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abstract
With the end of Dennard scaling, architects have increasingly turned to special-purpose

hardware accelerators to improve the performance and energy efficiency for some appli-

cations. Unfortunately, accelerators do not always live up to their expectations and may

under-perform in some situations. Understanding the factors which effect the performance

of an accelerator is crucial for both architects and programmers early in the design stage.

Detailed models can be highly accurate, but often require low-level details which are not

available until late in the design cycle. In contrast, simple analytical models can provide

useful insights by abstracting away low-level system details.

In this dissertation, we aim to explore the potential of such simple models for hardware

accelerators. To this end, we propose two complementary proposals. In our first proposal,

we develop a simple analytical model, LogCA, to argue whether an accelerator is helpful

for a given task or not. Once the usefulness of an accelerator is established, our second

proposal, Accelerometer, helps in identifying bounds and bottlenecks associated with an

accelerator design.

We validate our modeling framework across kernels of varying complexity on both

on-chip and off-chip accelerators. We also describe the utility of our models using two

retrospective case studies. First, we discuss the evolution of interface design in SUN/O-

racle’s encryption accelerators. Second, we discuss the evolution of memory interface

design in three different GPU architectures. In both cases, we show that the adopted design

optimizations for these machines are similar to the suggested optimizations. We argue that

architects and programmers can use insights from these retrospective studies for improving

future designs.
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1 introduction

In recent years, with increasing complexity of the

computational systems, empirical methods are now

needed to discover system limits and predict future

behavior.
— Clayton Morrison and Richard Snodgrass,

Computer Science can use More Science [4]

Over the years, research and progress in the compute industry has been driven by the

doubling of transistors every two years [5]—a phenomenon known as Moore’s law. The

trend of increasing transistor density and shrinking transistor sizes has been facilitated by

Dennard Scaling [6], which has kept a chip’s power consumption within acceptable limits.

This growth has resulted in over billion of transistors on a chip [7] and this trend was

expected to continue with Moore’s law.

Unfortunately, with the breakdown of Dennard scaling, we have hit a utilization wall [8],

resulting in an exponential decrease in the chip area operating at maximum frequency, with

each new generation. This leads to the so-called problem of Dark Silicon [9, 10, 11, 12, 13]

where some or most of the transistors on a chip have to be in-active, i.e., in a Dark state, to

meet the power budget.

This failure of Dennard scaling over the last decade has inspired architects to introduce

specialized functional units such as accelerators [14, 15]. These accelerators have shown

considerable performance and energy improvement over general-purpose cores for some

applications [8, 16, 17, 18, 19, 20, 21, 22]. In the server space, commercial processors already

incorporate a variety of accelerators, ranging from encryption to compression, from video

streaming to pattern matching, and from database query engines to graphics processing [23,
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24, 25]. In the mobile space, we are also witnessing a consistent increase in the area of

accelerators across generations. For example, more than 60% of the die area of Apple A8’s

SoC is dedicated to these accelerators [26]. Moreover, for a seamless integration of these

accelerators, there are recent industrial efforts like IBM’s Coherent Accelerator Processor

Interface (CAPI) [27, 28] and Cache Coherent interconnect for Accelerators (CCIX) [29].

These efforts seek to develop coherent interfaces for achieving higher bandwidth and lower

latencies while providing a uniform interface.

Unfortunately, despite these developments, accelerators do not always perform as

expected [30, 31]. The gains from an accelerator, among others, depend on: 1) coupling with

the host, i.e., whether an accelerator is part of pipeline, attached to a cache, memory or I/O

bus, 2) granularity of the computation, i.e., instruction-level, kernel-level or application-

level, and 3) overheads involved in transferring control and data from the host to an

accelerator. Occasionally, these factors may offset the potential benefits of an accelerator,

resulting in lower or no performance benefits.

With this uncertainty in the performance and expected ubiquitousness of accelerators

in the future architectures [26], programmers and architects face these obvious questions:

When not to use an accelerator? If using an accelerator, how much data to offload? What

are the performance bounds associated with an accelerator design? Where to connect an

accelerator in the system and how does it affect the gains? Does a performance-efficient

solution guaranty energy efficiency and vice versa?

To answer these questions, programmers and architects can employ a number of existing

performance analysis techniques. These techniques range from simple to complex analytical

models and from functional to full-system simulation models [32, 33].

Complex modeling techniques, including full-system simulators [34, 35, 36] can provide
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highly accurate performance estimates. However, this accuracy comes at the cost of long

simulation times and low-level system details which are not available till late in the design

cycle.

In contrast, analytical models—simpler ones in particular—abstract away these low-level

system details using mathematical equations [37]. These equations help in understanding

and analyzing complex systems by exposing the relationship among various design param-

eters and the sensitivity of the performance on these parameters without long simulation

times. Consequently, providing key insights early in the design cycle that are useful for

experts and non-experts alike.

Over the years, a number of simpler analytical models have been extremely useful in

analyzing complex systems: Little’s law [38] delineates the relationship between average

wait time and number of waiting items in a system; Amdhal’s law [39] provides theoretical

limits for parallel computations; Hill and Marty [40] extends Amdhal’s law for multi-core

architectures; PRAM [41] and LogP [42] for parallel computations; Roofline explicates a

bound and bottleneck analysis for the multi-core architectures [1], and recently Cache

Calculus [43] for modeling cache performance.

The aforementioned models provide useful insights despite their simplicity. Therefore,

in this dissertation we aim to explore the effectiveness of simple analytical models for

hardware accelerators.



4

1.1 Contributions

In this section, we briefly describe our main contributions.

1.1.1 LogCA: A High-Level Unified Performance and Energy Model

for Hardware Accelerators

Despite the increasing trend towards heterogeneous architectures, the architecture com-

munity lacks a simple model to reason about accelerators. Such a model should help

programmers and architects—early in the design cycle—in deciding whether an accelerator

is helpful for a given task or not.

To this end, we propose LogCA—a unified performance and energy model for hardware

accelerators—in Chapter 4 and 5. LogCA strikes a balance between too simple and too

complex models. It provides useful insights for both programmers and architects by

abstracting away the underlying architecture. With LogCA, we also formalize performance

metrics for predicting the “right” amount of offloaded data and demonstrate that sub-linear

and linear complexity algorithms are more sensitive to overheads and communication

latencies than higher complexity algorithms. While the general trend may not be surprising,

we argue that LogCA is accurate enough to answer important what-if questions very early

in the design cycle.

While LogCA does not tell the architect how to design hardware to achieve those values,

it can help him/her decide whether a given design will satisfy the high-level performance

goals. For architects, we believe an important benefit of LogCA is the ability to formalize

appropriate design goals for a new accelerator. History is replete with accelerators whose

overheads were so high that they were rarely used, e.g., SuperSPARC I copy engine, Niagara
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1 cryptographic accelerator, etc.

An earlier version of this work, encompassing the performance model with linear

complexity kernels, appears in Computer Architecture Letters in June 2014 [44]. In this

dissertation, we extend the performance model with a complementary energy model and

kernels ranging from sub-linear to super-linear complexity. We also discuss the effect of

pipelining and parallel execution on the performance.

1.1.2 Accelerometer: A Sensitivity Analysis of the LogCA Parameters

Oftentimes LogCA justifies the use of an accelerator, however the gains from an accelerator

are less than expected. In such scenarios, programmers and architects need to know the

cause of bottlenecks and whether these bottlenecks need attention of a programmer or an

architect.

To this end, we extend LogCA through a sensitivity analysis of its parameters and

develop Accelerometer in Chapter 6. The sensitivity analysis helps in visually identifying

performance bounds and bottlenecks. Furthermore, the identification of these bottlenecks

provides an opportunity for optimization and Accelerometer demarcates these optimization

opportunities through various optimization regions. With these optimization regions,

programmers and architects can visually identify the potential gains associated with each

optimization.

We demonstrate the utility of our model using two retrospective case studies. In the

first case study, we consider the evolution of the interface in cryptographic accelerators on

Sun/Oracle’s SPARC T-series processors. For the second case, we consider the memory

interface design in three different GPU architectures: a discrete, an integrated and a

heterogeneous system architecture (HSA) supported GPU. In both cases, we show that
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the adopted design optimizations for these machines are similar to the model’s suggested

optimizations. We argue that architects and programmers can use insights from these

retrospective studies for improving future designs.

Parts of this work have been submitted for publication. In this dissertation, we include

a thorough sensitivity analysis of the parameters for different complexity kernels.

1.2 Thesis Organization

In this dissertation, we provide a brief overview of the taxonomy of accelerators and discuss

related work in Chapter 2. We describe our evaluation methodology and workloads in

Chapter 3. We present our first proposal, LogCA, in Chapter 4. In Chapter 5, we complement

the performance model with an energy model. Chapter 6 presents Accelerometer for

identifying bounds and bottlenecks associated with an accelerator design. Finally, we

conclude this dissertation in Chapter 7 with pointers to future work.
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2 background and related work
This chapter compares and contrasts our work with the prior approaches for modeling

accelerator architectures. With the availability of a broad range of accelerators, we find it

pertinent to first define an accelerator.

2.1 Accelerator Architectures

Patel and W. Hwu [14] define an accelerator as:

An accelerator is a separate architectural substructure (on the same chip, or on a different die)

that is architected using a different set of objectives than the base processor, where these objectives

are derived from the needs of a special class of applications. Through this manner of design, the

accelerator is tuned to provide higher performance at lower cost, or at lower power, or with less

development effort than with the general-purpose base hardware.

Based on this definition, the current breed of accelerators can be classified into various

categories. Cascaval et al. [15] provide a taxonomy of these accelerators from an architecture

and programming perspective. In this dissertation, we are mostly concerned with the

architecture specific classification. Hence, we classify them in the following three categories.

Fixed-Function Accelerators provide the best performance per watt ratio at the cost

of flexibility. They are implemented in ASICs or other custom logic and are favorable for

frequently used application domains. Examples of these accelerators include: floating point

units, cryptographic accelerators, compression accelerators, and database accelerators [25,

24].

Reconfigurable Accelerators provide maximum functional flexibility at the cost of

performance. These accelerators are most suitable for those application domains which
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are still in the prototyping phase. Accelerators designed using Field Programmable Gate

Arrays (FPGAs) are the main examples of this class of accelerators. These accelerators are

mostly connected through either PCIe [45] or QPI interface [46, 47]. Recently, there has

been a growing interest in using these accelerators in the data centers [48, 49].

Programmable Accelerators provide better flexibility as compared to the fixed-function

accelerators. They are more apt for application domains which are not mature or are going

through continuous developments. Common examples include the graphics processing

units (GPUs), general purpose GPUs (GPGPUs) and the programmable network interface

controllers.

In this dissertation, our focus is on the effect of the interface in the design of accelerators.

Since reconfigurable accelerators do not provide many options for the interface, we have

primarily focused on the fixed-function and programmable accelerators. Although we

have not validated our modeling framework for the reconfigurable accelerators, we believe

that with the generality and abstraction our model provides, our modeling framework is

equally applicable for the reconfigurable accelerators.

2.2 Analytical Models

There is a rich body of work exploring analytical models for prediction of an accelerator’s

performance [50]. For some models, the motivation is to determine the future trend in

heterogeneous architectures [51, 52], and exploring the potential benefits associated with

an accelerator [39, 53, 54, 55], whereas for others, the motivation is to determine the right

amount of data to offload [56].
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2.2.1 Simple Modeling Frameworks

Using simplistic models to predict the performance of a machine has a long history [39,

40, 57, 58, 59, 60, 61, 62, 54, 42]. In the early days of parallel computing, Amdahl’s Law [39]

provided a simple model to predict the performance gains for parallel machines. The

model argued that despite the number of parallel resources, the speedup is limited by the

serial fraction of an algorithm. Hence, the speedup is given by

Speedup = 1
s+ p

N

(2.1)

where s is the time spent on the serial part of the program, p is the time spent on the part

of the program that can be parallelized and N is the number of processors.

Over the years, Amdahl’s law has been extended for various domains, ranging from

multi-core architectures [40, 59, 62] to data-centers [60] and from energy-constrained envi-

ronments [57, 61, 58] to heterogeneous architectures [54, 63].

To this end, Daga et al. [54] revisit Amdahl’s law for accelerator-based architectures

while analyzing the effectiveness of integrated GPUs over discrete GPUs. They argue that

for discrete GPUs, data-copying overheads are high and can not be ignored. They factor in

the overheads in the speedup computation, and the speedup is given by

Speedup = 1
s+ p′ + o

(2.2)

where s is the serial fraction of the program, p′ is the accelerated parallel fraction and o is

the parallel overhead.

We present a similar simple model—LogCA—for accelerators. We argue that despite

the peak performance of an accelerator, the achievable speedup is limited by the setup
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overheads and communication latencies. Our proposed model, LogCA, is inspired by

LogP [42] which is a model for the design and analysis of algorithms for parallel machines.

With LogP, the goal was to develop a simple yet accurate model for parallel computation

at a time when the available models were either too simplistic, i.e., zero communication

latencies and infinite bandwidth, or too specific, i.e., applicable for a particular configuration

of a machine. LogP was developed in an era when a diverse set of parallel machines were

emerging and it was difficult to model each of them. To overcome this difficulty and provide

a simple interface, LogP abstracted away the underlying details with four parameters. These

four parameters represent communication bandwidth (g), communication overhead (o),

communication delay (L), and the number of processors (P). We use a similar strategy of

using system parameters for abstracting away the low-level details. LogCA retains the L

and o parameters from LogP but as discussed in Chapter 4 its remaining three parameters

focus on properties of an accelerator and the offloaded computation.

2.2.2 Early-Stage Modeling Frameworks

Chung et al. [51] in a detailed study predict the future landscape of heterogeneous com-

puting. They extend the work of Hill and Marty [40] by incorporating power, bandwidth

and scalability of the unconventional cores (U-cores)—a term they coined to encompass

GPUs, FPGA and ASICs. They also include the ITRS roadmap in deriving parameters for

their model. Conceptually, their U-core’s efficiency parameter is similar to our Acceleration

(A) parameter. Similar to our modeling framework, the main goal of this work is not to

provide exact numbers but provide high-level ideas of the trade-offs involved in various

design decisions.

In another work in early-stage modeling, Hempstead et al. [52] propose Navigo. Navigo
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provides a compromise between back-of-the-envelope calculations and detailed simulators.

The model takes technology node, input voltage, frequency, number of cores and market

selection as inputs. A designer can then sweep across these inputs and observe the expected

system output as throughput and power. Overall, Navigo provides an estimate about

the amount of specialization required to maintain performance in power-constrained

future architectures. In contrast, our early-stage framework helps architects reason about

accelerators for a given task.

2.2.3 Modeling Communication Cost

Oftentimes, performance models exclude communication cost while estimating perfor-

mance on accelerators. However, similar to our model, various studies [64, 54, 53] argue

that communication cost can not be ignored. To this end, Nilakantan et al. [64] incorpo-

rate communication cost for early-stage modeling of accelerator-rich architectures. Their

analytical model also predicts the minimum accelerator area required to reach particular

performance goal. Similarly, Daga et al. [54] show the overheads for communicating over

the PCIe bus as a major bottleneck in exploiting the full potential of GPUs. They observe

that integrated GPUs fail to deliver comparable performance as their discrete counterpart

for memory-bound kernels because of the limited bandwidth.

Meswani et al. [53] explore such analytical models for high performance computing

(HPC) applications. They argue that HPC applications’ code size can be huge, resulting in

years of development time. For these applications, it make sense to predict the performance

gains before porting an application code to an accelerator. They divide an application into

idioms—a particular computation or memory access pattern. Using micro-benchmarks,

they evaluate the effect of data size on various idioms, e.g., streaming, gather scatter, stencil,
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etc. They later predict the performance of an application by identifying the frequency of

occurrence of an idiom in that application. This study is performed on high performance

computing applications with GPUs and FPGAs as the target devices.

2.2.4 Predicting Offloaded Data

The idea of offloading computationally intensive workloads to remote servers has been

extensively studied for mobile networks. Kumar et al. [56] provide a detailed survey

on models which tried to answer the basic question: when (and where) to offload the

workloads. We define performance and energy metrics to answer a similar question.

Unlike our modeling framework, these models for mobile networks do not provide insights

for programmers and architects in designing either the interface or the remote servers.

2.2.5 Performance Prediction on GPUs

A number of studies [65, 55, 66, 67, 68, 69, 70] have been performed for predicting perfor-

mance on GPU architectures. These studies differ by the complexity of the model and the

type of input code. We briefly discuss the most relevant below.

Hong et al. [65] develop an analytical performance model for predicting execution time

on GPUs. The model requires the PTX code and uses the number of running threads and

parallel memory requests. The authors later extend their model and develop an integrated

power and performance model for GPUs [55]. They use the execution time from the earlier

timing model to predict the power consumption. The power model also helps in predicting

the number of cores to achieve optimal performance per watt.

Sim et al. [70] extend Hong et al.’s [65] work and develop an analytical model to help

programmers predict the performance benefits from GPUs. Their model also helps in
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identifying the potential bottlenecks and suggest optimizations to alleviate these bottle-

necks. The model employs a number of architectural parameters to compute the execution

time. From an optimization perspective, apart from thread-level parallelism, the model

tries to exploit optimizations in instruction and memory-level parallelism. However, as a

down-side it also requires the assembly code of the CUDA kernel.

Lai and Seznec [71, 68] develop TEG, Timing Estimation tool for GPUs, which is an

analytical tool for estimating performance on GPUs. The model also helps in quantifying

the bottlenecks. Similar to earlier approaches, TEG requires CUDA kernel assembly code

and instruction trace for estimating the execution time.

Unlike earlier approaches, which require device specific code, GROPHECY [69] tries

to predict the performance of a kernel on a GPU using the CPU code. The model defines

a CPU code skeleton—an abstraction of the portion of the CPU code to be ported to the

GPU—and use an analytical model to predict the execution time on GPUs.

In terms of goals, our work is closely related to the work of Zhang and Owens [67]. The

authors have developed a micro-benchmark-based model for GPUs. The model identifies

performance bottlenecks and helps programmers and architects predict performance on

GPUs. The model is developed at an instruction and architectural level and determines

the bottlenecks by breaking down the total execution time in the instruction pipeline,

shared memory, and global memory. Unlike our approach, the model does not predict the

potential benefits from these optimizations.

In contrast to studies that require understanding of the underlying architecture, Song

et al. [66] use a simple counter-based approach augmented with machine learning to

predict power and performance efficiency for GPUs. The model also helps in identifying

bottlenecks and suggests optimizations to overcome them.
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In general, our work is different from these studies because of the complexity. These

models use a large number of parameters to accurately predict the power and/or perfor-

mance, whereas we limit the number of parameters to reduce the complexity of our model.

They also require deep understanding of the underlying architecture. Most of these models

also require access to GPU specific assembly or PTX codes. Unlike these approaches, we

use CPU code to provide bounds on the performance.

2.3 Roofline Models

In terms of simplicity and motivation, our work in Chapter 6—Accelerometer—closely

follows the Roofline model [1]—a visual performance model for multi-core architectures.

For the Roofline model, the goal is not to predict the exact performance but provide insights

about the relationship among various system parameters.

Roofline employs a “bound and bottleneck" analysis to provide useful insights about the

expected performance of a system. It exposes inherent hardware limitations for a particular

kernel and suggests several optimizations which programmers can use to fine tune that

kernel on a given system.

To establish these bounds, Roofline limits the performance with the peak floating point

performance and peak memory bandwidth. For a given system, the operating point of a

kernel remains within these bounds (hence the name ’roofline’). The model defines the

intersection of these two bounds as the ridge point. This point helps programmers and

compiler writers understands how close they are to in achieving peak performance. The

location of the operating point also helps in determining whether a kernel is compute bound

or memory bound. For example, Kernel 1 in Figure 2.1 is memory bound while Kernel 2 is

compute bound. Also bottlenecks in a design may limit a computation’s performance way
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below the peak performance. Roofline exposes these bottlenecks with performance ceilings

and suggests various optimizations to reach these ceilings and ultimately the roof of the

model.

Because of the effectiveness in providing useful insights, Roofline has been extended in

the past for various architectures [72, 73, 74]. Below, we discuss some of them briefly.

Choi et al. [72] propose an energy-based counterpart of the Roofline. The model exposes

the interplay of time, energy and power using algorithmic and architecture specific parame-

ters. Among these parameters, the number of operations, concurrency, and memory traffic

characterizes an algorithm, whereas per operation cost (time and energy) characterizes a

particular machine. By considering time and energy simultaneously, this model provides a

much broader picture to an algorithm designer.

In contrast to earlier approaches, the Boat Hull model [73] predicts the execution time

without using the accelerator specific source code. The authors use their previous work

on algorithm classification [75] to partition a given kernel into different classes. After
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classifying the kernel, the model generates a Roofline for each class. The authors validate

the model for both GPUs and traditional multi-core architectures. Unlike Boat Hull, our

classification is based on algorithmic complexity. We model complexity of the algorithms

using the power-law.

Jia et al. [74] propose GPURoofline, a Roofline model for GPUs. Similar to the original

Roofline model, GPURoofline targets programmers who are not expert GPU architects, but

need help tuning kernels for a particular GPU architecture. They validate the model for

both AMD and NVIDIA GPUs.

In a similar spirit to Roofline, Lai and Seznec [76] propose a model to provide an

upper bound on the kernel performance on GPUs. The model identifies the architectural

bottlenecks in the systems and scope of optimization for achieving peak performance.

Similar to other modeling methodologies, the model requires GPU assembly code as an

input.

Despite the similarities, unfortunately Roofline and its extensions can not be used

for exposing design bottlenecks in an accelerator’s interface for several reasons: First,

the primary goal of these models has been to help programmers and compiler-writers

write better code for a given system while providing no insights for architects. Second,

performance gains for accelerators are measured in speedup while Roofline measures

performance in terms of operations per bytes. And third, Roofline does not account for the

communication cost of offloading data from the host to an accelerator. Our extension for

LogCA, Accelerometer, is inspired by Roofline and is intended to address these shortcomings.
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3 evaluation methodology

This chapter describes the experimental setup and benchmarks for validating our models

on real machines. We also discuss our methodology for measuring model parameters and

performance metrics.

3.1 Experimental Setup

Our experimental setup comprises of on-chip and off-chip cryptographic accelerators

(Table 3.2) and various GPUs (Table 3.3). The on-chip cryptographic accelerators include

cryptographic units on Sun/Oracle UltraSPARC T2 [77], SPARC T3 [78], SPARC T4 [79] and

AES-NI (AES New Instruction) [80] on Sandy Bridge, whereas the off-chip accelerator is a

Hifn 7955 chip connected through the PCIe bus [81]. The GPUs include a discrete NVIDIA

GPU, an integrated AMD GPU (APU), and a heterogeneous system architecture (HSA)

supported integrated GPU [82].

For the on-chip cryptographic accelerators, each core in UltraSPARC T2 and SPARC

T3 has a physically addressed cryptographic unit. These cryptographic units require

privileged DMA calls for operation, which may incur overheads of thousands of cycles.

However, the cryptographic unit on SPARC T4 is integrated within the pipeline and does

not require privileged DMA calls. SPARC T4 also provides non-privileged cryptographic

instructions to access the cryptographic unit, thus reducing the overheads. Similar to

SPARC T4, Sandy bridge provides a non-privileged cryptographic instruction – AESNI –

for encryption.

The discrete GPU is connected through the PCIe bus, whereas for the APU, the GPU is

co-located with the host processor on the same die. For the APU, the system memory is
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Kernel Algorithmic Complexity
Advanced Encryption Standard (AES) O(n)
Secure Hashing Algorithm (SHA) O(n)
Matrix Multiplication (GEMM) O(n3)
Fast Fourier Transform (FFT) O(n log n)
Radix Sort O(kn)
Binary Search O(log n)
Discrete Cosine Transform (DCT) O(n2)

Table 3.1: Algorithmic complexity of the kernels used in the evaluation

partitioned between host and GPU memory. This eliminates the PCIe bottleneck of data

copying but still requires copying data between memories. In both cases, depending on

the size of the data, a number of cycles are spent in copying the data from the host memory

to device memory. Unlike discrete GPU and APU, HSA supported GPU provides a unified

and coherent view of the system memory. With the host and GPU sharing the same virtual

address space, explicit copying of data between memories is not required.

3.2 Workloads

In this section, we describe the workloads we have used in our evaluation. We have selected

our kernels to cover a diverse set of workloads. These kernels range from sub-linear to

super-linear complexity algorithms. Table 3.1 list the algorithmic complexities of these

kernels.

Our workloads consist of encryption, hashing and GPU kernels. For encryption and

hashing kernels, we have used OpenSSL [83] – an open source cryptography library, and

for GPU kernels, we have used AMD OpenCL SDK [84]. We also want to observe how

speedup varies with the size of the offloaded data. To do that, we have modified our kernels

to enable input size from 16B to 32MB.



19

3.3 Experimental Methodology

We have used Linux utilities to calculate the execution time on the cryptographic accelera-

tors, whereas for the GPUs we have used NVIDIA and AMD OpenCL profilers to compute

the setup, kernel and data transfer times. For our performance numbers, we report the

average of one hundred executions. We have modified OpenSSL to enable the support for

underlying hardware accelerators [85]. For verifying the usage of cryptographic accelera-

tors, we have used built-in counters in UltraSPARC T2 and T3 [86]. SPARC T4, however, no

longer supports these counters, so we have used Linux utilities to trace the execution of

the cryptographic instructions [87].

We have measured the average power using “Watts up? PRO" power meter [88]. We

compute energy by multiplying measured power by the execution time.

Crypto Accelerator PCIe UltraSPARC SPARC SPARC Sandy
Crypto T2 T3 T4 Bridge

Processor AMD S2 S2 S3 Intel Core
A8-3850 i7-2600

Frequency GHz 2.9 1.16 1.65 3 3.4
Caches L1: 24K L1: 8K L1: 8K L1: 16K L1: 64K

L2: 4M L2: 4M L2: 6M L2: 128K L2: 256K
OpenSSL version 0.98o 0.98o 0.98o 1.02, 1.0.1k 0.98o
Kernel Ubuntu Oracle Oracle Oracle Linux

3.13.0-55 Solaris 11 Solaris 11 Solaris 11.2 2.6.32-504

Table 3.2: Description of the Cryptographic accelerators
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Platform NVIDIA AMD AMD
Discrete GPU APU HSA

Name Tesla C2070 Radeon HD 6550 Radeon R7
Architecture Fermi Beaver Creek Kaveri
Stream Processors 16 5 8
Compute Units 448 400 512
Device Memory 6G 1G 4G
Peak Core Clock Freq. 1.5 GHz 600 MHz 720 MHz
Peak FLOPS 1 T 480 G 856 G
Host:
Processor Intel AMD AMD

Xeon E5520 A8-3850 A10-7850K
Frequency GHz 2.27 2.9 1.7
Cache L1: 32K L2: 256K L1: 24K L2: 4M L1: 16K L2: 2M

L3: 8M
Kernel Linux 2.6.32-504 Ubuntu 3.13.0-55 Ubuntu 4.0.0-040050

Table 3.3: Description of the GPUs
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4 logca: a high-level performance model

for hardware accelerators

The most that can be expected from any model is that

it can supply a useful approximation to reality: All

models are wrong; some models are useful.
— George Box

4.1 Introduction

Earlier, we defined an accelerator as a specialized component for providing performance

and energy efficiency. Unfortunately, accelerators do not always live up to their name or

potential. Offloading a kernel to an accelerator incurs latency and overhead that depends

on the amount of offloaded data, location of the accelerator, and its interface with the

system. In some cases, these factors may outweigh the potential benefits, resulting in

lower than expected or — in the worst case — no performance gains (speedup). Figure 4.1

illustrates such an outcome for the cryptographic accelerator in UltraSPARC T2 running

the Advanced Encryption Standard (AES) kernel [2].

Figure 4.1 provides two key observations: First, accelerators can under-perform as

compared to a general-purpose core, e.g., the accelerated version in UltraSPARC T2 outper-

forms the unaccelerated one only after crossing a threshold block size, i.e., the break-even

point (Figure 4.1-a); second, different accelerators – while executing the same kernel – have

different break-even points and overheads. For example, Sandy Bridge breaks even for

smaller offloaded data while UltraSPARC T2 and GPU break even for large offloaded data
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Figure 4.1: Executing Advanced Encryption Standard (AES) [2] on different cryptographic
accelerators. Break-even point (speedup of 1) represents the data at which the accelerated
version outperforms the unaccelerated one.

(Figure 4.1-b).

We also observe that a light-weight accelerator, like Sandy Bridge, breaks-even for a

smaller offloaded data. It incurs low overheads but provides lesser gains. On the other

hand, a heavy-weight accelerator, like a GPU, provides substantial gains at the cost of high

overheads and large offloaded data. While offloading large data to get gains may seem a

possible solution, applications may have a restriction on the amount of data that can be
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offloaded. This is one of the challenges an architect may face in the design and placement

of an accelerator.

Understanding the factors which dictate the performance of an accelerator are crucial for

both architects and programmers. Programmers need to be able to predict when offloading

a kernel will be performance-efficient. Similarly, architects need to understand how the

accelerator’s interface — and the resulting latency and overheads to offload a kernel — will

affect the achievable accelerator performance.

To address these issues, we propose LogCA, a performance model for hardware accelera-

tors. LogCA derives its name from the five parameters listed in Table 4.1. These parameters

characterize the communication latency (L) and overheads (o) of the accelerator interface,

the granularity or size (g) of the off-loaded data, the complexity (C) of the computation,

and the accelerator’s peak performance improvement (A) as compared to a general purpose

core.

LogCA is inspired by LogP [42], the well-known parallel computation model. LogP

sought to find the right balance between overly simple models (e.g., PRAM) and the detailed

reality of modern parallel systems. LogCA seeks to strike the same balance for hardware

accelerators, providing sufficient simplicity such that programmers and architects can

easily reason with it. Just as LogP was not the first model of parallel computation, LogCA

is not the first model for hardware accelerators [50]. With LogCA, our goal is to develop a

simple model that supports the important implications (§4.2) of our analysis using as few

parameters as possible while providing sufficient accuracy. In Einstein’s words, we want

our model to be as simple as possible and no simpler.

The rest of the chapter is organized as follows. We develop our model and discuss the

resulting implications in Section 4.2. We describe our methodology for calculating model
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parameters in Section 4.3, and discuss the results in Section 4.4. Section 4.6 delineates how

programmers and architects use LogCA, and we conclude with a summary in Section 4.7.

4.2 The LogCA Model

LogCA assumes an abstract system with three components (Figure 4.2 (a)): Host is a

general-purpose processor; Accelerator is a hardware device designed for the efficient

implementation of an algorithm; and Interface connects the host and accelerator abstracting

away system details including the memory hierarchy.

Our model uses the interface abstraction to provide intuition for the overhead and

latency of dispatching work to an accelerator. This abstraction enables modeling of different

paradigms for attaching accelerators – directly connected, system bus or PCIe. This also

gives the flexibility to use our model for both on-chip and off-chip accelerators. This

abstraction can also be trivially mapped to shared memory systems or other memory

hierarchies in heterogeneous architectures. The model further abstracts the underlying

architecture using the five parameters defined in Table 4.1.

Figure 4.2 (b) illustrates the overhead and latency model for an un-pipelined accelerator

where computation ‘i’ is returned before requesting computation ‘i+ 1’. Figure 4.2 (b) also

shows the breakdown of time for an algorithm on the host and accelerator. We assume that

the algorithm’s execution time is a function of granularity, i.e., the size of the offloaded

data. With this assumption, the unaccelerated time T0 (time with zero accelerators) to

process data of granularity g, will be

T0(g) = C0(g) (4.1)
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Parameter Symbol Description Units
Latency L Cycles to move data from the host

to the accelerator across an un-
pipelined interface, including the
cycles data spends in the caches
or memory

Cycles

Overhead o Cycles the host spends in setting
up the algorithm

Cycles

Granularity g Size of the offloaded data Bytes
Computational Index C Cycles the host spends per byte

of data
Cycles/Byte

Acceleration A The peak speedup of an accelera-
tor

N/A

Table 4.1: Description of the LogCA model.

Host Accelerator

Interface

time

Co(g)

o1(g) L1(g)
C1(g) =

Co(g)
A

Gain

T0(g)

T1(g)

(a) (b)

Figure 4.2: Top level description of the LogCA model (a) Shows the various components (b)
Time-line for the computation performed on the host (above) and on an accelerator (below)

where C0(g) is the computation time on the host.

When the data is offloaded to an accelerator, the new execution time T1 (time with one

accelerator) is

T1(g) = O1(g) + L1(g) + C1(g) (4.2)

where O1(g) is the host overhead time in offloading ‘g’ bytes of data to the accelerator, L1(g)

is the interface latency and C1(g) is the computation time in the accelerator to process data

of granularity g.
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To make our model more concrete, we make several assumptions. We assume that an

accelerator with acceleration ‘A’ can decrease, in the absence of overheads, the algorithm’s

computation time on the host by a factor of ‘A’, i.e., the accelerator and host use algorithms

with the same complexity. Thus, the computation time on the accelerator will be C1(g) =
C0(g)
A

. This reduction in the computation time results in performance gains, and we quantify

these gains with speedup, the ratio of the un-accelerated and accelerated time:

Speedup(g) = T0(g)
T1(g)

= C0(g)
O1(g) + L1(g) + C1(g)

(4.3)

We assume that the computation time is a function of the computational index ‘C’ and

granularity, i.e., C0(g) = C ∗ f(g), where f(g) signifies the complexity of the algorithm.

We also assume that f(g) is power function of ’g’, i.e., O(gβ) . This assumption results in

a simple closed-form model and bounds the performance for a majority of the prevalent

algorithms in the high-performance computing community [89].

The above assumption works well for modeling a variety of kernels, ranging from

sub-linear (β < 1) to super-linear (β > 1) complexities. However, this assumption may not

work well for logarithmic complexity algorithms, i.e.,O(log(g)),O(g log(g)). This is because,

asymptotically, there is no function which grows slower than a logarithmic function. Despite

this limitation, we observe that—in the granularity range of our interest—LogCA can also

bound the performance for logarithmic functions.

For many algorithms and accelerators, the overhead is independent of the granularity,

i.e., O1(g) = o. Latency, on the other hand, will often be granularity dependent, i.e.,

L1(g) = L∗g. Latency may be granularity independent if the accelerator can begin operating

when the first byte (or block) arrives at the accelerator, i.e., L1(g) = L. Thus, LogCA can

also model pipelined interfaces using granularity dependent latency assumption.
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We define computational intensity1 as the ratio of computational index to latency, i.e., C
L

and it signifies the amount of work done on a host per byte of offloaded data. Similarly,

we define accelerator’s computational intensity as the ratio of computational intensity to

acceleration, i.e., C/A
L

and it signifies the amount of work done on an accelerator per byte of

offloaded data.

For simplicity, we begin with the assumption of granularity independent latency. We

revisit granularity dependent latencies later (§ 4.2.3). With these assumptions,

Speedup(g) = C ∗ f(g)
o+ L+ C∗f(g)

A

= C ∗ gβ

o+ L+ C∗gβ
A

(4.4)

The above equation shows that the speedup is dependent on LogCA parameters and

these parameters can be changed by architects and programmers through algorithmic

and design choices. An architect can reduce the latency by integrating an accelerator more

closely with the host. For example, placing it on the processor die rather than on an

I/O bus. An architect can also reduce the overheads by designing a simpler interface, i.e.,

limited OS intervention and address translations, lower initialization time and reduced data

copying between buffers (memories), etc. A programmer can increase the computational

index by increasing the amount of work per byte offloaded to an accelerator. For example,

kernel fusion [90, 91]—where multiple computational kernels are fused into one—tends to

increase the computational index. Finally, an architect can typically increase the acceleration

by investing more chip resources or power to an accelerator.

1not to be confused with operational intensity [1], which signifies operations performed per byte of
DRAM traffic.
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Figure 4.3: A graphical description of the performance metrics

4.2.1 Effect of Granularity

A key aspect of LogCA is that it captures the effect of granularity on the accelerator’s

speedup. Figure 4.3 shows this behavior, i.e., speedup increases with granularity and

is bounded by the acceleration ‘A’. At one extreme, for large granularities, equation (4.4)

becomes,

lim
g→∞

Speedup(g) = A (4.5)

While for small granularities, equation (4.4) reduces to:

lim
g→0

Speedup(g) ' C

o+ L+ C
A

<
C

o+ L
(4.6)

Equation (4.6) is simply Amdahl’s Law [39] for accelerators, demonstrating the dominating

effect of overheads at small granularities.

4.2.2 Performance Metrics

To help programmers decide when and how much computation to offload, we define two

performance metrics. These metrics are inspired from the vector machine metrics Nv and
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N1/2[92], where Nv is the vector length to make vector mode faster than scalar mode and

N1/2 is the vector length to achieve half of the peak performance. Since vector length is

an important parameter in determining performance gains for vector machines, these

metrics characterize the behavior and efficiency of vector machines with reference to scalar

machines. Our metrics tend to serve the same purpose in the accelerator domain.

g1 : The granularity to achieve a speedup of 1 (Figure 4.3). It is the break-even point

where the accelerator’s performance becomes equal to the host. Thus, it is the minimum

granularity at which an accelerator starts providing benefits. Solving equation (4.4) for g1

gives:

g1 =
[(

A

A− 1

)
∗
(
o+ L

C

)] 1
β

(4.7)

Implication 1. g1 is essentially independent of acceleration for large values of ‘A’.

For reducing g1 , the above implication guides an architect for investing resources in

improving the interface.

Implication 2. Doubling computational index reduces g1 by 2−
1
β .

The above implication demonstrates the effect of algorithmic complexity on g1 and shows

that varying computational index has a profound effect on g1 for sub-linear algorithms.

For example, for a sub-linear algorithm with β = 0.5, doubling the computational index

decreases g1 by a factor of four. However, for linear (β = 1) and quadratic (β = 2) algorithms,

g1 decreases by factors of two and
√

2, respectively.

gA
2

: The granularity to achieve a speedup of half of the acceleration. This metric

provides information about a system’s behavior after the break-even point and shows how
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quickly the speedup can ramp towards acceleration. Solving equation (4.4) for gA
2

gives:

gA
2

=
[
A ∗

(
o+ L

C

)] 1
β

(4.8)

Using equation (4.7) and (4.8), g1 and gA
2

are related as:

gA
2

= (A− 1)
1
β ∗ g1 (4.9)

Implication 3. Doubling acceleration ‘A’, increases the granularity to attain A
2 by 2

1
β .

The above implication demonstrates the effect of acceleration on gA
2

and shows that

varying acceleration has a prominent effect on gA
2

for sub-linear algorithms. For example,

for a sub-linear algorithm with β = 0.5, doubling acceleration increases gA
2

by a factor of

four. However, for linear and quadratic algorithms, gA
2

increases by factors of two and
√

2,

respectively.

For architects, equation (4.9) also exposes an interesting design trade-off between accel-

eration and performance metrics. Typically, an architect may prefer higher acceleration and

lower g1 , gA
2

. However, equation (4.9) shows that increasing acceleration also increases gA
2

.

This presents a dilemma for an architect to favor either higher acceleration or reduced gran-

ularity, especially for the sub-linear algorithms. LogCA helps by exposing these trade-offs

at an early design stage.

In our model, we also use g1 to determine the complexity of the system’s interface. A

lower g1 (on the left side of plot in Figure 4.3) is desirable, as it implies a system with lower

overheads and thus a simpler interface. Likewise, g1 increases with the complexity of the

interface or when an accelerator moves further away from the host.
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4.2.3 Granularity dependent latency

The previous section assumed latency is granularity independent but we have observed

granularity dependent latencies in GPUs. In this section, we discuss the effect of granularity

on speedup and derive performance metrics assuming granularity dependent-latency.

Assuming granularity dependent latency, equation (4.3) reduces to:

Speedup(g) = C ∗ gβ

o+ L ∗ g + C∗gβ
A

(4.10)

For large granularities, equation (4.10) reduces to:

lim
g→∞

Speedup(g) =
 A

A
C∗gβ ∗ (L ∗ g) + 1

 <
C

L
∗ gβ−1 (4.11)

Unlike equation (4.5), speedup in the above equation approaches C
L
∗gβ−1 at large granulari-

ties. Thus, for linear algorithms with granularity dependent latency, instead of acceleration,

speedup is limited by C
L

. However, for super-linear algorithms this limit increases by a

factor of gβ−1, whereas for sub-linear algorithms this limit decreases by a factor of gβ−1.

Implication 4. With granularity dependent latency, the speedup for sub-linear algorithms asymp-

totically decreases with the increase in granularity.

The above implication suggests that for sub-linear algorithms, on systems with granu-

larity dependent latency, speedup may decrease for some large granularities. This happens

because for large granularities, the communication latency (a linear function of granu-

larity) may be higher than the computation time (a sub-linear function of granularity)

on the accelerator, resulting in a net de-acceleration. This implication is surprising as

earlier we observed that—for systems with granularity independent latency—speedup
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for all algorithms increase with granularity and approaches acceleration for very large

granularities.

For very small granularities, equation (4.10) reduces to:

lim
g→ 0

Speedup(g) ' A ∗ C

A ∗ (o+ L) + C
(4.12)

Similar to equation (4.6), the above equation exposes the increasing effects of overheads at

small granularities. Solving equation (4.10) for g1 using Newton’s method [93]:

g1 = C ∗ (β − 1) ∗ (A− 1) + A ∗ o
C ∗ β ∗ (A− 1)− A ∗ L (4.13)

For a positive value of g1, equation (4.13) must satisfy C
L
> 1

β
. Thus, for achieving any

speedup for linear algorithms, C
L

should be at least 1. However, for super-linear algorithms

a speedup of 1 can achieved at values of C
L

smaller than 1, whereas for sub-linear algorithms

algorithms, C
L

must be greater than 1.

Implication 5. With granularity dependent latency, computational intensity for sub-linear algo-

rithms should be greater than 1 to achieve any gains.

Thus, for sub-linear algorithms, computational index has to be greater than latency to

justify offloading the work. However, for higher-complexity algorithms, computational

index can be quite small and still be potentially useful to offload.

Similarly, solving equation (4.10), using Newton’s method, for gA
2

gives:

gA
2

= C ∗ (β − 1) + A ∗ o
C ∗ β − A ∗ L

(4.14)

For a positive value of gA
2

, equation (4.14) must satisfy C/A
L

> 1
β

. Thus, for achieving



33

a speedup of A/2, C
L

should be at least ‘A’ for linear algorithms. However, for super-

linear algorithms a speedup of A
2 can achieved at values of C

L
smaller than ‘A’, whereas for

sub-linear algorithms, C
L

must be greater than ‘A’.

Implication 6. With granularity dependent latency, accelerator’s computational intensity for sub-

linear algorithms should be greater than 1 to achieve speedup of half of the acceleration.

The above implication suggests that for achieving half of the acceleration with sub-

linear algorithms, the computation time on the accelerator must be greater than latency.

However for super-linear algorithms, that speedup can be achieved even if the computation

time on accelerator is lower than latency. Programmers can use the above implications to

determine—early in the design cycle—whether to put time and effort in porting a code to

an accelerator. For example, consider a system with a minimum desirable speedup of one

half of the acceleration but has a computational intensity of less than the acceleration. With

the above implication, architects and programmers can infer early in the design stage that

the desired speedup can not be achieved for sub-linear and linear algorithms. However,

the desired speedup can be achieved with super-linear algorithms.

We are also interested in quantifying the limits on achievable speedup due to overheads

and latencies. To do this, we assume a hypothetical accelerator with infinite acceleration,

and calculate the granularity (gA) to achieve the peak speedup of ‘A’. With this assump-

tion, the desired speedup of ‘A’ is only limited by the overheads and latencies. Solving

equation 4.4 for gA gives:

gA = C ∗ (β − 1) + A ∗ o
C ∗ β − A ∗ L

(4.15)

Surprisingly, we find that the above equation is similar to equation( 4.14), i.e., gA equals gA
2

.

This observation shows that with a hypothetical accelerator, the peak speedup can now be
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achieved at the same granularity as gA
2

. This observation also demonstrates that if gA
2

is

not achievable on a system, i.e., C/A
L

< 1
β

as per equation (4.14), then despite increasing

the acceleration, gA will not be achievable, and the speedup will still be bounded by the

computational intensity.

Implication 7. If a speedup of A
2 is not achievable on an accelerator with acceleration ‘A’, despite

increasing acceleration to Ã (where Ã>A), the speedup is bounded by the computational intensity.

The above implication helps architects in allocating more resources for an efficient

interface instead of increasing acceleration.

4.3 Experimental Methodology

This section describes our methodology for determining LogCA parameters. We measure

these parameters using the execution time on host (equation 4.1) and accelerator (equation

4.2) and accelerator specifications. We determine these parameters once and can be later

used for different kernels on the same system. In Figure 4.4, we sketch a work flow for

determining these parameters.

• C : We calculate computational index and β by profiling the CPU code on the host. We

profile by varying the granularity from 16B to 32MB. At each granularity, we measure the

execution time and use regression analysis to determine C and β.

• o : For overheads, we use the observation from equation (4.2) that for very small granu-

larities the execution time for a kernel on an accelerator is dominated by the overheads,

i.e.,

lim
g→0

T1(g) ' o
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• A : We use different methods for calculating acceleration on the on-chip accelerators and

GPUs. For on-chip accelerators, we calculate acceleration using equation (4.5) and the

observation that the speedup curve flattens out and approaches acceleration for very large

granularities. We use this observation and track the speedup variation with granularity

until it becomes constant. On the other hand, for the GPUs, we use the ratio of peak

GFLOPs on CPU and GPU, i.e.,

A = Peak GFLOPGPU
Peak GFLOPCPU

For GPUs, we do not use equation (4.5) as it requires computing acceleration for each

kernel, as each application has a different access pattern which affects the speedup. So, we

bound the maximum performance using the peak flops from the device specifications.

• L : Similar to acceleration, we employ two techniques for calculating latency. For the on-chip

accelerators, we run micro-benchmarks and use execution time on host and accelerators

i.e., equations (4.1) and (4.2). On the other hand, for the GPUs, we compute latency using

peak memory bandwidth of the GPU. Similar to Meswani et al. [53], we use the following

equation for measuring data copying time for the GPUs:

L = 1
BWpeak

We have developed our model using assumptions of granularity independent and de-

pendent latencies. In our setup, we observe that the on-chip cryptographic accelerators rep-

resent accelerators with granularity independent latency while the off-chip cryptographic

accelerator and discrete GPU/APU represent the granularity dependent accelerators. For

each accelerator, we calculate the speedup and performance metrics using the respective
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Speedup, g1, gA
2

g

C, βA, oA, L

Figure 4.4: Flowchart for calculating LogCA parameters.

Kernel Algorithmic Complexity
Advanced Encryption Standard (AES) O(n) O(g1.01)
Secure Hashing Algorithm (SHA) O(n) O(g0.97)
Matrix Multiplication (GEMM) O(n3) O(g1.7)
Fast Fourier Transform (FFT) O(n log n) O(g1.2)
Radix Sort O(kn) O(g0.94)
Binary Search O(log n) O(g0.14)
Discrete Cosine Transform (DCT) O(n2) O(g0.99)

Table 4.2: Algorithmic complexity of various kernels with number of elements and granu-
larity. The power of g represents β for each kernel.

equations earlier defined in (§4.2).

In Table 4.2, we list the complexities of each kernel, both in terms of number of elements

n and granularity g. We expect these complexities to remain same in both cases, but we

observe that they differ for Matrix multiplication and Discrete Cosine Transform. For

example, for a square matrix of size n, Matrix Multiplication has complexity of O(n3),

whereas the complexity in terms of granularity is O(g1.7). This happens because for Matrix

Multiplication (and DCT)—unlike others—computations are performed on matrices and
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LogCA Parameters
Device Benchmark L o C A

(cycles) (cycles) (cycles/bytes)

Discrete GPU

AES 174
Radix Sort 290
Matrix Multiplication 3× 103 2× 108 2 30
FFT 290
Binary Search 116

APU

AES 174
Radix Sort 290
Matrix Multiplication 15 4× 108 2 7
FFT 290
Binary Search 116

UltraSPARC T2 AES 1,500 2.9× 104 90 19
SHA 10.5× 103 72 12

SPARC T3 AES 1,500 2.7× 104 90 12
SHA 10.5× 103 72 10

SPARC T4 AES 500 435 32 12
SHA 16× 103 32 10

SPARC T4 instructions AES 4 111 32 12
SHA 1,638 32 10

Sandy Bridge AES 3 10 35 6

Table 4.3: Calculated values of LogCA Parameters.

not vectors. So offloading a square matrix of size n corresponds to offloading n2 elements,

which results in the apparent discrepancy in the complexities.

4.4 Evaluation

In this section, we present our results and show that LogCA closely captures the behavior

for different complexity algorithms on both off and on-chip accelerators. We also list the

calculated LogCA parameters in Table 4.3.
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(c) AMD Integrated GPU (APU)

16 12
8 1K 8K 64

K
51

2K 4M 32
M

0.1

1

10

100

1000

A

g1 gA
2

C
L

(d) UltraSPARC T2

16 12
8 1K 8K 64

K
51

2K 4M 32
M

0.1

1

10

100

1000

A

g1 gA
2

C
L

S
p

ee
d

u
p

(e) SPARC T3

16 12
8 1K 8K 64

K
51

2K 4M 32
M

0.1

1

10

100

1000

A

g1 gA
2

C
L

(f) SPARC T4 engine

16 12
8 1K 8K 64

K
51

2K 4M 32
M

0.1

1

10

100

1000

A

gA
2

C
L

g1 < 16B

Granularity (Bytes)

S
p

ee
d

u
p

(g) SPARC T4 instruction
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Figure 4.5: Speedup curve fittings plots comparing LogCA with the observed values of
AES [2] over a range of granularities. LogCA starts following observed values after 16B.
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(a) UltraSPARC T2 engine
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(c) SPARC T4 engine
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Figure 4.6: Speedup curve fittings plots comparing LogCA with the observed values of
SHA256 [3] over a range of granularities. LogCA starts following observed values after
64B.

4.4.1 Linear-Complexity Kernels (β = 1)

Figure 4.5 shows the curve-fitting of LogCA for AES. We consider both off-chip and on-

chip accelerators, connected through different interfaces, ranging from PCIe bus to special

instructions. We observe that the off-chip accelerators and APU, unlike on-chip accelerators,

provide reasonable speedup only at very large granularities. We also observe that the

achievable speedup is limited by computational intensity for off-chip accelerators and
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Figure 4.7: Speedup curve fittings plots comparing LogCA with the observed values of
Radix Sort over a range of granularities.

acceleration for on-chip accelerators. This observation supports earlier implication on the

limits of speedup for granularity independent and dependent latencies in equation ( 4.5)

and (4.11), respectively.

Figure 4.5 also shows that UltraSPARC T2 provides higher speedups compared to

Sandy Bridge, but it breaks-even at a larger granularity. Sandy Bridge, on the other hand,

breaks-even at very small granularity but provides limited speedup. The discrete GPU

with powerful processing cores has the highest acceleration among others. But its observed

speedup is less than others due to high overheads and latencies involved in communicating

through the PCIe bus.

We have also marked g1 and gA
2

for each accelerator in Figure 4.5 which help program-

mers and architects identify the complexity of the interface. For example, g1 for crypto-

graphic instructions, i.e., SPARC T4 and Sandy Bridge, lies on the extreme left while for the

off-chip accelerators, g1 lies on the far right. It is worth mentioning that we have marked

ga
2

for on-chip accelerators but not for the off-chip accelerators. For off-chip accelerators,
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computational intensity is less than acceleration and as we have noted in equation (4.14)

that gA
2

for these designs does not exist.

We also observe that g1 for the cryptographic-card connected through the PCIe bus does

not exist, showing that this accelerator does not break-even even for large granularities.

Figure 4.5 also shows that g1 for GPU and APU is comparable. This observation shows

that despite being an integrated GPU and not connected to the PCIe bus, APU spends

considerable time in copying data from the host to device memory.

Figure 4.6 shows the curve fitting for SHA on various on-chip cryptographic accelerators.

We observe that g1 and gA
2

do exist, as all of these are on-chip accelerators. We also observe

that the LogCA curve mostly follows the observed value. However, it deviates from the

observed value before 64B. This happens because SHA requires block size of 64B for hash

computation. If the block size is less than 64B, it pads extra bits to make the block size

64B. Since LogCA does not capture this effect, it does not follow the observed speedup for

granularity smaller than 64B.

Figure 4.7 shows the speedup curve fitting plots for radix sort. We observe that LogCA

does not follow the observed values for smaller granularities on GPU. This happens because

LogCA does not model caches, and with a single latency parameter, it can not capture

the memory access pattern for both small and large granularities. Despite this inaccuracy,

LogCA still accurately predicts g1 and gA
2

. We also observe that gA
2

for GPU is higher than

APU.

4.4.2 Super-Linear Complexity Kernels (β > 1)

Figures 4.8 and 4.9 show the speedup curve fitting plots for super-complexity kernels on

discrete GPU and APU. These Figures provide some key observations: First, we observe
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Figure 4.8: Speedup curve fittings plots comparing LogCA with the observed values of
Matrix Multiplication over a range of granularities.
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Figure 4.9: Speedup curve fittings plots comparing LogCA with the observed values of
FFT over a range of granularities.

that matrix multiplication (Figure 4.8) with higher complexity (O(g1.7)) achieves higher

speedup as compared to sort (Figure 4.7) and FFT (Figure 4.9) with lower complexities of

O(g) and O(g1.2), respectively. This observation corroborates results from equation (4.11)

that achievable speedup of higher-complexity algorithms is higher than lower-complexity
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algorithms. We also observe that gA
2

does not exist for FFT. This happens because as we

note in equation (4.14) that for gA
2

to exist for FFT, C
L

should be greater than A
1.2 . However,

Figure 4.9 shows that C
L

is smaller than A
1.2 for both GPU and APU.

4.4.3 Sub-Linear Complexity Kernels (β < 1)

Figure 4.10 shows the curve fitting for binary search which is a sub-linear algorithm (β =

0.14). We observe that g1 does not exist even for very large granularities and C
L
< 1. This

observation supports implication (5) that for a sub-linear algorithm of β = 0.14, C
L

should

be greater than 7 to provide any speedup. We also observe that for large granularities,

speedup starts decreasing with an increase in granularity. This observation supports

our earlier claim in implication (4) that for systems with granularity dependent latencies,

speedup for sub-linear algorithms asymptotically decrease. We also observe that LogCA

deviates from the observed value at large granularities. This deviation occurs because

LogCA does not model caches. As mentioned earlier, LogCA abstracts the caches and

memories with a single parameter of latency which does not capture the memory-access

pattern accurately.

Even though LogCA does not accurately captures binary search behavior, it still provides

an upper bound on the achievable performance. This information can be still helpful for

architects and programmers early in the design stage.

Consider a scenario where multiple kernels—with different computational indices—are

available for an algorithm. LogCA can helps programmers in identifying the kernel which

meets the computational index requirement at a certain g1 . For example, Figure 4.11 shows

the computational indices of various encryption and hashing kernels on UltraSPARC T2. We

can make two key observations: First, encryption kernels have high computational index as
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Figure 4.10: Speedup curve fittings plots comparing LogCA with the observed values of
Binary Search over a range of granularities.

16 12
8 1K 8K 64

K
51

2K 4M 32
M

1

10

100

1000
Encryption Kernels

Hashing Kernels

g1 (Bytes)

C
o
m

p
u

ta
ti

on
al

In
d

ex
(C

y
cl

es
/B

y
te

)

AES DES 3DES RC4 SHA1 SHA256 MD5

Figure 4.11: g1 for various encryption and hashing kernels on UltraSPARC T2.

compared to hashing kernel. And second, g1 decreases with the increase in computational

index. This observation also supports earlier implication (2) that doubling computational

index reduces g1 by a factor of 2.
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Figure 4.12: System configuration for multiple accelerators running in parallel.

4.5 Case for Multiple Accelerators

Earlier we observed in Section 6.2.1 that for latency bound kernels, speedup is bounded

by computational intensity. Therefore, to increase this bound we can either increase

computational index or decrease latency. We can decrease the effective latency by overlap-

ping computation with communication. To do this, the host—instead of sitting idle after

offloading—can offload the sub-computations to multiple accelerators operating in parallel

or pipeline these sub-computations on a single accelerator. In this section, we explore the

potential impact of parallelizing and pipelining computations.

4.5.1 Parallel Execution

We consider a system with ‘n’ accelerators, operating in parallel, each with an acceleration

of A1, A2, ...., An. These accelerators are connected through different interfaces, resulting in

different overheads, i.e., o1, o2, ...., on and latencies, i.e., L1, L2, ...., Ln. Figure 4.12 illustrates

such a configuration.

For a computation with computational index ‘C’, the execution time on the host is:

T0(g) = C0(g) = C ∗ f(g) (4.16)
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We assume that a granularity of ‘g’ can be partitioned into ‘n’ parts, i.e,

n∑
i=1

gi = g

For parallel computation, the host offloads a fraction of the total granularity, gi to each

accelerator, and we assume that each fraction has the same computational index ‘C’. We

also assume that the host sets up the i-th computation after offloading (i-1)st computation.

Therefore, the overhead for the first accelerator is o1, o1 + o2 for the second, and ∑n
i=1 oi for

the n-th accelerator and we define the overheads for the n-th accelerator as the lumped

overheads, on:

on =
n∑
i=1

oi

With these assumptions, the execution time on the first accelerator is given by:

T1(g1) = o1 + L1 ∗ g1 + C ∗ f(g1)
A1

Similarly, the execution time for the second accelerator is:

T2(g2) = o1 + o2 + L2 ∗ g2 + C ∗ f(g2)
A2

And for the n-th accelerator:

Tn(gn) = on + Ln ∗ gn + C ∗ f(gn)
An

Therefore, the total execution time is limited by the accelerator which completes the execu-
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tion at the end, i.e.,

Tparallel(g) = max (T1(g1), T2(g2), ...., Tn(gn)) (4.17)

where, T1(g1), T2(g2), and Tn(gn) are the execution times on the first, second and n-th

accelerator, respectively. The speedup in this case is given by:

Speedupparallel = C ∗ f(g)
max (T1(g1), T2(g2), ..., Tn(gn)) (4.18)

The above equation exposes some interesting trade-offs in partitioning the granularity

among the accelerators. Ideally, we would like to partition the granularity such that each

accelerator finishes the work at the same time. To achieve that, an optimal distribution

strategy would be such that the accelerator which incurs low overheads and/or latencies,

gets a larger portion of granularity.

For a concrete analysis, we make some simplifying assumptions here. We assume that

the computation has linear complexity and the granularity ‘g’ can be partitioned into ‘n’

equal parts, i.e., gi = g
n

. We also assume that each accelerator has the same acceleration, i.e.,

‘Ai = A’, and is connected through the same interface, i.e., ‘Li = L’. We also assume that the

overheads are constant, i.e., oi = o. With these assumptions, the n-th accelerator finishes

at the end—equal distribution of work is not an optimal strategy with these assumptions.

Therefore, the total execution time from equation (4.17) reduces to:

Tparallel(g) = n ∗ o+ L ∗ g
n

+ C ∗ g
nA
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Figure 4.13: System configuration for multiple accelerators running in serial.

And the speedup from equation (4.18) is given by:

Speedupparallel = C ∗ f(g)
n ∗ o+ L ∗ g

n
+ C∗g

nA

(4.19)

We observe that the above equation is similar to the speedup equation (4.4) for a single

accelerator in Chapter 4. This observation shows that multiple accelerators can be treated as

a single accelerator with lumped parameters. For very small overheads, the above equation

reduces to:

Speedupparallel ≈ nA (4.20)

However, for large overheads, equation (4.19) reduces to:

Speedupparallel � nA (4.21)

The above equations show that offloading sub-computations to multiple accelerators is

beneficial with smaller overheads. As the overheads increase, the potential benefits start

decreasing.

4.5.2 Serial Execution

Now we consider a system with ‘n’ accelerators, but unlike previous subsection, operating

serially. Figure 4.13 illustrates such a configuration. Each accelerator has an acceleration of

A1, A2, ...., An, and is connected through a different interface, resulting in different over-



49

heads, i.e., o1, o2, ...., on and latencies, i.e., L1, L2, ...., Ln. We also assume that algorithms

running on these accelerators have different computational indices, i.e., C1, C2, ..., Cn. As-

suming each accelerator process a fraction of granularity ‘g’, i.e., ‘gi’, the execution time on

the host is:

T0(g) = C0(g) = C1 ∗ f(g1) + C2 ∗ f(g2)+, ...+ Cn ∗ f(gn) =
n∑
i=1

Ci ∗ f(gi) (4.22)

Assuming no overlapping between computation and communication, the serial execution

time for ‘n’ accelerators is:

Tserial(g) = o1 +L1 ∗ g1 + C ∗ f(g1)
A1

+ o2 +L2 ∗ g2 + C ∗ f(g2)
A2

+ ....+ on +Ln ∗ gn + C ∗ f(gn)
An

=⇒ Tserial(g) =
n∑
i=1

oi +
n∑
i=1

Li ∗ gi +
n∑
i=1

Ci
Ai
∗ f(gi) (4.23)

The speedup for such a system will be given by:

Speedupserial =
∑n
i=1 Ci ∗ f(gi)∑n

i=1 oi +∑n
i=1 Li ∗ gi +∑n

i=1
Ci
Ai
∗ f(gi)

(4.24)

4.5.2.1 Pipelined Execution

Equation (4.24) shows the speedup for ‘n’ accelerators operating in serial. For a carefully

pipelined system where the overheads and link latencies are completely hidden by the

accelerator’s computation time, equation (4.24) will be given by:

Speeduppipelined =
∑n
i=1 Ci ∗ f(gi)

maxi∈n(oi) +maxi∈n(Li ∗ gi) +∑n
i=1

Ci∗f(gi)
Ai

(4.25)

Therefore, in this section we explore the potential for pipelined execution, where these
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Figure 4.14: Overlapping scenarios for pipelined execution of three computations on an
accelerator. (a) The base case of an un-pipelined execution. Pipelined execution when (b)
overhead is higher than latency (c) overhead is smaller than latency.

‘n’ sub-computations are now run on a single accelerator. We assume that the host can

start processing i-th component before the completion of the (i+1)-st component of the

computation.

Equation (4.25) highlights some additional potential bottlenecks in the system, despite

overcoming the overheads and latencies. For example, while operating computations with

different computational indices, the one with higher computational index and/or β can

become a new bottleneck. Consequently, not allowing other accelerators to proceed.

Similar to the parallel execution, we make some simplifying assumptions for a concrete

analysis. We assume that each accelerator process a granularity of ‘g’, i.e., gi = g. We also

assume that each accelerator has the same acceleration, i.e., ‘Ai = A’, and is connected

through the same interface, i.e., ‘Li = L’. We also assume that the overheads are constant,

i.e., oi = o.

Figure 4.14 shows different scenarios for pipelining three computations. Figure 4.14-a

shows the base case, i.e., the un-pipelined execution. Figure 4.14-b shows the scenario
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when overhead is larger than latency. In this case, speedup is given by:

Speeduppipelined = n ∗ C ∗ f(g)
L ∗ g +max[n ∗ o+ C∗f(g)

A
, o+ n ∗ C∗f(g)

A
]

(4.26)

Increasing the number of sub-computations, the above equation reduces to:

lim
n→∞

Speeduppipelined = C ∗ f(g)
max[o, C∗f(g)

A
]

(4.27)

Similarly, Figure 4.14-c shows the scenario when latency is larger than overheads. In this

case, speedup is given by:

Speeduppipelined = n ∗ C ∗ f(g)
o+max[n ∗ L ∗ g + C∗f(g)

A
, L ∗ g + n ∗ C∗f(g)

A
]

(4.28)

Increasing the number of sub-computations, the above equation reduces to:

lim
n→∞

Speeduppipelined = C ∗ f(g)
max[L ∗ g, C∗f(g)

A
]

(4.29)

Moreover, when overhead and latency are smaller than computation time, speedup is

given by:

Speeduppipelined = n ∗ C ∗ f(g)
L ∗ g + o+ n ∗ C∗f(g)

A

(4.30)

Similarly, increasing the number of sub-computation for the above equation results in:

lim
n→∞

Speeduppipelined ≈ A (4.31)

The above equations highlight the significance of overheads while pipelining the computa-

tions.
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Figure 4.15: Parallel execution of AES. (a) Comparing execution on multiple accelerators
with a single accelerator. Curve fitting of LogCA with the observed values while executing
on (b) two (c) four and (d) eight accelerators.

4.5.3 Results

In this section, we discuss our results for parallel and pipelined computations.

Figure 4.15 illustrates the effect of running AES on eight cryptographic accelerators on

UltraSPARC T2 in parallel. In Figure 4.15-a, we compare the parallel computations with

the base case—on a single accelerator, whereas for (b), (c) and (d), we plot the curve-fittings

for running on two, four and eight cryptographic accelerators, respectively. We also list the

speedup for the base case and multiple accelerators in Table 4.4.
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Granularity Speedup
(Bytes) n=1 n=2 n=4 n=8
16 0.04 0.15 0.11 0.1
32 0.08 0.17 0.16 0.13
64 0.16 0.2 0.18 0.19
128 0.33 0.27 0.28 0.31
256 0.63 0.42 0.47 0.51
512 1.22 0.63 0.81 0.99
1K 2.30 1.06 1.49 1.87
2K 4.10 2.01 2.79 3.39
4K 6.70 3.67 5.10 6.03
8K 9.8 6.68 9.08 10.8
16K 12.8 11.8 15.0 16.8
32K 15.1 17.0 21.2 22.6
64K 16.6 24.4 27.1 28.8

Table 4.4: Parallel execution of AES for various granularities. ’n’ represents the number of
accelerators running in parallel.

Granularity Speedup
(Bytes) n=1 n=2 n=4
16K 0.01 0.01 0.01
64K 0.08 0.08 0.08
256K .89 0.9 .93
1M 8.18 8.30 8.60
4M 15.5 18.5 20.2
16M 17.6 21.3 22.6
64M 18.5 23.5 23.6

Table 4.5: Pipelined execution of matrix multiplication on a discrete GPU. ’n’ represents
the number of pipeline stages.

Figure 4.15-a shows that the gains from parallelization vary with granularity. For very

small granularities, the speedup decreases with more parallelization. This happens because

as we noted in equation (4.21) that for smaller granularities, overheads are higher than

the computations time. However, for higher granularities, the speedup increases with

increasing parallelization.
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Granularity Speedup
(Bytes) n=1 n=2 n=4
16K 0.01 0.01 0.01
64K 0.04 0.04 0.04
256K 0.16 0.16 0.16
1M 0.68 0.69 0.72
4M 2.26 2.50 2.60
16M 5.68 7.20 8.40
64M 9.18 15.6 17.4

Table 4.6: Pipelined execution of FFT on discrete GPU. ’n’ represents the number of pipeline
stages.

Granularity Speedup
(Bytes) n=1 n=2 n=4
4K 0.30 0.28 0.25
8K 0.30 0.28 0.27
16K 0.47 0.45 0.35
32K 0.57 0.46 0.41
64K 0.49 0.47 0.43
128K 0.70 0.65 0.60
256K 0.99 0.95 0.85
512K 1.66 1.70 1.90
1M 2.79 3.00 4.20
2M 4.21 5.20 7.80
4M 8.97 9.80 10.1
8M 11.0 12.0 13.3
16M 11.6 13.1 14.2
32M 12.8 14.4 15.4
64M 13.1 15.6 16.8

Table 4.7: Pipelined execution of Radix Sort on a discrete GPU. ’n’ represents the number
of pipeline stages.
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Figure 4.16: Pipelined execution of matrix multiplication on a discrete GPU. (a) Comparing
pipelined and un-pipelined execution. Curve fitting of LogCA with the observed values
for pipelining (a) two and (b) four computations.
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Figure 4.17: Pipelined execution of FFT on a discrete GPU. (a) Comparing pipelined and
un-pipelined execution. Curve fitting of LogCA with the observed values for pipelining (a)
two and (b) four computations.

Figure 4.16- 4.19 illustrate the effect of pipelining on different kernels running on a

discrete GPU. Each of these figures has three different plots. In each figure, (a) plots the

observed speedups for un-pipelined and pipelined computations. Subsequently, (b) and

(c) plot the curve fitting plots for the pipelined execution for two and four computations,

respectively. For a better understanding, we also list the actual speedup numbers for each

algorithm in Tables 4.5- 4.7.

These figures provide two key observations. First, LogCA closely follows the observed

values for kernels with regular memory access pattern, i.e., matrix multiplication and

FFT, whereas it over-predicts for kernels with irregular memory access patterns, i.e., radix
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Figure 4.18: Pipelined execution of radix sort on a discrete GPU. (a) Comparing pipelined
and un-pipelined execution. Curve fitting of LogCA with the observed values for pipelining
(a) two and (b) four computations.
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Figure 4.19: Pipelined execution of binary search on a discrete GPU. (a) Comparing
pipelined and un-pipelined execution. Curve fitting of LogCA with the observed val-
ues for pipelining (a) two and (b) four computations.

sort and binary search. And second, pipelining barely improves speedup by overlapping

computation with communication. It does not provide any benefits for lower granulari-

ties when overheads are high. With the increase in granularity, when the overheads are

amortized, speedup start improving. This observation corroborates equation (4.27) that

speedup is limited by overheads at smaller granularities. We also observe that pipelining

does not reduce g1 . In contrast to this observation, Lustig and Martonosi [97] showed that

pipelining can reduce the break-even point by fine-grained synchronization between the

host and GPU.
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4.6 How to Use LogCA?

In this section we describe how programmers and architects can use LogCA, and make de-

cisions early in the design stage. We delineate the process with flowcharts for programmers

and architects in Figure 4.20 and 4.21, respectively.

4.6.1 For Programmers

As mentioned earlier, LogCA helps programmers in deciding whether a kernel is worth

offloading or not. To this end, Figure 4.20 describes the various steps in the decision process.

In the first step, we profile the CPU code and determine the complexity of the algorithm by

measuring its β. We have chosen a threshold of 0.9 for the β of the kernel, this threshold

roughly signifies a linear complexity kernel.

After profiling, determine whether the latency parameter of the system is granularity

independent or dependent. For granularity-dependent latencies, do not offload kernels

with sub-linear complexities, whereas for kernels with at-least linear complexity, compute

the LogCA parameters. In contrast, for granularity independent latencies, compute the

LogCA parameters irrespective of the complexity of the kernel.

After computing the LogCA parameters, determine the speedup and performance

metrics, g1 and gA
2

. If g1 turns out to be negative, do not offload the kernel as a negative

g1 shows that the break-even point can not achieved with the current system. However, if

g1 is positive, proceed to the next step and calculate speedup.

If the calculated speedup is greater than the desired speedup, we are done. However, if

it is less than the desired speedup, use insights from equation (4.5) and (4.11) that speedup

can be increased by offloading more data. Therefore, unless there are design or algorithmic

constraints, offload more data to increase the speedup. If increasing granularity achieves
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Figure 4.20: A flowchart for programmers for using LogCA early in the design stage.
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the desired speedup, we are done. Otherwise, do not offload.

4.6.2 For Architects

For architects, LogCA provides insights about allocating resources in the right direction.

The flow chart in Figure 4.21 illustrates the various steps which help architects make a

decision.

In the first step, determine the LogCA parameters and g1 by profiling the CPU and

accelerator’s code. If g1 is negative, it shows that the interface needs improvement. As we

have noted earlier in implication (1) that allocating resources to accelerator will not affect

g1 . However, if g1 is positive, proceed to the next step and calculate the speedup. If the

calculated speedup is greater than the desired speedup, we are done.

However, if the calculated speedup is less than the desired speedup, calculate gA
2

.

If gA
2

is negative, the interface needs improvement. On the other hand, if gA
2

is positive,

resources should be spent on the accelerator.

4.7 Summary

With the recent trend towards heterogeneous computing, we feel that the architecture

community lacks a model to reason about the need for accelerators. To this end, we have

proposed LogCA—an insightful performance model for hardware accelerators. LogCA

provides insights, early in the design stage, to both architects and programmers by ab-

stracting away low-level details using five system parameters. These parameters signify

the latency (L), setup overheads (o), granularity (g) of the data, computational complexity

(C) of the kernel and the peak speedup of an accelerator (A).
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Figure 4.21: A flowchart for architects for using LogCA early in the design stage.
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LogCA leverages power-law for modeling the complexity of algorithms. This helps in

modeling a diverse range of kernels, ranging from sub-linear to super-linear complexities.

We also observe that the power-law helps in modeling logarithmic function within the

granularity range of our interest. LogCA exposes the relationship between speedup and

the offloaded data, and defines performance metrics which help programmers in deciding

about the right amount of data to offload. For architects, LogCA provides insight whether

resources should be spent on either the interface or the accelerator.

We have validated LogCA across a diverse range of kernels, on both on-chip and off-chip

accelerators. We have shown that LogCA accurately predicts the performance for kernels

with regular memory access pattern. However, for irregular access patterns, it mispredicts

for either lower or higher granularities.

We have also explored the potential impact of pipelining and parallelizing computations.

We have observed that exploiting maximum benefits out of these techniques require careful

partitioning of the work among the accelerators. We have also discussed the bottlenecks

resulting from an equal distribution of work in parallel computations, and from pipelining

computations with different algorithmic complexities.
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5 logcae: the energy counterpart for the

logca model

Power is a design constraint not only for portable

computers and mobile communication devices but

also for high-end systems, and the design process

should not subordinate it to performance.
— Trevor Mudge

5.1 Introduction

With the recent trend in energy-efficient systems, performance is no longer the primary

design criterion rather energy has become a major design concern [94]. Therefore, while

designing accelerators, architects need to make sure that the performance gains provided

by an accelerator should not be accompanied by excessive energy consumption. Likewise,

programmers need to ascertain, while offloading a kernel, the amount of data to offload

which can provide both performance and energy benefits.

To illustrate our point, Figure 5.1 plots the execution time and energy consumption

for the AES kernel on a discrete GPU. We observe that the unaccelerated execution time

is smaller than the accelerated one for smaller granularities, whereas it is higher than

accelerated execution time for large granularities. We also observe that the energy follows

a similar trend as execution time, i.e., the energy consumption for the accelerated kernel is

higher than the unaccelerated one for lower granularities and smaller than the unaccelerated

one for higher granularities. However, the break-even points are different for these two
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Figure 5.1: Execution time (above) and energy (below) for running Advanced Encryption
Standard (AES) kernel on a discrete GPU.

cases, i.e., the break-even point for energy consumption is roughly 32 times higher than for

execution time.

This observation highlights the possibility of an offloaded kernel to be performance but

not energy efficient. To help programmers and architects determine these scenarios early

in the design cycle, we have developed an energy model similar to the performance model

described earlier in Chapter 4.

The rest of the chapter is organized as follows. We develop the energy model in

Section 5.2, and define speedup-efficiency product in Section 5.3. We discuss the results in
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Parameter Symbol Description Units
Link Energy Le Energy to move data from the

host to the accelerator across an
un-pipelined interface, including
the cycles data spends in the
caches or memory

Joules

Overhead Energy oe Energy the host spends in setting
up the algorithm

Joules

Granularity g Size of the offloaded data Bytes
Computational Energy Ce Energy the host spends on com-

putation per byte of data
Joules/Byte

Energy Acceleration Ae The peak energy efficiency of an
accelerator

N/A

Table 5.1: Description of the energy counterpart of LogCA model.

energy

Ce
o(g)

oe1(g) Le
1(g) Ce

1(g) =
Ce

o(g)
Ae

Gain

Ee
0(g)

Ee
1(g)

Figure 5.2: Energy consumption for the computation performed on the host (above) and
on an accelerator (below)

Section 5.4 and finally, conclude with Section 5.5.

5.2 Energy Model

In this section, we develop the LogCA energy model and compare and contrast it with the

LogCA performance model. We note that the energy model is similar to the performance

model, and they differ only in the assumption of latency1. Therefore, for consistency with

1We describe the latency assumption at the end of this section
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the performance model, we use the same five symbols—each with an ‘e’ superscript, except

for ‘g’—to denote the corresponding energy parameters. Table 5.1 provides a description

of each parameter.

Figure 5.2 shows the breakdown of energy consumed by an algorithm on the host and

accelerator. We assume that the host is idle after offloading the algorithm and we do not

factor in the energy consumed during that time. We also assume that the algorithm’s

execution energy is a function of granularity, i.e., the size of the offloaded data. With this

assumption, the unaccelerated energy E0 (energy with zero accelerators) to process data of

granularity g, will be

E0(g) = Ce
0(g) (5.1)

where Ce
0(g) is the computation energy on the host.

When the data is offloaded to an accelerator, the new execution energy E1 (energy with

one accelerator) is

E1(g) = Oe
1(g) + Le1(g) + Ce

1(g) (5.2)

where Oe
1(g) is the host overhead energy in offloading ‘g’ bytes of data to the accelerator,

Le1(g) is the link or communication energy and Ce
1(g) is the computation energy in the

accelerator to process data of granularity ‘g’.

We assume that an accelerator with acceleration ‘Ae’ can decrease, in the absence of

overheads, the algorithm’s computation energy on the host by a factor of ‘Ae’, i.e., the

accelerator and host use algorithms with the same complexity. Thus, the computation

energy on the accelerator will be Ce
1(g) = Ce0(g)

Ae
. This reduction in the computation energy

results in energy gains, and we quantify these gains with efficiency, the ratio of the un-
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accelerated and accelerated energy:

Efficiency(g) = E0(g)
E1(g)

= Ce
0(g)

Oe
1(g) + Le1(g) + Ce

1(g) (5.3)

We also assume that the computation energy is a function of the computational index

‘Ce’ and granularity, i.e., Ce
0(g) = Ce ∗ f(g), where f(g) signifies the complexity of the

algorithm. We also assume that f(g) is power function of ’g’, i.e., O(gβ) .

Earlier for the performance model, our analysis is based on two alternative assumptions

about latency, i.e., it can be granularity independent or dependent. However for the energy

model, the assumption of granularity independent latency is not likely to be valid. Since

communicating large blocks will proportionally consume more link energy and overlapping

various computations can not save energy. That is why the link energy will always be

granularity dependent and for simplicity we assume it to be a linear function of granularity

i.e., Le1(g) = Le ∗ g. We also assume that energy overheads are granularity independent,

i.e., oe1(g) = oe. With these assumptions, efficiency will be given by:

Efficiency(g) = Ce ∗ gβ

oe + Le ∗ g + Ce∗gβ
Ae

(5.4)

For large granularities, equation (5.4) reduces to:

lim
g→∞

Efficiency(g) =
 Ae

Ae

Ce∗gβ ∗ (Le ∗ g) + 1

 <
Ce

Le
∗ gβ−1 (5.5)

Since the above equation is similar to equation (4.10) from the performance model, all

the results and implications from our analysis in Section 4.2.3 are also applicable for the

energy model. Thus, we do not discuss this further in detail and just list the equations for
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energy metrics for reference.

ge1 = Ce ∗ (β − 1) ∗ (Ae − 1) + Ae ∗ oe

Ce ∗ β ∗ (Ae − 1)− Ae ∗ Le (5.6)

geAe
2

= Ce ∗ (β − 1) + Ae ∗ oe

Ce ∗ β − Ae ∗ Le
(5.7)

The above equations highlight the fact that for achieving any energy efficiency, the compu-

tation energy on the host should be greater than the link energy. Similarly, for achieving

an energy efficiency of half of the peak value, the computation energy on the accelerator

should be greater than the link energy.

5.3 Speedup-Efficiency Product

In the early days of low-power designs, a number of proposed techniques saved power at

the cost of low performance. Thus, making it difficult for architects to optimize for both

energy and performance. To overcome this problem, Horowitz et al. [95] argued for a single

metric energy-delay product (EDP). EDP helps in comparing different low-power design

techniques by exposing the trade-offs between lower energy and increased delays.

Similarly, we argue that both speedup and efficiency should be considered while making

a design decision for accelerators. Therefore, we propose a similar metric, speedup-efficiency

product (SEP), which takes into account both speedup and efficiency. Mathematically,

SEP = Timeunaccelerated
Timeaccelerated

∗ Energyunaccelerated
Energyaccelerated

= EDPunaccelerated
EDPaccelerated

(5.8)

The above equation shows that SEP is the ratio of unaccelerated and accelerated EDPs. A
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higher (and increasing) SEP signifies an energy-efficient design, whereas a lower SEP im-

plies that the performance gains are not accompanied by reasonable energy improvements,

i.e., an energy-inefficient design. Thus, SEP can be helpful in comparing performance and

energy trade-offs in accelerator designs similar to EDP.

5.4 Results

In this section, we present our results and show that the energy counterpart of LogCA

follows the observed energy efficiency behavior for both off and on-chip accelerators. We

also observe that these results closely match the results from our performance analysis in

the previous chapter. This is not surprising, as we mentioned earlier in Chapter 3 that we

measure energy consumption of a kernel by multiplying the average power by its execution

time. Therefore, the energy consumption is a scaled version of the execution time and

consequently, the efficiency curves are more or less similar to the speedup curves.

5.4.1 Linear Complexity Kernels

Figure 5.3 shows the curve-fitting of LogCAe for accelerators connected through different

interfaces, i.e., ranging from PCIe bus to special instructions. We observe that the off-chip

accelerators and APU, unlike on-chip accelerators, are energy efficient only at very large

granularities. For example, ge1 for GPU and APU are 8MB and 4MB, respectively. This

observation shows that the powerful (and power hungry) cores in the discrete GPU make

it energy-inefficient for smaller granularities. It also shows that despite being an integrated

GPU and not connected to the PCIe bus, APU spends considerable energy in copying data

from the host to device memory.
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Figure 5.3: Efficiency curve fittings plots comparing LogCAe with the observed energy of
AES [2] over a range of granularities. Performance metrics (g1 , gA

2
) are also labelled for a

comparison.
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Figure 5.4: Efficiency curve fittings plots comparing LogCAe with the observed energy of
SHA256 [3] over a range of granularities. Performance metrics (g1 , gA

2
) are also labelled

for a comparison.

Figure 5.3 also shows that UltraSPARC T2, SPARC T3 and T4 provide higher efficiency

than Sandy Bridge, but break-even at a higher granularity. Sandy Bridge, on the other

hand, breaks-even at very small granularity but provides limited efficiency.

Figure 5.4 shows the curve fitting for SHA on various on-chip cryptographic accelerators.

Similar to AES, ge1 and geA
2

do exist as all of these are on-chip accelerators. It is also interesting

to note that ge1 for SPARC T4 is slightly lower than g1 (as shown in Figure 4.5 in Chapter 4),
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and signifies an energy-efficient design.

Figure 5.5 shows that LogCAe does not follows the observed energy efficiency for radix

sort for smaller granularities. LogCAe starts following the observed efficiency after crossing

the break-even point. This observation is similar to the performance results of radix sort in

the previous chapter. LogCAe is also unable to predict the performance correctly because

of the irregular memory access pattern of radix sort.

5.4.2 Super-Linear Complexity Kernels

Figures 5.6 and 5.7 show the speedup curve fitting plots for matrix multiplication and

FFT kernels on discrete GPU and APU. We observe that Matrix multiplication (Figure 5.6)

with higher complexity achieves higher efficiency as compared to Sort (Figure 5.5) and

FFT (Figure 5.7) with relatively lower complexities. This observation supports earlier

implication that achievable efficiency (speedup) of higher-complexity algorithms is higher

than lower-complexity algorithms.

5.4.3 Sub-Linear Complexity Kernels

We do not present energy efficiency results for the sub-linear complexity kernels as we have

observed earlier in the previous chapter (Figure 4.10) that—with granularity dependent

latency—kernels with sub-linear complexity do not provide any speedup.

5.4.4 Speedup-Efficiency Product

To show how SEP helps in choosing an energy and performance-efficient design, we plot

speedup-efficiency product for AES running on five different accelerators in Figure 5.8.

This figure provides some key observations: First, the fixed-function accelerators provide
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Figure 5.5: Efficiency curve fittings plots comparing LogCAe with the observed energy of
Radix Sort over a range of granularities. Performance metrics (g1 , gA

2
) are also labelled for

a comparison.

higher SEP than the off-chip accelerators. Thus, representing designs where performance

gains are accompanied with comparable energy efficiency.

Second, among the fixed-function accelerators, granularity determines a better energy-

efficient design. For example, AESNI instructions on Sandy Bridge provide the highest

speedup-efficiency product for small granularities, i.e., till 128B, whereas for larger granu-

larities, i.e., till 16KB, SPARC T4 has higher SEP. We also observe that for granularities larger

than 16KB, UltraSPARC T2 is the most energy-efficient solution. This happens because at

large granularities, the energy consumption due to overheads is no longer a bottleneck, so

UltraSPARC T2 provides comparable results to SPARC T3 and T4.

Third, for the programmable accelerators, we observe that GPU and APU have compa-

rable SEPs. This is surprising because we observe in Figure 5.3 that GPU is less energy-

efficient than APU. However, despite low efficiency, GPU provides higher speedup than

APU, resulting in similar SEP.
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Figure 5.6: Efficiency curve fittings plots comparing LogCAe with the observed energy of
matrix multiplication over a range of granularities. Performance metrics (g1 , gA

2
) are also

labelled for a comparison.

We observe similar results for running SHA on on-chip accelerators in Figure 5.9, i.e.,

SPARC T4 with special encryption instructions has the highest SEP and all accelerators

provide comparable SEP at very large granularities.

5.5 Summary

With the recent trend towards energy-efficient computing, energy has become an important

design criterion. Consequently, architects can no longer make design decisions while

focussing only on performance. Therefore, in this chapter, we have developed an energy

counterpart—LogCAe—for the LogCA model. Similar to LogCA, LogCAe abstracts away

low-level details using five key parameters. These parameters signify the link energy (Le),

energy for overheads (oe), granularity (g) of the data, computational complexity (Ce) of the

kernel and the peak energy efficiency of an accelerator (Ae).
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Figure 5.8: Speedup-Efficiency Product (SEP) plot for AES on various accelerators.

For evaluating trade-offs between performance and energy efficient design, we have

also defined a metric—speedup-efficiency product. We have observed that the speedup-

efficiency product of the fixed-function accelerators is higher than the programmable

accelerators. We have also observed that for discrete GPUs, with powerful processing cores,
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Figure 5.9: Speedup-Efficiency Product (SEP) plot for SHA on various accelerators.

lower energy efficiency results in lower speedup-efficiency product.

We have validated our model across a diverse range of kernels on both on-chip and

off-chip accelerators. However, similar to LogCA, the accuracy of the energy model is

limited by its inability to model caches.
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6 accelerometer: a sensitivity analysis of

the logca parameters
6.1 Introduction

LogCA, presented earlier in Chapter 4, provides sufficient simplicity for programmers

and architects to easily reason about accelerators, yet it does not provide many insights

on the design bottlenecks and how to mitigate these bottlenecks. For example, consider

three accelerators, SPARC T4, UltraSPARC T2 and a discrete GPU, running an encryption

kernel in Figure 6.1. These accelerators have different break-even points and speedup

characteristics.

For the given example, LogCA helps programmers in determining the minimum gran-

ularity to offload and architects in choosing an accelerator design based on the expected

operating granularity. It also helps in capturing the effect of granularity on the speedup

for a given design and deciding whether a proposed design meets the desired speedup or
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Figure 6.1: Running Advanced Encryption Standard (AES) kernel on three different
cryptographic accelerators.
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not. However, if the desired speedup is not achievable, LogCA does not help in exposing

the design bottlenecks and how to alleviate them.

Considering the AES encryption example in Figure 6.1, programmers and architects

would greatly benefit from understanding: what bottlenecks cause UltraSPARC T2 and

GPU to under-perform for small data sizes? Which optimizations on UltraSPARC T2

and GPU would result in similar performance to SPARC T4? Which optimizations are

programmer-dependent and which are architecture-dependent? What are the trade-offs in

selecting one optimization over the other?

To answer these questions, we take inspiration from the Roofline model [1] and extend

LogCA to develop Accelerometer in this chapter. Accelerometer is a tool which exposes the

design bottlenecks using the sensitivity analysis of the LogCA parameters. Accelerometer

provides insights about the accelerator’s interface by exposing the design bounds and

bottlenecks. It also suggests optimization—using visually identifiable regions—to alleviate

these bottlenecks. These visually identifiable optimization regions also help programmers

and architects to qualitatively assess the trade-offs among various optimizations.

The rest of the chapter is organized as follows. In Section 6.2, we develop accelerometer

and describe the performance bounds, sensitivity analysis and totem plots. Section 6.3

describes the retrospective case studies, and we discuss parallelizing and pipelining com-

putations in Section 4.5. Then, we discuss how programmers and architects can use

accelerometer in Section 6.4. We conclude this chapter by summarizing the key points in

Section 6.5.
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Figure 6.2: Accelerometer helps in visually identifying (a) compute and (b) latency bound
kernels.

6.2 Accelerometer

In this section, we describe Accelerometer and show how it leverages LogCA for visually

identifying the performance bounds. We also show the efficacy of the sensitivity anal-

ysis of the LogCA parameters in exposing design bottlenecks and suggesting possible

optimizations to alleviate them.
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6.2.1 Performance Bounds

We have observed earlier in Chapter 4 that for granularity-independent latency speedup is

bounded by acceleration, i.e.,

lim
g→∞

Speedup(g) = A (6.1)

whereas for granularity-dependent latency, speedup is bounded by the product of

computational intensity and gβ−1

lim
g→∞

Speedup(g) = C

L
∗ gβ−1 (6.2)

Depending on the complexity of the kernel, the above equation can be further expanded

as:

lim
g→∞

Speedup(g) =


< C

L
if β < 0

= C
L

if β = 1

> C
L

if β > 1

(6.3)

Using these observations, we classify kernels either as compute-bound or latency-

bound. For compute-bound kernels, the achievable speedup is bounded by acceleration,

whereas for the latency-bound kernels, the speedup is bounded by computational intensity.

Based on this classification, a compute-bound kernel can either be running on a system

with granularity-independent latency or has super-linear complexity while running on

a system with granularity-dependent latency. Figure 6.2-a illustrates these bounds for

compute-bound kernels.

On the other hand, a latency-bound kernel is running on a system with granularity-

dependent latency and has either linear or sub-linear complexity. Figure 6.2-b illustrates
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these bounds for compute-bound kernels.

Programmers and architects can visually identify these bounds and use this information

to invest their time and resources in the right direction. For example, for compute-bound

kernels—depending on the operating granularity—it may be beneficial to invest more

resources in either increasing acceleration or reducing overheads. However, for latency-

bound kernels, optimizing acceleration and overheads is not that critical, but decreasing

latency and increasing computational index maybe more beneficial.

6.2.2 Sensitivity Analysis

To identify the design bottlenecks, we perform a sensitivity analysis of the LogCA param-

eters. We consider a parameter a design bottleneck if a 10x improvement in it provides

at least 20% improvement in speedup. A ’bottlenecked’ parameter also provides an opti-

mization opportunity. To visually identify these bottlenecks, we introduce optimization

regions. As an example, we identify design bottlenecks in UltraSPARC T2’s cryptographic

accelerator by varying its individual parameters in Figure 6.3 (a)-(d).

Figure 6.3 (a) shows the variation (or the lack of) in speedup with the decrease in latency.

The resulting gains are negligible and independent of the granularity, as it is a closely

coupled accelerator.

Figure 6.3 (b) shows the resulting speedup after reducing overheads. Since the overheads

are one-time initialization cost and independent of granularity, the per byte setup cost is

high at small granularities. Decreasing these overheads considerably reduces the per byte

setup cost and results in significant gains at these smaller granularities. Conversely, for

larger granularities, the per byte setup cost is already amortized, so reducing overheads

does not provide much gains. Thus, overhead is a bottleneck at small granularities and
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provides an opportunity for optimization at these granularities.

Figure 6.3 (c) shows the effect of increasing the computational index. The results are

similar to optimizing overheads in Figure 6.3 (b), i.e., significant gains for small granulari-

ties, and a gradual decrease in the gains with increasing granularity. With the constant

overheads, increasing computational index increases the computation time of the kernel

and decreases the per byte setup cost. For smaller granularities, the reduced per byte setup

cost results in significant gains.

Figure 6.3 (d) shows the variation in speedup with increasing acceleration. The gains

are negligible at small granularities and become significant for large granularities. As

mentioned earlier, the per byte setup cost is high at small granularities and it reduces for

large granularities. Since increasing acceleration does not reduce the per byte setup cost,

optimizing acceleration provides gains only at large granularities.

We group these individual sensitivity plots in Figure 6.4 to build the optimization

regions. As mentioned earlier, each region indicates the potential of 20% gains with 10x

variation of one or more LogCA parameters. For the ease of understanding, we color these

regions and label them with their respective LogCA parameters. For example, the blue

colored region labelled ‘oC’ (16B to 2KB) indicates an optimization region where optimizing

overheads and computational index is beneficial. Similarly, the red colored region labelled

‘A’ (32KB to 32MB) represents an optimization region where optimizing acceleration is

only beneficial. The granularity range occupied by a parameter also identifies the scope

of optimization for an architect and a programmer. For example, for UltraSPARC T2, the

overhead parameter occupies most of the lower granularity region, suggesting an opportu-

nity for architects to improve the interface. Similarly, the absence of the latency parameter

suggests little benefit for optimizing latency. These regions can also help programmers
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Figure 6.3: The effect on speedup of 10x improvement in each LogCA parameter. The base
case is the speedup of AES [2] on UltraSPARC T2.

and architects in prioritizing optimizations.

We also add horizontal arrows to the optimization regions in Figure 6.4 to demarcate the

start and end of granularity range for each parameter. For example, optimizing acceleration

starts providing benefits from 2KB while optimizing overheads or computational index is

beneficial up till 32KB. These arrows also indicate the cut-off granularity for each parameter.

These cut-off granularities provide insights to architects and programmers about the design

bottlenecks. For example, the high cut-off granularity of 32KB suggests high overheads

and thus a potential for optimization.
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Figure 6.4: Optimization regions for UltraSPARC T2. The presence of a parameter in an
optimization region indicates that it can at least provides 20% gains. The horizontal arrow
indicates the cut-off granularity at which a parameter provides 20% gains.

Figure 6.4 shows that the achievable performance of running an AES kernel is 16. This

performance can only be increased by replacing the current accelerator with an accelerator

of higher acceleration. It also shows that encryption on UltraSPARC T2 is a compute-bound

operation. The not so small g1 signifies reasonable overheads and thus a potential for an

optimization.

Figure 6.4 also shows that a particular region can have multiple optimization possibilities.

For example, both overheads and acceleration can provide gains from 2KB to 32KB. An

architect has to make a decision in choosing an optimization as there may be pros and cons

associated with each optimization option.

6.2.3 Totem Plots

In the previous section, we have considered optimizations with 10x variation of each

parameter. The resulting plots help architects and programmers in identifying preferable

optimization early in the design stage. But these plots may not be helpful in answering
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Figure 6.5: Totem plots for AES on UltraSPARC T2. We vary each LogCA parameter from
2x to 10x. We also consider the hypothetical case of decreasing (increasing) each parameter
to zero (infinity).

these what-if questions: 1) What if the architects and programmers do not have the freedom

for a parameter variation of 10x? 2) Instead of investing large resources on optimization,

what if the same gains can be achieved by smaller variation of the parameters?

To answer these questions, and analyze the effect of smaller improvements we introduce

totem plots in this section. Totem plots investigate whether comparable gains can be achieved

by smaller variations in LogCA parameters. We draw the totem plots by varying each

parameter from 2x-10x. To determine an upper bound on the resulting gains, we also
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consider two hypothetical cases with extreme values, i.e., increasing a parameter to infinitely

large value and decreasing a parameter to zero. Figures 6.5 - 6.10 show these plots for all

machines in our analysis while running AES.

Figures 6.5 shows the totem plots for an encryption kernel on the cryptographic acceler-

ator on UltraSPARC T2. Figure 6.5 (a) shows the totem plots for the latency. As we note

earlier, a 10x reduction in latency on this machine does not provide any gains, it is not

surprising that there are no gains for 2x-8x reduction either. But it is interesting to note that

the achievable gains with the extreme case of zero latency are not different either. So for

designs similar to UltraSPARC T2, latency should have the lowest priority for optimization.

Figure 6.5 (b) shows the totem plots for overheads. We observe that for smaller granularities—

the effective optimization region for overheads—reducing overheads even by 2x or 4x

provide significant gains. Further reducing the overheads does not provide considerable

gains. This observation can guide an architect that significant gains can be achieved by

allocating limited resources for optimizing the overheads.

Totem plots for computational index in Figure 6.5 (c) show a similar result. If operating

at smaller granularities, a programmer can use this insight to get significant gains by

moderate increase of computational index.

Figure 6.5 (d) shows that for small granularities, even with a infinite acceleration, the

gains are not significant. While for large granularities 2x and 4x optimization of acceleration

provides significant gains but further increase in acceleration provides diminishing returns.

We also observe that systems with granularity independent latency, speedup with infinite

acceleration is limited by the computational intensity. This observation provides an upper

bound on the achievable performance.

Figures 6.6 and 6.7 show totem plots for the encryption kernel on Sandy Bridge and
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Figure 6.6: Totem plots of AES on Sandy Bridge. We vary each parameter (a) Latency (b)
Overhead (c) Computation Index and (d) Acceleration, from 2x to 10x. We also consider
the hypothetical case of decreasing (increasing) each parameter to zero (infinity).

SPARC T4 respectively. These machines represent on-chip accelerators and in this respect

are similar to UltraSPARC T2 design (Figure 6.5). This behavior is also evident as the

latency parameter does not provide any opportunity for optimization. However, in contrast

to UltraSPARC T2 design, they use low-overhead special instructions for encryption which

results in almost no optimization opportunity for overheads. With overheads and latency

bottlenecks already addressed for these machines, optimizing acceleration is logically the

next optimization opportunity. This opportunity is also evident from the plots as the
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Figure 6.7: Totem plots for AES on T4 instr. We vary each parameter (a) Latency (b)
Overhead (c) Computational index and (d) Acceleration, from 2x to 10x. We also consider
the hypothetical case of decreasing (increasing) each parameter to zero (infinity). The
marked region indicates optimizations which provide at least 20% gains

optimization range for acceleration parameter encompass the whole granularity range for

both Sandy Bridge and SPARC T4.

Figures 6.8 and 6.9 show the totem plots for AES on a PCIe connected accelerator and

discrete GPU respectively. In contrast to on-chip accelerators, both of these machines repre-

sent off-chip accelerators and this is also evident from the large optimization opportunity

for latency. Computational index also provides a comparable optimization opportunity
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Figure 6.8: Totem plots for AES on PCIe accelerator as we vary each LogCA parameter from
2x to 10x. We also consider the hypothetical case of decreasing (increasing) each parameter
to zero (infinity). The marked region indicates optimizations which provide at least 20%
gains

which is tantamount to reducing the latency. We also observe that acceleration does not

provide substantial benefits at large granularities, even for the hypothetical case of infinite

acceleration. Thus signifying low optimization opportunity for acceleration in off-chip

accelerators.

Figure 6.10 shows the totem plots for AES on the APU. These plots are similar to those of

the discrete GPU. This behavior is not surprising as despite being an integrated accelerator,
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Figure 6.9: Totem plots of AES on NVIDIA GPU. We vary each parameter (a) Latency (b)
Overhead (c) Computational index and (d) Acceleration, from 2x to 10x. We also consider
the hypothetical case of decreasing (increasing) each parameter to zero (infinity).

APU requires explicit copying between the host and device memories. Similar to discrete

GPU, latency and computational index provides a lot of optimization opportunity. We also

observe that optimizing acceleration yields slightly better optimization opportunity than

discrete GPU.
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Figure 6.10: Totem plots of AES on AMD APU. We vary each parameter (a) Latency (b)
Overhead (c) Computational index and (d) Acceleration, from 2x to 10x. We also consider
the hypothetical case of decreasing (increasing) each parameter to zero (infinity).

6.3 Case Studies

In this section, we present two case studies to present the efficacy of our model. For the first

case, we consider cryptographic accelerators connected through different interfaces, and

discuss the evolution of these designs in Sun/Oracle SPARC machines. For the second case,

we consider three different GPUs architectures. In both cases, we elaborate Accelerometer

using the insights it provides about accelerator’s interface, the design bottleneck it exposes
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and optimization opportunities it suggests.

6.3.1 Cryptographic Accelerators

Figure 6.11 shows the evolution of cryptographic accelerators in SPARC architectures from

the off-chip cryptographic accelerators in pre-Niagara (Figure 6.11 (a)) to cryptographic

accelerators integrated within the pipeline in SPARC T4 (Figure 6.11 (e)). We observe that

latency is absent in the on-chip accelerators’ optimization regions, as these accelerators are

closely coupled with the host. We also note that the optimization region with overhead

parameter—representing the complexity of an accelerator’s interface—shrinks while the

optimization regions with acceleration parameter expand from Figure 6.11 (a-e). For

example, for the off-chip cryptographic accelerator, the cut-off granularity for overheads is

256KB, whereas it is 128B for the SPARC T4, suggesting a much simpler interface.

Figure 6.11 (a) shows the optimization regions for the off-chip cryptographic accelerator

connected through the PCIe bus. We note that the overhead and latency parameter occupy

most of the optimization regions, indicating high overhead OS calls and high-latency data

copying over the PCIe bus as the bottlenecks. As mentioned earlier, these bottlenecks also

suggest potential for optimization.

Figure 6.11 (b) shows the optimization regions for UltraSPARC T2. The large cut-off

granularity for overheads at 32KB suggests a complex interface, indicating a high overhead

OS call creating a bottleneck at small granularities. The cut-off granularity of 2KB for

acceleration suggests that optimizing acceleration is beneficial at large granularities. Similar

to UltraSPARC T2, Figure 6.11 (c) shows the optimization regions for SPARC T3. These

regions closely resemble those of UltraSPARC T2 in Figure 6.11 (b), and suggests that

on-chip accelerator on SPARC T3 uses a similar interface.
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Figure 6.11: LogCA for performing Advanced Encryption Standard [2] on various crypto-
graphic accelerators. LogCA identifies the design bottlenecks through LogCA parameters
in an optimization region. The bottlenecks which LogCA suggests in each design is opti-
mized in the next design.
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Figure 6.11 (d) shows optimization regions for an on-chip accelerator on SPARC T4.

There are three optimization regions, with the cut-off granularity for overhead now reduced

to only 512B. This observation suggests a considerable improvement in the interface design

over SPARC T3 and it is also evident by a smaller g1. We also note that the cut-off granularity

for acceleration now decreases to 32B, showing an increase in the opportunity for optimizing

acceleration.

Figure 6.11 (e) shows optimization regions for cryptographic instructions on SPARC T4.

We observe that unlike earlier designs, it has only two optimization regions and the speedup

approaches the acceleration at a small granularity of 128B. In contrast, UltraSPARC T2 and

SPARC T3 provide no gains at this granularity. We also observe that the cut-off granularity

for overheads further reduces to 128B, suggesting some opportunity for optimization

at very small granularities. The model also shows that the acceleration occupies the

maximum range for optimization. For example, optimizing acceleration provides benefits

for granularities greater than 16B. The low overhead access is due to the non-privileged

instruction SPARC T4 uses to access the cryptographic unit, which is integrated within the

pipeline.

The reduced overheads which Accelerometer indicates in SPARC T4 are due to the

fast-path access introduced by Sun in their SPARC design codenamed Rainbow Falls [96].

Unlike earlier designs, the source (host) and destination (accelerator) pages are pre-pinned

during initial access to an accelerator. Thus, an application does not have to go through

the high-overhead OS calls on each access to an accelerator, resulting in lower overheads.

We should mention that Sun claims [96] to enable the fast-path in SPARC T3. However, we

observe this behavior only in SPARC T4.

We note that although all SPARC machines use the same accelerator, yet Figure 6.11
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shows these accelerators have different acceleration. For example, UltraSPARC T2 with

18, and SPARC T4 with 13. This happens because of the way we calculate the acceleration.

As mentioned earlier, we compute the acceleration by computing speedup at very high

granularity. So a machine operating at high frequency will have lower acceleration and

vice-versa. Since UltraSPARC T2 is operating at the lowest frequency, it has the highest

acceleration.

Summary: We show in Figure 6.11 (a)-(e) that the adopted optimizations in each design

is similar to Accelerometer’s suggestion. For example, Accelerometer suggests that for

small granularities, resources should be spend on improving the interface and for large

granularities, resources should be spend on improving acceleration. Since encryption jobs

are mostly smaller in size, over the years we have mainly observed improvement in the

interface design. For the future designs, our model suggests that more resources should be

allocated for improving acceleration.

6.3.2 General-Purpose Accelerators

Now we discuss Accelerometer for different GPUs architectures and discuss the insights it

provides about these architectures. We choose kernels with varying complexity to observe

the effect of kernel complexity on the optimization regions.

Figure 6.12 shows Accelerometer for performing matrix multiplication on a discrete

NVIDIA GPU, an AMD integrated GPU and an integrated AMD GPU with HSA support.

Figure 6.12 shows that matrix multiplication is compute bound on all three GPUs. We

also observe a higher value of g1 for the discrete GPU and APU as compared to HSA GPU,

signifying a complex interface—with high overheads and latencies—for the discrete GPU

and APU.
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Figure 6.12: Various optimization regions for matrix multiplication over a range of granu-
larities on (a) NVIDIA discrete GPU, (b) AMD APU and (c) HSA Supported GPU.

Figure 6.12 shows the evolution of memory interface design in GPU architectures. It

shows the optimization regions for matrix multiplication on a discrete NVIDIA GPU, an

AMD integrated GPU (APU) and an integrated AMD GPU with HSA support. We observe

that the computational index occupies most of the regions which signifies maximum

optimization potential for programmers.

The discrete GPU has four optimization regions (Figure 6.12 (a)). Among these, latency
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(b) AMD Integrated GPU (APU)
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Figure 6.13: Various Optimization regions for FFT over a range of granularities on (a)
NVIDIA discrete GPU, (b) AMD APU and (c) HSA Supported GPU.

dominates most of the regions, signifying high-latency data copying over the PCIe bus and

thus maximum optimization potential. The high cut-off granularity for overheads at 32KB

indicates high overhead OS calls to access the GPU. Similarly with highly aggressive cores,

acceleration has high cut-off granularity of 256KB indicating less optimization potential for

acceleration.

Similar to the discrete GPU, the APU also has four optimization regions (Figure 6.12 (b)).
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Figure 6.14: Various Optimization regions for Radix Sort over a range of granularities on
(a) NVIDIA discrete GPU, (b) AMD APU and (c) HSA Supported GPU.

There are few notable differences from the discrete GPU. For example: with the elimination

of data copying over the PCIe bus, the cut-off granularity for latency reduces to 512KB; the

cut-off granularity for overheads is still high suggesting high overhead OS calls to access

the APU and with less aggressive cores, the cut-off granularity for acceleration reduces to

64KB, implying more optimization potential for acceleration.

Figure 6.12 (c) shows three optimization regions for the HSA-enabled integrated GPU.
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Figure 6.15: Various Optimization regions for Binary Search over a range of granularities
on (a) NVIDIA discrete GPU, (b) AMD APU and (c) HSA Supported GPU.

We observe that latency is absent in all regions and the cut-off granularity for overhead

reduces to 8KB. These reductions in overheads and latencies signify a simpler interface than

the discrete GPU and APU. We also observe that the cut-off granularity for acceleration

drops to 2KB, suggesting higher potential for optimizing acceleration.

Figures 6.13 and 6.14 show the sensitivity analysis plots for DCT and radix sort respec-

tively. We observe that these plots are similar to matrix multiplication sensitivity plots
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with some minor differences. These plots have similar optimization regions. However, the

width of optimization regions change with the kernel complexity, i.e., as the complexity

of the kernel decreases, the cut-off for optimizing overhead and latency increase. This

behavior is not surprising, as we have noted earlier in chapter 4 that higher complexity

kernels are less sensitive to latency and overheads.

The sensitivity analysis of binary search, Figure 6.15 (a-b), with sub-linear complexity on

discrete GPU and APU, provide an interesting result. We already know from LogCA results

in chapter 4 that sub-linear complexity kernels are not a good candidate for offloading on

systems with granularity-dependent latencies. The sensitivity analysis further shows that

optimizing computational index and latency provide optimization opportunities for both

GPU and APU. However, for the discrete GPU, optimizing latency provides comparable

benefits to computational index, whereas, on the APU optimizing latency is counter-

productive at large granularities.

Figure 6.15-c shows the sensitivity analysis for the binary search on a system with

granularity-independent latency. On such systems, optimizing overheads and computa-

tional index are beneficial for a range of granularities, whereas optimizing acceleration is

beneficial only for very large granularities.

6.4 Discussion

In this section, we discuss how programmers and architects can use Accelerometer with

LogCA to make decisions early in the design cycle. We consider different scenarios to

elaborate our case.

Figures 6.16 and 6.17 show flow charts for programmers and architects, respectively.

These flow charts are similar to the LogCA flow chart from Chapter 4 with some minor



100

changes. Specifically, we add extra steps for optimizing the LogCA parameters when the

target speedup is not achievable. We describe these steps below and later explain them

with a working example.

In the first step, consult the performance bound plots to determine the upper bounds

on the performance. Then, leverage the sensitivity analysis plots to determine the opti-

mization region for the operating granularity. In the next step, narrow down the scope of

optimization by selecting an optimization parameter. Subsequently, determine whether

a 10x optimization of that particular parameter results in the target speedup or not. If it

does, then consult the totem plots to determine whether similar gains can be achieved

by a smaller variation of the parameter. However, if the target speedup is still not achiev-

able, consult the totem plots to determine the optimization potential for greater than 10x

improvement.

For illustration purposes, we consider a design similar to UltraSPARC T2 in Figure 6.18,

with a target speedup of 12. We also assume that the operating granularity is fixed at 4KB.

The sensitivity analysis in Figure 6.18 shows that this operating granularity falls under the

‘oCA’ region. As we have noted earlier in Chapter 4 that for programmers,optimization

opportunity lies in optimizing computational index, whereas for architects optimization

opportunity lies in improving overheads, latencies and acceleration. So for the optimization

region ‘oCA’, both programmers and architects can potentially optimize this design, and

we discuss these scenarios below.

A programmer can offload a bigger chunk of data (16KB) to achieve the target speedup.

But with the fixed granularity constraint, offloading larger data is not an option. In that

case, a programmer can consult the sensitivity analysis plots and determine whether a 10x

optimization of the computational index achieves the target speedup. In the next step, the
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Figure 6.16: A flowchart for programmers for using Accelerometer with LogCA early in
the design stage.



102

CPU code

Profile

Compute LogCA
parameters

Accelerator code

g1 ≥ 0
Sensitivity Anal-

ysis of o,L,A

Totem Plots
of o,L,A

Speedupcalculated
≥

Speedupdesired

Performance
Bounds

Done

Yes

No

No

Figure 6.17: A flowchart for architects for using Accelerometer with LogCA early in the
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Figure 6.18: Optimization regions for UltraSPARC T2. The presence of a parameter in an
optimization region indicates that it can at least provides 20% gains. The horizontal arrow
indicates the cut-off granularity at which a parameter provides 20% gains.

programmer can refer the totem plots to determine whether similar gains can be achieved

by a smaller variation in the computational index.

Similarly, an architect can consult the sensitivity analysis plots and determine that opti-

mizing acceleration does not provide the target speedup. However, optimizing overhead

provides the desired speedup. As we have mentioned in the above paragraph, the next

step is to consult the totem plots and determine whether smaller variations in overheads

results in similar gains. However, if for some reason, the overheads can not be reduced, i.e.,

interface can not be changed, an architect can look at the totem plots to determine whether

a larger variation in acceleration achieves the target speedup or not.

6.5 Summary

In this chapter, we leverage LogCA and take inspiration from the Roofline model of multi-

core architectures to develop a visual performance model for accelerators. Our model
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provides high-level insights, early in the design stage, to both architects and programmers.

The model uses “bound and bottleneck" analysis to expose design limitation and suggest

optimizations to overcome these bottlenecks.

For providing performance bounds, we have classified kernels as either compute or

latency bound. We have done a sensitivity analysis of the LogCA parameters, and have

partitioned the granularity range with this analysis. We have also demarcated the start and

end of an optimization region for a particular parameter. We have also defined totem plots

for a fine-grained sensitivity analysis of the parameters. The aforementioned techniques

help in visually identifying the optimal strategy for optimization.

Using case studies of Sun/Oracle SPARC cryptographic accelerators and GPU archi-

tectures, we have shown that accelerometer captures the evolution of interface in these

designs. We have also outlined a methodology which programmers and architects can

employ for making decisions early in the design stage.
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7 conclusions

In this dissertation, we seek to answer this question—how effective are simple analytical

models in predicting performance of hardware accelerators? To this end, we have made

the following contributions.

7.1 Summary of Contributions

• In Chapter 4 we proposed LogCA—a high-level performance model for hardware accelera-

tors. LogCA provided architects with insights about the interface of hardware accelerators.

We defined performance metrics which helped programmers in deciding the right amount

of data to offload. We showed that simple models are helpful for algorithms with regular

access patterns.

• In Chapter 5 we complemented LogCA, with its energy counterpart, LogCAe. We showed

that a performance efficient design does not imply an energy efficient design. We also

defined a metric—speedup-efficiency product—for evaluating trade-offs between perfor-

mance and energy efficient designs.

• In Chapter 6 we proposed Accelerometer—a sensitivity analysis of the LogCA parameters.

Accelerometer visually identified the performance bounds and bottlenecks associated with

an accelerator design. We also defined various optimization regions and the potential gains

associated with these regions.
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7.2 Limitations and Directions for Future Work

Here, we discuss the limitations of our work and pointers to multiple research directions

to overcome these limitations. A number of studies [98, 99, 100] have discussed various

possible issues and future directions for accelerator-rich architecture. Our work can also

be improved by building on insights from these studies.

The applicability of our modeling framework can be limited by the simplifying assump-

tions. For example, to keep our model simple, we abstracted aways caches and memories

through the interface abstraction, and we modeled this interface with a single parameter.

With this simplification, we do not capture the effect of caches and different memory ac-

cess patterns. To overcome this limitation, our work can be complemented with similar

analytical cache models [43, 101, 102].

For most of our analysis, we assumed a single accelerator system. However, there

have been recent proposals for future heterogeneous architectures, featuring “sea-of-

accelerators" [34]. Moreover, researchers have looked into partitioning resources for such

architectures [103, 104, 105]. In these scenarios, our modeling framework will not be

applicable as we do not explicitly model contention among resources.

We have also not considered the effect of pipelining and parallelization from an energy

perspective. This is because as a first-order effect, these techniques result in higher energy

consumption. However, the idea of pipelining and parallelizing computations is not new to

the architecture community. Over the years, architects have proposed various optimization

techniques—including analytical models [57, 61]—for reducing energy consumption in

multicore architectures. Similar to these models, our modeling framework can be extended

for optimizing parallel computations on accelerators.

In this dissertation, our design space, for the fixed-function accelerators, has focused
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on encryption and hashing kernels on real systems. Expanding the design space on either

real system or simulators, can be a potential future work.

For the sensitivity analysis in Chapter 6, we lacked a cost model to evaluate the trade-offs

among multiple optimizations which provide similar gains. If each optimization provides

equal benefits then the “cost”—in terms of finances or time duration—of each optimization

may be the deciding factor. As it is quite possible that an optimization may provide more

gains than the other but the cost for implementing that optimization over-weighs the

potential benefits. A cost model, similar to the work of Debardelaben et al. [106] and

Nguyen et al. [107], may help in answering these questions. But a cost model is beyond the

scope of this dissertation and we leave it as a possible future work.
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