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Abstract 

This thesis reports research developing different tools to help fully utilize the power of 

modern scanning transmission electron microscopy (STEM) and more effectively extract 

information from the data collected in STEM, including high angle annular dark-field (HAADF) 

STEM image series, hyperspectral X-ray energy dispersive spectroscopy (EDS) data, and 4D 

STEM data. Machine learning and big data methods have been applied to enhance the 

understanding of the data collected in STEM, and the techniques have been applied to various 

materials systems and problems. 

First, atomic-resolution data collected from the conventional HAADF detector and EDS 

detector in STEM is discussed. The different parameters of non-rigid registration have been 

studied and optimized for atomic resolution data for high precision atomic site position 

determination. Joint denoising and distortion correction, a new tool to directly fit the atom 

positions from noisy image series, has been developed to find atom positions with enhanced 

precision under limited electron dose. For hyperspectral data collected from the EDS detector, 

non-local principal component analysis has been applied to denoise the data to reveal the 

underlying atomic structure. 

Second, machine learning tools to help to understand the data collected in the newly 

developed 4D STEM imaging mode are discussed. Convolutional neural networks have been 

used to study the convergent beam electron diffraction (CBED) pattern from 4D STEM data and 

predict materials properties from the CBED patterns. Tensor singular value decomposition has 

been used to remove the random noise from the massive 4D STEM data and find the noiseless 

ground truth of the noisy data. 
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Third, 4D STEM techniques are applied to study different aspects of the three different 

materials systems, including: 1. Strain states around platelet-shaped Nb-rich precipitate in ZrNb 

alloy after irradiation. 2. Lattice twist pattern in multilayer twisted WS2 mesostructure grown on 

a non-Euclidean substrate surface. 3. Structural polarization and the internal electric field 

generated by the polar structure in polar metal LaPtSb and LaAuGe with hexagonal Heusler 

structures. 
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1 Introduction 

Modern aberration-corrected scanning transmission electron microscopy (STEM) enables 

the researcher to study the local structure of materials at an atomic resolution[1] by generating a 

well-focused electron beam with sub-Ångstrom size[2]. The integration of X-ray energy 

dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS) with STEM further 

enabled the study of chemical and bonding information at the atomic scale[3]. Furthermore, the 

recent development of ultrafast direct electron detectors enabled the acquisition of the whole 

convergent beam electron diffraction (CBED) pattern at each probe position and a new imaging 

mode called 4D STEM[4]. A wealth of information can be collected in STEM with high spatial 

resolution, and the methods to interpret the data and extract useful information to answer 

materials science questions from the data becomes critical. 

Chapters 3 to 5 discuss the use of three different techniques to help better extract 

information from atomic-resolution data collected in STEM, including both high-angle annular 

dark-field (HAADF)-STEM image series and the hyperspectral data collected from the EDS 

detector. The experimental condition and registration parameters for non-rigid registration to 

achieve sub-pm precision image have been discussed in chapter 3. In chapter 4, non-local 

principle component analysis (NLPCA), a novel non-local denoising method using the 

redundancy within the data itself, has been applied to denoise the EDS spectroscopy data 

dominated by Poisson noise to reveal the underlying atomic structure. Chapter 5 discusses a new 

method to directly identify the position of atomic columns from noisy image series. By doing the 

all-at-once fitting on the noisy image series, the new method achieved enhanced precision level 

on image series collected with reduced electron dose. 
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With the development of 4D STEM, the data size collected in STEM increased by hundreds 

of times as a whole 2D CBED pattern is collected at each probe position instead of a single 

number or a single spectrum. Each STEM scan typically generates 4D STEM data with multiple-

GB size, and the total data size collected on a certain specimen could easily reach tens to 

hundreds of GB. To more effectively handle these massive data collected in 4D STEM, machine 

learning tools have been applied to pre-process and analyze the collected data. In chapter 6, the 

convolutional neural network (CNN), a supervised machine learning tool, has been trained using 

multislice simulated 4D STEM data to predict material properties on real experimental data, and 

achieved nm precision in local thickness estimation at unit cell resolution. An unsupervised 

machine learning tool, tensor singular value decomposition (SVD), is introduced in chapter 7 and 

applied to denoise atomic-resolution 4D STEM data. The method shows close to the best 

denoising performance compare to other state-of-the-art denoising methods, while performing at 

lease 100-folds faster, make it suitable to denoise the massive 4D STEM data. 

With a whole CBED pattern collected from each probe position, 4D STEM could access 

materials properties that cannot be resolved in the conventional STEM. Chapter 8 discusses the 

strain mapping of Nb-rich precipitate in irradiated ZrNb alloy, using the variation of distances 

between the Bragg diffraction spots in CBED patterns. With a similar setup, chapter 10 used the 

twist angles in the Bragg diffraction spots to study the twist patterns in multilayer twisted WS2 

structures. In chapter 9, the movement of the electron beam under the Columb force from the 

internal electric field, which is captured in the CBED patterns, is used to map the internal electric 

field in hexagonal Heusler alloys LaPtSb and LaAuGe, which are possible polar metal candidates 

with high electron conductivities. 
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2 Characterization and Simulation Techniques 

2.1 Introduction 

STEM serves as my main toolbox to study different materials structure. This chapter will 

introduce different aspects of STEM and how they provide information about different aspects of 

the structure of the material. Overall, STEM rasters high energy, well-focused electron beam 

across the surface of an electron transparent piece of material. The electrons interact strongly 

with the material, and different aspects of the material’s structure will be reflected in the 

diffracted electron beam. Chapter 2.2 introduces the conventional STEM techniques include 

STEM spectrum techniques. Section 2.3 and 2.4 will focus on the CBED produced in STEM and 

4D STEM imaging mode and its implementation. Section 2.5 introduces the multislice 

simulation, which is a powerful tool to simulate the electron-sample interaction and helps 

researches predict and better understand the result acquired in STEM. Section 2.6 briefly 

summarizes all the collaborative projects that I worked on using STEM. 

2.2 Conventional STEM 
 

In conventional STEM, a well-focused electron probe, possibly with sub-Å size, is formed 

and rasters on the surface of an electron transparent sample. Figure 2.1, which was adapted from 

ref[5], shows the schematic of a STEM. The optical system of a STEM is often viewed as a 

reversed TEM. Typically, a STEM consists of the electron source, pre-specimen lense, sample 

stage, projection lenses, and annular detector. As electron interacts strongly with atoms inside the 

specimen, the transmitted electron composes rich information about sample structure and 

properties. A modern STEM often also includes an aberration corrector, EELS detector, EDS 
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detector, and ronchigram camera. A few of the important components will be introduced in detail 

in the following paragraphs. 

 

Fig 2.1 Schematic of a STEM. 

The electron source produces a high energy electron with small energy dispersion. Field 

emission gun (FEG) is the most popular electron source for modern STEM. Recent instrument 

development enabled high brightness cold FEG, which generates multiple times brighter electron 

sources compare to traditional warm FEG. Common STEM uses an electron source that provides 

200-300 kV electron, with 60-80 kV low energy electron as an alternate option. High voltage 

STEM that produces higher than 1 MV is available but is very rare. A small energy dispersion is 

favored for the electron gun both for a better imaging coherency and also a higher energy 

resolution in EELS. The Thermo Fisher Titan STEM installed at the University of Wisconsin-

Madison has an energy dispersion of around 1 eV. A STEM with a monochromator installed can 

often achieve tens of meV energy resolution, with 4.2 meV energy resolution recorded[6], 
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revealing deeper details in EELS. But the high energy resolution often comes at the price of a 

smaller beam current, with an effort toward a lossless monochromator for EELS[7]. 

The aberration corrector, which was invented about twenty years ago[8], has become 

more common and hugely benefited the spatial resolution of STEM. Fig 2.2 is adapted from ref 

[9] shows the evolution of microscopy resolution, with aberration-corrected electron microscopy 

dominating the highest resolution regime. The recent improvement in imaging technique and 

imaging hardware has pushed the resolution to the sub-Å regime, with 0.39 Å resolution 

recorded with ptychography[10] and 0.41 Å resolution recorded using a novel aberration 

corrector[11]. The widely applied aberration corrector has made atomic resolution imaging a 

routine in STEM. 

 

 

Figure 2.2 Evolution of spatial resolution for microscopy techniques 
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The sample stage in STEM draw increased attention recently as it can be used to achieve 

a wide variety of experimental conditions and achieve in-situ and in-operando experiments. A 

standard STEM holder can be moved along x, y, z direction within about 1 mm range, with a tilt 

range of about ± 40° along one or two directions depends on whether it is a single tilt or double 

tilt detector, and a specially designed holder can be tilted close to ±90° for tomography. Besides 

the standard movement and tilt, in-situ holders can apply different conditions on the specimen 

include heating, cooling, mechanical force, and electric field. Some other holder design also 

allows users to put specimen inside a liquid or gas environment. 

The transmitted electrons are detected by multiple detectors, include a round-shaped 

HAADF detector, removable disc-shaped bright field (BF) detector, ronchigram camera, and 

EELS detector. HAADF detector and BF detector integrates the electron within a certain angular 

range and produce a single signal value for each probe position. Ronchigram camera, on the 

other side, collects the whole CBED pattern but is typically not synchronized to beam scan and 

thus produces one CBED pattern for multiple beam positions. The EELS detector, which uses an 

energy drift tube to distinguish electron with different energies, will produce a single spectrum at 

each beam position. 

An important part of any STEM experiment is the sample. A basic requirement for 

STEM sample is the thickness has to be less than a few hundreds of nm, in order to let the high 

energy electron transmitted through. Sample thickness of less than 100 nm is routinely required 

for high-quality STEM experiments, with preferred sample thickness being less than 40 nm. A 

high-quality sample should also have a uniform thickness, fewer impurities, less residual strain, 

fewer surface contamination, and small damage introduced during sample preparation. Multiple 

ways have been proposed to prepare a thin and high-quality sample.  
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Two ways have been used most frequently in the studies in this thesis are mechanical 

polishing[12] and focused ion beam (FIB) lift-out method. The mechanical polishing method has 

the advantage of creating a large uniform thin area with small damage, with the possibility of 

later modification and surface refinement using an ion-mill or nano-mill. The disadvantage of 

this method is that the sample has to be water-resistance or organic solution-resistance, and the 

preparation process consumes a relatively large piece of the sample. Also, it will be hard if you 

want to thin a very specific part of the whole sample. FIB lift-out method, on the other hand, 

compensates the disadvantages of mechanical polishing as it operates under vacuum with no 

usage of water or organic solvent. As FIB builds on top of an SEM, it allows the user to visualize 

the sample that you are working on and thus can create a sample from a very specific region and 

only consume a small portion of the sample (about 10 µm3). FIB process is also possible to be 

programmed and runs automatically. The disadvantage of FIB is that it often introduces beam 

damage due to the usage of the high energy beam to thin the sample, and the final sample is 

typically thicker (50-80 nm) with amorphous layers on each side. 

The FIB used for the studies in this thesis is a Zeiss Auriga dual-beam FIB-SEM system operates 

with a Ga ion beam. 30 kV ion beam is used at the beginning stage to create a trench and lift out 

a small lamella of the sample with about 15 × 2 × 10 µm size. The lamella is then thinned under 

30 kV ion beam with a decreasing beam current from 300 pA to 20 pA. The sample is then final 

thinned using 5 kV ion beam and 100 pA beam current to get a uniform surface. The sample is 

then finished in a Fishione 1040 nanomill with 900 eV Ar ion on both sides to further remove the 

amorphous layer and get a smooth surface. The final thickness of the sample is expected to be 

less than 40 nm, with a thickness of less than 20 nm routinely achieved. 



8 
 

The mechanical polishing tool used for the studies in this thesis is an Allied High Tech Multiprep 

polishing wheel. Wedge-shaped samples are polished using diamond paper with decreasing 

particle size from 30 µm to 0.1 µm. The samples are then further thinned using a Fishione 1050 

ion-mill starting from 3 kV Ar ion beam with voltage gradually decreased and finished at 100 

eV. The samples are thinned in Fishione 1040 nanomill with 900 eV Ar ion on both sides to 

further remove amorphous layers if necessary. The thickness of amorphous layers on each side is 

expected to be decreased on each step with a lower beam voltage with a final thickness of less 

than 5 nm. 

Many other ways have been proposed to prepare TEM samples. Another way that has been used 

in the studies in this thesis is the dispersion of nanoparticles. The nanoparticles are dispersed in 

absolute ethanol and then dropped on to the top of carbon film supported by a Cu grid. The 

nanoparticles will be dispersed on top of carbon film in random orientation after ethanol 

evaporated. Other ways that have proposed by other people but are not utilized in this thesis 

include electropolishing[13], small-angle cleavage[14], dimple grinding[15], single-crystal 

crushing[16], and ultramicrotome[17]. Each method has its own field application and advantage, 

and users should choose the correct method base on the experiment design and specific material. 

Sample contamination induced by electron beam irradiation has long been a serious problem for 

high-resolution imaging in TEM and STEM. Carbon contamination from hydrocarbon on the 

surface of the sample or in the environment deposits to the surface hitted by electron[18],[19], 

and the accumulated carbon contamination generates strong contrast and a loss of resolution. In 

EELS, carbon contamination also generates a strong carbon-K edge in the spectrum and makes it 

impossible to analyze the peaks that are close to the carbon edge. The problem is more serious 
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for STEM[20] as it has a much higher electron dose than the conventional TEM. And it could be 

more serious on the samples with a high-energy surface such as 2D materials. 

The most common effort to solve this problem is to remove the source of hydrocarbon. Samples 

are typically treated in oxidizing plasma to remove the hydrocarbon on the sample surface before 

being transferred into the TEM column. At UW-Madison, a GV10x Gentle Asher cleaner was 

used to clean the sample for 10 minutes under 20 W each time before the sample is transferred 

into the TEM column. The gentle plasma generated by the Asher cleaner does not damage fragile 

samples such as 2D material or the lacey carbon film. For the Titan STEM at UW-Madison, an 

on-column Gentle Asher cleaner is installed to clean the whole column together with the 

installed sample. This setup was also reported elsewhere[21] for a better chemical imaging of 

carbon in polymer samples. All the tools for sample preparation, include tweezers, TEM grids, 

sample storage boxes, and glassware, are all cleaned and baked if possible to prevent possible 

introduction of hydrocarbon onto the sample. 

A less common way to solve this problem is to shower a larger area of sample under a high 

current electron beam. By doing this, carbon contamination will be uniformly deposited on a 

large area of the sample, typically µm size, to prevent it from builds up locally when doing high-

resolution imaging. This method was used occasionally by showing the beam under 160 MX 

magnification with about 100 pA beam current for 30 minutes before acquiring high-resolution 

images. 

2.3 Four-dimensional STEM (4D STEM) 
 

Starting in recent years, with the development of fast direct electron detectors, a new imaging 

mode called 4D STEM[4] has become possible and gained popularity. 4D STEM refers to the 
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experiments where a whole diffraction pattern is collected for each probe position. Unlike 

conventional STEM, where a single value is generated from an integrating detector at each probe 

position, a whole 2D CBED pattern is collected, and the collected data is indexed in (x, y, kx, ky), 

thus four-dimensional. Fig 2.3 shows the schematic of data acquisition in 4D STEM. As a whole 

diffraction pattern is collected from each probe position, 4D STEM data contains much more 

information than conventional STEM and has been used in many different applications. Section 

2.3.1 will introduce the detectors for 4D STEM, three different cases of application on crystalline 

materials will be introduced in section 2.3.2 to 2.3.4 categorized by the relationship between 

convergence angle and Bragg diffraction angle, then the applications to amorphous material will 

be introduced in section 2.3.5. 

 

Fig 2.3 schematic of diffraction pattern acquisition on a pixelated detector in 4D STEM. 

2.3.1 Detectors 
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The advent of electron detectors is the key to enable 4D STEM imaging mode. Traditionally, 

diffraction patterns are either visualized on a phosphorous screen or being recorded on a charge-

coupled device (CCD)[22] with digital readout. CCD camera’s acquisition rate (typically tens of 

Hz) is much lower than the STEM scan rate, which is typically at tens to hundreds kHz. To 

synchronize STEM scan to a CCD camera, one is limited to a coarse scan grid with low 

resolution. Otherwise, sample drift would dominate the whole acquisition and make the acquired 

image uninterpretable. 
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S 

Table 2.1 List of different electron detectors and their parameters, Quadro, LBL 4DSTEM, and 

UW-DE Ultrafast detectors are not commercialized yet. 

 

There are two primary design routes for electron detectors. One is adopted from the detectors for 

cryo-TEM, which uses monolithic active pixel sensors (APS) from complementary metal-oxide-

semiconductor (CMOS) chips. This type of detector is very sensitive to electron hitting and 

typically consists of many small pixels. Gatan K2, K3, DE-16, and the two ultrafast cameras 

under development at LBL and UW in table 2.1 used this design. The drawback of this design is 

that the sensor could be easily saturated at high beam current. This is not a problem for 

conventional TEM as the beam current is spread over a large area, but imposes a major problem 

for STEM as the electron dose is much higher in STEM and the majority of the dose is inside the 

undiffracted beam. A solution to this problem is to use a higher frame rate to reduce the electron 

dose within the exposure time of a single frame. At extremely high frame rate, counting mode 

could be achieved, which is widely used in conventional TEM that generates binary frames, and 

the number at each pixel simply indicates whether an electron hits this pixel or not. This mode 

could reduce the data size of collected data by replacing 8-bit or 16-bit data with 1-bit binary 

data, and simplifies the noise pattern in collected data to pure Poisson noise. Up to now, no 

detector is fast enough to achieve ubiquitous counting mode for all STEM experiments, but 

efforts are made to develop ultrafast detectors, and there have been some successful researches 

on ptychography in counting mode[33] using Merlin Medipix-3 detector with 1-bit output. 
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The other design uses thick pixels and has a high dynamic range optimized for STEM and is 

called a hybrid pixel array detector (PAD). EMPAD and Medipix in table 2.1 are two sensors 

with this design. The benefit of a PAD detector is that it has an almost infinite high dynamic 

range, and signal at a very high collection angle can be collected simultaneously with 

undiffracted beam without saturating the pixels exposed to undiffracted beam. This design is 

especially beneficial for ptychography as a larger collection range can be used to enhance the 

spatial resolution in the reconstructed images[10]. One of the disadvantages of this design is the 

large pixel size, which could cause the loss of some fine features in the CBED pattern. However, 

so far, this is not the limiting factor for the 4D STEM experiment as the number of pixels on any 

pixel array detector is more than enough to resolve the features on CBED patterns. Other 

disadvantages for this detector design is unclear for now, as this design is rather new with very 

few different PAD detectors and related studies. There could be some limitation on frame rate as 

the electron signals need to travel through the thick active layer to reach the circuit bump bonded 

at the bottom. 
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Fig 2.4 Schematic and CBED pattern acquired on multilayer WS2 sample for a) Bragg angle > 

convergence angle, b) Bragg angle ≈ convergence angle, and c) Bragg angle < convergence 

angle 

 

2.3.2 4D STEM Mode 1: Bragg Angle > Convergence Angle 

In this 4D STEM mode, a small objective aperture needs to be used to get a small 

convergence angle, typically less than one mrad to a few mrad, as a typical Bragg angle for 

crystalline material is about 10 mrad. When the Bragg angle in the crystalline material is larger 

than the convergence angle of 4D STEM, the CBED patterns contain a set of well-separated 

diffraction disks, and each one of them can be indexed. In this case, any structural change that 

would change the Bragg angle could be detected by 4D STEM. 
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The most popular application for this mode is to detect the strain inside samples, which is 

the change in the lattice parameter and directly changes the magnitude of Bragg angles. The 

benefit of detecting strain using diffraction patterns instead of high-resolution real space image is 

that a large area (µm size) can be detected for each time with the same strain precision[34] as 

high-resolution images[35]. This tool has been applied to multiple materials systems, including 

irradiated ZrNb alloy[36], GaAs/GaAsP multilayer heterostructure[34], and two-dimensional 

heterostructures[37]. Multiple refinements have been reported include better detection of 

diffraction disks position[38],  cancel out the effect of sample tilt[39], application of patterned 

probe[40], and the usage of exit-wave power-cepstrum[41]. 

This 4D STEM mode was also used to study the twist in multilayer Van der Waals structure such 

as GaN[42]. The same setup has also been used to reveal the structural polarization in oxides. 

The results agreed well with high-resolution STEM study and were used to study room-

temperature polar skyrmions[43] and negative capacitance[44]. 

Although with the advantage of being able to detect and index each diffraction spot, the most 

significant disadvantage of this 4D STEM mode is the resolution as the spatial resolution is 

typically limited to nm to a few Å due to the usage of a small convergence angle to get separated 

diffraction disks. Also, it worth mention that the measurement precision under this mode 

depends on how accurately one can locate the diffraction disks, which could be hard if the disk 

has a fuzzy edge, irregular shape, or unclear edge due to low electron dose or thick sample. 

The application of 4D STEM on amorphous materials also often adapt this image mode, as a 

high spatial resolution is not necessary for the samples without repeating structure. There have 

been few studies focus on apply 4D STEM to study amorphous material. A representative study 
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focuses on determining the structural heterogeneity in metallic glasses using this new 

technique[45]. 

2.3.3 4D STEM Mode 2: Bragg Angle ≈ Convergence Angle 

 

With a moderate size objective aperture and a convergence angle of about 10 mrad, this 4D 

STEM imaging mode with simple overlapping between diffraction disks could be achieved. 

Under this 4D STEM mode, diffraction disks overlap with each other and result in interference in 

the overlapping region, but the overlap patterns are simple, so one can still identify and index 

each diffraction disk. 

This imaging mode is especially helpful for a phase retrieval technique called 

ptychography[46],[47]. Ptychography seeks to recover the lost phase information in the 

transmitted electron probe at each probe position using the interference between the undiffracted 

beam and diffracted beam. The theory was proposed about thirty years ago[46] with simple 

Wigner deconvolution algorithm[48] solving ptychography problem and some early year 

experimental implementation[49],[50] showing resolution from phase image beyond the 

microscope’s information limit. Ptychography started to draw some considerable attention with 

the recent development of the fast direct electron detector, which enabled the simultaneous 

acquirement of the whole diffraction pattern, which makes ptychography data much more 

accessible.  

Using the fast direct electron detector, researchers used psychography to achieve enhanced 

contrast on light elements[51], higher spatial resolution on low-voltage STEM[52], and even 

brake the world record for the highest spatial resolution achieved in a TEM[10]. Studies have 

also been carried out to optimize the ptychography technique, includes the new iterative 
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ptychography solving engine using multiple diffraction patterns[53], graphic processing unit 

(GPU) based ptychographic solver with much higher processing speed[54], and systematic study 

of optimized imaging condition using pixelated detectors[55],[56]. 

There are also significant limitations to ptychography. First, ptychography solves the phase 

information in the transmitted electron probe, and the phase information may not be directly 

related to the atomic structure when the sample is thick with complex dynamic diffraction. And it 

would be especially confusing when there is a phase wrap (phase change by 2π) and make 

ptychography result uninterpretable. Also, in many cases, ptychography problems are solved 

under the weak phase object assumption, which assumes the sample only changes the phase of 

the electron wave function and does not change the magnitude. This also only holds true for very 

thin samples. As a result, ptychography is very useful for thin samples, such as 2D materials, or 

materials with light elements, such as polymer and biomaterials. Recently, there has been some 

effort to extend psychography to thicker samples and solve the whole 3D electrostatic potential 

using a more complex algorithm[57], but to do this would require a huge dataset acquired from 

different defocus values and consumes lots of computational power to solve the problem. 

2.3.4 4D STEM Mode 3: Bragg Angle < Convergence Angle 

 

With a large objective aperture and a large convergence angle (often > 20 mrad), this 4D STEM 

mode with high spatial resolution can be achieved. This setup is the same as conventional high-

resolution STEM and high-resolution STEM spectroscopy. The benefit of this image mode is an 

extremely high spatial resolution, often sub-Å, that can be used to resolve individual atom in the 

sample. As a high convergence angle is used, there are lots of overlap between different 

diffraction disks. When the sample is thick with complex dynamical diffraction, it becomes hard 

to identify and index each diffraction disk, and the CBED patterns often consist of a bright 
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undiffracted disk and lots of arcs around it. As a result, it could be hard to study the material 

structure using the information from a certain diffraction disk. 

The most popular application of this 4D STEM mode is to visualize the electric field or magnetic 

field. This application takes advantage of the fact that the charged electron probe drifts under 

Columb force or Lorentz force, and visualize the field by detecting the shift in electron probe’s 

center of mass. Related work could date back to about ten years ago using the segmented STEM 

detector. Then the results are refined with the pixelated detector to better resolve the center of 

mass shift[58],[23]. Nowadays, an atomic resolution electric field map can be routinely obtained 

on a stable enough STEM with a moderately fast pixelated detector. Furthermore, there have 

been works to quantitatively measure the electric field[58],[59], measure large scale polarization 

field after the cancellation of the strong electric field surrounding nuclei[60], and directly 

visualize the irregular electric field distribution around each atom site[61]. 

There have also been studies on the magnetic field under a similar idea using so-called Lorentz 

STEM. In a Lorentz STEM, the magnetic field surrounding the sample is turned off so that the 

magnetic structure will not be damaged by the strong magnetic field from objective lenses 

(around 1 T). Meanwhile, the spatial resolution is limited to tens of nm without the critical 

objective lenses. With the limit on spatial resolution, researchers have visualized relatively large 

magnetic structures such as magnetic skyrmion and magnetic domain boundaries[62],[63]. 

Efforts have been made to develop a magnetic field-free environment around the sample without 

turning off objective lenses[64], which achieves a magnetic free environment while achieving 

high spatial resolution. The system is proved to be capable of acquiring atomic resolution images 

on strong magnetic materials but has not been able to achieve atomic resolution magnetic field 
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imaging, as the magnetic field is much weaker compared to the electric field surrounding atom 

nuclei. 

Besides, the ptychography reported with record-breaking resolution actually also belongs to this 

imaging mode as the convergence angle is 21.7 mrad, but each diffraction disk and the 

overlapping region can be well resolved and indexed due to the usage of the thin 2D material. 

2.4 4D STEM System at UW-Madison 

A 4D STEM system is developed and employed at the University of Wisconsin-Madison on top 

of a Direct Electron DE-16 pixelated detector and an aberration-corrected Titan STEM. The 

system consists of two major parts: a customized scan control system to synchronize the STEM 

scan and detector acquisition, and a self-developed software to control the whole 4D STEM data 

collection. The system is designed to have enough bandwidth to accommodate the next 

generation ultrafast detector, which could acquire 120,000 frames per second. The specifications 

of the Titan STEM at UW-Madison can be found from ref[65], and the specifications of the DE-

16 detector can be found from refNN. This section will introduce the components of the 4D 

STEM system at UW-Madison, its different modes, and the typical operation procedure of the 

system. 

Name Manufacturer and model Bandwidth Other parameters 

Arbitrary wave generator 

(AWG) 

Keysight M3201 200 MHz 2 GB memory, 16 bit, 

1GSamples memory, 

0.5 V output range 
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Digitizer Keysight M9217A 32 MHz 2 channel, 16 bit, 32 

MSample memory, 256 

V detection range 

Amplifier Keysight 3222 20 MHz  

PCIe Chassis Keysight M9010A   

External Scan Switchbox Thermo Fisher Scientific  Two external ports 

with Lemo connection 

Table 2.2 Specifications of different hardware parts in the UW-Madison 4D STEM System 

The components of the scan control system can be found in Table 2.2. All different parts are 

ready for the next generation ultrafast camera, which will be operating at a maximum of 120 kHz 

frequency, still much lower than the part with the lowest bandwidth (20 MHz from the amplifier) 

and thus bandwidth is not a concern for the ultrafast camera. A more practical concern for the 4D 

STEM system is the somewhat limited memory size in the AWG and the digitizer. As the 4D 

STEM scan is relatively slow, a large number of samples are needed to save the scan pattern and 

the data generated from the HAADF detector (the latter one is less of a concern as the sampling 

rate of the digitizer can be changed). 

The AWG takes control of the whole 4D STEM acquisition with the camera runs in slave mode. 

The whole procedure starts when the AWG receives the acquisition command from the scan 

software, then it starts to generate signals to control digitizer acquisition, camera acquisition, and 

STEM scans. The STEM scan signal performs a conventional row-wise pattern like the internal 

scan system of Titan. The camera stays ready and exposed during the acquisition and does a 

single readout for each trigger signal it receives from the AWG. The digitizer starts a single 
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readout from the HAADF detector with the length covering the whole 4D STEM acquisition 

when it detects the rising edge of the trigger signal. 

 

Figure 2.5 UW 4D STEM system timing diagram under the rolling shutter mode. 

The DE-16 camera can run in two different shutter modes, namely rolling shutter and global 

shutter. Rolling shutter adapts a sequential readout structure, where different parts of the sensor 

expose at different points in time (see the readout front in figure 2-5). The majority of CMOS 

detectors utilize a rolling shutter. The rolling shutter for the DE-16 camera does the readout in a 

row-wise pattern. It more effectively uses the limited readout bandwidth by generating a 

continuous readout stream, instead of doing all at once readout after exposure in a global shutter. 

Rolling shutter generates artifact when it is used to take the image of a changing object, and this 

artifact is well studied in ref[66],[67]. In 4D STEM, the moving beam generates the changing 

CBED pattern. More specifically, the usage of a rolling shutter means each frame acquired 
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contains a mixture of information from two consecutive beam positions, and different row 

contains a different fraction of information from the first and second beam position. With this 

taken into consideration, the beam movement is not synchronized to the start of the readout of 

each frame, as each frame is going to contain a mixture of two beam positions anyway. 

The artifact of the rolling shutter is subtle and can be ignored when the beam scan is 

oversampled, which means the step size between two beam positions is much smaller than the 

size of the object, and thus the difference between two consecutive CBED patterns are small. 

Also, as a result of the beam instability, sample drift, and a finite source size, the image acquired 

on each frame is from a small local area instead of a single infinite small point. (This actually 

suggest that we are always collecting PACBED patterns instead of CBED patterns in a real 

experiment, but we are going to keep using the term CEBD pattern to refer to the data collected 

from a single frame) The effect of the rolling shutter will be minimized when the scan step size is 

comparable or smaller than the size of this small area in each acquisition. Another case when the 

rolling shutter artifact does not matter is when extracting information from PACBED pattern 

after averaging over multiple CBED patterns, where the information from different beam 

positions are averaged in the end when generating the PACBED pattern and thus it does not 

matter if each image contains information from two beam positions. This also suggests that one 

way to avoid effect from the rolling shutter artifact is to use the information from PACBED 

patterns instead of from a single CBED pattern. 

The DE-16 camera is also capable of running under the global shutter mode at the cost of 

acquisition speed[67], which eliminates the artifact from the rolling shutter. The timing diagram 

under the global shutter mode is shown in figure 2-6. Under the global shutter mode, it is 

important to set the timing of beam movement to be exactly the same as the start of readout, 
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which is 203.8 µs after the rising edge of the trigger signal after capacitor reset and charge 

transfer from sensor to the capacitor. 

 

Figure 2.6 UW 4D STEM system timing diagram under the global shutter mode. 

A customized scan software coded in C# is used to control the whole scan procedure, a 

screenshot of the software can be found in figure 2-7. The software can make three different 

types of scans: 2D acquisition, full-frame 4D STEM, and ROI 4D STEM. The first one runs a 

beam scan with the HAADF detector and generates a 2D STEM image without using the DE-16 

camera. Both 4D STEM acquisition mode runs the DE-16 camera to collect a 4D STEM dataset 

on Streampix and simultaneously save a 2D HAADF image to the DE computer. The full-frame 

4D STEM mode uses the same scan area as the internal scan system of Titan, while the ROI 4D 

STEM selects a sub-area on the full-frame area using the selection box shown in the software. 

Although the acquisition is controlled and triggered by the scanning software, the data generated 
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from the DE-16 camera is collected by a different software called Streampix, which simply 

stream data from the camera to solid-state drive (SSD) array and has no inter-talk with the scan 

software. Streampix is used for its ability to directly streaming data from the camera to the SSD 

array, and the maximum data size is determined by the full size of the SSD array. Another 

possible option, which was tested before, is to collect data using a software called DE-Server. 

DE-Server first saves everything to the computer memory, which means the maximum data size 

is limited by the size of the computer memory and is much smaller than the size of the SSD 

array, but it also brings the advantage of being able to process and manipulate the data during the 

acquisition process to show some real-time feedback. The DE-Server option is not adopted 

mostly for the limitation it imposed on the data size.  

 

Figure 2.7 A screenshot of the scan control software used for UW 4D STEM system 

Using the scan software and Streampix, a typical 4D STEM acquisition procedure includes the 

following steps. 
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1. Change the scan source from ‘Internal’ to ‘EELS’ on the external scan switch box. 

2. Set the 4D STEM scan parameters on the scan software. 

3. Set the save directory for Streampix, change acquisition mode to ‘Slave mode,’ then start 

the acquisition. 

4. Unblank the beam if the beam was blanked before to protect the sample, then click ‘Full-

frame 4D STEM’ or ‘ROI 4D STEM’ on scan software. 

 

2.5 Multislice Simulation 
 

Multislice simulation has been applied to simulate the interaction between material and electron 

and thus simulate the STEM image and diffraction patterns[68], which helps people design 

experiments, predict experiment results, and interpret the collected data[69]. In multislice 

simulation, a thick specimen is divided into multiple slices. For each slice, the electron wave 

function gets a phase shift due to the projected atomic potential of all the atoms within that slice, 

then propagate for the thickness of the slice. This simulation scheme is very efficient for large 

structures with many atoms compare to the Bloch wave method, which is typically used for small 

simulations. So far, there have been multiple implementations of multislice simulation, some of 

them are CPU parallelized, or GPU parallelized, a complete list can be found in ref[70]. In the 

works reported here, Prismatic[70],[71] was used to simulate both 2D STEM image and CBED 

patterns in 4D STEM with the acceleration of an Nvidia P100 GPU. 

Although typically being qualitative and often quantitative accurate, two factors are typically not 

considered in multislice simulations, which could generate some discrepancy between simulation 

and experiment. One factor is the atomic bonding effects, as almost all the multislice simulation 

software consider the specimen as a collection of independent atoms with no chemical bonding 
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considered. To include the bonding information, one has to first draw the bonding information 

from sources such as density functional theory (DFT), then feed it to the multislice algorithm to 

replace the simple independent atom model. An implementation could be found in ref[72],[73] 

with discussions on the effects in the annular dark field (ADF) image. This effect could be more 

dramatic in some parts of the CBED patterns collected in 4D STEM experiments. 

Another factor that is often not considered in multislice simulations is the inelastic 

scattering[74]. This procedure is typically simulated using a Monte Carlo procedure and is 

currently implemented µSTEM[75]. The simulation of inelastic scattering convolves three more 

parameters: characteristic angle, which is the characteristic of the Lorentzian distribution of the 

inelastic scattering; critical angle, which is the angular limit on the inelastic scattering; and mean 

free path of the material. The inelastic scattering is shown to be critical for a good quantitative 

interpretation for both conventional STEM image[76] and the annular intensity in 4D STEM[77]. 

2.6 Collaborative projects 
 

This section presents all the collaborative projects that I have worked on utilizing the power of 

aberration-corrected STEM. High-resolution STEM, STEM-EELS, STEM-EDS, and CBED has 

been used to give insights into different materials, include low-dimensional materials, battery 

materials, and alloy materials. 
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Fig 2.8 STEM-EDS elemental maps of Ti, O, and Cl on the TiO2 thin film and CBED pattern 

acquired from different TiO2 structures. 

A hidden metastable intermediate in amorphous TiO2 thin film was discovered with a critical 

role in electrochemical damage as they induce localized high electrical current that expedites the 

etching of TiO2 thin film when it is used as Si photoelectrochemical photoanodes protection 

layer[78]. STEM was used to characterize the metastable intermediates in the thin film at high 

resolution with chemical mapping. CBED patterns acquired on the intermediate phase suggest 

that there exist two different intermediate phases, and both of them are different from crystalline 

TiO2 with an Anatase structure and the pure amorphous structure. 
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Figure 2.9 In situ TEM diffraction characterization for different transition metal dichalcogenides 

and oxide used as anode materials for Li-ion battery during lithiation step: (a) graphene-

supported SnS2, (b) interconnected vertically stacked MoS2, (c) surface gradient Ti-doped MnO2 

nanowires. 

Nanostructured transition metal oxide and dichalcogenides, include Ti-doped MnO2 

nanowires[79],  vertically stacked MoS2[80], and graphene supported SnS2[81], were used as 

anode materials for high-rate and long-life Li-ion batteries. STEM was used to study the 

microstructure of these materials, and in-situ TEM was used to study the phase transition of the 

anode materials during the lithiation step. Diffraction patterns were collected during the lithiation 

step, then the radial intensity profiles of diffraction patterns were derived and used to identify 

different phases present in different stages of the reaction. The identified phases were used to 

offer insight into the litiation step and explain the observed performance of the anode materials. 
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Figure 2.10 Atomic-resolution annular bright-field (ABF) image of Mo solid solution (Moss) 

with line profile across possible interstitial solute locations (upper) and atomic-resolution 

HAADF image of Mo2B phase (lower) in Moss + Mo5SiB2 + Mo2B alloys. 

Aberration-corrected STEM has been applied to characterize Moss + Mo5SiB2 + Mo2B 

alloy[82],[83]. Atomic resolution ABF image was used to analyze the Moss phase in the alloy, 

and results suggest that B atoms occupy the octahedral interstitial sites of the Mo lattice. Atomic 

resolution HAADF image was used to analyze the whole alloy which shows phase separation 

and the Mo2B 
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Lattice structure which agrees well with the expected lattice structure. 

 

Figure 2.11 STEM characterization of CeO2 nanosheets and bio-inspired single-crystal CoO 

nanosheets. 

CeO2 and CoO nanosheets have been synthesized under the help of polymers and characterized 

using aberration-corrected STEM. Atomic resolution HAADF images suggest that the bio-
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inspired CoO nanosheets[84] have monocrystalline structure throughout the µm sized nanosheets 

and the CeO2 nanosheets[85] show polycrystalline structure. STEM-EDS was used to study the 

composition in the nanostructures. EDS elemental maps on both CeO2 and CoO structure shows 

uniform distribution of Ce, Co, and O, suggesting a homogeneous structure on the whole 

nanosheet. 

 

Figure 2.12 High-resolution HAADF-STEM images of (a) LaAuSb, (b) LiZnSb, and (c) FeVSb 

thin films 

Half-Heusler compounds with composition XYZ has drawn attention for its electronic, magnetic, 

and thermoelectric properties that are tunable by controlling stoichiometry, defects, and 

structure. High-resolution HAADF-STEM has been used to characterize Heusler alloy thin films 

of LaAuSb[86], LiZnSb[87], and FeVSb[88] using molecular beam epitaxy. All three samples 
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show good epitaxial alignments between the film and the substrate, and the lattice structures 

agree with expected cubic or hexagonal structures. 

3 Optimizing Non-Rigid Registration for High-Resolution STEM 

Image Series 

3.1 Introduction 

Precise atomic position determination in STEM provides critical information for materials 

science research in several topics, including ferroic distortions[89], strain states[35],[90], 

octahedral rotation angles[91],[92], catalytic activities[93], and point defect[94],[95],[96],[97]. To 

factors need to be considered to get . First is the image signal-to-noise ratio (SNR), which is 

determined by electron dose and proportional to exposure time under fixed beam current. The 

second one is image distortion, which refers to the difference between the actual probe scan grid 

and an ideal regular grid. Image distortions mostly arise from two sources: sample drift during 

acquisition and scan distortions. The scan distortions are mostly dominated by the random offset 

deviation at the beginning of each row in the row-wise scan pattern, which results in flagging 

and skipping artifacts in the collected image. 

To obtain both high electron dose and minimum image distortion, the most common way is 

to acquire a series of fast acquisition frames with small distortion, register the frames and 

compensate for distortions, then average the registered frames to get a single high-quality image 

with high precision. Multiple registration methods have been proposed to compensate for the 

sample drift during acquisition. Rigid registration was first applied by Kimoto et al. .[98], which 

moves all the pixels in a single frame by the same vector to correct the overall sample drift and 

achieved precision better than 10 pm in the final averaged image. Berkels et al[99] applied non-
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rigid registration (NRR) to register STEM image series by assigning a separate drift vector for 

each pixel and better fits the pixel-wise acquisition of STEM. Sub-pm precision has been 

reported using NRR on high electron dose image series[100]. Both registration methods do not 

use any prior knowledge about the input image and can be applied to any image series. The 

disadvantage of these methods is that they only correct the low-frequency distortion caused by 

sample drift, high-frequency distortions such as the flagging and skipping during the scan are not 

fitted nor corrected. 

Methods have been proposed to correct the flagging and skipping at the beginning of each 

scan row using prior knowledge about the input image series. By assuming periodic lattice 

structure in the image, Braidy et al.[101] detected the random offset using the phase image 

generated from the streaks in Fourier space with the peaks from repeating structure as a 

reference. By assuming a smooth peak shape in the atomic resolution image, Jones and 

Nellist[102],[103] developed SmartAlign, which corrected the distortions by minimizing the 

difference between consecutive rows and then reordering rows to get a round shaped appearance 

of the peaks. Both methods effectively removed the flagging and skipping artifacts, but the 

assumptions made on the underlying image series means the method should be applied with extra 

care and they may not apply to all image series. 

A group of mode dedicated methods to correct the flagging and skipping artifacts use 

images acquired from different scan directions. As the fast scan direction has negligible 

distortion and high fidelity, acquiring data with at least two different fast scan directions can 

reconstruct a final image with small distortion across the whole frame. Sang and LeBeau[104] 

developed revSTEM, targeting at constant linear sample drift and is able to resolve accurate 

lattice spacing and angle on less stable samples. Ophus el al.[105] improved on revSTEM to 
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include the correction of nonlinear drift, including flagging and skipping using two images with 

orthogonal scan directions. Ning et al. .[106] further enhance the method for atomic resolution 

image by emphasizing the atomic position match between images collected with different scan 

directions. 

In this study, we focus on the NRR algorithm used by Berkels et al. and study the 

conditions to achieve sub-pm precision on the HAADF-STEM image series. Both experimental 

conditions and registration parameters are studied using image series acquired on SrTiO3 [100] 

single-crystal samples. This NRR algorithm capture and corrects the overall sample drift pattern 

during the acquisition without fitting the discontinuous distortions such as the flagging and 

skipping. However, these distortions could be averaged out in the final averaged image if the 

magnitude of these distortions has a zero mean value. 

The registration quality is measured by calculating the precision of the final averaged 

image. In this work, the image precision is defined as the standard deviation of the distance 

between Sr atoms, under the assumption that the strain-free sample should have uniformly 

distributed Sr atoms and the standard deviation on an ideal image should be zero. The position of 

Sr atoms is determined by fitting each peak to an asymmetric 2D Gaussian function. Another 

popular method to determine the image quality on the atomic resolution image is to calculate the 

residual strain on a nominally strain-free specimen, which was utilized in ref[107]. 

3.2 Experimental Condition Optimization 

To achieve sub-pm precision, it is important to keep the sample close to the zone axis and 

keep the mistilt less than 1 mrad. The registration result on SrTiO3 [001] sample with a small 

mistilt angle is shown in figure 3.1 (b). The tilt is estimated to be less than 1 mrad from the [001] 

zone axis using the PACBED pattern shown in figure 3.1 (c), and the final precision is measured 
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to be 0.75 pm along the fast scan direction ([100] direction) and 0.77 pm along the slow scan 

direction ([010] direction). The registration result from the image series acquired with a larger 

mistilt angle is shown in figure 3.1 (e), where the sample is tilted by about 6 mrad from the zone 

axis. The precision measured on this dataset is 1.67 pm along the fast scan direction and 1.79 pm 

along the slow scan direction, both are worse than the precision from the sample with small tilt 

and over 1 pm. This loss of precision might be caused by the loss of resolution or lower SNR 

from the less off-zone axis tilt. 

Another important factor in the experiment is the drifting rate. We suggest to stabilize the 

sample for long enough and achieve better than 1 nm/min drift rate. A small sample drift rate is 

important to guarantee a large enough field of view in the final image. One could also obtain a 

large field of view by using a larger scan with more scan points. 

 

Figure 3.1 (a) single HAADF acquisition, with an example of slicing artifact marked by the red 

arrow, (b) averaged image after registration and cropped according to sample drift, (c) PACBED 
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pattern with the center bright disk corresponding to 24.5 mrad convergence angle from an on 

zone axis SrTiO3 sample. (d-f) shows the single frame, final image, and PACBED pattern for a 

tilted sample 

 

3.3 Parameter Optimization 

The tunable parameters in the NRR algorithm are listed in Table 3.1 with their definition, 

range, and a recommended value. There is a total of five tunable parameters: the smoothness 

factor λ, start level and λ multiplier which controls the multilevel registration scheme and the 

number of registration iterations and the convergence criterion. The detailed explanation of each 

parameter and why they are being used can be found in ref[99]. Each parameter’s effect on the 

precision of the final averaged image from NRR is tested by varying one parameter at a time 

with other parameters fixed at the recommended value. 

 

Name Definition (assume single raw frame has 

2n by 2n pixels) 

Range Recommend 

value 

Smoothness factor 

(λ in eq [1]) 

Controls the relative importance of the 

smoothness term in the energy, eq [1] 

> 0 200 

Start level Images for the first level of registration 

will be downsampled to 2start level × 2start level 

pixels 

An integer 

between 1 and n 

for input images 

of 2n × 2n pixels 

n-1 
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λ multiplier Multiplier to λ for registration of data on a 

grid downsampled by a factor of 2 

> 0 5 

Convergence 

criterion 

Stopping threshold for energy 

minimization 

> 0 10-6 

Total iterations The number of total NRR iterations 

including the initial stage and following 

refining stages.  

integer ≥ 1 3 

Table 3.1. List of all parameters in NRR with their definitions, possible ranges, and the 

recommended values. 
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Figure 3.2 Effect of (a) λ, (b) registration start level, (c) λ multiplier, (d) convergence criterion, 

and (e) total iterations on the precision of the final image. 
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Figure 3.2 shows the relationship between image precision and the selections of each 

parameter. Figure 3.2 (a) shows that the smoothness factor λ is the most important factor for a 

high precision registration. The data used for NRR show a preference for large λ values, with a 

small λ value causing a loss of precision. There is no significant improvement in precision with λ 

larger than 200. The preference for a large smoothness factor suggests that the distortion we have 

on the input image series is smooth and can be well fitted to a distortion field with high 

smoothness. 

Figure 3.2 (b) shows precision from different registration start level, which controls the 

downsampling in the multilevel registration process and is used to avoid unwanted local maxima. 

With 2n pixels along each side in the raw input images and a registration start level of k, the 

number of pixels at the beginning of registration is 

𝑛𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑑 =
𝑛𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

2𝑛−𝑘 ,                                                [1] 

where noriginal is the side length of the raw input image in the unit of pixels. Registration 

results show sub-pm precision for all different registration start levels. The registration start 

levels smaller than 4 were not tested as the downsampled image at the beginning of registration 

may lose all the features that could be used in registration and cause unphysical sudden jumps 

between frames. This is especially likely if the image contains only periodic lattice structures. An 

example of this sudden jump will be shown in section 3.4. 

Figure 3.2 (c) shows the effect of λ multiplier. In the multilevel registration scheme, 

downsampled registrations are performed with a smoothness factor of  

( multiplier)r×, 𝑟 = log2(
𝑛

𝑛𝑑𝑜𝑤𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑑
),                                   [2] 
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where λ is the smoothness factor used at full pixel size, and λ’ is the smoothness factor 

used on the downsampled image. The result shows a preference of λ multiplier larger than 1, 

resulting in a larger smoothness factor λ and a higher requirement for registration smoothness at 

a coarse pixel grid. 

Figure 3.2 (d) and (e) show the effects of the convergence criterion and the number of total 

iterations. The convergence criterion is used as the exit condition when minimizing the energy 

function, and the image series will be re-registered multiple times depends on the number of total 

iteration parameters. Result suggests that a convergence criterion of 10-6 with a total of 3 

iterations is enough to reach sub-pm precision in the final result. 

3.4 Artifact Visualization 

In this section, we directly visualize the distortion fields in the registration under different 

registration parameters, in order to get a better understanding of the registration behaviors and 

how they affect the precision in the final image. In each case, NRR seeks the deformation to 

register the target frame shown in figure 3.3(b) to the keyframe shown in figure 3.3(a). Figures 

3.3(c), (e), and (g) show the vector plots of non-rigid pixel deformations determined under the 

default parameter, a (too) small start level, and a (too) small lambda value, respectively. All three 

plots are shown at reduced pixel density (344 pm spacing between vectors) for the whole frame. 

Figures 3.3(d), (f), and (h) show the deformed frames after applying the deformation. 

The pair in figure 3.3 (c) and (d) shows the correctly fitted deformation field, which 

captures the correct overall drift pattern and the registered patch looks similar to the keyframe 

shown in figure 3.3 (a). Figure 3.3 (e) shows the deformation field detected when the start level 

is too low, which generates a half-unit cell jump and causes the Sr sites in the registered patch to 

overlap with Ti sites in the keyframe. Figure 3.3 (g) shows the deformation field determined 
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when the smoothness factor λ is too small. Without the smoothness constraint, NRR detects the 

unphysical deformation field with lots of abrupt changes. In this case, all the distortions in the 

keyframe will be duplicated in the registered frames and eventually in the final averaged result, 

causing a loss of precision. 

 

Figure 3.3 Example of the deformation field for registration between two frames under various 

conditions. (a) and (b) are small patches of the original frames. (a) is the keyframe, and (b) will 

be deformed to match it. (c) and (d), (e) and (f), and (g) and (h) are pairs of deformation vector 

fields (c, e, and g) and deformed images (d, f, and h) processed with various choices of 

registration parameters. (c) and (d) use the default parameter, (e) and (f) used a too small start 

level, and (g) and (h) used a too small lambda value. 

3.5 NRR with Fixed Electron Dose 

The total electron dose a certain sample could sustain is often limited, and the fixed total 

electron dose budget can be divided into more frames with a smaller frame dose, or fewer frames 

with higher frame dose. Essentially, we are making a choice between frames with fewer 
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distortions and frames with higher SNR and thus easier to register. To study the precision for 

different choices of frame dose, we have acquired image series with frame doses ranging from 

1.2×103 e-/Å2 to 2.5×104 e-/Å2, varied by using pixel dwell times from 0.5 s to 12 s at a fixed 

beam current. Then NRR was performed on image series with a fixed total dose ranging from 

2×105 e-/Å2 to 12×105 e-/Å2  with different frame doses. 

Figure 3.4 shows the precision along fast scan direction and slow scan direction against the 

frame dose/pixel dwell time under different sets of total electron dose. For the slow scan 

direction, the results suggest that the highest precision can be achieved at 6 µs/px pixel dwell 

time. For fast scan direction, the highest precision is achieved at 0.5 µs/px dwell time, which is 

the fastest scan, and 8 µs/px shows a local minimum in precision. Overall, the precision gets 

worse when pixel dwell time increases beyond 10 µs,  as more distortions exist within a single 

frame and cannot be corrected by NRR. At 0.5µs/px dwell time, the images capture, rather than 

averaging over, a broader range of distortions, at the cost of possibly larger scan distortions, 

which result in a good precision along the fast scan direction and slightly worse precision along 

the slow scan direction. 6-8 µs/px dwell time generates good precision along both scan direction, 

and we suspect this is the result of some distortion source being suppressed at these scan 

frequencies. In conclusion, we recommend 6-8 µs/px dwell time for high precision imaging 

using NRR, but this option could vary for different instruments and different labs. 
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Figure 3.4 Registered averaged image precision along (a) fast scan and (b) slow scan direction 

under different pixel dwell time / frame dose. The total dose is kept constant by varying the 

number of registered images. 
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3.6 Conclusions 

Experimental requirements and registration parameters to achieve sub-pm precision have 

been studied using the atomic resolution HAADF-STEM image series acquired on a SrTiO3 

[001] single-crystal sample. A small off-zone axis tilt of less than 1 mrad and a small sample 

drift of less than 1 nm/min have been found to be critical for a high precision result, while a large 

enough smoothness factor λ is the most important registration parameter. When applying NRR to 

image series with fixed total electron dose, the overall best precision is achieved at about 6 µs/px 

pixel dwell time. Sub-pm precision can be routinely achieved with the experimental condition 

and registration parameters carefully selected. 

4 Non-local Principle Component Analysis to Denoise Hyperspectral 

EDS Data 

4.1 Introduction 

One capacity of modern STEM is its integration with microanalysis techniques, including 

electron energy loss spectroscopy (EELS) and energy-dispersive X-ray spectroscopy (EDS). 

With modern aberration corrector[108], advanced detector[109], and high stability sample 

holders and instrument, it becomes possible to study chemical information in STEM at high 

spatial resolution and possibly at atomic resolution. However, as a result of the limited cross-

section for EDS and EELS, the collection of EDS and EELS data still requires much longer pixel 

dwell time (ms – seconds) to gather enough signal compare to traditional HAADF-STEM (a few 

to tens of µs), which makes it more important to correct sample drift and denoise to visualize the 

underlying information. 
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A few different ways have been proposed to denoise the atomic-resolution hyperspectral 

data collected in STEM. One simplest way is to apply a spatial filter to only keep data with 

certain periodicity in the denoised data. The spatial filter could effectively remove random noise 

and improve SNR as the random noise shows no periodicity and mostly occupies the low-

frequency region in the Fourier space. However, the spatial filter is known for forcing periodicity 

in the denoised image and could possibly remove aperiodic features together with noise. Another 

widely-applied denoising method is principal component analysis (PCA)[110], which assumes 

the noiseless ground truth has lower dimensionality and perform the denoise by reducing the 

dimensionality of the noisy data. PCA has been proved to be useful in the denoising of 

EELS[111] and EDS[112]. The current state-of-the-art denoising method is the non-local 

method, which divides the data into small patches, search for similar patches, denoise the group 

of similar patches, then project the denoised patches back to the original data shape. Mevenkamp 

et al. applied non-local means[113] (NLM) and block-matching and 3D-filtering[114] (BM3D) 

to denoise single frame STEM image. Outside electron microscopy, block-matching and 4D-

filtering[115] (BM4D) has been developed to directly denoise 3D hyperspectral data. 

In this work, we adopted the NLPCA method[116] to denoise the EDS spectrum image. 

NLPCA builds on previous non-local methods in two ways. First, a k-means clustering[117] step 

is applied to the collection of all the patches to look for similar patches, instead of doing 

similarity search within a local search window or along a certain direction, which better help 

reveal the similarity and redundancy within the whole data. Second, NLPCA applied PCA to 

denoise groups of similar patches, instead of simply take the average or apply a spatial filter to 

remove the noise, which is better at removing noise with a more complex distribution. On top of 

that, the NLPCA we applied has Poisson statistics embedded when measuring the similarity 
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between image patches and perform PCA to denoise groups of image patches, which makes it a 

powerful method to denoise EDS data that perfectly obey Poisson statistics. 

4.2 Non-local Principle Component Analysis and Parameter Selection 

In this section, we will briefly introduce the NLPCA method, where further details of the 

method and its denoising performance on real-life photos can be found in ref[118].  

 

Figure 4.1 Schematic of NLPCA denoising. 

 

The schematic of NLPCA is shown in figure 4.1. When a noisy 3D data cube is fed to 

NLPCA, it first divides the large datacube into lots of small overlapping cubes. The small cubes 

are divided into a few groups in the clustering step using k-means clustering, with the difference 

between two cubes defined as the Bergmann distance measured under Poisson statistic[119], 

which is essentially measuring the similarity between two cubes assuming both cubes are 

corrupted by Poisson noise. Then, within each group of similar cubes, a PCA is performed to 

remove the noise by finding the redundancy and reducing the dimensionality of the collection of 
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cubes. The denoised cubes are then reprojected back to the original size of the raw datacube to 

generate a denoised datacube with the same size. 

Although being a powerful method and optimized for Poisson noise corrupted data, there 

are certain limitations on the NLPCA method. First, the denoising parameters, namely the 

number of clusters in the pachization step and the number of principles components to use in the 

PCA step, needs to be determined first, and currently, we don’t have any effective data-driven 

method to determine the denoising parameters on specific input data. This also means that the 

same number of principal components will be used in the PCA step of different clusters, which is 

not ideal as different clusters may contain different features and may need a different number of 

principle components for optimal denoising performance. A second limitation is the computer 

resources needed for NLPCA, as it takes a large memory, often hundreds of times of the raw data 

size, to keep the collection of all the overlapping cubes. And the k-means clustering and PCA on 

the collection of overlapping cubes are computationally intensive. All these means it would be 

challenging, and maybe impossible, to apply NLPCA to denoise datacube with large size. 

4.3 Denoising on Simulated Data and Parameter Selection 

To test the reliability of NLPCA, check for reconstruction artifacts, and determine the 

appropriate patch size, the number of clusters, and the number of principle components, we 

applied NLPCA to a phantom data set with varying levels of Poisson noise. We created a 

noiseless phantom EDS spectrum image based on the experimental data and the ideal lattice 

structure of NdTiO3.  For every lattice site, a 2D Gaussian distribution of intensity was created in 

the appropriate bands, on top of an approximate Bremsstrahlung background[120].  The signal-

to-background of the atomic lattice in each spectral band and the ratio of intensities from band to 

band was matched to the experimental data. Three different Ca distributions were considered, all 
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on the Nd sublattice: uniform substitution, random substitution, and nanoparticles with Ca 

completely replacing Nd. The O and Ti distributions are the same in all three phantoms.  Poisson 

noise is added with a Poisson random noise generator using the intensity in each voxel as the 

mean of the Poisson distribution. 

Denoising quality on the simulated data was calculated in terms of the peak signal-to-noise 

ratio using the ground truth as a reference. PSNR is defined via the mean squared error (MSE), 

which is the averaged squared difference between the target image and the ground truth, 

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑[𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2

𝑛

𝑗=1

.                                       [3]

𝑚

𝑖=1

 

PSNR is then defined as  

𝑃𝑆𝑁𝑅 = 10 ∙ log10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
),                                                   [4] 

where MAXI is the maximum intensity in the ground truth. The denoising parameters were varied 

one at a time over a wide range to denoise the noisy data and calculate the PSNR on the denoised 

data. Then a set of parameters that gives the best denoising quality was determined to be the 

optimized denoising parameters and was used in the denoising of real experimental data.  
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Figure 4.2: PSNR of the denoised random phantom as a function of the NLPCA parameters and 

the input Poisson noise level: (a)-(c) shows PSNR vs. patch size, number of components, and 

number of clusters, and (d) shows PSNR of the denoised images vs. PSNR of the input images.  

Figure 4.2 (a)-(c) shows the relationship between denoising quality and three different 

denoising parameters. Figure 4.2 (a) shows that the PSNR increases with increasing patch size, 

as a larger patch size captures more information and periodicity inside the patch. However, this 

also significantly increases the computational cost. As a result, we used 17 px patch size, which 

is large enough to cover at least one unit cell.  Figure 4.2 (b) shows that it takes only 4 

components to denoise the O and Ti bands, which requires 10 components to recover the Ca and 

Nd band with a more complex structure. We selected 10 components for the PCA step, as there 

is only a small loss in PSNR in the O and Ti band between 4 and 10 components, while less than 

10 components could possibly generate artifacts in the Ca and Nd bands with more complex 

structure. Figure 4.2 (c) shows that the denoising quality is nearly independent of the number of 
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clusters, as long as it is more than 2, which is reasonable as the extra clusters could be empty and 

won’t do any harm to the denoising result. We used a total of 10 clusters for denoising, in case 

the data contains a more complex structure that needs to be captured using more clusters. 

 

Figure 4.3: Simulated ground truth (top row), noised observation (middle row) and denoised results 

(bottom panel) for Ca NPs, randomly distributed Ca and uniformly distributed Ca. In every case 

the Ca occupies the Nd sublattice.  The O and Ti distributions are the same for all three phantoms, 

so they are shown only once. NLPCA performs very well for the highly redundant uniform Ca 

distribution.  Performance for the less redundant distributions is also good.  

 The denoising results on simulated EDS data is shown in figure 4.3 for three different Ca 

distributions. The NLPCA perfectly recovered the ground truth for uniformly distributed Ca. For 

the randomly distributed Ca and clustered Ca, NLPCA was able to recover most of the structure, 

with some shadow on the denoised Ca map where should be no Ca, as a result of cross-talk between 

different bands. The randomly distributed Ca atoms show the worst denoising performance, as 

there isn’t much redundancy in the data that can be used for denoising. Overall, NLPCA is shown 
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to be capable of improving SNR on the data and recover the underlying ground truth for all three 

different data types. 

4.4 Denoising Results and Comparison to Other Methods 

 

Figure 4.4: Comparison between EDS elemental maps recorded along [001] Ca-stabilized 

Nd2/3TiO3 after non-rigid registration (a-e) and NLPCA denoised elemental maps (f-j). Elemental 

maps from left to right display the integrated intensity from (a) O Kα, (b) Ca Kα, (c) Ti Kα+Ti Kβ, 

(d) Nd Lα+Nd Lβ+Nd Lβ4 peaks and (e) an overlaid composite map of Ca, Ti, and Nd. Scale bar 

is 2nm and applies to all panels.  

 With the method tested on simulated data and optimal denoising parameters determined, 

we applied NLPCA to experimentally collected atomic resolution EDS data from Ca-stabilized 

Nd2/3TiO3 [001] sample. The comparison of O, Ca, Ti, and Nd elemental maps from noisy data 

and denoised data are shown in figure 4.4. A significant SNR improvement can be seen in all 

four element maps, with clear atomic features in Ca, Ti, and Nd maps. The O map shows some 

features, but we suspect they are mostly denoising artifacts. The denoised data also clearly shows 
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that Ti occupies a different site than Nd and Ca, which agrees with the fact that Ca was doping 

the Nd site in the perovskite structure. 

 

Figure 4.5: Comparison of CPCA, NLPCA, NLM, and BM3D applied to experimental data 

recorded along [001] Ca-stabilized Nd2/3TiO3. O Kα, Ca Kα, Ti Kα, Nd Lα maps denoised by 

CPCA, NLPCA, NLM, and BM3D are shown in the top row, second row, third row, and bottom 

row, respectively. The scale bar is 2 nm and applies to all panels. 

We have also compared the denoising result from NLPCA to other denoising methods, including 

conventional weighted PCA[121],[122] (CPCA), NLM[113],[114], and BM3D[123]. The 
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denoising results from CPCA, as shown in the second row, shows almost no improvement in SNR. 

The denoising result from NLM is shown in the fourth row, which shows improved SNR and some 

atomic features in the Ti map, but the denoised result in Nd and Ca maps are unphysical and most 

likely to be denoising artifacts. The denoising results from BM3D, as shown in the last row, shows 

good denoising results in the Ti map and some atomic features in the Nd map, but is not able to 

recover the atomic features in Ca map. Also, the denoised Nd map is not clean with obvious 

artifacts. Overall, NLPCA has the best denoising performance on this noisy EDS dataset, and is 

the only one that is able to correctly recover the atomic structure in Ca, Ti, and Nd bands. 

 

4.5 Conclusions 

NLPCA has been applied to denoise atomic resolution spectrum image series collected in 

EDS to reduce the effects of Poisson noise and improve SNR for better visualization of the 

underlying microstructure. The denoised elemental maps are consistent with the structure of the 

material and have a significantly clearer atomic structure. Based on denoised simulated data, 

NLPCA with appropriate parameters can reconstruct the underlying atomic structure for several 

different microstructures. The comparison to other denoising methods also shows that NLPCA 

performs the best in terms of denoising performance and introduces the least artifact. The usage of 

NLPCA may enable EDS spectrum imaging experiments at a reduced dose and thus lower beam 

damage, extending the reach of the technique to lower concentrations and more beam sensitive 

materials. 
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5 Joint Denoising and Distortion Correction 

5.1 Introduction 

As discussed in section 3.1, being able to accurately determine the position of atoms in 

atomic resolution STEM could be beneficial on multiple research topics, and lots of efforts have 

been made to correct the distortions in STEM for better atom position detection. These distortion 

correction tools work well on STEM data with a high electron dose with a reproducible sub-pm 

precision result on the processed image. 

Low dose STEM data is typically dominated by Poisson noise, and denoise methods are 

often applied to find the noiseless ground truth from noisy images to improve SNR and reveal 

the atomic structure. One widely adopted method is to apply filter masks in Fourier 

space[124],[125], with the assumption that high-resolution STEM data is sparse in Fourier space 

and occupies characteristic frequency. However, this could be problematic as it forces periodicity 

in the final processed image and would ignore non-periodic structures. More advent method 

applies non-local means[113] and block-matching and 3D-filtering (BM3D)[114] to denoise 

STEM image using redundancies within the image itself with Poisson noise statistic embedded in 

the method.  

In this work, we present the application of joint denoising and distortion correction 

(JDDC), which is a Bayesian model-based method to do an “all at once” fitting on low dose 

atomic resolution HAADF STEM image series to directly resolve atom positions. A model is 

built to describe the noisy image series with atom position, distortions, and Poisson noise, then 

Bayesian approach is applied to look for the most probable set of atom positions and distortions 

that generate the noisy observation with Poisson noise introduced. Unlike the peak detection in 
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previous works, where a high-quality image with reduced distortion is generated in the 

intermediate step, JDDC directly fit the atom positions from the noisy image series. JDDC is 

especially helpful for noisy image series, where the pixel-wise matching between frames in the 

distortion correction becomes hard and unreliable.  

5.2 Joint Denoising and Distortion Correction Method 

The idea of JDDC is to build a model that contains all different factors in STEM image 

acquisition, include Poisson noise, sample drift, and flyback offset error, for a whole image 

series with multiple frames. A detailed description and derivation of the energy function can be 

found in ref[126]. The model used in this work is improved upon the previous model by using a 

collection of asymmetric Gaussian functions instead of symmetric Gaussian functions, which 

better describes the peak shape expected in STEM images, especially with imperfect optical 

systems. Corresponding to this change, we adapted an extra regularizer term on the peak shapes 

to prevent the model from using extended peaks to fit slicing artifacts in the image and results in 

much more stable fitting under low electron dose.  

Assume we have an image series with N3 frames, and the area of a region of interest 

(ROI) within each frame has pixel size N1-by-N2. Considered the drift between multiple frames, 

we only work on an ROI area that is presented in the whole image series, and the size of the ROI 

area is typically smaller than the size of a single raw frame. The fitted parameters can be divided 

into two parts: a collection of Gaussian functions P = {P1, P2, …, PN3 } which describes total L 

atom sites in the image series, and a collection of deformations W for each pixel (i,j) in each 

frame k. For the Gaussian function part, we assume that atomic columns in a HAADF STEM 

image can be described by a 2D asymmetric Gaussian function with constant background, such 
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that each atom position can be described by seven parameters: 𝑷𝑙 = (𝑥0,𝑙, 𝑦𝑜,𝑙, 𝐴𝑙 , 𝑐, 𝑥𝑤, 𝑦𝑤, 𝐼0). 

Thus, the intensity on the coordinate (x, y) contributed by atom site l is  

𝐼𝑙(x, y | 𝑷𝑙) =  𝐼0 + 𝐴𝑙𝑒𝑥𝑝[(
1

2(1−𝑐2)
)((

𝑥−𝑥0,𝑙

𝑥𝑤
)

2

+ (
𝑦−𝑦0,𝑙

𝑦𝑤
)

2

+ (
2(𝑥−𝑥0𝑙)(𝑦−𝑦0𝑙)

𝑥𝑤𝑦𝑤
))].                  [5] 

To simplify the model and reduce the number of parameters being fitted, we set 𝐼0, 𝑐, 𝑥𝑤, 𝑦𝑤 to 

be the same for all the atom sites, while each atom site has its own intensity and position 

𝐴𝑙 , 𝑥0𝑙 , 𝑦𝑜𝑙. 

The deformations describe the difference between an ideal regular scan grid and the 

actual scan grid. A single deformation vector wijk = (wijk,1, wijk,2 ) is assigned for each pixel (i, j) 

in each frame k, where the two components correspond to the deformation along the horizontal 

direction and vertical direction. The deformation field includes both random sample drift and the 

flyback offset error at the beginning of each scan row. 

The parameters are fitted by minimizing the energy function, which is a sum of N3 energy 

functions for N3 frames 

𝐸 =  ∑ 𝐸𝑘(𝑷, 𝑾𝒌)

𝑁3

𝑘=1

+ 𝑅3(𝑷)

=   ∑{𝑑[𝐼(𝑥, 𝑦 + 𝑾𝒌|𝑷), 𝐺𝑘]  + 𝑅1(𝑾𝒌) + 𝑅2(𝑾𝒌)}

𝑁3

𝑘=1

+ 𝑅3(𝑷)                [6] 

In the function, 𝑷 is the collection of Gaussian function parameters for each peak and is shared 

through the whole image series. Wk is the collection of all the deformation vectors in frame k. In 

the expanded formula, the first term on the right side measures the similarity between 

observation Gk  and the ground truth with deformation. The R1 term serves to fit the Brownian 
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motion for sample drifts and flyback offset errors. The R2 term is a regularizer on the 

deformation, and R3 term is a regularizer on peak positions and shapes. The R2 and R3 terms do 

not fit any specific distortion pattern in the image series but serves to prevent the model from 

unphysical fitting results. 

The R1 term on the right side that fits the sample drifts and flyback offset errors expands 

into 

𝑅1(𝑾𝑘) =  
1

2𝐷
[
|𝑤𝑘

11|2

Δ𝑡
+ ∑(

𝑁2
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∑
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2

Δ𝑡
+

|𝑤𝑘
1𝑗 − 𝑤𝑘

𝑁1(𝑗−1)|
2

Δ𝑇
 

𝑁1

𝑖=2

)].          [7] 

The second term on the right side penalizes the deformation difference between two adjacent 

pixels within a row divided by the time interval Δ𝑡 between the acquisition of two pixels. The 

third term on the right side penalizes the deformation difference between the start pixel of a row 

and the end pixel of the previous row. A large time interval Δ𝑇 = 1000Δ𝑡 is used, which allows 

more flexibility, and the more significant flyback error can be fitted. D at the beginning is a 

balancing factor that controls the relative importance of the Brownian motion term. 

The R2 term on the right side of [6] is a regularizer penalizing the squared norm of the 

deformation with separate weights assigned for horizontal and vertical direction and expands into 

𝑅2(𝑾𝒌) =
1

2
∑ ∑ (𝜈ℎ𝑜𝑟|𝑤𝑘

𝑖𝑗,1|
2

+ 𝜈𝑣𝑒𝑟𝑡|𝑤𝑘
𝑖𝑗,2|

2
) ,

𝑁2

𝑗=1

𝑁1

𝑖=1

                           [8] 

where 𝑤𝑘
𝑖𝑗,1 and 𝑤𝑘

𝑖𝑗,2 denote the horizontal and vertical component of the deformation on 

pixel (i, j) in frame k. This term is only related to the absolute deformation magnitude on each 

pixel, it does not penalize abrupt change in deformation between adjacent pixels like [7] does. 
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The usage of this term could prevent the model from using the Brownian motion to fit noise 

pixels. 

The R3 term is a regularizer on atom positions outside the region of interest and atom 

shapes, it expands into 

𝑅3(𝑷) =  
𝜈𝑜𝑢𝑡

2
∑ [(𝑥𝑖 − 𝑥𝑖

𝑖𝑛𝑖)
2

+ (𝑦𝑖 − 𝑦𝑖
𝑖𝑛𝑖)

2
] + 𝜈𝑠ℎ𝑎𝑝𝑒(|

𝜎𝑦

𝜎𝑥
| − 1)3

𝑝∈𝑃𝑜𝑢𝑡

.                       [9] 

The first term on the right side prevents the atoms outside the region of interest them from 

moving far away from initial positions (𝑥𝑖
𝑖𝑛𝑖 , 𝑦𝑖

𝑖𝑛𝑖). These atom sites need to be considered as 

they have residual intensity inside the region of interest, but as they are not considered when 

fitting the sample drift, we simply require them to stay close to their initial position. The second 

term on the right side penalizes shape change from symmetric Gaussian to prevent JDDC from 

fitting peaks into highly extended Gaussian peaks to compensate slicing artifacts. The two terms 

are weighted by constant factors 𝜈𝑜𝑢𝑡 and 𝜈𝑠ℎ𝑎𝑝𝑒. 

A full list of the tunable fitting parameters and the value we adapted is listed in Table 5.1. 

𝜈ℎ𝑜𝑟, 𝜈𝑣𝑒𝑟𝑡, 𝜈𝑠ℎ𝑎𝑝𝑒, and 𝐷 are the most important parameters for the final fitting result, and they 

are optimized by a global search over multiple parameters simultaneously. Low dose image 

series acquired from SrTiO3 [100] sample with 2 frames and a total 8.56 × 102 e-/Å2 electron dose 

were used to search for optimal fitting parameters by looking for a set of parameters that 

generate the best fitting precision. The fitting precision is defined as the standard deviation 

between Sr atom sites in the fitted results along the fast scan and slow scan directions[100],[127]. 

We did not attempt to refine the fitting parameters for image series with a higher electron dose, 
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as the energy landscape gets smoother with higher electron dose, and JDDC is typically robust 

over a wider range of parameter selections. 

Notation Description Value 

𝜈ℎ𝑜𝑟 Weight factor penalizing the magnitude of horizontal deformation. 1 

𝜈𝑣𝑒𝑟𝑡 Weight factor penalizing the magnitude of vertical deformation. 100 

𝜈𝑠ℎ𝑎𝑝𝑒 Weight factor penalizing the asymmetrical shape. 0.3 

𝜈𝑜𝑢𝑡 Weight factor penalizing peak movement outside the region of 

interest. 

0.05 

𝐷 Weight factor for Brownian motion term. 0.002 

Δ𝑇/Δ𝑡 Time length ratio between Brownian motions for flyback offset 

errors and sample drifts. 

1000 

Table 5.1 List of all fitting parameters in JDDC and adapted values 

When an image series is fed to the JDDC, the algorithm first performs a rigid registration 

to align multiple frames, then average to get a single frame with improved SNR. Atom site 

positions are initialized by a local-maxima searching on the smoothed image. A region of interest 

that presents in all frames inside the image series is then selected. Starting from the initialized 

atom position and an empty distortion field where distortions are zero everywhere, a trust region 

Newton method is used to minimize the energy function [6]. 
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5.3 High Precision Atom Position Fitting at Low Dose 

 

Figure 5.1 Single frame of (a) raw image series, (b) JDDC fitted peaks with distortions, and (c) 

JDDC fitted peaks. (d) – (f) are the zoomed-in patch from the single frame shown in (a) – (c). 

The peak detection of JDDC has been tested on the HAADF-STEM image series collected 

from SrTiO3 [001] single-crystal sample. The image series contains 10 frames of 256-by-256 px 

images, with 21.5 pm pixel size and 10 µs pixel dwell time. A single frame from the raw image 

series is shown in Figure 5.1 (a) with a zoomed-in patch from the region in the red box shown in 

Figure 5.1 (d). The atomic columns are clearly distorted in the raw data, with clear flagging 

artifacts from the scan distortions. The collection of 2D Gaussian functions with distortion fitted 

by JDDC is shown in Figure 5.1 (b) with a zoomed-in patch from the same area shown in Figure 

5.1 (e). The fitted atomic sites with distortion added from JDDC closely resembles the distorted 

atomic sites in the raw data. The sample drift term from JDDC fitting shows zero mean drift 

during the acquisition of each pixel with a standard deviation of 1.5 pm. The scan offset term 
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from JDDC fitting shows zero mean offset for each row along both x and y direction, with 10.8 

pm and 15.1 pm standard deviation along the x and y direction, respectively. The fitting result 

suggests that the probe offset at the beginning of each row is more serious along the slow scan 

direction, in other words, the skipping artifact should be more obvious than the flagging artifact. 
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Figure 5.2 The precision of JDDC fitting results on low dose image series compared to NRR 

from (a) fast scan direction and (b) slow scan direction. The error bars come from the standard 

deviation of the mean from ten repetitions using different image frames. 

To test the performance of JDDC at a low electron dose, 0.5 µs pixel dwell time was used 

to collect the HAADF image series, which is the shortest possible pixel dwell time without 

causing a significant, systematic scan distortion on our microscope[128]. Fitted atom positions 

from JDDC were directly used to calculate the precision with peaks from the edge 10 px 

excluded. The same ROI used in JDDC is used in the final averaged image from NRR to 

calculate the precisions from fitted peak positions. Details of determining peak positions from 

NRR results can be found in ref[100]. 0.5 µs pixel dwell time was used to collect the low dose 

image series to get the lowest possible electron dose, and the total dose was controlled by using a 

different number of frames under a fixed frame dose. 

Figure 5.2 shows the precision of fitted atomic sites positions from JDDC at low electron 

dose benchmarked against the NRR method along the fast scan direction and the slow scan 

direction. JDDC shows improved precision from NRR over the whole range of tested electron 

dose less than 42.8 × 103 e-/Å2 and achieved better than 10 pm precision along both scan 

directions with 856 e-/Å2 electron dose. Such a low dose would cause minimum beam damage to 

most of the inorganic crystal materials but is still outside the useful range for biological materials 

or organic crystal. 

5.4 Conclusions 

A new model-based method called JDDC, which performs all-at-once fitting to detect atom 

sites and distortions from the HAADF-STEM image series, was tested on experimental image 

series collected from SrTiO3 [100] single-crystal sample. JDDC fitting is shown to be able to 
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capture the correct drift pattern from noisy image series, and the fitted images with distortions 

match well with experimental images by eye. JDDC also shows improved precision compare to 

NRR at low dose image series with a total dose of less than 4.5 × 103 e-/Å2, and achieved better 

than 10 pm precision with 856 e-/Å2 electron dose. When applying JDDC to fit image series with 

fixed total electron dose, the best precision was achieved at a pixel dwell time of 2 µs/px, which 

largely eliminates the effect from detector response time while the image still captures most 

distortions. Overall, JDDC is shown to be an effective tool to directly identify atomic sites at 

relatively high precision on a fast scan, low dose image series. 

 

6 4D STEM Data Analysis with Convolutional Neural Networks 

6.1 The Motivation for Using Convolutional Neural Networks 

The full 2D CBED patterns in an atomic-resolution 4D STEM data set contain a wealth of 

information about the specimen. The information is difficult to access directly, partially due to 

the data complexity and volume, and partially due to uncertainty in the precise, sub-Ångstrom 

positioning of the probe on the sample. Position-averaged CBED (PACBED)[129] has been the 

most common method to reduce position uncertainty by giving up the spatial resolution. 

PACBED has been used to determine local STEM sample thickness[129], ferroelectric 

polarity[130], octahedral tilt in oxide superlattices[131], and sample composition with a well-

defined alloy system[132]. 

 The typical way of PACBED pattern analysis compares the experimentally collected 

PACBED patterns to a simulated library covering all possibilities. One way to make the 

comparison is by using the judgment of human eyes, which is slow, limited to resources, and 
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prone to bias. An alternative way is to perform least square fitting (LSF) [133],[134] between 

experiment data and all the possible ones in the simulation library, which is more objective but 

requires a full match of all the experimental parameters. Parameters that need to be matched 

include the size of the zero beams, the position of the zero beams, and the ellipticity of the beam, 

which requires a very large simulated library or a library that is repeatedly recalculated to fit the 

experimental parameter change. Neither of them is well-suited to the massive data that is 

collected in 4D STEM. 

 As an alternative to the LSF, we propose to do this matching using CNNs, which is a 

supervised deep-learning tool developed for computer vision and image recognization[135]-

[136], mostly for image classification. CNN has the advantage of extracting characteristic 

features from input images and using the features for image recognization. It does not require a 

full match between the input image and the image it was trained on, which solves the problem of 

full matching mentioned above. CNNs have been applied to solve a variety of materials science 

problems. As just a few examples: Ziadinov et al. .[137] trained a CNN to locate atom sites and 

identify defects from noisy atomic-resolution STEM images. Xie et al. .[138] built CNN on top 

of element and bonding information in perovskite structure and trained it to predicted materials 

properties. Li et al. .[139] trained CNN to identify dislocation loops in low-resolution 

diffraction-contrast TEM images at an accuracy comparable to a human being. 

 Pioneered by Xu and LeBeau, CNNs have been applied to analyze PACBED 

patterns[140]. They studied PACBED patterns acquired from 60 nm side length region of a 

SrTiO3 [001] single crystal sample, and trained a series of different CNNs to analyze different 

aspects of the sample, including pattern size, center, rotation, local thickness, and off-zone axis 

tilt. In this work, we build on their work in three different ways. First, we target the PACBED 
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patterns averaged from 4D STEM dataset that covers just one atomic column, instead of multiple 

unit cells, resulting in a much higher spatial resolution. The schematic of this sub-unit cell 

PACBED generation and thickness measurement is illustrated in Figure 6.1. Second, we use a 

single CNN, instead of a combination of several CNNs, to predict the property that we are 

interested in while ignoring unrelated properties. Third, regression-CNN (R-CNN) is tested 

besides the conventional classification CNN, which generates a continuous number as output 

instead of separate classes. R-CNN has been shown to be better suited for many materials 

science problem and has higher prediction accuracy when predicting the local sample thickness 

from PACBED patterns. 

 

Figure 6.1 Schematic of sub-UC resolution thickness prediction, a) simultaneously acquired 

HAADF image with peaks marked b) example of Sr-PACBED pattern and CNN estimated 

thickness c) CNN derives thickness map overlapped on HAADF image 

 

6.2 CNN Structure and Training 

The structure of CNN can be divided into two parts, a convolutional base and a top fully 

connected layer for decision making. The convolutional base uses multiple layers of 

convolutional kernels to extract features in the input image, and result in a map of high-level 
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features. Then the top fully connected layers use the detected high-level features to make a final 

decision about the input image, either the class the image belongs to or a single continuous 

number that describes the image. 

Two top fully connected layers structure has been studied, lead to classification CNN (C-

CNN) and R-CNN. The direct output from the fully connected layers a C-CNN is a single 

probability for each class the network is trained on, then the class with the highest probability 

will be used as the final output and to classify the input image. For R-CNN, the fully connected 

layers directly generate a continuous number as the output to describe the input image. 

For the materials science-related properties, some of them can only be predicted using a C-

CNN structure, as they cannot be expressed by a continuous number, such as lattice symmetry 

and different types of atomic sites. On the other hand, many properties we are interested in can 

be described using a continuous number and can be predicted using an R-CNN, such as sample 

thickness, off-zone axis tilt, doping fraction, lattice constant/strain. All these properties can also 

be predicted using C-CNN by dividing the continuous number into many classes. 

For the properties that can be expressed using a continuous number, C-CNN is not the best 

fit as it assumes the classes cannot be arranged in any meaningful order. Practically speaking, 

when training a C-CNN, the same penalty will be applied as long as the predicted class is not the 

right class, no matter how far the wrong prediction is from the correct value. For R-CNN, the 

penalty applied depends on the difference between the prediction and the desired value,  which 

better fits the prediction of a continuous number. However, so far, there are much fewer studies 

on R-CNN, partially because real-life problems are mostly classification problems, and also R-

CNN is much harder to train as it requires the model to learn not only the difference between 

different images but also the overall changing trend across different images. In this work, we 
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trained both C-CNN and R-CNN to predict local sample thickness from a single atomic site 

using the sub-unit cell PACBED pattern generated from atomic-resolution 4D STEM data. We 

trained C-CNN to estimate sample thickness between 0-100 nm with 2 nm estimation accuracy 

and trained R-CNN to estimate sample thickness between 0-35 nm. A smaller estimation range is 

used for R-CNN as it is harder to train, and it is more challenging to train it to learn a wide 

variety of PACBED appearance. 

A good training data is the key to train an effective CNN model, and a good training 

dataset should satisfy two aspects: correctly labeled, and covers all the possibilities within each 

class. As multislice simulated data is used as the training data, and the simulation parameters are 

used as the labels, the data is guaranteed to be correctly labeled. The challenges become how to 

generate simulated data that is realistic and how to cover all the possibilities in the simulation.  

 

Parameter name Parameter value 

Model size 49 Å × 49 Å × 1000 Å 

Output thickness increment  5 unit cells 

Probe step size  0.175 Å 

Potential space sampling  0.06 Å 

Frozen phonon configurations 20 

Root mean square thermal displacement 

for Sr, Ti, O 

Sr: 0.0887Å;Ti: 0.0746 Å  O: 0.0947 Å 

Table 6.1 Multislice simulation parameters used for CNN training data. 

The multislice simulation parameters are listed in Table 6.1. To generate realistic data, we 

have included the effect of thermal vibration, effective source size, and Poisson noise to the 
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simulated data. Effective source size has been previously studied for a quantitative match of 

HAADF-STEM images[69] with different methods proposed to measure the source size in 

experiments[141],[142]. This factor has also been implemented in different STEM simulation 

packages[143],[70]. We found that the effective source size is crucial for the appearance of the 

sub-unit cell PACBED pattern and has to be considered for a visually good match. Figure 6.2 

shows a panel of simulated PACBED patterns under different combinations of effective source 

size and integration radii. The appearance of the PACBED patterns changes significantly with 

different source size when the integration radius is smaller than the size of a single unit cell. And 

by matching the simulated PACBED patterns to the experiment PACBED pattern, we have 

determined that a 110 pm effective source size should be applied to all the simulated 4D STEM 

data. Besides the effective source size, random, Poisson-distributed noise was added to each 

CBED pattern after rescaling every single CBED pattern to a maximum value of 5, which is 

close to the actual intensity in the number of electrons we collected in the experiment.  
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Figure 6.2 Simulated PACBED under different combinations of effective source size and 

integration radius for SrTiO3 [100] with a thickness of 23 nm. The last row shows an example of 

experimental data acquired from 23 nm STO [100] sample and integrated by different radii. All 

PACBED patterns are in the unit of beam fraction. 
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To cover all possible situations in a real experiment, we have simulated 4D STEM data as 

a function of thickness for different off-zone axis tilt between 0 and 3 mrad. Considered that scan 

distortion and sample drift make it extremely difficult to precisely determine the position of a set 

of CBED patterns in the experiments, 36 different spatial integration configurations were used, 

including 9 slightly different integration center positions and 4 different integration radii (105.0 

pm, 122.5 pm, 140.0 pm, 157.5 pm). In the end, each PACBED pattern passed through the data 

augmentation process before being fed to the model, which applies random distortion effect, 

including feature-wise centering, vertical and horizontal flips, vertical and horizontal 

translations, rotations, shears, and zooms.  

In the training step, we adopted the transfer learning scheme instead of training the 

network from blank. In transfer learning[144], both the structure and some weights are adapted 

from a pre-trained VGG16 network using the (large) ImageNet dataset. The pre-trained weights 

on the convolutional layers have already effectively learned features that are important in image 

classification tasks. Although these adapted weights and convolutional kernels are trained on 

natural images instead of grayscale diffraction patterns, some basic features are in common such 

as corners, edges, and arcs, making it a good start point to train the network compared to training 

from scratch. 

The training hyper-parameters are listed in Table 6.2 for two CNNs, with parameters 

optimized by hand one at a time. CNNs are known to be sensitive to the parameters used during 

training, and there is no effective way to select these parameters so far. Several trials were 

performed for each set of parameters to determine the most successful parameter values, which is 

necessary due to the stochastic processes during training, include image augmentation, random 

seeds for minimization problems, etc.  
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Cross-validation was used to monitor CNN’s prediction accuracy during training. The 

whole simulation dataset was randomly divided into 80% training data and 20% validation 

data[145]. Within each training epoch, CNN was trained with the back-propagation method[146] 

using training data, then the trained network was tested on validation data to get a validation 

accuracy. CNN training was stopped if no improvement in validation accuracy is observed 

within a tolerance determined by the patience parameter. The training of C-CNN ended with 

85% validation accuracy, i.e., 85% of the prediction fall into the right category, and the R-CNN 

ended with an RMSE of 1 nm. 

 

Parameter name C-CNN R-CNN 

Batch size[147] 32 

Fully connected layer size 256 

Dropout rate[148] 0.3 

Decay 1e-6 

Learning rate[149] 0.001 0.0005 

Momentum[150] 0.9 0.9 

Maximum learning epochs 20 + 50 20 + 50 

Training library size 11,232 3,888 

Loss function Categorial accuracy MSE 

Optimizer Stochastic gradient descent (SGD) 

Table 6.2 Training parameters for two CNNs 
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6.3 Thickness Estimation on Experimental Data 

 

Figure 6.1 Examples of matching between experiment Sr-PACBED and simulated Sr-PACBED 

from CNN predicted thickness for a,b) C-CNN, and c,d) R-CNN. a) and c) show examples of 

good agreement between HAADF estimation and CNN measurement, b) and d) show examples 

of mismatch between two measurements. The sample is [100] single crystal SrTiO3. 

Figure 6.3 shows examples of experimental Sr-column PACBED patterns, thickness 

estimated by CNNs and HAADF intensity, and the corresponding simulated PACBED patterns 

from the thickness estimated by CNNs. The PACBED pairs shown in Figure 6.3 (a) and (c) 

covers a wide range of different sample thicknesses, and the experimental PACBED pattern is 

visually similar to the simulated PACBED. All the experimental PACBED patterns have a fixed 

rotation from the simulation, as marked by the blue arrows. CNNs are not confused by the 

rotation for the thickness measurement, as rotation was part of the image augmentation at the 

training stage. However, this rotation could be critical for LSF methods. Figure 6.3 (b) and (d) 

show two examples where CNN and HAADF make different estimations. The CNNs over-
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estimate the sample thickness in both cases. In both cases, the difference between two simulated 

PACBED patterns are small and can be hard to distinguish by human eyes. Overall, the matching 

between experiment and simulation suggests that the trained CNNs are making the PACBED 

patterns matching at a level that is similar to human eyes. 
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Figure 6.4 CNN with coarse and fine step size measurements compared to quantitative STEM 

measurements of thickness from the same atomic columns. r is the integration radius about the 

atomic column position in the CBED data set 

Figure 6.4 shows the CNN thickness measurement as a function of the HAADF 

measurement for all the Sr columns in a total of 34 4D STEM datasets, of which 25 have a 

thickness within 35 nm and can be used to test the R-CNN. Three different integration radii were 

used when generating the experimental Sr-PACBED patterns, where a larger integration radius 

improves the SNR by averaging over more CBED patterns, but potentially brings in more 

information that is not related to the Sr atomic column. Quantified performance of two CNNs in 

terms of RMSE and fraction of estimation that fall within ± 1 nm and 2 nm is shown in Table 

6.3. 

Integration radius 

(pm) 

RMSE 

(nm) 

1nm 2nm  Integration 

radius (pm) 

RMSE 

(nm) 

2nm 

70 1.05 68% 94% 70 5.16 66% 

105 1.09 70% 94% 105 4.44 61% 

140 1.14 65% 93% 140 13.10 55% 

Table 6.3. Performance of coarse classification CNN under different integration radii for fine R-

CNN (left) and coarse C-CNN (right) 

For R-CNN, the thickness measurement works well throughout the whole prediction range, 

with about 1 nm RMSE between the CNN measurement and HAADF measurement. For C-CNN, 

the measurement works well on thin samples, and some of the measurements on thick samples 

get deviated from HAADF measurement, which also dominates the RMSE calculated for C-

CNN. Generally speaking,  feature-based measurement is more challenging on thick samples, as 
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the PACBED patterns show denser features than thin samples, and the features have smaller 

variance with different thicknesses. 

 

6.4 Conclusions 

Two CNNs were trained using multislice simulated libraries to estimate local sample 

thickness at an atomic resolution on the SrTiO3 [100] single crystal sample using Sr-column 

PACBED patterns generated from 4D STEM data. Both C-CNN and R-CNN are explored for 

different estimation ranges. 70% and 94% of r-CNN estimations fall within ±1 nm and ±2 nm of 

the corresponding HAADF estimations, 66% of c-CNN estimations fall within ±2 nm of the 

HAADF estimations. The CNN training scheme described in this work can be easily adapted to 

estimate other aspects of the samples with properly generated training data and the correct 

network architecture. R-CNN, which shows high accuracy on fine estimation, can be helpful for 

the measurement of local misorientation, octahedral tilt, and doping fraction. C-CNN, which can 

be applied to the classification type of task and can recognize widely different patterns, can be 

helpful in identifying different types of lattice symmetry, atom, and defects. 

7 Denoising Atomic Resolution 4D STEM Data with Tensor Singular 

Value Decomposition 

7.1 Introduction to Different Types of Denoising Methods 

Denoising 4D STEM data is challenging for its massive size[151] and complex noise 

distribution. A 4D STEM scan with 16-bit 512-by-512 pixel CBED patterns and 100-by-100 

beam positions occupies 5 GB, which is challenging, and the recent advent of ultrafast detectors 

could possibly lead to data size that is multiple times of the current size. The multiple GB data 
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size imposes a serious challenge for denoising methods to be both time- and memory-efficient. 

The noise pattern on the collected CBED pattern is also complex and deviates from the ideal 

Poisson noise[28],[152]. A back-thinned active pixel type detector generates a signal that is 

proportional to the energy deposited into the active layer by a high-energy electron, which obeys 

a Landau distribution[153],[154]. The trace of the high energy electron makes it possible to 

generate signal across multiple adjacent pixels randomly, which further complicate the noise 

pattern. Altogether, it becomes challenging to directly recover the ground truth from a 

combination of all the noise sources mentioned above. 

One common approach to denoise data is to perform dimensionality reduction (sometimes 

referred to as rank reduction) on the noisy data. By treating the noisy data as a group of vectors 

in a high-dimensional space, dimensionality reduction denoise the data under the assumption that 

the noiseless ground truth lies in a subspace with lower dimensionality. The denoising procedure 

typically involves finding a set of new basis vectors for the subspace and use the set of new basis 

vectors to describe the noisy data. Similar ideas have also been used for spectral 

unmixing[155],[110]  to gain a better understanding of the data. With different constraints to the 

basis vectors, different denoising methods have been proposed. The most popular dimensionality 

reduction method in the electron microscopy field is PCA, which finds a set of orthogonal basis 

vectors to describe the noisy data without significant information loss[110],[156], with adapted 

targeting Poisson noise distribution, namely Poisson PCA or exponential PCA[157]. PCA has 

been widely applied to denoise EELS and EDS data collected in STEM, with multiple 

implementations including DigitalMicrograph plugin[158], temDM[159], and Hyperspy[160]. A 

less common method is independent component analysis (ICA)[161], which seeks basis vectors 

without the orthogonal constraint. ICA has also been used to denoise data which contains 
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additive noise that is independent of the singal[162]. Another dimensionality reduction method is 

non-negative matrix factorization (NMF)[163], which can only be applied to non-negative data 

and applies non-negative constraint to the basis vectors and their corresponding coefficients. 

NMF is useful when looking for basis vectors that have certain physical meanings and thus 

required to be non-negative, and has been applied to both denoising[164],[165],[166] and data 

unmixing[167]. These dimensionality reduction methods can only be directly applied to 2D 

matrices, and data with higher dimensions will have to be unfolded to 2D before being 

processed, which leads to possible loss of structure and information. 

Another category of state-of-the-art denoising methods is the non-local methods[168], 

which explores the self-similarity within the data and combines information from similar regions 

to remove random noise. These methods first divide the whole data into small patches, often 

overlap ones, then group similar patches together and denoise each group of similar patches. 

Being applied to electron microscopy, Mevenkamp et al. applied non-local means[113] and 

adapted BM3D[114] to denoise a single frame of HAADF-STEM image corrupted by Poisson 

noise. Yankovich et al. applied NLPCA, which is optimized for extremely noisy data and 

extended to 3D data, to denoise hyperspectral STEM EDS data cube[169],[170]. Maggioni et al. 

proposed the BM4D method[115] as an extension of BM3D to denoise hyperspectral data, with a 

modified version targeting time sequences[171]. As a result of dividing the data into small 

patches, these methods are typically memory-intensive and occupy memory tens or hundreds of 

times larger than the raw data. And there is no straightforward application of non-local methods 

for data unmixing. 

Tensor SVD is a low-rank denoising method for high-order data in three or more 

dimensions.[172],[173],[174],[175] Here, we apply the tensor SVD method of Zhang and 
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Xia[176] to denoise atomic-resolution STEM data, focusing on 4D STEM but also testing EDS 

spectrum images.  Compare to matrix-based rank reduction methods, tensor SVD can maintain 

the full structure of data, giving it the potential to exploit, for example, structure in both spatial 

dimensions. Compare to non-local methods, tensor SVD is much more memory-efficient and 

time-efficient as it directly works on the raw data without dividing it into patches. Based on our 

implementation, single-digit GB 4D STEM data can be denoised in a few minutes on a desktop 

computer with moderate computing power. 

7.2 Tensor Singular Value Decomposition 

The concept of the tensor SVD method is shown in figure 7.1. In our case of atomic-

resolution 4D STEM data, we first unfold the two dimensions in reciprocal space with less 

redundancy into one single dimension and get 3D tensors from the 4D data, as shown in figure 

7.1 (a). As a result of the repeating structure, the ground truth X is a tensor with Tucker low-

rank[177] (r1, r2,r3), which means it can be decomposed into a product of core tensor S with 

reduced size, and three unitary matrices: 

𝑿 = 𝑺 ×1 𝑈(1) ×2 𝑈(2) ×3 𝑈(3), 𝑺 ∈ ℝ𝑟1×𝑟2×𝑟3 , 𝑈(𝑘) ∈ 𝕆𝑝𝑘×𝑟𝑘 ,                 [10] 

as shown in Figure 1(d). Here, the tensor-matrix product is defined as: 

𝑿𝑖𝑗𝑘 = ∑ 𝑺𝑎𝑏𝑐𝑈𝑖𝑎
(1)

𝑈𝑖𝑏
(2)

𝑈𝑖𝑐
(3)

𝑎,𝑏,𝑐                                          [11]. 

The problem of finding the low-rank decomposition shown on the right side of eq [10] from 

the noisy observation Y is what we called a tensor SVD problem. 
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Figure 7.1 Illustration of the tensor SVD problem. (a) noisy observation tensor Y constructed from 

CBED patterns by unfolding the reciprocal space into one single dimension, (b) noiseless ground 

truth tensor X with low rank, (c) additive noise tensor Z, (d) Tucker decomposition of the low-

rank tensor into a core tensor and three unitary matrices.  

To solve tensor SVD problems, unlike their counterparts in 2D matrices, the best rank-(r1, 

r2, r3) approximation cannot be obtained from the truncation of a full decomposition[178], and 

the ranks have to be determined first before solving the problem. In this work, we set the 

denoising rank along each dimension to be the number of principal components derived from 2D 

matrices formed by unfolding the tensor along that dimension. For example, the unfolded 2D 

matrix from 3D tensor with size 𝑝1 × 𝑝2 × 𝑝3 along the first dimension gives a 2D matrix with 

size 𝑝1 × (𝑝2𝑝3) with the elements arranged as  
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[ℳ1(𝒀)]𝑖,(𝑗−1)𝑝3+𝑘 = 𝒀𝑖𝑗𝑘,  𝒀 ∈ ℝ𝑝1×𝑝2×𝑝3 , ℳ1(𝒀) ∈ ℝ𝑝1×𝑝2𝑝3.                      [12] 

The number of principal components on 2D matrices is determined by calculating the 

eigenvalues and make a scree plot, then find the elbow point[179],[180],[181],[112]. This rank 

determination method is justified using simulation data, where the denoising result using the set 

of ranks determined from scree plots are very close to the denoising ranks that best recovers the 

ground truth. 

 To find the best rank -(r1, r2, r3) approximation from the noisy input, we applied the 

higher-order orthogonal iteration (HOOI) method, which was first proposed in ref[178]. In our 

implementation, the HOOI method seeks to minimize the difference between noisy data and the 

low-rank tensor in Frobenius norm,  

𝑿̂ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑟𝑎𝑛𝑘(𝑿)=𝑟1,𝑟2,𝑟3
‖𝒀 − 𝑿‖F,                                           [13] 

by iteratively refines the unitary matrix b along each dimension with 2D matrix SVD. Additional 

details of this implementation can be found in ref[176]. The Frobenius norm measurement does 

not assume any specific noise statistics, and Poisson's negative log-likelihood could be used 

instead as a similarity measurement for data with pure Poisson statistics[33],[182]. This 

implementation also assumes that the low-rank ground truth represents a large fraction of the 

total variance of the noisy data, i.e., the signal should be significant and the noise should be 

trivial. This assumption may not be satisfied if the noise contributes more significantly to the 

total variance, for example, if the data contains some high-intensity noise points. 

7.3 Denoising Performance 

Tensor SVD’s performance is first tested on simulated 4D STEM data with known ground 

truth. Figure 7.2 shows the comparison between noisy data, tensor SVD denoised data, ground 
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truth, and the difference between the ground truth and denoised data in terms of reconstructed 

ADF image and a single CBED pattern on simulated SrTiO3 [001] structure under 1000 FPS 

frame rate. 8, 8, and 30 were used as the denoising ranks for x, y, and k dimensions for the data. 

In both cases, tensor SVD is able to almost perfectly recover the ground truth, with small 

residual and mostly noise shown in figure 7.2 (g) and (h). Figure 7.2 (i) shows the data quality 

measured in PSNR for pairs of noisy and denoised data, and tensor SVD is shown to be able to 

improve the data quality by about 20 dB under different input noise levels.

 

Figure 7.2. Denoising 4D STEM simulated from a perfect STO. crystal: virtual ADF image and a 

single CBED pattern pairs from (a)-(b) simulated 1000 FPS noisy data, (c)-(d) tensor SVD 

denoised data, and (e)-(f) ground truth. (g) Output PSNR from SVD denoised data vs. input PSNR 

from noisy data calculated under different noise levels. (h) Spatial distribution of denoising PSNR 

for 1000 FPS data. 
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A more complicated Si edge dislocation model with less periodicity was used to test the 

tensor SVD method, and the denoising results are shown in Figure 7.3. The denoising ranks for 

this structure was 32, 32, and 180 for rx, ry, and the unfolded k dimension, significantly higher 

ranks are used for the real space dimensions as a result of the irregular structure around the 

dislocation core. The comparison between reconstructed ADF images and single CBED patterns 

extracted from periodic Si lattice and the dislocation core shows almost no visible difference 

between the denoised image and the ground truth. From the difference image shown in figure 7.3 

(j)-(l) and the PSNR map shown in figure 7.3 (n), the denoised CBED pattern around the 

dislocation core has about 7 dB lower PSNR than the periodic lattice structure, and a higher pixel-

wise difference between the denoised image and truth image. The PSNR measured from noisy-

denoised pairs from different noise levels shows that tensor SVD is able to improve the PSNR by 

about 15 dB on the data with irregular structures. 
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Figure 7.3. Denoising simulated 4D STEM data from a Si dislocation core: The virtual ADF image, 

a single CBED pattern from the periodic region of the Si structure at the position of the green dot 

in (g), and a single CBED pattern from the dislocation core region at the position marked by the 

red dot in (g) extracted from: (a)-(c) simulated 1000 FPS noisy data, (d)-(f) tensor SVD denoised 

data, and (g)-(i) ground truth. (j) Output PSNR from SVD denoised data vs. input PSNR from 

noisy data at different noise levels. (k) Spatial distribution of denoising PSNR for 1000 FPS data. 

 

With the denoising performance confirmed on simulated data, tensor SVD was applied to 

denoise experimentally collected 4D STEM data without known ground truth. A SrTiO3 [001] 

single crystal sample and a LiZnSb [112̅0] hexagonal Heusler alloy thin film grown on top of 

GaSb [110] substrate was used to collect 4D STEM data and test tensor SVD. Figure 7.4 shows 

the comparison between noisy data and denoised data on the two samples in terms of reconstructed 

ADF image and single CBED patterns. For both samples, the SNR gets much improved after tensor 

SVD, and the denoised ADF image and CBED patterns show much less random noise point. The 

denoised CBED pattern from the SrTiO3 sample shows clear arc features in the dark field region 

from Bragg diffractions, while the denoised CBED pattern from the thicker LiZnSb/GaSb sample 

shows signs of Kikuchi bands. 

The tensor ranks for STO data are determined to be 30, 32, and 180 for rx, ry, and k, 

respectively, and 35, 38, and 180 for rx, ry, and k for LiZnSb/GaSb interface. The ranks determined 

from scree plots are very similar for the two samples, despite a clear difference in the complexity 

of material structures, confirming that the ranks are heavily influenced by non-sample factors like 

scan distortions. It took 575.0 seconds for tensor SVD to denoise the 2.7 GB LiZnSb/GaSb data 

and 538.9 seconds for the 1.6 GB SrTiO3 data on a personal desktop. The processing times are 
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mostly determined by the denoising ranks, so the processing times for the two datasets were similar 

despite the SrTiO3 data is about 30% smaller than the LiZnSb data. 

 

Figure 7.4 Denoising experimental 4D STEM data: (a) – (h) Virtual ADF images and single CBED 

patterns pairs. The right half of each CBED is shown as the square root of intensity to emphasize 

weak features. The color scales are for the linear left half of each image. (a) – (d) Data from STO 

[100]: (a), (b) as acquired, (c), (d) after tensor SVD denoising. (e) – (f) Data from a LiZnSb [112̅0] 

/ GaSb [110] interface: (e), (f) as acquired, (g), (h) after tensor SVD denoising. (i) – (n) Scree plots 

used to determine the tensor rank for denoising. Components in blue are retained and components 

in orange are discarded in the denoised reconstruction of the data. The 0 component which 

represents the mean of the data is omitted from the graphs. (i) – (k) STO. scree plots. (l) – (n) 

LiZnSb / GaSb scree plots. 
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Tensor SVD has also been applied to denoise hyperspectral EDS data collected from Ca-

stabilized NdTiO3 [001] sample, the denoised results from tensor SVD and a few other denoising 

methods are shown in figure 7.5. The EDS spectrum images from 1000 energy channels were 

integrated into seven elemental maps corresponding to seven x-ray bands, which increase the mean 

signal to 1.8 counts/px from 0.015 counts/px in the raw data. However, this data still has relatively 

low counts compare to the data collected in 4D STEM. Scree test determined denoising ranks were 

10, 10, and 7 along x, y, and the energy dimension, respectively. The comparison between noisy 

data, and denoised data from tensor SVD, NLPCA, and conventional PCA shows that tensor SVD 

was able to remove noise and improve SNR from the noisy data, but the denoise is not as effective 

as NLPCA, especially for the Ca map which has a more limited count. 
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Figure 7.5, EDS elemental maps from (a) noisy data, (b) tensor SVD denoised data, (c) NLPCA 

denoised data, and (d) matrix PCA denoised data displayed in the order of Ca, Ti, Nd, from left to 

right. (a), (c) and (d) are replotted from the data in ref [169]. 
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7.4 Comparison to Other Denoising Methods and Data Arrangements 

Subsets of the simulated 4D STEM with reduced size in reciprocal space were constructed 

and used to compare the performance of tensor SVD, NLPCA, BM4D, and matrix PCA. 

Reduced data size was required in order to fit the memory requirement of the non-local style 

method NLPCA and BM4D. The final 3D tensor for the test with reciprocal space unfolded into 

one single dimension has 114×114×100 pixels on rx, ry, and k dimensions. 

Figure 7.6 shows the comparison between noisy data, denoised data from four different 

methods, and the ground truth for both SrTiO3 data and the Si edge dislocation data in terms of 

reconstructed real space image (Figure 7.6 (a) and (c)), and the CBED pattern subset (Figure 7.6 

(b) and (d)). The reconstructed real space image lacks details such as the contrast between Sr and 

Ti sites, and the dumbbell structure in Si, as a result of limited coverage in reciprocal space. 

From the denoising quality quantified in PSNR shown in figure 7.6 (e) and (f), tensor SVD 

performs either the best or close to the best among the four methods on both structures. In terms 

of processing times, matrix PCA is the fastest one, closely followed by tensor SVD, and both are 

much faster than the non-local methods NLPCA and BM4D. Overall, with both denoising 

performance and processing time considered, tensor SVD is the optimal method for denoising 

massive 4D STEM data with good denoising performance and fast processing speed. 
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Figure 7.6. Comparison of tensor SVD to other denoising methods: (a) virtual images from 

simulated STO data, (b) CBED pattern patches from STO. data, (c) virtual images from simulated 

Si dislocation data, (d) CBED pattern subset from Si dislocation data extracted. (a) – (d) use the 

signal level of 1000 fps experimental data, and the numbers in (b) and (d) are the computing time 

required for denoising. (e)-(f) PSNR of the denoised data as a function of input noise level for (e) 

STO data and (f) Si dislocation data. 



90 
 

 

7.5 Conclusions 

Tensor SVD is a method to find a low-rank representation of tensor data. It is analogous to 

component analysis of matrix data using PCA, but it preserves the full three or four (or more) 

dimensional structure of the data set. We have used tensor SVD to denoise atomic-resolution 4D 

STEM data. The method can be directly applied to multiple GB 4D STEM data sets with the 

adjustable parameters determined by scree tests. Computing times on a typical desktop computer 

is a few minutes, and the required memory is twice the size of the data. Tests on simulated data 

show that tensor SVD has the best or close to the best performance compared to other state-of-

the-art methods which require substantially more computation time and memory. Tests on 

experimental data show that tensor SVD significantly improves the signal to noise ratio, and the 

denoised data shows clearer structures in both real space images and CBED patterns. Tensor 

SVD can also be applied to other high dimensional data sets, such as EDS spectrum images. 

8 Strain Mapping of Nb-rich Precipitate in ZrNb Alloy 

8.1 Strain Measurement Using 4D STEM 

Strain engineering of materials has shown itself to be a powerful tool in materials research. 

The change in lattice constant has been used to tune different properties of materials, including 

charge mobility[183], polarization[184], superconductivity[185], and in this work, serving as the 

driving force of Nb-rich platelets in the ZrNb alloy[36]. 

TEM and STEM have long been used to characterize local strain in materials. One popular 

method for strain measurement via Fourier transform of the atomic-resolution image is geometric 

phase analysis (GPA)[186], which has been implemented in Digital Micrograph[187] and is 
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shown to be able to measure lattice mismatch to 1 pm precision[188]. The strain has also been 

directly measured from the real space image after precisely fitting the atomic column 

positions[35]. Both methods are limited in the size of their field of view, as a sufficiently high 

enough magnification has to be used to get an image of lattice and derive the strain information. 

4D STEM solved this problem by calculating the strain information directly from diffraction 

spots[34]. Using a small convergence angle and collecting well separated diffracted beams, the 

distances between diffracted beams with different Bragg index are directly related to certain 

lattice constants. Then, the strain information could be calculated from the relative change of 

distances between Bragg diffraction spots at each probe position. The 4D STEM measurement of 

strain has shown a strain measurement precision of 0.1%, with the possibility of measuring µm-

sized area in a single scan and a spatial resolution of about 1 nm. 

For the 4D STEM strain measurement, the spatial resolution is determined by the size of 

the electron probe, which is typically about nm size as a result of the diffraction limit from a 

small convergence angle. And the strain measurement precision depends on the ability to 

accurately measuring the position of each diffraction spot. To precisely measure the position of 

each diffraction spot, a thin sample is often used to suppress the patterns within each diffraction 

spot generated by dynamical scattering. Some more complicated registration tools have been 

used to fit the position of diffraction disks[38], and patterned probes have been used to 

deliberately introduce features to the probe to enhance position registration[40]. 

8.2 Strain Map of Zr Precipitates 

In this work, we focused on the strain states around the Zr-rich platelets precipitates in 

ZrNb alloy. The hypothesis has been made that the Zr-rich platelets are mainly driven by the 

dislocation-induced strain fields, and accelerated by the irradiation[189]. Although there is 
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currently no way to directly confirm the growth mechanism via in-situ methods, the residual 

strain states around the precipitates could give useful information, as strain driven growth would 

result in obvious residual strain in the final precipitates. 

ZrNb alloy with 1% Nb and irradiated by 1.0 dpa proton irradiation, which contains a high 

density of Zr-rich precipitates, has been used for the 4D STEM study. The sample has been 

prepared by FIB lift out using a Zeiss Auriga Ga FIB, followed by final thinning in a Fishione 

1040 nanomill to get an electron transparent sample and a smooth surface. A 1.75 mrad 

convergence angle was used to get well-separated diffraction spots, and 100 FPS frame rate was 

used on the DE-16 camera to integrate a high enough intensity on each frame under 20 pA beam 

current. 

 

Figure 8.1 PACBED pattern from the 4D STEM scan around an Nb-rich precipitate, with two 

vectors corresponding to the lattice planes in strain maps marked by blue and green arrows. 

The PACBED pattern from the whole 4D STEM scan is generated after compensating for 

the diffraction pattern drift during the scan and is shown in figure 8.1, where different Bragg 

diffraction spots are separated from each other. G1 is defined to be the vector corresponding to 

the (0002) lattice planes of the Zr matrix and the (011) planes of the precipitate, and g2 is defined 
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to be the one corresponding to the (011̅1̅) of the matrix and (101̅) of the precipitate. These two 

vectors are used to calculate the four components of the strain tensor around the precipitate, 

namely εxx, εyy, εxy, and εrot, where x and y correspond to the directions of g1 and g2, respectively. 

Only four components of the strain tensor could be derived out of a total of nine, as we can only 

collect the 2D projection of the sample from STEM, and the out-of-plane information is missing. 

The detailed derivation of the four components can be found in the supplementary materials of 

ref[37]. 
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Figure 8.2 4D STEM analysis of Nb-rich precipitates in the ZrNb alloy. (a) simultaneously 

acquired HAADF-STEM image showing the precipitate, (b) – (c) lattice spacing map along g1 

and g2, (d) – (g), components of strain tensor calculated from 4D STEM data. 

The strain components, together with simultaneously acquired HAADF-STEM image and 

the lattice spacing maps, are shown in figure 8.2. Figure 8.2 (d) and (e) show that the precipitate 

is coherent with almost no strain along the x direction, while a strong strain can be observed 

along the y direction, especially at the two ends of the precipitate. The strong residual strain at 

the two ends of the long side of the precipitate agrees with the hypothesis of strain driven growth 

of the precipitate. On the rotation map shown in figure 8.2 (g), a few bright spots can be seen 

along the edge of the precipitate, which corresponds to the origin of edge dislocations. 

8.3 Conclusions 

4D STEM has been used to study the strain states around Nb-rich precipitates grown in 

ZrNb alloy under irradiation. Areas with positive strain in the εyy map indicate platelet has high 

tensile strain along the thickness direction. The εrot map clearly shows the residual coherent 

strain field at the platelet's length interfaces, and the dislocation induced strain fields nearby the 

platelet's two ends. The observed strain states agree with the strain driving growth mechanism of 

the platelet-shaped precipitates. 

9 Polarization Measurement in Hexagonal Heusler Alloys 

9.1 Polar Metals and Polarization Measurements 

Polar metal refers to the category of materials that simultaneously have free carriers and 

hold polarization in the structure. Polar metals show promising properties in nonlinear optics, 

nonreciprocal charge transport[190], and can be potentially used as electrode materials for 
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ferroelectric capacitors[191]. A few different types of polar metals have been proposed, as can be 

seen in the black curves in Figure 9.1 (a). Most of them are oxides with perovskite 

structure[192], with one exception being a metal dichalcogenide[193]. 

 

Figure 9.1 (a) Temperature dependence of resistivity for LaAuGe, LaPtSb, and other materials 

that have been proposed to be polar metals. (b) Atomic structure model of LaAuGe and LaPtSb 

with a single unit cell marked in black line and the buckling definition marked by the red arrow. 

Here, we propose a new type of polar metal based on hexagonal Heusler alloy, include 

LaAuGe and LaPtSb[194]. Figure 9.1 (a) shows the temperature dependence of resistivity for 

LaAuGe and LaPtSb, both of them show a higher resistivity with increased temperature, which is 

a characteristic of conductors with free carriers. Compared with other polar metals from previous 

reports, both hexagonal Heusler alloys show orders of magnitude lower resistivity. The atomic 

structure of the Heusler alloys is shown in figure 9.1 (b). La atoms form a hexagonal sub-lattice 

(A sites), with planes of AuGe/PtSb fills in between (B and C sites). A constant non-zero 



97 
 

displacement between the planes formed by B and C sites is what we called a buckling 

displacement[86] and result in the polar structure. 

The characterization of the polarization in the hexagonal Heusler alloy includes structural 

polarization and electrical polarization. Structural polarization refers to the fact that the lattice 

has no inversion symmetry, which in this case, is equal to the existence of a non-zero constant 

buckling displacement. This can be measured by directly visualize the lattice structure using HR-

STEM, which will be discussed in detail in section 9.2. Electrical polarization refers to the fact 

that an internal electric field is generated by the polar structure. This is common in ferroelectric 

materials and is typically measured by switching the internal electric field and measure the 

hysteresis loop[89]. However, this is not possible for polar metals, as the external electric field 

would directly generate a current in the material instead of switching the internal electric field. 

Here, we propose to measure the internal electric field using 4D STEM, which would be 

discussed in detail in section 9.3. 

9.2 Structural Polarization Measurement with HRSTEM 

To characterize the polar structure of LaPtSb and LaAuGe, we applied high-resolution 

HAADF-STEM to directly visualize the lattice structures of the two materials. LaPtSb and 

LaAuGe thin film were grown using molecular beam epitaxy (MBE) on Al2O3 substrates, and 

TEM samples were prepared by FIB liftout using a Zeiss Auriga Ga FIB and final thinning using 

a Fishione 1040 nanomill to get an electron-transparent sample with a smooth surface. HAADF-

STEM image series were acquired on a 200 kV Titan STEM with a 24.5 mrad semi-convergence 

angle and a HAADF detector covering 54-329 mrad. Image series were collected and post-

processed with NRR to obtain high SNR for Gaussian fitting of the atom positions. 
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Figure 9.2 HAADF-STEM image of (a) and (b) LaPtSb and (c) and (d) LaAuGe measured along 

a [112̅0] zone axis with [0001] growth direction points up. The atomic structure is overlapped in 

(c) and (d) with red arrows marking the displacement between Pt/Au and Sb/Ge sites. 

Figure 9.2 (a)-(d) shows the HAADF-STEM characterization of the LaPtSb and LaAuGe 

thin film, with a clear buckling structure shown in Figure 9.2 (c) and (d). The position of the 

Pt/Au and Sb/Ge sites are determined by fit each pair of PtSb/AuGe atoms to a sum of two 2D 



99 
 

Gaussian functions. The atomic positions were then used to calculate the buckling displacements 

in the two materials, and the result suggests the buckling displacement along the polar direction 

([0001] direction, which is also the growth direction) are 0.222 Å for LaPtSb and 0.176 Å for 

LaAuGe, confirming the structural polarization in both structures. 

 

Figure 9.3 HAADF-STEM image of LaxGd1-xPtSb with buckling analysis and the buckling 

displacement along polar direction for (a) x=0, (b) x=0.05, (c) x=0.3, and (d) x=1. 

On LaPtSb, we have further demonstrated that by doping the La sites with Gd, we are able 

to control both the buckling direction and magnitude. Figure 9.3 shows the high-precision 

HAADF-STEM characterization on a series of LaPtSb with different Gd doping fractions. Here, 

the substrate is on the bottom side, and with buckling defined as the displacement from Sb to Pt, 

we define the cases where Pt is closer to the substrate as positive buckling displacement. From 

the Gaussian fitting of Sb and Pt positions, the four different doping fractions show different 

buckling magnitude as well as directions. This tuning over the buckling displacement means that 

we will be able to grow a more complex polarization structure with possible polar domains by 

controlling the Gd doping fraction in different layers. 
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9.3 Electrical Polarization Measurement with 4D STEM 

With the structural polarization confirmed from HAADF-STEM images, a more interesting 

question is whether this structure holds an internal electric field from the polarization. To answer 

this question, we applied 4D STEM to directly probe the inner electric field using an electron 

probe. In 4D STEM, the negatively charged electron probe will move under the Columb force 

from the electric field, and this movement will be captured in the diffraction pattern, and by 

analyzing the change in the diffraction pattern at each probe position, one is able to map the 

electric field distribution in the sample. 

Currently, there exist two different flavors of 4D STEM to measure the electric field. The 

first setup uses a small convergence angle to obtain separated the undiffracted beam from the 

diffracted beam, and then derive the electric field from the undiffracted beam itself. This method 

has been successful in resolving the negative capacitance in polar vortices[44] and resolving 

room-temperature polar skyrmions[43]. The disadvantage of this setup is the limited spatial 

resolution, as the beam size is typically nm at a small convergence angle and thus won’t be able 

to resolve the fine electric field distribution inside a single unit cell or around a single atomic 

site. On the other hand, this method has the advantage of being able to eliminate the effect from 

sample tilt, as the tilt would only change the intensity of the diffracted beams. 

The other setup uses a large convergence angle to get a well-focused beam, typically with 

sub-Å size, then perform a fine scan with sub-unit cell step size on the sample. The same setup 

has been used in differential phase contrast (DPC) STEM for a long time and is capable of 

resolving the electric field at high spatial resolution. Recently, this setup has been used to study 

the electric field generated by polarization in GaN/AlN multilayer structure[60], with another 

work observing a similar electric field in the BiFeO3 thin film with polar structure[61]. In this 



101 
 

setup, it is important to eliminate the effect of sample tilt, as the sample tilt generates a similar 

signal as the electric field from polarization, even with a small tilt. A typical way to eliminate the 

effect of sample tilt is to find a reference within the sample itself that has the same tilt but a 

different polarization state, such as the difference between GaN and AlN in ref[60], and the 

difference between BiFeO3 and SrTiO3 in ref[61]. 

In this work, we followed the setup used in ref[60]. A small electron probe with sub-Å size 

was used to scan over the sample, center of mass (COM) of the CBED pattern is calculated at 

each probe position, followed by an average over Voroni unit cells covering half unit cell to 

cancel out the contribution from the strong electric field around each atom to reveal the weak 

electric field generated by polarization. Figure 9.4 (a) and (b) show the electric field signal from 

polarization after averaging over Voronoi cells along the [1100] direction (non-polar direction) 

and the [0001] direction (polar direction). It can be clearly seen that the polar direction shows a 

strong electric field signal compared to the non-polar direction, which shows a signal that is very 

close to zero. This preliminary result suggests that there might exist an internal long-range 

electric field generated by the polar structure in polar metals. 
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Figure 9.4 (a) and (b) electric field measurement after average over Voronoi cells in LaPtSb 

along [1100] direction and [0001] direction. (c) simultaneously acquired HAADF image showing 

the lattice structure of LaPtSb and (d) a zoomed-in patch from the HAADF image with atomic 

sites marked on the image. 

9.4 Conclusions 

STEM and 4D STEM has been used to study the polarization in thin film polar metal 

LaPtSb and LaAuGe synthesized using MBE. High-resolution STEM was used to confirm the 

polar structure in LaPtSb and LaAuGe, with buckling displacement quantified in both structures 

as well as Gd doped LaPtSb thin films. 4D STEM has been used to directly map the long-range 

electric field in LaPtSb generated by the polar structure. Measurement shows a clear electric 

field signal along the polar direction compare to the non-polar direction, but the results still need 

to be carefully inspected to eliminate the effect from sample tilt and other sources that could 

generate a similar signal as the electric field. 

10 Study of Twist Pattern in Supertwist WS2 Structure with 4D STEM 

10.1 Super Twist Structure from Non-Euclidean Surface 

Twisted multilayer of 2D materials has drawn increasing interest over the years as the 

Morie superlattice shows emerging phenomena such as unconventional superconductivity[195] 

and exciton behaviors[196]. However, there have been limited ways to twist the lattice. Most 

works prepare twisted 2D stacks using mechanical stacking, which requires dedicate control and 

is very inefficient. Dislocation driven Eshelby twist has been reported to twist the 

lattice[197],[198], but the twist angle is negatively correlated to the lateral size of the structure 

and thus does not fit into 2D materials. 
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In this work, a radically new way is proposed to grow layered 2D material with a constant 

twist angle between consecutive layers using a substrate with a non-Euclidean surface. On a non-

Euclidean surface, a full circle is either larger than 360° on a hyperbolic surface, or less than 

360° on an elliptic surface. Then if we grow a layered 2D material spiral with a screw dislocation 

at the center on these non-Euclidean surface, the lattice itself still covers a full 360°, then the 

difference between 360° and the angle of a full-circle on the surface will generate a twist angle 

and lead to two different types of twisted patterns on an elliptic surface or hyperbolic surface. 

 

Figure 10.1 (A) An aligned WS2 spiral. (B) A deformed SiO2 particle. (C) A super-twisted WS2 

spiral with a deformed SiO2 particle at its center. The first row (A1, B1, C1) is the top-down SEM 

images of the objects before FIB. The second row (A2, B2, C2) is the corresponding cross-section 

images with boundaries highlighted by dashed lines. The areas between the two yellow dashed 

lines are WS2.  Fig. B2 and C2 clearly show that the deformed SiO2 nanoparticles formed cone-

shaped protrusions on Si/SiO2 substrates after the growth process. 

The non-Euclidean surface was generated by dispersing SiO2 nanoparticles on a flat SiO2 

substrate, then heat the surface to deform the SiO2 nanoparticles to form a protruded substrate. 
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Then the top of the cone is an elliptic surface, while the side of the deformed nanoparticle is a 

hyperbolic surface. The image from the top and side of the deformed nanoparticle can be found in 

Figure 10.1 (b). These deformed nanoparticles then serve as the growth core for the multilayer 

WS2 structure in the vapor assisted chemical vapor deposition synthesis[199]. An example of a 

multilayer WS2 structure grow on top of the deformed nanoparticle is shown in Figure 10.1 (c), 

where a twist pattern can be clearly seen in the top-down view. 

10.2 STEM and 4D STEM Characterization of the Twist Pattern 

Although the geometric twist pattern can be easily characterized using SEM or atom force 

microscopy (AFM) as the structure is pretty large with µm size, none of these methods could 

resolve the lattice twist in the structure, which is much more important than the geometric twist. 

To study the lattice twist pattern, we applied 4D STEM with the same setup as described in 

section 2.3.2 and section 8.1 for strain mapping, and we use the twist angle between different 

sets of diffraction spots to directly measure the twist angles of different layers. 



105 
 

 

Figure 10.2 (a) low magnification HAADF-STEM image from the whole structure, (b) – (e) 

PACBED pattern generated from areas with 1-, 2-, 3-, and 4- layers of WS2 structure 

respectively, (e) relationship between layer index and geometric twist angle and lattice twist 

angle measured using the shape and PACBED pattern. 

The twist angle was measured on a simple four layers structure with a constant twist 

pattern, as shown in Figure 10.2 (a). 4D STEM data was collected within the area marked by the 

red box, and PACBED patterns were generated from areas with 1-, 2-, 3-, and 4- layers of WS2 

structure, as shown in Figure 10.2 (b) – (e), respectively. The edge of each layer is marked with 

dashed lines with different colors, and the set of diffraction spots from that layer is marked by 

the dashed lines with the same color in the PACBED patterns. Using the shape of each layer in 

the low magnification HAADF-STEM image, and the diffraction spots in the PACBED patterns, 
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we are able to plot the relationship between geometric twist (black dots) and lattice twist (red 

dots) and the layer index, as shown in Figure 10.2 (f). The results suggest that the lattice twist 

closely matches to the geometric twist, and shows a linear twist pattern with a constant twist 

angle between consecutive layers. 

 

Figure 10.3 (a) low magnification HAADF-STEM image from the whole structure, (b) 

relationship between layer index and geometric twist angle and lattice twist angle measured 

using the shape and PACBED pattern, (c) – (i) PACBED pattern generated from areas with 1-8 
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layers of WS2 structure except three layers (j) relationship between layer index and the position 

of each set of the diffraction pattern. 

Another example of lattice twist angle measurement on a more complex structure with 

more layers is shown in Figure 10.3. 4D STEM data was collected from the area marked by the 

red box in Figure 10.3 (a), and the PACBED patterns are generated from areas with 1, 2, and 4-8 

layers of twisted WS2. The area with 3 layers of twisted WS2 was missing in the structure, 

probably damaged during sample transfer. With more than 8 layers of WS2, the sample gets thick 

with a strong background generated by inelastic scattering and lots of overlapping between 

diffraction spots from different layers. Both factors make it hard to identify the diffraction spots 

on the PACBED pattern. A plot of geometric twist angle and lattice twist angle for each layer is 

shown in Figure 10.3 (b), which shows a similar linear twist pattern and the match between 

geometric twist and lattice twist. 
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Figure 10.4 (a)-(c) Morie patterns acquired from HAADF-STEM on 1-, 2-, and 3- layers of 

twisted WS2, (d)-(f) simulated Morie pattern by overlapping 1, 2, and 3 layers of 1T WS2 models 

with the twist angle measured using PACBED patterns. 

Using high-resolution HAADF-STEM, we were able to directly visualize the Moire 

patterns from 1-, 2-, and 3- layers of twisted WS2, which is shown in Figure 10.4 (a) – (c). The 

HAADF-STEM images are filtered using an average background subtraction filter[200] based on 

the work in ref[124] to remove the non-uniform background generated by carbon contamination. 

Expected Moire patterns from the twist angles measured using PACBED patterns are generated 

by overlapping multiple layers of 1T WS2 models and is shown in Figure 10.4 (d) – (f). The 
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experimental Moire patterns closely match the expected ones, again proofing that the lattice twist 

angles measured using PACBED patterns are accurate. 

10.3 Conclusions 

A novel way to grow multilayer twisted 2D materials using a non-Euclidean substrate has 

been proposed and tested on WS2. 4D STEM has been used to study the lattice twist angles by 

generating PACBED patterns from areas with different numbers of twisted layers. Result 

suggests that the lattice twist angles closely match the geometric twist angle and is almost 

constant between consecutive layers, which agrees with the twist model we are proposing. The 

twist angles are directly visualized using HR-STEM by directly visualize the Moire pattern, and 

the results confirmed the measurement using PACBED patterns. 

11 Outlook 

This chapter will focus on possible future researches based on 4D STEM, and most of them 

are just simple ideas without very careful considerations. The possible researches are divided 

into three parts. The first part discusses possible new image modes of 4D STEM by using a faster 

detector or combining with in-situ techniques and spectroscopies. The second part discusses 

possible ways to extract more information from 4D STEM data sets. And the third part focuses 

on the combination of machine learning methods and 4D STEM. 

There is little doubt that 4D STEM could benefit from the usage of a faster detector with 

acquisition frequency closer to the typical STEM scan frequencies. A faster detector and shorter 

collection time could reduce scan distortions caused by sample drift during acquisition and make 

it possible to apply distortion-correction methods with serial 4D STEM. Another benefit of using 
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a faster detector is to simplify the noise statistic by running in counting mode[201] and make it 

possible to apply Poisson denoise methods to directly solve the ground truth.  

Besides the usage of a faster detector, 4D STEM can also be combined with other imaging 

techniques in STEM. One possibility is to apply 4D STEM to in-situ experiments. So far, 4D 

STEM has been successfully applied to study the in-situ deformation process and measure the 

strain change in the process[202]. Other than that, 4D STEM data can also be used to study other 

processes such as charge transfer under electrical bias[203], polar-nonpolar phase transition 

during heating[204], polar domain switching under external strain[205] or bias[206], and oxygen 

vacancy segregation and ordering during heating[207]. The relatively slow collection speed 

could be problematic when combining with in-situ experiments. A 4D STEM scan with fewer 

beam positions and lower resolution could be beneficial in in-situ experiments. 

Another possibility is to combine 4D STEM with the EDS and EELS spectroscopy data 

collection in STEM. A combination of these techniques simultaneously collects the energy-

dispersive data, which is sensitive to composition and bonding change, and the diffraction data, 

which is sensitive to structural change. The combination of 4D STEM and EELS would require a 

customized detector that allows part of the electron beam to pass through, and it has been shown 

that ptychography problems could be solved with the center of the diffraction pattern 

missing[208]. 

Other than new experiment settings, more information about the material structure could be 

extracted from the 4D STEM data with new ways to analyze the data. One possible improvement 

is to recover the whole 3D atomic structure instead of the 2D projection of the structure from the 

data. Efforts have been made to solve the whole 3D scattering matrix using 4D STEM focal 

series[57] and the multislice ptychography problem[209]. The ability to retrieve the full 3D 
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structure could be used to study the full 3D strain states, atom ordering in alloys, and position of 

point defects inside the material. Other than 3D reconstruction, fine structure change in the 

material could be resolved by interpreting 4D STEM data quantitatively and match to multislice 

simulations. It has been shown that by including the inelastic scattering in the simulation, the 

difference between experiment and simulation could be reduced to below 10% over a wide 

annular range and below 5% for some narrower annular range[77], which means any structural 

change generating a diffraction intensity difference larger than these residual difference could be 

resolved by quantitatively matching experiment and simulation. 

4D STEM can also be combined with machine learning methods to facilitate data acquisition 

and analysis. First, machine learning methods like CNN can be used to understand the 

experiment environment, like aberration status[210], sample tilt, thickness from collected CBED 

patterns. With this information and a control system to tune the microscope, the 4D STEM 

acquisition could be automatically performed with minimum human interaction. Besides 

automated data collection, compressive sensing could be applied to both the real space scan and 

the diffraction pattern acquisition to speed up the acquisition. 

With data collected, machine learning methods could be applied to pre-process the collected 

data. One possible application is to use the U-net[211] as a counting filter, which performs image 

segmentation on the collected image and classifies each pixel as an electron hit or no electron hit. 

CNNs can also be trained to compress 4D STEM data[212] for faster saving and transport of the 

massive 4D STEM data by learning characteristic features in 4D STEM data and then compress 

the data by saving a map of features instead of the raw data. Machine learning methods can also 

be used for denoising. Besides the tensor SVD method described in Chapter 7, certain types of 
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generative adversarial networks [213] and U-nets[214] are also powerful tools that can be trained 

to learn certain noise pattern and denoise 4D STEM data. 

Machine learning methods can also help to understand the collected 4D STEM data. The 

data processing scheme described in Chapter 6 can be adapted to analyze other aspects of the 

sample, with possible performance improvement by adapting novel network structures. Another 

possible model that can be used to understand materials science properties from the collected 

data is graph neural network (GNN)[215][216]. Unlike CNN that uses a convolutional base to 

detect features, GNN generates a graph from the input data, performs graph convolutions, then 

extracts information from the final graph. GNNs are much less computationally intensive than 

CNNs, as it has much less tunable parameters. The graph structure can hold prior knowledge 

about the data and embed physical meaning in the network, instead of processing the data simply 

as images. Neural networks can also be applied to solve ptychography problems. Work has been 

reported using neural network to mimic the electron propagation in the sample[217], then solve 

the reverse propagation problem using back-propagation. Although this would be a powerful tool 

if working properly, the solving process would be slow. A possible implementation of neural 

networks, possibly U-nets, is to directly learn the relationship between the collected 4D STEM 

data and the phase information of the sample, then directly generate the phase image from input 

data using forward propagation. Although this may not be as accurate as the iterative solvers like 

ePIE, it could significantly reduce the time consumption. 
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