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Abstract

This dissertation contributes to the risk and insurance literature by expanding our understanding of

insurance claims modeling, deductible ratemaking, and the insurance risk retention problem. In the

claims modeling part, a data-driven approach is taken to analyze insurance losses using statistical

methods. It is often common for an analyst to be interested in several outcome measures depending

on a large set of explanatory variables, with the goal of understanding both the average behavior,

and the overall distribution of the outcomes. The use of multivariate analysis has an advantage in

a broad context, and the literature on multivariate regression modeling is extended with a focus on

dependence among multiple insurance lines. In this process, a deductible is an important feature

of an insurance policy to consider, because it may influence the frequency and severity of claims

to be censored or truncated. Standard textbooks have approached deductible ratemaking using

models for coverage modification, utilizing parametric loss distributions. In practice, regression

could be used with explanatory variables including the deductible amount. The various approaches

to deductible ratemaking are compared in this dissertation. Ultimately, an insurance manager

would be interested in understanding the influence of a retention parameter change to the risk

of a portfolio of losses. The retention parameter may be deductible, upper limit, or coinsurance.

This dissertation contributes to the statistics and actuarial literature by introducing and applying

the 01-inflated negative binomial frequency model (a frequency model for observations with an

inflated number of zeros and ones), and illustrating how discrete and continuous copula methods

can be empirically applied to insurance claims analysis. In the process, the dissertation provides a

comparison among various deductible analysis procedures, and shows that the regression approach

has an advantage in problems of moderate size. Finally, the dissertation attempts to broaden our

understanding of the risk retention problem within a constrained optimization framework, and
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demonstrates the quasiconvexity of the objective function in this problem. The dissertation reveals

that the loading factor of a reinsurance premium has a risk measure interpretation, and relates to

the risk measure relative margins (RMRM). Concepts are illustrated using the Wisconsin Local

Government Property Insurance Fund (LGPIF) data.
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Chapter 1

Introduction

Insurance analytics enables approaches for insurance organizations to make decisions based on

the analysis of data, in order to define problems, analyze and devise solutions of the problems

using models, and monitor the outcome of the solution based on data. This process of decision

making begins by first observing a problem under consideration, and identifying the risks and

external factors associated with the problem. Consider the task of developing a rating engine

for an insurance organization. The actuary is aware of the external environment in which the

organization operates, including the regulatory environment, and the stakeholders surrounding the

organization. Based on various factors, the problem could be defined as updating the rating engine

based on empirical data. Once a problem is defined, an appropriate solution could be devised, and

presented.

This dissertation has been motivated by a ratemaking project for the Local Government Prop-

erty Insurance Fund (LGPIF), which is introduced further in Chapter 7. The initial request from

the LGPIF concerned the surplus ratio (a measure of an insurer’s financial health) of the property

fund approaching the target ratio above which the surplus should be maintained. Historically, the

property fund was able to maintain a surplus ratio above the target ratio, however in recent years

due to severe weather events in 2010, the surplus ratio was approaching the target rapidly. In this

case, the first task of the actuary is to define the problem. In the case of the LGPIF, implementing

a more accurate and cost efficient rating engine was mutually agreed to be the primary goal of the

project. Hence, a team including myself, worked on the ratemaking of the LGPIF building and

contents, contractor’s equipment, and motor vehicles coverage groups, in order to present a rating
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engine to the LGPIF. Details of this rating engine, and the LGPIF can be found in Chapter 7 of

this dissertation.

When defining and solving a problem, what is observed may be only part of a larger problem,

and an actuary must look below the surface in order to have an idea of the full problem. After

completing the LGPIF ratemaking project, a researcher’s perspective naturally leads to the question

of whether a new and accurate rating engine would suffice for the LGPIF, or could the actuary

do more in terms of providing an answer to broader problems concerning the adequacy of rates.

What more could an actuary do? This question leads to the primary chapters of this dissertation.

This dissertation provides an overview of insurance claims modeling in Chapter 2, an overview of

insurance deductible ratemaking in Chapter 3, and an application of insurance claim models in risk

retention problems in Chapter 4. Each of the concepts are applied in Chapter 5 in the form of a

case study using the LGPIF data set. To provide helpful background, the LGPIF data and the

rating algorithm is summarized in detail in Chapter 7.

In the following few pages, a brief summary of the entire dissertation is provided. Section

1.1 summarizes multivariate insurance claims modeling. Section 1.2 summarizes approaches for

deductible ratemaking, and Section 1.3 summarizes insurance risk retention applications. Section

1.4 summarizes the endorsement ratemaking approach used in the LGPIF rating algorithm.

1.1 Multivariate Insurance Claims Modeling

The first question is whether the modeling sufficiently accounts for the characteristics of the outcome

variables. This includes the dependencies among variables. Correctly understanding the losses

of an insurance company involves not only modeling the average behavior of variables, but also

understanding the worst possible scenarios of the losses. One approach to understanding the risk of

a portfolio of losses is to analyze large potential loss amounts which could happen with very small

probabilities. Potentially large losses to a portfolio have significant meanings to the risk imposed

to a company. Dependencies among risks either at the individual level or at the line level may

influence the worst-case outcome, and hence the overall risk measure of an insurance portfolio.

Therefore, correctly understanding insurance risks involves understanding potential dependencies

among risks.
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Regression models for understanding the distribution of claim outcomes continue to be devel-

oped, and sophisticated models are used in the literature. For the purpose of insurance ratemaking,

it is recommended to model the frequency of claims, and the severity of claim amounts. In addition

to the frequency-severity components, outcomes can be further categorized by entity type and peril

types, requiring complex modeling. Hence, an overview of multivariate frequency-severity regres-

sion models and dependence models are useful, and the application of these approaches are covered

in Chapter 2 of this dissertation.

Section 2.2 starts with univariate foundations, with each subsection introducing the frequency-

severity model using GLMs, and the 01-inflated negative binomial model (Section 2.2.2), as well

as details of the severity model using the GB2 model (Section 2.2.3). The chapter puts emphasis

particularly on the GB2 model, because of its flexibility in modeling losses with long-tail distribu-

tions. A χ2-goodness of fit test is used for each of the six coverage groups (building and contents,

equipments, and four different motor vehicle coverages), to assess the best model for each case of

frequency data. The QQ-plot is utilized to assess the goodness of fit of the GB2 distribution for the

severity model of each coverage group. The Tweedie model, which is a compound Poisson model

of a summation of gamma distributed random variables, is also fit as a comparison.

Section 2.3 describes multivariate foundations. The section provides an overview of copula

methods, and provides references to various literature related to the usage of copulas in modeling

multivariate data. Section 2.3.2 begins by multivariate models for severities, followed by the sub-

sequent section dealing with dependence models for discrete outcomes. Section 2.3.4 discusses the

dependence model for the Tweedie distribution, which we determine to be less desirable than the

frequency-severity dependence model, based on the jittered plots of the Cox-Snell residuals.

Finally, in Section 2.4, the dependence between frequency and severity responses is considered.

The Vuong’s test is utilized as a procedure to determine the better model in terms of the log-

likelihood, in case there are two competing models of dependence. The main text of the dissertation

illustrates the use of Vuong’s test result as a supporting evidence that a normal copula suffices for

the modeling of dependence between frequencies and severities. Empirical results are shown in the

LGPIF case study (Chapter 5), Section 5.1.
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1.2 Deductible Ratemaking

When understanding insurance loss portfolios, an important question is whether deductibles

are accurately priced. As we will see, deductibles and upper limits have mechanically similar fea-

tures to insurance contracts because the upper limit of a contract to the insurer is essentially a

deductible from a reinsurance company’s perspective. Hence, the deductible can be understood as

a parameter to determine the amount of insurance purchased by an insurance entity. Deductible

choices may influence the frequency and severity of insurance claims, by truncating and censor-

ing the observed data. A policyholder with $100,000 deductible may have a different risk profile,

compared to a policyholder with a $500 base deductible. Deductible choices may also depend on

psychological characteristics of the policyholder. Both the average behavior (the mean) and the

worst-case behavior of the claim distribution is influenced by the deductible for various reasons.

In particular, the average behavior determines the rates for the insurance contract. Hence, under-

standing the relationship between the deductible and the average behavior of an insurance portfolio

is a fundamentally important task.

Meanwhile, the upper limit of a policy may be invisible to the policyholder when effected

through a reinsurance arrangement. Psychological considerations may apply differently, when the

upper limit rating problem is considered. For this reason, different approaches to ratemaking may

be needed, depending on whether the deductible or the upper limit is rated. Standard actuarial

textbooks have approached this problem by modeling the coverage modification amount using

parametric loss distributions. Meanwhile, the regression approach could be used with explanatory

variables including the deductible amount. When various approaches for deductible ratemaking

are compared, it can be discovered that the regression approach enables reasonable assessment

of deductible relativities for problems of moderate size. The regression approach also has the

advantage in terms of incorporating endorsements using regularization methods (see Frees and Lee

(2017)), which is an approach used for the rating engine of the LGPIF. The maximum likelihood

approach may be more appropriate for the upper limit ratemaking problem. Various approaches

to deductible ratemaking, and their pros and cons are discussed in Chapter 3 of this dissertation.

Section 3.2 begins with a review of the literature related to insurance deductible ratemaking.

In this and subsequent sections, the concept of a relativity curve is introduced, and used as an
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important tool in assessing the loss elimination behavior of various models. The chapter proceeds

to reviewing the theory of coverage modification in Section 3.2. The main text of the theory of

coverage modification (Section 3.3) builds up foundational formulas for deductible ratemaking under

the assumption that the underlying loss distribution has been estimated. Once a theory is built,

the foundation is applied to two different empirical approaches to deductible ratemaking. The first

approach is to estimate the underlying loss distribution using maximum likelihood, and to apply

the theoretical formulas directly. The second approach is to perform a regression of the response

variable on log deductibles, and to obtain the coefficient of the log deductible term, in order to

calculate the relativities. The relativity curves for both approaches are compared in Section 3.4.3.

A simulation study shows that the relativity curve for the regression approach is an approximation

to the theoretically correct relativity curve, using one parameter (See Section 3.5.2).

Finally, an empirical study using the LGPIF data shows that the regression approach and the

maximum likelihood approach of deductible ratemaking has pros and cons in their own respect

(Section 3.5.3). The result of the chapter is that the regression approach has an advantage in

deductible ratemaking in case a large number of covariates are used in the ratemaking model, and

the deductible is of moderate size in a relative sense. The maximum likelihood approach turns out

to have an advantage in assessing relativities for deductible levels beyond the point where empirical

data is available.

Details of the model estimation results used for the empirical studies are shown in Section 5.2.1.

Details of the truncated estimation of peril-type models and 01-inflated frequency models are shown

in Section 5.2.2.

1.3 Insurance Portfolio Optimization

Once all of the previous problems are solved, the actuary is ready to consider broader problems.

Insurance portfolio optimization is a fundamental problem of risk and insurance analytics, requiring

modeling of insurance claims, analysis of risk retention parameters, and numerical optimization

techniques. During the modeling stage, the insurance analyst builds sophisticated claims models

for the purpose of ratemaking and risk assessment.

What do we mean by “insurance portfolio optimization?” Consider a single loss for simplicity.
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The loss distribution would have a mean and a variance. If an imaginary insurance company were

to cover this loss, what could be ways to optimize the surplus standing of the insurance company,

theoretically speaking? Recalling concepts from the Markowitz portfolio optimization, a portfolio

is better off when the variability of the outcome is minimal, given some predetermined requirement

on the average outcome realized. The Markowitz portfolio optimization problem could be extended

to the insurance liability case, and we may use the quantile of the insurance loss as a measure of

variability. Now the question for the insurance company is, given a loss, what is the optimal amount

of insurance/reinsurance to purchase (how much of the risk to retain). In considering this question,

the goal is to minimize the variability of the retained insurance loss, subject to a minimum amount

of premium needed to be collected. This relates to the concept illustrated in Markowitz (1952).

In Chapter 4, Section 4.1, this problem is formulated and introduced, with an emphasis on the

loading factor (1 + λ∗). Basically, this loading factor is found in every literature of reinsurance

optimization. The easiest way to understand the loading factor is to think of the case where the

loading factor is 1, thus a loading doesn’t exist. If the loading doesn’t exist, then the price of holding

the risky loss, versus paying the safe reinsurance premium, becomes identical and hence the riskless

reinsurance premium becomes the optimal choice. Hence full insurance coverage is sought. In the

framework used in this dissertation, this corresponds to an upper limit parameter of zero so that

all of the loss is covered. Under a certain loading amount, the optimal insurance amount is some

partial coverage, and the optimal upper limit becomes an intermediate value between zero and

infinity.

The interesting discovery is that since the loading factor is a Lagrangian multiplier, it could

be understood as the RM2(θ∗) risk measure, introduced in Frees (2016) in the one dimensional

problem case. This means imposing a constraint on the premiums is actually analogous to fixing

the loading factor to a constant, and vice versa. In the framework introduced in Section 4.3, the

optimization problem is formulated and the analogy is illustrated more rigorously. Section 4.4 and

4.5 explores the single loss case in more detail, and demonstrates how constrained optimization

could be used to determine the optimal insurance amount depending on the premium constraint

imposed. In Section 4.6, the formulas for the aggregate loss case is introduced, and the non-

convexity, and quasiconvexity of the optimization problem is discussed. Basically, the quantile

function of the optimization problem to be solved is a monotonic function (as is proved in Section
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4.6 for each of the d, u, c parameters), and hence is quasiconvex. This means the level sets of the

function is convex. Thus, the local optima found from optimization becomes the global optima.

Given a non-empty interval of the parameter, there exists a unique solution, according to Section

4.8.5. Non-convexity is illustrated using an example, in order to demonstrate the need for the

establishment of quasi-convexity of the quantile function.

Ultimately, an insurance manager would be interested in the influence of a risk retention pa-

rameter change to a portfolio of retained risks. Furthermore, the manager may be interested in

optimizing the portfolio of risks by adjusting the deductible or upper limit parameter for a block

of insurance policies, or for multiple layers of parameters. These more complicated optimization

problems are covered in Sections 4.7, and 4.8.

Concepts of the insurance portfolio optimization chapter are illustrated using the Wisconsin

Local Government Property Insurance Fund (LGPIF) data in Section 5.3, where the Madison

Metropolitan School District policy of the LGPIF is used as an example for optimizing the upper

limit parameter u.

1.4 Endorsements Ratemaking

In addition to the material in Sections 1.1, 1.2, and 1.3, the Appendix of this dissertation

(Chapter 7, Section 7.2.4) provides results from practical applications of regularization methods

for endorsements ratemaking. The endorsement ratemaking approach using shrinkage estimation is

illustrated in Frees and Lee (2017), where the endorsement coefficients are “shrunk” towards zero in

order to regulate the size. Endorsements are optional coverages, such as zoo animals coverage for a

building and contents insurance. Policyholders who elect to purchase the endorsement are subject to

additional premium for the optional coverage, and hence an appropriate rate should be calculated.

Shrinkage methods are able to moderate the size of regression coefficients, so as to regulate the rates

for the endorsements in a disciplined way. Depending on the external environment, the manager

is able to control how high or low the endorsement rate should be, without influencing the overall

predictive ability of the rating engine.

Chapter 7 begins with a summary of the LGPIF, in order to provide an overview of the prob-

lem in hand. Section 7.2 explains the basic structure of the rating engine, where the insurance
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premium is determined by various multiplicative factors, including endorsement factors. Section

7.2.4 summarizes the endorsements offered by the property fund. The claim frequency and severity

is summarized by each endorsement, in order to provide some intuition of the relationship between

the endorsement and the claims. Shrinkage estimation is used to calculate the rates for each en-

dorsement, as explained in Frees and Lee (2017). Section 7.3 shows various different proposals for

the final rating engine, which depends on the rating variables and tuning parameter used.

1.5 Conclusion of Introduction

This dissertation takes a data-driven approach to insurance claims modeling, and illustrates various

applications of insurance claim models. The work contributes to the risk and insurance literature

by expanding our understanding of insurance claims modeling, deductible ratemaking, as well as

insurance risk retention parameter optimization problems. The material consisting each chapter of

this dissertation can be found in the following papers:

1. Frees, Edward W., and Gee Lee (2017). “Rating Endorsements using Generalized Linear

Models,” Variance, Vol. 10(1).

2. Frees, Edward W., and Gee Lee, and Lu Yang (2015). “Multivariate Frequency-Severity

Regression Models in Insurance,” Risks, Vol. 4(1)

3. Lee, Gee Y., “General Insurance Deductible Ratemaking,” Conditionally Accepted by the

North American Actuarial Journal.
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Chapter 2

Multivariate Insurance Claims

Modeling

Abstract

In insurance analytics, it is common to have several outcome measures that the

analyst wishes to understand using explanatory variables. Often times, outcome

measures may be related by common hazards and hence have dependencies. For

example, in property insurance, a common hazard may impose risk of accident to

the insured’s building and contents as well as motor vehicles. It is common to be

interested in the frequency of accidents, and the severity of the claim amounts, with

such dependencies. Outcomes can be categorized by entity types, time, and space,

requiring complex dependency modeling. In this chapter of the dissertation, methods

for dependence modeling are reviewed. The work contributes to the statistics and

actuarial literature by introducing and applying the 01-inflated negative binomial

frequency model, and illustrating how discrete and continuous copula methods can

be empirically applied to the insurance claims prediction problem.

This chapter is based on Frees, Edward W., and Gee Lee, and Lu Yang (2015). “Multivariate

Frequency-Severity Regression Models in Insurance,” Risks, Vol. 4(1).

Empirical results are shown in Chapter 5, Section 5.1.
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2.1 Introduction to Multivariate Claims Modeling

Many insurance data sets feature information about how often claims arise, the frequency, in addi-

tion to the claim size, the severity. Random variables can include:

• N , the number of claims (events),

• yk, k = 1, ..., N, the amount of each claim (loss), and

• S = y1 + · · ·+ yN , the aggregate claim amount.

By convention, the set {yj} is empty when N = 0.

Importance of Modeling Frequency. The aggregate claim amount S is the key element for

an insurer’s balance sheet, as it represents the amount of money paid on claims. So, why do

insurance companies regularly track the frequency of claims as well as the claim amounts? As

in Frees (2014), the reasons can be categorized into four categories: (i) features of contracts; (ii)

policyholder behavior and risk mitigation; (iii) databases that insurers maintain; and (iv) regulatory

requirements.

1. Contractually, it is common for insurers to impose deductibles and policy limits on a per

occurrence and on a per contract basis. Knowing only the aggregate claim amount for each

policy limits any insights one can get into the impact of these contract features.

2. Covariates that help explain insurance outcomes can differ dramatically between frequency

and severity. For example, in healthcare, the decision to utilize healthcare by individuals (the

frequency) is related primarily to personal characteristics whereas the cost and insurance access

per user (the severity) may be more related to characteristics of the healthcare provider (such

as the physician). Covariates may also be used to represent risk mitigation activities whose

impact varies by frequency and severity. For example, in fire insurance, lightning rods help to

prevent an accident (frequency) whereas fire extinguishers help to reduce the impact of damage

(severity).

3. Many insurers keep data files that suggest developing separate frequency and severity models.

For example, insurers maintain a “policyholder” file that is established when a policy is written.

A separate file, often known as the “claims” file, records details of the claim against the insurer,

including the amount. These separate databases facilitate separate modeling of frequency

and severity.
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4. Insurance is a closely monitored industry sector. Regulators routinely require the reporting of

claims numbers as well as amounts. Moreover, insurers often utilize different administrative

systems for handling small, frequently occurring, reimbursable losses, versus rare occurrence,

high impact events. Every insurance claim means that the insurer incurs additional expenses

suggesting that claims frequency is an important determinant of expenses.

Importance of Including Covariates. In this dissertation, the interest is in the joint modeling of

frequency and severity of claims. In actuarial science, there is a long history of studying frequency,

severity and the aggregate claim for homogeneous portfolios; that is, identically and independently

distributed realizations of random variables. See any introductory actuarial text, such as Klugman

et al. (2012), for an introduction to this rich literature.

Meanwhile, a modeler may be interested in incorporating explanatory variables (covariates,

predictors) into the analysis. Historically, this additional information has been available from

a policyholder’s application form, where various characteristics of the policyholder were supplied

to the insurer. For example, in motor vehicle insurance, classic rating variables include the age

and sex of the driver, type of the vehicle, region in which the vehicle was driven, and so forth.

The current industry trend is towards taking advantage of “big data”, with attempts being made

to capture additional information about policyholders not available from traditional underwriting

sources. An important example is the inclusion of personal credit scores, developed and used in

the industry to assess the quality of personal loans, that turn out to also be important predictors

of motor vehicle claims experience. Moreover, many insurers are now experimenting with global

positioning systems combined with wireless communication to yield real-time policyholder usage

data and much more. Through such systems, they gather micro data such as the time of day that

the car is driven, sudden changes in acceleration, and so forth. This foray into detailed information

is known as “telematics”. See, for example, Frees (2015) for further discussion.

Importance of Multivariate Modeling. Reasons for examining insurance outcomes on a mul-

tivariate basis is well summarized in Frees et al. (2013). Yet, in Frees et al. (2013), the frequencies

were restricted to binary outcomes, corresponding to a claim or no claim, known as “two-part”

modeling. In contrast, this dissertation chapter describes more general frequency modeling, al-

though the motivation for examining multivariate outcomes are similar. Analysts and managers



12

gain useful insights by studying the joint behavior of insurance risks, i.e., a multivariate approach:

• For some products, insurers must track payments separately by component to meet contractual

obligations. For example, in motor vehicle coverage, deductibles and limits depend on the

coverage type, e.g., bodily injury, damage to one’s own vehicle, or damage to another party.

Hence, it is natural for the insurer to track claims by coverage type.

• For other products, there may be no contractual reasons to decompose an obligation by com-

ponents and yet the insurer does so to help better understand the overall risk. For example,

many insurers interested in pricing homeowners insurance are now decomposing the risk by

“peril”, or cause of loss. Homeowners insurance is typically sold as an all-risk policy, which

covers all causes of loss except those specifically excluded. By decomposing losses into ho-

mogenous categories of risk, actuaries seek to get a better understanding of the determinants

of each component, resulting in a better overall predictor of losses.

• It is natural to follow the experience of a policyholder over time, resulting in a vector of

observations for each policyholder. This special case of multivariate analysis is known as

“panel data”, see, for example, Frees (2004).

• In the same fashion, policy experience can be organized through other hierarchies. For example,

it is common to organize experience geographically and analyze spatial relationships.

• Multivariate models in insurance need not be restricted to only insurance losses. For example,

a study of term and whole life insurance ownership is in Frees and Sun (2010). As an example

in customer retention, both Brockett et al. (2008); Guillén et al. (2008) advocate for putting

the customer at the center of the analysis, meaning that one needs to think about several

products that a customer owns simultaneously.

An insurer has a collection of multivariate risks and the interest is managing the distribution of

outcomes. Typically, insurers have a collection of tools that can then be used for portfolio man-

agement including deductibles, coinsurance, policy limits, renewal underwriting, and reinsurance

arrangements. Although pricing of risks can often focus on the mean, with allowances for expenses,

profit, and “risk loadings”, understanding capital requirements and firm solvency requires under-

standing of the portfolio distribution. For this purpose, it is important to treat risks as multivariate

in order to get an accurate picture of their dependencies.
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Dependence and Contagion. We have seen in the above discussion that dependencies arise nat-

urally when modeling insurance data. As a first approximation, we typically think about risks in a

portfolio as being independent from one another and rely upon risk pooling to diversify portfolio

risk. However, in some cases, risks share common elements such as an epidemic in a population,

a natural disaster such as a hurricane that affects many policyholders simultaneously, or an in-

terest rate environment shared by policies with investment elements. These common (pandemic)

elements, often known as “contagion”, induce dependencies that can affect a portfolio’s distribution

significantly.

Thus, one approach is to model risks as univariate outcomes but to incorporate dependencies

through unobserved “latent” risk factors that are common to risks within a portfolio. This approach

is viable in some applications of interest. Meanwhile, one can also incorporate contagion effects

into more general multivariate approaches. This dissertation will consider situations where data

are available to identify models and so we will be able to use the data to guide our decisions when

formulating dependence models.

Modeling dependencies is important for many reasons. These include:

1. Dependencies may impact the statistical significance of parameter estimates.

2. Dependence modeling allows for an analyst to obtain the distribution of one variable conditional

on another.

3. The degree of dependency affects the degree of reliability of our predictions.

4. To understand the distribution of an insurance product with many identifiable components,

one strategy is to describe the distribution of each product and a relationship among the

distributions. Insurers may be interested in this approach to assess the possibility of extreme

variation in the losses of their insurance products.

2.2 Univariate Foundations

This section summarizes modeling approaches for a single outcome. For notation, define N for

the random number of claims, S for the aggregate claim amount, and S̄ = S/N for the average

claim amount (defined to be 0 when N = 0). To model these outcomes, we use a collection of

covariates x, some of which may be useful for frequency modeling whereas others will be useful for
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severity modeling. The dependent variables N,S, and S̄ as well as covariates x vary by the risk

i = 1, . . . , n. For each risk, we also are interested in multivariate outcomes indexed by j = 1, . . . , p.

So, for example, Ni = (Ni1, . . . , Nip)
′ represents the vector of p claim outcomes from the ith risk.

A more detailed review for the single outcome, p = 1 case, can be found in Frees (2014).

2.2.1 Frequency-Severity

For modeling the joint outcome (N,S), or equivalently, (N, S̄), it is customary to first condition

on the frequency and then model the severity. Suppressing the {i} subscript, we decompose the

distribution of the dependent variables as:

f(N,S) = f(N) × f(S|N) (2.1)

joint = frequency × conditional severity,

where f(N,S) denotes the joint distribution of (N,S). Through this decomposition, we do not

require independence of the frequency and severity components.

There are many ways to model dependence when considering the joint distribution f(N,S) in

Equation (2.1). For example, one may use a latent variable that affects both frequency N and

loss amounts S, thus inducing a positive association. Copulas are another tool used regularly by

actuaries to model non-linear associations and will be described in subsequent Section 2.4. The

conditional probability framework is a natural method of allowing for potential dependencies and

provides a good starting platform for empirical work.

2.2.2 Modeling Frequency

It has become routine for actuarial analysts to model the frequency Ni based on covariates xi using

generalized linear models, GLMs, cf., De Jong and Heller (2008). For binary outcomes, logit and

probit forms are most commonly used, cf., Guillén (2014). For count outcomes, one begins with

a Poisson or negative binomial distribution. Moreover, to handle the excessive number of zeros

relative to that implied by these distributions, analysts routinely examine zero-inflated models, as

described in Boucher (2014).

A strength of GLMs relative to other non-linear models is that one can express the mean as
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a simple function of linear combinations of the covariates. In insurance, it is common to use a

“logarithmic link” for this function and so express the mean as µi = E[Ni] = exp(x′iβ), where β

is a vector of parameters associated with the covariates. This function is used because it yields

desirable parameter interpretations, seems to fit data reasonably well, and ties well with other

approaches traditionally used in actuarial ratemaking applications. See Mildenhall (1999).

It is also common to identify one of the covariates as an “exposure” that is used to calibrate

the size of a potential outcome variable. In frequency modeling, the mean is assumed to vary

proportionally with Ei, for exposure. To incorporate exposures, we specify one of the explanatory

variables to be lnEi and restrict the corresponding regression coefficient to be 1; this term is known

as an offset. With this convention, we have

lnµi = lnEi + x′iβ ⇔
µi
Ei

= exp(x′iβ).

When there are excessive numbers of 0 s and 1 s in the outcome, a ”zero-one-inflated” model

can be used. As an extension of the zero-inflated method, a zero-one-inflated model employs two

generating processes. The first process is governed by a multinomial distribution that generates

structural zeros and ones. The second process is governed by a Poisson or negative binomial

distribution that generates counts, some of which may be zero or one.

Denote the latent variable in the first process as Ii, i = 1, . . . , 2, which follows a multinomial dis-

tribution with possible values 0, 1 and 2 with corresponding probabilities π0,i, π1,i, π2,i = 1− π0,i − π1,i.

Here, Ni is frequency. With this, the probability mass function of Ni is

fN,i(n) = π0,iI{n=0} + π1,iI{n=1} + π2,iPi(n),

where Pi(n) may be the density for a Poisson or negative binomial distribution. A logit specification

is used to parameterize the probabilities for the latent variable Ii. Denote the covariates associated

with Ii as zi. A logit specification is used to parameterize the probabilities for the latent variable

Ii. Using level 2 as the reference category, the specification is

log
πj,i
π2,i

= z′iγj , j = 0, 1.
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Correspondingly,

πj,i =
exp(z′iγj)

1 + exp(z′iγj) + exp(z′iγj)
, j = 0, 1.

π2,i = 1− π0,i − π1,i

Maximum likelihood estimation is used to fit the parameters.

2.2.3 Modeling Severity

Modeling Severity Using GLMs. For insurance analysts, one strength of the GLM approach

is that the same set of routines can be used for continuous as well as discrete outcomes. For

severities, it is common to use a gamma or inverse Gaussian distribution, often with a logarithmic

link (primarily for parameter interpretability).

The linear exponential family forms the basis of GLMs. One strength of the linear exponential

family is that a sample average of outcomes comes from the same distribution as the outcomes.

Specifically, suppose that we have m independent variables from the same distribution with location

parameter θ and scale parameter φ. Then, the sample average comes from the same distributional

family with location parameter θ and scale parameter φ/m. This result is helpful as insurance

analysts regularly face grouped data as well as individual data. For example, Frees (2014) provides

a demonstration of this basic property.

To illustrate, in the aggregate claims model, if individual losses have a gamma distribution with

mean µi and scale parameter φ, then, conditional on observing Ni losses, the average aggregate

loss S̄i has a gamma distribution with mean µi and scale parameter φ/Ni.

Generalized Beta Family. The GLM is the workhorse for industry analysts interested in ana-

lyzing the severity of claims. Naturally, because of the importance of claims severity, a number of

alternative approaches have been explored, cf., Shi (2014) for an introduction. This section reviews

the generalized beta family models for insurance loss severities. Commonly used distributions are

exponential, gamma, and Pareto distributions, where the practice is to replace the location param-

eter with x′β. For this, it is common to assume a parametric model with a logarithmic link for

parameter interpretability. The generalized beta random variable Y has the density
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fY (y; a, b, c, α1, α2) =
|a|ya·α1−1(1− (1− c)(y/b)a)α2−1

ba·α1B(α1, α2)(1 + c(y/b)a)α1+α2
,

where 0 < c < 1, and b, α1, α2 > 0. Here, B(α1, α2) is the beta function. The generalized

beta family contains many familiar distributions as special cases: GB1, GB2, gamma, generalized

gamma, Weibull, Burr type 3, Burr type 12, Dagum, log-normal, Lomax (Pareto Type II), F,

Rayleigh, chi-square, half-normal, half-Student-t, exponential and log-logistic. Klugman et al.

(2012) provides an introductory overview of the generalized beta family distributions. Each special

case is obtained by restricting the parameter of the distribution to a specific value or taking the

limiting case of the parameter. Some special cases have been more popular than others in the

loss-modeling context. The GB family is defined for response values between

0 < ya <
ba

1− c
.

Yet limiting cases are defined for arbitrarily large y values. The GB1 distribution is obtained

by restricting c = 0, while the GB2 distribution is obtained by restricting c = 1 from the GB

family. The GB2 density provides a flexible class of distributions for insurance loss modeling, and

is described in detail next.

Modeling Severity Using GB2. A random variable with a “generalized beta of the second

kind”, or in short GB2, distribution can be written as

eµ
(
G1

G2

)σ
= C1e

µF σ = eµ
(

Z

1− Z

)σ
,

where the constant C1 = (α1/α2)σ, G1 and G2 are independent gamma random variables with

scale parameter 1 and shape parameters α1 and α2, respectively. Further, the random variable F

has an F-distribution with degrees of freedom 2α1 and 2α2, and the random variable Z has a beta

distribution with parameters α1 and α2. The density is

fY (y; a, b, α1, α2) =
|a|(y/b)a·α1

yB(α1, α2)[1 + (y/b)a]α1+α2
,
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and is defined for

0 < y <∞.

For incorporating covariates, it is straightforward to show that the regression function is of the form

E (y|x) = C2 exp (µ (x)) = C2 e
x′β,

where the constant C2 can be calculated with other (non-location) model parameters. Under the

most commonly used way of parametrization for the GB2, where µ is associated with covariates, if

−α1 < σ < α2, then we have

C2 =
B(α1 + σ, α2 − σ)

B(α1, α2)

where B(α1, α2) = Γ(α1)Γ(α2)/Γ(α1 + α2). Thus, one can interpret the regression coefficients

in terms of a proportional change. That is, ∂ [ln E(y)] /∂xk = βk. In principle, one could allow for

any distribution parameter to be a function of the covariates. However, following this principle

would lead to a large number of parameters; this typically yields computational difficulties as well

as problems of applications, Sun et al. (2008). An alternative way to choose the location parameter

in GB2 is through log linear model in Prentice (1975). In this dissertation, µ is used to incorporate

covariates. The density of GB2(σ, µ, α1, α2) is

f(y;µ, σ, α1, α2) =
[exp(z)]α1

yσB(α1, α2)[1 + exp(z)]α1+α2

where z = ln(y)−µ
σ . As pointed out in Yang (2011), if

Y ∼ GB2(σ, µ, α1, α2),

log(Y ) = µ+ σ(log α1 − log α2) + σlog F (2α1, 2α2).

This is actually the log linear model used with errors following the log-F distribution.

Thus µ+ σ(log α1 − log α2) can be used as the location parameter associated with covariates.

Thus, the GB2 family has four parameters (α1, α2, µ and σ), where µ is the location parameter.

The GB2 includes limiting distributions such as the generalized gamma, exponential, Weibull, and
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so forth. It also encompasses the “Burr Type 12” (by allowing α1 = 1), as well as other families of

interest, including the Pareto distributions. The GB2 is a flexible distribution that accommodates

positive or negative skewness, as well as heavy tails. See, for example, Klugman et al. (2012) for

an introduction to these distributions.

As a special case of GB2, the location parameter of GG (generalized gamma) can be derived

based on GB2. Let α2 →∞, and the density of GG(a, b, α1) is

GG(y; a, b, α1) =
a

Γ(α1)y
(y/b)aα1e−(y/b)a .

Reparametrizing the GB2(a, b, α1, α2)) with a = 1
σ , b = exp(µ), we have

GG(a, b, α1) = lim
α2→∞

GB2(a, bα
1/a
2 , α1, α2).

The location parameter for GG(a, b, α1) should be log(b) + σlog(α2) + σ(log(α1) − log(α2)) =

log(b) + σlog(α1). This is consistent with the results in Prentice (1974). When a = 1, the GG

distribution becomes the gamma distribution with shape parameter α1 and scale parameter b.

log(b) + log(α1) is the location parameter, which is the log-mean of the gamma distribution, and is

hence consistent with the GLM framework.

2.2.4 Tweedie Model

Frequency-severity modeling is widely used in insurance applications. However, for simplicity, it

is also common to use the aggregate loss S as a dependent variable in a regression. Because the

distribution of S typically contains a positive mass at zero representing no claims, and a continuous

component for positive values representing the amount of a claim, a widely used mixture is the

Tweedie (1984) distribution. The Tweedie distribution is defined as a Poisson sum of gamma

random variables. Specifically, suppose that N has a Poisson distribution with mean λ, representing

the number of claims. Let Yj be an i.i.d. sequence, independent of N , with each Yj having a gamma

distribution with parameters α and β, representing the amount of a claim. Note, β is standard

notation for this parameter used in loss-model textbooks, and the reader should understand it is

different from the bold-faced β, as the latter is a symbol we will use for the coefficients corresponding
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to explanatory variables. Then, S = y1 + . . .+ yN is a Poisson sum of random gammas.

To understand the mixture aspect of the Tweedie distribution, first note that it is straightfor-

ward to compute the probability of zero claims as Pr(S = 0) = Pr(N = 0) = e−λ. The distribution

function can be computed using conditional expectations,

Pr(S ≤ y) = e−λ +

∞∑
n=1

Pr(N = n) Pr(Sn ≤ y), y ≥ 0.

Because the sum of i.i.d. gammas is a gamma, Sn = y1 + . . .+yn (not S) has a gamma distribution

with parameters nα and β. For y > 0, the density of the Tweedie distribution is

fS(y) =
∞∑
n=1

e−λ
λn

n!

βnα

Γ(nα)
ynα−1e−yβ.

From this, straight-forward calculations show that the Tweedie distribution is a member of the

linear exponential family. Now, define a new set of parameters µ, φ, P through the relations

λ =
µ2−P

φ(2− P )
, α =

2− P
P − 1

and
1

β
= φ(P − 1)µP−1.

Easy calculations show that

E[S] = µ and Var[S] = φµP ,

where 1 < P < 2. The Tweedie distribution can also be viewed as a choice that is intermediate

between the Poisson and the gamma distributions.

In the basic form of the Tweedie regression model, the scale (or dispersion) parameter φ is

constant. However, if one begins with the frequency-severity structure, calculations show that φ

depends on the risk characteristics i, cf., Frees (2014). Because of this and the varying dispersion

(heteroscedasticity) displayed by many data sets, researchers have devised ways of accommodating

and/or estimating this structure. The most common way is the so-called “double GLM” procedure

proposed in Smyth (1989) that models the dispersion as a known function of a linear combination

of covariates (as well as the mean, hence the name “double GLM”).
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2.3 Multivariate Models and Methods

2.3.1 Copula Regression

Copulas have been applied with GLMs in the biomedical literature since the mid-1990s; Meester

and Mackay (1994); Lambert (1996); Song (2000). In the actuarial literature, the t-copula and the

Gaussian copula with GLMs as marginal distributions were used to develop credibility predictions

in Frees and Wang (2005). In more general cases, Song (2007) provides a detailed introduction of

copula regression that focuses on the Gaussian copula and Kolev and Paiva (2009) surveys copula

regression applications.

Introducing Copulas. Specifically, a copula is a multivariate distribution function with uniform

marginals. Let U1, . . . , Up be p uniform random variables on (0, 1). Their joint distribution function

C(u1, . . . , up) = Pr(U1 ≤ u1, . . . , Up ≤ up) (2.2)

is a copula. We seek to use copulas in applications that are based on more than just uniformly dis-

tributed data. Thus, consider arbitrary marginal distribution functions F1(y1), . . . ,Fp(yp). Then,

we can define a multivariate distribution function using the copula such that

F(y1, . . . , yp) = C(F1(y1), . . . ,Fp(yp)). (2.3)

If outcomes are continuous, then we can differentiate the distribution functions and write the density

function as

f(y1, . . . , yp) = c(F1(y1), . . . ,Fp(yp))

p∏
j=1

fj(yj), (2.4)

where fj is the density of the marginal distribution Fj and c is the copula density function.

It is easy to check from the construction in Equation (2.3) that F(·) is a multivariate distri-

bution function. Sklar established the converse in Sklar (1959). He showed that any multivariate

distribution function F(·) can be written in the form of Equation (2.3), that is, using a copula

representation. Sklar also showed that, if the marginal distributions are continuous, then there is

a unique copula representation. See, for example, Nelsen (1999) and Frees and Valdez (1998) for

an introduction to copulas, and Joe (2014) for a comprehensive modern treatment.
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Regression with Copulas. In a regression context, we assume that there are covariates x asso-

ciated with outcomes y = (y1, . . . , yp)
′. In a parametric context, we can incorporate covariates by

allowing them to be functions of the distributional parameters.

Specifically, we assume that there are n independent risks and p outcomes for each risk i,

i = 1, . . . , n. For this section, consider an outcome yi = (yi1, . . . , yip)
′ and K×1 vector of covariates

xi, where K is the number of covariates. The marginal distribution of yij is a function of xij , βj

and θj . Here, xij is a Kj×1 vector of explanatory variables for risk i and outcome type j, a subset

of xi, and βj is a Kj×1 vector of marginal parameters to be estimated. The systematic component

x′ijβj determines the location parameter. The vector θj summarizes additional parameters of the

marginal distribution that determine the scale and shape. Let Fij = F (yij ; xij ,βj ,θj) denote the

marginal distribution function.

This describes a classical approach to regression modeling, treating explanatory variances/covariates

as non-stochastic (“fixed”) variables. An alternative is to think of the covariates themselves as ran-

dom and perform statistical inference conditional on them. Some advantages of this alternative

approach are that one can model the time-changing behavior of covariates, as in Patton (2006), or

investigate non-parametric alternatives, as in Acar et al. (2011). These represent excellent future

steps in copula regression modeling that are not addressed further in this article.

2.3.2 Multivariate Severity

For continuous severity outcomes, we may consider the density function fij = f(yij ; xij ,βj ,θj)

associated with the distribution function Fij and c the copula density function with parameter

vector α. With this, using Equation (2.4), the log-likelihood function of the ith risk is written as

li(β,θ,α) =

p∑
j=1

ln fij + c(Fi1, . . . ,Fip;α), (2.5)

where β = (β1, . . . ,βp) and θ = (θ1, . . . ,θp) are collections of parameters over the p outcomes.

This is a fully parametric set-up; the usual maximum likelihood techniques enjoy certain optimality

properties and are the preferred estimation method.

If we consider only a single outcome, say yi1, then the associated log-likelihood is ln fi1. Thus,
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the set of outcomes y11, . . . , yn1 allows for the usual “root-n” consistent estimator of β1, and

similarly for the other outcomes yij , j = 2 . . . , p. By considering each outcome in isolation of the

others, we can get desirable estimators of the regression coefficients βj , j = 1, . . . , p. These provide

excellent starting values to calculate the fully efficient maximum likelihood estimators using the log-

likelihood from Equation (2.5). Joe coined the phrase “inference for margins”, sometimes known

by the acronym IFM in Joe (1997), to describe this approach to estimation.

In the same way, one can consider any pair of outcomes, (yij , yik) for j 6= k. This permits

consistent estimation of the marginal regression parameters as well as the association parameters

between the jth and kth outcomes. As with the IFM, this technique provides excellent starting

values of a fully efficient maximum likelihood estimation recursion. Moreover, they provide the

basis for an alternative estimation method known as “composite likelihood”, cf., Song et al. (2013)

or Nikoloulopoulos (2013a), for a description in a copula regression context.

2.3.3 Multivariate Frequency

If outcomes are discrete, then one can take differences of the distribution function in Equation (2.3)

to write the probability mass function as

f(y1, . . . , yp) =
2∑

j1=1

· · ·
2∑

jp=1

(−1)j1+···+jp C(u1,j1 , . . . , up,jp). (2.6)

Here, uj,1 = Fj(yj−) and uj,2 = Fj(yj) are the left- and right-hand limits of Fj at yj , respectively.

For example, when p = 2, we have

f(y1, y2) = C(F1(y1),F2(y2))− C(F1(y1−),F2(y2))

−C(F1(y1),F2(y2−)) + C(F1(y1−),F2(y2−)).

It is straightforward in principle to estimate parameters using Equation (2.6) and standard maxi-

mum likelihood theory.

In practice, two caveats should be mentioned. The first is that the result of Sklar (1959) only

guarantees that the copula is unique over the range of the outcomes, a point emphasized with

several interesting examples in Genest and Nešlehová (2007). In a regression context, this non-
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identifiability is less likely to be a concern, as noted in Joe (2014); Song et al. (2013); Nikoloulopoulos

and Karlis (2010); Nikoloulopoulos (2013a). Moreover, the last reference emphasizes that the

Gaussian copula with binary data has been used for decades by researchers as this is just another

form for the commonly used multivariate probit.

The second issue is computational. As can be seen in Equation (2.6), likelihood inference in-

volves the computation of multidimensional rectangle probabilities. The review article Nikoloulopou-

los (2013a) describes several variations of maximum likelihood that can be useful as the dimension

p increases, see also Nikoloulopoulos (2013b). As in Genest et al. (2013), the composite likelihood

method is used for computation. For large values of p, the pair (also known as “vine”) copula

approach described in Panagiotelis et al. (2012) for discrete outcomes seems to be a promising ap-

proach.

2.3.4 Multivariate Tweedie

As emphasized in Joe (2014) (p. 226), in copula regression it is possible to have outcomes that

are combinations of continuous, discrete, and mixture distributions. One case of special interest in

insurance modeling is the multivariate Tweedie, where each marginal distribution is a Tweedie and

the margins are joined by a copula. Specifically, Shi (2016) considers different types of insurance

coverages with Tweedie margins.

To illustrate the general principles, consider the bivariate case (p = 2). Suppressing the i index

and covariate notation, the joint distribution is

f(y1, y2) =



C(F1(0), F2(0)) y1 = 0, y2 = 0

f(y1)∂1C(F1(y1), F2(0)) y1 > 0, y2 = 0

f(y2)∂2C(F1(0), F2(y2)) y1 = 0, y2 > 0

f(y1)f(y2)c(F1(y1), F2(y2)) y1 > 0, y2 > 0

,

where ∂jC denotes the partial derivative of copula with respect to the jth component. See Shi

(2016) for additional details of this estimation where he also described a double GLM approach to

accommodate varying dispersion parameters.
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2.3.5 Association Structures and Elliptical Copulas

First consider an outline of the evolution of multivariate regression modeling.

1. The multivariate normal (Gaussian) distribution has provided a foundation for multivariate

data analysis, including regression. By permitting a flexible structure for the mean, one can

readily incorporate complex mean structures including high order polynomials, categorical vari-

ables, interactions, semi-parametric additive structures, and so forth. Moreover, the variance

structure readily permits incorporating time series patterns in panel data, variance components

in longitudinal data, spatial patterns, and so forth. One way to get a feel for the breadth of

variance structures readily accommodated is to examine options in standard statistical soft-

ware packages such as PROC Mixed in SAS (2010) (for example, the TYPE switch in the RANDOM

statement permits the choice of over 40 variance patterns).

2. In many applications, appropriately modeling the mean and second moment structure (vari-

ances and covariances) suffices. However, for other applications, it is important to recognize

the underlying outcome distribution and this is where copulas come into play. As we have

seen, copulas are available for any distribution function and thus readily accommodate binary,

count, and long-tail distributions that cannot be adequately approximated with a normal dis-

tribution. Moreover, marginal distributions need not be the same, e.g., the first outcome may

be a count Poisson distribution and the second may be a long-tail gamma.

3. Pair copulas (cf., Joe (2014)) may well represent the next step in the evolution of regression

modeling. A copula imposes the same dependence structure on all p outcomes whereas a

pair copula has the flexibility to allow the dependence structure itself to vary in a disciplined

way. This is done by focusing on the relationship between pairs of outcomes and examining

conditional structures to form the dependence of the entire vector of outcomes. This approach

is useful for high dimensional outcomes (where p is large), an important developing area of

statistics. This represents an excellent future step in copula regression modeling. See Frees

and Lee (2017).

As described in Joe (2014), there is a host of copulas available depending on the interests of

the analyst and the scientific purpose of the investigation. Considerations for the choice of a
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copula may include computational convenience, interpretability of coefficients, a latent structure for

interpretability, and a wide range of dependence, allowing both positive and negative associations.

For our applications of regression modeling, we typically begin with the elliptical copula family.

This family is based on the family of elliptical distributions that includes the multivariate normal

and t-distributions. See more in Frees and Wang (2006).

This family has most of the desirable traits that one would seek in a copula family. From our

perspective, the most important feature is that it permits the same family of association matrices

found in the multivariate Gaussian distribution. This not only allows the analyst to investigate

a wide degree of association patterns, but also allows estimation to be accomplished in a familiar

way using the same structure as in the Gaussian family, e.g., SAS (2010).

For example, if the ith risk evolves over time, we might use a familiar time series model to

represent associations, e.g.,

ΣAR1(ρ) =



1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1


such as an autoregressive of order 1 (AR1). See Frees and Wang (2005) for an actuarial application.

For a more complex example, suppose that yi = (yi1,yi2,yi3)′ represents three types of ex-

penses for the ith company observed over 4 time periods. Then, we might use the following

dependence structure

Σ =


ΣAR1(ρ1) σ12Σ12 σ13Σ13

σ12Σ
′
12 ΣAR1(ρ2) σ23Σ23

σ13Σ
′
13 σ23Σ

′
23 ΣAR1(ρ3)

 ,

as in Shi (2012). This is a commonly used specification in models of several time series in econo-

metrics where σjk represents a cross-sectional association between yij and yik and Σjk represents

cross-associations with time lags.
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2.3.6 Assessing Dependence

Dependence can be assessed at all stages of the model fitting process:

• Copula identification begins after marginal models have been fit. Then, use the “Cox-Snell”

residuals from these models to check for association. Create simple correlation statistics (Spear-

man, polychoric) as well as plots (pp and tail dependence plots) to look for dependence struc-

tures and identify a parametric copula.

• After a model identification, estimate the model and examine how well the model fits. Examine

the residuals to search for additional patterns using, for example, correlation statistics and t-

plot (for elliptical copulas). Examine the statistical significance of fitted association parameters

to seek a simpler fit that captures the important tendencies of the data.

• Compare the fitted model to alternatives. Use overall goodness of fit statistics for comparisons,

including AIC and BIC, as well as cross-validation techniques. For nested models, compare via

the likelihood ratio test and use Vuong’s procedure for comparing non-nested alternative spec-

ifications.

• Compare the models based on a held-out sample. Use statistical measures and economically

meaningful alternatives such as the Gini statistic.

In the first and second step of this process, a variety of hypothesis tests and graphical methods can

be employed to identify the specific type of copula (e.g., Archmedian, elliptical, extreme value, and

so forth) that corresponds to the given data. Researchers have developed a graphical tool called

the Kendall plot, or the K-plot for short, to detect dependence. See Genest and Boies (2003). To

determine whether a joint distribution corresponds to an Archimedean copula or a specific extreme-

value copula, goodness-of-fit tests developed by Genest and Rivest (1993); Kojadinovic et al. (2011);

Genest et al. (2011); Bahraoui et al. (2014) can be helpful. The reader may also reference Joe (2014)

for a comprehensive coverage of the various assessment methods for dependence.

2.3.7 Frequency-Severity Modeling Strategy

Multivariate frequency-severity modeling strategies are a subset of the usual regression and copula

identification and inference strategies. In absence of a compelling theory to suggest the appropriate
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covariates and predictors (which is generally the case for insurance applications), the modeling

strategy consists of model identification, estimation, and inference. Typically, this is done in a

recursive fashion where one sets aside a random portion of the data for identification and estimation

(the “training” sample), and one proceeds to validate and conduct inference on another portion (the

“test” sample). See, for example, Hastie et al. (2009) for a description of this and many procedures

for variable selection, mainly in a cross-sectional regression context. One may think about the

identification and estimation procedures as three components in a copula regression model:

1. Fit the mean structure. Historically, this is the most important aspect. One can apply robust

standard error procedures to get consistent and approximately normally distributed coefficients,

assuming a correct mean structure.

2. Fit the variance structure with a selected distribution. In GLMs, the choice of the distribution

dictates the variance structure that can be over-ruled with a separately specified variance, e.g.,

a “double GLM.”

3. Fit the dependence structure with a choice of copula.

For frequency-severity modeling, there are two mean and variance structures to work with, one for

the frequency and one for the severity.

Identification and Estimation

Although the estimation of parametric copulas is fairly established, the literature on identification

of copulas is still in the early stage of development. As described in Section 2.3.2, maximum

likelihood is the usual choice with an inference for margins and/or composite likelihood approach

for starting values of the iterations. A description of composite likelihood in the context of copula

modeling can be found in Joe (2014). As noted here, composite likelihood may be particularly

useful for multivariate discrete data when univariate margins have common parameters; page 233,

Joe (2014). Another variation of maximum likelihood in copula regression is the “maximization

by parts” method, as described in Song (2007) and utilized in Czado et al. (2012). In the context

of copula regressions, the idea behind this is to split the likelihood into two pieces, an easier

part corresponding to the marginals and a more difficult part corresponding to the copula. The

estimation routine takes advantage of these differing levels of difficulty in the calculations.
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Identification of copula models used in regression typically starts with residuals from marginal

fits. For severities, the idea is to estimate a parametric fit to the marginal distribution, such

as normal or gamma regression. Then, one applies the distribution function (that depends on

covariates) to the observation. Using notation, we can write this as Fi(yi) = ε̂i. This is known

as the “probability integral transformation.” If the model is correctly specified, then the ε̂i has a

uniform (0,1) distribution. This is an idea that dates back to works by Cox and Snell (1968) and

so these are often known as “Cox-Snell” residuals. For copula identification, it is recommended in

Joe (2014) to take an inverse normal distribution transform (i.e., Φ−1(ε̂i), for a standard normal

distribution function Φ) to produce “normal scores.”

Because of the discreteness with frequencies, these residuals are not uniformly distributed even

if the model is correctly specified. In this case, one can “jitter” the residuals. Specifically, define

a modified distribution function Fi(y, λ) = Pr(Yi < y)+λPr(Yi = y) and let V be a uniform random

number that is independent of Yi. Then, we can define the jittered residual to be Fi(yi, V ) = ε̃i.

If the model is correctly specified, then jittered residuals have a uniform (0,1) distribution, cf.,

Rüschendorf (2009).

Compared to classical residuals, residuals from probability integral transforms have less ability

to guide model development—we can only tell if the marginal models are approximately correct.

The main advantage of this residual is that it is applicable to all (parametric) distributions. If you

are working with a distribution that supports other definitions of residuals, then these are likely to

be more useful because they may tell you how to improve your model specification, not whether

or not it is approximately correct. If the marginal model fit is adequate, then we can think of the

residuals as approximate realizations from a uniform distribution and use standard techniques from

copula theory to identify a copula. We refer to Joe (2014) for a summary of this literature.

Model Validation

After identification and estimation, it is customary to compare a number of alternative models based

on the training and on the test samples. For the training sample, the “in-sample” comparisons are

typically based on the significance of the coefficients, overall goodness of fit measures (including

information criteria such as AIC and BIC), cross-validation, as well as likelihood ratio comparisons

for nested models.
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For comparisons among non-nested parametric models, it is now common in the literature to

cite a statistic due to Vuong (1989). For this statistic, one calculates the contribution to the

logarithmic likelihood such as in Equation (2.5) for two models, say, l
(1)
i and l

(2)
i . One prefers

Model (1) compared to Model (2) if the average difference, D̄ = m−1
∑m

i=1Di, is positive, where

Di = l
(1)
i −l

(2)
i and m is the size of the validation sample. To assess the significance of this difference,

one can apply approximate normality with approximate standard errors given as SDD/
√
m where

SD2
D = (m − 1)−1

∑m
i=1(Di − D̄)2. In a copula context, see; page 257, Joe (2014) for a detailed

description of this procedure, where sample size adjustments similar to those used in AIC and BIC

are also introduced.

Comparison among models using test data, or “out-of-sample” comparisons are also important

in insurance because many of these models are used for predictive purposes such as setting rates

for new customers. Out-of-sample measures compare held-out observations to those predicted by

the model. Traditionally, absolute values and squared differences have been used to summarize

differences between these two. However, for many insurance data sets, there are large masses at

zero, meaning that these traditional metrics are less helpful. To address this problem, a newer

measure is developed in Frees et al. (2011b) that they call the “Gini index.” In this context, the

Gini index is twice the average covariance between the predicted outcome and the rank of the

predictor. In order to compare models, Theorem 5 of Frees et al. (2011b) provides standard errors

for the difference of two Gini indices.

2.4 Frequency Severity Dependency Models

In traditional models of insurance data, the claim frequency is assumed to be independent of

claim severity. However, the average severity may depend on frequency, even when this classical

assumption holds.

One way of modeling the dependence is through the conditioning argument developed in Sec-

tion 2.2.1. An advantage of this approach is that the frequency can be used as a covariate to

model the average severity. See Frees et al. (2011a) for a healthcare application of this approach.

For another application, a Bayesian approach for modeling claim frequency and size was proposed

in Gschlößl and Czado (2007), with both covariates as well as spatial random effects taken into
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account. The frequency was incorporated into the severity model as covariate. In addition, they

checked both individual and average claim modeling and found the results were similar in their

application.

As an alternative approach, copulas are widely used for frequency severity dependence modeling.

In Czado et al. (2012), the authors fit Gaussian copula on Poisson frequency and gamma severity and

used an optimization by parts method from Song et al. (2005) to do the estimation. They derived

the conditional distribution of frequency given severity. In Krämer et al. (2013), the distribution of

policy loss is derived without the independence assumption between frequency and severity. They

also showed that the ignoring of dependence can lead to underestimation of loss. A Vuong’s test

was adopted to select the copula.

To see how the copula approach works, recall that S̄ represents average severity of claims and

N denotes frequency. Using a copula, we can express the likelihood as

fS̄,N (s, n) =


fS̄,N (s, n|N > 0)P (N > 0) for n > 0

P (N = 0) for n = s = 0

Denote

D1(u, v) =
∂

∂u
C(u, v) = P (V ≤ v|U = u).

With this,

P (S̄ = s,N ≤ n|N > 0) =
∂

∂s
P (S̄ ≤ s,N ≤ n|N > 0)

=
∂

∂s
C(FS̄(s), FN (n|N > 0))

= fS̄(s)D1(FS̄(s), FN (n|N > 0)).

This yields the following expression for the likelihood

fS̄,N (s, n) =


fS̄(s)P (N > 0)(D1(FS̄(s), FN (n|N > 0))

−D1(FS̄(s), FN (n− 1|N > 0))) for s > 0, n ≥ 1

P (N = 0) for s = 0, N = 0.
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For another approach, Shi et al. (2015) built a dependence model between the frequency and

severity. They used an extra indicator variable for occurrence of claim to deal with the zero-

inflated part, and built a dependence model between frequency and severity conditional on positive

claim. The two approaches described previously were compared; one approach using frequency as a

covariate for the severity model, and the other using copulas. They used a zero-truncated negative

binomial for positive frequency and the GG model for severity. In Hua (2015), a mixed copula

regression based on GGS copula (see Joe (2014) for an explanation of this copula) was applied on

a medical expenditure panel survey (MEPS) dataset. In this way, the negative tail dependence

between frequency and average severity can be captured.

Brechmann et al. applied the idea of the dependence between frequency and severity to the

modeling of losses from operational risks in Brechmann et al. (2014). For each risk class, they

considered the dependence between aggregate loss and the presence of loss. Another application of

this methodology in operational risk aggregation can be found in Li et al. (2014). Li et al. focused

on two dependence models; one for the dependence of frequencies across different business lines,

and another for the aggregate losses. They applied the method on Chinese banking data and found

significant difference between these two methods.

2.5 Chapter Summary

In this chapter, multivariate insurance claims modeling is reviewed with an emphasis on the usage

of copulas. First, marginal models for the frequencies and severities are explained, and then these

marginal models are extended into multivariate models using copulas. The chapter is a broad

survey of frequency-severity regression models with an emphasis on insurance analytics applications,

and the chapter contributes to the literature by recommending specific models for the LGPIF

application. The chapter is based on Frees et al. (2016).

Empirical results of the application of the methods in this chapter are shown in Chapter 5

using the LGPIF data. Specifically, Section 5.1 begins with brief summary statistics of the rating

variables used in the empirical application, and Section 5.1.2 shows the coefficient estimation results

and model fits for the frequency and severity modeling for the building and contents line. Section

5.1.3 shows the dependency modeling results. Section 5.1.4 shows the coefficient estimation results
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for other lines. Application of the Tweedie model to the LGPIF is illustrated in Section 5.1.5. Out-

of-sample validation results are shown in Section 5.1.6, and the usage of the Gini index analysis is

shown in Section 5.1.7.
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Chapter 3

Deductible Ratemaking

Abstract

Insurance claims have deductibles, which must be considered when pricing for in-

surance premium. Deductibles may cause censoring and truncation of insurance

losses. For these types of claims, the regression approach is often used with deductible

amount included as an explanatory variable inside a frequency-severity model. In

this way, the resulting regression coefficient can be used to calculate the deductible

rates. On the one hand, this approach has the advantage of incorporating the psy-

chological effect of policyholders making deductible choices into the ratemaking. On

the other hand, standard actuarial textbooks recommend the maximum likelihood ap-

proach for estimating parametric loss models, which can be used for calculating the

coverage modification amounts due to the deductibles. In this chapter, a compre-

hensive overview of deductible ratemaking is provided, and the pros and cons of

various approaches under different parametric models are compared. The regression

approach proves to have an advantage in predicting aggregate claims. The maximum

likelihood approach becomes necessary for calculating theoretically correct relativities

for deductible levels beyond those observed, for each policyholder. Models for specific

peril types can be combined to improve the ratemaking, and estimation issues for

such models under truncation and censoring are discussed.
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This chapter is based on Lee, Gee Y., “General Insurance Deductible Ratemaking,” Conditionally

Accepted by the North American Actuarial Journal.

Details of empirical results are shown in Chapter 5, Section 5.2.

3.1 Introduction

A deductible is an important feature of an insurance contract. Deductibles influence the number

of times the insured will make a claim and will influence the amount that is reimbursed to the

insured in the event of an insured loss. In many cases, deductibles may cause insurance claims

to be observed with censoring and truncation. These aspects must be addressed when pricing

insurance premiums, and the theoretically correct approach can be discussed from the standpoint

of actuarial theory.

To formalize our framework for modeling, let N be the loss frequencies for each policyholder,

and random variable Yj the severities of the losses (for each j = 1, ..., N), which are assumed to

be independent of N. Suppose a deductible d is applied, so that the risk-sharing function from the

perspective of the insurer is defined as

g(Yj ; d) =


0 Yj < d

Yj − d d ≤ Yj <∞.

We can be consistent in notating censored random variables with a subscript g, to remember they

have extra zeros below the censoring point. Also, we will denote truncated random variables and

their corresponding parameters with a subscript ∗. It is helpful to understand that truncation

is basically observing a subset of a full sample, under some truncation mechanism. Hence, the

notation · | d ≤ Yj means observing a variable conditional on d ≤ Yj . Then, the observed, censored

and truncated random variable for claim frequencies and severities for each policyholder can be

denoted as
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Ng(d) =

N∑
j=1

I(d < Yj) (number of claims)

Yg,j(d) =


0 Yj < d

Yj − d d ≤ Yj <∞
(censored severities)

Y∗,j(d) = Yj − d | d ≤ Yj (truncated severities)
1∑
1

Sg(d) =

N∑
j=1

Yg,j(d) (aggregate claims)

where I(·) is an indicator function, taking on the value 1 if the input condition is true, and 0

otherwise. Note that Ng(d) is a summation of Bernoulli random variables. These concepts are

demonstrated using empirical data in Chapter 5, Section 5.2.1, Table 5.34 and Table 5.33. The

concept of censoring and truncation is illustrated graphically in Figure 5.11.

The textbook Klugman et al. (2012) shows in detail how coverage modification affects the

claim frequency and severity distributions. The advantage of applying parametric loss models for

deductible ratemaking is that accurate, theoretically correct deductible rates can be calculated

for insurance losses. When covariates are incorporated into the models, deductibles can be priced

in a subject-specific manner, which allows a rating engine to be theoretically correct for all of

the policyholders within an insurance company. Empirical work using truncated estimation for

insurance claims with data can give practitioners an illustration of the application of loss models

for deductible ratemaking.

Although accurate rates can be calculated using such textbook approaches, a practitioner may

be interested in the regression approach for deductible ratemaking by treating the deductible level

as an explanatory variable in a regression model, as in Frees and Lee (2017). This intuitive solution

is to use the coefficient estimates for log deductible to calculate the relativities for various deductible

levels. This approach is taken for simplicity of implementation, and practicality in ratemaking ap-

plications. The approach becomes particularly useful when a large number of explanatory variables

are used for ratemaking. A practitioner may be interested in learning when to apply truncated

estimation techniques and when the regression approach suffices. Hence, in this chapter of the
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dissertation, a detailed analysis of deductible rating approaches is conducted.

For some more motivation for the study, the reader may consider the situation where an analyst

would be interested in developing a pricing structure that incorporates deductibles in a disciplined

way, and in knowing how to change prices when the deductibles change. Meanwhile, only the

reported losses above a certain deductible level may be observed by the analyst. An actuarial

analyst may need an assessment of the price of a particular insurance policy or a portfolio of

policies under this circumstance. For these considerations, an overview of the available methods

for deductible ratemaking, and a comparison of the approaches using empirical applications, would

be a meaningful contribution to the literature.

3.2 Literature Review

There is a large literature discussing problems related to deductible ratemaking. Some foundational

literature on deductible pricing, exposure rating and coverage modification is summarized in the

following subsections. Statistical methods related to censored and truncated estimation have a long

history, as does the insurance economics literature, where the deductible choice of policyholders is

studied for the assessment of risk preferences. Readers who are interested in the main subject of

the paper may skip this section and go directly to Section 3.3.

Deductible Pricing

A standard reference for deductible pricing in actuarial science is in Brown and Lennox (2015),

where the indicated deductible relativity for a single loss of an insurance policy is given by the

relationship

Indicated deductible relativity =
E[Yg(d)]

E[Y ]
= 1− LER(d),

where LER is an abbreviation of loss elimination ratio. The indicated deductible relativity provides

an assessment of how much an insurance loss cost is reduced by a deductible, from a per-loss

perspective, while the loss elimination ratio provides an assessment of how much the covered loss

is reduced by introducing a deductible d. If the policy has a density function fY , then the loss
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elimination ratio is

LER(d) =

∫ d

0
y fY (y)dy + d

∫ ∞
d

fY (y)dy∫ ∞
0

y fY (y)dy

.

This principle can be applied to excess-of-loss treaty pricing for per-loss insurance and reinsurance

policies, where losses beyond a retention level are covered by a reinsurer. For the frequency-severity

framework, it is helpful to use the notations in the following Section 3.3, to define the relativity of

an aggregate loss as

REL(d0, d) =
E[Sg(d)]

E[Sg(d0)]
=

E[N ]

∫ ∞
d

(1− FY (y))dy

E[N ]

∫ ∞
d0

(1− FY (y)dy

=

∫ ∞
d

(1− FY (y))dy∫ ∞
d0

(1− FY (y))dy

, (3.1)

where d0 is a base deductible. In the textbook, Brown and Lennox (2015), the experience rating

approach, and the exposure rating approach for reinsurance pricing are introduced in relation to

deductible ratemaking. The former uses a company’s historical loss experience, for a best predictor

of future experiences. In the latter approach, claim severity distributions are based on industry

data. The literature has some work related to excess-of-loss layer rating methodologies.

An article by Bernegger (1997) uses the Maxwell-Boltzmann, Bose-Einstein, Fermi-Dirac dis-

tribution to model losses for reinsurance applications. Statistical properties of this distribution is

introduced further in Wu and Cai (1999). To summarize their approach, an insurance company

may be given an increasing curve in δ, say H(δ), where 0 < δ < 1. In this case, δ = d/u is a

normalized deductible in the [0, 1] interval. This curve is differentiated to obtain an expression for

the loss distribution.

Several related studies have been interested in the rating of large insurance losses and the

excess-of-loss layer rating. For example, Ludwig (1991) provides an overview of the exposure rating

approach. Fasen and Kluppelberg (2014) discusses risk processes for large insurance losses without

empirical examples. Several actuarial seminars, such as White and Mrazek (2004) and White

(2005), have introduced advanced practical methodologies for exposure rating approaches. A recent

article by Chavez-Demoulin et al. (2016) applies extreme value models to operational risk. Some

researchers have studied the data misspecification issue under left-truncation, as Gurnecki et al.



39

(2006). These studies provide good motivation for further studies. This chapter of the dissertation

provides an empirical demonstration of how coverage modification effects can be incorporated into

deductible ratemaking. The approach in this dissertation chapter is distinct from existing work,

in that the interest is more focused on the experience rating approach, using data from the Local

Government Property Insurance Fund, introduced further in Chapter 5 and 7.

Coverage Modification

In many cases, the deductible levels correspond to only small values in the lower tail of the claim

distribution. Hence, it is often most efficient to use the regression approach with independent

explanatory variables, for both the frequencies and the severities of insurance claims. However, for

large deductible amounts, there may be motivation to use other approaches.

For a specific class of frequency distributions, called the (a, b, 0) class distributions, the modi-

fication to the frequencies, due to deductibles, has been understood quite well. The (a, b, 0) class

distributions, summarized in Table 3.1, are explained in detail by Klugman et al. (2012). These

frequency distributions have the property such that a scale in the parameter θ results in the same

scale to the mean of the distribution. If the mean of the distribution with parameter θ is given as

E[Y], the mean of the distribution with the scaled parameter θv has mean E[Y]v. This property

can be easily observed by inspecting the last column of Table 3.1.

Table 3.1: (a, b, 0) Class Distributions

Name B(z) B(θ(z − 1)) Mean

Poisson ez eθ(z−1)

∣∣∣∣ θ

Binomial (1 + z)m
∫ 0

((1− θ) + θz)m
∣∣∣∣ mθ

Geometric (1− z)−1
∫ 0

(1− θ(z − 1))−1

∣∣∣∣ θ

Negative Binomial (1− z)−r
∫ 0

(1− θ(z − 1))−r
∣∣∣∣ rθ

In Table 3.1, B(θ(z − 1)) denotes the probability generating function. To understand the effect of

left-truncation of the severities on the frequencies, an effect known as coverage modifications, in

the language of Klugman et al. (2012), is introduced. Let v = 1 − FY(d) be the probability that

a loss results in a claim (a payment). The probability-generating function for the modified claim
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count random variable can be obtained by modifying the probability-generating function of the

underlying (a, b, 0) class distribution P(z) = B[θ(z − 1)] using the probability-generating function

PI(z) = 1− v+ vz of the Bernoulli random variable, which takes on the value 1 when a loss results

in a claim:

Pg(z) = P(PI(z)) = P(1 + v(z − 1)) = B(θ(1 + v(z − 1)− 1)) = B(θv(z − 1)) = P(z; θv). (3.2)

The sum of N Bernoulli random variables has an (a, b, 0) class primary distribution and a Bernoulli

secondary distribution, in which case the probability-generating function for the secondary distri-

bution can be plugged into the probability-generating function of the primary distribution to obtain

the resulting compound distribution. This allows expression (3.2) to be so simple and intuitive.

The two most often used frequency distributions for counts in actuarial science are the Poisson

distribution and the negative binomial distribution. The Poisson distribution is a popular choice

for practical modeling. Let Ng be the observed counts, excluding the unobserved claims due to

truncation, for a policyholder. Note that from (3.2), we know the underlying frequencies also follow

a Poisson distribution, so that

N ∼ Poisson (θ) ⇐⇒ Ng ∼ Poisson (vθ) ,

where v = Pr(Y > d) is the amount of coverage modification. In practice, the negative binomial is

also often used, in order to accommodate for over-dispersion. In this case, a mean parametrization

is used, and the underlying frequencies can be retrieved in a similar way:

N ∼ NB (r, θ) ⇐⇒ Ng ∼ NB (r, vθ) ,

where v = Pr(Y > d). These properties are valid under the assumption that N and v are indepen-

dent, meaning the factors determining the severity are independent of the number of claims.

There has been little work on how to use an estimated loss distribution for deductible ratemak-

ing in conjunction with the loss frequencies. When the loss frequencies and severities are empirically

analyzed together, the sampling frame also becomes an issue. Cummings (2005) recommends the

use of the generalized linear models (GLM) approach to deductible ratemaking. His presenta-
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tion discusses the limitation of the method of Guiahi (2001), where the relationship between the

claim frequencies and the deductibles is not considered. For practical reasons, Cummings (2005)

recommends using standard GLM models with deductibles as an independent explanatory variable.

Truncated Estimation

There is a vast literature on censored and truncated data modeling in statistics. However, most of

these papers focus on the estimation problem, where the goal is to obtain estimates of parameters

for a specified distribution from censored or truncated data. Kaplan and Meier (1958) introduced

the product limit estimator for censored and truncated data. There have been a number of follow-

up studies, including Woodroofe (1985) and Lai and Ying (1991). Kalbfleisch and Prentice (2002)

provides treatment of modeling for censored and truncated data for survival models. Finkelstein

and Wolfe (1985) take a semi-parametric approach for interval censored failure time data. There

have also been a number of studies focusing on estimation problems for particular distributions:

Barr and Sherrill (1999) on the truncated normal, Aban et al. (2006) on the truncated Pareto

distribution, and Chapman (1956) on the truncated gamma distribution. Discrete data with zero

truncation is discussed in Plackett (1953) and Klugman et al. (2012). Recently, Verbelen and

Claeskens (2014) applied multivariate Erlang mixture models to censored and truncated data.

Although the literature is vast, a combined estimation of frequencies and severities under trun-

cation and censoring is rarely found in the statistical estimation literature. The estimation of

censored frequencies under fixed coverage modification amounts is treated theoretically in actuarial

textbooks, but more empirical treatment seems to be needed.

Insurance Economics

There is another vast but separate literature where the selection effect mentioned in Cummings

(2005) is studied in relation to policyholder behavior in the insurance market. The selection effect

occurs when specific deductible choices are correlated with the loss profile of a policyholder. The

problem of deductible choice is important in insurance economics and risk management, as it

is a crucial vehicle for sorting out the adverse-selection and moral-hazard problems in practice.

Hence, it is important to study their effects. The pricing of a deductible is an interesting problem,

and the precise psychological effect of a deductible choice is a problem under active research.
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Hence, the deductible choice problem serves as a framework for understanding economic decisions

under uncertainty, whose implications apply more broadly to problems in society. For this reason,

traditional economics textbooks cover the deductible choice problem in depth. There is a vast

literature in which deductibles are studied in order to understand the risk preference of policyholders

and the presence of adverse selection in insurance markets.

In economics and risk management, articles such as Rothschild and Stiglitz (1976) and Halek and

Eisenhauer (2001) have been standard references for the need of deductibles for mitigating adverse

selection in insurance markets with hidden information. In economics and behavioral economics,

deductible choices of policyholders have been used to study the risk preference of decision makers.

Treatment of this literature can be found in Mas-Colell et al. (1995), Koszegi and Rabin (2006),

and Sydnor (2010). Econometric approaches for measuring the preference of decision makers in

a lab setting have been an active topic of research. For example, Holt and Laury (2002) provide

standard procedures for measuring risk preferences in a lab environment. Recently, there is interest

in extending these studies into real-world problems, through empirical studies such as Cohen and

Einav (2007) and Einav et al. (2012). In particular, Sydnor (2010) illustrates how deductible

choices are often unexplained by standard economic theory, and more sophisticated models may be

necessary.

3.3 Theory of Coverage Modification

This section provides useful theoretical results for deductible ratemaking. Similar results can be

found in Klugman et al. (2012), Gray and Pitts (2012), Tse (2009), and Bahnemann (2015); how-

ever, here the results are simplified and condensed into more general forms, with an emphasis on

small deductible changes. The results apply to any random variable Y , without continuity or the

existence of a distribution required. The results for frequencies apply to any count random variable

N , not just the (a, b, 0) class distributions.

Let us begin by assuming the censored random variable is observed. From an empirical stand-

point, the sample size on which estimation can be performed necessarily gets smaller for the claim

severities, as Y is truncated to Y∗(d). See Figure 5.11. The first theorem provides a general

expression for the difference in expected aggregate claims, under two different deductibles.
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Theorem 3.3.1. Let N be any count random variable, and Y any random variable, each with finite

first moments. If N and Y are independent, then for deductibles d1 < d2, we have

E[Sg(d1)− Sg(d2)] = E[N ]E [Yg(d1)− Yg(d2)] .

Proof. We have

E[Sg(d)] = E

[
N∑
i=1

Yg,i(d)

]
= E

[
E

[
N∑
i=1

Yg,i(d)

∣∣∣∣N
]]

= E [NE [Yg(d)]] = E [N ]E [Yg(d)] ,

and the theorem follows directly.

Theorem 3.3.1 provides an expression for the difference between two aggregate claims means,

under two different deductibles. When the loss severities have a parametric loss distribution, the

following corollaries allow a modeler to calculate the mean average claim and relativities for a given

deductible d, relative to a base deductible.

Corollary 3.3.1.1. If Y has distribution function FY , then for d2 > d1 we have

E[Sg(d1)− Sg(d2)] = E[N ]

∫ d2

d1

(1− FY (y)) dy.

Proof. It suffices to provide an expression for Yg(d). We have

E[Yg(d)] =

∫ ∞
d

(y − d)dFY (y) = (y − d)(1− FY (y))

∣∣∣∣∞
d

+

∫ ∞
d

(1− FY (y)) dy

=

∫ ∞
d

(1− FY (y)) dy.

In particular, we have

E[Yg(d1)− Yg(d2)] =

∫ d2

d1

(1− FY (y)) dy.

Note, E[Yg(d)] is the partial expectation of Y , given Y > d. As a special case, the following provides
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an expression for the modified aggregate claims under any new per-loss deductible level:

E[Sg(d)] = E[S]− E[N ] ·
∫ d

0
(1− FY (y)) dy.

Corollary 3.3.1.2. Using the notation for relativity REL as defined in equation (3.1), we have

E[Sg(d2)] = E[Sg(d1)]×REL(d1, d2) = E[Sg(d1)]×

∫ ∞
d2

(1− FY (y)) dy∫ ∞
d1

(1− FY (y)) dy

,

where d1 may be considered as a base deductible.

This motivates the concept of the relativity for aggregate claims, as explained in Section 3.2.

Hence, the mean aggregate claim is modified by an amount, depending on the deductible. Given

some loss distribution FY , the next theorem allows a modeler to recover the underlying loss fre-

quencies, from observed claim frequencies.

Theorem 3.3.2. Let N be any count random variable, and Y have distribution function FY , each

with finite first moments. If Y is independent of N , then Ng(d) satisfies

E [Ng(d)] = E [N ] · (1− FY (d)).

Theorem 3.3.2 provides an expression for the mean of the observed, censored frequency distribution,

in terms of the underlying loss distribution parameters, under deductible d. When the mean fre-

quency is parametrized using a log-link, for regression purposes, parameters for the underlying loss

N can be obtained by a regression, using offset = ln(1−FY (d)). Given the loss distributions, the

following formulas provide the theoretical marginal changes in the means, under a small deductible

change.

Corollary 3.3.2.1. If E[Yg(d)] is differentiable at d, then

∂

∂d
E[Yg(d)] = −1 + FY (d).
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If FY is differentiable, then

∂

∂d
E[Ng(d)] = −E[N] · fY(d).

Proof. We have

∂

∂d
E[Yg(d)] = lim

d′→d

E [Yg(d
′)− Yg(d)]

d′ − d
= lim

d′→d

−1

d′ − d

∫ d′

d
(1− FY (y)) dy = −1 + FY (d).

An alternative proof assumes a density for Y . Let fY be the density, and we have

E[Yg(d)] = E [(Y − d) · I(Y > d)] =

∫ ∞
d

(y − d)fY (y)dy =

∫ ∞
d

yfY (y)dy − d(1− FY (d)).

Differentiation gives

∂

∂d

[∫ ∞
d

yfY (y)dy − d · (1− FY (d))

]
= −d · fY (d)− (1− FY (d)) + d · fY (d)

= −1 + FY (d).

For the frequency, we have

E [Ng(d)] = E

[
N∑
i=1

I(y > d)

]

= E

[
E

[
N∑
i=1

I(y > d)

∣∣∣∣N
]]

= E [N · P (y > d)]

= E [N ] · (1− FY (d)).

If FY is differentiable, then the rate of change of the frequencies can be obtained by

∂E[Ng(d)]

∂d
= E[N] · ∂ [1− FY (d)]

∂d
= −E[N] · fY(d).

In general, the overall effect of a deductible change on the expected aggregate claim, using any
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count random variable and any severity distribution, can be obtained by differentiation.

Corollary 3.3.2.2. Let N be any count random variable, and Y any random variable, each with

finite first moments. If N and Y are independent, then E[Sg(d)] satisfies

∂

∂d
E[Sg(d)] = −E[N ] · (1− FY (d)) .

Finally, a formula for the truncated severities is provided.

Theorem 3.3.3 (Truncated Severity Modification). Let Y be any random variable with density fY

and distribution FY . Then, Y∗(d) satisfies

∂

∂d
E[Y∗(d)] =

fY(d)

1− FY(d)
E[Y∗(d)]− 1.

Proof. Using the Libnitz rule, and the notation TCEY (d) = E[Y |Y > d], we have

∂E[Y∗(d)]

∂d
=
∂E[Y − d|Y > d]

∂d

=
∂E[Y|Y > d]

∂d
− ∂

∂d
{d|Y > d}

=
∂

∂d

∫ ∞
d

yfY(y)

1− FY(d)
dy − ∂

∂d
{d|Y > d}

=

∫ ∞
d

∂

∂d

yfY(y)

1− FY(d)
dy − dfY(d)

1− FY(d)
− ∂

∂d
{d|Y > d}

=
fY(d)

(1− FY(d))2

∫ ∞
d

yfY(y)dy − dfY(d)

1− FY(d)
− 1

=
fY(d)

1− FY(d)
E[Y|Y > d]− fY(d)

1− FY(d)
d − 1

=
fY(d)

1− FY(d)
TCEY(d)− fY(d)

1− FY(d)
d − 1

=
fY(d)

1− FY(d)
(TCEY(d)− d)− ∂

∂d
{d|Y > d}

=
fY(d)

1− FY(d)
E[Y∗]− 1,

where the last term 1 is obtained by differentiating {d|Y > d} with respect to d. Here, TCE is

used to denote the tail conditional expectation of a severity distribution.
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3.4 Approaches to Deductible Ratemaking

In this section, we provide an overview of different empirical approaches to deductible ratemaking

and how they can be applied in our framework. The two general approaches are the regression

approach and the maximum likelihood approach with truncated estimation methods. First, the

sampling frame is formalized. For rating purposes, we assume the following variables are observed:

{Ng,i(di),xi, di} ,

where xi is a set of explanatory variables including coverage amounts ui, which could not be

adjusted, while di are the deductible choices, which can be adjusted by either the policyholder or

the insurance company. The coverage amounts ui are used as the upper-limit amounts, and these

are assumed not adjustable by the policyholder or the insurance company. In other data sets,

coinsurance amounts also may be observed. Note that the number of losses Ni are realized prior

to the loss amounts. For each loss Ni, the amounts yij are realized, and

y∗,ij(di) = yij − di|yij > di

are observed for each loss j = 1, . . . Ni. Hence, the estimation assumes a claims data set and

a policyholder data set. If the numbers of observations in these two data sets are considered

independent, then standard asymptotic theory could be used for standard error estimates. In

many cases, y∗,ij may be observed, while yij is unobserved.

3.4.1 Maximum Likelihood Approach to Deductible Ratemaking

The maximum likelihood approach is a direct application of the theory, outlined in Section 3.3. We

provide an overview of how the theory in Section 3.3 and similar results in Gray and Pitts (2012),

Tse (2009) and Bahnemann (2015) can be empirically applied to real data. The rating procedure

is summarized into four simple steps. The most difficult part is the estimation step, which requires

statistical estimation methods for censored and truncated loss distributions. Subsequent steps are

simple and straightforward.
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Rating Procedure

1. Obtain FY (y) using statistical estimation. This involves censored and truncated estimation

methods, (see Section 3.3 for related theorems).

2. Obtain E[N ], using Section 3.3 theory. Specifically, use ln(1− FY (d)) as offset and E[Ng(d)]

as response in a regression.
∫ 1

1

3. To calculate the rates for any dnew, obtain E[Yg(dnew)] =

∫ dnew

0
(1− FY (y)) dy, using the

estimated loss model from Step 1 and numerical integration.

4. Calculate the new E[Sg(dnew)] using, E[Sg(dnew)] = E[N ]·E[Yg(dnew)] (see Corollary 3.3.1.2).∫ 1
1

There are two complications to consider. First, for the frequency model parameter estimates, the

standard errors become amplified by the modeling error and estimation error from the severity

distribution, because of the coverage modification.

Second, if the number of claims is considered random, then the size of the claims data depends on

the realization of the claim frequencies and severities for each policyholder, and hence the sampling

frame becomes complicated. It is possible to show that for any confidence level, it is possible to

find a large enough size for the policyholder sample so that the sample size of the claim data set

is ensured to be large enough with any desired confidence. There is a large literature on large-

sample theory for the validity of the fixed sample size for the claims data set, given a sequential

stopping rule. Anscombe (1952) provides a proof for this result. Siegmund (1985) provides an

overview of sequential analysis. In particular, Anscombe (1952) shows that for a sequence of

proper random variables taking positive integer values Nr, the sequence of statistics based on Nr

observations satisfies convergence and uniform continuity in probability. Assuming the sampling

frame described above, application of the rating formulas using the maximum likelihood approach

would use the above steps.

3.4.2 Regression Approach to Deductible Ratemaking

The regression approach is to use GLM models with a log deductible covariate. In practice, it is

common to assume the after-deductible claims follow a gamma distribution or a Pareto distribution.
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Let Y∗ be the observed claims. Then common practice is to parameterize the mean of the gamma

distribution, using explanatory variables xi and coefficients β:

E[Y∗(di)] = exp
(
x′iβ

)
.

In this setup, deductibles may be incorporated into the model. If ln di = lnDeducti is included as

an explanatory variable, then its coefficient, βd, would satisfy

∂E[Y∗(di)]

∂d
=
∂ exp (x′iβ)

∂d
= exp

(
x′iβ

)
βd
∂ ln di
∂d

= E[Y∗(di)]
βd
di
.

Hence, for a single policy i, the coefficient βd can be considered as the deductible elasticity of the

mean:

βd =
∂E[Y∗(di)]/E[Y∗(di)]

∂d/di
.

In econometrics, elasticity is a term used to denote the percentage change in a variable, in response

to a percentage change in an explanatory variable. However, defining a single quantity βd for a

population of policies can be done in many different ways. When the sample of deductibles is

not uniform, or when the deductible choice distribution is correlated with the response variable,

the coefficient βd may reflect this. For this dissertation chapter, assessing how well a calculated

βd summarizes the relativity is best done using graphical approaches explained in Section 3.4.3.

Analogously, if used in the regression for Ng(di), then the corresponding coefficient γd would have

the interpretation

γd =
∂E[Ng(di)]/E[Ng(di)]

∂d/di
.

In actuarial science, the pure premium approach is sometimes used to model the aggregate claims

directly, using a compound distribution, such as the Tweedie distribution. In this case, a similar

approach can be used by including ln di as an explanatory variable in the regression for the aggregate

claims. For an overview of the pure premium approach, the reader may refer to Frees (2014) or Shi

(2016). In this case, the coefficient ξd for ln di would have the interpretation
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ξd =
∂E[Sg(di)]/E[Sg(di)]

∂d/di
.

One may compare the preceding derivations with using lnui = LnCoveragei as an explanatory

variable, in order to incorporate the coverage amounts into the regression model, as larger coverage

amounts should typically result in higher claims. To ensure the interpretability of the coefficients

for log coverage amounts, it is often recommended to use an alternative, exposure (offset) approach.

According to Frees et al. (2016), in actuarial science exposures (offsets) are used to calibrate the

size of potential outcome variables. In this case, the mean can be assumed to vary proportionally

with an amount E. In this case, the coefficient for lnE is restricted to be 1 and included in the

model as an offset. With this convention, we have

µ = E · exp(x′β) = exp
(
x′β + lnE

)
.

One can consider using E = u − d as the offset amount for the regression, when the deductible

amounts are to be incorporated as well. This way, when a policyholder selects a larger coverage

amount (upper limit of policy), higher insurance premiums would be charged. Similarly, higher-

deductible choices would naturally lead to a discount of the premium. The problem with applying

this approach to deductibles is that the precise effects of deductible changes are not considered this

way. In most cases, for a unit of deductible change, the scale change of the loss may be different

from a unit. Note that in reality, the effect of a deductible change may vary, depending on the loss

distributions of the policyholders.

3.4.3 Relativity Calculation

Further insight can be obtained by comparing the relativities for each approach. Recall the ex-

pression for REL in equation (3.1). Given a base deductible d0, for the regression approach, we

have

RELREG(d0, d) =
exp (x′β + βd ln d) · exp (x′γ + γd ln d)

exp (x′β + βd ln d0) · exp (x′γ + γd ln d)
=

(
d

d0

)βd+γd

, (3.3)
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where we assume βd + γd < 0. When the pure premium approach is used, the relativity given base

deductible d0 would be calculated in a similar way:

RELREG(d0, d) =
E[Sc(d)]

E[Sc(d0)]
=

exp (x′ξ + ξd ln d)

exp (x′ξ + ξd ln d0)
=

(
d

d0

)ξd
, (3.4)

where we assume ξd < 0. For a general link function η : (0,∞) → (−∞,∞), the relativity curve

becomes

RELREG(d0, d) =
η−1 (x′ξ + ξd · η(d))

η−1 (x′ξ + ξd · η(d0))
,

where ξd is the coefficient for the covariate η(di) in the regression. Different link functions may

result in different shapes of relativity curves, yet in this paper, let us focus on analyzing the log

link. The true relativity is

RELCM(d0, d) =

∫ u

d
(1− FY (y))dy∫ u

d0

(1− FY (y))dy

, (3.5)

where d > d0. For a Pareto model, if α > 1, we have

RELCM(d0, d) =

∫ u

d

(
λ

λ+ y

)α
dy∫ u

d0

(
λ

λ+ y

)α
dy

=
(λ+ d)−α+1 − (λ+ u)−α+1

(λ+ d0)−α+1 − (λ+ u)−α+1 , (3.6)

and taking the upper bound u to infinity gives

RELCM(d0, d)→
(
λ+ d

λ+ d0

)−α+1

as u→∞. (3.7)

The reader may compare (3.4) and (3.7), and note the similarity, as both are decreasing functions

in d, with the true relativity curve depending on the shape parameter of the distribution. In

particular, observe that in equation (3.7), as λ→ 0 and u→∞, with α > 1, the relativity curve for

the Pareto model becomes identical to that of the regression approach, with ξd = −α+1 in equation

(3.4). To compare the performance of the regression approach, one may plot the relativities for

deductibles in the range [d0, u] and compare the fit. Note that in parametric models with covariates,

the true relativity curve becomes subject specific through the distribution parameters, whereas the
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regression approach would allow for subject-specific variation through interaction terms with the

deductible covariate. The performance of the regression approach depends on how well the relativity

curve approximates the true relativity of a given policyholder.

3.5 Applications

In this section, three applications are provided. Section 3.5.1 performs a simulation study, in order

to illustrate the nature of the relativity curve. From the simulation, we learn that the regression

approach is an approximation to the true relativity curve using one parameter. Section 3.5.2

calculates the relativities using real data from the LGPIF. The LGPIF data is described in more

detail in Chapter 5, and 7. Section 3.5.3 shows that the regression approach performs well in terms

of aggregate claims prediction.

3.5.1 Simulation

To assess the performance of the regression approach, claims were generated synthetically, using pa-

rameters similar to the Local Government Property Insurance Fund (LGPIF) building and contents

claims (explained in more detail in Chapter 5), and the lightning peril type is used for demonstra-

tion. The coefficient estimate results for the severity models are shown in Chapter 5, Table 5.35.

Claims were synthetically generated using parameters similar to those found from estimation. This

way, the deductible level can be adjusted to observe the potential effect on the relativity. Hence,

B = 10, 000 policies were generated using a Pareto distribution, with E[Y ] = 11, 087 and α = 2.553.

The claim frequency mean E[N ] = 1 was used. Deductibles were synthetically generated by the

following procedure:

• Generate di from a multinomial distribution over {500, 1000, 2500, 5000, 10000, 25000}, each

with probabilities (0.461, 0.215, 0.118, 0.095, 0.011, 0.100 ), for i = 1, . . . , B policyholders.

These numbers were used so that the deductible distribution resembles the LGPIF data. Then the

regression approach is used to estimate the elasticities. The results are βd + γd = −0.217 for the

deductible elasticity using the Poisson and gamma family. The relativities are then calculated for
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Figure 3.1: Relativities From Regression Using ln(di), for E[Y ] = 11087, E[Y ] = 2000, and E[Y ] =
500

deductible levels ranging between the base 500 and 25,000 using the regression coefficients, and

shown in Figure 3.1 along with the true relativity curve for comparison.

From Figure 3.1, observe that the regression approach using ln(di) approximates the true rel-

ativity curve in the best possible way, with deviations due to the nature of the log link. In the

first panel, notice that for small relativity values, there is a small discrepancy between the dotted

and solid lines. If the curve is dilated to the right, eventually the regression approach results in

larger and larger deviations from the true relativity, as the curve deviates more from the solid line.

For example, if a deductible of 1,000,000 is selected for the reinsurance retention level, the error in

the relativity would be substantial when the regression approach is used. The regression approach

using ln d as the explanatory variable results in a curve that is steeper than the true relativity curve

for small deductibles, and the curve flattens out eventually due to the nature of the link function.

In subsequent panels, the scale parameter λ is increased, showing how the regression approximation

becomes closer to the true relativity curve when λ approaches zero. In general, we find that the

regression approach would be suitable for moderate-size problems, where the scale parameter λ is

moderate in size.

In Figure 3.2, instead of ln(di), we attempt to use ln(di + λ) for the explanatory variable. This

way, the regression approach relativity curve becomes identical to the true relativity curve, and

in all three panels, the curve fits almost exactly. This suggests several valuable insights. First,

we learn that the regression is an approximation to the relativity curve using one parameter only,
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Figure 3.2: Relativities From Regression Using ln(di + λ), for E[Y ] = 11087, E[Y ] = 2000, and
E[Y ] = 500

or in other words, without a scale parameter. This scale parameter is not known in advance

without performing maximum likelihood. Also, we learn that when the problem is of moderate

size, regression may perform well.

3.5.2 Relativities

Next, we compare the different approaches using real data. Figure 3.3 shows a histogram of the

lightning losses and the fitted distributions using truncated estimation for the exponential, gamma

and Pareto models. From the figure, observe that the exponential and gamma model fits look

about the same, whereas the Pareto model fit is slightly better. Details of the coefficient estimation

results are shown in Chapter 5, Section 5.2, Tables 5.35, 5.36.

The regression approach is implemented using a standard glm software package with Poisson

and gamma families. Log deductibles are included as covariates in each regression model, by peril

type. To compare the single relativity obtained from the regression approach, we calculate single

relativities for the gamma and Pareto maximum likelihood approaches by

RELm(d0, d) =

E

[∑
i

Sg,i,m(d)

]

E

[∑
i

Sg,i,m(d0)

]
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Figure 3.3: Density of Lightning Losses

where Sg,i,m(d) indicates the aggregate claims for peril type m, for policyholder i, under deductible

d. This single quantity allows for a comparison of the relativity obtained from the maximum

likelihood approach and the regression approach.

The regression approach coefficient estimates for the ln(d) explanatory variable are shown in

Table 3.2. These quantities are used to calculate the relativities for the regression approach, by

peril type. Relativities for the maximum likelihood approach are calculated using the estimated

models in Chapter 5, Section 5.2, Tables 5.35, 5.36.

Table 3.2: Coefficients from Regression Approach

Poisson (γd) Gamma (βd) Sum (γd + βd) Adjustment 1 − α**

Fire -0.407 0.228 -0.179 -0.012

Vandalism -1.335 0.981 -0.354 -0.357

Lightning -0.822 0.489 -0.332 -0.874

Wind -0.567 0.259 -0.308 -0.242

Hail* -0.202 0.594 0.391 -0.202 -0.543

Vehicle -1.125 0.429 -0.697 -2.924

Water (Non-weather)* -0.579 0.714 0.135 -0.579 -0.127

Water (Weather)* -0.375 0.949 0.574 -0.375 -0.000

Misc.* -0.734 0.716 -0.019 -0.734 -0.063

*Adjustment made for parameter interpretability.

**Shape parameter of Pareto model is shown for reference.

In Figure 3.4, the peril types are categorized into nine categories, as explained in more detail in

Chapter 5, Section 5.2, Table 5.37. In the figure, relativities for the regression approach and those

obtained from maximum likelihood are overlayed, allowing for comparisons. The numeric values of

the relativities are shown in Table 3.3.

In each panel of Table 3.3, the relativities are shown in the column for each deductible level.

The reader may compare the first panel, showing the regression approach, with the second and

third panels, showing the gamma model and Pareto model, using truncated estimation and the
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rating formulas in Section 3.3. The leftmost column is the relativity for the 1,000 deductible level.

The relativities for the next deductible level, 2,500, are lower as expected, and so on. The lowest

relativity indicates the ratio of the aggregate claims under 50,000 to the aggregate claims under

the base deductible, 500. Hence, the single quantities in the tables allow for a comparison of the

relativity levels for the single elasticity obtained from the regression approach and the maximum

likelihood approach.

The reader may observe that regression provides lower relativities in general. In particular, the

relativities in the regression approach are somewhat more uniform over different deductible levels,

except for very small deductible levels, when compared with the second panel, which uses the same

distributional assumption with a maximum likelihood approach. This is due to the nature of the

log link. As we will see in subsequent sections, the performance of the aggregate claim prediction

is unaffected by this phenomenon. The Pareto distribution has a heavier tail and in general results

in higher relativities. The calculations are shown with holdout sample claims for year 2011, while

the models were fit using data for years 2006–2010.
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Figure 3.4: Plot of Relativities for Regression Approach and Selected MLE Approaches

We have been able to make a few observations while implementing each approach. First,

when the maximum likelihood approach is used with the gamma distribution assumption, some

of the policyholders resulted in relativity values of zero. This shows that although the maximum
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Table 3.3: Comparison of Relativities for Regression Approach and Selected MLE Approaches

Regression Approach

Deductible 1,000 2,500 5,000 10,000 15,000 25,000 50,000

Fire 0.883 0.750 0.663 0.585 0.545 0.497 0.439

Vandalism 0.782 0.565 0.442 0.346 0.300 0.250 0.196

Lightning 0.794 0.586 0.465 0.369 0.323 0.272 0.216

Wind 0.808 0.609 0.492 0.397 0.351 0.300 0.242

Hail* 0.869 0.722 0.627 0.545 0.502 0.453 0.394

Vehicle 0.617 0.326 0.201 0.124 0.094 0.066 0.040

Water (Non-weather)* 0.669 0.394 0.263 0.176 0.139 0.104 0.069

Water (Weather)* 0.771 0.547 0.422 0.325 0.280 0.231 0.178

Misc.* 0.601 0.307 0.184 0.111 0.082 0.057 0.034

*lnDeduct has been included only in the frequency regression, for interpretability.

Poisson-gamma MLE

Deductible 1,000 2,500 5,000 10,000 15,000 25,000 50,000

Fire 0.996 0.983 0.963 0.928 0.896 0.839 0.723

Vandalism 0.868 0.583 0.320 0.106 0.037 0.005 0.000

Lightning 0.960 0.851 0.700 0.484 0.342 0.181 0.046

Wind 0.974 0.903 0.800 0.635 0.510 0.337 0.129

Hail 0.997 0.987 0.971 0.943 0.918 0.872 0.778

Vehicle 0.829 0.448 0.131 0.008 0.000 0.000 0.000

Water (Non-weather) 0.976 0.911 0.816 0.663 0.546 0.380 0.168

Water (Weather) 0.996 0.983 0.965 0.931 0.900 0.845 0.734

Misc. 0.988 0.954 0.904 0.819 0.747 0.631 0.434

Poisson-Pareto MLE

Deductible 1,000 2,500 5,000 10,000 15,000 25,000 50,000

Fire 0.997 0.989 0.976 0.956 0.940 0.913 0.866

Vandalism 0.988 0.967 0.949 0.932 0.923 0.912 0.900

Lightning 0.962 0.865 0.745 0.588 0.490 0.371 0.236

Wind 0.984 0.942 0.888 0.812 0.758 0.686 0.583

Hail 0.994 0.978 0.952 0.907 0.868 0.803 0.687

Vehicle 0.955 0.863 0.783 0.722 0.702 0.688 0.682

Water (Non-weather) 0.988 0.957 0.916 0.859 0.818 0.761 0.680

Water (Weather) 0.995 0.982 0.964 0.935 0.913 0.879 0.823

Misc. 0.988 0.959 0.922 0.870 0.834 0.783 0.710
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likelihood approach has the flexibility of providing policyholder-specific relativities by varying the

parametrization, sophisticated distributional assumptions, such as a long-tail, Pareto distribution,

would be needed for the relativities to be interpretable. In contrast, the regression approach

provides a single relativity value, which allows for easier interpretation. The regression approach,

although not perfect, seems to provide reasonable single-value relativities for an analyst to use.

In particular, observe that the maximum likelihood experienced difficulty in assessing the van-

dalism relativities, because claims in this category are influenced substantially by the deductible,

as claim sizes are small. Regression seems to provide more reasonable relativities for this category.

The reader may observe this in Table 3.3.

Second, the severity model for the regression approach sometimes provided coefficients that

could not be interpreted. This situation is illustrated in Table 3.2. Specifically, hail, water and

miscellaneous peril types resulted in βd values too high compared to γd. In these cases, the regression

model must be fixed, with βd omitted from the severity model. In Section 3.5.3, a similar situation

was observed for the aggregate claims model. The reader may see the coefficient for lnDeductBC

in Chapter 5, Section 5.2, Table 5.39.

3.5.3 Aggregate Claims Prediction

How well does each method, including the regression approach, perform in aggregate claims pre-

diction? We compare the regression approach with the maximum likelihood rating approach for

total aggregate claims prediction for an entire line. From this study, we demonstrate that, although

the regression approach provides smaller-than-reasonable relativities for some policies, it performs

quite well in terms of total aggregate claims prediction. We expect the regression approach to

provide a practical solution for applications with a large number of explanatory variables, where

the aggregate claims prediction is of primary interest. For a demonstration, we compare the results

of three different approaches:

(A) Regression approach, using Poisson-gamma, with the lnDeduct covariate

(B) Maximum likelihood approach, using Poisson-gamma truncated estimation

(C) Maximum likelihood approach, using Poisson-GB2 truncated estimation
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We did not implement a regression approach for the Poisson-GB2 model, because comparing the

three cases listed would suffice in demonstrating the most commonly encountered assumptions in

practice. Advantages and disadvantages of regression and maximum likelihood can be illustrated

by comparing these three common modeling assumptions. The estimation results are shown in

Chapter 5, where the tables for model A, B and C are each shown in Tables 5.39, 5.41, and 5.42.

Using these coefficient estimates, the total aggregate claims are predicted for different deductible

levels. For the regression approach, the log deductible amount is multiplied by the coefficient

estimate –0.737 in model A. The coefficient estimates from truncated estimation are also used to

calculate the aggregate claims, and the result is compared with predictions from the regression

approach.

Table 3.4: Out-of-Sample (2011) Performance of Each Approach

Aggregate Pearson Spearman

Claims Correlation Correlation

with Claims with Claims

(A) Poisson-gamma regression 16,170,966 0.2231 0.3922

(B) Poisson-gamma MLE 11,464,929 0.3358 0.3847

(C) Poisson-GB2 MLE 20,976,735 0.4157 0.4025

Claims 19,036,189 1.0000 1.0000

According to Table 3.4, the regression approach was effective in identifying the ranking of the

policyholders (as could be seen from the Spearman correlation), as well as predicting the amount

of aggregate claims, compared with the maximum likelihood approach using the same distribution

assumption. The aggregate claim amount for the regression approach, 16,170,966, is in fact closer

to the empirical claims than 11,464,929. This shows, for many practical rating problems with small

data sets, that the regression approach may provide a good assessment for the actual aggregate

claims. That is perhaps because the coefficients βd and γd incorporate the deductible selection

effect into the rating.

Theoretically, it is possible to incorporate the deductible selection effect into the Poisson-GB2

model. For example, one may consider fitting a separate severity model for various deductible levels.

A similar approach could be used for the mixture approach as well. If a selection effect exists, then

the severity model coefficient estimates would provide different parameters for each deductible level.

Another potential way to incorporate the selection effect is to use dependence modeling, considering
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Figure 3.5: Comparison of Severity Distributions. Panel 1: gamma losses fit; Panel 2: GB2 losses

fit; Panel 3: GB2 truncated estimation (Kolmogorov-Smirnov test statistics (p-values) 0.199 (0.000), 0.025

(0.003), 0.103 (0.000))

the dependence between deductible levels and the loss severity. This approach is left as future work.

According to Table 3.4, long-tail loss models, such as the GB2 model with truncated statistical

estimation, and coverage modification theory can improve the deductible rating, as the third row of

the table shows. Figure 3.5 provides some insight into why the prediction improves. The left panel

shows the Q-Q plot when the GB2 model is fit to the underlying loss distribution, assuming it is

observed. The LGPIF data records both the underlying loss and the deductible amounts, which

allows this figure to be shown as a comparison. The first panel shows that the fit of the gamma

distribution suffers for the lower and upper tails of the claims distribution. The middle panel shows

that the GB2 fit is better, and the third panel shows that truncated estimation has recovered the

underlying distribution quite well. In general, a better fit of the underlying loss model would result

in a better assessment of the coverage modification of the deductibles, for either small values or

large values of deductibles.

During our analysis, we performed comparisons of claim scores obtained from different models,

for various hypothetical deductible levels. For example, the aggregate claims can be predicted for

increasing deductible levels, and applied to all policyholders throughout the property fund. The

predicted aggregate claims can then be compared with the hypothetical empirical observed claims,

which can be obtained by applying the hypothetical deductible level to the underlying losses. In

general, our analyses have shown that, for large deductibles, the GB2 -01NB model performs best.
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Defining how large a deductible level is required, for the maximum likelihood approach to become

necessary, would be an interesting research question for future studies. The regression approach may

be a good method for predicting aggregate claims, for moderate-size data and small deductibles.

We find that when accurate deductible relativities are of interest for large losses, more elaborate

methods, such as the maximum likelihood approach, are needed with truncated estimation. In

particular, if subject-specific deductible relativities are needed or when an excess of loss layer is to

be priced, then the maximum likelihood approach would be necessary. In contrast, when a single

relativity value is desirable, the regression approach may turn out to be useful.

3.5.4 Comparison of Frequency Models

The severity distribution influences the truncation of the underlying frequency distribution through

the coverage modification amount v = 1−FY (d). This section compares different frequency model

assumptions under such deductible influence. We compare the Poisson model and 01-inflated

Poisson model by fitting the two distributions to the underlying loss frequencies and then attempt to

estimate the same parameters using the censored frequency observations. Details of the estimation

issue for 01-inflated count models under deductible influence are covered in Chapter 5, Section

5.2.3. For an introduction to 01-inflated count distributions, the reader may refer to Chapter 2,

Section 2.2.2.

Table 3.5 shows that the 01-inflated Poisson model fit is better than that of the Poisson model,

when the underlying losses are observed. This situation is shown in the first panel, where the

01-Poisson with underlying frequencies in general fit the empirical counts better, in each count

category. For example, the number of zero observations is predicted to be 768, which is close to

the empirical 766.
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Table 3.5: Comparison of Predicted Counts Using Validation Sample

(1) (2) (3) (4)

Poisson 01-Poisson Poisson 01-Poisson Empirical

Count Underlying Underlying Censored Censored Counts

Estimation Estimation (2011)

0 703 768 614 603 766

1 194 195 231 236 187

2 84 54 108 109 57

3 42 29 56 57 28

4 23 16 31 32 17

5 14 10 18 19 14

6 8 6 11 12 4

7 6 4 7 7 8

8 4 3 5 5 2

9 3 2 3 4 2

10 2 2 2 2 2

11 2 1 2 2 1

12 1 1 1 1 0

13 1 1 1 1 1

14 1 0 1 1 0

15 1 0 1 1 1

16 1 0 0 0 1

17 0 0 0 0 0

18 0 0 0 0 0

19 0 0 0 0 0

Note: Each column attempts to predict the underlying loss frequencies. Loss count categories

0–19 are shown for illustration. Notice that (3) and (4) overpredict the 0-losses and 1-loss

categories and underpredict the 2-losses category. This is as expected, and the reader may

understand the reason from the fit of the severity distribution below the deductible. Compare

the Q-Q plots in Figure 3.5.

The situation is different when a deductible causes censoring. In terms of the predicted counts,

the 01-Poisson does not perform better than the Poisson. This is because prediction of the observa-

tions below the deductible has become difficult, as the censoring causes data below the deductible

to be unobserved. This motivates using a basic model for the counts when censoring is in place.

Hence, the Poisson model is used in Section 3.5.3, which also allows using the ln(1− vi) offset tech-

nique for estimation. The reader may refer to Chapter 5, Section 5.2.3 for details of the estimation

procedure when a 01-inflated Poisson model assumption is used, and the coefficient estimate results

under this assumption.
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3.6 Summary

Loss models are built on positive responses. For this reason, log links or other such link functions

η : (0,∞) → (−∞,∞) are required to implement a regression approach. As a result, when the

deductible amount is included as a covariate in a regression, the resulting relativities become an

approximation of the theoretically true relativities. Ratemaking using the regression approach has

practical advantages, because it can be used with the standard generalized linear models framework.

As we have seen, the regression approach to the ratemaking of deductibles proves to be valuable

when the aggregate claims prediction is of most interest.

This dissertation chapter provides an overview of the rating of deductibles for per-loss insurance

deductibles. The chapter demonstrates how textbook methods for coverage modification compares

with the regression approach. Theoretical results have been generalized to loss variables without

continuous distributions. The chapter also provides a comparison of the regression approach to

deductible ratemaking, with the maximum likelihood approach.

To summarize the work in this chapter, a comprehensive overview of deductible ratemaking has

been performed. For cases where small deductibles are applied and the aggregate claim amounts are

the primary interest, the deductible amounts may be used as covariates in the scale parametrization

of a regression model. The reader may compare equations (3.3) and (3.7) to understand how

the regression approach provides a reasonable approximation of the true relativity curve, and the

meaning of the shape parameter of a distribution in relation to the curvature of the relativity

curve. This approach is not suitable when deductibles are large or when the precise relativities are

of interest for large losses, as shown in Figure 3.1.

When large deductibles are to be priced, the maximum likelihood approach is recommended.

For example, excess of loss layers may be priced better by fitting an underlying loss model. Yet,

as Table 3.4 shows, when different deductible-rating approaches were used to predict the aggregate

claims, the regression approach performed reasonably well, outperforming the maximum likeli-

hood approach using an identical distributional assumption, in terms of predicted aggregate claim

amounts. The explanation is that regression utilized the deductible selection effect within the data.

Specifically, the deductible elasticity of the claim frequency may likely have included effects due to

deductible selection.
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Future Work

For future studies, it may be interesting to apply more elaborated estimation procedures for

the case when the observed data contain only the average severities. Further studies on estimation

issues for compound distributions also may be of interest. The effect of an aggregate deductible

may also be a natural extension, where an additional layer of deductible is applied to the losses.

In addition, the claims may be classified using more elaborated techniques, to allow for efficient

peril-specific loss models for deductible ratemaking, using regression and maximum likelihood. The

influence of classification on deductible rates may also be potentially interesting to study further.

With big-data becoming an important issue in analytics, consideration of truncation and censoring

issues in classification methods may be a very important extension to consider.

Deductible Selection Effects

In my opinion, the most interesting extension would be the consideration of deductible selection

effects. For example, separate models may be imposed for each deductible choice for different sub-

populations. The difference between two sub-populations can sometimes be captured by a single

parameter, but sometimes not. In the latter case, different parameters, and hence different models

can be used for the two sub-populations.

For example, consider a high risk-type group, and a low risk-type group. The risk-type may

be indicated by the deductible choice of the policyholders. The fitted loss distribution for the two

groups may be identical, or it may be different. The difference may be indicated by the difference in

the model parameter estimated from the two populations. If the estimated parameters are different

and significant, then it may provide evidence of deductible selection effects from the population.
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Chapter 4

Insurance Portfolio Optimization

Abstract

In this chapter of the dissertation, the insurance risk retention problem is explored.

Given an underlying claims distribution and a premium constraint, what is the opti-

mal amount of risk to retain, or equivalently which level of risk retention parameters

should be chosen by an insurance entity? The risk retention parameter may be de-

ductible (d), coinsurance (c), or upper limit (u). Is it possible to find the optimal

parameter, and hence the optimal retention? The problem is studied using numerical

optimization techniques, utilizing the estimated claims distributions using loss mod-

eling methods. In our study, the minimum amount of premium collected is used as

a constraint to the optimization, and the deductible, upper limit, or coinsurance is

optimized for each policyholder. The optimization is performed under consideration

of the portfolio of all other policies carried by an insurance company. The chapter

discovers that the RM2 measure is equivalent to the loading factor of a reinsurance

premium, and also illustrates that the risk retention problem is not convex, but quasi-

convex. This means unique solutions can be found within intervals of the parameter

space.

Empirical results using the Local Government Property Insurance Fund (LGPIF) are shown in

Chapter 5, Section 5.3 in the form of a case study.
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4.1 Introduction

Determining the optimal form of an insurance contract can mutually benefit the insurance company

and the policyholder. What does it mean to optimize an insurance portfolio? This question relates

to the classic mean-variance trade-off of the Markowitz model of portfolios in finance.

To briefly summarize this chapter of the dissertation, a constrained optimization problem is

formulated, similar to the Markowitz framework, so that the V aR minimizing portfolio is found

under a certain premium constraint (Note: V aR is the amount of assets needed to cover possible

losses). The parameters over which the optimization happens are the deductible, upper limit, and

coinsurance. Because these risk retention parameters form a non-convex optimization problem, we

resort to numerical techniques to find optima for empirical studies.

Section 4.2 reviews related literatures, and introduces the reader to the concept of a loading

factor. Basically speaking, the tradeoff between having reinsurance versus taking one’s own risk,

happens because of what is known as the loading factor in the optimal reinsurance literature. If

there were no loading factor, then an insurer would have incentive to reinsure all of the risk. Under

a certain loading factor, now the insurer has a decision to make: How much should be retained, and

how much should be reinsured? The decision is influenced by the loading factor. This framework

is summarized in more detail in Section 4.3.

In subsequent sections, specific sub-cases of the full framework are explored one at a time. Sec-

tion 4.4 and 4.5 explores the single risk case, with and without the concept of a portfolio of risks

insured. Basically, consider a single policy, and all the rest of the policies, and consider changing

the parameter for the single policy. What are the optimal parameters, or in other words, what is the

optimal amount of insurance/reinsurance to purchase, under knowledge of the distribution of the

losses carried by an insurer. Section 4.6 extends the study to aggregate losses, and demonstrates

the quasi-convexity of the problem. An important class of quasi-convex functions is monotonic

functions, and the chapter demonstrates that our portfolio optimization problem deals with mono-

tonic functions, and hence has unique solutions under premium constraints. Section 4.7 explores

a specific case of the aggregate loss optimization problem, where blocks of policies are optimized.

A block of policies is basically a collection of policies that follow the same parameter, such as a

collection of school entities, etc. Subsequent chapters provide further insights. For example, Section
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4.8.1 explores the case, where two layers of parameters are optimized.

Insurance and reinsurance takes various forms, such as quota-share, stop-loss, or change-loss,

to name a few. In many cases, the goal is to determine the price for an insurance scheme, under

some type of budget constraint, couched in terms of preferences of the risk taker. Under restrictive

assumptions, both the utility theoretic and the risk measure approaches reduce to thinking about

a premium as an expected value and measuring the uncertainty through the variance. We begin

by reviewing relevant literature, and formalizing the concept of a loading factor 1 + λ∗, where the

superscript ∗ is used to recognize the fact that the loading factor is actually identical to what is

known as the RM2(θ∗) risk measure, introduced in Frees (2016), evaluated at the optimal parameter

θ∗. This basically means that the loading factor could be numerically computed, if desired.

4.2 Literature Review

Risk Retention Literature

For an example of a related actuarial textook, Gray and Pitts (2012) compares the risk-sharing

arrangements involving deductibles, coinsurance, and upper limits. Traditional approaches in the

insurance economics and risk management literature have sought to find an optimal risk retention

function. Specifically, using conditions on an insured’s preferences as quantified by a utility function

or a risk measure, substantial work has gone into determining the optimal form of a contract

and, in some cases, the optimal level of contract parameters such as deductible, upper limit, and

coinsurance. Also discussed in the traditional insurance economics literature is the issue of function

optimality in the presence of “background risks,” cf. Schlesinger (2013). For example, we could

represent the insurer’s total risk as the sum of the insurer’s share of the loss, and all other risks. The

insurance economics literature focuses on the robustness of the optimality results in the presence

of background risks, typically making as few assumptions as possible about the background risk

distribution.

Insurance Economics Literature

There is a long history of determining the risk retention parameters in the insurance economics

literature. Using this approach, an optimal choice of risk retention parameters can be determined
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through expected utility. A classic problem in insurance economics is to find the value of c to

maximize expected utility, Eu[w0 − (1 − c)Y − cE[Y ](1 + λ∗)], where u(·) denotes an insured’s

utility function and w0 represents initial wealth. Under mild conditions, the result of Mossin

(1968) indicates that full coverage corresponding to c = 1 is optimal when insurance is fair, λ∗ = 0.

When a loading is in place, λ∗ > 0, then a partial insurance coverage corresponding to a value of

c < 1 is optimal, cf., Schlesinger (2013). Schlesinger also notes that this insurance result has a

portfolio interpretation. One can define A = w0 − E[Y ](1 + λ∗) to be a non-risky asset and the

weighted average to be a combination of a non-risky and risky asset y. In this sense, the insurance

choice problem is equivalent to the portfolio problem in financial economics. As another example,

the optimality of deductible policies (d > 0) was first established by Arrow (1974). See Gollier

(2013), for a description of this and related results.

As with utility theoretic approaches, there is a long although less well-known, literature on

the choice of optimal risk retention parameters beginning with the work of Borch (1960). Related

to this, Assa (2015) provides a recent overview of this literature. As described in Assa (2015), in

insurance one worries about optimal decisions from both the insured and the insurer’s viewpoint. In

the context of this literature, one may consider the cE[Y ](1+λ∗) term as a reinsurance premium for

a quota share of the risk cY . Thus, (1 +λ∗) becomes a loading factor for the reinsurance premium.

Note, this formulation disregards the credit risk of a reinsurance contract.

Optimal Reinsurance Literature

Notations: The following are common notations in the literature.

Insured risk : If = Y − g(Y )

Quota-share reinsurance : g(Y ) = c · Y

Stop-loss reinsurance : g(Y ) = max{0, Y − d}

Change-loss reinsurance : g(Y ) = c ·max{0, Y − d}

Bowers et al. (1997), Daykin et al. (1994), and Kaas et al. (2001) emphasizes that for a fixed

reinsurance premium, the stop-loss contract is the optimal solution among a wide array of reinsur-

ance schemes, in the sense that it gives the smallest variance of the insurer’s retained risk. Recently,
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Cai and Tan (2007) provided a framework for finding the optimal stop-loss insurance contract un-

der VaR and CTE risk measures. In this framework, an analytic form of the optimal contract

could be determined, which depends on the safety loading of the reinsurance premium. In their

model, the safety loading and assumed loss models are critical factors for determining the optimal

retention levels. They consider the optimal reinsurance P (g(Y )) = (1 + λ∗)E(g(Y )), with λ∗ as

the relative security loading. For example, for the V aR, when it exists, the optimal retention level

would be d∗ = V aRλ′(Y ), where λ′ = λ∗/(1 + λ∗). The authors also illustrate that the results for

the individual risk models may be extended to dependent risks, and show the use of multivariate

phase type distributions, multivariate Pareto distribution, and multivariate Bernoulli distribution,

for the assessment of the effect of dependence on optimal retention levels.

Another related work, Cai et al. (2008) establishes that depending on the risk measure level of

confidence and the safety loading for the reinsurance premium, the optimal reinsurance can be in the

forms of stop-loss, quota-share, or change-loss. The authors find the optimal reinsurance contract

over a class of convex functions, so that the optima is g∗(X) = (min(Y, V aRα(Y ))− V aRλ′(Y ))+,

where λ′ = λ∗/(1 + λ∗). This is a form of stop-loss insurance.

Follow-up studies have furthered this approach using optimization criteria involving both the

insurer and the reinsurer. See Cai et al. (2015), Cai and Wei (2012a), Cai and Wei (2012b),

Embrechts et al. (2017), Cai et al. (2017). When there are multiple insurance players, Asimit

et al. (2013) considers the optimal risk transfer under quantile-based risk measure criteria. The

optimality problem of the risk transfer contract between two insurance companies with a one-period

setting appears in the literature. Specifically, let ϑ be the risk measure, such as V aR or CTE. Let

Y be the loss, g(Y ) is the amount retained by the insurer and Y − g(Y ) be the amount retained

by the policyholder, or the cedent. The function g is assumed to be smooth, specifically, Lipschitz

such that |g(y1)− g(y2)| ≤ |y1 − y2| for all y1, y2. Then, for a premium functional P , the decision

becomes min{ϑ[Y ] − ϑ[Y − g(Y )] + P [g(Y )]}, where P [g(Y )] = E[g(Y )](1 + λ∗), with λ∗ as the

relative security loading.

Sung et al. (2011) studies the optimal insurance policy offered by an insurer under the cumulative

prospect theory framework of Kahneman and Tversky, with convex probability distortions. They

show that under a fixed premium rate, the optimal insurance policy is either an insurance layer

or a stop-loss insurance. This work is part of a vast literature, which attempts to better explain
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the observed insurance buying behavior using non-expected utility models, including subjectively

weighted utility. In their work, the proportional premium principle is used, so that P [g(Y )] =

E[g(Y )](1 + λ∗), with λ∗ as the relative security loading. More studies on probability distortions

and risk preferences can be found in Mas-Colell et al. (1995), Koszegi and Rabin (2006), Sydnor

(2010).

Quantile Sensitivity Literature

Recently, Frees (2016) used results in the management science literature based on quantile

sensitivities. A quantile sensitivity measures the change in a risk measure, such as a value at risk,

based on changes in an input, such as a deductible or other retention parameter. By assessing the

(local) direction and size of a risk measure change per unit change in a retention parameter, valuable

advice on which parameters to change can be formed. Sharp, actionable results were provided in

Frees (2016) in part due to the knowledge of the background risk distribution but also because the

portfolio results were only local, not global, as in much of the literature. Hong (2009) proposes a

kernel estimator for estimating quantile sensitivities, which is consistent and asymptotically normal.

The authors provide a numerical example, where the method is applied to a portfolio consisting

of three assets. The authors also apply the method to a production-inventory example, where the

quantile sensitivity of the total cost over n periods is computed, as well as a queueing example,

where the quantile sensitivity of the service time is calculated numerically.

In this chapter of my dissertation, I will demonstrate how the risk measures literature ties

together with the framework of Markowitz, and how to rethink the security loading factor (1 + λ∗)

found consistently throughout the literature. I will extend the work of Frees (2016) using aggregate

loss models, and demonstrate applications of the risk retention framework.



72

4.3 Framework

Using general notations, let the total losses for an insurer’s portfolio be

S =
∑
∀i
Si

where Si is the aggregate loss for policy i. Let the aggregate loss for policy i be

Si =

p∑
k=1

Nik∑
j=1

Yijk,

where Yijk is the jth claim for the ith policyholder in coverage group (line) k. For an important

special case of transformations of insured losses, consider the risk-sharing function, where the wedge

symbol is defined as Y ∧ u = min(Y, u).

g(Y ; d, c, u) = c (Y ∧ u− Y ∧ d) =


0 Y < d

c(Y − d) d ≤ Y < u

c(u− d) Y ≥ u

. (4.1)

Here, the risk retention parameter d is the deductible, c is the coinsurance percentage, and u is the

upper limit of coverage. Let the retained claim be Sg,i. Then we have:

Per-loss level risk retention function: g1(Yijk) = g(Yijk; ci1, di1, ui1)

0∑
0

Per-line level risk retention function: g2(Sg1,ik) = g

Nik∑
j=1

g1(Yijk); ci2, di2, ui2


Per-policy level risk retention function: g3(Sg1,g2,i) = g

(
p∑

k=1

g2(Sg1,ik); ci3, di3, ui3

)

Retained claim: Sg,i = g3(Sg1,g2,i)

0∑
0

where Yijk is the loss for the jth loss of the ith policyholder in coverage group k.
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The above framework uses the notation

Sg1,ik =

Nik∑
j=1

g1(Yijk)

which is the aggregate claim amount for policy i in the k coverage group, and

Sg1,g2,i =

p∑
k=1

g2(Sg1,ik)

is the aggregate claims for policy i, which is obtained by summing all the losses in coverage groups

k = 1, ...p. Also, Nik is the number of losses for the ith risk, which could be a random variable.

Define:

Rg,i = Si − Sg,i (4.2)

to denote the reinsured loss. In this case,
∑

k

∑
j g(Yijk) denotes the insured loss, the amount

that the insurer will pay for the ith contract. Let θ be the collection of risk retention parameters,

including deductible, coinsurance, and upper limit. In this dissertation, the primary interest is in

Sg = g

 Ni∑
j=1

g(Yij , θi1), θi2

+ S(i)

where S(i) represents other risks in an insurer’s portfolio (and so the insurer has knowledge of the

distribution). The focus may be on a specific coverage group, and hence the subscript k is omitted.

Think of the quantile ξg,i as the amount of assets that the insurer needs to retain for the insured

loss at a given parameter θ. Then

qg = inf {y : Fg(y) ≥ α} (4.3)

where Fg is the distribution of the insured loss Sg. Suppose the insurer wishes to minimize qg

subject to a restriction on the premiums. We can write this as a constrained optimization problem.

Specifically, over different choices of θ, we seek to

minimize qg

subject to E[Sg] ≥ Pmin
(4.4)
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for the minimal premium Pmin. From this perspective, the insurance portfolio problem is compa-

rable to the classical portfolio optimization problem introduced by Markowitz in a finance context.

For us, it will be important to check that both the objective function qg and the constraint

function E[Sg] are quasiconvex in θ in order to ensure a global optima. A function is called

quasiconvex if its domain and all its sublevel sets are convex. For a function in R, quasiconvexity

requires that each sublevel set be an interval. If the function is strictly quasiconvex, then any

local optimal point will be a global optimal point (See Section 4.8.5). Further, as is common with

portfolio problems, there is a frontier of optimal points that one can visualize using a plot of E[Sg]

versus qg. The corresponding Lagrangian is

L = qg − {E[Sg]− Pmin} (1 + λ∗)

so that the Lagrange multiplier is

(1 + λ∗) =
∂θ qg
∂θE[Sg]

= RM2(θ∗). (4.5)

This is the risk measure relative margin introduced in (Frees, 2016). Our discovery is that the

first order condition from the optimal reinsurance literature can be reinterpreted in terms of the

RM2. Specifically, in the optimal reinsurance literature, the first order condition

∂qSg
∂θ

+
∂E[Rg,i]

∂θ
(1 + λ∗) = 0

is used, assuming a fixed loading factor (1+λ∗), which we can now understand as the RM2 measure

at the optimal parameter θ∗. For multiple dimension, we have θ∗ a vector. Taking the gradient of

the Lagrangian gives

∇θqg −∇θE[Sg](1 + λ∗) = 0

E[Sg] ≥ Pmin

Now that we have formalized the framework in terms of the RM2 measure, our next step is to

demonstrate how the the optima for specific examples can be determined using constrained op-
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timization. Focusing on a single coverage group, we will be interested in exploring the following

specific cases:

Main Text

• Single loss risk retention Sg = Sg,i = g(Yi) (Section 4.4).

• Single loss with omit-i portfolio, Sg = Sg,i + S(i) = g(Yi) + S(i) (Section 4.5).

• Aggregate losses, Sg = Sg,i + S(i) = g(Yi1) + ...+ g(YiNi) + S(i) (Section 4.6).

• Blocks of policies, Sg = Sg,i + S(i) = g(Yi1) + ...+ g(Yip) + S(i) (Section 4.7).

Supplementary Notes

• Two layers of parameters, Sg = Sg,i + S(i) = g2(g1(Yi1) + ...+ g1(YiN )) + S(i) (Section 4.8.1).
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4.4 Single Loss Risk Retention

For a fixed 0 < α < 1, and a specific policy (so that the subscript i is omitted), let q = F−1(α)

be the corresponding quantile. Let b = c(u − d), which represents the maximum payout. The

distribution function of g(Y ), shown in (4.1), is

Fg(Y ;θ)(z) =


F (d) z = 0

F
(
z
c + d

)
z < b

1 z ≥ b

.

There is additional discreteness due to the parameters d and u (or b). To compute the mean insured

loss, use integration by parts to get (see Chapter 3, Corollary 3.3.1.1)

E[g(Y ; θ)] = c

∫ u

d
(1− F (y))dy

This result assumes that d is finite. The case of d = −∞ can be handled in a straightforward

fashion. From Frees (2016), if F (d) < α < F (b−), then one finds qg has the solution z of the

equation α = F
(
z
c + d

)
. Straight-forward algebra shows this to be qg = c (q − d), where q is the

quantile of the underlying variable Y . If α ≥ F (b−), then qg = b = c (u− d) . Summarizing, we

have

qg =


0 α < F (d)

c(q − d) F (d) ≤ α < F (b−)

c(u− d) α ≥ F (b−)

. (4.6)

Optimization of Upper Limit

In this section, we demonstrate how the risk retention parameter u can be optimized for a simple

example. Assume that the distribution of Y follows a Pareto distribution with distribution function

FY (y) = 1−
(

γ

x+ γ

)η
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so that the mean is

E[Y ] =
γ

η − 1
.

Taking a single Building and Contents loss for the City of Green Bay, from the LGPIF data, assume

that γ = 26425.53, η = 1.846395, so that the mean is 31221.28 (see Chapter 5, Section 5.1, Table

5.11 for parameter estimation details). If α = 0.95, then the quantile is 107436.1 with a zero

deductible. For this distribution, the quantile is

q = γ
(

(1− α)−1/η − 1
)

= 107436.1

and the expected value is

E[g(Y ; d, c, u)] =
cγ

η − 1

[(
γ

d+ γ

)η−1

−
(

γ

u+ γ

)η−1
]

= 31221.28.

The expected value calculation is based on limited expected value calculations documented in, for

example, (Klugman et al., 2012). Focusing on the upper limit, so that c = 1 and d = 0,

qg =

 q α < F (u−)

u α ≥ F (u−)

which is linear in the upper limit parameter. We also have

E[g(Y ;u)] =
γ

η − 1

[
1−

(
γ

u+ γ

)η−1
]

Figure 4.1 is a plot of the quantile and the premium, both as a function of the upper limit u. The

quantile function is linear in u and hence quasi-convex. The premium function is concave in u, as

well as quasi-convex.
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Figure 4.1: Convexity of Single Policy Quantile Function

An insurer would like to make the quantile (left-hand panel) as small as possible by lowering the

upper limit. The smallest value occurs when the constraint is binding. Thus, the required premium

is E[Y ] = Pmin, so that the optimal upper limit is

umin = γ

[(
1− (η − 1)Pmin

γ

)−1/(η−1)

− 1

]
.

Figure 4.2 is a graph of the optimal upper limit and quantile as a function of the required premium.

As the insurer wants more premium, the upper limit increases and the necessary assets (the quantile)

increases.
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Figure 4.2: Optimal Upper Limit and Quantile

Figure 4.2 shows how to calculate explicit results for a single policy retention with upper limit only,

for a Pareto distributed risk.

Numerical Optimization of Upper Limit

Now, we want to use constrained optimization software to do this same calculation with the idea

of extending it to more general situations. The simulation solves the contstrained optimization

problem for a Pareto distributed risk. The model is exactly same as in Figure 4.1, so not reproduced.

When generating Figure 4.1, we obtained closed form expressions using the simplicity of the Pareto

distribution. This is not typically possible in an aggregate loss problem. The current exercise can

be readily adapted to solve problems with general distributions. The code optimizes qg(u), which

is a function of u, using the R function auglag. In order to ensure a convex domain, the following

restriction is given.

P (u) ≥ Pmin

where we call Pmin the required premium. The optimal upper limit u∗, and the optimal quantile

qg(u
∗) is found by optimizing the analytical function for the quantile reconciled with Figure 4.1.
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Now, instead of using the analytical quantile and limited expected value functions, we simulate

random variables and optimize the simulated approximations of these functions. We first do so

in the case of the single risk that follows a Pareto distribution so we can check our procedures.

B = 10, 000 replicates of the Pareto distributed loss is simulated with scale γ and shape η. Then

the upper limit is applied, and the 95% quantile of these censored losses is called qg. The quantile

is defined for each upper limit level u, and hence a function qg(u) can be defined. This function is

optimized using the R auglag routine, under the constraint

Psim(u) > Pmin

where this time Psim(u) is defined as the mean of the 10,000 generated censored losses. The resulting

optimal deductible u∗ and q(u∗) reconciled with Figure 4.2.

Table 4.1: Upper Limits and Corresponding RM2

u∗ E[Sg(u
∗)] qg(u

∗) RM2(u∗)

12,039 8,498.719 12,039 2.093

39,295 16,781.803 39,295 5.524

66,552 20,456.149 66,552 10.402

93,808 22,561.210 93,808 16.648

This provides motivation, so as to extend our study into more complicated cases, where the objective

function is the quantile of an entire portfolio of losses and the premium constraint is obtained from

a managerial decision regarding the minimum premium required from an entire portfolio. In the

following chapters, we explore specific cases using numerical optimization of objective functions,

which involve simulation of losses.

An interesting exercise is to set the loading factor to (1 + λ∗) = RM2(u∗) and optimize the

following problem to verify that the same value as u∗ is obtained:

min
{
qSg + E[Rg](1 + λ∗)

}
where Sg = min(Y, u) and Rg = (Y − u)+

The optima are shown in Table 4.2. In the simulation, B = 1, 000, 000 replicates of the Pareto

distribution has been used to obtain the mean and quantile.



81

Table 4.2: Loading Factors and Corresponding Optima

(1 + λ∗) u∗

2.093 13,007

5.524 40,335

10.402 67,583

16.648 95,064

Table 4.2 verifies that in one dimension, the RM2 risk measure in Frees (2016) is equivalent to the

loading factor found in the optimal reinsurance literature.

4.5 Single Policy with Omit-i Portfolio

4.5.1 Non-convexity

In general, the quantile function is not convex. To help understand this problem, we look to the

differentiability of the quantile to see if we get conditions for convexity for a single policy problem

within a portfolio. To begin, assume that θ is univariate and drop the α subscript to write q(θ) for

the quantile qα(θ). Starting with F (q(θ); θ) = α, differentiate to get

∂θ F (y; θ)|y=q(θ) + ∂y F (y; θ)|y=q(θ) ∂θq(θ) = 0.

Let’s use the shorthand notation

Fθ + Fy qθ = 0.

Thus,

qθ = −Fθ
Fy
,

which is known as a “quantile sensitivity.” For second derivatives, we have

Fθθ + Fyθ qθ + Fy qθθ = 0,

which can be solved for qθθ:

qθθ = −Fθθ
Fy
−
Fyθ
Fy

qθ

To understand the expression for qθθ more, we are interested in simulating an insurer’s portfolio,
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including a specific policy i. Thus, let Y1 simulate the ith policy, and let Y2 simulate the omit-i

portfolio, so that:

Sg = g(Y1) + Y2

To simulate an insurer’s portfolio using parametric models, consider a random variable Y1 and

another random variable Y2 representing the sum of all other losses within a portfolio. We assume

Y1 ∼ Gamma(α1, β)

Y2 ∼ Gamma(α2, β)

where α1, α2 are shape parameters, and β is a scale parameter, which is assumed to be identical

for the two random variables for simplicity. Then, recalling that the sum of gamma distributed

random variables is also a gamma distribution, we have

Y1 + Y2 ∼ Gamma(α1 + α2, β)

For the loss random variable Y1, consider applying an upper limit u. Then, for a given a, we have

two cases for the distribution of the censored loss, depending on the value of a:

Pr(min(Y1, u) ≤ a) =


FY1(a) u ≥ a

1 u < a

With θ = u, we have:

Sg = min(Y1, u) + Y2 (4.7)
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Thus,

FSg(y) = Pr(min(Y1, u) + Y2 ≤ y)

=

∫ y

0
Pr(min(Y1, u) ≤ y − z)dFY2(z)

=

∫ y

y−u
FY1(y − z) dFY2(z) +

∫ y−u

0
1 dFY2(z)

=

∫ y

y−u
FY1(y − z) dFY2(z) + FY2(y − u)− FY2(0) (4.8)

In order to obtain the terms Fuu, Fyu, and Fy, differentiate (4.8).

Fu =

∫ y

y−u
f1(y − z)dF2(z)− F1(u)f2(y − u)− f2(y − u)

Fuu = −f1(u)f2(y − u)− f1(u)f2(y − u) + F1(u)f ′2(y − u) + f ′2(y − u)

= f ′2(y − u) [1 + F1(u)]− 2f1(u)f2(y − u)

Fy =

∫ y

y−u
f1(y − z)dF2(z) + F1(0)f2(y)− F1(u)f2(y − u) + f2(y − u)

= Fu + 2f2(y − u) + F1(0)f2(y)

Fyu = Fuu − 2f ′2(y − u)

Fyy = Fuy + 2f ′2(y − u) + F1(0)f ′2(y)

Simplifying, we have

quu = − Fuu
Fu + 2f2(y − u) + F1(0)f2(y)

− Fuu − 2f ′2(y − u)

Fu + 2f2(y − u) + F1(0)f2(y)
qθ

The quantity quu gives little intuition, and in general the quantile function cannot be shown to be

convex.

4.5.2 Quasi-convexity

In this section, we demonstrate using a specific example, that when a single policy risk is con-

voluted with a portfolio risk, the resulting quantile of the aggregate loss is still quasi-convex in
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the optimization parameter. Under the framework of equation (4.7), the following simplification is

valid:

Pr(min(Y1, u) + Y2 ≤ y) =

∫ y

0
Pr(min(Y1, u) ≤ y − z|Y2 = z)fY2(z)dz)

=

∫ y

0
I(u > y − z)FY1(y − z)fY2(z)dz +

∫ y

0
I(u ≤ y − z)fY2(z)dz

=

∫ y

0
I(z > y − u)FY1(y − z)fY2(z)dz +

∫ y

0
I(z ≤ y − u)fY2(z)dz

=

∫ y

y−u
FY1(y − z)fY2(z)dz + FY2(y − u)

Using this relation, the quantile function can be plotted analytically with respect to different u

values. The equation

FY2(y − u) +

∫ y

y−u
FY1(y − z)fY2(z)dz = 0.95

is solved for y numerically, in order to calculate the quantile corresponding to each u. Let us assume

α1 = 1, α2 = 3, β = 1.

The resulting quantiles are plotted with respect to the parameter u. Alternatively, the 95th per-

centile corresponding to the parameter u may be found from simulation. Specifically, the parameter

u can be applied to B = 1, 000, 000 randomly generated gamma random variables Y1, and then

added to Y2, so that

Sg = min(Y1, u) + Y2

The 95th value of the simulated Sg values is obtained. This quantity can be plotted for each u.

The result is shown in the following figure. In the left panel, the analytically obtained quantiles

are plotted with respect to u, while on the right panel the simulated quantiles are plotted.
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Figure 4.3: Comparison of Analytical and Simulated Quantile Function

The two plots are identical. Figure 4.3 provides several insights. First, it provides motivation to

calculate and optimize quantile based risk measures using Monte Carlo simulations. Furthermore,

it shows that for this particular example, the portfolio quantile function is quasi-convex in the

upper limit parameter u. We will be able to establish this property for general aggregate loss risk

retention situations. Specifically, we will be able to establish

∂q

∂u
> 0

for the upper limit parameter u, and

∂q

∂d
< 0

for the deductible parameter d. Hence, for single parameter optimization of risk retention parame-

ters, such as the deductible or the upper limit, unique global optima could be found under premium

constraints. Section 4.5.3 provides an example to demonstrate that in general the quantile function

is not convex.
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4.5.3 Non-convexity Example

To demonstrate the non-convexity of the quantile function, we plot the quantile function with

respect to the parameter u for a specific example. As before, let the losses for policy i be Y1, and

introduce an omit-i portfolio loss for the rest of the portfolio, Y2. Suppose this time losses are

generated from two Pareto distributions with the property, such that η = 1.846395, γ = 26425.53,

and

Y1 ∼ Pareto
(
γ,
η

2

)
Y2 ∼ Pareto

(
γ,
η

5

)

The total loss is generated by adding the censored losses and the omit-i portfolio losses, Y2.

Total Loss = min(Y1, u) + Y2

The α = 0.95 quantile qg(u) is a function of u, and hence, can be plotted for values of u in the

range [0, qg(∞)]. Figure 4.4 shows the result.

Figure 4.4: Single Policy with Portfolio: Quantile and Premium



87

The left panel of Figure 4.4 shows that qg(u) is not convex, but quasi-convex. The quantile can be

optimized under the premium constraint

Psim(u) ≥ Pmin

where Psim(u) is the mean of the simulated losses, and Pmin defines the minimum requirement for

the premium. The following figures illustrate the quantile function and premium function with

respect to u, the parameter of interest. B = 1, 000, 000 replicates of the Pareto distribution were

used to calculate the quantile and mean function values. From Figure 4.4, we can check that

the quantile function qg(u) is not convex in the parameter u, due to the curvature introduced by

the omit-i portfolio. Nevertheless, an optimal parameter u∗ can be found under the constrained

optimization framework, due to the quasi-convexity of qg(u).

Figure 4.5: Single Policy with Portfolio: Optima
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4.6 Aggregate Loss Risk Retention

4.6.1 Theory

We are now ready to see the general result for aggregate losses. We believe that these results are

new to the literature. For a single policy with a single deductible, we have losses in the amount

Y1, Y2, . . . , YN where N is the random number of claims. If each loss is subject to a per occurrence

deductible d, then the insured loss (from the insurer’s perspective) is

Aggregate-Lossi(di) =

Ni∑
j=1

(Yij − di)+ + S(i)

for a given policy i. In general, the insurance company or the policyholder may be interested in

adjusting retention parameters d, c, or u. In case the parameter change of interest is the coinsurance,

we focus on the following aggregate loss:

Aggregate-Lossi(ci) =

Ni∑
j=1

ci · Yij + S(i)

whereas if the upper limit parameter is of interest, then:

Aggregate-Lossi(ui) =

Ni∑
j=1

min(Yij , ui) + S(i)

In each case, the aggregate loss quantile is a function of the risk retention parameter θi ∈ {di, ci, ui},

so that qg(θi) is to be minimized, under a premium constraint

Psim(θ∗i ) ≥ Pmin.

This is a quasiconvex optimization problem, which has a global solution under strict quasi-convexity

of the quantile function qg(θi). For background in quasiconvex optimization problems, see Boyd

and Vandenberghe (2004), Section 3.4.5, and 4.2.5.

The following theorems establish quasi-convexity of the quantile functions, with respect to each

of the parameters, di, ci, and ui.
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Theorem 4.6.1. qg(di) is strictly quasi-convex, and satisfies

∂qg
∂di

= − ci
fSg(qg)

· E

 Ni∑
j=1

I(Yij > di)

 fS(i)

qg − Ni∑
j=1

g(Yij)

 < 0

Proof. It suffices to show monotonicity, since monotonic functions are quasi-convex; See Boyd and

Vandenberghe (2004), Page 99. For fixed Ni = ni, define

H∗ni(t) = EYi1,...Yini

Pr
 ni∑
j=1

g(Yij) + S(i) ≤ t)

 (4.9)

= EYi1,...Yini

Pr
S(i) ≤ t−

ni∑
j=1

g(Yij))


= EYi1,...Yini

FS(i)

t− ni∑
j=1

g(Yi1)

 (4.10)

for policy i. If the portfolio consists of only one policy, then let

H∗ni(t) = Pr(Sg ≤ t|Ni = ni) = Fg,Si,ni(t) (4.11)
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Then, assuming differentiation and integration can be interchanged, we have:

∂

∂di
H∗ni(t) =

∂

∂di
Pr(Sg,ni ≤ t)

=
∂

∂di
Pr

S(i) +

ni∑
j=2

g(Yij) + g(Yi1) ≤ t


=

∂

∂di
EYi1

[
H∗(ni−1)(t− g(Yi1))

]
=

∂

∂di

{∫ ui

di

H∗(ni−1)(t− g(y))dFi(y)+

H∗(ni−1)(t)Fi(di) +H∗(ni−1)(t− g(ui))(1− Fi(ui))
}

=

∫ ui

di

∂

∂di
H∗(ni−1)(t− g(y))dFi(y)−H∗(n−1)(t)fi(di) +H∗(ni−1)(t)fi(di)

+
∂

∂di
H∗(ni−1)(t)Fi(di) +

∂

∂di
H∗(ni−1)(t− g(ui))(1− Fi(ui))

=

∫ ui

di

∂

∂di
H∗(ni−1)(t− g(y))dFi(y)

+
∂

∂di
H∗(ni−1)(t)Fi(di) +

∂

∂d
H∗(ni−1)(t− g(ui))(1− Fi(ui))

=

∫ ∞
0

∂

∂di
H∗(ni−1)(t− g(y))dFi(y), (4.12)

where H∗(ni−1)(t− g(y)) = 0 when g(y) > t. For the base case, we have

∂

∂di
H∗1(t) =

∂

∂di
Pr(Sg ≤ t|Ni = 1)

=
∂

∂di
EYi1

[
Pr
(
S(i) ≤ t− g(Yi1)

)]
=

∂

∂di
EYi

[
FS(i)

(t− g(Yi))
]

=
∂

∂di

{∫ ui

di

FS(i)
(t− g(y))dFi(y)+

FS(i)
(t)Fi(di) + FS(i)

(t− g(u))(1− Fi(ui))
}

=

∫ ui

di

∂

∂di
FS(i)

(t− g(y))dFi(y)− FS(i)
(t)fi(di) + FS(i)

(t)fi(di)

+
∂

∂di
FS(i)

(t)Fi(di) +
∂

∂di
FS(i)

(t− g(ui))(1− Fi(ui))

=

∫ ∞
0

∂

∂di
FS(i)

(t− g(y))dFi(y). (4.13)
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Plugging in Equation (4.13) into (4.12), we have

∂

∂di
H∗ni(t) =

∫ ∞
0

. . .

∫ ∞
0

∂

∂di
FS(i)

t− ni∑
j=1

g(yij)

 dFi(yi1) . . . dFi(yini)

= −
∫ ∞

0
. . .

∫ ∞
0

fS(i)

t− ni∑
j=1

g(yij)

 ni∑
j=1

∂g(yij)

∂di

 dFi(yi1) . . . dFi(yin)

=

∫ ∞
0

. . .

∫ ∞
0

fS(i)

t− ni∑
j=1

g(yij)

ci · ni∑
j=1

I(yij > di)

 dFi(yi1) . . . dFi(yin). (4.14)

Expression (4.13) is in fact identical to A1(t) in (Frees, 2016). When the deductible change is

considered, we have

A1(t) =

∫ t

t−bi
fi(g

−1(t− s))∂g
−1

∂di
(t− s)dFS(i)

(s)− [1− Fi(ui)]fS(i)
fS(i)

(t− g(ui))(−ci) (4.15)

where ∂g−1

∂d (t− s) = 1. Simplifying this results in

A1(t) = −ci
{
fS,θ(t)− Fi(di)fS(i)

(t)
}

(4.16)

So that

∂

∂di
qS,θ = −

A1(qS,θ)

fS,θ(qS,θ)
= −ci

{
1− Fi(di) ·

fS(i)
(qS,θ)

fS,θ(qS,θ)

}
(4.17)

Let’s compare this with expression (4.13), which is the case when a policy i has a single loss.

Assuming a continuous distribution for S(i), application of chain rule to the expectation of (4.13)

results in
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∂

∂d
qS,θ = − 1

fS,θ(qS,θ)
E

[
∂

∂di
H∗1(qS,θ)

]
= − 1

fS,θ(qS,θ)

∫ ∞
0

∂

∂di
FS(i)

(qS,θ − g(y))dFi(y)

= − 1

fS,θ(qS,θ)

∫ ∞
0

fS(i)
(qS,θ − g(y)) ·

(
∂g(y)

∂di

)
dFi(y)

= −c
∫ ∞

0

fS(i)
(qS,θ − g(y))

fS,θ(qS,θ)
· I(y > di)dFi(y)

= −cE

[
I(y > di)

fS(i)
(qS,θ − g(y))

fS,θ(qS,θ)

]

= −c

{
1− Fi(d) ·

fS(i)
(qS,θ)

fS,θ(qS,θ)

}
(4.18)

where the last equality can be established using the identity

E

[
I(y > di)

fS(i)
(t− g(y))

fS,θ(t)
+ I(y ≤ di)

fS(i)
(t− g(y))

fS,θ(t)

]
= 1

with fS(i)
(t− g(y)) = fS(i)

(t) when y ≤ di.

Theorem 4.6.3 establishes strict quasi-convexity of the quantile function in the parameter di. The

next results establish quasi-convexity in the parameter ui and ci.

Theorem 4.6.2. qg(ui) is strictly quasi-convex, and satisfies

∂qg
∂ui

= E

 Ni∑
j=1

I(Yij > ui)

 fS(i)

qg − Ni∑
j=1

g(Yij)

 1

fSg(qg)
· (ci) > 0

Proof. Assuming differentiation and integration can be interchanged, we have:
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∂

∂ui
H∗ni(t) =

∂

∂ui
Pr(Sg,ni ≤ t)

=
∂

∂ui
Pr

S(i) +

ni∑
j=2

g(Yij) + g(Yi1) ≤ t


=

∂

∂ui
EYi1

[
H∗(ni−1)(t− g(Yi1))

]
=

∂

∂ui

{∫ ui

di

H∗(ni−1)(t− g(y))dFi(y)+

H∗(ni−1)(t)Fi(di) +H∗(ni−1)(t− g(ui))(1− Fi(ui))
}

=

∫ ui

di

∂

∂ui
H∗(ni−1)(t− g(y))dFi(y)+

H∗(n−1)(t− g(ui))fi(ui) +
∂

∂ui
H∗(ni−1)(t)Fi(di)+

∂

∂ui
H∗(ni−1)(t− g(ui))(1− Fi(ui))−H∗(n−1)(t− g(ui))fi(ui)

=

∫ ui

di

∂

∂ui
H∗(ni−1)(t− g(y))dFi(y)+

∂

∂ui
H∗(ni−1)(t)Fi(di) +

∂

∂ui
H∗(ni−1)(t− g(ui))(1− Fi(ui))

=

∫ ∞
0

∂

∂ui
H∗(ni−1)(t− g(y))dFi(y), (4.19)

For the base case, a similar proof shows that the base case is given by

∂

∂ui
H∗1(t) =

∫ ∞
0

∂

∂ui
FS(i)

(t− g(y))dFi(y). (4.20)

Plugging in (4.20) into (4.19), we have

∂

∂ui
H∗ni(t) = −

∫ ∞
0

. . .

∫ ∞
0

fS(i)

t− ni∑
j=1

g(yij)

 ni∑
j=1

∂g(yij)

∂ui

 dFi(yi1) . . . dFi(yin) (4.21)

where

∂g(yij)

∂ui
=


ci for yij > ui

0 otherwise
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Theorem 4.6.3. qg(ci) is strictly quasi-convex, and satisfies

∂qg
∂ci

= E

 Ni∑
j=1

(Yij − di) · I(Yij > di)− (Yij − ui) · I(Yij > ui)


· fS(i)

qg − Ni∑
j=1

g(Yij)

 1

fSg(qg)
> 0

Proof. Assuming differentiation and integration can be interchanged, we have:

∂

∂ci
H∗ni(t) =

∂

∂ci
Pr(Sg,ni ≤ t)

=
∂

∂ci
Pr

S(i) +

ni∑
j=2

g(Yij) + g(Yi1) ≤ t


=

∂

∂ci
EYi1

[
H∗(ni−1)(t− g(Yi1))

]
=

∂

∂ci

{∫ ui

di

H∗(ni−1)(t− g(y))dFi(y) +H∗(ni−1)(t)Fi(di)+

H∗(ni−1)(t− g(ui))(1− Fi(ui))
}

=

∫ ui

di

∂

∂ci
H∗(ni−1)(t− g(y))dFi(y) +

∂

∂ci
H∗(ni−1)(t)Fi(di)+

∂

∂ci
H∗(ni−1)(t− g(ui))(1− Fi(ui))

=

∫ ∞
0

∂

∂ci
H∗(ni−1)(t− g(y))dFi(y). (4.22)

For the base case, we have:

∂

∂ci
H∗1(t) =

∂

∂ci
Pr(Sg ≤ t|Ni = 1)

=
∂

∂ci
EYi1

[
Pr
(
S(i) ≤ t− g(Yi1)

)]
=

∂

∂ci
EYi

[
FS(i)

(t− g(Yi))
]

=
∂

∂ci

{∫ ui

di

FS(i)
(t− g(y))dFi(y) + FS(i)

(t)Fi(di)+

FS(i)
(t− g(u))(1− Fi(ui))

}
=

∫ ∞
0

∂

∂ci
FS(i)

(t− g(y))dFi(y). (4.23)
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Hence, assuming S(i) has a continuous and differentiable distribution, we have

∂

∂ci
H∗ni(t) = −

∫ ∞
0

. . .

∫ ∞
0

fS(i)

t− ni∑
j=1

g(yij)

 ·
 ni∑
j=1

∂g(yij)

∂ci

 dFi(yi1) . . . dFi(yin) (4.24)

where

∂g(yij)

∂ci
=


yij − di for yij ≤ di

ui − di for yij > di

Hence, we can see that monotonicity of the quantile function ensures quasi-convexity. Meanwhile,

the reader may realize that quasi-convexity of the quantile function is ensured for the single-loss

cases shown in Section 4.5, by restricting Ni = 1.

4.6.2 Numerical Optimization for the Aggregate Loss Problem

Let us first take a look at the convexity of the associated premium and quantile functions. Suppress-

ing the subscript i, let the losses be generated from the assumptions η = 1.846395, γ = 26425.53,

λ = 1, which represents Green Bay city within the LGPIF data (see Chapter 5, Section 5.1, Table

5.11 for parameter estimation details) using the models:

N ∼ Poisson(λ)

Yj ∼ Pareto(γ, η), for j = 1, ..., N

Each loss can be transformed, and aggregated, so that the Aggregate-Loss(u) which is a function

of u, can be optimized over u with constraint

Psim(u∗) ≥ Pmin

where Psim(u∗) is the mean of all the replicates of Aggregate-Loss(u∗).
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Figure 4.6: Aggregate Risk: Quasi-Convexity

Figure 4.7: Aggregate Risk: Optima

These figures suggest that both the quantile and the premium functions are quasi-convex in the
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upper limit u. Quasi-convexity allows us to optimize the quantile function using constrained op-

timization routines such as auglag in R. Thus, the optimal upper limit u∗ and optimal quantile

q(u∗) can be found.

4.7 Blocks of Policies

Now that we are familiar with how the optimization works, let us consider more practical situations.

Suppose for a single policy, we have losses in the amount Y1, Y2, . . . , Yp where p is the number of

policies within a block of policies sharing similar features. For example, an insurance company

may be providing coverage for different entities. Thus, if there are say, p school entities, then the

manager may be interested in adjusting the upper limit for all school entities. Let’s focus on the

upper limit case, so that each loss is subject to a per occurrence upper limit u, then the insured

loss is

Block-Loss(u) =

p∑
j=1

min(Yj , u)

Suppose we are interested in applying specific upper limits for each block j. In this case we have

Block-Loss(u) =

p∑
j=1

min(Yj , µj · u), where µj = E[Yj ]

where each of the random variables Y1, ..., Yp represents a coverage within a block. For example, p

could be the number of school entities, each of which is subject to an upper limit of µj ·u, for some

u. In the following simulation, the optimal u is found by constrained optimization.

Simulation

p = 10 policies are randomly generated so that
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Block-Loss(u) =

p∑
j=1

min(Yj , µj · u)

Yj ∼ Pareto(γj , η)

γj ∼ Uniform[50, 5000]

η = 3, j = 1, ..., 10

where γj is the scale parameter of the policies j = 1, ...10, and η is the shape parameter of the

Type-II Pareto distribution. Initially, the mean and quantile functions are plotted with respect to

u, where u ∈ [0, 5]. The first two panels of the plot shows the mean and quantile functions are

quasi-convex in the parameter u.

Figure 4.8: Block Policies Example

The first two panels of Figure 4.8 suggest that the premium level may vary within the interval
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[0, 10, 000]. For this reason, restricting the domain of premium (mean) to [0, 10, 000] results in a

compact parameter space, and the optimal quantile can be found. The last two panels show the

optimal quantile, and the optimal parameter u∗, as the minimum premium restriction is varied

from 0 to 10,000.

4.8 Supplementary Notes

The risk-sharing parameters can potentially be in effect at 4 levels: 1. individual claims; 2. all

claims within a line, 3. all claims within a policy, and 4. claims within the portfolio. We also

index these parameters by i for the first three levels to indicate that they may vary by policy. For

a specific case, We can collect all the risk-sharing parameters into a single vector, so that

θ = {(cil, dil, uil, c4, d4, u4); i = 1, ..., n, l = 1, ..., 3}.

Note that if we do not assume that g is smooth in θ, then taking derivatives with respect to θ is

not an option. Consider a policyholder and a typical Z consisting of

Z =
(
N,Y1, ..., YN , SY,N , S̄Y,N

)
for number of claims N , individual claims {Yj}, aggregate severity SY N and average severity S̄Y N .

Based on observations of this process, one can develop simple rules to determine prices P , say, for

each outcome, by using regression models for each marginal. For a general random variable Z,

and a transformation g, we denote g(Z) as the transformed random variable. Our interest is in

summarizing this random variable by a pricing functional

P (g(Z;θ)) =

∫
p(g(z))dF (z)

and a risk measure functional

RM(g(Z;θ)) =

∫
F−1
g(Z)(t)dK(t)

where Fg(Z) is the distribution function of g(Z). In general, the pricing functional looks at the
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center of the retained risks distribution and ignores dependencies. In contrast, the risk measure

functional focuses on the tails and incorporates dependencies. We can think of the pricing function

as just the identity operator so that prices are expected values. We can think of the risk measure

at the 99th percentile of the distribution, known as the V AR.

Take n = 1, p = 1 and N = 1, so that we have one monoline policy with a single claim. In this

special case, the risk-sharing parameters at levels 2, 3, and 4 are redundant and can be ignored.

With the identity operator for prices, we have

P (g(Z); c, d, u) =

∫
g(z; c, d, u)dFY (z) = c · EY (min(Y, u)−min(Y, d)),

a familiar relationship in actuarial science, e.g., (Klugman et al., 2012), page 188. To date, the

substantial work in the literature has focused on risk retention parameters that are based on

policies. That is, discovery of an optimal policy is based on preferences concerning a single risk

Y . In contrast, very common contract features allow for risk retention parameters to be on a

per-occurrence, or per-loss basis. In this dissertation chapter, advice to insurers are provided when

parameters are defined on a per-loss basis. To illustrate, consider the situation where an insurer’s

ith risk has Ni, losses Yi1, . . . , YiNi . For a single loss, Yij , the insurer pays g(Yij). Then, the total

risk for the insurer’s portfolio can be expressed as

Sg =

Ni∑
j=1

g(Yij) + S(i).

We know of no other work in the risk and insurance literature that provides advice to risk managers

about risk retention parameters that operate on a per loss basis. In Section 4.8.1, advice for two

layers of parameters is provided.

4.8.1 Single Policy per Occurrence and per Policy Retention

Focusing on the upper limit, so that c = 1 and d = 0, we are now interested in exploring the case

with two layers of risk retention parameters. We have:

Aggregate-Loss(u1, u2) = min

 N∑
j=1

min(Yj , u1)

 , u2





101

In the following example, losses are simulated from identical parameters as previous sections, after

which u1 and u2 are applied. The resulting quantile q of the aggregate loss is a function in the two

parameters u1 and u2,

qsim(u1, u2) = Quantile of the aggregate loss with parameters u1, u2

which can be optimized under the constraint

Psim(u∗1, u
∗
2) ≥ Pmin

Figure 4.9: Two Upper Limits: Optima

4.8.2 With Portfolio Loss

For the two upper-limit parameter case with portfolio losses, we have

Aggregate-Loss(u1, u2) = min

 N∑
j=1

min(Yj , u1)

 , u2

+ Y2
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The result is shown below:

Figure 4.10: Two Upper Limits with Portfolio: Optima

The framework in this section is applied to the LGPIF Madison Metropolitan School District policy

optimization case study in Chapter 5, Section 5.3.

4.8.3 Future Work

In insurance risk management, it is helpful to provide advice to risk managers on the selection

of risk retention parameters. The retention parameters may include deductibles (d), coinsurance

(c), and upper limits (u). In order to provide solutions to this question, statistical models may

be helpful. In this chapter, we illustrate how the statistical model in Chapter 2 can help answer

the risk retention problem. Subsequently, it may be interesting to investigate altering these initial

approaches based on various risk assessment models.

One may think about a general risk retention rule “f(·)” that is applied to outcome Z. For

this function, we may be interested in (i) applying to individual or aggregate claims by line, (ii)

representing deductibles, policy limits, or coinsurance, by line, (iii) Restricting and introducing
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endorsements (extra coverages), (iv) applying f(·) to number of claims (v) applying f(·) to several

lines simultaneously. The special case, f(·) = 0, means that the insurer retains 0 claims, as in

rejecting a policy. Let

SZ(f) =

n∑
i=1

f(Zi)

represent the sum of retained claims. We could apply another layer of risk retention rules to the

entire portfolio (for reinsurance).

For future work, we would like to understand the distribution of SZ(f), paying particular

attention to (a) affects of contagion, (b) large exposures, large claims, (c) association among lines.

Guidelines for risk acceptance and retention may be established using our framework. In our

framework, we are especially interested in association over time, such as dividends, credibility.

Contagion may be easier to model if we look at causes/perils of risks, e.g. hail for homeowners,

earthquakes, floods, etc. Are there interesting risk-sharing rules that occur over time? There

are potential applications in dividends, credibility, and the like, where another risk/portfolio, say

SZ,2(f) is potentially added to the portfolio. We are interested in providing guidelines for when we

might accept additional risks. In conjuction with the determination of risk acceptance guidelines,

we might think about alternative pricing structures.

4.8.4 RM2 Computation

In this section, Monte-Carlo procedures for quantiles and the portfolio densities are discussed.

We first review some fundamental concepts of distribution function and quantile sensitivities. Con-

sider a generic random variable Y and evaluate this using the parametric function g(Y, θ). Use the

notation Fg(y; θ) = Pr(g(Y, θ) ≤ y) for the corresponding distribution function. Further, use

∂θ =
∂

∂θ

for a partial derivative with respect to θ and similarly for ∂y and so forth. For a fixed α, define the

quantile function qα = F−1
g (α).

Assumption 1. The function ∂θg(Y, θ) exists with probability 1 for any θ in an open set Θ. There
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exists a function k(·) such that Ek(Y ) <∞ and

|g(Y, θ2)− g(Y, θ1)| ≤ k(Y )|θ2 − θ1|

for all θ1, θ2 in Θ.

Assumption 2. For θ in an open set Θ, ∂yFg(y; θ) = fg(y; θ) is continuous in a neighborhood of y,

and ∂yFh(y; θ) exists and is continuous with respect to θ and y.

Under assumption 1 and 2, the distribution function sensitivity is

∂

∂θ
Fg(y; θ) = − ∂

∂y
E

{
∂

∂θ
g(Y, θ)I(g(Y, θ) ≤ y)

}
(4.25)

The quantile sensitivity is

∂

∂θ
qα = −∂θFg(qα(θ))

fg(qα(θ)
= −∂θFg(qα(θ))

∂yFg(qα(θ))

∣∣∣∣
y=qα(θ)

(4.26)

The proof of the Lemmas is part of Theorem 1 and 2 of (Hong, 2009) (see also the discussion

in (Jiang and Fu, 2015)). We now apply the Lemmas to the general framework of risk retention

problems. This is known in actuarial mathematics as the “aggregate loss model.” It is helpful to

review the assumptions underpinning this model.

Let Ni represent the number of claims for the ith risk. Given Ni = n, the claims {Yi1, . . . , Yin}

are i.i.d. The sum of claims from other risks is S(i). Assume that Ni, {Yij , j = 1, 2, . . .} and S(i)

are mutually independent. The sum of portfolio claims is

Sg =

Ni∑
j=1

g(Yij) + S(i).

Using the Lemmas, we can express the distribution function sensitivity as

∂

∂θ
Pr(Sg ≤ t) = − ∂

∂t
E


Ni∑
j=1

∂

∂θ
g(Yij)I(Sg ≤ t)

 (4.27)

Following the notation in Frees (2016), we use qS,g,α for the α quantile of Sg. Then, using Equation

(4.27), we can express the quantile sensitivity as
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∂θqS,g,α = −
∂θPr(Sg ≤ qS,g,α)

fSg(qS,g,α)
(4.28)

To evaluate the quantile sensitivity, we now describe the use of Monte-Carlo techniques. With

simulated realizations of Sg, it is straightforward to evaluate quantiles qS,g,α and density functions

fSg . More effort is needed to evaluate the distribution function sensitivity (at the quantile qS,g,α).

To this end, we first briefly outline a procedure to evaluate quantiles and densities and then describe

procedures to evaluate distribution function sensitivities.

For each risk i = 1, . . . , n in the portfolio, generate
{
N

(r)
i , Y

(r)
i1 , . . . Y

(r)
iNi

}
for r = 1, . . . , R

simulated replications. From this, determine

S
(r)
(i) =

∑
k 6=i

N
(r)
k∑
j=1

Y
(r)
kj

and

S(r)
g =

N
(r)
i∑
j=1

g
(
Y

(r)
ij

)
+ S

(r)
(i)

From this sequence {
S(r)
g

}R
r=1

,

we determine a Monte-Carlo approximation of qS,g,α and the density evaluated at the quantile,

fSg(qS,g,α). Beginning by taking expectations over S(i) and simplifying allows writing

∂

∂θ
Pr(Sg ≤ t) = − ∂

∂t
E


N1∑
j=1

∂

∂θ
g(Yij ; θ) I

 N∑
j=1

g(Yij ; θ) + S(i) ≤ t


= − ∂

∂t
E


N1∑
j=1

∂

∂θ
g(Yij ; θ) FS(i)

t− N∑
j=1

g(Yij ; θ)


= −E


Ni∑
j=1

∂

∂θ
g(Yij ; θ) fS(i)

t− Ni∑
j=1

g(Yij ; θ)


assuming the omit i portfolio distribution is continuous with density fS(i)

(·). Define kR(·; ·) to be

a kernel density estimator with bandwidth bR, e.g., kR(X; t) = I(t − bR < X ≤ t + bR)/(2bR) for
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a generic random variable X. For each risk retention parameter change, we can obtain compact

notations by conditioning the expression on the frequency of the ith policyholder. The distribution

function for the aggregate claims conditional on the frequency is defined by

H∗ni(t) = Pr(Sg,ni ≤ t) = Pr(Sg ≤ t|Ni = ni).

We let h∗ni(t) = ∂tH
∗ni(t) be the corresponding density. Then, for each special case θi = di, ci, ui,

it has been shown (in Section 4.6) that

∂

∂θi
H∗ni(t) =

∫ ∞
0

. . .

∫ ∞
0

 ni∑
j=1

∂

∂θi
g(yij)

 fS(i)

t− ni∑
j=1

g(yij)

 dFi(yi1) . . . dFi(yin), (4.29)

which could be evaluated by simulating the claims, and recording the resulting ∂θig(yij) values and

g(yij) values for each replicate. Taking the expectation of Equation (4.29) gives

∂

∂θi
Pr(Sg ≤ t) = ENi

[
∂

∂θi
H∗ni(t)

]
. (4.30)

The gradient to find the aggregate claim quantile minimizing parameter choice for a single parameter

optimization over θi becomes

∂θiqS,g =
1

fSg(qS,g,α)
· ENi

[
∂

∂θi
H∗ni(t)

]
(4.31)

4.8.5 Conditions for Existence and Uniqueness of Global Optima

In this subsection, let us formalize the condition under which a unique global optima for the risk

retention parameter could be found. For a review of convex optimization, see: Simon and Blume

(1994), Sundaram (1996), Boyd and Vandenberghe (2004). The following theorem provides a basic

condition in which a solution exists.

Weierstrass Theorem: Let D be a compact subset of Rn and f : D → Rn be a continuous

function on D. Then there exists xm and xM in D such that f(xm) ≤ f(x) ≤ f(xM ) for all x ∈ D.
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See Sundaram (1996), Page 90.

For a special class of functions, known as quasi-concave (or quasi-convex ) functions, the global

optima is unique in D. quasi-concave functions are defined. Let f : D → R. The upper-contour set

of f at a ∈ R is defined as

Uf (a) = {x ∈ D|f(x) ≥ a}

while the lower-contour set of f at a ∈ R is defined as

Lf (a) = {x ∈ D|f(x) ≤ a}

The function f is said to be quasi-concave on D if Uf (a) is a convex set for each a. It is called

quasi-convex on D if Lf (a) is a convex set for each a. A theorem in optimization theory states that

f is quasi-concave on D if and only if for all x, y ∈ D and for all λ ∈ (0, 1), it is the case that

f [λx+ (1− λ)y] ≥ min[f(x), f(y)]

The function f is quasi-convex on D if and only if for all x, y ∈ D and for all λ ∈ (0, 1), it is the

case that

f [λx+ (1− λ)y] ≤ max[f(x), f(y)]

The following theorem provides a condition under which, a local optima for a quasi-concave (quasi-

convex) function is global.

Theorem: Suppose f : D → R is strictly quasi-concave (quasi-convex), where D ∈ Rn is convex.

Then, any local maximum (minimum) of f on D is also a global maximum (minimum) of f on

D. Moreover, the set of maximizers (minimizers) of f on D is either empty or a singleton. See

Sundaram (1996), Page 213.

Thus, unique global optima may be found, by restricting the search domain to closed intervals.

This will be sufficiently useful for many practical applications in insurance risk retention.
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Chapter 5

LGPIF Case Study

Abstract

We demonstrate the approaches in this dissertation using a data set from the Wis-

consin Local Government Property Insurance Fund (LGPIF). A detailed description

of the LGPIF is included in Chapter 7. Here, brief summary statistics and details

of the application of the approaches are described. The estimated loss models are ap-

plied and focused towards the final section, which applies the loss distributions to a

case study on the Madison Metropolitan School District risk retention problem. We

find that optimal risk retention parameters can be determined using the loss models

developed in earlier chapters of the dissertation.

This chapter is based on the empirical results from:

• Frees, Edward W., and Gee Lee, and Lu Yang (2015). “Multivariate Frequency-Severity

Regression Models in Insurance,” Risks, Vol. 4(1)

• Lee, Gee Y., (forthcoming). “General Insurance Deductible Ratemaking,” Conditionally Ac-

cepted by the North American Actuarial Journal.

Section 5.1, 5.2, and 5.3 each show empirical results using the LGPIF data for chapters 2, 3, 4

respectively.
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5.1 Insurance Claim Modeling

Chapter 7 provides a more detailed summary of the LGPIF rating engine. Section 5.1.1 provides

basic summary statistics for the LGPIF policyholder level data.

5.1.1 Basic Summary Statistics

The data are split into a training sample, and a validation sample. Table 5.1 shows the sample

size for the training sample. Table 5.2 shows the validation sample. The data consist of six

coverage groups; building and content (BC), contractor’s equipment (IM), comprehensive new

(PN), comprehensive old (PO), collision new (CN), collision old (CO) coverage. The data are

longitudinal, and Tables 5.1 and 5.2 provide summary statistics for the frequencies and severities

of claims within the in-sample years 2006 to 2010, and the validation sample 2011.

Table 5.1: Data Summary by Coverage, 2006–2010 (Training Sample).
Average Average Annual Claims Average Coverage Number of Number of

Frequency Severity in Each Year (Million) Claims Observations

BC 0.879 9868 17,143 37.050 4992 5660

IM 0.056 624 766 0.848 318 4622

PN 0.159 197 466 0.158 902 1638

PO 0.103 311 504 0.614 587 2138

CN 0.127 374 744 0.096 720 1529

CO 0.120 538 951 0.305 680 2013

Table 5.2: Data Summary by Coverage, 2011 (Validation Sample).
Average Average Annual Claims Average Coverage Number of Number of

Frequency Severity in Year (Million) Claims Observations

BC 0.945 8352 20,334 42.348 1038 1095

IM 0.076 382 645 0.972 83 904

PN 0.224 307 634 0.172 246 287

PO 0.128 220 312 0.690 140 394

CN 0.125 248 473 0.093 137 268

CO 0.081 404 656 0.375 89 375

Table 5.3 describes each coverage group. Automobile coverage is subdivided into four subcategories,

which correspond to combinations for collision versus comprehensive and for new versus old cars.
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Table 5.3: Description of Coverage Groups

Code Name of Coverage Description

BC Building and Contents

This coverage provides insurance for buildings and the

properties within. In case the policyholder has purchased

arider, claims in this group may reflect additional amounts

covered under endorsements.

IM Contractor’s Equipment

IM, an abbreviation for “inland marine” is used as the

coverage code for equipments coverage, which originally

belong to contractors.

C Collision

This provides coverage for impact of a vehicle with an

object, impact of vehicle with an attached vehicle, or

overturn of a vehicle.

P Comprehensive

Direct and accidental loss or damage to motor vehicle,

including breakage of glass, loss caused by missiles, falling

objects, fire, theft, explosion, earthquake, windstorm, hail,

water, flood, malicious mischief or vandalism, riot or civil

common, or colliding with a bird or animal.

N New
This code is used as an indication that the coverage is for

vehicles of current model year, or 1∼2 years prior to the

current model year.

O Old

This code is used as an indication that the coverage is for

vehicles three or more years prior to the current

model year.

From Table 5.3, there are collision and comprehensive coverages, each for new and old vehicles of

the entity. Hence, an entity can potentially have collision coverage for new vehicles (CN), collision

coverage for old vehicles (CO), comprehensive coverage for new vehicles (PN), and comprehensive

coverage for old vehicles (PO). Hence, in our analysis, we consider these sub-coverages as individual

lines of businesses, and work with six separate lines, including building and contents (BC), and

contractor’s equipment (IM) as separate lines also.

Preliminary dependence measures for discrete claim frequencies and continuous average severi-

ties can be obtained using polychoric and polyserial correlations. These dependence measures both

assume latent normal variables, whose values fall within the cut-points of the discrete variables.

The polychoric correlation is the inferred latent correlation between two ordered categorical vari-

ables; the polyserial correlation is the inferred latent correlation between a continuous variable and

an ordered categorical variable, cf. Joe (2014).

Table 5.4 shows the polychoric correlation among the frequencies of the six coverage groups.

Note that these dependencies in Table 5.4 are measured before controlling for the effects of ex-

planatory variables on the frequencies. As Table 5.4 shows, there is evidence of correlation across

different lines, however these cross-sectional dependencies may be due to correlations in the expo-
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sure amounts or, in other words, the sizes of the entities.

Table 5.4: Polychoric Correlation among Frequencies of Claims.

BC IM PN PO CN

IM 0.506

PN 0.465 0.584

PO 0.490 0.590 0.771

CN 0.492 0.541 0.679 0.566

CO 0.559 0.601 0.642 0.668 0.646

The dependence between frequencies and average claim severities is often of interest to modelers,

to correctly understand the risk involved in the claims. In Section 2.4 we have reviewed methods

to assess the dependency between the frequency and average severity of insurance claims. Our

data are suitable for applying this approach. The diagonal entries of Table 5.5 show the polyserial

correlations between the frequency and severity of each coverage group.

Table 5.5: Polyserial Correlation between Frequencies and Severities.

BC IM PN PO CN CO

Freq. Freq. Freq. Freq. Freq. Freq.

BC Severity −0.033 0.029 −0.063 −0.069 0.020 −0.050

IM Severity −0.033 −0.078 0.110 0.249 0.159 0.225

PN Severity 0.074 0.275 −0.146 −0.216 0.119 0.143

PO Severity 0.111 0.171 −0.161 −0.119 0.258 0.137

CN Severity −0.112 −0.174 −0.003 0.135 0.032 −0.175

CO Severity −0.099 −0.079 −0.055 −0.083 −0.068 −0.032

According to Table 5.5, the observed correlation between frequency and severity is small. For

the CN line, a positive correlation can be observed although very small (0.032, while the other

correlations between frequency and severity are negative). Again, these numbers only provide a

rough idea of the dependency. Table 5.6 shows the Spearman correlation between the average

severities, for those observations with at least one positive claim. The correlation among the

severities of new and old car comprehensive coverage is high.

Table 5.6: Correlation among Average Severities.

BC IM PN PO CN

IM 0.220

PN 0.098 0.095

PO 0.229 0.118 0.415

CN 0.084 0.237 0.166 0.200

CO 0.132 0.261 0.075 0.140 0.244
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In summary, these summary statistics show that there are potentially interesting dependencies

among the response variables.

Explanatory Variables

Table 5.7 shows the number of observations available in the data set, for years 2006–2010.

Table 5.7: Number of Observations.

BC IM PN PO CN CO

Coverage > 0 5660 4622 1638 2138 1529 2013

Average Severity > 0 1684 236 315 263 370 362

Explanatory variables used are summarized in Table 5.8. The marginal analyses for each line are

performed on the subset for which the coverage amounts shown in Table 5.7 are positive.

Table 5.8: Summary of Explanatory Variables.

Variable Name Description Mean

lnCoverageBC Log of the BC coverage amount. 37.050

lnCoverageIM Log of the IM coverage amount. 0.848

lnCoveragePN Log of the PN coverage amount. 0.158

lnCoveragePO Log of the PO coverage amount. 0.614

lnCoverageCN Log of the CN coverage amount. 0.096

lnCoverageCO Log of the CO coverage amount. 0.305

NoClaimCreditBC Indicator for no BC claims in prior year. 0.328

NoClaimCreditIM Indicator for no IM claims in prior year. 0.421

NoClaimCreditPN Indicator for no PN claims in prior year. 0.110

NoClaimCreditPO Indicator for no PO claims in prior year. 0.170

NoClaimCreditCN Indicator for no CN claims in prior year. 0.090

NoClaimCreditCO Indicator for no CO claims in prior year. 0.140

EntityType City, County, Misc, School, Town (Categorical)

lnDeductBC Log of the BC deductible level, chosen by the entity. 7.137

lnDeductIM Log of the IM deductible level, chosen by the entity. 5.340

5.1.2 Marginal Model Fitting—Zero/One Frequency, GB2 Severity

For each coverage type, a frequency-severity model is fit marginally.

BC (Building and Contents) Frequency Modeling

In the frequency part, we fit several commonly employed count models: Poisson, negative binomial

(NB), zero-inflated Poisson, zero-inflated negative binomial. Our data not only exhibit a large mass

at 0, as with many other insurance claims data, but also an inflated number of 1 s. For BC, there
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are 997 policies with 1 claim. This can be compared to the expected number under zero-inflated

Poisson, 754, and under the zero-inflated negative binomial, 791. (See Table 5.9 for details). These

zero-inflated models underestimate the point mass at 1 due to the shrinkage to 0. Thus, alternative

“zero-one-inflated” models are introduced in Section 2.2.2.

Table 5.9 shows the expected count for each frequency value under different models and the

empirical values from the data. A Poisson distribution underestimates the zero proportions while

zero-inflated and negative binomial models underestimate the proportion of 1 s. The zero-one

inflated models do provide the best fits for simultaneously estimating the probability of a zero and

a one.

Chi-square goodness of fit statistics can be used to compare different models. Table 5.10 shows

the result. It is calculated depending on Table 5.9. The zero-one-inflated negative binomial is

significantly better than other methods. Each column represents the result for the following cases:

(1) Empirical

(2) Zero-inflated Poisson

(3) Zero-one-inflated Poisson

(4) Poisson

(5) Negative binomial

(6) Zero-inflated Negative binomial

(7) Zero-one-inflated Negative binomial
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Table 5.9: Comparison between Empirical Values and Expected Values for the building and contents
(BC) Line.

Category (1) (2) (3) (4) (5) (6) (7)

0 3976 4038.125 3975.403 3709.985 4075.368 4093.699 3996.906

1 997 754.384 1024.219 1012.267 809.077 791.424 1003.169

2 333 355.925 276.082 417.334 313.359 314.618 280.600

3 136 187.897 146.962 202.288 155.741 157.282 136.758

4 76 106.780 82.052 106.874 88.866 89.615 75.822

5 31 63.841 48.426 60.160 55.484 55.697 46.021

6 19 39.850 30.212 36.540 36.919 36.845 29.854

7 19 26.082 19.850 24.261 25.765 25.553 20.379

8 16 18.025 13.670 17.440 18.663 18.395 14.482

9 5 13.165 9.808 13.222 13.932 13.652 10.632

10 7 10.087 7.269 10.305 10.664 10.393 8.016

11 2 8.007 5.505 8.124 8.336 8.084 6.180

12 4 6.505 4.219 6.427 6.636 6.406 4.855

13 5 5.357 3.248 5.086 5.367 5.159 3.875

14 5 4.441 2.502 4.024 4.401 4.214 3.136

15 2 3.690 1.925 3.182 3.653 3.485 2.569

16 4 3.062 1.479 2.519 3.066 2.914 2.127

17 3 2.530 1.134 1.999 2.598 2.460 1.777

18 1 2.077 0.867 1.597 2.221 2.095 1.498

≥ 19 19 10.168 5.167 16.366 19.876 18.004 11.343

0 proportion 0.702 0.713 0.702 0.655 0.720 0.723 0.706

1 proportion 0.176 0.133 0.181 0.179 0.143 0.140 0.177

Table 5.10: Goodness of Fit Statistics for BC Line.

(2) (3) (4) (5) (6) (7)

154.573 77.064 105.201 88.086 98.400 34.515

BC (Building and Contents) Severity Modeling

In the average severity part, the most commonly used distribution, gamma, is fit and compared

with the GB2 model. To do the goodness of fit test, the quantiles of normal Cox-Snell residuals

are compared with normal quantiles.

Figure 5.1 shows the residual plot of severity fitted with gamma and GB2. Clearly, the gamma

does not fit well especially in the tail part.
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Figure 5.1: QQ Plot for Residuals of Gamma and GB2 Distribution for BC.

Building and Contents Model Summary

Table 5.11 shows the coefficients for the fitted marginal models. Here, coefficients of GB2, NB and

the zero-one-inflated parts are provided.
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Table 5.11: Coefficients of Marginal Models for BC Line.

Variable Name Coef.
Standard

Error

GB2

(Intercept) 5.620 0.199 ∗∗∗
lnCoverageBC 0.136 0.029 ∗∗∗
NoClaimCreditBC 0.143 0.076 .

lnDeductBC 0.321 0.034 ∗∗∗
EntityType: City −0.121 0.090

EntityType: County −0.059 0.112

EntityType: Misc 0.052 0.142

EntityType: School 0.182 0.092 ∗
EntityType: Town −0.206 0.141

σ 0.343 0.070

α1 0.486 0.119

α2 0.349 0.083

NB

(Intercept) −0.798 0.198 ∗∗∗
lnCoverageBC 0.853 0.033 ∗∗∗
NoClaimCreditBC −0.400 0.132 ∗∗
lnDeductBC −0.232 0.035 ∗∗∗
EntityType: City −0.074 0.090

EntityType: County 0.015 0.117

EntityType: Misc −0.513 0.188 ∗∗
EntityType: School −1.056 0.094 ∗∗∗
EntityType: Town −0.016 0.160

log(size) 0.370 0.115

Zero

(Intercept) −6.928 0.840 ∗∗∗
CoverageBC −0.408 0.135 ∗∗
lnDeductBC 0.880 0.108 ∗∗∗
NoClaimCreditBC 0.954 0.459 ∗

One

(Intercept) −5.466 0.965 ∗∗∗
CoverageBC 0.142 0.117

lnDeductBC 0.323 0.137 ∗
NoClaimCreditBC 0.669 0.447

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1.

Marginal Models for Other Lines

Section 5.1.4 provides the model selection and marginal model results for lines other than building

and contents.

5.1.3 Copula Identification and Fitting

Dependence is fit at two levels. The first is between frequency and average severity within each

line. The second is among different lines.
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Frequency Severity Dependence

Vuong’s test, as described in Section 2.3.7, is used for copula selection. Specifically, we consider

two models M (1) and M (2), in our example, M (1) is Gaussian copula while M (2) is t copula. Let

∆12 be the difference in divergence from models M (1) and M (2). When the true density is h, this

can be written as

∆12 = n−1
∑
i

{
Eh[logf (2)(Yi;xi, θ

(2))]− Eh[logf (1)(Yi;xi, θ
(1))]

}
.

A large sample 95% confidence interval for ∆12, D̄ ± 1.96× n−1/2SDD, is provided in Table 5.12.

Table 5.12 shows the comparison of Gaussian copula against t copula with commonly used degrees of

freedom for frequency and severity dependence in BC line. An interval completely below 0 indicates

that copula 1 is significantly better than copula 2. Thus, the Gaussian copula is preferred.

Table 5.12: Vuong Test of Copulas for BC Frequency and Severity Dependence.

Copula 1 Copula 2 95% Interval

Gaussian t(df = 3) −0.0307 −0.0122

Gaussian t(df = 4) −0.0202 −0.0065

Gaussian t(df = 5) −0.0147 −0.0038

Gaussian t(df = 6) −0.0114 −0.0023

Maximum likelihood estimation with the full multivariate likelihood, which estimates parameters

in marginal and copula models simultaneously, is fit here. Table 5.13 shows parameters of BC line

with the full likelihood method. Here the marginal dispersion parameters are fixed from marginal

models. By comparing Tables 5.13 and 5.11, it can be seen that the coefficients are close. As

pointed out in Joe (2014), inference functions for margins, with the results in Table 5.11, is efficient

and can provide a good starting point for the full likelihood method, as in Table 5.13.
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Table 5.13: Coefficients of Total Likelihood for BC Line.

Variable Name Coef.
Standard

Error

GB2

(Intercept) 5.629 0.195 ∗∗∗
lnCoverageBC 0.144 0.029 ∗∗∗
NoClaimCreditBC 0.222 0.076 ∗∗
lnDeductBC 0.320 0.031 ∗∗∗
EntityType: City −0.148 0.090 .

EntityType: County −0.043 0.111

EntityType: Misc 0.158 0.143

EntityType: School 0.225 0.092 ∗
EntityType: Town −0.218 0.141

σ 0.343 0.070

α1 0.486 0.119

α2 0.349 0.083

NB

(Intercept) −0.789 0.083 ∗∗∗
lnCoverageBC 1.003 0.001 ∗∗∗
NoClaimCreditBC −0.297 0.172 .

lnDeductBC −0.230 0.001 ∗∗∗
EntityType: City −0.068 0.097

EntityType: County −0.489 0.109 ∗∗∗
EntityType: Misc −0.468 0.202 ∗
EntityType: School −0.645 0.083 ∗∗∗
EntityType: Town 0.267 0.166

log(Size) 0.370 0.115

Table 5.13: Continued

Variable Name Coef.
Standard

Error

Zero

(Intercept) −6.246 0.364 ∗∗∗
lnCoverageBC −0.338 0.047 ∗∗∗
lnDeductBC 0.910 0.050 ∗∗∗
NoClaimCreditBC 0.888 0.355 ∗

One

(Intercept) −5.361 0.022 ∗∗∗
lnCoverageBC 0.345 0.013 ∗∗∗
lnDeductBC 0.335 0.010 ∗∗∗
NoClaimCreditBC 0.556 0.431

ρ Dependence −0.132 0.033 ∗∗∗
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1.

For other lines, the results of the full likelihood method are summarized in Table 5.14.
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Table 5.14: Coefficients of Total Likelihood for Other Lines. As described in Section 5.1.4, the other lines use a negative binomial model for

claim frequencies, not the 0–1 inflated model introduced in Section 2.2.2. For the CO line severity, 1
σ is fitted for the purpose of computation. Model

selection and marginal model results can be found in Section 5.1.4.

IM PN PO CN CO

Coef.
Std.

Coef.
Std.

Coef.
Std.

Coef.
Std.

Coef.
Std.

Error Error Error Error Error

GB2

(Intercept) 8.153 0.823 *** 7.918 0.046 *** 7.554 0.092 *** 6.773 0.059 *** 9.334 0.000 ***

lnCoverage 0.304 0.065 *** 0.078 0.045 . 0.081 0.057 0.137 0.039 *** 0.161 0.000 ***

NoClaimCredit 0.190 0.202 0.021 0.209 0.695 0.194 *** 0.140 0.144 −0.296 0.001 ***

lnDeduct 0.028 0.125

σ 0.955 0.365 0.047 0.043 0.100 0.130 0.863 0.513 40.193 31.080

α1 1.171 0.630 0.054 0.050 0.102 0.137 4.932 6.441 0.038 0.030

α2 1.337 0.856 0.076 0.068 0.108 0.145 1.279 1.131 0.025 0.019

NB

(Intercept) −1.331 0.594 * −2.160 0.284 *** −2.664 0.297 *** −0.467 0.158 ** −1.746 0.187 ***

Coverage 0.796 0.077 *** 0.239 0.065 *** 0.490 0.067 *** 0.487 0.054 *** 0.782 0.056 ***

NoClaimCredit −0.371 0.141 ** −0.588 0.194 ** −0.612 0.177 *** −0.668 0.157 *** −0.324 0.139 *

lnDeduct −0.140 0.085 .

EntityType: City −0.306 0.235 0.574 0.330 . 0.411 0.376 0.433 0.186 * 0.680 0.232 **

EntityType: County 0.139 0.274 3.083 0.294 *** 2.477 0.329 *** 1.131 0.172 *** 1.284 0.211 ***

EntityType: Misc −2.195 1.024 * −0.060 0.642 −0.508 0.709 −0.323 0.456 0.486 0.442

EntityType: School −0.032 0.292 0.389 0.297 0.926 0.327 ** −0.192 0.185 1.350 0.208 ***

EntityType: Town −0.405 0.277 −0.579 0.481 −1.022 0.650 −1.529 0.385 *** −0.450 0.355

size 0.724 1.004 0.766 1.420 1.302

ρ Dependence −0.109 0.097 −0.154 0.064 * −0.166 0.073 * 0.171 0.064 ** 0.009 0.045

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1.
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Table 5.13 shows significantly strong negative association between frequency and average severity

for the building and contents (BC) line. In contrast, the results are mixed for other lines. Table

5.14 shows no significant relationships for the CO and IM lines, mild negative relationships for the

PN and PO lines, and a strong positive relationship for the CN line. For the BC and CN lines, these

results are consistent with the polyserial correlations in Table 5.5, calculated without covariates.

Dependence between Different Lines

The second level of dependence lies between different lines. In this section, the dependence model

for frequencies, severities and aggregate loss with Tweedie margins, as in Section 2.3.4, are fit.

Here, we use marginal results from the inference functions for margins method. In principle, full

likelihood can be used. As mentioned previously in this section, in our case, the results of inference

functions for margins are close to full likelihood estimation.

Tables 5.15 and 5.16 show the dependence parameters of copula models for frequencies and

severities, respectively. A Gaussian copula is applied and the composite likelihood method is

used for computation. Comparing Tables 5.4 and 5.15, it can be seen that frequency dependence

parameters decrease substantially. This is due to controlling for the effects of explanatory variables.

In contrast, comparing Tables 5.6 and 5.16, there appears to be little change in the dependence

parameters. This may be due to the smaller impact that explanatory variables have on the severity

modeling when compared to frequency modeling.
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Table 5.15: Dependence Parameters for Frequency. PN and PO shows the highest amount of
correlation, indicating a common hazard within the comprehensive coverages. New and old car
collisions also shows a high correlation, presumably due to a common hazard within the motor
vehicles.

BC IM PN PO CN

IM 0.190

PN 0.141 0.162

PO 0.054 0.206 0.379

CN 0.101 0.149 0.271 0.081

CO 0.116 0.213 0.151 0.231 0.297

Table 5.16: Dependence Parameters for Severity.

BC IM PN PO CN

IM 0.145

PN 0.134 0.051

PO 0.298 0.099 0.498

CN 0.062 0.110 0.156 0.168

CO 0.106 0.215 0.083 0.080 0.210

Table 5.17 shows the result of dependence parameters for different lines with Tweedie margins.

The coefficients of marginal models are in Section 5.1.5.

Table 5.17: Dependence Parameters for Tweedies.

BC IM PN PO CN

IM 0.210

PN 0.279 0.367

PO 0.358 0.412 0.559

CN 0.265 0.266 0.553 0.328

CO 0.417 0.359 0.496 0.562 0.573
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5.1.4 Other Lines

IM (Contractor’s Equipment)

The property fund uses IM as a symbol to denote contractor’s equipment, and we follow this

notation. Figure 5.2 shows the residual plot of severity fitted with gamma and GB2 in the IM line.

Based on the plot, the GB2 is chosen.
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Figure 5.2: QQ Plot for Residuals of Gamma and GB2 Distribution for contractor’s equipment
(IM)

Table 5.18 shows the expected count for each frequency value under different models and empirical

values from the data. The proportion of 1 s for the IM line is not high, and hence most models are

able to capture this.

Table 5.18: Comparison between Empirical Values and Expected Values for IM line.

(1) (2) (3) (4) (5) (6) (7)

0 proportion 0.949 0.948 0.948 0.941 0.948 0.949 0.949

1 proportion 0.039 0.041 0.040 0.050 0.041 0.041 0.041

Table 5.19: Goodness of Fit Statistics for IM Line.

(2) (3) (4) (5) (6) (7)

13.046 11.204 74.788 7.335 6.497 6.493

Table 5.19 shows goodness of fit tests result. It has been calculated using the results in Table 5.18.

The parsimonious model, negative binomial, is preferred.
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PN (Comprehensive New)

The property fund uses P for comprehensive, and N to denote new vehicles. Hence PN would mean

comprehensive coverage for new vehicles. Figure 5.3 shows the residual plot of severity, fitted with

gamma and GB2 for PN. Based on the plot, the GB2 is chosen for the PN line.
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Figure 5.3: QQ Plot for Residuals of Gamma and GB2 Distribution for comprehensive new (PN).

Table 5.20 shows the expected count for each frequency value under different models, and the

empirical values from the data.

Table 5.20: Comparison between Empirical Values and Expected Values for PN Line.

(1) (2) (3) (4) (5) (6) (7)

0 proportion 0.808 0.805 0.800 0.769 0.809 0.811 0.809

1 proportion 0.094 0.071 0.098 0.094 0.090 0.086 0.092

Table 5.21 shows goodness of fit tests result. It has been calculated using the results in Table 5.20.

The simpler model, negative binomial, is preferred.

Table 5.21: Goodness of Fit Statistics for PN Line.

(2) (3) (4) (5) (6) (7)

31,776.507 2113.085 93,179.199 11.609 14.537 11.853
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PO (Comprehensive Old)

The property fund uses symbol O to denote old, hence PO would be comprehensive coverage for

old vehicles. Figure 5.4 shows the residual plot of severity fitted with gamma and GB2, for the PO

line.
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Figure 5.4: QQ Plot for Residuals of Gamma and GB2 Distribution for comprehensive old (PO).

Table 5.22 shows the expected count for each frequency value under different models and empirical

values from the data.

Table 5.22: Comparison between Empirical Values and Expected Values for PO Line.

(1) (2) (3) (4) (5) (6) (7)

0 proportion 0.877 0.876 0.873 0.847 0.879 0.880 0.879

1 proportion 0.072 0.057 0.072 0.084 0.067 0.065 0.068

Table 5.23 shows goodness of fit tests result. It has been calculated using the results in Table 5.22.

Negative binomial model is selected, based on the test results.

Table 5.23: Goodness of Fit Statistics for PO Line.

(2) (3) (4) (5) (6) (7)

387.671 43.127 5365.758 2.995 3.824 2.512
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CN (Collision New)

Figure 5.5 shows the residual plot of severity fitted with gamma and GB2 for the CN line.
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Figure 5.5: QQ Plot for Residuals of Gamma and GB2 Distribution for collision new (CN).

Table 5.24 shows the expected count for each frequency value under different models, and the

empirical values from the data.

Table 5.24: Comparison between Empirical Values and Expected Values for CN Line.

(1) (2) (3) (4) (5) (6) (7)

0 proportion 0.758 0.757 0.754 0.713 0.764 0.765 0.761

1 proportion 0.149 0.132 0.150 0.179 0.138 0.137 0.148

Table 5.25 shows the goodness of fit tests result. It has been calculated using the values in Table

5.24. The parsimonious model, negative binomial, is selected.

Table 5.25: Goodness of Fit Statistics for CN Line.

(2) (3) (4) (5) (6) (7)

10,932.035 1791.868 15,221.056 29.911 30.378 22.574
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CO (Collision, Old)

Figure 5.6 shows the residual plot of severity fitted with Gamma and GB2 for the CO line. GB2 is

preferred. Note, here 1
σ instead of σ is fitted for computational stability.
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Figure 5.6: QQ Plot for Residuals of Gamma and GB2 Distribution for collision old (CO).

Table 5.26 shows the expected count for each frequency value under different models, and the

empirical values from the data.

Table 5.26: Comparison between Empirical Values and Expected Values for CO Line.

(1) (2) (3) (4) (5) (6) (7)

0 proportion 0.820 0.819 0.818 0.795 0.822 0.823 0.822

1 proportion 0.111 0.098 0.109 0.130 0.109 0.105 0.109

Table 5.27 shows the goodness of fit tests result. It has been calculated using the results in Table

5.26. The parsimonious model, negative binomial, is selected.

Table 5.27: Goodness of Fit Statistics for CO Line.

(2) (3) (4) (5) (6) (7)

60.691 25.206 121.987 10.387 11.440 10.370
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5.1.5 Tweedie Margins

Table 5.28 shows marginal coefficients for each line.

Table 5.28: Marginal Coefficients of Tweedie Model.

BC IM PN

Variable Name
Coef.

Std.
Coef.

Std.
Coef.

Std.

Error Error Error

(Intercept) 5.855 0.969 *** 8.404 1.081 *** 6.284 0.437 ***

lnCoverage 0.758 0.155 *** 1.022 0.134 *** 0.395 0.107 ***

lnDeduct 0.147 0.148 −0.277 0.154 .

NoClaimCredit −0.272 0.371 −0.330 0.244 −0.570 0.296 .

EntityType: City 0.264 0.574 0.223 0.406 0.930 0.497 .

EntityType: County 0.204 0.719 0.671 0.501 2.550 0.462 ***

EntityType: Misc −0.380 0.729 −1.945 1.098 . −0.010 0.942

EntityType: School 0.072 0.521 −0.340 0.520 0.036 0.474

EntityType: Town 0.940 0.658 −0.487 0.476 0.185 0.586

φ 165.814 849.530 376.190

P 1.669 1.461 1.418

PO CN CO

Variable Name
Coef.

Std.
Coef.

Std.
Coef.

Std.

Error Error Error

(Intercept) 5.868 0.489 *** 8.263 0.294 *** 7.889 0.340 ***

lnCoverage 0.860 0.119 *** 0.474 0.098 *** 0.841 0.117 ***

lnDeduct

NoClaimCredit 0.155 0.319 −0.369 0.253 −1.025 0.331 **

EntityType: City 0.747 0.612 0.169 0.347 −0.723 0.540

EntityType: County 1.414 0.577 * 1.112 0.325 *** 0.863 0.434 *

EntityType: Misc 0.033 0.925 −0.596 0.744 −0.579 0.939

EntityType: School 0.989 0.544 . −0.631 0.316 * 0.477 0.399

EntityType: Town −2.482 1.123 * −1.537 0.499 ** −0.628 0.564

φ 322.662 336.297 302.556

P 1.508 1.467 1.527

Notes: φ: dispersion parameter, P : power parameter, 1 < P < 2.

Signif. codes: 0 ‘***’ 0.001‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

Figure 5.7 shows the cdf plot of jittered aggregate losses, as described in Section 2.3.7. For most

lines, the plots do not show a uniform trend. This tells us that the Tweedie model may not be

ideal for such cases.
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Figure 5.7: Jittering Plot of Tweedie.

5.1.6 Out-of-sample Validation

In this section, the independent case, dependent frequency-severity model, and the dependent pure

premium approach are compared. The out of sample validation is performed on the 2011 held-

out data, where there are 1098 observations. The claim scores for the pure premium approach

are obtained using the conditional mean of the Tweedie distribution for each policyholder. For

the frequency-severity approach, the conditional mean for the zero-one-inflated negative binomial

distribution is multiplied to the first moment of the GB2 severity distribution for the policyholder.

Claim scores for the dependent pure premium approach and the dependent frequency-severity

approach are computed using a Monte Carlo simulation of the normal copula.

We first consider the nonparametric Spearman correlation between model predictions and the

held-out claims. Four models are considered: the frequency-severity and pure premium (Tweedie)

model, assuming independence among lines, and assuming a Gaussian copula among lines. As can

be seen from Table 5.29, the predicted claims are about the same whether dependence is considered

or not. The interesting question is how much improvement the zero-one-inflated negative binomial

model, and the long-tail distribution (GB2) marginals bring. We observe that the long-tail nature

of the severity distribution sometimes results in a large predicted claim. We found that prediction
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of the mean, using the first moment, can be numerically sensitive.

Figure 5.8 shows a plot of the predicted claims against the out-of-sample claims, for the in-

dependent pure premium approach. Figure 5.9 shows the dependent frequency-severity approach.

These figures illustrate that more sophisticated marginal models improve the prediction for the

building and contents coverage group.

Table 5.29: Out-of-Sample Correlation.

BC IM PN PO CN CO Total

Independent Tweedie 0.410 0.304 0.602 0.461 0.512 0.482 0.500

Dependent Tweedie (Monte Carlo) 0.412 0.305 0.601 0.462 0.511 0.481 0.501

Independent Freq-Sev 0.440 0.308 0.590 0.475 0.525 0.469 0.498

Dependent Freq-Sev (Monte Carlo) 0.435 0.308 0.590 0.477 0.525 0.485 0.521

Figure 5.8: Out-of-Sample Validation for Independent Tweedie. (In these plots, the conditional
mean for each policyholder is plotted against the claims.)
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Figure 5.9: Out-of-Sample Validation for Dependent Frequency-Severity. (In these plots, the claim
scores for each line is simulated from the frequency-severity model with dependence, using a Monte
Carlo approach with B = 50,000 samples from the normal copula. The model with 01-NB and GB2
marginals show clear improvement for the BC line, in particular for the upper tail prediction. For
other lines such as CO, the GB2 marginal results in miss-scaling).
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5.1.7 Gini Index

To further validate our results, we use the Gini index to measure the satisfaction of the fund

manager with each score. The Gini index is introduced in Frees et al. (2011b). In this section,

the Gini index is calculated using relativities computed with the actual premium collected by the

LGPIF in 2011 as the denominator, with the scores predicted by each model as numerator. This

means we are looking for improvements over the original premium scores used by the LGPIF. We

expect the Gini index to be higher with the frequency-severity approach, as the fit for the upper tail

is better. Figure 5.10 compares the independent Tweedie approach, and the dependent frequency-

severity approach. For the dependent frequency-severity approach, a random 6-dimensional vector

is sampled from the normal copula, and the quantiles are converted to frequencies and severities.
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For the BC line scores calculated using the Tweedie model, we obtain −1.74% Gini index,

meaning this model does not improve the existing premium scores used by the fund. Note that in

Frees and Lee (2017), where the interest is more in the regularization problem, a constant premium

is used as denominator for assessing the relativity. Here, the denominator used is the original

premiums, which means in order for the index to be positive, there must be an improvement over

the original premiums. The dependent frequency-severity scores with B = 50,000, normal copula,

and zero-one-inflated NB and GB2 margins results in a Gini index of 22.77%, meaning a clear

improvement from the original premium scores. As a side note, the Spearman correlations are:

original BC premiums 42.59%, Tweedie model 40.97%, and Frequency-severity model 43.52%, with

the out-of-sample claims. Also the reader may observe from Table 5.29 that the improvement is

mostly due to the better marginal model fit, instead of the dependence modeling.

Figure 5.10: Ordered Lorenz Curves for BC.
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5.1.8 Summary of Insurance Claim Modeling

In Section 5.1, the models introduced in Chapter 2 have been applied to the LGPIF data. The six

coverage groups of the LGPIF have been each modeled using the best fitting marginal models. The

01-inflated negative binomial model, and the GB2 model have been utilized where appropriate.
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Copula models have been used to capture the dependence between the frequency and severity, and

the dependence among the frequency of different coverage groups, as well as the dependence among

the average severity of different coverage groups.

The simulation section used the fitted models to predict the 2011 losses for each of the six

coverage groups. According to the results, sophisticated marginal models, such as the 01-inflated

negative binomial model, and the GB2 severity model improves the prediction. The frequency-

severity approach performed better according to the Gini index measure shown in Section 5.1.6.

Overall, the results verify that dependence modeling is useful for capturing the worst-case behavior

of a portfolio of losses, while the average behavior is more influenced by the marginal models.

The models used in Section 5.1 assumed the response variable for the severity part is the

average loss severity over a year. The response variable is defined for each policyholder-year for the

frequency response. The average severity is defined for the policyholder-years in which at least one

claim occurs. In the following section (Section 5.2), model fitting results for claim level responses

will be shown. Note that in Section 5.1, the underlying loss variable is assumed to be observed.

This is often not the case in reality, and hence Section 5.2 will focus on the case where censoring

and truncation is in place.
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5.2 Deductible Ratemaking

Chapter 3 compared two different approaches to deductible ratemaking. The regression approach

performs statistical estimation of models with the log deductible explanatory variable included as

a covariate. The maximum likelihood approach uses the coverage modification formulas. For both

approaches, censored and truncated response variables are used for the modeling. In this section,

coefficient estimation results are shown for models, which assume censored and truncated response

variables are observed.

Section 5.1 assumed the average severities are observed. In Section 5.2, the claims are assumed

to be directly observed without an averaging process.

5.2.1 LGPIF Claim-Level Data

This section shows the details of the deductible rating procedure using the LGPIF data, focusing

on the building and contents (BC) coverage group. Table 5.30 summarizes the number of building

and contents (BC) policies in force.

Table 5.30: Summary Statistics of BC (Primary Coverage) Claims

Year
Average Loss Claim Loss Claim Number of

Deductible Frequency Frequency Total Total Policyholders

2006 3,048 0.735 0.525 20,313,812 18,161,172 1,158

2007 3,233 0.926 0.611 17,230,457 15,261,868 1,142

2008 3,412 0.747 0.518 11,060,356 9,160,440 1,129

2009 3,517 0.925 0.443 11,047,677 8,774,310 1,113

2010 3,599 1.089 0.633 36,659,296 33,328,603 1,113

The LGPIF data is ideal for this study, because the underlying losses and claims are both

recorded in the data server. 4285 losses are observed in the training sample, resulting in 3089

claims exceeding the deductible. In many practical situations, the former may not be available.

Hence, our goal in this study is to assume the former variable is unobserved and to test our result

using the observed, empirical underlying losses, which various hypothetical deductible levels can

be applied to and compared against. Table 5.31 shows a summary of the frequency and severity of

claims by deductible choice, for 2006–2010. There are a number of instances with a high deductible

level, say 100, 000, which implies that this data set may be studied in relation to risk retention

problems in the reinsurance context.
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Table 5.31: Summary Statistics of BC Claims by Deductible

Deductible
Avg. Loss Avg. Claim Average Average Number of

Frequency Frequency Loss Claim Observations

500 0.628 0.621 6,197 5,884 2,674

1,000 0.668 0.641 6,808 6,147 1,067

2,500 0.539 0.506 12,923 11,610 686

5,000 0.606 0.362 39,229 36,987 716

10,000 0.378 0.196 13,044 10,692 209

15,000 0.672 0.224 22,426 17,615 67

25,000 5.973 0.202 34,679 21,654 183

50,000 17.290 1.355 530,867 411,317 31

75,000 7.400 0.000 44,897 0 5

100,000 0.294 0.235 486,350 459,880 17

Table 5.32 shows the explanatory variables in the policyholder data, given that an entity has

purchased BC coverage. Table 5.34 shows a summary of both the underlying loss data, which

usually isn’t observable, and the claims data for those losses above the chosen deductible, which is

observable in most common practices.

The observed claims are summarized in Table 5.34, allowing for a comparison of LossBeforeDeductible

and LossAfterDeductible in both cases. Because Table 5.33 is conditional on LossAfterDeductible

> 0, the minimum value for LossAfterDeductible is zero in Table 5.34 (losses), whereas it is pos-

itive in Table 5.33 (claims).

Table 5.32: Policyholder Data Summary

Min. Median Mean Max. N

CoverageBC 8,937 11,310,000 37,190,000 2,445,000,000 5,655

Log(CoverageBC) -4.718 2.426 2.128 7.802

DeductBC 500 1,000 3,356 100,000

Table 5.33: Summary of Claims Above the Deductible

Min. Median Mean Max. N

LossBeforeDeduct 504 4094 29,920 12,920,000 3,089

After Deduct 4 2,982 27,420 12,920,000

Table 5.34: Summary of All Losses

Min. Median Mean Max. N

LossBeforeDeduct 1 2,243 19,300 12,920,000 4,285

After Deduct 0 750 16,970 12,920,000
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Figure 5.11: Illustration of Censoring and Truncation of Insurance Claims.

In Section 5.1, the average severities are used for the modeling, whereas here the claims are

directly used without the averaging. Figure 5.11 illustrates the data generation mechanism for the

censored losses and the claims.

5.2.2 Censored and Truncated Estimation

This section shows the statistical estimation methods needed for the deductible ratemaking tech-

nique shown in Chapter 3, Section 3.4.1. The general situation is that the jth observed claim for

policyholder i is forced to be in the interval (0,∞), due to left truncation point di. We indicate

those claim observations above the deductible by using j(ς), where the indices ς (varsigma) take

on values 1, . . . Ng,i(d). To specify the likelihood, we consider modeling the following observed
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variables:

Ng,i(d) =

Ni∑
j=1

I(Yij > di),

Y∗,i,j(ς;i)(d) =

Ng,i∑
ς=1

Yi,j(ς) − di|Yi,j(ς;i) > di,

j(ς; i) = index of ith loss above di, ς = 1, . . . , Ng,i,
1∑
1

i(ι) = index of jth positive Y∗,i,j(ς;i)(d),
1∑
1

Severity

Here, the likelihood for severities is specified. In most practical situations in actuarial science,

upper-tail truncation rarely happens, and we are interested in ordinary left truncation only. Then,

for a specific peril type M = m, the likelihood becomes

LY |M =
∏

Mι=m

ng,i(ι)∏
ς=1

fY |M
(
y∗,i(ι),j(ς;i) + di(ι)

)
1− FY |M

(
di(ι)

) · I
(
y∗,i(ι),j(ς;i) < ui(ι) − di(ι)

)
+
∏

Mι=m

ng,i(ι)∏
ς=1

1− FY |M
(
ui(ι)

)
1− FY |M

(
di(ι)

) · I (y∗,i(ι),j(ς;i) = ui(ι) − di(ι)
)
,

where y∗ is used to denote a realization of Y∗(d), and the second term will be nonzero if there is

right-censoring due to a policy limit ui(ι). This provides the likelihood of the conditional severity

distribution. Coefficients have been estimated for the exponential, gamma and Pareto distributions,

for each peril type separately. Results are shown in Table 5.35.
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Table 5.35: Exponential, Gamma, Pareto Model Coefficient Estimates

Exponential Gamma Pareto

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Fire

(Intercept) 9.484 0.246 9.524 0.385 11.628 1.029

Coverage 0.455 0.060 0.447 0.096 0.571 0.093

shape 0.423 0.041 1.012 0.012

log L 1,723 1,674 1,626

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Vandalism

(Intercept) 7.713 0.112 7.782 0.001 8.806 0.305

Coverage 0.116 0.025 0.016 0.001 -0.110 0.041

shape 0.454 0.001 1.357 0.131

log L 4,543 4,435 4,324

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Lightning

(Intercept) 8.028 0.105 8.032 0.101 8.419 0.177

Coverage 0.324 0.028 0.325 0.027 0.226 0.040

shape 1.079 0.051 1.874 0.201

log L 7,346 7,345 7,213

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Wind

(Intercept) 8.829 0.139 8.860 0.171 9.258 0.607

Coverage 0.250 0.035 0.235 0.044 0.257 0.066

shape 0.715 0.058 1.242 0.177

log L 2,645 2,635 2,552

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Hail

(Intercept) 9.658 0.181 9.672 0.239 10.481 0.550

Coverage 0.595 0.051 0.593 0.068 0.276 0.091

shape 0.584 0.085 1.543 0.436

log L 857 849 827

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Vehicle

(Intercept) 7.917 0.117 7.921 0.075 8.123 0.149

Coverage 0.049 0.029 0.087 0.018 -0.021 0.036

shape 2.217 0.103 3.924 0.622

log L 5,753 5,645 5,690

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Water (NW)

(Intercept) 8.058 0.201 8.072 0.246 10.167 1.460

Coverage 0.400 0.043 0.386 0.053 0.137 0.088

shape 0.707 0.070 1.127 0.204

log L 1,705 1,698 1,653

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Water (W)

(Intercept) 9.493 0.180 9.516 0.300 12.953 0.438

Coverage 0.428 0.042 0.428 0.071 0.270 0.059

shape 0.375 0.023 1.007 0.002

log L 4,310 4,141 3,910

Coef. Std. Err. Coef. Std. Err. Coef. Std. Err.

Misc.

(Intercept) 8.959 0.148 9.023 0.230 10.561 1.662

Coverage 0.351 0.036 0.333 0.057 0.174 0.069

shape 0.436 0.031 1.063 0.112

log L 3,075 2,990 2,817

The fit of these models can be assessed by looking at the Q-Q plots. From Figures 5.12, 5.13, 5.14,
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5.15, 5.16, 5.17, 5.18, 5.18, 5.19, 5.20, the reader may see that the Pareto model fits best for most

of the peril types, demonstrating the long-tail nature of the claim severities.

Figure 5.12: Fire Claim Model Q-Q Plots (Kolmogorov-Smirnov test statistics (p-values): 0.442(0.000),

0.594(0.000), 0.094(0.097)

Figure 5.13: Vandalism Claim Model Q-Q Plots (Kolmogorov-Smirnov test statistics (p-values):

0.472(0.000), 0.520(0.000), 0.143(0.000)
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Figure 5.14: Lightning Claim Model Q-Q Plots (Kolmogorov-Smirnov test statistics (p-values):

0.148(0.000), 0.138(0.000), 0.105(0.000)

Figure 5.15: Wind Claim Model Q-Q Plots (Kolmogorov-Smirnov test statistics (p-values): 0.262(0.000),

0.328(0.000), 0.095(0.010)
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Figure 5.16: Hail Claim Model Q-Q Plots (Kolmogorov-Smirnov test statistics (p-values): 0.257(0.000),

0.359(0.000), 0.088(0.565)

Figure 5.17: Vehicle Claim Model Q-Q Plots (Kolmogorov-Smirnov test statistics (p-values):

0.084(0.000), 0.246(0.000), 0.159(0.000)



141

Figure 5.18: Water (Non-Weather) Claim Model Q-Q Plots (Kolmogorov-Smirnov test statistics (p-

values): 0.230(0.000), 0.267(0.000), 0.083(0.128)

Figure 5.19: Water (Weather) Claim Model Q-Q Plots (Kolmogorov-Smirnov test statistics (p-values):

0.120(0.000), 0.648(0.000), 0.044(0.377)
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Figure 5.20: Miscellaneous Claim Model Q-Q Plots (Kolmogorov-Smirnov test statistics (p-values):

0.453(0.000), 0.610(0.000), 0.059(0.160)

Frequency

Obtaining the underlying frequency parameters considers the coverage modification by the de-

ductible. For regression models with a log link, the quantity ln(1−FY (di)) can be used as an offset

in standard regression routines. Specifically, for a mean parametrization

E[Ni] = exp
(
x′iγ

)
,

consider the observed frequencies, E[Ng,i]. Then,

E[Ng,i] = E[Ni](1− FY (di)) = exp
(
x′iγ

)
(1− FY (di)) = exp

(
x′iγ + offset

)
.

Hence, for most frequency regression models, the offset variable offset = ln(1 − FY (di)) can be

used, in order to recover the underlying loss frequency distribution parameters. For (a, b, 0) class

distributions with log link, this approach would work. In particular, the approach would work for

the Poisson regression or the negative binomial regression. This can be potentially extended to a

general link function η, where the mean is parametrized by

E[Ni] = η−1
(
x′iγ

)
.
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Estimation becomes more complicated for zero-inflated models, or zero-one-inflated models. For a

treatment of zero-one-inflated models, see Section 5.1. In these models, the modification to each

component of the primary and secondary probability mass function should be specified in the likeli-

hood function. The estimation of zero-one-inflated Poisson models under censoring and truncation

is covered in Section 5.2.3. In this chapter of the dissertation, we will use the Poisson frequency

model for most illustrations. The coefficient estimates for the Poisson model are shown, using

different coverage modification assumptions from the severity part. In general, the log likelihood

tends to improve when the long-tail, Pareto model is assumed.

Table 5.36: Poisson Frequency Model Coefficient Estimates
Fire Vandalism Lightning

Coef. Std.Err. Coef. Std.Err. Coef. Std.Err.

(Intercept) -5.366 0.225 -5.082 0.156 -3.400 0.093

Exponential Coverage 0.551 0.055 1.007 0.036 0.484 0.024

-log L 604 1,466 2,091

(Intercept) -5.374 0.225 -5.374 0.155 -3.242 0.096

Gamma Coverage 0.556 0.055 1.099 0.036 0.518 0.025

-log L 603 1,590 1,985

(Intercept) -5.124 0.234 -5.118 0.154 -3.245 0.097

Pareto Coverage 0.557 0.057 1.112 0.035 0.560 0.025

-log L 594 1,396 1,949

Wind Hail Vehicle

Coef. Std.Err. Coef. Std.Err. Coef. Std.Err.

(Intercept) -4.389 0.161 -4.681 0.210 -4.155 0.122

Exponential Coverage 0.503 0.042 0.137 0.065 0.847 0.030

-log L 947 375 1,799

(Intercept) -4.454 0.166 -4.719 0.209 -3.839 0.121

Gamma Coverage 0.599 0.044 0.141 0.065 0.799 0.030

-log L 933 376 1,837

(Intercept) -4.250 0.163 -4.693 0.212 -4.179 0.122

Pareto Coverage 0.525 0.043 0.163 0.066 0.883 0.030

-log L 937 376 1,786

Water (NW) Water (W) Misc.

Coef. Std.Err. Coef. Std.Err. Coef. Std.Err.

(Intercept) -6.242 0.262 -4.910 0.157 -4.546 0.161

Exponential Coverage 0.867 0.058 0.685 0.036 0.550 0.040

-log L 601 1,155 998

(Intercept) -6.652 0.282 -5.245 0.174 -4.710 0.172

Gamma Coverage 1.043 0.063 0.899 0.041 0.697 0.043

-log L 594 1,142 965

(Intercept) -6.491 0.277 -4.973 0.166 -4.543 0.169

Pareto Coverage 0.990 0.061 0.776 0.038 0.647 0.042

-log L 593 1,134 963

Peril Type Categories

Table 5.37 summarizes the losses and claims with respect to the peril type categories. The building

and contents coverage has subcoverages, each of which consists of different peril types, which could

be clustered into different categories. The property fund classifies the claims into three categories



144

Table 5.37: Peril Types of BC Losses

Peril Average Loss N Prob.

Fire 87,168 172 0.034

Vandalism, Theft, Etc. 2,084 1,774 0.355

Lightning 11,087 832 0.167

Wind 18,125 296 0.059

Hail 145,488 76 0.015

Damage by Vehicle 3,905 852 0.171

Water (Weather) 80,432 426 0.085

Water (Non-Weather) 23,974 202 0.040

Misc. 29,150 362 0.073

by default. Here they have been manually recategorized into nine broad categories: fire, vandalism,

lightning, wind, hail, vehicle, water damages (weather and non-weather) and other perils. Because

the scale of the loss distribution is highly dependent on the peril type, it is worthwhile to consider

specific peril type categories and fit loss distributions for each. Hence, the question is, Given a

claim, how can we accurately classify it into one of these categories? For example, given a claim,

could we classify it into either a vandalism claim or other? Analyses using basic discrete choice

models have revealed that more categories result in higher standard errors in the coefficients of the

peril type model. Rosenberg et al. (1999) and Yuan and Lin (2006) are some motivating articles

for the classification problem. The claim classification should use explanatory variables of the

policyholder, instead of any properties of the claim that is unknown at the instance of the claim.

Discrete categories may be easier to formulate the classification problem. Classifying claims using

continuous mixture models is left as future work.

When the log coverage is plotted with the average severities of claims, usually a positive cor-

relation can be observed. However, when the underlying losses are plotted without the averaging

over policy-year observations, the variation in the response variable is larger. Hence, when a single

severity model is used with the coverage amount as an explanatory variable, interpretable coef-

ficients may not be obtained without categorizing the claims into peril type categories. For this

reason, we are interested in considering the different severity distributions with respect to various

peril types. Section 5.2.2 have shown the coefficient estimation results for selected models using

the peril type categories specified in Table 5.37. The density plot in Section 3.5.2, Figure 3.3 is for

the lightning peril type shown here, and relativity curves in Figure 3.4 follows the nine categories

shown here also.
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Mixture Models

For modeling insurance losses with different profiles, depending on specific cases, mixture models

have been used in the literature. In practice, exponential mixtures and mixed Pareto approaches

have been used. For cases with mixture weights in multiple categories, practitioners have used

the term Pareto soup model; see White (2005). One motivation for mixture models may be the

different peril types, under which the loss severities experience different profiles. The modeling of

severities, given a specific peril type, can be performed conditional on each peril type to obtain

a set of parameters for each category of claim peril. This approach is taken in our aggregate

claims prediction. Hence estimation issues for mixture models under censoring and truncation are

discussed in detail here.

Suppose the number of claims N and Y are independent. Let M be the peril type categorical

variable, so that there are several peril types with respective loss severities, conditional on the peril

type category. Then the conditional density for claim severities can be written as

fY |M (y|m) = fY (y; θm),

where we allow the distribution parameters θm to vary over different peril types. The unconditional

distribution for the severity can be obtained using the mixture

FY (y) =
∑
m

FY |M (y|m)fM (m).

In this case, the expected loss severity becomes

E[Y ] =
∑
m

E[Y |M = m]fM (m).

The underlying peril type probabilities, fM (m), are required for this. In practice, fixed probabilities

fM (m) = pm may be used. Here, in order to determine the peril type probabilities in a data-driven

way, we specify the joint density for the frequencies and severities as
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fY,N (y, n) =
∑
m

fY |M (y|m) · fM (m) · fN (n),

for each peril type m. For related work, Frees and Valdez (2008) use a discrete choice model,

focusing on the dependency among auto insurance claim types, and Fu and Liu (forthcoming) use

the EM algorithm for estimation of a finite mixture model. Other approaches may be to impose

parametric models for the peril type probabilities. The approach we take is to model each specific

peril type and consider the coverage modification for that specific peril only.

Hence, calculation of the total building and contents density requires the peril type probabilities,

since the above results are peril dependent. The peril type probabilities may be modeled either

for all of the perils or for the reclassified peril type categories. For the Pareto mixture, the former

approach was tried, while for the GB2 mixture, the reclassified approach has been used with

categories shown in Table 5.38. Other data-driven clusterings may be possible. In this case, the

clustering has been manually performed into three arbitrarily chosen categories, using the average

loss severities. The advantage of clustering the perils into categories is the reduction in the number

of parameters to be estimated, especially when covariates are used for the peril type model.

Table 5.38: Average Loss and Claim Severity by Peril

Type Perils
Average Average

N
Loss Claim

Low Vandalism, theft, burglary, damage by vehicle 2,675 1,495 2,626

Medium Lightning, wind, non-weather water damage, misc. 17,721 15,020 1,692

High Fire, hail, water damage by weather 89,487 83,617 674

Total 19,496 17,167 4,992

In this chapter of the dissertation, a basic discrete choice model is used for the peril type

probabilities, whose coefficients are estimated using maximum likelihood:

fM (m) =



exp (x′ωm)

1 +
∑
ϕ6=m0

exp
(
x′ωϕ

) for peril type m 6= m0

1
∫ 0

0

1 +
∑
ϕ6=m0

exp
(
x′ωϕ

) for base peril type m = m0,
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Here, ωm are the regression coefficients of interest. With deductible d, the observed peril type

probabilities are altered. The underlying ωm can be recovered by first calculating

1− FY |M (d|m), for each m,

∫ 0

0

which are simply the coverage modification amounts for each peril type. Using the truncated claims,

given Y > d, the likelihood for peril type is specified using a multinomial model:

LM |Y >d = Pr(M = m|Y > d) =
Pr(Y > d|M = m)fM (m)∑
ϕ

Pr(Y > d|M = ϕ)fM (ϕ)

=

(
1− FY |M (d|m)

)
fM (m)∑

ϕ

(
1− FY |M (d|ϕ)

)
fM (ϕ)

. (5.1)

The left side of (5.1) is an observed quantity from the truncated data. The unknowns are the

parameters for the unconditional probabilities fM (m) for each m and the conditional severity dis-

tribution parameters for each peril type. In a maximum likelihood context, these quantities would

need to be included in the likelihood for the severity model. The goal is to estimate the ω in

fM (m;ω). For this, each observation of M |Y > d within the truncated claims data is used in the

following model for the categorical response M :

LY,M |Y >d = Pr(Y = y,M = m|Y > d)

= Pr(Y = y|M = m,Y > d) · Pr(M = m|Y > d)

∫ 0

0

= LY |M,Y >d · LM |Y >d. (5.2)

Taking the log of (5.2) and summing, we have

logLY,M |Y >d = logLY |M,Y >d + logLM |Y >d,

∫ 0

0
(5.3)

where the first term is the log-likelihood for the severity for a specific peril type category, and the

second term is the likelihood for the peril type. Note that the first term is the likelihood for the
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severity for a given observed claim, and the second is a probability weight, which is due to the

modification by a deductible d.

Poisson-Gamma Regression (Model A)

This section details the models in the aggregate claims study in Chapter 3, Section 3.5.3. Two

different regression approaches are compared with the gamma model with truncated estimation.

We also compare a GB2 mixture model with entity types used as predictors for peril type categories.

We begin here by showing the two regression approaches. Table 5.39 shows the coefficient estimates

for the first approach. The frequency model contains lnDeductBC as an explanatory variable. Here,

the peril type model has used a simple classification scheme, where the peril types are categorized

as having low, medium and high loss severity, before fitting the model. This was necessary because

fitting too many peril type predictors resulted in high standard errors for the peril type model.

Different approaches may be used for the reclassification of peril type categories.

Table 5.39: Poisson-Gamma Regression (Model A)
Gamma Poisson

Variable Coef. Std. Err. Variable Coef. Std. Err.

(Intercept) 8.442 0.094 (Intercept) -7.901 0.170

CoverageBC 0.353 0.026 CoverageBC 0.889 0.018

lnDeductBC -0.737 0.020

NoClaimCreditBC -0.409 0.060

Type:City -0.095 0.105 Type:City -0.068 0.063

Type:County -0.093 0.123 Type:County -0.323 0.075

Type:Misc 0.358 0.185 Type:Misc -0.335 0.112

Type:School 0.764 0.111 Type:School -0.745 0.065

Type:Town 0.115 0.194 Type:Town 0.021 0.116

φ 2.847

AIC 64,444 AIC 9,054

Table 5.40 shows the estimation results when lnE = ln(u− d) is used as an offset variable in both

the frequency and severity regressions. Because the deductible amounts and coverages are used as

offsets, they are excluded from the set of explanatory variables in the regression.
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Table 5.40: Regression Approach With Offset
Gamma Poisson

Variable Coef. Std. Err. Variable Coef. Std. Err.

(Intercept) 7.295 0.076 (Intercept) -2.960 0.046

NoClaimCreditBC -0.669 0.058

Type:City -1.191 0.093 Type:City -0.852 0.056

Type:County -1.953 0.103 Type:County -1.263 0.062

Type:Misc 0.796 0.185 Type:Misc -1.904 0.110

Type:School -0.676 0.095 Type:School -1.599 0.057

Type:Town 1.476 0.191 Type:Town 0.407 0.114

φ 3.196

AIC 65,037 AIC 11,828

Poisson-Gamma MLE (Model B)

Table 5.41 shows the coefficient estimates when truncated estimation procedures are used with the

Poisson frequency and gamma severity distributions. Note that the AIC for the severity model is

high, most likely because of the poor model fit in the upper tail. Estimates of the Poisson coefficient

are shown in the second panel, where the recovered coefficients are different from Tables 5.39 and

5.40.

Table 5.41: Poisson-Gamma Maximum Likelihood (Model B)
Gamma Poisson

Variable Coef. Std. Err. Variable Coef. Std. Err.

(Intercept) 8.157 0.091 (Intercept) -1.924 0.059

CoverageBC 0.373 0.025 CoverageBC 0.591 0.016

NoClaimCreditBC -0.725 0.059

Type:City -0.114 0.103 Type:City 0.118 0.064

Type:County -0.109 0.133 Type:County 0.087 0.075

Type:Misc 0.395 0.185 Type:Misc -0.635 0.112

Type:School 0.743 0.110 Type:School -0.774 0.065

Type:Town 0.150 0.196 Type:Town -0.195 0.117

φ 0.272 0.007

AIC 70,656 AIC 10,282

Poisson-GB2 MLE (Model C)

Table 5.42 shows the coefficient estimates for the GB2 severity model. For the severity model, notice

that only the scale parameters are peril dependent, in order to reduce the number of parameters

used in the model. Also, the reader can observe that the AIC for the severity model becomes much

lower under the GB2 model, compared with the gamma model in Table 5.41.
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Table 5.42: GB2 Maximum Likelihood (Model C)

Term Variable Coef. Std. Err.

Low (Intercept) 7.235 0.138

Medium
(Intercept) 7.619 0.164

CoverageBC 0.198 0.028

High
(Intercept) 8.332 0.216

CoverageBC 0.250 0.040

ωM

(Intercept) 0.368 0.102

Type:City -0.705 0.124

Type:County 0.467 0.142

Type:Misc -0.191 0.248

Type:School 0.056 0.129

Type:Town -0.314 0.254

ωH

(Intercept) -0.669 0.134

Type:City -0.605 0.166

Type:County 0.444 0.183

Type:Misc 0.081 0.309

Type:School 0.344 0.164

Type:Town -0.081 0.323

σ 1.213 0.154

α1 1.653 0.337

α2 1.677 0.344

AIC 17,737

Table 5.42 shows only the severity distribution coefficients. This could be paired with the Poisson

model or more advanced frequency model assumptions such as zero-one inflated models. Compar-

ison of various frequency model assumptions and coefficient estimates under GB2 loss severities

are shown in Table 5.43. In Table 5.43, the estimated frequency parameters differ, depending on

whether the underlying losses are observed or unobserved. Estimation of the coefficients in Table

5.43 is explained in the following Section 5.2.3.

Table 5.43: Comparison of Coefficients for Frequency Models

(1) (2) (3) (4)

Poisson 01-Poisson Poisson 01-Poisson

Underlying Underlying Censored Censored

Estimation Estimation

Coef. Std.E. Coef. Std.E. Coef. Std.E. Coef. Std.E.

Poisson

(Intercept) -2.874 0.054 -1.841 0.098 -1.955 0.060 -1.913 0.066

CoverageBC 0.993 0.012 0.753 0.019 0.733 0.017 0.734 0.020

NoClaimCreditBC -0.668 0.047 -0.289 0.122 -0.574 0.059 -0.587 0.065

Type:City -0.597 0.058 -0.025 0.077 0.055 0.063 0.038 0.064

Type:County -0.540 0.064 -0.130 0.086 -0.190 0.075 -0.214 0.076

Type:Misc -1.884 0.113 -0.388 0.168 -0.494 0.112 -0.542 0.121

Type:School -0.988 0.056 -1.070 0.083 -0.792 0.065 -0.786 0.067

Type:Town 0.360 0.113 -0.117 0.144 -0.045 0.117 -0.130 0.124

Zero

(Intercept) -0.684 0.325 -13.048 9.776

CoverageBC 0.074 0.071 1.228 1.017

NoClaimCreditBC 1.147 0.243 -5.461 44.880

One

(Intercept) -3.507 0.436 -6.400 3.860

CoverageBC 0.481 0.089 -0.196 0.276

NoClaimCreditBC 0.900 0.337 2.167 3.894
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5.2.3 01-Inflated Model Estimation

To estimate the 01-inflated Poisson model from censored observations, we define v = 1−FY (d) for

notational convenience, since only those losses above the deductible would be observed as a claim.

Then the observed zero probabilities would satisfy

Pr(Nλ,g(d) = 0)
1

1

= π0 + π2Pλ(0) + π1(1− v) + π2Pλ(1)(1− v) + π2Pλ(2)(1− v)2 + π2Pλ(3)(1− v)3 + . . .
1

1

= π0 + π2Pλ(0) + π1(1− v) + π2

[
λe−λ(1− v) +

e−λλ2

2!
(1− v)2 +

e−λλ3

3!
(1− v)3 + . . .

]
= π0 + π2Pλ(0) + π1(1− v) + π2

e−λ

e−λ(1−v)

[
λ(1− v)e−λ(1−v) +

e−λ(1−v)(λ(1− v))2

2!
+ . . .

]

= π0 + π2Pλ(0) + π1(1− v) + π2e
−λv(1− Pλ(1−v)(0))

1

1

= π0 + π2Pλ(0) + π1(1− v) + π2Pλv(0)(1− Pλ(1−v)(0)),
1

1

where we use the notation Pλ(1−v)(n) to denote the probability of a random variable with secondary

Poisson distribution with parameter λ(1− v) being n.
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The probability of one claim being observed is

Pr(Nλ,g(d) = 1)
1

1

1

1

= π1 + π2Pλ(1)v

(
1

1

)
+ π2Pλ(2)(1− v)v

(
2

1

)
+ π2Pλ(3)(1− v)2v

(
3

1

)
+ . . .

1

1

= π1 + π2v
[
Pλ(1) + 2Pλ(2)(1− v) + 3Pλ(3)(1− v)2 + . . .

] 1

1

= π1 + π2v

[
λe−λ + 2

λ2e−λ

2!
(1− v) + 3

λ3e−λ

3!
(1− v)2 + . . .

]
= π1 + π2vλ

e−λ

e−λ(1−v)

[
e−λ(1−v) +

(λ(1− v))e−λ(1−v)

1!
+

(λ(1− v))2e−λ(1−v)

2!
+ . . .

]

= π1 + π2λve
−λv(1− Pλ(1−v)(0))

1

1

= π1 + π2 · Pλv(1) · (1− Pλ(1−v)(0)),
1

1

and the probability of n claims being observed is

Pr(Nλ,g(d) = n)

= π2

[
Pλ(n)vn

(
n

0

)
+ Pλ(n+ 1)vn(1− v)

(
n+ 1

1

)
+ Pλ(n+ 2)vn(1− v)2

(
n+ 2

2

)
+ . . .

]
1

1

= π2v
nλne−λ

1

n!

[
1 +

λ(1− v)

1!
+

(λ(1− v))2

2!
+ . . .

]
1

1

= π2
(λv)ne−λv

n!

1

1

= π2Pr (Nλv = n) for n ≥ 2.
1

1

Using these terms, the log-likelihood for policyholder i can be specified as

logLi = log{Pr(Nλi,g(di) = 0) · I(Nλi,g(di) = 0)

+Pr(Nλi,g(di) = 1) · I(Nλi,g(di) = 1)

+Pr(Nλi,g(di) = nλi,g) · I(Nλi,g(di) = nλi,g(di))}.

Because the estimation of 01-inflated models under deductible influence is an interesting application,
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the details have been shown here. Section 3.5.4 of the dissertation illustrates the performance of

this model in comparison with the basic Poisson model, with and without deductible influence.

5.2.4 Summary of Deductible Ratemaking

Section 5.2 has shown the censored and truncated estimation results, in relation to Chapter 3.

The difference between the models in Section 5.1 and 5.2 is the type of observed variable. Section

5.1 assumes the average severity is observed over policyholder-years, while in Section 5.2 the loss

severities are assumed to be observed at the claim level without averaging.

The following, Section 5.3 is a case study of insurance portfolio optimization (introduced in

Chapter 4) using the models in Section 5.1.
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5.3 Insurance Portfolio Optimization

Chapter 4 introduced insurance portfolio optimization methods, where the goal is to determine the

optimal risk retention parameter, subject to a premium constraint. Using the models in Section

5.1, the goal in this chapter is to find the optimal risk retention parameter for a single policyholder.

Hence, the insurance portfolio optimization approach is applied to the models of the LGPIF, in

order to determine the optimal per-loss and annual aggregate upper limit for the school entity

Madison Metropolitan School District (MMSD). Specifically, the building and contents claim model

introduced in Section 5.1.2, Table 5.11 is used for illustration.

5.3.1 Framework

Using the framework in Section 4.8.1, let

Sg,i(u1, u2) = Aggregate-Lossi(u1, u2) = min

 Ni∑
j=1

min(Yij , u1), u2


with

qg,i = α-quantile of the aggregate loss for policyholder i

where we assume the insurer wishes to minimize qg,i subject to a restriction on the premiums. As

in the framework of Section 4.8.1, our goal is to

minimize qg,i

subject to E[Sg,i] ≥ Pmin

5.3.2 Madison Metropolitan School District Policy

A portfolio manager may enter into a reinsurance treaty analogous to the framework in Section

5.3.1 for the largest school district in the portfolio, in order to mitigate the impact of a single large

loss causing unexpected amounts in claims. The manager may be interested in a per-loss coverage,

as well as a coverage on the aggregate losses at the annual aggregate loss level. The question is,

how much of the risk should be retained, and how much should be reinsured?

For this study, the policy i of interest is MMSD, which is a school entity with 585, 877, 641
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in coverage. MMSD has GB2 parameters σ = 0.343355, µ = 11.29235, and α1 = 0.4863737,

α2 = 0.3488046, and the probability of zero and one claims each 0.4993782, and 0.2791071, and

E[Pi(n)] = 13.899 using a 01-inflated negative binomial model as described in Section 5.1.2.

5.3.3 The Omit-i Portfolio

The omit-i portfolio is simulated assuming a hypothetical insurance company, carrying the BC

claims only.

Table 5.44: Summary Statistics for Simulated Aggregate Portfolio Losses

Min. Median Mean Max. B

759,300 6,245,000 31,380,000 4,753,000,000 10,000

Table 5.44 shows summary statistics for the simulated omit-i portfolio, using the 01-inflated negative

binomial models, and GB2 severity models for each of the policies. The long-tail nature of the

GB2 distribution is illustrated in Table 5.44. The average aggregate losses for the omit-i portfolio

turned out to be 31.38 million, which is reasonably close to the realized empirical losses in year 2011.

Nevertheless, the maximum simulated aggregate portfolio loss is 4,753 million, which is extremely

high.

To explain the details of the simulation of the omit-i portfolio, among the 1095 policies in the

out-of-sample data with BC coverage, the 1094 policies excluding MMSD are each simulated with

B = 10, 000 replicates of frequency and severity models. The resulting claims are aggregated to

form B = 10, 000 replicates of omit-i portfolio aggregate losses S(i). Thus

Sg = min

([
Ni∑
i=1

min(Yij , u1)

]
, u2

)
+ S(i)

can be obtained, and the quantile and mean-excess function can be used for the optimization. That

is, the quantile

qg = α-quantile of the aggregate loss for the entire portfolio

= inf
{
FSg(y) = α

}
where FSg is the distribution for Sg can be optimized. Because the portfolio losses consist of more
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policies than a single loss case, the premium constraints and resulting quantile should be larger

than the first case. With the omit-i portfolio, the problem becomes

minimize qg

subject to E[Sg] ≥ Pmin.

Both cases (without the omit-i portfolio, and with the omit-i portfolio) are shown in Tables 5.45

and 5.46 of the following section.

5.3.4 Results

Without Omit-i Portfolio

First, it is natural to ask, what would be the optimal parameter, if we ignore the omit-i portfolio

and simply optimize the single MMSD policy parameters? This section shows the result.

Figure 5.21: Histogram of Simulated Loss (Left Panel) and Aggregate Loss (Right Panel) for MMSD

Figure 5.21 shows the distribution of simulated losses, and the aggregate loss density, on a log-

scale. In the left panel of Figure 5.21, each of the simulated Yij losses for policy MMSD are plotted.

Each loss is GB2 distributed, and hence all positive. The right panel shows the aggregate losses,∑Ni
j=1 Yij . If the realized Ni value is zero, then the aggregate loss is zero, hence the aggregate loss
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density has a mass point at zero. The distribution is shown before applying the parameter ui.

Figure 5.22: Optimization Result Without Omit-i Portfolio

In Figure 5.22, the optimization result is shown. The left panel of 5.22 shows the graph of

u∗1 for various E[Sg,i] ≥ Pmin constraints , and the right panel shows the graph of u∗2 for various

E[Sg,i] ≥ Pmin constraints. The parameter pair (u1, u2) is optimized simultaneously, and an optimal

value (u∗1, u
∗
2) is found for each given Pmin value. The first parameter u1 applies to each of the

losses, and the second parameter u2 applies at the aggregate loss level.

In Table 5.45, the actual optimal upper limit values are shown in a table. As Pmin is varied

from 25,181 to 226,626, the optimal parameter pair (u∗1, u
∗
2) varies from small values to high values.

Notice that the third column is the constraint, whereas the fourth column is the actual realized

empirical expected value under the parameter (u∗1, u
∗
2). It can be observed that the constraint is

satisfied. The quantile increases from 127,654 to 4,219,594. The value 4,219,594 is the quantile of

the underlying loss, ie. when (u1, u2) = (∞,∞).

From Table 5.45, the reader may observe that the quantile is fixed to 4,219,594, once the upper

limits are large enough. The premium constraint is varied within the interval [0, 226, 626]. As the

premium constraint is increased, the optimal upper limit increases, until the constraint is binding.

The parameter pair with the minimum qg,i is returned.

Another observation is that the second upper limit parameter is higher than the 95th per-
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Table 5.45: Optimization Result Without Portfolio

u1 u2 Pmin E[Sg,i] qg,i

198,929 127,654 25,181 25,181 127,654

413,984 370,951 50,361 50,361 370,951

743,103 711,706 75,542 75,542 711,706

1,215,740 1,213,764 100,723 100,723 1,213,764

1,998,173 1,998,052 125,903 125,903 1,998,052

3,325,589 3,325,580 151,084 151,084 3,325,580

9,873,521 9,412,247 176,264 191,726 4,219,594

38,706,607 41,235,780 201,445 230,101 4,219,594

35,779,709 86,894,710 226,626 228,892 4,219,594

centile value qg,i. The reason why it is possible for the quantile to be fixed at 4,219,594 while the

mean E[Sg,i] continues to increase while the upper limit parameters increase to extremely high

u1 = 35, 779, 709 and u2 = 86, 894, 710, is due to the long-tail nature of the GB2 distribution.

Presumably, even after the upper limit is as high as u1 = 1, 215, 740 and u2 = 1, 213, 764, the mean

is only 100,723, meaning that a lot of mass is towards the tail of the aggregate loss distribution.

With Omit-i Portfolio

When the omit-i portfolio is added, the aggregate loss is much larger. The first panel of Figure 5.23

shows the distribution of Sg,i + S(i), without any influence of the upper limit parameter. The plot

is generated by simulating B = 10, 000 replicates of Sg,i from Figure 5.21 and adding the result to

B = 10, 000 replicates of S(i). From Figure 5.21, notice that the mass at zero has disappeared. This

is because at a portfolio level, mostly all of the simulated portfolio losses (B = 10, 000 replicates)

will have at least one policy with a positive loss.

In Figure 5.24, the optimal upper limit parameter (u∗1, u
∗
2) is plotted by optimizing the 99%

quantile for Sg,i + S(i) under increasing premium constraints E[Sg] ≥ Pmin. Notice that the curve

for both u∗1 and u∗2 are not completely smooth depending on how the optimization routine has

converged. The upper limit parameters apply to the ith policy (MMSD) only, and not the rest of

the portfolio.
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Figure 5.23: Histogram of Simulated Portfolio Aggregate Losses

Figure 5.24: Optimization Result With Portfolio

Table 5.46 shows the actual optimal parameters, when the portfolio loss is optimized. The Pmin

constraint is varied from between [31.4 mil, 31.8 mil], where the lowest possible Pmin value is

the average of the omit-i portfolio loss distribution. The highest possible value is determined by

simulating Sg using u1 = u2 = ∞. It is advised that the manager selects the Pmin value wisely,

and in the process use Table 5.46 as a reference for the decision making.
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Table 5.46: Optimization Result With Portfolio

u1 u2 Pmin E[Sg] qg

231,289 387,532 31,423,842 31,428,300 288,201,063

729,649 1,222,013 31,467,683 31,476,526 288,201,063

2,012,678 3,370,341 31,511,525 31,524,752 288,201,063

7,594,563 12,716,460 31,555,366 31,570,239 288,201,063

23,065,340 35,309,580 31,599,208 31,599,235 288,201,063

179,376,300 181,474,100 31,643,049 31,643,910 288,389,004

1,009,057,000 1,007,782,000 31,686,891 31,686,892 288,389,004

1,504,771,000 1,486,168,000 31,730,732 31,698,717 288,389,004

5,293,603,000 5,280,993,000 31,774,574 31,774,574 288,389,004

5.3.5 Summary of Insurance Portfolio Optimization Case Study

In this section, the LGPIF data has been applied to the insurance portfolio optimization problem

for the Madison Metropolitan School District Policy. Optimal upper limit parameters have been

determined, depending on the premium constraint to the policy. If the premium constraint is

imposed to the portfolio, then the omit-i portfolio can be added, in order to determine the parameter

pair satisfying the constraint at the portfolio level.

Using this methodology, the insurance manager has a framework to determine the optimal upper

limit, deductible, and coinsurance for each policy. Improvements are possible, and some potential

future work is summarized in the following, Section 6.
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Chapter 6

Conclusion and Future Work

To summarize, we have started the dissertation by motivating actuarial problem solving under

the framework of first defining the problem, then devising a solution, and finally monitoring the

solution. This framework motivated the development of more accurate rating algorithms for the

LGPIF. Meanwhile, motivation for the search of more advanced and fundamental solutions to the

solvency issue of the LGPIF lead us to study advanced insurance claims models, deductible rating

methodologies, and insurance risk retention problems.

Based on the situation in the LGPIF, we have first determined that accurate rating algorithms,

and optimal risk retention could help improve the solvency of the LGPIF. Depending on the problem

definition, our models and methodologies began to focus on specific chapters of the dissertation.

6.1 Insurance Claims Modeling

In Chapter 2, multivariate approaches to insurance claims modeling were reviewed. For future

work, claims may be categorized into further detail using the peril types, and the spatial relationship

may be explored. Various categorization methods can be used to cluster and categorize the claims

into categories, so as to discover interesting relationships among the categories of insurance claims.

The longitudinal nature of the data may be explored further.

In this dissertation, the hierarchical nature of insurance claims and the influence of censoring and

truncation has been explored. More case studies using various models, and studying the influence

of censoring and truncation could be interesting extensions to the work done in this dissertation.
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An example of a hierarchical model in the insurance context is Frees et al. (2009).

In addition, advanced classification and clustering methods can be used for insurance claims

modeling. Specifically, textual information could be utilized to classify insurance claims. This

is known as claims triaging methods. With new machine learning methods emerging, insurance

claims modeling using non-traditional data may become an active field of research in the future.

For example, in the future it may be possible to utilize bitmap image data to more accurately

predict the claim frequency and severity of insurance risks, and classify insurance policies.

6.2 Deductible Ratemaking

In Chapter 3, deductible ratemaking approaches have been reviewed. The standard way of mod-

eling insurance claims treats deductible choices as exogenously given. Deductible levels are either

included in a regression model, or used as a constant input to calculating the coverage modifica-

tion amount. In both cases, relativities for various deductible levels can be obtained for insurance

ratemaking purposes.

An new interpretation of deductibles may be suggested in the future. This new interpretation

may allow for the flexibility of applying multivariate analysis to deductible choices and other re-

sponse variables common in insurance analytics, such as claim frequencies, and severities. A survey

of various ordinal response models may be a possible next step for flexible modeling of deductible

choices. It may be interesting to compare various approaches to deductible choice modeling: One

may interpret deductibles as a continuous random variable, while other approaches may treat them

as ordinal responses.

Once a model for deductible choice is built, it may be possible to obtain distributions of loss fre-

quencies and severities conditional on the deductible choice, using dependence models. This would

allow for underlying loss models to be dependent on the deductible choice made by the insurance

policyholder. Several potential models for deductible choice are possible. The proportional odds

model for deductible choice may be given by

P (Y ≤ j|x) = logit−1
(
αj + β′x

)
, j = 1, . . . , J − 1.

The cutpoints αj are increasing in j, and the cumulative probabilities P (Y ≤ j|x) are increasing



163

in j as well. For example, let x = x1 = x1 if the entity type is city, and x = x2 = x2 if the entity

type is county, and let β = β. Then, for a fixed j, the odds ratio of cumulative probabilities is

proportional to the slope β, providing an expression for the difference in the logit of the cumulative

probabilities under the two entity types. Hence, the name proportional odds model. More general

models are also possible. Let

P (Y ≤ j|x) = FZ(z)

for a latent variable Z with any parametric distribution, possibly fat-tailed. The choice of distri-

bution for the latent variable Z would depend on the nature of the underlying data.

6.3 Insurance Portfolio Optimization

In Chapter 4, we have been able to optimize the risk retention parameters for simple example

problems of risk retention. The general procedure is to visualize the domain over which the quantile

function is quasi-convex, and obtain a global minimizer of the function within a compact domain

satisfying the premium constraint. We have shown that the following expressions for the premium

(µg) and quantile (qg) sensitivities can be obtained using quantile sensitivity formulas:

∂qg
∂di

= − ci
fSg(qg)

E

 Ni∑
j=1

I(Yij > di)

 fS(i)

qg − Ni∑
j=1

g(Yij)


∂qg
∂ui

=
ci

fSg(qg)
· E

 Ni∑
j=1

I(Yij > ui)

 fS(i)

qg − Ni∑
j=1

g(Yij)


∂qg
∂ci

=
1

fSg(qg)
E

 Ni∑
j=1

(Yij − di) · I(Yij > di)

−(Yij − ui) · I(Yij > ui)) fS(i)

qg − Ni∑
j=1

g(Yij)
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The mean sensitivities are:

∂

∂di
µ = −ci · E[Ni] · (1− FY (di))

∂

∂ui
µ = ci · E[Ni] · (1− FY (ui))

∂

∂ci
µ = E[Ni] ·

∫ ui

di

(1− FY (y))dy.

For commonly used loss distributions, we have been able to see that

∂qg
∂di

< 0, and
∂qg
∂ui

> 0, and
∂qg
∂ci

> 0

and we may also notice that

∂µg
∂di

< 0, and
∂µg
∂ui

> 0, and
∂µg
∂ci

> 0

with the curvature (second derivative) of the quantile function depending largely on the curvature

of the omit-i portfolio distribution. Thus, for simple one-dimensional optimization problems, we

have been able to provide answers to the optimal risk retention parameter, di, ci, and ui. When

multiple parameters are optimized simultaneously, quasi-convexity of the quantile function is not

guaranteed. However, for the case where two upper limits are present each at different layers, we

were able to obtain reasonable optima for the upper limits u1 and u2, for an empirical study using

the LGPIF data.

There are many avenues for future work related to the risk retention and portfolio optimization

chapter of this dissertation. One possible future work may be to focus on the multiple layers

problem. It may be potentially interesting to obtain real reinsurance market data to apply the

methodologies in this part of the dissertation. For a multiple parameter problem, how should

the RM2 measure be defined, and how should it relate to the loading factor of the reinsurance

premium? These are open questions to explore.
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6.4 Summary of Conclusion and Future Work

In conclusion, this dissertation provided an overview of multivariate insurance claims modeling,

as well as an overview of insurance ratemaking in the presence of deductibles. The dissertation

provided a rigorous overview of insurance claims modeling, and insurance deductible ratemaking.

Based on a data-driven way of assessing the underlying loss distribution, models are estimated and

utilized for ratemaking and insurance portfolio optimization.

For this reason, this dissertation assumes the deductible parameter di, nor other risk retention

parameters such as ui, or ci alters the underlying distribution of losses. In reality, the parameter

changes may influence the underlying distributions, and hence may be a topic for future work.



166

Bibliography

Aban, Inmaculada B., Mark M. Meerschaert, and Anna K. Panorska (2006). “Parameter Estimation for the Truncated

Pareto Distribution,” Journal of the American Statistical Association, Vol. 101(473), pp. 270–277.

Acar, Elif F., Radu V. Craiu, and Fang Yao (2011). “Dependence Calibration in Conditional Copulas: A Nonpara-

metric Approach,” Biometrics, Vol. 67, pp. 445–453.

Anscombe, F. J. (1952). “Large-sample Theory of Sequential Estimation,” Mathematical Proceedings of the Cambridge

Philosophical Society, Vol. 48, pp. 600–607.

Arrow, Kenneth J. (1974). “Optimal Insurance and Generalized Deductibles,” Scandinavian Actuarial Journal, Vol.

1, pp. 1–42.

Asimit, Alexandru V., Alexandru M. Badescu, and Tim Verdonck (2013). “Optimal Risk Transfer Under Quantile-

Based Risk Measures,” Insurance: Mathematics and Economics, Vol. 53, pp. 252–265.

Assa, Hirbod (2015). “On Optimal Reinsurance Policy with Distortion Risk Measures and Premiums,” Insurance:

Mathematics and Economics, Vol. 61, pp. 70–75.

Bahnemann, David (2015). Distributions for Actuaries. CAS Monograph Series, Number 2.

Bahraoui, Zuhair, Catalina Bolance, and Ana M. Perez-Marin (2014). “Testing Extreme Value Copulas to Estimate

the Quantile,” SORT, Vol. 38, pp. 89–102.

Barr, Donald R. and Todd Sherrill (1999). “Mean and Variance of Truncated Normal Distributions,” American

Statistician, Vol. 53(4), pp. 357–361.

Bernegger, Stefan (1997). “The Swiss Re Exposure Curves and the MBBEFD Distribution Class,” ASTIN Bulletin,

Vol. 27, pp. 99–111.

Borch, K. (1960). “An Attempt to Determine the Optimum Amount of Stop Loss Reinsurance,” Transactions of the

16th International Congress of Actuaries, Vol. 1(3), pp. 597–610.

Boucher, Jean-Philippe (2014). “Regression with Count Dependent Variables,” in Edward W. Frees, Glenn Mey-

ers, and Richard A. Derrig eds. Predictive Modeling Applications in Actuarial Science, Cambridge. Cambridge

University Press.

Bowers, N.J., H.U. Gerber, J.C. Hickman, D.A. Jones, and C.J. Nesbitt (1997). “Actuarial Mathematics,” Vol. 2, pp.

201–223.

Boyd, Stephen and Lieven Vandenberghe (2004). Convex Optimization. Cambridge University Press.

Brechmann, Eike, Claudia Czado, and Sandra Paterlini (2014). “Flexible Dependence Modeling of Operational Risk

Losses and its Impact on Total Capital Requirements,” Journal of Banking & Finance, Vol. 40, pp. 271–285.

Brockett, Patrick L., Linda L. Golden, Montserrat Guillén, Jens P. Nielsen, Jan Parner, and Ana M. Pérez-Maŕın
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Chapter 7

Appendix: Rating Engine Summary

.

Abstract

This Appendix provides additional details of the LGPIF, as well as some intuition

of how the rating engine for the LGPIF has been implemented.

The rating engine in this chapter is based on Frees, Edward W., and Gee Lee (2017). “Rating

Endorsements using Generalized Linear Models,” Variance, Vol. 10(1).

7.1 Overview

The primary purpose of this Appendix is to document the rating engine, so as to provide some

additional details regarding the Local Government Property Insurance Fund (LGPIF). The chapter

explains how rates for building & contents, motor vehicle, and contractor’s equipment may be

calculated. The recommended engine is in Section 7.2. This rating engine is built using modern

analytic techniques known as generalized linear models, GLM, and calibrated to existing LGPIF

data. A discussion of the techniques may be found in Frees and Lee (2017).

The Wisconsin Office of the Insurance Commissioner administers the LGPIF. The LGPIF was

established to provide property insurance for local government entities that include counties, cities,

towns, villages, school districts, and library boards. The fund insures local government property

such as government buildings, schools, libraries, and motor vehicles. The fund covers all property
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losses except those resulting from flood, earthquake, wear and tear, extremes in temperature, mold,

war, nuclear reactions, and embezzlement or theft by an employee.

In 2011, the fund covered over a thousand local government entities who pay approximately $25

million in premiums each year and receive insurance coverage of about $75 billion. State government

buildings are not covered; the LGPIF is for local government entities that have separate budgetary

responsibilities and who need insurance to moderate the budget effects of uncertain insurable events.

Claims for state government buildings are charged to another state fund that essentially self-insures

its properties.

The fund offers three major groups of insurance coverage: building and contents (BC), inland

marine (construction equipment), and motor vehicles. In effect, the LGPIF acts as a stand-alone

insurance company, charging premiums to each local government entity (policyholder) and paying

claims when appropriate. Although the LGPIF is not permitted to deny coverage for local govern-

ment entities, these entities may go onto the open market to secure coverage. Thus, the LGPIF

acts as a “residual” market to a certain extent, meaning that other sources of market data may not

reflect its experience.

7.2 Rating Engine

7.2.1 Building and Contents

The rates for the building & contents coverage is calculated using the formula shown below. The

endorsement factors should include all endorsement coverage ratios purchased by the policyholder.

Here, the endorsement factors are multiplicative. Frees and Lee (2017) explains how multiplicative

endorsement factors may be interpreted as additive factors, by using specific covariates for the

multiplicative factors. The rating variables are described in detail, in Table 7.1. Details of each

term in the formula can be found in Table 7.2 and 7.3.

BC Rate = Base Rate× Offset× Deductible Factor×

NoClaimCredit Factor× EntityType Factor× Endorsement Factors
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Table 7.1: Description of Rating Variables

Rating variable Formula

lnCoverage log(building and contents coverage)

lnCoveragePNA log(comprehensive new ACV coverage)

lnCoveragePNR log(comprehensive new RC coverage)

lnCoverageCNA log(collision new ACV coverage)

lnCoverageCNR log(collision new RC coverage)

lnCoveragePOA log(comprehensive old ACV coverage)

lnCoveragePOR log(comprehensive old RC coverage)

lnCoverageCOA log(collision old ACV coverage)

lnCoverageCOR log(collision old RC coverage)

lnCoverageIM log(contractor’s equipment coverage)

lnDeduct log(deductible)

lnDeductIM log(contractor’s equipment deductible)

NoClaimCredit 1 if the insured has no building and contents claim in two years

PWlnCovRat log(1 + pier and wharf coverages/denom)

SAlnCovRat log(1 + special use animal coverages/denom)

ZOOlnCovRat log(1 + zoo animal coverages/denom)

FAlnCovRat log(1 + fine arts coverages/denom)

GClnCovRat log(1 + golf course coverages/denom)

BIlnCovRat log(1 + business interruption coverages/denom)

ARlnCovRat log(1 + accounts receivable coverages/denom)

MS1lnCovRat log(1 + money and securities coverages/denom)

MS2lnCovRat log(1 + money and securities limited term coverages/denom)

VPlnCovRat log(1 + vacancy permit/denom)

ADDlnCovRat log(1 + other endorsement coverages/denom)

AC05 1 if policyholder has 5% alarm credit

AC10 1 if policyholder has 10% alarm credit

AC15 1 if policyholder has 15% alarm credit

denom building coverage/100

Table 7.2: Base Rating Engine

Variable Value

Base Rate exp[9.878− 1.256 + 1.035× lnCoverage]

Offset exp[log(0.95)× AC05 + log(0.90)× AC10 + log(0.85)× AC15]

Deductible Factor exp[−0.332× lnDeduct]

NoClaimCredit Factor exp[−0.050× NoClaimCredit]

Table 7.3: Entity Type Factors

Variable Value

City exp[0.332]

County exp[0.076]

Misc exp[0.034]

School exp[−0.032]

Town exp[0.061]

In Table 7.3, the base entity type is Village, which does not have a multiplicative factor. The

following sections describe the rating engine for motor vehicles, and contractor’s equipment, as well

as more details of the endorsement factors.
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7.2.2 Motor Vehicle

Table 7.4: Rating Engine for Motor Vehicle

Coverage Formula

PNA (Comprehensive, new, actual cash value) exp[0.118 + 7.975 + 0.755× lnCoveragePNA]

PNR (Comprehensive, new, replacement cost exp[0.118 + 7.975 + 0.755× lnCoveragePNR]× exp[−0.090 + 0.015]

POA (Comprehensive, old, actual cash value) exp[−1.201 + 8.326 + 0.715× lnCoveragePOA]

POR (Comprehensive, old, replacement cost) exp[−1.201 + 8.326 + 0.715× lnCoveragePOR]× exp[−0.198 + 0.287]

CNA (Collision, new, actual cash value) exp[0.238 + 8.508 + 0.893× lnCoverageCNA]

CNR (Collision, new, replacement cost) exp[0.238 + 8.508 + 0.893× lnCoverageCNA]× exp[−0.009 + 0.276]

COA (Collision, old, actual cash value) exp[−0.724 + 8.616 + 0.886× lnCoverageCOA]

COR (Collision, old, replacement cost) exp[−0.724 + 8.616 + 0.886× lnCoverageCOA]× exp[−0.244 + 1.312]

7.2.3 Contractor’s Equipment

Table 7.5: Rating Engine for Contractor’s Equipment

Coverage Formula

IM (Contractor’s Equipment) exp[−1.915 + 9.523 + 0.890× lnCoverageIM− 0.098× lnDeductIM]

7.2.4 Endorsements

Table 7.6: Endorsement Factors

Variable Value

Pier & Warf exp[0.082× SAlnCovRat]

Special Animal exp[0.045× SAlnCovRat]

Zoo exp[0.041× ZOOlnCovRat]

Fine Arts exp[0.186× FAlnCovRat]

Golf Course exp[0.070× GClnCovRat]

Business Interruption exp[0.093× BIlnCovRat]

Accounts Receivable exp[0.049× ARlnCovRat]

Money & Securities exp[0.005× MS1lnCovRat]

Money & Securities Limited exp[0.002× MS2lnCovRat]

Vacancy Permit exp[0.042× VPlnCovRat]

Add Ins (other endorsements) exp[0.074× ADDlnCovRat]

Details of Endorsements Ratemaking

Table 7.7 describes endorsements, or optional coverages, that are available to LGPIF policyholders.

We do not actually observe claims from an endorsement. For example, if a policyholder purchases

a Golf Course Grounds endorsement and has a claim that is from this additional coverage, we are

not able to observe this connection with our data. We do observe the additional claim, whether

the policyholder has the endorsement, and the amount of coverage under the endorsement. In this

sense, endorsements can be treated as another rating variable in our algorithms.
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Table 7.7: Description of Endorsements

Variable Description

Business Interruption
Reimburses an insured for business interruption

(lost profits and continuing fixed expenses)

Accounts Receivable
Adds coverage for money owed by its debtors

during business interruption due to a covered loss.

Pier and Wharf
Loss of watercraft, by the pressure of ice or water

on piers and wharves

Fine Arts
Adds coverage (agreed value) on fine arts, either

per item or per exhibit

Golf Course Grounds
Adds coverage to golf course type property such as

greens, tees, fairways, etc.

Special Use Animal
Adds coverage for police enforcement animals, such

as dogs and horses

Zoo Animals
Adds coverage for zoo animals. Animal mortality is

specifically excluded.

Vacancy Permit
Allows claims from covered losses arising from

vacant property

Monies and Securities

Adds coverage for monies and securities for loss by

theft, disappearance, or destruction (A: loss inside

premise, B: loss outside premise).

Monies and Securities Adds limited term coverage for monies and

(limited term) securities

Other Endorsements
Other additional endorsements, including

ordinance & law, and extra expenses

Table 7.8 summarizes the claims experience by endorsement. Policyholders with the Zoo Animals

endorsement experience an average annual claim frequency of 73.9. Presumably, policyholders

paying for this extra protection would enjoy higher property claims and so should be charged

additional premiums. The most frequently subscribed endorsement is the Monies & Securities,

which covers monetary losses by theft, disappearance, or destruction. The average coverage and

number of observations are over five years (2006 ∼ 2010), the in-sample period. For example, the

Zoo Animals coverage consists of 10 observations over five years and these were from the Henry

Vilas Zoo in Dane County and the Milwaukee County Zoo in Milwaukee County.

Table 7.8 shows that a policyholder with any type of endorsement has a higher claims frequency

compared to the total of all policyholders. Similarly, for most endorsements, policyholders have

a higher average severity, with Pier and Wharf, Monies and Securities (limited term), and Other

Endorsements being the exceptions. The effect of higher severity seems to be particularly large for

certain endorsements, such as Zoo Animals, Golf Course Grounds and Fine Arts.
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Table 7.8: Summary of Claim Frequency and Severity by Endorsement

Average Spearman Correlation

Number of Claim Average Endorsement of Coverage with

Endorsements Observations Frequency Severity Coverage Frequency Severity∗

Business Interruption 225 6.427 48,612 2,679,595 0.392 0.249

Accounts Receivable 172 5.285 29,743 853,966 0.188 0.097

Pier and Wharf 312 2.510 24,649 245,445 0.067 0.083

Fine Arts 67 13.493 37,896 12,160,956 0.297 0.187

Golf Course Grouds 28 18.000 20,866 237,500 0.749 0.166

Zoo Animals 10 73.900 18,554 1,102,790 0.877 0.462

Special Use Animal 256 5.547 13,127 21,903 0.168 0.073

Vacancy Permit 225 4.902 21,232 1,779,212 0.053 0.316

Monies and Securities (A,B) 2,137 2.000 29,999 58,928 0.255 0.137

Monies and Securities 556 1.739 19,811 416,587 0.143 0.091

(limited term)

Other Endorsements 53 4.906 28,245 4,763,019 -0.003 0.334

All Policies

Total 5,639 1.109 17,287

Note: ∗The severity correlations are based on observations with at least one claim using the average severity

(amount divided by frequency).

To help establish the relationship between endorsements and claims outcomes, Table 7.8 also

shows the average endorsement coverage (the average is over policyholders with some positive

coverage). The table summarizes the Spearman correlation of the amount of endorsement coverage,

versus the frequency and severity of claims observed. It is not surprising that all of these correlations

are positive, indicating that more coverage means both a higher frequency and severity of claims.

7.3 Comparison of Rating Engine Proposals

Several possible rating engines for the LGPIF building and contents, motor vehicles, and contrac-

tor’s equipment coverages were proposed during the ratemaking project. This section summarizes

the projected premiums collected under various proposed engines. The premium amounts collected

during the 2011-2013 validation years, and the loss ratios under each proposed rating engine is

summarized in Tables 7.9 and 7.10.

For details of the rating engines, the reader may refer to Frees and Lee (2017), where shrinkage

estimation is utilized to regulate the regression coefficients for endorsements. More details of

each of the rating engine proposals can be found on the LGPIF Project Website. URL: https:

//sites.google.com/a/wisc.edu/local-government-property-insurance-fund. In order for

the rating engine to achieve balanced goals, ProposalG has been recommended as the final rating

engine. This is the version documented in Section 7.2.

https://sites.google.com/a/wisc.edu/local-government-property-insurance-fund
https://sites.google.com/a/wisc.edu/local-government-property-insurance-fund
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Table 7.9: Summary of BC Rating Engine Proposals, for the Validation Years 2011-2013

Building and Contents, Endorsements, 2011-2013

Rating Agency Premium and Actual Claims 2011 2012 2013 Total Loss Ratio Loss Ratio

(2011-13) (2011-12)

Claim Actual BC claims 22,326,420 21,810,101 54,610,875 98,747,396

Premium Rating Agency Premium 16,779,794 19,216,683 23,466,925 59,463,402 166% 123%

Proposals, with basic severity part 2011 2012 2013 Total Loss Ratio Loss Ratio

(2011-13) (2011-12)

ProposalA Entity, Endorsements no-shrink 21,008,944 22,030,612 21,675,099 64,714,655 153% 103%

ProposalB Endorsements, no-shrink 20,035,598 20,612,146 20,031,720 60,679,464 163% 109%

ProposalC Entity, County Code, Endorsements, no-shrink 24,190,064 26,061,778 26,177,166 76,429,008 129% 88%

ProposalD County Code, Endorsements, no-shrink 22,488,344 23,784,246 23,800,179 70,072,769 141% 95%

ProposalE Shrink Proposal B ( λ = 5, 090 ) 20,623,223 19,674,382 18,880,691 59,178,296 167% 110%

ProposalF Shrink Proposal B ( λ = 840 ) 18,192,018 17,801,528 17,091,870 53,085,416 186% 123%

ProposalZ Coverage, lnDeduct, NoClaimCredit only 19,048,028 19,867,143 19,018,469 57,933,640 170% 113%

ProposalY Include Fire5 Variable 20,994,111 21,872,717 21,559,197 64,426,025 153% 103%

ProposalW Include Fire5 and Interaction Terms 20,182,663 21,404,551 21,565,588 63,152,802 156% 106%

ProposalH Shrink Proposal Y ( λ = 1, 410 ) 20,226,368 20,963,069 20,278,499 61,467,936 161% 107%

ProposalG Shrink Proposal A ( λ = 1, 520 ) 20,613,830 20,568,182 20,405,217 61,587,229 160% 107%

Proposals, including County Codes in severity part 2011 2012 2013 Total Loss Ratio Loss Ratio

(2011-13) (2011-12)

ProposalNewA Entity, Endorsements no-shrink 24,361,156 25,127,193 24,270,236 73,758,585 134% 89%

ProposalNewB Endorsements, no-shrink 23,167,688 23,654,059 22,409,073 69,230,820 143% 94%

ProposalNewC Entity, County Code, Endorsements, no-shrink 25,298,499 26,322,859 26,312,040 77,933,398 127% 86%

ProposalNewD County Code, Endorsements, no-shrink 22,663,382 23,352,261 23,056,013 69,071,656 143% 96%

ProposalNewE Shrink Proposal B ( λ = 5, 090 ) 19,335,968 18,577,296 17,642,352 55,555,616 178% 116%

ProposalNewF Shrink Proposal B ( λ = 840 ) 18,044,740 17,750,364 16,820,564 52,615,668 188% 123%

ProposalNewZ Coverage, lnDeduct, NoClaimCredit only 22,136,500 22,878,477 20,914,215 65,929,192 150% 98%

ProposalNewY Include Fire5 Variable 24,385,402 25,073,534 24,248,079 73,707,015 134% 89%

ProposalNewW Include Fire5 and Interaction Terms 21,410,557 22,115,281 22,341,415 65,867,253 150% 101%

ProposalNewH Shrink Proposal Y ( λ = 1, 410 ) 23,636,524 24,315,555 22,703,826 70,655,905 140% 92%

ProposalNewG Shrink Proposal A ( λ = 1, 520 ) 22,286,825 22,328,960 21,888,652 66,504,437 148% 99%

Percentage collected as Endorsement 2011 2012 2013 Total % of BC

Rate

Rating Agency 428,582 428,480 459,728 1,316,790 2.28%

ProposalG 630,373 612,937 599,784 1,843,094 2.99%

ProposalNewG 1,203,646 1,217,098 1,097,528 3,518,272 5.29%
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Table 7.10: Summary of MV, IM rating Engine Proposals, for the Validation Years 2011-2013

Motor Vehicles, Inland Marine (Equipments), 2011-2013

Motor Vehicles and Equipment, Actual Claims 2011 2012 2013 Total

PN Comprehensive New 696,638 450,920 472,960 1,620,519

PO Comprehensive Old 342,529 769,275 1,530,055 2,641,859

CN Collision New 519,899 806,637 648,939 1,975,475

CO Collision Old 720,337 847,595 1,209,702 2,777,634

IM Inland Marine (equipments) 708,489 1,298,880 798,989 2,806,358

Total (Motor Vehicles and Equipment) 2,987,891 4,173,308 4,660,645 11,821,844

Rating Agency Premiums 2011 2012 2013 Total Loss Ratio

PN Comprehensive New 225,914 216,054 221,501 663,469 244%

PO Comprehensive Old 984,117 982,397 1,036,699 3,003,213 88%

CN Collision New 514,000 525,083 474,612 1,513,695 131%

CO Collision Old 2,269,482 2,292,351 2,338,022 6,899,855 40%

IM Inland Marine (equipments) 2,037,347 1,959,159 1,599,688 5,596,194 50%

Total (Motor Vehicles and Equipment) 6,030,860 5,975,044 5,670,522 17,676,426 67%

Proposals, basic 2011 2012 2013 Total Loss Ratio

PN Comprehensive New 488,951 487,691 524,768 1,501,410 108%

PO Comprehensive Old 572,159 573,495 574,062 1,719,717 154%

CN Collision New 731,037 743,717 693,730 2,168,484 91%

CO Collision Old 1,167,161 1,194,424 1,219,265 3,580,850 78%

IM Inland Marine (equipments) 897,386 913,853 933,368 2,744,607 102%

Total (Motor Vehicles and Equipment) 3,856,694 3,913,180 3,945,194 11,715,068 101%

Proposals, using EntityType, CountyCodes, and RC indicator 2011 2012 2013 Total Loss Ratio

PN Comprehensive New 548,385 547,517 534,383 1,630,285 99%

PO Comprehensive Old 1,039,040 984,426 892,854 2,916,320 91%

CN Collision New 816,755 824,158 765,350 2,406,263 82%

CO Collision Old 1,276,916 1,328,641 1,395,729 4,001,286 69%

IM Inland Marine (equipments) 906,691 922,785 943,863 2,773,339 101%

2011 2012 2013 Total Loss Ratio

Total (Motor Vehicles and Equipment) 4,587,787 4,607,528 4,532,179 13,727,493 86%
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