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Abstract

Moduli spaces of curves of genus g with n marked points, Mg,n, are one of the main

objects of study in algebraic geometry. Kontsevich has described the construction of

a class, called partition function, in H∗(Mg,n)Σn , using even cyclic A∞-algebras and

ribbon graphs with orientation. Igusa has given an explicit construction of the partition

function using an orientation defined by Conant and Vogtmann. Amorim and Tu have

given a similar construction for odd cyclic A∞-algebras and ribbon graphs using a so-

called twisted orientation. In this thesis we define a new notion of orientation for ribbon

graphs and A∞-algebras of arbitrary parity, and we show that it matches with the one of

Conant-Vogtmann (in the even case) and with the one of Amorim-Tu (in the odd case).

We also give a graphical representation of the orientation which allows us to draw the

ribbon graph in a canonical way, and this leads to a canonical expression of the partition

function.
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Chapter 1

Introduction

Moduli spaces of smooth and compact curves of genus g with n marked points,Mg,n, are

one of the main objects of study in algebraic geometry. They have a rich history going

back to Riemann, but in their modern form were introduced by Deligne and Mumford

[4]. The topology of these moduli spaces is related to Teichmüller theory. Mapping class

groups act on Teichmüller spaces and the quotient is homeomorphic to moduli space of

curves.

Ribbon graphs are graphs with a cyclic order of half edges given at each vertex.

Strebel [13] and Penner [10] have discovered that there is a close relation between ribbon

graphs and the geometry of moduli spaces of curves. If one thickens each edge of a ribbon

graph into a ribbon, one gets an oriented surface with a boundary. This surface will have

genus g and n boundary components. Strebel, Penner and Kontsevich have explained

the relation between the homology ofMg,n and Rg,n, a chain complex spanned by ribbon

graphs of genus g and n boundary components, with a particular differential d.

A∞-algebras were first defined by Stasheff [12] in 1963. They feature prominently

in the theory of Mirror Symmetry. They allow to give a finite dimensional model for

the derived category of any complex compact manifold [7]. Further endowed with an

extra structure, a pairing with respect to which the operations are cyclic, A∞- algebras

correspond to Calabi-Yau manifolds.
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Kontsevich has realized that there is a close relation between cyclic A∞-algebras and

the cohomology of ribbon graphs. He was able to give a definition of a so-called partition

function, a function which takes as an input a cyclic A∞-algebra and a ribbon graph

and gives us a number. The precise definition requires one to specify extra data, an

orientation of the ribbon graph. This notion depends on the parity of the A∞-algebra.

In the even case the orientation we need is given by Conant and Vogtmann [3]. In this

case Igusa gave an explicit formula for the partition function [5], using the orientation

defined by Conant and Vogtmann. In the odd A∞-algebra case the orientation, called

twisted orientation, is given by Amorim and Tu [1].

The purpose of this thesis is to give a unified interpretation of the orientation given

in [3] and the twisted orientation given in [1]. We will give a graphical explanation of the

orientation that helps us understand Kontsevich’s partition function in both contexts.

Given a cyclic A∞-algebra, a ribbon graph and 4 choices over the graph (order the

edges, orient the edges, order the vertices and pick a starting half edge at each vertex)

we will give a canonical representation of the ribbon graph, for which we can recover a

canonical expression for Kontsevich’s partition function. In the even A∞-algebra case

this recovers the orientation of Conant and Vogtmann [3]. In the odd A∞-algebra case

we get the twisted orientation of Amorim and Tu [1].
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Chapter 2

Signs with Graphical Conventions

2.1 The Symmetric Monoidal Structure on Graded

Vector Spaces

Let k be a field. A Z-graded vector space V is a vector space together with a decompo-

sition

V =
⊕
i∈Z

V i

where the elements v ∈ V i will be said to be homogeneous elements of degree i. The

degree of such v is denoted by |v| = i. For any integer n, V [n] denotes the graded vector

space with shifted grading V [n]i = V n+i and the underlying space V .

The category of graded vector spaces over the field k equipped with the usual tensor

product ⊗ and a natural isomorphism between V ⊗W and W ⊗ V , forms a symmetric

monoidal category, denoted by (grV ectk,⊗).



4

2.2 Koszul Rule of Signs

Koszul rule of signs gives us the natural isomorphism between V ⊗W and W ⊗ V for

V and W in grV ectk as the twisting map

tw(v ⊗ w) = (−1)|v||w|w ⊗ v

on homogeneous elements v ∈ V i and w ∈ W j. This rule extends to V and W by

linearity. Note that tw ◦ tw is the identity map, i.e. tw is an involution.

A linear map of degree n between graded vector spaces is a linear map f : V → W

such that f(V i) ⊆ W i+n for all i ∈ Z. We use the same notation for the degree as before,

|f | = n.

Let V,W,A and B be graded vector spaces, f : V → W and g : A → B be linear

maps of degree m and n, respectively. Then f ⊗ g : V ⊗ A → W ⊗ B is a linear map

satisfying the Koszul rule of signs

(f ⊗ g)(v ⊗ w) = (−1)|g||v|f(v)⊗ g(w)

for homogeneous elements v ∈ V i and w ∈ W j.

2.3 Graphical Representations

We will give a graphical representation for maps between tensor products of graded

vector spaces. All the graphical representations are read from top to bottom. Let us

describe the fundamental pieces of the diagrams and what operations they represent.

In the above notation whenever we switch two consecutive elements (morphisms or

elements in the vector space) we get a sign depending on the product of their degrees.
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We can represent this interchange by using crossing strands. This crossing will give us

a sign depending on the signs of the incoming edges.

a ∈ A

ab

b ∈ B

(−1)|a||b|

A⊗B

B ⊗ A

2.4 Shifted Signs

Another convention that is used for the signs is the shifted sign convention. Let us

have a homogeneous degree d element v ∈ V , i.e. v ∈ V d. If we consider this v in the

shifted graded vector space V [1] it will have degree d − 1. This follows from the fact

that V [1]d−1 = V d. We will denote the shifted degree of v by |v|′. We have |v|′ = |v|−1.

2.5 More on Graphical Representations

If we cross two strands twice, both crossings will give us the same sign. We can represent

this fact by the equivalence of the following two diagrams
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a

a

b

b

(−1)|a||b|

(−1)|b||a|

=

a

a

b

b

We can also represent a multi-tensor map f : V ⊗k → V ⊗l by the following diagram

V ⊗k

. . .

. . .

V ⊗l

In the above diagram if we have k inputs, the edges above the box, and l outputs,

the edges below the box, it represents a multi-tensor map V ⊗k → V ⊗l. For multi-tensor

maps of even degree we have an additional equivalence of the following two diagrams
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=

The above relation will help us move strands around even maps and help us dis-

entangle bigger pictures. We want to be able to do something similar for odd degree

multi-tensor maps. To deal with that problem we will add a dashed line to the box as

below (see, for example, Sheridan [11])

. . .

. . .

The dashed line is considered to be a purely odd degree line and makes our diagram

even total degree. One end of the dashed line is connected to our odd diagram. The

other end is free. As a convention we will assume that the free ends will go to the left of

the picture. When we have multiple dashed lines we will assume that their free ends are

kept in a predefined order. Note that intersection of two dashed lines always introduces
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a negative sign.

2.6 Odd and Even Pairings

We have two more fundamental pieces of our graphical representations, cup and cap. We

will assume that our vector space V is endowed with a perfect pairing. Cup represents

the pairing (inner product) 〈−,−〉 : V ⊗ V → k on V defined over the field k. Let

V be finite dimensional with basis v1, . . . , vn ∈ V . This will give us an isomorphism

φ : V → V ∗. Let v∗i be the dual of vi. Let us also define vi = φ−1(v∗i ). Cap represents

the map k → V ⊗ V : 1 7→
∑

i vi ⊗ vi. Let us note that 〈vi, vi〉 = 1 and 〈vi, vj〉 = 0 for

i 6= j. The following diagrams represent even degree cup and cap, respectively

Similarly for the degree reasons, we will add dashed lines for the odd degree maps

as below.

We will only discuss homogeneous pairings.
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Theorem 2.1 The following three diagrams are equivalent

= =

Proof:

Let us show that the diagram on the left is equivalent to identity (the diagram in the

middle).

Let us read the diagram on the left from top to bottom. First we have the input, x ∈ V .

We can write the coordinates of x in both basis as x =
∑

i aivi and x =
∑

i biv
i. Note

that 〈vi, x〉 = ai and 〈x, vj〉 = bj. First thing that we come across is the cap. That gives

us the map

id⊗ cap : V → V ⊗ V ⊗ V : x 7→ x⊗
∑
i

vi ⊗ vi

=
∑
i

x⊗ vi ⊗ vi

As a second and final operation that we see in our diagram we have the cup product

of the left 2 terms.
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〈−,−〉 · id : V ⊗ V ⊗ V → V :
∑
i

x⊗ vi ⊗ vi 7→
∑
i

〈x, vi〉 · vi

=
∑
i

bi · vi

= x

Hence the diagram on the left corresponds to an identity map. We can give a similar

argument for the diagram on the right. This gives us freedom to remove kinks from

strands.

Remark. Let V be a vector space with odd and even degree parts, V = Vodd⊕Veven.

If cup and cap are both odd the following picture gives us the super-dimension of V.

Here the dashed lines intersect our graph only once and since they have degree one

we might get a sign depending on the solid edge. If we read the diagram from top to

bottom, we first have a cap then an intersection with a dashed line and finally a cup.

This corresponds to

1 7→
∑
i

vi ⊗ vi 7→
∑
i

(−1)|vi|vi ⊗ vi 7→
∑
i

(−1)|vi|〈vi, vi〉 =
∑
i

(−1)|vi|

= dimVeven − dimVodd

= 0
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This is a confirmation of the fact that our pairings are defined in the correct way. Doing

the evaluation over a circle will give us the super dimension.
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Chapter 3

A∞-Algebras

3.1 Definition

A∞-algebras were invented by Stasheff [12] at the beginning of sixties. There are two

sign conventions (due to Cho [2]) when defining A∞-algebras, one using the regular signs

and the other using shifted signs.

Definition 3.1 Let k be a field. An A∞-algebra (with no shifting) over k is a Z or

Z/2Z-graded vector space with graded structure maps mns
n : A⊗n → A of degree 2 − n

satisfying the following relation for each k ≥ 1

∑
r+s+t=k

(−1)ε1mns
r+1+t(x1, . . . , xr,m

ns
s (xr+1, . . . , xr+s), xr+s+1, . . . , xk) = 0

where ε1 = (r + 1)(s+ 1) + s(|x1|+ . . .+ |xr|)

Definition 3.2 Let k be a field. An A∞-algebra over k is a Z or Z/2Z-graded vector

space with graded structure maps mn : A[1]⊗n → A[1] of degree 1 satisfying the following

relation for each k ≥ 1

∑
r+s+t=k

(−1)ε2mr+1+t(x1, . . . , xr,ms(xr+1, . . . , xr+s), xr+s+1, . . . , xk) = 0

where ε2 = |x1|′ + . . .+ |xr|′ and |xi|′ = |xi|+ 1 is the shifted sign.
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Remark 3.3 Given an A∞-algebra with structure maps satisfying the non-shifted con-

vention in definition 3.1, we can obtain an A∞-algebra with shifted sign convention in

definition 3.2 by replacing mk’s by mns
k as follows.

mk(x1, . . . , xk) = (−1)
∑k−1

i=1 (k−i)|xi|mns
k (x1, . . . , xk)

We can represent both defining equations for the A∞-algebras by using the graphical

representations from the previous chapter.

. . .

. . . . . .

±
∑

k−inputs
=0

In the above picture we have k inputs fixed. We apply two multiplications as seen

above so that we get one output. The summation is over all ways to apply two such

graded structure maps, mk’s.

From now on, unless otherwise noted, we will assume our A∞-algebras are defined

using the shifted sign convention.
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3.2 Properties

Some immediate results from the definition:

• We have m1 ◦m1 = 0 and (A,m1) is a differential complex.

• In the first convention if mns
1 and mns

2 are the only nontrivial maps we get a dg-

algebra with mns
1 as the differential and mns

2 as the product. This follows from the

fact that mns
1 m

ns
2 = mns

2 (mns
1 ⊗ 1 + 1⊗mns

1 ).

• In the first convention if only nontrivial product is mns
2 then A is an associative

graded algebra.

• In general, m2 is associative up to homotopy, given by m3.

3.3 Examples

1. A basic example of an A∞ algebra is as follows. Let the underlying space be Z/2Z-

graded 1-dimensional C1 concentrated in even degrees. Let m2n+1 = 0 for all n

and even degree maps are arbitrary linear maps. [8]

2. Let B be an ordinary algebra and N ≥ 1 integer. Let ε be an indeterminate of

degree 2−N . Let A = B[ε]/(ε2). First let us put a trivial A∞-structure on A by

setting mn = 0 for n 6= 2 and m2 is the multiplication in B. Let c : B⊗N → B be

any linear map. If c is also a Hochschild cocycle for B we can define a deformed

A∞-structure on A as follows [6]

m′n =


mn if n 6= N,

mn + εc if n = N.
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3. Let X be a complex compact manifold and let E be a vector bundle on X. Then

Ext∗X(E , E) := ⊕n∈ZExt
n(E , E)

can be given a natural A∞ structure. A := HomX(E , E) is a dg-algebra and

hence an A∞-algebra. Then HA = Ext∗X(E , E) has an induced A∞-structure.

Here m1 = 0, m2 is Yoneda product and higher mk’s are given via Homotopy

Perturbation Lemma.

3.4 Cyclic A∞-Algebras

We will be interested in A∞-algebras equipped with an extra structure. An A∞-algebra

is called a cyclic A∞-algebra, if it is equipped with a non-degenerate pairing (inner

product) 〈, 〉 : A[1]⊗ A[1]→ k that satisfies the following conditions

〈mk(x1, . . . , xk), xk+1〉 = (−1)K(x)〈x1,mk(x2, . . . , xk+1)〉

〈a, b〉 = −(−1)|a|
′|b|′〈b, a〉

where K(x) is the Koszul sign that we have defined in the chapter 1, given by K(x) =

|x1|′(|x2|′ + . . . + |xk+1|′). The first equation is the cyclicity condition. The second

equation means our pairing is skew symmetric. Note that, we have used the shifted sign

convention above. We can also define the pairing in the non-shifted case by the following

〈a, b〉ns = (−1)|a|〈a, b〉
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Using the skew-symmetricity we can get the symmetricity condition for the non-

shifted setting as below

〈a, b〉ns = (−1)|a|〈a, b〉

= (−1)|a|+|a|
′|b|′+1〈b, a〉

= (−1)|a|+(|a|+1)(|b|+1)+1〈b, a〉

= (−1)|a||b|+2|a|+|b|+2〈b, a〉

= (−1)|a||b|(−1)|b|〈b, a〉

〈a, b〉ns = (−1)|a||b|〈b, a〉ns

We will also use the notation ck+1(x1, . . . , xk+1) = 〈mk(x1, . . . , xk), xk+1〉.

We will define an A∞-algebra to be odd if the degree of the pairing is odd and even

if the degree of the pairing is even. If A is an odd A∞-algebra this means that 〈a, b〉 = 0

for homogeneous a, b ∈ A when |a| ≡ |b| mod 2. For an even A∞-algebra A we get that

〈a, b〉 = 0 for homogeneous a, b ∈ A when |a| 6≡ |b| mod 2. The parity of the pairing

does not depend on if we use shifted signs or not.



17

Chapter 4

Ribbon Graphs

4.1 Definition

A ribbon graph is a finite connected graph equipped with a cyclic ordering on the half

edges incident to each vertex, see [5]. More precisely, it’s a graph Γ = (V,E, i) consisting

of a finite set of vertices V = V (Γ), finite set of edges E = E(Γ) and an incidence map

i : E → (V ×V )/Σ2 from each edge to unordered pairs of vertices of that edge, together

with a cyclic ordering on the set of half-edges incident to each vertex in V . We will

denote the set of all half edges of a graph Γ by H or H(Γ). The valency of a vertex

v ∈ V , denoted val(v), is the number of half edges incident to that edge.

Ribbon graphs can be described using permutation records. To specify a ribbon graph

Γ, we will specify two permutations σ, τ on H(Γ). Here σ is an arbitrary permutation

and τ is an involution with no fixed points. Under this representation the vertices V (Γ)

corresponds to the cycles of σ and the edges E(Γ) corresponds to the cycles of τ . Then

the faces F (Γ) of our graph corresponds to the cycles of στ . We will illustrate the last

fact in the example below.
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1
2

3
4

5

6 7

10

9 8

Example: In the picture above we can write σ = (1 2 3 4)(5 6 7)(8 9 10) and

τ = (1 10)(2 9)(3 6)(4 5)(7 8). This gives us the 4 faces of the graph above as the cycles

in στ = (1 8 5)(2 10)(3 7 9)(4 6)

We can also represent ribbon graphs on a plane as a graph drawn in a way that the

half edges at each vertex are in a clockwise order. This may require us to draw it in a

way that edges intersect outside of the vertices.

For every ribbon graph we may associate to it a topological surface with boundary.

We construct this surface by first replacing half edges at each vertex with thin strips

(ribbons) where the orientation of the boundary of the strips are determined by the

orientation of the vertex. After connecting each half-edge with its corresponding half-

edge in a way that the orientations match, we get a connected oriented surface with

boundary. The resulting surface might no longer be planar. Let g be the genus of the

resulting surface and let n be the number of boundary components.

The orientation at the boundary is the same as the orientation at the vertex
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We replace the vertex on the left with the surface on the right

The cyclic ordering at each vertex is an important part of the ribbon graph data as

you can see in the following 2 examples.

Both pictures have the same underlying graph with different orientations at the

vertices. First example has genus g = 0 with n = 3 boundary components, meanwhile

the second surface has genus g = 1 with n = 1 boundary component.

Since the resulting surface is oriented we can calculate its Euler characteristic and
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get

|V | − |E|+ |F | = χ

|V | − |E|+ n = 2− 2g (4.1)

A stable ribbon graph is a ribbon graph where the valency of each vertex is at least

3. From now on we will only consider the ribbon graphs that are stable.

Theorem 4.1 For each g, n ≥ 0 there are only finitely many stable ribbon graphs with

genus g and n boundary components.

Proof. Since the graph is stable, we have val(v) ≥ 3 for any v ∈ V . For each vertex

there are at least 3 half edges, i.e. |H| ≥ 3|V |. Since for each edge there are exactly 2

half edges we have 2|E| = |H|. Hence we get |V | ≤ 2

3
|E| or −|E| ≤ −3

2
|V |. From the

equation 4.1 we get

|V | − |E| = 2− 2g − n

|V | − 3

2
|V | ≥ 2− 2g − n

−1

2
|V | ≥ 2− 2g − n

|V | ≤ 4g + 2n− 4

and also

|E| = |V |+ 2g + n− 2

|E| ≤ 6g + 3n− 6

So for a fixed (g, n) we have an upper bound on the number of vertices and edges. This

means we only have finitely many such graphs.
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4.2 Orientation of Graphs

For a real vector space V , the determinant is defined as det(V ) :=
top∧
V , the wedge

product in degree dimV . The orientation on V can be thought of as a unit vector in

det(V ). For any real vector space V we have 2 possible orientations, represented by 1 or

−1 on det(V ). If V is endowed with a basis, orientation of V corresponds to choosing

an order of basis elements, up to even permutations.

For a set S we denote by RS the real vector space with S as its basis. Let us denote

the set of two half edges contained in an edge e by H(e).

Definition 4.2 [3] An orientation or on a graph Γ is a unit vector in

detRV (Γ)⊗
⊗

e∈E(Γ)

detRH(e),

i.e. the orientation on a graph Γ is determined by first ordering the vertices of Γ and

then ordering the half edges in each edge of Γ, up to even changes of this data.

Remark. Conant and Voigtman have proved in [3] that a ribbon graph Γ has a

natural orientation if all its vertices have odd valence. Since we have∑
v∈V (Γ)

val(v) = |H| = 2|E|

having all vertices with odd valence means that |V | must be even.

Definition 4.3 [3] Given a graph Γ and an edge e ∈ E(Γ), which is not a loop, we can

define Γ/e as the graph obtained by collapsing the edge e. If an orientation on Γ is given

as orienting the edges and ordering vertices so that the source of e is the second from

last and its target is the last vertex, the induced orientation on Γ/e is given by taking

the coalesced vertex to be the last vertex and letting the remaining edges and vertices to

be oriented and ordered as before.



22

4.3 The Differential d

Definition 4.4 [5] A graph Γ has codimension n if it has obtained from a trivalent

graph by collapsing n edges.

Let Gn be the free abelian group generated by all isomorphism classes [Γ] of connected

oriented ribbon graphs Γ of codimension n, modulo the relation −[Γ] = [−Γ] where −Γ

is Γ with opposite orientation. If [Γ] has an orientation reversing automorphism this

implies 2[Γ] = 0. We can define the boundary operator ∂ : Gn → Gn+1 by

∂[Γ] =
∑
e

[Γ/e]

where e ∈ E[Γ] is not a loop.

Example:

∂ ( ) = ± ± ±

When we apply ∂ to the graph on the left above, we have 3 choices for the edge

to collapse. We do all three and add the resulting graphs. We used ± because the

orientation of the graph is ignored for now.

Theorem 4.5 The map ∂ is a boundary map, i.e. ∂2 = 0.
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Proof. Let Γ be our graph and let the order of vertices in or(Γ) be given as v1, . . . , vn.

When we apply ∂ twice, we are collapsing two edges. We either collapse two edges with

no common vertex or two edges that share only one vertex. If both edges are between

same two vertices, after applying the first ∂ the other edge becomes a loop and we can

not apply ∂ to a loop. Since ∂ is done over all edges, both possible pairs of edges {e, f}

to be deleted appears twice, once as (e, f) and once as (f, e).

Case 1: Let us pick two edges e1 going from va to vb and e2 going from vc to vd where

all a, b, c, d are different. Without loss of generality assume that a < b and c < d. First

we need to change the list of vertices from v1, . . . , vn into v1, . . . , v̂a, . . . , vn, va and then

into v1, . . . , v̂a, . . . , v̂b . . . , vn, va, vb. Here by hat we represent the fact that the vertex is

no longer in its original position. In the first step va goes through n − a other vertices

and vb goes through n− b other vertices. This gives us a sign (−1)(n−a)+(n−b) = (−1)a+b.

Then we can collapse e1 and get a new vertex v′1. Here the order of vertices are given in

or(Γ/e1) be given as v1, . . . , v̂a, . . . , v̂b . . . , vn, v
′
1 and we have

or(Γ/e1) = (−1)a+bor(Γ)

Note that we now have n − 1 vertices. Now let us collapse e2 in Γ/e1. By the same

argument as above we get a new set of vertices v1, . . . , vn, v
′
1, v
′
2 with the new orientation

in the graph given as

or((Γ/e1)/e2) = (−1)c+dor(Γ/e1) = (−1)a+b+c+dor(Γ)

If we first collapse e2 and then e1, similarly we get a new set of vertices in the

orientation as v1, . . . , vn, v
′
2, v
′
1. Note that the last two elements are switched this time.

If we put them in the original order we get an extra negative sign.

or((Γ/e2)/e1) = −(−1)a+b+c+dor(Γ)
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Hence the same graph that we get by collapsing edges e1 and e2 appears twice but with

opposite signs. The summation over all non intersecting pairs of edges in ∂2 gives 0.

Case 2: Now let us pick two edges e1 going from va to vb and e2 going from vb to

vc. Without loss of generality assume that a < b < c. As in the first case if we delete

e1 we get a new vertex v′1 where the order of vertices are now v1, . . . , vn, v
′
1. The new

orientation is as before or(Γ/e1) = (−1)a+bor(Γ). But now e2 goes from v′1 to vc. Since

v′1 is already in the last place we only need to move vc into the last position. Since we

have n − 1 vertices we get a new sign (−1)n−1−c. Now we have the order of vertices as

v1, . . . , vn, v
′
0 where v′0 is the vertex that we get by collapsing e1 and e2. We have

or((Γ/e1)/e2) = (−1)n−1−cor(Γ/e1) = (−1)a+b+n−1−cor(Γ)

If we first collapse e2 we get the order of vertices as v1, . . . , vn, v
′
2 with or(Γ/e2) =

(−1)b+cor(Γ). The edge e1 now goes from va to v′2. To collapse e1 first we need to move

va into last position. We get v1, . . . , vn, v
′
2, va and the sign (−1)n−1−a. Then we need to

switch the last two vertices to get the correct orientation on e1 and get another negative

sign. This gives

or((Γ/e2)/e1) = (−1)n−1−a+1or(Γ/e2) = (−1)n−a+b+cor(Γ)

which is the negative of the sign that we get by collapsing e1 first. Hence we get the

same graph with opposite orientations. The summation over all edges that intersect

only at a vertex gives 0 under ∂2.

Hence we have ∂2 = 0.

The compactly supported dual of this complex is the graph cohomology complex

given as follows
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Definition 4.6 [5] Gn is the additive group of all homomorphisms f : Gn → Z so that

f [Γ] 6= 0 for only finitely many [Γ]. Thus Gn is generated by duals [Γ]∗ of generators of

Gn. The boundary map d : Gn → Gn−1 is given in terms of these dual generators by

d[Γ]∗ =
∑

li[Γi]
∗

where li is equal to the number of edges e in Γi so that Γi/e ∼= Γ minus the number of

edges e in Γi so that Γi/e ∼= −Γ. The sum is over a basis for Gn−1.

Remark Let Hom+(Γi,Γ) be the set of morphisms f : Γi → Γ so that the orientation

of Γ agrees with the orientation induced from Γi by f . Similarly let Hom−(Γi,Γ) be such

morphisms where the orientations disagree. We can write the coefficient li above as

li =
|Hom+(Γi,Γ)| − |Hom−(Γi,Γ)|

|Aut(Γ)|
∈ Z

The li is the number of left equivalence classes of morphisms f : Γi → Γ. If we define

ri to be the number of right equivalence classes of morphisms f : Γi → Γ we get a similar

formula

ri =
|Hom+(Γi,Γ)| − |Hom−(Γi,Γ)|

|Aut(Γi)|
∈ Z

Note that ri =
|Aut(Γ)|
|Aut(Γi)|

li If we also define 〈Γ〉 := |Aut(Γ)|[Γ]∗ we can write the
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differential as

d〈Γ〉 = d(|Aut(Γ)|[Γ]∗)

= |Aut(Γ)|d[Γ]∗

= |Aut(Γ)|
∑

li[Γi]
∗

= |Aut(Γ)|
∑

li
〈Γi〉

|Aut(Γi)|

= |Aut(Γ)|
∑

li
〈Γi〉

|Aut(Γi)|

=
∑ |Aut(Γ)|
|Aut(Γi)|

li〈Γi〉

d〈Γ〉 =
∑

ri〈Γi〉

Definition 4.7 [5] Let GZ∗ denote the subcomplex of G∗ generated by the elements 〈Γ〉.

We call GZ∗ the integral subcomplex of G∗

We can give a pictorial description of d at each vertex. For an oriented ribbon graph

Γ, each vertex v of valence n splits into 2 vertices v1, v2 connected by an edge. Hence we

have val(v1) + val(v2) = n+ 2. Note that our ribbon graphs are stable and val(vi) ≥ 3.

We can think of this splitting as a choice of a diagonal in a convex n-gon. Hence we

have
n(n− 3)

2
different splittings at this vertex.

If our vertex v is trivalent there is no possible splitting where both v1 and v2 will be

at least trivalent.

For a vertex of valency 4 we have 2 possible splittings as shown below.

v

e2

e3

e1

e4

→

e2

e3

e1

e4

v1 v2
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v

e2

e3

e1

e4

→

e2

e3

e1

e4

v1

v2

Theorem 4.8 The map d is a boundary map, i.e. d2 = 0.

Proof. This follows from the fact that d is adjoint to ∂. We get

d2 = (∂†)2 = (∂2)† = 0

Let Ror
g,n be the abelian group generated by oriented ribbon graphs with genus g, n

boundary components and differential d. The main result relating ribbon graphs and

the homology of moduli spaces of curves was obtained by Strebel and Penner

Theorem 4.9 [13, 10] H∗(Ror
g,n) ∼= H∗(Mg,n)Σn
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Chapter 5

Partition Functions and Graphical

Orientations

5.1 Definition

In the previous two chapters, we have talked about two different topics, A∞-algebras and

ribbon graphs. In this chapter we will show how both concepts help us define Partition

Functions. In [8] and [9] Kontsevich explains how to get a cocycle on the associative

graph cohomology complex G∗, from a finite dimensional Z/2Z-graded A∞-algebra A.

Igusa gave an explicit construction [5] of this cocycle using the orientation that we have

defined in the previous chapter [3].

Let A = A0 ⊕ A1 be a Z/2Z-graded cyclic A∞-algebra (also called superalgebra)

with nondegenerate even scalar product 〈, 〉ns : A ⊗ A → R. Note that 〈a, b〉ns = 0

if |a| + |b| = 1 and 〈a, b〉ns = (−1)|a|〈b, a〉ns. The second condition is the symmetry

condition for even pairings in [5]. Then Igusa gives a partition function

ZA : GZ∗ → R

that is defined on any generator 〈Γ〉 with orientation or as follows

ZA〈Γ〉 = ε1
∑
states

∏
i

〈mni
(xi1, . . . , xini

), xi0〉nsε2
∏
j

〈ȳ∗j , y∗j 〉ns
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Now let us explain the terms in the above expression. In order to write it, first we

need to make some choices.

• We first need to choose a basis {yj} for A.

• We will order vertices of Γ. Let us denote the ordered vertices by v1, v2, . . . , vn.

• We will pick an orientation of each edge. This is the same as writing each edge ei

as an ordered pair of its half edges (hi, h̄i).

• We will pick a starting half edge at each vertex vi and denote that half edge by

ei0. This will allow us to write half edges incident to vi in a clockwise order as

ei0, ei1, . . . , eini
where the valency of vi is ni + 1

A state is an assignment of basis elements of A to each half edge eij. The summation

is over all possible states. First product is over all vertices vi. The second product is

over all edges ej where yj and ȳj are the basis elements assigned to the half edges (hj, h̄j)

of ej. y
∗
j is the dual of yj. Here we have oriented the edge ej from hj to h̄j.

Then we can define ε2 to be the sign that we get by permuting the odd half edges in

e10, e11, . . . , e1n1 , e20, e21, . . . , e2n2 , e30, . . . into h0, h̄0, h1, h̄1, . . .. To be more precise, we

first ignore the half edges in both orderings that are labeled by even elements of the

algebra and then set ε2 to be the sign of the permutation of the remaining half edges

with odd basis elements. In the expression h0, h̄0, h1, h̄1, . . . it may look like we have also

picked an order on the edges. But this is not important. To be able to get a nonzero

element from the second pairing in the formula we need hj to h̄j to have the same parity.

If we switch the order of two edges then one of the edges will move through both half

edges of the other edge and in total will get no sign.
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Finally, ε1 is the sign that transforms the orientation or of the graph into

sign(v1, e10, e1n1 , . . . , e11, v2, e20, e2n2 , . . . e21 . . .).

Now let’s show that the partition function is well defined. Since we are summing

over all states each basis element and its dual appears only once. Hence the for-

mula is independent of the choice of basis. Now let us show that transposing ver-

tices v1 and v2 changes both ε1 and ε2 by a factor of (−1)n1n2 , hence doesn’t effect

ZA. To get the sign change in ε1 we need to find the sign that we get by switching

v1, e10, e1n1 , . . . , e11, v2, e20, e2n2 , . . . e21 . . . into v2, e20, e2n2 , . . . e21, v1, e10, e1n1 , . . . , e11 . . ..

This is given by the permutation that switches the block v1, e10, e1n1 , . . . , e11 of length

n1 + 2 and the block v2, e20, e2n2 , . . . e21 of length n2 + 2. This changes ε1 by a factor of

(−1)(n1+2)(n2+2) = (−1)n1n2 , as we wanted.

Before we look at ε2, let us look at the total degree of all half edges in a given vertex.

We need 〈mni
(xi1, . . . , xini

), xi0〉 to be nonzero, i.e. both terms in the pairing must have

the same degree modulo 2. Since degmni
≡ ni mod 2 we get

ni + deg xi1 + . . .+ deg xini
≡ deg xi0 mod 2

deg xi0 + deg xi1 + . . .+ deg xini
≡ ni mod 2

This means for a vertex of valence ni + 1, total degree of all half edges coming from that

vertex must be ni mod 2, otherwise we get 0 in ZA.

To get the sign change in ε2 we need to find the sign that we get by permuting the odd

elements in e11, . . . e1n1 , e10, e21, . . . e2n2 , e20, . . . into e21, . . . e2n2 , e20, e11, . . . e1n1 , e10, . . ..

Here we are switching the blocks e11, . . . , e1n1 , e10 that corresponds to the half edges

coming out of v1 and e21 . . . e2n2 , e20 the half edges coming out of v2. The blocks have

corresponding degrees n1 and n2 modulo 2. Hence we get a factor of (−1)n1n2 as we
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wanted.

Finally, let us cyclically permute the half edges x1, . . . , xn, x0 of the vertex v with

valency n + 1 into x0, x1, . . . , xn. This changes ε1 by a factor of (−1)n. To get the

new ε2 we need to move x0 through x1, . . . , xn. Hence we change ε2 by a factor of

(−1)|x0|
∑n

i=1 |xi| = (−1)|x0|(n−|x0|). We also get an extra factor of (−1)n+|x0|+|x0|n (Koszul

sign) from the cyclicity condition. Hence the total sign change is

(−1)n+|x0|(n−|x0|)+n+|x0|+|x0|n = (−1)n+n|x0|−|x0|+n+|x0|+|x0|n = 1

The partition function ZA is well defined.

Theorem 5.1 [9] ZA is a cocycle on G∗.

Example: [8] Let us define an A∞-algebra A over Q. We take A = Q and we set

modd = 0 and m2k is the multiplication by xk for a fixed choice of rational numbers

xi ∈ Q. Let us also set 〈a, b〉 = ab. Since states correspond to assigning basis vectors on

each half edge, we only have one state where we assign 1 to each half edge. Then our

partition function has only one term, depending on xi’s.

The odd case:

In [1] Amorim and Tu gave a construction of the partition function, also called Kont-

sevich class, for odd A∞-algebras. Their construction is analogous to that of Igusa,

but they needed to use a different orientation, which they called a twisted orientation.

Instead of ordering the vertices and orienting the edges, a twisted orientation just or-

ders the edges. In the next sections we will describe a more general definition of an

orientation of a ribbon graph, which will work for both odd and even A∞-algebras.
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5.2 Understanding the Signs from Graphical Repre-

sentations

In the definition of ZA〈Γ〉 we get the sign ε2 by ordering the vertices and orienting the

edges. This is exactly the information that we have from the orientation or of Γ. Let

us extend the orientation data of Γ in a more general way. Given a ribbon graph Γ, we

will make the following four choices.

1. Order the edges

2. Orient the edges

3. Order the vertices

4. Choose a starting half edge at each vertex

Once these choices are made, this will lead to a canonical expression, similar to the

one of Igusa.

We will show that in the even pairing case items 1 and 4 do not change the sign

in our graphical convention, thus recovering the orientation of Conant and Vogtmann.

For the odd pairing case only item 1 will introduce a sign. This gives us the twisted

orientation used in [1].

Theorem 5.2

• In the even case only items 2 (Orient the edges) and 3 (Order the vertices) give a

sign. This gives us the orientation of Γ.
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• In the odd case only item 1 (Order the edges) gives a sign. This corresponds to the

twisted orientation of Γ.

We will give a graphical proof of this theorem in the following 2 sections.

Before we analyze even and odd cases separately, let us give a pictorial description of

the partition function below. Making all the choices above allows us to draw our ribbon

graph in a canonical way. We will first order and orient edges on top. Then we will order

the vertices below, pick a starting half edge and then follow the clockwise orientation.

Then the edges and vertices are connected using an interchange block which introduces

a sign. Let us show this over an example.

V W

1
4

5

2
3

6

>

<

>

A

B

C

In the ribbon graph above, edges are ordered A,B,C, orientations are given by ar-

rows, vertices are ordered V,W and starting half edges are picked to be 1 for V and 2

for W . After picking the starting half edge we follow the clockwise orientation.
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>
A

1 2

>
B

3 4

>
C

5 6

1 4 5

V

2 6 3

W

interchange block

The picture above is uniquely determined by the four choices we made. It is correct

for even operations. When we use an odd operation we will add dashed lines as described

in the first chapter. The interchange block gives us the sign ε2 in Igusa’s definition. Note

that we get a sign only when we intersect two odd degree elements.

5.3 Even Pairing

In this chapter we will look at all 4 items that have been described in the previous section.

We will show that only items 2 and 3 will give us a sign. That will be equivalent to the

orientation notion defined by Conant and Vogtmann [3].

1. Order of edges doesn’t matter.
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A B AB

=

In the even pairing, cap is an even operation. When we switch two consecutive edges

we are moving one even operations through another. This will not introduce a sign.

2. Changing the edge orientation introduces a sign.

Let e1, . . . , en be a basis of A and e1, . . . , en ∈ A be the dual basis so that 〈ei, ej〉 = 1 if

i = j and equal to 0 otherwise. We have e∨i = ei. We also have by the skew-symmetricity

1 = 〈ei, ei〉 = −(−1)|ei|
′|ei|′〈ei, ei〉

1 = 〈ei,−(−1)|ei|
′|ei|′ei〉

This means that (ei)∨ = −(−1)|ei|
′|ei|′ei. Note that e1, . . . , en is also a basis of A. Thus

we have the graphical relation.

= −

The cap (with the sign) on the right corresponds to −
∑

i ei ⊗ ei and the graph on
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the left corresponds to
∑

i(−1)|ei|
′|ei|′ei ⊗ ei and we have

−
∑
i

ei ⊗ ei = −
∑
i

ei ⊗ (ei)∨

= −
∑
i

ei ⊗−(−1)|ei|
′|ei|′ei

=
∑
i

(−1)|ei|
′|ei|′ei ⊗ ei

3. Changing the order of 2 consecutive vertices introduces a sign.

A vertex corresponds to ck+1(x0, . . . , xk) = 〈mk(x0, . . . , xk−1), xk〉. To get a nonzero

value from the vertex we need to have the shifted degrees as |xk|′ ≡ |mk(x0, . . . , xk−1)|′

mod 2. This means that |xk|′ ≡ 1 +
∑k−1

i=0 |xi|′ mod 2 or
∑k

i=0 |xi|′ ≡ 1 mod 2. Since

ck is an odd operation we will add a dashed line (of order 1) at the vertex to make it

even.

. . . . . .

V W

=

. . . . . .

W V

We can go from the graph on the left to right to by switching two even operations.

This doesn’t give us any sign. We will also intersect the dashed lines to preserve their

original ordering. That will give us a negative sign, if we do not draw the dashed lines.
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4. Choosing a starting half edge at a vertex doesn’t matter.

x0 x1 x2 xk

. . .

=

x0 x1 x2 xk

. . .

The graph on the left corresponds to 〈mk(x0, . . . , xk−1), xk〉 and the graph on the

right corresponds to (−1)K(x)〈mk(x1, . . . , xk), x0〉 where K(x) is the Koszul sign given

by K(x) = |x0|′(|x1|′ + . . . + |xk|′). The equality of the two graphs exactly corresponds

to the cyclicity condition. Note that we didn’t use the fact that we have an even pairing.

The same argument holds for the odd case.

We conclude that of the choices we have made, only choices 2 and 3 matter. Thus

we recover the notion of orientation due to Conant and Vogtmann, which is ordering the

vertices and orienting the edges.

5.4 Odd Pairing

Now assume that the algebra has an odd pairing. We have already shown in the previous

section that choosing a starting edge doesn’t give us a sign. Let us look at the other

3 pieces of orientation data. Only the order of edges will give us a sign. That is the

twisted orientation defined by Amorim and Tu [1].

1. Switching two edges introduces a sign.

Let us look at two consecutive edges. Since our pairing is odd, the cap will have odd
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degree. We will add dashed lines as in the picture below

A B AB

=

With the added dashed lines, operations are even. We can move them freely without

getting a sign. We will also keep the order of dashed lines. That will give us an

intersection of dashed lines. Hence we get a sign when we do not draw the dashed lines.

2. Changing the orientation doesn’t matter.

Just like the even case, let’s pick e1, . . . , en, a basis of A and e1, . . . , en ∈ A as the

dual basis so that 〈ei, ej〉 = 1 if i = j and equal to 0 otherwise.. But this time we have

1 = 〈ei, ei〉 = −(−1)|ei|
′|ei|′〈ei, ei〉

1 = −〈ei, ei〉

1 = 〈ei,−ei〉

since |ei|′ ≡ |ei|′ + 1 mod 2. This means that (ei)∨ = −ei. Note that e1, . . . , en is also

a basis of A.

We represent this graphically as the equality,
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=

The cap on the right corresponds to
∑

i(−1)|ei|
′
ei ⊗ ei and the graph on the left

corresponds to
∑

i(−1)|ei|
′
(−1)|ei|

′|ei|′ei ⊗ ei =
∑

i(−1)|ei|
′
ei ⊗ ei and we have

∑
i

(−1)|ei|
′
ei ⊗ ei =

∑
i

(−1)|e
i|′ei ⊗ (ei)∨

=
∑
i

(−1)|e
i|′ei ⊗ (−ei)

=
∑
i

(−1)|e
i|′+1ei ⊗ ei

=
∑
i

(−1)|ei|
′
ei ⊗ ei

as we wanted

3. Order of the vertices doesn’t matter.

Since the vertices and cups are odd in this case both operations require a dashed

line. Hence we can put a dashed line at both and connect them as in the picture below.
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x0 x1 x2 xk−1 xk

. . .

=

x0 x1 x2 xk−1 xk

. . .

This makes all the vertices into even operations, which allows us to move and order

them freely.

We conclude that only choice 1 matters, thus recovering the orientation data of

Amorim and Tu.
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[9] M. Kontsevich. Formal (non)commutative symplectic geometry. The Gelfand Math-

ematical Seminars, 1990-1992. Birkhäuser Boston, 1993, pp. 173-187;



42

[10] R. C. Penner. The decorated Teichmüller space of punctured surfaces. Communica-

tions in Mathematical Physics, Volume 113, Number 2, p. 299-339, 1987;

[11] N. Sheridan. Formulae in noncommutative Hodge theory. arXiv:1510.03795v2

[math.KT]

[12] J. D. Stasheff. Homotopy associativity of H-spaces. I, II. Trans. Amer. Math. Soc.

108(1963), 275-292; ibid. 108, 293-312, 1963;

[13] K. Strebel. Quadratic differentials. Berlin, Heidelberg, New York: Springer, p. 184,

1984;


