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Abstract

Moduli spaces of curves of genus g with n marked points, M, ,, are one of the main
objects of study in algebraic geometry. Kontsevich has described the construction of
a class, called partition function, in H*(M,,)>", using even cyclic A,-algebras and
ribbon graphs with orientation. Igusa has given an explicit construction of the partition
function using an orientation defined by Conant and Vogtmann. Amorim and Tu have
given a similar construction for odd cyclic A,.-algebras and ribbon graphs using a so-
called twisted orientation. In this thesis we define a new notion of orientation for ribbon
graphs and A..-algebras of arbitrary parity, and we show that it matches with the one of
Conant-Vogtmann (in the even case) and with the one of Amorim-Tu (in the odd case).
We also give a graphical representation of the orientation which allows us to draw the
ribbon graph in a canonical way, and this leads to a canonical expression of the partition

function.
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Chapter 1

Introduction

Moduli spaces of smooth and compact curves of genus g with n marked points, M, ,,, are
one of the main objects of study in algebraic geometry. They have a rich history going
back to Riemann, but in their modern form were introduced by Deligne and Mumford
[4]. The topology of these moduli spaces is related to Teichmiiller theory. Mapping class
groups act on Teichmiiller spaces and the quotient is homeomorphic to moduli space of
curves.

Ribbon graphs are graphs with a cyclic order of half edges given at each vertex.
Strebel [13] and Penner [10] have discovered that there is a close relation between ribbon
graphs and the geometry of moduli spaces of curves. If one thickens each edge of a ribbon
graph into a ribbon, one gets an oriented surface with a boundary. This surface will have
genus ¢g and n boundary components. Strebel, Penner and Kontsevich have explained
the relation between the homology of M, ,, and R, ,,, a chain complex spanned by ribbon
graphs of genus g and n boundary components, with a particular differential d.

A-algebras were first defined by Stasheff [12] in 1963. They feature prominently
in the theory of Mirror Symmetry. They allow to give a finite dimensional model for
the derived category of any complex compact manifold [7]. Further endowed with an
extra structure, a pairing with respect to which the operations are cyclic, A,.- algebras

correspond to Calabi-Yau manifolds.



Kontsevich has realized that there is a close relation between cyclic A.-algebras and
the cohomology of ribbon graphs. He was able to give a definition of a so-called partition
function, a function which takes as an input a cyclic A,-algebra and a ribbon graph
and gives us a number. The precise definition requires one to specify extra data, an
orientation of the ribbon graph. This notion depends on the parity of the A,.-algebra.
In the even case the orientation we need is given by Conant and Vogtmann [3]. In this
case Igusa gave an explicit formula for the partition function [5], using the orientation
defined by Conant and Vogtmann. In the odd A..-algebra case the orientation, called
twisted orientation, is given by Amorim and Tu [1].

The purpose of this thesis is to give a unified interpretation of the orientation given
in [3] and the twisted orientation given in [1]. We will give a graphical explanation of the
orientation that helps us understand Kontsevich’s partition function in both contexts.

Given a cyclic Ay-algebra, a ribbon graph and 4 choices over the graph (order the
edges, orient the edges, order the vertices and pick a starting half edge at each vertex)
we will give a canonical representation of the ribbon graph, for which we can recover a
canonical expression for Kontsevich’s partition function. In the even A..-algebra case
this recovers the orientation of Conant and Vogtmann [3]. In the odd A..-algebra case

we get the twisted orientation of Amorim and Tu [1].



Chapter 2

Signs with Graphical Conventions

2.1 The Symmetric Monoidal Structure on Graded

Vector Spaces

Let k be a field. A Z-graded vector space V is a vector space together with a decompo-
sition
V=V
i€Z

where the elements v € V' will be said to be homogeneous elements of degree i. The
degree of such v is denoted by |v| = i. For any integer n, V'[n] denotes the graded vector
space with shifted grading V[n]® = V"™ and the underlying space V.

The category of graded vector spaces over the field k equipped with the usual tensor
product ® and a natural isomorphism between V @ W and W ® V| forms a symmetric

monoidal category, denoted by (grVecty, ®).



2.2 Koszul Rule of Signs

Koszul rule of signs gives us the natural isomorphism between V @ W and W ® V for

V and W in grVecty as the twisting map
twv @w) = (=1 @ v

on homogeneous elements v € V¢ and w € WJ. This rule extends to V and W by
linearity. Note that tw o tw is the identity map, i.e. tw is an involution.

A linear map of degree n between graded vector spaces is a linear map f:V — W
such that f(V*) C W™ for all i € Z. We use the same notation for the degree as before,
[f| =n.

Let V,W, A and B be graded vector spaces, f : V — W and g : A — B be linear
maps of degree m and n, respectively. Then f®¢g:V ® A - W ® B is a linear map

satisfying the Koszul rule of signs

(f®g)(v@w) = (=1 f(v) ® g(w)

for homogeneous elements v € V' and w € W7.

2.3 Graphical Representations

We will give a graphical representation for maps between tensor products of graded

vector spaces. All the graphical representations are read from top to bottom. Let us

describe the fundamental pieces of the diagrams and what operations they represent.
In the above notation whenever we switch two consecutive elements (morphisms or

elements in the vector space) we get a sign depending on the product of their degrees.



We can represent this interchange by using crossing strands. This crossing will give us

a sign depending on the signs of the incoming edges.

A®B
a€ A be B

(=1)lell

B® A

2.4 Shifted Signs

Another convention that is used for the signs is the shifted sign convention. Let us
have a homogeneous degree d element v € V, i.e. v € V4. If we consider this v in the
shifted graded vector space V1] it will have degree d — 1. This follows from the fact

that V[1]971 = V4. We will denote the shifted degree of v by |v|’. We have |v|' = |v] — 1.

2.5 More on Graphical Representations

If we cross two strands twice, both crossings will give us the same sign. We can represent

this fact by the equivalence of the following two diagrams



a b a b
(_1)|a|\b\
_1)|blla\

a b a b

We can also represent a multi-tensor map f : V& — V@ by the following diagram

V@k

V®l

In the above diagram if we have k inputs, the edges above the box, and [ outputs,
the edges below the box, it represents a multi-tensor map V& — V® . For multi-tensor

maps of even degree we have an additional equivalence of the following two diagrams



The above relation will help us move strands around even maps and help us dis-
entangle bigger pictures. We want to be able to do something similar for odd degree
multi-tensor maps. To deal with that problem we will add a dashed line to the box as

below (see, for example, Sheridan [11])

\ T
N I
N oo

The dashed line is considered to be a purely odd degree line and makes our diagram
even total degree. One end of the dashed line is connected to our odd diagram. The
other end is free. As a convention we will assume that the free ends will go to the left of
the picture. When we have multiple dashed lines we will assume that their free ends are

kept in a predefined order. Note that intersection of two dashed lines always introduces



a negative sign.

2.6 0Odd and Even Pairings

We have two more fundamental pieces of our graphical representations, cup and cap. We
will assume that our vector space V is endowed with a perfect pairing. Cup represents
the pairing (inner product) (—,—) : V.® V' — k on V defined over the field k. Let
V' be finite dimensional with basis vq,...,v, € V. This will give us an isomorphism
¢ :V — V*. Let v} be the dual of v;. Let us also define v' = ¢~1(v}). Cap represents
the map k - V@V : 1+ > v; ®v'. Let us note that (v',v;) =1 and (v*,v;) = 0 for

1 # j. The following diagrams represent even degree cup and cap, respectively

Similarly for the degree reasons, we will add dashed lines for the odd degree maps

as below.

We will only discuss homogeneous pairings.



Theorem 2.1 The following three diagrams are equivalent

Proof:
Let us show that the diagram on the left is equivalent to identity (the diagram in the
middle).
Let us read the diagram on the left from top to bottom. First we have the input, z € V.
We can write the coordinates of x in both basis as © = Y, a;v; and x = ), bv*. Note
that (v, 2) = a; and (x,v;) = b;. First thing that we come across is the cap. That gives

us the map

d@cap:V—=-VVeV: ir— x®Zvi®vi
= Zx@vi@bvi

As a second and final operation that we see in our diagram we have the cup product

of the left 2 terms.
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(= =) id: VRVeV VY zeuev = Y (1)

= Zbi'vi

- Xz

Hence the diagram on the left corresponds to an identity map. We can give a similar
argument for the diagram on the right. This gives us freedom to remove kinks from
strands.

Remark. Let V be a vector space with odd and even degree parts, V = V,30® Veven-

If cup and cap are both odd the following picture gives us the super-dimension of V.

Here the dashed lines intersect our graph only once and since they have degree one
we might get a sign depending on the solid edge. If we read the diagram from top to
bottom, we first have a cap then an intersection with a dashed line and finally a cup.
This corresponds to

Lo Y 0@ v' e Y (D)@t Y (1), o) = ) (=D

i

= dim ‘/even — dim ‘/odd

= 0
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This is a confirmation of the fact that our pairings are defined in the correct way. Doing

the evaluation over a circle will give us the super dimension.
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Chapter 3

Aso-Algebras

3.1 Definition

A-algebras were invented by Stasheff [12] at the beginning of sixties. There are two
sign conventions (due to Cho [2]) when defining A,.-algebras, one using the regular signs

and the other using shifted signs.

Definition 3.1 Let k be a field. An A.-algebra (with no shifting) over k is a Z or
Z.)2Z.-graded vector space with graded structure maps m!'® : A®™ — A of degree 2 — n
satisfying the following relation for each k > 1

Z (=) my (2, e, MY (@1, o Tt )y Trgsts - -, T) = 0
r4+s+t==k

where e1 = (r+1)(s + 1) + s(|z1| + ... + |z,])

Definition 3.2 Let k be a field. An As-algebra over k is a Z or 7Z/2Z-graded vector
space with graded structure maps m,, : A[1]%™ — A[1] of degree 1 satisfying the following
relation for each k > 1

Z (_1)52mr+1+t(x17 sy Ty ms(gjr—i—la s 7$r+s)> Lptst1s--- 7$k> =0
r+s+t=k

where eg = |x1| 4+ ... + |2 and |x;|" = |x;| + 1 is the shifted sign.
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Remark 3.3 Given an A -algebra with structure maps satisfying the non-shifted con-
vention in definition 3.1, we can obtain an A.-algebra with shifted sign convention in

definition 3.2 by replacing my’s by mj® as follows.
mg(xy, ..., 2x) = (—1)Zf;1l(k*i)|xi|mzs(x1, cey TE)

We can represent both defining equations for the A..-algebras by using the graphical

representations from the previous chapter.

In the above picture we have k inputs fixed. We apply two multiplications as seen
above so that we get one output. The summation is over all ways to apply two such

graded structure maps, my’s.

From now on, unless otherwise noted, we will assume our A.-algebras are defined

using the shifted sign convention.
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3.2 Properties

Some immediate results from the definition:
e We have m; om; = 0 and (A4, m,) is a differential complex.
e In the first convention if m7® and mj® are the only nontrivial maps we get a dg-

algebra with m7* as the differential and m%* as the product. This follows from the
fact that m7*mb® = m4*(m}* @ 1 + 1 @ m1}®).
e In the first convention if only nontrivial product is m3® then A is an associative

graded algebra.

e In general, ms is associative up to homotopy, given by msg.

3.3 Examples

1. A basic example of an A, algebra is as follows. Let the underlying space be Z/2Z-
graded 1-dimensional C! concentrated in even degrees. Let mg,.; = 0 for all n

and even degree maps are arbitrary linear maps. [§]

2. Let B be an ordinary algebra and N > 1 integer. Let € be an indeterminate of
degree 2 — N. Let A = Ble]/(¢?). First let us put a trivial A, -structure on A by
setting m,, = 0 for n # 2 and m, is the multiplication in B. Let ¢ : B®Y — B be
any linear map. If ¢ is also a Hochschild cocycle for B we can define a deformed

Ao-structure on A as follows [6]
my, ifn# N,

m, +ecc ifn=N.
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3. Let X be a complex compact manifold and let £ be a vector bundle on X. Then
Exty (E,E) == @®perExt™(E,€)

can be given a natural A, structure. A := Homx(&,€) is a dg-algebra and
hence an A, -algebra. Then HA = Ext%(£,€) has an induced A.-structure.
Here m; = 0, mg is Yoneda product and higher my’s are given via Homotopy

Perturbation Lemma.

3.4 Cyclic A, -Algebras

We will be interested in A,-algebras equipped with an extra structure. An A..-algebra
is called a cyclic A, -algebra, if it is equipped with a non-degenerate pairing (inner

product) (,) : A[l] ® A[1] — k that satisfies the following conditions

(mg(xy, ..., Tk), Tpr1) = (—1)K(”)<x1,mk(:c2,...,wk+1)>

(a,0) = —(=1)" (b, a)

where K (z) is the Koszul sign that we have defined in the chapter 1, given by K(z) =
|z1|"(Jx2|” 4+ ... + |2k41]). The first equation is the cyclicity condition. The second
equation means our pairing is skew symmetric. Note that, we have used the shifted sign

convention above. We can also define the pairing in the non-shifted case by the following

(a,0)" = (=1)""(a, b)
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Using the skew-symmetricity we can get the symmetricity condition for the non-

shifted setting as below

(a,b)" = (=1)l"a,b)
_(q)abHal B g

_ (_1)|a|+(|a|+1)(\b\+1)+1<b7 a)

N S e T

= (=1)elPl(—1)P (3, a)

<a, b>n8 = (_1)|a”b\<b’ a>ns

We will also use the notation cxyq (21, ..., Tke1) = (Mmi(x1, ..., Tk), Ty1)-

We will define an A..-algebra to be odd if the degree of the pairing is odd and even
if the degree of the pairing is even. If A is an odd A..-algebra this means that (a,b) =0
for homogeneous a,b € A when |a| = |b| mod 2. For an even A.-algebra A we get that
(a,b) = 0 for homogeneous a,b € A when |a| # |b| mod 2. The parity of the pairing

does not depend on if we use shifted signs or not.
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Chapter 4

Ribbon Graphs

4.1 Definition

A ribbon graph is a finite connected graph equipped with a cyclic ordering on the half
edges incident to each vertex, see [5]. More precisely, it’s a graph I' = (V, E, i) consisting
of a finite set of vertices V' = V/(I'), finite set of edges F' = E(I') and an incidence map
i: B — (VxV)/¥; from each edge to unordered pairs of vertices of that edge, together
with a cyclic ordering on the set of half-edges incident to each vertex in V. We will
denote the set of all half edges of a graph T' by H or H(I'). The valency of a vertex
v € V, denoted val(v), is the number of half edges incident to that edge.

Ribbon graphs can be described using permutation records. To specify a ribbon graph
I, we will specify two permutations o,7 on H(I'). Here o is an arbitrary permutation
and 7 is an involution with no fixed points. Under this representation the vertices V (I")
corresponds to the cycles of o and the edges E(I") corresponds to the cycles of 7. Then
the faces F'(I') of our graph corresponds to the cycles of 7. We will illustrate the last

fact in the example below.
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Example: In the picture above we can write 0 = (123 4)(56 7)(89 10) and
7= (110)(29)(3 6)(4 5)(7 8). This gives us the 4 faces of the graph above as the cycles
inor=(185)(210)(379)(46)

We can also represent ribbon graphs on a plane as a graph drawn in a way that the
half edges at each vertex are in a clockwise order. This may require us to draw it in a
way that edges intersect outside of the vertices.

For every ribbon graph we may associate to it a topological surface with boundary.
We construct this surface by first replacing half edges at each vertex with thin strips
(ribbons) where the orientation of the boundary of the strips are determined by the
orientation of the vertex. After connecting each half-edge with its corresponding half-
edge in a way that the orientations match, we get a connected oriented surface with
boundary. The resulting surface might no longer be planar. Let g be the genus of the
resulting surface and let n be the number of boundary components.

The orientation at the boundary is the same as the orientation at the vertex



We replace the vertex on the left with the surface on the right
The cyclic ordering at each vertex is an important part of the ribbon graph data as

you can see in the following 2 examples.

Both pictures have the same underlying graph with different orientations at the
vertices. First example has genus g = 0 with n = 3 boundary components, meanwhile
the second surface has genus g = 1 with n = 1 boundary component.

Since the resulting surface is oriented we can calculate its Euler characteristic and
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get
VI =Bl +F| = x
V| —|E|+n=2-2g (4.1)

A stable ribbon graph is a ribbon graph where the valency of each vertex is at least

3. From now on we will only consider the ribbon graphs that are stable.

Theorem 4.1 For each g,n > 0 there are only finitely many stable ribbon graphs with

genus g and n boundary components.

Proof. Since the graph is stable, we have val(v) > 3 for any v € V. For each vertex
there are at least 3 half edges, i.e. |H| > 3|V|. Since for each edge there are exactly 2
2 3
half edges we have 2|F| = |H|. Hence we get |V] < §|E| or —|E] < —§|V|. From the
equation 4.1 we get
VI-IEl = 2-29—-n
3
V| —§|V] > 2—-2g9—n
1
VI 2 2-29-n

V| < 4g+2n—4

and also
|E| = |V|4+29+n—2
|E| < 6g+3n—6

So for a fixed (g,n) we have an upper bound on the number of vertices and edges. This

means we only have finitely many such graphs.
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4.2 Orientation of Graphs

top
For a real vector space V', the determinant is defined as det(V) := AV, the wedge

product in degree dim V. The orientation on V' can be thought of as a unit vector in
det(V). For any real vector space V' we have 2 possible orientations, represented by 1 or
—1 on det(V). If V is endowed with a basis, orientation of V' corresponds to choosing
an order of basis elements, up to even permutations.

For a set S we denote by RS the real vector space with S as its basis. Let us denote

the set of two half edges contained in an edge e by H(e).
Definition 4.2 [3] An orientation or on a graph I' is a unit vector in

det RV(I") ® ® det RH (e),

i.e. the orientation on a graph I' is determined by first ordering the vertices of I' and
then ordering the half edges in each edge of I', up to even changes of this data.
Remark. Conant and Voigtman have proved in [3] that a ribbon graph I' has a

natural orientation if all its vertices have odd valence. Since we have

> val(v) = |H| = 2|E|

veV(T)
having all vertices with odd valence means that |V| must be even.
Definition 4.3 [3] Given a graph I and an edge e € E(I'), which is not a loop, we can
define I' /e as the graph obtained by collapsing the edge e. If an orientation on T' is given
as orienting the edges and ordering vertices so that the source of e is the second from
last and its target is the last vertez, the induced orientation on I'/e is given by taking
the coalesced vertex to be the last vertex and letting the remaining edges and vertices to

be oriented and ordered as before.
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4.3 The Differential d

Definition 4.4 [5] A graph T has codimension n if it has obtained from a trivalent

graph by collapsing n edges.

Let G" be the free abelian group generated by all isomorphism classes [['] of connected
oriented ribbon graphs I' of codimension n, modulo the relation —[I'] = [-I'] where —I"
is I' with opposite orientation. If [I'] has an orientation reversing automorphism this
implies 2[T'] = 0. We can define the boundary operator 9 : G* — G"*! by

o) =) [/e]

€

where e € E[I'] is not a loop.

Example:

When we apply 0 to the graph on the left above, we have 3 choices for the edge
to collapse. We do all three and add the resulting graphs. We used 4+ because the

orientation of the graph is ignored for now.

Theorem 4.5 The map O is a boundary map, i.e. 0> = 0.
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Proof. Let I" be our graph and let the order of vertices in or(I") be given as vy, ..., v,,.
When we apply 0 twice, we are collapsing two edges. We either collapse two edges with
no common vertex or two edges that share only one vertex. If both edges are between
same two vertices, after applying the first 0 the other edge becomes a loop and we can
not apply 0 to a loop. Since 0 is done over all edges, both possible pairs of edges {e, f}
to be deleted appears twice, once as (e, f) and once as (f,e).

Case 1: Let us pick two edges e; going from v, to v, and ey going from v, to vg where
all a,b,c,d are different. Without loss of generality assume that a < b and ¢ < d. First
we need to change the list of vertices from vy, ..., v, into vy, ..., ¥,,...,v,, v, and then
into vy,...,Uq,...,0p...,0n, Vs, V. Here by hat we represent the fact that the vertex is
no longer in its original position. In the first step v, goes through n — a other vertices
and vy, goes through n — b other vertices. This gives us a sign (—1)"=9+1=b) — (_1)a+?,
Then we can collapse e; and get a new vertex v]. Here the order of vertices are given in

~

or(I'/e1) be given as vy, ..., Uy ..., Uy ..., Uy, v and we have
or(I'/ey) = (=1)*"or(T)

Note that we now have n — 1 vertices. Now let us collapse e; in I'/e;. By the same
argument as above we get a new set of vertices vy, . .., vy, v}, v5 with the new orientation

in the graph given as
or((T/er)/e2) = (=1)*"or(T/er) = (=1)""***or(T)
If we first collapse e; and then ep, similarly we get a new set of vertices in the

orientation as vy, ..., v,, vy, v]. Note that the last two elements are switched this time.

If we put them in the original order we get an extra negative sign.

or((T/ez)/er) = —(=1)*"**or(T)
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Hence the same graph that we get by collapsing edges e; and e; appears twice but with
opposite signs. The summation over all non intersecting pairs of edges in 92 gives 0.
Case 2: Now let us pick two edges e; going from v, to v, and ey going from v, to
V.. Without loss of generality assume that a < b < ¢. As in the first case if we delete
e1 we get a new vertex v] where the order of vertices are now vy, ..., v,,v;. The new
orientation is as before or(I'/e;) = (—1)%**or(T"). But now e, goes from v} to v.. Since
v} is already in the last place we only need to move v, into the last position. Since we
have n — 1 vertices we get a new sign (—1)"~'7¢. Now we have the order of vertices as

U1, ..., Uy, v Where v is the vertex that we get by collapsing e; and e;. We have
or((T/er)/e2) = (=1)"""or (T fe;) = (=1)**** " =¢or(T)

If we first collapse e; we get the order of vertices as vy, ..., v,,vs with or(I'/es) =
(—1)*or(T"). The edge e; now goes from v, to v4. To collapse e; first we need to move

n=1=a Then we need to

v, into last position. We get vy, ..., v, v, v, and the sign (—1)
switch the last two vertices to get the correct orientation on e; and get another negative

sign. This gives
or((Tfe2) fer) = (—1)" 1=+ op(I' fe3) = (1)~ 4o (T)

which is the negative of the sign that we get by collapsing e; first. Hence we get the
same graph with opposite orientations. The summation over all edges that intersect
only at a vertex gives 0 under 92,

Hence we have 9% = 0.

The compactly supported dual of this complex is the graph cohomology complex

given as follows
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Definition 4.6 [5] G, is the additive group of all homomorphisms f : G" — Z so that
fIL] # 0 for only finitely many [I']. Thus G, is generated by duals [I']* of generators of

G". The boundary map d : G, — G,_1 is given in terms of these dual generators by

dll']" = Zli[ri]*

where l; is equal to the number of edges e in T'; so that T';/e = T' minus the number of

edges e in I'; so that T';/e =2 —T". The sum is over a basis for G,_1.

Remark Let Hom™ (T;, T') be the set of morphisms f : I'; — I' so that the orientation
of I' agrees with the orientation induced from I'; by f. Similarly let Hom™ (I";, ") be such

morphisms where the orientations disagree. We can write the coefficient /; above as

_ |HOH1+(F2,F)‘ — |H0m_<FZ7F)|

l Aut(D)]

ez

The [; is the number of left equivalence classes of morphisms f : I'; — I'. If we define
r; to be the number of right equivalence classes of morphisms f : I'; — I' we get a similar

formula

_ |Hom™(T;,T)| — |Hom™ (T;, T")|

P = 7
r [ Awt(D)] <

| Aut(D)]

Note that r;, = ————
ote that r Aut(T)

l; If we also define (I') := | Aut(I)|[[']* we can write the
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differential as

ar) = d(| Aut(D)[[T]")
— | Au(D)ld[r)

= |Aut(D)]) LT
— | Au ()
()
= \Aut(F)\Zlim
| Aut(T
Z | Aut(T,)| (L)
dr) = Zmn)

Definition 4.7 [5] Let GZ denote the subcomplex of G. generated by the elements (T').

We call GZ the integral subcomplex of G,

We can give a pictorial description of d at each vertex. For an oriented ribbon graph
I', each vertex v of valence n splits into 2 vertices vy, vo connected by an edge. Hence we
have val(v;) + val(v2) = n + 2. Note that our ribbon graphs are stable and val(v;) > 3.
We can think of this splitting as a choice of a diagonal in a convex n-gon. Hence we

n(n — 3)
2

have different splittings at this vertex.
If our vertex v is trivalent there is no possible splitting where both v; and vy will be
at least trivalent.

For a vertex of valency 4 we have 2 possible splittings as shown below.

(& Co (& €o

€4 3 €4 3
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€1 €9

Theorem 4.8 The map d is a boundary map, i.e. d*> = 0.
Proof. This follows from the fact that d is adjoint to 0. We get
& = (O = (@) =0

Let RJ, be the abelian group generated by oriented ribbon graphs with genus g, n
boundary components and differential d. The main result relating ribbon graphs and

the homology of moduli spaces of curves was obtained by Strebel and Penner

Theorem 4.9 [13, 10] H*(R?) = H.(M,,)™
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Chapter 5

Partition Functions and Graphical

Orientations

5.1 Definition

In the previous two chapters, we have talked about two different topics, A,.-algebras and
ribbon graphs. In this chapter we will show how both concepts help us define Partition
Functions. In [8] and [9] Kontsevich explains how to get a cocycle on the associative
graph cohomology complex G, from a finite dimensional Z/2Z-graded A..-algebra A.
Igusa gave an explicit construction [5] of this cocycle using the orientation that we have
defined in the previous chapter [3].

Let A = Ay @ Ay be a Z/2Z-graded cyclic Ay -algebra (also called superalgebra)
with nondegenerate even scalar product (,)™ : A® A — R. Note that (a,0)™ = 0
if la] + [b] = 1 and (a,b)™ = (—1)9l(b,a)"*. The second condition is the symmetry

condition for even pairings in [5]. Then Igusa gives a partition function
Z41:GE 5 R
that is defined on any generator (I') with orientation or as follows

ZA<F> = €1 Z H(mm (.I‘Z‘l, Ce ,(L’ml), Ii0>ns€2 H<y_;k7 y;k>ns

states 1 J
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Now let us explain the terms in the above expression. In order to write it, first we

need to make some choices.
e We first need to choose a basis {y;} for A.
e We will order vertices of I'. Let us denote the ordered vertices by vy, vy, ..., v,.

e We will pick an orientation of each edge. This is the same as writing each edge e;

as an ordered pair of its half edges (h;, h;).

e We will pick a starting half edge at each vertex v; and denote that half edge by
e;0. This will allow us to write half edges incident to v; in a clockwise order as

€i0s €41, - - - » €in; Where the valency of v; is n; + 1

A state is an assignment of basis elements of A to each half edge e;;. The summation
is over all possible states. First product is over all vertices v;. The second product is
over all edges e; where y; and y; are the basis elements assigned to the half edges (h;, Ej)
of e;. y; is the dual of y;. Here we have oriented the edge e; from h; to h;.

Then we can define €5 to be the sign that we get by permuting the odd half edges in
€105 €115 - - - 5 Clny» €205 €21, - - - » E2nys €30, - - - 0O Rg, ho, h1, by, . ... To be more precise, we
first ignore the half edges in both orderings that are labeled by even elements of the
algebra and then set e; to be the sign of the permutation of the remaining half edges
with odd basis elements. In the expression hg, ko, b1, b1, . .. it may look like we have also
picked an order on the edges. But this is not important. To be able to get a nonzero
element from the second pairing in the formula we need h; to Ej to have the same parity.
If we switch the order of two edges then one of the edges will move through both half

edges of the other edge and in total will get no sign.
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Finally, €, is the sign that transforms the orientation or of the graph into
SEgN(V1, €10, €lngs - - -5 €115 V2, €20, Conyy -+ - €21+« - ).

Now let’s show that the partition function is well defined. Since we are summing
over all states each basis element and its dual appears only once. Hence the for-
mula is independent of the choice of basis. Now let us show that transposing ver-
tices v; and vy changes both € and ey by a factor of (—1)""2, hence doesn’t effect
Z 4. To get the sign change in ¢; we need to find the sign that we get by switching
U1y €10, Clnyy - - - 5 €115 U2, €20, €2pgy « « - €21 « .. INEO Vo, €20, €2p1ny « - - €21, V1, €105 €1y s« « 5 €11 - - --
This is given by the permutation that switches the block vy, ey, €1n,, - .., €11 of length
ny + 2 and the block vy, €99, €2p,, . . . €21 0f length ny + 2. This changes €; by a factor of
(—1)mA+2m2+2) — (_1)mn2 a5 we wanted.

Before we look at €5, let us look at the total degree of all half edges in a given vertex.
We need (my,, (%1, ..., Tin, ), Tio) to be nonzero, i.e. both terms in the pairing must have

the same degree modulo 2. Since degm,, =n;, mod 2 we get

n; +degwzy + ... +degxy,, = degzy mod 2

degz;o +degxyy + ... +degx;y,, = n; mod 2

This means for a vertex of valence n; + 1, total degree of all half edges coming from that
vertex must be n; mod 2, otherwise we get 0 in Z4.

To get the sign change in €5 we need to find the sign that we get by permuting the odd
elements in eq1,...€1n,,€10, €21, - - - €21y, €20, - .. INLO €21, ... €20y, €20, €11, - - - E1ny, €10 - - --
Here we are switching the blocks ey, ..., e1,,, €10 that corresponds to the half edges
coming out of vy and eg; ... e9,,, €9 the half edges coming out of vy. The blocks have

corresponding degrees n; and my modulo 2. Hence we get a factor of (—1)""2 as we
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wanted.

Finally, let us cyclically permute the half edges x1,...,z,,xq of the vertex v with
valency n + 1 into zg,xq,...,x,. This changes ¢; by a factor of (—1)". To get the
new €; we need to move zy through z,...,x,. Hence we change €5 by a factor of
(—1)lwol izt lzil = (—1)lwol(n=lzol) " We also get an extra factor of (—1)"+zol+lzoln (Koszul

sign) from the cyclicity condition. Hence the total sign change is

(_1)n+|$0|(n*|fro|)+n+|ff0|+|moln - (_1)n+nlzolf\wo\+n+\x0\+|$o\n -1

The partition function Z4 is well defined.
Theorem 5.1 [9] Z, is a cocycle on G,.

Example: [8] Let us define an A-algebra A over Q. We take A = Q and we set
Moqqg = 0 and meo is the multiplication by x; for a fixed choice of rational numbers
x; € Q. Let us also set (a,b) = ab. Since states correspond to assigning basis vectors on
each half edge, we only have one state where we assign 1 to each half edge. Then our
partition function has only one term, depending on x;’s.

The odd case:

In [1] Amorim and Tu gave a construction of the partition function, also called Kont-
sevich class, for odd A..-algebras. Their construction is analogous to that of Igusa,
but they needed to use a different orientation, which they called a twisted orientation.
Instead of ordering the vertices and orienting the edges, a twisted orientation just or-
ders the edges. In the next sections we will describe a more general definition of an

orientation of a ribbon graph, which will work for both odd and even A..-algebras.
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5.2 Understanding the Signs from Graphical Repre-
sentations

In the definition of Z4(I') we get the sign € by ordering the vertices and orienting the
edges. This is exactly the information that we have from the orientation or of I'. Let
us extend the orientation data of I' in a more general way. Given a ribbon graph I', we

will make the following four choices.

1. Order the edges
2. Orient the edges
3. Order the vertices

4. Choose a starting half edge at each vertex

Once these choices are made, this will lead to a canonical expression, similar to the
one of Igusa.

We will show that in the even pairing case items 1 and 4 do not change the sign
in our graphical convention, thus recovering the orientation of Conant and Vogtmann.
For the odd pairing case only item 1 will introduce a sign. This gives us the twisted

orientation used in [1].

Theorem 5.2

e In the even case only items 2 (Orient the edges) and 3 (Order the vertices) give a

sign. This gives us the orientation of I'.
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e [n the odd case only item 1 (Order the edges) gives a sign. This corresponds to the

twisted orientation of .

We will give a graphical proof of this theorem in the following 2 sections.

Before we analyze even and odd cases separately, let us give a pictorial description of
the partition function below. Making all the choices above allows us to draw our ribbon
graph in a canonical way. We will first order and orient edges on top. Then we will order
the vertices below, pick a starting half edge and then follow the clockwise orientation.
Then the edges and vertices are connected using an interchange block which introduces

a sign. Let us show this over an example.

A

In the ribbon graph above, edges are ordered A, B, C, orientations are given by ar-
rows, vertices are ordered V, W and starting half edges are picked to be 1 for V' and 2

for W. After picking the starting half edge we follow the clockwise orientation.
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interchange block

w

The picture above is uniquely determined by the four choices we made. It is correct
for even operations. When we use an odd operation we will add dashed lines as described
in the first chapter. The interchange block gives us the sign €, in Igusa’s definition. Note

that we get a sign only when we intersect two odd degree elements.

5.3 Even Pairing

In this chapter we will look at all 4 items that have been described in the previous section.
We will show that only items 2 and 3 will give us a sign. That will be equivalent to the
orientation notion defined by Conant and Vogtmann [3].

1. Order of edges doesn’t matter.



35

In the even pairing, cap is an even operation. When we switch two consecutive edges
we are moving one even operations through another. This will not introduce a sign.

2. Changing the edge orientation introduces a sign.

Let ey,...,e, beabasisof Aande',... e" € Abe the dual basis so that (e;, ¢?) = 1if

i = j and equal to 0 otherwise. We have e} = e¢’. We also have by the skew-symmetricity
1= (e,e’) = —(_1)|ei|,|ei‘/<€i7 €i)
e

This means that (¢/)Y = —(—1)l%l'le'Ie;. Note that €', ..., e" is also a basis of A. Thus

we have the graphical relation.

The cap (with the sign) on the right corresponds to — >, e; ® €' and the graph on
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the left corresponds to 3_,(—1)1el'e? @ ¢; and we have

—Zei®ei = —Zei@) (e
= Y e (-1l
= Y ()T e

3. Changing the order of 2 consecutive vertices introduces a sign.

A vertex corresponds to cxy1(xo, ..., xr) = (my(xo, ..., Tx_1), k). To get a nonzero
value from the vertex we need to have the shifted degrees as |zi|" = |mi(zo, ..., Tg—1)|
mod 2. This means that |z;x| = 1+ Zf:_ol |z;|" mod 2 or Zf:o |z;|" =1 mod 2. Since
¢x is an odd operation we will add a dashed line (of order 1) at the vertex to make it

even.

We can go from the graph on the left to right to by switching two even operations.
This doesn’t give us any sign. We will also intersect the dashed lines to preserve their

original ordering. That will give us a negative sign, if we do not draw the dashed lines.
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4. Choosing a starting half edge at a vertex doesn’t matter.

Ty T1 T2 Tk Ty T1 T2 L

The graph on the left corresponds to (my(xg,...,x_1),zx) and the graph on the
right corresponds to (—1)X® (my (21, ..., 1), zo) where K (z) is the Koszul sign given
by K(z) = |zo|' (|z1|" + ... + |zk|"). The equality of the two graphs exactly corresponds
to the cyclicity condition. Note that we didn’t use the fact that we have an even pairing.
The same argument holds for the odd case.

We conclude that of the choices we have made, only choices 2 and 3 matter. Thus
we recover the notion of orientation due to Conant and Vogtmann, which is ordering the

vertices and orienting the edges.

5.4 0Odd Pairing

Now assume that the algebra has an odd pairing. We have already shown in the previous
section that choosing a starting edge doesn’t give us a sign. Let us look at the other
3 pieces of orientation data. Only the order of edges will give us a sign. That is the
twisted orientation defined by Amorim and Tu [1].

1. Switching two edges introduces a sign.

Let us look at two consecutive edges. Since our pairing is odd, the cap will have odd
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degree. We will add dashed lines as in the picture below

\

With the added dashed lines, operations are even. We can move them freely without
getting a sign. We will also keep the order of dashed lines. That will give us an
intersection of dashed lines. Hence we get a sign when we do not draw the dashed lines.

2. Changing the orientation doesn’t matter.

Just like the even case, let’s pick eq,...,e,, a basis of A and e!,..., e" € A as the

dual basis so that {e;,e/) =1 if i = j and equal to 0 otherwise.. But this time we have

L= (erne) = ~(-D)M(ele)

1 = —(e)
1 = (e, —e)
since |e;]' = [e|' + 1 mod 2. This means that (e’)Y = —e;. Note that e',... e" is also

a basis of A.

We represent this graphically as the equality,
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The cap on the right corresponds to Zi(—1)|ei‘/ei ® e and the graph on the left

corresponds to > (=1)lel (=)l eV el @ e; = S (1)l e? @ e; and we have

Z(_l)‘eillei ® 6@' _ Z<_1)|ei\’6i ® (ei)\/

% %

= Y (e (e

7

= Y (- g,

i

= Z(—l)'ei‘/ei ® e;

%

as we wanted
3. Order of the vertices doesn’t matter.
Since the vertices and cups are odd in this case both operations require a dashed

line. Hence we can put a dashed line at both and connect them as in the picture below.
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Lo X1 T2 Lk—1 Tk Ty X1 T2 Lr—1 Tk

This makes all the vertices into even operations, which allows us to move and order
them freely.
We conclude that only choice 1 matters, thus recovering the orientation data of

Amorim and Tu.
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