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CHAPTER 1

INTRODUCTION

1.1 Objectives

The primary objective of this research is to evaluate the use of the
computer program DUMPStat as an alternative or supplement to the use of
indicator preventive action limits (PAL) for determining whether a landfill is in

compliance with groundwater quality standards.

1.2 Background

Careful monitoring of the impact of landfills on groundwater quality is a
critical component of Wisconsin’s groundwater protection program. Currently,
the Wisconsin Department of Natural Resources (WDNR) administrates the
monitoring programs in accordance with Chapter NR 140 of the Wisconsin
Administrative Code. This regulation sets two types of groundwater quality
standards: preventive action limits (PAL’s) and enforcement standards (ES).
The lower PAL serves two purposes. First, the PAL is used in design codes so
that contamination is prevented through use of stringent designs. Second, the
PAL is used as a “trigger” for remedial actions. PAL'’s are used to prevent

contamination but the ES defines when a violation has occurred. If an ES is
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violated, the landfill is subject to immediate enforcement action. If substances
detected in groundwater exceed either the ES or PAL for a health or welfare
parameter, the WDNR may set an alternative concentration limit (ACL). The
WDNR also sets PAL'’s for indicator parameters which occur naturally and may
indicate contamination. These indicator parameters provide an early warning for
possible contamination.

The focus of this research is on PAL'’s for indicator parameters. NR 140
specifies the PAL for indicator parameters as the mean plus three standard
deviations or a minimum increase, based on at least eight background samples.
NR 140 does not specify how ACL'’s are set. However, the WDNR Waste
Management Program policy is to use the sample mean plus two sample
standard deviations. Consequently, both the indicator PAL and ACL are
determined statistically. Also, the indicator PAL and the ACL are both
determined on a well specific basis (intrawell) when possible. The health and
welfare PAL and ES are uniform across the landfill as well as across the state.

The PAL procedure is set by law and rule while the ACL procedure is set
by rule only. The rule can be changed by changing policy and operating
procedures but the law can be changed only by an act of the legislature. Since
changing the PAL procedure would require a substantial legislative change, this
was our focus. Also, the nature of the current statistical procedures is intrawell,
so the focus of this research is intrawell.

Gibbons(1994) has developed statistical procedures for analyzing

groundwater quality data at landfills. These procedures are included in the



statistical package DUMPStat (Downgradient, Upgradient Monitoring Program
Statistics), developed by Gibbons and Discerning Systems, Inc. DUMPStat has
two intrawell methods which could potentially replace the indicator PAL,
prediction limits (PL’s) and the combined Shewhart-CUSUM control charts
(CC’s). The objective of this research focuses on statistical issues, although
operational issues are also considered. This report is intended to provide
information which the WDNR can use to determine whether or not DUMP Stat
should be adopted in whole or in part as a tool for assessing groundwater
impacts at landfills. Again, we focused on the well specific indicator PAL, since

the use of DUMPStat would require a legislative change.

1.3  Project Summary and Organization

In order to evaluate the intrawell DUMPStat algorithms, we proceeded in
three steps. First, we applied DUMPStat to indicator parameter data from the
Portage County Landfill. From this analysis, we found that the DUMP Stat
algorithms are far more conservative than the PAL. For indicator parameters,
the use of DUMPStat would result in more violations than would the use of
PAL’s. This would be true for both upgradient and downgradient wells.

Our second step was to test the underlying assumptions of the DUMP Stat
calculations: independence, stationarity, and normality. These assumptions are

not critical to the use of PAL'’s, as they are not based on statistical significance.



In order to evaluate these assumptions, we tested three indicator parameters for
26 upgradient wells at ten landfills. Normality was rejected at 12 of 26 wells and
the assumptions of independence was rejected at 15 of 26 wells. In addition to
these assumptions, we tested each well and parameter for trend. For this test,
at least 50 percent of the wells and parameters exhibited an upward or
downward trend.

The third step in this study was to evaluate how violations of assumptions
and presence of trend affects DUMPStat and the use of the indicator PAL.
DUMPStat was applied to indicator parameters for the 26 wells at the ten
landfills. Next, we determined whether or not each violation was in a data set -
that rejected normality, rejected independence or exhibited trend. For all
parameters combined, we found that over 60 percent of the violations for
DUMPStat and PAL were in these data sets.

This report is intended to provide an in depth analysis of the results
reported above as well as additional background information. The report is
organized in the following manner:

e Chapter one is a simple introduction.

e Chapter two reviews Wisconsin’s groundwater monitoring regulations.

e Chapter three reviews all the options available in DUMPStat. Our focus is on
intrawell prediction limits and combined Shewhart-CUSUM control charts,

however, we discuss in brief the other DUMPStat options.



Chapter four is the Portage County Landfill case study. In this case study we
evaluate all wells using PL’s, CC's and PAL'’s using both eight and 25
background samples.

Chapter five evaluates the assumptions of parametric tests for 26 upgradient
wells at ten landfills. Then we evaluated these wells using PL’s, CC’s and
PAL'’s. Lastly, we considered how violations of the assumptions affect each
statistical test.

Chapter six is the conclusion and recommendation section.



CHAPTER 2

MONITORING AT WISCONSIN LANDFILLS

2.1 Wisconsin Regulations

As stated in Chapter 1, the primary legislation regulating Wisconsin
landfills is NR 140. The purpose of the legislation is:
“...to establish groundwater quality standards for substances detected in
or having a reasonable probability of entering the groundwater resources
of the state; to specify scientifically valid procedures for determining if a
numerical standard has been attained or exceeded; to specify procedures
for establishing points of standards application, and for evaluating
groundwater monitoring data; to establish ranges of responses the
department may require if a groundwater standard is attained or
exceeded; and to provide for exemptions for facilities, practices and
activities regulated by the department.”
The purpose of Chapter 2 of this report is to outline the regulations of the state,
to outline the monitoring requirements, to review the calculations required for
PAL, and to show how these requirements relate to intrawell and interwell
analysis.
Subchapter Ill of NR 140 applies only to the DNR while subchapters | and
Il apply to the DNR as well as the following Wisconsin government agencies:
e Department of Agriculture, Trade and Consumer Protection (DATCP),
e Department of Industry, Labor and Human Relations (DILHR),

¢ Department of Natural Resources (DNR), and

e Department of Transportation (DOT).



Also, NR 140 applies to facilities and practices which may affect groundwater
quality but are regulated by other agencies. However, the regulation does not

apply to mining or prospecting activities, which are covered by other regulations.

2.2 Preventive Action Limits and Enforcement Standards

Wisconsin has two water quality standards for each parameter. The
preventive action limit (PAL) is the lower of the two; exceedance of this value
raises a red flag. The enforcement standard (ES) is the maximum allowable
level. NR 140.10 specifies PAL’'s and ES’s for 101 public health related
standards. The PAL is ten percent of the ES for parameters with carcinogenic
effects. For example, the ES for benzene is 5 micrograms per liter while the PAL
for is 0.5 micrograms per liter. For other parameters with mutagenic, teratogenic
or interactive effects the PAL is twenty percent of the ES. For example, for
cyanide the ES is 200 micrograms per liter and the PAL is 40 micrograms per
liter. Similarly, NR 140.12 specifies PAL and ES for parameters having aesthetic
or other public welfare concerns. The PAL for these are 50 percent of the ES.
For example the ES and PAL for chloride are 250 mg/l and 125 mg/I|

respectively.



PAL’s are calculated for indicator parameters on a well specific basis.
These are the parameters that are measured regularly but do not directly affect

public health or welfare. For these parameters the PAL is calculated as:

PAL = X+max[3s,M] (2.1)

where X is the sample mean, s is the sample standard deviation and M is the
minimum increase. s and X are estimated from a minimum of eight background
samples for the particular constituent. Table 2-1 lists the minimum increase, M,

for indicator parameters.

Parameter Minimum Increase, mg/I
Alkalinity 100
Biochemical Oxygen Demand (BOD) 25
Boron 2
Calcium 25
Chemical Oxygen Demand (COD) 25
Magnesium 25
Ammonia Nitrogen 2
Organic Nitrogen 2

Total Nitrogen 5
Potassium 5
Sodium 10
Specific Conductance 200 umhos/cm
Total Dissolved Solids (TDS) 200
Hardness 100
Total Organic Carbon (TOC) 1

Total Organic Halogen (TOX) 0.25

Table 2-1 Minimum Increase for Indicator Parameters




2.3 Monitoring Requirements

NR 140 covers many of the important factors necessary for environmental
protection. However it does not provide specific information regarding the
requirements for environmental monitoring for landfills. NR 507 defines the
monitoring requirements. The purpose of this rule is:

“... to help insure that efficient, nuisance-free and environmentally

acceptable solid waste management procedures are practiced in this

state, to outline environmental monitoring requirements at solid waste

facilities and to implement groundwater standards according to NR 140

and ch. 160 stats.”

This rule governs all environmental monitoring for solid waste disposal facilities
except hazardous waste facilities and mining operations.

Prior to accepting waste, a landfill must have a WDNR approved sampling
plan. This plan must include the number and location of all monitoring wells.
The number of required monitoring wells is based on the facility size, waste type,
design and hydrogeologic or geologic properties. However, each new municipal
solid waste landfill (MSW) must have a minimum of four Subtitle D wells.

The baseline monitoring requirements vary depending on the type of
waste accepted. For example, the groundwater monitoring requirements for a
municipal solid waste landfill are different from a landfill that accepts foundry
waste. Table 2-2 lists the detection parameters and sampling frequencies

currently required for routine sampling at municipal solid waste landfills. Table

2-3 lists the detection parameters and sampling frequency requirements for
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other waste types. All proposed landfills must take four samples for all the

detection parameters listed in Table 2-2 or 2-3 plus any public health and

welfare parameters not included as detection monitoring parameters prior to

submittal of the feasibility report. If exemptions to the groundwater standards for

public health and welfare are granted in the feasibility determination, four more

rounds of sampling for those parameters are required so that an ACL can be

calculated and approved as a part of the plan of operation. For detection

parameters, the next four samples must be taken before submittal of the plan of

operation in order to accumulate a total of eight background samples. Each

sample must have a minimum of 30 days between sampling rounds.

Detection Parameters

Frequency for All Wells

Frequency for Sub D. Wells

Alkalinity Semi-annual Semi-annual
Chloride Semi-annual Semi-annual
CcoD Semi-annual Semi-annual

Field Conductivity Semi-annual Semi-annual
Field pH Semi-annual Semi-annual
Field Temperature Semi-annual Semi-annual
Groundwater Elev. Semi-annual Semi-annual
Hardness Semi-annual Semi-annual
*VOC Scan Annual Semi-annual

Table 2-2 Monitoring Requirements for Municipal Solid Waste Landfills

* A list of VOC parameters for detection monitoring is in Appendix Il of NR 507




Waste Type Detection Parameters Frequency for All Wells
Municipal Solid Waste Alkalinity Semi-annual
Combustor Residue Boron Semi-annual
Cadmium Semi-annual
Chloride Semi-annual
coD Semi-annual
Field Conductivity Semi-annual
Field pH Semi-annual
Field Temperature Semi-annual
Groundwater Elevation Semi-annual
Hardness Semi-annual
Lead Semi-annual
Selenium Semi-annual
Sulfate Semi-annual
Paper Mill Sludge Ammonia Nitrogen Semi-annual
Alkalinity Semi-annual
Chloride Semi-annual
COoD Semi-annual
Field Conductivity Semi-annual
Field pH Semi-annual
Field Temperature Semi-annual
Groundwater Elevation Semi-annual
Hardness Semi-annual
Nitrate + Nitrate as N Semi-annual
Sulfate Semi-annual
Fly or Bottom Ash Alkalinity Semi-annual
Boron Semi-annual
coD Semi-annual
Field Conductivity Semi-annual
Field pH Semi-annual
Field Temperature Semi-annual
Groundwater Elevation Semi-annual
Hardness Semi-annual
Sulfate Semi-annual
Semi-annual
Semi-annual
Semi-annual
Foundry Waste Alkalinity Semi-annual
coD Semi-annual
Field Conductivity Semi-annual
Field pH Semi-annual
Field Temperature Semi-annual
Fluoride Semi-annual
Groundwater Elevation Semi-annual
Hardness Semi-annual
Sodium Semi-annual

Other Solid Waste

As Specified in Writing by the WDNR

Table 2-3 Monitoring Requirements for Other Solid Waste Landfills
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2.4 Responses When a Groundwater Standard is Attained or Exceeded

Wisconsin's rules differ slightly from the U.S. EPA Subtitle D. Subtitle D
requires analysis of groundwater samples from designated wells for indicator
parameters. These parameters include fifteen metals and VOC’s. Wisconsin's
approved plan allows for routine monitoring of detection parameters as listed in
Table 2-2 and 2-3. Wisconsin's detection monitoring does not include routine
metals monitoring. Also, the VOC monitoring is as specified in Table 2-2. If a
PAL is exceeded for an indicator parameter, assessment monitoring in
accordance with Wisconsin’s approved plan may be required.

If the concentration of a substance, including indicator parameters, in
groundwater attains or exceeds a PAL this does not automatically lead to
assessment monitoring. Sections NR 140.24, NR 140.26 and Chapter NR 508
outline the appropriate responses for exceedances. First, the landfill owner
must notify the WDNR in writing of the exceedance. Second, the owner must
provide a preliminary analysis of the cause and significance of the
concentration. In response the WDNR evaluates the notice and preliminary
analysis. The WDNR may require the owner to further assess the cause and
significance of the increased concentration and prepare a report evaluating the

degree and extent of the problem.



The owner may demonstrate that a reported value represents a false
exceedance of the groundwater standard. While reviewing this information the
WDNR may look at a number of different items to determine the cause and
significance of the exceedance. They may consider:

e the location of the monitoring well;

¢ the specific characteristics of the site;

e the nature of the substances involved and the likelihood of migration;

e background water quality;

¢ reliability of sampling data;

e public health, welfare and environmental effects;

e probability that a PAL or ES may be attained or exceeded outside the

design ma‘nagement zone (DMZ) of the landfill;

o performance of the facility;

e other known or suspected sources of the substance in the area;

e hydrogeologic conditions;

o extent of groundwater contamination,

e alternate responses.

Within 30 days, if the WDNR does not agree that the exceedance is a false
positive, the owner must begin assessment monitoring. If the exceedance is for
one of the inorganic compounds listed in Table 2-2 then the WDNR may allow
an alternative assessment monitoring plan. Also, an alternate monitoring plan
may be approved to include only the parameters that are present in the leachate

collection system. If the full assessment monitoring proceeds, all the parameters



in Appendix Il of NR 507 must be included in the monitoring program. This

includes but is not limited to the following:

Public Welfare Parameters Public Health Parameters

Copper Arsenic
Manganese Barium
Sulfate Cadmium
Zinc Chromium
Fluoride
Lead
Mercury
Nitrate + Nitrite (as N)
Selenium
Silver
Antimony
Beryllium
Nickel
Thallium

Table 2-4 Assessment Monitoring Parameters
Assessment monitoring is only one of the options available to the WDNR
if a well exceeds a PAL, ES or ACL. The range of responses which the WDNR

may take are:

e no action (only for PAL’'s at NR 140 wells);
e sample wells or require sampling of wells;

e require a change in the monitoring program, including increased

monitoring;

e require an investigation of the extent of groundwater contamination;
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require a revision of the operational procedures at the facility, practice
or activity;

require an alternate method of waste treatment of disposal;

require prohibition or closure and abandonment of a facility, practice
or activity;

require remedial action to renovate or restore groundwater quality;
revise rules or criteria on facility design, location or management

practices.
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CHAPTER 3

DUMPStat ALGORITHMS

3.1 Introduction

In the previous chapter we introduced the current groundwater monitoring
regulations as enforced by the Wisconsin Department of Natural Resources
(WDNR). In this chapter we consider the potential use of DUMPStat as an
approach for evaluating groundwater monitoring data at landfill sites. DUMPStat
(Downgradient, Upgradient Monitoring Program Statistics) is a statistical
package developed by Gibbons. It has five analysis options:

e upgradient versus downgradient (interwell) prediction limits;

¢ intrawell prediction limits (PL’s) and combined Shewhart-CUSUM,;

control charts (CC’s)

¢ time series plots;

e VOC detection;

e assessment monitoring.

The two intrawell options could potentially replace the indicator PAL. The
objective of this research is to evaluate DUMPStat as an alternative to the
current methods for calculating the PAL for indicator parameters. The objective
of this chapter is to discuss operational issues, to introduce all the options

available in DUMPStat, and to take a closer look at the two intrawell options.



3.2 DUMPStat Operation

We found the DUMPStat program easy to use. The program runs well
both in Windows 3.11 and Windows 95. We had no installation problems. In
addition, the menus are easy to understand and use. The program, in its current
form, would be difficult to misuse because all important statistical parameters
cannot be changed. For example, the user cannot select the significance level
for the prediction limit. Also, the statistical parameters for the combined
Shewhart -CUSUM control chart are set and cannot be changed.

The WDNR data was easily merged into the DUMPStat database, with
only a few problems. The problems we experienced were with nondetect heavy
metals. DUMPStat requires that the nondetect data include detection limits.
Some data did not include the detection limit and could not be merged. Most
indicator parameter data are above the detection limit. So for our study, merging
indicator parameters was not a problem. However, merging large data sets
(over 10 Mb) can take over an hour. Merging smaller data sets takes only
minutes. In order to shorten merging times, we used a database program to
isolate the wells and parameters of interest.

After the data have been merged into the database a few more steps
need to be taken to run the DUMPStat options. First, the time window for the
background data needs to be defined. Second, the minimum number of

background samples needs to be selected (typically eight for indicator



parameters). Third, a rare event statistic needs to be selected, either Poisson
prediction limits or nonparametric prediction limits. We did not examine
parameters that would require use of rare event statistics. Fourth, we decided to
identify historical trends, an optional step. Fifth, we isolated the wells and
constituents of interest. If these steps are followed most DU.MPStat options can

be performed.
3.3 DUMPStat Options

DUMPStat has five options for analysis. After merging the data and
performing the five steps listed in the previous section these options can be
used. The first option is the upgradient versus downgradient prediction limits.
The second option includes the intrawell prediction limits (PL’s) and combined
Shewhart-CUSUM control charts (CC’s). This option is the main focus of this
study and is discussed below. The third option is the time series plots. This
option can be used to plot the concentration versus time for the selected
parameters. The fourth option, VOC detection, lists all the selected volatile
organic compounds (VOC) above the detection limit. The fifth option is
assessment monitoring. For each parameter for which a health or welfare
standard is set (by the user), DUMPStat makes a time series plot, determines if
any trends exist, and performs a t-test for the last four independent samples.
Section NR 140.14 allows the t-test or another valid statistical analysis for the

data being considered for health and welfare standards.

3-3



3.4 Intrawell Methods

As mentioned previously, the intrawell methods in DUMPStat could
potentially replace the use of PAL'’s for detecting changes in values for indicator
parameters. DUMPStat has two methods for intrawell testing: prediction limits

(PL’s) and the combined Shewhart-CUSUM control charts (CC’s).
3.4.1 Prediction Limits

When the prediction limit is used, DUMPStat first removes outliers from
the background data using Dixon’s test. Next, DUMPStat tests for increasing
trend in the background data using Sen’s test. Then the prediction limit is

calculated as:

1

PL=X+s-t 14— (3.1)

[1-an-]

where X is the sample mean, s is the sample standard deviation, n is the

number of background samples, and t is the t-statistic based on the 1-a

[ 1_a.n-1]
confidence level (or a significance level) and n-1 degrees of freedom.

The significance level, «, is the minimum of: 0.01 or

a =\1- 095 . (3.2)



where k is the number of future comparisons. From equation 3.2 we can
determine that when k is 100, o is the minimum of 0.01 and 0.0226. k will
always be less than 100; consequently o will always be 0.01 for intrawell
analysis. Further, equation 3.2 is based on one verification resample. We were
not able to verify historical results for our analysis. Consequently, DUMP Stat
only indicated a violation after two consecutive exceedances.

The PL is a logical alternative to the PAL because a limit is set based on
the background mean and standard deviation. Similar to the indicator PAL, the
PL is compared to future data points. Also, prediction limits and indicator PAL's
are better suited for detecting sudden increases in concentration. Unlike the
indicator PAL, DUMPStat does not indicate a violation unless the resample or
the next sampling round (depending on the verification resampling plan) also
violates the PL. The PL procedure outlined here as well as the tests for
historical trend and outliers are illustrated in detail with examples in appendix A.

A comparison can be made between the indicator PAL and PL without
calculating either. Most of the time, the PL as implemented by DUMPStat will be
more conservative and will produce more violations than the indicator PAL. This
is true for two reasons. First, the PL does not allow for a minimum increase like
the indicator PAL. This minimum increase allows an additional benefit to the
landfill owner for indicator parameters with a low variance. Second, the number
of standard deviations used to compute the PAL will generally be greater than

that used to compute the PL. Consider the second point. The PAL is always



three standard deviations above the mean. However, for the PL the number of
standard deviations is t[ A -‘h +%. The dependence on n, the number of

background samples, is illustrated in Figure 3-1 for a 99 percent confidence
level. From this figure, we can see with eight background samples the PL is
3.18 standard deviations above the mean which is almost the same as the
indicator PAL. Further, with ten background samples the PL is 2.96 standard
deviations above the mean which is essentially the same as the indicator PAL.
Looking at Figure 3-1 we can conclude that the PL is more conservative than the
PAL for ten or more background samples. From eight to ten background
samples the PL is essentially the same as the indicator PAL. Since eight is the
minimum number of background samples for indicator parameters the PL will at
worst be 0.18 standard deviations above the PAL.

All in all, the PL, as implemented by DUMPStat, is more conservative
than the indicator PAL. The PL will cause more violations than the indicator

PAL. This could result in additional monitoring or possibly remedial action.
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Figure 3-1 Comparison of PAL and PL Based on Number of Background
Samples

3.4.2 Combined Shewhart-CUSUM Control Charts

The second intrawell method that could replace the indicator PAL is the
combined Shewhart-CUSUM control chart (CC). As its name suggests, the
combined Shewhart-CUSUM control chart combines the Shewhart control chart
with the CUSUM control chart. The CC can pick up sudden changes as well as

long term upward trends in water quality.
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The Shewhart control chart is often used in industrial practice. Consider
a bolt manufactured with a specified diameter. The diameter of the bolt is
assumed to be a random variable. A mean and standard deviation for the bolt
diameter can be calculated. The original Shewhart control chart is “out of
control” if the bolt diameter is three standard deviations above or below the
mean. If the control chart is “out of control” then the problem is considered
deterministic. Theoretically, a deterministic problem can be fixed by changing
the machinery or the operator. This is very similar to the current indicator PAL.
In fact, the WDNR is currently using a one sided Shewhart control chart since
the indicator PAL is set three standard deviations above the mean.

The Shewhart test used in DUMPStat is a variation of the original
Shewhart control chart. It is a one sided test and the control chart is “out of
control” if the sample exceeds the mean by 4.5 standard deviations for eleven or
fewer background samples or by 4.0 standard deviations for twelve or more
background samples.

The cumulative sum (CUSUM) portion of the control chart is much
different. While the Shewhart portion of the control chart detects sudden
increases in concentration the CUSUM portion detects steady or slow increases

in concentration. The CUSUM, S; is calculated as

S, =max0,(z -k)+S,,] (3.3)
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where z; is defined as
~X
z, =2 (3.4)

X is the sample mean, s is the sample standard deviation, and x; is the
concentration of interest. Also, k is a parameter related to the displacement
which should be detected quickly (one for eleven or fewer background samples
and 0.75 for twelve or more background samples) and S,=0. The CUSUM
portion of the control chart is considered “out of control” if S; is greater than 4.5
for eleven or fewer samples and 4.0 for twelve or more samples.

Like the prediction limits, the DUMPStat CC does not indicate a violation
unless it is confirmed by a resample or the next round of sampling. If a resample
is taken it should replace the original value in order to provide an unbiased
confirmation of the exceedance for the CC. A complete explanation of the CC is

included in Appendix A with a sample calculation.
3.6 Chapter Summary

All in all we found the DUMPStat program easy to install and use. The
program has several simple and useful options including: assessment
monitoring, time series plotting and VOC detection. DUMPStat also has

interwell prediction limits which do not fit well into the WDNR system since
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intrawell analysis is the preferred method. DUMPStat has two intrawell options:
prediction limits and the combined Shewhart-CUSUM control charts. Of these
two, the prediction limits are more conservative than the indicator PAL for ten or
more background samples. Further, they are essentially the same as the PAL
for eight or nine background samples. The combined Shewhart-CUSUM control
chart on the other hand is more difficult to evaluate since a limit can only be set
for the next sampling round while the prediction limit sets a limit for the next k
sampling rounds. In the next chapter we apply these intrawell methods to data

from a Wisconsin landfill.



CHAPTER 4

PORTAGE COUNTY CASE STUDY

4.1 Introduction

As previously mentioned, the indicator PAL could potentially be replaced
by either of the two DUMPStat intrawell options: prediction limits (PL’s) or the
combined Shewhart-CUSUM control charts (CC’s). In order to examine and
compare the effectiveness of the PAL’s, PL’'s and CC’s we applied all three
methods to the Portage County landfill (license number 2966), a landfill which is
not apparently affecting groundwater quality.

We examined both upgradient and downgradient wells using the indicator
parameters: alkalinity, hardness and specific conductance. Using box plots,
time series plots and a site map we classified each well into one of four
categories: up/sidegradient unimpacted; downgradient impact possible;
downgradient impact suspected; and downgradient unimpacted. Next for each
parameter and each well, we applied the indicator PAL, PL and CC methods.
The effectiveness of each method was evaluated using the downgradient
impacted wells, while the false positive rate was estimated based on the
unimpacted upgradient and sidegradient wells.

Based on this case study we found that the CC’s were more conservative
than the PL’s, and both methods were more conservative than the indicator PAL.
That is, the CC and PL would put the landfill in violation much more often than

the indicator PAL. This result confirms the arguments made in the third chapter.
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In addition, we found an unexpected number of violations at upgradient wells.
We used these violations to estimate the false positive rate and we found it to be
very high for some unimpacted wells. The high number of violations and high
false positive rates led us to question the assumptions of these statistical tests.

This issue is considered in Chapter 5.

4.2 Portage County Landfill Characteristics

The Portage County landfill is located approximately in the center of the
state of Wisconsin. As stated previously, the landfill has a number of upgradient
and sidegradient wells which are not likely to have been impacted by the landfill.
The landfill also has a number of downgradient wells. The location of all wells
and the direction of groundwater flow are shown on Figure 4-1.

Fifteen of the wells have continuous data from 1983 to the present. Each
well has approximately 51 data points for each indicator parameter. Of these
fifteen wells, three can be clearly classified as upgradient (W-10, W-11 and W-
12). Two of the wells are sidegradient but appear to be beyond the influence of
the landfill (W-9 and W-9p). The site has ten clearly downgradient wells (W-17,
W-18, W-20, W-20p, W-21, W-21p, W-22, W-22p, W-23 and W-23p). The “p”
designates a deep well (piezometer), screened below the water table. These
wells are screened in sandy glacial till (in a sand fraction that is coarser than
above). The wells without the “p” designation are screened at (or near) the

water table which is in fine to very fine sandy glacial till.
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Figure 4-1 Portage County Landfill Well Location Map
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4.3 Box Plots and Time Series Plots

As a preliminary step in the evaluation of the landfill, we prepared box
plots and time series plots for all wells. These plots were discussed and
recommended in the two previous WDNR studies (Goodman, 1987 and Fisher,
1989). These studies suggested that a high median or interquartile range (IQR)
may indicate contamination. Similarly, multiple outliers or extreme values may
indicate contamination. Box plots for all the wells for a single parameter should
be plotted simultaneously. Aside from the box plots, time series plots can be
visually inspected for increasing trends. Multiple time series can be plotted on
one graph; however, this should be limited to five or fewer wells and one
parameter per graph. In addition, at least one upgradient or sidegradient well
should be plotted on each graph for comparison.

Figure 4-2, 4-3 and 4-4 show the box plots from the fifteen wells for
alkalinity, hardness and specific conductance respectively. The box plots were
created by Statistica (1997) and the box plot construction is indicated in Figure
4-5. Time series plots for alkalinity (Figures 4-6, 4-7 and 4-8), hardness
(Figures 4-9, 4-10 and 4-11) and specific conductance (Figures 4-12, 4-13 and
4-14) also are given. These box plots and time series plots are based on
quarterly samples for each constituent at each well (approximately 51 samples
for each parameter). By visually inspecting the box plots, time series plots and

well location map, we made some preliminary classifications. Based on these



classifications we will compare the effectiveness of the indicator PAL to the PL
and CC. The preliminary classifications are:
1. Upl/sidegradient unimpacted: W-10, W-11, W-12, W-9 and W-9p
2. Downgradient impact possible: W-17, W-20p, W-21p, W-22 and W-
22p
3. Downgradient impact suspected: W-20, W-21 and W-23p

4. Downgradient impacted: W-18 and W-23

Box Plot: Portage County Landfill (2966)
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Figure 4-2 Box Plots for Alkalinity



Box Plot: Portage County Landfill (2966)
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4.4 Intrawell Analysis All Wells

Box plots and time series plots, as discussed in the previous section, can
be an important tool for groundwater monitoring. In faét, the use of these visual
aids may be better than the use of any statistic. However, these visual aids must
be used with appropriate statistics governed by law. Currently, the appropriate
statistic for alkalinity, hardness and specific conductance is the indicator PAL.
The DUMPStat alternatives to the indicator PAL are the PL and CC.

First let us compare the PL to the indicator PAL. Figures 4-15, 4-16 and
4-17 show the indicator PAL and PL for alkalinity, hardness and specific
conductance, respectively, based on eight background samples. From these
figures we can see the PL is lower for all but a few of wells for each parameter.
The PL is higher than the indicator PAL for W-23 for all parameters and for W-
20p for alkalinity, because the standard deviation for each is greater than M/3
where M is the minimum increase. Recall (figure 2-1) that the minimum increase
for alkalinity, hardness and specific conductance is 100 mg/l, 100 mg/l and 200
uhmos/cm, respectively. So if the variance is above 33.3 mg/l, 33.3 mg/l or 66.7
pnhmos/cm for alkalinity, hardness and specific conductance, respectively, the PL
will be 3.18 standard deviations above the mean while the indicator PAL will be

3.00 standard

4-13



deviations above the mean for eight background samples. Otherwise the
minimum increase above the mean is set as the indicator PAL which is well
above the PL.

We also calculated the PL and indicator PAL based on 25 background
samples. As expected, the PL is always less than the indicator PAL. The
indicator PAL and PL for 25 background samples are given in Figures 4-18, 4-19
and 4-20 for alkalinity, hardness and specific conductance. For 25 background
samples, the PL for parameters with a high variance (over M/3) will be close to
the indicator PAL while those with a low variance tend to be much lower than the
indicator PAL. Using 25 background samples also produced lower PL than
using eight background samples. This result is expected and explained in the

last chapter.

Comparison of PALs and PL mPAL
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Figure 4-15 PAL and PL for Alkalinity
(8 Background Samples)
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Comparison of PALs and PL mPAL
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Figure 4-20 PAL and PL for Specific Conductance
(25 Background Samples)

To compare the CC to the indicator PAL, we calculated the number of
data points in violation for alkalinity, hardness and specific conductance for each
well. This procedure was conducted using both eight and 25 background
samples. This analysis was also performed for the PL for comparison. The
results from this analysis are listed in Table 4-1 and Table 4-2 for eight and 25
background samples. Figures 4-21 and 4-22 present the total number of
violations for each of the parameters for all the wells combined.

From this analysis, we found that the greatest number of violations

sitewide (for alkalinity, hardness and specific conductance) was 89 for the PAL
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with eight background samples and 27 for 25 background samples. The
greatest number of violations sitewide for the PL was 308 for eight background
samples and 172 violations for 25 background samples. The CC had the
highest number violations sitewide with 390 violations for eight background
samples and 198 violations for 25 background samples. In other words on a
sitewide basis, the PL produced over three times as many violations as the
indicator PAL for eight background samples and over six times as many
violations based on 25 background samples. Similarly, the CC produced four
and seven times as many violations as the indicator PAL for eight and 25

background samples respectively.

Alkalinity Hardness Specific Conductance
PAL PL CcC PAL PL CcC PAL PL cC
W-10 0 9 12 0 11 25 0 0 0
W-11 0 3 12 0 1 0 0 1 2
W-12 0 3 2 0 9 28 0 0 0
W-17 0 0 0 0 0 0 0 0 0
W-18 22 28 37 21 28 37 19 31 38
W-20 10 27 26 10 30 30 7 26 28
W-20P 1 1 1 0 22 43 0 6 21
W-21 7 27 28 8 29 31 9 26 27
W-21P 0 23 24 0 27 27 0 12 26
W-22 0 22 23 0 24 27 0 11 20
W-22P 2 12 11 2 16 17 0 8 15
W-23 40 39 42 41 40 42 37 37 41
W-23P 5 38 39 7 36 35 5 27 30
W-9 0 17 28 0 28 41 0
W-9P 0 1 2 0 7 9 1 1 1

Table 4-1 Number of Data Points in Violation
(Based on Eight Background Samples)
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Alkalinity Hardness Specific Conductance
PAL PL CC PAL PL cCc PAL PL ce
W-10 0 7 11 0 3 4 0 0 0
W-11 0 3 15 0 %) 4 0 1 1
W-12 0 4 3 0 4 3 0 0 0
W-17 0 0 0 0 0 0 0 0 0
W-18 4 5 217 4 7 26 4 6 26
\W-20 10 27 26 10 27 27 7 16 26
W-20P 1 1 5 0 13 20 0 6 20
W-21 6 25 26 7 25 26 9 20 26
W-21P 0 25 25 0 25 26 0 ¥ 26
W-22 0 22 22 0 23 21 0 14 21
W-22P 2 13 51 2 15 14 0 6 15
\W-23 0 0 6 0 0 6 0 0 4
W-23P 4 15 26 5 15 27 5 9 26
\W-9 0 11 12 0 12 12 0 0 0
W-9P 0 0 2 0 0 0 1 1 11

Table 4-2 Number of Data Points in Violation
(Based on 25 Background Samples)
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Figure 4-21 Number of Data Points in Violation Sitewide
(Based on Eight Background Samples)
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4.5 Upgradient Wells

As discussed in the previous section, the PL and CC are more
conservative than the indicator PAL. Therefore, DUMPStat will produce more
violations when compared to the indicator PAL. Because of the increased
number of violations, DUMPStat will pick up an impact sooner than the indicator
PAL. However, some of these violations are false. In order to evaluate this
effect, five wells were considered. All were either upgradient or sidegradient
and beyond the influence of the landfill. We estimated the false positive rate by
dividing the number of violations by the total number of data points for each
parameter for these wells. We performed this analysis based on both eight and
25 background samples.

The results of this analysis are given in Figures 4-23 and 4-24 for
alkalinity, hardness and specific conductance. From these plots, one can see
that hardness and alkalinity have a higher false positive rate than specific
conductance for both eight and 25 background samples. Specifically for the two
DUMPStat algorithms, specific conductance had less than a five percent false
positive rate for both eight and 25 background samples, while alkalinity and
hardness had over a five percent false rate. The worst case was a 40 percent
false positive rate for hardness using eight background samples and CC.

Both of the DUMPStat algorithms had higher false positive rates than the

indicator PAL. However, CC had the highest false positive rate. With eight
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background samples, the overall false positive rate was 0.1, 12 and 21 percent
for the PAL, PL and CC, respectively. Similarly with approximately 25
background samples, the overall false positive rates improved to 0.1, 6, and 9
percent. We would expect the false positive rates to decrease with more
background samples since the mean and standard deviation can be better
estimated for upgradient wells. This result is not true for downgradient wells
because they may be impacted by the landfill. Hence, the background data for

downgradient wells should be selected with care.

: @ Alkalinit
Comparison of PALs, PL & CC & Hardness
B Specific Conductance
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Figure 4-23 False Positive Rate Based on Five Upgradient Wells
(Based on Eight Background Samples)
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Figure 4-24 False Positive Rate Based on Five Upgradient Wells
(Based on 25 Background Samples)

4.6 Downgradient Wells

The false positive rates for the upgradient wells appear to be high. In
addition to determining the false positive rate, we are interested in evaluating the
effectiveness of the test. We did this evaluation by examining two downgradient
wells which were preliminarily determined to be impacted.

Consider W-18 and W-23 which we determined to be impacted based on

box plots and time series plots for alkalinity, hardness and specific conductance.
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As noted in Table 4-1, one can see, regardless of the method, that W-23 and W-
18 have high numbers of violations based on eight background samples. W-23
has approximately 40 violations (see Table 4-1) for alkalinity, hardness and
specific conductance regardless of the test, based on eight background
samples. Each method is equally effective for detecting the impact on W-23
since each method indicates 4/5 of the data points are in violation. For W-18 (8
background samples) the PAL, PL and CC have approximately 21, 29, and 37
violations for each parameter. Although the number of violations are different,
each test is effective for determining impact.

Based on eight background samples each test was effective for
determining impact. However, the same cannot be said for using 25 background
samples. Based on 25 background samples, the PL and indicator PAL do not
indicate impact for these wells and parameters. Alternatively, the CC indicates a
substantial impact for W-18 but not for W-23. This result indicates that
background data should be selected with great care. The 25 background
samples likely include impacted data which increases the mean and standard

deviation and decreases the likelihood of impact detection for all tests.
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4.7 Chapter Summary

We have shown that the intrawell DUMPStat algorithms are more
conservative than the indicator PAL. In addition, it is clear that the CC will
produce more violations than the PL. Each of these methods is effective for
determining impact. Of the violations, we noticed some upgradient wells with a
substantial number of violations. Consequently, we estimated the false positive
rate for the each parameter and statistical test. The false positive rate at these
wells for the PL and CC was very high for alkalinity and hardness when
compared to the indicator PAL. The number of violations at upgradient wells
leads us to question the underlying assumptions of these statistical tests, which
will be examined in the next chapter. Regardless of the statistical test or
parameter, the selection of background data appears to a very important factor.
If too much data is included in the background, all the statistical tests will fail to
detect an impact. In the next chapter, we will review the underlying assumptions

of these statistical tests.
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CHAPTER 5

ASSUMPTIONS FOR INTRAWELL ANALYSIS

5.1 Introduction

In the previous chapters we examined three statistical tests used for
intrawell analysis of indicator parameters including: indicator preventive action
limits (PAL), prediction limits (PL) and combined Shewhart-CUSUM control
charts (CC). Currently, the PAL is the statistical test mandated by the Wisconsin
Administrative Code and enforced by the Wisconsin Department of Natural
Resources (WDNR) for indicator parameters. Prediction limits and combined
Shewhart-CUSUM control charts are intrawell tests used in the computer
program DUMPStat. These tests are potential replacements for the indicator
PAL.

In the last chapter we applied the prediction limits and combined
Shewhart-CUSUM control charts on data from a Wisconsin landfill and found a
large number of false positives. For example, using 25 background samples we
found the false positive rate to be over fifteen percent for alkalinity at the
Portage County Landfill. In this chapter we investigate when this high incidence
of false positives is due to violations of the assumptions; in particular, we
explore distributional assumptions and the assumptions of stationarity and

independence. These assumptions are investigated using alkalinity, hardness



and specific conductance data from 26 upgradient wells at ten Wisconsin

landfills.

5.2 Landfill Selection

The locations of the landfills we considered are indicated in Figure 5-1.
These landfills cover a majority of the state and are located in a variety of
geologic formations. Table 5-1 gives information on each landfill. Most of the
landfills accept municipal solid waste (MSW), and three of the landfills accept
industrial waste including papermill sludge and foundry waste. The size of these
landfills varies from the small Lincoln Landfill (license number 1779), which has
a capacity of 0.05 million cubic yards, to the large Troy area landfill (license
number 3090), which has a capacity of 3.9 million cubic yards.

Based on site maps provided by the WDNR, we identified 26 wells that
were unlikely to have been impacted by these ten landfills. Most of the wells are
clearly upgradient. A few are sidegradient wells but are clearly beyond the
influence of the landfill. Each of the wells had at least fifteen data points for
each of the indicator parameters of interest. The selected wells are listed in

Table 5-2.



License Landfill License Landfill
Number Name Number Name
1779 Lincoln 2978 Sauk County
2695 Pope & Talbot 3065 |City of Richland Center
2805 Oneida County 3070 Juneau County
2966 Portage County 3090 Troy Area
2974 Grede Foundries 3141 Lincoln County

Figure 5-1

Name and Location of Landfills Studied




Table 5-1 Landfill Characteristics for Sites Studied

Landfill Facility Design Waste Design Volume | Site Size Site Year Number of
(License) Received (Millions of (Acres) Life Sampling Upgradient Wells
Cubic Yards) Began Analyzed

Lincoln Natural MSW 0.05 20 1984- 1984 2
(1779) Attenuation 1990
Pope & Talbot Partial Clay Lined | Papermill 1.2 19 1976- 1976 3
(2695) Leachate Sludge present

Collection
Oneida County Partial Clay Lined MSW 1.1 16.3 1979- 1979 2
(2805) Leachate Papermill present

Collection Sludge
Portage County Clay Lined MSW 1.37 18.6 1984- 1983 5
(2966) Leachate Present

Collection
Grede Foundries Partial Clay Lined | Foundry 0.966 19.5 1981- 1981 2
(2974) Leachate Waste present

Collection
Sauk County Clay Lined MSW 1.28 20 1983- 1978 3
(2978) Leachate Present

Collection
City of Richland Clay Lined MSW 0.34 7.3 1986- 1986 3
Center Leachate 1993
(3065) Collection
Juneau County Clay Lined MSW 0.42 8 1987- 1987 1
(3070) Leachate present

Collection
Troy Area Clay Lined MSW 3.9 26 1987- 1987 3
(3090) 1996
Lincoln County Clay Lined MSW 0.825 14.6 1987- 1987 2
(3141) Leachate present

Collection
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License # Landfill Common Well # | DNR Well # | Location
1779 Lincoln MW-1 1 Up
1779 Lincoln MW-4 104 Up
2695 Pope & Talbot W-13 11 Up
2695 Pope & Talbot W-18 18 Up
2695 Pope & Talbot W-6 3 Up
2805 Oneida County MW-1 1 Up
2805 Oneida County MW-126 126 Up
2966 Portage County W-10 14 Up
2966 Portage County W-11 16 Up
2966 Portage County W-12 17 Up
2966 Portage County W-9 12 Side
2966 Portage County W-9P 13 Side
2974 Grede Foundries B-3 103 Up
2974 Grede Foundries B-5 105 Up/Side
2978 Sauk County W-30 101 Up
2978 Sauk County W-30A 102 Up
2978 Sauk County W-31 103 Up
3065 City of Richland Center MW-6 106 Up
3065 City of Richland Center MW-7 107 Side
3065 City of Richland Center MW-7P 108 Side
3070 Juneau County OW-5 1 Up
3090 Troy Area B-1 201 Up
3090 Troy Area B-1B 203 Up
3090 Troy Area B-2 204 Up
3141 Lincoln County M-4 706 Up
3141 Lincoln County M-9 710 Up/Side

Table 5-2 Selected Wells




5.3 Stationarity, Independence and Trend

Most statistical tests, such as those based on the combined Shewhart-
CUSUM control charts or predictions limits are predicated on the assumption
that the data are taken from a random sample. Herein random means that the
data are independent and identically distributed. In this section, we will
determine whether the upgradient alkalinity, hardness and specific conductance
data represent random samples. In particular, we will test for two kinds of
nonrandomness: nonstationarity; and serial correlation.

For data collected in time, nonstationarity means that the distribution
changes in time. Nonstationarity can be due to seasonality of the mean and/or
variance or to long-term drift of the mean and/or variance. Figure 5-2 is an
example of nonstationarity due to periodic variation in the mean. Figure 5-3 is
an example of nonstationarity in variance. Figure 5-4 shows data for which both

the mean and variance change in time.
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Figure 5-2 Nonstationary Process: Changing Mean
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Figure 5-4 Nonstationary Process: Changing Mean and Variance

Figures 5-2 through 5-4 are hypothetical examples of nonstationarity;
Figure 5-5 shows an example of apparent nonstationarity of alkalinity data from
two wells at the Portage County landfill. These data show apparent variation in
the mean and variance. For example, for W-9 the variance for data prior to June
1990 is 38.5 mg/l and after is 374.6 mg/l. The variance of the data from W-9p
also appears to increase, although not as significantly as W-9. These wells are
clearly beyond the influence of the landfill; hence the apparent nonstationary
behavior is not due to contamination by the landfill. Determining the cause of
this apparent nonstationarity was beyond the scope of this study. One

possibility is consistent measurement error, due to changes in sampling and
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measurement protocols. Another possibility is that the apparent nonstationarity

is due to variation in the flow field at the site.
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Figure 5-5 Nonstationary Process: Changing Variance

Inspection of all of the time series plots of the water quality data from 26
upgradient wells did not reveal any obvious seasonal behavior. Goodman
(1987) and Montgomery et. al. (1987) also found little significant seasonality in
groundwater quality data. Consequently, we did not conduct any formal
statistical tests for seasonality. Instead, we conducted statistical tests for serial
correlation and for linear trends, both of which are causes of nonrandomness. In
short datasets, such as those analyzed here, correlation and trend can be

confounding. Strictly speaking, serial correlation should only be estimated from
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stationary data, as the presence of a trend can falsely indicate serial correlation.
Similarly, serial correlation can indicate a trend which does not exist. We chose
to use tests of both serial correlation and trend to detect nonrandomness. We
also tested the data for normality and lognormality, since both prediction limits
and combined Shewhart-CUSUM control charts are typically predicated on the
assumption of normality or lognormality.

Serial correlation was evaluated using the lag-k autocorrelation
coefficient, the correlation coefficient for data points separated by k sampling
intervals. This coefficient varies from -1 to +1. For the lag-1 autocorrelation, a
positive coefficient indicates high values tend to be followed by high values and
low values tend to be followed by low values in the time series. For a negative
lag-1 autocorrelation coefficient, the opposite is true.

For our study, we calculated the autocorrelation function coefficient for up
to fifteen lags (k=15) depending on the length of the data sets. This analysis
was performed for 26 upgradient wells for alkalinity, hardness and specific
conductance at ten landfills. We used a five percent significance level for the
two sided test. It should be noted that the test procedure offered in Statistica
(1997) is slightly different from the procedure used by Goodman (1987).
Appendix C outlines the procedure for calculating any lag-k autocorrelation

coefficient and it includes a sample calculation.



Before reviewing our results, it is interesting to look at graphical
representation of the data. Specifically, a plot for the concentration, Ci4, versus
the next concentration, C;, provides a visual indication of the strength of the
lag-1 Autocorrelation coefficient. For perfect positive correlation the plot would
be linear with a positive slope. For strong correlation, the plot would show a
clustering of the data points with a positive slope. Figures 5-6 and 5-7 show the
results for specific conductance for two wells. These two wells show no
clustering and no clear slope. The lag-1 autocorrelation coefficient for the data
are 0.005 and -0.053 respectively; neither is significant at the 5% level. In
contrast, strong lag-1 autocorrelations are shown in Figures 5-8 and 5-9. The
positive slopes are clear as well as the clustering of both high values and low
values. Lastly, figures 5-10 and 5-11 show strong lag-1 autocorrelations but the

high values are more disperse than the low values.
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Figure 5-6 No Significant Serial Correlation
(r1=0.005, p=0.97)

Specific Conductance, W-9, Portage County (2966)
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Figure 5-7 No Significant Serial Correlation
(r1=-0.053, p=0.69)




Hardness, W-9, Portage County (2966)
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Figure 5-8 Significant Positive Serial Correlation
(r1=0.716, p=0.000)
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Figure 5-9 Significant Positive Serial Correlation
(r1=0.676, p=0.000)

5-13




Hardness, W-6, Pope & Talbot (2695)
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Figure 5-10 Clustering of Lower Values and Dispersion of High Values
(r1=0.611, p=0.000)

Alkalinity, W-6, Pope & Talbot (2695)
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Figure 5-11 Clustering of Lower Values and Dispersion of High Values
(r1=0.802, p=0.000)
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Autocorrelations were displayed in the form of correlograms, plots of the
estimated lag-k autocorrelation coefficient as a function of k. Figures 5-12 and
5-13 show an example for which the autocorrelation was insignificant for all
fifteen lags calculated. Figures 5-14 and 5-15 show correlograms for which
significant correlation persists for a number of lags. It is not surprising that these
two correlograms are almost the same. Figure 5-14 is hardness and Figure 5-15
is the alkalinity for the same well. Since this is a carbonate aquifer, we can
expect hardness and alkalinity to be similar. Figure 5-16 and 5-17 are also
correlograms for the alkalinity and hardness. Here, the correlations decay to
zero after eight lags and then become negative (although not significantly). All
the correlograms are included in appendix C.

Autocorrelation Function: Portage County Landfill (2966)
W-9 Specific Conductance
(Standard errors are white-noise estimates)

Lag Corr. S.E. T Q P
1 4.005 L1360 [ ooz e .00 .9691
2 +.008  .1346 : ER— - i .01 .9974
3 -.010 1333 | e | : -{ .01 .9997
4 +.209 .1319 . ; 4 2.53  .6393
5 -.078  .1305 i X S— ; -] 2.89  .7176
6 -.302  .1290 : ] : .2135
7 +.021  .1276 .3003
8 +.011  .1261 3967
9 +.079  .1247 4571
10 +.071  .1232 5207
11 +.016  .1216 .6092
12 +.163  .1201 5312
13 -.108  .1186 .5432
14 -.085  .1170 .5791
15 +.031  .1154 - 6479

Figure 5-12 Corellogram with Insignificant Autocorrelation



Autocorrelation Function: Portage County Landfill (2966)
W-9P Specific Conductance
(Standard errors are white-noise estimates)

Lag Corr. S.E. p
1 -.053 .1360 .6947
2 -.117 .1346 .6344
3 -.038 .1333 .8038
4 +.191 .1319 - .5433
5 -.154 .1305 .4821
6 -.155 .1290 .4318
7 -.002 .1276 .5486
8 -.008 .1261 .6552
9 +.071 .1247 .7140
10 +.106 .1232 .7250
11 +.004 .1216 .7986
12 +.095 .1201 .8133
13 -.094 .1186 .8260
14 -.071 .1170 .8536
15 +.120 .1154 .8375
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Figure 5-13 Corellogram with Insignificant Autocorrelation

Autocorrelation Function: Pope & Talbot Landfill (2695)
W-6 Hardness
(Standard errors are white-noise estimates)

Lag Corr. S.E. T T T P

1 +.611  .1104 g N i {30. .0000
2 +.470  .1097 | : 77 . .0000
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5 +.260  .1075 SIS LR .0000
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AU -7 TS VoY% [ OSSO S— LR ) .0000
8 +.194 L1053 frremmreeesmneessbersins e ) .0000
9 +.181  .1046 i % 0000
10 +.092  .1038 : i % .0000
11 +.158  .1031 i ), .0000
12 +.120  .1023 Y .0000
13 +.138  .1016 ) .0000
14 +.139  .1008 ) .0000
15 +.039  .1000 B .0000
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Figure 5-14 Corellogram with Autocorrelation Showing Longer Term
Persistence
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Autocorrelation Function: Pope & Talbot Landfill (2695)
W-6 Alkalinity
(Standard errors are white-noise estimates)

Lag Corr. S.E. T T T Q s}
1 +.802  .1104 i ; 452.79  .0000
2 +.626  .1097 i 777 -{85.34  .0000
3 +.389  .1090 - 98.11  .0000
4 +.256  .1083 : : % 103.7  .0000
5 +.187  .1075 i : W, O 106.7  .0000
6 +.180  .1068 - . S— %, - 109.6  .0000
7 +.174  .1061 e : - 112.3  .0000
8 +.229  .1053 f- 117.0  .0000
9 +.248  .1046 4122.6  .0000
10 +.236  .1038 127.8  .0000
11 +.222  .1031 132.4  .0000
12 +.206  .1023 136.5  .0000
13 +.203  .1016 140.5  .0000
14 +.192  .1008 144.1  .0000
15 +.069  .1000 | 144.6  .0000

Figure 5-15 Corellogram with Autocorrelation Showing Longer Term
Persistence

Autocorrelation Function: Portage County Landfill (2966)
W-9 Hardness
(Standard errors are white-noise estimates)

Lag Corr. S.E. T T T Q s}

1 +.716  .1360 f- .0000
2 +.640  .1346 |- .0000
3 +.652  .1333 .0000
4 +.474  .1319 B .0000
5 +.337  .1305 [ N ) e 93.80  .0000
6 +.236  .1290 VN s 97.15  .0000
7 +.104  .1276 f- . 97.81  .0000
8 -.007  .1261 [ i i 497.82  .0000
9 -.031  .1247 |- 4 : 497.88  .0000
10 -.161  .1232 : S, i 99.58  .0000
11 -.217  .1216 i ) f 102.8  .0000
12 =.232  .1201 fermmemrssnnes — ) ; 106.5  .0000
13 =.235 L1186 fereeeeeeenss ) : i -{110.4  .0000
14 -.229  .1170 |- ) L 114.3  .0000
15 -.206  .1154 ‘) : ; 117.5  .0000

Figure 5-16 Corellogram with Autocorrelation Showing Shorter Term
Persistence
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Autocorrelation Function: Portage County Landfill (2966)
W-10 Hardness
(Standard errors are white-noise estimates)

Lag Corr. S.E. T T T Q P
1 +.676  .1360 H .0000
2 +.611  .1346 .0000
3 +.405  .1333 .0000
4 +.279  .1319 .0000
5 +.162  .1305 .0000
6 +.055  .1290 .0000
7 +.051  .1276 .0000
8 -.011  .1261 f- .0000
9 -.117  .1247 } .0000
10 -.210  .1232 .0000
11 -.241  .1216 .0000
12 -.218  .1201 .0000
13 -.208  .1186 .0000
14 -.117  .1170 .0000
15 -.139  .1154 .0000

Figure 5-17 Corellogram with Autocorrelation Showing Shorter Term
Persistence
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Goodman (1987) and Montgomery et. al. (1987) also evaluated serial
correlation coefficients of groundwater quality data. Goodman tested for serial
correlation using two methods: lag-1 autocorrelation function; and the
nonparametric runs test. The results were similar for both tests. For the
parameters examined in this study, Goodman (1987) found a smaller proportion
of significant lag-1 autocorrelation coefficients: 23, 26 and 24 percent compared
to the 62, 65 and 58 percent found in this study for alkalinity, hardness and
specific conductance, respectively. Much of the difference may be attributed to
differences in record lengths. The average record length in Goodman (1987)
was less than three years; in this study the average record length is about
thirteen years. Montgomery et. al. (1987) estimated lag-1 autocorrelation
coefficients for hardness and specific conductance at two and eight wells,
respectively. Of these, only 50% of the hardness data and 25% of the specific
conductance data showed significant autocorrelation. The average record

length was only about seven years.
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Figure 5-18 Results for Independence Tests

Our study indicates the data for upgradient wells are not random. One or
more correlation coefficients for over 50 percent of the data sets are significantly
different from zero. In the next section we will test the data for trend.

A number of parametric and nonparametric tests for trend are available.
Stoline et. al. (1993) used parametric regression to detect both linear and
quadratic downward trends for a superfund site. Frapporti et. al. (1994) used the
Spearman rho test to evaluate changing geochemical processes. DUMP Stat
uses Sen’s test to evaluate background data for upward historical trends or the

entire data set for upward or downward trends for assessment monitoring. We
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chose the gamma test, which is a slight variation of the Kendall tau test. The
Gamma test and Sen’s test procedures are outlined in appendix A.

The results of the gamma test are shown in Figure 5-19, for a significance
level of five percent. Overall, at least 50 percent of the wells had a significant
trend for alkalinity, hardness and specific conductance. Slightly fewer wells
showed trend than autocorrelation for hardness and specific conductance.
Slightly more wells exhibited autocorrelation than trend for alkalinity. Further,
the breakdown of the gamma trends were 53 percent positive and 47 negative.

Figure 5-20 shows the totals for autocorrelation and trend on the same graph.

| Negative Trend, Gamma Test

Test for Trend | Positive Trend, Gamma Test
B Positive or Negative, Gamma Test

90%
80%

70%
60%

50%
40%

30% -

Percentage Exhibiting Trend

20% -
10% -

0% -

Alkalinity Hardness Specific
Conductance

Figure 5-19 Overall Results for Trend Tests
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Figure 5-20 Overall Results for Trend and Autocorrelation

5.4 Normality

Prediction limits and combined Shewhart-CUSUM control charts, as used
in DUMPStat, are generally predicated on the assumption of normality. A
number of tests for normality are suggested in the literature. Gibbons (1994)

lists several including:

Normal Probability Plots

Shapiro-Wilk Test

Shapiro-Francia Test

D’Agostino’s Test
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e Skewness
¢ Kolmogorov-Smirnov (mean and variance known) Goodness-of
Fit Test
e Kolmogorov-Smirnov with Lilliefors Generalization (uses sample
mean and sample standard deviation)
Montgomery et. al. (1987) and Gilbert (1987) suggest:
e Histograms
¢ Normal Probability Plots
e Chi-Squared Goodness-of-Fit Test
e Skewness
Before applying a test for normality, it is useful to examine histograms of
the data. Histograms give qualitative information about data normality. For
example, the alkalinity data shown in Figure 5-21 approximately exhibit normal
behavior. Other data give a different picture. Figure 5-22 shows sampling data
clearly skewed to the right while Figure 5-23 shows data clearly skewed to the
left. Although the skewness coefficient would detect non-normal behavior for

Figure 5-22 and 5-23 it would not detect the bimodality evident in Figure 5-24.
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For a quantitative look at normality we performed two numerical tests: the
Shapiro-Wilk (SW) test and the Kolmogorov-Smirnov test (KS). The Lilliefors
test procedure was used for the KS test since the mean and variance were not
known a priori. For these tests, we analyzed 26 upgradient wells at ten landfills
in Wisconsin for normality. For each well we used alkalinity, hardness and
specific conductance.

Using a five percent significance level, we found that the KS and SW
provided similar results for alkalinity and specific conductance and identical
results for hardness. For the SW test, 54, 73 and 54 percent of the wells were
rejected for normality for alkalinity, hardness and specific conductance
respectively. Similarly for the KS test, 50, 73 and 46 percent of the wells were
rejected for normality for alkalinity, hardness and specific conductance. Overall,
normality was rejected 60 percent of the time for the SW test and 56 percent of
the time for the KS test.

The results from our tests are summarized in Figure 5-25. In addition,
this figure compares our results with the results from Montgomery et. al. (1987),
Goodman (1987), and Fisher (1989). Note that Montgomery et. al. (1987) did
not use alkalinity in any of the tests and only tested three wells for hardness.
From Figure 5-25, one can see from all three studies that normality is rejected
more often for hardness than for alkalinity and specific conductance. Basically,

our study shows that the assumption of normality is frequently violated.
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Figure 5-25 Results for Tests of Normality

We also applied the SW test to the log transform of the data. Table 5-3
gives the results of these tests. For the parameters alkalinity, hardness and
specific conductance 58, 46 and 61 percent of the wells were rejected for
lognormality. This is comparable to the rejection rate of 54, 73 and 54 percent
for normality. Also, 46, 46 and 42 percent of the wells were rejected for both
normality and lognormality. Alternately, 35, 27 and 27 percent of the wells were
not rejected for both normality and lognormality. These results are not

encouraging for the use of prediction limits or control charts based on normality
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or lognormality. In about 50 percent of the cases considered neither assumption

appears to be warranted.

Rejecting Rejecting Rejecting Not Rejecting

Normality | Lognormality Both Both
Alkalinity 14/26 15/26 12/26 9/26
Hardness 19/26 12/26 12/26 7/26
Specific Conductance 14/26 16/26 11/26 7/26

Table 5-3 Results for Shapiro-Wilk Test for Normality and Lognormality

5.5 How do Violations of Assumptions Affect Parametric Tests?

In previous sections, we found that over 50 percent of the upgradient
wells had a significant trend, non-normal distribution or serial correlation. In
fact, 93, 100 and 88 percent of the wells were significant for at least one of the
three for alkalinity, hardness and specific conductance, respectively. In the case
study discussed in the previous chapter, we found that a number of upgradient
wells had violations. Further, we found the false positive rate to be higher than
expected. In this section, we will use DUMPStat and the indicator PAL to
evaluate the same 26 upgradient wells at ten landfills. Again, the parameters

alkalinity, hardness and specific conductance will be used. This analysis was

5-28



performed using eight background samples. After the analysis, we tabulated the
number of data points out of compliance. Next, we estimated the false positive
rate. Lastly, we determined if the data points that were out of compliance were
in data sets exhibiting nonormality, serial correlation, and trend.

Figure 5-26 shows the number of violations for each parameter for all the
upgradient wells. Figure 5-27 shows the estimates of the false positive rate
based on the same wells. Clearly, the PL and CC indicate a large number of
violations in the upgradient data. For all cases, the CC had more violations than
the PL and the PL had more violations than the PAL. For instance, alkalinity had
2,151 and 202 violations for the PAL, PL and CC, respectively. Since all the
data is upgradient, these violations are all false positive results. Overall the
false positive rate estimate is 0.7, 10.9, and 21.4 percent for the PAL, PL and

CC, respectively.
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How do these false positive results relate to violation of the assumptions
of normality and randomness in the indicator PAL, PL and CC. Figure 5-28
shows the percent of PAL exceedances which occur in datasets which exhibit
serial correlation, nonormality, or trend. Figures 5-29 and 5-30 show the
corresponding plots for PL and CC respectively. Of the PAL violations, 83, 78
and 74 percent of the violations were in data sets showing nonormality, serial
correlation or trend respectively. (Note however, that they were close for PAL
exceedances for alkalinity and hardness data.) For the PL, at least 65 percent
of the violations are in data sets showing nonormality, serial correlation, or trend.
For the CC, at least 57 percent of the violations are in data sets violating
assumptions. From this, we can conclude data that violates the assumptions is

more likely to be out of compliance than in compliance.
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Figure 5-30 Percentages of CC Violations in Data Sets Deviating from
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5.6 Chapter Summary

The tests used in DUMPStat assume that the data are random and are
normally distributed (or can be normally distributed with a log transformation).
Analysis of alkalinity, hardness and specific conductance data for 26 upgradient
wells indicated that these assumptions are commonly violated. Over 50 percent

of these wells, for each parameter, had a significant autocorrelation coefficient
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or trend which indicates the data are not random. Also, over 50 percent of the
upgradient wells, for each parameter, rejected normality and over 50 percent

rejected lognormality.
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CHAPTER 6

RECOMMENDATIONS AND CONCLUSIONS

We cannot recommend the use of DUMPStat as a supplement or
alternative to the indicator PAL. Use of DUMPStat’'s methods for intrawell
comparison, prediction limits and combined Shewhart-CUSUM control charts,
will result in many false indications of contamination. This is true for two
reasons. First, DUMPStat's intrawell tests are inherently more conservative than
the indicator PAL, except at small sample sizes. Second, the assumptions on
which these tests are based, that the data are random samples from normal
distributions, are often violated by upgradient landfill monitoring data.

Nonrandomness in particular can trigger false indication of contamination.

6-1



CHAPTER 7

References

Bence, James R. “Analysis of Short Time Series: Correcting for
Autocorrelation.” Ecology. 76(2): 628-639.

Box, E. P. and G. M. Jenkins. 1976. Time Series Analyis Forecasting and
Control. San Francisco: Holden Day.

Close, M.E. 1989. “Effect of Serial Correction on Ground Water Quality
Sampling Frequency.” Water Resources Bulletin. 23(3): 507-515.

Connelly, J. November 17, 1995. Personal Communication, Subject: Ug'coming
Meeting on November 20 with Sanifill. Wisconsin Department of Natural
Resources.

Fisher, Sarah R. 1989. Methods for Determining Compliance with Groundwater
Quality Regulations at Waste Disposal Facilities. M.S. Report. University
of Wisconsin-Madison.

Frapporti, G., S.P. Vriend, and P.F.M. Van Gaans. 1994. “Qualitative Time
Trend Analysis of Ground Water Monitoring Networks Environmental
Monitoring and Assessment. 30: 81-102.

Gibbons, Robert D. 1994a. DUMPStat: an artificially intelligent computer
program for ground-water monitoring applications. [Computer Program
and Manual]. Discerning Systems: Burnaby, British Columbia.

Gibbons, Robert D. 1994b. Statistical Methods for Groundwater Monitoring.
New York: John Wiley & Sons, Inc.

Gibbons, Robert D. 1995. Statistical Methods for Ground-Water Monitoring at
Waste Disposal Facilities. Chicago: Robert D. Givens Ltd.

7-1



Gilbert, R. O. 1987. Statistical Methods for Environmental Pollution Monitoring.
New York: Van Nostrand Reinhold Company Inc.

Goodman, Iris. 1987. Graphical and Statistical Methods to Assess the Effects
of Landfils on Groundwater quality. Madison: Wisconsin Department of
Natural Resources.

Harris, Jane, Jim C. Loftis, and Robert H. Montgomery. 1987. “Statistical
Methods for Characterizing Ground-Water Quality.” Ground Water.
25(2): 185-193.

Helsel D. R. and R.M. Hirsch. 1992. Statistical Methods in Water Resources.
Amsterdam, New York: Elsevier.

Hirsch, Robert M. and James R. Slack. 1984. “A Nonparametric Trend Test for
Seasonal Data with Serial Dependence.” Water Resources Research.
20(6): 727-732.

Hirsch, Robert M., James R. Slack, and Richard A. Smith. 1982. “Techniques of
Trend Analysis for Monthly Water Quality Data.” Water Resources
Research. 18(1): 107-121.

Horowitz, Joel and Samir Barakat. 1979. “Statistical Analysis of the Maximum
Concentration of an Air Pollutant: Effects of Autocorrelation and Non-
Stationarity.” Atmospheric Environment. 13: 811-818.

Horsey, Henry R., Phyllis Corosone-Link and Megan R. Sullivan. “The
Effectiveness of Intrawell Groundwater Monitoring Statistics at Older
Subtitle D Facilities. Waste Age. 27(4): 99-100.

Johnson, Virginia M., R. Cary Tuckfield, and Rachel A. Anderson. 1996.
“Reducing the Sampling of Groundwater Monitoring Wells.”
Environmental Science and Technology. 30(1): 355-358.

Jousma, G., et al.,, eds. 1987. Groundwater Contamination: Use of Models in
Decision-Making. Amsterdam: Kluwer Academic Publishers.




Kendall, M.G, and Jean Dickenson Gibbons. 1990 Rank Order Correlation.
New York: Oxford University Press.

Kendall, M.G. and Ord, J. K. 1990. Time Series. New York: Oxford University
Press.

Loftis, J.C. and R.C. Ward. 1980. “Sampling Frequency Selection for
Regulatory Water Quality Monitoring.” Water Resources Bulletin. 16(3):
501-507.

Maidment, David R., eds. 1993. Handbook of Hydrology. New York: McGraw-
Hill Inc.

McNichols, Roger J. and Charles B. Davis. 1988. “Statistical Issues and
Problems in Ground Water Detection Monitoring at Hazardous Waste
Facilities.” Groundwater Monitoring and Remediation. Fall, 135-150.

Montgomery, Robert H., Jim C. Loftis, and Jane Harris. 1987. “Statistical
Characteristics of Ground-Water Quality Variables.” Ground Water.
25(2): 176-184.

Nielsen, David M., eds. 1991. Practical Handbook of Ground-Water
Monitoring. Chelsea, Michigan: Lewis Publishers.

Pettyjohn, Wayne A, et al. 1976. A _Ground-Water Quality Atlas of the United
States. National Demonstation Water Project.

Starks, Thomas H. and George T. Flatman. 1991. “RCRA Ground-Water
Monitoring Decision Procedures Viewed as Quality Control Schemes.
Environmental Monitoring and Assessment. 16: 19-37.

Statsoft, Inc. 1997. Statistica for Windows [Computer Program and Manual].
Tulsa, Oklahoma: Statsoft, Inc.

7-3



Stoline, Michael .R., Richard N. Passero, and Michael J. Barcelona. 1993.
“Statistical Trends in Ground-Water Monitoring Data at a Landfill
Superfund Site: a Case Study .” Environmental Monitoring and
Assessment. 27: 201-219.

Voell, Chris. 1993. “Groundwater Monitoring: A Regulatory Overview.” World
Wastes. 39(9): 32-34.

Wallis, James R. and P. Enda O’Connell. 1972. “Brief Reports Small Sample
Estimation of p;.” Water Resources Research. 8(3): 707-712.

Wisconsin Department of Natural Resources. 1994. PAL/ACL Calculations
Guidance for Solid Waste Facilities. Madison.

Wisconsin Department of Natural Resources. 1988. Chapter NR 140 Wisconsin
Administrative Code. Madison.

Wisconsin Department of Natural Resources. 4/25/96. Chapter NR 507
Wisconsin Administrative Code. (Draft) Madison.

Wisconsin Department of Natural Resources. 4/25/96. Chapter NR 508
Wisconsin Administrative Code. (Draft) Madison.







APPENDIX A
STATISTICAL TESTS



APPENDIX A
STATISTICAL TESTS

Table of Contents

A1.0

A3.0

A4.0

A5.0

A6.0

Sen’s Test

A1.1 Test Procedure
A1.2 Sample Calculation

Dixon’s Test

A2.1 Test Procedure
A2.2 Sample Calculation

Intrawell Shewart-CUSUM Control Charts

A3.1 Test Procedure
A3.2 Sample Calculation

Intrawell Prediction Limits

A4.1 Test Procedure
A4.2 Sample Calculation

Gamma Test

A5.1 Test Procedure
A5.2 Sample Calculation

Autocorrelation Function

AB6.1 Test Procedure
A6.2 Sample Calculation

A-1
A-3

A-5
A-7

A-8
A-10

A-12
A-14

A-15
A-17

A-19
A-21



APPENDIX A
STATISTICAL TESTS

List of Tables

A1A1

A1.2

A2.1

A22

A2.3

A3.1

A3.2

A3.3

A3.4

A4

A4.2

A5.1

A6.1

Individual Slope Estimates

Ranked Slope Estimates

Dixon’s Test Statistic Equations

Critical Values for Dixon’s Statistic

Sample Data for Dixon’s Test

Shewart-CUSUM Control Chart Parameters
Sample Data for Shewart-CUSUM Control Chart

Mean, Standard Deviation and Shewart-CUSUM
Control Chart Parameters

Tabular Shewart-CUSUM Control Chart

Student’s t Statistics Based on n-1 Degrees of
Freedom and a 99 Percent Confidence Level

Sample Data for Prediction Limit
Individual sgn(x;-x;) for Gamma Test

Sample Data for Autocorrelation Function

List of Figures

A3.1

Graphical Shewart-CUSUM Control Chart

A-10

A-10

A-11

A-13

A-14

A-17

A-21

A-11



A1.0 Sen’s Test

Reference:

Gibbons, Robert D. Statistical Methods For Groundwater Monitoring. New York:
John Wiley & Sons, Inc., 1994.

Sen developed this nonparametric trend test. DUMPStat uses it to identify
historical trends if the option is selected in the setup menu. The test estimates
the slope of the concentration versus time regression line. According to Gibbons
this method is robust to outliers, missing data and nondetects. The required
data includes the sample values and the order of the samples in time for a well
-and constituent.

The one sided hypothesis test is:

Null hypothesis Ho: The data has no upward trend

Alternate hypothesis H:: The data has an upward trend

A11 Test Procedure

First, compute N estimates of the slope Q where

N = n-(n-1)
2

(A1.1)

X =X
and Q= ‘J Ix (A1.2)

for all combinations of j greater than i where j=(i+1),....n and i=1,....(n-1).

n is the total number of sample points, x; is the ith sample concentration and X
is the jth sample concentration.

Second, rank the N values of Q from smallest to largest. Compute the median
slope S, where

S=Q, . if Nis odd (A1.3)

[(N+1)12)

S=Q,,+Q if N is even (A1.4)

[(N+2)12)

I



Third, estimate the variance of S, V[S]. For n>10 the V[S] can be estimated by

s _n-(n—1).(2n+5)—§t,-p-(p—1).(2.p+5)
B 18

(A1.5)

where t, is the number of ties with extent p. For example for t,=2 there are two
ties of extent 4. There are two measurements repeated four times each.

Fourth, compute the approximate lower confidence limit which is the Mth
smallest value of Q where

1/2

_N-2Z,_,-V[§]
B 2

M

(A1.6)

Z1. is the lower one sided (1-a)100 percent confidence Z statistic for the normal
distribution, where a is the significance level of the test.

Lastly, locate the Mth smallest value of Q. Typically, M is not an integer so
interpolate to approximate the Mth largest Q. If this interpolated value is greater
than zero reject the null hypothesis.



A1.2 Sample Calculation

Compute the number of slope estimates, N

N
2

Compute slope estimates, Q

_10-9

= 45

Time Sample
Period| Concentration
1 200
2 210 10.00
3 225 12.50 | 15.00
4 210 3.33 [ 0.00 |-15.00
5 260 15.00 [ 16.67 | 17.50 | 50.00
6 260 12.00[12.50|11.67|25.00{ 0.00
7 290 15.00]16.00|16.25|26.67 | 15.00 | 30.00
8 250 7.14 | 6.67 | 5.00 |10.00]| -3.33 | -5.00 |-40.00
9 260 7.50 | 7.14 | 5.83 |10.00| 0.00 | 0.00 |-15.00(10.00
10 300 11.11[11.25/10.71[15.00| 8.00 | 10.00| 3.33 |25.00 [40.00 |
Table A1.1 Individual Slope Estimates
Now rank the Q values from smallest to largest.
Rank Q Rank Q Rank Q Rank Q
1 -40 13 5.833 24 10.71 35 15
2 -15 14 6.667 25 11.11 36 16
3 -15 15 7.143 26 11.25 37 16.25
4 -5 16 7.143 27 11.67 38 16.67
5 -3.33 17 7.5 28 12 39 17.5
6 0 18 8 29 12.5 40 25
7 0 19 10 30 12.5 41 25
8 0 20 10 31 15 42 26.67
9 0 21 10 32 15 43 30
10 3.333 22 10 33 15 44 40
11 3 23 10 34 15 45 50
12 5

Table A1.2 Ranked Slope Estimates



Compute The Median Slope

S= Q[n] =10.00
Estimate the variance of S.

vs] “-(“~1)'(2n+5)-§t.,-P-(P—1)-(2P+5) 10-9-25-1.3-2-11-1.2.1.9

18 18

where n=10 is the number of sample points. Also, the data contains two ties.
The first is a two way tie with a concentration of 210. Consequently t;=1. The
second is a three way tie with a concentration of 260. Similarly t;=1.

For the 99 percent one sided test Z;99=2.33.

Determine the Mth smallest slope estimate Q.

_N-Z_ -V[S]" 45-233.120.33
- 2 - 2

M =972

So select the ninth and tenth smallest values for the slope estimate, Q. Then
interpolate to get the Mth smallest Q value.

Q9=O
Q1o=3. 33
Qe72=2.40

Qs72>0 so the reject null hypothesis that trend is zero (the data may have an
upward trend).
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A2.0 Dixon’s Test

Reference:

Gibbons, Robert D. Statistical Methods For Groundwater Monitoring. New York:

John Wiley & Sons, Inc., 1994.

Dixon developed this test for possible outliers. According to Gibbons (1994),
Dixon’s Test can be used where a small number of outliers are suspected.
DUMPStat searches for outliers in the background data. If outliers are included
in the background data, the control limit could be set too high or too low. This
influences the false positive and false negative rate.

The two sided hypothesis test is:

Null hypothesis Ho: The data set contains no outliers
Alternate hypothesis H:: The data set contains outliers
A2.1 Test Procedure

To perform the test, first rank the data from smallest to largest. Second,
calculate the Dixon statistic for the highest and lowest values in the data set.

Table A.2.1 shows the Dixon statistics based on the number of sample values, n.

n Highest Value Lowest Value

3-7 xn B Xn—1 X2 - X1
X, — X, X, — X,

8-10 X, — X4 X, — X
X, — X, X%

11-13 X~ X2 X; — X
X, =X, X~ X

14-25 Xn - Xn—2 x3 B x1
X, — X, X, , X

Table A2.1 Dixon’s Test Statistic Equations



Lastly compare these statistics with the critical Dixon’s statistics provided in
Table A2.2. The test may be repeated if additional outliers are suspected.

However, this may increase the probability that a data point is removed

unnecessarily. The probabilities in Table A2.2 are for a single test for outliers.

n 5% 1% n 5% 1%

3 0.941 0.988 14 0.546 0.641
4 0.765 0.889 15 0.525 0.616
5 0.642 0.780 16 0.507 0.595
6 0.560 0.698 17 0.490 0.577
7 0.507 0.637 18 0.475 0.561
8 0.554 0.683 19 0.462 0.547
9 0.512 0.635 20 0.450 0.535
10 0.477 0.597 21 0.440 0.524
11 0.576 0.679 23 0.421 0.505
12 0.546 .0.642 - 24 0.413 0.497
13 0.521 0.615 25 0.406 0.498

Table A2.2 Critical Values for Dixon’s Statistic




A2.2 Sample Calculation

Rank Sample

Concentration
2.00
210
210
225
250
260
260
260
290
3000

olo|o|N|o|u|s|wid(-

Table A2.3 Sample Data for Dixon’s Test

X —X X —X
n=10 therefore use ~—— agnd —2—
X =X, X  —X

n-1 1

statistic. The corresponding results are

for the high value and low value Dixon

X2=21 0 X1 =2.00
The Dixon statistic for the upper value is

X.—X,_, 3000-290

= = 0.971
x —x, 3000-210

The Dixon statistic for the lower value is

x,—X, _210-200

= =0722
X_,—X 290-200

The critical Dixon Statistic with a one percent false positive rate is 0.597. Since
both Dixon statistics calculated above the critical Dixon statistic, reject the null
hypothesis. Consequently, the highest and lowest value in the data set should
be removed prior to calculating the mean, standard deviation, PAL, prediction
limit or control chart.



A3.0 Intrawell Shewart-CUSUM Control Charts

Reference:

Gibbons, Robert D. Statistical Methods For Groundwater Monitoring. New York:
John Wiley & Sons, Inc., 1994.

The Shewart-CUSUM control chart is one intrawell option available in
DUMPStat. This method combines the Shewart control chart which can detect
immediate releases, and the CUSUM control chart which can detect gradual
releases. The data in order of measurement are required for this analysis.
DUMPStat notifies the user of historical trends using Sen'’s test and removes
outliers using Dixon’s test. Procedures and examples of these tests are included
in A1.0 and A2.0. :

The one sided hypothesis test is:

Null hypothesis Ho: The well is not in violation

Alternate hypothesis Hy: The well is in violation

A3.1 Test Procedure

DUMPStat selects three Shewart-CUSUM control chart parameters.

n k SCL h
n<12 1.0 4.5 4.5
n>12 0.75 4.0 4.0

- Table A3.1 Shewart-CUSUM Control Chart Parameters

n is the number of background samples. The user may set the minimum number
of n to 4, however, Gibbons and the WDNR recommend a minimum of 8
background samples. k is a parameter related to the displacement that should
be quickly detected. h is value which the CUSUM will be compared. SCL is the
number of standard deviations the Shewart will be compared. These values are
slightly more conservative than the EPA recommendations.




First, compute the mean, X, based on the background data where

X
i=1

x=1

(A3.1)
n

Second, calculate the standard deviation, s, based on the background data
where

3 X —X
s =4/ (A3.2)
n-1
Third, calculate the z score for all i=1,2....N where
;:‘;X (A3.3)

and N is the total number of samples both background and beyond.

Fourth, calculate the CUSUM, S, for all i=1,2....N where

S = max[O, (z-k)+ SH] (A3.4)
and ’
So=0

The Shewart-CUSUM control chart is out of control if during a sampling period
S >h or z > SCL. This must be verified by the next round of sampling before

action is required.
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A3.2 Sample Calculation

For the data listed below use the first 8 samples for the background. Compute

the Shewart-CUSUM control chart based on the entire sample.

Time Sample Time Sample
Period Concentration Period Concentration
1 200 7 240
2 210 8 250
3 225 9 260
4 210 10 310
5 260 11 320
6 260 12 260

Table A3.2 Sample Data for Shewart-CUSUM Control Chart

Calculate the mean and standard deviation based on the eight background
samples. The results are listed in Table A3.3. Also, the three Shewart-CUSUM
control chart parameters are listed.

Table A3.3 Mean, Standard Deviation and Shewart-CUSUM Control Chart
Parameters

IMean, X 231.875
Standard Deviation, s 23.895
k 1
Ih=SCL 45
Number of Background, n 8
Total Samples, N 12
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Calculate z; and S; based on equations A3.3 and A3.4. Displays of the control
chart in graphical and tabular form are included in table A3.4 and figure A3.1.

Time Sample Shewart | CUSUM -Control Chart
Period, i | Concentration, x; Zi Si Status

1 200 -1.33 0.00 In Control

2 210 -0.92 0.00 In Control

3 225 -0.29 0.00 In Control

4 210 -0.92 0.00 In Control

5 260 1.18 0.18 In Control

6 260 1.18 0.35 In Control

7 240 0.34 0.00 In Control

8 250 0.76 0.00 In Control

9 260 1.18 0.18 In Control

10 310 3.27 2.45 In Control

11 320 3.69 513 Out of Control (Hit)
12 260 1.18 5.31 |Out of Control (Verified Hit)

Table A3.4 Tabular Shewart-CUSUM Control Chart

—&— Samples
Sample Control Chart —o— Etrﬁw
CERERR——— I
400
350 ,L———i
% 300 A
£ /
= 250
2
hd
% 200
® 150
I}
S
o 100
50
0
1 2 3 4 5 6 7 8 9 10 1 12
Time Period

Figure A3.1 Graphical Shewart-CUSUM Control Chart

Note the eleventh concentration is out of control for the CUSUM portion of the
control chart. This is verified on the twelfth sample. Therefor action should be
taken.
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A4.0 Intrawell Prediction Limits

Reference:

Gibbons, Robert D. Statistical Methods For Groundwater Monitoring. New York:
John Wiley & Sons, Inc., 1994.

The prediction limit is one intrawell option available in DUMPStat. This method
is detects immediate releases faster than the Shewart-CUSUM control charts but
cannot detect slow or gradual releases. The data in order of measurement are
required for this analysis.

DUMPStat notifies the user of historical trends using Sen’s test and removes
outliers using Dixon’s test. Procedures and examples of these tests are included
in A1.0 and A2.0.

The one sided hypothesis test is:

Null hypothesis Ho: The well not in violation
Alternate hypothesis Hi: The well is in violation

A4.1 Test Procedure

First, select o as the minimum of 0.01 or a = V1-0.95¢ for one verification
resample. For this study pass 1 of 1 resamples was selected from the setup
menu for the verification resampling plan. Other verification resampling plans
can be selected in the DUMPStat setup menu. k is the number of future
comparisons to be made.

Second, compute the intrawell prediction limit, PL, as:

141 (A4.1)

PL=X+s-t .
[1_n‘n—1] n

where X is the mean and s is the standard deviation of the background data
(see equations A3.1 and A3.2). n is the number of background data points.
t. .. IS the student’s upper one sided t statistic based on n-1 degrees of

freedom and a 1-a confidence level (see table A4.1 on the next page).
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n-1 to.00 n-1 to.00
1 31.82054 17 2.566936
2 6.964523 18 2.552382
3 4.54071 19 2.539488
4 3.746956 20 2.527977
5 3.364931 21 2.517649
6 3.142664 22 2.508326
7 2.997957 23 2.499865
8 2.896457 24 2.492159
9 2.821438 25 2.485111
10 2.76377 26 2.478627
11 2.718078 27 2.472664
12 2.680996 28 2.467141
13 2.650311 29 2.46202
14 2.624493 30 2.457266
15 2.602481 50 2.403274
16 2.583488 31999 2.326463

Table A4.1 Student’s t Statistics Based on n-1 Degrees of Freedom and a
99 Percent Confidence Level

Third compare the prediction limit to the data of interest. If the data exceeds the
prediction limit two consecutive times the well is in violation.
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A4.2 Sample Calculation

Compute the prediction limit based on the first eight background samples (n=8).
See if samples nine through twelve exceed the prediction limit.

Time Sample Time Sample
Period Concentration Period Concentration
1 200 7 240
2 210 8 250
3 225 9 260
4 210 10 300
5 260 11 320
6 260 12 322

Table 4.2 Sample Data for Prediction Limit

There are four future samples therefor k=4. Consequently, o is the minimum of

0.01 and az\/1—0.95“ :\/17—0.957 =0113.

Select t[o_gg,7]=2.997957 from Table 4.2.

For the background data the mean, X, is 231.875 and the standard deviation, s,
is 23.895.

PL:i+s-t[ “_1]-1f1+% = 231.9+23.9-2.998-1f1+% =307.9

The eleventh and twelfth samples exceed the prediction limit. The well may not
be in compliance and action should be taken.
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A5.0 Gamma Test

References:

Kendall, M.G, and Jean Dickenson Gibbons. Rank Order Correlation. New York:
Oxford University Press, 1990.

Statsoft, Inc. Statistica for Windows [Computer Program and Manual]. Tulsa,
Oklahoma: Statsoft, Inc., 1997.

The Gamma test is a nonparametric trend test. It is equivalent to the Kendall
tau, except that ties are explicitly taken into account. The Gamma test yields
exactly the same results as the Kendall tau type b, except the calculation of the
gamma statistic removes the ties from the denominator of the statistic. Like
Sen’s test the Gamma test is robust to outliers missing data and nondetects. The
required data includes the sample values and the order of the samples in time
for a well and constituent.

Null hypothesis Ho: The data has no upward trend
Alternate hypothesis Hi: The data has an upward or downward trend

A5.1 Test Procedure
First, compute N values of the sgn(x;-x;) where

_n-(n-1)
2

N (A5.1)

+1 if x-x>0
and sgn(x,—x)=490 if x-x=0 (A5.2)
-1 if x-x<0

for all combinations of j greater than i where j=(i+1),....n and i=1,....(n-1). nis
the total number of sample points, x; is the ith sample concentration and x;+1 is
the jth sample concentration. '
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Second, calculate the Mann-Kendall statistic, S as

S=53sgn(x —x) (A5.3)

1 i+

Basically, this is the sum of the +1 and -1 values calculated in equation A5.2. If
S is zero, no trends exist.

Third, calculate the gamma statistic as,

y = S (A5.4)

. P
N->t-P.(p-1
IR

where t, is the number of ties with extent p. For example for t,=2 there are two
ties of extent four. There are two measurements repeated four times.

Fourth, estimate the variance of S, V[S]. For n>10 the V[S] can be estimated by

n-n-1-2n+5)-3t -p-(p-1)-(2-p+5
v[s]- (n=1)-(2n+8)-2t,-p-(p-1)-(2-p+5) 5.3
18

Fifth, for n>10 the z statistic can be estimated for the two sided normal test by

3‘11 if $S>0
VIS]:
z={ 0 if S$>0 (A5.4)
S*1 % s<o
VS|

Sixth, compare z value with two sided z value with a 95 percent confidence level.
Therefor if |2 > 196 then reject the null hypothesis. The data may have a trend.
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A5.2 Sample Calculation

Compute the number of sgn(x-x;) values, N

Compute sgn(x;-x;)

Time Sample
Period| Concentration

1 200

210

225

210

1
—

260

260

290 1 1

250 -1 -1 -1

OloNO| A |WIN

260

-— e e e (e e [ [ [

PN\ [P ) L Q) [ N G PN M B PSS N

—_— e e [ [ [

[ N RSy U N P N S N RN

1 1 1 1 1|

-
o

300

Table A5.1 Individual sgn(x;-x;) for Gamma Test

Calculate the Mann-Kendall statistic, S by adding all the 1’s, 0's and -1’s in
Table A1.1.

S=¥3sgn(x —x)=36-1+4.0+5.-1= 31

Calculate the gamma statistic, y

= 5 ~=075

s | 31
3
-B-(p——1)} 45-[1-5(2—1)”-5(3-1)

Y= .
N-[>t
[22

Estimate the variance of S,

n-(n—1)~(2n+5)—§tp~p‘(p—1)-(2p+5) 10.9.25-1.3.2.11-1.2.1.9
18 B 18

=120.33
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S>0 so calculate z, based on equation 5.4.

zZ= 3'11 = 31‘11 =2735>1.96
V[S] 12033

Reject the null hypothesis. The data may have an upward trend.
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A6.0 Autocorrelation Function

References:

Box, E. P. and G. M. Jenkins. Time Series Analyis Forecasting and Control.
San Francisco: Holden Day, 1976.

Kendall, M.G. and Ord, J. K. Time Series. New York: Oxford University Press,
1990. A

Statsoft, Inc. Statistica for Windows [Computer Program and Manual]. Tulsa,
Oklahoma: Statsoft, Inc., 1997.

The autocorrelation or serial correlation coefficient relates a series of data with
itself shifted by a lag of k observations. This is a test of independence. The
required data includes the sample values and the order of the samples in time
for a well and constituent.

Null hypothesis Ho: The data does not have autocorrelation
Alternate hypothesis Hi. the data has autocorrelation

A6.1 Test Procedure
The autocorrelation function, r,, may be estimated as

=S (AB.1)
CD

where

N-k

1
C =—
N =

(% = %)%, — %) (A6.2)

is the estimate of the autocovariance and X is the mean of the data. k is the
number of the lag. In this study a k is one was used. Also, i=1,2....(N-k).
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Assuming the series is a white noise process (all the autocorrelations are zero),
the standard error of the autocorrelation function, SE[r,] can be estimated by:

1 N-k
SE[r]=,—-—— AB6.3
[r.] N Na2 (A6.3)
Lastly, calculate the normal z statistic and compare it to the two sided tabulated

value at the 95 percent confidence level (1.96). If z>1.96 then reject the null
hypothesis.

. SEk[rk] (AB.4)
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A6.2 Sample Calculation

Calculate the autocorrelation function for the following data.

Time Sample
Period| Concentration

222
210
200
220
240
260
280
300
320
340

-

OO|N[O|O|DA]WIN

-
o

Table A6.1 Sample Data for Autocorrelation Function
Calculate the autocovariance functions, ¢, and c;.

c,= % > (% = X)(X., - X) = 116 [(222 - 255.2)(210 - 255.2) + (210 - 255.2)(200 - 255.2) +

...(320-255.2)(340 - 255.2)| = 1343.7

Similarly,

c, =1651.4

From these calculate the lag-1 autocorrelation function, ry.

¢, 13437

"= T 16514

0

=0.814

Now, estimate the standard error of the autocorrelation function

SE[I&]=\/1-N_k _ 19T o5
N N+2 V10 10+2
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Next, compute the standard normal variate, z

r 0814

z= = -10.85> 196
SE[r] 0075

This z value is greater than 1.96 so reject the null hypothesis. The data may
have serial correlation and the assumption of independence is in question.
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APPENDIX B
GAMMA TEST RESULTS
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B1.1 Lincoln Landfill (1779)

Alkalinity
Valid
N | Gamma VA p-level
MW-1 19 | 031 | -1.85 | 0.065
IMW-4 19 | -077 | -4.48 | 7E-06
Hardness
Valid
N Gamma VA p-level
MW-1 19 | 037 | -2.14 | 0.032
Mw-4 20 0.7 | 422 | 2E-05
Specific Conductance
Valid
N Gamma YA p-level
MW-1 46 | 0131 | 1.248 | 0.212
IMwW-4 22 | -075 | 479 | 2E-06




B1.2 Pope & Talbot Landfill (2695)

Alkalinity
Valid
N Gamma Z p-level
W-13 66 0.638 | 7.526 | 5E-14
W-18 52 -0.08 | -0.79 0.43
W-6 77 0.206 | 2.609 | 0.009
Hardness
Valid
N Gamma Z p-level
W-13 66 0.261 2.99 0.003
W-18 52 0.449 | 4634 | 4E-06
W-6 77 -0.15 | -1.96 0.05
Specific Conductance
Valid
N Gamma Z p-level
W-13 60 0.364 | 4.098 | 4E-05
W-18 46 0.365 | 3.564 | 4E-04
W-6 71 0.235 | 2.896 | 0.004




B1.3 Oneida County Landfill (2805)

Alkalinity
Valid
N Gamma V4 p-level
MW-1 15 | 0.096 | 0.497 | 0.619
MW-126 16 -0.08 | -0.38 | 0.702
Hardness
Valid
N Gamma Y4 p-level
MwW-1 15 | -006 | -0.3 | 0.761
MwW-126 16 019 | 1.02 | 0.31
Specific Conductance
Valid
N Gamma V4 p-level
MWV-1 69 | 0.414 | 4937 | 8E-07
Mw-126 17 | -046 | -253 | 0.011
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B1.4 Portage County Landfill (2966)

Alkalinity
Valid
N Gamma Z p-level
W-10 51 0.555 | 5.659 | 2E-08
W-11 51 0.378 | 3.797 | 1E-04
W-12 51 -024 | -2.36 | 0.018
W-9 51 0.452 | 4.542 | 6E-06
W-9P 51 -0.11 -1.16 | 0.247
Hardness
Valid
N Gamma|  Z p-level
W-10 51 0.357 | 3.629 | 3E-04
W-11 51 0.132 | 1.335 | 0.182
W-12 51 -0.08 | -0.84 | 0.399
W-9 51 0.435 | 4.426 | 1E-05
W-9P 51 -0.08 | -0.85 | 0.395
- Specific Conductance
Valid
N Gamma V4 p-level
W-10 51 0.059 | 0.608 | 0.543
W-11 51 -0.07 | -0.75 | 0.456
W-12 51 -0.27 -2.8 0.005
W-9 51 0.059 | 0.595 | 0.552
W-9P 51 -0.08 | -0.81 0.421




B1.5 Grede Foundries Landfill (2974)

Alkalinity
Valid
N Gamma VA p-level
[B-3 56 0.3 | -3.18 | 0.001
[B-5 51 06 | 6.13 | 9E-10
Hardness
Valid
N Gamma Z p-level
(B-3 56 | 0.221 | 2.389 | 0.017
[B-5 52 | 0.237 | 2.441 | 0.015
Specific Conductance
Valid
N Gamma Z p-level
(B-3 56 | 0.081 | 0.882 | 0.378
[B-5 51 | 0.058 | 0.599 | 0.549




B1.6 Sauk County Landfill (2978)

Alkalinity
Valid
N Gamma Z p-level
W-30 48 -0.29 | -2.89 | 0.004
W-30A 48 -0.45 | -4.45 | 9E-06
W-31 47 -0.3 -2.97 | 0.003
Hardness
Valid
N Gamma V4 p-level
W-30 48 -0.2 -1.99 | 0.046
W-30A 48 -0.3 -2.98 | 0.003
W-31 48 -0.29 | -2.87 | 0.004
Specific Conductance
Valid
N Gamma V4 p-level
W-30 48 -022 | 217 0.03
W-30A 48 -0.21 -2.09 | 0.036
W-31 48 -0.18 -1.8 0.072




B1.7 City of Richland Center Landfill (3065)

Alkalinity
Valid
N Gamma Z p-level
Mw-6 43 | 0.339 | 3.152 | 0.002
Mw-7 43 0.02 | 0.189 | 0.85
Mw-7P 42 | 0.278 | 2.558 | 0.011
Hardness
Valid
N Gamma YA p-level
IMW-6 43 | 001 | 011 | 0915
IMwW-7 43 | 0.289 | 2.717 | 0.007
Mw-7P 43 | 0059 | 055 | 0.582
Specific Conductance
Valid
N Gamma Z p-level
IMW-6 43 | 0117 | 1.069 | 0.285
MW-7 43 | 0.249 | 2.312 | 0.021
MwW-7P 42 | 0249 | 229 | 0.022




B1.8 Juneau County Landfill (3070)

Alkalinity

Valid

N Gamma V4 p-level
low-5 35 | 0.435 | 2.777 | 0.009
Hardness

Valid

N Gamma Z p-level
OW-5 35 0.681 534 | 7E-06
Specific Conductance

Valid

N Gamma Z p-level
OW-5 35 0.454 | 2.931 | 0.006
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B1.9 Troy Area Landfill (3090)

Alkalinity
Valid
N Gamma VA p-level
(B-1 32 | -0.37 | -2.79 | 0.005
[B-1B 21 | 0077 | 0485 | 0.627
[B-2 30 | 0197 | 1.524 | 0.128
Hardness
Valid
N Gamma Z p-level
[B-1 32 | -022 | -1.75 | 0.081
B-1B 21 | 0.043 | 0.272 | 0.785
B-2 30 | 0244 | 1.882 | 0.06
Specific Conductance
Valid
. N Gamma V4 p-level
B-1 33 | -055 | -449 | 7E-06
B-1B 22 | 0214 | 1.388 | 0.165
B-2 31 | 0.137 | 1.078 | 0.281




B1.10 Lincoln County Landfill (3141)

Alkalinity
Valid
N Gamma Z p-level
IM-4 32 [ 0.218 | 1.737 | 0.082
IM-9 30 -05 | -3.83 | 1E-04
Hardness
Valid
N Gamma V4 p-level
IM-4 32 | 0309 | 2.457 | 0.014
M-9 30 0 0 1
Specific Conductance
Valid
N Gamma V4 p-level
IM-4 32 | 0191 | 1513 | 0.13
IM-9 30 | -007 | -0.52 | 0.605

B-10




APPENDIX C
AUTOCORRELATION TEST RESULTS



APPENDIX C
AUTOCORRELATION TEST RESULTS

Table of Contents

C1.1 Lincoln Landfill (1779) C-1
C1.2 Pope & Talbot Landfill (2695) C-4
C1.3 Oneida County Landfill (2805) C-7
C1.4 Portage County Landfill (2966) C-10
C1.5 Grede Foundries Landfill (2974) C-16
C1.6 Sauk County Landfill (2978) C-19
C1.7 City of Richland Center Landfill (3065) C-22
C1.8 Juneau County Landfill (3070) C-25
C1.9 Troy Area Landfill (3090) C-26

'C1.10 Lincoln County Landfill (3141) C-29



Lag Corr.
1 +.173
2 -.259
3 -.325
4 +.208
5 +.157
6 +.101
7 -.100
8 -.219
9 -.314

10 +.036

11 +.271

12 +.128

13 -.318

14 -.123

15 +.029

Lag Corr.
1 +.389
2 +.486
3 +.437
4 +.366
5 +.117
6 +.252
7 -.021
8 -.043
9 -.163

10 -.215

11 -.297

12 -.216

13 -.390

14 -.233

15 -.244

Autocorrelation Function: Lincoin Landfill (1779)

(Standard errors are white-noise estimates)

MW-1 Alkalinity

S.E. ; T Q

.2078 .69
.2023 2.34
.1966 5.08
.1907 7 6.27
.1846 V7 6.99
.1784 - 7.31
c1TT19 b 7.65
B =< O R e 9.40
.1581 13.36
.1508 13.42
L1430 feorreenes 17.01
.1348 W 17.91
L1261 24.28
.1168 25.38
.1066 g 25.45

1.0 05 0.0 0.5 1.0
Autocorrelation Function: Lincoln Landfill (1779)
MW-4 Alkalinity
(Standard errors are white-noise estimates)

S.E. r o
.2078 777 3.50
.2023 Y, 9.26
.1966 v, 14.20
.1907 772 17.88
.1846 ) : 18.28
.1784 20.28
I o2 L)) MR ) 20.29
.1651 20.36
.1581 - 21.43
L1508 e V7 23.45
.1430 27.77
.1348 O 72 30.35
L1261 39.91
.1168 ) 43.88
.1066 7 49.14

-1.0 -0.5 0.0 0.5 1.0

.4045
.3110
.1662
.1801
.2212
.2928
.3644
.3095
.1471
.2014
L1077
.1184
.0287
.0311
.0443

.0614
.0098
.0027
.0013
.0026
.0025
.0050
.0091
.0109
.0092
.0035
.0025
.0001
.0001
.0000



Lag Corr.
1 +.112
2 +.168
3 +.071
4 +.170
5 -.065
6 -.190
7 -.183
8 -.106
9 -.172

10 -.089

11 -.067

12 +.003

13 -.128

14 -.025

15 +.016

Lag Corr.
1 +.574
2 +.488
3 +.397
4 +.269
5 +.172
6 +.163
7 +.010
8 -.120
9 -.167

10 -.221

11 -.310

12 -.304

13 -.333

14 -.332

15 -.258

Autocorrelation Function: Lincoln Landfill (1779)
MW-1 Hardness
(Standard errors are white-noise estimates)

S.E. T T Q
.2078 Y .29
B Lo B S B R .98
.1966 e 1.11
L1907 peeerees O+ iveeeoieoeeesemmseaseesennsenned 1.91
.1846 } ey %‘ 2.03
.1784 IS 3.17
.1719 b 4.30
B3 A T 2 4.71
L1581 freeeeeeees 5.90
L1508 freerrreessnsesienenbi Y, 6.25
L1430 [ s @ 6.47
.1348 6.47
.1261 7.49
.1168 7.54
.1066 7.56

1.0 05 0.0 05 1.0
Autocorrelation Function: Lincoln Landfill (1779)
MW-4 Hardness
(Standard errors are white-noise estimates)

S.E. T T T 0
.2078 7.63
.2023 13.46
.1966 17.52
L1907 |- V777 19.51
.1846 |- ) 20.38
B R O 21.21
L1719 |- } 21.21
.1651 21.74
.1581 - 22.86
.1508 25.01
.1430 29.71
.1348 - 34.79
L1261 - 41.77
.1168 poe- 49.85
.1066 - 55.70

.5887
.6118
L7737
.7520
.8443
.7873
.7446
L7877
.7501
.7939
.8403
.8906
.8751
.9121
.9403

.0057
.0012
.0006
.0006
.0011
.0017
.0035
.0054
.0065
.0053
.0018
.0005
.0001
.0000
.0000



Lag Corr.
1 -.121
2 +.008
3 -.048
4 +.063
5 -.037
6 +.215
7 +.010
8 -.028
9 -.088

10 -.026

11 -.130

12 +.062

13 -.185

14 +.019

15 -.194

Lag Corr.
1 +.552
2 +.375
3 +.349
4 +.285
5 +.198
6 +.073
7 +.112
8 +.031
9 -.017

10 -.139

11 -.163

12 -.139

13 -.224

14 -.265

15 -.286

Autocorrelation Function: Lincoln Landfill (1779)
MW-1 Specific Conductance
(Standard errors are white-noise estimates)

S.E. T T Q <)

.1413 R ), PR .73 .3916
.1398 : | R .74 .6916
.1382 i R i : 4 .86 .8354
.1366 5 ; .8987
.1350 .9500
.1334 L7122
.1318 .8089
.1301 .8757
.1285 .8935
.1268 .9327
.1250 L9112
.1233 .9334
.1215 .8468
.1197 .8906
L1179 7745

-1.0 -0.5 0.0 0.5 1.0
Autocorrelation Function: Lincoln Landfill (1779)
MW-4 Specific Conductance
(Standard errors are white-noise estimates)

S.E. T T Q P

.1956 7.97  .0048
.1911 11.82  .0027
.1865 froveech oveensd 15.32  .0016
.1818 R - oo 17.78  .0014
.1769 bk 19.03  .0019
1719 e 7 19.21  .0038
.1668 |- : W, i 19.66  .0064
.1615 - 7 AR S—— 19.70  .0116
.1560 I SRR SO— 19.71  .0198
.1504 20.56  .0244
.1445 |- 21.83  .0257
.1383 - i 22.84  .0291
.1319 ) : 25.71  .0186
.1251 Y i 30.20  .0072
.1180 m ..................................................... 36.10 .0017

-1.0 -0.5 0.0 05 1.0



Autocorrelation Function: Pope & Talbot Landfill (2695)
W-6 Alkalinity
(Standard errors are white-noise estimates)

Lag Corr. S.E. T T T Q P
1 +.802 .1104 : - 52.79 .0000

2 +.626  .1097 i NN s 85.34  .0000

3 +.389  .1090 - 98.11  .0000

4 +.256  .1083 - 7% 103.7  .0000
5 +.187  .1075 : : 106.7  .0000
6 +.180 L1068 frmmmnesnenieserssnenn ) : 109.6  .0000
7 +.174  .1061 ; 112.3  .0000
8 +.229 L1053 [ 117.0  .0000
9 +.248  .1046 |- : i 122.6  .0000

10 +.236 .1038
11 +.222 .1031
12 +.206 .1023
13 +.203 .1016
14 +.192 .1008
15 +.069 .1000

127.8 .0000
132.4 .0000
136.5 .0000
140.5 .0000
144.1 .0000
144.6 .0000

é?%%

-1.0 -05 0.0 05 1.0

Autocorrelation Function: Pope & Talbot Landfill (2695)
W-13 Alkalinity
(Standard errors are white-noise estimates)

Lag Corr. S.E. T T Q P
1 +.797 .1186 N A 4{45.15  .0000
2 +.643 L1178 froreeeeeeeeeeens e 3 NN {75.01  .0000
3 +.569  .1169 i 98.76  .0000
4 +.502  .1160 |- - 117.5  .0000
5 +.499  .1150 136.3  .0000
6 +.406 L1141 V7777774 149.0 .0000
7 +.401  .1132 7 -{161.5  0.000
8 +.414  .1123 i 175.1  0.000
9 +.404  .1113 188.3  0.000
10 +.420  .1104 202.7  0.000
11 +.393  .1094 215.7  0.000
12 +.369  .1085 227.2  0.000
13 +.329  .1075 236.6  0.000
14 +.253  .1065 242.3  0.000
15 +.152  .1055 244.4  0.000
-1.0 0.5 0.0 05 1.0
Autocorrelation Function: Pope & Talbot Landfill (2695)
W-18 Alkalinity
(Standard errors are white-noise estimates)
Lag Corr. S.E. ' P
1 -.036  .1348 .07  .7892
2 +.053  .1334 .23 .8913
3 -.027  .1321 .27 .9651
4 +.293  .1307 .28 .2594
5 -.022  .1294 .31 .3790
6 +.077  .1280 .67  .4606
7 -.043  .1266 .79 .5644
8 +.019  .1252 .81  .6682
9 -.048  .1237 .96 .7439
10 -.036  .1223 .05  .8114
11 -.044  .1208 .18  .8614
12 -.078  .1194 .60  .8828
13 -.039  .1179 .71 .9165
14 +.010  .1163 .72 .9451
15 -.104  .1148 .53 .9411




Lag Corr.
1 +.611
2 +.470
3 +.405
4 +.265
5 +.260
6 +.239
7 +.152
8 +.194
9 +.181

10 +.092

11 +.158

12 +.120

13 +.138

14 +.139

15 +.039

Lag Corr.
1 +.358
2 +.104
3 +.141
4 +.144
5 -.007
6 -.043
7 +.113
8 +.065
9 -.068

10 +.167

11 +.213

12 +.074

13 +.023

14 +.028

15 -.217

Lag Corr.
1 +.585
2 +.455
3 +.424
4 +.228
5 +.224
6 +.188
7 +.196
8 +.169
9 +.069

10 +.049

11 -.047

12 -.100

13 -.092

14 -.055

15 -.094

Autocorrelation Function: Pope & Talbot Landfill (2695)

W-6 Hardness
(Standard errors are white-noise estimates)

S.E. T T Q
.1104 .65
.1097 .01
.1090 .80
.1083 .81
.1075 .66
.1068 .68
.1061 .74
.1053 .12
.1046 .11
.1038 .90
.1031 .26
.1023 - .62
.1016 .48
.1008 .39
.1000 ] .54

-1.0 -0.5 0.0 0.5 1.0
Autocorrelation Function: Pope & Talbot Landfill (2695)
W-13 Hardness
(Standard errors are white-noise estimates)

S.E. T T 0
.1186 |- i .10
L1178 .88
.1169 .33
.1160 .88
.1150 .88
L1141 .02
.1132 .03
.1123 .36
L1113 .74
L1104 |- .02
.1094 .83
.1085 .29
.1075 .33
.1065 21.40
.1055 fr 25.63

-1.0- -0.5 0.0 0.5 1.0
Autocorrelation Function: Pope & Talbot Landfill (2695)
W-18 Hardness
(Standard errors are white-noise estimates)

S.E.

.1348
.1334
.1321
.1307 Yy : .
.1294 | i 46.83
.1280 48.99
.1266 [ ) 51.39
1252 foer frrreresss s 153.21
.1237 53.53
21223 |- 53.69
.1208 53.84
L1194 54.54
L1179 55.15
.1163 55.37
.1148 56.05

-1.0 0.5 1.0

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0026
.0072
.0101
.0119
.0245
.0427
.0508
.0729
.0985
.0739
.0352
.0464
.0666
.0918
.0422

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000



Lag Corr.
1 +.436
2 +.396
3 +.360
4 +.285
5 +.252
6 +.291
7 +.239
8 +.176
9 +.168

10 +.176

11 +.171

12 +.190

13 -.009

14 -.062

15 -.072

Lag Corr.
1 +.213
2 +.163
3 +.114
4 +.321
5 +.276
6 +.242
7 +.113
8 +.078
9 +.088

10 +.053

11 +.031

12 +.040

13 -.047

14 -.091

15 -.008

Lag Corr.
1 +.200
2 +.142
3 +.108
4 +.135
5 +.103
6 +.297
7 +.097
8 -.018
9 -.004

10 -.107

11 -.027

12 -.028

13 -.033

14 -.108

15 -.063

Autocorrelation Function: Pope & Talbot Landfill (2695)

W-6 Specific Conductance
(Standard errors are white-noise estimates)
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.1123 S ) = 43.07
1114 ' i : 48.18
.1106 7Y 55.12
.1098 m ..... 59.84
.1090 ) 62.46
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.1047 EANSRS T ; 73.37
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Autocorrelation Function: Pope & Talbot Landfill (2695)
W-13 Specific Conductance
(Standard errors are white-noise estimates)
S.E. T T Q
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L1177 - - - 23.05
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21100 feeeee 25.35
L1088 oo 25.36

-1.0 -0.5 0.0 05 1.0
Autocorrelation Function: Pope & Talbot Landfill (2695)
W-18 Specific Conductance
(Standard errors are white-noise estimates)

S.E. T .0
.1428 1.96
L1412 2.97
.1396 3.57
.1379 4.52
.1363 5.09
.1346 9.97
.1329 10.50
.1312 10.52
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.1259 11.26
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.1223 11.39
.1204 fo- : i ; : 12.20
.1185 |- . - i 12.49

.0001
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000

.0851
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.1324
.0130
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.0042
.0069
L0113
L0175
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.0313
.0454

.1613
.2267
.3120
.3399
.4051
.1261
.1620
.2305
.3101
.3408
L4214
.5021
.5782
.5902
.6418



Lag Corr.
1 +.422
2 -.155
3 -.241
4 -.135
5 -.071
6 +.001
7 +.063
8 +.047
9 +.095

10 +.009

Lag Corr.
1 +.052
2 -.015
3 -.060
4 -.105
5 -.076
6 -.042
7 +.001
8 -.035
9 -.021

10 +.047

S.E.
L2226
.2155
.2082
.2006
.1927
.1845
.1760
.1669
.1574

L1472

-1.0

S.E.
.2282
.2205
.2125
.2041
.1954
.1863
.1768
.1667
.1559

.1443

-1.0

MW-1 Alkalinity

Autocorrelation Function: Oneida County Landfill (2805)

(Standard errors are white-noise estimates)

0.0

MW-126 Alkalinity

0.5 1.0

Autocorrelation Function: Oneida County Landfill (2805)

(Standard errors are white-noise estimates)

05 1.0

.59

.11

.44

.90

.03

.03

.16

.24

.60

.61

.05

.06

.14

.40

.55

.60

.60

.65

.67

.77

.0581

.1284

.1420

.2071

.3032

.4197

.5212

.6205
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.7618

.8196

.9722

.9871

.9824

.9901

.9964

.9990

.9996
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.9999



Lag Corr.
1 +.340
2 -.264
3 -.329
4 -.262
5 -.138
6 +.046
7 +.219
8 +.194
9 +.044

10 -.057

Lag Corr.
1 +.323
2 -.211
3 -.293
4 -.002
5 -.119
6 -.101
7 -.112
8 -.056
9 +.032

10 +.044

L2226
.2155
.2082
.2006
L1927
.1845
.1760
.1669
.1574

.1472

Autocorrelation Function: Oneida County Landfill (2805)

MW-1 Hardness

(Standard errors are white-noise estimates)
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L2125
.2041
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.1768
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.1443

-05

0.5

Autocorrelation Function: Oneida County Landfill (2805)

MW-126 Hardness

(Standard errors are white-noise estimates)
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.82

.82

.20

.49

.89

.00
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.14

L1271
.1476
.0966
.0905
.1287
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.1746

L2377

.3030

.1566

.2317

.1853

.3060

.3925

.4830

.5531

.6472

L7357

.8038



Lag Corr.

1 +.291
2 +.145
+.085
+.035
+.064
+.089
+.099
+.087
9 +.045
10 +.001
11 -.016
12 +.024
13 +.024
14 +.085
15 +.079

@0 Nd o O W

Lag Corr.

1 +.476
2 +.091
3 -.031
4 -.082
5 +.010
6 -.021
7 -.061
8 -.062
9 -.071

10 -.107

Autocorrelation Function: Oneida County Landfill (2805)

MW-1 Specific Conductance

(Standard errors are white-noise estimates)
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Autocorrelation Function: Oneida County Landfill (2805)
MW-126 Specific Conductance
(Standard errors are white-noise estimates)
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.78
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.97
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.43
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Lag Corr.

1 +.610
+.594
+.505
+.385
+.466
+.213
+.192
+.164
+.048
+.047
11 -.172
12 -.189
13 -.197
14 -.233
15 -.210
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0

Lag Corr.

1 +.537
2 +.577
3 +.533
4 +.324
5 +.240
6 +.232
7 +.077
8 +.029
.009
.186
.185
.254
.388
14 -.298
15 -.356

Lag Corr.

1 +.572
2 +.535
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.349
.393
.244
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.315
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.113
.075
.032
.009
.037
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S.E.
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.1290

.1276 |-
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.1247
.1232
.121e
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.1186

L1170 -

.1154

S.E.
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.1305 p-
.1290

.127¢
.1261

.1247 |-
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.1170
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S.E.
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21247 |-
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Autocorrelation Function: Portage County Landfill (2966)

W-9 Alkalinity
(Standard errors are white-noise estimates)
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Autocorrelation Function: Portage County Landfill (2966)
~ W-9P Alkalinity
(Standard errors are white-noise estimates)
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Autocorrelation Function: Portage County Landfill (2966)
W-10 Alkalinity
(Standard errors are white-noise estimates)
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Lag Corr.
1 +.238
2 +.065
3 +.095
4 +.209
5 +.224
6 +.104
7 +.131
8 +.233
9 +.180

10 +.122

11 +.103

12 -.030

13 +.244

14 -.087

15 -.043

Lag Corr.
1 +.582
2 +.493
3 +.215
4 +.036
5 -.011
6 -.053
7 +.122
8 +.130
9 +.168

10 +.084

11 +.046

12 -.023

13 -.134

14 -.135

15 -.204

Autocorrelation Function: Portage County Landfill (2966)

W-11 Alkalinity
(Standard errors are white-noise estimates)
S.E. T Q
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.1186 j ------------- 22.46
.1170 { 23.01
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Autocorrelation Function: Portage County Landfill (2966)
W-12 Alkalinity
(Standard errors are white-noise estimates)
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Autocorrelation Function: Portage County Landfill (2966)
W-9 Hardness
(Standard errors are white-noise estimates)

Lag Corr. S.E. Q P
1 +.716  .1360 |- 27.70  .0000
2 +.640  .1346 50.28  .0000
3 +.652  .1333 74.20  .0000
4 +.474 1319 |- 87.13  .0000
5 +.337  .1305 93.80  .0000
6 +.236  .1290 |- ; 97.15  .0000
7 +.104  .1276 R 7/ 497.81  .0000
8 -.007  .1261 |- 97.82  .0000
9 -.031  .1247 97.88  .0000
10 -.161  .1232 99.58  .0000

11 -.217 .1216 102.8 .0000

: %, :
12 -.232  .1201 m : 106.5  .0000
)=
72

13 -.235 .1186 110.4 .0000
14 -.229 .1170 114.3 .0000
15 -.206 .1154 117.5 .0000
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Autocorrelation Function: Portage County Landfill (2966)
W-9P Hardness
(Standard errors are white-noise estimates)

Lag Corr. S.E. T T Q p
1 +.495 ° .1360 .24 .0003
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6 +.402  .1290 . 74.58  .0000
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) i
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Autocorrelation Function: Portage County Landfill (2966)
W-10 Hardness
(Standard errors are white-noise estimates)
Lag Corr. S.E. Q P

24.73 .0000
45.32 .0000

1 +.676 .1360
2 +.611 .1346

3 +.405  .1333 - 54.55  .0000
4 +.279  .1319 |- 59.03  .0000
5 +.162  .1305 60.57  .0000
6 +.055  .1290 60.75  .0000
7 +.051  .1276 - 60.91  .0000
8 -.011  .1261 60.92  .0000
9 -.117  .1247 61.80  .0000
10 -.210  .1232 64.71  .0000
11 -.241  .1216 ), : 68.64  .0000
12 -.218  .1201 Wy — 71.94  .0000
13 -.208  .1186 ) ; ~175.00  .0000
14 -.117  .1170 W, j 76.01  .0000
15 -.139  .1154 |- Y : 77.45  .0000
-1.0 05 0.0 05 1.0



Lag Corr.
1 +.308
2 +.042
3 -.016
4 -.122
5 -.192
6 -.073
7 -.057
8 -.042
9 +.068

10 -.035

11 -.111

12 -.129

13 -.113

14 -.186

15 -.003

Lag Corr.
1 +.308
2 +.250
3 +.237
4 +.324
5 +.327
6 +.120
7 +.012
8 -.025
9 -.078

10 -.083

11 -.094

12 -.154

13 -.230

14 -.217

15 -.213

S.E.
.1360
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.1333
.1319
.1305
.1290
.1276
.1261
.1247
.1232
.121e
.1201

.1186 -

.1170
.1154

Autocorrelation Function: Portage County Landfill (2966)
W-11 Hardness
(Standard errors are white-noise estimates)
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Autocorrelation Function: Portage County Landfill (2966)
W-12 Hardness
(Standard errors are white-noise estimates)

T

e
...... §. 2 4
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8.89
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9.26
10.09
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14.68
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8.57
11.74
17.77
24.07
24.94
.95
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.38
.83
.43
.07
.84
35.28
38.68

.0237
.0738
.1560
.1930
.1428
.1991
.2693
.3519
.4208
.5073
.5222
.5075
.5148
.4006
.4749

.0237
.0138
.0083
.0014
.0002
.0004
.0008
.0016
.0026
.0040
.0056
.0054
.0025
.0013
.0007



Lag Corr.
1 +.005
2 +.008
3 -.010
4 +.209
5 -.078
6 —-.302
7 +.021
8 +.011
9 +.079

10 +.071

11 +.016

12 +.163

13 -.108

14 -.085

15 +.031

Lag Corr.
1 -.053
2 -.117
3 -.038
4 +.191
5 -.154
6 =-.155
7 -.002
8 -.008
9 +.071

10 +.106

11 +.004

12 +.095

13 -.094

14 -.071

15 +.120

Lag Corr.
1 +.323
2 +.214
3 +.168
4 +.242
5 -.007
6 -.232
7 -.012
8 -.107
9 -.104

10 -.190

11 -.086

12 -.029

13 -.199

14 -.164

15 -.028
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.1216
.1201
.1186
.1170
.1154

S.E.
.1360
.1346
.1333
.1319
.1305
.1290
.1276
.1261
.1247
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Autocorrelation Function: Portage County Landfill (2966)
W-9 Specific Conductance
(Standard errors are white-noise estimates)
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Autocorrelation Function: Portage County Landfill (2966)
W-9P Specific Conductance
(Standard errors are white-noise estimates)
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Autocorrelation Function: Portage County Landfill (2966)
W-10 Specific Conductance
(Standard errors are white-noise estimates)
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.4571
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.5433
.4821
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.0291
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Lag Corr.
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