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Abstract 

Spatial ability is a multifaceted construct with demonstrated ties to success in 

mathematics and gesture production. Recent empirical work has also begun investigating 

whether targeted interventions for spatial ability can transfer to mathematics but are often limited 

to specific populations and specific math outcomes. Spatial anxiety has been shown to be 

negatively associated with the ability to access and utilize spatial skills. However, little is known 

about the interplay between spatial ability, spatial anxiety, and gestures in mathematics. This 

dissertation describes a guiding framework for researching spatial ability in mathematics before 

describing four studies to investigate the relationships between these constructs. These studies 

cover a multitude of mathematics domains, populations, and methods of analysis, including an 

experimental study on adult’s performance on standardized mathematics outcomes, an analysis 

of existing data from a longitudinal study on children’s fraction knowledge, and an experimental 

study on undergraduates’ geometric thinking, and a randomized control study on undergraduates’ 

geometric thinking and gesture production following a short spatial intervention. Several 

findings emerged. First, specific spatial sub-categories could be more critical for success on 

different math tasks, and spatial anxiety scores predict spatial and math ability scores. Second, 

spatial anxiety may moderate the relationship between spatial ability and both geometric thinking 

and representational gesture production. Third, spatial-based Tangram tasks may increase the 

likelihood of transformational proof and dynamic gesture production. These findings will inform 

future classroom-based spatial interventions and studies exploring the links between 

mathematics, gesture, spatial ability, and spatial anxiety.  
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Introduction 

In the last several decades, traditional models of mathematical cognition have seen 

substantial expansion beyond isolated rule-based processing symbolic systems. Since 

mathematical thinking is a confluence of how our perceptual, motoric, and cognitive processes 

interact with our environment and culture (Lakoff & Nuñez, 2000), educational researchers have 

investigated the ways in which mathematics concepts gain meaning by being grounded in 

perceptual and motor-based systems, including action and gesture. Researchers have also sought 

to determine how individual differences in cognitive processes, such as spatial ability, anxiety, 

and working memory, impact success on mathematics tasks. For this reason, there are a variety 

of different factors that can impact a student’s success on mathematical tasks. Understanding the 

links between spatial ability, spatial anxiety, and mathematical thinking may be a way to bridge 

these two lines of often separate lines of research.  

Spatial ability can be generally defined as the ability to imagine and manipulate objects 

and relations. Decades of research have shown that spatial ability can be linked to mathematics 

success. Findings from numerous studies have demonstrated that spatial ability is critical for 

many domains of mathematics education, including basic numeracy and arithmetic (Case et al., 

1996) and geometry (Battista et al., 2018), as well as more advanced topics such as algebra word 

problem solving (Oostermeijer et al., 2014), calculus (Sorby et al., 2013), and decoding complex 

mathematical ideas (Tufte, 2001). Scores on the mathematics portion of the Program for 

International Student Assessment are significantly positively correlated with scores on tests of 

spatial cognition (Sorby & Panther, 2020). Spatial ability has also been linked to the entrance 

into, retention in, and success within STEM fields (e.g., Wolfgang et al., 2003), while 

deficiencies in spatial abilities have been shown to create obstacles for STEM education (Harris 
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et al., 2013). Combined, the findings suggest that spatial ability serves as a gateway for entry into 

STEM fields (Uttal & Cohen, 2012) and that educational institutions need to recognize the 

importance of explicitly training students' spatial thinking skills along with skills in STEM. 

Many studies do not consider the influences of individual differences in spatial ability on these 

associations, such as how individuals approach the problems. Moreover, few studies investigate 

the links between spatial abilities and mathematical reasoning tasks that are not pen-and-paper 

based. 

Gesture production may also be tied to spatial abilities. One function of gestures that 

cooccur with speech is to express and communicate spatial information from mental 

representations (Alibali, 2005). For example, speakers often gesture when they describe object 

locations (Tutton, 2003), spatial patterns (Melinger & Kita, 2007), or motion in space (Kita & 

Özyürek, 2003). Additionally, the complex motor movements of gesture allow learners to 

represent dynamic, spatial-relational information (McNeill, 2005) and augment reasoning and 

problem-solving by connecting sensorimotor experiences with mental representations (Wilson, 

2002; Nathan, 2014). For example, Chu and Kita (2011) found that when individuals produce 

spontaneous gestures during challenging spatial visualization problems, the gestures enhance 

performance, possibly by improving the internal computation of spatial transformations. 

However, how other individual differences, such as spatial anxiety, could affect gesture 

production in these situations is unknown.  

Studies across this vast body of work investigating the links between spatial abilities and 

mathematics performance and gesture production use different spatial taxonomies, employ 

different spatial measures, and track improvement across many mathematics education topics. 

This variety makes it difficult for scholars to draw clear causal lines between specific spatial 
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skills interventions and specific mathematics educational improvements and for educators to 

follow clear guidance on improving mathematics learning through spatial skills development. 

As a separate construct, spatial anxiety has been shown to be negatively associated with 

performance on spatial ability tasks (Ramirez et al., 2012). While some scholars have argued that 

low anxiety levels are essential for neurocognitive performance, high levels of anxiety, 

especially domain-trait-specific anxieties, may lead to reduced performance (Derakshan & 

Eysenck, 2010). Spatial anxiety is a domain-specific trait anxiety that functions similarly to 

mathematics anxiety and testing anxiety and describes apprehension towards tasks requiring 

spatial processing (Lyons et al., 2018). Like spatial ability, spatial anxiety appears to be 

composed of sub-components. One study of nineteen 21-year-old twin pairs identified two 

components of spatial anxiety: navigation anxiety and rotation/visualization anxiety (Malanchini 

et al., 2017). Other studies have linked spatial anxiety to spatial orientation skills, specifically, 

decreased efficiency of orientation strategies and increased errors during navigation tasks 

(Lawton, 1994; Hund & Minarik, 2006). However, we know little about the effects of spatial 

anxiety on other components of spatial ability as there are limited measures.  

Studies have investigated gender differences within spatial anxiety. Wei et al. (2018) 

compared groups from China and Russia and found that males outperformed females on spatial 

ability tasks, with females reporting higher spatial anxiety than males. More specifically, females 

had higher scores of spatial anxieties on spatial perception and visualization tasks, although the 

magnitudes of the correlations between anxiety and these spatial abilities were similar between 

males and females. A different study found that spatial anxiety affected working memory 

capacity in females but not males and that females performed worse than males on mental 

rotation tasks (Ramirez et al., 2012). Still, other studies have found no significant sex differences 
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in spatial anxiety (Hund & Minarik, 2006; Saucier et al., 2002). The variety of measures and 

inconsistency of results could reflect the multifaceted heterogeneity of spatial ability, and 

participants’ experiences of anxiety may only arise during certain spatial activities. In any case, it 

reinforces the need for further research to clarify how spatial anxiety interacts with spatial ability 

and in what contexts, and how math educators could leverage these factors to develop effective 

mathematics instruction addressing these possible gender differences. 

The framework and studies in this dissertation are guided by several aspects of research 

on spatial ability and spatial anxiety, specifically for mathematical thinking and gesture 

production. However, there are many limitations in the current research. First, there is a lack of 

consensus among the spatial ability community about the sub-categories that make up spatial 

ability and how best to select a taxonomy in mathematics education research. Second, much 

research on the connections between spatial ability and mathematics focuses on paper-based 

outcomes such as multiple-choice and short-answer measures. While this provides a good 

foundation for the relationship between these constructs, little is known about how spatial 

abilities relate to more informal, discourse-based mathematical thinking practices or the 

interaction between spatial abilities and gestures during these tasks. Additionally, to my 

knowledge, no studies have tested the potential of spatial interventions to improve mathematical 

thinking in discourse-based tasks. Finally, spatial anxiety is a relatively unexplored construct, 

especially outside navigational anxiety. To the best of my knowledge, no studies have examined 

spatial anxiety's potential associations with mathematics performance.  

In this dissertation, I address the limitations described above by creating a guiding 

framework and a series of four research studies. The overall goals of this work are to support 

theoretical understanding and practical applications of the cognitive and affective processes of 



5 

 

 

 

the spatial system (i.e., spatial ability and spatial anxiety) for improving students’ mathematical 

thinking by:  

1) summarizing the current state of the spatial ability literature as relevant for 

mathematics education and creating a guiding framework for mathematics education 

researchers 

2) examining the role of spatial ability, spatial anxiety, and gesture in a variety of 

domains of mathematics, including overall mathematics ability, fraction knowledge, 

and geometric discourse, and  

3) empirically testing whether a short Tangram task affects geometric thinking and 

gesture production more than a lower-spatial control task.  

Summary of Dissertation Research Studies 

This dissertation work is presented in the following four chapters exploring the 

relationships between spatial ability, spatial anxiety, and mathematical thinking. Chapter 1 first 

introduces a guiding framework for researchers investigating the connection between spatial 

ability and mathematics. This chapter summarizes the abundance of spatial ability taxonomies in 

the literature and provides practical guidance for navigating these taxonomies to select one most 

appropriate for the research aims with accompanying recommendations for choosing an analytic 

approach and spatial tasks. The following three chapters present findings from four studies 

exploring the role of spatial ability and spatial anxiety in gesture production and mathematical 

thinking. In Chapter 2, I describe two exploratory studies to uncover the specific relationships 

between spatial abilities, spatial anxiety, and mathematics. In particular, the first study presents 

findings from an exploratory study on adults’ standardized mathematics outcomes previously 

published as a conference paper at the 2020 AERA Conference. Study 2 focuses on the role of 
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embodied processes across the grounded and embodied learning timescales (e.g., spatial ability, 

spatial anxiety, number sense, and working memory) in children’s symbolic fraction knowledge 

that was previously published as a poster at the 2021 CogSci Conference. In Chapter 3, I extend 

these findings to explore the role of spatial anxiety in students’ geometric thinking as measured 

through their verbal proof and gesture. Preliminary findings from this study were published as a 

conference paper at the 2022 North American Chapter of the International Group for the 

Psychology of Mathematics Education Conference. These studies are presented with 

modifications to remove redundancies and provide consistent formatting. Finally, Chapter 4 

describes a randomized controlled study testing the potential of a Tangram task which involves 

spatial thinking for improving students’ geometric thinking and gesture production. This study 

was preregistereda. I then concluded with a brief discussion of the overall implications of the 

framework and studies, general limitations of the studies, and proposed future work.  

 

a https://osf.io/dgznu/ 
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Chapter 1: Navigating Spatial Ability for Mathematics Education 

Spatial ability can be broadly defined as imagining, maintaining, and manipulating spatial 

information and relations. Over the past several decades, researchers have found strong 

connections between spatial abilities and mathematics performance (e.g., Newcombe, 2013; 

Young et al., 2018a). However, the sheer plurality of spatial taxonomies and analytical 

frameworks that scholars use to describe spatial skills, the lack of theoretical spatial taxonomies, 

and the variety of spatial assessments available make it very difficult for education researchers to 

make the appropriate selection of spatial measures for their investigations. Researchers also face 

the daunting task of selecting the ideal spatial skills to design studies and interventions to 

enhance student learning and the development of reasoning mathematics and STEM (science, 

technology, engineering, and mathematics) more broadly. To address these needs, we have 

provided a review that focuses on the relationship between spatial skills and mathematical 

thinking and learning. Our specific contribution is to offer a practical guide for navigating and 

selecting among the various major taxonomies on spatial reasoning and various instruments for 

assessing spatial skills for use in mathematics education research. 

The central objective of this review is to describe an organizational framework that 

acknowledges this muddled picture and strives to operate within it rather than offer overly 

optimistic proposals for resolving long-standing complexities. This review offers guidance 

through this complicated state of the literature to help STEM education researchers select 

appropriate spatial measures and taxonomies in service of their investigations, assessments, and 

interventions. We review and synthesize several lines of the spatial ability literature and provide 

researchers exploring the link between spatial ability and mathematics education a guiding 

framework for research design. To foreshadow, this framework identifies three major design 
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decisions to guide scholars and practitioners seeking to use spatial skills to enhance mathematics 

education and education research: (1) selecting a spatial ability taxonomy and (2) an analytical 

frameworks, and (3) choosing spatial tasks (Figure 1). This guiding framework is intended to 

provide educational researchers and practitioners with a common language and decision process 

for conducting research and instruction that engage learners' spatial abilities. We hope this may 

lead to an increased understanding of the associative and causal links between spatial and 

mathematical abilities to improve educational research and practice.  

Figure 1 

Major elements of an investigation into the role of spatial reasoning 

 

The Importance of Spatial Reasoning for Mathematics and STEM Education. 

Research has shown that there is a positive relationship between spatial skills and various 

domains of mathematics performance. Deficiencies in spatial abilities can create obstacles in 

STEM fields (Shea et al., 2001). Some scholars have sought to determine which mathematical 

concepts engage spatial thinking. For example, studies on specific mathematical concepts found 

spatial skills were associated with one-to-one mapping (Gallistel & Gelman, 1992), missing-term 

problems (Cheng & Mix, 2014), mental computation (Verdine et al., 2014), and various 

geometry concepts (Hannafin et al., 2008). Burte and colleagues (2017) proposed categories of 

mathematical concepts such as problem type, problem context, and spatial thinking level to 

target math improvements following spatial invention training. Their study concluded that 
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mathematics problems that included visual representations, real-world contexts, and that 

involved spatial thinking are more likely to show improvement after embodied spatial training. 

Although spatial skills are not typically taught in the general K-12 curriculum, these lines 

of research have led to recommendations that explicitly teaching children about spatial thinking 

could increase STEM achievement and retention (Sorby, 2009; Stieff & Uttal, 2015). Several 

studies have shown that spatial training may positively impact mathematics performance in both 

experimental and classroom settings. For example, Mix and colleagues (2021) found that training 

spatial visualization and form perception led to better mathematics performance in first- and 

sixth-grade students. Similarly, a large, community-based study (n=17,648) conducted by Judd 

and Klingberg (2021) found enhanced math performance when mathematics training was paired 

with spatial training. In classrooms, Lowrie and colleagues (2019) found that students who 

completed a spatial visualization intervention program did significantly better than control 

classes who received standard mathematics instruction on geometry and word problems. In a 

meta-analysis of studies exploring the possible effects of spatial training on mathematics, Hawes 

and colleagues (2022) found that spatial training was effective for increasing success on both 

spatial and mathematics tasks, moderated by age, use of physical manipulatives, and type of 

transfer. One limitation of this meta-analysis is that it only surveyed 26 studies.  

The Varieties of Approaches to Spatial Reasoning  

Difficulties observing spatial reasoning in practice have spurred substantive research 

focused on uncovering the nature of spatial ability and its sub-components. Factor-analytic 

studies throughout the last century have sought to determine if spatial ability exhibits a unitary 

structure or if it is more likely to be composed of various sub-factors such as mental rotation, 

spatial visualization, navigation, and spatial orientation (e.g., Buckley et al., 2018; Carroll, 1993; 
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Hegarty & Waller, 2005; Spearman, 1927; Thurstone, 1950). Attempts to define and classify 

spatial sub-components relate mainly to psychometric indices and the associations between test 

item performance characterizing spatial skills and are often not clearly grounded in accepted 

definitions, theoretical bases, or interpretations of findings in the field (Uttal et al., 2013). 

Still, the specific nature of these associations is largely unknown. Several lines of research 

have suggested that shared processing requirements from mathematical and spatial tasks could 

account for these associations. For example, brain imaging studies have shown similar brain 

activation patterns in spatial and mathematics tasks (Amalric & Dehaene, 2016; Hubbard et al., 

2005; Walsh, 2003). In a study of spatial and mathematical thinking, Mix and colleagues (2016) 

showed a robust within-domain factor structure and overlapping variance irrespective of task-

specificity. They proposed that spatial scaling, visualization, and form perceptions are shared 

processes required when individuals perform various spatial and mathematical tasks.  

Efforts to document the relationship between mathematics performance and spatial skills or 

to enhance mathematics through spatial skills interventions show significant limitations in their 

theoretical framing or generalizability of findings. For example, many studies designed to 

investigate and improve spatial abilities have focused on either a particular spatial sub-

component or a particular mathematical skill. Much of the research has primarily focused on 

measuring only specific aspects of object-based spatial ability, with some scholars focusing 

exclusively on either small- or large-scale spatial skills. The most commonly studied spatial 

skills include small-scale skills such as individuals' abilities to mentally rotate objects, visualize 

objects from different perspectives, and find embedded figures (Linn & Peterson, 1985). An even 

more restricted body of research has considered large-scale skills involving spatial orientation, 
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such as navigation and map reading (e.g., Hegarty et al., 2018; Hegarty & Waller, 2004; Frick, 

Möhring & Newcombe, 2014) 

Currently, there is no commonly accepted definition of spatial ability or its exact sub-

components in the literature (Carroll, 1993; Lohman, 1988; Michael et al., 1957; McGee, 1979; 

Yilmaz, 2009). This lack of convergence leaves the research and practitioner communities with a 

muddled picture of how to think about the relationship between spatial thinking and 

mathematics, designing effective interventions based on clear causal principles, selecting 

appropriate metrics, and analyzing outcome data. Consequently, there is insufficient guidance for 

mathematics and STEM education researchers to navigate the vast landscape of spatial 

taxonomies and analytical frameworks, select the most appropriate measures for documenting 

student outcomes, and design potential interventions targeting spatial abilities. 

One notable exception is the work by Battista and colleagues (2018). They used think-

aloud data from individual interviews and teaching experiments with elementary and middle-

grade students to investigate the relationship between spatial reasoning and geometric reasoning. 

Their investigation yielded task-level accounts of spatial reasoning that are described in terms of 

their role in geometric thinking, such as parallelism and isometries, rather than generalized 

cognitive processes, such as mental rotation. These "property-based spatial analytic reasoning" 

processes decompose "objects into their parts using geometric properties to specify how the parts 

or shapes are related, and, using these relationships, operates on the parts" (Battista et al., 2018, 

pp. 196-197). As a result, these processes are described in ways that generally fall outside the 

standardized psychometric assessment instruments. Establishing bridges between education 

domain-centric analyses of this sort and traditional psychometric accounts about domain-general 

spatial abilities is central to our review.  
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Selecting a Spatial Taxonomy 

One of the first decisions that mathematics education researchers need to make when 

designing a study that either aims to explore the role of spatial ability as a covariate or attempts 

to design an intervention around spatial ability for improving mathematics is selecting a spatial 

taxonomy that suits the data collected and the ways data will be analyzed. A spatial taxonomy is 

an organizational system for classifying spatial abilities, and thus serves an important role in 

both the theoretical framework for any inquiry as well as for interpreting and generalizing 

findings from empirical investigations. In practice, selecting a spatial taxonomy is often difficult 

for researchers due to the expansive research on spatial ability.  

 In an attempt to make the vast number of spatial taxonomies more navigable for 

mathematics researchers and educators, we distinguish between three general types of spatial 

taxonomies that are reflected in the current literature and help researchers in their selection 

process through guiding questions. These three spatial taxonomies are ones that classify 

according to: different specific spatial abilities, different broad spatial abilities, and those that 

treat spatial abilities as derived from a unitary factor structure. Although this is not a 

comprehensive account, these three spatial taxonomies were chosen to highlight the main sub-

factor dissociations in the literature.  

Specific-Factor Structures 

Since the earliest conceptualization (e.g., Galton, 1879), the communities of researchers 

studying spatial abilities have struggled to converge on one all-encompassing definition or 

provide a complete list of its sub-components. Though the literature provides a variety of 

definitions of spatial ability that focus on the capacity to visualize and manipulate mental images 
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(e.g., Battista, 2007; Gaughran, 2002; Lohman, 1979; Sorby, 1999), some scholars posit that it 

may be more precise to define spatial ability as a constellation of skills based on performance on 

tasks that load on individual spatial factors (Buckley et al., 2018).  

Following this charge, studies throughout the first half of the twentieth century attempted 

to define the many sub-components of spatial ability using psychometric methods. Attempts to 

dissociate subfactors were often met with difficulty due to differing factor analytic techniques 

and spatial ability tests (D'Oliveira, 2004). The subsequent lack of cohesion in this field of study 

led to different camps of researchers adopting inconsistent names for spatial sub-components 

(Cooper & Mumaw, 1985; McGee, 1979) and divergent factorial frameworks (Hegarty & 

Waller, 2005; Yilmaz, 2009). For example, McGee (1979) describes factor analytic studies in 

which Witkin's (1950) field dependence/independence instruments, such as the Rod and Frame 

Test (RFT) and Embedded Figures Test (EFT) that assess the extent individuals rely on internal 

or external referents, and Guilford and Zimmerman's (1948) spatial orientation instrument that 

assessed individuals’ ability to orientate in space relative to objects emerge together in a factor, 

indicating that these tests measure a similar psychological construct. However, Linn and 

Peterson (1985) replace McGee's spatial orientation factor with a factor called spatial perception, 

which describes the ability of individuals to determine relationships with respect to their own 

bodies while ignoring distractions. They also provide evidence that supports the claim that some 

of Witkin's (1950) field dependence/independence instruments, such as the RFT, align more 

closely with spatial perception, while other field dependence/independence instruments, such as 

the EFT, better align with spatial visualization which refers to an individual’s ability to mentally 

rotate and manipulate objects. Such a lack of convergence is clearly problematic for the scientific 

study of spatial ability.  
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In light of this, several reviews attempted to better organize the literature in the second 

half of the twentieth century and into the early part of the twenty-first century. However, these 

reviews differed in important ways. For example, to provide greater order to the inconsistent and 

confusing names of spatial ability subfactors, McGee (1979) suggested a simple two-factor 

taxonomy comprised of spatial visualization and spatial orientation. However, wading into the 

same literature, Lohman (1979) argued for a three-factor spatial ability taxonomy, including 

spatial visualization, orientation, and relations. The additional factor, spatial relations, was 

defined as tasks requiring mental rotation with an emphasis on the ability to solve problems 

quickly and was later (Lohman, 1988) renamed speeded rotation to emphasize the relation to 

processing time. Carroll (1993) subsequently identified five major clusters of spatial ability sub-

components. Two sub-components, spatial visualization and spatial relations, do not differ from 

Lohman's (1979) categories. Carroll’s three additional factors included flexibility of closure, 

closure speed, and perceptual speed, which describe the abilities to detect a known hidden 

pattern, complete a hidden pattern, and compare figures or symbols.  

In the last few decades, several attempts have been made to dissociate sub-components of 

spatial ability further. Yilmaz (2009) combined aspects of the taxonomies described above with 

studies identifying dynamic spatial abilities and environmental spatial abilities to create an eight-

factor taxonomy that acknowledges several spatial skills (e.g., environmental ability and 

spatiotemporal ability) needed in real-life situations. More recently, Buckley and colleagues 

(2018) proposed an extended taxonomy for spatial ability. This taxonomy combines many ideas 

from the previously described literature and the spatial factors identified in the Cattell-Horn-

Carroll theory of intelligence (see Schneider & McGrew, 2012). It currently includes 25 factors 

that can also be divided into two broader categories of static and dynamic, with the authors 



15 

 

 

 

acknowledging that additional factors may be added as research warrants. It is unclear how 

dissociation of these many subfactors could be practically applied in empirical research, which 

we regard as an important goal for bridging theory and research practices.  

As demonstrated above, a variety of spatial taxonomies dissociate factors along different 

lines through various factor analytic methods. Though specific definitions vary, many scholars 

agree on making a dissociation between spatial orientation and visualization skills and, more 

recently, further dissociating mental rotation from other spatial visualization skills. These 

separations may inform researchers' spatial taxonomy and analytical framework selection and the 

selection of tasks used in their investigations. We next review several studies that use a specific-

factor structure taxonomy and report on its benefits and limitations for education research.  

Dissociation Between Spatial Orientation and Spatial Visualization 

 On the surface, perspective-taking (a subfactor of spatial orientation) and spatial 

visualization may seem equivalent. Measures for these skills often ask participants to anticipate 

the appearance of arrays of objects after either a rotation (visualization) of the objects or a 

change in the objects' perspective (perspective-taking), and both depend on a form of rotation. 

However, several studies have indicated that the spatial orientation subfactor of perspective-

taking and the spatial visualization subfactor of spatial visualization processes are 

psychometrically separate skills (e.g., Huttenlocher & Presson, 1979; Kozhevnikov & Hegarty, 

2001; Wraga et al., 2000). Perspective rotation tasks often lead to egocentric errors, such as 

reflection errors when trying to reorient perspectives, while object rotation task errors are not as 

systematic (Kozhevnikov & Hegarty, 2001; Zacks et al., 2000). For example, to solve a spatial 

orientation/perspective-taking task (Figure 2A), participants may imagine their bodies moving to 

a new position or viewpoint with the objects of interest remaining stationary. In contrast, the 
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objects in a spatial visualization task are often rotated in one’s imagination (Figure 2B). 

Behavioral and neuroscience evidence is consistent with these findings suggesting a dissociation 

between an object-to-object representational system and a self-to-object representational system 

(Hegarty & Waller, 2004; Kosslyn et al., 1998; Zacks et al., 1999). Thus, within the specific-

factor structure of spatial ability, spatial orientation/perspective-taking can be considered a 

separate factor from spatial visualization/mental rotation (Thurstone, 1950).  

Dissociation Between Mental Rotation and Non-rotational Spatial Visualization 

The boundaries between specific factors of spatial ability are often blurred and context 

dependent. To address this, Ramful and colleagues (2017) have created a three-factor taxonomy 

that clarifies the distinct differences between spatial visualization and spatial orientation (see 

section 1.1.1) by treating mental rotation as a separate factor. Their taxonomy is unique in that 

they used mathematics curricula, rather than solely basing their analysis on a factor analysis, to 

identify three sub-factors of spatial ability: (1) mental rotation, (2) spatial orientation, and (3) 

spatial visualization. Mental rotation describes how one imagines how a two-dimensional or 

three-dimensional object would appear after it has been turned (Figure 2B). Mental rotation is a 

cognitive process that has received considerable attention from psychologists (Bruce & Hawes, 

2015; Lombardi et al., 2019; Maeda & Yoon, 2013). Spatial orientation, in contrast, involves 

egocentric representations of objects and locations and includes the notion of perspective-taking 

(Figure 2A). Spatial visualization in their classification system (previously an umbrella term for 

many spatial skills that included mental rotation) describes mental transformations that do not 

require mental rotation or spatial orientation (Linn & Peterson, 1985) and can be measured 

through tasks like those shown in Figure 2C that involve operations such as paper folding and 

unfolding. Under this definition, spatial visualization may involve complex sequences in which 
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intermediate steps may need to be stored in spatial working memory (Shah & Miyake, 1996). In 

mathematics, these skills often correlate with symmetry, geometric translations, part to whole 

relationships, and geometric nets (Ramful et al., 2017). 

Figure 2 

Exemplars of spatial orientation, mental rotation, and non-rotational spatial visualization tasks 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. The spatial orientation task (A) is adapted from Hegarty and Waller's (2004) Object 

Perception/Spatial Orientation Test. The mental rotation task (B) is redrawn and adapted from  

Vandenberg and Kuse's (1978) Mental Rotation Test. The non-rotational spatial visualization 

task (C) is redrawn and adapted from Ekstrom and colleagues' (1976) Paper Folding Task. 

Recommended Uses, Analytic Frameworks, and Limitations 

Specific-factor taxonomies are used in a variety of lines of research, including 

mathematics education. Studies exploring the association between spatial ability and 

mathematics often focus on a particular sub-factor. For example, some studies have focused on 

the association between mental rotation and numerical representations (e.g., Rutherford et al., 

2018; Thompson et al., 2013), while others have focused on spatial orientation and mathematical 
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problem solving (e.g., Tartre, 1990). Similarly, those investigating spatial training efficacy often 

use spatial tasks based on a single factor or a set of factors as pre- and post-test measures and in 

intervention designs (e.g., Bruce & Hawes, 2014; Gilligan et al., 2019; Lowrie et al., 2019; Mix 

et al., 2021). However, the sheer number of these specific-factor spatial taxonomies used in 

education can be overwhelming for researchers, and many are not based in spatial ability theory, 

so it may be challenging for education researchers to find a suitable, evidence-based taxonomy 

for their work. The discussion above serves as an evidence-based guide to help researchers to 

ground their understanding of the various specific factor definitions and narrow their search for 

an appropriate specific-factor spatial taxonomy.  

 We recommend that education researchers first decide how many specific factors 

are relevant for their study by either selecting a taxonomy used in previous research or through 

exploratory pilot studies to identify the ecologically valid and contextually relevant spatial 

subfactors. In the design of these pilot studies, we suggest that researchers include several tests 

of a particular specific spatial sub-factor of interest or of multiple related spatial subfactors that 

have been used in prior similar studies or may be theoretically relevant to the current study. We 

also suggest that researchers include measures for constructs (e.g., gender, age, general 

intelligence, and working memory) that may need to be controlled for in the final study. Then, 

researchers should select the appropriate analytic framework to either use scores from single sub-

factor measures or separate scores from multiple factor-specific measures. As a best practice, we 

recommend using a composite score for many measures to combat issues such as task-related 

biases (Moreu & Weibels, 2021). In addition, researchers should be careful to acknowledge the 

inherent limitations that arise as multiple specific sub-factors may load on any one particular 

mathematics task (see section 2 for discussion). 
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Broad-Factor Structures 

Studies of mathematical reasoning and learning that rely on specific-factor structures can 

yield different results depending on their choices of factors (Schenck, Kim, et al., 2022). These 

differing results present a problem for finding convergence of the role of particular spatial 

abilities on particular mathematics concepts. An alternative approach relies on much broader 

distinctions between spatial ability sub-components. Proponents of broad-factor structure 

approaches argue that many traditional specific-factor structures of spatial ability rely on 

exploratory factor analysis rather than confirmatory factor analyses informed by a clear 

theoretical basis of spatial ability (Uttal et al., 2013; Young et al., 2018b). We refer to these as 

broad-factor structure approaches as their categorizations align with combinations of specific 

spatial ability subfactors.  

Some scholars who draw on broad-factor structures have argued for a partial dissociation 

between large-scale and small-scale spatial abilities (Ferguson et al., 2015; Hegarty et al., 2006; 

Hegarty et al., 2018; Jansen, 2009; Potter, 1995). Large-scale spatial abilities involve physical 

navigation through space (e.g., moving one's body through a new environment). Small-scale 

spatial abilities are defined as those that predominantly rely on mental transformations of shapes 

or objects (e.g., mental rotation tasks) but do not necessitate large-scale body movement. 

Hegarty and colleagues (2018) recommend that large-scale abilities can be measured through 

sense of direction measures and navigation activities. The same study also suggests that small-

scale abilities may be measured through typical spatial ability tasks like those discussed in 

section 2 of this paper, such as mental rotation. A meta-analysis examining the relationship 

between small- and large-scale abilities provided further evidence that these two factors should 

be defined separately, with additional evidence that this relationship may be moderated by age 
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but not gender (Wang et al., 2014). Though, another recent meta-analysis investigating gender 

differences in large- and small-scale spatial ability provided evidence for a high level of gender 

differences in large-scale ability and a medium level of gender differences in small-scale ability 

due to differing neural bases and strategy use between the genders (Yuan et al., 2019).  

Other lines of broad-factor structures research have drawn on linguistic, cognitive, and 

neuroscientific findings to develop a 2x2 classification system that distinguishes between 

intrinsic and extrinsic information and static and dynamic tasks (Newcombe & Shipley, 2015; 

Uttal et al., 2013). Intrinsic spatial skills involve attention to a single object's spatial properties, 

while extrinsic spatial skills predominately rely on attention to the spatial relationships between 

objects. The second distinction defines static tasks as recognizing and thinking about objects and 

their relations. In contrast, dynamic tasks often move beyond static coding of the spatial features 

of an object and its relations to imagining spatial transformations of one or more objects. 

Uttal and colleagues (2013) describe how this 2x2 broad classification framework 

combining intrinsic and extrinsic information with static and dynamic reasoning can be mapped 

onto Linn and Peterson's (1985) three-factor taxonomy, breaking spatial ability into spatial 

perception, mental rotation, and spatial visualization sub-factors. Spatial perception tasks (e.g., 

water level tasks; see Inhelder & Piaget, 1958) require coding spatial position information 

between objects or gravity without manipulating the objects and nicely represent the extrinsic-

static categorization. Mental rotation tasks (e.g., the Mental Rotations Test of Vandenberg & 

Kuse, 1978) represent the intrinsic-dynamic category. Spatial visualization tasks fall into the 

intrinsic classification and can address static and dynamic reasoning depending on whether the 

objects are unchanged or require spatial transformations. Ekstrom et al.'s (1976) Form Board 

Test and Paper Folding Test are two examples of spatial visualization tasks that measure the 
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intrinsic-dynamic classification, while the Embedded Figures Test (Witkin et al., 1971) is an 

example of an intrinsic-static classification. Furthermore, Uttal and colleagues (2013) address a 

limitation of Linn and Peterson's (1985) taxonomy by including the extrinsic/dynamic 

classification, which they note can be measured through spatial orientation and navigation 

instruments such as the Guilford-Zimmerman Spatial Orientation Task (Guilford & Zimmerman, 

1948).  

Though Uttal and colleagues' (2013) classification provides a helpful framework for 

investigating spatial ability and its links to mathematics (Young et al., 2018b), it faces several 

challenges. Some critics posit that spatial tasks often require a combination of spatial sub-

components and cannot be easily mapped onto one domain in the framework (Okamoto et al., 

2015). For example, a think-aloud task might ask students to describe a different viewpoint of an 

object. The student may imagine a rotated object (intrinsic-dynamic), moving their body to the 

new viewpoint (extrinsic-dynamic), or a combination of strategies. Additionally, an experimental 

study by Mix and colleagues (2018) testing the 2x2 classification framework on children in 

Kindergarten, 3rd and 6th grade using confirmatory factor analysis failed to find evidence for the 

static-dynamic dimension at any age or for the overall 2x2 classification framework. This study 

demonstrates limitations to this framework in practice, and other frameworks with less 

dimensionality may be more appropriate for understanding spatial abilities in children. 

Even in light of these challenges, broad-factor taxonomies may benefit researchers who 

do not expect specific sub-factors of spatial ability to be relevant for their data or are using a 

spatial ability measure to control for spatial ability as part of an investigation of a related 

construct. No valid and reliable instruments have been designed to specifically assess these 

broad-factor taxonomies. Instead, the developers of these taxonomies suggest mapping existing 
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spatial tasks, which are usually tied to specific sub-factors of spatial ability, to broader 

categories. For practical applications, we recommend that education researchers first decide 

whether one or multiple broad factors are relevant for the study by aligning spatial measures 

used in similar prior studies with a particular broad-factor taxonomy. We suggest selecting an 

appropriate task and using a single variable for analyses if one broad factor appears relevant. If 

multiple broad factors are relevant, researchers should select one measure for each relevant 

factor and use these as separate scores for analyses. As before, we recommend using a composite 

score from multiple measures and controlling for individual factors that may correlate with 

spatial ability, such as gender, age, general intelligence, and working memory, where possible.  

Unitary-Factor Structure 

Many scholars understand spatial ability to be composed of a subset of specific or broad 

factors. However, there is also empirical support for an additional view: Spatial ability may 

actually be a unitary construct. Spatial ability has been investigated using factor analytical 

methods that sought to map the structure of general intelligence (Spearman, 1927; 

Thurstone, 1938). These early studies identified spatial ability as one factor separate from 

general intelligence that mentally operates on spatial or visual images. Evidence supporting a 

unitary spatial ability model proposes a common genetic network that supports all spatial 

abilities (Malanchini et al., 2020). In their study, 16 spatial tests were administered clustered into 

three main sub-components: Visualization, Navigation, and Object Manipulation. They then 

conducted a series of confirmatory factor analyses to fit one-factor (Spatial Ability), two-factor 

(Spatial Orientation and Object Manipulation), and three-factor models (Visualization, 

Navigation, and Object Manipulation). The best fitting model was the one-factor model -- even 

when accounting for general intelligence.  
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This unitary structure could be beneficial for researchers interested in questions about general 

associations between mathematics and spatial ability or using spatial ability as a moderator in 

their analyses. However, to date, no valid and reliable instruments have been created to fit within 

the unitary taxonomy, such as those that include various spatial items. Instead, researchers who 

discuss spatial ability as a unitary construct often choose one or multiple well-known spatial 

measures based on a particular sub-factor of spatial ability (e.g., Boonen et al., 2013; Burte et al., 

2017). In the absence of a unitary spatial cognition measure designed to assess spatial ability 

from a unitary perspective, researchers should think critically about selecting measures for their 

studies and address the limitations of such decisions.  

For example, Casey and colleagues (2015) found that early spatial skills were long-term 

predictors of later math reasoning skills. In their analysis, the authors identified two key spatial 

skills, mental rotation and spatial visualization, that previous work by Mix and Cheng (2012) 

found to be highly associated with mathematics performance. To measure these constructs, 

Casey and colleagues administered three spatial tasks to participants: a spatial visualization 

measure, a 2-D mental rotation measure, and a 3-D mental rotation measure. The authors were 

interested in the impact of overall spatial ability and partially replicating previous findings rather 

than whether or how these two factors impacted mathematics performance. Thus, they combined 

these three spatial scores into a single composite score. The decision to use a composite score 

across separate measures aligns with a unitary-factor taxonomy and demonstrates a way to use 

this taxonomy in the absence of spatial measures designed for a unitary-factor taxonomy.  

This example illustrates why we recommend that researchers who select the unitary structure 

of spatial ability either address possible limitations of their spatial task selection or create a 

composite score from several tasks that align to various spatial sub-factors and extract the latent 



24 

 

 

 

factor. Though some confirmatory analyses have shown that there is no clear separation of 

factors among common spatial ability measures (Colom et al., 2001), this issue motivates the 

need for an evidence-based, theory-grounded task selection procedure such as the one described 

in Section 2 and the need for a unitary spatial cognition measure. 

An Evidence-Based Procedure for Choosing Spatial Tasks 

With so many spatial ability taxonomies, researchers must carefully select tasks and 

surveys that match their stated research goals and theoretical framework, the spatial ability skills 

of interest, and the populations under investigation. As mentioned, researchers may select spatial 

tasks based on practical motivations rather than theoretical ones. These decisions can be 

complicated by the vast number of spatial tasks, with little guidance for which ones best align 

with the various spatial taxonomies. To help guide researchers with these decisions, we have 

compiled a list of spatial instruments referenced in this paper and matched them with their 

associated spatial sub-components and intended populations (Table 1).  
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Comparing the instruments in these ways reveals several important gaps necessary to 

measure unitary spatial cognition that correlate with mathematics and spatial abilities across the 

lifespan. In particular, this analysis reveals an over-representation of certain quadrants of the 2 

(intrinsic-extrinsic) x 2 (static-dynamic) classification system described in section 1.2. It shows a 

pressing need for more tasks explicitly designed for extrinsic-static classifications. It also reveals 

that the slate of available instruments is dominated by tasks that have only been tested on adults. 

These disparities are important for educational considerations and are taken up in the final 

section.  

Due to the sheer number of spatial tasks and the observations that tasks do not load 

consistently on distinct spatial ability factors such as spatial visualization or mental rotation due 

to the tasks' complex nature, it would be impossible in the scope of this review to discuss every 

task-factor relationship. As a practical alternative, we have decided to group spatial ability tasks 

into three aggregated categories based on their dissociations, as discussed in the previous section: 

Spatial orientation tasks, non-rotational spatial visualization tasks, and mental rotation tasks (for 

examples, see Figure 2). We acknowledge that other scholars may continue to identify different 

aggregations of spatial reasoning tasks, including those used with mechanical reasoning and 

abstract reasoning tasks (e.g., Tversky, 2019; Wai et al., 2009). In our aggregated categories, 

mechanical reasoning tasks would align with either mental rotation or non-rotational tasks 

depending on the specific task demands, while abstract reasoning tasks would align most closely 

with non-rotational spatial visualization tasks.  

As there are no universally accepted measures of spatial ability for each spatial factor,  we 

have narrowed our discussion in this paper to include exemplars of validated, cognitive, pen-and-

pencil spatial ability tasks. These tasks have been historically associated with various spatial 
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ability factors rather than merely serving as measures of general intelligence or visuospatial 

working memory (Carroll, 1993) and are easily implemented and scored by educators and 

researchers without specialized software or statistical knowledge. Notably, this discussion of 

spatial ability tasks and instruments excludes self-report questionnaires such as the Navigational 

Strategy Questionnaire (Zhong & Kozhevnikov, 2016) and the Santa Barbara Sense of Direction 

Scale (Hegarty et al., 2002); navigation simulations such as the Virtual SILC Test of Navigation 

(Weisberg et al., 2014) and SOIVET-Maze (da Costa et al., 2018);  and tasks that involve 

physical manipulation such as the Test of Spatial Ability (Verdine et al., 2014).  As such, we 

were unable to find any published, validated instruments for large-scale spatial orientation, a 

sub-factor of spatial orientation, that meet our inclusion criteria. The following sections detail the 

types of tasks and instruments commonly used to measure spatial orientation, non-rotational 

spatial visualization, and mental rotation. 

Spatial Orientation Tasks 

Much like spatial ability more generally, spatial orientation skills fit into the broad 

distinctions of large-scale (e.g., wayfinding, navigation, and scaling abilities) and small-scale 

(e.g., perspective-taking and directional sense) skills, with small-scale spatial orientation skills 

being shown to be correlated with larger-scale spatial orientation skills (Hegarty et al., 2002; 

Hegarty & Waller, 2004). Although few studies have attempted to determine statistical 

associations between spatial orientation and mathematics, spatial orientation has been correlated 

with some forms of scholastic mathematical reasoning. One area of inquiry showed associations 

between spatial orientation and early arithmetic and number line estimation (Cornu et al., 2017; 

Zhang & Lin, 2015). In another, spatial orientation skills were statistically associated with 

problem-solving strategies and flexible strategy use during high school level geometric and non-
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geometric tasks (Tartre, 1990). Studies of disoriented children as young as three years old show 

that they reorient themselves based on the Euclidean geometric properties of distance and 

direction, which may contribute to children's developing abstract geometric intuitions (Izard et 

al., 2011; Lee et al., 2012; Newcombe et al., 2009).  

The Guilford-Zimmerman (GZ) Spatial Orientation Test is one of the earliest spatial 

orientation instruments (Guilford & Zimmerman, 1948). Participants are asked to identify a 

boat's position that would give a particular view of the landscape. However, psychometric 

studies of spatial orientation have shown conflicting results on the separability of spatial 

orientation and spatial visualization. Some researchers conclude that the GZ Spatial Orientation 

Test and spatial visualization instruments measure the same factors (Lohman, 1979; Schultz, 

1991). It is possible that participants' strategies could be to rotate the objects rather than shift 

their perspectives. Other critics of this instrument believe the GZ Spatial Orientation Test tasks 

are complicated and confusing for participants. One study reported that 98% of participants 

commented that their orientation skill test score did not reflect their ability (Kyritsis & Gulliver, 

2009).  

To combat the GZ Spatial Orientation Test problems, Kozhevnikov and Hegarty (2001) 

developed the Object Perspective Taking Test, which was later revised into the Object 

Perspective/Spatial Orientation Test (see Figure 2A; Hegarty & Waller, 2004). Test takers are 

prevented from physically moving the test booklet, and all items involved an imagined 

perspective change of at least 90°. Unlike previous instruments, results from the Object 

Perspective/Spatial Orientation Test showed a dissociation between spatial orientation and 

spatial visualization factors (though they were highly correlated) and correlated with self-

reported judgments of large-scale spatial cognition. A similar instrument, the Perspective Taking 
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Test for Children, has been developed for younger children. (Frick, Möhring, & Newcombe, 

2014). Additionally, simpler versions of these tasks that asked participants to match an object to 

one drawn from an alternative point of view have also been used, such as those in the Spatial 

Reasoning Instrument (Ramful et al., 2017).  

Non-Rotational Spatial Visualization Tasks 

With differing definitions of spatial visualization, measures of this spatial ability sub-

component often include tasks that evaluate other spatial ability skills. For example, cross-

sectioning tasks such as those in the Mental Cutting Test (CEEB, 1939) and the Santa Barbara 

Solids Test (Cohen & Hegarty, 2012) ask students to choose the correct cross-section from a 

criterion figure to be cut with an assumed plane. At first, this may seem like a straightforward 

spatial visualization task, with some scholars suggesting cross-sectioning tasks are distinct from 

mental rotation and spatial perception (Ratliff et al., 2010); the nature of the drawings requires 

participants to visualize the cross-section and then rotate either the object or perspective to match 

the given answer choices indicating a potential overlap between spatial ability factors. In this 

section, we focus on tasks that do not overtly require mental rotation.  

The three tests for non-rotational spatial visualization come from the Kit of Factor-

Referenced Cognitive Tests developed by Educational Testing Services (Ekstrom et al., 1976). 

These instruments were developed for research on cognitive factors in adult populations. The 

first instrument is the Paper Folding Test (PFT), one of the most commonly used tests for 

measuring spatial visualization (see Figure 2C). In this test, participants view diagrams of a 

square sheet of paper being folded and then punched with a hole. They are asked to select the 

picture that correctly shows the resulting holes after the paper is unfolded. Though this task 

assumes participants imagine unfolding the paper without the need to rotate, studies have shown 
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that problem attributes (e.g., number and type of folds and fold occlusions) impact PFT accuracy 

and strategy use (Burte et al., 2019a).  

The second instrument is the Form Board Test. Participants are shown an outline of a 

complete geometric figure with a row of five shaded pieces. The task is to decide which shaded 

pieces will make the complete figure when put together. During the task, participants are told 

that the pieces can be turned but not flipped and can sketch how they may fit together.  

The third instrument, the Surface Development Test, asks participants to match the sides 

of a net of a figure to the sides of a drawing of a three-dimensional figure. Like the PFT, strategy 

use may also impact accuracy on these two measures. To combat the possible influence of 

strategy use, the Make-A-Dice test was created (Burte et al., 2019b), which relies on the number 

of squares in a row and consecutive folding in different directions rather than just increasing the 

number of folds to increase difficulty. Additionally, none of these three instruments were 

explicitly designed to test non-rotational spatial visualization but rather a broader definition of 

spatial visualization that includes mental rotation. Thus, it is possible that some participants' 

strategies may include mental rotation or spatial orientation.  

Other common types of spatial visualization tasks include embedded figures adapted 

from the Gottschaldt Figures Test (Gottschaldt, 1926). These tasks measure spatial perception, 

field-independence, and the ability to disembed shapes from a background, which may be a 

necessary problem-solving skill (Witkin et al., 1977). One instrument, the Embedded Figures 

Test, originally consisted of 24 trials during which a participant is presented with a complex 

figure, then a simple figure, then shown the complex figure again with instructions to locate the 

simple figure within it (Witkin, 1950). Others have used Witkin's (1950) stimuli as a basis to 
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develop various embedded figures tests, including the Children's Embedded Figures Test (Karp 

& Konstadt, 1963) and the Group Embedded Figure Test (Oltman et al., 1971).  

A test of spatial ability based on Ramful and colleagues' (2017) Spatial Reasoning 

Instrument (SRI) employs a three-factor taxonomy: Spatial orientation, spatial visualization, and 

mental rotation. Notably, the questions that measure spatial visualization are specifically 

designed not to require mental rotation or spatial orientation. Unlike previously mentioned 

instruments, the SRI is not a speed test, though students are given a total time limit of 45 

minutes. Additionally, this instrument targets middle school students and was designed to align 

more closely with students' mathematical curricular experiences rather than a traditional 

psychological orientation. Mathematical connections in the SRI include visualizing lines of 

symmetry, using two-dimensional nets to answer questions about corresponding three-

dimensional shapes, and reflecting objects.  

Mental Rotation Tasks 

Mental rotation is a cognitive operation in which a mental image is formed and rotated in 

space. Mental rotation can be treated as a separate skill from spatial orientation and spatial 

visualization (Linn & Peterson, 1985; Shepard & Metzler, 1971). This process develops from 3 

to 5 years of age with large individual differences (Estes, 1998) and shows varying performance 

across individuals irrespective of other intelligence measures (Borst et al., 2011). Several studies 

have also demonstrated significant gender differences, with males typically outperforming 

women (e.g., Voyer et al., 1995), though this gap may be decreasing across generations 

(Richardson, 1994), suggesting it is due at least in part to sociocultural factors such as 

educational experiences rather than exclusively based on genetic factors.  
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Though there is disagreement on how mental rotation fits within the subset of spatial skills, 

behavioral and imaging evidence suggests that mental rotation tasks invoke visuospatial 

representations that correspond to object rotation in the physical world (Carpenter et al., 1999; 

Shepard & Metzler, 1971). Mental rotation skills are often subsumed under spatial visualization 

or spatial relations sub-components. Historically, three-dimensional mental rotation ability has 

fallen under the spatial visualization skill, while two-dimensional mental rotation occasionally 

falls under a separate spatial relations skill (e.g., Carroll, 1993; Lohman, 1979). Thus, mental 

rotation measures often include either three-dimensional or two-dimensional stimuli rather than a 

mixture of both.  

As many definitions of general spatial ability include a "rotation" aspect, several studies have 

investigated the links between mental rotation and mathematics. For young children, cross-

sectional studies have shown mixed results. Some studies found significant correlations between 

mental rotation and calculation and arithmetic (Cheng & Mix, 2014; Gunderson et al., 2012; 

Hawes et al., 2015). Conversely, Carr et al. (2008) found no significant associations between 

mental rotation and standardized mathematics performances in similar populations. In middle 

school-aged children (11-13 years), mental rotation skill was positively associated with 

geometric knowledge (Battista, 1990; Casey et al., 1999) and problem-solving (Hegarty & 

Kozhevnikov, 1999; Delgado & Prieto, 2004). Studies on high school students and adults have 

indicated that mental rotation is associated with increased accuracy on mental arithmetic 

problems (Geary et al., 2000; Kyttälä & Lehto, 2008; Reukala, 2001).  

Three-dimensional Mental Rotation Tasks 

In one of the earliest studies of three-dimensional mental rotation, Shepard and Metzler 

(1971) presented participants with pictures of pairs of objects that were either the same objects in 
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the same or different orientations or different objects because they were mirror images of those 

objects. This design provided a nice control since the mirror images were truly different objects 

(i.e., they could not be rotated to match the original). Yet, they shared comparable visual 

complexity to those that were the same. Participants were asked to answer as quickly as possible 

whether the objects were the same or different, regardless of the orientation difference. Results 

found a positive linear association between reaction time and the angular difference in the 

orientation of objects. In combination with participant post-interviews, this finding illustrated 

that in order to make an accurate comparison between the object and the answer questions, 

participants first imagined the object as rotated into the same orientation as the target object and 

that participants perceived the two-dimensional pictures as three-dimensional objects in order to 

complete the imagined rotation. Additional studies have replicated these findings over the last 

four decades (Uttal et al., 2013). Shepard and Metzler-type stimuli have been used in many 

different instruments, including the Purdue Spatial Visualization Test: Rotations (Guay, 1976) 

and the Mental Rotation Test (see Figure 2B; Vandenberg & Kuse, 1978). However, recent 

studies have shown that some items on the Mental Rotation Test can be solved using analytic 

strategies such as a global-shape strategy to eliminate answer choices rather than relying on 

mental rotation strategies (Hegarty, 2018).  

One common critique of the Shepard and Metzler-type stimuli is that the complex design 

of the classic cube configurations is inappropriate for younger populations, leading to few mental 

rotation studies on this population. Studies have shown that children under five years of age have 

severe difficulties solving standard mental rotation tasks, with children between the ages of 5 and 

9 solving such tasks at chance (Frick, Hanson, & Newcombe, 2014). To combat this, studies with 

pre-school age children often lower task demands by reducing the number of answer choices, 
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removing mirrored and incongruent stimuli, and using exclusively two-dimensional pictures 

(Krüger et al., 2013; Krüger, 2018). In response, some scholars have begun developing 

appropriate three-dimensional mental rotation instruments for elementary school students, such 

as the Rotated Colour Cube Test (Lütke & Lange-Küttner, 2015). In this instrument, participants 

are presented with a stimulus consisting of a single cube with different colored sides and are 

asked to identify an identical cube that has been rotated. However, studies on both three-

dimensional and two-dimensional rotation have found that cognitive load depends more on the 

stimulus angle orientation than the object's complexity or dimensionality (Cooper, 1975; 

Jolicoeur et al., 1985). 

Two-dimensional Mental Rotation Tasks 

To measure two-dimensional mental rotation, tasks for all populations feature similar 

stimuli. These tasks, often referred to as spatial relations or speeded rotation tasks, typically 

involve single-step mental rotation (Carroll, 1993). One common instrument for two-dimensional 

mental rotation is the Card Rotation Test (Ekstrom et al., 1976). This instrument presents an 

initial figure and asks participants to select the rotated but not reflected items. Importantly, these 

tasks can be modified for various populations (Krüger et al., 2013). One standardized instrument 

for preschool and early primary school-age children, the Picture Rotation Test, demonstrates how 

easily these two-dimensional stimuli can be modified (Quaiser-Pohl, 2003).  

A Guiding Framework 

We contend that the decisions made regarding the choice of spatial taxonomies, 

analytical frameworks, and spatial measures will impact both the results and interpretations of 

the study's findings. One way these decisions impact study outcomes is that specific sub-factors 



36 

 

 

 

of spatial ability have been shown to be more strongly associated with specific sub-domains of 

mathematics than with others (Delgado & Prieto, 2004; Schenck & Nathan, 2020). Thus, 

selecting a spatial skills instrument poorly suited to the mathematical skills under investigation 

may fail to show a suitable predictive value and lead the research team to conclude that spatial 

reasoning overall is not relevant to the domain of interest. These design limitations are often not 

discussed in the publications we reviewed and, perhaps, may not even be realized by the 

researchers. However, due to the abundance of spatial taxonomies and lack of consensus in the 

spatial ability community, it can be difficult for education researchers to select an appropriate 

framework to match their specific domains of study and foresee the limitations affecting their 

outcomes.  

Due to the various spatial taxonomies and the assumptions and design decisions needed 

for the accompanying analytical frameworks, we assert that it may be beneficial for some 

scholars and educators to move away from attempting to create a specific, universally accepted 

taxonomy of spatial ability. Instead, it may be more useful to consider spatial ability as a web of 

interconnected sub-components that describe how individuals perceive, generate, relate, and 

transform spatial information about objects, including themselves. Furthermore, the precise ways 

individuals interact with spatial information through the various possible sub-components appear 

to be based on a particular scholar's or educator's perspective, which should inform study design 

through their choices of spatial taxonomies and analytical frameworks and measures based on 

their goals.  
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To address these shortcomings, we have designed a guide for researchers in the form of a 

flowchart that helps match spatial taxonomies to analytic frameworks (Figure 3). Our guide does 

not include every possible spatial taxonomy. Instead, it offers a helpful starting point for 

incorporating spatial skills into an investigation.  

The first question in the flowchart, Q1, draws researchers to the relevance of 

subcomponents to their investigation. If sub-components do not apply to their goals, we 

recommend the unitary spatial taxonomy and an analytical framework using a single composite 

score from multiple tasks.  

When sub-components are applicable, Q2 of the flowchart directs the researcher to 

consider whether these sub-components are specific or broadly defined. The flowchart then 

guides the investigator to choose a spatial taxonomy that most closely aligns with their research 

goals. Several analytic frameworks from our review are listed as compatible with specific-factor 

structures. Broad-factor structures mainly distinguish large-scale from small-scale spatial 

abilities or intrinsic/extrinsic skills from static/dynamic tasks. 

Once an appropriate spatial taxonomy has been selected, Q3 in the flowchart directs 

researchers to whether one or more sub-components are directly relevant to their investigation. If 

only one factor is relevant, we suggest an analytic approach that includes a single score from one 

task among the chosen taxonomies. If multiple factors are relevant to the investigation, we 

suggest including multiple composite scores from multiple tasks in analyses. Note that the 

guidance here to use a single composite score from one task as a measure of spatial ability that is 

conceptualized as made up of sub-components differs from the guidance to use a single 

composite score from multiple tasks when spatial ability is conceptualized in terms of a unitary-

factor structure. For example, if the research goal is to understand the links between mental 
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rotation and a particular domain of mathematics, we suggest the researchers use a single 

composite score from mental rotation measures. But if the research goal is to understand the 

general links between spatial ability and a particular domain of mathematics, we suggest that the 

researcher use a composite score from multiple spatial measures in the absence of a universal 

spatial cognition measure. Task selection, the final step in the flow chart, will depend on 

practical considerations such as which spatial sub-components are relevant, population age, and 

time constraints. Though thousands of spatial tasks are available, the tasks listed in Table 1, 

which also identify corresponding broad and specific spatial sub-components, can serve as a 

useful starting point for designing a study.  

Conclusions and Lingering Questions 

Researchers largely agree that spatial ability is essential for mathematical reasoning and 

success in STEM fields (National Research Council, 2006). The two goals of this review were, 

first, to summarize the relevant spatial ability literature, including the various factor structures 

and measures, in an attempt to more clearly understand the elements of spatial ability that may 

relate most closely to mathematics education; and second, to provide practical recommendations 

for education researchers and practitioners for selecting appropriate theoretical taxonomies, 

analytical frameworks, and specific instruments for measuring, interpreting, and improving 

spatial reasoning for mathematics education. Our review showed a wide array of spatial 

taxonomies and analytical frameworks for understanding and measuring spatial reasoning. 

However, we found no consensus on the nature of this link, no convergence on a definition of 

spatial ability or agreement regarding the possible sub-components of spatial ability, and no 

universally accepted set of standardized measures to assess spatial skills. This review exposes 

several challenges to understanding the relationship between spatial skills and performance in 
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mathematics, which are complicated by divergent descriptions of spatial taxonomies and 

analytical frameworks scholars use to describe spatial skills and the sheer volume of spatial 

assessments one encounters as a potential consumer. These challenges are all part of the 

responsibility of the research community. The lack of progress on these issues impedes progress 

in designing effective spatial skills interventions for improving mathematics thinking and 

learning based on clear causal principles, selecting appropriate metrics for documenting change, 

and analyzing and interpreting the student outcome data.  

Our primary contribution in the context of these challenges is to provide a practical 

guide, well situated in the research literature, for navigating and selecting among the various 

major spatial taxonomies and various validated instruments for assessing spatial skills for use in 

mathematics education research and instructional design. In order to anchor our 

recommendations, we first summarized much of the history and major findings of spatial ability 

research as it relates to education (Section 1). In this summary, we identified three major types of 

spatial taxonomies: specific, broad, and unitary, and provided recommendations for associated 

analytical frameworks. We then discussed the plethora of spatial ability tasks that investigators 

and educators must navigate (Section 2). To make the landscape more tractable, we divided these 

tasks into three categories relevant to mathematics education -- spatial orientation, mental 

rotation, and non-rotational spatial visualization (see Table 1) -- and mapped these tasks to their 

intended populations. We acknowledge that researchers and educators often select spatial tasks 

and analytic frameworks for practical rather than theoretical reasons, which can undermine the 

validity of their own research and assessment efforts. In order to provide educators with a 

stronger evidence-based foundation, we offered a guiding framework in the form of a flowchart 

to assist investigators in selecting appropriate spatial taxonomies and analytic frameworks as a 
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precursor to making well-suited task sections to meet their particular needs. A guide of this sort 

provides some of the best paths forward to utilizing the existing resources for understanding and 

improving education through the lens of spatial abilities. We focused our efforts on providing a 

tool to guide the decision-making of investigators and educators seeking to relate spatial skills 

with mathematics performance based on the existing resources and theoretical frameworks. 

Several limitations remain, however. One is that the vast majority of published studies 

administered spatial skills assessments using paper-and-pencil instruments. In the ensuing years, 

testing has largely moved online, posing new challenges regarding the applicability of some of 

the instruments and findings. Updating these assessments will naturally take time until research 

using online instruments catches up. A second limitation is that studies investigating the 

associations between spatial ability and mathematics have often focused on a particular spatial or 

mathematical skill. There are many unknowns for which spatial abilities map to which areas of 

mathematics performance. This limitation can only be addressed through careful, large-scale 

studies. A third limitation is that many of the instruments in the published literature were 

developed for use with adult populations. This greatly limits their applicability to school-aged 

populations. Here, again, this limitation can only be addressed through more research that 

extends this work across a broader developmental range. Fourth, many spatial ability instruments 

reported in the literature include tasks that may be solved using various strategies, thus calling 

into question whether they measure the specific spatial skills they claim to measure. For 

example, some tasks, such as the Paper Folding Test, may be solved effectively through counting 

rather than pure spatial visualization. Thus, there is a pressing need for process-level data, such 

as immediate retrospective reports and eye tracking (cf. Just & Carpenter, 1985), to accurately 

describe the various cognitive processes involved and how they vary by age, individual 
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differences, and assessment context. Fifth, there is a need for more tasks and instruments 

designed specifically for extrinsic-static classifications and unitary frameworks. Though there 

are currently no studies that provide evidence for a link between mathematics and extrinsic-static 

spatial abilities, it is possible that a lack of assessments has masked the connection. This 

limitation can only be addressed with more research into the development of these measures. 

Perhaps the greatest limitation is that scholarly research on spatial ability still lacks a convergent 

taxonomy and offers no clear picture of which aspects of spatial thinking are most relevant to 

STEM thinking and learning.  

Overall, research to understand the structure of spatial ability more deeply is at a 

precipice. Understanding the sub-components of spatial ability and how their structures change 

with individual differences directly impacts how education researchers understand the 

relationship between spatial thinking and mathematical ability and how researchers and 

educational designers develop effective interventions. Synthesizing these lines of research 

highlighted several unexplored areas that require future work. STEM education and workforce 

development remain essential for scientific and economic advancements, and spatial skills are 

important for success and retention in technical fields. Thus, it is critical to further understand 

the connections between spatial and mathematical abilities as ways to increase our understanding 

of the science of learning and inform the design of future curricular interventions that transfer 

skills for science, technology, engineering, and mathematics.  
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Chapter 2: Exploring Spatial Ability, Spatial Anxiety, and Mathematical Thinking 
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Study 1: Connecting Mathematics, Spatial Ability, and Spatial Anxiety 

Traditional models of mathematical cognition (e.g., Newell & Simon, 1972) have seen 

substantial expansion beyond individually isolated rule-based processing of symbol systems. 

While contextual and social influences on mathematical thinking have greatly influenced 

contemporary theories (e.g., Cobb, 1994; Schliemann & Carraher, 2002), two other classes of 

processes that extend our theories of mathematical cognition – embodiment and affect – are still 

in their infancy. One facet of embodied cognition particularly relevant for math is spatial skills 

(Uttal & Cohen, 2012; Mix et al., 2016; Newcombe, 2013). An aspect of affect relevant to math 

is anxiety. To further understand the breadth and multifaceted nature of mathematical thinking in 

terms of expanded notions of cognition, we investigate the relationship of mathematical ability 

with spatial skills and spatial anxiety. Models of mathematical cognition that include affective 

and embodied processes contribute to basic theory of human cognition. Such models also inform 

the design of evidence-based educational practices, including the design of curriculum activities 

and principles for instruction and assessment.  

Theoretical Framework  

Spatial Ability  

Spatial ability refers to the ability to generate and manipulate spatial objects, images, 

relationships, and transformations (Battista, 2007). These abilities include memorization and 

comparison of visual patterns, manipulating mental objects, and performing spatial imagery 

(Hegarty & Waller, 2005). Spatial imagery, as defined by Hegarty & Waller (2005), refers to “a 

representation of the spatial relationships between parts of an object, the location of an object in 

space or their movement” (pg. 144). Spatial ability has been linked to success in mathematics for 
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students as young as three (Verdine et al., 2014), and studies investigating phenomena such as 

the SNARC effect have the links between spatial-numerical associations and math ability (Berch 

et al., 1999; Toomarian et al., 2019). As children develop, spatial ability is consistently 

important. Assessment of spatial skills among elementary-aged children strongly predicts later 

mathematical capabilities (Casey et al., 2015; Laski et al., 2013).  

There is little consensus in the literature about the exact combination of factors and sub-

skills critical for spatial ability (Yilmaz, 2009), and naming conventions of the factors vary 

(Hegarty & Waller, 2005; Lohman, 1988; McGee,1979). We adopted the three-factor framework 

proposed by Ramful and colleagues (2016): (1) Mental rotation describes how one imagines a 

2D or 3D object would appear after it has been turned; (2) spatial orientation involves egocentric 

representations of objects and locations and includes the notion of perspective taking; and (3) 

spatial visualization describes mental transformations that do not require mental rotation, spatial 

orientation, or egocentric reference.  

Anxiety in Mathematics and Spatial Reasoning 

High levels of anxiety reduce neurocognitive performance (Derakshan & Eysenck, 2010; 

MacLeod & Donnellan, 1993; Meyers et al., 2013). Mathematics anxiety predicts low 

mathematics performance even when controlling for other anxiety factors, such as test anxiety 

(Lukowski et al., 2016). Furthermore, math anxiety appears to be domain specific: When 

students simply anticipated doing math, those with high math anxiety exhibited greater activity 

in brain regions associated with threat detection, which was not present when they anticipated 

doing a reading activity (Lyons & Beilock, 2012).  
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Spatial anxiety as a psychological construct captures feelings of annoyance, confusion, 

and frustration when faced with spatial tasks. Spatial anxiety and spatial ability are negatively 

correlated (Malanchini et al., 2017). Furthermore, spatial anxiety, like spatial ability, appears to 

be composed of sub-components. One study of twins identified two components of spatial 

anxiety: navigation and rotation/visualization (Malanchini et al., 2017) or large versus small 

scale (Hegarty et al., 2018). Other studies have linked spatial anxiety to spatial orientation skills, 

specifically, a decrease in the efficiency of orientation strategies and an increase in errors on 

navigation tasks (Hund & Minarik, 2006; Lawton, 1994). However, we know little about the 

relationship between spatial anxiety on math performance. 

Research Questions 

There is emerging evidence for connections between the broad constructs of spatial 

ability, spatial anxiety, and math performance, overall, but little is known about how spatial 

anxiety relates to math performance, or the associations for their various subcomponents. Thus, 

our three main research questions are: What is the relationship between spatial ability and overall 

performance on math tests? (RQ1); What are the relationships between spatial ability sub-

categories and performance on math performance sub-categories? (RQ2); What are the 

relationships between spatial anxiety, spatial ability, and performance on math tests? (RQ3). 

Methods and Data Sources 

We recruited 153 participants (18 years of age and above) through Amazon’s Mechanical 

Turk service. All participants completed spatial ability, spatial anxiety, and mathematics ability 

assessments and a demographics survey. For spatial ability, participants completed the Spatial 

Reasoning Instrument, which breaks down into three sub-categories: mental rotation, spatial 
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orientation, and spatial visualization (Ramful et al., 2016). The spatial anxiety measure was a 

combination of eight questions from the Spatial Anxiety Scale (Lawton, 1994) and five questions 

from the Child Spatial Anxiety Questionnaire (Ramirez et al., 2012) that were updated to fit the 

population. The mathematics ability measure was composed of a subset of 16 questions from the 

2012 PISA Mathematics Test, which consisted of four sub-categories of questions: quantity, 

uncertainty and data, space and shape, and change and relationships (Organization for Economic 

Co-operation and Development, Programme for International Student Assessment, 2014).  

All measures were completed online. In a previous pilot study, participants took an 

average of 26 minutes to complete the tasks. Based on this data, participants who completed the 

study in less than 25 minutes were excluded from the analyses. This restriction left a total of 101 

participants. See Table 2 for descriptive statistics. 

Table 2 

 

Demographic and Descriptive Statistics (N=101) 

Variables Mean (SD)  N (%) 

Age in years 34.05 (10.97)  

Sex, Female  62 (61%) 

Native Language, English  86 (85%) 

Ethnicity, White  63 (62%) 

Total SRI Score  18.34 (6.67)   

Mental Rotation (MR) Subscore  5.89 (2.73)  

Spatial Visualization (SV) Subscore  4.58 (2.60)  

Spatial Orientation (SO) Subscore  7.87 (2.22)  

Total PISA Score  8.99 (3.45)  

Quantity (Q) Subscore  2.35 (1.07)  

Uncertainty and Data (UD) Subscore  2.31(1.14)  

Space and Shape (SS) Subscore  2.37 (1.05)  

Change and Relationships (CR) Subscore  1.92 (1.09)  

Spatial Anxiety Score  23.44 (12.39)  
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Results 

Reliability for the spatial ability, mathematics, and spatial anxiety measures exceeded the 

0.7 threshold for the overall assessments and for each of the sub-scales, with the exception of the 

mathematics Quantity sub-scale, which had a Cronbach’s α = 0.69.  

For our analyses, we used Ordinary Least Squares (OLS) regression. In each model, we 

included participant sex and age as fixed effects because these variables have been shown to be 

significant predictors of spatial ability, spatial anxiety, and mathematics ability (Lawton,1994; 

Maeda & Yoon, 2013, Voyer, Voyer & Bryden, 1995).  

RQ1: Spatial and Math Ability 

A multiple linear regression was calculated to predict overall math ability scores based on 

overall spatial ability scores while controlling for age and sex (RQ1). Spatial ability scores 

significantly predicted overall math ability scores (t (97) =10.07, p < .001). Each one-point 

increase in spatial ability scores increased math ability scores by 0.38 points. This result 

indicates that spatial ability may have an important relationship with math ability and gives 

further weight to previous findings that spatial ability may be an essential factor for success in 

STEM fields (Davis, 2015; Uttal & Cohen, 2012).  

RQ2: Spatial and Math Ability Sub-categories 

To investigate the relationships between spatial and math ability sub-categories, we 

calculated five separate multiple linear regression equations to predict math ability scores based 

on each of the spatial ability sub-categories (mental rotation, spatial orientation, and spatial 

visualization) controlling for age and sex (RQ2). The first model predicted overall math ability 

by the three spatial ability sub-categories. The subsequent models predicted the four sub-
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categories of mathematics ability (quantity, uncertainty and data, space and shape, and change 

and relationships) by the three spatial ability sub-categories. Overall, at least one spatial ability 

sub-category significantly predicted the dependent variable. No sex effects were found in any 

model. 

Mental rotation was significantly predictive of scores for both uncertainty and data 

questions (UD; t (95) = 2.84, p = .005) and change and relationship questions (CR; t (95) = 2.50, 

p = .014) but not math ability overall. Spatial orientation was significantly predictive of scores 

for overall math ability (t (95) = 3.50, p = 0.001), quantity questions (Q; (t (95) = 3.94, p < .000), 

and uncertainty and data questions (UD; t (95) = 1.99, p = .049). Spatial visualization was 

significantly predictive of scores for both uncertainty and data questions (UD; t (95) = 2.18, p = 

.031) and space and shape questions (SS; t (95) = 3.10, p = .003).  

RQ3: Spatial Ability, Math Ability, and Spatial Anxiety 

The last set of analyses further examined the relationships between spatial ability, spatial 

anxiety, and math ability (RQ3). Results indicated that spatial anxiety significantly predicted 

spatial ability scores (t (97) = -8.18, p < .000). As expected, this relationship was negative, which 

is consistent with previous work on the association between spatial anxiety and performance (e.g., 

Malanchini et al., 2017).  

A second model indicated that spatial anxiety also significantly predicted math ability 

scores (t (97) = -0.13, p < .000). This result was interesting since the results of the pilot study did 

not indicate this relationship, and it has not been identified in any previous literature to our 

knowledge. The relationship between spatial anxiety and math ability is negative, as expected with 

anxiety relationships. Spatial anxiety may affect students’ spatial ability, which leads to lower 

math ability scores. Spatial anxiety scores may reflect math anxiety, which, though not measured 
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in this study, was not significantly correlated in the pilot study.  

To determine the more specific relationship between spatial ability, spatial anxiety, and 

math ability, the third model in these analyses included spatial ability scores, spatial anxiety scores, 

and the interaction between these scores. Here, spatial anxiety lost its predictive power for math 

ability once spatial ability was added to the model (t (95) = -1.26, p = .211). Spatial ability 

remained highly predictive of math performance (t (95) = 2.51, p = .0134). Additionally, the 

interaction between spatial ability and anxiety was not significant (t (95) = 1.40, p = .165). This 

result could mean that spatial anxiety does not directly affect math ability but may indirectly affect 

it through other factors. 

Educational and Scientific Importance 

This study indicated three important results. First, spatial ability and math ability are highly 

related. Second, specific spatial sub-categories could be more critical for success on different types 

of math tasks. Third, high spatial anxiety scores predict lower spatial and math ability scores. 

Taken together, these results reflect the complex nature of spatial and math ability. This 

research helps uncover the deeper relationships between math ability, spatial ability, and spatial 

anxiety. The strong correlation between spatial ability and math ability may reflect the highly 

spatial nature of mathematics. 

Additionally, the results illuminate the relationships between the different sub-categories 

of spatial and math ability that previous research has not identified. Each of the three spatial ability 

sub-categories (mental rotation, spatial orientation, and spatial visualization) had unique 

relationships with the four sub-categories of math ability. Spatial visualization was predictive of 

success on items involving space and shape, suggesting people visualize different views of an 

object without the need to rotate the object or orient relationships between objects. These differing 
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relationships are consistent with the idea that spatial ability is composed of a variety of factors 

(e.g., McGee, 1979). Subcomponents of spatial ability factors may be more critical to success on 

specific math ability tasks than overall spatial ability. Thus, it may be possible to design more 

specific spatial interventions to improve scores on particular math sub-categories. 

Spatial anxiety was negatively associated with both spatial ability and math ability. Spatial 

anxiety may have a general effect, such as reducing working memory capacity, as posited in 

Attentional Control Theory (Eysenck & Derakshan, 2011), which would limit resources devoted 

to mathematical problem-solving. Spatial anxiety may also disrupt specific mathematical skills. 

However, there are several limitations to this study that should be addressed in future 

research. First, this study only included adults, with a majority of participants identifying as 

white and native English speakers. Second, this study did not include measures of working 

memory, which may explain why spatial anxiety is negatively associated with both spatial ability 

and math ability. Additional studies will be needed to see if these relationships extend to other 

populations and to further the mechanisms behind the relationships between spatial anxiety and 

both spatial ability and math ability. Third, this study used a composite score for spatial anxiety 

that consisted of a modified scale designed for children. Though no measures of spatial anxiety 

designed for adults existed at the time this study was conducted, future studies will be needed to 

see if these new measures, which are more appropriate for adult populations, have an impact on 

the results discussed here. These new measures also break spatial anxiety into sub-factors. 

Further studies should investigate the possible associations between these spatial anxiety sub-

factors and both spatial ability and mathematics.  
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Study 2: Exploring Expanded Notions of Embodiment in Students’ Fraction Knowledge 

Traditional models of mathematical cognition are expanding beyond individually isolated 

rule-based processing of symbol systems. While the importance of social factors and contexts 

influences contemporary theories on mathematical thinking (e.g., Sfard, 2008), two emerging 

frameworks, embodiment and affect, also extend theories on mathematical cognition. Affective 

and embodied processes are not only contributing to the basic theory of human cognition, but 

they are also informing the design of evidence-based educational practices, including the design 

of curricular activities as well as principles for instruction and assessment. Thus, researchers and 

educators must understand the multifaceted nature of mathematical thinking, including the 

relationships between mathematical ability, spatial skills, and spatial anxiety. In the current 

study, we investigate the relationships between these factors in children with a focus on 

mathematical fraction operations. 

Theoretical Background 

Fraction Knowledge and Embodiment 

Previous studies on symbolic fraction proficiency have shown that fraction operations are 

one of the best predictors of later algebra performance (DeWolf et al., 2015; Siegler et al., 2012) 

and are necessary for advanced learning in STEM (National Mathematics Advisory Panel, 2008). 

However, studies have shown that children struggle with symbolic fraction skills during the 

critical period between elementary and early middle school (e.g., Fuchs et al., 2013; Hansen et 

al., 2017; Siegler & Pyke, 2013). Though research has identified several factors which may 

explain fraction task performance, including calculation fluency (Hansen et al., 2017), working 

memory (Fuchs et al., 2013), mathematics anxiety (Starling-Alves et al., 2021), and spatial-
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numerical associations (Toomarian et al., 2019), research studies on fractions typically focus on 

only one explanatory domain at a time. Moreover, while other lines of research have shown that 

spatial ability and spatial anxiety may contribute to mathematical thinking (Schenck & Nathan, 

2020), these studies do not focus specifically on fractions knowledge. Thus, little is known about 

the associations between factors such as number sense, memory, affective states, and spatial 

ability and their associations with symbolic fraction tasks. 

In the embodied cognition community, past research on symbolic fraction understanding 

has focused on understanding the relationships between fraction knowledge and gestures (e.g., 

Surahmi & Ekawati, 2018; Swart et al., 2014) and developing digital embodied interventions 

(e.g., Swart et al., 2016). In this current work, we extend the embodied lens by drawing on the 

Grounded and Embodied Learning Framework (GEL; Nathan, 2021; Figure 4), which draws on 

Newell (1994) to describe the interconnected nature of learning across timescales, including 

affective states, memory, spatial ability and number sense processes. 

Spatial Ability 

One facet of embodied cognition in mathematical thinking is spatial ability (Xie et al., 

2020). Spatial ability refers to the skills needed to generate and manipulate mental spatial 

objects, images, relationships, and transformations (Battista, 2007). Empirical evidence has 

demonstrated links between numbers and space that give rise to spatial-numerical associations 

(Dahaene et al., 1993; Hawes & Ansari, 2020) and an automatic shared processing and strategic 

recruitment of spatial processes (Mix et al., 2016). Furthermore, studies have shown that spatial 

ability is integrally linked to success in mathematics for children as young as three (Verdine et 

al., 2014) and that the development of spatial skills among elementary-aged children strongly 

predicts later mathematical capabilities (Casey et al., 2015). 
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Spatial ability is often thought to consist of a variety of sub-skills identified through 

factor analytic methods in the early twentieth century (e.g., Carroll, 1993), although there is little 

consensus in the literature about the exact combination of critical sub-skills (Yilmaz, 2009). 

Nonetheless, a framework proposed by Ramful and colleagues (2017) was developed based on 

skills needed for success in middle grades mathematic classrooms that consists of three sub-

skills: mental rotation, spatial orientation, and spatial visualization and has been used in prior 

research seeking to uncover the specific relationships between spatial skills and mathematics 

(Schenck & Nathan, 2020). 

Anxiety 

Domain-specific anxieties such as math and spatial anxiety are distinct from general 

anxiety (Lauer et al., 2018). Prior studies on math anxiety have shown a negative association 

between math anxiety and math achievement (Ramirez et al., 2013) and that this association may 

be moderated by working memory (Ashcraft & Krause, 2007). While math anxiety has a well-

established correlation with adolescents’ math performance (Ma, 1999), spatial anxiety, 

especially in children, is relatively underexplored. Studies conducted on adults showed that 

spatial anxiety is negatively correlated with spatial ability, with women reporting greater spatial 

anxiety (Lyons et al., 2018). Similar results were found in the few studies in children (Lauer et 

al., 2018; Ramirez et al., 2012). More recent studies have shown a negative correlation between 

spatial anxiety and mathematics performance in adults (Schenck & Nathan, 2020), despite the 

fact that spatial anxiety lost its’ significance when controlling for spatial ability, and they found 

no significant interaction between spatial anxiety and spatial ability. Additionally, factor 

analyses have indicated that spatial anxiety, like spatial ability, is a multifaced construct in adults 

even though the research community does not agree on the number and nature of sub-factors. 
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While work by Lyons and colleagues’ (2018) indicated that spatial anxiety may consist of three 

factors (i.e., mental manipulation, navigation, and imagery), other scholars like Malachini and 

colleagues (2017) have shown that spatial anxiety induced by large-scale navigation tasks can be 

dissociated from small-scale spatial visualization tasks. 

Current Study 

The current study extends Schenck and Nathan’s (2020) work uncovering the relationships 

between spatial ability, anxiety, and mathematical thinking by focusing on children’s 

performance, including measures of working memory, and expanding embodied notions of 

fractions knowledge. The central research questions are: What are the relationships between 

spatial anxiety, spatial ability, and performance on fraction assessments (RQ1); how are 

mathematical learning and thinking about fractions rooted in body-based processes such as 

anxiety and spatial ability? (RQ2) 

Methods 

The dataset includes middle-grade students (N = 89) recruited from multiple school 

districts in a Midwestern city in the United States, including a mix of urban and suburban 

districts of varying demographics. The data was collected as part of a larger longitudinal study 

on children's fraction knowledge development and comes from the Year 4 cohort of the study. It 

should be noted that this year of data collection coincided with the 2020 Covid-19 pandemic, 

which delayed data collection. Consequently, 52% of participants completed at least one session 

virtually rather than in person, and there was more than a six-month gap between second and 

first sessions for eight participants. Inclusion criteria for this study were fluent English 
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production and comprehension and completion of all covariate measures of interest. Participants 

received $10 per hour of participation and a small toy for each study visit as compensation.  

Procedure 

 Participants completed assessments in two one-hour lab visits occurring on separate 

days, either in-person or virtually. On the first visit, they completed a set of standardized 

measures, including the Woodcock-Johnson Tests of Abilities, 3rd edition (WJ-III) subtests 

(Schrank et al., 2001). On the second visit, they completed the rest of the assessments (see Table 

3 for demographic information). 

Table 3 

 

Demographic Statistics (N=89) 

Variables Mean (SD)  N (%) 

Age in years at Session 1 12.02 (1.52)  

Age in years at Session 2 12.27 (1.57)  

Sex, Male  50(56%) 

Sex, Female  34(38%) 

Sex, Other  5 (6%) 

 

Measures 

 Participants were given the Fraction Knowledge Assessment (FKA) to measure fraction 

knowledge, the dependent variable. The FKA is a pencil-and-paper assessment that measures 

both conceptual and procedural aspects of fraction knowledge. This instrument was constructed 

using items from national and international assessments, including the National Assessment of 

Educational Progress and the Trends in International Mathematics and Science Study, and from 

instruments developed by researchers such as Hallett and colleagues (2012). Separate FKA's 
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were developed for each grade (5th, 6th, and 8th grades for this study) with grade-appropriate 

items and contained 41 items. 

Embodied Covariates. Various measurements were included to explore the relationships 

between fraction knowledge and embodiment. First, we measured working memory, math 

anxiety, and spatial anxiety. Working memory was measured using the auditory working 

memory subtest from WJ-III (Schrank et al., 2001), which is associated with verbal working 

memory and short-term memory. Math anxiety was measured using the Suinn Mathematics 

Anxiety Rating Scale, Elementary Form (Suinn et al., 1988). Spatial anxiety was measured using 

the Child Spatial Anxiety Questionnaire (Ramirez et al., 2012), which correlates with small-scale 

spatial anxiety, and the Santa Barbara Sense of Direction Scale (Hegarty et al., 2002), which 

correlates with large-scale spatial anxiety. These scales were used separately and as a composite 

score in the analyses. We chose to separate these measures into two factors (large- and small-

scale) based on Malanchini and colleagues' (2017) work rather than Lyons and colleagues' 

(2018) three-factor framework because there is not yet an appropriate three-factor measure that 

has been developed for this age group.  

Next, we measured number sense and spatial ability. Number sense was measured using 

two WJ-III subtests: mathematics fluency and calculation (Schrank et al., 2001). Mathematics 

fluency is a timed test and involves simple written arithmetic problems, while calculation is 

untimed and involves more complicated calculations such as fraction operations. Due to overall 

time constraints of the larger longitudinal study, spatial ability was measured using a truncated 

spatial reasoning assessment based on the Spatial Reasoning Instrument (SRI; Ramful et al., 

2017) consisting of 15-items, split into three subcategories (mental rotation, spatial orientation, 

and spatial visualization) of 5-items each. Internal reliability for this truncated measure was 
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calculated using all participants from this study who had completed this measure (N = 166) and 

Cronbach's alphas for the overall composite score (α = .75) and the three sub-categories (mental 

rotation, spatial orientation, and spatial visualization) were .70, .72, and .68, respectively. 

Results 

RQ1: Spatial Anxiety, Spatial Ability, and Fraction Assessments 

To address the first research question about spatial anxiety, we used Ordinary Least 

Squares regression. Multiple linear regressions were calculated to predict fraction assessment 

scores while controlling for sex, age at session 2, and working memory by: 1) spatial ability as a 

composite score and with sub-categories; 2) spatial anxiety as a composite score and with sub-

categories, and 3) spatial ability and spatial anxiety composite scores with an interaction term 

between these constructs. 

Fraction Knowledge and Spatial Ability. To investigate the relationship between 

fraction knowledge scores and spatial ability, we calculated two multiple linear regression 

equations to predict fraction knowledge scores based on the spatial ability scores while 

controlling for age at session 2, sex, and working memory. The first model predicted fraction 

knowledge by the spatial ability composite score. The second model predicted fraction 

knowledge by three spatial ability sub-categories (mental rotation, spatial orientation, and spatial 

visualization).  

In model 1, spatial ability composite score was significantly predictive of fraction 

knowledge (β = 0.85, p < .001). In model 2, mental rotation scores (β = 2.30, p < .001) and 

spatial visualization scores (β = 1.98, p = .004) were significantly predictive of fraction 

knowledge. Neither age, sex, nor working memory was significant in either model. 
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Fraction Knowledge and Spatial Anxiety. To investigate spatial anxiety, we calculated 

two multiple linear regression equations to predict fraction knowledge scores based on spatial 

anxiety scores while controlling for age at session 2, sex, and working memory. Like the models 

for spatial ability, the first model predicted fraction knowledge by the spatial anxiety composite 

score, and the second model predicted fraction knowledge by two spatial anxiety sub-categories 

(small-scale and large-scale).  

In model 1, spatial anxiety composite score was not significantly associated with fraction 

knowledge (β = 0.06, p = .673). However, working memory was significantly associated with a 

0.31-point increase in fraction knowledge scores for each one-point increase in working memory 

score (p = .025). Similarly, in model 2, neither small- nor large-scale spatial anxiety scores were 

significantly associated with fraction knowledge (β = -0.48, p = .004; β = 0.31, p = .004, 

respectively), but working memory was significantly associated with a 0.35-point increase in 

fraction knowledge scores for each one-point increase in working memory score (p = .012). 

Neither age nor sex was significant in either model. 

Fraction Knowledge, Spatial Ability, and Spatial Anxiety. To determine the more 

specific relationship between spatial ability, spatial anxiety, and fraction knowledge, we 

calculated a multiple regression equation to predict fraction knowledge by spatial ability 

composite scores, spatial anxiety composite scores, and the interaction between these scores. In 

this model, spatial ability lost its predictive power for fraction knowledge (β = -1.12, p = .211) 

and was replaced by spatial anxiety (β = -0.65, p = .043). Furthermore, there was a significant 

interaction between spatial ability composite scores and spatial anxiety composite scores (β = 

0.08, p = .009). Neither age, sex, nor working memory was significant in this model. 
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RQ2: Embodied Processes and Fraction Knowledge 

To address the second research question about how mathematical learning and thinking 

about fractions are rooted in body-based processes, we calculated Pearson's correlations to 

estimate the magnitude and direction of the relationship between each variable. Correlations 

among all variables are shown in Table 3.  

Table 3 

 

Pearson Correlations for Embodied Processes and Fraction Knowledge 

Variable FKA WM MA SA SA-S SA-L Math Calc SRI MR SO 

WM 0.22           

MA -0.25 -0.17          

SA -0.02 -0.12 0.59         

SA-S -0.11 -0.04 0.61 0.73        

LS-S -0.05 -0.16 0.41 0.92 0.42       

Math 0.53 0.25 -0.15 0.01 -0.14 0.10      

Calc 0.69 0.18 -0.25 -0.02 -0.13 0.06 0.70     

SRI 0.58 0.27 -0.23 -0.14 -0.20 -0.08 0.42 0.55    

MR 0.57 0.28 -0.27 -0.14 -0.15 -0.11 0.40 0.49 0.87   

SO 0.31 0.22 -0.08 -0.13 0.02 -0.15 0.17 0.35 0.72 0.51  

SV 0.50 0.18 -0.15 -0.07 -0.26 0.04 0.44 0.54 0.82 0.55 0.41 

Note. N = 89. FKA = fraction knowledge score; WM = working memory score; MA = math 

anxiety score; SA = spatial anxiety score; SA-S = Small-scale spatial anxiety sub-category; SA-L 

= Large-scale spatial anxiety sub-category; Math = Math fluency score; Calc = Calculation 

score; SRI = Spatial ability score; MR = Mental Rotation sub-category; SO = Spatial orientation 

sub-category; SV = spatial visualization sub-category. Two-tailed significance levels are 

presented. Bolded items are significant at p < 0.05.  

 

Working Memory and Anxieties. The first measures of interest focused on working 

memory and mathematic and spatial anxieties. Results indicated that fraction knowledge and 

working memory were positively associated (r(89) = 0.22, p = .040), while fraction knowledge 

and math anxiety were negatively associated (r(89) = -0.25, p = .019). There were no significant 

correlations between fraction knowledge and spatial anxiety as a composite score (r(89) = -0.02, 
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p = .884) or either small-scale or large-scale sub-categories (r(89) = -0.11, p = .293, and r(89) = -

0.05, p = .642, respectively). Within this timescale, math anxiety and spatial anxiety as a 

composite score and both small- and large-scale spatial anxiety were significantly associated 

(r(89) = 0.59, p < .000, r(89) = 0.61, p < .001, and r(89) = 0.41, p < .001, respectively). 

Number Sense and Spatial Ability. The second measures of interest, consisted of two 

number sense scales, math fluency and calculation, and spatial ability. Fraction knowledge was 

significantly positively associated with both number sense (math fluency and calculation) scores 

(r(89) = 0.53, p < .001, and r(89) = 0.69, p < .001, respectively) and the spatial ability composite 

score (r(89) = 0.58, p < .001). Furthermore, there were significant positive correlations between 

all three spatial ability sub-categories (mental rotation, spatial orientation, and spatial 

visualization) and fraction knowledge (r(89) = 0.57, p < .001, r(89) = 0.31, p = .003, and r(89) = 

0.50, p < .001, respectively). 

Within this timescale, math fluency scores were significantly positively associated with 

calculation scores (r(89) = 0.70, p < .001), the spatial ability composite score (r(89) = 0.42, p < 

.001), and mental rotation and spatial visualization sub-categories (r(89) = 0.40, p < .001, and 

r(89) = 0.44, p < .001, respectively). Calculation scores were also significantly positively 

associated with the spatial ability composite score (r(89) = 0.55, p < .001), and all three spatial 

ability sub-categories (mental rotation, spatial orientation, and spatial visualization) scores (r(89) 

= 0.49, p < .001, r(89) = 0.35, p = .001, and r(89) = 0.54, p < .001, respectively). 

Between the Measures. There were also significant associations between the two groups 

of measures. The two number sense measures were significantly associated with different 

working memory and anxiety measures. Math fluency was associated with working memory 
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(r(89) = 0.25, p = .021), while calculation scores were associated with math anxiety (r(89) = -

0.25, p = .020). The spatial ability composite scores and sub-categories were also associated with 

differing combinations of working memory and anxiety measures. Spatial ability composite and 

mental rotation scores were associated with working memory (r(89) = 0.27, p = .011, and r(89) = 

0.28, p = .009, respectively) and math anxiety (r(89) = -0.23, p = .031, and r(89) = -0.27, p = 

.010, respectively). Spatial orientation was only associated with working memory (r(89) = 0.22, 

p = .043), while the spatial visualization scores were associated with small-scale spatial anxiety 

(r(89) = -0.26, p = .014).) and math anxiety (r(89) = -0.23, p = .031, and r(89) = -0.27, p = .010, 

respectively). Spatial orientation was only associated with working memory (r(89) = 0.22, p = 

.043), while the spatial visualization scores were associated with small-scale spatial anxiety 

(r(89) = -0.26, p = .014). 

Discussion 

This study provides evidence of a positive relationship between spatial ability and 

symbolic fraction knowledge and that spatial anxiety's relationship with fraction knowledge may 

be moderated by spatial ability (RQ1). Consistent with findings in other domains of mathematics 

in adults (e.g., Schenck & Nathan, 2020), fraction knowledge was significantly associated with 

overall spatial ability. This study also identified two specific factors of spatial ability, spatial 

visualization and mental rotation, associated with fraction knowledge.  

The connection between symbolic fraction knowledge could be explained as students 

accessing previously learned mental representations, such as a mental number line to compare 

fractional quantities or constructing mental diagrams such as area models or other conceptual 

models to visualize computations such as addition and multiplication. Though more studies will 

be needed to assess whether this spatial visualization and fraction knowledge connection is 
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indicative of these nonsymbolic problem-solving strategies, it could provide evidence for how 

children ground symbolic fractions in a nonsymbolic number sense system such as a ratio 

processing system (Park & Matthews, 2021). The connection between symbolic fractions and 

mental rotation is less intuitive. Though mental rotation is one of the most studied spatial 

abilities, the limited evidence connecting it to mathematics in general and specific domains. 

While some studies have shown mental rotation is predictive of mental arithmetic which may 

explain the connection found in this study (e.g., Kyttälä & Lehto, 2008), further studies will be 

needed to explore the association found in this study.  

Further studies may also be needed to address two limitations of the spatial ability 

measure used in this study. First, the spatial ability measure was a truncated version of a 

validated instrument. Though metrics indicated that this version was sufficiently reliable for this 

study, employing the full version in subsequent work may reveal different or more valid 

associations. Second, the truncated SRI spatial ability measure assumed a specific sub-factor 

framework of spatial ability. Since there is little agreement on which sub-factors are important 

for mathematics, let alone whether existing spatial instruments truly measure intended spatial 

ability sub-skills accurately (Burte et al., 2019a), additional studies may be needed to fully 

explore the results of this study. 

Neither the spatial anxiety composite score nor either of the sub-scores was significantly 

associated with fraction knowledge in this study. However, when spatial ability was added to the 

model with spatial anxiety, the interaction and spatial anxiety composite scores were 

significantly negatively associated with fraction knowledge. These results contradict previous 

studies on spatial anxiety and mathematics that showed a negative association between spatial 
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anxiety and various mathematics domains with an insignificant interaction between spatial 

ability and spatial anxiety in adults (Schenck & Nathan, 2020).  

This contradiction could have several explanations. First, spatial anxiety may moderate 

the relationship between spatial ability and fraction knowledge. The relationship may be specific 

to symbolic fraction knowledge with spatial anxiety interfering with the spatial ability processes 

such as visualizing the mental representations described earlier. Second, the relationship between 

spatial anxiety and spatial ability may not be specific to fraction knowledge but rather change 

with development. As students age, they may develop mechanisms to cope with the impacts of 

spatial anxiety, or the effects of other domain-specific anxieties, such as math anxiety or testing 

anxiety, may become more predictive of mathematic performance. Additionally, some studies 

have suggested that domain-specific anxieties, such as math and spatial anxieties, may not be 

differentiable from other forms of anxiety in children (Hill et al., 2016; but see Lauer et al., 

2018). It could be that the spatial anxiety results seen in this study are indicative of another type 

of anxiety that was not measured or controlled for in either study. Third, these results could be 

explained through the development of fraction knowledge specifically. Success on symbolic 

fraction tasks, in particular, may require a composite of both procedural and conceptual 

knowledge and bifurcate in terms of the types of experiences that students acquire throughout 

development. These experiences may provide students with the skill that delays spatial anxieties' 

impacts from the initial lack of knowing how to manipulate the formalisms of fractions 

representations. Fourth, the significant relationship between spatial anxiety and mathematics in 

adults in Schenck and Nathan's (2020) study may result from the lack of a working memory 

variable. Domain-specific anxieties have been linked to lower performance in complex tasks 

such as mathematics by creating worries that interfere with working memory (Engle, 2002). It is 
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possible that the spatial anxiety measure associations found in Schenck and Nathan (2020) may 

change if working memory had been measured and controlled for in their analyses. Additional 

studies will be needed to test these explanations.  

This study also illuminated how embodied processes are correlated with learning and 

thinking about symbolic fractions (RQ2). Working memory and mathematica anxieties had 

significant relationships with fraction. Additionally, math anxiety and spatial anxiety were also 

significantly correlated. These findings support both previous work on symbolic fractions 

suggesting these are factors of interest in this domain.  

Calculation, math fluency, and spatial ability were all significantly correlated with 

fraction knowledge, which supports prior work on symbolic fractions. Additionally, mental 

rotation and spatial visualization spatial ability sub-skills were also strongly correlated with 

fraction knowledge, similar to the results found in the previous analysis of this study. However, 

unlike the previous models, there was also a medium correlation between spatial orientation sub-

skills and fraction knowledge. This relationship could indicate that spatial orientation skills are 

associated with fraction knowledge, but other sub-skills have more powerful associations. 

Furthermore, differing correlations between each measure of number sense and the various 

spatial sub-skills. These correlations may benefit future studies attempting to explore these areas 

more deeply and may indicate additional variables of interest to researchers. 

Overall, this study supports several previous findings on both fraction knowledge and 

mathematics learning more generally. It also highlights several novel associations. Spatial ability 

skills, such as spatial visualization and mental rotation, may be specifically relevant for symbolic 

fraction knowledge learning, and spatial anxiety may moderate that relationship. This study also 

solidifies the connection between fraction knowledge and embodiment by demonstrating how 
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fraction knowledge is rooted in multiple body-based systems. Though this work is correlational 

and exploratory, these findings may provide the foundations for future work exploring the 

mechanisms behind these associations.  
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Chapter 3: Investigating the Role of Spatial Anxiety in Embodied Geometric Reasoning 

 

 

 

 

 

 

 

 

 

 

 

 

 

Portions of this chapter have been published and are reproduced with permission from: 

Schenck, K. E., & Nathan, M. J. (2022, November). Spatial anxiety moderates the effect of 

spatial ability in geometric reasoning. In A. E. Lischka, E. B. Dyer, R.S. Jones, J. N. Lovett, J. 

Strayer, & S. Drown (Eds.), Proceedings of the forty-fourth annual meeting of the North 

American Chapter of the International Group for the Psychology of Mathematics Education (pp. 

598). Nashville, TN, United States. 
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Embodied processes such as spatial reasoning and gesture production are associated with 

success on verbal geometric tasks such as proof (e.g., Nathan et al., 2021; Pier et al., 2019). 

Geometric reasoning often engages spatial reasoning processes for mentally visualizing and 

transforming geometric objects (e.g., skewing a quadrilateral). Gestures and speech are integral 

to communicating those transformations for assessments and applications (incl. Alibali & 

Nathan, 2012). The role of gestures during mathematical reasoning goes well beyond a 

supporting role in describing geometric transformations and has been shown to play a 

fundamental role in the reasoning process (e.g., Hostetter & Alibali, 2008/2019; Kita et al., 

2017). However, far less is known about the impact of spatial anxiety on specific domains of 

mathematics or the possible interactions between spatial anxiety and spatial ability. 

Although previous studies have identified associations between certain domains of 

mathematics and spatial anxiety (Schenck, Hubbard, et al., 2022; Schenck & Nathan, 2020), 

there are remaining questions about the exact nature of these associations since neither of these 

studies focused on a highly spatial domain of mathematics such as geometry nor did they include 

spatial activities designed to elicit gestures. Thus, the possibility that task demands may explain 

the connections between spatial anxiety, spatial ability, gesture, and geometric reasoning must be 

explored.  

The central objectives of this paper are, first, to offer an expanded theoretical view of 

embodied mathematical activity that includes both cognitive and affective processes, and second, 

to investigate the role of a cognitive and affective spatial system in embodied geometric 

thinking. Specifically, we examine the role that the cognitive processes of spatial ability and the 

affective process of spatial anxiety plays in predicting the quality of participants’ geometric 

reasoning and their occurrences of gesture. The main objective is to identify associations 
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between affective spatial processes and geometric thinking to improve our empirical 

understanding of the embodied and spatial nature of mathematical reasoning to advance our 

understanding of the role of affective spatial processes. A deeper understanding of the spatial 

nature of mathematics and the influence of its associations with other cognitive processes are 

crucial for developing effective, evidence-based approaches to mathematics education that 

inform pedagogy, teacher professional development, and the design of curricular activities and 

interventions.  

Theoretical Background 

Some scholars suggest that reasoning is achieved by using bodily experiences as a grounding 

mechanism to imagine or simulate perceptions or actions, which can be re-used through mental 

simulation to make connections between this online multimodal sensorimotor experience and an 

offline, amodal system of conceptual knowledge (Barsalou, 2008). Scholars have also posited a 

reliable, causal, bidirectional relationship between body and cognitive states (Nathan, 2014; 

Shapiro, 2019). Theories of grounded and embodied cognition (GEC) connect reasoning to body-

based processes like physical and simulated action (Beilock & Goldin-Meadow, 2010; Hostetter 

& Alibali, 2008/2019), often through gesture (Alibali & Nathan, 2012).  

Grounded and Embodied Mathematical Cognition 

GEC acknowledges that bodily experiences are critically important for meaning-making 

of concrete and abstract concepts. Hostetter and Alibali’s (2008/2019) theory of Gestures as 

Simulated Action posits that gestures arise when perceptions push pre-motor activity beyond 

motor-planning threshold and are expressed as motoric activity that simulates the performance of 

an action. This threshold can vary by individual depending on current task demand, individual 

differences, and situational considerations.  
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Several studies have shown that mathematical ideas are inherently embodied and can be 

expressed through actions such as gestures. It is thought that the complex motor movements of 

gesture allow learners to represent dynamic, spatial-relational information (McNeill, 2005) and 

augment reasoning and problem-solving by connecting sensorimotor experiences with mental 

representations (Nathan, 2014; Wilson, 2002). For example, Abrahamson and Bakker (2016) 

explored how hand and arm movements demonstrating proportionality can served as a 

sensorimotor basis for multiplicative reasoning. Guided by the Mathematics Imagery Trainer for 

Proportion, Abrahamson and colleagues developed a digital environment in which students 

constructed new “attentional anchors” representing targeted mathematical concepts.  

Though much of the work on embodied mathematical cognition focuses on numbers and 

operations (e.g., Abrahamson & Bakker, 2016; Ottmar & Landy, 2017), an emerging body of 

work by Nathan and colleagues has explored GEC in verbal geometric proof processes. Forming 

proofs is a disciplinary practice that often combines content knowledge with psychological 

processes such as spatial imagery and logical deduction (Nathan, 2014). During proof 

generation, students tend to rely on authoritative means (Herbst & Brach, 2006), overgeneralize 

from specific examples (Knuth et al., 2009), or salient perceptual features (Jones, 2000). These 

methods align with the emphasis on proof as establishing certainty rather than developing 

inquiry in high school textbooks (de Villiers, 1998) which is a disconnect from how mathematics 

uses proof to construct mathematical knowledge. As such, students often struggle to generate 

generalized proofs (Healy & Hoyles, 2000) and fail to actively investigate the veracity of a 

statement beyond memorizing theorems to confirm assertions (Hanna, 2000). Thus, scholars 

have looked at expanding the traditional notion of proof as a product to less formalized proof 

schemes as a form of disciplinary discourse (Harel & Sowder, 1998; Knuth, 2002).  
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The theory of action-cognition transaction (ACT; Nathan, 2014) posits a relationship 

between the learner and the environment and between action and perception (in combination 

with language) as the mechanisms by which gestures can induce cognitive states and vice-versa. 

In research, Nathan and colleagues (2021) studied how mathematics experts and non-experts 

solve verbal geometric reasoning. Participants were asked to explain whether the geometric 

conjectures were true or false. Transcripts of student’s explanations (rationales) combined with 

video recordings of the gestures they made showed that representational gestures, specifically 

those that dynamically depicted transformations of geometric objects, were strongly associated 

with the production of correct intuition, mathematical insight, and transformational proof 

(Nathan et al., 2021). Between groups, experts outperformed non-experts across all performance 

measures and were more likely to produce representational gestures than non-experts who 

produced dynamic representational gestures, leading the authors to conclude that dynamic 

representational gesture may replace expertise. Additional studies working with high school 

students have shown that students performed better on geometric reasoning tasks when their 

verbal explanations were accompanied by dynamic representational gestures that were “replays” 

of actions they were previously directed to perform (Walkington et al., 2022). In effect, these 

gesture replays demonstrate that learners internalize embodied simulations of a geometric 

transformation that serve as a primary mechanism supporting geometric insights.  

 

Embodied Components of Spatial Systems 

Much of the research to understand geometric reasoning from an embodied lens has 

focused on the role of gestures (e.g., Nathan et al., 2021; Pier et al., 2019; Walkington et al., 

2022). From a cognitive perspective, much research has focused on the roles of spatial abilities 
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(e.g., Hannafin et al., 2008; Newcombe, 2013). Nonetheless, there may be an additional benefit 

to expanding research on geometric thinking to include affective and cognitive measurements of 

spatial abilities and spatial anxiety and how they are associated with both verbal mathematical 

reasoning and gesture production. 

Spatial Ability 

Spatial ability, the capacity to imagine, retain, and manipulate visuospatial information 

and relations, is crucial for success in science, technology, engineering, and mathematics 

(STEM) fields (Shea et al., 2001; Wolfgang et al., 2003). Deficiencies in spatial abilities can 

hinder progress in STEM disciplines (Harris et al., 2013; Wai et al., 2009), emphasizing the need 

for institutions to explicitly train students' spatial thinking skills. Evidence supports that spatial 

thinking training interventions can enhance STEM education performance and retention (Sorby, 

2009). Connections between spatial and mathematical task success have been demonstrated in 

children (Casey et al., 2015; Laski et al., 2013) and adults (Schenck & Nathan, 2020). Research 

on spatial ability and mathematical skills has shown positive associations (Atit et al., 2021; Xie 

et al., 2020). Spatial ability is essential for various domains of mathematics education (e.g., 

Battista et al., 2018; Case et al., 1996; Oostermeijer et al., 2014; Sorby et al., 2013; Tufte, 

2001).). Overall, these findings underscore the importance of spatial ability in mathematics 

education and suggest that fostering spatial thinking skills could enhance success in various 

mathematical domains. 

Anxiety  

Though some scholars argue that low anxiety levels can enhance neurocognitive 

performance, high anxiety levels may impair it. Trait anxieties, relatively stable cognitive and 

somatic anticipation responses to uncertain situations, can be domain-specific, such as math or 
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spatial anxiety. Math anxiety is a well-established predictor of poor math performance, even 

when controlling for other factors (Lukowski et al., 2019; Zhang et al., 2019). Similarly, spatial 

anxiety, an apprehension towards situations requiring spatial abilities, has been found to 

negatively correlate with spatial ability (Malanchini et al., 2017; Ramirez et al., 2012). However, 

spatial anxiety has not been as extensively studied as math anxiety. 

Spatial anxiety has been linked to lower performance on spatial tasks (Ramirez et al., 

2012), reduced sense of direction (Kremmyda et al., 2016; Lawton, 1994), higher math anxiety 

in adults (Ferguson et al., 2015), and a gender gap in spatial ability and anxiety scores (Lawton, 

1994; Maeda & Yoon, 2013; Malanchini et al., 2017; Voyer et al., 1995). Children with higher 

spatial anxiety levels exhibit reduced spatial skill gains (Gunderson et al., 2013). Moreover, 

spatial anxiety has been shown to be associated with mathematics performance in both children 

and adults (Schenck & Nathan, 2020; Schenck, Hubbard, et al., 2022). Existing assessments of 

spatial anxiety, such as Lawton's Spatial Anxiety Scale (SAS; 1994), the Child Spatial Anxiety 

Questionnaire (Ramirez et al., 2012), and a more recent measure developed by Lyons et al. 

(2018), contribute to a better understanding of spatial anxiety. However, these instruments have 

limitations, such as targeting specific age groups or focusing on particular aspects of spatial 

anxiety. 

Research Questions 

We investigate the links between spatial anxiety and geometric reasoning, which drives 

the following research questions: 1) What is the relationship between spatial anxiety and 

geometric reasoning as measured by performance on (a) verbal insight and (b) proof; and 2) 

What is the relationship between spatial anxiety and the occurrence of gestures during geometric 

reasoning? 
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Method 

Participants 

 

Undergraduate students (N = 94) were recruited from a large Midwestern university in 

the United States. The data represents a pre-intervention subset of a larger randomized 

experimental trial investigating students’ mathematical intuitions and geometric proofs (Swart et 

al., 2023). Inclusion criteria required fluent English production and comprehension and 

completion of all covariate measures of interest. Participants received a $20 gift card as 

compensation for completing both sessions of the study. Sixty-seven participants (71%) 

identified as female, while 27 (29%) identified as male. Most participants (81%) identified 

English as their native language. Responses to race/ethnicity questions were consolidated into 

three categories (White/Non-Hispanic, Asian, and Other) due to the high number of participants 

who self-identified as White/Non-Hispanic (63%) and Asian (26%). The “Other” category (12%) 

represents the remaining options. A full breakdown of the demographics is summarized in Table 

4. 

Table 4   

   

Demographics and descriptive statistics (N = 94) 

Variables Mean (SD) N (%) 

Average age  20.13 (1.34)  

Sex, Female  67 (71%) 

Ethnicity, White/Non-Hispanic  59 (63%) 

Ethnicity, Asian  24 (26%) 

Ethnicity, Other  11 (12%) 

Native English Speaker  76 (81%) 

Average spatial ability score  12.68 (2.07)  

Average spatial anxiety score  37.60 (14.98)  

Likelihood of correct insight (per trial)  421 (56%) 

Likelihood of correct proof (per trial)  175 (23%) 

Likelihood of representational gesture (per trial)  302 (40%) 

Likelihood of nondynamic gestures (per trial)  190 (25%) 

Likelihood of dynamic gesture (per trial)  112 (15%) 
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Materials 

Conjectures 

 Eight geometric conjectures that explored the general properties of two-dimensional 

objects were used in this study. These were selected from a variety of secondary mathematics 

textbooks and in consultation with a mathematics professor who directed the secondary 

mathematics teacher education program for their relevance to current high school education. Of 

the eight conjectures, three involved properties of parallelograms, three involved properties of 

triangles, and two involved properties of coordinate planes and angles. Five of the eight 

conjectures were true statements, and three were false. Table 5 includes the text for each 

conjecture, its veracity, and relevant mathematical insights.  
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Table 5 

 

Text, truth value, and mathematical concept for each of the eight conjectures 

Conjecture  Conjecture Text Truth Insight Examples 

AAA Given that you know the measure 

of all three angles of a triangle, 

there is only one unique triangle 

that can be formed with these 

three angle measurements.  

False Triangles can be scaled to produce 

similar triangles with proportional sides 

and equal angles.  

Diagonals The diagonals of a rectangle 

always have the same length. 

True A rectangle has two pairs of parallel 

sides, so the distance between two 

opposite sides much be equal even if it 

is at a diagonal. The diagonals of a 

rectangle form two congruent triangles, 

so they must be the same length. 

Doubled 

Rectangle 

If you double the length and the 

width of a rectangle, then the area 

is exactly doubled.  

False Doubling the length and height of a 

rectangle would increase the area by a 

factor of four.  

Opposite Sides 

and Angles 

In triangle ABC, if Angle A is 

larger than Angle B, then the side 

opposite Angle A is longer than 

the side opposite Angle B.  

True As the measure of the angle increases, 

the side opposite of the angle must also 

increase so that triangle is closed.  

Parallelogram The area of a parallelogram is the 

same as the area of a rectangle 

with the same lengths of base and 

height.  

True A rectangle is a type of parallelogram, 

so they have the same formula. A 

parallelogram can be made into a 

rectangle by tilting or pushing the sides, 

which does not change the area.  

Triangle 

Inequality 

The sum of the lengths of two 

sides of a triangle is always 

greater than the length of the third 

side.  

True If the sum of the two sides was equal to 

the third side, it would form a line. If 

the sum of the two sides was less than 

the third side, the triangle would not 

close. 

Vertical Angles The opposite angles of two lines 

that intersect each other are 

always the same.  

True The only instance opposite angles 

would not be the same would be if one 

of the lines were curved and not a line. 

Straight angles add up to 180 degrees, 

and two intersecting lines create four 

angles with adjacent angles that form 

straight angles.  

X-axis 

Reflection 

Reflecting any point over the x-

axis is the same as rotating the 

point 90 degrees clockwise about 

the origin.  

False Reflecting a point over the x-axis 

multiplies the y-coordinate by -1. 

Rotating a point 90 degrees clockwise 

multiplies the x-coordinate by -1 and 

then switches the x- and y- coordinate.  



77 

 

 

 

 

Measures 

 Though participants completed several covariate measures as part of the larger study, 

only two measures are of interest for this current study: spatial ability and spatial anxiety. We 

used a truncated version of the validated Spatial Reasoning Instrument (Ramful et al., 2017) to 

assess spatial ability. The truncated version was composed of five multiple-choice items for each 

of the three specific spatial ability subcomponents: mental rotation, non-rotational spatial 

visualization, and spatial orientation. Each correct answer received one point, and points were 

summed for a total composite score out of 15 possible points. Internal reliability for this 

truncated measure was calculated using all participants from the larger study who had completed 

this measure (N = 151). Though the overall reliability of this measure was acceptable (α = .69), 

truncating the battery created reliability issues for the individual subcomponents. Thus, we will 

only be using the composite score for this measure.  

Spatial anxiety was measured using the Novel Spatial Anxiety Scale (Lyons et al., 2018). 

This measure consists of 24 5-item Likert scale questions, which break into three subcategories 

(mental-manipulation, navigation, and imagery) of eight questions each. Point values for answers 

to each question ranged from 0 (“Not at all”) to 4 (“Very Much”). No questions required reverse 

scoring. Points were summed for a total composite score as well as three sub-scores. Internal 

reliability was calculated using all participants from the larger study who had completed the 

measure (N = 151). The Cronbach’s alpha for the overall composite score was .91, and 

Cronbach’s alphas for the subcategories of mental manipulation, navigation, and imagery were 

.87, .91, and .86, respectively. Only the spatial anxiety composite score is used in these analyses. 
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Coding 

For each conjecture, the researcher asked participants to provide a reason why they believed the 

conjecture was true or false. Videos of the pre-intervention experimental section were organized, 

and participants’ verbal responses were transcribed verbatim using the Transana software system 

(Woods & Fassnacht, 2020). Timestamps were added to segment the full transcripts into each of 

the eight conjectures for coding. Segmentation resulted in 752 video clips to be coded (94 

participants x 8 conjectures). Two research team members coded each transcript using the coding 

scheme described below.  

Coding Scheme 

Typed transcripts and videos were coded for three categories based on the coding scheme 

developed by Nathan and colleagues (2021): verbal insight, valid transformational proof, and 

gesture. Verbal insight was coded (1/0) for the presence of key mathematical ideas for each 

conjecture, as specified by our team of mathematicians and math educators (examples are shown 

in Table 2). Transformational proof, a type of deductive proof, was coded (1/0) if the verbalized 

proof (including speech and gesture) met all three criteria set forth by Harel & Sowder, 2005: (1) 

a logical sequence of reasoning, with conclusions drawn from valid premises; (2) generalizable 

reasoning, showing the argument holds for an entire class of mathematical objects relevant to the 

conjecture; (3) operational thinking, with evidence of thought progression through a goal 

structure, anticipating the outcomes of one’s mental operations. Any combination of insights that 

did not meet all three criteria was coded as a 0.  

For gesture, three separate codes were used. The first code identified the occurrence of a 

representational gesture (i.e., a hand or arm movement that represents or depicts some feature or 

operation of a mathematical object or idea, per Alibali & Nathan, 2012). The next two codes 
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subdivided representation gestures exclusively into nondynamic depictive or dynamic depictive 

gestures. Nondynamic depictive gestures are representational gestures that only represent 

mathematical entities (including acts such as tracing or pointing) but do not involve 

transformations that alter the geometric objects under investigation. Dynamic depictive gestures 

are representational gestures but also demonstrate some type of geometric transformation, such 

as rotating, dilating, or skewing an object. Investigators (e.g., Garcia & Infante, 2012; 

Newcombe & Shipley, 2015) have documented the role of dynamic depictive gestures in 

students’ exploration of generalizable mathematical and physical properties of objects, such as 

invariance of the sum of interior angles of a triangle when skewed or dilated (Pier et al., 2013; 

Williams-Pierce et al., 2017). Any occurrence of at least one of these types of gestures would 

lead to assigning a 1 for that respective gesture code. Participant transcripts that did not include 

any gesture or included non-representational gestures (e.g., beat gestures) were coded 0.  

Inter-rater Reliability 

 To establish inter-rater reliability, a researcher not involved in the initial coding process 

coded a random selection of 20% of the participants’ videos. Overall inter-rater reliability for 

these codes is 𝜅 = 0.89. Table 5 shows inter-rater reliability for verbal insight, transformational 

proof, and gestures.  

 Shaffer’s rhob was also calculated for each code to assess the validity of the inter-rater 

reliability using a kappa threshold of 0.65.  (Eagan et al., 2017). Results for each inter-rater 

reliability measure can be found in Table 6. Overall, Shaffer’s rho statistics for each code were 

 

b The software for calculating rho can be accessed at this link: https://app.calcrho.org/. 
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less than 0.05, indicating that the sample size used for inter-rater reliability was sufficient to 

estimate inter-rater reliability at a threshold of at least 0.65.  

Table 6  

    

Inter-rater Reliability for Participant Transcript Coding 

Code 
Cohen’s 

kappa 

Shaffer’s 

 rho 

Omnibus 0.89 0.00 

Verbal Insight 0.84 0.00 

Transformational Proof 0.86 0.00 

Representational Gesture 0.90 0.00 

Non-Dynamic Gesture 0.93 0.00 

Dynamic Gesture 0.90 0.00 

Note. Shaffer’s rho was calculated with a kappa threshold of 0.65.  

 

Procedure 

In the first session, participants completed a series of demographic and covariate measures online 

via Qualtrics. In the second session, participants played an embodied videogame, The Hidden 

Village (THV; Nathan & Walkington, 2017; Nathan & Swart, 2021). In the game narrative, 

players are informed that they have crashed landed on an alien planet and need help from various 

villagers to retrieve energy strings to refuel the ship and return home. Each villager asks the 

participant to help them complete an activity in exchange for an energy string and to reveal an 

additional part of the village map (Figure 4A). During each game activity, participants were 

prompted to perform a set of relevant directed actions (Figure 4B). The game tracks player 

movements in real time and determines when an action sequence has been adequately performed. 

Each action sequence had to be successfully performed three times to advance in the game. For 

the next step, each player was presented with one of the eight geometry conjectures, with 

conjecture order determined by a Latin square design to avoid ordering effects on later 

performance (Figure 4C). The player was then prompted to give an immediate verbal response to 
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a geometry conjecture’s veracity (True or False) as a measure of their mathematical intuition. 

Players were not informed of any association between the actions they were prompted to perform 

and the current conjecture. They were then prompted to explain their response (Figure 4D). 

These verbal responses and accompanying gestures were recorded throughout game play. A 

player then had the conjecture shown again and asked to select the best choice among one of four 

multiple-choice options that presented a truth value for the conjecture and a justification for 

selecting that truth option (Figure 4E). The game then concluded their encounter with that 

particular village member (Figure 4F). This cycle was repeated for each of the eight different 

conjectures. It should be noted that this data collection period coincided with the 2020 Covid-19 

pandemic; consequently, all participants completed questionnaires, surveys, and game play 

virtually through Zoom facilitated by a research team member (Figure 4G). The gameplay was 

video- and audio-recorded through Zoom.  
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Note. This figure depicts the cycle for each conjecture in The Hidden Village. Participants are 

introduced to alien villagers that ask for help with a task (A), complete a set of direct actions, (B) 

and then answer a geometric conjecture (C - E). They are then rewarded with a piece of the map 

and an energy string to refuel their ship (F). Due to the COVID-19 pandemic, participation took 

place on Zoom, facilitated by a research team member (G).  

 

Results 

A correlation matrix of key variables can be found in Table 7. For our analyses, we used 

logistic regression for binary outcomes (0/1) on the occurrences of verbal insight, 

transformational proof, representational gesture, non-dynamic gesture, and dynamic gesture. 

Figure 4 

Conjecture cycle in The Hidden Village 
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Logistic mixed models for insight, transformational proof, and the gesture codes were fit using 

the glmer command in the R software package lme4 (Bates et al., 2015). We included participant 

ID and conjecture as random effects. Participant sex and spatial ability scores were included as 

fixed effects because these variables have been shown to be significant predictors of spatial 

anxiety and mathematics ability (Lawton, 1994; Maeda & Yoon, 2013; Nathan et al., 2021; 

Schenck & Nathan, 2020; Voyer et al., 1995). Spatial ability and spatial anxiety scores were 

centered and scaled. We also added an interaction term between spatial ability and spatial 

anxiety to test for the potential moderator relationship reported elsewhere (Schenck, Hubbard, et 

al., 2022; Schenck & Nathan, 2022). Plots for each of the models that include the interaction 

term can be found in Appendix A.  

Table 7 

 

Correlations for Key Factors 

Variables 1 2 3 4 5 6 7 8 

1. Age         

2. Sexa .078        

3. Spatial Ability Score .216 -.200       

4. Spatial Anxiety Score .050 .060 -.124      

5. Verbal Insight -.001 -.214 .156 -.001     

6. Transformational Proof -.067 -.123 .115 -.061 .425    

7.  Representational Gestures -0.98 -.032 .007 .000 .131 .101   

8.  Non-Dynamic Gestures -.074 -.030 -.051 .024 .084 -.241 .710  

9. Dynamic Gestures -.045 -.007 .072 -.030 .077 .433 .511 -.243 

Note. Bolded correlations are significant at p < .010.  
aFemale is the reference category.  

 

Odds ratios (OR) rather than effect sizes are reported here as our dependent variables are 

dichotomous. Odd ratios of 1.00 represent no change in the relative odds of the dependent 

variable. Odds ratios above 1.00 represent an increase in the relative odds of the outcome 

variable, while odds ratios below 1.00 represent a decrease. We interpreted odds ratios as 
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“small” (1.68 < OR < 3.47 or 0.29 < OR < 0.60), “medium” (3.47 < OR < 6.71 or 0.15 < OR < 

0.29), or “large” (OR > 6.71 or < 0.15). These interpretations correspond respectively to Cohen’s 

d = 0.2, 0.5, and 0.8 as “small,” “medium,” and “large” effect sizes (Chen et al., 2010).  

RQ1: Spatial Anxiety and Geometric Reasoning 

To examine the role of spatial anxiety on geometric reasoning, we fit separate mixed-

effect logistic regression models for the dependent variables of verbal insight and 

transformational proof. For verbal insight (Model 1, Table 8), gender (p < .001) and spatial 

ability (p = .006) were significantly associated with the production of correct verbal insight. 

Males were associated with an increase in the relative odds of producing correct verbal insight of 

3.25. Increased spatial ability scores were associated with an increase in the relative odds of 

producing correct verbal insight of 3.49. When the interaction between spatial ability and spatial 

anxiety was added to form Model 2 (Table 8), the interaction was significantly associated with a 

decrease in the relative odds of producing correct verbal insight (OR = 0.59, p = .045). Gender 

(OR = 3.03, p < .001) and spatial ability scores (OR = 3.25, p = .002) remained significantly 

associated with correct verbal insight. These results suggest that spatial anxiety may not be 

directly associated with verbal insight production but indicate a small moderating interaction 

between spatial ability scores and verbal insight. Though participants with higher spatial ability 

scores tend to be more likely to produce verbal mathematical insights, there is a modest decline 

with increases in spatial anxiety.  
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Table 8 

  

Results of the Logistic Regression Predicting Verbal Insight 

Variable  B SE OR p  

Model 0: Null Model 

Random Component: Participant ID variance 0.97  0.99    

Random Component: Conjecture variance 0.93  0.96    

Intercept  0.31 0.37 1.36 .000 **

* 

Model 1: Main Effects       

Random Component: Participant ID variance 0.53  0.72    

Random Component: Conjecture variance 0.93  0.96    

Intercept  1.16 0.85 3.19 .005 ** 

Malea  1.18 0.27 3.25 .000 *** 

Spatial Ability  1.25 0.06 3.49 .006 ** 

Model 2: Main Effects with Interaction       

Random Component: Participant ID variance 0.49  0.70    

Random Component: Conjecture variance 0.93  0.96    

Intercept  1.14 1.56 0.70 .005 ** 

Malea  1.20 0.26 3.03 .000 *** 

Spatial Ability  1.37 0.17 3.25 .002 ** 

Spatial Anxiety  -0.17 0.05 0.84 .051  

Spatial Ability X Spatial Anxiety  -0.52 0.01 0.59 .045 * 

Note. N = 752. OR = odds ratio.  
aFemale is the reference category.  

* p < .05, ** p < .010; *** p < .001 

 

The results for the models predicting transformational proof (Model 1, Table 9) showed 

that gender (p = .033) and spatial ability (p = .014) were significantly associated with the 

production of a transformational proof. Males were associated with an increase in the relative 

odds of producing correct verbal insight of 2.29. Increased spatial ability scores were associated 

with an increase in the relative odds of producing correct verbal insight of 3.94. When the 

interaction between spatial ability and spatial anxiety was added to Model 2 (Table 9), the 

interaction (OR = 0.60, p = .019) and spatial anxiety scores (OR = 0.85, p = .048) were 

significantly associated with a decrease in the relative odds of producing a transformational 

proof. Gender (OR = 2.25, p = .008) and spatial ability scores (OR = 3.32, p = .013) remained 
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significantly associated with transformational proofs. These results suggest that spatial anxiety 

may not directly affect transformational proof production but shows a small indirect moderating 

interaction between spatial ability scores and proof production. As with insight, higher levels of 

spatial anxiety modestly depress the benefits of spatial ability on the likelihood of proof 

production.  

Table 9 

  

Results of the Logistic Regression Predicting Transformational Proof 

Variable  B SE OR p  

Model 0: Null Model 

Random Component: Participant ID variance 1.16  1.08    

Random Component: Conjecture variance 2.71  1.65    

Intercept  -1.96 0.61 0.14 .001 ** 

Model 1: Main Effects       

Random Component: Participant ID variance 0.82  0.91    

Random Component: Conjecture variance 2.72  1.65    

Intercept  -1.37 0.64 0.25 .033 * 

Malea  0.83 0.32 2.29 .009 ** 

Spatial Ability  1.37 0.15 3.94 .014 * 

Model 2: Main Effects with Interaction       

Random Component: Participant ID variance 0.69  0.83    

Random Component: Conjecture variance 2.73  1.65    

Intercept  -1.42 0.64 0.24 .027 * 

Malea  0.81 0.31 2.25 .008 ** 

Spatial Ability  1.42 0.15 4.14 .006 ** 

Spatial Anxiety  -0.16 0.14 0.85 .048 * 

Spatial Ability X Spatial Anxiety  -0.51 0.14 0.60 .019 * 

Note. N = 752. OR = odds ratio.  
aFemale is the reference category.  

* p < .05, ** p < .010 

 

RQ2: Spatial Anxiety and Gesture 

To examine the role of spatial anxiety on gesture production during geometric reasoning, 

we fit mixed-effect logistic regression models for representational, nondynamic, and dynamic 

depictive gestures separately. The results for the model predicting representational gestures 

(Model 1, Table 10) indicated that spatial ability scores (OR = 0.82, p = .046) were associated 
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with a decrease in the relative odds of producing a representational gesture. This finding suggests 

that gesture may have been a more valuable embodied resource for participants with lower 

spatial abilities. When the interaction between spatial anxiety and spatial ability was added to 

form Model 2 (Table 10), spatial ability (OR = 0.87, p = .029) remained significantly associated 

with a decrease in the relative odds of producing a representational gesture. Increased spatial 

anxiety scores (OR = 0.79, p = .045) were also significantly associated with a decrease in the 

relative odds of producing at least one representational gesture. Furthermore, the interaction 

between spatial ability and spatial anxiety (OR = 1.75, p = .035) was significantly associated 

with producing at least one representational gesture. These results suggest that spatial anxiety 

may moderate the relationship between spatial ability and the likelihood of producing at least one 

representational gesture, unlike the associated decrease associated with transformational proof 

production. There were no significant gender effects in either model for representational 

gestures.  
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Table 10 

  

Results of the Logistic Regression Predicting Representational Gestures 

Variable  B SE OR p  

Model 0: Null Model 

Random Component: Participant ID variance 2.73  1.65    

Random Component: Conjecture variance 0.59  0.76    

Intercept  -0.64 0.33 1.39 .045 * 

Model 1: Main Effects       

Random Component: Participant ID variance 2.72   1.65    

Random Component: Conjecture variance 0.58  0.76    

Intercept  3.88 3.02 48.42 .031 * 

Malea  0.17 0.43 1.19 .697  

Spatial Ability  -0.20 0.21 0.82 .046 * 

Model 2: Main Effects with Interaction       

Random Component: Participant ID variance 2.56  1.60    

Random Component: Conjecture variance 0.58  0.76    

Intercept  4.58 3.05 97.51 .003 ** 

Malea  0.16 0.43 1.17 .704  

Spatial Ability  -0.14 0.21 0.87 .029 * 

Spatial Anxiety  -0.23 0.19 0.79 .045 * 

Spatial Ability X Spatial Anxiety  0.56 0.19 1.75 .035 * 

Note. N = 752. OR = odds ratio.  
aFemale is the reference category.  

* p < .05, ** p < .010 

 

For nondynamic depictive gestures (Table 11), the results from Model 1 show that spatial 

ability scores (OR = 0.79, p = .049) are significantly associated with a decrease in the relative 

odds of producing at least one nondynamic depictive gesture. Spatial anxiety scores (OR = 1.22, 

p = .065) were not significantly associated with nondynamic depictive gesture production. Model 

2 (Table 11) added the interaction term between spatial ability and spatial anxiety. This 

interaction (OR = 1.26, p = .051) was marginally significantly associated with nondynamic 

depictive gesture. Spatial ability scores (OR = 0.75, p = .030) also remained significantly 

associated. However, the odds ratios for spatial ability and the interaction did not meet the 

criteria for a small effect size. No significant gender effects were found in either model.  
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Table 11 

  

Results of the Logistic Regression Predicting Non-Dynamic Gestures 

Variable  B SE OR p  

Model 0: Null Model 

Random Component: Participant ID variance 1.42  1.19    

Random Component: Conjecture variance 1.13  1.06    

Intercept  -1.58 0.41 0.21 .000 *** 

Model 1: Main Effects       

Random Component: Participant ID variance 1.31  1.14    

Random Component: Conjecture variance 1.13  1.06    

Intercept  2.47 2.43 11.82 .310  

Malea  0.26 0.35 1.30 .460  

Spatial Ability  -0.23 0.16 0.79 .049 * 

Model 2: Main Effects with Interaction       

Random Component: Participant ID variance 1.25  1.12    

Random Component: Conjecture variance 1.13  1.06    

Intercept  3.14 2.45 23.10 .200  

Malea  0.24 0.34 1.27 .477  

Spatial Ability  -0.29 0.17 0.75 .030 * 

Spatial Anxiety  -0.15 0.15 0.86 .070  

Spatial Ability X Spatial Anxiety  0.23 0.16 1.26 .051  

Note. N = 752. OR = odds ratio.  
aFemale is the reference category.  

* p < .05, *** p < .005 

 

The results of the first model (Model 1; Table 12) predicting the occurrence of at least 

one dynamic depictive gesture show that spatial ability scores (p = .012) were significantly 

associated with dynamic depictive gesture production. Increased spatial scores were associated 

with an increase in the relative odds of producing at least one dynamic depictive gesture of 1.28. 

Decreased spatial anxiety scores (OR = 0.89, p = .051) were also marginally associated with 

dynamic depictive gesture production. However, once the interaction between spatial ability and 

spatial anxiety was added to the model (Model 2, Table 12), neither spatial anxiety (OR = 0.89, p 

= .067) nor the interaction (OR = 1.16, p = .078) were significant. Spatial ability remained 

significantly associated with dynamic depictive gestures (OR = 1.25, p = .045). Gender was not 

significant in either model.  
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Table 12 

  

Results of the Logistic Regression Predicting Dynamic Gestures 

Variable  B SE OR p  

Model 0: Null Model  

Random Component: Participant ID variance 1.71  1.31    

Random Component: Conjecture variance 2.17  1.48    

Intercept  -2.79 0.57 0.06 .000 *** 

Model 1: Main Effects       

Random Component: Participant ID variance 1.60  1.26    

Random Component: Conjecture variance 2.18  1.48    

Intercept  -0.26 2.91 0.77 .059  

Malea  -0.14 0.41 0.87 .071  

Spatial Ability  0.25 0.20 1.28 .012 * 

Model 2: Main Effects with Interaction       

Random Component: Participant ID variance 1.61  1.27    

Random Component: Conjecture variance 2.20  1.48    

Intercept  0.18 3.08 1.20 .053  

Malea  -0.15 0.43 0.86 .072  

Spatial Ability  0.22 0.21 1.25 .045 * 

Spatial Anxiety  -0.12 0.19 0.89 .067  

Spatial Ability X Spatial Anxiety  0.15 0.19 1.16 .078  

Note. N = 752. OR = odds ratio.  
aFemale is the reference category.  

 * p < .05, *** p < .005 

 

Discussion 

This investigation sought to understand the role of spatial ability and spatial anxiety in geometric 

reasoning and gesture production. The evidentiary relationships between spatial anxiety, spatial 

ability, and gesture suggest that geometric thinking is embodied across both affective and 

cognitive processes. The current study provides correlational evidence that spatial anxiety may 

act as a moderator between spatial ability and geometric thinking and is associated with the 

production of mathematical insights, transformational proofs, and representational gestures. 

Though this study does not endorse a causal claim about the role of spatial systems in geometric 

thinking, these findings provide a first step in understanding the complex interactions between 
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embodied learning processes and the role of spatial anxiety in spatial ability, geometric thinking, 

and gesture production.  

Spatial ability and spatial anxiety were negatively correlated, corroborating other 

accounts (Malanchini et al., 2017; Ramirez et al., 2012; Schenck & Nathan, 2020). While spatial 

anxiety was not directly associated with geometric reasoning, it was a significant moderator 

between spatial ability and geometric reasoning measured by verbal mathematical insight and 

transformational proof performance. For gestures, spatial anxiety was a significant moderator 

between spatial ability and representational gestures but had no significant associations with 

nondynamic depictive or dynamic depictive gestures. Though this work is correlational and 

exploratory, these findings expand the current understanding of spatial anxiety and provide 

insight into its potential role in geometric reasoning and gesture production.  

We measured geometric reasoning through verbal mathematical insights and 

transformational proof production (RQ1). In both outcome measures, spatial anxiety moderated 

spatial ability, though the effect sizes were small. As spatial anxiety decreased, the relationship 

between spatial ability scores and geometric reasoning increased. This connection could be 

explained as spatial anxiety taking up valuable resources needed to perform spatial tasks during 

geometric reasoning tasks by forcing students to use their limited working memory capacity to 

both focus on the tasks and inhibit irrelevant thoughts in accordance with the attentional control 

theory (Eysenck et al., 2007). Domain-trait anxieties, such as mathematics anxiety (Ashcraft & 

Kirk, 2001) and testing anxiety (Beilock & Carr, 2005), have also been shown to reduce 

mathematical performance. Though there are few studies on spatial anxiety, it has been shown 

that there was an interaction between working memory and spatial anxiety in elementary-aged 
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girls performing mental rotation tasks (Ramirez et al., 2012). This interaction was more 

pronounced for children with higher working memory scores than those with lower ones.  

However, this current study did not include working memory measures. Additionally, it 

is unclear whether spatial anxiety is more associated with verbal or visuospatial working 

memory. While visuospatial working memory, rather than verbal working memory, has been 

shown to mediate the relationship between spatial ability and executive functioning (Wang et al., 

2018), studies on domain-trait anxieties occupy often use verbal working memory measures in 

their designs (e.g., Ramirez et al., 2012) as it is thought that anxiety impacts working memory 

through verbal components, such as intrusive thoughts (Beilock, 2010). Future studies will be 

needed to fully understand the interaction between spatial anxiety and spatial ability during 

geometry reasoning.  

For gesture (RQ2), we also found that spatial anxiety moderated the relationship between 

spatial ability and representational gesture production, though the effect size did not meet the 

criteria for a small effect size. There were no significant relationships between spatial anxiety 

and nondynamic depictive gestures or dynamic depictive gestures. The lack of association 

between spatial anxiety and the two subcategories of representational gesture may be due to the 

low incidence of these codes in this dataset, as only 25% of cases included a nondynamic 

depictive gesture, and 15% of cases included a dynamic depictive gesture. For the more inclusive 

superordinate category of representational gesture, the association between spatial ability and 

gesture production decreased as spatial anxiety decreased. The direct relationship between spatial 

ability and representational gesture was negative in this study, suggesting that participants with 

lower spatial ability were more likely to produce at least one gesture. Combined, these findings 

suggest that participants with lower spatial ability scores and relatively higher spatial anxiety 



93 

 

 

 

scores may be more likely to gesture. One explanation for this relationship is that 

representational gesture may function as a beneficial cognitive offloading mechanism, which 

may help offset the limited visuospatial and verbal working memory capacity caused by spatial 

anxiety. This interpretation is supported by research showing that individual differences in 

working memory capacity determine whether gestures affect cognitive processes (Marsaller & 

Burianová, 2013). However, it is unclear whether this offloading mechanism of gesture 

production is due to reducing working memory load through restructuring and externalizing 

information (Cook et al., 2012) or by lowering the individual’s current gesture threshold, 

allowing even small amounts of motor activation to cause a gesture (Hostetter & Alibali, 

2008/2019). It should be noted that previous studies on gestures during geometric reasoning have 

suggested that increased spatial scores are associated with increased gesture production (Nathan 

et al., 2021; Pier et al., 2019; Walkington et al., 2019). This difference in the direction of 

association may be due to the modality of the study. The previous studies have been conducted 

in person, while this current study was moved online due to the COVID-19 pandemic. Students 

may gesture differently in virtual environments than in physical environments. Future studies 

will be needed to uncover the specifics of these relationships. 

This research demonstrates further evidence for a significant negative correlation 

between spatial ability and spatial anxiety (e.g., Malanchini et al., 2017; Ramirez et al., 2012; 

Schenck & Nathan, 2020). In addition to the evidence of a possible moderation effect detailed 

above, this correlation leads us to question whether spatial ability and spatial anxiety are 

independent constructs and how they may influence each other. It is possible that higher spatial 

anxiety is a result of a person’s meta-recognition of their poor spatial ability. Alternatively, 

higher spatial anxiety may lead a person to seek out fewer spatial experiences, which has been 
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linked to lower spatial ability, especially in women (Baenninger & Newcombe, 1989; Quaiser-

Pohl & Lehmann, 2002). Future work will be needed to tease apart these relationships to inform 

the design of interventions that target spatial ability, spatial anxiety, and geometric thinking.  

Implications and Conclusions  

Research on embodied mathematical thinking has often focused on observable, conscious 

behaviors like gestures. Studies have shown that co-speech and co-thought gestures, particularly 

dynamic gestures, can be used to depict mathematical objects and simulate transformations on 

those objects (Hostetter & Alibali, 2008/2019). These simulated actions strongly correlate with 

students’ ability to generate correct mathematical insights and construct transformational proofs 

(e.g., Nathan et al., 2021; Swart et al., 2022; Walkington et al., 2022). Though spatial ability was 

used as a covariate in previous work and found to be associated with intuition, insight, 

transformational proof, and gesture (Hostetter & Alibali, 2007, Nathan et al., 2021), it was not 

singled out as an embodied process. This current study expanded the investigation on 

mathematical thinking to include affective (e.g., spatial anxiety) and cognitive (e.g., spatial 

ability) embodied processes, adding to the understandings of how mathematical knowledge is 

embodied. 

This study adds to the limited spatial anxiety literature by providing empirical evidence 

for spatial anxiety’s role in geometric thinking. Prior empirical work on spatial anxiety has 

focused on spatial anxiety’s impact on spatial ability outcomes (Gunderson et al., 2013; 

Kremmyda et al., 2016; Lawton, 1994: Malanchini et al., 2017; Ramirez et al., 2012), adult’s 

success on standardized mathematics problem (Schenck & Nathan, 2020), and middle-grade 

student’s fraction knowledge (Schenck, Hubbard, et al., 2022). Identifying the significant effect 

of spatial anxiety on the relationship between spatial ability and geometric thinking and gesture 
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production provides a basis for other studies to further explore this interaction. This finding may 

lead to investigations into possible spatial anxiety interventions to improve both spatial ability 

and mathematical reasoning abilities.  
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Chapter 4: A Tangram Task for Geometric Reasoning during Insight and Proof 

Over the last few decades, there has been increasing interest in improving mathematics 

proficiencies. Several lines of research have investigated the influences of motoric (i.e., gesture) 

and cognitive (e.g., spatial ability) processes on mathematics abilities. For example, studies have 

shown that gesture is associated with mathematical reasoning both directly (e.g., Goldin-

Meadow et al., 2009; Nathan et al., 2021) or indirectly (e.g., Walkington et al., 2022). It has also 

been widely demonstrated that spatial abilities are associated with mathematical achievement 

across different ages and domains of mathematics (e.g., Delgado & Prieto, 2004; Mix et al., 

2016). The malleability of spatial ability may be especially useful for building mathematics 

abilities. Spatial abilities can be improved through both direct and indirect training methods and 

in and out of educational settings (Baennigner & Newcombe, 1989; Uttal et al., 2013). Spatial 

training may be effective for increasing student success in STEM fields, as problem solving in 

STEM areas relies on spatial reasoning (Stieff & Uttal, 2015).  

The literature investigating whether interventions that involve spatial abilities to improve 

math is ambivalent and includes both studies that show support and a lack of support. There is a 

growing body of causal evidence that spatial-based tasks improve mathematics achievement 

(e.g., Adams et al., 2022; Gilligan et al., 2020; Hawes et al., 2017; Sorby & Veurink, 2019). 

Other studies have found no evidence of spatial tasks transferring to mathematics achievement 

(Hawes et al., 2015). The varied findings could result from the multidimensional and complex 

nature of spatial ability and mathematics. Furthermore, these studies are often limited by their 

focus on pen-and-paper mathematics assessments as outcomes (e.g., Hawes et al., 2022, Yang et 

al., 2020). As discourse tasks such as questioning, proving, and justifying problem-solving are 

important for fostering conceptual and procedural mathematics knowledge (e.g., Legesse et al., 
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2020), it is beneficial to understand the potential of a tasks that involves spatial abilities for 

improving these types of mathematics proficiency.  

The central objectives of this paper are to provide evidence for whether a Tangram task is 

effective for improving geometric reasoning, can impact on students’ gesture production, and to 

explore the associations between working memory and spatial anxiety and geometric reasoning. 

Specifically, we examine the potential for a short Tangram task to increase students’ generation 

of mathematical insights, transformational proof, and the types of gestures often associated with 

mathematically valid reasoning in geometry. Understanding the impact of spatial-based tasks in 

discourse-based geometric reasoning (i.e., proof) and gesture production provides a first step 

toward understanding how spatial-based tasks can impact discourse-based reasoning tasks and 

the basis for future intervention designs for use in classrooms, educational technology designs, 

and teacher professional development.  

Theoretical Background 

 In the following section, I give an overview of the main theories central to this paper. I 

will first summarize the literature on the different aspects of the spatial system. Next, I discuss 

the prior work on grounded and embodied mathematical thinking. This background provides the 

theoretical framing that leads to the current study’s research questions. 

The Spatial System  

Many different components may make up one’s system for processing visuospatial 

information. For this paper, I will address three components of this system: spatial ability, spatial 

anxiety, and working memory.  
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Spatial Ability   

Spatial ability has been a topic of interest and debate within the scientific community for 

more than a century, with researchers struggling to agree on a complete definition or list of sub-

components. The ability to generate, retain, and manipulate abstract visual images is a recurring 

theme in many definitions (e.g., Battista, 2007; Gaughran, 2002; Lohman, 1979). Factor-analytic 

studies have attempted to determine if spatial ability is a unitary structure or comprised of 

various sub-factors (e.g., Buckley et al., 2018; Carroll, 1993), with some researchers advocating 

for broader categorical distinctions, such as large- versus small-scale skills (Hegarty et al., 2018) 

or intrinsic and extrinsic information (Uttal et al., 2013). In contrast, recent work by Malanchini 

et al. (2020) supports a unitary model of spatial ability, demonstrating the existence of a common 

genetic network that supports all spatial abilities. 

The importance of spatial ability extends to its impact on success in science, technology, 

engineering, and mathematics (STEM) fields, with deficiencies in spatial abilities posing 

obstacles to STEM careers (Harris et al., 2013; Shea et al., 2001). Research has found 

connections between success in spatial tasks and mathematical tasks in both children (e.g., Casey 

et al., 2015; Schenck, Hubbard et al., 2022) and adults (e.g., Schenck & Nathan., 2020), and 

several meta-analyses have confirmed positive associations between spatial and mathematics 

skills (Atit et al., 2021; Xie et al., 2020). Although the specific nature of these associations 

remains largely unknown, studies have suggested shared processing requirements in both spatial 

and mathematical tasks (Hubbard et al., 2005; Mix et al., 2016). Additionally, researchers have 

sought to determine which mathematical concepts engage spatial thinking, with some studies 

finding associations between specific spatial ability sub-components and mathematics concepts 

(Burte et al., 2017; Cheng & Mix, 2014; Hannafin et al., 2008; Schenck & Nathan, 2020). 
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Spatial Anxiety 

Spatial anxiety, and its impact on neurocognitive performance, has been a subject of 

study for researchers. According to the Attentional Control Theory, anxiety negatively affects 

performance by disrupting working memory capacity (Eysenck et al., 2007). Spatial anxiety, a 

domain-specific trait anxiety, has been found to be negatively correlated with spatial ability, 

interfering with processes involved in spatial skill development (Gunderson et al., 2013; 

Malanchini et al., 2017; Ramirez et al., 2012). Like spatial ability, spatial anxiety is thought to 

have subcomponents, such as navigation anxiety and rotation/visualization anxiety (Lyon et al., 

2018; Malanchini et al., 2017). Various assessments have been developed to measure spatial 

anxiety but are limited to specific age groups or situations. A recent questionnaire developed by 

Lyons et al. (2018) provides a relatively comprehensive measure of spatial anxiety, targeting 

adults and featuring subscales for mental manipulation, navigation, and imagery, making it 

particularly relevant to the current study. 

Studies have also investigated gender differences in spatial anxiety. While some studies 

have reported females experiencing higher spatial anxiety and performing worse on spatial tasks 

(e.g., Wei et al., 2018), others have found no significant sex differences (e.g., Hund & Minarik, 

2006). The inconsistency in results could be due to the heterogeneous nature of spatial ability 

and the fact that anxiety may only manifest during certain spatial activities.  

Malleability of Spatial Ability. Hundreds of studies have explored whether spatial 

ability can be improved. Overall, studies have shown that spatial ability is sensitive to training 

effects (e.g., Cheng, 2016; Peters et al., 1995; Wright et al., 2008) and that spatial training may 

be beneficial for mathematics outcomes (e.g., Cheng & Mix, 2014; Hawes et al., 2015; Mix et 
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al., 2021). Several meta-analyses summarize the results of these studies and provide 

comprehensive insight into the malleability of spatial skills.  

Baennigner and Newcombe (1989) conducted the first of these large meta-analyses. In 

two separate analyses, they investigated: (1) the relationship between prior spatial experiences 

and spatial ability and (2) the effects of spatial training on spatial ability. The first analysis 

included 11 studies, including 26 samples divided into male and female groups, and provided 

evidence for a weak link between spatial activity participation and spatial test performance. No 

significant gender differences were discovered. The second analysis included 19 spatial training 

studies initially divided into experimental and test-retest groups. These studies were then 

categorized by gender, the training content (specific, general, or indirect), and the duration of 

training. Overall, the analyses indicated that spatial training improves performance on spatial 

tests, and conditions are optimal when specific training is administered in at least three sessions. 

Furthermore, spatial training improved the scores of both males and females for all groups.  

Expanding on Baenninger and Newcombe’s (1989) findings, Uttal and colleagues (2013) 

completed a meta-analysis of 217 studies on spatial ability training. These studies were 

completed after 1984 (the last date of studies used in the Baenninger and Newcombe (1989) 

analyses), employed a causally relevant design, and focused on non-clinical populations. Rather 

than specify studies by spatial skill sub-component, spatial skills were coded based on a 2 x 2 

framework with dimensions of intrinsic versus extrinsic and static versus dynamic. Training 

programs were divided into video games, instructional courses, and direct spatial task training. 

Overall, three key results were found: (1) Spatial ability is malleable in people of all ages; (2) 

training is effective, transferable, and long-lasting; (3) interventions are effective both in and out 

of educational settings. Like the previous meta-analysis, there were no significant differences 
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between types of training or genders. Unlike Baenninger and Newcombe (1989), Uttal and 

colleagues did not conclude that a particular type of intervention was more effective. Instead, 

their analysis suggested that the training type may depend on time, resources, individual 

differences, and study goals. In addition, training was shown to have strong effects of transfer 

from one assignment to another, and targeted training may increase learners’ chances of 

succeeding or specializing in STEM disciplines.  

Spatial Interventions. Studies have shown that spatial training can improve spatial 

abilities, but some scholars have investigated whether training these skills can improve 

mathematics abilities. There is ample evidence of a positive relationship between STEM skills 

and spatial ability and that spatial ability can improve with training. Theoretically, researchers 

have argued that spatial training may translate into increasing student achievement in STEM 

fields (Stieff & Uttal, 2015; Uttal & Cohen, 2012). Scholars have proposed that the best way to 

understand the link between spatial skills and STEM achievement is to build on complementary 

approaches in the mathematics education and psychology fields by focusing on a better 

alignment between the sub-factors of spatial ability and STEM reasoning skills in the exploration 

of how spatial ability inventions influence how students think and learn (Lowrie et al., 2020). 

In the last five years, there have been substantive gains in empirical research into the 

efficacy of spatial training on mathematical ability. At least two recent meta-analyses have 

focused on understanding the effects of spatial training on mathematics performance. Yang and 

colleagues (2020) sought to extend Uttal and colleagues’ (2013) findings to young children’s 

spatial skills. This meta-analysis included 20 intervention studies for children aged 0 to 8 years. 

It used Uttal and colleagues’ (2013) spatial skill 2 x 2 framework and training type 

classifications. The videogame training classifier was expanded to include play and hands-on 
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operation to account for the age of the participants in the study. The analysis showed that early 

spatial skill training is highly effective, with no significant differences in age, training type, or 

research setting. For gender, however, results revealed that spatial training led to a greater effect 

for girls than boys.  

Hawes and colleagues (2022) also examined the possible effects of spatial training on 

mathematics performance and under what conditions these effects occur. An examination of 29 

pre-post designed studies found that spatial training was effective for increasing success on both 

spatial and mathematics tasks. Age, use of concrete manipulatives, and type of transfer 

moderated the effects of spatial training on mathematics. In contrast, spatial gains, type of 

control group, and training dosage were not significantly associated with training gains. These 

findings suggest that spatial training that involves concrete materials or short interventions may 

be beneficial for increasing mathematical thinking. However, this meta-analysis included only 

two studies on adults.  

Overall, evidence supports that spatial skills and mathematics performance could be 

enhanced through spatial training. That being said, very few studies have explored the impact of 

spatial training on mathematics in adults and how spatial training may impact mathematics 

outcomes that are not measured by written tests. Moreover, results remained mixed on a few 

issues, including whether spatial training can close gender gaps and what design decisions may 

make training more effective.  

Working Memory 

It is thought that working memory may be an essential component of aspects of 

intelligence, including spatial ability (Kyllonen, 1996; Miyake et al., 2001). One of the most 

widely accepted models of working memory is Baddeley and Hitch's multi-modal model (1974; 
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see also Baddeley, 2000 for more recent updates). Most crucial to Baddeley and Hitch’s 

framework is the construction of working memory as comprised of three subcomponents: the 

central executive, the phonological loop, and the visuospatial sketchpad. The visuospatial 

component of working memory may be particularly critical for mathematics and spatial abilities.  

Studies have indicated that specific sub-components of spatial ability (spatial 

visualization, speeded rotation, and visuospatial perceptual speed) may differ in cognitive load 

on the working memory system (Shah & Miyake, 1996; Hegarty et al., 2000). Tasks that 

measure these three spatial ability components require spatial transformation, which cannot be 

completed in a single eye fixation. Thus, they require temporary visuospatial storage thought to 

be provided by the visuospatial sketchpad (Miyake et al., 2001). Furthermore, Miyake and 

colleagues (2001) showed differing degrees of working memory involvement between spatial 

visualization, speeded rotation, and visuospatial perceptual speed, with spatial visualization tasks 

showing the high involvement and visuospatial perceptual speeding showing the lowest. 

Researchers posit that these differences may be due to the maintenance (i.e., cognitive load) of 

storing the visuospatial representations. These findings could help explain within-subject and 

between-subject variations in spatial ability measures.  

Individual differences in spatial rather than verbal working memory are related more 

closely to proficiencies in mathematics (Reuhkala, 2001; Kyttälä et al., 2003). The variations in 

spatial working memory are particularly significant for number, measurement, and space. 

Researchers have suggested this could be because the visuospatial sketchpad is used to represent 

visual number forms (Hayes, 1973), non-numeric spatial arrangements (Seron et al., 1992), 

carrying operations (Heathcote, 1994), counting imagery (Bull et al., 1999) and geometry 

(Hartje, 1987). Differences in processing speed and spatial working memory capacity could also 
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partly explain variation in mathematics scores. For example, speed-of-processing indices 

accounted for variance in young children's arithmetic abilities (Bull & Johnston, 1997). 

Additionally, children with low visuospatial working memory capacity reflect a limited capacity 

to temporarily store visuospatial information (Geary et al., 2000).  

Differences in visuospatial working memory may also impact spatial abilities through 

problem-solving strategy selection and anxiety. Research on mathematical problem-solving 

strategies has shown that individuals with higher working memory scores rely on working-

memory-demanding strategies, while individuals with lower working memory scores often rely 

on heuristic strategies, which use a lower working memory demand. (Beilock & DeCaro, 2007). 

Individuals with high working memory were also found to be most affected by stress-related 

anxiety, which can disrupt cognitive processes (Beilock & Carr, 2005; Ramirez et al., 2012). 

Furthermore, other studies have shown that spatial ability explains unique variance in 

mathematical word problem-solving performance (Blatto-Vallee et al., 2007; Casey et al., 2008; 

Boonen et al., 2013). Thus, it is possible that individuals with higher working memory scores 

may be more susceptible to the negative impacts of anxiety on the performance of problem-

solving tasks like those on spatial ability measures. As visuospatial working memory has been 

linked to spatial abilities as well as mathematic abilities, it could be that the differences outlined 

above could explain the variations in links between spatial ability and mathematics for individual 

students.  

Grounded and Embodied Mathematical Thinking 

 Grounded and embodied theories of cognition posit that meaning-making, even for 

abstract concepts, can be achieved through body-based experiences (Barsalou, 2008; Shapiro, 

2019). Several theoretical frameworks offer explanatory accounts for how grounded and 
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embodied cognition (GEC) arises from the interaction of cognitive, perceptual, and motor 

processes. For example, Barsalou (1999) proposed a sensory-motor account of mental 

representations in which mental processes operate with perceptual symbols, activating a 

perceptual-motor simulation of properties associated with a particular concept. Glenberg and 

Robertson (1999) proposed the Indexical Hypothesis, which describes how actions influence 

comprehension and meaning making during reading tasks. When reading, actions help readers 

index or ground the abstract symbols in objects and movements. The benefits of grounded 

reading extend to imagined and physical actions (Glenberg et al., 2004). These benefits seen in 

reading also extend to include mathematical problem solving, which typically involves a verbal 

or written prompt (Glenberg et al., 2012).  

Gestures provide an important avenue of evidence for the role of the body in complex 

reasoning due to their role in language production, comprehension, and problem solving 

(McNeil, 1992). Though gestures are seldom in a one-to-one relation with spoken word or 

meaning, gestures convey meaning by combining semantic and pragmatic content to simulate 

action (Hostetter & Alibali, 2008/2019) and typically accompany speech or thought (Goldin-

Meadow, 2003; Kita et al., 2017; McNeil, 1992). Gestures serve several functions during 

communication and thinking, such as affecting cognitive processes, conveying information, and 

managing cognitive load. Gestures help activate, maintain, manipulate, and package visuospatial 

and motoric information (Kita et al., 2017). They can keep spatio-motoric information active in 

working memory, reducing cognitive load during reasoning tasks (Cook et al., 2012; Goldin-

Meadow et al., 2001). For example, individuals with lower visuospatial working memory 

capacity may have higher gesture rates to compensate for their limited memory resources when 

thinking and speaking about spatial information (Chu et al., 2014; Göksun et al., 2013). 
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Individuals also have a gesture threshold (Hostetter & Alibali, 2008). This threshold is 

the level of motor activation needed for a mental simulation to be expressed in action and can 

vary depending on factors such as individual differences (e.g., spatial and verbal skills, anxiety, 

working memory), current task demands (e.g., processing spatial imagery), and situational 

contexts. For example, Hostetter and Alibali (2007) found that individuals with high spatial 

visualization skills and low verbal skills produce gestures at higher rates than individuals with 

different spatial and verbal skill combinations.  

 Recently, several studies have provided empirical evidence for the grounded and 

embodied nature of geometric thinking, specifically in proof. Constructing proofs is a 

methodology for generating new mathematical knowledge and is one of the focuses of secondary 

geometric education (Rav, 1999). The production of mathematical proofs requires students to 

evaluate universal truths about shape and space and justify their conclusions. Studies have shown 

that both professional mathematicians and students ground their understandings of mathematical 

content through embodied practices such as gestures (e.g., Kim et al., 2011; Marghetis et al., 

2014; Nathan et al., 2021, Walkington et al., 2019; Walkington et al., 2022). Studies have 

specifically identified a class of representational gestures, called dynamic gestures, as critical for 

valid, generalizable geometric thinking (Pier et al., 2019; Nathan et al., 2021; Walkington et al., 

2019). While non-dynamic gestures (such as pointing and tracing) can effectively simulate and 

communicate static properties of objects, dynamic gestures depict the invariant characteristics of 

mathematical objects as they undergo transformations, such as rotation, reflection, dilation, and 

skewing. Furthermore, prior studies have found strong associations between dynamic gestures, 

spatial reasoning skills, and geometric reasoning (Göksun et al., 2013; Nathan et al., 2021). 

 



107 

 

 

 

Research Questions 

Previous research on the potential of spatial interventions for mathematical outcomes has 

provided empirical evidence that some tasks that involve spatial abilities may improve 

mathematics performance. Nevertheless, these studies are limited and typically focus on younger 

populations and rely on pen-and-paper assessments. Research on embodied geometric reasoning 

has shown that gestures, particularly dynamic gestures, can influence one’s reasoning process. 

However, it is unclear what the impact of spatial-based tasks on gesture during these reasoning 

tasks may be. Additionally, previous research has indicated that other factors, such as working 

memory and spatial anxiety, may be associated with spatial abilities and, in turn, impact the 

effectiveness of tasks that involve spatial abilities for mathematical thinking. Thus, there is a 

value in investigating the impacts of spatial-based tasks and how working memory and spatial 

anxiety are associated with embodied geometric reasoning and gesture production, leading to 

three theoretically motivated research questions.  

R1: Can a short Tangram puzzle task impact students’ geometric reasoning?  

Tasks that invoke spatial abilities, such as solving Tangram puzzles, are thought to improve 

access to one’s spatial abilities, and spatial abilities have been found to be critical for geometric 

reasoning. I hypothesize that a short Tangram task will improve geometric reasoning as 

measured by mathematical insight and transformational proof.  

 R2: Can a short Tangram puzzle task impact students’ tendency to gesture?  

Students who produce representational gestures, especially dynamic representational gestures, 

often exhibit superior mathematics performance because representational gestures can simulate 

properties and transformations of mathematical objects. Tangram puzzle tasks require students to 
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imagine and manipulate objects. On this basis, I hypothesize that a short Tangram puzzle task 

will lead to increased gesture production.  

 R3: How are working memory and spatial anxiety associated with geometric reasoning 

and gesture production?  

 This research question is exploratory. Working memory, especially visuospatial working 

memory, is often associated with mathematical thinking and spatial abilities, and gestures may 

help reduce the demands on working memory. I hypothesize that visuospatial working memory 

will be associated with both (a) geometric reasoning and (b) gesture production. Furthermore, 

spatial anxiety has been shown to be negatively associated with spatial abilities and 

representational gestures, and it may moderate the relationship between spatial ability and 

mathematical thinking. Thus, I hypothesize that spatial anxiety will be negatively associated with 

(c) geometric thinking and (d) representational gesture production.  

Methods 

Participants 

Eighty-four undergraduate students were recruited from a large university in the 

Midwestern United States. Inclusion criteria required fluent English production and 

comprehension and completion of all covariate measures of interest. As compensation, 

participants received a $20 gift card. Participants were randomly assigned to either the control or 

intervention groups. The control group (n = 42) included 23 students who identified as female, 

with 90% identifying as native English speakers. The intervention group (n = 42) included 21 

students who identified as female, with 95% of students identifying as native English speakers. 

Further descriptive statistics for both groups can be found in Table 13. 

Power Analysis 
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The a priori power analysis used β = 0.80, α = 0.05, and an effect size of f = 0.25 for the 

effect of the spatial intervention on proof performance using G*Power’s ANOVA Repeated 

Measures (Faul et al., 2007). The effect size was estimated based on prior studies that have used 

similar spatial interventions (Cornu et al., 2019; Mix et al., 2021; Siew et al., 2013; Sundberg, 

1994). The correlation among participants solving six repeated geometry proofs was estimated at 

0.5 based on previous studies' data generating model (see Schenck, Kim, et al., 2022). A 

minimum sample of 76 (36 per group) is needed. The current sample, which included 42 

participants per group, is expected to provide adequate power for the following statistical 

analyses.  

Table 13 

  

Demographics (N = 84) 

Variables 
Intervention 

(n=42) 

Control 

(n=42) 

Average Age (SD) 19.29 (1.22) 19.38 (1.24) 

% native English speakers 95.24% 90.47% 

% Ethnicity- White/Non-Hispanic 57.14% 73.81% 

% Ethnicity- Asian 26.19% 14.29% 

% Ethnicity- Other 16.67% 11.90% 

% Gender- Male 45.24% 42.86% 

% Gender- Female 50.00% 54.76% 

% Gender- Other 4.76% 2.38% 

 

Materials 

Covariate Measures 

 Participants completed several measures as part of a pretest before the intervention. The 

first was a demographic information survey via Qualtrics that included self-reported information 

about age, gender, native language, and ethnicity. After data collection was complete, I collapsed 

the ethnicity responses into three categories for reporting: White/Non-Hispanic, Asian, and 
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Other. Gender responses were also collapsed into two categories for analysis: Female and 

Male/Other.  

 Spatial anxiety was then assessed using the Novel Spatial Anxiety Scale (Lyons et al., 

2018) via Qualtrics. This spatial anxiety measure is a 24-question 5-item Likert scale measure 

that asks students to rate how anxious they would be from “Not at All” to “Very Much” in a 

variety of situations. These situations can require mental manipulation (e.g., rotating an object), 

imagery (e.g., recalling specific features of an object), or navigation (e.g., getting around an 

unfamiliar location). Each question was scored from 0 (“Not at All”) to 5 (“Very Much) to 

compute a composite score. Internal reliability testing showed Cronbach’s alpha for the overall 

composite score of 0.85.  

 To assess spatial ability, I followed the recommendations of Schenck and Nathan (2023). 

Previous data analysis from a study on geometric reasoning identified mental rotation and non-

rotational spatial visualization as significant predictors of verbal geometric reasoning (Schenck, 

Kim et al., 2022). These two constructs both fall under the specific factor of spatial visualization 

(Carrol, 1993; Lohman, 1988; McGee, 1979). For task selection, I chose the Paper Folding Task 

(Ekstrom et al., 1976). This spatial visualization measure has been shown to be predictive of 

measures of geometric thinking (Nathan et al., 2021; Walkington et al., 2019) and gesture 

production (Nathan et al., 2021; Hostetter & Alibali, 2007). The Paper Folding Task is a 20-item 

(2 x 10 items per section), timed, multiple-choice assessment. Participants were given three 

minutes to complete each section of ten questions. Scores were computed with one point for each 

correct answer and -0.25 points for each incorrect answer. The internal reliability for my sample 

was 0.80.  



111 

 

 

 

 Working memory was assessed using two different span tasks. Both tasks used computer-

based software created by Stone and Towse (2015) and were presented using the Tatool platform 

(von Bastian et al., 2012). The first task was the matrix span which measures visuospatial 

working memory. In this task, participants were shown a 4 x 4 grid. One at a time, grid locations 

would light up. After receiving all grid locations for the set, participants were notified of the 

recall phase and were asked to click the grid locations in the order they recalled seeing them. 

Each set contained between three and nine grid locations. Each set size was repeated three times 

in random order for a total of 126 grid locations. The second task was the reading span which 

measures verbal working memory. In this task, participants were first presented with a two-digit 

number to be memorized. Immediately following the presentation of the number, the participants 

were asked to read a sentence as fast as possible and assess whether it made sense. Each set 

contained from three to seven numbers. At the end of each set, the participants were instructed to 

recall the numbers in the correct serial order. Each set size was repeated three times in random 

order for a total of 75 sentences and numbers. At the end of each span task, a partial non-

weighted score was calculated without the 85% accuracy criterion on the processing component 

of the span tasks. Partial, rather than absolute, scores were calculated as partial scores have been 

shown to have higher internal consistency and convergent validity for these tasks (Đokić et al., 

2018). Non-weighted scores were selected as they are more in accordance with standard 

psychometric procedures (e.g., Conway et al., 2007) 

Tangram Task 

 After completing the pretest covariate measures, participants were randomly assigned 

into one of two conditions: a control task or a Tangram task. In the control condition, participants 

were shown a set of six letters arranged in a circle via PowerPoint. Each set of letters included at 

least two vowels and could be combined to form at least one six-letter English word. They were 
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then instructed to write down all the possible words or common acronyms that could be created 

from a combination of the letters. Each set was presented for four minutes before a new set was 

automatically displayed, and a total of ten sets were presented for a total task time of 40 minutes. 

This task was chosen as the control task as it involves relatively low spatial skills. In a pilot 

study (N = 32), students were randomly assigned either the control task or the Tangram task 

condition. Most of the 16 participants in this control condition reported using replacement 

strategies (i.e., starting with a word and replacing the consonants or vowels) or association 

strategies (i.e., finding similar words associated with a found word). Additionally, in this pilot, 

students in the control condition group completed the Paper Folding Test (Ekstrom et al., 1976) 

before and after the control task. There was no significant difference between the spatial pre- and 

posttest scores (t(30) = 1.14, p = .262) 

 In the Tangram task condition, participants were asked to complete a set of puzzles using 

physical Tangram manipulatives (Figure 5A). For each puzzle, participants were shown an image 

of a composite shape via PowerPoint (Figure 5B) and were given 5 minutes to assemble the 

shape using all seven Tangram pieces. After the participants assembled the composite shape or 

after 5 minutes, an image of the composite shape with the individual pieces visible was revealed 

(Figure 5C). Then, participants were instructed to check their assembled solution against the 

displayed solution and make any necessary changes to their assembled shape before moving on 

to a new puzzle. Participants completed as many puzzles as possible in 40 minutes to match the 

control condition's time demands. The mean number of puzzles solved by participants in this 

condition was eight, with a range of 6 to 13 puzzles. This task was chosen as the spatial 

intervention for three reasons: (1) Tangram puzzles rely on spatial visualization skills such as 

disembedding, mental rotation, and visualization, which have been previously linked to 
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geometric reasoning (Moyer-Packenham et al., 2008; Schenck, Kim, et al., 2022); (2) Previous 

studies with both adults and children have shown that experiences with Tangram puzzles resulted 

in improves scores on paper-and-pencil geometry tasks (Cornu et al., 2019; Mix et al., 2020; 

Siew et al., 2013; Sundberg, 1994); and (3) Tangram puzzle pieces are physical manipulatives 

and include several geometric shapes, indicating a possible close relationship between Tangrams 

and geometry concepts which Hawes’ and colleagues’ (2022) suggest may increase the 

likelihood that a spatial-based task will impact mathematics outcomes. In the pilot study (N = 

32), the 16 students in the Tangram spatial intervention condition reported using spatial and 

geometric strategies such as visualizing how to break up the picture into the relevant pieces, 

imagining rotating the pieces to fit into the image, and mentally comparing the geometric 

features (i.e., angles, side lengths, and area) to decide which piece was appropriate, providing 

further evidence that participant used spatial-based strategies to solve the Tangram puzzles. 

Additionally, there was a significant increase in difference between the spatial pre- and posttest 

scores  (t(30) = 2.168, p = .048).  

Figure 5 

 

Spatial Intervention Group Task 
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Conjectures 

 The six conjectures used in this study were selected from a larger list of conjectures used 

in another study (Schenck, Walkington, & Nathan, 2022). These conjectures reflect the general 

properties of two- and three-dimensional objects often included in secondary geometry 

curriculums. Three conjectures explored the two-dimensional properties of lines, parallelograms, 

and triangles. The remaining three conjectures explored the three-dimensional properties of 

prisms, cylinders, and spheres. All six conjectures were true statements. Table 14 includes the 

text and relevant mathematical insights for each conjecture. 
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Table 14   

   

Text and mathematical concepts for each of the eight conjectures 

Conjecture 

Name 
Conjecture Text Example Verbal Insights 

Triangle The sum of the lengths of any 

two sides of a triangle must be 

greater than the length of the 

remaining side. 

1) References the Triangle Inequality Theorem 

2) The shortest distance between two points is a 

line. 

3) If the sum was equal to the third side, it would 

form a line. If the sum were less than the third 

side, it would not connect to form a triangle. 

 

Parallelogram Consecutive angles in a 

parallelogram add up to 180 

degrees. Consecutive angles are 

two angles inside the shape that 

are next to each other. 

1) Interior angles of a parallelogram sum to 360, 

and half of 360 is 180.  

2) Parallelograms consist of parallel lines and 

same side interior angles sum to 180.  

3) Rectangles and squares are parallelograms 

with right angles.  

 

Lines If two parallel lines are cut by a 

third line, the pairs of 

corresponding angles are 

congruent. Corresponding angles 

are in the same position at each 

intersection where a straight line 

crosses two others. 

 

1) References the Corresponding Angles Theorem 

2) Transversal cuts both parallel lines at the same 

angle, so you can use a translation to map the 

angles to each other  

3) Uses vertical angles and alternate interior angle 

theorems to show a logical train of congruency. 

Sphere A plane can only intersect a 

sphere at zero, one, or infinite 

points. A plane is like a sheet of 

paper that goes on forever in 

every direction. 

1) If a plane does not intersect the sphere, it 

intersects at zero points. (OR False because 

intersect implies at least one intersection) 

2) If a plane is tangent to the sphere, it intersects 

at one point.  

3) The cross section of a plane is a circle with 

infinite points.  

 

Prism If the length, width, and height of 

a cube are each doubled, then the 

volume increases by a factor of 8. 

1) The volume of a cube is side cubed or length 

times width times height.  

2) Doubling each side multiplies each dimension 

by 2. 

3) Uses examples to find the volume of multiple 

cubes.  

 

Cylinder Given a cylinder with radius r 

and height h, the cylinder can be 

unrolled to include a rectangle 

with dimensions of h and 2*pi*r.  

1) The rectangle will have the same height as the 

cylinder.  

2) 2* pi* r is the formula for circumference.  
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Procedure 

 All participation was completed in a private room with a researcher. Participants began 

their session by completing the demographics survey and the Novel Spatial Anxiety Scale via 

Qualtrics on a laptop. Participants then completed the Paper Folding Task by providing answers 

to the item on the worksheet. Next, participants completed the Matrix and Reading Span tasks on 

a laptop.  

 Participants were then randomly assigned to either the control or Tangram task condition. 

In each condition, the researcher read instructions aloud as participants followed along with the 

instructions displayed on the PowerPoint software. Participants then completed the word 

generation (control group) or Tangram puzzle (intervention group) tasks for 40 minutes.  

 Participants were then asked to stand three feet from the table with the laptop while the 

researcher introduced the conjecture task. Specifically, participants were instructed to read the 

geometry conjecture aloud, decide whether the conjecture was always true or ever false, and then 

provide a justification. All participants completed six conjectures that had their presentation 

order counterbalanced using a Latin square design. Conjecture responses were videotaped.  

Coding 

 Videos of this section of the experiment were organized, and participants’ speech was 

transcribed verbatim. Initial speech transcription was done using Otter for Business, an online 

automated transcription service (Otter.ai, 2023), before a researcher reviewed and corrected each 

transcript. Timestamps were then added to split the full transcripts into the six conjectures for 

coding, resulting in 504 video clips to be coded (84 participants x 6 conjectures). The occurrence 

of gestures was then coded for each clip using the videos. One researcher from the research team 

coded each transcript using the coding scheme described below.  
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Coding Scheme 

Transcripts were coded for mathematical insight, transformational proof, and gesture. 

Mathematical insight consists of two possible subcategories: verbal insight and gestural insight. 

Verbal insight was coded (1/0) for the presence of key mathematical ideas for each conjecture in 

the participant’s speech, as specified by our team of mathematicians and math educators 

(examples are shown in Table 14). Gestural insight (1/0) refers to spontaneous gestures in which 

a person’s gestures exhibit mathematical insights otherwise absent in speech (Xia et al., 2022.). 

These two categories were combined into a single Insight (1/0) category for this analysis. 

Transformational proof was coded (1/0) if the verbalized proof showed a logical 

sequence of generalizable reasoning and included operational thinking as defined by Harel and 

Sowder (2005). Any verbalized insights that met only part of this criteria were scored a zero.  

Three separate gesture codes were used. The first code identified the occurrence of a 

representational gesture that represents or depicts some feature or operation of a mathematical 

object or idea (Alibali & Nathan, 2012). Representational gestures were then divided into two 

subcategories: nondynamic depictive and dynamic depictive gestures. Nondynamic depictive 

gestures are representational gestures that only represent mathematical entities (including acts 

such as tracing or pointing) but do not involve transformations that alter the geometric objects 

under investigation. Dynamic depictive gestures are representational gestures that demonstrate 

geometric transformation, such as rotating, dilating, or skewing an object. Any occurrence of at 

least one of these types of gestures would lead to assigning a 1 for that respective gesture code. 

Participant transcripts that did not include any gesture or included non-representational gestures 

(e.g., beat gestures) were coded 0.  
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Inter-rater Reliability 

Inter-rater reliability was established by a researcher not involved in the initial coding 

process, who coded a random sample of roughly 20% of the participants’ videos. I also 

calculated Shaffer’s rho statistics to assess the validity of the inter-rater reliability using a kappa 

threshold of 0.65 (Eagan et al., 2017). The overall inter-rater reliability for these codes is κ = 

0.84 with a Shaffer’s rho of 0.00, indicating the sample size was sufficient to estimate the inter-

rater reliability at a threshold of at least 0.65.  Individual inter-rater reliability measures for the 

insight, transformational proof, and gesture codes are shown in Table 15.  

Table 15  

    

Inter-rater Reliability for Participant Transcript Coding 

Code 
Cohen’s  

kappa 

Shaffer’s 

 rho 

Omnibus 0.84 0.00 

Insight 0.85 0.00 

Verbal Insight 0.81 0.00 

Gestural Insight 0.87 0.02 

Transformational Proof 0.86 0.00 

Representational Gesture 0.81 0.00 

Non-Dynamic Gesture 0.79 0.00 

Dynamic Gesture 0.83 0.00 

Note. Shaffer’s rho was calculated with a kappa threshold of 0.65 

 

Results 

 Descriptive statistics showed no obvious differences in the covariate measures between 

the control and intervention groups, but there were differences in the percentage correct for proof 

and all three gesture categories (Table 16). Correlations among all the key factors are presented 

in Table 17. Verbal and gestural insight categories were combined into one “insight” category 

for correlations and analyses. For the analyses, mixed effect logistic regression models for binary 
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outcomes (0/1) on the accuracy of insight, proof, representational gesture, non-dynamic gesture, 

and dynamic gesture were fit using the glmer command in the R software package lme4 (Bates et 

al., 2015). Participant ID and conjecture were included as random effects in all models. In 

addition to the covariate measures, gender was added to the models as there are well-documented 

gender differences in spatial ability (e.g., Maeda & Yoon, 2013) and spatial anxiety (e.g., 

Malanchini et al., 2017).  

 As the dependent variables in each model are dichotomous, I will report odds ratios 

rather than effect sizes. I interpreted odds ratios as “small” (1.68 < OR < 3.47 or 0.29 < OR < 

0.60), “medium” (3.47 < OR < 6.71 or 0.15 < OR < 0.29), or “large” (OR > 6.71 or < 0.15) based 

on the recommendation of Chen and colleagues (2010).  

Table 16   

  

Descriptive statistics (N = 84) 

Variables 
Intervention 

(n=42) 

Control 

(n=42) 

Average spatial ability score (SD) 13.82 (3.72) 13.61 (3.89) 

Average spatial anxiety score (SD) 37.60 (13.59) 35.81 (11.88) 

Average verbal working memory accuracy 0.33 (0.17) 0.33 (0.13) 

Average visuospatial working memory accuracy 0.65 (0.18) 0.61 (0.16) 

Likelihood of correct insight (per trial) 61.11% 57.94% 

Likelihood of correct verbal insight (per trial) 56.75% 54.37% 

Likelihood of correct gestural insight (per trial) 6.75% 5.95% 

Likelihood of correct proof (per trial) 30.16% 11.90% 

Likelihood of representational gesture (per trial) 61.11% 50.79% 

Likelihood of nondynamic gesture (per trial) 59.52% 47.62% 

Likelihood of dynamic gesture (per trial) 32.14% 18.65% 
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Table 17   

   

Correlations for Key Factors   
Variables 1 2 3 4 5 6 7 8 9 

1. Gendera          

2. Verbal Working Memory -.180         

3. Visuospatial Working Memory -.114 .323        

4. Spatial Ability Score -.139 .262 .325       

5. Spatial Anxiety Score .067 .208 -.103 -.121      

6.  Insight -.206 .223 .209 .277 -.002     

7. Transformational Proof -.121 .287 .205 .248 .047 .452    

8.  Representational Gestures -.063 .177 .098 .113 -.068 .148 .291   

9. Non-Dynamic Gestures -.065 .181 .118 .133 -.066 .168 .295 .953  

10. Dynamic Gestures -.061 .184 .046 .095 -.002 .155 .482 .512 .433 

Note. Bolded correlations are significant at p < .010.  
aFemale/Other is the reference category.  

  

 

Spatial Interventions and Geometric Reasoning 

 I first fit a set of models predicting participants' mathematical insights to test the 

hypothesis that a short Tangram task will improve geometric reasoning as measured by 

mathematical insight and transformational proof. The results of Model 1 (Table 18) showed that 

several of the covariates were significantly predictive of insight. There was a small significant 

gender effect, with females less likely than non-females to produce a mathematical insight (OR = 

0.46; p = .007). Spatial ability scores had a small but highly reliable association with the relative 

odds of producing a correct mathematical insight, significantly associated with a 1.68 increase (p 

< .000). Both non-dynamic (OR = 3.13; p < .000) and dynamic gestures (OR = 2.64; p  = .003) 

had a small significant association with the production of insight. When the Tangram task was 

added to form Model 2 (Table 18), it was not significantly predictive of insight (OR = 1.40; p = 

.238). These results suggest that the Tangram task did not affect the participants’ odds of 
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producing a correct mathematical insight. However, gender (OR = 0.47; p = .008), spatial ability 

(OR = 1.68; p < .000), non-dynamic gestures (OR = 3.16; p  < .000), and dynamic gestures (OR 

= 2.69; p  = .002) continued to have a small significant association with insight production. 

Table 18 

  

Results of the Logistic Regression Predicting Insight 

Variable  B SE OR p  

Model 0: Null Model 

Random Component: Participant ID variance 1.61  1.27    

Random Component: Conjecture variance 0.31  0.56    

Intercept  0.53 0.29 1.70 .003 ** 

Model 1: Main Effects       

Random Component: Participant ID variance 0.58  0.76    

Random Component: Conjecture variance 0.70  0.84    

Intercept  -1.22 0.73 0.30 .049 * 

Femalea  -0.78 0.29 0.46 .007 ** 

Spatial Ability  0.52 0.16 1.68 .000 *** 

Spatial Anxiety  -0.01 0.15 0.99 .099  

Verbal Working Memory  1.88 1.13 6.55 .097  

Visuospatial Working Memory  1.34 0.90 3.82 .138  

Non-Dynamic Gesturesb  1.14 0.29 3.13 .000 *** 

Dynamic Gesturesb  0.97 0.33 2.64 .003 ** 

Model 3: Main Effects with Intervention       

Random Component: Participant ID variance 0.55  0.74    

Random Component: Conjecture variance 0.71  0.84    

Intercept  -2.99 0.72 0.05 .001 ** 

Femalea  -0.76 0.29 0.47 .008 ** 

Spatial Ability  0.52 0.15 1.68 .000 *** 

Spatial Anxiety  -0.01 0.15 0.99 .093  

Verbal Working Memory  1.99 1.12 7.32 .076  

Visuospatial Working Memory  1.39 0.89 4.01 .120  

Non-Dynamic Gesturesb  1.15 0.29 3.16 .000 *** 

Dynamic Gesturesb  0.99 0.33 2.69 .002 ** 

Tangram Taskc  0.34 0.28 1.40 .238  

Note. N = 504. OR = odds ratio.  
aMale/Other is the reference category.  
bNo Gesture/ Gesture of another type is the reference category. 
cControl Group is the reference category. 

* p < .05, ** p < .010; *** p < .001 
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 I then fit a set of models predicting participants’ transformational proof. The first model 

(Model 1; Table 19) showed a small significant association between both spatial ability scores 

and non-dynamic gestures and transformational proof. Spatial ability scores were associated with 

an 80% increase in the relative chance of producing a transformation proof (OR = 1.80; p = 

.003), while the occurrence of at least one non-dynamic gesture was associated with a 2.34 

increase in the relative odds of transformational proof production (p = .039). Additionally, 

students who had higher visuospatial working memory scores (OR = 11.02; p = .034) or 

produced at least one dynamic gesture (OR = 11.13; p < .000) were over 11 times more likely to 

produce a transformational proof than students with lower visuospatial scores or who did not 

produce dynamic gesture. When the Tangram task was added to the form Model 2 (Table 19), it 

had a significant medium effect on transformational proof production (OR = 4.26; p = .018). 

This result means that students in the Tangram task condition were over four times more likely to 

produce a transformational proof than students in the control condition. In this model, spatial 

ability scores (OR = 1.70; p = .007), visuospatial working memory scores (OR = 10.28; p = 

.034), non-dynamic gesture (OR = 2.27; p = .047), and dynamic gesture (OR = 10.38; p < .000) 

were significantly predictive of transformational proof production. Additionally, in models 1 and 

2, spatial anxiety was a marginally negative significant predictor of transformational proof (OR = 

0.76; p = .053, and OR = 0.77; p = .052, respectively). Participants with higher spatial anxiety 

scores were less likely to produce a transformational proof than participants with lower spatial 

anxiety scores, though these associations did not meet the criteria for a small effect size.  

 The effect of the Tangram task was also evident in students’ verbal explanations. Several 

participants directly referenced the task while explaining why the statement was always true. For 

example, one participant explaining the Parallelogram conjecture first gave a generalized 
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example that any consecutive angles of a parallelogram must be supplementary due to the 

parallel lines and the alternate angle theorem. The participant then gave a specific example using 

the Tangram shapes, stating: 

 Another way to think of it is like using the shapes. You could have the one parallelogram 

and then build an identical version with the two triangles and put them next to each other. Then 

you can see how the angles match and make a straight line or 180 degrees. I guess you could also 

do it with the square.  

Though the mention of the Tangram task was more common in the two-dimensional conjectures, 

there were a few cases in the Cylinder conjecture. For example, during their explanation, one 

participant remarked that they were “mentally breaking apart the cylinder to view its’ pieces like 

I did with the [Tangram] puzzles.” Combined, these quantitative and qualitative results give clear 

evidence for the hypothesis that a short Tangram task may positively impact the production of 

transformation proof but not mathematical insight.  
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Table 19 

  

Results of the Logistic Regression Predicting Transformational Proof 

Variable  B SE OR p  

Model 0: Null Model 

Random Component: Participant ID variance 2.42  1.55    

Random Component: Conjecture variance 0.09  0.29    

Intercept  -1.93 0.29 0.15 .000 *** 

Model 1: Main Effects       

Random Component: Participant ID variance 0.49  0.70    

Random Component: Conjecture variance 0.17  0.41    

Intercept  -5.21 0.91 0.01 .000 *** 

Femalea  -0.26 0.34 0.77 .451  

Spatial Ability  0.59 0.20 1.80 .003  ** 

Spatial Anxiety  -0.28 0.18 0.76 .053  

Verbal Working Memory  2.19 1.13 8.96 .061  

Visuospatial Working Memory  2.40 1.13 11.02 .034  * 

Non-Dynamic Gesturesb  0.85 0.41 2.34 .039  * 

Dynamic Gesturesb  2.41 0.36 11.13 .000  *** 

Model 3: Main Effects with Intervention       

Random Component: Participant ID variance 0.39  0.63    

Random Component: Conjecture variance 0.16  0.40    

Intercept  -5.23 0.89 0.01 .000  *** 

Femalea  -0.26 0.33 0.77 .427  

Spatial Ability  0.53 0.20 1.70 .007  ** 

Spatial Anxiety  -0.26 0.18 0.77 .052  

Verbal Working Memory  1.94 1.11 6.96 .081  

Visuospatial Working Memory  2.33 1.10 10.28 .034 * 

Non-Dynamic Gesturesb  0.82 0.41 2.27 .047 * 

Dynamic Gesturesb  2.34 0.36 10.38 .000 *** 

Tangram Taskc  1.45 0.34 4.26 .018 * 

Note. N = 504. OR = odds ratio.  
aMale/Other is the reference category.  
bNo Gesture/ Gesture of another type is the reference category. 
cControl Group is the reference category. 

* p < .05, ** p < .010; *** p < .001 

 

Spatial Interventions and Gesture 

In order to test the hypothesis that a short Tangram task will lead to increased gesture 

production, I fit three models predicting each of the three gesture categories: representational, 

non-dynamic, and dynamic. In the model predicting representational gestures (Model 1; Table 

20), spatial anxiety (p = .030) and visuospatial working memory (p < .000) were significantly 
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predictive of representational gesture production. Higher spatial anxiety scores were associated 

with an increase in the relative odds of producing at least one representational gesture of 1.22 (p 

= .030), though this association did not meet the criteria for a small effect size. Participants with 

higher visuospatial working memory scores were more than 11 times more likely to produce a 

representational gesture, suggesting that visuospatial memory has a large association with this 

type of gesture production. The Tangram task was not significantly predictive in this model (OR 

= 1.31; p = .131). 

Table 20 

  

Results of the Logistic Regression Predicting Representational Gestures 

Variable  B SE OR p  

Model 0: Null Model 

Random Component: Participant ID variance 2.90  1.70    

Random Component: Conjecture variance 1.72  1.31    

Intercept  0.42 0.57 1.52 .046 * 

Model 1: Main Effects       

Random Component: Participant ID variance 2.92  1.51    

Random Component: Conjecture variance 1.71  1.31    

Intercept  -0.40 0.53 0.67 .045 * 

Femalea  -0.08 0.19 0.92 .697  

Spatial Ability  0.17 0.03 1.19 .382  

Spatial Anxiety  0.20 0.01 1.22 .030  * 

Verbal Working Memory  0.16 0.61 1.17 .794   

Visuospatial Working Memory  2.41 0.73 11.13 .000 *** 

Tangram Taskb  0.27 0.19 1.31 .131  

Note. N = 504. OR = odds ratio.  
aMale/Other is the reference category.  
bControl Group is the reference category. 

* p < .05, ** p < .010; *** p < .001 

 

 The model predicting non-dynamic gestures (Model 1; Table 21) produced similar results 

to the representational gestures model. Higher spatial anxiety scores were significantly 

associated with an increase in the relative odds of producing non-dynamic gestures of 1.22 (p = 

.042). Increased visuospatial working memory scores had a large association with non-dynamic 
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gesture production and were significantly associated with an increase in the relative odds of 9.68 

(p = .002). The Tangram task was not significantly predictive in this model (OR = 1.40; p = 

.075).  

Table 21 

  

Results of the Logistic Regression Predicting Non-Dynamic Gestures 

Variable  B SE OR p  

Model 0: Null Model 

Random Component: Participant ID variance 3.14  1.77    

Random Component: Conjecture variance 1.76  1.33    

Intercept  0.29 0.58 1.34 .046 * 

Model 1: Main Effects       

Random Component: Participant ID variance 3.15  1.70    

Random Component: Conjecture variance 1.74  1.34    

Intercept  -0.77 0.53 0.46 .014 ** 

Femalea  -0.08 0.19 0.92 .696  

Spatial Ability  0.03 0.03 1.03 .228  

Spatial Anxiety  0.20 0.01 1.22 .042 * 

Verbal Working Memory  0.37 0.61 1.45 .560  

Visuospatial Working Memory  2.27 0.72 9.68 .002 ** 

Tangram Taskb  0.33 0.19 1.40 .075  

Note. N = 504. OR = odds ratio.  
aMale/Other is the reference category.  
bControl Group is the reference category. 

* p < .05, ** p < .010; *** p < .001 

 

 The results for the model predicting dynamic gestures (Model 1, Table 22) showed that 

dynamic gestures were significantly associated with an increase in visuospatial working memory 

scores (p = .017). Higher visuospatial working memory scores were associated with an increase 

in the relative odds of producing at least one dynamic gesture of 28.79, exceeding the threshold 

for a large effect size. Additionally, the Tangram task condition significantly predicted dynamic 

gesture production (p = .039). Participants in the Tangram task condition were 2.32 times more 

likely to produce at least one dynamic gesture than participants in the control condition, meeting 
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the threshold for a small effect size. These results support the hypothesis that Tangram tasks may 

positively impact participants’ gesture production, at least for this type of gesture. 

Table 22 

  

Results of the Logistic Regression Predicting Dynamic Gestures 

Variable  B SE OR p  

Model 0: Null Model 

Random Component: Participant ID variance 2.15  1.47    

Random Component: Conjecture variance 0.67  0.82    

Intercept  -1.64 0.40 0.19 .000 *** 

Model 1: Main Effects       

Random Component: Participant ID variance 1.64  1.28    

Random Component: Conjecture variance 0.68  0.82    

Intercept  -2.45 1.18 0.08 .037 * 

Femalea  -0.11 0.41 0.90 .794  

Spatial Ability  0.03 0.06 1.03 .563  

Spatial Anxiety  -0.02 0.02 0.98 .397  

Verbal Working Memory  -0.89 1.31 0.41 .499  

Visuospatial Working Memory  3.36 1.41 28.79 .017 * 

Tangram Taskb  0.84 0.41 2.32 .039 * 

Note. N = 504. OR = odds ratio.  
aMale/Other is the reference category.  
bControl Group is the reference category. 

* p < .05, ** p < .010; *** p < .001 

 

Discussion 

Spatial systems and gesture production each demonstrate reliable associations with 

mathematical reasoning. While gestures have often been considered to be an effective malleable 

factor for improving mathematical reasoning and problem solving, there has been far less 

research exploring the potential for changes in spatial abilities to alter math performance or to 

consider how such interventions would impact gesture production. Spatial abilities impact our 

ability to complete geometric tasks. Due to the malleability of spatial skills, students engaging in 

geometric thinking may benefit from engaging in spatial activities prior to completing geometric 
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tasks. The central goal of this paper was to investigate the potential of a brief Tangram task for 

improving students’ geometric reasoning and to understand the relationships between geometric 

reasoning, spatial anxiety, gesture production, and working memory. One additional contribution 

of this study is to document the role of spatial anxiety in understanding the relationships between 

geometric reasoning and spatial systems.  

To address the first research question of whether a short Tangram task impacts students’ 

geometric reasoning, I looked for the main effects of completing the invention on students’ 

ability to generate correct mathematical insights and transformational proofs. Even when 

controlling for prior spatial ability, working memory, spatial anxiety, and gesture production, this 

study found statistically solid support favoring the Tangram task for improving geometric 

reasoning through the increased production of transformational proof, supporting my hypothesis. 

However, there was no statistical evidence for the impact of a Tangram task on mathematical 

insight production. Thus, it appears that the Tangram task does not lead students to be more 

likely to generate key mathematical insights, but -- most importantly -- it does benefit students’ 

ability to produce mathematically valid proofs in high school level geometry. These 

transformational proofs require students to move beyond simply stating mathematical insights to 

incorporating those insights into argumentation that is logical, generalizable, and operational 

(Harel & Sowder, 2005), which may be more important for mathematics educational curriculum 

standards). 

One explanation for how Tangram tasks directly benefit the production of mathematically 

valid transformational proofs is that the spatial strategies used in Tangram tasks activities may 

transfer due to shared domain-general and domain-specific processes. Participants often recruit 

spatial skills and representations when solving mathematics problems to model, simulate, and 
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manipulate mathematical relations and to ground the meaning of mathematical symbols (Mix et 

al., 2019; Seron et al., 1992). This study utilized a physical spatial-based task that was likely to 

engage students’ spatial and motoric systems in ways that are congruent with the task demands 

for geometry reasoning. This prior engagement may allow students to access and employ those 

systems more readily during the geometric reasoning task, increasing the likelihood that students 

will successfully construct accurate, transformational geometric proofs.  

For example, after practicing spatial visualization right before geometric reasoning, 

students may transfer spatial visualization strategies such as generating visualization and 

transforming the geometric objects to facilitate reasoning through their proof, leading to more 

generalizable and operative thoughts than strictly recalling relevant mathematical theorems and 

properties. As seen in the qualitative examples, students also incorporated specific examples 

from the Tangram task into their verbal explanations to demonstrate their more generalized 

reasoning concretely. Students could be grounding their understandings of geometric properties 

in their physical experiences with the Tangram shapes. These explanations align with findings 

from Hawes and colleagues’ (2022) suggestions that spatial interventions with concrete materials 

(such as Tangrams) used with older children may be more effective.  

For the second research question addressing whether a short Tangram task impacts 

students’ tendency to gesture, I looked for the main effects of completing the invention on 

students’ ability to generate representational gestures. When controlling for spatial ability, 

working memory, and spatial anxiety, this study found that students in the Tangram task 

condition were more likely to produce dynamic gestures (a sub-category of representational 

gesture that are particularly important for mathematical reasoning) than students in the control 

condition, supporting my hypothesis. There were no significant differences between the 
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intervention and control conditions in the likelihood that participants would produce at least one 

non-dynamic or representational gesture.  

These results suggest that the spatial and motoric activation of the Tangram task uniquely 

impacts dynamic production rather than representational gestures. The movements that 

commonly occur during the task include picking up, rotating, flipping, and sliding the Tangram 

pieces. These actions are used to transform physical objects. Since dynamic gestures depict 

transformations on mental representations of objects, students in the spatial condition may be 

replaying the actions required in the Tangram task as spontaneous actions in the geometric tasks 

when they align with their mental transformations. As suggested by the model of action-

cognition transduction (Nathan, 2014), students in the Tangram task condition may benefit from 

a body-based experience which is then internalized and incorporated into their situation model of 

the geometric concepts as they manage the feedforward and feedback processes that monitor and 

regulate the influences of one’s goal-directed actions on the world (Nathan et al., 2014). This 

updated situation model can then be invoked during future geometric reasoning and displayed 

through dynamic representational gestures. This study and prior research have shown that 

increased dynamic gesture production (similar to that described by Garcia & Infante, 2012) is 

specifically tied to the increased likelihood of transformational proof production in geometric 

reasoning tasks (Nathan et al., 2021; Schenck et al., 2021; Walkington et al., 2019; Williams-

Pierce et al., 2017). Thus, the Tangram task may also indirectly impact proof production by 

increasing the likelihood of dynamic gesture production.  

The third research question was exploratory and investigated the associations between 

working memory and spatial anxiety and geometric reasoning and gesture production. For 

working memory, I hypothesized that visuospatial working memory would be associated with 
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both geometric reasoning and gesture production. The results provided evidence in support of 

this hypothesis. Results indicated that visuospatial working memory, but not verbal working 

memory, was significantly associated with transformational proof with large odds ratios (OR = 

11.02 across conditions; and OR = 10.28, with intervention condition in the model). These odds 

ratios were even greater than those for spatial ability and non-dynamic gesture and on par with 

the factors coding for the presence of dynamic gestures. Though the geometry reasoning tasks in 

this study had both spatial and verbal components, these results confirm that visuospatial 

working memory may play a uniquely important role in geometric reasoning (Giofrè et al., 2013; 

Giofrè et al., 2018). It could be that although the task is presented verbally, the use of geometry-

specific vocabulary invokes spatial representations needed for spatial visualization as both 

visuospatial working memory and spatial abilities may overlap as constructs (Miyake et al., 

2001).  

Visuospatial working memory was also significantly associated with all three gesture 

categories, again with large odds ratios (OR = 11.13 for representational gesture; OR = 9.68 for 

non-dynamic gestures; and OR = 28.79 for dynamic gestures). As visuospatial working memory 

and gesture were both associated with geometric thinking, these results may support the 

argument that one function of gestures is to active visuospatial working memory resources since 

visuospatial working memory is thought to support the imagery needed for spatial tasks 

(Cattaneo et al., 2006; Smithson & Nicoladis, 2014).  

A contribution of this study is the incorporation of a spatial anxiety measure to better 

understand the relationship between mathematical reasoning, spatial systems, gesture production, 

and working memory. I hypothesized that spatial anxiety would be negatively associated with 

geometric reasoning and gesture production. Spatial anxiety can impair both spatial abilities and 
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working memory (Ramirez et al., 2012). Spatial anxiety was significantly associated with 

representational and non-dynamic gesture production. Participants with higher spatial anxiety 

were more likely to produce representational and non-dynamic gestures. It could be that students 

are using representational gestures as an offloading mechanism to overcome their increased 

working load and inability to fully access their spatial abilities. Additionally, spatial anxiety was 

marginally significantly associated with proof production but not mathematical insight. This 

result suggests that spatial anxiety may be directly associated with students’ ability to produce 

logical, generalizable, operative proofs but not their ability to articulate mathematical insights. 

As with gesture, the reduction in performance could be due to spatial anxiety’s interference with 

spatial abilities and working memory.  

Limitations and Future Directions 

 These findings should be interpreted in light of several limitations. First, no post-test 

measures for spatial ability were included in this study. The spatial posttest was not included due 

to concerns about the length of time of the intervention. Though a pilot study showed that 

students had immediate spatial gains on identical measures after the Tangram task, it is possible 

that there are limits to these gains or that the Tangram task did not increase spatial ability in the 

participants in this study. Without delayed measures, it is impossible to determine how long any 

potential gains will last after the Tangram task. Future studies will need to investigate the 

potential for lasting effects of the short Tangram task or whether longer or repeated interventions 

provided additional gains in geometric reasoning and gesture production.  

 Second, the geometry conjectures were selected from a larger set of conjectures used in a 

separate study that selected conjectures from secondary mathematics textbooks. Furthermore, 

this study included both two- and three-dimensional properties in the conjectures. It is possible 
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that these decisions could lead to task differences that were not accounted for in the results. For 

example, three-dimensional geometry concepts are not focused on as deeply as two-dimensional 

concepts in high school curriculums. Though some undergraduates in this study have had 

additional geometry curricula that focused on three-dimensional concepts, it is likely that the 

majority of participants are less familiar with reasoning about the three-dimensional conjectures. 

Additionally, the Tangram task, primarily a two-dimensional task, may provide more substantial 

benefits for the two-dimensional conjectures due to task congruency. Future studies will need to 

account for participants’ expertise and explore the impact of conjecture task differences.  

 Third, in this study, I considered the Tangram puzzle task to be more aligned with a 

spatial intervention task rather than a geometry knowledge intervention task based on the 

interviews of pilot participants and prior studies that have specified that Tangram puzzle tasks 

are spatial interventions (e.g., Cornu et al., 2019; Mix et al., 2020; Siew et al., 2013; Sundberg, 

1994). These studies were also included in the meta-analyses by Hawes and colleagues (2022) 

that categorized the potential for spatial interventions to improve mathematical thinking. Though 

the pieces within Tangram contain geometric shapes, this study provided no direct instructions to 

the participants  the linked the shapes to specific geometric properties or knowledge. It is 

possible that in addition to invoking participants’ spatial and motor systems, the Tangram task 

also transferred geometry properties and knowledge to the subsequent geometric reasoning task. 

Future studies will need to investigate whether tasks such as the Tangram puzzle task impact 

spatial systems in order to be characterized as a spatial intervention. Studies will also need to 

investigate which, if any, geometric properties were transfer by students from the Tangram task 

to the geometric reasoning task. 
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 Finally, the third research question of this study was exploratory. Due to the complicated 

analyses used in this study and the focus on the spatial intervention questions, I did not complete 

an a priori power analysis for the effects of working memory and spatial anxiety on geometric 

reasoning and gesture production. It is possible that the analyses performed for this research 

question are underpowered in this study. Future studies should address this issue by doing a 

focused study on the role of working memory and spatial anxiety in geometric reasoning and 

gesture production with a larger sample to thoroughly investigate the claims made in this paper.  

Implications and Conclusion 

In light of these findings, I consider the implications of this study on emerging theories of 

spatial-based tasks for improving mathematics and grounded and embodied cognition (GEC). 

Recent meta-analyses have shown that spatial intervention experiences may be effective for 

improving mathematics outcomes (Hawes et al., 2022, Yang et al., 2020). These include studies 

that indicate that even short spatial interventions can be beneficial (e.g., Cheng & Mix, 2014; 

Hawes et al., 2015). However, the spatial interventions included in these two recent meta-

analyses are limited in scope and often focus on elementary-aged participants and paper-based 

assessments. The randomized controlled experimental design of the current study allows for 

causal conclusions that strengthen the endorsement for a causal relationship that short spatially 

based tasks such as Tangram puzzles play in geometric reasoning and gesture production. This 

study corroborates prior research that spatial interventions can affect mathematical reasoning and 

extends the prior research by including undergraduate participants completing discourse-based 

geometric reasoning tasks and gesture production. These results demonstrate that the skills 

learned or accessed in spatial interventions may transfer to more informal, verbal reasoning tasks 

often seen in classrooms and used as formative assessments by instructors. This study also added 
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to the limited literature on the role of spatial anxiety in mathematical thinking, though further 

research is necessary.  

This study also contributes to a series of empirical studies on the reciprocal relationships 

between the mind and body posited by many GEC scholars (Nathan, 2021; Shapiro, 2019). This 

study reinforces prior studies showing that students’ gestures and spatial skills benefit geometric 

proof production (Nathan et al., 2021; Pier et al., 2019; Walkington et al., 2019). Moreover, this 

study extends this work by demonstrating that spatial tasks may directly and indirectly impact 

proof production. The Tangram task led to an increase in the production of dynamic gestures, 

specifically those indicative of successful proof production. Gestures often convey information 

about how students think and what they understand that may not be apparent in their speech. 

Spatial tasks may be a way to increase students’ gesture production, supporting their 

mathematical reasoning and providing teachers insight into that reasoning. 
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Synthesis of Conclusions Across All Studies 

Mathematics education research is expanding away from a focus on traditional 

formalisms and abstract rules into understanding the ways in which mathematical thinking is 

grounded in our cognitive, motoric, and perceptual systems (e.g., Nathan et al., 2021). By 

deepening our understanding of the relationship between spatial anxiety and spatial ability, 

researchers can develop targeted interventions and educational strategies to address these issues, 

ultimately fostering skill development and performance improvement for individuals across 

different age groups and genders. This dissertation aims to deepen the understanding of the 

cognitive and affective components of the spatial system (i.e., spatial ability and spatial anxiety) 

and its relation to mathematics and explore the potential of a spatial task to improve success on 

discourse-based geometry tasks.  

Summary of Findings 

Chapter 1 first reviews the many spatial ability taxonomies and spatial tasks created 

through decades of research. This review illuminated several challenges in understanding the 

relationship between spatial ability and mathematics. One, the spatial taxonomies that describe 

spatial skills are often not based on well evidenced theoretical and analytical frameworks. Two, 

the sheer variety of spatial tasks and assessments are often untethered to evidence based spatial 

taxonomies. Three, there are critical gaps in spatial tasks and assessments, including a pressing 

need for tasks explicitly designed for a unitary spatial taxonomy, extrinsic-static classifications 

of spatial ability, and for use with children. These challenges can impede progress in designing 

effective spatial ability interventions for improving mathematics and learning, selecting 
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appropriate metrics for documenting change, and analyzing and interpreting student outcome 

data. In light of these gaps, the chapter concludes by offering a practice guide for navigating and 

selecting among the various spatial taxonomies and spatial tasks for use in mathematics 

education research.  

In Chapter 2, I presented two studies that explored the role of spatial ability and spatial 

anxiety in mathematical thinking. Study 1 provided evidence from adults that spatial ability and 

spatial anxiety is associated with performance on standardized mathematics outcomes. Evidence 

corroborated findings that spatial ability and mathematics ability are highly correlated (Davis, 

2015; Uttal & Cohen, 2012). Moreover, specific spatial ability sub-categories were associated 

differently with various mathematic tasks, providing a first step for identifying particular 

relationships between spatial ability sub-categories and mathematics domains. Finally, the results 

showed that high spatial anxiety scores predict lower spatial and mathematics ability scores. 

Study 2 partially built on this work by investigating the role of grounded embodied learning 

processes, such as spatial ability and spatial anxiety, in children's symbolic fraction knowledge. 

Like in study 1, particular sub-categories of spatial ability (i.e., mental rotation and spatial 

visualization) were associated with fraction knowledge scores. Additionally, spatial anxiety 

appeared to moderate the relationships between spatial ability and fraction knowledge. These 

two studies demonstrated that distinct spatial ability sub-categories may be associated with 

various mathematical domains and that spatial anxiety impair the relationship between spatial 

ability and mathematics ability.  

Chapter 3 expands the work on spatial ability, spatial anxiety, and mathematics to a 

discourse-based geometry task and gesture production. This study's findings built on Chapter 2 

to provide correlational evidence that spatial anxiety may moderate the relationship between 
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spatial ability and geometric thinking and between spatial ability and representational gesture 

production. When spatial anxiety decreased, the effect of spatial ability on the likelihood of 

mathematical insight and transformational proof production increased. Additionally, students 

with higher spatial anxiety scores and lower spatial ability scores were more likely to produce a 

representational gesture. In this study, I demonstrate the links between spatial ability, spatial 

anxiety, and gesture production in an area of mathematics that was previously unexplored.  

Finally, Chapter 4 aimed to test whether a short Tangram task would improve geometric 

thinking outcomes and impact gesture production using guidance from the framework. Evidence 

from this study showed that not only does a Tangram task directly improve geometric thinking 

through the increased likelihood of producing a transformational proof, but it may also indirectly 

improve geometric thinking by increasing the likelihood of dynamic gesture. Though there were 

no delayed measures in this study, it is encouraging to see that a Tangram task may at least have 

an immediate impact on geometric thinking. This study built on the work in Chapters 2 and 3 to 

further explore the role of spatial anxiety and working memory in geometric thinking and gesture 

production. Findings showed that, like in previous studies, participants with higher spatial 

anxiety were less likely to produce transformational proofs but more likely to make 

representational gestures. For working memory, visuospatial working was significantly 

associated with transformational proof and gesture, with large odds ratios. These results 

demonstrate that spatial anxiety and visuospatial working memory may be additional 

considerations in designing spatial interventions and mathematics education research. 

The studies confirm that spatial ability is essential for various mathematics domains, 

including more formalized and discourse-based mathematics tasks. Additionally, two of the 

studies provide foundational evidence that particular sub-categories of spatial ability may be tied 
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explicitly to different mathematical domains. Across all four studies, findings suggest that spatial 

anxiety may influence mathematic outcomes, possibly moderating the relationship between 

spatial ability and mathematical thinking. It may also play a role in gesture production, a 

significant predictor of geometric thinking in several prior studies (e.g., Nathan et al., 2021; Pier 

et al., 2019; Walkington et al., 2019). Together, the review of the literature and studies presented 

in this dissertation demonstrate the interconnectedness of spatial systems, gesture production, 

and mathematical thinking.  

Limitations and Future Directions 

Several factors limit the findings of these studies. First, the majority of the studies in this 

dissertation are exploratory, and two studies use existing data from more extensive studies. As 

such, there may be power issues with the sample sizes, and I am unable to make strong 

generalizable claims. Future work with larger samples, a prior power analyses, and studies 

designed to test the specific claims can focus on quantitative data collection for generalizable 

claims. Additional studies with larger sample sizes are especially vital for understanding the role 

of spatial anxiety, as the effect sizes seen in this study rarely meet the threshold for a small 

effect. A larger sample size may be able to more robustly measure spatial anxiety's actual 

associations with spatial and mathematic ability.  

Second, all the studies used spatial anxiety as a variable of interest. There is relatively 

limited literature on spatial anxiety and its cognitive impacts, especially in mathematics. 

Additionally, very few measures of spatial anxiety exist. In fact, to the best of my knowledge, 

only one measure is appropriate for use with adults and includes spatial anxiety factors other 

than navigational anxiety. Thus, these studies are limited by this lack of research. Future studies 
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should focus on refining measurement tools and exploring the contexts in which spatial anxiety 

manifests.  

Third, three studies were limited to adults due to limited access to school-age populations 

during the COVID-19 pandemic. Though this population was appropriate for the goals of this 

dissertation and for providing foundational knowledge of the relationships between spatial 

systems, gesture production, and mathematics, it does limit the practical applications of this 

work. In future work, studies should explore other age groups to understand how these 

relationships occur across development. A longitudinal study may also inform structural models 

of the long-term impacts of spatial ability and spatial anxiety on mathematics achievement. In a 

similar vein, all studies were completed in a laboratory setting. To better understand the role of 

spatial systems in mathematics and the potential of spatial tasks for improving mathematical 

thinking, future work should include classroom-based research to explore the benefit of 

integrating spatial tasks into existing mathematics curricula and reveal possible lasting effects of 

spatial training in authentic settings. 

I also plan to continue to develop and test spatial interventions to facilitate learning in 

STEM contexts. Specifically, I am interested in exploring the affordances of collaboration and 

immersive technologies such as virtual, augmented, and mixed reality. The few studies 

comparing the use of manipulatives such as Tangrams in virtual reality and physical settings 

have shown an increase in collaborative problem solving in the virtual reality groups but more 

opportunities for mirroring gestural imagery in the physical group due to the direct manipulation 

of the objects (Evan et al., 2011). This work suggests that virtual reality may have affordances 

for increasing collaborations at the expense of opportunities for students to make and mirror 

relevant gestures. However, the technology used in this study required a handheld controller, 
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limiting the movements that could be made in the virtual reality condition. To the best of my 

knowledge, no studies have investigated collaboration or immersive technologies that do not 

require handheld controllers for spatial interventions. These technologies provide high motoric 

engagement, gestural congruency, and immersion (Johnson-Glenberg et al., 2014) and may 

facilitate mathematics learning by increasing engagement (Buentello-Montoya et al., 2021).  

Implications for Mathematics Education Research 

Given these limitations, the work presented in this dissertation has several implications 

for spatial ability, grounded and embodied learning, and mathematics education. Other 

researchers can utilize this work to support future work on the intersection of spatial ability and 

mathematics. Chapter 1 illuminates many limitations of the current spatial ability literature that 

could inspire future work in the field, including developing unitary spatial ability measures. It 

also provides a practice guide for researchers to choose appropriate spatial taxonomies, analytic 

frameworks, and spatial tasks. This guide could make incorporating spatial ability into 

mathematics education research more approachable for researchers, especially those who are not 

as familiar with the decades of work in this area. Chapter 4 provides an example of how this 

guide could be used in research on spatial interventions for increasing mathematics outcomes. 

The studies in Chapter 2 identified specific spatial ability sub-categories distinctly associated 

with different mathematics domains. In line with the guide's recommendations, the findings in 

Chapter 2 could be used as a basis for selecting a specific-factor spatial taxonomy.  

These findings also contribute to the theoretical understanding of how spatial systems 

(i.e., spatial ability and spatial anxiety) are associated with gesture production and mathematical 

thinking. Though decades of research have demonstrated a connection between spatial ability 

and mathematics, this work extends the existing literature in three ways. First, the studies in 



142 

 

 

 

Chapter 2 provide evidence that different mathematical tasks may rely on specific spatial sub-

categories. Though other studies have focused on the role of particular spatial sub-categories in 

mathematics, such as mental rotation (e.g., Hawes et al., 2015; Thompson et al., 2013), these 

studies often do not include other tasks for other spatial sub-categories, limiting their use as a 

basis for other studies wishing to identify associations between mathematics and spatial sub-

categories. While spatial abilities are not explicitly taught in classrooms, there is a growing 

consensus that these skills should be included in STEM curricula (Gilligan-Lee et al., 2022). 

This work may provide the basis for designing curricula to target specific spatial skills relevant 

to mathematics. Second, Chapter 3 extends the work on spatial ability and mathematics into 

discourse-based informal tasks. Tasks such as these are relatively underrepresented in spatial 

ability literature. As these tasks often occur in mathematics classrooms and are essential for 

students to build mathematical argumentation, researchers must continue exploring the cognitive 

and affective components that affect these tasks. Third, Chapter 4 adds to the limited work on 

spatial tasks for mathematical thinking, especially in discourse-based tasks. Research on spatial 

training and interventions suggests that short interventions can improve spatial ability (Uttal et 

al., 2013). The results of this study suggest that spatially-involved tasks, such as a Tangram 

puzzle task, may extend to improved geometric thinking and increased gesture production.  

This work informs the limited work on spatial anxiety. Spatial anxiety is a multifaceted 

and complex construct that significantly impacts neurocognitive performance (Lauer et al., 2018; 

Lyons et al., 2018) and is negatively correlated with spatial ability (Malanchini, 2017). This 

research continues to support these theories. Moreover, the findings in this work indicate that 

spatial anxiety affects mathematical thinking and gesture production in children and adults. 
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Though the work here is largely exploratory, the contributions provide a basis for understanding 

spatial anxiety beyond the contexts of navigation and its association with cognitive processes.  

Finally, these studies also help extend the theories of grounded and embodied learning 

(GEL) and gesture. While GEL theories typically focus on observable behaviors, including 

gesture and language, recent frameworks, such as the Grounded and Embodied Learning 

Timescales (Nathan, 2021), have expanded to include unobservable behaviors, including 

affective and cognitive processes. The studies apply this expansion by positing that spatial ability 

and spatial anxiety are inherently embodied processes that help individuals ground their 

mathematical knowledge. Furthermore, there is evidence that spatial anxiety moderates the 

relationship between spatial ability and mathematics outcomes and that individuals with higher 

anxiety levels may use gesture as a cognitive offloading mechanism. These studies also add to 

the gesture literature by providing evidence that spatial anxiety may impact gesture production 

by modifying an individual's gesture threshold (Hostetter & Alibali, 2019). Thus, it is beneficial 

to include spatial ability and spatial anxiety in embodied processes to understand their role in 

grounding students' learning. 

Conclusion 

The work in this dissertation explores the connections between spatial systems, gesture 

production, and mathematics. My findings inform future mathematics educational researchers 

and instructional practices with spatial ability and spatial anxiety using a grounded and embodied 

perspective. I propose that these constructs are interrelated, and it is critical to continue 

conducting research that examines them simultaneously. Spatial ability and spatial anxiety 

impact various domains of mathematics, and it may be possible to develop spatial interventions 
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that can target mathematics performance, including discourse-based tasks and gesture production 

during these tasks.  

 

 

  



145 

 

 

 

References 

Abrahamson, D., & Bakker, A. (2016). Making sense of movement in embodied design for 

mathematics learning. Cognitive Research: Principles and Implications,1(1), 1–13. 

Adams, J., Resnick, I., & Lowrie, T. (2022). Supporting senior high-school students’ 

measurement and geometry performance: Does spatial training transfer to mathematics 

achievement? Mathematics Education Research Journal.  

Alibali, M. W. (2005). Gesture in spatial cognition: Expressing, communicating, and thinking 

about spatial information. Spatial Cognition and Computation, 5(4), 307 – 331.  

Alibali, M. W., & Nathan, M. J. (2012). Embodiment in mathematics teaching and learning: 

Evidence from learners' and teachers' gestures. Journal of the Learning Sciences, 21(2), 247–

286. 

Amalric, M., & Dehaene, S. (2016). Origins of the brain networks for advanced mathematics in 

expert mathematicians. Proceedings of the National Academy of Sciences, 113(18), 4909-4917.  

Ashcraft, M. H., & Krause, J. A. (2007). Working memory, math performance, and math 

anxiety. Psychonomic Bulletin & Review, 14, 243 – 248.  

Atit, K., Power, J. R., Pigott, T., Lee, J., Geer, E. A., Uttal, D. H., Ganley, C. M., & Sorby, S. A. 

(2021). Examining the relations between spatial skills and mathematical performance: A meta-

analysis. Psychonomic Bulletin & Review.  

Baddeley, A. D. (2000). The episodic buffer: a new component of working memory? Trends in 

Cognitive Science, 4, 417-423. 

Baddeley, A. D. & Hitch, G. J. (1974). Working memory. In G. A. Bower (Ed.), Recent 

advances in learning and motivation (Vol. 8, pp. 47-90). Academic Press. 

Baenninger, M., & Newcombe, N. (1989). The role of experience in spatial test performance: A 

meta-analysis. Sex Roles, 20, 327 – 344.  

Banich, M. T., & Compton, R. J. (2018). Cognitive neuroscience. Cambridge University Press. 

Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and brain sciences, 22(4), 577-

660. 

Barsalou, L.W. (2008). Grounded cognition. Annual Review of Psychology, 59(1), 617–645. 

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). lme4: Linear mixed-effects models 

using Eigen and S4. R package version 1.1-7. http://CRAN.R-project.org/package=lme4. 

Battista, M. T. (1990). Spatial visualization and gender differences in high school geometry. 

Journal for Research in Mathematics Education, 21(1), 47-60.  



146 

 

 

 

Battista, M. T. (2007). The development of geometric and spatial thinking. In F. K. Lester Jr. 

(Ed.), Second handbook of research on mathematics teaching and learning (pp. 843-908). 

Charlotte, NC: Information Age Publishing 

Battista, M.T., Frazee, L. M., & Winer, M. L. (2018). Analyzing the relation between spatial and 

geometric reasoning for elementary and middle school students. In K. S. Mix & M. T. Battista 

(Eds.), Visualizing Mathematics. Research in Mathematics Education (pp. 195 – 228). 

Springer, Cham.  

Beilock, S. L. (2010). Choke: What the secrets of the brain reveal about getting it right when you 

have to. Free Press, Simon & Schuster. 

Beilock, S. L., & Carr, T. H. (2005). When high-powered people fail: Working memory and 

“choking under pressure” in math. Psychological Science, 16(2), 101 – 105.  

Beilock, S. L. & DeCaro, M. S. (2007). From poor performance to success under stress: Working 

memory, strategy selection, and mathematical problem solving under pressure. Journal of 

Experimental Psychology: Learning, Memory & Cognition, 33(6), 983–998. 

Beilock, S. L., & Goldin-Meadow, S. (2010). Gesture changes thought by grounding it in action. 

Psychological Science, 21(11), 1605–1610. 

Berch, D. B., Foley, E. J., Hill, R. J., & Ryan, P. M. (1999). Extracting parity and magnitude 

from Arabic numerals: Developmental changes in number processing and mental 

representation. Journal of Experimental Child Psychology, 74, 286–308. 

Blacker, K. J., Weisberg, S. M., Newcombe, N. S., & Courtney, S. M. (2017). Keeping Track of 

Where We Are: Spatial Working Memory in Navigation. Visual Cognition, 25(7-8), 691–702.  

Beilock, S. L. & DeCaro, M. S. (2007). From poor performance to success under stress: Working 

memory, strategy selection, and mathematical problem solving under pressure. Journal of 

Experimental Psychology: Learning, Memory & Cognition, 33(6), 983–998. 

Boonen, A. J. H., van der Schoot, M., van Wesel, F., de Vries, M. H. & Jolles, J. (2013). What 

underlies successful world problem solving? A path analysis in sixth grade students. 

Contemporary Educational Psychology, 38, 271 – 279.  

Borst, G., Ganis, G., Thompson, W. L., & Kosslyn, S. M. (2011). Representations in mental 

imagery and working memory: Evidence from different types of visual masks. Memory & 

Cognition, 40(2), 204-217.  

Bower, C., Zimmermann, L., Verdine, B., Toub, T. S., Islam, S., Foster, L., Evans, N., Odean, 

R., Cibischino, A., Pritulsky, C., Hirsh-Pasek, K., & Golinkoff, R. M. (2020). Piecing together 

the role of a spatial assembly intervention in preschoolers’ spatial and mathematics learning: 

Influences of gesture, spatial language, and socioeconomic status. Developmental 

Psychology, 56(4), 686–698. 



147 

 

 

 

Bruce, C. D. & Hawes, Z. (2015). The role of 2D and 3D mental rotation in mathematics for 

young children: what is it? Why does it matter? And what can we do about it? ZDM 

Mathematics Education, 47, 331 – 343.  

Buckley, J., Seery, N. & Canty, D. (2018) A heuristic framework of spatial ability: a review and 

synthesis of spatial factor literature to support its translation into STEM education. Educational 

Psychology Review, 30, 947–972.  

Buentello-Montoya, D. A., Lomelí-Plascencia, M. G., & Medina-Herrera, L. M. (2021). The role 

of reality enhancing technologies in teaching and learning of mathematics. Computers and 

Electrical Engineering, 94, 107287. 

Bull, R. & Johnston, R. S. (1997). Children’s arithmetical difficulties: Contributions from 

processing speed, identification, and short-term memory. Journal of Experimental Child 

Psychology, 65.  

Bull, R., Johnston, R. S. & Roy, J. A. (1999). Exploring the roles of the visual-spatial sketch pad 

and central executive in children's arithmetical skills: Views from cognition and developmental 

neuropsychology. Developmental Neuropsychology, 15(3), 421-442. 

Burte, H., Gardony, A. L., Hutton, A., & Taylor, H. A. (2017). Think3d!: Improving 

mathematical learning through embodied spatial training. Cognitive Research: Principles and 

Implications, 2(13).  

Burte, H., Gardony, A. L., Hutton, A., & Taylor, H. A. (2019a). Knowing when to fold ‘em: 

Problem attributes and strategy differences in the Paper Folding Test. Personality and 

Individual Differences, 146, 171 – 181.  

Burte, H., Gardony, A. L., Hutton, A., & Taylor, H. A. (2019b). Make-A-Dice test: Assessing 

the intersection of mathematical and spatial thinking. Behavior Research Methods, 51(2), 602-

638.  

Carpenter, P. A., Just, M. A., Keller, T. A., Eddy, W., & Thulborn, K. (1999). Graded functional 

activation in the visuospatial system with the amount of task demand. Journal of Cognitive 

Neuroscience, 11(1), 9–24.  

Carr, M., Steiner, H. H., Kyser, B., and Biddlecomb, B. (2008). A comparison of predictors of 

early emerging gender differences in mathematics competency. Learning and Individual 

Differences, 18(1), 61–75.  

Carroll, J. B., (1993). Human cognitive abilities: A survey of factor-analytic studies. University 

of Cambridge Press.  

Case, R., Okamoto, Y., Griffin, S., McKeough, A., Bleiker, C., Henderson, B., Stephenson, K. 

M., Siegler, R. S., & Keating, D. P. (1996). The role of central conceptual structures in the 



148 

 

 

 

development of children's thought. Monographs of the Society for Research in Child 

Development, 61(1/2), i-295.  

Casey, B. M., Andrews, N., Schindler, H., Kersh, J. E., Samper, A. & Copley, J. (2008). The 

development of spatial skills through interventions involving block building activities. 

Cognition and Instruction, 26(3), 269 – 309.  

Casey, M. B., Nuttall, R. L., & Pezaris, E. (1999). Evidence in support of a model that predicts 

how biological and environmental factors interact to influence spatial skills. Developmental 

Psychology, 35(5), 1237-1247.  

Casey, M. B., Pezaris, E., Fineman, B., Pollock, A., Demers, L., & Dearing, E. (2015). A 

longitudinal analysis of early spatial skills compared to arithmetic and verbal skills as 

predictors of fifth-grade girls' math reasoning. Learning and Individual Differences, 40, 90-

100.  

Cattaneo, Z., Fastame, M. C., Vecchi, T., & Cornoldi, C. (2006). Working memory, imagery and 

visuo-spatial mechanisms. In T. Vecchi & G. Bottini (Eds.), Imagery and spatial cognition: 

Methods, models and cognitive assessment (pp. 101 – 137). John Benjamins Publishing 

Company. 

Chen, H., Cohen, P., & Chen, S. (2010). How big is a big odds ratio? Interpreting the magnitudes 

of odds ratios in epidemiological studies. Communications in Statistics – Simulation and 

Computation, 39(4), 860 – 864.  

Cheng, Y. L. (2016). The improvement of spatial ability and its relation to spatial training. In M. 

Khine (Ed.). Visual-spatial ability in STEM education (pp. 143 –172). Springer. 

Cheng, Y. L. & Mix, K. S. (2014). Spatial training improves children's mathematics ability. 

Journal of Cognition and Development, 15(1), 2 – 11.  

Chu, M. & Kita, S. (2008). Spontaneous gestures during mental rotation tasks: Insights into the 

microdevelopment of the motor strategy. Journal of Experimental Psychology: General, 137, 

706 – 723.  

Chu, M., & Kita, S. (2011). The nature of gestures' beneficial role in spatial problem 

solving. Journal of Experimental Psychology: General, 140(1), 102–116. 

Cohen, C. A., & Hegarty, M. (2012). Inferring cross sections of 3D objects: A new spatial 

thinking test. Learning and Individual Differences, 22(6), 868 -874.  

College Entrance Examination Board. (CEEB, 1939). Spatial Aptitude Test in Spatial 

Relationships. 

Colom, R., Contreras, M.J., Botella, J., & Santacreu, J. (2001). Vehicles of spatial ability. 

Personality and Individual Differences, 32(5), 903-912.  



149 

 

 

 

Cobb, P. (1994). Where Is the Mind? Constructivist and Sociocultural Perspectives on 

Mathematical Development. Educational Researcher, 23(7), 13–20. 

Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O. & Engle, R. W. 

(2005). Working memory span tasks: A methodological review and user's guide. Psychonomic 

Bulletin & Review, 12, 769 - 786. 

Cook, S. W., Yip, T. K., & Goldin-Meadow, S. (2012). Gestures, but not meaningless 

movements, lighten memory load when explaining math. Language and Cognitive Processes, 

27(4), 594 – 610. 

Cooper, L. A. (1975). Mental rotation of random two-dimensional shapes. Cognitive Psychology, 

7(1), 20-43.  

Cooper, L. A., & Mumaw, R. J. (1985). Spatial aptitude. In R. F. Dillman (Ed.). Individual 

differences in cognition (2nd. Ed., pp.67-94). Academic Press. 

Cornu, V., Hornung, C., Schiltz, C., & Martin, R. (2017). How do different aspects of spatial 

skills relate to early arithmetic and number line estimation? Journal of Numerical Cognition, 

3(2).  

da Costa, R., Pompeu, J. E., de Mello, D. D., Moretto, E., Rodrigues, F. Z., Dos Santos, M. D., 

Nitrini, R., Morganti, F., & Brucki, S. (2018). Two new virtual reality tasks for the assessment 

of spatial orientation Preliminary results of tolerability, sense of presence and 

usability. Dementia & Neuropsychologia, 12(2), 196–204.  

Davis, B. (Ed.). (2015). Spatial reasoning in the early years: Principles, assertions, and 

speculations. Routledge.  

Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number 

magnitude. Journal of Experimental Psychology: General, 122(3), 371.  

Delgado, A. R., & Prieto, G. (2004). Cognitive mediators and sex-related differences in 

mathematics. Intelligence, 32, 25–32.  

Derakshan, N., & Eysenck, M. W. (2010). Introduction to the special issue: Emotional states, 

attention, and working memory. Cognition and Emotion, 24(2), 189–199. 

DeWolf, M. Bassok, M., & Holyoak, K. J. (2015). From rational numbers to algebra: Separable 

contributions of decimal magnitude and relational understanding of fractions. Journal of 

Experimental Child Psychology, 133, 72 – 84.  

de Villiers, M. (1998). An Alternative Approach to Proof in Dynamic Geometry. In R. Lehrer & 

D. Chazan (Eds.), Designing Learning Environments for developing Understanding of 

Geometry and Space (pp. 369–393). Mahwah, NJ: Lawrence Erlbaum Associates. 



150 

 

 

 

Đokić R, Koso-Drljević M, Đapo N (2018) Working memory span tasks: Group administration 

and omitting accuracy criterion do not change metric characteristics. PLOS ONE 13(10): 

e0205169. 

D'Oliveira, T. (2004). Dynamic spatial ability: An exploratory analysis and a confirmatory study. 

The International Journal of Aviation Psychology, 14(1), 19–38.  

Eagan, B., Rogers, B., Serlin, R., Ruis, A. R., Arastoopour Irgens, G., & Shaffer, D. W. (2017, 

June). Can we rely on IRR? Testing the assumptions of inter-rater reliability. [Paper 

Presentation] In B. K. Smith, M. Borge, E. Mercier, & K. Y. Lim (Eds.), Proceedings of 12th 

International Conference on Computer Supported Learning, Vol. 2. Philadelphia, PA. 

Ekstrom, R. B., French, J.W., & Harmon, H. H. (1976). Manual for kit of factor-referenced 

cognitive tests. Educational Testing Service. 

Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in 

Psychological Science, 11, 19 -23.  

Estes, D. (1998). Young children's awareness of their mental activity. The case of mental 

rotation. Child Development, 69 (5), 1345–1360.  

Evans, M. A., Feenstra, E., Ryon, E., & McNeill, D. (2011). A multimodal approach to coding 

discourse: Collaboration, distributed cognition, and geometric reasoning. International Journal 

of Computer-Supported Collaborative Learning, 6, 253 – 278.  

Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive 

performance: Attentional control theory. Emotion, 7(2), 336-353. 

Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using 

G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41, 

1149-1160. 

Ferguson, A. M., Maloney, E. A., Fugelsang, J., & Risko, E. F. (2015). On the relation between 

math and spatial ability: The case of math anxiety. Learning and Individual Differences, 39, 1-

12. 

French, J. W. (1951). The description of aptitude and achievement tests in terms of rotated 

factors. University of Chicago Press.  

Frick, A., Hanson, M.A., & Newcombe, N. S. (2014) Development of mental rotation in 3- to 5-

year-old children. Cognitive Development, 28(4), 386-399.  

Frick, A, Möhring, W. and Newcombe, N. S. (2014). Picturing Perspectives: Development of 

Perspective-Taking Abilities in 4- to 8-Year-Olds. Frontiers in Psychology, 5, 386.  



151 

 

 

 

Fuchs, L. S., Schumacher, R. F., Long, J., Namkung, J., Hamlett, C. L., Cirino, P. T., Jordan, N. 

C., Siegler, R., Gersten, R., & Changas, P. (2013). Improving at-risk learners’ understanding of 

fractions. Journal of Educational Psychology, 105, 683 – 700. 

Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. 

Cognition, 44(1/2), 43–74.  

Galton, F. (1879). Generic images. The Nineteenth Century, 6(1), 157–169. 

Garcia, N., & Infante, N. E. (2012). Gestures as facilitators to proficient mental modelers. In L. 

R. Van Zoest, J.-J. Lo, & J. L. Kratky (Eds.), Proceedings of the 34th Annual Meeting of the 

North American Chapter of the International Group for the Psychology of Mathematics 

Education (pp. 289–295). Kalamazoo, Michigan. 

Gaughran, W. (2002). Cognitive modelling for engineers [Paper Presentation]. American Society 

for Engineering Education annual conference and exposition, Montréal, Canada.  

Geary, D. C., Saults, S. J., Liu, F., and Hoard, M. K. (2000). Sex differences in spatial cognition, 

computational fluency, and arithmetical reasoning. Journal of Experimental Child Psychology, 

77(4), 337 – 353.  

Gilligan, K. A., Thomas, M. S. C., & Farran, E. K. (2019). First demonstration of effective 

spatial training for near transfer to spatial performance and far transfer to a range of 

mathematics skills at 8 years. Developmental Science, 23(4).  

Gilligan, K. A., Thomas, M. S., & Farran, E. K. (2020). First demonstration of effective spatial 

training for near transfer to spatial performance and far transfer to a range of mathematics 

skills at 8 years. Developmental Science, 23(4), e12909.  

Gilligan-Lee, K. A., Hawes, Z. C. K., & Mix, K. S. (2022). Spatial thinking as the missing piece 

in mathematics curricula. Npj Science of Learning, 7(1), 1-4.  

Giofrè, D., Donolato, E., & Mammarella, I. C. (2018). The differential role of verbal and 

visuospatial working memory in mathematics and reading. Trends in Neuroscience and 

Education, 12, 1-6.  

Giofrè, D., Mammarella, I. C., Ronconi, L., & Cornoldi, C. (2013). Visuospatial working 

memory in intuitive geometry, and in academic achievement in geometry. Learning and 

Individual Differences, 23, 114-122. 

Glenberg, A. M., & Robertson, D. A. (1999). Indexical understanding of instructions. Discourse 

Processes, 28(1), 1-26. 

Glenberg, A., Willford, J., Gibson, B., Goldberg, A., & Zhu, X. (2012). Improving reading to 

improve math. Scientific Studies of Reading, 16(4), 316-340. 



152 

 

 

 

Göksun, T., Goldin-Meadow, S., Newcombe, N. & Shipley, T. (2013). Individual differences in 

mental rotation: What does gesture tell us? Cognitive Processing, 14(2), 153 – 162.  

Goldin-Meadow, S. (2003). Hearing gesture: How our hands help us think. Harvard University 

Press. 

Goldin-Meadow, S., Cook, S. W., & Mitchell, Z. A. (2009). Gesturing gives children new ideas 

about math. Psychological science, 20(3), 267-272. 

Gottschaldt, K. (1926). Über den Einfluss der Erfahrung auf die Wahrnehmung von Figuren. 

Psychologische Forschung, 8, 261-318.  

Guay, R. B. (1976). Purdue Spatial Visualization Test. Purdue Research Foundation. 

Guilford, J. P. & Lacey, J. I. (Eds) (1947). Printed Classification Tests (No. 5). U.S. Government 

Printing Office.  

Guilford, J. P. & Zimmerman, W. S. (1948). The Guilford-Zimmerman Aptitude Survey. Journal 

of Applied Psychology, 32(1), 24–34. 

Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between 

spatial skill and early number knowledge: The role of the linear number line. Developmental 

Psychology, 48(5), 1229–1241.  

Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2013). Teachers’ spatial anxiety 

relates to 1st- and 2nd graders’ spatial learning. Mind, Brain, and Education, 7(3), 196-199. 

Guttman, R., Epstein, E. E., Amir, M., & Guttman, L. (1990). A structural theory of spatial 

abilities. Applied Psychological Measurement, 14(3), 217 – 236. 

Hanna, G. (2000). Proof, explanation, and exploration: An overview. Educational Studies in 

Mathematics, 44(1), 5-23. 

Hannafin, R. D., Truxaw, M. P., Vermillion, J. R., & Liu, Y. (2008). Effects of spatial ability and 

instructional program on geometry achievement. Journal of Educational Research, 101(3), 

148–157.  

Hansen, N., Jordan, N. C., & Rodrigues, J. (2017). Identifying learning difficulties with 

fractions: a Longitudinal study of student growth from third through sixth grade. 

Contemporary Educational Psychology, 50, 45 – 59.  

Harel, G., & Sowder, L. (1998). Students’ proof schemes: Results from exploratory studies. 

Research in collegiate mathematics education III, 234-283. 

Harel, G., & Sowder, L. (2005). Toward comprehensive perspectives on the learning and 

teaching of proof. In F. Lester (Ed.), Second handbook of research on mathematics teaching 

and learning (pp. 805-842). Reston, VA: National Council of Teachers of Mathematics. 



153 

 

 

 

Harris, J., Hirsh-Pasek, K., & Newcombe, N. S. (2013) A new twist on studying the development 

of dynamic spatial transformations: Mental paper folding in young children. Mind, Brain, and 

Education, 7(1), 49-55.  

Hartje, W. (1987). The effect of spatial disorders on arithmetical skills. In G. Deloche & X. 

Seron (Eds.), Mathematical disabilities A cognitive neuropsychological perspective. (pp. 121 - 

135). Lawrence Erlbaum Associates. 

Hawes, Z., & Ansari, D. (2020). What explains the relationship between spatial and 

mathematical skills? A review of evidence from brain and behavior. Psychonomic Bulletin & 

Review, 27, 465 – 482. 

Hawes, Z., Moss, J., Caswell, B., Naqvi, S., & MacKinnon, S. (2017). Enhancing children’s 

spatial and numerical skills through a dynamic spatial approach to early geometry instruction: 

Effects of a 32-week intervention. Cognition and Instruction, 35(3), 236 – 264.  

Hawes, Z., Moss, J., Caswell, B., & Poliszczuk, D. (2015). Effects of mental rotation training on 

children's spatial and mathematics performance: a randomized controlled study. Trends in 

Neuroscience and Education, 4(3), 60 - 68.  

Hawes, Z. C. K., Gilligan-Lee, K. A., & Mix, K. S. (2022). Effects of spatial training on 

mathematics performance: A meta-analysis. Developmental Psychology, 58(1), 112-137.  

Hayes, J. R. (1973). On the function of visual imagery in elementary mathematics. In W. G. 

Chase (Ed.), Visual information processing (pp. 177-214). Academic. 

Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in 

Mathematics Education, 31(4), 396–428. 

Heathcote, D. (1994). The role of visuo-spatial working memory in the mental addition of multi~ 

digit addends. Current Psychology of Cognition, 13, 207-245. 

Hegarty, M. (2018). Ability and sex differences in spatial thinking: What does the mental 

rotation test really measure? Psychonomic Bulletin & Review, 25, 1212-1219. 

Hegarty, M., Burte, H., & Boone, A. P. (2018). Individual differences in large-scale spatial 

abilities and strategies. In D. R. Montello (Ed.), Handbook of behavioral and cognitive 

geography (p. 231–246). Edward Elgar Publishing.  

Hegarty, M., & Kozhevnikov, M. (1999). Types of visual-spatial representations and 

mathematical problem solving. Journal of Educational Psychology, 91(4), 684 – 689.  

Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial 

abilities at different scales: Individual differences in aptitude-test performance and spatial 

layout learning. Intelligence, 34(2), 151–176. https://doi.org/10.1016/j.intell.2005.09.005 



154 

 

 

 

Hegarty, M., Richardson, A. E., Montello, D. R., Lovelace, K., & Subbiah, I. (2002). 

Development of a self-report measure of environmental spatial ability. Intelligence, 30, 425–

447.  

Hegarty, M., Shah, P. & Miyake, A. (2000). Constraints on using the dual-task methodology to 

specify the degree of central executive involvement in cognitive tasks. Memory and Cognition, 

28, 376 – 385.  

Hegarty, M. & Waller, D. (2004). A dissociation between mental rotation and perspective-taking 

spatial abilities. Intelligence, 32(2), 175 – 191.  

Hegarty, M. & Waller, D. A. (2005). Individual differences in spatial abilities. In P. Shah, & A. 

Miyake (Eds.), The Cambridge Handbook of Visuospatial Thinking (pp. 121-169). Cambridge 

University Press.  

Herbst, P., & Brach, C. (2006). Proving and doing proofs in high school geometry classes: What 

is it that is going on for students? Cognition and Instruction, 24(1), 73-122. 

Hill, F., Mammarella, I. C., Devine, A., Caviola, S., Passolunghi, M. C., & Szűcs, D. (2016). 

Maths anxiety in primary and secondary school students: Gender differences, developmental 

changes and anxiety specificity. Learning and Individual Differences, 48, 45 – 53. 

Hostetter, A. B., & Alibali, M. W. (2007). Raise your hand if you’re spatial: Relations between 

verbal and spatial skills and gesture production. Gesture, 7(1), 73 – 95.  

Hostetter, A. B., & Alibali, M. W. (2008). Visible embodiment: Gestures as simulated action. 

Psychonomic Bulletin & Review, 15(3), 495 – 514.  

Hostetter, A. B., & Alibali, M. W. (2019). Gesture as simulated action: Revisiting the 

framework. Psychonomic Bulletin & Review, 26, 721 – 752.  

Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and 

space in parietal cortex. Nature Reviews Neuroscience, 6(6), 435–448.  

Hund, A. M. & Minarik, J. L. (2006). Getting From Here to There: Spatial Anxiety, Wayfinding 

Strategies, Direction Type, and Wayfinding Efficiency. Spatial Cognition & Computation, 6, 

179–201. 

Inhelder, B. & Piaget, J. (1958). The growth of logical thinking: From childhood to adolescence. 

Basic Books.  

Izard, V., Pica, P., Spelke, E.S., & Dehaene, S. (2011). Flexible intuitions of Euclidean geometry 

in an Amazonian indigene group. Proceedings of the National Academy of Sciences, 108(24), 

9782 – 9787.  



155 

 

 

 

Jansen, P. (2009). The dissociation of small-and large-scale spatial abilities in school-age 

children. Perceptual and motor skills, 109(2), 357-361. 

Johnson-Glenberg, M. C., Birchfield, D. A., Tolentino, L., & Koziupa, T. (2014). Collaborative 

embodied learning in mixed reality motion-capture environments: Two science studies. 

Journal of Educational Psychology, 106(1), 86 – 104. 

Jolicoeur, P., Regehr, S., Smith, L. B. J. P., Smith, G. N. (1985). Mental rotation of 

representations of two-dimensional and three-dimensional objects. Canadian Journal of 

Psychology, 39(1), 100-129.  

Jones, K. (2000). Providing a foundation for deductive reasoning: Students' interpretations when 

using dynamic geometry software and their evolving mathematical explanations. Educational 

Studies in Mathematics, 44(1), 55-85 

Judd, N., & Klingberg, T. (2021). Training spatial cognition enhances mathematical learning in a 

randomized study of 17,000 children. Nature Human Behaviour, 5(11), 1548-1554. 

Just, M. A., & Carpenter, P. A. (1985). Cognitive coordinate systems: accounts of mental 

rotation and individual differences in spatial ability. Psychological Review, 92(2), 137. 

Karp, S. A., & Konstadt, N. L. (1963). Manual for the Children's Embedded Figures Test. 

Cognitive Tests.  

Kim, S., Jiang, Y., & Song, J. (2015). The effects of interest and utility value on mathematics 

engagement and achievement. In K. A. Renninger, M. Nieswandt, & S. Hidi (Eds.), Interest in 

mathematics and science learning (pp. 63-78). Washington, DC: American Educational 

Research Association. 

Kita, S., Alibali, M. W., & Chu, M. (2017). How do gestures influence thinking and speaking? 

The gesture-for-conceptualization hypothesis. Psychological Review, 124(3)., 245 – 266.  

Kita, S., & Özyürek, A. (2003). What does cross-linguistic variation in semantic coordination of 

speech and gesture reveal? Evidence for an interface representation of spatial thinking and 

speaking. Journal of Memory and Language, 48, 16-32. 

Knuth, E. J. (2002). Secondary school mathematics teachers' conceptions of proof. Journal for 

Research in Mathematics Education, 33, 379-405. 

Knuth, E., Choppin, J., & Bieda, K. (2009). Middle school students’ production of mathematical 

justifications. In D. Stylianou, M. Blanton, & E. Knuth (Eds.), Teaching and learning proof 

across the grades: A K–16 perspective (pp. 153–170). Routledge. 

Kosslyn, S. M., Koenig, O., Barrett, A., Cave, C. B., Tang, J., & Gabrieli, J. D. E. (1989). 

Evidence for two types of spatial representations: Hemispheric specialization for categorical 

and coordinate relations. Journal of Experimental Psychology: Human Perception and 

Performance, 15(4), 723 – 735.  



156 

 

 

 

Kozhevnikov, M. & Hegarty, M. (2001). A dissociation between object manipulation spatial 

ability and spatial orientation ability. Memory & Cognition, 29(5), 745-756.  

Kremmyda, O., Hüfner, K., Flanagin, V. L., Hamilton, D. A., Linn, J., Strupp, M., Jahn, K. 

&Brandt, T. (2016). Beyond dizziness: Virtual navigation, spatial anxiety and hippocampal 

volume in bilateral vestibulopathy. Frontiers in Human Neuroscience, 10. 

Krüger, M. (2018). Mental rotation and the human body: Children's inflexible use of 

embodiment mirrors that of adults. British Journal of Developmental Psychology, 23(3),  

Krüger, M., Kaiser, M., Mahler, K., Bartels, W., & Krist, H. (2013). Analogue mental 

transformations in 3-year-olds: Introducing a new mental rotation paradigm suitable for young 

children. Infant and Child Development, 23, 123-138.  

Kyllonen, P. C. (1996). Is working memory capacity Spearman's g? In I. Dennis & P. Tapsfield 

(Eds.), Human abilities: Their nature and measurement (pp. 49-75). Erlbaum. 

Kyritsis, M. & Gulliver, S. R. (2009). Guilford-Zimmerman orientation survey: A validation 

[Paper Presentation]. The 7th International Conference on Information, Communications and 

Signal Processing, Macau.  

Kyttälä, M., Aunio, P., Lehto, J. E., Van Luit, J. & Hautamäki, J. (2003). Visuospatial working 

memory and early numeracy. Educational and Child Psychology, 20(3), 65–76. 

Kyttälä, M. & Lehto, J. E. (2008). Some factors underlying mathematical performance: the role 

of visuospatial working memory and non-verbal intelligence. European Journal of Psychology 

of Education, 23(77).  

Lakoff, G. & Nuñez, R. (2000). Where Mathematics Come From. Basic Books. 

Laski, E. V., Casey, B. M., Yu, Q., Dulaney, A., Heyman, M. & Dearing, E. (2013). Spatial 

skills as a predictor of first grade girls' use of higher level arithmetic strategies. Learning and 

Individual Differences, 23, 123–130.  

Lauer, J. E., Esposito, A. G., & Bauer, P. J. (2018). Domain-specific anxiety relates to children’s 

math and spatial performance. Developmental Psychology, 54, 2126 – 2138.  

Lawton, C. A. (1994). Gender differences in way-finding strategies: Relationship to spatial 

ability and spatial anxiety. Sex roles, 30(11-12), 765-779. 

Lee, S.A., Sovrano, V.A., & Spelke, E.S. (2012). Navigation as a source of geometric 

knowledge: Young children's use of length, angle, distance, and direction in a reorientation 

task. Cognition, 1, 144 – 161.  



157 

 

 

 

Legesse, M., Luneta, K., Ejigu, T. (2020). Analyzing the effects of mathematical discourse-based 

instruction on eleventh-grade students’ procedural and conceptual understanding of probability 

and statistics. Studies in Educational Evaluation, 67, 100918.  

Linn, M., & Petersen, A.C. (1985). Emergence and characterization of sex differences in spatial 

ability: A meta-analysis, Child Development, 56(6), 1479-1498.  

Lohman, D. F. (1979). Spatial ability: A review and re-analysis of the correlational literature 

(Technical Report No. 8). Stanford, CA: Aptitudes Research Project, School of Education, 

Stanford University.  

Lohman, D. F. (1988). Spatial abilities as traits, processes, and knowledge. In R. J. Sternberg 

(Ed.), Advances in the psychology of human intelligence (pp. 181–248). Lawrence Erlbaum. 

Lombardi, C. M., Casey, B.M., Pezaris, E., Shadmehr, M., & Jong, M. (2019). Longitudinal 

analysis of associations between 3-d mental rotation and mathematics reasoning skills during 

middle school: Across and within genders. Journal of Cognition and Development, 20(4), 487 

– 509.  

Lowrie, T., Logan, T. & Hegarty, M. (2019). The influence of spatial visualization training on 

students' spatial reasoning and mathematics performance. Journal of Cognition and 

Development, 20(5), 729 – 751.  

Lowrie, T., Resnick, I., Harris, D., & Logan, T. (2020) In the search of the mechanisms that 

enable transfer from spatial reasoning to mathematics understanding. Mathematics Education 

Research Journal, 32, 175 -188.  

Lukowski, S. L., DiTrapani, J., Jeon, M., Wang, Z., Schenker, V. J., Doran, M. M., . . . Petrill, S. 

A. (2019). Multidimensionality in the measurement of math-specific anxiety and its 

relationship with mathematical performance. Learning and Individual Differences, 70, 228-

235.  

Lütke, N. & Lange-Küttner, C. (2015). Keeping it in three dimensions: Measuring the 

development of mental rotation in children with the Rotated Colour Cube Test (RCCT). 

International Journal of Developmental Science, 9(2), 95-114.  

Lyons, I. M., Beilock, S. L. (2011). Mathematics anxiety: Separating the math from the anxiety. 

Cerebral Cortex, 22, 2102–2110. 

Lyons, I. M., Ramirez, G., Maloney, E. A., Rendina, D. N., Levine, S. C., & Beilock, S. L. 

(2018). Spatial anxiety: a Novel questionnaire with subscales for measuring three aspects of 

spatial anxiety. Journal of Numerical Cognition, 4, 526-553. 

Ma, X. (1999). A meta-analysis of the relationship between anxiety toward mathematics and 

achievement in mathematics. Journal for Research in Mathematics Education, 30, 520 – 540.  



158 

 

 

 

Malanchini, M., Rimfeld, K., Shakeshaft, N. G., McMilan, A., Schofield, K. L., Rodic, M., 

Rossi, V., Kovas, Y., Dale, P. S., Tucker-Drob, E. M., & Plomin, R. (2020). Evidence for a 

unitary structure of spatial cognition beyond general intelligence. Science of Learning, 5(9).  

Malanchini, M., Rimfeld, K., Shakeshaft, N. G., Rodic, M., Schofield, K., Selzam, S., . . . Kovas, 

Y. (2017). The genetic and environmental aetiology of spatial, mathematics and general 

anxiety. Scientific reports, 7, 42218. 

Marghetis, T., Edwards, L. D., & Núñez, R. (2014). More than mere handwaving. Emerging 

perspectives on gesture and embodiment in mathematics, 227-246. 

Marstaller, L., & Burianová, H. (2013). Individual differences in the gesture effect on working 

memory. Psychonomic Bulletin & Review, 20, 496 - 500.  

MacLeod, C., & Donnellan, A. M. (1993). Individual differences in anxiety and the restriction of 

working memory capacity. Personality and Individual Differences, 15(2), 163–173. 

Maeda, Y. & Yoon, S. Y. (2013). A meta-analysis on gender differences in mental rotation 

ability measured by the Purdue spatial visualization tests: Visualization of rotations (PSVT: R). 

Educational Psychology Review, 25(1), 69 – 94.  

McGee, M. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, 

hormonal and neurological influences. Psychological Bulletin, 86(5), 889–918.  

McGee, M. G. (1979). Human spatial abilities: sources of sex differences. New York, NY: 

Preager. 

McNeill, D. (1992). Hand and mind: What gestures reveal about thought. Chicago: The 

University of Chicago Press. 

McNeill, D. (2005). Gesture and thought. University of Chicago Press.  

Melinger, A., & Kita, S. (2007). Conceptualisation load triggers gesture production. Language 

and Cognitive Processes, 22, 473 – 500.  

Meyers, J. E., Grills, C. E., Zellinger, M. M., & Miller, R. M. (2013). Emotional distress affects 

attention and concentration: The difference between mountains and valleys. Applied 

Neuropsychology: Adult, 21(1), 28–35. 

Michael, W. B., Guilford, J. P., Fruchter, B. & Zimmerman, W. S. (1957). The description of 

spatial-visualization abilities. Educational and Psychological Measurement, 17, 185-199.  

Mix, K. S. (2019). Why are spatial skills and mathematics related? Child Development 

Perspectives, 13(2), 121 – 126.  



159 

 

 

 

Mix, K. S., Hambrick, D. Z., Satyam, V. R., Burgoyne, A. P., & Levine, S. C. (2018). The latent 

structure of spatial skill: A test of the 2 x 2 typology. Cognition, 180, 268 – 278. 

Mix, K.S., Levine, S. C., Cheng, Y. L., Stockton, J. D., & Bower, C. (2021). Effects of Spatial 

Training on Mathematics in First and Sixth Grade Children. Journal of Educational 

Psychology, 113(2), 304 – 314.  

Mix, K. S., Levine, S. C., Cheng, Y. L., Young, C., Hambrick, D. Z., Ping, R., & 

Konstantopoulos, S. (2016). Separate but correlated: The latent structure of space and 

mathematics across development. Journal of Experimental Psychology: General, 145(9), 

1206–1227.  

Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P. & Hegarty, M. (2001). How are visuo-

spatial working memory, executive functioning, and spatial abilities related? A latent variable 

analysis. Journal of Experimental Psychology: General, 130, 621-640. 

Mohler, J. L. (2008). A review of spatial ability research. Engineering Design Graphics Journal, 

72(2), 19 – 30.  

Moreau, D., & Wiebels, K. (2021). Assessing change in intervention research: The benefits of 

composite outcomes. Advances in Methods and Practice in Psychological Science, 4(1), 

2515245920931930. 

Moyer-Packenham, P. S., Salkind, G., & Bolyard, J. J. (2008). Virtual manipulatives used by K-

8 teachers for mathematics instruction: Considering mathematical, cognitive, and pedagogical 

fidelity. Contemporary Issues in Technology and Teacher Education, 8(3), 202 – 218.  

Nathan, M.J. (2014). Grounded mathematical reasoning. In L. Shapiro (Ed.), The Routledge 

Handbook of Embodied Cognition (1st ed., 171 -183). Routledge. 

Nathan, M. J. (2021). Foundations of embodied learning: a Paradigm for education. Routledge. 

Nathan, M. J., Schenck, K. E., Vinsonhaler, R., Michaelis, J. E., Swart, M. I., & Walkington, C. 

(2021). Embodied geometric reasoning: Dynamic gestures during intuition, insight, and 

proof. Journal of Educational Psychology, 113(5), 929–948. 

Nathan, M. J., & Swart, M. I. (2021). Materialist epistemology lends design wings: Educational 

design as an embodied process. Educational Technology Research and Development, 69, 1925 

– 1954.  

National Mathematics Advisory Panel. (2008). Foundations for success: The final report of the 

National Mathematics Advisory Panel. U.S. Department of Education. 

National Research Council (2006). Learning to think spatially. Washington, DC: The National 

Academies Press.  



160 

 

 

 

Newcombe, N. S. (2013). Seeing Relationships: Using Spatial Thinking to Teach Science, 

Mathematics, and Social Studies. American Educator, 37, 26–40. 

Newcombe, N. S. & Shipley, T. F. (2015). Thinking about spatial thinking: new typology, new 

assignments. In J. S. Gero (Ed), Studying Visual and Spatial Reasoning for Design Creativity 

(pp. 179 – 192). Springer, Dordrecht.  

Newcombe, N.S., Ratliff, K. R., Shallcross, W. L., & Twyman, A.D. (2009). Young children's 

use of features to reorient is more than just associative: Further evidence against a modular 

view of spatial processing. Developmental Science, 13(1), 213 – 220.  

Newell, A. (1994). Unified theories of cognition. Harvard University Press.  

Newell, A., & Simon, H. A. (1972). Human problem solving. Prentice-Hall. 

Okamoto, Y., Kotsopoulos, D., McGarvey, L., & Hallowell, D. (2015). The development of 

spatial reasoning in young children. In B. Davis (Ed), Spatial Reasoning in the Early Years: 

Principles, Assertions, and Speculations. (pp. 25-38). Routledge. 

Oltman, P. K., Raskin, E., & Witkin, H. A. (1971). Group Embedded Figure Test. Consulting 

Psychologists Press.  

Oostermeijer, M., Boonen, A. J. H., & Jolles, J. (2014). The relation between children's 

constructive play activities, spatial ability, and mathematical work problem-solving 

performance: a mediation analysis in sixth-grade students. Frontiers in Psychology, 5, 782.  

Otter.ai (2023). Otter for Business [Computer Software].  

Ottmar, E., & Landy, D. (2017). Concreteness fading of algebraic instruction: Effects on 

learning. Journal of the Learning Sciences, 26(1), 51 – 78.  

Organization for Economic Co-operation and Development, Programme for International 

Student Assessment. (2014) PISA 2012 Released Mathematics Questions. Retrieved from 

Organization for Economic Co-operation and Development website: 

http://www.oecd.org/pisa/test/PISA%202012%20items%20for%20release_ENGLISH.pdf 

Park, Y., & Matthews, P. G. (2021). Revisiting and refining relations between nonsymbolic ratio 

processing and symbolic math achievement. Journal of Numerical Cognition, 7, 328 – 350.  

Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C. (1995). A 

redrawn Vandenberg and Kuse Mental Rotations Test- Different versions and factors that 

affect performance. Brain and Cognition, 28(1), 39 – 58.  

Pier, E. L., Walkington, C., Clinton, V., Boncoddo, R., Williams-Pierce, C., Alibali, M. W., & 

Nathan, M. J. (2019). Embodied truths: How dynamic gesture and speech contribute to 

mathematical proof practices. Contemporary Educational Psychology, 58, 44 – 57.  

http://www.oecd.org/pisa/test/PISA%202012%20items%20for%20release_ENGLISH.pdf


161 

 

 

 

Potter, L. E. (1995). Small-scale versus large-scale spatial reasoning: Educational implications 

for children who are visually impaired. Journal of Visual Impairment & Blindness, 89(2), 142-

152. 

Quaiser-Pohl, C. (2003). The mental cutting test "Schnitte" and the Picture Rotation Test – Two 

new measures to assess spatial ability. International Journal of Testing, 3(3), 219-231.  

Ramful, A., Lowrie, T., & Logan, T. (2017). Measurement of spatial ability: Construction and 

validation of the Spatial Reasoning Instrument for Middle School Students. Journal of 

Psychoeducational Assessment, 35(7), 709 - 727.  

Ramirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2012). Spatial anxiety relates to 

spatial abilities as a function of working memory in children. Quarterly Journal of 

Experimental Psychology, 65(3), 474–487. 

Ramirez, G., Gunderson, E. A., Levine, S. C., & Beilock, S. L. (2013). Math anxiety, working 

memory, and math achievement in early elementary school. Journal of Cognition and 

Development, 14, 187 – 202.  

Ratliff, K.R. McGinnis, C.R., & Levine, S. C. (2010, August). The development and assessment 

of cross-sectioning ability in young children, [Paper presentation]. The 32nd Annual Meeting of 

the Cognitive Science Society, Portland, OR.  

Rav, Y. (1999). Why do we prove theorems? Philosophia Mathematica, 7(1), 5-41. 

Reuhkala, M. (2001). Mathematical skills in ninth-graders: relationship with visuo-spatial 

abilities and working memory. Educational Psychology, 21, 387–399. 

Richardson, J. T. E. (1994). Gender differences in mental rotation. Perceptual and Motor Skills, 

78(2), 435–448.  

Richardson, F. C., & Suinn, R. M. (1972). The Mathematics Anxiety Rating Scale: Psychometric 

data. Journal of Counseling Psychology, 19(6), 551-554.  

Rutherford, T., Karamarkovich, S. M. & Lee, D. S. (2018). Is the spatial/math connection 

unique? Associations between mental rotation and elementary mathematics and English 

achievement. Learning and Individual Differences, 62, 180 – 199.  

Saucier, D. M., Green, S. M., Leason, J., MacFadden, A., Bell, S., Elias, L. J. (2002). Are sex 

differences in navigation caused by sexually dimorphic strategies or by differences in the 

ability to use the strategies? Behavioral Neuroscience, 116 (3), 403 - 410.  

Schenck, K. E., Hubbard, E. M., Nathan, M. J., & Swart, M. I. (2022) Expanding understandings 

of embodied mathematical cognition in students’ fraction knowledge. In J. Culbertson, A., 

Perfors, H. Rabagliati, & V. Ramenzoni (Eds.), Proceedings of the Annual Meeting of the 

Cognitive Science Society, 44. Toronto, Canada.  



162 

 

 

 

Schenck, K. E., Kim, D., Swart, M. I., & Nathan, M. J. (2022, April). With no universal 

consensus, choice of spatial frameworks can affect model fitting and interpretation. [Paper 

Presentation]. The annual American Educational Research Association Conference, San Diego, 

CA.  

Schenck, K. E. & Nathan, M. J. (2020, April). Connecting mathematics, spatial ability, and 

spatial anxiety. [Paper Presentation]. The annual American Educational Research Association 

Conference, San Francisco, CA.  

Schenck, K. E., & Nathan, M. J. (2022, November). Spatial anxiety moderates the effect of 

spatial ability in geometric reasoning. In A. E. Lischka, E. B. Dyer, R.S. Jones, J. N. Lovett, J. 

Strayer, & S. Drown (Eds.), Proceedings of the forty-fourth annual meeting of the North 

American Chapter of the International Group for the Psychology of Mathematics Education 

(pp. 598). Nashville, TN, United States. 

Schenck, K. E., & Nathan, M. J. (2023). Navigating spatial ability for mathematics education: A 

review and roadmap for researchers. Manuscript in preparation.  

Schenck, K. E., Nathan, M. J., & Walkington, C. (2021). Groups that move together, prove 

together: Collaborative gestures and gesture attitudes among teachers performing embodied 

geometry. In S. Macrine & J. Fugate (Eds.), Movement Matters: How Embodied Cognition 

Informs Teaching and Learning. MIT Press.  

Schenck, K. E., Walkington, C., & Nathan, M. J. (2022). Mathematical Reasoning with Dynamic 

Geometry. https://doi.org/10.17605/OSF.IO/R9CUV 

Schliemann, A. D., & Carraher, D. W. (2002). The Evolution of Mathematical Reasoning: 

Everyday versus Idealized Understandings. Developmental Review, 22(2), 242–266. 

Schneider, J., & McGrew, K. (2012). The Cattell–Horn–Carroll model of intelligence. In D. 

Flanagan & P. Harrison (Eds.), Contemporary intellectual assessment: Theories, tests, and 

issues (3rd ed., pp. 99–144). Guilford Press.  

Schrank, F. A., McGrew, K. S., & Woodcock, R. W. (2001). Technical Abstract. [Woodcock-

Johnson III Assessment Service Bulletin No. 2.]. Itasca, IL: Riverside Publishing.  

Schultz, K. (1991). The contribution of solution strategy to spatial performance. Canadian 

Journal of Psychology, 45(4), 474–491.  

Seron, X., Pesenti, M., Noël, M., Deloche, G. & Cornet, J. (1992). Images of numbers, or "When 

98 is upper left and 6 sky blue.". Cognition, 44, 159-196. 

Sfard, A. (2008) Thinking as communicating: Human development, the growth of discourses, 

and mathematizing. Cambridge University Press.  

https://doi.org/10.17605/OSF.IO/R9CUV


163 

 

 

 

Shah, P., & Miyake, A. (1996). The separability of working memory resources for spatial 

thinking and language processing: an individual differences approach. Journal of experimental 

psychology: General, 125(1), 4 - 27.  

Shapiro, L. (2019). Embodied cognition. Routledge. 

Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in 

intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational 

Psychology, 93(3), 604 - 614.  

Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 

171(3972), 701-703.  

Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., ... 

Chen, M. (2012). Early predictors of high school mathematics achievement. Psychological 

Science, 23, 691– 697.  

Siegler, R. S., & Pyke, A. A. (2013). Developmental and individual differences in understanding 

of fractions. Developmental Psychology, 49, 1994 – 2004. 

Siew, N. M., Chong, C. L., & Abdullah, M. R. (2013). Facilitating students’ geometric thinking 

through Van Heile’s phased-based learning using Tangram. Journal of Social Science, 9(3), 

101 – 111.  

Smithson, L., & Nicoladis, E. (2014). Lending a hand to imagery? The impact of visuospatial 

working memory interference upon iconic gesture production in a narrative task. Journal of 

Nonverbal Behavior, 38, 247 – 258.  

Sorby, S. (1999). Developing 3-D spatial visualization skills. Engineering Design Graphics 

Journal, 63(2), 21–32 

Sorby, S. A. (2009). Educational research in developing 3-D spatial skills for engineering 

students. International Journal of Science Education, 31(3), 459-480.  

Sorby, S., Casey, B., Veurink, N., & Dulaney, A. (2013). The role of spatial training in 

improving spatial and calculus performance in engineering students. Learning and Individual 

Differences, 26, 20-29.  

Sorby, S. A. & Panther, G. C. (2020). Is the key to better PISA math scores improving spatial 

skills? Mathematics Education Research Journal, 32(2), 213 – 233.  

Sorby, S., & Veurink, N. (2019). Preparing for STEM: Impact of spatial visualization training on 

middle school math performance. Journal of Women and Minorities in Science and 

Engineering, 25(1), 1-23.  

Spearman, C. (1927). The abilities of man, their nature and measurement. Macmillan. 



164 

 

 

 

Starling-Alves, I., Wronski, M. R., & Hubbard, E. M. (2021). Math anxiety differentially impairs 

symbolic, but not nonsymbolic, fraction skills across development. Annals of the New York 

Academy of Sciences. 

Stieff, M., & Uttal, D. (2015). How much can spatial training improve STEM achievement? 

Educational Psychology Review, 27(4), 607 – 615.  

Stone, J. M, & Towse, J. N. (2015). A working memory test battery: Java-based collection of 

seven working memory tasks. Journal of Open Research Software, 3 (1), e5. 

Suinn, R. M., Taylor, S., & Edwards, R. W. (1988). Suinn mathematics anxiety rating scale for 

elementary school students (MARS-E): Psychometric and normative data. Educational and 

Psychological Measurement, 48, 979 – 986.  

Sundberg, S. E. (1994). Effect of spatial training on spatial ability and mathematical 

achievement as compared to traditional geometry instruction. University of Missouri-Kansas 

City. 

Surahmi, E., Budayasa, I. K., & Ekawati, R. (2018). The role of gesture to mathematics' fraction 

base concept instruction. Journal of Physics Conference Series, 1108.  

Swart, M.I., Friedman, B., Vitale, J.M., Kornkasem, S., Hollenberg, S., Lowes, S., Nankin, F., 

Sheppard, S. and Black, J.B.B. (2014). Mobile Movement Mathematics: Exploring the gestures 

students make while explaining FrActions. Proceedings of the annual conference of the 

American Educational Research Association. Philadelphia, PA.  

Swart, M. I., Friedman, B., Kornkasem, S., Lee, A., Lyashevsky, I., Black, J. B., Vitale, J. M., & 

Sheppard, S. (2016). A design-based approach to situating embodied learning of mathematical 

fractions using narratives and gestures in a tablet-based game. Proceedings of the annual 

conference of the American Educational Research Association. Washington, D.C. 

Swart, M. I., Schenck, K. E., Xia, F., Kim, D., Grondin, M., Nathan, M. J., & Walkington, C. 

(2023, May). Embodying students’ geometric thinking in an interactive narrative game. [Paper 

Presentation]. American Educational Research Association Conference, Chicago, IL, United 

States. 

Tam, Y. P., Wong, T. T., & Chan, W. W. L. (2019). The relation between spatial skills and 

mathematical abilities: The mediating role of mental number line representation. 

Contemporary Educational Psychology, 56, 14 – 24.  

Tartre, L. A. (1990). Spatial orientation skill and mathematical problem solving. Journal for 

Research in Mathematics Education, 21(3), 216 -229.  

Thompson, J. M., Nurek, H. C., Moeller, K., & Kardosh, R. C. (2013). The link between mental 

rotation ability and basic numerical representations. Acta Psychologica, 144, 324–331.  



165 

 

 

 

Thurstone, L. L. (1938). Primary mental abilities. Chicago University Press. 

Thurstone, L. L. (1950). Some primary abilities in visual thinking (Report number. 59). Chicago, 

IL: Psychometric Laboratory, University of Chicago. 

Toomarian, E.Y., Meng, R., & Hubbard, E.M. (2019). Individual Differences in Implicit and 

Explicit Spatial Processing of Fractions. Frontiers in Psychology, 10(569). 

Tufte, E.R. (2001). The visual display of quantitative information (2nd ed.). Graphics Press. 

Tutton, M. (2013). A new approach to analysing static locative expressions. Language and 

Cognitive Processes, 22, 25 – 60.  

Tversky, B. (2019). Transforming Thought. In Mind in motion (pp. 85 – 106). Basic Books. 

Uttal, D. H., & Cohen, C. A. (2012). Spatial thinking and STEM education: When, why, and 

how? In B. Ross (Ed.), Psychology of learning and motivation (Vol. 57, pp. 147-181). 

Academic Press.  

Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, 

N. S. (2013). The Malleability of Spatial Skills: A Meta-Analysis of Training Studies. 

Psychological Bulletin, 139(2), 352–402.  

Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional 

spatial visualization. Perceptual and Motor Skills, 47, 599–604.  

Viarouge, A., Hubbard, E. M., & McCandliss, B. D. (2014). The cognitive mechanisms of the 

SNARC effect: an individual differences approach. PloS one, 9, e95756.  

Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., Newcombe, N. S., Filipowicz, A. T., & 

Chang, A. (2014). Deconstructing building blocks: Preschoolers' spatial assembly performance 

relates to early mathematical skills. Child Development, 85(3), 1062–1076.  

von Bastian, C. C., Locher, A., & Ruflin, M. Tatool: A Java-based open-source programming 

frameworking for psychological studies. Behavior Research Methods, 45, 108-115. 

Voyer, D., Voyer, S., & Bryden, M.P. (1995). Magnitude of sex differences in spatial abilities: a 

meta-analysis and consideration of critical variables. Psychological Bulletin, 117(2), 250 -270.  

Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 

50 years of cumulative psychological knowledge solidifies its importance. Journal of 

Educational Psychology, 101(4), 817.  

Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space, and quantity. 

Trends in Cognitive Sciences, 7, 483–488. 



166 

 

 

 

Walkington, C., Chelule, G., Woods, D., & Nathan, M.J. (2019). Collaborative gesture as a case 

of extended mathematical cognition. Journal of Mathematical Behavior, 55, 1-20. 

Walkington, C., Nathan, M. J., Wang, M. & Schenck, K.E. (2022). The effect of relevant 

directed arm motions on gesture usage and proving of geometry conjectures. Cognitive 

Science, 46(9). 

Wang, L., Bolin, J., Lu, Z., & Carr, M. (2017). Visuospatial Working Memory Mediates the 

Relationship Between Executive Functioning and Spatial Ability. Frontiers in Psychology.  

Wang, L., Cohen, A. S., & Carr, M. (2014). Spatial ability at two scales of representation: A 

meta-analysis. Learning and Individual Differences, 36, 140 -144.  

Wei, W., Budakova, A., Bloniewski, T., Matsepuro, D., & Kovas, Y. (2018). Spatial anxiety and 

spatial performance in university students in Russia and China. In The European Proceedings 

of Social & Behavioural Sciences, 771–781. 

Weisberg, S. M., Schinazi, V.R., Newcombe, N. S., Shipley, T. F., & Epstein, R. A. (2014). 

Variations in cognitive maps: Understanding individual differences in navigation. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 40(3), 669 – 682.  

Williams-Pierce, C., Pier, E. L., Walkington, C., Boncoddo, R., Clinton, V., Alibali, M. W., & 

Nathan, M. J. (2017). What we say and how we do: action, gesture, and language in proving. 

Journal for Research in Mathematics Education, 48(3), 248-260. 

Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 

625–636. 

Witkin, H. A. (1950). Individual differences in ease of perception of embedded figures. Journal 

of Personality, 19, 1-15.  

Witkin, H. A., Moore, C. A., Goodenough, D. R., & Cox, P. W. (1977). Field-dependent and 

field-independent cognitive styles and their educational implications. Review of Educational 

Research, 47(1), 1 – 64.  

Witkin, H. A., Oltman, P. K., Raskin, E., & Karp, S. A. (1971). A manual for the embedded 

figures test. Consulting Psychologist Press.  

Wolfgang, C., Stannard, L., & Jones, I. (2003). Advanced constructional play with LEGOs 

among preschoolers as a predictor of later school achievement in mathematics. Early Child 

Development and Care, 173(5), 467-475.  

Woods, D., & Fassnacht, C. (2020). Transana Multiuser (Version 3.32d) [Computer software]. 

Retrieved from http://transana.com. 



167 

 

 

 

Wraga, M., Creem, S. H., & Profitt, D. R. (2000). Updating displays after imagined object and 

viewer rotations. Journal of Experimental Psychology: Learning, Memory, & Cognition, 26(1), 

151-168.  

Wright, R., Thompson, W. L., Ganis, G., Newcombe, N. S., & Kosslyn, S. M. (2008). Training 

generalized spatial skills. Psychonomic Bulletin & Review, 15(4), 763 – 771.  

Xia, F., Schenck, K.E., Swart, M.I., & Nathan, M.J. (2022, June). Directed actions scaffold 

gestural insights in geometric reasoning. In Proceedings of the 2022 International Conference 

of the Learning Sciences-ICLS2022 (pp. 1982-1983). Hiroshima, Japan: International Society 

of the Learning Sciences.  

Xie, F., Zhang, L., Chen, X., & Xin, Z. (2020). Is spatial ability related to mathematical ability: a 

Meta analysis. Educational Psychology Review, 32, 113 -155. 

Yang, W., Liu, H., Chen, N., Xu, P, & Lin, X. (2020). Is early spatial skills training effective? A 

meta-analysis. Frontiers in Psychology, 27.  

Yilmaz, B. (2009). On the development and measurement of spatial ability. International 

Electronic Journal of Elementary Education, 1(2), 1–14. 

Young, C. J., Levine, S. C., & Mix, K. S. (2018a). The connection between spatial and 

mathematical ability across development. Frontiers in Psychology, 9, 775.  

Young, C. J., Levine, S. C., & Mix, K. S. (2018b). What processes underlie the relation between 

spatial skill and mathematics? In K. S. Mix & M. T. Battista (Eds.), Visualizing Mathematics. 

Research in Mathematics Education (pp. 195 – 228). Springer, Cham.  

Yuan, L., Kong, F., Luo, Y., Zeng, S., Lan, J., & You, X. (2019). Gender differences in large-

scale and small-scale spatial ability: A systematic review based on behavioral and 

neuroimaging research. Frontiers in Behavioral Neuroscience, 13, 128. 

Zacks, J., Rypma, B., Gabrieli, J. D. E., Tversky, B., & Glover, G. H. (1999). Imagined 

transformations of bodies: An fMRI investigation. Neuropsychologia, 37(9), 1029 – 1040.  

Zacks, J. M., Mires, J., Tversky, B., & Hazeltine, E. (2000). Mental spatial transformations of 

objects and perspective. Spatial Cognition and Computation, 2, 315–332.  

Zhang, X., & Lin, D. (2015). Pathways to arithmetic: The role of visual-spatial and Language 

skills in written arithmetic, arithmetic word problems, and nonsymbolic 

arithmetic. Contemporary Educational Psychology, 41, 188-197.  

Zhang, J., Zhao, N., & Kong, Q. P. (2018). The Relationship Between Math Anxiety and Math 

Performance: A Meta-Analytic Investigation. Frontiers in Psychology. 

Zhong, J. Y., & Kozhevnikov, M. (2016). Relating allocentric and egocentric survey-based 

representations to the self-reported use of a navigation strategy of egocentric spatial updating. 

Journal of Environmental Psychology, 46, 154-175.  



168 

 

 

 

Appendix A 

Interaction Plots from Chapter 3 

Figure A1 

Probability of Verbal Insight by Spatial Ability for Three Levels of Spatial Anxiety 
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Figure A2 

Probability of Transformational Proof by Spatial Ability for Three Levels of Spatial Anxiety 

 

Figure A3 

Probability of Representational Gesture by Spatial Ability for Three Levels of Spatial Anxiety 
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Figure A4 

Probability of Non-Dynamic Gesture by Spatial Ability for Three Levels of Spatial Anxiety 

 

 

Figure A5 

Probability of Non-Dynamic Gesture by Spatial Ability for Three Levels of Spatial Anxiety 
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