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Abstract

The recent years witnessed a surge in the intellectual interest of statistical methods for

personalized dosing. It is important to investigate the Individual Dose Interval (IDI) both

for medical applications and statistical researches. In this dissertation, a new method based

on Outcome-Weighted-Learning (OWL) is proposed to determine two types of IDIs with

different properties: Probability Dose Interval (PDI) and Expectation Dose Interval (EDI).

The former identifies a range of doses where the potential outcome is greater than a threshold

with a certain probability and the latter identifies a range of doses where the expectation

of the potential outcome is greater than a threshold. The method adopts Reproducing

Kernel Hilbert Space (RKHS) estimators from non-convex loss functions, which are solved

by the Difference-of-Convex (DC) algorithm. The Fish consistency and the convergence

rates of the estimators are discussed. Numerical simulations show an advantage of the

proposed method over methods based on traditional outcome modeling. In addition, this

new method is applied to determine personalized Hemoglobin A1c (HbA1c) control intervals

for diabetic patients.
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Chapter 1

Introduction

1.1 The Need for Personalized Interval Dosing in Practice

Personalized medicine is playing an important role in clinical researches and applications.

A common belief in many medical fields is that personalized prescription based on patients’

health condition and medical history will result in more effective treatment. Despite the

abundance of research on personalization of categorical treatments, which aims to choose

the optimal treatment out of several candidates based on patients’ features, personalization

of dosing has not been studied sufficiently. This is related to the inadequacy of clinical

experiments targeting this area, as randomized clinical trials, the gold standard in medical

research, typically engages only one dosage level. A typical dose-finding trial is often con-

structed in the double-blind Phase II trial to identify the no-effect, the main effect, and the

maximal effective doses (Chevret, 2006). Such practices often ignore the heterogeneity of

patients’ reaction to the doses, and in fact, the FDA-approved doses may not work well for

all the patients.

In practice, physicians may not always want to give prescriptions of fixed doses. Due to

the complex nature of human’s reaction to chemicals, which might vary dramatically across

patients, it is difficult or undesirable to specify a fixed dose for all the situations. Instead,

the dosage is sometimes prescribed to several candidate levels or to a range where physicians
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can make decisions depending on the severity of the disease and patients’ tolerance to side

effects. Such practices are mainly driven by the demands for the maximum-tolerated doses.

For example, cancer patients who survive 5 years after treatment are usually viewed as

successful cases. It would be useful to know about the least amount of doses that can

achieve the comparable anticipated lifetime, especially given the fact that cancer therapies

generally entail high costs and cause damage to human organs. As another example, beta

blockers are usually adopted to alleviate the symptoms of heart premature contraction,

but overdosing may incur potential side effects. For almost any sorts of prescriptions, it

would be helpful to learn about the maximum-tolerated dose with minimum side effects for

patients.

In some other situations, it is impossible to enforce an exact dose of medication due

to partial compliance. The HbA1c, referred to as glycated hemoglobin, is formed when

hemoglobin, a protein within the red blood cells that carries oxygen throughout the body,

combines with glucose in the blood and thus becomes glycated. By measuring HbA1c,

clinicians are able to get an overall picture of what average blood sugar levels of the patients

have been over the past three months. Diabetes patients usually try to keep their HbA1c

level within a certain range, usually 4 to 7 mmol/l before meals and 4 to 8.5 mmol/l after the

meals (Weykamp, 2013). But it is not very likely to be maintained at an exact value because

the blood sugar cannot be accurately controlled only by medications, diets, and exercises.

Moreover, patients with different physiological conditions need to control HbA1c in different

ways (Radin, 2014). For instance, over-controlling blood sugar for older patients will lead to

a compromised quality of life. In this case, how to provide personalized recommendations

of HbA1c control intervals for patients with different conditions becomes an important

question. In Chapter 7, we will tackle this problem with our proposed approaches using a

large dataset.
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1.2 Personalization of Discrete Treatment

The field of personalized medicine has received considerable attention over time. Unlike

the personalized dosing problem, there have been well-developed lines of research on per-

sonalizing a binary treatment using the information on patients’ characteristics. The most

popular and intuitive statistical methods involve a two-step procedure based on outcome

modeling (Zhao et al., 2009, Moodie et al., 2012, Chakraborty and Moodie, 2013). This

framework sometimes referred to as the indirect methods, can be described as a two-step

procedure. In the first step, an outcome model is developed to model the conditional ex-

pectation of outcome given treatment, covariates, and their interactions. The model could

be parametric with Lasso-type regularization (Tibshirani, 1996), or nonparametric, such

as tree-based methods (Breiman, 2017, 2001) and Support Vector Machine (Vapnik, 2013,

Steinwart and Christmann, 2008). In the second step, the treatment option which maxi-

mizes the expected outcome given a patient’s covariates is set to be the optimal treatment

for the patient. Alternative methods based on direct modeling of regret or contrast have

also been developed, which are believed to have better performance facing low signal-to-

noise ratio (Moodie et al., 2009, Henderson et al., 2010, Wallace and Moodie, 2015, Liang

and Yu, 2018). Although the current practices of the indirect methods mainly focus on

categorical treatment, the same procedure can be utilized to handle continuous treatment

(Chen et al., 2016).

However, the outcome model is susceptible to overfitting when the sample size is small.

In such cases, there might be some advantages to directly estimate the Individual Treatment

Rule (ITR), which often has a simpler form than the outcome model (Zhao et al., 2012).

This framework is referred to as the Outcome-Weighted-Learning (OWL), which has been

extended to handle multiple stages (Zhao et al., 2015), ordinal treatment (Chen et al., 2017),

and multi-category treatment (Lou et al., 2017). From here, we denote Y as the outcome,

A ∈ {0, 1} as the binary treatment for simplicity, andX ∈ X as the d-dimensional covariates,

while y, a and x are specific values of Y , A and X. Also, denote the ITR as a function
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that maps patients’ features to the binary treatment treatments, i.e., f(x) ∈ {0, 1} for all

x ∈ X . The classic OWL model aims at solving a weighted binary classification problem as

below.

fITR = arg min
f(x)∈{0,1}

E
[Y 1{f(X) 6= A}

P (A |X)

]
(1.1)

= arg max
f(x)∈{0,1}

E
[Y 1{f(X) = A}

P (A |X)

]
= arg max

f(x)∈{0,1}
EX

[ ∫
E[Y |A = a,X]1{f(x) = a}da

]
= arg max

f(x)∈{0,1}
EX

[
1{f(X) = 1}E[Y |A = 1, X] + 1{f(X) = 0}E[Y |A = 0, X]

]
= arg max

f(x)∈{0,1}
EX

[
1{f(X) = 1}

(
E[Y |A = 1, X]− E[Y |A = 0, X]

)
+ E[Y |A = 0, X]

]

where P (A |X) is the probability of observing A given the covariates X, often referred to

as the propensity score. For a fixed X = x, this is equivalent to maximizing

1{f(x) = 1}
(
E[Y |A = 1, X = x]− E[Y |A = 0, X = x]

)
+ E[Y |A = 0, X = x]

Therefore, the optimal treatment for patient x is

a∗(x) = arg max
a∈{0,1}

E[Y |A = a,X = x]

1.3 Personalization of Continuous Treatment

As introduced in the previous section, there are well-developed statistical methods for per-

sonalized treatment assignment when the treatment is from two or more categories. But

less attention has been paid to the continuous treatment, i.e., the dosage of a certain medi-

cation. The pioneer work of Chen et al. (2016) adopts the OWL framework to estimate the

Individual Dosing Rule (IDR) that maximizes the conditional expectation of the response

given covariates. In addition, Chen et al. (2016) discusses the usage of various indirect meth-

ods for problems of personalized dosing and demonstrates the superiority of OWL-based
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approaches through extensive simulation and real data analysis.

The IDR from Chen et al. (2016) recommends a dose for each patient so that the patient’s

expected outcome given the recommended dose and covariates is maximized. Assuming now

A ∈ [aL, aU ] is a bounded continuous dose variable and Y (a, x) is the potential outcome

(Rubin, 1974) given dose a and covariates x, we denote the f : X 7→ [aL, aU ] as the IDR

Chen et al. (2016) which solves the following problem:

fIDR = arg max
f(x)∈[aL,aU ]

E
[
Y (f(X), X)

]
= arg max

f(x)∈[aL,aU ]
EX
[
E[Y |A = f(X), X]

]
= arg max

f(x)∈[aL,aU ]
lim
φ→0

EX

[
E
[
Y 1
{
A ∈

(
f(X)− φ, f(X) + φ

)}
/P (A |X)

∣∣X]
2φ

]
(1.2)

where φ is a hyperparameter in finite sample and is required to be specified to balance

the bias and variance of the estimated IDR. The inverse weighting probability P (A |X) is

essentially a conditional density of A given X which is assumed to be known in experimental

settings and has to be estimated in the observational settings. The equality holds under

the assumption of ignorability, that the potential outcome is independent with the dose

assignment given the covariates, i.e., Y (·, x) |= A
∣∣X = x.

In the finite-sample setting, the indicator function in (1.2) is relaxed by a non-convex

but continuous surrogate loss, which can be decomposed to the difference of two convex

losses. Then the Difference-of-Convex (DC) (Le Thi Hoai and Tao, 1997) algorithm is

adopted to solve the problem. Chen et al. (2016) demonstrates the small sample advantage

of their method over the indirect methods based on the traditional outcome modeling when

the received dose is relatively close to the optimal dose. The method that we are going to

propose in Chapter 2 is partially inspired by Chen et al. (2016) and they will complement

each other when applied together.

There are two main limitations of Chen et al. (2016) from the application aspects. First,

it is unknown how to capture the sampling error of the estimated IDR as the statistical
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inference is difficult due to the non-convexity of the objective function and the iterative

nature of the DC algorithm. Second, there are cases where the estimated IDR might not

be the best option, if other factors are taken into consideration, such as expenses and

side effects. Especially when the outcome is insensitive to the dose, a non-optimal dose

might nonetheless achieve comparable outcomes and thus it may be meaningful to look for

the least-sufficient or maximum-tolerated dose. As in Fig 1.1, a hypothetical relationship

between the response and the dose is graphed. The red dot indicates the optimal dose,

while the orange dots signify potential estimated peaks. If the threshold is considered to

be the yellow dotted line, then all potential estimated peaks would be contained within the

lower bound and the upper bound marked by two green lines. Also, the lower bound itself

might be a rational choice as it achieves a comparable outcome with a lower dose.

Figure 1.1: A Hypothetical Dose-response Curve

To capture the dose-response relationship in a holistic manner, we define an Individ-

ual Dose Interval (IDI) and we anticipate that the doses inside the interval are desirable

whereas doses outside the interval are undesirable. Each IDI is connected with a threshold

S separating good outcomes from bad ones. And a confidence probability α reflects how

strongly the desirable interval is associated with the good outcomes. In the remaining of this

dissertation, let A be a continuous dose with bounded support a ∈ [aL, aU ] and Y (a, x) be

the potential outcome given the dose a and the patient features x. Also, let fL(x) ∈ [aL, aU ]
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be the lower bound of IDI and fU (x) ∈ [aL, aU ] be the upper bound of IDI for patient x

such that fL(x) < fU (x) ∀x ∈ X . This dissertation aims to determine the following two

types of IDIs.

Probability Dose Interval (PDI): (1.3)[
fL(x), fU (x)

]
: ∀a∗ ∈ [fL(x), fU (x)], Y (a∗, x) > S with probability at least α

Expectation Dose Interval (EDI): (1.4)[
fL(x), fU (x)

]
: ∀a∗ ∈ [fL(x), fU (x)], E[Y (a∗, x)] > S

If a patient follows the PDI recommendation, the patient is guaranteed to have the

outcome above S with a probability of at least α. Similarly, a patient who follows the EDI

recommendation will have the expected outcome above S. As in Rubin (1974), the potential

outcome is only observed for a single treatment level, but we will discuss in Chapter 3 the

assumptions required for linking the potential outcomes to estimable quantities. In the

course of this dissertation, we denote the Individual Dose Interval Rule (IDIR) as the two

bound functions of patients’ features, which includes Probability Dose Interval Rule (PDIR)

and Expectation Dose Interval Rule (EDIR), functions that map x ∈ X to (1.3) and (1.4).

1.4 Indirect Methods Based on Outcome Modeling

Classification and regression methods model the conditional distributions of discrete and

continuous outcomes given covariates. In the following section, we will show that they

can be adapted to estimate the IDI with the properties described in the previous section.

Generally, the PDI can be estimated using classification methods whereas the EDI can

be estimated using regression methods. This adaptation of classification and regression

methods shares the same spirits with the other indirect methods that are used to estimate

the the ITR (see Section 1.2) and the IDR (see Section 1.3). The intuition behind these

approach is that since in the definition of (1.3) and (1.4), the potential outcome is never
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observed, we can replace it by sample estimates, under the ignoriability assumption which

we will discuss in Section 3.1. The indirect methods essentially look for following interval

for patient x ∈ X .

Indirect PDI: (1.5)[
fL(x), fU (x)

]
: ∀a∗ ∈ [fL(x), fU (x)], P̂

(
Y > S |A = a∗, X = x

)
≥ α

Indirect EDI: (1.6)[
fL(x), fU (x)

]
: ∀a∗ ∈ [fL(x), fU (x)], Ê[Y |A = a∗, X = x] > S

This approach involves two steps. In the first step, an outcome model is constructed to

attain the estimated conditional probability P̂
(
Y > S |A = a,X = x

)
or the estimated

conditional expectation Ê[Y |A = a,X = x] for any a ∈ [aL, aU ]. In the second step, a grid

search is done to find [fL(x), fU (x)]. We will illustrate the detailed procedures as follows.

The estimation procedure of the PDI involves developing a classification model using

I{Y > S} as the binary label against the dose and the covariates. Subsequently, a grid

search is done for each patient in order to identify a range of doses where the predicted

probability of having Y > S is greater than the confidence probability α, i.e., P̂ (Y >

S | a∗, x) ≥ α. To enable the grid search, the classification model should be able to deliver

a fitted probability for each patient on each dose. For instance, if the classification model is

a logistic regression model, the fitted probability can be easily calculated through the link

function. Another example is the Random Forest (Breiman, 2001), where the probability

is the proportion of positive at the majority voting step. For the Support vector machine

(SVM) (Vapnik, 2013), it more involved as a refitting step, suggested in Platt (1999), must

be taken so that the SVM results can be interpreted in probabilistic language.

Similarly, EDI is estimated through regression methods. The majority of the regression

methods target the conditional mean, E[Y |a, x] in our case, and hence they can be utilized

as the first step outcome model. For each individual, the grid search is done to find a range

of doses where the predicted outcome given the dose and the covariates is above a threshold
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S. In the case of the Ordinary Least Square (OLS), this implies finding a range of a such

that Ê[Y |a, x] = Xβ̂ > S. Other nonparametric methods or machine learning techniques,

including the Random Forest regression (Breiman, 2001), can also serve the same purpose.

Support vector regression (Drucker et al., 1997) essentially targets the conditional median,

but it should be able to approximate the conditional mean in most of the cases.

A problem naturally arises since the predicted probabilities might be completely above

or below the confidence probability α for classification methods within a reasonable range of

doses. Similarly, the predicted conditional expectations can be entirely above or below the

threshold S. Strategies should be prepared in order to handle such cases. For instance, if the

dose has a natural lower bound aL and a natural upper bound aU , the PDI for a patient is

[aL, aU ] when all predicted probabilities are above α, i.e., P̂ (Y > S | a, x) > α ∀a ∈ [aL, aU ]

and the EDI is also [aL, aU ] when all predicted conditional expectations are above S, i.e.,

Ê[Y |a, x] > α ∀a ∈ [aL, aU ]. Conversely, when P̂ (Y > S | a, x) < α or Ê[Y |a, x] < S for

all a ∈ [aL, aU ], we have the PDI or the EDI being the empty set. This procedure does

not preclude alternative strategies. For example, a pre-specified conservative dose interval

could be used when the grid search suggests that all doses are desirable or all doses are

undesirable.

The following of this dissertation is organized as follows: In Chapter 2, we will introduce

our new research method based on the OWL, where the Quadrant Loss, the basis of our

method, is derived in Section 2.3. In Chapter 3, we will clarify the necessary assumptions in

addition to several causal issues associated with our method. In Chapter 4, we discuss the

estimation of the IDI based on non-convex risk functions using relaxations. In Section 4.2,

the DC algorithm will be applied to solve the non-convex objective functions. In Chapter

5, theorems and corollaries will explain the reason why the proposed method is Fisher

consistent, which shall be followed by the analysis of the convergence rate of the estimators.

Simulation studies for different scenarios can be found in Chapter 6. Finally, in Chapter 7

we will provide an estimation of the personalized HbA1c control interval using a large EHR

dataset of type II diabetes patients.
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Chapter 2

Method

In Section 1.4, we have illustrated the estimation of IDI using classification and regression

methods based on traditional outcome modeling. However, the success of such indirect

methods necessitates the quality of the outcome model. In the cases where the outcome

model can be correctly specified, the grid search might be able to produce IDIs which are

beneficial to the patients. When the outcome model is hard to specify but the sample

size is large, one can still rely on nonparametric methods in order to attain the predicted

probabilities or conditional expectations. But when the outcome model is believed to be

complicated or the sample size is small, using the indirect method could lead to biased or

inefficient estimates of IDI. In this Chapter, we will provide an alternative approach based

on the OWL framework without modeling the outcome.

2.1 From Binary OWL to Individual Dose Interval

Zhao et al. (2012) established the original OWL framework for personalized treatment

assignment without modeling the outcome. However, their framework has to be extended

as now we need to assign a personalized interval of doses. In the case of the IDI, the

continuous dose A takes values in a range [aL, aU ] instead of {0, 1}, as is in the ITR case.

Let A1(x) denote the desirable subset of A for x ∈ X , while A0(x) denotes the undesirable
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subset, such that A(x) = A0(x) ∪ A1(x) and A0(x) ∩ A1(x) = ∅. Unlike the objective

function 1.1 where the ITR f(x) selects from {0, 1}, the IDI selects A1(x) ⊂ A(x).

Also, in equation (1.1), the weights in the classification problem is proportional to Y ,

and therefore, assuming A = 1 is the better treatment for x, the regret for not being able to

select the optimal treatment is
∣∣Y (1, x)− Y (0, x)

∣∣. In the IDI case, the regret for a patient

x who followed the IDI but had outcome below S should be S − Y . On the contrary, if the

patient failed to follow the IDI but received outcome above S, there would be a regret of

Y − S. Hence, we can construct the objective function to be minimized similarly to (1.1)

as below.

E(Y,A,X)

[
1

P (A |X)

((
S − Y

)
+

1{A ∈ A1(X)}+
(
Y − S

)
+

1{A /∈ A1(X)}
)]

where the inverse weighting probability P (A |X) is the conditional density function of A

given X which is assumed to be known in experimental settings and has to be estimated in

the observational settings. In Section 3.2, we will discuss the estimation of P (A |X). The

above minimization problem is equivalent to maximize

E

[
1

P (A |X)

((
Y − S

)
+

1{A ∈ A1(X)}+
(
S − Y

)
+

1{A /∈ A1(X)}
)]

= EX

[ ∫ (
E
[(
Y − S

)
+
|A = a,X

]
1{a ∈ A1(X)}

+ E
[(
S − Y

)
+
|A = a,X

]
1{a /∈ A1(X)}

)
da

]
= EX

[ ∫ (
1{a ∈ A1(X)}

(
E
[(
Y − S

)
+
|A = a,X

]
− E

[(
S − Y

)
+
|A = a,X

])
+ E

[(
S − Y

)
+
|A = a,X

])
da

]

for a fixed X = x, this boils down to maximize

∫ (
1{a ∈ A1(x)}

(
E
[(
Y − S

)
+
|A = a,X = x

]
− E

[(
S − Y

)
+
|A = a,X = x

])
+ E

[(
S − Y

)
+
|A = a,X = x

])
da
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Therefore, the optimal division of A into A1(x) and A0(x) should satisfy


a ∈ A1(x), if E

[
Y |A = a,X = x

]
> S

a ∈ A0(x), if E
[
Y |A = a,X = x

]
< S

(2.1)

In Section 2.3, we will show that the above objective function leads to the EDI defined

in Section 1.4 with certain structural assumptions which will be covered in Section 3.1.

2.2 From Classification to Individual Dose Interval

In Section 1.4, the two-step procedure based on the classification methods and grid search

is introduced to estimate the PDI with threshold S and the confidence probability α. A

PDI should be both sufficient and necessary. A patient is supposed to have an outcome

greater than the pre-specified constant S if the dose is inside the PDI. On the other hand,

the patient’s outcome is supposed to be less than the constant, if the dose is outside the

IDI. Due to the randomness that cannot be ruled out even in the most rigorous experiment,

violations will exist in a proportion of the observations.

A new patient x ∈ X requiring a PDI recommendation presents the risk of two possible

errors. First, when the patient receives a dose inside the interval, i.e., A ∈ A1(x), but has

an outcome below the threshold, i.e., Y < S, it presents a false-positive error with weight

α. Second, when the patient receives a dose outside the interval, i.e., A ∈ A0(x), but has an

outcome above the threshold, i.e., Y > S, it presents a false-negative error with weight 1−α.

The weights α and 1−α balance the magnitude of the two errors and eventually determine

the PDI. Essentially, the two-step procedure minimizes the below weighted misclassification

by grid searching A1(x) and A0(x) for each x ∈ X .

E

[
αI(Y < S∗)× I

(
A ∈ A1(X)

)
+ (1− α)I(Y > S∗)× I

(
A /∈ A0(X)

)]
(2.2)

The mathematical reasoning is implied in the proof of theorem 5.3.1. However, this two-step
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procedure relies on the validity of the classification model. In practice, it is hard to guarantee

the quality of the model as the data generating mechanism of the outcome variable is often

complicated. Sometimes, it is desirable to circulate the modeling of outcome and instead

directly minimize (2.2) in order to estimate A1(x) and A0(x). We will show in Section 2.3

that this idea results in the OWL-based PDI method.

For the classification based methods, the interactions between A and X are captured in

the outcome model. The direct estimation of A1(x) and A0(x) from (2.2) requires a pseudo-

population weighted by the inverse density 1/P (A |X) where the interactions between A

and X will not bias the estimation under the ignorability assumption (see Section 3.1). In

theorem 5.3.1 and corollary 5.3.1, the necessity of such adjustment is demonstrated. In

addition, postulating structural assumptions of Y (a, x) can facilitate the direct estimation

of IDI. For example, if the potential outcome Y (a, x) is a monotonically increasing function

of a given x, then only the lower bound is needed to separate the desirable doses from

the undesirable doses, i.e., A1(x) = [fL(X), aU ] and A0(x) = [aL, fL(X)]. Therefore, the

updated risk function becomes

E

[
1

P (A |X)

(
αI(Y < S∗)× I

(
A ∈ [fL(X), aU ]

)
+ (1− α)I(Y > S∗)× I

(
A ∈ [aL, fL(X)]

))]
(2.3)

Similarly, if Y (a, x) is a unimodal function of a and monotonic on each side of the mode,

the updated risk function becomes

E

[
1

P (A |X)

(
αI(Y < S∗)× I(A ∈

[
fL(X), fU (X)

]
)
)

+ (1− α)I(Y > S∗)× I(A /∈
[
fL(X), fU (X)

]
)
)]

(2.4)

Again, the inverse density weighting 1/P (A |X) is the conditional density function of A

given X which is assumed to be known in the experimental settings and has to be estimated

in the observational settings. In Section 3.1, weaker structural assumptions are documented.
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In Section 3.2, we will discuss the estimation of P (A |X). In the next section, we will

specifically show that both (2.1) and (2.4) are special cases of a general framework.

2.3 Quadrant Loss

The approaches derived in the previous two sections are special cases of applying the Quad-

rant Loss. In this section, we will demonstrate the intuition of the generalized framework of

the Quadrant Loss. We start with a hypothetical case where the potential outcome Y (a, x)

monotonically increases with the treatment a for a specific patient with features x ∈ X .

For simplicity, we assume Y (a, x) = m(a, x) + ε and ε ∼ N (0, 1) where the subpopulation

of X = x is shown in Figure 2.1. Then we attempt to provide an estimate f̂L(x) of the op-

timal lower bound of the IDI for x given a threshold S and a confidence probability α = 0.5.

Now we consider two options of f̂L(x), a0 and a1, where a0 is the optimal lower bound

for x ∈ X and a1 a sub-optimal one larger than a0. We will demonstrate why f̂L(x) reaches

a0 instead of a1 by minimizing the Quadrant Loss. The optimal lower bound a0 takes the

value where m(a, x) intersects S, as is indicated by the blue dotted vertical line in Figure

2.1. In fact, the threshold S and f̂L(x) would form a set of coordinates, where the Quadrant

Loss only penalize the second (upper left) and the fourth (lower right) quadrants. Only the

red dots in the second quadrant and the green dots in the fourth quadrant would contribute

to the loss. So by letting f̂L(x) = a0, the Quadrant Loss is minimized as the sum of the

numbers of the red and green dots is the smallest. Alternatively, if we let f̂L(x) equal to

the other candidate lower bound a1 which is slightly larger than a0, then there will be more

dots in the second Quadrant and fewer in the fourth Quadrant, as is illustrated in Fig 2.2.

Since the increase of the dots in the second Quadrant (as is shown by the orange dots)

would always be larger than the decrease of dots in the fourth Quadrant (as is shown by the

blue dots) (see Fig 2.2), to move f̂L(x) from a0 to a1 would increase Loss. Similarly, there

is no gain moving f̂L(x) from a0 to the left. So a0 is the optimal f̂L(x) which minimizes
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the Quadrant Loss. We will provide a formal proof in section 5.2.

Figure 2.1: The Quadrant Loss for the
Estimated Optimal Lower Bound

Figure 2.2: The Change of Quadrant Loss
for an Alternative Lower Bound

Another implication of Figure 2.1 is that the weights assigned to the losses of the second

and the fourth quadrant do not have to be the same. Naturally, the patients might care

more if they followed the IDI suggestion and nonetheless had bad outcomes compared to if

they failed to follow the recommendation and nonetheless had good outcomes. In that case,

we are essentially looking for a conservative dose interval by assigning more weights to the

loss of Y < S to encourage a narrower interval. We will demonstrate in the theorem 5.3.1

that this corresponds to choosing confidence probability α 6= 1
2 in the PDI case. Moreover,

if we let the ratio of the losses incurred by a single observation in the fourth quadrant and

in the second quadrant to be α
1−α , the confidence probability α in PDI is guaranteed. In

another word, the patients receiving doses inside the interval are guaranteed to have the

response Y > S with a probability of at least α. As for EDI, it requires α = 1
2 and it is

guaranteed the patients receiving doses inside the interval to have expected response greater

than S. The detailed proofs are established in Section 5.2.

Instead of identifying the IDI for a single type of patients X = x, we allow information

to be shared between patients and the IDIR can, therefore, be learned as a function of

patients’ features x. Here, we denote fL(x) as the IDI lower bound function and fU (x) as
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the IDI upper bound function. Formally, the risk functions that determines the one-sided

and two-sided IDI are shown as below.

The Quadrant Risk for the lower bound function in the one-sided IDI is as follows.

RΦ(fL) = EY,A,X

[
1

P (A |X)

(
(1− α)Φ(Y − S)I

(
A < fL(X)

)
+ αΦ(S − Y )I

(
A > fL(X)

))]
(2.5)

The first term of the risk function above comes from the second quadrant while the second

term comes from the fourth quadrant. Correspondingly, the Quadrant Risk for the IDI

upper bound function is as follows.

RΦ(fU ) = EY,A,X

[
1

P (A |X)

(
(1− α)Φ(Y − S)I

(
A > fU (X)

)
+ αΦ(S − Y )I

(
A < fU (X)

))]
(2.6)

While the Quadrant Risk for the two-sided IDI is as follows.

RΦ(fL, fU ) =

EY,A,X

[
1

P (A |X)

(
(1− α)Φ(Y − S)I(A /∈ [fL(X), fU (X)]) + αΦ(S − Y )I(A ∈ [fL(X), fU (X)]

)]
(2.7)

The weight function Φ(·) shows the adjustment of loss based on a misclassified case.

There are two choices, the indicator loss I(· > 0) is engaged to learn the PDIR, and the

hinge loss (·)+ is used in learning the EDIR. The two corresponding risk functions are

denoted as RI(fL) and Rh(fL) for one-sided PIDR and EDIR, as well as RI(fL, fU ) and

Rh(fL, fU ) for two-sided PDIR and EDIR. The notations of losses and risks, among relaxed

losses which we will introduce in Chapter 4, are summarized comprehensively in Table

4.1. The inverse density weighting 1/P (A |X) is the conditional density function of A

given X which is assumed to be known in experimental settings and has been estimated in

observational settings. In Section 3.2, we will discuss the estimation of P (A |X).

In order for the IDIs to be identifiable, certain assumptions are needed. For one-sided

IDIs, we assume that Y (a, x) is a Partial Monotonic function of a, and for two-sided IDIs,
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we assume that Y (a, x) is a Partial Unimodal function of a. These assumptions are slightly

weaker than the monotonicity assumption and unimodality assumption. We will discuss

the details of these assumptions in Section 3.1.

2.4 Personalization of Threshold and Confidence Probability

So far, the confidence probability α and the threshold S have been regarded as constants

for both indirect methods in Section 1.4 and our OWL-based method in Section 2.3. This

could potentially limit the applications of these IDI methods.

In fact, there is a large variation in patients’ baseline conditions. Patients may have

very different conditions prior to receiving the doses. Admittedly, in cases where the pa-

tients’ response is mainly decided by the treatment dose, this will not cause any problems.

However, in reality, patients’ outcome may be affected by these baseline factors extensively,

like the medication history, the disease progression, and demographics. These factors may

overwhelmingly contribute to the patients’ response as prognostic effects. Consider a case

where patients’ outcome is dominated by the prognostic effects, wherein, the identified con-

fidence probability α and the threshold S would only be meaningful for a small proportion of

patients. For the rest cases dominated by prognostic effects, those who have good baseline

conditions may nonetheless show desirable outcomes given any reasonable doses, and those

who have bad baseline conditions may nonetheless show undesirable outcomes given any

reasonable dosing. This scenario may invalidate the applicability of a constant threshold of

S. Therefore, we shall consider the threshold as a function of patients’ baseline differences,

i.e., S = S(x). The same restriction may apply to the confidence probability α; while there

may naturally be a higher probability for some patients to have desirable outcomes, the

opposite might be true for other patients, in spite of taking optimal doses. Therefore, it is

necessary to personalize the confidence probability as a function of patients’ characteristics

as well, i.e., α = α(x). Grantedly, how to personalize S(x) and α(x) is an open question

which should be decided on a case-by-case basis.
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As long as both of the two functions are pre-determined, the estimation procedures as

in Section 4 can still be used for such personalization of patients’ baseline conditions, given

that the interpretations and the assumptions modified accordingly. Now the PDI is an

IDI where the patient x will have outcome Y > S(x) with probability at least α(x). We

suggest that only one of S(x) and α(x) is personalized for the PDI to avoid the difficulty

of interpretation. As for the EDI, α is required to equal 1
2 and the EDI provides a range

of doses where the expected outcome of patient x is above S(x). Further discussion of the

assumptions can be found in theorems from 5.2.1 to corollary 5.2.2.

It is straightforward to use the indirect methods to solve IDI. The first step will not

change as the prognostic effects can be captured by either classification methods or regres-

sion methods. The only difference is in the second step. If using grid search methods to

find the IDIs for a particular patient x, we may simply replace the constant S and α by the

values of the functions S(x) and α(x).

Correspondingly, the new risk functions for the one-sided IDIs are as following.

RΦ(fL) = EY,A,X

[ 1

P (A |X)

((
1− α(X)

)
Φ
(
Y − S(X)

)
I
(
A < fL(X)

)
]

+ α(X)Φ
(
S(X)− Y

)
I
(
A > fL(X)

))]
(2.8)

and

RΦ(fU ) = EY,A,X

[ 1

P (A |X)

((
1− α(X)

)
Φ
(
Y − S(X)

)
I
(
A > fU (X)

)
]

+ α(X)Φ
(
S(X)− Y

)
I
(
A < fU (X)

))]
(2.9)
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The new risk function for the two-sided IDI is as following.

RΦ(fL, fU ) =

EY,A,X

[ 1

P (A |X)

((
1− α(X)

)
Φ
(
Y − S(X)

)
I(A /∈

[
fL(X), fU (X)

]
)

+ α(X)Φ
(
S(X)− Y

)
I(A ∈

[
fL(X), fU (X)

])]
(2.10)

We use the example below to illustrate the interpretation of PDI with personalized

thresholds and confidence probabilities. PDI
(
α = P̂ (Y > 10 |x), S = 10, x

)
represents

a dose interval where we have Y (a, x) > 10 with a probability of at least P̂ (Y > 10 |x)

for each patient x, where the estimated probability can be obtained from an independent

model and is determined before estimating PDI. Similarly, PDI
(
α = 0.95, S = Ê [Y |x] , x

)
represents a dose interval where Y (a, x) is guaranteed to be greater than its conditional

mean with probability 95%. Besides, an EDI
(
α = 1

2 , S = Ê [Y |x∗] , x
)

will imply a dose

interval where E[Y (a, x∗)] > Ê [Y |x]. This suggests that the proper choice of a treatment

dose is expected to results in a better outcome compared to the expected outcome assuming

the treatment dose is chosen using the same strategy as in the dataset where the estimate

Ê [Y |x] is obtained.

When dealing with a binary outcome Y ∈ {0, 1}, two special properties of our proposed

methods should be noted. First, the same estimates of PDI can be yielded with any S(x) ∈

(0, 1). Therefore, in this case, personalization should only be applied to α(x) but not S(x).

Second, the PDI with S ∈ (0, 1) and α(x) = P (Y = 1 |x) is equivalent to the EDI with

α = 1
2 and S(x) = P (Y = 1 |x). This is due to the fact that such personalization implies

the same weights in (2.8) and (2.10).
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Chapter 3

A Causal Framework of Dose

Interval Recommendation

In Chapter 2, we proposed our approach based on the OWL framework for determining

IDIs. Before diving into the estimation of IDIs, we will discuss the identification problems

in order for the estimated IDIs to have the causal implications. In Section 3.1, we discuss

the main causal assumptions that we impose. In Section 3.2, we will discuss the estimation

of the inverse density weights. In Section 3.3, we define the average treatment effect of IDI

recommendation for evaluation purpose.

3.1 Assumptions

In the previous Chapters, we have defined and discussed the IDIs. Specifically, the defini-

tions of the PDI and the EDI are stated using the potential outcome language introduced in

Rubin (1974). In order for the PDI and the EDI to be identifiable from observational data,

the ignorability assumption must be imposed for the linkage between the counterfactual

world and real world.

In our case, the ignorability assumption implies that the received dose is independent

of the potential outcomes given the covariates, i.e., A |= Y (a, x)|x where a ∈ [aL, aU ]. This
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assumption is essentially not testable but might be guaranteed by a careful incorporation of

baseline covariates. Therefore, in Chapter 7, we attempt to collect as large a set of relevant

upstream variables prior to the dose as possible, so that even when this assumption is not

perfectly satisfied, the impact of its violation may be alleviated.

Besides the ignorability assumption, for the IDIs to be identifiable, we need additional

assumptions, which are referred to as the structural assumptions. For the one-sided interval

and the two-sided interval, there are four different structural assumptions listed below for

both PDI and EDI.

The partial monotonicity assumption for one-sided PDI (3.1)

• P
(
Y (aL, x) > S(x)

)
≤ α(x) and P

(
Y (aU , x) > S(x)

)
≥ α(x)

• P (Y (a, x) > S(x)) across α(x) at most once as a goes from aL to aU

The partial unimodality assumption for two-sided PDI (3.2)

• P
(
Y (aL, x) > S(x)

)
≤ α(x) and P

(
Y (aU , x) > S(x)

)
≤ α(x)

• ∃a∗ ∈ [aL, aU ], P (Y (a∗, x) > S(x)) ≥ α(x)

• P (Y (a, x) > S(x)) cross α(x) at most twice as a goes from aL to aU

The partial monotonicity assumption for one-sided EDI (3.3)

• E [Y (aL, x)] ≤ S(x) and E [Y (aU , x)] ≥ S(x)

• E(Y (a, x)) across S(x) at most once as a goes from aL to aU

The partial unimodality assumption for two-sided EDI (3.4)
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• E [Y (aL, x)] ≤ S(x) and E [Y (aU , x)] ≤ S(x)

• ∃a∗ ∈ [aL, aU ], E [Y (a∗, x)] ≥ S(x)

• E(Y (a, x)) cross S(x) at most twice as a goes from aL to aU

In Section 5.2, we will demonstrate that the mechanisms via which these assumptions

enables the Fisher consistency. For one-sided intervals, we only present the assumptions for

the lower bounds and the assumptions for the upper bounds can be adapted accordingly.

3.2 Propensity Score of Dose Assignment

In the previous sections, we refer to the inverse density weights 1/P (a |x) as the known

function of patients’ features x. This might be the case in clinical trials where the doses or

even the features are determined or randomized by design. However, there is only limited

number of clinical trials for which dosing is the target. What is more, there may not

always exist enough treatment levels so that the treatment could be viewed as a continuous

variable. The inadequacy of randomized clinical trials forces us to consider observational

studies where the conditional density P (a |x) has to be estimated.

Unlike the binary ITRs where the probability of receiving one of the treatments is used

as the propensity score (Zhao et al., 2012, Zhou et al., 2017), the estimation of IDIR requires

an inverse density weights 1/P (a |x) where P (a |x) is the conditional density of the dose

given the covariates (Chen et al., 2016). Multiple approaches are available for estimating

the conditional density. First, a regression model, either parametric or nonparametric, can

be constructed to model the conditional expectation of the dose given covariates. And

the residuals could be used to estimate the conditional density either from a parametric

distribution, i.e., the Gaussian distribution or from Kernel density estimation. The same

technique has been used in Chen et al. (2016). This approach offers the best performance

when the distributional assumptions are reasonable or the distribution of error does not

show much variation across the range of doses. Of course, the quality of the conditional
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mean model has to be guaranteed. Second, the range of doses can be divided into multiple

intervals where the probability of falling into one interval is modeled using a multinomial

regression. This approach introduces much more parameters for the benefit of increasing

flexibility. The third approach is similar to the second approach, but the probability of

falling into one interval is instead modeled using a cumulative ordinal logistic regression

(Harrell, 2001). This approach has fewer parameters and thus is less flexible, however,

it is indeed more robust compared to the second approach. In the real data analysis of

HbA1c measure in Chapter 7, we applied the third approach, yet we believe each of these

three approaches has its own suitable scenarios. Another potential candidate is Covariates-

Balancing Propensity Score for continuous variable (Fong et al., 2018), which forces the

balancing of covariates across the range of continuous treatment. From the experiences

with the dataset in Chapter 7, this procedure leads to less efficient estimates, which can

probably be attributed to the reduced emphasis on conditional density. Therefore, we do

not recommend using this approach for general OWL-based IDI although we do not preclude

the possibility that it may have good performance in certain cases.

3.3 Average Causal Effect of A Dose Interval Recommenda-

tion

The causal inference for IDIR has to be established in order to answer such a question: how

large is the effect of following the IDI recommendation versus not following? As illustrated in

the Chapter 2.4, IDI may be estimated with both the OWL-based methods and the indirect

methods. However, the evaluation of these IDI estimates is not as straightforward. For an

IDIR
[
fL(x), fU (x)

]
, we define Ti as the indicator of whether the patient i received a dose

are inside the recommended IDI, i.e., Ti = 1
{
Ai ∈ [fL(Xi), fU (Xi)]

}
. Correspondingly,

patients with Ti = 1 constitute the taker group and patients with Ti = 0 the non-taker

group. Ideally, we shall compare the distribution of outcome between the takers and non-

takers. A large gap in the proportions of the good outcome, Yi > S(Xi), indicates the
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potential benefit of the IDIR. However, this procedure can introduce large bias because of

the following facts. First, the distributions of the estimated IDI lower/upper bounds vary

for different methods. When S(x) and α(x) are not perfectly personalized, the indirect

methods may distinct observations with Yi > S(Xi) from observations with Yi < S(Xi)

simply by modeling the prognostic effect. Consequently, the baseline conditions of takers

might be much better than those of non-takers. Therefore, a direct comparison might

overestimate the effectiveness of the recommendation for the indirect methods.

To evaluate different IDI methods, we formally define the average causal effect of IDI

recommendation as below. To eliminate possible confounding factors, it is necessary to make

the taker group and the non-taker group comparable in terms of covariates distribution.

Only in that case, the average causal effect of IDIR can be identified under th ignorability

assumption in Section 3.1. Therefore, we develop a propensity score model based on the

CBPS approach introduced in Imai and Ratkovic (2014), using Ti as the outcome against all

the potential confounders Xi. The model delivers two estimated probability P̂ (Ti = 1|Xi)

and P̂ (Ti = 0|Xi). The average treatment effect for the PDI is defined as the gap of

proportions of Yi > S(Xi) between weighted taker group and weighted non-taker group.

For the EDI, the gap of Yi − S(Xi) is used.

ATEPDI =

n∑
i=1

1{Yi > S(Xi)}Ti
P (Ti|Xi)

−
n∑
i=1

1{Yi > S(Xi)}(1− Ti)
P (Ti|Xi)

ATEEDI =
n∑
i=1

(
Yi − S(Xi)

)
Ti

P (Ti|Xi)
−

n∑
i=1

(
Yi − S(Xi)

)
(1− Ti)

P (Ti|Xi)

The CBPS method is believed to alleviate the imbalance more efficiently, because it incor-

porates the goal of balancing of covariates into the objective function. After imposing the

weights, the weighted population approximates the hypothetical randomized experiment

where patients are randomly assigned to the taker group and the non-taker group.
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Chapter 4

Estimation

In this Chapter, we introduce the estimation methods for solving objective function (2.8)

and (2.10). In section 4.1, we relax the indicator function to be a non-convex but continuous

surrogate loss which is then solved by DC-algorithm. The technical details of this approach

are discussed in details in section 4.2. This framework can incorporate both linear estimation

and Kernel estimation, whose results are compared in Chapter 6 and Chapter 7.

4.1 Non-Convex Relaxation

With the indicator function in (2.9) and (2.10), it is difficult to optimize the empirical risk

function. Convex relaxations are widely used in Statistics and Machine Learning where the

indicator function is often relaxed by hinge loss, like in various Support Vector Machine

studies. However, it can be shown that the indicator functions cannot be replaced by a

convex loss in the optimal dose problem (Chen et al., 2016). This is also true for the

IDI problem as the convex relaxation will incur extremely large losses on observations far

from the optimal bounds which bias the estimation. Instead, we propose a truncated hinge

loss for one-sided IDI and an integrated truncated hinge loss for the two-sided IDI. These

surrogate losses are non-convex but continuous and can be viewed as natural extensions of

the non-convex loss from Chen et al. (2016). Since non-convex losses are incorporated, the
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DC-algorithm could be applied to solve the resulting non-convex objective functions, as is

shown in the next section.

The risk function of one-sided IDI after relaxation is as follows.

RΦ,ε(fL) = EY,A,X

[ 1

P (A |X)

((
1− α(X)

)
Φ
(
Y − S(X)

)
)Ψε(fL(X), A) (4.1)

+ α(X)Φ
(
S(X)− Y

)
)Ψε(A, fL(X))

)]
(4.2)

The risk function of two-sided IDI after relaxation is as follows.

RΦ,ε(fL, fU ) = (4.3)

EY,A,X

[ 1

P (A |X)

((
1− α(X)

)
Φ
(
Y − S(X)

)
Ψout
ε

(
fL(X), A, fU (X)

)
(4.4)

+ α(X)Φ
(
S(X)− Y

)
Ψin
ε

(
fL(X), A, fU (X)

))]
(4.5)

where

Ψε(a, b) = min{(a− b)+

ε
, 1}

Ψin
ε

(
a, b, c

)
=



b < a < c, 0

a < b < (a+ ε) < c, (b− a)/ε

(a+ ε) < b < (c− ε), 1

a < (c− ε) < b < c, (c− b)/ε

a < c < b, 0

Ψout
ε

(
a, b, c

)
= 1−Ψin

ε

(
a, b, c

)
The plots of these three surrogate losses can be found in Fig 4.1, Figure 4.2 and Figure
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4.3. To summarize, we listed the combinations of the loss, the risk and the corresponding

interval type that they imply in Table 4.1.

Table 4.1: Notations
Weight Loss Risk Relaxed Risk Methods

Φ = I(· > 0) Ψε RI(fL) RI,ε(fL) one-sided PDI

Φ = I(· > 0) Ψin
ε , Ψout

ε RI(fL, fU ) RI,ε(fL, fU ) two-sided PDI

Φ = (·)+ Ψε Rh(fL) Rh,ε(fL) one-sided EDI

Φ = (·)+ Ψin
ε , Ψout

ε Rh(fL, fU ) Rh,ε(fL, fU ) two-sided EDI

4.2 DC Algorithm for One-sided Dose Interval

In the previous section, the risk function is relaxed by replacing the indicator functions

with surrogate losses. In this section, we apply DC algorithm which estimates the IDIs

by minimizing the empirical risk. To start with one-sided IDI, let H being a Reproducing

Kernel Hilbert Space (RKHS). The optimization procedure for one-sided IDI attempts to

solve the following problem:

f̂L = arg min
f∈H

n∑
i=1

[ 1

P (Ai|Xi)

((
1− α(X)

)
Φ(Yi − S(X))Ψ(f(Xi), Ai) (4.6)

+ α(X)Φ(S(X)− Yi)Ψ(Ai, f(Xi))
)]

+
λn
2
||fL||22 (4.7)

The representer theorem is applicable in this case, but since the convexity no longer

holds, it is difficult to solve the optimization problem numerically. Chen et al. (2016) applied

the DC algorithm to solve their optimization problem. It turns out that the DC algorithm

are also applicable in our case, since the truncated hinge loss Ψ(a, b) = min{ (a−b)+
ε , 1} can

also be decomposed as the difference of two convex loss function, i.e., Ψ1(a, b) = (a−bε )+,

Ψ2(a, b) = (a−bε − 1)+ and Ψ(a, b) = Ψ1(a, b)−Ψ2(a, b).

According to Le Thi Hoai and Tao (1997), the DC algorithm can be used to solve the

non-convex minimization problem by iteratively solving a series of convex minimization

problem, where the non-convex objective function are transformed to the difference of two
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Figure 4.1: Loss Functions Ψε,Ψ1 and Ψ2

Figure 4.2: Loss Functions Ψout
ε ,Ψout

1 and Ψout
2

Figure 4.3: Loss Functions Ψin
ε ,Ψin

1 and Ψin
2
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convex functions. Denote that f(x) = φ(x)β, where φ(·) is a transformation of the original

patient’s features. If φ(x) = x then we are essentially looking for a linear rule, otherwise, the

non-linearity is incorporated through the Kernel trick. The non-convex objective function

S(β) is the sum of the empirical risk function plus an `2 regularization term. We can

construct two convex functions S1(β) and S2(β) such that S(β) = S1(β)−S2(β). We define

S(β), S1(β) and S2(β) as below.

S(β) =

n∑
i=1

[ 1

P (Ai|Xi)

((
1− α(Xi)

)
Φ
(
Yi − S(Xi)

)
Ψ
(
φ(Xi)β,Ai

)
+ α(Xi)Φ

(
S(Xi)− Yi

)
Ψ
(
Ai, φ(Xi)β

))]
+
λn
2
βTK(Xi, Xi)β

S1(β) =

n∑
i=1

[ 1

P (Ai|Xi)

((
1− α(Xi)

)
Φ
(
Yi − S(Xi)

)
Ψ1

(
φ(Xi)β,Ai

)
+ α(Xi)Φ

(
S(Xi)− Yi

)
Ψ2

(
Ai, φ(Xi)β

))]
+
λn
2
βTK(Xi, Xi)β

S2(β) =
n∑
i=1

[ 1

P (Ai|Xi)

((
1− α(Xi)

)
Φ
(
Yi − S(Xi)

)
Ψ2

(
φ(Xi)β,Ai

)
+ α(Xi)Φ

(
S(Xi)− Yi

)
Ψ2

(
Ai, φ(Xi)β

))]

According to the DC algorithm, β can be solved by repeatedly solving the following opti-
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mization problem

βt+1 = arg min
β

S1(β)− [∇S2(βt)]T (β − βt)

= arg min
β

S1(β)− [∇S2(βt)]Tβ

=
n∑
i=1

1

P (Ai|Xi)

(
1− α(Xi)

)
Φ
(
Yi − S(Xi)

)[
Wi(β

t)Ψ1

(
φ(Xi)β,Ai

)
+Qi(β

t)Ψ1

(
Ai, φ(Xi)β

)]

+
n∑
i=1

1

P (Ai|Xi)
α(Xi)Φ

(
S(Xi)− Yi

)[
W̃i(β

t)Ψ1

(
Ai, φ(Xi)β

)
+ Q̃i(β

t)Ψ1

(
φ(Xi)β,Ai

)]
+
λn
2
βTK(Xi, Xi)β (4.8)

where

Wi(β) = I
(
Ai − φ(Xi)β > −ε

)
W̃i(β) = I

(
Ai − φ(Xi)β < ε

)
Qi(β) = I

(
Ai − φ(Xi)β < −ε

)
Q̃i(β) = I

(
Ai − φ(Xi)β > ε

)
The optimization problem above boils down to the following quadratic programming

problem which can be easily solved using standard packages. The details of the derivations

are documented in Appendix A.1.

arg min
β,b

1

2

n∑
i=1

n∑
j=1

(α̃i − αi) < Xi, Xj > (α̃j − αj)−
n∑
i=1

(α̃i − αi)Ai

s.t.
n∑
i=1

αi −
n∑
i=1

α̃i = 0

0 ≤ αi ≤ HiW
t
i + H̃iQ̃

t
i

0 ≤ α̃i ≤ HiQ
t
i + H̃iW̃

t
i

(4.9)

where Hi =
I
(
Yi>S(Xi)

)(
1−α(Xi)

)
P (Ai|Xi)λn corresponds to the penalty for patients who are outside
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their IDIs but receive good outcomes and H̃i =
I
(
S(Xi)>Yi

)
α(Xi)

P (Ai|Xi)λn represents the penalty for

patients who are inside their IDIs but receive bad outcomes.

The solution of β are attained by a linear combination of Xi

β̂ =
n∑
i=1

(α̃i − αi)Xi

As for the intercept b, although there exists an analytic solution by applying K.K.T.

conditions, we solve it using a line search for simplicity. Technically, any Kernel can be used

for the Kernel matrix K(Xi, Xi). In Section 6 and Section 7, the results of the linear Kernel

and Gaussian Kernel are compared. The convergence rates in Section 5.3 are established

for Gaussian Kernel.

The above procedures can be simplified if we are willing to make further assumptions.

To see this, the optimization problem in each iteration can be transformed to:

f̂ t+1
L = arg min

f∈H

1

n

n∑
i=1

=
1

P (Ai|Xi)
Ji |f(Xi)−Ai|+

λn
2
||f ||22 (4.10)

where

Ji(β, βt) =
(
1− α(Xi)

)
Φ
(
Yi − S(Xi)

)[
Wi(β

t)Hi(β) +Qi(β
t)H̃i(β)

]
(4.11)

+ α(Xi)Φ
(
S(Xi)− Yi

)[
W̃i(β

t)H̃i(β) + Q̃i(β
t)Hi(β)

]
(4.12)

Once we assume that f̂βt+1(Xi) − Ai and f̂βt(Xi) − Ai have the same sign, then the

objective function (4.10) can be simplified as:

f t+1
L = arg min

f∈H

λn
2
||f ||22+

1

n

n∑
i=1

1

P (Ai|Xi)

[(
1− α(Xi)

)
Φ
(
Yi − S(Xi)

)
I(

0<f̂ t(Xi)−Ai<ε
)

+ α(Xi)Φ
(
S(Xi)− Yi

)
I(

0<Ai−f̂ t(Xi)<ε
)]∣∣∣f(Xi)−Ai

∣∣∣ (4.13)
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This simplified algorithm provides an intuitive illustration of the estimation procedure.

For each iteration, only a small proportion of the sample can contribute to the optimization,

i.e., only observations
{
i : 0 < f̂ t(Xi) − Ai < ε or 0 < Ai − f̂ t(Xi) < ε

}
are used for

estimating f t+1. This means the estimator f̂ t(Xi) only search its current neighborhood

of radius ε to get f̂ t+1(Xi). From extensive simulation studies, we found the simplified

algorithm general provides much faster estimation with a little compromise for the accuracy.

The advantage of such simplicity is that equation (4.13) is equivalent to weighted Support

Vector Machine which can be solved by standard libraries.

So far, we only discussed the case of the one-sided IDIs with a lower bound function.

In the case where the upper bound is needed, the derivations above can be reproduced

with minor modifications. Instead of deriving from the original non-convex optimization

problems to its quadratic programming problem, we show its simplified form below.

f t+1
U = arg min

f∈H

λn
2
||f ||22+

1

n

n∑
i=1

1

P (Ai|Xi)

[(
1− α(Xi)

)
Φ
(
Yi − S(Xi)

)
I(0<Ai−f t(Xi)<ε)

+ α(Xi)Φ
(
S(Xi)− Yi

)
I(0<f t(Xi)−Ai<ε)

]∣∣∣f(Xi)−Ai
∣∣∣ (4.14)

4.3 DC Algorithm for Two-sided Dose Interval

The non-convex objective function for estimating two-sided IDIs below involves the empir-

ical version of the relaxed risk (4.3) and two `2 norm regularization terms.

S(fL, fU ) =

n∑
i=1

HiΨ
out
ε

(
fL(X), A, fU (X)

)
+ H̃iΨ

in
ε

(
fL(X), A, fU (X)

)
+
λn
2
||fL||22 +

λn
2
||fU ||22

where Hi and H̃i are defined as in the previous section. For simplicity, the same tunning

parameter λn is used for both fL and fU . In order to apply DC algorithm, we construct
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the following convex decompositions

Ψout = Ψout
1 −Ψout

2

Ψin = Ψin
1 −Ψin

2

where

Ψin
1

(
a, b, c

)
=


b < a, (a− b)/ε+ 1

a < b < c, 1

c < b, (b− c)/ε+ 1

Ψin
2

(
a, b, c

)
=


b < (a+ ε) (a+ ε− b)/ε

(a+ ε) < b < (c− ε), 0

(c− ε) < b, (b− c+ ε)/ε

Ψout
1

(
a, b, c

)
= Ψin

1

(
a, b, c

)
− 1 =


b < a, (a− b)/ε

a < b < c, 0

c < b, (b− c)/ε

Ψout
2

(
a, b, c

)
=


b < (a− ε) (a− b)/ε

(a− ε) < b < (c+ ε), 0

(c+ ε) < b, (b− c)/ε

Here we assume that c − a ≤ 2ε holds all the time. It can be easily shown that the

non-convex objective function S(fL, fU ) can be decomposed to the difference of two convex
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functions S1(fL, fU ) and S2(fL, fU ) where

S1(fL, fU ) =
n∑
i=1

HiΨ
out
1 (fL, Ai, fU ) +

n∑
i=1

H̃iΨ
in
1 (fL, Ai, fU ) +

1

2
||fL||22 +

1

2
||fU ||22

and

S2(fL, fU ) =

n∑
i=1

HiΨ
out
2 (fL, Ai, fU ) +

n∑
i=1

H̃iΨ
in
2 (fL, Ai, fU ) (4.15)

The DC algorithm iteratively solves the following problem

arg min(
φ(Xi)βL+bL

)
<
(
φ(Xi)βU+bU

)S1(βL, βU )−∇S2(βL, βU )

βL − βtL
βU − βtU


arg min(

φ(Xi)βL+bL

)
<
(
φ(Xi)βU+bU

)S1(βL, βU )−∇S2(βL, βU )

βL
βU


=

n∑
i=1

Hi

[
WL
i Ψ1(fL(Xi)−Ai) +QLi Ψ1(Ai − fL(Xi))

]
+

n∑
i=1

Hi

[
WU
i Ψ1(Ai − fU (Xi)) +QUi Ψ1(fU (Xi)−Ai)

]
+

n∑
i=1

H̃i

[
W̃L
i Ψ1(fL(Xi)−Ai) + Q̃Li Ψ1(Ai − fL(Xi))

]
+

n∑
i=1

H̃i

[
W̃U
i Ψ1(Ai − fU (Xi)) + Q̃Ui Ψ1(fU (Xi)−Ai)

]
+

1

2
||fL||22 +

1

2
||fU ||22

where WL
i = 1Ai>(f tL−ε), W̃

L
i = 1Ai>(f tL+ε), Q

L
i = 1Ai<(f tL−ε), Q̃

L
i = 1Ai<(f tL+ε) and

WU
i = 1Ai<(f tU+ε), W̃

U
i = 1Ai<(f tU−ε), Q

U
i = 1Ai>(f tU+ε), Q̃

U
i = 1Ai>(f tU−ε).

The first two terms in (4.15) came with penalty Hi =
I
(
Yi>S(Xi)

)(
1−α(Xi)

)
P (Ai|Xi)λn for patients

who are outside the IDIs but receive good outcomes and the second two terms are associated

with penalty H̃i =
I
(
S(Xi)>Yi

)
α(Xi)

P (Ai|Xi)λn for patients who are inside the IDIs but receive bad

outcomes.
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As in the previous section, each single iteration of the DC algorithm is eventually trans-

formed to the following quadratic programming problem. The details of the derivations can

be found in Appendix A.2.

arg min
β,b

1

2

n∑
i=1

n∑
j=1

(α̃Li − αLi −mi) < Xi, Xj > (α̃Lj − αLj −mj) (4.16)

+
1

2

n∑
i=1

n∑
j=1

(α̃Ui − αUi +mi) < Xi, Xj > (α̃Uj − αUj +mj)

−
n∑
i=1

(α̃Li − αLi + α̃Ui − αUi )Ai − 2ε
n∑
i=1

mi

s.t. 0 ≤ αLi ≤ HiW
L
i + H̃iW̃

L
i

0 ≤ α̃Li ≤ HiQ
L
i + H̃iQ̃

L
i

0 ≤ αUi ≤ HiQ
U
i + H̃iQ̃

U
i

0 ≤ α̃Ui ≤ HiW
U
i + H̃iW̃

U
i

0 ≤ mi

n∑
i=1

αLi − α̃Li +mi = 0

n∑
i=1

αUi − α̃Ui −mi = 0 (4.17)

After solving the problem above, the parameters can be recovered by

β̂L =
n∑
i=1

(α̃Li − αLi −mi)Xi

β̂U =
n∑
i=1

(α̃Ui − αUi +mi)Xi

Until now the estimation of intercept bL and bU is neglected. Although these two pa-

rameters can technically be solved by applying K.K.T. conditions, it will involve rather

complicated derivations. Instead, we use a two-dimensional grid search to solve the inter-

cepts.

In (4.17), the first two constraints are for the lower bound function while the second
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two constraints are for the upper bound function. The positive parameter mi corresponds

to the gap fU (Xi)− fL(Xi) for each observation which enforces every training observation

to satisfy the constraint that fL(Xi) < fU (Xi). However, for the testing dataset, this

constraint can be violated for a small proportion of the sample. Our simulation and real

data analysis show that this is generally not a severe problem, as the structural assumptions

assume away the potential violations asymptotically.

Similar to the one-sided case, there is a simplified version of the two-sided IDI estimation.

From equation (4.16) and Appendix A.7, it can be inferred that fL and fU can be solved

independently if we do not enforce the constraint fL(Xi) < fU (Xi) in the training data.

This is only reasonable when this constraint is believed to be enforced by the finite sample

as the structural assumptions in Section 3 only ensure that it is satisfied asymptotically.

For each iteration in the DC algorithm, the lower bound function f̂
(t)
L (x) and the upper

bound function f̂
(t)
U (x) are optimized in a sequence, with f̂

(t)
U (x) being the upper bound for

f̂
(t+1)
L (x) and f̂

(t+1)
L (x) being the lower bound for f̂

(t+1)
U (x).

To summarize the simplified algorithm, we iteratively update f̂L and f̂U by solving the

following two optimization tasks, which are not much different than (4.13) and (4.14).

f̂ t+1
L = arg min

fL∈H,fL(Xi)<f̂ tU (Xi)

λn
2
||fL||22

n∑
i=1

1

P (Ai|Xi)

(
(1− α)Φ(Yi − S∗)Wi + αΦ(S∗ − Yi)W̃i

)∣∣∣fL(Xi)−Ai
∣∣∣

f̂ t+1
U = arg min

fU∈H,f̂ tL(Xi)<fU (Xi)

λn
2
||fU ||22

n∑
i=1

1

P (Ai|Xi)

(
(1− α)Φ(Yi − S∗)W̃i + αΦ(S∗ − Yi)Wi

)∣∣∣fU (Xi)−Ai
∣∣∣

where Wi = I(0<f t(Xi)−Ai<ε) and W̃i = I(0<Ai−f t(Xi)<ε)
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Chapter 5

Theoretical Results

In this Chapter, theorems and corollaries will be proved to show the theoretical properties

of the proposed methods. In Section 5.2, we will prove two theorems to show that the Fisher

consistency holds under reasonable assumptions. Therefore, by minimizing the Quadrant

risk functions, we will attain the IDIs introduced in Section 1.3 with the desired causal

interpretations. In Section 5.3, we first discuss the convergence of the relaxed risk function

(4.1) and (4.3) to the original Quadrant risk functions (2.8) and (2.10). And then the

convergence rate of the estimated IDI bound functions to the optimal IDI bound functions

are shown. Throughout this section, we assume that α = 1
2 for all EDIs.

5.1 Optimal Bound Functions

In this section, we define the optimal bound functions that we intend to recover from the

sample. The functions satisfying the definition might not be unique for both the PDI or

the EDI unless extra uniqueness assumptions are made. These definitions will be needed in

the next section to prove the Fisher consistency of the proposed methods.

1. One-sided PDI optimal lower bound function:

• Any measurable function fI,L,opt(x) that P
(
Y
(
fI,L,opt(x), x

)
> S(x)

)
= α(x)

2. Two-sided PDI optimal lower bound function:
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• Any measurable function fI,L,opt(x) that P
(
Y
(
fI,L,opt(x), x

)
> S(x)

)
= α(x)

• For any a < fI,L,opt(x), P
(
Y (a, x) > S(x)

)
≤ α(x)

Two-sided PDI optimal upper bound function:

• Any measurable function fI,U,opt(x) that P
(
Y
(
fI,U,opt(x), x

)
> S(x)

)
= α(x)

• For any a > fI,U,opt(x), P
(
Y (a, x) > S(x)

)
≤ α(x)

3. One-sided EDI optimal lower bound function:

• Any measurable function fh,L,opt(x) that E
[
Y (fh,L,opt(x), x)

]
= S(x)

4. Two-sided EDI optimal lower bound function:

• Any measurable function fh,L,opt(x) that E
[
Y (fh,L,opt(x), x)

]
= S(x)

• For any a < fh,L,opt(x), E [Y (a, x)] ≤ S(x)

Two-sided EDI optimal upper bound function:

• Any measurable function fh,U,opt(x) that E
[
Y (fh,U,opt(x), x)

]
= S(x)

• For any a > fh,U,opt(x), E [Y (a, x)] ≥ S(x)

The IDI bound functions above are optimal in the sense that they are the minimizers

of corresponding Quadrant risk functions, i.e.,

• fI,L,opt = arg minf RI(f)

•
[
fI,L,opt, fI,U,opt

]
= arg minfL≤fU RI(fL, fU )

• fh,L,opt = arg minf Rh(f)

•
[
fh,L,opt, fh,U,opt

]
= arg minfL≤fU Rh(fL, fU )

These claims will be verified in the proofs of theorem 5.2.1 to Corollary 5.2.2.
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5.2 Fisher Consistency

In this section, Fisher consistency of the OWL-based approach will be discussed. Theorem

5.2.1 shows that minimizing RI(·) results in the PDI lower bound, above which the doses

will produce outcomes larger than S(x) with probability at least α(x). Theorem 5.2.2 shows

that minimizing Rh(·) implies the EDI lower bound that the doses greater than the bound

are expected to generate outcomes larger than S(x), while the α(x) is set to be a constant

1
2 for interpretability. Corollary 5.2.1 and corollary 5.2.2 are the two-sided counter-parts of

theorem 5.2.1 and theorem 5.2.2.

It should be emphasized that the IDIs are determined by a threshold function S(x)

and a probability function α(x). The combinations of these two functions imply different

interpretations and require different assumptions. It is important that these two functions

are determined coherently with the interpretations and the assumptions are supported by

data.

Theorem 5.2.1. For the one-sided PDI with optimal lower bound function fI,L,opt =

arg minf RI(f), any measurable function a(·) s.t. fI,L,opt(x) ≤ a(x) ≤ aU , ∀x ∈ X , the

potential outcome Y (a(x), x) satisfies P (Y (a(x), x) ≥ S(x)) ≥ α(x) under the partial mono-

tonicity assumption for PDI (3.1), i.e.,

1. P
(
Y (aL, x) > S(x)

)
≤ α(x) and P

(
Y (aU , x) > S(x)

)
≥ α(x)

2. P (Y (a, x) > S(x)) across α(x) at most once as a goes from aL to aU

Proof. A brief proof can be found in Appendix A.3.

Corollary 5.2.1. For the two-sided PDI with optimal bound functions [fI,L,opt, fI,U,opt] =

arg minfL≤fU RI(fL, fU ), any measurable function a(·) s.t. fI,L,opt(x) ≤ a(x) ≤ fI,U,opt(x),

∀x ∈ X , the potential outcome Y (a(x), x) satisfies P (Y (a(x), x) ≥ S(x)) ≥ α(x) , under

the partial unimodality assumptions for PDI (3.2), i.e.,

1. P
(
Y (aL, x) > S(x)

)
≤ α(x) and P

(
Y (aU , x) > S(x)

)
≤ α(x)
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2. ∃a∗ ∈ [aL, aU ], P (Y (a∗, x) > S(x)) ≥ α(x)

3. P (Y (a, x) > S(x)) cross α(x) at most twice as a goes from aL to aU

Proof. A brief proof can be found in Appendix A.4.

Theorem 5.2.2. For the one-sided EDI with optimal lower bound function fh,L,opt =

arg minf Rh(f), any measurable function a(·) s.t. fh,L,opt(x) ≤ a(x) ≤ aU , ∀x ∈ X , the

potential outcome Y (a(x), x) satisfies E [Y (a(x), x)] ≥ S(x) under the partial monotonicity

assumptions for EDI (3.3), i.e.,

1. E [Y (aL, x)] ≤ S(x) and E [Y (aU , x)] ≥ S(x)

2. E(Y (a, x)) across S(x) at most once as a goes from aL to aU

Proof. A brief proof can be found in Appendix A.5.

Corollary 5.2.2. For the two-sided EDI with optimal bounds functions [fh,L,opt, fh,U,opt] =

arg minfL≤fU Rh(fL, fU ), any measurable function a(·) s.t. fh,L,opt(x) ≤ a(x) ≤ fh,U,opt(x),

∀x ∈ X , the potential outcome Y (a(x), x) satisfies E [Y (a(x), x)] ≥ S(x) under the partial

unimodality assumption for EDI (3.4), i.e.,

1. E [Y (aL, x)] ≤ S(x) and E [Y (aU , x)] ≤ S(x)

2. ∃a∗ ∈ [aL, aU ], E [Y (a∗, x)] ≥ S(x)

3. E(Y (a, x)) cross S(x) at most twice as a goes from aL to aU

Proof. A brief proof can be found in Appendix A.6.

5.3 Convergence Rate

In this section, the convergence rates of the Quadrant risk of the estimated IDIR are derived.

First, theorem 5.3.1 shows that, for one-sided PDI lower bounds, the difference between risk

function RI(·) and its non-convex relaxation RI,εn(·) converges to zero with the same rate
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as εn → 0. Similarly, theorem 5.3.2 shows that Rh(·) converges to its non-convex relaxation

Rh,εn(·) with the same rate as εn → 0. Corollary 5.3.1 and corollary 5.3.2 show that the

same results hold for two-sided intervals. Theorem 5.3.3 is adapted from the Chen et al.

(2016), where the convergence rate of one-sided IDIR is obtained based on general results

of empirical risk minimization and approximation theorem. Finally, in theorem 5.3.3, we

provide the convergence rate of the two-sided IDIR.

Theorem 5.3.1. For any measurable function f : X 7→ R, we have |RI(f) − RI,εn(f)| ≤

Cεn, where C is a constant.

Proof. A brief proof can be found in Appendix A.7.

Corollary 5.3.1. For any interval of two measurable functions [fL, fU ], where fL, fU :

X 7→ R and fL(x) ≤ fU (x) ∀x ∈ X , we have |RI(fL, fU ) − RI,εn(fL, fU )| ≤ Cεn, where C

is a constant.

Proof. A brief proof can be found in Appendix A.8.

Theorem 5.3.2. For any measurable function f : X 7→ R, then |Rh(f)−Rh,εn(f)| ≤ C0εn,

under the assumption that E

[∣∣∣Y − E[Y (a, x)]
∣∣∣∣∣∣∣A = a,X = x

]
≤ C1, where C0 and C1 are

two constants.

Proof. A brief proof can be found in Appendix A.9.

Corollary 5.3.2. For any interval of two measurable functions [fL, fU ] where fL, fU : X 7→

R and fL(x) ≤ fU (x) ∀x ∈ X , we have |Rh(fL, fU ) − Rh,εn(fL, fU )| ≤ C0εn, under the as-

sumption that E

[∣∣∣Y −E[Y (a, x)]
∣∣∣∣∣∣∣A = a,X = x

]
≤ C1, where C0 and C1 are two constants.

Proof. A brief proof can be found in Appendix A.10.

Theorem 5.3.3. Under the assumptions that fΦ,L,opt ∈ Bδ
1,∞(Rd), a Besov space, such

that, Bδ
1,∞(Rd) = {f ∈ L∞((Rd)) : supt>0(t−δw(r,L1)(f, t)) < ∞}, where w is the modulus
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of continuity. Then for any ζ > 0, d/(d+ τ) < p < 1, τ > 0, and the parameter γn for the

Gaussian Kernel,

RΦ(f̂n)−RΦ(fopt) ≤ c1
λn
γdn

+ c2γ
δ
n + c3

1

γ
(1−p)(1+ζ)d

2−p
n λ

p
2−p
n n

1
2−p

+ c4
τ

1
2

n
1
2

+ c5
τ

n
+ c6εn (5.1)

with probability 1−3e−τ . Here d is the dimension of X and Φ can be either Φ = I or Φ = h,

i.e., the rate above applies for both PDI and EDI. .

Properly choosing the constant as

γn ∝
(

1

n

) 1
2δ+d

λn ∝
(

1

n

) δ+d
2δ+d

εn = O
(
n−

δ
2δ+d

)
(5.2)

We have the following convergence rate with with probability 1− 3e−τ .

RΦ(f̂L)−RΦ(fopt) = O
(
n−

δ
2δ+d

)
(5.3)

Proof. A brief proof can be found in Appendix A.11.

Corollary 5.3.3. Under the assumptions that fΦ,L,opt ∈ Bδ
1,∞(Rd) and fΦ,U,opt ∈ Bδ

1,∞(Rd),

such that, Bδ
1,∞(Rd) = {f ∈ L∞((Rd)) : supt>0(t−δw(r,L1)(f, t)) < ∞}, where w is the

modulus of continuity. If it is further assumed that there exists a measurable function

fM,opt(x), which is known or can be estimated consistently, such that fL,opt(x) < fM (x) <

fU,opt(x) for all x ∈ X . Then for any η > 0, d/(d+ τ) < p < 1, τ > 0, 0 < p′ < 1,and the

parameter γn for the Gaussian Kernel, we have

RΦ(f̂L,n, f̂U,n)−RΦ(fL,opt, fU,opt) = Op

(
n−

δ
2δ+d

)
(5.4)

with probability p′ +
(
1 − 3e−τ

)2 − 1. Here d is the dimension of X and Φ can be either

Φ = I or Φ = h, i.e., the rate above applies for both PDI and EDI.

Proof. A brief proof can be found in Appendix A.12.
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The theorem 5.3.3 and corollary 5.3.3 prove that the OWL-based IDI method can po-

tentially achieve a rate of nearly O(n−
1
2 ), when the δ, the smoothness parameter of optimal

bound functions fL and fU , is relatively large compared to the d, the dimension of the

covariates. This rate is essentially faster than the convergence rate in Chen et al. (2016),

which is nearly O(n−
1
4 ). We believe that this difference is due to the fact that in the IDIR

problem, the objective is to find a compact set, while in the IDR problem, the target is a

single function, which makes the problem significantly more difficult.
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Chapter 6

Simulation

In this Chapter, simulation settings are designed to examine the efficiency of our OWL-

based methods and the indirect methods in various scenarios. In Section 6.1, we present

settings without prognostic effects. In Section 6.2, we design alternative data generating

model in presence of prognostic effects, where the personalization of S(x) has to rely on

independent estimation steps.

The detailed two-step procedure used by the indirect methods can be found in Section

1.4 and Section 2.4. This procedure involves an outcome modeling step based on the

classification models and a grid search step to find the PDIs. For the EDI, the outcome

modeling step is based on the regression models. The indicator I{Y > S} is used as the

binary outcome for each classification model for which we build a model that P̂ (Y >

S(X)|a,X) := h(A,X), and then search through the domain of A to find a range of doses

A1 that for ∀a ∈ A1, h(a,X) > α(X). Similarly, Y serves as the numeric outcome for each

regression model for which we build a model that Ê[Y |A,X] := h(A,X), and then conduct

a grid search to find a range A1 such that for ∀a ∈ A1, we have h(a,X) > S(X). The

effectiveness of both the indirect methods and our OWL-based methods are examined by

evaluating the empirical risk functions on an independent testing dataset. The empirical

risk functions, as defined in Chapter 2, are R̂I,ε for the PDIs and R̂h,ε for the EDIs.

Three types of classification methods are included in this simulation. Logistic Regression
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incorporates all the main effect terms of dose and covariates, as well as the quadratic term

of dose and interactions of dose and covariates. Besides, `2 regularization is used but the

quadratic term is exempted from the regularization, as is suggested by Cai and Tian (2016).

The coefficient of regularization, λn, is the only tuning parameter. Support Vector Machine

relies on a Gaussian Kernel to capture the non-linearity and interactions between the dose

and the covariates. The cost C is the only tunning parameter while the Kernel bandwidth

is fixed at 1√
d
. The Random Forest Classification (RF-C) with a forest size 1000 is the only

tree-based classifier in this study. The percentage of variables used for each split is the only

tuning parameter.

Three types of regression methods are selected for this simulation. Lasso uses the

same model as the Logistic Regression except the link function being linear instead of

the logit function. Support Vector Regression (SVR) applies the ε-insensitive regression

method (Drucker et al., 1997) and approximates the conditional mean by the conditional

median. The Gaussian Kernel with bandwidth 1√
d

is still used for SVR. The Random

Forest Regression (RF-R) with a forest size 1000 shares the same robustness as the RF-C

method. Parameter settings for the regression methods are the same as the corresponding

classification cases.

For our OWL-based approach, the Kernel trick allows us to incorporate many types of

Kernels. However, to establish easy comparisons with SVM and SVR, we only include the

linear Kernel, denoted as OWL-L, and the Gaussian Kernel denoted as OWL-K. Although

the convergence rate in Section 5.3 is based on the Gaussian Kernel, we will show that linear

Kernel sometimes achieves no worse performance even for nonlinear IDIRs. Throughout

this Chapter, as well as Chapter 7, all the tuning parameters are selected using 5-folds

cross-validation while the initializations of OWL-based methods are done by using constant

lower/upper bounds through population estimations without including patients’ covariates.
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6.1 Basic Settings

In this section, multiple simulation settings are prepared with varying sample sizes, numbers

of covariates, and data generating processes. Scenario1 and Scenario2 are designed for the

Monotonic case to find one-sided IDIs, where the Y (a, x) has only one intersection with

Y = S∗ for a given x. The relationship between A and Y is depicted using a logistic

function while the heterogeneity is captured by manipulating the center parameter Ci as a

function of Xi. Scenario3 and Scenario4 are designed for the Unimodal case to find the two-

sided IDIs, where Y (a, x) has two intersections with Y = S∗ for a given x. Negative absolute

distance is used when constructing the mean generating function, while the center parameter

Ci is a function of features Xi. According to Section 3.1, only Partial Monotonicity and

Partial Unimodality assumptions are needed for finding IDIs. But instead we used Strict

Monotonicity and Strict Unimodality for simplicity. Independent Gaussian noises are added

to all the outcome variables. The four scenarios are documented as follows. The confidence

probability αs are kept to 1
2 for all the four scenarios.

1. Monotonicity with Linear Bound

S = 2.5

Ci = 0.3 ∗Xi1 + 0.3 ∗Xi2 + 0.3 ∗Xi3

µi =
rerAi

erCi + erAi
r = 10

Yi = µi + εi εi ∼ N (0, 1)

2. Monotonicity with Non-linear Bound

S = 2.5

Ci = 0.75 ∗ log(|Xi1|+ 1)− 0.2 ∗ cos(πXi2)− 0.2 ∗ I(Xi3 > 0)− 0.3896

µi =
rerAi

erCi + erAi
r = 10
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Yi = µi + εi εi ∼ N (0, 1)

3. Unimodality with Linear Bounds

S = 0.5

Ci = 0.15 ∗Xi1 + 0.15 ∗Xi2 + 0.15 ∗Xi3

µi = 1− |Ai − Ci|

Yi = µi + εi εi ∼ N (0, 0.2)

4. Unimodality with Non-linear Bounds

S = 0.5

Ci = 0.75 ∗ log(|Xi1|+ 1)− 0.2 ∗ cos(πXi2)− 0.2 ∗ I(Xi3 > 0)− 0.3896

µi = 1− |Ai − Ci|

Yi = µi + εi εi ∼ N (0, 0.2)

where Xs are independent random variables following uniform distribution between [−1, 1]

and A is generated from a normal distribution independent with Xs. Figure 6.1 provides

scatter plots of the simulated datasets both with and without noise. The simulation results

based on 100 repetitions are summarized in Table 6.1 and Table 6.1, where the average

Quadrant Losses for all settings (average weighted misclassification for the PDI cases and

average weighted hinge loss for the EDI cases) are documented with the standard deviations

in the parentheses. Figure 6.2 plotted the trends of the average Quadrant Losses for the

PDIs with different sample sizes and Figure 6.3 plotted the trends of the average Quadrant

Losses for the EDIs. The solid lines stand for the two OWL-based methods, OWL-L and

OWL-K. The dashed lines represent the indirect methods.

Notice that in most cases, OWL-L and OWL-N have advantages over the indirect meth-
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Figure 6.1: Scatter Plots of Simulation Scenarios
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Figure 6.2: PDI Average Quadrant Losses for Simulation Settings in Section 6.1
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Figure 6.3: EDI Average Quadrant Losses for Simulation Settings in Section 6.1
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N PDI-L PDI-K Logistic SVM RF-C

Scenario 1 100 0.045 (0.010) 0.069 (0.009) 0.053 (0.012) 0.060 (0.014) 0.071 (0.008)
200 0.035 (0.005) 0.053 (0.005) 0.039 (0.005) 0.048 (0.006) 0.058 (0.007)
300 0.032 (0.003) 0.047 (0.004) 0.037 (0.004) 0.043 (0.004) 0.055 (0.005)
400 0.031 (0.003) 0.045 (0.004) 0.034 (0.004) 0.040 (0.003) 0.051 (0.004)
600 0.031 (0.002) 0.041 (0.003) 0.033 (0.003) 0.037 (0.003) 0.047 (0.003)

Scenario 2 100 0.115 (0.007) 0.109 (0.007) 0.161 (0.021) 0.129 (0.008) 0.122 (0.008)
200 0.111 (0.004) 0.107 (0.006) 0.119 (0.005) 0.115 (0.006) 0.111 (0.006)
300 0.110 (0.003) 0.105 (0.005) 0.115 (0.004) 0.109 (0.006) 0.107 (0.004)
400 0.109 (0.003) 0.103 (0.003) 0.114 (0.003) 0.105 (0.003) 0.106 (0.004)
600 0.107 (0.003) 0.102 (0.004) 0.108 (0.002) 0.103 (0.003) 0.103 (0.004)

Scenario 3 100 0.096 (0.006) 0.099 (0.006) 0.101 (0.005) 0.136 (0.013) 0.116 (0.010)
200 0.090 (0.006) 0.095 (0.004) 0.098 (0.005) 0.114 (0.008) 0.105 (0.007)
300 0.088 (0.003) 0.093 (0.003) 0.095 (0.005) 0.105 (0.006) 0.100 (0.005)
400 0.086 (0.003) 0.091 (0.003) 0.093 (0.005) 0.100 (0.005) 0.097 (0.004)
600 0.085 (0.002) 0.089 (0.003) 0.090 (0.004) 0.094 (0.004) 0.094 (0.003)

Scenario 4 100 0.115 (0.006) 0.106 (0.004) 0.107 (0.003) 0.155 (0.012) 0.123 (0.011)
200 0.110 (0.003) 0.103 (0.003) 0.106 (0.003) 0.126 (0.009) 0.111 (0.005)
300 0.108 (0.003) 0.101 (0.003) 0.106 (0.002) 0.114 (0.006) 0.106 (0.004)
400 0.107 (0.003) 0.099 (0.004) 0.106 (0.003) 0.110 (0.005) 0.105 (0.004)
600 0.106 (0.003) 0.096 (0.003) 0.106 (0.002) 0.103 (0.004) 0.101 (0.003)

Table 6.1: PDI Quadrant Losses for Simulation Settings in Section 6.1

N EDI-L EDI-K Lasso SVR RF-R

Scenario 1 100 0.0449 (0.0211) 0.0913 (0.0172) 0.0580 (0.0217) 0.0649 (0.0197) 0.0841 (0.0184)
200 0.0252 (0.0048) 0.0583 (0.0090) 0.0324 (0.0073) 0.0470 (0.0122) 0.0654 (0.0131)
300 0.0224 (0.0035) 0.0493 (0.0080) 0.0325 (0.0096) 0.0445 (0.0133) 0.0578 (0.0095)
400 0.0213 (0.0028) 0.0457 (0.0069) 0.0256 (0.0051) 0.0424 (0.0193) 0.0489 (0.0061)
600 0.0191 (0.0018) 0.0375 (0.0048) 0.0234 (0.0034) 0.0406 (0.0153) 0.0439 (0.0044)

Scenario 2 100 0.1853 (0.0173) 0.1634 (0.0143) 0.2739 (0.0398) 0.2082 (0.0189) 0.1289 (0.0176)
200 0.1743 (0.0086) 0.1556 (0.0143) 0.1864 (0.0136) 0.1779 (0.0096) 0.1202 (0.0122)
300 0.1707 (0.0070) 0.1491 (0.0132) 0.1725 (0.0099) 0.1577 (0.0092) 0.1175 (0.0094)
400 0.1657 (0.0057) 0.1404 (0.0069) 0.1691 (0.0060) 0.1505 (0.0075) 0.1160 (0.0087)
600 0.1599 (0.0051) 0.1289 (0.0063) 0.1589 (0.0045) 0.1375 (0.0050) 0.1087 (0.0094)

Scenario 3 100 0.0141 (0.0019) 0.0153 (0.0016) 0.0151 (0.0015) 0.0223 (0.0028) 0.0204 (0.0035)
200 0.0126 (0.0014) 0.0143 (0.0011) 0.0141 (0.0012) 0.0175 (0.0022) 0.0161 (0.0016)
300 0.0120 (0.0009) 0.0135 (0.0010) 0.0132 (0.0009) 0.0149 (0.0012) 0.0147 (0.0010)
400 0.0116 (0.0006) 0.0130 (0.0009) 0.0129 (0.0008) 0.0138 (0.0008) 0.0139 (0.0007)
600 0.0111 (0.0005) 0.0123 (0.0007) 0.0124 (0.0006) 0.0125 (0.0007) 0.0132 (0.0006)

100 0.0189 (0.0019) 0.0175 (0.0018) 0.0178 (0.0006) 0.0283 (0.0034) 0.0223 (0.0029)
200 0.0180 (0.0009) 0.0166 (0.0008) 0.0177 (0.0007) 0.0205 (0.0019) 0.0178 (0.0016)
300 0.0174 (0.0008) 0.0158 (0.0010) 0.0175 (0.0007) 0.0176 (0.0014) 0.0165 (0.0007)
400 0.0174 (0.0007) 0.0153 (0.0009) 0.0177 (0.0007) 0.0160 (0.0010) 0.0159 (0.0007)
600 0.0171 (0.0005) 0.0145 (0.0007) 0.0176 (0.0006) 0.0145 (0.0007) 0.0151 (0.0006)

Table 6.2: EDI Quadrant Losses for Simulation Settings in Section 6.1
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ods in terms of accuracy. The standard deviations of these two OWL-based methods are

at least comparable to those of the indirect methods. The EDI in Scenario 2 makes one

exception, where the RF-R exhibits superior accuracy and robustness in several settings.

But still, OWL-K is the second best for all the sample sizes. It is possible that the indirect

methods can have average Quadrant Losses smaller than those of the OWL-based methods

when the sample size is greater than 1000. This is reasonable because the qualities of the

outcome models are guaranteed when the sample size is large and they might eventually

attain advantages over the OWL-based methods. Therefore, with the above simulation

results, we claim only the small sample advantages of the proposed OWL-based method.

6.2 In Presence of Prognostic Effects

In the previous simulations, the threshold function S(x) and the confidence probability

α(x) are chosen as constant so that the assumptions in Section 3 hold for each patient.

This means that the trajectory of dose-response will always have at least one intersection

with the threshold. Even though such settings are straightforward for demonstrating the

proposed methods, they do not imitate the real applications except for cases where the

effects of the dose are much stronger than the prognostic effects.

Therefore, the below simulation settings are designed in order to test the robustness of

our approach in face of prognostic effects. When strong prognostic effects are present, it

might not be reasonable to choose a constant threshold function. Instead, we build linear

models with up to cubic terms to model the outcome without using the dose and then

take the fitted outcome as the value of threshold function, i.e., S(x) = Ê [Y |x]. Since it

is recommended in Section 2.4 that only one of S(x) and α(x) is personalized, we keep

α(x) = 1
2 as in previous sections and only personalize S(x). The four redesigned settings

are as follows.
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1. Monotonic with Linear Bound

Ci = 0.3 ∗Xi1 + 0.3 ∗Xi2 + 0.3 ∗Xi3

Di = 0.6 ∗Xi2 + 0.6 ∗Xi3 + 0.6 ∗Xi4

Ai ∼ N (Ci, 0.5)

µi =
rerAi

erCi + erAi
+Di r = 10

Yi = µi + εi εi ∼ N (0, 1)

Si = fitted(lm(Y ∼ X))i

2. Monotonic with Non-linear Bound

Ci = 0.5 ∗ log(|Xi1|+ 1)− 0.2 ∗ I(Xi2 > 0) + 0.2 ∗ sin(π ∗Xi3)

Di = 0.3 ∗ sin(π ∗Xi2)− 0.3 ∗ I(Xi3 > 0) + 0.3 ∗ |Xi4|

Ai ∼ N (Ci, 0.5)

µi =
rerAi

erCi + erAi
+Di r = 10

Yi = µi + εi εi ∼ N (0, 1)

Si = fitted(lm(Y ∼ X))i

3. Unimodal with Linear Bounds

Ci = 0.3 ∗Xi1 + 0.3 ∗Xi2 + 0.3 ∗Xi3

Di = 0.6 ∗Xi2 + 0.6 ∗Xi3 + 0.6 ∗Xi4

Ai ∼ N (Ci, 0.5)
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µi = 1− |Ai − Ci|+Di

Yi = µi + εi εi ∼ N (0, 0.2)

Si = fitted(lm(Y ∼ X))i

4. Unimodal with Non-linear Bounds

Ci = 0.5 ∗ log(|Xi1|+ 1)− 0.2 ∗ I(Xi2 > 0) + 0.2 ∗ sin(π ∗Xi3)

Di = 0.3 ∗ sin(π ∗Xi3)− 0.3 ∗ I(Xi4 > 0) + 0.3 ∗ |Xi5|

Ai ∼ N (Ci, 0.5)

µi = 1− |Ai − Ci|+Di

Yi = µi + εi εi ∼ N (0, 0.2)

Si = fitted(lm(Y ∼ X +X2 +X3))i

From Figure 6.5 and Figure 6.6, the OWL-L has advantages in the two linear settings

and the OWL-K has advantages in the two nonlinear settings, which is consistent with the

results in Section 6.1. This fact reassures that the proposed OWL-based method will not

be heavily impacted by a reasonable estimation of the threshold S(x). We believe that the

estimation of the confidence probability α(x) shares the same property. In the next section,

the above IDI methods will be examined on the real dataset where the function S(x) and

α(x) are not available and thus have to be estimated from the data.
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Figure 6.4: Scatter Plots of Simulation Scenarios with Prognostic Effects
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Figure 6.5: PDI Average Quadrant Losses for Simulation Settings in Section 6.2
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Figure 6.6: EDI Average Quadrant Losses for Simulation Settings in Section 6.2
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N PDI-L PDI-K Logistic SVM RF-C

Scenario 1 100 0.049 (0.010) 0.071 (0.010) 0.063 (0.030) 0.075 (0.012) 0.082 (0.009)
200 0.041 (0.005) 0.057 (0.006) 0.047 (0.007) 0.058 (0.006) 0.071 (0.006)
300 0.037 (0.004) 0.051 (0.004) 0.044 (0.005) 0.052 (0.005) 0.065 (0.005)
400 0.035 (0.003) 0.048 (0.004) 0.041 (0.004) 0.047 (0.004) 0.061 (0.004)
600 0.034 (0.002) 0.045 (0.003) 0.040 (0.004) 0.044 (0.003) 0.056 (0.004)
800 0.033 (0.002) 0.043 (0.003) 0.039 (0.003) 0.042 (0.003) 0.053 (0.003)

Scenario 2 100 0.100 (0.005) 0.094 (0.004) 0.127 (0.041) 0.112 (0.018) 0.099 (0.007)
200 0.097 (0.004) 0.089 (0.005) 0.107 (0.026) 0.098 (0.018) 0.093 (0.005)
300 0.097 (0.003) 0.086 (0.004) 0.098 (0.007) 0.092 (0.011) 0.089 (0.004)
400 0.096 (0.003) 0.082 (0.004) 0.098 (0.010) 0.086 (0.008) 0.086 (0.003)
600 0.095 (0.002) 0.079 (0.004) 0.095 (0.002) 0.085 (0.015) 0.083 (0.003)
800 0.094 (0.002) 0.077 (0.003) 0.095 (0.004) 0.084 (0.020) 0.080 (0.003)

Scenario 3 100 0.105 (0.007) 0.109 (0.007) 0.111 (0.005) 0.156 (0.017) 0.127 (0.010)
200 0.099 (0.006) 0.104 (0.005) 0.109 (0.005) 0.130 (0.007) 0.116 (0.006)
300 0.096 (0.003) 0.100 (0.003) 0.105 (0.005) 0.119 (0.006) 0.111 (0.004)
400 0.094 (0.003) 0.099 (0.003) 0.103 (0.006) 0.113 (0.005) 0.108 (0.003)
600 0.094 (0.003) 0.098 (0.003) 0.101 (0.005) 0.106 (0.004) 0.105 (0.004)
800 0.092 (0.003) 0.097 (0.003) 0.098 (0.004) 0.102 (0.004) 0.103 (0.003)

Scenario 4 100 0.147 (0.008) 0.137 (0.005) 0.138 (0.004) 0.190 (0.022) 0.155 (0.012)
200 0.142 (0.005) 0.132 (0.005) 0.137 (0.003) 0.163 (0.010) 0.144 (0.007)
300 0.140 (0.005) 0.127 (0.006) 0.136 (0.002) 0.147 (0.006) 0.136 (0.005)
400 0.139 (0.004) 0.124 (0.006) 0.137 (0.002) 0.140 (0.006) 0.132 (0.005)
600 0.137 (0.004) 0.118 (0.004) 0.136 (0.003) 0.131 (0.005) 0.126 (0.004)
800 0.136 (0.002) 0.114 (0.002) 0.136 (0.002) 0.125 (0.004) 0.123 (0.004)

Table 6.3: PDI Quadrant Losses for Simulation Settings in Section 6.2

N EDI-L EDI-K Lasso SVR RF-R

Scenario 1 100 0.0472 (0.0176) 0.0896 (0.0168) 0.0673 (0.0279) 0.1180 (0.0535) 0.0983 (0.0162)
200 0.0295 (0.0074) 0.0626 (0.0122) 0.0423 (0.0129) 0.0883 (0.0471) 0.0784 (0.0115)
300 0.0258 (0.0047) 0.0509 (0.0075) 0.0353 (0.0090) 0.0864 (0.0636) 0.0673 (0.0092)
400 0.0236 (0.0036) 0.0457 (0.0066) 0.0317 (0.0071) 0.1185 (0.0933) 0.0617 (0.0069)
600 0.0217 (0.0021) 0.0399 (0.0043) 0.0280 (0.0047) 0.1769 (0.1159) 0.0563 (0.0062)
800 0.0208 (0.0022) 0.0362 (0.0038) 0.0269 (0.0041) 0.2231 (0.1169) 0.0505 (0.0055)

Scenario 2 100 0.1421 (0.0097) 0.1290 (0.0087) 0.2273 (0.0971) 0.1735 (0.0441) 0.1348 (0.0125)
200 0.1384 (0.0072) 0.1169 (0.0118) 0.1582 (0.0252) 0.1355 (0.0313) 0.1182 (0.0095)
300 0.1350 (0.0062) 0.1076 (0.0099) 0.1467 (0.0126) 0.1261 (0.0384) 0.1114 (0.0090)
400 0.1341 (0.0052) 0.1004 (0.0105) 0.1407 (0.0083) 0.1087 (0.0232) 0.1068 (0.0082)
600 0.1312 (0.0042) 0.0918 (0.0069) 0.1373 (0.0085) 0.1077 (0.0345) 0.0981 (0.0066)
800 0.1296 (0.0041) 0.0868 (0.0059) 0.1360 (0.0063) 0.1139 (0.0432) 0.0941 (0.0056)

Scenario 3 100 0.0154 (0.0019) 0.0167 (0.0018) 0.0210 (0.0047) 0.0358 (0.0042) 0.0549 (0.0034)
200 0.0137 (0.0012) 0.0152 (0.0012) 0.0175 (0.0032) 0.0271 (0.0026) 0.0473 (0.0028)
300 0.0130 (0.0010) 0.0143 (0.0010) 0.0162 (0.0018) 0.0237 (0.0022) 0.0423 (0.0032)
400 0.0125 (0.0006) 0.0139 (0.0009) 0.0156 (0.0016) 0.0216 (0.0022) 0.0394 (0.0026)
600 0.0123 (0.0006) 0.0134 (0.0007) 0.0149 (0.0009) 0.0193 (0.0015) 0.0339 (0.0021)
800 0.0121 (0.0005) 0.0131 (0.0007) 0.0145 (0.0009) 0.0176 (0.0015) 0.0302 (0.0024)

Scenario 4 100 0.0285 (0.0023) 0.0264 (0.0017) 0.0487 (0.0034) 0.0503 (0.0061) 0.0516 (0.0037)
200 0.0272 (0.0016) 0.0246 (0.0016) 0.0472 (0.0024) 0.0375 (0.0043) 0.0423 (0.0032)
300 0.0265 (0.0012) 0.0232 (0.0017) 0.0466 (0.0021) 0.0314 (0.0033) 0.0374 (0.0026)
400 0.0263 (0.0011) 0.0220 (0.0017) 0.0459 (0.0020) 0.0279 (0.0020) 0.0337 (0.0022)
600 0.0259 (0.0010) 0.0202 (0.0013) 0.0457 (0.0015) 0.0236 (0.0015) 0.0304 (0.0017)
800 0.0257 (0.0005) 0.0192 (0.0005) 0.0459 (0.0014) 0.0220 (0.0015) 0.0277 (0.0009)

Table 6.4: EDI Quadrant Losses for Simulation Settings in Section 6.2
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Chapter 7

Study of Hemoglobin A1c Control

and Diabetic Associated Events

Hemoglobin is an iron-containing oxygen which transports protein in the red blood cells.

Hemoglobin A1c (HbA1c), the most abundant minor hemoglobin in the human body, is

formed when glucose accumulates in red blood cells and binds to the hemoglobin. This

process occurs slowly and continuously over the lifespan of red blood cells, which is 120

days on average. This makes HbA1c an ideal biomarker of long-term glycemic control.

Patients who are susceptible to high blood glucose are usually recommended to have their

HbA1c levels regularly measured and recorded.

HbA1c test, since became commercially available in 1978, has been one of the standard

tools for monitoring diabetes progression. American Diabetes Association (ADA) recom-

mended using A1c measurement in 1988. The Diabetes Control and Complications Trial

(DCCT) demonstrated its importance as a predictor of diabetes-related outcomes, and the

ADA started recommending specific A1c targets in 1994 (Little et al., 2011). In 2010, ADA

added HbA1c≥ 6.5% as a criterion for diabetes diagnosis. The prevalence of HbA1c test can

be partially explained by its clinic convenience. As HbA1c is unaffected by acute pertur-

bations in glucose levels, there is no need for fasting or timed samples. For people without

diabetes, the normal range for the HbA1c level is between 4% and 5.6%. Hemoglobin A1c
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levels between 5.7% and 6.4% imply a higher chance of getting diabetes. Levels of 6.5% or

higher indicate the presence of diabetes.

Despite the popularity of HbA1c tests, HbA1c may not reflect the real progression of

diabetes given various conditions that patients are predisposed to. Interfering factors may

lead to false results of HbA1c tests (Radin, 2014). In some cases, the direction of bias is

predictable while in other cases not. For instance, HbA1c can be falsely elevated by iron

deficiency anemias, vitamin B-12 anemias, folate deficiency anemias, asplenia and other

conditions associated with decreased red cell turnover (Nitin, 2010). HbA1c measures may

be lower for patients with conditions that shorten the life of the red blood cell or increase

its turnover rate (Freedman et al., 2010), including acute and chronic blood loss, hemolytic

anemia, splenomegaly and end-stage renal disease. While in some other cases, the direction

of bias is not always easily predictable. For example, the complex interplay of glycemic

control and other treatments, such as erythropoietin therapy and the treatment of uremia

may influence A1c level in a more case-by-case way (Radin, 2014).

Due to the susceptibility of HbA1c measures to various medical and physiological factors,

HbA1c measures reflects glycemia differently for different patients. Therefore, the recom-

mendation of a single HbA1c control level for all the patients may not always be desirable.

As mentioned in Section 1.1, a lower glycemic level is not always better, and over-controlling

glycemia can lead to faint or compromised life quality. Especially for patients who are older,

with severe complications, or in the phase of early post-surgery rehabilitation, HbA1c is not

supposed to be controlled for them as low as for younger and healthier patients.

As a response to the progress in medical research, the idea of glucose control has been

evolving over time. In the past, an A1C of 7 percent was considered the golden rule of health

for everyone. In recent years, however, the importance of a patient-centered approach to

managing A1C levels has been recognized, which may better correspond to the patient’s

needs for diabetes management and their personal conditions and preferences.

The evolving needs of medical practices call for a personalized HbA1c control strategy

with individualized intervals based on patients characteristics. In this Chapter, we demon-
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strate how the methods that we proposed in the dissertation are ideal for the application

of HbA1c control. Specifically, we apply our OWL-based approach, as well as the indirect

methods based on classification, to find the IDIs for HbA1c control. The following of the

Chapter is organized as follows. In Section 7.1, we introduce the EHR dataset and illustrate

the data construction in details. The preparation of the estimation, including stratification

of the sample, the personalization of confidence probability, and the estimation of inverse

density weighting, are discussed in Section 7.2. In Section 7.3, we show that the estimated

HbA1c upper bounds and compare it with the observed HbA1c levels in the dataset. In

Section 7.4, we discuss the effect of IDI recommendation if patients follow the suggested

HbA1c control intervals.

7.1 Data Source

In this section, we introduce the HbA1c dataset to study the relationship between HbA1c

control and the events of diabetic patients. Specifically, the sample is a subset of a type

II diabetes dataset which is drawn from a large Midwestern multi-specialty physician and

patient group. Electronic Health Record (EHR) datasets are merged with Medicare claim

data to obtain laboratory records, information on primary care visits, and medication his-

tory. All patients have been tracked for a specific time period from the first quarter of

2003 to the fourth quarter of 2011. The full observational records are not available for the

majority of patients. All the patients have been medically homed to receive the plurality of

primary care and/or endocrinology care at primary care clinics managed by UW Medical

Foundation, UW Hospital and Clinics and UW Family Medicine.

Patients identified with diabetes must have at least 1 inpatient or SNF Medicare claim

or at least two carrier claims for diabetes, which should be less than 2 years apart. The

diagnosis should be defined by one or more of the following categories: the ICD-9 codes, Dia-

betes mellitus (250.xx), Polyneuropathy in diabetes (357.2), Diabetes retinopathy (362.0x),

and Diabetic cataract (366.41). There are several types of patients who are excluded from
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the dataset, who are without continuous coverage with Medicare Parts A & B for a baseline

year or for at least one subsequent quarter, without Medicare railroad benefits or were not

enrolled in a Medicare HMO. Each patient needs to have at least 5 quarter time periods in

one of the 3 insurers from 2003 to 2011 including 4 baseline quarters and a measurement

period of at least 1 subsequent quarter. Also, the patients should have A1c records over the

5 quarter period which are available in the UW health system. In the sample of analysis,

51.3% of patients are female and 91.8% of the patients are White. The ages of participants

at the cohort start time range from 18 to 102 years old, with an average of 65.7 and a stan-

dard deviation of 13.7. There are 8645 patients in total whose 95130 HbA1c measurements

are recorded.

Multiple patients’ observations need to be aggregated to learn a single IDIR, so it is

generally preferable that the patients are in similar conditions. In this data, there are 1884

patients whose maximal HbA1c are above 10%. We believe that these patients have been in

severe conditions for a prolonged duration, and their events might not reflect the progress of

diabetes and may be confounded by other long-term comorbidities. Therefore, only patients

with maximal HbA1c below 10% are included.

We regard the HbA1c measurements as the treatment doses in this study. Observa-

tions are centered around the availability of HbA1c measurements. Each observation is

associated with a unique HbA1c measurement from an individual patient proceeding the

baseline period. The outcome variable is the number of negative events, which include

hospitalizations and Emergency Department (ED) visits that cover 90 days following the

HbA1c measurement, 90 days after the HbA1c measurement. For the purpose of notation

consistency, we take the negative of the number of events such that for any S ∈ (−1, 0),

1{Yi > S} represents a good outcome and 1{Yi < S} stands for a bad outcome. In addi-

tion, we also include a list of short-term covariates that we average from measurements of

conditions 90 days prior to the treatment HbA1c measurement as well as a list of long-term

covariates that are averaged from conditions up to 900 days prior to the treatment HbA1c

measurement. After removing the ones with missing baseline covariates, 47432 observations
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remain. An illustration of the data structure can be found in Figure 7.1. Each observa-

tion is generated from an outcome period (90 days after HbA1c measure), and short-term

covariates period (90 days before the HbA1c measure) and a long-term covariates period

(including the baseline information). Potential overlapping is allowed.

Figure 7.1: Illustration of Data Structure

There are several reasons why we choose to select the observations based on treatment

HbA1c measurements rather than on patients or patient-quarters. First, this study aims to

provide dynamic Individual Dose Interval (IDI) recommendations for patients. The IDI shall

change over time in order to capture the effect of aging and disease progression along the

study period. Therefore, it is not applicable to have observations constructed at the patient

level. Second, although the HbA1c measurement generally reflects the level of blood sugar

in the past 3 months, it may be impacted by recent events (Radin, 2014). For instance,

a recent hospitalization or ED-visit tend to increase the following HbA1c measurements

to a large extent. A patient-quarter data structure, with aggregation of treatment and

events throughout a quarter, cannot really exclude the outcomes prior to the treatment and

eventually may overestimate the impact of blood sugar. However, with the HbA1c-centered

data structure, we are able to condition on all the events occurred prior to the HbA1c

measurement as covariates, thus adjusting for these confounders. Such observations are
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referred to as the new ’patient’s for convenience.

The dataset also contains a large range of variables, among which are variables de-

lineating diabetes progress, those defining the IDIR and confounders of the treatment.

Specifically, the covariates may be collapsed to the following three categories:

1. Patient Demographics: age, gender, race

2. Patient Long-term Measurement: height, the indicator of disability at baseline, length

of enrollment, the average of HbA1c in past 91-900 days, the indicator of Medicaid,

number of measurements recorded in past 91-900 days, Sulfonylureas intake, Insulin

intake, and other medications intake

3. Patient Short-term Measurement: number of HbA1c measurements in the past 90

days; the average of HbA1c measurement in the past 1-90 days, number of hospitaliza-

tion, number of ED-visits; low-density lipoprotein cholesterol, Systolic blood pressure,

Diastolic blood pressure, BMI, weight, cardiovascular disease, ischemic heart disease,

Congestive Heart failure, Hepatocellular Carcinoma, Hypoglycemia and injury, infec-

tions; and 18 other comorbidities;

7.2 Data Preparation

It is important for defining an IDI that the threshold function S(x) and the probability

function α(x) are specified reasonably so that the interpretations are meaningful and the

assumptions are realistic. First, a proper choice of S(x) might be any real value between 0

and -1. This is because the 95% of patients have less than 2 events, which means the majority

of the patients have outcomes are greater than -2. If we choose any value smaller than -1,

it might induce severe imbalance that 1{Yi < S} and (Yi < S)+ will be zero. Besides, the

presence of events, corresponding to the outcome being zero, is a good indicator of patients’

health condition. Therefore, we recode our integer outcome as a binary variable, Y = 0

when the patient did not have any event and Y = −1 when the patient had at least one
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event.

Second, it might be undesirable to treat all the patients in the same manner as one

patient’s conditions tend to be dramatically different from the other’s. As mentioned in

Chapter 2.4, patients with a long diabetic history and multiple comorbidities may go to

the hospital frequently even when their blood sugar level is well-controlled. In contrast,

younger and healthier patients might be able to endure much higher blood sugar without

hospitalizations and emergency visits. In addition, the variation of patients’ conditions

across time has to be considered. It will not be a good choice for a patient in the early

post-surgery rehabilitation stage to control blood sugar as low as before. As is discussed

in Chapter 2.4, for the binary outcome Y ∈ {−1, 0}, personalizing α(x) a the probability

of having no events, P (Yi = 0|Xi), and having S(x) ∈ (−1, 0) for the PDI is equivalent

to personalizing S(x) as P (Yi = 0|Xi) and letting α(x) = 0.5 for the EDI. To simplify

notations, we use the PDI notations and let α(x) = P̂ (Yi = 0|Xi) and S(x) = −0.5.

In this study, we use a linear logistic regression to model P (Yi = 0 |Xi) without the

information of HbA1c measure, i.e., logit(P (Yi = 0 |Xi)) = Xiβ. For each new patient with

features x∗, the predicted probability of having no event is 1/
(
1 + e−x

∗β̂
)

assuming that the

dosing practice remains unchanged for the new patient, which means the dose received by

the new patient is obtained from the same conditional distribution P (a |x) as in the training

dataset. The model contains the following variables as covariates: age, gender, BMI, short-

term average HbA1c, long-term average HbA1c, the indicator of ischemic heart disease

or congestive heart failure, the indicator of hepatocellular carcinoma, short-term number

of hospitalization, short-term number of ED-visit, and the indicator of disability. These

variables are believed to capture the most of prognostic effects. Adding extra variables is

likely to reduce the stability of the estimates.

As patients at the different risk levels are not likely to have the same IDIR, separate

analyses for different risk groups might be necessary. Hence, we divide the entire sample

into three equal stratas according to the estimated probability of no event P̂ (Yi = 0 |Xi)

with the top 5% and bottom 5% extremes excluded. Figure 7.2 shows a density plot
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of P̂ (Yi = 0 |Xi) for three stratas. Analyses are conducted for each stratas. For each

individual Xi, we let α(x) be the 75% quantile of the estimated probabilities of no event in

the strata where P̂ (Yi = 0|Xi) falls in. For each strata, 1000 patients are randomly sampled

to training dataset while the remaining around 2000 patients are left for the testing dataset.

We average the results from 100 times of repetitions of the whole procedure.

Figure 7.2: Stratification Based on the Estimated Probabilities of No Event

For each repetition, an estimate of the conditional density P (Ai|Xi) is required to con-

struct the inverse density weighting in our OWL-based method. We first uniformly split

the range between 4% and 10% into 20 equal levels and use cumulative logistic regression

(Harrell, 2001) to model the ordinal HbA1c levels. The probability of observing one level

over the other is denoted as P (Ai|Xi). We did not model the density of residuals from

a regression fitting because the conditional distribution of HbA1c is likely to be different

for patients with different conditions, and the noisiness of HbA1c measurement may lead

to large residuals resulting in extreme probabilities. Also, multinomial regression approach

may not be suitable in this case which may include too many parameters and may result

in unstable estimation. However, the OWL framework is robust to minor misspecification

of the propensity score model (Zhao et al., 2012, Chen et al., 2016), so we choose it as the

most conservative available strategy. Our numerical results in the next two section also

validate this argument.
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7.3 Distribution of the Estimated HbA1c Control Upper Bounds

The observed HbA1c measures are capped between 4% and 10%, after having the patients

with maximal HbA1c above 10 excluded. The distribution of our estimated upper bounds

using linear Kernel for the 3 stratas can be found in Figure 7.3, Figure 7.4 and Figure 7.5.

For the first strata, while the majority of patients have observed HbA1c between 5.5% and

7.5%, their estimated upper bounds are generally between 6.5% and 8%, which suggests

that most of the patients are over-controlling their blood sugar. If some of them lose the

control by 0.5% or 1%, their event risk is still below 18.5%. In fact, around 80% of the

patients have HbA1c below the suggested upper bounds while the around 20% of them

failed to control their blood sugar. Besides, 75% of patients have interval width below 1%

and the median width is 0.6%. The second strata and the third strata generally have the

similar distribution of the upper bounds except for a slight shift to the right.

The indirect methods give IDI recommendations that are dramatically different from

those from the OWL-based method. First, as we have mentioned in Section 1.4 and Section

2.4, the indirect methods can predict if patients will have desirable outcomes by simply

modeling the prognostic effects. Consequently, only a small proportion of patients, usually

smaller than 50%, have informative HbA1c upper bounds. Figure 7.3 shows in the right

column the distribution of the informative upper bounds for the Logistic Regression, the

SVM and the Random Forest in sequence. In the left column, sample dose-response curves

of the corresponding methods are presented by plotting the predicted probability of no

event against the range of HbA1c measurement. It can be inferred from the curves and the

density plots that the Logistic Regression has the least flexibility and assigns approximately

the same upper bound to all the patients. As a contrast, the Random Forest produces the

most flexible curves but results in over-spread upper bounds. The SVM is generally between

the other two approaches in terms of the flexibility, but its upper bounds are highly tilted

towards the right, which might not be realistic for most the diabetic patients.

The 2015 American Diabetes Association (ADA) Standards of Medical Care in Diabetes
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Figure 7.3: Histogram of Observed HbA1c and Estimated Upper Bounds for the 1st Strata

Figure 7.4: Histogram of Observed HbA1c and Estimated Upper Bounds for the 2nd Strata

Figure 7.5: Histogram of Observed HbA1c and Estimated Upper Bounds for the 3rd Strata
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advise the following A1C levels. 6.5 % is the stringent goal for people who can achieve this

goal without experiencing a lot of hypoglycemia episodes or other negative effects of having

lower blood glucose levels. 7 % is a reasonable A1C goal for many adults with diabetes who

are not pregnant. 7.5 % is the goal recommended for all children with diabetes. 8 % is the

less stringent goal for people with a history of severe hypoglycemia, people who have had

diabetes for many years or have difficulty achieving tighter control, and people with limited

remaining life expectancy.

The upper bounds we provided might look too high at the first glance compared with

the ADA standard. However, they are actually coherent with the standard given the age

distribution. In our dataset, 88% of the patients are above 60 years old, 50% of the patients

are over 73 years old and 20% are aged above 80 years old. Most of the patients have

diabetes for many years. Generally, if taking prescriptions from a practicing physician,

most of the patients will be targeting the 8% goal in general. Our personalized HbA1c

control intervals are expected to capture more heterogeneity among patients and therefore

may provide more informative guidance for physicians.

7.4 Average Causal Effects of the Upper Bound Recommen-

dations

As illustrated in the previous section, both our OWL-based methods and the indirect meth-

ods can provide estimates for the upper bounds of HbA1c for observations in the testing

dataset. Due to the reasons stated in Section 3.3, it is not reasonable to interpret the gap

between the shares of events of patients with doses inside IDIs and patients with doses

outside IDI as the effect of IDI recommendation. First, the distribution of estimated upper

bounds varies across different methods. The estimated bounds from OWL-based methods

are generally concentrated between 7.5% and 8.5%. For the indirect methods, the esti-

mated upper boundaries are more spread-out. Second, with the indirect methods, we can

in addition model the prognostic effect within each strata. This enables the identification



70

Figure 7.6: Fitted Outcome Trajectories and Histograms of the Estimated HbA1c Upper
Bounds from Logistic Regression, SVM, and Random Forest
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of the proportion of patients who can endure any reasonable HbA1c and the proportion

of patients whose events cannot be avoided. As a consequence, patients who are located

inside the IDIs estimated from indirect methods have much lower risk compared to their

counterpart patients outside the IDIs. Therefore, a direct comparison might overestimate

the effectiveness of the IDI recommendations estimated from the indirect methods.

To evaluate the efficacy of all the methods, we evaluate the ATE defined in Section 3.3.

Patients who had HbA1c measurement below the estimated IDIs are regarded as takers.

Patients failed to control the HbA1c below the estimated IDIs are regarded as non-takers.

We build a CBPS model using the indicator Ti = 1{Ai ∈ [aL, fU (Xi)]} as outcome against

all the other covariates Xi. In the pseudo-population weighted by P̂
(
Ti
)
/P̂
(
Ti
∣∣Xi

)
, the

standardized differences of covariates between the taker group and the non-taker group are

generally below 0.1, which indicates an acceptable balance of covariates. The ATE in our

case is defined as the gap in the share of those having events between the weighted taker

group and weighted non-taker group.

ATE =
n∑
i=1

1{Yi < 0}(1− Ti)
P (Ti|Xi)

−
n∑
i=1

1{Yi < 0}Ti
P (Ti|Xi)

In Table 7.4, the estimated average causal effects with the OWL-based methods and

indirect methods are summarized. It is clear that the OWL-based approach with linear

Kernel yields the largest ATEs among all these cases. Besides, it is apparent in the within-

strata analysis that the difficulty of achieving the threshold decrease from the 1st strata to

the 3rd strata. Because most of the methods include a larger proportion of patients into

the interval, while the corresponding ATEs decrease as the number of stratas goes up.

Combined with the results from Section 7.3, the causal effects in Table 7.4 confirm the

validity of using our OWL-based methods as a new approach to study the HbA1c control

interval because the distribution of the estimated HbA1c upper bounds is reasonable given

the current researches and the causal effect of OWL-L recommendations is larger compared

to that of the indirect methods.
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Strata 1 Strata 2 Strata 3

%taker ATE %taker ATE %inside ATE

Logistic 20.97 (19.45) 3.96 (0.53) 35.98 (22.64) 1.16 (0.12) 22.70 (15.89) 0.78 (0.14)
SVM 17.94 (14.63) 1.44 (0.07) 30.34 (22.00) 1.74 (0.07) 60.93 (21.00) 1.76 (0.09)

RF 33.03 (5.36) 2.86 (0.06) 45.68 (5.70) 1.67 (0.04) 58.79 (7.10) 1.31 (0.04)
OWL-L 90.00 (3.29) 7.42 (0.34) 91.67 (2.38) 3.28 (0.40) 93.13 (4.00) 2.73 (0.17)
OWL-K 88.80 (4.96) 4.54 (0.21) 90.52 (3.23) 2.51 (0.19) 89.32 (5.46) 1.63 (0.10)

Table 7.1: The Percentage of Takers and the ATE of Recommended HbA1c Upper Bounds
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Chapter 8

Future Work

In this dissertation, we consider the problem of Individual Dose Interval (IDI) recommen-

dation. Through the discussion of the indirect methods based on traditional outcome mod-

eling and grid search, we develop a new framework based on Outcome-Weighted-Learning

(OWL). We believe our method has several advantages. First, it is a unified framework for

both Probability Dose Interval (PDI) and Expectation Dose Interval (EDI). Second, the

modeling of the outcome, known to be susceptible to misspecification, is avoided in our

framework. Third, in contrast to the indirect methods, our method provides an informative

IDI for each patient since it is less affected by the prognostic effect. Simulation studies show

that our method has a small sample advantage over the indirect methods. In a study of the

HbA1c control upper bound, our method is proven to have better robustness and produces

recommendations of upper bounds that are more beneficial to the patients compared to the

indirect methods.

We hope that more attention will be drawn to the optimal dose interval problem. There

are several interesting open topics that deserve more discussion in the future. First, the sta-

tistical inference of IDI estimation has not been established. There are still major obstacles

due to the non-convex objective function. Second, faster convergence rates for Kernel esti-

mation can be derived, especially for the two-sided IDIs. Third, high dimensional techniques

might be integrated with this method to broaden the applications. Finally, an extension of



74

this framework to dynamic treatment regime with multiple stages might be a challenging

and rewarding direction.



75

Reference

Breiman, L. (2001), ‘Random forests’, Machine learning 45(1), 5–32.

Breiman, L. (2017), Classification and regression trees, Routledge.

Cai, T. and Tian, L. (2016), ‘Comment on: ’personalized dose finding using outcome

weighted learning”.

Chakraborty, B. and Moodie, E. (2013), Statistical methods for dynamic treatment regimes,

Springer.

Chen, G., Zeng, D. and Kosorok, M. R. (2016), ‘Personalized dose finding using outcome

weighted learning’, Journal of the American Statistical Association 111(516), 1509–1521.

Chen, J., Fu, H., He, X., Kosorok, M. R. and Liu, Y. (2017), ‘Estimating individualized

treatment rules for ordinal treatments’, arXiv preprint arXiv:1702.04755 .

Chevret, S. (2006), Statistical methods for dose-finding experiments, Vol. 24, Wiley Online

Library.

Drucker, H., Burges, C. J., Kaufman, L., Smola, A. J. and Vapnik, V. (1997), Support vector

regression machines, in ‘Advances in neural information processing systems’, pp. 155–161.

Eberts, M., Steinwart, I. et al. (2013), ‘Optimal regression rates for svms using gaussian

kernels’, Electronic Journal of Statistics 7, 1–42.



76

Fong, C., Hazlett, C., Imai, K. et al. (2018), ‘Covariate balancing propensity score for a

continuous treatment: Application to the efficacy of political advertisements’, The Annals

of Applied Statistics 12(1), 156–177.

Freedman, B. I., Shenoy, R. N., Planer, J. A., Clay, K. D., Shihabi, Z. K., Burkart, J. M.,

Cardona, C. Y., Andries, L., Peacock, T. P., Sabio, H. et al. (2010), ‘Comparison of

glycated albumin and hemoglobin a1c concentrations in diabetic subjects on peritoneal

and hemodialysis’, Peritoneal Dialysis International 30(1), 72–79.

Harrell, F. E. (2001), Ordinal logistic regression, in ‘Regression modeling strategies’,

Springer, pp. 331–343.

Henderson, R., Ansell, P. and Alshibani, D. (2010), ‘Regret-regression for optimal dynamic

treatment regimes’, Biometrics 66(4), 1192–1201.

Imai, K. and Ratkovic, M. (2014), ‘Covariate balancing propensity score’, Journal of the

Royal Statistical Society: Series B (Statistical Methodology) 76(1), 243–263.

Le Thi Hoai, A. and Tao, P. D. (1997), ‘Solving a class of linearly constrained indefinite

quadratic problems by dc algorithms’, Journal of global optimization 11(3), 253–285.

Liang, M. and Yu, M. (2018), ‘A semiparametric approach to model effect modification’,

arXiv preprint arXiv:1804.05373 .

Little, R. R., Rohlfing, C. L. and Sacks, D. B. (2011), ‘Status of hemoglobin a1c mea-

surement and goals for improvement: from chaos to order for improving diabetes care’,

Clinical chemistry 57(2), 205–214.

Lou, Z., Shao, J. and Yu, M. (2017), ‘Optimal treatment assignment to maximize expected

outcome with multiple treatments’, Biometrics .

Luedtke, A. R. and van der Laan, M. J. (2016), ‘Comment on: ’personalized dose find-

ing using outcome weighted learning”, Journal of the American Statistical Association

111(516), 1526–1530.



77

Moodie, E. E., Chakraborty, B. and Kramer, M. S. (2012), ‘Q-learning for estimating

optimal dynamic treatment rules from observational data’, Canadian Journal of Statistics

40(4), 629–645.

Moodie, E. E., Platt, R. W. and Kramer, M. S. (2009), ‘Estimating response-maximized

decision rules with applications to breastfeeding’, Journal of the American Statistical

Association 104(485), 155–165.

Nitin, S. (2010), ‘Hba1c and factors other than diabetes mellitus affecting it’, Singapore

Med J 51(8), 616–622.

Platt, J. (1999), ‘Probabilistic outputs for support vector machines and comparisons to

regularized likelihood methods’, Advances in large margin classifiers 10(3), 61–74.

Radin, M. S. (2014), ‘Pitfalls in hemoglobin a1c measurement: when results may be mis-

leading’, Journal of general internal medicine 29(2), 388–394.

Rubin, D. B. (1974), ‘Estimating causal effects of treatments in randomized and nonran-

domized studies.’, Journal of educational Psychology 66(5), 688.

Steinwart, I. and Christmann, A. (2008), Support vector machines, Springer Science &

Business Media.

Tibshirani, R. (1996), ‘Regression shrinkage and selection via the lasso’, Journal of the

Royal Statistical Society. Series B (Methodological) pp. 267–288.

Vapnik, V. (1998), Statistical learning theory. 1998, Wiley, New York.

Vapnik, V. (2013), The nature of statistical learning theory, Springer science & business

media.

Wallace, M. P. and Moodie, E. E. (2015), ‘Doubly-robust dynamic treatment regimen esti-

mation via weighted least squares’, Biometrics 71(3), 636–644.



78

Weykamp, C. (2013), ‘Hba1c: a review of analytical and clinical aspects’, Annals of labora-

tory medicine 33(6), 393–400.

Zhao, Y., Kosorok, M. R. and Zeng, D. (2009), ‘Reinforcement learning design for cancer

clinical trials’, Statistics in medicine 28(26), 3294–3315.

Zhao, Y.-Q., Zeng, D., Laber, E. B. and Kosorok, M. R. (2015), ‘New statistical learning

methods for estimating optimal dynamic treatment regimes’, Journal of the American

Statistical Association 110(510), 583–598.

Zhao, Y., Zeng, D., Rush, A. J. and Kosorok, M. R. (2012), ‘Estimating individualized

treatment rules using outcome weighted learning’, Journal of the American Statistical

Association 107(499), 1106–1118.

Zhou, X., Mayer-Hamblett, N., Khan, U. and Kosorok, M. R. (2017), ‘Residual weighted

learning for estimating individualized treatment rules’, Journal of the American Statistical

Association 112(517), 169–187.



79

Chapter 9

Appendix

A.1 Derivation of Algorithm for One-sided Dose Interval

As is claimed in Section 4.2, the DC algorithm will repeatedly update

βt+1 = arg min
β

(
S1(β)− [∇S2(βt)]T (β − βt)

)
(A.1)

We will derive the form of quadratic programming by first showing that

∇S2(β) = ∇β

(
n∑
i=1

( 1

P (Ai|Xi)

(
1− α(Xi)

)
Φ
(
Yi − S(Xi)

)
Ψ2

(
φ(Xi)

Tβ −Ai
))

+

n∑
i=1

( 1

P (Ai|Xi)
α(Xi)Φ

(
S(Xi)− Yi

)
Ψ2

(
Ai − φ(Xi)

Tβ
)))

=
n∑
i=1

1

P (Ai|Xi)

(
1− α(Xi)

)
Φ
(
Yi − S(Xi)

)
Qi(β)

φ(Xi)

ε

−
n∑
i=1

1

P (Ai|Xi)
α(Xi)Φ

(
S(Xi)− Yi

)
Q̃i(β)

φ(Xi)

ε

where Qi(β) = I(
Ai−φ(Xi)β<−ε

) and Q̃i(β) = I(
Ai−φ(Xi)β>ε

)
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Following that, we have

∇S2(βt)β =
n∑
i=1

1

P (Ai|Xi)

(
1− α(Xi)

)
Φ
(
Yi − S(Xi)

)
Qi(β

t)
φ(Xi)β

ε

+
n∑
i=1

1

P (Ai|Xi)
α(Xi)Φ

(
S(Xi)− Yi

)
Q̃i(β

t)(
−φ(Xi)β

ε
)

Therefore,

∇S2(βt)β +
n∑
i=1

1

P (Ai|Xi)

(
1− α(Xi)

)
Φ
(
Yi − S(Xi)

)
Qi(β

t)(−Ai
ε

)

+

n∑
i=1

1

P (Ai|Xi)
α(Xi)Φ

(
S(Xi)− Yi

)
Q̃i(β

t)
Ai
ε

=
n∑
i=1

1

P (Ai|Xi)

(
1− α(Xi)

)
Φ
(
Yi − S(Xi)

)
Qi(β

t)
(φ(Xi)β −Ai

ε

)
+

n∑
i=1

1

P (Ai|Xi)
α(Xi)Φ

(
S(Xi)− Yi

)
Q̃i(β

t)
(Ai − φ(Xi)β

ε

)
(A.2)
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By plugging in the previous results into the DC procedure,

βt+1 = arg min
β

S1(β)− [∇S2(βt)]T (β − βt)

= arg min
β

S1(β)− [∇S2(βt)]Tβ

= arg min
β

S1(β)−
(
A.2

)
=

n∑
i=1

1

P (Ai|Xi)

(
1− α(Xi)

)
Φ
(
Yi − S(Xi)

)[
Ψ1

(
φ(Xi)β,Ai

)
−Qi(βt)

(φ(Xi)β −Ai
ε

)]
+

n∑
i=1

1

P (Ai|Xi)
α(Xi)Φ

(
S(Xi)− Yi

)[
Ψ1

(
Ai, φ(Xi)β

)
− Q̃i(βt)

(Ai − φ(Xi)β

ε

)]
+
λn
2
βTK(Xi, Xi)β

=
n∑
i=1

1

P (Ai|Xi)

(
1− α(Xi)

)
Φ
(
Yi − S(Xi)

)[
Wi(β

t)Ψ1

(
φ(Xi)β,Ai

)
+Qi(β

t)Ψ1

(
Ai, φ(Xi)β

)]

+
n∑
i=1

1

P (Ai|Xi)
α(Xi)Φ

(
S(Xi)− Yi

)[
W̃i(β

t)Ψ1

(
Ai, φ(Xi)β

)
+ Q̃i(β

t)Ψ1

(
φ(Xi)β,Ai

)]
+
λn
2
βTK(Xi, Xi)β (A.3)

where Wi(β) = I(Ai−φ(Xi)β>−ε) and W̃i(β) = I(Ai−φ(Xi)β<ε).

To solve the optimization above problem, we now show that it is essentially a quadratic

programming problem which can be easily solved using standard packages.

Starting from equation (A.3), let Hi =
I
(
Yi>S(Xi)

)(
1−α(Xi)

)
P (Ai|Xi)λn and H̃i =

I
(
S(Xi)>Yi

)
α(Xi)

P (Ai|Xi)λn ,

the equation (A.3) can be written as

arg min
β

n∑
i=1

(HiW
t
i + H̃iQ̃

t
i)Ψ1

(
φ(Xi)β,Ai

)
+

n∑
i=1

(HiQ
t
i + H̃iW̃

t
i )Ψ1

(
Ai, φ(Xi)β

)
+

1

2
βTK(Xi, Xi)β
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which is equivalent to

arg min
β,b

n∑
i=1

(HiW
t
i + H̃iQ̃

t
i)ξi +

n∑
i=1

(HiQ
t
i + H̃iW̃

t
i )ξ̃i +

1

2
βTK(Xi, Xi)β

s.t. ξi − φ(Xi)β − b+Ai ≥ 0, ξi ≥ 0

ξ̃i + φ(Xi)β + b−Ai ≥ 0, ξ̃i ≥ 0

Applying the Lagrangian multiplier, the problem above is equivalent to

arg maxαi,α̃i,µi,µ̃i

n∑
i=1

(HiW
t
i + H̃iQ̃

t
i)ξi +

n∑
i=1

(HiQ
t
i + H̃iW̃

t
i )ξ̃i +

1

2
βTK(Xi, Xi)β

−
n∑
i=1

αi(ξi − φ(Xi)β − b+Ai)−
n∑
i=1

α̃i(ξ̃i + φ(Xi)β + b−Ai)−
n∑
i=1

uiξi −
n∑
i=1

ũiξ̃i

s.t. β +

n∑
i=1

αiXi −
n∑
i=1

α̃iXi = 0

n∑
i=1

αi −
n∑
i=1

α̃i = 0

HiW
t
i + H̃iQ̃

t
i − αi − µi = 0 ∀i = 1, . . . , n

HiQ
t
i + H̃iW̃

t
i − α̃i − µ̃i = 0 ∀i = 1, . . . , n (A.4)

Combined with the constraint that αi ≥ 0, α̃i ≥ 0, µi ≥ 0, µ̃i ≥ 0, we have the final

quadratic programming problem as

arg min
β,b

1

2

n∑
i=1

n∑
j=1

(α̃i − αi) < Xi, Xj > (α̃j − αj)−
n∑
i=1

(α̃i − αi)Ai

s.t.
n∑
i=1

αi −
n∑
i=1

α̃i = 0

0 ≤ αi ≤ HiW
t
i + H̃iQ̃

t
i

0 ≤ α̃i ≤ HiQ
t
i + H̃iW̃

t
i (A.5)
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where the solution of β are attained by

β̂ =
n∑
i=1

(α̃i − αi)Xi

A.2 Derivation of Algorithm for Two-sided Dose Interval

In order to derive the final quadratic programming problem from the DC minimization

objective function

βt+1 = arg min
β

(
S1(β)− [∇S2(βt)]T (β − βt)

)
We point out that

S1(fL, fU ) =

n∑
i=1

HiΨ
out
1 (fL, Ai, fU ) +

n∑
i=1

H̃iΨ
in
1 (fL, Ai, fU ) +

1

2
||fL||22 +

1

2
||fU ||22

and

S2(fL, fU ) =

n∑
i=1

HiΨ
out
2 (fL, Ai, fU ) +

n∑
i=1

H̃iΨ
in
2 (fL, Ai, fU )

where Hi and H̃i are defined as in the previous section.

It follows that

∇S2(f tL, f
t
U )

βL
βU

 =

n∑
i=1

Hi

(
Xi
ε 1Ai<(f tL−ε) −

Xi
ε 1Ai>(f tU+ε)

)βL
βU


+

n∑
i=1

H̃i

(
Xi
ε 1Ai<(f tL+ε)

−Xi
ε 1Ai>(f tU−ε)

)βL
βU


Denote WL

i = 1Ai>(f tL−ε), W̃
L
i = 1Ai>(f tL+ε), Q

L
i = 1Ai<(f tL−ε), Q̃

L
i = 1Ai<(f tL+ε) and

WU
i = 1Ai<(f tU+ε), W̃

U
i = 1Ai<(f tU−ε), Q

U
i = 1Ai>(f tU+ε), Q̃

U
i = 1Ai>(f tU−ε).
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Then we have

arg min
(XiβL+bL)<(XiβU+bU )

S1(βL, βU )−∇S2(βL, βU )

βL − βtL
βU − βtU


arg min

(XiβL+bL)<(XiβU+bU )
S1(βL, βU )−∇S2(βL, βU )

βL
βU


=

n∑
i=1

Hi

[
WL
i Ψ1(fL(Xi)−Ai) +QLi Ψ1(Ai − fL(Xi))

]
+

n∑
i=1

Hi

[
WU
i Ψ1(Ai − fU (Xi)) +QUi Ψ1(fU (Xi)−Ai)

]
+

n∑
i=1

H̃i

[
W̃L
i Ψ1(fL(Xi)−Ai) + Q̃Li Ψ1(Ai − fL(Xi))

]
+

n∑
i=1

H̃i

[
W̃U
i Ψ1(Ai − fU (Xi)) + Q̃Ui Ψ1(fU (Xi)−Ai)

]
+

1

2
||fL||22 +

1

2
||fU ||22 (A.6)

Starting from here, we use the primal-dual property to derive the final quadratic pro-

gramming form. The primal problem is defined as follows.

arg min
n∑
i=1

(HiW
L
i + H̃iW̃

L
i )ξLi +

n∑
i=1

(HiQ
L
i + H̃iQ̃

L
i )ξ̃Li

+
n∑
i=1

(HiQ
U
i + H̃iQ̃

U
i )ξUi +

n∑
i=1

(HiW
U
i + H̃iW̃

U
i )ξ̃Ui

+
1

2
||fL||22 +

1

2
||fU ||22

S.t. (ξLi − φ(Xi)βL − bL +Ai) ≥ 0 ξLi ≥ 0

(ξ̃Li + φ(Xi)βL + bL −Ai) ≥ 0 ξ̃Li ≥ 0

(ξUi − φ(Xi)βU − bR +Ai) ≥ 0 ξUi ≥ 0

(ξ̃Ui + φ(Xi)βU + bR −Ai) ≥ 0 ξ̃Ui ≥ 0

(φ(Xi)βU + bR − φ(Xi)βL − bL) ≥ 2ε (A.7)
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The corresponding Dual problem after applying Lagrangian multiplier is as following.

arg max
n∑
i=1

(HiW
L
i + H̃iW̃

L
i )ξLi +

n∑
i=1

(HiQ
L
i + H̃iQ̃

L
i )ξ̃Li

+
n∑
i=1

(HiQ
U
i + H̃iQ̃

U
i )ξUi +

n∑
i=1

(HiW
U
i + H̃iW̃

U
i )ξ̃Ui

+
1

2
||fL||22 +

1

2
||fU ||22

−
n∑
i=1

αLi (ξLi − φ(Xi)βL − bL +Ai)−
n∑
i=1

µLi ξ
L
i

−
n∑
i=1

α̃Li (ξ̃Li + φ(Xi)βL + bL −Ai)−
n∑
i=1

µ̃Li ξ̃
L
i

−
n∑
i=1

αUi (ξUi − φ(Xi)βU − bR +Ai)−
n∑
i=1

µUi ξ
U
i

−
n∑
i=1

α̃Ui (ξ̃Ui + φ(Xi)βU + bR −Ai)−
n∑
i=1

µ̃Ui ξ̃
U
i

−
n∑
i=1

mi(φ(Xi)βU + bR − φ(Xi)βL − bL − 2ε)

s.t. βL +

n∑
i=1

αLi φ(Xi)−
n∑
i=1

α̃Li φ(Xi) +

n∑
i=1

mL
i φ(Xi) = 0

βU +

n∑
i=1

αUi φ(Xi)−
n∑
i=1

α̃Ui φ(Xi)−
n∑
i=1

mU
i φ(Xi) = 0

n∑
i=1

αLi − α̃Li +mi = 0

n∑
i=1

αUi − α̃Ui −mi = 0

HiW
L
i + H̃iW̃

L
i − αLi − µLi = 0, ∀i = 1, . . . , n

HiQ
L
i + H̃iQ̃

L
i − αLi − µLi = 0, ∀i = 1, . . . , n

HiQ
U
i + H̃iQ̃

U
i − αLi − µLi = 0, ∀i = 1, . . . , n

HiW
U
i + H̃iW̃

U
i − αLi − µLi = 0, ∀i = 1, . . . , n
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Plugging in the constraint results in the following simplified form.

arg min
β,b

1

2

n∑
i=1

n∑
j=1

(α̃Li − αLi −mi) < Xi, Xj > (α̃Lj − αLj −mj)

+
1

2

n∑
i=1

n∑
j=1

(α̃Ui − αUi +mi) < Xi, Xj > (α̃Uj − αUj +mj)

−
n∑
i=1

(α̃Li − αLi + α̃Ui − αUi )Ai − 2ε
n∑
i=1

mi

s.t. 0 ≤ αLi ≤ HiW
L
i + H̃iW̃

L
i

0 ≤ α̃Li ≤ HiQ
L
i + H̃iQ̃

L
i

0 ≤ αUi ≤ HiQ
U
i + H̃iQ̃

U
i

0 ≤ α̃Ui ≤ HiW
U
i + H̃iW̃

U
i

0 ≤ mi

n∑
i=1

αLi − α̃Li +mi = 0

n∑
i=1

αUi − α̃Ui −mi = 0 (A.8)

After solving the problem above,

β̂L =
n∑
i=1

(α̃Li − αLi −mi)Xi

β̂U =
n∑
i=1

(α̃Ui − αUi +mi)Xi

A.3 A Proof of Theorem 5.2.1

Proof. First, let f∗ be a function such that f∗ ∈ F , {f : ∀x ∈ X , P (Y (f(x), x) > S(x)) =

α(x)}, and then let f ′ be a function that f ′ 6= f∗.

Denote X0 = {x : x ∈ X ,∃f ∈ F s.t. f ′(x) = f(x)}, X1 = {x : x ∈ X , f ′(x) >

maxf∈F f(x)}, and X2 = {x : x ∈ X , f ′(x) < minf∈F f(x)}
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Therefore, under the ignorability assumption, P (Y > S(x)|A = f ′(x), x) = P (Y (f ′(x), x) >

S(x)) > α(x) for x ∈ X1, while P (Y > S(x)|A = f ′(x), x) = P (Y (f ′(x), x) > S(x)) < α(x)

for x ∈ X2.

Then,

RI(f
′)−RI(f∗)

=E
[ 1

P (A |X)

((
1− α(X)

)
I
(
Y > S(X)

)(
I
(
A < f ′(X)

)
− I
(
A < f∗(X)

))
+ α(X)I

(
Y < S(X)

)(
I
(
A > f ′(X)

)
− I
(
A > f∗(X)

)))]
=E

[∫ f ′(X)

f∗(X)

((
1− α(X)

)
P
(
Y > S(X)|A = a,X

)
− α(X)P

(
Y < S(X)|A = a,X

))
da

∣∣∣∣X ∈ X1

]
P (X ∈ X1) (A1)

+ E

[∫ f∗(X)

f ′(X)

(
−
(
1− α(X)

)
P
(
Y > S(X)|A = a,X

)
+ α(X)P

(
Y < S(X)|A = a,X

))
da

∣∣∣∣X ∈ X2

]
P
(
X ∈ X2

)
(A2)

+ E

[∫ f ′(X)

f∗(X)

((
1− α(X)

)
α(X)− α(X)

(
1− α(X)

))
da

∣∣∣∣X ∈ X0

]
P
(
X ∈ X0

)
(A3)

Where

(A3) =0

(A1) =E

[∫ f ′(X)

f∗(X)

(
P
(
Y > S(X)|A = a,X

)
− α(X)

)
da

∣∣∣∣X ∈ X1

]
P
(
X ∈ X1

)
=E

[∫ f ′(X)

maxf∈F f(X)

(
P
(
Y > S(X)|A = a,X

)
− α(X)

)
da

∣∣∣∣X ∈ X1

]
P
(
X ∈ X1

)
≥0

>0 if P (X ∈ X1) 6= 0
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(A2) =E

[∫ f∗(X)

f ′(X)

(
− P

(
Y > S(X)|A = a,X

)
+ α(X)

)
da

∣∣∣∣X ∈ X2

]
P (X ∈ X2)

=E

[∫ minf∈F f(X))

f ′(X)

(
− P

(
Y > S(X)|A = a,X

)
+ α(X)

)
da

∣∣∣∣X ∈ X2

]
P (X ∈ X2)

≥0

>0 if P (X ∈ X2) 6= 0

Therefore, RI(f
′)− RI(f∗) ≥ 0. And RI(f

′)− RI(f∗) = 0 if and only if P (X ∈ X1) =

P (X ∈ X2) = 0, i.e, f ′ ∈ F . Hence any possible optimal left bound function fI,L,opt(x) =

arg minf RI(f) belongs to F , and according to the assumption of partial monotonicity for

PDI (3.1) that P
(
Y (aL, x) > S(x)

)
≤ α(x), P

(
Y (aU , x) > S(x)

)
≥ α(x) and P (Y (a, x) >

S(x)) across α(x) at most once, we have that that P
(
Y
(
fI,L,opt(x), x

)
> S(x)

)
= α(x)

and P
(
Y
(
a′(x), x

)
> S(x)

)
≥ α(x) for ∀x ∈ X , where a′(x) is an arbitrary measurable

function s.t. fI,L,opt(x) ≤ a′(x) ≤ aU . Then theorem 5.2.1 is proved.

A.4 A Proof of Corollary 5.2.1

Proof. First,

FL , {f : ∀x ∈ X , P (Y (f(x), x) > S(x)) = α(x) and ∃a∗ < f(x), P (Y (a∗, x) > S(x)) ≤ α(x)}

FU , {f : ∀x ∈ X , P (Y (f(x), x) > S(x)) = α(x) and ∃a∗ > f(x), P (Y (a∗, x) > S(x)) ≤ α(x)}

Let f∗L ∈ FL and f∗U ∈ FU , then for arbitrary f ′L and f ′U , the sample space of X can be
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decomposed as X = X0 ∪ X1 ∪ X2 ∪ X3 ∪ X4 where

X0 = {x : x ∈ X , ∃fL ∈ FL s.t. f ′L(x) = fL(x) and ∃fU ∈ FU s.t. f ′U (x) = fU (x)}

X1 = {x : x ∈ X , max
fL∈FL

fL(x) < f ′L(x) ≤ f ′U (x) < min
fU∈FU

fU (x)}

X2 = {x : x ∈ X , f ′L(x) < min
fL∈FL

fL(x) ≤ max
fU∈FU

fU (x) < f ′U (x)}

X3 = {x : x ∈ X , f ′L(x) ≤ min
fL∈FL

fL(x) ≤ f ′U (x) ≤ max
fU∈FU

fU (x)}

X4 = {x : x ∈ X , min
fL∈FL

fL(x) ≤ f ′L(x) ≤ max
fU∈FU

fU (x) ≤ f ′U (x)}

X5 = {x : x ∈ X , f ′L(x) ≤ f ′U (x) < min
fL∈FL

fL(x) ≤ max
fU∈FU

fU (x)}

X6 = {x : x ∈ X , min
fL∈FL

fL(x) ≤ max
fU∈FU

fU (x) < f ′L(x) ≤ f ′U (x)}

then

RI(f
′)−RI(f∗)

=E
[ 1

P (A |X)

((
1− α(x)

)
I
(
Y > S(X)

)(
I(A /∈ [f ′L(X), f ′U (X)])− I(A /∈ [f∗L(X), f∗U (X)])

)
+ α(x)I

(
Y < S(X)

)(
I(A ∈ [f ′L(X), f ′U (X)])− I(A ∈ [f∗L(X), f∗U (X)])

))]
=E

[
. . .

∣∣∣∣X ∈ X1

]
P (X ∈ X1) (B1)

+E

[
. . .

∣∣∣∣X ∈ X2

]
P (X ∈ X2) (B2)

+E

[
. . .

∣∣∣∣X ∈ X3

]
P (X ∈ X3) (B3)

+E

[
. . .

∣∣∣∣X ∈ X4

]
P (X ∈ X4) (B4)

+E

[
. . .

∣∣∣∣X ∈ X5

]
P (X ∈ X5) (B5)

+E

[
. . .

∣∣∣∣X ∈ X6

]
P (X ∈ X6) (B6)

where (B3) ≥ 0, (B3) > 0 if P (X ∈ X3) > 0, and (B4) ≥ 0, (B4) > 0 if P (X ∈ X3) > 0,

according to the results of theorem 5.2.1. These results can be directly applied since it is
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easily to see that within X3 and X4 the assumption meets the requirement of theorem 5.2.1.

(B0) =0

(B1) =E

[∫ f ′L(X)

f∗L(X)

((
1− α(X)

)
P (Y > S(X)|A = a,X)− α(X)P (Y < S(X)|A = a,X)

)
da

+

∫ f∗U (X)

f ′U (X)

((
1− α(X)

)
P (Y > S(X)|A = a,X)

− α(X)P (Y < S(X)|A = a,X)
)
da

∣∣∣∣X ∈ X1

]
P (X ∈ X1)

=E

[ ∫ f ′L(X)

maxfL∈FL fL(X)

(
P (Y > S(X)|A = a,X)− α(X)

)
da

+

∫ minfU∈FU fU (X)

f ′U (X)

(
P (Y > S(X)|A = a,X)− α(X)

)
da

∣∣∣∣X ∈ X1

]
P (X ∈ X1)

≥0

>0 if P (X ∈ X1) 6= 0

(B2) =E

[ ∫ f∗L(X)

f ′L(X)

(
−
(
1− α(X)

)
P (Y > S(X)|A = a,X) + α(X)P (Y < S(X)|A = a,X)

)
da

+

∫ f ′U (X)

f∗U (X)

(
−
(
1− α(X)

)
P (Y > S(X)|A = a,X)

+ α(X)P (Y < S(X)|A = a,X)
)
da

∣∣∣∣X ∈ X2

]
P (X ∈ X2)

=E

[ ∫ minfL∈FL fL(X)

f ′L(X)

(
− P (Y > S(X)|A = a,X) + α(X)

)
da

+

∫ f ′U (X)

maxfU∈FU fU (X)

(
− P (Y > S(X)|A = a,X) + α(X)

)
da

∣∣∣∣X ∈ X2

]
P (X ∈ X2)

≥0

>0 if P (X ∈ X2) 6= 0
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(B5) =E

[∫ f ′U (X)

f ′L(X)

(
−
(
1− α(X)

)
P (Y > S(X)|A = a,X) + α(X)P (Y < S(X)|A = a,X)

)
da

+

∫ f∗L(X)

f∗U (X)

((
1− α(X)

)
P (Y > S(X)|A = a,X)

− α(X)P (Y < S(X)|A = a,X)
)
da

∣∣∣∣X ∈ X5

]
P (X ∈ X5)

=E

[ ∫ f ′U (X)

f ′L(X)

(
− P (Y > S(X)|A = a,X) + α(X)

)
da

+

∫ f∗L(X)

f∗U (X)

(
P (Y > S(X)|A = a,X)− α(X)

)
da

∣∣∣∣X ∈ X5

]
P (X ∈ X5)

≥0

>0 if P (X ∈ X5) 6= 0

(B6) =E

[∫ f ′U (X)

f ′L(X)

(
−
(
1− α(X)

)
P (Y > S(X)|A = a,X) + α(X)P (Y < S(X)|A = a,X)

)
da

+

∫ f∗L(X)

f∗U (X)

((
1− α(X)

)
P (Y > S(X)|A = a,X)

− α(X)P (Y < S(X)|A = a,X)
)
da

∣∣∣∣X ∈ X6

]
P (X ∈ X6)

=E

[ ∫ f ′U (X)

f ′L(X)

(
− P (Y > S(X)|A = a,X) + α(X)

)
da

+

∫ f∗L(X)

f∗U (X)

(
P (Y > S(X)|A = a,X)− α(X)

)
da

∣∣∣∣X ∈ X6

]
P (X ∈ X6)

≥0

>0 if P (X ∈ X6) 6= 0

Therefore, RI(f
′
U , f

′
U ) − RI(f∗L, f∗U ) ≥ 0, and RI(f

′
U , f

′
U ) − RI(f∗L, f∗U ) = 0 if and only

if P (X /∈ X0) = 0. Hence for any optimal two-sided bound functions [fI,L,opt, fI,U,opt] =

arg minfL≤fU RI(fL, fU ), we have fI,L,opt ∈ FL and fI,L,opt ∈ FU . According to the assump-
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tion of partial unimodality for PDI (3.2) that P
(
Y (aL, x) > S(x)

)
≤ α(x), P

(
Y (aU , x) >

S(x)
)
≤ α(x), ∃a∗ ∈ [aL, aU ], P (Y (a∗, x) > S(x)) ≥ α(x) and P (Y (a, x) > S(x)) cross

α(x) at most twice as a goes from aL to aU , we have that that P
(
Y
(
fI,L,opt(x), x

)
> S(x)

)
=

P
(
Y
(
fI,U,opt(x), x

)
> S(x)

)
= α(x) and P

(
Y
(
a′(x), x

)
> S(x)

)
≥ α(x) for ∀x ∈ X ,

where a′(x) is an arbitrary measurable function s.t. fI,L,opt(x) ≤ a′(x) ≤ fI,U,opt(x).

A.5 A Proof of Theorem 5.2.2

Proof. The proof of theorem 5.2.2 can be easily adapted from theorem 5.2.1.

First, let f∗ be a function such that f∗ ∈ F , {f : ∀x ∈ X , E [Y (f(x), x)] = S(x)}, and

then let f ′ be a function that f ′ 6= f∗.

Denote X0 = {x : x ∈ X ,∃f ∈ F s.t. f ′(x) = f(x)}, X1 = {x : x ∈ X , f ′(x) >

maxf∈F f(x)}, and X2 = {x : x ∈ X , f ′(x) < minf∈F f(x)}

Therefore, under the ignorability assumption, E
[
Y |A = f ′(x), X = x

]
= E

[
Y (f ′(x), x)

]
>

S(x) for x ∈ X1, while E
[
Y |A = f ′(x), X = x

]
= E

[
Y (f ′(x), x)

]
< S(x) for x ∈ X2.
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Then,

Rh(f ′)−Rh(f∗)

=E
[ 1

P (A |X)

(
1

2

(
Y − S(X)

)
+

(
I
(
A < f ′(X)

)
− I
(
A < f∗(X)

))
+

1

2

(
S(X)− Y

)
+

(
I
(
A > f ′(X)

)
− I
(
A > f∗(X)

)))]
=E

[∫ f ′(X)

f∗(X)

(1

2
E
[(
Y − S(X)

)
+
|A = a,X

]
− 1

2
E
[(
S(X)− Y

)
+
|A = a,X

])
da

∣∣∣∣X ∈ X1

]
P (X ∈ X1) (A1)

+ E

[∫ f∗(X)

f ′(X)

(
− 1

2
E
[(
Y − S(X)

)
+
|A = a,X

]
+

1

2
E

[(
S(X)− Y

)
+
|A = a,X

])
da

∣∣∣∣X ∈ X2

]
P (X ∈ X2) (A2)

+ E

[∫ f ′(X)

f∗(X)

(1

4
E
[∣∣∣Y − E[Y (a,X)

]∣∣∣∣∣∣∣A = a,X
]

− 1

4
E
[∣∣∣Y − E[Y (a,X)

]∣∣∣∣∣∣∣A = a,X
])
da

∣∣∣∣X ∈ X0

]
P (X ∈ X0) (A3)
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Where

(A3) =0

(A1) =E

[∫ f ′(X)

f∗(X)

(1

2
E
[(
Y − S(X)

)
+
−
(
S(X)− Y

)
+
|A = a,X

])
da

∣∣∣∣X ∈ X1

]
P (X ∈ X1)

=E

[∫ f ′(X)

maxf∈F f(X)

(1

2
E
[(
Y − S(X)

)
+
−
(
S(X)− Y

)
+
|A = a,X

])
da

∣∣∣∣X ∈ X1

]
P (X ∈ X1)

≥E

[∫ f ′(X)

maxf∈F f(X)

(1

2
E
[
(Y − E

[
Y (a,X)

]
)+

− (E
[
Y (a,X)

]
− Y )+|A = a,X

])
da

∣∣∣∣X ∈ X1

]
P (X ∈ X1)

=0

>0 if P (X ∈ X1) 6= 0

(A2) =E

[∫ f∗(X)

f ′(X)

(1

2
E
[(
S(X)− Y

)
+
−
(
Y − S(X)

)
+
|A = a,X

])
da

∣∣∣∣X ∈ X2

]
P (X ∈ X2)

=E

[∫ minf∈F f(X))

f ′(X)

(1

2
E
[(
S(X)− Y

)
+
−
(
Y − S(X)

)
+
|A = a,X

])
da

∣∣∣∣X ∈ X2

]
P (X ∈ X2)

≥E

[∫ minf∈F f(X))

f ′(X)

(1

2
E
[
(E
[
Y (a,X)

]
− Y )+

− (Y − E
[
Y (a,X)

]
)+|A = a,X

])
da

∣∣∣∣X ∈ X2

]
P (X ∈ X2)

=0

>0 if P (X ∈ X2) 6= 0

Therefore, Rh(f ′)−Rh(f∗) ≥ 0. And Rh(f ′)−Rh(f∗) = 0 if and only if P (X ∈ X1) =

P (X ∈ X2) = 0, i.e, f ′ ∈ F . Hence any possible optimal left bound function fh,L,opt(x) =

arg minf Rh(f) belongs to F , and according to the assumption of partial monotonicity for
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EDI (3.3) that E [Y (aL, x)] ≤ S(x), E [Y (aU , x)] ≥ S(x) and E [Y (a, x)] across S(x) at

most once, we have that that E
[
Y
(
fh,L,opt(x), x

)]
= S(x) and E [Y (a′(x), x)] ≥ S(x) for

∀x ∈ X , where a′(x) is an arbitrary measurable function s.t. fI,L,opt(x) ≤ a′(x) ≤ aU . Then

theorem 5.2.1 is proved.

A.6 A Proof of Corollary 5.2.2

Proof. Similarly as the previous theorem,

FL , {f : ∀x ∈ X , E [Y (f(x), x)] = S(x) and ∃a∗ < f(x), E[Y (a∗, x)] < S(x)}

FU , {f : ∀x ∈ X , E [Y (f(x), x)] = S(x) and ∃a∗ > f(x), E[Y (a∗, x)] < S(x)}

Let f∗L ∈ FL and f∗U ∈ FU , then for arbitrary f ′L and f ′U , the sample space of X can be

decomposed as X = X0 ∪ X1 ∪ X2 ∪ X3 ∪ X4 where

X0 = {x : x ∈ X , ∃fL ∈ FL s.t. f ′L(x) = fL(x) and ∃fU ∈ FU s.t. f ′U (x) = fU (x)}

X1 = {x : x ∈ X , max
fL∈FL

fL(x) < f ′L(x) ≤ f ′U (x) < min
fU∈FU

fU (x)}

X2 = {x : x ∈ X , f ′L(x) < min
fL∈FL

fL(x) ≤ max
fU∈FU

fU (x) < f ′U (x)}

X3 = {x : x ∈ X , f ′L(x) ≤ min
fL∈FL

fL(x) ≤ f ′U (x) ≤ max
fU∈FU

fU (x)}

X4 = {x : x ∈ X , min
fL∈FL

fL(x) ≤ f ′L(x) ≤ max
fU∈FU

fU (x) ≤ f ′U (x)}

X5 = {x : x ∈ X , f ′L(x) ≤ f ′U (x) < min
fL∈FL

fL(x) ≤ max
fU∈FU

fU (x)}

X6 = {x : x ∈ X , min
fL∈FL

fL(x) ≤ max
fU∈FU

fU (x) < f ′L(x) ≤ f ′U (x)}



96

then

RI(f
′)−RI(f∗)

=E
[ 1

P (A |X)

(
(1− α)

(
Y − S(X)

)
+

(
I(A /∈ [f ′L(X), f ′U (X)])− I(A /∈ [f∗L(X), f∗U (X)])

)
+ α

(
S(X)− Y

)
+

(
I(A ∈ [f ′L(X), f ′U (X)])− I(A ∈ [f∗L(X), f∗U (X)])

))]
=E
[
. . .

∣∣∣∣X ∈ X1

]
P (X ∈ X1) (B1)

+E
[
. . .

∣∣∣∣X ∈ X2

]
P (X ∈ X2) (B2)

+E
[
. . .

∣∣∣∣X ∈ X3

]
P (X ∈ X3) (B3)

+E
[
. . .

∣∣∣∣X ∈ X4

]
P (X ∈ X4) (B4)

+E
[
. . .

∣∣∣∣X ∈ X5

]
P (X ∈ X5) (B5)

+E
[
. . .

∣∣∣∣X ∈ X6

]
P (X ∈ X6) (B6)

where (B3) ≥ 0, (B3) > 0 if P (X ∈ X3) > 0, and (B4) ≥ 0, (B4) > 0 if P (X ∈ X3) > 0,

according to the results of theorem 5.2.2. These results can be directly applied since it is

easily to see that within X3 and X4 the assumption meets the requirement of theorem 5.2.2.
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(B0) =0

(B1) =E

[ ∫ f ′L(X)

f∗L(X)

(1

2
E
[(
Y − S(X)

)
+
|A = a,X

]
− 1

2
E
[(
S(X)− Y

)
+
|A = a,X

])
da

+

∫ f∗U (X)

f ′U (X)

(1

2
E
[(
Y − S(X)

)
+
|A = a,X

]
− 1

2
E
[(
S(X)− Y

)
+
|A = a,X

])
da

∣∣∣∣X ∈ X1

]
P (X ∈ X1)

=E

[∫ f ′L(X)

maxfL∈FL fL(X)

(
1

2
E
[(
Y − S(X)

)
+
−
(
S(X)− Y

)
+
|A = a,X

])
da

+

∫ minfU∈FU fU (X)

f ′U (X)

(
1

2
E
[(
Y − S(X)

)
+

−
(
S(X)− Y

)
+
|A = a,X

])
da

∣∣∣∣X ∈ X1

]
P (X ∈ X1)

≥E

[∫ f ′L(X)

maxfL∈FL fL(X)

(
1

2
E
[(
Y − E

[
Y (a,X)

])
+
−
(
E
[
Y (a,X)

]
− Y

)
+
|A = a,X

])
da

+

∫ minfU∈FU fU (X)

f ′U (X)

(
1

2
E
[(
Y − E

[
Y (a,X)

])
+

−
(
E
[
Y (a,X)

]
− Y

)
+
|A = a,X

])
da

∣∣∣∣X ∈ X1

]
P (X ∈ X1)

=0

>0 if P (X ∈ X1) 6= 0
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(B2) =E

[∫ f∗L(X)

f ′L(X)

(
− 1

2
E
[(
Y − S(X)

)
+
|A = a,X

]
+

1

2
E
[(
S(X)− Y

)
+
|A = a,X

])
da

+

∫ f ′U (X)

f∗U (X)

(
− 1

2
E
[(
Y − S(X)

)
+
|A = a,X

]
+

1

2
E
[(
S(X)− Y

)
+
|A = a,X

])
da

∣∣∣∣X ∈ X2

]
P (X ∈ X2)

=E

[∫ minfL∈FL fL(X)

f ′L(X)

(
1

2
E
[
−
(
Y − S(X)

)
+

+
(
S(X)− Y

)
+
|A = a,X

])
da

+

∫ f ′U (X)

maxfU∈FU fU (X)

(
1

2
E
[
−
(
Y − S(X)

)
+

+
(
S(X)− Y

)
+
|A = a,X

])
da

∣∣∣∣X ∈ X2

]
P (X ∈ X2)

≥E

[∫ minfL∈FL fL(X)

f ′L(X)

(
1

2
E
[
−
(
Y − E[Y (a,X)]

)
+

+
(
E[Y (a,X)]− Y

)
+
|A = a,X

])
da

+

∫ f ′U (X)

maxfU∈FU fU (X)

(
1

2
E
[
−
(
Y − E[Y (a,X)]

)
+

+
(
E[Y (a,X)]− Y

)
+
|A = a,X

])
da

∣∣∣∣X ∈ X1

]
P (X ∈ X1)

=0

>0 if P (X ∈ X2) 6= 0
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(B5) =E

[∫ f ′U (X)

f ′L(X)

(
− 1

2
E
[(
Y − S(X)

)
+
|A = a,X

]
+

1

2
E
[(
S(X)− Y

)
+
|A = a,X

])
da

+

∫ f∗L(X)

f∗U (X)

(
1

2
E
[(
Y − S(X)

)
+
|A = a,X

]
− 1

2
E
[(
S(X)− Y

)
+
|A = a,X

])
da

∣∣∣∣X ∈ X5

]
P (X ∈ X5)

=E

[∫ f ′U (X)

f ′L(X)

(
1

2
E
[
−
(
Y − S(X)

)
+

+
(
S(X)− Y

)
+
|A = a,X

])
da

+

∫ f∗L(X)

f∗U (X)

(
1

2
E
[(
Y − S(X)

)
+

−
(
S(X)− Y

)
+
|A = a,X

])
da

∣∣∣∣X ∈ X5

]
P (X ∈ X5)

≥E

[∫ f ′U (X)

f ′L(X)

(
1

2
E
[
−
(
Y − E[Y (a,X)]

)
+

+
(
E[Y (a,X)]− Y

)
+
|A = a,X

])
da

+

∫ f∗L(X)

f∗U (X)

(
1

2
E
[(
Y − E[Y (a,X)]

)
+

−
(
E[Y (a,X)]− Y

)
+
|A = a,X

])
da

∣∣∣∣X ∈ X5

]
P (X ∈ X5)

=0

>0 if P (X ∈ X5) 6= 0
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(B6) =E

[∫ f ′U (X)

f ′L(X)

(
− 1

2
E
[(
Y − S(X)

)
+
|A = a,X

]
+

1

2
E
[(
S(X)− Y

)
+
|A = a,X

])
da

+

∫ f∗L(X)

f∗U (X)

(
1

2
E
[(
Y − S(X)

)
+
|A = a,X

]
− 1

2
E
[(
S(X)− Y

)
+
|A = a,X

])
da

∣∣∣∣X ∈ X6

]
P (X ∈ X6)

=E

[∫ f ′U (X)

f ′L(X)

(
1

2
E
[
−
(
Y − S(X)

)
+

+
(
S(X)− Y

)
+
|A = a,X

])
da

+

∫ f∗L(X)

f∗U (X)

(
1

2
E
[(
Y − S(X)

)
+

−
(
S(X)− Y

)
+
|A = a,X

])
da

∣∣∣∣X ∈ X6

]
P (X ∈ X6)

≥E

[∫ f ′U (X)

f ′L(X)

(
1

2
E
[
− (Y − E[Y (a,X)])+ + (E[Y (a,X)]− Y )+|A = a,X

])
da

+

∫ f∗L(X)

f∗U (X)

(
1

2
E
[
(Y − E[Y (a,X)])+

− (E[Y (a,X)]− Y )+|A = a,X
])
da

∣∣∣∣X ∈ X6

]
P (X ∈ X6)

=0

>0 if P (X ∈ X6) 6= 0

Therefore, Rh(f ′U , f
′
U ) − Rh(f∗L, f

∗
U ) ≥ 0, and Rh(f ′U , f

′
U ) − Rh(f∗L, f

∗
U ) = 0 if and only

if P (X /∈ X0) = 0. Hence for any optimal two sided bound functions [fh,L,opt, fh,U,opt] =

arg minfL≤fU Rh(fL, fU ), we have fh,L,opt ∈ FL and fh,L,opt ∈ FU . According to the assump-

tion of partial unimodality for EDI (3.4) that E [Y (aL, x)] ≤ S(x), E [Y (aU , x)] ≤ S(x),

∃a∗ ∈ [aL, aU ], E [Y (a∗, x)] ≥ S(x) and E[Y (a, x)] across S(x) at most twice, we fur-

ther have that E[Y (fh,L,opt(x), x)] = E[Y (fh,U,opt(x), x)] = S(x) and E[Y (a′(x), x)] ≥ S(x)

for ∀x ∈ X , where a′(x) is an arbitrary measurable function s.t. fh,L,opt(x) ≤ a′(x) ≤

fh,U,opt(x). Then thereom 5.2.2 is proved.
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A.7 A Proof of Theorem 5.3.1

Proof. for any measurable function f : X → R, we have

|RI(f)−RI,εn(f)|

=E

∣∣∣∣ 1

εnP (A |X)

((
1− α(X)

)
I(Y > S(X)) max(εn − (f(X)−A)+, 0)

+ α(X)I(Y < S(X)) max(εn − (A− f(X))+, 0)

)∣∣∣∣
=EX

∣∣∣∣ 1

εn

∫
a∈[aL,aU ]

((
1− α(X)

)
P (Y > S(X)|A = a,X) max(εn − (f(X)− a)+, 0)

+ α(X)P (Y < S(X)|A = a,X) max(εn − (a− f(X))+, 0)

)
da

∣∣∣∣
=EX

∣∣∣∣
(
1− α(X)

)
εn

∫
a∈[f(X)−εn,f(X)]

P (Y > S(X)|A = a,X)(εn − (f(X)− a))da

+
α(X)

εn

∫
a∈[f(X),f(X)+εn]

P (Y < S(X)|A = a,X)(εn − (a− f(X)))da

∣∣∣∣
=EX

∣∣∣∣
(
1− α(X)

)
εn

∫
z∈[0,εn]

P (Y > S(X)|A = f(X)− z,X)(εn − z)dz

+
α(X)

εn

∫
z∈[0,εn]

P (Y < S(X)|A = f(X) + z,X)(εn − z)dz
∣∣∣∣

≤ ε

then it follows the theorem 5.3.1.
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A.8 A Proof of Corollary 5.3.1

Proof. for any measurable function fL : X → R, fU : X → R and fL(X) ≤ fU (X)∀x ∈ X ,

we have

|RI(f)−RI,εn(f)|

= EX

∣∣∣∣
(
1− α(X)

)
εn

∫
a∈[fL(X)−εn,fL(X)]

P (Y > S(X)|A = a,X)(εn − (fL(X)− a))da

+
α(X)

εn

∫
a∈[fL(X),fL(X)+εn]

P (Y < S(X)|A = a,X)(εn − (a− fL(X)))da

+
α(X)

εn

∫
a∈[fU (X)−εn,fU (X)]

P (Y < S(X)|A = a,X)(εn − (fU (X)− a))da

+

(
1− α(X)

)
εn

∫
a∈[fU (X),f(X)R+εn]

P (Y > S(X)|A = a,X)(εn − (a− fU (X)))da

∣∣∣∣
= EX

∣∣∣∣
(
1− α(X)

)
εn

∫
z∈[0,εn]

P (Y > S(X)|A = fL(X)− z,X)(εn − z)dz

+
α(X)

εn

∫
z∈[0,εn]

P (Y < S(X)|A = fL(X) + z,X)(εn − z)dz

+
α(X)

εn

∫
z∈[0,εn]

P (Y < S(X)|A = fU (X)− z,X)(εn − z)dz

+

(
1− α(X)

)
εn

∫
z∈[0,εn]

P (Y > S(X)|A = fU (X) + z,X)(εn − z)dz
∣∣∣∣

= 2 ∗ εn

then it follows the corollary 5.3.1.
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A.9 A Proof of Theorem 5.3.2

Proof. for any measurable function f : X → R, we have

|Rh(f)−Rh,εn(f)|

= E

∣∣∣∣ 1

εnP (A |X)

((
1− α(X)

)
(Y − S(X))+ max(εn − (f(X)−A)+, 0)

+ α(X)(S(X)− Y )+ max(εn − (A− f(X))+, 0)

) ∣∣∣∣
= EX

∣∣∣∣ 1

εn

∫
a∈[aL,aU ]

(
E(
(
1− α(X)

)
(Y − S(X))+|A = a,X) max(εn − (f(X)−A)+, 0)

+ E(α(X)(S(X)− Y )+|A = a,X) max(εn − (a− f(X))+, 0)

)
da

∣∣∣∣
= EX

∣∣∣∣
(
1− α(X)

)
εn

∫
a∈[f(X)−εn,f(X)]

E((Y − S(X))+|A = a,X)(εn − (f(X)− a))da

+
α(X)

εn

∫
a∈[f(X),f(X)+εn]

E((S(X)− Y )+|A = a,X)(εn − (a− f(X)))da

∣∣∣∣
= EX

∣∣∣∣
(
1− α(X)

)
εn

∫
z∈[0,εn]

E((Y − S(X))+|A = f(X)− z,X)(εn − z)dz

+
α(X)

εn

∫
z∈[0,εn]

E((S(X)− Y )+|A = f(X) + z,X)(εn − z)dz
∣∣∣∣

≤ C1εn

Then it follows theorem 5.3.2.
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A.10 A Proof of Corollary 5.3.2

Proof. for any measurable function fL : X → R, fU : X → R and fL(X) ≤ fU (X)∀x ∈ X ,

we have

|Rh(f)−Rh,εn(f)|

= EX

∣∣∣∣
(
1− α(X)

)
εn

∫
a∈[fL(X)−εn,fL(X)]

E((Y − S(X))+|A = a,X)(εn − (fL(X)− a))da

+
α(X)

εn

∫
a∈[fU (X),fU (X)+εn]

E((S(X)− Y )+|A = a,X)(εn − (a− fL(X)))da

+
α(X)

εn

∫
a∈[fU (X)−εn,fU (X)]

E((S(X)− Y )+|A = a,X)(εn − (fU (X)− a))da

+

(
1− α(X)

)
εn

∫
a∈[fL(X),fL(X)+εn]

E((Y − S(X))+|A = a,X)(εn − (a− fU (X)))da

∣∣∣∣
= EX

∣∣∣∣
(
1− α(X)

)
εn

∫
z∈[0,εn]

E((Y − S(X))+|A = fL(X)− z,X)(εn − z)dz

+
α(X)

εn

∫
z∈[0,εn]

E((S(X)− Y )+|A = fL(X) + z,X)(εn − z)dz

+
α(X)

εn

∫
z∈[0,εn]

E((S(X)− Y )+|A = fU (X)− z,X)(εn − z)dz

+

(
1− α(X)

)
εn

∫
z∈[0,εn]

E((Y − S(X))+|A = fU (X) + z,X)(εn − z)dz
∣∣∣∣

≤ 2 ∗ C1 ∗ εn

Then it follows Corollary 5.3.2.

Theorem A.10.1. Under the assumptions that the optimal regime fΦ,L,opt ∈ Bα
1,∞(Rd), a

Besov space, such that, Bα
1,∞(Rd) = {f ∈ L∞((Rd)) : supt>0(t−αw(r,L1)(f, t)) < ∞}, where

w is the modulus of continuity. Then for any η > 0, d/(d + τ) < p < 1, τ > 0, and the

parameter γn for the Gaussian Kernel

RΦ(fopt)−RΦ(f̂n) = Op
(( 1

n

)1/(4+3d/α)
)

where Φ can be either Φ1(·) = I(· > 0) or Φ2(·) = (·)+.
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A.11 A Proof of Theorem 5.3.3

Proof. According to theorem 5.3.1 and theorem 5.3.2, we have

RΦ(f̂L)−RΦ(fopt) ≤ RΦ,εn(f̂L)−RΦ,εn(fL,opt) + 2 ∗ Cεn

≤ RΦ,εn(f̂L)−RΦ,εn(f∗L) + 2 ∗ Cεn

≤
(
λn||f̂L||2k +RΦ,εn(f̂L)−R∗Φ,εL

)
+

(
2 ∗ Cεn

)
= (I) + (II) (A.9)

where f∗L is the minimizer of RΦ,εn(·) and R∗Φ,εn = RΦ,εn(f∗L).

To bound (A.9), we need to first bound (I). As is in Chen et al. (2016), we refer to

theorem 7.23 in Steinwart and Christmann (2008). In order to use the oracle inequality in

the theorem, there are four conditions to be satisfied.

• (B1) The loss function L(·) has a supremum bound L(·) ≤ B for a constant B > 0.

• (B2) The loss function L(·) is locally Lipschitz continuous loss that can be clipped at

a constant M > 0 such that f̃ = I(|f | ≤M)f + I(|f | ≥M)M .

• (B3) The variance bound EP
(
L ◦ f̃ −L ◦ f∗L,P

)2 ≤ V (EP (L ◦ −̃L ◦ f∗L,P ))v is satisfied

for constant v ∈ [0, 1], V ≥ B2−v and all f ∈ H.

• (B4) For fixed n ≥ 1, there exist constant p ∈ (0, 1) and a ≥ B such that the entropy

number EDX∼PnXei(id : H → L2(DX)) ≤ ai−
1
2p , i ≤ 1.

To verify the condition (B1), recall the relaxed loss function of the lower bound of the

one-sided interval is as follows.

LΦ,ε(X,A, fL(X)) =
1

P (A |X)

((
1− α(X)

)
Φ
(
Y − S(X)

)
)Ψε(fL(X), A)

+ α(X)Φ
(
S(X)− Y

)
)Ψε(A, fL(X))

)
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Assuming the inverse probability 1
P (A |X) is bounded by a constantB, then LI,ε(X,A, fL(X))

is naturally bounded by B for the PDI case. For the EDI case, when Y is bounded, and S(x)

is properly chosen, Lh,ε(X,A, fL(X)) is bounded by B = max{ 1
P (A |X) ,max |Y − S(X)|}.

To simplify notations, we say the loss function LΦ,ε(X,A, fL(X)) is bounded by B.

To verify condition (B2), similar to (B1), LΦ,ε(X,A, fL(X)) is Lipschitz continuous with

a Lipschitz constant B. Also, fL can be clipped to have a smaller risk. Suppose that M is

a upper bound of absolute value of a reasonable range of dose, say, M = max{|aL|, |aU |},

and f̃L = I(|fL| ≤ M)fL + I(|fL| ≥ M)M . It naturally follows that Rφ(f̃L) ≤ RΦ(fL),

since any unreasonable large dose recommendations introduce larger risk.

The condition (B3) is satisfied with v = 0 and V = 4B2, because

E
[(
LΦ,ε ◦ f̃L − LΦ,ε ◦ f∗L

)2] ≤ 2E
[(
LΦ,ε ◦ f̃L

)2
+
(
LΦ,ε ◦ f∗L

)2] ≤ 4B2

The Gaussian Kernel that are used in Chapter 6 and Chapter 7 is one type of benign

Kernel. According to theorem 7.34 of Steinwart and Christmann (2008), (B4) is satisfied

with the constant a = cε,pγ
− (1−p)(1+ζ)d

2p
n , where d/(d+τ) < p < 1 and ζ > 0 are two constant.

Since condition (B1)-(B4) are satisfied in our case, applying Theorem 7.23 from Stein-

wart and Christmann (2008) yields

(I) ≤ 9 ∗
(
λn||f0

L||2k +RΦ,εn(f0
L)−R∗Φ,εn

)
+K0

[
1

γ
(1−p)(1+ζ)d
n λpnn

] 1
2−p

+ 36
√

2B(
τ

n
)
1
2 +

15Bτ

n

(A.10)

with probability 1− 3e−τ .

In order to bound

(
λn||f0

L||2k + RΦ,εn(f0
L) − R∗Φ,εn

)
, the approximation error, we refer

to Section 2 in Eberts et al. (2013). As (A.10) holds for any f0
L ∈ Hγ , we could construct a

specific f0
L to facilitate the proof. First, as (8) in Eberts et al. (2013), we define a function

K(x) =
∑r

j=1

(
r
j

)
(−1)1−j 1

jd
( 2
γ2

)d/2Kjγ/√2(x) where Kγ = exp(−γ2||x||22) for all x ∈ Rd, and

subsequently define f0
L via convolution.
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f0
L = K ∗ f∗L =

∫
Rd
K(X − t)f∗L(t)dt, x ∈ Rd

If we assume f∗L ∈ L2(Rd) ∩ L∞(Rd), then from theorem 2.3 in Eberts et al. (2013), it

can be shown that f0
L ∈ Hγ , where Hγ is the RKHS of Gaussian RBF Kernel. In addition,

theorem 2.2 provides the upper bound for the access risk of f0
L, which can be incorporated

to have the results below.

λn||f0
L||2k +RΦ,εn(f0

L)−R∗Φ,εn

= λn||K ∗ f∗L||2k +RΦ,εn(K ∗ f∗L)−R∗Φ,εn

≤ λn(γn
√
π)−d(2r − 1)2||f∗L||2L2(Rd) +RΦ,εn(K ∗ f∗L)−R∗Φ,εn

≤ λn(γn
√
π)−d(2r − 1)2||f∗L||2L2(Rd) +B|K ∗ f∗L − f∗L|L1(PX)

≤ λn(γn
√
π)−d(2r − 1)2||f∗L||2L2(Rd) +BCr,1||g||Lp(PX)ωr,L1(Rd)(f

∗
L, γn/2) (A.11)

Given the fact that we assume fopt ∈ Bδ
1,∞(Rd), if we are willing to further assume

f∗L ∈ Bδ
1,∞(Rd), i.e., Bδ

1,∞(Rd) = {f ∈ L∞(Rd) : supt>0(t−δωr,L1(Rd))(f, t) < ∞}, then

wr,L1(Rd)(f∗L, γn/2) < c0γ
δ, where c0 is a constant. Plugging in this into (A.11), we obtain

λn||f0
L||2k +RΦ,εn(f0

L)−R∗Φ,εn ≤ c1λnγ
−d
n + c2γ

δ
n

After Combining all the parts together,

RΦ(f̂L)−RΦ(fopt) ≤ c1
λn
γdn

+ c2γ
δ
n + c3

1

γ
(1−p)(1+ζ)d

2−p
n λ

p
2−p
n n

1
2−p

+ c4
τ

1
2

n
1
2

+ c5
τ

n
+ c6εn

By properly choosing the constant, the desired rate can be attained.

γn ∝
(

1

n

) 1
2δ+d

λn ∝
(

1

n

) δ+d
2δ+d

εn = O
(
n−

δ
2δ+d

)
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We have the convergence rate:

RΦ(f̂L)−RΦ(fopt) = O
(
n−

δ
2δ+d

)

A.12 A Proof of Corollary 5.3.3

Proof. Proving the convergence rate of the two-sided IDI estimators can be heavily involved.

To the best of our knowledge, there is no well-established convergence theory for algorithms

like DC which use an iterative procedure to tackle non-convex objective functions, especially

when there are two functions estimated from the empirical risk minimization (ERM). To

limit the scope of this dissertation, we instead provide a convergence rate by borrowing

the results from 5.3.3, and replace the convergence of the two-sided IDI estimator with two

estimators of one-sided IDIs. In order to do so, several extra assumptions have to be made.

It is possible that better rates under weaker the assumptions can be achieved in the future.

The proof of corollary 5.3.3 consists of two steps. In the first step, we assume that

there exists a function or a consistent estimator of a function that separate the dataset into

a left subset and a right subset, in each of which the Partial Monotonicity assumption in

(3.1) and (3.3) is satisfied. In the second step, the integrated access risk of the two-sided

IDI estimator is bounded by the sum of two access risks of two independent one-sided IDI

estimators. The detailed proof will be documented below.

Suppose there is a function fM,opt(x), such that fL,opt(x) < fM,opt(x) < fU,opt(x) for all

x ∈ X . Such a function is more likely to be known when the outcome is largely determined

by the dose. For instance, it might be able to separate the left subset and the right subset

by a single dose value, so that the lower bounds will be contained to only the left side of the

value and the upper bounds to only the right side. Our simulation in Section 6.1 is qualified

as an example where the optimal lower bounds are all below zero and the optimal upper

bounds are all above zero. Thus, we can let fM,opt(x) = 0. However, this is not always the
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case in practice. Both the signal-to-noise ratio and the distribution of lower/upper bounds

might make it impossible for visual separation. Therefore, we will discuss the cases where

fM,opt(x) is estimated from data.

One possible choice of fM,opt is fmax,opt = arg maxf E
[
Y |A = f(X), X

]
, the optimal

individual dose rule (IDR) in Chen et al. (2016). Theoretical properties of the estimator

f̂max have been established in the original paper and also discussed in Luedtke and van der

Laan (2016). Despite the fact that it is suggested in Luedtke and van der Laan (2016)

that the OWL-based estimator might convergence in nearly O(n−1/2), the rate established

so far are based on the risk (or value function) instead of the rule fmax,opt itself due to

major obstacles imposed by the DC algorithm. In order to facilitate the proof, we make

the following assumption for the estimated optimal dose function f̂max.

fL,opt(x) < f̂max(x) < fU,opt(x), ∀x ∈ X (A.12)

In the second step, two censored datasets are defined where the lower bound function and

the upper bound function can be estimated individually, assuming there is a fM,opt, known

or estimated, such that fL,opt(x) < fM,opt(x) < fU,opt(x) for all x ∈ X . Denote the original

dataset without censoring as D = {
(
Xi, Ai, Yi

)
, 1 ≤ i ≤ n} and then we can subsequently

define DL = {
(
Xi, Ai, Yi

)
, ∀i s.t. Ai ≤ fM,opt(Xi)} and DU = {

(
Xi, Ai, Yi

)
, ∀i s.t. Ai >

fM,opt(Xi)}. These two subsets are independent as there is no shared observations.

Now define f̂ ′L = minfL R̂Φ,ε(fL) on dataset DL and f̂ ′U = minfU R̂Φ,ε(fU ) on dataset

DU , while
{
f̂L, f̂U

}
= minfL,fU R̂Φ,ε(fL, fU ) on the dataset of D. Similarly, define f ′L,∗ =

minfL RΦ,ε(fL) on the censored population of DL and f ′U,∗ = minfU RΦ,ε(fU ) on the cen-

sored population of DU , while
{
fL,∗, fU,∗

}
= minfL,fU RΦ,ε(fL, fU ) on the original pop-

ulation. To simplify the problem, we assume that fL,∗(x) − fU,∗(x) ≤ −2ε, since this

inequality will hold when ε → 0 as n → 0. By the definitions of DL, DU and D, we have{
f ′L,∗, f

′
U,∗
}

=
{
fL,∗, fU,∗

}
, i.e., the population estimates of the lower and upper bounds

estimated jointly are the same as the population estimates of the lower and upper bounds
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estimated individually while assuming the other part is known. In addition, we make the

following assumption of the uniform convergence of the empirical risk functions.

sup
fL,fU∈H

∣∣R̂Φ,ε(fL, fU )−RΦ,ε(fL, fU )
∣∣ ≤ κ√ log(n)

n
with probability p′ (A.13)

where κ is a constant related to p′ and the complexity of the RKHS. Without proving the

rate in A.13, we believe it is consistent with the general uniform convergence rate in Vapnik

(1998) where only one functions is estimated through ERM.

We will show how the loss function of the two-sided IDI can be decomposed as the sum

of two one-sided interval losses plus a quantity not related to the dose. Recall the loss

function for the lower bound of the one-sided interval:

LΦ,ε(X,A, fL(X)) =
1

P (A |X)

((
1− α(X)

)
Φ
(
Y − S(X)

)
)Ψε(fL(X), A)

+ α(X)Φ
(
S(X)− Y

)
)Ψε(A, fL(X))

)

And the loss function for the upper bound of the one-sided interval:

LΦ,ε(X,A, fU (X)) =
1

P (A |X)

((
1− α(X)

)
Φ
(
Y − S(X)

)
)Ψε(A, fU (X))

+ α(X)Φ
(
S(X)− Y

)
)Ψε(fU (X), A)

)

And the loss function for the two-sided interval:

LΦ,ε(X,A, fL(X), fU (X)) =
1

P (A |X)

((
1− α(X)

)
Φ
(
Y − S(X)

)
)Ψout

ε (fL(X), A, fU (X))

+ α(X)Φ
(
S(X)− Y

)
)Ψin

ε (fL(X), A, fU (X))
)

It follows that the difference between two-sided loss and the sum of one-sided losses is a

constant which does not contain the bound functions, under the assumption that fL,∗(x)−
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fU,∗(x) ≤ −2ε.

LΦ,ε(X,A, fL(X), fU (X))− LΦ,ε(X,A, fL(X))− LΦ,ε(X,A, fU (X))

=
1

P (A |X)

((
1− α(X)

)
Φ
(
Y − S(X)

)
Ψε(A, fU (X))

+ α(X)Φ
(
S(X)− Y

)(
Ψε(fU (X), A)− 1

))
− LΦ,ε(X,A, fU (X))

=
−1

P (A |X)

(
α(X)Φ

(
S(X)− Y

))

Combined with corollary 5.3.1 and corollary 5.3.2, we have

RΦ(f̂L,f̂U )−RΦ(fL,opt, fU,opt) ≤ RΦ,εn(f̂L, f̂U )−RΦ,εn(fL,opt, fU,opt) + 2Cεn

≤ RΦ,εn(f̂L, f̂U )−RΦ,εn(fL,∗, fU,∗) + 2Cεn

≤ RΦ,εn(f̂ ′L, f̂
′
U )−RΦ,εn(fL,∗, fU,∗) + 2Cεn + 2κ

√
log(n)

n

= RΦ,εn(f̂ ′L)−RΦ,εn(f ′L,∗) +RΦ,εn(f̂ ′U )−RΦ,εn(f ′U,∗) + 2Cεn + 2κ

√
log(n)

n

(A.14)

with probability p′ as n → ∞. The probability p′ comes from the inequality (A.13).

The first inequality of A.14 is guaranteed by theorem 5.2.1 and theorem 5.2.2. The second

inequality is from the definition of fL,∗ and fU,∗. The third inequality is from the assumption

A.13. The coefficient is 2 × κ because the uniform bound has to be applied twice as the

definitions of f̂L and f̂U guarantee R̂Φ,εn(f̂L, f̂U ) < R̂Φ,εn(f̂ ′L, f̂
′
U ) but not RΦ,εn(f̂L, f̂U ) <

RΦ,εn(f̂ ′L, f̂
′
U ). The last equality is from the decomposition of the two-sided loss and the

equivalence of
{
f ′L,∗, f

′
U,∗
}

and
{
fL,∗, fU,∗

}
.

The theorem follows by applying (A.10) twice, because f̂ ′L and f̂ ′U are independently es-

timated on two non-overlapping datasets DL and DU and, therefore, RΦ,εn(f̂ ′L)−RΦ,εn(f ′L,∗)

is independent with RΦ,εn(f̂ ′U )−RΦ,εn(f ′U,∗). The uniform bound (A.13) and theorem 5.3.3

hold for the same time with a probability of at least p′+(1−3e−τ )2−1. Here εn only shows

up in the term 2Cεn. Hence by choosing εn = O
(
n−

δ
2δ+d

)
, it will not impact the conver-
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gence rate. The term 2κ

√
log(n)
n , which corresponds to the convergence rate of O

(
( logn

n )
1
2

)
,

is dominated by the entire (A.14) is dominated by the first two risk terms. Therefore, the

same convergence rate in theorem 5.3.3 can be achieved in corollary 5.3.3.
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