous studies that have examined response times

with rating scale measures. According to Callegaro et al. (2009) andHenninger and Plieninger

(2021), fast responses on rating scale items may be due to a respondent’s (1) high confidence

in the item response and/or (2) shallower cognitive process. Many studies have reported that

respondents tend to give fast and automated responses when they have a strong self-schema

related to the item (Akrami et al., 2007; Fazio et al., 1986; Grant et al., 1994; Hanley, 1965;

Holden et al., 1991). In contrast, slow responses are given when respondents are uncertain

about the responses or provide “controlled” responses (e.g., editing or fake responses; Holden,

1995; Holden & Hibbs, 1995; Holden et al., 1992; Holtgraves, 2004; Monaro et al., 2021;

Roma et al., 2018). Fast responses may thus be associated with higher confidence/certainty,

extreme item responses, and higher consistency/stability (Arndt et al., 2018; Casey & Tryon,

2001; Germeroth et al., 2015; Grant et al., 1994; Kuiper, 1981). At the same time, fast and

spontaneous responses are also known to occur when respondents go through a shallow and

superficial cognitive process (Callegaro et al., 2009) which may arise as a response styles-

driven response process. Along these lines, Henninger and Plieninger (2021) illustrated that

response times are shorter if a respondent makes a response-style-driven category selection.

The results of this study are consistent with these prior studies in showing that fast responses

are likely to be highly reflective of both the content trait as well as response styles.

While prior studies either focused on the content trait or response styles in exploring

response times with rating scale measures, this study attended to the simultaneous influence

of both traits. One practical implication is that response styles will likely need to be attended
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to if onewants to use response times to improve the estimation of the content trait. In cognitive

tests, it might be easy to use response times for improving the estimation of ability traits. In

noncognitive assessments, however, this study’s results indicate that the informative value

of response times for the estimation of construct measures might be relatively limited given

the interference from response styles, despite the previous findings illustrating that response

times can inform about the construct measures (Ranger, 2013; Ranger & Ortner, 2011).

The results highlight another place in which the effects of the content trait and response

styles in item response processes may be confounded (Adams et al., 2019). Item response

tree (IRTree) models for response styles have received much attention for modeling response

styles in rating scale items. The models typically assume that the effects of the content trait

and response styles can be separately modeled by attaching each trait to a different subpro-

cesses of item responses. From another perspective, however, the content trait and response

styles may be inextricably confounded, possibly due to the presence of a mixture of respon-

dent types (Kim & Bolt, 2021). In this study, the same form of confounding seems to be

present in response times. Specifically, it is difficult to distinguish whether fast extreme re-

sponses are given due to the extreme level of the content trait or extreme response styles. As

a consequence, it does not seem that attending to response times necessarily provides panacea

to the confounding of these traits in the selection of the item response.

Overall, this study lends insight into understanding response processes across response

times with regard to the content trait and response styles. Nevertheless, there remain addi-

tional directions for research. I primarily focused on examining psychometric differences

between fast and slow responses by comparing item properties. Given that the ultimate goal
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of modeling response time is to improve the estimation of content traits, future work may

further examine and evaluate whether the use of response times can actually improve the trait

estimation. Such an investigation can be particularly useful and interesting to look at with a

shorter test where the estimation of person traits solely based on item responses can be rel-

atively less accurate. In addition, while this study mainly focused on two types of response

styles (i.e., ERS and MRS), researchers may also consider other types of response styles such

as acquiescent response style (ARS; the tendency to agree irrespective of item content) or so-

cially desirable responding (the tendency to respond in a way to look good). Moreover, though

I have eliminated outlier item responses with extremely fast or slow response times from the

analyses, such outlier response times may be useful in informing about careless responding

behaviors which can be interesting to look at.

In this study, item responses were classified into a fast or slow response class based on

residual item response times in which the effects of items and persons on response times were

removed. The use of residual response times made it available to examine whether and how

respondents behave differently across items depending on whether they responded relatively

faster or slower than is expected, which further helped to understand how response times are

associated with item responses through the content trait and response styles within individ-

uals. However, future studies may use response times instead of the residuals and explore

the effects of item features (e.g., item position, item length/complexity) on response times to

facilitate a better understanding of item-person interactions. Moreover, as decisions for distin-

guishing fast and slow responses are arbitrary, future studies may consider applying different

split methods or criteria to classify response times which may yield different results and im-
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plications. For instance, researchers may use median values of response times to distinguish

fast and slow responses, or even quartiles to split response times into four classes instead of

two as in this study. A stochastic way of finding a cut-off value that best explains the data can

also be considered as was done in Molenaar and De Boeck (2018). Furthermore, rather than

dichotomizing response times that is likely to reduce the amount of information, future work

may use response times as a continuous variable and examine the psychometric heterogeneity

across response times by explicitly modeling the effects of response times on item parameters

(Bolsinova et al., 2017).

We should also be cautious in generalizing the results of this study as different findings

can be observed with different populations or tests. For instance, the three datasets used in

this study are collected from a freely accessible website, which usually do not require a high

motivation or cognitive efforts of respondents. It is hence plausible that using data from

other types of tests collected in different ways (particularly in a way that can draw highly

motivated respondents) can lead to different findings. Lastly, it would be interesting and

useful to use other types of process data such as eye tracking or brain imaging data, which are

becoming more available, to validate the findings from response times or to further improve

the understanding of item response process in rating scale measurement.
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5 Conclusions and Future Directions

5.1 Conclusions

Throughout this dissertation, the three studies coherently illustrated that understanding and

incorporating item response process into psychometric models can contribute to improving

the measurement of latent constructs and obtaining richer information about respondents and

items/tests. In Chapter 2, the proposed noncompensatory MIRT model appeared to provide

a more intuitive and practical approach for modeling passage-based test item responses with

less model complexity compared to the bifactor model. Themodel successfully captured local

item dependencies present in the passage-based structure while providing a better represen-

tation of the underlying cognitive process/components for solving passage-based items. The

parameterization of the model also seemed to provide a more intuitive and easier interpreta-

tion of item properties, potentially improving our understanding of how items function with

respect to the underlying components/processes.

In Chapter 3, I demonstrated that the mixture IRTree model can produce more valid and

accurate measurement results in rating scale assessments, by attending to the heterogeneity of

item response process across respondents as well as the uncertainty of item response process

within respondents. The study specifically showed the capacity of the mixture model to ac-

count for the response process uncertainty of an individual by reflecting it to the precision of

latent trait estimates, and highlighted the potential biases when ignoring such an uncertainty;

namely, we can overstate the precision with which latent constructs are measured.

Chapter 4 suggested that using response time information can lend insight into under-
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standing item response process heterogeneity in rating scale measurement. The results illus-

trated that both the content trait and response styles had differential effects on item responses

dependent on item response times; specifically, faster item responses were more influenced

by the content and response style traits compared to slower responses. Such differences im-

ply a response process heterogeneity within individuals and that the content trait and response

styles may have simultaneous effects in item response process. It is emphasized that the ef-

fects of the content and response style traits may be confounded, which may to some extent

limit the use of response time information in rating scale measurement.

In conclusion, the measurement models presented in the three chapters contribute to im-

proving our understanding of underlying item response processes and behaviors in cognitive

and noncognitive assessments. Also, these studies illustrate the potentials and benefits of in-

corporating item response process into psychometric modeling, providing a basis for future

research.

5.2 Future research directions

It is undeniable that psychometrics is rapidly evolving, bringing many new opportunities and

challenges to researchers. For instance, due to the increased use of computer-based testing,

innovative assessments and novel item formats have been developed and new forms of data

(i.e., process data) such as response times and action sequences have become available. There

is also an increasing interest in integrating learning and assessment, and measurement goals

are expanding from assessment of learning to assessment for learning. Such advancement

and expansion of the area increases the need for understanding and modeling item response
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process, through which we can enhance the validation of novel item and test formats, obtain

more informative and diagnostic information from assessments, improve the measurement of

latent constructs, and maximize the use of data available for understanding respondents and

items.

In this sense, I suggest two broad directions, which can interplay with each other, for

future research on item response process: 1) to explore the use of process data in cognitive

and noncognitive assessments to enhance the understanding of response processes, and 2) to

investigate item response processes in relation to innovative assessments and novel item types.

As shown in Chapter 4 of this dissertation, the use of process data, such as response times, can

improve our understanding of underlying cognitive or psychological response processes that

we cannot explicitly observe from final item responses (De Boeck & Jeon, 2019). I believe

making use of process data can better the measurement of constructs and lend deeper insight

into student development and learning. Future studies may thus investigate how response

times and other types of process data (e.g., page navigations and mouse clicks) can help to

detect and understand the response process heterogeneity in cognitive and noncognitive as-

sessments. Specifically, we may explore the usefulness of various forms of process data and

develop psychometric models incorporating process data information to better estimate and

distinguish traits intended to be measured and not intended to be measured (e.g., response

styles). Future work may also consider using machine learning techniques to classify or pre-

dict response behaviors of individuals, broadening the scope of research on response process

heterogeneity.

Moreover, we may further investigate response behaviors and cognitive strategies for
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solving or responding to test items, especially in relation to new formats of assessments and

items. For instance, future work may include a further exploration of the noncompensatory

approach illustrated in Chapter 2 in relation to innovative assessments. As demonstrated in

the chapter, the noncompensatory model may provide a useful framework to understanding

and modeling problem-solving processes in new formats of assessments, such as game-based

or simulation-based assessments, because such tests often measure integrated competencies

requiring multiple components to process. Thus, it would be interesting to look at how the

noncompensatorymodel can be adapted to novel types of assessmentsmeasuring complex and

integrated abilities (e.g., collaborative problem-solving skills, creating thinking). Further, it

may be even more intriguing to incorporate process data (including eye movement and brain

imaging data which can be a potent source of information for understanding item response

process) into the model to potentially provide an improved understanding of individuals’ item

solving/response process in assessments.
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Appendices

Appendix A Supplementary Figures and Tables for Noncompensatory
MIRT for Passage-Based Tests Study

Figure A1
Plots of Bias in Difficulty Estimates for Passage-related and Passage-independent
Components Under the Passage-Based Noncompensatory Model (PB-NM) Against the
Difference in the Two Difficulty Parameters, for Each Generating Condition.

Note. N = The number of respondents;Ni/p = The number of items per passage; bp = Passage-
related difficulty; bg = Passage-independent difficulty.
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Figure A2
Plots Showing the Relationship between the Proportion-correct (p-value) and Item
Component Difficulty Estimates Under the Passage-Based Noncompensatory Model
(PB-NM) with Item Type Labels, for Reading Comprehension Test Data

Note. LC = Literal comprehension; MI = Main idea; INF = Inference; VOC = Vocabulary in
context; RS = Rhetorical strategy; DEV = Development; TON = Tone; LR = Logical reason-
ing.

Table A1
A Model Fit Comparison across Rasch, Two-parameter Logistic (2PL), and Bifactor Models,
for Reading Comprehension Test Data.

Model AIC BIC HQ

Rasch 96558.40 96773.90 96636.64
2PL 96238.29 96657.62 96390.53

Bifactor 95902.23 96531.23 96130.59

Note. AIC = Akaike Information Criterion ; BIC = Bayesian Information Criterion; HQ =
Hannan-Quinn Criterion.
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Appendix B Examples of Items for Each Item Type in the Reading Com-
prehension Test

• Literal comprehension (LC)
The passage claims that seeing is
A. something our brains do much more effectively than thinking.
B. something at which humans excel other animals.
C. an important prerequisite to thinking.
D. more important than thinking.
E. closely related to our power of memory.

•Main idea (MI)
The main point of this passage is that barbed wire fences
A. hurt the American economy.
B. ruined the land in the American West.
C. made a huge impact on the make-up of the American West.
D. made inventors rich.
E. caused problems between settlers.

• Inference (INF)
The author seems to imply that humans
A. are much like animals.
B. do not spend much time thinking.
C. have the ability to reason.
D. cannot reason well.
E. rely on memory.

• Vocabulary in context (VOC)
The word “analogy” in line 13 most nearly means
A. experiment.
B. function.
C. structure.
D. comparison.
E. cause.

• Rhetorical strategy (RS)
The first paragraph of this selection serves what purpose?
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A. To introduce Edgar Allan Poe’s most famous stories.
B. To offer a definition of “detective.”
C. To explain characteristics of the detective story genre.
D. To get readers interested in reading the stories of Edgar Allan Poe.
E. To use expert opinion to set up the claims in the second paragraph.

• Development (DEV)
This passage is composed primarily of
A. comparisons.
B. examples.
C. descriptions.
D. generalizations.
E. factual claims.

• Tone (TON)
The tone of the passage is
A. respectful.
B. objective.
C. bitter.
D. ironic.
E. sarcastic.

• Logical reasoning (LR)
There is no item that can be exposed to public for this item type. A common form
for this item type is to ask examinees to identify an unstated assumption the author is
making based on a claim that is stated in the passage.



112

Appendix C Recovery of Respondent Parameters in the Simulation:
Bias and Root Mean Squared Error (RMSE) of Respondent
Parameter Estimates

The mixture IRTree model also recovers the person parameters θ and η reasonably well across
classes. For the simulation reported in the study, Figures C1 and C2 show the bias and RMSE
of θ and η estimates, respectively, produced from the mixture and single IRTree models for
the condition where the proportion of each class is simulated as equal (i.e., (P1, P2) = (0.5,
0.5)). As a result, the true data generated contain both ORD and ERS respondents. Looking
first at Figure C1, the results are shown in terms of bias of the θ estimate as well as RMSE,
when each of the three different models (mixture, ERS only, ORD only) is fit. Note that for
respondents in Class 1 (the ERS class), the bias and RMSE of the estimates derived from the
mixture and ERS model are similar whereas the ORD model produces larger errors. This can
naturally be explained by the fact that the ORD model does not account for extreme response
style. For respondents in Class 2 (the ORD class), by contrast, the mixture model produces
similar recovery to that of the ORDmodel while the ERSmodel produces slightly larger errors.
This can be explained by the fact that the ERS model uses information from only one node
of each item to estimate θ, resulting in much less information, whereas the other two models
use all three nodes.

As to the η estimates, I focus on the estimates observed under the mixture and ERS
models only. Figure C1 shows that the overall patterns of bias and RMSE from the mixture
and ERS models appear to be similar while the mixture model produces slightly better results.
As can be seen from the plots, for Class 1, the points are scattered slightly more closely to
zero for the mixture model than for the ERS model. For Class 2, both the mixture and ERS
models show large bias and RMSE of estimates (it is viewed that the true ERS parameters for
respondents in Class 2 are still present even though their responses to items are not influenced
by the ERS). The errors get larger as the deviation of η from zero increases because the η

estimates for these respondents from both models are close to zero, which can be viewed as a
reasonable estimate for η based on the fact that their responses are not affected by ERS. The
points from the mixture model seem to be scattered almost as a straight line (reflecting that
all the estimates are nearly 0) whereas the points from the ERS model are more spread. It can
reasonably argued from such results that the mixture model classifies respondents to their true
class pretty well, and therefore, the person parameters θ and η can be estimated as accurately
as (or perhaps slightly better than) estimated under the correct single IRTree model.
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Figure C1
Bias and RMSE of Content Trait (θ) Estimates Obtained From the Mixture IRTree Model
[(a), (d)], Single ERS IRTree Model [(b), (e)], and Single ORD IRTree Model [(c), (f)], for
(P1, P2) = (0.5, 0.5) Condition

Figure C2
Bias and RMSE of ERS (η) Estimates Obtained From the Mixture IRTree Model [(a), (c)]
and Single ERS IRTree Model [(b), (d)], for (P1, P2) = (0.5, 0.5) Condition
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I note that these results in terms of recovery under model misspecification are very likely
affected by the psychometric characteristics of items used to generate the data. In particular,
the item parameters simulated in this study imply that tests are centered with respect to the
rating scale (i.e. equivalent numbers of “agree” and “disagree” responses). The results will
likely imply greater bias under misspecification when the items are not centered (e.g., a dis-
proportionate number of either “agree” or “disagree” responses), as is common in practice on
self-report survey instruments.
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