
Understanding In-Context Learning via Synthetic and Controllable Datasets

by

Ziqian Lin

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2025

Date of final oral examination: 04/18/2025

The dissertation is approved by the following members of the Final Oral Committee:
Kangwook Lee, Assistant Professor, Electrical and Computer Engineering
Sharon Li, Assistant Professor, Computer Sciences
Jerry Zhu, Professor, Computer Sciences
Robert D. Nowak, Professor, Electrical and Computer Engineering

© Copyright by Ziqian Lin 2025

All Rights Reserved

i

To my family and mentors, whose guidance shaped my curiosity for science and inspired

me to pursue knowledge with integrity.

ii

Acknowledgements

First and foremost, I want to sincerely thank my advisor, Professor Kangwook

Lee, who taught me how to conduct the right research. When we first met, I was

good at experiments but had difficulty with writing and giving presentations. He

provided me with detailed guidance on how to improve these weaknesses. He

explained clearly how to prepare a research project presentation. I should answer

these questions in my presentation: (i) What is the project? (ii) What is the current

status? (iii) What did we discuss last week? (iv) What did we plan to do last week?

(v) What did we achieve last week, and what were the results? (vi) What will we

do next week? He also gave me valuable advice on writing, from basic details like

distinguishing between “citet” and “citep,” to high-level aspects such as logical

flow. I’m grateful to have observed how he revised my papers, which helped me

understand both the rationale behind his changes and how to improve the flow.

Gradually, I learned how to conduct the right and high-quality research. I greatly

value our meetings. I feel lucky and honored to have Kangwook as my advisor.

I am grateful to my committee members, Professor Jerry Zhu, Professor Robert

D. Nowak, and Professor Sharon Li. I first met Jerry in the course CS 861, Theory of

iii

Machine Learning, which sparked my interest in theoretical research. Robert orga-

nized the SILO seminars1, which invited speakers that broadened my perspective

on different research areas. Early in my Ph.D., I worked with Sharon, and together

we successfully submitted a paper to CVPR, which started my research journey at

the University of Wisconsin-Madison.

I am also thankful to the excellent mentors during my internships at Amazon

in 2022 and Google in 2024. At Amazon, I was mentored by Hao Ding and col-

laborated with Nghia Trong Hoang, Branislav Kveton, Anoop Deoras, and Hao

Wang. Although our first submission was not accepted, we continued working

and eventually published our work at WSDM 2024. At Google, I was mentored by

Yaojie Liu and collaborated with Runze Li, Yujia Chen, Vincent Chu, and Sharon

Li. I learned valuable industrial experience, such as communication and reporting

skills, from them.

This dissertation would not have been possible without the support from my

collaborators: Jungtaek Kim, Thomas Zeng, Sreya Dutta Roy, Tuan Dinh, Yuchen

Zeng, Ruisu Zhang, Michael Gira, Shashank Rajput, Jy-yong Sohn, Dimitris Pa-

pailiopoulos, Yicong Chen, Liu Yang, and Shubham Kumar Bharti. I learned a

great deal from them. Additionally, I am thankful for my lifelong friends Qingyun

Wang, Yin Liu, and Liang Shang, with whom I studied and enjoyed life together.

I would also like to acknowledge Angela Thorp, my graduate coordinator, who

kindly answered my questions and provided support whenever I consulted her.

Lastly, I am deeply grateful to my parents. They supported me in pursuing my
1https://silo.wisc.edu/

https://silo.wisc.edu/

iv

studies abroad. The fourth year of my Ph.D. was especially difficult because of

health issues caused by poor eating habits and insufficient sleep. My mother came

from China to Madison to care for me during this hard time, as she has always

supported me throughout my life. I am incredibly lucky to have her as my mom.

Thank you to everyone I’ve encountered along the way in my life for your help, guidance,

and lessons I’ve received.

v

Contents

Contents v

List of Tables viii

List of Figures xi

Abstract xxii

1 Introduction 1

1.1 Large Language Models and In-Context Learning 1

1.2 Synthetic and Controllable Datasets for ICL in the Literature 3

1.3 Two Missing Pieces in the Literature 7

1.4 Research Questions and Contributions 8

2 Explaining Early Ascent: Dual Operating Modes of In-Context Learning 10

2.1 Overview . 11

2.2 Pretraining and Data Generative Model 16

2.3 Inference and Dual Operating Modes 21

vi

2.4 Early Ascent . 25

2.5 Bounded Efficacy of Biased-Label ICL 29

2.6 Extension with Preliminary Results: Coded Prompts for Large Lan-

guage Models . 32

2.7 Conclusion . 48

3 Incorporating Instructions into Synthetic ICL: In-Context Learning with

Hypothesis-Class Guidance 51

3.1 Overview . 52

3.2 Meta-Learning for ICL-HCG . 56

3.3 Experiments . 63

3.4 Discussion . 73

3.5 Extension with Preliminary Results: Can Transformers Do In-Context

Blind Tree Search? . 74

3.6 Conclusion . 83

4 Contribution and Future Work 84

4.1 Contribution . 84

4.2 Future Work . 86

A For Chapter 2 89

A.1 Notations . 89

A.2 Prior Examples . 94

A.3 Coarse Upper Bound for ICL Risk . 97

A.4 Transformer Performance in Approximating Bayesian Inference . . . 99

vii

A.5 Additional Information for Bounded Efficacy in GPT-4 100

A.6 Bounded Efficacy in Zero-shot ICL . 103

A.7 The Derivation of Posterior . 104

A.8 Detailed Analysis of Component Shifting and Re-weighting 108

A.9 Additional Experiments for Early Ascent 115

A.10 Mathematical Derivation for Early Ascent 117

A.11 Proof Tools . 121

A.12 ICL to Learn the In-Context Function 125

A.13 ICL with Biased Labels to Retrieve A Task 129

A.14 Proof of Lemma 6 . 146

A.15 Toy Example for Component Shifting and Component Re-weighting . 151

B For Chapter 3 167

B.1 Pseudo Algorithm for ICL-HCG . 167

B.2 Implementation Detail of Hypothesis Prefix and Context Query . . . 167

B.3 Additional Details of Experiments . 170

B.4 Experimental Setup . 171

Bibliography 178

viii

List of Tables

2.1 Bounded efficacy in GPT-4. Error rate measured with respect to “ad-

dition (+)” and “biased +”. The bounded efficacy phenomenon: the

error rate goes down to k = 2, but it increases afterward. Experiment

details in Appendix A.5.1. 31

2.2 The illustration of coded and uncoded prompts with a real example. A

coded prompt predicts multiple samples in a single inference while an

uncoded prompt predicts one sample in one inference. Uncoded prompt

1 is in the same format as the coded prompt, while uncoded prompt 2 is

a more natural question format for prompting a single example. ✓/✗ =

correct/incorrect prediction. 44

2.3 Coded prompt vs. uncoded prompt. F1-score comparison between

coded prompt and uncoded prompt under different prime ranges and

different sample batch sizes. F1-score is measured by averaging 400

batches. 45

2.4 Comparison of MSE and rate across different methods. 48

ix

A.1 Prior settings for early ascent. The pretraining task prior comprises two

components for one dimension and three for two or more dimensions.

ICL aims to predict following the in-context function w∗, equivalent to

prior center 2’s function w2 (w∗ = w2). The in-context task is character-

ized by having a closer x distribution to the task of prior center 1 but a

closer x→ y mapping to the prior center 2. The parameters for all cases

are set to σµ = σw = 0.05, σx = τx = 1, and σy = 2. Refer to Fig. A.2b for

visualization of the prior centers under dimension d ∈ {1, 2, 3}. 98

A.2 Setup of bounded efficacy. Experiment setting to reveal the bounded

efficacy phenomenon of biased-label ICL in GPT-4. 101

A.3 Zero in-context example (k = 0). Prediction is colored red if it is correct

for task retrieval (a(?)b = (a + b)), and colored blue if it is correct for

task learning (a(?)b = (a + b + 1)). “...” denotes the hidden part of the

prompt. Please refer to Table A.2 for the whole prompt. 102

A.4 Two in-context examples (k = 2). Prediction is colored red if it is correct

for task retrieval (a(?)b = (a + b)), and colored blue if it is correct for

task learning (a(?)b = (a + b + 1)). “...” denotes the hidden part of the

prompt. Please refer to Table A.2 for the whole prompt. 102

A.5 Eight in-context examples (k = 8). Prediction is colored red if it is

correct for task retrieval (a(?)b = (a + b)), and colored blue if it is correct

for task learning (a(?)b = (a + b + 1)). “...” denotes the hidden part of

the prompt. Please refer to Table A.2 for the whole prompt. 103

x

B.1 Hyperparameter search spaces for different model architectures. The

optimal hyperparameters are bolded if multiple possibilities are provided.172

B.2 Experimental setups of different generalizations. The expression

min{512, #possible} indicates that when the number of possible hypoth-

esis classes is fewer than 512, we evaluate all possible hypothesis classes

for testing; otherwise, we limit the selection to at most 512 hypothesis

classes. For example, if |HOOD| = 16 and |H| = 2, the total number of

possible hypothesis classes is given by:
(

|HOOD|
|H|

)
=
(

16
2

)
= 16×15

2 = 120.

Since 120 < 512, we evaluate all 120 hypothesis classes for testing in this

scenario. 172

B.3 Additional setups. Numbers that differ from those in Table B.2 are

highlighted in bold for clarity. 173

xi

List of Figures

2.1 A summary of our contributions. We first propose a probabilistic model

for pretraining data and in-context examples. By analyzing our model,

we obtain a quantitative understanding of the dual operating modes of

ICL, and explain two real-world phenomena observed with LLMs. . . . 13

2.2 Different pretraining data models. Raventos et al. and ours. 18

2.3 Numerical experiments. (Left) An illustration of the pretraining priors.

(Right) The numerical computational results. 20

2.4 Distance to the closest prior vs ICL risk. We compute ICL risks of three

target tasks colored red (farthest), green, and blue (closest), under the

tetrahedron setting, illustrated in the left-most figure. The red target

task has the longest distance to the closest prior center, and the blue

target task has the shortest distance to the closest prior center. We can

observe that the target task is easier to learn when the distance to the

closest prior is smaller. 27

xii

2.5 The early ascent phenomenon. Fig. 2.5a and Fig. 2.5b show that the

task retrieval mode is dominant up to k = 32, and component 1’s mix-

ture weight increases (E[w̃] approaches w1). Since this component is

farther than the other one, the risk starts increasing. At larger k values,

the risk starts decreasing (E[w̃] approaches w2) via task learning. See

Appendix A.2.3 for setting details. We further examine the early ascent

phenomenon under linear regression with varied levels of label noises

in Appendix A.9.1, and under non-linear regression and discrete token

prediction in Appendix A.9.2. 28

2.6 Bounded efficacy. The error rates of ICL with random labels start in-

creasing at large k. See Appendix A.6 for more experimental results.

. 31

2.7 Illustration of the analogy between information bit transmission in a

noisy communication channel and LLM inference. The communication

channel transmits bit B with a probability Pe(B) of error occurrence,

while LLM infers a sample with true label X and has a probability

Pe(X; p) of making incorrect predictions. The notation W is for the noise

introduced by channel or LLMs. 38

2.8 Illustration of the analogy between encoded bit transmission in a noisy

communication channel and coded LLM inference. The communication

channel transmits an encoded bit B1⊕B2, while LLM inference predicts

multiple samples (two samples in this example) with true label X1, X2.

The notation W is for the noise introduced by the channel or LLMs. . . . 38

xiii

2.9 Uncoded prompts vs. uncoded+coded+(dec2) prompts. Each MSE

pair in the scatter diagram represents one experiment, with a total of

100 experiments. The red line represents y = x. 49

3.1 Common ICL framework vs. ours. Conventional frameworks with

synthetic datasets often construct sequences by concatenating multiple

(x, y) pairs, overlooking the importance of instructions. In contrast, our

approach explicitly incorporates instructions through a hypothesis prefix.

Specifically, we transform the hypothesis classH into a sequence that is

prepended to the sequence of (x, y) pairs and then fed into a Transformer.

We refer to this method as in-context learning with hypothesis-class guidance

(ICL-HCG). (Real-world examples are demonstrated using the GPT-4

Legacy model.) . 53

3.2 Four types of generalization. An illustration of the four types of gener-

alization. 60

3.3 Learning ICL-HCG via Transformer. We begin by sampling a subset

from the hypothesis universe as the hypothesis classH. Next, we encode

the hypothesis class H and concatenate it with the context query into

a unified sequence of tokens. This sequence is fed into a Transformer

model for training with next-token prediction, and testing for evaluat-

ing the accuracy on y’s and hypothesis identification. (This figure is a

simplified illustration. Please refer to Appendix B.2 and Fig. B.1 for the

full details.) . 62

xiv

3.4 The generation of training and testing hypothesis classes. The hypoth-

esis universe is devided into two pools: one for generating training and

ID testing hypothesis classes, and another for generating OOD testing

hypothesis classes. 63

3.5 Multiple runs on ID and OOD hypothesis class generalizations. (Dif-

ferent runs imply training and testing with different random seeds.)

Transformer successfully learns ICL-HCG and generalizes to new hy-

pothesis classes and hypotheses. Generalization on ID hypotheses is

easier than on OOD hypotheses. Refer to Appendix B.3.1, Fig. B.2 for

more curves of loss, training, and testing accuracy. 65

3.6 Multiple runs on ID and OOD hypothesis class size generalizations.

(Different runs imply training and testing with different random seeds.)

Transformers trained on hypothesis classes with sizes |H| ∈ {7, 8, 9} suc-

cessfully generalize to hypothesis classes with sizes |H| ∈ {2, 3, . . . , 13, 14}

under ID hypothesis class size generalization. In contrast, the same

trained Transformer exhibits poorer performance on OOD hypothesis

class size generalization. In the figure, IS stands for “in-size,” indicating

the hypothesis class sizes included in the training, while OOS stands for

“out-of-size,” indicating the sizes that are not included in the training.

Refer to Appendix B.3.1, Fig. B.3 for training accuracy curves. 66

xv

3.7 Various models on ID and OOD hypothesis class generalizations.

Transformer and Mamba succeed on both ID and OOD hypothesis class

generalization, whereas LSTM and GRU fail. Mamba exhibits slightly

higher accuracy than Transformer on OOD generalization. Refer to

Appendix B.3.2 and Fig. B.4 for training curves. 67

3.8 Various models on ID and OOD hypothesis class size generalizations.

In both settings, Transformers and Mamba exhibit strong generalization,

whereas LSTM and GRU fail to do so. For hypothesis class sizes |H| ∈

{7, 8, 9}, Mamba achieves accuracy comparable to Transformer on ID

hypothesis class generalization, and surpasses Transformer on OOD

hypothesis class generalization. However, Transformers show similar or

higher accuracy than Mamba on ID hypothesis class size generalization,

suggesting a potential advantage in length generalization. Refer to

Appendix B.3.2, Fig. B.5 for training accuracy curves. 68

3.9 Effect of training hypothesis class count. Transformer and Mamba

trained on ICL-HCG tasks generalize to new hypothesis classes with

only 4 to 16 training hypothesis classes. Refer to Appendix B.3.3, Fig. B.6

for training accuracy and more details. 69

3.10 The effect of sample imbalance. Sample imbalance leads to lower

convergence speed. 70

xvi

3.11 The effect of instruction. Under ID hypothesis class generalization,

providing an instruction (hypothesis prefix) significantly boosts ICL

performance, especially when the y token appears early (indicating only

a few demonstration examples precede it). 71

3.12 The effect of pretraining hypothesis diversity. Under hypothesis gener-

alization, increasing the diversity of pretraining hypotheses significantly

boosts the performance of ICL when instructions are provided. However,

without instructions, this effect is limited. 73

3.13 A maze example with size 6× 6. 80

3.14 Comparison on MCTS with varied C values. 81

3.15 Comparison on different C values. We train Transformers on trajec-

tories generated by MCTS with different UCT exploration constant C

values. During the training process, Transformers learn from the MCTS

to perform search, and C = 0.1 achieves the best performance similar to

MCTS. 82

4.1 Works in this thesis and future directions. 85

xvii

A.1 Visualization of the tetrahedron setting. The figure shows the pretrain-

ing prior centers and the in-context task. For β ∈ {1, 2, 3, 4}, (µβ, wβ) is a

mixture component center in the prior. (µα, wα) for α = 1 (numbers are

noted in the center of circles) is the center of the target task for ICL with

biased labels, while (µ∗, w∗) is the in-context task. The dotted purple

lines highlight the distance of 1 from the origin (0, 0, 0) to any point

denoted by µ or w. 94

A.14 Illustration of the function exp(k + 2)/(1 + exp(k + 2)). 120

A.2 The early ascent phenomenon. Fig. A.2a displays the trends of expected

losses, upper bounds, and mixture weights, while Fig. A.2b presents the

trend of the expectation of w̃. We can see that the task retrieval mode

is dominant up to k = 32, and component 1’s mixture weight increases

(E[w̃] approaches w1). Since this misleading component 1 is far from

the target component 2, the risk starts increasing. At larger k values, the

risk starts decreasing (E[w̃] approaches w2) via task learning. 158

xviii

A.3 In-context learning vs ridge regression. R∗ indicates the prediction

by ridge regression, F∗ indicates the prediction by ICL with a Bayes-

optimal next-token predictor, and y∗
k+1 = ⟨xk+1, w∗⟩. Let the k samples

draw from a task (µ∗, w∗), which is drawn from the pretraining prior

distribution. The dimension d of x equals 6. We observe that ICL per-

forms better than ridge regression when k is small, and ridge regression

performs better than ICL when k ≥ d. Especially, when the task prior

distribution has high task variance (big δµ and δw values), ICL and ridge

regression have very similar performance. 159

A.4 Prior task noises. The figure shows the experiment results under varied

noise levels. δµ and δw indicate the noise levels of the pretraining task

prior. F∗ indicates the prediction of Bayesian inference while F̂ indicates

the prediction of the trained Transformer network. The results show

that the trained Transformer network’s performance can approach the

performance of Bayesian inference. 159

A.5 Number of components. The figure shows the experiment results under

varied component densities. M indicates the number of mixture com-

ponents corresponding to different 3D regular polyhedrons described

in Appendix A.2.1, and δµ = δw = 1
16 . F∗ indicates the prediction of

Bayesian inference while F̂ indicates the prediction of the trained Trans-

former network. The higher the component density is, the harder it is

for the Transformer network to approach Bayesian inference. 160

xix

A.6 Experiments on varying feature dimensions. The figure shows the

experiment results under varied dimensions. d indicates the dimension

and the number of mixture components (see Appendix A.2.2 for setting

details), and δµ = δw = 1
16 . F∗ indicates the prediction of Bayesian

inference while F̂ indicates the prediction of the trained Transformer

network. The higher the feature dimension is, the harder it is for the

Transformer network to approach Bayesian inference. 161

A.7 Ablations on varying numbers of examples in the demonstrations

(k). Models that are the best under 13B in each task category (Channel

MetaICL and Direct GPT-J, respectively) are used. 161

A.8 Bounded efficacy phenomenon of real-world LLMs. As k increases, the

classification error curve of ICL with random labels exhibits the bounded

efficacy phenomenon. The curve with true labels further confirms that

this phenomenon is not due to models tending to perform worse on

long sequences. 162

A.9 Numerical analysis on component re-weighting. The trends of Ψµ, Ψw,

and πm for CR with increasing k under varying task noise parameters. . 162

A.10 The trend of Component Shifting. Numerical computations of ∥µ̃m −

µ∗∥, ∥w̃m −w∗∥ for Component Shifting (CS). 163

A.11 Early ascent under varied label noises. Results show that the early

ascent phenomenon maintains for noise level τy ∈ [0, 1.0]. Label noise

level σy = 1.0 is used for pretraining. 163

xx

A.12 Bounded efficacy under varied label noises. Results show that the

bounded efficacy phenomenon maintains for noise level τy ∈ [0, 0.1].

Label noise level σy = 1.0 is used for pretraining. 164

A.13 Early ascent on non-linear regression and discrete token prediction.

F̂ indicates the prediction by a pretrained Transformer model and F∗

indicates the prediction by numerical computation following a Bayes

optimal predictor. While we cannot derive the optimal predictor under

non-linear regression, we can derive the optimal predictor under discrete

token prediction. 164

A.15 The numerical computation of the task learning. The second and

third rows show the eigenvalues of the matrices δw

∑k

i=1 xix
⊤
i

k
and I +

δw
∑k

i=1 xix
⊤
i . The fourth row shows the distance between the predicted

w̃ and w∗ has a reciprocal decreasing rate with respect to k. The fifth

and sixth rows indicate the expected squared loss follows a quadratic

decreasing rate with respect to k. 165

A.16 Proof roadmap of ICL with biased labels, Theorem. 5. 166

A.17 Visualization of prior, posterior, and observations. The left part of the

figure indicates the pretrained next-token predictor is pretrained on the

task prior distribution according to Assumption 10, and the prediction

is based on the prior without in-context examples. The right part of the

figure indicates that with in-context samples, the prediction is based on

the posterior, regarding the in-context examples as observed samples. . . 166

xxi

B.1 The framework. We convert hypothesis classH and ICL sequence SK

into sequences of tokens, concatenate them and input to Transformer.

Then we examine whether Transformer can predict correct y and z values.169

B.2 Multiple runs for ID and OOD hypothesis class generalizations. . . . 170

B.3 Multiple runs for ID and OOD hypothesis class size generalizations. . 174

B.4 Various models on ID and OOD hypothesis class generalizations. . . . 175

B.5 Various models on ID and OOD hypothesis class generalizations. . . . 176

B.6 Effect of training hypothesis class count on ID and OOD hypothesis

class generalization. 177

xxii

Abstract

Large language models (LLMs) have become a central component in modern

natural language processing, exhibiting strong capabilities across a wide range

of tasks. A key feature of this success is in-context learning (ICL), where LLMs

improve their prediction performance on new tasks by conditioning on a set of

input-output examples provided in the prompt, without requiring any parameter

updates. Despite its empirical effectiveness in applications such as text classification,

question answering, and translation, the underlying mechanism of ICL remains

not fully understood from a theoretical perspective.

To address this challenge, this thesis leverages synthetic and controllable

datasets as a fundamental tool for understanding ICL. While existing works have

extensively leveraged synthetic and controllable datasets such as those [31, 2, 127]

based on linear regression tasks to study ICL, we identify two critical missing pieces

in the current literature. The first missing piece is that an empirically observed phe-

nomenon, named “early ascent” in this thesis, remains theoretically unexplained:

although we expect the prediction error to decrease as the number of in-context

samples increases, we empirically found that the error increases and decreases

xxiii

for some experiments [11]. The second missing piece is that existing synthetic

datasets overlook the instructions used in ICL: while in real-world use cases of

ICL, in-context samples are coupled with task instructions that guide the model’s

behavior, the current synthetic and controllable datasets in the literature overlook

the role of instructions. This thesis fills these two missing pieces by constructing

and studying synthetic and controllable datasets.

To fill the first missing piece, we propose a novel probabilistic model for gen-

erating pretraining tasks and then pretraining sequences from those tasks, where

the pretraining tasks have a latent clustered structure. We analyze such a syn-

thetic and controllable data model and reveal that ICL operates in two distinct

modes: task retrieval and task learning. Then we provide the first mathematical

explanation for the early ascent phenomenon. Furthermore, we predict the phe-

nomenon of “bounded efficacy” named in this thesis, where the prediction error of

ICL with randomly labeled examples initially decreases but eventually increases

as the number of in-context examples increases. To fill the second missing piece,

we propose a new synthetic and controllable data framework, namely In-Context

Learning with Hypothesis-Class Guidance (ICL-HCG), which explicitly incorporates

task instructions into synthetic data generation. Through extensive experiments,

we demonstrate that the instruction significantly improves the prediction accuracy

and generalization ability of ICL compared to ICL without instruction.

Additionally, this thesis explores future directions with preliminary results.

Inspired by the dual operating modes of ICL, we propose a new prompt design

method named coded prompts to enhance LLM performance when multiple test

xxiv

samples are available at inference time. We also study a new problem setting,

in-context blind tree search, extending ICL to sequential decision-making scenarios

involving action-reward loops.

In summary, this thesis develops synthetic and controllable datasets to enable

mathematical analysis, provides new theoretical and empirical insights to our

understanding of ICL, and improves LLMs’ performance in practice.

1

Chapter 1

Introduction

1.1 Large Language Models and In-Context Learning

Large language models (LLMs) have demonstrated great capabilities in solving var-

ious complex tasks via simple prompts [131]. Among their capabilities, in-context

learning (ICL) [11] is really impressive, because ICL enables LLMs to adapt to

new tasks by conditioning on a sequence of input-output examples provided in

the prompt, without requiring any explicit parameter updates. In the standard ICL

setting, the model is given a set of k samples {(xi, yi)}k
i=1 corresponding to a partic-

ular task that serve as in-context samples, followed by a new input xquery for which

the model is expected to predict the output ŷquery. The entire sequence is converted

into a single prompt and fed into an LLM, such as a pretrained Transformer model:

LLM(x1, y1, x2, y2, . . . , xk, yk, xquery)⇒ ŷquery.

2

This process allows the model to infer the underlying task from the provided exam-

ples and make the prediction without the need for any fine-tuning and parameter

updating. ICL has become a powerful paradigm for enabling LLMs to perform

many different tasks by leveraging only a few in-context samples, such as text

classification [6, 72, 75], question answering [8, 17, 50], and translation [126, 105].

However, a comprehensive mathematical and theoretical understanding of ICL

remains open.

To systematically understand the mechanism of ICL, many works have utilized

synthetic and controllable datasets to facilitate detailed experimental and theo-

retical studies. An example is the linear regression setup introduced by Garg et al.

[31], which is the first work on utilizing the synthetic and controllable dataset to

study ICL. In this setting, for each sequence, x’s are sampled from an isotropic

Gaussian, and y’s are generated by linear mappings ⟨x, w⟩ where w is a coefficient

specific to each sequence. Such a synthetic and controllable dataset allows us to

train Transformer models from scratch, explore more specific aspects of ICL, and

give precise explanations of how LLMs utilize in-context samples during ICL.

This chapter first reviews existing works using synthetic and controllable datasets

to study ICL, then identifies two missing pieces of the literature, and finally intro-

duces the research questions and contributions in this thesis.

3

1.2 Synthetic and Controllable Datasets for ICL in the

Literature

Garg et al. [31] first build a synthetic and controllable dataset where the pretrain-

ing and testing sequences are generated from noiseless linear regression tasks.

Specifically, for each sequence, Garg et al. [31] first sample w from a Gaussian

distribution N (0, Id), representing the underlying task. Then, a number of vectors

{x}K
i=1 are sampled from an isotropic Gaussian distribution N (0, I), and {y}K

i=1

are generated by y(i) = ⟨w, x(i)⟩. Finally, those x’s and y’s are concatenated into a

sequence (x(1), y(1), x(2), y(2), . . . , xK , yK) for pretraining. For inference, the input

sequence follows the format (x(1), y(1), x(2), y(2), . . . , xk, yk, xquery), where the k pairs

{(x(i), y(i))}k
i=1 following a new sampled w serve as in-context samples. The model

then predicts the output for xquery conditioned on {(x(i), y(i))}k
i=1.

Noiseless Linear Regression Based on the well-defined synthetic and controllable

dataset by Garg et al. [31] using noiseless linear regression tasks, researchers

systematically study the mechanisms of ICL and properties of Transformers. For

instance, there is an exciting line of research on connecting ICL to gradient descent,

firstly hinted by Garg et al. [31]. Akyürek et al. [2] and Von Oswald et al. [112] then

show that one attention layer can be exactly constructed to perform gradient descent,

and empirically find similarities between ICL and gradient descent. Further, Ahn

et al. [1] theoretically show that under certain conditions, Transformers trained on

noiseless linear regression tasks minimizing the pretraining loss will implement a

gradient descent algorithm. Nevertheless, Fu et al. [27] show that Transformers

4

are able to approximate the second-order optimization methods, sharing a similar

convergence rate as iterative Newton’s method. Besides gradient descent, there

are lots of other interesting topics on ICL and Transformers based on this linear

regression setting, such as looped Transformer [122, 32], training dynamic [128,

44, 51], generalization [83], etc.

Noisy Linear Regression Such a simple noiseless linear regression task is further

extended to variants. By extending the linear regression to noisy linear regression

y = ⟨x, w⟩+ ϵ, Li et al. [60] analyze the generalization and stability of ICL. Wu et al.

[117] and Raventós et al. [91] analyze the effect of task diversity on the risk in ICL.

With the tasks of the format y = W x + ϵ, where W is a matrix rather than a vector,

Chen et al. [13] examine the training dynamic of the multi-head attention in ICL.

More than Linear Regression Beyond linear regression, researchers are also in-

terested in non-linear regression and classification. The research directions are

scattered, and we list them as follows. Bai et al. [4] show that Transformers can

perform in-context algorithm selection, i.e., adaptively selecting different ICL algo-

rithms such as gradient descent, least square, or ridge regression. Bhattamishra et al.

[7] show that Transformers can learn a variety of Boolean function classes. Cheng

et al. [15] provide evidence that Transformers can learn to implement gradient

descent to enable them to learn non-linear functions. Guo et al. [37] show that

trained Transformer achieves near-optimal ICL performance under y = ⟨w, f(x)⟩,

where f is a shallow neural network. Examining linear and non-linear regression

tasks, Fan et al. [25] and Tripuraneni et al. [107] show Transformer can perform

5

ICL on composited or mixed tasks of pretrained linear or non-linear tasks, and

Yadlowsky et al. [121] examine whether trained Transformers can generalize to

new tasks beyond pretraining. Park et al. [84] examine whether Mamba can in-

context learn a variety of synthetic tasks, such as sparse linear regressions and

decision trees. Via examining regression and classification tasks, Kim et al. [52]

show that task diversity helps shorten the ICL plateau pretraining. Ramesh et al.

[88] assume there are multiple functions composited to connect x and y pair, e.g.,

y = f1 ◦ f2 ◦ f3(x) to study the compositional capabilities of Trasnformer. Li et al.

[58] study how the non-linear Transformer learns binary classification.

Synthetic and Controllable Datasets with Images Beyond simply leveraging vec-

tors as x’s, researchers also consider images as those x’s, i.e., the training sequence

(x(1), y(1), x(2), y(2), . . .) has image-label pairs serving as in-context samples. Chan

et al. [12] first examine how the pretraining data properties affect ICL under this

setting. Singh et al. [102] and Reddy [93] further examine the effect of data on the

dynamics of ICL and in-weight learning. Fu et al. [28] study the learning plateaus

of ICL with similar pretraining sequences composed of image-label pairs.

Synthetic and Controllable Datasets with Instruction To the best of our knowl-

edge, there are two articles on synthetic and controllable datasets with instruc-

tions. Huang and Ge [43] append an additional vector µ to the sequences with

(x, w⊤x) pairs, which leads to the sequence (µ, x(1), w⊤x(1), x(2), w⊤x(2), . . .) where

x(i) ∼ N (µ, I), and show that the trained Transformer can achieve significantly

lower loss on ICL when the task descriptor µ is provided. Xuanyuan et al. [120]

6

develop a new synthetic and controllable dataset based on task ((a · x) ◦ (b · y))

mod p = r, where (x, y) is the input, r is the output, ◦ is an operation (+,−, /), and

each task is defined by the parameters (a, b, ◦) (p is a constant). The instruction is

constructed as (al, au, bl, bu, ◦), where al and au are the lower and upper bounds of

a (similar for b), and ◦ is the operation. Therefore, the instruction constrains the

possible tasks, providing information on the underlying task of in-context samples.

Under such a setting, Xuanyuan et al. [120] study how the information provided

by instruction affects the accuracy of ICL.

Synthetic and Controllable Datasets with Autoregressive Format The pretrain-

ing sequences in this type of synthetic and controllable datasets follow the format

(x(1), x(2), x(3), . . .). These tokens are generated from a next-token generative model,

such as the Hidden Markov Model (HMM) [118], Probabilistic Finite Automata

(PFA) [3], or simply a function x(i+1) = f(x(i)) + ϵ [60, 96]. Xie et al. [118] first

proposes to use multiple Hidden Markov Models (HMMs) to represent latent

concepts in real-world language and generate pretraining sequences, then explain

ICL via a Bayesian perspective. Han et al. [38] leverages the same setting and

explains ICL via kernel regression. Sequences under this format are also generated

by Akyürek et al. [3] using Probabilistic Finite Automata (PFAs), Edelman et al.

[24] using Markov Chain, and Nichani et al. [78] using Markov Chain with causal

structure, to study the induction head [79] of LLMs. While the abovementioned

datasets only consider single-step dependence between tokens, i.e., the next token

only depends on one of the previous tokens, Makkuva et al. [70] further explore

higher-order Markov chains.

7

1.3 Two Missing Pieces in the Literature

While existing works have constructed diverse synthetic and controllable datasets

and leveraged them to study ICL, we identify two critical missing pieces in the

current literature.

An Unexplained Phenomenon in Real-World ICL: Early Ascent One missing

piece is an unexplained phenomenon observed in real-world ICL named “early

ascent” by us [61], initially documented by Brown et al. [11]. It describes a situation

where the error rate of ICL initially increases with a small number of in-context

samples and then decreases with additional samples. This phenomenon is weird

since we expect that more examples always bring benefits to the prediction. Such a

phenomenon has not been mathematically explained in the literature.

A Gap Between Synthetic and Real-World ICL: Instruction Another missing

piece is that the current synthetic and controllable datasets overlook the role of

instructions. The instructions are important to ICL since they explicitly provide

information about the target task to the model and improve the prediction accuracy

of ICL, demonstrated by Brown et al. [11]. However, existing synthetic and control-

lable datasets overlook instructions, leaving a critical gap between synthetic and

real-world ICL. Thus, a synthetic and controllable dataset that explicitly integrates

instructions is needed to better mimic the real-world ICL.

8

1.4 Research Questions and Contributions

Motivated by the abovementioned two missing pieces, this thesis aims to fill these

missing pieces and enhance our understanding of ICL by designing and studying

new synthetic and controllable datasets. Specifically, the thesis investigates research

questions and brings corresponding contributions as follows:

1. Can we design a synthetic and controllable dataset for ICL, with which we

can better understand the mechanism of ICL and mathematically explain the

early ascent phenomenon? [61]

• We propose a novel synthetic and controllable dataset, which has an underly-

ing probabilistic model for generating synthetic pretraining data, modeling

the latent clustered structure in practical tasks, and explaining ICL via two

modes: task learning and task retrieval.

• Leveraging our proposed synthetic and controllable dataset, we analyze

the Bayesian inference dynamics of ICL, providing the first mathematical

explanation for the early ascent phenomenon.

• Leveraging our proposed synthetic and controllable dataset, we predict

the bounded efficacy phenomenon. In this phenomenon, the error rate of

ICL with randomly labels first decreases, but eventually increases as the

number of in-context samples increases.

2. Can we design a synthetic and controllable dataset for ICL, with which we are

able to incorporate instructions into ICL to bridge the gap between synthetic

9

and real-world ICL in the literature? [62]

• We design a new synthetic and controllable data framework, namely In-

Context Learning with Hypothesis-Class Guidance (ICL-HCG), which explicitly

incorporates task instructions into synthetic ICL and enables controlled

experiments on ICL with instruction.

• Through various experiments, we show that a model trained with instruc-

tions significantly outperforms one trained without instructions. We further

show that incorporating instructions for pretraining increases the general-

izability of the pretrained model compared to one without instructions.

Additionally, this thesis provides preliminary results on future directions be-

yond the main studies. Building on insights from the dual operating modes of

ICL, we propose a new approach to prompt design, namely coded prompts, to en-

hance the prediction accuracy of a real-world LLM when multiple test samples

are available at inference time. Extending the synthetic and controllable dataset

construction beyond ICL-HCG, we explore a more complicated problem setting,

namely “in-context blind tree search,” which extends ICL to a sequential decision-

making process involving action-reward loops. The preliminary results of these

two directions are presented after each main chapter, illustrating how our synthetic

and controllable datasets inspire future research.

In summary, we construct and study new synthetic and controllable datasets,

contribute to both theoretical understanding and real-world application of ICL,

and fill the two missing pieces in the literature.

10

Chapter 2

Explaining Early Ascent: Dual

Operating Modes of In-Context

Learning

ICL exhibits dual operating modes [82]: task learning, i.e., acquiring a new skill

from in-context samples, and task retrieval, i.e., locating and activating a relevant

pretrained skill. Recent theoretical work proposes various mathematical models to

analyze ICL, but they cannot fully explain the duality. In this work [61], we analyze

a generalized probabilistic model for pretraining data, obtaining a quantitative

understanding of the two operating modes of ICL. Leveraging our analysis, we

provide the first explanation of an unexplained phenomenon observed with real-

world LLMs. Under some settings, the ICL risk initially increases and then decreases

with more in-context examples. Our analysis offers a plausible explanation for this

11

“early ascent” phenomenon: a limited number of in-context samples may lead to

the retrieval of an incorrect skill, thereby increasing the risk, which will eventually

diminish as task learning takes effect with more in-context samples. We also

analyze ICL with biased labels, e.g., zero-shot ICL [68], where in-context examples

are assigned random labels, and predict the bounded efficacy of such approaches.

We corroborate our analysis and predictions with extensive experiments with

Transformers and LLMs.

2.1 Overview

LLMs exhibit a significant improvement in predictive performance when provided

with in-context examples [11]. This emergent ability of LLMs, known as ICL, oper-

ates in two distinct modes: task learning and task retrieval [82]. Large language

models exemplify this duality. They can learn unseen functions from in-context

examples, demonstrating the learning mode [11, 92, 31]. Concurrently, LLMs can

also retrieve and utilize a pretrained skill. A clear evidence of the task retrieval

mode is presented by Min et al. [73], where the authors show ICL performance

remains largely unaffected even when in-context examples are annotated with

random labels. This suggests that LLMs simply retrieve a pretrained skill rather

than learn it from in-context examples.

The dual nature of ICL can be explained as follows. LLMs are a next-token

predictor that is pretrained on a large pretraining set, consisting of diverse data

from diverse domains/tasks. To predict the next token optimally in such a scenario,

12

the model must first learn the task prior from pretraining data and then implicitly

perform Bayesian inference at the test time [118, 90]. Optimal prediction on multi-

task pretraining data requires adherence to the learned prior (over the tasks present

in the pretraining data) and making predictions based on the posterior. The ability

to learn and apply this prior during test-time inference enables task retrieval–if

in-context examples align closely with a task encountered during pretraining, the

model can swiftly adjust its posterior and predict without learning a new skill.

Simultaneously, the model can learn a novel or uncommon skill given sufficient

in-context samples and a non-zero prior probability for that skill.

Although the link between pretraining and ICL’s dual modes is conceptually

straightforward, formally establishing this connection is an unresolved challenge.

Motivated by this, our work seeks to address the following questions:

How do we rigorously explain the dual operating modes of ICL? Can we define the

conditions under which the retrieval mode is a dominant one and vice versa?

A New Model for Pretraining Data To find the answers to these questions, we first

propose a new probabilistic model for pretraining data by assuming the pretraining

data has a latent clustered structure. In particular, we consider in-context learning

of linear functions following the recent work [31, 2, 60, 112, 90, 117]. A next-token

prediction model is prompted with (1) a sequence of (x, y) pairs, which come from

a common linear function, and (2) one test input xtest. An ideal model capable of in-

context learning linear models should internally fit a linear function (say y = ŵT x)

using the in-context examples and then generate the predicted label ytest = ŵT xtest

13

Task Group
Re-weighting

retrieved
function w/ few
in-context examples

learned
function w/ many

in-context examples

Task Group
Shifting

Task
Retrieval

Task
Learning

Model Analysis Experiment

Figure 2.1: A summary of our contributions. We first propose a probabilistic model
for pretraining data and in-context examples. By analyzing our model, we obtain a
quantitative understanding of the dual operating modes of ICL, and explain two
real-world phenomena observed with LLMs.

as the next token. The recent work [90, 117] show that such in-context learning is

feasible by training a next-token prediction model on a large pretraining dataset,

consisting of sequences of labeled samples drawn from diverse linear functions.

We extend the existing model for pretraining data [90] by introducing mul-

tiple task groups and task-dependent input distributions. When one generates

pretraining data, one must specify a probability distribution of linear functions

(equivalently, that of the linear coefficient w). While most of the prior work as-

sumes that w is drawn from a single Gaussian distribution, we will model it as

drawn from a Gaussian mixture model, where each Gaussian component models

a task group. This model better reflects real-world data that exhibits a clustered

structure [118]. Furthermore, we also allow each mixture component to have its

own distribution for input x. Shown on the left-most panel in Fig. 2.1 is a simple

14

visualization of our model. The blue task group is modeled as the distribution

of linear functions with positive coefficients (w ≈ 1) with the input distribution

centered around E[x] = +1. The red lines represent the other task group – linear

functions with negative coefficients (w ≈ −1) with the input distribution centered

at E[x] = −1. See Sec. 2.2 for more details.

Analysis With our new model for pretraining data, we analyze the optimal pre-

trained model under the squared loss, i.e., the MMSE estimator of the label given

input with in-context examples. Here, the pretraining distribution (of linear func-

tions) is the prior, and in-context examples are the observations. Leveraging the fact

that the Gaussian mixture is a conjugate prior to the Gaussian likelihood function,

we obtain a closed-form expression of the posterior distribution. By fully quantify-

ing the posterior distribution of w in the form of a Gaussian mixture, we characterize

how in-context examples are used to update each component’s posterior mean and

posterior mixture probability. We will call updates of mixture probabilities as task

group (component) re-weighting and updates of component means as task group (com-

ponent) shifting. See the central panel in Fig. 2.1 for visualization. By analyzing these

two effects, we obtain a quantitative understanding of how two different operating

modes emerge. In particular, we show that, under some mild assumptions, task

group re-weighting is the dominant factor when provided with few in-context

samples, rendering the task retrieval mode. With many in-context samples, task

group shifting occurs, resulting in the task learning mode.

15

Explanation of Two Real-World Phenomena To demonstrate the practical value

of the new insights we have gained from our model, we will leverage our analysis

to explain and predict two phenomena observed with LLMs in practice.

• The early ascent phenomenon refers to the observation that, under certain con-

ditions, the ICL risk initially increases and then decreases when more in-context

examples are introduced [11, 118]. See the right-most panel of Fig. 2.1 for visual-

ization. Based on our analysis, we offer a plausible explanation for this early ascent

phenomenon–a limited number of in-context samples may lead to the retrieval of

an incorrect skill, thereby increasing the risk, which will eventually diminish as

task learning takes effect with more in-context samples.

• Bounded efficacy of biased-label ICL is predicted by our model. ICL performs

well even with in-context examples that are annotated with biased labels [68, 73].

Our model provides a rigorous justification of this approach: If in-context examples

with biased labels carry sufficient information for retrieving a correct pretrained

task, then this approach would work. At the same time, our analysis suggests that

the operating mode of ICL will make a transition from task retrieval to task learning

with more in-context examples. When the learning mode starts taking place, the

test risks of such methods will start increasing as the pretrained model will start

fitting the biased labels. See the right-most panel of Fig. 2.1 for visualization.

This bounded efficacy has not been reported in the literature [73, 82]. We found

that this was due to the small number of examples tested. With more in-context

samples, we observe the predicted bounded efficacy phenomenon with real-world

LLMs such as Mistral 7B [47], Mixtral 8×7B [48], Llama 2 [106], and GPT-4 [80].

16

2.2 Pretraining and Data Generative Model

A next-token predictor is a sequential prediction model that predicts the next token

given an initial token sequence. Consider pretraining this model on sequences

consisting of (x, y)1 pairs in the form of (x1, y1, x2, y2, . . .), with the model trained to

predict only the y values, thereby skipping the prediction of x. Here, we assume odd-

numbered tokens represent d-dimension real-valued vectors, and even-numbered

tokens represent scalars. During inference, the model receives a sequence of 2k + 1

tokens. The first 2k tokens are k labeled samples (xi, yi), i ∈ {1, . . . , k} =: [K], and

the last token is unlabeled xk+1. Ideally, the model should predict yk+1 correctly.

2.2.1 Data Generative Model

In the pretraining phase, we assume the next-token predictor is pretrained on di-

verse tasks, each representing a continuous joint distribution of (x, y). Before we

move on to the exact pretraining data generative model proposed in this paper, we

first provide a general setting for the data generation process. A task is defined by

a joint distribution Dx,y, which specifies the likelihood of obtaining a sample (x, y)

from this task. Each task is sampled from the task prior Dprior, meaning Dprior rep-

resents a distribution over distributions. The pretraining data comprises numerous

sequences, each containing K labeled samples i.i.d. drawn from a distribution Dx,y.

We formally describe our pretraining data generative model in Assumption 1.

1It is more rigorous to represent the vector x as multiple tokens. However, viewing it as a
high-dimensional “token” simplifies our notation while not affecting our analysis. Thus, with a
slight abuse of notation, we will treat both xi and yi as tokens for simplicity.

17

Assumption 1 (Pretraining Data Generative Model). Given an integer K > 0, a

pretraining task prior Dprior, we generate a sequence SK as follows:

(a) Sample a task from the task prior: Dx,y ∼ Dprior;

(b) Sample K labeled samples from the chosen task: ∀i ∈ {1, 2, . . . , K}, (xi, yi) ∼ Dx,y;

(c) Define a sequence SK : SK = [x1, y1, . . . , xK , yK].

In the sequence, the first 2k elements of SK is denoted as Sk, and the first 2k + 1

elements will be indicated by Sk ⊕ x(k+1), e.g., S0 = [], and S1 ⊕ x2 = [x1, y1, x2].

2.2.2 Bayes-Optimal Next-Token Predictor

Let L(F) = ESK

[
1
K

∑K−1
k=0 (F(Sk ⊕ x(k+1))− yk+1)2

]
as the pretraining objective,

where F is a next-token predictor and SK is generated from Dprior following As-

sumption 1. In other words, for each sequence, we pretrain F to predict each label

y based on preceding samples, measuring risk with the squared loss. Due to the

linearity of expectation, we have: L(F) = 1
K

∑K−1
k=0 E

SK

[
(F(Sk ⊕ x(k+1))− yk+1)2

]
. A

variable-input-length next-token predictorF can be viewed as K fixed-input-length

next-token predictors F0, . . . ,FK−1, where Fk takes a sequence of exactly 2k + 1

tokens as input. Thus, assuming the sufficient expressiveness of F , the optimiza-

tion problem F∗ = argminF L(F) can be decomposed into K separate optimization

problems for k ∈ {0, . . . , K − 1}:

F∗
k = argmin

Fk

E
SK

[(Fk(Sk ⊕ x(k+1))− yk+1)2].

18

The solution denoted F∗
k is an MMSE estimator [110, page 63] for each k. Thus, the

prediction F∗(Sk ⊕ x(k+1)) = F∗
k (Sk ⊕ x(k+1)) satisfies:

F∗(Sk ⊕ x(k+1)) = E
SK

[
yk+1|Sk ⊕ x(k+1)

]
= E

Dx,y

[
E

yk+1

[
yk+1|Dx,y, Sk ⊕ x(k+1)

]∣∣∣∣∣Sk ⊕ x(k+1)
]

= E
Dx,y

[
E

yk+1
[yk+1|Dx,y, xk+1]

∣∣∣∣∣Sk ⊕ x(k+1)
]

. (2.1)

Thus, F∗(Sk⊕x(k+1)) is the expectation (over task posterior) of E
yk+1

[yk+1|Dx,y, xk+1]

regarding Sk ⊕ x(k+1) as observation. We show that a pretrained Transformer can

empirically approximate Bayesian inference in Appendix A.4.

−0.5 0.0 0.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

X-axis

Y-axis Samples from
Tasks in the
Task Group

Task 1

Task 2

Task 3

Task 4

Underlying Functions of Tasks

Tasks in the Task Group

Probability Density Functions
of x Distributions of Tasks

Tasks in the Task Group

(a) Pretraining data [90].

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

X-axis

Y-axis

Samples from
Tasks in Task
Group A

Task 1

Task 2

Task 3

Task 4

Samples from
Tasks in Task
Group B

Task 1

Task 2

Task 3

Task 4

Underlying Functions of Tasks

Tasks in Task Group A

Tasks in Task Group B

Probability Density Functions
of x Distributions of Tasks

Tasks in Task Group A

Tasks in Task Group B

(b) Our pretraining data with two task groups.

Figure 2.2: Different pretraining data models. Raventos et al. and ours.

19

2.2.3 Gaussian/Linear Assumptions on Pretraining Data

Generative Model

Let us now elaborate further assumptions on Dprior and Dx,y in the Assumption 1

for a tractable posterior, extending beyond the scope of Raventos et al. [90], who

propose the data generative model that each task is a noisy linear regression task,

the function w for each task is drawn from the same Gaussian distribution, and

different tasks share the same x distribution. In contrast, our model posits that

task functions are derived from a Gaussian mixture distribution, and tasks employ

varying x distributions, as illustrated in Fig. 2.2. We formally formulate this setting

in Assumption 2.

Assumption 2 (Gaussian/Linear Assumptions for Pretraining Data Generative

Model).

(a) (µ, w) ∼ Dprior : P (µ, w) = ∑M
m=1 πmP (µ, w|Tm), where Tm is the mth mixture

component2 of the Gaussian mixture, i.e., P (µ, w|Tm) = N (µ|µm, σ2
µI)·N (w|wm, σ2

wI),

and πm is the mixture weight. ∑M
m=1 πm = 1, 0 < πm < 1, (µm, wm) is the center of the

mixture component Tm, and all components share the same covariance matrix controlled by

σµ and σw;

(b) input: x ∼ Dx(µ), P (x|µ) = N (x|µ, σ2
xI);

(c) label: y|x ∼ Dy|x(w) : P (y|x, w) = N (y|w⊤x, σ2
y);

(d) ∥µm∥ = ∥wm∥ = 1,∀m ∈ [M];

(e) ∃r > 1 that ∀α, β ∈ [M], 1
r
≤ πα

πβ
≤ r;

2The concept “mixture component” is derived from Gaussian mixture models in the statistical
literature and is analogous to the term “Task Group” depicted in the left-most panel of Fig. 2.1.

20

(f) x, µ, µm, w, wm ∈ Rd, I ∈ Rd×d.

Remark 1. Based on Assumptions 2(b) and 2(c), we define the probability of observing a

sample (x, y) within a task (µ, w) as the “noisy linear regression” likelihood.

Assumption 2(a) indicates that the pretraining dataset of an LLM consists of M

different task groups. Assumption 2(b) posits that tasks have varying x distribution

with varying mean but share the same covariance matrix. Assumption 2(c) assumes

tasks as noisy linear regressions with the same noise scale in labels. Assumption 2(e)

posits comparable mixture weights π across different task groups.

(a) The Tetrahedron
setting. An illustra-
tion of the in-context
task and the prior cen-
ters. ∀m ∈ {1, 2, 3, 4},
we set µm = wm.

0

1

2
δµ = δw = 1/81 δµ = δw = 1/9 δµ = δw = 1 δµ = δw = 9 δµ = δw = 81

‖w̃1−w∗‖
‖w̃2−w∗‖
‖w̃3−w∗‖
‖w̃4−w∗‖

0.0

0.5

1.0 π̃1

π̃2

π̃3

π̃4

0.0

0.5

1.0

‖w̃ −w∗‖

0 1 3 7 15 31 63 1270.0

0.5

1.0

0 1 3 7 15 31 63 127 0 1 3 7 15 31 63 127 0 1 3 7 15 31 63 127 0 1 3 7 15 31 63 127

(F∗− y∗k+1)
2

Number of In-Context Examples (k)

(b) CR, CS, and risks under the Tetrahedron setting. In the first
two rows, we show the effects of CS and CR with an increasing
number of in-context examples. In the third row, we show how far
the in-context predicted function w̃ is from the target function w∗.
In the fourth row, we show the ICL risk.

Figure 2.3: Numerical experiments. (Left) An illustration of the pretraining priors.
(Right) The numerical computational results.

21

2.3 Inference and Dual Operating Modes

The previous Sec. 2.2.2 shows that performing ICL with the optimally pretrained

next-token predictor is equivalent to computing the posterior mean of the label.

In Sec. 2.3.1, we give the generation process of in-context examples. In Sec. 2.3.2,

under Assumption 2 and treating Sk⊕x(k+1) as observation, we derive a closed-form

expression for the task posterior Dpost, and identify two factors in the transition

from prior to posterior: Component Shifting and Component Re-weighting. In

Sec. 2.3.3, we derive a closed-form expression of the ICL prediction F∗(Sk ⊕ x(k+1)).

Further, Sec. 2.3.4 presents the results of numerical computation conducted under

the tetrahedron setting, as illustrated in Fig. 2.3a. The numerical computation

results demonstrate the effects of component shifting and re-weighting. Finally,

Sec. 2.3.5 raises the definitions of the dual operating modes.

2.3.1 In-Context Task and In-Context Function

We introduce Assumption 3 for the in-context task and the in-context function of

in-context examples:

Assumption 3 (Gaussian/Linear Assumptions for In-Context Examples).

(a) The input sequence Sk ⊕ x(k+1) of ICL satisfies, ∀i, xi ∼ N (µ∗, τ 2
xI), yi = ⟨xi, w∗⟩;

(b) ∥µ∗∥ = ∥w∗∥ = 1.

Assumption 3(a) states that each in-context example (xi, yi) is drawn from the

in-context task (µ∗, w∗), with w∗ representing the specific in-context function and

the labels being free from noise.

22

2.3.2 Closed-Form Expression of Posterior

The following lemma gives the closed-form expression of the posterior Dpost given

any observation Sk ⊕ x(k+1):

Lemma 1 (Conjugate Distributions with Noisy Linear Regression Likelihood).

Under Assumption 2, the posterior probability of task (µ, w) given Sk ⊕ x(k+1) is:

P (µ, w|Sk ⊕ x(k+1)) = ∑M
m=1 π̃mP (µ, w|T̃m)

= ∑M
m=1 π̃m · N (µ|µ̃m, σ̃2

µI) · N (w|w̃m, σ̃2
wI).

Here, the mixture component Tm in the prior is mapped to the mixture component T̃m in

the posterior with mixture weight π̃m and component means (µ̃m, w̃m):

π̃m = πmC1c
µ
mcw

m,

cµ
m = exp

(
−∥µm∥2 − ∥µm+(k+1)δµµ̄∥2

(I+(k+1)δµΣ̄µ)−1/2σ2
µ

)
,

cw
m = exp

(
−∥wm∥2 − ∥wm+kδww̄∥2

(I+kδwΣ̄w)−1/2σ2
w

)
,

µ̃m = (I + (k + 1)δµΣ̄µ)−1(µm + (k + 1)δµµ̄),

w̃m = (I + kδwΣ̄w)−1(wm + kδww̄),

σ̃2
µ = σ2

µ(I + (k + 1)δµΣ̄µ)−1,

σ̃2
w = σ2

w(I + kδwΣ̄w)−1,

where C1 is a normalizing constant, i.e., ∑m π̃m = 1, δµ = σ2
µ

σ2
x
, δw = σ2

w

σ2
y

, Σ̄µ = I ,

µ̄ =
∑k+1

i=1 xi

k+1 , Σ̄w =
∑k

i=1 xix
⊤
i

k
, and w̄ =

∑k

i=1 xiyi

k
. See Appendix A.7 for the proof.

Remark 2. Gaussian mixture is known to be a conjugate prior to the Gaussian likelihood.

The outlined conjugate distributions in this lemma extend the Gaussian mixture conjugate

23

distributions by substituting the Gaussian likelihood with the “noisy linear regression”

likelihood in Remark 1.

Lemma 1 states that the task posterior remains a Gaussian mixture, with its

mixture components shifted and re-weighted from the task prior. Therefore, under-

standing the impact of in-context examples on the posterior requires understanding

how in-context examples affect the two factors:

• Component Shifting (CS): The component center is shifted from (µm, wm) to

(µ̃m, w̃m).

• Component Re-weighting (CR): The component weight is re-weighted from π

to π̃.

Remark 3. The term “component” comes from the literature on Gaussian mixtures. It

serves as an alternative to “Task Group” as shown in Fig. 2.2. The terminology “Component

Shifting” and “Component Re-weighting” can be viewed as “Task Group Shifting” and

“Task Group Re-weighting.” We will abbreviate “mixture component center” to simply

“center” when there is no ambiguity.

Leveraging Assumption 3, we collected mathematical analyses of CS and CR in

Appendix A.8. The analysis explores the impacts of pretraining task noises and the

number of in-context examples on µ̃m, w̃m, and π̃m, and examines the convergence

of µ̃m, w̃m, and π̃m, as k approaches infinity.

24

2.3.3 Closed-Form Expression of ICL Prediction

With Assumption 2 and Lemma 1, we have the following corollary for the prediction

F∗(Sk ⊕ x(k+1)):

Corollary 2. Let w̃ = ∑M
m=1 π̃mw̃m. With pretraining data generative model 1 and

Assumption 2, if the pretrained modelF∗ minimizes the pretraining risk, then the prediction

on any sequence Sk ⊕ x(k+1) by F∗ is as follows:

F∗(Sk ⊕ x(k+1)) =
〈

xk+1,
M∑

m=1
π̃mw̃m

〉
= ⟨xk+1, w̃⟩.

Proof. Apply Assumption 1 to Eq. 2.1, F∗(Sk ⊕ x(k+1)) = E(µ,w)∼Dprior [⟨xk+1, w⟩|Sk ⊕

x(k+1)]. Using Lemma 1, this reduces to ∑M
m=1 π̃m E

(µ,w)∼T̃m

[⟨xk+1, w⟩]. Due to the

linearity of expectation and inner product, the prediction can be simplified as

⟨xk+1,
∑M

m=1 π̃mw̃m⟩ = ⟨xk+1, w̃⟩.

Thus, the prediction is a convex combination of predictions by the centers

of those shifted and re-weighted mixture components in the posterior. We are

interested in how πm and wm change to π̃m and w̃m with increasing k and how the

pretraining prior distribution properties affect these changes.

2.3.4 Prior Task Noises, CS, CR, and ICL Prediction

We numerically compute how π̃m, w̃m, and the predictionF∗(Sk⊕x(k+1)) evolve as k

increases under different prior task noise conditions. The numerical computation is

based on the tetrahedron setting with four prior mixture components as illustrated

in Fig. 2.3a. See Appendix A.2.1 for details of the tetrahedron setting. Fig. 2.3b

25

shows the computational results. The first row shows the CS effect, demonstrating

the impact of increasing k on w̃m. The second row shows the CR effect, illustrating

the impact of increasing k on π̃m. The third and fourth rows depict how increasing

k influences the risk of learning the function w∗. We observe that with low task

noises and a small k value, the CR effect initially prevails, significantly boosting the

mixture weight of component 1 over others. Then, as k increases further, the CS

effect aligns all component centers with (µ∗, w∗).

2.3.5 Dual Operating Modes

The “task retrieval” mode describes a scenario where the impact of component

re-weighting surpasses that of component shifting, leading to the prediction that

is primarily influenced by the interplay between pretraining priors and in-context

examples. An illustration of this is shown in the first column of Fig. 2.3b, where

the re-weighting of π̃m is more pronounced than the shifting of w̃m, indicating that

CR plays a pivotal role in altering the prediction. In contrast, the “task learning”

mode refers to situations where component shifting dominates over component

re-weighting, resulting in the prediction almost depending on in-context examples

and neglecting the pretraining priors.

2.4 Early Ascent

We now explain the early ascent phenomenon by analyzing a finegrained risk bound

of ICL. (See Appendix A.3 Theorem 7 for the coarser bound.)

26

2.4.1 Finegrained Upper Bound

The finegrained upper bound for ICL risk is shown below:

Theorem 3 (Finegrained Upper Bound for ICL Risk). Consider a next-token predictor

attaining the optimal pretraining risk. As k →∞, ICL risk is upper bounded by:

E[L∗
k] <

M∑
m=1
∥wm −w∗∥2ESk⊕x(k+1) [π̃m∥xk+1∥2λ1(A)2],

where L∗
k = (F(Sk ⊕ x(k+1)) − y∗

k+1)2 = (F(Sk ⊕ x(k+1)) − ⟨xk+1, w∗⟩)2, ∥wm −w∗∥

is the distance between the in-context function w∗ and the function wm of center m, π̃m

is the posterior mixture weight, and A = (I + δw
∑k

i=1 xix
⊤
i)−1. See Appendix A.12 and

Eq. A.14 for proof details. In Appendix A.12.1, we further refine the bound for cases when

in-context xi only spans in a subspace of Rd, resulting in λ1(A) = 1 constantly.

In-context examples affect the upper bound by affecting the two factors π̃β and

λ1(A), corresponding to CR and CS introduced in Sec. 2.3.2. When ignoring the

CR effect and only considering CS, the finegrained upper bound degrades to the

general coarse bound in Appendix A.3 Theorem 7.

2.4.2 The Effect of Dual Operating Modes on ICL Risk

We numerically compute ICL risk under varied settings to explore the effect of

the dual operating modes on the risk in Fig. 2.4. When pretraining task noises are

low, i.e., δµ and δw are small, the task retrieval mode happens with a small number

of in-context examples, and the upper bound is affected by how (µ∗, w∗) is close

to a prior center. Specifically, the task prior boosts the learning process of ICL if

27

Number of In-Context Examples (k) - Risk E[(F∗− y∗k+1)
2]

−1
0

1

−1

0

1

−1
0
1

Prior µβ and In-Context µ∗

0 20 22 24 26 280.0

0.5

1.0
δµ = δw = 1/81

0 20 22 24 26 280.0

0.5

1.0
δµ = δw = 1/9

0 20 22 24 26 280.0

0.5

1.0
δµ = δw = 1

Farthest

Medium

Closest

Number of In-Context Examples (k)

Figure 2.4: Distance to the closest prior vs ICL risk. We compute ICL risks of three
target tasks colored red (farthest), green, and blue (closest), under the tetrahedron
setting, illustrated in the left-most figure. The red target task has the longest distance
to the closest prior center, and the blue target task has the shortest distance to the
closest prior center. We can observe that the target task is easier to learn when the
distance to the closest prior is smaller.

the in-context task is close to a prior center, due to the task retrieval mode quickly

retrieving the task of the nearest prior center.

2.4.3 Early Ascent with Biased x Distribution

However, the task retrieval mode may not always benefit ICL. We notice that a

weird phenomenon is observed by Brown et al. [11] and Xie et al. [118]. As the

number of in-context samples increased, the performance of ICL first decreased

and then increased. Brown et al. [11] reports that GPT-3 on LAMBADA shows

a lower one-shot accuracy (72.5%) than zero-shot accuracy (76.2%), but the few-

shot accuracy (86.4%) is higher than the zero-shot accuracy. Xie et al. [118] also

replicated this phenomenon with their synthetic dataset. Xie et al. [118] explains

this by “the few-shot setting introduces the distracting prompt structure, which

can initially lower accuracy.”

28

0

5

R
is

k/
B

ou
nd

d = 1

0

10

d = 3
Risk of ICL Risk Upper Bound of ICL

0

20

d = 8

20 24 28 212 2160

1

M
ix

tu
re

W
ei

gh
t

20 24 28 212 216

Number of In-Context Examples (k)

0

1

Mixture Weight of Component 1 (Misleading)

Mixture Weight of Component 2 (Target)

Mixture Weight of Component 3

20 24 28 212 2160

1

(a) Risk and πm as k increases under
d ∈ {1, 3, 8}.

−0.5 0.0 0.5
Value of First Dimension of w

−0.5

0.0

0.5

V
al

ue
of

S
ec

on
d

D
im

en
si

on
of
w

k = 0

k = 25

k = 210

k = 215

w1 of Center 1 (Misleading)

w2 of Center 2 (Target)

w3 of Center 3

Traj of E[w̃] with Increasing k

−1.0−0.5
0.0

0.5
1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0
−0.5
0.0
0.5
1.0

k = 0

k = 25

k = 210

k = 215

w1 of Center 1 (Misleading)

w2 of Center 2 (Target)

w3 of Center 3

Traj of E[w̃] with Increasing k

(b) Expectation of w̃ as k increases under d ∈
{2, 3}.

Figure 2.5: The early ascent phenomenon. Fig. 2.5a and Fig. 2.5b show that the
task retrieval mode is dominant up to k = 32, and component 1’s mixture weight
increases (E[w̃] approaches w1). Since this component is farther than the other
one, the risk starts increasing. At larger k values, the risk starts decreasing (E[w̃]
approaches w2) via task learning. See Appendix A.2.3 for setting details. We further
examine the early ascent phenomenon under linear regression with varied levels of
label noises in Appendix A.9.1, and under non-linear regression and discrete token
prediction in Appendix A.9.2.

To obtain some insights, we present a simple scenario where x misleads the

prediction by an LLM. Consider the following one-shot prompt for English-to-

Korean translation: “What is the color of apple? 사과의색깔은무엇인가?3 What

is the color of banana?” The correct answer should be “바나나의색깔은무엇인

가?”4 However, GPT-3.5 generates “바나나의색깔은노란색입니다,” which means

“The color of bananas is yellow.” This shows that pretrained LLMs could retrieve

an incorrect skill (question answering in this example) by observing misleading

input (x).

Based on our analysis, we further show that the early ascent phenomenon

provably occurs under a certain assumption Appendix A.10.1. We also reproduce
3“What is the color of apple?” in Korean.
4“What is the color of banana?” in Korean.

29

early ascent in Fig. 2.5a, where the upper bound and the risk initially increase due

to the misleading task (of center 1) is retrieved first. Fig. 2.5b further demonstrates

the relative locations of the retrieved functions to functions of prior centers. Finally,

we give the formal theorem on the early ascent phenomenon:

Theorem 4 (Early Ascent). Assume α = arg min
m

∥µm−µ∗∥2

2σ2
x

+∥(wm−w∗)⊤µ∗∥2+dτ2
x∥wm−w∗∥2

2σ2
y

is the most misleading task and the task α satisfies:

Ex1

[
(F∗(x1)− ⟨w∗, x1⟩)2

]
< Ex1

[
⟨x1, wα −w∗⟩2

]
.

Then, when δµ and δw are small enough, ∃k ≥ 1 s.t.:

Ex1

[
(F∗(x1)− ⟨w∗, x1⟩)2

]
< ESk⊕x(k+1)

[(
F∗(Sk ⊕ x(k+1))− ⟨w∗, xk+1⟩

)2
]

,

where Ex1 [⟨x1, wα −w∗⟩2] equals to the risk when the prediction fully depends on the

misleading task function wα of prior center α. See Appendix A.10.2 for proof details.

Theorem 4 shows that, if the misleading task α has a higher risk than the zero-

shot risk, then when δµ and δw are small enough, early ascent happens.

2.5 Bounded Efficacy of Biased-Label ICL

We further predict the bounded efficacy phenomenon by examining the bound of

ICL with biased labels. The assumption for biased-label ICL is described as follows:

Assumption 4 (ICL with Biased Labels). The function w∗ of ICL with biased labels is

different from the target function wα, i.e., w∗ ̸= wα where wα is a function of a pretraining

task prior center. The in-context task is closer to the prior center α compared to all the other

30

prior centers β ̸= α:

∀β ̸= α, ∥µβ − µ∗∥2 − ∥µα − µ∗∥2 ≥ d2
µ, ∥wβ − w∗∥2 − ∥wα − w∗∥2 ≥ d2

w, and

τ 2
x∥wβ −w∗∥2 − (1 + τ 2

x)∥wα −w∗∥2 ≥ τ 2
xu2

w.

Assumption 4 depicts that to retrieve wα associated with the prior center α, the

in-context task is selected based on its proximity to center α, ensuring it is closer to

center α.

2.5.1 Upper Bound for ICL Risk with Biased Labels

The following theorem shows an upper bound for ICL risk with biased labels to

retrieve a task:

Theorem 5 (Upper Bound for ICL Risk with Biased Labels). Consider a next-token

predictor attaining the optimal pretraining risk. As k →∞, ICL risk with biased labels is

upper bounded by:

ESk
[Lα

k] < ∥wα −w∗∥2(1 + dτ 2
x) + C1

kδw

exp
(
C2k

δ
2 − 3

4
)

+ O(k−2),

where Lα
k = (F(Sk ⊕ x(k+1))− yα

k+1)2 = (F(Sk ⊕ x(k+1))− ⟨xk+1, wα⟩)2. When δµ and

δw are sufficiently small, exists a particular interval for k s.t.:

ESk
[Lα

k] < ∥wα −w∗∥2(1 + dτ 2
x) min{1, 4k2δw

2(1 + τ 2
x)2}

+ C3 exp
(
−k

(
d2

µ

8σ2
x

+ u2
wτ 2

x

8σ2
y

))
+ C4 exp

−k
1
2

8

 .

As k increases, the second and third terms dominate and exponential decay when k is small,

and the first term dominates and increases when k is large. C1, C2, C3, and C4 are constants

depending on the prior setting, τx, and (µ∗, w∗). See Appendix A.13 for proof details.

31

k 0 1 2 4 8 16
+ 75.0% 36.2% 33.9% 49.3% 79.3% 85.1%
Biased + 100.0% 98.3% 95.9% 60.5% 24.4% 16.8%

Table 2.1: Bounded efficacy in GPT-4. Error rate measured with respect to “addition
(+)” and “biased +”. The bounded efficacy phenomenon: the error rate goes down
to k = 2, but it increases afterward. Experiment details in Appendix A.5.1.

2.5.2 Bounded Efficacy of Biased-Label ICL in GPT-4

This section further shows that the bounded efficacy phenomenon exists in GPT-4 in

Table 2.1. With the task “biased addition (+)” as the in-context task corresponding

to w∗, as the number of in-context examples increases, ICL will first retrieve the skill

“addition (+)” corresponding to wα which has a strong pretraining prior. Later, it

will learn the “biased +” task, leading to the bounded efficacy phenomenon.

0 20 21 22 23 24 25 26 27

0.2

0.4

0.6

0.8

C
la

ss
ifi

ca
ti

on
E

rr
or

Mixtral 8x7B

0 20 21 22 23 24 25 26 27

Number of In-Context Examples (k)

Llama 2 70B

0 20 21 22 23 24 25 26 27

GPT-4

True Labels

Random Labels

Figure 2.6: Bounded efficacy. The error rates of ICL with random labels start
increasing at large k. See Appendix A.6 for more experimental results.

2.5.3 Bounded Efficacy for Zero-Shot ICL

We further introduce Lemma 6, a variation of the previous Theorem 5, to explain

zero-shot ICL, an ICL algorithm capable of functioning with random labels [68].

32

Lemma 6 ((informal) Upper Bound for Zero-Shot ICL). Assume a next-token pre-

dictor attains the optimal pretraining risk, the risk of ICL with random labels (provide no

information) will reveal a bounded efficacy phenomenon. See Appendix A.14 for proof.

Lemma 6 says that as the number of in-context examples increases, the loss curve

of zero-shot ICL with random labels will have the bounded efficacy phenomenon,

which conflicts with the observation from Min et al. [73] that ICL with random

labels has very similar performance as ICL with true labels for the number of

in-context examples ranging from 1 to 32. We believe this observation is due to

the small number of in-context examples. Thus, we extend the experiment of Min

et al. [73] to explore the number of in-context examples beyond 32. Due to LLMs’

context lengths constraining the maximum number of in-context examples, we

choose different LLMs from Min et al. [73] for a larger context length capacity.

Fig. 2.6 highlights the bounded efficacy phenomenon in the error curve asso-

ciated with random labels. Compared with true labels, the error rate of ICL with

random labels increases at a much smaller k value, clearly exhibiting the bounded

efficacy phenomenon we predicted.

2.6 Extension with Preliminary Results: Coded

Prompts for Large Language Models

As shown in the previous sections, task retrieval can improve the prediction accuracy

of ICL even without informative labels. This naturally raises the question: What if

we provide multiple testing samples during inference? These test samples could

33

serve as unlabeled in-context examples for each other, potentially enhancing the

prediction accuracy of LLMs. Motivated by this idea, we explore the following

extension and present preliminary results.

2.6.1 Introduction

LLMs [11, 80] have become a cornerstone of generative AI research, demonstrating

remarkable capabilities in various natural language processing tasks. An essential

technique to improve the performance of LLMs is prompt engineering. Numerous

heuristic strategies [49, 65, 95, 129, 74, 115, 116, 59, 56, 64, 59] have been developed

to design better prompts for LLMs. Despite their impressive performance, there is

a significant scope for further enhancement, innovation, and optimization.

In response to this opportunity, we propose a novel dimension to prompt design

– coded prompts for pooled LLM inference (this approach involves inferring an

LLM with multiple samples). This innovative approach is inspired by the principles

of coding theory [94], a field that focuses on designing coded symbols as functions

of multiple information symbols rather than one symbol for reliable communi-

cation and storage systems. Drawing on this concept, we design coded prompts

for processing multiple inputs simultaneously, thereby enabling pooled inference

within the context of LLMs.

In this paper, we review the coding and its potential to improve prompt design

in LLMs. We introduce a new framework for coded prompts and provide formal

definitions. This framework is the basis for our investigation into the coded prompts’

ability to boost LLM performance. We test this concept with experiments on two

34

tasks: a classification task of identifying the largest prime number in a range and a

regression task of predicting text toxicity. Initial results show that coded prompts

can significantly improve task performance, highlighting this approach’s potential.

In summary, our contributions are as follows:

• We introduce the concept of coded prompts, a novel approach to prompt

design, inspired by the principles of coding theory. This approach allows for

the simultaneous processing of multiple inputs, potentially enhancing the

efficiency and performance of LLMs.

• We provide a framework and formal definitions for coded prompts.

• We empirically validate our approach through experiments on two tasks

including a classification task of identifying the largest prime number in a

range and a regression task of predicting text toxicity. We demonstrate that

coded prompts can significantly improve task performance, highlighting the

potential of our approach.

2.6.2 Related Work

Prompt Engineering Prompt engineering has been studied extensively over a

long period. Researchers have explored topics including how to ensemble mul-

tiple prompts [49, 97, 98, 87, 86, 53], automatically generate good prompts [100,

59, 66, 133], or train a better model for instruction [81, 74, 115]. Further, Wei et

al. [116] propose Chain-of-Thoughts (CoT) which explores how to generate a chain

of thoughts – a series of intermediate reasoning steps – significantly improves

35

the ability of large language models. CoT is further improved by varied direc-

tions such as ensembling [114, 113, 29], and selecting good steps in multi-step

reasoning [108, 123].

Self-Evaluation for LLMs Self-evaluation mechanism [69, 85, 101] was intro-

duced that LLMs themselves provide feedback to their own generation candidates.

Chen et al. [14] use self-evaluation to improve the accuracy of LLMs to generate

code. Xie et al. [119] endow LLMs with self-evaluation to refine multi-step reason-

ing inference. Yao et al. [123] allow LLMs to perform deliberate decision-making by

considering multiple different reasoning paths and self-evaluating choices to decide

the next course of action. Zhang et al. [130] employ language models in a cumula-

tive and iterative manner to emulate human thought processes to solve complex

problems. Different from these works that predict one sample at each inference,

we consider how to leverage multiple inputs together to boost the performance of

LLMs.

Applications of ICL in Real-World LLMs ICL provides another special angle

of prompt design, i.e., leveraging extra samples into the prompt [11] to boost the

prediction performance. This method is further explored via improving sample

quality, such as calibrating to reduce in-context sample bias [132], choosing better in-

context samples [65, 104, 129], training LLMs following in-context instruction [124],

or providing samples without true labels [68].

36

Coding Theory Coding theory [19] was adopted in various domains of machine

learning. Han et al. [39] applied coding theory to compress neural networks.

Dimakis et al. [22] and Rashmi et al. [89] applied coding theory to storage systems.

Lee et al. [54] applied coding theory to speed up distributed computing. In this

work, we aim to apply coding theory to an LLM which is used as a predictor.

2.6.3 Coded Prompts

Coding Theory: A Brief Overview

Before introducing our framework for coded prompts, let us briefly overview the

key idea of coding theory [94]. Coding theory is concerned with designing efficient

and reliable methods for transmitting or storing data. One of the main goals is to

develop encoding schemes, that can protect data integrity against errors that might

occur during transmission or storage.

To illustrate the key idea, consider the following example concerning the com-

munication of two bits, say B1 and B2. In a naïve approach, one might simply

transmit (over a noisy communication channel) B1 and B2 as they are. However,

this approach is vulnerable to channel errors. If an error occurs during the commu-

nication, and if the value of B1 or B2 is lost, it will be impossible to recover the lost

data. Furthermore, if the values of B1 or B2 have altered while being transmitted,

it will be impossible even to realize if there was any error.

To protect against this, we can use a simple coding scheme. Instead of just

transmitting the original bits B1 and B2, we also transmit the XOR of B1 and B2,

denoted as B1 ⊕B2. Here, we call B1 ⊕B2 an encoded bit or coded bit. Now, even if

37

one of the two information bits is lost, we can recover it using the remaining one

information bit and the encoded bit. For instance, if B1 is lost, we can recover it by

XORing B2 and B1 ⊕ B2, i.e., B2 ⊕ (B1 ⊕ B2) = B1. Similarly, if B2 is lost, we can

recover it by XORing B1 and B1 ⊕B2, i.e., B1 ⊕ (B1 ⊕B2) = B2.

This simple example illustrates the basic principle of coding theory. In practice,

coding theory involves much more complex and sophisticated schemes, but the

underlying goal remains the same: to protect data and ensure its integrity during

transmission or storage.

Analogy Between Noisy Communication and LLM Inference

To introduce coded prompts, we draw a novel analogy: viewing LLM inference

as a noisy communication channel [19]. By drawing inspiration from information

and coding theory, we can consider the process of generating predictions from

LLMs as analogous to transmitting and receiving information through a noisy

channel. With this analogy, the unknown ground truth labels can be considered

the “information bits,” while the LLM’s predictions represent the “received bits”

after passing through the noisy channel. More specifically, consider a test sample

drawn from the data distribution (X, Y) ∼ D. For instance, X could be a sentence,

and Y = f(X) ∈ {0, 1} could be a binary label denoting if the sentence is toxic (1)

or not (0). Here, f(·) is an unknown deterministic label mapping from X to Y .

The prediction result of an LLM inference with a particular prompt, say p, can be

modeled as follows:

Ŷ p = Y ⊕W p
X ,

38

1 1 1
1 0 1
0 0 1

Considering the following 3 tweets. !!. tweet. !". tweet.
!#. tweet. How many of the listed tweets contain complaints?

Considering the following 2 tweets. !!. tweet. !#. tweet. How
many of the listed tweets contain complaints?

Considering the following tweet. !#. tweet. Does the tweet
contain a complaint?

LLM
(e.g., GPT4)

2

1

1
(a) Illustration of the lookup table approach for ensembling multiple prompts during the inference stage.

(b) Illustration of the process for acquiring block information from three samples using an LLM.

!'
!(

!)

#=

Transmitted bit

Te
st

sa
m

pl
es

$ %$ − ' !

(0,0,0) 4

(0,1,1) 0
(1,1,1) 2

$ … …

Compute the loss
12 − 4 ! for all possible 2

based on the observation 4

Convert the prompts Get ' Predict 52 = argmin$∈ &,! ! 12 − 4 !

($ = (0,1,1)

Noisy Channel
Received bit

LLM (e.g., GPT4)
True label Output

Binary Asymmetric Channel LLM Inference
Noise Error

<latexit sha1_base64="l8yoU3KHuCZGcuZ2QMGhOmlU5ek=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe5E1DJoY5mA+YDkCHubuWTN3t6xuxcIR8DexkIRW3+Snf/GzUehiQ8GHu/NMDMvSATXxnW/ndza+sbmVn67sLO7t39QPDxq6DhVDOssFrFqBVSj4BLrhhuBrUQhjQKBzWB4N/WbI1Sax/LBjBP0I9qXPOSMGivVbrvFklt2ZyCrxFuQEixQ7Ra/Or2YpRFKwwTVuu25ifEzqgxnAieFTqoxoWxI+9i2VNIItZ/NDp2QM6v0SBgrW9KQmfp7IqOR1uMosJ0RNQO97E3F/7x2asIbP+MySQ1KNl8UpoKYmEy/Jj2ukBkxtoQyxe2thA2ooszYbAo2BG/55VXSuCh7V2WvdlmqjJ7mceThBE7hHDy4hgrcQxXqwADhGV7hzXl0Xpx352PemnMWER7DHzifP8v9jYA=</latexit>

B
<latexit sha1_base64="fssjRMo/PPACQPaOTKnqaUuYgrw=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix48VjFfkgbymY7aZduNmF3Uyih4A/w4kERr/4jb/4bN20P2vpg4PHeDDPzgkRwbVz321lZXVvf2CxsFbd3dvf2SweHDR2nimGdxSJWrYBqFFxi3XAjsJUopFEgsBkMb3K/OUKleSwfzDhBP6J9yUPOqLHS/WOxWyq7FXcKsky8OSnDHLVu6avTi1kaoTRMUK3bnpsYP6PKcCZwUuykGhPKhrSPbUsljVD72fTSCTm1So+EsbIlDZmqvycyGmk9jgLbGVEz0IteLv7ntVMTXvsZl0lqULLZojAVxMQkf5v0uEJmxNgSyhS3txI2oIoyY8PJQ/AWX14mjfOKd1nx7i7K1dHTLI4CHMMJnIEHV1CFW6hBHRiE8Ayv8OYMnRfn3fmYta448wiP4A+czx8jTY2r</latexit>

Y
<latexit sha1_base64="D6ZBV++CJvR5QKbryp2ETsCPbBg=">AAACCHicbVA9SwNBEN2LXzF+RS0tXAxCbOJdELUMsbGMYD4gCWFvM0mW7O0eu3uBcARsbPwrNhaK2PoT7Pw37iUpNPHBwOO9GWbm+SFn2rjut5NaWV1b30hvZra2d3b3svsHNS0jRaFKJZeq4RMNnAmoGmY4NEIFJPA51P3hTeLXR6A0k+LejENoB6QvWI9RYqzUyR6XcUuzALdkCIoYqQQJIC6DEpO8d14862RzbsGdAi8Tb05yaI5KJ/vV6koaBSAM5UTrpueGph0TZRjlMMm0Ig0hoUPSh6alyTrdjqePTPCpVbq4J5UtYfBU/T0Rk0DrceDbzoCYgV70EvE/rxmZ3nU7ZiKMDAg6W9SLODYSJ6ngLlNADR9bQqhi9lZMB0QRamx2GRuCt/jyMqkVC95lwbu7yJVGD7M40ugInaA88tAVKqFbVEFVRNEjekav6M15cl6cd+dj1ppy5hEeoj9wPn8AebSZjQ==</latexit>

B ⇠ Bern(1/2)
<latexit sha1_base64="o1DsFhKCzdZg958KwB0r5t5yK04=">AAACC3icbVDLSsNAFJ34rPUVdekmtAjtpiQi6rLUjcsK9gFtCJPpTTt0MhNmJoUSCi7d+CtuXCji1h9w5984fSy09cCFwzn3cu89YcKo0q77ba2tb2xubed28rt7+weH9tFxU4lUEmgQwYRsh1gBoxwammoG7UQCjkMGrXB4M/VbI5CKCn6vxwn4Me5zGlGCtZECu9AKal1F465IQGItJMcxZDWQfFKqB1CqlcuBXXQr7gzOKvEWpIgWqAf2V7cnSBoD14RhpTqem2g/w1JTwmCS76YKEkyGuA8dQ6cblZ/Nfpk4Z0bpOZGQprh2ZurviQzHSo3j0HTGWA/UsjcV//M6qY6u/YzyJNXAyXxRlDJHC2cajNOjEohmY0MwkdTc6pABlphoE1/ehOAtv7xKmucV77Li3V0Uq6OHeRw5dIoKqIQ8dIWq6BbVUQMR9Iie0St6s56sF+vd+pi3rlmLCE/QH1ifP3HUmzY=</latexit>

WB ⇠ Bern(Pe(B))
<latexit sha1_base64="xVjgYqzYEnCuTyuizhi27reGF1A=">AAAB8HicbVDJSgNBEK1xjXGLevTSGAQPEmZE1GNADx4jmI1kCD2dnqRJL0N3TyAMAf/BiwdFvPo53vwbO8tBEx8UPN6roqpelHBmrO9/eyura+sbm7mt/PbO7t5+4eCwZlSqCa0SxZVuRNhQziStWmY5bSSaYhFxWo8GtxO/PqTaMCUf7SihocA9yWJGsHVSs3HebBsm0F2nUPRL/hRomQRzUoQ5Kp3CV7urSCqotIRjY1qBn9gww9oywuk4304NTTAZ4B5tOSqxoCbMpgeP0alTuihW2pW0aKr+nsiwMGYkItcpsO2bRW8i/ue1UhvfhBmTSWqpJLNFccqRVWjyPeoyTYnlI0cw0czdikgfa0ysyyjvQggWX14mtYtScFUKHi6L5eHTLI4cHMMJnEEA11CGe6hAFQgIeIZXePO09+K9ex+z1hVvHuER/IH3+QMAFpB0</latexit>

X, Y ⇠ D <latexit sha1_base64="Y5u2IOSlHW+DHLbI9pZgHfGL190=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoMQL2FXRD0GvHiMYB6QLGF2dpIMmZ1dZ3oDYQn4DV48KOLV3/Hm3zh5HDSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNUycasbrLJaxbgXUcCkUr6NAyVuJ5jQKJG8Gw9up3xxxbUSsHnCccD+ifSV6glG0Uispd1gY43m3WHIr7gxklXgLUoIFat3iVyeMWRpxhUxSY9qem6CfUY2CST4pdFLDE8qGtM/blioaceNns3sn5MwqIenF2pZCMlN/T2Q0MmYcBbYzojgwy95U/M9rp9i78TOhkhS5YvNFvVQSjMn0eRIKzRnKsSWUaWFvJWxANWVoIyrYELzll1dJ46LiXVW8+8tSdfQ0jyMPJ3AKZfDgGqpwBzWoAwMJz/AKb86j8+K8Ox/z1pyziPAY/sD5/AGqGJBL</latexit>

p(·) <latexit sha1_base64="tu1LIyvjzg9VPFXumbtzqqwpur0=">AAAB63icbVBNSwMxEJ34WetX1aOXYBHqpeyKqMeCF48V7Ae0S8mm2TY0yS5JtlCWgr/AiwdFvPqHvPlvzLY9aOuDgcd7M8zMCxPBjfW8b7S2vrG5tV3YKe7u7R8clo6OmyZONWUNGotYt0NimOCKNSy3grUTzYgMBWuFo7vcb42ZNjxWj3aSsECSgeIRp8TmUlJpX/RKZa/qzYBXib8gZVig3it9dfsxTSVTlgpiTMf3EhtkRFtOBZsWu6lhCaEjMmAdRxWRzATZ7NYpPndKH0exdqUsnqm/JzIijZnI0HVKYodm2cvF/7xOaqPbIOMqSS1TdL4oSgW2Mc4fx32uGbVi4gihmrtbMR0STah18RRdCP7yy6ukeVn1r6v+w1W5Nn6ax1GAUziDCvhwAzW4hzo0gMIQnuEV3pBEL+gdfcxb19AiwhP4A/T5A4KhjnU=</latexit>

p(X)
Prompt

<latexit sha1_base64="VOf5lO9QWTPwXrGzJLxqkVXu3HY=">AAACAHicbZBNS8MwHMZTX+d8q3rw4CU4BE+jFVEvwpgXjxPcC6ylpGm6haVJSdLJKAXxq3jxoIhXP4Y3v43Zy0E3Hwj8eJ5/SP5PmDKqtON8W0vLK6tr66WN8ubW9s6uvbffUiKTmDSxYEJ2QqQIo5w0NdWMdFJJUBIy0g4HN+O8PSRSUcHv9SglfoJ6nMYUI22swD70HmhE+kjn9eK67omUZQq2g3pgV5yqMxFcBHcGFTBTI7C/vEjgLCFcY4aU6rpOqv0cSU0xI0XZyxRJER6gHuka5Cghys8nCxTwxDgRjIU0h2s4cX/fyFGi1CgJzWSCdF/NZ2Pzv6yb6fjKzylPM004nj4UZwxqAcdtwIhKgjUbGUBYUvNXiPtIIqxNZ2VTgju/8iK0zqruRdW9O6/Uho/TOkrgCByDU+CCS1ADt6ABmgCDAjyDV/BmPVkv1rv1MR1dsmYVHoA/sj5/AIeplu0=</latexit> bB = B � WB

<latexit sha1_base64="0bYibD7ypjh0dNxEkoFiP1KdOXs=">AAACBnicbZDLSgMxGIUzXmu9jboUIVgEV2WmiLoRCm5cVrA32umQyWTa0MwkJJlKGQqCG1/FjQtF3PoM7nwb08tCWw8EPs75Q/KfQDCqtON8W0vLK6tr67mN/ObW9s6uvbdfUzyVmFQxZ1w2AqQIowmpaqoZaQhJUBwwUg/61+O8PiBSUZ7c6aEgXoy6CY0oRtpYvn3Uvqch6SGdNUcdAa9gs80FSxWs+42O8O2CU3QmgovgzqAAZqr49lc75DiNSaIxQ0q1XEdoL0NSU8zIKN9OFREI91GXtAwmKCbKyyZrjOCJcUIYcWlOouHE/X0jQ7FSwzgwkzHSPTWfjc3/slaqo0svo4lINUnw9KEoZVBzOO4EhlQSrNnQAMKSmr9C3EMSYW2ay5sS3PmVF6FWKrrnxdLtWaE8eJjWkQOH4BicAhdcgDK4ARVQBRg8gmfwCt6sJ+vFerc+pqNL1qzCA/BH1ucP13GZSg==</latexit>bY p = Y � W p
X

<latexit sha1_base64="0g54N+WS8H/2Q7Xj/X0vgvJvqjk=">AAACEXicbVA9SwNBEN3z2/gVtbRZDMLZhDsRFWyCNpYRjAkk57G3meji3u6yuxcIR8BfYONfsbFQxNbOzn/j5qPQxAcDj/dmmJmXKM6MDYJvb2Z2bn5hcWm5sLK6tr5R3Ny6NjLTFGpUcqkbCTHAmYCaZZZDQ2kgacKhntyfD/x6F7RhUlzZnoIoJbeCdRgl1klx0a/HjRuFW4aluCUVaGKlFiSF/Ay06PvVGPzGqdrfj4uloBwMgadJOCYlNEY1Ln612pJmKQhLOTGmGQbKRjnRllEO/UIrM6AIvSe30HR0sNNE+fCjPt5zSht3pHYlLB6qvydykhrTSxPXmRJ7Zya9gfif18xs5yTKmVCZBUFHizoZx1biQTy4zTRQy3uOEKqZuxXTO6IJtS7EggshnHx5mlwflMOj8sHlYanSfRjFsYR20C7yUYiOUQVdoCqqIYoe0TN6RW/ek/fivXsfo9YZbxzhNvoD7/MHeIydWA==</latexit>

W p
X ⇠ Bern(Pe(X; p))

Figure 2.7: Illustration of the analogy between information bit transmission in a
noisy communication channel and LLM inference. The communication channel
transmits bit B with a probability Pe(B) of error occurrence, while LLM infers
a sample with true label X and has a probability Pe(X; p) of making incorrect
predictions. The notation W is for the noise introduced by channel or LLMs.

Noisy Channel LLM (e.g., GPT4)

Binary Asymmetric Channel LLM Inference

<latexit sha1_base64="Y5u2IOSlHW+DHLbI9pZgHfGL190=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoMQL2FXRD0GvHiMYB6QLGF2dpIMmZ1dZ3oDYQn4DV48KOLV3/Hm3zh5HDSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNUycasbrLJaxbgXUcCkUr6NAyVuJ5jQKJG8Gw9up3xxxbUSsHnCccD+ifSV6glG0Uispd1gY43m3WHIr7gxklXgLUoIFat3iVyeMWRpxhUxSY9qem6CfUY2CST4pdFLDE8qGtM/blioaceNns3sn5MwqIenF2pZCMlN/T2Q0MmYcBbYzojgwy95U/M9rp9i78TOhkhS5YvNFvVQSjMn0eRIKzRnKsSWUaWFvJWxANWVoIyrYELzll1dJ46LiXVW8+8tSdfQ0jyMPJ3AKZfDgGqpwBzWoAwMJz/AKb86j8+K8Ox/z1pyziPAY/sD5/AGqGJBL</latexit>

p(·)
Prompt

<latexit sha1_base64="XNSTjpPtaa3TswNPbYhn3uQfdvw=">AAAB9XicbZBLSwMxFIXv1Fetr6pLN8EiuCozRdRlqRuXFewD2nHIpJk2NJMMSaZShoI/w40LRdz6X9z5b0wfC209EPg454bcnDDhTBvX/XZya+sbm1v57cLO7t7+QfHwqKllqghtEMmlaodYU84EbRhmOG0niuI45LQVDm+meWtElWZS3JtxQv0Y9wWLGMHGWg+1wENdmfBUo1pQCYolt+zOhFbBW0AJFqoHxa9uT5I0psIQjrXueG5i/Awrwwink0I31TTBZIj7tGNR4JhqP5ttPUFn1umhSCp7hEEz9/eNDMdaj+PQTsbYDPRyNjX/yzqpia79jIkkNVSQ+UNRypGRaFoB6jFFieFjC5goZndFZIAVJsYWVbAleMtfXoVmpexdlit3F6Xq6GleRx5O4BTOwYMrqMIt1KEBBBQ8wyu8OY/Oi/PufMxHc86iwmP4I+fzByWbkjU=</latexit>

B1 � B2
<latexit sha1_base64="HRjFEpwc4Zjm+qXeH+dkp+FX3M0=">AAACAHicbZBLSwMxFIXv+Kz1NerChZtgEVyVmSLqstSNywr2Ae0wZNK0Dc0kQ5IplKEg/hU3LhRx689w578xfQjaeiDwcc4NyT1Rwpk2nvflrKyurW9s5rby2zu7e/vuwWFdy1QRWiOSS9WMsKacCVozzHDaTBTFccRpIxrcTPLGkCrNpLg3o4QGMe4J1mUEG2uF7nEl9FFbJjzVqBKWfrARugWv6E2FlsGfQwHmqobuZ7sjSRpTYQjHWrd8LzFBhpVhhNNxvp1qmmAywD3asihwTHWQTRcYozPrdFBXKnuEQVP3940Mx1qP4shOxtj09WI2Mf/LWqnpXgcZE0lqqCCzh7opR0aiSRuowxQlho8sYKKY/SsifawwMbazvC3BX1x5Geqlon9ZLN1dFMrDh1kdOTiBUzgHH66gDLdQhRoQGMMTvMCr8+g8O2/O+2x0xZlXeAR/5Hx8A+XnleY=</latexit>

B1 � B2 � W
<latexit sha1_base64="3Ps0+mqVaLPqkExKaFHtEW+o1jM=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgQcJuEPUY8OIxgnmRLMvsZDYZMjO7zswGwhLwG7x4UMSrv+PNv3HyOGhiQUNR1U13V5hwpo3rfju5tfWNza38dmFnd2//oHh41NBxqgitk5jHqhViTTmTtG6Y4bSVKIpFyGkzHN5O/eaIKs1i+WDGCfUF7ksWMYKNlVrtwLtA7aASFEtu2Z0BrRJvQUqwQC0ofnV7MUkFlYZwrHXHcxPjZ1gZRjidFLqppgkmQ9ynHUslFlT72ezeCTqzSg9FsbIlDZqpvycyLLQei9B2CmwGetmbiv95ndREN37GZJIaKsl8UZRyZGI0fR71mKLE8LElmChmb0VkgBUmxkZUsCF4yy+vkkal7F2VK/eXperoaR5HHk7gFM7Bg2uowh3UoA4EODzDK7w5j86L8+58zFtzziLCY/gD5/MHqaSPpA==</latexit>

Y1, Y2

<latexit sha1_base64="ub7ZOkmz5ZraBZ70Cn/ngDyV4lc=">AAACG3icbZBNS8MwHMbT+TbnW9Wjl+AQNhijLaIeB148TnBbx1ZKmqVbWJqWJB2MMvBjePGrePGgiCfBg9/G7OWg2x4I/Hief0j+T5AwKpVl/Ri5jc2t7Z38bmFv/+DwyDw+aco4FZg0cMxi4QZIEkY5aSiqGHETQVAUMNIKhrfTvDUiQtKYP6hxQrwI9TkNKUZKW77ptH27GycslbDlZ65vV1zfmZTscgW2fWdN4pR9s2hVrZngKtgLKIKF6r751e3FOI0IV5ghKTu2lSgvQ0JRzMik0E0lSRAeoj7paOQoItLLZrtN4IV2ejCMhT5cwZn790aGIinHUaAnI6QGcjmbmuuyTqrCGy+jPEkV4Xj+UJgyqGI4LQr2qCBYsbEGhAXVf4V4gATCStdZ0CXYyyuvQtOp2ldV5/6yWBs9zuvIgzNwDkrABtegBu5AHTQABk/gBbyBd+PZeDU+jM/5aM5YVHgK/sn4/gWVVJ8y</latexit>

Y1 � WX1,X2
(1), Y2 � WX1,X2

(2)

<latexit sha1_base64="OHB87RC3Ux2HszmUkcidfRbgPWU=">AAAB8nicbVBNSwMxEM36WetX1aOXYBEqSNktoh4LXjxWsO1CuyzZNNuGZpMlmS2UpeCf8OJBEa/+Gm/+G9OPg7Y+GHi8N8PMvCgV3IDrfjtr6xubW9uFneLu3v7BYenouGVUpilrUiWU9iNimOCSNYGDYH6qGUkiwdrR8G7qt0dMG67kI4xTFiSkL3nMKQErddKKH3qX2A9rF2Gp7FbdGfAq8RakjBZohKWvbk/RLGESqCDGdDw3hSAnGjgVbFLsZoalhA5Jn3UslSRhJshnJ0/wuVV6OFbalgQ8U39P5CQxZpxEtjMhMDDL3lT8z+tkEN8GOZdpBkzS+aI4ExgUnv6Pe1wzCmJsCaGa21sxHRBNKNiUijYEb/nlVdKqVb3rau3hqlwfPc3jKKBTdIYqyEM3qI7uUQM1EUUKPaNX9OaA8+K8Ox/z1jVnEeEJ+gPn8wdB9pCB</latexit>

p(X1, X2)

<latexit sha1_base64="/vn574vP76lOb61qWSxoSkUmeGI=">AAACIHicbZBNS8MwHMbT+Tbn29Sjl+AQPIzRFnEeB148TnBbxzpLmqVbWNqGJB2MUvCLePGrePGgiN7005i94MvmA4GH5/mH5P/zOaNSmeaHkVtZXVvfyG8WtrZ3dveK+wdNGScCkwaOWSwcH0nCaEQaiipGHC4ICn1GWv7wctK3RkRIGkc3asxJN0T9iAYUI6Ujr1hte5Ybc5ZI2LpNeealjmeVHc8uW5nrFtqe/d3yn87OvGLJrJhTwWVjzU0JzFX3iu9uL8ZJSCKFGZKyY5lcdVMkFMWMZAU3kYQjPER90tE2QiGR3XS6YAZPdNKDQSz0iRScpr9vpCiUchz6ejJEaiAXu0n4X9dJVHDRTWnEE0UiPHsoSBhUMZzQgj0qCFZsrA3Cguq/QjxAAmGlmRY0BGtx5WXTtCvWecW+PivVRnczHHlwBI7BKbBAFdTAFaiDBsDgHjyCZ/BiPBhPxqvxNhvNGXOEh+CPjM8v7ouiJA==</latexit>

Y1 � W p
X1,X2,1

Y2 � W p
X1,X2,2<latexit sha1_base64="5fyPbRfsYeYpfTwREggba/VKPbU=">AAACBnicbVDLSsNAFJ3UV42vqEsRBovgQkoSRF0WdOGygm0jTQiT6aQdOpOEmUmhlILgxl9x40IRt36DO//GadOFth64cO45d5h7T5QxKpVtfxulpeWV1bXyurmxubW9Y+3uNWWaC0waOGWp8CIkCaMJaSiqGPEyQRCPGGlF/auJ3xoQIWma3KlhRgKOugmNKUZKS6F16IXO6X3o+JJyeO37phe6uneLPrQqdtWeAi4SZ0YqYIZ6aH35nRTnnCQKMyRl27EzFYyQUBQzMjb9XJIM4T7qkramCeJEBqPpGWN4rJUOjFOhK1Fwqv5+MUJcyiGP9CRHqifnvYn4n9fOVXwZjGiS5YokuPgozhlUKZxkAjtUEKzYUBOEBdW7QtxDAmGlkzN1CM78yYuk6Vad86p7e1apDR6KOMrgAByBE+CAC1ADN6AOGgCDR/AMXsGb8WS8GO/GRzFaMmYR7oM/MD5/AMU8l1g=</latexit>

X1, Y1 ⇠ D

X2, Y2 ⇠ D

Figure 2.8: Illustration of the analogy between encoded bit transmission in a
noisy communication channel and coded LLM inference. The communication
channel transmits an encoded bit B1 ⊕B2, while LLM inference predicts multiple
samples (two samples in this example) with true label X1, X2. The notation W is
for the noise introduced by the channel or LLMs.

where W p
X denotes a binary noise which (1) depends on the input X and (2) is

parameterized by the choice of prompt p. Note that for a fixed prompt p, this

becomes analogous to the binary asymmetric channel [26, 18, 76, 30], which has

been extensively studied in the field of information theory. We illustrate this analogy

in Fig. 2.7.

Coded Prompts

We now present the concept of coded prompts, which extends the previously dis-

cussed analogy to the transmission of encoded bits. See Figure 2.8 for a visual

representation. In the context of communication, as explored in the prior toy exam-

39

ple, we initially compute the encoded bit (B1 ⊕B2) and subsequently transmit it

over the channel, yielding B1 ⊕B2 ⊕W at the receiver end, where the variable W

represents the channel noise.

How can we implement analogous mechanisms within the framework of LLMs?

The equivalent of transmitting a coded bit can be conceptualized as generating a

prediction from an LLM using a coded prompt. A coded prompt is a specially crafted

prompt that accommodates multiple test inputs concurrently, mirroring the coded

bit in the communication example.

To illustrate this, let us consider a binary classification task with two inputs, X1

and X2. In a simplistic approach, we could generate predictions from the LLM for

each input independently. However, this method is susceptible to noise in the LLM

inference process. If the prediction for one input is erroneous due to noise, error

detection becomes infeasible.

To safeguard against this, we propose the development of a coding scheme.

Instead of merely generating individual predictions, we also generate a prediction

using a coded multi-input prompt, which incorporates both X1 and X2. We refer to

the prediction derived from this coded prompt as a coded prediction. Now, even if

one prediction from the two original prompts is inaccurate, we can detect or correct

it using the remaining and coded predictions.

One crucial distinction exists here. Given LLMs’ capability to generate out-

puts of arbitrary length, we can produce vector-valued predictions, as depicted in

Figure 2.8.

This contrasts with the communication example where only a single bit can be

40

received when utilizing the communication channel once.

Remark While the existing prompt techniques focus on addressing individual

test samples, our coded prompting technique processes multiple test samples si-

multaneously. It is important to note that this is not always feasible – if only one

test sample is available, then coding offers no advantage. Indeed, this mirrors

the block-length condition necessary for efficient coding – coding techniques are

effective when handling a large number of information bits, and their benefits are

limited when dealing with one or a small number of information bits [19].

Formal Definition

For clarity of presentation, we will assume the following simple setting (binary

classification) throughout the paper. Our framework can be easily extended to

handle more general cases.

For the input feature and label, we define (X, Y) such that (X, Y) ∼ D, with

X ∈ X and Y = f(X) ∈ Y . We denote by LLM the mapping induced by a raw

LLM inference followed by the label mapping function (e.g., parser). That is,

LLM : text→ ∪∞
n=1Yn. In this context, when using standard prompting, LLM’s output

falls within Y . However, with a single coded prompt for multiple inputs, LLM can

output a sequence of labels, denoted as Yn, for some n ≥ 1. More precisely, given

an input token sequence, the raw LLM inference will return a sequence distribution,

and the label mapping function will find the most likely label (or labels) given the

output sequence distribution. For instance, the most straightforward algorithm

41

is to look at the distribution of the first output token and determine which of the

binary labels is more likely than the other.

A single-input prompt function is denoted by p : X → text, i.e., p maps a single

input feature X into a formatted text p(X). The set of all such possible mappings

is denoted as P1. Note that this set includes not only various prefixes but also

various prompting techniques such as few-shot prompting [11, 65, 95, 129] and

Chain-of-Thoughts (CoT) [116]. For example, consider the movie review sentiment

classification task. A one-shot prompt can be represented as follows:

p(X) = “Movie review 1: It was so boring.

+ [Q] Is this review positive or negative? Negative.”

+ “Movie review 2: + X

+ [Q] Is this review positive or negative?”

As another example, one can represent a CoT prompt as follows:

p(X) = “Movie review: + X

+ [Q] Is this review positive or negative? Let’s think step by step.”

A k-input coded prompt function is denoted by p : X k → text, i.e., p maps a k input

features X1, X2, . . . , Xk into a formatted text p(X1, . . . , Xk). The set of all possible

such mappings is denoted as Pk. For example, consider the following examples of

multi-input coded prompts:

plist(X1, X2) = “Movie review 1: ” + X1 + “Movie review 2: ” + X2

+ “[Q] For each review, classify its sentiment.” (Vector prompt)

42

p∪(X1, X2) = “Movie review 1: ” + X1 + “Movie review 2: ” + X2

+ “[Q] Is there any positive review above?” (Detecting prompt)

Similar to the single-input case, coded prompts can incorporate various prompting

techniques such as few-shot prompting and CoT. The end-to-end LLM inference

with a prompting p can be viewed as a function composition: LLM ◦ p : X → ∪∞
n=1Yn.

When both uncoded prompts and coded prompts are used, we can decode the

uncoded and coded LLM outputs to estimate the labels better.

2.6.4 Experiments

This section shows that coded prompts can improve prediction performance on the

following two tasks.

Task 1: Finding the Maximum Prime Number in a Range (Binary Classification)

Task Setup In this task, the goal is to classify whether the given mathematical

statement is true or false. The statement is in the form of “p is the largest prime

number smaller than p′” for some integers p and p′. Each batch of k samples of

the synthetic dataset is generated as: (i) generate all N primes between vmin and

vmax: vmin < p1 < p2 < . . . < pN < vmax, (ii) uniformly randomly sample k + 1

continuous primes pn−k+1, . . . , pn,pn+1 from p1, p2, . . . , pN , (iii) the statement of each

prime pi, i ≤ n in the k + 1 continuous primes is constructed as “pi is the largest

43

prime smaller than pn+1.” This way, we always create one positive label sample and

k − 1 negative label samples.

Prompt Design & Rationale Table 2.2 presents our uncoded and coded prompts

for k = 4. Uncoded prompts evaluate a single test statement for its truthfulness,

while coded prompts assess k test statements simultaneously to determine the

sequence of true/false values. We experimented with three variations of prompts.

The first prompt is the coded prompt, while the second and third are two variants

of uncoded prompts. Uncoded prompt 1 is in the same format as the coded prompt

with only one inputted sample, while uncoded prompt 2 is a more natural question

format for prompting a single example. Notably, for this task, within a batch, it

is impossible for more than one statement to be true concurrently. The coded

prompt, by evaluating multiple test statements, i.e., using the vector prompt, has

the potential to discern this underlying pattern and thus make more accurate

predictions than uncoded prompts. It is important to note that we do not explicitly

inform the model of this hidden condition. Although explicitly stating this could

potentially enhance the performance of coded prompts, our aim here is to test the

model’s inherent ability to deduce inter-prompt relations independently.

Experimental Results The “Prediction” column in Table 2.2 shows a real predic-

tion outcome obtained with GPT-4 [80]. (The system message is set as “You are a

mathematician. Consider the following prime number task and follow the exact

instruction.”)

We observe that GPT-4 tends to predict “1” to at most one statement in most cases

44

Table 2.2: The illustration of coded and uncoded prompts with a real example. A
coded prompt predicts multiple samples in a single inference while an uncoded
prompt predicts one sample in one inference. Uncoded prompt 1 is in the same
format as the coded prompt, while uncoded prompt 2 is a more natural question
format for prompting a single example. ✓/✗ = correct/incorrect prediction.

Method Prompt Prediction

Coded
Prompt

Please indicate whether the following statements are correct.
(1) 6101 is the largest prime number smaller than 6121.
(2) 6113 is the largest prime number smaller than 6121.
(3) 6089 is the largest prime number smaller than 6121.
(4) 6091 is the largest prime number smaller than 6121.
Provide a sequence of 0s (for wrong statement) and 1s (for correct
statement) for the statements with no commas, spaces, or text.

0100
(✓✓✓✓)

Uncoded
Prompt

...(1) 6101 is the largest prime number smaller than 6121. 1(✗)

...(1) 6113 is the largest prime number smaller than 6121. 1(✓)

...(1) 6089 is the largest prime number smaller than 6121. 1(✗)

...(1) 6091 is the largest prime number smaller than 6121. 1(✗)

when using the coded prompt, implying GPT-4 tends to consider the relationship

between samples when making a coded inference. However, when performing

multiple inferences individually via uncoded prompts, GPT-4 frequently makes

multiple “1” predictions to different samples in a batch.

Furthermore, we compare the F1-score of uncoded prompts and coded prompts

in Table 2.3. We vary the values of vmin, vmax, and k (the number of samples in a

batch). One can observe that the F1-score with (one) coded prompt is consistently

higher than (four) uncoded prompts in all tested cases.

Task 2: Online Comment Toxicity Prediction (Regression)

Task Setup In this task, the goal is to predict the toxicity of online comments,

with a scale of 0 to 1. We use the Civil Comments dataset [9], which compiles a

45

Table 2.3: Coded prompt vs. uncoded prompt. F1-score comparison between
coded prompt and uncoded prompt under different prime ranges and different
sample batch sizes. F1-score is measured by averaging 400 batches.

Setting [vmin, vmax] [101, 102] [103, 104] [105, 106]
k 2 4 8 2 4 8 2 4 8

Uncoded Prompt 0.51 0.25 0.14 0.33 0.23 0.10 0.23 0.11 0.10
Coded Prompt 0.99 0.81 0.64 0.69 0.42 0.32 0.74 0.24 0.26

vast number of comments from the Civil Comments platform and adds a human

label for identity and toxicity to each comment. In this dataset, “Toxicity” describes

any language that is impolite, inconsiderate, or irrational [9]. It ranges from 0 to

1, with higher values indicating a higher level of toxicity. Due to the extremely

imbalanced distribution of toxicity in the dataset, we partitioned the dataset into

four bins: [0, 0.25), [0.25, 0.5), [0.5, 0.75), and [0.75, 1]. We then randomly sub-sample

200 comments from each bin, forming a balanced dataset containing 800 comments.

For each experiment run, we randomly sample 4 comments from this dataset and

have an LLM predict their toxicity scores. We calculate the Mean Square Error

(MSE) by comparing the outputs of the LLM with the actual labels, and perform

this process a total of 100 times.

Prompt Design & Rationale and Decoding Algorithms For uncoded prompts,

we let LLM evaluate them one by one independently, resulting in 4 scores from 4

queries. In particular, we use

“Evaluate the toxicity score from 0 to 1 of the following sentence,

provide your brief reason first and then show the toxicity score

46

(from 0 to 1) in the final line: {comment} ”

For a coded prompt, we use the vector prompt, i.e., we obtain 4 scores from a

single query. In particular, we use

“Evaluate the toxicity score from 0 to 1 of the following four

sentences, provide your brief reason and score for each one, and

finally list the four scores in the last line, separated by commas:

{comment1} {comment2} {comment3} {comment4} ”

Coded prompts, by processing multiple examples at once, can enhance the

calibration of toxicity scales in LLMs, potentially reducing calibration errors. For

instance, consider two comments: “I hate this person.” and “I despise this person.”

Assessing each comment individually makes it challenging to assign a toxicity score

due to the lack of specific guidelines. In fact, this is an ill-posed problem on its

own. However, when evaluated together, it is evident that the second comment

(using ‘despise’) is more toxic than the first (using ‘hate’). Thus, even without

clear guidelines, one can assign a higher score to the second comment. This self-

calibration is unique to coded prompts, making them more effective for this task.

We also test the performance when both uncoded prompts and a coded prompt

are used (five inference calls for four samples). We adopt this approach as it

allows us to utilize both individual calibration results and inter-sample calibration

results, which could potentially enhance the performance. Note that this is the

standard approach in coding theory, where we use the channel more than k times

when transmitting k bits, as in the illustrative example shown earlier. The rate of

47

a code is defined as the ratio of the number of information bits to the number of

transmissions. In the context of this particular coded prompting with four uncoded

prompts and one coded prompt, the rate is 4/5 = 0.8.

Furthermore, when using uncoded and coded prompts, we require decoding al-

gorithms. These are necessary to determine the four toxicity (one for each comment)

based on the five inference results through a specific algorithm. In this case, we

tested two simple decoding algorithms. The first decoding algorithm (dec1) simply

returns the average of the predictions made solely from the uncoded prompts and

those from the coded prompt. More specifically, let ŷ be a 4-dimensional vector

representing the four uncoded predictions, and z = [z1, z2, z3, z4] be a 4-dimensional

vector from a coded (vector) prediction. Then, dec1 returns the average of these

two vectors: (ŷ + z)/2.

The second decoding algorithm, (dec2), is designed for that with coded prompt,

the model may correctly order the inputs, but it might not accurately determine their

absolute toxicity. Therefore, we post-process the results to obtain the six (6 =
(

4
2

)
)

pairwise differences. Specifically, we first process z into q = [z1 − z2, z1 − z3, z1 −

z4, z2 − z3, z2 − z4, z3 − z4]. We then solve the following least-squares problem:

min
y∈[0,1]4

∥∥∥∥∥∥∥∥
 A1

A2

y−

 ŷ

q


∥∥∥∥∥∥∥∥

2

, A1 :=



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, A2 :=



1 −1 0 0

1 0 −1 0

1 0 0 −1

0 1 −1 0

0 1 0 −1

0 0 1 −1



.

48

Here, note that the A1 is the observation matrix corresponding to the four outputs

from the uncoded prompts, and A2 is the observation matrix corresponding to the

six pairwise differences obtained from a single coded prompt.

Methods Rate MSE

Uncoded Prompt 1 0.3643

Coded Prompt 4 0.3309

Decoding Algorithm 0.8 0.3005

Table 2.4: Comparison of MSE and

rate across different methods.

Experimental Results As shown in the

results of Table 2.4, coded prompts alone

achieve lower MSE than uncoded prompts

with a higher rate. Further, when coded

prompts are used together with uncoded

prompts, we could further decrease the MSE

with a lower rate. We observe that (dec2)

performs slightly better than (dec1) in this experiment. We further presents an MSE

comparison of uncoded prompts and uncoded+coded+(dec2) prompts across 100

experiments in Figure 2.9. Most of the MSE pairs lie below y = x, indicating that

the performance of the uncoded+coded+(dec2) prompts often surpasses that of

the uncoded prompts.

2.7 Conclusion

In this chapter, inspired by the early ascent phenomenon, we first propose a syn-

thetic and controllable data that has an underlying probabilistic model for generat-

ing pretraining sequences, modeling the latent clustered structure in practical tasks.

Via studying such a synthetic and controllable data framework, we identify dual

operating modes of ICL: task learning and task retrieval, give the first mathematical

49

0.0 0.2 0.4 0.6 0.8 1.0 1.2
MSE (uncoded prompts)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
SE

 (u
nc

od
ed

+c
od

ed
+d

ec
2

pr
om

pt
s)

MSE pair
y = x

Figure 2.9: Uncoded prompts vs. uncoded+coded+(dec2) prompts. Each MSE
pair in the scatter diagram represents one experiment, with a total of 100 experi-
ments. The red line represents y = x.

explanation for the early ascent phenomenon, and predict the bounded efficacy

phenomenon. We further validate our prediction with real-world LLMs. Motivated

by the phenomenon that task retrieval can improve the prediction accuracy of ICL

even without informative labels, we further propose coded prompts as an extension,

which prompts multiple test samples together, where those unlabeled test samples

50

could serve as in-context samples to each other, therefore, boost the prediction

via task retrieval. We empirically show with preliminary results that such an idea

boosts the prediction accuracy of real-world LLMs, demonstrating the necessity of

studying the synthetic and controllable dataset and its inspiration for real-world

applications.

51

Chapter 3

Incorporating Instructions into

Synthetic ICL: In-Context Learning

with Hypothesis-Class Guidance

Recent research has investigated the underlying mechanisms of ICL both theoreti-

cally and empirically, often via studying synthetic and controllable data generated

from simple function classes. However, existing works often focus on sequences

consisting solely of labeled examples, while in practice, labeled examples are typi-

cally accompanied by an instruction, providing some side information about the

task. In this work, we propose ICL with hypothesis-class guidance (ICL-HCG), a novel

synthetic data model for ICL where the input context consists of the literal de-

scription of a (finite) hypothesis classH and (x, y) pairs from a hypothesis chosen

from H. Under our framework, ICL-HCG, we conduct extensive experiments to

52

explore: (i) a variety of generalization abilities to new hypothesis classes; (ii) dif-

ferent model architectures; (iii) sample complexity; (iv) in-context data imbalance;

(v) the role of instruction; and (vi) the effect of pretraining hypothesis diversity.

As a result, we show that (a) Transformers can successfully learn ICL-HCG and

generalize to unseen hypotheses and unseen hypothesis classes, and (b) compared

with ICL without instruction, ICL-HCG achieves significantly higher accuracy,

demonstrating the role of instructions.

3.1 Overview

LLMs and ICL LLMs [131] have garnered widespread attention for their ability

to solve complex tasks using simple text prompts. Among their many capabilities,

ICL [11] is particularly striking. ICL enables LLMs to adapt to new tasks by con-

ditioning on provided examples, effectively allowing them to learn from context

without explicit parameter updates. Understanding how such behavior emerges in

LLMs remains an intriguing and challenging problem.

Existing Efforts for Understanding ICL To elucidate the mechanisms behind

ICL, researchers have constructed a variety of synthetic datasets [31, 60, 4]. These

datasets typically involve sequences consisting of input-output pairs {(x(i), y(i))},

where each output y(i) is generated by a simple underlying function f(x(i)). For

example, Garg et al. [31] focus on noiseless linear regression, where each input

is sampled from an isotropic Gaussian by x(i) ∼ N (0, Id), and the corresponding

output is given by y(i) = ⟨x(i), w⟩ with w ∼ N (0, Id) for each sequence. During

53

Re
al

-W
or

ld
Sy

nt
he

tic

𝑥 1 , 𝑦 1 , 𝑥 2 , 𝑦(2), … , 𝑥(𝑘)

𝑦(𝑘) = 𝑓(𝑥(𝑘))

0.5
0.2
0.3
0

,

0
0
0

1.0

,

0.1
0.4
0.2
0

,

0
0
0

0.7

, …

𝑦(𝑘)

Transformer

𝓗 = {ℎ1, ℎ2, ℎ3}

hypothesis prefix 𝑥 1 , 𝑦 1 , … 𝑥(𝑘)

𝑥1 𝑥2 𝑥3

ℎ1 0 0 1

ℎ2 0 1 0

ℎ3 0 1 1

Transformer

𝑦(𝑘)Ours: ICL-HCGCommon-used

Without Instruction With Instruction

Figure 3.1: Common ICL framework vs. ours. Conventional frameworks with
synthetic datasets often construct sequences by concatenating multiple (x, y) pairs,
overlooking the importance of instructions. In contrast, our approach explicitly
incorporates instructions through a hypothesis prefix. Specifically, we transform the
hypothesis classH into a sequence that is prepended to the sequence of (x, y) pairs
and then fed into a Transformer. We refer to this method as in-context learning with
hypothesis-class guidance (ICL-HCG). (Real-world examples are demonstrated using
the GPT-4 Legacy model.)

training and inference, the model receives a sequence consisting of k demonstration

pairs (x(1), y(1), . . . , x(k−1), y(k−1)) followed by a query input xquery. This setup allows

the model to infer the correct response for xquery conditioned on in-context examples.

Various extensions have been proposed, including using Gaussian mixtures rather

than a single Gaussian for task priors [61], employing non-linear functions [4],

and introducing multiple intermediate “chain-of-thought” [116] steps within each

(x, y) pair [57].

Motivation While a variety of data models have been studied to advance our

understanding of ICL, a gap remains between these datasets and real-world ICL

scenarios. In practice, users often provide LLMs with an instruction in addition

to labeled demonstrations, containing the descriptions of the task in mind. See

54

Fig. 3.1 for the visualization. The top-left and top-right panels show experimental

results using the GPT-4 Legacy model, highlighting the effect of instruction. In

the top-left panel, the user provides a one-shot English-Korean translation pair

without specifying the instruction, leading to an incorrect translation. In contrast,

the top-right panel includes the instruction—“perform the translation task following

the demonstration”—guiding the model to produce a correct translation, empha-

sizing the importance of the task descriptions. In fact, instructions are known to

enhance the accuracy of ICL in general [11]. However, most existing synthetic

data frameworks overlook this crucial aspect, neglecting the role of instructions in

guiding the learning process. Motivated by this limitation, we ask:

Can we design a synthetic data framework for ICL that better captures the practical use

scenarios of ICL by incorporating both instructions and labeled samples?

Notably, two recent works [120, 43] adopt prefix as instruction to implicitly provide

information on the task. In contrast, our approach explicitly provides a hypothesis

class as a prefix to the Transformer, guiding the model’s understanding of the

intended task.

Our Synthetic Data Model We propose a novel synthetic data model, in-context

learning with hypothesis-class guidance (ICL-HCG), illustrated in the bottom-right

panel of Fig. 3.1, which integrates a hypothesis class into the ICL procedure. Specif-

ically, besides the usual sequences of (x, y) pairs, a hypothesis class is embedded

as a hypothesis prefix and fed into the Transformer (more details in Fig. 3.3 of

Sec. 3.2.5). Leveraging this framework, we explore several aspects of Transformer

55

behavior on the ICL-HCG task: (i) We evaluate the generalization ability of trained

models to new hypothesis classes, new hypotheses, and various sizes of hypothe-

sis classes; (ii) We compare different model architectures (Transformer, Mamba,

LSTM, and GRU), highlighting their distinct properties on these generalizations;

(iii) We examine the sample complexity required for achieving ID and OOD hypoth-

esis class generalization and discover that merely a few dozen training hypothesis

classes are sufficient for near-perfect generalization. (iv) We examine the effect of

imbalanced in-context samples, demonstrating that imbalance can slow down the

training process; (v) We assess the benefit of incorporating a hypothesis prefix,

which notably enhances the accuracy of ICL; (vi) We show pretraining hypothesis

diversity can significantly improve the accuracy of ICL when with instruction.

We summarize our contributions as follows:

• We propose a novel synthetic data model, namely in-context learning with hypothesis-

class guidance (ICL-HCG) that integrates a hypothesis class into the ICL proce-

dure. This design provides a controlled testbed for diverse experiments to study

behaviors of ICL with instruction.

• We perform extensive empirical evaluations on our framework. Most interestingly,

we demonstrate that (a) Transformers can successfully learn ICL-HCG and such a

learned ability can generalize to unseen hypotheses and unseen hypothesis classes,

and (b) compared with ICL without instruction, ICL-HCG achieves significantly

higher accuracy on ICL, demonstrating the role of instructions.

56

3.2 Meta-Learning for ICL-HCG

Training a learner to perform ICL aligns with the concept of meta-learning, as it

enables adaptation to new tasks using in-context examples. While prior studies [31,

25, 91] train Transformers for ICL on sequences of the form (x1, y1, x2, y2, . . . , xk, yk)

without explicit instructions, our work investigates whether a Transformer trained

for ICL with instructions, namely ICL-HCG, can generalize to new ICL-HCG tasks.

3.2.1 Two Types of Tasks in ICL-HCG

We consider two types of tasks in ICL-HCG, both constructed from a finite hypoth-

esis class H = {h(1), h(2), . . . , h|H|} over a finite input space X = {x1, x2, . . . , x|X |}

and a binary output space Y = {0, 1}.

Label Prediction Consider a hypothesis class H and a sequence consisting of

training data and a test point:

Sk−1 ⊕ x(k) = (x(1), y(1), . . . , x(k−1), y(k−1), x(k)),

where for all i, y(i) = h(x(i)) for a specific h ∈ H, and x(k) is a test query input. The

objective is to predict the label:

y(k) = h
(
x(k)

)
.

We refer to this as label prediction, with input-output pairs:

iI,k =
(
H, Sk−1 ⊕ x(k)

)
, oI,k = y(k).

57

Hypothesis Identification Given a hypothesis classH and a sequence (namely

ICL sequence):

SK = (x(1), y(1), . . . , x(K), y(K)),

where for all i, y(i) = h(x(i)) for a specific h ∈ H, the goal is to identify the underlying

hypothesis h. Denote this as hypothesis identification, with:

iII,K =
(
H, SK

)
, oII,K = h.

Meta-Learning Label prediction uses k − 1 samples to predict the label of a

new query x(k), while hypothesis identification directly outputs h. Both label

prediction and hypothesis identification can be viewed as attempts to identify h

fromH via empirical risk minimization (ERM) using the dataset {(x(i), y(i))}. Our

meta-learning aims at learning to do ERM for different hypothesis classes when

these hypothesis classes are given as input along with (x, y) pairs.

3.2.2 Sample Generation

We consider the following two approaches for generating ICL-HCG task samples.

Assumption 5 (i.i.d. Generation). Given hypothesis classes {Hi}N
i=1, input space X ,

and an integer K:

(a) Sample a hypothesis classH from {Hi}N train
i=1 ;

(b) Sample a hypothesis h uniformly at random fromH;

(c) Sample K inputs {x(i)}K
i=1 i.i.d. from Uniform(X);

(d) Generate y(i) = h(x(i)) for each i ∈ [K];

58

(e) Define Sk−1 ⊕ x(k) = [x(1), y(1), . . . , x(k)] for label prediction;

(f) Define SK = [x(1), y(1), . . . , x(K), y(K)] for hypothesis identification.

Assumption 6 (Opt-T Generation). Given hypothesis classes {Hi}N
i=1, input space X ,

and an integer K:

(a) Sample a hypothesis classH from {Hi}N test
i=1 ;

(b) Sample a hypothesis h uniformly randomly fromH;

(c) Construct optimal teaching set1 of h with respect toH;

(d) Randomly duplicate elements from this optimal teaching set until its size reaches K.

Assign indices 1 through K arbitrarily to these (x, y) pairs;

(e) Define SK = [x(1), y(1), . . . , x(K), y(K)] for hypothesis identification.

3.2.3 Meta Training and Testing

Training Given a set of training hypothesis classes {Htrain
i }N train

i=1 , the meta-learner

is trained in a multi-task setting to minimize the following loss:

L = L1(fθ(iII,K), oII,K) +
K∑

k=1
L2(fθ(iI,k), oI,k), (3.1)

where we generate H, h, and SK following i.i.d. Generation, inherently defining

(iII,K , oII,K) and (iI,k, oI,k). The loss is indeed implemented with additional terms,

and we will further clarify the loss in Sec. 3.2.5, Eq. 3.2.
1The optimal teaching set [134] is the smallest set of (x, y) pairs that uniquely identifies h among

all candidates inH.

59

Testing Given a set of testing hypothesis classes {Htest
i }N test

i=1 , we consider two types

of testing.

• Label prediction: We generate (iI,k, oI,k) following i.i.d. Generation, and then

measure whether the learner f predict f(iI,k) correctly for each k ∈ [K];

• Hypothesis identification: We generate (iII,K , oII,K) using Opt-T Generation and

evaluate whether the learner f predicts f(iII) correctly. This setting tests whether

the learner acquires the ability to identify the underlying hypothesis with minimal

information.

3.2.4 Four Types of Generalization

Hypothesis universe Huni Given an input space X = {x1, x2, . . . , x|X |} and a

binary output space Y = {0, 1}, We define the hypothesis universe Huni = YX as

the collection of all possible binary classification hypotheses. This universe contains

M = 2|X | distinct hypotheses, serving as a hypothesis pool to constructing training

and testing hypothesis classes.

In meta-learning, the goal is to train a model that is able to rapidly adapt to new

tasks. Testing on new tasks can be considered as measuring the OOD generalization.

Under our ICL-HCG framework, we consider four types of OOD generalizations.

First, we examine whether the learner generalizes to a new testing hypothesis

class (the hypothesis class is unseen during training) that may or may not contain

hypotheses seen during training, referred to as in-distribution (ID) and out-of-

distribution (OOD) hypothesis class generalization, respectively.

60

ID hypothesis class
generalization

OOD hypothesis class
generalization

ID hypothesis class
size generalization

OOD hypothesis class
size generalization

ℎ1 ℎ2

ℎ4 ℎ5

ℎ3

ℎ6

ℎ7 ℎ8

ℎ10 ℎ11

ℎ9

ℎ12

ℎ1 ℎ2

ℎ4 ℎ5

ℎ3

ℎ6

ℎ7 ℎ8

ℎ10 ℎ11

ℎ9

ℎ12

ℎ1 ℎ2

ℎ4 ℎ5

ℎ3

ℎ6

training testing

A pool of

hypotheses

A hypothesis

class

Figure 3.2: Four types of generalization. An illustration of the four types of
generalization.

Definition 1 (ID Hypothesis Class Generalization). GivenHuni of size M , we enumer-

ate all C(M, m) = M !
m!(M−m)! distinct hypothesis classes, each containing m hypotheses. We

then randomly subsample these classes into disjoint training and testing subsets, ensuring

that no testing hypothesis class appears in the training set (although individual hypotheses

may overlap). By training on randomly selected training hypothesis classes and evaluating

on unseen testing hypothesis classes, we assess generalization to new hypothesis classes

consisting of ID hypotheses.

Definition 2 (OOD Hypothesis Class Generalization). Given Huni of size M , we

partition it into disjoint training and testing subsets of sizes M ID and MOOD, respectively.

We then generate training hypothesis classes from M ID and testing hypothesis classes from

MOOD, each containing m hypotheses. We train the learner on the training hypothesis

classes and evaluate on the testing hypothesis classes. Because no testing hypothesis appears

during training, this setup probes how well the learner generalizes to entirely new hypotheses,

i.e., OOD hypotheses.

61

We then consider whether the learner can generalize to hypothesis classes of var-

ious sizes. Building on the concepts of ID and OOD hypothesis class generalization,

we introduce size generalizations as follows.

Definition 3 (ID Hypothesis Class Size Generalization). Building on the setting of ID

hypothesis class generalization, while maintaining non-identical training and testing hy-

pothesis classes, we allow training hypothesis class to include various number of hypotheses

m ∈M ⫋ [L]. We investigate whether the learner can perform well on hypothesis classes

with other sizes m ∈ [L] \M, where [L] = {1, 2, . . . , L}.

Definition 4 (OOD Hypothesis Class Size Generalization). Based on the setting of

OOD hypothesis class generalization, while maintaining non-identical training and testing

hypotheses, we allow training hypothesis class to include various number of hypotheses

m ∈M ⫋ [L]. We investigate whether the learner can perform well on hypothesis classes

with various sizes m ∈ [L] \M, where [L] = {1, 2, . . . , L}.

3.2.5 Learning ICL-HCG via Transformer

This section details how Transformer learns ICL-HCG. As shown in Fig. 3.3, the

hypothesis classH is first converted to a hypothesis prefix with randomly assigned

hypothesis indexes, then concatenated with context query representing sequence

SK as a unified sequence s.

Hypothesis prefix 2 Given a hypothesis class H = {h4, h6, h7}, its hypothesis

prefix with size L = 4 is constructed as shown in Fig. 3.3. Blank hypothesis is
2Please refer to Appendix B.2 for the full version.

62

𝓗 = {ℎ4, ℎ6, ℎ7}

𝑆𝐾 = 𝑥2, 0, 𝑥1, 1

[𝑥1, 1, 𝑥2, 1, 𝑥3, 0, B,
 𝑥1, 1, 𝑥2, 0, 𝑥3, 1, C,
 −,−,−,−,−,−, D,
 𝑥1, 0, 𝑥2, 1, 𝑥3, 1, A]

[𝑥2, 0, 𝑥1, 1, >]

Transformer

C

hypothesis table hypothesis prefix

hypothesis class

ICL sequence

context query

𝑥1 𝑥2 𝑥3

ℎ1 0 0 0

ℎ2 0 0 1

ℎ3 0 1 0

…

ℎ8 1 1 1

hypothesis
universe

𝑥1 𝑥2 𝑥3

ℎ4 0 1 1

ℎ6 1 0 1

ℎ7 1 1 0

10

Figure 3.3: Learning ICL-HCG via Transformer. We begin by sampling a subset
from the hypothesis universe as the hypothesis class H. Next, we encode the
hypothesis classH and concatenate it with the context query into a unified sequence
of tokens. This sequence is fed into a Transformer model for training with next-
token prediction, and testing for evaluating the accuracy on y’s and hypothesis
identification. (This figure is a simplified illustration. Please refer to Appendix B.2
and Fig. B.1 for the full details.)

used to fill the hypothesis prefix when |H| < L. A randomly assigned hypothesis

index token z is used to label each hypothesis. Leveraging Fig. 3.3 for L = 4, z’s are

assigned from a pool {“A”,“B”,“C”,“D”} of size L without replacement3.

Context query Given an ICL sequence SK , we append a query token “>” after it

to trigger trigger the prediction of the hypothesis index ss shown in Fig. 3.3. We

name the combination of SK and “>” as context query.

The Transformer predicts the y tokens in the context query based on previous

tokens and the index z of the underlying hypothesis based on all tokens in the

sequence. The training loss in Eq. 3.1 is further extended to all the tokens in the
3We use variable z to represent the hypothesis index, and create a set of L hypothesis index tokens

as a pool from which each hypothesis is randomly assigned a unique index without replacement.

63

sequence and implemented as below:

L = −
T∑

t=1
log Pθ(si | s<i). (3.2)

We summarize the pipeline in the Appendix B.1 Algorithm 1.

3.3 Experiments

𝑥1 𝑥2 𝑥3

ℎ1 0 0 0

ℎ2 0 0 1

ℎ3 0 1 0

…

ℎ8 1 1 1

hypothesis
universe ℋuni

ℎ1 ℎ3

ℎ7 ℎ8

ℎ2 ℎ4

ℎ5 ℎ6

split

ℎ1 ℎ3

ℎ7 ℎ8

ℎ1 ℎ3

ℎ7 ℎ8

ℎ2 ℎ4

ℎ5 ℎ6

compose a
set of ℋ

compose two
sets of ℋ

a composed hypothesis class ℋ

used for training

used for testing
ID hypothesis class generalization

used for testing
OOD hypothesis class generalization

ℋID

ℋOOD

Figure 3.4: The generation of training and testing hypothesis classes. The hypoth-
esis universe is devided into two pools: one for generating training and ID testing
hypothesis classes, and another for generating OOD testing hypothesis classes.

3.3.1 Setting of Experiments

Hypothesis Class Generation Fig. 3.4 illustrates the hypothesis class generation

process used in this paper. We partition the hypothesis universe into two pools: one

for generating training and ID testing classes, and another for generating OOD test-

ing hypothesis classes. This ensures that training and ID testing hypothesis classes

do not overlap and that OOD hypothesis classes come from an entirely separate set

of hypotheses. Consequently, both ID and OOD hypothesis class generalization

64

can be assessed using the same trained model. For detailed realizations of setups

for four kinds of generalization, see Appendix B.4.3.

Pretraining During pretraining, we backpropagate gradients based on next-token

prediction for all tokens. Each training sequence s consists of a hypothesis prefix, a

context query, and a hypothesis index token. As illustrated in Fig. 3.3, we feed the

entire sequence s (excluding the final index token z into the Transformer. We then

compute cross-entropy loss for each subsequent token (excluding the very first).

Refer to Appendix B.4 for training details, including the learning rate schedule, and

hyperparameter search.

Components of Pretraining Loss We conducted experiments to determine the

optimal components to include in the pretraining loss. Specifically, we evaluated

four configurations: applying the loss (i) solely to the final hypothesis index token,

(ii) exclusively to the content query, (iii) only to the label y of the content query,

and (iv) across all tokens. We empirically find that incorporating the loss across all

tokens in the sequence leads to the best performance.

3.3.2 Four Types of Generalization

This section investigates whether a Transformer trained on ICL-HCG tasks can

generalize to new tasks, i.e., new hypothesis classes. We explore four types of gener-

alization scenarios, defined in Definitions 1, 2, 3, and 4. Detailed hyperparameters

of settings are provided in Appendix B.4.3.

65

0 256 512 768
Epoch

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
)

Testing Curve on ID Hypotheses

1st run
2nd run
3rd run
4th run

(a) Testing curves of ID hypothesis
class generalization.

0 256 512 768
Epoch

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
)

Testing Curve on OOD Hypotheses

1st run
2nd run
3rd run
4th run

(b) Testing curves of OOD hypothe-
sis class generalization.

Figure 3.5: Multiple runs on ID and OOD hypothesis class generalizations. (Dif-
ferent runs imply training and testing with different random seeds.) Transformer
successfully learns ICL-HCG and generalizes to new hypothesis classes and hy-
potheses. Generalization on ID hypotheses is easier than on OOD hypotheses. Refer
to Appendix B.3.1, Fig. B.2 for more curves of loss, training, and testing accuracy.

Finding 1: Transformer can successfully learn ICL-HCG tasks and such a learned

ability can generalize to new hypothesis, hypothesis class, and hypothesis size,

whereas the generalization on OOD hypotheses is harder than ID hypotheses.

We first demonstrate that the Transformer successfully learns ICL-HCG and

that this capability generalizes effectively on ID and OOD hypothesis class general-

izations. As illustrated in Figs. 3.5a and 3.5b, the Trained Transformers on 4 runs

with different random seeds all achieve near-perfect accuracy (close to 1.00) on ID

hypothesis class generalization, and around 0.8 to 0.9 accuracy on OOD hypothesis

class generalization. Furthermore, we show that the learned ICL-HCG ability gen-

eralizes to hypothesis classes of various sizes. As depicted in Figs. 3.6a and 3.6b,

the trained Transformers achieve near 1.00 accuracy for |H| ∈ {2, . . . , 12} on ID

66

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
) |H| = 2 (OOS) |H| = 3 (OOS)

1st run

2nd run

3rd run

4th run

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
) |H| = 4 (OOS) |H| = 5 (OOS) |H| = 6 (OOS)

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
) |H| = 7 (IS) |H| = 8 (IS) |H| = 9 (IS)

0 256 512 768
Epoch

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
) |H| = 10 (OOS)

0 256 512 768
Epoch

|H| = 11 (OOS)

0 256 512 768
Epoch

|H| = 12 (OOS)

(a) Testing curves of ID hypothesis class
size generalization.

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
) |H| = 2 (OOS) |H| = 3 (OOS)

1st run

2nd run

3rd run

4th run

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
) |H| = 4 (OOS) |H| = 5 (OOS) |H| = 6 (OOS)

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
) |H| = 7 (IS) |H| = 8 (IS) |H| = 9 (IS)

0 256 512 768
Epoch

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
) |H| = 10 (OOS)

0 256 512 768
Epoch

|H| = 11 (OOS)

0 256 512 768
Epoch

|H| = 12 (OOS)

(b) Testing curves of OOD hypothesis class
size generalization.

Figure 3.6: Multiple runs on ID and OOD hypothesis class size generalizations.
(Different runs imply training and testing with different random seeds.) Transform-
ers trained on hypothesis classes with sizes |H| ∈ {7, 8, 9} successfully generalize
to hypothesis classes with sizes |H| ∈ {2, 3, . . . , 13, 14} under ID hypothesis class
size generalization. In contrast, the same trained Transformer exhibits poorer per-
formance on OOD hypothesis class size generalization. In the figure, IS stands for
“in-size,” indicating the hypothesis class sizes included in the training, while OOS
stands for “out-of-size,” indicating the sizes that are not included in the training.
Refer to Appendix B.3.1, Fig. B.3 for training accuracy curves.

hypothesis class size generalization, while exhibiting moderately lower accuracy on

OOD hypothesis class size generalization. Both Figs. 3.5 and 3.6 indicate that gen-

eralization on OOD hypotheses is more challenging compared to ID hypotheses.

3.3.3 Model Architecture Comparisons

We compare Transformer with other model architectures, including Mamba [34],

LSTM [41], and GRU [16]. We investigate whether each model can effectively fit

67

the training dataset and generalize to the four types of unseen hypothesis classes.

0 256 512 768
Epoch

0.00

0.25

0.50

0.75

1.00
A

cc
on
z

(O
pt

-T
)

Testing Curve on ID Hypotheses

Transformer
Mamba
LSTM
GRU

(a) Testing curves of ID hypothesis
class generalization.

0 256 512 768
Epoch

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
)

Testing Curve on OOD Hypotheses

Transformer
Mamba
LSTM
GRU

(b) Testing curves of OOD hypothe-
sis class generalization.

Figure 3.7: Various models on ID and OOD hypothesis class generalizations.
Transformer and Mamba succeed on both ID and OOD hypothesis class general-
ization, whereas LSTM and GRU fail. Mamba exhibits slightly higher accuracy
than Transformer on OOD generalization. Refer to Appendix B.3.2 and Fig. B.4 for
training curves.

Finding 2: While both Mamba and Transformer excel on the four generalization

tasks, LSTM and GRU fail to handle the ICL-HCG tasks. Mamba outperforms Trans-

former on OOD hypothesis class generalization, whereas Transformer outperforms

Mamba on ID hypothesis class size generalization.

We evaluate ID and OOD hypothesis class generalization across model architec-

tures. Within the hyperparameter search space in Appendix B.4.2, Fig. 3.7 shows

that Transformer and Mamba both generalize well on ID and OOD hypothesis

class generalizations, with higher accuracy on ID hypotheses (1.00 accuracy) than

OOD (around 0.8 to 0.9 accuracy). In contrast, LSTM and GRU fail to fit the task,

achieving approximately 0.125 accuracy, equivalent to random guessing over eight

68

hypotheses. Furthermore, Fig. 3.8 shows that Mamba outperforms Transformer on

OOD hypothesis class size generalization, whereas Transformer excels on ID hy-

pothesis class size generalization, suggesting a potential advantage of Transformer

on length generalization, and Mamba on generalization of OOD hypotheses.

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
) |H| = 2 (OOS) |H| = 3 (OOS)

Transformer

Mamba

LSTM

GRU

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
) |H| = 4 (OOS) |H| = 5 (OOS) |H| = 6 (OOS)

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
) |H| = 7 (IS) |H| = 8 (IS) |H| = 9 (IS)

0 256 512 768
Epoch

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
) |H| = 10 (OOS)

0 256 512 768
Epoch

|H| = 11 (OOS)

0 256 512 768
Epoch

|H| = 12 (OOS)

(a) Testing curves of ID hypothesis class
size generalization.

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
) |H| = 2 (OOS) |H| = 3 (OOS)

Transformer

Mamba

LSTM

GRU

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
) |H| = 4 (OOS) |H| = 5 (OOS) |H| = 6 (OOS)

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
) |H| = 7 (IS) |H| = 8 (IS) |H| = 9 (IS)

0 256 512 768
Epoch

0.00

0.25

0.50

0.75

1.00
A

cc
on
z

(O
pt

-T
) |H| = 10 (OOS)

0 256 512 768
Epoch

|H| = 11 (OOS)

0 256 512 768
Epoch

|H| = 12 (OOS)

(b) Testing curves of OOD hypothesis class
size generalization.

Figure 3.8: Various models on ID and OOD hypothesis class size generalizations.
In both settings, Transformers and Mamba exhibit strong generalization, whereas
LSTM and GRU fail to do so. For hypothesis class sizes |H| ∈ {7, 8, 9}, Mamba
achieves accuracy comparable to Transformer on ID hypothesis class generalization,
and surpasses Transformer on OOD hypothesis class generalization. However,
Transformers show similar or higher accuracy than Mamba on ID hypothesis class
size generalization, suggesting a potential advantage in length generalization. Refer
to Appendix B.3.2, Fig. B.5 for training accuracy curves.

3.3.4 Effect of Training Hypothesis Class Count

We evaluate how the number of training hypothesis classes affects ID and OOD

hypothesis class generalization abilities.

69

20 22 24 26 28 210 212 214

#Training Classes (N train)

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
)

Testing Curves on ID Hypotheses

Transformer

Mamba

GRU

LSTM

(a) Testing curves of ID hypothesis
class generalization.

20 22 24 26 28 210 212 214

#Training Classes (N train)

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
)

Testing Curves on OOD Hypotheses

Transformer

Mamba

GRU

LSTM

(b) Testing curves of OOD hypothe-
sis class generalization.

Figure 3.9: Effect of training hypothesis class count. Transformer and Mamba
trained on ICL-HCG tasks generalize to new hypothesis classes with only 4 to 16
training hypothesis classes. Refer to Appendix B.3.3, Fig. B.6 for training accuracy
and more details.

Finding 3: Mamba is more sample efficient than Transformer on ICL-HCG tasks,

and achieves near-perfect generalization with few pretraining hypothesis classes.

In Fig. 3.9a, we evaluate Mamba, Transformer, GRU, and LSTM. With only 22 and

24 training hypothesis classes, Mamba and Transformer achieve near-perfect (1.00

accuracy) ID hypothesis class generalization, while LSTM and GRU fail to fit the

ICL-HCG tasks. In Fig. 3.9b, Mamba nearly achieves perfect OOD hypothesis class

generalization with as few as 22 training classes, whereas Transformer’s accuracy

improves gradually with more training classes.

3.3.5 Effect of Imbalanced In-Context Samples

This section investigates how an imbalanced sample distribution of in-context

samples in the context query affects the training procedure. Specifically, we consider

70

the following distribution over X :

norm
(

1√
D

, . . . ,
1√
D

, 1,
√

D, . . . ,
√

D
)

,

where the first half of the terms are 1√
D , the middle term (if |X | is odd) is 1, the

second half consists of
√

D, and D4 represents the disparity of the distribution over

X , i.e., D = maxx∈X P (x)
minx∈X P (x) .

Finding 4: In-context sample imbalance lags the convergence of training.

We analyzed the impact of imbalance on the training process in Fig. 3.10 by

varying D values, showing that greater imbalance slows convergence. On average

over four runs, training converges in about 384 epochs for D = 1 but takes around

700 epochs for D= 4.

0 256 512 768
Epoch

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
)

ID Hypothesis Class Generalization

D=1.0

D=4.0

D=9.0

0 256 512 768
Epoch

OOD Hypothesis Class Generalization

D=1.0

D=4.0

D=9.0

Figure 3.10: The effect of sample imbalance. Sample imbalance leads to lower
convergence speed.

4The notation D is distinguished from token “D” by color and dataset D by format.

71

3.3.6 The Benefit of Hypothesis Prefix

In this section, we demonstrate how the hypothesis prefix influences the accuracy of

ICL. We compare ICL accuracy on y with hypothesis prefix and without hypothesis

prefix, under the setting of ID hypothesis class generalization.

Finding 5: Incorporating hypothesis prefix as instruction significantly boost the

accuracy of ICL.

As shown in Fig. 3.11, the hypothesis prefix significantly enhances the training

and testing accuracy on y of ICL. Using position 3 as an example, predictions

with three (x, y) pairs as demonstrations achieve approximately 0.95 accuracy with

instruction but only around 0.8 without, highlighting the effectiveness of instruction.

Figure 3.11: The effect of instruction. Under ID hypothesis class generalization,
providing an instruction (hypothesis prefix) significantly boosts ICL performance,
especially when the y token appears early (indicating only a few demonstration
examples precede it).

72

3.3.7 The Effect of Pretraining Hypothesis Diversity

In this section, we investigate the impact of hypothesis diversity combined with

instruction (hypothesis prefix) on ICL accuracy. We conduct experiments under

OOD hypothesis class generalization with an input space size of |X | = 6, leading

to a hypothesis universe Huni of 2|X | = 64 hypotheses. Huni is split into HID with

48 hypotheses and HOOD with 16. For training, we sample M train ∈ {8, 16, 24, 32}

hypotheses fromHID to examine the effect of training hypothesis diversity, while

testing uses all hypotheses inHID.

Finding 6: Increasing the diversity of pretraining hypotheses significantly boosts

the performance of ICL when instructions are provided.

As illustrated in Fig. 3.12, under OOD hypothesis class generalization, the Trans-

former trained with instructions achieves similar ICL accuracy to a standard ICL

approach when pretraining hypothesis diversity is low, but significantly outper-

forms it when pretraining hypothesis diversity is high. Using position 10 as an

example, with instruction, increasing M train from 8 to 32 raises accuracy from 0.80

to approximately 0.99. Without instruction, the same increase in diversity improves

accuracy only from 0.80 to 0.90. Notably, the testing ICL samples are derived from

unseen hypotheses, indicating that incorporating instructions can enhance ICL

performance for new hypotheses.

73

0 4 8 12
Position in In-Context Sequence

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

on
y

(i
.i.

d.
)

Training Curve w/o Instruction

0 4 8 12
Position in In-Context Sequence

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

on
y

(i
.i.

d.
)

Training Curve w/ Instruction

M train=8

M train=16

M train=24

M train=32

0 4 8 12
Position in In-Context Sequence

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

on
y

(i
.i.

d.
)

Testing Curve w/o Instruction

0 4 8 12
Position in In-Context Sequence

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

on
y

(i
.i.

d.
)

Testing Curve w/ Instruction

Figure 3.12: The effect of pretraining hypothesis diversity. Under hypothesis
generalization, increasing the diversity of pretraining hypotheses significantly
boosts the performance of ICL when instructions are provided. However, without
instructions, this effect is limited.

3.4 Discussion

Building on the ICL-HCG framework, we conduct diverse experiments focusing

on generalization. While Bayesian inference [118] offers insights into ICL, prior

work [91] has shown that Transformers can generalize beyond Bayesian inference

with sufficient pretraining task diversity. However, the mechanisms underlying

such OOD generalization remain unclear. Our work provides a framework for

exploring OOD generalization beyond Bayesian inference, where no test samples

appear in the training set due to disjoint hypothesis classes.

74

Furthermore, in Sec. 3.3.3, we demonstrate that Transformer and Mamba ex-

hibit distinct strengths: Transformer excels on length generalization, while Mamba

performs better on OOD hypothesis generalization. In Sec. 3.3.7, we show that

instruction enhances the benefits of pretraining hypothesis diversity. These findings

highlight two key factors influencing OOD generalization: (i) model architecture

and (ii) data structure. Future work will further explore these phenomena, fo-

cusing on understanding the underlying mechanisms of OOD generalization in

Transformer and Mamba.

3.5 Extension with Preliminary Results: Can

Transformers Do In-Context Blind Tree Search?

As discussed in the previous sections, we extend the basic setting of synthetic and

controllable datasets, e.g., a sequence of (x, y) pairs, to a more complicated and

realistic setting with instructions. A natural question arises: can we further extend

this framework to model more complex scenarios involving sequential decision-

making and feedback? In this section, inspired by the recent development of

reasoning models such as OpenAI o1 [46] and DeepSeek-R1 [21], we take a step in

this direction by introducing our preliminary exploration of synthetic environments

designed for interactive tasks. Specifically, we construct a synthetic and controllable

environment, where a Transformer is required to perform “in-context blind tree

search” by sequentially taking actions and receiving an estimated expected reward,

i.e.., a rollout value. Under this setting, “in-context” means that past rewards

75

and actions are fed into the Transformer as the context, “blind” means that the

Transformer does not know the environment before interaction, and “tree search”

means that the search space has a tree structure. This setting differs from traditional

ICL, as the model must repeatedly interact with the environment, rather than

making a single prediction based on the given input. Our preliminary results show

that the Transformer trained under our synthetic and controllable framework can

potentially perform behavior cloning to imitate the behavior of MCTS with varying

UCT exploration constants.

3.5.1 Introduction

Various Emergent Abilities of LLMs LLMs have demonstrated various emergent

abilities including ICL [11] and CoT [116], which have been studied by researchers

these years. Recently, LLMs such as DeepSeek-R1 [36] suggest that their reason-

ing or problem-solving process has tree structures. In the process, LLMs propose

several plans for their next action, then take actions on some of those plans, and

further backtrack when necessary to investigate other plans. Besides, when LLMs

function with tools, such as the scenario of the Search and Deep Research modes of

ChatGPT-4o [45], they interact iteratively with external environments, leveraging

feedback to guide multi-step reasoning or problem-solving processes. These phe-

nomena indicate that LLMs may implicitly perform a search with an underlying

tree structure, i.e., they are performing a tree search.

76

The Need for Synthetic and Controllable Datasets As LLMs continue to grow,

more and more advanced and complicated synthetic and controllable datasets are

designed to isolate and examine those emergent abilities of LLMs, such as ICL and

CoT. However, there remains a notable gap: no existing synthetic and controllable

dataset captures the setting of blind tree search, where the environment is unknown

to the agent, and the agent must interact with the environment to explore the search

space with an underlying tree structure and identify high-reward trajectories of

actions. This setting captures two key features of LLMs’ reasoning and interaction

with environments:

• Blindness: The agent does not have all the information about the environment,

and has to interact with the environment and rely on the feedback from the

environment to guide the search process. The blindness mimics the unknown

environments LLMs often face, such as external websites or API functions.

• Tree-Structured Search Space: The search space has a tree structure. For each

iteration during the search, the agent chooses to explore a new leaf node in the

tree. This tree structure mimics the potential search space, in which real-world

LLMs perform the step-by-step reasoning and backtracking process.

Prior related works [35, 55, 103, 77] focus either on known environments or bandit-

style settings, diverging from the key features central to this problem setting. This

motivates the following research question:

Can we construct a synthetic and controllable dataset with tree-structured

search spaces and evaluate whether a Transformer can search effectively?

77

Our Framework and Finding To address this question, we propose a new syn-

thetic and controllable dataset for blind tree search. Specifically, we design synthetic

environments with underlying tree-structured search spaces. The Transformer then

navigates this environment by expanding one node in the search tree for each itera-

tion, receiving rollout feedback after each expansion. After I iterations, the search

process is evaluated by how well those high-reward states in the environment are

discovered. We train a Transformer model from scratch with the supervision of

search trajectories generated by MCTS of a specific UCT exploration constant, and

then we use the trained Transformer to perform search. We find that the trained

Transformer achieves similar performance to the corresponding MCTS with the

specific UCT exploration constant.

3.5.2 Problem Formulation

We consider an environment that has a graph structure. We use the following

notations to represent the graph G, as well as operations and information on it:

• S: the set of all states in the graph G;

• AS
G(s): all the adjacent states to state s in the graph G;

• r(s): reward on the state s. A number of rewards are scattered on the graph,

otherwise 0;

• R(s, d): the rollout value, an estimation of the future reward one will get from

state s, calculated based on averaging repeated simulations. Each simulation

starts from s with budget d following a random policy. The budget d means

78

how many steps one can move from state s, and the random policy means

that at any state, we uniformly randomly choose the next state from its ad-

jacent states. Whenever a rollout simulation arrives at a non-zero reward or

consumes d steps, the simulation ends and returns the reached reward.

We further consider the search problem with an underlying tree-structured

search space constructed based on the abovementioned environment. The agent

is given a limited budget of I expansions. For each expansion, the agent chooses

an action and arrives at a new state. The agent initializes the search tree with the

root node u0 corresponding to the start state s(u0) ∈ S on the graph G. The agent

also receives initially revealed actions A = AU→S
G (u0), where AU→S

G (u) = {au→s|s ∈

AS
G(s(u))} representing all actions of moving from s(u) to an adjacent state s. For

each iteration i = 1, . . . , I :

• Select an action auj→sk
∈ A following policy π used by the agent;

• Let node ui correspond to state sk, s(ui) = sk; (Note: ui contains not only

the information about s(ui), but all the information along the trace from root

node u0 to ui, including all actions.)

• Expand the search tree with edge uj → ui, e.g., ui is the child node of uj ;

• Obtain the rollout value R(s(ui), D − d(ui)) of node ui, where D constraints

the maximum depth of the search tree and d(ui) is the depth of the node ui;

• Remove action auj→sk
from A and append new actions AU→S

G (ui) into A if

r(s(ui)) = 0 and d(s(ui)) < D.

79

Remark 4. We convert the graph G into a tree-structured search space, and the agent, the

search algorithm, has a limited budget to construct the search tree via exploring only I nodes

in the search space. In the extreme case of G, if G is a non-acyclic directed graph, G could

be identical to the tree-structured search space.

Evaluation To evaluate the performance of a search algorithm at iteration I on a

graph G, we compare the predicted distances from the start node to all rewards

with the corresponding optimal distances computed by breadth-first search (BFS).

Specifically, for each discovered non-zero reward r located on the graph G, we

compute the relative distance error as: predicted_distance−optimal_distance
optimal_distance . A lower error

indicates a better discovery of the reward.

To aggregate the results of multiple rewards, we apply an exponential penalty

to each reward using relative distance error and compute the weighted sum:

Performance =
∑

r r × exp
(

optimal_distance−predicted_distance
optimal_distance

)
∑

r r
,

where higher rewards contribute more to the final performance score. If a reward

is not discovered, its predicted distance is set as infinite, and the corresponding

term contributes zero to the performance. A high value of this metric indicates that

the search algorithm finds high rewards with shorter distances.

3.5.3 Experiments

80

Figure 3.13: A maze example

with size 6× 6.

Maze Problem We consider a maze as a realization

of the graph G. See Fig. 3.13 for an example. Follow-

ing our problem definition, we have a root node cor-

responding to the start position [5, 5] colored green,

and the available action is “[5, 5] left−→ [4, 5],” all the

actions moving from the current location to an ad-

jacent location. At each iteration, a search algorithm

selects an action from the set of available actions, reaches a state, receives a rollout

value, removes the selected action from the set of available actions, and obtains

new actions based on the reached state.

In our experiments, we use mazes of size 8× 8. A start position, three rewards

(1.0, 0.5, and 0.2), and walls are further uniformly randomly positioned while

ensuring that all rewards are reachable from the start position. The walls are

generated with an overall probability of 0.5. We perform two simulations with

a maximum of 16 steps following a random policy, and use their average as the

rollout value.

MCTS As shown in Fig. 3.14, we compare the performance of MCTS methods

with varying UCT exploration constant C, as well as two baselines: “Random

Leaf” and “Random Trace.” “Random Leaf” indicates that, for each expansion, we

uniformly randomly select one action from the set of all possible actions. “Random

Trace” indicates that for each expansion, we start from the root node and iteratively

uniformly randomly select a child node until we reach a possible action.

We observe that MCTS methods with small UCT exploration constants (C =

81

Figure 3.14: Comparison on MCTS with varied C values.

0.003, 0.01, 0.03) achieve the best performance, consistently outperforming both

the purely exploitative strategy (C = 0) and MCTS with larger exploration con-

stants (C = 0.3, 1.0). This highlights the importance of balancing exploration and

exploitation in the search process. In addition, “Random Leaf” and “Random

Trace” perform significantly worse than MCTS, highlighting the importance of the

guidance from rollouts.

Transformer Consider a trajectory generated by MCTS:

u0, AU→S
G (u0), a0, r0, u1, AU→S

G (u1), a1, r1, u2, . . .

where u is the node in the search tree, AU→S
G is realized by four directions (“left,”

“right,” “up,” and “down” in the maze environment), a is the chosen action, and r is

the rollout value. All nodes and actions are discrete; we can directly tokenize them

into distinct integers. Rollout values are continuous; therefore, we quantize them

82

Figure 3.15: Comparison on different C values. We train Transformers on trajecto-
ries generated by MCTS with different UCT exploration constant C values. During
the training process, Transformers learn from the MCTS to perform search, and
C = 0.1 achieves the best performance similar to MCTS.

to distinct integers. We train Transformers with eight layers, eight attention heads,

and 1024 hidden dimensions on those tokenized trajectories generated by MCTS on

8192 different training mazes, and then evaluate their performance on 1024 different

testing mazes. As shown in Fig. 3.15, Transformers not only learn to perform search

from the MCTS trajectories but also distinguish different C values, indicating the

trained Transformers potentially learn to control the trade-off between exploration

and exploitation from their teacher, MCTS.

83

3.6 Conclusion

In this chapter, we identify a gap between synthetic and real-world ICL, the overlook-

ing of instruction in synthetic ICL. To bridge the gap, we introduce a novel synthetic

and controllable data framework, namely ICL-HCG, that explicitly integrates a

hypothesis class as the instruction. Through a series of diverse experiments, we

show that ICL with instructions outperforms one without instructions, demonstrat-

ing the important role of the instruction. In addition, we show that incorporating

instructions for pretraining increases the generalizability of the pretrained model

compared to one without instructions. While ICL-HCG extends the synthetic and

controllable dataset with instructions, we consider a more complicated setup, in-

context blind tree search. This setup mimics the backtracking in reasoning and

the interaction with environments observed in recent advanced LLMs. Through

designing a new synthetic and controllable data framework for in-context blind tree

search, we show that the Transformer can potentially learn the trade-off between

exploration and exploitation from the search algorithm, MCTS. These findings

show that the development of synthetic and controllable datasets could provide

us with a platform to systematically study more complicated LLM phenomena in

addition to ICL.

84

Chapter 4

Contribution and Future Work

4.1 Contribution

This thesis identifies two missing pieces in the literature on using synthetic and

controllable data sets to understand ICL. By proposing and studying new synthetic

and controllable datasets, this thesis brings the following contributions:

• Modeling Dual Modes of ICL, Explaining the Early Ascent Phenomenon,

and Predicting Bounded Efficacy We propose a novel synthetic and con-

trollable dataset, which has an underlying probabilistic model to generate

synthetic pretraining data. Via studying our proposed model, we identify

two operating modes in ICL: task retrieval and task learning. Leveraging

the two operating modes, we provide the first mathematical explanation for

the early ascent phenomenon and predict the bounded efficacy phenomenon.

Further, as preliminary results of the extension inspired by the above work,

85

we propose a new prompt design method named coded prompts to improve

the performance of LLMs via prompting multiple test samples together.

• Bridging the Gap of Instruction between Synthetic and Real-World ICL

We develop a new synthetic and controllable data framework, namely In-

Context Learning with Hypothesis-Class Guidance (ICL-HCG). This framework

integrates task instructions into synthetic data generation, enabling controlled

experiments on ICL with instructions. As preliminary results of the extension

inspired by the above work, we explore in-context blind tree search, where a

Transformer model is trained to perform tree search leveraging feedback in an

unknown environment. We show that the Transformer model can potentially

be trained to mimic the behavior of MCTS with varying UCT constants.

Figure 4.1: Works in this thesis and future directions.

In summary, this thesis constructs and studies new synthetic and controllable

datasets to explain dual operating modes of ICL, enabling our understanding of

86

early ascent and bounded efficacy, and to bridge the gap of instruction between

synthetic and real-world ICL. The proposed frameworks and extensions with pre-

liminary results lay the ground for future research, aiming at further enhancing

the theoretical understanding and empirical applications of ICL. We visualize the

studies conducted in this thesis and the broader future directions in Fig. 4.1.

4.2 Future Work

In addition to the contributions and preliminary extensions presented in this thesis,

there are still many open problems related to either ICL or synthetic and controllable

datasets. Potential projects of several future directions are organized as follows:

4.2.1 Task and Length Generalizations

Understanding why and how a pretrained Transformer generalizes across different

tasks and sequence lengths remains a big question:

• Decoding the Mechanisms of Task and Length Generalizations By design-

ing various synthetic and controllable datasets for pretraining Transformers,

future work could further look into the details of the pretrained model, such

as attention heads [125] or position embeddings [42, 33], to decode the mech-

anisms of task and length generalization.

• Learning Optimal Teaching Sets Another research question related to our

work ICL-HCG, is whether Transformers can learn to identify optimal teaching

sets, a minimal collection of examples that distinguishes a task from a set of

87

tasks. Similar to ICL-HCG, one can examine the generalization ability of the

Transformer on different sets of tasks.

4.2.2 Understanding the Mechanism of ICL within Transformers

Recent works [112, 1, 27, 40] suggest that Transformers implement gradient descent

to perform ICL. Further investigations could improve this understanding:

• Implementing Stochastic Gradient Descent within Transformers While

Transformers are known to implement gradient descent to perform ICL under

certain conditions, an open question is whether they can implement stochastic

gradient descent (SGD) [40], particularly under settings where SGD performs

better than gradient descent. Building synthetic and controllable datasets to

characterize when and how Transformers choose to implement GD or SGD

would help us to better understand the underlying mechanism of ICL.

• Improving the Generalization of ICL via Gradient-Descent Regularization

It is interesting to examine whether applying gradient-descent regularization

during training, e.g., forcing the Transformer to perform gradient descent

using in-context samples, can further strengthen the generalization ability of

ICL, since such regularization might encourage more stable and transferable

mechanisms of ICL.

4.2.3 Improving Fine-Tuning and Reasoning through ICL

We can potentially improve various applications of LLMs with ICL.

88

• Enhance Parameter-Efficient Fine-Tuning (PEFT) [63] with ICL Samples

Leveraging in-context examples during PEFT may boost its performance, since

in-context examples provide a high initial accuracy for PEFT. This method

may lead to an improvement to existing PEFT methods.

• Bootstrapping Reasoning with ICL Considering a framework aiming at itera-

tively improving the reasoning labels of samples. For each iteration, we run in-

ference on an LLM with the sequences of format (x1, r1, y1, x2, r2, y2, x3, r3, y3, x4)

and the LLM outputs r4 and y4 (r stands for reason). We can filter high-quality

generated reasons based on the correctness of y4. Those high-quality reasons

can be further used to prompt the model again to improve the prediction

accuracy of ICL with reasoning.

89

Appendix A

For Chapter 2

A.1 Notations

This section collects all notations used in the main paper.

Notations introduced in Sec. 2.2:

• F : a next-token predictor.

• F̂ : a pretrained next-token predictor.

• F∗: a Bayes-optimal next-token predictor that attains Bayes risk minimization.

• Fk: a next-token predictor for k in-context examples.

• F∗
k : a Bayes-optimal next-token predictor that attains Bayes risk minimization

for k in-context examples.

• x and y: input and label for a task, e.g., x and y of a linear regression task

y = x⊤w.

90

• k: the number of in-context examples.

• K: the max number of examples in a sequence.

• Sk: a sequence of k in-context examples, [x1, y1, . . . , xk, yk].

• SK : a sequence of K in-context examples, [x1, y1, . . . , xK , yK].

• Sk ⊕ x(k+1): Sk ⊕ x(k+1) = [x1, y1, . . . , xk, yk, xk+1], which is a sequence of k in-

context examples appended with xk+1.

• µ and w: the parameters that jointly specify a task. µ specifies the distribution

of x, and w specifies the function mapping x to y.

• Dprior and Dµ,w: Dprior = Dµ,w, and they represent the task prior distribution

where each task is specified by parameters µ and w. The task prior is also

named pretraining prior, pretraining task prior, pretraining prior distribution,

pretraining task prior distribution, or simply prior.

• Dx(µ): the conditional distribution of x conditioned on µ of the task (µ, w).

• Dx,y(µ, w): the joint distribution of (x, y) in the task (µ, w).

• Dy|x(w): y distribution conditioned on the input x and parameter w of the task

(µ, w).

• P (µ, w): the task probability of (µ, w) in the task prior Dprior.

• P (x|µ): the probability of x in Dx(µ).

• P (y|x, w): the probability of y in Dy|x(w).

91

• L(F): the risk of F on samples generated from the pretraining data generative

model 1.

• M : the number of mixture components in a Gaussian mixture prior.

• N (x; µ, Σ): the probability of x in the multivariate normal distribution with

mean µ and covariance matrix Σ.

• m, α, and β: the indices of mixture components in a Gaussian mixture prior.

• Tm: the mthe mixture component in a Gaussian mixture prior.

• πm: the mixture weight of the mth mixture component in a Gaussian mixture

prior.

• µm and wm: (µm, wm) is the center of the mth mixture component.

• µ∗ and w∗: (µ∗, w∗) is the in-context task, i.e., in-context examples are drawn

from this task without label noises.

• σµ and σw: the task noises, i.e., the noise scales of µ and w.

• σx and σy: the sample noises, i.e., the noise scales of x and y of pretraining

samples.

• τx: the sample noise, i.e., the noise scale of x of in-context examples.

• d: the dimension of x.

• r: the max ratio of two mixture weights of two mixture components.

Notations introduced in Sec. 2.3:

92

• Dpost: The posterior distribution of the pretraining prior Dprior after observing

Sk ⊕ x(k+1).

• ∥ · ∥: the L2 norm.

• ∥x∥2: for any vector x, ∥x∥2 = x⊤x.

• ∥x∥2
A: for any vector x and matrix A, ∥x∥2

A = x⊤Ax.

• P (µ, w|Sk⊕x(k+1)): the probability of task (µ, w) in the posterior after observing

Sk ⊕ x(k+1).

• T̃m: the mth mixture component in the Gaussian mixture posterior.

• π̃m: the mixture weight of the mth mixture component in the Gaussian mixture

posterior.

• µ̃m and w̃m: (µ̃m, w̃m) is the center of the mth mixture component in the Gaussian

mixture posterior.

• P (µ, w|T̃m): the probability of task (µ, w) in the mth mixture component of

posterior.

• δµ and δw: the ratios of squared task noises over squared sample noises. δµ = σ2
µ

σ2
x

,

and δw = σ2
w

σ2
y

.

• Σ̄µ: Σ̄µ = I .

• Σ̄w: Σ̄w =
∑k

i=1 xix
⊤
i

k
.

• µ̄: µ̄ =
∑k+1

i=1 xi

k+1 .

• w̄: w̄ =
∑k

i=1 xiyi

k
.

93

• w̃: the mean of w in the task posterior, i.e., the predicted function by Bayes-

optimal next-token predictor. F∗(Sk⊕x(k+1)) = ⟨xk+1, w̃⟩ =
〈

xk+1,
∑M

m=1 π̃mw̃m

〉
.

• cµ
m and cw

m: parts of the re-weighting coefficient of Component Re-weighting.

• Ψµ(α, β) and Ψw(α, β): functions to help analyze the phenomenon of Component

Re-weighting.

• r(α, β): the ratio of the mixture weight π̃α of T̃α over the mixture weight π̃β of T̃β .

• λd(A): the dth largest eigenvalue of matrix A. In this paper A ∈ Rd×d, thus λd(A)

represents the smallest eigenvalue of matrix A.

• λ1(A): the 1st, the largest eigenvalue of matrix A.

• y∗
k+1: the label of learning the function w∗. y∗

k+1 = ⟨xk+1, w∗⟩.

Notations introduced in Sec. 2.4:

• The L2 loss of ICL learning to learn the function w∗. L∗
k = (F(Sk ⊕ x(k+1)) −

y∗
k+1)2 = (F(Sk ⊕ x(k+1))− ⟨xk+1, w∗⟩)2.

Notations introduced in Sec. 2.5:

• d2
µ: ∀β ̸= α, ∥µβ − µ∗∥2 − ∥µα − µ∗∥2 ≥ d2

µ, the µ-margin of any other µβ over

µα.

• d2
w: ∀β ̸= α, ∥wβ −w∗∥2 − ∥wα −w∗∥2 ≥ d2

w, the w-margin of any other wβ over

wα.

• u2
w: ∀β ̸= α, τ 2

x∥wβ −w∗∥2− (1 + τ 2
x)∥wα−w∗∥2 ≥ τ 2

xu2
w, the weighted w-margin

of any other wβ over wα.

94

−1.0
−0.5

0.0
0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0
−0.5
0.0

0.5

1.0

µβ of Prior and µ∗ of In-Context Task

µβ

µα
µ∗

1

2

3

4

−1.0
−0.5

0.0
0.5

1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0
−0.5
0.0

0.5

1.0

wβ of Prior and w∗ of In-Context Task

wβ

wα

w∗

1

2

3

4

Figure A.1: Visualization of the tetrahedron setting. The figure shows the pretrain-
ing prior centers and the in-context task. For β ∈ {1, 2, 3, 4}, (µβ, wβ) is a mixture
component center in the prior. (µα, wα) for α = 1 (numbers are noted in the center
of circles) is the center of the target task for ICL with biased labels, while (µ∗, w∗)
is the in-context task. The dotted purple lines highlight the distance of 1 from the
origin (0, 0, 0) to any point denoted by µ or w.

• yα
k+1: the label of retrieving the function wα. yα

k+1 = ⟨xk+1, wα⟩.

• The L2 loss of ICL learning to retrieve the function wα of the pretraining prior

center α. Lα
k = (F(Sk ⊕ x(k+1))− yα

k+1)2 = (F(Sk ⊕ x(k+1))− ⟨xk+1, wα⟩)2.

A.2 Prior Examples

This section outlines our configurations of prior settings in numerical computations

and preliminary Transformer experiments, focusing on the geometrical arrange-

ment of the centers in the priors. Specifically, we detail the configurations where

95

the centers form shapes of 3-dimensional regular polyhedra in Sec. A.2.1, extend to

configurations in d-dimensional spaces in Sec. A.2.2, and discuss a unique setup

related to the early ascent phenomenon in Sec. A.2.3.

A.2.1 Regular Polyhedrons

Taking into account the centers of the mixture components from the pretraining

prior, which manifest as distinct points forming the vertices of various shapes,

we examine 3-dimensional regular polyhedrons. These include tetrahedron (4

vertices/centers), octahedron (6 vertices/centers), hexahedron (8 vertices/centers),

icosahedron (12 vertices/centers), and dodecahedron (20 vertices/centers), listed

with increasing density of the centers on a sphere.

The configuration of a regular polyhedron with M centers is established in

accordance with the parameters outlined in Assumption 2, as detailed below:

• Dimension d = 3, the number of mixture components equals to M ;

• The centers of mixture components form a regular polyhedron with M vertices;

• All components’ mixture weights are the same, πm = 1/M , and µm = wm, for all

m ∈ [M];

• For noises of x and y, we have σx = σy = 1, and τx = 1;

• For noises of µ and w, we have σµ = σw = 0.25 if not specified;

• For the in-context task, µ∗ = 2µ1+µ2
∥2µ1+µ2∥ and w∗ = 2w1+w2

∥2w1+w2∥ if not specified, where

µ2 is one of the the closest centers to µ1.

96

We mainly use the tetrahedron setting in the paper. Therefore, we further

visualize the setting and note down the parameters. The 3D visualization of mixture

component centers in the prior and the in-context task are shown in Fig. A.1. The

parameters are noted as follows:

• Dimension d = 3, number of mixture components M = 4;

• The centers of topics form a tetrahedron as shown in Fig. A.1. µ1 = w1 =

[0, 0,−1]⊤, µ2 = w2 = [
√

8
9 , 0, 1

3]⊤, µ3 = w3 = [−
√

2
9 , +

√
2
3 , 1

3]⊤, and µ4 = w4 =

[−
√

2
9 ,−

√
2
3 , 1

3]⊤;

• All components’ mixture weights are the same, πm = 1/4, and µm = wm, for all

m ∈ {1, 2, 3, 4};

• For noise of x and y, we have σx = σy = 1, and τx = 1;

• For noises of µ and w, we have σµ = σw = 0.25 if not specified;

• For in-context task, we have µ∗ = 2µ1+µ2+0.2µ3
∥2µ1+µ2+0.2µ3∥ and w∗ = 2w1+w2+0.2w3

∥2w1+w2+0.2w3∥ . We

slightly shift the in-context task (µ∗, w∗) towards (µ3, w3) for visualization pur-

poses, to make m = 3 and m = 4 produce slightly different curves.

A.2.2 d-Dimensional Examples

We consider d-dimensional examples with d centers for d ∈ {2, 4, 8, 16, 32}. A

d-dimensional example with d vertices is parametered as follows:

• Dimension equals to d, number of mixture component M = d;

97

• For all m ∈ [M], µm = em and µm,i =


1 if i = m

0 if i ̸= m

, i.e., µm is the mth vector in

the standard basis of Rm, characterized by having all elements equal to 0 except

for the mth element, which is 1.

• All components’ mixture weights are the same, πm = 1/d, and µm = wm, for all

m ∈ [M];

• For noise of x and y, we have σx = σy = 1, and τx = 1;

• For noises of µ and w, we have σµ = σw = 0.25;

• For the in-context task, we have µ∗ = 2µ1+µ2
∥2µ1+µ2∥ and w∗ = 2w1+w2

∥2w1+w2∥ .

A.2.3 Early Ascent Examples

Table A.1 outlines the prior configuration used to produce the early ascent phe-

nomenon, where the in-context task is designed with a distribution of x close to a

misleading task. The full results are shown in Fig. A.2.

A.3 Coarse Upper Bound for ICL Risk

The following theorem shows a coarse upper bound of the ICL risk parallel to

Theorem 3:

98

Table A.1: Prior settings for early ascent. The pretraining task prior comprises
two components for one dimension and three for two or more dimensions. ICL
aims to predict following the in-context function w∗, equivalent to prior center 2’s
function w2 (w∗ = w2). The in-context task is characterized by having a closer x
distribution to the task of prior center 1 but a closer x→ y mapping to the prior
center 2. The parameters for all cases are set to σµ = σw = 0.05, σx = τx = 1, and
σy = 2. Refer to Fig. A.2b for visualization of the prior centers under dimension
d ∈ {1, 2, 3}.

Case Component
/Task

Mixture
Weight µ w

d = 1

Component 1 1/2 µ1 = [+1] w1 = [−1]
Component 2 1/2 µ2 = [−1] w2 = [+1]
Component 3 / / /

In-context Task / µ∗ = [+1] w∗ = [+1]

d = 2

Component 1 1/3 µ1 = [+1, +1] w1 = [−1,−1]
Component 2 1/3 µ2 = [−1,−1] w2 = [+1, +1]
Component 3 1/3 µ3 = [+1,−1] w3 = [−1, +1]

In-context Task / µ∗ = [+1, +1] w∗ = [+1, +1]

d ≥ 2

Component 1 1/3 µ1 = [+1] + [+1]× (d− 1) w1 = [−1] + [−1]× (d− 1)
Component 2 1/3 µ2 = [−1] + [−1]× (d− 1) w2 = [+1] + [+1]× (d− 1)
Component 3 1/3 µ3 = [+1] + [−1]× (d− 1) w3 = [−1] + [+1]× (d− 1)

In-context Task / µ∗ = [+1]× d w∗ = [+1]× d

Theorem 7 (Coarse Upper Bound for ICL Risk). Consider a next-token predictor

attaining the optimal pretraining risk. As k →∞, the ICL risk is upper bounded by:

ESk⊕x(k+1) [L∗
k] <

4(1 + dτ 2
x)

τ 4
xδw

2k2 + O(kδ− 5
2),

where L∗
k = (F(Sk ⊕ x(k+1)) − y∗

k+1)2 = (F(Sk ⊕ x(k+1)) − ⟨xk+1, w∗⟩)2 and δ is an

arbitrarily small positive constant. See Appendix A.12 for proof details. The upper bound

decreases as the square of the inverse of k. Notice there is no noise for y labels of in-context

examples under our setting, which leads to a faster decay rate than standard 1/k for ridge

regression [109].

The notations δw and k are colored for easier observation.

99

We further compare the risk ESk⊕x(k+1) [L∗
k] and the risk under ridge regression

with L2 regularization parameter equal to 10−6, where the same k samples without

label noises are used as in-context examples for ICL and training samples for ridge

regression. Fig. A.3 shows the experiment results. Under certain settings for the

task prior Dµ,w, when the task prior has low task variances, ICL performs better

than ridge regression with a fixed regularization parameter under small k.

A.4 Transformer Performance in Approximating

Bayesian Inference

We examine if a Transformer network pretrained on samples generated from our

pretraining data generative model matches the performance of Bayesian inference.

We consider three factors of the task prior in our experiment: prior task noises, number

of components, and feature dimension. For scalar y, we transform it to a d-dimensional

vector [y, 0, . . . , 0]. Thus, Sk ⊕ x(k+1) forms a (2k + 1)× d matrix, comprising xk+1

and k pairs of (xi, yi).

Experiment Setting. We conduct experiments based on the module GPT2Model

from the package Transformers supported by HuggingFace1. We use a 10-layer,

8-head Transformer decoder with 1024-dimensional feedforward layers, and the

input dimension is set to d, equal to the dimension of x. We train the model over

three epochs, each consisting of 10,000 batches, with every batch containing 256
1https://huggingface.co/

100

samples. We use AdamW [67] as the optimizer with weight decay as 0.00001 and

set the learning rate to 0.00001.

Experiment Results. Fig. A.4, A.5, and A.6 show the experimental results, where

F̂ denotes the prediction of the Transformer network, F∗ denotes the prediction

of Bayesian inference, and y∗
k+1 = ⟨xk+1, w∗⟩ is the label of learning the in-context

function. In Fig. A.4, we consider the tetrahedron setting (see Apendix A.2.1 for

setting details) under varied task noises (δµ = δw ∈ {1/256, 1/64, 1/16, 1/4, 1}). In

Fig. A.5, we consider settings of regular shapes (see Appendix A.2.1 for setting

details) with different numbers of vertices/components (M ∈ {4, 6, 8, 12, 20}).

In Fig. A.6, we consider settings with varied dimensions (see Appendix A.2.2

for setting details, d ∈ {2, 4, 8, 16, 32}). We observe that the trained Transformer

network can approximate the Bayes-optimal predictor under varied settings, and

the larger the number of dimensions and the number of mixture components, the

harder it is for the Transformer network to approximate Bayesian prediction.

A.5 Additional Information for Bounded Efficacy in

GPT-4

A.5.1 Experimental Setting

Table A.2 introduces the experiment setting of GPT-4, including the system message,

the prompt, the in-context task, the “biased +” task, and the “addition (+)” task.

Designating the “biased +” task as the in-context task, i.e., ci = ai + bi + 1, we

101

Table A.2: Setup of bounded efficacy. Experiment setting to reveal the bounded
efficacy phenomenon of biased-label ICL in GPT-4.

Setting Desciption
LLM GPT-4

System Message You are a mathematician. Consider the following
math problem and follow the exact instruction.

Prompt

You are given examples. Each example has two
integers as input and one integer as output. Please
provide an answer for the last problems in
the math exercise:
a1(?)b1=c1
...
ak(?)bk=c2
ak+1(?)bk+1=
Provide your answer directly.

In-Context Task ai and bi are uniformly sampled from [10, 99], and
ci = ai + bi + 1.

Goal of Learning the
“biased +”

Task with True Labels

Aiming to learn the “biased +” task, a(?)b=
(a+b+1), with in-context examples following the
same “biased +” task, a(?)b=(a+b+1).

Goal of Retrieving the
“addition (+)”

Task with Biased Labels

Aiming to retrieve the “addition (+)” task, a(?)b=
(a+b). However, the in-context examples are
provided with a slightly different task “biased +”,
a(?)b=(a+b+1).

measure the performances on two goals, including learning the “biased +” task

and retrieving the “addition (+)” task.

A.5.2 Additional Results

This section collects four pairs of prompts and predictions for k = 0, 2, 8 in Ta-

bles A.3, A.4, and A.5. The results show that ICL with biased labels will initially

retrieve a commonsense pretraining task due to task retrieval, and finally learn the

102

Table A.3: Zero in-context example (k = 0). Prediction is colored red if it is correct
for task retrieval (a(?)b = (a + b)), and colored blue if it is correct for task learning
(a(?)b = (a + b + 1)). “...” denotes the hidden part of the prompt. Please refer to
Table A.2 for the whole prompt.

Prompt
...
51(?)36=
...

...
27(?)15=
...

...
76(?)82=
...

...
55(?)15=
...

Results

Without knowing the
operation or rule that
connects the two
input integers to
the output integer in
the examples, it’s
impossible to provide
a correct answer.
Please provide the
examples or the rule.

Sorry, but your
questionis not
clear. Could
you please
provide more
information
about the
operation
between the
two numbers?

Your question seems to
be missing some
information. Could you
please provide the
examples you mentioned?
They are necessary to
understand the relationship
between the two input
integers and the output
integer.

70

Table A.4: Two in-context examples (k = 2). Prediction is colored red if it is correct
for task retrieval (a(?)b = (a + b)), and colored blue if it is correct for task learning
(a(?)b = (a + b + 1)). “...” denotes the hidden part of the prompt. Please refer to
Table A.2 for the whole prompt.

Prompt

...
73(?)80=154
59(?)22=82
54(?)97=
...

...
48(?)73=122
78(?)80=159
21(?)33=
...

...
21(?)28=50
69(?)29=99
47(?)10=
...

...
94(?)43=138
98(?)70=169
96(?)41=
...

Results 151 54 57 187

in-context task because of task learning.

103

Table A.5: Eight in-context examples (k = 8). Prediction is colored red if it is
correct for task retrieval (a(?)b = (a + b)), and colored blue if it is correct for task
learning (a(?)b = (a + b + 1)). “...” denotes the hidden part of the prompt. Please
refer to Table A.2 for the whole prompt.

Prompt

...
37(?)70=108
41(?)18=60
19(?)12=32
82(?)67=150
42(?)13=56
26(?)41=68
80(?)39=120
58(?)23=82
40(?)90=
...

...
60(?)76=137
69(?)26=96
72(?)85=158
39(?)10=50
50(?)47=98
19(?)63=83
45(?)95=141
69(?)41=111
81(?)36=
...

...
66(?)40=107
46(?)81=128
63(?)31=95
41(?)24=66
70(?)43=114
89(?)84=174
76(?)82=159
46(?)28=75
49(?)46=
...

...
68(?)88=157
34(?)18=53
70(?)70=141
13(?)35=49
52(?)50=103
72(?)32=105
98(?)82=181
55(?)51=107
50(?)31=
...

Results 130 118 96 82

A.6 Bounded Efficacy in Zero-shot ICL

This section introduces the experiment setting of Fig. 2.6. We start by introduc-

ing the experiment results in Fig. A.7 copied and pasted from the work of Min

et al. [73]. While our theory shows the bounded efficacy phenomenon for ICL

with non-informative labels (Lemma 6), Fig. A.7 seems to imply a conflict phe-

nomenon. Thus, we further extend the number of in-context examples in Fig. A.7

left. The classification task adopts five datasets including (i) glue-mrpc [23], (ii)

glue-rte [20], (iii) tweet_eval-hate [5], (iv) sick [71], and (v) poem-sentiment [99].

We use the GitHub code2 released by Min et al. [73] to generate the same data and

evaluate LLMs with a larger context length capacity aiming at a larger number of
2https://github.com/Alrope123/rethinking-demonstrations

104

in-context examples. We selected Mistral 7B (32768), Mixtral 8×7B (32768), Llama2

13B (4096), Llama2 70B (4096), and GPT-4 (8192) for our experiments, with the

integers in parentheses indicating the maximum context length for each model. We

perform inference on large models with 8 H100 with the package vllm3.

A.7 The Derivation of Posterior

This section provides detailed derivations for Lemma 1. We begin by showing the

posterior is potentially still a Gaussian mixture in Sec. A.7.1. Then, in Sec. A.7.2, we

show how Eq. A.1 is proportion to Eq. A.2, which is precisely a Gaussian mixture.

A.7.1 Prior to Posterior

We start by showing the posterior is potentially still a Gaussian mixture. For fixed

Sk ⊕ x(k+1):

P (µ, w|Sk ⊕ x(k+1))

∝ P (µ, w|Sk ⊕ x(k+1))P (Sk ⊕ x(k+1))

= P (µ, w, Sk ⊕ x(k+1))

= P (µ, w)P (Sk ⊕ x(k+1)|µ, w)

=
(

M∑
m=1

πmP (µ, w|Tm)
)

P (Sk ⊕ x(k+1)|µ, w)

=
M∑

m=1
πmP (µ, w|Tm)P (Sk ⊕ x(k+1)|µ, w) (A.1)

3https://docs.vllm.ai/en/latest/

105

∝
M∑

m=1
π̃mP (µ, w|T̃m). (A.2)

We give the derivation from Eq. A.1 to Eq. A.2 in the next section.

A.7.2 Closed-Form Solution from Eq. A.1 to Eq. A.2

We analyze each component (indicated by a specific m) in Eq. A.1. Given fixed

Sk ⊕ x(k+1), for all m ∈ [M] and all (µ, w), we have:

log(P (µ, w|Tm)P (Sk ⊕ x(k+1)|µ, w))

= −∥µm − µ∥2

2σ2
µ

− ∥wm −w∥2

2σ2
w

−
∑k+1

i=1 ∥µ− xi∥2

2σ2
x

−
∑k

i=1 ∥x⊤
i w − yi∥2

2σ2
y

+ log
(

(2π)−d/2

σd
µ

)
+ log

(
(2π)−d/2

σd
w

)
+ (k + 1) log

(
(2π)−d/2

σd
x

)
+ k log

(
(2π)−1/2

σy

)

(Let C3 = log
(

(2π)−d/2

σd
µ

)
+ log

(
(2π)−d/2

σd
w

)

+ (k + 1) log
(

(2π)−d/2

σd
x

)
+ k log

(
(2π)−1/2

σy

)
.)

= C3 −
∥µm − µ∥2

2σ2
µ

− ∥wm −w∥2

2σ2
w

−
∑k+1

i=1 ∥µ− xi∥2

2σ2
x

−
∑k

i=1 ∥x⊤
i w − yi∥2

2σ2
y

= C3 − (∥µm − µ∥2

2σ2
µ

+
∑k+1

i=1 ∥µ− xi∥2

2σ2
x

)− (∥wm −w∥2

2σ2
w

+
∑k

i=1 ∥x⊤
i w − yi∥2

2σ2
y

)

(Let δµ =
σ2

µ

σ2
x

and δw = σ2
w

σ2
y

.)

= C3 −
1

2σ2
µ

(
(∥µm∥2 − 2µ⊤

mµ + ∥µ∥2) + δµ

(
(k + 1)∥µ∥2 − 2µ⊤

k+1∑
i=1

xi +
k+1∑
i=1
∥xi∥2

))

− 1
2σ2

µ

(
(∥wm∥2 − 2w⊤

mw + ∥w∥2) + δw

(
k∑

i=1
w⊤xix

⊤
i w − 2w⊤

k∑
i=1

xiyi +
k∑

i=1
y2

i

))

= C3 −
1

2σ2
µ

(
∥µm∥2 + (1 + (k + 1)δµ)∥µ∥2 − 2µ

(
µm + δµ

k+1∑
i=1

xi

)
+ δµ

k+1∑
i=1
∥xi∥2

)

106

− 1
2σ2

w

(
∥wm∥2 + w⊤

(
I + δw

k∑
i=1

xix
⊤
i

)
w − 2w

(
wm + δw

k∑
i=1

xiyi

)
+ δw

k∑
i=1

y2
i

)

(Let C4 = C3 −
δµ

2σ2
µ

k+1∑
i=1
∥xi∥2 − δw

2σ2
w

k∑
i=1

y2
i .)

= C4 −
1

2σ2
µ

(
∥µm∥2 + (1 + (k + 1)δµ)∥µ∥2 − 2µ

(
µm + δµ

k+1∑
i=1

xi

))

− 1
2σ2

w

(
∥wm∥2 + w⊤

(
I + δw

k∑
i=1

xix
⊤
i

)
w − 2w

(
wm + δw

k∑
i=1

xiyi

))

(Let Σ̄µ = I and Σ̄w =
∑k

i=1 xix
⊤
i

k
.)

= C4 −
1

2σ2
µ

(
∥µm∥2 + ∥µ∥2

I+(k+1)δµΣ̄µ
− 2µ⊤

(
µm + δµ

k+1∑
i=1

xi

))

− 1
2σ2

w

(
∥wm∥2 + ∥w∥2

I+kδwΣ̄w
− 2w⊤

(
wm + δw

k∑
i=1

xiyi

))

(Let µ̄ =
k+1∑
i=1

xi and w̄ =
∑k

i=1 xiyi

k
.)

= C4 −
1

2σ2
µ

(∥µm∥2 + ∥µ∥2
I+(k+1)δµΣ̄µ

− 2µ⊤(µm + (k + 1)δµµ̄))

− 1
2σ2

w

(∥wm∥2 + ∥w∥2
I+kδwΣ̄w

− 2w⊤(wm + kδww̄))

(Let ∆µ = (k + 1)δµ and ∆w = kδw.)

= C4 −
1

2σ2
µ

(∥µm∥2 + ∥µ∥2
I+∆µΣ̄µ

− 2µ⊤(µm + ∆µµ̄))

− 1
2σ2

w

(∥wm∥2 + ∥w∥2
I+∆wΣ̄w

− 2w⊤(wm + ∆ww̄))

= C4 −
(

∥µm∥2+
(

∥µ∥2
I+∆µΣ̄µ

−2µ⊤(µm+∆µµ̄)+∥µm+∆µµ̄∥2
(I+∆µΣ̄µ)−1

)
−∥µm+∆µµ̄∥2

(I+∆µΣ̄µ)−1

)
/2σ2

µ

−
(

∥wm∥2+
(

∥w∥2
I+∆wΣ̄w

−2w⊤(wm+∆ww̄)+∥wm+∆ww̄∥2
(I+∆wΣ̄w)−1

)
−∥wm+∆ww̄∥2

(I+∆wΣ̄w)−1

)
/2σ2

w

= C4− 1
2σ2

µ

((
∥µm∥2 − ∥µm + ∆µµ̄∥2

(I+∆µΣ̄µ)−1

)
+ ∥µ − (I + ∆µΣ̄µ)−1(µm + ∆µµ̄)∥2

I+∆µΣ̄µ

)
− 1

2σ2
w

((
∥wm∥2 − ∥wm + ∆ww̄∥2

(I+∆wΣ̄w)−1
)

+ ∥w − (I + ∆wΣ̄w)−1(wm + ∆ww̄)∥2
I+∆wΣ̄w

)
.

107

Notice C4 is independent to m, µ, and w, thus we have:

P (µ, w|Tm)P (Sk ⊕ x(k+1)|µ, w)

∝ exp

(
− 1

2σ2
µ

((
∥µm∥2 − ∥µm + ∆µµ̄∥2

(I+∆µΣ̄µ)−1

)
+ ∥µ − (I + ∆µΣ̄µ)−1(µm + ∆µµ̄)∥2

I+∆µΣ̄µ

))

· exp

(
− 1

2σ2
w

((
∥wm∥2 − ∥wm + ∆ww̄∥2

(I+∆wΣ̄w)−1
)

+ ∥w − (I + ∆wΣ̄w)−1(wm + ∆ww̄)∥2
I+∆wΣ̄w

))

∝ exp

(
−

∥µm∥2 − ∥µm + (k + 1)δµµ̄∥2
(I+(k+1)δµΣ̄µ)−1

2σ2
µ

)
︸ ︷︷ ︸

c
µ
m

exp

(
−

∥wm∥2 − ∥wm + kδww̄∥2
(I+kδwΣ̄w)−1

2σ2
w

)
︸ ︷︷ ︸

cw
m

· N (µ|(I + (k + 1)δµΣ̄µ)−1(µm + (k + 1)δµµ̄), σ2
µ(I + (k + 1)δµΣ̄µ)−1)

· N (w|(I + kδwΣ̄w)−1(wm + kδww̄), σ2
w(I + kδwΣ̄w)−1).

By defining P (µ, w|T̃) = N (µ|(I + (k + 1)δµΣ̄µ)−1(µm + (k + 1)δµµ̄), σ2
µ(I + (k +

1)δµΣ̄µ)−1) ·N (w|(I +kδwΣ̄w)−1(wm +kδww̄), σ2
w(I +kδwΣ̄w)−1) and π̃m = πmcµ

mcw
m.

We have:

πmP (µ, w|Tm)P (Sk ⊕ x(k+1)|µ, w) ∝ π̃mP (µ, w|T̃m).

Therefore,

M∑
m=1

πmP (µ, w|Tm)P (Sk ⊕ x(k+1)|µ, w) ∝
M∑

m=1
π̃mP (µ, w|T̃m).

108

A.8 Detailed Analysis of Component Shifting and

Re-weighting

A.8.1 Analysis of Component Re-weighting

This section analyzes the CR effect on π̃β as k increases. We focus on whether π̃α

of T̃α surpasses π̃β of any other T̃β with β ̸= α, where α is the index of the closest

prior center to the in-context task as described in Assumption 3. We assess this via

the ratio r(α, β) of π̃α to π̃β :

r(α, β) = π̃α

π̃β

= παC0c
µ
αcw

α

πβC0c
µ
βcw

β

= πα

πβ

exp(Ψµ(α, β) + Ψw(α, β)), (A.3)

where we define two functions Ψµ(α, β) = log(cµ
α/cµ

β) and Ψw(α, β) = log(cw
α /cw

β) to

facilitate the analyses of how r(α, β) changes with increasing k.

Analysis of Ψµ(α, β). We further simplify the function Ψµ(α, β) as follows:

Ψµ(α, β) = (
k+1∑
i=1
∥µβ − xi∥2 −

k+1∑
i=1
∥µα − xi∥2)/(2σ2

x(1 + (k + 1)δµ)). (A.4)

(See Appendix A.8.3 for derivation.) Since xi ∼ N (µ∗, τ 2
xI), choosing µ∗ closer to

µα tends to make Ψµ(α, β) positive and increase faster with increasing k. However,

as k approaches infinity, Ψµ(α, β) stabilizes rather than increasing infinitely, i.e.,

limk→∞ Ψµ(α, β) = (∥µβ−µ∗∥2−∥µα−µ∗∥2)/(2σ2
µ). The leftmost column of Fig. A.9

shows the numerical computation of Ψµ(α, β) with varied task noises under the

tetrahedron setting (see Appendix A.2.1 for setting details). The smaller the value

of δµ (= σ2
µ

σ2
x

) is, the easier for Ψµ(α, β) to increase as k increases.

109

Meanwhile, we also have:

lim
σµ→0

Ψµ(α, β) = (
k+1∑
i=1
∥µβ − xi∥2 −

k+1∑
i=1
∥µα − xi∥2)/(2σ2

x) (A.5)

Analysis of Ψw(α, β). We further simplify the function Ψw(α, β) as follows:

Ψw(α, β) = (∥wβ −w∗∥2
I−(I+kδwΣ̄w)−1 − ∥wα −w∗∥2

I−(I+kδwΣ̄w)−1)/(2σ2
w). (A.6)

(See Appendix A.8.3 for derivation.) Since kδwΣ̄w (= δw
∑k

i=1 xix
⊤
i , see definition

of Σ̄w in Lemma 1) is semi-positive definite, thus choosing w∗ closer to wα tends

to make Ψw(α, β) positive and increase faster as k increases. However, as k ap-

proaches infinity, limk→∞ kδwΣ̄w = limk→∞ kδw

∑k

i=1 xix
⊤
i

k
= kδw(µ∗µ∗⊤ +τ 2

xI). Thus,

limk→∞ I − (I + kδwΣ̄w)−1 = I and Ψw(α, β) stabilizes rather than increasing in-

finitely, i.e., limk→∞ Ψw(α, β) = (∥wβ − w∗∥2 − ∥wα − w∗∥2)/(2σ2
w). The topmost

row of Fig. A.9 shows the numerical computation of Ψw(α, β) with varied task

noises under the tetrahedron setting (see Appendix A.2.1 for setting details). The

smaller the value of δw (= σ2
w

σ2
y

) is, the easier for Ψw(α, β) to increase as k increases.

However, one should note that ∥wβ − w∗∥2 ≥ ∥wα − w∗∥2 does not necessarily

imply ∥wβ −w∗∥2
I−(I+kδwΣ̄w)−1 ≥ ∥wα −w∗∥2

I−(I+kδwΣ̄w)−1 .

Meanwhile, we also have:

lim
σw→0

Ψw(α, β) = (∥wβ −w∗∥2
kδwΣ̄w

− ∥wα −w∗∥2
kδwΣ̄w

)/(2σ2
w)

= (∥µβ − xi∥2
kΣ̄w
− ∥µα − xi∥2

kΣ̄w
)/(2σ2

y)

= (
k∑

i=1
∥yβ

i − y∗
i ∥2 −

k∑
i=1
∥yα

i − y∗
i ∥2)/(2σ2

y), (A.7)

where yβ
i = ⟨xi, wβ⟩, yα

i = ⟨xi, wα⟩, and y∗
i = ⟨xi, w∗⟩.

110

Therefore, combine Eqs. A.5 and A.7 and we have:

lim
σµ,σw→0

Ψµ(α, β) + Ψw(α, β)

= ∥µβ − xk+1∥2 − ∥µα − xk+1∥2

2σ2
x

+
k∑

i=1
(∥µβ − xi∥2 − ∥µα − xi∥2

2σ2
x

(A.8)

+ ∥y
β
i − y∗

i ∥2 − ∥yα
i − y∗

i ∥2

2σ2
y

)

Numerical Computations of Component Re-weighting. We have seen how noises

σµ and σw of the task prior affect the values of Ψµ and Ψw with increasing k. We

further show the numerical computation of π̃β in the center of Fig. A.9. The figure

shows that the smaller δµ and δw are, the larger Ψµ(α, β) and Ψw(α, β) will be with

increasing k, and the easier for the mixture component T̃α to dominates in the

posterior with an increasing number of in-context examples.

A.8.2 Analysis of Component Shifting

The Component Shifting effect in Lemma 1 involves shifting the variables µ̃m and

w̃m:

µ̃m = (I + (k + 1)δµΣ̄µ)−1(µm + (k + 1)δµµ̄), (A.9)

w̃m = (I + kδwΣ̄w)−1(wm + kδww̄). (A.10)

The following analyses examine these two variables with increasing k.

111

Analysis of µ̃m. We provide the derivation of µ̃m in Eq. A.9 (see Appendix A.8.4

for details):

µ̃m = (µm + kδµµ̄)/(1 + (k + 1)δµ). (A.11)

Thus, when k increases, µ̃m moves close to the value of
∑k

i=1 xi

k
and limk→∞ µ̃m = µ∗.

We also show the numerical computation of the distance between shifted µ̃m and

µ∗ in the first row of Fig. A.10.

Analysis of w̃m. We provide the derivation of w̃m in Eq. A.10 (see Appendix A.8.4

for details):

w̃m = (I + kδwΣ̄w)−1(wm −w∗) + w∗. (A.12)

Notice when k →∞, kδwΣ̄w = kδw

∑k

i=1 xix
⊤
i

k
→ kδw(τ 2

xI+w∗w∗⊤), thus λd(kδwΣ̄w)→

∞, λ1((I + kδwΣ̄w)−1) → 0, limk→∞(I + kδwΣ̄w)−1(wm − w∗) ≤ limk→∞ λ1((I +

kδwΣ̄w)−1) · ∥wm −w∗∥ = 0 and limk→∞ w̃m = w∗, where λd(A) indicates the mini-

mum eigenvalue of A. We also show the numerical computed distance between

w̃m and w∗ in the second row of Fig. A.10.

A.8.3 Derivation Collection of Ψµ(α, β) and Ψw(α, β)

This section collects derivations for Ψµ(α, β) and Ψw(α, β). The derivation of

Ψµ(α, β) is collected in Sec A.8.3 and the derivation of Ψw(α, β) is collected in

Sec A.8.3.

112

Derivation of Ψµ(α, β)

This section collects the derivation of Ψµ(α, β) in Eq. A.4 of Sec. A.8.1:

Ψµ(α, β)

= log(cµ
α/cµ

β)

= log


exp

(
−

∥µβ∥2−∥µβ+(k+1)δµµ̄∥2
(I+(k+1)δµΣ̄µ)−1

2σ2
µ

)

exp
(
−

∥µα∥2−∥µα+(k+1)δµµ̄∥2
(I+(k+1)δµΣ̄µ)−1

2σ2
µ

)


= (1 + (k + 1)δµ)∥µβ∥2 − ∥µβ + δµ
∑k+1

i=1 xi∥2

2σ2
µ(1 + (k + 1)δµ)

− (1 + (k + 1)δµ)∥µα∥2 − ∥µα + δµ
∑k+1

i=1 xi∥2

2σ2
µ(1 + (k + 1)δµ)

= −∥µβ + δµ
∑k+1

i=1 xi∥2

2σ2
µ(1 + (k + 1)δµ) −

−∥µα + δµ
∑k+1

i=1 xi∥2

2σ2
µ(1 + (k + 1)δµ)

=
−∥µβ∥2 − 2µ⊤

β (δµ
∑k+1

i=1 xi)− ∥δµ
∑k+1

i=1 xi∥2

2σ2
µ(1 + (k + 1)δµ)

− −∥µα∥2 − 2µ⊤
α (δµ

∑k+1
i=1 xi)− ∥δµ

∑k+1
i=1 xi∥2

2σ2
µ(1 + (k + 1)δµ)

=
(k + 1)δµ∥µβ∥2 − 2µ⊤

β (δµ
∑k+1

i=1 xi) + δµ
∑k+1

i=1 ∥xi∥2

2σ2
µ(1 + (k + 1)δµ)

− (k + 1)δµ∥µα∥2 − 2µ⊤
α (δµ

∑k+1
i=1 xi) + δµ

∑k+1
i=1 ∥xi∥2

2σ2
µ(1 + (k + 1)δµ)

=
∑k+1

i=1 δµ∥µβ − xi∥2

2σ2
µ(1 + (k + 1)δµ) −

∑k+1
i=1 δµ∥µα − xi∥2

2σ2
µ(1 + (k + 1)δµ)

=
∑k+1

i=1 ∥µβ − xi∥2 −∑k+1
i=1 ∥µα − xi∥2

2σ2
x(1 + (k + 1)δµ) .

113

Derivation of Ψw(α, β)

This section collects the derivation of Ψw(α, β) in Eq. A.6 of Sec. A.8.1:

Ψw(α, β)

= log(cw
α /cw

β)

= log


exp

(
−

∥wα∥2−∥wα+kδww̄∥2
(I+kδwΣ̄w)−1

2σ2
w

)
exp

(
−

∥wβ∥2−∥wβ+kδww̄∥2
(I+kδwΣ̄w)−1

2σ2
w

)


=
∥wβ∥2 − ∥wβ + kδww̄∥2

(I+kδwΣ̄w)−1

2σ2
w

−
∥wα∥2 − ∥wα + kδww̄∥2

(I+kδwΣ̄w)−1

2σ2
w

(Note kδww̄ = δw

k∑
i=1

xiyi = δw

k∑
i=1

xix
⊤
i w∗ = kδwΣ̄ww∗.)

=
∥wβ∥2 − ∥wβ + kδwΣ̄ww∗∥2

(I+kδwΣ̄w)−1

2σ2
w

−
∥wα∥ − ∥wα + kδwΣ̄ww∗∥2

(I+kδwΣ̄w)−1

2σ2
w

=
∥wβ∥2 − ∥(wβ −w∗) + (I + kδwΣ̄w)w∗∥2

(I+kδwΣ̄w)−1

2σ2
w

−
∥wα∥2 − ∥(wα −w∗) + (I + kδwΣ̄w)w∗∥2

(I+kδwΣ̄w)−1

2σ2
w

=
∥wβ∥2 − ∥wβ −w∗∥2

(I+kδwΣ̄w)−1 − 2(wβ −w∗)⊤w∗

2σ2
w

−
∥wα∥2 − ∥wα −w∗∥2

(I+kδwΣ̄w)−1 − 2(wα −w∗)⊤w∗

2σ2
w

=
∥wβ −w∗∥2 − ∥wβ −w∗∥2

(I+kδwΣ̄w)−1

2σ2
w

−
∥wα −w∗∥2 − ∥wα −w∗∥2

(I+kδwΣ̄w)−1

2σ2
w

=
∥wβ −w∗∥2

I−(I+kδwΣ̄w)−1 − ∥wα −w∗∥2
I−(I+kδwΣ̄w)−1

2σ2
w

.

114

A.8.4 Derivation Collection of µ̃m and w̃m

This section collects derivations for µ̃m and w̃m. The derivation of µ̃m is collected

in Appendix A.8.4, and the derivation of w̃m is collected in Appendix A.8.4.

Derivation of µ̃m

This section collects the derivation of µ̃m in Eq. A.11 of Sec. A.8.1:

µ̃m = (I + (k + 1)δµΣ̄µ)−1(µm + (k + 1)δµµ̄)

= (I + (k + 1)δµI)−1(µm + δµ

k+1∑
i=1

xi)

= µm + δµ
∑k+1

i=1 xi

1 + (k + 1)δµ

.

Derivation of w̃m

This section collects the derivation of w̃m in Eq. A.12 of Sec. A.8.1:

w̃m = (I + kδwΣ̄w)−1(wm + kδww̄)

(Recall kδww̄ = δw

k∑
i=1

xiyi = δw

k∑
i=1

xix
⊤
i w∗ = kδwΣ̄ww∗.)

= (I + kδwΣ̄w)−1(wm + kδwΣ̄ww∗)

= (I + kδwΣ̄w)−1(wm −w∗ + (I + kδwΣ̄w)w∗)

= (I + kδwΣ̄w)−1(wm −w∗) + w∗. (A.13)

115

A.9 Additional Experiments for Early Ascent

A.9.1 Early Ascent and Bounded Efficacy under Noisy Labels

We further examine phenomena of early ascent and bounded efficacy with noisy

labels under varied noise levels. The results show that these two phenomena are

robust to label noises to some extend.

A.9.2 Early Ascent under Non-Linear Regression and Discrete

Token Prediction

This section uses Fig. A.13 to show the existence of the early ascent phenomenon on

non-linear regression and discrete token prediction with our designed distributions

of pretraining and in-context samples. Fig. A.13a shows that the early ascent phe-

nomenon exists when a 2-layer neural network with Tanh Activation function serves

as the non-linear function, and Fig. A.13b shows that the early ascent phenomenon

exists when the dataset consists of sequences of tokens with discrete values rather

than sequences of vectors with continuous values. For the details of experiments

including our designed distributions of pretraining and in-context samples, please

refer to Sec. A.9.2 for the experiment with non-linear regression and Sec. A.9.2 for

the experiment with discrete token prediction.

Experiment Design for Non-Linear Regression

The following assumption shows the data generation model to generate a non-linear

sequence [x1, y1, . . . , xK , yK], where xi is a vector and yi is a scalar. The non-linear

116

function mapping x to y is highlighted in red in the assumption.

Assumption 7 (Pretraining Data Generative Model for Non-linear Regression).

(a) sample a task from the task distribution:

(µ, W , v) ∼ Dprior, P (µ, W , v) =
M∑

m=1
πmP (µ, W , v|Tm),

where Tm represents the mth mixture component, i.e., P (µ, W , v|Tm) = N (µ; µm, σ2
µI) ·

1√
(2π)d2 σd2

W

exp(∥W −Wm∥2
F

2) · N (v; vm, σ2
vI), and πm is the mixture weight. N (x; µ, Σ)

denotes the probability of x in the multivariate normal distribution with mean µ and covari-

ance matrix Σ, ∥ · ∥F indicates the Frobenius norm, ∑M
m=1 πm = 1, 0 < πm < 1, (µm, wm)

is the center of the mixture component Tm, and all components share the same covariance

matrix controlled by σµ, σW , and σv;

(b) input variable distribution: within a sequence, ∀i ∈ [K], xi ∼ Dx(µ), P (x|µ) =

N (x|µ, σ2
xI);

(c) label distribution: within a sequence, ∀i ∈ [K], yi|xi ∼ Dy|xi
(W , v), P (yi|xi, W , v) =

N (yi|⟨tanh(W xi), v⟩, σ2
y), where tanh() is a Tanh Activation function;

(d) x, µ, µm, v, vm ∈ Rd, and W , Wm ∈ Rd×d.

For experimental setting of Fig. A.13a, we set d = 2, σµ = 1, σW = σv = 0.5, σx =

σy = 1, M = 2, π1 = 0.1, π2 = 0.9, µ1 = [1, 0]⊤, µ2 = [0, 1]⊤, W1 =

1 0

0 0

 , W2 =

0 0

0 1

, and v1 = [1, 0]⊤, v2 = [0, 1]⊤. In-context samples follows task (µ∗, W ∗, v∗),

where µ∗ = µ1, W ∗ = W2, v∗ = v2, and σy = 1. Notice that although we add label

noise to in-context samples, when evaluating the prediction, we calculate error/loss

based on the clean label.

117

Experiment Design for Discrete Token Prediction

The following assumption shows the data generation model to generate a non-linear

sequence [x1, y1, . . . , xK , yK], where xi and yi are both integers (discrete tokens).

Assumption 8 (Pretraining Data Generative Model for Discrete Token Prediction).

(a) sample a task from the task distribution: (µ, w) ∼ Dprior, µ ∈ [M], w ∈ [M], P (µ, w) =∑M
m=1 πmP (µ, w|Tm), where Tm represents the mth mixture component, i.e., P (µ, w|Tm) =

1[w=wm]((1− (M − 1)σµ)1[µ=µm] + σµ1[µ ̸=µm]), and πm is the mixture weight.

(b) input variable distribution: within a sequence, ∀i ∈ [K], xi ∼ Dx(µ), P (xi|µ) =

(1− (M − 1)σx)1[x=µ] + σx1[x ̸=µ];

(c) label distribution: within a sequence, ∀i ∈ [K], yi|xi ∼ Dy|xi
(w), P (yi|xi, w) =

(1− (M − 1)σy)1[yi=xi+w mod M] + σy1[yi ̸=xi+w mod M].

For experimental setting of Fig. A.13b, we set M = 6,π1 = 0.04, π3 = 0.481, π5 =

0.479, π2 = π4 = π6 = 0, σµ = 0.05, σx = 0.04, σy = 0.13, µ1 = w1 = 1, µ3 = w3 =

3, µ5 = w5 = 5. In-context samples follows task (µ∗, w∗), where µ∗ = µ1, w∗ = w3,

and σy = 0.13. Notice that although we add label noise to in-context samples, when

evaluating the prediction, we calculate error/loss based on the clean label.

A.10 Mathematical Derivation for Early Ascent

We show that the early ascent phenomenon occurs under a specific setting in

Sec. A.10.1. Then, we give formal theory with proof to show when early ascent

happens in Sec. A.10.2.

118

A.10.1 A Specific Setting of Early Ascent

To have a cleaner mathematical understanding of this phenomenon, this section

uses the setting of d = 1, the first row, in Table A.1 to show the mathematical

logic. (Some parameter settings are described in Table A.1’s caption.) Following

Theorem 3, the upper bound of ICL risk is as follows:

ESk⊕x(k+1) [L∗
k]

<
2∑

β=1
∥wβ −w∗∥2ESk⊕x(k+1) [π̃β∥xk+1∥2λ1(A)2]

= ∥w1 −w∗∥2ESk⊕x(k+1) [π̃1∥xk+1∥2λ1(A)2]

+ ∥w2 −w∗∥2ESk⊕x(k+1) [π̃2∥xk+1∥2λ1(A)2]

(Notice w2 = w∗, ∥w1 −w∗∥2 = 22 = 4.)

= 4ESk⊕x(k+1) [π̃1∥xk+1∥2λ1(A)2]

(Notice π̃1 + π̃2 = 1.)

= 4ESk⊕x(k+1)

[
π̃1

π̃1 + π̃2
∥xk+1∥2λ1(A)2

]
(Recall π̃1

π̃2
= r(1, 2) as Eq. A.3.)

= 4ESk⊕x(k+1)

[
r(1, 2)

1 + r(1, 2)∥xk+1∥2λ1(A)2
]

.

Noticing δµ = 0.052

12 and δw = 0.052

22 are very small, when k is small, we have kδw ≈ 0

and λ1(A) = (I + δw
∑k

i=1 xix
⊤
i)−1 ≈ I , thus ESk⊕x(k+1)

[
r(1,2)

1+r(1,2)∥xk+1∥2λ1(A)2
]
≈

ESk⊕x(k+1)

[
r(1,2)

1+r(1,2)∥xk+1∥2
]

and a larger r(1, 2) means a larger upper bound. In the

following, we will examine whether the increase of k leads to the increase of r(1, 2).

119

Following Eq. A.3:

r(1, 2) = 1/2
1/2 exp(Ψµ(1, 2) + Ψw(1, 2))

= exp(Ψµ(1, 2) + Ψw(1, 2)).

We first analyze Ψµ(1, 2), following Eq. A.4:

E[Ψµ(1, 2)] = E
[∑k+1

i=1 ∥µ2 − xi∥2 −∑k+1
i=1 ∥µ1 − xi∥2

2σ2
x(1 + (k + 1)δµ)

]

(Since δµ ≈ 0, thus when k is small, we have:)

≈ E
[∑k+1

i=1 ∥µ2 − xi∥2 −∑k+1
i=1 ∥µ1 − xi∥2

2σ2
x

]

= k + 1
2σ2

x

E
[
∥µ2 − x1∥2 − ∥µ1 − x1∥2

]
= k + 1

2σ2
x

(E[∥µ2 − x1∥2]− E[∥µ1 − x1∥2])

= k + 1
2σ2

x

(E[∥µ2 − µ∗∥2] + τ 2
x)− (E[∥µ1 − µ∗∥2] + τ 2

x)

(µ∗ is the same as µ1, but different from µ2.)

= k + 1
2σ2

x

(E[∥µ2 − µ∗∥2]− 0)

= k + 1
2× 12 × 22

= 2(k + 1).

We then analyze Ψw(1, 2), following Eq. A.6:

E[Ψw(1, 2)] = E

−∥w1 −w∗∥2
I−(I+kδwΣ̄w)−1

2σ2
w


(Since δw ≈ 0, thus when k is small, we have:)

≈ −E
[

(w1 −w∗)⊤kδwΣ̄w(w1 −w∗)
2σ2

w

]

120

(Notice the feature dimension d = 1, Σ̄w =
∑k

i=1 ∥xi∥2

k
.)

≈ −E
[
∥w1 −w∗∥2kδw

∑k
i=1 ∥xi∥2

2σ2
w

]

= −E
[

2∑k
i=1 ∥xi∥2

σ2
y

]

= −2k

σ2
y

E
[
∥x1∥2

]
= −2k

σ2
y

(∥µ∗∥2 + τ 2
x)

= −2k

22 × (1 + 1) = −k.

−4 −2 0 2 4
k

0.00

0.25

0.50

0.75

1.00

f
(k

)

f (k) =exp(k + 2)/(1+exp(k + 2))

Figure A.14: Illustration

of the function exp(k +

2)/(1 + exp(k + 2)).

Therefore, when k is small, r(1, 2) = Ψµ(1, 2) +

Ψw(1, 2) ≈ exp(k + 2), and the upper bound is approx-

imately equal to:

4ESk⊕x(k+1)

[
exp(k + 2)

1 + exp(k + 2)∥xk+1∥2
]

,

which increases as the number of in-context examples

increases.

A.10.2 Theorem of Early Ascent

Theorem 4 (Early Ascent). AssumeEx1

[
(F∗(x1)− ⟨w∗, x1⟩)2

]
< Ex1 [⟨x1, wα −w∗⟩2],

where α = arg min
m

∥µm−µ∗∥2

2σ2
x

+ ∥(wm−w∗)⊤µ∗∥2+dτ2
x∥wm−w∗∥2

2σ2
y

. Then, when δµ and δw are

small enough, we have the early ascent phenomenon on the risk:

∃k ≥ 1 s.t. Ex1

[
(F∗(x1)− ⟨w∗, x1⟩)2

]
< ESk⊕x(k+1)

[(
F∗(Sk ⊕ x(k+1))− ⟨w∗, xk+1⟩

)2
]

.

121

Proof. We examine the following case, when σµ and σw are small enough, and k is

also big enough to retrieve a task, i.e., making a center dominate:

lim
k→∞

lim
(σµ,σw)→(0,0)

ESk⊕x(k+1)

[(
F∗(Sk ⊕ x(k+1))− ⟨w∗, xk+1⟩

)2
]

= lim
k→∞

lim
(σµ,σw)→(0,0)

ESk⊕x(k+1)

[〈∑M

m=1 π̃mA(wm −w∗), xk+1

〉2
]

= lim
k→∞

lim
(σµ,σw)→(0,0)

ESk⊕x(k+1)

[〈∑M

m=1 π̃m(wm −w∗), xk+1

〉2
]

= lim
k→∞

lim
(σµ,σw)→(0,0)

ESk⊕x(k+1)

[〈∑M

m=1 πm exp(Ψµ(m, 1) + Ψw(m, 1))(wm − w∗)∑M

m=1 πm exp(Ψµ(m, 1) + Ψw(m, 1))
, xk+1

〉2]
(Following Eq. A.8, we have lim

(σµ,σw)→(0,0)
Ψµ(m, 1) + Ψw(m, 1) =

∥µm − xk+1∥2 − ∥µ1 − xk+1∥2

2σ2
x

+
k∑

i=1

(
∥µm − xi∥2 − ∥µ1 − xi∥2

2σ2
x

+ ∥ym
i − y∗

i ∥2 − ∥y1
i − y∗

i ∥2

2σ2
y

)
)

= lim
k→∞

ESk⊕x(k+1)

〈
∑M

m=1 πm exp
(

∥µm−xk+1∥2

2σ2
x

+
∑k

i=1(∥µm−xi∥2

2σ2
x

+ ∥ym
i −y∗

i ∥2

2σ2
y

)
)

(wm − w∗)∑M

m=1 πm exp
(

∥µm−xk+1∥2

2σ2
x

+
∑k

i=1(∥µm−xi∥2

2σ2
x

+ ∥ym
i

−y∗
i

∥2

2σ2
y

)
) , xk+1

〉2
= ESk⊕x(k+1) [⟨wα −w∗, xk+1⟩2]

= Ex1 [⟨wα −w∗, x1⟩2],

where α = arg min
m

∥µm−µ∗∥2

2σ2
x

+ ∥(wm−w∗)⊤µ∗∥2+dτ2
x∥wm−w∗∥2

2σ2
y

.

A.11 Proof Tools

This section introduces the inequalities used in our proofs for Theorems 3 (fine-

grained upper bound for ICL risk), 5 (upper bound for ICL with biased labels), 7

(coarse upper bound for ICL risk) and Lemma 6 ((informal) upper bound for

zero-shot ICL):

122

A.11.1 Gaussian Tail Bound

If Zi ∼ N (0, 1), then for t > 0 we have:

P

(∑k
i=1 Zi

k
> t

)
≤ exp

(
−kt2

2

)
,

P

(∑k
i=1 Zi

k
< −t

)
≤ exp

(
−kt2

2

)
.

A.11.2 Chi-squared Tail Bound

If X ∼ χ(k), i.e., X = ∑k
i=1 Z2

i where Zi ∼ N (0, 1) then [10]:

P
(

X

k
− 1 > 2

√
t1 + 2t1

)
≤ exp

(
−kt2

1

)
,

P
(

X

k
− 1 < −2

√
t1

)
≤ exp

(
−kt2

1

)
.

As a looser but symmetric bound, for any t > 0, we have:

P
(

X

k
− 1 > t

)
≤ exp

(
−kt2

8

)
,

P
(

X

k
− 1 < −t

)
≤ exp

(
−kt2

8

)
.

A.11.3 Norm Tail Bound

If ϵi ∼ N (0, τ 2
xI), ϵi ∈ Rd, I ∈ Rd×d, then for t > 0 we have:

P

∥∥∥∥∥
∑k

i=1 ϵi

k

∥∥∥∥∥ >

√
τ 2

xd

k
(1 + t)

 ≤ exp
(
−kt2

8

)
,

where ∥ · ∥ indicates the L2 norm.

123

Proof. ∥∥∥∥∥
∑k

i=1 ϵi

k

∥∥∥∥∥
2

=
d∑

j=1

(∑k
i=1 ϵi,j

k

)2

= τ 2
x

k

d∑
j=1

(∑k
i=1 ϵi,j

τx

√
k

)2

(Notice ϵi,j ∼ N (0, τ 2
x) and let Zj =

∑k
i=1 ϵi,j

τx

√
k
∼ N (0, 1).)

= τ 2
xd

k

∑d
i=1 Z2

i

d
.

Therefore, by applying Appendix A.11.2 we have:

P

(
τ 2

xd

k

∑d
i=1 Z2

i

d
>

τ 2
xd

k
(1 + t)

)
≤ exp

(
−kt2

8

)
.

A.11.4 Eigenvalue Concentration Bound

Lemma 8. If ∀i, xi ∼ N (µ, τ 2
xI), ∥µ∥ = 1, A =

∑k

i=1 xix
⊤
i

k
, and ϵi = xi − µ, we have

∀t > 0:

P

(
L ≤ λd(A) ≤ λ1(A) ≤ U and

∥∥∥∥∥
∑k

i=1 ϵi

k

∥∥∥∥∥ < τx

√
γ(1 + t)

)
> 1− 3 exp

(
−kt2

8

)
,

where L = τ 2
x(1− t

2 − γ)2 − 2τxγ
√

1 + t, U = 1 + τ 2
x(1 + t

2 + γ)2 + 2τxγ
√

1 + t, λi(A)

is the ith biggest eigenvalue of the matrix A and γ =
√

d
k
.

We begin with decomposing A to three components:

A =
∑k

i=1 xix
⊤
i

k
=
∑k

i=1(µ + ϵi)(µ + ϵi)⊤

k
= µµ⊤ +

∑k
i=1 ϵiϵ

⊤
i

k
+
∑k

i=1(µϵ⊤
i + ϵiµ

⊤)
k

,

124

then consider the eigenvalue bound of each of them.

For the first component µµ⊤, we have:

0 ≤ λd(µµ⊤) < λ1(µµ⊤) ≤ 1.

Then, we analyze the second component
∑k

i=1 ϵiϵ
⊤
i

k
. Following Vershynin [111,

Theorem 4.6.1, p. 97], we have for any 1−
√

d
k

> s > 0:

P

(1− s−

√
d

k

)2
≤ 1

τ2
x

λd

(∑k
i=1 ϵiϵ

⊤
i

k

)
<

1
τ2

x

λ1

(∑k
i=1 ϵiϵ

⊤
i

k

)
≤
(

1 + s +

√
d

k

)2


> 1− 2 exp
(
−ks2

2

)
.

Finally, we examine the third component
∑k

i=1(µϵ⊤
i +ϵiµ

⊤)
k

. We have for all ∥a∥ = 1:∥∥∥∥∥a⊤
∑k

i=1(µϵ⊤
i + ϵiµ

⊤)
k

a

∥∥∥∥∥ = 2
∥∥∥∥∥a⊤

∑k
i=1 ϵi

k
µ⊤a

∥∥∥∥∥ ≤ 2
∥∥∥∥∥
∑k

i=1 ϵi

k

∥∥∥∥∥
(Notice by Norm Tail Bound in Appendix A.11.3, we have:

P

∥∥∥∥∥
∑k

i=1 ϵi

k

∥∥∥∥∥ >

√
τ 2

xd

k
(1 + t)

 ≤ exp
(
−kt2

8

)
.)

=⇒ P

(∥∥∥∥a⊤
∑k

i=1(µϵ⊤
i + ϵiµ

⊤)
k

a

∥∥∥∥ ≤ 2
∥∥∥∥∑k

i=1 ϵi

k

∥∥∥∥ ≤ 2

√
τ2

xd

k
(1 + t)

)
> 1 − exp

(
−kt2

8

)

=⇒ P

(
−2τx

√
d

k
(1 + t) ≤ λd

(∑k

i=1(µϵ⊤
i + ϵiµ

⊤)
k

)
≤ λ1

(∑k

i=1(µϵ⊤
i + ϵiµ

⊤)
k

)
≤ 2τx

√
d

k
(1 + t)

)

> 1− exp
(
−kt2

8

)
.

Let γ =
√

d
k
, s = t/2, and summarize three components by union bound, we

have:

P

(
τ2

x

(
1− t

2 − γ

)2
− 2τxγ

√
1 + t ≤ λd(A) ≤ λ1(A) ≤ 1 + τ2

x

(
1 + t

2 + γ

)2
+ 2τxγ

√
1 + t

)

> 1− 3 exp
(
−kt2

8

)
.

125

As a summary, we have:

P

(
L ≤ λd(A) ≤ λ1(A) ≤ U and

∥∥∥∥∥
∑k

i=1 ϵi

k

∥∥∥∥∥ < τx

√
γ(1 + t)

)
> 1− 3 exp

(
−kt2

8

)
,

where γ =
√

d
k
, L = τ 2

x(1− t
2−γ)2−2τxγ

√
1 + t, U = 1+τ 2

x

(
1 + t

2 + γ
)2

+2τxγ
√

1 + t,

and λi(A) is the ith biggest eigenvalue of the matrix A.

A.12 ICL to Learn the In-Context Function

This section introduces the proof of Theorem 7 (coarse upper bound for ICL risk)

and Theorem 3 (finegrained upper bound for ICL risk). The upper bound of

Theorem 3 is derived at Eq. A.14.

Proof. Assuming we are using in-context examples following Assumption 3, i.e.,

xi ∼ N (µ∗, τ 2
xI), yi = ⟨xi, w∗⟩, ∥µ∗∥ = ∥w∗∥ = 1, and we aim to have the prediction

of Sk ⊕ x(k+1) to be ⟨xk+1, w∗⟩, i.e., to learn the function (w∗) of the in-context task

(µ∗, w∗). Let L∗
k indicate the squared loss (F∗(Sk ⊕ x(k+1)) − ⟨xk+1, w∗⟩)2, where

F∗(Sk ⊕ x(k+1)) is the prediction of Sk ⊕ x(k+1) by the Bayes-optimal next-token

predictor F∗ under Assumption 2 for pretraining data generation. We derive the

upper bound of the expected squared loss as follows:

ESk⊕x(k+1) [L∗
k]

= ESk⊕x(k+1)

[(
F∗(Sk ⊕ x(k+1))− ⟨w∗, xk+1⟩

)2
]

(By Corollary 2.)

= ESk⊕x(k+1)

[(∑M

m=1 π̃m⟨w̃m, xk+1⟩ − ⟨w∗, xk+1⟩
)2
]

126

= ESk⊕x(k+1)

[(〈∑M

m=1 π̃m(w̃m −w∗), xk+1

〉)2
]

(See Eq. A.13 for the derivation of w̃m.)

= ESk⊕x(k+1)

[(〈∑M

m=1 π̃m((I + kδwΣ̄w)−1(wm −w∗) + w∗ −w∗), xk+1

〉)2
]

(Let A = (I + kδwΣ̄w)−1, and notice A is symmetric positive definite.)

= ESk⊕x(k+1)

[〈∑M

m=1 π̃mA(wm −w∗), xk+1

〉2
]

(Notice
(∑M

β=1 π̃βaβ

)2
≤
∑M

β=1 π̃βa2
β , since E[a]2 ≤ E[a2].)

≤ ESk⊕x(k+1)

[∑M

m=1 π̃m⟨A(wm −w∗), xk+1⟩2
]

=
∑M

m=1 ESk⊕x(k+1)

[
π̃m((wm −w∗)⊤Axk+1)2

]
≤
∑M

m=1 ESk⊕x(k+1)

[
π̃m∥wm −w∗∥2λ1(A)2∥xk+1∥2

]
=
∑M

m=1 ∥wm −w∗∥2ESk⊕x(k+1)

[
π̃m∥xk+1∥2λ1(A)2

]
(A.14)

≤ 4ESk⊕x(k+1)

[∑M

m=1 π̃m∥xk+1∥2λ1(A)2
]

= 4ESk⊕x(k+1)

[
∥xk+1∥2λ1(A)2

]
(Notice A is a random matrix only depends on x1, x2, . . . , xk, but not xk+1.)

= 4Exk+1

[
∥xk+1∥2

]
ESk

[
λ2

1(A)
]

= 4(1 + dτ 2
x)ESk

[
λ2

1(A)
]

.

We further simplify ESk
[λ2

1(A)] using Lemma 8:

ESk⊕x(k+1) [L∗
k]

≤ 4(1 + dτ 2
x)ESk

[
λ2

1(A)
]

127

≤ 4(1 + dτ 2
x)ESk


 1

1 + kδwλd(
∑k

i=1 xix⊤
i

k
)


2

(By applying Lemma 8 to
∑k

i=1 xix
⊤
i

k
.)

≤ 4(1 + dτ 2
x)ESk

[(1
1 + kδwL

)2]

≤ 4(1 + dτ 2
x)
(1

1 + kδw(τ 2
x(1− t

2 − γ)2 − 2τxγ
√

1 + t)

)2

+ 3 exp
(
−kt2

8

) .

Let t = kδ− 1
2 , where 1

2 > δ > 0 and δ is arbitrary small. We have:

ESk⊕x(k+1) [L∗
k] <

4(1 + dτ 2
x)

τ 4
xδ2

wk2 + O(kδ− 5
2).

We further validate our analysis with numerical computations in Fig. A.15, in-

cluding the trend of π̃m for m ∈ [M], λj

(
δw

∑k

i=1 xix
⊤
i

k

)
for j ∈ [d], λj

(
I + δw

∑k
i=1 xix

⊤
i

)
for j ∈ [d], 1/∥w̃−w∗∥, 1/E[F∗(Sk⊕x(k+1))−y∗

k+1], and 1/E[(F∗(Sk⊕x(k+1))−y∗
k+1)2]

as k increases.

A.12.1 Case When In-context Input Variable Spans in Subspace

In this section, we refine Eq. A.14 for the finegrained bound in Theorem 3. Specifi-

cally, we refine the following inequality for case when in-context input variable xi

only spans in the subspace of Rd, resulting in λ1(A) = 1 constantly as mentioend

in Theorem 3:

∑M

m=1 ESk⊕x(k+1)

[
π̃m((wm −w∗)⊤Axk+1)2

]
≤
∑M

m=1 ESk⊕x(k+1)

[
π̃m∥wm −w∗∥2λ1(A)2∥xk+1∥2

]
,

128

where A = (I +∑k
i=1 xix

⊤
i)−1 is derived in Lemma 1. Violating Assumption 3(a), in

this section we consider the case that xi ∼ N (µ, diag(1, . . . , 1︸ ︷︷ ︸
d′

, 0, . . . , 0)), where µ =

[p, 0, . . . , 0︸ ︷︷ ︸
d′−1

, q, 0, . . . , 0]⊤. (If µ does not follows the format [p, 0, . . . , 0︸ ︷︷ ︸
d′−1

, q, 0, . . . , 0]⊤,

we can always rotate the coordinates so µ has this format.) Therefore, we have

matrix A (after rotation) with the following format:

A =



Id′×d′ +∑k
i=1 xi,1:d′x⊤

i,1:d′ 0d′×(d−d′)

0(d−d′)×d′ I(d−d′)×(d−d′)


−1

, if q = 0

I(d′+1)×(d′+1) +∑k
i=1 xi,1:(d′+1)x

⊤
i,1:(d′+1) 0(d′+1)×(d−d′−1)

0(d−d′−1)×(d′+1) I(d−d′−1)×(d−d′−1)


−1

, if q > 0

where xi,1:d′ = [xi,1, xi,2, . . . , xi,d′]⊤, Ia×a indicates an identity matrix with shape a

by a, and 0a×b indicates a zero matrix with shape a by b. Finally, we can revise the

upper bound for the case when xi only spans in a subspace of Rd using the new

format of A as follows:

When q = 0, we have:

∑M

m=1 ESk⊕x(k+1)

[
π̃m((wm −w∗)⊤Axk+1)2

]
≤
∑M

m=1 ESk⊕x(k+1) [π̃m((wm −w∗)⊤
1:d′A1:d′,1:d′xk+1,1:d′

+ (wm −w∗)⊤
(d′+1):dI(d−d′)×(d−d′)xk+1,(d′+1):d)2]

≤
∑M

m=1 ESk⊕x(k+1) [π̃m(∥(wm −w∗)1:d′∥2λ1(A1:d′,1:d′)2∥xk+1,1:d′∥2

+ ∥(wm −w∗)(d′+1):d∥2∥xk+1,(d′+1):d∥2)],

(Notice ∥xk+1,(d′+1):d∥2 = 0)

=
∑M

m=1 ESk⊕x(k+1)

[
π̃m∥(wm −w∗)1:d′∥2λ1(A1:d′,1:d′)2∥xk+1,1:d′∥2

]
,

129

When q > 0, we skip the analysis since the analysis for q > 0 is the same as the

analysis for q = 0. The only difference is that d′ for q > 0 is one bigger than d′ for

q = 0.

A.13 ICL with Biased Labels to Retrieve A Task

This section details the proof of Theorem 5, with Fig.A.16 serving as a visual

guide. The non-asymptotic bound for the bounded efficacy phenomenon and the

asymptotic bound share the same foundational elements in the proof. However,

they are different in handling the components marked in pink. Fig. A.16 is thus

provided to offer a clearer understanding of its overall framework and assist readers

in navigating through the proof. In the following sections, Sec. A.13.1 introduces the

non-asymptotic bound revealing the bounded efficacy phenomenon, and Sec. A.13.2

introduces the asymptotic bound.

A.13.1 Non-Asymptotic Bound for the Bounded Efficacy

Phenomenon

This section proves the non-asymptotic bound in Theorem 5: Consider a next-token

predictor attaining the optimal pretraining risk. When δµ and δw are sufficiently

small, there exists a particular interval (refer to Sec.A.13.1 for the interval) for k

such that ICL risk with biased labels is upper bounded by:

ESk
[Lα

k] < C3 exp
(
−k

(
d2

µ

8σ2
x

+ u2
wτ 2

x

8σ2
y

))
+ 48(1 + dτ 2

x) exp
−k

1
2

8



130

+ ∥wα −w∗∥2(1 + dτ 2
x) min{1, 4k2δw

2(1 + τ 2
x)2}.

whereLα
k = (F(Sk⊕x(k+1))−yα

k+1)2 = (F(Sk⊕x(k+1))−⟨xk+1, wα⟩)2 C3 is a constant

depending on the prior setting, τx, and (µ∗, w∗). With small k, the first and second

terms dominate and exponential decay. With large k, the third term dominates and

increases. Thus, the upper bound reveals a bounded efficacy phenomenon.

Proof. Assuming we are using in-context examples following Assumptions 3 and 4,

i.e., xi ∼ N (µ∗, τ 2
xI), yi = ⟨xi, w∗⟩, ∥µ∗∥ = ∥w∗∥ = 1, and we aim to retrieve the

function wα of the prior center (µα, wα) which is close to the in-context task. Let

Lα
k indicate the squared risk (F∗(Sk ⊕ x(k+1))− ⟨xk+1, wα⟩)2, where F∗(Sk ⊕ x(k+1))

is the prediction of Sk ⊕ x(k+1) by the Bayes-optimal next-token predictor F∗. In

order to have an upper bound on the risk, we consider xi ∼ N (µ∗, τ 2
xI) in two cases:

(1) C: L < λd

(∑k

i=1 xix
⊤
i

k

)
≤ λ1

(∑k

i=1 xix
⊤
i

k

)
< U and

∥∥∥∥∑k

i=1 ϵi

k

∥∥∥∥ < τx

√
γ(1 + t) (see

Lemma 8 for t, γ, L and U) and (2) ¬C: at least one of the previous inequalities

does not hold. Following Lemma 8, the probability of ¬C is bounded by: P (¬C) ≤

3 exp(−kt2

8)).

We start our upper bound analysis on the expected squared risk by splitting the

risk into three parts:

ESk⊕x(k+1) [Lα
k]

= ESk⊕x(k+1)

[
(F∗(Sk ⊕ x(k+1))− ⟨wα, xk+1⟩)2

]
(By Corollary 2.)

= ESk⊕x(k+1)

[(∑M

β=1 π̃β⟨w̃β, xk+1⟩ − ⟨wα, xk+1⟩
)2
]

131

(Notice
∑M

β=1 π̃β = 1.)

= ESk⊕x(k+1)

[(∑M

β=1 π̃β (⟨w̃β, xk+1⟩ − ⟨wα, xk+1⟩)
)2
]

(Notice
(∑M

β=1 π̃βaβ

)2
≤
∑M

β=1 π̃βa2
β , since E[a]2 ≤ E[a2].)

≤ ESk⊕x(k+1)

[∑M

β=1 π̃β(⟨w̃β, xk+1⟩ − ⟨wα, xk+1⟩)2
]

= ESk⊕x(k+1)

[∑M

β=1 π̃β⟨w̃β −wα, xk+1⟩2
]

= P (C)ESk⊕x(k+1)

[∑M

β=1 π̃β⟨w̃β −wα, xk+1⟩2
∣∣∣∣C]

+ P (¬C)ESk⊕x(k+1)

[∑M

β=1 π̃β⟨w̃β −wα, xk+1⟩2
∣∣∣∣¬C

]
= P (C)ESk⊕x(k+1)

[∑
β ̸=α

π̃β⟨w̃β −wα, xk+1⟩2
∣∣∣∣C] (Part A)

+ P (C)ESk⊕x(k+1) [π̃α⟨w̃α −wα, xk+1⟩2|C] (Part B)

+ P (¬C)ESk⊕x(k+1)

[∑M

β=1 π̃β⟨w̃β −wα, xk+1⟩2
∣∣∣∣¬C

]
. (Part C)

We will analyze three parts one by one in the following three sections respectively.

Bounded Efficacy - Part A

Proof. We firstly analyze the term P (C)ESk⊕x(k+1) [∑β ̸=α π̃β⟨w̃β −wα, xk+1⟩2|C], Part

A:

P (C)ESk⊕x(k+1)

[∑
β ̸=α

π̃β⟨w̃β −wα, xk+1⟩2
∣∣∣∣C]

< P (C)ESk⊕x(k+1)

[∑
β ̸=α

π̃β∥w̃β −wα∥2∥xk+1∥2
∣∣∣∣C]

(See Eq. A.13 for the derivation of w̃β.)

= P (C)ESk⊕x(k+1)

[∑
β ̸=α

π̃β∥(I + kδwΣ̄w)−1(wβ −w∗) + w∗ −wα∥2∥xk+1∥2
∣∣∣∣C]

132

(Let A = (I + kδwΣ̄w)−1, and λ1(A) is the largest eigenvalue of matrix A.)

= P (C)ESk⊕x(k+1)

[∑
β ̸=α

π̃β∥A(wβ −w∗) + w∗ −wα∥2∥xk+1∥2
∣∣∣∣C]

≤ P (C)ESk⊕x(k+1)

[∑
β ̸=α

π̃β(∥A(wβ −w∗)∥+ ∥w∗ −wα∥)2∥xk+1∥2
∣∣∣∣C]

(Notice ∥wβ −w∗∥ ≤ 2.)

≤ P (C)ESk⊕x(k+1)

[∑
β ̸=α

π̃β∥xk+1∥2(2λ1(A) + ∥w∗ −wα∥)2
∣∣∣∣C]

(Notice A = (I + kδwΣ̄w)−1 and conditioned on C we have:

L < λd(Σ̄w) < λ1(Σ̄w) < U.)

≤ P (C)ESk⊕x(k+1)

[∑
β ̸=α

π̃β∥xk+1∥2
∣∣∣∣C] (2

1 + kδwL + ∥w∗ −wα∥
)2

(Notice ∥w∗ −wα∥ ≤ 2.)

≤ 16P (C)ESk⊕x(k+1)

[∑
β ̸=α

π̃β

π̃α

∥xk+1∥2
∣∣∣∣C] .

(By applying Eqs. A.3, A.4, A.6, and Assumption 2(e) on π̃β

π̃α

:)

< 16P (C)ESk⊕x(k+1)

∑
β ̸=α

r exp
(
−∑k+1

i=1 ∥µβ − xi∥2 +∑k+1
i=1 ∥µα − xi∥2

2σ2
x(1 + (k + 1)δµ)

)

· exp
(−∥wβ −w∗∥2

I−(I+kδwΣ̄w)−1 + ∥wα −w∗∥2
I−(I+kδwΣ̄w)−1

2σ2
w

)
∥xk+1∥2

∣∣∣∣∣∣C


(In the first exponential term, by splitting
∑k+1

i=1 to
∑k

i=1 and i = k + 1 :)

< 16P (C)ESk⊕x(k+1)

∑
β ̸=α

r exp
(
−∑k

i=1 ∥µβ − xi∥2 +∑k
i=1 ∥µα − xi∥2

2σ2
x(1 + (k + 1)δµ)

)
︸ ︷︷ ︸

Part A-1

· exp
(−∥wβ −w∗∥2

I−(I+kδwΣ̄w)−1 + ∥wα −w∗∥2
I−(I+kδwΣ̄w)−1

2σ2
w

)
︸ ︷︷ ︸

Part A-2

133

· exp
(
−∥µβ − xk+1∥2 + ∥µα − xk+1∥2

2σ2
x(1 + (k + 1)δµ)

)
∥xk+1∥2

︸ ︷︷ ︸
Part A-3

∣∣∣∣∣∣C


(Note that x1, . . . , xk are dependent on C but xk+1 is not.

Thus, we split them for further analysis.)

In the following, we separately analyze the three terms, Part A-1, Part A-2, and

Part A-3. The high-level idea is that, as k increases, due to the concentration of Part

A-1 and Part A-2, they can be upper bounded by a function of k. Then, regarding

Part A-1 and Part A-2 as constant values (their upper bounds), the expectation of

Part A-3 can be upper bounded.

Part A-1. We first deal with Part A-1. When conditioned on case C, we have:∑k
i=1(−∥µβ − xi∥2 + ∥µα − xi∥2)

1 + (k + 1)δµ

(Let xi = µ∗ + ϵi)

= k
∥µα − µ∗∥2 − ∥µβ − µ∗∥2 +

∑k

i=1 2⟨µβ−µα,ϵi⟩
k

1 + (k + 1)δµ

= k
∥µα − µ∗∥2 − ∥µβ − µ∗∥2 +

〈
2(µβ − µα),

∑k

i=1 ϵi

k

〉
1 + (k + 1)δµ

≤ k
∥µα − µ∗∥2 − ∥µβ − µ∗∥2 + 2∥µβ − µα∥

∥∥∥∥∑k

i=1 ϵi

k

∥∥∥∥
1 + (k + 1)δµ

(Recall we have ∀β ∈ [M], ∥µβ − µα∥ ≤ 2, and in case C we have:∥∥∥∥∥
∑k

i=1 ϵi

k

∥∥∥∥∥ < τxγ
√

1 + t.)

< k
∥µα − µ∗∥2 − ∥µβ − µ∗∥2 + 4τxγ

√
1 + t

1 + (k + 1)δµ

.

134

Let t = k− 1
4 . Recall in Assumption 4, we have ∀β ̸= α, ∥µβ−µ∗∥2−∥µα−µ∗∥2 ≥ d2

µ.

If δµ ≪ 1 s.t. Iµ = {k|(k +1)δµ ≤ 1 and d2
µ

2 > 4τxγ
√

1 + k− 1
4} ≠ ∅, then when k ∈ Iµ

we have:

k
∥µα − µ∗∥2 − ∥µβ − µ∗∥2 + 4τxγ

√
1 + t

1 + (k + 1)δµ
< k
∥µα − µ∗∥2 − ∥µβ − µ∗∥2 + d2

µ

2
2 = −k

d2
µ

4 .

Part A-2. We then deal with Part A-2. When conditioned on case C, we have:

− ∥wβ −w∗∥2
I−(I+kδwΣ̄w)−1 + ∥wα −w∗∥2

I−(I+kδwΣ̄w)−1

(λ1(A) and λd(A) indicate the largest and smallest eigenvalues of the matrix A.)

< −∥wβ −w∗∥2λd(I − (I + kδwΣ̄w)−1) + ∥wα −w∗∥2λ1(I − (I + kδwΣ̄w)−1)

(Recall in case C we have: L < λd(Σ̄w) < λ1(Σ̄w) < U.)

< −∥wβ −w∗∥2
(

1− 1
1 + kδwL

)
+ ∥wα −w∗∥2

(
1− 1

1 + kδwU

)
= −∥wβ −w∗∥2 kδwL

1 + kδwL + ∥wα −w∗∥2 kδwU
1 + kδwU

< −∥wβ −w∗∥2 kδwL
1 + kδwτ 2

x

+ ∥wα −w∗∥2 kδwU
1 + kδwτ 2

x

Let t = k− 1
4 . If δw ≪ 1 s.t. Iw = {k|kδwτ 2

x ≤ 1 and L∥wβ −w∗∥2 −U∥wα −w∗∥2 >

τ2
xu2

w

2 } ≠ ∅, (note limk→∞ L∥wβ − w∗∥2 − U∥wα − w∗∥2 = τ 2
x∥wβ − w∗∥2 − (1 +

τ 2
x)∥wα −w∗∥2 ≥ τ 2

xu2
w) then when k ∈ Iw, we have:

−∥wβ −w∗∥2 kδwL
1 + kδwτ 2

x

+ ∥wα −w∗∥2 kδwU
1 + kδwτ 2

x

< −τ 2
xu2

w

2
kδw

1 + kδwτ 2
x

< −kδw
τ 2

xu2
w

4 .

Part A-3. We finally deal with Part A-3. Part A-3 is independent to case C, and we

have:

P (C)ESk⊕x(k+1)

[
exp

(
−∥µβ − xk+1∥2 + ∥µα − xk+1∥2

2σ2
x(1 + (k + 1)δµ)

)
∥xk+1∥2

∣∣∣∣∣C
]

135

< ESk⊕x(k+1)

[
exp

(
−∥µβ − xk+1∥2 + ∥µα − xk+1∥2

2σ2
x(1 + (k + 1)δµ)

)
∥xk+1∥2

]

(Let xk+1 = µ∗ + ϵ.)

= ESk⊕x(k+1)

[
exp

(
−∥µβ − µ∗ − ϵ∥2 + ∥µα − µ∗ − ϵ∥2

2σ2
x(1 + (k + 1)δµ)

)
∥xk+1∥2

]

= ESk⊕x(k+1)

[
exp

(
−∥µβ − µ∗∥2 + ∥µα − µ∗∥2 + ⟨2(µβ − µα), ϵ⟩

2σ2
x(1 + (k + 1)δµ)

)
∥xk+1∥2

]

(Let − ∥µβ − µ∗∥2 + ∥µα − µ∗∥2 = −D, 2σ2
x(1 + (k + 1)δµ) = E, b = 2(µβ − µα).)

= ESk⊕x(k+1)

[
exp

(
−D + b⊤ϵ

E

)
∥xk+1∥2

]

(Notice ∥xk+1∥2 = ∥µ∗ + ϵ∥2 ≤ 2∥µ∗∥2 + 2∥ϵ∥2.)

≤ ESk⊕x(k+1)

[
exp

(
−D + b⊤ϵ

E

)
(2∥µ∗∥2 + 2∥ϵ∥2)

]

(Notice ∥µ∗ + ϵ∥2 = 1.)

= 2
ESk⊕x(k+1)

[
exp

(
−D + b⊤ϵ

E

)]
+ ESk⊕x(k+1)

[
exp

(
−D + b⊤ϵ

E

)
∥ϵ∥2

]
= 2

 exp
(

τ 2
x∥b∥2

2E2 − D

E

)
+ ESk⊕x(k+1)

[
exp

(
−D + b⊤ϵ

E

)
∥ϵ∥2

]
= 2

 exp
(

τ 2
x∥b∥2

2E2 − D

E

)
+ τ 2

x

(
1 + τ 2

x∥b∥2

E2

)
exp

(
τ 2

x∥b∥2

2E2 − D

E

)

+ (d− 1)τ 2
x exp

(
τ 2

x∥b∥2

2E2 − D

E

)
= 2

1 + τ 2
x

(
d + τ 2

x∥b∥2

E2

) exp
(

τ 2
x∥b∥2

2E2 − D

E

)

= Ck=0.

136

Summary of Part A. Thus, summarizing Part A-1, Part A-2, and Part A-3, we have:

P (C)ESk⊕x(k+1)

[∑
β ̸=α

π̃β⟨w̃β −wα, xk+1⟩2
∣∣∣∣C]

< 16P (C)ESk⊕x(k+1)

∑
β ̸=α

r exp
(
−∑k

i=1 ∥µβ − xi∥2 +∑k
i=1 ∥µα − xi∥2

2σ2
x(1 + (k + 1)δµ)

)
︸ ︷︷ ︸

Part A-1

· exp
(−∥wβ −w∗∥2

I−(I+kδwΣ̄w)−1 + ∥wα −w∗∥2
I−(I+kδwΣ̄w)−1

2σ2
w

)
︸ ︷︷ ︸

Part A-2

· exp
(
−∥µβ − xk+1∥2 + ∥µα − xk+1∥2

2σ2
x(1 + (k + 1)δµ)

)
∥xk+1∥2

︸ ︷︷ ︸
Part A-3

∣∣∣∣∣∣C


< 16r(M − 1)Ck=0 exp
(
−

d2
µk

8σ2
x

)
exp

(
−u2

wτ 2
xk

8σ2
y

)

= 16r(M − 1)Ck=0 exp
(
−k(

d2
µ

8σ2
x

+ u2
wτ 2

x

8σ2
y

)
)

Bounded Efficacy - Part B

Proof. We then deal with the second term P (C)ESk⊕x(k+1) [π̃α⟨w̃β − wα, xk+1⟩2|C],

Part B:

P (C)ESk⊕x(k+1) [π̃α⟨w̃α −wα, xk+1⟩2|C]

≤ P (C)ESk⊕x(k+1) [π̃α∥w̃α −wα∥2∥xk+1∥2|C]

(See Eq. A.13 for the derivation of w̃α.)

= P (C)ESk⊕x(k+1) [π̃α∥(I + kδwΣ̄w)−1(wα −w∗) + w∗ −wα∥2∥xk+1∥2|C]

= P (C)ESk⊕x(k+1) [π̃α∥(I − (I + kδwΣ̄w)−1)(w∗ −wα)∥2∥xk+1∥2|C]

137

(Let λ1(A) be the maximal eigenvalue of the matrix A.)

≤ ∥wα −w∗∥2P (C)ESk⊕x(k+1) [π̃αλ2
1(I − (I + kδwΣ̄w)−1)∥xk+1∥2|C]

(Recall that conditioned on C we have L < λd(Σ̄w) < λ1(Σ̄w) < U.)

< ∥wα −w∗∥2P (C)ESk⊕x(k+1)

π̃α

(
1− 1

1 + kδwU

)2
∥xk+1∥2

∣∣∣∣∣∣C


= ∥wα −w∗∥2P (C)ESk⊕x(k+1) [π̃α∥xk+1∥2|C]
(

1− 1
1 + kδwU

)2

< ∥wα −w∗∥2Exk+1

[
∥xk+1∥2

] (
1− 1

1 + kδwU

)2

= ∥wα −w∗∥2(1 + dτ 2
x)
(

1− 1
1 + kδwU

)2

= ∥wα −w∗∥2(1 + dτ 2
x)
(

kδwU
1 + kδwU

)2

.

Let t = k− 1
4 . if δw ≪ 1 s.t. IU = {k|U < 2(1 + τ 2

x)} ≠ ∅, then when k ∈ IU we have:

∥wα −w∗∥2(1 + dτ 2
x)
(

kδwU
1 + kδwU

)2

< ∥wα −w∗∥2(1 + dτ 2
x) min{1, 4k2δ2

w(1 + τ 2
x)2}.

Bounded Efficacy - Part C

Proof. Finally, for the third term P (¬C)ESK
[∑M

β=1 π̃β⟨w̃β −wα, xk+1⟩2|¬C], Part C:

P (¬C)ESk⊕x(k+1)

[∑M

β=1 π̃β⟨w̃β −wα, xk+1⟩2
∣∣∣∣¬C

]
≤ P (¬C)ESk⊕x(k+1)

[∑M

β=1 π̃β∥w̃β −wα∥2∥xk+1∥2
∣∣∣∣¬C

]
(See Eq. A.13 for the derivation of w̃β.)

= P (¬C)ESk⊕x(k+1)

[∑M

β=1 π̃β∥(I + kδwΣ̄w)−1(wβ −w∗) + w∗ −wα∥2∥xk+1∥2
∣∣∣∣¬C

]
< P (¬C)ESk⊕x(k+1)

[∑M

β=1
π̃β(2∥(I + kδwΣ̄w)−1(wβ − w∗)∥2 + 2∥w∗ − wα∥2)∥xk+1∥2

∣∣∣¬C
]

138

< P (¬C)ESk⊕x(k+1)

[∑M

β=1
π̃β

(
2∥wβ − w∗∥2λ2

1
(
(I + kδwΣ̄w)−1)+ 2∥w∗ − wα∥2) ∥xk+1∥2

∣∣∣¬C
]

< P (¬C)ESk⊕x(k+1)

[∑M

β=1 π̃β(2 · 4 · 1 + 2 · 4)∥xk+1∥2
∣∣∣∣¬C

]
= 16P (¬C)ESk⊕x(k+1)

[∑M

β=1 π̃β∥xk+1∥2
∣∣∣∣¬C

]
< 16P (¬C)Exk+1 [∥xk+1∥2|¬C]

(Notice C is defined on {x1, . . . , xk})

< 16P (¬C)Exk+1 [∥xk+1∥2]

< 16(1 + dτ 2
x)P (¬C)

(Let t = k− 1
4 .)

< 48(1 + dτ 2
x) exp

−k
1
2

8

 .

Bounded Efficacy - Summary

Proof. Summarizing Part A, Part B, and Part C, we have:

ESk⊕x(k+1) [Lα
k]

< 16r(M − 1)Ck=0 exp
(
−

d2
µk

8σ2
x

)
exp

(
−u2

wτ 2
xk

8σ2
y

)

+ ∥wα −w∗∥2(1 + dτ 2
x) min{1, 4k2δ2

w(1 + τ 2
x)2}+ 48(1 + dτ 2

x) exp
−k

1
2

8


= C3 exp

(
−k

(
d2

µ

8σ2
x

+ u2
wτ 2

x

8σ2
y

))
+ 48(1 + dτ 2

x) exp
−k

1
2

8


+ ∥wα −w∗∥2(1 + dτ 2

x) min{1, 4k2δ2
w(1 + τ 2

x)2}.

139

The Particular Interval

The particular interval for the non-asymptotic bound is the union of Iµ, Iw, and IU:

k ≤ min{ 1
δµ

− 1,
1

δwτ 2
x

}

4τxγ
√

1 + k− 1
4) <

d2
µ

2
L∥wβ −w∗∥2 −U∥wα −w∗∥2 > τ 2

xu2
w/2

U < 2(1 + τ 2
x).

A.13.2 Asymptotic Bound

This section proves the non-asymptotic bound in Theorem 5: Consider a next-token

predictor attaining the optimal pretraining risk. As k →∞, ICL risk with biased

labels is upper bounded by:

ESk
[Lα

k] < ∥wα −w∗∥2(1 + dτ 2
x) + C1

k
exp

(
C2k

− 1
2
)

+ O(k−2),

where Lα
k = (F(Sk ⊕ x(k+1))− yα

k+1)2 = (F(Sk ⊕ x(k+1))− ⟨xk+1, wα⟩)2, and C1 and

C2 are constants depending on the prior setting, τx, and (µ∗, w∗).

The proof of the asymptotic bound is heavily overlapped with the proof of the

non-asymptotic bound. We will hide the overlapped derivations with “(. . .)”.

Proof. Assuming we are using in-context examples following Assumptions 3 and 4,

i.e., xi ∼ N (µ∗, τ 2
xI), yi = ⟨xi, w∗⟩, ∥µ∗∥ = ∥w∗∥ = 1, and we aim to retrieve the

function wα of the prior center (µα, wα) which is close to the in-context task. Let

Lα
k indicate the squared risk (F∗(Sk ⊕ x(k+1))− ⟨xk+1, wα⟩)2, where F∗(Sk ⊕ x(k+1))

140

is the prediction of Sk ⊕ x(k+1) by the Bayes-optimal next-token predictor F∗. In

order to have an upper bound on the risk, we consider xi ∼ N (µ∗, τ 2
xI) in two cases:

(1) C: L < λd

(∑k

i=1 xix
⊤
i

k

)
≤ λ1

(∑k

i=1 xix
⊤
i

k

)
< U and

∥∥∥∥∑k

i=1 ϵi

k

∥∥∥∥ < τx

√
γ(1 + t) (see

Lemma 8 for t, γ, L and U) and (2) ¬C: at least one of the previous inequalities

does not hold. Following Lemma 8, the probability of ¬C is bounded by: P (¬C) ≤

3 exp(−kt2

8)).

We start our upper bound analysis on the expected squared risk by splitting the

risk into three parts:

ESk⊕x(k+1) [Lα
k]

(. . .)

= P (C)ESk⊕x(k+1)

[∑
β ̸=α

π̃β⟨w̃β −wα, xk+1⟩2
∣∣∣∣C] (Part A′)

+ P (C)ESk⊕x(k+1) [π̃α⟨w̃α −wα, xk+1⟩2|C] (Part B′)

+ P (¬C)ESk⊕x(k+1)

[∑M

β=1 π̃β⟨w̃β −wα, xk+1⟩2
∣∣∣∣¬C

]
. (Part C ′)

We will analyze three parts one by one in the following three sections respectively.

Asymptotic Bound - Part A′

Proof. We firstly analyze the term P (C)ESk⊕x(k+1) [∑β ̸=α π̃β⟨w̃β −wα, xk+1⟩2|C], Part

A′:

P (C)ESk⊕x(k+1)

[∑
β ̸=α

π̃β⟨w̃β −wα, xk+1⟩2
∣∣∣∣C]

(. . .)

141

< P (C)ESk⊕x(k+1)

[∑
β ̸=α

π̃β∥xk+1∥2
∣∣∣∣C] (2

1 + kδwL + ∥w∗ −wα∥
)2

(Notice ∥w∗ −wα∥ ≤ 2.)

≤ P (C)ESk⊕x(k+1)

[∑
β ̸=α

π̃β

π̃α

∥xk+1∥2
∣∣∣∣C]

(
4

(1 + kδwL)2 + 8
1 + kδwL

)
(A.15)

+ P (C)ESk⊕x(k+1)

[∑
β ̸=α

π̃β∥xk+1∥2
∣∣∣∣C] ∥w∗ −wα∥2. (A.16)

Line A.16 will be merged with Part B′ and analyzed in Sec. A.13.2. The current sec-

tion will analyze line A.15. We start by analyzing P (C)ESk⊕x(k+1)

[∑
β ̸=α

π̃β

π̃α
∥xk+1∥2

∣∣∣C].
By Eqs. A.3, A.4, A.6, and Assumption 2(e) on π̃β

π̃α
, we have:

P (C)ESk⊕x(k+1)

[∑
β ̸=α

π̃β

π̃α

∥xk+1∥2
∣∣∣∣C]

(. . .)

< P (C)ESk⊕x(k+1)

∑
β ̸=α

r exp
(
−∑k

i=1 ∥µβ − xi∥2 +∑k
i=1 ∥µα − xi∥2

2σ2
x(1 + (k + 1)δµ)

)
︸ ︷︷ ︸

Part A′-1

· exp
(−∥wβ −w∗∥2

I−(I+kδwΣ̄w)−1 + ∥wα −w∗∥2
I−(I+kδwΣ̄w)−1

2σ2
w

)
︸ ︷︷ ︸

Part A′-2

· exp
(
−∥µβ − xk+1∥2 + ∥µα − xk+1∥2

2σ2
x(1 + (k + 1)δµ)

)
∥xk+1∥2

︸ ︷︷ ︸
Part A′-3

∣∣∣∣∣∣C


(Note that x1, . . . , xk are dependent on C but xk+1 is not. Thus, we split them.)

In the following, we separately analyze the three terms, Part A′-1, Part A′-2, and

Part A′-3. The high-level idea is that, as k increases, due to the concentration of Part

A′-1 and Part A′-2, they can be upper bounded by a function of k. Then, regarding

Part A′-1 and Part A′-2 as constant values (their upper bounds), the expectation of

142

Part A′-3 can be upper bounded.

Part A′-1. We first deal with Part A-1. When conditioned on case C, we have:∑k
i=1(−∥µβ − xi∥2 + ∥µα − xi∥2)

1 + (k + 1)δµ

(. . .)

< k
∥µα − µ∗∥2 − ∥µβ − µ∗∥2 + 4τxγ

√
1 + t

1 + (k + 1)δµ

.

With Assumption 4, we have d2
µ ≤ ∥µβ − µ∗∥2 − ∥µα − µ∗∥2. With Lemma 8, we

have γ =
√

d
k
. Let t = kδ− 1

2 and 0 < δ < 1
2 , we have:

k
∥µα − µ∗∥2 − ∥µβ − µ∗∥2 + 4τxγ

√
1 + t

1 + (k + 1)δµ

= −
d2

µ

δµ

+ 4τx

√
d

δµ

k− 1
2 + O(k−1).

Part A′-2. We then deal with Part A′-2. When conditioned on case C, we have:

− ∥wβ −w∗∥2
I−(I+kδwΣ̄w)−1 + ∥wα −w∗∥2

I−(I+kδwΣ̄w)−1

(. . .)

< −∥wβ −w∗∥2
(

1− 1
1 + kδwL

)
+ ∥wα −w∗∥2

(
1− 1

1 + kδwU

)
= −(∥wβ −w∗∥2 − ∥wα −w∗∥2) +

(
∥wβ −w∗∥2

1 + kδwL − ∥wα −w∗∥2

1 + kδwU

)
.

With Assumption 4, we have d2
w ≤ ∥wβ −w∗∥2 − ∥wα −w∗∥2. Lemma 8 gives the

definitions of L and U. Let t = kδ− 1
2 and 0 < δ < 1

2 , we have:

= −d2
w +

(
∥wβ −w∗∥2

kδwτ 2
x

− ∥wα −w∗∥2

kδw(1 + τ 2
x)

)
+ O(k−2)

< −d2
w + ∥wβ −w∗∥2

kδwτ 2
x

+ O(k−2)

143

< −d2
w + 4

δwτ 2
x

k−1 + O(k−2).

Part A′-3. We finally deal with Part A′-3. Part A′-3 is independent to case C, and

we have:

P (C)ESk⊕x(k+1)

[
exp

(
−∥µβ − xk+1∥2 + ∥µα − xk+1∥2

2σ2
x(1 + (k + 1)δµ)

)
∥xk+1∥2

∣∣∣∣∣C
]

(. . .)

= Ck=0.

Summary of Part A′. Thus, summarizing Part A′-1, Part A′-2, and Part A′-3, we

have:

P (C)ESk⊕x(k+1)

[∑
β ̸=α

π̃β

π̃α

∥xk+1∥2
∣∣∣∣∣C
](

4
(1 + kδwL)2 + 8

1 + kδwL

)

< P (C)ESk⊕x(k+1)

∑
β ̸=α

r exp
(
−∑k

i=1 ∥µβ − xi∥2 +∑k
i=1 ∥µα − xi∥2

2σ2
x(1 + (k + 1)δµ)

)
︸ ︷︷ ︸

Part A′-1

· exp
(−∥wβ −w∗∥2

I−(I+kδwΣ̄w)−1 + ∥wα −w∗∥2
I−(I+kδwΣ̄w)−1

2σ2
w

)
︸ ︷︷ ︸

Part A′-2

· exp
(
−∥µβ − xk+1∥2 + ∥µα − xk+1∥2

2σ2
x(1 + (k + 1)δµ)

)
∥xk+1∥2

︸ ︷︷ ︸
Part A′-3

∣∣∣∣∣∣C


·
(

4
(1 + kδwL)2 + 8

1 + kδwL

)

(Notice lim
k→∞

L = lim
k→∞

τ 2
x

(
1− t

2 − γ
)2
− 2τxγ

√
1 + t = τ 2

x .)

< r
∑
β ̸=α

exp

− d2
µ

δµ
+ 4τx

√
d

δµ
k− 1

2 + O(k−1)
2σ2

x

 exp

(
−d2

w + 4
δwτ2

x
k−1 + O(k−2)

2σ2
w

)
Ck=0

(8
kδwτ2

x
+ O(k−2)

)

144

= r(M − 1)Ck=0 exp

(
−d2

µ + 4τx

√
dk− 1

2 + O(k−1)
2σ2

µ

)
exp

(
−d2

w + 4
δwτ2

x
k−1 + O(k−2)

2σ2
w

)(8
kδwτ2

x
+ O(k−2)

)
= 8r(M − 1)Ck=0

kδwτ2
x

exp

(
−d2

µ + 4τx

√
dk− 1

2 + O(k−1)
2σ2

µ

)
exp

(
−d2

w + 4
δwτ2

x
k−1 + O(k−2)

2σ2
w

)
+ O(k−2)

= 8r(M − 1)Ck=0

kδwτ 2
x

exp
−d2

µ + 4τx

√
dk− 1

2

2σ2
µ

 exp
(
−d2

w

2σ2
w

)
+ O(k−2)

Asymptotic Bound - Part B′

Proof. We then deal with the second term P (C)ESk⊕x(k+1) [π̃α⟨w̃β − wα, xk+1⟩2|C],

Part B′:

P (C)ESk⊕x(k+1) [π̃α⟨w̃α −wα, xk+1⟩2|C]

(. . .)

< ∥wα −w∗∥2P (C)ESk⊕x(k+1) [π̃α∥xk+1∥2|C]
(

1− 1
1 + kδwU

)2
.

We add the line A.16 in Sec. A.13.2 back:

P (C)ESk⊕x(k+1) [π̃α(⟨w̃α − wα, xk+1⟩)2|C] + P (C)ESk⊕x(k+1)

[∑
β ̸=α

π̃β∥xk+1∥2
∣∣∣C] ∥w∗ − wα∥2︸ ︷︷ ︸

line A.16 in Sec. A.13.2

< ∥wα −w∗∥2P (C)ESk⊕x(k+1) [π̃α∥xk+1∥2|C]
(

1− 1
1 + kδwU

)2

+ P (C)ESk⊕x(k+1)

[∑
β ̸=α

π̃β∥xk+1∥2
∣∣∣∣C] ∥w∗ −wα∥2

≤ ∥wα −w∗∥2P (C)ESk⊕x(k+1) [π̃α∥xk+1∥2|C]

+ ∥wα −w∗∥2P (C)ESk⊕x(k+1)

[∑
β ̸=α

π̃β∥xk+1∥2
∣∣∣∣C]

(Notice
∑M

β=1 π̃β = 1)

= ∥wα −w∗∥2P (C)ESk⊕x(k+1) [∥xk+1∥2|C]

145

< ∥wα −w∗∥2Exk+1

[
∥xk+1∥2

]
= ∥wα −w∗∥2(1 + dτ 2

x)

Asymptotic Bound - Part C ′

Proof. Finally for the third term P (¬C)ESK
[∑M

β=1 π̃β⟨w̃β −wα, xk+1⟩2|¬C], Part C ′:

P (¬C)ESk⊕x(k+1)

[∑M

β=1 π̃β⟨w̃β −wα, xk+1⟩2
∣∣∣∣¬C

]
(. . .)

< 16(1 + dτ 2
x)P (¬C)

(Let t = kδ− 1
2 .)

< 48(1 + dτ 2
x) exp

(
−k2δ

8

)
.

Asymptotic Bound - Summary

Proof. Summarizing Part A′, Part B′, and Part C ′, we have:

ESk⊕x(k+1) [Lα
k]

<
8r(M − 1)Ck=0

kδwτ 2
x

exp
−d2

µ + 4τx

√
dk− 1

2

2σ2
µ

 exp
(
−d2

w

2σ2
w

)
+ O(k−2)

+ ∥wα −w∗∥2(1 + dτ 2
x) + 48(1 + dτ 2

x) exp
(
−k2δ

8

)

= ∥wα −w∗∥2(1 + dτ 2
x) + 8r(M − 1)Ck=0

kδwτ 2
x

exp
−d2

µ + 4τx

√
dk− 1

2

2σ2
µ

 exp
(
−d2

w

2σ2
w

)

146

+ O(k−2)

= ∥wα −w∗∥2(1 + dτ 2
x) + C1

k
exp(C2k

− 1
2) + O(k−2)

A.14 Proof of Lemma 6

In this subsection, we introduce the proof of Lemma 6. We first give the full version

of the lemma:

Lemma 6 (Upper Bound for Zero-Shot ICL). Assume a next-token predictor attains

the optimal pretraining risk, and Assumption 2 has only two components α and β, with

centers (µα, wα) = (−µβ,−wβ). When performing ICL with xi ∼ N (µ∗|τ 2
xI), assume

∥µ∗∥ = 1, and yi = 0, i.e., yi has the same preference to prior component α as β. When

δµ and δw are sufficiently small, there is a particular interval for k that ICL risk is upper

bounded by:

ESk
[Lα

k] < C4 exp
(
−

d2
µk

8σ2
x

)
+ 12(1 + dτ2

x) exp
(
−k

1
2

8

)
+ (1 + dτ2

x) min{1, k2δw
2(1 + τ2

x)2},

where Lα
k = (F(Sk⊕x(k+1))−yα

k+1)2 = (F(Sk⊕x(k+1))−⟨xk+1, wα⟩)2, C4 is a constant

depending on the prior, τx, and (µ∗, w∗). When k is small, the first and second terms

dominate and exponential decay. When k is large, the third term dominates and increases.

Proof. The proof techniques are similar to the proof techniques used in Sec. A.13.1.

Assuming we are using in-context examples following xi ∼ N (µ∗, τ 2
xI), ∥µ∗∥ =

1, yi = 0, i.e., w∗ = 0, and we aim to retrieve the function wα of the prior center

147

(µα, wα) which is close to the in-context task. Let Lα
k indicate the squared loss

(F∗(Sk⊕x(k+1))−⟨xk+1, wα⟩)2, whereF∗(Sk⊕x(k+1)) is the prediction of Sk⊕x(k+1)

by the Bayes-optimal next-token predictor F∗. In order to have an upper bound

on the loss, we consider xi ∼ N (µ∗, τ 2
xI) in two cases: (1) C: L < λd

(∑k

i=1 xix
⊤
i

k

)
≤

λ1

(∑k

i=1 xix
⊤
i

k

)
< U and

∥∥∥∥∑k

i=1 ϵi

k

∥∥∥∥ < τx

√
γ(1 + t) (see Lemma 8 for t, γ, L and U)

and (2) ¬C: at least one of the previous inequalities does not hold. Following

Lemma 8, the probability of ¬C is bounded by: P (¬C) ≤ 3 exp(−kt2

8)).

Similar to Sec. A.13.1, we split the expected squared loss into three parts:

ESk⊕x(k+1) [Lα
k]

< P (C)ESk⊕x(k+1) [π̃β⟨w̃β −wα, xk+1⟩2|C] (Part A′′)

+ P (C)ESk⊕x(k+1) [π̃α⟨w̃α −wα, xk+1⟩2|C] (Part B′′)

+ P (¬C)ESk⊕x(k+1)

[∑
κ∈{α,β}

π̃κ⟨w̃κ −wα, xk+1⟩2|¬C
]

. (Part C ′′)

A.14.1 Proof of Lemma 6: Part A′′

Proof. We first analyze the term P (C)ESk⊕x(k+1) [π̃β⟨w̃β−wα, xk+1⟩2|C], Part A′′. Sim-

ilar to Sec. A.13.1, we have:

P (C)ESk⊕x(k+1) [π̃β⟨w̃β −wα, xk+1⟩2|C]

< P (C)ESk⊕x(k+1) [
π̃β

π̃α

⟨w̃β −wα, xk+1⟩2|C] ·
(2

1 + kδwL + ∥w∗ −wα∥
)2

< P (C)ESk⊕x(k+1)

r exp
(
−∑k

i=1 ∥µβ − xi∥2 +∑k
i=1 ∥µα − xi∥2

2σ2
x(1 + (k + 1)δµ)

)

148

· exp
−∥wβ −w∗∥2

I−(I+kδwΣ̄w)−1 + ∥wα −w∗∥2
I−(I+kδwΣ̄w)−1

2σ2
w


· exp

(
−∥µβ − xk+1∥2 + ∥µα − xk+1∥2

2σ2
x(1 + (k + 1)δµ)

)
∥xk+1∥2

∣∣∣∣∣∣C
 · (2

1 + kδwL + ∥w∗ −wα∥
)2

(Notice w∗ = 0, wβ = −wα.)

= rP (C)ESk⊕x(k+1)

 exp
(
−∑k

i=1 ∥µβ − xi∥2 +∑k
i=1 ∥µα − xi∥2

2σ2
x(1 + (k + 1)δµ)

)

· exp
(
−∥µβ − xk+1∥2 + ∥µα − xk+1∥2

2σ2
x(1 + (k + 1)δµ)

)
∥xk+1∥2

∣∣∣∣∣∣C
 · 32

= 9rP (C)ESk⊕x(k+1)

 exp
(
−∑k

i=1 ∥µβ − xi∥2 +∑k
i=1 ∥µα − xi∥2

2σ2
x(1 + (k + 1)δµ)

)
︸ ︷︷ ︸

A′′-1

· exp
(
−∥µβ − xk+1∥2 + ∥µα − xk+1∥2

2σ2
x(1 + (k + 1)δµ)

)
∥xk+1∥2

︸ ︷︷ ︸
A′′-3

∣∣∣∣∣∣C
.

Same to Sec. A.13.1, when conditioned on case C, for Part A′′-1 we have:
∑k

i=1(−∥µβ − xi∥2 + ∥µα − xi∥2)
1 + (k + 1)δµ

< k
∥µα − µ∗∥2 − ∥µβ − µ∗∥2 + 4τxγ

√
1 + t

1 + (k + 1)δµ

.

Let t = k− 1
4 . Recall in Assumption 4, we have ∀β ̸= α, ∥µβ−µ∗∥2−∥µα−µ∗∥2 ≥ d2

µ.

If δµ ≪ 1 s.t. Iµ = {k|(k +1)δµ ≤ 1 and d2
µ

2 > 4τxγ
√

1 + k− 1
4} ≠ ∅, then when k ∈ Iµ

we have:

k
∥µα − µ∗∥2 − ∥µβ − µ∗∥2 + 4τxγ

√
1 + t

1 + (k + 1)δµ

< −
d2

µ

4 .

Same to Sec. A.13.1, when conditioned on case C, for Part A′′-3 we have:

P (C)ESk⊕x(k+1)

[
exp

(
−∥µβ − xk+1∥2 + ∥µα − xk+1∥2

2σ2
x(1 + (k + 1)δµ)

)
∥xk+1∥2

∣∣∣∣∣C
]

= Ck=0.

149

As a summary of the above analysis, we have:

P (C)ESk⊕x(k+1) [π̃β⟨w̃β −wα, xk+1⟩2|C] < 9rCk=0 exp
(
−

d2
µk

8σ2
x

)
.

A.14.2 Proof of Lemma 6: Part B′′

Proof. We then deal with the second term P (C)ESk⊕x(k+1) [π̃α(⟨w̃α −wα, xk+1⟩)2|C],

Part B′′. The analysis is exactly the same as Sec. A.13.1, and we have:

P (C)ESk⊕x(k+1) [π̃α⟨w̃α −wα, xk+1⟩2|C] < ∥wα −w∗∥2(1 + dτ 2
x)
(

kδwU
1 + kδwU

)2

.

Let t = k− 1
4 . if δw ≪ 1 s.t. IU = {k|U < 2(1 + τ 2

x)} ≠ ∅, then when k ∈ IU we have:

∥wα −w∗∥2(1 + dτ 2
x)
(

kδwU
1 + kδwU

)2

< ∥wα −w∗∥2(1 + dτ 2
x) min{1, 4k2δ2

w(1 + τ 2
x)2}.

A.14.3 Proof of Lemma 6: Part C ′′

Proof. Finally, for the third term P (¬C)ESk⊕x(k+1) [∑κ∈{α,β} π̃κ⟨w̃κ −wα, xk+1⟩2|¬C],

Part C ′′. Similar to Sec. A.13.1, we have:

P (¬C)ESk⊕x(k+1)

[∑
κ∈{α,β}

π̃κ(⟨w̃κ −wα, xk+1⟩)2
∣∣∣∣¬C

]
< P (¬C)ESk⊕x(k+1)

[∑
κ∈{α,β}

π̃κ

(
2∥(I + kδwΣ̄w)−1(wκ − w∗)∥2 + 2∥w∗ − wα∥2) ∥xk+1∥2

∣∣∣∣¬C
]

(Recall w∗ = 0.)

< P (¬C)ESk⊕x(k+1)

[∑
κ∈{α,β}

π̃κ(2 · 1 · 1 + 2 · 1)∥xk+1∥2
∣∣∣∣¬C

]

150

= 4P (¬C)ESk⊕x(k+1)

[∑
κ∈{α,β}

π̃κ∥xk+1∥2
∣∣∣∣¬C

]
< 4P (¬C)Exk+1 [∥xk+1∥2|¬C]

(Notice C is defined on {x1, . . . , xk}.)

< 4P (¬C)Exk+1 [∥xk+1∥2]

< 4(1 + dτ 2
x)P (¬C)

(Let t = k− 1
4 .)

< 12(1 + dτ 2
x) exp

−k
1
2

8

 .

A.14.4 Proof of Lemma 6: Summary

Proof. Summarizing Part A′′, Part B′′, and Part C ′′, we have:

ESk⊕x(k+1) [Lα
k]

< 9rCk=0 exp
(
−

d2
µk

8σ2
x

)
+ ∥wα −w∗∥2(1 + dτ 2

x) min{1, 4k2δ2
w(1 + τ 2

x)2}

+ 12(1 + dτ 2
x) exp

−k
1
2

8


= 9rCk=0 exp

(
−

d2
µk

8σ2
x

)
+ (1 + dτ 2

x) min{1, 4k2δ2
w(1 + τ 2

x)2}+ 12(1 + dτ 2
x) exp

−k
1
2

8


= C4 exp

(
−

d2
µk

8σ2
x

)
+ 12(1 + dτ 2

x) exp
−k

1
2

8

+ (1 + dτ 2
x) min{1, 4k2δ2

w(1 + τ 2
x)2}.

151

A.14.5 The Particular Interval

The particular interval for the risk bound revealing bounded efficacy is the union

of Iµ and IU:

k ≤ 1
δµ

− 1

4τxγ
√

1 + k− 1
4) <

d2
µ

2
U < 2(1 + τ 2

x).

A.15 Toy Example for Component Shifting and

Component Re-weighting

We study how in-context examples affect the prediction of ICL by a pretrained

Bayes-optimal next-token predictor and how the pretraining distribution affects

this phenomenon. Assume the next-token predictor f is initially pretrained on

a dataset distribution to produce the minimum risk minimizer f ∗, and then the

pretrained f ∗ is used to predict the next token y of the token x. Instead of direct

inference via f ∗(x), we consider inference with additional k in-context examples

{xi}k
i=1 via the format f ∗([x1, . . . , xk, x]). We aim to theoretically examine the effect

of in-context examples {xi}k
i=1 on the prediction f ∗([x1, . . . , xk, x]). While the formal

problem setting may involve verbose math, this demo section illustrates the basic

phenomenon for better delivering our work.

The following demo subsections are organized as follows. We first introduce

the problem setting in Sec. A.15.1. We then connect ICL with Bayesian inference in

152

Sec. A.15.2. Further, we introduce the assumptions for the pretraining dataset in

Sec. A.15.3. Finally, we derive a closed-form posterior and introduce two phenom-

ena, “Component Shifting” and “Component Re-weighting” in Sec. A.15.4.

A.15.1 Toy Example: Pretraing Data Generative Modela

ICL involves two important components: the pretraining dataset, and the next-token

predictor supporting varied input lengths. We assume the next-token predictor f :

∪k∈{0,...,K−1}Rk×1 → R1×1 can fit the pretraining distribution exactly with enough

data and expressivity. To generate a training sample, we first sample a task µ from

underlying task distributionDµ, and then we generate tokens of the sequence from a

distribution Dx(µ) based on the task µ. The sample generation process is described

as follows:

Assumption 9 (Demo: Pretraining Data Generative Model). Given a task prior

distribution Dµ, and a conditioned x sampler Dx(µ) conditioned on task µ, the process of

generating a sequence SK = [x1, x2, . . . , xK] with length K follows:

(a) Sample a task µ from the task prior: µ ∼ Dµ, and the probability of µ is indicated by

P (µ);

(b) Sample K samples, each denoted by xi, from the chosen task: For i ∈ {1, 2, . . . , K},

xi ∼ Dx(µ), and the probability of xi = x is indicated by P (x|µ);

(c) Define a Sequence Sk: For capital K, SK = [x1, . . . , xK]; and for lowercase k, the

sequence of the first k demonstrations of SK is indicated by Sk = [x1, . . . , xk], e.g., S2 =

[x1, x2].

153

The generation process is related to real-world scenarios via two points: (i) For

sampling step 9(a), the LM is trained on varied tasks; (ii) For sampling step 9(b),

when one person/agent produces texts for one task, the generated text could be

noisy. For instance, given a task such as describing a football game, one person has

multiple ways to describe it.

A.15.2 Toy Example: Bayes-Optimal Next-Token Predictor

Now we consider training f(·) using sample SK generated via the above generation

process 9:

L(f) = E
SK

[
1
K

K−1∑
k=0

(f(Sk)− xk+1)2
]

= E
µ∼Dµ

 E
xi∼D(µ),

i∈{1,...,K}

[
1
K

K−1∑
k=0

(f(Sk)− xk+1)2
∣∣∣∣∣µ
] .

f can be viewed as K separate models f0, . . . , fK−1, where fk takes a sequence of k

tokens as input. Therefore, when the model f has enough expressivity, the opti-

mization problem f ∗ = argminf L(f) could be regarded as K different optimization

problems:

f ∗
k = argmin

fk

E
SK

[(f(Sk)− xk+1)2],∀k ∈ {0, . . . , K − 1}.

Thus, the solution f ∗
k for each k is a minimum mean square error (MMSE) estima-

tor [110, page 63], and the prediction of f ∗(Sk) satisfies:

f ∗(Sk) = E
SK

[xk+1|Sk] = E
µ∼Dµ

[E
xi∼D(µ),

i∈{1,...,K}

[xk+1|µ, Sk]|Sk] = E
µ∼Dµ

[E
xk+1∼D(µ)

[xk+1|µ]|Sk].

(A.17)

The prediction f ∗(Sk) is the expectation of E
xk+1∼D(µ)

[xk+1|µ] on the task posterior

observing Sk.

154

A.15.3 Toy Example: Gaussian Assumptions on Pretraining Data

Generative Model

In Sec. A.15.2, we connect ICL with Bayesian inference, and in Eq. A.17, we observe

that the prediction f ∗(Sk) depends on the posterior. We are interested in how the in-

context examples affect the prediction and the posterior. We make assumptions on

the pretraining dataset to have a closed-form expression of the posterior facilitating

further analyses:

Assumption 10 (Demo: Gaussian Assumptions for Generative Model for Pretrain-

ing Data).

(a) Task distribution: µ ∼ Dµ, P (µ) = ∑M
m=1 πmP (µ|Tm), where Tm is the mth mixture

component of the Gaussian mixture, i.e., P (µ|Tm) = N (µ|µm, σ2), and πm is the corre-

sponding mixture weight. ∑M
m=1 πm = 1, 0 < πm < 1, µm is the center of the mixture

component Tm, and all components share the same covariance matrix controlled by σ;

(b) Token distribution: x ∼ Dx(µ), P (x|µ) = N (x|µm, τ 2).

A.15.4 Toy Example: Posterior Analysis

With Assumption 10, we derive the closed-form expression of the posterior as

follows:

P (µ|Sk) ∝
M∑

m=1
π̃mN (µ|µ̃m, σ̃2). (A.18)

(π̃m = πm exp


k
(

µm −
∑k

i=1 xi

k

)2

2(τ 2 + kσ2)

 , µ̃m = τ 2µm + σ2∑k
i=1 xi

τ 2 + kσ2 , σ̃2 = τ 2σ2

τ 2 + kσ2)

155

See Sec. A.15.5 for proof details. From Eq. A.18, we observe two factors when

comparing the posterior with the prior in Assumption 10: (i) Component Shifting:

after observing Sk = [x1, x2, . . . , xk], the center of each mixture component is shifted

to τ2µm+σ2
∑k

i=1 xi

τ2+kσ2 ; (ii) Component Re-weighting: the mixture weight πm of each

mixture component is re-weighted by multiplying exp


k

(
µm−

∑k

i=1 xi

k

)2

2(τ2+kσ2)

 (which

needs to be further normalized so that re-weighted mixture weights sum to 1).

Fig. A.17 illustrates the phenomena of Component Shifting and Component Re-

weighting by observing in-context examples.

A.15.5 Proof of Posterior Derivation in Toy Example

In this section, we give a detailed derivation of the posterior in Eq. A.18 of Sec. A.15.4:

P (µ|Sk) ∝ P (µ, Sk)

= P (Sk|µ)P (µ)

= (Πk
i=1P (xi|µ))P (µ)

=
M∑

m=1
πmN (µ|µm, σ2)(Πk

i=1N (xi|µ, τ 2)).

We then show N (µ|µm, σ2)(Πk
i=1N (xi|µ, τ 2)) is proportional to a Gaussian distribu-

tion:

log
(
N (µ|µm, σ2) · Πk

i=1N (xi|µ, τ 2)
)

=
(

log
(

1√
2πσ

)
− (µ− µm)2

2σ2

)
+

k∑
i=1

(
log

(
1√
2πτ

)
− (xi − µ)2

2τ 2

)

(Let C10 = log
(

1√
2πσ

)
+ k log

(
1√
2πτ

)
)

156

= C10 −
(µ− µm)2

2σ2 −
k∑

i=1

(xi − µ)2

2τ 2

= C10 −
1

2τ 2σ2

(
τ 2(µ− µm)2 + σ2

k∑
i=1

(xi − µ)2
)

(Abbreviate
k∑

i=1
as

∑
for simplicity.)

= C10 −
1

2τ 2σ2

(
µ2(τ 2 + kσ2)− 2µ

(
τ 2µm + σ2∑xi

)
+
(
τ 2µ2

m + σ2∑x2
i

))

= C10 −
τ 2 + kσ2

2τ 2σ2

(µ− τ 2µm + σ2∑xi

τ 2 + kσ2

)2

+ τ 2µ2
m + σ2∑x2

i

τ 2 + kσ2 −
(

τ 2µm + σ2∑xi

τ 2 + kσ2

)2


= C10 −
τ 2 + kσ2

2τ 2σ2

(µ− τ 2µm + σ2∑xi

τ 2 + kσ2

)2

+ (τ 2µ2
m + σ2∑x2

i)(τ 2 + kσ2)− (τ 2µm + σ2∑xi)2

(τ 2 + kσ2)2


= C10 −

τ 2 + kσ2

2τ 2σ2

(µ− τ 2µm + σ2∑xi

τ 2 + kσ2

)2

+ kσ2τ 2µ2
m + σ2∑x2

i (τ 2 + kσ2)− 2µmτ 2σ2∑xi − (σ2∑xi)2

(τ 2 + kσ2)2


(Let C11 = C10 −

τ 2 + kσ2

2τ 2σ2 · σ
2∑x2

i (τ 2 + kσ2)− (σ2∑xi)2 − τ 2σ2(∑xi)2/k

(τ 2 + kσ2)2 .)

= C11 −
τ 2 + kσ2

2τ 2σ2

(µ− τ 2µm + σ2∑xi

τ 2 + kσ2

)2

+ kσ2τ 2µ2
m − 2µmτ 2σ2∑xi + τ 2σ2(∑xi)2/k

(τ 2 + kσ2)2


= C11 −

τ 2 + kσ2

2τ 2σ2

(µ− τ 2µm + σ2∑xi

τ 2 + kσ2

)2

+ kτ 2σ2

(τ 2 + kσ2)2 ·
(

µm −
∑

xi

k

)2


157

= C11 −
k
(

µm −
∑k

i=1 xi

k

)2

2(τ 2 + kσ2) −

(
µ− τ2µm+σ2

∑k

i=1 xi

τ2+kσ2

)2

2 · τ2σ2

τ2+kσ2

.

Notice C11 is independent to m,∀m ∈ [M] and µ. Therefore, we have:

πm · N (µ|µm, σ2) · Πk
i=1N (xi|µ, τ 2) ∝ π̃m · N (µ|µ̃m, σ̃2),

where π̃m = πm exp

−
k

(
µm−

∑k

i=1 xi

k

)2

2(τ2+kσ2)

 , µ̃m = τ2µm+σ2
∑k

i=1 xi

τ2+kσ2 , and σ̃2 = τ2σ2

τ2+kσ2 .

Thus:

P (µ|Sk) ∝
M∑

m=1
πmN (µ|µm, σ2)(Πk

i=1N (xi|µ, τ 2))

∝ π̃mN (µ|µ̃m, σ̃2).

158

0

2

4

6

8
R

is
k/

B
ou

nd

d = 1

0

5

10

d = 2

0

5

10

15

d = 3

Risk of ICL Risk Upper Bound of ICL

0

10

20

d = 5

0

10

20

30

d = 8

20 24 28 212 216
0

1

M
ix

tu
re

W
ei

gh
t

20 24 28 212 216
0

1

20 24 28 212 216

Numbser of In-Context Examples (k)

0

1

Mixture Weight of Component 1 (Misleading) Mixture Weight of Component 2 (Target) Mixture Weight of Component 3

20 24 28 212 216
0

1

20 24 28 212 216
0

1

(a) First row: expected L2 loss and upper bound with increasing in-context
samples k under varied dimensions d. Second row: expected mixture weights
with increasing in-context samples k under varied dimensions d. We further
examine the early ascent phenomenon under linear regression with varied
levels of label noises in Appendix A.9.1, and under non-linear regression and
discrete token prediction in Appendix A.9.2.

20 24 28 212 216

Number of In-Context Examples (k)

−1.0

−0.5

0.0

0.5

1.0

V
al

ue
of
w

Traj of E[w̃] with Increasing k

w1 of Center 1 (Misleading)

w2 of Center 2 (Target)

−0.5 0.0 0.5
Value of First Dimension of w

−0.5

0.0

0.5

V
al

ue
of

S
ec

on
d

D
im

en
si

on
of
w

k = 0

k = 25

k = 210

k = 215

w1 of Center 1 (Misleading)

w2 of Center 2 (Target)

w3 of Center 3

Traj of E[w̃] with Increasing k

−1.0−0.5
0.0

0.5
1.0

−1.0

−0.5

0.0

0.5

1.0

−1.0
−0.5
0.0
0.5
1.0

k = 0

k = 25

k = 210

k = 215

w1 of Center 1 (Misleading)

w2 of Center 2 (Target)

w3 of Center 3

Traj of E[w̃] with Increasing k

(b) The trajectory of the expectation of w̃ with increasing k under d equal to
1, 2 and 3.

Figure A.2: The early ascent phenomenon. Fig. A.2a displays the trends of expected
losses, upper bounds, and mixture weights, while Fig. A.2b presents the trend of
the expectation of w̃. We can see that the task retrieval mode is dominant up to
k = 32, and component 1’s mixture weight increases (E[w̃] approaches w1). Since
this misleading component 1 is far from the target component 2, the risk starts
increasing. At larger k values, the risk starts decreasing (E[w̃] approaches w2) via
task learning.

159

0 2 4 6 81012
0

1

M
S

E

δµ = δw = 1/81

0 2 4 6 81012
0

2

δµ = δw = 1/9

0 2 4 6 81012
0

10

δµ = δw = 1

0 2 4 6 81012
0

25
0

δµ = δw = 9

0 2 4 6 81012
0

20
00

0

δµ = δw = 81

E[(R∗− y∗k+1)
2]

E[(F∗− y∗k+1)
2]

Number of In-Context Examples (k)

Figure A.3: In-context learning vs ridge regression. R∗ indicates the prediction
by ridge regression, F∗ indicates the prediction by ICL with a Bayes-optimal next-
token predictor, and y∗

k+1 = ⟨xk+1, w∗⟩. Let the k samples draw from a task (µ∗, w∗),
which is drawn from the pretraining prior distribution. The dimension d of x equals
6. We observe that ICL performs better than ridge regression when k is small, and
ridge regression performs better than ICL when k ≥ d. Especially, when the task
prior distribution has high task variance (big δµ and δw values), ICL and ridge
regression have very similar performance.

10−2

10−1

100

E
P

=
1

δµ = δw = 1
256 δµ = δw = 1

64 δµ = δw = 1
16 δµ = δw =1

4

(F̂ − y∗k+1)
2 (F∗− y∗k+1)

2

δµ = δw =1
1

10−2

10−1

100

E
P

=
2

0 10 20 30

10−2

10−1

100

E
P

=
3

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

Number of In-Context Examples (k)

Figure A.4: Prior task noises. The figure shows the experiment results under varied
noise levels. δµ and δw indicate the noise levels of the pretraining task prior. F∗

indicates the prediction of Bayesian inference while F̂ indicates the prediction of
the trained Transformer network. The results show that the trained Transformer
network’s performance can approach the performance of Bayesian inference.

160

10−2

10−1

100

E
P

=
1

M = 20 M = 12 M = 8 M = 6

(F̂ − y∗k+1)
2 (F∗− y∗k+1)

2

M = 4

10−2

10−1

100

E
P

=
2

0 10 20 30

10−2

10−1

100

E
P

=
3

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

Number of In-Context Examples (k)

Figure A.5: Number of components. The figure shows the experiment results
under varied component densities. M indicates the number of mixture components
corresponding to different 3D regular polyhedrons described in Appendix A.2.1,
and δµ = δw = 1

16 . F∗ indicates the prediction of Bayesian inference while F̂ indi-
cates the prediction of the trained Transformer network. The higher the component
density is, the harder it is for the Transformer network to approach Bayesian infer-
ence.

161

10−2

10−1

100

E
P

=
1

d = 32 d = 16 d = 8 d = 4

(F̂ − y∗k+1)
2 (F∗− y∗k+1)

2

d = 2

10−2

10−1

100

E
P

=
2

0 10 20 3010−2

10−1

100

E
P

=
3

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

Number of In-Context Examples (k)

Figure A.6: Experiments on varying feature dimensions. The figure shows the
experiment results under varied dimensions. d indicates the dimension and the
number of mixture components (see Appendix A.2.2 for setting details), and δµ =
δw = 1

16 . F∗ indicates the prediction of Bayesian inference while F̂ indicates the
prediction of the trained Transformer network. The higher the feature dimension
is, the harder it is for the Transformer network to approach Bayesian inference.

Figure A.7: Ablations on varying numbers of examples in the demonstrations
(k). Models that are the best under 13B in each task category (Channel MetaICL
and Direct GPT-J, respectively) are used.

162

0 20 21 22 23 24 25 26 27

0.2

0.4

0.6

0.8

C
la

ss
ifi

ca
ti

on
E

rr
or

Mistral 7B

0 20 21 22 23 24 25 26 27

Llama 2 13B

0 20 21 22 23 24 25 26 27

Number of In-Context Examples (k)

Mixtral 8x7B

0 20 21 22 23 24 25 26 27

Llama 2 70B

0 20 21 22 23 24 25 26 27

GPT-4

w/ True Labels

w/ Random Labels

Figure A.8: Bounded efficacy phenomenon of real-world LLMs. As k increases, the
classification error curve of ICL with random labels exhibits the bounded efficacy
phenomenon. The curve with true labels further confirms that this phenomenon is
not due to models tending to perform worse on long sequences.

0 1 3 7 15 31 63

0

10

δµ = 1/9

0 1 3 7 15 31 63

0

10

δµ = 1/3

0 1 3 7 15 31 63

0

10

δµ = 1

0 1 3 7 15 31 63

0

10

δµ = 3

0 1 3 7 15 31 63

0

10

δµ = 9

Ψµ(1, 1)

Ψµ(1, 2)

Ψµ(1, 3)

Ψµ(1, 4)

0 1 3 7 15 31 63

0

10

δw = 1/9

0 1 3 7 15 31 63

0

10

δw = 1/3

0 1 3 7 15 31 63

0

10

δw = 1

0 1 3 7 15 31 63

0

10

δw = 3

0 1 3 7 15 31 63

0

10

δw = 9

Ψw(1, 1)

Ψw(1, 2)

Ψw(1, 3)

Ψw(1, 4)

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1/9, δw = 1/9

π̃1

π̃2

π̃3

π̃4

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1/9, δw = 1/3

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1/9, δw = 1

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1/9, δw = 3

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1/9, δw = 9

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1/3, δw = 1/9

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1/3, δw = 1/3

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1/3, δw = 1

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1/3, δw = 3

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1/3, δw = 9

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1, δw = 1/9

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1, δw = 1/3

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1, δw = 1

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1, δw = 3

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 1, δw = 9

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 3, δw = 1/9

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 3, δw = 1/3

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 3, δw = 1

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 3, δw = 3

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 3, δw = 9

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 9, δw = 1/9

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 9, δw = 1/3

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 9, δw = 1

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 9, δw = 3

0 1 3 7 15 31 630.0

0.5

1.0
δµ = 9, δw = 9

Number of In-Context Examples (k)

Figure A.9: Numerical analysis on component re-weighting. The trends of Ψµ,
Ψw, and πm for CR with increasing k under varying task noise parameters.

163

0 1 3 7 15 31 630

1

2
δµ = 1/9

0 1 3 7 15 31 630

1

2
δµ = 1/3

0 1 3 7 15 31 630

1

2
δµ = 1

0 1 3 7 15 31 630

1

2
δµ = 3

0 1 3 7 15 31 630

1

2
δµ = 9 ‖µ̃1− µ∗‖

‖µ̃2− µ∗‖
‖µ̃3− µ∗‖
‖µ̃4− µ∗‖

0 1 3 7 15 31 630

1

2
δw = 1/9

0 1 3 7 15 31 630

1

2
δw = 1/3

0 1 3 7 15 31 630

1

2
δw = 1

0 1 3 7 15 31 630

1

2
δw = 3

0 1 3 7 15 31 630

1

2
δw = 9 ‖w̃1−w∗‖

‖w̃2−w∗‖
‖w̃3−w∗‖
‖w̃4−w∗‖

Number of In-Context Examples (k)

Figure A.10: The trend of Component Shifting. Numerical computations of ∥µ̃m−
µ∗∥, ∥w̃m −w∗∥ for Component Shifting (CS).

0

5

10

R
is

k/
B

ou
nd

d = 1 d = 3
Risk of ICL under Label Noise τy =0.0 Risk Upper Bound of ICL

d = 8

0 23 27 211 2150

1

M
ix

tu
re

W
ei

gh
t

0 23 27 211 215

Numbser of In-Context Examples (k)

Mixture Weight of Component 1 (Misleading)

Mixture Weight of Component 2 (Target)

Mixture Weight of Component 3

0 23 27 211 215

(a) Noise level τy = 0.0.

0

5

10
R

is
k/

B
ou

nd
d = 1 d = 3

Risk of ICL under Label Noise τy =0.01

d = 8

0 23 27 211 2150

1

M
ix

tu
re

W
ei

gh
t

0 23 27 211 215

Numbser of In-Context Examples (k)

Mixture Weight of Component 1 (Misleading)

Mixture Weight of Component 2 (Target)

Mixture Weight of Component 3

0 23 27 211 215

(b) Noise level τy = 0.01.

0

5

10

R
is

k/
B

ou
nd

d = 1 d = 3
Risk of ICL under Label Noise τy =0.1

d = 8

0 23 27 211 2150

1

M
ix

tu
re

W
ei

gh
t

0 23 27 211 215

Numbser of In-Context Examples (k)

Mixture Weight of Component 1 (Misleading)

Mixture Weight of Component 2 (Target)

Mixture Weight of Component 3

0 23 27 211 215

(c) Noise level τy = 0.1.

0

5

10

R
is

k/
B

ou
nd

d = 1 d = 3
Risk of ICL under Label Noise τy =1.0

d = 8

0 23 27 211 2150

1

M
ix

tu
re

W
ei

gh
t

0 23 27 211 215

Numbser of In-Context Examples (k)

Mixture Weight of Component 1 (Misleading)

Mixture Weight of Component 2 (Target)

Mixture Weight of Component 3

0 23 27 211 215

(d) Noise level τy = 1.0.

Figure A.11: Early ascent under varied label noises. Results show that the early
ascent phenomenon maintains for noise level τy ∈ [0, 1.0]. Label noise level σy = 1.0
is used for pretraining.

164

10−3

10−1

101

τ y
=

0
δµ = δw = 1

256 δµ = δw = 1
64 δµ = δw = 1

16

(F∗− yαk+1)
2

δµ = δw =1
4 δµ = δw =1

1

10−3

10−1

101

τ y
=

0.
01

10−3

10−1

101

τ y
=

0.
1

0 10 20 3010−3

10−1

101

τ y
=

1.
0

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

Number of In-Context Examples (k)

Figure A.12: Bounded efficacy under varied label noises. Results show that the
bounded efficacy phenomenon maintains for noise level τy ∈ [0, 0.1]. Label noise
level σy = 1.0 is used for pretraining.

0 1 3 7 15 31
Number of In-Context Examples (k)

0.06

0.08

0.10

0.12

0.14

M
ea

n
S

qu
ar

ed
E

rr
or

Early Ascent (Non-linear Regression)

E[(F̂ − y∗k+1)
2]

(a) Experiment under non-linear regres-
sions.

0 1 3 7 15 31
Number of In-Context Examples (k)

0.0

0.2

0.4

0.6

0/
1

L
os

s

Early Ascent (Discrete Token Prediction)

E[1[F∗ 6=y∗k+1]]

E[1[F̂ 6=y∗k+1]
]

(b) Experiment under discrete token pre-
diction.

Figure A.13: Early ascent on non-linear regression and discrete token prediction.
F̂ indicates the prediction by a pretrained Transformer model and F∗ indicates the
prediction by numerical computation following a Bayes optimal predictor. While
we cannot derive the optimal predictor under non-linear regression, we can derive
the optimal predictor under discrete token prediction.

165

0.0

0.5

1.0
δµ = δw = 1/9

0.0

0.5

1.0
δµ = δw = 1

0.0

0.5

1.0
δµ = δw = 9

π̃1

π̃2

π̃3

π̃4

0.0

0.2

0

2

0

20 λ0 of δw
∑
xkx

>
k

k

λ1 of δw
∑
xkx

>
k

k

λ2 of δw
∑
xkx

>
k

k

0

20

0

200

0

2000 λ0 of I + δw
∑xkx

>
k

λ1 of I + δw
∑xkx

>
k

λ2 of I + δw
∑xkx

>
k

0

20

0

500

0

2000
1/‖w̃ −w∗‖

0

20

0

250

0

2000

1/E[‖F∗− y∗k+1‖]

0 21 42 63 84 105 126
0

500

0 21 42 63 84 105 126
0

100000

0 21 42 63 84 105 126
0

2

×106

1/E[(F∗− y∗k+1)
2]

Number of In-Context Examples (k)

Figure A.15: The numerical computation of the task learning. The second and
third rows show the eigenvalues of the matrices δw

∑k

i=1 xix
⊤
i

k
and I + δw

∑k
i=1 xix

⊤
i .

The fourth row shows the distance between the predicted w̃ and w∗ has a reciprocal
decreasing rate with respect to k. The fifth and sixth rows indicate the expected
squared loss follows a quadratic decreasing rate with respect to k.

166

𝔼!!⊕#!"#[ℒ$
%]

𝑃 𝐂 𝔼[∑&'% (𝜋& *𝑤& −𝑤% , 𝑥$()
* |𝐂]

𝑃(𝐂)𝔼[(𝜋% *𝑤% −𝑤% , 𝑥$() *|𝐂]

𝑃 ¬𝐂 𝔼 ∑&+), (𝜋& *𝑤& −𝑤% , 𝑥$()
* ¬𝐂

16𝑟 𝑀 − 1 𝐶$+- exp −
𝑑.*𝑘
8𝜎#*

exp −
𝑢/* 𝜏#*𝑘
8𝜎0*

||𝑤% −𝑤∗||* 1 + 𝑑𝜏#* min{1, 4𝑘*𝛿/* 1 + 𝜏#* *}

48 1 + 𝑑𝜏#* exp −
𝑘
)
*

8

𝑃 𝐂 𝔼 ∑&'% (𝜋&||𝑥$()	||* 𝐂 ||𝑤∗ −𝑤%||*

𝔼!!⊕#!"#[ℒ$
%]

𝑃 𝐂 𝔼[∑&'% (𝜋& *𝑤& −𝑤% , 𝑥$()
* |𝐂]

𝑃(𝐂)𝔼[(𝜋% *𝑤% −𝑤% , 𝑥$() *|𝐂]

𝑃 ¬𝐂 𝔼 ∑&+), (𝜋& *𝑤& −𝑤% , 𝑥$()
* ¬𝐂

8𝑟 𝑀 − 1 𝐶$+-
𝑘𝛿/𝜏#*

exp
−𝑑.* + 4𝜏# 𝑑𝑘3

)
*

2𝜎.*
exp

−𝑑/*

2𝜎/*
+𝑂 𝑘3*

||𝑤% −𝑤∗||* 1 + 𝑑𝜏#*

48 1 + 𝑑𝜏#* exp −
𝑘*4

8

Bo
un

de
d

Ef
fic

ac
y

As
ym

pt
ot

ic
 B

ou
nd

Figure A.16: Proof roadmap of ICL with biased labels, Theorem. 5.

°7.5 °5.0 °2.5 0.0 2.5 5.0 7.5
0

1

2

3
Posterior Probability Density Function
Gaussian Mixture

ª 0.00N (2.25, 0.5)

ª 0.06N (3.0, 0.5)

ª 0.94N (4.0, 0.5)

ObservationsGiven
Observations

W/O In-Context Examples

Inference with
In-Context
Examples

Ba
ye

sia
n

In
fe

re
nc

e
IC

L Pretrained Next-Token Predictor

Prediction

W/ In-Context Examples

Pretrained Next-Token Predictor

Prediction

Component
Re-weighting

Component
Shifting

°7.5 °5.0 °2.5 0.0 2.5 5.0 7.5
0

1

2

3
Prior Probability Density Function

Gaussian Mixture

0.45N (°3, 1)

0.53N (0, 1)

0.02N (4, 1)

Figure A.17: Visualization of prior, posterior, and observations. The left part of
the figure indicates the pretrained next-token predictor is pretrained on the task
prior distribution according to Assumption 10, and the prediction is based on the
prior without in-context examples. The right part of the figure indicates that with
in-context samples, the prediction is based on the posterior, regarding the in-context
examples as observed samples.

167

Appendix B

For Chapter 3

B.1 Pseudo Algorithm for ICL-HCG

We summarize our meta framework for ICL-HCG in Algorithm 1.

B.2 Implementation Detail of Hypothesis Prefix and

Context Query

Hypothesis prefix Given a hypothesis classH and its hypothesis table, the cor-

respongding hypothesis prefix with hypothesis prefix’s content length L is con-

structed as shown in Fig. B.1. The token “P” serves as the padding token to separate

hypotheses, the token “;” serves as the separation token to separate (x, y) pairs, the

token “N” serves as the empty token to fill a blank hypothesis, and the token “>”

is used to connect (x, y) pairs of the hypothesis to a randomly assigned hypothesis

168

Algorithm 1 Meta-Learning Framework for ICL-HCG

1: Inputs: a set of inputsX , a training set of hypothesis classes S train = {Htrain
i }N train

i=1 ,
a testing set of hypothesis classes S test = {Htest

i }N test
i=1 , batch size B, hypothesis

prefix size L, and context query size K
2: for training epoch do
3: sample {Hi}B

i=1
i.i.d.∼ Uniform(S train)

4: for each hypothesis classH ∈ {Hi}B
i=1 do

5: generate h, SK following i.i.d. Generation
6: // Construct sequence based onH, h, and SK

7: construct hypothesis prefix, context query, and hypothesis index z based on
H, h, SK

8: s← concatenate(hypothesis prefix, context query, z)
9: // Cross-entropy loss for next token prediction

10: L ← −∑|s|
t=2 log P (st | s<t)

11: end for
12: update model parameters using L of the batch
13: end for
14: for testing epoch do
15: sample {Hi}B

i=1
i.i.d.∼ Uniform(S test)

16: for each hypothesis classH ∈ {Hi}B
i=1 do

17: generate h, SK via:
18: either following i.i.d. Generation
19: or following Opt-T Generation
20: construct sequence s based onH, h, and SK

21: evaluate the prediction accuracy on y, z, etc
22: end for
23: end for

169

𝓗 = {ℎ4, ℎ6, ℎ7}

𝒂𝟏 𝒂𝟐 𝒂𝟑

ℎ4 0 1 1

ℎ6 1 0 1

ℎ7 1 1 0

[P, P, 𝑎1, 0, ; , 𝑎2, 1, ; , 𝑎3, 1, >, B,
 P, P, 𝑎1, 1, ; , 𝑎2, 0, ; , 𝑎3, 1, >, C,
 P, P, N, N, N, N, N, N, N, N, >, D,
 P, P, 𝑎1, 1, ; , 𝑎2, 1, ; , 𝑎3, 0, >, A]

[P, P, P, P,
 𝑎1, 1, ; , 𝑎2, 0, >]

Transformer

C

hypothesis table hypothesis prefix

hypothesis class

context query

𝑆𝐾 = 𝑥2, 0, 𝑥1, 1
ICL sequence

10

Figure B.1: The framework. We convert hypothesis classH and ICL sequence SK

into sequences of tokens, concatenate them and input to Transformer. Then we
examine whether Transformer can predict correct y and z values.

index z1. In the illustrated example in Fig. B.1, the randomly assigned indexes

z’s are sampled from M = 4 hypothesis index tokens {“A”,“B”,“C”,“D”} without

replacement2.

Context query Given an ICL sequence SK with K pairs of (x, y), the context query

of size K is constructed to represent the ICL sequence and trigger the prediction

of the hypothesis index with padding token “P”, separation token token “;”, and

query token “>” as shown in Fig. B.1.
1We use variable z to represent the hypothesis index.
2A set of L hypothesis index tokens are created serve as the pool from which the hypothesis

indexes are randomly sampled without replacement.

170

B.3 Additional Details of Experiments

B.3.1 Four Types of Generalization

We share more training and testing curves in Fig. B.2 to provide additional results

to Fig. 3.5, and in Fig. B.3 to provide additional results to Fig. 3.6.

0.25

0.26

0.27

0.28

0.29

C
ro

ss
E

nt
ro

py
L

os
s

on
s

Training Curves on ID Hypotheses

1st run
2nd run
3rd run
4th run

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
)

Testing Curves on ID Hypotheses

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
)

Testing Curves on OOD Hypotheses

0 256 512 768
Epoch

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(i
.i.

d.
)

0 256 512 768
Epoch

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(i
.i.

d.
)

0 256 512 768
Epoch

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(i
.i.

d.
)

Figure B.2: Multiple runs for ID and OOD hypothesis class generalizations.

B.3.2 Compare with Other Model Architectures

We share more training and testing curves in Figs. B.4 and B.5 to provide additional

results to Figs. 3.7 and 3.8, respectively.

B.3.3 Effect of Training Class Count

We share more training and testing curves in Fig. B.6 to provide additional results

to Fig. 3.9.

171

B.4 Experimental Setup

Each experiment is repeated four times, with the mean calculated across runs.

The shadow region’s boundary is defined by the minimum and maximum values

observed across the four runs.

B.4.1 Learning Rate Scheduler

We set the training procedure with 768 total epochs, each epoch containing 1024

batches. The learning rate (lr) is first warmed up linearly from an LR/64 at epoch

e = 1 to a peak value LR at epoch e = 64, following:

lr(e) = LR · e

64 , 1 ≤ e ≤ 64.

After epoch 64, the learning rate undergoes a quadratic decay over the remaining

704 epochs, given by

lr(e) = LR ·
√

64
e

, 64 ≤ e ≤ 768.

B.4.2 Hyperparameter Search

We list the hyperparameter searching spaces used for Transformer, LSTM, GRU,

and Mamba. The best hyperparameter is searched using ID hypothesis class gener-

alization with ∥X∥ = 5, ∥H∥ = 8, and then used for all other settings.

172

Table B.1: Hyperparameter search spaces for different model architectures. The
optimal hyperparameters are bolded if multiple possibilities are provided.

Model Architecture #layers #hidden dimensions #learning rate #weight decay #batch size
Transformer 2,8 128 0.00010, 0.00020, 0.00050, 0.00100 0.0005 16
Mamba 2,8 128 0.00010, 0.00020, 0.00050, 0.00100 0.0005 16
GRU 2,8 128 0.00020, 0.00050, 0.00100, 0.00200 0.0005 16
LSTM 2,8 128 0.00020, 0.00050, 0.00100, 0.00200 0.0005 16

B.4.3 Setup for Generating Training and Testing Hypothesis

Classes

We list the experimental setup for each experiments in the following Table B.2. When

conducting experiments to evaluate accuracy on y, we modified the experimental

setup following Table B.3.

Table B.2: Experimental setups of different generalizations. The expression
min{512, #possible} indicates that when the number of possible hypothesis classes
is fewer than 512, we evaluate all possible hypothesis classes for testing; other-
wise, we limit the selection to at most 512 hypothesis classes. For example, if
|HOOD| = 16 and |H| = 2, the total number of possible hypothesis classes is given
by:

(
|HOOD|

|H|

)
=
(

16
2

)
= 16×15

2 = 120. Since 120 < 512, we evaluate all 120 hypothesis
classes for testing in this scenario.

Generalization Setup ID Hypothesis
Class Generalization

OOD Hypothesis
Class Generalization

ID Hypothesis
Class Size Generalization

OOD Hypothesis
Class Size Generalization

size of input space (|X |) 5 5 5 5
size of label space (|Y|) 2 2 2 2
size of context query (K) 5 5 5 5
size of training hypothesis class (|Htrain|) 8 8 7,8,9 7,8,9
size of testing hypothesis class (|Htest|) 8 8 2, . . . ,14 2, . . . ,14
size of hypothesis prefix (L) 8 8 16 16
#all hypotheses (|Huni|) 32 32 32 32
#hypotheses in ID pool (|HID|) 16 16 16 16
#hypotheses in OOD pool (|HOOD|) 16 16 16 16
#training hypothesis classes 12358 12358 4096 4096
#testing hypothesis classes 512 512 min{512, #possible} min{512, #possible}

173

Table B.3: Additional setups. Numbers that differ from those in Table B.2 are
highlighted in bold for clarity.

Section Sec. 3.3.6 Sec. 3.3.7
size of input space (|X |) 4 6
size of label space (|Y|) 2 2
size of context query (K) 12 12
size of training hypothesis class (|Htrain|) 4 8
size of testing hypothesis class (|Htest|) 4 8
size of hypothesis prefix (L) 4 8
#all hypotheses (|Huni|) 16 64
#hypotheses in ID pool (|HID|) 16 8,16,24,32,48
#hypotheses in OOD pool (|HOOD|) 0 16
#training hypothesis classes 1308 min{12358, #possible}
#testing hypothesis classes 512 512

174

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(i
.i.

d.
)

T
ra

in

|H| = 2 (OOS) |H| = 3 (OOS) |H| = 4 (OOS) |H| = 5 (OOS) |H| = 6 (OOS)

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
)

T
es

t

|H| = 2 (OOS) |H| = 3 (OOS) |H| = 4 (OOS) |H| = 5 (OOS) |H| = 6 (OOS)

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
)

T
es

t

|H| = 2 (OOS) |H| = 3 (OOS) |H| = 4 (OOS) |H| = 5 (OOS) |H| = 6 (OOS)

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(i
.i.

d.
)

T
ra

in

|H| = 7 (IS) |H| = 8 (IS) |H| = 9 (IS)

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
)

T
es

t

|H| = 7 (IS) |H| = 8 (IS) |H| = 9 (IS)

1st run

2nd run

3rd run

4th run

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
)

T
es

t

|H| = 7 (IS) |H| = 8 (IS) |H| = 9 (IS)

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(i
.i.

d.
)

T
ra

in

|H| = 10 (OOS) |H| = 11 (OOS) |H| = 12 (OOS) |H| = 13 (OOS) |H| = 14 (OOS)

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
)

T
es

t

|H| = 10 (OOS) |H| = 11 (OOS) |H| = 12 (OOS) |H| = 13 (OOS) |H| = 14 (OOS)

0 256 512 768
Epoch

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
)

T
es

t

|H| = 10 (OOS)

0 256 512 768
Epoch

|H| = 11 (OOS)

0 256 512 768
Epoch

|H| = 12 (OOS)

0 256 512 768
Epoch

|H| = 13 (OOS)

0 256 512 768
Epoch

|H| = 14 (OOS)

Figure B.3: Multiple runs for ID and OOD hypothesis class size generalizations.

175

0 256 512 768
0.25

0.27

0.29

0.31

C
ro

ss
E

nt
ro

py
L

os
s

on
s

Training Curves on ID Hypotheses

Transformer
Mamba
LSTM
GRU

0 256 512 768
0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
)

Testing Curves on ID Hypotheses

0 256 512 768
0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
)

Testing Curves on OOD Hypotheses

0 256 512 768
Epoch

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(i
.i.

d.
)

0 256 512 768
Epoch

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(i
.i.

d.
)

0 256 512 768
Epoch

0.00

0.25

0.50

0.75

1.00
A

cc
on
z

(i
.i.

d.
)

Figure B.4: Various models on ID and OOD hypothesis class generalizations.

176

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

T
ra

in
,

iid

|H| = 2 (Train) |H| = 3 (Train) |H| = 4 (Train) |H| = 5 (Train) |H| = 6 (Train)

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

T
es

t(
ID

),
O

pt
-T

|H| = 2 (OOS) |H| = 3 (OOS) |H| = 4 (OOS) |H| = 5 (OOS) |H| = 6 (OOS)

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

T
es

t(
O

O
D

),
O

pt
-T

|H| = 2 (OOS) |H| = 3 (OOS) |H| = 4 (OOS) |H| = 5 (OOS) |H| = 6 (OOS)

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

T
ra

in
,

iid

|H| = 7 (Train) |H| = 8 (Train) |H| = 9 (Train)

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

T
es

t(
ID

),
O

pt
-T

|H| = 7 (IS) |H| = 8 (IS) |H| = 9 (IS)
Transformer

Mamba

LSTM

GRU

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

T
es

t(
O

O
D

),
O

pt
-T

|H| = 7 (IS) |H| = 8 (IS) |H| = 9 (IS)

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

T
ra

in
,

iid

|H| = 10 (Train) |H| = 11 (Train) |H| = 12 (Train) |H| = 13 (Train) |H| = 14 (Train)

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

T
es

t(
ID

),
O

pt
-T

|H| = 10 (OOS) |H| = 11 (OOS) |H| = 12 (OOS) |H| = 13 (OOS) |H| = 14 (OOS)

0 256 512 768
Epoch

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

T
es

t(
O

O
D

),
O

pt
-T

|H| = 10 (OOS)

0 256 512 768
Epoch

|H| = 11 (OOS)

0 256 512 768
Epoch

|H| = 12 (OOS)

0 256 512 768
Epoch

|H| = 13 (OOS)

0 256 512 768
Epoch

|H| = 14 (OOS)

Figure B.5: Various models on ID and OOD hypothesis class generalizations.

177

20 22 24 26 28 210 212 214

#Training Classes (N train)

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(i
.i.

d.
)

Training Curves on ID Hypotheses

Transformer

Mamba

GRU

LSTM

20 22 24 26 28 210 212 214

#Training Classes (N train)

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(i
.i.

d.
)

Testing Curves on ID Hypotheses

20 22 24 26 28 210 212 214

#Training Classes (N train)

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
)

Testing Curves on ID Hypotheses

20 22 24 26 28 210 212 214

#Training Classes (N train)

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(i
.i.

d.
)

Testing Curves on OOD Hypotheses

20 22 24 26 28 210 212 214

#Training Classes (N train)

0.00

0.25

0.50

0.75

1.00

A
cc

on
z

(O
pt

-T
)

Testing Curves on OOD Hypotheses

Figure B.6: Effect of training hypothesis class count on ID and OOD hypothesis
class generalization.

178

Bibliography

[1] K. Ahn, X. Cheng, H. Daneshmand, and S. Sra. Transformers learn to imple-
ment preconditioned gradient descent for in-context learning. In Advances in
Neural Information Processing Systems, 2023.

[2] E. Akyürek, D. Schuurmans, J. Andreas, T. Ma, and D. Zhou. What learning
algorithm is in-context learning? Investigations with linear models. In
International Conference on Learning Representations, 2023.

[3] E. Akyürek, B. Wang, Y. Kim, and J. Andreas. In-context language learning:
Architectures and algorithms. In International Conference on Machine Learning,
2024.

[4] Y. Bai, F. Chen, H. Wang, C. Xiong, and S. Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. In Advances
in Neural Information Processing Systems, 2023.

[5] F. Barbieri, J. Camacho-Collados, L. E. Anke, and L. Neves. TweetEval:
Unified benchmark and comparative evaluation for tweet classification. In
Findings of the Association for Computational Linguistics: EMNLP, 2020.

[6] F. Barbieri, J. Camacho-Collados, L. E. Anke, and L. Neves. Tweeteval: Unified
benchmark and comparative evaluation for tweet classification. In Findings
of the Association for Computational Linguistics: EMNLP, 2020.

179

[7] S. Bhattamishra, A. Patel, P. Blunsom, and V. Kanade. Understanding in-
context learning in Transformers and LLMs by learning to learn discrete
functions. In International Conference on Learning Representations, 2024.

[8] M. Boratko, X. Li, T. O’Gorman, R. Das, D. Le, and A. McCallum. Protoqa:
A question answering dataset for prototypical common-sense reasoning. In
Conference on Empirical Methods in Natural Language Processing, 2020.

[9] D. Borkan, L. Dixon, J. S. Sorensen, N. Thain, and L. Vasserman. Nuanced
metrics for measuring unintended bias with real data for text classification.
Companion Proceedings of The 2019 World Wide Web Conference, 2019.

[10] S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities: A
nonasymptotic theory of independence. Oxford University Press, 2013.

[11] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter,
C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner,
S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models
are few-shot learners. In Advances in Neural Information Processing Systems,
2020.

[12] S. Chan, A. Santoro, A. Lampinen, J. Wang, A. Singh, P. Richemond, J. McClel-
land, and F. Hill. Data distributional properties drive emergent in-context
learning in Transformers. In Advances in Neural Information Processing Systems,
2022.

[13] S. Chen, H. Sheen, T. Wang, and Z. Yang. Training dynamics of multi-head
softmax attention for in-context learning: Emergence, convergence, and
optimality (extended abstract). In Annual Conference on Learning Theory,
2024.

[14] X. Chen, M. Lin, N. Schärli, and D. Zhou. Teaching large language models to
self-debug. arXiv preprint arXiv:2304.05128, 2023.

180

[15] X. Cheng, Y. Chen, and S. Sra. Transformers implement functional gradient
descent to learn non-linear functions in context. In International Conference
on Machine Learning, 2024.

[16] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase representations using
RNN encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

[17] P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and
O. Tafjord. Think you have solved question answering? try arc, the AI2
reasoning challenge. arXiv preprint arXiv:1803.05457, 2018.

[18] S. D. Constantin and T. Rao. On the theory of binary asymmetric error
correcting codes. Information and Control, 1979.

[19] T. M. Cover and J. A. Thomas. Information theory and statistics. Elements of
information theory, 1991.

[20] I. Dagan, O. Glickman, and B. Magnini. The PASCAL recognising textual
entailment challenge. In PASCAL Machine Learning Challenges Workshop, 2005.

[21] DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in LLMs via
reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[22] A. G. Dimakis, B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran.
Network coding for distributed storage systems. IEEE Trans. Inf. Theory, 56
(9):4539–4551, 2010. doi: 10.1109/TIT.2010.2054295. URL https://doi.org/
10.1109/TIT.2010.2054295.

[23] W. B. Dolan and C. Brockett. Automatically constructing a corpus of sentential
paraphrases. In International Workshop on Paraphrasing, 2005.

[24] B. L. Edelman, E. Edelman, S. Goel, E. Malach, and N. Tsilivis. The evolution
of statistical induction heads: In-context learning Markov chains. arXiv
preprint arXiv:2402.11004, 2024.

https://doi.org/10.1109/TIT.2010.2054295
https://doi.org/10.1109/TIT.2010.2054295

181

[25] Y. Fan, S. Yadlowsky, D. Papailiopoulos, and K. Lee. Transformers can learn
meta-skills for task generalization in in-context learning. In NeurIPS Workshop
on Compositional Learning: Perspectives, Methods, and Paths Forward, 2024.

[26] C. V. Freiman. Optimal error detection codes for completely asymmetric
binary channels. Information and Control, 1962.

[27] D. Fu, T.-Q. Chen, R. Jia, and V. Sharan. Transformers learn to achieve second-
order convergence rates for in-context linear regression. In Advances in Neural
Information Processing Systems, 2024.

[28] J. Fu, T. Yang, Y. Wang, Y. Lu, and N. Zheng. Breaking through the learning
plateaus of in-context learning in Transformer. In International Conference on
Machine Learning, 2024.

[29] Y. Fu, H. Peng, A. Sabharwal, P. Clark, and T. Khot. Complexity-based
prompting for multi-step reasoning. arXiv preprint arXiv.2210.00720, 2022.

[30] R. Gabrys and L. Dolecek. Coding for the binary asymmetric channel. In
International Conference on Computing, Networking and Communications. IEEE,
2012.

[31] S. Garg, D. Tsipras, P. S. Liang, and G. Valiant. What can Transformers learn
in-context? A case study of simple function classes. In Advances in Neural
Information Processing Systems, 2022.

[32] K. Gatmiry, N. Saunshi, S. J. Reddi, S. Jegelka, and S. Kumar. Can looped
Transformers learn to implement multi-step gradient descent for in-context
learning? In International Conference on Machine Learning, 2024.

[33] O. Golovneva, T. Wang, J. Weston, and S. Sukhbaatar. Contextual position en-
coding: Learning to count what’s important. arXiv preprint arXiv:2405.18719,
2024.

[34] A. Gu and T. Dao. Mamba: Linear-time sequence modeling with selective
state spaces. arXiv preprint arXiv:2312.00752, 2023.

182

[35] A. Guez, T. Weber, I. Antonoglou, K. Simonyan, O. Vinyals, D. Wierstra,
R. Munos, and D. Silver. Learning to search with MCTSnets. In International
Conference on Machine Learning, 2018.

[36] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang,
X. Bi, et al. Deepseek-R1: Incentivizing reasoning capability in llms via
reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[37] T. Guo, W. Hu, S. Mei, H. Wang, C. Xiong, S. Savarese, and Y. Bai. How
do Transformers learn in-context beyond simple functions? A case study
on learning with representations. In International Conference on Learning
Representations, 2024.

[38] C. Han, Z. Wang, H. Zhao, and H. Ji. Explaining emergent in-context learning
as kernel regression. arXiv preprint arXiv:2305.12766, 2023.

[39] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding.
arXiv preprint arXiv:1510.00149, 2015.

[40] R. Hataya and M. Imaizumi. Transformers as stochastic optimizers. In ICML
Workshop on In-Context Learning, 2024.

[41] S. Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.

[42] E. Hua, C. Jiang, X. Lv, K. Zhang, N. Ding, Y. Sun, B. Qi, Y. Fan, X. Zhu,
and B. Zhou. Fourier position embedding: Enhancing attention’s periodic
extension for length generalization. arXiv preprint arXiv:2412.17739, 2024.

[43] R. Huang and R. Ge. Task descriptors help Transformers learn linear models
in-context. In ICML Workshop on In-Context Learning, 2024.

[44] Y. Huang, Y. Cheng, and Y. Liang. In-context convergence of Transformers.
In International Conference on Machine Learning, 2024.

183

[45] A. Hurst, A. Lerer, A. P. Goucher, A. Perelman, A. Ramesh, A. Clark, A. Os-
trow, A. Welihinda, A. Hayes, A. Radford, et al. GPT-4o system card. In arXiv
preprint arXiv:2410.21276, 2024.

[46] A. Jaech, A. Kalai, A. Lerer, A. Richardson, A. El-Kishky, A. Low, A. Helyar,
A. Madry, A. Beutel, A. Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

[47] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. d. l.
Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier, et al. Mistral 7B. arXiv
preprint arXiv:2310.06825, 2023.

[48] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bamford, D. S.
Chaplot, D. d. l. Casas, E. B. Hanna, F. Bressand, et al. Mixtral of experts.
arXiv preprint arXiv:2401.04088, 2024.

[49] Z. Jiang, F. F. Xu, J. Araki, and G. Neubig. How can we know what language
models know? Transactions of the Association for Computational Linguistics,
2020.

[50] T. Khot, P. Clark, M. Guerquin, P. Jansen, and A. Sabharwal. Qasc: A dataset
for question answering via sentence composition. In AAAI Conference on
Artificial Intelligence, 2020.

[51] J. Kim and T. Suzuki. Transformers learn nonlinear features in context:
Nonconvex mean-field dynamics on the attention landscape. In International
Conference on Machine Learning, 2024.

[52] J. Kim, S. Kwon, J. Y. Choi, J. Park, J. Cho, J. D. Lee, and E. K. Ryu. Task
diversity shortens the ICL plateau. arXiv preprint arXiv:2410.05448, 2024.

[53] L. Lam and S. Suen. Application of majority voting to pattern recognition:
an analysis of its behavior and performance. IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans, 27(5):553–568, 1997.

184

[54] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran.
Speeding up distributed machine learning using codes. IEEE Transactions on
Information Theory, 2017.

[55] L. Lehnert, S. Sukhbaatar, D. Su, Q. Zheng, P. Mcvay, M. Rabbat, and Y. Tian.
Beyond A*: Better planning with transformers via search dynamics boot-
strapping. arXiv preprint arXiv:2402.14083, 2024.

[56] B. Lester, R. Al-Rfou, and N. Constant. The power of scale for parameter-
efficient prompt tuning. In Association for Computational Linguistics, 2021.

[57] H. Li, M. Wang, S. Lu, X. Cui, and P.-Y. Chen. How do nonlinear Transformers
acquire generalization-guaranteed CoT ability? In ICML Workshop on High-
dimensional Learning Dynamics: The Emergence of Structure and Reasoning, 2024.

[58] H. Li, M. Wang, S. Lu, X. Cui, and P.-Y. Chen. How do nonlinear Transformers
learn and generalize in in-context learning? In International Conference on
Machine Learning, 2024.

[59] X. L. Li and P. Liang. Prefix-tuning: Optimizing continuous prompts for
generation. In Association for Computational Linguistics, 2021.

[60] Y. Li, M. E. Ildiz, D. Papailiopoulos, and S. Oymak. Transformers as algo-
rithms: Generalization and stability in in-context learning. In International
Conference on Machine Learning, 2023.

[61] Z. Lin and K. Lee. Dual operating modes of in-context learning. In Interna-
tional Conference on Machine Learning, 2024.

[62] Z. Lin, S. K. Bharti, and K. Lee. In-context learning with hypothesis-class
guidance. arXiv preprint arXiv:2502.19787, 2025.

[63] H. Liu, D. Tam, M. Muqeeth, J. Mohta, T. Huang, M. Bansal, and C. A. Raffel.
Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. Advances in Neural Information Processing Systems, 35:1950–1965,
2022.

185

[64] J. Liu, A. Liu, X. Lu, S. Welleck, P. West, R. L. Bras, Y. Choi, and H. Hajishirzi.
Generated knowledge prompting for commonsense reasoning. In Association
for Computational Linguistics, 2022.

[65] J. Liu, D. Shen, Y. Zhang, B. Dolan, L. Carin, and W. Chen. What makes good
in-context examples for GPT-3? In Deep Learning Inside Out: The Workshop on
Knowledge Extraction and Integration for Deep Learning Architectures, 2022.

[66] X. Liu, Y. Zheng, Z. Du, M. Ding, Y. Qian, Z. Yang, and J. Tang. GPT under-
stands, too. arXiv preprint arxiv.2103.10385, 2021.

[67] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In
International Conference on Learning Representations, 2019.

[68] X. Lyu, S. Min, I. Beltagy, L. Zettlemoyer, and H. Hajishirzi. Z-ICL: Zero-
shot in-context learning with pseudo-demonstrations. In Association for
Computational Linguistics, 2023.

[69] A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe, U. Alon,
N. Dziri, S. Prabhumoye, Y. Yang, et al. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651, 2023.

[70] A. V. Makkuva, M. Bondaschi, A. Girish, A. Nagle, M. Jaggi, H. Kim, and
M. Gastpar. Attention with Markov: A framework for principled analysis of
Transformers via Markov chains. arXiv preprint arXiv:2402.04161, 2024.

[71] M. Marelli, S. Menini, M. Baroni, L. Bentivogli, R. Bernardi, and R. Zamparelli.
A SICK cure for the evaluation of compositional distributional semantic
models. In International Conference on Language Resources and Evaluation, 2014.

[72] M. Marelli, S. Menini, M. Baroni, L. Bentivogli, R. Bernardi, and R. Zamparelli.
A SICK cure for the evaluation of compositional distributional semantic
models. In International Conference on Language Resources and Evaluation, 2014.

186

[73] S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi, and L. Zettle-
moyer. Rethinking the role of demonstrations: What makes in-context learn-
ing work? In Empirical Methods in Natural Language Processing, 2022.

[74] S. Mishra, D. Khashabi, C. Baral, and H. Hajishirzi. Cross-task generalization
via natural language crowdsourcing instructions. In ACL, 2022.

[75] I. Mollas, Z. Chrysopoulou, S. Karlos, and G. Tsoumakas. ETHOS: an online
hate speech detection dataset. arXiv preprint arXiv:2006.08328, 2020.

[76] S. M. Moser, P.-N. Chen, and H.-Y. Lin. Error probability analysis of binary
asymmetric channels. Dept. El. & Comp. Eng., Nat. Chiao Tung Univ, 2009.

[77] S. Mukherjee, J. P. Hanna, Q. Xie, and R. Nowak. Pretraining decision trans-
formers with reward prediction for in-context multi-task structured bandit
learning. arXiv preprint arXiv:2406.05064, 2024.

[78] E. Nichani, A. Damian, and J. D. Lee. How Transformers learn causal struc-
ture with gradient descent. arXiv preprint arXiv:2402.14735, 2024.

[79] C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. DasSarma, T. Henighan,
B. Mann, A. Askell, Y. Bai, A. Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

[80] OpenAI. GPT-4 technical report, 2023.

[81] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton,
L. Miller, M. Simens, A. Askell, P. Welinder, P. F. Christiano, J. Leike, and
R. Lowe. Training language models to follow instructions with human feed-
back. arXiv preprint arXiv.2203.02155, 2022.

[82] J. Pan, T. Gao, H. Chen, and D. Chen. What in-context learning “learns”
in-context: Disentangling task recognition and task learning. In Findings of
the Association for Computational Linguistics, 2023.

187

[83] M. Panwar, K. Ahuja, and N. Goyal. In-context learning through the Bayesian
prism. In International Conference on Learning Representations, 2024.

[84] J. Park, J. Park, Z. Xiong, N. Lee, J. Cho, S. Oymak, K. Lee, and D. Papailiopou-
los. Can Mamba learn how to learn? A comparative study on in-context
learning tasks. In International Conference on Machine Learning, 2024.

[85] D. Paul, M. Ismayilzada, M. Peyrard, B. Borges, A. Bosselut, R. West, and
B. Faltings. Refiner: Reasoning feedback on intermediate representations.
arXiv preprint arXiv:2304.01904, 2023.

[86] S. Pitis, M. R. Zhang, A. Wang, and J. Ba. Boosted prompt ensembles for
large language models. arXiv preprint arXiv:2304.05970, 2023.

[87] G. Qin and J. Eisner. Learning how to ask: Querying LMs with mixtures of
soft prompts. arXiv preprint arXiv:2104.06599, 2021.

[88] R. Ramesh, E. S. Lubana, M. Khona, R. P. Dick, and H. Tanaka. Compo-
sitional capabilities of autoregressive Transformers: A study on synthetic,
interpretable tasks. In International Conference on Machine Learning, 2024.

[89] K. V. Rashmi, N. B. Shah, and P. V. Kumar. Optimal exact-regenerating codes
for distributed storage at the MSR and MBR points via a product-matrix
construction. IEEE Trans. Inf. Theory, 2011.

[90] A. Raventos, M. Paul, F. Chen, and S. Ganguli. The effects of pretraining task
diversity on in-context learning of ridge regression. In ICLR Workshop on
Mathematical and Empirical Understanding of Foundation Models, 2023.

[91] A. Raventós, M. Paul, F. Chen, and S. Ganguli. Pretraining task diversity
and the emergence of non-bayesian in-context learning for regression. In
Advances in Neural Information Processing Systems, 2024.

[92] Y. Razeghi, R. L. L. IV, M. Gardner, and S. Singh. Impact of pretraining term
frequencies on few-shot numerical reasoning. In Findings of the Association
for Computational Linguistics: EMNLP, 2022.

188

[93] G. Reddy. The mechanistic basis of data dependence and abrupt learning
in an in-context classification task. In International Conference on Learning
Representations, 2023.

[94] T. Richardson and R. Urbanke. Modern coding theory. Cambridge university
press, 2008.

[95] O. Rubin, J. Herzig, and J. Berant. Learning to retrieve prompts for in-context
learning. In the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, 2022.

[96] M. E. Sander, R. Giryes, T. Suzuki, M. Blondel, and G. Peyré. How do
Transformers perform in-context autoregressive learning? In International
Conference on Machine Learning, 2024.

[97] T. Schick and H. Schütze. Exploiting cloze questions for few shot text clas-
sification and natural language inference. arXiv preprint arXiv:2001.07676,
2020.

[98] T. Schick and H. Schütze. Few-shot text generation with pattern-exploiting
training. arXiv preprint arXiv:2012.11926, 2020.

[99] E. Sheng and D. Uthus. Investigating societal biases in a poetry composition
system. In Workshop on Gender Bias in Natural Language Processing, 2020.

[100] T. Shin, Y. Razeghi, R. L. L. IV, E. Wallace, and S. Singh. Autoprompt: Eliciting
knowledge from language models with automatically generated prompts. In
Association for Computational Linguistics, 2020.

[101] N. Shinn, B. Labash, and A. Gopinath. Reflexion: an autonomous agent with
dynamic memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

[102] A. Singh, S. Chan, T. Moskovitz, E. Grant, A. Saxe, and F. Hill. The transient
nature of emergent in-context learning in Transformers. In Advances in Neural
Information Processing Systems, 2024.

189

[103] D. Su, S. Sukhbaatar, M. Rabbat, Y. Tian, and Q. Zheng. Dualformer: Control-
lable fast and slow thinking by learning with randomized reasoning traces.
In International Conference on Learning Representations, 2024.

[104] H. Su, J. Kasai, C. H. Wu, W. Shi, T. Wang, J. Xin, R. Zhang, M. Ostendorf,
L. Zettlemoyer, N. A. Smith, and T. Yu. Selective annotation makes language
models better few-shot learners. arXiv preprint arXiv.2209.01975, 2022.

[105] G. Tanzer, M. Suzgun, E. Visser, D. Jurafsky, and L. Melas-Kyriazi. A bench-
mark for learning to translate a new language from one grammar book. In
International Conference on Learning Representations, 2024.

[106] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bash-
lykov, S. Batra, P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[107] N. Tripuraneni, L. Doshi, and S. Yadlowsky. Can Transformers in-context
learn task mixtures? In NeurIPS Workshop on Distribution Shifts: New Frontiers
with Foundation Models, 2023.

[108] H. Trivedi, N. Balasubramanian, T. Khot, and A. Sabharwal. Interleaving
retrieval with chain-of-thought reasoning for knowledge-intensive multi-step
questions. arXiv preprint arXiv.2212.10509, 2022.

[109] A. Tsigler and P. L. Bartlett. Benign overfitting in ridge regression. Journal of
Machine Learning Research, 2023.

[110] H. L. Van Trees. Detection, estimation, and modulation theory, Part I: Detection,
estimation, and linear modulation theory. John Wiley & Sons, 2004.

[111] R. Vershynin. High-dimensional probability: An introduction with applications in
data science. Cambridge university press, 2018.

[112] J. Von Oswald, E. Niklasson, E. Randazzo, J. Sacramento, A. Mordvintsev,
A. Zhmoginov, and M. Vladymyrov. Transformers learn in-context by gradi-
ent descent. In International Conference on Machine Learning, 2023.

190

[113] X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, and D. Zhou. Rationale-
augmented ensembles in language models. arXiv preprint arXiv.2207.00747,
2022.

[114] X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, S. Narang, A. Chowdh-
ery, and D. Zhou. Self-consistency improves chain of thought reasoning in
language models. In International Conference on Learning Representations, 2023.

[115] Y. Wang, S. Mishra, P. Alipoormolabashi, Y. Kordi, A. Mirzaei, A. Arunku-
mar, A. Ashok, A. S. Dhanasekaran, A. Naik, D. Stap, et al. Super-natural
instructions: Generalization via declarative instructions on 1600+ tasks. In
Empirical Methods in Natural Language Processing, 2022.

[116] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou,
et al. Chain-of-thought prompting elicits reasoning in large language models.
Advances in Neural Information Processing Systems, 2022.

[117] J. Wu, D. Zou, Z. Chen, V. Braverman, Q. Gu, and P. L. Bartlett. How many
pretraining tasks are needed for in-context learning of linear regression? In
International Conference on Learning Representations, 2024.

[118] S. M. Xie, A. Raghunathan, P. Liang, and T. Ma. An explanation of in-context
learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

[119] Y. Xie, K. Kawaguchi, Y. Zhao, X. Zhao, M.-Y. Kan, J. He, and Q. Xie. De-
composition enhances reasoning via self-evaluation guided decoding. arXiv
preprint arXiv:2305.00633, 2023.

[120] M. Xuanyuan, T. Yang, J. Fu, and Y. Wang. On task description of in-context
learning: A study from information perspective, 2024.

[121] S. Yadlowsky, L. Doshi, and N. Tripuraneni. Can Transformer models gener-
alize via in-context learning beyond pretraining data? In NeurIPS Workshop
on Distribution Shifts: New Frontiers with Foundation Models, 2024.

191

[122] L. Yang, K. Lee, R. D. Nowak, and D. Papailiopoulos. Looped Transformers
are better at learning learning algorithms. In International Conference on
Learning Representations, 2024.

[123] S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and K. Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models.
In Advances in Neural Information Processing Systems, 2023.

[124] S. Ye, H. Hwang, S. Yang, H. Yun, Y. Kim, and M. Seo. In-context instruction
learning. arXiv preprint arXiv.2302.14691, 2023.

[125] K. Yin and J. Steinhardt. Which attention heads matter for in-context learning?
arXiv preprint arXiv:2502.14010, 2025.

[126] R. Zhang, X. Wang, C. Zhang, Z. He, H. Wu, Z. Li, H. Wang, Y. Chen, and
Q. Li. Bstc: A large-scale chinese-english speech translation dataset. arXiv
preprint arXiv:2104.03575, 2021.

[127] R. Zhang, S. Frei, and P. L. Bartlett. Trained transformers learn linear models
in-context. In Robustness of Few-shot and Zero-shot Learning in Large Foundation
Models (R0-FoMo), 2023.

[128] R. Zhang, S. Frei, and P. L. Bartlett. Trained Transformers learn linear models
in-context. Journal of Machine Learning Research, 2024.

[129] Y. Zhang, S. Feng, and C. Tan. Active example selection for in-context learning.
In Association for Computational Linguistics, 2022.

[130] Y. Zhang, J. Yang, Y. Yuan, and A. C.-C. Yao. Cumulative reasoning with
large language models. arXiv preprint arXiv:2308.04371, 2023.

[131] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang,
J. Zhang, Z. Dong, et al. A survey of large language models. arXiv preprint
arXiv:2303.18223, 2023.

192

[132] Z. Zhao, E. Wallace, S. Feng, D. Klein, and S. Singh. Calibrate before use: Im-
proving few-shot performance of language models. In International Conference
on Machine Learning, 2021.

[133] Y. Zhou, A. I. Muresanu, Z. Han, K. Paster, S. Pitis, H. Chan, and J. Ba.
Large language models are human-level prompt engineers. arXiv preprint
arXiv.2211.01910, 2022.

[134] X. Zhu. Machine teaching: An inverse problem to machine learning and
an approach toward optimal education. In AAAI Conference on Artificial
Intelligence, 2015.

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Large Language Models and In-Context Learning
	Synthetic and Controllable Datasets for ICL in the Literature
	Two Missing Pieces in the Literature
	Research Questions and Contributions

	Explaining Early Ascent: Dual Operating Modes of In-Context Learning
	Overview
	Pretraining and Data Generative Model
	Inference and Dual Operating Modes
	Early Ascent
	Bounded Efficacy of Biased-Label ICL
	Extension with Preliminary Results: Coded Prompts for Large Language Models
	Conclusion

	Incorporating Instructions into Synthetic ICL: In-Context Learning with Hypothesis-Class Guidance
	Overview
	Meta-Learning for ICL-HCG
	Experiments
	Discussion
	Extension with Preliminary Results: Can Transformers Do In-Context Blind Tree Search?
	Conclusion

	Contribution and Future Work
	Contribution
	Future Work

	For Chapter 2
	Notations
	Prior Examples
	Coarse Upper Bound for ICL Risk
	Transformer Performance in Approximating Bayesian Inference
	Additional Information for Bounded Efficacy in GPT-4
	Bounded Efficacy in Zero-shot ICL
	The Derivation of Posterior
	Detailed Analysis of Component Shifting and Re-weighting
	Additional Experiments for Early Ascent
	Mathematical Derivation for Early Ascent
	Proof Tools
	ICL to Learn the In-Context Function
	ICL with Biased Labels to Retrieve A Task
	Proof of Lemma 6
	Toy Example for Component Shifting and Component Re-weighting

	For Chapter 3
	Pseudo Algorithm for ICL-HCG
	Implementation Detail of Hypothesis Prefix and Context Query
	Additional Details of Experiments
	Experimental Setup

	Bibliography

