Vincent Learmonth Butitta

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Freshwater and Marine Sciences)

At the UNIVERSITY OF WISCONSIN-MADISON

2022

Date of final oral examination: 4 May 2022

The dissertation is approved by the following members of the Final Oral Committee:

Emily H. Stanley, Professor, Integrative Biology
M. Jake Vander Zanden, Professor, Integrative Biology

Hilary A. Dugan, Assistant Professor, Integrative Biology

Timothy P. Yoshino, Professor Emeritus, Department of Pathobiological Sciences

Andrew L. Rypel, Associate Professor, Department of Wildlife, Fish, and Conservation Biology

Table of Contents

Acknowledgements ii
Preamble. iii
Thesis Introduction. 1
Chapter 1Environmental controls on long-term growth of freshwater mussels in an oligotrophic lake. 8
Chapter 2Detecting stress in unionids in a natural ecosystem experiencing a zebra mussel invasion usingmetabolomics.43
Chapter 3Changes in freshwater mussels (Order: Unionida) of Wisconsin in the past 50 years69
Chapter 4
Thesis contributions to the study of freshwater mussels 101

Acknowledgements:

There is a list as long as this thesis of people in my life that have contributed to my having this wonderful opportunity to be able to spend my time doing what I love with a group of people I deeply appreciate. Only a small fraction will be mentioned by name here. I'd like to thank Andrew Rypel for his mentorship, friendship, and sharing the story of the naiads with me. His unending curiosity about the natural world is a fount of inspiration that will contribute to my lifelong appreciation of the natural world. I would like to thank my parents and my brother, who have shaped and supported my lifelong love of science and desire to make the world a better place. I want to mention the communities l've been able to surround myself with these past few years. Be it the Center for Limnology, Freshwater Mollusk Conservation Society, Society for Freshwater Science, or UW-Madison, the ability to surround myself with friendly, intelligent, inquisitive, and supportive people is one of my favorite aspects of this path in life I've chosen. Thank you Martin, Luke, Colin, Rob, Holly, David, Adrianna, Adam, Ricardo, the rest of the Stanley lab family, Ben, John M., Susan, Steve C., Kelly, Liddy, Niklas, Akira, Traci, Pat, Jenny, Claudia, Steve E., Joe, Karly, and Ernie. I would like to specifically thank Lisie Kitchel and Jesse Weinzinger, without whom the third chapter would be a lot less interesting. I'd like to thank my committee for their support, guidance, and patience with the development of this thesis. I'd particularly like to thank all of the educators in my life, those who have taught me and those whom l've had the pleasure to work alongside.

Lastly, I want to thank Emily Stanley, a mentor whose guidance I deeply appreciate, a scientist I highly respect, and most importantly, a friend whom I cherish and look forward to keeping for years to come.
"There is no question that all of the better mussel streams are capable of supporting mussel resources many times as abundant as they do now, for they did so a score or less of years ago." - Coker 1917-18

Naiads were goddesses of lakes, rivers, and springs in ancient Greece. Protectors of freshwaters, known for their beauty, the gifts they provided, and their long, though not everlasting lives. For anyone who has ever had the opportunity to cool their face in a stream and had the good fortune of a naiad appear to them, peering out from between two, small, unassuming "rocks", understands the powers they possess.

And although their numbers are fewer today than they were yesterday, their powers to protect their homes remains. For I have not met a person who has experienced the presence of a naiad and not felt a sense of wonder and connection, and a deep desire to share the story of the naiads. A story that has called a growing number of people to dedicate their lives to protecting our freshwaters. May the story of the naiads reach enough people, that they can return to every lake, river, and spring they once called home.

Thesis Introduction:

North America is home to approximately 300 species of freshwater mussels-the highest diversity found anywhere the world. They inhabit a wide range of freshwater ecosystems from small, headwater streams to large rivers, lakes, and ponds across which they provide numerous ecosystem services (Vaughn and Hakenkamp 2001). Over the past 200 years, threats from a rapidly growing human-dominated landscape have resulted in immeasurable losses to our freshwater mussels (Haag 2012; Ricciardi and Rasmussen 1999).

The full extent of the damage to freshwater mussel populations in North America is difficult to assess. But we are far from the world described in the accounts of early naturalists where "...one could not step for a mile without treading on a living mussel." (Simpson 1899) or where finding streams devoid of mussels was "...somewhat of a new experience, for we had grown so used to finding shells in every creek...At times it almost got monotonous" (Remington and Clench 1925).

The first alarms for concern of their conservation came over 100 years ago, as entire mussel communities were seemingly depleted from whole rivers due to overexploitation from the pearl and button industries (Kunz 1898; Coker 1919). These alarms prompted the first concerted efforts to study their biology and inventory their numbers and distributions in the hopes to manage for stable populations (Pritchard 2001). In the years following, threats continued to emerge—most notably the widespread impoundment of North American rivers (USACOE 2020) and continued decreasing water quality, the combination of which resulted in loss of habitat, fish hosts, and fragmentation of populations (Vaughn and Taylor 1999; Strayer and Malcom 2012; Hamstead et al. 2019; Sousa et al. 2020). The total effects of which can still be seen in most rivers today (Anthony and Downing 2001; Haag 2012).

The latter half of the $20^{\text {th }}$ century in the United States saw federal protections for numerous mussel species enacted under the Endangered Species Act, passage of the Clean Water Act, and a
slowing of new dam construction (USACOE 2020). Despite these needed changes, mussel communities continued to decline (Bogan 1993). The combination effects of a century of stressors may have been too high a barrier for many mussels to recover from.

Since the 1970s a growing community of mussel conservationists have helped raise awareness for these often-overlooked animals. A renewed effort to study their ecology and reproduction, identify vulnerable species and important habitats, develop propagation techniques, and assess the impacts of ongoing and potential future risks have greatly improved our ability to protect what remains of their populations (Haag and Williams 2014; FMCS 2016; Ferreira-Rodríguez et al. 2019). But threats to their persistence have not ceased. Mussels are experiencing a new wave of threats in a rapidly changing climate (Inoue and Berg 2017; Baldan et al. 2021), invasive species (Ricciardi et al. 1996; Strayer and Malcom 2007), and inexplicable mass-mortality events (Cummings et al. 1988; Wengström et al. 2019; Vaughn 2022). Without conservation intervention, North America may lose up to half of its species in the next 100 years (Ricciardi and Rasmussen 1999).

Effective conservation of our freshwater mussels will require a deeper understanding of their ecology: in how they respond to a changing world, especially to novel and growing threats, as well as a close monitoring of current populations (FMCS 2016; Ferreira-Rodríguez et al. 2019). It is to this end that my dissertation is aimed. In the following three chapters I explore aspects of freshwater mussel ecology in relation to environmental controls on growth, physiological response to threats from an invasive species, and report on the current status and recent changes of the freshwater mussel communities of Wisconsin.

Chapters one and two focus particularly on mussel populations in lakes as they respond to natural changes in their environment. These are contributions to a very small body of research that focus on lake-dwelling populations (see Strayer et al. 1981; Cyr 2008; 2020). The study of mussels in lakes and lentic systems is particularly important in that these are the preferred habitats of the invasive
zebra mussels (Dreissena polymorpha) (Mellina and Rasmussen 1994; Allen and Ramcharan 2001) which are spreading throughout Wisconsin as well as much of North America (Benson et al. 2021).

Specifically, in chapter one, I examine how growth of the freshwater mussel Lampsilis siliquoidea has responded to long-term changes in an oligotrophic lake. I compare ~30 years of schlerochronology records from mussel shells to long-term ecosystem-wide data. I show that annual mussel growth in oligotrophic lakes can be dynamic, highly variable between individuals, and associated with landscape-level environmental changes unique to lake ecosystems.

In chapter 2, I document physiological responses of Lampsilis siliquoidea during the initial stages of an invasion by zebra mussels in a eutrophic lake. I use the emerging tool of metabolomics to assess how metabolic processes in L. siliquoidea are affected by zebra mussels. I show that L. siliquoidea display signs of starvation with increased levels of infestation by zebra mussels. I demonstrate that metabolomics can be a useful tool when applied in natural environments by identifying processes through which zebra mussels harm native mussel communities.

In chapter 3, I report on the current status of freshwater mussel communities in Wisconsin and how they have changed in the past 50 years. I show that losses have occurred for the majority of species and that these losses are geographically distributed across the state. I show that these losses may potentially be offset by gains in other locations, but warn that that is likely an overly optimistic interpretation. I describe the level of uncertainties in species assessments and identify watersheds that should be of highest priority for future surveys.

Freshwater mussels seem almost uniquely poorly suited for survival in a human-dominated world. Their conservation will require immense efforts across academia, government agencies, non-
governmental organizations, community engagement, and individuals ${ }^{1}$. I hope that this work in one way or another is helpful to this cause.

References:

Allen, Y. C., and C.W. Ramcharan. 2001. "Dreissena Distribution in Commercial Waterways of the U.S.: Using Failed Invasions to Identify Limiting Factors." Canadian Journal of Fisheries and Aquatic Sciences 58 (5): 898-907.

Anthony, J. L., and J. A. Downing. 2001. "Exploitation Trajectory of a Declining Fauna: A Century of Freshwater Mussel Fisheries in North America." Canadian Journal of Fisheries and Aquatic Sciences 58 (10): 2071-90.

Baldan, D., L. Kiesel, C. Hauer, S. C. Jähnig, and T. Hein. 2021. "Increased Sediment Deposition Triggered by Climate Change Impacts Freshwater Pearl Mussel Habitats and Metapopulations." Journal of Applied Ecology 58 (9): 1933-44.

Benson, A. J., D. Raikow, J. Larson, A. Fusaro, A. K. Bogdanoff, and A. Elgin. 2021. "Dreissena Polymorpha (Pallas, 1771): U. S. Geological Survey, Nonindigenous Aquatic Species Database." Gainsville, FL. Bogan, A. E. 1993. "Freshwater Bivalve Extinctions (Mollusca: Unionoida): A Search for Causes." American Zoologist 33 (6): 599-609.

Coker, R. E. 1919. "Fresh-Water Mussels and Mussel Industries of the U.S." Bulletin of the Bureau of Fisheries 36: 13-89.

Cummings, K. S, L. Suloway, and L. M. Page. 1988. "The Freshwater Mussels (Mollusca: Bivalvia: Unionidae) of the Embarras River in Illinois Thirty Years of Stream Change." Illinois Natural History Survey: Technical Report.

[^0]Cyr, H. 2008. "Physical Forces Constrain the Depth Distribution of the Abundant Native Mussel Elliptio Complanata in Lakes." Freshwater Biology 53 (12): 2414-25.
———. 2020. "The Growth of Juvenile Native Mussels (Elliptio Complanata) in Lakes Varies with Sediment Characteristics and Site Exposure." Freshwater Biology 65 (2): 278-88.

Ferreira-Rodríguez, N., Y. B. Akiyama, O. V. Aksenova, R. Araujo, M. C. Barnhart, Y. V. Bespalaya, A. E. Bogan, et al. 2019. "Research Priorities for Freshwater Mussel Conservation Assessment." Biological Conservation 231 (March): 77-87.

FMCS. 2016. "A National Strategy for the Conservation of Native Freshwater Mollusks." Freshwater Mollusk Biology and Conservation 19 (1): 1.

Haag, W. R. 2012. North American Freshwater Mussels: Natural History, Ecology, and Conservation. New York, NY: Cambridge University Press.

Haag, W. R., and J. D. Williams. 2014. "Biodiversity on the Brink: An Assessment of Conservation Strategies for North American Freshwater Mussels." Hydrobiologia 735 (1): 45-60.

Hamstead, B. A., P. D. Hartfield, R. L. Jones, and M. M. Gangloff. 2019. "Changes to Freshwater Mussel Assemblages after 25 Years of Impoundment and River Habitat Fragmentation." Aquatic Conservation: Marine and Freshwater Ecosystems 29 (12): 2162-75.

Inoue, Kentaro, and David J. Berg. 2017. "Predicting the Effects of Climate Change on Population Connectivity and Genetic Diversity of an Imperiled Freshwater Mussel, Cumberlandia Monodonta (Bivalvia: Margaritiferidae), in Riverine Systems." Global Change Biology 23 (1): 94107.

Kunz, G. F. 1898. "A Brief History of the Gathering of Fresh-Water Pearls in the United States." Bulletin of the U.S. Fish Commission 17: 321-30.

Mathiak, H. A. (1979). A river survey of the unionid mussels of Wisconsin 1973-1977. Sandshell Press.

Mellina, E., and J. B. Rasmussen. 1994. "Patterns in the Distribution and Abundance of Zebra Mussel (Dreissena Polymorpha) in Rivers and Lakes in Relation to Substrate and Other Physicochemical Factors." Canadian Journal of Fisheries and Aquatic Sciences 51 (5): 1024-36.

Pritchard, J. 2001. "An Historical Analysis of Mussel Propagation and Culture: Research Performed at the Fairport Biological Station." Illinois, USA: Report to US Army Core of Engineers.

Remington, P.S. Jr, and William J. Clench. 1925. "Vagabonding for Shells." Nautilus 38: 127-43.

Ricciardi, A., F. G. Whoriskey, and J. B. Rasmussen. 1996. "Impact of the Dreissena Invasion on Native Unionid Bivalves in the Upper St. Lawrence River" 53: 11.

Ricciardi, A., and J. B. Rasmussen. 1999. "Extinction Rates of North American Freshwater Fauna." Conservation Biology 13 (5): 1220-22.

Simpson, C.T. 1899. "The Pearly Fresh-Water Mussels of the United States; Their Habits, Enemies, and Diseases, with Suggestions for Their Protection." Bulletin of the U.S. Fish Comission 18: 279-88.

Sousa, R., A. Ferreira, F. Carvalho, M. Lopes-Lima, S. Varandas, A. Teixeira, and B. Gallardo. 2020. "Small Hydropower Plants as a Threat to the Endangered Pearl Mussel Margaritifera Margaritifera." Science of The Total Environment 719 (June): 137361.

Strayer, D. L., J. J. Cole, G. E. Likens, and D. C. Buso. 1981. "Biomass and Annual Production of the Freshwater Mussel Elliptio Complanata in an Oligotrophic Softwater Lake." Freshwater Biology 11 (5): 435-40.

Strayer, D. L., and H. M. Malcom. 2007. "Effects of Zebra Mussels (Dreissena Polymorpha) on Native Bivalves: The Beginning of the End or the End of the Beginning?" Journal of the North American Benthological Society 26 (1): 111-22.
———. 2012. "Causes of Recruitment Failure in Freshwater Mussel Populations in Southeastern New York." Ecological Applications 22 (6): 1780-90.

USACOE. 2020. "National Inventory of Dams." US Army Core of Engineers.
https://nid.usace.army.mil/\#/.
Vaughn, C. C. 2022. "Catastrophic Decline of the Mussel Fauna of the Blue River, Oklahoma," 5.
Vaughn, C. C., and C. C. Hakenkamp. 2001. "The Functional Role of Burrowing Bivalves in Freshwater Ecosystems: Functional Role of Bivalves." Freshwater Biology 46 (11): 1431-46.

Vaughn, C. C., and C. M. Taylor. 1999. "Impoundments and the Decline of Freshwater Mussels: A Case Study of an Extinction Gradient." Conservation Biology 13 (4): 912-20.

Wengström, N., H. Söderberg, J. Höjesjö, and A. Alfjorden. 2019. "Mass Mortality Events in Freshwater Pearl Mussel (Margaritifera Margaritifera) Populations in Sweden: An Overview and Indication of Possible Causes." Freshwater Mollusk Biology and Conservation 22 (2): 61.

Chapter 1

Environmental controls on long-term growth of freshwater mussels in an oligotrophic lake

PUBLISHED AS: Butitta, Vince L., Andrew L. Rypel, and Emily H. Stanley. "Environmental controls on long- term growth of freshwater mussels in an oligotrophic lake." Freshwater Science 40.2 (2021): 316-327.

Abstract

:

Freshwater mussels are one of the most endangered groups of animals and live in some of the fastest changing ecosystems in the world. Unfortunately, very little is known about how their life history and ecology are influenced by their environment, especially for lake-dwelling populations. In this study, we paired ~ 30 y of extensive environmental data to lifetime and annual growth rates of a population of Fatmucket mussels (Lampsilis siliquoidea) living in a cool-water oligotrophic lake in northern Wisconsin, USA. This population displayed one of the slowest growth rates and longest lifespans within its phylogenetic tribe (Lampsilini). Growth rates were highly variable between individuals and, in contrast to studies in other systems, not related to temperature, growing season, or any indicators of primary production. However, growth rates were positively correlated with changes in lake level. We hypothesize that mussel growth in this system is linked to landscape-level environmental conditions and allochthonous resource limitation.

Introduction:

Freshwater mussels (Order: Unionida) are one of the most imperiled groups of organisms on Earth (Ricciardi and Rasmussen 1999, Lopes-Lima et al. 2017) and inhabit some of the fastest changing ecosystems worldwide (Vörösmarty et al. 2010, Carpenter et al. 2011). It is important to better understand the ecology and life history of freshwater mussels because these aspects of mussel biology affect how mussels will respond to future global environmental changes. Growth rate is a fundamental life-history attribute that dictates a mussel's survival and reproductive success; however, the environmental conditions that control growth are understudied (Haag 2012). Understanding how mussel growth is controlled by divergent environmental conditions may be of significance to mussel conservation in our changing world.

Mussels maintain long-term records of lifetime growth archived in their shells, in some cases providing 30 to 300 y of annualized growth information (Schöne et al. 2005, Helama and Valovirta 2008, Rypel et al. 2008). In the shells of most species, a conspicuous and often narrow dark band appears in the shell record during periods of low to no growth. In temperate climates, these dark bands coincide with growth cessation during winters, which can allow for exact dating of historical mussel growth (Helama et al. 2006, Haag and Commens-Carson 2008, Rypel et al. 2008, Schöne 2013). Interpretation of growth rings (annuli) can be used to estimate ages of individual mussels as well as describe long-term variations in annual growth rates. When mussels are collected from closely monitored ecosystems, past growth records can be compared to environmental records to explore how mussel growth is related to their environment (i.e., sclerochronology; Schöne et al. 2004, 2005, Black et al. 2010).

Linking mussel growth to environmental conditions using sclerochronology has been reasonably well documented in both marine and freshwater systems. In marine systems, bivalve growth has been shown to correlate strongly with diverse environmental controls, such as temperature (Archambault et al. 1999, Schöne et al. 2005), primary productivity (Smaal and van Stralen 1990), chlorophyll a (Chl a)
(Page and Hubbard 1987, Archambault et al. 1999), particulate organic C (Page and Hubbard 1987), and zooplankton biomass (Wanamaker et al. 2009). In freshwaters, most research on mussels has been conducted in fluvial systems (but see Kendall et al. 2010) where growth is strongly associated with physical variables, such as discharge or temperature (Schöne et al. 2003, 2004, Rypel et al. 2009, Black et al. 2010, Dycus et al. 2015,) and in which biological or chemical environmental variables have not been detected as controls on growth.

Freshwater mussels are understudied in lake ecosystems, with the notable exception of a large number of studies on the ecological effects and autecology of invasive species, such as Zebra (Dreissena polymorpha Pallas, 1771) and Quagga (Dreissena rostriformis bugensis Andrusov, 1897) mussels (reviews by Higgins and Vander Zanden 2010, Karatayev et al. 2015). Native lake mussels may have received less research attention because of reduced species diversity and abundances compared to those found in fluvial ecosystems. However, lake-dwelling mussels pose an interesting opportunity for studying growth dynamics.

Flow is often the primary determinant of annual growth of mussels in fluvial ecosystems (Rypel et al. 2008, Rypel 2009, Black et al. 2010, Dycus et al. 2015), which leads us to ask: How do drivers of freshwater mussel growth change when there is little to no flow, such as in a lake? One might expect that lakes are particularly challenging environments for mussels (these challenges may be the reason for lower abundances and lack of species diversity found in lakes). Unique lake ecosystem characteristics like the lack of flowing water and seasonal stratification, which controls important environmental conditions such as temperature, dissolved oxygen, and plankton assemblages, may greatly hinder the food-capturing abilities of filter-feeding mussels. The environmental characteristics of lake environments lead us to ask a $2^{\text {nd }}$ question: Is the growth of lake-dwelling mussels controlled by food availability or an environmental condition that is unique to or more pronounced in lake ecosystems? Griffiths and Cyr (2006) found that lake-dwelling Eastern Elliptio (Elliptio complanata Lightfoot, 1786)
had higher growth rates in upwind sites compared to downwind sites despite lower chlorophyll concentrations and colder water temperatures at upwind sites. The unique environmental conditions mussels experience in lakes and unexpected growth responses in systems in which they have been studied, like the findings of Griffiths and Cyr (2006), should inspire greater attention to lake-dwelling mussels in our attempts to better understand how these animals are influenced by their environment.

Here, we describe lifetime growth dynamics of a lake-dwelling population of Fatmucket mussles (Lampsilis siliquoidea Barnes, 1823). Our specific goals were to: 1) develop a von Bertalanffy growth curve to describe lifetime growth trajectories for this population and place the growth of L. siliquoidea in context to that of related species; 2) construct a chronology describing long-term growth variations of mussels within the lake; and 3) describe any relationships found between annual mussel growth and long-term environmental conditions (abiotic or biotic) in the lake. We hypothesized that lake ecosystems (especially cool, soft-water, oligotrophic environments like the one in this study) pose unique environmental challenges that strongly limit mussel somatic growth. We predicted that there would be variability in growth rates among years that is synchronous among individuals in the population and that this variability would correlate with at least 1 environmental driver consistent with the potential difficulties of living in a lake ecosystem.

Methods:

Site description

Trout Lake is located in a temperate climate in the Northern Highland Lake District of Wisconsin, USA. It is a cool-water, dimictic, oligotrophic lake that freezes annually and has an area of 1608 ha, a mean depth of 14.9 m , and a maximum depth of 35.7 m . It has an average summer Chl a concentration of $2.4 \mu \mathrm{~g} / \mathrm{L}$ and a long-term average calcium concentration of $12.6 \mathrm{mg} / \mathrm{L}$ (Magnuson et al. 2019a, b). Sediment characteristics within the lake and at the sample site are primarily sand with some cobble; the
sample site was characterized as having very shallow sloping bathymetry, and there were no macrophytes present. As one of the pioneering sites of the Long-term Ecological Research program, Trout Lake has been continuously studied for physical, chemical, and biological variables since 1981. Lampsilis siliquoidea is the most abundant unionid species found in the lake. Plain Pocketbook (Lampsilis cardium Rafinesque, 1820) and Giant Floater (Pyganodon grandis Say, 1829) are also present but fewer in number (VLB, personal observation).

Sample collection and processing

From Trout Lake, we collected individual mussels from depths of 2 to 3 m within the same mussel bed ($\sim 46^{\circ} 01^{\prime} 00^{\prime \prime} \mathrm{N}, 89^{\circ} 40^{\prime} 35^{\prime \prime} \mathrm{W}$) during the summers of 2014 and 2017 . We chose this site based on qualitative pilot surveys indicating that this site had noticeably higher mussel density than any other known locations. We collected only live mussels of 1 species (L. siliquoidea), and we sacrificed them immediately after collection in both years. We collected a total of ~ 75 mussels but used only a subset of these in our analyses (see below for additional explanation). Of the mussels that we used in the analyses, 7 were collected in 2014 (4 female, 3 male) and 19 in 2017 (11 female, 8 male). Sex was determined by shell morphology because sexual dimorphism is readily apparent in L. siliquoidea. We generally focused on collecting larger (and presumably older) individuals to develop the longest chronologies possible. However, large size might also result from faster growth rates and lead to a potential over-estimate of average growth rates of individuals in the population.

In the lab, we measured the length and width of each shell. We used a rock-cutting saw to cut 1 valve of each shell ~halfway between the major and minor axes of growth from the umbo to the shell margin (the valve used varied by which valve could be best gripped by the saw's vice in a proper orientation for the cut). We smoothed the mussel half-shells with $14-\mu \mathrm{m}$ grit suspended in water until
polished, then adhered each of them to a transparent glass slide with epoxy. After the epoxy set, we cut the shells to ${ }^{\sim} 1-\mathrm{mm}$ thin sections and again polished them.

Two independent observers interpreted shell thin sections for annuli counts (Fig. 1). Annuli were identified and measured at the boundary of the nacre and prismatic layer for consistency in identification of annuli between observers and between shells-annuli at this location are commonly referred to as internal annuli in contrast to lines observed on the external shell. Discrepancies between observers were compared until both observers agreed on the presence of each annulus. There was a low threshold for excluding thin sections from analysis based upon readability; we included in the final analysis only shells for which both observers self-reported having a high level of certainty in accurate dating of the internal annuli to their associated years. Of the ~ 75 individuals initially collected from the lake, 61 were cut into shell thin sections, and 35 of these were omitted because 1 or both observers reported less than a high level of confidence in annuli detection. Consequently, we used 26 shell sections in this study's analyses. To estimate annual growth, we measured the distance between annuli to the nearest 0.01 mm by using a Leica S8AP0 microscope (Leica, Wetzlar, Germany) with the Leica Application Suite software (version 3.7.0; Leica Microsystems, Buffalo Grove, Illinois).

Chronology validation

We quality checked each chronology of annual growth increments with COFECHA (Fritts 1976, Holmes 1983), a software program that uses crossdating to check appropriate dating of chronologies. Each chronology was crossdated in COFECHA following the methods of Rypel et al. (2008). Briefly, each annual growth increment chronology was $1^{\text {st }}$ detrended by using an exponential curve and then smoothed with a cubic spline that retained 50% of variability over $32-y$ periods to remove ontogenetic and low frequency patterns in the chronology prior to crossdating (Fritts 1976). In the crossdating process, all the chronologies were averaged together to create a master chronology against which each
individual chronology was compared in a leave-1-out design as a first assessment for an appropriately dated chronology (Fritts 1976). Each chronology was also cut to sequential series of 8 y in length and lagged -3 to $+3 y$, and its correlation to the master chronology was assessed. We considered chronologies to have been validated if their unlagged position had the highest correlation with the master chronology. If a chronology exhibited a substantially higher correlation when lagged, both reviewers reexamined the shell, and it was only adjusted to the lagged position if both reviewers agreed. Otherwise, it was included in its original position. We assessed variation by sex in interannual growth rates with a t-test assessing whether the standard deviation differed between male and female chronologies. We checked assumptions for normality (graphically with histograms and QQplots) and equal variance (using Levene's test) for all t-tests and analysis of variance (ANOVA) models (below). We conducted all statistical analyses in the programming language R (version 3.6.3; R Project for Statistical Computing, Vienna, Austria).

Master chronology construction

We imported validated chronologies into ARSTAN (version 44h3; Cook and Holmes 1984), a software program designed for detrending individual chronologies and constructing a master chronology for time series analysis. Each chronology was fit with a negative exponential model to create a model of predicted growth for a mussel for any year, and deviations from this model represent aboveor below-expected growth for that year. We chose the "stiffer" fit of a negative exponential model compared to the spline used in the chronology validation process to retain as much low-frequency and climate signal as possible (Fritts 1976, Rypel et al. 2009). Each model fit was confirmed by eye, and none contained any obvious bias in the residuals of the model fit.

We calculated standardized growth indices (SGIs) by dividing the residuals by the model predictions. This approach is a standard process in sclerochronology to remove age-related growth
dynamics from chronologies (Fritts 1976). SGls >1 represent above-expected growth for that year, whereas SGIs <1 represent below-expected growth. A master chronology was created from the 'RESID' (residual) output from ARSTAN using methods described by Cook and Holmes (1984). This is a common process that first whitens out (i.e., diminishes) any autocorrelation in individual chronologies by making the time series behave more like white noise, then calculates a robust biweight mean that is designed to enhance common signals among individual chronologies (Kadafar 1983, Cook and Holmes 1984). We characterized lifetime growth trajectories by sex as well as for the general population with the von Bertalanffy equation:

$$
L_{t}=L_{\infty}\left(1-e^{K\left(t-t_{0}\right)}\right) \quad(\text { Eq. } 1)
$$

where L_{t} is the length (in mm) at time t (age in years), L_{∞} is the mean maximum length for the population, K is a growth constant that describes how quickly an individual approaches L_{∞}, and t_{0} is the time at which length $=0$. We used the R packages FSA (version 0.8.32; Ogle et al. 2020) and nlstools (version 1.0.2; Baty et al. 2015) for the von Bertalanffy analyses using the default approach ($2^{\text {nd }}$-degree polynomial) to create starting values for t_{0}. For the model, we calculated L_{t} from a ratio of the length of the thin section to the length of the major axis of the valve. The von Bertalanffy model was fit to males and females separately. If t_{0}, L_{∞}, or K in the von Bertalanffy model did not differ between sexes (by testing for a difference in means with a 2-tailed t-test), the model was then fit to all individuals combined. We assessed differences in von Bertalanffy estimates by sex via a 1-way ANOVA testing whether parameter estimates differed between a model where all estimates were allowed to vary by sex and a model where the parameter of interest did not vary by sex. We assessed how the von Bertalanffy parameter estimates for L. siliquoidea related to those previously reported for the Lampsilini tribe by Haag and Rypel (2011) by using a simple rank order.

Environmental data filtering and analysis

To assess the relationship between mussel growth and environmental characteristics, we examined a number of environmental variables, including lake-scale variables as well as broader macroclimate variables. Environmental variables used in our analysis include those that have been shown to influence mussel growth in other systems, such as indicators of primary and secondary production, water temperature, and growing season length (Rypel et al. 2009, Wanamaker et al. 2009, Black et al. 2010), as well as other variables we expected may influence mussel growth directly or indirectly (Table 1). We also evaluated variables for filtering environmental data based on time periods (e.g., ice-off, spring mixing), which we did as an informal way of conducting a sensitivity test (e.g., if data from spring mixing were included, would that drastically change our findings?). Filtering environmental data to different time windows did not change our findings (likely because the numerous measurements collected during the summer stratified period outweighed the effects of the inclusion of a few spring samples), so these time period variables were not included in the final analysis. The Trout Lake environmental data used in our analysis have been collected and curated by the North Temperate Lakes site of the Long-term Ecological Research network for $\sim 40 \mathrm{y}$ (Magnuson et al. 2019b, c, 2020a, b, c, d). All limnological measurements were collected at a centrally located buoy ~500 m from our mussel collection location. Data on macroclimate indices, specifically the North-Atlantic Oscillation (NAO) and Pacific Decadal Oscillation (PDO), were provided by the National Centers for Environmental Information managed by the National Oceanic and Atmoshperic Administration
(www.ncdc.noaa.gov/teleconnections). $\mathrm{NAO}_{\text {winter }}$ and $\mathrm{PDO}_{\text {winter }}$ are the mean indices for the North Atlantic and the Pacific Decadal Oscillations, respectively, during the immediately preceding winter months (these macroclimate indices primarily reflect winter precipitation in the study region). Precipitation data were downloaded from a nearby weather station in Minocqua, Wisconsin (GHCND:USC00475516).

We filtered environmental data to best reflect the conditions most likely experienced by the mussels during their growing season. Unless otherwise specified, we summarized all environmental data from the lake by the mean value from data filtered to include only data from the epilimnion during the summer stratified period to highlight the environmental conditions most likely to influence mussel growth (Amyot and Downing 1997, Hallmann et al. 2009). We calculated only a few variables differently: lake level ${ }_{\Delta}$ is the difference (in m) from the previous mean summer lake level, total precipitation is the cumulative water equivalent amount of precipitation that was recorded in the water year (beginning 1 October of previous calendar year), $\mathrm{SRP}_{\text {spring }}$ is the mean dissolved reactive phosphorus during the immediately preceding spring mixing period (a common approach to estimating summertime productivity in P-limited lakes), and degree days were calculated as the area under the curve of mean epilimnetic temperature beginning immediately after ice-out and ending at the end of summer stratification to capture as much of the potential growing season as possible (Amyot and Downing 1997). All data have a minimum temporal resolution of 2 weeks except $\mathrm{NAO}_{\text {winter }}$ and $\mathrm{PDO}_{\text {winter, }}$ which have a monthly temporal resolution, calcium, water color, specific UV absorbance at $254 \mathrm{~nm}\left(\right.$ SUVA $\left._{254}\right)$, slope ratio, and linear slope 275-295, which are sampled once during summer months. We chose to include multiple variables associated with dissolved organic carbon (DOC) quality (SUVA ${ }_{254}$, slope ratio, linear slope 275-295) in our best attempts to characterize potentially meaningful DOC estimates (Jane et al. 2017). We summarized all continuous variables to a mean value. We calculated the Pearson correlation coefficient of each environmental variable to the standardized mussel growth indices. These correlation coefficients are included in Table 1 strictly for thoroughness in reporting. We also calculated Pearson r for correlations of DOC and water color with lake level ${ }_{\Delta}$ because we were interested in describing how changes in lake level may have been associated with allochthonous inputs.

We chose an exhaustive model selection approach to identify environmental variables likely to influence mussel growth (R package MuMIn, version 1.43.17; Bartoń 2020). Prior to model selection, we
standardized all independent variables ($\bar{x}=0$, standard deviation [SD] $=0.5$) to more easily compare their relative importance. Exhaustive model selection is similar to a stepwise model selection except, instead of comparing model fitness by eliminating or adding 1 variable at a time, all possible combinations of variables are examined and compared. This approach means that exhaustive model selection is robust to collinearity between predictor variables because it independently assesses all variable combinations and does not drop potentially important variables as would be possible in a stepwise model selection approach. We used Bayesian Information Criterion (BIC) to assess the relative model fit and to discourage the selection of complex models (BIC more heavily penalizes complex models than does Akaike Information Criterion). Because the top model did not substantially outperform the next best fitting models ($\Delta \mathrm{BIC}<2$), we chose a model averaging approach that allowed us to estimate average effect size for each variable across the highest performing models. This approach also allowed us to report how often a variable was included in the set of highest performing models. If a variable is included in more of the highest performing models, it is more likely to have a causal relationship. Only models with a BIC score within 2 units of the highest performing model's BIC score were considered top performing models and included in the model averaging step. We averaged model estimates, or mean effect sizes, by using a conditional average approach that calculates the average effect size for each parameter across all of the top performing models (within 2 units of the lowest BIC score) in which that parameter is present. Variables that were identified as potentially being important, based on having been included in the top 2 performing models, showed no indication of collinearity (assessed via variance inflation factors). Each potentially important variable was used in independent simple linear regression models to test whether the parameterized model outperformed the null model according to a least squares assessment. The use of linear regression also allowed us to report the relationships of the environmental variables and mussel growth in an easier to interpret fashion. We ultimately identified 2 variables of potential importance (lake level ${ }_{\Delta}$ and $\mathrm{SRP}_{\text {spring }}$), and we created 2
independent linear regression models, 1 containing lake level ${ }_{\Delta}$ and the other containing SRP $_{\text {spring, }}$, to assess the independent effects of these variables on standardized mussel growth indices. We used a generalized least squares approach to asses the linear model of SRP $_{\text {spring }}$ on growth to account for heteroskedasticity in the model.

Results:

Individual growth chronologies ranged from 14 to 32 y $(n=26)$, spanning 1985 to 2016, and had a mean length of 20 y . Within the Lampsilini tribe of unionid mussels, this population of L. siliquoidea displayed one of the lowest recorded growth rates as described by K in the von Bertalanffy model (population $K=0.119$, 95% confidence interval: $0.11,0.13$) (Table S1, Fig. 2A, B). Our population-wide t_{0} estimate was -0.494 y (95% confidence interval: $-0.81,-0.18 \mathrm{y}$). Based on 2 -tailed t-tests, there was no difference in K or t_{0} between males and females ($K: p=0.57, t_{0}: p=0.92$). Males did reach a larger L_{∞} ($73.4 \mathrm{~mm}, 95 \%$ confidence interval: $70.6,76.2 \mathrm{~mm}$) than females ($66.4 \mathrm{~mm}, 95 \%$ confidence interval: $63.7,69.3 \mathrm{~mm})(p=0.02)$, which is not surprising given the sexual dimorphism of L. siliquoidea (Fig. 2C). There was a moderate level of synchrony in growth within the population (series intercorrelation: 0.390) (Fig. 3). However, there was substantial variability in the SGI between the different chronologies of individual mussels across all years (mean of the SD: 0.39). There was no difference in interannual variability by sex $(p=0.65)$.

Exhaustive model selection identified only 1 additional model within 2 BIC units of the lowest BIC score (highest performing model) (Table 2). Lake level ${ }_{\Delta}$ was included in both models, whereas springtime dissolved reactive phosphorus ($\mathrm{SRP}_{\text {spring }}$) was included in 1. Lake level ${ }_{\Delta}$ was suggested to be positively correlated with growth, whereas $\operatorname{SRP}_{\text {spring }}$ was suggested to be negatively related to growth (Table 2). No other environmental variables were identified through this method as likely controls of growth.

Based on a linear regression approach, lake level ${ }_{\Delta}$ explained a moderate amount of the total variance in growth ($R=0.57$) and was likely positively related to growth ($p<0.01$) (Table S2, Fig. 4A). $\mathrm{SRP}_{\text {spring }}$ explained relatively little of the total variance in growth $(R=-0.36, p=0.10)$ (Table S3, Fig. 4B), and an ANOVA test indicated that a model containing both lake level ${ }_{\Delta}$ and $\operatorname{SRP}_{\text {spring }}$ was only marginally different from a model containing only lake level ${ }_{\Delta}(p=0.04$; Table S4). This finding suggests that, if SRP ${ }_{\text {spring }}$ is related to mussel growth, it is likely less important than lake level. We assessed whether we could detect a relationship between lake level ${ }_{\Delta}$ and indicators of allochthonous C inputs but found no correlation between lake level ${ }_{\Delta}$ and water color (Pearson $r=0.08$) or lake level ${ }_{\Delta}$ and DOC (Pearson $r=$ 0.16).

We attempted to describe the relationship of each individual mussel chronology with lake level ${ }_{\Delta}$ and $\operatorname{SRP}_{\text {spring }}$ to see whether the relationship of the population growth dynamics with these environmental conditions was characteristic of a general population relationship or just the result of a strong relationship for only a few individuals. Standardized effect sizes (standardized estimates of the strength of the relationship between the environmental variable and mussel growth) were all positive for lake level ${ }_{\Delta}$ and generally, but not all, negative for $\operatorname{SRP}_{\text {spring }}$ (Fig. 5).

Discussion:

In this study, we were interested in describing lifetime growth dynamics of a lake-dwelling population of L. siliquoidea. We also wanted to construct a chronology describing long-term growth variations of mussels within the lake and describe any relationships found between annual mussel growth and long-term environmental conditions in the lake. In this system, we were able to detect a relationship between growth and lake level, but other environmental variables (e.g., temperature, growing season) did not appear to be important controls on growth. However, this study used a limited
sample size to describe growth characteristics of L. siliquoidea and their relationship to environmental conditions in 1 lake. Lampsilis siliquoidea has a wide geographic distribution and inhabits a range of habitats, and the extent to which the observed growth characteristics are common in other populations, or even in similar lake systems, is currently unknown. Lake size, depth, temperature, and trophic status are classically understood to be important in mediating the ecology of other freshwater taxa (Magnuson et al. 1979, Eadie and Keast 1984, Jeppesen et al. 2000), and future studies exploring their influence on lake mussels could be instructive.

Growth characteristics

Growth rates of L. siliquoidea mussels in Trout Lake, Wisconsin, were among the lowest recorded for the Lampsilini tribe, especially for a medium-sized species. Our focus on collecting larger individuals during sampling may have resulted in a bias toward faster growing individuals, so the true growth rate for this population may be even lower than what we found here. As is common with slower growing mussels, the maximum observed age was high compared to other Lampsilines. This slower growing, longer-lived life history, characteristic of an equilibrium strategist (Haag 2012), may be common in lake populations (Haag and Rypel 2011). This slow growth rate supports our hypothesis that oligotrophic soft-water lakes, such as Trout Lake, present unique environmental challenges to mussels, and these challenges are likely to impose a strong limitation on somatic growth.

Relationship of growth and environment

Despite large variation among individuals, growth was strongly positively correlated with changes in lake level. There were no relationships with temperature or measures of productivity as have been found in marine (Page and Hubbard 1987, Smaal and van Stralen 1990, Archambault et al. 1999, Schöne et al. 2005) and fluvial systems (Schöne et al. 2004, Black et al. 2010). The relationship between
growth and lake level suggests that mussels are responding to broad-scale ecosystem characteristics. Lake level is an aggregating environmental variable indicative of regional dynamics in precipitation and hydrology that link lake dynamics with the surrounding terrestrial landscape. It is unlikely that lake level had a direct influence on mussel growth, but rather it may act as a proxy for changes in other environmental characteristics. In fluvial systems, it has been hypothesized that a simple model for mussel growth has a parabolic relationship to discharge (Strayer 2008). During low to moderate flow, growth may be positively related to discharge as allochthonous resources and food capture rates increase. During high flow, the energetic costs of maintaining body position and expelling ingested suspended solids can outweigh the benefits of increased flow and result in a negative relationship between discharge and growth. The inverse relationship of growth to discharge has been well documented in systems of moderate to high levels of discharge (Black et al. 2010, Black et al. 2015, Dycus et al. 2015), but studies supporting the hypothesized positive effects of increased allochthonous resources are rare (but see Schöne et al. 2007). We propose that lakes represent an extreme case of a low-flow system and that the positive response of mussel growth to increased lake level reflects changes in allochthonous subsidies during wetter years.

Terrestrial subsidies likely play an important role in the littoral habitats of Trout Lake, given that they are often responsible for the bulk of C in the lakes of this region (Wilkinson et al. 2013) and can provide a surprisingly large proportion of C for higher trophic levels (Weidel et al. 2008, Cole et al. 2011). We were, however, unable to detect changes in water color or DOC quantity or quality (proxies for allochthonous inputs) associated with changes in lake level or mussel growth. This lack of connection may be explained by differences between the sampling location and the location where water quality metrics were measured. The mussel bed was just meters from shore and relatively close to a small inlet (~300 m), where individuals are likely to be exposed to allochthonous inputs immediately after runoff
events. In contrast, lake water-quality variables were measured at a centrally located buoy in deep water ~500 m from our sampling site.

Mussel growth was not related to any other metrics indicative of food availability that we were able to include in our analysis. Neither $\mathrm{ChI} a$, as a measure of phytoplankton biomass, nor cladoceran density had any relationship to growth. This lack of a relationship may result from multiple reasons: 1) there could be a mismatch in concentrations between littoral and pelagic habitats, as mentioned above for DOC; 2) pelagic resources may not be important or are not the limiting food sources for mussels in littoral habitats; 3) mussels may be integrating across or shifting between food sources, obscuring any clear relationship with any one potential source; or 4) food availability does not limit mussel growth in this system. Mussel diets vary by system and species, with feeding occurring across benthic and suspended sources that can include diatoms, phytoplankton, zooplankton, bacteria, cyanobacteria, fungi, and possibly dissolved organic matter (Newton et al. 2013, Fujibayashi et al. 2016, Weber et al. 2017). Mussel growth still may be limited by sources other than terrestrially derived food availability in this system, but the ability to detect these potential controls would be difficult because of potential shifting between food sources and the lack of data on certain sources (e.g., bacteria, fungi).

In addition to food, temperature is a fundamental determinant of metabolism and growth for all living things and is commonly associated with mussel growth rates in other systems (Hanson et al. 1988, Schöne et al. 2004, 2005, but see Cyr 2020). In this population, however, we failed to detect a relationship between water temperature and growth. Closely related variables often used as proxies for growing season, such as degree days and the duration of the summer stratified period, also surprisingly showed no relationship to growth. The most likely explanation for growth being unrelated to temperature could be that the range of summer epilimnetic temperatures in Trout Lake is small ($\mu=$ $19.3 \pm 1^{\circ} \mathrm{C}$) and may not be ecologically relevant for this population. Another possible explanation is that mussels may be regulating their temperature by moving within their habitat. Mussels are not entirely
sedentary animals, and they move both vertically in the substrate and horizontally in response to environmental cues, such as temperature (Amyot and Downing 1997, Schwalb and Pusch 2007, Hernandez 2016).

Potential drivers of variation

Numerous factors likely contribute to the variability in growth among individuals. Despite the population level synchrony in growth, an interseries correlation of 0.39 is relatively low compared to fluvial mussel populations (Rypel et al. 2009, Black et al. 2010, Sansom et al. 2013). Within a lake, the distribution of mussels can be highly patchy, suggesting that there may be spatial heterogeneity in habitat quality or the environmental controls within a lake. The moderately high variance in growth among individuals in this system is interesting, especially considering that these mussels were all comparable in age, residing in a similar substrate, and located within meters of each other. Although the open water is often fairly well mixed, benthic littoral habitats are more spatially heterogeneous (Downing and Rath 1988, Stoffels et al. 2005, Cyr 2019), and even mussels in the same bed may be experiencing different conditions.

Environmental conditions are but 1 set of factors that influence mussel growth, and unmeasured biotic drivers may play a stronger role in controlling growth. Physiological constraints on growth and the causes of physiological differences are often obscured and difficult to assess. We have a limited understanding of how characteristics such as sex and age affect growth dynamics of an individual. These effects are further complicated through differential investment in gonad development or glochidia brooding (instead of somatic in growth), which may vary substantially among individuals and over their lifetimes (Haag and Staton 2003, Moles and Layzer 2008). These factors are all overlaid upon the genetic variation between individuals, which can also be substantial (Larson et al. 2014). Other factors, such as the effects of competition, predation risk, parasites, and pathogens, may affect the
physiology and growth of individuals within an assemblage non-uniformly and may be important drivers of variation in growth among individuals as well (Gangloff et al. 2008, Vaughn et al. 2008) but unfortunately have received relatively little attention. Our study of the growth of a small sample of 1 species of mussels from a single bed in 1 lake provides only a limited view into the dynamics of how mussel growth is related to the conditions of their environment. Additional studies of other species in different systems will undoubtedly be insightful for better understanding environmental controls on mussel growth.

Conclusion

The alarming collapse of freshwater mussel assemblages worldwide should inspire increased effort to understand the ecology of these animals and the environmental challenges they face. Globally, lakes host numerous mussel populations and may be preferred habitat for some species (Nedeau et al. 2009, Haag 2012). Lakes impose divergent environmental challenges for mussels in comparison to fluvial environments, and we know very little about the ecology of lake-dwelling mussels, their responses to changing environmental conditions, or the ecosystem services they provide. Here, we show that the growth of mussels in lakes can be dynamic, can be highly variable between individuals, and may be correlated to landscape-scale environmental changes unique to lake systems. Further investigation of the ecology and life history of lake-dwelling mussels is important for developing a broader understanding these enigmatic animals.

References:

Amyot, J.P., and J. A. Downing. 1997. Seasonal variation in vertical and horizontal movement of the freshwater bivalve Elliptio complanata (Mollusca: Unionidae). Freshwater Biology 37:345-354.

Archambault, P., C. W. McKindsey, and E. Bourget. 1999. Large-scale shoreline configuration influences phytoplankton concentration and mussel growth. Estuarine, Coastal and Shelf Science 49:193208.

Bartoń, K. 2020. MuMIn: Multi-model Inference. (Available from: https://CRAN.Rproject.org/package=MuMIn)

Baty, F., C. Ritz, S. Charles, M. Brutsche, J.-P. Flandrois, and M.-L. Delignette-Muller. 2015. A Toolbox for nonlinear regression in R: The package nlstools. Journal of Statistical Software 66:1-21.

Black, B. A., J. B. Dunham, B. W. Blundon, J. Brim-Box, and A. J. Tepley. 2015. Long-term growthincrement chronologies reveal diverse influences of climate forcing on freshwater and forest biota in the Pacific Northwest. Global Change Biology 21:594-604.

Black, B. A., J. B. Dunham, B. W. Blundon, M. F. Raggon, and D. Zima. 2010. Spatial variability in growthincrement chronologies of long-lived freshwater mussels: Implications for climate impacts and reconstructions. Ecoscience 17:240-250.

Carpenter, S. R., E. H. Stanley, and M. J. Vander Zanden. 2011. State of the world's freshwater ecosystems: Physical, chemical, and biological changes. Annual Review of Environment and Resources 36:75-99.

Cole, J. J., S. R. Carpenter, J. Kitchell, M. L. Pace, C. T. Solomon, and B. Weidel. 2011. Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. Proceedings of the National Academy of Sciences 108:1975-1980.

Cook, E. R., and R. L. Holmes. 1984. Program ARSTAN user manual. Tucson, Arizona.

Cyr, H. 2019. The growth of juvenile native mussels (Elliptio complanata) in lakes varies with sediment
characteristics and site exposure. Freshwater Biology 65:278-288.

Cyr, H. 2020. Site exposure, substrate, depth, and the thermocline affect the growth of native unionid mussels in a stratified lake. Freshwater Science 39:773-790.

Downing, J. A., and L. C. Rath. 1988. Spatial patchiness in the lacustrine sedimentary environment. Limnological Oceanography 33:447-458.

Dycus, J. C., J. M. Wisniewski, and J. T. Peterson. 2015. The effects of flow and stream characteristics on the variation in freshwater mussel growth in a Southeast US river basin. Freshwater Biology 60:395-409.

Eadie, J. M., and A. Keast. 1984. Resource heterogeneity and fish species diversity in lakes. Canadian Journal of Zoology 62:1689-1695.

Fritts, H. C. 1976. Tree rings and climate. Academic Press, San Fransisco, California.

Fujibayashi, M., O. Nishimura, and H. Tanaka. 2016. Evaluation of food sources assimilated by Unionid mussels using fatty acid trophic markers in Japanese freshwater ecosystems. Journal of Shellfish Research 35:231-235.

Gangloff, M. M., K. K. Lenertz, and J. W. Feminella. 2008. Parasitic mite and trematode abundance are associated with reduced reproductive output and physiological condition of freshwater mussels. Hydrobiologia 610:25-31.

Griffiths, N. A., and H. Cyr. 2006. Are there hot spots for Elliptio complanata in the shallow littoral zone of a large Canadian Shield lake? Canadian Journal of Fisheries and Aquatic Sciences 63:21372147.

Haag, W. R. 2012. North American freshwater mussels. Cambridge University Press, New York, New York.

Haag, W. R., and A. M. Commens-Carson. 2008. Testing the assumption of annual shell ring deposition in freshwater mussels. Canadian Journal of Fisheries and Aquatic Sciences 65:493-508.

Haag, W. R., and A. L. Rypel. 2011. Growth and longevity in freshwater mussels: Evolutionary and conservation implications. Biological Reviews 86:225-247.

Haag, W. R., and J. L. Staton. 2003. Variation in fecundity and other reproductive traits in freshwater mussels. Freshwater Biology 48:2118-2130.

Hallmann, N., M. Burchell, B. R. Schöne, G. V. Irvine, and D. Maxwell. 2009. High-resolution sclerochronological analysis of the bivalve mollusk Saxidomus gigantea from Alaska and British Columbia: Techniques for revealing environmental archives and archaeological seasonality. Journal of Archaeological Science 36:2353-2364.

Hanson, J. M., W. C. Mackay, and E. E. Prepas. 1988. The effects of water depth and density on the growth of a unionid clam. Freshwater Biology 19:345-355.

Helama, S., B. R. Schöne, B. A. Black, and E. Dunca. 2006. Constructing long-term proxy series for aquatic environments with absolute dating control using a sclerochronological approach: Introduction and advanced applications. Marine and Freshwater Research 57:591-599.

Helama, S., and I. Valovirta. 2008. The oldest recorded animal in Finland: Ontogenetic age and growth in Margaritifera margaritifera (L. 1758) based on internal shell increments. Memoranda Societatis pro Fauna et Flora Fennica 84:20-30.

Hernandez, B. A. 2016. Movement behavior of uniond mussels in Central Texas. Master's Thesis. Texas State University, San Marcos, Texas.

Higgins, S. N., and M. J. Vander Zanden. 2010. What a difference a species makes: A meta-analysis of dreissenid mussel impacts on freshwater ecosystems. Ecological Monographs 80:179-196.

Holmes, R. L. 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43:69-78.

Jane, S. F., L. A. Winslow, C. K. Remucal, and K. C. Rose. 2017. Long-term trends and synchrony in dissolved organic matter characteristics in Wisconsin, USA, lakes: Quality, not quantity, is highly
sensitive to climate. Journal of Geophysical Research: Biogeosciences 122:546-561.

Jeppesen, E., J. P. Jensen, M. Søndergaard, and T. Lauridsen. 2000. Trophic structure, species richness and biodiversity in Danish lakes: Changes along a phosphorus gradient. Freshwater Biology 45:201-218.

Kadafar, K. 1983. The efficiency of the Biweight a robust estimator of location. Journal of Research of the National Bureau of Standards 88:105-116.

Karatayev, A. Y., L. E. Burlakov, and D. K. Padilla. 2015. Zebra versus quagga mussels: A review of their spread, population dynamics, and ecosystem impacts. Hydrobiologia 746:97-112.

Kendall, N. W., H. B. Rich, L. R. Jensen, and T. P. Quinn. 2010. Climate effects on inter-annual variation in growth of the freshwater mussel (Anodonta beringiana) in an Alaskan lake. Freshwater Biology 55:2339-2346.

Larson, J. H., N. L. Eckert, and M. R. Bartsch. 2014. Intrinsic variability in shell and soft tissue growth of the Freshwater mussel Lampsilis siliquoidea. PLoS ONE 9:1-7.

Lopes-Lima, M., R. Sousa, J. Geist, D. C. Aldridge, R. Araujo, J. Bergengren, Y. Bespalaya, E. Bódis, L. Burlakova, D. Van Damme, K. Douda, E. Froufe, D. Georgiev, C. Gumpinger, A. Karatayev, Ü. Kebapçi, I. Killeen, J. Lajtner, B. M. Larsen, R. Lauceri, A. Legakis, S. Lois, S. Lundberg, E. Moorkens, G. Motte, K. O. Nagel, P. Ondina, A. Outeiro, M. Paunovic, V. Prié, T. von Proschwitz, N. Riccardi, M. Rudzīte, M. Rudzītis, C. Scheder, M. Seddon, H. Şereflişan, V. Simić, S. Sokolova, K. Stoeckl, J. Taskinen, A. Teixeira, F. Thielen, T. Trichkova, S. Varandas, H. Vicentini, K. Zajac, T. Zajac, and S. Zogaris. 2017. Conservation status of freshwater mussels in Europe: State of the art and future challenges. Biological Reviews 92:572-607.

Magnuson, J., S. Carpenter, and E. Stanley. 2019a. North Temperate Lakes LTER: Chemical limnology of primary study lakes: Major lons 1981 - ver 34. Environmental Data Initiative. (Available from: https://doi.org/10.6073/pasta/a457e305538a0d8e669b58bb6f35721f, Accessed January 2020)

Magnuson, J., S. Carpenter, and E. Stanley. 2019b. North Temperate Lakes LTER: Chlorophyll - Trout Lake area 1981 - ver 30. Environmental Data Initiative. (Available from: https://doi.org/10.6073/pasta/6c8ee65f6876a7274bfe7714ae7c3a70, Accessed January 2020)

Magnuson, J., S. Carpenter, and E. Stanley. 2019c. North Temperate Lakes LTER: Physical limnology of primary study lakes 1981 - ver 27. Environmental Data Initiative. (Available from: https://doi.org/10.6073/pasta/c120b223f80c63982457a2e1e76f6038, Accessed September 2018)

Magnuson, J., S. Carpenter, and E. Stanley. 2020a. North Temperate Lakes LTER: Chemical limnology of primary study lakes: Nutrients, pH and carbon 1981 - ver 52. Environmental Data Initiative. (Available from: https://doi.org/10.6073/pasta/a457e305538a0d8e669b58bb6f35721f, Accessed January 2020)

Magnuson, J., S. Carpenter, and E. Stanley. 2020b. North Temperate Lakes LTER: Ice duration - Trout Lake area 1981 - ver 27. Environmental Data Initiative. (Available from: https://doi.org/10.6073/pasta/1c1acdb5489a0355f6f8bb5c496fdf8b, Accessed November 2018)

Magnuson, J., S. Carpenter, and E. Stanley. 2020c. North Temperate Lakes LTER: Lake levels 1981 - ver 26. Environmental Data Initiative. (Available from: https://doi.org/10.6073/pasta/489a7d5acd50ae9a3b500d774d6a5211, Accessed December 2020)

Magnuson, J., S. Carpenter, and E. Stanley. 2020d. North Temperate Lakes LTER: Meteorological data Woodruff Airport 1989 - ver 32. Environmental Data Initiative. (Available from: https://doi.org/10.6073/pasta/67f61866546a24df120ed21f5b1167a4, Accessed April 2019)

Magnuson, J. J., L. B. Crowder, and P. A. Medvick. 1979. Temperature as an ecological resource. American Zoologist 343:331-343.

Moles, K. R., and J. B. Layzer. 2008. Reproductive ecology of Actinonaias ligamentina
(Bivalvia:Unionidae) in a regulated river. Freshwater Science 27:212-222.
Nedeau, E. J., A. K. Smith, J. Stone, and S. Jepsen. 2009. Freshwater mussels of the Pacific Northwest. $2^{\text {nd }}$ edition. The Xerces Society, Portland, Oregon.

Newton, A., J. Teresa, C. Caryn, E. Daniel, S. Jerrine, T. Michael, and M. T. Arts. 2013. Profiles of biochemical tracers in Unionid mussels across a broadgeographical range. Journal of Shellfish Research 32:497-507.

Ogle, D. H., P. Wheeler, and A. Dinno. 2020. FSA: Fisheries stock analysis. (Available from: https://github.com/droglenc/FSA)

Page, H. M., and D. M. Hubbard. 1987. Temporal and spatial patterns of growth in mussels Mytilus edulis on an offshore platform: Relationships to water temperature and food availability. Journal of Experimental Marine Biology and Ecology 111:159-179.

Ricciardi, A., and J. B. Rasmussen. 1999. Extinction rates of North American freshwater fauna. Conservation Biology 13:1220-1222.

Rypel, A. L. 2009. Climate-growth relationships for largemouth bass (Micropterus salmoides) across three southeastern USA states. Ecology of Freshwater Fish 18:620-628.

Rypel, A. L., W. R. Haag, and R. H. Findlay. 2008. Validation of annual growth rings in freshwater mussel shells using cross dating. Canadian Journal of Fisheries and Aquatic Sciences 65:2224-2232.

Rypel, A. L., W. R. Haag, and R. H. Findlay. 2009. Pervasive hydrologic effects on freshwater mussels and riparian trees in southeastern floodplain ecosystems. Wetlands 29:497-504.

Sansom, B. J., D. J. Hornbach, M. C. Hove, and J. S. Kilgore. 2013. Effects of flow restoration on mussel growth in a wild and scenic North American river. Aquatic Biosystems 9:6.

Schöne, B. R. 2013. Arctica is/andica (Bivalvia): A unique paleoenvironmental archive of the northern North Atlantic ocean. Global and Planetary Change 111:199-225.

Schöne, B. R., E. Dunca, H. Mutvei, and U. Norlund. 2004. A 217-year record of summer air temperature
reconstructed from freshwater pearl mussels (M. margarifitera, Sweden). Quaternary Science Reviews 23:1803-1816.

Schöne, B. R., J. Fiebig, M. Pfeiffer, R. Gleß, J. Hickson, A. L. A. Johnson, W. Dreyer, and W. Oschmann. 2005. Climate records from a bivalved Methuselah (Arctica islandica, Mollusca; Iceland). Palaeogeography, Palaeoclimatology, Palaeoecology 228:130-148.

Schöne, B. R., W. Oschmann, J. Rössler, A. D. F. Castro, S. D. Houk, I. Kröncke, W. Dreyer, R. Janssen, H. Rumohr, and E. Dunca. 2003. North Atlantic Oscillation dynamics recorded in shells of a longlived bivalve mollusk. Geology 31:1037-1040.

Schöne, B. R., N. A. Page, D. L. Rodlam, J. Fiebig, S. Baier, S. O. Helama, and W. Oschmann. 2007. ENSOcoupled precipitation records (1959-2004) based on shells of freshwater bivalve mollusks (Margaritifera falcata) from British Columbia. International Journal of Earth Sciences 96:525540.

Schwalb, A. N., and M. T. Pusch. 2007. Horizontal and vertical movements of unionid mussels in a lowland river. Journal of North American Benthological Society 26:261-272.

Smaal, A. C., and M. R. van Stralen. 1990. Average annual growth and condition of mussels as a function of food source. Pages 179-188 in D. S. McLusky, V. N. de Jonge, and J. Pomfret (editors). North Sea-Estuaries interactions. Developments in hydrobiology. Volume 55. Springer, Dordrecht, The Netherlands.

Stoffels, R. J., K. R. Clarke, G. P. Closs, N. Zealand, P. Place, and W. Hoe. 2005. Spatial scale and benthic community organisation in the littoral zones of large oligotrophic lakes: Potential for cross-scale interactions. Freshwater Biology 50:1131-1145.

Strayer, D. L. 2008. Freshwater mussel ecology: A multifactor approach to distribution and abundance. University of California Press, Berkeley, California.

Vaughn, C. C., S. J. Nichols, and D. E. Spooner. 2008. Community and foodweb ecology of freshwater
mussels. Journal of the North American Benthological Society 27:409-423.
Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S. E. Bunn, C. A. Sullivan, C. R. Liermann, and P. M. Davies. 2010. Global threats to human water security and river biodiversity. Nature 467:555-561.

Wanamaker, A. D., K. J. Kreutz, B. R. Schöne, K. A. Maasch, A. J. Pershing, H. W. Borns, D. S. Introne, and S. Feindel. 2009. A late Holocene paleo-productivity record in the western Gulf of Maine, USA, inferred from growth histories of the long-lived ocean quahog (Arctica islandica). International Journal of Earth Sciences 98:19-29.

Weber, A. M., J. E. Bauer, and G. T. Watters. 2017. Assessment of nutritional subsidies to freshwater mussels using a multiple natural abundance isotope approach. Freshwater Biology 62:615-629.

Weidel, B., S. Carpenter, J. Cole, J. Hodgson, J. Kitchell, M. Pace, and C. Solomon. 2008. Carbon sources supporting fish growth in a north temperate lake. Aquatic Sciences 70:446-458.

Wilkinson, G. M., M. L. Pace, and J. J. Cole. 2013. Terrestrial dominance of organic matter in north temperate lakes. Global Biogeochemical Sciences 27:43-51.

812 TABLES AND FIGURES

813 Table 1

814 Environmental variables explored for potential relationships to growth of the freshwater mussel Lampsilis siliquoidea. Pearson r reports the
815 linear correlation between the master growth chronology and the environmental variable. Data for all limnological variables were collected and 816 curated by the North Temperate Lakes Long-term Ecological Research site, $\mathrm{NAO}_{\text {winter }} \mathrm{PDO}$ winter data were downloaded from the National Centers 817 for Environmental Information, and precipitation data were downloaded from a local weather station in Minocqua, Wisconsin, USA. Lake level ${ }_{\Delta}$ 818 is the difference (in m) from the previous mean summer lake level. Color refers to water color.

Variable	Mean	Range	Units	Pearson r
Lake level $_{\Delta}$	0.004	-0.25, 0.21	m	0.58
Soluble reactive phosphorus ($\left.\mathrm{SRP}_{\text {spring }}\right)^{\text {a }}$	0.58	0.19, 0.87	$\mu \mathrm{g} / \mathrm{L}$	-0.36
Chlorophyll a	2.4	0.29, 5.9	$\mu \mathrm{g} / \mathrm{L}$	-0.02
Total cladoceran ${ }^{\text {b }}$	10.6	4.4, 18.5	no./L	0.13
Total phophorus	0.74	0.19, 0.95	$\mu \mathrm{g} / \mathrm{L}$	0.03
O_{2}	9	8.4, 9.6	mg / L	-0.23
pH	8.3	8.0, 8.5	-	-0.08
Ca^{2+}	12.6	$11.2,14.2$	mg / L	-0.13
$\mathrm{NO}_{3}+\mathrm{NO}_{2}$	3.1	0.1,10.5	$\mu \mathrm{g} / \mathrm{L}$	-0.01

Total organic carbon	3	2.5, 3.4	mg/L	-0.05
Dissolved organic carbon (DOC)	3.1	2.4, 3.4	mg/L	-0.09
Specific ultraviolet absorbance (SUVA) at 254 nm	1.84	0.92, 5.15	$\mathrm{Lmg}^{-1} \mathrm{Cm}^{-1}$	0.2
Slope ratio	1.38	0.84, 2.1	(ratio of $S_{275-295}$ to $S_{350-400}$)	0.06
Linear slope 275-295	-0.024	-0.03, -0.014	$\log ($ slope of the abs scan over 275-295 nm)/nm	0.17
Color	17.7	$2.5,108.5$	abs at 254 nm (1 m path length)	0.11
Total precip water year	107.7	3.5,331.2	cm	0.44
North Atlantic Oscillation index ($\mathrm{NAO}_{\text {winter }}$)	0.1	-1.6, 1.4	-	0.26
Pacific Decadal Oscillation index ($\mathrm{PDO}_{\text {winter }}$)	0.27	-1.6, 2.5	-	0.34
Mean wind speed	1.25	0.3, 1.8	m / s	0.38
Duration stratification	141.3	123,183	d	-0.03
Degree days	3336	2922, 3751	${ }^{\circ} \mathrm{C} \times \mathrm{d}$	0.001
Date last ice	113.3	79,137	Day of year	-0.11
Date first ice	346.8	332, 369	Day of Year	-0.11
Water temperature (minimum)	13.3	9.9, 16.6	${ }^{\circ} \mathrm{C}$	0.02
Water temperature ($10^{\text {th }}$ percentile)	14.8	11.5, 17.3	${ }^{\circ} \mathrm{C}$	0.12

Water temperature ($25^{\text {th }}$ percentile)	17.3	$14.5,20.8$	${ }^{\circ} \mathrm{C}$	
Water temperature (mean)	19.3	$17.6,21.2$	${ }^{\circ} \mathrm{C}$	
Water temperature ($85^{\text {th }}$ percentile)	21.5	$18.3,23.6$	${ }^{\circ} \mathrm{C}$	0.15
Water temperature ($90^{\text {th }}$ percentile)	22.6	$20.1,24.7$	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$

$819 \quad{ }^{\text {a }}$ Calculated from spring mixing period only.
820 b only including individuals of the taxa Daphnia, Holopedium, Bosminidae, and Diaphanosoma.

Table 2

Conditional averages of the top performing models (within 2 Bayesian information criterion units of best performing model) from an exhaustive model selection. Independent variables were standardized ($\bar{x}=0$, standard deviation $=0.5$) to easily compare effect size between variables. Lake level ${ }_{\Delta}$ is the difference (in m) from the previous summer's mean lake level. SRP $_{\text {spring }}$ is the mean dissolved reactive phosphorus ($\mu \mathrm{g} / \mathrm{L}$) from the immediately preceding spring mixing period.

Parameter	Estimate	Standard error	z-value	$\operatorname{Pr}(>\|z\|)$	No. of models included
Intercept	0.93	0.03	26.16	<0.001	2
Lake level $_{\Delta}$	0.1	0.03	2.82	0.005	2
SRP $_{\text {spring }}$	-0.05	0.03	1.39	0.16	1

Figure 1

Figure 1: Close-up of shell thin-section from Lampsilis siliquoidea. Note conspicuous dark bands indicative of winter growth cessation. Diamonds indicate reference points of annuli at the prismatic layer/nacre margin from where measurements of annual growth were recorded.

Figure 2

Figure 2: Growth characteristics of Lampsilis siliquoidea and its context within the Lampsilini tribe. A.Growth trajectories of individual mussels color-coordinated by sex. Thick lines are growth trajectories for the population calculated using the von Bertalanffy equation: $L_{t}=L_{\infty}\left(1-e^{K\left(t-t_{0}\right)}\right)$, where L_{t} is the length (mm) at time t (age in years), L_{∞} is the mean maximum length for the population, K is a growth constant that describes how quickly an individual approaches L_{∞}, and t_{0} is the time at which length $=0$. Males: $K=0.11, L_{\infty}=73.4, t_{0}=-0.59, n=11$; females: $K=0.12, L_{\infty}=66.4, t_{0}=-0.51, n=14$; only L_{∞} was substantially different between sexes. Males are color-coded in red, females in blue, genus Lampsilis in black, and Lampsilini tribe in gray. B.-The von Bertalanffy growth coefficient K plotted against maximum observed age for populations within the Lampsilini tribe (gray dots) and genus Lampsilis (black dots) to highlight the unique growth characteristics of L. siliquoidea (data for panels A and B include all members of the Lampsilini tribe reported in Haag and Rypel 2011; Table S1). C.-The same colored growth curves from panel A with each individual chronology plotted underneath to display variation among individuals.

Figure 3

Figure 3: Master growth chronology of Trout Lake’s Lampsilis siliquoidea population (black line) ± 1 standard error (SE) (dashed lines) developed from the standardized growth indices (see Methods for description of detrending and standardization procedure). Values >1 indicate growth exceeded model expectations for that year, whereas values <1 indicate growth was less than expected. Gray shading indicates the number of chronologies contributing to that year's estimate.

Figure 4

Figure 4: A.—Regressions of standardized growth indices (SGIs) on lake level ${ }_{\Delta}$. B. - Soluble reactive phosporus ($\mathrm{SRP}_{\text {spring }}$). Lake level ${ }_{\Delta}$ is the difference (in m) from the previous mean summer lake level; $\mathrm{SRP}_{\text {spring }}$ is the mean dissolved reactive phosphorus during the immediately preceding spring mixing period. Each linear regression was run independent of other environmental variables. Each dot represents average standardized growth of the population in 1 y . Growth indices >1 reflect a higher than growth for that year, whereas growth indices <1 reflect growth lower than expected for that year.

Figure 5

Environmental variable

Figure 5: Estimates of effect size of lake level ${ }_{\Delta}$ and soluble reactive phosphorus ($\mathrm{SRP}_{\text {spring }}$) on individual mussel (Lampsilis siliquoidea) chronologies. Positive values indicate that the variable likely had a positive effect on that individual's growth; negative values indicate a likely negative effect on growth. Estimates farther from 0 suggest that the environmental variable had a stronger effect on mussel growth. Estimates were calculated independently of one another using linear models containing only the environmental variable (standardized; $\bar{x}=0$, standard deviation $=0.5$) being estimated and each individual chronology. Lake level ${ }_{\Delta}$ is the difference (in m) from the previous mean summer lake level; $\mathrm{SRP}_{\text {spring }}$ is the mean dissolved reactive phosphorus during the immediately preceding spring mixing period.

Chapter 2: Detecting stress in unionids in a natural ecosystem experiencing a zebra mussel invasion

 using metabolomics
Abstract

:

Freshwater mussels (Order: Unionida) are globally endangered and face numerous threats

 including the now widespread zebra mussel (Dreissena polymorpha). Conservation efforts can benefit from a better understanding of how unionids are affected by their numerous threats. Burden from colonization is likely a strong driver of unionid decline in systems where zebra mussels are present, but other factors such as unionid species, spatial aggregation of zebra mussels, and co-habitation history have been found to have an effect as well. Understanding why some unionids are more severely impacted by zebra mussels may benefit from a better mechanistic understanding of how unionids are affected by zebra mussels. In the present study we examined physiological profiles of Lampsilis siliquoidea across a natural gradient of zebra mussels in a eutrophic chain of lakes using a non-targeted metabolomics approach to analyze whether physiological profiles of stress were detectable in this unionid population, and/or if other life history processes within their natural ecosystem were impacted. Twenty-four of 99 metabolites were significantly associated with zebra mussel burden, many of which displayed consistent responses to laboratory studies of unionids under stress. This suggests that the physiological profiles of stress may be similar among species and detectable in unionids in natural systems. Metabolites integral to important physiological functions such as energy production did not appear to be negatively affected by zebra mussels; however, numerous metabolites secondarily associated with energy production were consistently negatively associated with mussel shell colonization. We propose that these metabolites are being used to supplement energy production and caution that this could conceal indicators of stress if only metabolites primarily associated with energy production are examined. We suggest that metabolomics is a useful tool to better understanding how unionids respond to stressors across various systems.
Introduction:

Freshwater mussels (order Unionida) are one of the most endangered taxa globally (Williams et al. 1993; Lopes-Lima et al. 2018). They experience numerous and varied threats to their persistence including historical overexploitation (Anthony and Downing 2001), ongoing habitat modification, decreasing water quality (Gillis 2011), invasive species (Ricciardi et al. 1996; Strayer 1999), climate change (Inoue and Berg 2017; Beggel et al. 2017), and emerging pathogens (Richard et al. 2021). Longterm conservation of unionids will require an understanding of how these mussels are influenced by anthropogenic factors at all scales.

One ubiquitous threat to unionids is the expanding geographic range of zebra mussels (Dreissena polymorpha) (Benson et al. 2021). Zebra mussels are one of the most aggressive invasive species in freshwater systems globally (Karatayev et al. 2015). Their relatively fast life history integrates a unique free-floating larval stage that allows rapid dispersal, high population growth rates, and high local densities and biomasses (Strayer and Malcom 2006). For example, zebra mussels often colonize all available hard substrates of benthic habitats (Nalepa et al. 1995; Mellina and Rasmussen 1994; Spear et al. 2022), including occupied and unoccupied unionid shells (Schloesser et al. 1996). Zebra mussels also trigger drastic changes to entire ecosystems and their presence negatively impacts survival and growth of competing filter-feeding unionids (Ricciardi et al. 2002).

Understanding how zebra mussels affect native unionids at an individual scale would assist in untangling why unionid communities display varied responses to zebra mussel invasions. Multiple factors such as hyper-localized spatial interactions (Beason and Schwalb 2022; Baker and Hornbach 2008; Ricciardi et al. 1996), species-specific characteristics of the unionid (Gillis and Mackie 1994), as well as community dynamics (Burlakova et al. 2014) shape the nature and severity of the impact of zebra mussel on unionids. This multifaceted response in turn increases difficulty in predicting long-term
conservation status of unionid species in at-risk ecosystems or those currently experiencing zebra mussel invasions (Strayer and Malcom 2007).

Unionids, and bivalves in general, are enigmatic animals and changes in body condition or overall health are often not readily apparent from a cursory observation. However, measurements of physiological status are often useful in identifying mechanistic drivers of fitness loss and mortality in mussels and other freshwater animals. For unionids, attributes such as glycogen concentration in the foot or mantle are common assessments, as they are useful and relatively robust in evaluating general body condition (Naimo et al. 1998). While the role of glycogen as a primary energy storage biomolecule in unionids makes it well-suited for assessing general body condition, it provides little insight into identifying how and which physiological processes may be disrupted. Further, baseline glycogen concentrations can differ among species, naturally fluctuate throughout the year, and are affected by reproductive effort (Monroe and Newton 2001; Nagabhushanam and Lomte 1971). Unionids respond differently depending on the threat they are experiencing and conditions of their ecosystem. Thus, it is often difficult to identify specific threats to their well-being (Strayer et al. 2004; Downing et al. 2010). Physiological assays may provide insight into stressors and how mussels respond to specific anthropogenic impacts. For example, subtle changes in glycogen levels, or other metabolic products, may signal less severe or early-stage changes in ecosystem conditions.

Non-targeted metabolomics is a bioassessment approach that estimates concentrations of an array of low molecular-weight biochemicals relevant to important biological processes at the cellular scale. Studies of metabolomics allow for direct insight into cellular activity and how specific biological processes may be altered, including the identification of processes by which mussels are negatively affected by stressors. Compared to marine bivalves, metabolomics studies in freshwater mussels have been rare (see Leonard et al. 2014; Roznere et al. 2014; 2017), but those that have been completed have shown the ability to identify specific metabolic pathways that have been altered in controlled
experimental studies of stress such as exposure to an endocrine disruptor (Leonard et al. 2014), food limitation (Roznere et al. 2014), and translocation (Roznere et al. 2017).

In this study, we used metabolomics to expand our understanding of how lake unionids are affected by zebra mussel invasion at a physiological level. We focused our assessment specifically on whether metabolomic profiles of stress are readily identifiable in natural ecosystems. We were able to study these by analyzing metabolomic profiles of a common freshwater mussel (Lampsilis siliquoidea) as they responded to initial years of a zebra mussel infestation across a gradient of zebra mussel densities throughout a chain of eutrophic lakes.

Methods:

Sampling location

The Yahara Lake system is a well-studied chain of eutrophic lakes (Mendota, Monona, Waubesa, and Kegonsa) located in southern WI, USA. Zebra mussels were first discovered in 2015 in Lake Mendota and quickly increased to high densities by $2018\left(>30,000 \mathrm{~m}^{-2}\right)$ (Spear et al. 2022). During this period, downstream lakes were steadily colonized and a natural gradient of zebra mussel densities developed throughout the lake chain. We used this natural gradient to examine physiological responses to varying degrees of zebra mussel infestation. Unionids higher in the lake chain had significantly higher total numbers of zebra mussels attached to their shells on average (ANOVA p-value <0.01): Mendota (mean = $46, S D=16.8)$, Monona (mean $=27, S D=25.9$), and Kegonsa (mean $=0.5, S D=1.1$). This pattern correlated with zebra mussel loads on unionids as defined by total grams dry mass of zebra mussels/grams dry mass of unionid soft tissue being substantially higher in the earlier invaded lakes higher in lake chain: Mendota (mean zebra mussel load = 4.3, SD 1.8), Monona (mean = 1.9, SD=1.8), and Kegonsa (mean $<0.01, \mathrm{SD}=0.01$).

Sample collection

During summer 2017, Lakes Mendota, Monona, and Kegonsa were surveyed for native mussels. Near shore sites were selected for SCUBA and snorkel surveys based on suitable habitat for native mussels. A total of 33 unionids were sampled across the lake chain for glycogen analysis: Mendota ($\mathrm{n}=$ 15), Monona (10), Kegonsa (8) and 32 individuals were sampled for metabolomics analysis: Mendota (9), Monona (15), Kegonsa (8) (Figure 1). The breeding season of Lampsilis siliquoidea is mid-summer and no females were observed to be gravid during collection. Mussels that were collected for glycogen analysis were immediately placed on ice to preserve the tissue for later analysis (following Dunn and Ellis, 2005). In the lab, individuals were sexed via external shell morphology, dried in a drying oven to a constant mass, weighed, then approximately 10 mg of foot tissue was collected and run for glycogen analysis (following Naimo et al. 1998).

For mussels that were sampled for metabolomics analysis, in the field, immediately after collection, approximately 200uL of hemolymph was drawn from the anterior adductor muscle using a 27-29-gauge syringe, stored in a 2 mL cryotube, and flash frozen in liquid nitrogen. Unionids were then scraped of all zebra mussels if present and returned to the benthos. All zebra mussels greater than length 5 mm were counted and measured along the major axis of the shell. Cumulative dry weight of all zebra mussels was estimated using a standard conversion of length to dry weight for zebra mussels (Coughlan et al. 2021). Zebra mussel loads were calculated as total estimated zebra mussel dry mass divided by the total dry mass of the unionid soft tissue. Hemolymph samples were stored at $-80^{\circ} \mathrm{C}$ until they were shipped on dry ice to West Coast Metabolomics Center at UC-Davis for non-targeted analysis of primary metabolites. Metabolites were identified using gas chromatography time-of-flight mass spectroscopy (GC-TOF MS and their peak heights were normalized to the sum peak height of annotated compounds (mTIC-normalization) by the West Coast Metabolomics Center. Each metabolite was independently normalized to zero and standardized to one standard deviation.

Metabolites were identified as being significantly affected by the presence of zebra mussels via a t-test on the relative metabolite concentrations between the groupings of unburdened and burdened mussels (p-value threshold of 0.05). The cutoff between unburdened and burdened was selected to favor natural breaks in the data as well as balance the sample size of each factor level. Model fits displayed in the scatter plots on all figures of relative metabolite concentration and zebra mussel load are back-transformations of linear regressions fit to \ln (relative metabolite concentration $+\alpha) \sim \ln (z e b r a$ mussel load +1) where α is the absolute value of the minimum metabolite relative concentration +0.5 . They are included only in plots of significantly affected metabolites and are intended only to provide a general description of the relationship between the metabolite and zebra mussel load. Non-metric multi-dimensional ordination on metabolomic data was calculated using Canberra distance to assess dissimilarity using the vegan package in R (Oksanen et al. 2020; R Core Team 2020).

Results:

Glycogen

Glycogen concentrations were lowest for mussels found in Mendota; mean glycogen in foot tissue was $70.6 \mathrm{mg} / \mathrm{g}(\mathrm{SD} 21)$. Mussels from Lake Monona had a mean glycogen concentration of 78.1 mg / g (SD 25.8), while Kegonsa residents had a mean concentration of $113 \mathrm{mg} / \mathrm{g}$ (SD 8.5). Glycogen concentrations of unionids were significantly negatively related to zebra mussel load (Figure 1). Unionids burdened by zebra mussels had a mean glycogen concentration in foot tissue at $77.0 \mathrm{mg} / \mathrm{g}$ (SD 21.0) where unionids unburdened by zebra mussels had mean foot glycogen concentrations of $107.0 \mathrm{mg} / \mathrm{g}$ (SD 10.7). Glycogen levels were not related to sex (LMM with sex as a random intercept, $p=0.99$).

Non-metric multi-dimensional ordination (NMDS):

Of the 99 metabolites that were identified by West Coast Metabolomics, 24 showed a significant change in response to zebra mussel loads (Table 1). There was substantial overlap of metabolite profiles
among the three lakes. Unionids had a consistent response among individuals strongly associated with zebra mussel load and not by sex or mass of unionid (Figure 2). Metabolite concentrations that were affected by zebra mussel load included molecules important in energy production, the citric acid cycle, and the urea cycle.

Carbohydrate metabolism

Energy sources for carbohydrate metabolism showed the opposite pattern from glycogen concentrations. Unionids burdened with zebra mussels displayed positive relationships with relative metabolite concentrations of glucose ($p<0.01$), galactose ($p<0.01$), and fructose ($p=0.01$) (Figure 3).

Citric Acid Cycle

Primary metabolites centrally involved in the citric acid cycle were able to maintain consistent concentrations across all levels of zebra mussel loads. There was no detectable relationship between relative metabolite concentration and zebra mussel load in three of four of the metabolites central to the citric acid cycle: fumarate ($p=0.78$), succinate ($p=0.06$), or citrate (0.72), while only malate displayed a significant positive relationship $(p=0.02)$ (Figure 4 left column). However, unionids burdened with zebra mussels experienced consistent and marked decreases in many metabolites that can act as substrates to support the citric acid cycle; secondary metabolite concentrations negatively related to zebra mussel loads included asparagine ($p=0.03$), lysine ($p<0.01$), methionine ($p=0.02$), serine ($p<0.01$), tryptophan ($p=0.02$), threonine ($p=0.03$), and valine ($p=0.01$) (Figure 4 middle and right columns).

Urea Cycle

Metabolites central to the urea cycle did not display consistent patterns in relation to zebra mussel loads. Zebra mussel load was not correlated with metabolites urea $(p=0.84)$ nor citrulline $(p=$ 0.05); however, zebra mussel load was negatively correlated with ornithine (p <0.01) (Figure 5).

Discussion:

Freshwater mussel metabolomic profiles displayed several consistent patterns associated with increasing zebra mussel load. This was consistent regardless of sex or mass of mussel (Figure 3). The most affected metabolites were amino acids known to be secondarily involved in energy production via the citric acid cycle (asparagine, lysine, methionine, serine, threonine, tryptophan, valine) and the urea cycle (ornithine), suggesting that processes necessary for energy production, protein metabolism and possibly excretion have been affected. Although the exact set of metabolites identified in this study were different, the specific metabolite expressions and direction of their changes are largely consistent with laboratory studies of physiological profiles of unionids experiencing stress from starvation (Roznere et al. 2014) such as reduced levels of free amino acids associated with the citric acid cycle and the urea cycle.

Glycogen is the primary energy storage molecule for mollusks, and its depletion in response to stressful situations is well-documented (de Zwaan and Wijsman 1976; Hummel et al. 1989), including in other studies of unionids affected by zebra mussel invasions (Haag et al. 1993; Beason and Schwalb 2022; Baker and Hornbach 2000). In this study, the negative relationship between foot glycogen concentration and zebra mussel load suggests unionids with moderate and high zebra mussel loads are likely tapping more into their stored glycogen in order to sustain basal metabolic function. This process cannot be maintained indefinitely and depleted glycogen levels may decrease reproductive capacity and/or increase mortality risk during periods of lower food availability.

Circulating metabolites important for energy production such as glucose, galactose and fructose, seem to not only be maintained but are slightly elevated in unionids burdened with zebra mussels. This is likely due in part to the mobilization of stored glycogen as well as an increase in gluconeogenesis (the process of synthesizing glucose from non-carbohydrate substrates such as amino acids). Elevated glucose levels during stress is not uncommon (McCue 2010; Roznere et al. 2014) and is likely an overcompensation for a lack of sufficient carbohydrate intake from food sources to balance energy demands (McCue 2010). However, this strategy of overcompensation cannot be maintained long-term as stores of glycogen become depleted along with the substrates used for gluconeogenesis. These patterns of increased glycolysis and diminishing gluconeogenic substrates closely mirrors that of laboratory studies of stress from starvation in Amblema plicata (Roznere et al. 2017), suggesting that metabolic patterns of stress are likely similar among unionids and may be easily identifiable through metabolomic analyses.

The citric acid cycle relies on circulating glucose as a primary source of energy. In this study, there were no significant changes in three of the four primary intermediates directly involved in the cycle, with only malic acid indicating an increase in response to zebra mussel load (Figure 4 left column); however, numerous amino acids capable of supplementing the citric acid cycle were consistently depleted in unionids with moderate and high zebra mussel loads (Figure 4 middle and right columns). It is likely that these amino acids are being depleted in order to supplement the citric acid cycle in an attempt to meet energy demands. In addition, another likely consequence of amino acids depletion is its effect on protein metabolism, specifically diminished opportunities for protein synthesis. The increased demand for energy sources without a concomitant upregulation of citric acid cycle intermediates may indicate an increased reliance on anaerobic respiration in mussels undergoing higher zebra mussel loads as energy demands are not being met through aerobic respiration alone. Venter et al. (2018) have
reported that decreases in asparagine with high zebra mussel load are consistent with stress from hypoxia in abalone and may serve as additional support for increased reliance on anaerobic metabolism.

In the present study, only one of three identified metabolites in the urea cycle showed significant changes in response to zebra mussel load (Figure 5). These minor changes in metabolites involved in the urea cycle suggest that if mussels have increased their rate of protein catabolism, it may only be to a minor extent. However, it is important to note that the urea cycle is not the most common pathway for removal of metabolic nitrogen in freshwater mussels, as a majority of nitrogen is excreted as ammonia prior to the urea cycle. Thus, if protein catabolism is increased in unionids experiencing higher levels of zebra mussel load, its effects on the urea cycle may be diminished as well as our ability to detect it.

Metabolomic analyses provide a powerful tool to identify changes in multiple metabolic pathways important to the physiology of an organism. Therefore, because patterns across individuals appear to be consistent, physiological impacts from zebra mussel infestation likely scale to population and perhaps even ecosystem level impacts. It is important to remember, however, that metabolites rarely have a single purpose and their interactions in multiple cellular processes make interpreting changes in the concentration of individual metabolites challenging. For example, changes in important physiological functions such as energy production through the citric acid cycle can be obscured by other processes such as gluconeogenesis. In addition, the variability of any one metabolite between species, time of year, and/or reproductive stage can make assessments based on one or only a few metabolites limited in their usefulness. A holistic approach that focuses on pathways as a unit rather than individual metabolites should be employed as it would provide greater confidence in identifying which pathways have been affected and how they have changed.

Metabolomics is broadly applicable to studies of mussel conservation and ecology. Metabolomic profiles associated with specific stressors such as hypoxia and temperature stress have been previously
described in marine bivalves (Ellis et al. 2014; Dunphy et al. 2015; Tuffnail et al. 2009), as well as in mussels responding to harmful chemicals such as endocrine disruptors in freshwater systems (Leonard et al. 2014). Within the focus of this study, the mechanisms through which zebra mussels negatively affect unionids are not well-defined, but likely include reduced filter-feeding ability and respiration, and hampering of burrowing and movement (reviewed by Strayer, 1999) and multiple undefined effects associated with physiological stress may be occurring in conjunction. Identifying metabolomic patterns associated with specific types of stress is an important next step, as it has broad reaching applications and may be particularly helpful when trying to identify specific threats to mussels in their environments (Tuffnail et al. 2009). In addition, very little is known about zebra mussel impacts on unionid reproduction, and with the increasing number of systems in which cohabitation is occurring, this is an important area of study.

In this study, we were able to identify signs of stress in unionids in response to zebra mussel fouling in their natural environment, but caution that physiological signs of stress may not always be readily apparent even for key physiological processes. Our study also highlights a potential for how metabolomics can be a useful tool in wild mussel health assessments, likely over a range of questions and applications. Finally, since freshwater mussels are also quite long-lived (Haag and Rypel 2011), approaches, like metabolomics, that allow sub-lethal characterization of fitness of these animals, will be critical to their future conservation management. The threats that freshwater mussels face are numerous and varied; the toolbox we will need to best understand, monitor, and manage mussel health will likely require an equally diverse approach.

References:

Anthony, J. L., and J. A. Downing. 2001. "Exploitation Trajectory of a Declining Fauna: A Century of Freshwater Mussel Fisheries in North America." Canadian Journal of Fisheries and Aquatic Sciences 58 (10): 2071-90.

Baker, S. M., and D. J. Hornbach. 2000. "Physiological Status and Biochemical Composition of a Natural Population of Unionid Mussels (Amblema Plicata) Infested by Zebra Mussels (Dreissena Polymorpha)." The American Midland Naturalist 143 (2): 443-52.

Baker, S. M., and D. J. Hornbach. 2008. "Zebra Mussels (Dreissena Polymorpha) Attached to Native Mussels (Unionidae) or Inanimate Substrates: Comparison of Physiological Rates and Biochemical Composition." The American Midland Naturalist 160 (1): 20-28.

Beason, E., and A. N. Schwalb. 2022. "Impact of Zebra Mussels on Physiological Conditions of Unionid Mussels in Texas." Aquatic Sciences 84 (2): 21.

Beggel, S., M. Hinzmann, J. Machado, and J. Geist. 2017. "Combined Impact of Acute Exposure to Ammonia and Temperature Stress on the Freshwater Mussel Unio Pictorum." Water 9 (7): 455.

Benson, A. J., D. Raikow, J. Larson, A. Fusaro, A. K. Bogdanoff, and A. Elgin. 2021. "Dreissena Polymorpha (Pallas, 1771): U. S. Geological Survey, Nonindigenous Aquatic Species Database." Gainsville, FL. Burlakova, L. E., B. L. Tulumello, A. Y. Karatayev, R. A. Krebs, D. W. Schloesser, W. L. Paterson, T. A. Griffith, M. W. Scott, T. Crail, and D. T. Zanatta. 2014. "Competitive Replacement of Invasive Congeners May Relax Impact on Native Species: Interactions among Zebra, Quagga, and Native Unionid Mussels." Edited by Peter P. Fong. PLoS ONE 9 (12): e114926.

Downing, J. A., P. Van Meter, and D. A. Woolnough. 2010. "Suspects and Evidence: A Review of the Causes of Extirpation and Decline in Freshwater Mussels." Animal Biodiversity and Conservation 33 (2): 151-85.

Dunphy, B. J., E. Watts, and N. L. C. Ragg. 2015. "Identifying Thermally-Stressed Adult Green-Lipped Mussels (Perna Canaliculus Gmelin, 1791) via Metabolomic Profiling." American Malacological Bulletin 33 (1): 127-35.

Ellis, R. P., J. I. Spicer, J. J. Byrne, U. Sommer, M. R. Viant, D. A. White, and S. Widdicombe. 2014. "1H NMR Metabolomics Reveals Contrasting Response by Male and Female Mussels Exposed to Reduced Seawater PH, Increased Temperature, and a Pathogen." Environmental Science \& Technology 48 (12): 7044-52.

Gillis, P. L. 2011. "Assessing the Toxicity of Sodium Chloride to the Glochidia of Freshwater Mussels: Implications for Salinization of Surface Waters." Environmental Pollution 159 (6): 1702-8.

GIllis, P. L., and G. L. Mackie. 1994. "Impact of the Zebra Mussel, Dreissena Polymorpha , on Populations of Unionidae (Bivalvia) in Lake St. Clair." Canadian Journal of Zoology 72 (7): 1260-71.

Haag, W. R., D. J. Berg, D. W. Garton, and J. L. Farris. 1993. "Reduced Survival and Fitness in Native Bivalves in Response to Fouling by the Introduced Zebra Mussel (Dreissena Polymorpha) in Western Lake Erie." Canadian Journal of Fisheries and Aquatic Sciences 50 (1): 13-19.

Haag, W. R., and A. L. Rypel. 2011. "Growth and Longevity in Freshwater Mussels: Evolutionary and Conservation Implications." Biological Reviews 86 (1): 225-47.

Hummel, H., L. de Wolf, W. Zurburg, L. Apon, R. H. Bogaards, and M. van Ruitenburg. 1989. "The Glycogen Content in Stressed Marine Bivalves: The Initial Absence of a Decrease." Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 94 (4): 729-33.

Inoue, K., and D. J. Berg. 2017. "Predicting the Effects of Climate Change on Population Connectivity and Genetic Diversity of an Imperiled Freshwater Mussel, Cumberlandia Monodonta (Bivalvia: Margaritiferidae), in Riverine Systems." Global Change Biology 23 (1): 94-107.

Karatayev, A. Y., L. E. Burlakova, S. E. Mastitsky, and D. K. Padilla. 2015. "Predicting the Spread of Aquatic Invaders: Insight from 200 Years of Invasion by Zebra Mussels." Ecological Applications 25 (2): 430-40.

Leonard, J. A., W. G. Cope, M. C. Barnhart, and R. B. Bringolf. 2014. "Metabolomic, Behavioral, and Reproductive Effects of the Synthetic Estrogen 17α-Ethinylestradiol on the Unionid Mussel Lampsilis Fasciola." Aquatic Toxicology 150 (May): 103-16.

Lopes-Lima, M., L. E. Burlakova, A. Y. Karatayev, K. Mehler, M. Seddon, and R. Sousa. 2018. "Conservation of Freshwater Bivalves at the Global Scale: Diversity, Threats and Research Needs." Hydrobiologia 810 (1): 1-14.

McCue, M. D. 2010. "Starvation Physiology: Reviewing the Different Strategies Animals Use to Survive a Common Challenge." Comparative Biochemistry and Physiology Part A: Molecular \& Integrative Physiology 156 (1): 1-18.

Mellina, E., and J. B. Rasmussen. 1994. "Patterns in the Distribution and Abundance of Zebra Mussel (Dreissena Polymorpha) in Rivers and Lakes in Relation to Substrate and Other Physicochemical Factors." Canadian Journal of Fisheries and Aquatic Sciences 51 (5): 1024-36.

Monroe, E. M., and T. J. Newton. 2001. "Seasonal Variation in Physiological Condition of Amblema Plicata in the Upper Mississippi River." Journal of Shellfish Research 20 (3): 1167-71.

Nagabhushanam, R., and V. S. Lomte. 1971. "Biochemical Studies in the Freshwater Mussel, Parreysia Corrugata." Hydrobiologia 37 (3-4): 545-52.

Naimo, T. J., E. D. Damschen, R. G. Rada, and E. M. Monroe. 1998. "Nonlethal Evaluation of the Physiological Health of Unionid Mussels: Methods for Biopsy and Glycogen Analysis." Journal of the North American Benthological Society 17 (1): 121-28.

Nalepa, T. F., J. A. Wojcik, D. A. Fanslow, and G. A. Lang. 1995. "Initial Colonization of the Zebra Mussel (Dreissena Polymorpha) in Saginaw Bay, Lake Huron: Population Recruitment, Density, and Size Structure." Journal of Great Lakes Research 21 (4): 417-34.

Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. Minchin, et al. 2020. Vegan: Community Ecology Package. R Package (version 2.5-7). https://CRAN.Rproject.org/package=vegan.

Pinheiro, J., D. Bates, S. DebRoy, D. Sakar, and R Core Team. 2020. NIme: Linear and Nonlinear Mixed Effects Models (version 3.1-149). R. https://CRAN.R-project.org/package=nlme.

R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria. https://www/R-project.org.

Ricciardi, A, F. G. Whoriskey, and J.B. Rasmussen. 1996. "Impact of the Dreissena Invasion on Native Unionid Bivalves in the Upper St. Lawrence River" 53: 11.

Richard, J. C., L. J. Campbell, E. M. Leis, R. E. Agbalog, C. D. Dunn, D. L. Waller, S. Knowles, J. G. Putnam, and T. L. Goldberg. 2021. "Mussel Mass Mortality and the Microbiome: Evidence for Shifts in the Bacterial Microbiome of a Declining Freshwater Bivalve." Microorganisms 9 (9): 1976.

Roznere, I., G. T. Watters, B. A. Wolfe, and M. Daly. 2014. "Nontargeted Metabolomics Reveals Biochemical Pathways Altered in Response to Captivity and Food Limitation in the Freshwater Mussel Amblema Plicata." Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 12 (December): 53-60.
———. 2017. "Effects of Relocation on Metabolic Profiles of Freshwater Mussels: Metabolomics as a Tool for Improving Conservation Techniques." Aquatic Conservation: Marine and Freshwater Ecosystems 27 (5): 919-26.

Schloesser, D. W., T. F. Nalepa, and G. L. Mackie. 1996. "Zebra Mussel Infestation of Unionid Bivalves (Unionidae) in North America." American Zoologist 36 (3): 300-310.

Spear, M. J., P. A. Wakker, T. P. Shannon, R. L. Lowe, L. E. Burlakova, A. Y. Karatayev, and M. J. Vander Zanden. 2022. "Early Changes in the Benthic Community of a Eutrophic Lake Following Zebra Mussel (Dreissena Polymorpha) Invasion." Inland Waters, March, 1-19.

Strayer, D. L. 1999. "Effects of Alien Species on Freshwater Mollusks in North America." Journal of the North American Benthological Society 18 (1): 74-98. h

Strayer, D. L., J. A. Downing, W. R. Haag, T. L. King, J. B. Layzer, T. J. Newton, and S. J. Nichols. 2004. "Changing Perspectives on Pearly Mussels, North America's Most Imperiled Animals." BioScience 54 (5): 429.

Strayer, D. L., and H. M. Malcom. 2006. "Long-Term Demography of a Zebra Mussel (Dreissena Polymorpha) Population." Freshwater Biology 51 (1): 117-30.
———. 2007. "Effects of Zebra Mussels (Dreissena Polymorpha) on Native Bivalves: The Beginning of the End or the End of the Beginning?" Journal of the North American Benthological Society 26 (1): 111-22.

Tuffnail, W., G. A. Mills, P. Cary, and R. Greenwood. 2009. "An Environmental 1H NMR Metabolomic Study of the Exposure of the Marine Mussel Mytilus Edulis to Atrazine, Lindane, Hypoxia and Starvation." Metabolomics 5 (1): 33-43.

Viarengo, A., and L. Canesi. 1991. "Mussels as Biological Indicators of Pollution." Aquaculture 94 (2-3): 225-43.

Venter, L., D. T. Loots, L. J. Mienie, P. J. van Rensburg, S. Mason, A. Vosloo, \& J. Z. Lindeque (2018). Uncovering the metabolic response of abalone (Haliotis midae) to environmental hypoxia through metabolomics. Metabolomics, 14(4), 49.

Williams, J. D., M. L. Warren, K. S. Cummings, J. L. Harris, and R. J. Neves. 1993. "Conservation Status of Freshwater Mussels of the United States and Canada." Fisheries 18 (9): 6-22.

Zwaan, A. de, and T. C. M. Wijsman. 1976. "Anaerobic Metabolism in Bivalvia (Mollusca) Characteristics of Anaerobic Metabolism." Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 54 (3): 313-23. between unburdened and burdened groups for each metabolite.

Figures and Tables

Table 1
List of metabolites identified as affected by zebra mussel burden. Each metabolite was independently standardized to a mean of zero (1 SD). Values for unburdened ($n=17$) and burdened ($n=15$) columns correspond to mean metabolite value across all individuals. P-values were calculated using a t-test

Figure 1

Figure 1: Distribution of zebra mussel loads on unionids used for metabolomics analysis among the sampled lakes (top). Zebra mussel loads were calculated as the total grams dry mass of zebra mussels/grams dry mass of unionid soft tissue. Unburdened ($n=17$) / burdened ($n=15$) cutoff was chosen to favor natural breaks in the data as well as balance the sample size of each factor level. Points are offset horizontally for visualization purposes only. Unionid foot glycogen concentrations across lakes in relation to zebra mussel loads (bottom). Glycogen concentrations are reported in mg of glycogen/g dry weight foot tissue. Lake IDs stand for Lakes Kegonsa (KG), Monona (MO), and Mendota ME).

Figure 2

Figure 2: Non-metric multi-dimensional scaling of metabolomic profiles of unionids. All 99 identified metabolites were included in NMDS. Dissimilarity was calculated using Canberra distance. Ellipses were calculated with the default level of 0.95 . The direction of the factors zebra mussel load, unionid mass, and (unionid) sex and their distance from the origin are proportional to the direction and strength of association of that factor with the ordination axes. KG Kegonsa; MO Monona; ME Mendota

Figure 3

Figure 2: Metabolites important in carbohydrate metabolism/energy production and their relationship to zebra mussel load. Boxplots show metabolite relative concentrations grouped by burdened/unburdened status. *denote significant differences between groups. Scatterplots display the same data across the range of zebra mussel loads. Modeled lines are back-transformations of linear regressions fit to $\ln ($ metabolite $+\alpha) \sim \ln ($ zebra mussel load) and are only intended to generally describe the relationship.

Figure 4

Citric acid cycle metabolites

Citric acid cycle precursors

Zebra mussel load

Figure 4: Relative concentrations of metabolites associated with citric acid cycle and their relationship to zebra mussel load. Left column comprised of metabolites central to the citric acid cycle, middle and right columns comprised of metabolites that can supplement the citric acid cycle. Boxplots show metabolite relative concentrations grouped by burdened/unburdened status. *denote significant differences between groups. Scatterplots display the same data across the range of zebra mussel loads. Modeled
lines are back-transformations of linear regressions fit to $\ln ($ metabolite $+\alpha) \sim \ln ($ zebra mussel load) and are only intended to generally describe the relationship.

Figure 5

Figure 5: Relative concentrations of metabolites central to urea cycle across zebra mussel load levels.
*denote metabolites that are significantly negatively correlated with zebra mussel load ($\mathrm{p}<0.05$).
Modeled lines are back-transformations of linear regressions fit to $\ln ($ metabolite $+\alpha) \sim \ln (z e b r a$ mussel load) and are only intended to generally describe the relationship.

Supplementary Table 1:

Full list of identified metabolites and their association with zebra mussel burden ($\mathrm{n}=99$). Values
correspond to mean peak height for that metabolite within unburdened/burdened group. All
metabolites were independently standardized to a mean of zero (1 SD). P-values were calculated using a t-test between unburdened and burdened groups for each metabolite.

KEGG ID	Metabolite	Unburdened	Burdened	p-value
C00147	Adenine	-0.239	0.271	0.153
C00212	Adenosine	0.075	-0.085	0.658
C00041	Alanine	0.146	-0.166	0.388
C01904	Arabitol	0.066	-0.075	0.698
C00152	Asparagine	0.359	-0.407	0.028
C00049	Aspartic acid	0.184	-0.208	0.276
C00099	Beta alanine	0.002	-0.002	0.991
C01571	Capric acid	-0.074	0.084	0.664
C00090	Catechol	-0.057	0.065	0.736
C01971	Cellobiose	0.192	-0.218	0.253
C00187	Cholesterol	0.017	-0.019	0.921
C00158	Citric acid	0.06	-0.068	0.722
C00327	Citrulline	0.322	-0.365	0.051
C01420	Cystine	0.223	-0.253	0.184
	Deoxypentitol	-0.299	0.339	0.071
C06593	Epsilon caprolactam	0.003	-0.004	0.984
C02336	Fructose	-0.446	0.506	0.005
C00122	Fumaric acid	0.048	-0.055	0.777
C01235	Galactinol	-0.044	0.049	0.798
C00880	Galactonic acid	-0.223	0.253	0.184
C00984	Galactose	-0.524	0.594	0.001
C00800	Gluconic acid	-0.403	0.457	0.013
C00221	Glucose	-0.531	0.602	0.001
C00103	Glucose 1 phosphate	-0.32	0.363	0.052
C01172	Glucose 6 phosphate	0.098	-0.111	0.562
C00025	Glutamic acid	0.294	-0.333	0.077
C00064	Glutamine	0.398	-0.451	0.014
C00489	Glutaric acid	-0.186	0.211	0.269
C00258	Glyceric acid	-0.113	0.128	0.505
C00116	Glycerol	0.053	-0.06	0.754
C05401	Glycerol 3 galactoside Glycerol alpha	0.064	-0.072	0.707
C03189	phosphate	0.092	-0.105	0.587

C00037	Glycine	0.123	-0.139	0.468
C00387	Guanosine	0.232	-0.263	0.166
C00530	Hydroquinone	-0.167	0.19	0.322
C00294	Inosine	0.268	-0.304	0.107
C00407	Isoleucine	0.262	-0.296	0.117
	Isopentadecanoic acid	-0.183	0.208	0.277
C00639	Isothreonic acid	-0.314	0.356	0.057
C07064	Lactulose	-0.146	0.165	0.388
C00123	Leucine	0.148	-0.167	0.382
C00047	Lysine	0.658	-0.745	0
C00532	Lyxitol	0.025	-0.028	0.883
C00711	Malic acid	-0.373	0.423	0.022
C00208	Maltose	0.31	-0.351	0.061
C01835	Maltotriose	0.173	-0.196	0.306
C00392	Mannitol	-0.255	0.289	0.126
C08243	Melezitose	-0.16	0.181	0.344
C00073	Methionine	0.403	-0.457	0.013
C02989	Methionine sulfoxide	0.396	-0.449	0.014
	Methylhexose	-0.362	0.41	0.027
C00137	Myo inositol	0.227	-0.257	0.176
C00645	N acetylmannosamine	-0.159	0.181	0.345
C00253	Nicotinic acid	-0.015	0.017	0.931
C00756	Octanol	-0.208	0.235	0.216
C00077	Ornithine	0.516	-0.585	0.001
C01879	Oxoproline	0.243	-0.276	0.146
C00079	Phenylalanine	0.354	-0.402	0.03
	Pipecolinic acid	0.286	-0.324	0.085
C00148	Proline	0.114	-0.129	0.501
C02067	Pseudo uridine	-0.003	0.003	0.988
C00138	Putrescine	0.358	-0.406	0.028
C01108	Pyrogallol	-0.276	0.313	0.097
C00296	Quinic acid	-0.147	0.166	0.385
C00492	Raffinose	-0.304	0.345	0.066
C01685	Ribonic acid	-0.246	0.279	0.141
C00121	Ribose	-0.287	0.325	0.084
C00805	Salicylic acid	-0.015	0.017	0.929
C00065	Serine	0.55	-0.623	0
C00493	Shikimic acid	-0.045	0.051	0.793
C00042	Succinic acid	-0.306	0.347	0.064
C00089	Sucrose	0.032	-0.037	0.85
C00795	Tagatose	-0.355	0.403	0.03
C16884	Threitol	-0.161	0.183	0.34
C01620	Threonic acid	0.346	-0.392	0.035
C00188	Threonine	0.366	-0.414	0.025
C00214	Thymidine	0.07	-0.079	0.681

C01083	Trehalose	0.175	-0.199	0.299
C00078	Tryptophan	0.392	-0.444	0.016
C00082	Tyrosine	-0.136	0.154	0.423
C00106	Uracil	-0.37	0.419	0.023
C00086	Urea	0.035	-0.04	0.835
C00183	Valine	0.406	-0.461	0.012
C00181	Xylose	-0.061	0.069	0.721
C05437	Zymosterol	0.024	-0.028	0.886
C02814	1, 2, 4-benzenetriol	-0.26	0.294	0.119
C07326	1,5-anhydroglucitol	-0.108	0.122	0.525
C01885	1-monopalmitin	-0.036	0.04	0.834
D01947	1-monostearin	0.243	-0.275	0.147
C02721	2-aminobutyric acid	0.4	-0.454	0.013
	2-deoxytetronic acid	-0.009	0.011	0.956
	2-hydroxyvaleric acid	0.183	-0.208	0.277
C00322	2-ketoadipic acid	0.101	-0.114	0.552
	2 methylglyceric acid	-0.148	0.168	0.382
	3 4 dihydroxycinnamic			
C01197	acid	0.144	-0.163	0.394
C05145	3 aminoisobutyric acid	-0.069	0.079	0.684
	5 hydroxynorvaline NIST	0.337	-0.382	0.04
	5 methoxytryptamine	0.387	-0.439	0.017
C08352	6 deoxyglucose	0.225	-0.255	0.179

Chapter 3

 Changes in freshwater mussels (Order: Unionida) of Wisconsin in the past 50 years
Abstract

: Wisconsin, U.S.A., located primarily in the Upper Mississippi River drainage, is home to 50 species of freshwater mussels. Over the past 200 years, they have experienced numerous threats from a rapidly growing human-dominated landscape resulting in nearly half of them now being endangered, threatened or whose conservation status is of special concern to the state. Systematic surveys have been conducted across the state semi-regularly since the 1970s; however, recent synthesis of these surveys and analysis of how species status may have changed has yet to be done. In this study, we used a paired-survey design to assess state-wide changes that have occurred to mussel populations over the past 50 years. We found evidence that population changes were variable among species as well as geographically distributed across the state. Our analysis suggests that species losses within the past halfcentury may be substantial, but we show that challenges associated with species detection, especially of uncommon species, makes accurate population assessment difficult.

Introduction:

Freshwater mussels (Order: Unionida) are one of the most endangered group of organisms worldwide (Lopes-Lima et al., 2018; Williams et al., 1993). They have faced numerous threats from decreased water quality (Ellis, 1936; Gillis, 2011), overexploitation (Anthony \& Downing, 2001; Kunz, 1898), loss of habitat, loss of fish hosts, fragmentation of populations from impoundments (Modesto et al., 2018; Ortmann, 1918; Sousa et al., 2020; Vaughn \& Taylor, 1999), and competition and direct negative effects from invasive species (Ricciardi et al., 1996; Strayer, 1999). Thorough monitoring of their populations is challenging, but needed for effective conservation management. The numerous ecosystem services mussels provide should underscore the importance of their preservation (Vaughn \& Hakenkamp, 2001).

There are approximately 300 species of freshwater mussels native to North America. Wisconsin, situated within the Upper Mississippi River drainage, is home to 50 of these species. Four of Wisconsin's species are federally-listed as endangered, 11 are state-listed as endangered with an additional 13 whose conservation status is threatened or considered to be of special concern (WI-DNR 2021). As is common in North America, Wisconsin's species are almost entirely of the Unionidae family, with one member of the Margaritiferidae family (Cumberlandia monodonta).

Concerns regarding conservation of freshwater mussels in the region date back to the turn of the $20^{\text {th }}$ century (Kunz, 1898; Coker, 1919). In the past 200 years, Wisconsin's rivers have experienced substantial increases in sediment loads as its forests were almost completely clear cut and its prairies were converted to cultivated land following settlement by Euro-Americans (Fitzpatrick \& Knox, 2000; Knox, 2006). Nearly 4000 dams of varying sizes have been constructed, sundering Wisconsin's rivers, modifying local habitats, and limiting host fish movement. Overexploitation from the pearl and button industries from the late 1800 s to the 1950 s was widespread throughout the region and dramatic depletions of mussels beds were commonplace (Coker, 1919). The effects of the combined stressors of
decreased water quality, depleted numbers, and limited population connectivity are still apparent nearly a century later (Anthony \& Downing, 2001).

It was not until the 1970's that any state-wide assessment of Wisconsin's native mussel community occurred, when one retired scientist took it upon himself to inventory mussels from over 600 sites across the entire state (Mathiak, 1979). Since then, there has been greater effort to monitor Wisconsin's mussel communities: approximately 6,500 additional surveys have been conducted throughout the state, with nearly 800 standardized surveys having been conducted since 2000 primarily by Wisconsin's Department of Natural Resources.

Prior to the first surveys of Wisconsin's waters, losses due to intense harvesting for the button industry, decreased water quality, and loss of habitat from dams likely had a strong influence on Wisconsin's mussels (Anthony \& Downing, 2001; Coker, 1919), but while many threats to mussels have remained, new threats have also emerged. Mussels still face a fragmented landscape, diminished population sizes, in addition to an increasing number of invasive species—most notably, the zebra mussel (Dreissena polymorpha), which has spread to nearly 300 lakes and rivers throughout the state within the 30 years since its arrival (WI-DNR, 2022). Effective conservation of these species requires accurate up-to-date information as well as analysis of long-term dynamics of the communities. These assessments require substantial effort over many years as many species are long-lived (thus seeing changes in populations requires comparably long sampling records), are highly spatially heterogeneous, and often exist in environments difficult to sample. A state-wide assessment of how Wisconsin's mussel communities have changed since comprehensive surveys began 50 years ago has yet to be done prior to this study.

In this study, we assessed whether changes have occurred in the freshwater mussel communities of Wisconsin over the past 50 years. We compared presence/absence at sites located across the state at which comparable historical (pre-2000) and recent surveys (post-2000) had been
conducted. We assessed whether population changes were associated with species commonness as well as whether changes in communities were different across major watersheds of Wisconsin.

Methods:

Study Area

Wisconsin, USA is a water-rich region with 32,000 miles of perennially flowing water and over 10,000 lakes. Most of the state is located in the Upper Mississippi River drainage, with the rest draining to the Great Lakes. In general, the northern half of the state is characterized by mixed secondary forests with substantial lake and wetland features and little, but growing exurban development. The southern half of Wisconsin is an agriculturally dominated landscape with suburban and urban development (Carpenter et al., 2007).

Data Overview

All data were provided by the Department of Natural Resources of Wisconsin (WI-DNR). This includes surveys conducted by the WI-DNR, public and private researchers, contracted organizations, as well as specimens collected by community members. From these surveys, 50 species and over 40,000 individuals have been recorded in Wisconsin's inland waters. Some of Wisconsin's first surveys date back to the late $19^{\text {th }}$ century, with significant contributions in the 1970 s (Mathiak, 1979), 1980s, 1990s, and late 2010s.

We were interested in assessing whether changes in the mussel communities were detectable within the past 50 years across Wisconsin. In order to do this, we separated the data into surveys conducted prior to the year 2000 (hereafter "historical surveys"), for which 6503 records exist, and surveys conducted between 2000-2020 (hereafter "recent surveys"), for which 777 records exist (Figure 1). The year 2000 was chosen as a cutoff because there was a natural break in the data for state-wide
number of surveys and it also provided sufficient sample size in number of recent surveys in comparable locations to historical surveys. We identified all historical surveys that were within 500 meters of recent surveys and had specified that they took place in the same river, then joined these historic records to recent records. We omitted surveys that were conducted using methodologies that were not appropriately comparable (filtering process is described below) resulting in 149 sites (hereafter "paired" sites) in which recent surveys were comparable to historical records.

Data Management

Filtering methodologies

Prior to identifying suitable surveys for our paired survey analyses, we omitted surveys that were described as shoreline surveys, surveys that targeted single species, and those that used a kicknet; we also did not consider observations of specimens reported through WI-DNR's Citizen-based Monitoring program to be surveys because they are rarely standardized and often include one or only a few specimens per submission. Unidentified mussels, shell collections not containing live mussels, and specimens only identified as "juvenile unionid" were omitted from all analyses. All data were transformed to presence/absence to best standardize across different sampling techniques. It is important to note that surveys in both historical and recent time periods were not randomly selected across Wisconsin's waters and that multiple survey methodologies were used (supplemental figure 1).

Apart from the survey methodologies described above, we did not omit any other survey types within the historical data; however, we omitted surveys that were quadrat-based from recent methods as this methodology is not designed to be sensitive to detecting uncommon species and was associated with a high rate of species suspected to be missing from sites (supplemental table 1). We did this to minimize biases in estimates of losses while maintaining as large of a sample size as possible. As we were more interested in assessing whether noticeable losses had occurred, we prioritized only including
survey types that were sensitive to detecting uncommon species in recent surveys. We acknowledge that this approach likely inflates estimates of newly found species at sites and caution the reader to keep this bias in mind when comparing estimates of missing and newly found species.

Assessment of species status

Species assessments were based on changes in their presence/absence at each paired-survey location. Species were considered "retained" if they were recorded both historically and recently at a site; species that were present historically and not resampled between 2000-2020 were classified as "missing", while species that were not recorded historically but were recorded between 2000-2020 were considered "newly found".

We examined whether regional patterns were associated with changes in species presence/absence. To do this, we calculated changes among species within Wisconsin's major watersheds (hydrologic unit code level 6). We estimated changes in species commonness within watersheds by calculating the difference in the number of sites in which a species was recently present and the number of sites in which it was historically present divided by the total number of paired sites within that drainage basin. We only calculated these changes for the ten watersheds with 5 or more paired surveys. For plotting purposes only, in figure 5 , species that were only recently found in a watershed were assigned a value of one for change in proportion. To summarize general patterns of loss at the watershed scale we counted the total number of species whose change in proportion within that watershed was less than zero; similarly, we counted the total number of species whose change in proportion within the watershed was greater than zero to characterize the general patterns of apparent gains across watersheds. We chose to report gains and losses independently as compared to their difference to remove the effect of differences in methodologies between historical and recent surveys in different locations as well as to be able to differentiate watersheds with only a few species changing in commonness from watersheds with many increasing and many decreasing in commonness.

All data analyses were done using R statistical software (R Core Team, 2020). Non-metric multidimensional scaling of mussel assemblages was calculated using individual survey presence/absence data using all historical and recent surveys (excluding kicknet, shoreline, and community member collected observations). The scaling was calculated using Chao dissimilarity distances within the vegan package (Hsieh et al., 2016; Oksanen et al., 2020; R Core Team, 2020).

Results:

Wisconsin is home to 50 species of freshwater mussels, 24 of which are state-listed as endangered $(n=11)$, threatened $(n=8)$, or whose status is of special concern $(n=5)$. Species-rich communities are distributed across much of the state. However, endangered, threatened, and species of special concern are disproportionately found in western regions of the state that are more closely connected to the Upper Mississippi River (Figure 2).

Forty-three species were present among the 149 paired survey sites. Of the seven that were not present among the paired survey sites, three were species of special concern (Elliptio complanata, Megalonaias nervosa, Utterbackiana suborbiculata), and one is endangered (Arcidens confragosus). Twenty-one species (10 of listed status) were found in more sites recently compared to historical surveys while 13 (seven listed) species were found in fewer sites recently (Figure 3). There was no relationship between the direction of change in the number of sites in which a species was present and species commonness as assessed by logistic regression of direction of change in commonness by rank of historical number of sites at which a species was present ($p=0.12$; supplemental figure 2). The rate at which species were resampled at sites in which they were historically present was variable between species and was positively associated with species commonness as assessed by linear regression of rank resampling rate by rank commonness across all recent surveys ($p<0.01$; Figure 4). Nine species were resampled at a rate of 0.75 or above, 17 species were resampled at a rate between $0.50-0.75$, seven
species were resampled at a rate between $0.25-0.50$, and seven species were resampled at a rate below 0.25 with five of these species having not been retained in any recent surveys within the paired sites. The survey methodology used for recent surveys had a significant effect on whether a species was retained, newly found, or missing at that site as assessed by a Chi-squared test of recent methodology and retained/newly found/missing status across paired sites ($\mathrm{p}<0.01$, Table 1).

Species richness within paired sites was variable among watersheds, ranging from 14 in central Wisconsin and Milwaukee watersheds to 38 in the St. Croix watershed (calculated only for watersheds with 5 or more paired surveys). Species-rich watersheds were more likely to contain uncommon species as assessed by linear regression of the rank of species commonness within paired recent surveys by watershed species richness ($\mathrm{p}<0.01$; supplementary figure 3 ; calculated using only watersheds with 5 or more paired surveys). Across the ten watersheds with five or more paired survey sites, there were 168 instances of species being retained at any site within a watershed in which they were historically present. Across the same ten watersheds, there were 20 instances in which species were not observed at any paired survey sites within a watershed in which they were historically present and 34 instances of species being newly found in recent surveys within watersheds in which they weren't documented at paired survey sites historically (Figure 5).

The number of species found in more sites within a watershed recently ranged from 3 (central Wisconsin River watershed) to 24 (St. Croix watershed) with a median of 8 and the number of species found in fewer sites within a watershed recently as compared to historically ranged from 6 (Wolf River watershed) to 12 (lower Chippewa River watershed) with a median of 8 (Figure 6). The proportion of species found in more sites recently within a watershed ranged from 0.21 (central Wisconsin watershed) to 0.71 (Wolf River watershed with a median of 0.40 and the proportion of species found in fewer sites within a watershed ranged from 0.21 (Wolf River watershed) to 0.57 (central Wisconsin and Milwaukee River watersheds) with a median of 0.46 . Watersheds that had a lower total species richness had a
higher proportion of species decreasing in commonness ($p<0.01$) as assessed by linear regression of the proportion species less common among recent surveys by watershed species richness (supplemental figure 4).

Discussion:

Wisconsin is home to a diverse community of freshwater mussels. Over the past 50 years, thousands of surveys have been conducted to document the diversity present across the state as well as provide opportunities to assess community changes that may be occurring. Recent surveys suggest that many species have likely experienced substantial losses within the past 50 years and that these losses are unevenly distributed among species as well as across Wisconsin's major watersheds.

The number of sites in which a species was missing or newly found was often substantial relative to the number of sites at which it was retained. Also, for most species, the number of sites at which the species was newly found was higher than the number of sites in which it was missing (Figure 3). An optimistic interpretation of this could be that species ranges may be increasing and highly dynamic, where losses at one site are offset by gains elsewhere and to some extent, this may be true. However, it is likely that many instances of species being only recently found at sites were missed in historical surveys and do not represent true gains at a site as it is much less likely that mussels are highly spatially dynamic in Wisconsin's rivers given their sedentary lifestyle and their dependence on the movement of their host fish to access new watersheds—an opportunity that Wisconsin's nearly 4000 dams likely limit. However, the magnitude of newly found species indicate that many of these communities are more species rich than historical surveys suggested. Although, instances of newly found species were disproportionately common species, evidence that uncommon species are not more common than previously thought.

Due to the nature of the paired survey data, a more informative analysis may be to examine whether species were resampled at sites in which they were known to be historically present. The proportion at which a species was resampled in recent surveys was variable among species and positively associated with species commonness (Figure 4). It is often the case that mussel beds are dominated by only a few common species and many species make up only a fraction of the total number of individuals (Haag, 2012). It is unlikely that all species present at a site will be found in any one survey and uncommon species are inherently less likely to be detected. The positive relationship between commonness of species and the proportion of sites in which a species was resampled is very likely affected by this regardless of whether population changes are occurring at the site level. However, even if no losses were occurring, we would expect that species that are similarly common would be resampled at a similar rate to one another and that does not appear to be the case. We see a wide range in the proportion of sites in which a species was resampled for both common and uncommon species suggesting that low resampling rates are not solely a product of detection sensitivity in recent surveys, but are evidence of diminished population numbers at the site scale. Notably, species that are often dominant species at a site such as Pygandon grandis and Strophitus undulatus being found in less than half of the sites in which it was historically recorded is eye-catching and worrisome.

There is an added level of difficulty when comparing changes in populations when different methodologies are conducted at different times across different sites. Methodology can have a strong effect on likelihood of detecting species, esepcially uncommon species (Vaughn et al., 1997). As expected, in this study, detection was associated with survey methodology. For example, timed surveys, a common qualitative survey technique, designed to detect species uncommon at a site, reported both the highest proportion of newly found species per survey, as well as the highest proportion of newly found species relative to missing species (Table 1). In contrast, methodologies that are quantitative such as random point sampling, or semi-quantitative such as collections of groups of 20 or 40 individuals had
lower proportions of newly found species per survey and newly found species relative to missing species. A strength of assessing resampling rate (as compared to total change in number sites in which a species is present) is it diminishes the effect of different pairings of survey methodologies across sites by only assessing changes in species that were detected in historical surveys regardless of the detection sensitivity of the historical survey. The proportion of species missing that is a product of survey detection compared to being truly lost from a site can only be relatively assessed and is beyond the scope of this study. However, it is important to note that even at sites where a timed survey was conducted, an alarmingly low resampling rate of 65% of species were found again that were known to be historically present. Determining whether these high numbers of missing species are truly lost at a given site should be a priority as it is either indicative of the need to conduct multiple qualitative surveys at a site to fully capture the community composition or that these losses may be better described as catastrophic.

The major watersheds of Wisconsin were characterized by different mussel communities as well different rates of community change. Uncommon species were disproportionately present in speciesrich watershed such as the Saint Croix and Lower Chippewa as well as the Wolf River as compared to species-poor watersheds, however, uncommon/rare species were distributed across most of Wisconsin. Changes in species populations were often variable across major watersheds in Wisconsin, with speciespoor watersheds having a higher proportion of species that are less common across recent surveys than species-rich watersheds. To some extent, these differences may be a product of different methodologies in recent surveys being used in different proportions across major watersheds. But it may also indicate that communities may be changing at broad regional patterns, and species seem to be doing worse in watersheds that historically may pose more challenging of habitats for species (i.e., species-poor watersheds). Thus, underscoring the need of state-wide monitoring efforts that include species-poor
watersheds to accurately assess changes in vulnerable populations or risk underestimating losses at the state scale.

Assessing changes in mussel populations is difficult, especially when survey methods vary between time periods. The magnitude and widespread nature of potential losses found in this study are alarming, but not unexpected as the patterns of losses found in this analysis are consistent with findings of changes in mussel communities from other studies in the region. A study of Illinois mussel communities found that species richness in rivers across the state was significantly lower than what would be expected were the rivers under natural conditions with up to nearly half of the species missing from river segments with the most impaired mussel communities (Cao et al., 2017). A study of mussel communities across a land-use gradient in Minnesota found that mussel abundances were significantly negatively associated with agriculture land use (a common land use especially in southern Wisconsin) (Hornbach et al., 2019). Even in the federally protected St. Croix river on the border between Minnesota and Wisconsin, mussel communities have reported losses in species richness and abundance over a recent 20-year period (Hornbach et al., 2018).

Mussel communities are likely changing across most of Wisconsin, and the scale of work needed to monitor even only communities that contain vulnerable species is immense. Across all recent survey sites, nearly half (332) contain species that are endangered, threatened, or of special concern, with 89 of the sites containing endangered species. Although these vulnerable species are disproportionately found in western regions of the state, populations of vulnerable species are found throughout the entire state. As this study has shown that there are likely regional patterns to mussel loss, monitoring mussels throughout their range is necessary for accurate assessment of species status. Developing a monitoring program capable of detecting population changes-even if focused on only the most vulnerable species—would be a challenge, especially at the state-wide scale. Current methodologies that incorporate both qualitative and quantitative approaches are an effective strategy for detecting changes
to species as well as communities. In addition, the Citizen-Based Monitoring program developed and managed by the Wisconsin Department of Natural Resources has demonstrated its value in identifying important sites for future monitoring efforts through 169 observations (as of 2021) of endangered, threatened, or species of special concern around the state.

Unfortunately, despite the great effort by state biologists and contributing community members, much remains uncertain about the current status and trajectories of freshwater mussels in Wisconsin. There are six species that are currently listed as endangered, threatened or of special concern who were not found at any of the paired survey sites in this analysis (Elliptio complanata, Megalonaias nervosa, Utterbackiana suborbiculata, Arcidens confragosus, Elliptio crassidens, and Reginaia ebunus, many of these are only found in large rivers) and this analysis cannot provide any assessment of their population trajectories. There are numerous species whose current conservation status may need to be reassessed as the number of sites from which they were missing are substantial relative to the total number of sites in which they have recently been found. For eight species in the most severe of cases, the number of sites from which they were missing equates to nearly half or more of the total number of known sites in which they have recently been found (Cyclonaias nodulata, Obovaria olivaria, Plethobasus cyphus, Potamilus ohiensis, Quadrula fragosa, Quadrula quadrula, Simpsonaias ambigua, Truncilla donaciformis). The task of continued monitoring of currently known sites of vulnerable populations, re-surveying sites in which vulnerable populations were historically present that have not been visited in at least 20 years, managing community-based observations, as well as developing up-to-date status assessments of species is no small task and it requires more attention and support than is currently be awarded to Wisconsin's freshwater mussel communities.

Freshwater mussels in Wisconsin have faced an intense and dynamic landscape of threats in the past 200 years and major losses very likely occurred prior to any systematic surveys. This analysis suggests that mussel communities of Wisconsin have continued to experience substantial losses over
the past 50 years. These losses are likely variable among species as well as across regions of the state. Increased efforts to document the current distributions and status of populations, especially rare and vulnerable species, would greatly support effective conservation of Wisconsin's freshwater mussels.

References:

Anthony, J. L., \& J. A. Downing (2001). Exploitation trajectory of a declining fauna: A century of freshwater mussel fisheries in North America. Canadian Journal of Fisheries and Aquatic Sciences, 58(10), 2071-2090.

Cao, Y., K. S. Cummings, L. Hinz, S. A. Douglass, A. P. Stodola, \& A.M. Holtrop (2017). Reconstructing the natural distribution of individual unionid mussel species and species diversity in wadeable streams of Illinois, USA, with reference to stream bioassessment. Freshwater Science, 36(3), 669-682.

Carpenter, S. R., B. J. Benson, R. Biggs, J. W. Chipman, J. A. Foley, S. A. Golding, R. B. Hammer, P. C. Hanson, P. T. J. Johnson, A. M. Kamarainen, T. K. Kratz, R. C. Lathrop, K. D. McMahon, B. Provencher, J. A. Rusak, C. T. Solomon, E. H. Stanley, M. G. Turner, M. J. Vander Zanden, ... H. Yuan (2007). Understanding Regional Change: A Comparison of Two Lake Districts. BioScience, 57(4), 323-335.

Coker, R. E. (1919). Fresh-water mussels and mussel industries of the U.S. Bulletin of the Bureau of Fisheries, 36, 13-89.

Ellis, M. M. (1936). Erosion Silt as a Factor in Aquatic Environments. Ecology, 17(1), 29-42.

Fitzpatrick, F. A., \& J. C. Knox (2000). Spatial and temporal sensitivity of hydrogeomorphic response and recovery to deforestation, agriculture, and floods. Physical Geography, 21(2), 89-108.

Gillis, P. L. (2011). Assessing the toxicity of sodium chloride to the glochidia of freshwater mussels: Implications for salinization of surface waters. Environmental Pollution, 159(6), 1702-1708.

Haag, W. R. (2012). North American freshwater mussels: Natural history, ecology, and conservation. Cambridge University Press.

Hornbach, D. J., D. C. Allen, M. C. Hove, \& K. R. MacGregor (2018). Long-term decline of native freshwater mussel assemblages in a federally protected river. Freshwater Biology, 63, 243-263.

Hornbach, D. J., M. C. Hove, K. R. MacGregor, J. L. Kozarek, B. E. Sietman, \& M. Davis (2019). A comparison of freshwater mussel assemblages along a land-use gradient in Minnesota. Aquatic Conservation: Marine and Freshwater Ecosystems, 29, 1826-1838.

Hsieh, T. C., K. H. Ma, \& A. Chao (2016). iNEXT: An R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods in Ecology and Evolution, 7(12), 1451-1456.

Knox, J. C. (2006). Floodplain sedimentation in the Upper Mississippi Valley: Natural versus human accelerated. Geomorphology, 79(3-4), 286-310.

Kunz, G. F. (1898). A brief history of the gathering of fresh-water pearls in the United States. Bulletin of the U.S. Fish Comission, 17, 321-330.

Lopes-Lima, M., L. E. Burlakova, A. Y. Karatayev, K. Mehler, M. Seddon, \& R. Sousa (2018). Conservation of freshwater bivalves at the global scale: Diversity, threats and research needs. Hydrobiologia, 810(1), 1-14.

Mathiak, H. A. (1979). A river survey of the unionid mussels of Wisconsin 1973-1977. Sandshell Press.

Modesto, V., M. Ilarri, A. T. Souza, M. Lopes-Lima, K. Douda, M. Clavero, \& R. Sousa (2018). Fish and mussels: Importance of fish for freshwater mussel conservation. Fish and Fisheries, 19(2), 244259.

Oksanen, J., B., F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., \& Wagner, H. (2020). Vegan: Community Ecology Package. R package (2.5-7) [Computer software]. https://CRAN.Rproject.org/package=vegan

Ortmann, A. E. (1918). The Nayades (Freshwater Mussels) of the upper Tennessee Drainage. With Notes on Synonymy and Distribution. Proceedings of the American Philosophical Society, 57, 521-626.

R Core Team. (2020). R: A language and environment for statistical computing. https://www/Rproject.org

Ricciardi, A., F. G. Whoriskey, \& J. B. Rasmussen (1996). Impact of the Dreissena invasion on native unionid bivalves in the upper St. Lawrence River. 53, 11.

Sousa, R., A. Ferreira, F. Carvalho, M. Lopes-Lima, S. Varandas, A. Teixeira, \& B. Gallardo (2020). Small hydropower plants as a threat to the endangered pearl mussel Margaritifera margaritifera. Science of The Total Environment, 719, 137361.

Strayer, D. L. (1999). Effects of Alien Species on Freshwater Mollusks in North America. Journal of the North American Benthological Society, 18(1), 74-98.

Vaughn, C. C., \& C. C. Hakenkamp (2001). The functional role of burrowing bivalves in freshwater ecosystems: Functional role of bivalves. Freshwater Biology, 46(11), 1431-1446.

Vaughn, C. C., \& C. M. Taylor (1999). Impoundments and the Decline of Freshwater Mussels: A Case Study of an Extinction Gradient. Conservation Biology, 13(4), 912-920.

Vaughn, C. C., C. M. Taylor, \& K. J. Eberhard (1997). A Comparison of the Effectiveness of Timed Searches vs. Quadrat Sampling in Mussel Surveys. Proceedings of a UMRCC Symposium. Conservation and Management of Freshwater Mussels II.

WI-DNR. (2022). Zebra Mussel: Aquatic Invasive species web portal. https://dnr.wi.gov/lakes/invasives/AISLists.aspx?species=ZM

Williams, J. D., M. L. Warren, K. S. Cummings, J. L. Harris, \& R. J. Neves, (1993). Conservation Status of Freshwater Mussels of the United States and Canada. Fisheries, 18(9), 6-22.

Table 1
Table of species survey status (e.g., "missing", "retained", "newly found") by survey methodology of recent survey in paired surveys (also including "area quadrat" although not included in paired analysis).

Proportion species resampled calculated as 1 - (n species missing/n species historically present), proportion species newly found calculated as n species newly found $/ \mathrm{n}$ species historically present. *Area quadrat surveys was not included in count totals or calculation of means

Methodology of recent	number survey at surveys in paired data	number species newly found	number species missing	number species retained	proportion species retained	proportion species newly found
Area quadrat*	39	65	223	220	0.497	0.147
Groups of 20	13	40	29	111	0.793	0.286
Groups of 40	14	22	43	22	0.338	0.338
Inventory	8	22	25	30	0.545	0.400
Other	1	2	4	9	0.692	0.154
Random point	11	19	33	29	0.468	0.306
Timed	40	178	111	203	0.646	0.567
Transect	1	-	7	20	0.741	-
Undocumented	61	203	161	279	0.634	0.461
Total	149	486	413	703		
Mean					0.607	0.359

Figure 1

Survey locations

Figure 1: Point-survey locations for all WI-DNR records of historical (pre-2000, grey points $n=6503$), recent (2000-2020, black points $n=777$) surveys. Blue points denote locations of paired-surveys ($n=$ 149).

Figure 2

Total species richness

Species richness (listed and special concern status)

Figure 2: Total species richness by major watersheds (left) and species richness of state-listed and species of special concern (right). Species richness was calculated across all historical and recent surveys. Color scales are consistent between panels.

Figure 3

Figure 3: Changes in number of sites in which a species was found across all paired sites (total number of paired sites $=149$) grouped by state conservation status. Species that were present historically at a site and not resampled were considered missing, species that were present in both time periods were considered retained, while species that were only present in recent surveys were considered newly found. Species are ordered within each group by number of sites in which they were present historically.

Figure 4

Figure 4: Rate of resampling for species by species commonness (left) and non-parametric regression of relationship (right). Proportion resampled calculated as 1- (n instances missing where historically present/historical abundance), total number of recent surveys is calculated from all recent surveys (not just paired sites). Linear regression of ranked proportion resampled by rank commonness suggests positive relationship ($p<0.01$).

Figure 5

Figure 5: Heatmap of change in species commonness by watershed. Change in proportion was calculated as follows: (n sites recently present -n sites historically present) / n sites historically present, so that 0 (white) represents a species that present in the same number of sites in both time periods, -1 represents a species that was historically present in at least one survey, but not found in any recent
surveys, and 1 represents a species that was found in twice as many sites recently compared to historically. Species that were only recently found in a watershed were assigned a 1 and species whose change in proportion was greater than $1(n=8)$ were assigned a 1 so as not to skew the color ramp. Species are in the same order as in figure 2, watersheds are arranged from highest total species richness at left to lowest.

Figure 6

Figure 6: Changes in species commonness at paired survey locations across watersheds. Note that color scales have different ranges between left and middle panels). Species that were found in at least one historical survey within a watershed and not in any recent surveys were considered "missing", species that were found in fewer surveys recently than historically were considered "decreasing", species who were found in the same number of sites recently as historically were considered "no change", species who were present in both time periods, but present in more sites recently than historically were considered "increasing", while species who were only found recently were considered "newly found". Watersheds are arranged from highest total species richness to lowest. Number of paired surveys by watershed are as follows: Saint Croix: 11, Lower Chippewa: 17, Wolf River: 38, Upper Fox: 8, Upper Chippewa: 9, Green Bay: 17, Upper Rock: 6, Black River: 10, Milwaukee River: 8, Central Wisconsin: 6.

Supplementary Table 1

Megalonaias nervosa	special concern	0	0	0	0	NA
Utterbackiana suborbiculata	special concern	0	0	0	0	NA
Simpsonaias ambigua	threatened	24	2	5	6	0.250
Tritogonia verrucosa	threatened	47	11	7	7	0.611
Alasmidonta viridis	threatened	39	8	7	7	0.533
Venustaconcha ellipsiformis	threatened	51	9	4	2	0.818
Truncilla donaciformis	threatened	5	0	1	9	0.000
Cyclonaias nodulata	threatened	2	0	0	3	0.000
Theliderma metanevra	threatened	12	2	5	1	0.667
Arcidens confragosus	threatened	3	0	1	0	NA
Epioblasma triquetra	endangered	51	9	7	4	0.692
Cyclonaias tuberculata	endangered	16	6	4	4	0.600
Plethobasus cyphyus	endangered	6	3	0	3	0.500
Cumberlandia monodonta	endangered	12	2	3	1	0.667
Ellipsaria lineolata	endangered	10	2	2	1	0.667
Villosa iris	endangered	5	1	0	1	0.500
Lampsilis higginsii	endangered	9	1	1	0	1.000
Quadrula fragosa	endangered	0	0	0	1	0.000
Elliptio crassidens	endangered	0	0	0	0	NA
Lampsilis teres	endangered	4	0	3	0	NA
Reginaia ebenus	endangered	2	0	1	0	NA

Supplementary Figure 1

Supplementary Figure 1: Recent survey methodology in paired surveys. Not all categories are entirely internally consistent (e.g., methodology for "random" surveys often depends on river size, "Timed" may not be a similar duration, and "undocumented" likely contains multiple survey techniques). General characteristics of the most common types of surveys are as follows. "Groups of 20/40": group collection of a predefined number of individuals, collection stops when no new species were collected in a new group. "Inventory" surveys focused on richness, "Random" is a predefined grid projected over river within which quadrats were randomly sampled, total number of samples differed with stream size.
"Timed": Predefined search time intervals, focusing on richness and rare species. "Transects":
Predefined length of line where all mussels within $\sim 1 \mathrm{~m}$ from line are counted.

Supplementary Figure 2

Supplementary figure 2: Logistic regression of change in commonness (less/more) as compared to historical commonness by rank abundance. Species were considered "net more common across surveys" if they were found in more surveys recently than historically, or "net less common across surveys" if they were found in fewer surveys recently than historically. Regression coefficient not statistically significant $(p=0.12)$.

Supplementary Figure 3

Supplementary figure 5: species ranked commonness by watershed richness. Rank commonness was calculated as number of sites present using paired recent surveys, watershed richness was calculated as number of species identified as ever being present among historical and recent surveys in watershed (p < 0.01).

Supplementary Figure 4

Supplementary figure 4: Proportion of species that are less common recently compared to historically within each watershed by total species richness in watershed. Proportion of species decreasing in commonness calculated as n species in fewer surveys recently than historically/n species richness in watershed within paired survey data. Number of paired surveys by watershed are as follows: Saint Croix:

11, Lower Chippewa: 17, Wolf River: 38, Upper Fox: 8, Upper Chippewa: 9, Green Bay: 17, Upper Rock: 6, Black River: 10, Milwaukee River: 8, Central Wisconsin: 6. The x-axis represents the total number of species present in all recent surveys within watershed (not just within paired sites). Linear regression suggests a negative relationship between these two variables ($p=0.02$).

Supplementary Figure 5

Supplementary figure 5: Non-metric ordination of mussel species assemblages. Ordination was calculated using Chao distances of all surveys historical and recent (n surveys $=6503$, stress $=0.122$). The proportion change in sites present (color) was calculated using all paired site data ($\mathrm{n}=149$) as was calculated as follows: (n sites recently present - n sites historically present) / n sites historically present, so that 0 (white) represents a species that present in the same number of sites in both time periods, -1 represents a species that was historically present in at least one survey, but not found in any recent surveys, and 1 represents a species that was found in twice as many sites recently compared to historically. Arcidens confragosus, Lampsilis teres, and Reginaia ebunus were found in 1,1 and 3 recent surveys respectively and not found in any historical sites, they were all assigned a 1 for color coding purposes.

Chapter 4: Thesis contributions to the study of freshwater mussels

Freshwater mussels are one of the most endangered groups of animals, as the conservation status of at least 40% of mussel species are classified as imperiled globally (Lopes-Lima et al., 2018). They have faced, and continue to face, numerous threats associated with the increasing impacts of humans on freshwater ecosystems and their future is uncertain. Currently, our ability to effectively protect vulnerable freshwater mussel species is limited in part by a lack of understanding of important aspects of their life history and ecology.

Recently, researchers and members from the Freshwater Mollusk Conservation Society (FMSC) created strategy plans that identified priority issues regarding the conservation of freshwater mussels considered to be of greatest immediate need (Ferreira-Rodríguez et al., 2019; FMCS, 2016). The goals of these strategy plans were to help guide research and management into conservation efforts of freshwater mollusks in North America. These strategy plans highlighted the need for research at multiple scales, from a better understanding of physiological characteristics important to population viability, to up-to-date broad-scale population assessments. The work in this thesis contributes towards the goals put forth within the strategy plans, with an emphasis on how freshwater mussels respond to changes in their environment. The studies within this thesis span a similar scale from physiological to state-wide scales. In chapter one, I showed how mussel growth can be related to broad-scale natural changes in their environment. In chapter two, I showed how native mussel communities respond physiologically to harmful invasive mussel species during the early stages of their invasion. In chapter three, I documented how native mussel communities have changed across Wisconsin over the past 50 years. In the following paragraphs I highlight the specific contributions of each chapter and how they align with the goals set out in the strategy plans.

In chapter one, I showed that mussel growth in lake populations can be dynamic, variable between individuals, and is associated with landscape-level environmental conditions. One of the main
issues defined in the strategy plans is the need to better understand the ecology of mollusks at the individual, population, and community level and in describing the issue, specifies the need to describe life history characteristics at appropriate scales. In this chapter, I described growth characteristics of a lake-dwelling population of Lampsilis siliquoidea, how their life-history was unique in comparison to closely related fluvial populations, and showed that controls on their growth were associated with landscape-level environmental changes unique to lake ecosystems. These contributions demonstrate that lake-dwelling populations can be unique regarding important life-history characteristics as well as are the environmental controls influential to their growth. Globally, lakes are important habitats for numerous mussel species (Haag, 2012), yet populations residing in lakes are disproportionately understudied, likely because lake communities often do not reach the same abundances and species richness as fluvial communities resulting in less interest in their study. This chapter contributes to the very small body of work describing important life-history characteristics of mussels in lakes and how their growth is related to unique characteristics of their ecosystem. Broadly, this chapter provides an example of how unique the life-history and ecology of mussels in lakes can be, which hopefully will inspire interest in these unique and understudied communities.

In chapter two, I examined physiological responses of a lake-dwelling populations of the native freshwater mussel Lampsilis siliquoidea as they responded to the stress of an invasive zebra mussel infestation. Health assessments and the development of new non-lethal methodologies for assessing sublethal effects from environmental stressors on freshwater mussels has been a recent focus of FMCS having organized a specific workshop for the cause in 2018, as well as highlighting the need to describe the risks and magnitudes of past, ongoing, and newly emerging stressors on mollusks as key issues within the strategy plans. In this chapter, I used non-targeted metabolomics-a relatively new and nonlethal approach in mussel health assessment-to assess sublethal effects of the stress associated with being burdened with zebra mussel attachment—a widespread and growing threat to native
freshwater mussels especially in the Midwest. I demonstrated that physiological profiles of stress were identifiable in populations under natural environmental conditions and that these profiles were consistent with studies of stress under laboratory conditions. I also demonstrated that physiological signs of stress are not necessarily apparent in metabolites central to important physiological processes, but can be obscured by supplemental processes that can compensate for the immediate effects on primary metabolites. This chapter, while focused on the stress associated with the burden of zebra mussels, demonstrates the usefulness of this approach in being able to detect populations experiencing stress in natural environments and should encourage other researchers that are interested in assessing stress associated with other potential drivers. This chapter also contributes to our understanding of lake-dwelling native mussel populations, populations that are particularly vulnerable to negative effects of invasive zebra mussels that prefer lake ecosystems.

In chapter three, in a collaboration with biologists from the Wisconsin Department of Natural Resources, we conducted the first state-wide assessment of how Wisconsin's mussel communities have changed since state-wide surveys were first carried out in the 1970's. The Department of Natural Resources has collected and managed thousands of records of survey data from across the state, but had yet to be able to analyze the data and synthesize how mussel communities have changed across the state of Wisconsin. The strategy plans emphasized that population assessments need to occur frequently, as effective conservation efforts are dependent on up-to-date records of the current distributions of populations as well as how these populations have changed over time. In this chapter, I showed that the extent of losses has been variable among species, but substantial losses have likely occurred for many of Wisconsin's native mussel populations within the last 50 years and I also provided evidence that the patterns of loss have not been uniform across the state. This chapter provides a largescale assessment of conservation status of Wisconsin's mussel communities, this is useful information for state biologists by identifying species that may be in need of updated population assessments and
may merit consideration for updating their conservation status as well as identify regions where vulnerable populations may be particularly at risk and require close attention for future monitoring efforts. In addition, it encourages increased investment in conservation efforts through documenting the scale of monitoring required to effectively manage for their successful conservation.

The broad range of study across the chapters of this thesis has given me the opportunity to train myself broadly in areas of research important for the conservation of freshwater mussels. The future of native freshwater mussel communities is uncertain as their numbers continue to decline and human impacts on their ecosystems intensifies. To improve their outlook, effective conservation planning will require a diverse set of skills and a range of perspectives. I have demonstrated within this thesis that I have contributed broadly to efforts important for freshwater mussel conservation and have developed a diverse set of professional skills that will be a foundation for meaningful future contributions towards their conservation.

References:

Ferreira-Rodríguez, N., Y. B. Akiyama, O. V. Aksenova, R. Araujo, M. C. Barnhart, Y. V. Bespalaya, A. E.
Bogan, I. N. Bolotov, P. B. Budha, C. Clavijo, S. J. Clearwater, G. Darrigran, V. T. Do, K. Douda, E.

Froufe, C. Gumpinger, L. Henrikson, C. L. Humphrey, N. A. Johnson, ... C. C. Vaughn (2019).
Research priorities for freshwater mussel conservation assessment. Biological Conservation, 231, 77-87.

FMCS. (2016). A National Strategy for the Conservation of Native Freshwater Mollusks. Freshwater Mollusk Biology and Conservation, 19(1), 1.

Haag, W. R. (2012). North American freshwater mussels: Natural history, ecology, and conservation. Cambridge University Press.

Lopes-Lima, M., L. E. Burlakova, A. Y. Karatayev, K. Mehler, M. Seddon, \& R. Sousa (2018). Conservation of freshwater bivalves at the global scale: Diversity, threats and research needs. Hydrobiologia, 810(1), 1-14.

[^0]: ${ }^{1}$ Nearly 2,000 surveys were conducted by one person, Harold A. Mathiak who took it upon himself to conduct the first Wisconsin-statewide mussel surveys nearly 50 years ago

