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Abstract

This thesis has two main components. The first component is an analysis of the Wis-
consin Public Land Survey (PLS) dataset, with the goal of identifying and mapping
historical forest types. The Wisconsin Public Land Survey database describes histori-
cal forest composition at high spatial resolution, and is of interest in ecological studies
of forest composition in Wisconsin just prior to significant Euro-American settlement.
For such studies, it is useful to identify recurring subpopulations of tree species known
as communities, but standard clustering approaches for subpopulation identification
do not account for dependence between spatially nearby observations. Here, we de-
velop and fit a latent discrete Markov random field model for the purpose of identifying
and classifying historical forest communities based on spatially referenced multivariate
tree species counts across Wisconsin. We show empirically for the actual dataset and
through simulation that our latent Markov random field modeling approach improves
prediction and parameter estimation performance. For model fitting, we introduce
a new stochastic approximation algorithm, which enables computationally efficient
estimation and classification of large amounts of spatial multivariate count data.
The second component of this thesis is a study of control variate methods for
Markov chain Monte Carlo (MCMC) simulations. Control variates are a method used
for reducing the variance of averages over samples taken from Monte Carlo or Markov
chain Monte Carlo simulations. We propose new methodology for the setting of de-
terministic sweep sampling using /K > 2 transition kernels. For the widely applicable

deterministic sweep Gibbs sampler, we show that the projection properties of Gibbs



il
kernels lead to a statistically efficient and easy to implement control variate estimator,
which has theoretical and practical benefits over competing methodology in the litera-
ture. In particular, for the data augmentation Gibbs sampler, our control variate esti-
mator is guaranteed to achieve a smaller asymptotic variance than a widely used Rao-
Blackwellization approach, typically with negligible increases in computational cost.
Additionally, we provide variance reduction guarantees for a Rao-Blackwellization ap-
proach for more general Gibbs sampling settings than those in existing results. We
conduct a simulation study which demonstrates that the theoretical benefits of our

proposed approaches are realized in practice.



111

Acknowledgments

I have benefited greatly from the company and insights of many people in the
Statistics Department throughout the past six years. Some of my fondest memories are
from studying for the PhD qualifying exam at Memorial Library with Hyebin Song
and Ting Ye during the summer of 2016. I enjoyed our discussions and excursions
down State Street immensely. It was also during this intellectually stimulating period
of time that my interest in statistics research solidified. I am thankful additionally for
the conversations I had with my officemates Jared Huling and Mike Wurm during my
time in graduate school. I particularly appreciate the perspectives and advice they
shared with me, relating both to research and to surviving and thriving in Room 1570,
Medical Sciences Center.

I am grateful to my thesis advisors, Professor Jun Zhu and Professor Murray
Clayton. Over my time at the University of Wisconsin-Madison, they directed me
toward challenging research problems, and encouraged me to develop questions and
solutions myself. They deftly balanced allowing me freedom and independence to
pursue my own research directions, while offering guidance and pushing me to progress
forward and achieve concrete milestones. My current interests in Markov random field
models and Markov chains, the topics which form the bulk of my dissertation work,
can be traced to the papers Professor Zhu suggested to me on Besag’s auto- models
during my first project.

My parents have always supported me through encouragement and reassurance

during challenging times. I wish to sincerely thank them here. I am also grateful to



v

Hyebin Song for her kindness, patience, and insights while writing this dissertation.



Contents
Abstract . . . . . . 1
Acknowledgments . . . . . .. ..o iii
1 Introduction 1

2 A Latent Discrete Markov Random Field Approach to Identifying

and Classifying Historical Forest Communities Based on Spatial Mul-

tivariate Tree Species Counts 7
2.1 Introduction . . . . . . .. ... 7
22 Model . . ... 12
2.2.1 Latent Model . . . . . . .. ... . 13
2.2.2 DataModel . . . . ... 15
2.3 Method . . . . . . 17
2.3.1 Maximum Regularized Likelihood Estimation . . . .. . .. .. 17
2.3.2 Modified EM Algorithm . . . . .. ... ... ... ... .... 19
2.3.3 Stochastic Approximation . . . . .. ... ... ... ... ... 23

2.4 Case Study: Historical Forest Communities based on Public Land Sur-

2.4.1 Choice of K and Model Validation . . . .. ... .. ... ... 27



2.5

2.4.2 FEcological Interpretation . . . . . . . ... ... ... ... ... 31
2.4.3 Model Diagnostic and Implementation Validation . . . . . . .. 36
Simulation Study . . . . . . ... 39

3 Control Variates and Rao-Blackwellization for Deterministic Sweep

Markov Chains 44
3.1 Imtroduction . . . . . . . .. 44
3.2 Notation and Setup . . . . . . . ... 48
3.2.1 K-Component Samplers and Gibbs Kernels . . . . . . ... .. 48
3.2.2  Control Variates and Rao-Blackwellization . . . . . . .. .. .. 50
3.3 Assumptions and Variance Reduction Results . . . . . . ... ... .. 52
3.3.1 Assumptions. . . . . ... 52
3.3.2 Variance Reduction Results . . . . ... ... ... ... . ... %)
3.3.3 Estimating the Optimal Control Variate Weight . . . . . . . .. 59
3.4 Theoretical Comparisons . . . . . . . . . .. .. ... 62
3.4.1 Comparison to Liu et al. [1994] . . . .. ... ... ... ... .. 62
3.4.2  Comparison to Dellaportas and Kontoyiannis [2012] . . . . . . . 64

3.4.3 Connection Between Rao-Blackwellization and Control Variates 65

3.5 Numerical Examples . . . . . . . . ... ... ... . 66
3.5.1 Bivariate Normal . . . . . . . . . . .. ... 67

3.5.2 Ising Model . . . .. .. . 69

4 Conclusions and Discussion 76

A Appendix to Chapter 2 79



A.1 Additional Computational Details . . . . . . ... ... ... ... ... 79
A.1.1 Gibbs Sampling Transition Kernel Py(z,z") . . . . .. .. .. .. 79
A.1.2 Implementation Details for Algorithm 1. . . . . ... ... ... 81
A.1.3 Path Integration to Evaluate Loglikelihoods . . . . . .. .. .. 82

A.2 EM Updates for the Spatially Independent Model, and Stochastic Gra-

dient Updates . . . . . . . . .. 84
A21 Independent EM . . . . . . ... 84
A.2.2 Jensen’s Inequality Argument . . . . . . .. .. ... ... ... 86

A.2.3 Stochastic Gradient and Rescaled Stochastic Gradient Updates . 87

B Appendix to Chapter 3 90
B.1 Proofs of Lemmas . . . . . . . . . . ., 90

B.2 Proofs of Theorems, Corollaries, and Propositions . . . . . . ... ... 100



Chapter 1

Introduction

The Wisconsin Public Land Survey database describes historical forest composition
at high spatial resolution, and is of interest in ecological studies of forest composition
in Wisconsin just prior to significant Euro-American settlement. For such studies, it
is useful to identify recurring subpopulations of tree species known as communities,
but standard clustering approaches for subpopulation identification do not account
for dependence between spatially nearby observations. For example, Figure 1.1 shows
a map of maximum a posteriori (MAP) classifications of forest community types in
Wisconsin based on PLS tree species data, which were generated from a finite mixture
model fit using maximum likelihood under an assumption of spatial independence.
Clearly, the resulting classifications exhibit a high degree of spatial regularity, even
though neither the model fitting process nor the forest community classification process
assumed or incorporated any type of spatial information.

In Chapter 2, we describe a modeling framework which enables the incorporation
of spatial correlation into a finite mixture type model, and we apply our methodol-

ogy in an analysis of the Wisconsin Public Land Survey dataset. Maps similar to
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Figure 1.1 initially led us to consider whether it might be useful to directly include
spatial information in the modeling and classification. We hypothesized that including
spatial correlation in the model could lead to better classification and parameter esti-
mation by allowing the model to share information across nearby grid cells. Chapter 2
is motivated by this consideration, and is based on work already appearing in Berg
et al. [2019b].

In addition to modeling questions, namely, how best to incorporate spatial cor-
relation in a finite mixture model framework, the work in Chapter 2 also involves in-
teresting computational considerations. We give a brief description here. Let ¢(n|yo)
denote a likelihood function, where yq corresponds to observed data, and n € RP is
a parameter to be estimated. In many cases, including in Chapter 2, the gradient of
the likelihood function involves an integral with respect to a probability density. A
familiar example is the case of a canonical exponential family model. In this case,
0(nlyo) = plyoln) = exp{nTT(yo) — &(n)} for a sufficient statistic T'(+) and normalizing

constant £(n), and we have

2—7‘; — T(yo) — BT ()1} (L1)

where E{T(y)|n} denotes the expected value of T" with respect to p(y|n) [see, e.g.
Shao, 2003] . The expectation E{T'(y)|n} can sometimes be computed analytically.
However, in many Markov random field models, including the one in Chapter 2, the
only practical way to obtain E{T(y)|n} is to estimate it via a Markov chain Monte

Carlo (MCMC) average [see, e.g., Younes, 1988]. In these cases, we construct an
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Figure 1.1: Model fitting results from a finite mixture model with 16 forest commu-

nities, fit using maximum likelihood under a spatial independence assumption. The

four most common tree species within each forest community type are listed. A key

to the species abbreviations is given in Table 2.2.



estimator
BTG} = MY Tly) (12)

where 4o, Y1, Y2, ... are consecutive draws from a Markov chain with invariant distribu-
tion p(y|n). In a similar way, in Chapter 2 we are led to construct an optimization
algorithm which involves MCMC estimates of the gradient, in place of the true, in-
tractable gradient. The convergence properties of such algorithms are discussed in,
e.g., Kushner and Yin [1997]. Finally, we note that performance measures for these
models, even for simple metrics such as holdout likelihoods, often apparently require
thoughtfully designed MCMC simulations. We negotiate these issues in Chapter 2.
Chapter 3 of this thesis relates to MCMC averages such as in (1.2). Our goal
in Chapter 3, drawing motivation from MCMC stochastic approximation algorithms
of the type used in Chapter 2, is to develop methodology to improve the efficiency
of MCMC simulations. Bayesian statistical analyses often utilize MCMC to compute
quantities such as posterior means and credible intervals, and thus MCMC for Bayesian
statistics is a clear application area for the methods in Chapter 3. However, the
methodology in Chapter 3 is applicable to MCMC simulations regardless of whether a
Bayesian posterior distribution is involved, so in Chapter 3 we typically do not make
reference to posterior distributions and other quantities specific to Bayesian statistics.
In Chapter 3, we propose new control variate methodology, with accompanying
theoretical guarantees, for deterministic sweep Markov chain sampling. Control vari-
ates are a commonly used technique for reducing the variance of ordinary independent
Monte Carlo averages as well as MCMC averages [see, e.g. Liu, 2008]. We preface the

rigorous discussion of control variates in Chapter 3 with an informal overview. The



idea of control variates is to replace an average

-1
MY X, (1.3)
t=

where X; are simulated draws from a Markov chain with stationary distribution 7,

with a new average of the form
MYy (X, — W), (1.4)

where we require the control variates W; to satisfy JvllgnooM -1 Zi\i 81 W; = 0 almost
surely. Under the condition A}linooM -1 Zi\igl Wy = 0, the estimators (1.3) and (1.4)
have the same limiting value. If the W; are suitably chosen, then the variance of (1.4)
will be reduced relative to (1.3). For example, suppose W; = X; — pu, where pu is

the expected value of X with respect to the stationary measure 7, that is, when
Xo ~ 7. Then MM N (X, = W) = MM i = p. In this case, the control
variate average (1.4) is exact for any finite sample size M. It is typically not possible
to construct such effective control variates W;, but this example shows that suitable
W; can lead to variance reductions. Chapter 3 deals with the construction of control
variates W, in the setting of deterministic sweep Markov chains.

While some of the calculations and regularity conditions in Chapter 3 are tech-
nical, the primary conclusions are relatively concrete. For the widely applicable deter-
ministic sweep Gibbs sampler, we show in Chapter 3 that the projection properties of
Gibbs kernels lead to a simple, novel control variate estimator, which has theoretical
and practical benefits over competing methodology in the literature. In particular,

for the data augmentation Gibbs sampler, our control variate estimate is guaranteed

to achieve a smaller asymptotic variance than a widely used alternative approach.



Additionally, we provide variance reduction guarantees for a Rao-Blackwellization ap-
proach for more general Gibbs sampling settings than those in existing results. We
conduct a simulation study which demonstrates that the theoretical benefits of our

proposed approaches are realized in practice.



Chapter 2

A Latent Discrete Markov Random Field
Approach to Identifying and Classifying
Historical Forest Communities Based on

Spatial Multivariate Tree Species Counts

2.1 Introduction

This chapter is based on joint work with myself, Jun Zhu, Murray Clayton,
Monika Shea, and David Mladenoff, which is published in Berg et al. [2019b].

In this chapter, we consider analyzing historical tree species composition data
and mapping forest ecological communities of keen interest in a variety of ecological
disciplines, including environmental history and landscape ecology. Sound modeling
and analysis of historical vegetation using novel statistical methodology is useful for
multiple purposes, including to aid ecological restoration efforts by providing reference
landcover information at restoration sites and to assess landscape changes over time
[Schulte et al., 2002, Shea et al., 2014]. If an area is known to have historically
supported a particular vegetation profile, this could indicate that restoration to the

historically supported vegetation type may be more ecologically appropriate [Egan,



2005).

The historical Public Land Survey (PLS) contains informative data for studies
of past forest composition. The PLS database for the state of Wisconsin is particu-
larly noteworthy for both its spatial extent (approximately 150,000 km?) and its high
resolution (survey points at roughly half mile intervals across the entire state). The
survey was initially conducted to assess land values and facilitate the sale of land,
but the collated and digitized PLS data currently provide the only precise, statewide
record of the natural ecosystems that were present in Wisconsin just prior to major
Euro-American settlement [Schulte and Mladenoff, 2001]. The database is derived
from surveyor notebooks from the original U.S. PLS, conducted across the United
States from the late 1700’s to the early 1900’s. The Wisconsin portion of the survey
was conducted over 1832-1866 [Liu et al., 2011]. Surveyors demarcated the land into
square mile sections, and placed a post as a survey marker at each section corner and
each half-mile point. At each survey point, the protocol required that they record
several environmental characteristics, including the species of two to four “witness”
trees.

Here, we consider the resulting tree species composition data from the Wisconsin
PLS, and aggregate the observed tree species counts within an overlaid grid of cells
for analysis. An illustration of this type of data is shown in Figure 2.1. We also
consider the identification of community subpopulation structure in the PLS relating
to recurring assemblages of tree species, which are described in ecological literature as
forest communities [Barnes et al., 2010]. Community subpopulations are a common
feature of tree species composition data such as in the PLS database. We model for-

est community subpopulations via the classification of each grid cell with the forest



community type most representative of that cell. Our modeling goal is two-fold. On
the one hand, we would like to use tree species composition data to identify discrete
assemblages of species corresponding to forest communities in the state of Wisconsin
prior to the major environmental disturbances accompanying Euro-American settle-
ment. On the other hand, we would like to classify cells in the survey region with the

forest community type they most likely belong to.

L]
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| Aspen
‘ * Black & northern pin oak
s ‘ of o C ¢ Elm
|

1 r * Red oak
—+ Sugar maple
o . White oak

Figure 2.1: Data from a 10-km-by-10-km subregion of the Wisconsin Public Land
Survey dataset. The overlaid grid cells are 1-km-by-1-km. Tree species are recorded

at multiple survey points within each grid cell.

To achieve our goal of accurately modeling and mapping forest community sub-
populations in the PLS survey, we develop an approach wherein forest communities
across the survey region are described by discrete, spatially correlated latent vari-
ables. The observed tree counts are described by community dependent multinomial

distributions. Thus, the observed tree species compositions in the PLS dataset are
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assumed to result from a set of multiple underlying forest community types, which oc-
cur in a spatially correlated fashion across the survey region. Our approach allows us
to describe, indirectly but flexibly, spatial correlation between observations in nearby
grid cells, and also to address unobserved structure due to distinct forest community
subpopulations.

Our analysis of tree species composition in the PLS dataset is unique among
previous literature in that it explicitly accounts both for spatial correlation effects
between nearby observations, as well as for latent forest community structure. Tree
species composition in the PLS was also studied in Paciorek et al. [2016], using, for
example, a latent conditional autoregressive (CAR) model to account for spatial cor-
relation with the goal of providing estimation of tree species composition in the PLS
survey region. While the posterior predictions of forest composition in Paciorek et al.
[2016] capture spatial covariance between the occurrence of related tree species, these
predictions do not explicitly identify or map forest communities. A dissimilarity-based
clustering approach as taken in Schulte et al. [2002] allows forest communities to be
identified and mapped, but this approach does not explicitly model spatial correlation
in the occurrence of forest community types across the study region.

In our work, the tree species composition data come in the form of tree species
count vectors, so that the data in each areal unit are multivariate, with counts of
zero for absent tree species. As such, in contrast to most work in spatial clustering,
our response variable is both multivariate and unordered. We do not constrain the
forest community types to appear in spatially contiguous blocks. We also do not
expect any ordinal relationship between the forest community types. In certain other

common settings, the term “spatial cluster” may refer to a spatially contiguous block
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of areal units where a response variable such as disease risk or rate is unusually high
relative to other areal units. Frequently, the analysis goal in these settings is to identify
“hotspots” of a disease and any associated risk factors [see, e.g., Gangnon and Clayton,
2003, Waller, 2009, Lawson, 2010]. Constraints are also sometimes imposed so that
each disease rate cluster only appears in a single contiguous block of areal units [see,
e.g., Knorr-Held and Rafler, 2004].

We estimate the parameters of our model via maximum likelihood (ML), and
we develop a new Markov chain Monte Carlo (MCMC) stochastic approximation (SA)
method to do this. Our MCMC-SA method is related to but differs from the direct
expectation-maximization (EM) approach [Dempster et al., 1977]. First, instead of
performing the full M-step, we take a gradient step for the Markov random field
parameters, and a modified EM step for the other parameters in the model. Such
EM algorithms with partial updates in the M-step are sometimes termed generalized
EM algorithms [Dempster et al., 1977]. In general, performing the full M-step of the
EM algorithm requires inverting between the mean parameterization and the natural
parameterization of the complete data distribution [see, e.g., Fort and Moulines, 2003].
In the Markov random field setting, performing this inversion is challenging, and it
requires an MCMC sampling step nested within each EM algorithm iteration, as in
Forbes and Fort [2007]. We additionally apply regularization penalties to ensure that
maxima of our objective function do not occur at the boundary of the parameter
space [see, e.g., Stidler et al., 2010, Chen, 2017, Hong et al., 2017]. Finally, in our
latent Markov random field model, the spatial dependence between the latent forest
community types makes computing the loglikelihood challenging, and we use a path

integration approach to accurately compute loglikelihoods on holdout data (see, e.g.,
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Section 6.2 in Neal 1993, or Gelman and Meng 1998).

While MCMC methods may in general be slow, our MCMC-SA method is feasible
even for relatively big data like the PLS dataset due to a computationally efficient
implementation of the sampling. Additionally, in the case study of the PLS dataset, we
achieve significant improvement in prediction performance using our method relative
to an alternative approach that does not account for spatial dependence. A simulation
study further shows that our MCMC-SA method can recover the true parameters
under the correct model specification and outperform some competing methodology.
Though our application in this chapter focuses on identification and classification of
forest communities across space, our methodology can be readily modified for use in
other ecological community identifications or other settings such as medical image
segmentation of tissue types.

The remainder of the chapter is organized as follows. In Section 2.2, we propose
a multinomial model with a latent discrete Markov random field for the PLS dataset.
In Section 2.3, we develop a maximum likelihood approach to estimate the model
parameters and propose a stochastic approximation procedure to compute these es-
timates. In Section 2.4, we apply our model and estimation method to analyze and
interpret the PLS dataset. In Section 2.5, results are presented from a simulation

study. We provide an appendix containing additional technical details (Appendix A).
2.2 Model

Our observed data consist of the counts of each tree species within an overlaid
grid of cells. We assume that each cell has a latent forest community type with an asso-

ciated multinomial probability distribution governing the species composition for each



13

type of forest community. We also assume conditional independence between observed
trees given the latent forest community types, which in turn are assumed to follow
a Markov random field. Thus, our model is a mixture of multinomial distributions,

where the types are spatially correlated.

2.2.1 Latent Model

The spatial grid of cells are assumed to be labeled with one of K possible types,
in our case K different forest communities. Corresponding to each grid cell is a spatial
neighborhood of adjacent grid cells. We view our approach as agnostic regarding the
underlying origin of the spatial dependence in the dataset. For example, an influ-
ential environmental covariate may occur in discrete patches across a map, causing
certain forest community types to appear or disappear in these areas. Additionally,
local within- and between-community interactions may cause spatial patterning on the
observed grid. The approach here attempts to mimic and account for the observed
spatial correlation structure rather than to exactly replicate the true data generating
process.

For notation, we refer to random variables with capitals, and realizations in
lowercase. When referring to a probability density for a discrete random vector Z
depending on a parameter vector ¢, we use the shorthand p(z|0) for p(Z = z|0). For a
vector z, we use z; to denote the ith entry of z. For a matrix A, we use the notation
A; to denote the jth column of A, and A;; to denote the element in the ith row
and the jth column of A. We denote the set of spatial neighbors of a cell ¢ by the
set N(i) = {i’ : 7' is a neighbor of cell i}, where the neighbors are defined so that

i ¢ N(i). We use the notation i’ ~ i to indicate that ¢/ € N (7). Additionally, the
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neighborhoods are assumed to be symmetric, so that if cell 7 is a neighbor of cell 7',
then cell 7’ is a neighbor of cell 7.

Let n denote the total number of grid cells and z € Q = {1,..., K}" denote a
vector of n (unobserved) forest community types. The random vector of forest com-

munity types Z is assumed to follow a Potts-type model with a vector of parameters

n € RE:
n K-1 n
() =exp g Y > ml(z=k) +ax Y Y Iz =z0) =) (2.1)
i=1 k=1 i=1 {eN(5)

where z; refers to the forest community type for cell ¢ and

n K-1
Em) =Y expe > > ml(z =k) +77KZ > I(
2'eQ i=1 k=1 zlzeN)

’L>Z

is a normalizing constant ensuring that p(z|n) is a probability density [Wu, 1982]. In
(2.1), for k < K, the parameter 7 controls the probability of the kth type relative
to the baseline type K. The spatial correlation parameter nx controls the strength of
interactions between the types and when nx = 0, the types are spatially independent
across grid cells.

We define a length K vector T'(z) of sufficient statistics with the kth entry

S I(zi=k); (kE<K)
T(2) = (2.2)

Yiim 2veniy Iz = 2); (k= K)

i'>iq

This allows us to rewrite the model (2.1) more succinctly as

p(zln) = exp {n'T(2) —&(n)},
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which belongs to the exponential family with the natural parameter vector n [Shao,
2003].

For boundary conditions in lattice data models, there are several approaches to
specifying the neighborhood of the cells on the boundary of the lattice. We use the so-
called “free” boundary conditions, where boundary cells simply have fewer neighbors
than internal cells [see, e.g., Comets and Gidas, 1992]. Other approaches attempt
to ensure that each cell has the same number (usually 4, for the square lattice) of
neighbors. For example, in “toroidal” boundary conditions, cells on one side or corner

of the lattice are connected to cells on the opposing side or corner of the lattice.

2.2.2 Data Model

Given the forest community types, we specify our model for the conditional
distribution of the observed tree species counts. For notation, we let the integer
M > 0 denote the number of tree species in the dataset. For the PLS case study, the
M = 33 most common species are used. We denote by Y; the length M vector of
tree counts in cell i, and use Y € Z™*" to denote the matrix of count vectors for the
entire dataset. Thus, Y,,; is the count of trees of species m in cell i. We let ¢; denote
the total number of trees observed within the ith cell. That is, ¢; = Zn]\ff:l Y, ..

We assume that each of the K forest community types is associated with a
distinct multinomial distribution over the M tree species. Conditional on the latent
type Z; = k, the tree species of individual trees within a grid cell are assumed to
be independent multinomials with sample size 1, so that the count vector Y; follows
a multinomial distribution with sample size ¢; and species probability parameters

depending on the kth forest community type. Additionally, the species of individual
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trees are assumed to be independent across grid cells and thus, the counts Y; are also
independent across grid cells, both conditional on the latent forest community types.
However, when the spatial correlation parameter nx # 0, the latent types are spatially
correlated, which induces spatial correlation among the tree counts Y.

We parameterize the species distribution for each forest community type k using
a species probability vector py, € # , where .# refers to the (open) probability simplex
defined by A4 = {p = [p1, .-, ponr)” = D, pm = 1; i, > 0,¥m}. We also define the
species probability matrix g with column vectors py by pu = [ul o ... uK] €
MK, The p,;, element of the p matrix is equal to the probability that a tree in a
grid cell is species m, given that the forest community type of that grid cell is k.

By the conditional independence of tree species between and within grid cells,
the conditional density of the observed tree counts given the forest community types

Z and the species probability matrix p is
n n M
piylz,m) = [[p(vilzw) =] C ] mi (2.3)
=1 i=1 m=1
-1
where p,, ., is the mth entry of column z; of p, and the factor C; = (H%:l ymi!> q:!
counts the number of possible ways of assigning species to each tree in the ith grid

cell with the species counts y;.

In summary, our full data generating mechanism comprises two steps:
1. Draw the forest community types Z according to the density in (2.1).

2. Conditioning on the forest community types Z = z from step 1, draw the tree

species counts Y according to the density in (2.3).

Define R(y, z) € RM*K to be a matrix of statistics with the (m, k)th element R(y, 2) 1 =
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> Ymil(z = k) summarizing the total number of species m trees in the grid cells
that belong to the kth type of forest community. Then, the complete data density for

(Y, Z2) is

p(y, zn, u) = p(z[n)p(ylz, 1)

=@@{WTV%—HM+§:Zﬁ%umw&m@J%+Z)%K®}, (2.4)

m=1 k=1

It is sometimes convenient to write the parameter vector 1 and the parameter
matrix p using a single vector parameter 6. Conversely, we may also need to obtain
1 and p from the corresponding vector #. Thus, we define a vectorization operator
(A) : RMXE _y RMK 4, (i, ... ,,u};]T for viewing the parameter matrix p as a
vector. Then, we define § € REFME Ly § = |:7]T, (u)T}T. We use © to denote the
parameter space for 6, and we use n() € RF and p(0) € RM*X to denote the n and

associated with . When it is clear, we simply write n or p rather than n(f) or pu(9).
2.3 Method

2.3.1 Maximum Regularized Likelihood Estimation

Here, we estimate the parameter 6 via maximum likelihood. For the model
described in (2.1) and (2.3), the observed data log-likelihood when Y =y is
0(0) = log {Z p(y,z|9)}. (2.5)
2eQ
The consistency of the maximum likelihood estimate, 6 = argmax,l(6), is shown in
an increasing domain asymptotics setting, under identifiability assumptions on 6 and
when the estimation is constrained to a compact parameter space [Comets and Gidas,

1992].
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The observed data log-likelihood (2.5) may exhibit unwanted behavior, such as
maxima on the boundary of the parameter space, which is common in latent variable
models. Such behavior can occur even in simple settings, such as a mixture of normal
densities with component-specific variances, where it is possible to achieve an arbi-
trarily high likelihood by setting the mean of one of the components to a single data
point, and sending the variance of that component toward 0 [see, e.g., Chen, 2017,
Section 3.2]. In our work, there is apparent convergence of entries of the tree species
probability matrix, pt,,., to 0, which seems to occur mostly for the rarer tree species,
while there is no observed convergence of components of the parameters associated
with the forest community types, 7, to the boundary of RX.

To guarantee the convergence of our estimation procedures to points within the
parameter space ©, we impose weakly informative prior penalties on the observed data
log-likelihood (2.5) [see, e.g., Stédler et al., 2010, Chen, 2017, Hong et al., 2017]. In
particular, Kushner and Yin [1997] added “soft penalties” to ensure that the objective
function is well-behaved and the iterates from a stochastic approximation procedure

remain bounded, which we use here to optimize a regularized log-likelihood function:

gpen(‘% = 2(6) + 1 (7]) + ;02(#)7 (26)

where p1(n) and ps(p) are penalty functions.
For each component of 7, we apply a Logistic(0, o) prior density with o > 0.

That is, p1(n) = Zle log f,(nx), where for k =1,..., K,

Jo(me) = o~ fexp {n/ (20)} + exp {—mi/(20)}] " (2.7)

In the PLS case study and the simulation studies, we use o = 1.
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For each column of p, we put a Dirichlet(al,,) prior with o > 1, where 1, is a
vector of M 1’s, so that
K M
p2(p) = (a—1) Z Z log(tm)- (2.8)
k=1 m=1
For an integer o > 1, po(p) can be viewed as adding to the dataset some pseudo-data
corresponding to a — 1 grid cells for each forest community type, in which 1 tree from

each of the M species is observed. We use a@ = 2 as the regularization parameter.

2.3.2 Modified EM Algorithm

To optimize the penalized likelihood in (2.6), we derive a modified EM algorithm.
The computations required by both the n and p updates involve expectations over all
possible K™ configurations of the forest community types. When the spatial correlation
parameter i # 0, we approximate the exact updates by a stochastic procedure, which
we describe in Section 2.3.3. When the spatial correlation parameter nx = 0, it is
possible to compute the expectations exactly, and we derive the EM updates for the
spatially independent model in Section A.2.1 of A.

Since the forest community types are unobserved, the problem of estimating
the parameters 6 = [UT, (u)T} ' falls naturally into the missing data framework and
the expectation-maximization (EM) algorithm is a possible solution [Dempster et al.,

1977]. In each iteration of our modified EM algorithm, a surrogate function is con-



20

structed in the E-step, based on the current parameter value 6

QU16°") = pi(n) + pa(p) + Y p(zly, 07") log {p(z, y|0)} (2.9)

z€Q

= | pa(n) + ) p(zly, 6°7) log{p(zIn)}

z€Q

+ | p2(p) + Y p(zly, 077) log{p(y |z, p)}

L z€N

Q1(n]0°") + Qa(p|60°7).

In the M-step, the parameter value ™" for the next iteration is obtained by maximiz-
ing the @-function over 6 . This process is repeated iteratively by setting 6" = v
and then maximizing the new ()-function again. Under suitable conditions, any limit
point of such an EM algorithm is guaranteed to be a stationary point of the log-
likelihood [Wu, 1983].

The surrogate Q-function (2.9) takes an average over the complete data loglike-
lihood log{p(z,y|6)} with respect to the conditional distribution p(z|y,#<") of the
types, given the observed data y and evaluated at 6°“", whereas the penalty func-
tions py(n) and pa(p) remain unchanged. The @Q-function (2.9) can also be shown to

minorize the regularized loglikelihood (2.6), in the sense that
/gpen(g) _ Epen(gcu'f'> > Q(Q|8CUT> o Q(QC’U/{’|QCUT)'

Thus, increasing the value of the Q)-function guarantees an even greater increase in the
value of the regularized loglikelihood (2.6). The implementation detail for maximizing
the Q-function is given as follows.

Update n: First, we deal with the maximization of the @;-function in (2.9):

Qu(nlo") =Y p(zly,07") log{p(zln)} + pi(n). (2.10)

zeQ
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Since p(z|n) is in the exponential family with sufficient statistic 7'(z), we have 0log{p(z|n)}/on =

T(z) — E{T(%')|n} [Shao, 2003] and

9Q1(n]o")
on

_ op1 (77)
on

_ Ip (77)
n

n=ncur

+ ) p(Zly. 6 [T(z') = E{T(z)|n""}]

n=NTT reQ

+ E{T(2)ly, 0"} — E{T(2)[n""} (2.11)

n=ncur

Thus, the gradient of Q1(n|0““") has a convenient representation in terms of the con-

ditional and marginal distributions at 6 = 0. Furthermore, it can be shown that

Ftpen(9) — 9Qui(n|o="")

877 H=Qcur 877

n:ncu'r :

Finding the n which maximizes Q1(n|0“*") in the M-step would require invert-
ing, at every iteration, between the exponential family natural parameter, n, and the
exponential family mean parameter, E{T'(z)|n}. For Markov random field models,
this inversion would require a sequence of MCMC draws and is a challenging compu-
tational problem [Forbes and Fort, 2007]. Thus, we elect to instead use a gradient

ascent update for the n component of 6:

nnew _ ,r]cur + Cil an(nWCUT) _ ncur + Cflagpen(e)

= T (2.12)

where c is a fixed constant stepsize chosen to ensure reasonable convergence behavior.

Update p: In contrast to n, the update for p has a convenient representation in terms
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of the conditional distribution p(z|y, 8"), because by (2.3), we have

Q2(pl6°") = pa(p) + > p(2ly, 0°") log{p(ylz, 1)}

z€Q

o () + Zp(z\y, o) Z Z {log(pe)"yi} I(z: = k) + Z log(C,

z€Q) i=1 k=1

) + Z Z {log(px)"y:} P(z = kly,0") + Z log(C;)

i=1 k=1 i=1

K
= Q)+ Zlog (2.13)

k=1

where Y7 log(C};) does not depend on p and

M
Q% (x) = D (o = 1) log(ptmr) + Z Z P(zi = kly, 07" ) yomi 10g( Kk -
m=1 i=1 m=1

It is shown in Section A.2.2 of Appendix A that the maximizer p™*" of (2.13) has

entries
Hog = {a =1+ Np} /{M (o — 1) + Ni.}, (2.14)

where Ny = 320, Pz = kly, 0°)y,mi and Ny = >0 | Nyt

In a standard EM update for p, we have pp® = pf"" + (upe — ps'"). Here,
it is more convenient to use an altered version, because p(z|y, ") is known only up
to a normalizing constant and the g update must be approximated by MCMC. The
quantities related to p(z|y,0") appear in both the numerator and denominator of
(2.14) and thus, it is challenging to estimate the EM update for g in an unbiased
fashion based only on a single draw from p(z|y, #*"). Thus, we propose a “short-step”

for updates:

~new cur new cur

= e A e (e — ), (2.15)
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where

o= {M(a = 1)+ N} /{M(a = 1)+ q;}. (2.16)
i=1

Since Nj, < > i, ¢ for all € ©, we have v, < 1 for all . On the other hand,
Ve > AM(a—1)}/{M(a—1)+>" ¢} > 0. Thus, the g™ update results from
taking a shortened EM step starting from p". For the product vp¢” in (2.15), the
numerator of 7, cancels with the denominator of p7°” in (2.14). The denominator
of v depends on the number of tree species M, the regularization parameter «, and
the number of trees in the dataset > | ¢;. Thus, y,p® depends on p(z|y,§") only
through the numerator of the pp“* update in (2.14), which can be estimated based on
a single draw from p(z|y, 0) (see Section 2.3.3).

The set .# is convex, and from (2.14), u"* € .#%. From convexity, when
p? € AE and pr € A#K, (2.15) implies g™ € #K as well. Additionally, the
update in (2.15) preserves the ascent property of the EM algorithm. By concavity of
the log function, Q% is concave, so that Q5 (™) > Q5 (ui) + (1 — 1) Q% (™) >
Q% (ug"m). When pe® # p" the inequalities are strict. Since Q1(n]0°") + Qq(p|0")
minorizes {p.,(0), any increase in the value of ()3 implies an increase in the value of

Cpen ().

2.3.3 Stochastic Approximation

To update 6, we devise a stochastic approximation procedure ™" = 0" +

g(0°""), where

ncur Cil Q1 (gwcur)
g0 =g [ | [ ) = | (2.17)
(/1‘ ) (Mnew) _ (ulcm‘)’

and ¢(f) is to be estimated based on MCMC samples. Stochastic approximation

approaches are useful when the function ¢(-) is difficult or impossible to evaluate, but
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g(+) can be approximated by an estimate G(6,z), where z is a random variable drawn

from a distribution my, such that mp and G(-,-) satisfy, for each 6,

/ G0, 2)my(dz) = g(0) (2.18)
[see, e.g., Robbins and Monro, 1951, Benveniste et al., 1990, Kushner and Yin, 1997].

The update in (2.17) is a combination of a gradient ascent update for n and
a short-step update for p, from which an iterate sequence may be constructed in
the following way. Starting from an initial parameter #©) and initial z(%), we obtain
draws z(*1) from mye () and set 0D = 9O 4 HVGH® z+D) The sequence
of stepsizes {¢®} is deterministic and generally satisfies conditions such as ¢® | 0,
S (€M) < 0o, and Yo7, ) = o [see, e.g., Benveniste et al., 1990, Kushner and
Yin, 1997]. Here, we use ¢®) =¢~1,

From (2.11), the gradient of (Q1(n|6°*"), and hence the gradient of the observed
loglikelihood, with respect to the n parameter can be computed based on the differ-
ence of two expectations of T'(z). The first expectation is taken with respect to the
conditional distribution p(z|y,8") and the second expectation is taken with respect

cur)

to the marginal distribution p(z|n°"), while the gradient of the logistic prior p;(n) can

new

be computed analytically. The p update g™ — p" in (2.15) can be computed by

taking the expectation of the function

Ha(ylcur7 Z)mk

_ (e =1 = Mpg) + 300 Hzi = kHYmi — Gt (2.19)
M(Oé—l)‘i‘zzbzl% 7

with respect to p(z]y,#). Thus, the update ¢g(0“") in (2.17) can be written as an

integration with respect to the density

Toeur (2) = p(21]y, 0" )p(22|0™"), (2.20)



25

where z = (z1,29) denotes an ordered pair of configurations z;,z, € Q. From (2.20),
z; and zy are drawn independently under myeur(+). The probability density mgeur ()
takes as its argument an element z of the sample space 22 = Q x Q.

Since integrals with respect to my(+) require intractable sums over all possible type
configurations z; and z,, we estimate g() based on approximate draws from my(-).
While it is difficult to sample directly from p(z|y, ) and p(z2|n) due to the spatial
correlation between the types z;, it is possible to use Markov chain transition kernels
(specifically, Gibbs sampling kernels) to approximate draws from these distributions
[Geman and Geman, 1984]. Due to the conditional independence between grid cells in
the conditional distribution p(y|z, i), both p(z]y,0) and p(z|n) are Markov random
field densities with simple conditional distributions at each cell given the rest of the
cells. Thus, it is possible to construct Gibbs sampling transition kernels P (-, -) : £ x
Q — [0,1] and Pog(-,-) : 2 x Q — [0, 1] so that the stationary distributions of P g(-,-)
and Pag(-,-) are p(z|y,8) and p(z|n), respectively. In order to approximately sample
from 7y, we run a Markov chain using the transition kernel Py(z,z') : Q% x Q% — [0, 1]
defined by Py(z,2") = P ¢(21,2)) P2 9(22,2)). Detailed formulas for the Gibbs samplers
are given in Section A.1.1 of Appendix A [see also, e.g., Gaetan and Guyon, 2010].
From the definition of Pp(-,-), we see that the updates to the Markov chain for the
conditional distribution p(z|y,#) are independent from the updates to the Markov
chain for the marginal distribution p(z|n).

In our stochastic modified EM procedure, we choose a stepsize ¢ and define the

function G(-,-) : © x Q%2 — © by

Ui

o) (2.21)

,z) = [C{apal—r(;n) +T(2z1) — T(ZQ)}

G,z) = G
( ) ( Ha(u’vzl)
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Then, we find parameters § maximizing the penalized likelihood lpen(6) via the pro-

cedure given in Algorithm 1.
Algorithm 1: Stochastic Modified EM
Initialize parameter 6, € O, configuration z, € Q?, number of iterations

T.

Y

for t=1 to T do

Draw z, € Q* according to Py, ,(z;_1,-)
€t = t_l

0, =01 +eG(0_1,2)
Return 67

Implementation details, including a discussion of the choice of the stepsize ¢, are given
in Section A.1.2 of Appendix A.
2.4 Case Study: Historical Forest Communities based on Pub-
lic Land Survey Data

The Wisconsin PLS dataset is a historical survey of trees, conducted primarily
between 1832-1866 [Schulte and Mladenoff, 2001]. The dataset has been commonly
used in ecological studies of forest composition prior to and concurrent with Euro-
American settlement. As described in the introduction, surveyors from the PLS walked
along a 1-mile-by-1-mile grid-like pattern across the state, and recorded the species
of 2—4 representative trees at survey points every half-mile (Figure 2.1). The dataset
is large, both in terms of the number of trees observed (328,499), distributed roughly
uniformly across the state, as well as in terms of the spatial extent (145,000 square
kilometers). Additionally, the tree species count data at each grid cell are highly
multivariate and for small enough grid cells, most tree species counts are 0, since only

2-4 trees were observed at each survey point and the survey points are at least half a
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mile away from each other.

For data analysis, a spatial grid of cells is first overlaid on the survey region
(the state of Wisconsin). For each grid cell i, a count vector y;, of length M = 33
species, is constructed from the trees observed at survey points within that cell. Grid
cells are not required to contain any trees. For our spatially correlated model, the
forest community type probability at any cell takes into account tree information
from nearby adjacent and non-adjacent grid cells containing trees. We compare three
grid resolutions: 4km-by-4km, 2-km-by-2-km, and 1km-by-1km grid cells, resulting in
9,469 cells, 37,134 cells, and 146,851 cells, respectively. For each grid resolution, each
cell is assumed to have a single forest community type. We use a first-order spatial
neighborhood structure with up to four nearest neighbors. That is, two points with
integer lattice coordinates (i,j) and (¢’,j') are neighbors when |i —i'| + |7 — 7| = 1.
Next, we fit the spatially correlated multinomial mixture models via the stochastic
modified EM procedure in Algorithm 1. For comparison, we fit spatially independent
multinomial mixture models via the standard EM algorithm, a derivation of which is

given in Section A.2.1 of Appendix A.

2.4.1 Choice of K and Model Validation

We use a cross-validation procedure to determine the number of forest commu-
nity types to use, and to assess the quality of the spatially correlated mixture models
relative to the spatially independent mixture models. In particular, we generate a
testing dataset by randomly selecting 20 percent of the trees from the full set of sur-
veyed trees. The remaining 80 percent of the trees are placed in a training dataset.

We then create training and testing datasets yirqin and yiess for each grid resolution
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(1km, 2km, and 4km) from these training and testing trees. We also consider five to-
tal numbers of forest community types K = 8,12, 16, 20, or 24. For each combination
of grid resolution and number of forest community types, we fit each of the models
on the training dataset y;yqin, starting from three random initial parameter values to
mitigate the multimodality of the likelihood.

We examine two loglikelihood based measures of prediction performance, using
the same training and testing datasets across models fit for different grid resolutions
and numbers of forest community types to ensure the likelihoods are comparable
among different models. We first compute, for each of the fitted models at each grid
resolution, a holdout loglikelihood

Cnotdon(0) = log {Zmquz, é>p<z|é>} . (2.22)

z€Q

We focus our model assessment on holdout loglikelihoods rather than on the errors of
estimated coefficients, because the true data-generating parameters are unknown for
the real data. Next, we compute a predictive loglikelihood

gpred(é> = 1Og{p(ytest|ytrain7 é)} = log {Zp(ytest|za é)p(z|ytraina é)} . (223>

2€Q
In contrast to the holdout loglikelihood Eholdaut(é) that is marginal on the testing
dataset, the predictive loglikelihood Epred(é) measures the quality of predictions of the
testing dataset, conditional on the training dataset. Since our maps of the study area
are ultimately based on the conditional distribution p(z|y, é), the predictive loglikeli-
hood is a relevant performance metric. To ensure that these likelihoods are comparable

across different grid resolutions, we drop the grid-resolution dependent factors C; in

(2.3). The loglikelihoods without the constants C; are equal to the loglikelihoods of the
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individual trees, before being aggregated into counts. Unlike the tree species counts
y; for each cell, which vary by the grid resolution, the loglikelihood of the collection
of individual trees has the same interpretation across grid resolutions.

For the spatially correlated models, the holdout loglikelihood in (2.22) is difficult
to compute, and we use path integration, also known as thermodynamic integration or
path sampling [Neal, 1993, Gelman and Meng, 1998]. We describe the path integration
procedure in Section A.1.3 of Appendix A. The predictive loglikelihood (2.23) is also

difficult to compute for the spatially correlated models. By the fact that

log{p(ytest ’ytraina é)} = log{p(ytr(u’na Yiest | é)} - 10g{p(thm |é)}

= log{p(y|0)} — log{p(Yrainl0)}, (2.24)

we write (,eq(f) as the difference between the two marginal likelihoods in (2.24) and

use path integration to compute these two marginal loglikelihoods separately.

Table 2.1: Values of holdout loglikelihood (€ped0ut) and predictive loglikelihood (€preq)
for the Wisconsin Public Land Survey case study for either spatially independent
models or the spatially correlated models, different numbers of forest community types
(K), and the grid resolution (1km, 2km, or 4km), averaged over 3 runs from random

initial starting parameters, and normalized by the number of trees in the testing
dataset.

Eholdout<é) EpTed(6>
Model K 1km 2km 4km 1km 2km 4km

Independent 8 -2.77 -26 -2.37 -2.11 -2.15 -2.18
12 -2.76 -2.58 -2.35 -2.04 -2.09 -2.13
16 -2.76 -2.57 -233 -2 -206 -2.1
20 -2.75 -2.57 -2.32 -1.98 -2.03 -2.08
24 -2.75 -2.57 -232 -1.96 -2.02 -2.07

Spatial 8 -2.23 -221 -222 -203 -2.13 -2.19
12 -218 -216 -22 -196 -2.08 -2.17
16 -2.15 -2.15 -2.2 -1.91 -2.05 -2.15
20 -2.15 -2.15 -2.18 -19 -2.03 -2.14
24 -2.15 -2.15 -2.18 -1.88 -2.04 -2.14
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Table 2.1 displays the holdout and predictive loglikelihoods obtained from the
spatial and independent models for the different grid resolutions and numbers of forest
community types. Intuitively, we expect it to be easier to predict the held out trees
after having seen spatially nearby training trees. A comparison of the marginal and
conditional loglikelihoods in Table 2.1 bears this out: the predictive loglikelihoods
fpred(é) are always larger than the holdout loglikelihoods Eholdout(é).

At all grid resolutions and numbers of forest community types, the spatial model
performs better based on holdout loglikelihood than the corresponding spatially inde-
pendent model. Additionally, the highest (best) spatially independent holdout loglike-
lihood is lower than the holdout loglikelihood from even the worst spatially correlated
model. For the spatially independent models, the holdout loglikelihoods for models
with fixed numbers of forest community types decrease as the grid resolution becomes
finer, while the holdout loglikelihoods for the spatial models with fixed number of
forest community types are more similar across the grid resolutions.

In contrast to the holdout loglikelihoods, the predictive loglikelihoods for both
the spatially correlated and independent models improve as the grid resolution be-
comes finer. Additionally, the predictive loglikelihoods increase monotonically at each
grid resolution as more forest community types are added to the model. The largest
(best) predictive loglikelihood is obtained for a 1km spatial model with 24 forest com-
munity types. The spatially independent models sometimes achieve higher predictive
loglikelihoods at the 2km and 4km grid resolutions, but the best predictive loglikeli-
hoods out of all the models are attained by spatial models at the 1km resolution.

Finally, model fits from different initializations on the PLS dataset, where the

true data generating mechanism is unknown, were qualitatively similar, with some
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variability in the fitted forest communities. For a fixed number of forest community
types, the correlation parameter estimates are typically similar across the grid reso-
lutions. For example, for the 16-community models, the smallest spatial correlation
parameter estimates are 1.615, 1.610, and 1.549, whereas the largest are 1.631, 1.619,

and 1.596, for the grid resolutions 1km, 2km, and 4km, respectively.

2.4.2 Ecological Interpretation

After model fitting, the forest community classifications at each grid cell are
determined from site-wise maximum a posteriori (MAP) estimates using Gibbs sam-
pling. Maps of these classifications are shown in Figures 2.2-2.3, which indicate that
the spatially correlated models tend to produce more spatially smooth classification
maps than the spatially independent models, particularly for the smaller grid resolu-
tions, as is expected. A key to the tree species abbreviations in these figures is given

in Table 2.2.

Forest type

* 1:BO, JO, WO, RO

® 10: RP, WP, AS, JP

© 11:WP, SU, TA, W8

® 12: JP,. RP, JO, WP

© 13:TA, SP, WP, CE

® 14:WO, RO, AS, BO
® 15: AS, WB, WP, WO

Forest type

*® 1:WO, JO, BO, AS

® 10: HE, BE, CE, SU

© 11:RP, JP, WP, TA

*® 12: TA, SP, WP, WB
© 13:WP, RP, WO, JO
*® 14:BE, SU, BA, EL

® 15:WP, SU, TA, WO
© 16:BA, EL, WB, WA © 16:JP, JO, RP, BO
® 2:HE, YB, SU, WB
© 3:W0, JO, BO, HI

© 8:SU, HE, YB,EL
© 98U, YB, WP, EL

Figure 2.2: Forest community classifications for the Public Land Survey case study
from the 16-community spatially correlated (left) and spatially independent (right)
models with the highest holdout loglikelihoods, which occurred at the 1km and 4km
grid resolutions, respectively. A key to the tree species abbreviations is given in
Table 2.2.
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Figure 2.3: A comparison of 16-community spatial and independent models over a
40-km-by-40-km subsection of the Wisconsin survey region for grid resolutions 4km,

2km, and 1km. A key to the tree species abbreviations is given in Table 2.2.

Table 2.2: The tree species abbreviations, names, and counts for the Wisconsin Public

Land Survey case study.

Abbreviation Name Count ~ Abbreviation Name Count
AL Alder 100 LI American basswood 7520
AS Aspen 12029 RM Red maple 1475
BA Black ash 5957 RO Red oak 5228
BE American beech 7586 RP Red pine 9925
BO Bur oak 34065 SO Swamp white oak 207
BU Butternut 534 SP Spruce 6048
BW Black walnut 113 SU Sugar maple 32718
CE White cedar 8297 TA Tamarack 19741
CH Black cherry 454 WA White ash 2119
CcO Eastern cottonwood 122 WB Paper birch 11770
EL Elm 11090 WI Willow 346
FI Balsam fir 4441 WM Silver maple 550
HE Eastern hemlock 26369 WO White oak 33170
HI Shagbark hickory 1198 WP Eastern white pine 21717
IR Tronwood 4076 YB Yellow birch 22008
JO Black & northern pin oak 26058  ZZ No trees 464
JP Jack pine 11004

The predictive loglikelihoods for both the spatially correlated and independent
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models improve as the grid resolution decreases from 4km to lkm (Table 2.1), which
suggests that the tree data are more likely to come from the same forest community
type within smaller grid cells, and that the larger grid cells aggregate trees from mul-
tiple forest community types. This pattern is consistent with ecological observations

of forest patch size in the region [Mladenoff et al., 1993].

Table 2.3: Summaries of the 16 estimated forest community types for the Wisconsin
Public Land Survey case study under the model selected based on cross validation,
including the counts of grid cells which are classified as each forest community type,
the top four tree species in each forest community, and the corresponding four largest

estimated species probabilities. A key to the tree species abbreviations is given in
Table 2.2.

Forest type Count Top Species Species Probabilities
23 , , SU, 0.352, 0.223, 0.154, 0.048
19373 BO, JO, WO, RO  0.72, 0.137, 0.117, 0.007
16121 WO, JO, BO, HI 0.478, 0.267, 0.209, 0.013
12380 SU, EL, WO, LI 0.282, 0.151, 0.131, 0.121
10746 SU, YB, WP, WB  0.342, 0.201, 0.089, 0.071
BE, SU, HE, BA 0.39, 0.138, 0.096, 0.065
7370  JO, WO, BO, AS  0.643, 0.177, 0.091, 0.031
7219 CE, HE, TA, YB 0.283, 0.175, 0.133, 0.094
7075 SP, WP, WB, TA  0.179, 0.167, 0.161, 0.146
10 6013 RP, WP, AS, JP 0.489, 0.19, 0.077, 0.061
11 5720 WP, SU, TA, WB  0.66, 0.055, 0.046, 0.042
12 5506 TA, WP, SP, WB  0.821, 0.036, 0.026, 0.015
0.7
0.4
0.6
0.2

OO0 U W
(0]
M~
(\]
~

1
13 5420 JP, RP, JO, WP 3, 0.087, 0.052, 0.024
14 4865 WO, RO, AS, BO 4, 0.221, 0.069, 0.067
15 4256 AS, WB, WO, WP
16 3186 BA, EL, WB, WA

0.063, 0.045, 0.043

7
8
6
2
)
8
2,
36, 0.161, 0.073, 0.064

We focus our ecological interpretation on the spatially correlated model with 1km
grid resolution and 16 forest community types which has the highest holdout loglike-
lihood out of the 1km models. This model also has the highest holdout loglikelihood
for the 16 forest community models across grid resolutions. Table 2.3 summarizes
the forest communities for this model and indicates that species associations within

these 16 forest communities are consistent with ecological expectation for the survey
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region [Curtis, 1959]. Similarly, the maps of the most likely forest community for each
grid cell generally meet expectations [Curtis, 1959, Finley, 1976]. Although one of the
models at the 2km grid resolution has a higher holdout loglikelihood than the model
we discuss here, the difference in holdout likelihoods was small (—2.143 for the 2km
model vs. —2.144 for the 1km model), while the improvement in predictive loglikeli-
hood from 2km to 1km is more substantial (—2.04 for the 2km model, vs. —1.91 for
the 1km model).

Among the oak communities, bur oak (BO) is the highest probability species in
the community (forest community type 2 in Table 2.3) that is most likely to occur
in the region that was historically oak savanna, mainly in topographically gentle sites
[Curtis, 1959]. While all oak species in the survey region are fire-adapted, bur oak
is the most fire tolerant [Peterson and Reich, 2001]. Its dominance in flatter areas
could be due to increased frequencies of prairie fires passing through [Stambaugh and
Guyette, 2008, Shea et al., 2014]. A more mixed oak community (forest community
type 3), dominated by white oak (WO) with a high probability of black/jack oak (JO)
and bur oak, was most likely to occur in a more topographically diverse, historically
savanna region; the topography likely allowed for more diverse fire patterns and species
assemblages [Shea et al., 2014]. The community dominated by black/jack oak (forest
community type 7) had highest probability in regions with dry soils; of the oak species
in Wisconsin, black and jack oak are the most drought-tolerant, so their dominance
on these sites is ecologically sensible [Curtis, 1959, Shea et al., 2014]. While the
other oak species likely were restricted to sunny savannas, the white oak-red oak
(RO) community (forest community type 14) may have existed as a closed canopy

community in southern Wisconsin. White oak and red oak are the more shade tolerant
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oaks [Curtis, 1959].

The three pine species in Wisconsin occur in several communities, three of which
are each dominated by the three species. The separation of the three species is ex-
pected, because while they are all associated with drier site conditions [Curtis, 1959],
they are each differently adapted to drought and fire and, especially for jack pine (JP)
and red pine (RP), often form monospecific stands depending on fire frequency [Burns
and Honkala, 1990, Radeloff et al., 1999]. White pine (WP) has greater than 0.1 prob-
ability in the red pine dominated community (forest community type 10) as well as
in a community (forest community type 9) with similar probabilities of spruce (SP),
paper birch (WB), and tamarack (TA). Compared to the other pine species, white
pine grows on a range of sites including those with richer soil, and has intermediate
shade tolerance which allows it occur on a variety of sites and even intergrade with
northern mesic forest community types [Curtis, 1959, Burns and Honkala, 1990, Fahey
et al., 2012]. Given the widespread nature of white pine, it is not surprising that it
has high probability of occurring in more than one community, including forest com-
munity type 9 which has species combinations that are possible on sites with recent
disturbance or sites that are refuges from fire [Fahey et al., 2012].

In northern Wisconsin, mesic forest occurs on sites with rich and moist but
well drained soils and is mainly dominated by eastern hemlock (HE), sugar maple
(SU), yellow birch (YB), and American beech (BE) [Curtis, 1959]. The cluster re-
sults separate this forest type into four communities, and probabilities of each forest
community type seem to vary geographically, depending on the range boundaries of
several species [Curtis, 1959, Davis et al., 1991]. Beech dominates one community, and

sugar maple and hemlock are other high-probability species in the community (forest
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community type 6) which is most likely to occur east of beech’s range boundary in
eastern Wisconsin.

In northern Wisconsin, forest community type 8 is the most likely community,
where hemlock has the highest probability along with white cedar, yellow birch, and
sugar maple. White cedar (CE) is most abundant in far northern Wisconsin [Curtis,
1959]. South of that a different community is more likely to occur (forest community
type 1), with high probability of hemlock, yellow birch, and sugar maple. West and
south of the range of hemlock, forest community type 5 is most likely to occur; in that
community, hemlock is absent and sugar maple and yellow birch dominate.

The remaining communities also align with expected forest types. In southern
Wisconsin, community type 4 is southern mesic forest, which is most likely in known
closed forest areas as expected [Curtis, 1959, Mladenoff et al.]. Community type 16
is wet-mesic forest in both north and south [Curtis, 1959]. Forest community type 13
is a tamarack wetland and forest community type 15 is northern dry/dry-mesic sites

that are recently disturbed and dominated by aspen (AS) [Curtis, 1959].

2.4.3 Model Diagnostic and Implementation Validation

In addition to the loglikelihoods, we consider an absolute deviation measure
of discrepancy between the observed and predicted proportions of tree species. To
compute this measure of discrepancy, we overlay a grid of n 20-km by 20-km cells on
the state of Wisconsin and compute the discrepancy

n M

i—1 m=1
where 7 indexes the 20-km by 20-km grid cells, P = Ymitest/qi" denotes the em-

pirical proportion of testing species m trees in the ith grid cell, and p,,; denotes the
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corresponding predicted proportion under a given model. The discrepancy D mea-
sures the average difference between the observed and predicted proportions in the
20-km by 20-km grid cells. For the mixture models, the predicted species proportions

for the ¢th grid cell p,,; are

zeQ k=1

We compute these predicted species probabilities analytically for the spatially inde-

pendent models but via MCMC for the spatially correlated models.

Table 2.4: Values of ¢; discrepancy (D) on the testing dataset on a 20-km by 20-km
grid for the spatially independent and dependent models with different numbers of
forest community types (K) and grid resolutions (1km, 2km, 4km) in the Wisconsin

Public Land Survey case study.

Model K 1km 2km 4km

Independent 8  0.0I1563 0.0136 0.013
12 0.014 0.0118 0.012
16 0.0132 0.0111 0.0111
20 0.013 0.0107 0.0108
24 0.0129 0.0104 0.0103

Spatial 8 0.0125 0.0132 0.014
12 0.011 0.0115 0.0131
16 0.00994 0.011  0.0127
20 0.00957 0.0106 0.0123
24 0.00933 0.0106 0.0123

From Table 2.4, the overall differences between the predicted and observed
species proportions are small, indicating good fit between the observed and predicted
species proportions. The best performing models with respect to the measure D
achieve an average absolute deviation of about 0.01 between the observed and pre-
dicted proportion for each of the 33 species. The deviations for the spatially correlated
models decrease as the grid resolution becomes finer, in contrast to the deviations for

the spatially independent models, which increase as the grid resolution becomes finer.
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The overall pattern for the absolute deviations, as the number of categories and the
grid resolutions change, is similar to the pattern for the predictive loglikelihoods in
Table 2.1.
For the spatial models, we also investigate an intuitive approximation of p(Yiest|Ytrains é),
which allows us to validate our path integration implementation. Under the assump-
tion

n

p(z|Ytraina é) ~ HP(ZAthm, 0)7

=1

we have

log{p(ytest|ytrain)} = log{z p(ytest‘za é)p(z‘thm, é)}

z€Q
n K . )
~ Z lOg {Zp{ytest’Zh e}p(zz = k|ytra'm7 6)} . (22‘5>
i=1 k=1

~

Using this approximation combined with MCMC draws from p(z|yirain,d) to obtain
empirical estimates of p(z; = k|Ytrain, é), we compute an approximation of the true
predictive loglikelihood £,,cq(0), denoted as 6;5’5;”(@). Table 2.5 suggests that the
results from this approximate procedure agree very well with the results obtained

via path integration in spite of the mostly different implementation details, providing

evidence for the correctness of our path integral implementation.
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Table 2.5: Predictive loglikelihood values on the testing dataset for the spatially corre-
lated model, computed using path integration and the approximate method of (2.25),
for the Wisconsin Public Land Survey case study with different numbers of forest

community types (K) and grid resolutions (1km, 2km, 4km).

Method K 1km 2km 4km
Path integral 8 -2.03 -2.13 -2.19
12 -1.96 -2.08 -2.17
16 -1.91 -2.05 -2.15
20 -1.9 -2.03 -2.14
24 -1.88 -2.04 -2.14
Approximate 8 -2.03 -2.14 -2.19
12 -1.96 -2.08 -2.17
16 -1.91 -2.05 -2.15
20 -1.9 -2.03 -2.14
24 -1.88 -2.04 -2.14

2.5 Simulation Study

We conduct a simulation study to evaluate the methodology applied to the PLS
case study in Sections 2.2-2.4. We consider g x g grids of cells, where the grid size
is g = 50,100,200, or 400 corresponding to n = 2,500, 10,000, 40,000, or 160,000
grid cells, respectively. We also consider the effect of observing larger and smaller
numbers of trees within each cell, by conducting simulations at ¢ = 3 or 6 trees
observed per cell. For each combination of grid size (g) and number of trees per cell
(q), 100 simulations are performed. There are K = 8 true forest community types,

with associated probabilities given in the p matrix below where the K = 8 columns
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of p each sum to 1.

Class 1 Class2 Class3 Class4 Classb Class6 Class 7 Class 8
[0.186  0.126 0.049 0.264 0.036 0.212 0.031 0.4037
0.228 0.177 0.086 0.139 0.465 0.016 0.015 0.057
0.016 0.015 0.016 0.026 0.064 0.022 0.016 0.054
0.089 0.016 0.035 0.299 0.022 0.041 0.235 0.021
0.026 0.018 0.015 0.024 0.134 0.016 0.220 0.015
0.019 0.092 0.103 0.016 0.016 0.065 0.045 0.027
0.044 0.015 0.015 0.016 0.016 0.016 0.016 0.125
r=10.015 0.195 0.016 0.016 0.111 0.021 0.019 0.062

0.028 0.133 0.199 0.059 0.040 0.109 0.049 0.018

0.036 0.015 0.025 0.015 0.016 0.360 0.025 0.021

0.017 0.017 0.016 0.046 0.015 0.057 0.026 0.021

0.039 0.016 0.017 0.030 0.015 0.017 0.016 0.015

0.223 0.094 0.015 0.015 0.016 0.016 0.016 0.016

0.016 0.016 0.374 0.016 0.018 0.016 0.016 0.027
| 0.017 0.054 0.017 0.018 0.016 0.019 0.257 0.117

The simulated vectors of forest community types z have density

p(zln) =exp {n'T(2) —&(n)},

where 7 = [—0.060, —0.055, —0.039, —0.037, —0.024, —0.057, —0.004, 1.2] and T'(z) is
defined as in (2.2). That is, the spatial correlation parameter nx = 1.2. Given the
forest community types Z = z, the tree count vectors Y; are independent multinomials
with sample sizes ¢ = 3 or ¢ = 6 trees at each grid cell. Since the regularized likelihood
is invariant to permutations of the mixture categories, we use the permutation of
categories that minimizes the mean squared errors (MSE),

MSE = > " (i — poni)*/ (MK,

k=1 m=1
for each simulation when assessing the estimation error. The MSE for the pu matrix are

reported in Table 2.6 for the stochastic modified EM algorithm described in Algorithm
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1 (“Modified EM”), in comparison to the spatially independent model fit via the
EM algorithm (“Independent EM”), the ordinary stochastic gradient as described in
Younes [1989] (“Ordinary SG”), and a version of stochastic gradient with differently
scaled stepsizes for the n and p parameter (“Rescaled SG”). Implementation details

for ordinary and rescaled stochastic gradient are given in Section A.2.3 of Appendix A.

Table 2.6: Simulation mean squared error (MSE) for the species probability parameter
matrix p using different algorithms for ¢ = 3,6 simulated trees per grid cell and for

different numbers of grid cells n.

Method Trees per cell n =502 n=1002 n=200®> n =400?

Modified EM 2e-04 4e-05 1e-05 2e-06
5e-05 le-05 3e-06 7e-07

Independent EM 4e-04 8e-05 2e-05 6e-06
2e-04 4e-05 2e-05 8e-07

Rescaled SG

Ordinary SG

<
I
w

7e-04 5e-04 4e-04 oe-04
4e-04 4e-04 4e-04 3e-04
0.003 0.003 0.003 0.003
0.002 0.002 0.002 0.002

PN
A
S Fo Ut Fo NIt o

Table 2.6 suggests that the modified EM algorithm performs best at every set-
ting, followed by independent EM. When only ¢ = 3 trees are included in each cell, the
MSESs for the p parameter from the spatially independent model are over twice that of
the spatially correlated. When ¢ = 6 trees are included at each cell, the performance
of the spatially correlated and independent models are more similar, although the
spatially correlated model still always performs better than the spatially independent
model. For both models, the MSE at each grid size is, as expected, lower when ¢ = 6
trees are included than when ¢ = 3 trees are included. For both the spatially corre-
lated and independent models, the parameter estimates f1 appear to be converging to
the truth at about the rate of \/n. The convergence occurs in spite of the fact that

the likelihood is multimodal, while the fitting algorithms were randomly initialized.
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This suggests that the estimation procedure is robust to the choice of initialization.
Interestingly, the rescaled stochastic gradient performs better than ordinary stochastic

gradient, but still performs worse than the independent EM algorithm.

Table 2.7: Simulation bias, variance, and mean squared error (MSE) for the spatial
correlation parameter nx using different algorithms for ¢ = 3,6 simulated trees per

grid cell and for different numbers of grid cells n.

n=>502 n=502 n=1002 n=1002 n=2002 n=2002 n=400> n=4002
q=3 q==6 q=3 q=06 q=3 q=06 q=3 q==6

Modified EM Bias -0.002 -0.009 -0.002 -0.002 -0.001 -1e-05 -0.002 -6e-04
Variance 9e-04  6e-04  2e-04 le-04 4e-05 3e-05 8e-06 7e-06
MSE 9e-04  Te-04  2e-04 le-04 4e-05 3e-05 1le-05 7e-06

Rescaled SG  Bias -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02
Variance 0.002 0.001 5e-04 4e-04 2e-04 3e-04 2e-04 3e-04
MSE 0.003  0.002  0.001 8e-04 Te-04 6e-04 6e-04 6e-04

Ordinary SG  Bias -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
Variance 0.005  0.006  0.005 0.006 0.005 0.007 0.005 0.005
MSE 0.04 0.03 0.04 0.03 0.05 0.03 0.05 0.03

Method Error

The spatially independent model does not include the spatial correlation param-
eter nk, so that Table 2.7 compares the bias, variance, and mean squared errors for
the spatial correlation parameter nx only for the stochastic modified EM, ordinary
stochastic gradient, and rescaled stochastic gradient algorithms. Again, the stochastic
modified EM algorithm performs better than either rescaled stochastic gradient and
ordinary stochastic gradient. This difference is particularly pronounced for the larger
grid sizes. For g = 400 and ¢ = 6, the MSE for the stochastic modified EM algo-
rithm is approximately 100 times smaller than the MSE for the rescaled stochastic
gradient algorithm. As can be seen from Table 2.7, the component of MSE due to
bias for the stochastic modified EM algorithm is very small relative to the component
of MSE due to variance. Additionally, the MSE decreases monotonically as the grid
size increases, as well as when more trees are observed within each cell. This suggests

that our algorithm accurately recovers the spatial correlation parameter in the Potts
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Since the spatially independent model does not include the spatial correlation
parameter 7k, the estimates for 7, when k£ < K (Table 2.8) for the independence
model are expected to be biased relative to the true data generating 7, parameters,
so that comparisons between the correlated and uncorrelated model estimates are less
meaningful for these parameters. The stochastic modified EM algorithm performs
best out of all the methods for every combination of grid size and number of trees per

grid cell.

Table 2.8: Simulation mean squared error (MSE) for the 7, parameters when k& < K
using different algorithms for ¢ = 3,6 simulated trees per grid cell and for different

numbers of grid cells n.

Method Trees per cell n =502 n=100> n=200®> n =400?
Modified EM q=3 0.0031  0.00082  0.00017  5.9e-05
q=206 0.0031  0.00053  0.00011  2.6e-05
Independent EM ¢ =3 0.24 0.066 0.041 0.03
q=20 0.082 0.041 0.027 0.026
Rescaled SG q=3 0.0099  0.0083 0.0089 0.0085
q=206 0.044 0.043 0.041 0.035
Ordinary SG q=3 0.62 0.66 0.69 0.61
q—6 1 1 1.2 11

Finally, in our simulation study, the minimum number of trees in a dataset is
7,500, while in the PLS case study, over 300,000 trees were observed. Thus, the “prior
sample sizes” of trees from each forest community type are much smaller than the
observed sample size, and we do not expect the prior penalties to substantially bias the
estimation procedure. The simulation study results bear this out. Additionally, the n

parameters are estimated in simulation with very little bias due to the regularization.
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Chapter 3

Control Variates and Rao-Blackwellization

for Deterministic Sweep Markov Chains

3.1 Introduction

This chapter is based on joint work with Jun Zhu and Murray Clayton, and a
preprint of an earlier version appears in Berg et al. [2019a].

Markov chain Monte Carlo (MCMC) is a widely used technique for drawing sam-
ples from intractable probability distributions. In statistics, MCMC is now a standard
tool in Bayesian analysis for sampling from complicated posterior distributions. The
goal of MCMC is usually to approximate quantities such as [ m(dz)g(x), where 7 is an
intractable probability measure, and g : X — R? is a m-integrable function mapping a
state space X to R? for some integer d > 1. In MCMC, a Markov chain Xy, X1, X, ...
with a stationary probability measure 7 is simulated for some finite number of itera-

tions M, and [ m(dx)g(z) is then estimated by the empirical average

M-1

Su/M =M"Y" g(Xy). (3.1)

Under suitable conditions, a central limit theorem can be shown for the estimator
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Sy /M stating that

MY? {SM/M - / W(dx)g(x)} 4 N(0,%) (3.2)

as M — oo, where % denotes convergence in distribution [Meyn and Tweedie, 2009).
In this sense, Sy, /M is asymptotically unbiased, and the MCMC error asymptotically
comes entirely from the asymptotic variance . Thus, one sensible measure of the
efficiency of an MCMC estimator is the asymptotic variance ¥, which we will use in
the remainder.

A variety of techniques exist for reducing the asymptotic variance ¥ in (3.2) for
MCMC simulations, including conditioning, control variates, and antithetic sampling
see, e.g., Liu, 2008, Robert and Casella, 2004]. We focus on control variate approaches
here, although we also make connections to conditioning based approaches. In control
variate approaches, mean zero random variables are added to each term of (3.1) in such
a way that the variance of the sum is reduced. In approaches based on conditioning, g
in (3.1) is replaced with the conditional expectation with respect to 7 of g given some
intermediate quantity, with the hope that the resulting average has a reduced variance
relative to (3.1). This procedure bears some resemblance to the classical Rao-Blackwell
approach of reducing the variance of an estimator through conditioning [Rao, 1945,
Blackwell, 1947], and thus the term Rao-Blackwellization is commonly used to describe
techniques in which an MCMC average of a conditional expectation is taken in order
to reduce the asymptotic variance Y. However, in MCMC, unlike in classical Monte
Carlo, independence does not hold and a naive conditioning approach may increase
the asymptotic variance [Geyer, 1995].

The MCMC literature contains a variety of variance reduction results, espe-
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cially for reversible Markov chains. For example, Casella and Robert [1996] provide
variance reduction results for Markov chains resulting from the Metropolis-Hastings
algorithm. A conditioning approach is used in McKeague and Wefelmeyer [2000] to ob-
tain a variance reduction result for reversible Markov chains. In Meyn [2008], control
variate methods are discussed for time-homogeneous Markov chains in the context of
network models. In Douc and Robert [2011], a Rao-Blackwellization method is stud-
ied for Markov chains based on Metropolis-Hastings algorithms. In Dellaportas and
Kontoyiannis [2012], a control variate method is given for reducing the variance of
estimates based on reversible Markov chains. In Brosse et al. [2018], a control variate
scheme is used to obtain variance reductions for certain Markov chains that can be
related through a limiting process to a Langevin diffusion.

Our work here adds to the prior literature in several ways. First, determinis-
tic sweep sampling is commonly used and more straightforward to implement than
random sweep sampling, to which previous methodology applies. Thus, our pro-
posed control variate methodology for deterministic sweep Markov chains lessens the
gap between Markov chain theory and practice. As an example, our control variate
methodology is applicable to deterministic sweep Gibbs samplers, whereas the con-
trol variate estimator for reversible Markov chains in Dellaportas and Kontoyiannis
[2012] is applicable to random sweep Gibbs samplers but not to deterministic sweep
Gibbs samplers. While we obtain several useful results for deterministic sweep Gibbs
samplers, where the component transition kernels are reversible, our results also apply
more generally and can be used to construct control variate estimates for deterministic
sweep Markov chains composed of non-reversible Markov kernels.

Second, we propose a Rao-Blackwellization estimator for deterministic sweep
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Gibbs sampling with variance reduction guarantees in broader settings than existing
Rao-Blackwellization estimators. Our Rao-Blackwellization estimator in Corollary 3.2
applies to Gibbs samplers with K > 2 components. The Rao-Blackwellization estima-
tor in Liu et al. [1994] only comes with theoretical guarantees for Gibbs samplers with
K = 2 components. Liu et al. [1994] also require the integrand g to satisfy a relatively
strong strong dependence condition which we do not require. Rao-Blackwellization
for Gibbs sampling is commonly applied in practice, but theoretical justification for
this approach had previously been lacking. For example, Goodfellow et al. [2013]
use a Rao-Blackwellization scheme to improve the efficiency of a stochastic gradient
algorithm involving Gibbs sampling, but justify their approach using the classical Rao-
Blackwell theorem for independent data. Our result in Corollary 3.2 provides a more
rigorous foundation for Rao-Blackwellization for deterministic sweep Gibbs samplers
by showing that the conditioning leads to a smaller asymptotic variance in the Markov
chain central limit theorem.

Third, for two-component Gibbs samplers, our proposed control variate method-
ology yields provably smaller asymptotic variances than the current state of the art
for control variate and Rao-Blackwellization methods. In this setting, the asymptotic
variances attained by our methodology are guaranteed to be smaller (Theorem 3.3)
than those resulting from the methodology in Dellaportas and Kontoyiannis [2012],
without additional computational cost. Our proposed control variate methodology
also yields smaller asymptotic variances (Proposition 3.2) than the canonical Rao-
Blackwellization estimate proposed in Liu et al. [1994] for the data augmentation
Gibbs sampler setting. Our control variate approach will often be feasible to imple-

ment with negligible additional computational costs whenever the Liu et al. [1994]
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Rao-Blackwellization approach is feasible to implement.
3.2 Notation and Setup

3.2.1 K-Component Samplers and Gibbs Kernels

We consider Markov chains {X;}$°, evolving on a state space (X, 2"), where X
is assumed to be a complete separable metric space, and 2 is the associated Borel
o-algebra. We refer to a function IT : X x 2~ — [0,1] as a probability kernel if
II(-,A) : X — [0,1] is an 2 —measurable function of x for each A € 27, and also
(x,-) : & — |0, 1] defines a probability measure on (X, Z") for each = € X. Given a
probability measure A on (X, 27), we say a probability kernel II(z, A) : X x 2" — [0, 1]
is A-stationary iff A\(A) = [ A(dx)II(x, A) for all A € 2.

We use R to denote the extended real line [—oo, 00] and N = {0, 1,2, ...} refer to
the nonnegative integers. For a function f : X — R? where p > 1 and probability ker-
nel IT: X x 2" — [0,1], we define II°f(z) = f(z), ' f(z) = 1If(z) = [(x,dy) f(y),
and T f(z) = TI(IT*"' f)(z) for ¢ > 1. We also define II*(z, A) = TI'I4(z), where
I4(+) : X — R denotes the indicator function with /4(z) =1 for x € A and I4(x) =0
elsewhere. We define the permutation function o(-) : {1,.., K} — {1,...,K} by
o(k) =k+1for k< K and o(k) =1 for k = K, and we define o'(k) inductively by
ol(k) =k for t =0, and o'(k) = o{c" " (k)} for t > 0.

Deterministic sweep samplers update the Markov chain by applying the kernels
Il in a fixed order. At time 0, the transition operator used to update the state is,

without loss of generality, IT; = IL,0(1), and at time ¢, the transition operator is IT,(y).
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Thus, for an initial probability measure v on (X, 2"), we have
P,(Xo € Ay, ..., X; € Ay)
= /V(dl'o)l_[l(l'o, d.l’l)...Hgt(l)(.Tt,l, dil't)I({iL'l € AZ,VZ})

We also define P} f(z) by P{f(z) = f(z) and P{f(z) = {0 i) - Mpr-10ay [} (2)
for t > 1. We define Pf(z, A) = P{I4(x), so that P} is a composition of multiple kernels
rather than a repeated composition of a single kernel. Random sweep kernels update
the Markov chain via the mixture kernel Q = K~ 3" TI,.

Next, we define the probability kernels used in Gibbs sampling. Define the
identity map YV : (X, 2") — (X, Z"),x — x for v € X. We say a probability kernel
IT: X x 2 — [0,1] is a regular conditional distribution kernel with respect to (¢, ),
where ¥ C 2 is a sub-g-algebra of 2", whenever (1) II(z, A) = E{I(Y € A)|9}
almost everywhere with respect to 7 (a.e. 7), for each A € 27, and (2) for m-a.c.
x, (xz, A) is a probability measure on (X, 2"). It is well-known that when X is a
complete separable metric space and 2" the associated Borel o-algebra, such regular
conditional distributions IT always exist [see, e.g., Durrett, 2010].

For a measurable function h : X — R"™ for some n > 1, we say a probability
kernel IT : X x 2" — [0,1] is a Gibbs kernel with respect to (h, ) if II is a regular
conditional distribution kernel with respect to the o-algebra o(h). Gibbs kernels have
some useful properties. First, any Gibbs kernel Il with respect to (h, ) preserves .

This follows since

/ (d2)TT(z, A) = 7(A) (3.3)
for each A € 2, from the properties of conditional expectation. Additionally, the

idempotence property II{I1f}(z) = ILf(z) holds a.e. 7 for each m-integrable f. Finally,
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for functions f, g which are square-integrable with respect to m, we have
[ wtdn) f@gta) = [ wdoisige)
~ [ wan @) = [ wdg@ns) (3.4)

The equality [7(dz)f(z)Ilg(z) = [n(dz)g(x)ILf(z) is the useful reversibility prop-
erty. Thus from (3.4), we see that Gibbs transition kernels are reversible with respect
to m. However, compositions of reversible probability kernels such as the P} that arise
in deterministic sweep Gibbs sampling will in general not be reversible with respect

to 7.

3.2.2 Control Variates and Rao-Blackwellization

In general, control variate schemes replace the estimator M 1Sy, = M1 Zi\i 61 9(Xy)
with an estimator of the form M~ 3™ "{g(X,) — ¢W,}, where W, are mean zero
random variables, and ¢ is a constant. Since the W; are mean 0, both estima-
tors have the same expected value. If {(X;, W;)}M;! are iid and the covariance of
W, and ¢(X;) is positive, then it is straightforward to check that the variance of
MMM g(X,) — Wy} is minimized for the choice ¢ = var(Wy) " cov(Wo, g(Xo)) >
0. However, when independence does not hold, as in MCMC, then the optimal choice
of ¢ is less straightforward, since it becomes necessary to account for correlations be-
tween terms at different time points ¢. The optimal choice of ¢ in the Markov chain
setting will be an important consideration for the remainder. In the Markov chain
control variate estimators considered here, we consider mean zero control variates of
the basic form W; = f(Xi41) — Hyey f(X:) to ensure that M3 M Hg(X,) — Wi}
is an asymptotically unbiased estimator of [ 7(dx)g(x). Control variates of this ap-

proximate form were suggested in Henderson and Glynn [2002]. Dellaportas and Kon-
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toyiannis [2012] refer to the function f as a “control variate basis function”, and we
adopt this terminology here.

For deterministic sweep chains {X;}72, that use probability kernel II,¢) to ob-
tain Xy, we consider the three estimators (3.5), (3.6), and (3.7) below, in addition to
the empirical estimator (3.1). In (3.6) and (3.7), we use C' € RP*¢ and Cj, € RP*? for

k=1,..., K to refer to fixed p x d matrices:

Rao-Blackwellized: (3.5)
M-1

M'SEP = MY Hpryg(Xy)
t=0

Fixed weight control variate: (3.6)

MISEY = M3 [9() — O {F(Xi) — T £ (X))

Variable weight control variate: (3.7)
M-1

M-Sy = Z [9(Xe) = Coony {f (Xeg1) — Horay £ (X4) }]
t=0

The Rao-Blackwellized estimator (3.5) replaces each ¢g(X;) in (3.1) with the
conditional expectation IL,:(1yg(X}). The estimator (3.5) essentially formalizes the idea
that it ought to be better to replace g(X;;1) in Sy with the conditional expectation of
9(Xi11) given X;. The control variate estimators arise from adding mean 0 terms to the
empirical estimator (3.1). We have M~'STV = M8y — M~ SV CT{f(X;41) —
oey f(Xo)} and M7ESYY = M1Sy — MUY OLy ) {F (X)) = Toey (X))

The variable weight scheme allows the control variate weight at each iteration ¢ to
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vary depending on the probability kernel being used to update the Markov chain at
time t. Because the control variate and Rao-Blackwellization estimators involve the
conditional expectations II; f and Il g, respectively, it is necessary in practice for these
conditional expectations to have a computationally tractable form.

We now provide some further remarks on (3.5)—(3.7). First, the Rao-Blackwellization
estimator (3.5) is closely linked to the control variate estimators (3.6) and (3.7). For
the choices f = g and C = I x4 in (3.6), we have M ~1SEP = M—1SEW — M~ g(Xy) —
g(Xar)}. Under reasonable conditions, the difference M~'{g(X,) — g(Xas)} will be
asymptotically negligible. Furthermore, the fixed weight control variate estimator (3.6)
is a special case of the variable weight control variate estimator (3.7) with the choices
C; =Cy=---=Ckg = C. The fixed weight estimator (3.6) is similar to the control
variate estimator proposed by Dellaportas and Kontoyiannis [2012], except that their
reversible Markov chain kernel () is replaced by the kernel 11,1y currently being used
to update the Markov chain. Note that [ m(dz){f —II;f} =0 for k =1,..., K when
the I, are 7 stationary, and thus the control variate terms in (3.6) and (3.7) are mean
0 with respect to m. The variable weight estimator (3.7) allows a separate weight

matrix Cy(x) to be used for differences involving each transition kernel II.
3.3 Assumptions and Variance Reduction Results

3.3.1 Assumptions

We consider Markov chains {X;}{°, with an arbitrary initial law v on (X, 2")
and time-inhomogeneous transition kernels P, = II,¢(;y. Throughout, we will take 7
to be a probability measure on (X, 2") which we would like to take expectations with

respect to. We say a set C' € 2" is a small set with respect to a probability kernel P
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if there exists an m > 0, and a non-trivial measure v, on (X, 2"), such that
P™(z,B) > vpy(B)

forall z € C, B € 2 [see, e.g., Meyn and Tweedie, 2009].
First, we make the following assumptions on the composition kernels PX* and

the transition kernels I1, ..., [1x.

(A.1) The kernels II; are m-stationary. This holds whenever at least one of (A.la) and

(A.1b) holds:

(A.1a) (Reversibility) The II; are reversible, so that (f,Il,g) = (Ilxf,g) for all

square integrable functions f,g: X — R.

(A.1b) (Gibbs kernels) The Il are Gibbs kernels with respect to (hg, ) for some
set of functions hy : (X, Z") — (R™ %™*), where my > 1 is an integer

denoting the dimension of the range of hy.

(A.2) (¢-irreducibility) There exists a probability measure 1 on (X, .2") such that for
each k =1,...,K and all A € 2" with ¥/(A) > 0, and for all x € X, there exists

a positive integer ¢ = ¢(x, A, k) such that P (z, A) > 0.

(A.3) (Geometric drift) There exist small sets C, € 2~ with respect to P, constants

Ak < 1 and by < oo, and functions Vi, : X — [1,00), such that for k =1, ..., K,

(A.4) (Aperiodicity) The composition kernels P are assumed to be aperiodic.
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Assumption (A.1) ensures that the transition kernels I, preserve the stationary
distribution 7. Assumption (A.2) ensures that 7 is the unique stationary distribu-
tion for the transition kernels PX for k =1, ..., K [see, e.g. Meyn and Tweedie, 2009).
Assumption (A.3) ensures that Markov chains with transition kernel PX are Harris re-
current, so that for any A € 2" with ¢(A) > 0, we have P,(NF_, U2 v { Xt € A}) =1
for all z € A, where P, refers to the Markov chain law with point mass initial distribu-
tion &, and transition kernel PX. Regarding (A.4), we say an irreducible probability
kernel is aperiodic if d = 1 is the largest integer such that there exist sets Dy, ..., Dy sat-
isfying (1) PX(z,D;y1) =1forz € D;,i=1,...,d — 1 and PE(x, D;) =1 for z € Dy,
(2) Y{(UL,D;)¢} = 0, and (3) Dy, ..., Dg are disjoint [see, e.g. Meyn and Tweedie,
2009]. Furthermore, our Lemma B.3 in Appendix A shows that Assumption (A.1b),
when it holds, ensures (A.4) holds also.

Next, we make the following assumptions about the functions ¢ : X — R?

f:X — RP and Vi(z) in (A.3):
(B.1) (Square integrability) [ 7(dz)V2(z) < oc.

(B.2) |aTg(x)] < Vi(x) for all a € R? with ||al|, < 1, where ||z||2 denotes the Euclidean
norm of z. For a univariate function ¢, this is equivalent to assuming that

lg(x)| < Vi(z) for all z.
(B.3) [ m(dz)g(z) = 0.
(BA4) [m(dz)fTf < oo and fTf <ooforall z € X.

Assumptions (A.3), (A.4), (B.1), and (B.2) will be used to ensure certain bounds

on solutions gy to the Poisson equations gy — Pfgy = g — [ m(dx)g(z). Assump-
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tion (B.3) is introduced for notational convenience: it allows us to write, for exam-
ple, statements such as g, — PXgy = ¢ rather than g, — PFg, = g — [ n(dz)g(x).
For a general integrand g, the results to follow will apply to the function g(z) =
g(x) — [ w(dz')g(a’). In addition, (B.4) holds for f = g when (A.1)-(A.4) and (B.1)—
(B.2) hold.

3.3.2 Variance Reduction Results

In the following, we state our main variance reduction results, and defer the
proofs to Appendix B.2.
Proposition 3.1. Under (A.1)-(A.4) and (B.1)-(B.3), there exist functions gy : X —
R? with

ge(r) =Y Plglx) k=1,..,K (3.8)

a.e. . The sums in the definition of gr are absolutely convergent elementwise for
m-a.e. v € X, and [7w(dx)gigr < oo for each k. Additionally, each gi satisfies a

corresponding Poisson-type equation

gk — ko) = 9, a.e. m.

The Poisson equation solutions from Proposition 3.1 can be used to write each
of the sums in the estimators given in (3.1) and (3.5)-(3.7) as the sum of an ap-
proximating martingale, plus a small error term. We may then obtain expressions
for the asymptotic variance of these estimators by applying central limit theorems
for martingales [Gordin, 1969, Hall and Heyde, 1980]. Intuitively, one can verify that
9k — k9o = g by checking that each term in g, matches a term in II; g, except
for the first term g, so that all terms besides g cancel, provided the sums and integrals

can be rearranged as needed. Proposition 3.1 is proved in Appendix B.2.
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We now define

U, = / w(dr){f 7 — (W) (I f)T) (3.9)
V= / 7(dz){ 3% — (U f) (g )} (3.10)

aswell as U = K~ 'S 0 Uy and V = K~ 371 | Vi These quantities arise in the ex-
pressions for the asymptotic variance of the control variate estimators (3.6) and (3.7).
The quantities U, and Vj can be interpreted as a conditional variance and a condi-
tional covariance, respectively. Suppose Xy ~ 7, and that the distribution of X; given
X is ITx(Xo, ). Then Uy, is the conditional matrix of f(X;), and Vj is the conditional
covariance of f(X1) and Gy (X1).

In the remainder, for positive semidefinite matrices A and B, we say A > B if
A — B is positive semidefinite. We say A > B if A — B is positive semidefinite with
at least 1 nonzero eigenvalue. We define < and < similarly. Further, we let AT denote
the pseudoinverse of A. We write N(0,Y) for a d-dimensional multivariate normal
distribution, where we allow the variance ¥ to be positive semidefinite rather than
strictly positive definite.

Theorem 3.1. Assume (A.1)-(A.4) and (B.1)-(B.4). We have
M=28YW 4 N (0, 5¢)

. The vartance ¢ can be written as
K o
o = / m(dr)gg" + K1Y Y / m(dz){g(Peg)” + (Prg)g™} (3.11)
k=1 t=1

K
+ K Z CrmUiCotry — Caiy Vie = Vil Cotry,

k=1

and ¢ s minimized at Co gy = é’a(k), where é’a(k) = U,IW.
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In Theorem 3.1, we establish the convergence result M~Y25YW % N(0, S¢) for
the variable weight control variate estimate in (3.7). The proof of Theorem 3.1 is in
Appendix B.2. In general, the optimal weight expression C’a(k) =U, ,I Vi in Theorem 3.1
appears daunting, since the Vj contain integrals involving the Poisson equation solu-
tions g 1). Corollary 3.1 below establishes a simpler form for the optimal control
variate weight for the fixed weight control variate estimator M~'St" in (3.6), in the
setting of Gibbs sampling.

Corollary 3.1 (Fixed weight control variates). Suppose (A.1), (A.2)-(A.3), and (B.1)-
(B.4) hold. Then for the fized weight scheme with Cy = -+ = Cx = C, we have

K oo
So = [ade)gg + K YY" [ wldo{o(Pig)” + (o))
k=1 t=1
+cTvc -c'v -vtc,
and Y¢ is minimized at C = C, where C' = UTV. If (A.1b) also holds, then we have
the simplified expression V = [ w(dz)fg”.
A detailed proof of Corollary 3.1 is given in Appendix B.2. We outline the
steps to obtain the simplified representation for V' under (A.1b) here. First, we have
S m(de) (e f) (kg ) = [ 7(dx) fTIkGL 4, by the idempotence and reversibility of TI,

under (A.1b). Then, we rearrange and use Proposition 3.1 to obtain
K
V=K"' Z / m(dx){ f gawy — Fkdd 0}
k=1

K
= K'Y [ w(de) f(or — Megow)” = | 7(dz)fg"
z / e — oo /

Corollary 3.1 shows that the formula for the optimal control variate weight sim-
plifies substantially in the Gibbs sampling setting where (A.1b) holds. In general, the

quantity V = K'Y fa30y — (W f)(Mkgow))” depends on the Poisson equation
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solutions gy from Proposition 3.1, whereas under (A.1b), the formula for C no longer
involves the g, () explicitly. In contrast, for general transition kernels or Gibbs sam-
pling without fixed control variate weights, the optimal weights are more complicated
to obtain due to the presence of the Poisson equation solutions gy in V' (V).

We now establish a variance reduction result for the Rao-Blackwellized esti-
mator (3.5), in the setting of deterministic sweep Gibbs sampling. To our knowledge,
this result is new and no prior theoretical results exist for general Rao-Blackwellization
schemes for deterministic sweep Gibbs sampling. We use ¥y to denote the variance of
the ordinary empirical estimate (3.1) with control variate weight C' = 0 in (3.6). We
use X; = YXgp to denote the variance of the Rao-Blackwellized estimate (3.5), which
results from the choices f = g and C = I, in (3.6).

Corollary 3.2 (Rao-Blackwellized Gibbs sampling). Suppose (A.1b), (A.2)-(A.3),
and (B.1)-(B.3) hold, and f = g. We have

— K- Z[/ (dx)gg +Z/ (dx){g(Peg)" + (Prg)g" }

and
S =%y - [ n(do)gg" 12/ (d2) (4g) (Teg)" < 5.

The result follows from collecting terms and simplifying the variance from The-
orem 3.1 with C' = I;y4 and f = g. We again exploit (A.1b) to use the simplified
formula for V from Corollary 3.1. When f = g, then V = [ n(dz)fg" = [ n(dz)gg"
A detailed proof of Corollary 3.2 is given in Appendix B.2.

Corollary 3.2 shows that the asymptotic variance is always smaller for the Rao-

Blackwellized average >; than for the empirical average . Thus, for deterministic
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sweep Gibbs sampling, the apparently naive Rao-Blackwellization strategy of averag-
ing the conditional expectation of the integrand g, with respect to whichever transition

kernel is being used to update X;, leads to an improved asymptotic variance.

3.3.3 Estimating the Optimal Control Variate Weight

In order to implement the control variate estimators (3.6) and (3.7), it is nec-
essary to choose the control variate weights C' and C}, respectively. For the fixed
weight Gibbs sampler, we show that it is possible to estimate the exact optimal con-
trol variate weight. In general settings, we propose estimating an arbitrarily accurate
approximation of the optimal weight. Since C = U'V and C’U(k) = U,IVk, one can
compute estimates of the optimal weights via Markov chain Monte Carlo estimates of
U and V or U, and V.

Before we introduce our weight estimators, we recall the definitions Vi = [ 7(dz){f g0~

(/) (Mkgo(y) "} and V= K1 37,0, Vi For integers B > 0, we define
B
VP = Z/”(d«f) {F(Pwy9)" — (M f) (e Po9)" }
t=0
K
VE=Ky v
k=1

as well as C’f(k) = U,IVkB and CB = U'VB. The quantity V;® can be viewed as
an approximation of Vj resulting from including the first B + 1 terms in the Poisson
equation solution g, (), or equivalently, that drops lag-t autocovariance terms in Vj, for
t > B. From Proposition 3.1, we have the deterministic convergence results Blgrolo VB =
Vi, and Bli_r}r;oVB = V. Thus, C? — C and C’f(k) — ég(k) as B — oo, where C and

Co(x) are optimal weights as defined in Corollary 3.1 and Theorem 3.1.

For convenience in referring to the K subchains of a K-component deterministic
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sweep sampler, we define Z(k) = {i € N:i =k — 1+ nK for some n € N}, so that
Z (k) is the set of integers t such that the transition kernel ITj is used to generate X4
from X;. That is, for t € Z(k) we have Xy 1](Xo, ..., X¢) ~ (X, -). We also define
Z(k,y) = Z(k)n{0,1,...,y}.

We define the estimators

lm=M”§?ﬂ&m—mmﬂ&Mﬂ&m—mmﬂmF (3.12)
@MZATZZg%ﬂﬁ@ﬁﬁ—ﬂﬁﬂﬁﬂﬂ&ﬂ%Jhﬂ&ﬂT (3.13)
vﬁleg?ﬂ&H%4bmﬂ&»§¥uaH» (3.14)
vﬁw=wfzdg%lfﬂXHQ—HML&»i;mXHH» (3.15)
ﬁsz*gpawwf (3.16)

and propose the control variate weight estimators

Cf]Gwibbs — U}\'JVACjibbs (317)
chE=ulvE (3.18)
Clar = Ul uVibhs (3.19)

These estimators are empirical estimators of the corresponding quantities U, U, V7,
etc., based on Markov chain samples of size M. Let EEW’B denote the asymptotic vari-
ance from Theorem 3.3 for the variable weight control variate estimator with weights
C’f(k), for k = 1,..., K. Further, let ZgW’B denote the variance for the fixed weight
control variate estimator with weight CZ, and let ¥ denote the variance for the fixed

weight control variate estimator with the optimal weight C' = UTV. For technical
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reasons, we add an additional assumption. Let v << 7 indicate that the measure v is

absolutely continuous with respect to .
(C.1) (Absolute continuity) v << 7 for the initial measure v for which Xy ~ v

We impose Assumption (C.1) in order to ensure that the generalized inverse
estimates converge properly, that is, U]Tw — UT and (7,1 v — U ,I almost surely. When
the limiting matrices U and Uy are invertible, then Assumption (C.1) is unnecessary

for the conclusions of Theorem 3.2 to hold and can be dropped.

Theorem 3.2. Suppose (A.1)-(A.4), (B.1)-(B.4), and (C.1) hold. Then we have
é‘ﬁ, L3 OB, C‘ﬁk)M % Cﬁk), and

M-—1
M_1/2 Z g(Xt) - (03(1)7M)T{f(Xt+l) — HUt(l)f(Xt)} i} N(O, EgW,B)
t=0

M-1
M2 Z 9(Xe) — (CEV{f(Xip1) — ey f(X0)} <4 N(0, ZgW,B)
=0

Furthermore, suppose Assumptions (A.1b), (A.2)-(A.4), (B.1)-(B.4), and (C.1) hold.
Then C’fjbbs 2 C, and

M-—1
M7V2N" () — (CE)T{f (Xesr) — ey (X)) 5 N(0,55)
t=0

The proof of Theorem 3.2 is in Appendix B.2. Theorem 3.2 shows for general
Markov chains that one can replace the exact truncated control variate weights C?
and Cﬁk) by estimates without affecting the asymptotic variance from Theorem 3.1.
The asymptotic variance will in general be suboptimal for any finite truncation level

B, since CP and C,f will in general differ from the optimal weights C and C’g(k). In
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practice, the choice of B seems to be somewhat challenging, since when B is large
relative to the Monte Carlo sample size M, the estimates C’ﬁ and C’f}k)’M can be
expected to perform badly. However, in the Gibbs sampling setting, where Assump-
tion (A.1b) holds, this difficulty vanishes. Theorem 3.2 shows that for Gibbs sampling,
the estimator C’fjbbs leads to the control variate estimate with the optimal asymptotic

variance in Corollary 3.1.
3.4 Theoretical Comparisons

3.4.1 Comparison to Liu et al. [1994]

We next compare the asymptotic variance for our control variate estimators (3.6)
and (3.7) to the asymptotic variance for the Rao-Blackwellization estimator from Liu
et al. [1994]. The estimator in Liu et al. [1994] applies in the so-called data augmen-
tation Gibbs sampling setting, in which a two-component Gibbs sampler has compo-
nents II; and Ily, and the integrand ¢ satisfies II,g = ¢ a.e. 7 for at least one of the
components k.

We assume the control variate basis function f = g, and we assume g satisfies
(D.1) (Data augmentation) Ilsg = g a.e. 7.
(D.2) (Non-degeneracy) [ m(dx)gg” is a positive definite matrix.

In this setting, the estimator from Liu et al. [1994] is

M-—1
SV /M = MY " hg(X,). (3.20)
t=0

We remark that when f = g and the data augmentation assumption (D.1) holds, then

the asymptotic variance of the variable weight control variate scheme only depends
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on the weight matrix Cs, but not on . Thus, for the purpose of comparison, it is
sufficient to consider the fixed weight control variate estimator (3.6) only.

Denote by ¥, 1, X9, Yrwk, and X the variances obtained by the empirical
estimator (3.1), the Rao-Blackwellized estimator (3.5), the fixed weight control variate
scheme with C' = 21,4, the conditioning estimate in (3.20) due to Liu et al. [1994], and
the fixed weight control variate scheme with the optimal weight C' = C, respectively.
Additionally, define A = [ 7(dz)gg" and B = [ 7(dz)(Il1g)(II;g)*. Then we have the
following result.

Proposition 3.2. Assume K = 2, and that (A.1b), (A.2)-(A.3), (B.1)-(B.3), and
(D.1)~(D.2) hold. Then S5 = Sy, and Sa < Ty < By < Do, with

Yo —Y2=-2B(A-B)'B<0

By Proposition 3.2, we have X5 < ¥y = ¥k and thus the variance from our
fixed weight control variate estimator (3.6) will be no larger than the variance from
the approach of Liu et al. [1994]. When Xy is nonzero, then we have the strict
inequality X~ < Xpwk. In addition, since ¥; < Xy and Xy < Xy, the variance Xy g
will be lower than the variances from both the empirical estimator as well as the Rao-
Blackwellization approach in Corollary 3.2. Thus the optimal asymptotic variance of
the fixed weight scheme is equal to the optimal asymptotic variance for the variable
weight scheme. The proof of Proposition 3.2 is given in Appendix B.2.

In the scalar g case, the only increases in cost of the control variate estimate
relative to the Liu et al. [1994] estimate are incurred in the computation and aggre-

gation of the g(X;) values. We expect these costs will generally be smaller than the
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costs of computing and aggregating the I1;¢(X;), and will often be smaller than the
cost of sampling additional X;. When d > 1, so that g has d components, the control
variate approach incurs an additional cost per iteration of d? operations to estimate
U and V, as well as as a one-time cost of d® to invert U at the end of the simulation.
For large d, one can consider approximate versions of the control variate scheme to
reduce the cost. For example, we might take C' to be a scalar and consider minimizing
the asymptotic mean squared error per coefficient, which is proportional to 173q1.
The optimal scalar choice of C' for this criterion is C' = (17V1)/(17U1), where both
the numerator and denominator can be estimated with an O(d) cost per iteration by

exploiting the outer product structure of U and D.

3.4.2 Comparison to Dellaportas and Kontoyiannis [2012]

We also compare the asymptotic variances resulting from deterministic and ran-
dom sweep Gibbs sampling schemes with K = 2 components. Our control variate
methodology applies to the deterministic sweep version of Gibbs sampling, whereas
Dellaportas and Kontoyiannis [2012] applies only to random sweep Gibbs sampling
schemes. For kernels I1; and Il,, we define the random sweep kernel Q = (I1; +115) /2.

Additionally, we define the function

h=g—C"(f - Qf) (3.21)

Then we have the following result.

Theorem 3.3. Suppose (A.1b)-(A.3) and (B.1)-(B.4) hold, and that the number of
components K = 2.
Write ¥ and YXgrg respectively for the variances from the optimal fized weight

deterministic sweep scheme and the corresponding random sweep scheme with weight
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chosen as in Dellaportas and Kontoyiannis [2012]. Then

where C is the optimal weight for the deterministic sweep scheme, where C is the
optimal weight for the random sweep scheme, and h = g—C7(f —Qf). The inequality
18 strict except when Y rg = 0.

Theorem 3.3 shows it is statistically more efficient to use our fixed weight, de-
terministic sweep control variate scheme rather than the random sweep scheme with
weight as chosen in Dellaportas and Kontoyiannis [2012], for general Gibbs sampling
schemes with K = 2 components, making our methodology useful for practical appli-
cations. For example, two component Gibbs samplers arise in applications in the com-
mon data augmentation Gibbs sampling setting [see, e.g. Robert and Casella, 2004].
Additionally, Markov random field models often contain a bipartite graph structure

which leads to two-component Gibbs sampling schemes.

3.4.3 Connection Between Rao-Blackwellization and Control Variates

We further show that the Rao-Blackwellization estimator (3.5) can be viewed
as an approximate control variate scheme. Suppose the control variate basis function
f = g, and assume for simplicity that the matrices Uy in (3.9) are positive definite.
Then under the assumptions of Theorem 3.1, the optimal control variate weights are
Cory = Uy Vi, where V, = J 7(dx){997 4 — (Mkg)(Mkgory)™}. Now, consider using

the approximation

Jotky = 9+ Uopryg + oy Ilo2yg + ... = g, (3.22)
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within Vj,, where the infinite sum in the Poisson equation solution is truncated after

a single term. Then we are left with

Vi ~ / r(de) (99" — (Meg)(Ieg)"} = U (3.23)

Thus, under the one term approximation of g,), we obtain C’U(k) = I xq for each
k. Similarly, for the fixed weight scheme, we obtain C' = I;.4. But these choices of

weights in (3.6) and (3.7) both lead to the estimator

M-1

MH{g(Xo) = g(Xan)} + M"Y Tpyg(Xy),

=0
which is asymptotically equivalent to the Rao-Blackwellized estimator in (3.5).

An inspection of the estimators (3.14) and (3.15) shows that setting B = 0 and
f = g can be interpreted as invoking the approximation (3.23). In particular, in the
setting where f = g and B = 0, then U, — Uy and ‘A/}CB — Uy almost surely, so
that the estimators from the control variate approach with B = 0 will be identical
to the estimates from the Rao-Blackwellized estimate (3.5). Figure 3.3 in Section 3.5

provides a numerical demonstration of this fact.
3.5 Numerical Examples

In this section, we present two concrete examples to illustrate the theory and
methods developed in Sections 3.2-3.4. Since the setting of Theorem 3.1 is asymptotic,
these examples provide a test of whether or not the asymptotic variance reduction
properties of the control variate schemes materialize at reasonable finite sample sizes.
Additionally, the examples provide some indication of the performance of the control
variate schemes when the optimal control variate weight is estimated from Markov

chain Monte Carlo. The first example, a bivariate normal, is relatively simple, but
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provides valuable insight into the overall performance of the methods. The second
example, an Ising model, is of interest in many fields.

3.5.1 Bivariate Normal

We consider a Gibbs sampling setting where 7 is a standard bivariate normal
distribution with p = [0,0]”, 0 = 03 = 1, and correlation p between the two compo-
nents. We take K = 2 and define Il for £ = 1,2 as the kernels which update states
X; = (X1, Xoy) by setting Xy i1 = Xy and drawing X, 41 ~ N(Xpr, 1 — p?). Tt
can be shown that for & = 1,2, the composition kernels P? satisfy Assumption (A.2)
with the measure ¢ = 7. Additionally, Lemma B.3, combined with (A.1b) and (A.2),
shows that (A.4) also holds. We verify in Lemma B.9 (Appendix A) that Assump-
tion (A.3) also holds for P} and P} with the functions Vi(z) = 2% + ra3 + 1 and
Vo(z) = ra? + 22 + 1 for appropriately chosen r > 0. These V}, satisfy (B.1). Thus,
Theorem 3.1 can be applied to each of the following examples.

Our numerical results for the bivariate normal setting are shown in Figure 3.1.
We compare the simulation mean squared error (MSE) for multiple estimators of
[ w(dz)g(x), for three different integrands g. For each example integrand g, we set
the control variate basis function f = g. For the fixed weight control variate approach,
we compare the two fixed weight control variate weight estimators (3.17) and (3.18).
Empirically, the estimator (3.17) performs better than the estimator (3.18), which
is expected since (3.17) requires the estimation of fewer covariance terms, and also
since the estimator (3.18) estimates the truncated weight C'® rather than the optimal
weight C. We set B = 10. We computed MSE in each setting based on 100 simulated

averages using M = 2000 draws, at each value of p.
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Figure 3.1a shows a data augmented setting, where the integrand g(xy, z2) = s,
so that g only depends x,. Figure 3.1a compares the simulation asymptotic variances
of Syr/M as the bivariate normal correlation coefficient p varies for the empirical (3.1),
Rao-Blackwellization (3.5), fixed weight control variate (3.6), variable weight control
variate (3.7), and LWK (3.20) estimators. We see that the control variate and LWK
estimators outperform the empirical and Rao-Blackwell estimators, with the empirical
estimator performing the worst. The LWK and control variate estimators perform
similarly, although for large |p|, the control variate estimates outperform the LWK
estimates. For p = 0, the LWK estimate is exactly Il g(x1,z2) = 0 for all (z1,x2).
Thus, at p = 0, the finite sample performance of the LWK estimate is better than the
control variate estimate estimates, which accrue some error in finite samples due the
estimation of C. This error vanishes asymptotically with M'/2 normalization.

Figure 3.1b shows results for the integrand g(z,xs) = 2% + 23/3 — 4/3. Since
this g depends on both x; and x5, the approach by Liu et al. [1994] no longer applies.
Figure 3.1b compares the variances of the fixed weight and variable weight control
variate estimators (3.6) and (3.7), as well as the Rao-Blackwellized and empirical
estimators (3.5) and (3.1), as p varies. For this example, the variable weight control
variate estimates outperform the fixed weight estimates. The fixed weight estimates
substantially outperform the empirical and Rao-Blackwellized estimates.

Figure 3.1c shows results for the integrand g(xi,z2) = x; + z3. The control
variate estimates (both fixed-weight and general) attain 0 asymptotic variance, even
though the empirical and Rao-Blackwellization estimates have positive asymptotic
variance. This can be explained as follows. Taking the random sweep kernel ) =

(IT; + 1I1,) /2, we have Qg = (1 + p)g/2, so that g is an eigenfunction of () with
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eigenvalue A = (1 4 p)/2. Therefore, taking ¢ = 1/(1 — A\) and f = g gives g(x) —
{g(r) — Qg(z)} = 0 a.e. . Thus, the optimal random sweep Gibbs sampling scheme
from Theorem 3.3 has an asymptotic variance of 0. From Theorem 3.3, we have that
the optimal fixed weight deterministic sweep control variate scheme must also attain
0 asymptotic variance. Figure 3.1c demonstrates that the control variate estimates
indeed achieve 0 asymptotic variance, as the MSE for the control variate estimates are
nearly exactly 0 except for large p, where finite sample error in estimating C causes the
MSE to be just barely above 0. On the other hand, the empirical and Rao-Blackwell

estimators perform much worse, particularly for larger p.

9(X1.%2)=X2 g%, %0)=X /3413 9(X1.X2)=X14Xp
0.003

? method

« empirical
4 fixed-1
E = fired2

@
mmmmmmm

05 00 05
rho

(a) (b)

Figure 3.1: Mean squared error (MSE) for different p values in a bivariate normal
7 example, with the integrands (a) g(x1,z2) = 2, (b) g(x1,22) = 3 + 23/3 — 4/3,
and (c) g(z1,x9) = 1 + x2. The estimator labels empirical, Rao-Blackwell, fixed-1,
fixed-2, variable, and LWK correspond, respectively, to Equations (3.1), (3.5), (3.6)
with weight from (3.17), (3.6) with weight from (3.18), (3.7) with weight from (3.19),
and (3.20).

3.5.2 Ising Model

Next, we consider a one-parameter Ising model on an n x n square grid of cells.
We take n = 20. The state space is X = {—1, 1}”2, where 2" = 2% is the set of

all subsets of X. The probability density function of the desired stationary measure
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with respect to counting measure on (X, 2") is w(z) = exp{nT'(x) — £(n)}, where the

sufficient statistic T'(z) = > z;xj, and the notation ¢ ~ j indicates that i is a

in~ji<]
neighbor of j. Thus, the contribution from a given 7,7 pair with ¢ ~ j is positive when
r; and z; are equal, and negative otherwise. The term £(n) = log[} .y exp{nT(z)}]
is a log normalizing constant. We write x_; for the values at all sites of x except site
i. Also, we use x' to denote the configuration x with the ith value flipped, so that
(7;)" = —x;, and (2°)_; = x_;.

We consider deterministic sweep Gibbs samplers, as well as deterministic sweeps

composed of Metropolis-type updates. We first define Gibbs sitewise kernels for each

=12, =x_;)exp{nT(z')} Z exp{nT(z*)} Va, 2" € X.

Each TII; is a Gibbs kernel with respect to (h;,w) for the coordinate projection h; :

X — R,x — x_;. Further, we define sitewise Metropolis kernels @); by
Qi(x,2') = I(2' = 2")0.9a;(z) + (2" = 2)[0.1 + 0.9{1 — a;(2)}]

where a;(x) = min{r(z%)/m(x), 1}. Each Metropolis kernel Q; corresponds to propos-
ing to flip the value at the ¢th coordinate with probability 0.9, and then accepting any
flip with probability a;(z). Note that we do not always propose to flip the value at
site 7. It is straightforward to show that the Q;(x,z’) satisfy the reversibility condi-

tion (A.la).
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For each of the Gibbs and Metropolis sitewise update types, we consider two
different types of compositions of the sitewise updates, so that in total, four Markov
chain schemes are considered. First, in the raster sweep, we construct Markov chains
{Xi}82, using the update Il (1) (resp., Qot(1)) at each time step ¢, where the sites are
traversed sequentially proceeding first down each column of the grid, and then across
the columns in order.

We next consider a checkerboard sweep, where we partition the bipartite lattice
into two components W; and W, as in Figure 3.2a, and then update each component
in sequence. To update each component, we construct composition kernels

Hy(x,2') = H IL p (z,2") k=1,2
i¢Wi
for the Gibbs kernels and
Jp(z, ') = H Qi p (r,2)) k=1,2
W
for the Metropolis kernels. Because of the lattice neighborhood structure of the sites,
any ordering of the II; (resp., @;) in the compositions Hj, (resp., Ji) leads to an
equivalent transition kernel, and both composition kernels can be implemented using
independent Bernoulli draws at every site not in Wj. For the checkerboard sweeps,
we construct Markov chains {X;};2, by applying the kernel Hyq (resp., J,)) at each
time t. For example, for the Gibbs-based sampler, H; is used to obtain X; from Xj,
and H, is used to obtain X, from X;. Thus, at each step, all of the cells are updated
in one of the components Wj.
It is straightforward to verify that Hj itself is a Gibbs kernel with respect to

(hg, ), where hy : X — RIWkl 2 — xw, denotes the coordinate projection which ob-
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tains the values in Wp,. All four sweeps are irreducible with respect to the uniform prob-
ability measure on (X, 2"). Additionally, taking C' = X, b = 1, Vi(z) to be the con-
stant function Vi (z) = 2maxyex |T(2)| for k = 1,2, and g(z) = T'(x) — [ w(dz')T(2")
ensures (A.3) holds for chains composed of either the Gibbs and Metropolis updates.
Finally, the aperiodicity condition in Assumption (A.4) holds for the composition
chains PX (where K = n? for the raster sweeps and K = 2 for the checkerboard

sweeps). For both the Gibbs and Metropolis updates, this follows from the fact that
PE(z,{z}) >0, VzxeX

for raster and checkerboard scans with either Gibbs or Metropolis sitewise updates.
For the Gibbs sampler chains, we could alternatively have verified (A.4) by using
Lemma B.3.

For each sweep type, we considered estimators based on 2000 sweeps through
the grid. For the raster sweeps, we used B = 5(400) = 2000, which corresponds to
lags resulting from 5 complete sweeps through the grid. For the checkerboard sweeps,
we used B = 5(2) = 10, which also corresponds to 5 sweeps through the grid.

In Figures 3.2 and 3.3, method="“fixed-1” and “fixed-2” correspond to estimating
C via (3.17) and (3.18), respectively. In Figure 3.2, MSE is computed based on the
empirical average squared error of 100 estimated means, where each estimated mean
used 2000 complete sweeps through the grid. That is, M = 2000(n?) = 800000 for the
raster sweeps, and M = 2000(2) = 4000 for the checkerboard sweeps.

Figure 3.2 shows the MSE for the checkerboard and raster sweeps with Metropo-
lis and Gibbs updates. Figure 3.2b shows the performance of the estimators for

checkerboard sweep. Figure 3.2c shows that for the raster sweep, the variable weight
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control variate estimator performs much worse than the other estimators, likely due
to the fact that n? weights must be estimated for this scheme. Figure 3.2d shows the
MSE for the raster sweep, for the estimators remaining after excluding the variable
weight control variate estimate. In Figure 3.2d, the empirical and Rao-Blackwellized
schemes nearly overlap for both Gibbs and Metropolis schemes. For Gibbs sampling,
the fixed weight estimator based on (3.16) performs best, as expected, but the fixed
weight batch estimator also performs well. For Metropolis sampling, the fixed weight
estimators perform similarly, but the MSE for the batch means estimator is often
smaller than for the fixed weight estimator based on (3.16).

For each value of the Ising model parameter 7, we estimated the true value
of [w(dz)g(x) using a long checkerboard sweep run with 100000 complete sweeps
through the grid, so that M = 100000(2) = 200000. We used the Rao-Blackwellized

estimator to compute the means.
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Figure 3.2: Mean squared error (MSE) for the Ising model simulation example at

different values of 7, for deterministic raster and checkerboard sweeps.

We also examined the effect of the truncation level B on the performance of the
various estimates (Figure 3.3). Our study allowed us to confirm three notable the-
oretical properties of the control variate estimators. First, for Gibbs samplers, the
optimal fixed weight control variate formula based on (3.17) (horizontal line with
smaller dashes) always performed better than the corresponding estimator (3.18), as
expected. For the Gibbs samplers, the approximate estimator (3.18) performed best
near B = 4, where the estimation performances were nearly identical to, but slightly
worse than, the estimates using (3.17). Second, our results for each setting demon-
strate empirically that setting the batch size B = 0 is asymptotically equivalent to

the Rao-Blackwellization approach (3.5) (horizontal line with larger dashes). Third,
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for the Metropolis samplers, using (3.18) with the best-performing B in each setting

leads to a better control variate weight than using the fixed weight estimator (3.17)
(horizontal line with smaller dashes).
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Figure 3.3: Mean squared error (MSE) for the fixed weight control variate method
with checkerboard and raster sweeps, for the Ising model with n = 0.3, based on 100

simulated means at each batch size B, where each simulated mean used M = 2000
draws.
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Chapter 4

Conclusions and Discussion

In Chapter 2, we modeled forest communities on a landscape via a latent Markov
random field model. The spatially correlated model outperformed the spatially in-
dependent model for parameter estimation in a simulation study and for prediction
on the historical Wisconsin PLS dataset. The fitted models were sensible relative
to prior ecological literature, and we provided ecological interpretation of the fitted
models on the PLS dataset. We also proposed a stochastic approximation procedure
for jointly estimating the forest community species compositions and the spatial cor-
relation strength in our latent Markov random field model.

In Forbes et al. [2013], which studied similar a similar model to the one in Chap-
ter 2, the spatial correlation structure includes additional parameters to allow the
interaction strength to depend on the forest types. We achieved adequate results with
a single spatial correlation parameter, and leave the investigation of more sophisticated
spatial correlation structures to future work. It would also be interesting to relate the
forest community classifications to environmental covariates across the PLS survey
area. Finally, while we provide a computationally feasible method in this work, pa-

rameter estimation for noisily observed Markov random fields is still computationally
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challenging. We believe this is a promising direction for future research.

In Chapter 3, we studied control variate methods for deterministic sweep Markov
chains. We proposed control variate estimators with theoretical and practical benefits
relative to existing approaches in the literature. Our proposed methodology should
be particularly useful in applications involving deterministic sweep Gibbs samplers,
where our fixed weight control variate estimator is simple to implement, comes with
rigorous theoretical guarantees, and performs well in practice.

In the future, it will be useful to investigate good choices for the control vari-
ate basis functions in practical settings. In addition, while we consider only a fixed
number of control variate basis functions here, it would be of interest to study high-
dimensional asymptotic settings wherein a control variate basis of suitable functions f
increases in dimension to infinity along with the Markov chain sample size, similar to,
e.g Mijatovi¢ et al. [2018]. A potential “Holy Grail” type goal of this approach would
be to achieve, in more practical settings than currently exist, zero variance, or nearly
zero variance, estimates of integrals with respect to probability distributions. Here,
zero variance estimates should be contrasted with the usual “slow”, v/M-normalized
rate of convergence that occurs in typical Monte Carlo simulations.

We add one note of caution regarding control variates. In the Markov chain set-
ting, control variates reduce variance essentially by post-processing the Markov chain,
leaving the transition kernel of the underlying chain unchanged. Thus, we expect
control variate methods to be applicable primarily to Markov chains with reasonable
convergence to the stationary distribution, so that asymptotic results relating to the
MCMC central limit theorems are believable. Put bluntly, we do not expect control

variates to be able to cure convergence difficulties resulting from an inefficient tran-
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sition kernel, in which case it may take a great deal of time for asymptotic results of
the kind proven in Chapter 3 to take effect. Alternative approaches which directly
modify the transition kernels to improve the convergence behavior of the chain are

thus a useful avenue for further research.
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Appendix A

Appendix to Chapter 2

A.1 Additional Computational Details
A.1.1 Gibbs Sampling Transition Kernel P(z,z’)

In this section, we define the Gibbs sampling kernel FPy(z,2z’) for updating the
label configurations z. Recall that for z € Q? = Q x Q, we have z = (21, z3), where
we hope to draw the label configuration z; according to the conditional distribution
p(z]y,0), and z, according to the marginal distribution p(z|n), so that z corresponds
to a draw from my(z) = p(z1]y, 0)p(z2]0). Both p(z|n) and p(z|y,d) are Markov ran-
dom field densities with the same neighborhood structure. This can be shown by
deriving (via a brief computation) the conditional probabilities p{z(i)|y,z1(—1), 0}

and p{zz(i)|z2(—1),0}. For z € Q, let z(—1) refer to the values at all cells except the
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1th cell. Using the notation p 2 p(yi|zi = k,0), we have

plzali) = K|z —i),0}
(

ol s 18] |
eXp[nK Dt I{zg(i/):K}]Jrzf/;i eXp[Wk/+77K S I{Zg(i’):k/}] )

(k < K)

oxpni Xy Hz2(i)=K}] .
L explire Sir Hza () =K+ 57 explngrtnre S Tz (i) =k}

and

p{zi(i) =k

p

Yy, Zl(_i>v 0}

pik exp[mknic S Tz (i)=k}]
Dik exp[nK D il I{zl(i’):K}]ﬁ-Zg;} Dik! exp[nk/-i-n}( D il i I{z1(i’):k’}]

(k < K);

pik exp[ni Xy, {z1 (i) =K} .
DPiK €Xp [WK >itei Hza ('L/):K}]WLZS;i Py’ €Xp [nk’Jﬂ]K >itei Hza (i/):kl}] ’

(k= K)

\

For z € O2, let z;(i) refer to the value at cell i in the jth label configuration of

z (recall j € {1,2}). We will use z;2(i) € € to denote the configuration for which

z;(1) for i > m

z(i) for i <m
The single sweep Gibbs sampler Py(z,z’) 2 Py1(z1,2)) Py 2(22,2)) is defined in
terms of Gibbs sampling transition kernels Py (-, ) : 2 x Q — [0,1] and Ppa(-,-) :

Q2 x Q — [0,1]. The transition kernels Py ;(z;,2z1/) and Pps(2z2,25) are constructed,

respectively, to have p(z;]y, ) and p(z2|0) as their stationary distributions. They are
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defined in terms of single-cell transition kernels Py (-, -):
P y(zy,2 H Py {212, (i), 212, (i + 1)}

Py y(22,25) H Py {2225 (i), 2025(i + 1)}

In turn, for x, 2" € , the single-cell kernels are defined by

Py (x,2') 2 T{a' (i) = 2(—i)} p{’ (i) ly, x(—i), 0}
Phol,a') 2 IT{a' (i) = 2(—i)} p{a’ (i) |(—i), 6} (A.3)

The conditional probabilities required by Equation A.3 are given in Equations A.1

and A.2.

A.1.2 Implementation Details for Algorithm 1

We choose the stepsize ¢ in Algorithm 1 by finding ¢ so that the behavior of the
algorithm is reasonable: for too large a stepsize, the algorithm may oscillate between
nonsensically large parameter values, while for too small a stepsize, the convergence of
the algorithm is extremely slow. For the PLS data examples, we use ¢ = 0.02/n, where
n is the number of cells in the grid. Another useful trick is the following: rather than
using the initial time ¢ = 1 and stepsize sequence ¢, = 1/t, we use the “time-shifted”
sequence with initial time ¢ = D and ¢, = D/(t + D), for some moderately large
D. This causes the stepsize to decrease much more slowly as the iterations proceed;
effectively, the time shifted sequence uses a larger stepsize by a factor of D, but also
starts at a higher iteration number. Some caution is in order as Younes [1988] shows
that the convergence of Markov chain stochastic optimization may only be guaranteed

for small enough stepsizes, but we did not experience convergence issues in our work.



82

For the PLS model fits, we use 8000 steps and D = 200, so that the shifted time at
the final step is Trina = 8000 + D = 8200.

Additionally, the Gibbs sampling step in Algorithm 1 can be made much faster
for square lattice grids by exploiting the small number of spatial neighbors (< 4)
of each cell. From Equations A.1 and A.2, the single-site conditional probabilities
needed for Gibbs sampling depend only on the neighboring values. The neighboring
grid cells of a given cell can be obtained quickly, and their values used to compute
the necessary conditional probabilities, by using a sparse symmetric adjacency matrix
representation of the lattice structure. In a sparse adjacency matrix representation,
the storage format of the matrix (column-major or row-major) will determine the most
efficient scheme for accessing the neighbors. In a column (row) major sparse matrix
A, it will be fastest to find the ¢th neighbor of site 7 by finding the row index of the
ith nonzero entry in the jth column (row) [see, e.g., software documentation such as

in Guennebaud et al., 2010, for more details].

A.1.3 Path Integration to Evaluate Loglikelihoods

For the spatially correlated models we estimate here, the holdout likelihood in
Equation 2.22 of the main text is difficult to compute. It is technically possible to
compute fhozdout(é) via a Gibbs sampling average with respect to p(z\é) However, the
marginal distribution p(z|d) will tend to put most of its mass on configurations with
very low p(Yiest|2, é), and computing Equation 2.22 by averaging over configurations
obtained from Gibbs sampling of p(z|é) is not efficient. The path integral approach
we now describe is a method to estimate £j,404: that overcomes the high variance of

approaches based on importance sampling [Gelman and Meng, 1998, Neal, 1993].
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In path integration, we aim to compute differences in marginal likelihood between

two parameter settings, ¢, and 6, via integrations of the form

" Olporgonr 00
A(eh 92) = gholdaut(92) - fholdout(el) = / holdout ( )

S (A.4)

where 6(t) = (1 — t)0; + 0.

We estimate the integral in Equation A.4 using stochastic estimates of %.
The derivative of the holdout loglikelihood with respect to nx is %‘;‘t@ = E(Tk|Ytest, 0)—
E(Tk|0). We can approximate this derivative by the estimate T (z1) — Tk (2z2), where
z is an approximate draw from 7my(z) defined in Equation 2.20 in the main text. In
practice, the starting point 6; is frequently chosen so that £pgqg0u:(01) can be easily
computed. In our case, {400 (01) can easily be computed exactly when the spatial
correlation parameter ng for 6, is 0.

We define émd to be the parameter 0 but with correlation parameter g set to 0

(so that the labels are marginally independent under émd)' Then we compute

~ ~

gpen(é) = gpen(éind) + A(Qinda 9) (A5)

~

The difference A(0;,q,0) is computed using the procedure in Algorithm 2.
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Algorithm 2: Path integration procedure

Initialize parameter 6 = émd, configuration z € 2, number of iterations

T

A~ ~

Set A(0;ng,0) =0

Set h =1/T

Set Ay, = hijk;

for t=1 to T do

Draw z' € Q? according to Py(z, -)
/

7 =12

~ ~ ~ ~

A(@md, 49) = A(@Z‘nd, 0) + Ah {TK(Zl) - TK(ZQ)}

n(@)x =n0)x + A

~ ~

Return A(6;,q,0)

By the definition of émd, only ng differs along the émd to 6 path. Additionally,
we note that path integration procedures are sometimes implemented by discretizing
a 0, — 0 path, and then approximating the derivative % at each point based
on many Monte Carlo or Markov Chain Monte Carlo runs. In contrast, here we
use a single draw at each iteration with new parameter values separated by small
increments. The goal of this modification is to avoid the need for a burnin period at
each new parameter value by slowly transitioning (over T iterations) from Bing to 6.

A.2 EM Updates for the Spatially Independent Model, and
Stochastic Gradient Updates

A.2.1 Independent EM

When the labels are spatially independent, it will be convenient to use the vector

w € RE to refer to the marginal probabilities of each label type, so that p(Z; = k|w) =
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wy. We will still use p € .#% to refer to the conditional distribution parameters and
0 to refer to the joint (w,p) parameter. Under spatial independence, the observed
data density is

=1 = m=1

and the observed data loglikelihood is

Zlog (Z Wy, H ,u,y””> :

For our implementation of the EM algorithm for the spatially independent
mixture model, we regularize the w vector via the Dirichlet prior penalty p;(w) =
(v — 1) Zszl log(wg). We regularize the p matrix via the Dirichlet prior penalty
po(p) = (@ — 1) oM log(tamr), which is the same py(p) as was used in Sec-
tion 2.3 for the spatially dependent EM algorithm.

We now write £y, (6) = £(0) + p1(w) + p2(p) for the regularized spatially inde-
pendent loglikelihood.

The conditional distribution of the latent label at cell ¢ given parameter 6 and

tree count vector y; is

wp(yilzi =k, px)
p(zi = klyi, 0) =
Zk/ 1 Wi'P (yZ|Z’L =K 7#’19’)

As in the main article, we may construct the minorizing function Q(6|6,4) = Q1(w|0sa)+
Q2(14|001q) Where

Q1(w|0p1q) = (v — 1) Zlog wy) + Zp(z, = k|ys, 0°%) log(wy,)

n K
=1 k=1
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and
Q2(1t|001a)
M K n K M
=(a—1) Z Z log(tmk) + Z Z Z YmiD(zi = klyi, 0°) log(pmr)
m=1 k=1 n=1 k=1 m=1

It can be shown using the argument in Section A.2.2 that the entries of the

new

maximizers w™" and p"" are given by

wnew _ a—1 + Z?:l p(zz = klym QOld)
k - n
K(a=1)+ Y0, X, plz = Ky, 01)
new a—1+ Z?:l p(zl = k|yl7 HOld)Ymi
Mo =

M(a—1) + Zn]\;[/ﬂ Z?:l p(zi = klyi, 0°4)y i
A.2.2 Jensen’s Inequality Argument

A standard textbook result based on Jensen’s inequality (see, e.g., Shao [2003]
example 1.49) states that the following inequality holds for any two length M proba-

bility vectors x,y with positive entries and Z%Zl Ty = 2%:1 Ym = 1:

Z T 10g(Tm /Ym) > 0 (A.6)

The inequality is strict except when x = y, where equality holds. Now, consider

maximizing
M
>l 10g (1) (A7)
m=1

over u € {u : Z%ﬂ f = 1, ptry, > 0,¥m}, where each h,, is required to be positive
but fozl h,, is not required to be 1. Let H = Zn]\le h,,. Maximizing Equation A.7

over p is equivalent to maximizing

M

S (o) H) log (1) (A8)

m=1
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over y. By the inequality in Equation A.6, we have

> (hm/H)log {(h’;ﬂ} >0 (A.9)

m=1 m

except when p,,, = h,,,/H for each m. Thus, to maximize Equation A.7, we must take

o, = hp/H for each m.

A.2.3 Stochastic Gradient and Rescaled Stochastic Gradient Updates

The forest community conditional densities take the form
M
plyilzi = ko) = [ mi
m=1
= eXp{(f’ZYi — qi&(dk) }

where ¢, € RM is a vector of exponential family natural parameters corresponding
to the mean parameter ;. Since the entries of pp must sum to 1, this exponential
family parameterization is not full-rank.

For the stochastic gradient update, we will take the parameter 87 = [nT, (q’))T]
where ¢ € RM*X has columns ¢y,. It is convenient to perform the gradient updates on
the ¢ space rather than the p space since the ¢ space is unbounded. From standard

results on exponential families, we have

Ologp(yilzi = k, ¢n) _ —
8¢k 7 K2 9

where the relationship between the mean parameters p; and the natural parameters

¢y for exponential families was used [see, e.g., Shao, 2003].
Now, noting p(y|0) = >_,cq P(¥|z,0)p(2|n), we have

Olog{p(yl0)} _

50 %p(dyﬁ)fm@)
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where fg, (2) = 3200, 1(zi = k)(yi — qiben)-

The stochastic gradient procedure follows Algorithm 1, using the update formula

Coclboz) = G ([n] Z) :C[{é‘g—ﬁw&l)—ﬂm)}]
) SG ) ;

(¢ Ho(¢,21)
where the ¢ update is
Ho(@,21)mi = (o = 1)(1 — M pni) + ZI{Zl(i) = k}(Ymi — Gittmi)
i=1

The gradient descent update formula is quite similar to the EM-like update for-
mula in Equation 2.19 of the main text. However, the gradient descent update occurs
on the ¢ (natural parameter) scale, rather than the g (mean parameter) scale, and the
denominator term for the stochastic gradient update is not scaled by the number of
trees in the dataset. When > | ¢; is very large, this may lead to poor behavior since
the order of magnitude of the gradient components with respect to ¢, will increase
with >, ¢;, while the order of magnitude of T'(z;) and T'(z5) depends only on the
number of grid cells (and not on the number of trees observed > | ¢;). In such cases
it may be valuable to rescale the components of the likelihood gradient corresponding
to the 7 and ¢ parameters. In the “rescaled” stochastic gradient algorithm in the

simulation study, we use

(1/m) {258 + T(a1) - T(z)
Grsa(0,2) = Grsa | |7, | 2] =c¢ "l
- <l(¢)] ) [ Hu rsa(@,z1)

where the ¢ update is

(a - 1)(1 - Ml‘l’mk> + Z?:l I{Zl(i) - k}(sz - Qill'mk)

Ha,RSG’(¢7 Zl)mk‘ - M(CY _ 1) I Zn gi
i=1 1

and n is the number of grid cells. The MSE for the rescaled update are smaller than

for the ordinary SG update (Tables 2.6 and 2.7). The improvement seems to result
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from putting the updates for the Markov random field parameter n and the conditional
distribution parameter ¢ on a more similar scale. In this way, the incremental EM
update in Equation 2.15 in the main article can be viewed as a sort of automatic
preconditioning, although in the incremental EM algorithm it is still necessary to

choose a good stepsize ¢ for the n update.
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Appendix B

Appendix to Chapter 3

The proofs of Lemmas B.1-B.9 are in Appendix A. Appendix B.2 contains (in or-
der), the proofs of Theorem 3.1, Corollaries 3.1-3.2, Theorems 3.2-3.3, and Proposi-

tions 3.1-3.2.
B.1 Proofs of Lemmas

In Lemmas B.1-B.3, we show that the length K composition kernels PK are
aperiodic when the Il are Gibbs kernels for k =1, ..., K.

Lemma B.1. Assume (A.1b). Suppose PiIs(x) = Ia(x) a.e. w for somet > 1. Then

Pg(_kI)IA =14 a.e T.

Proof: We have

(La, 1a) = (Pila, Pyla) = (PriyLa, Pila)

<P I, PGS L) (PLLA, PLLL)

= (P, PE LAY (L 1)

where the first and final equalities follow since PiI4 = I4 a.e. m, the second equal-
ity follows from reversibility and idempotence of I, and the inequality follows from

the Cauchy-Schwarz inequality. Jensen’s inequality gives <P;(’k1) Iy, P;(’kl)l a) < (Ia, L),
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which from the preceding implies (P% 14, P I4) = (14, 14). Since (Polf_1 14, P;

1 _
o(k) o(k) (k) IA) -

*)
(I14,14), applying the Cauchy-Schwarz inequality to P;@l) I, and P{I, implies Pﬁ(’kl) Ia(x) =
Pila(x) = I4(z) a.e. 7. O

Lemma B.2 below relates the stationary measure 7 to the irreducibility measure

.
Lemma B.2. Assume (A.1) and (A.2), and suppose Y(A) > 0 for some A € 2", and
PE(x,A) =1 for allx € A. Then n(A) = 1.

Proof of Lemma B.2: Note that for any A € 2,

(A) =S 2 tn(4) =Y 2 / (dz) PE T ()
t=1 t=1
Now, suppose some set A € 2 satisfies ¥(A) > 0 and P/ (z,A) = 1 for all

z € A. Then

+) 2 / 7(dx) 4o PE T4 (2)

= m(A) + / m(dx)1 zc i 27 PE ()
=1

Thus, I4c > o, 27" PE I4(x) = 0 a.e. 7. But from t-irreducibility of P, the infinite
sum is positive for all . This implies I4c = 0 a.e. 7, and thus 7(A) = 1. ]

Now, we finish the proof of aperiodicity.
Lemma B.3. Under (A.1b) and (A.2), the transition kernels PE are aperiodic.

Proof: Consider some arbitrary k from 1,..., K. From Theorem 5.4.4 of Meyn
and Tweedie [2009] and the i-irreducibility of PXK, there exists an integer d and a

collection of sets Dy, ..., D, satisfying
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1. PE(x,D;yq)=1forz € D;, i =0,...,d— 1 (mod d)

2. Y{(UL, D)C} = 0
3. Dy,..., Dy are disjoint

We show that PE is aperiodic by showing that d = 1 is the largest integer such
that 1-3 hold for a collection of sets Dy, ..., Dg. Suppose to the contrary that d > 1 for a
collection of sets Dy, ..., Dy satisfying 1-3. From Lemma B.2, we have 7(UL,D;) = 1.
Thus, PKIp, = Ip, a.e. 7 for each i. Now, K(d — 1) applications of Lemma B.1
imply PKIp, = Ip, a.e. 7 for each i. Additionally, 7(D;) > 0 for at least one i, so
for this i, H = {x € D, : PKIp, = 1} is non-empty. But this is a contradiction, since
PE(x,D;y1) = 1 for all x € H. Thus, any collection of sets Dy, ..., Dy satisfying 1-3
must have d = 1. This proves the result. O
Lemma B.4. Assume (A.1)-(A.4) hold. Suppose llyf = f a.e. w for each k =
L,....K, where f : (X, Z) = (R,Z). Then f is constant a.e. .

Proof: Suppose 11,14 = I4 a.e. «w for each k, for some A € Z". We first show
m(A) = 0 or 1. Define a Markov chain {Y;}{2, by the initial distribution Yy ~ 7
and the transition kernel PX. Then we have I4(Y;) = I4(Yy) almost surely for all ¢.
Now under (A.1)-(A.4), a Law of Large Numbers holds, so that M~ Zi‘igl IA(Y;) %%
[ w(dx)Ia(z). Thus, I4(Yy) = [ w(dz)la(z) almost surely. This implies [ 7(dx)l4(x) =
0 or 1.

Now, let 7 = {A € % : llyly = 14 a.e. w1, Vk}. We show 7 is a o-field. The
empty set ¢ € S and the state space X € 7. Also, for any arbitrary A € 7, we

have m(A) = 0 or m(A) = 1. This implies A € J# for each A € 5. Finally, for
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{A,}5°, with each A, € S, we have (U A,,) = 0 or 1, so that U, A, € 7.
Thus, 7 is a o-field.
We have Il f = f a.e. m by assumption. We now show f is #-measurable. Let
B € % given. Define A = f~!(B). Also, define Ay = (Il f)~*(B) for each k. We have
Io = I4, a.e. 7 for each k since f =TI, f a.e. 7 for each k. Thus A = f~1(B) € .
Since B was arbitrary, f is ¢ measurable.
Finally, we show that f is constant a.e. 7. Without loss of generality, we assume
f > 0. For general f, we may use the standard decomposition of f into positive and
negative components and apply the following reasoning to each component [see, e.g.,
Chapter 1 of Shao, 2003]. Since f is .#’-measurable, we can construct a sequence
{fn}5e, of F-measurable simple functions such that f, 1 f pointwise. Now, let
b= [w(dz)f(x). Then 7({z : f(z) > b}) = T}Lr{:oﬁ({x : fn > b}) =0, where we used
{fn > b} C {fnus1 > b} for each n by monotone convergence of the f,, as well as the
fact that f, are constant a.e. 7 so that [7(dz)f, < b implies f, < b a.e. 7. Thus,

f(x) = b a.e. m. This completes the proof. O

Lemma B.5. Assume (A.1)-(A.4) hold, and suppose (B.4) holds for the function
f: X — RP. Then for any a € RP, we have

a' [Z/W(dx){ffT — (L)L f) } | a=0
k
if and only if a” f = b a.e. T for some constant b.

Proof: Follows easily from Lemma B.4. O]

Lemma B.6. Let U be a symmetric positive semidefinite p X p matriz, and V be a
px d matriz such that a®V = 014 for any vector a with Ua = 0. Then for all p-vectors
a?

UV € argmin o7 {CTUC — CTV — VT C}a

CeRpxd
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Proof: First, we note that when U = 0,x,, then V' = 0 also, so that a’ {CTUC —
CTV —VTC}a = 0 for all a, for any choice of C. In particular, a” {CTUC — CTV —
VTCYa = 0 for all a for C = UTV. Otherwise, since U is symmetric positive semidef-
inite, we may write U = QDQ?T where ) is a p x r matrix with » < p orthonormal
columns, and D is a r x r diagonal matrix with strictly positive diagonal entries. Fur-
ther, for any C' € RP*¢, we may write C = QR + B where R € R™? B € RP*? and
Q"B = 0yxa.

It can be checked that the value of the B component of C' does not affect the
value of a” (CTUC — CTV — VT (C)a, so that minimizers of the form C' = QR exist.

When C' = QR, we have
ct'vc -c'v —vic=x"X -viQD'Q"Vv (B.1)

where X = D'2QTC — D='2Q"V . The second term in (B.1) does not depend on C.
Now, a” X" Xa > 0 for arbitrary C. But Ul = QD~'Q”, so that taking C' = U'V
gives X = D'2QTQD'QTV — D7'2QTV = 0. Thus, a"{CTUC — CTV —VTC}a is
minimized for each a whenever C' = UTV. This completes the proof. O]
In Lemma B.7-B.8, we take K =2 and @ = (II; + II,)/2.
Lemma B.7. Assume (A.1b)-(A.3) and (B.1)-(B.2). Then we have Y o, |Q"g(x)]
is square integrable with respect to w, and Y",° Q'g(x) = >_.° (Pf + P})g(z) a.e. .
Proof: We show the result for scalar g : X — R. The result follows for general
g : X — R? by applying the reasoning below elementwise.

Note Q'g = {(II; +1Iy)/2}tg = S5, 271 (2]) (P} + Pi)g a.e. 7 via idempotence

i=1 i—1
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of the IIj, so that

B Ry Z( } )Pt + 17g(e))
=SS rtsto) + Pigta (U i< (B.2)

< S (1Prg(@)| + | P g(a)))

a.e. m, where the second inequality follows because

2o (i) g () -

which itself is a well-known identity related to the pdf of a negative binomial random
variable.

The Assumptions (A.1b)—(A.3) imply (A.1)-(A.4) hold, and since (B.1)—-(B.2)
also hold, we have Y 7, |Pfg(z)| + |Pig(x)| < oo a.e. m by Proposition 3.1. Thus
> 1Q™g(x)| converges a.e. m, and

S Q) = Jim 30 (Plate) + a2z (i< o

=1 n=1
= Plg(x) + Pyg(=),

a.e. m, where the final equality follows from using Fubini’s Theorem and the identity

Y2 =1 O
Lemma B.8. Assume (A.1b), (A.2)-(A.3), and (B.1)-(B.4) hold. Assume {X;}2,
is defined as in Theorem 3.1. Take Sy as in (3.6) and define Hy = S0 T a(Xy) —
CT{f(X,) — Qf(X,)}. Then M~Y2(Sy — Hy) “30.

Proof of Lemma B.8: We prove the result assuming Xy, ~ 7. When X, ~

v for general v, the result can be shown with a coupling argument as sketched in

Theorem 3.1.
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We prove the result for scalar f,g : X — R and C' = ¢ € R. The extension to

g: X =R f: X = RP, and C € RP*? can be shown by applying the univariate
result elementwise for each of the d elements of M~Y/2(Sy; — Hyy).

For univariate f, g and scalar ¢, we have

[(M-1)/2] [(M—2)/2]
Sy — Hy = Z clly f(Xoe) + Z Iy f(Xor41)
=0 =0
M1

- Z ATl f(Xy) + o f(Xy) }/2.

Now, when ¢ is even, II; f(X;) = II; f(X;11) almost surely, and similarly, IT, f(X;) =

T f(Xi41) almost surely when ¢ is odd. Thus

[(M-1)/2] M-1
Z CHlf th ZC 1f Xt
t=0 t=0
0 M even

CHlf(XMfl)/Q M odd

almost surely, and

[(M—2)/2] M—1
Z CH2f X2t+1 ZCHQf Xt
t=0 t=0
—CHQf(Xo)/2 M odd

—cly f(X0)/2 + cllaf(Xp—1)/2 M even
almost surely. Thus,
M~Y2|Sy — Hyl
< MY2e{|Ta f(Xo) /2 + T f(Xar-1) /2] + Mo f (Xar1)/2[} ©3 0

as M — oo by applying the Strong Law of Large Numbers along the K = 2 subchains

to the function {(II; + ILy) f(z)/2}>. O
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Lemma B.9. Consider the Gibbs kernels 11; and Iy from the bivariate normal Gibbs
sampling example. Then there exists an r > 0 such that Assumption (A.3) holds
for the composition kernels P? and P? with the choices Vi(z) = 22 + rz2 + 1 and
Vo(x) = rad + 23 + 1.

Proof: First, we show that the {X5,}>°, and {Xs,41}72, chains are T-chains,
in the sense of Meyn and Tweedie [2009]. To do this, we show that the composition
kernels P?(x,-) and Pj(z,-) are strong Feller chains. Since the kernels PZ(x,-) are
aperiodic (Lemma B.3) and t-irreducible, this will imply from part (i) of Theorem

6.2.5 in Meyn and Tweedie [2009] that every compact subset of R? is small.

To show that P2(z,-) is strong Feller, we check that
liminf P(z,,, A) > P}(x, A)

for any A € #? and sequence {x,}°°, with z, = (21, T2,) € R? and z,, — z.

Let A € #?*, and suppose {z,}°, is a sequence in R? with z,, — x*. We have

/ P2(a, d2') ()
=B / exp{—(1 — p*) (& — pr1n)?/2} exp{—(1 — p*) (2] — pa)®/2} [ a(a")da’ dir)

where 1’ = (2, 2}), and the constant B = {27(1 — p?)}~! does not depend on x,, or

x'. Now, since x,, — x*, we have in particular that x;, — 7. Thus, by continuity,
lim inf exp{—(1 — p*) " (a — pr1n)*/2} exp{—(1 — p*) "' (z} — p})*/2}
= exp{—(1 — p*) "2 — pa7)*/2} exp{—(1 — p*) (2} — px3)*/2}
Therefore, from Fatou’s Lemma, we have limnianf(xn, A) > P2(x*, A), so P? is

strong Feller. The proof that P# is also strong Feller is similar. Thus, all compact sets

are small for P? and P} from Theorem 6.2.5 in Meyn and Tweedie [2009].
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Now, consider V;(z) = 2? + ra3 + 1 where 0 < r < (1 — p*). Take \; = p* +r.

Then I,V (z) = p?a3 4+ (1 — p?) + ra3 + 1 and

LTI Vi(2) = (p* +rp*)at + (1+p* +7)(1 = p?) +1
<MV + (L + 2 +7) (L= pH) + 1= A — A\

Now, take b = (14 p* +7)(1 — p*) + 1 — Ay and ¢ > 0 such that A\;rc® >
(1+p*+7)(1 = p?)+1—X;. Then we have P2Vy(z) = ILILVi(z) < M Vi(z) + blo()
where C' = [—c¢, ] X [—¢,¢]. Since C' is compact, C' is small, so (A.3) is satisfied for
P}

Similarly, it can be shown that P} also satisfies (A.3). O

In Lemma B.10 below, take ITy, ..., 115 : X x 2" — [0, 1] to be a set of transition
kernels and let {X;}:°, be a Markov chain with initial law v and transition kernel
Ity at time ¢. For positive integers m, define the Markov chain {Y;(m)}fio by Y, =
( Xkt s Xictrmi—1) € X™5 so that each Y; € X™ contains the the X which result
from m sweeps through the K kernels starting from Xy,. Let P be the transition
kernel associated to Y;. From our definition of Y;, the initial law © of the Y; chain is

v(dy) = v(dy) (v, dys) - - - g1 (dymr—1, mIK).

Lemma B.10. Suppose Assumptions (A.1)-(A.4) hold for the kernels PE and T,

k=1,..,K. Then P is 7-stationary for the measure 7 (dyy, .., dym) = 7(dy )Ty (y1, dy2) s (ys, dys) - -
Additionally, P is i-irreducible for the measure ¥(dy) = [ W (dao) g (xo, dy)I (y1, dys) - - - Tk —1 (Ymx
where the integral is taken over xy only. Further, there exist constants X < 1 and

b> 0, a function V : X™ — [1,00), and a P-small set C' such that the drift condi-

tion PV (y) < AV (y) + blx(y) holds. Finally, P is aperiodic. Thus, the strong law of

large numbers holds so that

M-1

lim M) g(Y,) =/ﬁ(dy)g(y)

M—o0
t=0

almost surely for functions g : X™ — R with [ 7(dy)|g(y)| < co.
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Proof of Lemma B.10: The #-stationarity of P follows from the 7-stationarity
of the Iy, k =1, ..., K under Assumption (A.1).

Next, we show that P is ¢-irreducible. Let a set A be given such that @Z;(A) > 0,
and let y* € X™¥ be given. We show there exists an integer ¢ such that Pt(y*, A) > 0.
Since 1/;(14) > 0, using the definition of U yields the existence of constants €y, €; > 0 and
a set B € X such that g (xo, dy )11 (y1, dy2) - - - g1 (Ymr -1, dYmr ) > €o for all xg €
B,y € A, and ¢(B) > ¢;. Now, by the ¢-irreducibility of P£ under Assumption (A.2),
PlK(yx .. B) > 0 for some integer to. Further, observe that P'(y, XK1 x C) =
PE(yic, B) forally € X™K and C' € 2. Thus, Pt (y* A) > PR% (3 . B)ey > 0,
so P is &—irreducible.

We now verify the drift condition. Take A = Mg, b = b, V(y) = Vi (Ymx),
and C = X™E-1 x Ck, with Mg, bk, Vi, and Ck as in Assumption (A.3). Then
PV(y) = PEVic(ymr) < AV Ymi) + bxclow (Ymx) = AV (y) + blc(y). Thus, all
that remains to verify the drift condition is to show that the set C' is P-small.
Since Cf is PE-small by Assumption (A.3), there exists an integer ¢ such that
P (2, A) > v(A) for all z € Ck, A € %, for some non-trivial measure v. Let
v(dy) = [ v(dwo) Uk (w0, dyn )T (y1,dya) - Mg 1 (Y1, AYmrc). Then PH7(y, A) >
7(A) for all y € C, A € 2%, Thus, C is P-small.

Finally, we verify that P is aperiodic. Suppose to the contrary that for some
d > 1 there exist disjoint Dy, ..., Dg € B(X™F) satisfying P(y, D,y) = 1 for y € D;,
and (UL, Dy)°) = 0.

By assumption, P"¥*!(y, D,u) = 1 for y € D;, for each i = 1,...,d. By the
Markov property, there exists a kernel P : X x Z(X™¥) — [0, 1], where P(:, A) :

X — [0,1] is a measurable function for each A € Z(X™K) and P(z,-) is a probability
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measure for each # € X, such that P (y, A) = P(ymx, A) for all y € XK A €
B(X™). Let D; = P(-, Do) ' ({1}) € 27, and let D; = X™K~1 x D;. We have
DinD; = ¢ fori # jand D;ND; = ¢ for i # j. Since P((UL,D;)°) = 0, we
have D; = D, almost everywhere with respect to QZ Thus the D; are an alternative
collection of disjoint sets satisfying P(y, D)) = 1 for y € D; and (U, D;)€) = 0.
But since the D; have the form X™5~1x D;, we have P(y, D;) = PE (ymx, D;) for each
i and thus the D; are a collection of disjoint sets satisfying PE(x, [)G(i)) = 1forz € D;.

Since PE(z,UL,D;) = 1 for z € UL, D;, we have ¢((UL,D;)¢ = 0, so that PE is

periodic. But this is a contradiction, since P§ is aperiodic under Assumption (A.4).
B.2 Proofs of Theorems, Corollaries, and Propositions

Proof of Theorem 3.1:

First, we consider the case when the initial measure v = 7. In this case, the law
of {X;}2, is Py and Xy ~ m. To simplify notation, we will prove the result in the
univariate case where g : X = R, f: X — R, and C} = ¢, € R. In the remainder, for
notational clarity, we will use the conventions II; = Iyt (1), ¢; = Cot(1), and gy = Got(1),

so that
M—1

> 9(X) = e {f(Xu) — TLF(X0)} (B.3)

t=0
-1

Su

S

gt(Xt) - Htf]t+1(Xt) - Ct+1{f(Xt+1) - Htf(Xt)}

I
i\

0(Xo) — gn (Xnr) (B.4)
+ - Jer1(Xeg1) = HeGea (Xy) — o {f (Xogn) — T f(X0) }

t

[
S

Il
o

a.e. P., where we are using the identity g, — II;g;11 = ¢ a.e. m from Proposition 3.1

in the second equality, and rearranging the sum in the third equality.
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The term Uy = Yoo b Gii1 (Xo1) = o1 (Xp) — o { F(Xupr) — L f(X;)} is an
L, martingale (since Xy ~ 7, and the ¢, are square integrable with respect to 7 from
Proposition 3.1). The remainder term §o(Xo) — gar(Xar) will be shown to be small
using the Law of Large Numbers for Markov chains. Thus, we expect the asymptotic
behavior of Sy to be similar to that of Uy, and we will apply a central limit theorem
for martingales to deal with this term.
We now introduce a martingale central limit theorem, Theorem 1, which follows
immediately from Theorem 3.2, Corollary 3.1 of Hall and Heyde [1980]. We use 2 to
denote convergence in probability.

Theorem 1. Let {Syi, Fni,1 < @ < k,,n > 1} be a zero-mean, square integrable
martingale array with differences Yy, = Spi — Spi—1 (Sno :=0). Suppose

1. (conditional Lindeberg) for all € > 0, S5 E{Y2I(|Yyi| > €)|-Fni1} 20

2. (converging conditional variances) S E(Y2A|Fpi1) 2 0
where o? is a constant. Then Sy, = > Yo A Z, where the R.V. Z has characteristic
function exp(—o?t?/2).

Now, for i > 0 we define D; = §;(X;) — I;_1G:(Xi—1) — ci{ f(X;) = L1 f(Xi-1) )y
and take k, = n, % = (X, ..., X;), and S,; = n~Y/? 22:1 D;. From these defi-
nitions, we have #,; C %, ;41 for 1 < i < n. We will verify Conditions 1 and 2 of
Theorem 1 hold for { Sy, Zni, 1 <i < k,,n > 1} defined in this way, following Section
17.4.2 of Meyn and Tweedie [2009]. In order to motivate this approach, we note that
Spn = 12U,

Now, for k = 1,..., K, we define r(i) = k + (i — 1)K. For t > k, we define

my(t) = max{i € N : ri(i) < t}. For checking the conditional Lindeberg condition 1,
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it is enough to show that

my(n)

> B ol (Yaro| > Ol F i1} =0

i=1
as n — oo for each k = 1,..., K. Conditions (A.1)—(A.3) imply that for £k =1, ..., K,
the subchains ( Xy g;—1)72, are Harris recurrent with stationary measure 7. Therefore,

the Law of Large Numbers (Theorem 17.3.2 of Meyn and Tweedie [2009]) holds for

each subchain. Consider an arbitrary k. For i > 1,n > ri(i), we have

E{D? i 1(|1Dr )| > b)|F )1} = h(Xry(i)-1)

ri (i

a.e. P, for some 7-integrable function h? : X — R. Therefore

mg(n)

limsup Z E{Yrirk(i)jﬂynmk(i)‘ > b)|¢92n7rk(i),1}
n i=1

my(n)
= lim sup n! Z E{ng(i)I(‘Dm(i)‘ > n1/2b)|yn,7"k(i)—1}
n i=1
mp(n)
< lim sup n! Z E{Dzk(i)l(|Drk(i)| > b*)|§n,rk(i)_1}
n i=1
my(n)
< K 'imsup{mg(n) — 1)} * Z hi (Xrp(i)-1)

_ g / (dz)hY (z)

a.e. P, for any b* > 0, where the first equality follows from the definition of Y,;,
and the last equality follows from applying the Law of Large numbers to the subchain

{ X @)-1}521. Now, from the properties of conditional expectation, and the dominated

b

convergence theorem, we can find a sequence b; 1 oo for which [ 7(dz)h)’(z) < 5!
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for each j. Thus, we obtain

my(n)

limsup Y E{Y?2, oy I(Yarui| > 0 Fppiy—1} < (GK)™
" i=1

almost surely for each j, so the event

mp(n)

limsup > E{Y2 I (Yaruo| > 0 Fumiy-1} =0
" i=1

my(n)
= ;S limsup Y E{Y?, o I ([Yar| > 0)|[ P} < (GK) ™
" i=1
has probability 1. Repeating this argument for each k£ = 1, ..., K verifies the condi-
tional Lindeberg condition 1.
To verify the variance convergence in condition 2, we use the Law of Large

Numbers on each subchain again to obtain >, E(Y,2|.%,,_1) “5P 62 where

7= K [ o), ) 5o (3) ~ Ty (0) — oy 11(0) — )
Kk::l
= K_l Z [(gg(k;) - Ca(k’)f7 ga(k’) - CU(k)f>
k=1

— (Wkdor) — Coto) e fs ido(ky — ot lif)] (B.5)

The convergence in probability in Condition 2 of Theorem 1 then follows immediately
from the almost sure convergence. Thus by Theorem 1, we have S, % 7 where Z
has characteristic function exp(—a?t?/2).

We now deal with the remainder term go(Xo) — gar(Xar) — cof (Xo) + ear f (X ).
Clearly, M~2§5(Xo) —cof(Xo) 3 0 as M — co. Additionally, from the Law of Large

Numbers applied to each subchain,

M-1

> MG Kerss) - e K)o [ () 3u(o) - (@0 < o0

t=0
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almost surely as M — oo for each k = 1,..,K. Therefore, M~Y2{g1(Xas) +
e (X))} <5 0 also.
Applying Slutsky’s Theorem, we obtain M~/28y, % 7 where Z has character-
istic function exp(—c?t?/2).

IR
Now, we have 02 = K'Y, | By where

Br. = oty — o[> Jotk) — Co).S) — (o) — Cotoyli S Wndowy — o Ilif)
= (Gotk) + Mrdo(r)> Gok) — Ukok)) — 2¢o) ({fs Jor)) — Wi fs Midor)))

+C(27(k)(<f7f>_<nkfaﬂkf>) (k:L""K)'

Note

[M] >

(Gote) + ko) Gok) — HrGowr))

T

I
MV

(Gok), Gok)) — ko (k) ko x))

£
Il

1

[
Mw

(Grs k) — Moy, Lego))

el
Il
—

[
Mx

(O + Wgr, gr — Migoq))

T
I

Mw

(9.9 +22 9, Prg)

1 t=1

b
Il

where the last equality used Proposition 3.1 to simplify gp — IIxgs(x). Thus,

K oo
o’ =K~ ZBk— 9.9) + 2K ) ") (g, Pig)
k=1 t=1
K

+ K Zci(k)«f, )= (e f 1L f)) — 2CU(k)(<f7 ﬁa(k)> — (i f, Hkgo(k)»

k=1

We now extend to the multivariate case by the Cramer-Wold device. Let f :
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X =R g: X 5 RP, C, € R and

M-1
9(X CTf(Xt) + CtTHHtf(Xt)

=0
a € R Define Uy = [w(de){ff" — (Wpf) (i f")} and Vi = [w(de){filu —
(I /) (MkGory) ™} Then we have a” M~1/28y, % 7 where Z is a random variable with
characteristic function exp(—a’ Xcat?/2), with

zc—/ (dx)gg” + 2K~ ZZ/ (dz)g(Peg)”

k=1 t=1

Since this holds for arbitrary a, we have by the Cramer-Wold Theorem that M~/2S,, -%
7, where Z is a random variable with characteristic function exp(—t'¥ct/2).

Finally, we extend from the multivariate case with initial measure 7, to the
multivariate case with initial measure v # 7. In this case, the desired convergence
in distribution can be shown to hold via a coupling argument, as in Roberts and
Rosenthal [2004]. We sketch the proof here. We construct on the same probability
space two Markov chains {X,}°, and {X,}5°,, with initial law v x 7 for (X, Xo).

Then, we update the chains using a joint transition kernel chosen so that

1. each chain is marginally a Markov chain with transition kernel IT; = TL,¢() at

time ¢, and
2. Xy = Xt for all t > tg, for some random ty, almost surely.

The aperiodicity assumption (A.4) and the geometric drift to the petite set C in

Assumption (A.3) ensure such a transition kernel can be constructed.
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Then, M~Y2(Sy — Syr) =3 0, where Sy = SVt g(Xy) — O {f(Xe) —

L £(X,)} and Sy = St g(Xy) — CL L {f(Xig1) — T f(X,)}. Thus, from Slutsky’s
theorem, M~1/25), % 7 where Z has characteristic function exp(—tT¥qt/2).

Now, we show that Y¢ is minimized when Co ) = Ung. First, we show Ua =

01xq implies a”V}, = 0. To see this, note that Uya = 0 implies

/ w(d) T (2, dy)a™ (£ () — Tof () HF () — Tf ()} Ta = 0

so that a”{f(y) — I, f(x)} = 0 a.e. A\, where )\ is the measure on (X?,.%?) defined

by Ae(A x B) = [ w(dx)l(z,dy)I(z € A,y € B). In this case,
a"Vi = /W(dl’)aT{fﬁa(k) — T [Tk g }
= [l x dy)a {(5) = e () (s) ~ o (2)
= 01><d~
Finally, we note that X depends on Cy(x only through the term K ~* (Cg(k) UCoti)—
C';F(k)vk — %TCa(k)). By Lemma B.6, this term is minimized when Cy ) = U,in. This
completes the proof. O

Proof of Corollary 3.1: First, we obtain the simplified expression V =

K" Vi = [w(dx)fgT for V. Under the Gibbs kernel assumption (A.1b),
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K K
V=K1 Z Vi=K! Z / m(d2){ f 9oy — Wef (Mrdog) }
k=1 k=1
K
_ kY / w(de){ £ — T f (57 )}
k=1
K
— K'Y [ wdn)(f3F - £t}
k=1

— K—li/w(dx)fg:r = /w(daz)ng

where the second line rearranged the sum of the fg,u) terms, and the third line
used the equality [ 7(da)yf(Ikgow))” = [ 7(dz)f(Mkdow))” from reversibility and
idempotence of II;. The last line follows from Proposition 3.1.

In general, we have
K
K'Y ' e -vI'c- Vg =c"uc - C'v - Ve,
k=1

and
K o
Xo = /W(dl’)ggT +KTY Z/w(d:c){g(Pkg)T + (Pug)g™}
k=1 t=1
K
+K Z CruyUrCotr) = Coy Vie = Vil Cory-
k=1

N / m(dr)gg" + K1Y Y / m(dz){g(Peg)" + (Prg)g"}

k=1 t=1

+ctve -o'v -vrtc

which is the representation of ¥ given in Corollary 3.1.
Now, we show that Ua = 0 implies a”V = 0, so that we may apply Lemma B.6

to the term CTUC — CTV — VT (C. First, we have that Ua = 0 implies a’Ua = 0,
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so from Lemma B.5, we have Ua = 0 implies a’ f = b a.e. 7. In this case 'V =0
from the same reasoning as in the proof of Theorem 3.1. Thus, Lemma B.6 shows that
CTUC — CTV —VT(C is minimized when C = C, where C' = UTV. Since Z¢ depends
on C only through CTUC — CTV — VT, we have that ¢ is minimized at C' = C.
This completes the proof. n
Proof of Corollary 3.2:
We have
K
S1=%o+ K CliUkCoty — Chiy Vi — Vi Cory
k=1

K
=S+ K'Y U — 2V

k=1

=3 — /W(da:)ggT ~K! Z/W(dx)(ﬂkg)(ﬂkg)T < ¥,

where the first equality used Theorem 3.1, and the second equality used Cy = I;«q4 for

each k =1, ..., K and the fact f = g. The third equality results from applying identity

K" Vi = [n(de) = [7(dx)gg”. The inequality holds since both integrals are

of nonnegative functions, so that the subtracted integrands are nonnegative. O
Proof of Theorem 3.2:

Under the Assumptions in the statement of Theorem 3.2, we show

M-—1
M2 (Cliy o — Cor) {f (X)) — oy f(X2)} 5 0
t=0

M-1

M2 (= O (X)) = Ty f(X2)} 5 0
.

MY (CH™ = OV f(Xesr) = Toey f(X2)} 5 0
t=0

The result then follows from Slutsky’s Theorem and Theorem 3.1.



109

We give the proof for M~1/2 3 M (CGMs — CYTL f(Xp1) — ey f(X3)} 2 0.
The other convergence results follow similarly. Let U = Qo DQJ be an eigendecom-
position of U, so that () € RP*" with r < p columns and D is a diagonal matrix with
positive entries on the diagonal. Let Q; € RP*(®=") be an orthonormal basis for the
orthogonal complement Q7 of @y in R?. Note I, = QoQf +Q1QT From Lemma B.5,
we have QT {f(Xis1) — Ipeq1y f(X:))} # O only finitely many times under (A.1)—(A.3).
Furthermore from Lemma B.5, we have for QT f # ¢ for some vector ¢ only finitely
many times. Note

Proof of Theorem 3.3: First, consider the case where g : X — R and f :
X — R, and C € R, so that Sy, is a sum of scalar terms.

From Lemma B.7, we have )~ |Q"g| is square integrable with respect to .
Thus, h=—-C [+ X2, Qg is square integrable and satisfies the Poisson equation
H—Qﬁ:ha.e. .

It can be then be shown from the same martingale central limit theorem approach
as in Theorem 3.1 that for the random sweep chain, we have M ~1/2S,; — Z where Z
is a random variable with characteristic function exp(SE52/2), with $ES = (h, h) —
(Qﬁ, Qﬁ) denoting the asymptotic variance ©.4¢ for the control variate scheme with

arbitrary C, in distinction to Xgrg which denotes the asymptotic variance with the

optimal C. We first show that X5% = (h,h) + 237 (h,Q'h). We have
& = (hyh) — (Qh, Qh)
= (-C(f+Qf) +9+2) Qg.9-C(f - Qf)
=1

= (h—20Qf+2> Q'g.h) (B.6)
t=1

where the first equality follows from the martingale CLT, and the second inequality
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follows from the identify a® — b* = (a + b)(a — b). Also,

2> (h,Q'h) =2 (h,Q'g - CQ'(f — Qf))

[e.9]

= =203 (hQ'(f = Q) +2>_ (h,Q'g)

= =2C (1, Q) +2CJim (h, Q) +2 f} (. Q')

Now, we define ||f|| = (f, f)*/*. From Lemma 2 in Burkholder and Chow [1961], we
have since () is positive and self-adjoint that there exists an idempotent, self adjoint
operator @ such that tlg&“@r — Q'r|| = 0 for any function r : X — R with (r,r) < oo.
But for such a @, we have QQf = Qf a.e. , since

QRS — QfI < lQQf — Q' fII +1IQ"f — Qfll

<Qf = Q7 I+ 11Q"f — Qfll
and Jim Q- Q' F[|+Q'f ~Qf| = 0. Since QQf = Qf ae. 7, we have ILQf = QF

a.e. mand I,Qf = Qf a.e. w. Thus, from Lemma B.4, Qf is constant a.e. , so that

lim (h, Q' f) = (h,Qf) = 0, since [ n( = 0. Therefore, 237, (h,Q'h) =

t—o00

—2C (h,Qf) +2>°.2, (h,Q"g), so that we may rewrite (B.6) as
B — (h,h) +QZ (h,Q'h)

We now show that X¢ = (h,h) + thl (h,Qh) where Y is the asymptotic

variance in Corollary 3.1 for the fixed weight scheme. First, we observe
> (hQ'g)=> (g.(P{+ Pl)g CZ (9, Q"(f — QF))
t=1 =1
~C (g, Qf) +Clim (9, Q" f) + > {g,(P} + P})g)
t=1

Clg,Qf) + Z g, (P{ + P})g)
=1
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Thus,

[e.e]

hy+ > (h,Q'h) = (h,h) — C(h,Qf) — C{g,Qf) + > (g, (P} + P})g)
t=1

t=1

(9, (P{ + P3)g)

NE

=(g,9) +

—2C<f,g>+202(<faf>_<ka7ka>)

1

which coincides with the asymptotic variance in Corollary 3.1.
The extension to multivariate ¢ : X — R? f : X — R, and C : X —
R%>? follows via the Cramer-Wold device. We have M~Y2S,, — Z where Z has

characteristic function exp(t?$85¢/2) with

nES — / m(dx)hh" +2§ / m(dz)h(Q'h)T

for the random sweep chain and

Yo = / m(dz)hh" + i / m(dz)h(Q'h)T

for the deterministic sweep chain. The expression in Theorem 3.3 for the difference
Y& — Xprs between the optimal variances is obtained by arithmetic. We observe that
Yoo, [w(dz)h(QR)T is positive semidefinite since @ is a positive, self-adjoint oper-
ator and therefore has a positive, self-adjoint square root Q with QQ = Q, so that
[ w(da)h(@h)T = [ x(dr)QH(Qh)T
O
Proof of Proposition 3.1: We first prove the result for univariate g : X — R.
Define gy(z) = > o0y PElg(x), for each k. By Assumption (A.4), the kernels P are

aperiodic. Additionally, from Assumption (A.2), Markov chains resulting from PK
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are irreducible. From the geometric drift condition (A.3), Theorem 15.0.1 of Meyn

and Tweedie [2009] implies

o0

> |PEg(x)| < RVi(x) (B.7)

t=0

for some R <ooandallz € X, for k=1,.... K.

Recall the definition

=> Plglr) k=1..K
We now show that »".° |Pig(z)| is square integrable with respect to 7 for each k.

First, we note that it is sufficient to prove y =, \P,z”{Pcfff(k)gH is square integrable

with respect to w for each m =0, ..., K — 1, since in this case

K-1

Do 1Pg@)l =) 1B {9}

m=0 t=0

Now, we have

Jnle ] e[}

/ (d) PP RV iy} = / m(dx) R*V 2 gy < 00

for each m = 0,..., K — 1. The first inequality follows from Jensen’s inequality, the
second inequality follows from (B.7) and the equality follows because the II; preserve
the stationary probability distribution .

We may then apply Fubini’s theorem for 7 a.e. x to obtain

/ () | P {Z rPfff(k)g\H

00 2
~ [ ntan) ZPL:"ﬂPﬁf(k)gu] <o,
t=0
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Now, from Jensen’s inequality, we have
m m K
Z [P {PH g <D Br{IPA wal}
t=0

so that Y .o |P{PA! (w9} is square integrable with respect to m, for each m =
0., K —1.

Thus, > _,°, |Plg| is square integrable with respect to 7, and also g is square
integrable with respect to .

Now, we verify gp — IIzg,) = g a.e. m for each k. Since II; .7, |P§(k)g| is

square integrable with respect to m, we have from Fubini’s theorem that

ko (k) HkZP k)g—ZHk w9 =)_Plg
t=1

for m a.e. x, so that g, — g,y = g for m a.e. .

Now, for general g : X — R¢ we have |aTg| < V, from Assumption (B.2)
whenever ||a|lz < 1. In particular, taking a to be the vectors e;,i = 1,...,d with
e; having 1 in the ith position and 0 elsewhere, we see from the previous reasoning
that the conclusions of the Proposition still hold. We have g, — II;g,4) = g a.e.
7. Additionally [ 7w(dz){> ;2o |Ptgl} {D 0 |Pigl} < oo, so that the sum Y 2, Plg
converges absolutely, elementwise, for 7w a.e. =z, and each of the d components of
> oo | Plg| are square integrable with respect to . O

Proof of Proposition 3.2: First, we show that the LWK conditioning approach
is, to within an asymptotically negligible term, an instance of the control variate
scheme in (3.6) with C' = 2[;44. Note that Qg = (Ilyg + Ilag)/2 = ¢g/2 + II19/2.
Define Hy = i\igl ILg(X:) = Zt =0 9(Xh) — 2{g(X;) — Qg(X,)}. Then for Sy =

S g(Xy) — 2{g(X;) — Mpeyg(Xy)}, we have from Lemma B.8 that M~1/2(Sy, —
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Hyy) — 0, so that M ~Y/2H,; has the same asymptotic distribution as M ~/25,,. Thus,
Yrwk = 2.

Since g = g a.e. m, we have U = U;/2 = (A — B)/2. We also have V = B,
and the term CTUC —VTC —CTV in the representation of Y in Corollary 3.1 can be
written as CT(A—B)C/2—CTA—ATC. Now, C = U'V = 2(A—B)~' A. Substituting

C = C and C = 21,4 into (B.5) and subtracting yields

Yo — Yy =—24(A—-B)'A— (-2A - 2B)
= 2AT(A-B)'"A+2(A-B)(A—-B)"'A+2B(A—-B)"'Y(A-B)
=—2B(A-B)'B<0,
where the first equality used the symmetry of A and B, and the final inequality used
the fact that A— B is positive semidefinite. When B is positive definite, the inequality

is strict.

Similarly,
Yo—-31=-2(B+A) —-{(A-B)/2—-2A} =—-(A+3B)/2<0

since A is positive definite from Assumption (D.2) and B is positive semidefinite.

Finally, ¥ — ¥y = —(B + 34)/2 < 0. This completes the proof. O
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