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Abstract

Networks are one of the basic structures to represent the relations between objects.

There is a lot of application of random networks in daily life, including social networks,

evolution history, navigation maps and protein structures. This dissertation will

introduce this graphical tool to analyze applications in two fields: social data analysis

and phylogenetics.

Along with the data explosion, an ever-increasing share of human communication

and social interaction, making available vast quantities of data. How to extract the signal

from the vast noise becomes a more and more important question for large-scale social

media data analysis. We introduce a notion of cross-validated eigenvalues, which guide

us to find the correct dimension of random graphs under a class of random graph models.

We provide a simple estimation procedure, the central limit theorem that gives a p-value

for the statistical significance of each sample eigenvector, and proof of consistency for

estimating the number of communities in a network.

A phylogenetic network is a graphical tool to analyze the evolutionary history

between species. We show the identifiability of phylogeny in the presence of gene flow

caused by several sources including lateral gene transfer, hybridization and incomplete

lineage sorting. We first show an algorithmic proof to identify the phylogeny tree in the

presence of lateral gene transfer events with the transfer rate constantly large, and a

notion reconstruction algorithm is also presented with the proof of consistency. Then

we identify the phylogeny from multi-sequence data under multispecies coalescent model

using the multiple independent sites per locus under a large class of substitution models.

We extend the idnetifiability result considering hybridization, which identify the level-1

phylogenetic network as we can view the networks as a collection of displayed trees.
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Chapter 1

Introduction

The network is one of the basic structures which can represent the relations between

vertices and has plenty of applications in different fields such as social contact, neuronal

networks, protein-protein interactions, and evolution relations. This dissertation

introduces a set of applications on networks for social media data analysis and phylogeny

inference.

1.1 Introduction to social network analysis

The development of new technologies has brought more and more human activity

information available online, digital media like Twitter records an ever-increasing share

of human communication and social interaction, making available vast quantities of big

data, in the forms of text, audio, and video. This brings a big opportunity for the

data scientist to study individuals and society at large unobtrusively, and the raw and

large-scale data also brings the big challenge to extracting the signal from the vast noise.

In the application of social data analysis, this dissertation tries to answer the

question that how to select the correct number of communities using the

spectral methods. Spectral methods hold a central place in statistical data analysis.

Spectral methods refer to a collection of algorithms built upon the eigenvectors(resp.

singular vectors) and eigenvalues (resp. singular values) of some properly designed

matrices of data. Classical spectral methods include principal components analysis
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(PCA), in which a low-dimensional subspace that explains most of the variance in

the data is sought [Pea01];[Hot33]; Fisher’s discriminant analysis, which aims to

determine a separating hyperplane for data classification [Fis36]; and multidimensional

scaling, used to realize metric embeddings of the data [Kru64]. Recent developments

in spectral methods have highlighted their strengths in handling large-scale, high-

dimensional, and noisy data [BW09]; [Che+21b], including community detection in

networks [McS01];[RCY11a], sampling [HC17];[Roh19]; [CZR19], clustering [Von07];

[RZ20], dimensionality reduction [BN03]; [CR20], low-rank matrix estimation [AM07];

[KMO09], among others.

In social network analysis, a large and widespread class of models supposes that

each person has a set of k latent characteristics. The probability that a pair of people

are friends depends only on that pair’s k characteristics. Typically, for example, if

two people have similar features, then they are more likely to become friends. One

common diagnostic is the scree plot, which plots the largest sample eigenvalues in

decreasing order; the user searches this plot for a “gap” or “elbow” in the decaying

eigenvalues. This diagnostic has two key limitations. First, the eigenvalues often have

multiple gaps and elbows. Second, in statistical models with k true dimensions, bias

differentially affects the k and k + 1 sample eigenvalues, and this bias blurs any gap or

elbow between them. A more general problem is that a useful theory and methodology

must confront the possibility that only some of the leading k population eigenvectors

are estimable. In this situation, the “correct” choice of k is the number of statistically

useful dimensions. To confront these problems, Chapter 2 introduces a notion of cross-

validated eigenvalues. Under a large class of random graph models, we provide (1) a

simple estimation procedure, (2) a central limit theorem that gives a p-value for the

statistical significance of each sample eigenvector, and (3) a proof of consistency. This

approach can be used to estimate the number of statistically useful sample eigenvectors,

naturally adapting to the complexity of the estimation task. In simulations and a data
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example, the proposed estimator compares favorably to alternative approaches in both

computational and statistical performance.

1.2 Introduction to the phylogenetic network infer-

ence

A phylogeny is a proposal of how organisms are related by their evolutionary

history, based on the evidence that all living things are related by common descent.

Phylogenetic networks are a graphical tool used to perform analysis in mathematics

and biology [HRS10]. The leaves represent the species at the current time, the internal

vertices represent the ancestor species in evolutionary history and the edges represent

evolutionary events between their incident vertices. Every species has observable traits

that may be binary (e.g. ’horns’ or ’no horns’) or greater (e.g. DNA or amino acid

sequences). Evolutionary events are comprised of mutations that influence these traits,

and there are many ways to model them. Traditional sequence-based substitution models

include the Jukes-Cantor [JC+69] and the generalized time-reversible model [Tav+86].

However, phylogenetic networks inferred from different genes often imply different,

conflicting evolutionary histories from which they have been sampled [Pol+06; GD08;

Cra+09; Nak13]. In addition to statistical errors in gene tree estimation, there are

several well-recognized causes of gene tree incongruence, including incomplete lineage

sorting (ILS), hybridization, lateral gene transfer (LGT), gene duplication and loss.

Another key question this dissertation tries to answer is whether can we

infer phylogenetic networks from the gene sequence in the presence of the

gene flow? Observing measured traits between taxa and using them to determine

discrete relationships and the evolutionary distance between taxa, and the phylogenetic

network topologies are recovered from these sub-networks or pairwise distances. Lots of

prior works have been done in phylogenetic networks inference including probability-
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or likelihood-based methods [Bou+13], quartet-based methods [Lar+10], [Mir+14],

[RSM19], concatenation [RS15], sequence-based methods[TKF91], [TKF92],[DR13a].

In chapter 3, this dissertation first focuses on identifying a phylogeny tree in the

presence of LGT, which has an important role in the evolution [SSJ03; McD+10; WC11;

MC17; Hib+21]. A stochastic model of LGT was introduced by Roch and Snir [RS13],

LGT events occur at random along the phylogeny according to a Poisson process, for

each gene independently. The goal is to recover the species phylogeny from a collection

of gene trees, each of which can be thought of as a randomly scrambled instance of the

species phylogeny. A related model was also studied in [LRH07; Ste+13; SS13]. It was

proved in [RS13] that under the assumptions in Section 3.2.2, a species phylogeny with

n leaves can be recovered from a logarithmic number of genes when the LGT rate is at

most O(1/ log n) per unit time. [RS13] also showed that the species phylogeny cannot

be distinguished with constant probability from the same number of genes when the

LGT rate is of the order of Ω(log log n) per unit time. Under the same assumptions,

the algorithm result in [DR16] improved the LGT rate to a small constant bound by a

recursive approach which progressively builds the species phylogeny from the leaves up,

using the information obtained from partially reconstructed subtrees to reach further

into the past. A similar result was given in [Ste+13] by showing the subtree spanned

by any three leaves is statistically consistent when the LGT rate is small, and then the

species tree can be reconstructed from the gene trees by majority voting. To further close

this gap for a constantly large transfer rate, Chapter 3 introduces an algorithmic idea

to reconstruct the phylogeny bottom up. since the LGT events happen chronologically

from the root and the transition matrix is invertible, the previous divergence time can

be identified because it’s the first time that two clusters merge in the distribution.

In chapter 4, we are motivated by the example given by [Ste+13] showing that

the mixtures of two sets of branch lengths on a tree of one topology can exactly mimic
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the different (expected) site pattern frequencies of a tree of a different topology under

the two-state symmetric model. This dissertation introduces a new estimator which

can overcome this issue by using two independent sites per gene. Under the DNA

substitution model including the Jukes-Cantor model and the general time reversible

model, chapter 4 introduces a notion of multiple sites estimator whose expectation

satisfies the four points condition in the presence of incomplete lineage sorting. One

can further infer the whole phylogeny tree using quartet-based algorithms like [Erd+99].

One can extend the identifiability result by considering different rate across loci or under

the mixture of identical trees model. This dissertation further discuss the identifiability

on level-1 phylogenetic networks as we can view the networks as a collection of displayed

trees and the four points condition of the ideal version of the estimator is also held by

linearity.

1.3 Collaboration note

Chapter 2 is based on the collaboration work in [Che+21a] with Fan Chen, Karl Rohe

and Sébastien Roch from University of Wisconsin Madison. Chapter 3 is based on the

work with Elchanan Mossel from Massachusetts Institute of Technolog, Allan Sly from

Princeton University and Sébastien Roch. The section 4.2 in chapter 4 is based on the

work with Sébastien Roch and the section 4.3.2 in chapter 4 is based on the work with

Cécile Ané, Sébastien Roch,Yu Sun and Jingcheng Xu from University of Wisconsin

Madison. My main role in all these projects are rigorous theory development and paper

writing.
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Chapter 2

Estimating Graph Dimension with

Cross-validated Eigenvalues

2.1 Background and Notations

In social network analysis, a large and popular class of models supposes that each person

has a set of k latent characteristics and the probability that a pair of people are friends

depends only on that pair’s k characteristics. Typically, for example, if two people have

similar characteristics, then they are more likely to become friends. We aim to estimate

the number of characteristics k using a class of models where every edge is statistically

independent, conditionally on the characteristics. This includes the Latent Space Model,

the Aldous-Hoover representation, and graphons [HRH02; Ald85; Hoo89; Lov12; JC14].

Denote the adjacency matrix A ∈ Nn×n as recording the number of edges between

i and j in element Aij. We are particularly interested in the class of models where every

person i is assigned a vector of characteristics Zi ∈ Rk and

E(Aij) =
k∑
ℓ=1

ZiℓZjℓ = ⟨Zi, Zj⟩. (2.1)

This model is often called the random dot product model [Ath+13], which includes the

Stochastic Blockmodel, along with its degree-corrected and mixed membership variants
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[KN11; Air+08]. In the Stochastic Blockmodel, k is the number of blocks. Under

mild identifiability conditions, E(A) and the normalized form of this matrix defined in

Equation (2.2) below have k non-zero eigenvalues. We use this fact to estimate k.

The scree plot gives the sample eigenvalues. We look for an elbow or a gap.

0 50 100 150

0.2

0.3

0.4

0.5

0.6
Simulation: scree plot

0 50 100 150

0.2
0.3
0.4
0.5
0.6
0.7

Data: scree plot

Figure 2.1: In these examples, it is difficult to detect a gap or elbow. In
the left panel, the graph is simulated from a Degree-Corrected Stochastic
Blockmodel with n = 2560. In the right panel, the graph is a citation
graph among n = 22, 688 academic journals. Displayed are the largest 150
eigenvalues of the normalized and regularized adjacency matrix, L, defined
in Equation (2.2). Section 2.1.1 gives more details for these figures.

Unfortunately, the eigenvalues of A or of its normalized form (i.e., the “sample

eigenvalues”) in the scree plot often fail to provide a clear estimate of k. As an

illustration, this is the case in Figure 2.1. We address this problem with a cross-

validation technique. There are three basic pieces that, when put together, enable our

cross-validation approach to estimating the latent dimension k.

The first piece provides two identically distributed adjacency matrices, Ã and

Ãtest, from a single adjacency matrix A. For each element i, j, define the elements of Ã

and Ãtest as

Ãij ∼ Binomial(Aij, 1− ε) and [Ãtest]ij = Aij − Ãij.

If ε = 1/2, then Ã and Ãtest are identically distributed. If A has independent

elements with E(Aij) = ⟨Zi, Zj⟩, then Ã also has independent elements with E(Ãij) =

⟨Zi, Zj⟩/(1 − ε). Moreover, we will model Aij as Poisson, which makes Ã and Ãtest

statistically independent. It is common to model Aij as Poisson because it is convenient
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and, in sparse graphs specifically, the difference between the Poisson and Bernoulli

models becomes negligible [KN11; FP+20; CD18; CCB16; ZA20]. See Section 2.5 for

further comparison between Bernoulli and Poisson graphs.

The second piece is that E(A),E(Ã), and E(Ãtest) have nearly identical spectral

properties that reveal k. Because E(Ã) = E(A)/(1− ε), dividing an eigenvalue of E(A)

by 1−ε gives an eigenvalue of E(Ã). As a result, they have the same number of non-zero

eigenvalues, which is the value k that we aim to estimate. Importantly, these matrices

all have identical eigenvectors.

While the technical parts of the chapter use the eigenvectors of an adjacency

matrix, the proposed algorithm instead uses eigenvectors from the normalized and

regularized adjacency matrices. To define this matrix for the full adjacency matrix

A, define the node degrees di =
∑

j Aij and the regularization parameter τ = n−1
∑

i di.

The normalized and regularized adjacency matrix is

L = DAD, where D is a diagonal matrix with Dii = (di + τ)−1/2. (2.2)

Importantly, the normalized and regularized form of E(A) also has k non-zero

eigenvalues. For dense graphs, L has similar statistical properties to A. However, for

sparse graphs, L has better statistical properties [LLV17; ZR18].

The third and final piece of the proposed approach is that for an eigenvector x̃ of

Ã (or its normalized and regularized version L̃), the “cross-validated eigenvalue,”

λtest(x̃) = x̃T Ãtestx̃ =
∑
ij

x̃ix̃j[Ãtest]ij (2.3)

is a weighted sum of independent random variables which converges to the normal

distribution; this result is conditional on x̃, which is independent of Ãtest in the Poisson
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model. We test whether the expected value of λtest(x̃) is zero,

E(λtest(x̃)|Ã) = x̃T E(Ãtest|Ã)x̃ = x̃T E(Ãtest)x̃ =
∑
ℓ

(
∑
i

Ziℓx̃i)
2/2. (2.4)

When this value is zero, it means that x̃ is orthogonal to the latent space; in this case,

we say that x̃ is not statistically useful (although, perhaps, it is still useful for tasks

other than estimating Z1, . . . , Zn). Ideally, the first k eigenvectors will provide large

values of λtest, with large Z-scores, while the following eigenvectors have λtest ≈ 0 and

Z-scores normally distributed, with mean zero and variance one. The main theoretical

result, stated in Theorem 2.4.1 below, shows that the proposed technique is consistent.

2.1.1 Motivating examples

In Figure 2.1, the simulated graph comes from a Degree-Corrected Stochastic

Blockmodel, with k = 128 hierarchically arranged blocks. Many of the 128 dimensions

cannot be estimated from the data. As such, it is not surprising that no artifacts arise

in the scree plot around 128.

In Figure 2.2 below, the simulated scree plot from Figure 2.1 is repeated as a black

line. The first two eigenvalues have been removed to improve the display. The blue line

gives x̃T L̃testx̃, where x̃ runs through the leading 150 eigenvectors of L̃. The red line gives

the population version of this quantity, where the normalized and regularized matrix is

constructed from the matrix E(A). The red and blue lines reveal that the eigenvectors

computed from the data do not correlate with the underlying Z’s after around k̂ ≈ 60.

Moreover, the Z-scores in the right panel start to cluster around the cutoff at k̂ ≈ 60.

The standard scree plot (black line in left panel) does not reveal anything around this

value. The full details of this simulation model are provided in supplementary Section

2.8.1. This illustration splits the edges ten separate times, each with probability ε = .1,

and averages the results over those ten folds.
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0.0

0.1
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0.4

Simulation: scree plot
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0

5

10

15

20

Simulation: Z−scores

Figure 2.2: In the left panel, the black line gives the empirical eigenvalues
(repeated from the left panel of Figure 2.1) and the orange line gives the
k = 128 non-zero population eigenvalues. The blue line gives x̃T L̃testx̃ and
red line gives the population version of this quantity. In the right panel,
the Z-scores test the null hypothesis that the quantity in (2.4) is zero. The
horizontal black line gives the cutoff for .05 significance. In this example, a
good choice for k̂ would be around 60.

The right panel of Figure 2.1 gives the scree plot for a citation graph on 22,688

academic journals. This graph was constructed from the Semantic Scholar database

[Amm+18] of roughly 220 million academic papers. Citations from one paper to another

were converted to citations between the journals that published the papers. If there were

more than 5 citations from journal i to journal j using a 5% sample of all edges, then Aij

is set to one. Otherwise, Aij is zero. This graph was originally constructed and studied

in [RZ20]. For simplicity, the graph was symmetrized by setting Aij = 1 if Aji = 1.

The average journal degree is 35. In the simulation in Figure 2.2 above, the red and

orange lines give “population quantities,” constructed with E(A). In Figure 2.3, we use

the blue line as an estimate of the red line and the Z-scores to test the null hypothesis

that Equation (2.4) is equal to zero.

One way of understanding the difficulty of using spectral approaches for

estimating k is this: the sample eigenvectors can “overfit” to the noise in large-scale

graphs and it is hard to tell when this overfitting happens. This is the same overfitting

that makes the sample eigenvalues in the scree plot differentially biased; in Figure 2.2 in

the left panel, the gap from the black line to the orange and red lines is smaller on the left
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Figure 2.3: In this example, ε = .05 and for illustration, the data was divided
only one time. All of the leading 150 dimensions are highly statistically
significant. This is consistent with the results in [RZ20] that showed the
leading 100 dimensions reveal groups of journals that form coherent academic
areas. In this example, L has 789,980 non-zero elements, spread across 22,688
rows and columns. Despite the relatively large size of this graph, computing
all 150 cross-validated eigenvalues and their Z-scores requires less than 10
seconds in R on a 2020 MacBook Pro. This speed is enabled by the sparse
matrix packages Matrix and RSpectra [BM21; QM19]

and larger on the right. In this chapter, we exploit a notion of cross-validated eigenvalues

as a new approach to estimating k. Here, the eigenvectors and cross-validated eigenvalues

are computed on different graphs which is made possible by splitting the edges into two

graphs [AS15; ABH16]. This removes the bias from overfitting.

Under a large class of random graph models, we provide a simple procedure to

compute cross-validated eigenvalues.

A related holdout approach was previously explored in the econometrics literature

[ADZ14; Lam16] for covariance estimation. In this chapter and in those prior papers, the

eigenvectors are estimated with a portion of the data and the “signal strength” of those

vectors is estimated with the remaining held-out data. There are three key differences

with this previous work. First, the observed data is of a different nature; for a covariance

matrix Σ ∈ Rp×p, it is assumed in [Lam16] that we observe yi = Σ1/2xi, where xi are

unobserved and contain independent, identically distributed (i.i.d.) random variables.

Second, the notion of sample splitting is different; the approach in [ADZ14] constructs
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a sample covariance matrix with a subsample of the observed vectors y1, . . . , yn. Third,

the target of estimation is different; we provide p-values to estimate k, while the prior

work aims to estimate the eigenvalues of Σ, which is presumed to be full rank.

For cross-validated eigenvalues, we provide an intuitive central limit theorem,

which leads to a p-value for the statistical significance of a sample eigenvector. This can

be used to estimate the number of statistically useful sample eigenvectors, and thus k.

We provide consistency results for the proposed estimator of k, allowing for weighted

and sparse graphs. Finally, through simulations and real data applications, we show

that this estimator compares favorably to alternative approaches in both computational

and statistical performance.

2.1.2 Prior literature

Numerous methods have been proposed to estimate k under the Stochastic Blockmodel

and its degree-corrected version [BLM15; BS16; Lei16; WB17; CL18; MSZ19; LL19a;

Liu+19; Jin+20]. One previous technique has been proposed to estimate the dimension

of the more general random dot product graph [LLZ20]. These methods roughly fall

into one of three categories: spectral, cross-validation, and (penalized) likelihood-based

approaches. Methods based on likelihood or cross-validation are actively researched,

yet the majority of them are commonly restrained by the scale of networks. Spectral

methods are highly scalable for estimating k in large networks, although their rigorous

analyses require delicate, highly technical random matrix arguments [AEK17; BBK19;

CCH20; DZ19; BBK20; HLY20].

Among the likelihood-based approaches, the authors of [WB17] proposed to

estimate k by solving a Bayesian information criterion (BIC) type optimization problem,

where the objective function is a sum of the log-likelihood and of the model complexity.

The computation is often not feasible because the likelihood contains exponentially many
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terms. In [MSZ19], a pseudo-likelihood ratio is used to compare the goodness-of-fit

of models with differing ks that have been estimated using spectral clustering with

regularization [RCY11b; QR13; JY16; SWZ19], speeding up the computation. However,

the two methods allow little node degree heterogeneity. Related to the goodness-of-fit

technique, the authors of [Jin+20] present a stepwise testing approach based on the

number of quadrilaterals in the networks. Computing the statistic requires at least

n2 multiplication operations, regardless of the sparsity of the graph, thus is infeasible

for large n. More recently, cross-validation [PC84; AC10] has also been adapted to the

context of choosing k. For example, in [CL18], a block-wise node-pair splitting technique

is introduced. In each fold, a block of rows of the adjacency matrix are held out from

the Stochastic Blockmodel fitting (including the community memberships), then the

left-out rows are used to calculate a predictive loss. In [LLZ20], the authors propose

to hold out a random fraction of node-pairs, instead of nodes (thus all the incidental

node-pairs). In addition, they suggest using a general low-rank matrix completion (e.g.,

a singular value thresholding approach [Cha15]) to calculate the loss on the left-out

node-pairs. Theoretical conditions for not under-estimating k were established in both

cross-validation based methods [CL18; LLZ20]. Calculating the loss on either held-

out rows or on scattered values in the adjacency matrix requires O(n2) computations,

regardless of sparsity. This limits the ability of these techniques to scale to large graphs.

In [BS16; Lei16], hypothesis tests using the top eigenvalue or singular value of

a properly normalized adjacency matrix are proposed, based on edge universality and

other related results for general Wigner ensembles [TW94; Sos99; Erd+12; Erd+13;

Ale+14]. The analyses of these hypothesis tests assume dense graphs. In [Liu+19], a

version of the “elbow in the scree plot” approach (see, e.g., [ZG06] for a discussion of this

approach) is analyzed rigorously under the Degree-Corrected Stochastic Blockmodel,

also in the dense case. For sparser graphs, the spectral properties of other matrices

associated to graphs have been used to estimate k, including the non-backtracking
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matrix [Krz+13; BLM15; LL19a] and the Bethe-Hessian matrix [LL19a]. However,

their theoretical analysis currently allow little node degree heterogeneity in the sparse

case.

There is also related work on bootstrapping [SB99; Tho+16; GS17; LL19b;

LLS20a], jackknife resampling [LLS20b] and subsampling [BB15; LS19; Nau+21]

in network analysis. In particular, in [LS19], subsampling schemes are applied to

the nonzero eigenvalues of the adjacency matrix under low-rank graphon models.

Weak convergence results are established under some technical conditions, including

sufficient edge density (i.e., average degree growing asymptotically faster than
√
n);

simulation results also indicate that sparsity leads to poor performance for the estimators

considered, especially in the case of the eigenvalues closer to the bulk.

2.2 The statistical model, sample eigenvalues, and a

new measure of signal strength

We consider a connected multigraph G = (V,E) consisting of the set of nodes V =

{1, . . . , n} and edges E, where we allow multiple edges and self-loops. The adjacency

matrix A ∈ Nn×n records the number of edges between i and j in element Aij.

The introduction motivated the chapter by expressing E(Aij) = ⟨Zi, Zj⟩ in

Equation (2.1). If the Z1, . . . , Zn ∈ Rk span Rk and the elements Aij are independent

Poisson variables, then this model is included in Definition 1, which is the focus of this

chapter.

Definition 1 (Poisson graph). We consider random graph models where the elements
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of A are independent Poisson random variables and E(A) has the eigendecomposition

E(A) = UΛUT (2.5)

for U ∈ Rn×k with orthonormal columns and diagonal matrix Λ ∈ Rk×k with positive

elements λ1, . . . , λk ∈ R down the diagonal in non-increasing order.

Define the population (or expectation) matrix P = E(A). The diagonal of Λ

contains the leading k eigenvalues of P and their corresponding eigenvectors are in the

columns of U . For j > k, the eigenvalues of P are λj = 0. In this chapter, we aim to

estimate the number of nonzero eigenvalues.

This chapter makes two simplifying assumptions. The first simplifying

assumption is that A is symmetric (i.e., edges are undirected). This assumption can

be relaxed; Remark 2.4.1 discusses directed graphs, contingency tables, and rectangular

incidence matrices. The second simplifying assumption is that the elements of A are

Poisson. A simulation in Section 2.5 demonstrates that the proposed technique provides

reliable p-values in Bernoulli graphs as well.

2.2.1 Sample eigenvalues: a poor diagnostic

A common approach to estimating the eigenvalues of P is to use a plug-in estimator,

i.e., estimating the eigenvalues of P with the eigenvalues of A. The symmetric matrix

A ∈ Nn×n has eigenvectors x̂1, . . . , x̂n ∈ Rn that are the solution to

x̂j = argmax
x∈Ŝj

xTAx, (2.6)
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where Ŝj = {x ∈ Rn : ∥x∥2 = 1 and xTx̂ℓ = 0 for ℓ = 1, . . . , j − 1}. The eigenvalues λ̂j

for j = 1, . . . , n are defined as

λ̂j = x̂Tj Ax̂j. (2.7)

Note that the quadratic form that defines the eigenvalues in Equation (2.7) is identical

to the objective function that the eigenvectors optimize in equation (2.6). This leads to

overfitting and bias.

The eigenvalues of A, i.e., λ̂1, λ̂2, λ̂3, . . . , are often plotted against their index

1, 2, 3, . . . . This is called a scree plot and it is used as a diagnostic to estimate k. In this

scree plot, there might be a “gap” or an “elbow” at the kth eigenvalue, which reveals k.

However, there is a fundamental problem with the plug-in estimator for the

population eigenvalues which can make the “gap” or “elbow” in the scree plot more

difficult to observe. The leading eigenvalue estimates λ̂1, . . . , λ̂k are asymptotically

unbiased, so long as their corresponding population eigenvalues λ1, . . . , λk are large

enough (see, e.g., [CCH20] for related results). However, when n is much larger than k,

λ̂k+1 is a biased estimate of λk+1 = 0, with E(λ̂k+1) > λk+1 = 0 (see, e.g., [BBK20] for

related results). So, if λk is not large enough, then this bias diminishes the appearance

of a “gap” or “elbow” between λ̂k and λ̂k+1 in the scree plot.

This can be seen in the left panel of Figure 2.2. In that figure, the gap between the

sample eigenvalues (black line) and the population eigenvalues (orange line) is smaller

on the left and larger on the right. Note that in this figure, it is not the eigenvalues of A

and E(A) that are shown, but rather the eigenvalues of the normalized and regularized

forms of A and E(A).
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2.2.2 Measuring the signal strength of a sample eigenvector

Even if an oracle were to tell us that the population eigenvector xj has population

eigenvalue λj ̸= 0, we should only use the sample eigenvector x̂j for statistical inference

if x̂j is close to xj and other leading population eigenvectors. Because of this requirement,

the population eigenvalues λj do not measure the signal strength of x̂j.

In the realistic setting where the signal is not overwhelming for every sample

eigenvector x̂j for j < k, we will measure the signal strength of this vector in the

following way. Define the population (or expected) cross-validated eigenvalue of a sample

eigenvector x̂j as

λP (x̂j) = x̂Tj Px̂j. (2.8)

Of course, this is not actually an eigenvalue in the traditional sense. However, there

are three reasons to think of this quantity as an analogue. First, the quadratic form in

Equation (2.8) mimics the form for the sample eigenvalue in Equation (2.7), which is

also the objective function that the sample eigenvectors optimize in Equation (2.6). As

such, for a population eigenvector xj, λP (xj) is the corresponding population eigenvalue

λj.

The second reason to think of λP as an analogue of an eigenvalue is that for a

sample eigenvector x̂, there always exists a vector x̂⊥ ∈ Rn that is orthogonal to x̂ and

Px̂ = λ̂x̂+ x̂⊥

for some value λ̂ ∈ R. If x̂⊥ = 0, then x̂ is an eigenvector of P with eigenvalue λ̂. Even

when x̂⊥ ̸= 0, if ∥x̂∥2 = 1, then λ̂ = λP (x̂).

λP (x̂) = x̂TPx̂ = x̂T(λ̂x̂+ x̂⊥) = λ̂
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The third reason also provides intuition for why λP is a measure of signal strength;

indeed λP provides for the optimal reconstruction of P as conceptualized in the following

proposition. See supplementary Section 2.7 for a proof.

Proposition 2.2.1 ([Lam16]). The solution to

min
λ̂1,...,λ̂q

∥∥∥∥∥P −
q∑
j=1

λ̂jx̂jx̂
T
j

∥∥∥∥∥
F

is λ̂j = λP (x̂j) for j = 1, . . . , q.

A key advantage of the population quantity λP (x̂j) over λj is that it reveals

information about the vector that we can compute, i.e., x̂j, not the eigenvector that we

wish we had, i.e., xj. If a sample eigenvector x̂j is close to its population counterpart

xj, then for the reasons above, it is reasonable to presume that λP (x̂j) is close to

the population eigenvalue λj. However, if the estimation problem is too difficult and

x̂j is nearly orthogonal to the eigenvectors of P that have non-zero eigenvalues, then

λP (x̂j) ≈ 0. Notably, and most importantly, this can happen even if x̂j’s corresponding

population eigenvector xj has a non-zero eigenvalue. For example, this happens when

the estimation problem is too difficult as happens for the 60th-128th sample eigenvectors

in Figure 2.2.

The notion of λP (x̂j) was originally proposed and studied in [ADZ14] and [Lam16]

for optimal estimation of eigenvalue shrinkage under a different statistical model. While

the signal strength λP is unknown, cross validation can provide an unbiased estimator

that is asymptotically normal. The next three sections develop and study a statistical

testing procedure for the null hypothesis

H0 : λP (x̃j) = 0 (2.9)
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conditionally on x̃j, where x̃j are estimates of the eigenvectors of P (or its normalized

form) constructed from a large subsample of the edges in the graph.

2.3 The three key pieces for cross-validated eigen-

values

This section details the three key pieces that enable the estimation of cross-validated

eigenvalues. First, edge splitting a Poisson random graph creates two independent

Poisson random graphs. Second, the expected adjacency matrices of the resulting graphs

are “spectrally invariant” to this edge splitting. Third, the quadratic form for λtest in

Equation (2.3) satisfies a central limit theorem.

2.3.1 The first piece: edge splitting creates independent

Poisson graphs

The ES procedure in Algorithm 1 splits the edges of a graph into two graphs and outputs

the two adjacency matrices Ã and Ãtest. Notice that under ES and conditionally on Aij,

Ãij ∼ Binomial(Aij, ε) and [Ãtest]ij = Aij− Ãij. The independence of Ã and Ãtest follows

from the next lemma, often referred to as thinning (see, e.g., [Dur19, Section 3.7.2]).

Lemma 2.3.1. Define X ∼ Poisson(λ) and conditionally on X, define Y ∼

Binomial(X, p) and Z = X − Y . Unconditionally on X, the random variables Y

and Z are independent Poisson random variables and, further, Y ∼ Poisson(pλ) and

Z ∼ Poisson((1− p)λ).

To apply the lemma, let X be Aij, let λ be Pij, let Y and Z be the (i, j)-th elements

of Ã and Ãtest respectively, and let p = ε. Lemma 2.3.1 implies that Ã and Ãtest are

independent Poisson random graphs.



20

Input: Adjacency matrix A ∈ Nn×n and edge splitting probability ε ∈ (0, 1).
Procedure ES(A, ε):

1. Convert A into G = (V,E), where {i, j} is repeated in the edge set E
potentially more than once if Aij > 1.

2. Initiate Ẽtest and Ẽ, two empty edge sets on V .
3. for each copy of edge {i, j} ∈ E do

assign it to Ẽtest with probability ε. Otherwise, assign it to Ẽ.
4. Convert (V, Ẽtest) into an adjacency matrix Ãtest ∈ Nn×n and (V, Ẽ)
into an adjacency matrix Ã ∈ Nn×n

Output: Ã and Ãtest.

Algorithm 1: Edge splitting

2.3.2 The second piece: the population graphs are “spectrally

invariant” to splitting

The next proposition shows that ES preserves the spectral properties of the population

adjacency matrices E(Ã) and E(Ãtest). This result does not require any distributional

assumptions on A, only that its elements are integers (so that Ã and Ãtest are defined).

Proposition 2.3.1. If Ã and Ãtest ∈ Nn×n are generated by applying ES to A ∈ Nn×n

with splitting probability ε, then

1. The eigenvectors of E(A),E(Ã), and E(Ãtest) are identical.

2. If λj is an eigenvalue of E(A), then (1− ε)λj is an eigenvalue of E(Ã) and ελj is

an eigenvalue of E(Ãtest).

Here, all expectations are unconditional on A.

Proof. Define P = E(A) and let P = UΛUT be its eigendecomposition; if A is not

random, then P = A and U,Λ potentially have n columns. It follows directly from the

construction in ES that E(Ã) = (1− ε)P and E(Ãtest) = εP . Rearranging terms reveals
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the eigendecomposition of E(Ãtest),

E(Ãtest) = εP = U(εΛ)UT

and similarly for E(Ã). This shows that they have the same eigenvectors and the simple

relationship between their eigenvalues in the statement.

2.3.3 The third piece: cross-validated eigenvalues are asymp-

totically Gaussian

To state the theorem formally, we consider a sequence of random adjacency matrices

B(n) ∈ Nn×n from Poisson random graphs with E(B(n)) = Q(n) ∈ Rn×n satisfying

maxij Q
(n)
ij ≤ 1, and a sequence of unit vectors x(n) ∈ Rn. To simplify the notation,

we suppress the explicit dependence on n. We will impose the following delocalization

condition on x:

∥x∥2∞ = o(σ), (2.10)

where

σ2 = 2(x2)TQ(x2)− (x2)Tdiag(Q)(x2),

with x2 being the vector x with entries squared and diag(Q) being the diagonal matrix

containing the diagonal elements of Q. Similarly, we also define

σ̂2 = 2(x2)TB(x2)− (x2)Tdiag(B)(x2).

In the next section, we will apply the theorem to B := Ãtest, Q := εP and x an

eigenvector of Ã or of its normalized form.

Theorem 2.3.1 (CLT for cross-validated eigenvalue). Let B, Q, σ and σ̂ be as above.
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Assume that x satisfies Condition (2.10). Then,

λB(x)− λQ(x)
σ̂

⇒ N(0, 1). (2.11)

The proof of Theorem 2.3.1 is in supplementary Section 2.7.

Remark. If the elements of B are Bernoulli instead of Poisson, then a similar central

limit theorem holds with a new variance γ2 that contains the sum
∑

ij x
2
ix

2
jPij(1− Pij).

The key difference compared to the Poisson variance is the inclusion of (1−Pij) which is

difficult to estimate. Because (1− Pij) ≤ 1, The Poisson model formula for σ2 provides

an upper bound for γ2. As such, σ2 and σ̂2 can still be used to provide conservative

inference. Moreover, when the graph is sparse, we have (1 − Pij) → 1 and σ2, and

σ̂2 become better approximations. The key problem with Bernoulli graphs is not the

lack of normality, or estimating the variance. The key problem is that Ã and Ãtest are

no longer independent. So the CLT in Theorem 2.3.1 cannot be applied to λ̂(x̃) if A

contains Bernoulli elements. This is further discussed and studied in Section 2.5.

Remark. Regarding the delocalization condition (2.10), when all entries of Q are of the

same order ρ = o(1), then σ = Θ(ρ1/2) and the condition boils down to ∥x∥∞ = o(ρ1/4).

In supplementary Section 2.7.2 (Corollary 2.7.1), we discuss a sufficient condition for

∥x∥2∞ = o(σ) to hold in terms of the expected number of edges in B.

2.4 Cross-validated eigenvalue estimation

In this section, we use Theorem 2.3.1 to test the null hypothesis H0 : λ(x̃j) = 0, where

x̃j is an eigenvector of Ã. Section 2.4.1 states the algorithm and Section 2.4.2 provides

the main theoretical result, i.e., that it is consistent.
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2.4.1 The algorithm

The algorithm reports a p-value for each eigenvector. These are then used to estimate k.

In addition to the splitting probability ε, the algorithm takes two more parameters: (i)

the maximum number kmax of eigenvectors to consider and (ii) the significance level α.

We describe the algorithm for an undirected graph with the adjacency matrix A ∈ Nn×n

in Algorithm 2; see Remark 2.4.1 for rectangular or asymmetric A. After EigCV, a few

remarks on the theory and the implementation are in order.

Input: Adjacency matrix A ∈ Nn×n, edge splitting probability ε ∈ (0, 1),
and significance level α ∈ (0, 1)

Procedure EigCV(A, ε, kmax, folds):
1. for f = 1, . . . , folds do

i. Ã, Ãtest ←ES(A, ε) // Algorithm 1

ii. (Optional) Compute L̃ with Ã as in Equation (2.2).
iii. Compute the leading kmax eigenvectors of L̃ (or Ã), as
x̃1, . . . , x̃kmax .
iv. for ℓ = 2, . . . , kmax do

compute the test statistic

Tf,ℓ =
λ̃test(x̃ℓ)

σ̃ℓ
,

where λ̃test(x) = xTÃtestx, and
σ̃ℓ =

√
2ε(x̃2ℓ)

TAx̃2ℓ − ε(x̃2ℓ)Tdiag(A)x̃2ℓ is the standard error
evaluated using the full graph. Here, x̃2ℓ ∈ Rn is the vector x̃ℓ
with each element squared.

2. for ℓ = 2, . . . , kmax do
Compute Tℓ as the mean of the T1,ℓ, . . . , Tfolds,ℓ and compute the
one-sided p-value pℓ = 1− Φ(Tℓ), where Φ is the cumulative
distribution function of the standard normal distribution.

Output: The graph dimensionality estimate: argmink≤kmax
{pk ≥ α} − 1.

Algorithm 2: Eigenvalue cross-validation

Remark. Theorem 2.4.1 studies EigCV with folds = 1 and Ã instead of L̃ in step ii.

Moreover, there is an additional step needed in Theorem 2.4.1 to check for delocalization.

This technical requirement is further discussed in Section 2.4.2. This step is not used
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in EigCV or in our code. We allow for these modifications in EigCV because they are

practically advantageous. Increasing folds > 1 helps to remove the randomness in the

p-values generated from edge splitting ES (see supplementary Section 2.8.2 for further

discussion of folds > 1). Using L̃ instead of Ã helps reduces localization of eigenvectors

[LLV17; ZR18]. Finally, we do not include a check for delocalization because we find in

the simulation in Section 2.5 that when an eigenvector x̃ℓ delocalizes, then (x̃2ℓ)
TAx̃2ℓ in

the formula for σ̃ℓ is very large, thus leading to conservative inferences.

Remark. If folds = 1 and the p-values pk are used to select eigenvectors, then the

eigenvectors x̃k should be used (not x̂k). This is because the p-value pk is only associated

with the eigenvector x̃k. It is tempting to compute the eigenvectors of A or L with all

of the edges and then give the k-th eigenvector x̂k the p-values pk. However, when the

left-out edges are also used to compute the eigenvectors, this alters the eigenvectors. In

addition to slightly changing the elements of the eigenvectors, it is common for the order

of the eigenvectors to also change. Or, for the new eigenvectors to be a more general

rotation of the subsampled eigenvectors. It is an area for future research to understand

if and how the p-values can be extended. By making ε small we can ensure that the

subsampled eigenvectors x̃k are nearly as good as x̂k.

EigCV easily extends to two other settings, rectangular incidence matrices and a

test of independence for contingency tables.

Remark. Rectangular incidence matrices. If the matrix A ∈ Nr×c is either

rectangular or asymmetric (e.g., the adjacency matrix for a directed graph, the incidence

matrix for a bipartite graph, a contingency table, etc.), then eigenvectors should be

replaced by singular vectors. In step 3 of EigCV, compute the singular vector pairs ũℓ
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and ṽℓ. Then, the test statistic is

Tℓ =
ũTℓ Ãtestṽℓ√
ε(ũ2ℓ)

TAṽℓ
.

Theorem 2.3.1 extends under analogous conditions to this setting. Our R package

(https://github.com/RoheLab/gdim) includes this extension.

Remark. Contingency tables. Suppose A ∈ Nr×c is a contingency table with

multinomial elements. Note that the χ2 test of independence tests the null hypothesis

that E(A) is rank 1, i.e., k = 1. To test if E(A) has rank greater than k = 1 and

potentially reject independence, one can apply EigCV to A with kmax = 2, using the

extension to rectangular matrices in Remark 2.4.1. The three key pieces for the cross-

validation apply to this setting, thus enabling this approach. First, if the distribution of

A is multinomial, then ES provides two independent matrices. Second, in expectation,

those matrices have identical singular vectors and the same number of non-zero singular

values. Third, the CLT in Theorem 2.3.1 extends to this data generating model with

analogous conditions. EigCV is potentially powerful for alternative hypotheses where

E(A) has a large second eigenvalue. In contrast to the traditional Pearson’s χ2 test for

independence, EigCV handles a large number of rows and columns and a sparse A, where

the vast majority of elements are zeros. Moreover, it has the added advantage that the

singular vectors ũ2 and ṽ2 estimate where the deviation from independence occurs, thus

making the results more interpretable. This is an area of our ongoing research.

2.4.2 Statistical consistency

This section states a consistency result for a modified version of the algorithm stated in

Algorithm 3 in supplementary Section 2.7.3. The main modification is the addition of a

delocalization test. We use K for the true latent dimension and K̂ for its estimate.

https://github.com/RoheLab/gdim
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We will make some further assumptions. Let P = ρnP
0, where 0 < ρn < 1

controls the sparsity of the network, and P 0 = UΛ0UT is a matrix of rank k with

P 0
ij ≤ 1 for all i, j. Here, Λ0 = diag(λ01, · · · , λ0K) is the diagonal matrix of its non-

increasing eigenvalues, and U = (u1, · · · , uK) contains the corresponding eigenvectors.

We first consider the signal strength in the population adjacency matrix. The magnitude

of the leading eigenvalues characterize the useful signal in the data; only if they are

sufficiently large is it possible to identify them from a finite graph sample. As such,

the first assumption requires that the leading eigenvalues of the population graph are

of sufficient and comparable magnitude. We also include necessary assumptions on the

sparsity of the graph.

Assumption 1 (Signal strength and sparsity). We assume that there exist positive

constants ψ1, ψ
′
1 such that

κ := λ01/λ
0
K ∈ (0, ψ1), λ01 ≥ ψ′

1n.

In addition, we assume that P 0
ij ≤ 1 for all i, j and that the network sparsity satisfies

c0
logξ0 n
n
≤ ρn ≤ c′0n

−ξ1 , for some constants ξ0 > 2, ξ1 ∈ (0, 1), c0, c
′
0 > 0.

Observe that Assumption 1 implies in particular that ψ−1
1 ψ′

1nρn ≤ λK ≤ λ1 ≤ nρn

since λ1 ≤ tr(P ) ≤ nρn. Assumption 1 is less strict than the assumptions in [LLZ20].

This is because we do not require a minimum gap between distinct eigenvalues, which

is hard to satisfy in practice.

Next, we consider a property of the population eigenvectors. The notion

of coherence was previously introduced by [CR09]. Under the parametrization of

Assumption 1, the coherence of U is defined as

µ(U) = max
i∈[n]

n

K
∥UTei∥2 =

n

K
∥U∥22,∞,
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where ei is the i-th standard basis vector. A lower coherence indicates that the

population eigenvectors are more spread-out—that is, they are not concentrated on

a few coordinates.

Assumption 2 (Coherence). We assume µ(U) ≤ µ0, for some constant µ0 > 1.

Our main theoretical result asserts the consistency of our cross-validated

eigenvalue estimator for estimating the latent dimension. The proof of Theorem 2.4.1 is

in supplementary Section 2.7.

Theorem 2.4.1 (Consistency). Suppose A ∈ Rn×n is a Poisson graph satisfying

Assumptions 1 and 2. Let K be the true latent space dimension, and let K̂ be the

output of Algorithm 3 (see supplementary Section 2.7.3) with edge splitting probability

ε. Then,

P
(
K̂ = K

)
→ 1 as n→∞.

2.5 Poisson vs Bernoulli

The Poisson model has previously been used to study statistical inference with random

graphs [KN11; FP+20; CD18; CCB16; ZA20]). In the sparse graph setting, these models

produce very similar graphs (e.g. Theorem 7 in [Roh+18]). Moreover, under the Poisson

model, the edges are exchangeable [CCB16; CD18; Roh+18].

This section shows that EigCV continues to perform well in settings where the

elements of A are Bernoulli random variables. The technical results and derivations in

this chapter do not directly apply to this setting. The key difficulty comes from the

edge splitting. Under the Bernoulli model, Aij ∈ {0, 1}. So, it is not possible for both Ã

and Ãtest to get the edge i, j. This creates negative dependence. Because the fitting and
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test graph are dependent, a central limit theorem akin to Theorem 2.3.1 becomes more

difficult. Nevertheless, a theorem akin to Theorem 2.4.1 still holds with minor changes

to the conditions.

This simulation shows that the negative dependence created from Bernoulli edges

makes the testing procedure more conservative. That is, when we are testing

H0 : E(λtest(x̃ℓ)) = 0

for ℓ > k, the α = .05 test rejects with probability less than .05. This type of

miscalibration is traditionally considered acceptable.

This section simulates from a k = 2 Stochastic Blockmodel and examines the

distribution of T3 and T4, under both the Bernoulli and Poisson models for edges. In

all of these simulations, there are n = 2000 nodes. Each node is randomly assigned to

either block 1 or 2 with equal probabilities. Let i and j be any two nodes in the same

block and u and v be any two nodes in different blocks. Across simulation settings,

Pij/Pu,v = 2.5. While keeping this ratio constant, the values in P increase to make

the expected degree of the graph go from 3.5 to 105, by increments of 3.5. In the

Poisson model, Aij ∼ Poisson(Pij) and in the Bernoulli model, Aij ∼ Bernoulli(Pij).

We compute T3 and T4 in EigCV (Algorithm 2) with edge split probability ε = .05 and

folds = 1. Supplementary Section 2.8.2 gives the identical simulation, but for folds = 10.

We use the one-sided rejection region Tℓ > 1.65. If Tℓ ∼ N(0, 1), then this has

level α = .05. We refer to the simulated probability that Tℓ > 1.65 as the rejection

probability. Figure 2.4 estimates the rejection probability in two ways. First, each dot

gives the proportion of 1000 replicates in which Tℓ > 1.65. Second, the line gives the

values

α̂ = 1− Φ((1.65− T̄ℓ)/SD(Tℓ)), (2.12)
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where Φ is the cumulative distribution function (CDF) of the standard normal, T̄ℓ is the

average value of Tℓ over the 1000 replicates, and SD(Tℓ) is the standard deviation of these

1000 replicates. This is an estimate of the rejection probability, under the assumption

that Tℓ is normally distributed.

Across simulation settings, the α = .05 test is conservative.
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Figure 2.4: The left panel gives results for T3 and the right panel gives results
for T4. Each point corresponds to the proportion of 1000 replicates that the
test statistic was greater than 1.65. The line is a smoothed version of α̂.

Under the simulation settings described above, Figure 2.4 shows four things.

1. The points and lines are below .05. So, the proposed test is conservative.

2. On the left side of both panels, the points and lines are well below .05. So, the

proposed test is particularly conservative for very sparse graphs. Note that the

bottom left point in both figures is over-plotted with two points. This is because

none of the 4000 tests in the lowest degree graphs were rejected. The corresponding

α̂’s are on the order 1/20,000.

3. On the right side of both panels, the red line decreases. So, for Bernoulli graphs,

the test is increasingly conservative for denser graphs.

4. The points are scattered around their respective lines, which suggests that the
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normal distribution provides a reasonable approximation for the right tail of the

distribution (but Tℓ does not have expectation zero and variance one).

The test is increasingly conservative for dense Bernoulli graphs. In particular,

the line giving the normal approximation α̂ is decreasing. So, either E(T3) < 0 or

V ar(T3) < 1 or both (and similarly for T4). The next figure, Figure 2.5, shows that the

expectation of T3 and T4 decreases away from zero for dense Bernoulli graphs.

Under the Bernoulli model, for ℓ > k, the negative dependence makes the
expectation of Tℓ decrease away from zero as the graph becomes more

dense.
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Figure 2.5: Each dot gives the average value of Tℓ over 1000 replicates; T2 on
the left, T3 in the middle, and T4 on the right. The previous figure, Figure
2.4, shows that as the Bernoulli graph becomes denser, T3 and T4 are less
likely to exceed 1.65. This figure shows that this is because their expectation
decreases away from zero.

The expected values of T3 and T4 decrease due to the negative dependence between

Ã and Ãtest under the Bernoulli model. That is, if an edge appears in Ã, then it cannot

appear in Ãtest, and vice versa. Figure 2.5 shows that x̃Tℓ Ãx̃ℓ and x̃
T
ℓ Ãtestx̃ℓ are negatively

correlated when (1) the edges are Bernoulli, (2) the graph is dense, (3) and ℓ > k.

In the two-block Stochastic Blockmodel, this negative dependence does not shift the

expectation of T2, even for dense Bernoulli graphs (see also Figure 2.8 in supplementary

Section 2.8). The fact that x̃ℓ displays negative correlation, but only for ℓ > k, is
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particularly interesting. Here is one interpretation: because these eigenvectors do not

estimate signal, they only find noise in Ã. Then, that noise disappears in Ãtest due to

the negative dependence.

On the very left of both panels in Figure 2.4, the expected degree is 3.5. In

this very sparse regime, which is below the weak recovery threshold [MNS15] (see also

[Abb18]), the test are conservative for both Bernoulli and Poisson graphs. In this very

sparse regime, the eigenvectors x̃ℓ often localize on a few nodes that have a large degree

simply due to chance. When this happens, (x̃2ℓ)
TAx̃2ℓ over-estimates the population

quantity (x̃2ℓ)
TE(A)x̃2ℓ . This causes σ̃ℓ in the denominator of Tℓ to be large, thus making

the standard deviation of Tℓ small and the test statistic less likely to exceed 1.65. Figure

2.9 in supplementary Section 2.8 displays the standard deviation of the test statistics.

It is comforting that the test is conservative in such scenarios because these localized

eigenvectors x̃ are often particularly troubling artifacts of noise. For example, the

consistency result in Section 2.4.2 requires an additional step to EigCV that discards

localized eigenvectors. The current simulation suggests that the additional step is a

technical requirement. For this reason, we do not include the additional step in EigCV.

Supplementary Section 2.8.2 repeats these figures with folds = 10. Increasing the

number of folds makes the T3 and T4 even more conservative, while making T2 more

powerful. This happens because the variation in Tℓ comes from both the original data A

and the edge splitting. By increasing the number of folds, the second source of variation

diminishes while not disrupting the expectation of Tℓ.

2.6 Comparing to other approaches

This section compares the proposed method (EigCV) with some existing graph

dimensionality estimators using both simulated and real graph data. Throughout, we
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set the graph splitting probability ε to 0.05, set the significance level cut-off at α = 0.05,

and folds = 10.

We compare EigCV to (1) BHMC, a spectral method based on the Bethe-Hessian

matrix with correction [LL19a]; (2) LR, a likelihood ratio method adapting a Bayesian

information criterion [WB17]; (3) ECV, an edge cross-validation method with an area

under the curve criterion [LLZ20]; (4) NCV, a node cross-validation using an binomial

deviance criterion [CL18]; and (5) StGoF (with α = 0.05), a stepwise goodness-of-fit

estimate [Jin+20]. We performed all computations in R. For (1)-(4), we invoked the R

package randnet, and for (5), we implemented the original Matlab code (shared by the

authors) in R.1

2.6.1 Numerical experiments

This section presents several simulation studies that compare our method with other

approaches to graph dimensionality. We sampled random graphs with n = 2, 000

nodes and k = 10 blocks from the Degree-Corrected Stochastic Blockmodel (DCSBM).

Specifically, for any i, j = 1, 2, ..., n,

Aij
ind.∼ Bernoulli

(
θiθjBz(i)z(j)

)
,

where z(i) ∈ {1, 2, ..., k} is the block membership of node i, and B ∈ Rk×k is the block

connectivity matrix, with Bii = 0.28 and Bij = 0.08 for i, j = 1, 2, ..., k, and θi > 0

is the degree parameters of node i. We investigated the effects of degree heterogeneity

by drawing θi’s from three distributions (before scaling to unit sum): (i) a point mass

distribution, (ii) an Exponential distribution with rate 5, (iii) a Pareto distribution

with location parameter 0.5 and dispersion parameter 5. From (i) to (iii), the node

degrees become more heterogeneous. Finally, to examine the effects of sparsity, we

1The R code is also available at https://github.com/RoheLab/gdim.

https://github.com/RoheLab/gdim
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chose the expected average node degree in {25, 30, ..., 60}. For each simulation setting,

we evaluated all methods 100 times.

Figure 2.6 displays the accuracy of all graph dimensionality methods. Here, the

accuracy is the fraction of times an estimator successfully identified the true underlying

graph dimensionality (which is 10).2 From the results, both BHMC and ECV offered

satisfactory estimation when the graph is degree-homogeneous and the average degree

becomes sufficiently large, while they were affected drastically by the existence of degree

heterogeneity. The LR estimate was affected by degree heterogeneity as well (although

less than BHMC or ECV) and also required a relatively large average node degree to

estimate the graph dimensionality. The NCV methods failed to estimate the graph

dimensionality under most settings. The StGoF estimate worked better for degree-

heterogeneous graphs but required a larger average node degree for accuracy. It is

also worth pointing out that the LR and StGoF methods tended to over-estimate the

graph dimensionality when the average degree is large, especially for the power-law

graphs (see supplementary Figure 2.12). Finally, our method provided a much more

accurate dimensionality estimate overall, requiring smaller average node degree and

allowing degree heterogeneity. In addition, our testing approach also enjoys a strong

advantage of reduced computational cost. To show this, Figure 2.7 depicts the average

runtime for each method. It can be seen that the proposed method and BHMC are faster

than competing methods by several orders of magnitude. The computational complexity

of each StGoF iteration (or test) is at least O(n2), regardless of whether the graph is

sparse or not. Consequently, StGoF requires the longest runtime.

2Besides comparison of accuracy, we also compared the deviation of the estimation by each method,
for which similar results hold consistently (see supplementary Figure 2.12).
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Figure 2.6: Comparison of accuracy for different graph dimensionality
estimates under the DCSBM. The panel strips on the top indicate the node
degree distribution used. Within each panel, each colored line depicts the
relative error of each estimation method as the average node degree increases.
Each point on the lines are averaged across 100 repeated experiments.
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Figure 2.7: Comparison of runtime for the different graph dimensionality
methods. Each colored bar indicates the runtime of applying each method
on a DCSBM graph with 2000 nodes and 10 blocks. The maximum graph
dimensionality is set to 15 for all methods. The runtime was averaged across
100 repeated experiments.
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2.6.2 Email network

A real data network was generated using email data within a large European research

institution, with each node representing one of the 1005 core members [LKF07]. There

is an edge from node i to node j, if i sent at least one email to j. The dataset

also contains 42 “ground-truth” community memberships of the nodes. That is, each

individual belongs to exactly one of 42 departments at the research institute. For

simplicity, we removed the 14 small departments that consist of less than 10 members

(see supplementary Table 2.2 for similar results without the filter). This resulted in a

directed and unweighted network with a total of 936 nodes from 28 communities.

We applied the graph dimensionality methods to estimate the number of clusters

in the network. For the randomized methods (including ECV, NCV, and our proposed

method), we ran them 25 times and report the mean and standard deviation of the

estimates. For the methods that report a p-value (including StGoF and our proposed

method), we use a significance level of α = 0.01, followed by a multiplicity correction

using the procedure of [BH95]. We set kmax = 50. Finally, we chose the splitting

probability to be 0.05, as the network is sparse with an average node degree of 23.5.

Table 2.1 lists the inferences made by each method. As shown, our method provided

an estimate that is close to the true number of departments within the institute.

BHMC, LR, NCV, and ECV all estimated small numbers of clusters, while StGoF

went significantly larger (≥ 50). These observations were consistent with the simulation

results (see supplementary Figure 2.12). Among all the others, only the proposed method

provided a close estimate (≈ 28) to the true number of departments. Similarly to

the simulation results, the BHMC method and our method are more computationally

efficient, with much shorter runtime than the others.
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Table 2.1: Comparison of graph dimensionality estimates using the email
network among members in a large European research institution. Each
members belongs to one of 28 departments.

Method Estimate (mean) Runtime (second)
EigCV 28.3 0.68
BHMC 14 0.02
LR 17 85.19
NCV 6.5 204.97
ECV 16.5 41.07
StGoF ≥ 50 397.47

2.7 Technical proofs

2.7.1 Proof of Proposition 2.2.1

Proof. Let X̂ ∈ Rn×q contain the leading q sample eigenvectors x̂1, . . . , x̂q in its columns.

We aim to show that

min
Γ is diagonal

∥P − X̂ΓX̂T∥F

contains λP (x̂1), . . . , λP (x̂q) down the diagonal.

Using the symmetry of P and the cyclic property of the trace, we obtain

∥P − X̂ΓX̂T∥2F = tr(P 2) + tr(X̂Γ2X̂T)− 2tr(PX̂ΓX̂T)

= tr(P 2) + tr(Γ2)− 2tr(X̂TPX̂Γ).

Taking a derivative with respect to the diagonal of Γ and setting equal to zero gives

Γ = diag(X̂TPX̂)

which contains λP (x̂1), . . . , λP (x̂q) down the diagonal.
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2.7.2 Proof of Theorem 2.3.1

Proof. We will use Lyapunov’s CLT for triangular arrays with fourth moment condition

(see, e.g., [Dur19, Exercise 3.4.12]). Recall that Bij is Poisson with mean Qij. Its

mean and variance are Qij, while its central fourth moment is Qij(1 + 3Qij) ≤ 4Qij

under the assumption Qij ≤ 1. Note that σ2 = 2
∑

ij(xixj)
2Qij −

∑
i=j(xixj)

2Qij =∑
i≤j (2− 1{i = j})2 (xixj)2Qij. To use Lyapunov’s CLT, taking into account the

symmetry of B, we show that the following ratio converges to zero:

∑
i≤j E |(2− 1{i = j})xixj(Bij −Qij)|4

σ4

≤
∑

i≤j (2− 1{i = j})4 (xixj)4(4Qij)

σ4
(2.13)

≤
16∥x∥4∞

∑
i≤j (2− 1{i = j})2 (xixj)2Qij

σ4

=
16∥x∥4∞
σ2

= o(1),

where we used the bound on the fourth moment in the first inequality and the

delocalization condition on the last line. This shows that

λB(x)− λQ(x)
σ2

⇒ N(0, 1). (2.14)

Via Slutsky’s Lemma, we can multiply the ratio in Equation (2.14) by any

sequence that converges to one in probability and the result still holds. The proof

is then concluded by showing that σ/σ̂ converges to one in probability. Indeed, we have

Var

(
σ̂2

σ2

)
=

Var[(x2)TBx2 − (x2)Tdiag(B)x2]

σ4

=
Var[

∑
i≤j (2− 1{i = j})2 (xixj)2Bij]

σ4
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=

∑
i≤j (2− 1{i = j})4 (xixj)4Qij

σ4
,

which is Equation (2.13) up to a factor of 4 and thus o(1). So, by Chebyshev’s inequality,

σ̂2/σ2 converges in probability to its expectation. Note that E(σ̂2/σ2) = 1 and that

taking the inverse and the square root is continuous transformation. So, the ratio σ/σ̂

converges in probability to one.

Corollary 2.7.1

The following corollary gives a sufficient condition for ∥x∥2∞ = o(σ) to hold in terms of

m and the expected number of edges in B.

Corollary 2.7.1. Using the setting of Theorem 2.3.1, let π ∈ Rn be a probability

distribution on the nodes with πi proportional to a node’s expected degree. Define

⟨π, x2⟩ be the expected value of x2I for I drawn from π and define m = 2−1
∑

i di as the

expected total number of edges. If Q is positive semi-definite and

∥x∥2∞
⟨π, x2⟩

= o
(√

m
)
,

then the CLT in Equation (2.11) holds.

Proof. The proof of Corollary 2.7.1 follows directly from the next lemma.

Lemma 2.7.1. Suppose Q ∈ Rn×n
+ is positive semi-definite. Define d = Q1n ∈ Rn to

be the expected degrees of the nodes 1, . . . , n, where 1n ∈ Rn is a vector of 1’s. Then,

σ2 = 2(x2)TQx2 − (x2)Tdiag(Q)x2 ≥ ⟨d, x
2⟩2∑
i di

.

Proof. Define y = x2, θ = d1/2,Θ = diag(θ) ∈ Rn×n, yθ = Θy, and L = Θ−1QΘ−1.
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Because the elements of θ are non-negative, L is non-negative definite.

The first part of the proof is to show that L θ = θ. This is because Θ−2Q is a

Markov transition matrix. So,

Θ−2Q1n = 1n =⇒ Θ−1QΘ−1Θ1n = Θ1n

and this implies that L θ = θ. So, by the Perron-Frobenius Theorem, θ is the leading

eigenvector of L with eigenvalue 1.

Let L have eigenvectors and eigenvalues (ϕ1, λ1), . . . , (ϕn, λn), where ϕ1 =

θ/∥θ∥2, λ1 = 1 and 0 ≤ λj ≤ 1 for j ̸= 1. Then,

yTQy = yTθ L yθ =
n∑
ℓ=1

λℓ⟨ϕℓ, yθ⟩2.

Keeping only the first order term on the right-hand side, we have

yTQy ≥ λ1⟨ϕ1, yθ⟩2 =
⟨d, x2⟩2∑

i di
.

The desired result follows from the fact that σ2 = yTQy + yT(Q − diag(Q))y ≥ yTQy,

since y and Q have non-negative entries.

Applying the bound in the lemma to the delocalization condition and rearranging

gives the claim.

2.7.3 Proof of consistency

This section details the proof of Theorem 2.4.1.
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Notation We use the notation [n] to refer to {1, 2, ..., n}. For any real numbers

a, b ∈ R, we denote a ∨ b = max{a, b} and a ∧ b = min{a, b}. For non-negative an

and bn that depend on n, we write an ≲ bn to mean an ≤ Cbn for some constant C > 0,

and similarly for an ≳ bn. Also we write an = O(bn) to mean an ≤ Cbn for some constant

C > 0. The matrix spectral norm is ∥M∥ = max∥x∥2=1 ∥Mx∥2, the matrix max-norm is

∥M∥max = maxi,j |Mij|, and the matrix 2→∞ norm is ∥M∥2,∞ = maxi ∥Mi,·∥2.

Modified algorithm

Algorithm 3 is used in the consistency result.

Input: Adjacency matrix A ∈ Nn×n, edge splitting probability ε ∈ (0, 1)
Procedure EigCV’(A, ε, kmax):

1. Obtain Ã, Ãtest ←ES(A, ε) from splitting A and set S = ∅.
// Algorithm 1

2. for k = 2, . . . , kmax do

a - compute λ̃test(x̃k) = x̃Tk Ãtestx̃k and

σ̃k =

√
ε

1−ε(x̃
2
k)

T
(
2Ã− diag(Ã)

)
x̃2k

b - if

∥x̃k∥2∞ ≤ min

{
σ̃2
k

log2 n
,
log n

n

}
,

add k to S and compute

Tk =
λ̃test(x̃k)

σ̃k
.

Output: The graph dimensionality estimate:
K̂ = |{Tk ≥

√
n log n : k ∈ S}|.

Algorithm 3: Modified eigenvalue cross-validation

Some concentration bounds

We will need several concentration bounds for Poisson random variables. We derive

them from standard results.
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We begin with a simple moment growth bound.

Lemma 2.7.2 (Poisson moment growth). Let Z be a Poisson random variable with

mean µ ≤ 1. There exists a universal constant C > 0 such that, for all integers p ≥ 2,

E[|Z − µ|p] ≤ Cµ
p!

2

(e
2

)p−2

.

Proof. We show that

E[|Z − µ|p] ≤ C ′µ
(p
2

)p
, (2.15)

for some constant C ′ > 0. The claim then follows from Stirling’s formula in the form

√
2πpp+1/2e−p ≤ p!, ∀p ≥ 1.

By the definition of the Poisson distribution and using the fact that 0 ≤ µ ≤ 1 by

assumption, we have

E[|Z − µ|p] =
∑
z≥0

|z − µ|pe−µµ
z

z!

= |µ|pe−µ + |1− µ|pe−µµ+
∑
z≥2

|z − µ|pe−µµ
z

z!

≤ 2µ+ µ2e

{∑
z≥0

zp
e−1

z!

}
.

The term in curly brackets on the last line is the p-th moment of a Poisson random

variable with mean 1, which is ≤ C ′′ (p
2

)p
for some constant C ′′ > 0 by [Ahl21, Theorem

1]. Eq. (2.15) follows.

The moment growth bound implies concentration for linear combinations of

independent Poisson random variables.
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Lemma 2.7.3 (General Bernstein for Poisson variables). Let Z1, . . . , Zm be independent

Poisson random variables with respective means µ1, . . . , µm ≤ 1. For any α =

(α1, . . . , αm) ∈ Rm and t > 0,

P

[
m∑
i=1

αi(Zi − µi) ≥ t

]
≤ exp

(
− t2

C ′µmax∥α∥22 + C ′′∥α∥∞t

)
,

where µmax = maxi µi and C
′, C ′′ > 0 are universal constants.

Proof. We use [BLM13, Corollary 2.11]. Observe that

m∑
i=1

E[αi(Zi − µi)2] =
m∑
i=1

α2
iµi ≤ µmax∥α∥22.

Moreover, by Lemma 2.7.2 and Stirling’s formula,

m∑
i=1

E[αpi (Zi − µi)
p
+] ≤

m∑
i=1

αpiCµi
p!

2

(e
2

)p−2

≤ Cµmax∥α∥22
p!

2

(e
2
∥α∥∞

)p−2

≤ p!

2
v
(e
2
∥α∥∞

)p−2

,

where we define

v := max {1, C}µmax∥α∥22.

The claim then follows from [BLM13, Corollary 2.11].

The moment growth bound also implies spectral norm concentration.

Lemma 2.7.4 (Spectral norm of Poisson graph). Suppose B ∈ Rn×n is the adjacency

matrix of a Poisson graph with mean matrix Q satisfying Qij ≤ 1 for all i, j. Let

qmax = maxij Qij and assume that nqmax ≥ c0 log
ξ0 n for some ξ0 > 2. Then, for any
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δ > 0, there exists a constant C ′′′ > 0 such that

∥B −Q∥ ≤ C ′′′√nqmax log n,

with probability at least 1− n−δ.

Proof. We use [Tro12, Theorem 6.2]. We first rewrite the matrix as a finite sum of

independent symmetric random matrices

B −Q =
n∑
i=1

n∑
j=i

(Bij −Qij)E
i,j,

where Ei,j ∈ Rn×n with Ei,j
ij = Ei,j

ji = 1 and 0 elsewhere.

Observe that, for i ̸= j,

(Ei,j)p =

 Ei,i + Ej,j if p = 2, 4, . . .

Ei,j if p = 3, 5, . . .

while, if i = j,

(Ei,i)p = Ei,i, p ≥ 2.

Let X i,j := (Bij−Qij)E
i,j. Then EX i,j = 0. Moreover, for i ̸= j and p = 2, 4, . . .,

we have

E(X i,j)p = E(Bij −Qij)
p (Ei,i + Ej,j) ⪯ Cqmax

p!

2

(e
2

)p−2

(Ei,i + Ej,j),
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by Lemma 2.7.2. Similarly, for i ̸= j and p = 3, 5, . . .,

E(X i,j)p = E(Bij −Qij)
pEi,j ⪯ Cqmax

p!

2

(e
2

)p−2

(Ei,i + Ej,j),

where we used the fact that the matrix ( 1 α
α 1 ) has eigenvalues 1 + α, 1 − α ≥ 0 when

|α| ≤ 1. When i = j,

E(X i,i)p = E(Bii −Qii)
pEi,i ⪯ Cqmax

p!

2

(e
2

)p−2

(2Ei,i).

Define

(Σ2)i,j := Cqmax(E
i,i + Ej,j).

and

σ2 =

∥∥∥∥∥
n∑
i=1

n∑
j=i

(Σ2)i,j

∥∥∥∥∥ =

∥∥∥∥∥Cqmax

n∑
i=1

n∑
j=i

(Ei,i + Ej,j)

∥∥∥∥∥ ≤ 2Cqmaxn,

where the inequality holds since
∑n

i=1

∑n
j=i(E

i,i + Ej,j) is a diagonal matrix with

maximum entry 2n. Then, by [Tro12, Theorem 6.2],

P [∥B −Q∥ ≥ t] = P

[∥∥∥∥∥
n∑
i=1

n∑
j=i

X i,j

∥∥∥∥∥ ≥ t

]

≤ n exp

(
−t2/2

σ2 + (e/2)t

)
≤ n exp

(
−t2/2

2Cqmaxn+ (e/2)t

)
.

Taking t = C ′′′√nqmax log n and using the fact that nqmax ≥ c0 log
ξ0 n, ξ0 > 2, gives the

result.
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Key properties of sample eigenvectors

Consider the adjacency matrix A of a Poisson graph satisfying Assumptions 1 and 2.

Fixing ε ∈ (0, 1), let Ã and Ãtest be as in Section 2.3. Let P = ρnP
0 = EA =∑K

j=1 λjx
T
j xj with λ1 ≥ λ2 ≥ · · · ≥ λK > 0. Let {x̃l}kmax

l=1 be the collection of

eigenvectors associated with eigenvalues {λ̃l}kmax
l=1 of Ã. Without loss of generality, we

assume λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃kmax . Define

Û = (x̃1, · · · , x̃K) and U = (x1, · · · , xK) ∈ Rn×K . (2.16)

We will need the following event:

E0 =
{∥∥∥Ã− (1− ε)P

∥∥∥ ≤ C ′′′√nρn log n
}
.

Applying Lemma 2.7.4 with B := Ã and Q := (1 − ε)P shows that E0 holds with high

probability.

Concentration of signal eigenspace First, we use a version of the Davis-Kahan

theorem to show that the signal sample eigenvectors are close to the signal population

eigenspace.

Lemma 2.7.5 (Signal eigenspace). Under event E0, there exists an orthonormal matrix

O ∈ RK×K such that, for all k ∈ [K],

∥ỹk − xk∥2 = O

(√
log n

nρn

)
, ∥x̃k − yk∥2 = O

(√
log n

nρn

)
,

where

ỹl =
(
ÛO
)
·l
=

(
K∑
i=1

(x̃i)jOil

)n

j=1

, yl =
(
UOT

)
·l =

(
K∑
i=1

(xi)jOli

)n

j=1

.
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Moreover, for all k ∈ [K], s ∈ [K], and t ∈ [kmax] \ [K],

⟨xs, yk⟩ = Oks, ⟨x̃t, ỹk⟩ = 0.

Proof. We use the variant of the Davis-Kahan theorem in [YWS15, Theorem 2]. Under

E0,
∥∥∥Ã− (1− ε)P

∥∥∥ = O(
√
nρn log n). By [YWS15, Theorem 2], there exists an

orthonormal matrix O ∈ RK×K such that, for all l ∈ [K],

∥ỹl − xl∥2 ≤ ∥ÛO − U∥F = O

(
∥Ã− (1− ε)P∥

λK

)
= O

(√
log n

nρn

)
,

and

∥x̃l − yl∥2 ≤ ∥Û − UOT∥
F
= ∥(ÛO − U)OT∥

F
= ∥ÛO − U∥

F
= O

(√
log n

nρn

)
,

where we used λK ≥ ψ−1
1 ψ′

1nρn, which holds under Assumption 1.

By the orthonormality of {xl}l and {x̃l}l, we have for s ∈ [K],

⟨xs, yk⟩ =
n∑
l=1

(xs)l

(
K∑
i=1

(xi)lOki

)
=

K∑
i=1

(
n∑
l=1

(xs)l(xi)l

)
Oki = Oks,

and for t ∈ [kmax] \ [K],

⟨x̃t, ỹk⟩ =
n∑
l=1

(x̃t)l

(
K∑
i=1

(x̃i)lOik

)
=

K∑
i=1

Oik

(
n∑
l=1

(x̃t)l(x̃i)l

)
=

K∑
i=1

Oik1{i=t} = 0.

Bounds on population quantities The previous lemma implies bounds on the

population quantity of interest, λP (x̃l).
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Lemma 2.7.6 (Bounding λP (x̃l)). Under event E0,

x̃Tl Px̃l ≳ nρn, ∀l ∈ [K],

x̃Tl Px̃l ≲ log n, ∀l ∈ [kmax] \ [K].

Proof. For s ∈ [K], expanding x̃s over an orthonormal basis including {xl}l∈K , we get

x̃Ts Px̃s =
K∑
k=1

λk⟨x̃s, xk⟩2

=
K∑
k=1

λk
[
⟨xk, ys⟩2 − ⟨xk, ys − x̃s⟩⟨xk, x̃s + ys⟩

]
≥

K∑
k=1

λkO
2
sk −

K∑
k=1

λk∥ys − x̃s∥2∥xk∥22 (∥x̃s∥2 + ∥ys∥2) (2.17)

≥ ψ−1
1 ψ′

1nρn −O

(
2Knρn

√
log n

nρn

)
(2.18)

≳ nρn

where inequality (2.17) follows from Cauchy–Schwarz, the triangle inequality and

⟨xk, ys⟩2 = Osk by Lemma 2.7.5. Inequality (2.18) holds since
∑K

k=1O
2
sk = 1,

ψ−1
1 ψ′

1nρn ≤ λk ≤ nρn by Assumption 1, ∥x̃s − ys∥2 = O
(√

logn
nρn

)
by Lemma 2.7.5

and ∥x̃k∥2 = ∥xk∥2 = ∥ys∥2 = 1.

For t ∈ [kmax] \ [K],

x̃Tt Px̃t =
K∑
k=1

λk⟨x̃t, xk⟩2

=
K∑
k=1

λk⟨x̃t, xk − ỹk + ỹk⟩2

=
K∑
k=1

λk [⟨x̃t, xk − ỹk⟩+ ⟨x̃t, ỹk⟩]2
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=
K∑
k=1

λk⟨x̃t, xk − ỹk⟩2 (2.19)

≤ Kλ1 max
k∈[K]

∥xk − ỹk∥22 = O(log n) (2.20)

where equality (2.19) follows from ⟨x̃t, ỹk⟩ = 0 by Lemma 2.7.5. Equation (2.20)

holds since ∥ỹk − xk∥2 = O
(√

log n/nρn

)
by Lemma 2.7.5 and λk ≤ λ1 ≤ nρn by

Assumption 1.

Delocalization of signal eigenvectors To establish concentration of the estimate

λ̃test(x̃l) around ελP (x̃l) for l ∈ [K], we first need to show that x̃l is delocalized. That

result essentially follows from an entrywise version of Lemma 2.7.5 based on a technical

result of [Abb+20].

Lemma 2.7.7 (Delocalization of signal sample eigenvectors). There exist constants

δ1 > 0, C1 > 0 such that the event

E1 =
{
∥x̃l∥∞ ≤ C1

√
µ0

n
,∀ l ∈ [K]

}

holds with probability at least 1− 3n−δ1 .

Proof. We use [Abb+20, Theorem 2.1] on Ã, which requires four conditions. We check

these conditions next. First, let Ã∗ = (1− ε)P , ∆∗ = λK ,

κ =
λ1
λK
≤ ψ1, (2.21)

where the inequality follows from Assumption 1,

φ(x) =
1

32ψ1

min{
√
nx, 1},
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and

γ = C ′′′ψ1(ψ
′
1)

−1

√
log n

nρn
≳

√
log n

n1−ξ1 , (2.22)

where C ′′′ is the constant in Lemma 2.7.4 and ψ1, ψ
′
1 > 0, ξ1 ∈ (0, 1) are the constants

in Assumption 1.

(A1) (Incoherence) By [Abb+20, Eq. (2.4)] and the remarks that follow it, the

incoherence condition is satisfied provided

µ(U) :=
n

K
∥U∥22,∞ ≤

nγ2

Kκ2
.

Under Assumption 2, µ(U) ≤ µ0 while (2.22) implies nγ2 = Ω(log n) and (2.21)

implies κ = O(1). Hence the condition is satisfied.

(A2) (Row and columnwise independence) By Lemma 2.3.1, Ã is the adjacency matrix

of a Poisson graph with independent entries. In particular, {Ãij : i = m or j = m}

are independent of {Ãij; i ̸= m, j ̸= m}.

(A3) (Spectral norm concentration) As observed previously, applying Lemma 2.7.4 with

B := Ã, Q := (1− ε)P and δ > 0 shows that the event

E0 =
{∥∥∥Ã− (1− ε)P

∥∥∥ ≤ C ′′′√nρn log n
}
,

holds with probability 1− n−δ. Moreover, by the remark after Assumption 1,

γ∆∗ = C ′′′ψ1(ψ
′
1)

−1

√
log n

nρn
λK ≥ C ′′′√nρn log n.

Hence,

P
[∥∥∥Ã− Ã∗

∥∥∥ ≤ γ∆∗
]
≥ 1− n−δ.
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Note further that, under Assumption 1, γ = o(1), which implies

32κmax{γ, φ(γ)} ≤ 32κmax

{
γ,

1

32ψ1

}
≤ 1,

for n large enough, as required in [Abb+20, Assumption (A3)], where we

used (2.21).

(A4) (Row concentration) As required in [Abb+20, Assumption (A4)], the function φ

is continuous and non-decreasing on R+ with φ(0) = 0 and φ(x)/x nonincreasing

on R+. Let W ∈ Rn×K . By standard norm bounds

1√
n
≤ ∥W∥F√

n∥W∥2,∞
≤ 1.

As a result, by definition of φ,

φ

(
∥W∥F√
n∥W∥2,∞

)
=

1

32ψ1

.

Let

g = ∆∗∥W∥2,∞φ

(
∥W∥F√
n∥W∥2,∞

)
=

1

32ψ1

λK∥W∥2,∞.

Fix m ∈ [n] and r ∈ [K]. Applying Lemma 2.7.3 on Ãm· with maxij EÃij ≤

(1− ε)ρn, there exist c2 > 0, c′2 > 1 such that

P

∣∣∣∣∣∣
∑
i∈[n]

(Ãmi − Q̃mi)Wir

∣∣∣∣∣∣ ≥ g/
√
K


≤ 2 exp

(
− g2/K

C ′(1− ε)ρn∥W·r∥22 + C ′′∥W·r∥∞g/
√
K

)

= 2 exp

(
−

λ2K∥W∥
2
2,∞

322ψ2
1KC

′(1− ε)ρn∥W·r∥22 + 32ψ1

√
KC ′′∥W·r∥∞λK∥W∥2,∞

)
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≤ 2 exp

(
− λ2K
322ψ2

1KC
′(1− ε)nρn + 32ψ1

√
KC ′′λK

)
≤ 2 exp(−c2nρn)

≤ n−c′2 ,

where C ′ and C ′′ are the constants in Lemma 2.7.3 and we used again that, by the

remark after Assumption 1, λK ≥ ψ−1
1 ψ′

1nρn. In the final inequality, we use that

nρn ≥ c0 log
ξ0 n, ξ0 > 2 under Assumption 1. Since

∥∥∥(Ã− Q̃)m·W
∥∥∥
2
≤
√
K sup

r

∣∣∣∣∣∣
∑
i∈[n]

(Ãmi − Q̃mi)Wir

∣∣∣∣∣∣ ,
a union bound over r implies

P
[∥∥∥(Ã− Q̃)m·W

∥∥∥
2
≤ g
]
≥ 1−Kn−c′2 .

Recall the definition of Û and U from (2.16). Applying [Abb+20, Theorem 2.1]

and using [Abb+20, Eq. (2.4)] again, there exists C̃ > 0 such that

max
l∈[K]
∥x̃l∥∞ ≤

∥∥∥Û∥∥∥
2,∞

≤ C̃(2κ+ φ(1))∥U∥2,∞

≤ C̃

(
2ψ1 +

1

32ψ1

)√
K

√
µ0

n
,

with probability 1−n−δ−2n−(c′2−1), where we used Assumption 2 on the last line. Taking

C1 = C̃(2ψ1 +
1

32ψ1
)
√
K and δ1 = min{δ, c′2 − 1} > 0 gives the claim.

Concentration of quadratic forms Next, we show that λ̃test(x̃l) is concentrated

around ελP (x̃l).
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Lemma 2.7.8 (Concentration of λ̃test(x)). Let x ∈ Rn be a unit vector such that

∥x∥2∞ ≤
log n

n
, (2.23)

then there exists δ2 > 1 such that

P

[∣∣∣∣∣∑
i,j

xixj(Ãtest − εP )ij

∣∣∣∣∣ ≤√ρn log n

]
≥ 1− n−δ2 .

Proof. We use Lemma 2.7.3. From ∥x∥2 = 1, we get

P

[∣∣∣∣∣∑
i,j

xixj(Ãtest − εP )ij

∣∣∣∣∣ ≥√ρn log n

]

≤ 2 exp

(
− (

√
ρn log n)

2/2

C ′ερn
∑

i,j(xixj)
2 + C ′′maxij |xixj|

√
ρn log n

)

≤ 2 exp

(
− ρn log n/2

C ′ερn + C ′′∥x∥2∞
√
ρn log n

)
.

By Assumption 1, ρn ≫ logn
n

while
√
ρn log n = o(1). By (2.23), the denominator on the

last line is ≲ ρn and the claim follows.

We also bound the variance estimate for the signal eigenvectors.

Lemma 2.7.9 (Bound on the variance estimate). Under event E0 ∩ E1, for all l ∈ [K],

σ̃2
l :=

ε

1− ε
(x̃2l )

T
(
2Ã− diag(Ã)

)
x̃2l = Θ(ρn).

Proof. Let Q̃ = (1 − ε)P . We first show (x̃2l )
TÃx̃2l can be controlled via (x̃2l )

TQ̃x̃2l .

Indeed observe that for each l ∈ [K]

∣∣∣(x̃2l )TÃx̃2l − (x̃2l )
TQ̃x̃2l

∣∣∣ = |(x̃2l )T(Ã− Q̃)x̃2l |
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≤
∥∥∥Ã− Q̃∥∥∥∥∥x̃2l ∥∥22

≤
∥∥∥Ã− Q̃∥∥∥∥x̃l∥2∞∥x̃l∥22

= O

(√
nρn log n ·

1

n

)
= O

(√
ρn log n

n

)

where we used that
∥∥∥Ã− Q̃∥∥∥ = O(

√
nρn log n) under event E0 and ∥x̃2l ∥∞ = ∥x̃l∥2∞ =

O( 1
n
) under E1. Moreover, observe that

√
ρn log n/n ≪ ρn since nρn ≥ c0 log

ξ0 n under

Assumption 1. So

∣∣∣(x̃2l )TÃx̃2l − (x̃2l )
TQ̃x̃2l

∣∣∣ ≪ ρn. (2.24)

To get an upper bound on σ̃2
l , note that

(x̃2l )
TPx̃2l ≤ λ1∥x̃2l ∥22

≤ λ1 · ∥x̃l∥2∞ · ∥x̃l∥22

= O

(
nρn ·

1

n
· 1
)

= O(ρn),

where we used λ1 ≤ nρn by Assumption 1. Hence, we get

σ̃2
l =

ε

1− ε

[
2(x̃2l )

TÃx̃2l − (x̃2l )
Tdiag(Ã)x̃2l

]
≤ 2ε

1− ε
(x̃2l )

TÃx̃2l

≤ 2ε

1− ε
|(x̃2l )TÃx̃2l − (x̃2l )

TQ̃x̃2l |+
2ε

1− ε
(x̃2l )

TQ̃x̃2l

≤ 2ε

1− ε
|(x̃2l )TÃx̃2l − (x̃2l )

TQ̃x̃2l |+ 2ε(x̃2l )
TPx̃2l

= O(ρn),
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by (2.24).

In the other direction, by Cauchy-Schwarz,

(x̃2l )
TPx̃2l ≥

(
x̃Tl Px̃l

)2∑
ij Pij

≳
(nρn)

2

n2ρn
≳ ρn,

where the middle inequality follows from Lemma 2.7.6. Combining with (2.24), we have

σ̃2
l =

ε

1− ε

[
(x̃2l )

TÃx̃2l + (x̃2l )
T
(
Ã− diag(Ã)

)
x̃2l

]
≥ ε

1− ε
(x̃2l )

TÃx̃2l

≥ ε

1− ε
(x̃2l )

TQ̃x̃2l −
ε

1− ε

∣∣∣(x̃2l )TÃx̃2l − (x̃2l )
TQ̃x̃2l

∣∣∣
= ε(x̃2l )

TPx̃2l −
ε

1− ε

∣∣∣(x̃2l )TÃx̃2l − (x̃2l )
TQ̃x̃2l

∣∣∣
≳ ρn.

That concludes the proof.

Proof of Theorem 2.4.1

Now, we are ready to prove Theorem 2.4.1.

Proof of Theorem 2.4.1. By Lemmas 2.7.4 and 2.7.7, the event E0 ∩ E1 holds with

probability 1 − 4n−δ1 . Under E0 ∩ E1, which depends only on Ã, the claims in

Lemmas 2.7.5, 2.7.6 and 2.7.9 also hold. For the rest of the proof, we condition on

E0 ∩ E1 and use the fact that Ãtest is independent of Ã by Lemma 2.3.1.

Let x̃l, l ∈ [kmax], be the top kmax unit eigenvectors of Ã and let

σ̃2
l =

ε

1− ε
(x̃2l )

T
(
2Ã− diag(Ã)

)
x̃2l .
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Define

S =

{
l ∈ [kmax] : ∥x̃l∥2∞ ≤ min

{
σ̃2
l

log2 n
,
log n

n

}}
,

to be the subset of [kmax] corresponding to sufficiently delocalized eigenvectors. Recall

that the test statistic associated to x̃l is

Tl =
x̃Tl Ãtestx̃l

σ̃l
.

We say that l is rejected if

l ∈ S and |Tl| ≥
√
n log n =: τn.

No under-estimation We show that the test statistic associated with the K leading

eigenvectors of Ã will reject the null hypothesis with high probability, that is,

• [K] ⊂ S; and

• |Tl| ≥ τn, ∀l ∈ [K].

Fix s ∈ [K]. First, we check that s ∈ S. Under E1, ∥x̃2s∥∞ = O(1/n)≪ log n/n.

We need to check that
∥∥x̃2s∥∥∞ ≤ σ̃2

s/ log
2 n, for n sufficiently large. This follows from

the fact that σ̃2
s = Θ(ρn) by Lemma 2.7.9 and ρn ≥ c0n

−1 logξ0 n with ξ0 > 2 under

Assumption 1.

Next, we bound |Ts| from below. We have, with probability 1−n−δ2 , where δ2 > 1

is the constant in Lemma 2.7.8,

|Ts| =

∣∣∣∣∣ x̃Ts Ãtestx̃s
σ̃s

∣∣∣∣∣
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≥
ε
∣∣x̃Ts Px̃s∣∣− ∣∣∣x̃Ts (Ãtest − εP )x̃s

∣∣∣
σ̃s

≳
εnρn −

√
ρn log n√
ρn

≳ n
√
ρn

≫
√
n log n, (2.25)

where the dominating term is controlled through |x̃Ts Px̃s| ≳ nρn ≫ log n by

Lemma 2.7.6, the term |x̃Ts (Ãtest − εP )x̃s| is bounded above by
√
ρn log n≪ log n from

Lemma 2.7.8 and the denominator satisfies σ̃2
s = Θ(ρn) by Lemma 2.7.9. The final

bound follows from Assumption 1. By a union bound, (2.25) holds simultaneously for

s ∈ [K] with probability 1−Kn−δ2 .

No over-estimation Then, we show that the noise eigenvectors of Ã will either be too

localized or the test statistic associated with them will fail to reject the null hypothesis.

In other words, we show that for any s ∈ S \ [K], it holds that |Ts| < τn with high

probability.

Let t ∈ S \ [K]. We bound |Tt| from above as follows

|Tt| =

∣∣∣∣∣ x̃Tt Ãtestx̃t
σ̃t

∣∣∣∣∣
≤

ε
∣∣x̃Tt Px̃t∣∣+ ∣∣∣x̃Tt (Ãtest − εP )x̃t

∣∣∣
σ̃t

(2.26)

= O

(√
n

log2 n
· (log n+

√
ρn log n)

)
= O

(√
n
)
. (2.27)

The first term in the numerator of (2.26) satisfies
∣∣xTt Pxt∣∣ = O(log n) by Lemma 2.7.6

while the term |x̃Tt (Ãtest − εP )x̃t| in (2.26) is bounded above by
√
ρn log n≪ log n from
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Lemma 2.7.8. For the denominator σ̃t, t ∈ S implies that ∥x̃2t∥∞ ≤ σ̃2
t / log

2 n, thus

σ̃2
t ≥ log2 n · ∥x̃2t∥∞ ≥

log2 n

n
· n∥x̃2t∥∞ ≥

log2 n

n
· ∥x̃t∥22 =

log2 n

n
.

By a union bound, (2.27) holds simultaneously for t ∈ S \ [K] with probability at least

1− n−δ2+1.

Consistency Therefore, it follows that the algorithm outputs K̂ = K with probability

tending to 1.

2.8 Supporting figures and tables

2.8.1 Details of Degree-Corrected Stochastic Blockmodel in

the introduction, Figures 2.1 and 2.2

In the introduction, the simulated graph comes from a Degree-Corrected Stochastic

Blockmodel (DCSBM). See Section 2.6.1 for a description of this model and its

parameters. In Figures 2.1 and 2.2, the DCSBM has k = 128 blocks. The 2,560 nodes

are randomly assigned to the 128 blocks with uniform probabilities. On average, each

block contains 20 nodes. The smallest block has 10 nodes and the largest block has 32.

The degree parameters θi are distributed as Exponential(λ = 1) and the B matrix is

hierarchically structured. In order to specify the elements of B, let T be a complete

binary tree with 7 generations (i.e., 27 = 128 leaves). Each leaf node is assigned to one

of the k = 128 blocks. Define u ∧ v ∈ T as the most recent common ancestor of u and

v (i.e., the node closest to the root along the shortest path between u and v). Define

g(u, v) as the distance in T from the root to u ∧ v. So, if the shortest path between u

and v passes through the root, then g(u, v) = 0. Moreover, g(u, u) = 7 for all leaf nodes

u. Set Bu,v = p2g(u,v), where p = .0008 is chosen so that the average expected degree of
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the nodes is equal to 20.

2.8.2 Bernoulli vs. Poisson

Two clarifying figures for folds = 1

The average value of T3 and T4 are different under the Poisson and Bernoulli models

(see Figure 2.5 in Section 2.5). To further illustrate this difference and to show that

T2 does not have the same property, Figure 2.8 subtracts the average value of the test

statistic under the Bernoulli model from the corresponding average under the Poisson

model. The difference appears for T3 and T4, but not for T2. This shows that x̃
T
ℓ Ãx̃ℓ and

x̃Tℓ Ãtestx̃ℓ are negatively correlated when (1) the edges are Bernoulli, (2) the graph is

dense, (3) and ℓ > k. In the two-block Stochastic Blockmodel, this negative dependence

does not shift the expectation of T2, even for dense Bernoulli graphs.

Figure 2.9 displays the standard deviation for the test statistics T2, T3, T4 over

the 1000 replicates in the simulation. This figure is repeated with folds = 10 in Figure

2.11.

Increasing the number of folds in the Bernoulli vs. Poisson comparison

Figure 2.10 repeats Figure 2.4, but with folds = 10 instead of 1. It shows that increasing

the number of folds makes T3 and T4 more conservative. While Theorem 2.3.1 shows

that Tℓ is asymptotically normal with folds = 1, increasing the number of folds induces

unknown dependence between the test statistics. Figure 2.10 suggests that even with 10

folds, the right tail of the distribution of T3 and T4 are well approximated by the normal

distribution; this is because the bumpy line that gives α̂ is close to the points. The tests

are conservative because their expectation is not zero and their variance is not one.

Figure 2.11 shows that increasing the number of folds dramatically reduces the



59

2 3 4

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0.0

0.2

0.4

0.6

0.8

degree

po
is

so
n 

−
 b

er
no

ul
li

Figure 2.8: Each panel gives the difference between the Poisson and Bernoulli
results from Figure 2.5. In this simulation model, there are k = 2 blocks in
the Stochastic Blockmodel. Taken together, this suggests that the negative
dependence in Bernoulli graphs between the fitting and testing adjacency
matrices diminishes the expected value of Tℓ when ℓ > k and the graph is
more dense. However, the negative dependence does not appear to diminish
the expected value of T2. When a test is conservative under the null, one
typically suffers a reduced power under the alternative. However, this result
suggests that the negative dependence require us to pay this price. The
Bernoulli model makes T3 conservative, without making T2 less powerful.

SD(Tℓ) with folds = 1
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Figure 2.9: As discussed in Section 2.5, the localization of the eigenvectors
on small degree graphs (on the left of each panel) makes σ̃ over estimate the
standard error. This makes the standard deviation of the test statistics over
the 1000 replicates smaller than 1.
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variation in T2, T3, T4. This makes T2 more powerful and T3, T4 more conservative.
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Figure 2.10: This is a repeat of Figure 2.4, but with folds = 10 instead of 1.
The vertical axis gives estimates of the rejection probability for T3 (left) and
T4 (right). Each dot give the proportion of 1000 simulations for which the
test statistic exceeds 1.65. The bumpy line interpolates the values α̂, defined
in Equation (2.12). Because there are so few rejections, particularly for T4, it
is difficult to see whether the bumpy line is close to the points. The straight
line is the ordinary least squares fit to the points. It roughly aligns with the
bumpy line. This suggests that the right tails of the distributions for T3 and
T4 are approximately normally distributed.

2.8.3 Comparing to other techniques

In Figure 2.6, we evaluated the accuracy of each method when requiring the exact

recovery of k. In order to illustrate how each method either under-estimates or over-

estimates k, Figure 2.12 displays the results in Figure 2.6 by the relative error for each

estimate k̂, which is defined as

relative error =
k̂ − k∗

k∗
,

where k∗ = 10 is the true k. From the simulation results, we observed that most methods

under-estimate k when the average degree of the graph is smaller (i.e., sparser), except for

StGoF which over-estimates it. In addition, from the standard deviation of the relative
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Figure 2.11: This is a repeat of Figure 2.9, but with folds = 10 instead of 1.
The vertical axis gives the standard deviation of the test statistics T2, T3, T4
over the 1000 replicates. Notice that they are all significantly less than one.
This explains why the rejection probabilities in Figure 2.10 are significantly
lower than .05.

error, we observe that EigCV provides a more accurate and less variable estimation of k

as the graph sparsity varies.

In Section 2.6.2, we removed the 14 small departments that consist of less

than 10 members. Among these, two departments have only one members, and eight

departments have less than five members. Table 2.2 compares six methods using this

email network without filtering. We observed similarly that EigCV provided a closer

estimate of k than other methods.
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Figure 2.12: Comparison of relative error for different graph dimensionality
estimators under the DCSBM. The panel strips on the top indicate the node
degree distribution used. Within each panel, each colored line depicts the
relative error of each estimation method as the average node degree increases.
Each point on the lines are averaged across 100 repeated experiments. For
each point, an error bar indicates the sample standard deviation of relative
errors.

Table 2.2: Comparison of graph dimensionality estimates using the email
network among members in a large European research institution. Each
members belongs to one of 42 departments.

Method Estimate (mean) Runtime (second)
EigCV 30.56 0.81
BHMC 14.00 0.04
LR 13.00 128.17
NCV 6.96 271.15
ECV 20.08 60.13
StGoF > 50 544.66
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Chapter 3

Species tree inference in the

presence of lateral gene transfer:

identifiability and consistency

3.1 Background

Phylogenetic inference is one of the central problems in modern phylogenomics. However,

phylogenetic networks inferred from different genes often imply different, conflicting

evolutionary histories from which they have been sampled [Pol+06; GD08; Cra+09;

Nak13]. In addition to statistical errors in gene tree estimation, there are several well-

recognized causes of gene tree incongruence, including incomplete lineage sorting (ILS),

hybridization, lateral gene transfer (LGT), gene duplication and loss.

Among these evolutionary processes, ILS and hybridization are the two most

studied processes. Firstly, the ILS is a population genetic phenomenon, which describes

the failure of ancestral gene copies to coalesce into a common ancestral copy until

earlier than the previous speciation event. It has been proved that the topology of

the phylogeny can be reconstructed from sufficiently many genes in the presence of the

ILS under some mild assumptions [MK06; LP07; MR08; SR08]. Secondly, hybridization

is also an important source of gene incongruence in bacteria, plants and animals [Arn97;
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D R 

Figure 3.1: An LGT event. On the left, the species phylogeny is shown
with the donor (D) and recipient (R) locations. On the right, the resulting
(unweighted) gene tree is shown after the LGT event.

Rie97; Mal07; Lam+18]. One can identify the hybridization by observing morphological

or molecular intermediacy and/or combination if exists. There are some works on

hybridization detection in the presence of the ILS using joint analysis of hybrids and

putative parental taxa [MK09; YDN12].

The LGT is another source of phylogenetic inference conflicting, and also the focus

of this chapter, see the example in Figure 3.1 from [DR16]. Growing evidences show that

LGT play important role in the evolution [SSJ03; McD+10; WC11; MC17; Hib+21], so

there is a key problem in modern phylogenomics: Is the species tree identifiable from the

gene trees regardless of the LGT rate?

A stochastic model of LGT was introduced by Roch and Snir [RS13], LGT events

occur at random along the phylogeny according to a Poisson process (see Section 3.2

for details), for each gene independently. The goal is to recover the species phylogeny

from a collection of gene trees, each of which can be thought of as randomly scrambled

instance of the species phylogeny. A related model was also studied in [LRH07; Ste+13;

SS13]. It was proved in [RS13] that under the assumptions in Section 3.2.2, a species

phylogeny with n leaves can be recovered from a logarithmic number of genes when the

LGT rate is at most O(1/ log n) per unit time. [RS13] also showed that the species

phylogenies cannot be distinguished with constant probability from the same number of

genes when the LGT rate is of the order of Ω(log log n) per unit time. Under the same
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assumptions, the algorithm result in [DR16] improved the LGT rate to a small constant

bound by a recursive approach which progressively builds the species phylogeny from

the leaves up, using the information obtained from partially reconstructed subtrees to

reach further into the past. Similar result was given in [Ste+13] by showing the subtree

spanned by any three leaves is statistically consistency when the LGT rate is small, and

then the species tree can be reconstructed from the gene trees by majority voting.

In this chapter, we further close the gap in LGT rate, that is, we show a phylogeny

is identifiable from the distribution of the gene trees when the LGT rate is arbitrarily

constant per unit of time. When the LGT rate is constantly large, any subtree of the

gene tree with leaves more than three mismatches the species phylogeny restricting to

the same leaf-set with high probability. Because of this statistical inconsistency, the idea

like partially recovering from the leaves in [DR16] and the majority voting in [Ste+13]

both fail. Instead, we view the LGT process as a non-homogeneous continuous-time

Markov process on graph space. Since the LGT events happen chronologically on the

phylogeny from the root, we can reconstruct the phylogeny backward in time from the

distribution of the gene tree from the leaves up by Markov property once we define the

generator matrix Qt correctly. Observing that the generator matrix Qt is determined

by the edges on the species phylogeny at time t and Qt changes only when crossing a

speciation time, so we can recover Qt recursively from the leaf-edges on gene trees. This

idea can be adapted to a consistent reconstruction algorithm. In the counter-example

which has long leaf edges on the phylogeny, we show the limiting distribution only

depends on the topology of the gene trees which implies the failure of majority voting.

Under the same assumptions in [RS13; DR16] with the pairwise distance between leaves

on gene trees, we improve the algorithm result in [DR16] in the sense of relaxing LGT

rate, that is, we show a species phylogeny with n leaves can be reconstructed from an

exponential number of genes even when the LGT rate is large in constant. We observe

that the pairwise distance between two leaves depends on the last LGT event on the
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path between these two leaves. By the property of the continuous-time Poisson process,

an LGT event happens at a specific location on the phylogeny has probability zero.

After considering all
(
n
2

)
pairwise distances between the n leaves on all gene trees, we

can identify the species’ phylogeny from a collection of gene trees by majority voting.

3.2 Definitions and Results

In this section, we introduce the stochastic model of lateral genetic transfer (LGT),

which is based on a related model of Galtier [Gal07; GD08]. We assume that LGT

events occur at random along the species phylogeny and follow roughly the presentation

in [RS13] and [DR16]. We first introduce the model in Section 3.2.1, and then we give

the formal statement of our main results in Section 3.2.2.

3.2.1 Stochastic Model of LGT

A species phylogeny is a graphical representation of the speciation history of a group

of organisms. The leaves correspond to extant species. Each branching indicates a

speciation event. We associate each edge with a positive value corresponding to the

time elapsed along that edge.

Definition 2 (Phylogeny). A species phylogeny Ts = (Vs, Es; r, τ, µ) is a directed tree

rooted at r with vertex set Vs, edge set Es and n labelled leaves L = [n] = {1, 2, · · · , n}

such that 1) the degree of all internal vertices Vs−L is exactly 3 except the root r which

has degree 2, and 2) the edges are assigned inter-speciation times τ : Es → (0,+∞) as

well as a fixed rate of substitution µ(e) = µ ∈ (0,∞), for some constant µ. We assume

that Ts is ultrametric, that is, from every node, the path lengths with respect to τ from

that node to all its descendant leaves are equal.

Let Ts = (Vs, Es; r, τ, µ) be a fixed species phylogeny, we define the following
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notations. By a location in Ts, we mean any position along Ts seen as a continuous

object, that is, a point x along an edge e ∈ Es and denoted as x ∈ e in that case. We

denote the set of locations in Ts by Xs. We say that x ∈ Xs is an ancestor of y ∈ Xs if

x is on the path between y and r in Ts (in which case y is also a descendant of x). For

any two locations x, y in Xs, we let MRCA(x, y) be their most recent common ancestor

(MRCA) in Ts.

Phylogeny is naturally equipped with notions of distance and time, that are useful

in reconstructing phylogeny.

Definition 3 (Species metric). A species phylogeny Ts = (Vs, Es; r, τ, µ) induces a metric

ds on the leaves defined as follows, for all u, v ∈ L:

ds(u, v) =
∑

e∈p(u,v)
τ(e) · µ

where p(u, v) is the unique path between leaves u, v in the phylogeny, viewed as a set

of edges. We call ds the species metric. We extend to all vertices naturally. Note that,

given our assumption that τ is an ultrametric, ds is also an ultrametric.

Definition 4 (Time). Given a species phylogeny Ts = (Vs, Es; r, τ, µ), we assign a notion

of time on Ts defined as follows, for all x ∈ Vs:

t(x) =
∑

e∈p(r,x)
τ(e)

where p(r, x) is the unique path from the root r to x in the phylogeny, viewed as a set of

edges. We extend to the locations along an edge linearly in a natural way, i.e. t(x) < t(y)

if x is an ancestor of y. Denoted as t(r) = 0. Note that, given our assumption that τ is

an ultrametric, t(u) = t(v) for all leaves u, v ∈ L and we denote it as tL.
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We say that two locations x, y are contemporaneous if they correspond to the

same time, that is,

t(x) = t(y).

We let

Cx = {y ∈ Xs : t(y) = t(x) < +∞}

be the set of locations contemporaneous to x on Ts. Let λ : [0, tL] → (0,∞) be the

LGT rate assigned to Ts along time. For each edge e = (x, y) ∈ Es with t(x) < t(y),

Λ(e) =
∫ t(y)
t(x)

λ(z)dz gives the expected number of LGT events on edge e. Further, we let

Λtot =
∑
e∈Es

Λ(e)

be the total LGT weight of the phylogeny.

To infer the species phylogeny, we first reconstruct gene trees, that is,

trees of ancestor-descendant relationships for orthologous genes(or, more generally,

loci). Phylogenomic studies have revealed extensive discordance between gene

trees(eg. [Bap+05], [DB07]).

Definition 5 (Gene tree). A rooted gene tree Tg = (Vg, Eg; r, ωg) for gene g is a directed

tree rooted at r with vertex set Vg, edge set Eg and the same leaf-set L = {1, . . . , n} as

the species phylogeny such that 1) the degree of every internal vertex is either 2 or 3,

and 2) the edges are assigned branch lengths ωg : Eg → (0,+∞). We let Tg = T [Tg] be

the topology of Tg where each internal vertex of degree 2 is suppressed except the root

r which has degree 2. And we let T unrootedg be the topology of Tg where each internal

vertex of degree 2 is suppressed including the root r.

As will become clear from the description of the LGT process below (see also

Figure 3.1), each edge e of the gene tree Tg corresponds to a full or a partial edge
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of the species phylogeny Ts. In particular, there exists a mapping (η, ζb, ζf ) : Eg →

Es × R+ × R+, mapping an edge e ∈ Eg to an edge η(e) ∈ Es and a pair of times

0 ≤ ζb(e) ≤ ζf (e) ≤ τ(η(e)). The quantities ζb(e) and ζf (e) represent times of LGT

events on edge η(e), as we will define below.

Definition 6 (Stochastic model of LGT). Let Ts = (Vs, Es; r, τ, µ) be a fixed spec-

ies phylogeny. A gene tree Tg is generated according to the following continuous-time

stochastic process, which gradually modifies the species phylogeny starting at the root.

There are two components to the process:

1. LGT locations. The recipient and donor locations of LGT events are selected as

follows:

• Recipient locations. Starting from the root, along each branch e of Ts,

locations are selected as recipient of a genetic transfer according to a

continuous-time Poisson process with rate λ. Equivalently, the total number

of LGT events is Poisson with mean Λtot and each such event is located

independently according to the following density. For a location x on branch

e, the density at x is Λ(e)/Λtot.

• Donor locations. If x is selected as a recipient location, the corresponding

donor location y is chosen uniformly at random in Cx. The LGT transfer

σ(x, y) is then obtained by performing an SPR move from x to y, that is, the

subtree below x in Ts is moved to y in Tg.

The probability that a recipient or donor location coincides with a node of Ts is 0.

If that happens, we associate the recipient/donor to one of the the adjacent edges

arbitrarily.

2. Executing the LGT Process: We perform genetic transfers chronologically
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from the root:

• We initialize the gene tree as follows: Vg = Vs, Eg = Es.

• We also initialize the mappings (η, ζb, ζf ) as follows, for all e ∈ Eg: η(e) = e;

ζb(e) = 0; ζf (e) = τ(e).

• We process the LGT events chronologically as follows:

(a) Suppose the next event to process has x ∈ e ∈ Es as recipient location

and y ∈ e′ ∈ Es as donor location.

(b) We find the unique edges ex, ey ∈ Eg such that:

– η(ex) = e and η(ey) = e′; and

– ζb(ex) ≤ τx ≤ ζf (ex) and ζb(ey) ≤ τy ≤ ζf (ey);

where τx is the time between x and its most recent ancestor in Ts, and

similarly for τy.

(c) We introduce a new node v, splitting ey into two consecutive edges, ey1

and ey2 , with the following features:

– η(ey1) = η(ey2) = e′;

– ζb(ey1) = ζb(ey); ζf (ey1) = τy;

– ζb(ey2) = τy; ζf (ey2) = ζf (ey).

(d) If ex = (u,w), we update it to ex = (v, w), and change ζb(ex) = τx.
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After all LGT events have been processed, the weights on the resulting gene tree Tg are

defined as follows. For all e ∈ Eg, ωg(e) =
(
ζf (e)− ζb(e)

)
· µ.

We call σ(er, ed) the LGT transfer events with recipient location x ∈ er and donor

location y ∈ ed. Observe that LGT process keep the same leaves on the phylogeny and

LGT events may disconnect subtrees of the species phylogeny from their original roots,

connecting them to other branches of the gene tree, thereby creating nodes of degree

2 in the gene tree. We allow internal vertices of degree 2 in a gene tree to potentially

delineate between two consecutive species phylogeny edges, see Figture 3.1.

3.2.2 Species phylogeny inference in the presence of LGT

Let Ts = (Vs, Es; r, τ, µ) be an unknown species phylogeny and Ts = (Vs, Es) be the

topology of Ts. We say the species phylogeny is identifiable if we can identify Ts from the

distribution of gene trees under a leaf labeled respecting isomorphism. We assume that

N independent gene trees Tg1 , · · · , TgN , corresponding to homologous genes g1, · · · , gN ,

were generated according to the process of Definition 6. We aim to reconstruct the

species phylogeny, given N gene trees (or their topologies).

However, we assume that we have imperfect knowledge of the gene trees as these

trees are ultimately reconstructed from genetic sequences. Namely, we suppress all nodes

of degree 2 (may also including the root), and we are missing all correspondence between

the other internal nodes of the gene trees with the nodes or edges of the species phylogeny

that derived them.

We organize this section in the following: we first introduce the identifiability

result in section 3.2.2; then we provide a new reconstruction algorithm in section 3.2.2;

we state the reconstruction result with add-on pairwise distance between leaves in

section 3.2.2 .
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Identifying the species phylogeny

Given the distribution of topology of gene tree Tg under the process of Definition 6, we

focus on identifying the topology Ts of the phylogeny, namely identify the rooted tree

(Vs, Es) up to a leaf-label respecting isomorphism, for some constant LGT rate. Since

the root is usual impossible to be identified from the sequential data, we will try to

identify the unrooted topology of species trees from the distribution of the topology of

unrooted gene trees.

Theorem 3.2.1 (Identifiability). We can identify the species phylogeny without root

from the distribution of the topology of unrooted gene tree generated under the process

of Definition 6 with transfer rate λ ∈ (0,∞).

To proof Theorem 3.2.1, we view the LGT process in Definition 6 as a non-

homogeneous continuous time Markov chain on graph space G containing all possible

binary species trees with n labeled leaves, we reverse the Markov process to recover the

species phylogeny backward in time from the isolated single leaf clusters. The speciation

time corresponding to the internal vertices can be identified since it’s the first time that

two clusters merge, which leads to a shrink in distribution. We will provide more details

in section 3.3.

Furthermore, since we recover the phylogeny from bottom up, with the extra

root information on the gene trees, we can identify the species phylogeny with root by

modifying the graph space G in the proof of Theorem 3.2.1.

Corollary 3.2.1 (Identifiability with root). We can identify the species phylogeny (with

root) from the distribution of topology of rooted gene tree generated under the process of

Definition 6 with transfer rate λ ∈ (0,∞).

The transfer rate λ can be relaxed to more general case. In the proof of
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Theorem 3.2.1, we reverse the Markov process backward in time, so it sufficient to

require λ be an integrable function of time.

Corollary 3.2.2 (General transfer rate). Theorem 3.2.1 and Corollary 3.2.1 hold for

λ : [0, tL] → (0,∞) which is a function of time such that
∫ tL
0
λ(t)dt < ∞, where

tL := t(L) is the time of the leaf-set L of the species phylogeny.

Reconstructing Ts from finite gene trees

Observing the distribution of gene tree is impossible in practice, we introduce

the reconstruction Algorithm 4 which is inspired by the proof of identifiability in

Theorem 3.2.1. Given N independent gene trees Tg1 , · · · , TgN generated under the

process of Definition 6 with no root, Algorithm 4 aims to reconstruct the topology

Ts of the phylogeny without root from empirical distribution (3.1) with high probability

up to a leaf-label respecting isomorphism, and more details can be found in section 3.3.

(
pN
)
i
=

1

N

N∑
j=1

1{Tgj∼=Si}, i ∈ [cn]. (3.1)

where Si ∈ G and cn := |G| = (2n − 5)!! is the number of possible unrooted binary

species trees with n labeled leaves (see e.g [SS+03]).

Theorem 3.2.2 (Algorithm result). Under the stochastic model of LGT, it’s possible to

reconstruct the unrooted topology of the species phylogeny w.h.p from N independent

gene trees with no root, for any fixed transfer rate λ ∈ (0,∞).

To prove Theorem 3.2.2, we need to address the errors come from empirical

distribution, the effect of time discretization, the guarantee of merging clusters and

accumulation errors from recursive steps.

Next, we show the majority vote fails in the presence of LGT events with constant
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Input: N gene trees {Tgi}Ni=1 independently generated under the LGT
process.

Procedure:

1. Initialize N = G, k = 1, lN = logN√
N
, L = {{u} : u ∈ L} and empirical

distribution pN
k

defined in (3.1).
2. For each state Si ∈ G, Ei denotes the leaf-edges on the tree Si.
3. while |L| > 2 do

i. For each state Si, i ∈ N , define

Qij =


|{(er, ed) ∈ E2

i : Sj
∼= Si [σ(er, ed)]}| if j ̸= i

−
∑

l ̸=iQil if j = i

0 else

where LGT events σ(er, ed) is defined below Definition 6.
iii. Compute

s = min
{
m ∈ Z : ∃ i ∈ N s.t.

∣∣∣(exp(−mQ⊤)pN
k

)
i

∣∣∣ < lN

}
.

iv. Let
pN
k+1

= exp
(
−sQ⊤)pN

k
, N =

{
i :
(
pN
k+1

)
i
> lN

}
.

v. For every two distinct clusters (A,B) ∈ L2 s.t Si|A ∪B are
leafsomorphic for all i ∈ N ,

• On each state Si, update Ei by adding{
ei =

(
ρi, y

)
: y /∈ Si

∣∣A ∪B} ,
and removing edges {

e =
(
ρi, x

)
: x ∈ Si

∣∣A ∪B} ,
where ρi be the root of the subtree Si

∣∣A ∪B.
• Update L by removing A, B and adding A ∪B.

vi. Update lN = lN
√
logN ,

(
pN
k+1

)
i
= 0, i /∈ N and k = k + 1.

Output: The phylogeny Ts = N .

Algorithm 4: Phylogeny reconstruction
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transfer rate.

Theorem 3.2.3 (Stationary distribution with long leaf-edges). For species tree Ts with

leaves L = [n], there exists a unique stationary distribution π of gene tree topology

generated under the process of Definition 6 with fixed transfer rate λ ∈ (0,∞). Let V̊i

denotes the set of interior vertices of Si, and for each v ∈ V̊i, let nv denotes the number

of elements of V̊i that are descendants of v. Then

π(i) =
2n−1

n!

∏
v∈V̊i

n−1
v , i ∈ [cn].

Reconstructing Ts by providing pairwise distances between leaves on Tg

In this section, we state another Algorithm result to reconstruct the phylogeny if

providing pairwise distances between leaves on the gene trees. To formalize this further,

we introduce the following definitions.

Definition 7 (Leafsomorphic trees). Given two leaf-labeled rooted (or unrooted),

directed trees T = (V,E) and T ′ = (V ′, E ′) we call them leafsomorphic1 if there exists a

leaf labeled respecting isomorphism between the trees T̃ and T̃ ′ obtained from T and T ′

respectively, after replacing all maximal directed paths ⟨u, u1, . . . , uk, v⟩ whose internal

vertices have in- and out-degree 1 by a single directed edge ⟨u, v⟩.

Given N independent gene tree Tg1 , · · · , TgN generated under the process of

Definition 6, we aim to reconstruct the topology Ts of the phylogeny up to a leaf-label

respecting isomorphism, for all constant LGT rate.

To derive asymptotic results, we need the following model in [DR13b], which is

1This definition differs from the standard notion of isomorphism between leaf-labeled trees (see
e.g. [SS+03]) in that we ignore degree-2 vertices.
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related to a common assumption in the mathematical phylogenetics literature.

Definition 8 (Bounded-rates model). Let 0 ≤ ρλ ≤ 1, 0 < ρτ ≤ 1 and 0 < τ̄, λ̄ < +∞

be constants. Under the bounded-rates model, we consider the set of phylogenies

Ts = (Vs, Es; r, τ, µ) with n extant leaves such that the following conditions are satisfied,

∀e ∈ Es: λ ≡ ρλλ̄ ≤ λ(e) ≤ λ̄; τ ≡ ρτ τ̄ ≤ τ(e) ≤ τ̄ . Recall that µ is held constant on all

edges.

Finally, our asymptotic result is the following:

Theorem 3.2.4 (Algorithm result). Fix constants 0 ≤ ρλ ≤ 1, 0 < ρτ ≤ 1 and

0 < τ̄, λ̄ <∞. Under the bounded-rates model, for any ϵ > 0, there exists large enough

N = Ω(en), and it is possible to reconstruct the topology of the species phylogeny with

probability at least 1−ϵ from the N independent gene trees generated under the process

of Definition 6.

3.3 Identifying the species phylogeny from the

distribution of the gene trees

In this section, we provide the proof of our main result Theorem 3.2.1 and its corollary.

We view the LGT process in Definition 6 as a non-homogeneous continuous time Markov

chain on graph space and reconstruct the species phylogeny backward in time from leaves

L recursively.

Let Ts = (Vs, Es; r, τ, µ) be an unknown fixed species phylogeny with n labeled

leaves L = [n]. Before introducing the Markov Chain, we need some notations.

First, we describe levels on species phylogeny Ts. We order the vertices Vs by

the increasing values of time and split them into groups. There are 2n − 1 vertices
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on Ts and we denote the time of the i-th vertex vi as t
0
i , i = {0, 1, · · · , 2n − 2}. Let

K =
∣∣{t0i }2n−2

i=0

∣∣ − 1 and K ≤ n − 1 by the ultrametric property of τ . Let {ti}Ki=0 be

the longest strictly increasing subsequence of {t0i }2n−2
i=0 and we say {ti}Ki=0 are speciation

times (see Figure 3.2 as an example). We define

Γi = {x ∈ Vs : t(x) = ti}, i = 0, 1, · · · , K.

Then {Γi}Ki=0 form levels on the phylogeny Ts. In particular, Γ0 = {r} and ΓK = L. Let

γi = |Γi| , i = 0, 1, · · · , K. (3.2)

1 ≤ γi ≤ n by construction. On a binary tree Ts, for each location x ∈ Xs with

r

v1
v2

v3

v5v4

v6

time

tr = 0

tL

t1
t2

t3

t4

t5

Figure 3.2: The levels and speciation times on the phylogeny.

t(x) ∈ (ti−1, ti], the number of contemporaneous locations to x is

di :=
i−1∑
j=0

γj ∈ {0, 1, · · · , n− 1}, for all i ∈ [K]. (3.3)

We denote dt = di.

Next, we define the truncation of a phylogeny, following a similar definition in

[DR16]. We truncate the species phylogeny at time ν, thus producing a forest. We will

need the following notation. Given a rooted tree T and a subset of its leaves L′, denote

by T |L′ the restriction of T to leaf-set L′, i.e the smallest connected subgraph of T that
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contains L′ ∪ {MRCA(L′)}.

Definition 9 (Truncation). Given a phylogeny Ts = (Vs, Es; r, τ, µ) with labeled leaf-set

L = [n], the truncation of Ts at time ν is a leaf-labeled forest T νs = (V ′
s , E

′
s) with leaf-set

L satisfying the properties:

• Disjoint forest. For some m ≤ n, T νs comprises m rooted trees, with disjoint leaf-

sets L1, L2, · · · , Lm which, further, correspond to clusters in the species phylogeny,

that is, for all 1 ≤ i ≤ j ≤ m :

MRCATs(Li ∪ Lj) ̸= MRCATs(Li),MRCATs(Lj).

• Truncation. Every pair of leaves u, v ∈ L, such that MRCATs(u, v) = x with

t(x) ≥ ν belongs to the same Lj, and every pair of leaves u, v ∈ L such that

MRCATs(u, v) = x with t(x) < ν belongs to different Lj’s.

• Faithfulness. For all j ∈ [m], the leaf-labeled tree T νs |Lj is isomorphic to the

leaf-labeled tree Ts|Lj under a leaf-labeled respecting isomorphism.

We formalize the Markov chain as below. Let S1, S2, · · · , Scn be an ordering of

the cn unrooted binary trees with n labeled leaves L in G. We can view the LGT process

in Definition 6 as Mn
t , t ∈ [0, tK ], which is a non-homogeneous continuous-time Markov

chain on states {Si}cni=1, with initiate state Mn
0 = {Ts} and transition rate matrix Qt.

Observe that Qt depends on the topology of {Si}cni=1 and the LGT transfer events at time

t. More precisely, Qt changes only when we cross a speciation time since we perform

generic transfers chronologically from the root and each LGT transfer is an SPR move

between edges. Because the receipt location defined in Definition 6 is sampled according

to the Poisson distribution with same rate across all locations at time t, and the donor

location is chosen uniformly form all contemporaneous, Qt remains unchanged for all
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t ∈ (tk−1, tk], k ∈ [K], i.e Qt = C · Qk where C is some positive constant and Qk is

defined explicitly in Claim 1.

We denote the distribution of Mn
t as p(t), p(t) is a cn dimensional probability

vector with exactly cdt+1 nonzero elements, where dt + 1 represents the number of

branches at time t in (3.3). p(0) = p(t1) = δ({Ts}). Let Lk = {Lj}mj=1 be the disjoint leaf-

sets of T ks , where T ks is the truncation of Ts at time tk in Definition 9 (see Figure 3.3 as an

example). Let Nk = supp
(
Mn

tk

)
be the support of the Markov chain Mn

t at time t = tk,

i.e Nk =
{
Si : (p(tk))i > 0

}
. Each state Si, i ∈ Nk contains a recovered subgraph T ki that

is isomorphic to the leaf-labeled forest T ks under a leaf-labeled respecting isomorphism.

More precisely, T ki comprises dk+1 rooted trees with disjoint leaf-sets Lki , where Lki = Lk

for all i ∈ Nk, and T ki =
{
Si|Lj : Lj ∈ Lk

}
. We define active edges Ei,k ∈ Si be the

collection of edges on Si which disconnect T ki to the rest part of Si when we remove

these edges.

Ei,k =
{
e = (x, y) : x ∈ T ki , y /∈ T ki

}
. (3.4)

The proof of reconstructing Ts contains two main recursive steps. Fix k ∈ [K],

given the distribution of Mn
tk

and the truncation T ks , we reconstruct the distribution of

Mn
tk−1

and the truncation T k−1
s as following:

1. Recovering the distribution p(tk−1). Given the distribution of Mn
tk

and the

truncation T ks at time tk, we can identify recovered sub-graph T ki and active edges

Ei,k under a leaf-labeled respecting isomorphism on each state Si ∈ Nk. Next,

for t ∈ (tk−1, tk], we can construct the transition rate matrix Qt by considering

all possible SPR between the edges in Ei,k, and p(tk−1) follows from the Markov

property since the transition matrix is invertible, and tk−1 is the first time the

support of distribution shrink, i.e mins>0 |supp(p(tk − s))| < |Nk|.
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Figure 3.3: (A) A phylogeny Ts with labelled leaves L = [7]. (B) The
truncation of Ts at time t2. (C) The three elements in N2 with active edges
in red.

2. Merging the clusters. On each state Si ∈ supp(p(tk−1)), Si contains a subgraph

T k−1
i that is isomorphic to the leaf-labeled forest T k−1

s under a leaf-labeled

respecting isomorphism, so we can reconstruct T k−1
s by finding the largest common

subgraph of all states in the support of Mn
tk−1

under a leaf-labeled respecting

isomorphism.

Claim 1 shows the recovering the distribution step and Claim 2 shows the merging the

clusters step.

Claim 1. Given p(tk) and Lk, we can uniquely solve for p(tk−1).

Proof of Claim: We first recall the support of distribution Nk =
{
Si : (p(tk))i > 0

}
,

on each state Si ∈ Nk, we can construct T ki =
{
Si|L : L ∈ Lk

}
and active edges Ei,k

in (3.4).
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Figure 3.4: An example of constructing the generator matrix Q.

Then we define the generator matrix λQk of continuous-time Markov chain Mn
t

by considering the LGT events between the pairs of edges in Ei,k, t ∈ (tk−1, tk]. Since

Qt is determined by LGT events between the edges at time t on Ts, for all i ∈ Nk

(Qk)ij =



∣∣{(er, ed) ∈ E2
i,k : Sj

∼= Si[σ(er, ed)]
}∣∣ if j ̸= i,

−
∑

l ̸=i(Qk)il if j = i,

0 others,

where the transfer events σ(er, ed) are defined below Definition 6. we say tree S ∼=

S ′[σ(er, ed)] if there exists a LGT transfer σ(er, ed) and S, S ′ are leafsomorphic after

applying σ(er, ed) on S
′ (e.g in Figure 3.4, S ′ ∼= S[σ] and S ′′ ∼= S[σ′]).

In the example in Figure 3.3, we consider the LGT events between the pairs of

edges in Ei1,2, Ei2,2, and Ei3,2 respectively, and get Qil,ij = 2 for all l, j = 1, 2, 3 and

j ̸= l, Qil,il = −4 for l = 1, 2, 3 and Qij = 0 for others.
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Then by standard Markov chain theory [Ste94b],

p(tk)
⊤ = p(tk−1)

⊤ exp
[
λQk(tk − tk−1)

]
(3.5)

Since for all square matrix A, exp(A) is invertible and its inverse is exp(−A),

(3.5) implies

p(tk−1)
⊤ = p(tk)

⊤ exp
[
−λQk(tk − tk−1)

]
. (3.6)

Then, we define

sk := inf
{
s > 0 :

∣∣supp (p(tk)⊤ exp(−sQk)
)∣∣ < ∣∣supp (p(tk))∣∣} , (3.7)

where supp
(
p
)
= {i : pi > 0} is the support of the vector. We want to show sk =

λ(tk − tk−1).

Recall
∣∣supp (p(t))∣∣ = cdk+1, where dk+1 is the number of lineages on Ts at time

t. Firstly,
∣∣supp (p(tk−1)

)∣∣ < ∣∣supp (p(tk))∣∣ and by (3.6), we have

sk ≤ λ(tk − tk−1).

For the other direction, s > 0,
∣∣supp (p(tk−1 + s)

)∣∣ ≥ ∣∣supp (p(tk))∣∣ as dtk−1+s ≥ dk,

which implies

sk ≥ λ(tk − tk−1).

Combining with (3.6), we have

p(tk−1)
⊤ = p(tk)

⊤ exp
[
−skQk

]
. (3.8)
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■

Claim 2. Given p(tk) and Lk, we can reconstruct Lk−1.

Proof of Claim: Given p(tk) and Lk, we can compute p(tk−1) by (3.8) in Claim 1 and

define Nk−1 = supp
(
Mn

tk−1

)
. At divergence time tk−1, there exists γk−1 ≥ 1 distinct

pairs (A,B) ∈ (Lk)2, such that Si|A ∪B are leafsomorphic for all Si ∈ Nk−1, where γk−1

is defined in (3.2). We reconstruct Lk−1 by removing all pairs (A,B) and adding A∪B

on Lk. ■

Proof of Theorem 3.2.1. Now, we can prove Theorem 3.2.1 by applying Claim 1 and

Claim 2 recursively by levels backward in time. Let p(tK) := p(tL) be the distribution

of the topologies Tg of the gene tree generated under the process in Definition 6. We

summarize our proof into the following steps:

1. Initialize k = n, take Nk = G be the whole graph space and L = {{u} : u ∈ [n]}

be single-leaf clusters.

2. On each Si ∈ G, define active edges Ei as the collection of leaf-edges on the tree

Si.

3. Until |L| = 2,

(a) For each Si ∈ Nk, we consider the transfer events between edges in Ei and
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construct the rate matrix

(Qk)ij =



∣∣{(er, ed) ∈ E2
i,k : Sj

∼= Si [σ(er, ed)]
}∣∣ if j ̸= i,

−
∑

l ̸=i (Qk)il if j = i,

0 Else ,

where σ(er, ed) represents the LGT events that is defined below the

Definition 6.

(b) Compute the scaled inter-speciation time

sk = inf
{
s > 0 :

∣∣supp (p(tk)⊤ exp(−sQk)
)∣∣ < ∣∣supp(p(tk)∣∣}

and recover the distribution at previous speciation time

p(tk−1)
⊤ = p(tk)

⊤ exp [−skQk].

(c) Update Nk−1 =
{
Si :

(
p(tk−1

)
i
> 0
}
.

(d) For each pair (A,B) ∈ (L)2, A ̸= B s.t Si|A ∪B are leafsomorphic for all

i ∈ Nk−1.

• On each state Si ∈ Nk−1, update the actives edges Ei by adding edge

{
e =

(
ρi, y

)
: y /∈ Si|A ∪B

}



85

and removing the edges

{
e =

(
ρi, x

)
: x ∈ Si|A ∪B

}
,

where ρi is the root of the new subtree Si|A ∪B with degree 3.

• Update L by removing A, B and adding A ∪B.

(e) Update k = k − 1.

By Claim 1 and Claim 2, as |L| = 2, we can conclude that there is a unique element in

the support and it is isomorphic to Ts under a leaf-labeled isomorphism.

Proof of Corollary 3.2.2. The proof of Corollary 3.2.2 directly follows from the proof of

Theorem 3.2.1 by modifying equation (3.6) in Claim 1 as

p(tk−1)
⊤ = p(tk)

⊤ exp

[
−
(∫ tk

tk−1

λ(s)ds

)
Qk

]
.

Since
∫ tL
0
λ(z)dz <∞ and λ(·) > 0, all the rest arguments in Claim 1 hold.

3.4 Statistical Consistency

In this section, we proof the statistical consistency of Algorithm 4. We begin with some

claims. We first show the nonzero entries of the distribution is bounded away from zero

sufficiently in claim 3.

Claim 3. [Lower bound for nonzero entries] There exists p0 ∈ (0, 1) s.t

min
k∈[K],Si∈Nk

{(
p(tk)

)
i

}
≥ p0.
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Moreover, there exists constant C = C(n, λ, tK) > 0 independent of N , s.t

(
p(s)

)
i
≥


Cp0 if s ∈ (tk−1, tk], Si ∈ Nk−1,

CgNp0 if s ∈ (tk−1 + gN/λ, tk], Si ∈ Nk \ Nk−1,

where gN ↓ 0 as N →∞, provided N is larger than a sufficiently large constant.

Proof of Claim: We pick the minimum over a finite set,

min
k∈[K], Si∈Nk

(
p(tk)

)
i
≥ p0 > 0. (3.9)

Fix k ∈ {2, · · · , K}, at time s ∈ (tk−1, tk], there are dk+1 lineages on Ts, where dk ≤ n−1

is defined in (3.3). For Si ∈ Nk−1, then

(
p(s)

)
i
≥
(
p(tk−1)

)
i
· P ( No LGT transfer event during (tk−1, s])

≥ p0e
−λ(dk+1)(s−tk−1)

≥ p0e
−nλ(tk−tk−1).

By (3.5) and taking the Taylor expansion of exp(·) at s = tk−1 + gN/λ,

p(s) = p(tk−1) + λ(s− tk−1)Q
⊤
k p(tk−1) +

λ2c2

2
(Q⊤

k )
2p(tk−1),

for some c ∈ [0, gN/λ] and N sufficiently large. For Si ∈ Nk \Nk−1, recall (p(tk−1))i = 0.

By performing an SPR between dk + 1 lineages over Si, there are dk + 1 choices of cut

edge and each has dk possible edges to which the subtree will be regrafted. If the edge

to which the subtree will be regrafted is adjacent to the cut edge, the SPR returns the
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same ranked tree, and there are (dk − dk−1) pairs. We show

∑
j ̸=i

(Qk)ij = dk(dk + 1)− 2(dk − dk−1).

Thus, we have

(p(tk−1 + gN/λ))i = gN
∑
j ̸=i

(Qk)ji(p(tk−1))j +
c2

2

∑
j ̸=i

(Q2
k)ji(p(tk−1))j

≥ gNp0[dk(dk + 1)− 2(dk − dk−1)]/2

where we use the fact that the second term is dominated by the first term in the

inequality, provided gN is sufficiently small.

At time s > tk−1 + gN/λ, we have

(
p(s)

)
i
≥
(
p(tk−1 + gN/λ)

)
i
· P ( No LGT transfer during (tk−1 + gN/λ, s])

≥ gNp0e
−λ(dk+1)(s−tk−1−gN/λ)[dk(dk + 1)− 2(dk − dk−1)]/2

≥ gNp∗e
−nλ(tk−tk−1)

where we apply the fact that dk ≥ 2 in the inequality. We are done by taking

C = mink∈[K]{e−nλ(tk−tk−1)}. ■

Next, we show the concentration of sample probability vectors for all levels in

claim 4.

Claim 4. [Concentration] For N gene trees generated independently under the process

in Definition 6 with the fixed unknown species tree Ts and divergence times {tk}Kk=1,
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there exists a sequence {pN
k
}Kk=1 ⊂ [0, 1]cn such that

∥∥∥pN
k
− p(tk)

∥∥∥
∞
≤
√

(logN)K−k+1

N

simultaneously for all k ∈ [K], with probability at least 1 − N−1, provided N is larger

than a sufficiently large constant.

Proof of Claim: We proof by induction. For N gene trees generated independently

under the process in Definition 6, we define the empirical probability

(
pN
K

)
i
:=

1

N

N∑
j=1

1{Tgj∼=Si}, i ∈ [cn].

We first show the basic case that

∥∥∥pN
K
− p(tK)

∥∥∥
∞
≤
√

logN

N

with probability at least 1−N−1. We denote this event as E0.

Fix i ∈ [cn],
(
pN
K

)
i
is an average of N independent indicators whose expectation

is
(
p(tK)

)
i
, by Hoefdding’s inequality

P

(∣∣∣(pN
K

)
i
−
(
p(tK)

)
i

∣∣∣ >√ logN

N

)
≤ 2 exp

−2N (√ logN

N

)2
 =

2

N2
.

We are done after taking a union bound over all i ∈ [cn]. And let NN
K = G.

We restrict on the event E0 from now on. We define lkN =
√

(logN)K−k+1

N
, k ∈ [K]

and pick N0 > 0, such that (logN)1/2 > Cp0 for all N ≥ N0 and C is the constant in

Claim 3. By adapting equations (3.7) and (3.6) in Claim 1, we construct {pN
k
}k∈[K]

backward in time from pN
K
. First, we truncate the inter-splitting time sk and the
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distribution p
k
at lk−1

N as following:

sNk := min
{
m ∈ Z : ∃ i ∈ NN

k s.t.
∣∣∣(exp(−mQ⊤

k )p
N

k

)
i

∣∣∣ < lk−1
N

}
qN
k
:= exp[−sNk Q⊤

k ]p
N

k

(pN
k−1

)i := (qN
k
)i1{i:|(qNk )i|>lk−1

N }

NN
k−1 :=

{
Si : (p

N

k−1
)i > 0

}
where Qk is the generator matrix defined in Claim 1.

Observe that if
∥∥∥pN

k
− p(tk)

∥∥∥
∞
< lkN , then NN

k = Nk by construction, thus we

can recovery the clusters Lk and the generator matrix Qk from the same procedure in

Claim 1 and 2.

In order to show the induction step
∥∥∥pN

k−1
− p(tk−1)

∥∥∥
∞
< lk−1

N , we need to show

⌊N(sk − lk−1
N )⌋ ≤ sNk ≤ ⌈Nsk⌉ if

∥∥pN(tk)− p(tk)∥∥∞ ≤ lkN ,

where sk = λ(tk − tk−1) is the scaled inter-speciation time.

Recall that for any two matrices X, Y ∈ Rn×n,

∥∥eX+Y − eX
∥∥ ≤ ∥Y ∥e∥X∥+∥Y ∥,

where ∥·∥ denotes an arbitrary matrix norm and it follows from that the exponential

map is continuous and Lipschitz continuous on compact subsets of the space of all n×n

matrices. Applying this fact on Q⊤
k with s, t ≥ 0, we have

∥∥exp ((s+ t)Q⊤
k

)
− exp

(
sQ⊤

k

)∥∥ ≤ t∥Qk∥e(s+t)∥Qk∥ (3.10)
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For Si ∈ Nk and s ≥ 0, by Cauchy–Schwarz inequality

∣∣(exp(−sQ⊤
k )(p

N(tk)− p(tk))i
∣∣ ≤ ∥∥(exp (−sQ⊤

k

))
i·
∥∥
2

∥∥pN(tk)− p(tk)∥∥2
≤
√
cn exp (s∥Qk∥2)

∥∥pN(tk)− p(tk)∥∥∞ (3.11)

For Si ∈ Nk \ Nk−1, we break
∣∣∣(exp (−(sk +N−1)Q⊤

k

)
pN(tk)

)
i

∣∣∣ into three pieces by as

following:

∣∣∣(exp (−(sk +N−1)Q⊤
k

)
(pN(tk)− p(tk)

)
i

∣∣∣+ ∣∣∣(exp (−skQ⊤
k

)
p(tk)

)
i

∣∣∣
+ cn

∥∥exp (−(sk +N−1)Q⊤
k

)
− exp

(
−skQ⊤

k

)∥∥
∞
∥∥p(tk)∥∥∞

where the first term is controlled by (3.11), the second term equals (p(tk−1))i which is 0

since Si /∈ Nk−1 and the last term is controlled by 3.10.

≤
√
cne

(sk+N
−1)∥Qk∥2

∥∥pN(tk)− p(tk)∥∥∞ + (p(tk−1))i +
cn
N
∥Qk∥∞e

(sk+N
−1)∥Qk∥∞

≤ 2
√
cne

(sk+N
−1)∥Qk∥2

∥∥pN(tk)− p(tk)∥∥∞
< 2
√
cne

(sk+N
−1)∥Qk∥2 · lkN

< lk−1
N

which implies sNk /N ≤ sk + 1/N , provided N is sufficiently large.

By Claim 3 with gN = lk−1
N and e−sQkesQk = I, for m < N(sk − lk−1

N ) =

Nλ(tk − tk−1 − lk−1
N /λ), Si ∈ Nk

∣∣∣(exp(−m
N
Q⊤
k

)
p(tk)

)
i

∣∣∣ = ∣∣∣(exp((λ(tk − tk−1)−
m

N

)
Q⊤
k

)
p(tk−1)

)
i

∣∣∣
≥

 Cp0 if Si ∈ Nk−1

Cp0l
k−1
N if Si ∈ Nk \ Nk−1

≥ Cp0g
k−1
N
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Then

∣∣∣(exp(−m
N
Q⊤
k )p

N

k

)
i

∣∣∣ ≥ ∣∣∣(exp(−mQ⊤
k )p(tk)

)
i

∣∣∣
−
∣∣∣(exp(−mQ⊤

k )(p
N(tk)− p(tk)

)
i

∣∣∣
≥ Cp0g

k−1
N −

√
cn exp (sk∥Qk∥2)

∥∥pN(tk)− p(tk)∥∥∞
≥ Cp0g

k−1
N −

√
cn exp (sk∥Qk∥2) l

k
N

≥ Cp0g
k−1
N /2

which implies sNk ≥ ⌊N(sk − gk−1
N )⌋, for N sufficiently large. And we have the following

recursive relation,

∥∥∥qN
k−1
− p(tk−1)

∥∥∥
∞

=
∥∥∥exp [−sNk Q⊤

k

]
pN
k
− exp

[
−skQ⊤

k

]
p(tk)

∥∥∥
∞

≤
∥∥∥(exp [−sNk Q⊤

k

]
− exp

[
−skQ⊤

k

])
pN
k

∥∥∥
∞

+
∥∥∥exp [−skQ⊤

k

] (
pN
k
− p(tk)

)∥∥∥
∞

≤ |sNk /N − sk|∥Qk∥ exp(sk∥Qk∥)

+
√
cn exp (λ(tk − tk−1)∥Qk∥2)

∥∥pN(tk)− p(tk)∥∥∞
≤ 2gk−1

N ∥Qk∥ exp(sk∥Qk∥)

≤ lk−1
N

■

With N sampled gene trees. Now, we can prove Theorem 3.2.1 by applying Claim 1 and

Claim 2 recursively by levels backward in time. Following the Algorithm 4, it stops as

|L| = 2, then we can conclude that there is a unique element in N and it is isomorphic

to Ts under a leaf-labelled isomorphism.
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3.4.1 Proof of Theorem 3.2.3

If we run the process backward in time and take the length of leaf edges arbitrary large,

it can be viewed as a coalescence process. We recall the known result for the Yule model

(see e.g [SM01]) in Claim 5. We will show it indeed is the stationary distribution with

arbitrary long leaf edges for LGT process.

Claim 5 (Stationary distribution for Yule model). Let T be a rooted phylogenetic tree

with n labeled leaves and let PY (T ) denotes the probability of generating T under the

Yule model.

PY (T ) =
2n−1

n!

∏
v∈V̊i

n−1
v ,

where V̊ is the set of interior vertices of T . For each v ∈ V̊ , let nv denotes the number

of elements of V̊ that are descendants of v(including itself).

Proof of Theorem 3.2.3. We first consider the LGT process on ranked binary tree with n

labeled leaves, i.e the binary trees with ordering interior vertices. This process can also

be viewed as a Markov Chain M̃n
t on the extended graph space G̃ = {S̃i} with generator

matrix λQ̃k, where G̃ containing all ranked binary trees and |G̃| = n!(n− 1)!/2(n−1) (see

e.g [SM01]). On the leaf level t ∈ (tK−1, tK ], supp(M̃
n
t ) = G̃ and on each state S̃i, all

leaf edges are the active edges {Ei} defined in (3.4). The generator matrix is defined as

(Q̃K)ij =



∣∣∣{(er, ed) ∈ E2
i : S̃j

∼= S̃i[σ(er, ed)]
}∣∣∣ if j ̸= i,

−
∑

l ̸=i(Q̃K)il if j = i,

0 others,
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where the transfer events σ(er, ed) are defined below Definition 6.

In Claim 6, we show the LGT process on ranked binary tree tends to a uniform

distribution with long enough leaf edges. Then we are done by considering the projected

process over unranked trees and recalling the number of ranked functions of Si is

(n − 1)!
∏

v∈V̊i n
−1
v (see e.g [SM01]), where V̊ is the set of interior vertices of Si and

nv denotes the number of elements of V̊ that are descendants of v(including itself), for

each v ∈ V̊ .

Claim 6 (Stationary distribution on ranked binary trees). The process M̃t is uniformly

distributed on G̃ with arbitrary long leaf edges, that is

2n−1

n!(n− 1)!
1⊤Q̃K = 0

where 1 is the n!(n− 1)!/2n−1 dimensional one vector.

Proof of Claim: On the leaf level t ∈ (tK−1, tK ], supp(M̃
n
t ) = G̃ and on each state S̃i,

all leaf edges are active {Ei} defined in (3.4). It is equivalent to show that

−Q̃K(i, i) =
∑
j ̸=i

Q̃K(j, i), for all i.

By performing an SPR between n leaf edges over Si, there are n choices of cut edge

and each has n − 1 possible edges to which the subtree will be regrafted. If the edge

to which the subtree will be regrafted is adjacent to the cut edge, the SPR returns the

same ranked tree. We show

−Q̃K(i, i) =
∑
j ̸=i

Q̃K(i, j) = n(n− 1)− 2.
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We observe that for all pairs (i, j),

Q̃K(j, i) :=
∣∣∣{(er, ed) ∈ E2

j : S̃i
∼= S̃j[σ(er, ed)]

}∣∣∣ ≤ 2.

Since Sj is leafsomorphic to the ranked binary tree Si after applying a SPR between a

pair of leaf edges, there are at most 2 possible choices of cut edges over Sj.

In the case that the regrafted edge is separated by exactly one edge from the cut

edge, i.e Sj are different with Si only on one triplet up to a leaves labeled isomorphism,

Q̃K(j, i) = 2.

There are 3 different topologies for a rooted triplet, thus

|{j ̸= i : Q̃K(j, i) = 2}| = 2.

For other cases that {j ̸= i : Q̃K(j, i) = 1}, there are 2 choices of cut edges and each can

come from
∑n−2

k=2 k possible segments between neighboring {x ∈ Xs : t(x) ∈ {ti}Ki=0},

where
∑n−2

k=2 k comes from the possible ordering of internal vertices and {ti}Ki=0 are

speciation times. If the edge to which the subtree will be regrafted is adjacent to the

cut edge, the SPR returns the same ranked tree. We can conclude that

∑
j ̸=i

Q̃K(j, i) = 2

(
n−2∑
k=2

k − 2

)
+ 2 · 2 = n(n− 1)− 2.

■
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3.5 Reconstructing the species phylogeny with

pairwise distances on gene trees

In this section, we provide the proof of Theorem 3.2.4. We assume that N independent

gene trees Tg1 , · · · , TgN , corresponding to homologous genes g1, · · · , gN , were generated

according to the process of Definition 6. The main idea is identifying the pairwise

distances {ds(u, v)}u,v∈L on the phylogeny Ts by the property of continuous-time Poisson

process, and then reconstructing Ts by single-linkage clustering.

Let D := {ds(u, v) : u, v ∈ L} be the collection of all pairwise distances between

leaves on the phylogeny. Recall the multi-nodes metric

d(a1, a2, · · · , am) :=
(
d(a1, a2), · · · , d(a1, am), d(a2, a3), · · · , d(an−1, am)

)
,

We define

d(L) := d(1, 2, · · · , n) ∈ Rn(n−1)/2.

On each gene tree Tg generated under the process of Definition 6, for each pair

u, v ∈ L, we show the pairwise distances of leaves dg(u, v) = ds(u, v) with positive

probabilities in Claim 7; we show the pairwise distances of leaves dg(u, v) = k /∈ D

with probability 0 in Claim 8; then we show ds(L) can be approximated by the mode of

{dgi(L)}Ni=1 in Claim 9.

Claim 7 (Positive probability distances). For a gene tree Tg generated under the process

in Definition 6,

puv := P
[
dg(u, v) = ds(u, v)

]
∈ (0, 1)
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for all pairs u, v ∈ L. Moreover,

pL := P
[
dg(L) = ds(L)

]
= Θ(e−n).

Proof of Claim: Fix u, v ∈ L, under the process in Definition 6, if there exists LGT

transfer event σ = (x, y) with recipient location x ∈ Xs and donor location y ∈ Xs, such

that {x, y} ∈ p(u, v) on the path between u and v, then

dg(u, v) ̸= ds(u, v).

Therefore, we get

P [dg(u, v) = ds(u, v)] = P [ No LGT recipient locations on p(u, v)]

=
∏

e∈p(u,v)
P [ No LGT recipient locations on edge e]

=
∏

e=(x,y)∈p(u,v)
exp

[
−
∫ max{t(x),t(y)}

min{t(x),t(y)}
λ(z)dz

]

= exp

 ∑
e=(x,y)∈p(u,v)

−
∫ max{t(x),t(y)}

min{t(x),t(y)}
λ(z)dz


≥ exp

[
− λ̄
µ
ds(u, v)

]
∈ (0, 1)

Considering all pairs of leaves on Ts,

P [dg(L) = ds(L)] = P [ No LGT transfer events ] = e−
∑

e∈Es
Λ(e) = Θ(e−n)

where we use |Es| = Θ(n). ■

Claim 8 (Zero probability distances). For a gene tree Tg generated under the process
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in Definition 6,

P
[
dg(u, v) = k] = 0 for all k /∈ D

for all pairs u, v ∈ L.

Proof of Claim: Under the process in Definition 6, we pick recipient locations according

to a continuous-time Poisson process with Λ(e) on each branch e ∈ Ts starting from the

root. Fix k /∈ D and u, v ∈ L, dg(u, v) = k, there exists LGT transfer with recipient

location x ∈ Xs, such that ds(u, x) = k/2 or ds(v, x) = k/2. Thus

P
[
dg(u, v) = k] ≤ P

[
ds(u, x) = k/2

]
+ P

[
ds(v, x) = k/2

]
= 0.

■

Claim 9 (Majority vote). For any ε > 0, there exists N = Ω(en) large enough, such

that with probability at least 1− ε,

Modei=1,··· ,N dgi(L) = ds(L).

We denote this event as E .

Proof of Claim: On each gene tree Tgi that is independently generated under

the process in Definition 6, the event {dgi(L) = ds(L)} happens independently with

probability pL defined in Claim 7. By Hoeffding’s inequality,

P

[
1

N

N∑
i=1

1{dgi (L)=ds(L)} − pL < −
√

logN

N

]
≤ exp

−2N [−√ logN

N

]2
= N−2
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For the noise distances, by Claim 8,

P

[
∃ d ̸= ds(L),

N∑
i=1

1{dgi (L)=d} > 2

]
≤ P

[
∃ i ̸= j, dgi(L) = dgj(L) ̸= ds(L)

]
≤ N2P [dg1(L) = dg2(L) ̸= ds(L)]

= N2P [∃u, v ∈ L, dg1(u, v) = dg2(u, v) /∈ D]

≤ N2n2P [dg1(1, 2) = dg2(1, 2) /∈ D]

= N2n2P [P [dg1(1, 2) = k | dg2(1, 2) = k /∈ D]]

= 0

Thus we can conclude
∑N

i=1 1{dgi (L)=d} ≤ 2 simultaneously for all d ̸= ds(L).

For any ε > 0, taking N = Ω(en) large enough, with probability at least 1− ε,

N∑
i=1

1{dgi (L)=ds(L)} −
N∑
i=1

1{dgi (L)=d} > NpL −
√
N logN − 2 > 0

simultaneously for all d ∈ Rn(n−1)/2. We finish the proof and clearly the Mode here is

uniquely defined. ■

Proof of Theorem 3.2.4. Let

d̂(u, v) = Modei=1,··· ,N {dgi(L)} |(u,v), (3.12)

d̂(A,B) = min
a∈A,b∈B

d̂(a, b), A,B ⊂ L,A ∩B = ∅. (3.13)

{d̂} is well-defined by Claim 9 and condition on event E , we reconstruct the topology of

species phylogeny Ts use the single-linkage clustering as following:

1. Let L = {{u} : u = [n]}, set d̂ as in (3.12) and let T{u} be the tree composed of
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only u, for all u ∈ [n].

2. Until L = {[n]}:

(a) Let A,B be two clusters in L achieving the minimum d̂−distance in (3.13).

(b) Base on TA with root rA and TB with root rB, we construct the tree TA∪B by

introducing a new root node rA∪B and two edges d(rA∪B, rA) = d(rA∪B, rB) =

1
2
d̂(A,B) to {TA ∪ TB}.

(c) Update L by removing A, B and adding A ∪B.
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Chapter 4

Inference the phylogeny from

multi-loci using fmulti-sites

4.1 Introduction

Estimating the common evolutionary history of n species using sequential data from

multiple genes or loci is a fundamental question in modern phylogenomics. The

increasing availability of genomic-scale datasets of many aligned gene sequences has

made clear that the phylogenetic trees inferred for individual genes often differ from one

another [Pol+06; GD08; Cra+09; Nak13]. Although gene tree discordance might be due

to errors in gene tree inference, there are also important biological processes that can

cause it, which should be taken into account through appropriate modeling.

One well-recognized source of gene tree conflict is incomplete lineage sorting and

it was studied in the multispecies coalescent (MSC) model [PN88][RY03], combined with

standard models of sequence evolution by base substitutions. Under the multispecies

coalescent model, the identifiability of phylogeny was studied in [DNR14][CK15][ALR19].

We provide a simpler method than [CK15] and [ALR19] by avoiding the detailed

computation of site pattern probabilities. We improve the idea in [DNR14] by using

the symmetric property of MSC between lineages, and we also allow the different rates

across the loci which is not held in Metal[DNR14].
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This chapter aims to show that the phylogenetic tree inference from multi-

loci will be simplified with multiple independent sites per gene. Under the Jukes-

Cantor substitution model, using two independent sites per locus, one can construct

the estimator from sequential data to detect the correct quartets. Then the whole

phylogeny can be constructed from any quartets-based algorithm like the Dyadic Closure

Method (DCM) in[Erd+99]. In general time reversible model(GTR), we propose a more

general estimator using the determinant of site-pattern frequency matrix. The site-

pattern frequency matrix can be estimated from k independent sites per locus, where k

represents the number of state under substitution model.

This chapter is organized as follows: In section 4.2.1, we start with an example

of phylogeny inference under identical tree mixture model. Section 4.2.2 provides the

idenfiability result under MSC, combined with standard sequence evolution model Jukes-

Cantor. In section 4.2.3, we show the idenfiability result under general time-reversible

(GTR) substitution model, using the determinants of transition matrices. In section 4.3,

we extend the identifiability result to level-1 network by using the same estimator.

4.2 Phylogenetic inference under mixture of Gene

trees

Definition 10 (Species tree (Phylogeny)). A species tree T = (V,E; r, τ) is a directed

binary tree rooted at r and n labelled leaves L = [n] = {1, 2, · · · , n}. Each edge are

assigned inter-speciation times τ : E → (0,+∞). T = (V,E) be the topology of T after

suppressing the root.

We say the species tree T is identifiable if we can infer its topology T from the

distribution of gene trees (or its topologies) under a leaf-label respecting isomorphism.



102

In this chapter, we aim to show the identifiability of species tree T , moreover, we

can infer the phylogeny from multiple loci with multiple independent sites, that is, to

learn the structure T = (V,E) given the data {X⃗ij}i∈[N ],j∈[2m] which is an n×N × 2m

array composed of k states in substitution model with state space S (e.g. S = {0, 1}

under two-state symmetric model or S = {A,C,G, T} under Jukes-Cantor model), where

{Xij}j∈[m] is the data generated from the random gene tree G(i).

4.2.1 Phylogeny inference under identical tree mixture model

Masten & Steel [MS07] shows the non-identifiability under the two-state symmetric

model from multi-genes with one site per locus, that is, we are unable to identify the

structure of T if mixing the random gene tree {G(i)}i∈[N ] generated from the two-state

symmetric model with different scaled branch lengths. However, this problem can be

solved by introducing two sites per locus, that is, T is identifiable if there are at least

two independent sites per locus.

Identical tree mixtures of the two-state symmetric substitution model

We first introduce the two-state symmetric model or the Cavender-Farris-Neyman (CFN)

model given the fixed species tree T = (V,E, τ). Each vertices v ∈ V is assigned with

a binary random variables 0 or 1 and each edge is e ∈ E is assigned with a weight

pe ∈ [0, 1
2
]. The descendent vertex is assigned to different states with its parent vertex

with probability pe if these two vertices are connected by a directed edge e ∈ E.

Next, we introduce the r-component identical tree mixtures of the two-state

symmetric substitution model on n-leaf binary species trees T = (T1, · · · , Tr) with

mixing vector π = (π1, · · · , πr), where
∑r

i=1 πi = 1 and Ti has the same topology with

T for all i.

The sequence data with multiple independent sites per locus is generated as
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follows: for each locus, we first sample a class i from the distribution π; then for each

site, the bases for each x ∈ L are sampled under the two-state symmetric substitution

model independently on phylogenetic tree Ti.

In this chapter, we discuss the identifiability using two independent sites per

locus. Suppose there are at least 2m independent sites per locus (m ≥ 1) with an

arbitrary ordering, we first split the sites evenly into two groups M1 and M2 such that

|M1| = |M2| = m(e.g by even or odd), then we consider the pairs j = (j1, j2) ∈M1×M2

where j1, j2 are in increasing order. For fixed gene G(i), we define

σ̂xyij =

 1 if X x
ij = X

y
ij,

−1 if X x
ij ̸= X

y
ij,

j = {1, 2, · · · ,m}, x, y ∈ L,

which can be viewed as an indicator of the agreement over taxa x and y at the site j of

loci i. σ̂xyij ≡ 1, if x = y ∈ L.

We construct the estimator over two sites as follows: for every two pairs of leaves

(x, y), (z, w) ∈ L2,

l̂(x, y; z, w) = − 1

mN

N∑
i=1

∑
(j1,j2)

σ̂xyij1σ̂
zw
ij2
. (4.1)

Observe that all gene trees generated under the two-state symmetric model are

same distributed, thus same for {σ̂i·}. For simplicity, we denote the common random

variable as {σ̂·} after suppressing the subscript i. We define the following idealized

version of l̂,

l(x, y; z, w) = − [E (σ̂xy1 σ̂
zw
2 )] . (4.2)
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We aim to show the structure of phylogeny T is identifiable from l. Firstly, we

define the following four points test, which is a modified version of the classic four points

condition (see [Bun74]) for two independent sites per locus.

Definition 11 (Split-equivalent Function). We say function f on L4 is a Split-

equivalent Function if it satisfies the following conditions: for all x, y, z, w ∈ L(not

necessary distinct),

1. (interchangeability)

f(x, y; z, w) = f(y, x; z, w) = f(x, y;w, z) = f(z, w;x, y);

2. (Nonnegative) f(x, y; z, w) ≥ max{f(x, x; z, w), f(x, y; z, z)} ≥ 0 and the equality

holds if and only if x = y and z = w;

Definition 12 (Four-point Condition(4FC)). We say a Split-equivalent function f

satisfies the four points condition with respect to T if for any four taxon x, y, z, w ∈ L,

two of the three terms in the following list are equal and greater than the third:

f(w, x; y, z), f(w, y;x, z), f(w, z;x, y).

That is, suppose the leaves w, x, y, z ∈ L are such that either ((w, x), (y, z)) or

(((w, x), y), z) holds on T , then

f(w, x; y, z) < f(w, y;x, z) = f(w, z;x, y).

Next, Theorem 4.2.1 shows that T is identifiable from the collection of all

restricted subtrees S with |S| ≤ 4.
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Theorem 4.2.1 (Quartet theorem [SS+03]). Let T , T ′ be two phylogenies with same

leaves L, then T , T ′ are isomorphic if and only if T |S, T ′|S are isomorphic for all S ⊂ L

with |S| ≤ 4.

Since all unrooted trees with a size less than 4 are isomorphic (see [SS+03]),

it suffices to check quartets only. We show in Theorem 4.2.2 that we can identify all

restricted subtrees with size 4 from l, which implies the phylogeny T is identifiable from

Split-equivalent function l.

Theorem 4.2.2 (4PC). l is a Split-equivalent function and it satisfies the Four points

condition with respect to T .

Theorem 4.2.2 also tells us that one can ignore the fact that there are different

rates across loci, then the gene tree estimated from this “concatenated molecular

sequence by groups” has the same topology as T .

In light of Theorem 4.2.2, we use any Quartets-based algorithm to reconstruct T

(like Dyadic Closure Method(DCM) in[Erd+99]).

Proof of Theorem 4.2.2. Suppose leaves A,B,C,D ∈ L are distinct and the topology of

T restricted to these leaves is ((A,B), (C,D)) or (((A,B), C), D), we want to check

f(A,B;C,D) < f(A,C;B,D) = f(A,D;B,C).

It is equivalent to show

E
(
σ̂AB1 σ̂CD2

)
> E

(
σ̂AC1 σ̂BD2

)
= E

(
σ̂AD1 σ̂BC2

)
. (4.3)

Recall the following properties of two-state symmetric model (see [Ney71]),
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G|{A,B,C,D} and T |{A,B,C,D} are isomorphic. Condition on a fixed gene tree G,

we have

P(σ̂xyj = ±1|G) = 1± e−2dG(x,y)

2
, E(σ̂xyj |G) = e−2dG(x,y), j = 1, 2,

where dG(x, y) =
∑

e∈path(x,y;G) µeτe represents the scaled length between taxa x and y

on gene tree G.

Applying total expectations, we have

E(σ̂xy1 σ̂zw2 ) = E (E (σ̂xy1 σ̂
zw
2 |G))

= E (E (σ̂xy1 |G)E (σ̂zw2 |G))

= E
(
e−2dG(x,y)−2dG(z,w)

)
(4.4)

for any (x, y), (z, w) ∈ L2, where the second equality holds by the independence of two

sites.

First, we show the inequality part in equation (4.3). Applying (4.4) on pairs

(A,B), (C,D) and pairs (A,C), (B,D), we have

E(σ̂AB1 σ̂CD2 ) = E
(
e−2dG(A,B)−2dG(C,D)

)
> E

(
e−2dG(A,C)−2dG(B,D)

)
= E(σ̂AC1 σ̂BD2 )

where the inequality follows from the four points condition, that is, dG(A,B) +

dG(C,D) < dG(A,C) + dG(B,D), since the restricted subtree on G has the structure

((A,B), (C,D)) or (((A,B), C), D).

Next, We show the equality part in equation (4.3). Applying (4.4) on pairs
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(A,D), (B,C) and pairs (A,C), (B,D), we have

E(σ̂AC1 σ̂BD2 ) = E
(
e−2dG(A,C)−2dG(B,D)

)
= E

(
e−2dG(A,D)−2dG(B,C)

)
= E(σ̂AD1 σ̂BC2 ).

where we apply the four points condition on G, that is, dG(A,D) + dG(B,C) =

dG(A,C) + dG(B,D).

4.2.2 Phylogenetic inference under multispecies coalescent

In this section, we consider the identifiability from more complicate gene tree structures

caused by multispecies coalescent which models the gene tree incongruence from

population level.

Multispecies coalescent model

Multispecies Coalescent(MSC) model provides a framework for inferring species

phylogeny while accounting for ancestral polymorphism and gene tree-species tree

conflict, which is also referred as Incomplete Lineage Sorting(ILS).

Consider a species tree T = (V,E; r, τ) with n leaves. The branch lengths {τe}e∈E
are expressed in ”coalescent time units”. The species tree topology, T , is an unknown

parameter in a distribution D(T ) 1. We have N i.i.d. realizations of D(T ). These

realizations are referred to as gene trees, and are created by the following process:

The coalescence of any two branches is distributed as Exp(1), independently from

1D is the probability distribution governing the MSC
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all other pairs of branches. When two branches merge in the species tree, we assume

the lineages of the corresponding populations also merge. The genes are assumed to be

unlinked.

The realization of this model for N independent genes is

N∏
j=1

∏
e∈E

exp

(
−
(
Oe
j

2

)
pmaxγ

e,Oe
j+1

j − γe,O
e
j

j

)
×

Iej−Oe
j∏

l=1

exp

(
−
(
l

2

)
pmaxγ

e,l
j − γ

e,l−1
j

)

where for gene j and branch e, Iej is the number of lineages entering e, Oe
j is the number

of lineages exiting e, and γe,lj is the lth coalescence time in e.

Identifiability results under multispecies coalescent

Recall the following classic metric on Jukes-Cantor(JC) substitution model (see e.g ,

[SS+03],[DNR14] ).

Definition 13 (Tree metric for Jukes-Cantor model). Given a species tree T , we define

the dissimilarity

dT (x, y) = −
3

4
log

(
1− 4

3
E[p̂xy]

)
, for x, y ∈ L.

If there are at least 2m (m ≥ 1) independent sites per locus, the classic empirical

measure on leaves L is given by

p̂xy =
1

2mN

∑
i∈[N ],j∈[2m]

1{Xx
ij ̸=X y

ij}, x, y ∈ L,

which can be thought of as the normalized hamming distance between the concatenated

molecular sequences corresponding to taxon x and y.
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Following the same construction in section 4.2.1, we first split the 2m sites evenly

into two groups with m ≥ 1. We introduce the estimator ĤJC which is inspired by tree

metric in Definition 13. For every two pairs of leaves (x, y), (z, w) ∈ L2,

ĤJC (x, y; z, w) := − 1

mN

N∑
i=1

∑
(j1,j2)

[
1− 4

3
1{Xx

ij1
̸=X y

ij1
}

] [
1− 4

3
1{X z

ij2
̸=Xw

ij2
}

]
.

By Theorem 4.2.1, it suffices to show its idealized version HJC satisfies the Four

points condition.

HJC (x, y; z, w) = −E
[
e−

4
3
[dG(x,y)+dG(z,w)]

]
where dG(x, y) is the distance between x and y on G and E is the expectation respect

to the gene trees.

Lemma 4.2.1. For all (x, y), (z, w) ∈ L2, we have

HJC (x, y; z, w) = EĤJC (x, y; z, w)

Proof of Lemma 4.2.1. Applying total expectation and by the independence between

sites, we have

HJC (x, y; z, w) = −E
[
ĤJC (x, y; z, w)

]
= −E

[
E
[[

1− 4

3
1{Xx

ij1
̸=X y

ij1
}

] [
1− 4

3
1{X z

ij2
̸=Xw

ij2
}

]
|G
]]

= −E
[
E
[
1− 4

3
1{Xx

ij1
̸=X y

ij1
}|G
] [

1− 4

3
1{X z

ij2
̸=Xw

ij2
}|G
]]

= −E
[
e−

4
3
(dG(x,y)+dG(z,w))

]
where dG(x, y) =

∑
e∈path(x,y;G) µeτe represents the scaled length between taxa x and y
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on gene tree G.

Theorem 4.2.3 (4PT under MSC). HJC is a Four-taxon function and it satisfies the

Four points condition respect to the phylogeny T under the MSC.

Figure 4.1: two possible tree topologies of T4

Lemma 4.2.2 (Symmetric case). Suppose distinct four leaves x, y, z, w ∈ L that form

a tree T4 such that ((x, y)(z, w)) with respect to T (Fig 4.1 (a)), then

E
[
eα·[dG(x,y)+dG(z,w)]

]
> E

[
eα·[dG(x,z)+dG(y,w)]

]
.

where constant α < 0.

Proof of Lemma 4.2.2. Let o1, o2, and o3 be the common ancestors of (x, y), (z, w) and

(x, z) respectively. Let E1 be the event that at least two lineages corresponding to x,

y, z and w coalesce in the segment (o1, o3) or (o2, o3) of the tree and let E1 be the

event that this does not occur. From now on, for vertices u, v ∈ T4, let µuv denotes∑
e∈path(u,v;T4) µeτe.

Observe that on event E1, the gene tree G has the correct unrooted species tree

topology, thus four points condition dG(x, y) + dG(z, w) < dG(x, z) + dG(y, w) implies

E
[
eαdG(x,y)+αdG(z,w) − eαdG(x,z)+αdG(y,w)|E1

]
> 0 (4.5)
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with alpha < 0.

Applying total expectation, we have

E
[
eα[dG(x,y)+dG(z,w)]

]
=E

[
eαdG(x,y)+αdG(z,w)|E1

]
P(E1) + E

[
eαdG(x,y)+αdG(z,w)|E1

]
P(E1)

=E
[
eαdG(x,y)+αdG(z,w) − eαdG(x,z)+αdG(y,w)|E1

]
P(E1)

+ E
[
eαdG(x,z)+αdG(y,w)|E1

]
P(E1) + E

[
eαdG(x,y)+αdG(z,w)|E1

]
P(E1)

>E
[
eαdG(x,z)+αdG(y,w)|E1

]
P(E1) + E

[
eαdG(x,z)+αdG(y,w)|E1

]
P(E1)

=E
[
eα[dG(x,z)+dG(y,w)]

]
(4.6)

where the second equality holds by linearity, and the inequality follows from (4.5) and

the fact that on E1 one always get

dG(x, y) + dG(z, w)
dist
= dG(x, z) + dG(y, w)

since they both equal to the sum µxo1 + µyo1 + µzo2 + µwo2 plus a term that depends

on the gene tree topology above the root o3, but that last one is symmetric in the leaf

labels.

Lemma 4.2.3 (Asymmetric case). Suppose distinct four leaves x, y, z, w ∈ L that form

a tree T4 such that (((x, y), z), w) with respect to T (Fig 4.1 (b)), then

E
[
eα·[dG(x,y)+dG(z,w)]

]
> E

[
eα·[dG(x,z)+dG(y,w)]

]
.

where constant α < 0.

Proof of Lemma 4.2.3. We write o1, o2, o3 to denote the most recent common ancestors
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of (x, y), (x, z) and (x,w) respectively. In this case, we let E2 denote the event that the

lineages corresponding to x and y coalesce in the branch (o1, o2) in Fig 4.1.

Similar to balance case, observe that on event E2, the gene tree G has the

correct unrooted species tree topology, thus four points condition dG(x, y) + dG(z, w) <

dG(x, z) + dG(y, w) further implies

E
[
eαdG(x,y)+αdG(z,w) − eαdG(x,z)+αdG(y,w)|E2

]
> 0 (4.7)

with α < 0.

Again, applying total expectation, we have

E
[
eα[dG(x,y)+dG(z,w)]

]
=E

[
eαdG(x,y)+αdG(z,w)|E2

]
P(E2) + E

[
eαdG(x,y)+αdG(z,w)|E2

]
P(E2)

=E
[
eαdG(x,y)+αdG(z,w) − eαdG(x,z)+αdG(y,w)|E2

]
P(E2)

+ E
[
eαdG(x,z)+αdG(y,w)|E2

]
P(E2) + E

[
eαdG(x,y)+αdG(z,w)|E2

]
P(E2)

>E
[
eαdG(x,z)+αdG(y,w)|E2

]
P(E2) + E

[
eαdG(x,z)+αdG(y,w)|E2

]
P(E2)

=E
[
eα[dG(x,z)+dG(y,w)]

]
(4.8)

where the inequality follows from (4.7) and the fact that on event E2 we always get

dG(x, y) + dG(z, w)
dist
= dG(x, z) + dG(y, w)

since they both equal to the sum µxo1 +µyo1 +µzo2 +µwo3 +2µo1o2 +µo2o3 plus two terms

that depend on the gene tree topology above the vertex o2, but these last two are both

symmetric in the leaf labels.
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Proof of Theorem 4.2.3. We first show that for any distinct four leaves x, y, z, w ∈ L

that form a tree T4 such that either ((x, y)(z, w)) or (((x, y), z), w) with respect to T ,

then

HJC ((x, z), (y, w)) > HJC ((x, y), (z, w)) .

It follows from Lemma 4.2.2 and Lemma 4.2.3 with constant α = −4
3
.

Using similar techniques, we will next establish that

HJC ((x,w), (y, z)) = HJC ((x, z), (y, w)) .

It follows from the fact that in both cases ((x, y)(z, w)) and (((x, y), z), w) in Fig. 4.1,

exchanging the closest taxon y and x has no affect on the distribution of gene tree under

MSC, which is symmetric in the leaf labels, and by four points condition

dG(x, z) + dG(y, w)
dist
= dG(x,w) + dG(y, z).

This concludes the proof.

Next, we show the 4PC also holds after considering different rate across loci to

the model. Let {λG} ∈ R+ be a random scaling parameters assigned to each sampled

gene tree G with density function f , that is,

H̃JC (x, y; z, w) = −E
[∫

e−
4
3
λG[dG(x,y)+dG(z,w)]df(λG)

]
(4.9)

Corollary 4.2.1. H̃JC satisfies the four points condition in Definition 12 with respect

to T .
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4.2.3 Phylogenetic Inference with Determinants

For modeling the evolution of sequences composed of k bases, we use a continuous-time

Markov process, with a k × k instantaneous rate matrix Q such that the off-diagonal

entries of Q are nonnegative, the rows of Q sum to 0, and Q has stationary distribution

π, with positive entries and πQ = 0.

In this section, we consider the identifiablity on this general Markov model with

estimator with determinant (see [Ste94a]).

Definition 14 (logDet distance). Let F̂G,xy be a k × k matrix of empirical site-pattern

frequencies, obtained by normalizing the site pattern count matrix for x, y ∈ L, so that

its entries sum to 1.

dG(x, y) = − ln
[∣∣∣det(F̂G,xy)∣∣∣] .

Suppose there are at least 2km independent sites per loci (m ≥ 1) with

an arbitrary ordering, we first split the sites evenly into two groups M1,M2, such

that |M1| = |M2| = km, then we consider the pairs (l1, l2) ⊂ M1 × M2, where{
li = (l

(1)
i , · · · , l(k)i )

}m
p=1

forms a equal size partition of Mi, i = 1, 2.

Next, we introduce the estimator Ĥdet over 2 pairs of leaves (x, y), (w, z) ∈ L2 as

Ĥdet ((x, y), (z, w)) := − 1

mN

N∑
i=1

∑
(l1,l2)

[
det
(
F̂ xy
Gil1

F̂ zw
Gil2

)]
,

where F̂ xy
Gil

is k × k matrix of empirical site-pattern frequencies between x and y from l

sites on loci Gi, that is,

F̂ xy
Gil1

:=
[
f̂xyGil1

(α, β)
]
αβ

=
[
1{X x

iloα1
= α,X y

iloα1
= β}

]
αβ
,
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F̂ zw
Gil2

:=
[
f̂ zwGil2

(α, β)
]
αβ

=
[
1{X x

iloα2
= α,X y

iloα2
= β}

]
αβ
,

where o : S → [k] is a natural ordering of S, for example, oA = 1, oC = 2, oG = 3, oT = 4

in JC model.

Note that for all k × k matrix P, we can estimate its determinant as following

det(P) =
∑
σ∈Sk

sgn(σ)
k∏

u=1

(P)uσu , (4.10)

where Sk is the collection of all permutation on [k] and σu := σ(u), u ∈ [k].

Remark. By the independence between sites, the expression of determinants in (4.10)

under expectation can be rewritten as the product of expectation by construction of F̂ ·
Gi

since we pick the same site o(α) on entry (α, β). In this construction, the estimator

depends only on 2k independent sites per locus instead of 2k2 sites if naively picking

different sites on all entries.

Since all loci are generated independently, we consider the idealized version of

Hdet, that is

Hdet ((x, y), (z, w)) := −E
[
det(F̂ xy

G F̂ zw
G )
]

(4.11)

where E is the expectation respect to the gene trees and F̂G,· is defined with a random

gene tree G and its random 2k sites.

The general time reversible(GTR) model includes the additional assumption that

diag(π)Q is symmetric. At the root of a gene tree, sites in the ancestral sequence have

bases chosen independently with distribution π.

Theorem 4.2.4 (4PC under GTR). Hdet is a Split-equivalent function and it satisfies
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the Four points condition respect to the phylogeny T .

Before the proof, we introduce some properties of GTR model (see [ALR19]).

Lemma 4.2.4 (lemma 2.2 [ALR19]). Let Q be a GTR rate matrix with stationary

distribution π. Then Q = SΛS−1, where S = diag(π)−1/2U for some orthogonal matrix

U , and Λ = diag(λ) with λ1 = 0, λi ≤ 0. If Q ̸= 0, then λi < 0 for some i.

For a vector v, we use exp(v) to denote the entrywise application of the

exponential function.

Lemma 4.2.5 (lemma 2.3 [ALR19]). Let Q = S diag(λ)S−1 be the diagonalization

of a GTR rate matrix, and let µ(t) be a scalar-valued rate function. Then the Markov

transition matrixM(x) =M(µ,Q, x) describing cumulative base substitutions with rate

µ(t)Q for t ∈ [0, x] is

M(x) = S diag (exp(s(x)λ))S−1,

where s(x) =
∫ x
0
µ(t)dt. Thus the pairwise pattern frequency array F = diag(π)M is

symmetric positive definite.

Proof of Theorem 4.2.4. Following the same idea in previous proof, we want to show

that for any distinct four leaves x, y, z, w ∈ L that form a tree T4 such that either

((x, y)(z, w)) or (((x, y), w), z) with respect to T , then

Hdet ((x,w), (y, z)) = Hdet ((x, z), (y, w)) > Hdet ((x, y), (z, w)) .
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By lemma 4.2.5, we have

E(F̂G,xy|G) = Sdiag(exp(λdG(x, y)))S
−1

where Q = Sdiag(λ)S−1 is the eigen decomposition of Q, λ = (λ1, · · · , λk) are the

eigenvalues of rate matrix Q and dG(x, y) =
∑

e∈path(G;x,y) µeτe is the rate scaled

distance between taxa x and y. Applying product property of determinant det(AB) =

det(A) det(B), det(S) = det(S−1) = 1 and trace identity det(eA) = etr(A), we have

det
(
E(F̂G,xy|G)

)
= exp

(
k∑
i=1

λidG(x, y)

)
(4.12)

Combining 4.12 with equation (4.10), we have

det(F̂G,xyF̂G,zw)

= det(F̂G,xy) det(F̂G,zw)

=

∑
σ1∈Sk

sgn(σ1)
k∏

u=1

(F̂G,xy)uσ1
u

∑
σ2∈Sk

sgn(σ2)
k∏
v=1

(F̂G,zw)vσ2
v


=
∑
σ1∈Sk

∑
σ2∈Sk

sgn(σ1)sgn(σ2)
k∏

u=1

k∏
v=1

f̂G,xy(u, σ
1
u)f̂G,zw(v, σ

2
v).

Applying total expectation, we have

E
[
det(F̂G,xyF̂G,zw)

]
= E

[
E
[
det(F̂G,xyF̂G,zw)|G

]]
= E

∑
σ1∈Sk

∑
σ2∈Sk

sgn(σ1)sgn(σ2)E

[
k∏

u=1

k∏
v=1

f̂G,xy(u, σ
1
u)f̂G,zw(v, σ

2
v)|G

]
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= E

∑
σ1∈Sk

∑
σ2∈Sk

sgn(σ1)sgn(σ2)
k∏

u=1

k∏
v=1

E
[
f̂G,xy(u, σ

1
u)f̂G,zw(v, σ

2
v)|G

]
= E

∑
σ1∈Sk

∑
σ2∈Sk

sgn(σ1)sgn(σ2)
k∏

u=1

k∏
v=1

E
[
f̂G,xy(u, σ

1
u)|G

]
E
[
f̂G,zw(v, σ

2
v)|G

]
= E

[
det
(
E
[
F̂G,xy|G

])
det
(
E
[
F̂G,zw|G

])]
= E

[
det
(
E
[
F̂G,xy|G

]
E
[
F̂G,zw|G

])]
= E

(
exp

(
k∑
i=1

λi[dG(x, y) + dG(z, w)]

))
(4.13)

where the second equality holds by linearity, the third and fourth equality hold by

independence between sites, and the last equality follows from equation (4.12) and

property det(AB) = det(A) det(B).

Applying equation (4.13) on pairs (xw; yz), (xz; yw) and (xy; zw), by lemma 4.2.2

and lemma 4.2.3 with the fact
∑k

c=1 λc < 0 by lemma 4.2.4, we have

E
[
det(F̂ xw

G F̂ yz
G )
]
= E

[
det(F̂ xz

G F̂ yw
G )
]
< E

[
det(F̂ xy

G F̂ zw
G )
]

We complete the proof after substituting back to Hdet.

Corollary 4.2.2 (4PC under MSC). Hdet is a Split-equivalent function and it satisfies

the Four points condition respect to the phylogeny T under MSC.

Next, we assign different rates across genes. Let {λG} ∈ R+ be a random scaling

parameters assigned to each sampled gene tree G ∈ G with density function f , that is,

H̃det (x, y; z, w) = −E
[∫

λG det(F̂ xy
G F̂ zw

G )df(λG)

]



119

Corollary 4.2.3. H̃det satisfies the Four points condition with respect to T .

4.3 Phylogenetic level-1 network inference

4.3.1 Definitions with level-1 networks

Definition 15 (Phylogenetic Network). A topological binary rooted phylogenetic

network N = (V,E, γ)(we will usually use ”network” or N for convenience) on labelled

leaves set VL(we also use X denote general leaves set) is a connected directed acyclic

graph, where V is set of all nodes, E is set of all edges, γ is hybrid rate map. We denote

r as the root. V = {r} ∪ VL ∪ VH ∪ Vtree is disjoint union,

1. The root r has indegree 0 and outdegree 2.

2. A leaf v ∈ VL has indegree 1 and outdegree 0.

3. A tree node v ∈ Vtree has indegree 1 and outdegree 2.

4. A hybrid node v ∈ VH has indegree 2 and outdegree 1.

5. A hybrid edge e ∈ EH is an edge whose child is a hybrid node.

For each pair of hybrid edges (e1, e2) which share same hybrid-node child, are

assigned hybridization parameters γ : EH → (0, 1) satisfying γ(e1) + γ(e2) = 1. We also

denote nL = |VL| and nH = |VH |. γ̄ = max
e∈EH

γ(e), γ = min
e∈EH

γ(e).

Definition 16 (Level-1 network). The phylogenetic network N is level-1 if no two cycles

share a vertex.

Definition 17 (LSA). For two nodes a, b in a rooted network N , we write a ≤ b and

say that a is above b if there is a directed path from a to b. We write a < b if a ≤ b



120

and a ̸= b. For a set of nodes W in a rooted network N , let D be the set of nodes that

lie on all paths from the root to the elements of W . The greatest element of D (i.e. the

node s ∈ D such that s ≥ t for all t ∈ D) is called the lowest stable ancestor of W , or

LSA(W ) [Ste16, p.263].

Definition 18 (semidirected network). A semidirected graph G− = (V,E) is a tuple

where V is the set of nodes, and E = ED ⊔ EU with a set ED of directed edges (also

referred to as hybrid edges) and a set EU of undirected edges (also referred to as tree

edges). ED consists of ordered pairs (a, b) where a, b ∈ V . In contrast, EU consists of

unordered pairs {a, b}, such that if {a, b} ∈ EU , then (a, b) ̸∈ ED, i.e. an edge cannot be

both directed and undirected.

Let (N+, f) be a rooted network on X. The topological semidirected phylogenetic

network induced from (N+, f) is a tuple (N−, f), where N− is the semidirected graph

obtained by:

1. removing all the edges and nodes above LSA(X);

2. undirecting all tree edges e ∈ ET , but keeping the direction of hybrid edges;

3. suppressing s = LSA(X) if it has degree 2: if s is incident to two tree edges, then

remove s and replace the two edges with a single undirected edge; if s is incident

to one tree edge and one hybrid edge, then remove s, and replace the two edges

by a directed edge with the same direction as the original hybrid edge.

For a semidirected graph M− with vertex set V and labelling function g : X → V ,

(M−, g) is a topological semidirected phylogenetic network if it is the semidirected

network induced from some rooted network.

Definition 19 (Mixed network). A mixed network is a semidirected graph where
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undirected edges are partitioned into two sets: tree edges ET and split edges ES; and

where ES is itself partitioned into a set of classes. When the graph is embedded in a

Euclidean space, split edges within the same class are represented as parallel segments.

A metric (ℓ, γ) on a mixed network M is such that ℓ : E → R≥0 assigns the same length

to all edges in the same class of split edges; and γ : E → [0, 1] assigns γ(e) = 1 if e is

undirected and γ(e) ∈ (0, 1) if e is directed.

4.3.2 Identifiability on level-1 Network

In this section, we want to show the identifiability result on level-1 Network by viewing

the distance on network as a linear combination of it on displayed trees.

Theorem 4.3.1 (Identifiability). Under NMSC, the mixed network N+ is identifiable

from dN1 , d
N
2 and HJC .

Before the proof, we first introduces split system we used in the proof.

Definition 20 (Generalized Isolation Index and f-splits). For f be a split-symmetric

function on L2 × L2. The generalized isolation index αf (S) of a split S = S1|S2

over L is given by

αf (S) = min{α̃f (x1, y1;x2, y2) : x1, y1 ∈ S1, x2, y2 ∈ S2}

where

α̃f (x1, y1;x2, y2) =
1

2
[max{f(x1, y1;x2, y2), f(x1, x2; y1, y2), f(x1, y2; y1, x2)}

−f(x1, y1;x2, y2)]

We say that S is a f-split if αf (S) > 0.

Let’s claim one of the most important results of this chapter, about the sign of
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f -splits in tree and network. Denote S̄ is the collection of all possible splits on L.

Lemma 4.3.1 (f-split on Tree). Let T to be a species tree with leaf set L and exists

split-symmetric function fT satisfies the 4PC w.r.t. T , then all fT -splits coincides with

ST , that is αfT (S) > 0, ∀S ∈ ST

αfT (S) = 0, ∀S ∈ S̄/ST
(4.14)

Proof. We first show αf (S) is positive, ∀S = S1|S2 ∈ S(T ). Picking arbitrary four

points x1, x2 ∈ S1 and y1, y2 ∈ S2 (not necessary distinct), both x1, x2 and y1, y2 are

sisters on restrict tree T |{x1,x2,y1,y2}, then f(x1, x2; y1, y2) < f(x1, y1;x2, y2) by 4PC, thus

α̃f (x1, x2|y1, y2) > 0 and αf (S) > 0 after taking minimum over all choices over S1 and

S2.

Next, we show αf (S) is zero, if S = S1|S2 /∈ S(T ). There exists x1, x2 ∈ S1 and

y1, y2 ∈ S2 such that x1, y1 is sisters on restrict tree T |{x1,x2,y1,y2}, then f(x1, x2; y1, y2) >

f(x1, y1;x2, y2) by 4PC, then αf (S) ≤ α̃f (x1, x2|y1, y2) = 0.

Theorem 4.3.2 (f-split on Network). Let N to be a general phylogenetic network(not

necessarily level-1), and call T to be a displayed tree of N , if T is a tree generated by

deleting edges and suppressing degree 2 nodes on N . If there exists a split-symmetric

function fT holds 4PC w.r.t. T for all displayed tree T on N , and we denote

fN = Edis[fT ] (4.15)

with Edis is the probability measure of displayed tree, and Pdis[T ] > 0 for all T ∈ G(N),

then all fN -splits coincides with S(N).
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Proof. If S = S1|S2 ∈ S(N), observe that ∀x1, x2 ∈ S1 and y1, y2 ∈ S2, we have

fT (x1, x2; y1, y2) ≤ max{fT (x1, y1;x2, y2), fT (x1, y2; y1, x2)}

on all T ∈ G(N) by 4PC and the strict inequality holds on at least one T . By linearity,

we have

Edist
[
fT (x1, x2; y1, y2)

]
< max{Edist

[
fT (x1, y1;x2, y2)

]
,Edist

[
fT (x1, y2; y1, x2)

]
}

where we apply
∑
wiai ≥ max{

∑
wibi,

∑
wici} with wi ≥ 0 and ai, bi, ci > 0, if

ai ≥ max{bi, ci}, which implies αfN (x1, x2|y1, y2) > 0. Thus αfN (S) > 0 after taking

minimum over all possible choices.

If S = S1|S2 /∈ S(N), we have S /∈ S(T ) for all T ∈ G(N). Then on a displayed

tree T0, there exists x1, x2 ∈ S1 and y1, y2 ∈ S2 such that

fT0(x1, x2; y1, y2) ≥ max{fT0(x1, y1;x2, y2), fT0(x1, y2; y1, x2)}

that is, x1, x2 are not sisters on T0|{x1,x2,y1,y2} by 4PC. Observe that x1, x2 are not sisters

on T |{x1,x2,y1,y2} for all T ∈ G(N), since deleting edges or suppressing vertex with degree

2 will not change the circular order. Thus

fT (x1, x2; y1, y2) ≥ max{fT (x1, y1;x2, y2), fT (x1, y2; y1, x2)}

for all T ∈ G(N) by 4PC. Thus

fN(x1, x2; y1, y2) = Edist
[
fT (x1, y1;x2, y2)

]
≥ max{Edist

[
fT (x1, y1;x2, y2)

]
,Edist

[
fT (x1, y2; y1, x2)

]
}
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by observing
∑
wiai ≥ max{

∑
wibi,

∑
wici} with wi ≥ 0 and ai, bi, ci > 0, if

ai ≥ max{bi, ci}. Thus αfN (S) ≤ αfN (x1, x2|y1, y2) = 0.
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Chapter 5

Discussion

In chapter 2, we proposed a new way to estimate the number of latent dimensions in

a graph k using the concept of cross-validated eigenvalues. Through edge splitting and

thanks to a simple central limit theorem, the estimation of cross-validated eigenvalues is

efficient for very large graphs. The paper also provides theoretical justification showing

that the estimator is consistent. Our simulations and empirical data application validate

the theory and further demonstrate the efficacy of the proposed method. In addition to

being quickly computable, a key advantage of cross-validated eigenvalues is our rigorous

understanding of their behavior outside of the asymptotic setting where all k dimensions

can be estimated. Theorem 2.3.1 encodes this rigorous understanding into a p-value.

This theorem requires very little of the population matrix P ; it does not presume that

it is from a Degree-Corrected Stochastic Blockmodel, nor does it presume the actual

rank of P or the order of the eigenvalue being tested. Of course, this level of ease and

generality comes with a price. In particular, we only get to compute the eigenvectors

with 1− ε fraction of the edges. The natural possibility is to estimate k with a fraction

of the edges and then recompute the eigenvectors with the full graph. Going forward,

we hope others will join us in crafting new estimators for λP (x̂j) that do not require

leaving out edges.

In chapter 3, we show the most topological features of an ultrametric phylogeny

can be identified from the distribution of gene trees under LGT with arbitrary constant

transfer rate. More generally, the argument also works for the unrooted gene trees, which



126

works better for the sequence data. Beyond the theoretical identifiability question, we

also provide a consistent reconstruction algorithm. As we state in the introduction,

we view the LGT process as a Markov process on graph space G and reconstruct the

phylogeny backward in time from the leaves. The computation cost is expansive since

we need to compute the inverse matrix at each level. Moreover, there are a number of

questions can be studied in the future. We are interested in extending to more complex

model, for example in the present of extinction, incorporating gene duplication and loss.

Since the leaf set on the gene trees will be affected in generalized model, there is not

guarantee to recover the generator matrix recursively from the leaf-edges.

In chapter 4, we proposed a new estimator to show the identifiability of level-1

phylogenetic networks under some common DNA substitution models including Jukes-

Cantor and General time reversible model. However, the idea in the proof of lemma 4.2.2

and 4.2.3 that applying the four points condition on some gene tree with corrected

structure is not helpful in finding a suitable gap to compute the sample complexity. So

more work need to do next step when considering the construction algorithm and its

sample complexity. We also proposed a new estimator defined on 2k many independent

sites per gene under the GTR model, where k represents the number of states under the

substitution model. However, k may not be the smallest number of nonzero entries to

compute a nontrivial determinant of a matrix, one could reduce the number by more

advance algebraic tools. In this dissertation, when extending to the network, we use

the natural generation NMSC model which indicates the lineages picks their hybrid

parents total dependent, however in biology, it’s more common to pick their parents

independently across the hybrid edges, so more simulation work to compare the difference

between these two Multispecies coalescence on networks need to be explored.



127

Bibliography

[Abb+20] Emmanuel Abbe et al. “Entrywise eigenvector analysis of random matrices

with low expected rank”. In: Annals of Statistics 48.3 (2020), pp. 1452–

1474.

[Abb18] Emmanuel Abbe. “Community Detection and Stochastic Block Models”.

English. In: Foundations and Trends® in Communications and Informa-

tion Theory 14.1-2 (June 2018). Publisher: Now Publishers, Inc., pp. 1–

162.

[ABH16] E. Abbe, A. S. Bandeira, and G. Hall. “Exact Recovery in the Stochastic

Block Model”. In: IEEE Transactions on Information Theory 62.1 (Jan.

2016). Conference Name: IEEE Transactions on Information Theory,

pp. 471–487.

[AC10] Sylvain Arlot and Alain Celisse. “A survey of cross-validation procedures

for model selection”. In: Statistics Surveys 4.none (Jan. 2010). Publisher:

Amer. Statist. Assoc., the Bernoulli Soc., the Inst. Math. Statist., and the

Statist. Soc. Canada, pp. 40–79.

[ADZ14] Karim M. Abadir, Walter Distaso, and Filip Zikes. “Design-free estimation

of variance matrices”. en. In: Journal of Econometrics 181.2 (Aug. 2014),

pp. 165–180.
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[Lov12] László Lovász. Large networks and graph limits. Vol. 60. American

Mathematical Soc., 2012.

[LP07] Liang Liu and Dennis K Pearl. “Species trees from gene trees:

reconstructing Bayesian posterior distributions of a species phylogeny using

estimated gene tree distributions”. In: Systematic biology 56.3 (2007),

pp. 504–514.

[LRH07] Simone Linz, Achim Radtke, and Arndt von Haeseler. “A likelihood

framework to measure horizontal gene transfer”. In: Molecular biology and

evolution 24.6 (2007), pp. 1312–1319.

[LS19] Robert Lunde and Purnamrita Sarkar. “Subsampling Sparse Graphons

Under Minimal Assumptions”. In: arXiv:1907.12528 [math, stat] (Aug.

2019). arXiv: 1907.12528.

[Mal07] James Mallet. “Hybrid speciation”. In: Nature 446.7133 (2007), pp. 279–

283.

[MC17] Bradon R McDonald and Cameron R Currie. “Lateral gene transfer

dynamics in the ancient bacterial genus Streptomyces”. In: MBio 8.3

(2017).

[McD+10] Lauren D McDaniel et al. “High frequency of horizontal gene transfer in

the oceans”. In: Science 330.6000 (2010), pp. 50–50.

[McS01] Frank McSherry. “Spectral partitioning of random graphs”. In: Proceedings

42nd IEEE Symposium on Foundations of Computer Science. IEEE. 2001,

pp. 529–537.

[Mir+14] Siavash Mirarab et al. “ASTRAL: genome-scale coalescent-based species

tree estimation”. In: Bioinformatics 30.17 (2014), pp. i541–i548.

[MK06] Wayne P Maddison and L Lacey Knowles. “Inferring phylogeny despite

incomplete lineage sorting”. In: Systematic biology 55.1 (2006), pp. 21–30.



137

[MK09] Chen Meng and Laura Salter Kubatko. “Detecting hybrid speciation in

the presence of incomplete lineage sorting using gene tree incongruence: a

model”. In: Theoretical population biology 75.1 (2009), pp. 35–45.

[MNS15] Elchanan Mossel, Joe Neeman, and Allan Sly. “Reconstruction and

estimation in the planted partition model”. In: Probability Theory and

Related Fields 162.3 (2015), pp. 431–461.

[MR08] Elchanan Mossel and Sebastien Roch. “Incomplete lineage sorting:

consistent phylogeny estimation from multiple loci”. In: IEEE/ACM

Transactions on Computational Biology and Bioinformatics 7.1 (2008),

pp. 166–171.

[MS07] Frederick A Matsen and Mike Steel. “Phylogenetic mixtures on a single

tree can mimic a tree of another topology”. In: Systematic Biology 56.5

(2007), pp. 767–775.

[MSZ19] Shujie Ma, Liangjun Su, and Yichong Zhang. “Determining the Number

of Communities in Degree-corrected Stochastic Block Models”. In:

arXiv:1809.01028 [stat] (July 2019). arXiv: 1809.01028.

[Nak13] Luay Nakhleh. “Computational approaches to species phylogeny inference

and gene tree reconciliation”. In: Trends in ecology & evolution 28.12

(2013), pp. 719–728.

[Nau+21] Zacharie Naulet et al. “Bootstrap estimators for the tail-index and for

the count statistics of graphex processes”. EN. In: Electronic Journal of

Statistics 15.1 (2021). Publisher: The Institute of Mathematical Statistics

and the Bernoulli Society, pp. 282–325.

[Ney71] Jerzy Neyman. “Molecular studies of evolution: a source of novel statistical

problems”. In: Statistical decision theory and related topics. Elsevier, 1971,

pp. 1–27.

[PC84] Richard R. Picard and R. Dennis Cook. “Cross-Validation of Regression

Models”. In: Journal of the American Statistical Association 79 (1984).



138

Publisher: [American Statistical Association, Taylor & Francis, Ltd.],

pp. 575–583.

[Pea01] Karl Pearson. “LIII. On lines and planes of closest fit to systems of points

in space”. In: The London, Edinburgh, and Dublin philosophical magazine

and journal of science 2.11 (1901), pp. 559–572.

[PN88] Pekka Pamilo and Masatoshi Nei. “Relationships between gene trees and

species trees.” In: Molecular biology and evolution 5.5 (1988), pp. 568–583.

[Pol+06] Daniel A Pollard et al. “Widespread discordance of gene trees with species

tree in Drosophila: evidence for incomplete lineage sorting”. In: PLoS Genet

2.10 (2006), e173.

[QM19] Yixuan Qiu and Jiali Mei. RSpectra: Solvers for Large-Scale Eigenvalue

and SVD Problems. R package version 0.16-0. 2019.

[QR13] Tai Qin and Karl Rohe. “Regularized spectral clustering under the Degree-

Corrected Stochastic Blockmodel”. In: Proceedings of the 26th International

Conference on Neural Information Processing Systems-Volume 2. 2013,

pp. 3120–3128.

[RCY11a] Karl Rohe, Sourav Chatterjee, and Bin Yu. “Spectral clustering and the

high-dimensional stochastic blockmodel”. In: The Annals of Statistics 39.4

(2011), pp. 1878–1915.

[RCY11b] Karl Rohe, Sourav Chatterjee, and Bin Yu. “Spectral clustering and the

high-dimensional stochastic blockmodel”. EN. In: Annals of Statistics 39.4

(Aug. 2011). Publisher: Institute of Mathematical Statistics, pp. 1878–1915.

[Rie97] Loren H Rieseberg. “Hybrid origins of plant species”. In: Annual review of

Ecology and Systematics 28.1 (1997), pp. 359–389.

[Roh+18] Karl Rohe et al. “A Note on Quickly Sampling a Sparse Matrix with

Low Rank Expectation”. In: Journal of Machine Learning Research 19.77

(2018), pp. 1–13.



139

[Roh19] Karl Rohe. “A critical threshold for design effects in network sampling”.

In: The Annals of Statistics 47.1 (2019), pp. 556–582.

[RS13] Sebastien Roch and Sagi Snir. “Recovering the treelike trend of evolution

despite extensive lateral genetic transfer: a probabilistic analysis”. In:

Journal of Computational Biology 20.2 (2013), pp. 93–112.

[RS15] Sebastien Roch and Mike Steel. “Likelihood-based tree reconstruction

on a concatenation of aligned sequence data sets can be statistically

inconsistent”. In: Theoretical population biology 100 (2015), pp. 56–62.

[RSM19] Maryam Rabiee, Erfan Sayyari, and Siavash Mirarab. “Multi-allele species

reconstruction using ASTRAL”. In: Molecular phylogenetics and evolution

130 (2019), pp. 286–296.

[RY03] Bruce Rannala and Ziheng Yang. “Bayes estimation of species divergence

times and ancestral population sizes using DNA sequences from multiple

loci”. In: Genetics 164.4 (2003), pp. 1645–1656.

[RZ20] Karl Rohe and Muzhe Zeng. “Vintage Factor Analysis with Varimax

Performs Statistical Inference”. In: arXiv preprint arXiv:2004.05387

(2020).

[SB99] Tom AB Snijders and Stephen P Borgatti. “Non-parametric standard errors

and tests for network statistics”. In: Connections 22.2 (1999), pp. 161–170.

[SM01] Mike Steel and Andy McKenzie. “Properties of phylogenetic trees generated

by Yule-type speciation models”. In: Mathematical biosciences 170.1

(2001), pp. 91–112.

[Sos99] Alexander Soshnikov. “Universality at the Edge of the Spectrum in Wigner

Random Matrices”. en. In: Communications in Mathematical Physics 207.3

(Nov. 1999), pp. 697–733.

[SR08] Mike Steel and Allen Rodrigo. “Maximum likelihood supertrees”. In:

Systematic biology 57.2 (2008), pp. 243–250.



140

[SS+03] Charles Semple, Mike Steel, et al. Phylogenetics. Vol. 24. Oxford University

Press on Demand, 2003.

[SS13] Andreas Sand and Mike Steel. “The standard lateral gene transfer model

is statistically consistent for pectinate four-taxon trees”. In: Journal of

theoretical biology 335 (2013), pp. 295–298.

[SSJ03] Leo M Schouls, Corrie S Schot, and Jan A Jacobs. “Horizontal transfer

of segments of the 16S rRNA genes between species of the Streptococcus

anginosus group”. In: Journal of bacteriology 185.24 (2003), pp. 7241–7246.

[Ste+13] Mike Steel et al. “Identifying a species tree subject to random lateral gene

transfer”. In: Journal of theoretical biology 322 (2013), pp. 81–93.

[Ste16] Mike Steel. Phylogeny: Discrete and Random Processes in Evolution.

Philadelphia, PA: Society for Industrial and Applied Mathematics, 2016,

p. 302.

[Ste94a] M. Steel. “Recovering a tree from the leaf colourations it generates under

a Markov model”. In: Applied Mathematics Letters 7.2 (1994), pp. 19–23.

[Ste94b] William J Stewart. Introduction to the numerical solution of Markov chains.

Princeton University Press, 1994.

[SWZ19] Liangjun Su, Wuyi Wang, and Yichong Zhang. “Strong Consistency of

Spectral Clustering for Stochastic Block Models”. In: arXiv:1710.06191

[stat] (May 2019). arXiv: 1710.06191.
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