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Abstract

This thesis has two main components. The first component is an analysis of the Wis-

consin Public Land Survey (PLS) dataset, with the goal of identifying and mapping

historical forest types. The Wisconsin Public Land Survey database describes histori-

cal forest composition at high spatial resolution, and is of interest in ecological studies

of forest composition in Wisconsin just prior to significant Euro-American settlement.

For such studies, it is useful to identify recurring subpopulations of tree species known

as communities, but standard clustering approaches for subpopulation identification

do not account for dependence between spatially nearby observations. Here, we de-

velop and fit a latent discrete Markov random field model for the purpose of identifying

and classifying historical forest communities based on spatially referenced multivariate

tree species counts across Wisconsin. We show empirically for the actual dataset and

through simulation that our latent Markov random field modeling approach improves

prediction and parameter estimation performance. For model fitting, we introduce

a new stochastic approximation algorithm, which enables computationally efficient

estimation and classification of large amounts of spatial multivariate count data.

The second component of this thesis is a study of control variate methods for

Markov chain Monte Carlo (MCMC) simulations. Control variates are a method used

for reducing the variance of averages over samples taken from Monte Carlo or Markov

chain Monte Carlo simulations. We propose new methodology for the setting of de-

terministic sweep sampling using K ≥ 2 transition kernels. For the widely applicable

deterministic sweep Gibbs sampler, we show that the projection properties of Gibbs
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kernels lead to a statistically efficient and easy to implement control variate estimator,

which has theoretical and practical benefits over competing methodology in the litera-

ture. In particular, for the data augmentation Gibbs sampler, our control variate esti-

mator is guaranteed to achieve a smaller asymptotic variance than a widely used Rao-

Blackwellization approach, typically with negligible increases in computational cost.

Additionally, we provide variance reduction guarantees for a Rao-Blackwellization ap-

proach for more general Gibbs sampling settings than those in existing results. We

conduct a simulation study which demonstrates that the theoretical benefits of our

proposed approaches are realized in practice.
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Chapter 1

Introduction

The Wisconsin Public Land Survey database describes historical forest composition

at high spatial resolution, and is of interest in ecological studies of forest composition

in Wisconsin just prior to significant Euro-American settlement. For such studies, it

is useful to identify recurring subpopulations of tree species known as communities,

but standard clustering approaches for subpopulation identification do not account

for dependence between spatially nearby observations. For example, Figure 1.1 shows

a map of maximum a posteriori (MAP) classifications of forest community types in

Wisconsin based on PLS tree species data, which were generated from a finite mixture

model fit using maximum likelihood under an assumption of spatial independence.

Clearly, the resulting classifications exhibit a high degree of spatial regularity, even

though neither the model fitting process nor the forest community classification process

assumed or incorporated any type of spatial information.

In Chapter 2, we describe a modeling framework which enables the incorporation

of spatial correlation into a finite mixture type model, and we apply our methodol-

ogy in an analysis of the Wisconsin Public Land Survey dataset. Maps similar to
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Figure 1.1 initially led us to consider whether it might be useful to directly include

spatial information in the modeling and classification. We hypothesized that including

spatial correlation in the model could lead to better classification and parameter esti-

mation by allowing the model to share information across nearby grid cells. Chapter 2

is motivated by this consideration, and is based on work already appearing in Berg

et al. [2019b].

In addition to modeling questions, namely, how best to incorporate spatial cor-

relation in a finite mixture model framework, the work in Chapter 2 also involves in-

teresting computational considerations. We give a brief description here. Let `(η|y0)

denote a likelihood function, where y0 corresponds to observed data, and η ∈ Rp is

a parameter to be estimated. In many cases, including in Chapter 2, the gradient of

the likelihood function involves an integral with respect to a probability density. A

familiar example is the case of a canonical exponential family model. In this case,

`(η|y0) = p(y0|η) = exp{ηTT (y0)− ξ(η)} for a sufficient statistic T (·) and normalizing

constant ξ(η), and we have

∂`

∂η
= T (y0)− E{T (y)|η} (1.1)

where E{T (y)|η} denotes the expected value of T with respect to p(y|η) [see, e.g.

Shao, 2003] . The expectation E{T (y)|η} can sometimes be computed analytically.

However, in many Markov random field models, including the one in Chapter 2, the

only practical way to obtain E{T (y)|η} is to estimate it via a Markov chain Monte

Carlo (MCMC) average [see, e.g., Younes, 1988]. In these cases, we construct an
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Figure 1.1: Model fitting results from a finite mixture model with 16 forest commu-

nities, fit using maximum likelihood under a spatial independence assumption. The

four most common tree species within each forest community type are listed. A key

to the species abbreviations is given in Table 2.2.
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estimator

̂E{T (y)|η} = M−1

M−1∑
t=0

T (yt) (1.2)

where y0, y1, y2, ... are consecutive draws from a Markov chain with invariant distribu-

tion p(y|η). In a similar way, in Chapter 2 we are led to construct an optimization

algorithm which involves MCMC estimates of the gradient, in place of the true, in-

tractable gradient. The convergence properties of such algorithms are discussed in,

e.g., Kushner and Yin [1997]. Finally, we note that performance measures for these

models, even for simple metrics such as holdout likelihoods, often apparently require

thoughtfully designed MCMC simulations. We negotiate these issues in Chapter 2.

Chapter 3 of this thesis relates to MCMC averages such as in (1.2). Our goal

in Chapter 3, drawing motivation from MCMC stochastic approximation algorithms

of the type used in Chapter 2, is to develop methodology to improve the efficiency

of MCMC simulations. Bayesian statistical analyses often utilize MCMC to compute

quantities such as posterior means and credible intervals, and thus MCMC for Bayesian

statistics is a clear application area for the methods in Chapter 3. However, the

methodology in Chapter 3 is applicable to MCMC simulations regardless of whether a

Bayesian posterior distribution is involved, so in Chapter 3 we typically do not make

reference to posterior distributions and other quantities specific to Bayesian statistics.

In Chapter 3, we propose new control variate methodology, with accompanying

theoretical guarantees, for deterministic sweep Markov chain sampling. Control vari-

ates are a commonly used technique for reducing the variance of ordinary independent

Monte Carlo averages as well as MCMC averages [see, e.g. Liu, 2008]. We preface the

rigorous discussion of control variates in Chapter 3 with an informal overview. The
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idea of control variates is to replace an average

M−1

M−1∑
t=0

Xt, (1.3)

where Xt are simulated draws from a Markov chain with stationary distribution π,

with a new average of the form

M−1

M−1∑
t=0

(Xt −Wt), (1.4)

where we require the control variates Wt to satisfy lim
M→∞

M−1
∑M−1

t=0 Wt = 0 almost

surely. Under the condition lim
M→∞

M−1
∑M−1

t=0 Wt = 0, the estimators (1.3) and (1.4)

have the same limiting value. If the Wt are suitably chosen, then the variance of (1.4)

will be reduced relative to (1.3). For example, suppose Wt = Xt − µ, where µ is

the expected value of X0 with respect to the stationary measure π, that is, when

X0 ∼ π. Then M−1
∑M−1

t=0 (Xt −Wt) = M−1
∑M−1

t=0 µ = µ. In this case, the control

variate average (1.4) is exact for any finite sample size M . It is typically not possible

to construct such effective control variates Wt, but this example shows that suitable

Wt can lead to variance reductions. Chapter 3 deals with the construction of control

variates Wt in the setting of deterministic sweep Markov chains.

While some of the calculations and regularity conditions in Chapter 3 are tech-

nical, the primary conclusions are relatively concrete. For the widely applicable deter-

ministic sweep Gibbs sampler, we show in Chapter 3 that the projection properties of

Gibbs kernels lead to a simple, novel control variate estimator, which has theoretical

and practical benefits over competing methodology in the literature. In particular,

for the data augmentation Gibbs sampler, our control variate estimate is guaranteed

to achieve a smaller asymptotic variance than a widely used alternative approach.
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Additionally, we provide variance reduction guarantees for a Rao-Blackwellization ap-

proach for more general Gibbs sampling settings than those in existing results. We

conduct a simulation study which demonstrates that the theoretical benefits of our

proposed approaches are realized in practice.
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Chapter 2

A Latent Discrete Markov Random Field

Approach to Identifying and Classifying

Historical Forest Communities Based on

Spatial Multivariate Tree Species Counts

2.1 Introduction

This chapter is based on joint work with myself, Jun Zhu, Murray Clayton,

Monika Shea, and David Mladenoff, which is published in Berg et al. [2019b].

In this chapter, we consider analyzing historical tree species composition data

and mapping forest ecological communities of keen interest in a variety of ecological

disciplines, including environmental history and landscape ecology. Sound modeling

and analysis of historical vegetation using novel statistical methodology is useful for

multiple purposes, including to aid ecological restoration efforts by providing reference

landcover information at restoration sites and to assess landscape changes over time

[Schulte et al., 2002, Shea et al., 2014]. If an area is known to have historically

supported a particular vegetation profile, this could indicate that restoration to the

historically supported vegetation type may be more ecologically appropriate [Egan,
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2005].

The historical Public Land Survey (PLS) contains informative data for studies

of past forest composition. The PLS database for the state of Wisconsin is particu-

larly noteworthy for both its spatial extent (approximately 150,000 km2) and its high

resolution (survey points at roughly half mile intervals across the entire state). The

survey was initially conducted to assess land values and facilitate the sale of land,

but the collated and digitized PLS data currently provide the only precise, statewide

record of the natural ecosystems that were present in Wisconsin just prior to major

Euro-American settlement [Schulte and Mladenoff, 2001]. The database is derived

from surveyor notebooks from the original U.S. PLS, conducted across the United

States from the late 1700’s to the early 1900’s. The Wisconsin portion of the survey

was conducted over 1832–1866 [Liu et al., 2011]. Surveyors demarcated the land into

square mile sections, and placed a post as a survey marker at each section corner and

each half-mile point. At each survey point, the protocol required that they record

several environmental characteristics, including the species of two to four “witness”

trees.

Here, we consider the resulting tree species composition data from the Wisconsin

PLS, and aggregate the observed tree species counts within an overlaid grid of cells

for analysis. An illustration of this type of data is shown in Figure 2.1. We also

consider the identification of community subpopulation structure in the PLS relating

to recurring assemblages of tree species, which are described in ecological literature as

forest communities [Barnes et al., 2010]. Community subpopulations are a common

feature of tree species composition data such as in the PLS database. We model for-

est community subpopulations via the classification of each grid cell with the forest
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community type most representative of that cell. Our modeling goal is two-fold. On

the one hand, we would like to use tree species composition data to identify discrete

assemblages of species corresponding to forest communities in the state of Wisconsin

prior to the major environmental disturbances accompanying Euro-American settle-

ment. On the other hand, we would like to classify cells in the survey region with the

forest community type they most likely belong to.

Figure 2.1: Data from a 10-km-by-10-km subregion of the Wisconsin Public Land

Survey dataset. The overlaid grid cells are 1-km-by-1-km. Tree species are recorded

at multiple survey points within each grid cell.

To achieve our goal of accurately modeling and mapping forest community sub-

populations in the PLS survey, we develop an approach wherein forest communities

across the survey region are described by discrete, spatially correlated latent vari-

ables. The observed tree counts are described by community dependent multinomial

distributions. Thus, the observed tree species compositions in the PLS dataset are
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assumed to result from a set of multiple underlying forest community types, which oc-

cur in a spatially correlated fashion across the survey region. Our approach allows us

to describe, indirectly but flexibly, spatial correlation between observations in nearby

grid cells, and also to address unobserved structure due to distinct forest community

subpopulations.

Our analysis of tree species composition in the PLS dataset is unique among

previous literature in that it explicitly accounts both for spatial correlation effects

between nearby observations, as well as for latent forest community structure. Tree

species composition in the PLS was also studied in Paciorek et al. [2016], using, for

example, a latent conditional autoregressive (CAR) model to account for spatial cor-

relation with the goal of providing estimation of tree species composition in the PLS

survey region. While the posterior predictions of forest composition in Paciorek et al.

[2016] capture spatial covariance between the occurrence of related tree species, these

predictions do not explicitly identify or map forest communities. A dissimilarity-based

clustering approach as taken in Schulte et al. [2002] allows forest communities to be

identified and mapped, but this approach does not explicitly model spatial correlation

in the occurrence of forest community types across the study region.

In our work, the tree species composition data come in the form of tree species

count vectors, so that the data in each areal unit are multivariate, with counts of

zero for absent tree species. As such, in contrast to most work in spatial clustering,

our response variable is both multivariate and unordered. We do not constrain the

forest community types to appear in spatially contiguous blocks. We also do not

expect any ordinal relationship between the forest community types. In certain other

common settings, the term “spatial cluster” may refer to a spatially contiguous block
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of areal units where a response variable such as disease risk or rate is unusually high

relative to other areal units. Frequently, the analysis goal in these settings is to identify

“hotspots” of a disease and any associated risk factors [see, e.g., Gangnon and Clayton,

2003, Waller, 2009, Lawson, 2010]. Constraints are also sometimes imposed so that

each disease rate cluster only appears in a single contiguous block of areal units [see,

e.g., Knorr-Held and Raßer, 2004].

We estimate the parameters of our model via maximum likelihood (ML), and

we develop a new Markov chain Monte Carlo (MCMC) stochastic approximation (SA)

method to do this. Our MCMC-SA method is related to but differs from the direct

expectation-maximization (EM) approach [Dempster et al., 1977]. First, instead of

performing the full M-step, we take a gradient step for the Markov random field

parameters, and a modified EM step for the other parameters in the model. Such

EM algorithms with partial updates in the M-step are sometimes termed generalized

EM algorithms [Dempster et al., 1977]. In general, performing the full M-step of the

EM algorithm requires inverting between the mean parameterization and the natural

parameterization of the complete data distribution [see, e.g., Fort and Moulines, 2003].

In the Markov random field setting, performing this inversion is challenging, and it

requires an MCMC sampling step nested within each EM algorithm iteration, as in

Forbes and Fort [2007]. We additionally apply regularization penalties to ensure that

maxima of our objective function do not occur at the boundary of the parameter

space [see, e.g., Städler et al., 2010, Chen, 2017, Hong et al., 2017]. Finally, in our

latent Markov random field model, the spatial dependence between the latent forest

community types makes computing the loglikelihood challenging, and we use a path

integration approach to accurately compute loglikelihoods on holdout data (see, e.g.,



12

Section 6.2 in Neal 1993, or Gelman and Meng 1998).

While MCMC methods may in general be slow, our MCMC-SA method is feasible

even for relatively big data like the PLS dataset due to a computationally efficient

implementation of the sampling. Additionally, in the case study of the PLS dataset, we

achieve significant improvement in prediction performance using our method relative

to an alternative approach that does not account for spatial dependence. A simulation

study further shows that our MCMC-SA method can recover the true parameters

under the correct model specification and outperform some competing methodology.

Though our application in this chapter focuses on identification and classification of

forest communities across space, our methodology can be readily modified for use in

other ecological community identifications or other settings such as medical image

segmentation of tissue types.

The remainder of the chapter is organized as follows. In Section 2.2, we propose

a multinomial model with a latent discrete Markov random field for the PLS dataset.

In Section 2.3, we develop a maximum likelihood approach to estimate the model

parameters and propose a stochastic approximation procedure to compute these es-

timates. In Section 2.4, we apply our model and estimation method to analyze and

interpret the PLS dataset. In Section 2.5, results are presented from a simulation

study. We provide an appendix containing additional technical details (Appendix A).

2.2 Model

Our observed data consist of the counts of each tree species within an overlaid

grid of cells. We assume that each cell has a latent forest community type with an asso-

ciated multinomial probability distribution governing the species composition for each
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type of forest community. We also assume conditional independence between observed

trees given the latent forest community types, which in turn are assumed to follow

a Markov random field. Thus, our model is a mixture of multinomial distributions,

where the types are spatially correlated.

2.2.1 Latent Model

The spatial grid of cells are assumed to be labeled with one of K possible types,

in our case K different forest communities. Corresponding to each grid cell is a spatial

neighborhood of adjacent grid cells. We view our approach as agnostic regarding the

underlying origin of the spatial dependence in the dataset. For example, an influ-

ential environmental covariate may occur in discrete patches across a map, causing

certain forest community types to appear or disappear in these areas. Additionally,

local within- and between-community interactions may cause spatial patterning on the

observed grid. The approach here attempts to mimic and account for the observed

spatial correlation structure rather than to exactly replicate the true data generating

process.

For notation, we refer to random variables with capitals, and realizations in

lowercase. When referring to a probability density for a discrete random vector Z

depending on a parameter vector θ, we use the shorthand p(z|θ) for p(Z = z|θ). For a

vector z, we use zi to denote the ith entry of z. For a matrix A, we use the notation

Aj to denote the jth column of A, and Aij to denote the element in the ith row

and the jth column of A. We denote the set of spatial neighbors of a cell i by the

set N(i) = {i′ : i′ is a neighbor of cell i}, where the neighbors are defined so that

i /∈ N(i). We use the notation i′ ∼ i to indicate that i′ ∈ N(i). Additionally, the
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neighborhoods are assumed to be symmetric, so that if cell i is a neighbor of cell i′,

then cell i′ is a neighbor of cell i.

Let n denote the total number of grid cells and z ∈ Ω = {1, . . . , K}n denote a

vector of n (unobserved) forest community types. The random vector of forest com-

munity types Z is assumed to follow a Potts-type model with a vector of parameters

η ∈ RK :

p(z|η) = exp


n∑
i=1

K−1∑
k=1

ηkI(zi = k) + ηK

n∑
i=1

∑
i′∈N(i)
i′>i

I(zi = zi′)− ξ(η)

 (2.1)

where zi refers to the forest community type for cell i and

ξ(η) =
∑
z′∈Ω

exp


n∑
i=1

K−1∑
k=1

ηkI(z′i = k) + ηK

n∑
i=1

∑
i′∈N(i)
i′>i

I(z′i = z′i′)


is a normalizing constant ensuring that p(z|η) is a probability density [Wu, 1982]. In

(2.1), for k < K, the parameter ηk controls the probability of the kth type relative

to the baseline type K. The spatial correlation parameter ηK controls the strength of

interactions between the types and when ηK = 0, the types are spatially independent

across grid cells.

We define a length K vector T (z) of sufficient statistics with the kth entry

T (z)k =


∑n

i=1 I(zi = k); (k < K)∑n
i=1

∑
i′∈N(i)
i′>i

I(zi = z′i); (k = K)

(2.2)

This allows us to rewrite the model (2.1) more succinctly as

p(z|η) = exp
{
ηTT (z)− ξ(η)

}
,
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which belongs to the exponential family with the natural parameter vector η [Shao,

2003].

For boundary conditions in lattice data models, there are several approaches to

specifying the neighborhood of the cells on the boundary of the lattice. We use the so-

called “free” boundary conditions, where boundary cells simply have fewer neighbors

than internal cells [see, e.g., Comets and Gidas, 1992]. Other approaches attempt

to ensure that each cell has the same number (usually 4, for the square lattice) of

neighbors. For example, in “toroidal” boundary conditions, cells on one side or corner

of the lattice are connected to cells on the opposing side or corner of the lattice.

2.2.2 Data Model

Given the forest community types, we specify our model for the conditional

distribution of the observed tree species counts. For notation, we let the integer

M > 0 denote the number of tree species in the dataset. For the PLS case study, the

M = 33 most common species are used. We denote by Yi the length M vector of

tree counts in cell i, and use Y ∈ ZM×n to denote the matrix of count vectors for the

entire dataset. Thus, Ymi is the count of trees of species m in cell i. We let qi denote

the total number of trees observed within the ith cell. That is, qi =
∑M

m=1 Ymi.

We assume that each of the K forest community types is associated with a

distinct multinomial distribution over the M tree species. Conditional on the latent

type Zi = k, the tree species of individual trees within a grid cell are assumed to

be independent multinomials with sample size 1, so that the count vector Yi follows

a multinomial distribution with sample size qi and species probability parameters

depending on the kth forest community type. Additionally, the species of individual
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trees are assumed to be independent across grid cells and thus, the counts Yi are also

independent across grid cells, both conditional on the latent forest community types.

However, when the spatial correlation parameter ηK 6= 0, the latent types are spatially

correlated, which induces spatial correlation among the tree counts Yi.

We parameterize the species distribution for each forest community type k using

a species probability vector µk ∈M , where M refers to the (open) probability simplex

defined by M = {µ = [µ1, . . . , µM ]T :
∑

m µm = 1;µm > 0,∀m}. We also define the

species probability matrix µ with column vectors µk by µ =
[
µ1 µ2 . . . µK

]
∈

MK . The µmk element of the µ matrix is equal to the probability that a tree in a

grid cell is species m, given that the forest community type of that grid cell is k.

By the conditional independence of tree species between and within grid cells,

the conditional density of the observed tree counts given the forest community types

Z and the species probability matrix µ is

p(y|z,µ) =
n∏
i=1

p(yi|zi,µ) =
n∏
i=1

Ci

M∏
m=1

µymi
m,zi

(2.3)

where µm,zi is the mth entry of column zi of µ, and the factor Ci =
(∏M

m=1 ymi!
)−1

qi!

counts the number of possible ways of assigning species to each tree in the ith grid

cell with the species counts yi.

In summary, our full data generating mechanism comprises two steps:

1. Draw the forest community types Z according to the density in (2.1).

2. Conditioning on the forest community types Z = z from step 1, draw the tree

species counts Y according to the density in (2.3).

DefineR(y, z) ∈ RM×K to be a matrix of statistics with the (m, k)th elementR(y, z)mk =
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i=1 ymiI(zi = k) summarizing the total number of species m trees in the grid cells

that belong to the kth type of forest community. Then, the complete data density for

(Y, Z) is

p(y, z|η,µ) = p(z|η)p(y|z,µ)

= exp

{
ηTT (z)− ξ(η) +

M∑
m=1

K∑
k=1

log(µmk)Rmk(y, z) +
n∑
i=1

log(Ci)

}
, (2.4)

It is sometimes convenient to write the parameter vector η and the parameter

matrix µ using a single vector parameter θ. Conversely, we may also need to obtain

η and µ from the corresponding vector θ. Thus, we define a vectorization operator

~(A) : RM×K → RMK ,µ →
[
µT

1 , . . . ,µ
T
K

]T
for viewing the parameter matrix µ as a

vector. Then, we define θ ∈ RK+MK by θ =
[
ηT ,~(µ)T

]T
. We use Θ to denote the

parameter space for θ, and we use η(θ) ∈ RK and µ(θ) ∈ RM×K to denote the η and µ

associated with θ. When it is clear, we simply write η or µ rather than η(θ) or µ(θ).

2.3 Method

2.3.1 Maximum Regularized Likelihood Estimation

Here, we estimate the parameter θ via maximum likelihood. For the model

described in (2.1) and (2.3), the observed data log-likelihood when Y = y is

`(θ) = log

{∑
z∈Ω

p(y, z|θ)

}
. (2.5)

The consistency of the maximum likelihood estimate, θ̂ = argmaxθ`(θ), is shown in

an increasing domain asymptotics setting, under identifiability assumptions on θ and

when the estimation is constrained to a compact parameter space [Comets and Gidas,

1992].
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The observed data log-likelihood (2.5) may exhibit unwanted behavior, such as

maxima on the boundary of the parameter space, which is common in latent variable

models. Such behavior can occur even in simple settings, such as a mixture of normal

densities with component-specific variances, where it is possible to achieve an arbi-

trarily high likelihood by setting the mean of one of the components to a single data

point, and sending the variance of that component toward 0 [see, e.g., Chen, 2017,

Section 3.2]. In our work, there is apparent convergence of entries of the tree species

probability matrix, µmk, to 0, which seems to occur mostly for the rarer tree species,

while there is no observed convergence of components of the parameters associated

with the forest community types, η, to the boundary of RK .

To guarantee the convergence of our estimation procedures to points within the

parameter space Θ, we impose weakly informative prior penalties on the observed data

log-likelihood (2.5) [see, e.g., Städler et al., 2010, Chen, 2017, Hong et al., 2017]. In

particular, Kushner and Yin [1997] added “soft penalties” to ensure that the objective

function is well-behaved and the iterates from a stochastic approximation procedure

remain bounded, which we use here to optimize a regularized log-likelihood function:

`pen(θ) = `(θ) + ρ1(η) + ρ2(µ), (2.6)

where ρ1(η) and ρ2(µ) are penalty functions.

For each component of η, we apply a Logistic(0, σ) prior density with σ > 0.

That is, ρ1(η) =
∑K

k=1 log fσ(ηk), where for k = 1, . . . , K,

fσ(ηk) = σ−1 [exp {ηk/(2σ)}+ exp {−ηk/(2σ)}]−2 . (2.7)

In the PLS case study and the simulation studies, we use σ = 1.
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For each column of µ, we put a Dirichlet(α1M) prior with α > 1, where 1M is a

vector of M 1’s, so that

ρ2(µ) = (α− 1)
K∑
k=1

M∑
m=1

log(µmk). (2.8)

For an integer α > 1, ρ2(µ) can be viewed as adding to the dataset some pseudo-data

corresponding to α− 1 grid cells for each forest community type, in which 1 tree from

each of the M species is observed. We use α = 2 as the regularization parameter.

2.3.2 Modified EM Algorithm

To optimize the penalized likelihood in (2.6), we derive a modified EM algorithm.

The computations required by both the η and µ updates involve expectations over all

possibleKn configurations of the forest community types. When the spatial correlation

parameter ηK 6= 0, we approximate the exact updates by a stochastic procedure, which

we describe in Section 2.3.3. When the spatial correlation parameter ηK = 0, it is

possible to compute the expectations exactly, and we derive the EM updates for the

spatially independent model in Section A.2.1 of A.

Since the forest community types are unobserved, the problem of estimating

the parameters θ =
[
ηT ,~(µ)T

]T
falls naturally into the missing data framework and

the expectation-maximization (EM) algorithm is a possible solution [Dempster et al.,

1977]. In each iteration of our modified EM algorithm, a surrogate function is con-
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structed in the E-step, based on the current parameter value θcur:

Q(θ|θcur) = ρ1(η) + ρ2(µ) +
∑
z∈Ω

p(z|y, θcur) log {p(z,y|θ)} (2.9)

=

[
ρ1(η) +

∑
z∈Ω

p(z|y, θcur) log{p(z|η)}

]

+

[
ρ2(µ) +

∑
z∈Ω

p(z|y, θcur) log{p(y|z,µ)}

]
≡ Q1(η|θcur) +Q2(µ|θcur).

In the M-step, the parameter value θnew for the next iteration is obtained by maximiz-

ing the Q-function over θ . This process is repeated iteratively by setting θcur = θnew

and then maximizing the new Q-function again. Under suitable conditions, any limit

point of such an EM algorithm is guaranteed to be a stationary point of the log-

likelihood [Wu, 1983].

The surrogate Q-function (2.9) takes an average over the complete data loglike-

lihood log{p(z,y|θ)} with respect to the conditional distribution p(z|y, θcur) of the

types, given the observed data y and evaluated at θcur, whereas the penalty func-

tions ρ1(η) and ρ2(µ) remain unchanged. The Q-function (2.9) can also be shown to

minorize the regularized loglikelihood (2.6), in the sense that

`pen(θ)− `pen(θcur) > Q(θ|θcur)−Q(θcur|θcur).

Thus, increasing the value of the Q-function guarantees an even greater increase in the

value of the regularized loglikelihood (2.6). The implementation detail for maximizing

the Q-function is given as follows.

Update η: First, we deal with the maximization of the Q1-function in (2.9):

Q1(η|θcur) =
∑
z∈Ω

p(z|y, θcur) log{p(z|η)}+ ρ1(η). (2.10)
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Since p(z|η) is in the exponential family with sufficient statistic T (z), we have ∂ log{p(z|η)}/∂η =

T (z)− E{T (z′)|η} [Shao, 2003] and

∂Q1(η|θcur)
∂η

∣∣∣∣
η=ηcur

=
∂ρ1(η)

∂η

∣∣∣∣
η=ηcur

+
∑
z′∈Ω

p(z′|y, θcur) [T (z′)− E{T (z)|ηcur}]

=
∂ρ1(η)

∂η

∣∣∣∣
η=ηcur

+ E{T (z)|y, θcur} − E{T (z)|ηcur} (2.11)

Thus, the gradient of Q1(η|θcur) has a convenient representation in terms of the con-

ditional and marginal distributions at θ = θcur. Furthermore, it can be shown that

∂`pen(θ)

∂η

∣∣
θ=θcur

= ∂Q1(η|θcur)
∂η

∣∣
η=ηcur

.

Finding the η which maximizes Q1(η|θcur) in the M-step would require invert-

ing, at every iteration, between the exponential family natural parameter, η, and the

exponential family mean parameter, E{T (z)|η}. For Markov random field models,

this inversion would require a sequence of MCMC draws and is a challenging compu-

tational problem [Forbes and Fort, 2007]. Thus, we elect to instead use a gradient

ascent update for the η component of θ:

ηnew = ηcur + c−1∂Q1(η|θcur)
∂η

= ηcur + c−1∂`pen(θ)

∂η
, (2.12)

where c is a fixed constant stepsize chosen to ensure reasonable convergence behavior.

Update µ: In contrast to η, the update for µ has a convenient representation in terms
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of the conditional distribution p(z|y, θcur), because by (2.3), we have

Q2(µ|θcur) = ρ2(µ) +
∑
z∈Ω

p(z|y, θcur) log{p(y|z,µ)}

= ρ2(µ) +
∑
z∈Ω

p(z|y, θcur)
n∑
i=1

K∑
k=1

{
log(µk)

Tyi
}
I(zi = k) +

n∑
i=1

log(Ci)

= ρ2(µ) +
n∑
i=1

K∑
k=1

{
log(µk)

Tyi
}
P (zi = k|y, θcur) +

n∑
i=1

log(Ci)

=
K∑
k=1

Qk
2(µk) +

n∑
i=1

log(Ci), (2.13)

where
∑n

i=1 log(Ci) does not depend on µ and

Qk
2(µk) =

M∑
m=1

(α− 1) log(µmk) +
n∑
i=1

M∑
m=1

P (zi = k|y, θcur)ymi log(µmk).

It is shown in Section A.2.2 of Appendix A that the maximizer µnew of (2.13) has

entries

µnew
mk = {α− 1 +Nmk} / {M(α− 1) +Nk} , (2.14)

where Nmk =
∑n

i=1 P (zi = k|y, θcur)ymi and Nk =
∑M

m=1Nmk.

In a standard EM update for µ, we have µnew
k = µcur

k + (µnew
k − µcur

k ). Here,

it is more convenient to use an altered version, because p(z|y, θcur) is known only up

to a normalizing constant and the µ update must be approximated by MCMC. The

quantities related to p(z|y, θcur) appear in both the numerator and denominator of

(2.14) and thus, it is challenging to estimate the EM update for µ in an unbiased

fashion based only on a single draw from p(z|y, θcur). Thus, we propose a “short-step”

for updates:

µ̃new
k = µcur

k + γk(µ
new
k − µcur

k ), (2.15)
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where

γk = {M(α− 1) +Nk} /{M(α− 1) +
n∑
i=1

qi}. (2.16)

Since Nk <
∑n

i=1 qi for all θ ∈ Θ, we have γk < 1 for all θcur. On the other hand,

γk ≥ {M(α − 1)}/{M(α − 1) +
∑n

i=1 qi} > 0. Thus, the µ̃new update results from

taking a shortened EM step starting from µcur. For the product γkµ
new
k in (2.15), the

numerator of γk cancels with the denominator of µnew
k in (2.14). The denominator

of γk depends on the number of tree species M , the regularization parameter α, and

the number of trees in the dataset
∑n

i=1 qi. Thus, γkµ
new
k depends on p(z|y, θcur) only

through the numerator of the µnew
k update in (2.14), which can be estimated based on

a single draw from p(z|y, θ) (see Section 2.3.3).

The set M is convex, and from (2.14), µnew ∈ MK . From convexity, when

µnew ∈ MK and µcur ∈ MK , (2.15) implies µ̃new ∈ MK as well. Additionally, the

update in (2.15) preserves the ascent property of the EM algorithm. By concavity of

the log function, Qk
2 is concave, so that Qk

2(µ̃new
k ) ≥ γkQ

k
2(µnew

k ) + (1− γk)Qk
2(µcur

k ) ≥

Qk
2(µcur

k ). When µnew
k 6= µcur

k , the inequalities are strict. Since Q1(η|θcur)+Q2(µ|θcur)

minorizes `pen(θ), any increase in the value of Q2 implies an increase in the value of

`pen(θ).

2.3.3 Stochastic Approximation

To update θ, we devise a stochastic approximation procedure θnew = θcur +

g(θcur), where

g(θcur) = g

([
ηcur

~(µcur)

])
=

[
c−1 ∂Q1(η|θcur)

∂η

∣∣
η=ηcur

~(µ̃new)−~(µcur),

]
(2.17)

and g(θ) is to be estimated based on MCMC samples. Stochastic approximation

approaches are useful when the function g(·) is difficult or impossible to evaluate, but
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g(·) can be approximated by an estimate G(θ, z), where z is a random variable drawn

from a distribution πθ, such that πθ and G(·, ·) satisfy, for each θ,∫
G(θ, z)πθ(dz) = g(θ) (2.18)

[see, e.g., Robbins and Monro, 1951, Benveniste et al., 1990, Kushner and Yin, 1997].

The update in (2.17) is a combination of a gradient ascent update for η and

a short-step update for µ, from which an iterate sequence may be constructed in

the following way. Starting from an initial parameter θ(0) and initial z(0), we obtain

draws z(t+1) from πθ(t)(·) and set θ(t+1) = θ(t) + ε(t+1)G(θ(t), z(t+1)). The sequence

of stepsizes {ε(t)} is deterministic and generally satisfies conditions such as ε(t) ↓ 0,∑∞
t=1(ε(t))2 < ∞, and

∑∞
t=1 ε

(t) = ∞ [see, e.g., Benveniste et al., 1990, Kushner and

Yin, 1997]. Here, we use ε(t) = t−1.

From (2.11), the gradient of Q1(η|θcur), and hence the gradient of the observed

loglikelihood, with respect to the η parameter can be computed based on the differ-

ence of two expectations of T (z). The first expectation is taken with respect to the

conditional distribution p(z|y, θcur) and the second expectation is taken with respect

to the marginal distribution p(z|ηcur), while the gradient of the logistic prior ρ1(η) can

be computed analytically. The µ update µ̃new − µcur in (2.15) can be computed by

taking the expectation of the function

Hα(µcur, z)mk

=
(α− 1)(1−Mµcur

mk) +
∑n

i=1 I{zi = k}(ymi − qiµcur
mk)

M(α− 1) +
∑n

i=1 qi
, (2.19)

with respect to p(z|y, θ). Thus, the update g(θcur) in (2.17) can be written as an

integration with respect to the density

πθcur(z) = p(z1|y, θcur)p(z2|ηcur), (2.20)
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where z = (z1, z2) denotes an ordered pair of configurations z1, z2 ∈ Ω. From (2.20),

z1 and z2 are drawn independently under πθcur(·). The probability density πθcur(·)

takes as its argument an element z of the sample space Ω2 = Ω× Ω.

Since integrals with respect to πθ(·) require intractable sums over all possible type

configurations z1 and z2, we estimate g(θ) based on approximate draws from πθ(·).

While it is difficult to sample directly from p(z1|y, θ) and p(z2|η) due to the spatial

correlation between the types zi, it is possible to use Markov chain transition kernels

(specifically, Gibbs sampling kernels) to approximate draws from these distributions

[Geman and Geman, 1984]. Due to the conditional independence between grid cells in

the conditional distribution p(y|z,µ), both p(z|y, θ) and p(z|η) are Markov random

field densities with simple conditional distributions at each cell given the rest of the

cells. Thus, it is possible to construct Gibbs sampling transition kernels P1,θ(·, ·) : Ω×

Ω→ [0, 1] and P2,θ(·, ·) : Ω×Ω→ [0, 1] so that the stationary distributions of P1,θ(·, ·)

and P2,θ(·, ·) are p(z|y, θ) and p(z|η), respectively. In order to approximately sample

from πθ, we run a Markov chain using the transition kernel Pθ(z, z
′) : Ω2×Ω2 → [0, 1]

defined by Pθ(z, z
′) = P1,θ(z1, z

′
1)P2,θ(z2, z

′
2). Detailed formulas for the Gibbs samplers

are given in Section A.1.1 of Appendix A [see also, e.g., Gaetan and Guyon, 2010].

From the definition of Pθ(·, ·), we see that the updates to the Markov chain for the

conditional distribution p(z|y, θ) are independent from the updates to the Markov

chain for the marginal distribution p(z|η).

In our stochastic modified EM procedure, we choose a stepsize c and define the

function G(·, ·) : Θ× Ω2 → Θ by

G(θ, z) = G

([
η
~(µ)

]
, z

)
=

[
c
{
∂ρ1(η)
∂η

+ T (z1)− T (z2)
}

Hα(µ, z1)

]
(2.21)
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Then, we find parameters θ̂ maximizing the penalized likelihood `pen(θ) via the pro-

cedure given in Algorithm 1.

Algorithm 1: Stochastic Modified EM

Initialize parameter θ0 ∈ Θ, configuration z0 ∈ Ω2, number of iterations

T ;

for t=1 to T do

Draw zt ∈ Ω2 according to Pθt−1(zt−1, ·)

εt = t−1

θt = θt−1 + εtG(θt−1, zt)

Return θT

Implementation details, including a discussion of the choice of the stepsize c, are given

in Section A.1.2 of Appendix A.

2.4 Case Study: Historical Forest Communities based on Pub-

lic Land Survey Data

The Wisconsin PLS dataset is a historical survey of trees, conducted primarily

between 1832–1866 [Schulte and Mladenoff, 2001]. The dataset has been commonly

used in ecological studies of forest composition prior to and concurrent with Euro-

American settlement. As described in the introduction, surveyors from the PLS walked

along a 1-mile-by-1-mile grid-like pattern across the state, and recorded the species

of 2–4 representative trees at survey points every half-mile (Figure 2.1). The dataset

is large, both in terms of the number of trees observed (328,499), distributed roughly

uniformly across the state, as well as in terms of the spatial extent (145,000 square

kilometers). Additionally, the tree species count data at each grid cell are highly

multivariate and for small enough grid cells, most tree species counts are 0, since only

2-4 trees were observed at each survey point and the survey points are at least half a
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mile away from each other.

For data analysis, a spatial grid of cells is first overlaid on the survey region

(the state of Wisconsin). For each grid cell i, a count vector yi, of length M = 33

species, is constructed from the trees observed at survey points within that cell. Grid

cells are not required to contain any trees. For our spatially correlated model, the

forest community type probability at any cell takes into account tree information

from nearby adjacent and non-adjacent grid cells containing trees. We compare three

grid resolutions: 4km-by-4km, 2-km-by-2-km, and 1km-by-1km grid cells, resulting in

9,469 cells, 37,134 cells, and 146,851 cells, respectively. For each grid resolution, each

cell is assumed to have a single forest community type. We use a first-order spatial

neighborhood structure with up to four nearest neighbors. That is, two points with

integer lattice coordinates (i, j) and (i′, j′) are neighbors when |i − i′| + |j − j′| = 1.

Next, we fit the spatially correlated multinomial mixture models via the stochastic

modified EM procedure in Algorithm 1. For comparison, we fit spatially independent

multinomial mixture models via the standard EM algorithm, a derivation of which is

given in Section A.2.1 of Appendix A.

2.4.1 Choice of K and Model Validation

We use a cross-validation procedure to determine the number of forest commu-

nity types to use, and to assess the quality of the spatially correlated mixture models

relative to the spatially independent mixture models. In particular, we generate a

testing dataset by randomly selecting 20 percent of the trees from the full set of sur-

veyed trees. The remaining 80 percent of the trees are placed in a training dataset.

We then create training and testing datasets ytrain and ytest for each grid resolution
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(1km, 2km, and 4km) from these training and testing trees. We also consider five to-

tal numbers of forest community types K = 8, 12, 16, 20, or 24. For each combination

of grid resolution and number of forest community types, we fit each of the models

on the training dataset ytrain, starting from three random initial parameter values to

mitigate the multimodality of the likelihood.

We examine two loglikelihood based measures of prediction performance, using

the same training and testing datasets across models fit for different grid resolutions

and numbers of forest community types to ensure the likelihoods are comparable

among different models. We first compute, for each of the fitted models at each grid

resolution, a holdout loglikelihood

`holdout(θ̂) = log

{∑
z∈Ω

p(ytest|z, θ̂)p(z|θ̂)

}
. (2.22)

We focus our model assessment on holdout loglikelihoods rather than on the errors of

estimated coefficients, because the true data-generating parameters are unknown for

the real data. Next, we compute a predictive loglikelihood

`pred(θ̂) = log{p(ytest|ytrain, θ̂)} = log

{∑
z∈Ω

p(ytest|z, θ̂)p(z|ytrain, θ̂)

}
. (2.23)

In contrast to the holdout loglikelihood `holdout(θ̂) that is marginal on the testing

dataset, the predictive loglikelihood `pred(θ̂) measures the quality of predictions of the

testing dataset, conditional on the training dataset. Since our maps of the study area

are ultimately based on the conditional distribution p(z|y, θ̂), the predictive loglikeli-

hood is a relevant performance metric. To ensure that these likelihoods are comparable

across different grid resolutions, we drop the grid-resolution dependent factors Ci in

(2.3). The loglikelihoods without the constants Ci are equal to the loglikelihoods of the
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individual trees, before being aggregated into counts. Unlike the tree species counts

yi for each cell, which vary by the grid resolution, the loglikelihood of the collection

of individual trees has the same interpretation across grid resolutions.

For the spatially correlated models, the holdout loglikelihood in (2.22) is difficult

to compute, and we use path integration, also known as thermodynamic integration or

path sampling [Neal, 1993, Gelman and Meng, 1998]. We describe the path integration

procedure in Section A.1.3 of Appendix A. The predictive loglikelihood (2.23) is also

difficult to compute for the spatially correlated models. By the fact that

log{p(ytest|ytrain, θ̂)} = log{p(ytrain,ytest|θ̂)} − log{p(ytrain|θ̂)}

= log{p(y|θ̂)} − log{p(ytrain|θ̂)}, (2.24)

we write `pred(θ̂) as the difference between the two marginal likelihoods in (2.24) and

use path integration to compute these two marginal loglikelihoods separately.

Table 2.1: Values of holdout loglikelihood (`holdout) and predictive loglikelihood (`pred)

for the Wisconsin Public Land Survey case study for either spatially independent

models or the spatially correlated models, different numbers of forest community types

(K), and the grid resolution (1km, 2km, or 4km), averaged over 3 runs from random

initial starting parameters, and normalized by the number of trees in the testing

dataset.

`holdout(θ̂) `pred(θ̂)

Model K 1km 2km 4km 1km 2km 4km

Independent 8 -2.77 -2.6 -2.37 -2.11 -2.15 -2.18
12 -2.76 -2.58 -2.35 -2.04 -2.09 -2.13
16 -2.76 -2.57 -2.33 -2 -2.06 -2.1
20 -2.75 -2.57 -2.32 -1.98 -2.03 -2.08
24 -2.75 -2.57 -2.32 -1.96 -2.02 -2.07

Spatial 8 -2.23 -2.21 -2.22 -2.03 -2.13 -2.19
12 -2.18 -2.16 -2.2 -1.96 -2.08 -2.17
16 -2.15 -2.15 -2.2 -1.91 -2.05 -2.15
20 -2.15 -2.15 -2.18 -1.9 -2.03 -2.14
24 -2.15 -2.15 -2.18 -1.88 -2.04 -2.14
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Table 2.1 displays the holdout and predictive loglikelihoods obtained from the

spatial and independent models for the different grid resolutions and numbers of forest

community types. Intuitively, we expect it to be easier to predict the held out trees

after having seen spatially nearby training trees. A comparison of the marginal and

conditional loglikelihoods in Table 2.1 bears this out: the predictive loglikelihoods

`pred(θ̂) are always larger than the holdout loglikelihoods `holdout(θ̂).

At all grid resolutions and numbers of forest community types, the spatial model

performs better based on holdout loglikelihood than the corresponding spatially inde-

pendent model. Additionally, the highest (best) spatially independent holdout loglike-

lihood is lower than the holdout loglikelihood from even the worst spatially correlated

model. For the spatially independent models, the holdout loglikelihoods for models

with fixed numbers of forest community types decrease as the grid resolution becomes

finer, while the holdout loglikelihoods for the spatial models with fixed number of

forest community types are more similar across the grid resolutions.

In contrast to the holdout loglikelihoods, the predictive loglikelihoods for both

the spatially correlated and independent models improve as the grid resolution be-

comes finer. Additionally, the predictive loglikelihoods increase monotonically at each

grid resolution as more forest community types are added to the model. The largest

(best) predictive loglikelihood is obtained for a 1km spatial model with 24 forest com-

munity types. The spatially independent models sometimes achieve higher predictive

loglikelihoods at the 2km and 4km grid resolutions, but the best predictive loglikeli-

hoods out of all the models are attained by spatial models at the 1km resolution.

Finally, model fits from different initializations on the PLS dataset, where the

true data generating mechanism is unknown, were qualitatively similar, with some
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variability in the fitted forest communities. For a fixed number of forest community

types, the correlation parameter estimates are typically similar across the grid reso-

lutions. For example, for the 16-community models, the smallest spatial correlation

parameter estimates are 1.615, 1.610, and 1.549, whereas the largest are 1.631, 1.619,

and 1.596, for the grid resolutions 1km, 2km, and 4km, respectively.

2.4.2 Ecological Interpretation

After model fitting, the forest community classifications at each grid cell are

determined from site-wise maximum a posteriori (MAP) estimates using Gibbs sam-

pling. Maps of these classifications are shown in Figures 2.2–2.3, which indicate that

the spatially correlated models tend to produce more spatially smooth classification

maps than the spatially independent models, particularly for the smaller grid resolu-

tions, as is expected. A key to the tree species abbreviations in these figures is given

in Table 2.2.

Figure 2.2: Forest community classifications for the Public Land Survey case study

from the 16-community spatially correlated (left) and spatially independent (right)

models with the highest holdout loglikelihoods, which occurred at the 1km and 4km

grid resolutions, respectively. A key to the tree species abbreviations is given in

Table 2.2.
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(a) 4km, spatial (b) 2km, spatial (c) 1km, spatial

(d) 4km, independent (e) 2km, independent (f) 1km, independent

Figure 2.3: A comparison of 16-community spatial and independent models over a

40-km-by-40-km subsection of the Wisconsin survey region for grid resolutions 4km,

2km, and 1km. A key to the tree species abbreviations is given in Table 2.2.

Table 2.2: The tree species abbreviations, names, and counts for the Wisconsin Public

Land Survey case study.

Abbreviation Name Count
AL Alder 100
AS Aspen 12029
BA Black ash 5957
BE American beech 7586
BO Bur oak 34065
BU Butternut 534
BW Black walnut 113
CE White cedar 8297
CH Black cherry 454
CO Eastern cottonwood 122
EL Elm 11090
FI Balsam fir 4441
HE Eastern hemlock 26369
HI Shagbark hickory 1198
IR Ironwood 4076
JO Black & northern pin oak 26058
JP Jack pine 11004

Abbreviation Name Count
LI American basswood 7520
RM Red maple 1475
RO Red oak 5228
RP Red pine 9925
SO Swamp white oak 207
SP Spruce 6048
SU Sugar maple 32718
TA Tamarack 19741
WA White ash 2119
WB Paper birch 11770
WI Willow 346
WM Silver maple 550
WO White oak 33170
WP Eastern white pine 21717
YB Yellow birch 22008
ZZ No trees 464

The predictive loglikelihoods for both the spatially correlated and independent
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models improve as the grid resolution decreases from 4km to 1km (Table 2.1), which

suggests that the tree data are more likely to come from the same forest community

type within smaller grid cells, and that the larger grid cells aggregate trees from mul-

tiple forest community types. This pattern is consistent with ecological observations

of forest patch size in the region [Mladenoff et al., 1993].

Table 2.3: Summaries of the 16 estimated forest community types for the Wisconsin

Public Land Survey case study under the model selected based on cross validation,

including the counts of grid cells which are classified as each forest community type,

the top four tree species in each forest community, and the corresponding four largest

estimated species probabilities. A key to the tree species abbreviations is given in

Table 2.2.

Forest type Count Top Species Species Probabilities
1 23174 HE, YB, SU, WB 0.352, 0.223, 0.154, 0.048
2 19373 BO, JO, WO, RO 0.72, 0.137, 0.117, 0.007
3 16121 WO, JO, BO, HI 0.478, 0.267, 0.209, 0.013
4 12380 SU, EL, WO, LI 0.282, 0.151, 0.131, 0.121
5 10746 SU, YB, WP, WB 0.342, 0.201, 0.089, 0.071
6 8427 BE, SU, HE, BA 0.39, 0.138, 0.096, 0.065
7 7370 JO, WO, BO, AS 0.643, 0.177, 0.091, 0.031
8 7219 CE, HE, TA, YB 0.283, 0.175, 0.133, 0.094
9 7075 SP, WP, WB, TA 0.179, 0.167, 0.161, 0.146

10 6013 RP, WP, AS, JP 0.489, 0.19, 0.077, 0.061
11 5720 WP, SU, TA, WB 0.66, 0.055, 0.046, 0.042
12 5506 TA, WP, SP, WB 0.821, 0.036, 0.026, 0.015
13 5420 JP, RP, JO, WP 0.753, 0.087, 0.052, 0.024
14 4865 WO, RO, AS, BO 0.484, 0.221, 0.069, 0.067
15 4256 AS, WB, WO, WP 0.62, 0.063, 0.045, 0.043
16 3186 BA, EL, WB, WA 0.236, 0.161, 0.073, 0.064

We focus our ecological interpretation on the spatially correlated model with 1km

grid resolution and 16 forest community types which has the highest holdout loglike-

lihood out of the 1km models. This model also has the highest holdout loglikelihood

for the 16 forest community models across grid resolutions. Table 2.3 summarizes

the forest communities for this model and indicates that species associations within

these 16 forest communities are consistent with ecological expectation for the survey
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region [Curtis, 1959]. Similarly, the maps of the most likely forest community for each

grid cell generally meet expectations [Curtis, 1959, Finley, 1976]. Although one of the

models at the 2km grid resolution has a higher holdout loglikelihood than the model

we discuss here, the difference in holdout likelihoods was small (−2.143 for the 2km

model vs. −2.144 for the 1km model), while the improvement in predictive loglikeli-

hood from 2km to 1km is more substantial (−2.04 for the 2km model, vs. −1.91 for

the 1km model).

Among the oak communities, bur oak (BO) is the highest probability species in

the community (forest community type 2 in Table 2.3) that is most likely to occur

in the region that was historically oak savanna, mainly in topographically gentle sites

[Curtis, 1959]. While all oak species in the survey region are fire-adapted, bur oak

is the most fire tolerant [Peterson and Reich, 2001]. Its dominance in flatter areas

could be due to increased frequencies of prairie fires passing through [Stambaugh and

Guyette, 2008, Shea et al., 2014]. A more mixed oak community (forest community

type 3), dominated by white oak (WO) with a high probability of black/jack oak (JO)

and bur oak, was most likely to occur in a more topographically diverse, historically

savanna region; the topography likely allowed for more diverse fire patterns and species

assemblages [Shea et al., 2014]. The community dominated by black/jack oak (forest

community type 7) had highest probability in regions with dry soils; of the oak species

in Wisconsin, black and jack oak are the most drought-tolerant, so their dominance

on these sites is ecologically sensible [Curtis, 1959, Shea et al., 2014]. While the

other oak species likely were restricted to sunny savannas, the white oak-red oak

(RO) community (forest community type 14) may have existed as a closed canopy

community in southern Wisconsin. White oak and red oak are the more shade tolerant
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oaks [Curtis, 1959].

The three pine species in Wisconsin occur in several communities, three of which

are each dominated by the three species. The separation of the three species is ex-

pected, because while they are all associated with drier site conditions [Curtis, 1959],

they are each differently adapted to drought and fire and, especially for jack pine (JP)

and red pine (RP), often form monospecific stands depending on fire frequency [Burns

and Honkala, 1990, Radeloff et al., 1999]. White pine (WP) has greater than 0.1 prob-

ability in the red pine dominated community (forest community type 10) as well as

in a community (forest community type 9) with similar probabilities of spruce (SP),

paper birch (WB), and tamarack (TA). Compared to the other pine species, white

pine grows on a range of sites including those with richer soil, and has intermediate

shade tolerance which allows it occur on a variety of sites and even intergrade with

northern mesic forest community types [Curtis, 1959, Burns and Honkala, 1990, Fahey

et al., 2012]. Given the widespread nature of white pine, it is not surprising that it

has high probability of occurring in more than one community, including forest com-

munity type 9 which has species combinations that are possible on sites with recent

disturbance or sites that are refuges from fire [Fahey et al., 2012].

In northern Wisconsin, mesic forest occurs on sites with rich and moist but

well drained soils and is mainly dominated by eastern hemlock (HE), sugar maple

(SU), yellow birch (YB), and American beech (BE) [Curtis, 1959]. The cluster re-

sults separate this forest type into four communities, and probabilities of each forest

community type seem to vary geographically, depending on the range boundaries of

several species [Curtis, 1959, Davis et al., 1991]. Beech dominates one community, and

sugar maple and hemlock are other high-probability species in the community (forest
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community type 6) which is most likely to occur east of beech’s range boundary in

eastern Wisconsin.

In northern Wisconsin, forest community type 8 is the most likely community,

where hemlock has the highest probability along with white cedar, yellow birch, and

sugar maple. White cedar (CE) is most abundant in far northern Wisconsin [Curtis,

1959]. South of that a different community is more likely to occur (forest community

type 1), with high probability of hemlock, yellow birch, and sugar maple. West and

south of the range of hemlock, forest community type 5 is most likely to occur; in that

community, hemlock is absent and sugar maple and yellow birch dominate.

The remaining communities also align with expected forest types. In southern

Wisconsin, community type 4 is southern mesic forest, which is most likely in known

closed forest areas as expected [Curtis, 1959, Mladenoff et al.]. Community type 16

is wet-mesic forest in both north and south [Curtis, 1959]. Forest community type 13

is a tamarack wetland and forest community type 15 is northern dry/dry-mesic sites

that are recently disturbed and dominated by aspen (AS) [Curtis, 1959].

2.4.3 Model Diagnostic and Implementation Validation

In addition to the loglikelihoods, we consider an absolute deviation measure

of discrepancy between the observed and predicted proportions of tree species. To

compute this measure of discrepancy, we overlay a grid of n 20-km by 20-km cells on

the state of Wisconsin and compute the discrepancy

D = (Mn)−1

n∑
i=1

M∑
m=1

|p̄mi − p̂mi|,

where i indexes the 20-km by 20-km grid cells, p̄mi = ymi,test/q
test
i denotes the em-

pirical proportion of testing species m trees in the ith grid cell, and p̂mi denotes the
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corresponding predicted proportion under a given model. The discrepancy D mea-

sures the average difference between the observed and predicted proportions in the

20-km by 20-km grid cells. For the mixture models, the predicted species proportions

for the ith grid cell p̂mi are

p̂mi =
∑
z∈Ω

p(z|y, θ̂)
K∑
k=1

I(zi = k)µ̂mk

We compute these predicted species probabilities analytically for the spatially inde-

pendent models but via MCMC for the spatially correlated models.

Table 2.4: Values of `1 discrepancy (D) on the testing dataset on a 20-km by 20-km

grid for the spatially independent and dependent models with different numbers of

forest community types (K) and grid resolutions (1km, 2km, 4km) in the Wisconsin

Public Land Survey case study.

Model K 1km 2km 4km
Independent 8 0.0153 0.0136 0.013

12 0.014 0.0118 0.012
16 0.0132 0.0111 0.0111
20 0.013 0.0107 0.0108
24 0.0129 0.0104 0.0103

Spatial 8 0.0125 0.0132 0.014
12 0.011 0.0115 0.0131
16 0.00994 0.011 0.0127
20 0.00957 0.0106 0.0123
24 0.00933 0.0106 0.0123

From Table 2.4, the overall differences between the predicted and observed

species proportions are small, indicating good fit between the observed and predicted

species proportions. The best performing models with respect to the measure D

achieve an average absolute deviation of about 0.01 between the observed and pre-

dicted proportion for each of the 33 species. The deviations for the spatially correlated

models decrease as the grid resolution becomes finer, in contrast to the deviations for

the spatially independent models, which increase as the grid resolution becomes finer.
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The overall pattern for the absolute deviations, as the number of categories and the

grid resolutions change, is similar to the pattern for the predictive loglikelihoods in

Table 2.1.

For the spatial models, we also investigate an intuitive approximation of p(ytest|ytrain, θ̂),

which allows us to validate our path integration implementation. Under the assump-

tion

p(z|ytrain, θ̂) ≈
n∏
i=1

p(zi|ytrain, θ̂),

we have

log{p(ytest|ytrain)} = log{
∑
z∈Ω

p(ytest|z, θ̂)p(z|ytrain, θ̂)}

≈
n∑
i=1

log

{
K∑
k=1

p{ytest|zi, θ̂}p(zi = k|ytrain, θ̂)

}
. (2.25)

Using this approximation combined with MCMC draws from p(z|ytrain, θ̂) to obtain

empirical estimates of p(zi = k|ytrain, θ̂), we compute an approximation of the true

predictive loglikelihood `pred(θ̂), denoted as `approxpred (θ̂). Table 2.5 suggests that the

results from this approximate procedure agree very well with the results obtained

via path integration in spite of the mostly different implementation details, providing

evidence for the correctness of our path integral implementation.
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Table 2.5: Predictive loglikelihood values on the testing dataset for the spatially corre-

lated model, computed using path integration and the approximate method of (2.25),

for the Wisconsin Public Land Survey case study with different numbers of forest

community types (K) and grid resolutions (1km, 2km, 4km).

Method K 1km 2km 4km
Path integral 8 -2.03 -2.13 -2.19

12 -1.96 -2.08 -2.17
16 -1.91 -2.05 -2.15
20 -1.9 -2.03 -2.14
24 -1.88 -2.04 -2.14

Approximate 8 -2.03 -2.14 -2.19
12 -1.96 -2.08 -2.17
16 -1.91 -2.05 -2.15
20 -1.9 -2.03 -2.14
24 -1.88 -2.04 -2.14

2.5 Simulation Study

We conduct a simulation study to evaluate the methodology applied to the PLS

case study in Sections 2.2–2.4. We consider g × g grids of cells, where the grid size

is g = 50, 100, 200, or 400 corresponding to n = 2,500, 10,000, 40,000, or 160,000

grid cells, respectively. We also consider the effect of observing larger and smaller

numbers of trees within each cell, by conducting simulations at q = 3 or 6 trees

observed per cell. For each combination of grid size (g) and number of trees per cell

(q), 100 simulations are performed. There are K = 8 true forest community types,

with associated probabilities given in the µ matrix below where the K = 8 columns
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of µ each sum to 1.

µ =

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8



0.186 0.126 0.049 0.264 0.036 0.212 0.031 0.403

0.228 0.177 0.086 0.139 0.465 0.016 0.015 0.057

0.016 0.015 0.016 0.026 0.064 0.022 0.016 0.054

0.089 0.016 0.035 0.299 0.022 0.041 0.235 0.021

0.026 0.018 0.015 0.024 0.134 0.016 0.220 0.015

0.019 0.092 0.103 0.016 0.016 0.065 0.045 0.027

0.044 0.015 0.015 0.016 0.016 0.016 0.016 0.125

0.015 0.195 0.016 0.016 0.111 0.021 0.019 0.062

0.028 0.133 0.199 0.059 0.040 0.109 0.049 0.018

0.036 0.015 0.025 0.015 0.016 0.360 0.025 0.021

0.017 0.017 0.016 0.046 0.015 0.057 0.026 0.021

0.039 0.016 0.017 0.030 0.015 0.017 0.016 0.015

0.223 0.094 0.015 0.015 0.016 0.016 0.016 0.016

0.016 0.016 0.374 0.016 0.018 0.016 0.016 0.027

0.017 0.054 0.017 0.018 0.016 0.019 0.257 0.117

The simulated vectors of forest community types z have density

p(z|η) = exp
{
ηTT (z)− ξ(η)

}
,

where η = [−0.060,−0.055,−0.039,−0.037,−0.024,−0.057,−0.004, 1.2]T and T (z) is

defined as in (2.2). That is, the spatial correlation parameter ηK = 1.2. Given the

forest community types Z = z, the tree count vectors Yi are independent multinomials

with sample sizes q = 3 or q = 6 trees at each grid cell. Since the regularized likelihood

is invariant to permutations of the mixture categories, we use the permutation of

categories that minimizes the mean squared errors (MSE),

MSE =
8∑

k=1

15∑
m=1

(µ̂mk − µmk)
2/(MK),

for each simulation when assessing the estimation error. The MSE for the µ matrix are

reported in Table 2.6 for the stochastic modified EM algorithm described in Algorithm
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1 (“Modified EM”), in comparison to the spatially independent model fit via the

EM algorithm (“Independent EM”), the ordinary stochastic gradient as described in

Younes [1989] (“Ordinary SG”), and a version of stochastic gradient with differently

scaled stepsizes for the η and µ parameter (“Rescaled SG”). Implementation details

for ordinary and rescaled stochastic gradient are given in Section A.2.3 of Appendix A.

Table 2.6: Simulation mean squared error (MSE) for the species probability parameter

matrix µ using different algorithms for q = 3, 6 simulated trees per grid cell and for

different numbers of grid cells n.

Method Trees per cell n = 502 n = 1002 n = 2002 n = 4002

Modified EM q = 3 2e-04 4e-05 1e-05 2e-06
q = 6 5e-05 1e-05 3e-06 7e-07

Independent EM q = 3 4e-04 8e-05 2e-05 6e-06
q = 6 2e-04 4e-05 2e-05 8e-07

Rescaled SG q = 3 7e-04 5e-04 4e-04 5e-04
q = 6 4e-04 4e-04 4e-04 3e-04

Ordinary SG q = 3 0.003 0.003 0.003 0.003
q = 6 0.002 0.002 0.002 0.002

Table 2.6 suggests that the modified EM algorithm performs best at every set-

ting, followed by independent EM. When only q = 3 trees are included in each cell, the

MSEs for the µ parameter from the spatially independent model are over twice that of

the spatially correlated. When q = 6 trees are included at each cell, the performance

of the spatially correlated and independent models are more similar, although the

spatially correlated model still always performs better than the spatially independent

model. For both models, the MSE at each grid size is, as expected, lower when q = 6

trees are included than when q = 3 trees are included. For both the spatially corre-

lated and independent models, the parameter estimates µ̂ appear to be converging to

the truth at about the rate of
√
n. The convergence occurs in spite of the fact that

the likelihood is multimodal, while the fitting algorithms were randomly initialized.
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This suggests that the estimation procedure is robust to the choice of initialization.

Interestingly, the rescaled stochastic gradient performs better than ordinary stochastic

gradient, but still performs worse than the independent EM algorithm.

Table 2.7: Simulation bias, variance, and mean squared error (MSE) for the spatial

correlation parameter ηK using different algorithms for q = 3, 6 simulated trees per

grid cell and for different numbers of grid cells n.

Method Error
n = 502

q = 3

n = 502

q = 6

n = 1002

q = 3

n = 1002

q = 6

n = 2002

q = 3

n = 2002

q = 6

n = 4002

q = 3

n = 4002

q = 6

Modified EM Bias -0.002 -0.009 -0.002 -0.002 -0.001 -1e-05 -0.002 -6e-04
Variance 9e-04 6e-04 2e-04 1e-04 4e-05 3e-05 8e-06 7e-06
MSE 9e-04 7e-04 2e-04 1e-04 4e-05 3e-05 1e-05 7e-06

Rescaled SG Bias -0.03 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02
Variance 0.002 0.001 5e-04 4e-04 2e-04 3e-04 2e-04 3e-04
MSE 0.003 0.002 0.001 8e-04 7e-04 6e-04 6e-04 6e-04

Ordinary SG Bias -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
Variance 0.005 0.006 0.005 0.006 0.005 0.007 0.005 0.005
MSE 0.04 0.03 0.04 0.03 0.05 0.03 0.05 0.03

The spatially independent model does not include the spatial correlation param-

eter ηK , so that Table 2.7 compares the bias, variance, and mean squared errors for

the spatial correlation parameter ηK only for the stochastic modified EM, ordinary

stochastic gradient, and rescaled stochastic gradient algorithms. Again, the stochastic

modified EM algorithm performs better than either rescaled stochastic gradient and

ordinary stochastic gradient. This difference is particularly pronounced for the larger

grid sizes. For g = 400 and q = 6, the MSE for the stochastic modified EM algo-

rithm is approximately 100 times smaller than the MSE for the rescaled stochastic

gradient algorithm. As can be seen from Table 2.7, the component of MSE due to

bias for the stochastic modified EM algorithm is very small relative to the component

of MSE due to variance. Additionally, the MSE decreases monotonically as the grid

size increases, as well as when more trees are observed within each cell. This suggests

that our algorithm accurately recovers the spatial correlation parameter in the Potts
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distribution.

Since the spatially independent model does not include the spatial correlation

parameter ηK , the estimates for ηk when k < K (Table 2.8) for the independence

model are expected to be biased relative to the true data generating ηk parameters,

so that comparisons between the correlated and uncorrelated model estimates are less

meaningful for these parameters. The stochastic modified EM algorithm performs

best out of all the methods for every combination of grid size and number of trees per

grid cell.

Table 2.8: Simulation mean squared error (MSE) for the ηk parameters when k < K

using different algorithms for q = 3, 6 simulated trees per grid cell and for different

numbers of grid cells n.

Method Trees per cell n = 502 n = 1002 n = 2002 n = 4002

Modified EM q = 3 0.0031 0.00082 0.00017 5.9e-05
q = 6 0.0031 0.00053 0.00011 2.6e-05

Independent EM q = 3 0.24 0.066 0.041 0.03
q = 6 0.082 0.041 0.027 0.026

Rescaled SG q = 3 0.0099 0.0083 0.0089 0.0085
q = 6 0.044 0.043 0.041 0.035

Ordinary SG q = 3 0.62 0.66 0.69 0.61
q = 6 1 1 1.2 1.1

Finally, in our simulation study, the minimum number of trees in a dataset is

7,500, while in the PLS case study, over 300,000 trees were observed. Thus, the “prior

sample sizes” of trees from each forest community type are much smaller than the

observed sample size, and we do not expect the prior penalties to substantially bias the

estimation procedure. The simulation study results bear this out. Additionally, the η

parameters are estimated in simulation with very little bias due to the regularization.
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Chapter 3

Control Variates and Rao-Blackwellization

for Deterministic Sweep Markov Chains

3.1 Introduction

This chapter is based on joint work with Jun Zhu and Murray Clayton, and a

preprint of an earlier version appears in Berg et al. [2019a].

Markov chain Monte Carlo (MCMC) is a widely used technique for drawing sam-

ples from intractable probability distributions. In statistics, MCMC is now a standard

tool in Bayesian analysis for sampling from complicated posterior distributions. The

goal of MCMC is usually to approximate quantities such as
∫
π(dx)g(x), where π is an

intractable probability measure, and g : X → Rd is a π-integrable function mapping a

state space X to Rd for some integer d ≥ 1. In MCMC, a Markov chain X0, X1, X2, ...

with a stationary probability measure π is simulated for some finite number of itera-

tions M , and
∫
π(dx)g(x) is then estimated by the empirical average

SM/M = M−1

M−1∑
t=0

g(Xt). (3.1)

Under suitable conditions, a central limit theorem can be shown for the estimator
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SM/M stating that

M1/2

{
SM/M −

∫
π(dx)g(x)

}
d→ N(0,Σ) (3.2)

as M →∞, where
d→ denotes convergence in distribution [Meyn and Tweedie, 2009].

In this sense, SM/M is asymptotically unbiased, and the MCMC error asymptotically

comes entirely from the asymptotic variance Σ. Thus, one sensible measure of the

efficiency of an MCMC estimator is the asymptotic variance Σ, which we will use in

the remainder.

A variety of techniques exist for reducing the asymptotic variance Σ in (3.2) for

MCMC simulations, including conditioning, control variates, and antithetic sampling

[see, e.g., Liu, 2008, Robert and Casella, 2004]. We focus on control variate approaches

here, although we also make connections to conditioning based approaches. In control

variate approaches, mean zero random variables are added to each term of (3.1) in such

a way that the variance of the sum is reduced. In approaches based on conditioning, g

in (3.1) is replaced with the conditional expectation with respect to π of g given some

intermediate quantity, with the hope that the resulting average has a reduced variance

relative to (3.1). This procedure bears some resemblance to the classical Rao-Blackwell

approach of reducing the variance of an estimator through conditioning [Rao, 1945,

Blackwell, 1947], and thus the term Rao-Blackwellization is commonly used to describe

techniques in which an MCMC average of a conditional expectation is taken in order

to reduce the asymptotic variance Σ. However, in MCMC, unlike in classical Monte

Carlo, independence does not hold and a naive conditioning approach may increase

the asymptotic variance [Geyer, 1995].

The MCMC literature contains a variety of variance reduction results, espe-
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cially for reversible Markov chains. For example, Casella and Robert [1996] provide

variance reduction results for Markov chains resulting from the Metropolis-Hastings

algorithm. A conditioning approach is used in McKeague and Wefelmeyer [2000] to ob-

tain a variance reduction result for reversible Markov chains. In Meyn [2008], control

variate methods are discussed for time-homogeneous Markov chains in the context of

network models. In Douc and Robert [2011], a Rao-Blackwellization method is stud-

ied for Markov chains based on Metropolis-Hastings algorithms. In Dellaportas and

Kontoyiannis [2012], a control variate method is given for reducing the variance of

estimates based on reversible Markov chains. In Brosse et al. [2018], a control variate

scheme is used to obtain variance reductions for certain Markov chains that can be

related through a limiting process to a Langevin diffusion.

Our work here adds to the prior literature in several ways. First, determinis-

tic sweep sampling is commonly used and more straightforward to implement than

random sweep sampling, to which previous methodology applies. Thus, our pro-

posed control variate methodology for deterministic sweep Markov chains lessens the

gap between Markov chain theory and practice. As an example, our control variate

methodology is applicable to deterministic sweep Gibbs samplers, whereas the con-

trol variate estimator for reversible Markov chains in Dellaportas and Kontoyiannis

[2012] is applicable to random sweep Gibbs samplers but not to deterministic sweep

Gibbs samplers. While we obtain several useful results for deterministic sweep Gibbs

samplers, where the component transition kernels are reversible, our results also apply

more generally and can be used to construct control variate estimates for deterministic

sweep Markov chains composed of non-reversible Markov kernels.

Second, we propose a Rao-Blackwellization estimator for deterministic sweep
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Gibbs sampling with variance reduction guarantees in broader settings than existing

Rao-Blackwellization estimators. Our Rao-Blackwellization estimator in Corollary 3.2

applies to Gibbs samplers with K ≥ 2 components. The Rao-Blackwellization estima-

tor in Liu et al. [1994] only comes with theoretical guarantees for Gibbs samplers with

K = 2 components. Liu et al. [1994] also require the integrand g to satisfy a relatively

strong strong dependence condition which we do not require. Rao-Blackwellization

for Gibbs sampling is commonly applied in practice, but theoretical justification for

this approach had previously been lacking. For example, Goodfellow et al. [2013]

use a Rao-Blackwellization scheme to improve the efficiency of a stochastic gradient

algorithm involving Gibbs sampling, but justify their approach using the classical Rao-

Blackwell theorem for independent data. Our result in Corollary 3.2 provides a more

rigorous foundation for Rao-Blackwellization for deterministic sweep Gibbs samplers

by showing that the conditioning leads to a smaller asymptotic variance in the Markov

chain central limit theorem.

Third, for two-component Gibbs samplers, our proposed control variate method-

ology yields provably smaller asymptotic variances than the current state of the art

for control variate and Rao-Blackwellization methods. In this setting, the asymptotic

variances attained by our methodology are guaranteed to be smaller (Theorem 3.3)

than those resulting from the methodology in Dellaportas and Kontoyiannis [2012],

without additional computational cost. Our proposed control variate methodology

also yields smaller asymptotic variances (Proposition 3.2) than the canonical Rao-

Blackwellization estimate proposed in Liu et al. [1994] for the data augmentation

Gibbs sampler setting. Our control variate approach will often be feasible to imple-

ment with negligible additional computational costs whenever the Liu et al. [1994]
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Rao-Blackwellization approach is feasible to implement.

3.2 Notation and Setup

3.2.1 K-Component Samplers and Gibbs Kernels

We consider Markov chains {Xt}∞t=0 evolving on a state space (X,X ), where X

is assumed to be a complete separable metric space, and X is the associated Borel

σ-algebra. We refer to a function Π : X × X → [0, 1] as a probability kernel if

Π(·, A) : X → [0, 1] is an X –measurable function of x for each A ∈ X , and also

Π(x, ·) : X → [0, 1] defines a probability measure on (X,X ) for each x ∈ X. Given a

probability measure λ on (X,X ), we say a probability kernel Π(x,A) : X×X → [0, 1]

is λ-stationary iff λ(A) =
∫
λ(dx)Π(x,A) for all A ∈X .

We use R to denote the extended real line [−∞,∞] and N = {0, 1, 2, ...} refer to

the nonnegative integers. For a function f : X → Rp where p ≥ 1 and probability ker-

nel Π : X ×X → [0, 1], we define Π0f(x) = f(x), Π1f(x) = Πf(x) =
∫

Π(x, dy)f(y),

and Πtf(x) = Π(Πt−1f)(x) for t > 1. We also define Πt(x,A) = ΠtIA(x), where

IA(·) : X → R denotes the indicator function with IA(x) = 1 for x ∈ A and IA(x) = 0

elsewhere. We define the permutation function σ(·) : {1, ..., K} → {1, ..., K} by

σ(k) = k + 1 for k < K and σ(k) = 1 for k = K, and we define σt(k) inductively by

σt(k) = k for t = 0, and σt(k) = σ{σt−1(k)} for t > 0.

Deterministic sweep samplers update the Markov chain by applying the kernels

Πk in a fixed order. At time 0, the transition operator used to update the state is,

without loss of generality, Π1 = Πσ0(1), and at time t, the transition operator is Πσt(1).
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Thus, for an initial probability measure ν on (X,X ), we have

Pν(X0 ∈ A0, ..., Xt ∈ At)

=

∫
ν(dx0)Π1(x0, dx1)...Πσt(1)(xt−1, dxt)I({xi ∈ Ai,∀i}).

We also define P t
kf(x) by P 0

k f(x) = f(x) and P t
kf(x) =

{
Πσ0(k)Πσ1(k) · · ·Πσt−1(k)f

}
(x)

for t ≥ 1. We define P t
k(x,A) = P t

kIA(x), so that P t
k is a composition of multiple kernels

rather than a repeated composition of a single kernel. Random sweep kernels update

the Markov chain via the mixture kernel Q = K−1
∑K

k=1 Πk.

Next, we define the probability kernels used in Gibbs sampling. Define the

identity map Y : (X,X ) → (X,X ), x → x for x ∈ X. We say a probability kernel

Π : X ×X → [0, 1] is a regular conditional distribution kernel with respect to (G , π),

where G ⊂ X is a sub-σ-algebra of X , whenever (1) Π(x,A) = E{I(Y ∈ A)|G }

almost everywhere with respect to π (a.e. π), for each A ∈ X , and (2) for π-a.e.

x, Π(x,A) is a probability measure on (X,X ). It is well-known that when X is a

complete separable metric space and X the associated Borel σ-algebra, such regular

conditional distributions Π always exist [see, e.g., Durrett, 2010].

For a measurable function h : X → Rn for some n ≥ 1, we say a probability

kernel Π : X ×X → [0, 1] is a Gibbs kernel with respect to (h, π) if Π is a regular

conditional distribution kernel with respect to the σ-algebra σ(h). Gibbs kernels have

some useful properties. First, any Gibbs kernel Π with respect to (h, π) preserves π.

This follows since ∫
π(dx)Π(x,A) = π(A) (3.3)

for each A ∈ X , from the properties of conditional expectation. Additionally, the

idempotence property Π{Πf}(x) = Πf(x) holds a.e. π for each π-integrable f . Finally,
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for functions f, g which are square-integrable with respect to π, we have∫
π(dx)f(x)Πg(x) =

∫
π(dx)Π{fΠg}(x)

=

∫
π(dx)Πf(x)Πg(x) =

∫
π(dx)g(x)Πf(x). (3.4)

The equality
∫
π(dx)f(x)Πg(x) =

∫
π(dx)g(x)Πf(x) is the useful reversibility prop-

erty. Thus from (3.4), we see that Gibbs transition kernels are reversible with respect

to π. However, compositions of reversible probability kernels such as the P t
k that arise

in deterministic sweep Gibbs sampling will in general not be reversible with respect

to π.

3.2.2 Control Variates and Rao-Blackwellization

In general, control variate schemes replace the estimatorM−1SM = M−1
∑M−1

t=0 g(Xt)

with an estimator of the form M−1
∑M−1

t=0 {g(Xt) − cWt}, where Wt are mean zero

random variables, and c is a constant. Since the Wt are mean 0, both estima-

tors have the same expected value. If {(Xt,Wt)}M−1
t=0 are iid and the covariance of

Wt and g(Xt) is positive, then it is straightforward to check that the variance of

M−1
∑M−1

t=0 {g(Xt)− cWt} is minimized for the choice c = var(W0)−1cov(W0, g(X0)) >

0. However, when independence does not hold, as in MCMC, then the optimal choice

of c is less straightforward, since it becomes necessary to account for correlations be-

tween terms at different time points t. The optimal choice of c in the Markov chain

setting will be an important consideration for the remainder. In the Markov chain

control variate estimators considered here, we consider mean zero control variates of

the basic form Wt = f(Xt+1) − Πσt(1)f(Xt) to ensure that M−1
∑M−1

t=0 {g(Xt) −Wt}

is an asymptotically unbiased estimator of
∫
π(dx)g(x). Control variates of this ap-

proximate form were suggested in Henderson and Glynn [2002]. Dellaportas and Kon-
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toyiannis [2012] refer to the function f as a “control variate basis function”, and we

adopt this terminology here.

For deterministic sweep chains {Xt}∞t=0 that use probability kernel Πσt(1) to ob-

tain Xt, we consider the three estimators (3.5), (3.6), and (3.7) below, in addition to

the empirical estimator (3.1). In (3.6) and (3.7), we use C ∈ Rp×d and Ck ∈ Rp×d for

k = 1, ..., K to refer to fixed p× d matrices:

Rao-Blackwellized: (3.5)

M−1SRBM = M−1

M−1∑
t=0

Πσt(1)g(Xt)

Fixed weight control variate: (3.6)

M−1SFWM = M−1

M−1∑
t=0

[g(Xt)− CT{f(Xt+1)− Πσt(1)f(Xt)}]

Variable weight control variate: (3.7)

M−1SVWM =
M−1∑
t=0

[g(Xt)− CT
σt+1(1){f(Xt+1)− Πσt(1)f(Xt)}]

The Rao-Blackwellized estimator (3.5) replaces each g(Xt) in (3.1) with the

conditional expectation Πσt(1)g(Xt). The estimator (3.5) essentially formalizes the idea

that it ought to be better to replace g(Xt+1) in SM with the conditional expectation of

g(Xt+1) givenXt. The control variate estimators arise from adding mean 0 terms to the

empirical estimator (3.1). We have M−1SFWM = M−1SM −M−1
∑M−1

t=0 CT{f(Xt+1)−

Πσt(1)f(Xt)} and M−1SVWM = M−1SM −M−1
∑M−1

t=0 CT
σt+1(1){f(Xt+1)−Πσt(1)f(Xt)}.

The variable weight scheme allows the control variate weight at each iteration t to
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vary depending on the probability kernel being used to update the Markov chain at

time t. Because the control variate and Rao-Blackwellization estimators involve the

conditional expectations Πkf and Πkg, respectively, it is necessary in practice for these

conditional expectations to have a computationally tractable form.

We now provide some further remarks on (3.5)–(3.7). First, the Rao-Blackwellization

estimator (3.5) is closely linked to the control variate estimators (3.6) and (3.7). For

the choices f = g and C = Id×d in (3.6), we have M−1SRBM = M−1SFWM −M−1{g(X0)−

g(XM)}. Under reasonable conditions, the difference M−1{g(X0) − g(XM)} will be

asymptotically negligible. Furthermore, the fixed weight control variate estimator (3.6)

is a special case of the variable weight control variate estimator (3.7) with the choices

C1 = C2 = · · · = CK = C. The fixed weight estimator (3.6) is similar to the control

variate estimator proposed by Dellaportas and Kontoyiannis [2012], except that their

reversible Markov chain kernel Q is replaced by the kernel Πσt(1) currently being used

to update the Markov chain. Note that
∫
π(dx){f − Πkf} = 0 for k = 1, ..., K when

the Πk are π stationary, and thus the control variate terms in (3.6) and (3.7) are mean

0 with respect to π. The variable weight estimator (3.7) allows a separate weight

matrix Cσ(k) to be used for differences involving each transition kernel Πk.

3.3 Assumptions and Variance Reduction Results

3.3.1 Assumptions

We consider Markov chains {Xt}∞t=0 with an arbitrary initial law ν on (X,X )

and time-inhomogeneous transition kernels Pt = Πσt(1). Throughout, we will take π

to be a probability measure on (X,X ) which we would like to take expectations with

respect to. We say a set C ∈ X is a small set with respect to a probability kernel P
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if there exists an m > 0, and a non-trivial measure νm on (X,X ), such that

Pm(x,B) ≥ νm(B)

for all x ∈ C, B ∈X [see, e.g., Meyn and Tweedie, 2009].

First, we make the following assumptions on the composition kernels PKt
k and

the transition kernels Π1, ...,ΠK .

(A.1) The kernels Πk are π-stationary. This holds whenever at least one of (A.1a) and

(A.1b) holds:

(A.1a) (Reversibility) The Πk are reversible, so that 〈f,Πkg〉 = 〈Πkf, g〉 for all

square integrable functions f, g : X → R.

(A.1b) (Gibbs kernels) The Πk are Gibbs kernels with respect to (hk, π) for some

set of functions hk : (X,X ) → (Rmk ,Rmk), where mk ≥ 1 is an integer

denoting the dimension of the range of hk.

(A.2) (ψ-irreducibility) There exists a probability measure ψ on (X,X ) such that for

each k = 1, ..., K and all A ∈X with ψ(A) > 0, and for all x ∈ X, there exists

a positive integer t = t(x,A, k) such that PKt
k (x,A) > 0.

(A.3) (Geometric drift) There exist small sets Ck ∈X with respect to PK
k , constants

λk < 1 and bk <∞, and functions Vk : X → [1,∞), such that for k = 1, ..., K,

PK
k Vk(x) ≤ λkVk(x) + bkICk(x).

(A.4) (Aperiodicity) The composition kernels PK
k are assumed to be aperiodic.
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Assumption (A.1) ensures that the transition kernels Πk preserve the stationary

distribution π. Assumption (A.2) ensures that π is the unique stationary distribu-

tion for the transition kernels PK
k for k = 1, ..., K [see, e.g. Meyn and Tweedie, 2009].

Assumption (A.3) ensures that Markov chains with transition kernel PK
k are Harris re-

current, so that for any A ∈X with ψ(A) > 0, we have Px(∩∞N=1∪∞k=N {Xt ∈ A}) = 1

for all x ∈ A, where Px refers to the Markov chain law with point mass initial distribu-

tion δx and transition kernel PK
k . Regarding (A.4), we say an irreducible probability

kernel is aperiodic if d = 1 is the largest integer such that there exist sets D1, ..., Dd sat-

isfying (1) PK
k (x,Di+1) = 1 for x ∈ Di, i = 1, ..., d− 1 and PK

k (x,D1) = 1 for x ∈ Dd,

(2) ψ{(∪di=1Di)
C} = 0, and (3) D1, ..., Dd are disjoint [see, e.g. Meyn and Tweedie,

2009]. Furthermore, our Lemma B.3 in Appendix A shows that Assumption (A.1b),

when it holds, ensures (A.4) holds also.

Next, we make the following assumptions about the functions g : X → Rd,

f : X → Rp, and Vk(x) in (A.3):

(B.1) (Square integrability)
∫
π(dx)V 2

k (x) <∞.

(B.2) |aTg(x)| ≤ Vk(x) for all a ∈ Rd with ‖a‖2 ≤ 1, where ‖x‖2 denotes the Euclidean

norm of x. For a univariate function g, this is equivalent to assuming that

|g(x)| ≤ Vk(x) for all x.

(B.3)
∫
π(dx)g(x) = 0.

(B.4)
∫
π(dx)fTf <∞ and fTf <∞ for all x ∈ X.

Assumptions (A.3), (A.4), (B.1), and (B.2) will be used to ensure certain bounds

on solutions g̃k to the Poisson equations g̃k − PK
k g̃k = g −

∫
π(dx)g(x). Assump-
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tion (B.3) is introduced for notational convenience: it allows us to write, for exam-

ple, statements such as g̃k − PK
k g̃k = g rather than g̃k − PK

k g̃k = g −
∫
π(dx)g(x).

For a general integrand g, the results to follow will apply to the function ḡ(x) =

g(x)−
∫
π(dx′)g(x′). In addition, (B.4) holds for f = g when (A.1)–(A.4) and (B.1)–

(B.2) hold.

3.3.2 Variance Reduction Results

In the following, we state our main variance reduction results, and defer the

proofs to Appendix B.2.

Proposition 3.1. Under (A.1)–(A.4) and (B.1)–(B.3), there exist functions ĝk : X →
Rd with

ĝk(x) =
∞∑
t=0

P t
kg(x) k = 1, ..., K (3.8)

a.e. π. The sums in the definition of ĝk are absolutely convergent elementwise for

π-a.e. x ∈ X, and
∫
π(dx)ĝTk ĝk < ∞ for each k. Additionally, each ĝk satisfies a

corresponding Poisson-type equation

ĝk − Πkĝσ(k) = g, a.e. π.

The Poisson equation solutions from Proposition 3.1 can be used to write each

of the sums in the estimators given in (3.1) and (3.5)-(3.7) as the sum of an ap-

proximating martingale, plus a small error term. We may then obtain expressions

for the asymptotic variance of these estimators by applying central limit theorems

for martingales [Gordin, 1969, Hall and Heyde, 1980]. Intuitively, one can verify that

ĝk − Πkĝσ(k) = g by checking that each term in ĝk matches a term in Πkĝσ(k) except

for the first term g, so that all terms besides g cancel, provided the sums and integrals

can be rearranged as needed. Proposition 3.1 is proved in Appendix B.2.
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We now define

Uk =

∫
π(dx){ffT − (Πkf)(Πkf)T} (3.9)

Vk =

∫
π(dx){fĝTσ(k) − (Πkf)(Πkĝ

T
σ(k))} (3.10)

as well as U = K−1
∑K

k=1 Uk and V = K−1
∑K

k=1 Vk. These quantities arise in the ex-

pressions for the asymptotic variance of the control variate estimators (3.6) and (3.7).

The quantities Uk and Vk can be interpreted as a conditional variance and a condi-

tional covariance, respectively. Suppose X0 ∼ π, and that the distribution of X1 given

X0 is Πk(X0, ·). Then Uk is the conditional matrix of f(X1), and Vk is the conditional

covariance of f(X1) and ĝσ(k)(X1).

In the remainder, for positive semidefinite matrices A and B, we say A ≥ B if

A − B is positive semidefinite. We say A > B if A − B is positive semidefinite with

at least 1 nonzero eigenvalue. We define ≤ and < similarly. Further, we let A† denote

the pseudoinverse of A. We write N(0,Σ) for a d-dimensional multivariate normal

distribution, where we allow the variance Σ to be positive semidefinite rather than

strictly positive definite.

Theorem 3.1. Assume (A.1)–(A.4) and (B.1)–(B.4). We have

M−1/2SVWM
d→ N(0,ΣC)

. The variance ΣC can be written as

ΣC =

∫
π(dx)ggT +K−1

K∑
k=1

∞∑
t=1

∫
π(dx){g(Pkg)T + (Pkg)gT} (3.11)

+K−1

K∑
k=1

CT
σ(k)UkCσ(k) − CT

σ(k)Vk − V T
k Cσ(k),

and ΣC is minimized at Cσ(k) = C̃σ(k), where C̃σ(k) = U †kVk.
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In Theorem 3.1, we establish the convergence result M−1/2SVWM
d→ N(0,ΣC) for

the variable weight control variate estimate in (3.7). The proof of Theorem 3.1 is in

Appendix B.2. In general, the optimal weight expression C̃σ(k) = U †kVk in Theorem 3.1

appears daunting, since the Vk contain integrals involving the Poisson equation solu-

tions ĝσ(k). Corollary 3.1 below establishes a simpler form for the optimal control

variate weight for the fixed weight control variate estimator M−1SFWM in (3.6), in the

setting of Gibbs sampling.

Corollary 3.1 (Fixed weight control variates). Suppose (A.1), (A.2)–(A.3), and (B.1)–

(B.4) hold. Then for the fixed weight scheme with C1 = · · · = CK = C, we have

ΣC =

∫
π(dx)ggT +K−1

K∑
k=1

∞∑
t=1

∫
π(dx){g(Pkg)T + (Pkg)gT}

+ CTUC − CTV − V TC,

and ΣC is minimized at C = C̃, where C̃ = U †V . If (A.1b) also holds, then we have

the simplified expression V =
∫
π(dx)fgT .

A detailed proof of Corollary 3.1 is given in Appendix B.2. We outline the

steps to obtain the simplified representation for V under (A.1b) here. First, we have∫
π(dx)(Πkf)(Πkĝ

T
σ(k)) =

∫
π(dx)fΠkĝ

T
σ(k), by the idempotence and reversibility of Πk

under (A.1b). Then, we rearrange and use Proposition 3.1 to obtain

V = K−1

K∑
k=1

∫
π(dx){fĝTσ(k) − fΠkĝ

T
σ(k)}

= K−1

K∑
k=1

∫
π(dx)f(ĝk − Πkĝσ(k))

T =

∫
π(dx)fgT .

Corollary 3.1 shows that the formula for the optimal control variate weight sim-

plifies substantially in the Gibbs sampling setting where (A.1b) holds. In general, the

quantity V = K−1
∑K

k=1 fĝ
T
σ(k) − (Πkf)(Πkĝσ(k))

T depends on the Poisson equation
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solutions ĝk from Proposition 3.1, whereas under (A.1b), the formula for C̃ no longer

involves the ĝσ(k) explicitly. In contrast, for general transition kernels or Gibbs sam-

pling without fixed control variate weights, the optimal weights are more complicated

to obtain due to the presence of the Poisson equation solutions ĝk in V (Vk).

We now establish a variance reduction result for the Rao-Blackwellized esti-

mator (3.5), in the setting of deterministic sweep Gibbs sampling. To our knowledge,

this result is new and no prior theoretical results exist for general Rao-Blackwellization

schemes for deterministic sweep Gibbs sampling. We use Σ0 to denote the variance of

the ordinary empirical estimate (3.1) with control variate weight C = 0 in (3.6). We

use Σ1 = ΣRB to denote the variance of the Rao-Blackwellized estimate (3.5), which

results from the choices f = g and C = Id×d in (3.6).

Corollary 3.2 (Rao-Blackwellized Gibbs sampling). Suppose (A.1b), (A.2)–(A.3),

and (B.1)–(B.3) hold, and f = g. We have

Σ0 = K−1

K∑
k=1

[∫
π(dx)ggT +

∞∑
t=1

∫
π(dx){g(P t

kg)T + (P t
kg)gT}

]

and

Σ1 = Σ0 −
∫
π(dx)ggT −K−1

K∑
k=1

∫
π(dx)(Πkg)(Πkg)T ≤ Σ0.

The result follows from collecting terms and simplifying the variance from The-

orem 3.1 with C = Id×d and f = g. We again exploit (A.1b) to use the simplified

formula for V from Corollary 3.1. When f = g, then V =
∫
π(dx)fgT =

∫
π(dx)ggT .

A detailed proof of Corollary 3.2 is given in Appendix B.2.

Corollary 3.2 shows that the asymptotic variance is always smaller for the Rao-

Blackwellized average Σ1 than for the empirical average Σ0. Thus, for deterministic
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sweep Gibbs sampling, the apparently naive Rao-Blackwellization strategy of averag-

ing the conditional expectation of the integrand g, with respect to whichever transition

kernel is being used to update Xt, leads to an improved asymptotic variance.

3.3.3 Estimating the Optimal Control Variate Weight

In order to implement the control variate estimators (3.6) and (3.7), it is nec-

essary to choose the control variate weights C and Ck, respectively. For the fixed

weight Gibbs sampler, we show that it is possible to estimate the exact optimal con-

trol variate weight. In general settings, we propose estimating an arbitrarily accurate

approximation of the optimal weight. Since C̃ = U †V and C̃σ(k) = U †kVk, one can

compute estimates of the optimal weights via Markov chain Monte Carlo estimates of

U and V or Uk and Vk.

Before we introduce our weight estimators, we recall the definitions Vk =
∫
π(dx){fĝTσ(k)−

(Πkf)(Πkĝσ(k))
T} and V = K−1

∑K
k=1 Vk. For integers B ≥ 0, we define

V B
k =

B∑
t=0

∫
π(dx)

{
f(P t

σ(k)g)T − (Πkf)(ΠkP
t
σ(k)g)T

}
V B = K−1

K∑
k=1

V B
k

as well as CB
σ(k) = U †kV

B
k and CB = U †V B. The quantity V B

k can be viewed as

an approximation of Vk resulting from including the first B + 1 terms in the Poisson

equation solution ĝσ(k), or equivalently, that drops lag-t autocovariance terms in Vk for

t > B. From Proposition 3.1, we have the deterministic convergence results lim
B→∞

V B
k =

Vk and lim
B→∞

V B = V . Thus, CB → C̃ and CB
σ(k) → C̃σ(k) as B → ∞, where C̃ and

C̃σ(k) are optimal weights as defined in Corollary 3.1 and Theorem 3.1.

For convenience in referring to the K subchains of a K-component deterministic
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sweep sampler, we define Z(k) = {i ∈ N : i = k − 1 + nK for some n ∈ N}, so that

Z(k) is the set of integers t such that the transition kernel Πk is used to generate Xt+1

from Xt. That is, for t ∈ Z(k) we have Xt+1|(X0, ..., Xt) ∼ Πk(Xt, ·). We also define

Z(k, y) = Z(k) ∩ {0, 1, ..., y}.

We define the estimators

ÛM = M−1

M−1∑
t=0

{f(Xt+1)− Πσt(1)f(Xt)}{f(Xt+1)− Πσt(1)f(Xt)}T (3.12)

Ûk,M = M−1
∑

t∈Z(k,M−1)

{f(Xt+1)− Πkf(Xt)}{f(Xt+1)− Πkf(Xt)}T (3.13)

V̂ B
M = M−1

M−1∑
t=0

{f(Xt+1)− Πσt(1)f(Xt)}
B∑
r=0

g(Xt+1+r) (3.14)

V̂ B
k,M = M−1

∑
t∈Z(k,M−1)

{f(Xt+1)− Πkf(Xt)}
B∑
r=0

g(Xt+1+r) (3.15)

V̂ Gibbs
M = M−1

M−1∑
t=0

f(Xt)g(Xt)
T (3.16)

and propose the control variate weight estimators

ĈGibbs
M = Û †M V̂

Gibbs
M (3.17)

ĈB
M = Û †M V̂

B
M (3.18)

ĈB
k,M = Û †k,M V̂

B
k,M . (3.19)

These estimators are empirical estimators of the corresponding quantities U , Uk, V
B,

etc., based on Markov chain samples of size M . Let ΣVW,B

C̃
denote the asymptotic vari-

ance from Theorem 3.3 for the variable weight control variate estimator with weights

CB
σ(k), for k = 1, ..., K. Further, let ΣFW,B

C̃
denote the variance for the fixed weight

control variate estimator with weight CB, and let ΣC̃ denote the variance for the fixed

weight control variate estimator with the optimal weight C̃ = U †V . For technical
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reasons, we add an additional assumption. Let ν << π indicate that the measure ν is

absolutely continuous with respect to π.

(C.1) (Absolute continuity) ν << π for the initial measure ν for which X0 ∼ ν

We impose Assumption (C.1) in order to ensure that the generalized inverse

estimates converge properly, that is, Û †M → U † and Û †k,M → U †k almost surely. When

the limiting matrices U and Uk are invertible, then Assumption (C.1) is unnecessary

for the conclusions of Theorem 3.2 to hold and can be dropped.

Theorem 3.2. Suppose (A.1)–(A.4), (B.1)–(B.4), and (C.1) hold. Then we have

ĈB
M

a.s.→ CB, ĈB
σ(k),M

a.s.→ CB
σ(k), and

M−1/2

M−1∑
t=0

g(Xt)− (ĈB
σt(1),M)T{f(Xt+1)− Πσt(1)f(Xt)}

d→ N(0,ΣVW,B

C̃
)

M−1/2

M−1∑
t=0

g(Xt)− (ĈB
M)T{f(Xt+1)− Πσt(1)f(Xt)}

d→ N(0,ΣFW,B

C̃
)

Furthermore, suppose Assumptions (A.1b), (A.2)–(A.4), (B.1)–(B.4), and (C.1) hold.

Then ĈGibbs
M

a.s.→ C̃, and

M−1/2

M−1∑
t=0

g(Xt)− (ĈGibbs
M )T{f(Xt+1)− Πσt(1)f(Xt)}

d→ N(0,ΣC̃)

The proof of Theorem 3.2 is in Appendix B.2. Theorem 3.2 shows for general

Markov chains that one can replace the exact truncated control variate weights CB

and CB
σ(k) by estimates without affecting the asymptotic variance from Theorem 3.1.

The asymptotic variance will in general be suboptimal for any finite truncation level

B, since CB and CB
k will in general differ from the optimal weights C̃ and C̃σ(k). In
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practice, the choice of B seems to be somewhat challenging, since when B is large

relative to the Monte Carlo sample size M , the estimates ĈB
M and ĈB

σ(k),M can be

expected to perform badly. However, in the Gibbs sampling setting, where Assump-

tion (A.1b) holds, this difficulty vanishes. Theorem 3.2 shows that for Gibbs sampling,

the estimator ĈGibbs
M leads to the control variate estimate with the optimal asymptotic

variance in Corollary 3.1.

3.4 Theoretical Comparisons

3.4.1 Comparison to Liu et al. [1994]

We next compare the asymptotic variance for our control variate estimators (3.6)

and (3.7) to the asymptotic variance for the Rao-Blackwellization estimator from Liu

et al. [1994]. The estimator in Liu et al. [1994] applies in the so-called data augmen-

tation Gibbs sampling setting, in which a two-component Gibbs sampler has compo-

nents Π1 and Π2, and the integrand g satisfies Πkg = g a.e. π for at least one of the

components k.

We assume the control variate basis function f = g, and we assume g satisfies

(D.1) (Data augmentation) Π2g = g a.e. π.

(D.2) (Non-degeneracy)
∫
π(dx)ggT is a positive definite matrix.

In this setting, the estimator from Liu et al. [1994] is

SLWK
M /M = M−1

M−1∑
t=0

Π1g(Xt). (3.20)

We remark that when f = g and the data augmentation assumption (D.1) holds, then

the asymptotic variance of the variable weight control variate scheme only depends
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on the weight matrix C2, but not on C1. Thus, for the purpose of comparison, it is

sufficient to consider the fixed weight control variate estimator (3.6) only.

Denote by Σ0, Σ1, Σ2, ΣLWK, and ΣC̃ the variances obtained by the empirical

estimator (3.1), the Rao-Blackwellized estimator (3.5), the fixed weight control variate

scheme with C = 2Id×d, the conditioning estimate in (3.20) due to Liu et al. [1994], and

the fixed weight control variate scheme with the optimal weight C = C̃, respectively.

Additionally, define A =
∫
π(dx)ggT and B =

∫
π(dx)(Π1g)(Π1g)T . Then we have the

following result.

Proposition 3.2. Assume K = 2, and that (A.1b), (A.2)–(A.3), (B.1)–(B.3), and

(D.1)–(D.2) hold. Then Σ2 = ΣLWK, and ΣC̃ ≤ Σ2 < Σ1 < Σ0, with

ΣC̃ − Σ2 = −2B(A−B)−1B ≤ 0

Σ2 − Σ1 = −(A+ 3B)/2 < 0

Σ1 − Σ0 = −(B + 3A)/2 < 0

By Proposition 3.2, we have ΣC̃ ≤ Σ2 = ΣLWK and thus the variance from our

fixed weight control variate estimator (3.6) will be no larger than the variance from

the approach of Liu et al. [1994]. When ΣLWK is nonzero, then we have the strict

inequality ΣC̃ < ΣLWK . In addition, since Σ1 < Σ0 and Σ2 < Σ1, the variance ΣLWK

will be lower than the variances from both the empirical estimator as well as the Rao-

Blackwellization approach in Corollary 3.2. Thus the optimal asymptotic variance of

the fixed weight scheme is equal to the optimal asymptotic variance for the variable

weight scheme. The proof of Proposition 3.2 is given in Appendix B.2.

In the scalar g case, the only increases in cost of the control variate estimate

relative to the Liu et al. [1994] estimate are incurred in the computation and aggre-

gation of the g(Xt) values. We expect these costs will generally be smaller than the
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costs of computing and aggregating the Π1g(Xt), and will often be smaller than the

cost of sampling additional Xt. When d > 1, so that g has d components, the control

variate approach incurs an additional cost per iteration of d2 operations to estimate

U and V , as well as as a one-time cost of d3 to invert U at the end of the simulation.

For large d, one can consider approximate versions of the control variate scheme to

reduce the cost. For example, we might take C to be a scalar and consider minimizing

the asymptotic mean squared error per coefficient, which is proportional to 1TΣC1.

The optimal scalar choice of C for this criterion is C̃ = (1TV 1)/(1TU1), where both

the numerator and denominator can be estimated with an O(d) cost per iteration by

exploiting the outer product structure of U and D.

3.4.2 Comparison to Dellaportas and Kontoyiannis [2012]

We also compare the asymptotic variances resulting from deterministic and ran-

dom sweep Gibbs sampling schemes with K = 2 components. Our control variate

methodology applies to the deterministic sweep version of Gibbs sampling, whereas

Dellaportas and Kontoyiannis [2012] applies only to random sweep Gibbs sampling

schemes. For kernels Π1 and Π2, we define the random sweep kernel Q = (Π1 + Π2)/2.

Additionally, we define the function

h = g − CT (f −Qf). (3.21)

Then we have the following result.

Theorem 3.3. Suppose (A.1b)–(A.3) and (B.1)–(B.4) hold, and that the number of

components K = 2.

Write ΣC̃ and ΣRS respectively for the variances from the optimal fixed weight

deterministic sweep scheme and the corresponding random sweep scheme with weight
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chosen as in Dellaportas and Kontoyiannis [2012]. Then

ΣC̃ − ΣRS = −(C̄ − C̃)TU †(C̄ − C̃)−
∞∑
t=1

∫
π(dx)h̄(Qth̄)T ≤ 0.

where C̃ is the optimal weight for the deterministic sweep scheme, where C̄ is the

optimal weight for the random sweep scheme, and h̄ = g− C̄T (f−Qf). The inequality

is strict except when ΣRS = 0.

Theorem 3.3 shows it is statistically more efficient to use our fixed weight, de-

terministic sweep control variate scheme rather than the random sweep scheme with

weight as chosen in Dellaportas and Kontoyiannis [2012], for general Gibbs sampling

schemes with K = 2 components, making our methodology useful for practical appli-

cations. For example, two component Gibbs samplers arise in applications in the com-

mon data augmentation Gibbs sampling setting [see, e.g. Robert and Casella, 2004].

Additionally, Markov random field models often contain a bipartite graph structure

which leads to two-component Gibbs sampling schemes.

3.4.3 Connection Between Rao-Blackwellization and Control Variates

We further show that the Rao-Blackwellization estimator (3.5) can be viewed

as an approximate control variate scheme. Suppose the control variate basis function

f = g, and assume for simplicity that the matrices Uk in (3.9) are positive definite.

Then under the assumptions of Theorem 3.1, the optimal control variate weights are

C̃σ(k) = U−1
k Vk, where Vk =

∫
π(dx){gĝTσ(k) − (Πkg)(Πkĝσ(k))

T}. Now, consider using

the approximation

ĝσ(k) = g + Πσ1(k)g + Πσ1(k)Πσ2(k)g + ... ≈ g, (3.22)
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within Vk, where the infinite sum in the Poisson equation solution is truncated after

a single term. Then we are left with

Vk ≈
∫
π(dx){ggT − (Πkg)(Πkg)T} = Uk. (3.23)

Thus, under the one term approximation of ĝσ(k), we obtain C̃σ(k) = Id×d for each

k. Similarly, for the fixed weight scheme, we obtain C̃ = Id×d. But these choices of

weights in (3.6) and (3.7) both lead to the estimator

M−1{g(X0)− g(XM)}+M−1

M−1∑
t=0

Πσt(1)g(Xt),

which is asymptotically equivalent to the Rao-Blackwellized estimator in (3.5).

An inspection of the estimators (3.14) and (3.15) shows that setting B = 0 and

f = g can be interpreted as invoking the approximation (3.23). In particular, in the

setting where f = g and B = 0, then Ûk → Uk and V̂ B
k → Uk almost surely, so

that the estimators from the control variate approach with B = 0 will be identical

to the estimates from the Rao-Blackwellized estimate (3.5). Figure 3.3 in Section 3.5

provides a numerical demonstration of this fact.

3.5 Numerical Examples

In this section, we present two concrete examples to illustrate the theory and

methods developed in Sections 3.2–3.4. Since the setting of Theorem 3.1 is asymptotic,

these examples provide a test of whether or not the asymptotic variance reduction

properties of the control variate schemes materialize at reasonable finite sample sizes.

Additionally, the examples provide some indication of the performance of the control

variate schemes when the optimal control variate weight is estimated from Markov

chain Monte Carlo. The first example, a bivariate normal, is relatively simple, but
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provides valuable insight into the overall performance of the methods. The second

example, an Ising model, is of interest in many fields.

3.5.1 Bivariate Normal

We consider a Gibbs sampling setting where π is a standard bivariate normal

distribution with µ = [0, 0]T , σ2
1 = σ2

2 = 1, and correlation ρ between the two compo-

nents. We take K = 2 and define Πk for k = 1, 2 as the kernels which update states

Xt = (X1,t, X2,t) by setting Xk,t+1 = Xk,t and drawing Xσ(k),t+1 ∼ N(Xk,t, 1− ρ2). It

can be shown that for k = 1, 2, the composition kernels P 2
k satisfy Assumption (A.2)

with the measure ψ = π. Additionally, Lemma B.3, combined with (A.1b) and (A.2),

shows that (A.4) also holds. We verify in Lemma B.9 (Appendix A) that Assump-

tion (A.3) also holds for P 2
1 and P 2

2 with the functions V1(x) = x2
1 + rx2

2 + 1 and

V2(x) = rx2
1 + x2

2 + 1 for appropriately chosen r > 0. These Vk satisfy (B.1). Thus,

Theorem 3.1 can be applied to each of the following examples.

Our numerical results for the bivariate normal setting are shown in Figure 3.1.

We compare the simulation mean squared error (MSE) for multiple estimators of∫
π(dx)g(x), for three different integrands g. For each example integrand g, we set

the control variate basis function f = g. For the fixed weight control variate approach,

we compare the two fixed weight control variate weight estimators (3.17) and (3.18).

Empirically, the estimator (3.17) performs better than the estimator (3.18), which

is expected since (3.17) requires the estimation of fewer covariance terms, and also

since the estimator (3.18) estimates the truncated weight C̃B rather than the optimal

weight C̃. We set B = 10. We computed MSE in each setting based on 100 simulated

averages using M = 2000 draws, at each value of ρ.
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Figure 3.1a shows a data augmented setting, where the integrand g(x1, x2) = x2,

so that g only depends x2. Figure 3.1a compares the simulation asymptotic variances

of SM/M as the bivariate normal correlation coefficient ρ varies for the empirical (3.1),

Rao-Blackwellization (3.5), fixed weight control variate (3.6), variable weight control

variate (3.7), and LWK (3.20) estimators. We see that the control variate and LWK

estimators outperform the empirical and Rao-Blackwell estimators, with the empirical

estimator performing the worst. The LWK and control variate estimators perform

similarly, although for large |ρ|, the control variate estimates outperform the LWK

estimates. For ρ = 0, the LWK estimate is exactly Π1g(x1, x2) = 0 for all (x1, x2).

Thus, at ρ = 0, the finite sample performance of the LWK estimate is better than the

control variate estimate estimates, which accrue some error in finite samples due the

estimation of C̃. This error vanishes asymptotically with M1/2 normalization.

Figure 3.1b shows results for the integrand g(x1, x2) = x2
1 + x2

2/3 − 4/3. Since

this g depends on both x1 and x2, the approach by Liu et al. [1994] no longer applies.

Figure 3.1b compares the variances of the fixed weight and variable weight control

variate estimators (3.6) and (3.7), as well as the Rao-Blackwellized and empirical

estimators (3.5) and (3.1), as ρ varies. For this example, the variable weight control

variate estimates outperform the fixed weight estimates. The fixed weight estimates

substantially outperform the empirical and Rao-Blackwellized estimates.

Figure 3.1c shows results for the integrand g(x1, x2) = x1 + x2. The control

variate estimates (both fixed-weight and general) attain 0 asymptotic variance, even

though the empirical and Rao-Blackwellization estimates have positive asymptotic

variance. This can be explained as follows. Taking the random sweep kernel Q =

(Π1 + Π2)/2, we have Qg = (1 + ρ)g/2, so that g is an eigenfunction of Q with



69

eigenvalue λ = (1 + ρ)/2. Therefore, taking c = 1/(1 − λ) and f = g gives g(x) −

c{g(x)−Qg(x)} = 0 a.e. π. Thus, the optimal random sweep Gibbs sampling scheme

from Theorem 3.3 has an asymptotic variance of 0. From Theorem 3.3, we have that

the optimal fixed weight deterministic sweep control variate scheme must also attain

0 asymptotic variance. Figure 3.1c demonstrates that the control variate estimates

indeed achieve 0 asymptotic variance, as the MSE for the control variate estimates are

nearly exactly 0 except for large ρ, where finite sample error in estimating C̃ causes the

MSE to be just barely above 0. On the other hand, the empirical and Rao-Blackwell

estimators perform much worse, particularly for larger ρ.

(a) (b) (c)

Figure 3.1: Mean squared error (MSE) for different ρ values in a bivariate normal

π example, with the integrands (a) g(x1, x2) = x2, (b) g(x1, x2) = x2
1 + x2

2/3 − 4/3,

and (c) g(x1, x2) = x1 + x2. The estimator labels empirical, Rao-Blackwell, fixed-1,

fixed-2, variable, and LWK correspond, respectively, to Equations (3.1), (3.5), (3.6)

with weight from (3.17), (3.6) with weight from (3.18), (3.7) with weight from (3.19),

and (3.20).

3.5.2 Ising Model

Next, we consider a one-parameter Ising model on an n× n square grid of cells.

We take n = 20. The state space is X = {−1, 1}n2
, where X = 2X is the set of

all subsets of X. The probability density function of the desired stationary measure
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with respect to counting measure on (X,X ) is π(x) = exp{ηT (x)− ξ(η)}, where the

sufficient statistic T (x) =
∑

i∼j,i<j xixj, and the notation i ∼ j indicates that i is a

neighbor of j. Thus, the contribution from a given i,j pair with i ∼ j is positive when

xi and xj are equal, and negative otherwise. The term ξ(η) = log[
∑

x∈X exp{ηT (x)}]

is a log normalizing constant. We write x−i for the values at all sites of x except site

i. Also, we use xi to denote the configuration x with the ith value flipped, so that

(xi)
i = −xi, and (xi)−i = x−i.

We consider deterministic sweep Gibbs samplers, as well as deterministic sweeps

composed of Metropolis-type updates. We first define Gibbs sitewise kernels for each

i = 1, ..., n by

Πi(x, {x′}) = I(x′−i = x−i)π(x′){π(x) + π(xi)}−1

= I(x′−i = x−i) exp{ηT (x′)}


∑
x∗∈X:

x∗i∈{−1,1}
x∗−i=x−i

exp{ηT (x∗)}


−1

∀x, x′ ∈ X.

Each Πi is a Gibbs kernel with respect to (hi, π) for the coordinate projection hi :

X → R, x→ x−i. Further, we define sitewise Metropolis kernels Qi by

Qi(x, x
′) = I(x′ = xi)0.9ai(x) + I(x′ = x)[0.1 + 0.9{1− ai(x)}]

where ai(x) = min{π(xi)/π(x), 1}. Each Metropolis kernel Qi corresponds to propos-

ing to flip the value at the ith coordinate with probability 0.9, and then accepting any

flip with probability ai(x). Note that we do not always propose to flip the value at

site i. It is straightforward to show that the Qi(x, x
′) satisfy the reversibility condi-

tion (A.1a).
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For each of the Gibbs and Metropolis sitewise update types, we consider two

different types of compositions of the sitewise updates, so that in total, four Markov

chain schemes are considered. First, in the raster sweep, we construct Markov chains

{Xt}∞t=0 using the update Πσt(1) (resp., Qσt(1)) at each time step t, where the sites are

traversed sequentially proceeding first down each column of the grid, and then across

the columns in order.

We next consider a checkerboard sweep, where we partition the bipartite lattice

into two components W1 and W2, as in Figure 3.2a, and then update each component

in sequence. To update each component, we construct composition kernels

Hk(x, x
′) =

∏
i/∈Wk

Πi

 (x, x′) k = 1, 2

for the Gibbs kernels and

Jk(x, x
′) =

∏
i/∈Wk

Qi

 (x, x′) k = 1, 2

for the Metropolis kernels. Because of the lattice neighborhood structure of the sites,

any ordering of the Πi (resp., Qi) in the compositions Hk (resp., Jk) leads to an

equivalent transition kernel, and both composition kernels can be implemented using

independent Bernoulli draws at every site not in Wk. For the checkerboard sweeps,

we construct Markov chains {Xt}∞t=0 by applying the kernel Hσ(t) (resp., Jσ(t)) at each

time t. For example, for the Gibbs-based sampler, H1 is used to obtain X1 from X0,

and H2 is used to obtain X2 from X1. Thus, at each step, all of the cells are updated

in one of the components Wk.

It is straightforward to verify that Hk itself is a Gibbs kernel with respect to

(hk, π), where hk : X → R|Wk|, x → xWk
denotes the coordinate projection which ob-
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tains the values inWk. All four sweeps are irreducible with respect to the uniform prob-

ability measure on (X,X ). Additionally, taking C = X, b = 1, Vk(x) to be the con-

stant function Vk(x) = 2 maxx′∈X |T (x′)| for k = 1, 2, and g(x) = T (x)−
∫
π(dx′)T (x′)

ensures (A.3) holds for chains composed of either the Gibbs and Metropolis updates.

Finally, the aperiodicity condition in Assumption (A.4) holds for the composition

chains PK
k (where K = n2 for the raster sweeps and K = 2 for the checkerboard

sweeps). For both the Gibbs and Metropolis updates, this follows from the fact that

PK
k (x, {x}) > 0, ∀x ∈ X

for raster and checkerboard scans with either Gibbs or Metropolis sitewise updates.

For the Gibbs sampler chains, we could alternatively have verified (A.4) by using

Lemma B.3.

For each sweep type, we considered estimators based on 2000 sweeps through

the grid. For the raster sweeps, we used B = 5(400) = 2000, which corresponds to

lags resulting from 5 complete sweeps through the grid. For the checkerboard sweeps,

we used B = 5(2) = 10, which also corresponds to 5 sweeps through the grid.

In Figures 3.2 and 3.3, method=“fixed-1” and “fixed-2” correspond to estimating

C̃ via (3.17) and (3.18), respectively. In Figure 3.2, MSE is computed based on the

empirical average squared error of 100 estimated means, where each estimated mean

used 2000 complete sweeps through the grid. That is, M = 2000(n2) = 800000 for the

raster sweeps, and M = 2000(2) = 4000 for the checkerboard sweeps.

Figure 3.2 shows the MSE for the checkerboard and raster sweeps with Metropo-

lis and Gibbs updates. Figure 3.2b shows the performance of the estimators for

checkerboard sweep. Figure 3.2c shows that for the raster sweep, the variable weight



73

control variate estimator performs much worse than the other estimators, likely due

to the fact that n2 weights must be estimated for this scheme. Figure 3.2d shows the

MSE for the raster sweep, for the estimators remaining after excluding the variable

weight control variate estimate. In Figure 3.2d, the empirical and Rao-Blackwellized

schemes nearly overlap for both Gibbs and Metropolis schemes. For Gibbs sampling,

the fixed weight estimator based on (3.16) performs best, as expected, but the fixed

weight batch estimator also performs well. For Metropolis sampling, the fixed weight

estimators perform similarly, but the MSE for the batch means estimator is often

smaller than for the fixed weight estimator based on (3.16).

For each value of the Ising model parameter η, we estimated the true value

of
∫
π(dx)g(x) using a long checkerboard sweep run with 100000 complete sweeps

through the grid, so that M = 100000(2) = 200000. We used the Rao-Blackwellized

estimator to compute the means.
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(a) Conditional independence struc-

ture for the square lattice Ising model

(b) Ising model with checkerboard

sweep

(c) Ising model with raster sweep

(d) Ising model with raster sweep,

with variable weight control variate

estimator exluded

Figure 3.2: Mean squared error (MSE) for the Ising model simulation example at

different values of η, for deterministic raster and checkerboard sweeps.

We also examined the effect of the truncation level B on the performance of the

various estimates (Figure 3.3). Our study allowed us to confirm three notable the-

oretical properties of the control variate estimators. First, for Gibbs samplers, the

optimal fixed weight control variate formula based on (3.17) (horizontal line with

smaller dashes) always performed better than the corresponding estimator (3.18), as

expected. For the Gibbs samplers, the approximate estimator (3.18) performed best

near B = 4, where the estimation performances were nearly identical to, but slightly

worse than, the estimates using (3.17). Second, our results for each setting demon-

strate empirically that setting the batch size B = 0 is asymptotically equivalent to

the Rao-Blackwellization approach (3.5) (horizontal line with larger dashes). Third,
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for the Metropolis samplers, using (3.18) with the best-performing B in each setting

leads to a better control variate weight than using the fixed weight estimator (3.17)

(horizontal line with smaller dashes).

(a) Checkerboard sweep (b) Raster sweep

Figure 3.3: Mean squared error (MSE) for the fixed weight control variate method

with checkerboard and raster sweeps, for the Ising model with η = 0.3, based on 100

simulated means at each batch size B, where each simulated mean used M = 2000

draws.
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Chapter 4

Conclusions and Discussion

In Chapter 2, we modeled forest communities on a landscape via a latent Markov

random field model. The spatially correlated model outperformed the spatially in-

dependent model for parameter estimation in a simulation study and for prediction

on the historical Wisconsin PLS dataset. The fitted models were sensible relative

to prior ecological literature, and we provided ecological interpretation of the fitted

models on the PLS dataset. We also proposed a stochastic approximation procedure

for jointly estimating the forest community species compositions and the spatial cor-

relation strength in our latent Markov random field model.

In Forbes et al. [2013], which studied similar a similar model to the one in Chap-

ter 2, the spatial correlation structure includes additional parameters to allow the

interaction strength to depend on the forest types. We achieved adequate results with

a single spatial correlation parameter, and leave the investigation of more sophisticated

spatial correlation structures to future work. It would also be interesting to relate the

forest community classifications to environmental covariates across the PLS survey

area. Finally, while we provide a computationally feasible method in this work, pa-

rameter estimation for noisily observed Markov random fields is still computationally
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challenging. We believe this is a promising direction for future research.

In Chapter 3, we studied control variate methods for deterministic sweep Markov

chains. We proposed control variate estimators with theoretical and practical benefits

relative to existing approaches in the literature. Our proposed methodology should

be particularly useful in applications involving deterministic sweep Gibbs samplers,

where our fixed weight control variate estimator is simple to implement, comes with

rigorous theoretical guarantees, and performs well in practice.

In the future, it will be useful to investigate good choices for the control vari-

ate basis functions in practical settings. In addition, while we consider only a fixed

number of control variate basis functions here, it would be of interest to study high-

dimensional asymptotic settings wherein a control variate basis of suitable functions f

increases in dimension to infinity along with the Markov chain sample size, similar to,

e.g Mijatović et al. [2018]. A potential “Holy Grail” type goal of this approach would

be to achieve, in more practical settings than currently exist, zero variance, or nearly

zero variance, estimates of integrals with respect to probability distributions. Here,

zero variance estimates should be contrasted with the usual “slow”,
√
M -normalized

rate of convergence that occurs in typical Monte Carlo simulations.

We add one note of caution regarding control variates. In the Markov chain set-

ting, control variates reduce variance essentially by post-processing the Markov chain,

leaving the transition kernel of the underlying chain unchanged. Thus, we expect

control variate methods to be applicable primarily to Markov chains with reasonable

convergence to the stationary distribution, so that asymptotic results relating to the

MCMC central limit theorems are believable. Put bluntly, we do not expect control

variates to be able to cure convergence difficulties resulting from an inefficient tran-
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sition kernel, in which case it may take a great deal of time for asymptotic results of

the kind proven in Chapter 3 to take effect. Alternative approaches which directly

modify the transition kernels to improve the convergence behavior of the chain are

thus a useful avenue for further research.
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Appendix A

Appendix to Chapter 2

A.1 Additional Computational Details

A.1.1 Gibbs Sampling Transition Kernel Pθ(z, z
′)

In this section, we define the Gibbs sampling kernel Pθ(z, z
′) for updating the

label configurations z. Recall that for z ∈ Ω2 = Ω × Ω, we have z = (z1, z2), where

we hope to draw the label configuration z1 according to the conditional distribution

p(z|y, θ), and z2 according to the marginal distribution p(z|η), so that z corresponds

to a draw from πθ(z) = p(z1|y, θ)p(z2|θ). Both p(z|η) and p(z|y, θ) are Markov ran-

dom field densities with the same neighborhood structure. This can be shown by

deriving (via a brief computation) the conditional probabilities p{z1(i)|y, z1(−i), θ}

and p{z2(i)|z2(−i), θ}. For z ∈ Ω, let z(−i) refer to the values at all cells except the
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ith cell. Using the notation pik
∆
= p(yi|zi = k, θ), we have

p{z2(i) = k
∣∣z2(−i), θ}

=



exp[ηk+ηK
∑
i′∼i I{z2(i′)=k}]

exp[ηK
∑
i′∼i I{z2(i′)=K}]+

∑K−1
k′=1

exp[ηk′+ηK
∑
i′∼i I{z2(i′)=k′}]

; (k < K)

exp[ηK
∑
i′∼i I{z2(i′)=K}]

exp[ηK
∑
i′∼i I{z2(i′)=K}]+

∑K−1
k′=1

exp[ηk′+ηK
∑
i′∼i I{z2(i′)=k′}]

; (k = K)

(A.1)

and

p{z1(i) = k
∣∣y, z1(−i), θ}

=



pik exp[ηk+ηK
∑
i′∼i I{z1(i′)=k}]

piK exp[ηK
∑
i′∼i I{z1(i′)=K}]+

∑K−1
k′=1

pik′ exp[ηk′+ηK
∑
i′∼i I{z1(i′)=k′}]

(k < K);

piK exp[ηK
∑
i′∼i I{z1(i′)=K}]

piK exp[ηK
∑
i′∼i I{z1(i′)=K}]+

∑K−1
k′=1

pik′ exp[ηk′+ηK
∑
i′∼i I{z1(i′)=k′}]

;

(k = K)

(A.2)

For z ∈ Ω2, let zj(i) refer to the value at cell i in the jth label configuration of

z (recall j ∈ {1, 2}). We will use zjz
′
j(i) ∈ Ω to denote the configuration for which

(zjz
′
j)(i) =


zj(i) for i ≥ m

z′j(i) for i < m

The single sweep Gibbs sampler Pθ(z, z
′)

∆
= Pθ,1(z1, z

′
1)Pθ,2(z2, z

′
2) is defined in

terms of Gibbs sampling transition kernels Pθ,1(·, ·) : Ω × Ω → [0, 1] and Pθ,2(·, ·) :

Ω × Ω → [0, 1]. The transition kernels Pθ,1(z1, z1′) and Pθ,2(z2, z
′
2) are constructed,

respectively, to have p(z1|y, θ) and p(z2|θ) as their stationary distributions. They are
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defined in terms of single-cell transition kernels P i
θ,j(·, ·):

P1,θ(z1, z
′
1)

∆
=

n∏
i=1

P i
θ,1{z1z

′
1(i), z1z

′
1(i+ 1)}

P2,θ(z2, z
′
2)

∆
=

n∏
i=1

P i
θ,2{z2z

′
2(i), z2z

′
2(i+ 1)}

In turn, for x, x′ ∈ Ω, the single-cell kernels are defined by

P i
θ,1(x, x′)

∆
= I {x′(−i) = x(−i)} p{x′(i)|y, x(−i), θ}

piθ,2(x, x′)
∆
= I {x′(−i) = x(−i)} p{x′(i)|x(−i), θ} (A.3)

The conditional probabilities required by Equation A.3 are given in Equations A.1

and A.2.

A.1.2 Implementation Details for Algorithm 1

We choose the stepsize c in Algorithm 1 by finding c so that the behavior of the

algorithm is reasonable: for too large a stepsize, the algorithm may oscillate between

nonsensically large parameter values, while for too small a stepsize, the convergence of

the algorithm is extremely slow. For the PLS data examples, we use c = 0.02/n, where

n is the number of cells in the grid. Another useful trick is the following: rather than

using the initial time t = 1 and stepsize sequence εt = 1/t, we use the “time-shifted”

sequence with initial time t = D and εt = D/(t + D), for some moderately large

D. This causes the stepsize to decrease much more slowly as the iterations proceed;

effectively, the time shifted sequence uses a larger stepsize by a factor of D, but also

starts at a higher iteration number. Some caution is in order as Younes [1988] shows

that the convergence of Markov chain stochastic optimization may only be guaranteed

for small enough stepsizes, but we did not experience convergence issues in our work.
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For the PLS model fits, we use 8000 steps and D = 200, so that the shifted time at

the final step is TFinal = 8000 +D = 8200.

Additionally, the Gibbs sampling step in Algorithm 1 can be made much faster

for square lattice grids by exploiting the small number of spatial neighbors (≤ 4)

of each cell. From Equations A.1 and A.2, the single-site conditional probabilities

needed for Gibbs sampling depend only on the neighboring values. The neighboring

grid cells of a given cell can be obtained quickly, and their values used to compute

the necessary conditional probabilities, by using a sparse symmetric adjacency matrix

representation of the lattice structure. In a sparse adjacency matrix representation,

the storage format of the matrix (column-major or row-major) will determine the most

efficient scheme for accessing the neighbors. In a column (row) major sparse matrix

A, it will be fastest to find the ith neighbor of site j by finding the row index of the

ith nonzero entry in the jth column (row) [see, e.g., software documentation such as

in Guennebaud et al., 2010, for more details].

A.1.3 Path Integration to Evaluate Loglikelihoods

For the spatially correlated models we estimate here, the holdout likelihood in

Equation 2.22 of the main text is difficult to compute. It is technically possible to

compute `holdout(θ̂) via a Gibbs sampling average with respect to p(z|θ̂). However, the

marginal distribution p(z|θ̂) will tend to put most of its mass on configurations with

very low p(ytest|z, θ̂), and computing Equation 2.22 by averaging over configurations

obtained from Gibbs sampling of p(z|θ̂) is not efficient. The path integral approach

we now describe is a method to estimate `holdout that overcomes the high variance of

approaches based on importance sampling [Gelman and Meng, 1998, Neal, 1993].
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In path integration, we aim to compute differences in marginal likelihood between

two parameter settings, θ1 and θ2, via integrations of the form

∆(θ1, θ2) = `holdout(θ2)− `holdout(θ1) =

∫ 1

0

∂`holdout
∂θ

T ∂θ(t)

∂t
dt (A.4)

where θ(t) = (1− t)θ1 + tθ2.

We estimate the integral in Equation A.4 using stochastic estimates of ∂`holdout
∂θ

.

The derivative of the holdout loglikelihood with respect to ηK is ∂`holdout(θ)
∂ηK

= E(TK |ytest, θ)−

E(TK |θ). We can approximate this derivative by the estimate TK(z1)−TK(z2), where

z is an approximate draw from πθ(z) defined in Equation 2.20 in the main text. In

practice, the starting point θ1 is frequently chosen so that `holdout(θ1) can be easily

computed. In our case, `holdout(θ1) can easily be computed exactly when the spatial

correlation parameter ηK for θ1 is 0.

We define θ̂ind to be the parameter θ̂ but with correlation parameter ηK set to 0

(so that the labels are marginally independent under θ̂ind). Then we compute

`pen(θ̂) = `pen(θ̂ind) + ∆(θ̂ind, θ̂) (A.5)

The difference ∆(θ̂ind, θ̂) is computed using the procedure in Algorithm 2.
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Algorithm 2: Path integration procedure

Initialize parameter θ = θ̂ind, configuration z ∈ Ω2, number of iterations

T

Set ∆(θ̂ind, θ̂) = 0

Set h = 1/T

Set ∆h = hη̂K ;

for t=1 to T do

Draw z′ ∈ Ω2 according to Pθ(z, ·)

z = z′

∆(θ̂ind, θ̂) = ∆(θ̂ind, θ̂) + ∆h {TK(z1)− TK(z2)}

η(θ)K = η(θ)K + ∆h

Return ∆(θ̂ind, θ̂)

By the definition of θ̂ind, only ηK differs along the θ̂ind to θ̂ path. Additionally,

we note that path integration procedures are sometimes implemented by discretizing

a θ1 − θ2 path, and then approximating the derivative ∂`holdout
∂θ

at each point based

on many Monte Carlo or Markov Chain Monte Carlo runs. In contrast, here we

use a single draw at each iteration with new parameter values separated by small

increments. The goal of this modification is to avoid the need for a burnin period at

each new parameter value by slowly transitioning (over T iterations) from θ̂ind to θ̂.

A.2 EM Updates for the Spatially Independent Model, and

Stochastic Gradient Updates

A.2.1 Independent EM

When the labels are spatially independent, it will be convenient to use the vector

w ∈ RK to refer to the marginal probabilities of each label type, so that p(Zi = k|w) =
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wk. We will still use µ ∈MK to refer to the conditional distribution parameters and

θ to refer to the joint (w,µ) parameter. Under spatial independence, the observed

data density is

p(y|θ) =
n∏
i=1

(
K∑
k=1

wk

M∏
m=1

µymi
mk

)

and the observed data loglikelihood is

`(θ) =
n∑
i=1

log

(
K∑
k=1

wk

M∏
m=1

µymi
mk

)
.

For our implementation of the EM algorithm for the spatially independent

mixture model, we regularize the w vector via the Dirichlet prior penalty ρ1(w) =

(α − 1)
∑K

k=1 log(wk). We regularize the µ matrix via the Dirichlet prior penalty

ρ2(µ) = (α − 1)
∑K

k=1

∑M
m=1 log(µmk), which is the same ρ2(µ) as was used in Sec-

tion 2.3 for the spatially dependent EM algorithm.

We now write `pen(θ) = `(θ) + ρ1(w) + ρ2(µ) for the regularized spatially inde-

pendent loglikelihood.

The conditional distribution of the latent label at cell i given parameter θ and

tree count vector yi is

p(zi = k|yi, θ) =
wkp(yi|zi = k,µk)∑K

k′=1wk′p(yi|zi = k′,µk′)

As in the main article, we may construct the minorizing functionQ(θ|θold) = Q1(w|θold)+

Q2(µ|θold) where

Q1(w|θold) = (α− 1)
K∑
k=1

log(wk) +
n∑
i=1

K∑
k=1

p(zi = k|yi, θold) log(wk)
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and

Q2(µ|θold)

= (α− 1)
M∑
m=1

K∑
k=1

log(µmk) +
n∑
n=1

K∑
k=1

M∑
m=1

ymip(zi = k|yi, θold) log(µmk)

It can be shown using the argument in Section A.2.2 that the entries of the

maximizers wnew and µnew are given by

wnewk =
α− 1 +

∑n
i=1 p(zi = k|yi, θold)

K(α− 1) +
∑K

k′=1

∑n
i=1 p(zi = k′|yi, θold)

µnew
mk =

α− 1 +
∑n

i=1 p(zi = k|yi, θold)ymi
M(α− 1) +

∑M
m′=1

∑n
i=1 p(zi = k|yi, θold)ym′i

A.2.2 Jensen’s Inequality Argument

A standard textbook result based on Jensen’s inequality (see, e.g., Shao [2003]

example 1.49) states that the following inequality holds for any two length M proba-

bility vectors x, y with positive entries and
∑M

m=1 xm =
∑M

m=1 ym = 1:

M∑
m=1

xm log(xm/ym) ≥ 0 (A.6)

The inequality is strict except when x = y, where equality holds. Now, consider

maximizing

M∑
m=1

hm log(µm) (A.7)

over µ ∈ {µ :
∑M

m=1 µm = 1, µm > 0,∀m}, where each hm is required to be positive

but
∑M

m=1 hm is not required to be 1. Let H =
∑M

m=1 hm. Maximizing Equation A.7

over µ is equivalent to maximizing

M∑
m=1

(hm/H) log(µm) (A.8)
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over µ. By the inequality in Equation A.6, we have

M∑
m=1

(hm/H) log

{
(hm/H)

µm

}
> 0 (A.9)

except when µm = hm/H for each m. Thus, to maximize Equation A.7, we must take

µm = hm/H for each m.

A.2.3 Stochastic Gradient and Rescaled Stochastic Gradient Updates

The forest community conditional densities take the form

p(yi|zi = k,µk) =
M∏
m=1

µymk
mk

= exp{φT
k yi − qiξ(φk)}

where φk ∈ RM is a vector of exponential family natural parameters corresponding

to the mean parameter µk. Since the entries of µk must sum to 1, this exponential

family parameterization is not full-rank.

For the stochastic gradient update, we will take the parameter θT =
[
ηT ,~(φ)T

]
where φ ∈ RM×K has columns φk. It is convenient to perform the gradient updates on

the φ space rather than the µ space since the φ space is unbounded. From standard

results on exponential families, we have

∂ log p(yi|zi = k,φk)

∂φk

= yi − qiµk,

where the relationship between the mean parameters µk and the natural parameters

φk for exponential families was used [see, e.g., Shao, 2003].

Now, noting p(y|θ) =
∑

z∈Ω p(y|z, θ)p(z|η), we have

∂ log{p(y|θ)}
∂φk

=
∑
z∈Ω

p(z|y, θ)fφk(z)
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where fφk(z) =
∑n

i=1 I(zi = k)(yi − qiµk).

The stochastic gradient procedure follows Algorithm 1, using the update formula

GSG(θ, z) = GSG

([
η
~(φ)

]
, z

)
= c

[{
∂ρ1(η)
∂η

+ T (z1)− T (z2)
}

Hα(φ, z1)

]

where the φ update is

Hα(φ, z1)mk = (α− 1)(1−Mµmk) +
n∑
i=1

I{z1(i) = k}(ymi − qiµmk)

The gradient descent update formula is quite similar to the EM-like update for-

mula in Equation 2.19 of the main text. However, the gradient descent update occurs

on the φ (natural parameter) scale, rather than the µ (mean parameter) scale, and the

denominator term for the stochastic gradient update is not scaled by the number of

trees in the dataset. When
∑n

i=1 qi is very large, this may lead to poor behavior since

the order of magnitude of the gradient components with respect to φk will increase

with
∑n

i=1 qi, while the order of magnitude of T (z1) and T (z2) depends only on the

number of grid cells (and not on the number of trees observed
∑n

i=1 qi). In such cases

it may be valuable to rescale the components of the likelihood gradient corresponding

to the η and φ parameters. In the “rescaled” stochastic gradient algorithm in the

simulation study, we use

GRSG(θ, z) = GRSG

([
η
~(φ)

]
, z

)
= c

[
(1/n)

{
∂ρ1(η)
∂η

+ T (z1)− T (z2)
}

Hα,RSG(φ, z1)

]

where the φ update is

Hα,RSG(φ, z1)mk =
(α− 1)(1−Mµmk) +

∑n
i=1 I{z1(i) = k}(ymi − qiµmk)

M(α− 1) +
∑n

i=1 qi
.

and n is the number of grid cells. The MSE for the rescaled update are smaller than

for the ordinary SG update (Tables 2.6 and 2.7). The improvement seems to result
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from putting the updates for the Markov random field parameter η and the conditional

distribution parameter φ on a more similar scale. In this way, the incremental EM

update in Equation 2.15 in the main article can be viewed as a sort of automatic

preconditioning, although in the incremental EM algorithm it is still necessary to

choose a good stepsize c for the η update.
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Appendix B

Appendix to Chapter 3

The proofs of Lemmas B.1–B.9 are in Appendix A. Appendix B.2 contains (in or-

der), the proofs of Theorem 3.1, Corollaries 3.1–3.2, Theorems 3.2–3.3, and Proposi-

tions 3.1–3.2.

B.1 Proofs of Lemmas

In Lemmas B.1–B.3, we show that the length K composition kernels PK
k are

aperiodic when the Πk are Gibbs kernels for k = 1, ..., K.

Lemma B.1. Assume (A.1b). Suppose P t
kIA(x) = IA(x) a.e. π for some t > 1. Then

P t−1
σ(k)IA = IA a.e. π.

Proof: We have

〈IA, IA〉 = 〈P t
kIA, P

t
kIA〉 = 〈P t−1

σ(k)IA, P
t
kIA〉

≤ 〈P t−1
σ(k)IA, P

t−1
σ(k)IA〉

1/2 〈P t
kIA, P

t
kIA〉

1/2

= 〈P t−1
σ(k)IA, P

t−1
σ(k)IA〉

1/2 〈IA, IA〉1/2

where the first and final equalities follow since P t
kIA = IA a.e. π, the second equal-

ity follows from reversibility and idempotence of Πk, and the inequality follows from

the Cauchy-Schwarz inequality. Jensen’s inequality gives 〈P t−1
σ(k)IA, P

t−1
σ(k)IA〉 ≤ 〈IA, IA〉,
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which from the preceding implies 〈P t−1
σ(k)IA, P

t−1
σ(k)IA〉 = 〈IA, IA〉. Since 〈P t−1

σ(k)IA, P
t−1
σ(k)IA〉 =

〈IA, IA〉, applying the Cauchy-Schwarz inequality to P t−1
σ(k)IA and P t

kIA implies P t−1
σ(k)IA(x) =

P t
kIA(x) = IA(x) a.e. π.

Lemma B.2 below relates the stationary measure π to the irreducibility measure

ψ.

Lemma B.2. Assume (A.1) and (A.2), and suppose ψ(A) > 0 for some A ∈X , and

PK
k (x,A) = 1 for all x ∈ A. Then π(A) = 1.

Proof of Lemma B.2: Note that for any A ∈X ,

π(A) =
∞∑
t=1

2−tπ(A) =
∞∑
t=1

2−t
∫
π(dx)PKt

k IA(x)

Now, suppose some set A ∈ X satisfies ψ(A) > 0 and PK
k (x,A) = 1 for all

x ∈ A. Then

π(A) =
∞∑
t=1

2−t
∫
π(dx)PKt

k IA(x)

=
∞∑
t=1

2−t
∫
π(dx)IAP

Kt
k IA(x)

+
∞∑
t=1

2−t
∫
π(dx)IACP

Kt
k IA(x)

= π(A) +

∫
π(dx)IAC

∞∑
t=1

2−tPKt
k IA(x)

Thus, IAC
∑∞

t=1 2−tPKt
k IA(x) = 0 a.e. π. But from ψ-irreducibility of PK

k , the infinite

sum is positive for all x. This implies IAC = 0 a.e. π, and thus π(A) = 1.

Now, we finish the proof of aperiodicity.

Lemma B.3. Under (A.1b) and (A.2), the transition kernels PK
k are aperiodic.

Proof: Consider some arbitrary k from 1, ..., K. From Theorem 5.4.4 of Meyn

and Tweedie [2009] and the ψ-irreducibility of PK
k , there exists an integer d and a

collection of sets D1, ..., Dd satisfying
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1. PK
k (x,Di+1) = 1 for x ∈ Di, i ≡ 0, ..., d− 1 (mod d)

2. ψ{(∪di=1Di)
C} = 0

3. D1, ..., Dd are disjoint

We show that PK
k is aperiodic by showing that d = 1 is the largest integer such

that 1-3 hold for a collection of sets D1, ..., Dd. Suppose to the contrary that d > 1 for a

collection of sets D1, ..., Dd satisfying 1-3. From Lemma B.2, we have π(∪di=1Di) = 1.

Thus, PKd
k IDi = IDi a.e. π for each i. Now, K(d − 1) applications of Lemma B.1

imply PK
k IDi = IDi a.e. π for each i. Additionally, π(Di) > 0 for at least one i, so

for this i, H = {x ∈ Di : PK
k IDi = 1} is non-empty. But this is a contradiction, since

PK
k (x,Di+1) = 1 for all x ∈ H. Thus, any collection of sets D1, ..., Dd satisfying 1-3

must have d = 1. This proves the result.

Lemma B.4. Assume (A.1)–(A.4) hold. Suppose Πkf = f a.e. π for each k =

1, ..., K, where f : (X,X )→ (R,R). Then f is constant a.e. π.

Proof: Suppose ΠkIA = IA a.e. π for each k, for some A ∈ X . We first show

π(A) = 0 or 1. Define a Markov chain {Yt}∞t=0 by the initial distribution Y0 ∼ π

and the transition kernel PK
1 . Then we have IA(Yt) = IA(Y0) almost surely for all t.

Now under (A.1)–(A.4), a Law of Large Numbers holds, so that M−1
∑M−1

t=0 IA(Yt)
a.s.→∫

π(dx)IA(x). Thus, IA(Y0) =
∫
π(dx)IA(x) almost surely. This implies

∫
π(dx)IA(x) =

0 or 1.

Now, let H = {A ∈ F : ΠkIA = IA a.e. π, ∀k}. We show H is a σ-field. The

empty set φ ∈ H and the state space X ∈ H . Also, for any arbitrary A ∈ H , we

have π(A) = 0 or π(A) = 1. This implies AC ∈ H for each A ∈ H . Finally, for
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{An}∞n=1 with each An ∈ H , we have π(∪∞n=1An) = 0 or 1, so that ∪∞n=1An ∈ H .

Thus, H is a σ-field.

We have Πkf = f a.e. π by assumption. We now show f is H -measurable. Let

B ∈ R given. Define A = f−1(B). Also, define Ak = (Πkf)−1(B) for each k. We have

IA = IAk a.e. π for each k since f = Πkf a.e. π for each k. Thus A = f−1(B) ∈ H .

Since B was arbitrary, f is H measurable.

Finally, we show that f is constant a.e. π. Without loss of generality, we assume

f ≥ 0. For general f , we may use the standard decomposition of f into positive and

negative components and apply the following reasoning to each component [see, e.g.,

Chapter 1 of Shao, 2003]. Since f is H -measurable, we can construct a sequence

{fn}∞n=1 of H -measurable simple functions such that fn ↑ f pointwise. Now, let

b =
∫
π(dx)f(x). Then π({x : f(x) > b}) = lim

n→∞
π({x : fn > b}) = 0, where we used

{fn > b} ⊂ {fn+1 > b} for each n by monotone convergence of the fn, as well as the

fact that fn are constant a.e. π so that
∫
π(dx)fn ≤ b implies fn ≤ b a.e. π. Thus,

f(x) = b a.e. π. This completes the proof.

Lemma B.5. Assume (A.1)–(A.4) hold, and suppose (B.4) holds for the function

f : X → Rp. Then for any a ∈ Rp, we have

aT

[∑
k

∫
π(dx){ffT − (Πkf)(Πkf)T}

]
a = 0

if and only if aTf = b a.e. π for some constant b.

Proof: Follows easily from Lemma B.4.

Lemma B.6. Let U be a symmetric positive semidefinite p × p matrix, and V be a

p×d matrix such that aTV = 01×d for any vector a with Ua = 0. Then for all p-vectors

a,

U †V ∈ arg min
C∈Rp×d

aT{CTUC − CTV − V TC}a
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Proof: First, we note that when U = 0p×p, then V = 0 also, so that aT{CTUC−

CTV − V TC}a = 0 for all a, for any choice of C. In particular, aT{CTUC − CTV −

V TC}a = 0 for all a for C = U †V . Otherwise, since U is symmetric positive semidef-

inite, we may write U = QDQT where Q is a p × r matrix with r ≤ p orthonormal

columns, and D is a r× r diagonal matrix with strictly positive diagonal entries. Fur-

ther, for any C ∈ Rp×d, we may write C = QR + B where R ∈ Rr×d, B ∈ Rp×d, and

QTB = 0r×d.

It can be checked that the value of the B component of C does not affect the

value of aT (CTUC − CTV − V TC)a, so that minimizers of the form C = QR exist.

When C = QR, we have

CTUC − CTV − V TC = XTX − V TQD−1QTV (B.1)

where X = D1/2QTC −D−1/2QTV . The second term in (B.1) does not depend on C.

Now, aTXTXa ≥ 0 for arbitrary C. But U † = QD−1QT , so that taking C = U †V

gives X = D1/2QTQD−1QTV −D−1/2QTV = 0. Thus, aT{CTUC −CTV − V TC}a is

minimized for each a whenever C = U †V . This completes the proof.

In Lemma B.7–B.8, we take K = 2 and Q = (Π1 + Π2)/2.

Lemma B.7. Assume (A.1b)–(A.3) and (B.1)–(B.2). Then we have
∑∞

t=1 |Qtg(x)|
is square integrable with respect to π, and

∑∞
t=1Q

tg(x) =
∑∞

t=1(P t
1 + P t

2)g(x) a.e. π.

Proof: We show the result for scalar g : X → R. The result follows for general

g : X → Rp by applying the reasoning below elementwise.

Note Qtg = {(Π1 + Π2)/2}tg =
∑t

i=1 2−t
(
t−1
i−1

)
(P i

1 + P i
2)g a.e. π via idempotence
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of the Πk, so that

M∑
n=1

|Qng(x)| ≤
M∑
n=1

2−n
n∑
i=1

(
n− 1

i− 1

)
{|P i

1g(x)|+ |P i
2g(x)|}

=
M∑
i=1

M∑
n=1

{|P i
1g(x)|+ |P i

2g(x)|}2−n
(
n− 1

i− 1

)
I(i ≤ n) (B.2)

≤
M∑
n=1

(|P n
1 g(x)|+ |P n

2 g(x)|)

a.e. π, where the second inequality follows because

∞∑
n=i

2−n
(
n− 1

i− 1

)
=
∞∑
r=1

2−(i−1+r)

(
i− 2 + r

i− 1

)
= 1,

which itself is a well-known identity related to the pdf of a negative binomial random

variable.

The Assumptions (A.1b)–(A.3) imply (A.1)–(A.4) hold, and since (B.1)–(B.2)

also hold, we have
∑∞

t=1 |P t
1g(x)| + |P t

2g(x)| < ∞ a.e. π by Proposition 3.1. Thus∑∞
n=1 |Qng(x)| converges a.e. π, and

∞∑
n=1

Qng(x) = lim
M→∞

M∑
i=1

M∑
n=1

{P i
1g(x) + P i

2g(x)}2−i
(
n− 1

i− 1

)
I(i ≤ n)

=
∞∑
n=1

P n
1 g(x) + P n

2 g(x),

a.e. π, where the final equality follows from using Fubini’s Theorem and the identity∑∞
i=n 2−i

(
i−1
n−1

)
= 1.

Lemma B.8. Assume (A.1b), (A.2)–(A.3), and (B.1)–(B.4) hold. Assume {Xt}∞t=0

is defined as in Theorem 3.1. Take SM as in (3.6) and define HM =
∑M−1

t=0 g(Xt) −
CT{f(Xt)−Qf(Xt)}. Then M−1/2(SM −HM)

a.s.→ 0.

Proof of Lemma B.8: We prove the result assuming X0 ∼ π. When X0 ∼

ν for general ν, the result can be shown with a coupling argument as sketched in

Theorem 3.1.
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We prove the result for scalar f, g : X → R and C = c ∈ R. The extension to

g : X → Rd, f : X → Rp, and C ∈ Rp×d can be shown by applying the univariate

result elementwise for each of the d elements of M−1/2(SM −HM).

For univariate f, g and scalar c, we have

SM −HM =

b(M−1)/2c∑
t=0

cΠ1f(X2t) +

b(M−2)/2c∑
t=0

cΠ2f(X2t+1)

−
M−1∑
t=0

c{Π1f(Xt) + Π2f(Xt)}/2.

Now, when t is even, Π1f(Xt) = Π1f(Xt+1) almost surely, and similarly, Π2f(Xt) =

Π2f(Xt+1) almost surely when t is odd. Thus

b(M−1)/2c∑
t=0

cΠ1f(X2t)−
M−1∑
t=0

cΠ1f(Xt)/2

=


0 M even

cΠ1f(XM−1)/2 M odd

almost surely, and

b(M−2)/2c∑
t=0

cΠ2f(X2t+1)−
M−1∑
t=0

cΠ2f(Xt)/2

=


−cΠ2f(X0)/2 M odd

−cΠ2f(X0)/2 + cΠ2f(XM−1)/2 M even

almost surely. Thus,

M−1/2|SM −HM |

≤M−1/2c{|Π2f(X0)/2|+ |Π1f(XM−1)/2|+ |Π2f(XM−1)/2|} a.s.→ 0

as M →∞ by applying the Strong Law of Large Numbers along the K = 2 subchains

to the function {(Π1 + Π2)f(x)/2}2.
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Lemma B.9. Consider the Gibbs kernels Π1 and Π2 from the bivariate normal Gibbs

sampling example. Then there exists an r > 0 such that Assumption (A.3) holds

for the composition kernels P 2
1 and P 2

2 with the choices V1(x) = x2
1 + rx2

2 + 1 and

V2(x) = rx2
1 + x2

2 + 1.

Proof: First, we show that the {X2n}∞n=0 and {X2n+1}∞n=1 chains are T-chains,

in the sense of Meyn and Tweedie [2009]. To do this, we show that the composition

kernels P 2
1 (x, ·) and P 2

2 (x, ·) are strong Feller chains. Since the kernels P 2
k (x, ·) are

aperiodic (Lemma B.3) and ψ-irreducible, this will imply from part (ii) of Theorem

6.2.5 in Meyn and Tweedie [2009] that every compact subset of R2 is small.

To show that P 2
1 (x, ·) is strong Feller, we check that

lim inf
n

P 2
1 (xn, A) ≥ P 2

1 (x,A)

for any A ∈ R2 and sequence {xn}∞n=1 with xn = (x1n, x2n) ∈ R2 and xn → x.

Let A ∈ R2, and suppose {xn}∞n=1 is a sequence in R2 with xn → x∗. We have∫
P 2

1 (xn, dx
′)IA(x′)

= B

∫
exp{−(1− ρ2)−1(x′2 − ρx1n)2/2} exp{−(1− ρ2)−1(x′1 − ρx′2)2/2}IA(x′)dx′1dx

′
2

where x′ = (x′1, x
′
2), and the constant B = {2π(1 − ρ2)}−1 does not depend on xn or

x′. Now, since xn → x∗, we have in particular that x1n → x∗1. Thus, by continuity,

lim inf
n

exp{−(1− ρ2)−1(x′2 − ρx1n)2/2} exp{−(1− ρ2)−1(x′1 − ρx′2)2/2}

= exp{−(1− ρ2)−1(x′2 − ρx∗1)2/2} exp{−(1− ρ2)−1(x′1 − ρx′2)2/2}

Therefore, from Fatou’s Lemma, we have lim inf
n

P 2
1 (xn, A) ≥ P 2

1 (x∗, A), so P 2
1 is

strong Feller. The proof that P 2
2 is also strong Feller is similar. Thus, all compact sets

are small for P 2
1 and P 2

2 from Theorem 6.2.5 in Meyn and Tweedie [2009].
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Now, consider V1(x) = x2
1 + rx2

2 + 1 where 0 < r < (1 − ρ4). Take λ1 = ρ4 + r.

Then Π2V1(x) = ρ2x2
2 + (1− ρ2) + rx2

2 + 1 and

Π1Π2V1(x) = (ρ4 + rρ2)x2
1 + (1 + ρ2 + r)(1− ρ2) + 1

≤ λ1V1(x) + (1 + ρ2 + r)(1− ρ2) + 1− λ1 − λ1rx
2
2

Now, take b = (1 + ρ2 + r)(1 − ρ2) + 1 − λ1 and c > 0 such that λ1rc
2 ≥

(1 + ρ2 + r)(1− ρ2) + 1− λ1. Then we have P 2
1 V1(x) = Π1Π2V1(x) ≤ λ1V1(x) + bIC(x)

where C = [−c, c] × [−c, c]. Since C is compact, C is small, so (A.3) is satisfied for

P 2
1 .

Similarly, it can be shown that P 2
2 also satisfies (A.3).

In Lemma B.10 below, take Π1, ...,ΠK : X ×X → [0, 1] to be a set of transition

kernels and let {Xt}∞t=0 be a Markov chain with initial law ν and transition kernel

Πσt(1) at time t. For positive integers m, define the Markov chain {Y (m)
t }∞t=0 by Y

(m)
t =

(XKt, ..., XKt+mK−1) ∈ XmK , so that each Yt ∈ XmK contains the the Xt′ which result

from m sweeps through the K kernels starting from XKt. Let P̃ be the transition

kernel associated to Yt. From our definition of Yt, the initial law ν̃ of the Yt chain is

ν̃(dy) = ν(dy1)Π1(y1, dy2) · · ·ΠK−1(dymK−1,mK).

Lemma B.10. Suppose Assumptions (A.1)–(A.4) hold for the kernels PK
k and Πk,

k = 1, ..., K. Then P̃ is π̃-stationary for the measure π̃(dy1, ..., dymK) = π(dy1)Π1(y1, dy2)Π2(y2, dy3) · · ·ΠK−1(ymK−1, dymK).

Additionally, P̃ is ψ̃-irreducible for the measure ψ̃(dy) =
∫
ψ(dx0)ΠK(x0, dy1)Π1(y1, dy2) · · ·ΠK−1(ymK−1, dymK),

where the integral is taken over x0 only. Further, there exist constants λ < 1 and

b > 0, a function Ṽ : XmK → [1,∞), and a P̃ -small set C̃ such that the drift condi-

tion P̃ Ṽ (y) ≤ λṼ (y) + bIC̃(y) holds. Finally, P̃ is aperiodic. Thus, the strong law of

large numbers holds so that

lim
M→∞

M−1

M−1∑
t=0

g(Yt) =

∫
π̃(dy)g(y)

almost surely for functions g : XmK → R with
∫
π̃(dy)|g(y)| <∞.
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Proof of Lemma B.10: The π̃-stationarity of P̃ follows from the π-stationarity

of the Πk, k = 1, ..., K under Assumption (A.1).

Next, we show that P̃ is ψ̃-irreducible. Let a set A be given such that ψ̃(A) > 0,

and let y∗ ∈ XmK be given. We show there exists an integer t such that P̃ t(y∗, A) > 0.

Since ψ̃(A) > 0, using the definition of ψ̃ yields the existence of constants ε0, ε1 > 0 and

a set B ∈ X such that ΠK(x0, dy1)Π1(y1, dy2) · · ·ΠK−1(ymK−1, dymK) > ε0 for all x0 ∈

B, y ∈ A, and ψ(B) > ε1. Now, by the ψ-irreducibility of PK
K under Assumption (A.2),

P t0K
K (y∗mK , B) > 0 for some integer t0. Further, observe that P̃ t(y,XmK−1 × C) =

P tK
K (ymK , B) for all y ∈ XmK and C ∈X . Thus, P̃ t0+m(y∗, A) ≥ P t0K

K (y∗mK , B)ε0 > 0,

so P̃ is ψ̃-irreducible.

We now verify the drift condition. Take λ = λK , b = bK , Ṽ (y) = VK(ymK),

and C = XmK−1 × CK , with λK , bK , VK , and CK as in Assumption (A.3). Then

P̃ Ṽ (y) = PK
K VK(ymK) ≤ λKVK(ymK) + bKICK (ymK) = λṼ (y) + bIC(y). Thus, all

that remains to verify the drift condition is to show that the set C is P̃ -small.

Since CK is PK
K -small by Assumption (A.3), there exists an integer t such that

P tK
K (x,A) ≥ ν(A) for all x ∈ CK , A ∈ X , for some non-trivial measure ν. Let

ν̃(dy) =
∫
ν(dx0)ΠK(x0, dy1)Π1(y1, dy2) · · ·ΠK−1(ymK−1, dymK). Then P̃ t+m(y, A) ≥

ν̃(A) for all y ∈ C, A ∈X mK . Thus, C is P̃ -small.

Finally, we verify that P̃ is aperiodic. Suppose to the contrary that for some

d > 1 there exist disjoint D1, ..., Dd ∈ B(XmK) satisfying P̃ (y,Dσ(i)) = 1 for y ∈ Di,

and ψ̃((∪di=1Di)
C) = 0.

By assumption, P̃md+1(y,Dσ(i)) = 1 for y ∈ Di, for each i = 1, ..., d. By the

Markov property, there exists a kernel P : X × B(XmK) → [0, 1], where P (·, A) :

X → [0, 1] is a measurable function for each A ∈ B(XmK) and P (x, ·) is a probability
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measure for each x ∈ X, such that P̃md+1(y, A) = P (ymK , A) for all y ∈ XmK , A ∈

B(XmK). Let D̃i = P (·, Dσ(i))
−1({1}) ∈ X , and let D̄i = XmK−1 × D̃i. We have

D̃i ∩ D̃j = φ for i 6= j and D̄i ∩ D̄j = φ for i 6= j. Since ψ̃((∪di=1Di)
C) = 0, we

have D̄i = Di almost everywhere with respect to ψ̃. Thus the D̄i are an alternative

collection of disjoint sets satisfying P̃ (y, D̄σ(i)) = 1 for y ∈ Di and ψ̃((∪di=1D̄i)
C) = 0.

But since the D̄i have the form XmK−1×D̃i, we have P̃ (y, D̄i) = PK
K (ymK , D̃i) for each

i and thus the D̃i are a collection of disjoint sets satisfying PK
K (x, D̃σ(i)) = 1 for x ∈ D̃i.

Since PK
K (x,∪di=1D̃i) = 1 for x ∈ ∪di=1D̃i, we have ψ((∪di=1Di)

C = 0, so that PK
K is

periodic. But this is a contradiction, since PK
K is aperiodic under Assumption (A.4).

B.2 Proofs of Theorems, Corollaries, and Propositions

Proof of Theorem 3.1:

First, we consider the case when the initial measure ν = π. In this case, the law

of {Xt}∞t=0 is Pπ and X0 ∼ π. To simplify notation, we will prove the result in the

univariate case where g : X → R, f : X → R, and Ck = ck ∈ R. In the remainder, for

notational clarity, we will use the conventions Πt = Πσt(1), ct = cσt(1), and ĝt = ĝσt(1),

so that

SM =
M−1∑
t=0

g(Xt)− ct+1{f(Xt+1)− Πtf(Xt)} (B.3)

=
M−1∑
t=0

ĝt(Xt)− Πtĝt+1(Xt)− ct+1{f(Xt+1)− Πtf(Xt)}

= ĝ0(X0)− ĝM(XM) (B.4)

+
M−1∑
t=0

ĝt+1(Xt+1)− Πtĝt+1(Xt)− ct+1{f(Xt+1)− Πtf(Xt)}

a.e. Pπ, where we are using the identity ĝt − Πtĝt+1 = g a.e. π from Proposition 3.1

in the second equality, and rearranging the sum in the third equality.
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The term UM :=
∑M−1

t=0 ĝt+1(Xt+1)−Πtĝt+1(Xt)−ct+1{f(Xt+1)−Πtf(Xt)} is an

L2 martingale (since X0 ∼ π, and the ĝt are square integrable with respect to π from

Proposition 3.1). The remainder term ĝ0(X0) − ĝM(XM) will be shown to be small

using the Law of Large Numbers for Markov chains. Thus, we expect the asymptotic

behavior of SM to be similar to that of UM , and we will apply a central limit theorem

for martingales to deal with this term.

We now introduce a martingale central limit theorem, Theorem 1, which follows

immediately from Theorem 3.2, Corollary 3.1 of Hall and Heyde [1980]. We use
p→ to

denote convergence in probability.

Theorem 1. Let {Sni,Fni, 1 ≤ i ≤ kn, n ≥ 1} be a zero-mean, square integrable

martingale array with differences Yni = Sni − Sn,i−1 (Sn0 := 0). Suppose

1. (conditional Lindeberg) for all ε > 0,
∑kn

i=1E{Y 2
niI(|Yni| > ε)|Fn,i−1}

p→ 0

2. (converging conditional variances)
∑kn

i=1 E(Y 2
ni|Fn,i−1)

p→ σ2

where σ2 is a constant. Then Snkn =
∑

i Yni
d→ Z, where the R.V. Z has characteristic

function exp(−σ2t2/2).

Now, for i > 0 we define Di = ĝi(Xi)−Πi−1ĝi(Xi−1)− ci{f(Xi)−Πi−1f(Xi−1)},

and take kn = n, Fni = σ(X0, ..., Xi), and Sni = n−1/2
∑i

j=1Dj. From these defi-

nitions, we have Fni ⊂ Fn,i+1 for 1 ≤ i < n. We will verify Conditions 1 and 2 of

Theorem 1 hold for {Sni,Fni, 1 ≤ i ≤ kn, n ≥ 1} defined in this way, following Section

17.4.2 of Meyn and Tweedie [2009]. In order to motivate this approach, we note that

Snn = n−1/2Un.

Now, for k = 1, ..., K, we define rk(i) = k + (i − 1)K. For t ≥ k, we define

mk(t) = max{i ∈ N : rk(i) ≤ t}. For checking the conditional Lindeberg condition 1,
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it is enough to show that

mk(n)∑
i=1

E{Y 2
n,rk(i)I(|Yn,rk(i)| > ε)|Fn,rk(i)−1}

p→ 0

as n → ∞ for each k = 1, ..., K. Conditions (A.1)–(A.3) imply that for k = 1, ..., K,

the subchains (Xk+Kt−1)∞t=1 are Harris recurrent with stationary measure π. Therefore,

the Law of Large Numbers (Theorem 17.3.2 of Meyn and Tweedie [2009]) holds for

each subchain. Consider an arbitrary k. For i ≥ 1, n ≥ rk(i), we have

E{D2
rk(i)I(|Drk(i)| > b)|Fn,rk(i)−1} = hbk(Xrk(i)−1)

a.e. Pπ for some π-integrable function hbk : X → R. Therefore

lim sup
n

mk(n)∑
i=1

E{Y 2
n,rk(i)I(|Yn,rk(i)| > b)|Fn,rk(i)−1}

= lim sup
n

n−1

mk(n)∑
i=1

E{D2
rk(i)I(|Drk(i)| > n1/2b)|Fn,rk(i)−1}

≤ lim sup
n

n−1

mk(n)∑
i=1

E{D2
rk(i)I(|Drk(i)| > b∗)|Fn,rk(i)−1}

≤ K−1lim sup
n→∞

{mk(n)− 1)}−1

mk(n)∑
t=1

hb
∗

k (Xrk(i)−1)

= K−1

∫
π(dx)hb

∗

k (x)

a.e. Pπ for any b∗ > 0, where the first equality follows from the definition of Yni,

and the last equality follows from applying the Law of Large numbers to the subchain

{Xrk(i)−1}∞i=1. Now, from the properties of conditional expectation, and the dominated

convergence theorem, we can find a sequence bj ↑ ∞ for which
∫
π(dx)h

bj
k (x) ≤ j−1
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for each j. Thus, we obtain

lim sup
n

mk(n)∑
i=1

E{Y 2
n,rk(i)I(|Yn,rk(i)| > b)|Fn,rk(i)−1} ≤ (jK)−1

almost surely for each j, so the eventlim sup
n

mk(n)∑
i=1

E{Y 2
n,rk(i)I(|Yn,rk(i)| > b)|Fn,rk(i)−1} = 0


= ∩j

lim sup
n

mk(n)∑
i=1

E{Y 2
n,rk(i)I(|Yn,rk(i)| > b)|Fn,rk(i)−1} ≤ (jK)−1


has probability 1. Repeating this argument for each k = 1, ..., K verifies the condi-

tional Lindeberg condition 1.

To verify the variance convergence in condition 2, we use the Law of Large

Numbers on each subchain again to obtain
∑

iE(Y 2
ni|Fn,i−1)

a.s.−Pπ→ σ2 where

σ2 = K−1

K∑
k=1

∫
π(dx)Πk(x, dy)[ĝσ(k)(y)− Πkĝσ(k)(x)− cσ(k){f(y)− Πkf(x)}]2

= K−1

K∑
k=1

[
〈ĝσ(k) − cσ(k)f, ĝσ(k) − cσ(k)f〉

− 〈Πkĝσ(k) − cσ(k)Πkf,Πkĝσ(k) − cσ(k)Πkf〉
]

(B.5)

The convergence in probability in Condition 2 of Theorem 1 then follows immediately

from the almost sure convergence. Thus by Theorem 1, we have Snn
d→ Z where Z

has characteristic function exp(−σ2t2/2).

We now deal with the remainder term ĝ0(X0)− ĝM(XM)− c0f(X0) + cMf(XM).

Clearly, M−1/2ĝ0(X0)−c0f(X0)
a.s.→ 0 as M →∞. Additionally, from the Law of Large

Numbers applied to each subchain,

M−1∑
t=0

M−1{ĝk(Xk+Kt−1)− ckf(Xk+Kt−1)}2→
∫
π(dx){ĝk(x)− ckf(x)}2 <∞
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almost surely as M → ∞ for each k = 1, ..., K. Therefore, M−1/2{ĝM(XM) +

cMf(XM)} a.s.→ 0 also.

Applying Slutsky’s Theorem, we obtain M−1/2SM
d→ Z where Z has character-

istic function exp(−σ2t2/2).

Now, we have σ2 = K−1
∑K

k=1Bk where

Bk = 〈ĝσ(k) − cσ(k)f, ĝσ(k) − cσ(k)f〉 − 〈Πkĝσ(k) − cσ(k)Πkf,Πkĝσ(k) − cσ(k)Πkf〉

= 〈ĝσ(k) + Πkĝσ(k), ĝσ(k) − Πkĝσ(k)〉 − 2cσ(k)(〈f, ĝσ(k)〉 − 〈Πkf,Πkĝσ(k)〉)

+ c2
σ(k)(〈f, f〉 − 〈Πkf,Πkf〉) (k = 1, ..., K).

Note

K∑
k=1

〈ĝσ(k) + Πkĝσ(k), ĝσ(k) − Πkĝσ(k)〉

=
K∑
k=1

〈ĝσ(k), ĝσ(k)〉 − 〈Πkĝσ(k),Πkĝσ(k)〉

=
K∑
k=1

〈ĝk, ĝk〉 − 〈Πkĝσ(k),Πkĝσ(k)〉

=
K∑
k=1

〈ĝk + Πkĝk, ĝk − Πkĝσ(k)〉

=
K∑
k=1

〈g, g〉+ 2
∞∑
t=1

〈g, P t
kg〉

where the last equality used Proposition 3.1 to simplify ĝk − Πkĝσ(k). Thus,

σ2 = K−1

K∑
k=1

Bk = 〈g, g〉+ 2K−1

K∑
k=1

∞∑
t=1

〈g, P t
kg〉

+K−1

K∑
k=1

c2
σ(k)(〈f, f〉 − 〈Πkf,Πkf〉)− 2cσ(k)(〈f, ĝσ(k)〉 − 〈Πkf,Πkĝσ(k)〉)

We now extend to the multivariate case by the Cramer-Wold device. Let f :
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X → Rd, g : X → Rp, Ck ∈ Rp×d, and

SM =
M−1∑
t=0

g(Xt)− CT
t f(Xt) + CT

t+1Πtf(Xt).

a ∈ Rd. Define Uk =
∫
π(dx){ffT − (Πkf)(Πkf

T )} and Vk =
∫
π(dx){fĝTσ(k) −

(Πkf)(Πkĝσ(k))
T}. Then we have aTM−1/2SM

d→ Z where Z is a random variable with

characteristic function exp(−aTΣCat
2/2), with

ΣC =

∫
π(dx)ggT + 2K−1

K∑
k=1

∞∑
t=1

∫
π(dx)g(Pkg)T

+K−1

K∑
k=1

CT
σ(k)UkCσ(k) − CT

σ(k)Vk − V T
k Cσ(k).

Since this holds for arbitrary a, we have by the Cramer-Wold Theorem thatM−1/2SM
d→

Z, where Z is a random variable with characteristic function exp(−tTΣCt/2).

Finally, we extend from the multivariate case with initial measure π, to the

multivariate case with initial measure ν 6= π. In this case, the desired convergence

in distribution can be shown to hold via a coupling argument, as in Roberts and

Rosenthal [2004]. We sketch the proof here. We construct on the same probability

space two Markov chains {Xt}∞t=0 and {X̃t}∞t=0, with initial law ν × π for (X0, X̃0).

Then, we update the chains using a joint transition kernel chosen so that

1. each chain is marginally a Markov chain with transition kernel Πt = Πσt(1) at

time t, and

2. Xt = X̃t for all t > t0, for some random t0, almost surely.

The aperiodicity assumption (A.4) and the geometric drift to the petite set C in

Assumption (A.3) ensure such a transition kernel can be constructed.
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Then, M−1/2(SM − S̃M)
a.s.→ 0, where SM =

∑M−1
t=0 g(Xt) − CT

t+1{f(Xt+1) −

Πtf(Xt)} and S̃M =
∑M−1

t=0 g(X̃t) − CT
t+1{f(X̃t+1) − Πtf(X̃t)}. Thus, from Slutsky’s

theorem, M−1/2SM
d→ Z where Z has characteristic function exp(−tTΣCt/2).

Now, we show that ΣC is minimized when Cσ(k) = U †kVk. First, we show Uka =

01×d implies aTVk = 0. To see this, note that Uka = 0 implies∫
π(dx)Πk(x, dy)aT{f(y)− Πkf(x)}{f(y)− Πkf(x)}Ta = 0

so that aT{f(y)−Πkf(x)} = 0 a.e. λk, where λk is the measure on (X2,F 2) defined

by λk(A×B) =
∫
π(dx)Πk(x, dy)I(x ∈ A, y ∈ B). In this case,

aTVk =

∫
π(dx)aT{fĝσ(k) − ΠkfΠkĝ

T
σ(k)}

=

∫
λk(dx× dy)aT{f(y)− Πkf(x)}{ĝσ(k)(y)− Πkĝσ(k)(x)}

= 01×d.

Finally, we note that ΣC depends on Cσ(k) only through the termK−1(CT
σ(k)UkCσ(k)−

CT
σ(k)Vk − V T

k Cσ(k)). By Lemma B.6, this term is minimized when Cσ(k) = U †kVk. This

completes the proof.

Proof of Corollary 3.1: First, we obtain the simplified expression V =

K−1
∑K

k=1 Vk =
∫
π(dx)fgT for V . Under the Gibbs kernel assumption (A.1b),
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V = K−1

K∑
k=1

Vk = K−1

K∑
k=1

∫
π(dx){fĝTσ(k) − Πkf(Πkĝ

T
σ(k))}

= K−1

K∑
k=1

∫
π(dx){fĝTk − Πkf(Πkĝ

T
σ(k))}

= K−1

K∑
k=1

∫
π(dx){fĝTk − f(Πkĝ

T
σ(k))}

= K−1

K∑
k=1

∫
π(dx)fgT =

∫
π(dx)fgT

where the second line rearranged the sum of the fĝσ(k) terms, and the third line

used the equality
∫
π(dx)Πkf(Πkĝσ(k))

T =
∫
π(dx)f(Πkĝσ(k))

T from reversibility and

idempotence of Πk. The last line follows from Proposition 3.1.

In general, we have

K−1

K∑
k=1

CTUkC − V T
k C − CTVK = CTUC − CTV − V TC,

and

ΣC =

∫
π(dx)ggT +K−1

K∑
k=1

∞∑
t=1

∫
π(dx){g(Pkg)T + (Pkg)gT}

+K−1

K∑
k=1

CT
σ(k)UkCσ(k) − CT

σ(k)Vk − V T
k Cσ(k).

=

∫
π(dx)ggT +K−1

K∑
k=1

∞∑
t=1

∫
π(dx){g(Pkg)T + (Pkg)gT}

+ CTUC − CTV − V TC

which is the representation of ΣC given in Corollary 3.1.

Now, we show that Ua = 0 implies aTV = 0, so that we may apply Lemma B.6

to the term CTUC − CTV − V TC. First, we have that Ua = 0 implies aTUa = 0,
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so from Lemma B.5, we have Ua = 0 implies aTf = b a.e. π. In this case aTV = 0

from the same reasoning as in the proof of Theorem 3.1. Thus, Lemma B.6 shows that

CTUC −CTV − V TC is minimized when C = C̃, where C̃ = U †V . Since ΣC depends

on C only through CTUC − CTV − V TC, we have that ΣC is minimized at C = C̃.

This completes the proof.

Proof of Corollary 3.2:

We have

Σ1 = Σ0 +K−1

K∑
k=1

CT
σ(k)UkCσ(k) − CT

σ(k)Vk − V T
k Cσ(k)

= Σ0 +K−1

K∑
k=1

Uk − 2Vk

= Σ0 −
∫
π(dx)ggT −K−1

K∑
k=1

∫
π(dx)(Πkg)(Πkg)T ≤ Σ0,

where the first equality used Theorem 3.1, and the second equality used Ck = Id×d for

each k = 1, ..., K and the fact f = g. The third equality results from applying identity

K−1
∑K

k=1 Vk =
∫
π(dx) =

∫
π(dx)ggT . The inequality holds since both integrals are

of nonnegative functions, so that the subtracted integrands are nonnegative.

Proof of Theorem 3.2:

Under the Assumptions in the statement of Theorem 3.2, we show

M−1/2

M−1∑
t=0

(ĈB
σt(1),M − C̃σt(1))

T{f(Xt+1)− Πσt(1)f(Xt)}
p→ 0

M−1/2

M−1∑
t=0

(ĈB
M − C̃)T{f(Xt+1)− Πσt(1)f(Xt)}

p→ 0

M−1/2

M−1∑
t=0

(ĈGibbs
M − C̃)T{f(Xt+1)− Πσt(1)f(Xt)}

p→ 0

The result then follows from Slutsky’s Theorem and Theorem 3.1.
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We give the proof for M−1/2
∑M−1

t=0 (ĈGibbs
M − C̃)T{f(Xt+1) − Πσt(1)f(Xt)}

p→ 0.

The other convergence results follow similarly. Let U = Q0DQ
T
0 be an eigendecom-

position of U , so that Q ∈ Rp×r with r < p columns and D is a diagonal matrix with

positive entries on the diagonal. Let Q1 ∈ Rp×(p−r) be an orthonormal basis for the

orthogonal complement Q⊥1 of Q1 in Rp. Note Ip×p = Q0Q
T
0 +Q1Q

T
1 From Lemma B.5,

we have QT
1 {f(Xt+1)−Πσt(1)f(Xt))} 6= 0 only finitely many times under (A.1)–(A.3).

Furthermore from Lemma B.5, we have for QT
1 f 6= c for some vector c only finitely

many times. Note

Proof of Theorem 3.3: First, consider the case where g : X → R and f :

X → R, and C ∈ R, so that SM is a sum of scalar terms.

From Lemma B.7, we have
∑∞

t=0 |Qtg| is square integrable with respect to π.

Thus, ĥ = −Cf +
∑∞

t=0 Q
tg is square integrable and satisfies the Poisson equation

ĥ−Qĥ = h a.e. π.

It can be then be shown from the same martingale central limit theorem approach

as in Theorem 3.1 that for the random sweep chain, we have M−1/2SM → Z where Z

is a random variable with characteristic function exp(ΣRS
C t2/2), with ΣRS

C = 〈ĥ, ĥ〉 −

〈Qĥ,Qĥ〉 denoting the asymptotic variance ΣC
RS for the control variate scheme with

arbitrary C, in distinction to ΣRS which denotes the asymptotic variance with the

optimal C. We first show that ΣRS
C = 〈h, h〉+ 2

∑∞
t=1 〈h,Qth〉. We have

ΣRS
C = 〈ĥ, ĥ〉 − 〈Qĥ,Qĥ〉

= 〈−C(f +Qf) + g + 2
∞∑
t=1

Qtg, g − C(f −Qf)〉

= 〈h− 2CQf + 2
∞∑
t=1

Qtg, h〉 (B.6)

where the first equality follows from the martingale CLT, and the second inequality
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follows from the identify a2 − b2 = (a+ b)(a− b). Also,

2
∞∑
t=1

〈h,Qth〉 = 2
∞∑
t=1

〈h,Qtg − CQt(f −Qf)〉

= −2C
∞∑
t=1

〈h,Qt(f −Qf)〉+ 2
∞∑
t=1

〈h,Qtg〉

= −2C 〈h,Qf〉+ 2C lim
t→∞
〈h,Qt+1f〉+ 2

∞∑
t=1

〈h,Qtg〉 .

Now, we define ‖f‖ = 〈f, f〉1/2. From Lemma 2 in Burkholder and Chow [1961], we

have since Q is positive and self-adjoint that there exists an idempotent, self adjoint

operator Q̄ such that lim
t→∞
‖Q̄r−Qtr‖ = 0 for any function r : X → R with 〈r, r〉 <∞.

But for such a Q̄, we have QQ̄f = Q̄f a.e. π, since

‖QQ̄f − Q̄f‖ ≤ ‖QQ̄f −Qtf‖+ ‖Qtf − Q̄f‖

≤ ‖Q̄f −Qt−1f‖+ ‖Qtf − Q̄f‖

and lim
t→∞
‖Q̄−Qt−1f‖+‖Qtf−Q̄f‖ = 0. Since QQ̄f = Q̄f a.e. π, we have Π1Q̄f = Q̄f

a.e. π and Π2Q̄f = Q̄f a.e. π. Thus, from Lemma B.4, Q̄f is constant a.e. π, so that

lim
t→∞
〈h,Qt+1f〉 = 〈h, Q̄f〉 = 0, since

∫
π(dx)h(x) = 0. Therefore, 2

∑∞
t=1 〈h,Qth〉 =

−2C 〈h,Qf〉+ 2
∑∞

t=1 〈h,Qtg〉, so that we may rewrite (B.6) as

ΣRS
C = 〈h, h〉+ 2

∞∑
t=1

〈h,Qth〉

We now show that ΣC = 〈h, h〉 +
∑∞

t=1 〈h,Qh〉 where ΣC is the asymptotic

variance in Corollary 3.1 for the fixed weight scheme. First, we observe

∞∑
t=1

〈h,Qtg〉 =
∞∑
t=1

〈g, (P t
1 + P t

2)g〉 − C
∞∑
t=1

〈g,Qt(f −Qf)〉

= −C 〈g,Qf〉+ C lim
t→∞
〈g,Qt+1f〉+

∞∑
t=1

〈g, (P t
1 + P t

2)g〉

= −C 〈g,Qf〉+
∞∑
t=1

〈g, (P t
1 + P t

2)g〉
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Thus,

〈h, h〉+
∞∑
t=1

〈h,Qth〉 = 〈h, h〉 − C 〈h,Qf〉 − C 〈g,Qf〉+
∞∑
t=1

〈g, (P t
1 + P t

2)g〉

= 〈g, g〉+
∞∑
t=1

〈g, (P t
1 + P t

2)g〉

− 2C 〈f, g〉+
2∑

k=1

C2(〈f, f〉 − 〈Πkf,Πkf〉)

which coincides with the asymptotic variance in Corollary 3.1.

The extension to multivariate g : X → Rd, f : X → Rp, and C : X →

Rd×p follows via the Cramer-Wold device. We have M−1/2SM → Z where Z has

characteristic function exp(tTΣRS
C t/2) with

ΣRS
C =

∫
π(dx)hhT + 2

∞∑
t=1

∫
π(dx)h(Qth)T

for the random sweep chain and

ΣC =

∫
π(dx)hhT +

∞∑
t=1

∫
π(dx)h(Qth)T .

for the deterministic sweep chain. The expression in Theorem 3.3 for the difference

ΣC̃ − ΣRS between the optimal variances is obtained by arithmetic. We observe that∑∞
t=1

∫
π(dx)h(Qh)T is positive semidefinite since Q is a positive, self-adjoint oper-

ator and therefore has a positive, self-adjoint square root Q̃ with Q̃Q̃ = Q, so that∫
π(dx)h(Qth)T =

∫
π(dx)Q̃th(Q̃th)T ≥ 0.

Proof of Proposition 3.1: We first prove the result for univariate g : X → R.

Define g̃k(x) =
∑∞

t=0 P
Kt
k g(x), for each k. By Assumption (A.4), the kernels PK

k are

aperiodic. Additionally, from Assumption (A.2), Markov chains resulting from PK
k
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are irreducible. From the geometric drift condition (A.3), Theorem 15.0.1 of Meyn

and Tweedie [2009] implies

∞∑
t=0

|PKt
k g(x)| ≤ RVk(x) (B.7)

for some R <∞ and all x ∈ X, for k = 1, ..., K.

Recall the definition

ĝk(x) =
∞∑
t=0

P t
kg(x) k = 1, ..., K

We now show that
∑∞

t=0 |P t
kg(x)| is square integrable with respect to π for each k.

First, we note that it is sufficient to prove
∑∞

t=0 |Pm
k {PKt

σm(k)g}| is square integrable

with respect to π for each m = 0, ..., K − 1, since in this case

∞∑
t=0

|P t
kg(x)| =

K−1∑
m=0

∞∑
t=0

|Pm
k {PKt

σm(k)g}|

.

Now, we have∫
π(dx)

[
Pm
k

{
∞∑
t=0

|PKt
σm(k)g|

}]2

≤
∫
π(dx)Pm

k

{ ∞∑
t=0

|PKt
σm(k)g|

}2


≤
∫
π(dx)Pm

k {R2V 2
σm(k)} =

∫
π(dx)R2V 2

σm(k) <∞

for each m = 0, ..., K − 1. The first inequality follows from Jensen’s inequality, the

second inequality follows from (B.7) and the equality follows because the Πk preserve

the stationary probability distribution π.

We may then apply Fubini’s theorem for π a.e. x to obtain∫
π(dx)

[
Pm
k

{
∞∑
t=0

|PKt
σm(k)g|

}]2

=

∫
π(dx)

[
∞∑
t=0

Pm
k {|PKt

σm(k)g|}

]2

<∞.
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Now, from Jensen’s inequality, we have

∞∑
t=0

|Pm
k {PKt

σm(k)g}| ≤
∞∑
t=0

Pm
k {|PKt

σm(k)g|}.

so that
∑∞

t=0 |Pm
k {PKt

σm(k)g}| is square integrable with respect to π, for each m =

0, ..., K − 1.

Thus,
∑∞

t=0 |P t
kg| is square integrable with respect to π, and also ĝk is square

integrable with respect to π.

Now, we verify ĝk − Πkĝσ(k) = g a.e. π for each k. Since Πk

∑∞
t=0 |P t

σ(k)g| is

square integrable with respect to π, we have from Fubini’s theorem that

Πkĝσ(k) = Πk

∞∑
t=0

P t
σ(k)g =

∞∑
t=0

ΠkP
t
σ(k)g =

∞∑
t=1

P t
kg

for π a.e. x, so that ĝk − Πkĝσ(k) = g for π a.e. x.

Now, for general g : X → Rd, we have |aTg| ≤ Vk from Assumption (B.2)

whenever ‖a‖2 ≤ 1. In particular, taking a to be the vectors ei, i = 1, ..., d with

ei having 1 in the ith position and 0 elsewhere, we see from the previous reasoning

that the conclusions of the Proposition still hold. We have ĝk − Πkĝσ(k) = g a.e.

π. Additionally
∫
π(dx){

∑∞
t=0 |P t

kg|}T{
∑∞

t=0 |P t
kg|} < ∞, so that the sum

∑∞
t=0 P

t
kg

converges absolutely, elementwise, for π a.e. x, and each of the d components of∑∞
t=0 |P t

kg| are square integrable with respect to π.

Proof of Proposition 3.2: First, we show that the LWK conditioning approach

is, to within an asymptotically negligible term, an instance of the control variate

scheme in (3.6) with C = 2Id×d. Note that Qg = (Π1g + Π2g)/2 = g/2 + Π1g/2.

Define HM =
∑M−1

t=0 Π1g(Xt) =
∑M−1

t=0 g(Xt) − 2{g(Xt) − Qg(Xt)}. Then for SM =∑M−1
t=0 g(Xt) − 2{g(Xt) − Πσt(1)g(Xt)}, we have from Lemma B.8 that M−1/2(SM −
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HM)→ 0, so that M−1/2HM has the same asymptotic distribution as M−1/2SM . Thus,

ΣLWK = Σ2.

Since Π2g = g a.e. π, we have U = U1/2 = (A − B)/2. We also have V = B,

and the term CTUC−V TC−CTV in the representation of ΣC in Corollary 3.1 can be

written as CT (A−B)C/2−CTA−ATC. Now, C̃ = U †V = 2(A−B)−1A. Substituting

C = C̃ and C = 2Id×d into (B.5) and subtracting yields

ΣC̃ − Σ2 = −2A(A−B)−1A− (−2A− 2B)

= −2AT (A−B)−1A+ 2(A−B)(A−B)−1A+ 2B(A−B)−1(A−B)

= −2B(A−B)−1B ≤ 0,

where the first equality used the symmetry of A and B, and the final inequality used

the fact that A−B is positive semidefinite. When B is positive definite, the inequality

is strict.

Similarly,

Σ2 − Σ1 = −2(B + A)− {(A−B)/2− 2A} = −(A+ 3B)/2 < 0

since A is positive definite from Assumption (D.2) and B is positive semidefinite.

Finally, Σ1 − Σ0 = −(B + 3A)/2 < 0. This completes the proof.
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