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General introduction 

High nitrogen (N) and phosphorus (P) concentrations in streams can contribute to 

eutrophication and acidification of receiving waters, the loss of biological diversity and 

estuarine productivity, and present a public health concern (Vitousek et al. 1997). Stream 

water quality in mixed-use watersheds is a function of contributions from agricultural 

runoff as well as the interacting biotic and abiotic factors that control ecosystem-level 

nutrient cycling (Griffith et al. 2002, Meador and Goldstein 2003, Buck et al. 2004, 

Srivastava et al. 2007). Although nutrient concentrations in predominantly forested 

watersheds are generally small in comparison to agricultural or human land use dominated 

watersheds (Johnson et al. 1997, Lowrance et al. 1997), nitrate concentrations from 

forested watersheds can increase significantly in response to disturbance (Eshleman 2000, 

Eshleman et al. 2009). For effective management of receiving waters, accurate, repeatable 

and spatially explicit estimates of nutrient loading are required. Satellite and airborne 

remote sensing techniques allow synoptic long-term coverage of large regions, and in 

combination with climate data, can be leveraged to better predict the effects of land cover 

composition and disturbance events on nutrient export from watersheds.  

 Models based on land-use/land-cover (LULC) classifications derived from 

medium-to-coarse spatial scale multispectral (MX) satellite imagery have often been 

employed to predict variations in water quality across large regions. These models rely on 

LULC classifications, and, combined with other environmental data, have been shown to 

be effective in predicting water quality at varying spatial and temporal scales (Osborne and 

Wiley 1988, Allan et al. 1997, Krysanova et al. 1998, Basnyat et al. 2000, Meador and 
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Goldstein 2003, Maillard and Pinheiro Santos 2008). However, LULC maps are static 

generalizations of the land surface and do not capture the full spatial and temporal 

heterogeneity of land surface dynamics. Continuous measurements of land surface 

dynamics are needed to better characterize nutrient dynamics across large scales. 

 The drawbacks of limited spectral resolution of MX sensors can be overcome with 

imaging spectroscopy (or hyperspectral (HX) remote sensing). Recent research has shown 

that spectroscopic methods can be used to characterize key plant functional traits such as 

foliar nitrogen content (Townsend et al. 2003, Majeke et al. 2008, Martin et al. 2008), 

specific leaf area (SLA), foliar lignin and cellulose (Majeke et al. 2008, Kokaly et al. 2009) 

and δN
15

 concentrations (Kleinebecker et al. 2009, Elmore and Craine 2011). Recently, it 

has been shown that foliar nitrogen and lignin/cellulose concentrations characterize leaf 

lifespan (Wright et al. 2005, Shipley et al. 2006, Santiago 2007), influence soil C:N ratios 

(Ollinger et al. 2002) and in combination with disturbance events (Eshleman 2000, McNeil 

et al. 2007), may be strong controllers of nutrient cycling in forested landscapes (Aber et 

al. 1991, Fortunel et al. 2009, de Bello et al. 2010). 

 However, both multi-spectral and hyperspectral remote sensing techniques fail to 

accurately track ecosystem processes at a time scale fine enough to characterize the 

temporal dynamics of the land surface and related changes in nutrient cycling rates. Data 

on changes in the land surface spaced close enough in time can be leveraged to track 

changes in land surface characteristics on a continuous basis. This can be achieved from 

hypertemporal (TX) satellite imagery that provides near-daily coverage of the earth 
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surface, but at the loss of high spectral and spatial resolution of MX and HX sensors 

respectively.  
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Research overview 

The principal aim of my dissertation is to characterize factors influencing nutrient export 

from forested landscapes using a combination of satellite remotes sensing and imaging 

spectroscopy. Specifically, the objective of Chapter 1 (Singh et al. 2013) is to develop 

ecologically meaningful, landscape-scale indicators of water quality using remote sensing 

data and regional water quality data (sourced from Robertson et al. 2006, Stanley and 

Maxted 2008 for this study) for the state of Wisconsin.  The approach is intended to 

generate an algorithm for inputting MODIS-derived products to predict water quality 

across years, with the ability to predict future (or past) years when data become available. 

The models formulated in this chapter intend to produce generalizable techniques to 

facilitate prediction of stream water nutrient concentrations based on MODIS data from a 

previous year. In other words, this raises the possibility for predicting summer baseflow 

nutrient concentrations approximately 8 months in advance.  

Whereas the objective of Chapter 1 is to utilize the synoptic coverage of MODIS data 

for predicting summer baseflow water quality approximately one year in advance, in 

Chapter 2, I leverage the high temporal resolution of MODIS data to develop algorithms 

for predicting water quality measures on a near continuous time basis. Data for this part of 

the research are sourced from the Chesapeake Bay Watershed. The Chesapeake Bay has 

been the subject of intensive research on the effects of human land use on eutrophication, 

resulting in extensive efforts to reduce nutrient inputs (e.g. Fisher et al. 1992, Boynton et 

al. 1995, Paerl et al. 1998, Boesch et al. 2001, Anderson et al. 2002, Kemp et al. 2005, 

Phillips 2007, USEPA 2008). A central component to the suite of solutions proposed to 
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address water quality in the Bay includes establishment and apportioning total maximum 

daily loads (TMDLs) per land use among states. Although forested regions represent a 

significant portion of the Chesapeake Bay watershed (~54%), the Chesapeake Bay Phase 

5.3 Community Watershed Model (USEPA 2010) prescribes a constant forest total 

nitrogen load that increases linearly with increases in atmospheric nitrogen deposition. It 

may therefore be that spatially and temporally continuous characterization of nutrient 

export from forested areas could result in more effective targeting of management actions 

such as setting of TMDLs by season and location. To this end, I develop predictive models 

using functional linear concurrent models to relate time series of nutrient loads in stream 

water with time series of satellite-derived (MODIS) measures of ecosystem variability and 

disturbance in conjunction with climate data. Functional models developed for this 

research allow integration of temporal variation in environmental factors such as climate 

and disturbance and biological factors such as vegetation phenology and provide insights 

into both the timing and magnitude of potential drivers of changes in water quality for 

forested areas in the Chesapeake Bay watershed. 

Hypertemporal satellite imagery such as MODIS enables tracking land surface 

dynamics in near real time. In contrast, imaging spectroscopy has great potential for 

mapping vegetation traits that cannot be retrieved from broadband data such as MODIS. In 

Chapter 3, my goal is the development and application of generalizable algorithms to 

repeatedly and accurately map ecosystem properties such as foliar traits across space and 

time using spectroscopic imagery obtained from the AVIRIS sensor (NASA’s Airborne 

Visible/Infrared Imaging Spectrometer; Vane et al. 1993, Green et al. 1998). In this study, 

5



 

 

I develop spectroscopic calibrations for the determination of leaf chemical composition 

(nitrogen, carbon, and fiber constituents) and morphology (leaf mass per area, LMA) of 

temperate and boreal tree species using imaging spectroscopy. I also demonstrate 

techniques to explicitly propagate uncertainties from the leaf to the plot to the image scale. 

These data can be used to relate foliar traits with ecosystem processes such as biochemical 

effects of invasive species on forest canopies (Glenn et al. 2005, Asner et al. 2008, He et 

al. 2011), characterizing photosynthetic down-regulation (Gamon et al. 1990, Gamon et al. 

1992, Gamon et al. 1997), measurement of the inductance of plant defense to perturbations 

(Couture et al. 2013) and assessment of landscape-scale streamwater nutrient export. 

Using spatial predictions of foliar biochemistry obtained from Chapter 3, Chapter 

4 utilizes a structural equation modeling approach to assess the relative influences of foliar 

biochemistry, watershed physiography and human land use patterns on water quality in 

watersheds across the Upper Midwestern United States. Specifically, I explore the 

influence of four broad groups of variables on streamwater quality. These are: 1) nutrient 

retention due to foliar biochemistry, 2) nutrient retention due to watershed physiography, 

3) an index of human activity (landscape composition dominated with urban and 

agricultural land use), and 4) indicators of watershed-scale nutrient ‘leakiness’. I 

hypothesize that: A) higher foliar recalcitrance will have a direct positive effect on nutrient 

retention in watersheds and indirectly with overall water quality (i.e. lesser nutrient 

export), and will be negatively correlated with indicators of watershed leakiness and 

indicators of human activity; B) indicators of watershed leakiness and high human activity 

will have negative direct influences on water quality (i.e. high nutrient export), as 
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moderated indirectly by retention in watersheds and foliar recalcitrance. The overarching 

objective of this research is the identification of ecological associations in addition to 

landscape-scale physiographic and climatologic variables needed to characterize the range 

of drivers of water quality. Such an approach may help focus development and restoration 

policies towards building more resilient landscapes. This study also demonstrates that 

recent advances in satellite and airborne imaging technologies may enhance our ability to 

understand landscape-level processes associated with water quality, and through the use of 

remote sensing we can develop more standardized and accessible data sets for use by a 

broader audience of managers and stakeholders. 
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Chapter 1: A MODIS approach to predicting stream water quality in Wisconsin
1
 

 

Abstract 

Efforts to predict water quality often rely heavily on static landuse/land-cover (LULC) 

classifications derived from remote sensing imagery.  However, LULC classifications are 

infrequently updated, and the development of regular (annual) land cover maps that 

accurately capture intra- and inter-annual change may be expensive in terms of data and 

labor costs.  In addition, existing land cover products may not include classes relevant to 

the assessment of water quality.  Conversely, data from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) instruments are freely available, preprocessed, frequently 

updated, and available in a range of useful data products.  Our goal was to predict water 

quality for streams in Wisconsin, USA using a simple model constructed from MODIS 

products.  We used streamwater nitrate and dissolved phosphorus data from 2001 to 2004 

from two previous studies (Robertson et al. 2006, Stanley and Maxted 2008) to evaluate 

the potential for using MODIS directly in an empirical model to predict water quality, 

thereby circumventing the classification process or reliance on dated land cover maps. 

Using predictors derived exclusively from MODIS data products; we successfully 

predicted 80% of the variation in measured nitrate concentrations and 51% of the variation 

in dissolved phosphorus concentrations. Predictions of water quality were developed on 

both a per-pixel and a watershed basis. 

                                                 
1
 Reprinted from: Singh, A., Jakubowski, A. R. ; Chidister, I.; and P. A. Townsend (2013) A 

MODIS approach to predicting stream water quality in Wisconsin. Remote Sensing of Environment 

128:74-86 

13



 

 

Introduction 

High nitrogen (N) and phosphorus (P) concentrations in streams contribute to 

eutrophication and acidification of receiving waters, the loss of biological diversity, and 

present a public health concern (Vitousek et al. 1997).  In temperate landscapes with mixed 

land cover, a particular concern is high N contributions in the form of nitrate (NO3
-
) 

derived from agricultural runoff and other sources. The ability to predict nitrate-N (NO3-N) 

levels of streams easily and accurately is needed to understand the consequences of 

increased nitrogen loading and to improve management.  Nitrate concentrations of rivers 

are correlated with human population densities in watersheds (Peierls et al. 1991), point 

sources due to human sewage and wastewater inputs (Cole et al. 1993), and nonpoint 

sources due to runoff from agricultural and urban lands (Carpenter et al. 1998).  With 

increasing human disturbance, total N fluxes rise due to increases of nitrate loading (Aber 

et al. 1989, Howarth et al. 1996).   

Agricultural fertilization is the primary nonpoint source of nitrate, but disturbance 

to forests can also increase NO3-N export (Eshleman et al. 2009). The classic watershed-

nutrient cycle studies at Hubbard Brook show that the complete removal of vegetation 

from a watershed leads to large increases in the stream concentrations of many ions, 

including nitrate, as well as increases in the amount of particulate matter leaving the 

streams of a watershed (Likens et al. 1970).  More recent studies of water quality in 

Wisconsin found strong correlations between human land use and wetland cover in a 

watershed and nitrate concentrations (Robertson et al. 2006, Stanley and Maxted 2008). 

While NO3-N concentrations in predominantly forested watersheds are generally small in 

14



 

 

comparison to agricultural watersheds (Johnson et al. 1997, Lowrance et al. 1997), nitrate 

concentrations can increase significantly in response to disturbance (Eshleman 2000, 

Eshleman et al. 2009). Like nitrate, streamwater phosphorus originates from a variety of 

sources, but in general is derived from nonpoint sources associated with agricultural and 

urban land use, and point sources associated with urbanization. Phosphorus is best 

predicted by urban and industrial activity in most cases (Chang 2008, Coskun et al. 2008) 

and in some cases agriculture (Pieterse et al. 2003, Zampella et al. 2007).  

 Traditional indicators of the effects of water quality on ecosystems generally 

employ metrics of the physical, biological or chemical dimensions of aquatic communities 

including vegetation (Karr and Schlosser 1978, Dennison et al. 1993), fossil records of 

algae (Hall et al. 1999), fish communities (Karr 1981), or channel morphology (Schlosser 

and Karr 1981).  More recently, land-use/land-cover (LULC) classifications have been 

correlated with previously used indicators and used to predict water quality on broader 

scales.  These predictive models rely on LULC classifications derived from satellite 

imagery, combined with other environmental data to extend predictions over varying 

spatial and temporal scales (Osborne and Wiley 1988, Allan et al. 1997, Krysanova et al. 

1998, Basnyat et al. 2000, Meador and Goldstein 2003, Maillard and Pinheiro Santos 

2008). 

 Two approaches are most widely used to incorporate LULC data into predictive 

models of water quality: (1) land cover maps classified from remote sensing imagery from 

a single time-step to characterize non-point inputs from the land, and (2) change-detection 

metrics to identify land-cover changes that are thought to affect water quality.  The 

15



 

 

majority of research using single image LULC techniques indicated a positive relation 

between agriculture and urban land cover and NO3-N concentrations in an area (Johnson et 

al. 1997, Jordan et al. 1997, Buck et al. 2004, Robertson et al. 2006, Stanley and Maxted 

2008).   In areas with high forest cover (and low agriculture and urban land cover), models 

using land-cover data to predict water quality are not very accurate (Herlihy et al. 1998), 

although studies have shown that accurate models of NO3-N export from forested systems 

are possible (Eshleman 2000). More complex models have used a coefficient of nitrogen or 

phosphorus export based on each land-cover class to improve predictive ability (Mattikalli 

and Richards 1996, Johnes and Heathwaite 1997), as has the use of spatial regression 

techniques that incorporate the spatial autocorrelation of water-quality data (Chang 2008).  

Many studies also found watershed structural parameters such as total area (Bhat et al. 

2006) and shape complexity (Hwang et al. 2007) to be useful predictors of stream water 

quality.   

   Change detection techniques have shown that conversion of forested land or 

grasslands to agriculture or urban land cover, increases NO3-N loading (Schilling and 

Spooner 2006).  Conversely, the conversions of row-crop cover to perennial grasslands or 

prairie reduces NO3-N loadings (Kaushal et al. 2006, Schilling and Spooner 2006). While 

the LULC approach to modeling water quality is valuable and remains widely used, other 

analyses attempt to derive more direct indicators of water quality from remotely sensed 

data.  Such metrics have even been found to have higher correlations with water quality 

than land cover classifications (Griffith 2002).  A suite of these studies focus on remote 

sensing of actual water bodies rather than the surrounding watershed (Yang et al. 1999, 
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Chen et al. 2007, Giardino et al. 2007).  Other approaches target individual species 

(Underwood et al. 2006) and vegetation groups (Li et al. 2005, Phillips et al. 2005).  More 

applicable to our study are a set of approaches that synthesize ecologically meaningful 

indices and classifications from remotely sensed data such as forest disturbance (Townsend 

et al. 2004, McNeil et al. 2007, Eshleman et al. 2009), sub-catchment arrangement of land 

cover (Lopez et al. 2008), normalized difference vegetation index (Jones et al. 1996, 

Whistler 1996, Griffith et al. 2002, Ma et al. 2008, Oki and Yasuoka 2008), vegetation 

phenological communities (Reed et al. 1994, Griffith 2002), and cover by natural and 

hydric vegetation communities (Phillips et al. 2005).  All these approaches were performed 

through methods of raster map data extraction and analysis (Patil et al. 2004). 

 The vast majority of the papers apply regression to identify relationships between 

water quality metrics and remotely sensed variables: either simple bivariate regression 

(Griffith 2002, McNeil et al. 2007, Stanley and Maxted 2008, Eshleman et al. 2009), 

multiple regression (Osborne and Wiley 1988, Allan et al. 1997, Meador and Goldstein 

2003, Townsend et al. 2004, Robertson et al. 2006, Maillard and Pinheiro Santos 2008), or 

partial least squares regression (Lopez et al. 2008).  While it has been demonstrated that 

using certain regression models with remote sensed data to predict water quality may 

violate their underlying assumptions (i.e. no errors in measurement and attenuated variance 

in the prediction of the predicted variable: Curran and Hay 1986, Cohen et al. 2003), 

regression remains the most widely used method of analysis. 

 Regardless of the analytical approach, the key difference among these studies is the 

mode by which remotely sensed data are incorporated into the models.  Many of the LULC 
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studies rely on supervised classification of aerial photography, satellite imagery, or other 

products to arrive at a land-cover map with static classifications (e.g. Stanley and Maxted 

2008).  Some LULC studies increase the richness of the input data by measuring LULC at 

different scales (Allan et al. 1997, Basnyat et al. 2000, Maillard and Pinheiro Santos 2008) 

or including GIS-derived landscape metrics (Lopez et al. 2008).  While the data are often 

treated as continuous via percent cover of a certain land-use type within a watershed or 

contributing zone, other methods employing image-derived vegetative or disturbance 

indices (Griffith et al. 2002, McNeil et al. 2007, Oki and Yasuoka 2008, Eshleman et al. 

2009) capture spatially distributed, continuous variables that can yield better explanatory 

power (Griffith et al. 2002).  Another related body of literature addresses building and 

implementing spatially distributed models in a GIS environment to model nutrient and 

pollutant movement through watersheds such as SPARROW modeling (Alexander et al. 

2008, Robertson et al. 2009).  While these models often employ data derived from 

remotely sensed imagery (such as land cover classification) as inputs, process-based 

models of water quality are beyond the scope of this study. 

 Our objective is to develop an ecologically meaningful, landscape-scale indicator 

of water quality using remote sensing data and recently collected water quality data 

(Robertson et al. 2006, Stanley and Maxted 2008) for the state of Wisconsin, USA.  The 

approach is intended to generate an algorithm for inputting MODIS-derived products to 

predict water quality across years, with the ability to predict future (or past) years when 

data become available. Our intent is to increase the efficiency of water-quality evaluation 

by deriving relationships from widely available Moderate Resolution Imaging 
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Spectroradiometer (MODIS) data products, thereby circumventing the reliance on static 

land-cover classifications.  Use of MODIS data should increase the repeatability of our 

procedures both for Wisconsin and elsewhere. 

 

Materials and methods 

Study Area 

The study area encompasses four ecoregions within the state of Wisconsin (Fig. 1A).  The 

northern third of the state comprises the Northern Lakes and Forests and is dominated by a 

mixed-hardwood forest that has regenerated since being clear-cut in the early 20
th

 century.  

This area was historically mixed-hardwoods and was glaciated approximately 10,000 years 

ago. The north-central portion of the state is classified as the North Central Hardwood 

Forest and is dominated by a mixture of agriculture and forest cover in an area that was 

glaciated approximately 10,000 years ago.  The Southeastern Wisconsin Till Plains is 

dominated by agriculture with several urban areas (Fig 1B). This area was glaciated and 

was historically oak savanna grading into deciduous forest.  The southwestern third of the 

state, known as the Driftless Area, was not glaciated during the most recent ice age.  The 

terrain is a mixture of hills and valleys created by the erosion of dolomite and limestone 

parent material and is comprised of a mixture of agriculture and hardwood forest.  

Historically, the area was a mosaic of oak savanna and tall grass prairie.   
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Field methods 

Water-quality data  

We compiled a large stream water chemistry data set from two recent investigations 

(Robertson et al. 2006, Stanley and Maxted 2008). Robertson et al. (2006) sampled 240 

wadeable streams during summer months between 2001-2003.  They analyzed samples for 

total unfiltered N (TN), nitrite plus nitrate (NO2
 
+ NO3-N), and dissolved phosphorous 

(DP).   Samples were filtered in the field through 0.45-μm membrane filters.  Chemical 

analyses of all water samples from this dataset were conducted by the Wisconsin State 

Laboratory of Hygiene in accordance with standard analytical procedures described in the 

“Manual of Analytical Methods, Inorganic Chemistry Unit” (WSLH 1993).  The basins for 

each sampling point were manually digitized using USGS 1:24,000 topographic 

quadrangle maps (Fig. 2A).  Stanley and Maxted (2008) sampled summertime base flow in 

84 wadeable streams during July and August of 2004.  Nitrite-N was analyzed using the 

sulfanilamide/dihydrochloride method (APHA 1998).  NO2 + NO3-N were analyzed on a 

Technicon segmented flow autoanalyzer (Tarrytown, New York, USA), and NO2-N was 

subtracted from NO2 + NO3-N to express results as NO3-N alone.  Total dissolved nitrogen 

(TDN) was measured using the autoanalyzer following persulfate digestion (APHA 1998).  

The basins for each sampling point in this study were delineated using a 30-m digital 

elevation model in ArcGIS 9.1 (Fig. 2B).  Measurements of dissolved nitrate (nitrate-N or 

NO3-N) and dissolved phosphorus (DP) are directly comparable between the Stanley and 

Maxted (2008) and Robertson et al. (2006) studies. Both NO3-N and DP were heavily 

right-skewed and were log-transformed prior to all statistical analyses. 

20



 

 

 

Satellite data analysis 

MODIS imagery 

The MODIS sensor operates aboard the NASA Aqua and Terra satellites.  For this study, 

we used data products from MODIS-Terra.  MODIS data are freely available through the 

U.S. Geological Survey (USGS) Land Processes Distributed Active Archive Center (LP-

DAAC). We used the following MODIS Version 4 products for our analyses: 500m 8-day 

composite surface reflectance (MOD09A1), 1000m yearly land cover (MOD12Q1), 250m 

16-day composite vegetation indices (MOD13Q1), 1000m 8-day fraction of 

photosynthetically active radiation and leaf area index composites (MOD15A2) and 

1000m 8-day composite gross primary productivity (MOD17A2). 

Data pre-processing 

All data were reprojected to the Wisconsin Transverse Mercator projection (NAD 1980) 

and were clipped to the spatial extent of Wisconsin.  Unified mask layers of water, cloud-

shadow and snow were extracted from the Quality-Assurance (QA) layers included with 

each MODIS data set. Measurements corresponding to spring, summer, and fall dates were 

collected from the least cloud-contaminated image for each year within an 8- or 16-day 

window corresponding to the temporal compositing of each MODIS product. For each year 

of data, images were selected around day 137 (May 17) for spring, and within an eight-day 

range for summer (day 177, June 26) and fall (day 273, September 30).   

We extracted average values of the MODIS data by watershed for the year previous 

to the year of the water sample.  Recent research has indicated that previous-year land 
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management or disturbance events may have strong influences on the water quality in the 

present year (Eshleman et al. 1998, Lewis and Likens 2007). This is also especially 

pertinent to our case because satellite data of the current year may have been obtained after 

the date of the stream sample. Importantly, models based on previous-year satellite data 

could facilitate predicting water quality one year in advance. Because the period over 

which all of the water-quality samples were taken covered four years, the remotely sensing 

variables in our data set include values from four years of imagery. All MODIS data were 

analyzed using ENVI v. 4.7 (ITT Visual Information Solutions Inc., Boulder CO, USA). 

Vegetation indices 

All variables and acronyms used to describe the vegetative cover are listed in Table 1. 

MODIS bi-directional and atmospherically corrected surface reflectance in the blue, red, 

and infrared bands are combined to provide two standard vegetation indices: Normalized 

Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), both of which 

characterize vegetation vigor based on absorption of red and reflection of infrared radiation 

in healthy vegetation. Previous research in other Midwestern states has found nitrogen 

concentrations in stream systems to be highly correlated with spring NDVI (Griffith et al. 

2002).  Following this, we expected mean spring NDVI and EVI values to have a strong 

negative correlation with nitrogen species concentrations, indicating presence of natural 

vegetation prior to emergence of crops.  In addition, we used the coefficients derived by 

Lobser and Cohen (2007) to generate Tasseled Cap indices for MOD09A1 data.  The 

Tasseled Cap indices (soil brightness, vegetation greenness and surface/vegetation 

wetness) are widely used in forest and agricultural studies to characterize vegetation 
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seasonal dynamics and disturbance (for e.g.: Skakun et al. 2003, Healey et al. 2005, Jin and 

Sader 2005). We hypothesized that the watershed-mean of the greenness index would 

correspond to vegetation vigor and would correlate negatively with stream water NO3-N 

concentration, while the brightness index was expected to exhibit a positive relationship 

with stream NO3-N concentration, since greater amounts of bare ground correspond to both 

direct and leaching-related nitrogen losses from watersheds. The wetness index 

corresponds generally to the amount of water contained in foliage (Cohen 1991) and is an 

indicator of vegetation health and was therefore hypothesized to correlate negatively with 

stream NO3-N concentration. We also derived disturbance indices for forested areas for all 

selected images following Healey et al. (2005). A number of studies have linked forest 

disturbance to nitrogen export from watersheds (for e.g. Townsend et al. 2004, McNeil et 

al. 2007, Eshleman et al. 2009). 

Gross Primary Productivity 

MODIS gross primary productivity (GPP) is derived from daily estimates of absorbed 

photosynthetically active radiation (APAR) and a light-use efficiency parameter that is a 

function of vegetation type (Turner et al. 2003, LP-DAAC 2008). Our expectation was that 

in combination, spring, summer, and fall imagery GPP would capture differences among 

annual crops, perennial grasslands (e.g., pastures), and forests that are biologically 

meaningful with respect to nutrient uptake.   In particular, annual crops would have low or 

no GPP for dates before crops are planted, while summer imagery would distinguish forest 

from other vegetation, because forest GPP is generally higher than that of annual crops and 

perennial grassland vegetation (Turner et al. 2006). Note that we provide the 

23



 

 

interpretations of the MODIS variables here; the variables themselves are used without 

prejudice and were expected to capture the salient patterns without significant processing 

or other interpretation from their original products.  

Spectral-mixture analysis 

Spectral-mixture analysis (SMA) is used to quantify the relative proportion of specific 

land-surface components (end-members) in each pixel.  SMA differs from land-cover 

classification in that it provides a quantitative estimate of the fractional proportion of 

surface types within a pixel rather than a singular classification for that pixel.  Our target 

endmembers were green vegetation (GV), bare soil, urban, and non-photosynthetic 

vegetation (NPV) and shade. We hypothesized that basins with high fractional proportions 

of bare soil in the spring would have high stream nitrogen concentrations. Endmembers 

were selected using a combination of field data collected using a FieldSpec3 

spectroradiometer (ASD Colorado, USA) and an averaged spectral signature of alfisols and 

mollisols (the primary soil orders in the study area, Hole 1976), derived from the USGS 

spectral library (Clark et al. 2007). The shade end-member was included to account for 

solar illumination effects.  The SMA was performed using ENVI 4.7 (ITT 2010). The 

shade fraction was removed from the images by apportioning the shade fraction to the 

remaining end-members and rescaling to sum to one. We followed methods suggested by 

Brandt and Townsend (2006) that used results of a change detection of SMA proportions 

to identify degraded watersheds in southern Bolivia. 
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Vegetation phenology 

We used vegetation phenology to characterize the temporal dynamics of vegetation within 

the watersheds. Phenology maps offer the opportunity to depict variations associated with 

nutrient dynamics without employing static land-cover classifications. For instance, a low 

seasonal maximum NDVI coupled with a large annual range in NDVI indicates a 

predominantly deciduous cover type corresponding to larger variations in nutrient fluxes 

compared to predominantly evergreen vegetation. Similarly, higher rates of increase and 

decline in NDVI during a year correspond to fast growing vegetation, such as crops. This 

captures the sharp transition of vegetation from the dormant stage (or bare ground) to full 

leaf-out, and could indicate nutrient uptake and resultant lower nutrient export. 

Correspondingly, a high rate of decline indicates either harvest or foliar abscission, 

possibly capturing the return of non-retranslocated nutrients back to the upper soil stratum 

and a resultant flush of nutrients out of the watershed via late-season rainfall events. 

Further, a longer growing season could correspond to higher biomass accumulation and 

therefore lower nutrient export to streams. The benefit to using phenology data is that it is 

directly based on reflectance data and avoids the necessity to characterize land-cover maps 

on a yearly basis. 

To develop phenological curves for all of the vegetation types across Wisconsin, 

we extracted NDVI data from the MOD13Q1 (250m. 16-day composite) vegetation indices 

product. Vegetation phenology was modeled as a double-logistic function of NDVI and 

day-of-year using the nlinfit function in Matlab R2010a (Mathworks Inc. Natick MA, 

USA): 
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(Eq. 1) 

 

Where:  

Nlow = Annual NDVI minimum (lower asymptote) 

Ndiff = Annual NDVI range (difference in lower and upper asymptote)  

ri = Maximum rate of increase in NDVI 

Sst = First inflection point (start-of-season date) 

rd = Maximum rate of decline in NDVI 

Sen = Second inflection point (end-of-season date) 

t = Julian date from January the 1
st
 of each year 

Each parameter was calculated for all image pixels. We also calculated and stored 

model fit information (R
2
) for each pixel. All pixels where the R

2
 value was lower than 0.5 

were masked and later interpolated from neighboring pixels using an inverse distance 

weighted interpolator.  

 

Statistical analysis 

Multivariate regression techniques have been extensively used in water-quality modeling 

(e.g. Osborne and Wiley 1988, Allan et al. 1997, Meador and Goldstein 2003, Townsend et 

al. 2004, Robertson et al. 2006, Maillard and Pinheiro Santos 2008). However, when data 

are highly correlated (such as between related vegetation indices), the assumptions of 
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traditional least-squares approach are violated leading to singular solutions or otherwise 

biased parameter estimates and/or confidence intervals. Inherent limitations of traditional 

approaches in handling multi-collinear and noisy data can be overcome by applying 

techniques based on multivariate statistical projection such as principal-component 

regression (PCR) and projection to latent-structure (PLS) regression. These techniques 

handle highly correlated noise-corrupted data sets by explicitly assuming the dependency 

between variables and estimating the underlying (or latent) structures that are essentially 

linear combination of the original variables.  

 We developed a new PLS method, the iterative variable exclusion PLS algorithm 

(hereafter xPLS) in Matlab v. R2010a (Mathworks Inc., Natick MA, USA) executed on a 

Condor distributed computing cluster (Epema et al. 1996) to model stream NO3-N 

concentrations as functions of MODIS imagery. Our intent was to find the most 

parsimonious model that would explain the largest amount of variation in the dependent 

variables.  PLS methods differ from stepwise and AIC/BIC approaches in that they use 

cross-validation to reduce the importance (or even eliminate) intra- and inter-correlated 

variables. xPLS extends this by making the algorithm iterative to simply reduce the 

number of input images required to map stream concentrations. PLS methods have 

achieved widest use in spectroscopy and chemometrics (Martens and Dardenne 1998, 

Wold et al. 2001), and are especially beneficial in that they allow the development of 

predictive models from datasets that are relatively oversampled with predictor variables 

compared to dependent variables. The structure of cross-validation during PLS model 

development largely precludes achieving model significance based on spurious 
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relationships or overfitting, regardless of the number of independent variables employed in 

the model (Martens and Dardenne 1998). PLS is therefore well suited to large image data 

sets with limited numbers of observations, and is becoming a more widespread approach in 

ecology (Carrascal et al. 2009). Full details on our xPLS algorithm are provided in 

Appendix A.   

Validation 

Once the best candidate models had been chosen from the xPLS algorithm, we used a two-

fold validation scheme to test the robustness of each model. First, a 20-fold cross-

validation scheme was used to evaluate the overall model fit. This stage produced cross-

validated model coefficients to compare the relative importance of each variable in 

predicting stream water nutrient concentrations (using standardized model coefficients) 

and to produce spatially-explicit predictions of potential nutrient concentration for the 

entire state (using raw model coefficients). Second, the data were split by source and 

models were calibrated using data from one source (e.g. from Stanley and Maxted 2008) to 

predict nutrient concentrations in the other model (e.g. to Robertson et al. 2006) and vice-

versa. This stage helped us identify 1) the robustness of the model fits when using 

disparate data sources, and 2) identify those factors that cause deviations in predicted 

concentration from observed values when using data sourced from different surveys. The 

cross-validation procedures were implemented in SAS v. 9.3 (SAS Institute Inc. Cary NC, 

USA). 
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Mapping  

Raw variable coefficients, obtained from the 20-fold cross-validated models, were used to 

map estimates of stream water nutrient concentrations across the study area. Because the 

models were calibrated from multiple years using continuous data and for watersheds of 

different sizes, the models are essentially year- and scale-independent. Model coefficients 

can be used to predict water quality for any year for which appropriate MODIS data are 

available or for watersheds where data are collected at different scales (such as stream 

orders).  This way, models can be progressively refined and cross-validated across both 

spatial and temporal scales as new data become available. Cross-validation can be 

conducted by either leaving a collection of watersheds out across years or by leaving a year 

out while using all watersheds. Further, models developed here can also be applied to 

predict stream water concentrations for watersheds in which water-quality data are not 

available.  

 

Results 

In the two datasets, concentrations of NO3-N varied from 0.005 to 20.55 mg/L with a mean 

of 2.10 (± 0.161) mg/L. Dissolved phosphorus ranged from 0.004 to 1.46 mg/L with a 

mean of 0.08 (± 0.006) mg/L (Table 2). Data for total nitrogen were not available for the 

Stanley et al (2008) dataset and data for total dissolved nitrogen and dissolved inorganic 

nitrogen were not available for the Robertson et al (2006) dataset.  
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Model performance: NO3-N 

The most parsimonious model identified by the xPLS algorithm explained 80% of the 

variation in stream NO3-N concentration (Fig. 3A) using 16 variables (of a total of 42 

variables, Fig. 4) projected to 15 latent vectors. The 20-fold cross-validated root mean 

squared error of prediction (CV-RMSEP) for the model was 1.04 mg/L. Recall that PLS 

provides a synthesis of the independent variables, and resultant predictive equation (which 

is just one coefficient per variable) has already accounted for inter-correlation among 

independent variables. Spring measurements for vegetation fraction, soil fraction, EVI and 

fraction of non-photosynthetic vegetation had the strongest loadings on streamwater NO3-

N. Whereas spring soil fraction and spring EVI correlated positively with stream water 

NO3-N concentration, spring green vegetation fraction and spring NPV were negatively 

correlated with stream water NO3-N concentration (Fig. 4). Variables representing bare or 

disturbed landscapes (spring tasseled-cap brightness, fall soil fraction and summer 

disturbance index) had strong positive correlations with stream water NO3-N 

concentration. In contrast, variables representing vegetation vigor and growth (spring gross 

primary productivity, spring wetness index and spring fraction of photosynthetically active 

radiation) weighted negatively on stream water NO3-N concentration (Fig. 4). 

Model performance: Dissolved phosphorus 

The most parsimonious model for DP identified by the xPLS algorithm explained 51% of 

the variation in DP (Fig. 5A). The 20-fold cross-validated root mean squared error of 

prediction for the model was 1.05 mg/L. In the case of DP, the xPLS results are only 

marginally better than could be achieved using percent cropland (Robertson et al. 2006).  
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The model contained 12 variables (of a total of 42 variables, Fig. 6) expressed in 11 latent 

vectors. Fall EVI, green vegetation fraction in summer (positively correlated) and fall and 

summer NDVI (negatively correlated) had the strongest weighting in the PLS model to 

predict DP (Fig. 6). Summer soil fraction and spring forest disturbance also exhibited 

strong positive weighting in the model (Fig. 6). The phenological variable rate of initial 

growth was negatively correlated with stream water DP concentration, while phenological 

rate of decline was positively correlated with stream water DP concentration. Overall, 

variables representing exposed soil (spring and summer soil fractions), disturbance 

(tasseled cap disturbance index) and rapid decline in vegetation greenness (phenologic rate 

of decline) were positively correlated with stream water DP concentration. In contrast, 

variables representing vegetation vigor and growth (phenologic rate of growth, fall and 

summer NDVI) were negatively correlated with stream water DP concentration (Fig. 6). 

Spatial predictions 

Maps of stream nutrient concentration show that watersheds in southwestern Wisconsin 

bordering Minnesota and Iowa are hot spots for increased nitrate-N (Fig. 7) and dissolved 

phosphorus (Fig. 8) concentrations. Nitrate concentrations were highest in south and south-

central Wisconsin in 2002 and DP concentrations were highest in 2003 and 2004 in regions 

around south-central Wisconsin and in coastal regions of Lake Michigan. Predominantly 

agricultural regions had consistently highest nitrate-N and DP concentrations. Stream 

water DP concentration increased in predominantly agricultural and urban watersheds over 

the study period. Although stream water NO3-N was highest in 2002, a general temporal 

trend was not evident.  
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 The maps (Figs. 7 and 8) show distinct differences from year to year in predicted 

stream water nutrient concentrations. Post-hoc tests revealed that temporal variation in 

nutrient concentrations were attributable in part to variations in weather. For example, the 

highest NO3-N concentrations in 2002 were explained by a combination of an unusually 

warm spring (in terms of higher accumulated degree growing days in 2002) coupled with 

lower than average rainfall in southwestern Wisconsin (Fig. 9). Overall, cumulative rainfall 

and growing degree days (GDDs) accounted for 42% of the variation in the watershed 

predictions for NO3-N. Higher precipitation was associated with lower NO3-N 

concentrations and higher GDDs were associated with elevated NO3-N concentrations 

(both P < 0.0001). However, weather variables did not explain as much variation in 

predicted stream water DP concentration (14%). In contrast to NO3-N, both rainfall and 

GDD were positively associated with DP concentrations but the effect of cumulative 

rainfall was relatively weak (P = 0.02). 

 

Discussion 

Our aim was to develop models using free MODIS data to predict nutrient concentrations 

in streams throughout Wisconsin. Our empirical strategy was intended to produce a 

generalized technique that would facilitate prediction of stream water nutrient 

concentrations based on data from a previous year, meaning that the potential would exist 

to predict summer baseflow nutrient concentrations approximately 8 months in advance. 

The models predicted NO3-N concentrations fairly accurately (80% of variation explained, 

CV-RMSEP: 1.04 mg/L, Fig. 3A) and were able to improve upon the regression-based 

32



 

 

models presented by Robertson et al. (72% for total N; Robertson et al. 2006) using three 

variables (total forest, precipitation and row-cropped agriculture) and Stanley and Maxted 

(71% for N03-N; Stanley and Maxted 2008) using two variables (proportion of land under 

agricultural and urban land use).  

Models developed for DP were less successful (51% variation explained, CV-

RMSEP: 1.05 mg/L, Fig. 5) than the models presented by Robertson et al. (56% for total 

total P; Robertson et al. 2006). However, our models were based exclusively on satellite 

imagery, whereas Robertson et al. (2006) included a host of important point-source 

variables such as wastewater discharge locations and non-point variables including 

proportion of agricultural or urban land use that exert strong controls on DP 

concentrations. Most notably, our data are dynamic and can be modified based on 

availability. Inclusion of dynamic point-source data may improve DP predictions, but 

unlike satellite imagery may not be available for all locations. 

The most important variables for predicting NO3-N concentrations included the 

spring gross primary productivity (GPP), tasseled-cap wetness index, fraction of absorbed 

photosynthetically active radiation (FPAR), and NDVI. All these variables either measure 

or can be considered surrogate measures of vegetation cover or vegetation vigor, and may 

indicate either nitrogen storage in foliar biomass or nitrogen uptake by growing plants. 

Conversely, the variables correlated positively with NO3-N concentrations included mean 

soil fraction (SOI), the MODIS forest disturbance index (DST) and tasseled-cap brightness 

(BGT). All of these variables are indicators of either foliar loss (e.g., disturbance index) or 

of the amount of soil exposed (soil fraction and the brightness index) and may indicate 
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denudation of groundcover after harvesting, foliar loss due to insect or logging related 

disturbances or land-management practices that result in the release or runoff of nitrogen to 

the soil and surface water. 

The most important variables for predicting DP concentrations included NDVI in 

fall and summer, and the phenologic rate of growth. Although model fit for DP was lower 

than for NO3-N, the overall sign for these variables matched expectations. These are 

measures of vegetation growth (rate of increase of greenness in vegetation) and the 

accumulation of foliar biomass by plants (NDVI), and may indicate either phosphorus 

storage in foliar biomass or uptake by growing plants. Conversely, the variables correlated 

positively with DP concentrations included soil fraction, EVI, the MODIS disturbance 

index and phenologic rate of greenness decline. Similar to the inferences for NO3-N, these 

variables are indicators of either foliar loss or of the amount of soil exposed, therefore 

providing surrogate measures for the loss of phosphorus to the soil. 

The cross-validation results show that watershed NO3-N (Figs. 3B, 3C) and DP 

(Figs. 5B, 5C) concentrations in streams draining predominantly forested watersheds are 

systematically overestimated as agricultural land-cover increases. This suggests the 

potential divergence between the two functional types to retain nutrients (for e.g. see 

Correll et al. 1999, Fenn and Poth 1999, Poor and McDonnell 2007) and highlights the 

importance of uniform sampling across a variety of ecosystems when collecting data 

representative of a region. Although the variables did not include the effects of fertilizer 

use explicitly, we believe that variables such as NDVI, EVI and phenologic rate of growth 

(usually higher for agricultural landscapes) capture some of the variation expressed as the 
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response of vegetation to external nutrient inputs (for e.g., Stone et al. 1996, Basnyat et al. 

2005, Inman et al. 2007). Use of additional remote sensing variables derived from stream 

buffers could increase DP prediction efficiency (Hwang et al. 2007, Chang 2008, Diebel et 

al. 2009). 

Predicting year-to-year fluctuations  

Remote sensing data from MODIS facilitated prediction of interannual stream water NO3-

N concentrations, and to some extent, DP, in Wisconsin.  In turn, this allowed statewide 

mapping of NO3-N and DP concentrations on both a per-pixel and watershed basis. Our 

best statistical models improved upon those of Stanley and Maxted (2008) and Robertson 

et al. (2006), who both used the Wisconsin Initiative for Statewide Cooperation on 

Landscape Analysis and Data (WISCLAND, Reese et al. 2002) land-cover database. The 

WISCLAND land cover data were developed using dual-date 30-m resolution Landsat 

Thematic Mapper imagery primarily from 1992.  The use of such a static land-cover 

database yielded accurate models, indicating few major land-cover changes relevant to 

water quality during the long period between the map (circa 1992) and water quality 

sampling (early 2000’s). However, the data are limited by the difference in timing of data 

sets.  Use of yearly land-cover data or remote sensing products permits predictions of year-

to-year fluctuations in stream nutrient concentrations. This could facilitate timely 

management responses if necessary. Our predictive models can be applied to any 

watersheds or watershed delineations for which the MODIS data exist.  The approach can 

be updated/validated as new data become available, and can be extended to adjoining states 

if appropriate data for model development or testing are available. Note that our approach 

35



 

 

does not directly take into consideration year-to-year differences in weather and 

streamflow that may affect annual loads of N or P; however, these data do incorporate 

changes that occur on the landscape as a result of the changes in weather. These data also 

provide an important baseline estimate of differences in stream water concentrations that 

could be used to better parameterize models of nutrient loads. 

 Although Robertson et al. (2006) and Stanley and Maxted (2008) used a smaller 

number of predictor variables (3 and 2 respectively), our approach synthesizes temporally 

rich MODIS imagery to characterize full landscape dynamics on an annual basis, rather 

than using a static classification. Although this results in a larger number of independent 

variables used, it also facilitates incorporation of dynamic landscape attributes that can 

only be derived from multiple image data sets.  To this end, we implemented the xPLS 

algorithm to rigorously assess significance for the large xPLS models. 

 Because the data can be readily summarized from the pixel-based maps to the 

watershed basis, our approach is scalable and flexible.  Nevertheless, our approach is based 

on imagery, so we primarily capture drivers of water quality associated with nonpoint 

sources. As such, independent water-quality data sets could be compared to our 

predictions, with the residuals used to identify watersheds where point sources may be 

problematic. Both pixel-wise and watershed-scale data summaries may have drawbacks. 

Whereas watershed-scale predictions may smooth-out variations important to designing 

mitigation interventions, per-pixel results may run the risk of contamination by random 

errors inherent in satellite imagery.  
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Management implications  

An annually derived, spatially explicit model to predict water quality offers great promise 

for informing the management of stream water quality at the watershed scale.  Not only 

does the model provide a tool to identify watersheds having need for mitigation activities, 

the pixel-wise data may also be useful for identifying watersheds in which small-scale, 

landowner specific management is worthwhile.  For example, in a watershed identified as 

having high stream water nitrogen, a project designed to reduce sediment and nutrient 

runoff from a single landowner’s property through the installation of buffers or a reduction 

in fertilizer use will likely have little impact because of larger scale processes occurring in 

the surrounding basin.  In watersheds identified as having poor water quality, large-scale 

efforts that work with all of the landowners in the basin may be necessary to reduce the 

nitrogen concentrations.  Conversely, efforts with individual landowners (i.e., small 

numbers pixels) exhibiting high NO3-N concentrations may be worthwhile in areas having 

otherwise low predicted nitrogen levels.  

Our predictions are also useful for locating areas in which rare aquatic species may 

be most at risk, if they are sensitive to competition with N-limited species or to the 

acidification associated with high N concentrations (e.g. Bobbink et al. 1998, Latham 

2003, Kleijn et al. 2008).  The model results can also be used to identify basins in which 

the reintroduction of previously extirpated sensitive species are possible or to target 

streams where exotic species are most prone to invade.  In particular, we have found that 

our models accurately predict the distribution of species that are favored in high N or 
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disturbed conditions like Phalaris arundinacea (reed canarygrass) and Lythrum salicaria 

(purple loosestrife) (Rachich and Reader 1999, Jakubowski et al. 2010).  

Future work 

We were able to predict NO3-N concentrations accurately on a watershed scale but were 

less successful with predicting DP. A number of modifications to our model could increase 

its accuracy. Aggregation of watersheds into small, medium, and large watersheds by area 

instead of lumping them together for analysis could increase the predictive power of our 

model by allowing the variable selection routine to employ different sets of variables that 

may be more sensitive to water quality at different scales. In addition, the derivation of 

remotely sensed variables for buffers around streams instead of or in addition to the whole 

watershed could increase model accuracy by characterizing near-channel processes that are 

important to water quality (Peterjohn and Correll 1984).  Adding slope or other 

topographic variables to the model could improve our predictions of NO3-N concentration, 

and possibly DPs (Diebel et al. 2009), as interactions between slope and land-surface 

properties can be important to runoff and hence stream water nutrient concentrations.  

 This effort would be greatly improved by the availability of regular and more 

frequent water-quality collections at each sampling location, both for model development 

and testing.  Specifically, time series of streamwater nutrient concentrations in the same 

basins over many years would facilitate better characterization of annual nutrient fluxes 

and variations that may be associated with year-to-year differences in weather.  For 

example, Mitchell et al. (1996) have shown the influence of weather patterns on 

watershed-scale nutrient export, a factor that we did not account for in the current model. 
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Although there are compelling arguments in the literature that summer baseflow 

measurements are a good indicator of annual N fluxes (Townsend et al. 2004, Stanley and 

Maxted 2008, Eshleman et al. 2009), a greater temporal sampling density will allow a 

more detailed analysis of the mechanisms revealed by the analysis of the MODIS data.  

Although continuous water-quality samples do exist (e.g., by USGS and state agencies), 

these watersheds tend to be large and largely urban or agricultural.  For our method to be 

effective, water quality should be sampled across a range of watershed orders, with an 

emphasis on sampling across a range of land-cover distributions.  Finally, the linkage of 

this remote sensing approach to mechanistic models of stream nutrient export has the 

potential to enhance both approaches to evaluating and predicting nutrient concentrations.  

In particular, our approach captures the effects of variations in land cover on water quality, 

such as disturbance of forests, that are not currently captured by existing models (e.g. 

HSPF: Donigian et al. 1983, SPARROW: Smith et al. 1997). 

 Evaluating the predictive ability of the model beyond the spatial extent of the state 

of Wisconsin may be worthwhile.  Because our model includes parameters easily 

attainable from freely available satellite data, the model could be expanded to predict 

stream water quality for much of the Midwest and perhaps beyond. The availability of 

MODIS parameters calculated annually provides the opportunity to identify and predict 

inter-annual fluctuations of stream nitrogen concentrations with changing land cover 

conditions.  
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Tables 

Table 1.  List of acronyms. 

MODIS Product Code Variable Method 

MOD09A1 

WET Wetness Index 
Tasselled cap 

transformation 
BGT Brightness Index 

GRN Greenness Index 

DST Disturbance Index 
Healy et. al. 

2005 

GVF Green vegetation 

Spectral 

unmixing 

NPV Non-photosynthetic vegetation 

SOI Soil 

URB Urban 

MOD13A1 
NDV Normalized difference vegetation index 

From product 
EVI Enhanced vegetation index 

MOD13Q1 

ROI Rate of increase 

Phenologic 

Curve fitting  

(eqn. 1) 

ROD Rate of decrease 

LGS Length of growing season 

SOS Start of season 

EOS End of season 

MOD15A2 
FPR 

Fraction of photosynthetically active 

radiation From product 

LAI Leaf area index 

MOD17A2 GPP Gross primary productivity From product 
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Table 2: Mean (± 1 SE) and range values of concentration (in mg/l) for nitrate (NO3-N) 

total nitrogen (TN), total dissolved nitrogen (TDN), dissolved inorganic nitrogen (DIN) 

and dissolved phosphorous (DP); stream concentrations are averaged across the entire state 

for Stanley and Maxted (2008; n = 76) and Robertson et al. (2006; n = 239).   

 

 

Stanley and Maxted (2008) 

n = 76 

Robertson et al. (2006) 

n = 239 

Water quality variable Mean Range Mean Range 

NO3 2.12 (0.329) 0.005 - 12.615 2.09 (0.185) 0.005 - 20.550 

TN - - 2.81 (0.185) 0.131 - 21.26 

TDN 2.79 (0.360) 0.089 - 14.014 - - 

DIN 2.17 (0.331) 0.0182 - 12.703 - - 

DP 0.08 (0.009) 0.011 - 0.389 0.079 (0.007) 0.004 - 1.460 
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Figures 

Figure 1: Level 4 ecoregions of Wisconsin (Omernik et al. 2000). B. Agricultural areas in 

Wisconsin (derived from NLCD 2001: Chander et al. 2009).  
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Figure 2: Watersheds sampled by Robertson et al. (2006) in 2001-2003. B. Watersheds 

sampled by Stanley et al. (2008) in 2004. We excluded nested watersheds, and masked all 

water bodies and areas outside the bounds of Wisconsin. 
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Figure 3: Predicted NO3-N concentration from the PLS model vs. observed concentration 

using all data. B. Cross-validation of the PLS model calibrated with Robertson et al. (2006) 

data to predict data from Stanley and Maxted (2008), and C) vice-versa. Color of points 

indicates amount of forest cover in each watershed and follows the percentage shown in 

the color ramp to the right. Red dashed line indicates the 1:1 line. Black dashed line 

indicates model fit. Deviation from the 1:1 line illustrates model bias. 
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Figure 4: Standardized coefficients of variables selected by the xPLS algorithm for 

predicting ln(NO3-N). Absolute values of standardized coefficients (blue bars) are 

presented to facilitate comparison. Hatched bars indicate partial correlations of each 

variable with observed ln (NO3-N). Asterisks indicate significance levels for the 

correlation (*** P < 0.0001, ** P < 0.05, * P < 0.01). Variable names are provided in 

Table 1. 
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Figure 5: Plots of predicted dissolved phosphorus (DP) concentration vs. observed 

measurements. Details follow those of Figure 3. 
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Figure 6: Absolute values of standardized coefficients of variables selected by the xPLS 

algorithm for predicting natural log(DP) and partial correlations of those variables with 

log(DP). Details follow those of Fig. 4.  Variable names are provided in Table 1. 
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Figure 7: Maps of predicted NO3-N concentrations across the four years of the study using 

coefficients derived from the PLS model. The left panel shows pixel-wise predictions, the 

right panel shows data averaged across Wisconsin DNR watersheds (sourced from: 

http://dnr.wi.gov/maps/gis/metadata.html). Note log-scale of color bar, color bar units in 

mg/L. 
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Figure 8: Maps of predicted DP concentrations across the four years of the study using 

coefficients derived from PLS model. The left panel shows pixel-wise predictions, the 

right panel shows data averaged across Wisconsin DNR watersheds. Note log-scale of 

color bar, color bar units in mg/L. 
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Figure 9: Maps of cumulative growing degree days (left panel, base temperature = 0°C, 

ceiling temperature = 30°C) and cumulative daily rainfall (in mm.) measured from the 1
st
 

of October the previous year to the 1
st
 of June of the current year (data source: Serbin and 

Kucharik 2009). 
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Supplementary materials 

 

Appendix A 

Details of the 'iterative exclusion' projection to latent structures regression (xPLS) 

algorithm 

 

Background 

The chief value of projection to latent structures (PLS) regression over traditional multiple 

linear regression models is that it works well with over-sampled predictor data sets, i.e. 

when the number of independent variables approaches or even exceeds the number of 

observations (Geladi and Kowalski 1986; Wold et al. 1984; Wold et al. 2001). PLS handles 

highly correlated noise-corrupted data sets by explicitly assuming the dependency between 

variables and estimating the underlying (or latent) structures that are essentially linear 

combination of the original variables. PLS is preferred to traditional regression for multi-

collinear data sets because it takes advantage of correlations within the large number of 

predictors without the issues associated with data reduction approaches, for example 

difficulties in interpretation of synthetic PCA variables or the potential for modeling 

spurious relationships using stepwise regression (Grossman et al. 1996). Original variables 

are retained and their importance is evaluated by a review of their standardized prediction 

coefficients.  

 In particular, PLS regression replaces the set of predictors by a smaller number of 

latent variables. As the derivation of the factors is based on principal components 

58



 

 

transformations, the factors are orthogonal by design, and are linear combinations of the 

original predictors. While similar to principal component regression, where the factors are 

determined by the predictors only, PLS identifies factors taking into consideration each 

factor's individual usefulness in predicting the dependent variables by maximizing its 

covariance with the dependent variable while simultaneously maintaining the constraint of 

being orthogonal to the previously determined factors (Frank and Friedman 1993; Geladi 

and Kowalski 1986; Wold et al. 1984; Wold et al. 2001).  

 Our intent was to find the most parsimonious PLS model that would explain the 

largest amount of variation in the dependent variables while using a minimal number of 

orthogonal components. Typically, the root mean square (RMS) error of a PLS model 

decreases as components are added, with each new component incrementally contributing 

to explaining the variation in the dependent set. Eventually, a point is reached where 

adding any more components introduces noise in the model and the RMS error starts to 

increase. If the number of components is greater than or equal to the rank of the sample 

factor space, PLS essentially becomes equivalent to multivariate linear regression. It is 

therefore important to balance the number of components that are used to fit the PLS 

model to avoid both under-specified and over-fitted models (Geladi and Kowalski 1986; 

Lindgren et al. 1994). In practice, some heuristic is applied to select the number of 

components that are used to fit the model.  

 To this end, we designed an iterative algorithm that would test the importance of 

each predictor at a time by excluding it from the set of predictors and evaluating the fit (in 

terms of overall leave-one-out cross-validated root mean squared [CV-RMS] error) of the 
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model using all predictors that remained in the model. If, on excluding the predictor, the 

overall model fit increased, the predictor was permanently excluded from the candidate 

model and a new search initiated.  Specifically, at each step, one variable was excluded 

from the set of ‘k’ predictors and a standard PLS model was fit with the reduced set of 

predictors (k-1 predictors). The optimal number of latent components to use for fitting this 

PLS model was determined by sequentially fitting PLS models with an increasing number 

of components until the leave-one-out CV-RMS error of the reduced model started to 

increase. Once the optimal number of components was determined, the CV-RMS error of 

the reduced PLS model was retained in a vector.  

As each predictor variable in the data set was sequentially excluded, the CV-RMS 

error vector was evaluated to determine the set of k-1 predictors having the lowest CV-

RMS error. The dropped variable resulting in the smallest RMS error was excluded 

permanently from the set of predictors, and a new iteration was initiated with the 

remaining predictors. Iterations continued until all but one predictor remained in the 

model. At the end of all iterations, a candidate set of models equal to the number of 

predictors were generated. By design, each model contained progressively fewer predictors 

(i.e. from k variables to 1 variable). All candidate models were sorted by their respective 

CV-RMS errors and the model with the lowest CV-RMS error was identified as the best 

model. Importantly, as all variables were tested iteratively within each candidate set of 

predictors, and as a leave-one-out cross-validation scheme was used to assess the CV-RMS 

error, the procedure ensured that the model would arrive at the exact same set of models 

for any number of runs. The iterative variable exclusion PLS algorithm (hereafter xPLS) 
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was developed and implemented in Matlab v. R2010a (Mathworks Inc., Natick MA, USA) 

and executed on a Condor distributed computing cluster (Epema et al. 1996). 
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Chapter 2: Continuous-time modeling of streamwater nutrient loading from forests 

in the Chesapeake Bay watershed using MODIS and meteorological data 

 

Abstract 

Despite concerted and extensive efforts by multiple state and federal agencies, streams in 

the Chesapeake Bay watershed continue to show poor indicators of water quality due to 

nitrogen and phosphorus loading from agricultural operations, urban and suburban runoff, 

wastewater, airborne contaminants and other sources. Although urban point sources and 

agricultural area sources are well characterized by existing models such as the BASINS-

HSPF system used by watershed managers, characterization of nutrient loads from forests 

remain difficult to quantify. This study presents the application of a new modeling 

technique, functional linear concurrent modeling (FLCM), to predict monthly variation in 

nitrate-N loading for 2001-2008 from streams draining forested watersheds in the 

Chesapeake Bay basin, with the ultimate objective being to better estimate nutrient loading 

from forested areas using freely available, spatially explicit satellite, meteorological and 

other geospatial data. In our application, FLCMs use time series in both response and 

predictor variables to identify the relative importance in the magnitude and timing of 

hypothesized drivers of intra-annual variations in water quality. Models built using FLCMs 

explained 81% of the variation in monthly streamwater nitrate loads for nine mostly 

forested watersheds over eight years of monitoring data. Cross-validation (dropping one 

watershed or year and rerunning the model) accuracies ranged from 50-85% for dropped 

watersheds and 60-87% for dropped years. Variables derived from remote sensing proved 
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especially useful for predicting monthly nitrate-N loading from forests, with monthly 

MODIS NDVI being positively related to higher water quality in all but late summer 

months (and unrelated in summer months), a remote sensing disturbance index positively 

related to higher late summer loads of stream nitrate-N (and unimportant the rest of the 

year), and evergreen/deciduous proportions important during non-growing season months. 

While our model confirms that mean nitrate-N loads from forests assumed by BASINS-

HSPF are well-founded (HSPF: 2.76 kg/ha/yr, our model median: 2.75 kg/ha/yr), our 

model suggests that inter-annual loads from forests can vary from 2.31 kg/ha/yr to 4.43 

kg/ha/yr. Spatial predictions obtained from the FLCMs may be instrumental in targeting 

management efforts and for better representing forests in process-based models such as 

BASINS-HSPF.   
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Introduction 

The Chesapeake Bay has been the subject of intensive research on the effects of human 

land use on eutrophication, resulting in extensive efforts to reduce nutrient inputs (e.g. 

Fisher et al. 1992, Boynton et al. 1995, Paerl et al. 1998, Boesch et al. 2001, Anderson et 

al. 2002, Kemp et al. 2005, Phillips 2007, USEPA 2008). However, monitoring data 

continue to show poor indicators of water quality related to low populations of many 

species of fish and shellfish (USEPA 2013). Although the Bay waters did not meet 79% of 

water quality goals set by the EPA in 2009 (CBPO 2009), there have been improvements 

since then, with approximately 7.12 M kg less nitrogen delivered to the Bay in 2011 than 

2009 (CBPO 2012), amounting to a 24.5 M kg decline from the 1990-2008 average load. 

Phosphorus loads have declined 0.4 M kg (2009-2011: CBPO 2012) and additional 

significant gains have been made in restoring wetlands (15.27 km
2
 in 2010-2011), opening 

fish migration pathways (238 km in 2011) and planting forest buffers (386 km added in 

2011). Despite these advances, goals to improve dissolved oxygen levels and water clarity 

and restore bottom habitat have yet to be achieved, and issues with nutrient management 

remain central concerns for agencies. In particular, there is great interest in closing 

uncertainties in nutrient budgets from non-point sources (Townsend et al. 2004, Yanai et 

al. 2012). 

Point sources of nitrogen, phosphorus, and sediment to the Bay include municipal 

wastewater facilities, industrial discharge facilities, combined sewer outflows (CSOs), 

sanitary sewer outflows (SSOs), National pollutant discharge elimination system (NPDES) 

permitted stormwater (municipal separate storm sewer systems and construction and 
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industrial sites), and concentrated animal feeding operations (CAFOs). Nonpoint sources 

include agricultural lands (animal feeding operations, croplands, hay and pastures), 

atmospheric deposition, forest disturbance and nonregulated stormwater runoff (USEPA 

2010b). A central component to the suite of solutions proposed to address water quality in 

the Bay includes establishment and apportioning of total maximum daily loads (TMDLs) 

per land use among states. The TMDL, the largest ever developed by EPA, encompass the 

165,759 km
2
 watershed, identifies the necessary pollution reductions from major sources 

of nitrogen, phosphorus and sediment across the District of Columbia and large sections of 

Delaware, Maryland, New York, Pennsylvania, Virginia and West Virginia, and sets 

pollution limits necessary to meet water quality standards in the Bay and its tidal rivers 

(USEPA 2010c). A TMDL refers to the maximum amount of a pollutant that a body of 

water can receive and still meet state water quality standards designed to ensure waterways 

meet a national primary goal of being swimmable and fishable (USEPA 2010c). TMDLs 

are typically determined using modeling approaches calibrated to water quality monitoring 

data. The modeling approaches, in turn, are conditioned on present and future land use 

patterns (USEPA 2010a). 

Forested regions represent a significant portion of the Chesapeake Bay watershed 

(~54%). According to estimates by the Chesapeake Bay Program Office (CBPO), forested 

land contributes the lowest loading rate per unit area of all the land uses (Koroncai et al. 

2003). Studies have also indicated that a significant portion of the loads do not originate in 

the forests but from atmospheric deposition of nitrogen (Langland et al. 1995, Aber and 

Driscoll 1997, Goodale et al. 2002, Pan et al. 2004). The Chesapeake Bay Phase 5.3 
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Community Watershed Model (USEPA 2010a) assumes only atmospheric deposition as an 

input load for forests, woodlots, and wooded land use. The model prescribes a median 

forest total nitrogen load to be 3.47 kg/ha/yr (un-harvested: 1.82 kg/ha, harvested: 11.56 

kg/ha, and assumed to correspond with an average atmospheric deposition of about 23.52 

kg/ha/yr), which increases linearly with increases in atmospheric deposition. The loads 

from forested components of watersheds are estimated through model calibration based on 

a small number of monitoring stations in forested areas (USEPA 2010d). Although 

reasonable under moderate levels of nitrogen loading from forests, it has been suggested 

that nitrogen saturation occurs in forests at high levels of deposition, and the rate of export 

can increase at a rate higher than the rate of deposition increase (Aber et al. 1989, Aber et 

al. 1993, Hunsaker et al. 1993, Goodale et al. 2002) or during disturbance events such as 

defoliation by insects (Eshleman 2000, Eshleman et al. 2000, Goodale et al. 2000, Aber et 

al. 2002, Townsend et al. 2004, McNeil et al. 2007, Eshleman et al. 2009). Similarly, the 

long-term experiment in the Hubbard-Brook Experimental Forest (HBEF; Bormann and 

Likens 1979) has demonstrated that while nitrogen is generally retained in forest 

ecosystems, nitrogen losses several orders of magnitude can occur during extensive 

disturbances. The HBEF work also demonstrated that there are reproducible seasonal 

patterns in nutrient effluence, with lower export during the growing season and highest 

export during the dormant season. 

 Non-point processes can have a disproportionate impact on water quality indicators 

for watersheds of all sizes (Grayson et al. 1997, Howarth 1998, Basnyat et al. 2000, 

Maillard and Pinheiro Santos 2008). As such, spatial data have been employed 
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increasingly as inputs for building and calibrating both empirical and mechanistic water -

quality models. At the simplest, land-use/land-cover (LULC) classifications have often 

been employed to predict water quality on broader scales (for e.g. Mattikalli and Richards 

1996, Johnes and Heathwaite 1997, Bhat et al. 2006) and a majority of studies have 

indicated positive correlations between agriculture and urban land cover and NO3-N 

concentrations in receiving waters (Johnson et al. 1997, Jordan et al. 1997, Buck et al. 

2004, Robertson et al. 2006, Stanley and Maxted 2008).  In areas with high forest cover, 

however, models using land cover data to predict water quality are not very accurate 

(Herlihy et al. 1998). Methodologically, when using remotely sensed variables in addition 

to LULC data, most empirical models employ regression techniques to identify 

relationships between water quality metrics and remotely sensed variables: either simple 

bivariate regression (Griffith 2002, McNeil et al. 2007, Stanley and Maxted 2008, 

Eshleman et al. 2009), multiple regression (Osborne and Wiley 1988, Allan et al. 1997, 

Meador and Goldstein 2003, Townsend et al. 2004, Robertson et al. 2006, Maillard and 

Pinheiro Santos 2008), or partial least squares regression (Lopez et al. 2008, Singh et al. 

2013).  Although these techniques have been successful to varying degrees, and many 

allow building predictive models that are spatially-explicit, most such models are fixed in 

time (i.e. predictions are often made for summer baseflow conditions or annual averages).  

Spatially and temporally continuous predictions of water quality could result in 

more effective targeting of management actions such as setting of TMDLs by season and 

location. Classical statistics techniques such as linear, multiple or PLS regressions are not 

conducive for such applications due to the inherent temporal autocorrelation in the data. 
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Although techniques such as ARMA (Harding and Perry 1997) offer an alternative, the 

size-effect of the temporal trajectories of the variables (i.e. rate and timing of vegetation 

green-up, climatic variations and timing of disturbance events) cannot be explicitly 

modeled. In contrast, the widely used SPARROW nonlinear optimization model (Brakebill 

and Preston 2003) has been successfully applied in an empirical context for many studies 

in the Chesapeake Bay (for e.g.: Roberts et al. 2009, Brakebill et al. 2010, Roberts and 

Prince 2010), but to date only one study has generalized it to explain inter-annual 

variations in nutrient loading using Bayesian means (Wellen et al. 2012).  

 Our objective is to develop ecologically meaningful, landscape-scale and near-

continuous time empirical models for predicting nitrate loads from forested regions of the 

Chesapeake Bay Watershed using remote sensing, meteorological and GIS data.  

Specifically, the approach is intended to generate an algorithm for inputting MODIS-

derived and gridded climate data products to estimate monthly nitrogen loads from the 

forested portions of watersheds across years. To this end, we use a newly developed 

technique, functional regression, to relate time series of nutrient loads in stream water with 

time series of satellite-derived measures of ecosystem variability and disturbance, GIS 

descriptors of watershed physiography, and climate data to generate predictive models. 

Overall, we: 1) investigate what factors influence streamwater nutrient loading in 

predominantly forested watersheds, 2) build nutrient loading models independent of direct 

water quality measures, 3) integrate temporal variation in environmental factors such as 

climate and disturbance and biological factors such as vegetation phenology, 4) provide 
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insights into when a variable matters (in addition to how much) and, 5) build nutrient 

loading models are generalizable across space and time. 

 

Material and methods 

Study area 

The current land use in the Chesapeake Bay watershed (Fig 1) is about 54 percent forest or 

wooded, 26 percent agriculture and pasture, and 8 percent developed land. Nearly 17.7 

million people live in the basin, and the population is estimated to increase to about 20 

million by 2030 (USEPA 2010b). Runoff and groundwater from the Chesapeake watershed 

flow into an estuary with a surface area of 11,655 km
2
 (~4,500 square miles). The largest 

estuary in the U.S., the Chesapeake has been the subject of considerable conservation 

efforts due to its exceptional biological productivity and cultural importance.  

Our objective is the development of a general model to predict nutrient loading 

from forested areas of the watershed. To calibrate such a model, we require loading data 

from primarily forested watersheds, in which the contribution from agricultural nonpoint 

sources are minimal. Our study therefore focuses on watersheds that are largely forested 

(>80%) and for which water quality data are available for the MODIS record (2001-

onwards). We employ data from nine predominantly forested watersheds ranging in area 

from 8 km
2
 to 2,536 km

2
 and in forested proportions ranging from 87.5% to 93.9%: 

Blacklick Run, Cedar creek, Jackson River, Pine Creek, Cowpasture River, 

Sinnemahoning Creek, Kettle Creek, Upper Big Run, Deep Run (Fig 2). Table 1 shows the 

location, area and relative distribution of forest land cover in each watershed. 
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Water quality data 

The nine gaged watersheds have extensive daily discharge and periodic (monthly or higher 

frequency) nutrient concentration data that are suitable for analysis of long-term nitrate-N 

load and concentration trends. The six larger watersheds have been continuously gaged by 

U.S. Geological Survey, and water samples have been periodically collected at the outlet of 

these watersheds by state water quality agencies and analyzed for nitrate-N in accredited 

water quality laboratories. The three smaller watersheds have been monitored for more 

than ten years by the authors following comparable methods. Water samples were analyzed 

for nitrate-N concentration using a flow injection or segmented flow instrument in which 

the nitrate ion reacts with sulfanilamide and N-(1-naphthyl) ethylenediamine following 

cadmium reduction; nitrite-N concentrations were subtracted to obtain nitrate-N values. 

We computed continuous daily nitrate-N loads from the streamflow and nitrate-N time 

series for each station using (LOADEST: Runkel et al. 2004) following Eshleman et al. (in 

press). Daily loads were aggregated and normalized by watershed area to generate monthly 

nitrate-N yields (kg/ha). We log-transformed nitrate-N loads before all analysis to conform 

to assumptions on normality. 

Satellite data 

MODIS data from the NASA Terra satellite platform was obtained through the online Data 

Pool at the NASA Land Processes Distributed Active Archive Center (LP DAAC), 

USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South 

Dakota (https://lpdaac.usgs.gov/data_access). We used MODIS Version 5 product 
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MOD09A1 (500m 8-day composite surface reflectance) for our analyses. Data from four 

MODIS tiles (h11-h12, v04-v05) were reprojected to a common reference system and 

datum (UTM18N, NAD83) mosaicked, clipped to the study area, and masked by quality 

control flags.  Basic vegetation indices – NDVI [(NIR-RED)/(NIR+RED)] and NDII 

[(SWIR1-NIR)/(SWIR1+NIR)] were estimated for each satellite image. In addition, we 

generated Tasseled Cap indices using coefficients following Lobser and Cohen (2007). 

Tasseled Cap indices (soil brightness, vegetation greenness and surface/vegetation 

wetness) have previously been utilized for characterizing vegetation seasonal dynamics for 

forest disturbance and agricultural studies (for e.g.: Skakun et al. 2003, Healey et al. 2005, 

Jin and Sader 2005). The Tasseled Cap indices were used in the disturbance index 

(following Healey et al. 2005), formulations of which have also been used to link forest 

disturbance to nitrogen export from watersheds (for e.g. Townsend et al. 2004, McNeil et 

al. 2007, Eshleman et al. 2009). We hypothesized that increasing vegetation greenness in 

the spring months would correspond to lower nitrate loads in the corresponding time 

period, while greater brightness and disturbance indices would correlate positively with 

nitrate loads since greater amounts of exposed soil and disturbance would lead to a greater 

nutrient flushing potential, especially when coupled with concurrent precipitation. All 

remote sensing measures were averaged by month and by watershed for analysis. 

Meteorological data 

Monthly gridded precipitation data were sourced from the PRISM climate database 

(http://www.prism.oregonstate.edu/) and aggregated to the watershed level similar to the 

MODIS data. We also included total atmospheric nitrate deposition data (monthly, 
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gridded) from the National Atmospheric Deposition Program (NADP, 

http://nadp.sws.uiuc.edu/) to account for direct nitrate inputs to watersheds. 

Watershed characteristics 

We included simple and widely used parameters to describe the physiography and 

landcover of each watershed. The variables considered were: Stream length, stream density 

and deciduous forest landcover. Stream length and density were obtained by clipping 

streamwater networks obtained from the NHDplus dataset (NHDPlus 2010) to watershed 

polygons followed by spatial measurements in a GIS. Deciduous land cover proportion 

was obtained from the National Land Cover Database (NLCD 2006: Fry et al. 2011). We 

hypothesized that 1) longer stream lengths ameliorate nitrate loads in watershed outlets by 

increasing residence time and resulting in higher in-stream processing and uptake of 

nutrients, 2) higher stream densities represent faster-draining watersheds and have an 

amplifying effect on nitrate loads, and 3) greater deciduous land cover characterizes the 

residual variation of nitrate loading between coniferous and deciduous-dominated 

watersheds. 

Statistical methods 

Functional data analysis 

Our modeling strategy was designed to provide 1) temporally dynamic predictions, 2) 

predictions down-scalable to periods shorter than the observation time frame, and 3) 

information on when a predictor had a significant effect on the response (NO3-N loads) as 

well as, in the classical regression sense, how much. Classical regression approaches can 

provide information on how much a variable is important (in terms of coefficient effect 
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sizes), but dynamic predictions generally have required data-intensive process-based 

models (e.g. HSPF: Bicknell et al. 1996). Recent developments in functional data analysis 

(FDA; Ramsay 1997, Ramsay and Silverman 2002) have somewhat narrowed this gap for 

a number of applications, including remote sensing (Zhang et al. 2011). However, 

applications of FDA techniques in ecology remain relatively rare. In brief, FDA techniques 

are predicated on approximating time-varying predictors using continuously derivable 

functions that are then regressed on similarly approximated time-varying (functional) or 

scalar responses. Ordinary least squares (OLS) regression models are formulated such that: 

             , (1) 

Where: α = model intercept, β = model coefficients, y = responses, x = predictors, and   = 

model error term. In contrast, a functional model with a scalar response (with the β having 

an explicit dependency on t) has the basic form: 

                 . (2) 

Letting tj be increasingly dense, a functional linear model becomes conceptually similar to 

a multivariate OLS model with the sums replaced by integrals: 

                   , (3) 

Where t is represented as a continuum, and        and      represented as smooth 

functions using a variety of basis function expansions (Fourier, cubic, polynomial, etc.). 

When the response also varies in the corresponding time period as the predictors, the 

formulation is termed a functional linear concurrent model (FLCM) with responses, 

predictors and model coefficients all approximated using sets of (possibly different) basis 

expansions: 
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                      . (4) 

The flexibility of functional data objects to be approximated using a variety of basis 

function expansions makes it convenient to model smoothly varying periodic (e.g. 

Fourier), non-periodic (e.g. bicubic spline, polynomial), or episodic (e.g. wavelet) time 

series. While the formulation and estimation of functional linear models differ significantly 

from OLS models, the results are interpreted in much the same manner, but also provide 

richer information due to the effect of timing being explicitly captured in the models. That 

is, beta coefficients obtained from OLS regression provide information on whether the 

particular predictor(s) explains a significant amount of variation in the response; functional 

coefficients also show when in the time series that predictor is significant. Functional 

models therefore allow building dynamic models, but it is important to emphasize that they 

are statistical-empirical constructs that, while valid across the domain of the inputs, may 

not provide reliable predictions during exceptional events. Full details of the mathematical 

formulation of functional data analysis are provided in the seminal work by Ramsay and 

Silverman (2002). We used the package fda (Ramsay et al. 2013) in R (R 2008) for all 

analyses. 

We modeled the water quality information from each year*watershed combination 

as a single observation. Modeled observations comprised one year of data (12-data points), 

with a total of 90 observations (9 watersheds * 10 years) derived from 1080 (90 * 12 

months) data points of original load estimates. We used Fourier basis expansions for 

approximating the monthly variation in nitrate loads and for all time-varying predictor 

variables (NDVI, precipitation, disturbance) because: 1) bicubic spline approximations 
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produced over/under shoots estimates at the ends of time series, and 2) most of these 

variables were essentially periodic and could be considered stationary for the purpose of 

one (annual) observation. To avoid overfitting smoothed observations when approximating 

functions for time-varying responses and predictors, the amount of smoothing applied for 

each profile was determined by conducting a grid search of number of basis functions 

ranging from three to eleven (in steps of twos) and values of the roughness penalty ranging 

from 0.1 – 5.0 (in steps of 0.1) and selecting the combination that provided the lowest 

generalized cross-validation error (following Ramsay et al. 2007). Other temporally static 

explanatory variables (e.g. stream length, stream density, deciduous land cover) were 

entered in the models as scalars. 

Missing data were estimated by fitting cubic splines to the entire time series of each 

watershed and replacing missing observations with fitted values. We preferred cubic 

splines for data filling because Fourier series approximations obscured annual-scale trends 

when data from all years were used. During initial tests, generalized cross-validation 

statistics showed agreement between predicted and randomly dropped observations, 

although cubic splines caused artifacts (under- and over- shooting the range of data) at the 

end of time series. We consequently dropped the first (2000) and last (2009) years of 

available data from the analyses. The study consequently uses data only from the 2001-

2008 periods (eight years). 

Lag effects 

FDA regression techniques allow the predictions of continuously varying responses on 

similarly structured functions or scalar predictors, with the model responses assumed to be 
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concurrent. In other words, an effect scales to a response at the same observation time (e.g. 

precipitation at time t affects flushing at time t). This assumption might hold true for many 

applications, but nutrient flushing effects may be significantly lagged per the timing and 

extent of ecosystem perturbations in watersheds. Lag effects in nutrient flushing have long 

been recognized (Bormann and Likens 1979), especially by Eshleman et al. (1998) in a 

study conducted in watersheds within our study region. To investigate and adjust for lag 

effects in our data, we conducted cross-correlation analyses of all predictors lagged up to 

two years with observed NO3-N loads at watershed outlets. We identified peaks in the 

cross-correlation coefficients, and then pre-lagged the corresponding variables before 

including them as predictors in the final models.  

Validation 

Statistical analyses using continuous-time long-term records pose considerable constraints 

on validation due to the inherently small sample size of such records. Instead of using a 

classical leave-observation-out validation strategy that risks pseudo-replication (the 

watershed being in the training sample set), we followed a conservative cross-validation 

strategy wherein 1) a watershed’s entire record was dropped from the training dataset and 

predicted using the rest to test how the model performed on a randomly sampled watershed 

and 2) all watersheds were iteratively dropped from a given year and the model built with 

the training dataset comprising all other years to predict how well the model performed on 

a randomly sampled year. 
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Results 

Functional approximations of nitrate-N loads across all watersheds and years closely 

matched observed patterns of variation (R
2
 = 0.91, Fig 3). Nitrate-N loads at watershed 

outlets generally followed annual cyclic patterns that peaked in the spring months 

(February-May) and were the lowest in the fall (August-October, Fig 3). Cross-correlation 

analysis of nitrate loads against predictor variables suggested different but expected lag 

periods (Fig 4). Nitrate-N loads did not lag precipitation, but were lagged in NDVI by 

approximately a month (r1 month = -0.54), nitrate-N loads lagged the disturbance index by a 

13 months (r13 months = 0.14). We lagged the disturbance index by one year (r1 year = 0.09), 

since lagging data by 13 months would incur the loss of one entire year of data across all 

watersheds; also, studies in similar landscapes have found empirical evidence of nitrate 

loads lagging disturbance by a year (Eshleman et al. 1998, Eshleman 2000, Eshleman et al. 

2000).  

Beta coefficients obtained from fitted FLCMs revealed that precipitation was 

highly and positively related with nitrate loads throughout the year, with the effect of 

precipitation peaking in the fall (Fig 5). The pattern of influence of NDVI was markedly 

seasonal, with nitrate-N loads declining with increasing NDVI in the green-up and brown-

down phases of vegetation phenology and not significant elsewhere. In contrast, nitrate-N 

loads were highly positively correlated in the mid-growing season with one-year-lagged 

disturbance index (higher disturbance during the previous summer corresponded to higher 

nitrate-N load). Stream density had a similar response profile as disturbance (positively 

related during the growing season), stream length had the opposite effect, indicating 
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watersheds with greater lengths of streams retaining larger amounts of nitrate throughout 

year except during the growing season when the effect was not significant. As expected, N-

deposition had a generally amplifying effect on nitrate loads throughout the year, but this 

effect was the most apparent during the green-up and brown-down shoulder seasons. A 

larger proportion of deciduous forest cover dampened overall nitrate-N loads, but the effect 

was not significant in the mid-growing season. 

Overall, the model agreed well with observed data (Fig 6, Table 2). Across all years 

and watersheds, the model explained around 81% of the variation in data (74% with the 

raw data, i.e. non-Fourier smoothed nitrate-N data.) Per-watershed predictions were 

consistently high (R
2
 = 0.74 – 0.90) except for Jackson River (R

2
 = 0.65, RMSE = 0.294). 

The model performed well across all years (R
2
 = 0.73 – 0.90), with the worst performance 

in  2004 (R
2
 = 0.68). Month-by-month predictions had the lowest fits (R

2
 = 0.63 – 0.75), 

likely as a consequence of using a constant lag for all watersheds. Cross-validation 

statistics confirmed the Jackson River watershed (CV R
2
 = 0.59, CVRMSE = 0.376), the 

Pine Creek watershed (CV R
2
 = 0.50, CVRMSE = 0.601) and the year 2004 (CV R

2
 = 

0.60, CVRMSE = 0.377) as persistent outliers. When aggregated across all watersheds, the 

model predicted ~95% of all variation in the data (89% using unsmoothed data) indicating 

the effectiveness of the model in capturing large-scale seasonal changes in nitrate loads 

(Fig 7, 8A). Aggregated across watersheds and years, the model tracks inter-annual 

variations in nitrate-N loads as they related to precipitation and vegetation phenology. 

Moreover, our results capture observed declining trends in nitrate-N loading into the Bay 

from 2004 onwards (Eshleman et al. in press, Fig 8B).  

79



 

 

 

Discussion 

The intent of this study was to develop ecologically meaningful, landscape-scale and 

nearly continuous-time indicators of nutrient loads from forests using remote sensing data 

for the Chesapeake Bay watershed.  To this end, we developed predictive models using 

functional linear concurrent models to relate time series of nutrient loads in stream water 

with time series of satellite-derived measures of ecosystem variability and disturbance, as 

well as climate data. For broader application, the proposed models needed to both use data 

independent of direct water quality measures, and integrate temporal variation in 

environmental factors such as climate, disturbance, and vegetation phenology in addition 

to classically used parameters of watershed physiography and land cover. Our models 

matched observations well, and provided insights into when as well as how much each 

hypothesized predictor was important. We expect that similar accuracies could be obtained 

using other empirical techniques, but the FLCM approach provided unique insights into the 

temporal pattern of relationships between the putative environmental drivers and nitrate-N 

loads at watershed outlets. For example, significant and large coefficients for precipitation 

confirm the role of precipitation in flushing nutrients from watersheds, with the maximum 

flushing occurring in the end-of-season phenological phase of vegetation, when uptake by 

vegetation is lowest and contributions due to senescence is highest.  

The interaction of the seasonality of precipitation effects and vegetation phenology 

is likely related to the general pattern of nutrient attenuation in streams, in which 

watersheds with longer stream lengths retain more nutrients, but only during the vegetation 
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uptake period and in the fall when in-stream heterotrophic uptake of N is prevalent 

(McDowell and Fisher 1976, Goodale et al. 2009). Similarly, the correspondence between 

the timing of influence of disturbance and stream density may indicate precipitation-

facilitated nutrient flushing from disturbed ecosystems (Goodale et al. 2000, Aber et al. 

2002, Eshleman et al. 2009) in comparatively more dissected landscapes. Patterns of 

nitrogen deposition followed expected reinforcing effects on stream water nitrate export 

(Fenn and Poth 1999, Aber et al. 2002, Eshleman et al. 2009). Increasing deciduous cover 

corresponded to lower nitrate-N loading into streamwater both in the spring and fall (Fig 

5). Increased uptake of nutrients during green-up is a widely recognized phenomenon 

(Koyama et al. 2008, Ueda et al. 2009, El Zein et al. 2011), explaining the importance of 

deciduous forest cover in the spring. The relative importance of deciduous compared to 

evergreen forests in the fall is likely due to faster decomposability of fall foliage from 

broadleaved deciduous trees and therefore greater immediate in-stream heterotrophic 

uptake (McDowell and Fisher 1976, Goodale et al. 2009). 

 Overall model fits and cross-validations indicate that our model was robust to 

variations in forest dynamics and environmental conditions. However, predictions of 

nitrate-N loads in some years and watersheds were persistently under- or over- predicted, 

most notably the year 2004. 2004 followed a record wet year (2003) that had followed a 

record dry year (2001). Kaushal et al (2008) studied approximately 1000 streams in 

Maryland around the same time period and found that watershed-scale nitrate retention 

declined drastically in 2003. We believe that the patterns we observed in our data are the 

continuation of this phenomenon. Watershed-wise, nitrate-N loads from the Pine Creek 
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and Jackson River watersheds were under-predicted when cross-validated against other 

watersheds. Given that variations in nitrate-N loads from these watersheds were largely 

similar to those from other watersheds, we suspect this is an interaction of the larger size 

and relatively higher non-forest landcover of these watersheds (mean 2107 km
2
, 14.71% 

non-forest) compared to the rest (mean 435 km
2
, 11.02% non-forest). On average, these 

differences translate to an over six-fold difference in non-forest land area that contributes 

to nitrate-N loads at the watershed outlet. As our model is applicable to (and only applied 

to) forested pixels in a watershed, the contribution of non-forest pixels is likely under-

represented in predicted loads and thus negatively biases the predictions. This illustrates 

the difficulty in accurately characterizing nutrient loads from forests, i.e., the lack of 

suitably large, entirely forested watersheds for model calibration/validation. 

 Aggregated across months and watersheds, predicted nitrate-N loads followed a 

pattern of decline (Fig 8) that has been observed in streamwater data post-2004 (CBPO 

2012) and in general in the past decade (Eshleman et al. in press). While model uncertainty 

may be highest at the monthly scale, the fact that the modeled trends in loads match 

observations provides confidence that our methodology is robust to decadal-scale 

variations in water quality, while also matching the larger patterns in intra-annual 

variations. The results of our work provide insights that may benefit other empirical 

approaches, such as the SWALLOW model of Wellen et al. (2012), and may provide an 

alternate strategy to parameterization of forests in process-based models. 

Finally, the effect of N-deposition was not a major predictor in the model (in 

comparison to say, precipitation (Fig 5), even though annually aggregated trends in 
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predicted nitrate loads correlated highly with trends in N deposition (r = 0.863, P = 0.005). 

N deposition was included in the model as a monthly-static but yearly-varying variable, 

and likely captured the effect of declining N deposition (Burns 2011) in influencing the 

water quality of streams across the Chesapeake Bay Watershed. 

 

Conclusion 

Overall, this study reaffirms that climate and landscape variables have a strong influence 

on nutrient loading to streams from the forested component of watersheds. We also 

provide new insights into when these variables exert the greatest influence in addition to 

their relative influence. Information on the timing of the importance of a variable should 

help in targeting management efforts in both space and time. Such models may also be of 

use to management agencies for scenario generation under varying land management 

policies. Though the inherent limitations of empirical models constrain them to operate 

within the range of observed data, temporally-varying predictions may be instrumental in 

better calibrating mechanistic models such as BASINS-HSPF (Bicknell et al. 1996), which 

currently assumes constant loads from forested ecosystems. While mean annual predictions 

from our model matched those assumed by HSPF well (HSPF: 2.76 kg/ha/yr, our model 

median: 2.75 kg/ha/yr), our model suggests annual nitrate-N loads can vary from 2.31 

kg/ha/yr to 4.43 kg/ha/yr. The study also shows that FLCMs coupled with readily available 

satellite, meteorological and climate data may be viable for making continuous-time 

models for many other natural resource management applications or for mixed land uses. 

Our modeling approach used MODIS data as a major input, data from sensors with similar 
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measurements strategies such as the VIIRS aboard the Suomi-NPP mission could ensure 

long-term continuity. 
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Tables 

Table 1: Study watersheds sorted in order of increasing forest cover. 

 

Name Latitude Longitude % Forest Area (km
2
) 

Pine Creek 41.273611 -77.324444 83.38 2536.75 

Upper Big Run 39.596472 -79.176348 85.71 3.50 

Jackson River 37.788611 -80.000833 87.19 1678.25 

Cedar Creek 39.081111 -78.329722 87.45 292.75 

Blacklick Run 39.609337 -79.082551 87.50 8.00 

Cowpasture River 37.791667 -79.759722 87.93 1242.75 

Sinnemahoning Creek 41.413333 -78.197222 89.34 813.75 

Kettle Creek 41.319444 -77.874167 91.03 668.75 

Deep Run 39.653586 -78.452090 93.90 20.50 

 

  

90



 

 

Table 2: FLCM Model fit statistics stratified by watershed, year and month. Results are 

presented as coefficients of determination, model root mean square error, relative bias and 

sample size. Results are shown for models compared with Fourier-smoothed data (that the 

model was built with) and unsmoothed (raw) data. 

 

   

Smoothed data 

 

Unsmoothed data 

Watershed 

  

R
2
 RMSE Bias 

 

R
2
 RMSE Bias 

N = 96 Upper Big Run 

 

0.81 0.332 0.086 

 

0.75 0.376 0.086 

 

Blacklick Run 

 

0.81 0.324 0.049 

 

0.72 0.417 0.049 

 

Cedar Creek 

 

0.74 0.269 0.083 

 

0.66 0.293 0.083 

 

Cowpasture River 

 

0.78 0.324 -0.166 

 

0.68 0.383 -0.166 

 

Deep Run 

 

0.84 0.513 -0.075 

 

0.72 0.660 -0.075 

 

Sinnemahoning Creek 

 

0.89 0.228 -0.101 

 

0.82 0.293 -0.101 

 

Jackson River 

 

0.65 0.294 0.046 

 

0.56 0.351 0.046 

 

Kettle Creek 

 

0.89 0.225 0.009 

 

0.83 0.288 0.009 

 

Pine Creek 

 

0.90 0.282 0.069 

 

0.84 0.338 0.069 

Year 

         N = 108 2001 

 

0.73 0.413 0.036 

 

0.69 0.453 0.036 

 

2002 

 

0.83 0.318 -0.074 

 

0.78 0.373 -0.074 

 

2003 

 

0.73 0.240 0.055 

 

0.52 0.369 0.055 

 

2004 

 

0.68 0.319 0.115 

 

0.56 0.392 0.115 

 

2005 

 

0.90 0.240 0.107 

 

0.83 0.308 0.107 

 

2006 

 

0.78 0.320 -0.015 

 

0.68 0.408 -0.015 

 

2007 

 

0.87 0.312 -0.141 

 

0.77 0.417 -0.141 

 

2008 

 

0.83 0.363 -0.083 

 

0.79 0.408 -0.083 

Month 

         N = 72 January 

 

0.71 0.278 0.000 

 

0.62 0.341 0.016 

 

February 

 

0.71 0.272 0.000 

 

0.57 0.367 -0.123 

 

March 

 

0.65 0.267 0.000 

 

0.65 0.335 0.071 

 

April 

 

0.62 0.257 0.000 

 

0.45 0.283 0.036 

 

May 

 

0.67 0.240 0.000 

 

0.60 0.295 -0.040 

 

June 

 

0.71 0.238 0.000 

 

0.61 0.355 0.003 

 

July 

 

0.67 0.325 0.000 

 

0.45 0.444 -0.020 

 

August 

 

0.63 0.422 0.000 

 

0.52 0.501 0.013 

 

September 

 

0.64 0.431 0.000 

 

0.64 0.512 0.074 

 

October 

 

0.72 0.381 0.000 

 

0.65 0.422 -0.106 

 

November 

 

0.75 0.344 0.000 

 

0.76 0.380 0.001 

 

December 

 

0.72 0.311 0.000 

 

0.55 0.405 0.074 

Overall 

         N = 864 

  

0.81 0.320 0.000 

 

0.74 0.393 0.000 
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Figures 

Figure 1: Land cover of the Chesapeake Bay watershed (NLCD 2006).
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Figure 2: Location of sampled watersheds. 
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Figure 3: Comparison of (A) raw and (B) Fourier-basis smoothed profiles of log-

transformed NO3-N loads in study watersheds. (C) Illustrates match between raw and 

smoothed data. Line colors indicate year (2001-2008) and symbols indicate watersheds. 

The FLCM model utilizes Fourier-smoothed data (B) for all analyses. 
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Figure 4: Cross-correlation plots of predictor variables with log (NO3-N) loads. Cross-

correlations were conducted to determine if NO3-N loads had lagged responses to predictor 

variables. Cross-correlation coefficients averaged across watersheds (with standard 

deviation bars) are plotted (blue circles) for lag values ranging from zero to 17 months. 

Shaded regions indicate the period when the cross-correlation had the largest absolute 

value. 
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Figure 6: Model fits obtained from the functional linear concurrent model, with the model 

coefficient of determination (R
2
) and associated root mean square error (RMSE). A) Fit 

between the Fourier smoothed data and unsmoothed data. B) Fit between Fourier smoothed 

data and model predictions. C) Fit between unsmoothed data and model predictions. 

Colors indicate different years (2001-2008) and symbols indicate different watersheds. 
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Figure 7: Model fits obtained from the functional linear concurrent model aggregated 

across watersheds, with coefficient of determination (R
2
) and associated root mean square 

error (RMSE). Error bars show standard deviation in nitrate-N load by watershed. A) Fit 

between the Fourier-smoothed ln(NO3-N) data and model predictions. B) Fit between 

unsmoothed data and model predictions. Note that models were built using Fourier 

smoothed data. Colors indicate different years (2001-2008). 
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Figure 8: Model fits obtained from the functional linear concurrent model aggregated 

across watersheds through time. A) Monthly unsmoothed ln(NO3-N) (red circles) and 

model predictions (green circles). B) Unsmoothed data and model predictions aggregated 

by year. Dotted lines denote trends in ln(NO3-N) loads from 2004 onwards observed in raw 

data (red) and model predictions (green). Note that individual points in both subplots are 

offset from year centerlines for clarity. 
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Figure 9: Spatial predictions obtained by applying the FLCM model on forest pixels (left 

panels) of the entire Chesapeake Bay watershed, and aggregated to HUC11 watersheds 

(right panels). Note log scale of color ramp. Predictions for the first four months of 2004 

are shown. Pixel-scale predictions would be needed to be aggregated by total drainage-area 

weighted forest cover per stream outlets for streamwater assessments. 
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Chapter 3: Retrieval of canopy foliar chemical and morphological traits and their 

uncertainty from imaging spectroscopy 

 

Abstract 

A major goal of remote sensing is the development of generalizable algorithms to 

repeatedly and accurately map ecosystem properties across space and time. Imaging 

spectroscopy in particular has great potential for mapping vegetation traits that cannot be 

retrieved from broadband data, but has traditionally been limited by location-specific 

approaches. Here we illustrate a general approach for the estimation of key foliar chemical 

and morphological traits and the propagation of errors from the leaf to the image scale 

using partial least squares regression (PLSR) applied to data from 164 field plots within 51 

AVIRIS images acquired between 2008-2011. We use a series of 500 randomized 50/50 

subsets of the original data to generate spatially explicit maps of six traits (leaf mass per 

area (LMA), and percent nitrogen, carbon, fiber, lignin and cellulose) as well as pixel-wise 

uncertainty in their mapped estimates. Both LMA and %N PLSR models had a R
2
 greater 

than 0.85. Root mean square errors (RMSEs) for both variables were less than 9% of the 

range of data. Fiber and lignin were predicted with R
2
 > 0.70 and carbon and cellulose 

greater than 0.5. Although R
2
 of %C and cellulose were lower than LMA and %N, the 

range in variability of these constituents (especially %C) was lower than %N or LMA, and 

their RMSE values were beneath 12%. The resulting maps of nutritional and 

morphological properties together with their overall uncertainties represent a first-of-its-

kind data approach for examining the spatio-temporal patterns of forest functioning and 
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nutrient cycling. Specifically, these results offer an alternative to categorical maps of 

functional or physiognomic types by providing spatially continuous maps of the traits that 

define those functional types.  A key contribution of this work is the ability to assign 

retrieval uncertainties by pixel, enabling more efficient assimilation of these data products 

into ecosystem models to help constrain carbon and nutrient cycling projections.  
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Introduction 

Terrestrial ecosystems play an important role in the global carbon by sequestering 3-5 Pg 

of carbon (C) per year from the atmosphere via photosynthesis (Schimel 1995, Cramer et 

al. 2001, 2007, Le Quere et al. 2009). Characterization of the factors that influence the 

magnitude of terrestrial C uptake is required to develop a process-based understanding of 

ecosystem dynamics and accurately model vegetation response to environmental change. 

In particular, the chemical, structural and morphological properties of the foliage in 

vegetation canopies correlate strongly with plant function, including ecosystem-wide 

nutrient cycling rates (Scott and Binkley 1997, Craine et al. 2002, Santiago et al. 2004, 

Meier and Bowman 2008) and photosynthetic capacity (Reich et al. 1997, Reich et al. 

1999, Shipley et al. 2005, Kergoat et al. 2008). Thus, research and modeling efforts to 

estimate the dynamics of global carbon stocks make use of the covariance between plant 

traits and patterns of biogeochemical cycling to determine ecosystem productivity (Enquist 

et al. 2007).  

Recent research has shown that global patterns of nutrient cycling and primary 

productivity in forested ecosystems are driven in large part by a small suite of foliar 

structural and biochemical traits representing a tradeoff between leaf construction costs 

and photosynthesis (Reich et al. 1992, Shipley and Lechowicz 2000, Wright et al. 2004, 

Shipley et al. 2005, Shipley et al. 2006). Specifically, coordination between foliar nitrogen 

content and specific leaf area (SLA, or its reciprocal, leaf mass per area LMA) maximizes 

C-fixation (Shipley et al. 2005) and forms a fundamental axis describing tradeoffs between 

leaf lifespan and plant growth (Reich et al. 1991, Wright et al. 2004, Shipley et al. 2006). 
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Foliar nitrogen levels determine stomatal regulation in relation to the marginal cost of 

water loss relative to carbon gain as a tradeoff between allocation to structural tissues 

versus liquid phase processes (Shipley and Lechowicz 2000, Shipley et al. 2006). Whereas 

lower SLA results in lower foliage photosynthetic potential per unit dry mass (Niinemets 

2001) it leads to greater leaf structural strength and consequently longer leaf life spans 

(Wright and Westoby 2002, Wright et al. 2005a, Violle et al. 2009). These patterns have 

been found to be consistent between broadleaf, needleleaf and herbaceous species (Reich 

et al. 1991, Reich et al. 1992, Grime 2006) and have been found to operate independent of 

growth form or phylogeny (Shipley et al. 2006). Foliar nitrogen also scales with the 

content of RuBisCo, the key protein in plants responsible for the carboxylation of RuBP in 

the initial steps of CO2 fixation (Long 1991, Collatz et al. 1992, Ainsworth and Rogers 

2007), and therefore modulates key photosynthesis parameters such as the maximum rate 

of carboxylation (Vcmax) and electron transport (Jmax) (Long 1991, Ripullone et al. 2003).  

Not surprisingly, these plant traits also co-vary strongly with decomposition and 

nitrogen mineralization rates across ecosystems (Chapin 2003, Kazakou et al. 2006, 

Quested et al. 2007, Santiago 2007). Decomposition is a critical source of plant nutrients 

and drives the largest flux of terrestrial C to the atmosphere (Meier and Bowman 2008). 

When controlled for climate, decomposition rates are positively correlated with nitrogen 

content of litter, SLA and leaf water content (Bonan 1993, Schadler et al. 2003). Litter 

decomposability is generally negatively correlated with leaf dry matter content (Garnier et 

al. 2004, Kazakou et al. 2006, Quested et al. 2007, Fortunel et al. 2009, Kazakou et al. 

2009), foliar lignin concentrations (Robinson and Jolidon 2005, Hobbie et al. 2007, 
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Johnson et al. 2007, Carrera and Bertiller 2010) and positively with foliar nitrogen 

concentrations (Hattenschwiler et al. 2005, Kazakou et al. 2006, Fortunel et al. 2009). 

Lignin-to-nitrogen ratios have shown to be strong indicators of litter quality and consistent 

predictors of litter decomposability across a number of biomes (Melillo et al. 1982, Aerts 

1997, Knorr et al. 2005, Hobbie et al. 2006, Quested et al. 2007, Fortunel et al. 2009) and 

together with cellulose concentration are considered rate regulating factors in late stages of 

forest litter decomposition (McClaugherty and Berg 1987, Berg 2000, Johnson et al. 2007). 

As such, synoptic, repeatable and consistent retrievals of key foliar traits such as foliar 

nitrogen, SLA (or LMA) and foliar lignin and cellulose may be invaluable for 

characterizing determinants of ecosystem function across large regions (Chapin et al. 1996, 

Diaz et al. 2004, Ustin and Gamon 2010), and may provide valuable inputs for modeling 

nutrient fluxes and vegetation range shifts under changing land-use and climate scenarios 

(Wright et al. 2004, Townsend et al. 2008). 

Imaging spectrometers measure radiation reflected off the earth’s surface in narrow, 

contiguous wavebands (typically ≤10-15 nm) over a large portion of the incident solar 

spectrum (e.g., 350-2500 nm for NASA’s Airborne Visible/Infrared Imaging Spectrometer, 

AVIRIS, Vane et al. 1993, Green et al. 1998). It has long been demonstrated that 

spectroscopy is sensitive to foliar chemistry, and indeed this is the basis for standard 

spectroscopic approaches in a range of disciplines to estimate chemistry on dried samples 

(Kokaly 2001, Richardson and Reeves 2005, Petisco et al. 2006) or to non-destructively 

estimate chemistry or photosynthetic properties of fresh leaves (Curran et al. 1992, Sims 

and Gamon 2002, Blackburn 2007, Menesatti et al. 2010). The ability to do this is a 
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consequence of well-known biochemical absorption features (Curran 1989, Curran et al. 

1992, Fourty et al. 1996, Curran et al. 2001) at different wavelengths of light related to 

electron transitions and bending and stretching of chemical bonds (Curran 1989, Fourty et 

al. 1996).  

The ability to retrieve chemistry from remotely sensed imagery is more complicated, 

although it is clear that chemical features related to leaf chlorophyll (Curran et al. 1992, 

Yoder and Pettigrewcrosby 1995, Curran et al. 2001) and water content are clearly 

expressed in both narrowband and broadband imagery (Gates et al. 1965, Tucker 1980, 

Asner and Vitousek 2005, Sanchez-Azofeifa et al. 2009, Ustin et al. 2012). The effects of 

canopy structure on reflectance do confound the identification of absorption features in 

foliage (Knyazikhin et al. 2013), but these occur primarily in the near infrared wavelengths 

where leaf scattering is highest and there are not features commonly associated with 

biochemical retrieval. Further, there is evidence that features identifiable at the leaf-level 

can be enhanced at the canopy level (Baret et al. 1994). Ultimately, the coordination of 

traits at both the leaf and canopy level facilitates using spectral information to map traits of 

interest, even if the physical basis for strong correlations have not been fully characterized 

(Townsend et al. 2003, Ollinger 2011, Ollinger et al. 2013). 

A considerable and growing body of literature has demonstrated very strong sensitivity 

of imaging spectroscopy data to foliar traits relevant to photosynthesis (Wessman et al. 

1989, Matson et al. 1994, Curran et al. 1997, Martin and Aber 1997, Coops et al. 2003, 

Smith et al. 2003, Townsend et al. 2003, Asner and Martin 2008, Martin et al. 2008, 

McNeil et al. 2008, Kokaly et al. 2009). One of the key findings of the research to date is 
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that spectra in the shortwave infrared (especially 1400-1850 nm and 2000-2400 nm) are 

critical to retrieval of parameters related to photosynthesis on account of strong absorption 

features related to nitrogen bonds in proteins that are expressed in those regions (Fourty et 

al. 1996). Supplementary Table S1 summarizes recent literature on the direct use of canopy 

spectra obtained from spectroscopic imagery to map foliar biochemical and morphological 

traits of forest canopies.  

Additional studies have shown that radiative transfer models (Asner 1998, Asner et al. 

2008, Asner and Martin 2008, 2009, Asner et al. 2011a) can be used in conjunction with 

imaging spectroscopy to map foliar traits effectively. To our knowledge, however, apart 

from Martin et al. (2008), studies that incorporate information from multiple scenes across 

multiple locations are rare. Site-specific studies include Coops et al. (2003) and Townsend 

et al. (2003), who employed only a single or small number of images from a single study 

area, and Ollinger et al. (2002a), who used a large number of images of one study area 

acquired on a single date. Martin and Aber (1997) demonstrated for a small data set that a 

regression-based calibration could be built for two study sites, Harvard Forest 

(Massachusetts) and Blackhawk Island (Wisconsin), although predictions from one site to 

the other were not successful.  

Our goal is the development and application of generalizable algorithms to repeatedly 

and accurately map ecosystem properties such as foliar traits across space and time 

(Townsend et al. 2003, Ustin et al. 2004, Majeke et al. 2008, Ustin and Gamon 2010). 

Remote sensing research at the leaf and canopy scales has demonstrated the capacity to 

characterize the biochemical status of forest canopies from stand to landscape scales using 
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air- and space-borne imaging spectrometers (Ustin et al. 2004, Carlson et al. 2007, Asner 

et al. 2011a). In this study, we report a set of spectroscopic calibrations for the 

determination of leaf chemical composition (nitrogen, carbon, and fiber constituents) and 

morphology (leaf mass per area, LMA) of temperate and boreal tree species using imaging 

spectroscopy. We demonstrate techniques to explicitly propagate uncertainties from the 

leaf to the plot to the image scale. The resulting maps of nutritional and morphological 

properties together with their overall uncertainties represent a first-of-its-kind data product 

for examining the spatio-temporal patterns of forest functioning and nutrient cycling. 

These data can be used to relate foliar traits with ecosystem processes such as streamwater 

nutrient export and insect herbivory. In addition, the ability to assign a retrieval uncertainty 

enables more efficient assimilation of these data products into ecosystem models to help 

constrain carbon and nutrient cycling projections.  

 

Materials and methods 

Study sites 

We established 164 sample sites in diverse forest types across seven major ecoregions 

(Omernik 1987, Omernik et al. 2000, McMahon et al. 2001) spanning the upper Midwest 

(n=106) and Eastern U.S. (n = 58, Figure 1, see list of dominant species in Supplementary 

Table S2 and all plots and their locations in Supplementary Table S3). 54 plots were 

located in The Northern Lakes and Forests ecoregion, characterized by nutrient-poor 

glacial soils, undulating till plains, morainal hills, broad lacustrine basins, and extensive 

sandy outwash plains dominated by coniferous and northern hardwood forests. This region 
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is mostly dominated by Acer saccharum and Betula alleghaniensis, interspersed with 

Pinus resinosa and Populus tremuloides stands. Pinus banksiana is the dominant species in 

the Pine Barrens, co-dominant with Quercus macrocarpa. Bogs and wetlands in the region 

are generally dominated by Larix laricina, Picea mariana and in some locations Thuja 

occidentalis. Large stands of old-growth Tsuga canadensis can be found in the Porcupine 

mountains and have been sites of intensive research of stand dynamics and forest 

regeneration (Frelich and Lorimer 1991, Dahir and Lorimer 1996) and biogeochemical 

cycling (Mladenoff 1987). Much of this region is dominated by highly-productive second-

growth hardwood forests that were largely clearcut between 1850-1930 (Rhemtulla et al. 

2009). The high productivity of this ecosystem has been intensively studied for carbon 

stock assessments and energy flux studies (Davis et al. 2003, Cook et al. 2004, Desai et al. 

2008) and is also the location of the Chequamegon Ecosystem Atmosphere Study 

(ChEAS) studying the impacts of disturbance and environmental influences on forest 

carbon and energy fluxes within northern temperate forests (Burrows et al. 2003, Ahl et al. 

2004, Cook et al. 2004, Schulte et al. 2005).  

Ten plots were located on Blackhawk Island in the North Central Hardwood Forests 

ecoregion. The island is dominated with large stands of A. saccharum and Quercus rubra 

interspersed with stands of Pinus strobus with Ostrya virginiana in the understory. 

Blackhawk Island has hosted intensive studies on nutrient cycling (Pastor et al. 1982, 

1984) and was the location of some of the first uses of imaging spectroscopy (Wessman et 

al. 1988) as well as the use of AVIRIS imagery to map foliar nutrients for incorporation 

into biogeochemical models (Martin and Aber 1997). Eleven plots were located in the 
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Wisconsin’s Driftless Area, consisting of deeply dissected, loess-capped, bedrock 

dominated plateaus. The diverse forests and woodlots in this region are characterized by A. 

saccharum dominated stands with Q. rubra co-dominant, and large stands of P. strobus 

and P. resinosa co-dominant with Acer rubrum and Carya ovata. The Southeastern 

Wisconsin Till Plains to the south contained another 31 plots, the majority of which (29) 

were located within intact urban forests of the Madison metropolitan area and are 

characteristic of the North Central Hardwoods region. These plots fall in the transition 

zone between the hardwood forests and oak savannas to the west and the tallgrass prairies 

of the Central Corn Belt Plains to the south. Ecosystems in this region have been studied 

extensively for the effects of anthropogenic disturbance (Bresee et al. 2004, Grossmann 

and Mladenoff 2008) and the effects of land cover on regional water quality (Meador and 

Goldstein 2003, Lathrop 2007, Diebel et al. 2008, Singh et al. 2013).  

In the eastern U.S., 22 plots were located in the Adirondacks Park in the North 

Appalachian and Atlantic Maritime Highlaneds ecoregion. These plots were dominated by 

Fagus grandifolia and A. saccharum associations, with B. alleghaniensis and P. resinosa 

co-dominants and considerable understory of A. rubrum and Abies balsamifera. This 

ecoregion is characterized by hills and mountains, mostly forested land cover, nutrient-

poor soils, and numerous high-gradient streams and glacial lakes. Lakes and streams in this 

region have been impacted by acidification due to atmospheric deposition originating in 

industrialized areas upwind from the ecoregion to the west and this area has been the 

subject of numerous studies of N deposition on forests (Aber et al. 1997, McNeil et al. 

2007b, Crowley et al. 2012).  
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Finally, 36 plots were located in the Ridge and Valley and Central Appalachians 

Ecoregions to the south of the Adirondacks. The Central Appalachian sites were located in 

cool, wet mountainous areas of the Appalachian Plateau, while the Ridge and Valley plots 

occur in comparatively warmer, drier ridgelines in the rain shadow of the Appalachians 

(Chastain et al. 2006). Present-day forests are dominated by a variety of oak associations 

including Q. alba, Q. prinoides, Q. rubra, and Q. velutina, as well as A. saccharum, A. 

rubrum, Pinus strobus, T. canedensis, with Carya glabra and Fraxinus americana as the 

sub-dominant species. Forests in this larger region have been affected by post-industrial 

acid deposition and subsequent recovery. A large number of studies have been conducted 

on the effects of acidic deposition on N saturation of these forests (Aber et al. 1989, Aber 

et al. 1998, Aber et al. 2003), and consequently the effects of N deposition on soil and 

foliar C:N ratios (McNeil et al. 2007b, Bedison and Johnson 2009, Davis et al. 2009, 

Piatek et al. 2009), ecosystem productivity and growth (May et al. 2005, Davis et al. 2008, 

Bedison and McNeil 2009) and nitrogen leakage from disturbance events (Eshleman et al. 

1998, Eshleman 2000, Townsend et al. 2004, McNeil et al. 2007a, Eshleman et al. 2009, 

Townsend et al. 2012). 

 

Field methods 

All field plots were sampled in July or August in 2008-2011, within ±2 weeks of AVIRIS 

image acquisition. We assumed that canopy chemistry would remain relatively stable 

during this midsummer sampling window (Matson et al. 1994, Scogings et al. 2004, Migita 

et al. 2007). Twenty plots were sampled in multiple years in locations where repeat 
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acquisitions of AVIRIS imagery occurred. Our field effort focused on characterizing forest 

canopy foliar properties and well as forest composition, both based on basal area by 

species (Townsend et al. 2003) and by leaf area following the method of Smith et al. 

(2002). At each plot we collected leaves via shotgun, line launcher or pole pruner for all 

canopy species.  Leaves were sampled from the top, middle and bottom of the canopy, 

stored fully hydrated in a cooler and measured in a field laboratory within six hours of 

sampling. We measured green-leaf spectra using an ASD FieldSpec3 or FieldSpec2 350-

2500 nm spectroradiometer (PANalytical Inc. Boulder, CO). Reflectance and transmittance 

were measured using both a contact probe and an integrating sphere. We measured 

hydrated leaf mass, standardized by leaf area. Samples were air dried, then stored for 

return to the lab, where we measured dry leaf mass, dry spectra and chemical 

concentrations following after oven drying samples at 70C for 72 hours. All leaf traits 

were determined chemometrically from leaf spectra, following methods outlined in Serbin 

et al. (in review). The use of chemometric retrievals facilitated estimation of leaf traits for 

a much larger sample of foliage from our plots that would have been possible if we had 

relied on chemical analyses, which is very time consuming and expensive compared to 

spectroscopy. In addition, the use of spectroscopy to retrieve leaf traits also allowed us to 

compute uncertainty for each sample used in our analyses, based on the uncertainty 

estimates reported by Serbin et al. (in review). Table 1 provides a summary of 

measurements taken over the course of the project.  
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Leaf to Canopy Scaling 

A variety of methods exist to scale leaf level estimates of foliar traits to the canopy, all of 

which are based on the relative abundance of species at a plot. We tested both a relative 

LAI-by-species (Macarthur and Horn 1969, Aber 1979, Smith and Martin 2001) and a 

relative basal area-by-species approach (Townsend et al. 2003), and found that canopy-

level estimates of functional traits correlated with r > 0.9 between the two methods. Here 

we employ scaling by relative basal area, in which we assume that contribution by any one 

tree to canopy level trait signal is proportional to tree size. We prefer this method over 

scaling by relative LAI because methods based on rapid sampling of LAI by species 

following MacArthur and Horn (1969) are strongly biased towards prominent understory 

species, which was problematic in areas with extensive sugar maple subcanopies. In 

addition, Townsend et al. (2003) found that scaling by basal area correlated as well with 

total leaf biomass as scaling by LAI. Leaf traits (and associated uncertainties) were 

obtained from Serbin et al. (in review), and canopy-average traits were calculated as the 

sum of the products of the trait measurement times relative basal area of each species 

recorded on the 60x60 m plot. The scaling was conducted using multiple replicates (1000) 

drawn from the distributions of leaf-level estimates and uncertainties from Serbin (in 

review) to generate plot-level trait estimates and uncertainty.  

 

Image Processing 

AVIRIS data were provided by the Jet Propulsion Laboratory as orthorectified, calibrated 

radiance images (Vane et al. 1993, Green et al. 1998). Our study employed a total of 145 
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AVIRIS images (Fig 1), for which 51 were used for model development and testing, and 

the remainder were used for mapping and analysis. All images were processed using a 

common processing stream to ensure comparability among measurements. We performed 

post-hoc georectification as needed to align images with other geospatial data, such as 

digital orthophoto quads. We atmospherically corrected images using ATREM (TAFKAA: 

Gao et al. 2000, Montes and Gao 2004). Images were topographically corrected using the 

modified sun-canopy-sensor topographic method (Soenen et al. 2005) and BRDF corrected 

using a quadratic function of the volumetric scattering term of the Ross-Thick BRDF 

model (Roujean et al. 1992, Lucht et al. 2000). Pixel sizes for the AVIRIS imagery ranged 

from 12-18 m, depending on flight altitude, with registration errors < 0.5 pixels. 

 

Statistical analysis 

The general approach to the estimation of canopy traits (including chemistry) from 

imaging spectroscopy (IS) is illustrated in Fig. 2. We build upon the approach taken by 

Martin et al. (2008), in which they used data from 8 study sites and 137 field plots to 

develop a general, cross-scene predictive equation for foliar nitrogen. We extend their 

effort by additionally deriving maps of carbon, leaf mass per area (LMA), fiber, lignin and 

cellulose, as well as mapping uncertainties in all traits of interest. We employed the Partial 

Least-Squares Regression (PLSR, also called “projection to latent structures”) modeling 

approach (Wold et al. 1984, Geladi and Kowalski 1986, Wolter et al. 2008) to predict 

canopy traits from imaging spectroscopy, as used by Smith et al. (2003), Coops et al. 

(2003), Townsend et al. (2003), McNeil et al. (2008), and Martin et al. (2008). In practice, 
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PLSR involves the derivation of wavelength-by-wavelength calibration factors based on 

the iterative transformation of latent vectors correlated with the dependent variable of 

interest. PLSR techniques achieve computational efficiency by maximizing the covariance 

of independent variables with the dependent variable while simultaneously maintaining the 

constraint of being orthogonal to the previously determined factors (Wold et al. 1984, 

Geladi and Kowalski 1986, Frank and Friedman 1993, Wold et al. 2001). The chief value 

of PLSR over traditional multiple linear regression models is that it is designed to work 

well with highly multi-collinear and over-sampled predictor data sets, i.e. when the number 

of independent variables approaches or even exceeds the number of observations (Wold et 

al. 1984, Geladi and Kowalski 1986, Wold et al. 2001). PLSR avoids difficulties in 

interpretation of synthetic PCA variables or the potential for modeling spurious 

relationships using stepwise regression (Grossman et al. 1996).  

 

Scaling 

Spectra from field plot locations were extracted from AVIRIS imagery and averaged for 

3x3 pixels, ensuring one AVIRIS spectra per plot assumed to represent the entire 60x60 m 

plot. We postulate that averaging of multiple pixels is desirable because a) in practice a 

field plot of a closed-canopy stand can rarely be identified to a specific pixel and b) 

averaging of pixels provides a measure of uncertainty and heterogeneity of spectral 

response in the ensuing statistical model. For some plots, multiple AVIRIS scenes were 

available in the same year and season raising the possibility of pseudo-replication. To 

address this, we randomly split our plots into 50/50 calibration-validation sets ensuring that 
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only one spectrum for each per plot was used  to generate trait-predictive PLSR models. 

We repeated this process 500 times, each time randomly sampling from the uncertainty 

distributions of the plot-level trait estimates to propagate uncertainties to the image scale. 

Ultimately, our full methodology allows the propagation of uncertainty from the leaf-level 

(derived from contact spectroscopy) to the plot level (through leaf-to-plot scaling) and 

finally to the image scale. PLSR coefficients obtained from each of the 500 permutations 

were applied to generate 500 predictions of the trait per pixel, from which we estimated 

pixel-wise means and standard deviations to report uncertainty. 

 

Results 

Geographic variation in foliar traits 

The ranges of plot-level trait estimates stratified by leaf morphology are presented in Table 

1. Plot level foliar traits aggregated by species are provided in Supplemental Table S2, and 

by plot in Supplemental Table S3. There was a nearly two-fold difference in Marea between 

needleleaf and broadleaf species (T = 21.75, P < 0.0001), and mass-based nitrogen content 

of broadleaf species was around 1.5 times that of needleleaf species (T = 17.88, P < 

0.0001). There was less variation in differences in carbon content, fiber, lignin and 

cellulose between needle-leaf and broadleaf species, but all differences were significant (P 

< 0.0001). Correlation analyses revealed a strong negative relationship between leaf 

nitrogen and Marea (r = -0.804, P < 0.0001) as well as significant negative relationships 

with other leaf structural compounds (Table 2, Fig. 3), in agreement with the broader 

concept of the leaf economic spectrum (Wright et al. 2004, Wright et al. 2005a, Wright et 
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al. 2005b). Leaf nitrogen content decreased with latitude, while Marea increased, a 

reflection of an increasing dominance of needleleaf species in the north. We also found a 

significant positive correlation between foliar nitrogen and patterns of nitrogen deposition 

across our sites (r = 0.394, P < 0.0001). To further explore this relationship, we fit a 

mixed-effects model to predict foliar nitrogen concentrations while controlling for latitude 

with Gaussian random effects specified for species. The model explained 88.7% in the 

variation in foliar nitrogen, of which 59% was attributed to differences between species 

alone. The effect elevated foliar nitrogen concentrations corresponding to N deposition 

gradient were apparent (P < 0.0001) even after taking into consideration latitudinal 

gradients and inherent differences between species. This finding corroborates evidence of 

foliar N enrichment that has been reported from many studies in Northeastern forests 

(McNeil et al. 2007b, Davis et al. 2009, McNeil et al. 2012). 

 

Canopy spectra 

Canopy spectra were highly variable (Fig. 4) with nearly complete separation (±1 standard 

deviation) between spectra of all broadleaf and all needle-leaf plots in the NIR (700-

1400nm) and the 1400-1900 nm SWIR1 regions. Spectra of the two physiognomic types 

overlapped some in the visible (400-700nm) and SWIR2 (1900-2400 nm) wavelengths. 

The most spectral variability (in terms of the coefficient of variation) was observed in the 

visible regions of the spectrum (> 23-50%) and was generally constant across the rest of 

the spectrum (~22%). Plots dominated by needle-leaf species had around 10% less spectral 

variability than broadleaf species. 
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PLSR model results 

The results of the PLS predictions for forest traits are shown in Table 3 and graphed in 

Figs. 5 - 10. Note that error bars are shown in both directions: error on the Y-axis is due to 

uncertainty of trait values from the scaling from leaf level spectra to plot level traits 

(Serbin et al. in review), while uncertainty on the X-axis is due to uncertainty from the 

image-based PLSR model.  To our knowledge, this is the first time that such a 

comprehensive analysis of uncertainty has been provided, including both uncertainties in 

the training data and in the mapped estimates. In Figs 5-10, we graph standardized 

coefficients (upper right), which facilitate comparison among bands and traits due to scale 

differences in reflectance between different wavelength regions (i.e. higher reflectance and 

greater variability in the NIR equate to smaller coefficients, but not necessarily less 

important coefficients). We also show the Variable Importance of Projection (VIP) statistic 

(lower right panels, see Wold 1994), which indicates the value of each predictor 

(waveband) in fitting the PLS model for both predictors and responses based on its 

absolute coefficient size and its partial-R
2
 in the overall PLS model. For practical 

application, the raw PLS coefficients are what are used for mapping, but are not as useful 

for model assessment and interpretation. Supplemental Table S4 lists the PLS coefficients 

and their uncertainties for the traits reported in this paper. These are the values that users 

should apply to make maps from novel imagery that have been processed in a method 

comparable to this study. Further, we also show wavelength regions that correspond to 

known absorption features (from Curran 1989, Fourty et al. 1996, Curran et al. 2001). 
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Both LMA and %N had model fits with R
2
 greater than 0.85, which are comparable to 

the results reported by Martin et al. (2008, Supplementary table S1).  Root mean square 

errors (RMSEs) for both variables were less than 9% of the range of data (Tables 3, 5). 

Fiber (ADF) and lignin (ADL) were predicted with R
2
 > 0.70 and carbon and cellulose 

greater than 0.5.  Although R
2
 of fiber and lignin were lower than LMA and %N, their 

RMSE values were within 10% of the range of data.  The comparatively lower R
2
 values 

for %C and cellulose are related to the low amount of natural variability in these 

constituents.  

 

Mapping 

We used the PLSR coefficients (Supplementary Table S4) to generate spatially explicit 

maps of our traits and the results of the permutations to map uncertainty in our estimates 

(Figs 11, 12). Because of the large number of images used in this study, we show results 

from a subset of the scenes. Maps of trait combinations provide an alternate to land cover 

maps for characterizing vegetation gradients. For example, we can synthesize foliar trait 

maps into functional type maps by constructing false color composites of key foliar traits 

such as nitrogen, lignin and leaf mass per area (Fig. 13) to illustrate continuous gradients 

of canopy biochemical and morphological traits that are likely also related to species 

associations. However, the maps of traits are interpretable as patterns of plant investment 

in foliar nutrients vs. structural compounds across environmental gradients on the 

landscape. Mapping individual traits across regions (Fig. 14, 15) reveals significant 

variability in relative abundance of dominant traits that could not otherwise be captured by 
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landcover classifications alone (right panels on Fig. 13). Maps of functional traits from a 

single hyperspectral image can reveal differences in species associations across gradients 

that are otherwise only apparent in multi-date imagery (Fig. 16), and moreover can help 

identify disturbance events through changes in estimated functional traits and associated 

increases in mapped uncertainty (Fig. 17).  

 

Discussion 

We confirm the capacity of imaging spectroscopy to accurately and repeatedly map foliar 

traits important to photosynthetic metabolism and foliar nutrient cycling. Our method for 

the estimation of canopy chemistry involved the integration of three types of data 

representing different scales of observation, thus allowing the propagation of uncertainty 

from the leaf-level dependent variables to the plot/canopy level, and finally to maps 

created from image spectra. Imaging spectroscopy has been used in numerous studies to 

map foliar traits (Wessman et al. 1989, Curran et al. 1997, Serrano et al. 2002, Townsend 

et al. 2003, Asner et al. 2008, Huber et al. 2008, Martin et al. 2008), ours is the first study 

to demonstrate the capacity to map multiple functional traits from such data across a 

diversity of sites and years and to explicitly account for the propagation of measurement 

and modeling uncertainty through to the end product.  

 We used our calibration coefficients to 1) investigate physiological basis for the 

PLSR results and 2) assess which wavelength regions were important in modeling the trait 

of interest and if these were generalizable across other studies. Reviewing the literature, 

leaf-level, fresh-leaf standardized coefficients were available for Marea (from Serbin et al. 
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in review), while the only published image-level (raw) coefficients were available from 

Martin et al. (2008). The standardized leaf-level coefficients for Marea generated from an 

ASD spectroradiometer by Serbin et al. (in review) agreed almost completely with AVIRIS 

results (Fig. 5 top right). Importantly, although standardized coefficients matched almost 

the entire spectrum, there was a reversal of sign in coefficients across the red-edge (500-

700nm). Leaf-level NIR reflectance in this range results from scattering at the interface 

between cell walls and intercellular air spaces, while canopy (i.e., image) reflectance is 

strongly dominated by canopy structure and leaf morphology (needle vs. broad leaf) 

(Jacquemoud et al. 2009). In leaves, NIR reflectance generally increases with leaf 

thickness (Ehleringer and Mooney 1978, Lin and Ehleringer 1983, DeLucia et al. 1996, 

Slaton et al. 2001), but canopy reflectance in the NIR reverses between thin broadleaved 

forests to clumped needleleaf canopies in which thick leaves have higher NIR reflectance 

compared to broadleaves but lower canopy reflectance due to the effects of needle 

clumping and shading. The fact that direction of coefficients switch between leaf and 

canopy-level models of LMA provides confidence that imaging spectroscopy captures 

sufficient information about the canopy and constituent foliage for purposes of mapping 

(Ollinger et al. 2013, Townsend et al. 2013) than has been suggested (Knyazikhin et al. 

2013).  

To further assess the wider applicability of our models, we compared coefficients 

obtained from our analysis of %N with those published by Martin et al. (2008), the only 

other study we found for which comparable coefficients have been published. Patterns of 

loadings of standardized coefficients of our models predicting foliar N content also showed 
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general agreement with the Martin et al. models (2008) (Fig. 6). Discrepancies in locations 

of dips and spikes in coefficients result primarily from our use of a standardized dataset 

(i.e., centered and scaled) compared to raw coefficients from Martin et al. (2008). Martin et 

al.’s (2008) study, while limited to 11 images (5 AVIRIS, 6 Hyperion), covered a wide 

variety of ecosystems across the world and was a pioneering effort demonstrating the 

capacity to build general models to map foliar traits across large regions. Studies using 

larger numbers of images, such as Smith et al. (2002) and Ollinger et al. (2002), have also 

been successful, but limited to a single study region.  

We included a large number of forest types and species in our analyses (Suppl Tables 

S2 and S3), but by no means were our field samples comprehensive. However, we assume 

that our database covers the breadth of forest functional variability within the region, and 

therefore missing species or types are bracketed by the range of our data. In this regard, 

spatial patterns of uncertainties are likely indicative of gaps in our database for different 

forest optical types (sensu  Ustin and Gamon 2010) rather than due to weaknesses in model 

performance. The largest uncertainties were observed in locations where 1) the vegetation 

was not represented in our database of foliar traits due to our focus on forests (i.e., grasses, 

forbs, crops, wetlands); 2) there were strong terrain effects in the imagery; or 3) along 

forest edges and disturbed areas. In particular, the uncertainty mapping helped identify 

areas that had been recently disturbed (Fig. 17). Clearcuts showed a consistent pattern of 

higher lignin and Marea and lower foliar nitrogen content compared to adjacent undisturbed 

areas, and consistently high uncertainties due to optical properties of disturbances being 

outside the range of optical properties for the intact forests sampled for this study. Future 
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analysis of vegetation traits in disturbed areas using imaging spectroscopy may provide the 

opportunity to better understand changes in ecosystem dynamics brought about by human 

or natural perturbations. 

Composite maps of functional traits (e.g., Fig. 13) revealed a greater amount of 

variability in forest canopies than was apparent in individual maps (Figs.11 and 12) or 

landcover classifications. For example, in the Central Appalachian sites, co-dominant 

conifers in ridges and valleys were revealed by the higher lignin content and Marea of 

conifers (Figure 13, panel 2). Comparisons between maps of individual traits (Fig. 14, 15) 

revealed gradients in functional traits that follow the inverse relationship between 

investments in leaf structural mass in contrast to leaf nutrients (Wright and Westoby 2002, 

Reich et al. 2003, Wright et al. 2004). Regions showing higher foliar nitrogen 

concentrations were associated with lower values of Marea and vice versa. While this is 

widely known from multiple species inhabiting diverse ecosystems (Reich et al. 1998, 

Reich et al. 1999, Wright et al. 2001, Sanchez-Azofeifa et al. 2009, Asner et al. 2011b), 

imaging spectroscopy allowed these associations to be mapped explicitly and across 

multiple ecoregions. 

 Maps of foliar traits obtained from this study can be leveraged to drive ecosystem 

process models requiring parameterization of foliar nitrogen content and leaf mass per 

area, which are coordinated in leaves to maximize carbon fixation (Shipley et al. 2005) in 

patterns independent of species-level physiognomy (Reich et al. 1991, Reich et al. 1992, 

Grime 2006). This offers the potential to estimate carboxylation capacity of forests, e.g. 

following Kattge et al. (2009) who proposed a general model to estimate this parameter 
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based on Marea and %N. Similarly, Green et al. (2003) showed that canopy light use 

efficiency can be retrieved from canopy foliar content, Marea and the fraction of absorbed 

photosynthetically active radiation (fPAR), all of which can be retrieved from imaging 

spectroscopy. This offers the potential to develop datasets needed to drive spatially explicit 

ecosystem process models at large scales from proposed forthcoming satellites (e.g. 

HyspIRI, EnMAP: Stuffler et al. 2007, Middleton et al. 2013). 

 Imaging spectroscopy offers the opportunity for applications ranging from 

assessment of biochemical effects of invasive species (Glenn et al. 2005, Asner et al. 2008, 

He et al. 2011), to characterizing photosynthetic down-regulation (Gamon et al. 1990, 

Gamon et al. 1992, Gamon et al. 1997) and measurement of the inductance of plant 

defense to perturbations (Couture et al. 2013). By directly measuring the chemical and 

physiological consequences of disturbances and other environmental drivers on vegetation, 

spaceborne imaging spectroscopy should provide the ability to directly quantify the 

consequences of environmental change rather than inferring it from landcover maps or 

vegetation indices. This will provide agencies the tools to measure impacts of invasions or 

help better guide management activities. 

 

Conclusion  

Ultimately the trait mapping from imaging spectroscopy will allow us to address questions 

such as: How do forest functional types (FFTs, or, more generally, plant functional types, 

PFTs) mediate ecosystem response to environmental change? For a given perturbation (e.g. 

atmospheric N deposition, insect defoliation), spatial variability in ecosystem response 
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(e.g. forest productivity, nitrogen retention) can be characterized via spectroscopy to 

measure the key suite of leaf-based functional traits that may change with perturbations.  

Using data from a wide range of forest ecosystems, we rigorously tested the capacity of 

hyperspectral imagery to map forest functional trait.  Our ultimate objective was to provide 

a much-needed generalized framework for making regional scale predictions from imaging 

spectroscopy of the delivery of key ecosystem services from complex forest environments 

that are increasingly subjected to multiple agents of global environmental change.   

These results allow us to use maps of functional traits to map the fundamental axes of 

variability in plant physiology (Reich et al. 1991, Reich et al. 1992, Reich et al. 1999, 

Craine et al. 2002, Wright et al. 2005a, Wright et al. 2005b, Sanchez-Azofeifa et al. 2009).  

These traits synthetically define a spectrum ranging from “fast” (high nutrients and low 

lignin, thin, low LMA leaves) to “slow” patterns of forest nutrient cycling. An important 

next step is the integration of data collected from across the globe (Asner and Martin 2009, 

Asner et al. 2012) to further determine the extent of the generality of these methods, and to 

integrate data across sensor types and measurement or analytical strategies to fully evaluate 

the generality of the relationships and then refine and standardize approaches across 

investigations as needed. Along with Martin et al. (2008) and efforts underway by Asner 

and colleagues, this research represents one step toward the development of global 

approaches to mapping plant functional properties from imaging spectroscopy. This 

ongoing research will provide a solid foundation for the development of “trait” products 

from the proposed HyspIRI mission and NEON’s Aerial Observatory Platform (Kampe et 

al. 2010, Middleton et al. 2013, Sims et al. 2013). 
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Figures  

Figure 1: Locations of field sampling plots (164) overlaid on AVIRIS acquisitions (143) 

from 2008-2011. Boxes indicate locations of sites graphed in subsequent figures; A: 

Porcupine Mountains SF, MI; B: Ottawa NF, MI; C Flambeau River SF, WI; D: Devil’s 

Lake State Park, WI; E: Fernow Experimental Forest, WV; F: Green River SF, MD. 
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Figure 2: Scaling leaf-level functional traits to the canopy using AVIRIS imagery. 
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Figure 3: Figure illustrating covariance between foliar biochemical and morphological 

traits measured in this study. X-axis: leaf mass per area (Marea, g/m
2
), y-axis: Acid 

Dissolvable Lignin (ADL%); z-axis: leaf nitrogen content on a mass basis (N%). 
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Figure 4: Means (with standard deviation bands) of AVIRIS spectra obtained from 51 

images and 164 plots stratified by dominant leaf habit (deciduous, needleleaf).  
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Figure 11: Spatial predictions of Marea, %N, and %C (left panels; and uncertainties, right 

panels) obtained by applying coefficients obtained from 500 randomized PLSR models to 

AVIRIS imagery acquired over the Green Ridge State forest MD (box F, Fig. 1). Each 

model was built with a 50/50 calibration/validation split. Left panels are pixel-wise means 

of 500 model predictions; right panels are standard deviations. See Table 3 for model 

statistics; Table S2 in supplementary materials for model coefficients. 
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Figure 12: Spatial predictions of %ADF, %ADL and %Cellulose (left panels; and 

uncertainties, right panels) obtained by applying coefficients obtained from 500 

randomized PLSR models to AVIRIS imagery acquired over the Green Ridge State forest 

MD (box F, Fig. 1). Each model was built with a 50/50 calibration/validation split. Left 

panels are pixel-wise means of 500 model predictions; right panels are 1.0 standard 

deviations. See Table 3 for model statistics; Table S2 in supplementary materials for model 

coefficients. 
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Figure 13: False color composites of foliar traits (left panels; R/G/B = 

ADL/Nitrogen/Marea) compared with NLCD 2006 landcover maps (right panels). Foliar 

trait association maps provide richer information on foliar traits across forest ecotones than 

discrete classes. Subplot locations are A: Porcupine Mountains SF; B: Ottawa National 

Forest, MI; and F: Green Ridge SF, MD (boxes in Fig. 1, Landcover classification legend 

is Figure S5 in supplementary materials) 
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Figure 14: Spatial variation in predicted foliar nitrogen content (%N) in forested regions 

sampled across the Midwestern and Northeastern United States. Letters denote boxes in 

Fig. 1. 
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Figure 15: Spatial variation in predicted leaf mass per area (Marea g/m
2
) in forested regions 

sampled across the Midwestern and Northeastern United States. Letters denote boxes in 

Fig. 1. 
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Figure 16: Foliar trait association maps (subplot A: false color composite R/G/B = 

ADL/Nitrogen/Marea) provide richer detail than NLCD 2006 landcover classifications 

(subplot B), or from fall aerial imagery (subplot C; 11/08/2010 GoogleEarth™). While 

leaf-off aerial imagery (subplot D; 4/14/2005 GoogleEarth™) clearly identifies needleleaf 

forest stands (also see high lignin+Marea [magenta] areas in subplot B), color enhancement 

of fall aerial imagery (subplot C) shows phenological differences (subplot E) between 

dominant deciduous species (Quercus rubrum, Acer saccharum) corresponding to spatial 

patterns of foliar traits in subplot A. Subplot F indicates high confidence in mapping traits 

(%N shown) across deciduous forest landcover. High prediction uncertainties are only 

observed in edges or non-forest areas. 
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Figure 17: Recently disturbed regions show up as sharp boundaries in trait association 

maps (subplot A: false color composite R/G/B = ADL/Nitrogen/Marea, compare with 

subplot B: landcover from NLCD 2006). Changes in foliar nutrient content (%N subplot 

C) and elevated uncertainties (subplot D) capture logging activities (pre-cut subplot E: 

8/24/2007, post-logging subplot F 10/19/2009, images from GoogleEarth™) near the 

Fernow Experimental Forest, WV. 

  

161



 

 

 

 S
u

p
p

le
m

en
ta

ry
 m

a
te

ri
a

l 
 

S
1
: 

R
ev

ie
w

 o
f 

re
ce

n
t 

li
te

ra
tu

re
 o

n
 t

h
e 

ap
p
li

ca
ti

o
n
 o

f 
im

ag
in

g
 s

p
ec

tr
o
sc

o
p

y
 t

o
 m

ap
 f

o
li

ar
 c

h
em

is
tr

y
. 

N
o
te

 t
h
at

 w
e 

d
o
 n

o
t 

in
cl

u
d
e 

st
u
d
ie

s 
th

at
 e

m
p
lo

y
 i

n
v
er

si
o
n
 o

f 
ra

d
ia

ti
v
e 

tr
an

sf
er

 m
o
d
el

s 
to

 m
ap

 c
an

o
p

y
 c

h
em

ic
al

 p
ro

p
er

ti
es

 t
o
 c

o
n
fo

rm
 t

o
 t

h
is

 s
tu

d
y
. 

T
ra

it
 

V
eg

et
at

io
n
 t

y
p

e 
L

o
ca

ti
o
n
 

S
en

so
r 

P
lo

ts
 

Im
ag

es
 

M
et

h
o
d
 

R
2
C

al
 

R
M

S
E

C
al

 
R

2
V

al
 

R
M

S
E

V
al

 
S

o
u

rc
e 

C
 

M
ix

ed
 n

ee
d

le
le

af
-b

ro
ad

le
af

 
S

w
it

ze
rl

an
d
 

H
y
M

ap
 

2
8
 

4
 

B
&

B
 

0
.3

1
 

1
.2

1
 (

R
M

S
E

) 
 

 
H

u
b

er
 e

t 
al

. 
(2

0
0
8

) 

 
 

 
 

 
 

 
 

 
 

 
 

L
ig

 
O

ak
, 
P

in
e 

W
is

co
n

si
n
 

A
IS

 
2

0
 

1
 

M
L

R
 

0
.8

5
 

1
.9

 (
S

E
) 

 
 

W
es

sm
an

 e
t 

al
. 

(1
9
8

9
) 

L
ig

 
Ju

n
ip

er
 -

 C
o
as

ta
l 

ra
in

fo
re

st
 

W
es

t-
ce

n
tr

al
 O

re
g
o
n

 
A

V
IR

IS
 

1
7
 

4
 

M
L

R
 

0
.9

3
 

2
7
7

.8
0

 (
S

E
C

) 
 

 
Jo

h
n

so
n
 e

t 
al

. 
(1

9
9
4

) 

L
ig

 
N

 H
ar

d
w

o
o
d

 a
n
d

 n
ee

d
le

le
af

 
H

ar
v
ar

d
 F

o
re

st
, 

M
A

 
A

V
IR

IS
 

2
1
 

1
 

M
L

R
 

0
.7

0
 

2
.3

8
 (

S
E

C
V

) 
0

.2
7
 

3
.8

7
 (

S
E

P
) 

M
ar

ti
n

 a
n
d

 A
b

er
  

(1
9
9
7

) 

L
ig

 
N

 H
ar

d
w

o
o
d

 a
n
d

 n
ee

d
le

le
af

 
B

la
ck

h
aw

k
 I

sl
an

d
, 

W
I 

A
V

IR
IS

 
2

0
 

1
 

M
L

R
 

0
.9

0
 

0
.8

5
 (

S
E

C
V

) 
0

.0
1
 

4
.3

3
 (

S
E

P
) 

M
ar

ti
n

 a
n
d

 A
b

er
  

(1
9
9
7

) 

L
ig

:N
 

N
 H

ar
d

w
o
o
d

 a
n
d

 n
ee

d
le

le
af

 
W

h
it

e 
M

o
u
n
ta

in
 N

F
, 

N
H

 
A

V
IR

IS
 

8
1
 

5
6
 

P
L

S
R

 
0

.6
9
 

0
.2

3
 (

S
E

C
) 

 
0

.2
3
 (

S
E

C
V

) 
O

ll
in

g
er

 e
t 

al
. 

(2
0
0

2
) 

L
ig

n
in

 
Ju

n
ip

er
 -

 C
o
as

ta
l 

ra
in

fo
re

st
 

W
es

t-
ce

n
tr

al
 O

re
g
o
n

 
A

V
IR

IS
 

9
 

1
 

M
L

R
 

0
.7

5
 

1
7
.9

0
 (

S
E

E
) 

 
 

M
at

so
n

 e
t 

al
. 

(1
9
9
4

) 

L
ig

n
in

 
S

la
sh

 P
in

e 
G

ai
n

es
v
il

le
, 

F
L

 
A

V
IR

IS
 

1
4
 

4
 

M
L

R
 

0
.9

8
 

 
 

 
C

u
rr

an
 e

t 
al

. 
(1

9
9

7
) 

L
ig

n
in

 
C

h
ap

ar
ra

l 
S

an
ta

 M
o
n
ic

a,
 C

A
 

A
V

IR
IS

 
2

3
 

1
 

M
L

R
 

0
.8

1
 

5
.3

9
 (

R
M

S
E

) 
 

 
S

er
ra

n
o
 e

t 
al

. 
(S

er
ra

n
o
 e

t 
al

. 
2
0

0
2

) 

 
 

 
 

 
 

 
 

 
 

 
 

N
 

N
 H

ar
d

w
o
o
d

 a
n
d

 n
ee

d
le

le
af

 
W

is
co

n
si

n
 

A
IS

 
2

0
 

1
 

M
L

R
 

0
.8

3
 

0
.0

4
 (

S
E

) 

 
 

W
es

sm
an

 e
t 

al
. 

(1
9
8

9
) 

N
 

Ju
n
ip

er
 -

 C
o
as

ta
l 

ra
in

fo
re

st
 

W
es

t-
ce

n
tr

al
 O

re
g
o
n

 
A

V
IR

IS
 

9
 

1
 

M
L

R
 

0
.7

2
 

2
.4

0
 (

S
E

E
) 

 
 

M
at

so
n

 e
t 

al
. 

(1
9
9
4

) 

N
 

Ju
n
ip

er
 -

 C
o
as

ta
l 

ra
in

fo
re

st
 

W
es

t-
ce

n
tr

al
 O

re
g
o
n

 
A

V
IR

IS
 

2
5
 

4
 

M
L

R
 

0
.9

0
 

0
.7

0
 (

S
E

C
) 

 
 

Jo
h

n
so

n
 e

t 
al

.(
1

9
9
4

) 

N
 

S
la

sh
 P

in
e 

G
ai

n
es

v
il

le
, 

F
L

 
A

V
IR

IS
 

1
4
 

4
 

M
L

R
 

0
.9

8
 

 
 

 

C
u

rr
an

 e
t 

al
. 

(1
9
9

7
) 

N
 

N
 H

ar
d

w
o
o
d

 a
n
d

 n
ee

d
le

le
af

 
H

ar
v
ar

d
 F

o
re

st
, 

M
A

 
A

V
IR

IS
 

2
1
 

1
 

M
L

R
 

0
.8

7
 

0
.2

3
 (

S
E

C
V

) 
0

.8
3
 

0
.2

7
 (

S
E

P
) 

M
ar

ti
n

 a
n
d

 A
b

er
 (

1
9
9

7
) 

N
 

N
 H

ar
d

w
o
o
d

 a
n
d

 n
ee

d
le

le
af

 
B

la
ck

h
aw

k
 I

sl
an

d
, 

W
I 

A
V

IR
IS

 
2

0
 

1
 

M
L

R
 

0
.8

5
 

0
.1

5
 (

S
E

C
V

) 
0

.7
5
 

1
.3

2
 (

S
E

P
) 

M
ar

ti
n

 a
n
d

 A
b

er
 (

1
9
9

7
) 

N
 

C
h
ap

ar
ra

l 
S

an
ta

 M
o
n
ic

a,
 C

A
 

A
V

IR
IS

 
2

3
 

1
 

M
L

R
 

0
.7

5
 

0
.5

5
 (

R
M

S
E

) 

 
 

S
er

ra
n

o
 e

t 
al

. 
(2

0
0

2
) 

N
 

N
 H

ar
d

w
o
o
d

 a
n
d

 n
ee

d
le

le
af

 
W

h
it

e 
M

o
u
n
ta

in
 N

F
, 

N
H

 
A

V
IR

IS
 

5
3
 

3
6
 

P
L

S
R

 
0

.8
2
 

 
 

0
.2

3
 (

S
E

C
V

) 
S

m
it

h
 e

t 
al

. 
(2

0
0

2
) 

N
 

E
u

ca
ly

p
tu

s 
sp

p
. 

T
u

m
b

ar
u

m
b
a,

 A
u

st
ra

li
a 

H
y
p

er
io

n
 

1
4
 

1
 

P
L

S
R

 
0

.9
5
 

0
.1

1
 (

S
E

C
) 

0
.6

8
 

0
.2

7
 (

S
E

C
V

) 
C

o
o
p

s 
et

 a
l.

 (
2
0

0
3

) 

N
 

E
u

ca
ly

p
tu

s 
sp

p
. 

T
u

m
b

ar
u

m
b
a,

 A
u

st
ra

li
a 

H
y
p

er
io

n
 

1
4
 

1
 

M
L

R
 

0
.8

3
 

0
.1

0
 (

S
E

C
) 

 
 

C
o
o
p

s 
et

 a
l.

 (
2
0

0
3

) 

N
 

N
 H

ar
d

w
o
o
d

 a
n
d

 n
ee

d
le

le
af

 
B

ar
tl

et
t 

E
x
p

. 
F

o
re

st
, 

N
H

 
A

V
IR

IS
 

4
9
 

1
 

P
L

S
R

 
0

.8
3
 

0
.1

7
 (

S
E

C
) 

0
.7

9
 

0
.1

9
 (

R
M

S
E

P
) 

S
m

it
h

 e
t 

al
. 

(2
0
0

3
) 

N
 

N
 H

ar
d

w
o
o
d

 a
n
d

 n
ee

d
le

le
af

 
B

ar
tl

et
t 

E
x
p

. 
F

o
re

st
, 

N
H

 
H

y
p

er
io

n
 

4
9
 

1
 

P
L

S
R

 
0

.8
2
 

0
.1

7
 (

S
E

C
) 

0
.6

0
 

0
.2

5
 (

R
M

S
E

P
) 

S
m

it
h

 e
t 

al
. 

(2
0
0

3
) 

N
 

D
ec

id
u

o
u

s 
O

ak
 

G
re

en
 R

id
g
e 

S
F

, 
M

D
 

H
y
p

er
io

n
 

2
0
 

1
 

P
L

S
R

 
0

.9
7
 

 
 

 

T
o

w
n

se
n

d
 e

t 
al

. 
(2

0
0
3

) 

162



 

 

 

 

T
ra

it
 

V
eg

et
at

io
n
 t

y
p

e 
L

o
ca

ti
o
n
 

S
en

so
r 

P
lo

ts
 

Im
ag

es
 

M
et

h
o
d
 

R
2
C

al
 

R
M

S
E

C
al

 
R

2
V

al
 

R
M

S
E

V
al

 
S

o
u

rc
e 

C
 

M
ix

ed
 n

ee
d

le
le

af
-b

ro
ad

le
af

 
S

w
it

ze
rl

an
d
 

H
y
M

ap
 

2
8
 

4
 

B
&

B
 

0
.3

1
 

1
.2

1
 (

R
M

S
E

) 
 

 
H

u
b

er
 e

t 
al

. 
(2

0
0
8

) 

 
 

 
 

 
 

 
 

 
 

 
 

N
 

D
ec

id
u

o
u

s 
O

ak
 

G
re

en
 R

id
g
e 

S
F

, 
M

D
 

A
V

IR
IS

 
1

7
 

1
 

P
L

S
R

 
0

.8
4
 

 
 

 
T

o
w

n
se

n
d

 e
t 

al
. 

(2
0
0
3

) 

N
 

N
 H

ar
d

w
o
o
d

 a
n
d

 n
ee

d
le

le
af

 
B

ar
tl

et
t 

E
x
p

. 
F

o
re

st
, 

N
H

 
A

V
IR

IS
 

5
6
 

1
 

P
L

S
R

 
0

.8
3
 

0
.1

7
(S

E
C

) 
0

.7
0
 

0
.1

9
(R

M
S

E
P

) 
O

ll
in

g
er

 a
n

d
 S

m
it

h
 (

2
0
0
5

) 

N
 

N
 H

ar
d

w
o
o
d

 a
n
d

 n
ee

d
le

le
af

 
B

ar
tl

et
t 

E
x
p

. 
F

o
re

st
, 

N
H

 
H

y
p

er
io

n
 

5
6
 

1
 

P
L

S
R

 
0

.8
2
 

0
.1

7
(S

E
C

) 
0

.2
5
 

0
.2

5
(R

M
S

E
P

) 
O

ll
in

g
er

 a
n

d
 S

m
it

h
 (

2
0
0
5

) 

N
 

N
 H

ar
d

w
o
o
d

 a
n
d

 b
o
re

al
 

A
d

ir
o
n

d
ac

k
s,

 N
Y

 
H

y
p

er
io

n
 

2
8
 

2
 

P
L

S
R

 
0

.9
3
 

0
.2

8
(%

) 

 
 

M
cN

ei
l 

et
 a

l.
 (

2
0

0
8

) 

N
 

M
ix

ed
 n

ee
d

le
le

af
-b

ro
ad

le
af

 
S

w
it

ze
rl

an
d
 

H
y
M

ap
 

2
8
 

4
 

B
&

B
 

0
.5

3
 

0
.3

8
 (

R
M

S
E

) 
 

 
H

u
b

er
 e

t 
al

. 
(2

0
0
8

) 

N
 

V
ar

io
u

s 
U

S
A

, 
C

o
st

a 
R

ic
a,

 A
u

st
ra

li
a 

A
V

IR
IS

 
4

2
-7

5
 

5
 

P
L

S
R

 
0

.8
3
 

0
.1

4
 (

S
E

C
) 

 
0

.1
9
 (

S
E

C
V

) 
M

ar
ti

n
 e

t 
al

. 
(2

0
0
8

) 

N
 

V
ar

io
u

s 
U

S
A

, 
C

o
st

a 
R

ic
a,

 A
u

st
ra

li
a 

H
y
p

er
io

n
 

4
2

-7
5
 

6
 

P
L

S
R

 
0

.8
2
 

0
.2

2
 (

S
E

C
) 

 
0

.2
5
 (

S
E

C
V

) 
M

ar
ti

n
 e

t 
al

. 
(2

0
0
8

) 

N
 

P
ic

ea
 a

b
ie

s 
G

er
o

ls
te

in
, 

G
er

m
an

y
 

H
y
M

ap
 

1
3
 

1
 

M
L

R
 

0
.5

7
 

0
.0

5
 (

R
M

S
E

) 
 

 
S

ch
le

rf
 e

t 
al

. 
(2

0
1
0

) 

N
 

N
ee

d
le

le
af

 
V

an
co

u
v
er

 I
sl

an
d

, 
C

an
ad

a 
A

V
IR

IS
 

1
7
 

1
 

P
L

S
R

 
0

.7
7
 

0
.2

1
 (

S
E

C
V

) 
 

 
H

il
k

er
 e

t 
al

. 
(2

0
1

2
) 

N
 

N
ee

d
le

le
af

, 
E

u
ca

ly
p

tu
s 

sp
p
. 

T
u

m
u

t,
 N

S
W

, 
A

u
st

ra
li

a 
H

y
M

ap
 

8
0
 

5
 

P
L

S
R

 
0

.5
4
 

0
.9

0
 (

S
E

C
) 

 
0

.1
1
 (

S
E

C
V

) 
Y

o
u

n
g
en

to
b
 e

t 
al

. 
(2

0
1
2

) 

N
 

N
ee

d
le

le
af

, 
E

u
ca

ly
p

tu
s 

sp
p
. 

T
u

m
u

t,
 N

S
W

, 
A

u
st

ra
li

a 
H

y
M

ap
 

8
0
 

5
 

M
L

R
 

0
.6

0
 

0
.1

0
 (

S
E

C
) 

 
0

.1
0
 (

S
E

C
V

) 
Y

o
u

n
g
en

to
b
 e

t 
al

. 
(2

0
1
2

) 

N
 

N
ee

d
le

le
af

, 
E

u
ca

ly
p

tu
s 

sp
p
. 

T
u

m
u

t,
 N

S
W

, 
A

u
st

ra
li

a 
H

y
M

ap
 

8
0
 

5
 

M
L

R
 

0
.5

8
 

0
.1

0
 (

S
E

C
) 

 
0

.1
0
 (

S
E

C
V

) 
Y

o
u

n
g
en

to
b
 e

t 
al

. 
(2

0
1
2

) 

N
 

S
ag

eb
ru

sh
 

E
as

te
rn

 I
d

ah
o
 

H
y
M

ap
 

3
5
 

1
 

P
L

S
R

 
0

.9
5
 

 
0

.5
6
 

0
.2

5
 (

P
R

E
S

S
) 

M
it

ch
el

l 
et

 a
l.

 (
2

0
1
2

) 

  
 

163



 

 

 

 S
2
: 

E
st

im
at

es
 o

f 
fo

li
ar

 t
ra

it
s 

m
ea

su
re

d
 i

n
 t

h
is

 s
tu

d
y
 s

tr
at

if
ie

d
 b

y
 d

o
m

in
an

t 
ca

n
o
p

y
 s

p
ec

ie
s.

 S
p
ec

ie
s 

so
rt

ed
 b

y
 l

ea
f 

h
ab

it
 

(n
ee

d
le

le
af

, 
d

ec
id

u
o
u
s)

, 
an

d
 b

y
 r

el
at

iv
e 

fr
eq

u
en

c
y
 (

%
) 

in
 t

h
e 

o
v
er

al
l 

d
at

as
et

. 
E

st
im

at
es

 o
f 

m
ea

n
 t

ra
it

s 
ar

e 
p
re

se
n
te

d
 a

lo
n
g
 w

it
h
 

st
an

d
ar

d
 d

ev
ia

ti
o
n
s.

 

  
 

 
M

ar
ea

(g
/m

2
) 

N
%

 
C

%
 

A
D

F
%

 
A

D
L

%
 

C
el

lu
lo

se
%

 

 
 

 
M

ea
n
 

S
D

 
M

ea
n
 

S
D

 
M

ea
n
 

S
D

 
M

ea
n
 

S
D

 
M

ea
n
 

S
D

 
M

ea
n
 

S
D

 

S
p
. 

C
o
d
e 

O
v
er

al
l 

R
el

. 

F
re

q
. 

1
0
1
.5

5
 

4
3
.6

1
 

2
.2

5
 

0
.5

5
 

4
9
.5

7
 

1
.0

0
 

3
6

.8
1
 

6
.7

4
 

2
1

.2
1
 

4
.4

7
 

1
6

.3
9
 

2
.4

4
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

N
ee

d
le

 

le
af

 

S
p

ec
ie

s 
 

1
5
6
.7

7
 

3
0
.9

1
 

1
.6

0
 

0
.3

3
 

5
0
.4

7
 

0
.6

2
 

4
4

.2
7
 

5
.1

0
 

2
5

.6
9
 

3
.0

3
 

1
8

.5
3
 

2
.2

7
 

P
IS

T
 

P
in

u
s 

st
ro

b
u

s 
7
.0

6
 

1
3

9
.0

3
 

3
4
.7

1
 

1
.7

9
 

0
.2

9
 

5
0
.3

4
 

0
.6

0
 

4
2

.1
2
 

3
.9

3
 

2
5

.4
9
 

3
.1

7
 

1
7

.2
6
 

1
.1

3
 

A
B

B
A

 
A

b
ie

s 
b

a
ls

a
m

if
er

a
 

5
.4

2
 

1
4
4
.8

7
 

1
8
.5

2
 

1
.6

7
 

0
.1

4
 

5
1
.5

0
 

0
.9

9
 

3
6

.8
2
 

2
.4

1
 

2
1

.6
1
 

1
.5

1
 

1
5

.2
7
 

1
.5

7
 

P
IR

E
 

P
in

u
s 

re
si

n
o

sa
 

4
.7

6
 

1
8
7
.4

8
 

1
7
.4

4
 

1
.3

5
 

0
.2

1
 

5
0
.5

7
 

0
.5

7
 

4
7

.4
6
 

1
.8

1
 

2
6

.3
4
 

1
.3

8
 

1
9

.9
6
 

1
.4

4
 

T
S

C
A

 
T

su
g

a
 c

a
n

d
en

si
s 

4
.7

6
 

9
7
.7

8
 

1
1
.2

3
 

1
.9

9
 

0
.1

8
 

4
9
.7

0
 

0
.2

6
 

3
1

.4
9
 

3
.8

5
 

1
7

.3
1
 

2
.7

5
 

1
4

.3
4
 

1
.3

9
 

P
IB

A
 

P
in

u
s 

b
a

n
ks

ia
n

a
 

2
.3

0
 

1
7
1
.1

9
 

1
0
.4

4
 

1
.5

7
 

0
.1

4
 

5
0
.6

0
 

0
.4

3
 

5
1

.0
7
 

2
.6

0
 

2
9

.0
1
 

1
.5

7
 

2
1

.6
2
 

1
.0

1
 

P
IR

U
 

P
ic

ea
 r

u
b

en
s 

1
.8

1
 

1
4
4
.9

4
 

5
.8

3
 

1
.4

3
 

0
.2

7
 

5
0
.5

3
 

0
.5

2
 

4
2

.8
8
 

5
.0

8
 

2
3

.6
9
 

1
.8

9
 

1
8

.3
5
 

2
.7

5
 

T
H

O
C

 
T

h
u

ja
 o

cc
id

en
ta

li
s 

1
.1

5
 

1
6
2
.5

3
 

2
2
.2

1
 

1
.3

7
 

0
.2

5
 

4
9
.8

5
 

0
.5

0
 

4
0

.2
7
 

2
.3

1
 

2
4

.9
5
 

2
.1

3
 

1
6

.2
9
 

0
.9

6
 

P
IM

A
 

P
in

u
s 

m
a
ri

a
n
a
 

0
.9

9
 

2
0
9
.1

8
 

6
.9

9
 

0
.9

7
 

0
.0

6
 

5
0
.7

2
 

0
.0

7
 

4
6

.1
2
 

3
.6

2
 

2
4

.6
1
 

1
.9

5
 

2
1

.1
7
 

1
.0

0
 

L
A

L
A

 
L

a
ri

x 
la

ri
ci

n
a
 

0
.6

6
 

1
5
7
.2

8
 

5
.3

8
 

1
.5

3
 

0
.0

8
 

4
9
.9

9
 

0
.0

3
 

5
0

.0
5
 

0
.5

6
 

3
0

.3
2
 

0
.0

5
 

1
9

.6
7
 

0
.4

9
 

P
IS

Y
 

P
in

u
s 

sy
lv

a
ti

ca
 

0
.6

6
 

1
5
2
.6

8
 

0
.2

5
 

2
.2

3
 

0
.0

0
 

5
0
.1

5
 

0
.0

1
 

4
1

.9
2
 

0
.0

1
 

2
3

.6
3
 

0
.0

3
 

1
8

.3
5
 

0
.0

1
 

JU
V

I 
Ju

n
ip

er
o

u
s 

n
ig

ra
 

0
.3

3
 

2
0
3
.5

9
 

0
.1

9
 

2
.1

2
 

0
.0

0
 

4
8
.5

3
 

0
.0

1
 

4
0

.7
7
 

0
.1

0
 

2
6

.8
4
 

0
.0

4
 

1
7

.0
0
 

0
.0

5
 

P
IV

I 
P

in
u

s 
vi

rg
in

ia
n

a
 

0
.3

3
 

1
3
1
.7

3
 

0
.0

0
 

1
.7

8
 

0
.0

0
 

5
0
.2

8
 

0
.0

0
 

3
9

.2
4
 

0
.0

0
 

2
2

.0
7
 

0
.0

0
 

1
8

.4
0
 

0
.0

0
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

B
ro

ad
le

af
 

 
 

7
7
.1

8
 

1
9
.4

5
 

2
.5

3
 

0
.3

6
 

4
9
.1

8
 

0
.8

7
 

3
3

.5
1
 

4
.3

1
 

1
9

.2
3
 

3
.4

6
 

1
5

.4
4
 

1
.8

4
 

A
C

S
M

 
A

ce
r 

sa
cc

h
a
ru

m
 

1
9
.8

7
 

6
8
.4

3
 

1
2
.4

2
 

2
.5

1
 

0
.3

2
 

4
8
.9

0
 

0
.6

2
 

3
1

.9
1
 

3
.6

1
 

1
7

.2
5
 

2
.9

5
 

1
5

.0
2
 

1
.5

0
 

Q
U

R
U

 
Q

u
er

cu
s 

ru
b

ra
 

1
0
.0

2
 

8
7
.9

1
 

8
.8

7
 

2
.8

1
 

0
.1

5
 

4
9
.6

0
 

0
.7

0
 

3
5

.3
9
 

2
.3

9
 

2
1

.3
4
 

2
.3

7
 

1
5

.9
0
 

1
.1

8
 

A
C

R
U

 
A

ce
r 

ru
b

ru
m

 
9
.5

2
 

6
9
.1

1
 

8
.1

0
 

2
.3

9
 

0
.1

7
 

4
9
.7

4
 

0
.4

2
 

3
2

.6
1
 

4
.4

8
 

1
8

.7
0
 

2
.6

2
 

1
4

.5
5
 

1
.5

2
 

Q
U

A
L

 
Q

u
er

cu
s 

a
lb

a
 

7
.3

9
 

8
0
.2

6
 

1
0
.7

2
 

2
.7

8
 

0
.2

0
 

4
9
.4

7
 

0
.4

9
 

3
2

.6
4
 

1
.9

9
 

1
8

.5
5
 

1
.2

5
 

1
5

.6
1
 

0
.5

2
 

P
O

T
R

 
P

o
p

u
lu

s 
tr

em
u

lo
id

es
 

3
.2

8
 

6
9
.7

2
 

1
1
.5

7
 

2
.7

3
 

0
.2

5
 

4
9
.8

6
 

0
.9

2
 

3
4

.4
3
 

3
.1

3
 

2
3

.3
4
 

4
.1

3
 

1
7

.6
0
 

1
.2

9
 

T
IA

M
 

T
il

ia
 a

m
er

ic
a
n

a
 

2
.9

6
 

8
1
.0

6
 

3
.7

6
 

2
.8

5
 

0
.1

8
 

4
8
.3

0
 

0
.9

0
 

3
5

.9
1
 

1
.0

7
 

2
1

.7
5
 

0
.1

9
 

1
6

.1
6
 

0
.1

0
 

F
A

G
R

 
F

a
g

u
s 

g
ra

n
d

if
o
li

a
 

2
.6

3
 

7
5
.5

3
 

1
0
.0

6
 

2
.1

5
 

0
.1

1
 

4
9
.8

2
 

0
.2

4
 

4
3

.2
2
 

1
.8

8
 

2
4

.8
1
 

1
.0

5
 

1
8

.4
9
 

0
.9

6
 

Q
U

P
R

 
Q

u
er

cu
s 

 
2
.4

6
 

8
5
.7

7
 

1
5
.5

6
 

2
.4

1
 

0
.3

5
 

4
9
.7

5
 

0
.4

5
 

3
6

.2
7
 

1
.7

4
 

2
1

.5
8
 

1
.5

3
 

1
6

.0
1
 

0
.4

4
 

N
Y

S
Y

 
N

ys
sa

 s
yl

va
ti

ca
 

1
.8

1
 

7
7
.1

3
 

0
.8

9
 

2
.4

4
 

0
.0

7
 

4
9
.7

5
 

0
.0

0
 

3
2

.2
9
 

0
.2

8
 

1
8

.2
1
 

0
.2

8
 

1
4

.2
9
 

0
.2

8
 

164



 

 

 

  
 

 
M

ar
ea

(g
/m

2
) 

N
%

 
C

%
 

A
D

F
%

 
A

D
L

%
 

C
el

lu
lo

se
%

 

 
 

 
M

ea
n
 

S
D

 
M

ea
n
 

S
D

 
M

ea
n
 

S
D

 
M

ea
n
 

S
D

 
M

ea
n
 

S
D

 
M

ea
n
 

S
D

 

P
O

D
E

 
P

o
p

u
lu

s 
d

el
to

id
es

 
1
.8

1
 

7
5
.4

9
 

1
.7

9
 

2
.7

6
 

0
.2

0
 

4
8
.8

2
 

0
.0

1
 

3
2

.2
7
 

0
.0

6
 

2
0

.0
5
 

0
.2

5
 

1
3

.1
7
 

0
.0

7
 

C
A

O
V

 
C

a
ry

a
 o

va
ta

 
1
.6

4
 

7
0
.2

5
 

2
6
.6

4
 

2
.8

6
 

0
.2

8
 

4
7
.4

9
 

0
.7

3
 

3
7

.0
6
 

0
.2

2
 

1
9

.1
4
 

1
.3

0
 

1
7

.8
0
 

1
.0

6
 

F
R

N
I 

F
ra

xi
n
u

s 
n
ig

ra
 

1
.1

5
 

7
6
.2

5
 

3
.8

6
 

2
.9

4
 

0
.0

3
 

4
7
.5

5
 

0
.2

6
 

2
9

.9
4
 

4
.3

5
 

1
7

.5
8
 

1
.2

6
 

1
2

.5
7
 

2
.5

3
 

L
IT

U
 

L
ir

io
d

en
d
ro

n
 

tu
li

p
if

er
a
 

1
.1

5
 

7
9
.6

2
 

1
4
.2

0
 

2
.5

7
 

0
.0

4
 

4
8
.7

1
 

0
.3

4
 

3
4

.2
8
 

0
.5

9
 

2
0

.4
3
 

0
.4

2
 

1
4

.5
0
 

0
.2

3
 

F
R

P
E

 
F

ra
xi

n
u

s 

p
en

n
sy

lv
a
n

ic
a
 

0
.9

9
 

5
5
.1

0
 

0
.0

0
 

2
.8

9
 

0
.0

0
 

4
7
.4

5
 

0
.0

0
 

3
1

.8
8
 

0
.0

0
 

1
8

.7
4
 

0
.0

0
 

1
5

.9
2
 

0
.0

0
 

Q
U

M
A

 
Q

u
er

cu
s 

m
a
cr

o
ca

rp
a
 

0
.9

9
 

9
8
.6

9
 

7
.4

2
 

2
.8

2
 

0
.1

6
 

4
8
.8

4
 

0
.5

1
 

3
5

.3
4
 

0
.7

8
 

2
0
.3

1
 

0
.8

7
 

1
6

.0
3
 

0
.3

1
 

R
O

P
S

 
R

o
b

in
ia

 p
se

u
d

o
a
ca

ci
a
 

0
.8

2
 

5
8
.4

2
 

5
.6

0
 

3
.2

6
 

0
.1

4
 

4
7
.9

3
 

0
.6

0
 

3
5

.3
0
 

0
.7

7
 

2
2

.5
1
 

0
.0

8
 

1
6

.8
9
 

0
.0

6
 

C
E

O
C

 
C

el
ti

s 
o
cc

id
en

ta
li

s 
0
.6

6
 

6
4
.1

7
 

4
.9

4
 

3
.1

4
 

0
.1

2
 

4
7
.2

8
 

1
.4

8
 

3
2

.3
9
 

4
.9

7
 

2
0

.0
3
 

3
.0

6
 

1
5

.2
7
 

1
.8

1
 

A
C

S
N

 
A

ce
s 

sa
cc

h
a
ri

n
u

m
 

0
.4

9
 

8
2
.8

8
 

1
.7

2
 

2
.5

3
 

0
.1

1
 

5
0
.2

0
 

0
.8

2
 

2
5

.3
5
 

7
.7

9
 

1
5

.5
3
 

4
.1

6
 

1
1

.4
2
 

3
.1

5
 

Q
U

E
L

 
Q

u
er

cu
s 

el
li

p
so

id
a

li
s 

0
.1

6
 

1
0
1
.9

9
 

 
2
.9

1
 

 
4
9
.8

7
 

 
3

3
.2

2
 

 
2

1
.2

8
 

 
1

4
.9

8
 

 

  
 

165



 

 

 

 S
3
: 

E
st

im
at

es
 o

f 
fo

li
ar

 t
ra

it
s 

m
ea

su
re

d
 i

n
 t

h
is

 s
tu

d
y
 s

tr
at

if
ie

d
 b

y
 p

lo
t 

an
d
 y

ea
r 

sa
m

p
le

d
 a

n
d
 s

o
rt

ed
 b

y
 p

lo
t 

n
am

e.
 E

st
im

at
es

 o
f 

m
ea

n
 t

ra
it

s 
ar

e 
p
re

se
n
te

d
 a

lo
n
g
 w

it
h
 s

ta
n
d
ar

d
 d

ev
ia

ti
o
n
s 

an
d
 l

o
ca

ti
o
n
s 

o
f 

th
e 

p
lo

t.
 D

o
m

in
an

t 
an

d
 c

o
-d

o
m

in
an

t 
sp

ec
ie

s 
ar

e 

sp
ec

if
ie

d
 i

n
 c

o
lu

m
n
s 

S
P

P
1
 a

n
d
 S

P
P

2
, 
al

o
n
g
 w

it
h
 t

h
e 

p
ro

p
o
rt

io
n
 o

f 
re

la
ti

v
e 

b
as

al
 a

re
a 

(R
B

A
1
, 
R

B
A

2
) 

re
p
re

se
n
te

d
 o

n
 t

h
e 

p
lo

t.
 

S
ee

 m
et

h
o
d
s 

se
ct

io
n
 f

o
r 

co
m

p
le

te
 d

es
cr

ip
ti

o
n
. 

 

 
 

 
 

 
 

 
 

M
ar

ea
 g

/m
2
 

N
%

 
C

%
 

A
D

F
%

 
A

D
L

%
 

C
el

lu
lo

se
%

 

P
lo

t 
Y

ea
r 

S
P

P
1

 
R

B
A

1
 

S
P

P
2

 
R

B
A

1
 

L
at

it
u

d
e 

L
o
n

g
it

u
d

e 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 

A
d

ir
o

n
d

a
c
k

s,
 N

Y
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
A

K
0

1
 

2
0
0
9
 

P
IS

T
 

0
.4

9
 

P
IR

E
 

0
.3

5
 

-7
3

.7
4

1
3
6

2
 

4
4
.4

5
2

0
6
5
 

1
5
5

.7
4
 

0
.5

9
 

1
.5

6
 

0
.0

1
 

5
1
.0

6
 

0
.1

0
 

4
4
.7

8
 

0
.5

5
 

2
7
.1

5
 

0
.4

3
 

1
8
.2

0
 

0
.3

0
 

A
K

0
2

 
2

0
0
9
 

A
B

B
A

 
0

.2
9
 

A
C

R
U

 
0

.2
7
 

-7
3

.9
0

7
4
6

9
 

4
4
.5

0
3

2
8
0
 

1
1
3

.6
6
 

1
.2

2
 

1
.8

7
 

0
.0

2
 

5
1
.0

6
 

0
.1

1
 

3
5
.1

0
 

0
.6

9
 

2
0
.8

8
 

0
.4

8
 

1
4
.5

6
 

0
.3

4
 

A
K

0
6

 
2

0
0
9
 

T
H

O
C

 
0

.7
0
 

A
B

B
A

 
0

.1
1
 

-7
3

.8
9

9
1
0

5
 

4
4
.3

2
1

1
0
0
 

1
6
1

.9
4
 

1
.6

1
 

1
.3

7
 

0
.0

3
 

5
0
.2

0
 

0
.1

8
 

4
3
.1

7
 

0
.8

6
 

2
7
.2

9
 

0
.6

1
 

1
7
.3

9
 

0
.4

9
 

A
K

0
8

 
2

0
0
9
 

A
C

S
M

 
0

.4
9
 

F
A

G
R

 
0

.3
2
 

-7
3

.8
9

7
0
9

6
 

4
4
.3

1
9

9
0
1
 

7
4
.3

4
 

3
.6

0
 

2
.0

8
 

0
.1

5
 

4
9
.9

7
 

0
.2

8
 

3
9
.9

0
 

1
.8

6
 

2
2
.6

1
 

1
.0

1
 

1
7
.2

7
 

1
.3

5
 

A
K

1
1

 
2

0
0
9
 

T
H

O
C

 
0

.3
4
 

T
S

C
A

 
0

.2
6
 

-7
4

.1
8

0
8
0

2
 

4
4
.2

9
2

4
9
7
 

1
2
6

.7
3
 

6
.5

0
 

1
.6

7
 

0
.0

4
 

4
9
.9

1
 

0
.1

6
 

3
8
.5

1
 

0
.6

8
 

2
3
.1

3
 

0
.4

6
 

1
5
.8

7
 

0
.5

1
 

A
K

1
2

 
2

0
0
9
 

T
S

C
A

 
0

.8
2
 

B
E

A
L

 
0

.1
1
 

-7
4

.1
8

0
8
9

8
 

4
4
.2

9
1

9
0
4
 

1
0
7

.9
0
 

0
.6

5
 

1
.6

6
 

0
.0

2
 

5
0
.3

9
 

0
.1

5
 

2
7
.8

7
 

1
.1

3
 

1
4
.6

5
 

0
.7

9
 

1
1
.6

0
 

0
.6

1
 

A
K

1
7

 
2

0
0
9
 

P
IR

U
 

0
.6

2
 

B
E

A
L

 
0

.1
3
 

-7
4

.2
4

3
6
9

4
 

4
3
.9

9
5

3
0
2
 

1
4
0

.7
9
 

0
.5

6
 

1
.6

7
 

0
.0

2
 

4
9
.9

4
 

0
.1

2
 

3
9
.9

8
 

0
.6

4
 

2
2
.2

0
 

0
.4

9
 

1
7
.7

4
 

0
.3

9
 

A
K

1
8

 
2

0
0
9
 

P
IR

U
 

0
.5

3
 

A
C

R
U

 
0

.1
9
 

-7
4

.2
4

5
0
9

6
 

4
3
.9

9
4

8
9
7
 

1
3
5

.4
6
 

1
.2

3
 

1
.5

6
 

0
.0

3
 

5
0
.3

0
 

0
.2

3
 

3
9
.1

4
 

0
.9

6
 

2
2
.3

8
 

0
.8

1
 

1
5
.5

4
 

0
.6

4
 

A
K

2
1

 
2

0
0
9
 

F
A

G
R

 
0

.2
9
 

B
E

A
L

 
0

.2
2
 

-7
4

.2
4

3
0
0

3
 

4
3
.9

9
4

7
0
3
 

9
4
.5

3
 

1
.4

7
 

1
.9

5
 

0
.0

7
 

4
9
.5

7
 

0
.2

3
 

4
1
.6

4
 

1
.1

7
 

2
3
.3

4
 

0
.8

8
 

1
8
.4

6
 

0
.7

0
 

A
K

2
3

 
2

0
0
9
 

A
C

S
M

 
0

.4
0
 

T
IA

M
 

0
.2

4
 

-7
4

.2
4

5
6
9

4
 

4
4
.0

0
3

7
9
6
 

6
6
.9

9
 

2
.6

8
 

2
.5

4
 

0
.0

6
 

4
9
.0

8
 

0
.2

4
 

3
8
.5

0
 

1
.0

4
 

2
2
.6

4
 

0
.8

3
 

1
5
.6

7
 

0
.7

4
 

A
K

2
4

 
2

0
0
9
 

F
A

G
R

 
0

.4
3
 

A
C

S
M

 
0

.2
5
 

-7
4

.2
4

9
2
0

2
 

4
4
.0

0
4

6
0
2
 

6
6
.4

0
 

1
.6

3
 

2
.3

1
 

0
.1

1
 

4
9
.7

9
 

0
.3

5
 

4
0
.3

8
 

1
.6

5
 

2
3
.5

4
 

1
.2

5
 

1
7
.5

4
 

0
.9

5
 

A
K

2
7

 
2

0
0
9
 

F
A

G
R

 
0

.4
1
 

A
C

S
M

 
0

.3
2
 

-7
4

.4
7

8
1
1

1
 

4
3
.9

7
5

8
2
4
 

7
0
.3

0
 

2
.4

7
 

2
.1

6
 

0
.1

2
 

5
0
.1

3
 

0
.4

1
 

4
3
.1

6
 

1
.7

1
 

2
5
.0

9
 

1
.3

2
 

1
7
.5

5
 

1
.0

4
 

A
K

2
9

 
2

0
0
9
 

F
A

G
R

 
0

.4
8
 

A
C

S
M

 
0

.3
3
 

-7
4

.3
2

8
4
0

6
 

4
3
.6

9
7

8
8
9
 

7
7
.7

3
 

2
.5

1
 

2
.1

2
 

0
.0

5
 

4
9
.8

6
 

0
.2

4
 

4
3
.1

5
 

1
.1

8
 

2
5
.7

3
 

0
.8

3
 

1
8
.0

4
 

0
.7

5
 

A
K

3
2

 
2

0
0
9
 

F
A

G
R

 
0

.5
3
 

B
E

A
L

 
0

.2
6
 

-7
4

.6
5

0
3
9

5
 

4
3
.7

9
4

1
0
2
 

7
0
.2

9
 

3
.6

3
 

2
.1

7
 

0
.0

8
 

4
9
.5

2
 

0
.3

2
 

4
5
.5

4
 

1
.4

1
 

2
5
.3

5
 

1
.0

4
 

2
0
.2

1
 

0
.9

3
 

A
K

3
3

 
2

0
0
9
 

P
IR

U
 

0
.6

6
 

A
B

B
A

 
0

.2
4
 

-7
4

.6
1

0
1
9

8
 

4
3
.7

6
5

1
9
6
 

1
5
0

.6
5
 

3
.8

6
 

1
.0

5
 

0
.0

5
 

5
0
.3

6
 

0
.2

2
 

5
0
.7

1
 

1
.1

2
 

2
6
.1

9
 

1
.0

1
 

2
2
.4

3
 

0
.7

6
 

A
K

3
8

 
2

0
0
9
 

A
C

S
M

 
0

.3
5
 

F
A

G
R

 
0

.2
7
 

-7
4

.7
8

2
6
0

3
 

4
3
.8

3
7

8
0
1
 

8
4
.2

2
 

4
.6

0
 

1
.9

9
 

0
.1

4
 

5
0
.0

7
 

0
.3

7
 

4
4
.1

4
 

1
.8

2
 

2
5
.3

7
 

1
.1

6
 

1
8
.3

1
 

1
.2

6
 

A
K

4
4

 
2

0
0
9
 

F
A

G
R

 
0

.5
3
 

B
E

A
L

 
0

.2
0
 

-7
4

.7
1

0
6
6

6
 

4
3
.7

4
3

0
7
4
 

7
9
.4

8
 

3
.3

6
 

2
.1

1
 

0
.1

5
 

5
0
.0

7
 

0
.4

9
 

4
4
.9

7
 

2
.1

9
 

2
5
.9

7
 

1
.5

7
 

1
8
.6

7
 

1
.1

9
 

A
K

4
6

 
2

0
0
9
 

A
C

R
U

 
0

.3
5
 

F
A

G
R

 
0

.3
5
 

-7
4

.7
0

1
9
4

9
 

4
3
.7

3
7

7
8
5
 

7
9
.1

2
 

1
.3

0
 

2
.0

8
 

0
.0

9
 

4
9
.9

9
 

0
.2

9
 

4
3
.4

5
 

1
.3

5
 

2
4
.4

6
 

1
.0

2
 

1
8
.6

7
 

0
.7

3
 

A
K

5
7

 
2

0
0
9
 

P
IR

U
 

0
.4

1
 

A
B

B
A

 
0

.3
4
 

-7
4

.5
0

9
5
2

0
 

4
3
.7

3
5

6
3
5
 

1
4
8

.2
2
 

1
.7

5
 

1
.6

9
 

0
.0

2
 

5
1
.4

6
 

0
.1

1
 

4
1
.2

0
 

0
.8

1
 

2
4
.6

5
 

0
.5

4
 

1
6
.2

9
 

0
.3

8
 

A
K

5
8

 
2

0
0
9
 

P
IR

U
 

0
.4

0
 

A
B

B
A

 
0

.3
3
 

-7
4

.9
1

2
2
9

9
 

4
3
.5

0
9

4
9
8
 

1
4
6

.7
2
 

1
.8

6
 

1
.3

9
 

0
.0

2
 

5
0
.7

0
 

0
.1

1
 

3
9
.4

5
 

0
.6

1
 

2
1
.7

7
 

0
.4

4
 

1
7
.6

9
 

0
.3

6
 

A
K

5
9

 
2

0
0
9
 

F
A

G
R

 
0

.4
3
 

A
C

S
M

 
0

.3
5
 

-7
4

.8
9

5
1
9

8
 

4
3
.5

0
4

9
0
1
 

6
6
.6

6
 

3
.0

3
 

2
.2

4
 

0
.1

5
 

4
9
.7

9
 

0
.4

1
 

4
4
.1

8
 

2
.0

2
 

2
5
.3

7
 

1
.3

2
 

1
9
.0

5
 

1
.2

9
 

166



 

 

 

 

 
 

 
 

 
 

 
 

M
ar

ea
 g

/m
2
 

N
%

 
C

%
 

A
D

F
%

 
A

D
L

%
 

C
el

lu
lo

se
%

 

P
lo

t 
Y

ea
r 

S
P

P
1

 
R

B
A

1
 

S
P

P
2

 
R

B
A

1
 

L
at

it
u

d
e 

L
o
n

g
it

u
d

e 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 

A
K

6
0

 
2

0
0
9
 

A
B

B
A

 
0

.9
3
 

B
E

P
A

 
0

.0
8
 

-7
4

.5
1

0
6
7

0
 

4
3
.5

8
2

0
5
8
 

1
6
8

.9
1
 

3
.7

7
 

1
.6

1
 

0
.0

3
 

5
3
.5

1
 

0
.3

3
 

4
1
.3

8
 

1
.8

5
 

2
4
.4

3
 

1
.2

9
 

1
2
.3

7
 

0
.9

5
 

B
a
r
a

b
o
o

 H
il

ls
, 

W
I 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
B

H
0
2
 

2
0
0
8
 

T
S

C
A

 
0

.5
5
 

Q
U

R
U

 
0

.2
3
 

-8
9

.9
0

7
1
0

7
 

4
3
.3

7
2

4
0
8
 

1
0
8

.9
3
 

0
.8

8
 

2
.1

5
 

0
.0

2
 

4
9
.7

6
 

0
.0

7
 

2
9
.4

9
 

0
.6

7
 

1
5
.4

2
 

0
.5

0
 

1
4
.4

3
 

0
.4

0
 

B
H

0
3
 

2
0
0
8
 

A
C

S
M

 
0

.7
6
 

Q
U

A
L

 
0

.1
1
 

-8
9

.8
4

5
3
5

3
 

4
3
.3

9
1

8
6
7
 

6
0
.8

2
 

0
.3

1
 

2
.6

7
 

0
.0

1
 

4
8
.7

0
 

0
.0

9
 

2
8
.8

2
 

0
.4

5
 

1
4
.2

1
 

0
.3

8
 

1
4
.3

5
 

0
.2

5
 

B
H

0
5
 

2
0
0
8
 

A
C

S
M

 
0

.9
0
 

C
A

C
O

 
0

.0
3
 

-8
9

.8
2

3
1
2

8
 

4
3
.4

0
7

9
9
6
 

6
0
.1

9
 

0
.3

8
 

2
.5

1
 

0
.0

1
 

4
8
.4

0
 

0
.1

1
 

2
9
.7

4
 

0
.5

5
 

1
4
.0

0
 

0
.4

4
 

1
5
.5

6
 

0
.2

9
 

B
H

0
6
 

2
0
0
8
 

C
A

O
V

 
0

.5
7
 

Q
U

A
L

 
0

.1
9
 

-8
9

.8
2

9
3
3

9
 

4
3
.4

2
8

7
9
4
 

4
7
.7

9
 

0
.6

2
 

3
.1

0
 

0
.0

1
 

4
6
.8

7
 

0
.1

3
 

3
7
.2

4
 

0
.6

8
 

1
8
.0

4
 

0
.3

8
 

1
8
.7

0
 

0
.2

5
 

B
H

0
7
 

2
0
0
8
 

P
O

T
R

 
0

.4
3
 

A
C

S
M

 
0

.2
3
 

-8
9

.8
0

1
1
3

7
 

4
3
.4

1
9

9
2
4
 

6
0
.0

3
 

0
.4

5
 

3
.0

5
 

0
.0

1
 

4
9
.1

6
 

0
.0

7
 

3
0
.4

7
 

0
.6

3
 

1
8
.5

0
 

0
.4

5
 

1
6
.2

7
 

0
.4

4
 

B
H

1
0
 

2
0
0
8
 

A
C

R
U

 
0

.7
1
 

A
C

S
M

 
0

.1
2
 

-8
9

.7
6

1
9
1

2
 

4
3
.4

0
5

2
2
1
 

6
3
.6

2
 

0
.6

9
 

2
.5

3
 

0
.0

1
 

4
9
.3

4
 

0
.1

0
 

2
6
.5

5
 

0
.6

0
 

1
5
.2

5
 

0
.4

7
 

1
3
.0

5
 

0
.3

2
 

B
H

1
1
 

2
0
0
8
 

P
IS

T
 

0
.7

3
 

P
O

D
E

 
0

.1
8
 

-8
9

.7
4

6
4
9

3
 

4
3
.3

8
7

9
6
4
 

1
0
7

.4
9
 

0
.6

5
 

2
.0

6
 

0
.0

1
 

4
9
.6

7
 

0
.0

9
 

3
6
.4

8
 

0
.6

9
 

2
1
.8

5
 

0
.5

1
 

1
6
.2

9
 

0
.3

5
 

B
H

1
2
 

2
0
0
8
 

Q
U

R
U

 
0

.4
9
 

Q
U

A
L

 
0

.2
2
 

-8
9

.7
4

0
0
6

3
 

4
3
.3

9
3

5
3
9
 

8
0
.2

0
 

0
.6

2
 

2
.7

9
 

0
.0

1
 

4
9
.0

9
 

0
.0

7
 

3
3
.1

0
 

0
.4

2
 

1
8
.6

9
 

0
.3

7
 

1
5
.4

3
 

0
.3

1
 

B
H

1
4
 

2
0
0
8
 

C
A

O
V

 
0

.2
5
 

Q
U

R
U

 
0

.2
5
 

-8
9

.7
2

3
4
8

3
 

4
3
.4

1
5

6
8
3
 

9
8
.3

3
 

0
.3

1
 

2
.5

7
 

0
.0

1
 

4
8
.2

6
 

0
.0

8
 

3
6
.8

3
 

0
.4

5
 

2
0
.5

1
 

0
.3

3
 

1
6
.6

8
 

0
.2

2
 

B
H

1
5
 

2
0
0
8
 

P
IS

T
 

0
.5

4
 

Q
U

A
L

 
0

.1
8
 

-8
9

.6
9

7
6
9

2
 

4
3
.4

1
5

3
3
6
 

9
8
.7

7
 

0
.4

8
 

2
.3

5
 

0
.0

1
 

4
9
.6

1
 

0
.1

0
 

3
5
.8

7
 

0
.6

6
 

2
1
.6

8
 

0
.4

4
 

1
5
.0

3
 

0
.2

7
 

B
H

1
6
 

2
0
0
8
 

F
R

P
E

 
0

.3
6
 

A
C

R
U

 
0

.2
8
 

-8
9

.7
0

8
6
5

3
 

4
3
.4

3
5

2
0
5
 

5
5
.1

0
 

0
.3

2
 

2
.8

9
 

0
.0

1
 

4
7
.4

5
 

0
.0

8
 

3
1
.8

8
 

0
.4

1
 

1
8
.7

4
 

0
.3

6
 

1
5
.9

2
 

0
.2

3
 

B
la

c
k

h
a

w
k

 I
sl

a
n

d
, 

W
I 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
B

I0
1
 

2
0
0
8
 

A
C

S
M

 
0

.6
1
 

Q
U

R
U

 
0

.2
1
 

-8
9

.7
8

8
4
7

0
 

4
3
.6

5
1

9
2
2
 

6
8
.0

9
 

0
.6

4
 

2
.8

3
 

0
.0

1
 

4
8
.9

7
 

0
.0

7
 

3
0
.6

9
 

0
.4

0
 

1
6
.4

9
 

0
.3

4
 

1
4
.9

0
 

0
.2

3
 

B
I0

1
 

2
0
1
0
 

A
C

S
M

 
0

.4
7
 

Q
U

R
U

 
0

.3
7
 

-8
9

.7
8

8
4
7

0
 

4
3
.6

5
1

9
2
2
 

8
2
.5

2
 

2
.0

6
 

2
.9

4
 

0
.0

2
 

5
0
.0

3
 

0
.2

3
 

3
6
.7

3
 

0
.8

5
 

2
1
.6

5
 

0
.6

8
 

1
5
.0

1
 

0
.4

9
 

B
I0

2
 

2
0
0
8
 

A
C

S
M

 
0

.3
8
 

Q
U

R
U

 
0

.2
3
 

-8
9

.7
9

1
5
5

7
 

4
3
.6

5
2

0
4
7
 

6
7
.5

0
 

0
.2

8
 

2
.9

7
 

0
.0

1
 

4
9
.3

5
 

0
.0

6
 

3
5
.6

1
 

0
.2

8
 

2
0
.5

0
 

0
.2

8
 

1
7
.2

2
 

0
.1

8
 

B
I0

2
 

2
0
1
0
 

A
C

S
M

 
0

.3
6
 

Q
U

R
U

 
0

.3
4
 

-8
9

.7
9

1
5
5

7
 

4
3
.6

5
2

0
4
7
 

8
7
.5

2
 

1
.9

3
 

2
.7

5
 

0
.0

2
 

5
0
.4

8
 

0
.2

2
 

3
8
.2

7
 

0
.8

4
 

2
2
.9

3
 

0
.6

9
 

1
4
.6

2
 

0
.5

1
 

B
I0

3
 

2
0
0
8
 

A
C

S
M

 
0

.5
4
 

Q
U

R
U

 
0

.2
6
 

-8
9

.7
9

0
0
2

0
 

4
3
.6

5
0

7
1
6
 

6
5
.3

0
 

0
.3

1
 

2
.9

2
 

0
.0

1
 

4
9
.0

8
 

0
.0

7
 

3
3
.5

8
 

0
.3

6
 

1
8
.5

5
 

0
.3

3
 

1
6
.2

8
 

0
.2

1
 

B
I0

3
 

2
0
1
0
 

Q
U

R
U

 
0

.4
4
 

A
C

S
M

 
0

.4
2
 

-8
9

.7
9

0
0
2

0
 

4
3
.6

5
0

7
1
6
 

9
0
.9

7
 

2
.3

7
 

2
.7

9
 

0
.0

3
 

5
1
.1

4
 

0
.2

9
 

3
8
.2

0
 

1
.1

4
 

2
4
.0

0
 

0
.9

0
 

1
3
.9

4
 

0
.6

6
 

B
I0

4
 

2
0
0
8
 

Q
U

R
U

 
0

.6
2
 

A
C

R
U

 
0

.1
4
 

-8
9

.7
9

5
5
2

8
 

4
3
.6

5
1

3
7
6
 

8
5
.3

8
 

1
.3

7
 

2
.8

6
 

0
.0

1
 

4
9
.7

0
 

0
.0

9
 

3
7
.2

6
 

0
.4

5
 

2
2
.0

1
 

0
.4

2
 

1
8
.0

1
 

0
.3

0
 

B
I0

4
 

2
0
1
0
 

Q
U

R
U

 
0

.7
0
 

A
C

R
U

 
0

.1
4
 

-8
9

.7
9

5
5
2

8
 

4
3
.6

5
1

3
7
6
 

9
6
.3

9
 

3
.3

5
 

2
.7

1
 

0
.0

5
 

5
1
.2

0
 

0
.4

4
 

4
2
.5

1
 

1
.8

9
 

2
7
.9

7
 

1
.5

7
 

1
4
.7

8
 

1
.0

4
 

B
I0

5
 

2
0
0
8
 

P
IS

T
 

0
.6

5
 

P
IR

E
 

0
.3

0
 

-8
9

.8
0

0
0
6

7
 

4
3
.6

4
9

9
4
1
 

1
5
6

.5
0
 

0
.5

7
 

1
.7

3
 

0
.0

1
 

4
9
.9

5
 

0
.0

6
 

4
3
.9

9
 

0
.4

8
 

2
5
.1

6
 

0
.3

5
 

1
9
.5

8
 

0
.2

3
 

B
I0

5
 

2
0
1
0
 

P
IS

T
 

0
.6

0
 

P
IR

E
 

0
.2

9
 

-8
9

.8
0

0
0
6

7
 

4
3
.6

4
9

9
4
1
 

1
4
1

.1
6
 

4
.5

8
 

1
.7

6
 

0
.0

3
 

5
0
.3

7
 

0
.1

8
 

4
3
.9

7
 

0
.5

4
 

2
4
.9

4
 

0
.6

6
 

1
8
.6

2
 

0
.6

4
 

B
I0

6
 

2
0
0
8
 

P
IS

T
 

0
.5

7
 

Q
U

R
U

 
0

.1
6
 

-8
9

.7
9

6
1
7

4
 

4
3
.6

4
9

0
9
3
 

1
1
5

.5
8
 

0
.3

8
 

2
.2

1
 

0
.0

1
 

4
9
.8

0
 

0
.0

6
 

3
9
.9

7
 

0
.3

8
 

2
3
.1

5
 

0
.3

1
 

1
7
.9

7
 

0
.2

0
 

B
I0

6
 

2
0
1
0
 

P
IS

T
 

0
.6

2
 

Q
U

R
U

 
0

.1
2
 

-8
9

.7
9

6
1
7

4
 

4
3
.6

4
9

0
9
3
 

1
2
9

.4
0
 

6
.5

3
 

1
.9

4
 

0
.0

3
 

5
0
.2

8
 

0
.2

3
 

4
1
.7

5
 

0
.6

7
 

2
4
.1

0
 

0
.7

7
 

1
7
.4

8
 

0
.6

4
 

B
I0

7
 

2
0
1
0
 

A
C

R
U

 
0

.4
0
 

Q
U

R
U

 
0

.3
9
 

-8
9

.7
9

4
4
5

8
 

4
3
.6

5
2

2
5
1
 

9
4
.8

9
 

2
.4

5
 

2
.7

1
 

0
.0

3
 

5
0
.9

9
 

0
.3

0
 

3
6
.5

4
 

1
.3

4
 

2
3
.2

3
 

1
.0

0
 

1
2
.9

5
 

0
.7

5
 

167



 

 

 

 

 
 

 
 

 
 

 
 

M
ar

ea
 g

/m
2
 

N
%

 
C

%
 

A
D

F
%

 
A

D
L

%
 

C
el

lu
lo

se
%

 

P
lo

t 
Y

ea
r 

S
P

P
1

 
R

B
A

1
 

S
P

P
2

 
R

B
A

1
 

L
at

it
u

d
e 

L
o
n

g
it

u
d

e 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 

B
I0

8
 

2
0
1
0
 

P
IS

T
 

0
.7

9
 

A
C

R
U

 
0

.0
8
 

-8
9

.7
9

7
0
9

7
 

4
3
.6

5
2

6
1
2
 

1
3
1

.1
7
 

6
.1

3
 

1
.8

6
 

0
.0

3
 

5
0
.0

7
 

0
.2

1
 

4
2
.0

9
 

0
.6

1
 

2
3
.8

9
 

0
.7

7
 

1
7
.8

5
 

0
.7

8
 

B
I0

9
 

2
0
1
0
 

Q
U

R
U

 
0

.3
6
 

A
C

S
M

 
0

.2
1
 

-8
9

.7
8

9
9
0

8
 

4
3
.6

5
3

1
2
0
 

8
8
.5

9
 

1
.5

2
 

2
.8

7
 

0
.0

3
 

4
9
.5

8
 

0
.1

7
 

3
3
.8

5
 

0
.6

5
 

2
0
.2

3
 

0
.5

3
 

1
4
.1

5
 

0
.4

5
 

B
I1

0
 

2
0
1
0
 

A
C

S
M

 
0

.3
0
 

Q
U

R
U

 
0

.3
0
 

-8
9

.7
8

7
0
6

7
 

4
3
.6

5
1

1
2
2
 

8
2
.6

2
 

1
.6

6
 

2
.8

1
 

0
.0

3
 

5
0
.0

4
 

0
.2

0
 

3
5
.5

6
 

0
.7

0
 

2
1
.0

6
 

0
.5

5
 

1
4
.0

1
 

0
.4

4
 

M
a

d
is

o
n

, 
W

I 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
D

C
0
2
 

2
0
1
0
 

A
C

S
N

 
0

.9
2
 

P
O

D
E

 
0

.0
6
 

-8
9

.4
0

7
6
7

5
 

4
3
.0

5
6

4
9
7
 

8
3
.8

8
 

1
.5

2
 

2
.4

7
 

0
.0

3
 

4
9
.7

3
 

0
.1

9
 

2
0
.8

5
 

1
.0

8
 

1
3
.1

3
 

0
.8

3
 

9
.6

0
 

0
.5

8
 

D
C

0
3
 

2
0
1
0
 

A
C

S
M

 
0

.4
3
 

Q
U

A
L

 
0

.2
4
 

-8
9

.4
2

4
0
5

8
 

4
3
.0

4
6

0
0
1
 

8
5
.2

4
 

3
.1

1
 

2
.7

4
 

0
.0

5
 

4
9
.1

5
 

0
.1

1
 

3
1
.1

9
 

0
.6

1
 

1
6
.6

6
 

0
.4

5
 

1
3
.7

1
 

0
.3

3
 

D
C

0
4
 

2
0
1
0
 

P
IS

Y
 

0
.6

8
 

P
R

S
E

 
0

.1
3
 

-8
9

.4
2

8
5
4

9
 

4
3
.0

4
5

4
1
5
 

1
5
2

.6
8
 

4
.7

1
 

2
.2

3
 

0
.0

2
 

5
0
.1

5
 

0
.1

2
 

4
1
.9

2
 

0
.9

7
 

2
3
.6

3
 

0
.6

3
 

1
8
.3

5
 

0
.7

7
 

D
C

0
5
 

2
0
1
0
 

P
IR

E
 

0
.6

4
 

P
IS

T
 

0
.1

6
 

-8
9

.4
3

8
2
5

8
 

4
3
.0

3
8

2
1
7
 

1
6
9

.7
4
 

1
.8

0
 

1
.6

9
 

0
.0

2
 

5
0
.9

0
 

0
.0

9
 

4
5
.1

1
 

0
.6

1
 

2
7
.6

9
 

0
.4

5
 

1
8
.1

7
 

0
.4

3
 

D
C

0
8
 

2
0
1
0
 

T
IA

M
 

0
.2

0
 

F
R

P
E

 
0

.1
3
 

-8
9

.4
2

3
0
4

7
 

4
3
.0

5
6

0
7
2
 

7
8
.9

0
 

2
.9

4
 

2
.7

5
 

0
.0

7
 

4
7
.7

8
 

0
.1

1
 

3
6
.4

7
 

0
.8

8
 

2
1
.8

4
 

0
.5

3
 

1
6
.1

8
 

0
.4

4
 

D
C

0
9
 

2
0
1
0
 

Q
U

M
A

 
0

.7
2
 

Q
U

R
U

 
0

.0
8
 

-8
9

.4
4

4
1
8

5
 

4
3
.0

6
6

5
2
4
 

1
0
5

.0
6
 

4
.3

3
 

2
.6

7
 

0
.0

2
 

4
9
.2

8
 

0
.0

9
 

3
5
.9

4
 

0
.7

5
 

2
1
.0

4
 

0
.5

4
 

1
6
.0

4
 

0
.4

7
 

D
C

1
0
 

2
0
1
0
 

C
E

O
C

 
0

.3
8
 

R
O

P
S

 
0

.3
2
 

-8
9

.4
4

1
4
5

9
 

4
3
.0

7
3

0
6
8
 

6
4
.1

7
 

0
.4

2
 

3
.1

4
 

0
.0

3
 

4
7
.2

8
 

0
.1

4
 

3
2
.3

9
 

0
.9

9
 

2
0
.0

3
 

0
.7

7
 

1
5
.2

7
 

0
.6

3
 

D
C

1
2
 

2
0
1
0
 

A
C

S
M

 
0

.5
1
 

Q
U

A
L

 
0

.1
4
 

-8
9

.4
8

6
2
3

0
 

4
3
.0

7
4

8
0
8
 

7
6
.0

4
 

2
.2

8
 

2
.7

3
 

0
.0

3
 

4
9
.2

5
 

0
.1

2
 

3
1
.8

9
 

0
.7

2
 

1
7
.7

6
 

0
.5

6
 

1
4
.6

9
 

0
.4

4
 

D
C

1
3
 

2
0
1
0
 

Q
U

A
L

 
0

.5
9
 

Q
U

R
U

 
0

.1
8
 

-8
9

.4
8

5
3
3

6
 

4
3
.0

7
4

3
2
4
 

8
8
.1

2
 

1
.6

5
 

3
.0

3
 

0
.0

3
 

4
9
.5

8
 

0
.1

0
 

3
5
.0

1
 

0
.7

9
 

2
0
.3

9
 

0
.6

5
 

1
6
.2

3
 

0
.5

1
 

D
C

1
4
 

2
0
1
0
 

P
O

D
E

 
0

.5
6
 

A
C

N
E

 
0

.1
6
 

-8
9

.3
9

9
4
2

8
 

4
3
.0

4
5

4
2
9
 

7
4
.4

5
 

1
.7

2
 

2
.8

7
 

0
.0

4
 

4
8
.8

2
 

0
.1

5
 

3
2
.3

0
 

0
.9

5
 

2
0
.2

0
 

0
.7

0
 

1
3
.2

1
 

0
.5

3
 

D
C

1
5
 

2
0
1
0
 

P
IS

T
 

0
.6

3
 

P
R

S
E

 
0

.1
7
 

-8
9

.4
3

7
5
4

1
 

4
3
.0

3
7

7
3
8
 

1
4
8

.5
6
 

1
.2

6
 

1
.7

3
 

0
.0

3
 

5
0
.9

8
 

0
.1

4
 

4
5
.7

5
 

1
.0

2
 

3
0
.8

8
 

0
.7

3
 

1
7
.3

8
 

0
.8

1
 

D
C

2
0
 

2
0
1
0
 

JU
V

I 
0

.7
6
 

M
O

A
L

 
0

.1
3
 

-8
9

.4
2

7
6
3

5
 

4
3
.0

8
5

3
3
7
 

2
0
3

.5
9
 

1
.4

4
 

2
.1

2
 

0
.0

3
 

4
8
.5

3
 

0
.2

3
 

4
0
.7

7
 

1
.5

4
 

2
6
.8

4
 

0
.9

4
 

1
7
.0

0
 

0
.7

3
 

D
C

2
1
 

2
0
1
0
 

R
O

P
S

 
0

.7
6
 

C
E

O
C

 
0

.0
5
 

-8
9

.4
2

8
9
2

2
 

4
3
.0

8
6

4
1
5
 

5
5
.1

9
 

1
.1

0
 

3
.3

4
 

0
.0

2
 

4
7
.5

8
 

0
.1

5
 

3
4
.8

6
 

0
.9

8
 

2
2
.4

7
 

0
.7

9
 

1
6
.8

9
 

0
.6

3
 

D
C

2
2
 

2
0
1
0
 

Q
U

A
L

 
0

.6
3
 

P
R

S
E

 
0

.0
9
 

-8
9

.4
2

9
4
9

2
 

4
3
.0

8
5

8
9
1
 

8
9
.9

5
 

0
.5

6
 

2
.9

7
 

0
.0

2
 

4
9
.2

1
 

0
.1

2
 

3
3
.8

4
 

0
.8

8
 

1
9
.4

8
 

0
.7

4
 

1
6
.0

1
 

0
.6

2
 

D
C

2
3
 

2
0
1
0
 

Q
U

R
U

 
0

.7
3
 

P
R

S
E

 
0

.1
0
 

-8
9

.4
3

0
3
1

2
 

4
3
.0

9
0

1
2
8
 

9
7
.7

9
 

0
.7

9
 

2
.9

9
 

0
.0

3
 

4
9
.7

6
 

0
.1

3
 

3
4
.9

2
 

0
.7

9
 

2
2
.4

6
 

0
.7

0
 

1
6
.3

2
 

0
.6

4
 

D
C

2
4
 

2
0
1
0
 

A
C

S
M

 
0

.5
9
 

T
IA

M
 

0
.2

2
 

-8
9

.4
4

1
7
3

7
 

4
3
.0

8
7

7
9
6
 

6
6
.1

5
 

3
.3

4
 

2
.7

2
 

0
.0

8
 

4
7
.4

1
 

0
.1

7
 

2
7
.6

8
 

0
.8

4
 

1
5
.3

6
 

0
.8

5
 

1
2
.6

1
 

0
.4

2
 

D
C

3
0
 

2
0
1
0
 

Q
U

M
A

 
0

.2
8
 

Q
U

A
L

 
0

.2
8
 

-8
9

.4
2

9
2
0

5
 

4
3
.0

8
5

3
9
0
 

9
2
.3

2
 

3
.3

4
 

2
.9

6
 

0
.0

3
 

4
8
.4

0
 

0
.0

8
 

3
4
.7

5
 

0
.4

9
 

1
9
.5

7
 

0
.4

0
 

1
6
.0

3
 

0
.2

7
 

D
C

3
1
 

2
0
1
0
 

Q
U

R
U

 
0

.5
7
 

Q
U

A
L

 
0

.1
5
 

-8
9

.4
2

5
2
5

8
 

4
3
.0

8
7

1
1
6
 

9
6
.2

5
 

5
.3

9
 

2
.8

6
 

0
.0

8
 

4
8
.9

0
 

0
.1

6
 

3
5
.6

2
 

0
.6

5
 

2
1
.9

9
 

0
.4

8
 

1
6
.7

5
 

0
.3

4
 

D
C

3
2
 

2
0
1
0
 

A
C

S
M

 
0

.3
7
 

Q
U

R
U

 
0

.2
6
 

-8
9

.4
2

7
5
8

3
 

4
3
.0

8
8

1
9
1
 

7
8
.6

5
 

4
.6

7
 

2
.8

7
 

0
.0

8
 

4
8
.5

1
 

0
.1

5
 

2
9
.3

1
 

0
.5

3
 

1
6
.6

4
 

0
.5

7
 

1
3
.8

7
 

0
.2

7
 

D
C

4
0
 

2
0
1
0
 

T
IA

M
 

0
.2

6
 

Q
U

R
U

 
0

.2
1
 

-8
9

.4
8

9
0
5

9
 

4
3
.0

7
1

4
8
1
 

8
5
.3

8
 

1
.2

8
 

3
.0

6
 

0
.0

4
 

4
9
.3

4
 

0
.0

9
 

3
4
.7

8
 

0
.7

2
 

2
1
.5

5
 

0
.5

7
 

1
6
.1

1
 

0
.5

9
 

D
C

4
1
 

2
0
1
0
 

Q
U

E
L

 
0

.3
3
 

C
A

O
V

 
0

.3
3
 

-8
9

.3
8

7
4
7

9
 

4
3
.1

5
5

9
8
4
 

1
0
1

.9
9
 

1
.1

6
 

2
.9

1
 

0
.0

3
 

4
9
.8

7
 

0
.1

1
 

3
3
.2

2
 

0
.8

6
 

2
1
.2

8
 

0
.6

7
 

1
4
.9

8
 

0
.6

8
 

D
C

4
2
 

2
0
1
0
 

P
IS

T
 

0
.7

9
 

P
IR

E
 

0
.1

4
 

-8
9

.4
4

2
3
4

0
 

4
3
.0

3
3

9
8
8
 

1
8
2

.3
3
 

1
.5

4
 

1
.7

3
 

0
.0

4
 

5
2
.2

4
 

0
.1

8
 

5
2
.0

9
 

1
.2

8
 

3
6
.1

7
 

0
.9

7
 

1
8
.8

7
 

0
.9

7
 

D
C

4
3
 

2
0
1
0
 

A
C

S
N

 
0

.7
5
 

P
O

D
E

 
0

.1
5
 

-8
9

.4
0

7
1
2

2
 

4
3
.0

5
6

4
8
0
 

8
0
.9

0
 

0
.7

4
 

2
.6

6
 

0
.0

4
 

5
1
.1

5
 

0
.1

6
 

3
4
.3

4
 

1
.3

0
 

2
0
.3

4
 

0
.8

6
 

1
5
.0

6
 

0
.9

4
 

168



 

 

 

 

 
 

 
 

 
 

 
 

M
ar

ea
 g

/m
2
 

N
%

 
C

%
 

A
D

F
%

 
A

D
L

%
 

C
el

lu
lo

se
%

 

P
lo

t 
Y

ea
r 

S
P

P
1

 
R

B
A

1
 

S
P

P
2

 
R

B
A

1
 

L
at

it
u

d
e 

L
o
n

g
it

u
d

e 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 

D
C

4
4
 

2
0
1
0
 

Q
U

R
U

 
0

.4
7
 

Q
U

A
L

 
0

.2
1
 

-8
9

.4
0

4
6
2

1
 

4
3
.1

4
0

3
7
0
 

9
5
.0

0
 

0
.7

4
 

3
.0

8
 

0
.0

3
 

4
9
.7

2
 

0
.1

3
 

3
4
.8

6
 

0
.9

3
 

2
2
.7

5
 

0
.7

0
 

1
5
.8

6
 

0
.7

6
 

D
C

4
5
 

2
0
1
0
 

Q
U

A
L

 
0

.7
9
 

P
R

S
E

 
0

.1
0
 

-8
9

.4
3

4
5
2

9
 

4
3
.0

5
8

6
5
9
 

9
6
.5

0
 

0
.5

8
 

2
.9

0
 

0
.0

4
 

5
0
.5

6
 

0
.1

8
 

2
8
.1

0
 

1
.6

3
 

1
6
.5

3
 

1
.2

5
 

1
4
.8

4
 

1
.0

7
 

D
C

4
9
 

2
0
1
0
 

P
O

D
E

 
0

.6
6
 

A
C

N
E

 
0

.2
7
 

-8
9

.3
9

8
2
2

4
 

4
3
.1

4
8

2
4
1
 

7
7
.5

5
 

0
.9

2
 

2
.5

3
 

0
.0

3
 

4
8
.8

3
 

0
.2

0
 

3
2
.2

0
 

1
.1

6
 

1
9
.7

7
 

0
.8

5
 

1
3
.0

9
 

0
.6

1
 

D
C

5
0
 

2
0
1
0
 

L
IT

U
 

0
.2

2
 

Q
U

R
U

 
0

.1
5
 

-8
9

.4
8

2
1
4

4
 

4
3
.0

9
0

0
6
2
 

1
0
0

.3
8
 

2
.2

6
 

2
.6

2
 

0
.0

3
 

4
8
.7

7
 

0
.0

9
 

3
4
.5

9
 

0
.5

4
 

2
0
.4

0
 

0
.3

9
 

1
4
.7

3
 

0
.3

0
 

D
C

5
1
 

2
0
1
0
 

P
IR

E
 

0
.7

7
 

A
C

N
E

 
0

.1
7
 

-8
9

.4
0

3
7
4

6
 

4
3
.1

3
5

8
4
3
 

1
7
3

.9
6
 

7
.1

1
 

1
.7

1
 

0
.0

4
 

5
0
.4

5
 

0
.1

6
 

4
4
.8

9
 

0
.6

7
 

2
6
.0

0
 

0
.6

7
 

1
8
.3

1
 

0
.4

6
 

D
C

5
2
 

2
0
1
0
 

P
IS

T
 

0
.8

3
 

P
IR

E
 

0
.0

9
 

-8
9

.4
4

2
4
4

2
 

4
3
.0

3
3

0
5
2
 

1
6
0

.1
3
 

1
2
.3

8
 

1
.7

2
 

0
.0

5
 

5
0
.9

7
 

0
.2

0
 

4
2
.4

2
 

0
.8

5
 

2
5
.4

0
 

1
.3

4
 

1
7
.1

2
 

0
.4

8
 

G
re

e
n

 R
id

g
e
 S

F
, 

M
D

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
G

R
0

1
 

2
0
0
9
 

Q
U

P
R

 
0

.3
6
 

P
IS

T
 

0
.2

3
 

-7
8

.4
2

5
4
2

9
 

3
9
.6

7
0

7
5
4
 

9
6
.6

3
 

8
.2

8
 

2
.2

2
 

0
.1

0
 

4
9
.7

8
 

0
.4

0
 

3
8
.0

9
 

1
.1

1
 

2
2
.8

6
 

0
.7

9
 

1
6
.5

6
 

0
.6

5
 

G
R

0
2
 

2
0
0
9
 

Q
U

P
R

 
0

.2
9
 

Q
U

A
L

 
0

.1
3
 

-7
8

.4
2

3
0
1

9
 

3
9
.6

7
3

1
4
1
 

7
9
.3

0
 

6
.7

1
 

2
.4

6
 

0
.0

9
 

4
9
.7

2
 

0
.3

7
 

3
4
.8

1
 

1
.1

5
 

2
0
.6

3
 

0
.8

8
 

1
5
.4

0
 

0
.6

1
 

G
R

0
3
 

2
0
0
9
 

Q
U

A
L

 
0

.4
0
 

N
Y

S
Y

 
0

.3
0
 

-7
8

.4
1

1
8
8

5
 

3
9
.6

6
9

9
7
9
 

6
9
.2

7
 

5
.8

6
 

2
.6

1
 

0
.1

0
 

4
9
.0

7
 

0
.3

7
 

3
0
.6

9
 

1
.4

2
 

1
7
.5

2
 

1
.0

5
 

1
4
.8

7
 

0
.5

6
 

G
R

0
4
 

2
0
0
9
 

Q
U

A
L

 
0

.3
9
 

A
C

R
U

 
0

.2
3
 

-7
8

.4
0

4
3
3

4
 

3
9
.6

7
4

7
5
8
 

6
6
.9

1
 

5
.7

7
 

2
.5

0
 

0
.0

9
 

4
9
.3

7
 

0
.3

3
 

3
3
.0

0
 

1
.4

5
 

1
8
.7

2
 

1
.1

2
 

1
5
.5

9
 

0
.5

8
 

G
R

0
5
 

2
0
0
9
 

A
C

S
M

 
0

.3
6
 

Q
U

A
L

 
0

.2
6
 

-7
8

.5
2

5
2
4

6
 

3
9
.6

7
6

8
2
9
 

7
0
.5

9
 

5
.2

6
 

2
.5

5
 

0
.0

9
 

4
9
.6

5
 

0
.2

8
 

3
3
.3

8
 

1
.2

0
 

1
8
.7

7
 

0
.8

9
 

1
5
.3

4
 

0
.5

0
 

G
R

0
6
 

2
0
0
9
 

A
C

S
M

 
0

.4
1
 

Q
U

P
R

 
0

.3
1
 

-7
8

.5
1

9
7
4

0
 

3
9
.6

7
1

7
2
4
 

7
0
.7

3
 

8
.2

9
 

2
.4

2
 

0
.1

3
 

4
9
.6

2
 

0
.4

6
 

3
4
.5

3
 

1
.2

7
 

1
9
.8

3
 

0
.8

8
 

1
5
.3

7
 

0
.7

8
 

G
R

0
7
 

2
0
0
9
 

P
IS

T
 

0
.4

9
 

C
A

G
L

 
0

.2
0
 

-7
8

.4
8

4
3
0

6
 

3
9
.6

8
8

2
6
0
 

1
1
8

.0
4
 

9
.9

1
 

1
.8

3
 

0
.0

8
 

5
0
.3

7
 

0
.3

2
 

3
9
.7

7
 

1
.3

3
 

2
3
.8

2
 

1
.1

5
 

1
6
.5

6
 

0
.7

2
 

G
R

0
8
 

2
0
0
8
 

P
IS

T
 

0
.8

1
 

A
C

R
U

 
0

.0
6
 

-7
8

.4
6

6
1
1

2
 

3
9
.6

9
4

9
6
5
 

1
4
7

.5
1
 

1
.0

2
 

1
.5

6
 

0
.0

2
 

5
0
.9

9
 

0
.1

0
 

4
4
.1

2
 

0
.9

9
 

2
7
.4

6
 

0
.7

1
 

1
6
.6

6
 

0
.5

4
 

G
R

0
8
 

2
0
0
9
 

P
IS

T
 

0
.7

8
 

Q
U

R
U

 
0

.0
9
 

-7
8

.4
6

6
1
1

2
 

3
9
.6

9
4

9
6
5
 

1
3
1

.2
1
 

1
2
.0

3
 

1
.6

2
 

0
.0

5
 

5
0
.6

1
 

0
.2

9
 

4
4
.3

3
 

1
.3

8
 

2
7
.4

5
 

1
.2

3
 

1
7
.3

8
 

0
.8

5
 

G
R

0
9
 

2
0
0
9
 

P
IS

T
 

0
.8

3
 

Q
U

A
L

 
0

.0
4
 

-7
8

.4
8

3
4
6

0
 

3
9
.6

9
2

4
4
8
 

1
3
8

.0
1
 

1
3
.2

1
 

1
.5

0
 

0
.0

5
 

5
0
.6

7
 

0
.3

1
 

4
5
.4

3
 

1
.5

0
 

2
8
.3

4
 

1
.3

5
 

1
7
.4

7
 

0
.9

1
 

G
R

1
0
 

2
0
0
9
 

Q
U

A
L

 
0

.5
3
 

Q
U

R
U

 
0

.3
7
 

-7
8

.4
9

6
8
0

3
 

3
9
.6

5
3

2
5
6
 

7
9
.8

5
 

7
.3

1
 

2
.6

4
 

0
.1

3
 

5
0
.0

0
 

0
.4

6
 

3
1
.2

0
 

2
.3

9
 

1
7
.3

3
 

2
.0

2
 

1
5
.3

0
 

0
.7

1
 

G
R

1
1
 

2
0
0
9
 

A
C

R
U

 
0

.3
0
 

Q
U

A
L

 
0

.2
5
 

-7
8

.4
1

4
3
6

7
 

3
9
.6

6
6

2
9
3
 

6
9
.4

5
 

5
.5

7
 

2
.4

3
 

0
.0

7
 

4
9
.4

8
 

0
.3

0
 

3
1
.1

9
 

1
.0

5
 

1
7
.4

8
 

0
.9

1
 

1
4
.7

4
 

0
.5

2
 

G
R

1
2
 

2
0
0
9
 

Q
U

A
L

 
0

.1
8
 

Q
U

P
R

 
0

.1
8
 

-7
8

.5
1

1
5
6

4
 

3
9
.6

5
9

8
6
8
 

6
4
.2

5
 

5
.4

5
 

2
.5

1
 

0
.1

0
 

4
9
.0

4
 

0
.4

0
 

3
4
.0

7
 

1
.1

8
 

1
9
.2

4
 

0
.9

3
 

1
5
.8

3
 

0
.5

6
 

G
R

1
4
 

2
0
0
9
 

P
IS

T
 

0
.5

7
 

A
C

R
U

 
0

.1
4
 

-7
8

.4
5

9
2
6

8
 

3
9
.6

6
6

7
6
0
 

1
2
5

.2
7
 

9
.4

2
 

1
.6

9
 

0
.0

4
 

5
0
.4

5
 

0
.2

2
 

4
1
.6

3
 

1
.1

1
 

2
4
.9

2
 

0
.9

6
 

1
7
.1

9
 

0
.6

7
 

G
R

1
5
 

2
0
0
9
 

P
IV

I 
0

.5
5
 

A
C

R
U

 
0

.1
8
 

-7
8

.4
7

8
3
6

6
 

3
9
.6

3
7

2
4
5
 

1
3
1

.7
3
 

7
.2

3
 

1
.7

8
 

0
.0

4
 

5
0
.2

8
 

0
.2

2
 

3
9
.2

4
 

0
.9

5
 

2
2
.0

7
 

0
.7

1
 

1
8
.4

0
 

0
.8

3
 

G
R

1
6
 

2
0
0
9
 

Q
U

A
L

 
0

.3
7
 

A
C

S
M

 
0

.2
2
 

-7
8

.4
5

7
4
3

8
 

3
9
.6

6
8

1
8
8
 

7
0
.7

4
 

4
.6

3
 

2
.6

7
 

0
.0

9
 

4
9
.1

1
 

0
.2

8
 

3
2
.0

8
 

1
.3

8
 

1
7
.5

6
 

1
.0

4
 

1
5
.3

8
 

0
.5

0
 

G
R

1
8
 

2
0
0
9
 

R
O

P
S

 
0

.4
0
 

Q
U

P
R

 
0

.2
7
 

-7
8

.4
1

5
5
0

4
 

3
9
.6

7
2

7
5
0
 

6
4
.8

8
 

5
.5

0
 

3
.0

9
 

0
.1

1
 

4
8
.6

2
 

0
.3

8
 

3
6
.1

9
 

2
.2

8
 

2
2
.5

9
 

1
.8

1
 

1
6
.8

9
 

0
.7

4
 

G
R

1
9
 

2
0
0
9
 

Q
U

R
U

 
0

.2
4
 

A
C

S
M

 
0

.2
4
 

-7
8

.3
8

6
9
0

1
 

3
9
.6

4
8

1
5
3
 

7
4
.0

1
 

5
.6

1
 

2
.5

3
 

0
.0

8
 

4
9
.3

2
 

0
.2

6
 

3
3
.6

7
 

1
.5

1
 

1
8
.8

9
 

1
.2

6
 

1
5
.3

8
 

0
.4

7
 

G
R

2
1
 

2
0
0
9
 

Q
U

P
R

 
0

.3
3
 

A
C

S
M

 
0

.2
6
 

-7
8

.4
3

0
8
2

8
 

3
9
.6

0
5

9
5
2
 

6
9
.5

3
 

7
.2

6
 

2
.5

7
 

0
.1

0
 

4
9
.2

8
 

0
.4

0
 

3
5
.0

5
 

1
.2

3
 

2
0
.5

8
 

0
.9

4
 

1
5
.4

1
 

0
.6

3
 

ID
S

0
1

 
2

0
0
8
 

Q
U

P
R

 
0

.4
3
 

P
IS

T
 

0
.2

6
 

-7
8

.4
2

5
4
2

9
 

3
9
.6

7
0

7
5
4
 

1
0
4

.5
0
 

0
.3

1
 

1
.9

9
 

0
.0

2
 

5
0
.3

4
 

0
.0

7
 

3
8
.1

4
 

0
.5

9
 

2
3
.3

6
 

0
.5

0
 

1
6
.1

4
 

0
.3

3
 

169



 

 

 

 

 
 

 
 

 
 

 
 

M
ar

ea
 g

/m
2
 

N
%

 
C

%
 

A
D

F
%

 
A

D
L

%
 

C
el

lu
lo

se
%

 

P
lo

t 
Y

ea
r 

S
P

P
1

 
R

B
A

1
 

S
P

P
2

 
R

B
A

1
 

L
at

it
u

d
e 

L
o
n

g
it

u
d

e 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 

ID
S

0
5

 
2

0
0
8
 

Q
U

A
L

 
0

.5
9
 

Q
U

R
U

 
0

.3
5
 

-7
8

.4
9

6
8
0

3
 

3
9
.6

5
3

2
5
6
 

8
4
.4

7
 

0
.4

8
 

2
.8

5
 

0
.0

2
 

4
9
.6

4
 

0
.0

9
 

3
2
.6

7
 

0
.6

9
 

1
8
.5

0
 

0
.5

5
 

1
5
.6

0
 

0
.3

5
 

ID
S

1
0

 
2

0
0
8
 

Q
U

P
R

 
0

.4
3
 

Q
U

V
E

 
0

.2
0
 

-7
8

.4
2

3
0
1

9
 

3
9
.6

7
3

1
4
1
 

7
2
.9

8
 

1
.2

5
 

2
.8

2
 

0
.0

4
 

4
9
.3

9
 

0
.1

8
 

3
4
.8

2
 

1
.0

3
 

2
0
.1

4
 

0
.7

9
 

1
6
.2

0
 

0
.4

4
 

ID
S

2
5

 
2

0
0
8
 

L
IT

U
 

0
.5

8
 

T
S

C
A

 
0

.1
9
 

-7
9

.1
8

3
1
5

2
 

3
9
.5

9
2

3
5
6
 

7
0
.8

0
 

0
.5

3
 

2
.5

1
 

0
.0

3
 

4
7
.9

6
 

0
.0

8
 

3
2
.9

7
 

0
.9

2
 

1
9
.5

3
 

0
.6

6
 

1
4
.0

7
 

0
.4

3
 

ID
S

3
4

 
2

0
0
8
 

Q
U

R
U

 
0

.5
5
 

A
C

R
U

 
0

.2
5
 

-7
8

.9
7

1
1
4

3
 

3
9
.6

6
5

0
7
1
 

9
6
.0

0
 

0
.9

1
 

2
.7

0
 

0
.0

3
 

5
0
.5

2
 

0
.0

9
 

3
6
.3

4
 

0
.7

3
 

2
2
.0

7
 

0
.6

0
 

1
5
.2

6
 

0
.4

0
 

ID
S

3
5

 
2

0
0
8
 

T
S

C
A

 
0

.4
4
 

A
C

S
M

 
0

.1
9
 

-7
9

.0
8

3
8
1

1
 

3
9
.6

1
1

7
0
6
 

9
1
.2

1
 

0
.9

0
 

2
.1

3
 

0
.0

2
 

4
9
.5

8
 

0
.0

6
 

3
6
.7

8
 

0
.4

4
 

2
1
.3

3
 

0
.3

5
 

1
5
.6

7
 

0
.2

3
 

ID
S

3
6

 
2

0
0
8
 

A
C

S
M

 
0

.2
6
 

Q
U

R
U

 
0

.1
7
 

-7
9

.0
8

5
4
4

3
 

3
9
.6

1
1

9
2
6
 

6
4
.3

7
 

0
.6

2
 

2
.7

1
 

0
.0

2
 

4
8
.7

5
 

0
.0

6
 

3
7
.0

9
 

0
.5

0
 

2
1
.7

8
 

0
.3

9
 

1
5
.9

4
 

0
.2

7
 

ID
S

4
0

 
2

0
0
8
 

N
Y

S
Y

 
0

.3
1
 

Q
U

R
U

 
0

.2
5
 

-7
9

.2
0

9
8
2

5
 

3
9
.5

5
7

2
4
4
 

7
8
.9

5
 

0
.3

1
 

2
.3

0
 

0
.0

1
 

4
9
.7

5
 

0
.0

6
 

3
1
.7

2
 

0
.5

7
 

1
7
.6

3
 

0
.3

8
 

1
3
.7

1
 

0
.2

7
 

K
et

tl
e
 M

o
r
a
in

e
 S

F
, 

W
I 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
K

M
0

1
 

2
0
0
9
 

A
C

S
M

 
0

.6
3
 

F
R

A
M

 
0

.0
8
 

-8
8

.1
8

7
7
7

2
 

4
3
.5

7
2

0
9
4
 

7
4
.1

5
 

0
.4

7
 

2
.7

9
 

0
.0

1
 

4
8
.8

6
 

0
.0

9
 

3
1
.4

8
 

0
.6

0
 

1
7
.6

5
 

0
.4

7
 

1
4
.8

4
 

0
.3

0
 

K
M

0
2
 

2
0
0
9
 

F
R

N
I 

0
.7

8
 

U
L

A
M

 
0

.1
6
 

-8
8

.1
9

8
7
5

2
 

4
3
.6

3
2

4
4
2
 

7
0
.6

8
 

0
.6

8
 

2
.8

9
 

0
.0

2
 

4
7
.4

0
 

0
.1

5
 

2
5
.0

8
 

0
.9

2
 

1
6
.2

3
 

0
.8

4
 

9
.6

3
 

0
.5

7
 

M
in

n
e
so

ta
 A

r
ro

w
h

e
a

d
, 

M
N

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
M

N
0
1
 

2
0
0
8
 

P
IS

T
 

0
.7

9
 

B
E

P
A

 
0

.1
5
 

-9
1

.4
1

8
3
2

2
 

4
7
.6

5
1

0
6
3
 

2
5
5

.9
2
 

2
.2

4
 

1
.5

3
 

0
.0

1
 

5
0
.5

9
 

0
.1

3
 

4
4
.0

1
 

0
.7

5
 

2
6
.0

9
 

0
.5

3
 

1
7
.4

6
 

0
.4

1
 

M
N

0
2
 

2
0
0
8
 

P
IB

A
 

0
.4

6
 

A
B

B
A

 
0

.3
2
 

-9
1

.4
4

6
1
9

0
 

4
7
.6

5
5

8
3
1
 

1
5
2

.8
7
 

0
.4

9
 

1
.7

1
 

0
.0

1
 

5
0
.9

1
 

0
.0

5
 

4
5
.1

7
 

0
.4

7
 

2
5
.9

4
 

0
.3

7
 

2
0
.3

6
 

0
.2

7
 

M
N

0
3
 

2
0
0
8
 

P
IR

E
 

0
.9

3
 

P
IG

L
 

0
.0

5
 

-9
1

.5
1

1
5
4

5
 

4
7
.7

4
0

8
7
6
 

2
0
9

.7
9
 

0
.9

4
 

1
.1

0
 

0
.0

1
 

5
0
.1

8
 

0
.0

8
 

5
0
.6

3
 

0
.5

8
 

2
7
.6

3
 

0
.4

6
 

2
2
.2

9
 

0
.3

1
 

M
N

0
4
 

2
0
0
8
 

P
IM

A
 

0
.9

9
 

A
L

IN
 

0
.0

1
 

-9
1

.5
7

4
0
9

3
 

4
7
.7

4
0

6
6
4
 

2
1
3

.2
2
 

1
.3

0
 

0
.9

4
 

0
.0

1
 

5
0
.6

8
 

0
.0

8
 

4
8
.2

1
 

0
.5

4
 

2
5
.7

4
 

0
.4

2
 

2
1
.7

5
 

0
.3

5
 

M
N

0
5
 

2
0
0
8
 

P
O

T
R

 
0

.7
8
 

B
E

P
A

 
0

.1
5
 

-9
1

.2
9

4
4
3

2
 

4
7
.4

0
8

0
3
0
 

7
9
.9

6
 

0
.6

2
 

2
.7

8
 

0
.0

2
 

5
0
.6

3
 

0
.1

2
 

3
4
.1

4
 

1
.1

2
 

2
5
.6

3
 

0
.7

9
 

1
7
.8

1
 

0
.7

3
 

M
N

0
6
 

2
0
0
8
 

F
R

N
I 

0
.7

3
 

A
C

S
P

 
0

.0
8
 

-9
1

.2
3

2
3
2

0
 

4
7
.3

8
6

8
6
7
 

7
6
.6

5
 

0
.8

2
 

2
.9

5
 

0
.0

2
 

4
7
.9

5
 

0
.1

2
 

2
7
.4

7
 

0
.6

6
 

1
6
.7

8
 

0
.6

0
 

1
1
.2

7
 

0
.3

9
 

M
N

0
7
 

2
0
0
8
 

T
H

O
C

 
0

.9
2
 

P
IM

A
 

0
.0

5
 

-9
1

.2
8

8
5
0

5
 

4
7
.4

9
7

2
8
5
 

1
8
7

.5
9
 

1
.3

7
 

0
.9

7
 

0
.0

2
 

4
8
.9

8
 

0
.1

1
 

3
7
.3

9
 

0
.4

2
 

2
2
.2

9
 

0
.3

5
 

1
4
.8

7
 

0
.1

9
 

M
N

0
9
 

2
0
0
8
 

A
C

S
M

 
0

.7
4
 

B
E

A
L

 
0

.1
2
 

-9
1

.2
8

0
6
0

9
 

4
7
.5

0
2

4
5
8
 

6
9
.9

8
 

0
.4

3
 

2
.6

4
 

0
.0

1
 

4
9
.3

1
 

0
.0

9
 

2
7
.7

1
 

0
.5

0
 

1
3
.9

2
 

0
.5

0
 

1
3
.7

6
 

0
.3

1
 

C
h

e
q

u
a

m
e
g

o
n

-N
ic

o
le

t 
S

F
, 

W
I 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
N

C
0
1
 

2
0
0
8
 

P
O

T
R

 
0

.2
8
 

A
C

S
M

 
0

.2
7
 

-9
0

.7
8

2
8
9

9
 

4
5
.6

2
4

1
9
6
 

5
7
.9

6
 

0
.4

3
 

2
.6

3
 

0
.0

1
 

4
9
.1

0
 

0
.0

9
 

3
6
.1

1
 

0
.5

4
 

2
1
.6

0
 

0
.4

0
 

1
7
.4

2
 

0
.3

1
 

N
C

0
2
 

2
0
0
8
 

A
C

S
M

 
0

.3
8
 

T
S

C
A

 
0

.3
2
 

-9
0

.7
9

3
6
4

9
 

4
5
.6

2
8

0
4
4
 

7
7
.1

8
 

0
.3

2
 

2
.0

5
 

0
.0

1
 

4
9
.6

3
 

0
.0

8
 

3
1
.6

7
 

0
.5

0
 

1
7
.0

0
 

0
.3

8
 

1
5
.1

4
 

0
.2

6
 

N
C

0
3
 

2
0
0
8
 

A
C

S
M

 
0

.4
8
 

F
R

A
M

 
0

.3
0
 

-9
0

.7
8

1
7
5

0
 

4
5
.6

1
8

0
9
1
 

5
3
.9

9
 

0
.7

0
 

2
.5

7
 

0
.0

2
 

4
8
.3

6
 

0
.1

0
 

3
6
.5

6
 

0
.5

7
 

1
9
.4

6
 

0
.4

5
 

1
8
.0

7
 

0
.2

9
 

N
C

0
4
 

2
0
0
8
 

A
C

S
M

 
0

.6
2
 

F
R

A
M

 
0

.2
1
 

-9
0

.7
7

5
3
0

6
 

4
5
.6

2
3

8
9
0
 

5
9
.5

6
 

0
.3

8
 

2
.5

6
 

0
.0

1
 

4
8
.2

8
 

0
.1

1
 

3
6
.2

8
 

0
.5

6
 

1
9
.7

0
 

0
.4

5
 

1
7
.9

3
 

0
.2

9
 

N
C

0
5
 

2
0
0
8
 

A
C

S
M

 
0

.6
0
 

A
B

B
A

 
0

.1
9
 

-9
0

.2
6

0
7
7

1
 

4
5
.9

4
0

3
2
0
 

9
0
.0

6
 

2
.4

9
 

1
.8

5
 

0
.0

4
 

4
8
.9

1
 

0
.1

4
 

2
9
.0

3
 

0
.6

2
 

1
4
.8

8
 

0
.5

3
 

1
3
.7

2
 

0
.3

2
 

N
C

0
6
 

2
0
0
8
 

P
IR

E
 

0
.9

3
 

A
C

R
U

 
0

.0
3
 

-9
0

.2
3

1
6
6

0
 

4
5
.9

4
3

1
7
0
 

1
8
3

.5
7
 

1
3
.2

2
 

1
.3

2
 

0
.0

9
 

5
0
.1

5
 

0
.8

2
 

4
8
.2

8
 

1
.6

4
 

2
6
.9

7
 

1
.1

4
 

1
9
.7

6
 

1
.1

5
 

N
C

0
7
 

2
0
0
8
 

P
O

T
R

 
0

.9
3
 

P
IR

E
 

0
.0

5
 

-9
0

.2
1

9
5
2

9
 

4
5
.9

7
5

7
5
2
 

7
7
.6

6
 

0
.9

7
 

2
.4

4
 

0
.0

2
 

5
1
.7

4
 

0
.1

4
 

3
6
.3

1
 

1
.3

1
 

2
8
.5

4
 

1
.0

4
 

1
8
.7

4
 

0
.8

6
 

170



 

 

 

 

 
 

 
 

 
 

 
 

M
ar

ea
 g

/m
2
 

N
%

 
C

%
 

A
D

F
%

 
A

D
L

%
 

C
el

lu
lo

se
%

 

P
lo

t 
Y

ea
r 

S
P

P
1

 
R

B
A

1
 

S
P

P
2

 
R

B
A

1
 

L
at

it
u

d
e 

L
o
n

g
it

u
d

e 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 

N
C

0
8
 

2
0
0
8
 

L
A

L
A

 
0

.8
5
 

P
IM

A
 

0
.1

5
 

-9
0

.2
7

6
2
5

5
 

4
5
.9

4
8

1
6
9
 

1
6
1

.9
5
 

1
.7

9
 

1
.4

6
 

0
.0

2
 

5
0
.0

2
 

0
.1

5
 

5
0
.5

3
 

1
.1

9
 

3
0
.3

6
 

0
.5

1
 

2
0
.0

9
 

0
.6

1
 

N
C

0
9
 

2
0
0
8
 

F
R

N
I 

0
.7

5
 

A
B

B
A

 
0

.1
1
 

-9
0

.2
8

4
0
2

7
 

4
5
.9

7
1

3
8
7
 

7
8
.8

4
 

0
.5

7
 

2
.9

5
 

0
.0

2
 

4
7
.4

4
 

0
.1

2
 

3
3
.6

2
 

0
.6

9
 

1
8
.6

5
 

0
.5

9
 

1
4
.6

8
 

0
.3

9
 

N
C

1
0
 

2
0
0
8
 

L
A

L
A

 
0

.9
4
 

A
C

R
U

 
0

.0
2
 

-9
0

.2
2

5
7
4

5
 

4
5
.9

5
8

3
2
8
 

1
5
2

.6
2
 

1
.9

9
 

1
.6

0
 

0
.0

2
 

4
9
.9

7
 

0
.1

7
 

4
9
.5

6
 

1
.1

3
 

3
0
.2

8
 

0
.5

5
 

1
9
.2

4
 

0
.6

2
 

N
C

1
1
 

2
0
0
8
 

A
C

S
M

 
0

.9
1
 

T
IA

M
 

0
.0

6
 

-9
0

.2
2

9
2
9

2
 

4
5
.9

7
8

1
0
7
 

7
3
.7

7
 

1
.4

8
 

2
.1

9
 

0
.0

1
 

4
9
.2

0
 

0
.1

4
 

2
9
.7

0
 

0
.7

8
 

1
6
.1

0
 

0
.5

4
 

1
3
.4

0
 

0
.3

2
 

N
C

1
2
 

2
0
0
8
 

P
IB

A
 

0
.9

7
 

P
R

U
N

U
S

 
0

.0
3
 

-9
0

.2
5

0
8
6

2
 

4
5
.9

5
1

7
6
7
 

1
7
1

.3
6
 

1
.5

3
 

1
.6

2
 

0
.0

2
 

5
0
.4

3
 

0
.1

0
 

5
2
.9

1
 

0
.7

6
 

2
9
.9

0
 

0
.6

1
 

2
2
.3

3
 

0
.3

8
 

N
C

1
3
 

2
0
0
8
 

P
IR

E
 

0
.8

9
 

A
C

R
U

 
0

.0
6
 

-9
0

.2
3

4
7
7

8
 

4
5
.9

6
1

4
8
2
 

1
7
5

.1
6
 

1
.8

2
 

1
.4

6
 

0
.0

1
 

5
1
.0

3
 

0
.0

9
 

4
6
.6

3
 

0
.6

0
 

2
5
.9

6
 

0
.5

0
 

1
8
.9

1
 

0
.3

5
 

N
C

1
4
 

2
0
0
8
 

A
B

B
A

 
0

.6
7
 

P
O

T
R

 
0

.1
0
 

-9
0

.3
1

7
7
4

8
 

4
5
.9

6
5

7
0
6
 

1
4
6

.6
6
 

5
.2

2
 

1
.6

4
 

0
.0

5
 

5
1
.1

0
 

0
.1

3
 

3
6
.1

0
 

0
.6

6
 

2
1
.0

9
 

0
.5

7
 

1
6
.1

7
 

0
.3

1
 

N
C

1
5
 

2
0
1
0
 

A
C

S
M

 
0

.7
2
 

T
IA

M
 

0
.2

2
 

-9
0

.2
3

2
6
3

8
 

4
5
.9

8
0

7
0
1
 

5
3
.0

1
 

0
.6

6
 

1
.8

4
 

0
.0

2
 

4
8
.2

4
 

0
.1

5
 

2
8
.2

1
 

0
.6

2
 

1
4
.7

8
 

0
.5

8
 

1
2
.5

9
 

0
.3

9
 

N
C

1
6
 

2
0
1
0
 

P
IB

A
 

0
.8

4
 

P
IR

E
 

0
.0

8
 

-9
0

.2
4

4
0
1

3
 

4
5
.9

5
8

5
6
7
 

1
7
5

.1
8
 

1
.3

0
 

1
.7

3
 

0
.0

1
 

4
9
.4

9
 

0
.1

2
 

5
0
.3

7
 

0
.7

9
 

2
9
.3

4
 

0
.6

0
 

2
0
.8

3
 

0
.4

5
 

N
C

1
7
 

2
0
1
0
 

A
C

S
M

 
0

.6
2
 

T
IA

M
 

0
.2

5
 

-9
0

.2
5

9
0
9

4
 

4
5
.9

4
4

7
5
2
 

5
5
.6

9
 

0
.5

9
 

2
.0

5
 

0
.0

2
 

4
6
.9

1
 

0
.1

4
 

2
4
.2

0
 

0
.6

6
 

1
1
.0

4
 

0
.5

4
 

1
1
.7

0
 

0
.4

3
 

N
C

1
8
 

2
0
1
0
 

P
IS

T
 

0
.8

4
 

A
C

S
M

 
0

.0
6
 

-9
0

.2
6

4
5
4

4
 

4
5
.9

5
9

3
1
1
 

1
6
0

.7
5
 

0
.9

9
 

1
.6

4
 

0
.0

2
 

4
9
.8

7
 

0
.1

7
 

4
0
.3

2
 

1
.0

1
 

2
6
.4

3
 

0
.7

1
 

1
5
.2

1
 

0
.4

6
 

N
C

1
9
 

2
0
1
0
 

P
IR

E
 

0
.8

5
 

A
B

B
A

 
0

.0
8
 

-9
0

.1
9

9
6
7

0
 

4
5
.9

3
6

4
3
6
 

1
7
3

.4
1
 

1
.6

4
 

1
.1

9
 

0
.0

2
 

4
9
.3

3
 

0
.1

3
 

4
8
.6

0
 

0
.7

5
 

2
7
.4

4
 

0
.5

6
 

1
9
.6

4
 

0
.4

0
 

N
C

2
0
 

2
0
1
0
 

P
IS

T
 

0
.6

9
 

B
E

A
L

 
0

.1
7
 

-9
0

.2
5

9
8
2

0
 

4
5
.9

7
9

6
3
9
 

1
4
5

.4
5
 

0
.7

3
 

1
.8

7
 

0
.0

1
 

4
9
.6

7
 

0
.0

8
 

4
0
.2

4
 

0
.5

2
 

2
4
.1

1
 

0
.3

6
 

1
6
.5

1
 

0
.2

7
 

N
C

2
1
 

2
0
1
0
 

P
O

T
R

 
0

.7
0
 

A
B

B
A

 
0

.2
4
 

-9
0

.2
6

7
6
2

4
 

4
5
.9

7
0

5
6
8
 

9
4
.3

1
 

3
.3

6
 

2
.2

7
 

0
.0

3
 

4
9
.9

0
 

0
.1

5
 

3
5
.0

3
 

1
.0

7
 

2
5
.2

8
 

0
.8

8
 

1
6
.5

9
 

0
.6

3
 

N
C

2
2
 

2
0
1
0
 

A
C

S
M

 
0

.6
1
 

F
R

A
M

 
0

.2
0
 

-9
0

.0
8

0
4
9

7
 

4
5
.8

0
5

2
9
5
 

9
3
.9

1
 

2
.0

2
 

2
.0

6
 

0
.0

5
 

4
8
.0

1
 

0
.1

4
 

2
6
.7

5
 

0
.7

3
 

1
4
.6

8
 

0
.5

6
 

1
1
.9

5
 

0
.3

4
 

N
C

2
3
 

2
0
1
0
 

Q
U

R
U

 
0

.6
9
 

A
C

S
M

 
0

.2
1
 

-9
0

.0
7

9
7
2

5
 

4
5
.8

0
2

6
6
6
 

8
4
.1

2
 

1
.3

5
 

2
.5

7
 

0
.0

2
 

4
8
.9

7
 

0
.1

1
 

3
4
.5

4
 

0
.5

5
 

2
1
.1

8
 

0
.4

4
 

1
5
.4

9
 

0
.3

1
 

O
tt

a
w

a
 N

F
, 

M
I 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
O

F
0

1
 

2
0
0
9
 

T
S

C
A

 
0

.6
4
 

B
E

A
L

 
0

.1
7
 

-8
9

.2
4

1
4
6

5
 

4
6
.1

9
3

5
1
9
 

8
6
.0

5
 

0
.6

8
 

1
.9

6
 

0
.0

1
 

4
9
.9

1
 

0
.0

9
 

2
7
.7

0
 

0
.7

3
 

1
4
.7

4
 

0
.5

5
 

1
3
.2

0
 

0
.4

4
 

O
F

0
2

 
2

0
0
9
 

P
IR

E
 

0
.9

9
 

A
C

R
U

 
0

.0
1
 

-8
9

.1
8

1
2
3

3
 

4
6
.3

4
6

7
8
0
 

1
9
1

.2
7
 

0
.6

1
 

1
.1

9
 

0
.0

1
 

5
0
.6

2
 

0
.1

0
 

4
7
.9

6
 

0
.6

6
 

2
4
.8

0
 

0
.5

5
 

2
1
.5

9
 

0
.3

3
 

O
F

0
3

 
2

0
0
9
 

T
S

C
A

 
0

.6
9
 

B
E

A
L

 
0

.1
6
 

-8
9

.3
5

0
7
9

8
 

4
6
.2

4
0

0
5
8
 

1
0
6

.6
1
 

0
.6

5
 

1
.8

2
 

0
.0

2
 

5
0
.0

5
 

0
.1

0
 

2
6
.0

5
 

0
.8

1
 

1
4
.4

7
 

0
.5

9
 

1
1
.7

6
 

0
.5

0
 

O
F

0
4

 
2

0
0
9
 

A
C

S
M

 
0

.9
9
 

T
H

O
C

 
0

.0
1
 

-8
9

.3
0

1
4
0

4
 

4
6
.2

6
7

4
0
1
 

5
0
.4

3
 

0
.5

6
 

2
.1

2
 

0
.0

2
 

4
8
.9

8
 

0
.1

6
 

2
9
.8

1
 

0
.8

9
 

1
3
.0

9
 

0
.7

1
 

1
6
.6

1
 

0
.4

7
 

O
F

0
5

 
2

0
0
9
 

P
O

T
R

 
0

.7
6
 

A
B

B
A

 
0

.0
8
 

-8
9

.2
3

8
0
8

6
 

4
6
.3

0
2

2
8
6
 

7
6
.0

5
 

1
.5

9
 

2
.7

1
 

0
.0

6
 

5
0
.4

9
 

0
.2

6
 

3
9
.5

4
 

1
.4

8
 

2
8
.7

8
 

0
.9

7
 

2
0
.0

2
 

0
.8

2
 

P
in

e
 B

a
r
re

n
s,

 W
I 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
P

B
0
4
 

2
0
0
8
 

P
IS

T
 

0
.5

8
 

P
IR

E
 

0
.3

0
 

-9
0

.9
5

5
9
5

0
 

4
6
.7

6
2

8
4
1
 

1
6
1

.0
7
 

1
.0

4
 

1
.3

2
 

0
.0

1
 

5
0
.6

8
 

0
.0

7
 

4
3
.2

9
 

0
.3

8
 

2
3
.3

4
 

0
.2

9
 

1
8
.5

5
 

0
.2

3
 

P
B

0
5
 

2
0
0
8
 

P
IB

A
 

0
.8

5
 

Q
U

M
A

 
0

.1
3
 

-9
1

.6
6

1
3
8

9
 

4
6
.3

5
2

4
4
3
 

1
7
9

.2
7
 

0
.9

6
 

1
.5

5
 

0
.0

1
 

5
0
.7

7
 

0
.0

7
 

5
2
.7

5
 

0
.5

8
 

2
9
.4

2
 

0
.4

7
 

2
2
.5

8
 

0
.3

4
 

P
B

0
6
 

2
0
0
8
 

P
IR

E
 

0
.9

6
 

Q
U

M
A

 
0

.0
4
 

-9
1

.6
5

4
4
5

2
 

4
6
.3

5
1

9
5
1
 

2
2
3

.3
2
 

0
.8

4
 

1
.1

8
 

0
.0

1
 

5
1
.5

8
 

0
.0

9
 

4
8
.2

3
 

0
.5

3
 

2
6
.0

8
 

0
.4

6
 

1
9
.9

2
 

0
.3

1
 

P
B

0
7
 

2
0
0
8
 

P
IB

A
 

0
.7

3
 

A
M

E
L

 
0

.1
8
 

-9
1

.4
6

7
6
1

7
 

4
6
.4

4
0

2
1
4
 

1
4
9

.6
9
 

1
.6

2
 

1
.7

5
 

0
.1

0
 

5
0
.7

5
 

0
.3

6
 

4
5
.9

3
 

0
.7

5
 

2
5
.7

4
 

0
.5

8
 

1
9
.3

5
 

0
.4

1
 

171



 

 

 

 

 
 

 
 

 
 

 
 

M
ar

ea
 g

/m
2
 

N
%

 
C

%
 

A
D

F
%

 
A

D
L

%
 

C
el

lu
lo

se
%

 

P
lo

t 
Y

ea
r 

S
P

P
1

 
R

B
A

1
 

S
P

P
2

 
R

B
A

1
 

L
at

it
u

d
e 

L
o
n

g
it

u
d

e 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 
m

ea
n
 

S
.D

. 

P
B

0
8
 

2
0
0
8
 

P
IB

A
 

0
.9

6
 

B
E

N
I 

0
.0

2
 

-9
1

.4
9

0
4
6

7
 

4
6
.4

4
2

7
2
3
 

1
6
9

.5
0
 

0
.8

5
 

1
.2

7
 

0
.0

2
 

5
0
.4

4
 

0
.1

1
 

5
2
.8

4
 

0
.7

9
 

3
0
.4

6
 

0
.6

2
 

2
1
.9

4
 

0
.4

3
 

P
B

0
9
 

2
0
0
8
 

P
IB

A
 

1
.0

0
 

 
0

.0
0
 

-9
1

.5
1

9
8
9

3
 

4
6
.4

3
2

5
1
5
 

1
7
5

.0
6
 

0
.7

5
 

1
.4

2
 

0
.0

1
 

5
0
.5

7
 

0
.0

7
 

5
2
.3

9
 

0
.6

0
 

2
9
.9

8
 

0
.5

0
 

2
2
.3

0
 

0
.3

1
 

P
B

1
0
 

2
0
0
8
 

P
IB

A
 

1
.0

0
 

 
0

.0
0
 

-9
1

.5
4

7
5
7

4
 

4
6
.4

3
3

0
8
5
 

1
7
4

.5
8
 

0
.8

1
 

1
.3

9
 

0
.0

1
 

5
1
.2

5
 

0
.0

8
 

5
1
.2

6
 

0
.8

1
 

2
9
.1

1
 

0
.6

6
 

2
1
.5

3
 

0
.4

6
 

P
B

1
3
 

2
0
0
8
 

P
IB

A
 

1
.0

0
 

 
0

.0
0
 

-9
1

.9
8

9
1
8

2
 

4
6
.1

3
6

7
0
4
 

1
8
1

.4
8
 

0
.7

3
 

1
.5

8
 

0
.0

1
 

5
1
.2

4
 

0
.0

8
 

5
2
.1

4
 

0
.7

9
 

3
0
.5

5
 

0
.5

9
 

2
0
.2

6
 

0
.4

3
 

P
o

rc
u

p
in

e 
M

o
u

n
ta

in
s 

S
F

, 
M

I 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
P

M
0
1
 

2
0
0
9
 

A
C

S
M

 
0

.7
9
 

F
R

N
I 

0
.0

5
 

-8
9

.7
7

6
1
7

1
 

4
6
.7

0
7

0
3
0
 

5
2
.9

2
 

0
.5

8
 

2
.3

0
 

0
.0

1
 

4
8
.0

9
 

0
.1

2
 

2
7
.5

3
 

0
.6

0
 

1
3
.5

3
 

0
.5

0
 

1
5
.2

1
 

0
.2

8
 

P
M

0
2
 

2
0
0
9
 

T
S

C
A

 
0

.5
1
 

A
C

S
M

 
0

.2
9
 

-8
9

.9
1

5
0
9

8
 

4
6
.7

2
5

8
6
8
 

9
1
.5

1
 

1
.3

5
 

2
.1

2
 

0
.0

1
 

4
9
.2

5
 

0
.0

8
 

2
9
.8

4
 

0
.5

5
 

1
5
.9

8
 

0
.4

4
 

1
4
.1

0
 

0
.3

0
 

P
M

0
3
 

2
0
0
9
 

A
C

S
M

 
0

.7
8
 

B
E

A
L

 
0

.0
9
 

-8
9

.7
6

0
3
6

3
 

4
6
.7

4
3

0
3
0
 

4
6
.5

0
 

1
.1

8
 

2
.3

3
 

0
.0

2
 

4
8
.7

0
 

0
.1

4
 

2
8
.0

0
 

0
.7

3
 

1
4
.1

3
 

0
.6

1
 

1
5
.4

3
 

0
.3

5
 

P
M

0
4
 

2
0
0
9
 

A
C

S
M

 
0

.6
9
 

Q
U

R
U

 
0

.2
2
 

-8
9

.7
7

5
5
3

1
 

4
6
.7

4
3

4
5
8
 

4
8
.6

0
 

0
.4

3
 

2
.5

7
 

0
.0

1
 

4
8
.9

3
 

0
.1

0
 

2
8
.4

8
 

0
.5

7
 

1
4
.5

8
 

0
.4

7
 

1
5
.0

9
 

0
.2

8
 

P
M

0
5
 

2
0
0
9
 

T
S

C
A

 
0

.7
0
 

B
E

A
L

 
0

.1
4
 

-8
9

.9
6

2
1
1

1
 

4
6
.6

9
7

9
4
2
 

1
1
3

.4
2
 

0
.5

8
 

1
.6

9
 

0
.0

2
 

4
9
.7

0
 

0
.1

0
 

3
0
.8

1
 

0
.8

7
 

1
5
.8

9
 

0
.6

4
 

1
5
.0

5
 

0
.5

7
 

S
y

lv
a

n
ia

 N
F

, 
M

I 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
S

F
0

1
 

2
0
0
9
 

P
IM

A
 

0
.9

5
 

A
L

IN
 

0
.0

5
 

-9
1

.6
7

4
7
6

2
 

4
7
.8

3
8

4
5
3
 

2
0
1

.1
1
 

0
.7

6
 

1
.0

5
 

0
.0

1
 

5
0
.8

0
 

0
.0

9
 

4
1
.9

4
 

0
.5

7
 

2
2
.3

6
 

0
.4

9
 

2
0
.0

1
 

0
.4

1
 

S
F

0
2

 
2

0
0
9
 

P
IR

E
 

0
.8

9
 

A
B

B
A

 
0

.0
6
 

-9
1

.7
4

4
4
7

4
 

4
7
.8

0
7

7
8
7
 

2
0
1

.6
3
 

0
.8

3
 

1
.2

6
 

0
.0

1
 

5
0
.2

4
 

0
.0

8
 

4
7
.0

4
 

0
.5

0
 

2
5
.8

9
 

0
.4

3
 

2
0
.3

0
 

0
.2

7
 

S
F

0
3

 
2

0
0
9
 

P
O

T
R

 
0

.8
4
 

A
B

B
A

 
0

.1
1
 

-9
2

.4
5

8
6
1

2
 

4
7
.7

7
4

5
4
4
 

7
9
.9

1
 

0
.6

4
 

2
.5

7
 

0
.0

2
 

4
9
.8

3
 

0
.1

7
 

3
4
.6

1
 

1
.2

6
 

2
5
.2

4
 

0
.9

0
 

1
8
.0

7
 

0
.7

9
 

S
F

0
4

 
2

0
0
9
 

T
H

O
C

 
0

.6
9
 

A
B

B
A

 
0

.2
0
 

-9
2

.4
6

9
1
9

2
 

4
7
.7

5
2

9
3
2
 

1
6
8

.1
9
 

0
.6

6
 

1
.4

1
 

0
.0

2
 

5
0
.0

8
 

0
.1

1
 

4
1
.1

5
 

0
.5

3
 

2
6
.0

3
 

0
.3

8
 

1
6
.6

6
 

0
.2

9
 

S
F

0
5

 
2

0
0
9
 

P
IB

A
 

0
.7

6
 

A
B

B
A

 
0

.1
2
 

-9
1

.6
3

7
6
5

8
 

4
7
.8

3
7

0
1
3
 

1
7
6

.8
2
 

0
.8

0
 

1
.5

6
 

0
.0

1
 

5
0
.6

4
 

0
.0

6
 

5
0
.2

3
 

0
.5

0
 

2
8
.0

2
 

0
.4

5
 

2
2
.1

0
 

0
.2

8
 

S
a

v
a
g

e
 R

iv
e
r
 S

F
, 

M
D

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
S

R
0
1
 

2
0
0
9
 

T
S

C
A

 
0

.4
0
 

A
C

S
M

 
0

.2
5
 

-7
9

.0
8

3
8
1

1
 

3
9
.6

1
1

7
0
6
 

8
6
.5

0
 

4
.7

1
 

2
.0

8
 

0
.0

5
 

4
9
.5

3
 

0
.1

5
 

3
5
.8

2
 

1
.0

1
 

2
0
.5

6
 

0
.8

4
 

1
5
.4

9
 

0
.3

9
 

S
R

0
2
 

2
0
0
9
 

A
C

S
M

 
0

.4
4
 

T
IA

M
 

0
.2

5
 

-7
9

.0
8

5
4
4

3
 

3
9
.6

1
1

9
2
6
 

6
5
.0

7
 

4
.6

1
 

2
.6

9
 

0
.0

8
 

4
8
.8

6
 

0
.3

1
 

3
4
.1

7
 

0
.9

2
 

1
9
.9

1
 

0
.7

5
 

1
4
.9

0
 

0
.4

7
 

S
R

0
3
 

2
0
0
9
 

N
Y

S
Y

 
0

.2
9
 

Q
U

P
R

 
0

.2
4
 

-7
9

.2
0

9
8
2

5
 

3
9
.5

5
7

2
4
4
 

7
6
.7

6
 

4
.5

1
 

2
.4

7
 

0
.0

5
 

4
9
.7

6
 

0
.1

9
 

3
2
.4

1
 

0
.7

3
 

1
8
.3

2
 

0
.7

1
 

1
4
.4

0
 

0
.4

0
 

S
R

0
4
 

2
0
0
9
 

A
C

R
U

 
0

.4
8
 

A
C

S
M

 
0

.1
9
 

-7
9

.2
0

0
3
8

2
 

3
9
.5

6
9

9
8
8
 

6
9
.1

2
 

7
.8

4
 

2
.2

4
 

0
.0

7
 

5
0
.2

7
 

0
.3

4
 

3
2
.3

1
 

1
.0

1
 

1
8
.1

4
 

1
.0

1
 

1
4
.1

8
 

0
.6

8
 

S
R

0
5
 

2
0
0
9
 

A
C

S
M

 
0

.5
0
 

H
A

V
I 

0
.1

8
 

-7
9

.2
0

0
1
6

7
 

3
9
.5

7
5

7
8
5
 

6
2
.9

0
 

4
.8

8
 

2
.3

6
 

0
.0

9
 

4
9
.3

0
 

0
.2

4
 

3
2
.6

1
 

1
.1

1
 

1
8
.7

1
 

0
.8

2
 

1
4
.7

5
 

0
.5

6
 

S
R

0
7
 

2
0
0
9
 

L
IT

U
 

0
.2

8
 

A
C

R
U

 
0

.2
1
 

-7
9

.1
8

3
1
5

2
 

3
9
.5

9
2

3
5
6
 

7
1
.4

5
 

6
.1

2
 

2
.5

6
 

0
.0

6
 

4
8
.8

7
 

0
.2

0
 

3
4
.4

6
 

1
.0

6
 

2
0
.6

7
 

0
.9

6
 

1
4
.5

0
 

0
.4

4
 

S
R

0
9
 

2
0
0
9
 

A
C

R
U

 
0

.2
4
 

N
Y

S
Y

 
0

.2
4
 

-7
9

.1
4

3
5
1

0
 

3
9
.6

3
4

5
7
1
 

7
3
.0

4
 

4
.7

6
 

2
.5

5
 

0
.0

6
 

4
9
.5

1
 

0
.2

0
 

3
3
.0

8
 

0
.8

3
 

1
8
.8

6
 

0
.7

4
 

1
4
.4

9
 

0
.4

2
 

S
R

1
0
 

2
0
0
9
 

P
IS

T
 

0
.8

1
 

A
C

R
U

 
0

.1
6
 

-7
9

.0
8

5
7
3

9
 

3
9
.5

7
5

5
8
9
 

1
3
4

.3
8
 

1
3
.1

2
 

1
.4

7
 

0
.0

5
 

5
0
.8

8
 

0
.3

0
 

4
4
.8

7
 

1
.3

9
 

2
7
.7

5
 

1
.2

2
 

1
7
.0

8
 

0
.8

8
 

S
R

1
3
 

2
0
0
9
 

P
IS

T
 

0
.8

7
 

F
R

A
M

 
0

.0
9
 

-7
9

.0
6

7
0
7

1
 

3
9
.5

3
6

9
7
7
 

1
3
9

.2
2
 

1
4
.5

6
 

1
.4

7
 

0
.0

5
 

5
0
.5

9
 

0
.3

3
 

4
7
.2

8
 

1
.5

3
 

2
9
.5

8
 

1
.4

3
 

1
7
.9

3
 

0
.9

8
 

S
R

1
5
 

2
0
0
9
 

A
C

R
U

 
0

.2
9
 

A
C

S
M

 
0

.2
5
 

-7
9

.1
4

2
3
0

3
 

3
9
.5

3
2

9
0
4
 

6
2
.4

4
 

4
.8

2
 

2
.3

1
 

0
.0

6
 

4
9
.6

4
 

0
.2

3
 

3
2
.4

6
 

0
.8

5
 

1
8
.6

8
 

0
.7

4
 

1
4
.6

3
 

0
.4

6
 

172



 

 

 

 S
4
: 

M
ea

n
s 

o
f 

P
L

S
R

 r
eg

re
ss

io
n
 c

o
ef

fi
ci

en
ts

 (
an

d
 t

h
ei

r 
u
n
ce

rt
ai

n
ti

es
) 

fo
r 

p
re

d
ic

ti
n
g
 f

o
li

ar
 t

ra
it

s 
u
si

n
g
 A

V
IR

IS
 i

m
ag

er
y
 o

b
ta

in
ed

 

fr
o
m

 5
0
0

 j
ac

k
k
n
if

e 
m

o
d

el
s 

b
u
il

t 
u
si

n
g
 5

0
/5

0
 c

al
ib

ra
ti

o
n
/v

al
id

at
io

n
 s

p
li

t 
sa

m
p
le

s.
 C

el
ls

 w
it

h
o
u
t 

n
u
m

b
er

s 
in

d
ic

at
e 

w
at

er
 

ab
so

rp
ti

o
n
 b

an
d
s 

th
at

 d
ro

p
p
ed

 a
ft

er
 t

h
e 

at
m

o
sp

h
er

ic
 c

o
rr

ec
ti

o
n
 o

f 
A

V
IR

IS
 i

m
ag

er
y
. 

 

  
M

ar
ea

 
N

%
 

C
%

 
A

D
F

%
 

A
D

L
%

 
C

el
lu

lo
se

%
 

W
av

el
en

g
th

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 

In
te

rc
ep

t 
1

2
6
.4

2
6
1

8
6
 

3
2

.2
6
9

8
0

3
 

1
.7

2
9
6

4
3

 
0

.4
1

2
6

0
6
 

4
9

.0
0
3

1
1

6
 

0
.7

6
1
9

9
9
 

3
9

.0
3
4

8
0

3
 

5
.5

8
8
9

6
9
 

2
3

.2
2
0

1
7

3
 

4
.1

0
1
1

5
1

 
1

8
.2

0
7

4
6

0
 

2
.4

8
6
7

2
2
 

3
6

6
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

3
7

6
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

3
8

5
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

3
9

5
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

4
0

5
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

4
1

4
 

0
.0

0
9
8

4
2
 

0
.0

3
3
9

0
0
 

-0
.0

0
0
3

9
0

 
0

.0
0

0
3

4
2
 

0
.0

0
0
8

2
3
 

0
.0

0
0
7

7
5
 

-0
.0

0
0
4

5
7
 

0
.0

0
9
1

9
5
 

-0
.0

0
1
4

5
4
 

0
.0

0
5
4

5
9

 
-0

.0
0

0
3

9
3
 

0
.0

0
3
4

2
2
 

4
2

4
 

0
.0

0
1
0

3
1
 

0
.0

2
0
9

0
9
 

-0
.0

0
0
1

2
8

 
0

.0
0

0
2

2
7
 

0
.0

0
0
3

7
2
 

0
.0

0
0
4

7
2
 

0
.0

0
2
5

5
1
 

0
.0

0
5
0

7
8
 

0
.0

0
0
4

1
5
 

0
.0

0
3
5

8
5

 
0

.0
0

0
6

0
2
 

0
.0

0
2
0

3
6
 

4
3

4
 

-0
.0

0
3
6

4
1
 

0
.0

1
4
9

1
2
 

-0
.0

0
0
2

0
6

 
0

.0
0

0
1

7
9
 

0
.0

0
0
3

6
6
 

0
.0

0
0
3

7
5
 

0
.0

0
2
6

7
0
 

0
.0

0
3
7

9
5
 

0
.0

0
0
1

5
2
 

0
.0

0
2
8

6
8

 
0

.0
0

0
8

9
4
 

0
.0

0
1
5

3
1
 

4
4

3
 

0
.0

0
3
1

7
1
 

0
.0

1
2
6

3
0
 

-0
.0

0
0
2

6
0

 
0

.0
0

0
1

4
3
 

0
.0

0
0
3

5
5
 

0
.0

0
0
2

8
5
 

0
.0

0
5
4

7
5
 

0
.0

0
3
0

2
4
 

0
.0

0
2
9

3
2
 

0
.0

0
2
2

0
8

 
0

.0
0

1
0

9
1
 

0
.0

0
1
0

8
2
 

4
5

3
 

0
.0

0
2
9

6
6
 

0
.0

1
6
2

6
3
 

-0
.0

0
0
1

7
3

 
0

.0
0

0
1

5
9
 

0
.0

0
0
1

1
0
 

0
.0

0
0
3

1
5
 

0
.0

0
5
8

0
2
 

0
.0

0
3
8

9
7
 

0
.0

0
4
3

5
2
 

0
.0

0
2
3

9
2

 
0

.0
0

1
5

5
8
 

0
.0

0
1
2

7
4
 

4
6

3
 

-0
.0

0
5
6

9
9
 

0
.0

1
9
4

8
2
 

-0
.0

0
0
1

4
9

 
0

.0
0

0
1

8
2
 

0
.0

0
0
0

2
6
 

0
.0

0
0
3

0
5
 

0
.0

0
5
8

1
0
 

0
.0

0
4
4

4
0
 

0
.0

0
4
2

8
4
 

0
.0

0
2
5

0
6

 
0

.0
0

2
0

2
2
 

0
.0

0
1
3

2
8
 

4
7

2
 

-0
.0

0
6
2

3
2
 

0
.0

1
5
2

7
8
 

-0
.0

0
0
0

9
1

 
0

.0
0

0
1

4
7
 

-0
.0

0
0
0

7
9
 

0
.0

0
0
2

6
7
 

0
.0

0
4
8

7
9
 

0
.0

0
3
6

0
7
 

0
.0

0
2
8

9
8
 

0
.0

0
2
2

6
5

 
0

.0
0

2
1

2
4
 

0
.0

0
1
1

3
8
 

4
8

2
 

0
.0

0
2
2

4
5
 

0
.0

1
4
9

5
2
 

-0
.0

0
0
0

0
4

 
0

.0
0

0
1

4
2
 

0
.0

0
0
0

6
1
 

0
.0

0
0
2

5
1
 

0
.0

0
6
2

9
2
 

0
.0

0
3
6

8
3
 

0
.0

0
4
4

8
4
 

0
.0

0
2
1

9
5

 
0

.0
0

2
3

6
1
 

0
.0

0
1
2

4
0
 

4
9

2
 

-0
.0

0
0
3

5
8
 

0
.0

1
6
1

9
7
 

0
.0

0
0
0

3
6

 
0

.0
0

0
1

4
0
 

0
.0

0
0
0

9
4
 

0
.0

0
0
2

5
7
 

0
.0

0
5
8

8
7
 

0
.0

0
3
3

7
7
 

0
.0

0
4
1

7
3
 

0
.0

0
2
1

6
9

 
0

.0
0

2
2

4
1
 

0
.0

0
1
2

6
1
 

5
0

2
 

0
.0

0
8
2

4
4
 

0
.0

1
2
1

4
1
 

0
.0

0
0
0

2
6

 
0

.0
0

0
1

2
0
 

0
.0

0
0
1

7
7
 

0
.0

0
0
2

3
6
 

0
.0

0
6
3

3
7
 

0
.0

0
2
9

8
6
 

0
.0

0
4
3

4
3
 

0
.0

0
1
9

5
8

 
0

.0
0

2
4

2
4
 

0
.0

0
1
2

0
6
 

5
1

1
 

0
.0

2
3
2

4
2
 

0
.0

1
4
7

9
4
 

-0
.0

0
0
0

5
4

 
0

.0
0

0
1

2
2
 

0
.0

0
0
1

6
8
 

0
.0

0
0
2

1
2
 

0
.0

0
5
0

5
2
 

0
.0

0
2
7

3
5
 

0
.0

0
3
5

8
9
 

0
.0

0
1
8

6
3

 
0

.0
0

1
9

1
3
 

0
.0

0
1
0

6
4
 

5
2

1
 

0
.0

1
6
9

4
7
 

0
.0

1
5
1

5
6
 

-0
.0

0
0
0

7
3

 
0

.0
0

0
1

2
1
 

0
.0

0
0
0

5
9
 

0
.0

0
0
2

6
1
 

0
.0

0
3
3

3
6
 

0
.0

0
2
9

6
9
 

0
.0

0
2
8

3
2
 

0
.0

0
2
1

9
1
 

0
.0

0
0
6

3
7
 

0
.0

0
1
0

0
6
 

5
3

1
 

0
.0

0
9
2

5
6
 

0
.0

1
4
6

6
3
 

-0
.0

0
0
0

2
5

 
0

.0
0

0
1

3
1
 

-0
.0

0
0
1

9
6
 

0
.0

0
0
2

7
7
 

-0
.0

0
0
6

4
4
 

0
.0

0
3
0

3
3
 

0
.0

0
0
3

1
9
 

0
.0

0
2
5

2
8

 
-0

.0
0

0
7

5
2
 

0
.0

0
1
0

8
6
 

5
4

1
 

0
.0

0
3
5

9
6
 

0
.0

1
8
2

1
4
 

0
.0

0
0
0

0
8

 
0

.0
0

0
1

7
7
 

-0
.0

0
0
4

7
1
 

0
.0

0
0
3

3
8
 

-0
.0

0
3
9

7
3
 

0
.0

0
3
9

3
9
 

-0
.0

0
1
8

6
0
 

0
.0

0
3
1

9
3

 
-0

.0
0

1
8

0
1
 

0
.0

0
1
5

2
8
 

5
5

0
 

-0
.0

0
3
0

3
9
 

0
.0

1
8
7

6
5
 

-0
.0

0
0
0

3
5

 
0

.0
0

0
1

9
3
 

-0
.0

0
0
6

0
4
 

0
.0

0
0
3

5
7
 

-0
.0

0
6
2

5
5
 

0
.0

0
4
3

3
2
 

-0
.0

0
3
4

6
1
 

0
.0

0
3
3

6
2

 
-0

.0
0

2
6

5
4
 

0
.0

0
1
5

9
5
 

5
6

0
 

-0
.0

2
0
2

3
7
 

0
.0

1
9
7

3
5
 

0
.0

0
0
0

3
4

 
0

.0
0

0
2

1
1
 

-0
.0

0
0
8

3
8
 

0
.0

0
0
3

9
5
 

-0
.0

0
8
8

1
6
 

0
.0

0
4
6

4
8
 

-0
.0

0
5
1

0
7
 

0
.0

0
3
4

4
0

 
-0

.0
0

3
0

3
0
 

0
.0

0
1
7

6
5
 

5
7

0
 

-0
.0

1
7
1

1
8
 

0
.0

1
6
5

4
2
 

0
.0

0
0
0

0
7

 
0

.0
0

0
1

6
9
 

-0
.0

0
0
7

8
2
 

0
.0

0
0
3

5
7
 

-0
.0

0
8
3

7
2
 

0
.0

0
3
8

0
0
 

-0
.0

0
4
9

6
9
 

0
.0

0
2
8

5
1

 
-0

.0
0

2
9

5
7
 

0
.0

0
1
5

0
4
 

173



 

 

 

 

  
M

ar
ea

 
N

%
 

C
%

 
A

D
F

%
 

A
D

L
%

 
C

el
lu

lo
se

%
 

W
av

el
en

g
th

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 

5
8

0
 

-0
.0

1
9
6

1
0
 

0
.0

1
5
2

1
1
 

0
.0

0
0
1

2
1

 
0

.0
0

0
1

5
1
 

-0
.0

0
0
6

6
9
 

0
.0

0
0
3

1
4
 

-0
.0

0
8
4

2
0
 

0
.0

0
3
2

2
1
 

-0
.0

0
4
3

1
2
 

0
.0

0
2
3

2
3

 
-0

.0
0

2
8

5
2
 

0
.0

0
1
3

2
2
 

5
8

9
 

-0
.0

1
6
7

9
2
 

0
.0

1
4
2

2
8
 

0
.0

0
0
1

2
5

 
0

.0
0

0
1

4
7
 

-0
.0

0
0
5

8
6
 

0
.0

0
0
3

1
2
 

-0
.0

0
7
5

6
9
 

0
.0

0
3
0

0
8
 

-0
.0

0
3
7

0
6
 

0
.0

0
2
1

8
5

 
-0

.0
0

2
4

3
0
 

0
.0

0
1
2

3
8
 

5
9

9
 

-0
.0

1
6
4

6
9
 

0
.0

1
3
6

5
3
 

0
.0

0
0
1

4
9

 
0

.0
0

0
1

4
6
 

-0
.0

0
0
5

6
0
 

0
.0

0
0
3

1
1
 

-0
.0

0
7
4

0
5
 

0
.0

0
2
9

0
5
 

-0
.0

0
3
2

8
8
 

0
.0

0
2
1

4
6

 
-0

.0
0

2
3

9
2
 

0
.0

0
1
1

9
5
 

6
0

9
 

-0
.0

1
3
9

2
3
 

0
.0

1
2
4

2
5
 

0
.0

0
0
2

4
7

 
0

.0
0

0
1

2
8
 

-0
.0

0
0
4

5
4
 

0
.0

0
0
2

9
5
 

-0
.0

0
7
1

1
2
 

0
.0

0
2
5

4
2
 

-0
.0

0
3
1

2
8
 

0
.0

0
1
9

6
4

 
-0

.0
0

2
1

6
7
 

0
.0

0
1
1

0
0
 

6
1

9
 

-0
.0

1
0
2

7
7
 

0
.0

1
3
4

4
4
 

0
.0

0
0
2

6
2

 
0

.0
0

0
1

3
0
 

-0
.0

0
0
3

6
3
 

0
.0

0
0
2

8
7
 

-0
.0

0
5
9

4
7
 

0
.0

0
2
4

9
4
 

-0
.0

0
2
2

6
8
 

0
.0

0
1
8

8
3

 
-0

.0
0

1
6

1
7
 

0
.0

0
1
1

1
2
 

6
2

8
 

-0
.0

1
1
6

4
6
 

0
.0

1
2
1

8
9
 

0
.0

0
0
3

0
8

 
0

.0
0

0
1

2
2
 

-0
.0

0
0
3

1
1
 

0
.0

0
0
2

7
9
 

-0
.0

0
5
0

4
0
 

0
.0

0
2
5

1
6
 

-0
.0

0
1
9

5
8
 

0
.0

0
1
8

1
8

 
-0

.0
0

1
2

7
6
 

0
.0

0
1
0

6
6
 

6
3

8
 

-0
.0

0
9
2

8
4
 

0
.0

1
2
8

0
6
 

0
.0

0
0
3

6
7

 
0

.0
0

0
1

2
1
 

-0
.0

0
0
3

1
2
 

0
.0

0
0
2

8
8
 

-0
.0

0
5
2

9
2
 

0
.0

0
2
4

8
0
 

-0
.0

0
2
3

3
2
 

0
.0

0
1
7

8
2

 
-0

.0
0

1
2

7
7
 

0
.0

0
1
0

7
6
 

6
4

8
 

-0
.0

0
9
1

8
2
 

0
.0

1
4
1

0
1
 

0
.0

0
0
4

8
2

 
0

.0
0

0
1

3
1
 

-0
.0

0
0
2

8
8
 

0
.0

0
0
3

0
0
 

-0
.0

0
4
1

7
6
 

0
.0

0
2
6

0
9
 

-0
.0

0
1
6

2
7
 

0
.0

0
1
8

0
7

 
-0

.0
0

0
6

5
0
 

0
.0

0
1
1

2
4
 

6
5

5
 

-0
.0

0
7
7

3
5
 

0
.0

1
6
3

5
8
 

0
.0

0
0
5

3
0

 
0

.0
0

0
1

6
2
 

-0
.0

0
0
0

0
1
 

0
.0

0
0
3

5
1
 

-0
.0

0
3
1

0
5
 

0
.0

0
3
7

2
8
 

-0
.0

0
1
0

8
4
 

0
.0

0
2
5

3
4

 
-0

.0
0

0
3

4
4
 

0
.0

0
1
3

8
6
 

6
5

8
 

-0
.0

0
3
6

2
3
 

0
.0

1
6
8

0
5
 

0
.0

0
0
5

7
9

 
0

.0
0

0
1

4
8
 

0
.0

0
0
0

1
1
 

0
.0

0
0
3

3
3
 

-0
.0

0
1
4

6
9
 

0
.0

0
3
3

6
1
 

0
.0

0
0
2

9
9
 

0
.0

0
2
1

7
6

 
0

.0
0

0
1

6
0
 

0
.0

0
1
3

0
5
 

6
6

5
 

-0
.0

1
3
7

9
7
 

0
.0

1
6
2

7
6
 

0
.0

0
0
5

5
1

 
0

.0
0

0
1

3
8
 

-0
.0

0
0
0

3
9
 

0
.0

0
0
3

2
2
 

-0
.0

0
2
5

7
9
 

0
.0

0
3
0

3
0
 

-0
.0

0
0
2

1
6
 

0
.0

0
2
2

1
7

 
-0

.0
0

0
2

5
6
 

0
.0

0
1
2

7
2
 

6
6

8
 

-0
.0

0
6
6

5
6
 

0
.0

1
6
1

2
7
 

0
.0

0
0
5

8
7

 
0

.0
0

0
1

4
7
 

0
.0

0
0
0

5
6
 

0
.0

0
0
3

4
4
 

-0
.0

0
0
6

7
9
 

0
.0

0
3
3

4
8
 

0
.0

0
0
7

4
8
 

0
.0

0
2
2

2
1

 
0

.0
0

0
4

3
5
 

0
.0

0
1
3

8
6
 

6
7

5
 

0
.0

0
0
4

8
4
 

0
.0

1
7
0

0
7
 

0
.0

0
0
6

1
5
 

0
.0

0
0
1

6
7
 

0
.0

0
0
1

4
1
 

0
.0

0
0
3

8
4
 

0
.0

0
0
7

2
8
 

0
.0

0
4
1

0
8
 

0
.0

0
1
5

2
2
 

0
.0

0
2
6

8
8

 
0

.0
0

0
5

8
7
 

0
.0

0
1
5

7
3
 

6
8

5
 

-0
.0

0
9
8

5
7
 

0
.0

1
7
4

4
4
 

0
.0

0
0
6

7
5

 
0

.0
0

0
1

7
1
 

0
.0

0
0
0

0
8
 

0
.0

0
0
3

8
6
 

-0
.0

0
1
8

5
7
 

0
.0

0
3
7

4
7
 

-0
.0

0
0
6

7
4
 

0
.0

0
2
4

9
2

 
0

.0
0

0
4

7
9
 

0
.0

0
1
5

3
6
 

6
9

4
 

-0
.0

1
9
9

0
1
 

0
.0

1
8
4

8
3
 

0
.0

0
0
2

7
2

 
0

.0
0

0
1

6
7
 

-0
.0

0
0
4

0
9
 

0
.0

0
0
3

6
8
 

-0
.0

0
5
3

6
8
 

0
.0

0
3
6

4
9
 

-0
.0

0
3
9

4
8
 

0
.0

0
2
6

0
3

 
-0

.0
0

0
9

6
2
 

0
.0

0
1
2

6
7
 

7
0

4
 

-0
.0

3
2
5

5
1
 

0
.0

2
1
8

3
4
 

-0
.0

0
0
3

5
5

 
0

.0
0

0
2

2
8
 

-0
.0

0
1
1

5
6
 

0
.0

0
0
5

9
0
 

-0
.0

1
2
6

5
1
 

0
.0

0
4
4

9
5
 

-0
.0

1
2
9

1
4
 

0
.0

0
3
6

8
6

 
-0

.0
0

4
2

1
5
 

0
.0

0
1
8

2
5
 

7
1

4
 

-0
.0

1
7
4

2
6
 

0
.0

2
1
1

4
5
 

-0
.0

0
0
7

1
4

 
0

.0
0

0
2

3
5
 

-0
.0

0
1
1

0
1
 

0
.0

0
0
6

4
3
 

-0
.0

1
0
5

7
2
 

0
.0

0
4
0

8
9
 

-0
.0

1
3
9

5
5
 

0
.0

0
3
8

0
7

 
-0

.0
0

4
5

7
4
 

0
.0

0
2
0

0
8
 

7
2

4
 

0
.0

4
3
3

9
2
 

0
.0

1
9
0

1
2
 

-0
.0

0
0
8

0
9

 
0

.0
0

0
2

0
4
 

0
.0

0
0
4

8
1
 

0
.0

0
0
5

2
7
 

0
.0

0
5
9

5
0
 

0
.0

0
4
3

7
6
 

0
.0

0
1
3

5
8
 

0
.0

0
3
2

7
9

 
0

.0
0

0
8

8
0
 

0
.0

0
1
7

2
6
 

7
3

4
 

0
.0

6
5
8

0
9
 

0
.0

2
5
9

8
1
 

-0
.0

0
0
4

6
8

 
0

.0
0

0
2

8
5
 

0
.0

0
1
7

7
2
 

0
.0

0
0
8

2
8
 

0
.0

1
7
6

7
4
 

0
.0

0
6
0

3
5
 

0
.0

1
5
7

2
4
 

0
.0

0
4
4

5
4

 
0

.0
0

5
0

8
9
 

0
.0

0
2
5

7
4
 

7
4

3
 

0
.0

3
6
5

2
5
 

0
.0

2
1
2

9
9
 

0
.0

0
0
0

2
7

 
0

.0
0

0
2

5
6
 

0
.0

0
1
4

1
5
 

0
.0

0
0
6

7
2
 

0
.0

1
2
1

9
3
 

0
.0

0
4
9

4
1
 

0
.0

1
3
3

1
8
 

0
.0

0
3
8

9
1

 
0

.0
0

3
8

9
6
 

0
.0

0
2
2

1
7
 

7
5

3
 

0
.0

0
5
8

4
9
 

0
.0

1
8
9

2
9
 

0
.0

0
0
0

4
8

 
0

.0
0

0
2

2
9
 

0
.0

0
0
9

3
6
 

0
.0

0
0
4

8
8
 

0
.0

0
9
7

0
8
 

0
.0

0
4
9

2
4
 

0
.0

0
8
6

7
2
 

0
.0

0
3
8

1
9

 
0

.0
0

3
7

8
3
 

0
.0

0
1
7

9
2
 

7
6

3
 

0
.0

0
9
2

7
0
 

0
.0

3
5
6

4
3
 

0
.0

0
0
1

8
1

 
0

.0
0

0
4

3
7
 

0
.0

0
0
7

1
7
 

0
.0

0
1
0

0
8
 

-0
.0

0
2
4

0
1
 

0
.0

0
9
3

5
5
 

-0
.0

0
4
6

2
3
 

0
.0

0
6
9

2
4

 
0

.0
0

0
8

8
7
 

0
.0

0
3
9

1
0
 

7
7

3
 

-0
.0

1
3
9

9
8
 

0
.0

2
1
6

1
3
 

0
.0

0
0
0

4
3

 
0

.0
0

0
1

8
0
 

-0
.0

0
0
1

4
1
 

0
.0

0
0
4

2
3
 

0
.0

0
0
8

0
2
 

0
.0

0
4
3

4
4
 

-0
.0

0
1
9

4
9
 

0
.0

0
3
1

1
2

 
0

.0
0

0
3

7
9
 

0
.0

0
1
4

1
5
 

7
8

2
 

-0
.0

1
9
3

7
8
 

0
.0

1
5
7

5
8
 

0
.0

0
0
0

9
8

 
0

.0
0

0
1

6
2
 

-0
.0

0
0
2

5
6
 

0
.0

0
0
3

5
5
 

-0
.0

0
3
7

1
0
 

0
.0

0
3
9

0
9
 

-0
.0

0
3
4

3
3
 

0
.0

0
2
7

7
7

 
-0

.0
0

1
0

6
7
 

0
.0

0
1
3

4
2
 

7
9

2
 

-0
.0

0
6
9

8
2
 

0
.0

1
5
1

5
2
 

0
.0

0
0
0

2
9

 
0

.0
0

0
1

6
6
 

-0
.0

0
0
2

5
7
 

0
.0

0
0
3

4
2
 

-0
.0

0
1
7

5
4
 

0
.0

0
3
9

7
5
 

-0
.0

0
1
9

8
5
 

0
.0

0
2
7

2
0

 
-0

.0
0

0
6

9
5
 

0
.0

0
1
2

8
6
 

8
0

2
 

-0
.0

1
0
0

8
4
 

0
.0

1
3
9

8
4
 

-0
.0

0
0
0

0
1

 
0

.0
0

0
1

5
0
 

-0
.0

0
0
2

4
0
 

0
.0

0
0
3

2
8
 

-0
.0

0
1
7

8
6
 

0
.0

0
3
4

1
2
 

-0
.0

0
1
9

4
2
 

0
.0

0
2
2

9
5

 
-0

.0
0

0
6

7
5
 

0
.0

0
1
1

2
8
 

8
1

2
 

-0
.0

1
4
2

7
5
 

0
.0

1
3
1

8
3
 

0
.0

0
0
0

3
5

 
0

.0
0

0
1

4
9
 

0
.0

0
0
0

0
1
 

0
.0

0
0
3

0
9
 

-0
.0

0
1
0

9
0
 

0
.0

0
3
2

9
9
 

-0
.0

0
0
6

6
6
 

0
.0

0
2
3

7
2

 
-0

.0
0

0
4

6
5
 

0
.0

0
1
1

0
7
 

174



 

 

 

 

  
M

ar
ea

 
N

%
 

C
%

 
A

D
F

%
 

A
D

L
%

 
C

el
lu

lo
se

%
 

W
av

el
en

g
th

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 

8
2

1
 

0
.0

0
7
6

5
3
 

0
.0

1
7
4

4
7
 

-0
.0

0
0
0

6
4

 
0

.0
0

0
1

7
8
 

-0
.0

0
0
1

8
5
 

0
.0

0
0
3

6
1
 

-0
.0

0
2
2

7
8
 

0
.0

0
3
2

8
7
 

-0
.0

0
1
1

1
3
 

0
.0

0
2
6

3
0

 
-0

.0
0

0
4

7
5
 

0
.0

0
1
1

9
7
 

8
3

1
 

0
.0

0
3
8

3
2
 

0
.0

1
4
7

6
0
 

-0
.0

0
0
0

1
2

 
0

.0
0

0
1

5
2
 

-0
.0

0
0
2

6
2
 

0
.0

0
0
2

8
4
 

-0
.0

0
2
7

1
9
 

0
.0

0
2
9

0
2
 

-0
.0

0
1
5

7
4
 

0
.0

0
2
0

6
5

 
-0

.0
0

0
6

4
7
 

0
.0

0
1
1

4
0
 

8
4

1
 

-0
.0

0
6
1

7
2
 

0
.0

1
1
9

5
1
 

-0
.0

0
0
0

0
7

 
0

.0
0

0
1

3
7
 

-0
.0

0
0
2

1
6
 

0
.0

0
0
2

9
4
 

-0
.0

0
2
6

7
8
 

0
.0

0
2
7

7
5
 

-0
.0

0
1
5

1
8
 

0
.0

0
2
0

9
1
 

0
.0

0
0
1

8
0
 

0
.0

0
1
1

2
5
 

8
5

0
 

-0
.0

0
9
8

0
2
 

0
.0

1
2
1

6
2
 

0
.0

0
0
0

0
1

 
0

.0
0

0
1

2
2
 

-0
.0

0
0
2

5
7
 

0
.0

0
0
3

0
5
 

-0
.0

0
2
5

2
7
 

0
.0

0
2
8

1
5
 

-0
.0

0
0
5

9
8
 

0
.0

0
2
0

0
8

 
0

.0
0

0
0

0
7
 

0
.0

0
1
0

9
4
 

8
6

0
 

-0
.0

0
8
7

6
8
 

0
.0

1
4
9

8
3
 

0
.0

0
0
0

4
8

 
0

.0
0

0
1

5
5
 

-0
.0

0
0
1

6
8
 

0
.0

0
0
2

8
3
 

-0
.0

0
2
8

0
5
 

0
.0

0
3
1

9
7
 

-0
.0

0
0
9

1
9
 

0
.0

0
2
4

9
7

 
-0

.0
0

0
4

8
8
 

0
.0

0
1
1

0
9
 

8
7

0
 

-0
.0

1
1
6

7
8
 

0
.0

1
5
0

6
3
 

0
.0

0
0
0

4
2

 
0

.0
0

0
1

7
6
 

-0
.0

0
0
1

6
5
 

0
.0

0
0
2

9
7
 

-0
.0

0
1
7

6
6
 

0
.0

0
3
6

1
1
 

-0
.0

0
0
3

4
1
 

0
.0

0
2
7

9
1

 
-0

.0
0

0
2

0
6
 

0
.0

0
1
2

6
0
 

8
8

0
 

-0
.0

1
8
5

1
6
 

0
.0

1
6
8

9
0
 

0
.0

0
0
0

6
8

 
0

.0
0

0
1

8
3
 

0
.0

0
0
0

1
5
 

0
.0

0
0
2

9
9
 

-0
.0

0
2
3

8
9
 

0
.0

0
3
9

4
3
 

0
.0

0
0
0

7
0
 

0
.0

0
2
8

2
7

 
0

.0
0

0
0

7
4
 

0
.0

0
1
3

0
4
 

8
8

9
 

-0
.0

1
4
8

1
1
 

0
.0

1
7
4

3
9
 

-0
.0

0
0
0

1
4

 
0

.0
0

0
1

8
4
 

0
.0

0
0
0

7
5
 

0
.0

0
0
2

7
4
 

0
.0

0
3
1

9
7
 

0
.0

0
3
9

1
9
 

0
.0

0
3
5

9
5
 

0
.0

0
2
9

0
5

 
0

.0
0

1
2

9
9
 

0
.0

0
1
4

3
6
 

8
9

9
 

0
.0

0
5
0

2
4
 

0
.0

1
1
4

5
8
 

-0
.0

0
0
1

5
3

 
0

.0
0

0
1

4
2
 

0
.0

0
0
3

7
3
 

0
.0

0
0
2

6
0
 

0
.0

0
2
0

8
2
 

0
.0

0
3
3

0
4
 

0
.0

0
2
8

7
3
 

0
.0

0
2
6

0
1

 
0

.0
0

0
3

5
9
 

0
.0

0
1
1

1
9
 

9
0

9
 

0
.0

0
2
0

3
9
 

0
.0

1
6
5

4
4
 

-0
.0

0
0
2

1
5

 
0

.0
0

0
1

7
5
 

0
.0

0
0
1

0
8
 

0
.0

0
0
3

1
5
 

0
.0

0
4
0

0
6
 

0
.0

0
3
9

0
9
 

0
.0

0
2
9

5
5
 

0
.0

0
2
8

6
3

 
0

.0
0

0
9

6
2
 

0
.0

0
1
3

5
7
 

9
1

8
 

0
.0

1
7
1

8
1
 

0
.0

1
9
3

2
5
 

-0
.0

0
0
2

8
2

 
0

.0
0

0
2

5
4
 

0
.0

0
0
0

2
0
 

0
.0

0
0
3

4
8
 

0
.0

0
4
2

6
8
 

0
.0

0
4
8

5
3
 

0
.0

0
3
5

4
0
 

0
.0

0
3
5

4
2

 
0

.0
0

1
8

0
3
 

0
.0

0
1
7

6
1
 

9
2

8
 

-0
.0

4
2
2

9
3
 

0
.0

2
7
7

3
9
 

0
.0

0
0
1

0
9

 
0

.0
0

0
2

7
6
 

0
.0

0
0
3

1
4
 

0
.0

0
0
4

9
6
 

0
.0

0
6
4

4
1
 

0
.0

0
5
9

9
3
 

0
.0

0
5
1

2
0
 

0
.0

0
4
2

6
7

 
0

.0
0

2
5

3
2
 

0
.0

0
2
3

3
0
 

9
3

8
 

0
.0

7
3
5

5
9
 

0
.0

3
9
5

1
6
 

-0
.0

0
0
2

6
5

 
0

.0
0

0
3

7
4
 

-0
.0

0
0
7

5
6
 

0
.0

0
0
8

1
8
 

-0
.0

0
0
1

2
9
 

0
.0

0
8
1

7
9
 

-0
.0

0
0
5

2
0
 

0
.0

0
6
1

6
7

 
-0

.0
0

3
6

7
6
 

0
.0

0
3
0

1
9
 

9
4

7
 

-0
.0

2
7
4

2
0
 

0
.0

2
1
7

3
2
 

0
.0

0
0
1

1
0

 
0

.0
0

0
1

8
3
 

-0
.0

0
0
2

4
8
 

0
.0

0
0
4

4
7
 

-0
.0

0
4
4

7
7
 

0
.0

0
4
1

6
5
 

-0
.0

0
5
6

1
8
 

0
.0

0
3
5

3
6

 
-0

.0
0

1
4

2
0
 

0
.0

0
1
5

2
9
 

9
5

7
 

-0
.0

1
0
4

3
8
 

0
.0

1
7
4

4
5
 

0
.0

0
0
1

1
3

 
0

.0
0

0
2

2
2
 

-0
.0

0
0
4

3
4
 

0
.0

0
0
4

2
8
 

-0
.0

0
2
4

9
0
 

0
.0

0
4
5

5
0
 

-0
.0

0
3
4

7
1
 

0
.0

0
3
6

3
7

 
-0

.0
0

0
4

3
5
 

0
.0

0
1
7

9
4
 

9
6

7
 

-0
.0

1
7
6

3
2
 

0
.0

1
7
6

7
8
 

0
.0

0
0
2

1
7

 
0

.0
0

0
1

9
5
 

-0
.0

0
0
7

7
6
 

0
.0

0
0
3

6
0
 

-0
.0

0
6
2

1
0
 

0
.0

0
4
5

2
9
 

-0
.0

0
5
5

0
1
 

0
.0

0
3
2

0
5

 
-0

.0
0

1
3

6
5
 

0
.0

0
1
7

3
4
 

9
7

6
 

-0
.0

4
0
3

8
9
 

0
.0

1
8
7

2
8
 

0
.0

0
0
4

9
8

 
0

.0
0

0
2

0
4
 

-0
.0

0
0
7

1
4
 

0
.0

0
0
4

2
2
 

-0
.0

0
8
1

0
6
 

0
.0

0
4
2

1
1
 

-0
.0

0
4
9

4
3
 

0
.0

0
3
3

3
0

 
-0

.0
0

2
3

3
3
 

0
.0

0
1
6

9
8
 

9
8

6
 

-0
.0

2
8
2

6
7
 

0
.0

1
5
0

3
2
 

0
.0

0
0
4

3
7

 
0

.0
0

0
1

6
5
 

-0
.0

0
0
8

4
5
 

0
.0

0
0
3

9
2
 

-0
.0

0
8
6

6
0
 

0
.0

0
3
7

0
5
 

-0
.0

0
5
6

1
9
 

0
.0

0
2
7

7
9

 
-0

.0
0

2
2

2
5
 

0
.0

0
1
4

9
6
 

9
9

5
 

-0
.0

5
0
7

1
7
 

0
.0

1
4
6

9
8
 

0
.0

0
0
5

8
5

 
0

.0
0

0
1

9
1
 

-0
.0

0
0
9

9
3
 

0
.0

0
0
4

4
0
 

-0
.0

1
2
8

0
2
 

0
.0

0
3
9

4
3
 

-0
.0

0
7
8

0
4
 

0
.0

0
2
8

9
1

 
-0

.0
0

3
3

6
9
 

0
.0

0
1
5

5
4
 

1
0

0
5
 

-0
.0

2
7
9

7
8
 

0
.0

1
4
1

0
4
 

0
.0

0
0
4

5
0

 
0

.0
0

0
1

5
4
 

-0
.0

0
0
8

9
1
 

0
.0

0
0
3

7
5
 

-0
.0

0
7
8

5
6
 

0
.0

0
3
1

9
4
 

-0
.0

0
4
4

2
1
 

0
.0

0
2
5

3
8

 
-0

.0
0

1
9

9
7
 

0
.0

0
1
3

0
9
 

1
0

1
5
 

-0
.0

2
1
8

1
5
 

0
.0

1
3
1

4
8
 

0
.0

0
0
3

7
5

 
0

.0
0

0
1

4
3
 

-0
.0

0
0
8

0
1
 

0
.0

0
0
3

2
9
 

-0
.0

0
7
4

7
0
 

0
.0

0
2
7

9
6
 

-0
.0

0
4
8

5
0
 

0
.0

0
2
2

5
6

 
-0

.0
0

2
0

1
5
 

0
.0

0
1
1

5
9
 

1
0

2
4
 

-0
.0

0
7
0

1
5
 

0
.0

0
9
3

4
5
 

0
.0

0
0
1

4
6

 
0

.0
0

0
1

0
9
 

-0
.0

0
0
6

3
8
 

0
.0

0
0
2

7
5
 

-0
.0

0
3
6

0
7
 

0
.0

0
2
3

7
4
 

-0
.0

0
3
4

8
6
 

0
.0

0
1
9

7
9

 
-0

.0
0

1
0

1
6
 

0
.0

0
0
9

3
2
 

1
0

3
4
 

0
.0

0
8
0

6
4
 

0
.0

0
8
8

3
7
 

0
.0

0
0
0

0
2

 
0

.0
0

0
1

0
6
 

-0
.0

0
0
2

6
2
 

0
.0

0
0
2

2
7
 

0
.0

0
1
5

8
6
 

0
.0

0
2
3

8
1
 

0
.0

0
0
9

2
6
 

0
.0

0
1
7

2
2

 
0

.0
0

0
0

0
2
 

0
.0

0
0
9

4
0
 

1
0

4
4
 

0
.0

1
7
9

8
1
 

0
.0

0
8
5

7
4
 

0
.0

0
0
0

2
3

 
0

.0
0

0
1

0
6
 

-0
.0

0
0
1

9
8
 

0
.0

0
0
2

5
0
 

0
.0

0
0
5

6
3
 

0
.0

0
2
0

9
6
 

0
.0

0
0
5

1
3
 

0
.0

0
1
5

4
6

 
-0

.0
0

0
1

6
4
 

0
.0

0
0
8

8
5
 

1
0

5
3
 

0
.0

3
2
8

0
6
 

0
.0

1
0
6

1
4
 

-0
.0

0
0
1

2
1

 
0

.0
0

0
1

2
2
 

0
.0

0
0
2

2
1
 

0
.0

0
0
3

7
6
 

0
.0

0
2
7

9
5
 

0
.0

0
2
6

5
0
 

0
.0

0
1
4

8
1
 

0
.0

0
1
7

0
8

 
-0

.0
0

0
2

6
8
 

0
.0

0
1
1

9
7
 

1
0

6
3
 

0
.0

3
7
8

6
3
 

0
.0

1
2
3

3
1
 

-0
.0

0
0
3

3
0

 
0

.0
0

0
1

3
8
 

0
.0

0
0
5

9
2
 

0
.0

0
0
4

4
5
 

0
.0

0
8
3

0
5
 

0
.0

0
2
9

8
4
 

0
.0

0
4
2

2
6
 

0
.0

0
1
9

2
9

 
0

.0
0

1
7

1
0
 

0
.0

0
1
3

1
8
 

1
0

7
2
 

0
.0

4
2
1

0
4
 

0
.0

1
1
5

3
7
 

-0
.0

0
0
3

3
7

 
0

.0
0

0
1

4
5
 

0
.0

0
0
8

2
0
 

0
.0

0
0
4

6
6
 

0
.0

0
9
1

1
2
 

0
.0

0
2
9

6
8
 

0
.0

0
6
0

7
8
 

0
.0

0
2
1

7
7

 
0

.0
0

1
8

1
6
 

0
.0

0
1
3

3
6
 

175



 

 

 

 

  
M

ar
ea

 
N

%
 

C
%

 
A

D
F

%
 

A
D

L
%

 
C

el
lu

lo
se

%
 

W
av

el
en

g
th

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 

1
0

8
2
 

0
.0

4
7
2

5
8
 

0
.0

1
0
9

5
4
 

-0
.0

0
0
4

0
4

 
0

.0
0

0
1

5
1
 

0
.0

0
0
6

8
9
 

0
.0

0
0
3

6
5
 

0
.0

0
9
0

4
4
 

0
.0

0
2
5

8
3
 

0
.0

0
5
8

0
4
 

0
.0

0
2
0

7
2

 
0

.0
0

2
1

9
3
 

0
.0

0
1
1

8
1
 

1
0

9
1
 

0
.0

5
3
2

4
1
 

0
.0

1
4
3

0
2
 

-0
.0

0
0
4

7
9

 
0

.0
0

0
1

9
9
 

0
.0

0
0
6

2
4
 

0
.0

0
0
3

5
9
 

0
.0

1
0
3

1
0
 

0
.0

0
3
4

6
1
 

0
.0

0
6
0

9
3
 

0
.0

0
2
8

3
4

 
0

.0
0

2
7

6
5
 

0
.0

0
1
4

4
4
 

1
1

0
1
 

0
.0

3
4
5

4
3
 

0
.0

2
0
0

0
3
 

-0
.0

0
0
3

9
4

 
0

.0
0

0
2

1
7
 

0
.0

0
0
8

3
6
 

0
.0

0
0
4

4
2
 

0
.0

0
8
2

7
8
 

0
.0

0
4
5

4
7
 

0
.0

0
4
5

8
7
 

0
.0

0
3
6

6
2

 
0

.0
0

2
2

9
9
 

0
.0

0
1
6

8
0
 

1
1

1
1
 

0
.0

2
9
6

4
5
 

0
.0

2
5
4

0
2
 

-0
.0

0
0
1

8
3

 
0

.0
0

0
2

5
9
 

0
.0

0
1
3

7
4
 

0
.0

0
0
5

2
0
 

0
.0

0
5
1

8
5
 

0
.0

0
5
2

2
8
 

0
.0

0
3
3

1
1
 

0
.0

0
4
1

6
5

 
0

.0
0

1
7

1
1
 

0
.0

0
1
8

5
4
 

1
1

2
0
 

-0
.0

1
0
8

5
3
 

0
.0

2
7
5

0
7
 

0
.0

0
0
1

9
7

 
0

.0
0

0
3

2
4
 

-0
.0

0
0
5

3
6
 

0
.0

0
0
6

0
8
 

-0
.0

1
0
5

3
8
 

0
.0

0
5
9

0
6
 

-0
.0

0
7
5

3
3
 

0
.0

0
4
3

3
1

 
-0

.0
0

4
0

4
9
 

0
.0

0
2
4

0
5
 

1
1

3
0
 

0
.0

3
0
4

1
7
 

0
.0

2
8
2

8
0
 

-0
.0

0
0
0

6
7

 
0

.0
0

0
2

5
1
 

-0
.0

0
0
6

2
6
 

0
.0

0
0
5

4
3
 

0
.0

0
0
0

8
2
 

0
.0

0
5
0

0
0
 

-0
.0

0
0
8

4
4
 

0
.0

0
3
6

4
9

 
-0

.0
0

0
7

8
0
 

0
.0

0
2
0

5
6
 

1
1

3
9
 

0
.0

0
2
2

9
9
 

0
.0

2
1
3

2
1
 

0
.0

0
0
1

1
1

 
0

.0
0

0
2

1
8
 

0
.0

0
0
0

4
9
 

0
.0

0
0
3

9
6
 

-0
.0

0
3
7

4
4
 

0
.0

0
4
3

4
8
 

-0
.0

0
2
1

0
2
 

0
.0

0
3
2

5
1

 
-0

.0
0

1
8

8
6
 

0
.0

0
1
5

6
7
 

1
1

4
9
 

-0
.0

2
8
8

7
2
 

0
.0

2
1
2

9
5
 

0
.0

0
0
2

4
6

 
0

.0
0

0
2

6
7
 

-0
.0

0
0
4

8
5
 

0
.0

0
0
3

7
8
 

-0
.0

0
5
3

8
5
 

0
.0

0
4
6

0
4
 

-0
.0

0
2
5

2
3
 

0
.0

0
3
6

7
3

 
-0

.0
0

1
9

8
1
 

0
.0

0
1
3

9
7
 

1
1

5
8
 

-0
.0

0
0
8

7
6
 

0
.0

2
6
0

6
1
 

0
.0

0
0
0

3
1

 
0

.0
0

0
2

6
9
 

0
.0

0
0
2

5
4
 

0
.0

0
0
4

8
5
 

0
.0

0
0
8

6
7
 

0
.0

0
5
4

6
6
 

0
.0

0
1
4

9
7
 

0
.0

0
4
3

5
6

 
0

.0
0

0
6

7
3
 

0
.0

0
1
8

4
6
 

1
1

6
8
 

-0
.0

4
6
7

3
6
 

0
.0

2
3
5

4
1
 

0
.0

0
0
3

4
6

 
0

.0
0

0
2

4
8
 

-0
.0

0
0
1

8
9
 

0
.0

0
0
5

0
6
 

-0
.0

0
2
9

8
8
 

0
.0

0
3
8

6
8
 

-0
.0

0
0
8

6
5
 

0
.0

0
3
4

7
7

 
-0

.0
0

0
0

2
9
 

0
.0

0
1
6

5
1
 

1
1

7
7
 

-0
.0

6
2
5

2
8
 

0
.0

1
6
7

0
0
 

0
.0

0
0
4

9
2

 
0

.0
0

0
2

2
7
 

-0
.0

0
0
6

0
8
 

0
.0

0
0
5

0
7
 

-0
.0

0
6
8

6
7
 

0
.0

0
3
7

2
5
 

-0
.0

0
3
0

2
1
 

0
.0

0
2
7

9
3

 
-0

.0
0

1
6

3
7
 

0
.0

0
1
5

6
1
 

1
1

8
7
 

-0
.0

7
0
2

4
0
 

0
.0

1
7
3

5
5
 

0
.0

0
0
4

4
4

 
0

.0
0

0
2

0
8
 

-0
.0

0
0
9

4
4
 

0
.0

0
0
5

0
5
 

-0
.0

1
0
5

6
4
 

0
.0

0
3
6

5
9
 

-0
.0

0
6
3

4
2
 

0
.0

0
2
6

2
7

 
-0

.0
0

2
9

2
7
 

0
.0

0
1
5

2
5
 

1
1

9
6
 

-0
.0

8
6
1

0
1
 

0
.0

2
1
5

3
5
 

0
.0

0
0
4

8
8

 
0

.0
0

0
2

3
3
 

-0
.0

0
1
0

2
4
 

0
.0

0
0
5

7
3
 

-0
.0

1
0
2

5
6
 

0
.0

0
4
0

2
8
 

-0
.0

0
7
0

7
2
 

0
.0

0
2
9

1
7

 
-0

.0
0

2
5

9
1
 

0
.0

0
1
6

7
4
 

1
2

0
6
 

-0
.0

6
6
4

2
9
 

0
.0

1
7
3

8
9
 

0
.0

0
0
2

9
0

 
0

.0
0

0
1

9
8
 

-0
.0

0
1
1

1
0
 

0
.0

0
0
5

5
2
 

-0
.0

0
9
7

1
1
 

0
.0

0
3
6

3
2
 

-0
.0

0
8
4

8
6
 

0
.0

0
2
7

2
7

 
-0

.0
0

3
4

2
4
 

0
.0

0
1
6

0
3
 

1
2

1
5
 

-0
.0

4
7
4

6
6
 

0
.0

1
5
6

2
4
 

0
.0

0
0
1

1
6

 
0

.0
0

0
1

8
9
 

-0
.0

0
1
0

4
7
 

0
.0

0
0
5

2
3
 

-0
.0

0
7
5

5
5
 

0
.0

0
3
4

8
1
 

-0
.0

0
8
5

3
5
 

0
.0

0
3
0

0
1

 
-0

.0
0

2
6

4
1
 

0
.0

0
1
4

6
1
 

1
2

2
5
 

-0
.0

4
4
0

5
7
 

0
.0

1
8
3

5
2
 

0
.0

0
0
0

8
0
 

0
.0

0
0
1

5
0
 

-0
.0

0
0
6

0
8
 

0
.0

0
0
4

0
1
 

-0
.0

0
5
3

0
7
 

0
.0

0
3
2

7
4
 

-0
.0

0
5
4

5
6
 

0
.0

0
2
4

1
2

 
-0

.0
0

1
9

6
1
 

0
.0

0
1
3

0
4
 

1
2

3
5
 

-0
.0

1
3
9

3
7
 

0
.0

1
0
3

0
1
 

-0
.0

0
0
0

3
6

 
0

.0
0

0
1

1
7
 

-0
.0

0
0
0

2
8
 

0
.0

0
0
2

8
8
 

-0
.0

0
0
0

5
4
 

0
.0

0
2
7

4
4
 

0
.0

0
0
0

1
0
 

0
.0

0
2
1

5
8

 
-0

.0
0

0
3

4
9
 

0
.0

0
0
9

7
9
 

1
2

4
4
 

-0
.0

0
2
9

7
6
 

0
.0

1
4
9

3
7
 

-0
.0

0
0
1

3
6

 
0

.0
0

0
1

4
4
 

0
.0

0
0
3

0
5
 

0
.0

0
0
2

9
5
 

0
.0

0
0
2

6
9
 

0
.0

0
3
0

9
1
 

0
.0

0
0
9

6
1
 

0
.0

0
2
4

2
7

 
-0

.0
0

0
1

2
7
 

0
.0

0
1
1

2
3
 

1
2

5
3
 

0
.0

1
1
4

6
5
 

0
.0

1
3
0

7
8
 

-0
.0

0
0
1

8
9

 
0

.0
0

0
1

4
5
 

0
.0

0
0
6

4
1
 

0
.0

0
0
3

1
4
 

0
.0

0
4
3

0
4
 

0
.0

0
3
2

5
8
 

0
.0

0
3
4

1
2
 

0
.0

0
2
3

9
8

 
0

.0
0

1
2

9
1
 

0
.0

0
1
2

3
9
 

1
2

5
3
 

0
.0

3
7
6

3
2
 

0
.0

2
1
9

3
1
 

-0
.0

0
0
3

8
5

 
0

.0
0

0
2

2
2
 

0
.0

0
1
5

1
1
 

0
.0

0
0
6

2
1
 

0
.0

0
9
5

5
6
 

0
.0

0
5
8

4
5
 

0
.0

0
6
8

2
0
 

0
.0

0
4
4

0
2

 
0

.0
0

2
3

8
7
 

0
.0

0
2
2

0
5
 

1
2

6
3
 

0
.0

1
4
0

7
1
 

0
.0

1
3
6

2
5
 

-0
.0

0
0
2

3
6

 
0

.0
0

0
1

5
9
 

0
.0

0
0
5

7
9
 

0
.0

0
0
3

3
4
 

0
.0

0
5
7

0
8
 

0
.0

0
3
2

8
1
 

0
.0

0
4
7

2
9
 

0
.0

0
2
7

6
7

 
0

.0
0

2
0

6
1
 

0
.0

0
1
3

5
8
 

1
2

6
3
 

0
.0

3
5
0

4
7
 

0
.0

2
6
3

6
9
 

-0
.0

0
0
3

0
7

 
0

.0
0

0
2

6
9
 

0
.0

0
1
2

5
3
 

0
.0

0
0
5

6
8
 

0
.0

0
5
4

8
1
 

0
.0

0
6
8

9
5
 

0
.0

0
2
2

9
9
 

0
.0

0
4
6

1
2
 

0
.0

0
2
9

2
1
 

0
.0

0
2
2

9
1
 

1
2

7
3
 

0
.0

4
9
9

5
0
 

0
.0

3
7
8

6
1
 

-0
.0

0
0
5

0
7

 
0

.0
0

0
2

6
4
 

0
.0

0
1
4

5
0
 

0
.0

0
0
6

1
5
 

0
.0

0
7
3

7
5
 

0
.0

0
6
4

9
4
 

0
.0

0
3
9

4
2
 

0
.0

0
4
8

1
6

 
0

.0
0

2
5

7
6
 

0
.0

0
2
2

2
7
 

1
2

8
3
 

0
.0

6
0
0

3
3
 

0
.0

2
8
6

8
7
 

-0
.0

0
0
3

0
4

 
0

.0
0

0
2

6
7
 

0
.0

0
1
2

1
1
 

0
.0

0
0
4

9
9
 

0
.0

0
7
8

5
3
 

0
.0

0
5
5

0
3
 

0
.0

0
5
7

9
1
 

0
.0

0
4
4

2
0

 
0

.0
0

2
1

8
8
 

0
.0

0
1
9

2
8
 

1
2

9
3
 

0
.0

4
1
6

0
9
 

0
.0

2
8
3

7
0
 

-0
.0

0
0
2

2
9

 
0

.0
0

0
3

5
1
 

0
.0

0
1
1

4
8
 

0
.0

0
0
6

3
6
 

0
.0

0
4
2

4
6
 

0
.0

0
6
5

0
6
 

0
.0

0
3
6

1
2
 

0
.0

0
4
8

7
7

 
0

.0
0

1
8

3
1
 

0
.0

0
2
4

0
3
 

1
3

0
3
 

0
.0

3
9
7

8
4
 

0
.0

2
7
6

3
1
 

-0
.0

0
0
3

7
3

 
0

.0
0

0
3

9
0
 

0
.0

0
1
2

0
5
 

0
.0

0
0
6

3
9
 

0
.0

0
5
2

4
0
 

0
.0

0
6
8

3
0
 

0
.0

0
2
0

1
5
 

0
.0

0
4
9

7
0

 
0

.0
0

2
9

4
7
 

0
.0

0
2
3

1
1
 

1
3

1
3
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

176



 

 

 

 

  
M

ar
ea

 
N

%
 

C
%

 
A

D
F

%
 

A
D

L
%

 
C

el
lu

lo
se

%
 

W
av

el
en

g
th

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 

1
3

2
3
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
3

3
3
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
3

4
3
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
3

5
3
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
3

6
3
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
3

7
3
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
3

8
3
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
3

9
3
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
4

0
3
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
4

1
3
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
4

2
3
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
4

3
3
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
4

4
3
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
4

5
3
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
4

6
3
 

0
.0

0
5
8

1
0
 

0
.0

3
1
9

7
5
 

-0
.0

0
0
1

3
3

 
0

.0
0

0
3

7
3
 

0
.0

0
0
1

5
8
 

0
.0

0
0
7

9
3
 

-0
.0

0
0
0

2
4
 

0
.0

0
7
9

3
4
 

-0
.0

0
2
6

2
0
 

0
.0

0
5
8

2
7
 

-0
.0

0
0
8

4
1
 

0
.0

0
2
9

6
6
 

1
4

7
3
 

0
.0

2
9
0

0
1
 

0
.0

3
7
7

9
5
 

-0
.0

0
0
2

2
1

 
0

.0
0

0
3

8
2
 

0
.0

0
0
1

6
5
 

0
.0

0
0
7

6
6
 

-0
.0

0
3
4

2
6
 

0
.0

0
7
6

7
9
 

-0
.0

0
1
3

5
4
 

0
.0

0
5
7

3
8

 
-0

.0
0

1
4

2
9
 

0
.0

0
3
0

0
7
 

1
4

8
3
 

0
.0

4
1
9

1
6
 

0
.0

2
6
7

4
0
 

-0
.0

0
0
6

4
6

 
0

.0
0

0
2

8
4
 

0
.0

0
0
6

6
5
 

0
.0

0
0
6

3
0
 

0
.0

0
6
9

1
8
 

0
.0

0
6
1

9
9
 

0
.0

0
2
7

1
6
 

0
.0

0
4
1

4
6

 
0

.0
0

2
0

1
2
 

0
.0

0
2
2

8
3
 

1
4

9
3
 

0
.0

4
7
0

6
1
 

0
.0

2
6
6

3
3
 

-0
.0

0
0
7

7
0

 
0

.0
0

0
2

6
4
 

0
.0

0
1
2

9
5
 

0
.0

0
0
4

7
9
 

0
.0

1
0
0

9
3
 

0
.0

0
5
2

4
3
 

0
.0

0
4
9

7
5
 

0
.0

0
3
7

4
8

 
0

.0
0

3
6

0
4
 

0
.0

0
1
8

0
7
 

1
5

0
3
 

0
.0

4
9
8

7
6
 

0
.0

1
8
1

2
6
 

-0
.0

0
0
9

0
3

 
0

.0
0

0
2

0
5
 

0
.0

0
1
1

2
8
 

0
.0

0
0
4

8
0
 

0
.0

1
1
8

2
8
 

0
.0

0
4
7

5
3
 

0
.0

0
6
2

8
9
 

0
.0

0
3
5

8
0

 
0

.0
0

3
6

3
2
 

0
.0

0
1
7

2
4
 

1
5

1
3
 

0
.0

4
1
4

3
0
 

0
.0

1
5
1

9
9
 

-0
.0

0
0
8

4
8

 
0

.0
0

0
1

8
9
 

0
.0

0
1
2

1
2
 

0
.0

0
0
4

9
5
 

0
.0

0
9
6

9
8
 

0
.0

0
4
1

2
1
 

0
.0

0
5
0

5
9
 

0
.0

0
3
0

4
6

 
0

.0
0

2
7

6
2
 

0
.0

0
1
6

1
8
 

1
5

2
3
 

0
.0

3
1
0

5
6
 

0
.0

1
4
4

3
9
 

-0
.0

0
0
7

0
8

 
0

.0
0

0
1

6
8
 

0
.0

0
1
0

6
9
 

0
.0

0
0
5

1
3
 

0
.0

0
7
3

6
7
 

0
.0

0
3
5

9
4
 

0
.0

0
2
6

5
9
 

0
.0

0
2
7

1
5

 
0

.0
0

2
5

3
5
 

0
.0

0
1
5

2
3
 

1
5

3
3
 

0
.0

2
3
8

4
1
 

0
.0

1
3
7

4
6
 

-0
.0

0
0
6

3
0

 
0

.0
0

0
1

6
0
 

0
.0

0
0
8

2
6
 

0
.0

0
0
4

7
1
 

0
.0

0
6
6

9
5
 

0
.0

0
3
8

3
8
 

0
.0

0
3
3

7
4
 

0
.0

0
2
7

0
3

 
0

.0
0

1
6

0
7
 

0
.0

0
1
3

6
6
 

1
5

4
2
 

0
.0

2
2
9

1
8
 

0
.0

1
3
9

4
6
 

-0
.0

0
0
5

6
9

 
0

.0
0

0
1

7
3
 

0
.0

0
0
6

8
3
 

0
.0

0
0
5

1
4
 

0
.0

0
3
5

2
2
 

0
.0

0
3
8

4
5
 

0
.0

0
1
8

8
1
 

0
.0

0
2
6

4
2

 
0

.0
0

0
8

2
5
 

0
.0

0
1
3

8
7
 

1
5

5
2
 

0
.0

1
5
0

8
2
 

0
.0

1
0
7

2
5
 

-0
.0

0
0
4

6
1

 
0

.0
0

0
1

4
5
 

0
.0

0
0
6

2
1
 

0
.0

0
0
3

9
0
 

0
.0

0
1
5

9
2
 

0
.0

0
3
3

7
3
 

0
.0

0
0
6

0
1
 

0
.0

0
2
2

1
6

 
0

.0
0

0
0

9
5
 

0
.0

0
1
2

8
8
 

1
5

6
2
 

0
.0

0
9
7

8
4
 

0
.0

1
1
3

4
4
 

-0
.0

0
0
3

5
7

 
0

.0
0

0
1

3
8
 

0
.0

0
0
4

8
9
 

0
.0

0
0
3

9
0
 

-0
.0

0
0
7

4
4
 

0
.0

0
3
0

0
5
 

-0
.0

0
0
4

9
5
 

0
.0

0
2
0

9
5

 
-0

.0
0

0
8

4
0
 

0
.0

0
1
2

9
6
 

1
5

7
2
 

0
.0

0
5
5

4
0
 

0
.0

1
1
9

6
5
 

-0
.0

0
0
1

8
7

 
0

.0
0

0
1

4
1
 

0
.0

0
0
4

0
4
 

0
.0

0
0
3

6
2
 

-0
.0

0
2
9

8
3
 

0
.0

0
2
9

4
2
 

-0
.0

0
1
3

4
2
 

0
.0

0
2
0

4
9

 
-0

.0
0

0
9

8
4
 

0
.0

0
1
1

7
8
 

1
5

8
2
 

-0
.0

0
6
0

2
0
 

0
.0

1
0
1

6
1
 

-0
.0

0
0
1

0
0

 
0

.0
0

0
1

2
2
 

0
.0

0
0
1

5
0
 

0
.0

0
0
3

3
2
 

-0
.0

0
3
6

8
1
 

0
.0

0
2
8

5
0
 

-0
.0

0
1
9

7
6
 

0
.0

0
1
9

6
6

 
-0

.0
0

0
9

3
2
 

0
.0

0
1
0

1
4
 

177



 

 

 

 

  
M

ar
ea

 
N

%
 

C
%

 
A

D
F

%
 

A
D

L
%

 
C

el
lu

lo
se

%
 

W
av

el
en

g
th

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 

1
5

9
2
 

-0
.0

0
3
1

1
4
 

0
.0

1
0
8

7
8
 

-0
.0

0
0
0

3
0

 
0

.0
0

0
1

1
1
 

0
.0

0
0
1

4
8
 

0
.0

0
0
2

9
4
 

-0
.0

0
4
0

9
4
 

0
.0

0
2
6

3
2
 

-0
.0

0
2
0

9
7
 

0
.0

0
1
8

9
3

 
-0

.0
0

1
5

5
1
 

0
.0

0
1
0

2
9
 

1
6

0
2
 

0
.0

0
2
5

2
7
 

0
.0

0
9
9

9
1
 

0
.0

0
0
0

7
4

 
0

.0
0

0
1

1
7
 

0
.0

0
0
2

3
5
 

0
.0

0
0
3

1
9
 

-0
.0

0
2
6

0
4
 

0
.0

0
2
6

7
7
 

-0
.0

0
0
1

6
2
 

0
.0

0
1
9

4
7

 
-0

.0
0

0
7

7
6
 

0
.0

0
1
0

0
0
 

1
6

1
2
 

0
.0

0
7
9

8
2
 

0
.0

1
0
0

6
5
 

0
.0

0
0
0

1
5

 
0

.0
0

0
1

3
7
 

0
.0

0
0
1

6
6
 

0
.0

0
0
3

5
3
 

-0
.0

0
0
9

9
9
 

0
.0

0
3
0

7
8
 

0
.0

0
0
8

5
6
 

0
.0

0
2
2

7
3

 
-0

.0
0

0
4

2
7
 

0
.0

0
1
0

4
6
 

1
6

2
2
 

0
.0

0
3
6

1
8
 

0
.0

1
0
1

9
4
 

0
.0

0
0
1

5
1

 
0

.0
0

0
1

1
5
 

0
.0

0
0
1

3
1
 

0
.0

0
0
3

0
7
 

-0
.0

0
1
1

5
1
 

0
.0

0
2
7

7
3
 

0
.0

0
1
1

3
2
 

0
.0

0
2
0

6
5

 
-0

.0
0

0
5

5
9
 

0
.0

0
0
9

6
9
 

1
6

3
2
 

-0
.0

0
3
3

8
8
 

0
.0

1
1
0

2
5
 

0
.0

0
0
2

6
1

 
0

.0
0

0
1

3
9
 

0
.0

0
0
0

4
7
 

0
.0

0
0
2

7
3
 

-0
.0

0
3
4

9
8
 

0
.0

0
2
9

5
2
 

-0
.0

0
1
6

4
3
 

0
.0

0
2
0

9
3

 
-0

.0
0

1
1

6
3
 

0
.0

0
0
8

9
5
 

1
6

4
2
 

-0
.0

0
1
4

7
6
 

0
.0

1
3
0

3
2
 

0
.0

0
0
4

1
8

 
0

.0
0

0
1

6
3
 

-0
.0

0
0
4

4
3
 

0
.0

0
0
3

6
6
 

-0
.0

0
0
4

9
0
 

0
.0

0
3
4

1
5
 

0
.0

0
1
7

0
5
 

0
.0

0
2
4

7
1

 
0

.0
0

0
5

6
4
 

0
.0

0
1
2

9
7
 

1
6

5
2
 

-0
.0

0
1
9

5
6
 

0
.0

1
6
3

5
8
 

0
.0

0
0
5

5
9

 
0

.0
0

0
1

9
3
 

-0
.0

0
0
6

8
6
 

0
.0

0
0
3

6
1
 

0
.0

0
0
3

7
3
 

0
.0

0
4
4

8
3
 

0
.0

0
1
8

1
2
 

0
.0

0
2
9

1
0

 
0

.0
0

0
9

6
8
 

0
.0

0
1
6

3
8
 

1
6

6
2
 

-0
.0

1
3
5

1
5
 

0
.0

1
5
7

1
5
 

0
.0

0
0
6

6
3

 
0

.0
0

0
2

0
7
 

-0
.0

0
0
8

8
0
 

0
.0

0
0
3

9
7
 

-0
.0

0
1
5

6
1
 

0
.0

0
4
3

1
1
 

0
.0

0
0
9

3
2
 

0
.0

0
2
8

5
2

 
-0

.0
0

0
1

5
3
 

0
.0

0
1
5

5
8
 

1
6

7
2
 

-0
.0

0
2
1

5
0
 

0
.0

1
5
7

7
3
 

0
.0

0
0
4

9
5

 
0

.0
0

0
1

6
5
 

-0
.0

0
0
4

8
4
 

0
.0

0
0
3

2
6
 

-0
.0

0
4
3

7
5
 

0
.0

0
3
6

3
1
 

-0
.0

0
0
9

0
3
 

0
.0

0
2
6

0
8

 
-0

.0
0

1
7

7
5
 

0
.0

0
1
3

7
5
 

1
6

8
2
 

-0
.0

0
4
4

6
0
 

0
.0

1
1
4

6
8
 

0
.0

0
0
3

8
8

 
0

.0
0

0
1

2
6
 

-0
.0

0
0
4

0
7
 

0
.0

0
0
2

7
7
 

-0
.0

0
3
5

9
1
 

0
.0

0
2
9

4
7
 

-0
.0

0
0
3

7
7
 

0
.0

0
2
0

3
7

 
-0

.0
0

0
9

7
4
 

0
.0

0
1
0

2
2
 

1
6

9
2
 

-0
.0

0
8
7

1
2
 

0
.0

1
3
5

0
1
 

0
.0

0
0
3

6
9

 
0

.0
0

0
1

3
6
 

-0
.0

0
0
6

1
4
 

0
.0

0
0
2

9
9
 

0
.0

0
0
6

6
1
 

0
.0

0
2
7

7
4
 

0
.0

0
2
3

1
6
 

0
.0

0
1
8

2
4

 
-0

.0
0

0
1

6
0
 

0
.0

0
1
1

1
8
 

1
7

0
2
 

-0
.0

1
9
0

2
4
 

0
.0

1
4
6

6
0
 

0
.0

0
0
3

0
5

 
0

.0
0

0
1

6
4
 

-0
.0

0
0
9

2
7
 

0
.0

0
0
3

3
7
 

0
.0

0
2
2

1
4
 

0
.0

0
3
4

8
8
 

0
.0

0
2
9

4
9
 

0
.0

0
2
2

9
5

 
0

.0
0

0
8

5
7
 

0
.0

0
1
4

5
8
 

1
7

1
2
 

-0
.0

2
7
3

0
3
 

0
.0

1
4
6

0
4
 

0
.0

0
0
4

4
9

 
0

.0
0

0
1

7
5
 

-0
.0

0
1
0

6
5
 

0
.0

0
0
4

0
2
 

-0
.0

0
2
0

4
6
 

0
.0

0
3
5

8
4
 

-0
.0

0
0
9

6
4
 

0
.0

0
2
6

3
4

 
-0

.0
0

0
2

6
5
 

0
.0

0
1
4

3
3
 

1
7

2
2
 

-0
.0

2
3
5

5
2
 

0
.0

1
7
5

1
0
 

0
.0

0
0
1

9
3

 
0

.0
0

0
1

8
5
 

-0
.0

0
1
1

8
3
 

0
.0

0
0
4

3
1
 

0
.0

0
1
2

7
7
 

0
.0

0
3
9

1
5
 

-0
.0

0
1
2

8
0
 

0
.0

0
2
7

2
8

 
-0

.0
0

0
1

9
7
 

0
.0

0
1
5

3
2
 

1
7

3
2
 

-0
.0

2
0
4

9
6
 

0
.0

1
6
6

5
6
 

0
.0

0
0
0

8
0

 
0

.0
0

0
2

1
4
 

-0
.0

0
1
2

6
0
 

0
.0

0
0
4

4
4
 

-0
.0

0
0
4

1
6
 

0
.0

0
3
9

2
8
 

-0
.0

0
5
1

3
8
 

0
.0

0
2
8

7
8

 
-0

.0
0

0
8

0
6
 

0
.0

0
1
5

1
2
 

1
7

4
2
 

-0
.0

2
1
5

9
4
 

0
.0

1
9
7

2
3
 

0
.0

0
0
2

3
3

 
0

.0
0

0
2

2
2
 

-0
.0

0
0
5

2
0
 

0
.0

0
0
4

7
0
 

0
.0

0
0
4

0
2
 

0
.0

0
4
7

4
1
 

-0
.0

0
1
5

7
3
 

0
.0

0
3
1

2
2

 
-0

.0
0

0
7

8
1
 

0
.0

0
1
6

2
1
 

1
7

5
2
 

-0
.0

0
7
8

9
0
 

0
.0

1
5
2

2
7
 

0
.0

0
0
1

7
0
 

0
.0

0
0
1

8
5
 

-0
.0

0
0
4

5
7
 

0
.0

0
0
3

1
7
 

-0
.0

0
1
2

5
8
 

0
.0

0
3
8

3
7
 

-0
.0

0
1
0

8
6
 

0
.0

0
2
6

4
1

 
-0

.0
0

0
0

4
2
 

0
.0

0
1
2

7
7
 

1
7

6
2
 

-0
.0

0
5
0

8
8
 

0
.0

1
6
0

3
1
 

0
.0

0
0
2

3
9

 
0

.0
0

0
1

9
4
 

-0
.0

0
0
3

7
4
 

0
.0

0
0
3

1
9
 

-0
.0

0
0
5

9
7
 

0
.0

0
3
6

3
6
 

-0
.0

0
1
9

2
2
 

0
.0

0
2
6

4
6

 
-0

.0
0

0
2

4
9
 

0
.0

0
1
2

3
2
 

1
7

7
2
 

0
.0

1
7
2

7
2
 

0
.0

2
6
1

1
4
 

0
.0

0
0
2

1
5

 
0

.0
0

0
2

5
2
 

-0
.0

0
0
0

7
2
 

0
.0

0
0
3

9
9
 

0
.0

0
0
6

4
3
 

0
.0

0
5
1

3
2
 

-0
.0

0
0
2

6
9
 

0
.0

0
3
5

8
6

 
0

.0
0

0
6

9
0
 

0
.0

0
1
5

9
1
 

1
7

8
2
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
7

9
2
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
8

0
2
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
8

1
1
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
8

2
1
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
8

3
1
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
8

4
1
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
8

5
1
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

178



 

 

 

 

  
M

ar
ea

 
N

%
 

C
%

 
A

D
F

%
 

A
D

L
%

 
C

el
lu

lo
se

%
 

W
av

el
en

g
th

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 

1
8

6
1
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
8

6
8
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
8

7
1
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
8

7
3
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
8

7
8
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
8

8
8
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
8

9
8
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
9

0
8
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
9

1
8
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
9

2
8
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
9

3
8
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
9

4
8
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
9

5
8
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
9

6
8
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
9

7
8
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
9

8
8
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

1
9

9
8
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

2
0

0
8
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

2
0

1
8
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

2
0

2
8
 

0
.0

3
0
5

2
2
 

0
.0

2
4
3

5
7
 

-0
.0

0
0
2

0
7

 
0

.0
0

0
2

4
9
 

0
.0

0
1
4

1
2
 

0
.0

0
0
5

1
1
 

0
.0

0
7
3

0
2
 

0
.0

0
5
5

0
9
 

0
.0

0
3
2

2
8
 

0
.0

0
3
5

3
6

 
0

.0
0

1
9

5
6
 

0
.0

0
1
9

1
3
 

2
0

3
8
 

0
.0

2
3
8

2
5
 

0
.0

1
8
5

2
4
 

-0
.0

0
0
2

2
4
 

0
.0

0
0
2

0
3
 

0
.0

0
1
1

7
1
 

0
.0

0
0
3

8
1
 

0
.0

0
6
5

5
5
 

0
.0

0
4
3

8
6
 

0
.0

0
2
4

2
8
 

0
.0

0
3
0

0
4

 
0

.0
0

2
5

5
5
 

0
.0

0
1
5

2
3
 

2
0

4
8
 

0
.0

2
1
0

2
0
 

0
.0

1
8
1

7
3
 

-0
.0

0
0
2

2
7

 
0

.0
0

0
2

0
5
 

0
.0

0
1
3

1
0
 

0
.0

0
0
4

1
2
 

0
.0

0
4
0

9
6
 

0
.0

0
4
6

1
0
 

0
.0

0
0
8

4
2
 

0
.0

0
3
4

3
2

 
0

.0
0

2
0

5
6
 

0
.0

0
1
5

9
8
 

2
0

5
8
 

-0
.0

0
4
9

8
1
 

0
.0

2
4
2

7
6
 

0
.0

0
0
0

9
0

 
0

.0
0

0
2

5
9
 

0
.0

0
1
1

5
4
 

0
.0

0
0
5

5
6
 

-0
.0

0
1
5

4
3
 

0
.0

0
5
8

5
9
 

-0
.0

0
3
0

3
9
 

0
.0

0
4
2

5
7

 
-0

.0
0

0
3

3
5
 

0
.0

0
2
2

7
2
 

2
0

6
8
 

-0
.0

0
7
8

4
6
 

0
.0

1
9
9

6
2
 

0
.0

0
0
0

6
2

 
0

.0
0

0
2

2
7
 

0
.0

0
1
0

4
5
 

0
.0

0
0
4

5
1
 

-0
.0

0
1
0

5
5
 

0
.0

0
4
5

0
3
 

-0
.0

0
3
1

2
5
 

0
.0

0
3
4

4
7

 
-0

.0
0

0
3

4
4
 

0
.0

0
1
7

9
3
 

2
0

7
8
 

0
.0

1
1
6

2
3
 

0
.0

1
2
1

5
3
 

-0
.0

0
0
1

2
5

 
0

.0
0

0
1

4
5
 

0
.0

0
0
8

4
5
 

0
.0

0
0
2

3
3
 

0
.0

0
0
5

8
8
 

0
.0

0
2
7

9
2
 

-0
.0

0
0
7

6
2
 

0
.0

0
2
3

3
6

 
0

.0
0

0
2

5
3
 

0
.0

0
1
0

3
2
 

2
0

8
8
 

0
.0

0
9
5

0
0
 

0
.0

0
9
4

6
0
 

-0
.0

0
0
1

8
7

 
0

.0
0

0
1

0
6
 

0
.0

0
0
7

6
8
 

0
.0

0
0
2

5
5
 

0
.0

0
0
5

7
1
 

0
.0

0
2
5

6
9
 

-0
.0

0
0
2

4
5
 

0
.0

0
2
0

0
9

 
-0

.0
0

0
3

0
0
 

0
.0

0
0
9

0
5
 

2
0

9
9
 

0
.0

0
0
2

6
5
 

0
.0

1
1
8

3
0
 

0
.0

0
0
0

4
1

 
0

.0
0

0
1

3
6
 

0
.0

0
0
5

1
4
 

0
.0

0
0
2

2
1
 

-0
.0

0
3
3

1
9
 

0
.0

0
3
0

7
1
 

-0
.0

0
3
2

4
0
 

0
.0

0
2
4

1
4

 
-0

.0
0

0
8

4
3
 

0
.0

0
0
9

3
4
 

179



 

 

 

 

  
M

ar
ea

 
N

%
 

C
%

 
A

D
F

%
 

A
D

L
%

 
C

el
lu

lo
se

%
 

W
av

el
en

g
th

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 

2
1

0
9
 

-0
.0

0
1
5

6
8
 

0
.0

1
2
0

0
8
 

0
.0

0
0
1

1
1

 
0

.0
0

0
1

5
7
 

0
.0

0
0
2

4
2
 

0
.0

0
0
2

1
4
 

-0
.0

0
3
9

5
9
 

0
.0

0
3
3

1
7
 

-0
.0

0
2
7

2
3
 

0
.0

0
2
4

1
5

 
-0

.0
0

1
2

4
4
 

0
.0

0
1
0

1
5
 

2
1

1
9
 

-0
.0

0
1
2

7
6
 

0
.0

1
3
9

6
5
 

0
.0

0
0
0

6
8

 
0

.0
0

0
1

3
2
 

0
.0

0
0
1

2
1
 

0
.0

0
0
2

1
8
 

-0
.0

0
1
9

0
2
 

0
.0

0
2
9

7
2
 

-0
.0

0
0
8

8
8
 

0
.0

0
2
2

2
1

 
-0

.0
0

0
5

5
6
 

0
.0

0
0
8

5
6
 

2
1

2
9
 

-0
.0

0
9
4

7
8
 

0
.0

1
3
8

5
1
 

0
.0

0
0
2

6
7

 
0

.0
0

0
1

3
6
 

-0
.0

0
0
0

8
1
 

0
.0

0
0
2

2
5
 

-0
.0

0
3
1

5
4
 

0
.0

0
2
7

2
6
 

-0
.0

0
1
3

4
5
 

0
.0

0
2
1

6
5

 
-0

.0
0

1
1

9
0
 

0
.0

0
0
8

4
1
 

2
1

3
9
 

0
.0

0
0
7

1
5
 

0
.0

1
2
1

9
4
 

0
.0

0
0
2

0
4

 
0

.0
0

0
1

3
2
 

-0
.0

0
0
2

8
6
 

0
.0

0
0
2

3
3
 

-0
.0

0
1
6

6
4
 

0
.0

0
2
7

4
9
 

-0
.0

0
0
9

1
8
 

0
.0

0
2
1

4
3

 
-0

.0
0

0
2

5
6
 

0
.0

0
0
8

4
1
 

2
1

4
9
 

-0
.0

0
2
8

3
8
 

0
.0

0
9
2

3
9
 

0
.0

0
0
2

2
5

 
0

.0
0

0
1

0
1
 

-0
.0

0
0
2

7
7
 

0
.0

0
0
2

4
1
 

-0
.0

0
1
5

6
4
 

0
.0

0
2
4

7
4
 

0
.0

0
0
0

2
0
 

0
.0

0
1
7

8
0

 
-0

.0
0

0
1

9
2
 

0
.0

0
0
7

3
6
 

2
1

5
9
 

-0
.0

0
1
6

1
2
 

0
.0

1
3
5

3
5
 

0
.0

0
0
1

4
6

 
0

.0
0

0
1

1
4
 

-0
.0

0
0
2

7
4
 

0
.0

0
0
2

9
5
 

0
.0

0
0
7

6
1
 

0
.0

0
2
4

4
4
 

0
.0

0
1
0

5
0
 

0
.0

0
1
9

0
4

 
-0

.0
0

0
1

2
5
 

0
.0

0
0
9

0
4
 

2
1

6
9
 

-0
.0

0
6
1

8
1
 

0
.0

1
1
0

4
8
 

0
.0

0
0
2

1
4

 
0

.0
0

0
1

2
0
 

-0
.0

0
0
3

8
9
 

0
.0

0
0
3

3
4
 

-0
.0

0
2
4

4
7
 

0
.0

0
2
6

1
1
 

-0
.0

0
0
0

4
2
 

0
.0

0
2
1

0
7

 
-0

.0
0

0
8

6
3
 

0
.0

0
0
9

8
8
 

2
1

7
8
 

0
.0

0
6
2

0
1
 

0
.0

1
2
3

1
8
 

0
.0

0
0
1

6
8

 
0

.0
0

0
1

4
3
 

-0
.0

0
0
3

0
6
 

0
.0

0
0
2

9
7
 

0
.0

0
1
2

6
8
 

0
.0

0
2
7

8
1
 

0
.0

0
1
9

9
9
 

0
.0

0
2
3

5
5

 
0

.0
0

0
0

8
1
 

0
.0

0
0
9

3
8
 

2
1

8
8
 

0
.0

0
3
9

9
2
 

0
.0

1
2
5

8
2
 

0
.0

0
0
1

9
1

 
0

.0
0

0
1

2
5
 

-0
.0

0
0
2

2
9
 

0
.0

0
0
3

0
6
 

0
.0

0
2
1

6
6
 

0
.0

0
2
9

4
6
 

0
.0

0
3
1

8
9
 

0
.0

0
2
4

1
1

 
-0

.0
0

0
2

5
7
 

0
.0

0
0
9

6
5
 

2
1

9
8
 

0
.0

0
9
2

4
8
 

0
.0

1
2
4

7
0
 

0
.0

0
0
1

2
2

 
0

.0
0

0
1

2
6
 

-0
.0

0
0
3

4
2
 

0
.0

0
0
3

0
6
 

0
.0

0
2
6

5
6
 

0
.0

0
2
8

5
4
 

0
.0

0
3
1

0
9
 

0
.0

0
2
0

9
4

 
0

.0
0

0
5

5
9
 

0
.0

0
0
9

9
1
 

2
2

0
8
 

0
.0

0
1
4

4
1
 

0
.0

1
7
8

1
8
 

0
.0

0
0
1

6
2

 
0

.0
0

0
1

5
3
 

-0
.0

0
0
4

2
2
 

0
.0

0
0
3

3
3
 

0
.0

0
4
2

6
9
 

0
.0

0
3
5

0
0
 

0
.0

0
4
8

1
6
 

0
.0

0
2
8

5
8

 
0

.0
0

0
7

7
8
 

0
.0

0
1
1

5
3
 

2
2

1
8
 

-0
.0

0
0
6

9
2
 

0
.0

1
3
2

3
6
 

0
.0

0
0
1

5
5

 
0

.0
0

0
1

3
3
 

-0
.0

0
0
5

9
9
 

0
.0

0
0
3

7
3
 

0
.0

0
4
0

6
8
 

0
.0

0
3
5

4
8
 

0
.0

0
5
2

3
9
 

0
.0

0
2
8

2
5

 
0

.0
0

1
0

9
8
 

0
.0

0
1
3

3
6
 

2
2

2
8
 

-0
.0

0
3
0

0
5
 

0
.0

1
2
0

4
6
 

0
.0

0
0
1

0
8

 
0

.0
0

0
1

3
0
 

-0
.0

0
0
4

7
1
 

0
.0

0
0
3

6
7
 

0
.0

0
1
6

8
1
 

0
.0

0
3
0

3
6
 

0
.0

0
3
5

6
5
 

0
.0

0
2
3

2
0

 
0

.0
0

0
8

5
9
 

0
.0

0
1
1

9
6
 

2
2

3
8
 

0
.0

0
2
8

5
6
 

0
.0

1
5
2

9
6
 

-0
.0

0
0
0

1
6

 
0

.0
0

0
1

2
8
 

-0
.0

0
0
3

8
5
 

0
.0

0
0
3

2
1
 

0
.0

0
3
8

6
2
 

0
.0

0
3
6

8
4
 

0
.0

0
4
1

3
7
 

0
.0

0
2
6

5
2

 
0

.0
0

0
5

8
1
 

0
.0

0
1
0

7
6
 

2
2

4
8
 

-0
.0

1
5
0

8
4
 

0
.0

1
1
9

6
7
 

0
.0

0
0
1

6
0

 
0

.0
0

0
1

2
4
 

-0
.0

0
0
3

3
9
 

0
.0

0
0
3

7
7
 

-0
.0

0
0
7

6
4
 

0
.0

0
2
7

8
6
 

0
.0

0
2
6

0
0
 

0
.0

0
2
1

1
9

 
0

.0
0

0
1

9
8
 

0
.0

0
0
9

7
3
 

2
2

5
8
 

-0
.0

0
7
4

1
0
 

0
.0

1
2
8

0
0
 

-0
.0

0
0
0

5
9

 
0

.0
0

0
1

1
5
 

-0
.0

0
0
2

0
2
 

0
.0

0
0
2

6
9
 

0
.0

0
0
3

6
5
 

0
.0

0
2
6

6
4
 

0
.0

0
0
9

4
1
 

0
.0

0
1
8

5
7

 
0

.0
0

0
1

0
5
 

0
.0

0
0
9

3
9
 

2
2

6
8
 

-0
.0

1
6
5

0
8
 

0
.0

1
5
0

6
2
 

0
.0

0
0
0

8
6

 
0

.0
0

0
1

4
7
 

-0
.0

0
0
1

0
9
 

0
.0

0
0
3

3
2
 

-0
.0

0
2
7

2
8
 

0
.0

0
3
0

1
0
 

0
.0

0
0
0

4
0
 

0
.0

0
2
0

9
0

 
-0

.0
0

0
9

7
5
 

0
.0

0
1
0

5
8
 

2
2

7
8
 

-0
.0

1
6
0

3
4
 

0
.0

1
4
0

6
5
 

-0
.0

0
0
0

3
1

 
0

.0
0

0
1

5
4
 

-0
.0

0
0
0

8
8
 

0
.0

0
0
3

0
5
 

-0
.0

0
4
0

6
9
 

0
.0

0
3
3

5
8
 

-0
.0

0
1
2

9
8
 

0
.0

0
2
2

1
8

 
-0

.0
0

0
9

3
8
 

0
.0

0
1
1

2
8
 

2
2

8
8
 

-0
.0

2
2
0

1
1
 

0
.0

1
3
1

3
5
 

-0
.0

0
0
0

1
7

 
0

.0
0

0
1

2
3
 

-0
.0

0
0
2

6
4
 

0
.0

0
0
2

8
8
 

-0
.0

0
1
2

3
6
 

0
.0

0
3
0

3
5
 

-0
.0

0
1
0

6
4
 

0
.0

0
2
0

2
7

 
-0

.0
0

0
3

2
3
 

0
.0

0
0
9

7
8
 

2
2

9
8
 

-0
.0

0
2
4

8
8
 

0
.0

1
4
2

8
6
 

-0
.0

0
0
1

8
1

 
0

.0
0

0
1

4
4
 

0
.0

0
0
0

6
9
 

0
.0

0
0
3

1
4
 

0
.0

0
1
0

2
3
 

0
.0

0
3
2

5
5
 

0
.0

0
0
3

8
3
 

0
.0

0
2
2

5
2

 
0

.0
0

0
1

7
2
 

0
.0

0
1
0

3
1
 

2
3

0
8
 

-0
.0

1
7
6

1
0
 

0
.0

1
3
8

9
3
 

-0
.0

0
0
1

4
9

 
0

.0
0

0
1

6
4
 

-0
.0

0
0
5

2
5
 

0
.0

0
0
3

4
9
 

-0
.0

0
0
4

0
6
 

0
.0

0
3
3

8
9
 

-0
.0

0
2
6

6
2
 

0
.0

0
2
6

0
4

 
-0

.0
0

0
1

8
1
 

0
.0

0
1
2

0
4
 

2
3

1
8
 

0
.0

0
2
2

5
9
 

0
.0

1
5
1

3
9
 

-0
.0

0
0
1

8
5

 
0

.0
0

0
1

4
9
 

-0
.0

0
0
3

0
8
 

0
.0

0
0
3

1
8
 

-0
.0

0
0
1

0
3
 

0
.0

0
3
6

4
0
 

-0
.0

0
2
3

2
3
 

0
.0

0
2
8

0
0

 
0

.0
0

0
2

0
4
 

0
.0

0
1
1

0
7
 

2
3

2
8
 

-0
.0

1
3
5

1
5
 

0
.0

1
5
0

5
6
 

-0
.0

0
0
0

0
8

 
0

.0
0

0
1

4
0
 

-0
.0

0
0
1

4
9
 

0
.0

0
0
2

8
5
 

-0
.0

0
2
7

7
2
 

0
.0

0
3
4

3
8
 

-0
.0

0
2
2

7
0
 

0
.0

0
2
6

2
0

 
-0

.0
0

0
2

7
0
 

0
.0

0
0
9

8
9
 

2
3

3
8
 

0
.0

0
6
8

2
7
 

0
.0

1
8
3

0
2
 

-0
.0

0
0
2

0
1

 
0

.0
0

0
1

6
5
 

-0
.0

0
0
0

2
5
 

0
.0

0
0
2

9
2
 

0
.0

0
0
3

5
6
 

0
.0

0
3
7

4
5
 

-0
.0

0
0
9

0
6
 

0
.0

0
2
6

9
1
 

0
.0

0
0
9

8
2
 

0
.0

0
1
2

7
6
 

2
3

4
8
 

-0
.0

1
9
9

7
3
 

0
.0

2
5
3

5
0
 

-0
.0

0
0
1

3
0

 
0

.0
0

0
1

8
9
 

-0
.0

0
0
3

2
2
 

0
.0

0
0
3

5
8
 

-0
.0

0
2
0

7
1
 

0
.0

0
3
7

5
3
 

-0
.0

0
2
3

6
2
 

0
.0

0
2
8

4
9

 
0

.0
0

0
5

1
4
 

0
.0

0
1
5

1
1
 

2
3

5
8
 

-0
.0

0
9
1

2
4
 

0
.0

2
2
0

4
8
 

-0
.0

0
0
2

8
1

 
0

.0
0

0
1

9
0
 

-0
.0

0
0
1

4
6
 

0
.0

0
0
3

3
8
 

0
.0

0
2
6

9
7
 

0
.0

0
4
0

3
4
 

-0
.0

0
0
2

1
3
 

0
.0

0
3
3

3
0

 
0

.0
0

0
7

8
5
 

0
.0

0
1
1

2
8
 

2
3

6
8
 

-0
.0

1
6
1

8
7
 

0
.0

2
0
9

5
1
 

-0
.0

0
0
2

5
9

 
0

.0
0

0
1

9
5
 

-0
.0

0
0
1

3
0
 

0
.0

0
0
3

6
6
 

-0
.0

0
0
4

0
1
 

0
.0

0
4
2

3
6
 

-0
.0

0
2
4

1
7
 

0
.0

0
3
5

4
0

 
0

.0
0

1
6

3
4
 

0
.0

0
1
3

9
3
 

180



 

 

 

 

  
M

ar
ea

 
N

%
 

C
%

 
A

D
F

%
 

A
D

L
%

 
C

el
lu

lo
se

%
 

W
av

el
en

g
th

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 
M

ea
n

 
S

.D
 

M
ea

n
 

S
.D

 

2
3

7
8
 

-0
.0

0
9
2

2
0
 

0
.0

4
2
8

3
2
 

-0
.0

0
0
0

5
9

 
0

.0
0

0
2

3
8
 

0
.0

0
0
2

3
9
 

0
.0

0
0
3

4
9
 

0
.0

0
0
3

7
9
 

0
.0

0
5
1

3
1
 

0
.0

0
0
5

0
7
 

0
.0

0
3
8

6
1

 
0

.0
0

0
2

0
9
 

0
.0

0
1
8

3
5
 

2
3

8
8
 

0
.0

0
4
0

0
7
 

0
.0

3
3
3

6
5
 

-0
.0

0
0
2

8
2

 
0

.0
0

0
2

3
4
 

-0
.0

0
0
0

6
3
 

0
.0

0
0
3

9
1
 

0
.0

0
2
0

5
1
 

0
.0

0
5
7

2
1
 

0
.0

0
0
1

2
4
 

0
.0

0
4
1

3
1

 
0

.0
0

1
1

5
7
 

0
.0

0
1
5

7
8
 

2
3

9
8
 

0
.0

1
8
1

5
7
 

0
.0

2
3
7

3
3
 

-0
.0

0
0
2

6
9

 
0

.0
0

0
1

9
5
 

0
.0

0
0
0

4
7
 

0
.0

0
0
3

5
5
 

0
.0

0
4
2

1
7
 

0
.0

0
5
2

1
5
 

0
.0

0
1
7

1
7
 

0
.0

0
3
8

7
4

 
0

.0
0

1
1

5
7
 

0
.0

0
1
7

0
4
 

2
4

0
8
 

0
.0

0
0
6

4
8
 

0
.0

3
2
9

8
2
 

-0
.0

0
0
2

9
6

 
0

.0
0

0
2

6
4
 

0
.0

0
0
4

1
5
 

0
.0

0
0
5

2
9
 

0
.0

0
7
2

9
4
 

0
.0

0
6
0

1
2
 

0
.0

0
4
2

3
1
 

0
.0

0
4
6

4
8

 
0

.0
0

2
6

1
0
 

0
.0

0
2
1

1
0
 

2
4

1
8
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

2
4

2
8
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

2
4

3
7
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

2
4

4
7
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

2
4

5
7
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

2
4

6
7
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

2
4

7
7
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

2
4

8
7
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

2
4

9
7
 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

- 
- 

 

181



 

 

 

S5 Legend from the National Land Cover Database 2006 (www.mrlc.gov/nlcd06_leg.php‎). 
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Chapter 4: Relative influence of foliar biochemical traits, watershed characteristics 

and land use on stream water quality in the Upper Midwestern United States 

 

Abstract 

The relationship between nutrient cycling processes and water quality in mixed-use 

ecosystems is driven by complex interactions among biotic and abiotic processes. In many 

cases, these processes cannot be directly observed or modeled at broad spatial scales. 

Numerous empirical studies have employed land use patterns, variations in watershed 

physiography or disturbance regimes to characterize nutrient export from mixed-use 

watersheds, but simultaneously disentangling the effects of such factors has been difficult. 

Here we use structural equation modeling (SEM) to assess the relative influence of foliar 

biochemistry (derived from imaging spectroscopy), watershed physiography and human 

land use patterns on the water quality (concentration of summer baseflow nitrate-N and 

soluble reactive phosphorus) in watersheds across the Upper Midwestern United States. 

Specifically, we propose a SEM linking water quality (stream nitrate-nitrogen and 

dissolved phosphorus) to foliar retention (AVIRIS-derived foliar traits related to 

recalcitrance), watershed retention (wetland proportion, MODIS Tasseled Cap Wetness), 

runoff (agricultural and urban land use), and watershed leakiness (AVIRIS foliar nitrogen, 

nitrogen deposition). The SEMs confirmed that variables associated with foliar retention 

derived from AVIRIS imaging spectroscopy are related negatively to watershed leakiness 

(standardized path coefficient = -0.892) and positively to watershed retention (standardized 

path coefficient = 0.705), with features related to watershed retention and runoff exerting 
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the strongest controls on water quality (standardized path coefficients of -0.270 and 0.331 

respectively). Comparing forested and agricultural watersheds, we found significantly 

increased importance of foliar retention to watershed leakiness in forests compared to 

agriculture (standardized coefficients of -1.004 and -0.764 respectively), with measures of 

watershed retention more important to runoff and water quality in agricultural watersheds. 

The results illustrate the capacity of imaging spectroscopy to provide measures of foliar 

traits that influence nutrient cycling in watersheds. Ultimately, the results may help focus 

development and restoration policies towards building more resilient landscapes that take 

into consideration associations among functional traits of vegetation, physiography and 

climate. 
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Introduction 

Stream water quality in mixed-use watersheds is a function of the interacting biotic and 

abiotic factors that control ecosystem-level nutrient cycling (Griffith et al. 2002, Meador 

and Goldstein 2003, Buck et al. 2004, Srivastava et al. 2007). The forested and agricultural 

components of landscapes display inherently different nutrient cycling regimes, especially 

as consequence of anthropogenically mediated changes in ecosystem processes (e.g., 

nitrogen deposition, fertilizer use), soil properties (tillage, and type), moisture regimes 

(irrigation) and broad-scale environmental changes related to climate (Schindler and 

Bayley 1993, Vitousek et al. 1997a, Mosier 1998, Compton and Boone 2000). Nutrient 

management in mixed-use landscapes is important to the reduction of high nitrogen (N) 

and phosphorus (P) concentrations in streams that contribute to eutrophication and 

acidification of receiving waters and the loss of biological diversity and estuarine 

productivity, and present a public health concern (Vitousek et al. 1997b). Agricultural 

fertilization is the primary nonpoint source of nitrate-nitrogen (NO3-N) to receiving waters, 

but forest functional properties and disturbances to forests can also affect nutrient export, 

especially of nitrate-N (Townsend et al. 2004, Eshleman et al. 2009; Chapters 1 and 2). 

Like nitrate, streamwater phosphorus originates from a variety of sources, but in general is 

derived from nonpoint sources associated with agricultural and urban land use, and point 

sources associated with urbanization. Phosphorus is best predicted by urban and industrial 

activity in most cases and in some cases agriculture (Pieterse et al. 2003, Zampella et al. 

2007, Coskun et al. 2008).  
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The functional properties of vegetation affect nutrient dynamics at the watershed 

scale, even when decoupled from environmental factors such as N deposition and soil C: N 

ratios (Huang et al. 2011b). The response of plants to nutrient availability depends on their 

physiology (Huang et al. 2011a) and climatic constraints on seasonal N availability (Arain 

et al. 2006). Plant N availability and subsequent variations in local N cycling rates are also 

functions of competition within local species assemblages and the attendant differences in 

physiological trait adaptations (Reich et al. 1999, Reich et al. 2003, Rennenberg et al. 

2009, Huang et al. 2011a). Therefore, it is notable that even within forested ecosystems, 

nutrient cycling rates can differ between deciduous and conifer-dominated ecosystems 

(Aber and Driscoll 1997), and may vary considerably within landscapes dominated by a 

single functional type (Goodale et al. 2002). This is partly because of differences in foliar 

nitrogen and lignin/cellulose concentrations that characterize leaf lifespan (Wright et al. 

2005, Shipley et al. 2006, Santiago 2007), influence soil C:N ratios (Ollinger et al. 2002) 

and, in combination with disturbance events (Eshleman 2000, McNeil et al. 2007a), may 

be strong controllers of nutrient cycling (Aber et al. 1991, Fortunel et al. 2009, de Bello et 

al. 2010). Further, N output (or “leakage”) from forested ecosystems has also been linked 

to disturbance and land use legacies (Aber et al. 1997, Chen et al. 2004, McNeil et al. 

2008). For example, McNeil et al. (2007b) demonstrated that N leakage from watersheds 

may be mediated by insect-related defoliation and could maintain N limitation in temperate 

forest ecosystems. Similar results have been obtained in the Hubbard Brook Experimental 

forest (Li et al. 2004) and the Chesapeake Bay watersheds (Eshleman et al. 1998, 

Eshleman 2000, Townsend et al. 2004, Eshleman et al. 2009).  
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In most mixed-landcover watersheds, agriculture forms the strongest source of 

nutrients to receiving waters (Howarth et al. 1996, Carpenter et al. 1998, Howarth 1998, 

Hutchins et al. 2010, Roberts and Prince 2010). The major underlying factors are fertilizer 

application and land management practices (Mattikalli and Richards 1996, Cicek et al. 

2010, Hutchins et al. 2010, Roberts and Prince 2010) and resultant direct nutrient runoff 

during rainfall events (Reay et al. 1992, McCarty et al. 2008, Morari et al. 2012). For 

pasture-dominated landscapes, N and P export has also been linked to subsidies from 

animal waste (Worrall and Burt 1999, Pieterse et al. 2003, Buck et al. 2004). Agricultural 

nutrient management thus forms an important part of water resources protection strategies 

(Shepard 2005) and it has been shown that even small improvements in agricultural 

practices can result in significant improvements in water quality indicators (Diebel et al. 

2008, Diebel et al. 2009).  

Numerous studies have shown landscape-scale variables to be good predictors of 

aquatic habitat quality (Lyons et al. 1996, Fitzpatrick et al. 2001, Rooney and Bayley 2011, 

Daniel and Brown 2013) and have provided evidence of the importance of riparian zones 

for sustaining diverse fish communities in streams (Fennessy and Cronk 1997, Lowrance et 

al. 1997, Fitzpatrick et al. 2001, Meador and Goldstein 2003). A growing body of literature 

has empirically linked water quality in receiving waters with landcover associations 

(Johnson et al. 1997, Basnyat et al. 2000, Griffith et al. 2002, Buck et al. 2004, Stanley and 

Maxted 2008, Singh et al. 2013), but disentangling the relative influence of vegetation 

traits (as opposed to cover type), climate, disturbance and watershed physiography remains 
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to be explored due to the possibly complex and nonlinear interactions between these 

factors. 

 Multispectral and hypertemporal satellite sensors have long been employed to 

generate land use and land cover maps, create spatially explicit estimates of forest 

disturbance (Kennedy et al. 2010, Townsend et al. 2012), and derive parameters describing 

vegetation phenology (Reed et al. 1994, Stockli et al. 2008, Schleip et al. 2009) that we 

hypothesize are related to water quality. Recent research has shown that spectroscopic 

methods can be used to characterize key plant functional traits such as foliar nitrogen 

(Townsend et al. 2003, Majeke et al. 2008, Martin et al. 2008), specific leaf area (SLA), 

foliar lignin and cellulose (Wright et al. 2002, Majeke et al. 2008, Kokaly et al. 2009, 

Dybzinski et al. 2013) and potentially δ
15

N concentrations (Kleinebecker et al. 2009, 

Elmore and Craine 2011), making it possible for these functional traits to be incorporated 

into models of water quality. However, the interactions among these potential drivers have 

not been comprehensively evaluated, especially given the complexity of existing process 

models and the absence of data needed to characterize these traits across most regions. So, 

while a large body of research has linked the role of physiological trait associations 

(Santiago et al. 2004, Shipley et al. 2006, Fortunel et al. 2009, de Bello et al. 2010), 

climatic factors (Fausey et al. 1995, Krysanova et al. 1998, Hall et al. 1999, Hu and Ou 

2013), land use patterns (Basnyat et al. 2000, Griffith 2002, Griffith et al. 2002, Chen et al. 

2007) and disturbance (Eshleman 2000, Eshleman et al. 2000, Townsend et al. 2004, 

Eshleman et al. 2009) to nutrient cycling rates ranging from the stand to the watershed 

scale, the relative role of canopy foliar biochemical and structural traits remain to be 

188



 

 

 

explored due to lack of concurrent spatially explicit data. A major objective of this 

research was to test how measurements of foliar traits derived from NASA’s Airborne 

Visible / Infrared Imaging Spectrometer (AVIRIS) relate to export of stream water 

nutrients.  

 This study utilizes a structural equation modeling approach to assess the relative 

influences of foliar biochemistry, watershed physiography and human land use patterns on 

water quality in watersheds across the Upper Midwestern United States (Fig. 1). We 

explore the influence of four broad groups of variables on streamwater quality. These are: 

1) nutrient retention due to foliar biochemistry, 2) nutrient retention due to watershed 

physiography, 3) an index of human activity (landscape composition dominated with urban 

and agricultural land use), and 4) indicators of watershed-scale nutrient ‘leakiness’. We 

predict that: A) higher foliar recalcitrance has a direct positive effect on nutrient retention 

in watersheds and indirectly with overall water quality (i.e., lesser nutrient export), and is 

negatively correlated with indicators of watershed leakiness and indicators of human 

activity; B) indicators of watershed leakiness and high human activity have negative direct 

influences on water quality (i.e., high nutrient export), as moderated indirectly by retention 

in watersheds and foliar recalcitrance. The structural model proposed is shown in Fig. 2 

with arrows pointing in the direction of hypothesized influence. Variables constituting the 

latent factors in Fig. 2 are described in detail in the methods section. 
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Materials and methods 

Watershed data 

Watersheds for this study were identified within series of 53 swaths that were imaged by 

AVIRIS between 2008 and 2011 in the upper Midwestern United States (Fig. 1). 

Watersheds were selected to reflect the diversity in forest functional associations, 

landscape physiognomy and landcover composition. We selected first- through third-order 

watersheds from the NHD-plus database (NHDPlus 2010) that fell more than 90% within 

the AVIRIS swaths. NHD-plus stream layers as intersected with the selected watersheds 

were overlaid with TIGER (TIGER/Line 2011) road networks to identify a total of 216 

potential sampling locations, after screening for safe access and presence of water in the 

channel. Streams were sampled in 2010 and 2011, always within one year of AVIRIS 

acquisition, with 28 watersheds sampled in both years (Fig. 1). Watershed sizes ranged 

from 9.83 ha to 7,684.65 ha with a median of 724.65 ha and mean of 1,122.68 ha (S.D. 

1,329.49). 

Water quality sampling 

A total of 216 water samples from wadeable streams were obtained in the late summer 

(August-September) of 2010 and 2011, 5-50 m upstream from culverts depending on local 

accessibility. Streamwater samples were filtered on-site using 0.45 micron glass-fiber 

filters (Whatman Plc Piscataway, NJ), stored on ice in 60ml Nalgene bottles (Nalge Nunc 

International Corporation, Rochester NY), and frozen until the chemical analyses were 

performed. Samples were analyzed for nitrate-N (NO3-N) and soluble reactive phosphorus 

(SRP) using protocols described in the Manual of analytical methods (WSLH 1993). 
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Nitrate-N concentrations averaged 0.042mg/L (0.04 – 4.97mg/L) and SRP concentrations 

averaged 0.0045mg/L (0.00027 - 0.179mg/L). 

Watershed characteristics 

Broad indicators of watershed physiography (stream length, stream density) were obtained 

from NHD-plus stream network data (NHDPlus 2010) clipped to watershed boundaries 

obtained by terrain analysis of the National Elevation Dataset (NED: Gesch et al. 2002) at 

field sampled locations. Average soil infiltration capacities for delineated watersheds were 

derived from the STATSGO database (Schwarz and Alexander 1995) by identifying major 

hydrologic soil groups, linking the hydrologic soil groups with infiltration capacities 

(NRCS 2007) and weighting by area within the respective watersheds. Contribution of 

groundwater to baseflow was obtained from Wolock (2003) and averaged within 

watersheds. 

Climate and vegetation phenology 

Daily precipitation and maximum and minimum temperatures were obtained from the 

DayMet database (Thornton et al. 2012) and averaged annually within each watershed to 

characterize an average climatologic record for each watershed. Mean parameters of 

vegetation phenology for each watershed for the year sampled were obtained by fitting a 

double logistic model (Eqn. 1) to NDVI time series obtained from the MODIS MOD09A1 

product (500m, 8-day NDVI composites: USGS 2001). Phenological parameters were 

obtained for each year and averaged over all pixels contained in each watershed. 

Mathematically: 

191



 

 

 

            
 

                  
   

 

                      
       

Eqn. 1 

Where: a = minimum NDVI, b = max-min NDVI, ri = maximum rate of NDVI increase at 

start of season, SOS = start of season date (first inflection point), rd = maximum rate of 

NDVI decline at end of season, EOS = end of season date (second inflection point).  

Landcover and foliar traits 

Data on proportional landcover for each watershed were obtained from the National Land 

Cover Database (NLCD 2006 : Fry et al. 2011). Maps of predicted foliar traits 

characterizing canopy biochemical (%N, %C, Lignin, Cellulose) and structural parameters 

(leaf mass per area, LMA) were obtained from results of concurrent AVIRIS campaigns 

(for details see Chapter 3) and averaged for each watershed. 

Direct inputs and disturbance 

In the absence of a continuous data record from the Landsat mission (45% of all Landsat 5 

and Landsat ETM+ imagery was found cloud contaminated in summer months), we 

employed disturbance indices (following Healey et al. 2005) derived from the MOD09A1 

product to characterize disturbance between the year of sampling and the previous year. 

Similar to other spatial products, averaged values of disturbance indices were assigned to 

each watershed for each year. Data on atmospheric nitrogen inputs to watersheds were 

obtained from the North American Nitrogen Deposition program (NADP 2007) for years 

corresponding to the sampling year and averaged within watershed boundaries. 
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Statistical methods 

PLS path models 

Structural equation models (SEMs) are a set of statistical methods that aim to estimate a 

network of causal relationships (Vinzi et al. 2010a). Structural relationships are 

constructed as recursive linkages between (unmeasured) latent complex concepts, each 

measured through observable indicators. Overall, the intent is to study the complexity of a 

system using a causality concept among latent constructs (latent variables, LVs) while 

describing each LV by measured observations called manifest variables (MVs). The partial 

least squares (PLS) approach to SEMs, also known as path modeling (PLS-PM), represents 

an intersection of path analysis (Tukey 1964, Alwin and Hauser 1985, Vinzi et al. 2010a) 

and confirmatory factor analysis (Thurstone 1931). Proposed as a component-based 

alternative to covariance based structural equation modeling (CB-SEM) estimation 

procedures by Wold (1966), the PLS-PM technique iteratively solves for blocks of the 

measurement model in the first step (the relation of LVs to MVs), and proceeds with the 

estimation of the structural model (the interrelationships between LVs) in the second step. 

These steps are iterated until the aggregated residual error is minimized (Dijkstra 2010). 

The PLS-PM approach attempts to, at best, explain the residual variance of the latent and 

manifest variables rather than modeling the sample covariance matrix. As such, the PLS-

PM approach relaxes strict distributional and sample size requirements of data when 

compared to covariance-based SEMs (Lohmoller 1989). In contrast to CB-SEM analyses, 

the PLS-PM approach allows for formative indicator constructs to be identified, i.e. 

situations when the manifest variables are supposed to cause changes in latent variables (as 

193



 

 

 

opposed to reflective indicators, in which the relationship is reversed). Confidence 

intervals for parameter estimates are finally obtained empirically by bootstrapping 

techniques. Details of PLS-PM are described in Vinzi et al. (2010a). 

We defined five latent constructs (Fig. 2) that represent a conceptual description of 

watershed function. These were: 1) nutrient retention due to foliar recalcitrance 

(RETENF), characterized by: carbon to nitrogen ratio, lignin to nitrogen ratio, fiber to 

cellulose ratio and leaf mass per unit area; 2) nutrient retention in wetlands (RETENW), 

characterized by: MODIS tasseled cap wetness index, percentage wetland landcover, 

percentage water area, stream length, groundwater contribution to baseflow, and soil 

infiltration capacity and mean phenological start of season date; 3) watershed nutrient 

‘leakiness’ (LEAKGE) , characterized by: foliar N concentration, stream density, MODIS 

tasseled cap brightness index, total atmospheric N deposition, MODIS disturbance index, 

index of aridity (ratio of precipitation to potential evapotranspiration), proportion of area 

under coniferous forest and the composite terrain index derived from a digital elevation 

model (Gesch et al. 2002); 4) nutrient runoff from human dominated landcover 

(RUNOFF), characterized by: proportion of urban built up area, proportion of area under 

agriculture and pasture, and finally 5) water quality (WTQUAL), characterized by 

measured streamwater concentration of nitrate-N (NO3-N) and soluble reactive phosphorus 

(SRP). Table 1 lists basic statistical information on all variables, and presents the expected 

associated with each. We specified RETENF, RETENW and LEAKGE as formative 

constructs (i.e. latent variables defined as being ‘caused’ by manifest variables), and 

RUNOFF and WTQUAL as reflective constructs (i.e., latent variables that ‘cause’ 
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increases in manifest variables). We bootstrapped the model 500 times to obtain 

uncertainty estimates on all path coefficients. All analyses were conducted using the plspm 

package (Sanchez 2013) of the R statistical analysis system (R 2008). 

Initial models were evaluated for specification appropriateness by inspecting 

measures of unidimensionality of the latent blocks. This ensures satisfaction of the implicit 

assumption that manifest variables are better related to their own latent variable than 

others, and Kaiser’s rule that the first Eigenvalue of the correlation matrix should be higher 

than 1 while others are smaller. We used the Dillon-Goldstein’s Rho (Chin 1998) and 

principal components analysis of each block to check for unidimensionalty following Vinzi 

et al. (2010b) and Sanchez (2013). We also report the classical Cronbach’s alpha for each 

model construct. The model was termed suboptimal if it failed unidimensionality tests, 

namely if 1) the Dillon-Goldstein’s Rho was less than 0.7, and 2) if the first and second 

Eigenvectors were both higher than 1.0 (Kaiser’s rule). Model fits were further considered 

suboptimal if 3) the average communality index of a construct was less than 0.5 and 4) if 

the goodness-of-fit was less than 0.5. In brief, the communality index measures how much 

of the variability in a manifest variable is explained by the variability in its latent variable 

score (Vinzi et al. 2010b). The average communality of all MVs in a latent variable should 

be at least greater than 0.5. The goodness-of-fit statistic is simply the geometric mean of 

the average communality index and the average R
2
 of each latent variable. 

To optimize the SEM, we 1) inspected the model outer correlation matrix to 

identify the manifest variables having higher correlations with latent constructs other than 

the ones they were initially assigned to, and 2) evaluated bootstrap confidence intervals of 
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weights of under-performing manifest variables. We dropped those manifest variables that 

had low predictive power (non-significant path weights) and loaded highly on latent 

variables outside of their construct (high cross-loadings that did not make ecological sense, 

for example, if stream length were to load highly on foliar traits.) We report both the fully-

specified model and the final reduced model from this iterative process.  

We conducted bootstrap tests with replacement to test whether nutrient cycling 

mechanisms differed between watersheds that were predominantly forested (>70% forest) 

and ones that weren’t. Path coefficients were calculated in each resampling iteration and 

the standard error estimates were compared via a parametric t-test (Sanchez 2013). 

 

Results 

Unidimensionality tests indicated suboptimal fits in the fully-specified model (Table 3A). 

Inspection of the outer correlation matrix revealed that multiple MVs loaded higher on 

other variables than the proposed construct indicating some amount of model miss-

specification (Supplemental Table 1) and bootstrapped estimates of path weights 

(Supplemental Table 2) revealed that most, if not all, such MVs did not have significant 

path weights (i.e. P-value < 0.05). We iteratively dropped each non-significant MV and 

refit the model until all unidimensionality measures were satisfied (Table 3B). After 

iteratively dropping non-significant manifest variables, we were left with two manifest 

variables in each construct (Table 4). The reduced model indicated an adequate fit with the 

Dillon-Goldstein’s Rho > 0.7 for both reflective LVs (RUNOFF, WTQUAL, Table 3B). 

The reduced model also satisfied Kaiser’s rule (i.e. second Eigenvectors of all LVs less 
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than 1.0; Table 3B) and inspection of the outer correlation matrix confirmed the 

unidimensionality of the construct with every MV loading highly on its own LV (Table 4). 

Average communalities for all LVs were also greater than 0.5 (RETENF: 0.939, 

RETENW: 0.539, RUNOFF: 0.922, LEAKGE: 0.866, WTQUAL: 0.656).The reduced 

model had a higher goodness-of-fit (0.697) as compared with the fully-specified model 

(0.536) (Table 3). 

 The reduced model contained two manifest variables per each latent variable (Table 

5). Nutrient retention due to foliar recalcitrance (RETENF) was best explained by foliar C: 

N ratios followed by foliar Lignin: N ratios. Retention in watersheds (RETENW) was best 

explained by the tasseled cap wetness index followed by proportional landcover under 

lakes. Runoff from human-dominated land use (RUNOFF) was equally well explained by 

proportional area under agriculture and pasture. Watershed ‘leakiness’ (LEAKGE) was 

best explained by foliar nitrogen concentration and atmospheric N deposition. 

 Individual inner model path coefficients estimated from the final model revealed 

that almost all our hypotheses were supported by the proposed model (Table 6). The model 

indicated that foliar recalcitrance increased retention of nutrients in watersheds (RETENF 

→ ↑RETENW; P < 0.0001) and decreased watershed leakiness (RETENF → ↓LEAKGE; 

P < 0.0001). Nutrient retention in watersheds reduced watershed-scale nutrient export 

(RETENW → ↓WTQUAL; P < 0.0001), runoff from human-dominated landcover 

(RETENW → ↓RUNOFF; P < 0.0001) and watershed leakiness (RETENW → 

↓LEAKGE; P = 0.018). Runoff from human-dominated landcover increased watershed-

scale nutrient export (RUNOFF → ↑WTQUAL; P < 0.0001). Direct loadings between 
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other proposed linkages (Fig 3) had directions in agreement to proposed hypotheses but 

were not significant (all P > 0.05).  

When paths were aggregated over all possible linkages (i.e. Total effects, Table 7), 

the model indicates that nutrient retention due to foliar retention had a significant effect on 

reducing watershed-scale nutrient export (RETENF → ↓WTQUAL; P < 0.0001), and 

reducing nutrient export from human-dominated landcover (RETENF → ↓RUNOFF; P < 

0.0001). The model did not exhibit significant linkages between human-dominated land 

use patterns and watershed nutrient leakiness, or between watershed leakiness and water 

quality. 

Comparing path coefficients between mostly forested (>70%) and other watersheds 

(Table 9, Fig 4), we found that nutrient retention due to foliar recalcitrance was the 

predominant factor mitigating nutrient leakage in forested watersheds (RETENF → 

↓LEAKGE; P = 0.002). However, in mostly agricultural watersheds, wetland retention 

played in more prominent role in ameliorating water quality directly (RETENW → 

↓WTQUAL; P = 0.034) as well as through reduction of runoff (RETENW → ↓RUNOFF; 

P < 0.0001) and leakage (RETENW → ↓LEAKGE; P = 0.022). 

Latent variable scores exhibited strong latitudinal gradients; foliar and watershed 

retention increased with latitude (RETENF*Latitude r = 0.83, RETENW*Latitude r = 

0.74; both P < 0.0001) and runoff and watershed leakage declined (RUNOFF*Latitude r = 

-0.71, LEAKGE*Latitude = -0.91 respectively; both P < 0.0001), consequently translating 

to a large latitudinal gradient in water quality indices (WTQUAL*Latitude r = -0.71, P < 

0.0001) that parallels agricultural land use patterns in the Upper Midwest (%[Agriculture + 
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Pasture]*Latitude r = -0.72, P < 0.0001). Interestingly, this pattern is independent of the 

gradient in forest cover in surveyed watersheds (%Forest*Latitude r = 0.065, P = 0.387). 

These results show that foliar retention as derived from AVIRIS has a stronger relationship 

to ecosystem processes than traditionally used landscape variables such as percent land 

cover. Maps of latent variable scores derived from applying path weights to manifest 

variables show large amounts of spatial variation in projected litter recalcitrance between 

predominantly human dominated agriculture-woodlot landscapes (predicted low foliar 

recalcitrance Fig. 5A), mixed-hardwood and wetland dominated forests (predicted 

moderate foliar recalcitrance Fig 5B) and mixed-coniferous wetland dominated landscapes 

(predicted high foliar recalcitrance Fig. 5C) across the Midwest. 

 

Discussion 

The intent of this study was to explore the relative influence of canopy foliar traits, 

watershed physiography, and human land use patterns on measures of water quality in 

first- through third-order streams in the Upper Midwest, United states. We employed 

structural equation modeling to relate water quality measures (nitrate-N and soluble 

reactive phosphorus in stream water) with four broad latent variables: 1) nutrient retention 

due to foliar biochemistry, 2) nutrient retention due to watershed physiography, 3) an index 

of human activity (landscape composition dominated with urban and agricultural land use), 

and 4) indicators of watershed-scale nutrient ‘leakiness’. We found that: A) Higher foliar 

recalcitrance, as derived from AVIRIS-estimated C:N and lignin, had a direct positive 

effect on nutrient retention in watersheds and indirectly with overall water quality (i.e. 
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lesser nutrient export), and was negatively correlated with indicators of watershed 

leakiness and indicators of human activity; and B) indicators of watershed leakiness, as 

derived from NADP deposition and AVIRIS-estimated %N, and high human activity 

(derived from NLCD land cover) had negative, direct, influences on water quality (i.e. high 

nutrient export) which could be moderated indirectly by retention in watersheds (Tasseled 

Cap wetness and water body cover) and foliar recalcitrance.  

The comparison of structural models for mostly forested watersheds with 

agricultural watersheds showed that nutrient retention due to foliar recalcitrance was the 

major factor determining watershed nutrient leakiness in forested ecosystems (Table 9, Fig. 

4). This finding agrees with earlier studies that have associated recalcitrant foliar traits 

reducing litter decomposability and affecting eventual nitrogen cycling rates in several 

ecosystems (Aber et al. 1991, Verchot et al. 2001, Ayres et al. 2009, Fortunel et al. 2009, 

Kazakou et al. 2009), especially ones with high rates of N deposition and disturbance.  

Similarly, we found that indicators of wetland landcover mitigated nutrient export 

to streams. Importantly, the comparison of agricultural and forested watersheds (Table 9, 

Fig. 4) revealed that watershed retention formed the most important factor mitigating 

runoff, leakage and eventual water quality in agricultural watersheds. Natural wetlands are 

known to be important sinks of nutrients (Howardwilliams 1985, Johnston 1991, Jansson 

et al. 1994, Saunders and Kalff 2001, Zedler 2003), and have led to the proliferation of 

constructed wetlands for ameliorating water quality issues (Mitsch et al. 1995, Uusi-

Kamppa et al. 2000, Mitsch et al. 2005, Vymazal 2007). While the MODIS wetness index 

was a strong predictor of nutrient retention in watersheds, proportional area under wetlands 
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(from NLCD 2006: Fry et al. 2011) was not. Indicators of human dominated land use also 

behaved as expected with higher proportional areas under agriculture and pastures 

indicating higher nutrient export to watersheds. Intensive agricultural (Allan et al. 1997, 

Johnes and Heathwaite 1997, Howarth 1998, Boesch et al. 2001, Hutchins et al. 2010) and 

animal feeding operations (Carpenter et al. 1998, Pieterse et al. 2003, Buck et al. 2004, 

Elmore and Craine 2011) have long been identified as detrimental to the water quality of 

receiving waters, and have attracted considerable attention for targeted management and 

establishment of total maximum daily loads (Reckhow et al. 2005, Migliaccio and 

Srivastava 2007, Srivastava et al. 2007, USEPA 2010). Indicators of nutrient leakage from 

watersheds, however, were not significant predictors of water quality (Table 6, 7). The 

leakage latent variable consisted of measures of foliar N concentration (possibly an 

indicator of fertilizer application and/or differential nutrient uptake by vegetation) and N 

deposition (direct inputs), both ostensibly strong predictors of nitrogen export (Aber et al. 

1997, Fenn and Poth 1999, Aber et al. 2002, Paerl et al. 2002). These effects may have 

been better captured by the latent vector for human land use (RUNOFF), which explicitly 

coded for patterns of agricultural cover types. Post-hoc tests revealed that this might also 

be an effect of the strong correlation of spatial N deposition patterns in the Upper Midwest 

with agricultural land use intensity (r = 0.66, P < 0.0001) and proportional land use under 

pasture (r = 0.55, P < 0.0001). As such, the results do not suggest that foliar N and N 

deposition are unrelated to water quality, only that patterns in these variables are weaker 

predictors than measures of land use. 
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Our findings are in general agreement with other studies conducted in the Upper 

Midwest in general and Wisconsin in particular (Fitzpatrick et al. 2001, Robertson et al. 

2006, Diebel et al. 2008, Stanley and Maxted 2008, Edlund et al. 2009, Rogers et al. 2009, 

Singh et al. 2013), but our work builds on these studies by incorporating measures related 

to the role of vegetation functional traits in watershed nutrient export. Our effort was made 

possible by recent developments in imaging spectroscopy technology (Asner et al. 2004b, 

Ustin et al. 2004, Ollinger and Smith 2005, Kokaly et al. 2009, Asner et al. 2011) that 

enable landscape-scale estimation of foliar biochemical and morphological traits known to 

be strong drivers of ecosystem function and nutrient cycling (Reich et al. 1992, Shipley 

and Lechowicz 2000, Wright et al. 2004, Shipley et al. 2005, Shipley et al. 2006). High 

foliar lignin to nitrogen ratios (Robinson and Jolidon 2005, Hobbie et al. 2007, Johnson et 

al. 2007) and leaf dry matter content (Garnier et al. 2004, Kazakou et al. 2006, Quested et 

al. 2007, Fortunel et al. 2009, Kazakou et al. 2009) slow litter decomposition rates, but 

linking measures of litter recalcitrance with landscape-scale processes has remained 

difficult. We demonstrate that information obtained from imaging spectrometry can be 

used to simultaneously link ecosystem characteristics such as foliar biochemistry with 

anthropogenic stressors such as land use patterns to assess landscape-scale responses of 

ecosystem to perturbations. Indeed, information obtained from imaging spectrometers is 

increasingly being used for assessing ecosystem attributes such as foliar biochemistry 

(Asner et al. 2007, Huber et al. 2008, Majeke et al. 2008, Kokaly et al. 2009), nutrient 

cycling (Martin and Aber 1997, Asner et al. 2004a, Martin et al. 2008, Kokaly et al. 2009), 

invasive species (Glenn et al. 2005, Lawrence et al. 2006, Underwood et al. 2006, Asner et 
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al. 2008, Andrew and Ustin 2009, He et al. 2011) and mapping canopy fuels (Ha et al. 

2006, Jia et al. 2006), and will be increasingly available to scientists and managers with the 

launch of the HysPIRI mission (Middleton et al. 2013), the National Ecological 

Observatory Network’s Airborne Observation Platform (Kampe et al. 2010) and the 

European Space Agency’s EnMAP platform (Stuffler et al. 2007). 

Land use and ecosystems link in a variety of ways that influence water quality, 

although the connections may be indirect (Maloney and Weller 2011). Whereas it is 

relatively easy to monitor human-driven ecosystem stressors such as land use patterns as a 

basis to infer fertilizer application rates, the assessment of the role of landscape-scale, 

apparently unobservable determinants (e.g. decomposition rates) can be difficult. Our 

study provides a methodology that explicitly links measures of human land use, watershed 

physiography, ecosystem-wide nutrient subsidies and foliar biochemistry. This could 

facilitate a spatially explicit approach to targeting management interventions across large 

regions. We leverage the power of structural equation models to allow the formation of 

latent constructs that, although ‘unobservable’ in the strict sense, are based on 

measurements of ecosystem and anthropogenic indicators that have found wide empirical 

support in previous research and are used in guiding watershed management efforts 

worldwide.  

 

Conclusions 

Overall, we found that canopy foliar chemical and structural traits affected nutrient export 

across a broad region. These findings are made possible by the use of imaging 

203



 

 

 

spectroscopy data. Once such imagery become widely available, they will provide the basis 

for much more comprehensive assessments of the drivers of water quality at landscape and 

broader scales. Our results provide a potential framework to guide landscape management 

decisions such as designing nutrient conserving landscapes (Diebel et al. 2009). For 

example, ‘high leakage’ watersheds could be amended with strategically located wetlands 

or riparian buffers (Mitsch et al. 1995, Diebel et al. 2009, de Souza et al. 2013) when 

topographic modifications (e.g. grading) are not possible. Management agencies could 

target watersheds with varying amounts of disturbance regimes, soil properties and/or 

physiography (Smith et al. 1997, Brakebill and Preston 2003, Brakebill et al. 2010) by 

focusing on those factors that are controllable by either natural or management 

interventions in specific landscapes. For example, the comparisons in Figure 4 suggest that 

foliar traits play a larger role in mediating nutrient runoff and mitigating effects of N 

deposition in forests than in largely agricultural watersheds. In contrast, watershed 

retention (i.e. wetlands) may play a larger role in mitigating runoff and ameliorating effects 

of N deposition in agricultural compared to forested watersheds. Managing and monitoring 

ecosystems to ensure balanced delivery of multiple ecosystem services is a key challenge 

for applied ecology (de Bello et al. 2010). Our study is a small step in this direction: by 

identifying ecological associations in addition to landscape-scale physiographic and 

climatologic variables, we provide insights into a range of drivers of water quality that may 

help focus development and restoration policies towards building more resilient 

landscapes. At the same time, utilizing recent advances in satellite and airborne imaging 
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technologies may make this process more standardized and available to broader audience 

of managers and stakeholders. 
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Figures 

Figure 1: Study area. Sampled watersheds are overlaid on AVIRIS flightlines. Letters refer 

to locations of maps in Figure 5. 
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Figure 2: Proposed structural model. Arrows denote directions of hypothesized influences.  
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Figure 3: Fitted (reduced-variable) structural model. Path colors denote whether the 

antecedent latent variable positively (blue) or negatively (red) effects the descendent latent 

variable, line thickness is proportional to path weight. For example, RETENF increases 

RETENW, but decreases LEAKGE. Numbers adjacent to links denote standardized 

coefficient sizes. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Figure 4: Comparison of inner path coefficients of models built for predominantly forested 

watersheds (>70% forested, green) vs. more agricultural ones (red). *P < 0.05, **P < 0.01, 

***P < 0.001.  
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Figure 5: Maps of latent variable RETENF (nutrient retention due to foliar recalcitrance) 

derived by applying path weights (Estimate column, Table 5) to AVIRIS-derived maps of 

C:N ratio and lignin:N ratio. Brighter colors indicate projected low litter recalcitrance due 

to high litter quality. Panels on the right are land cover maps derived from NLCD 2006. 

Letters refer to location of sites in Figure 1. Black polygons indicate watersheds used in 

the study. 
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Overall conclusions 

My primary focus was to develop models using hypertemporal satellite data and imaging 

spectroscopy to predict streamwater nutrient concentrations across large regions. The goal 

was the development of generalizable techniques that would facilitate prediction of stream 

water nutrient levels based on data obtained on a variety of spatial and temporal 

resolutions. By identifying ecological associations in addition to landscape-scale 

physiographic and climatologic variables, this research provides insights into a range of 

drivers of water quality that may help focus development and restoration policies towards 

building more resilient landscapes.  

In general, a major goal of remote sensing, and imaging spectroscopy in particular, 

is the development of generalizable algorithms to repeatedly and accurately map 

ecosystem properties across space and time. In this regard, key objectives of my research 

were the development and application of generalizable algorithms to repeatedly and 

accurately map ecosystem properties such as foliar traits across space and time. This study 

illustrates the utility of imaging spectroscopy for providing rapid and accurate estimates 

key properties of forest canopies for a range of species and growth environments. A 

number of important results have come from this research; I summarize the findings from 

the four chapters below. 

 

1. Remote sensing data from MODIS facilitated prediction of inter-annual stream 

water nutrient concentrations. Not only can predictions be made on per pixel and 

watershed scale basis, but I also showed that water quality impacts lag the 
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landscape dynamics that I hypothesized were drivers. This is consistent with a 

range of studies showing that water quality impacts of disturbance usually peak a 

year or more following the disturbance (Likens et al. 1970, Eshleman et al. 1998, 

Eshleman et al. 2000) These means that remotely sensed measures of landscape 

dynamics can be used to make predictions of expected impacts on water quality 

using imagery from one year in advance. Water quality indicators obtained from 

techniques developed from this research may therefore facilitate timely 

management responses if necessary.  

2. Importantly, the predictive models developed in this research can be applied to any 

watersheds or watershed delineations for which the MODIS data exist. Annually 

derived, spatially explicit models developed here offer great promise for both 

monitoring and targeting the management of stream water quality at the watershed 

scale.   

3. While MODIS-based inter-annual water quality measures were fairly accurate for 

Wisconsin, MODIS data also facilitated the formulation of models to explain intra-

annual variations in water quality for the Chesapeake Bay. Spatial predictions 

obtained from the functional linear concurrent models (FLCMs) from this study 

may be instrumental in targeting management efforts and for better representing 

forests in process-based models such as BASINS-HSPF.  In particular, FLCMs can 

be utilized in many other ecological applications that involve time series in both 

response and predictor variables. FLCMs also facilitate identification of the relative 
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importance in both the magnitude and timing of hypothesized drivers of intra-

annual variations in drivers of ecosystem processes. 

4. Using spectroscopic imagery and partial least squares regression (PLSR) models, I 

developed a start-to-finish processing stream that allows the mapping of six forest 

functional traits (leaf mass per area [LMA] as well as percent nitrogen, carbon, 

fiber, lignin and cellulose) across a range of images. The method is generalizable 

and yields accurate, repeatable results, with best model performance being for 

LMA and nitrogen, two of the most important variables for measuring ecosystem 

function and estimating photosynthetic capacity (Wright et al. 2004).  

5. This research represents the first time both leaf and canopy (i.e., image) level 

spectra have been used to map functional traits at all stages of analysis, from the 

leaf to plot to image level. Also, I developed and demonstrated an approach to 

characterizing and mapping uncertainty based on measurement and prediction 

uncertainty at all stages of the analysis and identified the processing steps required 

to ensure consistent results. 

6. Information obtained from imaging spectrometry can be used to link ecosystem 

characteristics such as foliar biochemistry with anthropogenic stressors such as 

land use patterns to assess landscape-scale responses of ecosystem to perturbations. 

This is made possible by the ability of imaging spectroscopy to provide measures 

of foliar traits that influence nutrient cycling and water quality in watersheds. 

7. Using structural equation models, I found significant differences in the processes 

that control that control nutrient export from mixed use landscapes. Nutrient 
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retention due to foliar recalcitrance was the major factor determining nutrient 

leakiness in forested ecosystems, while retention in watersheds (likely due to 

wetland distribution) was the major driver in agricultural areas.  

 

Overall, my research provides a suite of methodologies that explicitly link measures of 

human land use, disturbance, watershed physiography, ecosystem-wide nutrient subsidies 

and foliar biochemistry to regional-scale measures of ecosystem functioning in general and 

water quality in particular. Although the applications presented here are specific to the 

areas of study, the methodologies presented in this research provide a template for 

landscape scale monitoring that can be implemented using a range of existing and 

proposed remote sensing instruments. My results may therefore guide future studies and 

provide information that will enable resource managers to identify the development and 

restoration policies needed to ensure clean water.  The novelty of the work is the utilization 

of a range of data sources at multiple temporal, spatial and spectral scales needed to fully 

characterize the influence of vegetation functional traits on water quality. 
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