
Towards Off-the-Shelf Real-Time Transactional Analytics On Cloud-Native

Database Systems

By

Elena Milkai

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2025

Date of final oral examination: May 5, 2025

The dissertation is approved by the following members of the Final Oral Committee:

Xiangyao Yu, Assistant Professor, Computer Sciences

Jignesh M. Patel, Professor, Computer Sciences

Paraschos Koutris, Associate Professor, Computer Sciences

Dimitris Papailiopoulos, Associate Professor, Electrical and Computer Engineering

© Copyright by Elena Milkai 2025

All Rights Reserved

Acknowledgments

This dissertation wouldn’t have been possible without the support, encouragement, and inspiration

of many people, to whom I’m deeply grateful.

First and foremost, I want to express my deepest gratitude to my advisor, Xiangyao Yu, for his

unwavering support throughout my Ph.D. journey. I feel incredibly fortunate to have had him as

my advisor. I still remember taking the very first class he taught—it became a turning point for

me. At a moment when I was uncertain about continuing in the program, his course reminded me

why I loved research in the first place. Xiangyao’s enthusiasm, insightful feedback, and constant

encouragement shaped every stage of this dissertation—from the earliest ideas to the final drafts.

But more than that, he has influenced how I think, how I tackle problems, and how I continue

to grow both as a researcher and as a person. I’m especially grateful for his guidance not only

during the Ph.D., but also as I take my next steps beyond it.

I’m equally grateful to my co-advisor, Jignesh M. Patel, for his mentorship and support. It’s

been a real privilege to work with him and to learn from his deep experience. Jignesh has a way

of challenging your thinking—always pushing for clarity, ambition, and impact. His perspective

added something truly special to this journey. Working with both of my advisors created an

environment that was not only intellectually stimulating but also deeply motivating. I’m especially

grateful for Jignesh’s thoughtful advice and encouragement—both throughout the Ph.D. and as I

prepared for life beyond it.

I’m also thankful to Paris Koutris for serving on my committee over the years and for

his thoughtful input during research presentations. His questions and suggestions helped me

strengthen my work. I’d also like to thank Dimitris Papailiopoulos for being part of my Ph.D.

committee.

Special thanks go to Lukas Maas and Vivek Narasayya, my mentors during my internship at

i

ii

Microsoft Research in Redmond. I’m truly grateful for the opportunity to work on impactful, real-

world database problems, and for your thoughtful guidance and feedback on my Ph.D. research.

I’m also thankful to Venki Ramarathnam and Christian König—our wide-ranging conversations

made the internship even more exciting and meaningful.

I’ve been lucky to collaborate with several amazing researchers at UW–Madison, including

Zhihan Guo, Yannis Chronis, and Kevin Gaffney. Each brought unique insights that helped shape

my work. I’m especially thankful to Yannis Chronis for always being ready with helpful advice—on

both research and life in academia. I also want to thank my talented labmates—Yifei Yang, Aarati

Kakaraparthy, Abigale Kim, Wenjie Hu, Ling Zhang, Xiangpeng Hao, Hokeun Cha, Bobbi Winema

Yogatama, Kevin Kristensen, and Martin Prammer. Not only are they some of the best database

researchers I know, but I’ve also learned so much from them over the years. They constantly set a

high bar, which pushed me to keep improving and growing. I’m really lucky to have shared this

journey with them.

Next, I want to thank my friends and fellow students at UW–Madison, with whom I shared not

only research discussions but also truly unforgettable moments during my time in Madison. Some

are now far away, some still close by—but all of them are in my heart: Eleni, Eleanna, Vasiliki,

Vasilis K., Argiris, Thanasis, Takis, Konstantinos, Vasilis P., Giannis, Rojin, Evangelia, Yannis, and

Thanos. Special thanks to my “brother” Nikos Zarifis for always being there for me through both

good and difficult times, and to my “sister” Dimitra Giantsidi, with whom I can party the hardest

and still brainstorm exciting research ideas—sharing great times in both worlds.

Last but not least, I am deeply grateful to my parents—Christos and Mariola—my brother

Michalis, and my extended family (just a few of them—otherwise, I’d need a whole chapter): my

cousins Andreas and Marios, my aunt Mimoza, my grandmothers Eleftheria and Polyxeni, and my

goddaughter Olivia. Their constant love and support have been a tremendous source of strength

and motivation throughout this journey. Without them, none of this would have been possible.

Contents

Acknowledgments i

Contents iii

Abstract vi

1 Introduction 1

1.1 Motivation . 1

1.2 A Systematic Evaluation Framework for HTAP Systems 3

1.3 Off-the-Shelf Real-Time Transactional Analytics 5

1.4 Contributions and Highlights . 6

1.5 Overview . 7

2 From OLTP to Real-Time Analytics 9

2.1 Historical Evolution of OLTP Engines . 9

2.2 The Rise of OLAP Engines and Data Warehouses 11

2.3 ETL Bottlenecks and the Demand for Fresh Data 12

2.4 Streaming & CDC Innovations . 13

2.5 Emergence of HTAP Architectures . 15

3 HATtrick: A Systematic Methodology to Evaluate HTAP Systems 18

3.1 Motivation . 19

3.1.1 Design challenges . 19

3.1.2 Design classification . 20

iii

iv

3.1.3 Current HTAP benchmarks . 21

3.2 Performance-centric definition of HTAP systems 22

3.2.1 Throughput frontier . 23

3.2.2 Interpretation of the throughput frontier 24

3.2.3 Calculation of throughput frontier . 28

3.3 Freshness of HTAP Systems . 28

3.3.1 Theoretical definition of Freshness . 29

3.3.2 Measuring Freshness Score . 30

3.4 Design of HATtrick Benchmark . 31

3.4.1 The Schema and Data . 32

3.4.2 Workload . 33

3.4.3 Benchmark Procedure . 35

3.5 Experimental Evaluation . 36

3.5.1 Experimental Configuration . 36

3.5.2 PostgreSQL . 38

3.5.3 PostgreSQL Streaming Replication . 41

3.5.4 System-X . 45

3.5.5 TiDB . 47

3.5.6 Comparison across systems . 50

3.5.7 Discussion . 51

3.6 Related Work . 52

3.7 Conclusion . 53

4 HERMES: An Off-the-Shelf Real-Time Transactional Analytics System 54

4.1 Design Goals . 55

4.2 HERMES Overview . 56

4.2.1 System Architecture . 57

4.2.2 HERMES Integration . 58

4.2.3 HERMES Design Details . 60

4.3 Transactional Analytics with HERMES . 69

v

4.3.1 Design Challenges . 69

4.3.2 HERMES’ Isolation Levels Solutions . 69

4.3.3 Transactional Analytics Workload (TAW) 73

4.4 HERMES Potential Extensions . 75

4.4.1 Cache Offloading to HERMES . 75

4.4.2 HERMES in a Distributed Setup . 76

4.4.3 HERMES Advancing Middle Layers . 77

4.5 Experimental Evaluation . 77

4.5.1 Experimental Setup . 77

4.5.2 HERMES Evaluation . 81

4.5.3 HATtrick Evaluation Across Systems . 85

4.5.4 TAW Evaluation Across Systems . 87

4.6 Related Work . 91

4.7 Conclusion . 93

5 Conclusions 94

5.1 Summary . 94

5.1.1 A Systematic Evaluation Framework for HTAP Systems 95

5.1.2 Off-the-Shelf Real-Time Transactional Analytics 95

5.2 Future Work . 96

5.3 Vision for HERMES . 96

5.4 Concluding Remarks . 98

Bibliography 101

Abstract

Hybrid Transactional and Analytical Processing (HTAP) systems aim to unify transactional and

analytical workloads within a single platform, enabling real-time insights over fresh data. Current

HTAP solutions face two key limitations: the lack of a systematic methodology to evaluate real-time

analytics capabilities, and the absence of a non-intrusive architecture that allows organizations

to enable real-time analytics using their existing Transaction Processing (TP) and Analytical

Processing (AP) engines without costly migrations.

This dissertation addresses these challenges through two main contributions. First, we in-

troduce HATtrick, an intuitive and systematic benchmark designed to evaluate HTAP systems

across two orthogonal dimensions: throughput frontier, which captures absolute performance

and the system’s ability to handle concurrent transactional and analytical workloads without

interference, and freshness, which measures how up-to-date analytical query results are with

respect to the most recent transactions. We also propose a visualization method that makes these

metrics easy to interpret, helping users understand trade-offs and draw meaningful conclusions

across systems. Our evaluation demonstrates that while modern HTAP systems have improved,

substantial opportunities for optimization remain.

Second, we propose HERMES, a novel off-the-shelf HTAP architecture that enables real-time

transactional analytics using an organization’s existing TP and AP engines—without requiring

engine modifications or expensive migrations to a new HTAP system. HERMES introduces a

lightweight middle layer between the engines and storage, which dynamically merges live transac-

tion logs with analytical reads to ensure query freshness. The design also preserves performance

isolation, supports end-to-end transactional consistency, and enables fine-grained control over iso-

lation levels for transactional analytics. We implemented a prototype using MySQL and DuckDB in

the cloud and show that HERMES achieves up to 3× higher throughput on transactional analytics

vi

vii

workloads compared to native HTAP systems.

Together, these contributions provide both rigorous tools for evaluating HTAP systems and

a practical architecture for enabling real-time analytics in production environments. We hope

this work encourages the HTAP community to refine benchmarks, build plug-and-play solutions,

and define clear design principles to make real-time analytics accessible to a broader range of

organizations.

Chapter 1

Introduction

1.1 Motivation

Real-time analytics continuously ingest, transform, and analyze data as it is generated, enabling

timely insights and decisions based on the most current information [137, 41]. Unlike batch

analytics, which process data in delayed intervals, real-time systems demand low latency and

high freshness to support time-sensitive applications. Use cases include mid-flight fraud detec-

tion, real-time recommendations, sub-second cybersecurity alerts, and up-to-date supply chain

monitoring [71, 64, 131].

Yet no single class of database system fully satisfies the demands of real-time analytics. On-

line Transactional Processing (OLTP) engines are optimized for high-throughput, low-latency

transactions with strong ACID guarantees—atomicity, consistency, isolation, and durability—but

they struggle with scan-heavy analytical queries, often degrading transactional performance [61].

Online Analytical Processing (OLAP) systems and data warehouses are better suited for large-scale,

ad hoc analytics over historical data, but rely on periodic ETL (extract–transform–load) pipelines

that introduce latency ranging from minutes to hours [39]. These delays result in stale analytical

views that fail to reflect current operational state. Even modern ELT pipelines, which delay

transformation until after ingestion, still incur overhead from moving, indexing, and preparing

data before it can be analyzed [70, 75].

To reduce the days-to-hours latency of traditional batch ETL, modern data architectures

increasingly rely on streaming platforms [78, 1, 22, 21, 60] and Change Data Capture (CDC)

1

2

tools [47, 108, 13, 68] to capture and process every row-level change in near real time. In these

systems, CDC extracts committed transactions from OLTP logs and passes them to streaming

engines for real-time transformation and application into data warehouses or lakes. However,

because each change traverses multiple independent commit points—the source database, the

streaming layer, and the analytical store—there is no inherent guarantee of atomicity across the

entire pipeline. As a result, analytical queries can observe incomplete or inconsistent states, where

only a subset of a transaction’s changes are visible, violating referential integrity or business

invariants [75]. Achieving full end-to-end transactional consistency therefore requires not only

exactly-once delivery and ordered processing but also atomic commit coordination across systems

(e.g., via two-phase commit protocols or ACID-compliant table formats), ensuring that analytical

queries reflect only fully committed source transactions.

Amid these limitations, Hybrid Transactional and Analytical Processing (HTAP) systems have

emerged as the most promising architecture for real-time analytics [109, 57]. HTAP systems

co-locate transactional and analytical processing on a shared, up-to-date dataset, eliminating

the need for separate pipelines and enabling immediate analytical visibility into live operational

data while preserving full end-to-end transactional consistency. Whether built using a single

engine [107, 55, 130, 72, 67] or decoupled engines [66, 93, 145, 91, 58], these architectures aim to

deliver strong consistency, low latency, and high throughput—without compromising flexibility

or incurring costly data duplication and movement. Despite these advances, two fundamental

challenges remain unaddressed in the current HTAP landscape.

First, despite substantial progress in HTAP system design [130, 55, 72, 101, 93, 66, 58, 145, 31, 56,

91, 82, 132, 119, 118, 23, 27, 100], the field still lacks a principled framework for evaluating real-time

analytics capabilities. Traditional benchmarks such as TPC-C [15], TPC-H [14], and SSB [110]

assess transactional and analytical workloads in isolation, failing to capture how both perform

under concurrent execution [109]. More recent efforts—CH-Benchmark [116], HTAPBench [44],

and Swarm64 [113]—attempt to address hybrid workloads but often treat transactional and analyt-

ical tasks as independent, overlooking the tightly coupled execution patterns and shared-state

contention that define true HTAP systems. Furthermore, these benchmarks lack standardized,

interpretable metrics—such as data freshness and workload interleaving—leading to fragmented

insights and limited comparability. In the absence of a unified evaluation methodology, system

3

designers struggle to understand architectural trade-offs, and practitioners lack reliable guidance

for selecting HTAP-ready platforms.

Second, no single architectural design has emerged as a universal solution for HTAP systems.

Single-engine designs [107, 55, 130, 72, 67] offer low latency but often struggle with scalability

and performance isolation under increasing load. In contrast, decoupled architectures [66, 93, 145,

91, 58] improve scalability by separating transactional and analytical components. However, their

dependence on specific Transactional Processing (TP) and Analytical Processing (AP) engines

complicates integration with the existing engines of an organization, often requiring costly and

disruptive migrations that are difficult to justify in production environments. Moreover, most

existing HTAP systems lack effiecient support for true HTAP transactions [109], which interleave

transactional logic and analytical queries within a single ACID transaction. These workloads

require analytical queries to reflect the latest data, including uncommitted updates from the

same transaction. Efficient support for such execution models not only streamlines application

development [42], but also enables advanced real-time use cases [73, 149].

This dissertation takes initial steps into addressing these challenges by posing two central

research questions: (1) Which metrics and evaluation methodologies best capture the core require-

ments of HTAP workloads, enabling meaningful comparisons across diverse system architectures?

and (2) How can we architect an HTAP system that delivers real-time analytics and efficient

support for true HTAP transactions, while preserving data freshness, ensuring high performance,

and scaling elastically—without requiring costly migrations or imposing significant engineering

overhead on existing infrastructures? By addressing these questions, we develop both a principled

evaluation framework and a novel HTAP architecture that aligns naturally with the infrastructure

standards of modern organizations. Together, these contributions aim to advance the state of the

art in real-time hybrid processing.

1.2 A Systematic Evaluation Framework for HTAP Systems

Building on the limitations identified in Section 1.1—particularly the lack of standardized metrics

and evaluation methodologies for HTAP systems—we introduce HATtrick [98], a systematic

framework for characterizing the performance and behavior of Hybrid Transactional and Analyti-

4

cal Processing (HTAP) architectures. HATtrick consists of two key components: a performance-

centric method for assessing how well a system handles hybrid workloads, and a technique for

quantifying freshness—that is, how up-to-date the data is in analytical queries.

In practice, real-world workloads rarely fall neatly into purely transactional or purely analytical

categories. For instance, TPC-E [12] incorporates both. We formalize this continuum as the

HTAP spectrum, which spans from fully transactional to fully analytical workloads. A robust

HTAP system should maintain high performance across the entire spectrum without favoring

one workload type over the other—a property known as performance isolation. To capture this

behavior, we introduce the concept of the throughput frontier—a two-dimensional visualization

that summarizes system performance across different transactional and analytical workload mixes.

This representation provides an intuitive and informative overview of how each HTAP system

responds under hybrid loads, helping to identify performance trade-offs and bottlenecks.

Another critical dimension in HTAP systems is freshness, which measures the delay between

transactional updates and their visibility to analytical queries. HATtrick includes a practical,

empirical method for measuring freshness in deployed systems, offering insights into their ability

to support real-time or near-real-time analytics.

Together, the throughput frontier and freshness metrics offer a comprehensive view of an HTAP

system’s capabilities. We implement these concepts in the HATtrick benchmark, which evaluates

systems using a suite of parametrically generated workloads that span the HTAP spectrum. For

each workload configuration—or “operating point”—HATtrick records both performance and

freshness, enabling systematic and comparative evaluation.

We apply the HATtrick benchmark to a range of HTAP-capable database systems. The

resulting throughput frontiers reveal how effectively each system balances hybrid workloads and

allocates resources between transactional and analytical components. Freshness measurements

highlight how promptly recent transactional updates are made visible to analytical queries. Our

results suggest that while current systems show promise, there remains substantial room for

improvement in both performance and data recency.

5

1.3 Off-the-Shelf Real-Time Transactional Analytics

Having developed a systematic evaluation framework in Section 1.2, we now turn to our second

research objective from Section 1.1: designing an Hybrid Transactional and Analytical Processing

(HTAP) architecture that enables real-time analytics using an organization’s existing Transactional

Processing (TP) and Analytical Processing (AP) engines—without requiring costly data migrations

or significant engineering effort, while still achieving strong freshness and performance.

We introduce off-the-shelf real-time analytics, a novel architecture [99] that enables real-time

analytical queries, supports pluggable TP and AP engines, and efficiently executes what we term

Transactional Analytics—our term for systems that support true HTAP transactions.

An off-the-shelf real-time analytics system is constructed using existing TP and AP engines with

no or minimal modifications to them. The key insight is to introduce a new system layer between

the database engines and the storage, which merges the transactional logs with the analytical reads

for analytical queries. Unlike existing HTAP databases that conduct this merging functionality

within the database engines, we demonstrate the feasibility of performing this outside the TP/AP

engines in a non-intrusive manner. This approach avoids the need for compulsory migration,

allowing organizations to continue using their existing TP/AP engines. It also achieves fresh

queries and delivers performance that is competitive with current HTAP systems.

A core goal of this architecture is to enable efficient execution of Transactional Analytics.

For high performance, the analytical components run on the AP engine, while the transactional

components run on the TP engine. In these systems, achieving transactional analytics at the

requested isolation level involves minimal modifications to the internals of the TP/AP engines. The

solution relies on coordination between the off-the-shelf system and TP/AP engines for achieving

various isolation levels.

To validate our architecture, we developed HERMES, a prototype cloud-based real-time analyt-

ics system. HERMES acts as a middle layer between computation and storage, intercepting storage

requests from TP engines (e.g., logging to AWS EBS) and AP engines (e.g., reading from AWS S3).

It merges log updates with analytical reads in real time and coordinates with the TP engine to

enforce the appropriate isolation level on behalf of the AP engine.

We evaluate HERMES using MySQL [106] as the TP engine and FlexPushdownDB [146] and

6

DuckDB [117] as the AP engines. Our results show that HERMES introduces minimal overhead

while preserving compatibility with existing systems. We compare its performance with MySQL

and TiDB [66] on standard HTAP workloads and demonstrate a competitive performance-cost

trade-off. To further evaluate transactional analytics capabilities, we introduce the Transactional

Analytics Workload (TAW), which extends existing HTAP benchmarks with true HTAP transaction

patterns. Our results show that HERMES outperforms existing solutions (e.g., MySQL and TiDB)

by up to 3×, demonstrating the feasibility of off-the-shelf real-time transactional analytics.

1.4 Contributions and Highlights

We list the main contributions of this dissertation.

A Systematic Evaluation Framework for HTAP Systems

• We introduce the concept of the throughput frontier, a novel performance metric that captures

how well an HTAP system maintains performance isolation across varying mixtures of

transactional and analytical workloads.

• We propose an empirical method for quantifying freshness, capturing how quickly analytical

queries reflect recent transactional updates.

• We present HATtrick, a systematic benchmark designed to evaluate HTAP systems. It

generates a range of parametrized hybrid workloads and extracts both throughput frontier

and freshness metrics.

• We propose an intuitive visualization technique for representing the throughput frontier

and freshness metrics extracted by HATtrick. This allows users to compare multiple HTAP

systems and easily interpret trade-offs between performance and freshness.

• We use HATtrick in a range of HTAP-capable systems and demonstrate its utility as a

comparative evaluation tool. Our results highlight trade-offs across different designs and

reveal significant opportunities for improving both performance and data freshness.

Off-the-Shelf Real-Time Transactional Analytics

7

• We introduce the concept of off-the-shelf real-time analytics, that allows fresh analytics over

existing TP and AP engines without compulsory migration to a dedicated HTAP database.

• We define and implement transactional analytics, a core capability for modern HTAP systems

that supports the execution of mixed transactional and analytical operations within a single

ACID transaction.

• We develop HERMES, a system layer that enables off-the-shelf real-time transactional analyt-

ics. We use MySQL [106] as the TP engine and FlexPushdownDB [146] and DuckDB [117]

as the AP engines.

• We evaluate HERMES and compare it against state of the art HTAP systems. The results indi-

cates that HERMES exhibits comparable performance to MySQL and TiDB on HATtrick [98],

while outperforming both by 3× on a transactional analytics workload we introduce, called

TAW.

1.5 Overview

We briefly describe the contents of the chapters of this dissertation.

• Background. In Chapter 2, we trace the historical evolution from early systems that focused

solely on transactions—namely, Online Transaction Processing (OLTP) database systems—to

today’s systems that prioritize real-time analytics, highlighting how application needs have

shifted over the decades of database system development.

• A Systematic Evaluation Framework for HTAP Systems. In Chapter 3, we define two

key metrics essential for characterizing HTAP systems: the throughput frontier and freshness.

We detail how each metric is computed and visualized, and we introduce the HATtrick

benchmark—a parametrized workload suite designed to evaluate HTAP performance across

a range of hybrid workloads. Finally, we use HATtrick to compare multiple HTAP-capable

database engines, outlining our evaluation methodology and presenting insights drawn

from the resulting comparisons.

8

• Off-the-Shelf Real-Time Transactional Analytics. Chapter 4 introduces the off-the-shelf

architecture—an HTAP system design that leverages existing TP and AP engines to deliver

fresh analytical queries and efficient support for transactional analytics. We demonstrate

this concept through the design and implementation of HERMES, a middleware layer that

merges transactional log records with analytical reads without requiring modifications to

the underlying engines. The chapter concludes with a detailed performance evaluation of

HERMES.

• Conclusions and Future Work. Chapter 5 summarizes the key contributions of the

dissertation and reflects on the lessons learned throughout the research process. It also

outlines potential future directions and extensions of the work presented.

Chapter 2

From OLTP to Real-Time Analytics

This chapter provides a historical overview and analysis of the evolution of database systems,

from transaction-focused architectures to today’s real-time analytical solutions. We first examine

the development of Online Transaction Processing (OLTP) engines in Section 2.1, followed by the

emergence of Online Analytical Processing (OLAP) engines and data warehouses in Section 2.2.

Next, we discuss the evolution of ETL (extract, transform, load) processes and the growing need

for fresher data in Section 2.3. We then cover the advent of streaming platforms and Change Data

Capture (CDC) tools in Section 2.4. Finally, we present the current state-of-the-art approach for real-

time analytics—Hybrid Transactional and Analytical Processing (HTAP) systems—in Section 2.5.

2.1 Historical Evolution of OLTP Engines

Online Transaction Processing (OLTP) technology has gone through several major stages since it

began. In the 1970s, IBM’s System R [37] was introduced as a groundbreaking research project that

defined many of the basic ideas behind today’s relational databases. It introduced the Structured

Query Language (SQL) and helped formalize the four key properties of transactions: atomicity,

consistency, isolation, and durability (ACID) [61]. System R also demonstrated practical techniques

like cost-based query planning and two-phase locking, which allowed multiple users to safely

access and update shared data at the same time [54]. These ideas laid the foundation for later

systems such as PostgreSQL [114, 138], MySQL [106], and Microsoft SQL Server [97], all of which

followed System R’s approach to transactions and SQL.

9

10

In the 1980s and 1990s, relational databases became solid, enterprise-ready products. IBM

DB2 [67], which grew out of System R, focused on speed, reliability, and easy recovery, making it

popular in sectors like banking and government [126]. Oracle Database added features such as

multi-version read consistency, clustering, and support for transactions across multiple servers,

helping companies keep their data safe even if part of their network went down [76]. During

this time, Microsoft SQL Server [97] also became well-known, first as a joint project with Sybase

and later as its own product tightly integrated with Windows, offering strong SQL performance,

full ACID support, and user-friendly management tools. Together, these systems showed that

relational databases could handle serious business needs with both speed and reliability.

Starting in the late 1990s, open-source databases made these enterprise features available to

everyone. PostgreSQL [114, 138], which evolved from the POSTGRES project at UC Berkeley,

brought in Multi-Version Concurrency Control (MVCC), support for custom data types, and strong

standards compliance, making it a flexible choice for many uses. MySQL [106] became popular

for its ease of use and performance in web applications. When MySQL added the InnoDB storage

engine [105], it gained full ACID transactions and MVCC, allowing it to run more demanding

transaction workloads. These projects helped spread database technology into startups, small

businesses, and the wider software community.

In the 2010s and beyond, new SQL-based systems built for the cloud emerged to meet demands

for scale and global reach. Google Cloud Spanner [45] combined SQL with automatic data splitting

across many servers and a synchronized global clock (TrueTime) to keep data consistent around

the world. Inspired by Spanner, CockroachDB [81] used the Raft consensus protocol to replicate

data safely and offered full serializable transactions by default. Amazon Aurora [20] redesigned

MySQL and PostgreSQL for the cloud by separating storage from compute, copying data across

multiple availability zones, and providing fast failover with minimal downtime.

These stages show how OLTP systems have built on System R’s original ideas, adapting to

new hardware, deployment models, and scaling challenges—all while keeping the transaction

guarantees and reliability that business applications need. While OLTP databases handle high-

volume transactions efficiently, they lack built-in support for complex aggregations and ad-hoc

analysis. This gap drove the creation of specialized OLAP engines and data warehouses, as

discussed next.

11

2.2 The Rise of OLAP Engines and Data Warehouses

The early 1990s marked the emergence of Online Analytical Processing (OLAP) as a frame-

work for multidimensional data analysis. OLAP systems were typically categorized as either

multidimensional OLAP (MOLAP), which stored data in multidimensional arrays for rapid aggre-

gations, or Relational OLAP (ROLAP), which mapped analytical operations to SQL over relational

schemas [39]. Early commercial products such as Oracle Express and Arbor Essbase [52] demon-

strated the viability of cube-based analytics [51]. Microsoft’s introduction of SQL Server Analysis

Services [96] in 1998 further propelled OLAP into widespread enterprise adoption by integrating

it directly into the SQL Server ecosystem.

In the 2000s, data warehouses became the foundation for business intelligence. Major rela-

tional databases added support for materialized views and query rewrite, enabling precomputed

aggregations and efficient group-by processing. At the same time, massively parallel processing

(MPP) architectures such as Teradata and Netezza distributed data across compute nodes to accel-

erate performance on terabyte-scale queries [135]. These “data warehouse appliances” provided

near-linear scalability and became widely deployed in enterprise analytics.

By the late 2000s, column-oriented storage and vectorized execution began reshaping OLAP

performance. Systems like MonetDB/X100 [35] and C-Store [136] demonstrated that storing

each column contiguously and processing data in vectorized batches could greatly improve cache

efficiency and throughput. Commercial successors, such as Vertica [84] and Sybase IQ [92],

adopted these ideas alongside compression and late materialization [16], becoming foundational

OLAP platforms for large-scale analytics.

The 2010s brought an explosion of open-source OLAP engines and big data SQL frameworks.

Apache Hive [36], Facebook’s Presto [125], and Cloudera Impala [121] offered MPP-style SQL

over Hadoop and cloud storage, while Apache Spark [148] provided fast in-memory analytics.

Today, OLAP has fully transitioned to the cloud. Platforms like Amazon Redshift [62], Google

BigQuery [95], and Snowflake [46] offer serverless, elastic MPP query engines with decoupled

compute and storage. This architecture enables multiple processing clusters to independently

scale against a shared data layer. These systems combine the best of previous decades—columnar

storage, vectorization, MPP parallelism, materialized views—while adding cloud-native elasticity

12

and high concurrency, setting the foundation for real-time and hybrid analytics architectures.

Despite advances in OLAP performance, these systems still rely on periodic data ingestion

through ETL (Extract–Transform–Load) pipelines. The next section examines the evolution of

ETL solutions and their impact on data freshness.

2.3 ETL Bottlenecks and the Demand for Fresh Data

Traditional ETL (Extract–Transform–Load) pipelines have long served as the backbone of data

warehousing, but they inherently introduce significant latency. Enterprise tools like Informatica

PowerCenter [103] and open-source platforms such as Talend [134] have been widely used to

orchestrate complex batch integration—extracting data from operational databases during off-

peak hours (e.g., nightly), transforming it on intermediate servers, and loading it into a separate

warehouse. While this batch-oriented approach met historical needs for periodic reporting, it

left analytics operating on stale snapshots. In practice, data in OLAP warehouses was often

out of date—ranging from one day to one week old due to the delays inherent in ETL and the

separation between transactional and analytical systems. As organizations shifted toward digital,

always-available operations, this latency became untenable, creating an urgent need for fresher

data and faster, more responsive insights.

One approach to reducing ETL latency was the adoption of micro-batching techniques. Micro-

batch processing accelerates traditional batch ETL by collecting and processing smaller batches of

data at frequent intervals—sometimes as short as seconds or minutes—rather than waiting for an

entire day’s accumulation. This approach served as a stepping stone between slow, coarse-grained

batches and true continuous streaming: it improved data freshness while reusing familiar batch-

oriented tools and infrastructure. For example, frameworks like Apache Spark Streaming [123]

introduced micro-batch execution models, enabling near-real-time ETL by slicing incoming data

into small, time-based chunks (e.g., every few seconds). By running ETL pipelines more continu-

ously—hourly or even sub-minute—organizations could significantly reduce data ingestion delays

compared to traditional overnight processing. However, even with micro-batches, notable delays

persisted, and operational complexity increased as systems had to manage higher-frequency job

scheduling and maintain data consistency across multiple stages.

13

Cloud-based ETL services further alleviated traditional bottlenecks by offering elastic scaling

and fully managed infrastructure for data pipelines. Platforms such as AWS Glue [124] and Google

Cloud Dataflow [59] made it easier to build, schedule, and operate ETL workflows in a serverless

environment, handling large data volumes with minimal operational overhead. AWS Glue, for

example, is a fully managed service that automatically scales jobs from gigabytes to petabytes and

allows users to design pipelines without manually provisioning infrastructure, leveraging Apache

Spark [148] under the hood. Similarly, Google Cloud Dataflow [59] provides a unified model for

batch and streaming pipelines, enabling scalable ETL pipelines and real-time stream analytics

on serverless infrastructure. These cloud-native ETL tools significantly reduced the turnaround

time for loading new data into warehouses or data lakes by supporting continuous or on-demand

ingestion and transformation. Nevertheless, even managed cloud ETL pipelines often rely on

micro-batching or triggered jobs, which may still introduce latencies of minutes or more. The

growing need for truly up-to-the-minute data ultimately pushed the industry toward streaming

data pipelines and real-time change capture.

Modern requirements for real-time analytics and operational intelligence have thus pushed

beyond traditional ETL. Organizations realized that waiting even hours for overnight ETL could

hinder decision-making in fast-paced environments. The limitations of batch processing, even

accelerated by micro-batching, set the stage for streaming data pipelines and change data capture

tools.

2.4 Streaming & CDC Innovations

To achieve fresher data with lower latency, the data engineering community embraced stream-

ing [78, 1, 22, 21, 60] and change data capture (CDC) [47, 108, 13, 68] technologies. Rather than

relying on periodic bulk transfers, streaming pipelines move data continuously as events occur.

Apache Kafka [1], a foundational technology in this shift, acts as a high-throughput, fault-tolerant

event bus that decouples data producers from consumers. Kafka enables real-time distribution

of changes from databases, sensors, logs, and other sources to multiple subscribers with min-

imal latency. By replacing batch ETL with continuous event flow, organizations reduced data

staleness and delivered fresher insights. Kafka’s architecture, which scales horizontally to han-

14

dle trillions of messages per day with millisecond latencies, made real-time integration at scale

practical. Streaming pipelines thus eliminated batch windows and opened the door to continuous,

up-to-the-moment analytics.

Expanding streaming capabilities, a new generation of stream processing frameworks and SQL-

oriented engines emerged to transform and analyze data in motion. Apache Flink [3] exemplifies

this shift: a distributed stream processor designed for stateful computations with high throughput,

low latency, and exactly-once consistency guarantees. Flink can ingest unbounded data streams and

perform complex operations such as windowing, joins, and aggregations. Critically, it exposes high-

level APIs, including a relational SQL layer, enabling continuous queries over live streams much

like traditional SQL on static tables. By bridging relational paradigms and real-time processing,

Flink and similar engines make streaming analytics accessible to a broader range of developers.

Another key innovation for reducing data latency is Change Data Capture (CDC), which

extracts incremental changes (inserts, updates, deletes) directly from database logs in real time.

Instead of bulk dumps, CDC tools continuously propagate small deltas as they occur. Debezium [47],

for instance, monitors write-ahead logs and streams row-level changes into systems like Kafka.

This enables downstream consumers or stream processors to react immediately, without waiting

for batch jobs. In the enterprise space, Oracle GoldenGate [108] has long provided log-based

CDC to replicate committed transactions across heterogeneous systems with minimal latency. By

bypassing traditional ETL, CDC pipelines drastically cut data lag and shift transformation and

loading closer to real-time.

In tandem with CDC, integrated streaming data pipelines platforms were developed to simplify

real-time data integration. Tools like StreamSets Data Collector [69] provide a graphical pipeline

engine that can ingest from databases (with CDC origins), apply transformations, and load into

sinks, all in a continuous flow. StreamSets is designed for “smart data pipelines” encompassing

streaming, CDC, and batch data without hand coding. For example, a pipeline might use a

StreamSets CDC origin to capture changes from an Oracle redo log and immediately route those

events through transformations to a target data lake or NoSQL store. Such platforms combine

the reliability of CDC with the flexibility of stream processing, allowing data engineers to build

real-time ETL flows visually. The result is that fresh data can be delivered to analytics platforms

or data lakes within seconds of a transaction occurring, a stark improvement from hours in the

15

batch ETL paradigm.

While streaming and CDC innovations have greatly advanced data freshness, they also intro-

duce new challenges in system complexity and consistency. Achieving exactly-once semantics in

distributed streams, handling out-of-order events, and coordinating across multiple components

remain non-trivial tasks. Streaming and CDC pipelines generally maintain a clear separation

between transactional processing and analytics, connected by a real-time data pipeline. Although

this design favors scalability and modularity, it typically cannot guarantee full end-to-end trans-

actional consistency, as downstream systems reflect changes asynchronously [75]. Ensuring

strict consistency would require complex safeguards, which are not easy to be implemented in

practice (e.g., via two-phase commit protocols or ACID-compliant table formats). As a result,

analytical queries over CDC outputs may observe inconsistent states, violating referential integrity

or business rules.

In contrast, Hybrid Transactional/Analytical Processing (HTAP) systems aim to unify trans-

action and analytical workloads over a single, up-to-date dataset, preserving strong consistency

while delivering fresh analytical insights. As we explore next, HTAP architectures represent a

fundamental shift toward fully integrated, low-latency, real-time analytical systems.

2.5 Emergence of HTAP Architectures

To meet the dual demands of transaction processing and real-time analytics, database systems

evolved toward Hybrid Transactional/Analytical Processing (HTAP) architectures. HTAP systems

unify online transactional processing (OLTP) and online analytical processing (OLAP) within

a single platform, operating directly on fresh data without the delays introduced by traditional

ETL (extract, transform, load) pipelines [109, 57, 89]. Gartner [111] introduced the term HTAP

in 2014 to describe systems that integrate transactional and analytical workloads within a single

platform, often using in-memory technologies to achieve low-latency performance. By removing

the need for separate operational and analytical systems, HTAP architectures allow queries to

reflect the current state of data in real time. This integration simplifies system design, eliminates

data duplication, and enables faster, more informed decision-making. However, delivering HTAP

remains challenging due to the fundamentally different performance requirements of OLTP and

16

OLAP workloads.

The evolution of HTAP systems has followed several paths, depending on how closely trans-

actional and analytical workloads are integrated [109, 57, 89]. One strategy is the single-engine

design, where both OLTP and OLAP run on a unified engine and data store [82, 130, 67, 72, 50].

SAP HANA is a landmark example: it combines row-based storage (for fast transactions) and

columnar storage (for fast analytics) within an in-memory architecture. New transactions first land

in a row-store delta and are periodically merged into the compressed column-store, allowing high

transactional concurrency and low-latency analytical queries. Oracle Database In-Memory [82]

adopts a similar model: OLTP workloads operate on disk-based row tables, while an in-memory

column store accelerates analytical queries. The Oracle optimizer transparently directs queries

to the appropriate format. These single-engine HTAP systems exploit memory and dual storage

formats to deliver fresh, consistent data for both transactions and analytics without needing a

separate pipeline. Academic research further advanced single-engine HTAP designs. The Hy-

Per system demonstrated that high OLTP and OLAP performance can coexist on the same data

through careful engineering. HyPer is an in-memory relational DBMS that uses multi-version

concurrency control (MVCC) and hardware-assisted virtualization to isolate analytical queries

from live transactions. By compiling queries and transactions into machine code, it achieves

OLTP throughput comparable to dedicated systems and OLAP performance matching specialized

engines—all without stalling updates.

Another HTAP approach uses a multi-engine architecture, separating transactional and an-

alytical processing across distinct components but tightly coordinating them through replica-

tion [66, 93, 58]. In these designs, OLTP and OLAP engines—potentially with different storage

formats or hardware—work together as a single logical database. TiDB [66], an open-source

distributed SQL system, exemplifies this model: its TiKV nodes handle transactions with row

storage, while TiFlash nodes maintain real-time columnar replicas for analytics. Updates propa-

gate asynchronously using Raft-based replication, ensuring TiFlash maintains causal consistency

with TiKV. TiDB directs OLTP queries to TiKV and OLAP queries to TiFlash, allowing analytical

workloads to scale independently without disrupting transactions, at the cost of a small freshness

lag. SAP HANA clusters [58] offer a similar architecture, with some nodes optimized for OLTP and

others maintaining in-memory columnar replicas for OLAP, all within a single tightly integrated

17

DBMS. Compared to external ETL pipelines, these shared-cluster designs provide fresher data

for analytics with lower latency while keeping the OLTP and OLAP components synchronized

internally.

Finally, decoupled HTAP architectures adopt a looser integration strategy, evolving tradi-

tional data pipelines into more seamless services [145, 31, 91]. In these systems, transactional

and analytical subsystems operate independently—often built on different technologies—while

asynchronous replication (typically CDC-based) keeps the analytical store nearly up-to-date. The

main goal is to preserve OLTP performance while enabling near-real-time analytics. A prominent

example is Google F1 Lightning [145], which adds HTAP capabilities atop existing OLTP databases

without modification. Lightning streams changes from systems like F1 [127] into a read-optimized

columnar store, and a federated query engine transparently combines live OLTP data with Light-

ning replicas. More recently, systems like Apache Hudi [5] and Delta Lake have adopted similar

designs. Hudi ingests change data capture (CDC) streams into cloud storage tables (e.g., S3 [2] or

HDFS [128]), allowing SQL engines (e.g., Presto [125], Athena [19], or SparkSQL [26]) to query

near-real-time snapshots with minimal lag. Delta Lake [24] similarly applies operational changes

through micro-batch or streaming ingestion, maintaining ACID-compliant tables on object stor-

age. Both frameworks enable analytics on fresh, rapidly changing data by managing distributed

storage with transactional consistency, achieving near-real-time insights while isolating analytical

workloads from OLTP systems.

In summary, each architectural approach presents its own challenges—ranging from main-

taining isolation to synchronizing data formats and balancing resource demands—but the payoff

is significant: HTAP enables real-time operational intelligence by allowing analytics directly on

fresh transactional data. This largely removes the traditional bottlenecks of ETL, with the database

itself serving as the point of integration. Today, a wide range of HTAP systems exists across all

categories, with designs within each group often converging on similar architectural patterns. Yet

no single HTAP architecture has emerged as universally superior. A lively debate continues in

both academia and industry over which design best balances freshness, consistency, scalability,

and system complexity.

Chapter 3

HATtrick: A Systematic Methodology to

Evaluate HTAP Systems

In this chapter, we present the details of the systematic methodology we propose for evaluating

HTAP systems—and, more broadly, any system with real-time capabilities. We begin in Section 3.1

by discussing the core goals that an HTAP system should achieve and motivate the need for a new

systematic evaluation framework by highlighting the limitations of existing HTAP benchmarks.

In Section 3.2, we introduce our first proposed metric, the throughput frontier, which captures

how a system performs across the entire HTAP spectrum. This metric measures how well a

system shares resources between the transactional and analytical portions of the hybrid workload,

and how much one portion impacts the other during concurrent execution. We also propose a

visualization method for the throughput frontier that can be adopted by any benchmark.

We continue in Section 3.3 by introducing our second metric, freshness, which measures how

up-to-date analytical queries are with respect to the latest transactional updates. We discuss the

challenges of accurately measuring freshness in real-world systems and explain how we address

these challenges in practice. Then, in Section 3.4, we present the design details of our benchmark,

HATtrick, which incorporates both the throughput frontier and freshness metrics. We describe

the benchmark’s schema, data generation, and workload characteristics.

In Section 4.5, we use HATtrick to experimentally compare multiple systems with HTAP

capabilities under different configurations. We also walk through the exact evaluation process that

users should follow when comparing HTAP systems with HATtrick and how to interpret the

18

19

results. Finally, in Section 4.6 we review related work in the field, and in Section 4.7 we conclude

the chapter.

3.1 Motivation

In this section, we first present a classification of HTAP systems based on their performance

isolation and freshness properties. Then, we describe existing work on benchmarking HTAP

systems. We then motivate the need for our proposed HATtrick benchmark.

3.1.1 Design challenges

Generally speaking, an HTAP system should achieve the following two goals: (i) performance

isolation — the transactional and analytical workloads should not interfere with each other and (ii)

freshness — analytical queries should observe the latest transactions’ updates.

An HTAP database contains two workloads, an OLTP workload and an OLAP workload,

against the same physical database. For simplicity, we refer to these two workloads as the T and

the A workloads. T workloads typically include a mix of read and write transactions, each of

which operates on a small subset of the database and uses indexes to accelerate search. In contrast,

A workloads are mostly read-only and often involve scans, joins, and aggregates of large subsets

of the database

An HTAP system achieves ideal performance isolation when each of the T and A workloads

achieves the performance as if it was executed independently. This is a desirable behavior since it

allows the two workloads to run without one blocking or affecting the performance of the other.

The practical challenge, therefore, is to design a system that can share the resources between the

two workloads in a way that minimizes the interference between them.

Moreover, an HTAP system should allow every A query to read the latest modifications of

the T workload. These modifications produce fresh data. We say that an HTAP system achieves

perfect freshness when there is no delay from the time the T workload commits its changes to

the time the A workload is able to process the same data. The challenge is to provide freshness

without negatively impacting the performance of the T or the A workloads.

In the next section, we describe how different HTAP designs use different solutions to achieve

20

performance isolation and freshness.

3.1.2 Design classification

HTAP systems today follow many different designs. We classify them based on their architectures

into three categories: (i) shared design, (ii) isolated design, and (iii) hybrid design. Then, we provide

some representative examples in each category.

Shared design. Systems that belong to this category execute the T and A workloads in a single

engine. They maintain a single copy of data and share resources between the two workloads

(e.g., memory bandwidth, CPU cores, and shared caches). Examples of systems that belong

to this category include all the traditional relational databases such as PostgreSQL [138, 114],

DB2 [67], and Oracle [107] but also specialized in-memory databases such as SAP HANA [130, 55],

Hyper [72, 101], L-Store [122], and DB2 BLU [118]. Systems that follow the shared design use

various ways to provide isolation between the two workloads. Creating snapshots of the main

database is one way to create “data replicas” and reduce the interference between reads and writes.

So, they use the copy-on-write (CoW) or multiversion concurrency control (MVCC) mechanisms.

Each of the systems that we mention above use their snapshot isolation mechanism to achieve

fresh analytics. For example, in MVCC every analytical query that arrives needs to traverse

lengthy version chains [142] and find the right snapshot.

Isolated design. Systems that belong to this category usually provide compute isolation and

dedicated resources to each workload. This is achieved by using different NUMA nodes for

each workload or even different machines. Also, two different copies of the data are maintained,

which have different representations. For example, row-store format is used in the T engine

and column-store format is used for the A engine, which supports efficient data compression for

processing high volumes of data in-memory. Examples of systems that belong to this category

are BatchBD [93], TiDB [66], SAP HANA SOE’s [58], F1 Lightning [145], Wildfire [31], Db2

event store [56], Greenplum [91], PostgreSQL Streaming Replication [112], and the fractured

mirrors [49]. An advantage of the systems that follow the isolated design is the mitigation of

the interference between the two workloads since there is no sharing of resources. For achieving

fresh analytics, the systems above traditionally follow an ETL process. Recent solutions aim to

more frequently update the A replica of the data and achieve higher freshness.

21

Hybrid design. This category combines characteristics from the two previously mentioned

designs. Systems that belong to this category usually are in-memory databases which execute the

two workloads in a single machine with shared resources but maintain two copies of data with

different representations. Examples of systems that belong to this category are Microsoft SQL

Server with Hekaton [86, 50], Oracle dual-format DB [82], and SingleStore [132]. Maintaining two

copies of the data is a way for these systems to aim for performance isolation. To provide fresh

analytics, every analytical query before execution has to fetch the changes from the transactional

log or the tail of the T copy.

3.1.3 Current HTAP benchmarks

Existing popular HTAP benchmarks include CH-Benchmark[116], HTAPBench [44], and Swar-

m64 [113]. We identify important limitations in the current HTAP benchmarks. For each limitation

discussed below we briefly discuss the strategy we will follow in HATtrick, the benchmark

proposed in this work.

Unable to measure performance isolation. The current hybrid benchmarks cannot identify

whether a tested system is achieving performance isolation between the T and the A workloads.

HTAPBench and Swarm64 view one of the workloads as the primary, usually the T, and the other

as a turbulence of the primary. Their goal is to execute the secondary workload without affecting

the target throughput of the primary workload. In HATtrick we view the T and A workloads

as equal. Our primary goal is to discover how good the current HTAP systems are at achieving

performance isolation when both workloads are equal. The throughput frontier metric, which

we will discuss in detail in Section 3.2.1, shows how close is a system at achieving performance

isolation, how performance scales, and the interference of the two workloads.

Unable to measure freshness. The second limitation of existing benchmarks is that they cannot

measure the freshness of an HTAP system. CH-Benchmark is the only benchmark that identifies

freshness as an important factor in system performance. They show how the performance is

affected by different freshness configurations in the old version of the Hyper [72] database.

However, they do not provide any methodology for measuring the freshness of a system. In

HATtrick, we provide a method to measure freshness applicable to all HTAP design categories

discussed in Section 3.1.2. Our method is simple and can be adopted by any HTAP benchmark

22

with minimal changes, we provide more details in Section 3.3.

Unable to identify design category. In Section 3.1.2 we categorize HTAP systems based on their

architectures. These categories have been also discussed in other research works [109, 119, 57, 65]

and they are important to understand and improve an HTAP system. None of the current hybrid

benchmarks is able to discover the category of a tested system. HATtrick can extract this

information and communicate it to the user in a friendly way. Our evaluation in Section 4.5 will

show how HATtrick discovers the correct category for each system.

Complicated schemas. The existing benchmarks are all created by combining the schemas

of TPC-C [15] and TPC-H [14] benchmarks. The TPC schemas are complex which makes their

implementation not straightforward to the users. In the world of OLAP, this has led to the creation

of the SSB [110] benchmark which is based on TPC-H but significantly simplified. SSB is widely

used due to its simplicity. For our proposed benchmark we extend the SSB schema to support

a new T workload which is an adapted version of TPC-C. We discuss in detail the design of

HATtrick in Section 3.4. We believe HATtrick can be useful in the same way that SSB has been

useful.

Hard to compare multiple HTAP systems. Existing benchmarks do not provide a systematic

way to compare multiple HTAP systems, they mostly focus on benchmarking one system. We

focus on combining all the information needed to compare different HTAP systems into a small

set of metrics. We also provide a visualization of the metrics to make the comparison process

more intuitive.

Due to the above limitations, we believe that there is still space for further research in bench-

marking HTAP systems and this work is a step towards filling this gap with the proposed HAT-

trick benchmark.

3.2 Performance-centric definition of HTAP systems

Although many HTAP systems that follow different designs exist in both academia and industry, it

is not clear how their performance should be measured and compared with each other. In this sec-

tion, we introduce the concept of a throughput frontier and define the performance characteristics

that capture the key properties of an HTAP system.

23

0 XT

T-Throughput (tps)
0

XA

A-
Th

ro
ug

hp
ut

 (q
ps

) Frontier
Hybrid throughput pairs
AUC

(a) Sampling method.

T-Throughput (tps)

A-
Th

ro
ug

hp
ut

 (
qp

s)

(b) Saturation method.

Figure 3.1: An illustration of throughput frontier and different methods of creation.

3.2.1 Throughput frontier

The performance of an OLTP or OLAP system is typically characterized by plotting throughput

versus the number of clients. However, characterizing HTAP performance is more complex.

We consider a hypothetical HTAP system that serves a mix of T - and A-clients, each of which

issues a constant stream of requests. We model the performance of the system using a function

S. The input to S is a 2-tuple (τ, α) ∈ N2, where τ and α are the number of T - and A-clients,

respectively. The performance of S is a 2-tuple (xt, xa) ∈ R2
≥0 where xt and xa are the T - and

A-throughputs, respectively. We refer to the 2-tuple (xt, xa) as the hybrid throughput of S.

Fortunately, we can make the simplifying assumption that S is bounded. We argue that the

most interesting set of points for HTAP performance characterization are those in the bound.

Intuitively, these points represent the maximum hybrid throughput that can be achieved by the

system across all configurations of clients. Of course, real HTAP systems cannot be perfectly

modeled as described above. However, as our experiments demonstrate, it is possible to estimate a

reasonably smooth curve that denotes a system’s maximum achievable hybrid throughput. For

the remainder of this chapter, we refer to this curve as the throughput frontier.

Visualizing the throughput frontier is straightforward — it can be represented by mapping the

hybrid throughputs to 2D space. Figure 3.1a shows an example of a throughput frontier created by

randomly sampling a large number of different workload mixes ((τ, α) pairs) and computing the

corresponding hybrid throughputs. The x-axis represents the T throughput measured in completed

24

successful transactions per second (tps). The y-axis represents the analytical throughput measured

in completed queries per second (qps). We denote the maximum transactional and analytical

throughput as XT and XA, respectively. The throughput frontier is always bounded by XT in the

x-axis and by XA in the y-axis.

This sampling approach to create the throughput frontier can be prohibitively time-consuming.

A more systematic way of computing the throughput frontier is illustrated in Figure 3.1b, called

the saturation method. Instead of randomly sampling different workload mixes, we fix either

the T or A clients while varying the number of the other type of clients until the performance

stops improving. The vertical and horizontal lines shown in the figure correspond to series of

measurements where the number of T (or A) clients are fixed and the number of A (or T) clients is

varied. We call them fixed-T and fixed-A lines respectively. We call the graph formed from the

fixed-T and fixed-A lines the grid graph (g).

Figure 3.2a shows a real example of a grid graph created for PostgreSQL streaming replication

(PostgreSQL-SR) with a 100 GB dataset; more details of the workload and experiment will be

presented in Sections 3.4 and 4.5. The real grid graphs do not include pure vertical or horizontal

lines. As it shows in Figure 3.2a, the real fixed-T and fixed-A lines are sloped and the distances

between the individual lines varies. The shape of the fixed-T and fixed-A lines can explain the way

the T and A components of a workload affect each other when they run concurrently. We provide

more details in the interpretation of the fixed-T and fixed-A lines in Section 3.2.2. Moreover, in

Section 3.2.3, we will discuss the way Figure 3.2a was created by introducing an efficient algorithm.

3.2.2 Interpretation of the throughput frontier

In this section, we discuss the information that can be extracted from the throughput frontier and

how this information can be used to interpret the performance of an HTAP system. In general,

the throughput frontier quantifies the absolute T - and A-throughput, and their relationship. It is

useful for diagnosing performance issues.

To fully understand the performance of an HTAP system, we must consider both the magnitude

and the shape of its throughput frontier. The magnitude of the throughput frontier (i.e., the distance

between each point on the frontier and the origin) represents the absolute performance of the

system across the entire HTAP workload spectrum. The throughput frontier magnitude is most

25

0 5K 10K 15K
0

.1

.2

.3

0 5K 10K 15K
0

.1

.2

.3

Fixed-T lines Fixed-A lines Proportional line Bounding box Frontier AUC

0 2 4 6 8 10
T-Throughput (103 tps)

0

.3

.6
A-

Th
ro

ug
hp

ut
 (q

ps
)

(a) PostgreSQL-SR for SF100.

0 2 4 6 8 10
T-Throughput (103 tps)

0

.3

.6

A-
Th

ro
ug

hp
ut

 (q
ps

)

(b) PostgreSQL-SR for SF100.

0 8 16 24 32
T-Throughput (102 tps)

0

2.5

5

A-
Th

ro
ug

hp
ut

 (q
ps

)

(c) TiDB for SF10.

0 4 8 12 16
T-Throughput (103 tps)

0

100

200

300

A-
Th

ro
ug

hp
ut

 (q
ps

)

(d) System-X for SF1.

Figure 3.2: Examples of our performance-centric definition: (a) Grid graph and (b, c, d) Throughput frontier.

useful when comparing multiple HTAP systems. If the throughput frontier region for some system

A completely envelops that of another system B, we can say that system A offers higher HTAP

performance than system B on the given workload. In contrast, it is also possible for neither

throughput frontier region to fully contain the other. In this case, we recommend a deeper analysis,

which takes into account additional factors such as the expected workload mix, to determine which

system is more desirable. The remainder of this section is dedicated to analysis of throughput

frontier shape.

To enhance this discussion, we will use examples of throughput frontiers derived from experi-

ments on real systems. Figure 3.2b, Figure 3.2c, and Figure 3.2d show the throughput frontiers of

PostgreSQL-SR, TiDB, and a commercial database which we anonymize as System-X. PostgreSQL-

SR and System-X use the serializable isolation level while TiDB guarantees snapshot isolated

26

reads. A scaling factor of 100 for the HATtrick benchmark was used for PostgreSQL-SR, 10 for

TiDB and 1 for System-X. The total raw data size is roughly 80 GB for PostgreSQL-SR, 10 GB for

TiDB, and 1 GB for System-X, in all cases the data fits in main memory. More configuration details

will be presented in Section 4.5.

We now introduce two annotations to the throughput graph to better understand the shape

of the throughput frontier: the proportional line and the bounding box. The proportional line

(pf), illustrated by the blue dashed line in Figure 3.2b and subsequent figures, is the line drawn

from the two extreme points of the throughput frontier. It represents a relationship of linear

dependence between T - and A-throughput. The bounding box (bf), illustrated by the red dashed

rectangle in Figure 3.2b and subsequent figures, is the rectangle formed by the extreme points

of the throughput frontier (i.e., 0 ≤ x ≤ XT and 0 ≤ y ≤ XA). The bounding box represents

independence between T - and A-throughput.

In subsequent paragraphs, we explain how the proportional line and the bounding box aid in

the analysis of the throughput frontier. We consider three general throughput frontier patterns.

The first is a throughput frontier that is close to the proportional line. The second is a throughput

frontier that is well above the proportional line and close to the bounding box. The third is a

throughput frontier that is well below the proportional line and close to the axes. While it is

conceptually useful to think of these patterns as separate cases, note that a real system may exhibit

a throughput frontier with any combination of patterns. Here, we separately consider each pattern

only to build intuition about the throughput frontier.

Close to the proportional line. As described earlier, the proportional line represents a linear

relationship between T - and A-throughput. The proportional line is named as such to emphasize

the tradeoff between T - and A-throughput: in an HTAP system whose throughput frontier remains

close to the proportional line, any increase in T -throughput is accompanied by a proportional

decrease in A-throughput, and vice versa. HTAP systems that exhibit this behavior are attractive

for their predictable performance. An example of a system and workload configuration that

produces a frontier with this pattern is TiDB with SF10, as shown in Figure 3.2c.

Above the proportional line, close to the bounding box. As described earlier, the bounding box

represents independence between T - and A-throughput. In an HTAP system whose throughput

frontier is well above the proportional line and close to the bounding box, it may be possible to

27

increase T -throughput with minimal impact on A-throughput, and vice versa. HTAP systems that

exhibit this behavior are attractive for their performance isolation. An example of a system and

workload configuration that produces a frontier with this pattern is PostgreSQL-SR with SF100, as

shown in Figure 3.2b. Note that, by definition, the throughput frontier of every HTAP system will

always be within the bounding box.

Below the proportional line, close to the axes. Qualitatively, the degree to which a throughput

frontier is below the proportional line and close to the axes represents the amount of negative

interference between the T - and A-portions of the workload. A throughput frontier that is well

below the proportional line is an indicator of poor HTAP performance and may indicate contention

for resources in the system. Identification of this pattern may be useful in diagnosing performance

issues. An example of a system and workload configuration that produces a frontier with this

pattern is System-X with SF1, as shown in Figure 3.2d. Importantly, the size of the database in

this configuration is comparatively small, which results in increased contention for data items.

We find that HTAP systems generally exhibit throughput frontiers below the proportional line for

small database sizes. These results will be discussed in more detail in Section 4.5.

Grid Graph

In addition to the throughput frontier, the grid graph provides complementary information

regarding workload preference, through the slope of the fixed-T and fixed-A lines. Ideally, if there is

no workload interference, the grid would be comprised of pure vertical and horizontal lines. This

is rarely the case in real systems, the lines tend to be slanted due to the interference between the

T and A workloads. The closer a fixed-T or fixed-A line is to be perpendicular to the axes the less

the corresponding workload is affected by the increase of the other workload. Figure 3.2a, shows

the grid graph of PostgreSQL-SR which corresponds to the throughput frontier of Figure 3.2b.

The fixed-T lines of the figure are closer to vertical, are clearly placed and tend to have the same

length which reaches the XA. The fixed-A lines are not smooth since they have fluctuations in the

absolute numbers of the T -throughput but they tend to have the same length which reaches the

XT . This means that the interference of the T and A workloads is minimized in PostgreSQL-SR in

this specific configuration and that PostgreSQL-SR is not favoring a workload over the other.

We also get workload preference information from the throughput frontier but the grid graph

28

provides more resolution at operation areas below the frontier that might be of interest in practice.

3.2.3 Calculation of throughput frontier

In Section 3.2.1, we introduced the saturation method for calculating the throughput frontier

(Figure 3.1b). Here, we describe in detail how it works including the creation of the fixed-T and

fixed-A lines.

First, we find the number of transactional clients (τmax) that maximize the transactional

throughput XT . To find (τmax), the HTAP system executes the transactional workload with an

increasing number of clients, until the transactional throughput does not further increase. The

algorithm repeats the same steps to find the number of analytical clients (αmax) that maximize

the analytical throughput XA. Note that for any other different workload mix, the DBMS cannot

achieve a transactional or analytical throughput higher than XT or XA, respectively.

The next step is to collect the data points that create the fixed-T and fixed-A lines. Each line

requires a series of measurements, in which the number of T (or A) clients is fixed and the number

of A (or T) clients is varied. In our evaluation we create six fixed-T and six fixed-A lines, by equally

diving the ranges [0, τmax] and [0, αmax]. For each line, we collect six points. We found that this

configuration provides a good coverage of the space, but the number of points per line collected as

well as the spacing of the lines can be tuned to provide better coverage. After all data is collected,

we calculate the throughput frontier. The throughput frontier is made up from the highest point

of each fixed-T and fixed-A lines.

3.3 Freshness of HTAP Systems

In addition to the performance-centric definition, we need to highlight the importance of an HTAP

system to provide fresh analytics. In this section, we introduce the concept of freshness score

which is used to describe the recency of the data read by an analytical query. We also describe our

method that can be used to measure the freshness scores of queries in real database systems.

29

Time

T1 T2 T3 A1

tc1 tc2 tc3 ts1

first not

seen

not

seen

 seen

Figure 3.3: Illustration of freshness for analytical queries.

3.3.1 Theoretical definition of Freshness

We consider again a hypothetical HTAP system that serves a mix of T - and A-clients and each of

them issues a constant stream of requests. In this definition, we assume both the clients and the

HTAP database have access to the same global clock. A transaction is considered committed when

the updates of the transaction are applied to the database and are visible to the other transactions.

Each analytical query starts and finishes at a particular time based on the global clock and reads a

specific snapshot of the operational data. An up-to-date version of the operational data includes

all the updates made by transactions that committed before the start of the analytical query. In

contrast, a stale version misses some of such updates. We say an HTAP system provides fresh

analytics if every analytical query is executed on an up-to-date version of the operational data.

Otherwise, we regard it as a system providing stale analytics.

We define freshness score of an analytical queryAq as a quantitative measure fAq = max(0, tsAq
−

tfnsAq
). tfnsAq

is the commit time of the first transaction not seen by Aq and tsAq
is the start time of

the Aq . Both measures are based on the global clock. Given the definition, the smaller the measure

is, the fresher the system will be. The freshness score of Aq is zero when the query can see the

updates from transactions committed before the start of the query, which means the snapshot is

up-to-date. When the snapshot is outdated, to calculate the freshness score we need to find the

time after which the snapshot became stale. This time is equal to the commit time of the first

transaction whose updates are not present in the version of the data in which Aq runs. Then,

the freshness score of Aq is equal to the difference between the start time of the query and the

first unseen transaction measured in time units, e.g., seconds. Figure 3.3 shows an example of

transactions T1, T2, T3 and an analytical query A1. Each tci corresponds to the commit time of

the transaction i and the ts1 corresponds to the start time of the analytical query A1. We assume

30

A1 sees all the changes made by transaction T1 but does not see changes by T2 or T3. Therefore,

T2 is the first-not-seen transaction and the freshness score of A1 is fAq = ts1 − tc2.

Since the A-clients issue multiple requests, each Aq will have a different freshness score. Thus,

we define the freshness score of an HTAP system as the aggregation of the freshness scores of all

analytical queries, denoted as fagg. agg can be any aggregation function such as the average or

95% percentile. Freshness favg = 0 means that the HTAP system can always provide the most

recent version of the operational data to all the analytical queries. Freshness favg = p seconds

means that on average the snapshot used by the analytical queries is out-dated by p seconds.

3.3.2 Measuring Freshness Score

The theoretical definition of freshness defined in the previous section can be challenging to

measure in a practical system. In particular, we identify the following two challenges:

Challenge 1: No global clock. The theoretical definition of freshness score requires a global

clock that is accessible from both clients and the database. A practical system, however, does

not have an accurately synchronized clock across different nodes, making it difficult to measure

commit time or query start time.

Challenge 2: Hard to identify first not seen transaction. The definition of freshness score

requires identifying the first transaction that is not seen by each analytical query. This task is

particularly difficult since by definition, the analytical query cannot identify such a transaction.

Extra bookkeeping information needs to be kept to identify a not seen transaction.

We introduce the following new algorithm to approximate the theoretical freshness score of a

query and resolve the two challenges above. The algorithm has minimal impact to the workload

in terms of modifications, and can be applied to general HTAP benchmarks.

To resolve the first challenge, we decide to conduct all time measurement on the client side. In

particular, the commit time of each transaction is the time when the transaction result is returned

to a client. The start time of an analytical query is the time when the query is sent to the database.

This solution avoids clock synchronization across database nodes, and the freshness score is

consistent with what the client observes.

To solve the second challenge, we need to first ensure that a client knows the results of which

transactions each analytical query should observe, and second be able to tell which transactions the

31

analytical query actually observed based on the returned result. We introduce a set of lightweight

tables FRESHNESSj , where j ∈ [1, τ] and τ is the number of transactional clients. For each

transactional client j we create one such table that acts as a synchronization point. We also

update the transactions and analytical queries in the workload such that they update and read the

corresponding table.

Each FRESHNESSj table contains only one integer field, which is the ID of the last transaction

from transactional client j. Each transaction will execute extra logic to update the FRESHNESSj

table with its ID. Note that a transactional client submits transactions to the database sequentially

with increasing IDs. Therefore, at most one transaction will be updating each FRESHNESSj table

at any given time and the ID in the table will monotonically increase. We deliberately design the

FRESHNESSj tables to be separate (one for each client) instead of storing multiple rows in a single

table in order to reduce contention from having different clients updating their IDs concurrently.

Thus, the transactional latency is not affected by the table locking protocol of each database.

To identify which transactions are observed by an analytical query, we modify each query

to read all FRESHNESSj tables and return the contents to the client. Specifically, we union the

FRESHNESSj tables and cross-join the result with the original query. If a query is executed against a

consistent snapshot, the returned IDs define the transactions observed by the query — transactions

with larger IDs are not observed by the query. This way, we successfully identify the first-not-seen

transaction and can calculate the freshness score.

Note that the algorithm described above works well when analytical queries are serializable or

snapshot isolated, where reads of data tables and freshness tables are consistent within a query. If

the queries are executed with lower isolation levels, one way to measure freshness is to embed

the FRESHNESSj information into each tuple at the cost of higher overhead. All the systems we

measure run with at least snapshot isolation and therefore we maintain FRESHNESSj as separate

tables.

3.4 Design of HATtrick Benchmark

We will now move to the design of our hybrid benchmark called HATtrick which we will use to

validate our performance centric definition and the freshness concept. HATtrick complements

32

the throughput frontier and incorporates our freshness measurement method. Thus, can be used

to effectively evaluate HTAP systems.

The HATtrick benchmark contains an analytical component and a transactional component.

The analytical component is based on the Star-Schema Benchmark (SSB) [110]. We extend the SSB

schema to support a new transactional workload which is an adapted version of the TPC-C [15]

benchmark. This new transactional workload is the transactional component of HATtrick. We

choose the SSB benchmark as our base because it offers a simple schema and query set that is

based on the Kimbal [74] definition of data warehouse.

The HATtrick benchmark has three execution steps: (a) the initial population of the database,

(b) the warm-up period, and (c) the measurement period. This section discusses the schema, the

workload, and the implementation details of the HATtrick benchmark.

3.4.1 The Schema and Data

Figure 3.4 shows the schema of the HATtrick benchmark, which keeps all the SSB entities and

relationships almost unmodified. We update the CUSTOMER, SUPPLIER, and PART relations by

adding one new attribute to each of them. Also, we introduce a new relation called HISTORY and

a series of relations called FRESHNESSj , where j ∈ [1, τ] and τ the number of transactional

clients. The purpose of adding the new attributes and the HISTORY relation is to support the

transactional workload component of HATtrick while, the FRESHNESSj relations are used

in the freshness measurement process as described in Section 4.2. Each FRESHNESSj table

contains only one integer field, the TXNNUM.

Specifically, we add the attribute PAYMENTCNT in the CUSTOMER relation which is an

integer that keeps track of the total number of payments each customer makes. Also, we add the

attribute YTD in the SUPPLIER relation which is a decimal that accumulates the year to date profits

of each specific supplier. Both these attributes are going to be used and updated in transactions

which are similar to the payment transaction in TPC-C benchmark.

The HISTORY relation consists of three attributes, the ORDERKEY from the LINEORDER

relation, the CUSTKEY from the CUSTOMER relation, and the AMOUNT which is a new deci-

mal attribute. An insertion in the HISTORY relation simulates the process of keeping historic

information for a customer payment.

33

The last change is made in the PART relation where we added the PRICE attribute which is a

decimal that stores the cost of each part. The PRICE attribute is used in every transaction that

inserts new orders in the LINEORDER relation when the EXTENDEDPRICE and ORDERTOTAL-

PRICE attributes are computed. We describe in Section 3.4.2 how exactly these additions are used

in each transaction.

HATtrick benchmark follows the scaling of the SSB benchmark for the initial population of the

database, Figure 3.4 shows more details. After the initial population, the sizes of the CUSTOMER,

SUPPLIER, PART, and DATE relations remain unaffected by the T workload. However, the

transactions of HATtrick change the sizes of the LINEORDER and HISTORY relations by adding

new tuples. The initial size of the HISTORY relation equals the number of the unique OR-

DERKEYs in the LINEORDER relation, that number is approximately the 25% of the size of

LINEORDER relation. The size of each FRESHNESSj relation is fixed and equal to one.

3.4.2 Workload

There are two components in the HATtrick benchmark, the analytical and the transactional.

Transactions

The HATtrick benchmark defines three transactions modeled after the TPC-C benchmark.

Specifically:

New order: This transaction enters a complete order with multiple lineorders through a single

database transaction. The new order is inserted to the LINEORDER relation. Specifically, given a

random customer name C NAME, part key P PARTKEY, supplier name S NAME, and day of order

D DATE, the new order transaction scans the CUSTOMER, PART, SUPPLIER, and DATE relations

to retrieve data. These data are used to create the new entries of the LINEORDER relation. For

example, based on the P PARTKEY, a P PRICE is retrieved which is used to compute the attributes

EXTENDEDPRICE and ORDERTOTALPRICE for that specific line-order. It is worth mentioning

that, the dates are sampled from the fixed range of the DATE relation which is seven years of

days from 1992 to 1998. Therefore, the new line-orders that are added through the new order

transaction do not insert new dates but they keep sampling uniformly from the fixed range.

34

CUSTOMER(C_) LINEORDER(LO_)

SUPPLIER (S_)

PART (P_)

DATE (D_)

ORDERKEY

LINENUMBER
CUSTKEY

PARTKEY
SUPKEY

ORDERDATE

ORDPRIORITY

SHIPPRIORITY
QUANTITY

EXTENDEDPRICE

ORDTOTALPRICE

DISCOUNT

REVENUE
SUPPLYCOST

TAX

COMMITDATE
SHIPMODE

SF*6,000,000

200,000*[1+log2 SF]

7 years of Days

SUPPKEY

NAME

ADDRESS

CITY

NATION

REGION

PHONE

YTD

SF*2,000

CUSTKEY

NAME

ADDRESS

CITY

NATION

REGION

PHONE

MKTSEGEMNT

PAYMENTCNT

SF*30,000

PARTKEY
NAME

MFGR
CATEGORY

BRAND1
COLOR
TYPE
SIZE

CONTAINER
PRICE

HISTORY(Η_)
~SF*1,500,000

DATEKEY DAYNUMNMONTH
DATE MONTHNUMINYEAR

DAYOFWEEK WEEKNUMINYEAR
MONTH SELLINGSEASON
YEAR LASTDAYINMONTHFL

YEARMONTHNUM HOLIDAYFL
YEARMONTH WEEKDAYFL

DAYNUMNWEEK DAYNUMNYEAR

ORDERKEY
CUSTKEY
AMOUNT

TXNNUM

FRESHNESSj(Fj_)

Figure 3.4: The schema of HATtrick benchmark based on modified SSB. New attributes in HATtrick

are in shade.

35

Payment: This is an update transaction which simulates a customer’s payment for an order that

they already made. The payment transaction updates the customer’s total number of paid orders

and the year to date balance of the order’s supplier which correspond to the C PAYMENTCNT and

S YTD attributes respectively. The transaction commits after inserting the payment information

to the HISTORY relation. The customer is selected by customer name C NAME 60% of the time

and by the customer key C CUSTKEY the rest of the time.

Count Orders: This transaction is read-only and reports the total number of orders for a given

customer. The customer is selected by C NAME, so seeking on the secondary index of the

CUSTOMER relation is required. The total number of customer’s orders is retrieved from the

LINEORDER relation. Each transaction generated by the T -client j, additionally to its original

workload updates the FRESHNESSj relation with the transaction’s ID.

Analytical Queries

The analytical component of the HATtrick benchmark includes all the 13 queries of the SSB

benchmark modified to also return the data from the FRESHNESSj relations. During the

measurement period, the transactions add new orders to the LINEORDER relation and thus, the

analytical queries process more rows as the time passes. The new entries added through the New

Order transaction follow the same specifications as defined in the SSB benchmark. No new dates

are added in the DATE relation. Therefore, the predicates of the analytical queries process data

created by the initial population of the database and the transactions.

3.4.3 Benchmark Procedure

During operation an HTAP system evaluates transactional requests and analytical requests simul-

taneously. Each client issues a transaction or a analytical query based on their type and waits for

the result before issuing the next. The number of clients is not restricted but the ratio of T to A

clients (T :A) is a benchmark parameter.

The T clients issue transactions with the following distribution: 48% New Order, 48% Payment

and 4% Count Orders. Each client is independent of other clients. The A clients’ queries are

organized in batches. An A batch contains all the 13 queries ordered randomly. Once all the

36

queries in the batch have finished execution the A client continues with a new batch of the 13

queries and a new permutation of them. The A queries do not delay the transactions, which could

happen if a client runs both types of queries. With this design, the tested database systems are

free to delay the transactions or the analytical queries in order to improve performance.

3.5 Experimental Evaluation

In the evaluation, we experiment with different databases and configurations. Specifically we

study how performance and freshness scores change for different database sizes, isolation levels,

physical schemas, replication modes, and deployments (single node and distributed). We use

PostgreSQL [138, 114], PostgreSQL Streaming Replication [112] (PostgreSQL-SR), an anonymized

System-X, and TiDB [66] for this part of the evaluation. Before we present the experiments, we

describe the experimental configuration and the setup of each database system that we use.

3.5.1 Experimental Configuration

System Configuration. The single-node and multiple-node experiments are performed on the

same type of servers. Each server has a 2.35Ghz AMD EPYCTM 7452 processor with 32 physical

cores, a 512GB RAM, and an SSD disk and runs the Ubuntu 18.04 LTS operating system.

Benchmark Configuration. We experiment with three scale factors of the HATtrick bench-

mark, SF1, SF10, and SF100, that correspond to raw data of sizes 570MB, 5.7GB, and 59GB respec-

tively. For all scaling factors and database systems that we tested, the data always fits in memory.

The clients that submit the transactional and the analytical requests run on the same machine in

which the tested database system is installed. For multi-node setup, the clients of the benchmark

run in one of the nodes (e.g., in PostgreSQL-SR, the clients run on the same machine with the

primary node).

The duration of each benchmark run consists of a warm-up period and the measurement period.

Each scaling factor has a different warmup and measurement period duration. For example, for

SF100 the warm-up duration is 5min and the real measurement phase is 10min. For SF10 the warm-

up is 3min and the measurement phase is 6min and for SF1 2min warm-up and 4min measurement

phase. The duration of each period for each scaling factor was selected after conducting a small

37

experiment, where we discover the appropriate time periods for each phase so the performance is

stable. The duration of the warmup and measurement periods remain the same across systems

when experimenting with the same scaling factors. Before each benchmark run we reset the data

to their initial state.

For each workload configuration (A:T client ratio) we repeat the execution of the benchmark

three times and report the average results. For each workload configuration the benchmark reports

the T throughput in successful transactions per second (tps) and A throughput in finished queries

per second (qps). We also compute freshness score for each A:T client ratio. HATtrick benchmark

extracts also the average response time of each transaction type and analytical query.

Evaluated Systems Configuration. The databases we use are PostgreSQL 14, System-X, and

TiDB 5.2.0. Because of legal restrictions, we do not disclose the original name of System-X. In

PostgreSQL and PostgreSQL-SR, we created all possible B+ tree indexes on the attributes used

in the predicates of the transactional and analytical requests. We used this configuration to

accelerate both workloads in PostgreSQL for all the experiments except for the one in which

different physical schemas are tested. In System-X and TiDB, we created all needed B+ tree indexes

for accelerating the transactional requests. Both System-X and TiDB provide an additional column

based representation of the data to speed up the analytical requests. Stored procedures were used

to execute the transactional requests and prepared statements to execute the analytical requests

in PostgreSQL, PostgreSQL-SR, and System-X. Prepared statements were used to execute both the

transactional and analytical requests in TiDB since stored procedures are not yet available. Finally,

for all databases we disabled the option of intra-query parallelism since it leads to over-utilization

of the resources when multiple analytical requests are executed in the database.

Reported Results. For each experimental configuration, we report three plots that correspond

to the fixed-T lines, the fixed-A lines, and the throughput frontier, respectively. We generate the

fixed-T and fixed-A plots as described in Section 3.2.3. We then compute the throughput frontier

from the fixed-T and fixed-A data, also as described in Section 3.2.3. Each figure in this section was

generated with this method. In addition to the throughput frontier we also compute the freshness

scores as described in Section 4.2. We report the 99th-percentile of the freshness scores for the

T:A client ratio points 20:80 (f2), 50:50 (f5) and 80:20 (f8) measured in seconds.

38

3.5.2 PostgreSQL

In this section we run the HATtrick benchmark in PostgreSQL 14 and show results for different

scale factors, isolation levels, and physical schemas. Our results show that there is a negative

interference between the T and A workloads in all the scale factors, isolation levels, and schemas.

This leads to a throughput frontier that is either below or close to the proportional line. Finally,

PostgreSQL is able to provide a zero freshness score in all the experiments, which is expected

based on its architecture.

System design. PostgreSQL is a relational database management system (RDBMS) designed

primarily for transactional processing. However, like many other traditional databases, Postr-

greSQL can also serve hybrid workloads. PostgreSQL uses multiversion concurrency control

(MVCC) in which readers never block writers, and vice versa. In this set of experiments, we use

the serializable isolation level.

Varying scaling factors. Figures 3.5 shows the performance results of HATtrick benchmark for

PostgreSQL in three different scaling factors. The fixed-T lines and the fixed-A lines for SF1 have

a non smooth behavior. As the number of fixed T /A clients is increased, the lines become more

slanted. This shows that the increase of the T (A) clients across the fixed-A(fixed-T) lines affects

negatively the A(T) throughput. In general, the behavior of the fixed-T and fixed-A lines shows

that as the number of the T and A clients increases, the two workloads are competing for compute

resources and data. The small size of the database contributes more to this behavior [120, 115, 144]

since many transactions update the same rows which due to locking leads to increased waiting

times. The throughput frontier for SF1 is always below the proportional line, suggesting negative

interference between the two workloads.

Moving to SF10, the fixed-T and fixed-A lines continue to have a slanted behavior. However,

the frontier is now moving closer to the proportional line. This means that an increase in the T

throughput is accompanied by a proportional decrease in A throughput, and vice versa. Thus, the

resource sharing between the two workloads is more efficient than in SF1. Compared to SF1, we

see a big drop in the maximum A throughput due to the increase of the database size which leads

to bigger answer sizes. In terms of maximum T output there is also a slight reduction compared

to SF1.

39

0 7 14 210

35

70 Fixed-T lines

TC = 0
TC = 0.1 * max

TC = 0.2 * max

TC = 0.5 * max

TC = 0.8 * max

TC = max

0 7 14 21

Fixed-A lines

AC = 0
AC = 0.1 * max

AC = 0.2 * max

AC = 0.5 * max

AC = 0.8 * max

AC = max

0 7 14 21

SF
1

f2 : 0s
f5 : 0s

f8 : 0s

Throughput Frontier

0 5 10 15 200
2
4
6

An
al

yt
ica

l T
hr

ou
gh

pu
t (

qp
s)

0 5 10 15 20 0 5 10 15 20

SF
10

f2 : 0s
f5 : 0s

f8 : 0s

0 4 8 12 160

.2

.4

0 4 8 12 16
Transactional Throughput (103 tps)

0 4 8 12 16

SF
10

0

f2 : 0s
f5 : 0s

f8 : 0s

Figure 3.5: PostgreSQL for different scaling factors.

In SF100, the fixed-A lines are not significantly affected by the increase of the T clients. On

the contrary, the fixed-T lines are the ones which are extremely affected by the increase of the A

clients. Thus, the fixed-A lines tent to be parallel and to all have the same length while the fixed-T

lines have a slanted behavior. As a result, the throughput frontier of SF100 is for the half part above

or close to the proportional line and for the rest part below the proportional line. This indicates

bad performance scaling and shows that the database system is not able to serve efficiently the

two workloads in parallel because the T throughput is extremely affected by the increase of the A

clients. Again, there is a drop in the maximum A throughput compared to SF10 which is related to

the increase of the database size. Interestingly, we observe a significant decrease of the maximum

T throughput compared to SF10. This is related to the big number of B+ tree indexes that we

use to accelerate both the T and A parts of the workload. However, as the size of the database

increases, the size of the indexes increases too. Therefore, more time is needed to traverse and

update the indexes when the ”New Order” and ”Update” transactions are executed leading to

degradation of the T throughput.

40

0 5 10 15 20 25 30
T-Throughput (103 tps)

0
1
2
3
4
5
6

A-
Th

ro
ug

hp
ut

 (q
ps

) Serializable (S)
Read-Committed (RC)

(a) Different isolation levels.

0 7 14 21
T-Throughput (103 tps)

0
1
2
3
4
5
6

A-
Th

ro
ug

hp
ut

 (q
ps

) all-indexes
semi-indexes
no-indexes

(b) Different physical schemas.

Figure 3.6: Within system experiments for PostgreSQL.

For all scale factors, the measured freshness score for all the ratio points is equal to zero. This

is expected since PostgreSQL maintains one copy of the data and the updates of the transactions

are made immediately available to the snapshot that the data analytical queries are using.

The advantage of PostgreSQL is that analytical requests can run concurrently with the trans-

actional requests by using snapshot isolation. However, the two workloads still need to compete

for resources, data structures, and data items, and this becomes worse when the number of the T

and A clients are both high.

Varying Isolation Levels. We now use PostgreSQL and experiment with different isolation levels.

We show how the throughput frontier captures the behavior differences between isolation levels.

Figure 3.6a shows the throughput frontiers of PostgreSQL in serializable and read committed

isolation levels for SF10. The read committed isolation level achieves higher T and A throughput in

almost all the parts of the throughput frontier. The throughput frontier of the serializable isolation

level achieves a better maximum A throughput. This is because the query optimizer of PostgreSQL

chooses different plans for the analytical queries in the different isolation levels. However, in all

the other cases the serializable throughput frontier is always below the read committed throughput

frontier. This is an expected result and this experiment demonstrates how throughput frontier

reveals the behavior of a system in different isolation levels. Another important observation is

the position of the two throughput frontiers relative to their proportional line — both throughput

frontiers are close to their proportional lines.

Varying Physical Schemas. We now experiment with different physical schemas in PostgreSQL.

41

The throughput graphs helps us understand the advantages and disadvantages of each physical

schema. Again, the results of the throughput frontiers coincide with what we expected to see.

Figure 3.6b shows the throughput graphs when the physical schema of the database changes;

the experiment is performed with serializable isolation level and SF10. The three different physical

schemas that are compared are the (1) no indexes, (2) with B+ tree indexes that accelerate only

the T workload (semi indexes) and (3) with all possible B+ tree indexes that can accelerate the T

and the A workload.

In terms of performance scaling, the physical schema with all the possible B+ tree indexes

achieves the best results since the throughput frontier is almost always above the throughput

frontiers of the other physical schemas. Next in ranking is the physical schema with the semi

B+ tree indexes and the worst is the no indexes physical schema. After conducting an analysis

we conclude that the different shapes in the throughput frontiers of the three physical schemas

are due to the different query plans the optimizer creates for the analytical queries based on the

available indexes.

In terms of maximum T throughput, the semi indexes physical schema achieves better perfor-

mance compared to the all indexes schema. More indexes can affect the T throughput since they

need to be updated in every change that transactions make. However, for the rest workload mixes

the all indexes and the semi indexes schemas achieve similar T throughputs.

The use of indexes seem to help not only the T workload but also the A queries. PostgreSQL

achieves the best results in both workloads when it uses the all indexes physical schema and this

is demonstrated by the throughput frontier results.

In both experiments above (i.e., varying isolation levels and varying physical schemas), we show

how the throughput frontier can be used for choosing among different database configurations.

Our method combines all the needed information in one figure for multiple configurations, thus

the users can understand the system’s behavior easily and draw conclusions faster.

3.5.3 PostgreSQL Streaming Replication

In this section we use PostgreSQL 14 with streaming replication (PostgreSQL-SR) and we run the

HATtrick benchmark for different scale factors and replication modes. The results show that as

the scale factor increases the throughput frontier moves above the proportional line, indicating

42

0 6 12 180

50

100 Fixed-T lines

TC = 0
TC = 0.1 * max

TC = 0.2 * max

TC = 0.5 * max

TC = 0.8 * max

TC = max

0 6 12 18

Fixed-A lines

AC = 0
AC = 0.1 * max

AC = 0.2 * max

AC = 0.5 * max

AC = 0.8 * max

AC = max

0 6 12 18

SF
1

f2 : 0.05s

f5 : 0.2s

f8 : 0.17s

Throughput Frontier

0 4 8 12 160

3.5

7

An
al

yt
ica

l T
hr

ou
gh

pu
t (

qp
s)

0 4 8 12 16 0 4 8 12 16

SF
10

f2 : 4s
f5 : 5s

f8 : 1s

0 2 4 6 8 100

.3

.6

0 2 4 6 8 10
Transactional Throughput (103 tps)

0 2 4 6 8 10

SF
10

0

f2 : 0.1s

f5 : 1.5s
f8 : 0.08s

Figure 3.7: PostgreSQL-SR for different scaling factors.

good performance scaling and shows that the database system is able to concurrently serve the

two workloads efficiently. However, in all the scale factors we experienced stale queries. Also,

the experiments with different replication modes show a trade-off between performance and the

freshness scores.

System design. Streaming replication is the most common PostgreSQL replication strategy in

which a primary node replicates data to the standby server(s). It is based on streaming WAL

records to the standby server(s) as they are generated without waiting for the WAL file to be filled.

Thus, it allows the standby server(s) to stay more up-to-date than with the file-based log shipping.

The primary node is usually used for transactional workloads while the standby node(s) is read

only.

By default PostgreSQL streaming replication is asynchronous, which means that there is a

small delay between committing a transaction in the primary and the changes becoming visible in

the standby node(s). However, a user can set up different replication modes. One option is the strict

synchronous replication in which a transaction in the primary commits only after the updates are

43

replayed in the standby node(s). This mode can be chosen by setting the synchronous commit

parameter of PostgreSQL-SR to remote apply. We call this mode RA. In this mode, one can use

PostgreSQL-SR to execute HTAP workloads and provide analytics with freshness score equal to

zero.

In our first part of the experiments we choose to relax the replication mode and set the

synchronous commit parameter to ON. We call this mode ON. In ON mode, a transaction in the

primary node will commit only after the standby server(s) confirms that the transaction record

was safely written to the disk of the standby server(s). The difference between the RA and ON

mode is that in the ON mode the transmission of the updates happens synchronously but the

actual replay of the updates is asynchronous. In RA mode both steps happen synchronously

by the commit time of the transaction. Since the transaction updates in ON mode are replayed

asynchronously in the standby server(s), we expect to see some stale queries.

Varying scaling factors. In this experiment, we set up PostgreSQL-SR in two identical nodes —

one is the primary node and is responsible for the transactional workload and the other is the

standby node responsible for the analytical workload. We choose replication mode ON.

Figure 3.7 shows the results for different scale factors. The fixed-T and fixed-A lines for all

the scale factors are less slanted compared to the PostgreSQL experiments of Section 3.5.2. This

behavior is more clear in the cases of SF10 and SF100 where the lines tend to be parallel and

have the same length. This means that the T (A) workload tend to be less affected by the increase

of the A(T) clients. Thus, as the scale factor increases the throughput frontier moves above the

proportional line and in SF100 is close to the bounding box. These results show that PostgreSQL-SR

is good at isolating the performance of T and A workloads and can serve the two workloads

efficiently. Interestingly, the results are representative of the system’s architecture. The primary

and standby nodes have isolated resources and thus the interference of the T and A workloads is

expected to be limited compared to HTAP systems that share resources.

As the scale factor increases we see a decrease in the maximum A throughput. In terms of the

maximum T throughput there is a significant decrease in SF100 compared to SF1 and SF10. This is

again related to the increased size of the indexes as it was discussed in Section 3.5.2.

In Figure 3.7 we report the freshness scores for all the scaling factors in the three T:A client

ratios. However, we cannot compare the absolute freshness score of a specific T:A ratio across the

44

0 4 8 12 16
T-Throughput (103 tps)

0

3

6

9
A-

Th
ro

ug
hp

ut
 (q

ps
)

f2 : 4.2s

f5 : 4.9s

f8 : 1.1s

f2 : 0s

f5 : 0s

f8 : 0s

ON
RA

(a) Different replication modes.

0 1 2 3 4 5
Freshness score (sec)

0.5
0.6
0.7
0.8
0.9
1.0

Pr
ob

ab
ilit

y

CDF

T : A = 80 : 20
T : A = 50 : 50
T : A = 20 : 80

(b) CDFs for mode ON.

Figure 3.8: Freshness results for PostgreSQL-SR.

different scale factors since they correspond to different number of clients.

In Figure 3.8b we show the CDFs of the freshness scores for the three ratios in SF10. For the

client ratio 20:80, almost 90% of the executed queries return freshness score close to zero and

the maximum freshness score seen is 1.1sec. Moving to the client ratio 50:50, the results show

that 75% of the executed queries return freshness score close to zero and the maximum freshness

score seen is 4.9sec. Finally, the client ratio 80:20 execution reports almost 55% of the queries

with freshness score close to zero and the maximum value seen is 4.2 sec. These results indicate

that the freshness scores are significantly affected by the number of the T clients. For example,

the ratio 80:20 has the lowest percentage of fresh queries (∼ 55%). This is reasonable since more

transactional clients are performing more updates in the primary node which need to be send and

applied to the standby replica. As a result, the standby node cannot keep up with the high rate of

updates and thus, the analytical queries are executed in more outdated snapshots.

Varying replication mode. Next we experiment with different replication modes in PostgreSQL-

SR and SF10. The results show that the performance of a system can be affected by the freshness

that it provides.

Figure 3.8a shows the throughput frontiers in SF10 for two different replication modes, ON

and RA. The figure includes also the freshness scores for the three client ratios in each mode. In

RA mode every transaction in the primary server has to wait for the updates to be applied in

the standby node before committing. Thus, the standby node remains always up-to-date and the

45

freshness scores are equal to zero for every query. On the contrary, in the ON mode the replay of

the data in the standby server happens asynchronously and thus we see stale queries. Both the

throughput frontiers of the ON and RA modes are above their proportional lines which means

that the system in both modes can efficiently isolate the performance of T and A workloads. In the

first half part of the frontiers the RA is above the ON frontier and for the rest half the ON frontier

is above the RA. This means that in the RA mode more analytical queries are executed and in the

ON mode more transactions. This is because the RA mode affects the latency of the transactions in

the primary node and thus the T throughput is lower. The fact that less transactions are executed

in the RA mode, leads also to a small increase in the A throughput.

In this experiment we see a trade-off between freshness and performance. To achieve fresh

analytical queries, T performance is sacrificed. This trade-off can be easily understood by using

our throughput frontier graphs and freshness measurements. Using the proposed metrics users

can choose the appropriate configuration based on their preferences and application requirements.

3.5.4 System-X

In this section we use System-X to run the HATtrick benchmark and show results for different

scale factors. The experiments show that System-X can guarantee freshness and as the size of the

database increases, it becomes more efficient in handling the two workloads concurrently.

System design. System-X is a memory optimized engine designed to accelerate transactions. The

experiments use the serializable isolation level which is achieved by optimistic MVCC without

locking. The internal data structures are all latch-free and the threads are executed without stalling

or waiting. System-X provides clustered column store indexes which can be also stored in memory

and used to accelerate the A workload. When System-X is used for hybrid workloads, it can be

configured to maintain two copies of the data in memory with each copy having a different data

representation. Therefore, transactions can use the row store while analytical queries the column

store copy. Varying scaling factors. Figure 3.9 shows the results for different scale factors. We

identify similar patterns with the PostgreSQL results in Figure 3.5. Both the fixed-T and fixed-A

lines are slanted which means that the T and A workloads are affecting negatively each other in

all the scale factors. However, in System-X and SF100 the fixed-T lines are less affected by the

increase of the A clients. Thus, the frontier of SF100 is above or close to the proportional line. Also,

46

0 4 8 12 160
100
200
300 Fixed-T lines

TC = 0
TC = 0.1 * max

TC = 0.2 * max

TC = 0.5 * max

TC = 0.8 * max

TC = max

0 4 8 12 16

Fixed-A lines

AC = 0
AC = 0.1 * max

AC = 0.2 * max

AC = 0.5 * max

AC = 0.8 * max

AC = max

0 4 8 12 16

SF
1f2 : 0s

f5 : 0s
f8 : 0s

Throughput Frontier

0 5 10 150
10
20
30
40

An
al

yt
ica

l T
hr

ou
gh

pu
t (

qp
s)

0 5 10 15 0 5 10 15

SF
10f2 : 0s

f5 : 0s

f8 : 0s

0 5 10 150
1
2
3
4

0 5 10 15
Transactional Throughput (103 tps)

0 5 10 15

SF
10

0f2 : 0s
f5 : 0s

f8 : 0s

Figure 3.9: System-X for different scaling factors.

the column format of the data and the high efficiency of data compression boost the performance

of analytics in System-X compared to PostgreSQL. In terms of maximum T throughput, System-X

is able to provide an almost stable performance in all scaling factors since the transactional part

does not need to ”pay” any cost for keeping the analytical data fresh.

Although System-X is lock and latch free and maintains two copies of data, the throughput

frontiers of SF1 and SF10 capture competition for resources. It is important to mention that,

transactions before committing in System-X need to pass a validation phase in which they validate

their reads. If a transaction X is in validation phase and another transaction Y reads the changes

X made, then Y becomes dependent on X and it blocks until X commits. When many T clients

compete for modifying common data, especially in smaller database sizes (e.g, SF1 and SF10), the

blocked transactions that are waiting to commit or abort are more numerous. This affects the

T throughput as well as the A throughput since each analytical query must synchronise with

transaction updates that have not yet been merged with the column store copy. It is important to

mention that the frontier of System-X is representative of the system’s design. System-X maintains

47

0 8 16 24 320
6

12
18 Fixed-T lines

TC = 0
TC = 0.1 * max

TC = 0.2 * max

TC = 0.5 * max

TC = 0.8 * max

TC = max

0 8 16 24 32

Fixed-A lines

AC = 0
AC = 0.1 * max

AC = 0.2 * max

AC = 0.5 * max

AC = 0.8 * max

AC = max

0 8 16 24 32

SF
1

f2 : 0s
f5 : 0s

f8 : 0s

Throughput Frontier

0 8 16 24 320

2.5

5

An
al

yt
ica

l T
hr

ou
gh

pu
t (

qp
s)

0 8 16 24 320 8 16 24 32

SF
10

f2 : 0s

f5 : 0s
f8 : 0s

0 8 16 24 320
.2
.4
.6

0 8 16 24 32
Transactional Throughput (102 tps)

0 8 16 24 32

SF
10

0f2 : 0s

f5 : 0s
f8 : 0s

Figure 3.10: Single node TiDB for different scaling factors.

two copy of the data to boost the performance of each workload. However, both workloads share

the same resources and thus, the shape of the frontier in SF100 is above or close to the proportional

line. Compared to the frontier of PostgreSQL for SF100 of Figure 3.5 the scaling of System-X is

better. This is expected since PostgreSQL has only one copy of the data and it is in row format.

For all scale factors, the freshness scores for the three client ratios are equal to zero. This is

expected for System-X since based on its design, the latest updates from the operational data are

always merged with the analytical data before the execution of a query.

3.5.5 TiDB

In this section we use TiDB and run HATtrick benchmark for different scale factos and de-

ployment configurations (single node and distributed nodes). Our results show that TiDB can

always guarantee fresh analytics. In terms of performance TiDB can serve efficiently the T and A

workloads as the size of the database increases.

48

System design. TiDB is a Raft based HTAP system with a distributed storage layer. The storage

layer consists of a row-based store called TiKV and a column-based store called TiFlash. The

data stored in TiKV is an ordered key-value map partitioned into many Regions. Each Region has

multiple replicas and a Raft consensus algorithm is used to keep the replicas consistent within a

Region. The replicas of each region form a Raft group which is composed of a leader and followers.

Each Raft group has also a learner node which asynchronously receives Raft logs from the leader

of the group and transform the row-format tuples to columnar format. More specifically, the

learner nodes receive a package of logs from the leader which they need to preprocess, decode

into row-format tuples, and transform to columnar format. This replication from TiKV to TiFlash

makes the fresh data available to the analytical queries and keeps synchronized the two copies.

Single node

Although TiDB is a distributed database, we chose the one server configuration for this experiment.

We schedule the transactions to access the TiKV storage and the analytical queries to access the

TiFlash storage. We choose for all the experiments the default isolation level of TiDB which is the

repeatable read with snapshot isolated reads.

Varying scaling factors. Figure 3.10 shows the results of TiDB. We identify similar behavior

with System-X in the fixed-T lines, fixed-A lines and the throughput frontier. In general as the size

of the database increases the frontier moves closer to the proportional line. Similar to System-X,

TiDB maintains two copies of data in different formats. Although the T and A workloads are

executed in different copies, the two workloads share resources. Thus, the frontier for SF100 has

a shape above or close to the proportional line. In terms of maximum A performance we see a

drop in the absolute value which is related to the increase of the database size. The maximum T

throughput remains almost stable across the different scale factors.

In all the scaling factors the measured freshness scores equal to zero. TiDB is designed to

always merge the tail of the log with the analytical data before the execution of an analytical query.

Therefore, the latest operational updates are always available to the snapshot of the analytical

queries.

49

0 2.5 50
10
20
30 Fixed-T lines

TC = 0
TC = 0.1 * max

TC = 0.2 * max

TC = 0.5 * max

TC = 0.8 * max

TC = max

0 2.5 5

Fixed-A lines

AC = 0
AC = 0.1 * max

AC = 0.2 * max

AC = 0.5 * max

AC = 0.8 * max

AC = max

0 2.5 5

SF
1f2 : 0s

f5 : 0s

f8 : 0s

Throughput Frontier

0 3.5 70

4

8

An
al

yt
ica

l T
hr

ou
gh

pu
t (

qp
s)

0 3.5 7 0 3.5 7

SF
10f2 : 0s

f5 : 0s

f8 : 0s

0 4 80
.3
.6
.9

0 4 8
Transactional Throughput (102 tps)

0 4 8

SF
10

0

f2 : 0s
f5 : 0s

f8 : 0s

Figure 3.11: Distributed TiDB for different scaling factors.

Distributed nodes

In this experiment we deploy TiDB in distributed mode. TiKV is deployed in three servers and

TiFlash in two servers. TiKV serves the transactional requests and TiFlash the analytical requests.

The results show that TiDB in distributed deployment can always provide fresh analytics. Also, it

achieves a frontier above the proportional line for SF10 and SF100.

Varying scaling factors. Figure 3.11 shows the results of distributed TiDB for the three scale

factors. The fixed-T and fixed-A lines have similar behavior to PostgreSQL-SR in Figure 3.7. As

the size of the database increases the negative interference of the T and A workloads is minimized

and the frontier moves above the proportional line and close to the bounding box.

Compared to the results of Figure 3.10, TiDB in distributed deployment achieves good perfor-

mance scaling. The shape of the frontier in the distributed deployment is representative of the

system’s architecture and shows that the system is close to achieving performance isolation. In

terms of maximum T throughput there is a significant decrease compared to the one node TiDB

50

0 2 4 6 8 10 12 14 16
Transactional Throughput (103 tps)

0

1

2

3

4
An

al
yt

ica
l T

hr
ou

gh
pu

t (
qp

s)

f5 : 0s f5 : 5s

f5 : 0s

f5 : 0s
f5 : 0s

PostgreSQL
PostgreSQL-SR
System-X
TiDB
TiDB-Dist

Figure 3.12: Throughput frontiers of compared systems.

which is caused by the high CPU-overhead of the TCP/IP stack and the limited network bandwidth.

However, there is an increase in the maximum A throughput in the distributed deployment which

is attributed to the more available resources in the TiFlash component.

3.5.6 Comparison across systems

In this section we compare all the HTAP systems evaluated above. When comparing different

HTAP systems, the process of computing the throughput frontier and freshness scores of each

system remains the same. For the comparison we follow a simple rule: If the throughput frontier

region of a system A completely envelops that of another system B and system A has lower or

same freshness scores compared to B, then system A is better. If not, then we need to dig into

more details and to also consider application requirements. Including all the frontiers in one

figure helps the user to extract conclusions faster. Figure 3.12 shows the throughput frontiers of

PostgreSQL (one node), PostgreSQL-SR (two nodes), System-X (one node), TiDB (one node), and

TiDB-Dist (ten nodes) running HATtrick with SF100. Also, we choose to include the freshness

scores for the T:A=50:50 client ratio point for each system. Note that systems in this figure may

use different number of nodes; we use this example as a point of reference for users that will use

51

HATtrick to compare performance across systems.

From Figure 3.12, we see that the throughput frontier of System-X envelops the throughput

frontiers of all the other systems except for the case of PostgreSQL which has higher value of

Tmax throughput. However, System-X has better A-throughput values and better performance

scaling compared to PostgreSQL since its frontier is close to or above the proportional line. We

can say that with the workload under test, System-X has the best HTAP performance compared

to the other systems.

Between PostgreSQL and PostgreSQL-SR, at first glance, it may not be clear as to which

system is better. PostgreSQL-SR has a “higher” frontier and has better A-throughput values,

but PostgreSQL has better T -throughput values. Also, PostgreSQL-SR has better performance

scaling since the frontier is above its proportional line, while PostgreSQL’s frontier– mostly

below its propotional line– reveals that the T workload is highly affected by the A workload.

Furthermore, PostgreSQL-SR cannot always provide fresh analytics while PostgreSQL does. Finally,

PostgreSQL-SR uses twice the amount of hardware resources. Deciding between PostgreSQL

and PostgreSQL-SR depends on the user’s preferences and the application requirements. If the

application requires fresh analytics then PostgreSQL is a better choice. However, if the freshness

requirements are not so strict then the application can be benefited from the better performance

scaling of PostgreSQL-SR.

Finally, between TiDB and TiDB-Dist, TIDB-Dist has better performance scaling and A-

throughput values. However, TiDB has better T -throughput values. This behavior is expected

since TiDB-Dist has distributed transactions. In overall, TiDB-Dist has better HTAP performance

compared to TiDB.

3.5.7 Discussion

To summarize, the HATtrick benchmark can reveal various aspects of an HTAP system and

it can also be used to compare diffe-rent HTAP systems. Specifically, HATtrick can discover

information related to absolute T and A throughput, performance scaling in the hybrid workload,

the interference of the T and A workloads, and the freshness of the database system. HATtrick

combines the above information into a few simple metrics and presents them in a user friendly

way, making the process of comparing different HTAP systems easier and more insightful.

52

We learned the following lessons when conducting this study. First, many current HTAP

systems can provide fresh analytics, but this comes with a cost in the T or/and A performance.

Second, the results show that the T -throughput is usually severely affected by the number of

A-clients; in contrast, the A-throughput is less affected by the number of T-clients. Finally, current

HTAP systems cannot achieve complete isolation between the T and A workloads. Future HTAP

systems could aim to achieve better isolation between T and A workloads and minimize the impact

on the freshness of the analytical query results.

3.6 Related Work

Recent work on benchmarking HTAP systems includes CH-Benchmark[116], HTAPBench [44]

and Swarm64 [113]. Their schema is a combination of the TPC-C and the TPC-H benchmarks.

The transactions and the analytical requests remain almost unchanged as in the original TPC-C

and TPC-H benchmarks respectively.

CH-Benchmark uses the T and A performance along with the CPU utilization as metrics of

the benchmark. The authors use the CH-Benchmark to discover how the freshness of the data, the

flexibility in the transactions features or expressiveness, and the scheduling of the two workloads

affect the performance of the HTAP system. They use Hyper [72] and SAP HANA [130, 55] for

their evaluation. The results show that fresh analytical queries can result in a degradation of

the system’s performance. On the contrary, flexibility and scheduling can boost the T and A

throughput.

The difference between HTAPBench and Swarm64 compared to CH-Benchmark is that they

view one of the workloads as a primary. Usually the analytical workload is viewed as the distur-

bance of the transactional workload. The users of the HTAPBench and Swarm64 benchmarks

specify a target throughput for the primary workload. Then the benchmarks constantly increase

the A queries as soon as they do not affect the target throughput.

HTAPBench and Swarm64 propose a method for generating both new data and requests

so that the A queries over recently updated data are comparable across runs. One difference

between HTAPBench and Swarm64 is the way the distances between timestamps are computed.

In HTAPBench the distances in the timestamps are computed without the need for a training

53

run. They use the fact that the data interval in TPC-H is 2405 days in all the scale factors. Thus,

they use the number of orders in this interval to compute the average time distance between

transactions. On the contrary, HTAPBench requires a training run for generating a linear scaling

for the timestamps which is then used during the initial data population phase and execution

phases.

3.7 Conclusion

In this chapter, we introduce a systematic way to evaluate different HTAP systems. We introduce

two new metrics, the throughput frontier and the freshness score. The throughput frontier is a

2D graph that captures the overall performance of a database system in the HTAP space. The

freshness score quantifies the recency of the data used by the analytical queries. We also propose

a method to measure the freshness score of every HTAP system. We validate these metrics by

designing a hybrid benchmark called HATtrick and test it in three different HTAP databases.

The results show that the throughput frontier is able to show the performance scaling and the

interfere of the T and A workloads. Moreover, the throughput frontier can discover the design

category of an HTAP system. Finally, the results show that our measuring freshness method is

able to capture the real freshness that each different HTAP system can provide based on their

design.

Chapter 4

HERMES: An Off-the-Shelf Real-Time

Transactional Analytics System

In this part of the thesis, we present the details of our proposed HTAP architecture. We begin

in Section 4.1 by introducing the design principles behind the off-the-shelf real-time analytics

system, outlining its goals and key ideas. We then provide an overview of our system prototype,

HERMES, in Section 4.2, which implements this architecture. More specifically, Section 4.2.1

describes the overall architecture of HERMES, while Section 4.2.2 details how HERMES integrates

with different Transactional Processing (TP) and Analytical Processing (AP) engines. The design

and implementation of HERMES ’s internal components are discussed in Section 4.2.3.

Next, we introduce the concept of transactional analytics in HERMES. We first discuss the

challenges of executing transactional analytics workloads in an off-the-shelf architecture in Sec-

tion 4.3.1, and then present our solution for supporting three different isolation levels within the

HERMES layer in Section 4.3.2. The design of the transactional analytics workload used in our

experimental evaluation is described in Section 4.3.3. We also explore possible extensions and

future directions for HERMES in Section 4.4.

Our evaluation of HERMES is presented in Section 4.5. We first describe the experimental setup

in Section 4.5.1, followed by the end-to-end performance results demonstrating the integration of

HERMES with MySQL [106], FPDB [146], and DuckDB [117] in Section 4.5.2. We then compare

HERMES to MySQL [106] and TiDB [66] using the HATtrick benchmark [98] in Section 4.5.3,

and evaluate its performance compared to MySQL [106] and TiDB [66] under the TAW workload

54

55

across different isolation levels in Section 4.5.4. Finally, we review related work in Section 4.6 and

conclude the chapter in Section 4.7.

4.1 Design Goals

This section introduces the two main goals an off-the-shelf real-time analytics system should

achieve and discusses the approach taken by existing HTAP systems, thereby motivating our

solution.

Goal 1: Support for pluggable engines. Most existing HTAP solutions [24, 66, 86, 50, 31, 40, 55,

82, 72, 102, 93, 31, 87, 133, 118, 100, 130, 55, 118, 43] require data migration due to tight integration

between their computation and storage engines, making transitions to other compute engines or

cloud storage challenging. Systems like F1-Lightning [145] and Hudi [5] offer some flexibility with

pluggable TP and AP engines, but only support near real-time analytics, with updates delayed by

∼10 minutes. This makes them unsuitable for applications that require high freshness, which is

critical in HTAP.

Key idea 1: Real-time analytics with existing TP/AP engines. An off-the-shelf real-time

analytics system achieves real-time analytics on the latest transactional data without requiring

engine migration; instead it uses existing TP/AP engines and storage services. This enables users

to select optimized engines and storage for TP and AP, avoiding migration efforts. The trade-off is

the need for efficient synchronization to maintain high or perfect freshness. A system achieves

perfect freshness when each analytical query can read changes of all transactions that have

committed (i.e., linearizability). The challenge lies in achieving fresh analytics without impacting

TP/AP performance or modifying engine internals. In Section 4.2, we present our architecture,

and our evaluation (Sections 4.5.2, 4.5.3) shows that our design avoids performance overhead

while matching state-of-the-art HTAP systems.

Goal 2: Efficient Transactional Analytics. An analytical transaction consists of both trans-

actional logic and analytical queries that are executed under the same isolation level [109]. The

analytical part contains queries of varying complexity, which are significantly accelerated when

processed in specialized engines (e.g., columnar databases) ensuring time and cost efficiency. The

results of the queries can then be used to perform more operations on the transactional data (e.g.,

56

update a table). The analytical query must see the correct data based on the enforced isolation

level.

• Application scenario:In fraud detection, real-time data on users’ recent behavior is analyzed

alongside historical data to proactively prevent or address fraud [17]. This analysis must

occur at the same isolation level as other operations within the analytical transaction. Upon

detecting fraud, the database should reliably revert to a known state by rolling back the

transaction or continuing remaining operations, ensuring accurate fraud detection and

robust management of potential fraudulent activities.

Efficiently executing transactional analytics is a major challenge for decoupled HTAP systems.

Our evaluation (Section 4.5.4) shows that even leading HTAP systems struggle with performance

under such workloads. Additionally, some systems only partially support this functionality,

offloading concurrency control to clients—a complex, error-prone approach that adds engineering

overhead [42].

Key idea 2: Efficient transactional analytics in off-the-shelf systems. An off-the-shelf

real-time analytics system enables efficient transactional analytics by selecting the optimal engine

for each workload component—transactional logic is executed in the TP engine and analytical

in the AP engine. Its decoupled design, however, challenges consistency and correctness across

isolation levels. To address this, analytical queries must operate on an accurate data snapshot. The

system achieves this by retrieving log statements that match the correct snapshot and coordinating

with the TP engine to enforce it, reducing TP-AP communication. In Section 4.3, we detail these

challenges and our solution for supporting transactional analytics across isolation levels.

4.2 HERMES Overview

In this section, we introduce HERMES, an off-the-shelf real-time analytics prototype system, and

discuss its architecture, integration with existing engines and design details.

57

Cloud Storage Service

Stable OLAP
Tables

DeltaPump

Transactional Engine
Analytical

 Engine

Query Report Analytics

In-memory
OLTP Tables

M-Delta

Cache

Hermes

BGM

Cloud Storage Service

Log TailTransaction Log

Log Cache FGM

A
n

a
ly

ti
ca

l

P
ro

ce
ss

in
g

 (
A

P
)

T
ra

n
sa

c
ti

o
n

a
l

P
ro

ce
ss

in
g

 (
T

P
)

Figure 4.1: HERMES architecture and main components.

4.2.1 System Architecture

Figure 4.1 illustrates the architecture of a hypothetical organization using HERMES. The TP engine

handles transactional requests, while the AP engine serves analytical queries. Data storage is

decoupled, with AP data stored in a cloud storage service. The transactional log from the TP

engine provides fresh data for the AP engine and is also persisted in a cloud storage service.

HERMES acts as the synchronization hub between the TP and AP engines.

HERMES includes two in-memory caches: the Log Cache and M-Delta Cache, as well as three

services: DeltaPump, Foreground Merge (FGM), and Background Merge (BGM). The Log Cache holds

the transactional log tail from the TP engine in memory. DeltaPump processes and forwards the

log tail to the M-Delta Cache. FGM merges the latest updates from the M-Delta Cache with stable

data during analytical reads, while BGM merges asynchronously data from the M-Delta Cache

into storage to prevent cache overflow.

Workflow. The TP engine directs the logs to HERMES (i.e, Log Cache), which forwards them to

58

cloud storage. When an analytical query arrives, the AP engine reroutes cloud storage requests to

HERMES. Upon receiving the first request, HERMES triggers the DeltaPump service to transfer log

tail data from the Log Cache to the M-Delta Cache. Simultaneously, HERMES retrieves stable data

from cloud storage and uses the FGM service to merge it with the latest updates from the M-Delta

Cache. The merged, up-to-date data is returned to the AP engine in the same stable format (e.g.,

Parquet [7]), enabling the rest of query execution to proceed. In the background, HERMES runs

the BGM service asynchronously to prevent indefinite M-Delta Cache growth.

Since a transaction is considered committed once the commit record hits storage, the AP

engine can, by definition, observe only committed transactions. Consequently, HERMES ensures

freshness and snapshot consistency with the current OLTP copy for all queries.

4.2.2 HERMES Integration

In this sections we outline key requirements for the TP and AP engines to support off-the-shelf

real-time analytics. In addition, we discuss the HERMES integration details with MySQL [106] as

TP engine, and FPDB [146] and DuckDB [117] as AP engines.

TP Engine Interface

In HERMES, the TP engine handles transactional requests, with the transaction log serving as

the main interface between HERMES and the TP engine to maintain data freshness in AP engine

queries. Off-the-shelf real-time analytics requires the TP engine to provide a row-level log where

the updates can be extracted and merged with analytical reads in real-time.

Log Granularity and Hermes Integration. Systems like MySQL [106], SQL Server [50] and

IBM Db2 [67] are well suited for HERMES as they can generate row-level log. In contrast, systems

like PostgreSQL [114] and Oracle [107] generate logs that capture changes at different levels

of granularity such as data pages or blocks. In this case, integration with HERMES requires

post-processing of the log, which involves three key steps: (1) identifying the rows that were

modified, inserted, or deleted based on the physical changes recorded at the page/block level, (2)

decoding these changes and translating them into logical operations that accurately represent the

database’s behavior (e.g., update, insertion, deletion), and (3) converting the row-level changes into

59

a standardized format (e.g., Avro) to ensure compatibility. Finally, systems that rely on command-

level logging, such as VoltDB [94], are generally incompatible with HERMES; integration requires

modifications to the TP engine internals, as post-processing of the log alone is insufficient.

MySQL Integration Details. We integrate HERMES with MySQL [106], an OLTP-optimized

database management system (DBMS), by directing its row-based binary log to a network-

accessible Log Cache on the HERMES server. For durability, HERMES forwards logs to AWS

EBS. This integration requires only a log path update in MySQL’s configuration, with no code

modifications.

ACID Correctness in HERMES. By preserving TP engine’s transactional integrity and merging

only committed logs, HERMES ensures ACID compliance for transactions and analytical queries.

• Preserving ACID in Transactions. HERMES acts as a log forwarding layer, leaving TP en-

gine’s transaction processing unchanged and preserving its ACID guarantees. When a

transaction commits, the TP engine writes its log to HERMES’ Log Cache, which forwards it

to persistent storage. Once stored, the storage acknowledges the Log Cache, which then

confirms to the TP engine. Since the TP engine commits only after this acknowledgment, its

logging process remains unchanged. If log forwarding fails, the TP engine does not receive

the acknowledgment, triggering its standard recovery.

• Ensuring ACID in Queries. HERMES guarantees atomicity for queries by processing only

fully committed transactions, preventing partial writes or exposure of incomplete data to

the AP engine. If log forwarding fails, uncommitted log records are discarded, and only fully

committed ones are replayed upon recovery. To maintain consistency, HERMES relies on the

TP engine’s transaction log as the single source of truth, merging only committed records.

This prevents the AP engine from observing inconsistent intermediate states. Furthermore,

isolation is upheld as HERMES ensures that in-progress transactions remain hidden from

the AP engine. Only fully committed log records are made available, preventing anomalies

from concurrent execution. Finally, durability is preserved since transactions are considered

durable only after being written to the TP engine’s dedicated storage. HERMES adheres to

this protocol, making log records accessible to the AP engine only after they are persistently

stored.

60

AP Engine Interface

In HERMES, AP engines are critical in serving analytical requests. For real-time analytics, AP

engines should direct their storage engine requests to HERMES. This setup renders the analytical

storage transparent to the AP engine, shifting the responsibility to HERMES for providing the latest

data. Consequently, HERMES necessitates that the AP engine consistently reads data directly from

storage. As such, the AP engine cannot leverage its local data cache. To address this limitation,

we propose offloading the AP cache to HERMES.

FPDBandDuckDB IntegrationDetails. We integrated HERMES with two AP engines: FPDB [146],

a cloud OLAP DBMS, and DuckDB [117], an embeddable OLAP DBMS. For both integrations, we

followed a similar approach. Specifically, we redirected scan operators’ data requests to HERMES,

aligning with each AP engine’s data access pattern (e.g., reading data from multiple partitions

simultaneously). To direct requests to HERMES, we used an RPC protocol like Apache Thrift [8]

for server-client communication. Each request specifies the data HERMES should provide, and

HERMES returns the updated data to the AP engine for the rest of the query execution. Overall,

we added fewer than 100 lines of code across both engines, primarily to implement HERMES and

AP engines communication.

4.2.3 HERMES Design Details

This section outlines HERMES design, focusing on the Foreground and Background Merge algo-

rithms, and its storage organization.

Data Organization

The data in HERMES is organized into three categories: stable data, transaction logs, and deltas.

Stable Data. HERMES manages multiple segments of data during the merging process, as shown

in Figure 4.1. The AP data of HERMES are stored in a distributed cloud storage service; we call

them stable data. Stable data is horizontally partitioned based on the primary key and sorted by

the primary key within each partition. Each partition is saved as a separate file in the cloud storage

and contains all columns corresponding to the rows within that partition. Currently, HERMES

supports stable data in CSV and Parquet formats [7] and can handle other industry-standard

61

formats (e.g., XML, JSON, Avro) [6] without modifying its internal functionality.

Transaction Log. The row-level transaction log records the history of changes to the TP data as

data events. These events capture table row operations such as insertions (INS), updates (UPD),

and deletions (DEL). In addition to storing the log in persistent storage, HERMES also maintains it

in the Log Cache to enable faster access.

Deltas. HERMES uses DeltaPump to parse the transaction log and extract the most recent updates

from its tail, referred to as tail-deltas (t-deltas). Each t-delta contains the after-images of row

changes along with the type of change (e.g., INSERT, UPDATE, DELETE). The t-deltas are sorted

by the primary key, and DeltaPump assigns a timestamp to each t-delta, marking the time the log

tail was parsed.

Upon retrieval, t-deltas are stored in the M-Delta Cache alongside previously fetched deltas;

called memory deltas (m-deltas). All deltas share the same data format, but differing in their

timestamps. The M-Delta Cache is designed to enhance the performance of foreground merges by

keeping the most recent log data in memory. Older m-deltas are asynchronously written to cloud

storage during background merges, referred to as disk deltas (d-deltas).

Foreground Merge (FGM)

In this section we introduce our Foreground Merge algorithm and two optimizations that we

designed to improve its performance: the M-Delta Merge Optimization and the BitMap Caching

Optimization.

FGM Algorithm. The problem that FGM algorithm solves can be described as follows: for a

particular data partition, the inputs of the FGM algorithm include a stable data file, several m-delta

files, and one t-delta file; all of them are sorted based on primary key of the table. The goal is

to merge all these data sources, such that if records with the same primary key exist in multiple

deltas, only the latest record should appear in the merge results.

Figure 4.2 shows an example of stable data, an m-delta from M-Delta cache, and a t-delta that

have already arrived from DeltaPump. For space saving purposes, we assume a single column

for primary key (PK), and we include only the primary keys of the data, omitting the rest of the

columns. Note that a new column (Type) is added to the m-deltas and t-deltas showing the type of

the transactional statement that causes the modification in the data, which can be INS, UPD, or

62

PK Columns
998 […]
999 […]
1000 […]
1001 […]
1002 […]
1003 […]

(a) Stable data

PK Columns Type
1001 <…> UPD
1002 <…> UPD
1003 <…> DEL

M-Delta, TS=50

(b) M-Delta

PK Columns Type
998 {…} UPD
1002 {…} UPD
1004 {…} INS

T-Delta, TS=100

(c) T-Delta

Value
0
1
1
0
0
0

BM(S)
Value
1
0
0

BM(M)
Value
1
0
0

BM(M)
Value
1
1
1

BM(T)

(d) Bitmaps

Figure 4.2: A tiny example of stable data, m- and t-delta and their bitMaps. (a) Stable data stored in the

cloud storage engine. (b) M-delta with updates for stable data and timestamp 50 stored in M-Delta cache.

(c) T-delta with updates for stable data and m-delta and timestamp 100, just arrived in cache. (d) BitMaps

for stable data, m- and t-delta generated with the FGM algorithm.

DEL. A timestamp (TS) value is associated with every m- and t-delta showing their arrival time. A

greater timestamp value means that the delta is more recent. Stable data, by definition, have a

TS=0. After the execution of the FGM process in this example, the algorithm keeps all the entries

(PK=998, 1002, 1004) from the t-delta which are the most recent versions. For the m-delta, the

FGM algorithm keeps only the first entry (PK=1001). The entry with PK=1002 is overwritten by

the t-delta update and the entry with PK=1003 is deleted. Similarly, for the stable data, the entries

with PK=998 and 1001–1003 are overwritten by the m- and t-delta, and the algorithm keeps only

the entries with PK=999 and 1000.

A naive design of FGM algorithm would use a merge algorithm similar to the sort-merge join.

In this case, the algorithm compares the smallest primary keys from each data source (stable data,

m-deltas, and t-delta), outputs one row at a time and moves to the next comparison. We found

63

this naive design to be too slow and not able to catch up with the speed of analytical processing.

To optimize this naive design, we leverage vector processing (e.g., SIMD and code generation in

Gandiva [4]) to speedup the merge process. To enable this optimization, we introduce the bitMap

vector data structure.

BitMap Vector. The bitMap is a vector of binary bits (0 or 1). We extract one bitMap for each data

source. Each bitMap has size equal to the corresponding data source. The entries in the bitMap

with value 1 correspond to the data source entries that will be retained, while the entries in the

bitmap with value 0 correspond to the data source entries that have been overshadowed by a later

change and will not be kept. Figure 4.2d shows the bitMaps which correspond to the data sources

of our tiny example (see Figure 4.2). The BM(S) bitMap corresponds to the stable data, the BM(M)

bitmap to the m-delta and the BM(T) to the t-delta.

FGM phases. Foreground merging (FGM) consists of two phases: the bitMap generation phase

and the filtering phase. The bitMap generation phase uses the k-way merge algorithm to calculate

k bitMaps, one for each data source that participates in the merging. The filtering phase uses the

k bitMaps generated in phase one and filters out unwanted entries from each data source.

We perform a separate FGM for each partition of each table that participates in the analytical

query given that the table has undergone changes. In a typical scenario, the different data sources

that participate in the merging are the stable data and the deltas. Note that for a specific partition

and table, there may exist multiple m-deltas stored in M-Delta cache. Each m-delta corresponds to

a different point in time depicted by its timestamp. The newest delta is always the last delta that

comes from the log (t-delta). Therefore, the stable data, the t-delta and k− 2 m-deltas, with k ≥ 2,

will be the input to the FGM algorithm.

Our FGM algorithm uses the k-way merge algorithm to extract the bitMap for each of the k

data inputs. We follow a very simple rule; the changes in the t-delta are the latest, based on the

timestamp, and should overwrite the stable data or/and the k − 2 m-deltas. Then, for the rest

k − 2 m-deltas, assuming always that the k − 2 m-delta is more recent than the k − 3 m-delta,

the changes in the k − 2 m-delta will override the stable data and the rest k − 3 m-deltas. More

specifically, we initiate k pointers which keep track of the current position in each data input.

Each time, we compare the primary keys of the first element from each data input and we extract

the minimum element(s). Note that the same primary key can appear in multiple data inputs and

64

we use the timestamp rule we explained earlier to update the bitMaps. If the minimum primary

key occurs in multiple data inputs, we determine the data input with the most recent timestamp

among them. For this data input we set to one the entry of the bitMap corresponding to the

position of the minimum primary key. For the rest data inputs (less recent timestamps) in which

the minimum primary key occurs, we set to zero the entry of the bitMap corresponding to the

position of the minimum primary key. Finally, we increment the pointer of each data input from

which the smallest primary keys were extracted and we continue with the next comparison until

we see all the entries of each data input and all the bitMap vectors are populated. The asymptotic

complexity of the algorithm is O(—stable— +
∑

—m-deltan— + —t-delta—), where —x— represents

the size of each data input and n ∈ [1, k − 2].

After the generation of bitMaps, FGM is ready to move to the second phase, the filtering. In

the filtering phase, the entries that are set to 0 in the bitMaps of phase one are filtered out from

the corresponding data. To make the filtering phase efficient, we use the Gandiva [4] expression

compiler. Gandiva uses LLVM to generate efficient native code for filtering, and it is designed

to take advantage of the Arrow memory format and modern hardware (e.g., SIMD instructions).

After the filtering, the remaining records from each data source are the full snapshot of the data

as of the time the analytical query arrived for execution. These records are combined and sent for

processing to the next operator of the query execution.

Note that the FGM does not apply the changes of the deltas to the stable data by creating a

new version of the stable data and deleting the old one (e.g., copy on write). FGM generates an

up-to-date snapshot of the data for the current query without reusing the result of the merge.

The m-detlas and the stable data remain unchanged after the execution of the FGM. When a new

query arrives for execution, a new FGM process (for each data partition) will be initiated to create

a new snapshot of the data including the latest changes from DeltaPump. Our method is similar

to the multi-versioning idea. As time passes, more and more deltas for a specific partition and

table will accumulate in memory and each will have a timestamp. To answer a query, the correct

version of the data needs to be generated based on the arrival time of the query.

M-Delta Merge Optimization. The first phase of the FGM algorithm uses k-way merge to

generate k bitMaps of each data input∈ k. As time passes, more m-deltas with different timestamps

will be gathered in the M-Delta cache for the same partition of the data. However, the time

65

complexity of the k-way merge algorithm increases with the increase of k. To alleviate this

problem, we introduce the m-delta merge optimization that enforces the one m-delta rule in cache.

We change the original FGM algorithm to always return the merged version of the input

t-deltas and m-deltas. The merged version of the deltas is saved in the M-Delta cache, replacing

the input deltas. Using this method, there will always be one m-delta in the M-Delta cache, and

three data inputs will participate in the k-way merge: the stable data, one m-delta, and the new

t-delta.

To achieve the one delta rule, after executing the FGM, we replace the current m- and t-deltas

in cache with the combined version of the remaining entries (after filtering) of the m- and t-deltas.

BitMapCaching Optimization The time complexity of the bitMap generation phase is negatively

affected by the number of data rows in the three data sources (e.g., stable data, m- and t-delta). We

observe that for a particular data source, the bitmap vector changes only slightly from query to

query, and the changes are monotonic — a bit can change only from 1 to 0, because it is overwritten

by the entries of data sources with more recent timestamps, but not the other way around. To

accelerate the creation of bitMaps we propose to cache the bitMaps of stable data in memory and

avoid the cost of constant regeneration. These bitMaps are small in size and can be cached with

small memory footprint. For large cold data partitions where the bitMaps are not cached, they

can be regenerated on demand.

Since the size of the t-deltas is almost constant, the time complexity of the bitMap update

is also constant. The limitation of bitMap caching optimization is the extra space required for

caching the stable data bitMaps. Note that every bitMap needs to store only one bit for each

entry of the stable data. The total number of bitMaps is equal to the number of table partitions.

Therefore, the total size of the bitMaps is expected to be relatively small and not prohibitive for

caching. In the case that bitMaps cannot be cached, we can fall back to recalculating the bitMaps

on the fly for each FGM.

Background Merge (BGM)

As time passes and more queries are executed, the size of each delta in the m-delta cache will

grow. As a result, the size of the cache occupied by the deltas will increase. To mitigate this

problem, we design a background process that periodically moves the m-deltas to the cloud storage

66

S D1 …S D2 S DnS

S
BGM Starts: T=t

S3S
Cloud Storage Service

M
-D

el
ta

 C
ac

he

BGM Ends: T=t+n

T1 T2 T3
T-Deltas

Read: T=t+1 Read: T=t+2

R
ea

d:
 T

=t
+n

Figure 4.3: M-Delta Cache organization during BGM.

service. In this section, we introduce our Background Merge (BGM) process and the D-Deltas Merge

optimization.

BGM Algorithm. The BGM process is triggered once the size of the m-delta cache exceeds the

threshold Tcache. Then, each m-delta whose size exceeds a threshold Tdelta is evicted to the storage

engine. To avoid blocking the execution of upcoming queries, a dedicated thread is responsible

for evicting the current m-deltas from cache and copy them to the cloud storage. This thread is

different from the thread that handles the m-delta and bitMap cache as described in Section 4.2.3.

Depending on the size of the data that have to be uploaded in the cloud storage, the BGM process

might take longer time to complete. To achieve time efficiency, we introduce a new m-delta cache

mode.

Figure 4.3 shows the high level idea of the new cache mode during the execution of the BGM.

In this example, we assume that S is the snapshot of the m-delta cache at the time T = t. At

the time T = t BGM is initiated for the snapshot S of the m-delta cache. This means that all the

m-deltas included in the S snapshot have to be uploaded in the cloud storage and then deleted

from the cache. While the dedicated thread of the BGM is working on uploading the data, the

deltas of the S snapshot continue to lay in cache until they become visible in cloud storage and is

safe to be deleted from cache. To make the deletion of the snapshot S faster, when the BGM is

67

completed, we do not merge the incoming t-deltas with the snapshot S as described in Section 4.2.3.

We leave the snapshot S untouched while merging the new t-deltas separately. For example, in

Figure 4.3 after the arrival of the T1 t-deltas (one for each table partition), a new snapshot D1 is

created in cache which corresponds to time T = t+ 1. Upon the arrival of the next query, the T2

t-deltas will arrive in cache and will be merged with the previous D1 snapshot. The new merged

snapshot D2 corresponds to the time T = t+ 2. Note that a query that arrives at time T = t+ 2

has to read deltas from both the S and the D2 data snapshots for the query result to be correct.

The two snapshots will co-exist in the m-delta cache until the data of S is uploaded in the cloud

storage and is visible to the next queries. The figure shows that at time T = t+ n the deltas of

S are saved on the cloud storage. At that time, the deltas of S are deleted from cache while the

deltas of Dn remain and the BGM is terminated. A query that arrives at time T = t+ n needs to

read both the deltas of Dn and the deltas of S from the cloud storage.

Each delta of the S snapshot is uploaded on the cloud storage as a new CSV or Parquet file with

the timestamp of the delta attached in the name of the file. We call these files disk-deltas (d-deltas).

The d-deltas will be included in the future FGM processes, and they will be treated similarly to an

m-delta with an older timestamp. More specifically, a separate bitMap will be generated for the

d-delta of a partition that will be cached and updated by the new t-delta entries.

D-Deltas Merge Optimization. The BGM process can be triggered multiple times creating

many d-deltas with different timestamps for the same table partition. This affects negatively the

execution time of the FGM process. To alleviate the problem, we introduce the d-deltas merge

optimization.

A dedicated thread in the background merges the d-deltas of the same partition into one

d-delta. Since we already have in cache the bitMaps of each d-delta, we use them to generate

the merged version of all the current d-deltas using the filtering phase of FGM. Once the merged

version is extracted it is saved in the cloud storage as a new CSV or Parquet file with the most

recent timestamp added in the file’s name. Once the merged version is visible and no running

queries are using the unmerged d-deltas they can be safely deleted.

68

re
qu

es
t R

ea
dV

ie
w

(S
2)

S
1
.

U
P
D
A
T
E

T
A
B
L
E

c
u
s
t
o
m
e
r

S
E
T

.
.
.

W
H
E
R
E

.
.
.

S
2
.

S
E
T

@
m
i
n
_
o
r
d
e
r
_
d
a
t
e

=

(

S
E
L
E
C
T

.
.
.

F
R
O
M

c
u
s
t
o
m
e
r

J
O
I
N

o
r
d
e
r
s

G
R
O
U
P

B
Y

.
.
.

O
R
D
E
R

B
Y

.
.
.

L
I
M
I
T

1

)

S
3
.

D
E
L
E
T
E

F
R
O
M

c
u
s
t
o
m
e
r

W
H
E
R
E

o
r
d
e
r
_
d
a
t
e

<

@
m
i
n
_
o
r
d
e
r
_
d
a
t
e

T
P

E
ng

in
e

H
er
m
es

A
P

E
ng

in
e

St
or

ag
e

Se
rv

ic
e

ex
ec

ut
e

S1
1

lo
g(

S1
)

2
L

og
 C

ac
he

pe
rs

is
t l

og
(S

1)
3

Tr
x

L
og

S
T
A
R
T

T
A
W

T
R
A
N
S
A
C
T
I
O
N

M
-D

el
ta

 C
ac

he

D
el

ta
Pu

m
p

ex
ec

ut
e

S2
4

re
qu

es
t

da
ta

(S
2)

5

6c

7

re
qu

es
t

da
ta

(S
2)

6a

re
tu

rn
da

ta
(S

2)
9

St
ab

le
O

L
A

P
Ta

bl
es

re
qu

es
t

lo
g

ta
il

6b
re

tu
rn

lo

g
ta

il
8

FG
M

re
tu

rn
 fr

es
h

da
ta

(S
2)

10
C
O
M
M
I
T

re
tu

rn
 r

es
ul

t
11

ex
ec

ut
e

S3
12

B
G

M

lo
g(

S3
)

13
pe

rs
is

t l
og

(S
3)

14 St
or

ag
e

Se
rv

ic
e

re
tu

rn
. R

ea
dV

ie
w

(S
2)

Figure 4.4: Execution flow of an analytical transaction in HERMES with Snapshot Isolation (SI). Note that

the workflow remains unchanged whether HERMES is present or not. An additional coordination exists

between the TP engine and HERMES, enabling HERMES to receive the list of visible transactions necessary

for achieving SI. This coordination integrates seamlessly.

69

4.3 Transactional Analytics with HERMES

HERMES not only achieves off-the-shelf real-time analytics but also enables real-time transactional

analytics.

4.3.1 Design Challenges

We identify the following two key challenges when integrating transactional analytics into off-

the-shelf real-time analytics system.

• Efficient Engine Selection. To optimize the execution of transactional analytics within an

off-the-shelf real-time analytics system, it is essential to process transactional statements in

the TP engine and analytical statements in the AP engine. This approach ensures that each

workload type is executed in its respective specialized engine, thus maximizing efficiency

and performance.

• Isolation Level Consistency. Efficient engine selection mandates that analytical statements

within an analytical transaction executes in the AP engine. Maintaining consistent isolation

levels for both analytical and transactional statements across different engines is crucial [77,

150]. This synchronization responsibility falls to the TP engine, ensuring that the AP engine

accesses accurate data based on the selected isolation level. Ideally, transactional analytics

integration should align with TP/AP engines’ inherent characteristics, avoiding internal

logic modifications.

4.3.2 HERMES’ Isolation Levels Solutions

This section introduces HERMES’ generalized solutions for transactional analytics under Snapshot

Isolation, Serializable, and Read Committed, as well as MySQL-specific implementations.

Snapshot Isolation

Snapshot Isolation (SI) [32] ensures that each transaction sees a consistent snapshot of the database

as it existed at a specific point in time, typically at the start of the transaction. In database systems,

70

SI is typically implemented using Multi-Version Concurrency Control (MVCC) [33]. In this design,

a transaction accessing a table with SI must determine the visible snapshot and read only the

data within that snapshot. Different systems represent the snapshot in different ways; some use

a single timestamp [34, 50, 90] and others use a compact representation of a list of transaction

IDs [106, 114]. We assume the list of transaction IDs in the following discussion but the solution

apply to both scenarios.

The list of visible transaction IDs determines which versions are included in a transaction’s

snapshot. At the start of a transaction’s execution, the TP engine gathers this list and shares it

with HERMES. By the time the first analytical query, within the analytical transaction, is about

to execute in the AP engine, HERMES will have the list and can use it to retrieve the correct log

events.

This solution applies to any TP engine supporting SI with MVCC and a row-level transaction

log, needing only minor code changes to transmit the transaction ID list to HERMES.

Workflow Example. Figure 4.4 illustrates the execution flow of an analytical transaction with

HERMES under snapshot isolation, comprising three statements: (S1) an update, (S2) an analytical

query, and (S3) a delete. The transaction begins with S1 executed in the TP engine (step 1),

generating a log saved in HERMES’s Log Cache (step 2) and persisted to the Storage Service (step

3). Next, S2 is sent to the AP engine (step 4), which requests data from HERMES (step 5). HERMES

retrieves stable data from the Storage Service (step 6a), fetches the log tail (step 6b), and obtains

the ReadView from the TP engine for snapshot consistency (step 6c). After preparing the fresh

data (steps 7-9), HERMES delivers it to the AP engine (step 10). The query result is returned to

the client (step 11) and used in S3, executed in the TP engine (step 12) and persisted via HERMES

(steps 13-14). With S3 complete, the transaction is ready to commit.

Implementation Details for MySQL. InnoDB, MySQL’s default storage engine, uses Undo Logs

as part of its MVCC implementation. Each transaction in InnoDB has a set of undo log records,

enabling access to previous record versions. Every transaction is assigned a unique ID, and when a

consistent read is needed, InnoDB creates a snapshot, or read view, that includes: (1) IDs of active

transactions, (2) a lower bound of committed transaction IDs, and (3) an upper bound of future

transaction IDs. InnoDB uses this snapshot to access appropriate data versions from the undo log,

ignoring records with transaction IDs above the upper bound and those between the bounds if

71

Algorithm 1: HERMES API for enabling Transactional Analytics with Snapshot Isolation

in MySQL, with changes to the InnoDB storage engine highlighted in gray .

1 Function InnoDB::CreateSnapshot(request)

2 readView← {active trxs, l bound, u bound}

3 readViewMap← {}

4 for each trxID in readView do

5 trxLogID← MySQL::getTrxLogID(trxID)

6 readViewMap += {trxID, trxLogID}

7 return readViewMap

8 Function HERMES::ReadFromLog(readViewMap)

9 data← {}

10 for each trxLogID in LogTail do

11 if trxLogID in readViewMap.active trxs then

12 continue

13 else if trxLogID > readViewMap.u bound then

14 continue

15 data += {after image of trxLogID entry}

16 return data

17 Function HERMES::EnableTAW(request)

18 readViewMap← InnoDB::CreateSnapshot(request)

19 data← HERMES::ReadFromLog(readViewMap)

20 return data

72

active. This process allows InnoDB to achieve a snapshot for reads, aligning more closely with SI

than the Repeatable Read isolation level claimed by MySQL.

As shown in algorithm 1, HERMES requires two pieces of information for transactional analytics

with SI in MySQL: (1) the read view from the InnoDB engine (line 2) and (2) a mapping between

InnoDB transaction IDs and those in the transaction log (lines 3-7). Note that MySQL’s log

transaction IDs differ from InnoDB’s transaction IDs. This mapping, along with the ReadView,

allows HERMES to retrieve the correct data snapshot for analytical queries (lines 8-16). To provide

this data, we made minor modifications to MySQL (lines 3-7), extending the InnoDB’s read view

with MySQL log transaction IDs and adding code in InnoDB to send the updated read view to

HERMES via Thrift clients. Overall, the modifications and additions made to MySQL are fewer

than 100 lines of code.

Serializable

Serializable (SR) [32] isolation level is the strictest isolation level, ensuring transactions execute

in a manner equivalent to a serialized order of execution. A conventional method to achieve

SR isolation is through a variant of Two-Phase Locking (2PL) [34]. By using 2PL, the database

system maintains read and write locks, guaranteeing conflicting transactions execute in a defined

sequence, resulting in serializable execution schedules.

To achieve SR transactional analytics in HERMES, the TP engine should prevent concurrent

modifications during the execution of the analytical queries within the analytical transaction.

When a table needs to be read on the AP side, the entire table should be locked on the TP engine

for the duration of the transaction.

This solution can be applied using any TP engine that offers SR using 2PL and supports

granularity locking. Implementing it necessitates adjustments to the locking logic within the TP

engine—hold locks even if the data is not accessed in the TP engine.

Workflow Example. In the SR isolation level, the workflow described in Figure 4.4 differs slightly

in terms of communication between the TP engine and HERMES. Specifically, compared to steps

6c and 7 of the SI level, the SR level requires somewhat enhanced coordination between the two

servers. However, the rest of the workflow remains unchanged.

Implementation Details for MySQL. MySQL’s InnoDB storage engine ensures serializability

73

through the implementation of 2PL and granular locking mechanisms. At the SR isolation level,

when a read operation is performed within a transaction, InnoDB employs granular locks—such as

row, range, or next-key locks—on the necessary data. These locks are acquired at the start of the

transaction and held until its completion, effectively preventing other transactions from writing

to the locked data.

In our system architecture, when Hermes receives a request to scan data for a specific query, it

communicates with MySQL to acquire exclusive locks on the relevant tables, utilizing the InnoDB

API to manage these locks at the table level. Once MySQL secures the exclusive locks, it notifies

Hermes to proceed with the data scanning operation. This locking mechanism ensures that during

Hermes’s scanning process, the tables remain isolated from concurrent transactions, preventing

any updates that could compromise data integrity. The communication between MySQL and

Hermes is facilitated through RPC (e.g. Apache Thrift). Implementing these changes in MySQL

required adding fewer than 150 lines of code.

Read Committed

In Read Committed (RC) [32] isolation, transactions view only committed data stored in the

transaction log. HERMES achieves RC for transactional analytics by having analytical queries read

all committed transactions of the relevant table from the log. This approach applies to any TP

engine with row-level transaction logging.

Workflow Example. For RC isolation level, the workflow described in Figure 4.4 remains

unchanged except that steps 6c and 7 are omitted. HERMES achieves RC by reading each committed

transaction directly from the log, without TP engine coordination.

Implementation Details for MySQL. In HERMES, achieving RC isolation level with MySQL

required no code changes or additions.

4.3.3 Transactional Analytics Workload (TAW)

This section explores the significance of Transactional Analytics, emphasizing on how existing

benchmarks lack generalization compared to TAW and explains the TAW’s design principles and

details.

74

Motivation of Transactional Analytics

Transactional analytics provide real-time insights in HTAP systems by integrating transactional

and analytical operations within a single workflow. Standard HTAP benchmarks typically assign

separate clients for transactional and analytical workloads, addressing only strictly separated

request types. However, prior research [109, 149, 73] shows that hybrid workloads often require

mixed transactional and analytical operations within the same transaction. Full HTAP support

enables analytical queries on fresh data both post-commit and within the same transaction,

allowing subsequent actions based on query results in real-time. This integrated approach supports

consistent isolation, avoiding partial updates or stale reads in workflows needing instant decisions

on the latest data.

Transactional analytics are critical for applications like fraud detection, personalized healthcare,

and supply chain optimization. HyBench [149] uses them for risk control, triggering actions like

transaction rollbacks, while PocketData [73] focuses on data management, leveraging nested

sub-queries for data deletion. Despite their benefits, existing benchmarks lack a generalized

framework for diverse transactional analytics scenarios.

Generalized Transactional Analytics with TAW

TAW evaluates HTAP systems under generalized transactional analytics scenarios and models di-

verse transactional analytics patterns, rather than being restricted to a single, predefined workflow

such as HyBench [149]. Specifically, the synthetic nature of TAW provides fine-grained control

over access patterns—allowing updates, insertions, or deletions to occur before, after, or between

analytical queries within the same transaction.

Our experiments show that varying the sequence of operations impacts query plans in HTAP

systems (see Section 4.5.4), emphasizing TAW’s ability to test broader scenarios. In general, TAW

highlights limitations in current approaches and advocates for more adaptable benchmarks to

address diverse TA patterns.

75

TAW Design Details

To create TAW, we build on HATtrick [98], an HTAP benchmark. HATtrick combines an adapted

version of TPC-C [15] for transactional tasks and the Star-Schema Benchmark (SSB)[110] for

analytical queries. Its transactional workload (issued by transactional clients T-clients) includes

three types of transactions—NewOrder, Payment, and CountOrders—whereNewOrder is an insertion

transaction, Payment involves updates and insertions, and CountOrders is read-only. The analytical

workload (issued by analytical clients A-clients) consists of 13 SSB[110] queries.

For TAW, we take the transactional component of HATtrick and, within each transaction

(NewOrder, Payment, and CountOrders), append one of the 13 SSB [110] analytical queries either

after or interleaved within the original workload. By adding SSB queries to each transaction, TAW

integrates analytics within the same transactional request [109]. A random SSB query number

is selected for each transaction to ensure equal probability across all queries. These adapted

requests form one part of the TAW workload, issued by dedicated transactional analytics clients

(TA-clients), while the original HATtrick transactional requests are issued by T-clients.

4.4 HERMES Potential Extensions

This section explores potential enhancements to the HERMES design, which are considered for

future work.

4.4.1 Cache Offloading to HERMES

Integrating the AP engine with HERMES prevents it from using its local cache, necessitating cache

offloading. However, this introduces challenges. First, remote cache access incurs network latency.

Second, HERMES must align with the AP engine’s caching mechanisms. Third, the optimizer may

struggle to generate efficient plans without direct cache metadata. Finally, offloading may disrupt

index-based query optimizations.

To mitigate latency, co-locating HERMES with the AP engine minimizes network overhead,

enabling near-native caching. HERMES bridges remote caching with the AP engine’s optimizer

by sharing metadata—index structures, materialized views, and statistics—facilitating efficient

76

execution plans. To maintain consistency, HERMES periodically synchronizes metadata with

the AP engine, ensuring that query execution reflects the latest cache state. Moreover, HERMES

supports indexing techniques such as min-max indexing and range partitioning, dynamically

adjusting index boundaries to enhance accuracy and efficiency.

4.4.2 HERMES in a Distributed Setup

In distributed TP/AP environments, HERMES enhances scalability and resource efficiency, enabling

real-time analytics without disrupting TP/AP engine functionality.

HERMES with Distributed TP. Distributed TP systems typically follow two architectures: (1) a

single primary node with multiple read-only replicas [88] and (2) a partitioned shared-nothing

model [135]. We describe how HERMES operates in each.

• Primary and Replica. Here, a primary node manages writes while read-only replicas handle

queries. The TP engine ensures consistency via replication consensus algorithms. With

the HERMES integration the storage layer remains the single source of truth. HERMES

guarantees fresh data delivery to the AP engine by verifying transaction log durability

before merging logs with stable data.

• Partitioned Shared-Nothing. In this architecture, data is partitioned across independent

nodes, requiring a global transaction order to maintain consistency. Existing protocols, such

as two-phase commit [34] and timestamp-based mechanisms in Multi-Version Concurrency

Control, ensure a consistent transaction sequence. HERMES uses these mechanisms to merge

log entries with the correct data partitions while preserving system integrity.

HERMES with Distributed AP. In both distributed and non-distributed AP engines, the interface

between an AP node and the storage engine (e.g., S3) remains consistent and HERMES integrates

seamlessly without architectural modifications. To meet distributed AP engines’ I/O demands,

HERMES scales by partitioning data across multiple servers, each responsible for specific table

partitions. A consistent partitioning strategy ensures logs are routed correctly without altering

HERMES’ internal design.

77

4.4.3 HERMES Advancing Middle Layers

HERMES acts as an intermediary between database servers and storage services, enhancing cloud

database performance. Traditional middle layers optimize transactions [25], accelerate filtering and

aggregation [10, 147], and support caching for query optimization [62]. HERMES enhances these

capabilities by supporting real-time and transactional analytics while preserving compatibility

with existing architectures. It integrates seamlessly by first applying the latest TP engine updates,

then performing pushdown computations to process relevant data before returning results to the

AP engine.

4.5 Experimental Evaluation

This section evaluates off-the-shelf real-time analytics against baseline systems, highlighting three

key aspects of HERMES.

• HERMES can seamlessly integrate with existing TP/AP engines without introducing additional

overhead (Section 4.5.2).

• HERMES’ overall TP/AP performance is competitive to well-established solutions (Section 4.5.3).

• HERMES offers superior performance for transactional analytics compared to existing solutions

(Section 4.5.4).

4.5.1 Experimental Setup

Cloud Server Configuration

The experiments are conducted on compute-optimized AWS EC2 instances in the US-West-2

region. We use three different instance types: (1) c5.4xlarge ($0.68 per hour) with 16 vCPU, 32 GB

memory and 10-Gbps network bandwidth, (2) c5.9xlarge ($1.53 per hour) with 36 vCPU, 72 GB

memory and 10Gbps network bandwidth, and (3) c5.12xlarge ($2.14 per hour) with 48 vCPU, 96

GB memory, and 12Gbps network bandwidth.

78

Systems Setup Configuration

In this section we present the different systems setups for HERMES, MySQL, and TiDB.

HERMES Setup. We use three instances, one for each component: (1) the HERMES server uses a

c5.9xlarge, (2) the AP-engine (FPDB or DuckDB) uses a c5.4xlarge, and (3) MySQL uses a c5.4xlarge.

DeltaPump uses the MySQL binary log connector [129] to parse the log. Both the TP and AP

engines maintain a copy of the database with the same schema. The AP-engine’s copy is stored in

Amazon S3 in Parquet [7] format, while the TP-engine’s copy is stored on disk; the TP-engine

logs to AWS EBS, through HERMES.

• Storage Cost. In our setup, MySQL stores one copy of the data on AWS EBS, while DuckDB

stores another copy in AWS S3. The cost of a General Purpose SSD (gp3) is $0.08 per

GB-month, and MySQL uses 55GB, resulting in a monthly cost of $4.40. The cost of S3

Standard storage is $0.023 per GB for the first 50 TB per month, and our data size in S3 is

10GB, leading to a monthly cost of $0.23. Therefore, the total storage cost for HERMES is

$4.63 per month.

Note that, the AP data stored in the storage engine occupies 10GB in Parquet, whereas

the same data requires 55GB in MySQL due to additional storage overhead. This 55GB

consists of the base data, InnoDB metadata, and default TP indexes, which increase storage

consumption. In contrast, Parquet’s compressed columnar format optimizes storage for

analytics, resulting in a smaller footprint.

• Memory consumption. In our HERMES setup, the AP engine cache is not offloaded to

HERMES. DuckDB, by default, avoids caching when reading from a storage engine, and

FPDB’s caching is disabled. HERMES allocates memory for three caching mechanisms: the

Log Cache, M-Delta Cache, and bitmaps for FGM and BGM, as detailed in Sections 4.2.3

and 4.2.3, to accelerate merging processes.

MySQL Setup. We setup MySQL with InnoDB storage engine in a c5.12xlarge instance. Moreover,

we created B+ tree indexes to optimize the analytical workload and fine-tuned several MySQL

parameters to ensure optimal performance.

79

• Storage Cost. MySQL baseline uses AWS EBS for database storage. Based on actual usage,

MySQL stores 115GB of data, resulting in an estimated storage cost of $9.20 per month. This

storage consists of two main components: (1) TP data (∼ 55GB), which includes InnoDB

metadata and default TP indexes, and (2) AP indexes (∼ 60GB), which improve query

performance but significantly increase storage overhead.

TiDB Setup. We deploy twelve c5.4xlarge instances following TiDB’s recommended configura-

tion [139, 11]: two TiDB servers, six TiKV servers (three replicas per region), and four TiFlash

servers. Utilizing TiFlash’s disaggregated storage and compute architecture [11], we allocate two

write nodes and two compute nodes for TiFlash. The write nodes handle logs from TiKV, convert

them to columnar format, and periodically upload updated data to cloud storage. The compute

nodes execute queries, accessing the latest data from the write nodes and remaining data from

cloud storage.

• Storage Cost. The TiDB setup utilizes six TiKV nodes with three replicas using a space of

∼ 117GB in total. TiFlash nodes store data in AWS EBS (∼ 7GB) and in AWS S3 (∼ 8GB).

This results in a total storage cost of $10.10 per month.

Baseline Selection. The selection of these systems is driven by their established strengths

in their respective domains. MySQL, with its proven transactional processing capabilities and

widespread use in cloud environments [141, 29, 9], serves as a key baseline for transactional

workloads. DuckDB is a high-performance analytical engine, aligning with trends in data lakes

and cloud-native analytics, essential to our architecture. Additionally, FPDB is included to evaluate

HERMES’ adaptability with less conventional AP engines. FPDB demonstrates HERMES ’ flexibility

in integrating with a diverse range of engines providing valuable insights into the system’s

versatility. Finally, TiDB was selected as the state-of-the-art (SOTA) HTAP system due to its

increasing adoption by major companies [140], which leverage TiDB’s ability to manage large-

scale transactional and analytical workloads concurrently in real-time. TiDB’s robust support for

hybrid workloads makes it an ideal baseline for evaluating HERMES ’ performance in HTAP.

80

Workloads

We use two workloads for evaluation: the HATtrick benchmark [98] and the Transactional

Analytics Workload (TAW), an adapted version of HATtrick. We discuss their characteristics

in Section 4.3.3. To test HERMES under more demanding conditions, we modify HATtrick and

TAW to simulate different update/insertion patterns, ensuring an update to every partition of the

schema tables with a probability of one.

Metrics

HATtrick extracts the following metrics, a throughput frontier graph and a freshness score for

every system under test.

The throughput frontier graph is a 2D plot with transactional throughput (T-Throughput) and

analytical throughput (A-Throughput) on the x- and y-axis. It is generated by running various

client mixes, showing the system’s performance across the HTAP spectrum and its isolation

capabilities. Ideally, the frontier aligns with the bounding box, defined by maximum T-Throughput

and A-Throughput values, indicating perfect isolation. A frontier close to or below the proportional

line suggests poor HTAP performance. The average freshness score is measured in seconds. A

freshness score of favg = 0 indicates the database always provides the most recent operational

data to analytical queries.

Similar to HATtrick, TAW generates a throughput frontier for each database, reflecting

comparable insights. Note that, in TAW, the y-axis represents transactional analytics throughput

(TA-Throughput), measured in analytical transactions per second (taps). In the experiments with

HATtrick and TAW, we use scale factor 50 databases, resulting in data sizes of approximately

10GB in Parquet format.

Measurement Methodology

To extract one of the throughput frontiers of Section 4.5.3, we execute multiple experiments with

different ratios of T- and A-clients. More specifically, we keep a single A-client and vary the

number of T-clients from zero to number of clients that maximizes the T-Throughput in each

database and scale factor, we call it Mmax. Each experiment includes a warm-up phase followed

81

0

5

10

T-T
hr

ou
gh

pu
t

(1
03 t

ps
)

Max-Throughput

NewOrder Payment CountOrders
0

40

80

La
te

nc
y

(m
se

cs
)Latency

MySQL Baseline Hermes w/ MySQL

Figure 4.5: Transactional throughput (T-Throughput) results in tps (left) and transactions’ latency results

in msecs (right) when executing HATtrick in HERMES w/ MySQL vs. the standalone MySQL executing

transactions.

by a measurement phase. For the results of Section 4.5.2 we execute a single experiment in which

we fix the number of T-clients to Mmax and the number of A-clients to one and we extract the

latency results.

The TAW clients operate similarly to HATtrick. However while HATtrick features an

A-client, TAW features a TA-client that issues analytical transactions to extract the throughput

frontier results.

4.5.2 HERMES Evaluation

This section presents the end-to-end results of HERMES integration with MySQL [106], FPDB [146],

and DuckDB [117], demonstrating that integration does not impact their original performance. It

also provides results on HERMES resource utilization.

HERMES Integration with MySQL

Figure 4.5 (left) displays the maximum T-Throughput achieved in MySQL baseline and the HERMES

with MySQL setup for the HATtrick benchmark. In MySQL baseline, only the transactional

portion of HATtrick is executed, with analytical queries disabled. In contrast, for the HERMES

setup, the results include the concurrent execution of analytical queries by the AP engine (FPDB

or DuckDB). Both configurations use MySQL under Snapshot Isolation. Additionally, Figure 4.5

(right) shows the corresponding transaction latencies.

82

Q1.1 Q1.2 Q1.3
0

10

20

La
te

nc
y

(s
ec

s)

FPDB Baseline Hermes w/ FPDB

Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3
0

100

200

Q1.1 Q1.2 Q1.3
0

10

20
La

te
nc

y
(s

ec
s)

Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3
0

100

200

(a) FPDB vs. HERMES w/ FPDB.

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.3
0

10

20

30

La
te

nc
y

(s
ec

s)

DuckDB Baseline Hermes w/ DuckDB

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.30

10

20

30

La
te

nc
y

(s
ec

s)

(b) DuckDB vs. HERMES w/ DuckDB.

Figure 4.6: Latency (secs) of the HATtrick analytical queries in the HERMES & FPDB setup vs. the case

where FPDB executes the queries without using HERMES.

MySQL baseline achieves a maximum T-Throughput of 9,035 tps, while HERMES with MySQL

reaches 8,700 tps. Latencies are similar in both setups, with the HERMES integration introducing

up to 4% overhead—a minor trade-off for added functionality.

In the next sections, we discuss the latency results of Figure 4.6, focusing on HERMES’ per-

formance with FPDB and DuckDB. These measurements were taken with HERMES connected to

MySQL operating at a fixed T-Throughput of 8,700 tps, as shown in Figure 4.5. For all queries, the

updates merged with stable data correspond to this throughput, remaining consistent throughout

the experiments.

HERMES Integration with FPDB

Figure 4.6a illustrates the latency of the HATtrick queries when integrating HERMES with FPDB,

compared to FPDB baseline. For each query the left bar corresponds to latency of the original

query execution in FPDB baseline and the right bars correspond to the execution of the same

83

DuckDB
Baseline

Hermes
(FGM)

Hermes
(BGM)

0

20

40

Us
ag

e
Total CPU Usage (%)

DuckDB
Baseline

Hermes
(FGM)

Hermes
(BGM)

0

50

100

150
Total Network Usage (GB)

DuckDB
Baseline

Hermes
(FGM)

Hermes
(BGM)

0

5

10

Avg. Memory Usage (GB)
DuckDB Node Hermes Node

Figure 4.7: Resource utilization across three configurations: DuckDB baseline, HERMES with FGM, and

HERMES with BGM. Figure shows Total CPU Usage across all vCPUs (%), Total Network Usage (GB) and

Average Memory Usage (GB) for both the DuckDB and HERMES nodes.

query in HERMES with FPDB. In general, the closer the latency results of the HERMES with FPDB

setup are to the original FPDB latency, the better for the overall performance of HERMES.

The results demonstrate an overhead of less than 4% in the latency across the 13 queries

executed with HERMES, indicating that it imposes minimal performance impact on FPDB baseline.

HERMES Integration with DuckDB

Figure 4.6b shows the latency of HATtrick queries executed in HERMES with DuckDB, compared

to the DuckDB baseline. For each query, the left bar represents the latency of the original DuckDB

execution, while the right bar shows the latency in the HERMES with DuckDB setup. The results

indicate that HERMES with DuckDB incurs only about a 2% latency increase compared to the

baseline, demonstrating that even with a high-performance AP engine like DuckDB, HERMES can

deliver real-time analytics with minimal impact on query latency.

Overall, the results in Sections 4.5.2, 4.5.2 and 4.5.2 demonstrate that the performance of

MySQL, FPDB, and DuckDB remain stable after integration with HERMES. The next section shows

the resource utilization of the HERMES with MySQL and DuckDB setup.

Resource Utilization

Figure 4.7 presents resource utilization for the experiment in Section 4.5.2, focusing on the

integration of HERMES and DuckDB. It displays total CPU usage across all vCPUs (%), total

network usage (GB) as the sum of received and sent data, and average memory usage (GB). For

84

the HERMES setup, utilization is split into the HERMES and DuckDB nodes, with separate bars

for FGM and BGM. FGM shows usage during Foreground Merges only, while BGM includes both

Foreground and Background Merges. The DuckDB baseline is included for comparison.

CPU Usage. Figure 4.7 shows that, compared to the DuckDB baseline, the DuckDB node’s CPU

usage increases from 14% to 21% in the HERMES setup, consistently across both FGM and BGM

configurations. This rise is attributed to the deserialization process on the DuckDB node, which

incurs additional overhead as data serialized for network transmission is reconstructed upon

receipt.

In the HERMES node, CPU usage increases from 32% to 35% when BGM is enabled alongside

FGM. This is expected, as BGM requires the HERMES node to handle an additional background

task.

Network Usage. Figure 4.7 indicates that the DuckDB node’s total network usage remains

consistent between the DuckDB baseline and the HERMES setup. This is expected, as HERMES

integration does not alter the volume of data DuckDB receives from storage.

In the HERMES setup, the HERMES node’s network usage exceeds the DuckDB node’s due

to receiving data from the storage engine and sending updates to DuckDB, effectively doubling

usage. As expected, network usage rises further when BGM is active.

Memory Usage. Figure 4.7 shows that the DuckDB node’s average memory usage remains

consistent between the DuckDB baseline and the HERMES setup. This is expected, as integrating

HERMES does not require additional data caching on the DuckDB node.

In the HERMES setup, the HERMES node utilizes memory mainly for components such as the

Log Cache, M-Delta Cache, and bitmap caching, which are essential for accelerating FGM and

BGM. The memory usage increases during BGM due to the additional process.

Integrating HERMES with DuckDB slightly increases DuckDB’s CPU usage, mainly due to

deserialization, while memory and network usage remain unchanged compared to the DuckDB

baseline.

Estimated Cloud Cost. HERMES runs on one c5.9xlarge instance ($1.53/hour) and two c5.4xlarge

instances ($0.68/hour each). Assuming continuous usage over 30 days, the total compute cost

amounts to $2081 per month. For storage, HERMES uses a 64GB EBS volume for TP data in MySQL

and a 10GB volume in S3 for AP data, resulting in a total storage cost of $5.53 per month. Thus,

85

0 2 4 6 8 10 12 14 16 18
Transactional Throughput (103 tps)

0.0
0.1
0.2
0.3
0.4
0.5

An
al

yt
ica

l
 T

hr
ou

gh
pu

t (
qp

s)

fH : 0
fM : 0

fT : 0

Hermes MySQL TiDB

0.1
0.3
0.5

fT : 0

0 2 4 6 8 10 12 14 16 18
0

.03

.06

fM : 0

fH : 0

Transactional Throughput (103 tps)

An
al

yt
ica

l
Th

ro
ug

hp
ut

 (q
ps

)

(a) Throughput frontiers and avg. freshness scores.

0 2 4 6 8 10 12
Transactional Requests per Dollar (106)

0

1

2

An
al

yt
ica

l Q
ue

rie
s

pe
r D

ol
la

r (
10

2)

(b) Operations per dollar frontiers.

Figure 4.8: Throughput frontiers, freshness scores (fDB) and operations per dollar frontiers for HERMES

(with MySQL and DuckDB), MySQL, and TiDB when executing HATtrick.

the combined compute and storage cost for HERMES is $2086.53 per month.

DuckDB, running on a single c5.4xlarge instance, incurs a compute cost of $490 per month

under the same conditions. It stores 10GB of data in S3, contributing an additional $0.23 per

month in storage costs. As a result, the total compute and storage cost for DuckDB is $490.23 per

month.

4.5.3 HATtrick Evaluation Across Systems

This experiment compares HERMES, MySQL [106], and TiDB [66] using the HATtrick [98]

benchmark, with MySQL and DuckDB as HERMES’s TP- and AP-engines. The aim is to show that

HERMES achieves performance comparable to established HTAP systems.

86

Comparison Results.

The discussion will focus on throughput frontier shapes, absolute throughput values, and cost

frontiers.

Throughput Frontier Shapes. Figure 4.8a shows HATtrick results for each system. The

HERMES frontier (blue) aligns closely with its bounding box, demonstrating excellent performance

isolation and minimal TP and AP workload interference. MySQL’s frontier (purple) falls between

its bounding box and proportional line, indicating resource contention. TiDB’s frontier (yellow)

initially follows its proportional line, with A-Throughput decreasing as T-clients grow, but later

approaches its bounding box, mitigating this effect.

Absolute Throughput. TiDB hast the highest T- and A-Throughput values in Figure 4.8a. This is

expected, particularly for T-Throughput, as TiDB distributes transactional requests across two

TiKV servers. The consistently high A-Throughput is due to TiDB’s ability to cache frequently

accessed data on the local SSDs of TiFlash compute nodes [11]. However, as T-clients increase,

A-Throughput declines since frequent updates make cached data outdated.

Freshness Values. We used HATtrick benchmark to measure the freshness of the analytical

queries in HERMES, MySQL, and TiDB. Our results show that all the three databases achieve zero

freshness, indicating that all queries are always executed on up-to-date data.

Cost Frontiers. Note that the three curves in Figure 4.8a are generated using different hardware

settings. For a more fair comparison, we normalize the monetary cost and report the throughput

per dollar in Figure 4.8b. The figure highlights that HERMES can execute more transactional

requests per dollar than TiDB. Conversely, TiDB outperforms HERMES in analytical queries per

dollar, but as the number of T-clients increases, this difference becomes smaller.

Our results in Sections 4.5.2 and 4.5.3 show that HERMES inherits the stability of its underlying

TP/AP engines. Specifically: (1) Figures 4.5 and 4.6 show that HERMES maintains the original

performance of each engine, and (2) Figure 4.8 confirms that this stability holds across varying

client combinations. The shape of HERMES’ throughput frontier highlights its ability to deliver

stable HTAP performance, allowing concurrent transactions and analytics without mutual impact.

HERMES achieves this stability while matching leading HTAP systems in performance and offering

a cost-effective solution.

87

4.5.4 TAW Evaluation Across Systems

In this section we assess the performance of HERMES, MySQL [106], and TiDB [66] when executing

the TAW in three different isolation levels, Read Committed, Snapshot Isolation and Serializability.

Comparison Results

Figure 4.9 presents the results of executing the TAW in HERMES (blue), MySQL (purple), and TiDB

(yellow) across three different isolation levels. Each isolation level includes a graph depicting

the throughput frontiers and another graph showing the corresponding operations per dollar

frontiers.

Read Committed (RC) Results. Figure 4.9a illustrates the throughput frontiers, while Figure 4.9b

presents the corresponding operations-per-dollar frontiers in RC. HERMES (blue) demonstrates

nearly perfect performance isolation, as its throughput frontier closely aligns with its bounding

box, indicating minimal impact from the transactional workload. In contrast, MySQL (purple) and

TiDB (yellow) show frontiers between their proportional lines and bounding boxes, revealing a

significant decline in TA-throughput as the number of T-clients increases. This decline is evident

in the sharp drop towards the end of their frontiers.

In terms of absolute performance, HERMES achieves the highest TA-throughput (0.056 taps),

followed by MySQL (0.009 taps) and TiDB (0.004 taps). TiDB leads in T-throughput with 18,000 tps,

compared to HERMES (9,000 tps) and MySQL (7,000 tps). HERMES outperforms both competitors

in transactional analytics per dollar (Figure 4.9b) and ranks second in transactional requests per

dollar.

Snapshot Isolation (SI) Results. Similar to RC, Figure 4.9c presents throughput frontiers, and

Figure 4.9d illustrates operations-per-dollar frontiers for SI. HERMES (blue) maintains strong

performance isolation, with its frontier near the bounding box. In contrast, MySQL (purple) and

TiDB (yellow) exhibit frontiers between their proportional lines and bounding boxes, reflecting a

decline in TA-Throughput under higher transactional workloads.

88

0 2 4 6 8 10 12 14 16 18
Transactional Throughput (103 tps)

0.0
0.1
0.2
0.3
0.4
0.5

An
al

yt
ica

l
 T

hr
ou

gh
pu

t (
qp

s)

fH : 0
fM : 0

fT : 0

Hermes MySQL TiDB

0 2 4 6 8 10 12 14 16 18
Transactional Throughput (103 tps)

0

.02

.04

.06

TA
-T

hr
ou

gh
pu

t (
ta

ps
)

(a) Throughput frontiers in RC.

0 4 8 12 14
Transactional Requests per Dollar (106)
0

50

100

TA
 R

eq
ue

st
s p

er
 D

ol
la

r

(b) Operations per dollar frontiers in RC.

0 2 4 6 8 10 12 14 16 18
Transactional Throughput (103 tps)

0

.02

.04

.06

TA
-T

hr
ou

gh
pu

t (
ta

ps
)

(c) Throughput frontiers in SI.

0 4 8 12
Transactional Requests per Dollar (106)
0

50

100

TA
 R

eq
ue

st
s p

er
 D

ol
la

r

(d) Operations per dollar frontiers in SI.

0 2 4 6 8
Transactional Throughput (103 tps)

0

.02

.04

.06

TA
-T

hr
ou

gh
pu

t (
ta

ps
)

(e) Throughput frontiers in SR.

0 4 8 12
Transactional Requests per Dollar (106)
0

50

100

TA
 R

eq
ue

st
s p

er
 D

ol
la

r

(f) Operations per dollar frontiers in SR.

Figure 4.9: Throughput frontiers and operations per dollar frontiers results for HERMES, MySQL, and

TiDB when executing TAW at scale factor 50 under three different isolation levels: Read-Committed (RC),

Snapshot-Isolation (SI), and Serializable (SR).

89

In terms of absolute performance, HERMES once again achieves the highest TA-Throughput

(0.054 taps), followed by TiDB (0.015 taps) and MySQL (0.01 taps). TiDB leads in T-Throughput

with 16,500 tps, followed by HERMES at 8,000 tps and MySQL at 6,500 tps. HERMES maintains its

lead in transactional analytics requests per dollar, while ranking second in transactional requests

per dollar.

Serializability (SR) Results. Figure 4.9e and Figure 4.9f depict the throughput and operations-

per-dollar frontiers under SR, respectively. TiDB is omitted as it does not support SR. HERMES

(blue) exhibits a distinct frontier with a unique shape compared to RC and SI cases, reflecting

the dependent nature of transactional and analytical workloads under SR. In both HERMES and

MySQL, traditional and analytical transactions compete for lock access, leading to a decline in

TA-Throughput as T-clients increase. This explains why HERMES ’ frontier deviates from its

bounding box, even though analytical queries are executed on the DuckDB side. MySQL (purple)

follows a similar pattern but achieves lower TA-Throughput.

HERMES leads with the highest TA-Throughput (0.057 taps), followed by MySQL (0.01 taps).

Both achieve a T-Throughput near 6,000 tps. HERMES excels in transactional analytics per dollar

and ranks second in transactional requests per dollar.

Overall, HERMES surpasses MySQL and TiDB in TAW across all isolation levels, in absolute

performance and performance isolation.

TiDB Analysis

This section explores TiDB’s results in detail, highlighting key findings and explaining why TiDB’s

performance in TAW falls significantly short of HATtrick.

Workload Configurations. We use three workload configurations to analyze TiDB’s perfor-

mance differences between transactional analytics in TAW and traditional analytics in HATtrick.

First, Analytics-Only runs only the analytical component of the HATtrick benchmark, measuring

TiDB’s performance on traditional analytics without transactional interference. Next, TA-X work-

loads (where X is NewOrder or Payment) execute TA-X analytical transactions alone, isolating the

impact of transactional analytics. Finally, TA-X & Trxs includes both TA-X analytical transactions

and regular transactions, revealing TiDB’s limitations under mixed workloads.

Comparison Results. Figure 4.10a shows TiDB latency results for selected SSB queries across

90

1.2 2.2 3.2 4.2
Query Involved

10 1

100

101

La
te

nc
y

Lo
g

 S
ca

le
 (s

ec
)

Analytics Only
TA-NewOrder Only

TA-NewOrder & Trxs
TA-Payment Only

TA-Payment & Trxs

1.2 2.2 3.2 4.2
Query Involved

10 1

100

101

La
te

nc
y

Lo
g

 S
ca

le
 (s

ec
)

(a) Latency measured in seconds (secs) for the involved queries.

1.2 2.2 3.2 4.2
Query Involved

10 2

100

Da
ta

 M
ov

ed

 L
og

 S
ca

le
(G

B)

(b) Total data moved measured in gigabytes (GB).

Figure 4.10: Figure 4.10a and 4.10b display data from experiments conducted on TiDB, featuring various

workloads: Analytics Only (no Trxs), TAW with TA-NewOrder Only (no Trxs), TAW with TA-NewOrder

and Trxs, TAW with TA-Payment Only, and TAW with TA-Payment and Trxs. Figure 4.10a show query

latency and Figure 4.10b total data transferred during execution.

different workload configurations, omitting other queries with similar performance patterns (e.g.,

Queries 1.1 and 1.3 resemble 1.2). Figure 4.10b displays the total data transferred from TiFlash

nodes to the TiDB server node during execution.

Figure 4.10a shows that the lowest latency occurs in the Analytics-Only workload, where

queries run on TiFlash nodes optimized for analytics, aligning with HATtrick results (see Fig-

ure 4.8a) showing the highest A-Throughput for TiDB. The figure also reveals significantly higher

latencies for TA-NewOrder (Only/& Trxs) and TA-Payment (Only/& Trxs) workloads compared to

Analytics-Only, consistent with TiDB results under TAW (see Figures 4.9a, 4.9c, 4.9e).

Additionally, Figure 4.10a illustrates that the execution time for TA-NewOrder & Trxs and

TA-Payment & Trxs consistently surpasses that of TA-NewOrder Only and TA-Payment Only,

respectively. This emphasizes the influence of concurrent transaction execution on the latency of

transactional analytics in TiDB.

91

Query Plan Analysis. In the Analytics-Only workload, queries run entirely on TiFlash compute

nodes optimized for analytics. In contrast, TA-NewOrder and TA-Payment query processing

extends beyond TiFlash. Data from updated tables—LINEORDER for TA-NewOrder and SUPPLIER

and CUSTOMER for TA-Payment—are first retrieved from TiFlash nodes, then transferred to TiDB

server nodes for processing by the UnionScan operator. This operator likely ensures isolation by

merging recent data from TiFlash write nodes with S3-accessed data. Parts of the query then

run across both TiFlash nodes and the TiDB server, causing data transfers (see Figure 4.10b).

The extent of data movement depends on computation level in TiFlash, and larger tables like

LINEORDER require more merging time, explaining the higher latency for TA-NewOrder (Only/&

Trxs) compared to TA-Payment (Only/& Trxs).

TiDB’s TAW performance is hindered by query plan changes introduced by transactional

analytics. In contrast, HERMES maintains consistent query plans, making it well-suited for both

workloads.

4.6 Related Work

This section reviews current solutions for (near) real-time analytics.

HTAP Systems. HTAP systems unify TP and AP to enable real-time analytics. Single-system

architectures often employ shared [23] or optimized [87, 86, 50, 72, 102, 133, 82, 130, 55] data

structures for the two workloads, ensuring immediate availability of transactional data for ana-

lytical queries. This approach eliminates replication latency but may increase contention. Other

HTAP systems separate TP and AP engines, either sharing the same storage layer [43, 82, 100, 56]

for immediate data visibility or using decoupled storage [66, 145] to isolate resources and allow

independent scaling. In decoupled setups, transactional changes are periodically propagated to

the AP layer via Change Data Capture (CDC) or log-based replication, with minimal latency.

Most HTAP systems tightly couple compute and storage components, though exceptions like F1

Lightning [145] theoretically support pluggable engines, albeit without verification.

ChangeDataCapture (CDC)Tools. CDC tools are designed to monitor and replicate changes—such

as inserts, updates, and deletions—in source databases to maintain data consistency across systems.

They typically analyze transaction logs (e.g., PostgreSQL’s WAL or MySQL’s binary logs) to detect

92

modifications and then stream these changes in standardized formats (e.g., JSON, Avro) to target

systems. While CDC tools are essential for data replication, migration, and synchronization

between systems, they generally do not perform complex data processing. Their primary focus is

to ensure that target systems accurately reflect the latest changes from source systems in real time.

Notable CDC tools include Debezium [47], GoldenGate [108], pg logical [13], and StreamSets [68].

Streaming Data Platforms (SDP). SDPs are designed for real-time ingestion, transportation,

and processing of data streams from various sources. Unlike CDC tools, which primarily replicate

database changes, SDPs offer advanced data processing capabilities such as windowing, aggrega-

tions, and joins, essential for real-time analytics and event-driven architectures. While SDPs can

integrate CDC tools to capture and stream database changes in real-time, their primary function

is to facilitate the flow of diverse data types—including logs, metrics, sensor data, and other event

streams—across systems. They enable low-latency, high-throughput data movement and support

robust integration options for real-time data pipelines across different systems. Examples of SDPs

include Apache Kafka [78, 1], Apache Pulsar [22], Amazon Kinesis [21], and Google Pub/Sub [60].

Cloud-Based Storage Services. Storage services such as Delta Lake [24] and Hudi [5] are

designed to add transactional capabilities over cloud-based object storage, enabling reliable data

management for large-scale analytical and transactional processing. These services implement

structured data formats (e.g., Parquet, ORC) and define access protocols, supporting transactions

on data stored in distributed object storage. For example, Delta Lake utilizes versioned metadata

and transaction logs to track changes, ensuring data consistency. However, Delta Lake typically

requires modifications when integrated with various TP engines. In contrast, Hudi emphasizes

flexibility, providing native support for multiple TP and AP engines. Hudi benefits from CDC tools

for capturing data changes and SDPs for efficiently processing data streams, thereby enhancing

its ability to manage evolving datasets in real-time. Both Hudi and Delta Lake follow principles of

Lambda and Kappa architectures [75], with real-time and batch processing layers that support the

continuous integration and historical accuracy of data.

93

4.7 Conclusion

In this chapter we introduce off-the-shelf real-time transactional analytics, a system design that

uses the existing TP and AP engines of an organization and achieves fresh real-time transactional

analytics. Following this design, we develop a new service called HERMES, which serves as an

intermediate layer between computation and storage. Our evaluation shows that HERMES can

outperform current HTAP systems by a factor of 3 in transactional analytics.

Chapter 5

Conclusions

In this chapter, we first provide a summary of the main contributions of this dissertation (Sec-

tion 5.1). Next, we discuss potential future research directions inspired by this work (Section 5.2).

Finally, we conclude the dissertation with closing remarks in Section 5.4.

5.1 Summary

In this dissertation, we focus on two main problems observed in current Hybrid Transactional and

Analytical Processing (HTAP) solutions: (1) there is no systematic methodology for evaluating

HTAP systems based on their ability to achieve real-time analytics, and (2) there is no solution

that enables organizations with existing Transaction Processing (TP) and Analytical Processing

(AP) engines to adopt real-time capabilities without costly and time-consuming migrations to new

HTAP systems.

Our first goal is to develop a systematic and intuitive evaluation framework that assesses HTAP

systems based on two key dimensions: performance isolation and analytical query freshness. This

methodology is designed to help users easily compare multiple HTAP solutions and select the one

that best matches their real-time analytics needs.

Our second goal is to propose a novel HTAP architecture that enables organizations to achieve

real-time analytics using their existing TP and AP engines, without requiring modifications or

replacements. The architecture is designed to deliver fresh analytical query results, maintain

performance isolation, achieve low-latency analytics, ensure end-to-end transactional consistency,

94

95

and support correct isolation levels for transactional analytics.

5.1.1 A Systematic Evaluation Framework for HTAP Systems

In the first part of this dissertation, we propose a systematic evaluation framework for assessing

how well a system supports real-time analytics.

We introduce two fundamental metrics that uniquely characterize each system’s capabilities.

The first metric, throughput frontier, measures how the system performs and how effectively it

shares resources between transactional and analytical workloads while minimizing interference

during concurrent execution. The second metric, freshness, measures how up-to-date analytical

query results are when executed.

To operationalize these metrics, we present a benchmark called HATtrick, which extracts the

throughput frontier and freshness metrics from each system under evaluation. These metrics pro-

vide actionable insights into system performance, design trade-offs, and bottlenecks. Furthermore,

we introduce a visualization methodology that makes it intuitive for users to compare multiple

systems and assess which one best fits their application needs.

We use HATtrick to evaluate several systems with HTAP capabilities (e.g., TiDB [66]), demon-

strating how users can systematically compare different platforms based on extracted results. Our

findings show that current HTAP systems have made significant progress in improving perfor-

mance and query freshness, though there remains considerable room for further optimization.

5.1.2 Off-the-Shelf Real-Time Transactional Analytics

In the second part of this dissertation, we propose a novel HTAP architecture tailored for organi-

zations that already operate separate transactional processing (TP) and analytical processing (AP)

engines, but seek to achieve real-time analytics without costly migrations to new HTAP systems.

We introduce an off-the-shelf architecture for real-time analytics, which builds on existing TP

and AP engines with minimal or no modifications, and supports pluggable engine choices. The

key insight is to insert a lightweight middle layer between database engines and storage, merging

transactional logs with analytical reads on the fly. This approach avoids mandatory migration

while enabling fresh analytical queries and delivering performance competitive with native HTAP

96

systems.

A critical goal of our design is to support efficient Transactional Analytics. Analytical compo-

nents execute on the AP engine and transactional components on the TP engine, while the middle

layer ensures end-to-end transactional consistency by enforcing the correct isolation level for

analytical transactions.

To validate this architecture, we built HERMES, a prototype real-time transactional analytics

system for the cloud. HERMES intercepts storage interactions from TP engines (e.g., logging to

AWS EBS) and AP engines (e.g., reading from AWS S3), merging live transactional updates with

analytical reads while preserving isolation guarantees.

We evaluate HERMES using MySQL [106] as the TP engine and FlexPushdownDB [146] and

DuckDB [117] as AP engines. Our results show that HERMES introduces minimal overhead

to existing engines. Compared against MySQL and TiDB [66] on standard HTAP benchmarks,

HERMES achieves competitive performance and cost. To evaluate transactional analytics, we

introduce the Transactional Analytics Workload (TAW), an extension of existing HTAP workloads.

Our experiments demonstrate that HERMES outperforms current solutions by up to 3×, confirming

the feasibility of off-the-shelf real-time and transactional analytics.

5.2 Future Work

In this section, we outline potential directions for extending the work presented in this dissertation

and highlight new research avenues that emerge from our findings.

5.3 Vision for HERMES

HERMES has the potential to evolve into a more powerful and versatile data orchestration layer.

We envision several key areas of future expansion that will enhance its performance, scalability,

and flexibility. These include offloading cache management, supporting distributed deployments,

adding intelligent middle-layer services, integrating multiple engine types, and enabling continu-

ous analytics through incremental view maintenance.

97

Distributed and Scalable HERMES. HERMES could be extended into a fully distributed system,

where each node manages a specific partition of the cloud storage data. This sharded, replicated

architecture would enhance resilience—ensuring that node failures affect only a subset of the

data—and improve elasticity by allowing nodes to be dynamically added or removed based on

workload demands [48, 38, 83, 30]. To manage partition ownership and correctly route transactional

log entries from TP engines to the appropriate HERMES node, a lightweight coordinator is needed.

This coordinator could be implemented using a replicated Raft service [104, 85] or a decentralized,

coordinator-less approach (e.g., gossip-based membership and consensus [48, 83]), ensuring robust

and efficient partition management. A distributed HERMES design would not only provide high

availability and fault tolerance but also naturally enable more advanced features, such as support

for multiple TP and AP engines, as we discuss next.

Advancing Middle-Layer Services. HERMES ’s position as a cloud-native middle layer makes

it ideal for unifying a range of performance optimizations—metadata layers to enable transactional

support [25], caching layers for post-pushdown caching and query acceleration [143, 18], and

pushdown layers to offload filtering and aggregation [10, 147]—all within a single, cohesive

framework. Building on this foundation, HERMES can be extended to automatically detect schema

changes in transactional engines (e.g., added columns, altered types, new indexes) and broadcast

updated metadata to all subscribed analytical engines, eliminating manual coordination when

schemas evolve. It can also perform lightweight in-transit data cleaning—such as trimming

invalid values, standardizing formats, or enriching records via lookups—ensuring that analytical

engines always receive high-quality, consistent data [79]. Furthermore, HERMES can incorporate

adaptive pushdown: after merging the latest transactional updates, it selectively executes filters,

projections, or aggregates in the most efficient engine—transactional or analytical—based on

real-time cost estimates [28], thereby minimizing data movement and query latency. By bringing

these optimizations together—schema management, metadata propagation, data cleaning, caching,

and cost-aware pushdown—HERMES can serve as a powerful, all-in-one middle layer for modern

cloud database architectures.

98

Multi-Engine and Multi-Tenant Support. A full deployment of HERMES could extend its

capabilities to support multiple heterogeneous TP and AP engines simultaneously, allowing

organizations to flexibly choose the best engines for their specific application requirements while

still enabling real-time transactional analytics through HERMES ’s unified interface [53]. Different

TP engines could manage independent databases, while AP engines could execute queries that span

multiple sources seamlessly, provided that a global timestamp oracle ensures a single, consistent

snapshot across all engines—for instance, by using tightly synchronized clocks as in TrueTime [45]

or a Hybrid Logical Clock scheme [80]. Furthermore, HERMES could be enhanced to support

multi-tenant environments, providing strong isolation across tenants, enforcing resource quotas,

and guaranteeing fair performance, thus ensuring that multiple users or applications can safely

share a single HERMES deployment without interference.

Continuous Materialized Views. HERMES could further extend its functionality by maintain-

ing continuously updated materialized views for frequently accessed analytical queries [63]. By

continuously applying transactional updates to pre-defined view definitions, HERMES could keep

summaries and rollups live at all times. Incoming queries could be automatically routed to these

up-to-date materialized views for faster response times, significantly reducing query latency. Ad-

ditionally, HERMES could monitor query patterns to detect popular or expensive analytical queries

and proactively maintain their results. This approach would enable near-instantaneous responses

for hot queries, while less frequent queries would fall back to accessing raw data. In essence,

HERMES would offer a built-in, low-latency query caching mechanism, keeping materialized views

synchronized seamlessly with the underlying transaction stream.

5.4 Concluding Remarks

In this dissertation, we address two critical gaps in the landscape of Hybrid Transactional/Analytical

Processing (HTAP). First, we identify the absence of a unified, systematic methodology for eval-

uating how effectively HTAP systems support real-time analytics. Second, we observe that no

existing solution enables organizations to extend their current Transaction Processing (TP) and

Analytical Processing (AP) engines with real-time analytics capabilities without undergoing costly

99

and labor-intensive migrations to new HTAP platforms.

To address the first challenge, we introduced HATtrick, a comprehensive benchmark de-

signed to capture two orthogonal dimensions of HTAP performance: the throughput frontier,

which quantifies both the absolute system throughput and the degree of interleaving between

transactional and analytical workloads; and freshness, which measures the recency of analytical

query results relative to the latest transactional updates. We demonstrated how HATtrick ’s

visualizations of these metrics can help users systematically evaluate, compare, and tune HTAP

systems, while also exposing subtle trade-offs that traditional performance benchmarks fail to

reveal.

For the second challenge, we proposed a novel off-the-shelf HTAP architecture realized in

the HERMES prototype. By inserting a lightweight middle layer between existing TP and AP

engines and the underlying storage, HERMES delivers real-time analytics transactional analytics

without requiring any changes to the engines themselves. Our evaluation showed that HERMES

adds negligible overhead, outperforms native solutions by up to 3× on transactional-analytics

workloads, and proves the viability of non-intrusive HTAP adoption.

While these contributions lay a strong foundation, they also open several promising directions

for future work. Extending HERMES into a fully distributed architecture would enhance resilience,

elasticity, and support multi-tenant deployments at scale. Enriching the middle layer with ca-

pabilities such as adaptive schema evolution, metadata propagation, and lightweight in-stream

data cleaning would ensure data quality while expanding HERMES’s ability to support a wider

range of applications. Furthermore, supporting heterogeneous, federated query processing across

multiple TP and AP engines—and maintaining continuously updated materialized views for fre-

quently accessed queries—would drive even lower query latencies and further broaden HERMES’s

applicability.

In closing, this dissertation lays a foundation for the next generation of HTAP systems—systems

that are not only rigorously evaluated but also practically deployable. By uniting precise bench-

marking with a non-intrusive, flexible architecture, we aim to lower the barriers to adopting true

real-time analytics. We hope this work encourages the HTAP community to advance evaluation

frameworks, design plug-and-play architectures, and establish clear design principles—ultimately

enabling organizations of all sizes to seamlessly integrate real-time insights into their operations

100

and decision-making processes.

Bibliography

[1] 2024. Amazon Kafka. https://kafka.apache.org.

[2] 2024. Amazon S3. https://aws.amazon.com/s3/.

[3] 2024. Apache Flink. https://flink.apache.org/.

[4] 2024. Apache Gandiva. https://arrow.apache.org/blog/2018/12/05/gandiva-donation/.

[5] 2024. Apache Hudi. https://hudi.apache.org.

[6] 2024. Apache Iceberg: The open table format for analytic datasets. https://iceberg.
apache.org.

[7] 2024. Apache Parquet. https://parquet.apache.org.

[8] 2024. Apache Thrift. https://thrift.apache.org/about.

[9] 2024. Google Cloud SQL for MySQL. https://cloud.google.com/sql/docs/mysql.

[10] 2024. S3 Select and Glacier Select. https://aws.amazon.com/blogs/aws/s3-glacier-select/.

[11] 2024. TiFlash Disaggregated Storage and Compute Architecture and S3 Support.
https://docs.pingcap.com/tidb/stable/tiflash-disaggregated-and-s3.

[12] Version 1.14.0. 2011. TPC BENCHMARK™ E.

[13] 2ndQuadrant Ltd. 2024. pglogical: Logical Replication for PostgreSQL. https://www.
2ndquadrant.com/en/resources/pglogical/. Accessed April 2025.

[14] Vesion 3.0.0. 2011. TPH BENCHMARK™ H.

[15] Revision 5.11. 2009. TPC BENCHMARK™ C.

[16] Daniel J Abadi, Samuel R Madden, and Nabil Hachem. 2008. Column-stores vs. row-
stores: how different are they really?. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data. 967–980.

[17] Aisha Abdallah, Mohd Aizaini Maarof, and Anazida Zainal. 2016. Fraud detection system:
A survey. Journal of Network and Computer Applications 68 (2016), 90–113.

101

https://iceberg.apache.org
https://iceberg.apache.org
https://cloud.google.com/sql/docs/mysql
https://www.2ndquadrant.com/en/resources/pglogical/
https://www.2ndquadrant.com/en/resources/pglogical/

102

[18] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner, Samuel Madden, and Ion
Stoica. 2013. BlinkDB: queries with bounded errors and bounded response times on very
large data. In Proceedings of the 8th ACM European conference on computer systems. 29–42.

[19] Amazon Web Services. 2023. Amazon Athena Documentation. https://docs.aws.
amazon.com/athena/latest/ug/what-is.html. Accessed: 2024-04-27.

[20] Amazon Web Services. 2023. Amazon Aurora: Design Considerations for High Availability
and Performance. AWS Whitepaper.

[21] Amazon Web Services. 2024. Amazon Kinesis Streams Developer Guide. https://docs.
aws.amazon.com/kinesis/. Accessed April 2025.

[22] Apache Software Foundation. 2024. Apache Pulsar: Cloud-Native, Distributed Messaging
and Streaming. https://pulsar.apache.org. Accessed April 2025.

[23] Raja Appuswamy, Manos Karpathiotakis, Danica Porobic, and Anastasia Ailamaki. 2017.
The case for heterogeneous HTAP. In 8th Biennial Conference on Innovative Data Systems
Research.

[24] Michael Armbrust, Tathagata Das, Liwen Sun, Burak Yavuz, Shixiong Zhu, Mukul Murthy,
Joseph Torres, Herman van Hovell, Adrian Ionescu, Alicja Łuszczak, et al. 2020. Delta lake:
high-performance ACID table storage over cloud object stores. Proceedings of the VLDB
Endowment 13, 12 (2020), 3411–3424.

[25] Michael Armbrust, Ali Ghodsi, Reynold Xin, and Matei Zaharia. 2021. Lakehouse: a new
generation of open platforms that unify data warehousing and advanced analytics. In
Proceedings of CIDR, Vol. 8. 28.

[26] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K Bradley,
Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al. 2015. Spark sql:
Relational data processing in spark. In Proceedings of the 2015 ACM SIGMOD international
conference on management of data. 1383–1394.

[27] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. 2016. Bridging the archipelago between
row-stores and column-stores for hybrid workloads. In Proceedings of the 2016 International
Conference on Management of Data. 583–598.

[28] Ron Avnur and Joseph M Hellerstein. 2000. Eddies: Continuously adaptive query processing.
In Proceedings of the 2000 ACM SIGMOD international conference on Management of data.
261–272.

[29] Microsoft Azure. 2024. Azure Database for MySQL. https://learn.microsoft.com/
en-us/azure/mysql.

[30] Jason Baker, Chris Bond, James C Corbett, JJ Furman, Andrey Khorlin, James Larson, Jean-
Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh. 2011. Megastore: Providing
scalable, highly available storage for interactive services.. In CIDR, Vol. 11. 223–234.

https://docs.aws.amazon.com/athena/latest/ug/what-is.html
https://docs.aws.amazon.com/athena/latest/ug/what-is.html
https://docs.aws.amazon.com/kinesis/
https://docs.aws.amazon.com/kinesis/
https://pulsar.apache.org
https://learn.microsoft.com/en-us/azure/mysql
https://learn.microsoft.com/en-us/azure/mysql

103

[31] Ronald Barber, Christian Garcia-Arellano, Ronen Grosman, Rene Mueller, Vijayshankar
Raman, Richard Sidle, Matt Spilchen, Adam J Storm, Yuanyuan Tian, Pinar Tözün, et al.
2017. Evolving Databases for New-Gen Big Data Applications.. In CIDR.

[32] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil.
1995. A Critique of ANSI SQL Isolation Levels. ACM SIGMOD Record 24, 2 (1995), 1–10.

[33] Philip A. Bernstein and Nathan Goodman. 1983. Multiversion Concurrency Control—Theory
and Algorithms. ACM Transactions on Database Systems 8, 4 (1983), 465–483.

[34] Philip A Bernstein, Vassos Hadzilacos, Nathan Goodman, et al. 1987. Concurrency control
and recovery in database systems. Vol. 370. Addison-wesley Reading.

[35] Peter A Boncz, Marcin Zukowski, and Niels Nes. 2005. MonetDB/X100: Hyper-Pipelining
Query Execution.. In Cidr, Vol. 5. 225–237.

[36] Jesús Camacho-Rodrı́guez, Ashutosh Chauhan, Alan Gates, Eugene Koifman, Owen
O’Malley, Vineet Garg, Zoltan Haindrich, Sergey Shelukhin, Prasanth Jayachandran, Sid-
dharth Seth, et al. 2019. Apache hive: From mapreduce to enterprise-grade big data warehous-
ing. In Proceedings of the 2019 International Conference on Management of Data. 1773–1786.

[37] Donald D. Chamberlin, Morton M. Astrahan, Michael W. Blasgen, K. P. Eswaran, Jim Gray,
Patricia P. Griffiths, W. Frank King, Raymond A. Lorie, Paul McJones, Jim W. Mehl, Irvin L.
Traiger, William Wade, and Robert A. Watson. 1981. A History and Evaluation of System R.
Commun. ACM 24, 10 (1981), 632–646.

[38] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008. Bigtable: A distributed
storage system for structured data. ACM Transactions on Computer Systems (TOCS) 26, 2
(2008), 1–26.

[39] Surajit Chaudhuri and Umeshwar Dayal. 1997. An overview of data warehousing and OLAP
technology. ACM Sigmod record 26, 1 (1997), 65–74.

[40] Jianjun Chen, Yonghua Ding, Ye Liu, Fangshi Li, Li Zhang, Mingyi Zhang, Kui Wei, Lixun
Cao, Dan Zou, Yang Liu, et al. [n.d.]. ByteHTAP: ByteDance’s HTAP System with High
Data Freshness and Strong Data Consistency. ([n. d.]).

[41] Weisi Chen, Zoran Milosevic, Fethi A. Rabhi, and Andrew Berry. 2023. Real-Time Analytics:
Concepts, Architectures, and ML/AI Considerations. IEEE Access 11 (2023), 71634–71657.
https://doi.org/10.1109/ACCESS.2023.3295694

[42] Chaoyi Cheng, Mingzhe Han, Nuo Xu, Spyros Blanas, Michael D Bond, and Yang Wang. 2023.
Developer’s Responsibility or Database’s Responsibility? Rethinking Concurrency Control
in Databases. In 13th Annual Conference on Innovative Data Systems Research (CIDR’23).
January 8-11, 2023, Amsterdam, The Netherlands.

[43] Google Cloud. 2024. AlloyDB: A fully managed PostgreSQL database service. https:
//cloud.google.com/products/alloydb?hl=en.

https://doi.org/10.1109/ACCESS.2023.3295694
https://cloud.google.com/products/alloydb?hl=en
https://cloud.google.com/products/alloydb?hl=en

104

[44] Fábio Coelho, João Paulo, Ricardo Vilaça, José Pereira, and Rui Oliveira. 2017. Htap-
bench: Hybrid transactional and analytical processing benchmark. In Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering. 293–304.

[45] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J.
Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, et al.
2013. Spanner: Google’s Globally-Distributed Database. ACM Transactions on Computer
Systems 31, 3 (2013), 8:1–8:22.

[46] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin Avanes, Jon
Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel, Jiansheng Huang, et al.
2016. The snowflake elastic data warehouse. In Proceedings of the 2016 International Confer-
ence on Management of Data. 215–226.

[47] Debezium Community. 2024. Debezium: Stream Changes from Your Database. https:
//debezium.io. Accessed April 2025.

[48] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels.
2007. Dynamo: Amazon’s highly available key-value store. ACM SIGOPS operating systems
review 41, 6 (2007), 205–220.

[49] Ravishankar Ramamurthy David J DeWitt and Qi Su. 2002. A Case for Fractured Mirrors.
In Proceedings 2002 VLDB Conference: 28th International Conference on Very Large Databases
(VLDB). Elsevier, 430.

[50] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal, Ryan Stoneci-
pher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL server’s memory-optimized OLTP
engine. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data. 1243–1254.

[51] Barbara Dinter, Carsten Sapia, Gabriele Höfling, and Markus Blaschka. 1998. The OLAP
market: state of the art and research issues. In Proceedings of the 1st ACM international
workshop on Data warehousing and OLAP. 22–27.

[52] Robert J Earle. 1994. Method and apparatus for storing and retrieving multi-dimensional
data in computer memory. US Patent 5,359,724.

[53] Aaron J Elmore, Jennie Duggan, Michael Stonebraker, Magdalena Balazinska, Ugur
Cetintemel, Vijay Gadepally, Jeffrey Heer, Bill Howe, Jeremy Kepner, Tim Kraska, et al. 2015.
A demonstration of the bigdawg polystore system. Proceedings of the VLDB Endowment 8,
12 (2015), 1908.

[54] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. 1976. The Notions of Consistency
and Predicate Locks in a Database System. Commun. ACM 19, 11 (1976), 624–633.

[55] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo Müller, Hannes Rauhe,
and Jonathan Dees. 2012. The SAP HANA Database–An Architecture Overview. IEEE Data
Eng. Bull. 35, 1 (2012), 28–33.

https://debezium.io
https://debezium.io

105

[56] Christian Garcia-Arellano, Hamdi Roumani, Richard Sidle, Josh Tiefenbach, Kostas Rakopou-
los, Imran Sayyid, Adam Storm, Ronald Barber, Fatma Ozcan, Daniel Zilio, et al. 2020. Db2
event store: a purpose-built IoT database engine. Proceedings of the VLDB Endowment 13,
12 (2020), 3299–3312.

[57] Jana Giceva and Mohammad Sadoghi. 2019. Hybrid OLTP and OLAP.

[58] Anil K Goel, Jeffrey Pound, Nathan Auch, Peter Bumbulis, Scott MacLean, Franz Färber,
Francis Gropengiesser, Christian Mathis, Thomas Bodner, and Wolfgang Lehner. 2015.
Towards scalable real-time analytics: An architecture for scale-out of OLxP workloads.
Proceedings of the VLDB Endowment 8, 12 (2015), 1716–1727.

[59] Google Cloud. 2024. Google Cloud Dataflow. Available at https://cloud.google.com/
dataflow.

[60] Google Cloud. 2024. Google Cloud Pub/Sub: A Google-Scale Messaging Service. https:
//cloud.google.com/pubsub/docs/overview. Accessed April 2025.

[61] Jim Gray and Andreas Reuter. 1992. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann.

[62] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Stefano Stefani,
and Vidhya Srinivasan. 2015. Amazon redshift and the case for simpler data warehouses.
In Proceedings of the 2015 ACM SIGMOD international conference on management of data.
1917–1923.

[63] Ashish Gupta, Inderpal Singh Mumick, et al. 1995. Maintenance of materialized views:
Problems, techniques, and applications. IEEE Data Eng. Bull. 18, 2 (1995), 3–18.

[64] Riyaz Ahamed Ariyaluran Habeeb, Fariza Nasaruddin, Abdullah Gani, Ibrahim Abaker Tar-
gio Hashem, Ejaz Ahmed, and Muhammad Imran. 2019. Real-time big data processing for
anomaly detection: A survey. International Journal of Information Management 45 (2019),
289–307.

[65] Daniel Hieber and Gregor Grambow. [n.d.]. Hybrid Transactional and Analytical Processing
Databases: A Systematic Literature Review. ([n. d.]).

[66] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu Tang, Yuxing
Zhou, Menglong Huang, et al. 2020. TiDB: a Raft-based HTAP database. Proceedings of the
VLDB Endowment 13, 12 (2020), 3072–3084.

[67] IBM Corporation. 2024. IBM DB2 Database. IBM Corporation. https://www.ibm.com/
products/db2-database Version 11.5.8.

[68] IBM Corporation. 2024. IBM StreamSets: Seamless Hybrid and Multicloud Data Integration.
https://www.ibm.com/products/streamsets. Accessed April 2025.

[69] StreamSets Inc. 2024. StreamSets Data Collector Documentation. https://streamsets.
com/products/data-collector/. Accessed: 2025-04-26.

https://cloud.google.com/dataflow
https://cloud.google.com/dataflow
https://cloud.google.com/pubsub/docs/overview
https://cloud.google.com/pubsub/docs/overview
https://www.ibm.com/products/db2-database
https://www.ibm.com/products/db2-database
https://www.ibm.com/products/streamsets
https://streamsets.com/products/data-collector/
https://streamsets.com/products/data-collector/

106

[70] William H Inmon. 2005. Building the data warehouse. John wiley & sons.

[71] Arun Kejariwal, Sanjeev Kulkarni, and Karthik Ramasamy. 2017. Real time analytics:
algorithms and systems. arXiv preprint arXiv:1708.02621 (2017).

[72] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAP main mem-
ory database system based on virtual memory snapshots. In 2011 IEEE 27th International
Conference on Data Engineering. IEEE, 195–206.

[73] Oliver Kennedy, Jerry Ajay, Geoffrey Challen, and Lukasz Ziarek. 2016. Pocket data: The
need for TPC-MOBILE. In Performance Evaluation and Benchmarking: Traditional to Big
Data to Internet of Things: 7th TPC Technology Conference, TPCTC 2015, Kohala Coast, HI,
USA, August 31–September 4, 2015. Revised Selected Papers 7. Springer, 8–25.

[74] Ralph Kimball and Margy Ross. 2011. The data warehouse toolkit: the complete guide to
dimensional modeling. John Wiley & Sons.

[75] Martin Kleppmann. 2019. Designing data-intensive applications.

[76] Thomas Koch. 2000. Oracle: The Complete Reference. Oracle Press.

[77] Peter Kraft, Qian Li, Xinjing Zhou, Peter Bailis, Michael Stonebraker, Matei Zaharia, and
Xiangyao Yu. 2023. Epoxy: ACID Transactions across Diverse Data Stores. Proceedings of
the VLDB Endowment 16, 11 (2023), 2742–2754.

[78] Jay Kreps, Neha Narkhede, and Jun Rao. 2011. Kafka: A Distributed Messaging System for
Log Processing. In Proceedings of the NetDB Workshop. 1–7. Athens, Greece.

[79] Sanjay Krishnan, Jiannan Wang, Eugene Wu, Michael J Franklin, and Ken Goldberg. 2016.
Activeclean: Interactive data cleaning for statistical modeling. Proceedings of the VLDB
Endowment 9, 12 (2016), 948–959.

[80] Sandeep S Kulkarni, Murat Demirbas, Deepak Madappa, Bharadwaj Avva, and Marcelo
Leone. 2014. Logical physical clocks. In Principles of Distributed Systems: 18th International
Conference, OPODIS 2014, Cortina d’Ampezzo, Italy, December 16-19, 2014. Proceedings 18.
Springer, 17–32.

[81] Cockroach Labs. 2021. CockroachDB: Architecture Overview. Technical White Paper.
urlhttps://www.cockroachlabs.com/docs/architecture/overview/.

[82] Tirthankar Lahiri, Shasank Chavan, Maria Colgan, Dinesh Das, Amit Ganesh, Mike Gleeson,
Sanket Hase, Allison Holloway, Jesse Kamp, Teck-Hua Lee, et al. 2015. Oracle database
in-memory: A dual format in-memory database. In 2015 IEEE 31st International Conference
on Data Engineering. IEEE, 1253–1258.

[83] Avinash Lakshman and Prashant Malik. 2010. Cassandra: a decentralized structured storage
system. ACM SIGOPS operating systems review 44, 2 (2010), 35–40.

107

[84] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandier, Lyric Doshi,
and Chuck Bear. 2012. The vertica analytic database: C-store 7 years later. arXiv preprint
arXiv:1208.4173 (2012).

[85] Leslie Lamport. 2001. Paxos made simple. ACM SIGACT News (Distributed Computing
Column) 32, 4 (Whole Number 121, December 2001) (2001), 51–58.

[86] Per-Åke Larson, Adrian Birka, Eric N Hanson, Weiyun Huang, Michal Nowakiewicz, and
Vassilis Papadimos. 2015. Real-time analytical processing with SQL server. Proceedings of
the VLDB Endowment 8, 12 (2015), 1740–1751.

[87] Juchang Lee, SeungHyun Moon, Kyu Hwan Kim, Deok Hoe Kim, Sang Kyun Cha, and Wook-
Shin Han. 2017. Parallel replication across formats in SAP HANA for scaling out mixed
OLTP/OLAP workloads. Proceedings of the VLDB Endowment 10, 12 (2017), 1598–1609.

[88] Feifei Li. 2023. Modernization of databases in the cloud era: Building databases that run
like Legos. Proceedings of the VLDB Endowment 16, 12 (2023), 4140–4151.

[89] Guoliang Li and Chao Zhang. 2022. HTAP databases: What is new and what is next. In
Proceedings of the 2022 International Conference on Management of Data. 2483–2488.

[90] Hyeontaek Lim, Michael Kaminsky, and David G Andersen. 2017. Cicada: Dependably fast
multi-core in-memory transactions. In Proceedings of the 2017 ACM International Conference
on Management of Data. 21–35.

[91] Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou Wang, Jinbao Chen,
Asim Praveen, Yu Yang, Xiaoming Gao, Alexandra Wang, et al. 2021. Greenplum: A Hybrid
Database for Transactional and Analytical Workloads. In Proceedings of the 2021 International
Conference on Management of Data. 2530–2542.

[92] Roger MacNicol and Blaine French. 2004. Sybase IQ multiplex-designed for analytics. In
Proceedings of the Thirtieth international conference on Very large data bases-Volume 30.
1227–1230.

[93] Darko Makreshanski, Jana Giceva, Claude Barthels, and Gustavo Alonso. 2017. BatchDB:
Efficient isolated execution of hybrid OLTP+ OLAP workloads for interactive applications.
In Proceedings of the 2017 ACM International Conference on Management of Data. 37–50.

[94] Nirmesh Malviya, Ariel Weisberg, Samuel Madden, and Michael Stonebraker. 2014. Re-
thinking main memory OLTP recovery. In 2014 IEEE 30th International Conference on Data
Engineering. IEEE, 604–615.

[95] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar, Matt
Tolton, and Theo Vassilakis. 2010. Dremel: interactive analysis of web-scale datasets.
Proceedings of the VLDB Endowment 3, 1-2 (2010), 330–339.

[96] Microsoft Corporation. 2000. Microsoft SQL Server Analysis Services Multidimensional Per-
formance and Operations Guide.

108

[97] Microsoft Corporation. 2023. SQL Server 2022 Documentation. https://learn.
microsoft.com/en-us/sql/sql-server/. Accessed April 18, 2025.

[98] Elena Milkai, Yannis Chronis, Kevin P Gaffney, Zhihan Guo, Jignesh M Patel, and Xiangyao
Yu. 2022. How good is my HTAP system?. In Proceedings of the 2022 International Conference
on Management of Data. 1810–1824.

[99] Elena Milkai, Xiangyao Yu, and Jignesh M Patel. 2025. Hermes:Off-the-Shelf Real-Time
Transactional Analytics. Proceedings of the VLDB Endowment.

[100] Barzan Mozafari, Jags Ramnarayan, Sudhir Menon, Yogesh Mahajan, Soubhik Chakraborty,
Hemant Bhanawat, and Kishor Bachhav. 2017. SnappyData: A Unified Cluster for Streaming,
Transactions and Interactice Analytics.. In CIDR.

[101] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast serializable multi-
version concurrency control for main-memory database systems. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data. 677–689.

[102] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast serializable multi-
version concurrency control for main-memory database systems. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data. 677–689.

[103] Alex Nordeen. 2020. Learn Informatica in 24 Hours: Definitive Guide to Learn Informatica for
Beginners. Guru99.

[104] Diego Ongaro and John Ousterhout. 2014. In search of an understandable consensus
algorithm. In 2014 USENIX annual technical conference (USENIX ATC 14). 305–319.

[105] Oracle Corporation. 2024. The InnoDB Storage Engine. MySQL 8.0 Reference Manual. https:
//dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html Accessed
April 18, 2025.

[106] Oracle Corporation. 2024. MySQL 8.0 Reference Manual. https://dev.mysql.com/doc/
refman/8.0/en/

[107] Oracle Corporation. 2024. Oracle Database. Oracle Corporation. https://docs.oracle.
com/en/database/oracle/oracle-database/23/index.html Version 23c.

[108] Oracle Corporation. 2024. Oracle GoldenGate: Replicate and Transform Data. https:
//www.oracle.com/integration/goldengate/. Accessed April 2025.

[109] Fatma Özcan, Yuanyuan Tian, and Pinar Tözün. 2017. Hybrid transactional/analytical
processing: A survey. In Proceedings of the 2017 ACM International Conference onManagement
of Data. 1771–1775.

[110] O’Neil Pat, O’Neil Betty, and Chen Xuedong. 2009. The Star Schema Benchmark.

https://learn.microsoft.com/en-us/sql/sql-server/
https://learn.microsoft.com/en-us/sql/sql-server/
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/
https://dev.mysql.com/doc/refman/8.0/en/
https://docs.oracle.com/en/database/oracle/oracle-database/23/index.html
https://docs.oracle.com/en/database/oracle/oracle-database/23/index.html
https://www.oracle.com/integration/goldengate/
https://www.oracle.com/integration/goldengate/

109

[111] Massimo Pezzini, Donald Feinberg, Nigel Rayner, and Roxane Edjlali. 2014. Hybrid
transaction/analytical processing will foster opportunities for dramatic business innova-
tion. Gartner (2014, January 28) Available at https://www. gartner. com/doc/2657815/hybrid-
transactionanalyticalprocessing-foster-opportunities (2014), 4–20.

[112] PostgreSQL. 2021. PostgreSQL Streaming Replication Documentation.
https://www.postgresql.org/docs/current/warm-standby.html.

[113] PostgreSQL. 2021. Swarm64 HTAP Benchmark for PostgreSQL. (2021).

[114] PostgreSQL Global Development Group. 2023. PostgreSQL Database. https://www.
postgresql.org/ Version 16.

[115] Guna Prasaad, Alvin Cheung, and Dan Suciu. 2020. Handling highly contended OLTP work-
loads using fast dynamic partitioning. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 527–542.

[116] Iraklis Psaroudakis, Florian Wolf, Norman May, Thomas Neumann, Alexander Böhm, Anas-
tasia Ailamaki, and Kai-Uwe Sattler. 2014. Scaling up mixed workloads: a battle of data
freshness, flexibility, and scheduling. In Technology Conference on Performance Evaluation
and Benchmarking. Springer, 97–112.

[117] Mark Raasveldt and Hannes Mühleisen. 2023. Duckdb: an embeddable analytical database.
In Proceedings of the 2019 International Conference on Management of Data. 1981–1984.

[118] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani, David Kalmuk, Vin-
cent KulandaiSamy, Jens Leenstra, Sam Lightstone, Shaorong Liu, Guy M Lohman, et al.
2013. DB2 with BLU acceleration: So much more than just a column store. Proceedings of
the VLDB Endowment 6, 11 (2013), 1080–1091.

[119] Aunn Raza, Periklis Chrysogelos, Angelos Christos Anadiotis, and Anastasia Ailamaki.
2020. Adaptive HTAP through elastic resource scheduling. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. 2043–2054.

[120] Kun Ren, Jose M Faleiro, and Daniel J Abadi. 2016. Design principles for scaling multi-
core oltp under high contention. In Proceedings of the 2016 International Conference on
Management of Data. 1583–1598.

[121] John Russell. 2013. Cloudera Impala. ” O’Reilly Media, Inc.”.

[122] Mohammad Sadoghi, Souvik Bhattacherjee, Bishwaranjan Bhattacharjee, and Mustafa
Canim. 2016. L-store: A real-time OLTP and OLAP system. arXiv preprint arXiv:1601.04084
(2016).

[123] Salman Salloum, Ruslan Dautov, Xiaojun Chen, Patrick Xiaogang Peng, and Joshua Zhexue
Huang. 2016. Big data analytics on Apache Spark. International Journal of Data Science and
Analytics 1, 3 (2016), 145–164.

https://www.postgresql.org/
https://www.postgresql.org/

110

[124] Mohit Saxena, Benjamin Sowell, Daiyan Alamgir, Nitin Bahadur, Bijay Bisht, Santosh
Chandrachood, Chitti Keswani, G Krishnamoorthy, Austin Lee, Bohou Li, et al. 2023. The
story of AWS Glue. Proceedings of the VLDB Endowment 16, 12 (2023), 3557–3569.

[125] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie, Yutian Sun,
Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, et al. 2019. Presto: SQL on
everything. In 2019 IEEE 35th International Conference on Data Engineering (ICDE). IEEE,
1802–1813.

[126] Dennis Shasha and Philippe Bonnet. 2002. Database Tuning: Principles, Experiments, and
Troubleshooting Techniques. Morgan Kaufmann.

[127] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whipkey, Eric Rollins, Mircea
Oancea, Kyle Littlefield, David Menestrina, Stephan Ellner, et al. 2013. F1: A distributed
SQL database that scales. Proceedings of the VLDB Endowment 6, 11 (2013), 1068–1079.

[128] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010. The hadoop
distributed file system. In 2010 IEEE 26th symposium on mass storage systems and technologies
(MSST). Ieee, 1–10.

[129] Stanley Shyiko. 2022. MySQL Binary Log connector. https://github.com/shyiko/
mysql-binlog-connector-java.

[130] Vishal Sikka, Franz Färber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh, and Christof
Bornhövd. 2012. Efficient transaction processing in SAP HANA database: the end of a
column store myth. In Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data. 731–742.

[131] Eugene Siow, Thanassis Tiropanis, and Wendy Hall. 2018. Analytics for the internet of
things: A survey. ACM computing surveys (CSUR) 51, 4 (2018), 1–36.

[132] Alex Skidanov, Anders J. Papito, and Adam Prout. 2016. A column store engine for real-time
streaming analytics. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE).
1287–1297. https://doi.org/10.1109/ICDE.2016.7498332

[133] Alex Skidanov, Anders J. Papito, and Adam Prout. 2016. A column store engine for real-time
streaming analytics. In 2016 IEEE 32nd International Conference on Data Engineering (ICDE).
1287–1297. https://doi.org/10.1109/ICDE.2016.7498332

[134] J Sreemathy, S Nisha, Gokula Priya RM, et al. 2020. Data integration in ETL using TALEND.
In 2020 6th international conference on advanced computing and communication systems
(ICACCS). IEEE, 1444–1448.

[135] Michael Stonebraker. 1986. The case for shared nothing. IEEE Database Eng. Bull. 9, 1 (1986),
4–9.

[136] Mike Stonebraker, Daniel J Abadi, Adam Batkin, Xuedong Chen, Mitch Cherniack, Miguel
Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, et al. 2018. C-store:
a column-oriented DBMS. In Making Databases Work: the Pragmatic Wisdom of Michael
Stonebraker. 491–518.

https://github.com/shyiko/mysql-binlog-connector-java
https://github.com/shyiko/mysql-binlog-connector-java
https://doi.org/10.1109/ICDE.2016.7498332
https://doi.org/10.1109/ICDE.2016.7498332

111

[137] Michael Stonebraker and Uĝur Çetintemel. 2018. ” One size fits all” an idea whose time has
come and gone. In Making databases work: the pragmatic wisdom of Michael Stonebraker.
441–462.

[138] Michael Stonebraker and Lawrence A Rowe. 1986. The design of Postgres. ACM SIGMOD
Record 15, 2 (1986), 340–355.

[139] PingCAP TiDB. 2024. Deploy a TiDB Cluster Using TiUP. https://docs.pingcap.com/
tidb/stable/production-deployment-using-tiup.

[140] PingCAP TiDB. 2024. TiDB Customers. https://www.pingcap.com/customers/.

[141] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam, Kamal Gupta,
Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz Kharatishvili, and Xiaofeng
Bao. 2017. Amazon aurora: Design considerations for high throughput cloud-native rela-
tional databases. In Proceedings of the 2017 ACM International Conference on Management of
Data. 1041–1052.

[142] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017. An empirical
evaluation of in-memory multi-version concurrency control. Proceedings of the VLDB
Endowment 10, 7 (2017), 781–792.

[143] Reynold S Xin, Josh Rosen, Matei Zaharia, Michael J Franklin, Scott Shenker, and Ion Stoica.
2013. Shark: SQL and rich analytics at scale. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of data. 13–24.

[144] Cong Yan and Alvin Cheung. 2016. Leveraging lock contention to improve OLTP application
performance. Proceedings of the VLDB Endowment 9, 5 (2016), 444–455.

[145] Jiacheng Yang, Ian Rae, Jun Xu, Jeff Shute, Zhan Yuan, Kelvin Lau, Qiang Zeng, Xi Zhao,
Jun Ma, Ziyang Chen, et al. 2020. F1 Lightning: HTAP as a Service. Proceedings of the VLDB
Endowment 13, 12 (2020), 3313–3325.

[146] Yifei Yang, Matt Youill, Matthew Woicik, Yizhou Liu, Xiangyao Yu, Marco Serafini, Ashraf
Aboulnaga, and Michael Stonebraker. 2021. Flexpushdowndb: Hybrid pushdown and
caching in a cloud DBMS. Proceedings of the VLDB Endowment 14, 11 (2021), 2101–2113.

[147] Xiangyao Yu, Matt Youill, Matthew Woicik, Abdurrahman Ghanem, Marco Serafini, Ashraf
Aboulnaga, and Michael Stonebraker. 2020. PushdownDB: Accelerating a DBMS using S3
computation. In 2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE,
1802–1805.

[148] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur
Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J Franklin, et al. 2016.
Apache spark: a unified engine for big data processing. Commun. ACM 59, 11 (2016), 56–65.

[149] Chao Zhang, Guoliang Li, and Tao Lv. 2024. HyBench: A New Benchmark for HTAP
Databases. Proceedings of the VLDB Endowment 17, 5 (2024), 939–951.

https://docs.pingcap.com/tidb/stable/production-deployment-using-tiup
https://docs.pingcap.com/tidb/stable/production-deployment-using-tiup
https://www.pingcap.com/customers/

112

[150] Jianqiu Zhang, Kaisong Huang, Tianzheng Wang, and King Lv. 2022. Skeena: Efficient and
consistent cross-engine transactions. In Proceedings of the 2022 International Conference on
Management of Data. 34–48.

	Acknowledgments
	Contents
	Abstract
	Introduction
	Motivation
	A Systematic Evaluation Framework for HTAP Systems
	Off-the-Shelf Real-Time Transactional Analytics
	Contributions and Highlights
	Overview

	From OLTP to Real-Time Analytics
	Historical Evolution of OLTP Engines
	The Rise of OLAP Engines and Data Warehouses
	ETL Bottlenecks and the Demand for Fresh Data
	Streaming & CDC Innovations
	Emergence of HTAP Architectures

	HATtrick: A Systematic Methodology to Evaluate HTAP Systems
	Motivation
	Design challenges
	Design classification
	Current HTAP benchmarks

	Performance-centric definition of HTAP systems
	Throughput frontier
	Interpretation of the throughput frontier
	Calculation of throughput frontier

	Freshness of HTAP Systems
	Theoretical definition of Freshness
	Measuring Freshness Score

	Design of HATtrick Benchmark
	The Schema and Data
	Workload
	Benchmark Procedure

	Experimental Evaluation
	Experimental Configuration
	PostgreSQL
	PostgreSQL Streaming Replication
	System-X
	TiDB
	Comparison across systems
	Discussion

	Related Work
	Conclusion

	H0.8ERMES: An Off-the-Shelf Real-Time Transactional Analytics System
	Design Goals
	H0.8ERMES Overview
	System Architecture
	H0.8ERMES Integration
	H0.8ERMES Design Details

	Transactional Analytics with H0.8ERMES
	Design Challenges
	H0.8ERMES' Isolation Levels Solutions
	Transactional Analytics Workload (TAW)

	H0.8ERMES Potential Extensions
	Cache Offloading to H0.8ERMES
	H0.8ERMES in a Distributed Setup
	H0.8ERMES Advancing Middle Layers

	Experimental Evaluation
	Experimental Setup
	H0.8ERMES Evaluation
	HATtrick Evaluation Across Systems
	TAW Evaluation Across Systems

	Related Work
	Conclusion

	Conclusions
	Summary
	A Systematic Evaluation Framework for HTAP Systems
	Off-the-Shelf Real-Time Transactional Analytics

	Future Work
	Vision for H0.8ERMES
	Concluding Remarks

	Bibliography

