
Learning Sequential Patterns with Recurrent Neural Networks

by

Liam Johnston

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Statistics)

at the

UNIVERSITY OF WISCONSIN–MADISON

2024

Date of final oral examination: 05/03/2024

The dissertation is approved by the following members of the Final Oral Committee:
Vivak Patel, Assistant Professor, Statistics
Hyunseung Kang, Associate Professor, Statistics and Biostatistics and Medical Informatics
Keith Levin, Assistant Professor, Statistics
Sameer Deshpande, Assistant Professor, Statistics
Prasanna Balaprakash, Director of AI Programs, Oak Ridge National Lab

© Copyright by Liam Johnston 2024
All Rights Reserved

i

To mom and dad.

ii

acknowledgments

First and foremost, I would like to express my deepest appreciation to my advisor, Vivak
Patel, for his guidance both professionally and personally. It is difficult to express how
grateful I am to have had the opportunity to work under his tutelage. Without Vivak’s
advice, unwavering support and patience, I do not believe that I would have finished this
work. For that, I cannot thank him enough.

I would also like to thank my collaborators Prasanna Balaprakash and Yumian Cui for
their help, support and general interest in my work. Furthermore, I would like to thank
each of my committee members for reviewing my work and taking the time to be a part of
my defense.

Lastly, I would like to thank all of the faculty, administrators and students that have
helped shape my experience during my time in school. It has been a journey full of highs
and lows, but truly one that I will not forget.

iii

contents

Contents iii

List of Tables v

List of Figures vii

Abstractviii

1 Task Generalization 1
1.1 Introduction 2
1.2 Background 5
1.3 Generalization of Task Behaviors 7
1.4 Experimental Design 8
1.5 Task Behaviors 12
1.6 Conclusion 20

2 Controlling Gradient Dynamics in Recurrent Neural Networks 22
2.1 Recurrent Neural Networks 23
2.2 The Optimization Problem 24
2.3 The Vanishing and Exploding Gradient Problem 27
2.4 Proposed Methods for Mitigating VEG 28
2.5 Linear RNN Learning 33
2.6 The Coadjoint Algorithm 36
2.7 Experimental Results on the Coadjoint Method 40
2.8 Observations on Gradient Control and Learning 45
2.9 LU RNN 46
2.10 Conclusion 50

3 Revisiting the Problem of Learning Long-term Dependencies in Recurrent Neural
Networks 51
3.1 Introduction 52
3.2 A Metric for the Vanishing and Exploding Gradient Phenomenon 55
3.3 Experimental Design 58
3.4 Counter Examples 63
3.5 Statistical Analysis 68

iv

3.6 Revisiting the Mechanisms of Latching 74
3.7 Conclusion 77

4 Summary 79

Bibliography 81
A1 Task Generalization Supplementary Material 93
A2 Derivation of Gradient Flow Equations and Control 94
A3 Additional Figures100
A4 Revisiting VEG Model Summaries & Additional Tables102
A5 Linear Model Coefficient Tables106

v

list of tables

1.1 Benchmark tasks in deep learning . 3
1.2 Experimental factors and levels. 9
1.3 Input sequences of experimental task variations 10
1.4 Summary of model behaviors and task generalization 13
1.5 Summary of hypothesis test results for first-order behavior average task accuracy 15
1.6 Summary of Brown-Forsythe tests. 15
1.7 Numerical error rate by recurrent architecture 20

2.1 Summary of evaluated recurrent architectures. 43
2.2 Summary statistics for coadjoint trained RNNs 44

3.1 Experimental factors and levels. 59
3.2 Experimental factors and levels. 59
3.3 Recurrent architecture parameter count summary. 60
3.4 Terminal iterate training attempts with vanished adjoint ratios. 65
3.5 Summary statistics for model 1, model 2 and model 3. 70
3.6 Summary statistics for model 4, model 5 and model 6. 72
3.7 Summary statistics for model 7, model 8 and model 9. 73
3.8 Summary statistics for model 10, model 11 and model 12. 74

A1 Linear model summaries for first-order average task accuracy behavior. 93
A2 Convergence time summary statistics. 94
A3 Linear model summaries for second-order average task accuracy behavior. . . . 95
A4 Training attempts with vanished gradients during training. 102
A5 Training attempts with vanished gradients at terminal iterate. 103
A6 Training attempts learning quantiles by adjoint regime during training. 104
A7 Training attempts learning quantiles by adjoint regime at terminal iterate. . . . 105
A8 model 1 coefficient estimates and standard errors. 106
A9 model 2 coefficient estimates and standard errors. 107
A10 model 3 coefficient estimates and standard errors. 108
A11 model 4 coefficient estimates and standard errors. 109
A12 model 5 coefficient estimates and standard errors. 110
A13 model 6 coefficient estimates and standard errors. 111
A14 model 7 coefficient estimates and standard errors. 112
A15 model 8 coefficient estimates and standard errors. 113

vi

A16 model 9 coefficient estimates and standard errors. 114
A17 model 10 coefficient estimates and standard errors. 115
A18 model 11 coefficient estimates and standard errors. 116
A19 model 12 coefficient estimates and standard errors. 117

vii

list of figures

1.1 Input sequence example by task variation . 10
1.2 Estimated architecture effect for first-order behavior average task accuracy . . . 14
1.3 Distribution of convergence time by architecture 17
1.4 Second-order behavior average task accuracy hypothesis test summary 19

2.1 Forward dynamics of a basic RNN . 24
2.2 Linear RNN LTG input emphasis . 34
2.3 Scaled variance adjoint regularizer . 41
2.4 Padded MNIST test accuracy by architecture and training method. 44
2.5 Padded Fashion MNIST test accuracy by architecture and training method. . . . 44
2.6 Adjoint ratios by training method. 45
2.7 Adding problem sample observation. 49
2.8 Adding problem MSE for LU RNN and inverse RNN 50

3.1 Forward dynamics of basic RNN. 56
3.2 Backward (adjoint) dynamics of a basic RNN . 58
3.3 Observed distribution of adjoint ratios. 64
3.4 Evaluation accuracy for training attempts with adjoint ratio nearest 1 67
3.5 Evaluation accuracy and adjoint ratio size. 68
3.6 LTG forward state and backward (adjoint) dynamics with T = 40. 76
3.7 LTG forward state trajectories for T = {80, 160, 400, 800}. 76
3.8 LTG backward (adjoint) state trajectories for T = {80, 160, 400, 800}. 77

A1 Linear RNN LTG input emphasis additional figures. 100
A2 Impact of coadjoint penalty weight. 101

viii

abstract

The central theme of this dissertation investigates the question, “how do recurrent neural
networks (RNNs) learn?" We analyze this question empirically, where data was collected
from a massive factorial type experiment where more than 40,000 RNNs were trained on a
variety of sequential learning tasks. Using the data generated from this experiment, we
explore different aspects of RNN learning in each of the three chapters of this dissertation.

In Chapter 1, we examine the question of how can one RNN be compared against
another. We contextualize this question in relation to the standard methodology for com-
paring machine learning methods, namely, benchmarking. Specifically, we investigate
which (if any) model behaviors (e.g., classification accuracy, training time, etc.) observed
on one task, are architectural properties that will generalize to other related tasks. We
analyze this question using linear models and the data generated from the large factorial
experiment to statistically test whether model behaviors do indeed generalize across tasks.
The conclusions of this analysis approach suggest that most behaviors commonly used to
highlight architecture advantages are task specific (i.e., do not generalize across tasks).
That is, an architecture’s task performance is idiosyncratic, and, in particular, is highly
sensitive to parameter initialization and learning rate.

In the subsequent chapter we delve into the dynamics imbued by RNNs that make
learning long-time dependent structure difficult, namely, the vanishing and exploding
gradient problem (VEG). In particular, Chapter 2 is devoted to the characterization of
VEG, the discussion of methods that have been developed to address this training ailment,
and then introduce two novel methods for mitigating VEG: (i) a powerful optimization
framework for controlling training dynamics using second-order sensitivity methods, and
(ii) a simple recurrent architecture that is able to maintain gradient flow by the nature of
its construction.

The development and experimentation of these new methods demonstrate their ability
to deter VEG. However, similar to these method’s competitors, their ability to improve task
performance is often inconsistent. This observation motivates the work of Chapter 3, where
we reexamine the validity of the machine learning tenet, if VEG occurs then an RNN learns
long-term dependencies poorly. We investigate this tenet empirically, using the data generated
from the factorial experiment detailed in Chapter 1, along with a synthetic experiment
designed to study the attractor dynamics of these models. In investigating this tenet,
we introduce a simple data analysis approach that allows for the relationship between a
model’s task performance and its exhibited gradient dynamics to be statistically quantified.
Through this experimentation and analysis we provide evidence that demonstrates that

ix

this tenet does not fully capture the relationship between an RNN’s gradient dynamics
and their ability to learn.

1

1 task generalization

2

Benchmark tasks are the standard methodology for validating new methods and models
in deep learning, and have grown to such a level of importance that models improving
benchmark standards are commonly insinuated to be better suited to the benchmark
task’s underlying application domain. In this work, we assess whether any model
behaviors observed on a benchmark task are reproduced in related tasks through an
extensive experiment in which we train over 40,000 state-of-the-art recurrent neural
networks on sequential classification learning tasks. Using this experiment, we intro-
duce a data analysis approach to analyze model behaviors and their generalization.
From this analysis, we observe that common model behaviors, such as classification
accuracy on a benchmark task, do not generalize to related tasks. We observe only one
model behavior to generalize across related tasks: certain models have a robustness
to hyperparameter choices in avoiding training failures. Owing to our extensive ex-
perimentation, we provide evidence that validating new methods or models in deep
learning should not be done using benchmarks, and claims about the superiority of a
model over others owing to its performance on a benchmark task are dubious. Instead,
we recommend that the validation of new models and training methods include our
approach for analyzing task behaviors and their generalization to ensure a more holistic
representation of the new technique.

1.1 Introduction
Over the past decade, neural networks (NNs) have been deployed in significant real-world
applications that include autonomous vehicles, natural language generation, and even
scientific breakthroughs in protein structure prediction [78, 79, 50]. These successful
applications have made improving NN models an active area of research. In the research
community, the improvement provided by a novel NN model is often determined through
testing and comparison with preexisting models on benchmark tasks – a task or suite of tasks,
datasets and performance metrics used to compare machine learning methods [84, 82].
These benchmark tasks are instances of model applications (i.e., larger families of tasks) that
are of either industry or academic interest. Hence, as more application areas are addressed
using NNs, the number and variety of proposed benchmark tasks grow accordingly. As
illustration, benchmark tasks for several application domains are displayed in Table 1.1,
alongside of models that performed the benchmark, the application domain, and real-world
applications (if available).

As Table 1.1 illustrates, benchmark tasks have been a springboard for models to be
scaled-up and deployed for real-world, high-profile applications [102, 5, 27, 90]. As a

Disclaimer: Portions of this chapter are pulled directly from a co-authored paper written with Vivak
Patel and Prasanna Balaprakash that is currently under review at the international conference on automated
machine learning (AutoML).

3

Application
Domain Benchmark/Task Models Applications

Long Time
Dependent Tasks

Sequential MNIST [26]
Permuted MNIST [26]
Adding Problem [42]
IMDB Sentiment Analysis [68]

LSTM [42]
Exponential RNN [65]
UnICORNN [87]
Antisymmetric RNN [16]
Lipschitz RNN [32]
Unitary RNN [3]
Volume-preserving RNN [99]

Natural Language
Understanding

GLUE [109]
The Penn Treebank [69]
Super GLUE [108]

BERT [27]
Transformer [102]

ChatGPT4 [79]

Computer
Vision

ImageNet [25]
COCO [66]
KITTI [34]
ObjectNet [7]
LabelMe [88]

DaViT [28]
ResNet [39]
CoCa [112]
RevCol [15]
LiT[114]
VGGNet [91]

Reinforcement
Learning

ALE [8]
dm_control [101]
Meta-World [113]
MuJoCo [100]

R2D2 [52]
Deep Q-Networks [73]

Go
Chess
Atari

Medicine EyePACS (diabetic retinopathy) [51]
APTOS (blindness detection) [53]
CASP (protein structure) [57]
FLIP (protein structure) [24]
PTB-XL (electrocardiography) [107]
PTB-XL+ (electrocardiography) [95, 94]
CPSC, CPSC Extra (electrocardiography) [67]

CNN
Ankh [30]
ResNet/CNN [39, 6]

AlphaFold [50]

Table 1.1: Benchmark tasks, application domain, models that performed the benchmark,
and real-world applications.

result of these successes, benchmark tasks: (1) appear to be appropriate representatives
of the application domain in which they were designed to represent, and (2) accurately
reflect a model’s ability to learn other related (real-world) tasks (demonstrated by the
success of real-world applications that employ models that were first shown introduced on
benchmark tasks).

Yet, state-of-the-art large language models trained on an overwhelming corpus of data
(in some sense a thorough benchmark task) still require specialization to achieve good
performance on related tasks (see Section 1.2.3). This observation motivates this work.
Specifically, we investigate whether benchmark tasks are a meaningful tool for assessing
models. To this end, we introduce two concepts: model behavior and task generalization.

4

While we will be precise later (see Definitions 1.1 and 1.2), we define model behavior as
any measurable quality of a model and/or training process; and task generalization as the
ability of that quality to be reproduced on all tasks within a larger family of interest. Using
these concepts, we ask,

Do any model behaviors on a benchmark task generalize to a larger family of related
tasks?

If the answer is positive, then benchmark tasks are useful assessment tools. If the answer
is no, then the utility of benchmarks in comparing novel models or training methods is
questionable.

To investigate this question, we conduct a massive experiment on seven recurrent
architectures each of which was evaluated over a fixed hyperparameter grid (twenty unique
hyperparameter configurations) on a set of thirty sequential classification tasks. In total,
more than 40,000 RNNs were trained, requiring more than 14 years of computational time
(measured by CPU hours) executed in parallel on Argonne National Lab’s supercomputer,
Theta [33, 44].

Using the data collected from these experiments, we formulate various model behaviors
and test their respective abilities to generalize across tasks. Using a data analysis approach
that is novel for this application, our overaching conclusions are:

1. Task performance (e.g., classification accuracy) attained at a maximizing hyperpa-
rameter configuration is not a consistent behavior that can be reproduced across
families of related tasks.

2. The interactions between a NN model and a fixed grid of training hyperparameter
configurations are unique to the architecture and specific task.

3. Some architectures are robust to hyperparameters allowing them to consistently
complete all training epochs. Although this does not imply high task accuracy, this
was the only behavior that we observed to be reliably reproduced from task-to-task
in our experiments.

In summary, almost all model behaviors considered do not generalize from benchmark
tasks to a larger family of tasks. In light of this, rather than using benchmark tasks, we rec-
ommend end-users to carefully tune well-established models with which they are familiar
to their particular applications and computing environments. Furthermore, we recommend
that the validation of new models and training methods include our approach for analyzing

5

task behaviors and their generalization to ensure a more holistic representation of the new
technique.

Chapter Organization

In Section 1.2, we provide a background of related work and discuss issues with deep
learning that make task generalization a highly skeptical feature. Following, we formally
define model behavior and task generalization, and introduce a data analysis approach
for studying these properties in Section 1.3. In Section 1.4, we detail the experimental
design used to investigate model behaviors and task generalization, and, in Section 1.5,
we formulate various model behaviors and analyze their ability to generalize across tasks
using both qualitative assessment and formal hypothesis tests. Lastly, in Section 1.6, we
conclude.

1.2 Background

1.2.1 Validity of Comparisons on Benchmarks

Benchmarking in computer science dates back to the early 1960s and was first formalized
as a systematic method for measuring the computational speed of a computer system
[63]. Since then, this framework has been adopted by various areas of computer science,
including deep learning, to facilitate the evaluation and comparison of new methodologies.
However, in the case of deep learning, the degree to which a benchmark task is a valid
comparison tool is not clear [77, 72, 45, 12]. In particular, [82] highlights the limitations of
emphasizing benchmark tasks as milestones toward artificial general intelligence, stating
“... benchmarks – due to their instantiation in particular data, metrics and practice – cannot
possibly capture anything representative of the claims to general applicability being made
about them."

1.2.2 Dependence on Uncontrolled Variables

Benchmark tasks are used as a means to validate or compare models ceteris paribus using
standardized metrics. Although comparison practices have improved in DL, the complex-
ity of optimizing NNs still involves numerous uncontrolled implementation decisions
including: data pre-processing, hyperparameter tuning, and randomization.

1. Typically benchmark tasks are associated with specific data that is used for train-
ing and testing. While this consistency may suggest an identical starting point for

6

cross-study comparison, it is customary for data to undergo pre-processing prior to
training (e.g., standardization, rotation, word embedding), which can have a signifi-
cant impact on task performance [89].

2. Current strategies for defining and training NNs require numerous hyperparameters
(e.g., weight dimensions, learning rate, batch size, layer depth, regularization, etc.).
Not only will choices in hyperparameters impact a model’s task performance, but
the sensitivity to these choices may vary substantially across different models and
tasks. Consequentially, if a new method improves a benchmark standard, determin-
ing whether the improvement should be attributed to the novelty of the method, or
to a more thorough tuning process is unclear (particularly when improvement is
marginal) [70, 31, 41]. Moreover, while ablation studies can aid in conveying the
sensitivity of a method to hyperparameter choice, whether its conclusions generalize
across tasks is typically left unexplored.

3. Lastly, some uncontrolled sources of experimental variation appear to be unavoidable
and non-negligible. For instance, randomization — commonly used in both weight
initialization and stochastic training routines — has the capacity to degrade perfor-
mance from state-of-the-art to mediocre [83]; and an engineer’s prior experience has
been shown to be strongly correlated with resource utilization efficiency and task
performance [2].

In this chapter, a model’s performance on a benchmark task is shown to be dependent
on the hyperparameter choices, randomization, and, to an extent, data representation.

1.2.3 Task Generalization and Large Language Models

Recently, advancements in natural language processing (NLP) have suggested that large
language models (LLMs) have the ability to generalize across a variety of language tasks
[14, 27]. These models are developed using an expensive pre-training routine that learns
a language representation from a large amount of unlabeled text data [79]. Then, using
the learned representation from pre-training, an LLM is specialized to elicit multi-task
functionality.

The most successful of these strategies uses the pre-trained language representation as
a starting point to fine-tune task-specific models from labeled task training data [64, 27].
In other words, even for state-of-the-art LLMs, it is understood that a general model has a

7

substandard performance on related tasks. An alternative methodology uses prompts to
provide context to guide the model towards task-specific outcomes [76, 14, 118, 110]. While
these methods have shown promise, they still also indicate that the input corresponding
to the task must be tailored to the LLM [117], further corroborating how specific model
performance is to a given task.

These results align with our experimental observations. Namely, although we investi-
gate significantly smaller models than LLMs, we observe that task performance does not
generalize across task families. In particular, there are task idiosyncrasies such that learning
one task does not imply the ability to learn another related task. Similarly, LLMs do not
acquire multi-task functionality by default, but only when explicitly tuned or prompted to
specific tasks.

1.3 Generalization of Task Behaviors

1.3.1 Problem Set-Up

Our objective is to understand which (if any) model behaviors are consistently reproduced
on all data tasks within a particular family of tasks. As such, we focus our attention to
behaviors that are data task agnostic, or in other words, can be measured on any data
task. With this in mind, we formulate our analysis and subsequent definition of model
behavior taking value in Y, and three spaces that all supervised tasks require: a model or
architecture space, A; a hyperparameter space H; and a task space T. These three spaces
describe task information known a priori to training and will be the subject for defining
model behaviors.

Definition 1.1 (Model Behavior). A model behavior is a function B : A × H × T → Y that
maps a model architecture, hyperparameter configuration and task information to a measure of
performance.

We define the task generalization of a model behavior as the ability of a behavior to be
reproduced across all tasks within a larger task family of interest.

Definition 1.2 (Task Generalization). The task behavior, B(A,H, t), generalizes over the task
family, T, if

B(a,h, t) ≈ B(a,h, t ′) (1.1)

for all t, t ′ ∈ T.

8

1.3.2 Modeling Behaviors & Testing Task Generalization

We use the experiment described in Section 1.4 as an observational study to investigate
model behaviors over a family of thirty sequential learning tasks. The experiment can be
described by a design matrix, X = [A|H|T], where columns correspond to the experimental
factors: model architecture, training hyperparameters and task; and rows correspond
to individual training attempts. For each training attempt, a model behavior, Y, is ob-
served/measured (e.g., classification accuracy).

In order to understand the primary contributors to a model behavior B using a sampling
of its values, Y, we use the following descriptive model:

Y = β0 + βA ×A+ βH ×H + βA,H × [A ∗H] + ϵ. (1.2)

This model approximates the behavior, Y, as a function of the training attempt architecture
and hyperparameter configuration over the family of experimental tasks.

To investigate task generalization, we fit the task-specific linear model,

Ŷ(t) = β̂
(t)
0 + β̂

(t)
A ×A+ β̂

(t)
H ×H + β̂

(t)
A,H × [A ∗H] + ϵ(t), (1.3)

where t indexes the experimental task and also defines the corresponding rows/indices of
{X, Y}used for estimating (1.3). The regression coefficientβ(t)

A is estimated from observation
pairs belonging to task t, and encodes the effect a particular architecture has on the behavior
Y. If this effect generalizes across tasks, then β̂(t)

A ≈ β̂(t ′)
A for all t, t ′ ∈ T. We formalize this

question of task generalization as the pairwise comparison hypothesis test,

H0 : β
(t)
A = β

(t ′)
A vs. HA : β

(t)
A ̸= β(t ′)

A . (1.4)

In total, we perform
(
|T|

2
)

pairwise hypothesis tests and use a Bonferroni correction to
alleviate the likelihood of erroneous conclusions from multiple-comparisons.

1.4 Experimental Design
The experimental design can be fully described by the experimental factors and levels of
Table 3.2. Alternatively, our design can be described as training |A| = 7 RNN architectures
using |H| = 20 hyperparameter configurations on |T| = 30 sequential classification tasks.1

1We denote a hyperparameter configuration as a unique combination of recurrent dimension, learning
rate and training length; and task as a unique combination of dataset, order and noise orientation.

9

In total there are 4,200 unique combinations of A, H and T, of which each is replicated ten
times for a total model count of 42,000 training attempts.

Factor Levels

A

Architecture Basic RNN [86]
LSTM [42]
GRU [21]
Lipschitz RNN [32]
Antisymmetric RNN [16]
Exponential RNN [65]
UnICORNN [87]

H

Recurrent dimension {128, 256}
Learning rate {10−5, 10−4, 10−3, 10−2, 10−1}
Training length {25 epochs, 50 epochs}

T

Dataset CIFAR10 (T = 1024)
Fashion MNIST (T = 784)
IMDB (T = 500)
MNIST (T = 784)
Reuters (T = 500)

Order {sequential, permuted}
Noise orientation {none, post, uniform}

Table 1.2: Experimental factors and levels.

Each dataset contributes six task variations (i.e., combinations of the factors “Order”
and “Noise Orientation” in Table 3.2) where the original input sequence is altered by
either a fixed permutation and/or augmented with additional noise tokens. Table 1.3
below, details how the input sequence is altered with each task variation; and in Fig. 1.1,
we visualize how different task variations present a sample observation from the MNIST
dataset.

10

Order × Noise Orientation Input Sequence Time Horizon

sequential × none
{
ut

}500
t=1 500

permuted × none
{
uπ(t)

}500
t=1 500

sequential × post
{
u1,u2, . . . ,u500,n1,n2, . . . ,n1000

}
1500

permuted × post
{
uπ(1),uπ(2), . . . ,uπ(500),n1,n2, . . . ,n1000

}
1500

sequential × uniform
{
u1,n1,n2,u2,n3,n4, . . . ,u499,n997,n998,u500,n999,n1000

}
1500

permuted × uniform
{
uπ(1),n1,n2,uπ(2),n3,n4, . . . ,uπ(499),n997,n998,uπ(500),n999,n1000

}
1500

Table 1.3: Effect of factors order and noise orientation on task input sequence where we
denote {ut}

500
t=1 as the original (unaltered) input sequence; {nt}

1000
t=1 as a noise sequence drawn

uniformly from the distribution of the original input sequence; and π a fixed permutation
which is applied to the original input sequence.

Figure 1.1: An example of how input (feature) sequences change based on task variation
(i.e., combination of the experimental factors order and noise orientation) for an observation
from the MNIST dataset. The left image corresponds to the 28 × 28 MNIST image. For
the sequential task variation, the image is squashed to a sequence of 28 × 28 = 784 pixels
(right, first row). The permuted task variation applies a fixed permutation to the sequential
task’s sequence (right, second row). A noise sequence of length T = 1000 is appended
to the original input sequence for tasks where the experimental factor noise orientation =
{post, uniform}. For post noise tasks, the additional noise is appended to the end of the
original input sequence (right, third row); and for uniform noise tasks, noise is uniformly
dispersed throughout the original input sequence (right, fourth row).

Recall that our objective is to understand whether model behaviors observed on one task
generalize to a larger family of related tasks. In general, determining the degree in which

11

tasks are related is difficult to characterize. However, with respect to benchmarks, we believe
that the community sentiment is driven by the application/domain area. Our experimental
design reflects this where T consists of tasks that all require learning sequential patterns,
and A consists of architectures designed specifically for learning sequential patterns.

Owing to the scale of the conducted experiments, we present our analysis considering
three different task families of interest using the thirty experimental tasks.

1. Tf : tasks consisting of all thirty experimental tasks.

2. To : tasks consisting the five data tasks that correspond to each dataset with no
additional noise appended to the input sequence.

3. Td : tasks that share a common dataset.

In the context of task generalization for familyTf, we study the ability of model behaviors
to generalize across all thirty experimental tasks; for To, we study the behaviors that
generalize across the ten tasks (5 data sets by 2 orderings) that do not have additional noise
appended to their input sequences; and for Td we study the behaviors that generalize to all
tasks that use the same data set (e.g., there are 6 CIFAR10 tasks, MNIST has 6 tasks, etc.).

1.4.1 Data Collected and Measured

For each training attempt, we collect the (average) classification accuracy computed both
over the training set and a disjoint evaluation set. However, directly studying classification
accuracy in terms of task generalization is problematic. Tasks differ in the number of label
classes, K, making the range of classification accuracy dependent on K (e.g., Y = [1

K
, 1]).

As a consequence, the meaning of a particular level of classification accuracy will change
depending on the task. For example, for a task where K = 10, an accuracy of 50% could be
a significant level of learning (with balanced labels); while for a task with K = 2, accuracy
of 50% is no better than random class assignment.

We mitigate this issue by introducing a task standardized measure of classification
accuracy, task accuracy, which we denote by Yaccuracy and define as,

Yaccuracy =
test accuracy − 1

K

max
(
test accuracy

)
− 1

K

(1.5)

where K corresponds to the number of task class labels; and the maximum in the denomi-
nator is taken over all experimental training attempts performed on the respective task.
When labels are balanced, (1.5) standardizes performance to [0, 1] where zero indicates

12

learning did no better than random label assignment, and one indicates the maximum task
accuracy observed over all task training attempts (of which there are 1,400).2

In the subsequent section, we direct our emphasis to the behavior Yaccuracy as it is the
typical metric used to understand model performance in classification problems. In addi-
tion, we formulate and study behaviors related to training RNNs: convergence time and
numerical error rate. For convergence time, we study the variable Yepochs, which we define
as the number of training epochs completed prior to the model attaining its maximum
task accuracy. For training error rate, we study the variable Yerror, which we define as the
proportion of task training attempts (on a per-model basis) that encountered numerical
failure during training.

1.5 Task Behaviors
To better facilitate our discussion we organize model behaviors into two categories which
we coin as first-order behaviors and second-order behaviors. Our delineation of these two
categories was inspired by current practices in model reporting where typically only the
best hyperparameter configuration is considered. Hence, we define first-order behaviors as
behaviors measured on a model under its maximizing hyperparameter configuration (de-
noted by h∗ ∈ H), and second-order behaviors as behaviors that consider both maximizing
and non-maximizing hyperparameter configurations. Accordingly, first-order behaviors
are formulated as simple linear models,

Y(t) = β
(t)
0 + β

(t)
A ×A+ ϵ(t) for each t ∈ T, (1.6)

and second-order behaviors with multivariate linear models that include covariates for
hyperparameters and interactions,

Y(t) = β
(t)
0 + β

(t)
A ×A+ β

(t)
H ×H + β

(t)
A,H × [A ∗H] + ϵ(t) (1.7)

In Table 1.4, we summarize the model behaviors investigated (described next), and
indicate whether the behavior generalizes across tasks.

2When labels are not balanced, either in the training set or testing set, it is possible for this metric to be
less than zero. In practice, this can occur, but tends not to as the RNNs tend to all learn reasonably well when
the optimizer does not diverge during training.

13

Behavior Analysis
Space

Analysis
Method Metric Tested

Effect Test (H0) Task
Generalization

Average
task accuracy h∗ × Tf Linear model (1.8) Yaccuracy A β

(t)
A = β

(t ′)
A

Variance of
task accuracy h∗ × To

Brown-Forsythe Test
(Table 1.6) Yaccuracy A σ2

a,t = · · · = σ2
a,|T|

Convergence
time h∗ × Tf

Fig. 1.3 and
appendix Table A2 Yepochs A NA

Average
task accuracy H × To Linear model (1.10) Yaccuracy A β

(t)
A = β

(t ′)
A

H × To Linear model (1.10) Yaccuracy H β
(t)
H = β

(t ′)
H

H × To Linear model (1.10) Yaccuracy A×H β
(t)
A,H = β

(t ′)
A,H

Training
error rate H × Tf (Table 1.7) Yerror A NA /

Table 1.4: Model behaviors, investigated hyperparameter and task spaces, linear model
formula (if applicable), factor/coefficient tested, formal hypothesis test (if applicable), and
indicator of task generalization. The sectioning of the table delineates first-order (top) and
second-order (bottom) indicators.

1.5.1 First-order Behaviors

Average Task Accuracy

Define the model behavior average task accuracy as E[Yaccuracy|(A,h∗, t)]. For each task, we
estimate this behavior with the simple linear model,

Ŷ(t)
accuracy = β̂

(t)
0 + β̂

(t)
A ×A+ ϵ(t). (1.8)

This collection of linear models is able to estimate the relationship between task accuracy
and architecture well, where the majority of models capture more than 70% of the variation
in Yaccuracy (summarized in Table A1 of the appendix).

Using the testing framework described in Section 1.3, we perform pairwise hypothesis
tests akin to (1.4), in order to statistically test whether average task accuracy is a task
generalizable behavior.

Recall that we formulate task generalization as the null hypothesis of (1.4), which
suggests that the effect, β(t)

A , remains (statistically) constant across the task space T. Unfor-

14

Figure 1.2: Estimated coefficient, β̂A, for two architectures (Exponential RNN and Lipschitz
RNN) across thirty experimental tasks partitioned by task dataset (column facet) and
RNN architecture (row facet).

tunately, this is not observed. We include test summaries in Table 1.5, and use Fig. 1.2 to
illustrate their conclusions.

In Fig. 1.2 we display the estimated coefficient, β̂A, for two RNN architectures, where
β̂A is estimated relative to a reference architecture, for one of the thirty tasks.3 In the case
that the estimated architecture effect generalizes across tasks, then β̂A would vary little
across tasks. However, as demonstrated in Fig. 1.2, the estimated coefficient β̂A varies
significantly depending on the task. We observe this trend for all tested RNN architectures
and display the proportion of pairwise tests for each architecture that rejected the null
hypothesis in Table 1.5.

3We construct Fig. 1.2 using Antisymmetric RNN [16] as the reference architecture.

15

Fail to Reject H0 Reject H0

Antisymmetric RNN 0.35 0.65
Basic RNN 0.26 0.74
Exponential RNN 0.58 0.42
GRU 0.60 0.40
Lipschitz RNN 0.38 0.62
LSTM 0.56 0.44
UnICORNN 0.33 0.67

Table 1.5: Proportion of pairwise comparison tests that resulted in statistically different βA

(constructed via task-specific model (1.8)) for seven RNN architectures at testing level of
0.05.

Variance of Task Accuracy

The behavior variance of task accuracy describes the variation in task accuracy accrued from
reinitialization and training of a model at h∗. To interrogate this behavior we define σ2

a,t
as the variance of task accuracy for architecture, a ∈ A, and task, t ∈ T, and perform a
Brown-Forsythe test (see [13] for test details) for equality of group variances within a
given architecture for the task family To:

H0 : σ
2
a,t1 = σ

2
a,t2 = · · · = σ2

a,t|To vs. HA : Not all σ2
a,ti are equal (1.9)

for ti ∈ To. The results of this test (one for each architecture displayed in Table 1.6) indicate
that the variance of task accuracy is not consistent over the task family, and thus, not a
behavior that generalizes across tasks.

test statistic (dfs) p value H0 decision
Antisymmetric RNN 572.06 (9/37.35) 3.4 × 10−37 reject
Basic RNN 188.29 (9/32.54) 1.9 × 10−25 reject
Exponential RNN 618.77 (9/34.41) 2.4 × 10−35 reject
GRU 4.58 (9/11.27) 1.0 × 10−3 reject
Lipschitz RNN 557.86 (9/46.31) 4.2 × 10−44 reject
LSTM 5.75 (9/16.49) 1.0 × 10−3 reject
UnICORNN 518.07 (9/31.91) 5.5 × 10−32 reject

Table 1.6: Results of Brown-Forsythe test for equality of group variances across family
To where each group is comprised of training attempts that maximized each respective
architecture’s test accuracy at the terminal training epoch.

16

Convergence Time

We measure the first-order behavior convergence time with the variable, Yepoch, which we
define as the number of training epochs completed prior to the RNN attaining its maximum
task accuracy. For this behavior we consider the data generated during the first 25 epochs
for each training attempt. To study this behavior we compute the median and standard
deviation of Yepoch for each architecture and task (appendix Table A2) and use Fig. 1.3 to
illustrate our observations.

In Fig. 1.3 we draw boxplots of Yepoch for each task variation (horizontal axis) across
architectures (column facets) and datasets (row facets). Clearly, this behavior varies
across the experimental task space (both with respect to task dataset and task variation).
Interestingly, for some architectures and datasets, convergence time across the six task
variations appears to be fairly consistent (e.g., top left panel of Fig. 1.3). However, again,
this consistency does not generalize across task datasets for any architecture.

17

Figure 1.3: Boxplots of Yepoch for each task variation (horizontal axis) across architectures
(column facets) and datasets (row facets). For the UnICORNN architecture, only a subset
of tasks were able to be completed owing to extremely long training times.

1.5.2 Second-order Behaviors

Average Task Accuracy

We extend our investigation of the behavior average task accuracy to a second-order behavior
by studying it as a function of the entire hyperparameter space, H. We reflect this change
in the linear estimator formula,

Ŷ(t)
accuracy = β̂

(t)
0 + β̂

(t)
A ×A+ β̂

(t)
H ×H + β̂

(t)
A,H × [A ∗H] + ϵ(t) (1.10)

18

where β̂H denotes regression coefficients associated with the hyperparameters: learning
rate, second-order learning rate, recurrent dimension and training length; and β̂A,H denotes
the regression coefficients of the interactions between: architecture and learning rate, and
architecture and second-order learning rate. Hence, we can write the linear model formula
in the context of our experimental factors as:

Ŷ(ti)
acc =β̂

(ti)
0 + β̂

(ti)
arch × architecture + β̂

(ti)
1 × log(learning rate)

+ β̂
(ti)
2 × log(learning rate)2 + β̂3

(ti) × rec. dimension
+ β̂

(ti)
4 × training length + τ̂

(ti)
arch × (architecture × log(learning rate))

+ γ̂
(ti)
arch × (architecture × log(learning rate)2) + ϵ(ti)

(1.11)

where ti indexes the thirty experimental tasks of Tf. The model formula was chosen
based on quality. We summarize each of the thirty task-specific models in Table A3 of the
appendix, and note here that nearly all estimated models are able to capture more than
70% of the variation in task accuracy.

We test each regression coefficient of (1.11) for task generalization following the proce-
dure described in Section 1.3. Similar to the first-order behavior, no estimated effect (β̂A,
β̂H or β̂A,H) successfully generalized across tasks. In Fig. 1.4 we display the proportion of
pairwise tests that rejected H0 for each of the respective regression coefficients in (1.11).

19

Figure 1.4: The proportion of rejected hypotheses,H0 : β
(i)
coef = β

(j)
coef, at a significance level

of α = 0.05 for each predictor of the estimated linear model, (1.11).

Recall from Section 1.2, that there are numerous experimental variables that commonly
are uncontrolled during experimentation, like hyperparameter selection, that will impact
an architecture’s task performance. This scenario is corroborated in our experiment, where
we observe that all of the interaction terms encoded in the multivariate linear model, (1.11),
statistically varied across data tasks. This feature captures the idea that interactions between
an architecture and the selected hyperparameters are highly task-dependent, and do not
generalize to larger task families with a degree of certainty.

While these results are perhaps not surprising, it is informative in explaining why
we observe the tendency for incredibly involved training procedures of modern models.
Namely, there is an immense amount of tinkering and familiarity with an architecture
and dataset needed in order to optimize modern models. Furthermore, this tailoring
appears to be unavoidable when the objective sought is maximizing task performance (e.g.,
maximizing classification accuracy or minimizing test error). Hence, if an architecture’s
effectiveness is to be determined by its task capacity, then there needs to be a much larger
emphasis placed on the detail of the training procedure used, as well as the deviation in
the model’s performance when alternative training strategies are used. This is particularly
crucial in the current environment of machine learning where training resource availability
substantially differs between research labs and industry leaders. Without this level of

20

detail, resource allocation cannot be appropriately made, and as a consequence, limits the
practical usability of new models.

Training Error Rate

One of the main difficulties with using neural networks is the difficulty in training them.
This problem is particularly troublesome for very deep neural networks (which most mod-
ern networks are) as well as recurrent networks such as our experimental architectures
[80, 48]. We test this with the behavior training error rate as the proportion of training
attempts that produced numerical error during training. Computing error rate for each
architecture and task revealed this behavior to be architecture dependent, where three ar-
chitectures — Exponential RNN, Antisymmetric RNN and UnICORNN — displayed a
robust relationship with the training process (less than 1% error rate), while the other four
architectures consistently encountered numerical errors during training, dependent on the
task and hyperparameter configuration applied.

Error Rate
Antisymmetric RNN 0.0
Exponential RNN < 0.01
GRU 0.43
Lipschitz RNN 0.32
LSTM 0.28
Basic RNN 0.12
UnICORNN 0.0

Table 1.7: Proportion of training instances that produced numerical errors during training
for each RNN architecture.

1.6 Conclusion
In this chapter, we highlighted a misconception that plagues the scientific study of deep
learning, namely, the eagerness to accept a specific task instance (i.e., benchmark perfor-
mance) as an inferential tool for understanding a model’s capabilities on other related
tasks. We investigated this misconception empirically by introducing the concepts of model
behavior and task generalization using a large factorial experiment as a case study where
more than 40,000 models were trained on thirty related tasks. From this experiment, we
found that the only model behavior that was reproducible was that of training comple-
tion rate, which we defined as the proportion of training attempts that did not encounter
numerical error during training for a given model and task, and this characteristic was

21

architecture dependent. More importantly, we found that task accuracy was not a reliable
behavior that could be attained on one task and inferred on another related task. Addi-
tionally, this behavior did not generalize across tasks when considering models trained at
their maximizing hyperparameter configuration (as typically reported in the literature) or
when considering task accuracy as a linear function of an architecture and training hyper-
parameters. While such results are hinted to in the literature, we provide evidence that
benchmarks are only representative of themselves, and not a statement of model prowess
on a larger family of tasks. Accordingly, we have two recommendations. We encourage
engineers to invest in models with which they are familiar, and to carefully tune these
models to their particular applications and computing environments. Furthermore, we
encourage researchers creating new models or training methods to use our data analysis
approach developed in Section 1.3 to provide a more holistic characterization of how their
new methods behave across tasks.

22

2 controlling gradient dynamics in recurrent neural
networks

23

In this chapter we study a class of deep learning models designed for learning sequen-
tial data patterns, the recurrent neural network (RNN). Although RNNs are standard
models for learning with sequential data, RNNs are challenging to implement owing to
the difficulty of managing gradient behavior during training. While several approaches
have been proposed to manage gradient behavior (e.g., gated architectures, orthogonal
recurrence constraint/penalty, reservoir computing), these approaches either reduce
the modeling power of RNNs or require expensive training approaches. In this chapter,
we propose two methods for addressing these issues. The first method we propose is a
novel penalty on the intermediate partial derivatives computed during backpropaga-
tion through time. We show that our approach generalizes the orthogonal recurrence
penalty; it is easy to compute and differentiate; and it readily applies to nonlinear acti-
vation functions. The second method we propose is a simple architecture modification
that appears to improve learning distant time-dependent structure. We demonstrate
our approach’s effectiveness on modifications of benchmark training tasks that allow
us to probe the impact of gradient behavior during training.

2.1 Recurrent Neural Networks
Recurrent neural networks (RNNs) are a class of architectures designed for learning
sequential patterns. The defining feature of RNNs is their use of feedback connections. This
connectivity allows the model to dynamically acquire a memory over the input sequence.
This feature makes RNNs an attractive modeling choice when learning sequential patterns.
Accordingly, these models have been used in a variety of application areas, including:
natural language understanding, financial forecasting, weather prediction, music and
video generation, and robotics [71, 92, 116, 38, 29].

In Fig. 3.1 we illustrate the connectivity of a basic RNN. In general, an RNN can also
be used to produce a prediction at each time point from t = 1, . . . , T , but we will focus
on the case where a prediction is made at the final time T (as illustrated in Figure 3.1).
Moreover, while the diagram refers to the basic RNN, all RNN architectures produce a
sequence of memory states, {xt}, that are propagated forward in time and then used to
produce a prediction.1

In comparison to the classical feed-forward network (FFN), the recurrent connectivity
of RNNs offers certain advantages that the FFN does not. For example, RNNs can process
sequences of input features, and these sequences can vary in length. As evidenced by the

Disclaimer: Portions of this chapter are based on a published paper that I co-authored with Vivak Patel
(see [48]).

1While many RNN architectures can be visualized using Figure 3.1, there are some RNN architectures that
use multiple memory states from previous iterates as inputs [93], but analogous diagrams can be produced.

24

Figure 2.1: A visualization of the forward dynamics of the basic RNN (Definition 2.1).

numerous applications that use these models, this flexibility in processing makes RNNs
amenable to a variety of tasks and applications.

Although RNNs have been successfully deployed in a variety of applications, these
models suffer from two issues that can make them far less effective in practice. First, the
sequential processing of RNNs makes parallelizing computation far less effective. As a
result, these models can often be expensive to train. Second, optimizing these models
such that they are able to maintain memory over long time horizons is extremely difficult.
Owing to the repeated application of the transfer function (i.e.,W), gradient based methods
often produce error gradients that become vanishingly small or explode in size as they
are propagated throughout the network. Both scenarios can lead to convergence issues
during training, and difficulty contextualizing information over long time periods. This
latter issue is known as the vanishing and exploding gradient problem (VEG) and will be the
focal point of this chapter.

2.2 The Optimization Problem
Here, we formalize the basic RNN architecture and its corresponding (supervised) opti-
mization problem.

Definition 2.1 (Basic Recurrent Neural Network). For a single input sequence {u1,u2, . . . ,uT } ⊂
Rp and arbitrary initial state x0 ∈ Rd, an activation function σ : R → R (applied component-wise),
and an output function ϕ : R → R (applied component-wise), the Basic Recurrent Neural Network
(basic RNN) is defined by

xt =σ(Wxt−1 + Rut + b1) t = 1, . . . , T
ŷ =ϕ(VxT + b2)

(2.1)

25

whereW ∈ Rd×d is the recurrent weight matrix; d is the recurrent dimension; R ∈ Rd×p; b1 ∈ Rd;
V ∈ Rl×d; l is the output dimension; b2 ∈ Rl; for any t ∈ {0, . . . , T }, xt ∈ Rd is the memory state
at time t; and ŷ ∈ Rl is the prediction.

The optimization problem associated with this model can be formulated following the
empirical risk minimization procedure where a loss function, F, is minimized over a set
of N input-output pairs, {(ui

1,ui
2, . . . ,ui

T ,yi) : i = 1, 2, . . . ,N}, subject to the architecture
dynamics (i.e., (2.1)).

arg min
θ∈Θ

1
N

N∑
i=1
F(yi, ŷi)

subject to xit = σ(Wx
i
t−1 + Ru

i
t + b1) t = 1, . . . , T

ŷi = ϕ(VxiT + b2),

(2.2)

where the initial state, x0, is typically initialized to the zero-vector and learned as an
additional parameter during training.

Typically, solving (2.2) involves computing the partial derivative of the cost with respect
to each of the parameters. For recurrent parameters, this derivative will be a summation
over gradient information collected at each time step. For example, to compute the gradient
with respect toW for a single observation pair, we use the chain rule to derive

∂F

∂W
=

T∑
t=1

(∂xt
∂W

) ′(∂xt+1
∂xt

) ′ · · · (∂ŷ
∂xT

) ′∂F(y, ŷ)
∂ŷ

, (2.3)

where T refers to the time horizon, and the apostrophe operator denotes the transpose of a
matrix. Unfortunately, as seen in (2.3), computing the gradient requires the computation
and product of a sequence of Jacobian matrices, which can become prohibitively expensive
as the dimension of the states or parameters grow.

To avoid this, the adjoint method can be used. The adjoint method efficiently addresses
this expense by proceeding by duality, formulating a so-called adjoint system or “backward”
discrete-time system, and leveraging the solution vectors—called the adjoint states or
adjoint variables—of the adjoint system to compute derivatives using only matrix-vector
products [58].

The adjoint system can be derived through the Lagrangian. This derivation considers
the state dynamics as additional constraints under study and introduces a set of adjoint
variables (Lagrange multipliers), λ1, . . . , λT , corresponding to the state equation at each

26

position in the state trajectory. Under this framework, the Lagrangian is defined as

L = F(y, ŷ) + λ ′
T (ŷ− ϕ(VxT + b2)) +

T−1∑
t=0

λ ′
t

(
xt+1 − σ(Wxt + Rut+1 + b1)

)
. (2.4)

The Lagrangian’s first term is interpreted as the cost incurred from predicting ŷ, and the
Lagrangian’s summation term is interpreted as the cost of abiding by the forward system
dynamics. Note, the Lagrangian’s partial derivatives with respect to the adjoint state
are zero (i.e., ∂L

∂λi
= 0) if and only if the forward, discrete-time dynamics are satisfied.

Analogously, the Lagrangian’s partial derivatives with respect to the state variables,

∂L

∂xt
= 0 ∈ Rd, (2.5)

generate the backward or adjoint system, which, when satisfied, can be used to compute
the derivative of the Lagrangian with respect to the parameters.

The Adjoint System of Backpropagation. Given an RNN, an example ({u1, . . . ,uT },y),
and a loss function F(y, ŷ), the usual backpropagation calculation produces the adjoints
{λt : t = 1, . . . , T }, defined by

λt =

−V ′ϕ(1)(Vxt + b2) ′
∂F
∂ŷ

t = T

W ′σ(1)(Wxt + Rut+1 + b1) ′λt+1 t < T ,
(2.6)

where ϕ(1) and σ(1) represent the Jacobians of ϕ and σ, respectively.
Using these calculations, we can express the classical backpropagation algorithm.

27

Algorithm 1: Backpropagation (Adjoint Method) Algorithm
Data: Training Examples; Loss Function F; Initial Parameter Set, Θ; Activation

Function, σ; Output Function ϕ; (Stochastic) Gradient-based Training
Algorithm; User-Specified Stopping Condition;

Result: Backpropagation (adjoint method) Trained Recurrent Neural Network
while User-Specified Stopping Condition do

if Stochastic Algorithm then
Sample mini-batch from training examples in update set;

else
Use all training examples in update set;

end
for Each example in Update Set do

Compute {xt} and ŷ using (2.1);
Compute {λt} using (2.6);
Compute gradient of Fwith respect to the parameters;

end
Using the training algorithm and mean gradient, update the parameters;

end

2.3 The Vanishing and Exploding Gradient Problem
The vanishing and exploding gradient problem (VEG) is characterized by the rapid (expo-
nential) change in magnitude of the error gradient as it is propagated back throughout the
network. Specifically, consider a T -horizon sequential task, where xt is an intermediate
hidden state, and F the objective being minimized. Then the VEG problem is commonly
characterized by the rapid decay or growth of ∂F

∂xt
as the number of layers (i.e., recurrent

steps), T , grows. In terms of our derivation of the backpropagation algorithm, this charac-
terization of VEG can be analogously stated in terms of the adjoint states, λt. Namely, the
vanishing case is described by the rapid decay in size of ||λt||2 as T grows, and the exploding
case by the rapid increase in size of ||λt||2 as T grows.

To understand the impact of VEG on the training process, consider computing the
recurrent gradient using algorithm 1 (i.e., backpropagation).

∇WF(y, ŷ) = −

T∑
t=1

σ(1)(Wxt−1 + Rut + b1)
′λtx

′
t−1. (2.7)

28

First, notice that in (2.7), each time point contributes equally to computing the gradients
for the recurrent weight matrix. Thus, at the beginning of training, each time point can
influence the prediction quality of the RNN equally. Given that each time point corresponds
to an input vector ut, then each input vector can equally influence the prediction quality of
the RNN at the beginning of training, and this would only be modified if the minimization
induces the parameters to change the impact of each input.

However, owing to the nonlinearity of σ and the matrix-vector products in (2.6), the
adjoint variables, λt, tend to zero as t ↓ 1 (note, they can also explode towards infinity, but
this is observed less frequently in practice when suitable initializations are used). As a
result, the early inputs (i.e., those observed closest to t = 1) have a substantially diminished
or negligible influence on the choice of parameters, and, consequently, have a negligible
influence on the predictions that are being made. If there is no prior knowledge about the
relative importance of the inputs, then such a phenomenon would bias the RNN and could
result in poorer prediction power.

2.4 Proposed Methods for Mitigating VEG
In practice, if a model experiences VEG during optimization, then gradient credit assign-
ment becomes biased, and the RNN fails to learn or does so poorly. Accordingly, there
have been numerous techniques proposed to address this problem. Below, we discuss the
main mechanisms that these methodologies exploit to address VEG.

2.4.1 Gating Mechanisms

One popular strategy for improving gradient flow in RNNs is the use of gating mechanisms.
This strategy is the basis for the popular long short-term memory (LSTM) architecture
[42]. While there have been a variety of proposed architectures that modify the original
LSTM (e.g., see [21, 35, 20]), we will focus on the LSTM to explain the strategy that gated
architectures exploit to better manage gradient flow in RNNs.

The LSTM RNN is composed of a cell state, and three gating mechanisms: an input
gate, an output gate and a forget gate.2

2The number of gates can vary based on the specific architecture, but for the classical LSTM, there are
three gating mechanisms.

29

Definition 2.2 (Long short-term memory). The long short-term memory (LSTM) cell is
equipped with parameterized gating mechanisms,

ft =σg(Wfxt−1 + Rfut + bf) (forget gate)

it =σg(Wixt−1 + Riut + bi) (input gate)

ot =σg(Woxt−1 + Rout + bo) (output gate)

(2.8)

where σg is the sigmoid activation that maps to [0, 1]. Along with these gating units, the LSTM cell
develops an input state, c̃t, as,

c̃t = σh(Wcxt−1 + Rcut + bc) (2.9)

where σh is the hyperbolic tangent (element-wise) activation that maps to [−1, 1]. Using these
components, the cell state (memory), ct, and recurrent state, xt, are developed as,

ct =ft ⊙ ct−1 + it ⊙ c̃t
xt =ot ⊙ σh(ct)

(2.10)

where ⊙ denotes the element-wise Hadamard product.

As Def. 2.2 illustrates, the dynamics of the LSTM cell are significantly more complex
than the basic RNN, however, each component can be explained in a simple manner by
considering the LSTM cell as a computer equipped with a memory, and delete, write
and read operations. Namely, ct, is the system’s memory; ft is a learned weighting that
controls what components of memory should be deleted at each computational step (i.e.,
ft ⊙ ct−1); it is a learned weighting that controls what components of the input should be
written to memory (i.e., it⊙ c̃t); and ot is a learned weighting that controls which memory
components should be read at each computational step (i.e., ot ⊙ σh(ct)).

The key component of this design that allows for better training dynamics over long
time periods is the linearity of the memory cell, i.e.,

ct = ft ⊙ ct−1 + it ⊙ c̃t. (2.11)

This linearity is advantageous when considering the gradient of the memory cell through
time is then just the forget gate weighting,

∂ct

∂ct−1
=

∂

∂ct−1
ft ⊙ ct−1 = ft. (2.12)

30

In the case were ft = 1, no memory is deleted over time and the error gradient remains
constant through time. As a result, information written to ct will remain in memory
indefinitely, and will only be altered if ft induces this change.

In many cases, LSTMs (and more generally, gated RNNs) have demonstrated an ability
to better mitigate the gradient flow issue in RNN optimization — especially with initializa-
tions designed for the task’s temporal horizon [97]. However, almost paradoxically, gated
architectures lose memory capacity in comparison to the basic RNNs [22], and are suscepti-
ble to gradient explosion and gradient decay over long time horizons [3, 104]. Taking these
observations together, gated architectures appear to be more amenable to current training
techniques (up to a point), despite having a smaller learning capacity in comparison to
the basic RNN. Additionally, the gating mechanisms of these architectures requires addi-
tional parameterization in comparison to the basic RNN, further exacerbating the already
costly training time of these models, and further contributes to the environmental costs of
machine learning [47, 96].

2.4.2 Orthogonal and Unitary Recurrent Matrices

Another popular strategy for addressing VEG in RNNs is by using orthogonal (unitary)
matrices to either initialize or parameterize the recurrent (hidden-to-hidden) transition
matrix. The motivation for these strategies can be seen through the adjoint system derived
in the previous section (see 2.6), and reproduced here for readability,

λt =

−V ′ϕ(1)(Vxt + b2) ′
∂F
∂ŷ

t = T

W ′σ(1)(Wxt + Rut+1 + b1) ′λt+1 t < T .
(2.13)

Recall, that VEG can be characterized by the exponential vanishing or exploding of ||λt||2
through time. Hence, the size of the recurrent matrix,W, plays a critical role in determining
whether the gradient dynamics will explode or vanish in time. Namely, if ||W||2 < 1, then
||λt||2 → 0 as T ↓ 1 (vanishing gradient); and if ||W||2 > 1, then ||λt||2 → ∞ as T ↓ 1
(exploding gradient). SettingW to be orthogonal (i.e.,W ′W =WW ′ = I) takes advantage
of the norm preserving properties of orthogonal matrices (i.e., ||Wx||2 = ||x||2), and removes
the exponential impact ofW on the adjoint system, (2.13).

The exploration of this strategy has included a variety of methods. In particular, ini-
tializing W as the identity matrix was studied in [60], and initializing W as an orthogonal
matrix in [40]. Empirically, both of these strategies seem to improve training convergence in
RNNs. Although these initializations can successfully start the model at a place where the
singular values of the Jacobian are near one, it does not guarantee that these dynamics are

31

maintained during training. Thus, while orthogonal initialization is the default in modern
deep learning frameworks (e.g., TensorFlow, Theano, PyTorch), the initialization alone
is not sufficient for preventing vanishing and exploding gradients throughout training.
This shortcoming of initialization schemes has lead to the development of methods that
maintain orthogonal/unitary recurrent matrix structure throughout training using either
reparameterization of the recurrent matrix [3, 49, 115], or gradient descent on the Stiefel
manifold [111, 105].

Under certain conditions, enforcing an orthogonal recurrent matrix can provably avoid
the exploding gradient case as we elucidate in Theorem 2.1 below.3

Theorem 2.1. A basic RNN (defined in Definition 2.1) with an orthogonal recurrent matrixW
and activation function σ = tanh will avoid exploding gradients.

Recall that VEG can be characterized by the sensitivities of the recurrent states, λt. Thus, we can
show that this architecture will avoid exploding gradients by bounding ||λt||2.

||λt||2 =

∣∣∣∣∣∣∣∣ (T−1∏
i=t

W ′σ(1)(Wxt + Rut+1 + b1)
′
)
λT

∣∣∣∣∣∣∣∣
2

⩽ ||λT ||2

T−1∏
i=t

||W ′σ(1)(Wxt + Rut+1 + b1)
′ ||2

= ||λT ||2

T−1∏
i=t

|| σ(1)(Wxt + Rut+1 + b1) ||2

⩽ ||λT ||2

(2.14)

where we use the triangle inequality in line 2, the norm preserving quality of orthogonal maps (i.e.,
||Wx||2 = ||x||2) in line 3, and the fact that 0 ⩽ σ(1) ⩽ 1 for the hyperbolic tangent activation in
line 4.

Unfortunately, orthogonal parameterization does not provably prevent vanishing gradi-
ents as the magnitude of the backpropagated gradients is also influenced by σ(1)(x) ∈ [0, 1].
Hence, even for parameterizations such that ||W||2 = 1, the adjoint dynamics will often
exhibit decaying behavior. Nevertheless, orthogonal (unitary) architectures appear to
better mitigate the vanishing case as well in comparison to the basic RNN.

3Theorem 2.1 is taken from [3] and modified to the notation of the adjoint states and basic RNN dynamics.

32

2.4.3 Dynamical Systems RNNs

More recently, architectures inspired from dynamical systems have been applied to learning
long-term dependencies. These architectures draw a connection between the stability of an
ordinary differential equation (ODE) and the trainability of an RNN. Namely, in [17], the
authors note that the solution of an ODE is stable if the real parts of the eigenvalues of the
Jacobian matrix are less than or equal to zero. However, a stable solution does not guarantee
the system will be able to maintain memory over a long time-horizon. Namely, when the
real parts of the eigenvalues of the Jacobian matrix are less than one, then the system
will converge to a fixed point, resulting in a lossy system [37]. Hence, the construction
proposed aims to keep the real parts of the eigenvalues of the Jacobian matrix near zero.
To accomplish this objective, methods have proposed parameterizing the recurrent matrix
with an antisymmetric (skew-symmetric) matrix,M ∈ Rd×d, leveraging the fact that the
eigenvalues of M are all imaginary. In particular, antisymmetric matrices are used in
[17, 74, 65], and a mixture of antisymmetric matrices in [32]. These models benefit from
being simple to implement, and empirically have shown improvement over both the basic
RNN and LSTM in tasks that require maintaining memory of very long time horizons.
However, owing to the nonlinearity of the activation function, these architectures can still
succumb to vanishing gradients, and also require the additional tuning of a task-specific
diffusion parameter in order to ensure the stability of the ODE’s discretization (e.g., forward
Euler discretization).

2.4.4 Regularization Methods

One less explored strategy for combatting VEG in RNNs is through regularization. In [56]
the authors penalize the squared distance between successive hidden state norms,

β
1
T

T∑
t=1

(||xt||2 − ||xt−1||2)
2, (2.15)

where β is a user-specified penalty weight. The idea of this regularizer is that training in
RNNs can be improved by regularizing the forward computational path of the memory
state, by encouraging the memory state towards uniform size through time. This method
is reversed in [80], where they regularize the backward dynamics (i.e., adjoint states).

The regularizer introduced in [80] can be seen as a specific case of a more general
penalized optimization method that we develop in Section 2.6. In the next section, we use
linear RNNs to motivate our optimization procedure.

33

2.5 Linear RNN Learning
In this section, we use linear RNNs – that is, a Recurrent Neural Network (RNN) with
identity activation functions – to motivate the use of a novel regularizer that facilitates
gradient flow in RNNs. Specifically, as we now formalize, we focus on the case where
gradient flow is most challenging: when the predicted label is produced at the terminal
layer.

Definition 2.3. For inputs {u1, . . . ,uT } ⊂ Rp and arbitrary initial state x0 ∈ Rd, a Linear
Recurrent Neural Network (LRNN) is defined by

xt =Wxt−1 + Rut + b1 t = 1, . . . , T
ŷ =VxT + bo

(2.16)

whereW ∈ Rd×d, R ∈ Rd×p, b1 ∈ Rd, V ∈ Rℓ×d and bo ∈ Rℓ.

In fact, we can summarize the relationship between the prediction, ŷ, and inputs,
{u1, . . . ,uT }, by

ŷ =

N∑
t=1

VWT−tRut + b, (2.17)

where b ∈ Rℓ depends on the initial state, weights and biases specified in Definition 2.3. As
(2.17) demonstrates, the interaction between V and R with the generalized eigenspaces of
W determines which inputs are more heavily weighted and which inputs are less weighted.

For example, suppose the rows ofV and the columns of R belong to the same generalized
eigenspace ofW with a corresponding eigenvalue that has a magnitude greater than one.
Then, increasing powers of W will correspond to increasing powers of this eigenvalue’s
magnitude, and would cause a greater emphasis on earlier inputs in the sequence (i.e.,
u1) on the prediction. Moreover, if this choice ofW is dependent on the initialization or
training process rather than inherent patterns in the data, we have gradient explosion.
Analogously, suppose the columns of V and R belong to the same generalized eigenspace
ofW with a corresponding eigenvalue that has a magnitude less than one. Then, increasing
powers of W will correspond to reducing the emphasis of earlier inputs on the prediction.
Again, if this is not data-driven, then we would have a vanishing gradient.

However, these are not the only two cases that can occur. Often, V and R will span
several generalized eigenspaces of W, which will result in interactions between the eigen-
values corresponding to these generalized eigenspaces. As a result of these interactions
between the eigenvalues ofW, somewhat counterintuitively (yet well known), a LRNN
can emphasize different values of the input sequences in a nonlinear manner, even with small

34

(a) Basic RNN (b) Basic RNN w/ orthogonality constraint.
Figure 2.2: We train an LRNN with internal memory dimension d = 4 to solve the LTG
task with T = 75 inputs and labels determined by sign(u50). In (a), we train the problem
on the empirical risk, while, in (b), we do the same training and add a penalty to favorW
to be an orthogonal matrix.

memory dimension, d, in comparison to the time horizon, T , as we now illustrate using a simple
synthetic task.

Experiment 2.2 (Long Time Gap). The Long Time Gap (LTG) experiment is a simple synthetic
binary classification task that requires the model to latch a single signal amongst a sequence of
noise. The input sequence, U = {ut}

T
t=1, is a Rademacher series of length T – i.e., each ut is an

i.i.d. Rademacher random variable taking value of either +1 or −1 with probability 0.5 – and the
label corresponds to sign(ut∗) for a pre-specified sequence location t∗. In order to successfully learn,
the model must correctly distinguish the sign of ut∗ while learning to ignore the other T − 1 input
elements.

Remark 2.1. We cede that this task is simple in nature, but offers a controlled environment to
examine the learned dynamics of RNNs.

Using standard training routines in TensorFlow [1], we train LRNNs with internal
memory dimension d = 4 to address LTG for t∗ = 50 and T = 75. In Figure 2.2, we
plot example cases of the behavior of the learned values of VWT−tR for t ∈ [0, T − 1] and
emphasize the values in [0, T − 1]∩T. In Figure 2.2a, we see the nonlinear behavior that can
be induced even for such a small memory dimension of d = 4: as we would want for this
LTG task, the input at u50 is emphasized relative to other inputs, which represents some
degree of learning.

Interestingly, we find a mixed bag of performance when we induce W to be orthogonal
through a soft penalty, as shown in Figure 2.2b for the same task as in Figure 2.2a (see
Section A3.1 in appendix for more examples). Indeed, we should expect this type of

35

behavior whenW is orthogonal: since the magnitude ofW’s eigenvalues are all one, the
powers of W in (2.17) would create a periodic behavior or ergodic mixing; in turn, this
periodicity or mixing would not only emphasize the tth input, but others as well, as we
observe in Figure 2.2b; the result is a network with less accurate predictions. We note that
allowing for a soft penalty instead of a hard constraint should ease this behavior in LRNNs,
but will not consistently offer improved performance when we do not have such a penalty
term (see Section A3.1). Thus, inducingW to be orthogonal may address gradient flow,
but at the cost of performance.

However, we can use the reasoning behind inducingW to be orthogonal to come up with
a procedure that allows for a broader choice of parameters while also readily generalizing
to nonlinear activation functions. Suppose we compute the gradient of the parameters, W
and R, for a single example, ({u1, . . . ,uT },y), with respect to a loss function F(y, ŷ). The
gradients of the parameters are given by

∇WF(y, ŷ) = −

T∑
t=1

λtx
′
t−1, and

∇RF(y, ŷ) = −

T∑
t=1

λtu
′
t,

(2.18)

where

λt =

−V ′ ∂F
∂ŷ

t = T

W ′λt+1 t < T .
(2.19)

RequiringW to be orthogonal induces ∥λt∥2 = ∥λt+1∥2 for t < T in (2.19), which, in turn,
induces each intermediate output of the RNN to weigh equally in (2.18). Thus, requiringW
to be orthogonal controls gradient flow by requiring {λt}, called the adjoints in dynamical
systems language, to have equal norm.

We can induce this effect directly by adding a penalty G({λt}) to F(y, ŷ), such as penal-
izing the scaled variance of the adjoints’ norms:

G({λt}) =

T∑
t=1

[
∥λt∥2 −

(
1
T

T∑
i=1

∥λi∥2

)]2

. (2.20)

Clearly, for a LRNN, a choice of orthogonalW would certainly set the example G({λt}) in
(2.20) to zero. What is more, an alternative choice ofW that preserves the norm along the
row space of V would also set the example G({λt}) in (2.20) to zero. Thus, the example
penalty in (2.20) allows for a much broader set of learned parameters, even for the linear

36

case, in comparison to inducingW to be orthogonal.
In general, not only do penalties on the adjoints allow for a greater set of learned

parameters, but they also allow for greater flexibility by changing the form of the penalties:
we can make use of different norms; we can use different measures of variability; and we
can add weights to the penalty. Moreover, as we shown next, we can readily extend this
formulation to nonlinear activation functions, as the adjoints are always well defined so
long as the activation functions are differentiable. Finally, as we also show next, penalties
on the adjoints are inexpensive to compute and differentiate, do not require propagating
matrix-valued or tensor-valued quantities, and can be directly integrated into popular
automatic differentiation software, such as TensorFlow.

2.6 The Coadjoint Algorithm
Here, we present our procedure for addressing gradient flow problems in training Recurrent
Neural Networks (RNNs). While we focus on RNNs, we note that the procedure is
general and can be derived for arbitrary networks (e.g., gated recurrent networks, feed
forward networks, convolution networks, transformer networks, etc.) so long as the loss
function and the activation functions are twice differentiable (excepting a measure zero set).
Furthermore, we can modify the choice of penalty to induce other interesting properties in
the network. We will leave demonstrating these generalizations as future work.

We will present our procedure by first specifying general recurrent neural networks for
which gradient flow is particularly challenging; then, we will derive the usual backpropagation
calculation to define the adjoints; using the adjoints, we will derive our procedure; and,
finally, we will state an algorithm for (stochastic) gradient-based training algorithms. Note
that the definition of the general RNN and derivation of the adjoint system is also presented
in Section 2.2, but we repeat this information here for better readability.

Defining a Recurrent Neural Network. We begin by recalling the definition of the basic
RNN (i.e., Def. 2.1).

Definition 2.1 (Basic Recurrent Neural Network). For a single input sequence {u1,u2, . . . ,uT } ⊂
Rp and arbitrary initial state x0 ∈ Rd, an activation function σ : R → R (applied component-wise),
and an output function ϕ : R → R (applied component-wise), the Basic Recurrent Neural Network
(basic RNN) is defined by

xt =σ(Wxt−1 + Rut + b1) t = 1, . . . , T
ŷ =ϕ(VxT + b2)

(2.1)

37

whereW ∈ Rd×d is the recurrent weight matrix; d is the recurrent dimension; R ∈ Rd×p; b1 ∈ Rd;
V ∈ Rl×d; l is the output dimension; b2 ∈ Rl; for any t ∈ {0, . . . , T }, xt ∈ Rd is the memory state
at time t; and ŷ ∈ Rl is the prediction.

As per usual, we can let T vary from example to example and still maintain the same
RNN.

The Adjoints of Backpropagation. Given an RNN, an example ({u1, . . . ,uT },y), and a
loss function F(y, ŷ), the usual backpropagation calculation produces the adjoints {λt : t =
1, . . . , T }, defined by

λt =

−V ′ϕ(1)(Vxt + b0) ′
∂F
∂ŷ

t = T

W ′σ(1)(Wxt + Rut+1 + b1) ′λt+1 t < T ,
(2.21)

where ϕ(1) and σ(1) represent the Jacobians of ϕ and σ, respectively. As is well known, the
adjoints are then used to compute the gradients with respect to the parameters (i.e., W, R,
b1, V , b0) in a manner analogous to (2.18); for example,

∇WF(y, ŷ) = −

T∑
t=1

σ(1)(Wxt−1 + Rut + b1)
′λtx

′
t−1. (2.22)

Deriving the Coadjoints from Penalties on the Adjoints. Now, given an RNN, an ex-
ample ({u1, . . . ,uT },y), a loss function F(y, ŷ), and an adjoint penalty G(λ1, . . . , λT), we can
apply backpropagation to the sum of F and G following Lagrangian formalism [62] (see
Section A2 of the appendix for details). Applying backpropagation produces, what we
term, the forward coadjoints, {γt}, and the backward coadjoints, {αt}, defined by

γt =

− ∂G
∂λ1

t = 1
σ(1)(Wxt−1 + Rut + b1)Wγt−1 −

∂G
∂λt

t > 1,
(2.23)

38

and

αt =

V ′ϕ(1)(VxT + b0)
∂F

∂ŷ

+ V ′ϕ(1)(VxT + b0)
′ ∂

2F

∂2ŷ
ϕ(1)(VxT + b0)VγT

− V ′

(
ℓ∑

k=1

∂F

∂ŷ[k]
ϕ

(2)
[k](VxT + b0)

′

)
VγT

t = T

W ′σ(1)(Wxt + Rut+1 + b1)
′αt+1

+W ′

(
d∑

k=1
λt+1[k]σ

(2)
[k](Wxt + Rut+1 + b1)

′

)
Wγt

t < T ,

(2.24)

where the [k] represents the kth component of a given quantity; and ϕ(2)
[k] and σ(2)

[k] represent
the Hessians of ϕ[k] and σ[k], respectively. Now, we can use the coadjoints to compute the
gradient of the F + G with respect to the parameters; for example, the gradient of F + G
with respect toW is

−

T∑
t=1
σ(1)(Wxt−1 + Rut + b1)

′αtx
′
t−1

+ γtλ
′
t+1σ

(1)(Wxt + Rut+1 + b1)

+Wγtx
′
t

(
d∑

k=1
λt+1[k]σ

(2)
[k](Wxt + Rut+1 + b1)

)
.

(2.25)

Remark 2.2. When ϕ and σ are applied component-wise, as is typically the case, the equations
for forward and backward coadjoints simplify greatly. Even when ϕ and σ are applied to the entire
argument, we can simplify the notation using tensor notation, but we have opted to use matrix
notation for clarity.

We note that in the above formulation, we require F, ϕ, and σ to be twice differentiable
and we need G to be once differentiable. Generally, this is not a problem for most common
loss functions, activation functions and our anticipated choices of G, at least off of a set of
measure zero.

The Coadjoint Algorithm. Using the above calculations, we can state a (stochastic)
gradient-based training algorithm, Algorithm 2. We now state several properties of this
procedure. First, Algorithm 2 elucidates the naming of the forward and backward coad-
joints: the forward coadjoints are analogous to evaluating the RNN forward in time, while

39

Algorithm 2: Coadjoint Algorithm
Data: Training Examples; Loss Function F; Adjoint Penalty G; Initial Parameter Set,

Θ; Activation Function, σ; Output Function ϕ; (Stochastic) Gradient-based
Training Algorithm; User-Specified Stopping Condition;

Result: Coadjoint Trained Recurrent Neural Network
while User-Specified Stopping Condition do

if Stochastic Algorithm then
Sample mini-batch from training examples in update set;

else
Use all training examples in update set;

end
for Each example in Update Set do

Compute {xt} and ŷ using (??);
Compute {λt} using (2.21);
Compute {γt} using (2.23);
Compute {αt} using (2.24);
Compute gradient of F+Gwith respect to the parameters;

end
Using the training algorithm and mean gradient, update the parameters;

end

the backward coadjoints are analogous to the adjoints, which are calculated backward in
time. Second, in terms of memory costs, Algorithm 2 requires twice as much storage as
the regular backpropagation algorithm, as we must now also compute {γt} and {αt}; this
additional storage cost may be high for RNNs with large d and T , but can be ameliorated
using checkpoints [36]. Third, in terms of operations, Algorithm 2 requires twice as much
computation as the standard backpropagation algorithm. Overall, Algorithm 2 ought to be
a few times slower than standard backpropagation, given an efficient implementation.

Addressing the Vanishing Gradient RNN training difficulty primarily stems from un-
equal and biased credit assignment of terms, ∇WF

(t), in (2.22). In particular, the vanishing
gradient problem can be summarized by

∥∥∇WF
(t)
∥∥ ≈ 0. (2.26)

As a result the tth sequence position becomes negligible with respect to the optimization
path. As we’ve demonstrated, the adjoint state λt characterizes the magnitude of each
term in (2.22). In an analogous manner, the coadjoint procedure would incur the same
loss of signal if

∥∥∇W(F+G)(t)
∥∥ ≈ 0. We argue, albeit informally, that this will not occur if

40

optimization suffers from gradient decay. If adjoints have become vanishingly small at time
t, then ∇W(F + G)(t) ≈ ∇WG

(t). Adopting the scaled variance adjoint penalty, ∇WG
(t)

is zero only if all adjoints are equal in size. In the decayed setting, this cannot be true as
∥λt∥ ≈ 0 implying

∥∥∇W(F+G)(t)
∥∥ > 0.

2.6.1 Visualizing the Coadjoint Regularizer

In the previous section, we saw that LRNNs learned the LTG task by emphasizing label rele-
vant input tokens while down-weighting noise tokens. Furthermore, when we encouraged
the recurrent matrix towards orthogonality through a soft constraint we observed that the
dynamics induced from this constraint resulted in a more uniform emphasis applied to all
input tokens. The idea here being that the orthogonality constraint of the recurrent matrix
prevents the gradient envelope from decaying or exploding through time. Unfortunately,
in order to obtain this more uniform weighting of the gradient field, the forward dynamics
are reduced in their expressivity (see Fig. 2.2).

In comparison, the coadjoint algorithm does not make any explicit restriction on the
forward dynamics or parameterization of the recurrent matrix. Instead, the scaled variance
penalty in (2.20) regularizes the gradients of the model towards dynamics that are uniform
in time. We illustrate this using the LTG task in Fig. 2.3 where we train RNNs (nonlinear)
with varying regularization weights.

In Fig. 2.3 we process a single batch of training samples and plot ||xt||2 from t = 1, . . . , T
to visualize the learned state trajectory of the model (top red panels). The middle panels
of Fig. 2.3 correspond to the adjoint states, ||λt||2; and the bottom panel corresponds to the
adjoint states after being normalized by ||λt||

||Λ||
where ||Λ|| = maxt∈[1,T]{||λt||}.

Each of the trained models in Fig. 2.3 are able to achieve perfect accuracy on the LTG task,
but do so by learning very different dynamics. As the coadjoint penalty weight is increased
from 0 → 104 (left-to-right in Fig. 2.3), the adjoint states become more uniformly sized over
time indices. This behavior suggests that it may be useful in controlling gradient dynamics
through time, and mitigating the impact of gradient decay/explosion. We experimentally
test this hypothesis in the next section using a handful of benchmark tasks used to evaluate
the ability of RNNs to learn long-term time dependencies.

2.7 Experimental Results on the Coadjoint Method
Fundamentally, we wish to evaluate whether the coadjoint method can improve RNN
learning relative to the aforementioned approaches when gradient flow is a problem. To

41

(a) Recurrent State Trajectory

(b) Adjoint State Trajectory

(c) Normed Adjoint State Trajectory
Figure 2.3: Basic RNNs trained on the LTG task (T = 40) with varying levels of the coadjoint
regularizer applied. The panels from left-to-right indicate the level of regularizer applied
to the training process (left panel is no penalty (i.e., backpropagation) and the left is largest
(104 coefficient applied to G). The top panel illustrates the state trajectory for each model,
the middle panel depicts the adjoint trajectory and the bottom illustrates the normalized
adjoint trajectory.

42

this end, we modify two benchmark tasks into a family of tasks that will exacerbate a
common gradient flow problem, namely gradient decay. As an overview, we modify the
MNIST and Fashion MNIST classification tasks to (i) turn them into a temporal problem by
feeding in one row of the image to the RNN per time step (resulting in 28 inputs), and (ii)
appending the data sequence (i.e., the rows of the images) with varying numbers of rows
composed of independent standard Gaussian noise to extend the distance between the
output layer and the information in the image. Note, this second modification is essential:
when one of the aforementioned approaches for addressing gradient flow is still able to
learn as we increase the amount of noise appended to the sequence, this is an indication
that the approach is successfully able to address the gradient decay in the tasks.

Experiment 2.3 (Noise Padded MNIST and Fashion MNIST). Inspired by the padded experi-
ments of [17], we extend the temporal horizon of the input sequences by appending noise to the input.
We process the original MNIST and Fashion MNIST images (which are 28 × 28) row-by-row and
append iid Unif(0, 1) noise such that the total time horizon, T , is a multiple of the original image’s
number of rows. For example a Pad2x experiment would have a total time horizon of T = 56 where
the first 28 elements are the rows of the original image and the latter 28 elements are vectors in R28

where each coordinate is an i.i.d. standard uniform random variable. For each dataset we perform
0x (baseline with no padding), 4x, 8x and 12x padded experiments. We admit that (in theory)
these time horizons are not prohibitively long for a basic RNN to capture. However, by "hiding" the
original image in the beginning of the input sequence the network must learn to ignore the noise and
retain the signal over the entire horizon, making the task much more difficult in comparison to tasks
where there is signal presented at each time point.

We will briefly mention several salient points about the experimental design. First, in
modifying the tasks, the amount of noise that is appended is a multiple of the number
of rows of the original image: so a 4x padded task is appended with 112 (4 × 28) rows
of noise, while an 8x padded task is appended with 224 (8 × 28) rows of noise. In total,
we look at 0x (no noise appended), 4x, 8x, and 12x padded variants of the MNIST and
Fashion MNIST tasks. Second, in terms of the learning approaches for addressing gradient
flow, we consider the five methods described in Table 2.1. Finally, in terms of the recurrent
dimension, we experiment with recurrent dimensions in the set d = {20, 40, 60, 80, 100}. We
repeat each combination of these experimental factors ten times, and record the median
and median absolute deviation (MAD) of test accuracy for each architecture, recurrent
dimension and padded task in Table 2.2, and use Fig. 2.4 and Fig. 2.5 to visualize the
results.

43

Method Details
Adjoint RNN trained with the adjoint method, i.e., backpropagation
Coadjoint RNN trained with algorithm 2 and adjoint penalty (2.20)
Constrained RNN with soft penalty ∥W ′W − I∥2

2 + ∥WW ′ − I∥2
2

LSTM Long short-term memory network
RC RNN trained in the reservoir computer framework

Table 2.1: Recurrent models used in experiments.

For the Pad0x experiments (no additional padding), gradient decay was not observed
which resulted in approximately similar performance between RNN methods. LSTM was
able to consistently outperform the RNN methods in this setting. However, for the padded
experiments LSTM was the least effective method. Interestingly, we observed that LSTM
would periodically minimize training loss while failing to make any improvement on the
validation/test sets. This occurrence could be due to LSTM learning a pattern inherent to
the noise and not the true signal; implying that LSTM is directionally learning in that it first
learns the latter sequence elements and then as training progresses slowly incorporates
information from the earlier portions of the input sequence. This aspect lends favor to the
notion that LSTM training could be improved by the coadjoint algorithm and will be the
focus of subsequent work.

For smaller dimensions (d ⩽ 40) all of the methods had trouble consistently learning
in the padded settings. In particular, the coadjoint trained RNN periodically would fail
during training due to numerical error. This problem was mitigated to an extent with
increasing of dimension d > 60 and decreasing learning rate. Furthermore, these numerical
issues were not consistent in that coadjoint RNN learning was sensitive to the initialization.

In the Pad8x regime, the two datasets proved to be very different in the ease of learning.
For Fashion MNIST Pad8x, all RNN methods were able to learn and performed relatively
similarly given that the recurrent dimension was sufficiently large (d ⩾ 80). Suggesting
that gradient decay was not as detrimental for the Fashion MNIST dataset. On the other
hand, MNIST Pad8x proved to be a difficult task; only the coadjoint RNN was able to
generate a median accuracy greater than baseline, regardless of recurrent dimension.

For the Pad12x experiments, only the coadjoint RNN was able to achieve a median
accuracy better than baseline — although these models needed additional initializations
due to numerical difficulties. Of note, the constrained RNN was able to generate a few
initializations that learned to the degree of the coadjoint RNN but was not consistent in
that the vast majority of initializations did no better than the baseline accuracy.

44

MNIST Fashion MNIST

Method d = 20 d = 40 d = 60 d = 80 d = 100 d = 20 d = 40 d = 60 d = 80 d = 100

Pad0x

RNN adjoint 84.5 ± 0.425 90.3 ± 0.17 0.91.4 ± 0.10 91.7 ± 0.22 91.8 ± 0.10 77.8 ± 0.71 81.8 ± 0.18 82.9 ± 0.17 83.5 ± 0.14 83.6 ± 0.15
RNN coadjoint 84.8 ± 1.03 90.3 ± 0.12 91.4 ± 0.15 91.7 ± 0.10 91.8 ± 0.17 77.8 ± 0.29 81.8 ± 0.25 82.9 ± 0.20 83.5 ± 0.23 83.6 ± 0.15
RNN constrained 84.8 ± 0.43 90.3 ± 0.21 91.4 ± 0.11 91.8 ± 0.12 91.8 ± 0.12 77.9 ± 0.89 81.7 ± 0.26 82.9 ± 0.22 83.4 ± 0.13 83.6 ± 0.13
LSTM 96.7 ± 0.23 98.0 ± 0.12 98.4 ± 0.10 98.5 ± 0.10 98.6 ± 0.10 85.6 ± 0.23 87.5 ± 0.13 88.5 ± 0.10 88.7 ± 0.08 89.0 ± 0.15
RNN RC 84.7 ± 0.71 90.1 ± 0.24 91.4 ± 0.10 91.6 ± 0.11 91.6 ± 0.11 77.8.0 ± 0.77 81.9 ± 0.30 82.9 ± 0.31 83.5 ± 0.16 83.8 ± 0.07

Pad4x

RNN adjoint 10.8 ± 0.14 10.8 ± 0.20 45.7 ± 22.54 70.0 ± 5.24 77.8 ± 1.74 10.2 ± 0.25 45.2 ± 10.3 64.1 ± 3.7 68.1 ± 2.9 71.4 ± 2.0
RNN coadjoint 9.80 ± 0.0 10.8 ± 0.15 54.4 ± 12.73 72.7 ± 10.57 81.5 ± 1.52 10.1 ± 0.13 53.3 ± 12.1 64.8 ± 3.1 70.5 ± 3.2 72.6 ± 1.4
RNN constrained 10.9 ± 0.14 10.6 ± 0.18 42.3 ± 31.68 68.8 ± 5.94 81.1 ± 0.94 10.0 ± 0.23 50.1 ± 10.1 58.7 ± 7.8 67.6 ± 1.9 70.8 ± 1.7
LSTM 10.3 ± 0.23 10.3 ± 0.08 9.97 ± 0.12 10.1 ± 0.15 9.97 ± 0.19 10.1 ± 0.25 10.1 ± 0.28 10.2 ± 0.19 18.1 ± 8.1 70.9 ± 8.1
RNN RC 10.5 ± 0.17 10.7 ± 0.18 58.4 ± 4.68 71.3 ± 5.68 78.8 ± 3.47 9.92 ± 0.25 43.4 ± 23.2 66.8 ± 0.97 68.1 ± 1.8 72.0 ± 1.4

Pad8x

RNN adjoint 10.8 ± 0.24 10.4 ± 0.16 10.2 ± 0.10 10.4 ± 0.30 10.1 ± 19.4 9.9 ± 0.21 9.9 ± 0.19 9.8 ± 0.19 30.1 ± 20.4 51.0 ± 3.00
RNN coadjoint 9.80 ± 0.0 9.80 ± 0.0 36.2 ± 12.1 47.2 ± 2.9 50.7 ± 6.49 10.0 ± 0.00 10.0 ± 0.00 33.9 ± 20.8 52.3 ± 5.6 61.0 ± 5.3
RNN constrained 10.6 ± 0.15 10.3 ± 0.26 10.2 ± 0.21 10.2 ± 0.11 10.1 ± 0.23 10.0.0 ± 0.15 10.1 ± 0.35 10.2 ± 0.69 50.6 ± 7.4 56.8 ± 6.5
LSTM 10.6 ± 0.08 10.4 ± 0.17 10.1 ± 0.15 10.1 ± 0.20 10.1 ± 0.20 10.3 ± 0.10 10.2 ± 0.09 10.0 ± 0.13 10.1 ± 0.21 10.0 ± 0.25
RNN RC 10.7 ± 0.06 10.5 ± 0.10 10.2 ± 0.12 9.93 ± 0.11 10.4 ± 0.42 9.9 ± 0.21 9.7 ± 0.36 32.4 ± 21.5 26.6 ± 17.21 55.6 ± 9.6

Pad12x

RNN adjoint - - - 9.9 ± 0.01 10.0 ± 0.19 - - - 10.0 ± 0.24 10.2 ± 0.16
RNN coadjoint - - - 29.0 ± 4.96 42.2 ± 8.63 - - - 32.5 ± 17.1 47.7 ± 1.52
RNN constrained - - - 10.1 ± 0.10 10.1 ± 0.12 - - - 10.2 ± 0.18 9.9 ± 0.16
LSTM - - - 10.1 ± 0.31 10.1 ± 0.15 - - - 10.0 ± 0.19 10.1 ± 0.17
RNN RC - - - 10.0 ± 0.16 10.1 ± 0.13 - - - 9.9 ± 0.08 10.1 ± 0.12

Table 2.2: MNIST and Fashion MNIST Pad0x, Pad4x, Pad8x and Pad12x median classifica-
tion accuracy and MAD over ten initializations for five RNN methods.

Figure 2.4: MNIST: Median validation accuracy for recurrent architectures with hidden
dimension d = 100 for padded experiments 0X, 4X, 8X and 12X, respectivley.

Figure 2.5: Fashion MNIST: Median validation accuracy for recurrent architectures with
hidden dimension d = 100 for padded experiments 0X, 4X, 8X and 12X, respectively.

45

2.8 Observations on Gradient Control and Learning
Recall, we hypothesized that, when learning fails to occur in an RNN due to gradient
variability, the variability of the adjoints ({λt}) is the culprit, and by inducing control via a
penalty,G({λt}), will address this issue and allow an RNN to learn. To evaluate the first part
of this claim — the relationship between adjoint values and learning —, we compare the
value ∥λ1∥2

∥λT∥2
(i.e., the ratio between the initial and terminal adjoints) and the classification

accuracy. We recall that ∥λ1∥2 → 0 (gradient decay) and ∥λ1∥2 → ∞ (gradient explosion)
is what we view as the primary culprit in the loss of learning. Thus, an adjoint ratio of one
implies that the initial and terminal sequence positions are equally influential in gradient
credit assignment. In Figure 2.6, we plot the values of the adjoint ratio (i.e. ∥λ1∥2

∥λT∥2
) against

the classification accuracy for networks trained by backpropagation and the coadjoint
procedure.

Figure 2.6: (left-to-right: No padding, 2x, 3x and 4x padding) Test accuracy and the
ratio between initial and terminal adjoint sizes (i.e. ||λ1||2

||λT ||2
) for the Fashion MNIST noise

padded tasks at training completion. We display six basic RNNs trained with either:
backpropagation algorithm (brown), or the coadjoint algorithm (blue).

For the no padding and Pad 2x tasks, we see that there is really no relationship between
the adjoint ratio and classification accuracy: this is expected as there are not prohibitively
long temporal dependencies introduced such that gradient behavior becomes problematic.
However, as we increase the padding, we see that the classification accuracy increases as
the adjoint ratio approaches one (vertical line in Fig. 2.6). This pattern bolsters our claim
that the values of the adjoints play a critical role in determining whether learning will occur,
when gradient control is a problem. Furthermore, with the introduction of longer temporal
dependencies through additional padding we see that RNNs trained with backpropagation
(brown points in Fig. 2.6) tend to zero, exemplifying the regime where gradient decay is
problematic. On the other hand, RNNs that were trained with the coadjoint method (blue

46

points in Fig. 2.6) are able to homogenize the adjoint sizes such that the model is able to
utilize the gradient information provided from early sequence elements. Again, we view
this pattern as bolstering our position. To summarize, we observe that the adjoint ratio
is predictive of the classification accuracy as gradient flow becomes a problem, and, by
controlling this value through our coadjoint training, we are able to induce learning.

While the general trend described in Fig. 2.6 suggests that RNNs will learn when the
credit assignment is balanced (as measured by ||λ1||2

||λT ||2
), we also observe cases where credit

assignment is balanced (i.e., ||λ1||2 ≈ ||λT ||2), yet task accuracy does not improve (see right
panel of Fig. 2.6). This observation is in contrast to the viewpoint that RNN learning is
highly correlated with the ability of the model to mitigate VEG during training.

Using this observation as motivation, in Chapter 3 we leverage the data generated from
the factorial experiment described in Section 1.4 to study the relationship between RNN
learning and VEG.

2.9 LU RNN
In Sections 2.6 and 2.7, we introduced the coadjoint procedure and algorithm for penalizing
the intermediate partial derivatives (i.e., adjoint states) generated during backpropaga-
tion to improve gradient flow during training. Hence, the coadjoint procedure can be
categorized as a technique for inducing gradient flow through regularization. Moreover,
recall that regularization methods were one of a handful of main strategies for improving
gradient flow and learning long-time dependent structure in RNNs that was discussed in
Section 2.4. In this section, we re-examine another one of these strategies — constraining the
recurrent matrix to be orthogonal/unitary — to motivate a simple architecture/procedure
that empirically improves long-term memory in RNNs.

As described in Section 2.4, constraining the recurrent matrix to be orthogonal is one
of the main strategies for controlling gradient flow in RNNs. The motivation for this
parameterization can be characterized by the recurrent adjoint system (copied from (2.6)
below).

λt =W
′σ(1)(Wxt + Rut+1 + b1)

′λt+1 t < T (2.27)

Namely, if ||W||2 < 1, then ||λt||2 → 0 as T → 1 and we have vanishing gradients; and
if ||W||2 > 1, then ||λt||2 → ∞ as T → 1 and we have exploding gradients. However,
if ||W||2 = 1, then W is a norm preserving linear map, and ||λt||2 of (2.27) will not be
exponentially impacted by the magnitude ofW. Thus, this constraint strategy addresses
the gradient flow issue in RNNs by controlling the global gradient flow (from time index

47

T ↓ 1) by controlling the local gradient flow (i.e., the change in adjoint magnitude from
λt+1 → λt).

Using this same motivation, we now introduce a simple architecture that is capable
of controlling the adjoint system without directly penalizing the recurrent matrix, or the
gradients generated during backpropagation, which to our knowledge, is a novel technique
for inducing gradient flow in RNNs. Specifically, rather than constraining the recurrent
matrix, we simply require it to be invertible (i.e., WW−1 = W−1W = I). Moreover, the
forward dynamics remain identical to the basic RNN (see Def. 2.1), butW andW−1 are
interchanged every τ < T time steps. The intuition of this construction is that alternating
between W and W−1 creates a “pseudo” norm preserving property every 2τ time steps
without requiring ||W||2 = 1.

As illustration, consider ||W||2 = 2 and the recurrent adjoint system, (2.6), where
σ(1)(·) = 1 for simplicity. Clearly, when ||W||2 = 2, then ||λt||2 > ||λt+1||2, and the dynamics
become susceptible to encountering the exploding gradient case as T increases. Similarly, if
the model was parameterized with the matrix inverse, then ||W−1||2 =

1
2 and the dynamics

of (2.27) become susceptible to the vanishing gradient case. However, if we interchange
W for W−1 every τ time steps, then the adjoint system, (2.27), will alternate between
expanding and contracting dynamics depending on whether W or W−1 parameterizes the
recurrent matrix. As a result,W is free to vary in size, yet the adjoint system should remain
relatively uniform in size over arbitrary length time-horizons (for a suitably chosen τ < T).
Furthermore, we see this parameterization as a relaxation of the orthogonally constrained
RNNs. Namely, by inverting the recurrent matrix, gradient signal can be maintained over
the entire computational path, but does so without restricting the recurrent matrix to be
norm-preserving at each time point.

Although this simple trick for maintaining gradient strength is numerically sensible,
it requires computing the inverse of W. In general, inverting the square matrix, W ∈
Rd×d, requires O(d3) operations (e.g., using Gauss-Jordan elimination), which can become
prohibitive if d grows. To reduce this cost, we use the LU decomposition to parameterize
W (i..e,W = LUwhere L ∈ Rd×d is a lower triangular matrix, and U ∈ Rd×d is an upper
triangular matrix). As a result of this decomposition, W−1 can be computed in O(d2)

operations, while storing LU in place of W directly, only marginally increases storage
requirements.

Using this parameterization, we now define the LU RNN.

Definition 2.4 (LU Recurrent Neural Network). For a single input sequence {u1,u2, . . . ,uT } ⊂
Rp, constant τ < T , and arbitrary initial state x0 ∈ Rd, an activation function σ : R → R (applied
component-wise), and an output function ϕ : R → R (applied component-wise), the LU Recurrent

48

Neural Network is defined by

xt =σ(Wxt−1 + Rut + b1) t = 1, . . . , T
ŷ =ϕ(VxT + b2)

(2.28)

whereW = LU is stored as its LU decomposition and is interchanged with its inverse,W−1, in the
computation graph whenever t mod τ = 0.

In addition to the LU RNN, we also consider directly parameterizing withW−1 (no LU
decomposition) and refer to this architecture as the inverse RNN.

2.9.1 LU RNN (Preliminary) Experimental Results

To evaluate the LU RNN’s and inverse RNN’s ability to learn distant time dependencies, we
utilize a variation of a common task designed for testing a RNN’s ability to learn long-time
dependent structure, the adding problem.

Experiment 2.4 (Adding Problem). First introduced in [43], the adding problem was designed to
stress the ability of an RNN to store bits of information over extended periods of time. We implement
a variation of this task, where input features are formed by concatenating two univariate sequences
of length T . The first sequence consists of elements ut ∈ Unif(0, 1)); and the second is an indicator
vector of length T , where two elements are marked. The first marked element is selected uniformly at
random from positions [0, T

2], and the second marked element from positions [T2 +1, T]. The objective
of the model is to return the sum of the two elements in the first sequence that have a corresponding
marked position. In Fig. 2.7 we illustrate this task for a sample input pair.

49

0.4 0.2 0.8 0.7

0 1 0 0

. . .

. . .

0.9

1

0.2

0

Target = 1.1

+

Random Signal

Mask

u1 u2 uT.

Figure 2.7: An example observation of the T horizon adding problem. In this input observa-
tion, the positions t = {2, T − 1} are marked, indicating that the sum of their corresponding
random uniform elements will determine the target value (i.e., 0.2 + 0.9 = 1.1).

Remark 2.3. For the adding problem, a naïve strategy of predicting 1 for all output (regardless of
the input sequence) results in an expected mean square error (MSE) of 0.167, the variance of the
sum of two independent uniform distributions. This is the baseline which each model attempts to
improve.

We train each introduced architecture — LU RNN and inverse RNN — on the adding
problem with T = {100, 250, 750} and τ = 10. We compare these models to the basic RNN
and LSTM. For each model we fix the recurrent dimension to d = 128, the batch size to 32,
and select the learning rate from ∈ [10−4, 10−3]. In Fig. 2.8 we display the MSE for each
of these models and tasks. As depicted in Fig. 2.8, the basic RNN is unable to improve
over the naive strategy for any T . The LSTM is able to quickly learn at T = 100, but fails to
reduce MSE for T = 250. Both the LU RNN and inverse RNN are able to reduce MSE to
zero for T = {100, 250, 750}.

Remark 2.4. Other works have been able to train an LSTM to partially reduce MSE for the adding
problem at T = 750 [3]. However, the discrepancy in results can (possibly) be explained by
differences in batch size and optimizer.

50

Figure 2.8: Results of the adding problem with T = {100, 250, 750} for the basic RNN (red),
LU RNN (blue), inverse RNN (red) and LSTM (magenta).

2.10 Conclusion
In this chapter, we studied RNNs from an optimization perspective, emphasizing the
vanishing and exploding gradient problem, and the difficulty of learning long-term depen-
dencies with these architectures. Motivated by this problem, we introduced two methods
for mitigating VEG and improving long-term memory in RNNs: the coadjoint method
and the LU RNN. The coadjoint method introduces a procedure for training RNNs that
penalizes the intermediate derivatives generated during backpropagation (i.e., the ad-
joints) to control gradient flow (e.g., gradient decay), and allow for learning longer range
dependencies. We demonstrated that our coadjoint method generalizes the orthogonal
recurrence penalty commonly employed to address gradient control in recurrent networks;
we discussed how it can be quickly computed through an additional backpropagation;
and we pointed out how flexible our coadjoint method is beyond the example that we
investigated in this work.

We compared our coadjoint method against state-of-the-art approaches that are de-
signed for addressing gradient flow issues. We found that our coadjoint approach was able
to induce learning for basic RNNs when gradient decay is prohibitive to learning and closes
the gap between basic RNNs and current state-of-the-art approaches. In summary, our
coadjoint approach is a unique training approach that seems to better address the gradient
flow problem of training RNNs, and can help improve long-term memory in RNNs.

In addition to the coadjoint procedure, we introduced a simple architecture, the LU RNN,
that better learns long-term dependencies than the basic RNN. Furthermore, we discussed
the ease in which this architecture can be implemented, and how its computational path
can be seen as a relaxation of the orthogonal recurrence constraint; and demonstrated its
effectiveness on a commonly used benchmark for learning long-term dependencies.

51

3 revisiting the problem of learning long-term dependencies
in recurrent neural networks

52

Recurrent neural networks (RNNs) are an important class of models for learning
sequential behavior. However, training RNNs to learn long-term dependencies is a
tremendously difficult task, and this difficulty is widely attributed to the vanishing
and exploding gradient (VEG) problem. Since it was first characterized 30 years
ago, the belief that if VEG occurs during optimization then RNNs learn long-term
dependencies poorly has become a central tenet in the RNN literature and has been
steadily cited as motivation for a wide variety of research advancements. In this
work, we revisit and interrogate this belief using a large factorial experiment where
more than 40,000 RNNs were trained, and provide evidence contradicting this belief.
Motivated by these findings, we re-examine the original discussion that analyzed
latching behavior in RNNs by way of hyperbolic attractors, and ultimately demonstrate
that these dynamics do not fully capture the learned characteristics of RNNs. Our
findings suggest that these models are fully capable of learning dynamics that do not
correspond to hyperbolic attractors, and that the choice of hyper-parameters, namely
learning rate, has a substantial impact on the likelihood of whether an RNN will be
able to learn long-term dependencies.

3.1 Introduction
Recurrent neural networks (RNNs) are an important class of models used for addressing
tasks with sequential data, and are integral components to state-of-the-art encoder-decoder
models for language transduction [4, 81, 54]. However, RNNs have a tremendous difficulty
learning, especially when temporal dependencies are distant [10, 9]. An RNN’s learn-
ing difficulty is attributed to the vanishing and exploding gradient (VEG) phenomenon.
Indeed, in the 30 years since identifying VEG as the mechanism of poor RNN learning
[10, 9], the belief, if VEG occurs then an RNN learns long-term dependencies poorly, has become
a central tenet in the RNN literature. Moreover, this tenet is widely cited as motivation by
a variety of research advancements to combat or avoid VEG, including specialized initial-
ization schemes, novel empirical risk minimization formulations, novel recurrent neural
network architectures, attention mechanisms, and the increasingly popular transformer
architecture [102, 106, 23, 47, 111, 46, 65]. In fact, this tenet is so implicitly accepted that
research advancements for recurrent networks establish their validity using the tenet’s
contrapositive: rather than directly showing that VEG is mitigated, these research advance-
ments show an increase in test set accuracy, which, by the tenet’s contrapositive, implies
that the advancement mitigates VEG better than alternatives (e.g., see Table 1 of [32]). In
other words, this tenet—if VEG occurs then an RNN learns long-term dependencies poorly—is
an accepted fact, even at the forefront of RNN research.

Disclaimer: Portions of this chapter are pulled directly from a co-authored paper written with Vivak
Patel, Prasanna Balaprakash and Yumian Cui that is currently under review at the journal Neural Networks.

53

In this chapter, we revisit whether this tenet and its implications are true. Broadly, we
interrogate the following questions.

1. Is the tenet—if VEG occurs, then will an RNN learn long-term dependencies poorly—
true?

2. Is its contrapositive—if an RNN learns long-term dependencies well, then VEG is
mitigated—true?

To interrogate these questions, we use the data generated from the extensive factorial
experiment detailed in Section 1.4. Recall that this experiment uses seven RNN architectures
with two different recurrent dimensions each; five benchmark tasks with six variations
each; two different training horizons; five learning rates; and with all possible combinations
replicated ten times.1 Thus, we explore these questions using over 40,000 training attempts
requiring over 14 years of computational time on the Argonne National Laboratory Theta
supercomputer [33].

Through this extensive experiment, we conclude that the answer to each of the above
questions is negative. That is, we provide examples from our training attempts that illustrate
the following.

1. Even if VEG occurs, we observe RNNs that still learn long-term dependencies sub-
stantially above baseline performance.2

2. When an RNN learns long-term dependencies substantially above baseline perfor-
mance, we observe cases where VEG still occurs.

Importantly, we consider the possibility where the causal relationship is possibly fuzzy
and perform an extensive statistical analysis to evaluate these claims under this context.
We conclude as follows.

1. VEG has limited ability to explain when RNNs learn long-term dependencies above
baseline performance during training or at the model’s terminal iterate (marginal
R2 ≈ 0.005 and R2 = 0.25, respectively), and this explanatory power is further reduced
when other covariates which describe the underlying task and training hyperparame-
ters are included (less than 2% increase in R2 when information measuring VEG is
used as a predictor).

1For the UnICORNN, the full number of training attempts could not be reached owed to extremely long
training times.

2We refer to baseline performance as the performance achieved from guessing for a given task.

54

2. The quality of RNN learning has limited explanatory power in the amount of VEG
observed, and this explanatory power is diminished when other covariates are in-
cluded in the model (quality of learning accounts for less than a 1.5% increase in
explanatory power).

Our experimental conclusions seemingly contradict [9], which rigorously proves “that
only two conditions can arise when using hyperbolic attractors to latch bits of information.
Either the system is very sensitive to noise, or the derivatives of the cost at time twith respect
to the system activations converge exponentially to 0 as t increases.” In order for both our
experimental conclusions and the mathematical results of [9] to be true, we must be in two
distinct settings: namely, the standard RNN and more advanced architectures considered in
this work are learning dynamics that do not necessarily correspond to hyperbolic attractors,
which is the required setting for [9]. While other works have experimentally shown
that it is possible for certain RNN architectures to have dynamics that are not hyperbolic
attractors [11] or have theoretically constructed specific activations to generate RNNs with
strange attractor dynamics [18, 19, 59], our experimental disagreement with [9] raises the
question: in practice, do RNN dynamics correspond to hyperbolic attractors? That is, which
setting occurs in practice? While our results from the aforementioned experiment already
provide an answer — in practical settings, an RNN’s dynamics do not always correspond
to hyperbolic attractors —, we show that simple RNNs will learn dynamics that do not
correspond to hyperbolic attractors using a synthetic latching experiment (described in
Section 3.3). Accordingly, our experimental conclusions on the limited relationship between
VEG and learning seem applicable in practical settings.

Chapter Contributions To summarize, we show a rather mild relationship between VEG
and the ability of RNNs to learn long-term dependencies, which contradicts the pervasive
belief that VEG prevents an RNN from learning long-term dependencies. Instead, we
observe that it is the selection on hyper-parameters, namely learning rate, that has a
substantial impact on whether an RNN will be able to learn long-term dependencies.
We also observe that there is no single RNN architecture that seems to dominate tasks
with long-term dependencies. In addition, we re-examine the framework of RNNs as
hyperbolic attractors and with the use of a simple synthetic experiment provide evidence
that illustrates long-term memory can be acquired by RNNs through dynamics that are
not hyperbolic. This simple illustration provides a mechanism that can explain why such a
mild relationship was observed between VEG and the ability of RNNs to learn long-term
dependencies.

55

Chapter Organization In Section 3.2, we describe VEG and produce a metric that will be
used to analyze VEG quantitatively. In Section 3.3, we describe our experimental design. In
Section 3.4, we provide examples that address the veracity of the tenet and its contrapositive
statement. In Section 3.5, we provide a statistical analysis of the tenet and its contrapositive.
In Section 3.6, we re-examine the original framework for analyzing information latching
over time. In Section 3.7, we conclude.

Note to Readers This chapter is written such that it can largely be read independently
from the first two chapters of this dissertation. Thus, for the reader that chooses to read
this dissertation straight through, there may be some redundancy with respect to the first
two chapters of this dissertation. In light of this, readers are encouraged to skip Section
3.2 for a more succinct reading experience. Furthermore, although the description of the
experimental design is elaborated in Chapter 1 when discussing task generalization, we
reiterate the description in Section 3.3 of this chapter, and emphasize different aspects of
the design that pertain to our investigation between VEG and RNN learning.

3.2 A Metric for the Vanishing and Exploding Gradient
Phenomenon

Herein, we describe the characterization of VEG from [10] using the modern language of
backpropagation, and use it to define a metric for VEG. We use the basic RNN (introduced
in Def. 2.1 and reproduced below) as a starting point for this endeavor.

Definition 2.1 (Basic Recurrent Neural Network). For a single input sequence {u1,u2, . . . ,uT } ⊂
Rp and arbitrary initial state x0 ∈ Rd, an activation function σ : R → R (applied component-wise),
and an output function ϕ : R → R (applied component-wise), the Basic Recurrent Neural Network
(basic RNN) is defined by

xt =σ(Wxt−1 + Rut + b1) t = 1, . . . , T
ŷ =ϕ(VxT + b2)

(2.1)

whereW ∈ Rd×d is the recurrent weight matrix; d is the recurrent dimension; R ∈ Rd×p; b1 ∈ Rd;
V ∈ Rl×d; l is the output dimension; b2 ∈ Rl; for any t ∈ {0, . . . , T }, xt ∈ Rd is the memory state
at time t; and ŷ ∈ Rl is the prediction.

The basic RNN is visualized in Figure 3.1. The basic RNN can also be used to produce
a prediction at each time point from t = 1, . . . , T , but we will focus on the case where a

56

prediction is made at the final time T (see Figure 3.1) as this is when VEG is most prominent.
Moreover, while the diagram refers to the basic RNN, all RNN architectures produce a
sequence of memory states, {xt}, that are propagated forward in time and then used to
produce a prediction.3 Hence, all RNN architectures can suffer from VEG given that VEG
depends on the behavior of the memory states, as we discuss presently.

Figure 3.1: A visualization of the forward dynamics of the basic RNN (Definition 2.1).

From [10], an RNN suffers from vanishing gradients if for a given input sequence and
parameters, ∥∂xτ/∂xt∥2 for t < τ decays to zero as τ − t → ∞. Analogously, an RNN
suffers from exploding gradients if for a given input sequence and parameters, ∥∂xτ/∂xt∥2
for t < τ diverges to infinity as τ− t→ ∞. In other words, an RNN suffers from VEG if
a marginal change in the memory state at an earlier time point has an insignificant or a
substantial impact on the marginal change in the memory state at a future time point.

While this characterization of an RNN’s experience of VEG is useful for theory, it has
two limitations for developing a metric for VEG in practice. First, this characterization
does not apply to tasks with finite time horizons. Second, as VEG impacts the training
dynamics, this characterization does not account for possible contributions from the loss
function. Therefore, we consider a simple variation on this characterization that allows
us to develop a metric for VEG that addresses the above two limitations. In order to
describe our simple variation, we need to specify the training problem (i.e., empirical risk
minimization). Using the basic RNN as an example, let L be a loss function between a
label for an input sequence and the prediction from the RNN. Then, for a set of examples,

3While many RNN architectures can be visualized using Figure 3.1, there are some RNN architectures that
use multiple memory states from previous iterates as inputs [93], but analogous diagrams can be produced.

57

{(uj
1,uj

2, . . . ,uj
T ,yj) : j = 1, . . . ,N}, the training problem is to solve

min
W,R,b1,V ,b2

N∑
j=1
L(ŷj,yj)

s.t. xjt = σ(Wx
j
t−1 + Ru

j
t + b1) t = 1, . . . , T

ŷj = ϕ(VxjT + b2),

(3.1)

where xj0 is either randomly initialized for each j or set to a fixed value (e.g., zero).
The training problem, (3.1), is typically solved using (stochastic) gradient methods for

which gradients of the parameters are computed using backpropagation [85, 61]. Using
the rigorous Lagrangian formalism for backpropagation [62], backpropagation can be
defined as the backward analogue of calculating the memory states; that is, backpropagation
generates a sequence of vectors, called adjoint states, starting from time point T and
terminating at time point 0, as we now define.

Definition 3.1 (The Adjoint States of Backpropagation). Given a basic RNN, an example
({u1,u2, . . . ,uT },y), and a loss function L(ŷ,y), the usual backpropagation calculation produces
adjoint states {λt : t = 1, 2, . . . , T }, defined by

λt =

−V ′ϕ(1)(VxT + b2) ′
∂L
∂ŷ

t = T

W ′σ(1)(Wxt + Rut+1 + b1) ′λt+1 t < T ,
(3.2)

where ϕ(1) and σ(1) (applied component-wise) represent the derivatives of ϕ and σ, respectively.

In Figure 3.2, the calculation flow for the adjoint states is represented. Importantly,
from Figure 3.2 and by the chain rule, the adjoint state is λt = (∂xT/∂xt)(∂L/∂xT). Thus,
the adjoint states contain the sensitivities of the memory states to earlier time points, as is
done in [10], and contains information about the loss function, which we mentioned was
one of the limitations of developing a metric for VEG using the sensitivity of the memory
states alone. What is more, as is well known [62], the adjoint states are then leveraged to
compute the gradients with respect to the parameters (i.e., W, R, b1, V , b2). For example,
the adjoint states can be used to compute the gradient of the recurrent weight matrix with
respect to an example by

∇WL(ŷ,y) = −

T∑
t=1

σ(1)(Wxt−1 + Rut + b1)
′λtx

′
t−1. (3.3)

58

Figure 3.2: A visualization of the backward (adjoint) dynamics of the basic RNN (Definition
2.1).

From (3.3), the adjoint states play a critical role in VEG: roughly, if λt’s decay rapidly
as t approaches zero, then earlier values in the input sequence (i.e., those closer to t = 0)
will have a small impact on any updates to the parameters; and if λt’s grow rapidly as t
approaches zero, then earlier values in the input sequence will have an out-sized impact
on any updates to the parameters. Thus, the adjoint states can be used to quantify VEG by
the logarithm of the adjoint ratio,

log10
∥λ1∥2
∥λT∥2

. (3.4)

Specifically, when (3.4) is negative or positive, then we are observing some degree of either
vanishing or exploding gradients. Of course, the magnitude of (3.4) indicates the severity
of the problem: large absolute values of (3.4) indicate more severe VEG. Hence, (3.4) will
be our metric for VEG.

3.3 Experimental Design

3.3.1 Experiments on VEG and Learning

We now describe an experiment to interrogate the relationship between VEG and learning.
The experimental design is fully described by the factors and levels presented in Table 3.2
with further details provided below. The combination of each experimental level produces
a single treatment, resulting in 4,200 treatments, which are then replicated ten times each
independently. Thus, the experiment has 42,000 training attempts (i.e., experimental units),
which were excuted over 14 year of computational time at Argonne National Laboratory’s
Theta supercomputer [33].

The experiment factors and levels were designed for the following reasons.

59

Factor Levels

Architecture {Basic RNN [86], LSTM [42], GRU [21], Antisymmet-
ric RNN [16], Lipschitz RNN [32], Exponential RNN
[65], UnICORNN [87]}

Recurrent dimension {128, 256}

Learning rate {10−5, 10−4, 10−3, 10−2, 10−1}

Training length {25 epochs, 50 epochs}

Dataset {CIFAR10 (T = 1024), Fashion MNIST (T = 784),
IMDB (T = 500), MNIST (T = 784), Reuters (T =
500)}

Order {sequential, permuted}

Noise orientation {none, post, uniform}

Table 3.2: Experimental factors and levels.

1. For the architecture factor, the basic RNN was included as it is the canonical model
on which VEG was first described. The other architectures were selected as they have
had very strong performance on benchmark tasks (see Table 1 of [32]). Owing to
their performance on benchmark tasks and owing to the contrapositive of the tenet,
these architectures should not experience VEG as they are able to learn long-term
dependencies. Thus, if these architectures do experience VEG, then this can either be
attributed to the contrapositive of the tenet being tenuous or to the limited ability
of benchmarks to be representative of similar tasks. To discern between these two,
the performance of the architectures are always recorded and the tenet is analyzed
relative to this performance. That is, the architecture’s performance on benchmarks
reported in other work is not assumed to apply on similar tasks used here.

2. The recurrent dimension factor is driven by practical considerations. Initial explo-
rations of recurrent dimensions smaller than 128 revealed very little learning could be
achieved across the architectures, which would not yield any interesting information.
Moreover, recurrent dimensions larger than 256 often produced training attempts
that were too expensive to run for certain architectures within our computational
budget as the number of parameters can vary substantially across architectures even
for the same recurrent dimension (see Table 3.3).

3. The learning rates were selected to contain values that were observed to be successful
in the literature the architectures above, and that produced some degree of learning

60

Recurrent Dimension

Architecture l = 64 l = 128 l = 256 l = 512
Basic RNN 4,224 16,640 66,048 263,168
LSTM 16,896 66,560 264,192 1,052,672
GRU 12,672 49,920 198,144 789,504
Antisymmetric RNN 4,224 16,640 66,048 263,168
Lipschitz RNN 8,320 33,024 131,584 525,312
Exponential RNN 4,224 16,640 66,048 263,168
UniCORNN 4,544 17,280 67,328 265,728

Table 3.3: The number of parameters for different architectures by the recurrent dimension
where the feature dimension is fixed to p = 1.

from preliminary training attempts.

4. The training lengths of 25 and 50 were selected to fit within the computational budget,
still produce learning across the majority of training attempts, and to assess the impact
of VEG during training.

5. The data sets were selected from standard benchmark tasks for comparing RNN
performance in the literature. Each task is a classification task where if no errors
occur during prediction, then the model has achieved the maximum possible accuracy
of 100%. For each data set, the input sequence is either kept as it is or randomly
permuted (the permuted is kept fixed across all examples for a training attempt).
Similarly, for each data set, the input sequence (whether the original or permuted) is
kept as it is or is padded with 1000 inputs of noise in one of two ways: noise is placed
at the end of the sequence (post), or uniformly spread between the inputs (uniform).
An illustrative example of the variations of the input sequences are described in Table
1.3 and Fig. 1.1 of Chapter 1. These input sequence variations were selected in order
to artificially modify the long-term dependencies that exist in the input sequence
of each example, either by breaking them (i.e., permuting input sequences) or by
elongating them (i.e., by adding noise). While these additional task variations break
the typical structure of the real-world problem, they are commonly employed in
evaluating new RNNs as they lengthen or partially perturb the temporal horizon
of the task making it more difficult to learn [60, 3, 16, 103]. To reiterate, these task
variations do not completely remove temporal structure from the problem, but instead
exacerbate the difficulty in learning the original (sequential) task.

6. In tasks where additional noise was appended to the input sequence, the noise ele-
ments were generated uniformly from the range of the original input values. Each

61

noise sequence was generated once and appended to the original input sequence
prior to training. Owing to the randomization in noise generation, it is likely that the
added noise tasks will differ in training input. While this allows for the possibility
of training set difficulty to vary within task, we replicate each task over ten training
attempts, mitigating any differences.

7. The Adam optimizer [55] and a batch size of 32 was used for all training attempts.

In all, the experiment is designed to the best of our ability to interrogate VEG based on
the current understanding of RNN learning and performance. Importantly, we have no
direct control over whether VEG occurs and to what degree, nor do we have control over
the resulting performance of the model trained during a training attempt.

For each of the 42,000 models trained, we record summary statistics after each training
epoch. Specifically, at epoch termination, we compute the statistics: loss, accuracy, ||λ1||2 and
||λT ||2 over the training data and a disjoint test set and record the average over that respective
set. Here forward, we will write the initial and terminal adjoint as these quantities, i.e.,

||λ1||2 =
N∑
i=1

||λ
(i)
1 ||2 and ||λT ||2 =

N∑
i=1

||λ
(i)
T ||2, (3.5)

where i = 1, 2, . . . ,N indexes either the training or testing set which for our experimental
task ranges from N ∈ [2800, 60000]. Hence, as a proxy for (3.4), we construct the VEG
metric from the average statistics recorded,

log10
||λ1||2
||λT ||2

= log10

∑N
i=1 ||λ

(i)
1 ||2∑N

i=1 ||λ
(i)
T ||2

. (3.6)

where, again, N denotes the number of samples used for computing the average statistics
which is dataset dependent and ranges from N ∈ [2800, 60000] over the experimental tasks.

At first glance, using ||λ1||2 and ||λT ||2 seems to have the disadvantage that VEG informa-
tion for individual examples is lost. However, this is not necessarily the case owing to two
considerations. First, the values of ||λ(i)T || tend to be of orders of magnitude compared to the
magnitude of ||λ1||2 when either the vanishing or exploding phenomenon is observed (see
Figure 3.3). Then, the ratio in (3.6) will be rather similar to the average of the adjoints with
the advantage that potential cancellation errors from finite arithmetic are more likely to be
avoided. Hence, (3.6) is a reasonable way to capture potential VEG behavior. Second, in
terms of resource constraints, using the individual values, ||λ(i)1 || and ||λ

(i)
T || for i = 1, . . . ,N,

62

becomes prohibitively expensive, as writing ||λ
(i)
1 ||/||λ

(i)
T || over all examples and training

attempts requires between 35 GB to 756 GB of data which would have consumed much of
our computational budget and would have certainly exceeded our storage capacity. Simi-
larly, storing model weights after each epoch and then computing statistics post training
experimental design would have required writing between 126 GB and 1.58 TB of data.4

3.3.2 Experiments on Learning Dynamics

In addition to these tasks that make use of real-world data, we utilize a synthetic latching
experiment to investigate the dynamics learned in which an RNN can successfully store
information over an extended period of time. Recall, we have that if an RNN’s learned
dynamics have a hyperbolic attractor, then “Either the system is very sensitive to noise,
or the derivatives of the cost at time t with respect to the system activations converge
exponentially to 0 as t increases” [9]. Thus, if a trained RNN is not sensitive to input noise
nor if a trained RNN’s sensitivities converges exponentially to 0 as t increases, then the
RNN’s learned dynamics are not generating a hyperbolic attractor.

To assess the sensitivity to noise or decay of derivatives, we consider a family of Long
Time Gap (LTG) tasks (introduced in Section 2.5), which is a variation of the latching
experiment designed in [9]. Recall from Section 2.5 in Chapter 2 that the LTG task is a
simple synthetic binary classification task that requires the model to latch a single signal
amongst a sequence of noise. The input sequence, U = {uj}

T
j=1, is a Rademacher series of

length T — i.e., each uj is an i.i.d. Rademacher random variable taking value of either +1
or −1 with probability 0.5 — and for our current exploration we will fix the label such that
it corresponds to sign(u23) for a pre-specified sequence location t = 23.

The idea of this experiment is simple in nature: the model must learn to latch to a specific
input position (i.e., token position t = 23), and successfully maintain this information in
memory when exposed to subsequent noise tokens (i.e., input tokens t = 23, 24, . . . , T).
The ability to identify the label relevant position is referred to as latching, and the ability to
resist deleting/writing over this stored information when exposed to subsequent noise as
robust latching. Hence, an RNN will only be able to successfully complete this task if it can
learn to robustly latch to the label relevant token.

Now, we can train a basic RNN of fixed recurrent dimension, d = 4, on a variety of
time horizons T ∈ {40, 80, 160, 400, 800}. If we are able to successfully have the basic RNN
learn, then we have ruled out sensitivity to noise. However, at each training, we would

4Our smallest model can be stored with 80 KB and the largest with 1 MB. Computing the memory
requirement for the smallest model evaluated we have 80 KB×25 epochs×21000 models+80 KB×50 epochs×
21000 models = 126 GB.

63

change the recurrent weight which would prevent us from analyzing what would happen
to the derivatives as T increases. Instead, we will train a basic RNN at the smallest time
horizon, we fix the recurrent weight, and then, for all larger time horizons, only train the
output layer (i.e., reservoir computing [98]). Thus, if we are able to successfully learn and
if our adjoint states do not decay for increasing T , then our basic RNN’s dynamics do not
correspond to a hyperbolic attractor.

To summarize the experiment, we fix the recurrent dimension of a basic RNN to d = 4,
and vary the temporal horizon of the task T = {40, 80, 160, 400, 800}. We denote each of
these tasks byDT . We train the basic RNN onD40 to an error of less than 1% and denote this
model byM40. We then train four additional RNNs on the remaining four time horizons
with the same recurrent weigth asM40 (i.e., we only train the output layer). Note, we are
able to train these four additional RNNs to an error of less than 1% as well. We denote
these models as M80, M160, M400, and M800, where the subscript corresponds to the time
horizon.

For each of the trained models, we record the norm of the forward (recurrent state)
and backward (adjoint state) dynamics.

3.4 Counter Examples
In the previous section we used a synthetic experiment to demonstrate that RNNs are
capable of encoding long-term memory using dynamics that are not hyperbolic. We now
further this discussion by examining each question posed in Section 3.1 using our extensive
factorial experiment whose design is explained in the previous section to extend our
discussion to real-world data tasks. Below, we restate each claim and show examples from
our experiment that are counterexamples to each claim.

If VEG occurs, then will an RNN learn long-term dependencies poorly To disprove this
statement, we need to find training attempts for which VEG occurs and the RNN is able
to learn long-term dependencies above baseline. Here, we need to be more specific about
what we mean by VEG and its occurrence, and we need to be specific about what learning
above baseline means. While we have a metric for VEG, (3.6), it will be qualitatively useful
to specify three distinct regimes using the metric,

64

Figure 3.3: Histogram of adjoint ratios for all training attempts and epochs. The red dashed
lines are drawn at x = 40.35 and x = −40.35, which correspond to the maximum recorded
log adjoint ratio (i.e., 40.35) and its reflection over the origin and the endpoints of the
adjoint regimes.

Regime =

stable −40.35 < log10

||λ1||2
||λT ||2

< 40.35
vanishing log10

||λ1||2
||λT ||2

⩽ −40.35
exploding log10

||λ1||2
||λT ||2

⩾ 40.35
(3.7)

The regime endpoints were determined from the distribution of collected adjoint ratios
(see Figure 3.3) where 40.35 was the largest observed log adjoint ratio across all training
attempts that did not incur numerical error. Training attempts that experienced exploding
gradients were unable to be recorded owing to numerical failure during training. Although
we can not rigorously address the exploding case because of this, we include a short
summary of the training attempts that incurred numerical error in the appendix. Lastly,
the lower bound of the stable regime was determined by reflecting the maximum observed
log adjoint ratio over the origin. We cede that the vanishing regime could very well be
established with a much larger upper bound threshold (e.g., log10

||λ1||2
||λT ||2

⩽ −10.0 would
imply that ||λ1||T is ten orders smaller than ||λT ||2), however by using the chosen threshold
we employ a very conservative characterization of the vanishing regime. Thus, if we were to
consider a larger threshold value for distinguishing vanishing adjoints, then our subsequent
results would only be strengthened.

We specify learning quality using a range of values as follows. For each task (i.e., dataset
× order × noise orientation), of which there are thirty, we compute the Qp quantile as the
evaluation accuracy such that 100×p% of training attempts resulted in evaluation accuracy
less than Qp. As such, learning quality is determined relative to all RNN training attempts

65

on a given task.
We will examine the tenet and VEG with respect to two narratives: during training, and

during evaluation (after epoch 25 or 50). When a RNN experiences VEG during training
(see the discussion of (3.3)), the RNN is expected to be an ineffective learner owing to
the data driven relationships being muddled during optimization. Hence, to understand
VEG’s relevance during training, we examine training attempts that fall into the vanishing
regime according to (3.7) during training, and examine how well these RNNs are able to
learn. In Table A4 of the appendix, we display the number of training attempts that are
in the vanishing regime at some point during training for each task binned by the learning
quality quantiles (specifically,Q0.25, Q0.50, Q0.75, Q1.0) discussed above. While the majority
of training attempts that experience vanishing gradients do not learn, the table shows many
training attempts that learn in the upper quartile and that are in the vanishing regime,
contradicting the tenet’s claim.

We now examine the tenet as it relates to evaluation of the network. Recall, VEG can
be interpreted as the perturbation sensitivity of the memory state at a time point near the
output layer to an earlier layer. Hence, if ||λ1||2 ≈ 0 for t≪ T , then changes in the memory
state near t = 1 will have little impact on the memory state at time T . At evaluation, this
means that relevant information at the beginning of the temporal sequence will have a
limited impact on the quality of the prediction (as measured by the loss function to a true
label). In Table A5, we display the number of training attempts that are in the vanishing
regime at the terminal iterate for each task binned by the learning quality quantiles and
in Table 3.4 a summary of these counts by task type. From Table 3.4, three of the six
task varieties have training attempts with vanished adjoints in the top most quartile of
evaluation accuracy, and if the threshold is loosened to consider training attempts attaining
higher than median evaluation accuracy, all six task varieties include training attempts that
incur VEG.

sequential permuted sequential × post permuted × post sequential × uniform permuted × uniform
[Q0.75,Q1.00] 113 0 0 8 49 0
[Q0.50,Q0.75] 7 30 18 75 234 130
[Q0.25,Q0.50] 52 35 298 218 549 701
[Q0.00,Q0.25] 711 584 688 592 739 641

Table 3.4: Summary of number of training attempts with vanished gradients according
to (3.7) that fall within each learning quartile for each task type across all experimental
datasets.

If an RNN learns long-term dependencies well, then VEG is mitigated The evidence
from our interrogation of the preceding statement is sufficient to answer this question

66

negatively. However, we include Fig. 3.4 for additional evidence, and add a dimension to
this discussion. In particular, we know that certain architectures have achieved the best
performance on certain benchmark tasks. According to the tenet, we ought to believe that
the best performing architectures have then mitigated VEG and should learn long-term
dependencies well. Unfortunately, in our experiments, we observe cases when the basic
RNN mitigates VEG as well, or better than the newer designed architectures claiming
this characteristic. To demonstrate we use the terminal iterate and the IMDB permuted
uniform noise orientation task. For each architecture, we select the replicate that best
mitigates VEG, or in terms of our VEG metric, the replicate that produced a log adjoint
ratio nearest zero. Note that a log adjoint ratio of zero is indicative of ||λ1||2 = ||λT ||2 and the
successful mitigation of VEG. In the left panel of Figure 3.4 we plot each of these replicate’s
evaluation accuracy on the vertical axis, and their corresponding log adjoint ratio on the
horizontal. We draw a dashed black line at x = 0 to emphasize perfect avoidance of VEG
(i.e., ||λ1||2 = ||λT ||2). In this case, we observed that the basic RNN produced the replicate
that most successfully mitigated VEG (i.e., closest to the dashed line in Figure 3.4).

As a secondary example, we examine the training attempts for the Fashion MNIST
permuted post noise orientation task and select the training attempt that resulted in the
highest evaluation accuracy for each architecture. In the right panel of Figure 3.4 we plot
these training attempt’s evaluation accuracy on the vertical axis and their log adjoint ratio
on the horizontal axis. By the statement of the tenet’s contrapositive, the architecture that
resulted in the highest evaluation accuracy should best mitigate VEG. However, this is not
the case. While the GRU best mitigates VEG in this example (i.e., closest to dashed black
line), there are three architectures that attain higher evaluation accuracy yet fail to mitigate
VEG as well as the GRU.

67

Figure 3.4: (Left) Evaluation accuracy and log adjoint ratio for a single replicate from each
RNN architecture sampled based on its log adjoint ratio distance from 0 on the permuted
uniform IMDB task. (Right) Evaluation accuracy and corresponding log adjoint ratio
for the replicate that maximizes evaluation accuracy for each RNN architecture on the
permuted post Fashion MNIST task. In both figures the black dashed line represents a log
adjoint ratio of 0 (i.e. ||λ1||2 = ||λT ||2).

While the evidence presented in Figure 3.4 could be rationalized along the argument
that VEG and learning is not a hard rule, and thus, the relative nearness of the adjoint metric
to zero is not important as long as the model has attained an adjoint metric sufficiently
near zero. In this case, the models and adjoint metrics presented in Figure 3.4 are not a
strong statement against the tenet’s contrapositive. Owing to this, we include Figure 3.5,
where we select training attempt treatment replicates from our experimental design (i.e.,
same architecture, training hyperparameters and task), and thus only differ by parameter
initialization. For both treatments displayed in Figure 3.5 we have training attempts that
are classified as both stable or vanished according to (3.7). If the tenet’s contrapositive was
true, then we would expect the replicates that attained the highest test accuracy to have
also best mitigated VEG. However, we observe the opposite. Namely, there is an inverse
relationship between test accuracy and the size of the adjoint metric within each of these
treatments.

68

Figure 3.5: Test accuracy and adjoint metric at terminal iterate for replicates of two treat-
ments. Ten replicates produced from the basic RNN on the sequential IMDB task (left)
and ten replicates produced from the Exponential RNN on the permuted uniform MNIST
task (right). For each figure, replicates are generated using the same recurrent dimension,
learning rate and training length.

3.5 Statistical Analysis
In the previous section we provided counter examples that contradict the belief that if
VEG occurs, then RNNs learn long-term dependencies poorly. While the counter examples
alone suffice to demonstrate that this belief is often misconstrued, we further the discussion
by framing the tenet and its contrapositive as a modeling problem. In the case of the tenet,
if VEG occurs, then an RNN will learn long-term dependencies poorly, task accuracy is
implied to be dependent on VEG. While in the case of its contrapositive, if an RNN learns
long-term dependencies well, then VEG is mitigated, the direction of this relationship is
reversed and VEG insinuated to be a by-product of task accuracy. Using linear models we
interrogate these suggested relationships to better understand the validity of the tenet and
its contrapositive.

For each of these statements, we develop six linear models: three with respect to data
collected during training, and three with respect to data collected at the terminal iterate.
For each statement and setting (i.e., train and terminal iterate) predictors are varied in a
structured manner to probe at the importance of VEG in determining task accuracy (in
the case of the tenet), and at the importance of task accuracy in determining VEG (in the
case of the contrapositive). That is, in terms of the tenet, we exercise a three step modeling
procedure:

69

1. accuracy ∼ adjoint metric

2. accuracy ∼ adjoint metric + covariates describing the experimental factors of Table
3.2

3. accuracy ∼ covariates describing the experimental factors of Table 3.2

Under this procedure the first model is concerned with how well VEG alone can predict task
accuracy; the second model interested in how this relationship changes when additional
covariates describing the experimental treatment are included; and the third examining
how the removal of information quantifying VEG impacts the predictiveness of the experi-
mental factors. Furthermore, we perform the analogous three model procedure where we
interchange task accuracy and the adjoint metric to investigate the tenet’s contrapositive
statement.

3.5.1 Modeling task accuracy as a function of VEG

We start with modeling the relationship suggested by the tenet’s statement under the
training narrative. That is, we model task training accuracy as a function of the adjoint
metric.

During Training Recall that for each training attempt we collect summary statistics de-
scribing both performance (task accuracy) and VEG at each epoch. As such, the 42,000 train-
ing attempts produce a total of greater than one million observations (Ntrain = 1, 072, 475).
Thus each training attempt contributes multiple observations implying dependent struc-
ture within these observations. To account for this dependency, we fit linear mixed effects
models (LMMs) where training attempt is encoded as a random intercept. Furthermore,
in accordance with the second and third steps of our modeling procedure we incorporate
covariates of architecture, log learning rate (encoded as LR), second order learning rate
(encoded as LR2), recurrent dimension (encoded as dim), dataset, order, noise orientation,
and interactions of architecture∗LR, architecture∗LR2, and architecture∗noise orientation.

Owing to the large number of coefficients in the subsequent models to be presented,
we reserve full model coefficients to the appendix and include those encoding the fixed
intercepts and adjoint metric effect. Conforming to our established modeling procedure,

70

we fit the first three models as,

accuracyij = 0.555 + 8.1 × 10−4 ×
[

log10
||λ1||2
||λT ||2

]
ij
+ training attempti + ϵij (model 1)

accuracyij =− 0.389 + 6.6 × 10−4 ×
[

log10
||λ1||2
||λT ||2

]
ij
+ β2 × LR+ β3 × LR2 + β4 × dim

+ βa × architecture + βb × dataset + βc × order + βd × noise orientation
+ τa × (LR ∗ architecture) + τa × (LR2 ∗ architecture)
+ τad × (architecture ∗ orientation) + training attempti + ϵij

(model 2)
accuracyij =− 0.389 + β2 × LR+ β3 × LR2 + β4 × dim

+ βa × architecture + βb × dataset + βc × order + βd × noise orientation
+ τa × (LR ∗ architecture) + τa × (LR2 ∗ architecture)
+ τad × (architecture ∗ orientation) + training attempti + ϵij

(model 3)
where i = 1, 2, . . . , 42, 000 indexes training attempt; j = 1, 2, . . . ,ni the ni observations from
training attempt i; a the observation’s architecture; b the task data set; c the task order; d the
task noise orientation; and ϵij the residual error of the jth observation of training attempt
i. For models that include the additional covariates an implicit training attempt index
is assumed and a slight abuse of notation used with respect to the discrete independent
variables.5

In Table 3.5 we display summary statistics for model 1, model 2 and model 3 where the
conditional R2 statistic measures the variance explained by both fixed and random effects,
and the marginal R2 statistic measures the variance explained by the fixed effects alone
[75].

params condition number RMSE conditional R2 marginal R2
model 1 2 32.0 0.093 0.910 0.004
model 2 43 8302.4 0.080 0.935 0.705
model 3 42 8260.3 0.080 0.935 0.701

Table 3.5: Summary statistics for model 1, model 2 and model 3.

Summarizing the conclusions from Table 3.5: the adjoint metric alone is a very weak
predictor of task accuracy (model 1 marginal R2 = 0.004); including additional fixed effect

5We write βa × architecture as a shorthand for βa × 1{architecture = a} implying training attempt i
belonged to architecture level a.

71

covariates along with the adjoint metric results in the highest explanatory power (model
2 marginal R2 = 0.705); and the omission of the adjoint metric as a predictor has a near
negligible impact on the model explanatory power (model 3 marginal R2 = 0.701).

While the negligible marginal R2 of model 1 implies VEG is a rather poor predictor of
task (training) accuracy, the estimated coefficients offer additional support. In both model
1 and model 2, the estimated coefficient for the adjoint metric is on the order of 10−4, while
the range of all collected adjoint metric values is on the order of 102. Combining these two
pieces of information implies training accuracy will vary by at most 1% when all other
covariates are fixed.

At Terminal Iterate To model VEG at the terminal iterate and its impact on the ability
of an RNN to generalize we consider a response of evaluation accuracy and the adjoint
metric computed over a disjoint test set at the terminal iterate (i.e., after either epoch 25
of epoch 50) as a predictor.6 In contrast to the during training discussion, each training
attempt contributes a single observation to the modeling data set. Subsequently, we drop
the random intercept term used previously and fit fixed effects models,

eval. accuracyi = 0.561 + 5.5 × 10−3 ×
[

log10
||λ1||2
||λT ||2

]
i
+ ϵi (model 4)

eval. accuracyi =− 0.167 + 3.0 × 10−3 ×
[

log10
||λ1||2
||λT ||2

]
i
+ β2 × LR+ β3 × (LR)2 + β4 × dim

+ βa × architecture + βb × dataset + βc × order + βd × orientation
+ τa × (LR ∗ architecture) + τa × (LR2 ∗ architecture)
+ τad × (architecture ∗ orientation) + ϵi

(model 5)
eval. accuracyi =− 0.170 + β2 × LR+ β3 × (LR)2 + β4 × dim

+ βa × architecture + βb × dataset + βc × order + βd × orientation
+ τa × (LR ∗ architecture) + τa × (LR2 ∗ architecture)
+ τad × (architecture ∗ orientation) + ϵi

(model 6)
In comparison to the predictive power of the adjoint metric on training accuracy, the

adjoint metric appears to be a stronger predictor in the evaluation setting where model 4
captures 25.4% of the variation in task evaluation accuracy (see Table 3.6) suggesting a
mild relationship between VEG and task evaluation accuracy. Moreover, this is reflected in

6There were numerous training attempts that incurred numerical error during training, thus reducing
the number of training attempts that we consider at evaluation time from 42, 000 to 29, 566.

72

model 4 and model 5 coefficient estimates where both models estimate this effect on the
order of 10−3 (in comparison to 10−4 in the training narrative). Specifically, in terms of
model 5 and all other covariates fixed, an increase in the adjoint metric of 3.33 is associated
with an increase in task evaluation accuracy of 1%.

While model 4 suggests the relationship between VEG and task evaluation accuracy
is not negligible, when additional covariates are included the explanatory power of VEG
becomes insignificant. Namely, the difference in R2 between model 5 and model 6 is a
meager 0.018, suggesting VEG has very limited explanatory power in comparison to the
experimental factors.

params condition number RMSE R2 adjusted R2

model 4 2 32.9 0.221 0.254 0.254
model 5 43 8247.8 0.138 0.710 0.709
model 6 42 8233.6 0.142 0.692 0.691

Table 3.6: Summary statistics for model 4, model 5 and model 6.

3.5.2 Modeling VEG as a function of task accuracy

While the models constructed thus far have examined task (evaluation) accuracy as a
function of VEG, we now consider the implications of the tenet’s contrapositive and model-
ing the adjoint metric as a function of task accuracy. Again, we differentiate between the
training and evaluation narratives.

During Training Following the during training narrative of the previous section we
utilize a random intercept to account for observations collected from the same training
attempt, and fit three LMMs as,

[
log10

||λ1||2
||λT ||2

]
ij
= −16.77 + 5.03 × accuracyij + training attempti + ϵij (model 7)

[
log10

||λ1||2
||λT ||2

]
ij
=2.22 + 4.80 × accuracyij + β2 × LR+ β3 × LR2 + β4 × dim

+ βa × architecture + βb × dataset + βc × order + βd × orientation
+ τa × (LR ∗ architecture) + τa × (LR2 ∗ architecture)
+ τad × (architecture ∗ orientation) + training attempti + ϵij

(model 8)

73

[
log10

||λ1||2
||λT ||2

]
ij
=0.715 + β2 × LR+ β3 × LR2 + β4 × dim

+ βa × architecture + βb × dataset + βc × order + βd × orientation
+ τa × (LR ∗ architecture) + τa × (LR2 ∗ architecture)
+ τad × (architecture ∗ orientation) + training attempti + ϵij

(model 9)
Table 3.7 displays the summary statistics for these models. In a similar manner to what

was observed with respect to the explanatory power that the adjoint metric had during
training, training accuracy alone offers negligible explanatory power in determining the
level of VEG experienced during training (model 7 marginal R2 = 0.005). Moreover, this
limited explanatory power is further corroborated by the size of the estimated coefficients
for accuracy in model 7 and model 8 (estimates of 5.03 and 4.80, respectively). As task
accuracy is bound to the interval [0, 1], the estimated coefficients imply a variation in the
adjoint metric no greater than 5.03 irrespective of the task accuracy.

params condition number RMSE conditional R2 marginal R2

model 7 2 4.2 7.248 0.897 0.005
model 8 42 8357.6 7.250 0.899 0.706
model 9 41 8243.9 7.261 0.899 0.701

Table 3.7: Summary statistics for model 7, model 8 and model 9.

At Terminal Iterate Lastly we formulate a fixed effects linear model capturing the tenet’s
contrapositive implications. Namely, we model the adjoint metric computed over the
evaluation set as a function of task evaluation accuracy in model 10; as a function of task
evaluation accuracy and the experimental factors in model 11; and as a function of the
experimental factors alone in model 12.

[
log10

||λ1||2
||λT ||2

]
i
= −36.65 + 45.94 × eval. accuracy + ϵi (model 10)

[
log10

||λ1||2
||λT ||2

]
i
=2.18 + 19.31 × eval. accuracyi + β2 × LR+ β3 × LR2 + β4 × dim

+ βa × architecture + βb × dataset + βc × order + βd × orientation
+ τa × (LR ∗ architecture) + τa × (LR2 ∗ architecture)
+ τad × (architecture ∗ orientation) + ϵi

(model 11)

74

[
log10

||λ1||2
||λT ||2

]
i
=− 1.10 + β2 × LR+ β3 × LR2 + β4 × dim

+ βa × architecture + βb × dataset + βc × order + βd × orientation
+ τa × (LR ∗ architecture) + τa × (LR2 ∗ architecture)
+ τad × (architecture ∗ orientation) + ϵi

(model 12)
Similar to what was observed when contrasting the training and terminal iterate nar-

ratives with respect to the models constituting the tenet’s claim, evaluation accuracy is a
more informative predictor of VEG at the terminal iterate than accuracy (measured on
the training data) is during training. In particular, evaluation accuracy alone accounts
for 25.4% of the variation in the adjoint metric (see Table 3.8) and in model 10 its effect
estimated as 45.94. However, the difference in explanatory power between model 11 and
model 12 is less than 1.5% suggesting once additional covariates are accounted for, the
benefit in explanatory power of including evaluation accuracy as a predictor is marginal.
This latter point is further demonstrated by a substantial drop in the estimated coefficient
for evaluation accuracy in model 11 (19.31) in comparison to that of model 10 (45.94).

params condition number RMSE R2 adjusted R2

model 10 2 5.1 20.172 0.254 0.254
model 11 43 8418.8 11.025 0.777 0.777
model 12 42 8233.6 11.362 0.763 0.763

Table 3.8: Summary statistics for model 10, model 11 and model 12.

3.6 Revisiting the Mechanisms of Latching
In this section, we revisit the original work that offers explanation of why encoding long-
term memory in RNNs is so difficult [9]. The framework presented in this work takes a
dynamical systems viewpoint and poses RNNs as systems that learn hyperbolic attractors.
Using this framework, they analyze the ability of RNNs to latch to input information
over long periods of time. Through this lens of analysis, they mathematically deduce
that only one of two possible conditions (see Theorems 1 and 4 of [9]) can occur: the
system is very sensitive to noise, or the derivatives of the cost at time t with respect to the
system activations x0 converge exponentially to 0 as t increases. While their conclusions
are informative in describing the learning process in RNNs when their parameterization
generates hyperbolic attractors, we utilize the LTG latching experiment to demonstrate that
RNNs can readily learn dynamics that are not hyperbolic in nature.

75

Recall that the LTG experiment (see Section 3.3.2) was designed to test the ability of an
RNN to latch to label relevant information, which summarized, is the ability of a RNN to
store information through time. In the case of the LTG23 experiment, the RNN must be
able to latch to input u23 for an arbitrary amount of time, T . Additionally, the latter inputs,
{ut}

T
t=24, do not carry label relevant information, but will still impact the evolution of the

state dynamics. Hence, the model must both latch to label information provided at u23 and
also avoid deleting this information in the subsequent system evolution from t = 24, . . . , T .
The ability to do so is referred to as robust latching [9].

Using the notation introduced in section 3.2 for deriving our VEG metric and the LTG23
experiment, we reformulate the possible conditions that can arise according to the analysis
of [9]. If the learned attractor is hyperbolic, then either

1. The system is sensitive to noise: in other words, there is adequate gradient informa-
tion provided at time t = 23, (i.e., ||λ23||2 > 0), but contributions to the gradient from
the remaining time points are also substantial; or

2. ||λ23||2 ≈ 0 owing to the gradient of the loss (cost) at time twith respect to the system
states, xt, converging exponentially to 0 as the time horizon increases.

Hence, if neither of these situations are observed, then there is evidence to support that
the RNN’s dynamics do not correspond to a hyperbolic attractor. As we will now illustrate
using the LTG experiment, neither of these situations are observed, which suggests that
the RNN’s dynamics do not correspond to a hyperbolic attractor.

In Fig. 3.6, we visualize the learned dynamics of M40. The left image of Fig. 3.6 (dis-
played in red) are the norms of the recurrent states generated from a batch of observations
sampled from D40 during the forward process (i.e., ||xt||2 for t = 1, . . . , 40); and the right
image (blue) is an observation normalized figure of the backward adjoint dynamics (i.e.,
||λt||2 for t = 1, . . . , 40).7 Notably, the backward adjoint figure corroborates the model’s
ability to robustly latch to u23, evidenced by the emphasis of ||λ23||2 relative to the other
time indices, as well as its near zero task error rate.

7In the latter we perform normalization at an observation level in the following manner. Each observation
pair, ({ui

t}
40
t=1,yi), generates the set Λi = {||λi1||2, ||λi2||2, . . . , ||λiT ||2}, which we then normalize each value as

||λit||2/||Λ
i||2 before plotting.

76

Figure 3.6: LTG23 state (red) and adjoint (blue) trajectories for a temporal horizon of
T = 40. In both figures the dashed vertical line is positioned at t = 23, corresponding to
the time index that is correlated to the label.

While attractor dynamics are typically not amenable to empirical observation as they
are limiting behaviors, we leverage the time-shared parameterization of RNNs such that
we can (loosely) illustrate the limiting system dynamics. To do so, we analyze the behavior
of M80, M160, M400 and M800, which retained the recurrent weight ofM40 and only had the
output layer trained to an error rate of less than 1%.

If the recurrent parameterization learned by the RNN generates an attractive set across
the input observations than ||xt||2 should remain bounded for all t = {1, 2, . . . , T }. And
indeed, this is observed as illustrated by Fig. 3.7 where (forward) state trajectories are
displayed for each of the additional RNNs (each processed on a single batch drawn from
their respective data sets, DT).

Figure 3.7: LTG23 state trajectories for temporal horizons of T = {80, 160, 400, 800}. In all
four figures, the trajectories remain bounded through time.

77

Furthermore, if the attractive set generated over the input observations is hyperbolic,
then by the conditions derived in [9], as T increases, then ||λt||2 will either exponentially
vanish or explode. Again, in both cases, the model should fail to learn the task as expanding
adjoints implies an inability to robustly latch, and vanishing adjoints implies an inability to
latch. However, as we illustrate in Fig 3.8, the adjoint states do not behave in this manner for
any of the models. Moreover, each of these models successfully learn the task (classification
error rate less than 1%) and robustly latch to u23 as evidenced by a sizable increase in
magnitude of ||λ23||2 relative to the other time indices.

Figure 3.8: LTG23 adjoint trajectories for temporal horizons of T = {80, 160, 400, 800}. In
all four figures, the trajectories do not vanish or explode through time, but rather are able
to emphasize position t = 23, corresponding to the time index relevant for correct label
classification.

These observations illustrate that the RNN’s dynamics seem to generate an attractive set
over the input (Fig. 3.7) and robustly latch to u23. However, the RNN’s dynamics behave
in a manner that is not prescribed by the conditions that would appear if the attractive set
was hyperbolic (Fig. 3.8). Thus, while the original framework presented in [9] is accurate
in relation to its assumed framework (i.e., RNNs as generators of hyperbolic attractors), it
does not account for RNN’s capacity of learning non-hyperbolic attractor dynamics.

3.7 Conclusion
In this chapter we examined the validity of the belief (i.e., tenet) if VEG occurs, RNNs
will learn long-term dependencies poorly. In doing so, we re-examined the original analysis
that mathematically showed VEG to be debilitating to RNNs learning and maintaining
long-term memory when framed as generators of hyperbolic attractors. Using a simple

78

designed experiment, we expanded upon their analysis by demonstrating that RNNs are
capable of encoding long-term memory by means of non-hyperbolic attractor dynamics. To
empirically investigate the tenet we trained more than 40,000 RNNs on thirty different tasks
that all require learning long-term dependencies. Using the adjoints generated during
backpropagation, we developed a metric that quantifies the degree of VEG experienced,
and used this to interrogate the tenet’s statement. Our experimental results yielded counter
examples to the tenet and its contrapositive, demonstrating: when VEG occurs, RNNs
are still capable of learning long-term dependencies; and when an RNN learns long-term
dependencies well they can also experience VEG.

In addition to the counter examples, we constructed linear models where their structure
mirrored the implications of the VEG tenet and its contrapositive. Namely, we quantified
both the impact of VEG on task accuracy, and the impact of task accuracy on the degree of
VEG experienced. In both settings, we observed very limited explanatory power between
VEG and RNN learning, and when variables describing the underlying RNN architecture,
hyperparameters and task included as additional covariates the relationship between RNN
learning and VEG became negligible. Furthermore, the factors that were most predictive in
determining the learning quality of a model were the model architecture, the optimization
learning rate, and the interaction between these two factors. However, these relationships
appeared idiosyncratic to the task, and thus cannot be confidently determined a priori to
training.

In conclusion, the empirical evidence presented in this chapter support the idea that the
causal relationship between VEG and the ability of an RNN to learn long-term dependencies
is widely misconstrued and often exaggerated. Rather, the empirical evidence generated in
this work is more aptly aligned with VEG being a commonly observed symptom when
RNNs learn poorly, but not a prohibitive factor to RNNs learning long-term dependencies.
Ultimately, we hope that this work can provide a shift in perspective on the understanding
of VEG and reinvigorate the exploration of the ailments of learning long-term dependencies
with RNNs.

79

4 summary

80

Throughout this thesis, the learning characteristics of RNNs were investigated. In
particular, each chapter contextualized RNN learning through a different perspective and
question of interest. Namely,

1. In Chapter 1, we studied the question of how can one RNN be compared to another,
and contextualized our discussion in relation to benchmarking and task generaliza-
tion.

2. In Chapter 2, we introduced a second-order optimization method to address the
question of whether the gradient dynamics generated by backpropagation can be
controlled.

3. In Chapter 3, we reexamined the tenet: if VEG occurs, then an RNN will learn
long-term time dependencies poorly, and asked whether this is true.

While these chapters were motivated by unique learning questions, the analysis of
each revealed a shared theme. Namely, the quality in which an RNN learns is incredibly
sensitive to the interactions between the RNN architecture, training hyperparameters and
task features. Furthermore, these interactions can (and will) directly influence the gradient
dynamics learned by the model over the data. In particular, (inappropriately) large learning
rates can readily induce the gradient dynamics described by VEG, and also poor learning
quality. However, as corroborated in Chapter 3, VEG gradient dynamics alone, are not
predictive features of RNN learning quality. Again, we observed that the interactions
between RNN architecture and hyperparameters were much stronger predictors of RNN
learning quality.

These observations will motivate and guide my future work. In particular, as I move
forward in my career, I am interested in developing methods that improve the robustness
of RNNs to hyperparameter selection, as well as developing metrics that quantify an
architecture’s sensitivity to hyperparameter selection.

81

bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke,
Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[2] Kanav Anand, Ziqi Wang, Marco Loog, and Jan van Gemert. Black magic in deep
learning: How human skill impacts network training, 2020.

[3] Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural
networks, 2016.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine transla-
tion by jointly learning to align and translate, 2014.

[5] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine transla-
tion by jointly learning to align and translate, 2016.

[6] Aristotelis Ballas and Christos Diou. A domain generalization approach for out-of-
distribution 12-lead ECG classification with convolutional neural networks. In 2022
IEEE Eighth International Conference on Big Data Computing Service and Applications
(BigDataService). IEEE, aug 2022.

[7] Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan
Gutfreund, Josh Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-
controlled dataset for pushing the limits of object recognition models. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019.

[8] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade
learning environment: An evaluation platform for general agents. J. Artif. Int. Res.,
47(1):253–279, may 2013.

82

[9] Y. Bengio, P. Frasconi, and P. Simard. The problem of learning long-term dependen-
cies in recurrent networks. In IEEE International Conference on Neural Networks, pages
1183–1188 vol.3, 1993.

[10] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE Transactions on Neural Networks, 5(2):157–166, 1994.

[11] Nils Bertschinger, Thomas Natschläger, and Robert Legenstein. At the edge of chaos:
Real-time computations and self-organized criticality in recurrent neural networks.,
01 2004.

[12] Samuel R. Bowman and George E. Dahl. What will it take to fix benchmarking in
natural language understanding? CoRR, abs/2104.02145, 2021.

[13] Morton B. Brown and Alan B. Forsythe. Robust tests for the equality of variances.
Journal of the American Statistical Association, 69(346):364–367, 1974.

[14] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark
Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christo-
pher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei.
Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates, Inc., 2020.

[15] Yuxuan Cai, Yizhuang Zhou, Qi Han, Jianjian Sun, Xiangwen Kong, Jun Li, and
Xiangyu Zhang. Reversible column networks, 2023.

[16] Bo Chang, Minmin Chen, Eldad Haber, and Ed H. Chi. Antisymmetricrnn: A
dynamical system view on recurrent neural networks, 2019.

[17] Bo Chang, Minmin Chen, Eldad Haber, and Ed H. Chi. Antisymmetricrnn: A
dynamical system view on recurrent neural networks, 2019.

[18] Luonan Chen and K. Aihara. Strange attractors in chaotic neural networks. IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications, 47(10):1455–
1468, 2000.

83

[19] Luonan Chen and Kazuyuki Aihara. Chaos and asymptotical stability in discrete-
time neural networks. Physica D: Nonlinear Phenomena, 104(3):286–325, 1997.

[20] Minmin Chen. Minimalrnn: Toward more interpretable and trainable recurrent
neural networks, 2018.

[21] KyungHyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On
the properties of neural machine translation: Encoder-decoder approaches. CoRR,
abs/1409.1259, 2014.

[22] Jasmine Collins, Jascha Sohl-Dickstein, and David Sussillo. Capacity and trainability
in recurrent neural networks, 2017.

[23] Tim Cooijmans, Nicolas Ballas, Cesar Laurent, Caglar Gulcehre, and Aaron Courville.
Recurrent batch normalization, 2017.

[24] Christian Dallago, Jody Mou, Jody Mou, Kadina Johnston, Bruce Wittmann, Nicholas
Bhattacharya, Samuel Goldman, Ali Madani, and Kevin Yang. Flip: Benchmark
tasks in fitness landscape inference for proteins. In J. Vanschoren and S. Yeung,
editors, Proceedings of the Neural Information Processing Systems Track on Datasets and
Benchmarks, volume 1. Curran, 2021.

[25] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. IEEE, 2009.

[26] Li Deng. The mnist database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[27] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding, 2019.

[28] Mingyu Ding, Bin Xiao, Noel Codella, Ping Luo, Jingdong Wang, and Lu Yuan. Davit:
Dual attention vision transformers, 2022.

[29] Matthew Dixon and Justin London. Financial forecasting with α-rnns: A time series
modeling approach. Frontiers in Applied Mathematics and Statistics, 6, 2021.

[30] Ahmed Elnaggar, Hazem Essam, Wafaa Salah-Eldin, Walid Moustafa, Mohamed
Elkerdawy, Charlotte Rochereau, and Burkhard Rost. Ankh: Optimized protein
language model unlocks general-purpose modelling, 2023.

84

[31] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos,
Larry Rudolph, and Aleksander Madry. Implementation matters in deep rl: A case
study on ppo and trpo. In International Conference on Learning Representations, 2020.

[32] N. Benjamin Erichson, Omri Azencot, Alejandro Queiruga, Liam Hodgkinson, and
Michael W. Mahoney. Lipschitz recurrent neural networks, 2020.

[33] Mark R Fahey, Yuri Alexeev, Bill Allcock, Benjamin S Allen, Ramesh Balakrishnan,
Anouar Benali, Liza Booker, Ashley Boyle, Laural Briggs, Edouard Brooks, et al.
Theta and mira at argonne national laboratory. In Contemporary High Performance
Computing, pages 31–61. CRC Press, 2019.

[34] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2012.

[35] F.A. Gers and J. Schmidhuber. Recurrent nets that time and count. In Proceedings of
the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000.
Neural Computing: New Challenges and Perspectives for the New Millennium, volume 3,
pages 189–194 vol.3, 2000.

[36] Andreas Griewank et al. On automatic differentiation. Mathematical Programming:
recent developments and applications, 6(6):83–107, 1989.

[37] Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks.
Inverse Problems, 34(1):014004, December 2017.

[38] Jung Min Han, Yu Qian Ang, Ali Malkawi, and Holly W. Samuelson. Using recurrent
neural networks for localized weather prediction with combined use of public airport
data and on-site measurements. Building and Environment, 192:107601, 2021.

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition, 2015.

[40] Mikael Henaff, Arthur Szlam, and Yann LeCun. Recurrent orthogonal networks
and long-memory tasks. In Maria Florina Balcan and Kilian Q. Weinberger, editors,
Proceedings of The 33rd International Conference on Machine Learning, volume 48 of
Proceedings of Machine Learning Research, pages 2034–2042, New York, New York, USA,
20–22 Jun 2016. PMLR.

85

[41] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and
David Meger. Deep reinforcement learning that matters, 2019.

[42] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Compu-
tation, 9(8):1735–1780, 1997.

[43] Sepp Hochreiter and Jurgen Schmidhuber. Long short-term memory. Neural Compu-
tation, 9(8):1735–1780, 1997.

[44] Stephen Hudson, Jeffrey Larson, John-Luke Navarro, and Stefan M. Wild. libEnsem-
ble: A library to coordinate the concurrent evaluation of dynamic ensembles of
calculations. IEEE Transactions on Parallel and Distributed Systems, 33(4):977–988, apr
2022.

[45] Abigail Z. Jacobs and Hanna Wallach. Measurement and fairness. In Proceedings of
the 2021 ACM Conference on Fairness, Accountability, and Transparency. ACM, mar 2021.

[46] Li Jing, Yichen Shen, Tena Dub?ek, John Peurifoy, Scott Skirlo, Yann LeCun, Max
Tegmark, and Marin Solja?i? Tunable efficient unitary neural networks (eunn) and
their application to rnns, 2017.

[47] L. Johnston and V. Patel. Second-order sensitivity methods for robustly training
recurrent neural network models. IEEE Control Systems Letters, 5(2):529–534, 2021.

[48] Liam Johnston and Vivak Patel. Second-order sensitivity methods for robustly
training recurrent neural network models. IEEE Control Systems Letters, 5(2):529–534,
2021.

[49] Cijo Jose, Moustpaha Cisse, and Francois Fleuret. Kronecker recurrent units, 2017.

[50] John M. Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zídek, Anna
Potapenko, Alex Bridgland, Clemens Meyer, Simon A A Kohl, Andy Ballard, Andrew
Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler,
Trevor Back, Stig Petersen, David A. Reiman, Ellen Clancy, Michal Zielinski, Martin
Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David
Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu, Pushmeet Kohli, and
Demis Hassabis. Highly accurate protein structure prediction with alphafold. Nature,
596:583 – 589, 2021.

[51] Kaggle and EyePacs. Kaggle diabetic retinopathy detection, jul 2015.

86

[52] Steven Kapturowski, Georg Ostrovski, John Quan, Rémi Munos, and Will Dabney.
Recurrent experience replay in distributed reinforcement learning. In International
Conference on Learning Representations, 2018.

[53] Sohier Dane Karthik, Maggie. Aptos 2019 blindness detection, 2019.

[54] Minsu Kim, Joanna Hong, and Yong Man Ro. Lip to speech synthesis with visual
context attentional gan. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,
volume 34, pages 2758–2770. Curran Associates, Inc., 2021.

[55] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
International Conference on Learning Representations (ICLR), San Diega, CA, USA, 2015.

[56] David Krueger and Roland Memisevic. Regularizing rnns by stabilizing activations,
2016.

[57] Andriy Kryshtafovych, Torsten Schwede, Maya Topf, Krzysztof Fidelis, and John
Moult. Critical assessment of methods of protein structure prediction (casp)—round
xiv. Proteins: Structure, Function, and Bioinformatics, 89(12):1607–1617, 2021.

[58] Emmanuel Laporte and Patrick Le Tallec. Numerical methods in sensitivity analysis
and shape optimization. In Modeling and Simulation in Science, Engineering and
Technology, 2002.

[59] Thomas Laurent and James H. von Brecht. A recurrent neural network without
chaos. CoRR, abs/1612.06212, 2016.

[60] Quoc V. Le, Navdeep Jaitly, and Geoffrey E. Hinton. A simple way to initialize
recurrent networks of rectified linear units, 2015.

[61] Yann LeCun. Learning process in an asymmetric threshold network. In Disordered
systems and biological organization, pages 233–240. Springer, 1986.

[62] Yann LeCun, D Touresky, G Hinton, and T Sejnowski. A theoretical framework
for back-propagation. In Proceedings of the 1988 connectionist models summer school,
volume 1, pages 21–28, 1988.

[63] Bryon C. Lewis and Albert E. Crews. The evolution of benchmarking as a computer
performance evaluation technique. MIS Q., 9:7–16, 1985.

87

[64] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk
Michalewski, Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra.
Solving quantitative reasoning problems with language models, 2022.

[65] Mario Lezcano-Casado and David Martinez-Rubio. Cheap orthogonal constraints in
neural networks: A simple parametrization of the orthogonal and unitary group,
2019.

[66] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James
Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft
coco: Common objects in context, 2015.

[67] Feifei Liu, Chengyu Liu, Lina Zhao, Xiangyu Zhang, Xiaoling Wu, Xiaoyan Xu,
Yulin Liu, Caiyun Ma, Shoushui Wei, Jianqing Li, and Eddie Ng. An open access
database for evaluating the algorithms of electrocardiogram rhythm and morphology
abnormality detection. Journal of Medical Imaging and Health Informatics, 8:1368–1373,
09 2018.

[68] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and
Christopher Potts. Learning word vectors for sentiment analysis. In Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland, Oregon, USA, June 2011. Association
for Computational Linguistics.

[69] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a
large annotated corpus of English: The Penn Treebank. Computational Linguistics,
19(2):313–330, 1993.

[70] Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in
neural language models. In International Conference on Learning Representations, 2018.

[71] Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Černocký, and Sanjeev Khu-
danpur. Extensions of recurrent neural network language model. In 2011 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
5528–5531, 2011.

[72] Melanie Mitchell. Why ai is harder than we think, 2021.

88

[73] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep re-
inforcement learning, 2013.

[74] Signe Moe, Filippo Remonato, Esten Ingar Grøtli, and Jan Tommy Gravdahl. Lin-
ear antisymmetric recurrent neural networks. In Alexandre M. Bayen, Ali Jad-
babaie, George Pappas, Pablo A. Parrilo, Benjamin Recht, Claire Tomlin, and Melanie
Zeilinger, editors, Proceedings of the 2nd Conference on Learning for Dynamics and Con-
trol, volume 120 of Proceedings of Machine Learning Research, pages 170–178. PMLR,
10–11 Jun 2020.

[75] Shinichi Nakagawa and Holger Schielzeth. A general and simple method for obtain-
ing r2 from generalized linear mixed-effects models. Methods in Ecology and Evolution,
4(2):133–142, 2013.

[76] Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob
Austin, David Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan,
Charles Sutton, and Augustus Odena. Show your work: Scratchpads for intermediate
computation with language models, 2021.

[77] Scott W O’Leary-Kelly and Robert J. Vokurka. The empirical assessment of construct
validity. Journal of Operations Management, 16(4):387–405, 1998.

[78] Tesla Owners Online. Tesla full self driving explained by andrej karpathy, Aug. 2021.

[79] OpenAI. Gpt-4 technical report, 2023.

[80] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks, 2013.

[81] Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garrison
Cottrell. A dual-stage attention-based recurrent neural network for time series
prediction, 2017.

[82] Inioluwa Deborah Raji, Emily M. Bender, Amandalynne Paullada, Emily Denton,
and Alex Hanna. AI and the everything in the whole wide world benchmark. CoRR,
abs/2111.15366, 2021.

[83] Nils Reimers and Iryna Gurevych. Reporting score distributions makes a difference:
Performance study of lstm-networks for sequence tagging. In Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
338–348, Copenhagen, Denmark, 09 2017.

89

[84] Sebastian Ruder. Challenges and Opportunities in NLP Benchmarking. http://
ruder.io/nlp-benchmarking, 2021.

[85] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. Technical report, California Univ San Diego
La Jolla Inst for Cognitive Science, 1985.

[86] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning internal
representations by error propagation. In David E. Rumelhart and James L. Mc-
clelland, editors, Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, Volume 1: Foundations, pages 318–362. MIT Press, Cambridge, MA, 1986.

[87] T. Konstantin Rusch and Siddhartha Mishra. Unicornn: A recurrent model for
learning very long time dependencies, 2021.

[88] Bryan Russell, Antonio Torralba, Kevin Murphy, and William Freeman. Labelme: A
database and web-based tool for image annotation. International Journal of Computer
Vision, 77, 05 2008.

[89] Massimo Salvi, U. Rajendra Acharya, Filippo Molinari, and Kristen M. Meiburger.
The impact of pre- and post-image processing techniques on deep learning frame-
works: A comprehensive review for digital pathology image analysis. Computers in
Biology and Medicine, 128:104129, 2021.

[90] Andrew W. Senior, Richard Evans, John M. Jumper, James Kirkpatrick, L. Sifre, Tim
Green, Chongli Qin, Augustin Zídek, Alexander W. R. Nelson, Alex Bridgland, Hugo
Penedones, Stig Petersen, Karen Simonyan, Steve Crossan, Pushmeet Kohli, David C.
Jones, David Silver, Koray Kavukcuoglu, and Demis Hassabis. Improved protein
structure prediction using potentials from deep learning. Nature, 577:706 – 710, 2020.

[91] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition, 2015.

[92] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised
learning of video representations using lstms, 2016.

[93] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks.
arXiv preprint arXiv:1505.00387, 2015.

[94] Nils Strodthoff, Temesgen Mehari, Claudia Nagel, Philip J Aston, Ashish Sundar,
Claus Graff, Jørgen K Kanters, Wilhelm Haverkamp, Olaf Dössel, Axel Loewe,

http://ruder.io/nlp-benchmarking
http://ruder.io/nlp-benchmarking

90

Markus Bär, and Tobias Schaeffter. Ptb-xl+, a comprehensive electrocardiographic
feature dataset. Scientific data, 10(1):279, May 2023.

[95] Nils Strodthoff, Patrick Wagner, Tobias Schaeffter, and Wojciech Samek. Deep learn-
ing for ecg analysis: Benchmarks and insights from ptb-xl. IEEE journal of biomedical
and health informatics, PP, 09 2020.

[96] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy consid-
erations for deep learning in nlp, 2019.

[97] Corentin Tallec and Yann Ollivier. Can recurrent neural networks warp time?, 2018.

[98] Gouhei Tanaka, Toshiyuki Yamane, Jean Benoit Héroux, Ryosho Nakane, Naoki
Kanazawa, Seiji Takeda, Hidetoshi Numata, Daiju Nakano, and Akira Hirose. Recent
advances in physical reservoir computing: A review. Neural Networks, 115:100–123,
2019.

[99] William Taylor-Melanson, Gordon MacDonald, and Andrew Godbout. Volume-
preserving recurrent neural networks (vprnn). In 2021 International Joint Conference
on Neural Networks (IJCNN), pages 1–10, 2021.

[100] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-
based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 5026–5033. IEEE, 2012.

[101] Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh
Merel, Tom Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control:
Software and tasks for continuous control. Software Impacts, 6:100022, nov 2020.

[102] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

[103] Aaron Voelker, Ivana Kajić, and Chris Eliasmith. Legendre memory units:
Continuous-time representation in recurrent neural networks. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019.

[104] Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury, and Chris Pal. On orthogonal-
ity and learning recurrent networks with long term dependencies, 2017.

91

[105] Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury, and Chris Pal. On orthogonal-
ity and learning recurrent networks with long term dependencies. In Proceedings
of the 34th International Conference on Machine Learning - Volume 70, ICML’17, page
3570–3578. JMLR.org, 2017.

[106] Eugene Vorontsov, Chiheb Trabelsi, Samuel Kadoury, and Chris Pal. On orthog-
onality and learning recurrent networks with long term dependencies. CoRR,
abs/1702.00071, 2017.

[107] Patrick Wagner, Nils Strodthoff, Ralf-Dieter Bousseljot, Dieter Kreiseler, Fatima
Lunze, Wojciech Samek, and Tobias Schaeffter. Ptb-xl, a large publicly available
electrocardiography dataset. Scientific Data, 7:154, 05 2020.

[108] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael,
Felix Hill, Omer Levy, and Samuel R. Bowman. Superglue: A stickier benchmark for
general-purpose language understanding systems. CoRR, abs/1905.00537, 2019.

[109] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R.
Bowman. Glue: A multi-task benchmark and analysis platform for natural language
understanding, 2019.

[110] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc Le,
and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. CoRR, abs/2201.11903, 2022.

[111] Scott Wisdom, Thomas Powers, John R. Hershey, Jonathan Le Roux, and Les Atlas.
Full-capacity unitary recurrent neural networks, 2016.

[112] Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and
Yonghui Wu. Coca: Contrastive captioners are image-text foundation models, 2022.

[113] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Avnish Narayan, Hayden
Shively, Adithya Bellathur, Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-
world: A benchmark and evaluation for multi-task and meta reinforcement learning,
2021.

[114] Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander
Kolesnikov, and Lucas Beyer. Lit: Zero-shot transfer with locked-image text tuning,
2022.

92

[115] Jiong Zhang, Qi Lei, and Inderjit S. Dhillon. Stabilizing gradients for deep neural
networks via efficient svd parameterization, 2018.

[116] Marvin Zhang, Zoe McCarthy, Chelsea Finn, Sergey Levine, and Pieter Abbeel.
Learning deep neural network policies with continuous memory states, 2015.

[117] Tony Z. Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before
use: Improving few-shot performance of language models, 2021.

[118] Hattie Zhou, Azade Nova, Aaron Courville, Hugo Larochelle, Behnam Neyshabur,
and Hanie Sedghi. Teaching algorithmic reasoning via in-context learning, 2023.

93

A1 Task Generalization Supplementary Material

A1.1 First-order Linear Model Summary Table

Task adj. R2 σ

CIFAR10 Sequential None 0.50 0.13
CIFAR10 Permuted None 0.74 0.05
CIFAR10 Sequential Post 0.99 0.04
CIFAR10 Permuted Post 0.86 0.12
CIFAR10 Sequential Uniform 0.78 0.11
CIFAR10 Permuted Uniform 0.06 0.16
Fashion MNIST Sequential None 0.24 0.07
Fashion MNIST Permuted None 0.84 0.01
Fashion MNIST Sequential Post 0.69 0.20
Fashion MNIST Permuted Post 0.91 0.09
Fashion MNIST Sequential Uniform 0.58 0.12
Fashion MNIST Permuted Uniform 0.66 0.03
IMDB Sequential None 0.96 0.01
IMDB Permuted None 0.87 0.02
IMDB Sequential Post 0.92 0.13
IMDB Permuted Post 0.88 0.15
IMDB Sequential Uniform 0.97 0.02
IMDB Permuted Uniform 0.42 0.19
MNIST Sequential None 0.24 0.18
MNIST Permuted None 0.89 0.01
MNIST Sequential Post 0.98 0.07
MNIST Permuted Post 0.97 0.06
MNIST Sequential Uniform 0.86 0.14
MNIST Permuted Uniform 0.61 0.07
Reuters Sequential None 0.86 0.04
Reuters Permuted None 0.96 0.02
Reuters Sequential Post 0.95 0.04
Reuters Permuted Post 0.92 0.05
Reuters Sequential Uniform 0.76 0.05
Reuters Permuted Uniform 0.93 0.03

Table A1: Summaries of first-order linear models, (1.8), fit on data generated from one of
thirty experimental tasks.

A1.2 First-order Behavior Summary Table: Convergence Time

We measure the first-order behavior convergence time with the variable, Yepoch, which
is defined in Section 1.4 as the number of training epochs completed prior to the RNN

94

attaining its maximum task accuracy. We forego a formal test for this behavior, and instead
display the median and standard deviation of Yepoch for each architecture and task in Table
A2 below. Similar to the other first-order behaviors, the behavior convergence time varies
across tasks and architecture.

dataset orientation order Basic RNN Antisymmetric RNN Exponential RNN GRU Lipschitz RNN LSTM UnICORNN
CIFAR10 none sequential 23 ± 1.4 24 ± 0.8 24.5 ± 0.8 23.5 ± 3.7 25 ± 1.3 25 ± 3.1 24 ± 1.2
CIFAR10 none permute 25 ± 0.7 24 ± 1.3 24 ± 3 22 ± 2 25 ± 0.8 24 ± 5.9 21 ± 3.5
CIFAR10 post sequential 20.5 ± 8.3 24 ± 1.3 24.5 ± 0.7 23 ± NA 24 ± 2.2 13 ± 9.2 NA ± NA
CIFAR10 post permute 13 ± 7.1 25 ± 1.2 24.5 ± 1.1 17 ± 9.9 22 ± 1.4 1 ± NA NA ± NA
CIFAR10 uniform sequential 21.5 ± 5 24 ± 0.7 24 ± 1.1 22 ± 6.2 24 ± 2.6 19 ± 8.5 NA ± NA
CIFAR10 uniform permute 24.5 ± 1.1 23.5 ± 2.8 24 ± 1.4 22 ± 5.1 23 ± 2.3 25 ± 1.3 NA ± NA
Fashion MNIST none sequential 24 ± 1.6 24.5 ± 0.9 25 ± 1.5 22.5 ± 2.1 24.5 ± 1.7 23.5 ± 1.6 23.5 ± 1
Fashion MNIST none permute 24.5 ± 0.8 24 ± 1 24.5 ± 1.7 19 ± 3.8 24 ± 1 22.5 ± 4.2 23.5 ± 1.6
Fashion MNIST post sequential 20 ± 5.9 24 ± 1.7 20 ± NA 21.5 ± 3.3 23.5 ± 1.6 15.5 ± 7.1 NA ± NA
Fashion MNIST post permute 20.5 ± 7.2 24 ± 1.4 24 ± 1.9 25 ± NA 24 ± 1.2 16.5 ± 8 NA ± NA
Fashion MNIST uniform sequential 24 ± 1.7 24 ± 0.9 24 ± 2.3 25 ± 3.1 24 ± 1.1 24 ± 7.5 NA ± NA
Fashion MNIST uniform permute 25 ± 0.9 24 ± 0.9 24 ± 2.2 23 ± 1.2 25 ± 0.7 25 ± 5.9 NA ± NA
IMDB none sequential 22 ± 2.9 8 ± 0.5 25 ± 0.3 22 ± 2.7 1 ± 0.5 21 ± 2.5 1 ± 0.7
IMDB none permute 24.5 ± 1.2 7.5 ± 1.5 6 ± 0.9 25 ± 0.9 1.5 ± 1.4 8.5 ± 2.9 2 ± 0.6
IMDB post sequential 7 ± 11.7 1.5 ± 0.5 10 ± 5.8 10.5 ± 10.6 2 ± 1.3 13.5 ± 6.4 NA ± NA
IMDB post permute 9.5 ± 7.3 2 ± 1.3 5 ± 7.1 5 ± NA 10.5 ± 1.6 5 ± NA NA ± NA
IMDB uniform sequential 24 ± 2 25 ± 0.3 1 ± 4.7 19 ± 3.4 2 ± 0.5 17 ± 4.6 1 ± NA
IMDB uniform permute 24 ± 2.5 25 ± 0.4 11.5 ± 9.6 25 ± 1.2 3 ± 1.3 23.5 ± 1.9 NA ± NA
MNIST none sequential 24 ± 1.9 25 ± 1.1 24 ± 2.1 22 ± 2.3 21.5 ± 2.9 22.5 ± 4.7 24 ± 1.1
MNIST none permute 24 ± 3 25 ± 0.8 24 ± 2 23 ± 1.5 22.5 ± 2.5 23.5 ± 1.9 24 ± 0.9
MNIST post sequential 12.5 ± 7.2 25 ± 1 25 ± NA 16 ± 5.7 24 ± 1.6 1 ± 0.5 NA ± NA
MNIST post permute 19 ± 6.2 25 ± 2.1 24 ± 0.9 24 ± NA 24.5 ± 0.7 18 ± 9.2 NA ± NA
MNIST uniform sequential 24 ± 6.7 24 ± 3.2 24 ± 1.2 25 ± 9 22.5 ± 1 12 ± 6.6 NA ± NA
MNIST uniform permute 25 ± 1.5 24 ± 1.1 24 ± 1.4 21.5 ± 0.7 25 ± 0.5 24 ± 0.8 NA ± NA
Reuters none sequential 18.5 ± 5.4 23.5 ± 2.9 8.5 ± 6.5 17.5 ± 4.9 13.5 ± 4.6 10.5 ± 4.2 11.5 ± 7.1
Reuters none permute 19.5 ± 6.7 21.5 ± 2.6 20 ± 2.7 16.5 ± 4.4 8.5 ± 6.3 12.5 ± 5.7 8.5 ± 4.8
Reuters post sequential 1 ± 6.9 15 ± 8.5 9 ± 2.9 2 ± 0.4 22 ± 4.1 1 ± 0.6 22 ± 6.7
Reuters post permute 2.5 ± 6.1 24 ± 1.7 8 ± 1.3 1.5 ± 0.5 21.5 ± 3.3 1 ± 0.5 1 ± 8.2
Reuters uniform sequential 18.5 ± 8.9 14.5 ± 7.5 2 ± 0.3 2 ± 0.4 17.5 ± 6.1 24 ± 1.6 1 ± 10.4
Reuters uniform permute 24.5 ± 9.7 25 ± 0.7 24 ± 0.7 2 ± 0 3.5 ± 0.7 23.5 ± 2.1 25 ± 0.4

Table A2: Median epoch until maximum task accuracy (± standard deviation) at the
maximizing hyperparameter configuration, h∗ ∈ H, for each RNN architecture and task.

A1.3 Second-order Linear Model Summary Table

A2 Derivation of Gradient Flow Equations and Control

A2.1 Linear RNN Adjoint System

The linear RNN solves the following supervised optimization problem

min
θ∈Θ

F(y, ŷ)

s.t xi =Wxi−1 + Rui i = 1, . . . ,N
ŷ = VxN

(1)

95

Task Condition Number adj. R2 σ

MNIST Sequential Post 13519.63 0.85 0.14
MNIST Permuted Post 13411.21 0.74 0.16
IMDB Permuted Uniform 11418.28 0.80 0.15
CIFAR10 Sequential Post 11576.63 0.90 0.10
Fashion MNIST Permuted Post 12562.04 0.80 0.15
IMDB Sequential Post 11020.76 0.85 0.16
CIFAR10 Sequential Uniform 11207.60 0.80 0.09
CIFAR10 Permuted Uniform 11781.88 0.77 0.11
MNIST Permuted Uniform 12282.17 0.79 0.15
IMDB Permuted Post 10586.32 0.85 0.16
CIFAR10 Permuted Post 35155.99 0.84 0.10
Fashion MNIST Sequential Uniform 14362.85 0.87 0.12
MNIST Sequential Uniform 12074.71 0.86 0.13
Fashion MNIST Permuted Uniform 14610.45 0.85 0.12
IMDB Sequential Uniform 5.62e+18 0.77 0.13
Fashion MNIST Sequential Post 12976.09 0.91 0.11
Fashion MNIST Permuted None 11530.65 0.87 0.10
Fashion MNIST Sequential None 11356.01 0.84 0.12
CIFAR10 Sequential None 12059.23 0.78 0.10
MNIST Permuted None 13270.05 0.84 0.13
CIFAR10 Permuted None 11780.48 0.81 0.11
MNIST Sequential None 11233.34 0.83 0.15
Reuters Sequential Uniform 12272.45 0.60 0.11
Reuters Permuted Uniform 12221.92 0.76 0.08
Reuters Sequential Post 13595.45 0.87 0.09
IMDB Permuted None 9724.36 0.86 0.12
Reuters Permuted Post 15571.87 0.88 0.08
IMDB Sequential None 10253.44 0.81 0.11
Reuters Sequential None 11794.02 0.81 0.09
Reuters Permuted None 11538.50 0.82 0.08

Table A3: Summaries of linear model, (1.11), approximating the second-order behavior
average task accuracy.

The adjoint system can be derived from the Lagrangian

L = F(y, ŷ) + δ ′(ŷ− VxN) +

N∑
j=1
λ ′
j[xj −Wxj−1 − Ruj] (2)

96

where the adjoint states are the derivatives of (2) with respect to ŷ and xi i = 1, . . . ,N. The
resulting system is described by

δ = −
∂F

∂ŷ

λN = δV ′

λj =W
′λj+1 =W

(N−j) ′δV ′ j = 1, . . . ,N− 1

(3)

A2.2 Linear RNN Coadjoint System

The coadjoint method solves a similar optimization to (1) with the addition of an adjoint
control function G(Λ). The coadjoint method places additional constraints on the objective
such that the form of (3) must be obeyed.

min
θ∈Θ

F(y, ŷ) +G(Λ)

s.t xi =Wxi−1 + Rui i = 1, . . . ,N
ŷ = VxN

δ = −
∂F

∂ŷ

λN = δV ′

λj = λ
′
j+1W j = 1, . . . ,N− 1

(4)

The associated Lagrangian has form

L =F(y, ŷ) +G(Λ) + ϕ ′[ŷ− VxN
]
+

N∑
j=1
γ ′
j

[
xj −Wxj−1 − Ruj

]
+ψ ′[δ+ ∂F

∂ŷ

]
+ α ′

N

[
λN − δV ′]+ N−1∑

j=1
α ′
j

[
λj −W

′λj+1
] (5)

97

Differentiating (5) with respect to ŷ, xi and the adjoint states δ, λi for i = 1, . . . ,N (where
the latter are now viewed as constants) we can form the coadjoint system (shown below).

ϕ = −
∂F

∂ŷ

γN = ϕV ′

γj =W
′γj+1 j = 1, . . . ,N− 1

ψ = VαN

αj = −
∂G

∂λj
+Wαj−1 j = 2, . . . ,N

α1 = −
∂G

∂λ1

(6)

A2.3 Adjoint System Derivation (Nonlinear)

Given an RNN, an example ({u1, . . . ,uN},y), and a loss function F(y, ŷ), we aim to solve

min
θ∈Θ

F(y, ŷ)

s.t xj = σ(Wxj−1 + Ruj + b1) j = 1, . . . ,N
ŷ = ϕ(VxN + b0)

(7)

where θ = {V ,W,R,b1,b0}. Then the adjoint system can be derived using Lagrangian
formalism where we define the Lagrangian as,

L = F(y, ŷ) − ∂F

∂ŷ

[
ŷ− ϕ(VxN + b0)

]
+

N∑
j=1
λ ′
j

[
xj − σ(Wxj−1 + Ruj + b1)

]
(8)

The adjoint system is derived by differentiating (8) with respect to xi for i = 1, . . . ,N.

∂L

∂xN
= V ′ϕ(1)(VxN + b0)

′ ∂F

∂ŷ
+ λN (9)

∂L

∂xj
= λj −W

′σ(1)(Wxj + Ruj+1 + b1)
′λj+1 j = 1, . . . ,N− 1 (10)

where ϕ(1) and σ(1) represent the Jacobians of ϕ and σ, respectively. The adjoint system is
then the solution vectors to these gradients.

λj =

−V ′ϕ(1)(VxN + b0) ′
∂F
∂ŷ

j = N

W ′σ(1)(Wxi + Rui+1 + b1) ′λj+1 j < N,
(11)

98

A2.4 Coadjoint System Derivation (Nonlinear)

We now define a differentiable function of the adjoint variables G({λj}) and solve a similar
optimization problem to (7),

min
θ∈Θ

F(y, ŷ) +G({λj})

s.t xj = σ(Wxj−1 + Ruj + b1) j = 1, . . . ,N
ŷ = ϕ(VxN + b0)

λj =W
′σ(1)(Wxj + Ruj+1 + b1)

′λj+1 j = 1, . . . ,N− 1

λN = −V ′ϕ(1)(VxN + b0)
′ ∂F

∂ŷ

(12)

where the adjoint states in (6) are viewed as constants. In a similar fashion we can derive
the coadjoint states by forming a Lagrangian,

L =F(y, ŷ) +G({λj}) +
N∑
j=1
α ′
j

[
xj − σ(Wxj−1 + Ruj + b1)

]

+

N−1∑
j=1

γ ′
j

[
λj −W

′σ(1)(Wxj + Ruj+1 + b1)
′λj+1

]
+ γ ′

N

[
λN + V ′ϕ(1)(VxN + b0)

′ ∂F

∂ŷ

]
+ κ ′

[
ŷ− ϕ(VxN + b0)

]
(13)

The coadjoint system is then the solution vectors of differentiating (13) by {xj} and {λj} for
j = 1, . . . ,N.

∂L

∂λ1
=
∂G

∂λ1
+ γ1 (14)

∂L

∂λj
=
∂G

∂λj
+ γj − σ

(1)(Wxj−1 + Ruj + b1)Wγj−1 j = 2, . . . ,N (15)

∂L

∂xj
=αj −W

′σ(1)(Wxj + Ruj+1 + b1)
′αj+1

−W ′
(d∑

k=1
λj+1[k]σ

(2)
[k](Wxj + Ruj+1 + b1)

′
)
Wγj j = 1, . . . ,N− 1.

(16)

∂L

∂xN
=αN − V ′ϕ(1)(VxN + b0)

∂F

∂ŷ
− V ′ϕ(1)(VxN + b0)

′ ∂
2F

∂ŷ2ϕ
(1)(VxN + b0)VγN

+ V ′
(l∑

k=1

∂F

∂ŷ[k]
ϕ

(2)
[k](VxN + b0)

′
)
VγN

(17)

99

where [k] represents the kth component of a given quantity; and ϕ(2)
[k] and σ(2)

[k] represent
the Hessians of ϕ[k] and σ[k], respectively. Solving for the solution vectors in (14) and (15)
yields the forward coadjoint system,

γj =

− ∂G
∂λ1

j = 1
σ(1)(Wxj−1 + Ruj + b1)Wγj−1 −

∂G
∂λj

j > 1,
(18)

and doing the same for (16) and (17) yields the backward coadjoint system,

αj =

V ′ϕ(1)(VxN + b0)
∂F

∂ŷ
+ V ′ϕ(1)(VxN + b0)

′ ∂
2F

∂ŷ2ϕ
(1)(VxN + b0)VγN

− V ′

(
ℓ∑

k=1

∂F

∂ŷ[k]
ϕ

(2)
[k](VxN + b0)

′

)
VγN

j = N

W ′σ(1)(Wxj + Ruj+1 + b1)
′αj+1

+W ′

(
d∑

k=1
λj+1[k]σ

(2)
[k](Wxj + Ruj+1 + b1)

′

)
Wγj

j < N,

(19)

100

A3 Additional Figures

A3.1 LTG Figures

Figure A1: Magnitude of input expression for various LTGi tasks with soft penalty on
Wrec.

101

A3.2 Impact of Coadjoint Regularization Weight

Figure A2: The impact of the coadjoint penalty weight on task accuracy when gradient
management is not prohibitive (left column) and when it is (right column) for the Fashion
MNIST padded tasks. The left column figures are 0 padding tasks and the right column
is the 3x padded experiment. The rows correspond to orthogonal initialization (top row)
and Glorot initialization (bottom row).

From Fig. A2 we observe that training with the coadjoint method when gradient flow is
not prohibitive is not detrimental to learning as it performs as well as backpropagation
across a large variety of weightings. When backpropagation fails to adequately manage
gradient flow (right column of Fig. A2) selecting an appropriate penalty weight will induce
learning.

In practice, we found that a course hyperparameter search across differing values
of κ ∈ [0, 103] was sufficient to induce learning. We remark that the results reported
throughout all of our experiments could benefit by a finer selection of penalty weights.
Furthermore, we acknowledge that the method as a whole would benefit from a procedure
that automatically selects an appropriate weighting based on the data and time scale of the
problem; we leave this for future work.

102

A4 Revisiting VEG Model Summaries & Additional Tables

CIFAR10
sequential sequential × post sequential × uniform permuted permuted × post permuted × uniform

Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00

antisymmetric 0
exponential 1420 320 0 0 1481 345 71 0 852 452 142 0 990 430 54 196 1536 307 100 0 840 102 266 197
gru 81 0 0 0 416 870 14 0 68 3 0 0 54 0 0 0 419 691 31 0 43 1 0 0
lipschitz 0
lstm 68 1 0 0 865 911 16 0 45 50 1 0 85 18 0 0 815 856 14 0 38 9 2 8
rnn 2978 88 0 0 2654 2023 652 0 2927 798 147 0 2521 103 0 0 2634 2234 606 0 2699 456 248 100
unicornn 0
threshold 0.199 0.281 0.38 0.95 0.101 0.114 0.268 0.474 0.136 0.196 0.294 0.696 0.213 0.274 0.356 0.782 0.102 0.114 0.216 0.423 0.149 0.219 0.271 0.557

Fashion MNIST
sequential sequential × post sequential × uniform permuted permuted × post permuted × uniform

Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00

antisymmetric 0
exponential 1197 260 0 0 1354 1223 8 0 871 173 221 0 632 753 217 0 1367 998 6 0 34 812 104 280
gru 0 0 0 0 600 874 0 0 102 83 0 0 21 2 0 0 816 703 9 0 66 73 0 0
lipschitz 0
lstm 136 0 0 0 907 823 13 0 195 24 0 0 36 0 0 0 1145 759 20 0 15 13 5 0
rnn 3698 0 0 0 2812 2176 78 0 3848 36 0 0 2587 303 0 0 2203 1716 955 0 2052 542 299 0
unicornn 0
threshold 0.375 0.66 0.786 0.97 0.1 0.11 0.583 0.865 0.105 0.472 0.633 0.906 0.473 0.655 0.785 0.971 0.101 0.143 0.346 0.842 0.264 0.421 0.66 0.906

IMDB
sequential sequential × post sequential × uniform permuted permuted × post permuted × uniform

Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00

antisymmetric 0
exponential 1334 0 0 0 1288 89 885 0 1304 0 0 0 1564 0 0 0 1323 84 843 0 1273 0 275 0
gru 128 0 0 0 730 580 214 1136 127 4 21 0 455 20 0 0 708 510 182 1195 495 197 209 1146
lipschitz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0 0 0 0
lstm 542 0 0 0 541 180 203 884 515 17 127 186 461 0 0 0 559 189 213 849 457 92 241 662
rnn 1808 444 43 0 939 933 366 815 1094 910 625 514 2800 83 0 0 899 888 389 778 1106 959 801 320
unicornn 0
threshold 0.84 0.964 0.996 1 0.759 0.978 1 1 0.785 0.964 0.999 1 0.759 0.946 0.994 1 0.767 0.979 1 1 0.746 0.96 1 1

MNIST
sequential sequential × post sequential × uniform permuted permuted × post permuted × uniform

Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00

antisymmetric 0
exponential 1460 1439 482 3919 1194 1641 318 1600 936 940 0 0 1050 370 29 1 1655 886 7 0 551 341 67 129
gru 161 0 0 0 31 705 201 0 30 1733 0 0 20 0 0 0 51 1490 0 0 48 93 7 0
lipschitz 0
lstm 1149 18 0 0 47 974 270 0 70 1829 2 0 120 0 0 0 111 1982 32 0 77 13 2 0
rnn 4096 0 0 0 3546 1458 200 0 3177 788 0 0 2508 239 0 0 2717 1063 1406 0 2652 648 139 0
unicornn 0
threshold 0.188 0.642 0.851 0.996 0.105 0.112 0.556 0.977 0.106 0.162 0.594 0.976 0.375 0.617 0.85 0.991 0.109 0.135 0.336 0.922 0.179 0.31 0.663 0.965

Reuters
sequential sequential × post sequential × uniform permuted permuted × post permuted × uniform

Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00

antisymmetric 0
exponential 1418 2 0 0 257 1003 768 0 1132 287 756 303 265 1151 0 0 231 1111 663 12 256 1162 609 323
gru 60 0 0 0 410 261 504 1048 206 1 0 0 64 0 0 0 285 313 545 1081 301 266 501 814
lipschitz 0
lstm 684 1 0 0 2689 444 810 873 1926 75 120 410 131 1 0 0 2573 422 720 919 1438 340 287 919
rnn 2292 615 50 0 2000 621 1338 644 2265 766 997 418 1646 1209 28 0 1854 593 1280 577 1549 976 1049 586
unicornn 0
threshold 0.384 0.628 0.922 0.961 0.386 0.756 0.999 1 0.368 0.623 0.982 1 0.39 0.595 0.903 0.959 0.376 0.751 0.998 1 0.372 0.654 0.981 1

Table A4: Number of training attempts that experience vanished gradients during training
and their corresponding training accuracy binned by task quartile.

103

CIFAR10
sequential sequential × post sequential × uniform permuted permuted × post permuted × uniform

Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00

antisymmetric 0
exponential 40 13 0 0 39 31 0 0 29 18 0 0 38 2 12 1 43 32 0 0 27 2 20 1
gru 0 0 0 0 14 18 1 0 0 0 0 0 0 0 0 0 12 14 0 0 0 0 0 0
lipschitz 0
lstm 2 0 0 0 30 19 2 0 4 5 0 0 1 0 0 0 34 15 2 0 2 0 0 0
rnn 108 3 0 0 54 60 30 0 90 33 4 0 87 6 2 0 38 83 25 0 76 22 9 3
unicornn 0
threshold 0.216 0.332 0.422 0.701 0.1 0.105 0.304 0.476 0.148 0.218 0.331 0.637 0.236 0.313 0.387 0.489 0.1 0.107 0.242 0.433 0.163 0.251 0.292 0.462

Fashion MNIST
sequential sequential × post sequential × uniform permuted permuted × post permuted × uniform

Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00

antisymmetric 0
exponential 40 0 0 0 42 20 0 0 27 20 2 0 33 6 13 0 32 18 1 0 19 8 22 1
gru 0 0 0 0 20 16 0 0 0 0 0 0 0 0 0 0 12 21 1 0 1 0 0 0
lipschitz 0
lstm 3 0 0 0 20 32 1 0 8 0 0 0 0 0 0 0 19 34 1 0 0 0 0 0
rnn 113 0 0 0 54 38 2 0 118 3 0 0 80 17 0 0 36 35 23 0 65 20 6 0
unicornn 0
threshold 0.431 0.702 0.815 0.915 0.1 0.115 0.661 0.855 0.119 0.543 0.686 0.884 0.553 0.706 0.803 0.864 0.1 0.167 0.509 0.828 0.305 0.503 0.704 0.837

IMDB
sequential sequential × post sequential × uniform permuted permuted × post permuted × uniform

Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00

antisymmetric 0
exponential 39 0 0 0 32 39 2 0 40 0 0 0 47 0 0 0 41 23 6 0 35 16 0 0
gru 1 0 0 0 23 59 10 0 0 0 0 0 1 0 0 0 19 53 15 0 53 13 0 0
lipschitz 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
lstm 12 0 0 0 13 33 7 0 15 9 0 0 10 0 0 0 17 28 7 0 13 29 0 0
rnn 84 0 0 0 74 12 0 0 82 6 0 0 103 0 0 0 69 14 0 0 78 12 0 0
unicornn 0
threshold 0.804 0.842 0.852 0.887 0.5 0.505 0.776 0.835 0.646 0.743 0.775 0.844 0.701 0.826 0.844 0.886 0.501 0.505 0.768 0.846 0.51 0.603 0.71 0.793

MNIST
sequential sequential × post sequential × uniform permuted permuted × post permuted × uniform

Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00

antisymmetric 0
exponential 40 40 6 114 40 18 9 49 32 28 0 0 34 6 5 0 52 35 0 0 25 3 16 5
gru 0 0 0 0 0 18 3 0 0 48 0 0 0 0 0 0 4 37 0 0 0 0 0 0
lipschitz 0
lstm 34 0 0 0 4 25 7 0 9 44 0 0 4 0 0 0 7 52 1 0 1 0 0 0
rnn 132 0 0 0 102 23 1 0 105 28 0 0 70 12 0 0 77 33 32 0 76 30 0 0
unicornn 0
threshold 0.279 0.721 0.897 0.989 0.105 0.113 0.668 0.982 0.109 0.268 0.69 0.978 0.429 0.706 0.887 0.948 0.11 0.163 0.421 0.923 0.192 0.415 0.749 0.928

Reuters
sequential sequential × post sequential × uniform permuted permuted × post permuted × uniform

Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00 Q0.25 Q0.50 Q0.75 Q1.00

antisymmetric 0
exponential 40 0 0 0 42 18 0 0 26 40 13 0 40 0 0 0 37 22 0 0 3 64 2 0
gru 0 0 0 0 33 21 0 0 7 1 0 0 0 0 0 0 39 16 0 0 42 6 0 0
lipschitz 0
lstm 14 1 0 0 43 47 0 0 27 21 6 0 2 0 0 0 44 40 0 0 38 20 1 0
rnn 80 4 0 0 77 27 0 0 95 23 0 0 66 9 0 0 72 23 1 0 76 25 9 0
unicornn 0
threshold 0.46 0.592 0.696 0.764 0.208 0.361 0.532 0.733 0.342 0.396 0.485 0.654 0.407 0.547 0.635 0.765 0.211 0.361 0.496 0.742 0.275 0.365 0.415 0.606

Table A5: Number of training attempts that incurred vanished gradients at the terminal
iterate and their corresponding evaluation accuracy binned by task quartile.

104

CIFAR10
sequential sequential × post sequential × uniform permuted permuted × post permuted × uniform

(Q0.75 = 0.380) (Q0.75 = 0.268) (Q0.75 = 0.294) (Q0.75 = 0.356) (Q0.75 = 0.216) (Q0.75 = 0.271)
stable vanished stable vanished stable vanished stable vanished stable vanished stable vanished

antisymmetric 1362 0 3601 0 2915 0 374 0 3766 0 558 0
exponential 2172 0 3 0 305 0 4244 196 310 0 1894 197
gru 1807 0 15 0 439 0 1574 0 36 0 657 0
lipschitz 1254 0 2735 0 2413 0 685 0 2195 0 1034 0
lstm 519 0 10 0 271 0 462 0 0 0 323 8
rnn 0 0 0 0 0 0 960 0 0 0 1542 100
unicornn 3998 0 0 0 0 0 2559 0 0 0 0 0

Fashion MNIST
sequential sequential × post sequential × uniform permuted permuted × post permuted × uniform

(Q0.75 = 0.786) (Q0.75 = 0.583) (Q0.75 = 0.633) (Q0.75 = 0.785) (Q0.75 = 0.346) (Q0.75 = 0.660)
stable vanished stable vanished stable vanished stable vanished stable vanished stable vanished

antisymmetric 946 0 3266 0 2744 0 375 0 2921 0 472 0
exponential 3502 0 1213 0 1980 0 3807 0 1738 0 2411 280
gru 1754 0 37 0 403 0 1801 0 110 0 689 0
lipschitz 1335 0 1931 0 1053 0 1204 0 1411 0 649 0
lstm 756 0 4 0 15 0 1632 0 3 0 536 0
rnn 162 0 0 0 263 0 937 0 175 0 1401 0
unicornn 2974 0 0 0 0 0 1506 0 0 0 0 0

IMDB
sequential sequential × post sequential × uniform permuted permuted × post permuted × uniform

(Q0.75 = 0.996) (Q0.75 = 1.00) (Q0.75 = 0.999) (Q0.75 = 0.994) (Q0.75 = 1.00) (Q0.75 = 0.999)
stable vanished stable vanished stable vanished stable vanished stable vanished stable vanished

antisymmetric 1831 0 2171 0 1845 0 2074 0 2023 0 1603 0
exponential 2301 0 1620 0 2114 0 2504 0 1719 0 1781 0
gru 1771 0 363 1136 714 0 1527 0 349 1195 314 1146
lipschitz 1642 0 1223 0 1727 0 1575 0 1193 21 949 0
lstm 1381 0 235 884 358 186 1165 0 314 849 458 662
rnn 424 0 1175 815 589 514 386 0 1006 778 785 320
unicornn 2510 0 0 0 19 0 2760 0 0 0 0 0

MNIST
sequential sequential × post sequential × uniform permuted permuted × post permuted × uniform

(Q0.75 = 0.851) (Q0.75 = 0.556) (Q0.75 = 0.594) (Q0.75 = 0.851) (Q0.75 = 0.336) (Q0.75 = 0.663)
stable vanished stable vanished stable vanished stable vanished stable vanished stable vanished

antisymmetric 1019 0 2743 0 2371 0 542 0 2692 0 251 0
exponential 0 3919 0 1600 2360 0 4167 1 1824 0 2612 129
gru 1658 0 40 0 44 0 1448 0 101 0 767 0
lipschitz 1850 0 2180 0 1795 0 1184 0 1840 0 381 0
lstm 213 0 0 0 0 0 1664 0 6 0 596 0
rnn 210 0 0 0 99 0 1562 0 69 0 1870 0
unicornn 2386 0 0 0 0 0 611 0 0 0 0 0

Reuters
sequential sequential × post sequential × uniform permuted permuted × post permuted × uniform

(Q0.75 = 0.922) (Q0.75 = 0.999) (Q0.75 = 0.982) (Q0.75 = 0.903) (Q0.75 = 0.998) (Q0.75 = 0.981)
stable vanished stable vanished stable vanished stable vanished stable vanished stable vanished

antisymmetric 1771 0 1307 0 1337 0 1718 0 1278 0 1166 0
exponential 2768 0 2625 0 2293 303 2810 0 2825 12 2549 323
gru 1028 0 830 1048 1121 0 1006 0 461 1081 324 814
lipschitz 1905 0 830 0 1959 0 1836 0 806 0 1289 0
lstm 1611 0 1357 873 1376 410 1242 0 1351 919 1127 919
rnn 137 0 407 644 236 418 17 0 350 577 301 586
unicornn 2505 0 1388 0 1746 0 2949 0 1425 0 1634 0

Table A6: Count of training attempts by adjoint regime that attain training accuracy in the
top quartile (i.e., greater than Q0.75) on a per-task basis for each architecture.

105

CIFAR10
sequential sequential × post sequential × uniform permuted permuted × post permuted × uniform

(Q0.75 = 0.382) (Q0.75 = 0.277) (Q0.75 = 0.300) (Q0.75 = 0.360) (Q0.75 = 0.221) (Q0.75 = 0.277)
stable vanished stable vanished stable vanished stable vanished stable vanished stable vanished

antisymmetric 36 0 93 0 83 0 12 0 110 0 19 0
exponential 46 0 0 0 1 0 97 1 10 0 58 1
gru 48 0 1 0 20 0 45 0 1 0 15 0
lipschitz 40 0 84 0 70 0 28 0 56 0 23 0
lstm 24 0 0 0 10 0 9 0 0 0 10 0
rnn 0 0 0 0 0 0 33 0 0 0 50 3
unicornn 110 0 0 0 0 0 76 0 0 0 0 0

Fashion MNIST
sequential sequential × post sequential × uniform permuted permuted × post permuted × uniform

(Q0.75 = 0.780) (Q0.75 = 0.589) (Q0.75 = 0.631) (Q0.75 = 0.779) (Q0.75 = 0.349) (Q0.75 = 0.660)
stable vanished stable vanished stable vanished stable vanished stable vanished stable vanished

antisymmetric 18 0 80 0 63 0 8 0 65 0 15 0
exponential 95 0 45 0 58 0 102 0 54 0 59 1
gru 53 0 3 0 14 0 56 0 3 0 22 0
lipschitz 41 0 53 0 38 0 44 0 48 0 29 0
lstm 31 0 1 0 2 0 54 0 0 0 19 0
rnn 1 0 0 0 7 0 20 0 7 0 35 0
unicornn 71 0 0 0 0 0 21 0 0 0 0 0

IMDB
sequential sequential × post sequential × uniform permuted permuted × post permuted × uniform

(Q0.75 = 0.854) (Q0.75 = 0.773) (Q0.75 = 0.772) (Q0.75 = 0.844) (Q0.75 = 0.766) (Q0.75 = 0.704)
stable vanished stable vanished stable vanished stable vanished stable vanished stable vanished

antisymmetric 61 0 101 0 42 0 118 0 116 0 149 0
exponential 105 0 15 0 90 0 101 0 8 0 27 0
gru 68 0 0 0 29 0 42 0 0 0 8 0
lipschitz 19 0 103 0 2 0 2 0 93 0 1 0
lstm 38 0 0 0 25 0 33 0 0 0 27 0
rnn 33 0 0 0 34 0 40 0 0 0 7 0
unicornn 0 0 0 0 0 0 0 0 0 0 0 0

MNIST
sequential sequential × post sequential × uniform permuted permuted × post permuted × uniform

(Q0.75 = 0.857) (Q0.75 = 0.573) (Q0.75 = 0.605) (Q0.75 = 0.856) (Q0.75 = 0.342) (Q0.75 = 0.676)
stable vanished stable vanished stable vanished stable vanished stable vanished stable vanished

antisymmetric 29 0 75 0 53 0 14 0 70 0 6 0
exponential 0 114 0 49 84 0 101 0 58 0 52 5
gru 67 0 2 0 1 0 41 0 3 0 23 0
lipschitz 40 0 57 0 46 0 43 0 48 0 27 0
lstm 15 0 0 0 0 0 49 0 0 0 24 0
rnn 5 0 0 0 3 0 46 0 3 0 49 0
unicornn 37 0 0 0 0 0 7 0 0 0 0 0

Reuters
sequential sequential × post sequential × uniform permuted permuted × post permuted × uniform

(Q0.75 = 0.682) (Q0.75 = 0.513) (Q0.75 = 0.471) (Q0.75 = 0.624) (Q0.75 = 0.479) (Q0.75 = 0.410)
stable vanished stable vanished stable vanished stable vanished stable vanished stable vanished

antisymmetric 94 0 76 0 136 0 133 0 97 0 139 0
exponential 3 0 0 0 45 0 2 0 10 0 36 0
gru 12 0 11 0 2 0 39 0 5 0 3 0
lipschitz 88 0 123 0 69 0 93 0 124 0 105 0
lstm 45 0 0 0 22 0 38 0 0 0 18 0
rnn 0 0 0 0 7 0 0 0 0 0 2 0
unicornn 77 0 101 0 29 0 9 0 72 0 1 0

Table A7: Count of training attempts in each adjoint regime that attain evaluation accuracy
in the top quartile (i.e., greater than Q0.75) on a per-task basis for each architecture.

106

A5 Linear Model Coefficient Tables

Estimate Std. Error t value
(Intercept) 0.554629 0.001696 327.1
adjoint metric 0.000808 0.000012 65.5

Table A8: model 1 coefficient estimates and standard errors.

107

Estimate Std. Error t value
(Intercept) -0.389208 0.010304 -37.8
adjoint metric 0.000659 0.000011 61.5
exponential 0.062467 0.014306 4.4
gru -0.010889 0.024022 -0.5
lipschitz -0.253604 0.025034 -10.1
lstm -0.039498 0.018285 -2.2
rnn 0.109528 0.015192 7.2
unicornn 0.137791 0.017465 7.9
LR -0.206917 0.003107 -66.6
LR2 -0.014326 0.000221 -65.0
dim 0.000033 0.000014 2.4
dataset = fashion mnist 0.224876 0.002875 78.2
dataset = imdb 0.637598 0.002786 228.9
dataset = mnist 0.203151 0.002867 70.9
dataset = reuters 0.424152 0.002756 153.9
post noise -0.073278 0.004769 -15.4
uniform noise -0.089835 0.004774 -18.8
order = permute -0.004596 0.001731 -2.7
epochs 0.003895 0.000007 596.4
exponential * LR 0.011361 0.004565 2.5
gru * LR -0.014677 0.006689 -2.2
lipschitz * LR -0.051046 0.006972 -7.3
lstm * LR 0.005386 0.005488 1.0
rnn * LR 0.116526 0.004693 24.8
unicornn * LR -0.005282 0.005683 -0.9
exponential * LR2 0.001789 0.000324 5.5
gru * LR2 -0.001472 0.000434 -3.4
lipschitz * LR2 -0.002115 0.000447 -4.7
lstm * LR2 0.000192 0.000375 0.5
rnn * LR2 0.009572 0.000326 29.3
unicornn * LR2 -0.001558 0.000403 -3.9
exponential * post noise -0.091826 0.006999 -13.1
gru * post noise -0.102433 0.007906 -13.0
lipschitz * post noise 0.029330 0.007329 4.0
lstm * post noise -0.012013 0.007712 -1.6
rnn * post noise 0.005539 0.006900 0.8
unicornn * post noise 0.014250 0.010705 1.3
exponential * uniform noise 0.005152 0.006985 0.7
gru * uniform noise -0.007158 0.007991 -0.9
lipschitz * uniform noise 0.037987 0.007340 5.2
lstm * uniform noise 0.059214 0.007710 7.7
rnn * uniform noise 0.074150 0.006888 10.8
unicornn * uniform noise 0.012388 0.010718 1.2

Table A9: model 2 coefficient estimates and standard errors.

108

Estimate Std. Error t value
(Intercept) -0.388855 0.010404 -37.4
exponential 0.003710 0.014413 0.3
gru 0.010079 0.024250 0.4
lipschitz -0.246101 0.025275 -9.7
lstm -0.060495 0.018459 -3.3
rnn 0.067864 0.015324 4.4
unicornn 0.139739 0.017635 7.9
LR -0.206913 0.003137 -66.0
LR2 -0.014336 0.000223 -64.4
dim 0.000032 0.000014 2.3
dataset = fashion mnist 0.225447 0.002902 77.7
dataset = imdb 0.639595 0.002812 227.4
dataset = mnist 0.201172 0.002895 69.5
dataset = reuters 0.424946 0.002783 152.7
post noise -0.072876 0.004815 -15.1
uniform noise -0.089473 0.004820 -18.6
order = permute -0.003844 0.001748 -2.2
epochs 0.003901 0.000007 596.4
exponential * LR 0.000569 0.004606 0.1
gru * LR -0.009402 0.006753 -1.4
lipschitz * LR -0.049051 0.007039 -7.0
lstm * LR 0.001335 0.005540 0.2
rnn * LR 0.113617 0.004738 24.0
unicornn * LR -0.004800 0.005738 -0.8
exponential * LR2 0.001291 0.000327 3.9
gru * LR2 -0.001211 0.000438 -2.8
lipschitz * LR2 -0.001983 0.000451 -4.4
lstm * LR2 -0.000040 0.000379 -0.1
rnn * LR2 0.009614 0.000330 29.2
unicornn * LR2 -0.001517 0.000407 -3.7
exponential * post noise -0.098075 0.007066 -13.9
gru * post noise -0.126337 0.007972 -15.8
lipschitz * post noise 0.029498 0.007400 4.0
lstm * post noise -0.036978 0.007776 -4.8
rnn * post noise -0.005566 0.006964 -0.8
unicornn * post noise 0.013428 0.010809 1.2
exponential * uniform noise 0.004242 0.007052 0.6
gru * uniform noise -0.016471 0.008067 -2.0
lipschitz * uniform noise 0.037555 0.007411 5.1
lstm * uniform noise 0.047581 0.007782 6.1
rnn * uniform noise 0.068904 0.006955 9.9
unicornn * uniform noise 0.011509 0.010822 1.1

Table A10: model 3 coefficient estimates and standard errors.

109

Estimate Std. Error t value
(Intercept) 0.561104 0.001519 369.5
adjoint metric 0.005536 0.000055 100.4

Table A11: model 4 coefficient estimates and standard errors.

110

Estimate Std. Error t value
(Intercept) -0.166764 0.009667 -17.3
adjoint metric 0.003031 0.000071 42.8
exponential 0.385485 0.014315 26.9
gru 0.121142 0.024798 4.9
lipschitz -0.402029 0.025817 -15.6
lstm 0.297915 0.017426 17.1
rnn 0.368652 0.014360 25.7
unicornn 0.337191 0.015792 21.4
LR -0.167420 0.002809 -59.6
LR2 -0.010889 0.000199 -54.6
dim -0.000007 0.000013 -0.6
dataset = fashion mnist 0.244648 0.002686 91.1
dataset = imdb 0.440448 0.002615 168.4
dataset = mnist 0.244248 0.002685 91.0
dataset = reuters 0.196438 0.002582 76.1
post noise -0.099586 0.004312 -23.1
uniform noise -0.119898 0.004316 -27.8
order = permute -0.020505 0.001611 -12.7
epochs 0.000401 0.000065 6.2
exponential * LR 0.107020 0.004260 25.1
gru * LR 0.026398 0.006609 4.0
lipschitz * LR -0.087220 0.006859 -12.7
lstm * LR 0.098358 0.005110 19.2
rnn * LR 0.162722 0.004280 38.0
unicornn * LR 0.075794 0.005138 14.8
exponential * LR2 0.007822 0.000297 26.4
gru * LR2 0.001342 0.000419 3.2
lipschitz * LR2 -0.004449 0.000428 -10.4
lstm * LR2 0.006217 0.000347 17.9
rnn * LR2 0.011629 0.000299 38.8
unicornn * LR2 0.004100 0.000365 11.2
exponential * post noise -0.147453 0.006372 -23.1
gru * post noise -0.135198 0.008219 -16.4
lipschitz * post noise 0.027762 0.006914 4.0
lstm * post noise -0.107871 0.007655 -14.1
rnn * post noise -0.068440 0.006367 -10.7
unicornn * post noise -0.006035 0.009691 -0.6
exponential * uniform noise -0.016781 0.006322 -2.7
gru * uniform noise -0.033231 0.007668 -4.3
lipschitz * uniform noise -0.010733 0.006919 -1.6
lstm * uniform noise 0.012609 0.007303 1.7
rnn * uniform noise 0.047723 0.006302 7.6
unicornn * uniform noise -0.115179 0.009703 -11.9

Table A12: model 5 coefficient estimates and standard errors.

111

Estimate Std. Error t value
(Intercept) -0.170097 0.009962 -17.1
exponential 0.122263 0.013325 9.2
gru 0.185399 0.025510 7.3
lipschitz -0.388064 0.026605 -14.6
lstm 0.192344 0.017779 10.8
rnn 0.212007 0.014312 14.8
unicornn 0.350552 0.016272 21.5
LR -0.168041 0.002895 -58.0
LR2 -0.010968 0.000205 -53.4
dim -0.000016 0.000013 -1.2
dataset = fashion mnist 0.248049 0.002767 89.7
dataset = imdb 0.450829 0.002684 168.0
dataset = mnist 0.237333 0.002762 85.9
dataset = reuters 0.204586 0.002654 77.1
post noise -0.097962 0.004444 -22.0
uniform noise -0.118527 0.004448 -26.6
order = permute -0.016621 0.001657 -10.0
epochs 0.000443 0.000067 6.6
exponential * LR 0.061894 0.004254 14.6
gru * LR 0.043679 0.006799 6.4
lipschitz * LR -0.081938 0.007068 -11.6
lstm * LR 0.081873 0.005252 15.6
rnn * LR 0.167283 0.004410 37.9
unicornn * LR 0.079121 0.005295 14.9
exponential * LR2 0.005895 0.000302 19.5
gru * LR2 0.002277 0.000432 5.3
lipschitz * LR2 -0.004016 0.000441 -9.1
lstm * LR2 0.005503 0.000357 15.4
rnn * LR2 0.013172 0.000306 43.0
unicornn * LR2 0.004353 0.000376 11.6
exponential * post noise -0.177436 0.006527 -27.2
gru * post noise -0.257643 0.007942 -32.4
lipschitz * post noise 0.028186 0.007126 4.0
lstm * post noise -0.222673 0.007391 -30.1
rnn * post noise -0.111168 0.006481 -17.2
unicornn * post noise -0.011722 0.009986 -1.2
exponential * uniform noise -0.022935 0.006514 -3.5
gru * uniform noise -0.081524 0.007816 -10.4
lipschitz * uniform noise -0.012487 0.007131 -1.8
lstm * uniform noise -0.039824 0.007420 -5.4
rnn * uniform noise 0.025873 0.006474 4.0
unicornn * uniform noise -0.121506 0.009999 -12.2

Table A13: model 6 coefficient estimates and standard errors.

112

Estimate Std. Error t value
(Intercept) -16.773395 0.129014 -130.0
accuracy 5.028647 0.075263 66.8

Table A14: model 7 coefficient estimates and standard errors.

113

Estimate Std. Error t value
(Intercept) 2.220014 0.691035 3.2
accuracy 4.798466 0.075041 63.9
exponential -89.256280 0.956861 -93.3
gru 31.609801 1.619733 19.5
lipschitz 12.800656 1.683300 7.6
lstm -31.744651 1.227192 -25.9
rnn -63.828688 1.018045 -62.7
unicornn 2.291405 1.170710 2.0
LR 0.998814 0.208819 4.8
LR2 0.053961 0.014819 3.6
dim -0.002009 0.000927 -2.2
dataset = fashion mnist -0.218300 0.193713 -1.1
dataset = imdb -0.033683 0.193049 -0.2
dataset = mnist -3.966318 0.193025 -20.5
dataset = reuters -0.844784 0.187777 -4.5
post noise 0.958344 0.319691 3.0
uniform noise 0.976469 0.320040 3.1
order = permute 1.157570 0.116175 10.0
exponential * LR -16.395001 0.305769 -53.6
gru * LR 7.984143 0.450203 17.7
lipschitz * LR 3.315589 0.468174 7.1
lstm * LR -6.187261 0.368135 -16.8
rnn * LR -5.025122 0.314820 -16.0
unicornn * LR 0.757340 0.380932 2.0
exponential *LR2 -0.763514 0.021720 -35.2
gru * LR2 0.397572 0.029195 13.6
lipschitz * LR2 0.211058 0.030005 7.0
lstm * LR2 -0.352016 0.025169 -14.0
rnn * LR2 0.015125 0.021904 0.7
unicornn * LR2 0.069483 0.027045 2.6
exponential * post noise -9.000246 0.469182 -19.2
gru * post noise -35.702164 0.530637 -67.3
lipschitz * post noise 0.145393 0.492080 0.3
lstm * post noise -37.783471 0.516707 -73.1
rnn * post noise -16.867696 0.462405 -36.5
unicornn * post noise -1.279895 0.717710 -1.8
exponential * uniform noise -1.385131 0.468176 -3.0
gru * uniform noise -14.100072 0.536844 -26.3
lipschitz * uniform noise -0.808041 0.492722 -1.6
lstm * uniform noise -17.923256 0.517185 -34.7
rnn * uniform noise -8.318314 0.461786 -18.0
unicornn * uniform noise -1.357448 0.718598 -1.9

Table A15: model 8 coefficient estimates and standard errors.

114

Estimate Std. Error t value
(Intercept) 0.714736 0.700824 1.0
exponential -89.236565 0.970976 -91.9
gru 31.434463 1.643113 19.1
lipschitz 11.279579 1.707690 6.6
lstm -32.089892 1.245194 -25.8
rnn -63.520565 1.033018 -61.5
unicornn 2.967955 1.187938 2.5
LR 0.005746 0.211314 0.0
LR2 -0.014840 0.014998 -1.0
dim -0.001980 0.000940 -2.1
dataset = fashion mnist 0.869623 0.195798 4.4
dataset = imdb 3.043875 0.189699 16.0
dataset = mnist -2.995671 0.195253 -15.3
dataset = reuters 1.222724 0.187689 6.5
post noise 0.611903 0.324363 1.9
uniform noise 0.550985 0.324694 1.7
order = permute 1.138084 0.117882 9.7
exponential * LR -16.392288 0.310280 -52.8
gru * LR 7.902100 0.456745 17.3
lipschitz * LR 3.008173 0.475012 6.3
lstm * LR -6.187125 0.373549 -16.6
rnn * LR -4.481409 0.319342 -14.0
unicornn * LR 0.734813 0.386553 1.9
exponential *LR2 -0.757299 0.022040 -34.4
gru * LR2 0.390378 0.029621 13.2
lipschitz * LR2 0.197920 0.030445 6.5
lstm * LR2 -0.352263 0.025539 -13.8
rnn * LR2 0.061277 0.022215 2.8
unicornn * LR2 0.062237 0.027444 2.3
exponential * post noise -9.498218 0.476039 -20.0
gru * post noise -36.359196 0.538295 -67.5
lipschitz * post noise 0.260421 0.499296 0.5
lstm * post noise -37.985775 0.524295 -72.5
rnn * post noise -16.893334 0.469225 -36.0
unicornn * post noise -1.277259 0.728291 -1.8
exponential * uniform noise -1.391343 0.475084 -2.9
gru * uniform noise -14.216689 0.544694 -26.1
lipschitz * uniform noise -0.655344 0.499948 -1.3
lstm * uniform noise -17.725272 0.524779 -33.8
rnn * uniform noise -7.987948 0.468567 -17.0
unicornn * uniform noise -1.365918 0.729192 -1.9

Table A16: model 9 coefficient estimates and standard errors.

115

Estimate Std. Error t value
(Intercept) -36.654309 0.249102 -147.1
eval. accuracy 45.936038 0.457481 100.4

Table A17: model 10 coefficient estimates and standard errors.

116

Estimate Std. Error t value
(Intercept) 2.184928 0.775342 2.8
eval. accuracy 19.308812 0.450724 42.8
exponential -89.204996 1.033448 -86.3
gru 17.620471 1.977424 8.9
lipschitz 12.100298 2.067829 5.9
lstm -38.544742 1.379628 -27.9
rnn -55.775004 1.112488 -50.1
unicornn -2.360664 1.270095 -1.9
LR 3.039840 0.236643 12.8
LR2 0.185911 0.016663 11.2
dim -0.002536 0.001028 -2.5
dataset = fashion mnist -3.667266 0.241688 -15.2
dataset = imdb -5.279935 0.290667 -18.2
dataset = mnist -6.863920 0.239188 -28.7
dataset = reuters -1.262113 0.225275 -5.6
post noise 2.427226 0.346959 7.0
uniform noise 2.740764 0.348611 7.9
order = permute 1.602190 0.128584 12.5
epochs 0.005276 0.005179 1.0
exponential * LR -16.083421 0.330609 -48.6
gru * LR 4.857792 0.526898 9.2
lipschitz * LR 3.324929 0.548624 6.1
lstm * LR -7.019596 0.408398 -17.2
rnn * LR -1.725084 0.349733 -4.9
unicornn * LR -0.430121 0.411620 -1.0
exponential * LR2 -0.749718 0.023544 -31.8
gru * LR2 0.264431 0.033436 7.9
lipschitz * LR2 0.220148 0.034196 6.4
lstm * LR2 -0.341875 0.027779 -12.3
rnn * LR2 0.254818 0.024455 10.4
unicornn * LR2 -0.000429 0.029180 -0.0
exponential * post noise -6.466182 0.511777 -12.6
gru * post noise -35.423014 0.625911 -56.6
lipschitz * post noise -0.404399 0.552002 -0.7
lstm * post noise -33.576700 0.581098 -57.8
rnn * post noise -11.950707 0.504406 -23.7
unicornn * post noise -1.650018 0.773405 -2.1
exponential * uniform noise -1.587609 0.504574 -3.1
gru * uniform noise -14.359034 0.606456 -23.7
lipschitz * uniform noise -0.337459 0.552262 -0.6
lstm * uniform noise -16.529956 0.574945 -28.8
rnn * uniform noise -7.708681 0.501515 -15.4
unicornn * uniform noise 0.258714 0.776298 0.3

Table A18: model 11 coefficient estimates and standard errors.

117

Estimate Std. Error t value
(Intercept) -1.099439 0.795148 -1.4
exponential -86.844250 1.063551 -81.7
gru 21.200315 2.036103 10.4
lipschitz 4.607237 2.123458 2.2
lstm -34.830804 1.419028 -24.5
rnn -51.681408 1.142288 -45.2
unicornn 4.408076 1.298786 3.4
LR -0.204835 0.231054 -0.9
LR2 -0.025860 0.016399 -1.6
dim -0.002845 0.001060 -2.7
dataset = fashion mnist 1.122275 0.220829 5.1
dataset = imdb 3.425045 0.214198 16.0
dataset = mnist -2.281292 0.220479 -10.3
dataset = reuters 2.688192 0.211826 12.7
post noise 0.535692 0.354667 1.5
uniform noise 0.452144 0.355034 1.3
order = permute 1.281249 0.132293 9.7
epochs 0.013827 0.005333 2.6
exponential * LR -14.888331 0.339509 -43.9
gru * LR 5.701172 0.542640 10.5
lipschitz * LR 1.742807 0.564127 3.1
lstm * LR -5.438720 0.419172 -13.0
rnn * LR 1.504960 0.351958 4.3
unicornn * LR 1.097613 0.422619 2.6
exponential * LR2 -0.635894 0.024109 -26.4
gru * LR2 0.308391 0.034443 9.0
lipschitz * LR2 0.142598 0.035192 4.1
lstm * LR2 -0.235627 0.028514 -8.3
rnn * LR2 0.509150 0.024449 20.8
unicornn * LR2 0.083628 0.030004 2.8
exponential * post noise -9.892254 0.520955 -19.0
gru * post noise -40.397796 0.633861 -63.7
lipschitz * post noise 0.139831 0.568740 0.2
lstm * post noise -37.876246 0.589877 -64.2
rnn * post noise -14.097230 0.517267 -27.3
unicornn * post noise -1.876359 0.797048 -2.4
exponential * uniform noise -2.030459 0.519902 -3.9
gru * uniform noise -15.933172 0.623863 -25.5
lipschitz * uniform noise -0.578563 0.569129 -1.0
lstm * uniform noise -17.298907 0.592247 -29.2
rnn * uniform noise -7.209108 0.516720 -14.0
unicornn * uniform noise -2.087427 0.798056 -2.6

Table A19: model 12 coefficient estimates and standard errors.

	Contents
	List of Tables
	List of Figures
	Abstract
	Task Generalization
	Introduction
	Background
	Generalization of Task Behaviors
	Experimental Design
	Task Behaviors
	Conclusion

	Controlling Gradient Dynamics in Recurrent Neural Networks
	Recurrent Neural Networks
	The Optimization Problem
	The Vanishing and Exploding Gradient Problem
	Proposed Methods for Mitigating VEG
	Linear RNN Learning
	The Coadjoint Algorithm
	Experimental Results on the Coadjoint Method
	Observations on Gradient Control and Learning
	LU RNN
	Conclusion

	Revisiting the Problem of Learning Long-term Dependencies in Recurrent Neural Networks
	Introduction
	A Metric for the Vanishing and Exploding Gradient Phenomenon
	Experimental Design
	Counter Examples
	Statistical Analysis
	Revisiting the Mechanisms of Latching
	Conclusion

	Summary
	Bibliography
	Task Generalization Supplementary Material
	Derivation of Gradient Flow Equations and Control
	Additional Figures
	Revisiting VEG Model Summaries & Additional Tables
	Linear Model Coefficient Tables

