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Abstract

In this dissertation, we will investigate two semiparametric regression problems
in spatial and spatio-temporal statistics. We first examine semiparametric spline-based
regression methods for spatial data in general, and their role as an alternative to spec-
ifying a covariance structure for the errors. We discuss the method under a scenario
of spatial confounding, that is, when we expect changes in the regression coefficients
estimates due to multicollinearity between spatial random effects and covariates. For
these situations, including a smoother, such as a spline, changes the ordinary least
squares’ regression coefficients estimates in ways that are difficult to anticipate. An
application to a problem in precision agriculture is described, where soybean growth
is studied in a regression model based on seeding rates and environmental covariates.

The second investigation is motivated by a problem in the field of occupational
hygiene, where health hazards such as noise are monitored with maps for risk assess-
ment. Recent technological advancements allow data to be collected from a combina-
tion of static and roving sensors, but the current occupational hygiene methodology
is lacking in methods to produce dynamic maps that provide a fusion of the data
sources. We propose a spatio-temporal model that incorporates data from the static
sensors, which captures complete temporal information but is sparse in space, with
data from roving sensors, which provide a rich coverage of space but can potentially

be confounded with short fluctuations of the hazard in time.
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Chapter 1

Introduction

1.1 Spatial confounding in semiparametric regression

For spatial linear regression analysis, the traditional approach is to use a para-
metric linear mixed-effects model such that spatial dependence is captured as a spatial
random effect. A common assumption is that the spatial random effect is a Gaussian
process with mean zero and a parametric covariance function. Spline surfaces can be
used as an alternative approach to capture spatial variability, giving rise to a semi-
parametric method that does not require the specification of a parametric covariance
structure (see, e.g., Stroup, 2012).

Recent advances in spatial statistics have brought to light the issue of spatial con-
founding, where including a random spatial effect in a linear regression model changes
the estimated regression coefficients (Hodges and Reich, 2010; Paciorek, 2010; Hughes
and Haran, 2013). The spline term in a semiparametric method also does impact the
estimation of the regression coefficients. In Chapter 2, we will investigate such an im-

pact in spatial linear regression with spline-based spatial effects. Statistical properties



of the regression coefficient estimators are established under the model assumptions
of the traditional spatial linear regression. We also develop a method to choose the
tuning parameter for the smoothing splines that is tailored toward drawing inference
about the regression coefficients. Further, we examine the empirical properties of the
regression coefficient estimators under a scenario of spatial confounding via a simula-
tion study. A data example in precision agriculture research regarding soybean yield

in relation to field conditions and seeding rates is presented for consideration.

1.2 Spatio-temporal data fusion of static and roving sensors

Rapid technological advances have drastically improved the data collection ca-
pacity in occupational exposure assessment. However, advanced statistical methods
for analyzing such data and drawing proper inference remain limited. In Chapter 3
we will (1) provide new spatio-temporal methodology that combines data from both
roving and static sensors for data processing and hazard mapping across space and
over time in an indoor environment, and (2) compare the new methodology with the
current industry practice, demonstrate the distinct advantages of the new method and
the impact it may have on occupational hazard assessment and future policy making in
environmental health as well as occupational health. A novel spatio-temporal model
with continuous index in both space and time is proposed, and a profile likelihood
based model fitting procedure is developed that allows fusion of the two types of data.
To account for potential differences between the static and roving sensors, we extend
the model to have non-homogenous measurement error variances. Our methodology
is applied to a case study conducted in an engine test facility and dynamic hazard

maps are drawn to show features in the data that would have been missed by existing



approaches, but are captured by the new method.

1.3 Main contributions

The main contributions of this thesis are (1) a description in semiparametric
spatial regression of the relationship between spline and the regression coefficient es-
timates, how spatial confounding affects the regression coefficients estimates and how
the spline tuning parameter can be used to mitigate issues related to confounding; and
(2) an application-driven model for the fusion of spatio-temporal data sampled with
different instruments, which allows the creation of dynamic hazard maps incorporating

strengths from both types of instruments.

1.4 Organization of the dissertation

In Chapter 2, we will introduce the spline-based approach to spatial linear re-
gression (Section 2.2), including the statistical properties of the regression coefficient
estimators (Section 2.3). We will also discuss a spatial confounding scenario and its
impact on regression coefficients estimates via simulation studies (Section 2.6) and an
application to model soybean yield in precision agriculture (Section 2.7). The Ap-
pendix 2.A extends results from Section 2.6 to some more general cases of spatial
structures.

In Chapter 3, we develop a model for fusion of static and roving sensor spatio-
temporal data. The context of the application is described in Section 3.1, with the
model outlined in Section 3.2 and the model properties discussed in 3.3. The analysis
of the data is presented in Section 3.4. The Appendix 3.A shows a simulation study

to compare the performance of the proposed model with traditional approaches.
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In Chapter 4 we discuss some considerations on scalability and rank of the data
fusion model in Section 4.1. A discussion of spatial confounding in the context of

generalized linear models and Poisson point processes is also outlined in Section 4.2.



Chapter 2

Spatial confounding in spline-based

semiparametric methods

2.1 Introduction

For linear regression of spatial data, the traditional approach is to use a paramet-
ric linear mixed-effects model such that spatial dependence is captured by a spatial
random effect. Spline surfaces can be used as an alternative approach to capture
spatial effects, giving rise to a semiparametric method that does not require the spec-
ification of a parametric covariance structure for the spatial random effect. The use of
smoothing splines in this semiparametric method, however, impacts the estimation of
the regression coefficients. This is related to spatial confounding, a phenomenon seen
in spatial linear regression where the inclusion of a spatial random effect can affect
the estimates of the regression coefficients. Our purpose in this chapter is to describe
the statistical properties of spatial linear regression with spline-based spatial effects,

and spatial confounding issues that may arise from the use of splines.
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Figure 2.1: Soybean yield obtained in the experiment. The color codes are based on
the quartiles from combined yield from both fields. The field to the left is called H4,
and the field to the right is called Oak Creek. The region map is obtained with the
gegmap R package (Kahle and Wickham, 2013).

A motivating example is drawn from research on precision agriculture (see, e.g.,
McBratney et al., 2005). Field studies were conducted in Wisconsin to evaluate the
relations between soybean yield and various field conditions with the ultimate goal
of improving soybean farming and management practices in the state (Smidt et al.,
2016). Along with soybean yields, data were collected on soil characteristics such as
soil pH, phosporus, potassium, elevation, slope and seeding rate, among others. The
layout of the field, with the spatial sample locations and a color indicator of quartiles
of yield, is shown in Figure 2.1. Spatial linear regression with spline-based spatial
effects is an effective tool for the purpose of the study and can be readily implemented

in popular statistical software such as SAS® PROC MIXED (SAS Institute, Inc., 2008)
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or R’s 1lme4 (R Core Team, 2016; Bates et al., 2015). It is not clear, however, how the
inclusion of spline-based spatial effects could affect the inference about the regression
coefficients and how spatial confounding may play a role in the analysis of spatial data
from such field studies.

There is well-established research on semiparametric methods with splines under
specific conditions, of which the most essential are a deterministic and smooth func-
tional component of the data model and independent errors (Ruppert et al., 2003).
Rice (1986) derived the asymptotics for semiparametric unidimensional spline mod-
els, and argued that automatic smoothing (such as by cross-validation or generalized
cross-validation) is invalid for the estimation of the regression coefficients, a conclusion
shared by Green et al. (1985). Splines have become a popular approach to capturing
spatial effects in spatial linear regression, giving rise to a semiparametric method that
does not require the specification of a parametric covariance structure for the spatial
random effect in a linear mixed-effects model (see, e.g., Stroup, 2012). However, the
statistical properties of this semiparametric method are not well studied in theory and
empirically, as well as in light of the recent findings about spatial confounding.

Different types of spatial confounding have been identified for spatial linear re-
gression models. Hodges and Reich (2010) considered two cases: In the first case,
the spatial random effects are the spatial random effects are of Scheffé style, in the
sense that they are randomly drawn from a population, the draws are not of interest
in themselves, and uncorrelated with the covariates. For this case the regression coef-
ficients’ estimates can be biased depending on the dependence scales of the covariates
and the spatial random effect (Paciorek, 2010). A second case is when the spatial ran-

dom effect is merely a formal device to implement a smoother, for example, in lieu of
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important but missing covariates (see, e.g., Clayton et al., 1993; Ruppert et al., 2003;
Reich et al., 2006; Stroup, 2012). For this case, Hodges and Reich (2010) argued that
changes in the coefficients’ estimates due to the inclusion of spatial random effects can
be biased, in the sense that these changes will not reflect changes in the coefficients’
estimates from adding the missing covariate if it were actually available. Various in-
sights have been provided and strategies proposed to help mitigate spatial confounding
for spatial lattice data (see, e.g., Hodges and Reich, 2010; Hughes and Haran, 2013)
and for geostatistical data (see, e.g., Paciorek, 2010; Hanks et al., 2015). However,
the research above has focused on parametric model fitting via likelihood or Bayesian
methods and, to the best of our knowledge, only Hodges (2013) has commented on
the possibility of using a semiparameric approach and how spatial confounding plays
out in the corresponding statistical inference about the regression coefficients.

Here we consider a common semiparametric approach to spatial linear regres-
sion and in particular the role of spline-based spatial effects. First, we establish the
statistical properties of the regression coefficient estimators in terms of the impact of
spline-based spatial effects on the biases and variances under the model assumptions
of the traditional spatial linear regression. Next, we observe that the standard ap-
proach to tune the smoothing parameter in splines is generally tailored toward spatial
interpolation (or, Kriging) (Altman, 2000; Nychka, 2000) and can be improved for
the purpose of making inference about the regression coefficients. Thus, we propose a
method for selecting the spline tuning parameter based on minimization of the mean
squared error of the regression coefficients estimators. Further, we examine the em-
pirical properties of the regression coefficients estimators under a scenario of spatial

confounding by conducting a fairly extensive simulation study. Finally, we return to



the soybean yield data example to illustrate the methods.

The remainder of this chapter is organized as follows. In Section 2.2, we present
the spatial linear model for geostatistical data and the semiparametric method based
on thin-plate splines for model fitting. In Section 2.3, we investigate the spline-based
estimation method and the statistical properties of the resulting penalized least squares
estimators in terms of biases and variances. We also develop a tuning parameter
selection method that is tailored toward the inference of the regression coefficients in
Section 2.4. A simulation study is conducted in Section 2.5 that empirically examines
the statistical properties and the tuning parameter selection method. In Section 2.6,
we study a scenario of spatial confounding in the splined-based spatial linear regression.

In Section 2.7, we present the soybean data example in precision agricultural research.

2.2 Spline-based approach to spatial linear regression

2.2.1 Spatial linear regression model

Let D C R? denote a spatial domain of interest. Let n denote the sample size.
The observations are denoted Y'(s;) and observed at the spatial sampling location
s; = (si1,812) € D fori=1,...,n. For such a geostatistical data set, we consider a

traditional spatial linear regression model:

Y(s) = fo+ Brzi(s) + -+ + Bpp(s) +n(s) +&(s), (2.1)
where s = (s1,52)" € D, by, b, ..., are the regression coefficients including the
intercept and the slopes for the p covariates x1(s), ..., z,(s), n(s) is a spatial process

with mean 0 and spatial covariance function (s, s*) = Cov (n(s),n(s*)), s* € D, £(s)

is a measurement error with E(g(s)) = 0 and Var (¢(s)) = o2
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It is common practice to assume that the measurement errors €(s;) are iid Gaus-

sian random variables and are independent of the spatial random effects n(s), while
the spatial random effects n(s) follows a Gaussian process that has mean zero and is

mean squared differentiable in the sense that

lim E{(s) —n(s + 8)}* =0,

61—
where || - || denotes the Ly norm. Mean squared differentiability implies n(s) has a
spatial covariance function v that is continuous. Define ¢x(s), k£ = 1,2,... to be

continuous orthonormal functions such that [ ~(s,s*)pp(s*)ds* = & di(s), where
& and ¢p(s) are referred to as the kth eigenvalue and eigenfunction, respectively.
Then, the spatial covariance function 7 has a spectral decomposition 7(s,s*) =

Y re 1 Ekdr(s)Pr(s*) and n(s) admits a Karhunen-Loéve decomposition

Z &% Zyd(s) (2.2)

where {Z;}32, are iid N(0,1) (Loeve, 1978).

The model specified in (2.1) can be viewed as a type of linear mixed-effects model,
where 7)(s) is a random effect to account for the spatial effects in the regression of the
response on p covariates. The unknown regression coefficients are sometimes referred

to as the fixed effects.

2.2.2 Thin-plate splines

Often one wishes to fit the spatial linear regression model (2.1) without pre-
specifying a spatial covariance function, but somehow still account for the spatial
effects. In this case, smoothing splines provide a viable alternative to the traditional

likelihood-based or Bayesian approach (see, e.g. Stroup, 2012). We focus on thin-plate
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splines (Wahba, 1990), defined to be the solution of the variational problem
fr=arg ;g% ;{Y(Si) —g(s)}* + Mg, (2.3)
where W2 is the class of functions g : R*> — R that are differentiable and have
bounded second derivatives, and J[g] is a roughness penalty on g. Thin-plate splines
are in general a combination of low-order polynomials and a linear combination of
radial basis functions. For example, for a penalty based on the squared norm of the

bending energy,

so= [ {20} 2 {5 e} Lo} e

where s = (s1, s2)’, we have a thin-plate spline that has a closed form given by f\(s) =

ag+ogsi+aosa+ Y 0:pi(s), where ay is the intercept, oy and as are the slopes for
the two coordinates of s, {6;}", are the spline coefficients, subject to the constraints
Sor b =0 051, =1 0;isa; =0, and ; are the collection of thin-plate spline
radial basis functions given by ¢;(s) = ||s—s;||? log ||s — s;||. The thin-plate spline can
also be written as f\(s) = ap+ 181 + aasy + P(s)60, where ®(s) = (p1(8), ..., ¢n(s))

and @ = (04,...,0,).

2.3 Model fitting and statistical properties

In this section, we will consider model fitting based on thin-plate splines and the
statistical properties of the resulting regression coefficients estimates.
2.3.1 Penalized least squares estimation

To fit the spatial linear regression model (2.1), the traditional approach is to

assume Gaussian distributions and base the inference on likelihood methods such as
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maximum likelihood or restricted maximum likelihood (see, e.g., Stroup, 2012). The
estimates of the regression coefficients in (2.1) can be obtained by generalized least
squares, by grouping 7(s)+¢(s) as a structured noise with a certain variance-covariance
function. Alternatively, Bayesian methods can be applied for drawing inference about
the model parameters, but they also require the specification of the variance-covariance
function (Diggle and Ribeiro, 2007).

In an alternative semiparametric approach, the spatial linear regression model
(2.1) is fitted to the spatial data with the same linear regression on the covariates
but a thin-plate spline in place of the spatial random effect. Adjustments are needed,
however, to ensure identifiability. Since there are two intercepts, «q in the thin-plate
spline and [, in the linear regression, we set 5y = 0. Let X = (x4,...,x,) denote a
n x p matrix of covariates and 8 = (8, ..., ,) a p x 1 vector of regression coefficients.
Further, let T be a n x 3 matrix with each row i corresponding to (1,s;1, S;2), and
a = (o, aq,a9). We require that X and T are not perfectly collinear with each
other, and that X'6 = 0 and T8 = 0. Now, let ® denote an n X n matrix of basis
functions (®(s1)’,...,®(s,)")’, where ®(s;) = (¢1(8i),...,vn(s;)). The regression
coefficients and spline coefficients, 8 = (51, ..., 6p),, ¢ = (g, a1, 2), 0 = (61, ..., 6,),

are estimated by minimizing
Q(B,,0) = |ly - XB — Ta — @0|* + \J[f] (2.5)

subject to X’8 = 0 and T'@ = 0, where A is a tuning parameter that controls the
smoothness of the spline function and J[f] is a roughness penalty. The roughness

penalty for thin-plate splines can be rewritten as

J[f] = 0RO (2.6)
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where R is an n X n matrix with entries R;; = ¢;(sy) for i, = 1,...,n (Wahba,
1990, p. 32). For notation simplicity let f = Ta+ P80 be a n x 1 vector with the spline
function evaluated at si,...,s,. The solution of (2.5) for a fixed tuning parameter \

is

B) _ ((X(1-S)X) XISy
<f> =" e ) 20

where S, satisfies Sy(y—X8) = Ta+®6 and is called a smoother matrix, of dimension
n x n, and I is the n x n identity matrix. Moreover, & = {T/(I — Hy)T} " T/(I —
Hy)(y —X3), where Hg = ® {®'® + AR} ' &', and § = {®'® + \R} ' &' (y—X3—
Té). We will refer to B and f as the penalized least squares (PLS) estimates. From
(2.7), the regression coefficients estimate B can be viewed as weighted least squares,
with weights based on the complement of the smoother matrix. The estimator fis

obtained by applying the smoother matrix to the detrended data y — XB

2.3.2 Statistical properties of regression coefficients estimators

To study the role of spatial effects play in the spline-based estimation of the
regression coefficients, first we consider the interpretation of the spatial effects 7(s)
in the spatial linear regression model (2.1). One interpretation is that n(s) represents
spatial correlation, or a structured noise, among the observations. A more difficult
problem is when important covariates are unavailable (or available but unaccounted
for). In the first interpretation, the spatial effects n(s) are understood to be random
effects and thus, if replicates of the data were available, a different realization of 7n(s)
could be obtained. In the second interpretation, the spatial effects n(s) are used to
account for missing covariate information and thus, it is more suitable to treat 7(s) as

a fixed realization of some spatial process. In practical applications, the role for the
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spatial effects in spatial linear regression may be ambiguous and often is overlooked,
given that spatial data are rarely replicated. However, the two possible interpretations
of n(s) impact the notion of bias and variance of the PLS estimates ,é for the regression
coefficients. In the following, we will examine bias of the PLS estimators 3 in terms
of the unconditional and conditional expectations of B for the interpretation of spatial
random effects.

Lety = (y(s1),...,y(sn)) and n = (n(s1),...,n(s,))". If we understand n as a

random spatial effect, E(n) = 0 and E(y) = X3. It is straightforward to see that

E(8) = {X'(I - $,)X} ' X/(I - S)E(y) = 8.

~ ~

Further, we have E(f) = S\{E(y)—XE(8)} = 0. Thus, under the spatial linear regres-
sion model (2.1), for any fixed choice of the tuning parameter A, the PLS estimators
B and f in (2.7) are unbiased.

If, on the other hand, we condition the PLS estimator B on the spatial random

effects 1, we obtain
E(Bln) = {X'(I - S)X} " X'(I - S))E(y|n),

which is 3 + {X'(I — S,)X} ' X/(I — S))n. Due to the Karhunen-Loeve expansion of

n(s) in (2.2), the conditional expectation can be written as

EBn) =B+ &2 Ziipi, (2.8)

k=1

where 1, = {X'(I — S,)X} ' X'(I — Sy)¢y is a p x 1 vector of the kth eigenvector
of Var (n) regressed on X, and ¢y = (¢x(81), .., ¢r(Sn)) is the n x 1 kth eigenvector

of Var (n). Further, we have

E(f|n) = S\{E(y|n) - XE(B|n)} = Sall - X {X'(I - S))X} " X'(I-Sy)Jn. (2.9)
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Thus, under the spatial linear regression model (2.1), for any fixed choice of the tuning
parameter A\, and conditionally on the spatial random effects 1, the PLS estimators B
and f in (2.7) are biased. The conditional bias in B can be seen as a deviation from 3
caused by the correlation of the eigenvectors ¢y, of Var (n) with the covariates. Thus,
the bias is present as long as ¢, and the columns of X display any collinearity, and
independence of X and 7 is not sufficient for ,(; to be conditionally unbiased.

Next, we will study the variance of the PLS estimators 3, as the inference about
the regression coefficients B is of primary interest. Let Px = {X'(I — S,)X} ' X/(I—
Sa). Under the spatial linear regression model (2.1) and due to (2.2), we have Var (y) =

o+ 3% &, Thus,

Var (8) = PxVar (y)Px = 0°PxPx + Px (Z fk(bk(b;) Px

k=1
= o {X/(I - S))X} ' X/(I - S’ X{X/(T = S)X} " + > &brathy .
= (2.10)

A

Consider the decomposition of Var (3) into two additive components:

~ ~ A

Var (3) = Var x(83) + Var ,(83),

where the first component is the variability of B attributed to the columns of X,

Varx (8) = E { Var (8n) } = 0{X/(1 - $,)X} 7' X/(1 - 8, X{X/(I - $,)X} ",
(2.11)
and the second component is the variability of B attributed to the spatial random

effects n,

~

Var p(8) = Var {E(BJn) } = Var (Z gi/zzkwk,A> = S GE(ZD) s (212)
k=1 k=1
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We note the connection of (2.8) and (2.12), which shows that, conditional on
the realization of 1, the bias of B is a function of Y1, and unconditionally the effect

of 4y, \ is present as an inflating factor in Var (3). As such, we will now investigate

the impact of selection of A on the bias and variance of 3.

2.4 Selection of penalty tuning parameter

In this section we will discuss the behavior of the matrix S, as a function of
A, the so called smoothness tuning parameter in spline literature, and in particular
how it affects 1\, a key component in describing the relation between m and the
regression coefficients B Then we will propose an approach to selection of the tuning

parameter A when the researcher interest lies primarily in obtaining the estimates of

3.
2.4.1 The matrix S, and the smoothness property

Since S, is symmetric, it has a spectral decomposition Sy = QLQ' = >"" | {;q;q.,
where L is a diagonal matrix of eigenvalues ¢1(\) > ... > £,(\) and Q is an orthog-
onal matrix of eigenvectors qi,...,q,. Further, the eigenvalues of Sy are in [0, 1]
(Hastie and Tibshirani, 1990; Wahba, 1990), with the first 3 eigenvalues equal to 1
for the eigenvectors corresponding to T and eigenvalues shrinking toward 0 as a func-
tion of A for the eigenvectors corresponding to ®. The behavior of the matrix S, for
Saly — XB) is therefore, according to Hastie and Tibshirani (1990), of shrinking by ¢;
the projection of y — Xz3 along q;. In the limiting case of A = 0, the smoother matrix
interpolates the data, i.e., So(y — XB) — y — X3. On the other hand, for A\ — oo,

the limiting estimate is equivalent to the regression of the data on the columns of T,



17

or in notation S, 22 T(T'T)~'T’ = Hr.

The behaviour of Px can be described based on Sy. The case A — oo is simple,
since rank(Hr) = rank(T) = 3 and Hry is idempotent. This implies that )y » Azeo,
{(X'(I1-Hp)X} ' X/ (I-Hr)¢y, and Var x(8) 22%= 02 {X/(I — Hp)X}™'. The re-
sults shown are, in a certain way, similar to introducing extra explanatory variables (in
this case, T') to the regression matrix X (see, e.g., Seber and Lee, 2003, p. 54). The
case when \ = 0 is difficult, however, since for a generic n x 1 vector z, Sgz =1z =z
and therefore (I — Sg)z = 0. Moreover, limy_,o {X'(I — S,\)X}f1 is undefined. In
practice, however, software implementations overcome these difficulties by consider-
ing a lower rank implementation of Sy based on its spectral decomposition, i.e., us-
ing only the first M largest eigenvalues (Wood, 2003). For example, as explained
in R’s mgcv package documentation, the default action is to use the first M = 30
eigenvalues for two dimensional data. As a consequence, computationally the limit
limy_,0 {X'(I — S,)X} " does exist, and is equal to {X'QL*QX} ", where L* is a
diagonal matrix with entries equal zero corresponding to the first M largest eigen-
values in L, and ¢; = 1 otherwise, for « = M + 1,...,n. The associated eigenvectors
of Sy are those that display the most “wiggliness” (see, e.g., Ruppert et al., 2003,
p. 79, for the smoothing spline case, which is analogous). Borrowing from signal
processing literature, we will hereafter refer to the eigenvectors of Sy associated with
large eigenvalues as “low frequency” components, and the eigenvectors associated with
lower eigenvalues as “high frequency” (this connection is pointed out in, e.g., Wahba,
1990, p.145).

To illustrate the eigenvectors and eigenvalues of Sy, we have a diagram similar

to the diagram available in page 79 of Ruppert et al. (2003), except that instead of



18

Eigenvector map 1 Eigenvector map 2 Eigenvector map 3 Eigenvector map 4

- - e o Eigenvalues of Sy
8| o 1o —| « <) \\eae
7 ./:.-/ o ¥ — 1o 13% =
1 3 < '\O& —
ds /9 S| ¢ J——T < ]
//d ° |22 °
o o
o o

— 0.02

@« @«
S S
| —_— 0 \
3 / g ‘;3, s ﬂgo 3 2 —Q, 3 °0
o [ o - N N = % 7 - o
IS IETETT S e O A A T S 1 \ .
S T T T T © T N,

T T T T T T T T T T T o
o o

00 04 08 0 04 08 00 04 08 00 04 08 \
\ o A=0.1

0.
E|genvect0r map 5 Eigenvector map 6 Eigenvector map 7 Eigenvector map 8

cbels ,

N & 0] .

T T T T T T I T T I
00 04 08 00 04 08 00 04 08 00 04 08 L (AN
Eigenvector map 9  Eigenvector map 10  Eigenvector map 11 Eigenvector map 12 S \° R

;’\ @@fgju\ |
£ @;é;wf <

T T T T T index

00 04 08
00 04 08
00 04 08

00 04 08
00 04 08
L1 |

00 04 08

Figure 2.2: Eigenvectors and eigenvalues of the matrix Sy. The first 12 eigenvectors
(left) are shown as contour plots for the corresponding spatial coordinates. The first
20 eigenvalues (right) are shown as connected points for different values of A.
the unidimensional spline smoother, we consider the thin-plate spline instead. To
draw this diagram, we picked a regular spatial grid of 400 equallly spaced points in
[0,1] x [0, 1], and evaluated the thin-plate spline smoother matrix Sy for values of A
equal to 0.1, 1 and 10. The first 12 eigenvectors are displayed in Figure 2.2, to the
left, as well as connected scatterplots showing the first 20 eigenvalues. Notice the first
three eigenvectors span T, and the corresponding first three eigenvalues are equal to
one, regardless of \. We may also observe that the eigenvalues ¢; decrease as a function
of A, shrinking the spatial data along the corresponding eigenvector q;.

A practical implication of selection of A is in, for example, the components
Var x(8) and Var ,(8). When A — oo, Varx(8) becomes equivalent to the variance
of ordinary least squares B if T were included as additional covariates. On the other

hand, when A\ — 0, then Varx(B) behaves as if the columns of X were projected
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Figure 2.3: An illustration of the two components of Var (B), given here by Var X(ﬁl)
(variance attributed to the design matrix X) and Var ,(5;) (variance attributed to the
spatial process 7(s)). n is independent of X.

along the eigenvectors of Sy corresponding to the smallest eigenvalues. The interpre-
tation of Varn(B) is similar, except that we consider the regression of ¢ onto X. An
illustration of the balance between Varx(3) and Var ,(8) is shown in Figure 2.3 for
a single covariate x(s) that is uncorrelated with the spatial random effect 1. There
is a local minimum for Varx(f;) as a function of A, indicating that in this case a
moderate amount of smoothing on y — X,@ is benefitial to reduce Varx(3), but to
minimize Var ,(8) a very small tuning parameter A would be preferrable, i.e. close to
interpolation of the structured noise. Conditionally on 7, we understand that small A

would minimize the conditional bias.

2.4.2 An algorithm for selection of A

~

A tuning parameter that minimizes some function of the variance Var (3) would

constitute a reasonable choice, as the primary interest lies in the estimation of the
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regression coefficients. In addition, the degrees of freedom of a spline, given by tr(S,),
are decreasing as a function of A (Ruppert et al., 2003) and therefore such minimization
can help to balance model complexity. We now, therefore, consider the selection of
the tuning parameter \. Selection of A is usually based on cross validation, which
approximates the prediction squared error (PSE) (Hastie and Tibshirani, 1990). In

other words, let
PSE(N) =n"" ) E{y"(s:) — ga(si)},
i=1
where y*(s;) is a new observation, §x(s;) = x(s;)'8 — f(s;) is the predicted value of
y*(s;) and fy(s;) is the thin-plate spline evaluated at spatial sampling location s i for

i=1,...,n, Also, define the cross validation (CV) as
CV(A) =n"" Z E{y(s:) — 05" (s)}?
i=1

where ¢, "(s;) is the predicted value from a fitted model that excludes the ith obser-
vation. We have E{CV(\)} ~ PSE()X). A related well-known criterion, with lower

computational cost, is the generalized cross validation (GCV), given by

O yls) —ias)
GOV =n 2 {1 Y tr(Asm/n} ’

where tr(S,) is also commonly called the degrees of freedom of the smoother (Ruppert
et al., 2003). The A\* that minimizes CV (), or GCV()), is not necessarily the best
when the primary interest is in the regression coefficients that relate the response
variable to covariates.

Here we develop a different approach to select the tuning parameter \. It follows
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from (2.10) that the mean squared error (MSE) of B is given by
MSE(B) = tr(Var (8))

(2.13)
= o’tr (X'(I—S\)*X{X'(I-8S,)X}?%) + ka“#’k N

which is a function of the tuning parameter \. When the focus is on the regression

coefficients and not on prediction, a natural way to choose the tuning parameter is to

minimize the MSE of B That is, let
Aopt = aIg min tr(Var (3)).

While the first term on the right-hand-side of (2.13) is known except for o2, the
second term can be a challenge to approximate. We propose a plug-in estimate based

on the following argument: By the Karhunen-Loeve decompostion (2.2), we have

2
In(s)|I” = /{Zfl/ZZkGﬁk } ds
:/D{ngzlquk +22251/251/2Z}€Zk¢k(8)¢j(5)}dS

k 1]>k

—kazk/ﬁbk d5+2225m 222 /Cbk s)0;(s

k=1 j>k

Since {¢r(s)}52, are orthogonal functions, we have

In(s)lI* = ka22|\¢k )|* and E(|n(s) Zék\|¢k ). (2.14)
Consequently, we have
> &llvnall = E (IPxnll*) (2.15)
k=1

The right-hand-side of (2.15) and thus the second term on the right-hand-side of

(2.13) can be estimated by ||Pxf]||2. The criterion we propose, which aims to minimize
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~

MSE(3), is given by an estimated MSE,
eMSE(B) = 6%tr (X'(I — S,)*X{X'(I - $,)X}7?) + || Pxf]| (2.16)

where 62 = (n—p—2tr(S,)+tr(S3)) * Y., (vi—1:)? is an estimate of the measurement
error variance (Ruppert et al., 2003, p. 83). We will refer to PLS estimates of 3
obtained with the tuning parameter selected by minimizing the estimated MSE (PLS-
MSE). Since there are no replicates of f, E (|[Pxnl|?) is estimated by one realization

of [|Pxf|2.
2.5 A simulation study of the statistical properties of PLS

2.5.1 Simulation setup

We first conducted a simulation study to evaluate the statistical properties of
the PLS estimates of the regression coefficient developed in Section 2.3, as well as to
evaluate the performance of the selection procedure for the tuning parameter developed
in Section 2.4.

The spatial domain is the unit square [0, 1]%. A total of n = 50 locations were
selected randomly over the unit square and were used as the sampling sites sq, ..., S,.
The responses Y (s;) for i = 1,...,n were simulated from the spatial linear regression

model (2.1) with p = 2:
Y(s) = Bo+ Biz1(s) + Baza(s) + n(s) + <(s),

where the spatial random effects 7(s) follow a Gaussian process with mean zero and

a Matérn covariance function

2

d; p, K, 07) = %f—l’i(@ (mg>ﬂKn (\/ﬂc—i) , (2.17)
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Figure 2.4: Examples of Matérn covariance processes for different parameters: each
panel shows the realization of a single Gaussian process with choices of parameters
k=0.5,1.5,2.5, p =0.02,0.05,0.2,0.5.

where d is a spatial lag distance and K is the modified Bessel function of the second
kind. The parameter s controls the smoothness of the process, as the process with
Matérn covariance is m-times differentiable for m < & (Stein, 1999). The parameter o7
is the variance of 7(s) and the parameter p controls the range of spatial dependence.
Figure 2.4 shows a realization of a Gaussian process, simulated with the same random
seed, but with different choices of p and k for the Matérn covariance.

The two covariates, z1(s;) and xs(s;) for ¢ = 1,...,n, were generated as iid
N(0,1) and independent of each other, before the simulations; that is, they were
treated as fixed terms when Y'(s;) were generated repeatedly. The regression coef-
ficients were set to 1 = P2 = 1. Within each simulation, the measurement errors
e(s;) were generated as iid N(0,1) and the spatial random effects 7(s;) were gener-

ated from a Gaussian process with mean zero and the Matérn covariance function, for
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1 =1,...,n. The smoothness and range parameters of the Matérn covariance function
(2.17) were set to K = 0.5,1.5 or 2.5 and p = 0.02,0.05,0.2 or 0.5, while the variance
parameter was fixed at 0727 = 1. The error variance is 02 = 1. The total number of
simulations was S = 500 for each of the 12 combinations of x and p values.

The semiparametric thin-plate method by the PLS estimation in Section 2.3 was
applied with the tuning parameter selected by either GCV or eMSE (PLS-GCV or
PLS-MSE;, respectively). For comparison, we considered two alternative approaches.
One approach ignored the spatial random effects and fitted the standard linear re-
gression model by ordinary least squares (OLS). The other approach fitted the true
spatial linear regression model (2.1), which is also a linear mixed-effects model with a
spatial random effect, by restricted maximum likelihood (REML) in the geoR package

(Ribeiro Jr. and Diggle, 2015).

2.5.2 Simulation results

The box plots of the S = 500 regression coefficient estimates are shown in
Figure 2.5 for different £ and p values and fitted by four different methods (OLS,
REML, PLS-GCV, and PLS-MSE). The smoothness parameter x does not affect much
the regression coefficient estimates of 3, while the range parameter p does. Consider a
measure of relative efficiency, given by S~! 22921(3](3) — f3;)?, where BJ(-S) is the estimate
of B; in the sth simulation. The relative efficiency suggests that the OLS is the most
efficient for the smallest range parameter value p = 0.02. This is not surprising since
the spatial effects are weak and the spatial process 7(s) is nearly independent for
this value of range parameter. When the range parameter increases to p = 0.05,

the REML and spline-based methods give comparable results and both are about 5%
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Figure 2.5: Boxplots of regression coefficients estimates (Bl and Bg) under the standard
linear model fitted by ordinary least squares (OLS), the linear mixed-effects model
fitted by restricted maximum likelihood (REML), the spline-based approach fitted by
PLS with the tuning parameter selected by generalized cross validation (PLS-GCV)
or mean squared errors (PLS-MSE). The dark and light boxes are for Bl and 52,
respectively. The spatial random effects in the true model has a Matérn covariance
function with various smoothness parameters £ = 0.5,1.5,2.5 (in rows) and range
parameters p = 0.02,0.05,0.2,0.5 (in columns). The horizontal solid line in each

subfigure indicates the true value of g; = B, = 1.
to 10% more efficient than OLS. For the larger range parameters (p = 0.2,0.5), the
REML and spline-based methods are about 10% to 15% more efficient than OLS.
Further, the results are comparable for the two approaches, PLS-GCV and PLS-MSE,
for tuning parameter selection.

We further consider the methods effectiveness to predict the response y. In
Figure 2.6, we have the mean squared prediction error (MSPE), that is, the mean
squared differences between the estimated y and the ground truth X3 + n, for each

simulation step, broken down by the spatial process parameters. The results suggest
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that including a thin-plate spline component improves the MSPE in general, and more
so, when the scale parameter p is larger. Overall, the semiparametric methods perform
better as the scale parameter increases, yielding MSPEs that are smaller and varying
less across simulated replications as p increases. The OLS also yields smaller MSPE
as p increases, but the MSPE is always larger than the semiparametric methods.
Furthermore, the variability of the observed MSPE for OLS increases with p. The
performance of the REML approach is similar to OLS, in terms of MSPE. Since the
data are observed at sampling locations only, the smoothness parameter x does not
seem to affect the spline model substantially. The predictions based on PLS-MSE are
in general worse than the ones obtained by PLS-GCV, with a slight increase in the

MSPE.

2.6 Spatial confounding simulation study

The simulation study conducted in Section 2.5 was conducted under the assump-
tion that the covariates, x1 and x,, are each realizations of a process that has no spatial
dependence and are independent of the spatial random effects n(s). In this section,
we explore a case of spatial confounding, and the impact on the regression coefficient
estimates, via further simulations. We continue the simulation setup in Section 2.5,
except that we alter the nature of the second covariate z5(s). In addition, we examine
spatial confounding under different signal-to-noise ratios, as well as for nonstationary
n(s), in the Appendix 2.A.

For i = 1,...,n, xs(s;) were generated from a spatial process with mean zero
and a Matérn covariance function. The variance parameter is o2, = 1, the smoothness

parameter is k = 2.5, and the range parameter is p,, = 0.2 or 0.5. This scenario, in
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Figure 2.6: Mean squared prediction error (MSPE) for 400 simulations. OLS refers
to the standard linear model, REML refers to restricted maximum likelihood estima-
tion, PSL-GCV is the semiparametric thin-plate spline model with tuning parameter
obtained by minimizing GCV and PLS-MSE is the PLS model with A obtained by
the algorithm from Section 2.4. The spatial process has a Matérn covariance function
with parameters k = 0.5,1.5,2.5 and p = 0.02,0.05,0.2,0.5.

which covariates are independent of the spatial process but have strong dependence
scales themselves, resembles the spatial confounding problem seen in Paciorek (2010)
and, more closely, in Hanks et al. (2015). We interpret this scenario as close to the
“Scheffé-style random effects” scenario of Hodges and Reich (2010).

We illustrate the behavior of estimates (2.7) in a similar way to Figure 2.3.
Figure 2.7 has two sets of curves, one corresponding to Bl for reference, and the other
corresponding to Bg, the coefficient for x5(s). The variance of Bg is greater than that of
Bl, but as the tuning parameter A\ increases, both the variability attributed to X and

the variability attributed to 1 decrease. This can be understood since, because z(s)

is generated as a Matérn process, the resulting eigenvectors of x, are collinear with
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Figure 2.7: Illustration of the two components of Var (Bj), j = 1,2, given by Var X(Bj)
(variance attributed to the design matrix X) and Var,(3;) (variance attributed to the
spatial process 7(s)). In this case, n(s) is independent of X but z5(s) is a Gaussian
random field with Matern covariance and parameters k = 2.5, p = 0.2.
the eigenvectors of 1, and both have strong spatial dependence, therefore with large
associated eigenvalues for the low frequency components of variation. As such, for
smaller values of A\, the matrix I — S, captures only the high frequency components of
variation of X, attributing the low frequency components of x5 to f and modifying the
Bg estimate in ways that are difficult to anticipate. On the other hand, for larger A,
the low frequency components of X are preserved and the estimate variance decreases.
Note that Varn(ﬁl) decreases only up to a point. We understand that increasing A
too much would attribute the variation of 1 to x, instead.

The box plots of the S = 500 regression coefficient estimates of 51, fo are shown
in Figure 2.8 in a similar arrangement to Figure 2.5, but with two different range

parameters for xo(s), either p,, = 0.2 or 0.5. Unlike the scenario in Section 2.5 with

no spatial confounding, the variability of Bg is higher when the smoothness parameter
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k is smaller. The estimated Bg with the spline-based approach are comparable to OLS
and REML when the spatial random effects n(s) have a stronger spatial dependence
than xo(s) and the smoothness parameter x is larger. Otherwise, the variability is
larger than OLS and REML especially for the weaker spatial dependence of the spatial
random effects (p = 0.02 and p = 0.05). The relative efficiency of the PLS-MSE
method for selecting the tuning parameter is about 10% better than the PLS-GCV,
providing moderate evidence that the PLS-MSE method helps to mitigate the spatial

confounding in this case.

2.7 Case study: soybean yield

Field trials were conducted at multiple locations in 2013-2014 across Wisconsin
to study the effectiveness of precision agriculture. Here we consider the two fields,
known as H4 and Oak Creek, and shown in Figure 2.1. Fields were divided into
strips of similar size and aligned so they were not parallel to either the orientation of
the dominant soil types or direction of travel of the planter. The fields were planted
during the month of May when conditions allowed. Three seeding rates, high, medium,
and low, were randomly assigned to these strips. Variable rate technology (VRT)
prescriptions were uploaded into the planter monitors and the fields were mechanically
seeded by the growers in a certain row width.

Yield data were recorded by GPS-equipped yield monitoring systems on their
commercial harvesters (Figure 2.1). The data were gridded to a 18 m by 18 m reso-
lution. For this example, in addition to seeding rate, we consider a spatial regression
model which also includes elevation (Figure 2.9).

First, a standard linear regression model assuming independent errors was fitted
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Figure 2.8: Spatial confounding scenario with the range parameters for z, p,, = 0.2
(top half) and p,, = 0.5 (bottom half): Boxplots of 3, 3, under the standard linear
model fitted by ordinary least squares (OLS), the linear mixed-effects model fitted by
restricted maximum likelihood (REML), the spline-based approach fitted by PLS with
the tuning parameter selected by generalized cross validation (PLS-GCV) or mean
squared errors (PLS-MSE). The dark and light boxes are for B and fs, respectively.
The spatial random effects in the true model has a Matérn covariance function with
various smoothness parameters £ = 0.5,1.5,2.5 (in rows) and range parameters p =
0.02,0.05,0.2,0.5 (in columns). The horizontal solid line in each subfigure indicates
the true value of f; = [, = 1.
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Figure 2.9: Two covariates used in the soybean yield study, elevation and seeding rate.

by the ordinary least squares to regress soybean yield as the response on all the
covariates. The OLS estimates of the regression coefficients are given in Table 2.1.
We remark that a visual inspection of Figure 2.1 shows that in the H4 field, the higher
values of yield seem to be associated with the lower values of elevation in Figure 2.9;
on the other hand, for the field Oak Creek higher values of yield are associated with
higher elevations. We therefore expect a negative regression coefficient for elevation
in H4, and a positive regression coefficient for elevation in Oak Creek, and those are
the values shown in Table 2.1 for the OLS method. The residuals are mapped in
Figure 2.10 after a thin-plate spline smoothing and show strong spatial dependence
that is not fully captured by the covariates.

We believe the elevation covariate has characteristics that might cause spatial
confounding. Compare the empirical semivariograms of standardized elevation against
the semivariograms of the standardized residuals, obtained with the geoR package
(Ribeiro Jr. and Diggle, 2015), shown in Figure 2.11. We notice that elevation has
a stronger spatial dependence range, and is therefore akin to the spatial confounding

scenario where the covariates have stronger spatial dependence than the spatial effect
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Figure 2.10: The residuals after the ordinary least squares fitting of a standard linear
regression model. The residuals are smoothed by thin-plate splines, using the Tps
function from R fields package (Nychka et al., 2014).
itself.

We applied the spline-based methods developed in Sections 2.3 and 2.4. The
PLS estimates of the regression coeffients are shown in Table 2.1 with the tuning
parameter selected by either GCV or MSE. For comparison, we also fitted a spatial
linear regression model (2.1) by assuming that the spatial random effects follow a
Matérn covariance function with smoothness parameter xk = 2.5, and by REML, using
the geoR package (Ribeiro Jr. and Diggle, 2015). We observe the issue of spatial
confounding by noticing how large is the change in coefficient estimates, displayed in
Table 2.1, for the GCV-based PLS and REML. Our PLS-MSE approach however does
produce estimates that are close to the OLS.

The results from OLS and PLS-MSE are similar to each other, and different than
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Figure 2.11: Empirical semivariograms of the standardized elevation covariate and the
standardized residuals of the OLS method, for H4 and Oak Creek, respectively.

Table 2.1: Regression coefficient estimates by the ordinary least squares fit (OLS) of a
standard linear regression, the spline-based approach by penalized least squares where
the tuning parameters are selected by either generalized cross validation (PLS-GCV)
or mean squared errors (PLS-MSE), and restricted maximum likelihood (REML) for
spatial linear regression using the Matérn covariance function. H4 is the field to the
left of the map, Oak Creek is the field to the right. Asterisks mark the coefficients
with p-values < 0.05 (using the asymptotic test for REML).

H4 Oak Creek
Elevation Seeding Rate Elevation Seeding Rate
OLS -0.109 * 0.028 * 0.125 * 0.022 *
PLS-GCV 0.288 * 0.009 0.178 0.003
PLS-MSE -0.109 * 0.028 * 0.125 * 0.022 *
REML 0.097 * 0.013 * 0.162 * 0.033 *

PLS-GCV and REML, whereas the latter two seem to agree with each other, to a lesser
extent. Seeding Rate shares the same signs of regression coefficient estimates across all
methods. In particular, higher seeding rates are associated with greater soybean yield.

However, in both fields the seeding rate changes from a non-statistically significant
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Figure 2.12: The regression coefficient estimates Bj, divided by the corresponding
s.e.(f;), as a function of the tuning parameter log,,(A). The points on the right end
correspond to the ordinary least squares fit, which is approximately equivalent to the
case of A — oo. The vertical dashed lines indicate the optimal A selected by either
generalized cross validation (GCV) or mean squared error (MSE).

effect (using PLS-GCV) to a statistically significant positive effect (using PLS-MSE).
Figure 2.12 further delineates the regression coefficient estimates from the spline-based

approach as a function of the tuning parameter A, displaying the coefficients divided

by the corresponding standard error.

2.8 Conclusion and discussion

In this chapter, we have considered a semiparametric method based on smoothing
splines for spatial linear regression. We have derived the statistical properties of PLS
estimates of the regression coefficients under the traditional spatial linear regression

model. We discussed how the spline and the spatial random effect are connected in



35

terms of their spectral decomposition. Moreover, an alternative method to choose the
tuning parameter for the thin-plate splines, tailored toward drawing inference about
the regression coefficients, is proposed. Simulation studies have been conducted to
evaluate the statistical properties of regression coefficient estimates.

Further, we have examined the empirical properties of the regression coefficient
estimators under a scenario of spatial confounding via a simulation study. A data
example in precision agricultural research regarding soybean yield in relation to field
conditions is presented for illustration. We have found that the use of thin-plate
splines for spatial linear regression with spatially confounded data can change coef-
ficient estimates substantially and needs careful consideration. When covariates are
uncorrelated with the spatial random effects but have smaller dependence range than
the spatial effect, using splines to capture the spatial effect works well. But when the
covariates have similar (or stronger) ranges of spatial dependence, the spline might

compete with the covariate to capture the strongest effect.
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Appendix

2.A Extensions to the spatial confounding simulation study

2.A.1 Signal-to-noise ratios

2

;> Which lead to different signal-to-noise ratios

We investigated changes in o
(SNR) for the spatial process 7(s). Hereafter we will show only the estimates of
By. Figure 2.A.1 shows the case in which there is moderate spatial confounding, and
o7 is set to 0.10%, 0.50°, 20*, or 105°. We can observe that for different signal-to-noise
ratios, the PLS method has a worse performance than the REML using the Matérn

covariance, when the SNR is larger. Aside from the increased variability of the (s

estimates, the results are consistent with what was previously observed.

2.A.2 Nonstationarity: anisotropy and variable dependence range

In all the simulation studies above, the spatial random effects 7(s) are assumed
to be stationary and isotropic. We now consider generating data from processes that
are either anisotropic or have location variable dependence ranges based on transfor-
mations of the Matérn covariance function.

To simulate anisotropic spatial data, we let 7(s*) denote a spatial process with
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Figure 2.A.1: Comparison of 35 when o7 is set to 0.10%, 0.507, 207, or 100?. In this

case, 7(s) is a Matérn covariance Gaussian process with parameters v = 2.5, p = 0.2.

a Matérn covariance function (2.17) and generated the random effects at locations
si,...,s. Then we obtain the spatial random effects 7(s;) by rotating and rescaling
the coordinates of the locations s} with a deformation matrix such that s} = Ps; for

i=1,...,n (see, e.g., Wackernagel, 2003). In particular, we used § = 7/4,a = 1,b =8

in the transformation matrix P:

po (SO OV 0

To simulate the nonstationary with variable dependence range spatial data, we
again used the Matérn covariance model (2.17), but let the range parameter p vary
in the spatial domain by employing a weighting function w(s) on the coordinates.
Thus, Cov (n(s),n(s")) = y(w(s)s, w(s*)s*). We chose w(s) = 0.3+ (1 —0.3)/[1 +
expq{(s1 —0.4)/0.05}] so that the resulting spatial dependence of 7(s) transitions along
the first coordinate of s. Figure 2.A.2 shows the realizations of the said anisotropic
and nonstationary spatial random effects for different values of the range parameter
p-

Figure 2.A.3 provides the box plots of S = 500 regression coefficient estimates
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Figure 2.A.2: Examples of nonstationary covariance processes for different covari-
ance functions: each facet shows the realization of a single Gaussian process. The
anisotropic case is a deformation of a Matérn process with choices of parameters
k = 2.5 and p = 0.02,0.05,0.2,0.5. The nonstationary case has a weighting function
applied to the p coefficient, so that the dependence range between Y (s) and Y (s*)
changes depending on whether s, s7 > 0.4.

f35 for the anisotropic or nonstationary spatial random effects 71, based on the trans-
formations of a Matérn covariance function with k = 2.5, p = 0.02,0.05,0.2, and 0.5,
and 02 = 1. In this case of REML, the model is misspecified to have stationary spatial
random effects following a Matérn covariance function.

In this case, the results for the anisotropic spatial random effects are similar
to those of the stationary case, except that outlying regression coefficient estimates
seem to occasionaly appear. For the nonstationary varying dependence range case,
however, a comparison with Figure 2.8 suggests that the behavior of the regression
coefficient estimates is dictated by the strongest dependence range in the region, since

the simulated distribution of the PLS-GCV and PLS-MSE becomes comparable to

REML at lower values of p.
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The PLS-MSE does not improve upon PLS-GCV regression coefficient estimates

in the nonstationary cases, in general.

Nonstationary cases
p=0.02 p=0.05 p=0.2 p=05

aidonosiuy
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& & & QTR
Method

Figure 2.A.3: Comparison of Bg for the Anisotropic and Nonstationary cases. This
figure is analogous to Figure 2.8 top half, in which z5(s) has a spatial dependence of

0.2. The horizontal solid line indicates the true value of Byx.
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Chapter 3

A semiparametric model for fusion of
static and roving sensor spatio-temporal

data

3.1 Introduction

Occupational exposure assessment refers to assessment of the level of contam-
inants an employee is exposed to during their work-shift. The traditional method
for occupational exposure assessment is personal monitoring using lightweight devices
that can be worn by the workers. Personal exposure estimates are typically sought
because they can be compared against regulatory standards to ensure compliance
with existing laws. However, personal monitoring is generally expensive and requires
workers to carry equipment with them during their work. As such, it is common for
a small number of measurements, on a small number of employees, to be collected
(Tornero-Velez et al., 1997; Cherrie, 2003), resulting in small sample sizes that cannot

accurately capture true levels of contamination. Additionally, without the ability to
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track worker location, there is little ability to apportion exposures to different areas
or tasks.

Occupational hazard maps, contour plots of contaminant concentration over the
two-dimensional floor plan of the workplace, have gained popularity as a method to
overcome some of the limitations of the traditional personal sampling that is gen-
erally expensive with small sample sizes (Koehler and Peters, 2013; Peters et al.,
2012; Evans et al., 2008; Peters et al., 2006; Ologe et al., 2006). Hazard maps are
commonly produced by industrial hygienists or researchers using direct-reading in-
struments (DRIs) to capture contaminant concentrations at high spatial resolution
following a pre-determined grid throughout the facility of interest (hereafter, roving
sensors). Such maps are powerful tools to communicate risk in an easily understood
format and to guide decisions on control strategies aimed at reducing worker exposures
(O’Brien, 2003).

Hazard maps that rely on roving monitor data alone, while cost-effective to
produce and conceptually simple, likely fail to represent the temporal variability in
concentrations present in many occupational settings (Koehler and Volckens, 2011;
Lake et al., 2015). Augmenting the data with static sensors that collect time series
data but at a few locations, can allow practitioners to expand the temporal and spatial
coverage of data collection (Lake et al., 2015). As DRIs become more affordable and
accessible, these types of exposure data (from static and roving sensors with known
spatial information) are expected to become more abundant but rigorous statistical
methods for analyzing data and drawing proper inference remain limited. The cur-
rent hazard mapping approach to occupational exposure assessment, although novel,

represents several challenges. Maps that are created from roving sensor data alone
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are often either collected over a short temporal interval or aggregated over time and
neglect the temporal variability in the dataset. As such, temporal variability can be
mistakenly displayed as spatial variability. In our previous work, we compared maps
created using the roving sensor data and static sensor data separately (Lake et al.,
2015). The method employed was somewhat ad hoc because a comprehensive statis-
tical methodology was lacking to combine the datasets (static and roving) to provide
a representation of exposures across space and time. The maps should give not only
the most representative indication of the mean value, accounting for both data types,
but also an indication of the variability in concentrations, as a function of both time
and space.

Statistical methods for integrating different sources of data in space and/or time
have been researched in the past. For example, Isaacson and Zimmerman (2000) de-
veloped methodology for combining environmental data that are temporally correlated
and from two measurement systems. Their autoregressive moving-average models al-
lowed a common time trend, system-specific measurement errors, and missing data,
for which the inference was conducted by both frequentist and Bayesian approaches.
Cowles et al. (2002) extended Isaacson and Zimmerman (2000) to temporally corre-
lated data from multiple measurement systems that are measured at distinct sites in
space. A Bayesian approach was taken to estimate the long-term trend and evalu-
ate differences among the measurement systems. Further, Smith and Cowles (2007)
considered an integrated model for correlating point-referenced radon and areal ura-
nium data for quantifying a common spatial process using also a Bayesian approach,
whereas Sahu et al. (2010) fused point-referenced and areal wet deposition data in

space and time. Such prior research is illuminating, but none considered the possibil-
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ity of roving sensors and thus is not directly applicable for the hazard mapping under
consideration. The objectives of this chapter are (1) to develop new spatio-temporal
methodology that combines data from both roving and static sensors for data pro-
cessing and hazard mapping across space and over time in an indoor environment and
(2) to compare the new method with the current industry practice, demonstrating
the distinct advantages of the new method and the impact on occupational hazard
assessment and future policy making in environmental health as well as occupational
health.

Combining data from static and roving sensors in a statistically sound way is
challenging. First of all, while the roving sensors expand the spatial coverage of data,
the observations are sparse in time at any given location. This is in contrast to the
static sensors that are at a smaller number of sampling locations but observations are
denser in time at each sampling location. An ad hoc approach would be to analyze the
two types of data separately but there is potential benefit to be gained by developing
statistical methodology that pools the two data sources and takes full advantage of
their respective strengths. In addition, inaccurate and missing data can be a thorny
issue in such data analysis due to different measurement systems, instrumentation
failures, and uneven or asynchronous monitoring times, etc. To address these chal-
lenges, we propose a novel spatio-temporal process that has continuous index in both
space and time. That is, in the spatial domain of interest, the sampling locations
can occur anywhere in which sense the modeling is geostatistical (see, e.g., Cressie,
1993), whereas within the temporal window of interest, the sampling can occur at
any time and thus the modeling may be viewed as functional (see, e.g., Ramsay and

Silverman, 2005). We then develop a model fitting procedure that allows the fusion of
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the two types of data based on profile likelihood accompanied by a fast computational
algorithm. Further, to account for potential differences between the static and roving
sensors, we extend the spatio-temporal model to allow for inhomogenous measurement
error variances. Finally, we compare our new methodology with the current industrial
standard /practice which does not model temporal variability and generates hazard
maps from data averaged in time.

As we will demonstrate in a case study conducted in an engine test facility,
the dynamic hazard maps that interpolate across space and over time are far more
informative and representative of the evolution of hazard levels in space and time.
This finding can impact the way occupational hazards are to be mapped in the fu-
ture and move the industry and regulation forward to more accurate assessment of
environmental hazard. Moreover, while the methodology developed here is geared
toward spatio-temporal hazard mapping, we believe that other scientific disciplines
might benefit from our approach for fusing data with very different spatial and/or
temporal scales, such as data collected by individuals with personal devices versus
data collected at stationary monitoring stations used to study exposure and adverse

health effects in environmental epidemiology (see, e.g., Hall and McMullen, 2004).

3.2 Data and model specification

3.2.1 Data specification

We now specify the notation for the spatio-temporal process of a generic hazard.
Let D C R? denote a two-dimensional spatial domain of interest and let [0, 7] denote

a temporal window of interest where 7" > 0. Let sq,..., s,y denote the locations of



45

the static sensors, where s; = (s;4,5iy)" is the location of the ith static sensor and
ng is the number of static sensors. For the ith static sensor, let there be p; sampling
time points, denoted as 5 ;, for k =1,...,p;, ¢ = 1,...,ng. In contrast, let ng denote
the number of roving sensors. For the jth roving sensor, let there be ¢; sampling time
points. A roving sensor generally has different sampling locations at different sampling

time points and therefore, the sampling locations are denoted by 7y j, .. where

T
r1; = (rijz,T15y) 1S associated with sampling time ¢, ;, for { =1,...,¢;,j = 1,....,ng.
Let ys(t) denote the intensity of a hazard at a given point in time ¢ in [0,7] and a
given spatial location s = (s,,s,) € D. We will denote the samples collected by the

static sensors as ys, (tx;), for k =1,...,p;, i = 1,...,ng and the samples collected by

the roving sensors as yy, (t;), for {=1,...,¢;, j=1,...,ng.

3.2.2 Model specification

To model the static sensor data {ys, ()} and roving sensor data {y,,  (t;)},

we consider a spatio-temporal model

Ys(t) = ps(t) +ns(t) + es(0), (3.1)

where 114(t) is a deterministic mean function, n,(t) is a random spatio-temporal process
with E(ns(t)) = 0 and covariance function (¢, s, t', s") = Cov (ns(t), ns ('), and e5(¢)
is a measurement error process with E(g4(t)) = 0, constant variance o* = Var (g4(t)),
and zero correlation (Cressie and Wikle, 2011). Further, we assume that the spatio-
temporal process 14(t) is square integrable and the spatio-temporal covariance function

of ns(t) at location s € D satisfies

7(t757t/75) = 70(t7t,)7 (32)
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where vy (t,t") = (¢, 80,1, So) is a temporal covariance function at any spatial location
so € D. That is, the temporal correlation function n4(t) and ns(¢') is invariant in space.

The spatio-temporal process 7,(t) has a type of Karhunen-Loeve decomposition

(see, e.g., Gromenko and Kokoszka, 2013):

=3 als)alt), (3.3)

where {p/(t)}72, is a sequence of deterministic orthogonal temporal functions and
{&(s)}72, is a sequence of zero-mean random spatial processes that are uncorrelated
with each other. The decomposition (3.3) represents the spatio-temporal process as
a linear combination of the temporal basis functions ¢,(t) (based on the temporal
covariance function) with the random spatial processes £,(s) as coefficients.

We assume that the spatial covariance function of &,(s) takes on the form

Cov (£(8),&e(s")) = Aepe(lls — 8|5 00),

where A\, = Var (§(s)) is the variance of &(s), pe(-;0y) is a correlation function pa-
rameterized by 6y, and || - || denotes the Euclidean distance. From (3.3), we can write

the spatio-temporal covariance function (¢, s,t', s") of ns(t) as

y(t, 8,1, s ZCOV £0(8), &(8"))pe(t) (1) (3.4)

In the case s = ¢/, (3.4) is reduced to the temporal covariance function

=Y Mpe()pe(t')

This makes clear that {¢s(t)}32, are analogous to the eigenfunctions of vy(t,t') with
the corresponding eigenvalues {A\,}72,. It is based on (3.4) that we will devise a

semiparametric likelihood approach to fitting the spatio-temporal model (3.1) to the
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static and roving sensor data, as well as mapping the true spatio-temporal process of
the hazard us(t)+ns(t), while taking into account the spatial and temporal variability.

Our modeling approach is tailored toward the distinct features of static and
roving sensor data. The spatial index is continuous in the spatial domain and the
temporal index is continuous within the time window. Thus, the sensors can be
placed anywhere in the study area and do not need to be on a regular grid. Further,
sampling can occur at any point in time and no regular time intervals are required.
In addition, our modeling framework is semiparametric and flexible. The specification
of the deterministic mean function p4(t) is nonparametric, while the specification of
the spatio-temporal process is semiparametric in the sense that the spatial covariance
function Cov (&(s),&(s’)) in (3.4) is parametric but the temporal covariance function
Yo(t,t") in (3.2) is nonparametric. The nonparametric specification allows for capturing
different sources for a hazard, some of which are unexpected to be present, or are
present at unexpected time intervals, such as the outside noise near sensor #18 in the
case study.

The class of spatio-temporal covariance functions (3.4) is broad, encompassing
processes that are nonstationary and nonseparable in space and time with the sep-
arable case corresponding to Ay = 0 for £ > 2. These properties can be contrasted
to spatio-temporal kriging (Cressie and Wikle, 2011, p. 321), which in many practi-
cal scenarios require the specification of the spatio-temporal covariance function, and
the time series of spatial process approach (Cressie and Wikle, 2011, p. 336), which

requires the temporal coordinates to be sampled at regular intervals.
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3.3 Statistical inference

3.3.1 Profile likelihood estimation

Parameter estimation by maximum likelihood can be challenging due the large
number of parameters in the model (3.1). Thus, we use the idea of functional prin-
cipal components and develop a profile likelihood approach to estimating the model
parameters (Ramsay and Silverman, 2005). Further, only finitely many eigenvalues
are estimable from a sample covariance matrix in the nonparametric specification of
the covariance function and therefore, it is necessary that for some L < min;{p;} (see

Wahba, 1990, p.5),
L
na(t) = > &uls)pu(t). (3.5)
=1

Let ys, = (ys; (t1), - .-, ys, (£p,)) and ps, = (s, (t1), - - ., ps; (tp;))’ denote the vec-
tor of the data from the ith static sensor at time points ¢, for £k = 1,...,p; and the
corresponding mean vector, for i = 1,... ,ns. Let y,, = (yr,,;(t1;),. .. Yry,.; (tg;5))

and pr, = (pr,,(t1;), .. s b (tg;.;)) denote the vector of the data from the jth

roving sensor at spatial locations 7; ; and time points ¢; ; for [ =1, ..., ¢; and the cor-
responding mean vector, for j = 1,...,ng. Also, let y = (y,,,. .. ,y’sns Yy ,y;,nR )
and p = (pf, ... ,p,;ns TR ,;J,’THR)’ denote the vector of all the observations and

the corresponding mean vector.
Let
diag{A;}5,
diag{b;1}/L,

diag{blmR}?iPl{
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denote a block diagonal matrix, where

o1(tri) - oiltp.) ©1(t15)
Ai = T. and le‘ =
or(tis) - oLty or(ti;)
Let
Ags Ag R)
A ) )
<AR,S Arr
with
diag{Aepe([ls1 — s1:60) Yoy -+ diag{Aepe(||s1 — snll; 00}y
Ags = : :
diag{Aepe(||sn — 51l 00) Yoy -+ diag{Nepe(lsn — snll; 00) }iy

where Agpy(||s —s*||) = Cov (§(s), &e(s*)), \e = Var (&(s)) and py(+) is a spatial corre-
lation function that may be modeled by the Matérn class (Stein, 1999). Note Agg is a
block matrix with blocks corresponding to distinct spatial locations. The submatrices
Asr and Agp are defined analogously; however, for a given roving sensor, each dis-
tinct spatial location corresponds to its own block. This illustrates that the covariance
structure is more complex than a sampling scheme that involves only static sensors,
showing that roving sensors play a role in both spatial and temporal dependence. The
rank of A can be as large as L(ng + ", ¢;).

Suppose 75(t) and €4(t) are Gaussian processes. Then &(s) are Gaussian pro-

cesses and y follows a multivariate Gaussian distribution with mean g and covariance
Y =®AP + oy, (3.6)

where N = »71% p; + > 7, ¢; is the total sample size combining static and roving
sensor data and Iy is the N-dimensional identity matrix.

Estimation of all the components is not always possible depending on the choices

made for the parameters 6, in the spatial correlation function p,(-) and those made for
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the shape of the temporal process ¢,(-). We now develop a profile likelihood approach
to parameter estimation. At initialization, we estimate the mean function ps(t) by
ordinary least squares (OLS) and denote the estimated mean function as fis(t). For
example, a fitted mean function could comprise both a linear model spatially and a

nonparametric model temporally,

K
fis(t) = Bo + Busa + Bysy + Y BrBu(t) (3.7)
k=1

where s = (s;,s,)’, Bi(-) are cubic spline basis functions, K is the number of basis
functions that controls the smoothness of fi, and . are the OLS estimates of the
coefficients. Let fiors denote the vector of [is(t) at all sampling locations and time
points. Let y = y — froLs denote the detrended data comprising ¥s, = (ys,(tix) : k =
L...,p) fori=1,....,ng and g, = (Ur,,(t;0) : L =1,...,q;) for j=1,... ng.
Next, we estimate A\, and ¢,(t) by applying a functional principal component
analysis to the data from the static sensors (Ramsay and Silverman, 2005, pp. 178
182). In this step, we estimate the temporal covariance function 4y(t,t') from vectors
ys, expanded in B-spline basis functions, obtaining a functional estimate of y,, () —

s, (t) denoted by ¥s,(t). Thus

=ng Zysz s ( (3.8)

The estimate of the first temporal function ¢;(-) is the maximizer of

T 1/ / F@®%0(t, ) f (#)dedt’, (3.9)

where || f(t)||c = 1 in the LS norm, = fo t)dt + Cfo fr(t)g"(t)dt is

an inner product, and ( is a tuning parameter that controls the smoothness of the
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estimates. The estimates of the subsequent temporal functions ¢,(-) for £ > 2 are the
maximizer of (3.9) under the constraint of orthogonality of @,(-) and ¢p () (in the

(-,-)¢ sense) for all ¢ < (. Finally, A is estimated by

T T
Ao = / / Qo) Yo (L, t")pe(t")dedt!
0 0

for/=1,...,L.

Unlike static sensors, it is not possible to obtain a full time series of data at a
fixed location 7;; for the roving sensor. Therefore, estimates of ¢,(t) are based on
static sensors only and the values of ¢,(t) for the roving sensors are interpolated by
evaluating the estimates ¢,(t) at time points ¢, ;, for i =1,...,¢;, j=1,...,ng. The
smoothness of ¢,(t) estimates is influenced by the number of basis functions K, the
tuning parameter ¢, and the number of functional principal components L.

Given fi, Ar, and ¢(t), we minimize the negative profile log-likelihood of @ and

o2 defined as

f(8,0%) = —2L£(8,57)
(3.10)

o §'21(0,0%) 7'y + log[det {3, (8, 0%) 7},

where § = y — f1 is the detrended data vector and £,(6,02) = 2(0, 02; A, ¢o(t)) is
the covariance (3.6) parameterized by 0 and o2 and evaluated at A, and ¢y(t). The
solutions to (3.10) can be obtained by using box-constrained optimization to ensure
that all estimated parameters are positive. The optimization in (3.10) is obtained

numerically using the gradients
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i 2y _ gy 2\—1/ i 2N —1 ~
a0, (0,0°) = —9y'%,(0,0°) " ® {89/\(0)}@21(0,0 )y
+tr 21(0,02)‘1@’iA(0)¢> (3.11)
06,

0

Wf(¢9,o—2) = —y'S1(0,0%) g + tr {21(0,0%) 7" }.
o

The solutions to (3.10) can be obtained by using box-constrained optimization

to ensure that all estimated parameters are positive. Further, the coefficients in the

mean function (3.7) are updated by
. . -1
8= <X’E*1X) X3y,

where 32 = 3(0,62; Ay, ¢4(t)) is the covariance (3.6) evaluated at the parameter esti-

mates and X is the design matrix for the covariates in (3.7).

3.3.2 Uncertainty quantification

For static data only, asymptotics were derived in Chu et al. (2016). But to
quantify the uncertainty of estimated parameters and evaluate the overall prediction
accuracy of the models, we employ a leave-one-sensor-out cross-validation procedure.
For each static sensor ¢« = 1, ..., ng, we remove the corresponding data y,,, and fit the
model with the remaining data y~.

To obtain confidence intervals and standard errors for B, é, and 62, a cross-
validated empirical distribution of the respective parameters can be used. Let &
denote a generic parameter estimate. By removing the data for one static sensor at a
time, we obtain ng different estimates &=9 for i = 1, ..., ng. The standard error of &

is obtained by
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In addition, the (1—a)100% confidence interval can be constructed by the (a/2)th and

(1 — a/2)th empirical quantiles from the empirical cumulative distribution function

) =ng ZI{@ <n},

where Z(-) is the indicator function.
To obtain the mean squared prediction error (MSPE), the model fitted without

Ys, 1s used to produce a predicted value gﬁji) and thus,

MSPE = ng Zi{y& (te) — 5,7 (1) Y.

=1 k=1

A similar approach is taken to tune the smoothness of {1 and ¢ estimators by searching
over a grid of K and ¢ values for K and ¢, that minimize the MSPE. It is of interest to
find optimal tuning parameters without resorting to cross validation, although tuning
principal functional components automatically is an open problem by itself (Ramsay

and Silverman, 2005, p.179).

3.3.3 Spatio-temporal Kriging and prediction of spatial loadings

To predict ys,(t) at an unsampled location sy and time ¢y, we use

A

Jso (to) = fusy (t0) + Tlsg (to) = fiso (t0) + Zag.1 X" (y — f2) (3.12)

where 3, 1, = ®(to) A(s0)®(Lo), B(to) is ® evaluated at to, and A(sq) = <Aso,s ASO’R) ,
with A, s = {diag{Aepe(l|so—sill; Oc}i1 }i2), and Agy r = {diag{ Aepe(llso—70; 15 Oc}ii }iy 52, -
Equation (3.12) is used over a fine spatial grid to generate the hazard maps over time.

The prediction standard error is given by d,(ty), where

2 (to) = +ZAM to) — 30, 1 S a0

A

+ (X - Xli_lgso,to),(xlz_lx)_l(X - Xli_lSSOvtO)’
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and x are the covariates of in (3.7) evaluated at sy and t.

We can also predict the spatial loadings &,(s) using conditional expectations, in
an approach similar to Yao et al. (2005) for non-spatial data. Let sj,..., s, € D be
the unsampled locations of interest. The fth loading evaluated at locations sj, ...,
sk, is a linear predictor of (&(s}),...,&(s),)). Assuming {&(s7), ..., &(sk,) 2, and
es(t) are jointly Gaussian, we have

~

(Ee(s); - Gulsnn) = E((Els), - &ls3)) )

where EAJEW is the plug-in estimate of 3, ., and 3, , is the sample covariance of
(&u(s7), ..., &(st,)) and y, given by

ee(ti)pe(llst — s1ll:00) - ©eltguy nn)Pe(l|ST — T nn 1 60)
Egby — )\é . S .

po(ti)pellsy, — s1ll;00) - ella, me)pell sy, = T, ne 5 Or)

and 2, y and gt are as defined in Section 3.3.1.

3.3.4 Inhomogeneous variances

The model given in (3.1) assumes that the measurement error variance is the
same for the static and roving sensors. In practice, however, this assumption does not
always hold. In the following we extend the data model to accommodate the situation
that the measurement error variance for the static sensors is different from the roving
Sensors.

Consider model (3.1) again

Ys(t) = ps(t) +ns(t) + es(2), (3.13)
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but with measurement error variances Var (g4(t)) = o3 for static sensors and Var (g4(t))
o% for roving sensors. The model (3.13) will be referred to as the inhomogeneous vari-
ance case. The model (3.1) is a special case where 03 = of and will be referred to as
the homogeneous variance case. In the inhomogeneous variance case, the covariance

is a general case of (3.6) and the estimation algorithm is modified by using
Y = ®A® + 03Ds + o} Dg, (3.14)

where Dg, Dy are diagonal matrices with diagonal entries equal to 1 for static and
roving sensors, respectively, and 0 otherwise. The model (3.13) allows the fusion of
the two sources of data with varying degrees of spatio-temporal resolutions and draw-
ing inference about the true underlying process us(t) + ns(t). The profile-likelihood
approach to parameter estimation is modified as follows. The data are detrended with
initial estimates of p using (3.7) and the A, and ¢,(t) terms are estimated using func-
tional principal component analysis over the static sensors as before. Given f, A, and

$(t), we minimize the negative profile log-likelihood of 6, 02, and ¢} defined as

f(07 U%? 012{) = _2£(07 Ug? 0-12%> = g,22(07 Ug? 0_123)_1@
(3.15)
+ log[det{32(0, ag, 0%{)}] + Nlog(2m),

where § = y — f1 and 25(0,02,02) = 2(0, 02, 0%; A, ¢o(t)) given in (3.14) is param-
eterized by 6, 02, and o3 evaluated at A, and ¢y(t). The coefficients in the mean
function are updated by

N o -1 .

8= (X’E‘1X> X3y,
where 3 = (6, 02,0%; A, §(t)) and X is the design matrix for the covariates in (3.7).

The optimal values of 0,02, and o3, given f, 5\5, and ¢(t), are obtained analo-
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gously with the gradient given by

0
00,

00,

_f(e OSa UR) _y 22(0 US? GR) 1(1), { A(@)} Q)EQ(Ov 0’%, U%{)_lg

9] . _ 1
Wf(@,o%,alz{) = _y/22(970-§=0-}2{> 1DSE2(070-§7012{) 1y
I3 (3.16)

+ tr {22(0, ag, Jﬁ)_le} ,

o
80%

(8,05, o) = —§'%2(0, 05, 0%) DrXa(6, 05, 0%) 'y
+tr {32(0,03,01) 'Dr} .

This computation can be potentially more expensive than evaluating (3.11) be-
cause it requires explicit evaluation of 39(0, 02, 0%)~! in order to calculate the partial
traces tr {39(0,03,0%) ' Ds} and tr {X5(0,02,0%) ' Dr}. In the homogeneous vari-
ance case, this trace can be calculated faster using only the eigenvalues of (6, 0?).

The algorithms in Sections 3.3.1 and 3.3.4 are implemented in C++ and in-
corporated into R using the Repp (Eddelbuettel and Frangois, 2011) and RcppEigen
packages (Bates and Eddelbuettel, 2013). A generic implementation of the algorithm

is available in www.github.com/guiludwig/STDF, with additional examples in the

documentation.

3.4 Case study: spatio-temporal occupational hazard map-
ping
3.4.1 Application and data

A study was conducted in the spring of 2013 in an engine test facility located

in Colorado to evaluate occupational exposure (Lake et al., 2015). The facility has
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two rooms, both rectangular in shape (14.8 m by 6.5 m and 14.8 m by 33.7 m, re-
spectively), separated by a sliding door and encompassing a combined area of about
595 m?. A floor plan is shown in Figure 3.1(a). In one experiment, for example, an
active engine, located in the upper left corner of the facility (black square in Fig-
ure 3.1(a)), was operating between 10:00:00 am and 11:10:00 am, while the sliding
door was open. Measurements of noise intensity were collected by 18 static sensors
and 2 roving sensors. The locations of the static sensors are given in Figure 3.1(a),
whereas the pathways of the roving sensors are shown in Figure 3.1(b). The static
sensors started collecting data at 9:45:00 am and ended at 11:23:20 am when they
were turned off. The operation of the first roving sensor started at 10:28:45 am and
that of the second roving sensor started at 10:52:45 am. Both roving sensors were in
operation until the end of the experiment, but not continuously. Static sensor mea-
surements were collected at every minute, while roving sensors measured hazard levels
with a resolution of 20 seconds. There are thus 100 sampled points for each of the 18
static sensors, 105 sampled points for the first roving sensor and 72 sampled points
for the second roving sensor, for a total of 1977 observations.

The measurements sampled over time are plotted in Figure 3.2. For each static
sensor, a time series of noise intensity is plotted. The static sensors near the active
engine in the upper left corner of the facility had higher intensity (gray solid lines)
than those further away (dashed lines). One static sensor (#18) was far away from the
active engine but had high noise intensity, due to an unexpected noise source outside
the facility (black solid line). The roving sensors are also displayed as filled circles
(sensor 1) or open circles (sensor 2).

The static sensors all have dense sampling points in time and thus relatively
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Figure 3.1: (a) Floor plan of the engine test facility. The black rectangle in the
upper left corner is the source of noise, white rectangles are offices, gray rectangles are
inactive engines, and dark gray rectangles are floor openings. The locations of static
sensors are numbered from 1 to 18. (b) Pathway of the first roving sensor is drawn in
open circles. The pathway of the second roving sensor is similar thus omitted.

complete profiles of the temporal processes at the sampling locations (Figure 3.2).
However, the spatial coverage by the static sensors is limited to the 18 sampling
locations where they were installed (Figure 3.1(a)). In contrast, each roving sensor
has a wider spatial coverage (Figure 3.1(b)), but the information at any given location
is sparse in time (Figure 3.2). The sampling time points for the roving sensors are also

irregularly spaced, with occasional breaks that vary from about 20 seconds to about

5 minutes.
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Figure 3.2: Observed noise intensity over time from 9:45:00 am to 11:23:20 am. Gray
solid lines are time series for static sensors near one noise source (#1 through 7, and
17). Black solid line is near the secondary noise source (#18). Dashed lines are for
the remainder static sensors. Filled and open circles are samples taken by the first
roving sensor that started at 10:28:45 am and the second roving sensor that started

at 10:52:20 am, respectively.

3.4.2 Current practice of hazard mapping

In a recent review of hazard mapping approaches, Koehler and Peters (2013)
noted that relatively simple methods have been used to construct maps, often av-
eraging the sensors in time before employing a spatial interpolation technique, or
interpolating across space for a fixed time and averaging the maps. We show static
maps commonly obtained by industrial hygienists for the case study in Figure 3.3, af-
ter averaging over all data in time at each unique sampling location. The map labeled
“Roving” is based on kriging estimates and uses the roving sensors exclusively. It
corresponds to early practice with DRIs and still is the most common approach. The

map labeled “Roving and Static” incorporates both sources of data. The aggregated
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Figure 3.3: Static maps of the noise intensity obtained by kriging using the roving
sensor data only (left), the roving and static sensor data (center) and the static sensor
data only (right), averaging data at the same location in time.

map gives equal weights to observations available in the roving path (only one or two
data points) and the ones from the static sensors (a hundred observations over the
data collection period). Both maps tend to show local features that are not necessarily
informative. In addition, the map labeled “Static” uses only static sensor data. It
loses the local features provided by roving sensors, due to a fairly limited spatial cov-
erage. All these static maps naturally fail to capture the evolution of the hazard level
in time and, as we will demonstrate, misrepresent the intensity of a secondary noise
source in the southeastern part of the facility. Health effects of short duration but
high-level exposures are unclear, and the static maps in current practice have limited

capacity for studying these events.
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3.4.3 Model fitting

Before fitting an inhomogeneous variance model for the noise data, we selected
the tuning parameters by a leave-one-sensor-out cross validation approach. More
specifically, we considered a grid of values for the number of deterministic spline
basis functions K, the number of temporal principal components L, and the principal
components smoothing parameters (, and searched for a minimizer of the estimated
mean squared prediction error (MSPE).

A preliminary step in the model fitting is to determine the number of basis func-
tions K, the tuning parameter (, and the number of functional principal components
L. We employed the leave-one-static-sensor-out algorithm to estimate the MSPE.
More specifically, we considered a grid of values for the number of deterministic spline
basis functions (K = 4, 8,12, 16 and 32), the number of temporal principal components
L = 2,3,4, and the principal components smoothing parameters ¢ = 0, 1, 10, 100, 103,
and 10%. The results for the inhomogeneous variance case are given in Table 3.1. It
also displays estimates 62 and 6%. There is a modest improvement from incorporating
a larger L number of components, particularly at lower smoothness values for both
the deterministic mean function and the random spatio-temporal effects, with dimin-
ishing returns. The deterministic spline smoothness is optimal at mid-range values
for K (either 8 or 12) and the random effects do not need to be smoothed (a value of
¢ = 0 seems best). The minimum MSPE corresponds to K = 12, ( = 0, and L = 4.
However, we decided to go with L = 3 functional components, as the corresponding
MSPE (11.8) is close to the minimum (11.2).

There are two remarks to be made. First, the choice of smoothing reflects on the
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estimates of 02 and 0. The estimate of 03 changes the most as a function of the tuning
parameter ¢ when ¢ > 102. Second, the spline temporal trend and principal functional
components temporal effects compete with each other. For example, consider the
MSPE when L = 3 for Table 3.1. A small K minimizes MSPE when ( is small, but
conversely, allowing 32 basis functions for the trend spline requires more smoothing of
the functional component (¢ ~ 10*) to minimize the MSPE.

We tuned the parameters for smoothness in the homogeneous variance case sim-
ilarly. In this case, the estimated MSPE values were close, so we decided to keep
the same choices for K, ( and L for comparison. We also fitted the model without
using roving sensors at all and kept the choices of tuning parameters and number of
components. The selected parameters are L = 3, K = 12 and ( = 0. The estimated

deterministic component is
fis(t) = 83.64 — 0.40s, + 0.31s, + S(1),

where the spline term S(t) is shown in Figure 3.7(a). The estimates of the spatial
process variances are A= 13.20, Ay = 8.07, and 5\3 = 0.13. The estimates for spatial
range parameters, assuming an exponential spatial covariance model py(||s;—s;||; €¢) =
exp{—||s; — si||/0c}, for £ =1,2.3, are 0, = 22.34, 0, = 10.83, and 03 = 40.34. The
nonparametric estimates of the temporal functions ¢,(-) are shown in Figure 3.7(b).
The estimated measurement error variances are 63 = 1.49 and 65 = 1.05. The
parameter estimates for the homogeneous variance case and for the case in which only
the static sensor data are used are given in Table 3.2. The inhomogeneous variance case

is denoted by STDF (which stands for spatio-temporal data fusion), the homogeneous

variance case by STDFh, and the scenario with static sensors only by STDF*.
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A series of dynamic hazard maps for the predicted noise intensity using our
STDF model in Figure 3.4 show overall low intensity levels at the beginning and near
the end of the study (panels 09:50 am and 11:20 am). They identify peaks in most
time transects around the spatial coordinates s, = 2.5 and s, = 35, where the noise
source is located. The noise intensity decreases as the readings are made further away
from the noise source. In addition, a secondary noise source located near sensor #18 is
captured (see also Figure 3.1(a)). The standard errors of the predicted noise intensity
across time and space are plotted in Figure 3.5. As expected, lower standard errors are
found near the static sensors and along the trajectories of the roving sensors, shown
in Figure 3.1. The prediction standard errors are larger in areas without sensors at
the end of the experiment (at around 11:20 am). This corresponds to the time period
in which the main source of noise was turned off, and the secondary noise source
increased in intensity, shown in Figure 3.2.

Figure 3.6 maps the estimated (&(s?),...,&(s%)), ¢ = 1,2,3 over a fine grid
of spatial locations s, ..., s, with each ¢ loading standardized to have zero mean
and standard deviation one. The temporal components ¢,(t),¢ = 1,2, 3 are shown in
Figure 3.7(b). The interpretation of the the temporal functions ¢,(-) can be made in
light of Figure 3.2, as well as the Karhunen-Loéve expansion based on (3.5). The first
temporal component ¢, is nearly constant around 1 (Figure 3.7). The corresponding
&,(s) shown in Figure 3.6 shows higher noise intensity values in the northern room, and
near the secondary source around sensor #18. For the second temporal component,
since @9 is negative until approximately 11:10 am, it subtracts the ég(s) effect from

él(s), but after 11:10 am it adds the effect of the secondary noise source. Thus, in the

dynamic hazard maps (Fig. 3.4), the noise intensity is higher in the northern room
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Figure 3.4: Dynamic hazard maps with contour lines obtained from the spatio-
temporal data fusion (STDF) method; each panel corresponds to a point in time

from 9:50 am to 11:20 am at 10-minute intervals.

before 11:10 am, and afterwards the noise intensity is higher near sensor #18. The
third temporal component @3 is associated with a much smaller variance (;\3 =0.13),
and does not impact the hazard map as much as the first two components. The roles
of @3 and &(s) seem to be compensating & (s) and &(s) at the very beginning and the
very end of the experiment, in order for the hazard map to be closer to background
noise.

The standard errors for the parameter estimates are obtained via cross validation
by leaving one sensor out at each time, as detailed in Appendix 3.A, and are shown
in Table 3.2. While the main objective of Table 3.2 is to quantify the uncertainty

regarding the parameter estimates, we note that the large range parameter estimate
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Figure 3.5: Prediction standard error maps for the dynamic hazard maps given in
Figure 3.4; each panel corresponds to a point in time from 9:50 am to 11:20 am at

10-minute intervals.

05 reflects a relatively weak spatial dependence. Consequently the standard error
for 63 also might be inflated by static sensors within a certain radius of each other
being removed during the cross-validation step. Table 3.2 also displays how the roving
sensors affect the estimates of the spatial dependence coefficients. When only the
static sensors are used, the range parameter estimates 0y and ég are similar. However,
when the roving sensors are included, the estimate 65 becomes quite a bit smaller
than 65 and is more informative, in the sense that the spatial effect of the secondary
noise source becomes more prominent owing to the roving sensors near this secondary
source toward the end of the experiment. This illustrates that the inclusion of roving

sensors adds information about the spatial dependence at finer scales.
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Figure 3.6: Estimated (£,(s?),...,&(s%)),¢ = 1,2,3. Each ¢ loading is standardized
to have zero mean and standard deviation one. The associated variability coefficients
are \; = 13.20, Ay = 8.07 and A3 = 0.13.

In addition to maps displaying the intensity of a hazard, an informative repre-
sentation of the hazard can be made by plotting the probability of a hazard exposure
exceeding a threshold. The marginal probabilities can be obtained by computing the
z-scores using the hazard map and standard error maps, and evaluating the proba-

bility of exceedance. To illustrate, Figure 3.8 shows the probability that the hazard

levels exceed 85 dB, with contour lines at 0.95.

3.4.4 Scientific implications

Both static (Figure 3.3) and dynamic (Figure 3.4) hazard maps capture the high
noise intensity in the northern room near the working engine. However, the dynamic
hazard maps also show that the average intensity of hazard exposure in the southern
room increases during the period between 10:00 am and 11:00 am, when the engine in
the northern room is turned on. Further, the outside noise source is detected in the

southeastern corner, after 11:10 am. In particular, the intensity levels exceed 85 dB,
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Figure 3.7: (a) Deterministic effect for the temporal component estimated with a
spline function (b) ¢,(t), £ = 1,2,3 components, corresponding to a random effect in
the temporal component.

which is generally viewed as a harmful level for exposures longer than 8 hours. While
the static maps do detect a small noise peak near the same location, the predicted
intensity levels are understated.

The problem of interpolating hazard maps in time and space from discrete sam-
pled observations was discussed in Koehler and Peters (2013). While kriging is well
accepted for spatial interpolation in the occupational hygiene literature, often the
observations or the hazard maps are averaged in time to produce estimates at unsam-
pled time points and thus the temporal aspect of the data is ignored. To compare
our method with the existing approaches, we consider kriging using the roving data
only and kriging while incorporating roving and static sensor data, both averaging the
observations in time. We also consider fixed-time universal kriging (UK), fixed-time
thin-plate spline (TPS), and fixed-time simple linear regression on the spatial coordi-

nates (LM). By fixed-time we mean that a time point is fixed and the spatial map is
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Table 3.2: Parameter estimates, and cross-validated standard errors (in parenthe-
sis). STDF denotes spatio-temporal data fusion for the inhomogeneous variance case,

STDFh for the homogeneous variance case, and STDF* for only the static sensors.

Coefficient STDF STDFh STDF*
By 83.64 (4.52) | 83.53 (4.49) | 82.23 (3.59)
B, 20.40 (0.08) | -0.40 (0.08) | -0.38 (0.11)
B, 0.31 (0.04) | 0.31 (0.04) | 0.31 (0.04)
0, 22.34 (2.93) 22.20 (2.95) | 13.17 (1.83)
0, 10.93 (2.13) | 12.08 (1.88) | 30.99 (2.57)
04 40.34 (11.15) | 40.34 (11.10) | 32.56 (8.42)
o 1.49 (0.16) |  1.48 (0.15) | 1.46 (0.12
o2 1.05 (0.29) - -

constructed for the data corresponding to the time transect selected, thus preserving
some of the temporal structure from the data.

To compare the methods globally, the MSPE values for our spatio-temporal data
fusion method are obtained using the leave-one-sensor-out cross-validation described
Appendix 3.A. We generate prediction maps at every time point in which the static
sensors were sampled, and averaged the values across space and over time. When
including the roving sensors, the inhomogeneous variance case (STDF) has an MSPE
of 11.82, and the homogeneous version (STDFh) has an MSPE of 11.66. When using
only the static sensors (STDF*), the MSPE is 14.56. The MSPE for the static map
using roving sensors only is 37.42, and the MSPE for the static map incorporating
roving and static sensor data is 38.33. This shows a clear advantage of our method
over the current practice of using static maps. For the other alternative approaches,
the MSPE for fixed-time universal kriging (UK) is 24.4, thin-plate spline regression
(TPS) is 14.99, and simple linear regression model (LM) is 25.14, all of which are

outperformed by our method. We observe that the homogeneous variance case gives
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Figure 3.8: Probability of noise exceeding 85 dB map; darker areas indicate higher
probability, and the contour lines at 0.95 probability are included. Each panel corre-
sponds to a point in time from 9:50 am to 11:20 am at 10-minute intervals.

similar predictions to the inhomogeneous variance case.

In Figure 3.9 we focus on a small-scale example from the dataset, to illustrate
the possibility of detecting short duration hazard intensity peaks. The static sensors
are sampled every minute (Section 3.4.1) and thus the measurements are available
between 11:04 am and 11:05 am. For the UK and TPS generated maps, we use data
from 11:04 am and 11:05 am, and interpolate linearly the values from the maps at
times 11:04:20 and 11:04:40. We can see in Figure 3.9 that UK maps do not capture
the secondary noise source in the southeastern part of the facility. This is because
the method underestimates the range of spatial dependence, and produces prediction

that resemble a plane except where the static sensors are located. On the other hand,
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the TPS method over-smooths the data, losing local features such as the sharper
distinction between the northern and southern rooms in the facility. We omit the
linear model estimates, which are planes only. In addition, Figure 3.10 shows the
corresponding standard error maps for each method in Figure 3.9. We observe that
the STDF maps generally have lower standard errors than those of UK. The TPS only
has comparable standard errors when very near the static sensors, but otherwise much
higher standard errors than either STDF or UK.

A final remark is that we can consider cases in which the spatial covariance
function is not exponential. For example, we repeated the analysis using the Matérn
class of covariance functions, with known smoothness parameter v = 2.5. The resulting
hazard maps (not shown) are similar except for slightly smoother contour lines. We
anticipate that our method is robust to the choice of a covariance function in the

Matérn class.

3.5 Discussion

In this chapter, we have developed a spatio-temporal static and roving data fu-
sion model, with each data sensor having potentially different instrument variances.
The approach to model fitting and statistical inference has been applied to produce
hazard maps that capture dependence across space and over time in indoor environ-
ments. Modeling the spatio-temporal dependence structure allows the hazard maps
to capture features that are missed by the current practice in occupational hazard
assessment. Furthermore, our approach enables continuous-time prediction of hazard,
which the existing approaches are unable to produce.

With the semiparametric model specification, our method is able to detect unex-
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pected hazard sources that occur sporadically during a study. A sudden fluctuation of
intensity, such as the secondary noise source in the southeastern corner of the facility,
are undetected or underestimated when using current practices but can be detected
by our method. Moreover, health effects of short duration but high-level exposures are
unclear, and our method provides a way to better capture such transient exposures.

Cross validation shows that our methodology outperforms the traditional meth-
ods in the scientific application, a conclusion that is corroborated by the simula-
tion study given in Appendix 3.A. The simulations have also demonstrated that our
method is robust to different instrument variances, while the traditional approaches
tend to provide less accurate prediction.

While the height of the sensors is not accounted for directly, the model with het-
erogeneous measurement error variances may accommodate possibly different heights
for different sensors. It would be interesting, however, to examine this third dimen-
sion more closely, as well as to consider three-dimensional hazard maps when data are
collected at different heights (see, e.g., Tracey et al., 2014).

Other covariance modeling allows for nonseparability, although stationarity in
time is generally assumed (Gneiting, 2002; Ma, 2003; Quick et al., 2015). Stein (2005)
proposed models that are asymmetric in time, allowing for different smoothness de-
grees in space over time. It may be of interest to extend such models and develop
estimation methods for fusion of static and roving sensor data. For datasets of much
larger sample size with more sampling locations and /or time points, the proposed pro-
file likelihood approach would need to be improved for it to be more computationally
feasible. It may be helpful to utilize some form of approximation, such as blocking or

tapering, in the covariance matrix inversion. We leave this for future research as well.
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Figure 3.9: Comparison of STDF hazard map with maps created by universal kriging
(UK) and thin-plate splines (TPS) methods. For the UK and TPS, data are from
11:04:00 and 11:05:00, and interpolated linearly between 11:04:20 and 11:04:40. Black
points mark the static sensor locations, while white points mark the roving sensor

locations at the corresponding time.
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Figure 3.10: Comparison of standard errors of STDF hazard maps with standard error
of universal kriging (UK) and thin-plate splines (TPS) methods. For UK and TPS,
data are from 11:04:00 and 11:05:00, and interpolated linearly between 11:04:20 and
11:04:40. Black points mark the static sensor locations, while white points mark the

roving sensor locations at the corresponding time.
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Appendix

3.A Simulation study

Our purpose in this simulation is to study the quality of mapping, the effect
of fusing roving and static sensor data in terms of prediction, and to compare our
methodology with some of the existing approaches (Koehler and Peters, 2013). There
are two models for the deterministic component p4(t), three models for the covariance
functions of n,(t) and six configurations of sensors: a combination of either 6 or 18
static sensors, and either 0, 1 or 2 roving sensors. The location of the sensors (roving,
static and those reserved for MSPE calculation) are displayed in Figure 3.A.1; the
static sensor and prediction sensor locations were once generated randomly, but fixed
across independent experiments. We included three scenarios for the measurement
error variances (03, 0%) of the static and roving sensors: the first in which they are
equal, a second in which 0 = 02/4 and a third in which 6% = 40%. Each sensor
was observed for 60 units of time with complete observations for all sensors, and each
experiment was replicated, independently, 200 times.

In all scenarios our STDF method was fitted with the same tuning parameters.
The number of basis functions used for the deterministic mean function is 3, and

the number of basis functions for the random spatio-temporal effects part is 10, with
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Figure 3.A.1: Sensor configurations used in the simulation. (a) and (b): Static sensors,

either 6 or 18. (c) and (d): Roving sensors, either 0 (no picture), 1 (top) or 2 (bottom).

(e): Static points for which the mean squared prediction error (MSPE) was calculated.

smoothness parameter ( = 0. We also evaluated the effect of fitting models with

homogeneous and inhomogeneous variances, the former of which is denoted by STDFh.

The mean functions used were either linear in time and space, with

pa(s,t) =40 — s, +s,/2 —t/5,

or linear in space, nonlinear in time, with

pp(s,t) =40 — s, +s,/2 — t/5 + 8sin(27t/60).

We allowed the deterministic time to be (potentially) nonlinear by including a spline

term in the least squares detrending step.

For the spatio-temporal components, we used £4(t) ~ N(0,1%), e,.(t) ~ N(0,7,1?),
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Figure 3.A.2: Left: Comparison of MSPE averaged in space and time in simulation
study; x-axis is labeled according to static-roving sensor combination; strips in the
top part of the panel indicate the model fitted, and strips in the right part of the
panel indicate which deterministic mean and covariance model was used. In all cases,
0% = oZ. Right: Scatterplot of the MSPE results for the STDF model and the STDFh
(STDF homogeneous) model. The observed ratio of MSPEs is 0.9950 on average.

v = 1/4,1,4, and ns(t) is a Gaussian process with mean 0 and three choices of co-

variance function o(s,t,s’,t'):
(I) Independent case, in which 7(s,t) = 0.

(S) Spatially correlated case, in which o,(s,t,s",t') = U%B*HS*SIH/(’Sé(t = t'), where

0 is the indicator function.
(ST) Spatio-temporal case, with o, (s,t,s',t') = age_”s_s/||/986_|t_t'|/9t.

The traditional methods considered here were universal kriging (UK), thin-plate

spline (TPS), and linear regression (LM) at transects in time. More specifically, we
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Figure 3.A.3: Left: Comparison of MSPE averaged in space and time in simulation
study; x-axis is labeled according to static-roving sensor combination; strips in the
top part of the panel indicate the model fitted, and strips in the right part of the
panel indicate which deterministic mean and covariance model was used. In all cases,
0% = 0.2502. Right: Scatterplot of the MSPE results for the STDF model and the
STDFh (STDF homogeneous) model. The observed ratio of MSPEs is 0.9994 on

average.
fix points in time and fit the traditional methods to the corresponding observations.
Predictions are made based only on the observations at the same time point. The first
two were fitted using the default specification in the fields R package (Nychka et al.,
2014). That is, for each fixed time, each of the methods was applied. The reported
mean squared prediction errors (MSPE) are averages in time.

The MSPE results are compared across models in Figures 3.A.2, 3.A.3 and 3.A .4,
with the former corresponding to the case when 03 = 0%, the second with the case

when 0.250% = o} and the latter when 403 = 0. The results show that the STDF
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Figure 3.A.4: Left: Comparison of MSPE averaged in space and time in simulation
study; x-axis is labeled according to static-roving sensor combination; strips in the
top part of the panel indicate the model fitted, and strips in the right part of the
panel indicate which deterministic mean and covariance model was used. In all cases,
o = 402. Right: Scatterplot of the MSPE results for the STDF model and the STDFh
(STDF homogeneous) model. The observed ratio of MSPEs is 0.9471 on average.

method outperforms the traditional methods in basically all scenarios. The results
also reveal that our method is robust when roving sensors have variance greater than
the static sensors (Figure 3.A.4). The STDF method has similar performance for the
homogeneous and inhomogeneous specifications when the measurement error variances
are the same for static and roving sensors. The inhomogeneous case performs better

when the roving sensor variances are larger, as shown in the right scatterplot panel

for Figure 3.A.4.
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Chapter 4

Discussion and future work

4.1 Scalability and computational issues in data fusion prob-
lems

An important question about the spatio-temporal data fusion problem is of scal-
ability. It is possible to envision applications in which the hazard maps must be ob-
tained very fast, perhaps in real time, and using massive datasets. While the approach
described in Chapter 3 does have a fast implementation in the optimization step, it
still is a bottleneck for the procedure. Research for scalable spatio-temporal models
often involves approaches such as low rank approximations and tapering (see, e.g.,
Sang and Huang, 2012). On the other hand, Stein (2014) criticizes low rank approx-
imations of spatial covariance functions for their tendency to smooth out important
spatial features of the data. We believe our spatial-temporal data fusion approach can
be improved in terms of theory-driven computational efficiency, while being insulated

from Stein (2014)’s criticism due to the spatially rich coverage of the roving sensors.
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4.1.1 Advantages and issues with static data only maps

Consider the case where only static data is collected. The model for ¥ is

Y =®AD + oy, (4.1)

where N = Y%, p; is the total sample size for static sensor data, ng is the number of

static sensors, and I is the N-dimensional identity matrix. Here ® is a (L -ng) x N
matrix, and A is (L - ng) x (L - ng). We refer to the definitions in Chapter 3. We
observe that A is of rank no greater than L - ng (exactly L - ng as long as all static
sensors have distinct locations and no 6, = 0,¢ = 1,..., L) and since the number of
static sensors is small, then (L -ng) < N. To show the A structure explicitly, if we

let L =2 and ng = 2, then

At 0 Aip(|ls1 — 82l 61) 0
A2 0 A2pa(||81 — 825 02)
A= 4.2
" 0 (4.2)
Ao

As such, it is clear that if we consider only static sensors, A will be necessarily a
low rank matrix. While this is desirable, for instance, as it allows the fast evaluation
of ¥, on the other hand the spatial smoothing from low rank models discussed in
Stein (2014) becomes present.

Stein (2014) considered matrices of structure
> = A'BA +¢°D, (4.3)

where B is low rank (or rather, low dimensional with complete rank) and D is sparse
(of complete rank). It is possible to obtain X! explicitly by using Sherman-Morrison-

Woodbury formula.

S '=02D '~ oD A (B! + 0 ?AD'A’) T AD!



82

which is (computationally) easy to calculate since D is sparse and B is low dimensional.
The cost of evaluating D~ is negligible so the cost of evaluating 3! is roughly the
same of evaluating B™!. Stein (2014) argued that for matrices of form (4.3), if we

consider r, = rank(B), three cases of interest arise:

1.7, =Dn+0O(1)asn —» oo for 0 <D < 1.
2. 1, =Dn’ +0(1)asn —ocofor D>0and 0 <6 < 1.

3. 1, =719 as n — oo (i.e. constant).

Case 1 is not of a low rank smoother. Cases 2 and 3, however, do show worse
performance (in terms of Kullback-Leibler divergence) in comparison to using an in-
dependent blocks approximation, for massive datasets.

For the model (4.1), with static sensors only, first assume we have fixed L. If we
increase sampling in time but keep the number of static sensors constant, there is a
trade-off: our model is scalable as long as the number of static sensors is small, but we
fall into Stein’s worse case scenario. However, if the number of observations in time
is fixed and we increase the number of sensors, then the model belongs to Stein’s case
1. However this makes the model harder to scale (since the dimension of A is L - ng).
It is also unrealistic in the context of the application.

A further complication is that we are tuning L via cross-validation. It is an open

problem to determine the large sample behavior of the cross-validation choice of L.
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4.1.2 Roving and static data

Having roving sensors in the model changes matters substantially. Now, we have
that

Y = ®A® + 03Ds + 0} Dr, (4.4)

where N = 3775 p; + > 7F g; is the total sample size combining static and roving
sensor data and Iy is the N-dimensional identity matrix. While 02 Dg + o0& Dy is still
a sparse matrix (it is diagonal), A is now fairly complicated, with rank no greater
than L-ng+ L Z?:Rl g;- This happens since a static sensor has a different location for

each point in time. Considering the example in (4.2), let now also ng = 1 and ¢; = 2;

observe that

A0 Aipi(|[s1 — saf; 61) 0 Apr([ls1 = riall; 1)
A2 0 Aapa(|81 — 825 02) 0
A1 0 Mpi(l[s2 = riall; 61)
Ao 0
A= N
0 Aipa(l[s1 = raall;01) 0
Aapa(||s1 — 7‘1,1||;92) 0 Y i 7“2,1| ;02)
0 AMpi(lls2 — 721l 61) 0
) Aapa(||82 — 7“1,1||;92) 0 Aop2(||s2 — 7“2,1| ;02)
0 Apr([|[rer — r2all; 01) 0
A2 0 Aopa(|lr1r — r2al; 02)
A1 0
Ao

We can argue that A rank is based on the number of unique locations visited
by the roving sensors. It is clear that rank(A) increases also as a function of time.

This can be developed to formalize the statement that “including more roving sensors
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increase the spatial coverage of data”. Under some mild assumptions — we conjecture
that having space-filling movement patterns for the roving sensors within the region
of interest could be sufficient — it might be possible to show that the method belongs
to case 1 of Stein’s taxonomy. We also conjecture that the constant “D” in Stein’s
asymptotics is, in this case, given by the proportion of roving sensor data in the
dataset. However, this comes at the cost of (easy) scalability, since Sherman-Morrison-
Woodbury formula does not help in evaluating 31 if the rank of A is large. To
determine an appropriate method for scalability of the data constitutes a question for

future research.

4.2 Spatial confounding in non-Gaussian regression models

4.2.1 Spatial confounding in generalized linear models

Spline-based semiparametric generalized linear models (GLM) were discussed in
Green and Yandell (1985), O’Sullivan et al. (1986) and Green (1987). In generalized
linear models, we have observations y(s) = (y(s1), ..., y(s,)) of some random variable

with an exponential family distribution at locations sy, ..., s,, such that

9(E(y(s))) = x(s)'B +n(s) (4.5)

where g¢(-) is a link function, x(s) = (z1(s),...,z,(s)) is a vector of covariates with
coefficients 3, and 7(s) is a spatial random process that is not observed directly.
Semiparametric generalized linear models can be fitted by optimizing the penalized

log-likelihood function

(B, 1;y,X) + AJIf]
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which is analogous to (2.5), in the regression context. We believe that in the context
of semiparametric generalized linear models, spatial confounding can be challenging
due to the non-linearity nature of the data spatial dependence.

4.2.2 Spatial confounding in spatial point processes regression

Another extension of Chapter 2 to be pursued is to spatial point processes. From
Gaetan and Guyon (2010), let D be a closed subset of R?. Let
r=A{x,29,...}, z; €S;
x is a locally finite subset of points if x N B is finite for any Borel set B.

Definition 4.1 (Point process). A point process on D is a mapping X from a proba-
bility space {2, B, P} to the set Np of locally finite configurations such that for every
bounded Borel set B, the number of points N(B) of X falling in B is a random vari-

able.

Denote the number of points within B C D by N(B). The first order moment

measure u(B) is

u(B) = E(N(B)) = E (Z 1y e B})

yey

We assume the existence of an intensity function A such that

w(B) = / A(s)ds.
B
Definition 4.2 (Poisson process). Assume that

e For any bounded Borel set B C D, p(B) € (0,00) and N(B) ~ Poisson(j(B)).
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e The joint density f of event locations yi,...,¥n, conditioned on N(B) = n,

satisfies
n

f1,- - yalN(B) = n) o< [ [ Av2)

i=1

then Y is a Poisson process on D with intensity function \.

Regression models for inhomogeneous Poisson point process are based on the

log-intensity function

log{A(s)} = Bo+ D _ Bya;(s)

j=1
where z;(s), j = 1,...,p are covariates, and [y, ..., [, are parameters. Let y =
{y1,...,yn} be a Poisson process realization on a window W. The log-likelihood for

the Poisson process where A is a function of parameters 3 is

(8) = 3 log Al ) - /W A(s; B)ds

An algorithm by Baddeley and Turner (2000) can be used to obtain ,é The
algorithm is based on the Poisson GLM model. However, homogeneous Poisson point
processes correspond to the hypothesis of complete spatial randomness. That is, the
locations are distributed independently. While inhomogeneous Poisson point processes
offer some modeling flexibility when covariates are available, often spatial processes
show clustering behavior that cannot be entirely explained by the covariates alone
(see, e.g., Moller and Waagepetersen, 2003). Here, we will consider a class of clustering

processes called the Neyman-Scott process.

Definition 4.3 (Neyman-Scott process). We will define the Neyman-Scott process by

the algorithm that generates a point pattern of such process.
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e Generate parent process C(s) as an homogeneous Poisson process with constant

intensity function k.

e For each point of c, generate a child process Y¢(8) as an inhomogeneous Poisson

process with intensity function
Ae(s;8,0) = h(s — ¢, 0) exp{x(s)' 3}

h(s — c,0) is a density function with parameter o.

Usually, full maximum-likelihood estimation in spatial processes with clustering

is computationally expensive. Waagepetersen (2007) showed that

3f(ﬁ) = Zn:X(yz-) - / x(s)A(s; B)ds =0

e — w
is an unbiased estimating equation of 3 for Neyman-Scott processes. In other words,
using the Poisson likelihood yield good estimates for 3, although Guan (2008) showed

that it is possible to improve on these estimates by weighting the estimating equations.

Our conjecture is: Instead of fitting a model
log A(s; B) = x(s)'8
if we choose to include a spline term
log A(s; B) = x(s)'B + S5(s)

where S(s) is a nonparametric component (such as a thin-plate spline), there would
be an improvement over the convergence rates, properties of estimators, etc. However,
we also expect to see changes in the regression coefficient estimates ,[;' akin to spatial

confounding.
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log(A(s)) =1 +2x(s)

Figure 4.1: A realization of a Thomas’ point process (TPP). The squared points are
cluster centers, generated as a Poisson point process with intensity x = 20. The circles
around the parents are 20, a suggestion of the expected cluster radius. The background
shade is the log-intensity log(A(s)) for the child processes. The small points are the

observed realization of a TPP.

We will present a small simulation to illustrate the problem. Consider a Neyman-
Scott processes where h(s — c,0) is the Gaussian kernel with standard deviation o.
This process is called a Thomas’ point process. We have generated point patterns with
parent intensity function x = 20 on a [0, 1]* window, and log-intensity function given
by log(A(s)) = 1+ 2x4(s), where x(s) is a Cauchy kernel centered on coordinates
(4/10,2/10). The log-intensity function, along with a realization of the Thomas’
process is shown in Figure 4.1.

Figure 4.2 show the resulting estimates of 5, for S = 100 replicates of the point

patterns, with different values of o, the cluster radius. We have used the Baddeley-
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- [ e s

ppm  kppm spline ppm  kppm spline ppm  kppm spline
method

Figure 4.2: A comparison of regression coefficient estimates Bl for clustered point
processes when using the Poisson likelihood as an estimating equation (ppm), weighted
estimating equations (kppm) and the estimating equations with a thin-plate spline
(spline)

Turner algorithm for the Poisson likelihood (denoted by ppm), Guan (2008) weighted
estimating equations (denoted by kppm) and Baddeley-Turner with a thin-plate spline
component (denoted by spline). The ppm and kppm functions are available in R’s
spatstat package Baddeley et al. (2005). We see that the regression coefficient is
under-estimated across all methods and clustering levels, and the spline-based estimate
have a much higher variability across methods. On the other hand, the ppm method
estimates are systematically under the true value of f; when ¢ = 0.5. We plan to

keep investigating this problem, to determine when do splines work in point processes

regression, and what sort of modifications can be done to improve on it.



90

Conclusion

This thesis addressed two questions in spatial statistics. The first question is qualita-
tive, describing the relationship of splines and spatial random effects, in light of recent
findings on spatial confounding, and whether/when the inclusion of a spline can be
helpful in estimating the regression coefficients 3. We described a case of spatial con-
founding, and how the spectral behavior of the smoothing matrix Sy as well as control
of the tuning parameter A can help in understanding the changes in the regression
coefficients’ estimates.

The second question is a data-driven problem, in which static and roving sensor
spatio-temporal data can be combined to produce dynamic hazard maps. The model
captures the strengths of both types of sampling devices, namely, the temporal profile
from static sensors and the spatial coverage of roving sensors. The proposed model is

flexible and can be applicable in other data fusion problems.
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