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Abstract

The emergence of novel functions in allosteric transcription factors is driven by mutations whose
effects propagate through the allosteric network to create epistasis in gene expression.
Elucidating the relationship between mutations and their global effects is essential to
understanding the evolution of allosteric proteins. | integrate computational design, high-
throughput screening, structural analysis, and biophysical characterization to create and probe
the emergence of novel inducer affinity and specificity in an allosteric transcription factor. The
functional parameters of gene expression create a multidimensional fitness surface that bypasses
suboptimal regions of the fitness landscape by altering selective pressures. | develop a
generalizable design and screening workflow that yields sensors for eight selected small
molecules and can be used to probe the function of any protein that can control transcription using

variant libraries through direct measurement of RNA abundance.



1.0.0 Transcription factor evolution and engineering



1.1.0 Introduction

Allosteric transcription factors (aTFs) have critical roles in cellular processes such as
development, antibiotic resistance, and metabolism in both prokaryotes and eukaryotes'-3. Many
aTFs control gene expression by interacting with small molecules inside the cell*5. These proteins
have evolved from ancient predecessors, establishing the need for gene expression control
across evolutionary scales®. Gene duplication and mutagenesis created diverse functions in
extant aTFs”. However, the intermolecular interactions that give rise to new function in aTFs
remain largely unknown. The goal of this work is to characterize the molecular mechanisms
underlying the emergence of novel function and to apply new techniques to engineer ligand affinity

into aTFs.

Extant transcription factors have evolved from ancient precursors that carry the capacity for gene
expression control and allosteric communication®. Transcription factors are a complex platform
from which to probe evolution because gene expression control is the product of multiple
functional parameters: affinity for DNA, affinity for the small molecule, and the capability to
undergo allosteric changes that alter each. Mutations that yield novel function may affect each
parameter differently. The effect of mutations is further complicated by epistasis, or the non-
additive effect of combinations of mutations on protein function, but the prevalence of epistasis in

complex functions has not been explored.

A deeper understanding of the emergence of novel transcription factor function creates the
capacity to engineer new ligand affinity into existing aTFs. Changing ligand affinity and specificity
in aTFs can also reveal amino acid identities and positions in the protein that are critical for these
two functions. However, engineering novel ligand affinity challenging due to the intricacy of long-

range interactions in allosteric proteins. Computational approaches can readily simulate protein-



ligand interactions but lack the ability to account for allosteric function. In the absence of
mechanistic understanding of allosteric interactions, high-throughput screening must be used to

screen for designed aTFs that have preserved allosteric function.

Prokaryotic allosteric transcription factors are a simple, one component transcription regulation
system that are simple models for understanding transcription control. The TetR family of
transcriptional repressors control gene expression in response to antibiotics and other organic
molecules®. In the absence of a small molecule inducer, these proteins bind to the operator
sequence in the promoter of controlled genes to prevent RNA polymerase interaction. Once the
small molecule is present, the proteins undergo an allosteric change that reduces affinity for the
operator sequence and allows transcription of downstream genes'®. For the TetR family, these
downstream genes are typically antibiotic transporter proteins®. These proteins are a useful
framework that can probe the role of epistasis in controlling gene expression and are a useful

chassis to engineer novel function.

In chapter 2, | examine the molecular mechanisms underlying the evolution of ligand specificity in
TtgR, a member of the TetR family. For an allosteric transcription factor (aTF), function is the
combination of affinity for the inducer ligand, affinity for DNA, and allosteric changes that
accompany binding to the ligand. | engineer a specificity switch into TtgR to model the acquisition
of novel function and show that each parameter has unique patterns of epistasis even though the
epistatic interactions are consistent across parameters. These interactions and the resulting
altered specificity can be rationalized through the structural model of the engineered aTF bound
to resveratrol. Finally, | compare biophysical affinity to sensitivity to emphasize that epistasis may
also affect the allosteric response of the protein. The unique patterns of epistasis create functional

trade-offs where optimizing one function comes at the cost of another. An evolving aTF



simultaneously traverses these multiple fithess landscapes and can bypass regions of low fithess

by switching selective pressures.

In chapter 3, | create a library of aTF variants and develop an RNA-Seq strategy to screen
transcription factors for novel ligand affinity. | generate a ligand-agnostic library of variants using
phylogeny and a set of computationally stable mutations''. The ligand-agnostic nature of this
design workflow enables the same library to be screened across multiple ligands. Using RNA-
Seq, | identified multiple transcription factors that could respond to at least one of nine different
ligands. | also applied the RNA-Seq screening workflow to deep mutational scanning libraries of
TtgR. I tested the performance of these libraries against two ligands and found functional hotspots
in the DNA binding domain, at the interface between the DNA binding domain and the ligand

binding domain, and in second-shell residues of the ligand binding pocket.

In chapter 4, | discuss the conclusions of this work and future directions for both the evolution of
transcription factors and engineering aTF biosensors. This work is a preliminary glimpse into the
complexity of evolution in multifunctional proteins and the role of epistasis in function switching. |
explore the larger implications of the pervasiveness of epistasis on the evolution of novel function
in aTFs. | elaborate on the next steps required to validate the engineering workflow and improve

targeted computational design approaches.

1.2.0 Protein evolution, evolvability, and epistasis

In the following sections, | discuss the importance of epistasis on the evolution of new functions.
Epistasis is primarily visualized through fithess landscapes and characterized through two lenses:
specific and nonspecific epistasis. Epistasis has been characterized in different proteins through

the use of ancestral protein reconstruction or directed evolution. | then examine the role of



epistasis in the emergence of complex functions and consider the ability to bypass classical

fitness barriers by deconstructing these functions into separate fithess parameters.

Proteins are a complex arrangement of amino acids in three-dimensional space. The creation of
active sites, binding domains, and allosteric interactions are dependent on both the three-
dimensional arrangement and chemical properties of groups of amino acids'. As proteins
accumulate mutations during evolution, the chemical properties and spatial orientation of these
amino acid groups change to create novel interactions and functions'®'4. Understanding the
relationship between these molecular changes and the resulting influence on protein function is

essential to understanding protein evolution.

A central concept to the acquisition of novel functions is evolvability. Evolvability is the potential
of an amino acid sequence to acquire mutations that confer a novel function. Functional
promiscuity, the capacity to interact with multiple proteins or small molecules, has been argued
as a key effector of the evolution of function'>-17. Many monofunctional proteins reach an
intermediate promiscuous stage before switching to be specific for the new function, indicating
promiscuity plays an important role in the evolution of novel protein functions'®16.18. The amino
acid interactions that underlie the changes in specificity and function are often epistatic in nature,

highlighting the need to understand epistasis in the context of protein function?®.

1.2.1 Epistasis and fitness landscapes

The changes in protein function that arise from mutation are dependent on the chemical nature
of the mutation and its interactions with nearby amino acids. The effect of a mutation on protein

function can change depending on the amino acid identities at other positions; this phenomenon



is called epistasis®0. Epistasis is typically studied through a genetic lens but has been increasingly

studied in the context of protein evolution.

A useful context used to imagine epistasis is a fitness landscape, typically visualized as a three-
dimensional surface. The X and Y axes are used to describe sequence space, or the set of
possible amino acid sequences. The fitness of each sequence can then be plotted on the z-axis
to create a topographical map of protein function. As a protein evolves, it traverses sequence
space through the accumulation and fixation of mutations that increase fithess under selective
pressure'®. If each mutation contributes additively to fitness, then the fithess landscape has a
single maxima representing the sequence with optimal function?!. The number of paths that are
allowed between the starting sequence and the fithess maximum is equivalent to 2", where n is
the number of mutations between the two points. The number of available paths to a peak in the

fitness landscape is one method of characterizing epistasis.

1.2.2 Effect of epistasis on evolutionary trajectories

Epistasis results in certain combinations of mutations creating context-dependent changes in
fitness and the shape of the fitness landscape. In an epistatic system, the fitness landscape
becomes rugged, with multiple local maxima and minima corresponding to the epistatic
interactions?!. An inherent property of the ruggedness of the fithess landscape is the path-
dependence of evolutionary trajectories. Combinations of mutations will be beneficial in one
region of sequence space and be deleterious in another. Thus, the order of mutations constrains
the available evolutionary pathways of a particular sequence to discrete regions of sequence
space?°. Similarly, the global maxima of the fithess landscape is not readily accessible from any
point in sequence space because of multiple fithess minima, resulting in multiple “dead ends” of

theoretical evolutionary trajectories?®?.



The effect of epistatic interactions has been argued to be the key effector in mutation fixation
during evolution?3-25. In a blue fluorescent protein, epistatic interactions made up a minority of all
interactions, but were sufficient to build a model that could accurately predict phenotypes of
combinations of mutations with a correlation of 0.982%4. Epistatic interactions are differentially
distributed across protein domains, but contribute significantly to function?s. Reshaping the fithess
landscapes drastically alter the paths through sequence space that a protein can take to acquire

novel function.

1.2.3 Types of epistasis

Epistatic interactions are characterized by both the effect on protein function and the synergy of
the two contributing mutations. Specific epistasis refers to epistatic interactions in the context of
biophysical properties. Nonspecific epistasis refers to nonlinear effects on biological properties
like solubility, expression, or activity. In addition to these general categories based on functional
effect, one can also describe epistatic interactions in terms of individual and combinatorial effects
of mutations?6. Magnitude epistasis occurs when the combinatorial effect of two mutations is
amplified in comparison to the individual effect of each. Sign epistasis occurs when the effect of
one mutation is dependent on the presence of the other. Reciprocal sign epistasis occurs when

the effect of each mutation reverses in the presence of the other.

Specific epistasis encompasses function-switching mutations that can interact with DNA, small
molecules, or other proteins, but are affected by the identity of physically interacting nearby
residues. These nearby residues are permissive mutations, which can be required for the function
switch to occur?’. Permissive mutations must generally satisfy three categories: stabilization of

protein structure, maintenance of free energy states in different conformations, and compatibility



with parent and derived sequences?®. These mutations, when combined, nonlinearly affect the

biophysical properties contributing to novel functioné.

In contrast to specific epistasis, nonspecific epistasis affects the function at the biological level.
Nonspecific epistasis is commonly observed in the context of protein stability across a large range
of proteins?®. The initial increase in stability of the thermostable variants were required for fixation
of function-switching mutations3231.  Stability-mediated epistasis can be achieved through a
variety of means; any stabilizing mutation will thus be epistatic with any destabilizing, function-
conferring mutation. This nonspecific pairing is the root of nonspecific epistasis. The molecular
mechanism of stabilization may differ, but the overall effect remains the same3233. The key effect
is that each mutation affects the same biophysical property, like stability, that then has a
nonadditive effect on biological function. In these examples, any mutation that stabilizes the
protein exhibits nonspecific epistasis for any destabilizing mutation that also changes function.
Since the nonadditive effect manifests at the biological level, the mutations do not necessarily

directly interact.

1.2.4 Directed evolution and ancestral reconstruction are tools to study epistasis

The influence of epistasis on protein evolution can only really be examined in depth when the
sequence history of a protein is known. For example, stability-mediated epistasis in the evolution
of influenza has benefitted from the availability of the genome sequence of previous historical
strains that enabled closer examination of residue interactions®. Directed evolution is one
laboratory technique that is used to engineer novel function and preserves the sequence history
of the evolved protein'®34. However, directed evolution cannot be applied to examine protein

evolution in existing aTFs as the process involves iterative mutagenesis.



Ancestral reconstruction is one approach that can enable the laboratory resurrection of ancient
protein sequences using a combination of phylogenetically related sequences and maximum
likelihood estimationss5. Ancestral reconstructions of steroid hormone receptors have revealed
numerous intricacies about the evolution of mammalian transcription factors®. Ancestral
reconstruction has also been employed to examine the folding properties of RNAse H and ligand-
specificity of methyl-parathion hydrolase. In both cases, subtle changes in structure lead to
biological differences in either the folding pathway or the activity between ancestral and extant
proteins®”:38. Ancestral reconstruction provides the ability to test ancient protein sequences to

investigate the role of epistasis in the evolution of natural proteins.

1.2.5 Epistasis in proteins with complex function

The influence and abundance of epistasis has been thoroughly examined in numerous
proteins2837. However, many studies focus on a singular aspect of protein function to measure
the effects of epistasis. Stability, enzyme activity, DNA affinity, or small molecule affinity are all
aspects of biological function; examining each individually will give an inaccurate representation
of the influence of a mutation on protein fitness. For simple proteins with a singular biological
function such as antibodies and binding affinity, mutations are fixed under a single biological
context. However, complex proteins have multiple functions that can be optimized at different
times during evolution. Often, these proteins evolve towards one specific function and become
specialized after gene duplication events®®. This process can occur through stepwise
accumulation of mutations conferring additional specificity as subtle differences appear in the

effector molecules?”.

There is a limited understanding of the effects of mutations in multifunctional proteins on multiple

parameters and functions in an evolutionary context. In addition to selection pressures that may
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favor one biological function over another during evolution, each function can also be divided into
multiple parameters that can individually affect fithess. Transcription factor gene expression
control can be affected by changes in ligand binding affinity, DNA affinity, and allosteric
communication. While evolution will drive biological function towards an optimal fitness under
selection pressure, the biophysical mechanisms of improved fitness differ®2. Like biological
functions, each parameter may be selected independently during evolution based on the
responsiveness of the transcription factor or the activity of the enzyme. Each function and
parameter can be visualized with individual fitness landscapes. Elucidating the trajectories
complex proteins undergo through sequence space during evolution requires understanding of

the intersection of fitness parameter and function under selective pressure.

1.3.0 Engineering novel function into transcription factors

A fundamental property of many transcription factors is the ability to alter gene expression in
response to a small molecule. These molecules may be metabolites, therapeutics, or solvents
that the cell must respond to in order to survive in changing environments. The previous section
details the complexity of interactions that create transcription factor function; a natural progression
of this understanding is the engineering of new functions in characterized aTFs with rational

approaches.

The capacity to engineer small molecule affinity into aTFs is important because an engineering
workflow can be used to create novel biosensors. Biosensors are devices that use a biological
component to sense analytes in the environment. Biosensors have also been used in
environmental monitoring, food quality monitoring, and drug discovery*°. Transcription factor
biosensors are particularly useful because the biological sensing and the production of the

transducer are incorporated into a single protein in vivo. Transcription factors have been used in
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a broad array of sensing applications such as detection of trace compounds, generation of
complex gene circuits with natural and engineered transcription factors, and modulation of
metabolic control4'-48. The ability for cells to control the expression of key enzymes and proteins

to optimize readout is critical to generating automated biosynthetic production pipelines.

1.3.1 Challenges in engineering novel ligand affinity into aTFs

Engineering novel ligand affinity into transcription factors poses two major challenges. First,
redesigning the binding pocket of proteins to accommodate chemically distinct small molecules
is a challenging task. These proteins are also allosteric#®:5°. As mutations are introduced into the
ligand binding pocket to engineer affinity, the allosteric network of residues must be maintained

so that the act of ligand binding can be communicated to the DNA binding domain.

Computational design and directed evolution are two approaches that can facilitate acquisition of
new functions through mutagenesis. Directed evolution of an aTF is best suited for target
molecules that weakly interact with the wildtype transcription factor because few initial
substitutions must confer measurable improvement in function®'. Computational design enables
rapid testing of a large number of amino acid sequences in silico, producing a set of sequences
that are most likely to interact with the ligand of interest52. This approach can be used to engineer
affinity for molecules that are drastically different from the native ligand. While efficient at creating
and optimizing close-range protein-ligand interactions, computational methods cannot account
for the long-range interactions that arise in allosteric proteins®3. This limitation creates the
possibility of designed transcription factor sequences with high affinity for the target molecule, but

without the ability to undergo allosteric changes.
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Without prior knowledge of allosteric interactions, large numbers of designed aTFs must be
tested. High-throughput screening techniques such as RNA-Seq and fluorescence-activated cell
sorting (FACS) facilitate testing of many variants in a single experiment. The combination of
computational design and high-throughput screening will create and isolate a transcription factor

variant that has affinity for the target and maintains inherent allosteric properties.

1.3.2 Computational design to engineer ligand binding

Rosetta is a software suite developed to model the molecular interactions that comprise protein
tertiary and quaternary structures but is insufficient to engineer transcription factor biosensors
alone®t. Rosetta has been extensively used to model novel protein interactions®>%°. Lacl was
engineered to bind to novel sugar molecules like sucralose, gentiobiose, fucose, and lactitol using
a combination of Rosetta design and high-throughput screening®. The success of the Lacl
redesign effort represents a small step in chemical space away from the natural ligand. Future
endeavors must strive to push the boundaries of binding pocket design to create tools that allow

more radical redesign of the transcription factor that expands the repertoire of biosensors.

Despite the wide range of successful protein designs using the Rosetta software suite, the
computational design process has limitations that must be considered prior to its implementation.
Any in silico model has errors in its energy functions used to model amino acid states that is
propagated across all residues in the protein®'. The Rosetta Energy Function is used to calculate
the energy of an amino acid conformation and is a linear combination of different energy
parametersf2. These parameters model biophysical properties like electrostatics, repulsive forces
between atoms, solvation energies, and hydrogen bonding energies. However, there is no

guarantee that these computational models are accurate®3. Over reliance on computational
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approaches of engineering novel affinity may be detrimental in the absence of thorough

experimental validation and understanding of allosteric interactions.

1.3.3 Fluorescence screens to find successful designs

High throughput screens for computationally designed libraries can use the expression of a
fluorescent protein as a marker for transcription factor function. Flow cytometry and fluorescence
activated cell sorting (FACS) enables rapid screening of thousands of transcription factor variants
using GFP fluorescence®. The transcription factor variants are assayed for the proper function
based on GFP expression levels in the presence and absence of the target small molecule®’.
Each variant has its own unique fluorescence profile, and the fluorescence distribution of the
resulting library is the summation of all the fluorescence distributions of the individual variants.
Repeated sorting of different fluorescence populations in either the presence or the absence of

the ligand can isolate functional designs.

The sorting process relies on the ability of the transcription factor variants to control gene
expression in response to the small molecule. The function of the variant is then dependent on
fraction of the population isolated for both sorts in the presence of the ligand and sorts in the
absence of the ligand. Isolating a smaller fraction theoretically subsets variants with higher
induced gene expression and lower basal expression but may also result in the loss of the variants
with intermediate phenotypes. Once an observable shift in fluorescence between the uninduced
and the induced libraries is obtained during the sorting process, clonal assays will identify the

variants responsible.

1.3.4 RNA-Seq is an alternative to fluorescence screens
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RNA-Seq is a high-throughput alternative to the fluorescence-based screens that overcomes
several limitations of cell sorting approaches and generates functional scores for every variant in
the library. Fluorescence assays can also be used to obtain the phenotypes of all library members
by incorporating next-generation sequencing technology. These Sort-Seq approaches separate
a fluorescence distribution into bins of discrete fluorescence ranges via fluorescence-activated
cell sorting (FACS)é4-¢8, Each bin is then sequenced with NGS to elucidate the abundance of each
library member within the bin. The proportion of reads attributed to a single variant across all
fluorescence bins is used to infer the fluorescence distribution of the variant. However, accurate
reconstruction of the phenotypes of the library members requires careful consideration of the

range of the bins and knowledge of the underlying individual distributions®+.

RNA-Seq based approaches map transcription factor function in without the need to partition the
library. RNA-Seq relies on sequencing a short, random set of nucleotides called a “barcode”. In a
transcription factor library, the transcription factor variants control the expression of unique
barcodes®. Each transcription factor variant will be linked to multiple barcodes. These barcodes
can be mapped back to the transcription factor variant controlling its expression and then
sequenced using NGS to elucidate the abundance of each barcode. The performance of the
transcription factor variant is calculated by taking the ratio of these barcode abundances in the
presence and absence of small molecule ligands. This approach enables the characterization of

the entire transcription factor library in a single pooled assay.

One of the main challenges of the barcode-based RNA-Seq approach is mapping the randomized
barcode to the variant responsible for its expression. One way to overcome this challenge was
developed to characterize the architecture of 67° promoters using a short barcode at the 3’ of the

SfGFP gene’. The barcodes were mapped to the promoter variant responsible for their
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expression prior to incorporation of the sfGFP gene. Another similar approach involved short
barcodes mapping to GPCR activity in human cell lines®®, which established a generalizable
method of screening eukaryotic transcription factors. PacBio long-read sequencing was used in

another deep mutational scanning library of the SARS-CoV-2 receptor binding domain”".

RNA-Seq yields counts of all barcodes extensively mapped to transcription factor variants,
creating a fitness landscape of ligand responsiveness over the designed sequence space. This
approach increases the number of variants that can be screened compared to Sort-Seq. Sort-Seq
requires sequencing of multiple fluorescence partitions, which requires higher read volumes per
library or fewer variants. Furthermore, RNA-Seq is a direct measure of aTF function as it
measures the abundance of transcripts instead of GFP expression as a proxy. High-throughput
screens of computationally designed aTF libraries would benefit from the improvements provided

by RNA-Seq screens.

1.4.0 Probing epistasis and improving the aTF redesign

Despite their importance in biotechnology applications, relatively little is known about transcription
factors and the molecular mechanisms used in these proteins to confer novel ligand affinity. These
proteins often are simple, 1-component transcription regulators that control gene expression in
response to small molecules. A key aspect of aTF function is allostery; these proteins undergo
conformational or dynamic changes in response to ligand binding that alters their affinity for DNA.
Controlling gene expression is a complex function that involves multiple functional parameters.
Epistasis can affect each parameter to different extents, creating complex mutational interactions
over the course of evolution. The goal of the first part of this work is to probe these intricate

epistatic interactions across multiple functional parameters using changing ligand specificity.
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Transcription factors represent a versatile chassis and untapped resource for sensing platforms.

Expanding the use of aTF sensors requires expanding the repertoire of molecules that can be

sensed with these proteins. However, previous methods that aimed to engineer novel ligand

affinity had limited success. The latter part of this work is devoted to creating new computational

and high-throughput screening workflows that can generate new aTF biosensors that increase

the range of sensed molecules.
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2.1 Abstract

Epistasis is a major determinant in the emergence of novel protein function. In allosteric proteins,
direct interactions between inducer-binding mutations propagate through the allosteric network,
manifesting as epistasis at the level of biological function. Elucidating this relationship between
local interactions and their global effects is essential to understanding evolution of allosteric
proteins. We integrate computational design, structural and biophysical analysis to characterize
the emergence of novel inducer specificity in an allosteric transcription factor. Adaptive
landscapes of different inducers of the designed mutant show that a few strong epistatic
interactions constrain the number of viable sequence pathways, revealing ridges in the fitness
landscape leading to new specificity. The structure of the designed mutant shows a striking
change in inducer orientation still retains allosteric function. Comparing biophysical and functional
properties suggests a nonlinear relationship between local inducer affinity and allostery. Our

results highlight the functional and evolutionary complexity of allosteric proteins.
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2.2 Introduction

Interactions between mutations direct the evolution of protein function'. As proteins evolve, they
follow paths through the fithess landscape to reach a fithess peak that represents a novel function?.
For N mutations required to confer novel function, there are N! possible pathways connecting the
start and end states. However, some pathways may not be evolutionarily favorable due to
epistasis — a phenomenon that occurs when the sequence background into which a mutation is
introduced changes the functional effect of that mutation. The non-additivity due to epistasis
strongly influences the sequence trajectory a protein takes to gain new function’3-5. Therefore,
understanding the nature of epistatic interactions is the foundation for investigating the

mechanisms leading to novel protein function®.

Epistasis is generally categorized as specific or nonspecific based on cause-effect relationships
between the interactions of mutations and their outcome. Specific epistasis occurs between a
limited number of residues that typically physically interact, leading to nonadditive changes in
thermodynamically-driven biophysical properties such as protein stability or affinity’. Specific
epistasis has been extensively investigated in protein-protein, protein-ligand, protein-DNA
interactions®8-16. Nonspecific epistasis occurs when mutations are nonadditive with respect to
protein traits when combined'”-20. Such mutations can be spatially distant such as a global

suppressor that can interact with many destabilizing mutations with low pairing specificity*2!-22.

In this study, we examine the role of epistasis in the evolution of ligand specificity in an allosteric
transcription factor. Allostery is a fundamental mechanism by which proteins recognize
environmental cues (such as binding of an inducer or effector) within a localized region resulting
in modulation of function at a distal site?324. Mutations in the binding pocket that trigger the

allosteric network have the potential to create new epistatic interactions at the level of protein



23

function beyond the physical interactions commonly seen in specific epistasis and can create
complex nonspecific interactions. As allosteric proteins evolve toward new function, such as
orthologs in different organisms, their inducer specificity changes to adapt to the new
environment?®. Allosteric proteins may accrue mutations during evolution that would
simultaneously affect specificities for old and new inducers. Further, these mutations may also
impact function by affecting the capability of the protein to produce an allosteric change in
response to an inducer?-27, For an allosteric transcription factor (aTF), function is the outcome of
three parameters: affinity for the inducer ligand, affinity for DNA, and allosteric changes that
accompany binding to the ligand. Each of these parameters will have its own fitness function
mapped over the same sequence space, creating unique fitness landscapes. An aTF
simultaneously traverses these multiple fithess landscapes which collectively govern the
evolutionary trajectory of the aTF under selective pressure. Thus any one fithess landscape is not
adequate as a global measure of transcription factor function. We need to examine multiple fitness
landscapes and characterize epistasis in each individually to understand the evolutionary

trajectory of an aTF.

Here, we integrate functional, structural, and biophysical analysis to characterize epistasis in the
functional parameters of an allosteric transcription factor (aTF). Using computation-guided design,
we changed the ligand specificity of TtgR, a promiscuous microbial aTF, to respond to one of its
native ligands (resveratrol), but not to another (naringenin) by targeting mutations to positions that
directly interact with the ligand?®2°. By reconstructing all sequence pathways connecting the two
states (promiscuous and specific), we found that epistatic interactions of two distinct sets of amino
acids separately drive naringenin response while increasing resveratrol response (response is
the reporter expression when induced by a ligand). We characterized the fitness landscapes of

TtgR in terms of four functional parameters: fold change in gene expression, basal gene
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expression, maximum gene expression, and sensitivity to the ligand (ECso) and showed that
although ligand-induced allostery is a composite effect of all four parameters, each parameter
shows unique patterns of epistasis, but also notable similarities. The crystal structure of the
computationally designed mutant shows that one of the mutations reshapes the binding pocket to
favor resveratrol over naringenin through a striking change in its binding orientation while
maintaining allostery. We found that epistasis creates distinct biophysical and biological functional
landscapes. Our results highlight the functional and evolutionary complexity of allosteric proteins
because pathways can traverse through multiple adaptive landscapes under evolutionary
pressure2®. Our approach also provides a general conceptual and methodological framework to

investigate epistasis in transcription factors.

2.3 Computational design of ligand specificity switch

We chose TtgR, a ligand-inducible aTF belonging to the diverse TetR-like protein family, as a
target for computational engineering of ligand specificity?®. TtgR is a 1-component transcriptional
system and represents the simplest molecular mechanism for converting biophysical interaction
between inducer and protein into a complex biological response like transcription?. In the
uninduced state, TtgR physically obstructs the RNA polymerase by binding to DNA2°. When
induced, ligand-binding allosterically lowers affinity for DNA, thereby allowing transcription2°-3.
Since TtgR is found in a plant-associated microbe (Pseudomonas putida), it is induced by multiple
plant molecules including resveratrol and naringenin?8. Thus, TtgR provides a suitable functional
backdrop to investigate the role of epistasis in emergence of novel function (ligand specificity) in
an allosteric protein283!. To emulate emergence of novel function, we engineered TtgR to respond

to resveratrol and not to naringenin.
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We used computational design (Rosetta software suite) to engineer TtgR specificity by generating
function-switching mutations that directly interact with the ligand32. Less directed approaches may
yield a specificity switch, but these can also include distal mutations whose effects on ligand
affinity will confound our examination of epistasis'®33. Since our goal was to study how local
interactions shape global function, computational design was the appropriate tool as in silico

mutations are chosen based on interaction energies between protein and ligand343.

To increase resveratrol specificity, we redesigned the ligand-contacting residues for greater
affinity for resveratrol, assuming greater affinity may result in greater specificity. Since Rosetta is
a structure-based design tool, the absence of a resveratrol-bound TtgR crystal structure made
the design task challenging because the correct position of the ligand in the binding pocket was
not known a priori. Therefore, we generated a set of diverse starting poses (16) by docking
resveratrol conformers in different orientations within the binding pocket (Fig. 1). For each starting
pose, we redesigned ligand-contacting residues while permitting constrained rigid-body flexibility
of the ligand and torsional flexibility of the protein backbone. We computationally generated
approximately 19,000 unique TtgR design variants with an average of 5 mutations per variant
(Supplementary Fig. 1). After design, each output variant comes with a set of Rosetta-calculated
scores that reflect physical properties such as stability, repulsion, hydrogen bonds, and protein-
ligand affinity. The best variants for library construction can be selected from the distribution of all
scores of output designs based on user-defined preferences. The variants were curated using
parameter-specific median absolute deviation cutoffs on a select set of Rosetta scoring metrics
of to yield a final list of approximately 3,500 unique sequences for experimental testing
(Supplementary Fig. 2). The mutations generated in the 3,500 sequences are diverse, but
designed sequences generally favor the wildtype amino acid at each mutable position

(Supplementary Fig. 2). A few positions such as 96, 137, 168, and 175 have mutations that are
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more abundant than the wildtype amino acid. We synthesized oligonucleotides encoding
approximately 3,500 designed variants as a pool of exact chip-DNA sequences (Twist Bioscience

Inc).

To determine the activity of TtgR variants, we designed a pooled screen by sorting E. coli cells
containing a GFP reporter system regulated by a TtgR operator adapted for E. coli. We quantified
the activity of variants based on fold induction: the ratio of GFP expression with and without
inducer. Fold induction is a simple measure of the transcriptional activity of an aTF that accounts
for factors affected by epistasis including DNA affinity, ligand affinity and allostery5°. The activity
of the initial library was greater toward naringenin than resveratrol with a median fold induction of
21-fold and 2.4-fold with naringenin and resveratrol, respectively (Fig. 1). To enrich resveratrol-
specific variants in the library, we devised a toggled screening scheme where we first sorted
variants competent for binding to DNA (low GFP with no resveratrol) followed by sorting variants
that can activate expression of the reporter (high GFP with resveratrol) (Supplementary Fig. 3).
After three rounds of toggled screening, we observed much greater response to resveratrol than
naringenin in the enriched population compared to the input population (Fig.1). From the enriched
population, we isolated a resveratrol-specific TtgR variant with four mutations: C1371, [141W,
M167L, and F168Y which we will henceforth refer to as the ‘quadruple mutant’. All four mutations
were in close proximity to the ligand and no mutations were found elsewhere on TtgR. The
quadruple mutant gave 80- and 6-fold induction with 250uM resveratrol and 2mM naringenin,
respectively, compared to 60- and 54-fold of wildtype TtgR (Fig. 1, Supplementary Fig. 4). These
concentrations were selected based on maximum solubility in aqueous solution. The goal of
Rosetta design was to narrow the potential designable sequence space to a subspace of
sequences most likely to offer high resveratrol function. It is possible that other Rosetta designs

were successful in generating ligand specificity, but were lost in the screening process that was
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engineered to identify only the most successful variants. We found that the while the quadruple
mutant fell within the cutoffs imposed during the curation process, it was not the best in any
scoring parameter. We chose the quadruple mutant as the functional endpoint for characterizing

epistasis.

2.4 Epistasis shapes the fitness landscape of resveratrol response

We constructed multiple fitness landscapes derived from dose-response curves to examine
epistatic constraints in the transition from wildtype TtgR to the resveratrol-specific quadruple
mutant. We made all single, double, and triple mutation combinations of the four mutations that
provide resveratrol specificity as individual clones, resulting in a total of 16 variants (including
endpoints). Experimental fitness landscapes are a useful framework for characterizing epistasis
by revealing fithness pathways through mutational intermediates that connect two functional states.
Fitness landscapes are commonly illustrated as a series of nodes and edges. Each node is
designated by a binary string in which each number corresponds to a mutable position. A zero
indicates the wildtype amino acid identity and a one indicates the substituted amino acid. The
positions in order from left to right are: 137, 141, 167, and 168 (0000 is wildtype TtgR, 1111 is

quadruple mutant, and 0100 represents the 1141W mutant).

The ability of a transcription factor to control gene expression in response to a small molecule is
broadly described by four parameters — (1) fold change in gene expression upon induction (fold
induction), (2) basal gene expression without the inducer, (3) maximum gene expression upon
induction, and (4) sensitivity to ligand concentration or ECso. These parameters capture the
mechanistic properties of binding to inducer, binding to DNA, and allosteric communication of
ligand binding. To investigate how the same set of binding pocket mutations might uniquely affect

each parameter, we constructed the fitness landscape of each parameter individually. We
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quantified the number of viable pathways in the resveratrol landscape by requiring that each
additional mutation must increase parameter fitness if the quadruple mutant performs better than
wildtype or decrease parameter fitness if the quadruple mutant performs worse than wildtype.
There are 24 possible pathways from wildtype to quadruple mutant (Fig. 2a). Each functional
parameter shows distinctive patterns of epistasis, although some are closely related. In the fold
induction landscape, viable pathways must go through 0010 as all other single mutants have
lower resveratrol response relative to wildtype TtgR (Fig. 2a). This restricts the number of
available pathways from 24 to a maximum of 6. From 0010, there are three possible double
mutants: 0011, 0110 and 1010. Both 0110 and 0011 are not viable as their activity substantially
decreases compared to 0010 (Fig. 2a). However, 1010 is viable as it gives modestly higher
resveratrol response (Fig. 2a). Both C1371 and M167L manifest as key permissive intermediates
in the fitness landscape that allows 1141W (1110) or F168Y (1011) to be added. Since 1010 is
the only viable double mutant, the number of available pathways reduces to two (Fig. 2a, bold red
lines). Both triple mutants (1011 and 1110) have higher resveratrol response than 1010 which
allows two viable pathways to reach the quadruple mutant, which is the global maxima of this

fitness landscape (Fig. 2a).

The fitness landscape of basal gene expression resembles the fold induction landscape, with
identical viable pathways, as the nodes with lower basal gene expression also show higher fold
induction. All the nodes along viable pathways have lower basal gene expression than wildtype
TtgR (0000) with the quadruple mutant ranking among mutants with lowest basal gene expression
(Fig. 2b). The adaptive landscapes of maximum gene expression and ECso show similar features
to each other including a general trend of increasing magnitude from 0000 to 1111 (Fig. 2c,d).
Since the global maxima for maximum gene expression is 0111 (not 1111), all pathways on the

maximum gene expression landscape terminate at 0111 (Fig. 2c). Six pathways are allowed in
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the ECso landscape because of the general tendency of mutations to increase ECso regardless of
mutational background (Fig. 2d). There is an interesting dependence between maximum gene
expression and ECso where nodes with high expression tended to also have high ECs, (low ligand
sensitivity), indicating a likely trade off where high gene expression comes at the expense of
ligand sensitivity. In other words, it may be difficult to achieve an ultrasensitive response

concomitantly with a large change in gene expression.

Next, we delved deeper into the key epistatic interactions that shape the fithess landscapes.
Epistatic interactions are classified as magnitude, sign, or reciprocal sign based on the combined
effect of a pair of mutations relative to the effect of each mutant individually. Magnitude epistasis
occurs when both mutations individually are beneficial or detrimental and their combined effect is
greater in magnitude than sum of their individual effects (Supplementary Fig. 5). Sign epistasis
occurs when the effect of one mutation switches from beneficial to deleterious or vice versa
depending on if the other mutation is present (Supplementary Fig. 5). Reciprocal sign epistasis

occurs when both mutations switch effects when paired (Supplementary Fig. 5).

Two epistatic interactions, C1371-1141W and M167L-F168Y, play important roles in modulating
basal gene expression and fold induction. C1371 mutation makes epistatic interactions with all the
other three mutations (1100, 1010, or 1001) which are critical to control basal gene expression
through sign or reciprocal sign epistasis (Fig. 2b). This is best exemplified by the interaction
between C1371 (1000) and I141W (0100) in the basal gene expression landscape. Both 1000 and
0100 have high basal gene expression while the double mutant 1100 has low basal gene
expression leading to reciprocal sign epistasis. This interaction shows mutations in the binding
pocket trigger the allosteric network to create new epistatic interactions at a distal site (in this

case, the DNA-binding interface). The other double mutants that contain C1371 (1010 and 1001)
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also have decreased basal gene expression, which is maintained through the quadruple mutant
by non-epistatic (1100-1111, 1010-1111, and 1001-1111) interactions (Fig. 2b). The [141W
mutation is also key modulator of fold induction that manifests through controlling basal gene
expression. Although this mutation by itself causes high basal gene expression (low fold
induction) when paired with either M167L (0110) or F168Y (0101) in any combination, in the 1100
background both M167L (1110) and F168Y (1101) have low basal gene expression (high fold
induction) and form a magnitude epistasis interaction to generate the phenotype of the quadruple

mutant (Fig. 2b).

The M167L mutation makes a strong epistatic pair with the F168Y mutation, creating a reciprocal
sign epistasis interaction in the ECso landscape and sign epistasis in the basal gene expression,
maximum gene expression, and fold induction landscapes. In the ECso landscape, M167L is the
only node that decreases ECs that does not contain C137I (Fig. 2d). However, this effect is
masked by the addition of either C137I or [141W. The two mutations show sign epistasis in the
maximum gene expression landscape in the C1371 background (1000-1011) and magnitude
epistasis in the 1141W or C1371-1141W background, indicating that the pair behavior is dependent

on the background mutations (Fig. 2c).

While a qualitative description of epistasis is easy to visualize, we wanted to also quantify the
extent of and characterize the type of epistasis within all individual subnetworks and the entire
16-variant system. We used Bahadur expansion to describe all pairwise and higher order
interactions (see methods)36. The Bahadur expansion models the activity of the landscape using
a linear sum of interaction terms and coefficients. Orders of interactions (first [solo], second
[pairwise], third [three way], or fourth [four way]) can be included in this sum to understand their

contribution to modeling the behavior of all variants. For each subnetwork, we computed the
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correlation coefficient between a linear sum of first order interaction terms and actual experimental
data. In the simplest case of no epistasis, the correlation coefficient of this comparison (R?) is
close to 1, but any deviation (R?<1.0) indicates prevalence of epistasis. The patterns of epistasis
for fold induction, basal gene expression, maximum gene expression, and ECs, are all different.
Of the 24 possible subnetworks, 11 subnetworks are epistatic in the fold induction landscape
which includes seven, four, and two instances of sign, reciprocal sign and magnitude epistasis,
respectively (Fig. 2e). In the basal gene expression landscape, 12 subnetworks are epistatic with
ten sign and two reciprocal sign epistasis subnetworks (Fig. 2f). The maximum gene expression
landscape has 24 epistatic subnetworks: 12 magnitude, 10 sign, and 2 reciprocal sign (Fig. 2g).
The ECso landscape has 19 epistatic subnetworks: 7 magnitude, 9 sign, and 3 reciprocal sign (Fig.
2h). The magnitude and location of the epistatic interactions in the fitness landscapes are unique

to their respective fitness property.

Since small deviations in activity may be permitted during evolution, we relaxed the requirement
that each subsequent step through sequence space change fithess to be more like the quadruple
mutant. We allowed small losses in function of 25% between nodes and found that additional
pathways are tolerated in the basal gene expression, maximum gene expression, and ECso
landscapes. No additional pathways exist in the resveratrol fold induction landscape

(Supplementary Fig. 6).

Epistasis thus has a large role in shaping the fold induction landscape between the promiscuous
wildtype and resveratrol-specific quadruple mutant through key interactions. These same
interactions create unique epistatic interactions in the fithess landscapes of basal gene
expression, maximum gene expression, and ECso. Although the global expansion first-order terms

explain the majority of the variance in the fold induction landscape, higher-order epistatic
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interactions influence resveratrol fold induction by modulating interactions in secondary and

tertiary subnetworks to improve the resveratrol response (Supplementary Fig. 7).

2.5 Epistasis uniquely influences the fithess landscape of each ligand

As inducer specificity changes, the fitness landscape of the same mutational intermediates will
differ for each inducer. These differences may reveal alternative adaptive pathways in the fithess
landscape of one inducer that circumvent functional “dead ends” in the fithess landscape of
another inducer. Therefore, we examined the fitness landscape of naringenin-induced response
by evaluating the same four parameters: fold induction, basal gene expression, maximum gene
expression (at 2000uM), and ECso of all 16 variants for comparison with the fithess landscapes of
resveratrol. We determined the number of viable pathways by requiring that each additional
mutation must have a change in fitness that bridges wildtype and the quadruple mutant to emulate

the progressive change in function during evolution.

In the fold induction landscape, none of the 24 possible pathways viably connect wildtype to
quadruple mutant because the global minima (variant with lowest naringenin response) in the
landscape is the double mutant 0110, not the quadruple mutant (1111) (Fig. 3a). In the basal
gene expression landscape, three pathways connect wildtype to the quadruple mutant through
the C1371 (1000) mutation (Fig. 3b). Pathways emerging from 1000 pass through two double
mutants, 1001 and 1100, with lower basal gene expression. The basal gene expression of 1001
is higher than 1100, allowing 1001 to link to both triple mutants (1011 and 1101) compared to the
single triple mutant from 1100 (1110). The maximum gene expression landscape contains two
pathways connecting wildtype to quadruple mutant (Fig. 3c). Although many nodes have lower
maximum gene expression compared to the preceding node, most are not part of pathways that

bridge wildtype and the quadruple mutant. Two single mutants (1000 and 0100) have lower
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maximum gene expression than wildtype, but only one is connected to a viable double mutant
(0110). Both triple mutants (0111 and 1110) accessible from 0110 connect to the quadruple
mutant. Like the ECso landscape of resveratrol, the ECso landscape of naringenin is characterized
by a general increase in ECso as mutations accumulate (Fig. 3d). There are 8 possible pathways
that link wildtype to the quadruple mutant. Three of the four single mutants increase ECs (0100,
0010, and 0001). Four of the double mutants and all the triple mutants are accessible by at least
one of the preceding nodes, but not every double or triple mutant is accessible from all preceding
nodes due to minor deviations in the general trend of increasing ECso. No additional mutational
pathways are tolerated even when increases of up to 25% naringenin response are allowed
between nodes for the naringenin fold induction landscape (Supplementary Fig. 8). Similarly to
the resveratrol landscapes, the basal gene expression, maximum gene expression, and ECso

landscapes show additional pathways at this tolerance.

Closer examination of the role of individual mutations shows that C1371 and 1141W have strong
effects on multiple landscapes. C1371 (1000) is the only mutation that decreases ECso relative to
wildtype (Fig. 3d). Two additional double mutants 1010 and 1001 further decrease ECso but
pairing C1371 with 1141W (1100) or C137I with both M167L and F168Y (1011) increases in ECso,
suggesting that these mutational combinations may mask the effect of C137I. As with the
resveratrol landscapes, the 1141W mutation has an important role in modulating basal gene
expression and fold induction (Fig. 3a,b). Any mutant containing 1141W, but not C1371 has higher
basal gene expression (low folder induction) than wildtype. Combining 1141W and C137I results
in a large decrease in basal gene expression, which further decreases upon addition of either
M167L (1110) or F168Y (1101). M167L and F168Y individually result in incremental changes in
basal gene expression, maximum gene expression, and ECs (Fig. 3b,c,d). However, the M167L-

F168Y double mutant shows interesting context-dependent effects due to epistasis. For example,
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in the fold induction landscape, the combination of M167L and F168Y is beneficial in 1000
background, but detrimental in the 1100 background (Fig. 3a). This dependent behavior extends
to all the other fitness landscapes even though the mutational background and types of epistasis

change.

Next, we quantified epistasis both within all individual subnetworks and the entire 16-variant
system. Epistasis was much more prevalent in the subnetworks of the fitness landscapes of
naringenin than those in the fitness landscapes of resveratrol. In the fold induction landscape, 19
of the 24 subnetworks show epistasis (Fig. 3e). Nine were sign, six magnitude, and four reciprocal
sign. In the basal gene expression landscape, 16 subnetworks show epistasis with 3 examples of
magnitude epistasis and 13 examples of sign epistasis (Fig. 3f). The maximum gene expression
landscape has 24 epistatic subnetworks with 11 magnitude, 6 sign, and 7 reciprocal sign
subnetworks (Fig. 3g). The ECso landscape has 17 epistatic subnetworks: 8 magnitude epistasis,
8 sign epistasis, and 1 reciprocal sign epistasis (Fig. 3h). The same set of mutations that create
epistatic interactions giving rise to high resveratrol response forge ligand-specific epistatic
patterns in the fold induction, basal gene expression, maximum gene expression, and EC50

landscapes (Supplementary Fig. 9).

Epistasis shapes the fitness landscape of each function (naringenin and resveratrol) in distinct
ways. Furthermore, each functional parameter (basal gene expression, maximum gene
expression, or ECsp) is affected uniquely by the addition of multiple combinations of mutations.
1141W controls high basal gene expression and strongly modulates fold induction regardless of
ligand. In contrast, C1371 is more context-dependent; it is responsible for low ECso values solo or
in combination with either M167L or F168Y in the naringenin landscape, but is strongly influenced

by M167L in the resveratrol ECs, landscape. Some epistatic pairs are consistent between
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resveratrol and naringenin. The C1371+1141W pair strongly affects basal gene expression and
fold induction for both ligands. The M167L+F168Y pair has unique behavior in all fithess
landscapes that is dependent on the mutation background into which they are introduced.
However, the pair’s effect on the wildtype background is stronger in resveratrol compared to

naringenin for all parameters.

2.6 Crystal structure reveals molecular basis of specificity of quadruple mutant

To understand the structural basis of TtgR-ligand interactions, we solved high-resolution crystal
structures of quadruple mutant (resveratrol-bound and apo) and wildtype TtgR (resveratrol-
bound) at a resolution of 1.9A or better (Table S2). TtgR is a compact, dimeric, all-helical
transcription factor with a large cavity between five angled helices forming the ligand binding
pocket (Supplementary Fig. 10a,b). The quadruple mutant bound to resveratrol (PDB: 7KD8) is
structurally very similar to the wildtype with an all-atom RMSD of 1.2A over the entire structure.
The DNA binding domains of the resveratrol-bound quadruple mutant and the resveratrol-bound
wildtype are extremely similar with an all-atom RMSD of 1.0A (Supplementary Fig. 11). The four
mutations do not substantially change the volume of the pocket (215A3 in wildtype compared to
234A3 in the quadruple mutant) or the surface area of the pocket (184A in wildtype compared to
186A in the quadruple mutant) (Supplementary Fig. 12). The position and orientation of
resveratrol in the wildtype TtgR structure (PDB: 7K1C) resembles the position and orientation of
naringenin in a previously solved co-crystal structure of TtgR (PDB: 2UXU)?28. In both structures,
the ligands bind in a vertical mode such that the plane of the molecule is roughly perpendicular to
DNA (Supplementary Fig. 10c). In wildtype TtgR, the four mutated positions (C137, 1141, M167
and F168) are located approximately in the center of the binding pocket and make nonspecific
van der Waals interactions with resveratrol (Fig. 4a, upper panel). Other neighboring residues

N110, D172 and H114 make specific hydrogen bonds that stabilize resveratrol in the vertical
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orientation (Fig. 4a, lower panel). Although both naringenin and resveratrol bind in the vertical
orientation, only N110 is able to make a hydrogen bond with both naringenin and resveratrol®.
The ability of wildtype TtgR to bind multiple ligands likely arises from the nonspecific interactions

made by the nonpolar amino acids in the binding pocket.

Structure of the quadruple mutant reveals the role of individual residues in ligand specificity.
1141W, a mutation critical for resveratrol specificity, creates a large steric barrier that alters the
shape of the pocket and obstructs the vertical binding orientation of ligands (Fig. 4b, upper panel).
Resveratrol is accommodated in the binding pocket in a horizontal binding orientation almost
parallel to the plane of the tryptophan. Unlike 1141W which plays a clear steric role, the other three
mutations (C1371, M167L and F168Y) have a more subtle effect in reshaping the binding pocket
through nonpolar interactions. C137| mutation creates a protrusion in the binding pocket that
increases shape complementarity to resveratrol (Supplementary Fig. 13a). M167L is buried
between the residues in the binding pocket and the dimerization helix and may play a role in
positioning the 1141W tryptophan to stabilize its horizontal orientation through van der Waals
interactions (Supplementary Fig. 13b). F168Y allows the formation of multiple hydrogen bonds
with nearby water molecules and may serve to stabilize the structure (Supplementary Fig. 13b).
A different hydrogen bonding network consisting of D71, R75, and E78 make hydrogen bonds
with the resveratrol molecules in chain A (Supplementary Fig. 13c) and D71, E78, D172, and a
nearby water molecule make a hydrogen bond with the single resveratrol molecule in chain B (Fig.

4b, lower panel).

Although resveratrol and naringenin share similar chemical backbones, naringenin is bulkier than
resveratrol due to the fused carbon rings of the chromanone. This reduces shape

complementarity of naringenin to the redesigned binding pocket despite the similarity in volume
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of the quadruple mutant and wildtype binding pockets (Supplementary Fig. 12, 14).. The 4-
hydroxyphenyl moiety and the carbonyl group of the 4-chromanone backbone of naringenin could
create steric clashes with residues lining the wall of the pocket and cause the ligand to sample
less space in the pocket compared to resveratrol, which provides a reasonable structural basis

for ligand specificity.

The new binding mode of the quadruple mutant was not predicted in the original design scheme.
We seeded the input structures for Rosetta design with resveratrol docked in the vertical
orientation to mimic the binding mode of the wildtype structure. The design process is only able
to make minor alterations to the position and angle of the ligand in the binding pocket

(Supplementary Fig. 15).

The structural basis of ligand specificity relies on the 1141W substitution to create a steric barrier
to prevent binding in the vertical orientation, which is observed in wildtype TtgR for multiple ligands.
In the novel horizontal mode, other ligands may be occluded from the pocket through steric
clashes with wildtype residues in the pocket. The epistatic interactions observed in the fitness
landscapes for naringenin and resveratrol can be rationalized through examination of the structure.
The C137I-1141W pair increases shape complementarity to resveratrol while M167L-F186Y
contact the dimerization helix and potentially affect the positioning of nearby residues that interact
with the ligand. The altered binding mode establishes that allostery is robust to major changes in

binding mode in TtgR.

2.7 Relationship between biophysical affinity and biological response

Ligand response of an aTF is a complex combination of both biophysical interactions and allostery.

Mutations that affect aTF fold induction can do so by altering ligand affinity, DNA affinity, or the
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allosteric signal upon ligand binding. Since all four mutations are localized to the binding pocket,
the observed changes in fold induction of TtgR are likely due to altered binding affinity to ligand,
transmission of allosteric signal, or both. To understand the relationship between biophysical
affinity and biological response, we compared changes in ligand affinity (Kq) to changes in ligand
sensitivity (ECso) for both naringenin and resveratrol. We chose mutants in the 0000-1000-0100-
1100 subnetwork because it is important for the high resveratrol response in the quadruple mutant.
Further, this network shows a strong manifestation of epistasis through reciprocal sign change
and is therefore a good model to understand the relationship between biophysical affinity and
biological response. We estimated ligand affinity using isothermal titration calorimetry (ITC) of
purified proteins and ligand sensitivity from dose-response curves. Ligand sensitivity is derived

from reporter expression and is thus a combination of both allostery and affinity.

Affinity and sensitivity of resveratrol for different variants are generally concordant for resveratrol,
with the exception of 1100 (Fig. 5a). We note though that the ITC and dose response curves for
some variants did not plateau due to poor ligand solubility at high concentrations resulting in
imprecise estimates of Kq and ECso. Nonetheless, qualitative comparisons can be made to gain
useful insight. For instance, comparison of ITC profiles of 0000 and 1111 for resveratrol shows
weaker binding for 1111 even though the precise Kq may be difficult to measure. Similarly, dose
response curves show weaker ECso for 1111 than 0000 even though it is not fully saturated. The
C137I mutation appears to be largely responsible for the affinity in 1100, but the 1141W mutation
causes the increase in sensitivity. In general, as mutations accumulate from wildtype, the affinity
and sensitivity generally decrease, suggesting a decreased ability to undergo allosteric changes
is likely due to weaker binding (Fig. 5a). The discordance between affinity and sensitivity is much
greater for naringenin than resveratrol. In the case of naringenin, no relationship was evident

between affinity and sensitivity across the subnetwork (Fig. 5b). Although the quadruple mutant
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has higher resveratrol fold induction than wildtype, its affinity and sensitivity for resveratrol is lower
than that of wildtype (Fig. 1, 5a). In essence, these examples illustrate the complex relationship

between local interactions and their global effects in allosteric proteins.

The 0000-1000-0100-1100 subnetwork displays a unique, ligand-specific pattern of epistasis for
biophysical and biological parameters. The mutations we introduced into TtgR suggest an effect
on allostery changes in ECso as the complexities of function may not be simply explained by
changes in biophysical affinity. These measurements also suggest that by optimizing a particular
protein function (fold induction), other parameters (sensitivity or affinity) may not necessarily stay

at fitness maxima as the 1111 mutant shows poor sensitivity to both ligands.

2.8 Discussion

In this study, we describe the pervasive effects of epistasis on ligand specificity in a simple
allosteric transcription factor by the examining fold induction, basal gene expression, maximum
gene expression, and ECso of two ligands across multiple mutants. By leveraging computational
protein design, we engineered four mutations into TtgR, a promiscuous transcription factor that
can normally bind to both resveratrol and naringenin, to only bind to resveratrol. By characterizing
the functional response to both resveratrol and naringenin across all combinations of mutations,
we show that the extent of epistasis between mutations affecting multiple protein functions is
specific for each ligand. For instance, 50% of subnetworks meet the criteria for epistasis for
resveratrol fold induction while 83% of subnetworks are epistatic for naringenin fold induction.
However, the fitness landscapes of both ligands are shaped by common critical pairs of epistatic
interactions (C1371 and 1141W or M167L and F168Y), though their behavior may be different

depending on the functional parameter. Biological effects of these mutations are further validated
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by the crystal structures. The four mutations localize to one face of the binding pocket, making
nonpolar interactions with the ligand. C137I and 1141W increase shape complementarity of the
pocket for resveratrol, but only in an alternative horizontal binding pose. The four mutations that
confer ligand specificity decrease both affinity and sensitivity suggesting that the changes in

sensitivity could be a consequence of lower affinity and not necessarily a purely allosteric effect.

Our study used a constrained set of mutations chosen through in silico selection as opposed to
natural selection of random mutations found in bona fide evolutionary pathways. An evolutionary
process may have selected a different set of mutations to confer the same functional outcome,
leading to the presence of a different pattern of epistasis for either naringenin or resveratrol
response. Often in natural evolution, mutations that are distal to the site of interest have a
profound effect on protein function®2!. These background mutations complicate any examination
of key mutations within the targeted area of the protein and their influence on protein function. By
utilizing a combination of computational design and high-throughput screening, we targeted
mutations to a discrete set of ligand-interacting positions within the binding pocket. Our approach
enabled us to examine the propensity of epistasis in a constrained setting where mutations are
limited to those that interact directly with the ligand, enabling the examination of the intersection

of mutation, biophysical epistasis, and biological epistasis.

Our results highlight the dependence of epistasis on protein function and the prevalence of
distinctive adaptive landscapes for multiple functions within the same set of mutations. This
process highlights the functional tradeoffs that occur during an evolutionary process and raises
the implication that proteins with multiple functions may readily traverse nonoptimal sequence
space through varying selective pressures. These landscapes can thus become interconnected

by changing selection pressures between different protein functions. On an evolutionary scale,



41

simultaneously changing protein sequence and selection pressure may enable improbable
trajectories by bypassing epistatic barriers to reach previously inaccessible mutational states. In
our case, higher order epistasis which prevents access to the quadruple mutant in the naringenin
fold induction landscape, could be bypassed by toggling between naringenin and resveratrol
selection pressures. The evolution of allosteric proteins is inherently dependent on epistasis and
the interactions arising between mutations in these proteins uniquely affects multiple adaptive

landscapes.
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2.9 Methods

Computational Design:

Protein modeling and design was performed with Rosetta version 3.5 (2015.19.57819)3537,
Python and shell scripts for generating input from Rosetta and analyzing from Rosetta are

available at: https://github.com/raman-lab/biosensor_design

Structure and ligand preparation:

The high-resolution TtgR structure co-crystalized with tetracycline was selected as the starting
point for computational design (PDB ID: 2UXH)28. The structure was prepared for use in Rosetta
by performing an all-atom, coordinate-constrained relaxation3e.

Commands:

Rosetta/main/source/bin/idealize_jd2.linuxgccrelease -database Rosetta/main/database/ -

in::file::fullatom -s 2UXH.pdb -extra_res_fa LG.params -no_optH false -flip_ HNQ

Rosetta/main/source/bin/relax.linuxgccrelease -database Rosetta/main/database/ -
relax::sequence_file always_constrained_relax_script -constrain_relax_to_native_coords -
relax::coord_cst_width 0.25 -relax::coord_cst_stdev 0.25 -s 2UXH_idealized.pdb -in::file::native

2UXH_idealized.pdb -extra_res_fa LG.params -in::file::fullatom -no_optH false -flip_ HNQ

Rosetta/main/source/scripts/python/public/molfile_to_params.py -n resveratrol.params -p

resveratrol.pdb

Protein design simulations:
The RosettaScripts protocol used to design the ligand binding pocket of each starting TtgR-

resveratrol complex was based on enzyme design protocolss3?:39,
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Command:

Rosetta/main/source/bin/rosetta_scripts.linuxgccrelease -database Rosetta/main/database/ -
parser::protocol enzdes.xml -in::file::s 2UXH_resvertrol.pdb -extra_res_fa resv.params -
use_input_sc -packing:linmem_ig 10 -ex1-ex2 -run:preserve_header -enzdes_out -
enzdes:bb_min_allowed_dev 0.2 -enzdes:loop_bb_min_allowed_dev 0.5 -
enzdes:minimize_ligand_torsions 15 -parser::script_vars ligchain=X resfile=TtgR.resfile -

out::pdb -nstruct 10

The TtgR.resfile is a plain text file containing the amino acid position numbers that were able to
be mutated during design, and these were positions 137, 141, 167, 168, 171, 172, 175, and 176.
We used UW-Madison’s Center for High Throughput Computing computer cluster to perform
320,000 different design simulations. The resulting designed structures were curated to yield the

set of sequences that we synthesized to isolate resveratrol-specific TtgR variants.

Selection of designs for synthesis:

We selected computational designs for synthesis by first removing designs that were repetitive
and then removing designs that were energetically unfavorable. The criteria for unfavorable
energies were selected empirically based on the distribution of energies for all designs to yield
approximately 104 sequences for synthesis. Specifically, on each unique design, AAG stability
calculations were performed on designed residues to ensure the number of destabilizing changes
was limited. If the mutation destabilized the TtgR-resveratrol complex by 0.5 Rosetta Energy Units
(REU), the residue was reverted to its wild-type identity. After this, non-unique designs were again
removed. The unique designs were filtered using distance from the median absolute deviation of

several salient Rosetta scoring metrics including total ligand binding energy, hydrogen bond
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energy, Leonard-Jones repulsive energy, solvation energy, and total score, which is a weighted,
linear combination of all score terms in the energy function3*. Designs that passed this filter were

synthesized for library screening.

Commands:

./biosensor_design/fas_from_pdb_stdout.py *.pdb > TtgR_resveratrol_all_designs.fasta

./biosensor_design/uniquify_fas.py TtgR_resveratrol_all_designs.fasta >

TtgR_resveratrol_unique_designs.fasta

./ddg_monomer.static.linuxgccrelease -database ./database @ddg_flags -in:file:s

design_pdb.pdb -ddg::mut_file list_of_positions_to_calc_ddg.mutfile -ddg::iterations 50

.J/gen_enzdes_cutoffs.py concatentated_design_score_file.sc -c

median_abolute_deviation_cutoffs.txt -o designs_passing_filter.sc

The median absolute deviation cutoffs used were:
total_score < +1 MAD

fa_rep <+3 MAD

hbond_sc < +3 MAD

tot_burunsat_pm < +3 MAD

%(LIG)s_fa_rep <+3 SD

%(LIG)s_hbond_sc < +3 MAD
%(LIG)s_burunsat_pm < 2.5 ABS

%(LIG)s_total_score < -1 MAD
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Library synthesis:

Creating sfGFP reporter plasmid:

The sfGFP reporter plasmid was constructed using a backbone containing the ColE1 origin and
a kanamycin resistance gene. The TtgR operator sequence was modified to contain canonical -
10 (5-TATAAT-3’) and -35 (5-TTGACA-3’) elements in the promoter. A strong RBS (g10) was
chosen for high sfGFP expression?®. The TtgR operator-RBS sequence was constructed via
sequential PCR reactions with overlapping primers containing homology to the pColE1 backbone
5’ of sfGFP. The plasmid was annealed using isothermal assembly using 0.16pmol of backbone
and 0.43pmol of promoter4'. DH10B cells (NEB) were transformed with the pColE1 reporter
plasmid and plated on LB-kanamycin agar (50ug/mL). A colony was selected and grown in LB-
kanamycin media (50ug/mL) shaking for 16 hours at 37°C. An aliquot of the culture was stored at
-80°C in 25% glycerol. Plasmids were isolated using a DNA miniprep kit (Omega BioTek)
according to the manufacturer’s protocol. The insertion of TtgR operator sequence was confirmed

via Sanger sequencing.

Creating TtgR expression plasmid:

The TtgR expression plasmid used the SC101 origin and a spectinomycin resistance gene. The
constitutive promoter-RBS combination apFAB61-BBa_J61132 and the TtgR gene were amplified
via KAPA HiFi PCR mix (Roche) using primers with homology to the pSC101 backbone*2. The
TtgR-pSC101 construct was generated using isothermal assembly (0.046pmol backbone and
0.24pmol TtgR) and DH10B cells were transformed with the TtgR-pSC101 construct. A colony
was selected and grown in LB-spectinomycin media (50ug/mL) shaking for 16 hours at 37°C. An

aliquot was stored at -80°C and plasmids were isolated and verified as described previously.
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Library cloning:

Rosetta-designed sequences were synthesized as exact oligos (Twist Biosciences). Oligos were
converted to double-strand DNA using gPCR and purified on a spin column (EZNA Cycle Pure kit
from Omega BioTek). The pSC101 backbone was amplified with two separate primer pairs
encoding Bsal cut sites that matched the insertion location of the oligos on the TtgR gene. The
amplified backbone was treated with Dpn1 for 16 hours at 37°C (NEB) followed by a purification
using a spin column. The backbone was treated with Bsal (NEB) for 2.5 hours at 37°C followed
by purification using a spin column. The digested backbone was treated with Antarctic
phosphatase (NEB) for 1 hour at 37°C followed by purification using a spin column. A golden gate
reaction (NEB) was performed using 0.12pmol backbone and 0.89pmol library oligo in roughly a
1:7 molar ratio and incubating for 30 cycles of 37°C for 5min and 16°C for 5 min followed by 60°C
for 5min. A control reaction was made using just the pSC101 backbone with no Rosetta oligos
added. The golden gate reactions were dialyzed using semi-permeable membranes (Millipore)
for 1 hour at 25°C against dH>0. 25uL of C3020 cells (NEB) were transformed with 2uL of the
dialyzed golden gate mixture via electroporation. Cells recovered for 1 hour in SOC media shaking
at 37°C and were diluted 5X with LB. Dilutions of 100X, 500X, and 1,000X were plated to calculate
transformation efficiency relative to the control. A transformation was considered successful when
CFU/mL of the Golden Gate reactions exceeded CFU/mL of control reactions by a factor of 10 or
more. Cells grew for 6 hours post transformation before the culture was diluted 50X and grown
overnight shaking at 37°C for 16 hours. Plasmids of the library were harvested using a DNA

miniprep kit and stored at -20°C.

Preparing electrocompetent cells with reporter plasmid:
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An aliquot of the pColE1 frozen stock was streaked on a LB-kanamycin agar plate and grown for
16 hours at 37°C. A single colony was selected and grown in LB-kanamycin media shaking for
16 hours at 37°C. The culture was diluted 50X and grown at 37°C to an ODego of 0.6. Cells were
placed on ice and 5mL aliquots were centrifuged at 5,500g for 5 minutes at 4°C. Pellets were
resuspended, washed with ice cold dH20, and spun at 5,500g twice. The cells were resuspended
in 20uL of water to create electrocompetent DH10B containing the pColE1 plasmid. DH10B E.coli
containing the pColE1 reporter plasmid were transformed with the initial Rosetta library in pSC101
via electroporation. The transformed cells were recovered for 1 hour shaking at 37°C before
dilutions were plated on LB-kanamycin/spectinomycin agar plates (50ug/mL each) to calculate
transformation efficiency. The remaining cells were diluted 5X with LB- kanamycin/spectinomycin

media and grown shaking at 37°C for 16 hours. A frozen stock was made with 25% glycerol.

Sorting the resveratrol library:

50uL aliquots of the co-transformed Rosetta libraries were thawed on ice and inoculated into 5mL
of LB-kanamycin/spectinomycin and grown shaking at 37°C to an ODsoo of 0.2. Wildtype co-
transformed TtgR sensor+reporter was also inoculated as a reference. These were then split into
4 1mL aliquots and inoculated with either 500uM naringenin (DMSQO), 95uM resveratrol (ethanol),
DMSO, ethanol and grown for 14 hours at 37°C shaking. Cells were diluted 50X in ice cold PBS
(137mM NaCl, 2.7mM KCI, 10mM NazHPOQO4, 1.8mM KH2PO4) and stored on ice prior to sorting.
Sorting was conducted using a Sony SH800 cell sorter. Cells were excited by a 488nm laser and
GFP fluorescence was captured through a 525/50 filter. Gain settings were adjusted such that all
cells fell between 102 and 108 RFU. 100,000 event measurements of all libraries, induced and

repressed, were taken to draw gates according to population percentage.
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Sorting followed an induced-repressed schema; the first library sort consists of taking 500,000
cells of median 50% of fluorescence from the nontreated distribution. This sort isolates cells that
contain TtgR variants capable of repressing GFP expression. Cells were sorted into 2mL of LB.
LB as added to a final volume of 5mL and incubated for 1 hour at 37°C shaking. Kanamycin and
spectinomycin were added after 1 hour to a final concentration of 50ug/mL each from 1mg/mL
stocks. These grew to an OD600 of 0.2 before frozen stocks were made in 25% glycerol. A small
aliquot was stored as a frozen stock at -80°C in 25% glycerol. The remaining culture was induced
with naringenin, resveratrol, DMSO, or ethanol at an OD600 of 0.2.

The next sort consisted of isolating 100,000 cells in the top 5% of fluorescence from the
resveratrol-induced library. This subpopulation was grown as described previously and induced
with 95uM resveratrol at an OD600 of 0.2. The final sort consisted of isolating 500,000 cells the
bottom 60% of the nontreated fluorescence distribution. The sorted cells were incubated at 37°C

until the culture reached an OD600 of 0.2. A frozen stock was stored at -80°C in 25% glycerol.

Clonal Testing:

Aliquots of the sorted library, wildtype TtgR, and a GFP-positive control were thawed on ice. 50uL
of the library was plated on LB-kanamycin/spectinomycin and incubated at 37°C for 16 hours.
The GFP control aliquot was streaked on LB-kanamycin and the wildtype TtgR aliquot was
streaked on LB-kanamycin/spectinomycin and incubated in the same fashion. Colonies were
selected from each plate and inoculated into 150uL of LB in a 96 well plate. The colonies were
incubated at 37C shaking in a SBT1500-H microplate shaker (Southwest Science) and grew to
saturation (approximately 8 hours). The cultures were diluted 15X into fresh LB with either 500uM
naringenin or 95uM resveratrol and incubated in a Synergy HTX plate reader (BioTek) for 16

hours at 37°C. The performance of each colony was measured using the ratio of fluorescence to
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optical density (RFU/ODego). The ratio of this measurement in the presence and absence of ligand
defined the response to each ligand. Successful colonies had higher response for resveratrol than

for naringenin. These colonies were sequenced using Sanger sequencing.

Testing of combinatorial mutants:

Generation of combinatorial mutants:

The 14 mutational intermediates were generated using eight primers specifically encoding
combinations of either 137+141 or 167+168. The resulting oligos were inserted into the TtgR-
pSC101 plasmid using isothermal assembly using .042pmol of backbone and 0.8pmol TtgR.
DH10B E.coli cells (NEB) were transformed with the resulting reaction via electroporation.
Colonies were selected and sequenced to verify the correct mutations were present. The correct
colonies were inoculated into LB-spectinomycin and incubated at 37°C for 16 hours. An aliquot
was stored at -80°C in 25% glycerol and plasmids were harvested from the remaining culture.
DH10B cells were cotransformed with the 14 TtgR-pSC101 plasmids and the pColE1 reporter
plasmid. These were grown for 16 hours shaking at 37°C in LB-kanamycin/spectinomycin media

and frozen in 25% glycerol at -80C.

Dose response curves:

A 250mM stock of naringenin was made in DMSO and a 100mM stock of resveratrol was made
in ethanol. The TtgR-pSC101/pColE1 frozen stocks were struck out onto LB-
kanamycin/spectinomycin plates. Colonies were selected and inoculated into 150uL LB in a 96-
well plate. These grew in a microplate shaker to saturation (approximately 8 hours) at 37°C. The
cultures were diluted 15X into fresh LB-kanamycin/spectinomycin in a 96-well plate with varying

concentrations of either naringenin (OuM, 10uM, 25uM, 50uM, 75uM, 100uM, 250uM, 500uM,
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750uM, 1000uM, 1500uM, 2000uM) or resveratrol (OuM, 2.5uM, 5uM, 7.5uM, 10uM, 25uM,
50uM, 75uM, 100uM, 150uM, 200uM, 250uM). The concentration series for each ligand differ
due to solubility limits in agueous solutions. A series of naringenin and resveratrol stock
concentrations were made such that a 50X or a 100X dilution, respectively, would yield the desired
concentrations in the assay. Most variants were assayed with three biological replicates. Variants
with more biological noise (1010, 1001, 1110, and 1101 for naringenin and 1001, 1000, 0001, and
0011 for resveratrol) were assayed with six replicates. The assay was incubated in the microplate
shaker for 14 hours at 37°C shaking. Cells containing wildtype TtgR pSC101 with the pColE1
reporter and cells containing pColE1 reporter alone served as controls and were included on
every plate. A set of 6 biological replicates of a sfGFP positive control were induced with both
sets of ligands and concentrations.

Cells were diluted 50X in ice cold PBS. Fluorescence measurements were conducted on a LSR-
Fortessa system (BD Biosciences) using a 488nm laser for excitation and a 530/30 filter for
fluorescence emission. Using gates on FSC-H vs FSC-A, 100,000 events were gathered per well.
To account for changes in fluorescence that are independent of TtgR function, raw fluorescence
values were normalized by fold changes in sfGFP fluorescence in the positive control (N=6). The
median values of the fluorescence distributions were used as the basis for fold induction
calculations. Fold induction as calculated by obtaining the ratio of induced average median

fluorescence to baseline average median fluorescence.

Quantifying epistasis:
Analyzing fluorescence data:
The mean and standard deviation of each concentration of ligand for each combinatorial mutant

were used to calculate a fit using the Hill equation as a function of ligand concentration (x)*3.
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f(x: n, ECSO) = Fbaseline + ((Fmax - Fbaseline) * (x—)) (1)

ECgo™+x™
TtgR function was defined as the maximum fold induction of the system, which is the ratio of the
median fluorescence at the highest ligand concentration and the median fluorescence at OuM
ligand:
_fFmax o

fold induction =

Fpaseline

The Python 2.7 function curve_fit() from the Scipy module was used to fit the dose response
curves to the Hill equation (Supplementary Fig. 16, Supplementary Fig. 17)*. This function
provides both fit parameters and error as a covariance matrix as output. Basal gene expression
was the fluorescence at OuM ligand. Maximum gene expression was the fluorescence at the

highest ligand concentration. ECso was estimated using the Hill equation.

Bahadur expansion:
The Bahadur expansion was used to analyze the data3¢. Fitness for the bahadur expansion was

defined as:

fold inductionygriant

fltnessvariant = logm(fold induCtionwildtype) (3)

Fold induction in Eq.2 was changed to “basal gene expression”, “maximum gene expression”, or
“ECso” for each functional parameter. Each mutant can be represented as a numerical string (z
string), where each mutable position is one number (z) in the string. A wild type residue at a
position is designated by a -1 while the mutated residue is designated by a 1. The mutant
M167L+F168Y thus becomes [-1, -1, 1, 1]. The interaction terms can be modeled as follows:
po=1
D1, P2y ey P = Z1,23, .., Zp

Pn+1, Pn+2s o Pntcl = 212252123, -y Zn-12n
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Pon_1 = 2123 ... Zy
An orthonormal matrix of psi-values is created based on the combinations of mutations within the
set (Supplementary Table 3). The Bahadur coefficients can be calculated using this orthonormal

matrix and a fluorescence values f(x) for a particular mutant x in the set of all mutants X.

Wi = = Tex F(O0: (%) (4)
The fluorescence of each combinatorial mutant can be calculated based on the Bahadur
coefficients and z string.

f0) = 375 wipi(x) (5)
The R? between the modeled fluorescence values and the experimental data is 1.0 when all
interaction terms are included in the expansion. By truncating Eq. (5) to contain only low-order
interactions, the effect of these contributions to the model can be determined. The expansion was
applied to the full set of mutations (4 positions) and modeled using first order terms; first and
second order terms; first, second, and third order terms; and all terms (Supplementary Fig. 18).
An identical approach was applied to all 24 subnetworks and utilized only first order terms in the
reconstruction (Supplementary Fig 19).
Errors in the R? statistics were estimated using a Monte Carlo simulation. 500 sets of fluorescence
values for all mutants were sampled based on experimental fluorescence means and standard
deviations following a Gaussian distribution using the NumPy module in Python 2.74546, Eq. (4)
and (5) were applied to reconstruct the fluorescence values and calculate R? values between the
sampled model and the sampled data to give a distribution of R? values. Bias-corrected adjusted
95% confidence intervals were calculated by obtaining the average R? of 10,000 bootstrap
iterations of the Monte Carlo simulation R2. The bahadur expansion was applied to each functional

parameter.
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A control set of additive data was used to calculate the R? of data showing no epistasis
(Supplementary Table 1). This subnetwork was analyzed using the same approach as the

subnetwork workflow.

Protein characterization:

Purifying proteins for isothermal titration calorimetry:

The TtgR gene for variants 0000, 1000, 0100, 1100, and 1111 were cloned into a pET31B vector
downstream of the T7 promoter for lac-inducible transcription control using isothermal assembly
with 0.18pmol backbone and 0.392pmol TtgR. MBP was amplified with primers to add a C-
terminal His-tag and TEV site and inserted into the TtgR-pET31B vector upstream of TtgR to
create a MBP-His-TtgR fusion with a TEV cleavage site between the His-tag and the TtgR protein.
BL21 chemically competent cells (NEB) were transformed with 20ng of pET31B vector. Dilutions
of transformants were plated on LB-ampicillin agar. A colony was selected and grown in 5mL LB-
ampicillin media shaking at 37°C for 16 hours. This culture was added to 500mL autoinduction
media (Terrific Broth, 0.8% glycerol, 2mM MgSO., 0.375% (w/v) aspartic acid, 0.015% (w/v)
glucose, 0.5% (w/v) lactose) and grown for 8 hours at 37°C shaking. The culture was grown for
an additional 16 hours at 25°C shaking.

The cells were spun down at 5,500g for 15 minutes at 4°C. The supernatant was removed and
the cells were resuspended in a lysis buffer (300mM NaCl, 50mM HEPES, 1mM PMSF, 1mg/mL
Lysozyme, 5mM BME, 10% glycerol, pH 7.5). A Q500 sonicator (Qsonica) was used to lyse cells
using a 5 second on, 15 second off sonication protocol for 4 minutes total sonication time. The
lysate was centrifuged at 14,0009 for 45 minutes at 4°C. The supernatant was isolated and filtered
through a 0.22um filter. The filtered supernatant was purified on an Akta Start using 2 5mL

HisTrap HP columns. The column was washed with 5 column volumes (CV) IMAC-A (500mM
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NaCl, 20mM Imidazole, 20mM MOPS, 0.3mM TCEP, pH 7). MBP-6His-TtgR was eluted with a
gradient of 100% IMAC-A to 100% IMAC-B (500mM NaCl, 500mM Imidazole, 20mM MOPS,
0.3mM TCEP, pH7) over 5CV and collected in 2mL fractions. Fractions with the highest
absorbance at 280nm (A280) were combined and dialyzed in 8L of dialysis buffer A (100mM NaCl,
20mM MOPS, 0.3mM TCEP, pH 7.5). TEV was added to the proteins prior to dialysis at a ratio of
1:50 w/w TEV:TtgR. Dialysis occurred over a 16 hour interval at 4°C while stirring at low speed.

Dialyzed protein was centrifuged at 14,0009 for 10 minutes at 4°C. The supernatant was passed
through a 0.22um filter and loaded onto the HisTrap columns at 5mL/min. The column was
washed with 5CV of IMAC-A and 2mL fractions were collected. 5CV of IMAC-B was used to
remove the MBP-6His from the column. The column was washed with an additional 10CV IMAC-
A. Wash fractions with high A280 were combined and reapplied to the column. The column was
washed with 5CV of IMAC-A and 2mL fractions were collected. 5CV of IMAC-B was used to strip
the MBP-6His from the column. Fractions with high A280 were combined and dialyzed in 4L of
dialysis buffer C (100mM NaCl, 20mM MOPS, 10mM MgCI2, 0.3mM TCEP, pH 7.8). The protein
was centrifuged at 14,0009 for 10 minutes at 4°C. The supernatant was passed through a 0.22um
filter. The protein was concentrated to approximately 9mg/mL and frozen in 60uL aliquots in liquid
nitrogen before storing at -80°C. Dialysis buffer C was passed through a 0.22um filter and stored

at 4°C for ITC experiments.

Determining binding affinity of TtgR variants:

Stocks of 250mM naringenin and 100mM resveratrol were diluted to 500uM and 250uM,
respectively, in dialysis buffer C. Aliquots of TtgR were thawed on ice and diluted to a final
concentration of 7.5uM. DMSO or ethanol was added to the TtgR solution to match the solution

composition of the naringenin or resveratrol dilutions. An aliquot of dialysis buffer C was also
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prepared with DMSO or ethanol for a control injection and to wash the sample cell between ITC
injections.

The ITC experiments were conducted on a VP-ITC (MicroCal). An initial control injection scheme
consisted of loading the sample cell with dialysis buffer C and performing a series of 10 10uL
ligand injections with 10 minute intervals at 25°C. The sample cell was washed 5 times with
dialysis buffer C before the 7.5uM protein solution was loaded. 25 10uL naringenin injections or
28 10uL resveratrol injections occurred in 10 minute intervals at 25°C.

Data analysis was primarily conducted using Origin 7.0 (MicroCal). The heats of injection from
the control sample were averaged. The protein-ligand injection profile was subtracted by this
average heat prior to curve fitting. Due to low affinity for both naringenin and resveratrol, the
stoichiometry of binding was fixed to 1 to reduce the degrees of freedom prior to fitting. The curves

were fit with the single binding site model (Supplementary Fig. 20).

X-ray crystallography:

Purifying Proteins for X-ray crystallography:

TtgR-pET31B vector was electroporated into BL21 cells (NEB) and recovered in 1mL SOC. The
cells were incubated for 1 hour at 37°C before serial dilutions were plated on LB-ampicillin
(100ug/mL) plates. A single colony was selected and incubated in 5mL LB-ampicillin (100ug/mL)
at 37°C shaking for 3 hours. The 5mL culture was added to 500mL LB-ampicillin media and
incubated at 37°C shaking at 250rpm for approximately 3 hours until the ODsoo reached 0.6. The
culture was induced with 100uM IPTG followed by an incubation at 16°C for 16 hours shaking at
250rpm.

The cells were spun down at 5,500g for 15 minutes at 4C. The supernatant was removed and the

cells were resuspended in a lysis buffer (300mM NaCl, 50mM HEPES, 1mM PMSF, 1mg/mL
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Lysozyme, 5mM BME, 10% glycerol, pH 7.5). A Q500 sonicator (Qsonica) was used to lyse cells
using a 25 second on, 50 second off sonication protocol for 3 minutes and 45 seconds total
sonication time. The lysate was centrifuged at 14,000g for 45 minutes at 4°C. The supernatant
was isolated and filtered through a 0.22um filter. The filtered supernatant was purified on an Akta
Start (Cytiva) using a 5mL HisTrap HP columns (Cytiva). The supernatant was loaded onto the
column at a flow rate of 5mL/min. The column was washed with 5 column volumes (CV) IMAC-A.
MBP-6His-TtgR was eluted with a gradient of 100% IMAC-A to 100% IMAC-B over 10CV and
collected in 2mL fractions. Fractions with the highest absorbance at 280nm (A280) were
combined and dialyzed in 8L of dialysis buffer A. TEV was added to the proteins prior to dialysis
at a ratio of 1:50 w/w TEV:TtgR. Dialysis occurred over a 16 hour interval at 4°C while stirring at
low speed.

TtgR was isolated from MBP-6His through a subtractive IMAC protocol using the Akta Start and
5mL HisTrap HP column. The dialyzed protein was centrifuged at 4,000g for 10 minutes at 4C.
Supernatant was passed through a 0.22um filter and applied to the HisTrap column at 5SmL/min.
5CV IMAC-A was used to wash the column while 2mL fractions were collected. 2.5CV IMAC-B
was used to remove the MBP from the column and 5mL fractions were collected. Wash fractions
with high A280 were combined and dialyzed in 4L of dialysis buffer B (50mM NaCl, 5mM MOPS,
0.3mM TCEP, pH 7.5). EDTA was added to the protein wash fractions to a final concentration of
10mM prior to dialysis. Dialysis occurred over a 16 hour interval at 4C while stirring at low speed.
TtgR was concentrated to 10mg/mL using spin concentrators. Samples were spun at intervals of
3,500g for 5 minutes and mixed via pipette between spins. Concentrated TtgR was separated into

60uL aliquots and frozen in liquid nitrogen prior to storage at -80°C.

Size exclusion chromatography:
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Samples of TtgR wildtype and mutant proteins were received frozen in 5 mM MOPS, pH 7.4, 50
mM NaCl, 0.3 mM TCEP. Samples were thawed and centrifuged for 5 minutes at 21,130g.
Sample supernatants were filtered with a 0.22 micron MillexGV syringe filter unit (Millipore) before
applying to an equilibrated 10 mm x 300 mm Superdex 200 column (GE Healthcare).
Chromatography was performed on a GE AKTA FPLC system. Column buffer was 20 mM
HEPES, pH 7.5, 350 mM NaCl, 0.3 mM TCEP. Two primary peaks were obtained from each
sample with major peak at approximately 45kD MW and a minor peak at approximately 79kD.
The fractions corresponding to the major peak were pooled and concentrated with an Amicon
Ultracel-10 centrifugal filter device (Millipore) and dialyzed vs. 5 mM HEPES, pH 7.5, 50 mM NacCl,
0.3 mM TCEP. Samples collected after dialysis were divided into small aliquots and flash frozen

in PCR tubes with liquid nitrogen.

Crystallization screening and optimization:

Crystallization screening and optimization was conducted in the Collaborative Crystallography
Core in the Department of Biochemistry and the University of Wisconsin-Madison. Crystallization
experiments were set up using a SPT Labtech mosquito® crystallization robot in MRC SD-2
crystallization plates at 4°C and 20°C (277 and 293 K.) Crystals progressing to diffraction
experiments were all obtained at 20°C. Two general screens, Hampton Research IndexHT and
Molecular Dimensions JCSG+ were used in this study+’. Crystals were detected using brightfield
and UV fluorescence imaging with a JANSi UVEX-P crystallization plate imaging system
supplementing visual inspection with stereomicroscopes. Initial rounds of crystallization
optimization were performed in SD2 plates using the mosquito to expand 24 solution conditions

by setting columns of experiments in four different sample to reservoir volume ratios.
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Cryoprotected crystals were harvested in Mitegen micro mounts and flash cooled by immersion

in liquid nitrogen.

Crystallography:

Crystals were screened and X-ray diffraction data was collected at Advanced Photon Source
(APS) beamlines LS-CAT and GM/CA@APS, universally on crystals cooled to 100K. Diffraction
data was reduced using XDS and scaled with XSCALE#849. Structures were solved by molecular
replacement with Phaser within the Phenix suite of programs, automatically rebuilt with
phenix.autobuild, iteratively improved with alternating rounds of rebuilding in Coot and refinement

using phenix.refine, and validated using MOLPROBITY?50-54,

7K1A crystals providing diffraction data were grown by mixing 200 nL of protein at 9.7 mg/mL in
sample buffer (5mM HEPES pH 7.5, 50 mM NaCl, 0.3 mM TCEP) with 150 nL of reservoir solution,
was equilibrated against 150 nL 20% MEPEG, 0.2M MgCI2, 0.1M bistris HCL pH 6.5 equilibrated
against 50 microliters of reservoir solution in a SD2 plate. Samples were cryoprotected with
reservoir solution supplemented to 35% MEPEG 2000. A 360° sweep of data (720 frames) was
collected on a MAR 300 CCD detector at LS-CAT beamline 21ID-G on 2018-12-16 using 0.97856

A X-rays. The phase problem was solved using 2UXU(A) as a molecular replacement model?8.

7K1C crystals of wild-type TtgR with resveratrol were prepared by incubating 0.41 mM protein
(9.8 mg/mL) and 0.5 mM resveratrol dissolved in sample buffer for 30 minutes at room
temperature prior to setting up crystallization experiments. The crystal yielding the best diffraction

data was grown by mixing 200 nL of the protein-ligand sample with 250 nL reservoir (18%
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PEG4000, 0.2M MgCI2, 0.1M bistris HCI pH 6.5) equilibrated against 50 microliters of reservoir a
SD2 plate. Samples were cryoprotected with reservoir solution supplemented with 35% PEG4000.
A 360° sweep of data (720 frames) was collected on a MAR 300 CCD detector at LS-CAT
beamline 211D-G on 2018-12-16 using 0.97856 A X-rays. The phase problem was solved using

2XDN as a molecular replacement model.

7KD8 crystals were prepared by incubating 0.43 mM (10.4 mg/mL) quadruple mutant protein with
1 mM resveratrol in sample buffer for 30 minutes prior to setting up crystallization experiments.
Crystals providing the reported diffraction data set grew from 2 microliters of sample mixed with
2 microliters of reservoir solution (12% MEPEG 2000, 5% 2-methyl-2,4-pentanediol, 0.3 M MgCl2,
0.1 M bistris buffer at pH 6.5 equilibrated in a hanging drop experiment using a siliconized glass
cover slip. Samples were cryoprotected with reservoir solution supplemented to 30% MEPEG
2000. A 360°(3600 frames) shutterless data set was collected at LS-CAT 21ID-D on 2019-05-30
with an Eiger 9M direct detector and 1.07812 A X-rays. The phase problem was solved using

7K1A as a molecular replacement model.

Figures and scripts:
All figures were generated using the Matplotlib module in Python 2.7%. Scripts used in data
analysis and figure generation can be found at: https://github.com/raman-lab/epistasis. POVME

3.0 was used to calculate pocket volumes based on the location of resveratrols.
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Figure 1: Design of resveratrol-specific TtgR variant. Resveratrol conformers are
docked into TtgR followed by Rosetta-based computational design of the binding
pocket. Candidates with favorable Rosetta score metrics (green points) are synthe-
sized and cloned into an expression vector. Distribution of fluorescence in cells contain-
ing uninduced TtgR variant library (light green), induced with naringenin (light blue) and
resveratrol (red) before sorting (Pre-Sort) and after three rounds of sorting (Post-Sort)
are shown. Colony screening identified a quadruple mutant showing resveratrol speci-
ficity: C1371/1141W/M167L/F168Y.
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Figure 2: Fitness landscapes for multiple functional parameters in response to induction
with resveratrol. Fitness landscapes of (a) fold induction, (b) basal gene expression, (¢) maxi-
mum gene expression, and (d) EC, parameters for all 16 TtgR variants in response to resveratrol
with each variant shown as a node in the graph. Each variant is labeled with a binary string
corresponding to the presence (1) or absence (0) of a mutation at position 137, 141, 167, or 168 in
order. Nodes separated by a single mutation are connected by edges showing viable (bold red)
and unviable paths (light gray) through sequence space. Nodes are shaded by log,, of the fold
induction ratio at 250uM resveratrol normalized to the fold induction ratio of wildtype TtgR. Number
of epistatic subnetworks in the resveratrol (d) fold induction, (e) basal gene expression, (f) maxi-
mum gene expression, and (g) EC50 landscape determined by Bahadur expansion.
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Figure 3: Fitness landscapes for multiple functional parameters in response to induction with
naringenin. Fitness landscapes of (a) fold induction, (b) basal gene expression, (¢) maximum gene
expression, and (d) EC,, parameters for all 16 TtgR variants in response to naringenin with each
variant shown as a node in the graph. Each variant is labeled with a binary string corresponding to the
presence (1) or absence (0) of a mutation at position 137, 141, 167, or 168 in order. Nodes separated
by a single mutation are connected by edges showing viable (bold blue) and unviable paths (light gray)
through sequence space. Nodes are shaded by log,, of the fold induction ratio at 2000uM resveratrol
normalized to the fold induction ratio of wildtype TtgR. Number of epistatic subnetworks in the resvera-
trol (e) fold induction, (f) basal gene expression, (g) maximum gene expression, and (h) EC,, land-
scape determined by Bahadur expansion.
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Figure 4: Structural basis for ligand specificity. Wildtype TtgR and quadruple mutant are
shown in blue and green ribbons, respectively. Positions 137, 141, 167, and 168 are colored in
pink. Resveratrol is shown as gray sticks. Water molecules are shown as red spheres. (a) Binding
pocket of resveratrol-bound wildtype TtgR (PDB ID: 7K1C) (upper panel) with residues making
hydrogen bonds to resveratrol highlighted in orange (lower panel). (b) Binding pocket of resvera-
trol-bound quadruple mutant TtgR (PDB ID: 7KD8) (upper panel) with residues making hydrogen
bonds to resveratrol highlighted in orange (lower panel).
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Supplementary Figure 1: Mutation distribution for synthesized resveratrol
designs
Histogram of the number of mutations in the library of experimentally screened, Roset-

ta-generated designs. The average number of mutations was 5.1 with a variance of 1.8.
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Supplementary Figure 2: Mutation heatmap for synthesized resveratrol designs
Heatmaps are colored by PSSM score calculated from the set of curated Rosetta
designs. A black box is drawn around the wildtype amino acid identity at each position.
(a) Heatmap of the first of two designed regions of TtgR. (b) Heatmap of the second
designed region in TtgR.
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Supplementary Figure 3: Workflow for screening ligand-specific TtgR variants by
fluorescence activated cell sorting

Rosetta-designed TtgR variants are transformed into E. coli cells carrying the reporter
plasmid. TtgR variants are sorted by toggling between repressed and induced states (solid
arrow). The lower 50% of fluorescent cells are sorted in the absence of inducer to isolate
variants that are able to repress transcription. Subsequently, the sorted population are
grown and induced with resveratrol. The top 5% of fluorescent cells are sorted to isolate
variants capable of binding to the ligand and inducing GFP expression. After toggling multi-
ple times, the repressed sort is repeated a final time before the subpopulation is clonally
tested with both naringenin and resveratrol (dashed arrow).
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Supplementary Figure 4: Fluorescence distributions of wildtype TtgR and quadruple
mutant
Flow cytometry histograms of wildtype TtgR and quadruple mutant TtgR with and without
inducers. Naringenin 2000uM (blue) dissolved in DMSO and DMSO-only control (red), Res-
veratrol 250uM (blue) dissolved in ethanol and ethanol-only control (red) are shown.
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Supplementary Figure 5: Additional mutational pathways permitted by a 25% toler-
ance window for resveratrol functional parameters

The tolerance window describes the acceptance of a mutation that performs worse than
the background variant when describing allowed pathways through sequence space.
Each variant is labeled with a binary string corresponding to the presence (1) or absence
(0) of a mutation at position 137, 141, 167, or 168 in order. Nodes separated by a single
mutation are connected by edges showing viable (bold red) and unviable paths (light
gray) through sequence space. Nodes are shaded by log,, of the fitness parameter at
250uM resveratrol normalized to the fitness of wildtype TtgR. All new tolerated pathways
are shown as red dashed lines. Additional pathways have been calculated for resveratrol
(a) fold induction, (b) basal expression, (¢) maximum expression, and (d) EC,, land-
scapes. The fold induction landscape shows no additional pathways while the basal
expression, maximum fluorescence, and EC_, landscapes show 11, 8, and 8 additional
paths, respectively.
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Supplementary Figure 6: Visual definition of different types of epistasis

Visual representation of different types of epistasis. This graphical representation separates
example subnetworks based on the type of epistasis. An arbitrary fithess metric is plotted
against a sequence coordinate where each mutation is represented by a binary string. A
system is non-epistatic when the combined effect of mutations is the sum of their individual
effects. Magnitude epistasis occurs when the combined effect of mutations is greater than the
sum of their individual effects (no change in direction). Sign epistasis occurs when one muta-
tion switches direction from beneficial to detrimental (or vice versa) depending on the back-
ground in which it is introduced. Reciprocal sign epistasis occurs when both mutations switch
direction depending on the background.
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Supplementary Figure 7: Bahadur expansion of subnetworks in resveratrol functional parameters

Tertiary

Bahadur expansion was applied to the 24 subnetworks of the (a) fold induction, (b) basal expression, (¢) maximum expression, and (d) EC,,
landscapes. The box plots show the bootstrap averages (N=10,000 bootstrap replicates). Epistatic subnetworks were defined as those with
an R? value of less than 0.9, based on simulated additive data (“Control”). The box denotes the interquartile range and the orange line
denotes the median R? value for the bootstrap averages. The whiskers extend to the maximum and minimum R? values. The fold induction
landscape shows that the majority of subnetworks in a wildtype or single-mutant background show epistasis while those in double-mutant
backgrounds are less likely to show epistasis. The basal expression landscape shows similar patterns of R? values as the fold induction land-
scape. All of the subnetworks in the maximum expression landscape are epistatic. The EC,, landscape shows more epistasis than the fold
induction landscape in subnetworks with a double mutant background.
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Supplementary Figure 8: Additional mutational pathways permitted by a 25% toler-
ance window for naringenin functional parameters

The tolerance window describes the acceptance of a mutation that performs worse than
the background variant when describing allowed pathways through sequence space.
Each variant is labeled with a binary string corresponding to the presence (1) or absence
(0) of a mutation at position 137, 141, 167, or 168 in order. Nodes separated by a single
mutation are connected by edges showing viable (bold red) and unviable paths (light
gray) through sequence space. Nodes are shaded by log, of the fitness parameter at
2000uM naringenin normalized to the fithess of wildtype TtgR. All new tolerated path-
ways are shown as blue dashed lines. Additional pathways have been calculated for
resveratrol (a) fold induction, (b) basal expression, (¢) maximum expression, and (d)
EC,, landscapes. The fold induction landscape shows no additional pathways while the
basal expression, maximum fluorescence, and EC, landscapes show 2, 8, and 6 addi-
tional paths, respectively.
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Supplementary Figure 9: Bahadur expansion of subnetworks in naringenin functional parameters

Bahadur expansion was applied to the 24 subnetworks of the (a) fold induction, (b) basal expression, (¢) maximum expression, and (d) EC, land-
scapes. Epistatic subnetworks are defined in the same fashion as Supplementary Fig. 7. The box plots show the bootstrap averages (N=10,000
bootstrap replicates). The box denotes the interquartile range and the orange line denotes the median R? value for the subnetwork. The whiskers
extend to the maximum and minimum R?2 values. The fold induction landscape shows that only a small number of subnetworks in the wildtype or
single mutant background are not epistatic. In contrast, the basal expression landscape has nonepistatic subnetworks in the wildtype, single, and
double mutant backgrounds. Like the subnetworks of the resveratrol maximum fluorescence landscape, the majority of subnetworks in the narin-
genin maximum fluorescence landscape show epistasis. The EC, landscape shows similarity to the fold induction landscape with nonepistatic
subnetworks in the wildtype and single mutant backgrounds.
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Supplementary Figure 10: Structure of ligand-bound wildtype and quvadruple mutant

TtgR is as an all-helical dimer. The helix-turn-helix domain at the N-terminal end binds to DNA. The ligand binding pocket is enclosed
by five angled helices. An additional helix at the C-terminal end forms the dimerization interface. The quadruple mutant (PDB: 7KD8)
(a) is structurally identical to the wildtype (PDB: 7K1C) (b). Resveratrol is shown as pink sticks in both. (¢) A close-up view of the bind-
ing orientation of resveratrol in the pocket. The quadruple mutant (left) binds to resveratrol in the horizontal orientation. Wildtype TtgR
binds to resveratrol (middle) or to naringenin (right, PDB ID: 2UXU) in the vertical orientation. Resveratrol is shown as grey sticks.
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Supplementary Figure 11: Alignment of DNA binding domains for resveratrol-bound
quadruple mutant, resveratrol-bound wildtype, and apo quadruple mutant TtgR

(a) The DNA binding domains of the resveratrol-bound quadruple mutant (green) and the
resveratrol-bound wildtype (blue) TtgR. The RMSD of these two domains is 1.03A. (b) The
DNA binding domains of resveratrol-bound wildtype (blue) and apo wildtype (yellow) TtgR.
The RMSD of these two domains is 1.35A.
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Supplementary Figure 12: TtgR binding pocket volume visualization

Binding pocket volumes were calculated using POVMES.0 and visualized in Pymol. (a) The
pocket volume of apo wildtype TtgR, represented by the Xs, is 170A3%. The pocket was not
predefined in this calculation. (b) The pocket volume of resveratrol-bound wildtype TtgR is
215A3. (c) The pocket volume of resveratrol-bound quadruple mutant TtgR is 234A3. The
pockets for (b) and (c) were defined using the resveratrol molecule.
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Supplementary Figure 13: Interactions of mutated positions and alternate hydrogen
bonding networks

(a) The C1371 mutation creates a small cleft in the binding pocket that can enhance shape com-
plementarity to resveratrol in the horizontal binding mode. The quadruple mutant (left) is shown
in comparison to wildtype (right). The van der Waals surface of residue 137 and 141 is shown
for both structures. Positions 137, 141, 167, and 168 are shown as pink sticks. (b) (Left) M167L
creates nonpolar interactions with residues in helices composing the binding pocket and
dimerization interface (purple sticks). Mutated positions 137, 141, 167, and 168 are shown in
pink. 167 also plays a role in positioning the 1141W side chain. (Right) The F168Y substitution
enables the formation of additional hydrogen bonds to solvent that can create a hydrogen bond
network with D172. Water molecules are shown as red spheres. (¢) The hydrogen bond network
differs for the quadruple mutant between chain A and chain B due to the slightly different position
of the resveratrol molecules in each. (Left) In the quadruple mutant, D71, R75 and E78 (orange)
make hydrogen bonds with the resveratrol molecules. (Right) The hydrogen bonding network of
wildtype chain A is identical to chain B. Water molecules are shown as red spheres.



Supplementary Figure 14: Naringenin and resveratrol overlap

Naringenin (in brown) derived from a previous structure (PDB: 2UXU) is over-
lapped with resveratrol (in grey) via the pair_fit function in Pymol. The structures
of each ligand are similar with respect to the location of hydroxyl groups, but
differ by the addition of a carbonyl in the 4-chromanone backbone of naringenin.
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Supplementary Figure 15: Designed TtgR quadruple mutant binding pocket compared to crystal structure of TtgR qua-

druple mutant

The designed TtgR quadruple mutant (brown) is aligned to the crystal structure of the TtgR quadruple mutant (blue). (a) Resvera-
trol positions of the designed TtgR (brown) and the crystal structure (grey). (b) Mutated positions are shown as sticks. The design
was unable to model the resveratrol in the horizontal orientation even though the residue rotamer states are similar to those in the

crystal structure.
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Supplementary Figure 16: Gating scheme for fluorescence-activated cell sorting and flow
cytometry

(a) Gating strategy to sort cells containing a TtgR variant that is able to repress sfGFP expression. (b)
Gating strategy to sort cells containing a TtgR variant that is able to induce sfGFP expression when
exposed to 95.5uM resveratrol. (¢) Gating strategy to isolate cells containing a TtgR variant that is able
to both repress sfGFP expression in the absence of resveratrol and induce sfGFP expression in the
presence of resveratrol. The sorting gating schemes are presented in Figure 1 and Supplementary Fig.
3. (d) Gating strategy to calculate fluorescence for flow cytometry experiments presented in Fig. 2, Fig.
3, Supplementary Fig. 4, Supplementary Fig. 6, Supplementary Fig. 7, Supplementary Fig. 8, Supple-
mentary Fig. 9, Supplementary Fig. 16, and Supplementary Fig. 17.
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Supplementary Figure 17: Naringenin dose response curves

Dose response curves to naringenin for all 16 mutational combinations. Naringenin concen-
tration varied between OuM and 2000uM naringenin. Fit is shown as a solid line and experi-
mental data is shown as markers with error bars. The marker denotes the averages and the
error bars show the standard deviations of biological triplicate measurements (n=3) unless
otherwise specified (see Methods). (a) Single mutant fits (1000, 0100, 0010, and 0001). (b)
Double mutant fits (1010, 1001, 0110, 1100, and 0011). (c¢) Triple mutant fits (1011, 0111,
1110, and 1101). (d) Wildtype (0000) and quadruple mutant (1111) dose response curves.
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Supplementary Figure 18: Resveratrol dose response curves

Dose response curves for all 16 mutational combinations to resveratrol. Resveratrol concen-
tration varied between OuM and 250uM resveratrol. Fit is shown as a solid line and experi-
mental data is shown as markers with error bars. The marker denotes the averages and the
error bars show the standard deviations of biological triplicate measurements (n=3) unless
otherwise specified (see Methods). (a) Single mutant fits (1000, 0100, 0010, and 0001). (b)
Double mutant fits (1010, 1001, 0110, 1100, and 0011). (¢) Triple mutant fits (1011, 0111,
1110, and 1101). (d) Wildtype (0000) and quadruple mutant (1111) dose response curves.
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Supplementary Figure 19: Distribution of R? for first and higher order interactions for the full network

Distribution of R? values from the Bahadur expansion model applied to the full 16-member network after stochastic sampling (N=500)
of fold induction values based on experimental averages and standard deviations. Boxplots of first, second, third, and fourth order inter-
actions are shown for (a) resveratrol and (b) naringenin. The orange line is the median R2value for the distribution and the box encloses
the interquartile range (IQR). The whiskers extend to the maximum and minimum R? values. The raw R? values for the fold induction,

baseline fluorescence, EC, , and can be found online at https://github.com/raman-lab/epistasis.
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Supplementary Figure 20: Distribution of R?2 for first order interactions for individual
subnetworks

Distribution of R? values from the Bahadur expansion model applied to each subnetwork
after stochastic sampling of experimental fold induction values for (a) resveratrol or (b) narin-
genin based on experimental averages and standard deviations. Each subnetwork network
was modeled 500 times by stochastic sampling. The orange line is the median R? value for
the distribution and the box encloses the interquartile range (IQR). The whiskers extend to
the maximum and minimum R? values.The raw R? values for the fold induction, baseline

fluorescence, EC,, and can be found online at https:/github.com/raman-lab/epistasis.
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Supplementary Figure 21: Estimating binding parameters from isothermal calorimetry of wildtype TtgR and variants
Isothermal titration calorimetry experimental data for affinity of TtgR mutants to either naringenin or resveratrol. Heat per mole of
ligand injected (kCal/mol) is plotted as a function of the molar ratio of ligand:protein. Binding parameters are estimated from single site
binding model fits using Origin 7.0 software (MicroCal). Due to low affinities for both naringenin and resveratrol, stoichiometry was
fixed to 1 for both naringenin and resveratrol (see methods).
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Supplementary Figure 22: mF -DF and 2mF -DF  omit maps for resveratrol-bound quadru-
ple mutant TtgR and resveratrol-bound wildtype TtgR

Maps for the protein density were calculated in phenix from deposited models and structure factor
amplitudes. The mF -Df map is contoured at 30 and the 2mF -DF_maps were contoured at 20.
The mF -DF_omit map is shown as green wires while the 2mF -DF_omit map is shown in grey.
(a) mF -DF_and 2mF -DF_omit maps for resveratrol-bound quadruple mutant TtgR. Chain A is
shown in the top panel on the left and chain B is on the right. The lower panel depicts chain C (left)
and chain D (right). (b) mF -DF_and 2mF _-DF_omit maps for resveratrol-bound wildtype TtgR.
Chain A is shown on the left and chain B is shown on the right.



Tables
Name Sequence
KN_E1 TATCACGAGGCCCTTTCGTCTTCACCACCCAGCAGTATTGACAAACAAC
KN_E2 TTCATGGTTGTTTGTCAATACTGCTGGGTGggcgcgecatgactaagcttttcattgtct
KN_E3 2aagttaaatgTTGCTAAGGATTATACTTACATTCATGGTTGTTTGTCAATACTGCTGGG
KN_E4 atgtatatctccttcttaaagttaaatgTTGCTAAGGATTATACTTA
KN_E5 cagctcttcgectttacgcatatgtatatctecttcttaaagttaaatgTT
KN_E6 GTGAAGACGAAAGGGCCTCG
KN_E7 atgcgtaaaggcgaagagcetg
KN_E8 catgctgcttcatGtggtcc
KN_E9 GCTGGCAATTCCGACGTC
KN_E10 TTGACAATTAATCATCCGGC
KN_E11 CGAGCCGGATGATTAATTGTCAA
KN_E12 TGAattagcagaaagtcaaaagcctccga
KN_E13 tcggaggcttttgactttctgctaatTCATTATTTGCGCAGCGCCGG
KN_E14 gCGATCGTGCCCACCT
KN_E15 GTGCGGGCTCCAACT
KN_E16 ggCTGGTGCGTCGTCT
KN_E17 cGGGAAGTGTTCGCCG
KN_E18 GGTCTCGGTTCTGGATGCACGTACCCGTCGC
KN_E19 GGTCTCGCAGTGCCTGAACCAGTTCGGC
KN_E20 GGTCTCGCGTTGGCTGCTGCTGCCGGATAG
KN_E21 GGTCTCGATCCAGCACGGCGCTCTGGCGC
KN_E22 GAAATTCGTCAGCAGCGCCAGAGCGCCGTGCTGGATattCATAAAGGTATCACC
KN_E23 GAAATTCGTCAGCAGCGCCAGAGCGCCGTGCTGGATTGTCATAAAGGTtggACC
KN_E24 GAAATTCGTCAGCAGCGCCAGAGCGCCGTGCTGGATattCATAAAGGTtggACC
KN_E25 GAAATTCGTCAGCAGCGCCAGAGCGCCGTGCTGGATTGTCATAAAGGTATCACC
KN_E26 CAGCAGCAGCCAACGGCGAATCAGGCCATCCACATAGGCAAACcagCGCAACCGC
KN_E27 CAGCAGCAGCCAACGGCGAATCAGGCCATCCACATAGGCataCATCGCAACCGC
KN_E28 CAGCAGCAGCCAACGGCGAATCAGGCCATCCACATAGGCatacagCGCAACCGC
KN_E29 CAGCAGCAGCCAACGGCGAATCAGGCCATCCACATAGGCAAACATCGCAACCGC
KN_E30 TTTTGTTTAACTTTAAGAAGGAGATATACATATGaaaatcgaagaaggtaaactggtaat
KN_E31 CATATGTATATCTCCTTCTTAAAGTTAAACAAAA
KN_E32 attgaaaatataaattttcGTGGTGGTGGTGGTGGTGgtcgecgttaattaaagtctgeg
KN_E33 CCACCACCACgaaaatttatattttcaatctATGGTGCGTCGCACCAAAGAAGAAG
KN_E34 CTTTGTTAGCAGCCGGATCTCATTATTTGCGCAGCGCCGGGCTCAG
KN_E35 TGAGATCCGGCTGCTAACAAAGCCCGAAAGGA

Supplementary Table 1: Primers
Names and sequences of all primers used in this study.
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Binary Average St. Dev
00 3.1 0.93
01 24.5 7.35
10 56.1 16.83
11 74.4 22.32

93

Supplementary Table 2: Control additive data set
A set of random values that are additive with respect to the mean. The standard deviation
of each datapoint is 30% of the mean. This control set was used to calculate the R2 for
comparison to the subnetwork Bahadur expansions.
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Quadruple Mutant (Apo) | TtgR QM STL 7KD8 wtTtgR STL 7K1C
7K1A
Wavelength 0.9786 1.078 0.9786

Resolution range

32.14 -1.75 (1.813 - 1.75)

25.65 -1.71 (1.771 -1.71)

28.63 - 1.9 (1.968 -1.9)

Space group

caa21

P1

caa221

Unit cell

57.92 64.28 223.87 90 90 90

43.497 43.587 115.942 97.969
98.648 96.761

57.73 64.5 223.22 90 90 90

Total reflections

578957 (41577)

311123 (31645)

481016 (49244)

Unique reflections

42585 (4137)

82029 (8133)

33367 (3316)

Multiplicity

13.6 (10.1)

3.8(3.9)

14.4 (14.9)

Completeness (%)

99.71 (97.73)

91.78 (91.33)

99.88 (99.97)

Mean I/sigma(l)

16.20 (1.29)

13.88 (1.92)

22.92 (2.06)

Wilson B-factor

35.18

31.18

36.4

R-merge 0.09432 (1.303) 0.04573 (0.5776) 0.07704 (1.294)
R-meas 0.09805 (1.373) 0.05349 (0.6697) 0.07997 (1.339)
R-pim 0.02647 (0.4257) 0.02758 (0.3382) 0.02123 (0.3446)
CC1/2 0.987 (0.578) 0.998 (0.901) 0.999 (0.739)
Ccc* 0.997 (0.856) 1(0.974) 1(0.922)

Reflections used in refinement

42566 (4136)

81923 (8104)

33349 (3315)

Reflections used for R-free

1979 (197)

1975 (197)

2020 (202)

R-work 0.1966 (0.3962) 0.1927 (0.2891) 0.1833 (0.3081)
R-free 0.2400 (0.3854) 0.2406 (0.3556) 0.2246 (0.3837)
CC(work) 0.955 (0.728) 0.959 (0.912) 0.963 (0.810)
CC(free) 0.920 (0.647) 0.930 (0.871) 0.948 (0.650)
Number of non-hydrogen atoms | 3609 7247 3552

macromolecules 3321 6841 3322

ligands 2 72 36

solvent 286 334 194
Protein residues 413 830 415
RMS(bonds) 0.003 0.006 0.016
RMS(angles) 0.48 0.72 1.23
Ramachandran favored (%) 99.27 99.27 99.51
Ramachandran allowed (%) 0.73 0.61 0.49
Ramachandran outliers (%) 0 0.12 0
Rotamer outliers (%) 0.58 0.84 0.86
Clashscore 2.1 217 2.53
Average B-factor 39.41 40.02 42.83

macromolecules 39.27 39.83 42.66

ligands 35.92 53 52.81

solvent 41.05 41.07 43.92
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‘ Number of TLS groups

‘14

22

‘ 1

Supplementary Table 3: Crystallography refinement statistics
Refinement statistics for three structures: apo quadruple mutant TtgR (7K1A), wildtype
TtgR bound to resveratrol (7K1C), and quadruple mutant TtgR bound to resveratrol
(7KD8). Statistics for the highest resolution shell are shown in parentheses.

0000 | 0001 | 0010 | 0011 | 0100 | 0101 | o110 | o111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 | Fiesidue
Interactions

Wo 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
Wy 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1
Wy 1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 2
W3 1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 3
Wy 1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 4
Ws 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1-2
We 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1-3
W; 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1-4
Wg 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 2-3
Wy 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 2-4
Wyo 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 3-4
Wiy 1 -1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 1-2-3
Wiz 1 1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 1-2-4
Wis 1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 1-3-4
Wiy -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 2-3-4
Wis 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1-2-3-4

Supplementary Table S4: Psi values for Bahadur Expansion

Psi values for all orders of interactions (right column) for each mutant.
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3.1 Abstract

Engineering novel ligand affinity into allosteric transcription factors has enormous importance in
biotechnology, where these proteins can serve as natural biosensors. Efforts to engineer these
proteins has been limited due to extensive long-range interactions that create the allosteric
response. In the absence of prior knowledge of these interactions, novel function must be found
through many empirical measurements of function. Here, we create a novel computational design
and high-throughput screening workflow that incorporates ligand-agnostic variants with RNA-Seq
to engineer new biosensors. This approach generated variants with affinity to eight nonnative
ligands. Sequence analysis of high performing variants revealed distinct sequence profiles for
different ligand specificities. We also apply the screening workflow to characterize functional
hotspots in a DMS library, revealing important locations at the interface between the ligand
binding domain and the DNA binding domain. This workflow can be applied to screen function in

any protein whose function is a measurable change in transcription.
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3.2 Introduction

The production of value-added chemicals such as proteins, pharmaceuticals, polymer precursors,
and biofuels has exploded in part due to laboratory development of novel biosynthetic processes'
8. Creating and optimizing novel biosynthetic pathways to the point of commercialization often
involves iterative design-build-test-learn cycles*. Rational design and random mutagenesis
approaches can create thousands of pathway variants. The bottleneck of this approach is testing,
where direct measurement of the value-added compound may rely on direct quantification through
inherently low-throughput techniques®. High-throughput screens using fluorescence reporters and
flow cytometry workflows create the potential for testing a vast library for optimization in a single
experiments. Transcription factor biosensors are increasingly valuable in this process as these
proteins have natural small-molecule sensing capabilities. Furthermore, the utility of transcription
factors in biotechnology extends far beyond metabolic engineering as these proteins are also
critical in the detection of trace compounds in the environment, as a diagnostic tool, and in the

generation of complex gene circuits®-S.

Allosteric transcription factors (aTFs) control gene expression in response to changes in the
environment®. Prokayrotic transcription factors such as Lacl or TetR have the capacity to detect
small molecules and have a simple mechanism of gene expression control, making these proteins
logical candidates for biosensing applications. In the absence of the small molecule inducer, the
transcription factor remains bound to the operator sequence in the promoter of controlled genes,
physically preventing RNA polymerase from interacting with the promoter''. aTF binding to the
inducer causes an allosteric change that decreases affinity for the operator sequence, allowing

downstream gene expression’2.
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A major limitation of implementing transcription factor biosensors is the narrow range of molecules
that can be bound by characterized transcription factors. While genome mining has been able to
identify novel transcription factors for select target molecules, this approach cannot be realistically
applied to any arbitrary molecule of interest (Fig. 1a)'3'4. The capacity to engineer novel ligand
specificity into existing, well-characterized aTF scaffolds will greatly expand the uses of these
biosensors in metabolic engineering, both as control systems in circuits and sensing platforms for
pathway improvement's16. Currently, design approaches have been used to engineer novel
affinity for molecules that are structurally like the wildtype ligand'”-'°. Widespread adoption of
transcription factor biosensors in biotechnology requires the ability to design known aTFs to bind
to a diverse array of small molecules (Fig 1a)?°. However, designing aTFs for novel ligand affinity
has two major challenges: mutating the ligand binding pocket for affinity for the target molecule

and maintaining allosteric function.

Computational design is one solution to the challenge of engineering affinity for a target
molecule?'-23. Unlike random mutagenesis, computational approaches are not reliant on iterative
experimental workflows as these algorithms search sequence space for optimal interactions in
silico?. This process is able to analyze millions of sequences and generate a subset of mutations
that are most likely to increase affinity for the target molecule. However, computational tools
cannot account for long-range interactions required for the allosteric changes in response to

ligand binding and has had limited success in aTF scaffolds?5.

High-throughput screening approaches are required for searching massive computationally
designed libraries to isolate variants that can both interact with the target ligand and maintain
allosteric function. While fluorescence-based Sort-Seq approaches can recreate the fluorescence

profile of all variants in the library, this approach is limited by the number of gates and the
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individual fluorescence distribution of each library member526:27. Furthermore, sorting cannot be
scaled across multiple ligands. RNA-Seq is a pooled alternative to fluorescence-based screens
to gain quantitative measurement of transcription factor function and has been used to quantify

promoter activity and GPCR variant libraries?829.

Here, we describe a ligand-agnostic computational design approach coupled with an RNA-Seq
workflow for quantitative analysis of transcription factor function. We leverage the evolutionary
history of TtgR to create a library of phylogenetically derived, computationally stable amino acid
substitutions at key locations in the binding pocket3°. We screen this library of TtgR variants
against nine different ligands for functional aTFs and show that RNA-Seq is also applicable in
mutational scanning libraries by screening a TtgR deep mutational scanning (DMS) library against
endoxifen and tamoxifen. We find groups of variants change gene expression in response to
each ligand and validate top performing variants in a fluorescence-based assay. Furthermore, we
show that the variant library contains unique patterns of ligand specificity across all tested ligands,
which are reflected by amino acid preferences at important positions. Finally, the DMS screen is
able to identify allosterically important regions connecting the DNA binding domain and ligand
binding pocket. This work establishes a novel approach to create new transcription factor
biosensors that is also pertinent to basic science applications and can be applied to any protein

whose functional readout can be quantified via transcription.

3.3 Validating RNA-Seqg on a 16-member library

To assay the function of a library of transcription factor variants, we elected to assay transcript
quantity directly via RNA-Seq. One of the major challenges was linking the expression of a
reporter gene to the transcription factor variant responsible for controlling its expression.

Transcription factors can be uniquely identified using the expression of a short, randomized
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barcode as the reporter gene. To link the transcription factor to the barcode, we created a plasmid
that contained both the transcription factor variant and the barcode on the same piece of DNA
(Fig. 1b). A second construct was used to map the aTF variant to the barcode with next-generation
sequencing (Fig. 1c). Once the transcription factor and barcode pairings are known, transcription
factor function is a measure of the abundance of the barcodes during RNA-Seq (Fig. 1c). E. coli
containing the plasmid library are dosed with either the target ligand or a vehicle control and
harvested in log phase to obtain both total RNA and the library plasmids (Fig. 1d). The RNA
provides a measure of function while the plasmids facilitate normalization to prevent library skew

from affecting results.

We used a small test library of 16 TtgR variants that have differential response to naringenin3'.
Gene fragments encoding the variants were inserted with random barcodes into our expression
vector. Barcodes were mapped to variants in a separate next-generation sequencing run. For
barcodes that are mapped to multiple variants, the majority variant was selected if the read counts
for each other variant amounted to less than 10% of the read count of the most abundant variant.

Each variant in the test library had approximately 8,000 barcodes (Fig. 1e).

To analyze the performance of RNA-Seq on a transcription factor library, we compared RNA-Seq
fold enrichment to qRT-PCR fold enrichment. 8 of the 16 variants were isolated from random
colony screening of the test library for individual quantification. The test library and clonal variants
were dosed with either 1mM naringenin or DMSO as a vehicle control. The RNA-Seq data was
subset to barcodes that appeared in all four conditions (naringenin RNA, naringenin DNA, DMSO
RNA, and DMSO DNA). The performance of a variant was calculated as the sum of the barcode

counts for each variant (Fig. 1f). Comparison of the gRT-PCR fold enrichment and the RNA-Seq
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data showed high correlation (R?=0.83) (Fig. 1g). The RNA-Seq approach readily replicates

differences observed via qRT-PCR across a range of functions.

A bigger library with 8,000 barcodes per variant will be too large to sequence thoroughly. We
hypothesized that down-sampling fewer barcodes per variant will affect the accuracy of the fold
enrichment calculation. We used a Monte Carlo sampling approach to randomly select 10, 25,
50, and 100 barcodes per variant for 500 trials each and scored each sample by its correlation to
the qRT-PCR dataset (Fig. 1h). Each bootstrap group shows, on average, similar correlation to
the qRT-PCR assay compared to the 8,000 barcodes per variant. Thus, larger libraries can be
accommodated with a smaller barcode to variant ratio to reduce the sequencing volume

requirements.

3.4 Identifying novel sensors in the agnostic library

We tested an agnostic library against a range of small molecules to find new biosensors
(Supplementary Fig. 1). We selected four derivatives of tamoxifen (Tam), a breast cancer
therapeutic, to create specific and multi-specific sensors. Tamoxifen is a selective estrogen
receptor (ER) modulator that is metabolized by cytochrome P450 into 4-hydroxy-tamoxifen (4Hy)
and N-desmethyltamoxifen (Ndes). These two metabolites are then catabolized to endoxifen
(End). Endoxifen and 4Hy are the most abundant metabolites and show high activity3233. By using
sensing platforms for active metabolites of Tam like End and 4Hy, physicians can ensure

maximum efficacy during treatment.

We also selected quinine (Quin), naltrexone (Nal), and ellagic acid (EllIA) as targets for the
agnostic library. Quinine is a small molecule therapeutic used to treat malaria. It is isolated from

the bark of the cinchona tree; a sensor for quinine will be useful for creating a biosynthetic pathway
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in prokaryotes for scalable production. Furthermore, a quinine sensor may be useful for
monitoring quinine resistance and variations in pharmacokinetics during treatment34. Naltrexone
is used to treat addiction as an opioid receptor antagonist3®. Chemically, it shares many similarities
to other compounds that interact with the opioid receptors like morphine and heroin. Naltrexone
is chemically distinct from TtgR’s native ligands and thus poses a challenging target for affinity
engineering. By obtaining an opioid sensor, we can develop portable devices for quick detection
of this class of compounds. Ellagic acid is a plant polyphenol with a highly conjugated chemical

structure and shares chemical features with native ligands of TtgR (Supplementary Fig. 1).

We obtained a set of computationally stable substitutions at key positions in the ligand binding
domain of TtgR using the FuncLib tool and constructed a 17,737-member library comprising of 1-
4 mutations®. Mapping barcode-variant pairs identified 17,533 variants (98.8%) with an average
of 20 barcodes per variant (Supplementary Fig. 2). RNA-Seq of the 16N barcodes corresponding
to TtgR variants contained barcodes associated with 17,365 TtgR variants (97.9%). Each ligand
had a wide range of functional responses; top performing variants are candidates for novel

biosensors (Fig. 2a).

The variants in the top standard deviation for any one ligand were selected for further analysis
(red points) (Fig. 2a). These variants performed the best against naringenin and phloretin, the
native ligands of TtgR, and had the weakest response to ellagic acid. The top 40 sequences for
each ligand were selected for validation in a fluorescence-based assay. The best performers of
the naringenin and phloretin ligands shared many variants (Supplementary Fig. 3). Similarly, the
tamoxifen, endoxifen, 4-hydroxytamoxifen, and N-desmethyltamoxifen sets shared variants
(Supplementary Fig. 3) The quinine, naltrexone, and ellagic acid top performing variants were

unique to each ligand (Supplementary Fig. 3).
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The 251 unique top variants were cloned into an expression vector containing sfGFP under
control of the TtgR operator sequence (Fig. 2b). Variants capable of repressing transcription in
the absence of any small molecule were first isolated via cell sorting (Supplementary Fig 4). These
variants were then exposed to each ligand and the high fluorescence cells were sorted
(Supplementary Fig. 5). The performance of these variants is the fold change in percent

population of the high fluorescence and repressed sorts.

The fold change of variant abundance in the sorted library indicated that each ligand had a subset
of functional transcription factors. However, the library showed no change in fluorescence when
inoculated with ellagic acid, suggesting that a fluorescence assay is insufficient for screening this
ligand. Variants showed response to all other ligands (Fig. 2c). Although the naltrexone top
variants only showed high activity for naltrexone, these variants showed generalized response
across most ligands (Fig. 2c). In contrast, quinine top performers are generally specific for quinine
(Fig. 2c). Surprisingly, naringenin and phloretin top variants do not show strong response to these
ligands, but the low fold change may be due to the large number of variants that were isolated in
the high fluorescence sort during the sorting process (Supplementary Fig. 5). The percent
abundance in the induced state will thus differ less for each variant compared to the abundance
in the repressed state. The cross reactivity of the top performing variants to eight of the nine
ligands highlights the broad applicability of this approach. The majority of sequences with high

function in the RNA-Seq dataset also show response in a fluorescence-based assay.

3.5 Elucidating ligand-specific sequence preferences from RNA-Seq

The agnostic library was designed to provide a set of stable substitutions without optimizing

affinity for any ligand. This approach enables the same library to be screened across multiple
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ligands, as each aTF variant has the potential to interact with a new subset of small molecules
due to the redesigned ligand binding pocket. Given these design constraints, we expect that many
variants will have similar ligand specificity profiles. We can leverage the RNA-Seq to gain
information about mutations that create and affect function across all aTF variants and ligands.
We selected all 16,190 variants (91.2% of all variants) with data for at least 6 of the 9 ligands and
imputed the missing data using KNN imputation (see methods). Variants that performed at least
1.5 fold better than wildtype (3,135 variants) on at least one of the nine ligands were selected for
hierarchical clustering via the UPGMA algorithm with a correlation distance metric and a target of
12 clusters (Fig. 3a, Supplementary Fig. 6)3. The ligand clusters (top dendrogram) are grouped
appropriately based on the chemical structure (Supplementary Fig. 1). The tamoxifen ligands are
most closely related by their performance. Similarly, naringenin and phloretin, the two native
ligands of TtgR, also cluster together. In contrast, the ligands with the most structural diversity

(ellagic acid, naltrexone, and quinine) are the most distant.

The variant clusters (left dendrogram) display unique sequence specificity profiles based on the
normalized fold enrichment across the 9 ligands. Cluster 1 (blue, top) is characterized by higher
4-hydroxytamoxifen and endoxifen normalized fold enrichment. The third cluster (green) contains
variants with high naltrexone response. The fourth cluster (red) is primarily composed of variants
with high quinine normalized fold enrichment. Cluster 7 (pink) is characterized by variants with

high N-desmethyltamoxifen and tamoxifen normalized fold enrichment.

We wanted to characterize the sequence profiles of the cluster members to understand the
important substitutions that contribute to the unique specificity profile of each cluster. The agnostic
library is a combination of selected mutations across a limited number of positions in the binding

pocket with potential to directly interact with small molecules (Fig. 3b). We calculated the relative



106

positional entropy of all mutable positions for each cluster in comparison to the entire 16,190
sequences (see methods). Relative positional entropy quantifies the change in amino acid
distribution after clustering. In this context, high relative entropy indicates that certain amino acids
are preferred at a particular position once clustered. Each cluster except cluster 2, cluster 10, and
cluster 11 has one or more positions with high selective pressure (Fig. 3c). L113 and H114 show
low relative positional entropy across all clusters, suggesting that these two positions do not
contribute to unique protein-ligand interactions (Fig. 3c). These two residues are located at the
bottom of the binding pocket and have the potential to make hydrogen bond and nonpolar
interactions with small molecules that are oriented in the native “vertical” binding pose for many
ligands in wildtype TtgR (Fig. 3b). Surprisingly, N110 is adjacent to L113 and H114 and has the
potential to make similar interactions with ligands at the bottom of the binding pocket as L113 and
H114, but has high entropy in Cluster 7 (Fig. 3b, 3c). N-desmethyltamoxifen and tamoxifen thus
interact with this position in preference over L113 and H114. All other positions make up one face

of the ligand binding pocket and have at least one cluster that has high relative positional entropy.

Comparing amino acid sequence preferences at high selectivity positions across clustered
sequences and top performing variants for each ligand can identify distinct amino acid trends for
each ligand. Some clusters are very similar to one another across the nine ligands. Clusters 7,
11, and 12 all share high naringenin and phloretin fold response but differing tamoxifen response
profiles (Fig. 3a). Cluster 7 has higher N-desmethyltamoxifen and tamoxifen response while
cluster 12 has higher 4-hydroxytamoxifen and endoxifen response (Fig. 3a). Cluster 11 shows
high naringenin and phloretin response but does not respond to any of the tamoxifen ligands. We
examined the positions in clusters 7, 11, and 12 in the top 80™ percentile of relative positional
entropy to identify large changes in amino acid distribution before and after clustering. Cluster 7

has two positions with large changes: 92 and 110. Cluster 11 has no positions with high relative
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entropy. Cluster 12 shows high relative positional entropy at 67, 78, and 92. In Cluster 7, position
92 favors the wildtype leucine substitution over all possible mutations. Only the best tamoxifen
variants also show this behavior (Fig. 3d). N-desmethyltamoxifen, tamoxifen, and phloretin favor
the valine substitution while naringenin does not. In contrast, naringenin favors alanine,
isoleucine, or methionine at 92 (Fig. 3d). These differences highlight the generalizable approach

of the agnostic library.

Selecting amino acid substitutions from a limited set at a limited number of positions can
drastically change ligand response. Cluster 11, which contains variants with high response
naringenin, phloretin, and quinine, contains no positions with high relative entropy. Since
naringenin and phloretin are two of the native ligands of TtgR and every position has a high
percentage of wildtype residues due to the limited number of mutations in the library, many
variants show little change in the amino acid distributions in response to clustering (Fig. 3d). The
small change in amino acid distribution before and after clustering across the positions implies
that wildtype response is largely maintained regardless of amino acid substitution. Often, the
change in amino acid frequency in the clusters are matched by the changes observed in the top
performers of associated ligands. For example, cluster 7, which has high N-desmethyltamoxifen
and tamoxifen shows similar amino acid preferences as the top variants of N-desmethyltamoxifen.
The amino acid preferences of each cluster and the top performing variants imply that the
sequence-based analysis can highlight key functional substitutions that are associated with high

ligand response.

The agnostic design scheme of the aTF library creates a set of variants with the potential to
interact with a wide variety of ligands while having a constrained set of mutations that are selected

for stability. By clustering the variants based on their performance across ligands, we can gain
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insight into the amino acid preferences at each position and an initial understanding of the
importance of each in conferring novel ligand affinity. Comparing the sequence profiles of clusters
with shared naringenin and phloretin performance highlights the unique solutions that can give
rise to novel patterns of ligand specificity. The library thus contains variants with unique sets of

ligand specificity, creating a wide variety of potential sensors with tunable response profiles.

3.6 DMS of TtgR against endoxifen and tamoxifen highlights functional hotspots

One benefit of an RNA-Seq based screening workflow is that many libraries can be screened in
parallel to create a functional landscape of variants. We tested a deep-mutational scan library of
TtgR consisting of single point mutations of every position to all 19 other amino acids against
tamoxifen and endoxifen®”. The library was split into 6 different pools spanning amino acids 1-39,
40-77, 78-115, 116-153, 154-191, and 192-210. The majority of single point mutations have little
effect on function, with 3,897 variants in the endoxifen dataset and 3,996 variants in the tamoxifen

dataset between 1.2 and 0.8 of wildtype fold enrichment (Fig 4A, 4B).

The DNA binding domain has regions of high and low function across multiple substitutions. The
helix of the HTH motif that directly interacts with the major groove of the operator sequence
contains many positions where the majority (61%) of mutations decrease aTF function (Fig. 4a,
4b). Substitutions at positions between 81 and 101 are often detrimental (approximately 53%) to
protein function than the wildtype residue. These positions correspond to a solvent-facing region
of a helix in the ligand binding pocket, suggesting an allosteric role in gene expression control. In
contrast, 65% of mutations to positions between 116 and 153 confer increased function (Fig. 4a,
4b). These positions compose a single helix of the ligand binding pocket, but high-performing

positions are agnostic of orientation on the helix. Surprisingly, the helix associated with
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dimerization (186-210) also contains many positions where the majority of substitutions

(approximately 64%) are beneficial to protein function.

The variants that show high performance or low performance may be indicative of hotspots that
are critical for protein design. Hotspots were selected based on the number of mutations whose
performance fell outside the interquartile range of fold enrichment normalized to wildtype
performance (see methods). The majority of identified hotspots are near the DNA binding domain

and the interface between the DNA binding domain and the ligand binding domain.

Positions within the DNA binding domain can be classified as solvent interactions, DNA
interactions, or potential allosteric interactions (Fig. 4c). T5, K6, A9, and R27 are located in the
first helix of the DNA binding domain and do not have any significant interactions with the operator
sequence, the ligand, or the other Tt gR monomer. The high mutability of positions 5, 6, 9, and 27
may be because these positions have nonspecific interactions with the solvent. A38 is located in
the recognition helix that interacts with the major groove of the operator sequence and has a
direct effect on the capacity of TtgR to repress gene expression. Six of the seven positions at A38
drastically reduce function. A19, A23, A30, and R31 have possible structural or allosteric functions
based on their location. A19 and A23 make van der Waals interactions with 137 and L40 in the
recognition helix and possibly stabilize the position of the recognition helix conformation. These
positions may also be important for the allosteric changes that occur in response to ligand binding
that decrease affinity for the operator sequence. The backbone amide of AS0 makes a hydrogen
bond with D118. Mutating A30 to polar residues increases function by creating additional
interactions with A30 and R31 on the opposite monomer. R31 makes hydrogen bond interactions
with T120 and D122 on the opposite monomer. The hydrogen bond interactions are substituted

for van der Waals interactions in the majority of mutations at this position.
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The positions in the ligand binding domain either directly interact with the ligand or interface with
the DNA binding domain. L93 and N110 directly interact with the ligand and are mutable positions
in the agnostic library. Mutating position 93 results in a loss of function for the majority of
mutations. However, tamoxifen and endoxifen yield different sets of mutations that improve
function. In contrast, mutations at position 110 largely improve function with the exception of the
cysteine mutation, which is consistent across both ligands. 1112 is located at the interface of the
ligand binding domain and the DNA binding domain. The side group of 112 is located between
F24 and Y25 in the DNA binding domain. The size and polarity of this position is important as only
the leucine substitution increases function. Any substitution to residues with different shape or
polarity results in a loss of function. D84 is a solvent-accessible position located in a loop in the
ligand binding pocket. Selecting positions that have multiple substitutions that confer either high
or low function via the RNA-Seq approach identifies functional hotspots in TtgR in the DNA binding
domain and the ligand binding domain. The importance of these hotspots can be rationalized

based on their location in the structure of TtgR.

3.7 Discussion

Transcription factor biosensors have an important role in developing novel metabolic engineering
pathways*. However, creating new biosensors with affinity for any desired target molecule is
challenging because allosteric properties of the aTF must also be maintained. To solve this
challenge, we created an agnostic library of TtgR variants and used RNA-Seq to screen for affinity
to tamoxifen, endoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen, naringenin, phloretin,

naltrexone, ellagic acid, and quinine.
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Screening the agnostic library with RNA-Seq to quantify barcode expression revealed multiple
variants with high performance to each ligand. These top performers were validated using a
fluorescence-based cell sorting scheme. The fold change in variant abundance resulting from the
sorting workflow showed that these variants had a range of both specificities and activity against
eight of the nine ligands. Some variants, like those that performed best on quinine, were largely
specific for that one molecule. Others, like naltrexone top performers, often responded to multiple

ligands.

Although the agnostic library is not designed for affinity to any one ligand, our results suggest that
unique ligand specificities arise from screening the same ligand-agnostic library against multiple
ligands. Even a small subset of mutations in the allowed set enables drastic function-switching
phenotypes across dissimilar ligands. Variants with similar ligand specificity profiles can be found
using hierarchical clustering and we show that each cluster has unique amino acid compositions

at critical positions that may enable function switching.

We have also shown that the RNA-Seq workflow can be applied to functional screens the
application of a DMS library to endoxifen and tamoxifen. Hotspots were identified in the DNA
binding domain and the ligand binding domain. Some of these positions, like T5, K6, A9, and R27,
are solvent-exposed and likely have a wide range of tolerable mutations. Others are in direct
contact with either the DNA or the ligand and thus have a large number of mutations that decrease
function. The last group lies at the interface of the DNA binding domain and the ligand binding

domain, indicating a potential allosteric or a structural role in function.

These results validate an RNA-Seq based approach for assaying transcription factor function.

However, a similar workflow can be adapted to any protein whose function results in altered gene
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expression. This work establishes a base for expanded aTF usage in biotechnology by increasing
the design potential of well-characterized transcription factors. In the future, improvements of this

technology will enable designer aTFs to be created for any desired small molecule.

Despite the initial potential of this method, we acknowledge that additional data is required to
completely validate this design and screening system. Although initial RNA-Seq and fluorescence
screens have both shown changes in gene expression across top performing variants for multiple
ligands, clonal assays of each variant via transcript measurement (qRT-PCR) or GFP
fluorescence (flow cytometry) will prove that the responses observed in the RNA-Seq and
fluorescence screens are real. Crystal structures of the top hits will reveal the molecular
interactions responsible for the altered binding specificities. Finally, the RNA-Seq data can be
applied to improve the accuracy of targeted Rosetta design methods by using machine learning
to update the scoring process used to evaluate designed sequences. Improving the computational
design process will decrease the number of variants tested enabling additional ligands to be

assayed for the same cost.

New sensors have been found for the majority of ligands tested, indicating that TtgR is an
extraordinary scaffold that is amenable to the acquisition of many novel functions. This functional
plasticity may be a byproduct of the evolutionary history of TtgR. TtgR naturally controls the
expression of TtgABCD in pseudomonas putida. These proteins form subunits of a multidrug
exporter; TtgR must also be able to sense multiple ligands in order to control exporter
expression®. The ability to interact with multiple ligands has been posited as a key characteristic
of more evolvable proteins*°. Thus, future biosensor design efforts may warrant additional focus
on scaffolds that already have multifunctionality. QacR is another aTF that can bind to a wide

variety of ligands and is a potential candidate for redesign towards novel ligand specificity*'.
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hierarchical clustering4’. Clustering was visualized using Seaborn. Flow cytometry data were

analyzed in FlowJo V10.

3.8 Methods

General cloning methods

Plasmid creation:

Amplicons are generated using Kapa HiFi (Roche) PCR kits following the manufacturer protocol
(Supplementary Table 1). Amplicons are treated with 15U of Dpn1 (NEB) for 2.5 hours at 37°C
followed by 20 minutes at 80°C. PCR amplicons are then purified using EZNA Cycle Pure kits
(Omega BioTek). Isothermal assembly followed Gibson Assembly protocols (NEB), but
contained 100 mM Tris-HCI pH 7.5, 20 mM MgCl,, 0.2 mM dATP, 0.2 mM dCTP, 0.2 mM dGTP,
10 mM dTT, 5% PEG-8000, 1 mM NAD+, 4 U/ml T5 exonuclease, 4 U/ul Tag DNA ligase, and
25 U/ml Phusion polymerase. Isothermal assembly reactions are diluted 10X in dH2O prior to
transformation. DH10B (NEB) electrocompetent cells are transformed with 2uL of diluted
isothermal assembly reaction. Transformants are recovered in 700uL SOC for 1 hour at 37°C.
Dilutions are plated on LB-kanamycin (50ug/mL) plates and incubated at 37°C overnight.
Colony PCR is performed using Kapa Robust (Roche) using a single colony diluted in 100uL of

dH20. Plasmid purifications are performed using the ZR Plasmid Miniprep Classic kit (Zymo).

Library creation:

Plasmid libraries are generated using Golden Gate Assembly Kits (NEB, Bsal-HFv2). The
reactions undergo a cycling protocol of 30 alternating 5-minute 37°C and 16°C cycles followed
by a final 60°C 5-minute hold. The reactions are dialyzed against dH.O on semi-permeable

membranes (Millipore) for 1 hour at room temperature. DH10B (NEB) cells were transformed
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with 3uL of dialyzed reaction via electroporation. Transformants were recovered in 1mL of SOC
and then diluted 2X, 5X, and 10X with fresh SOC. Each dilution recovered for 1 hour shaking at
37°C. 4mL of LB-kanamycin (50ug/mL) was added to each dilution after recovery and 50X and
500X dilutions were plated of each recovered dilution to calculate transformation efficiency. The
remaining transformants were grown for 6 hours shaking at 225rpm. A frozen stock was made
in 25% glycerol and stored at -80 for each dilution. Fresh cultures were created by diluting each
6-hour growth 50X into fresh LB-kanamycin. These were grown overnight and plasmids were

harvested via ZR Plasmid Miniprep Classic kit (Zymo).

RNA purification:

Cells were struck out on an LB-Kan plate and grown overnight at 37°C. Three colonies were
inoculated into LB-kanamycin for overnight growth. The overnight cultures were diluted 50X into
fresh LB-kanamycin containing either ligand or solvent. The cultures were grown at 37°C
shaking at 250rpm in an Innova 4230 (New Brunswick Scientific). At the targeted ODeoo, cultures
were placed on ice for 10 minutes. 5*108 cells were harvested by centrifugation at 5,500g based
on the ODsoo and the assumption that 1.0 ODego cultures have 8*108 cells/mL. The pelleted cells
were decanted and stored at -80°C. This process was repeated in biological triplicate for each

target ODgoo With new colonies.

RNA was purified from cell pellets via Trizol reagent (Invitrogen). 1mL of Trizol reagent
(Invitrogen) was added to each cell pellet and vortexed briefly. The samples incubated at room
temperature for 5 minutes. 200uL of chloroform (Sigma Aldrich) was added to each sample. The
samples incubated at room temperature for 2 minutes and were centrifuged at 12,000g for 15

minutes at 4°C. 300uL of the aqueous phase was transferred to a clean 2mL centrifuge tube
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and placed on ice. RNA was purified from the aqueous phase using the RNA Clean and
Concentrator 5 kit (Zymo) and eluted in 15uL Ultrapure RNase-free dH20 (Invitrogen). The
purified RNA was digested using 4U Dnasel (NEB) in a 50uL reaction incubated at 37°C for 30
minutes. The digestion reactions were purified using the RNA Clean and Concentrator 5 kit
(Zymo) and eluted in 15uL Ultrapure RNase-free dH2O (Invitrogen). Concentrations were

measured using a Nanodrop instrument (Thermo Fisher).

gRT-PCR quantification of transcript abundance:

The abundance of the sfGFP and rrsA transcripts were measured via qRT-PCR. Each biological
triplicate RNA was run in technical triplicate in a MicroAmp Fast Optical 96-well plate (Life
Technologies). 1ng of RNA was added to Luna Universal One-Step qRT-PCR mix (NEB)
containing 4umol of each primer on ice. The standard cycling protocol was used according to
the manufacturer’s suggestion. Each sample consisted of a set of reactions containing sfGFP-
specific primers and another set containing rrsA-specific primers. The reactions were run on a
CFX Connect Real Time PCR Detection System (BioRad).

Fold enrichment was calculated using equations (1) and (2). The error was propagated from the

technical replicates and biological replicates using (3).

fold enrichment = 2744 (1)

AAC, = (Ct 6rp — Ct rrsA)+Ligand - (Ct crp — Ct rrsA)—Ligand (2)

error = /X2.(a;) (3)

Short barcode oligo synthesis:
Pre-defined or random barcodes were synthesized as a short primer (IDT). These barcode

primers were combined separately with another constant primer to create short double-stranded
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fragments containing the barcode flanked by Bsal cut sites in a single cycle of PCR using Kapa
HiFi (Roche). 1uL of this reaction was added into a second Kapa HiFi (Roche) reaction with
additional primers to increase the length of the amplicon over 18 cycles. The resulting amplicon

was purified using the DNA Clean and Concentrator-5 kit (Zymo).

Barcode-variant mapping via next-generation sequencing:

Two primer groups were used to add Illlumina sequencing regions to the barcode-spacer-variant
region of the mapping plasmid libraries. Each primer group consisted of three primers with
different numbers of Ns (ON, 3N, or 6N) to increase positional base diversity during runs. The
adapter primers had complementarity to the plasmid and contained lllumina sequencing primer
binding regions. Stem primers had the i7 and i5 indices and the adapter sequence to anneal to
the sequencing flow cell. The adapter regions were added using 1ng of template, 0.6uL of 10uM
primers, and Kapa HiFi mix (Roche) for 14 cycles. These reactions were purified using the DNA
Clean and Concentrator 5 kit (Zymo). The stem primers were used in a second PCR reaction

using 4uL of the first reaction for 10 cycles.

Sample preparation for sequencing:

For MiSeqg-based sequencing, the proper band was isolated using gel extraction on a 0.5%
agarose gel followed by purification with the EZNA gel extraction kit (Omega BioTek). The
concentration of the DNA was measured using AccuClear (Biotium) following manufacturer
protocols. The flow cell was loaded with 15pM DNA with 5% PhiX. For NovaSeq-based
sequencing, samples were purified using PippinHT (Sage Science) and the concentration was
measured via 4200 TapeStation (Agilent). The size selection, concentration measurement, and
NovaSeq runs were performed by the University of Wisconsin Madison Biotechnology Center

(UWBC).
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Mapping Data Analysis:

The FastQ output was merged using PEAR. A C++ script was used to filter poor-scoring reads
based on Q-scores. Reads that passed the quality filter were then filtered on constant regions
surrounding the barcode and TtgR variants. Barcodes that had read counts greater than 10 and
were unique for a single TtgR variant were mapped to a that variant. If a barcode mapped to
more than one TtgR variant, then the TtgR variant that had the most reads was selected if each

other variant was less than 10% of the reads of the most abundant variant.

RNA-Seq preparation:

RNA is harvested according to the RNA purification protocol. cDNA synthesis uses
approximately 3ug total RNA, a primer encoding a 16nt unique molecular identifier (UMI), and
the Maxima H Minus Double-Stranded cDNA Synthesis Kit. The cDNA is purified using the DNA
Clean and Concentrator 5 kit (Zymo). The lllumina sequencing regions are added in 2 PCR
reactions in the same manner as the MiSeq barcode-variant mapping reactions. Three sets of
primers containing the lllumina sequencing primer and a predefined barcode (ATCG, CGAT,
and GTCA) were used in the first PCR reaction to add the lllumina sequencing regions (11
cycles). One set of primers was used for each biological replicate. The first reaction is purified
using the DNA Clean and Concentrator 5 kit (Zymo). The second reaction uses 4uL of the first
reaction and primers that add i5 and i7 indices in 8 cycles. The final amplicons are purified

again. All replicates were combined in an equal molar ratio after purification.
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Plasmids are harvested from the remaining culture of the RNA preparation step. The UMI is
added to the plasmid-derived samples in a 2-cycle PCR reaction using 100ng of template. The

amplification of all DNA libraries followed an identical protocol to the RNA preparation.

The cDNA and DNA samples are sequenced using either a NovaSeq SP chip (test library) or a

NovaSeq S4 chip (DMS and agnostic libraries) by the UWBC.

RNA-Seq Data Analysis:

Fastq files were merged using NGmerge and filtered using Fastp based on average Q-score >
Q30 for reads*?43. Reads containing the 5’ and 3’ constant regions were isolated using UMI-
Tools and counted using Tally*445. Reads containing the central constant region were isolated
and UMI sequences were removed with UMI-Tools. The barcodes were then counted with Tally.
RNA-Seq barcodes were matched to mapped barcode-variant pairs with a Hamming distance

tolerance of 1 using Seal (sourceforge.net/projects/bbmap/).

RNA-Seq barcodes that were successfully mapped to known barcode-variant pairs were
analyzed across the induced RNA, induced DNA, control RNA, and control DNA samples. A
barcode both had to be found in all four datasets to be included in downstream analysis. The
read counts for a variant were then a sum of the barcode counts for all barcodes mapped and
found in all four datasets. No read count threshold was imposed during analysis. The fold

enrichment calculation uses equation (4).

Fold Enrichment = +53
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If biological replicates were available for each condition, the fold enrichment per variant was

curated based on the coefficient of variation (CV). Percent deviation is calculated with equation

(5).

CcV =

=RilQ
—_—~~
(]
N

In this equation, o is the standard deviation of the fold enrichment and x is the mean fold
enrichment across replicates. A 30% CV cutoff was imposed for the agnostic dataset and a 20%
deviation cutoff was imposed on the DMS dataset (Supplementary Fig. 7, Supplementary Fig. 8,

Supplementary Fig. 9).

All variants were normalized to wildtype fold enrichment for each replicate. Heatmaps were

constructed using the average performance of each variant after normalization.

Cell Sorting:

An overnight culture is diluted 50X in phosphate buffered saline (137mM NaCl, 2.7mM KCl,
10mM NazHPO4, 1.8mM KH2PO4) and placed on ice for 10 minutes prior to sorting. Sorting was
performed on an SH800 (Sony) using the 488nm laser and a 525+25 filter. Sorted cells were
grown for 1 hour shaking at 37°C in 5mL LB. Kanamycin was added to a final concentration of
50ug/mL and the culture was grown overnight. An aliquot of the sorted culture was stored at -
80°C in 25% glycerol. Plasmids were isolated from the remaining culture using the ZR Plasmid

Miniprep — Classic kit (Zymo).

Creating TtgR_pBBR1_SPS_V2:
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The plasmid containing the TtgR gene and the sfGFP gene under control of the TtgR operator
sequence was created using two Gibson Assembly reactions. The sfGFP gene was under
control of a modified TtgR operator sequence with canonical -10 (5-TATAAT-3’) and -35 (5-
TTGACA-3’) elements in the promoter. The backbone contains the TtgR gene under an
apFAB61-BBaJ61132 constitutive operator sequence, a kanamycin resistance marker, and the
pBBR1 origin (TtgR_pBBR1). The sfGFP gene was inserted into the pBBR1 backbone following
the standard methodology. Next, a terminator was placed at the 3’ end of the sfGFP gene

according to protocol. This plasmid was labeled as TtgR_pBBR1_SPS_V2.

Creating TtgR_ColE1_SPS_V5:

The pBBR1 origin was exchanged for a ColE1 origin. The sfGFP fragment was amplified from
TtgR_pBBR1_V2 using primers specific for the sfGFP region with 5’ ends complementary to the
destination ColE1 backbone and to the sfGFP amplicon. The TtgR gene was amplified from the
TtgR_SC101BBa plasmid with primers containing complementary regions to the backbone and
GFP amplicon. The sfColE1 backbone amplicon contains a kanamycin marker and a ColE1

origin. Plasmids were labeled as TtgR_ColE1_SPS.

The sfGFP promoter was modified to have the wildtype TtgR operator sequence. sfGFP with the
wildtype operator sequence was amplified from a separate plasmid using primers with overlap
to the TtgR_ColE1_SPS plasmid. The backbone amplicon was amplified from
TtgR_ColE1_SPS and consisted of the TtgR gene, the Kanamycin resistance marker, and the

ColE1 origin. The plasmid was labeled as TtgR_ColE1_SPS_V2.

A third Gibson assembly reaction was required to insert stop codons and Bsal cut sites into the

middle of the GFP gene to create the barcode insertion site. The stop codons and Bsal sites
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were encoded on overlapping primers and added to the TtgR_ColE1_SPS_V2 plasmid. The
backbone as annealed to itself in a 1-part isothermal assembly. This construct was labeled

TtgR_ColE1_SPS_V5.

Creating GFP control:

To create a GFP positive control, the TtgR gene was removed from the TtgR_ColE1_SPS_V2
plasmid. The backbone was amplified with primers that had complementary overlap with the
sfGFP gene. The sfGFP gene was amplified with primers complementary to the backbone. The
Bsal cut sites and early stop codons were inserted into sfGFP in the same fashion as the
creation of TtgR_ColE1_SPS_V5. The plasmid was labeled TtgR_ColE1_SPS_V3_GFPControl.
Three pre-defined 20nt barcodes (AAACCCTGTGCCAGAGGGTG,
GAGTGACCTTAAGTCAGGGA, and GCTTCTGTCCAAGCAGGTTA) were generated
according to standard protocols. The barcodes were inserted into the

TtgR_ColE1_SPS_V3_GFPControl using Golden Gate assembly.

ODego optimization:

MRNA levels were assayed at three different ODsggo values: 0.6, 1.2, and ~2.8 (overnight
growth). Testing was performed with the TtgR_ColE1_SPS_V2 plasmid with primers specific for
the 5’ region of sfGFP. rrsA, a ribosomal subunit and constitutively expressed gene, was used
as a reference. 2mL cultures were grown and RNA harvested according to standard protocols.
The abundance of the sfGFP and rrsA transcripts were measured via qRT-PCR following the

standard protocol (Supplementary Fig. 10a).

Length Optimization:
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The ODsoo 0.6 induction samples were used to test the effect of different amplicon lengths on
gRT-PCR fold enrichment. One of the TtgR_ColE1_SPS_V2 samples assayed with DMSO was
used to calculate the primer efficiency of three different primer pairs. Each pair shared the same
forward primer but had differing reverse primers that yielded amplicon lengths of 75bp, 150bp,
and 300bp. 0.001ng, 0.01ng, 0.1ng, or 1ng of RNA was added to Luna Universal One-Step
gRT-PCR mix (NEB) containing 4umol of each primer on ice. These RNA amounts were also
assayed with the rrsA primers in the same manner. The abundance of the sfGFP and rrsA
transcripts were measured via qRT-PCR following the standard protocol (Supplementary Fig.

10b).

Creating TtgR Test Library:

The TtgR gene variants were isolated from a set of 16 pre-existing plasmids each containing a
single TtgR variant. 100ng of each amplicon was combined into a single aliquot and stored at -
20°C. Barcodes for the RNA-Seq were 16nt in length and were encoded on a ssDNA primer
(IDT). The TtgR_ColE1_SPS_V5 backbone was amplified using primers that encompassed the
sfGFP gene, the ColE1 origin, and the kanamycin resistance marker. The barcodes, TtgR gene
variants, and backbone were assembled in a single Golden Gate reaction (NEB) according to

standard protocols.

Mapping test library barcode-variant pairs:

A 60nt spacer was created to bring the random barcode and TtgR variants physically adjacent
on the same plasmid to enable short read next generation sequencing mapping of barcode-
variant pairs. The test library plasmids were amplified with primers encoding Bsal cut sites that

would place the spacer between the barcode and the TtgR variant region. The spacer was
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inserted into the backbone using Golden Gate (NEB) following standard protocols. The resulting
library was sequenced on a 15M 2x250 MiSeq chip (lllumina). Data analysis followed standard

protocols.

RNA-Seq of test library:

The induction of the test library used either 1mM naringenin or DMSO as a control. DH10B
containing each barcoded GFP Control plasmid were struck out on LB-kanamycin plates. One
colony was selected from each barcoded DH10B and grown in 3mL LB-kanamycin overnight.
These barcoded control cultures were combined in equal ratio and added to the test library
culture to a final composition of 0.25% control. The induced cultures were grown and prepared

following standard protocols.

Validating RNA-Seq test library results:

The test library frozen stock was struck out on LB-kanamycin and grown overnight. 16 colonies
were selected and the TtgR variants were identified using colony PCR per standard protocols. 8
of the 16 total variants were verified via sequencing and were stored at -80°C. RNA was
harvested from each variant in biological triplicate under 1mM naringenin and DMSO conditions.

gRT-PCR was used to assay barcode transcript enrichment.

Creating agnostic libraries:

FuncLib-tolerated mutations were encoded into short oligos (Agilent) consisting of the TtgR
gene region flanked by Bsal cut sites for Golden Gate assembly. Four pools of approximately
4,400 variants were created by randomly combining between 1 and 5 tolerated mutations. Each
pool had unique priming sequences to isolate from a pooled sample. The pooled library was

diluted to 0.005uM in Tris-HCI (pH 7.5). Each pool was amplified using Kapa HiFi and 1uL of the
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diluted library in 15 cycles in triplicate. The amplified reactions were pooled together and
purified using the DNA Clean and Concentrator 5 kit (Zymo). The pooled oligos were cloned into
the TtgR_ColE1_SPS_V5 backbone using Golden Gate assembly (NEB). The libraries with

approximately 15 barcodes per variant, calculated by CFU/mL, were selected for RNA-Seq.

Mapping agnostic Libraries:
The mapping process was performed as described in the general cloning methods. The spacer

library was sequenced using an 2x250 NovaSeq SP chip (lllumina) by the UWBC.

Agnostic RNA-Seq:

The agnostic libraries were induced with the ligand (Supplementary Table 2). DMSO, dH20, and
EtOH were included as solvent controls. The four pools were grown individually in 5mL LB-
kanamycin overnight in triplicate. The four pools were combined prior to inoculation in 25mL LB-
kanamycin for the RNA harvest. GFP Control barcoded cells were spiked into the combined
agnostic replicates at a final concentration of 0.25%. The same pooled replicates were used for
all ligand inductions. Read volumes were calculated by targeting 500 reads per barcode with the

assumption that 50% of the reads will be lost due to filtering criteria.

RNA-Seq data analysis:

Data analysis followed the RNA-Seq pipeline described above. Variants with data passing CV
thresholds for more than 5 ligands and performed at least 1.5 times better than wildtype were
selected for clustering. Missing data was imputed using KNN methods in SciKit Learn6. The
UPGMA algorithm with a correlation distance metric and a target of 12 clusters was used to

cluster in SciPy3647. The number of clusters was selected by plotting the silhouette score
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against the number of clusters (Supplementary Fig. 6). The relative positional entropy was

calculated for each cluster compared to the total set of variants using equation (6)*8:

fC uster,a
RE = Za fcluster,a (l—t> (6)

fall,a

In this equation, a is the set of all amino acids observed at a single position and f is the
frequency with which that amino acid is observed. This equation compares clustered sets of
sequences compared to all possible agnostic sequences. This equation was only applied to

clusters with more than 20 sequences.

Testing Top Hits:

Top performing variants were selected based on the mean rank of each variant across the three
biological replicates. These variants were encoded in gene fragments (Twist) and synthesized in
a 96-well plate format. The fragments were resuspended to a final concentration of 10ng/uL,
pooled together, and cloned into the TtgR_ColE1_SPS_V2 backbone using Golden Gate

Assembly. The resulting library was sorted based on fluorescence.

LB media is inoculated with 50uL of the frozen stock of the library and grown overnight shaking
at 37°C. Sorting was performed according to the Cell Sorting protocol. 500,000 cells were
isolated of the lower 70% of the population based on fluorescence. Plasmids were isolated from
the remaining culture using the ZR Plasmid Miniprep — Classic kit (Zymo). DH10B (NEB) were

transformed with the purified plasmid library according to the Library Creation protocol.
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LB media is inoculated with 50uL of the frozen stock of the repressed library and grown
overnight shaking at 37°C. The culture was diluted 50X into fresh LB and grown overnight at
37°C shaking with the ligands (Supplementary Table 2). Sorting was performed according to the
Cell Sorting protocol. 400,000 cells were isolated using a gate that encompassed the top 0.5%
of the population based on the fluorescence distribution in the absence of any ligand. Plasmids

were isolated from the remaining culture using the ZR Plasmid Miniprep — Classic kit (Zymo).

The abundance of variants was determined using next-generation sequencing. Sequencing
amplicons were generated using primers that had complementarity to the TtgR gene around the
gene fragment insertion site. The amplification process followed the “Barcode-variant mapping
via next-generation sequencing” protocol. The concentration of the DNA was measured using
Qubit Fluorometric Quantification (Thermo Fisher) following manufacturer protocols. The flow
cell was loaded with 15pM DNA with 5% PhiX. Sequencing was performed on a MiSeq

instrument (lllumina).

Fastq files were merged using NGmerge and filtered using Fastp based on average Q-score >

Q30 for reads*243,

DMS Library synthesis:

The TtgR DMS libraries were created from pre-existing TtgR DMS libraries. This DMS library
was split into 6 different segments that encompassed the length of the TtgR gene. Each
segment was a separate plasmid library. These segments were amplified separately and cloned
into the TtgR_ColE1_SPS_V5 backbone using Golden Gate assembly (NEB). Libraries with

approximately 10 barcodes per variant were selected for RNA-Seq.
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Mapping DMS Libraries:
The mapping process was performed as described in the general cloning methods. The spacer
library was sequenced using an 2x250 NovaSeq SP chip (lllumina) by the UWBC

(Supplementary Fig. 11).

DMS RNA-Seq:

The DMS libraries were induced with the either 50uM tamoxifen, 50uM endoxifen, or EtOH. The
six pools were grown individually in 5mL LB-kanamycin overnight in triplicate. Each segment
was induced separately. Read volumes were calculated by targeting 500 reads per barcode with

the assumption that 50% of the reads will be lost due to filtering criteria.

Data analysis followed the RNA-Seq pipeline described above. The 90" percentile of positions

by number of mutations outside the interquartile range of all variants were defined as functional

hotspots.
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Figure 1: Validating RNA-Seq on a 16-member library. (a) The space of transcription factors
and small molecules that can be sensed with different approaches. Black points represent
specific ligand:aTF pairs. The dark green circle represents the extent to which methods can
currently expand aTF:ligand affinity. The light green circle represents the extent to which new
methodologies must increase aTF:ligand pairs. (b) Construct design pairs aTF variants to
randomized barcodes. (¢) A separate construct is used to pair barcodes to aTF variants such
that RNA-Seq of barcodes can be translated to aTF function. (d) Methodology to harvest plas-
mids and RNA from E. coli transformed with aTF libraries. This approach can easily be scaled
across multiple ligands and multiple libraries. (e) The number of barcodes per variant identified
using next-generation sequencing of the construct in (C). Each variant is identified by a sepa-
rate binary string. (f) Box plots of fold enrichment for each variant via RNA-Seq. The box
represents the interquartile range. Whiskers extend to 1.5 times the IQR. Fliers denote points
that lie outside the whiskers. Variants are represented by binary strings. (g) Correlation of
gRT-PCR data and fold enrichment from RNA-Seq. gRT-PCR fold enrichment was measured
via biological replicates of clonal strains of 8 of the 16 variants (see methods). The RNA-Seq
fold enrichment value was calculated by summing the counts of all barcodes associated with a
particular variant (see methods). The R2 for this dataset is 0.83. (h) Bootstrap correlation of
gRT-PCR fold enrichment to RNA-Seq data for 8 of the 16 variants. Groups of 10, 25, 50, 100,
or 500 barcodes were sampled for each variant across 500 cycles. The resulting correlation for
each cycle is plotted.
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Figure 2: Identifying novel sensors in the agnostic library. (a) The top 40 best variants from each ligand were selected for a
fluorescence-based screen (red points). The violin plot shows the fold enrichment calculated by RNA-Seq for all 17,365 variants
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the violin plot represents the IQR and the thin grey line extends to 1.5 times the IQR. (b) Fluorescence screening workflow that
incorporates a construct with sfGFP. A single repressed sort and an induced sort were sequenced (see methods). Fold change
(FC) was calculated as the ratio of percent change in the population with and without ligand. (¢) Fold change for each ligand
across the 251 best performing variants.
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Figure 3: Elucidating ligand-specific sequence preferences from RNA-Seq. (a) RNA-Seq
fold enrichment data for 3,3135 variants across nine ligands. Ligands and variants have been
clustered via the UPGMA algorithm with a correlation distance metric and a target of 12 clusters
(see methods). The different clusters are denoted by the colored bars on the right of the heat-
map. aTF function is shown as the log2(fold enrichment) normalized to wildtype. (b) Structure of
TtgR with tolerated mutations at each position (PDB ID: 7K1C). The wildtype residue is highlight-
ed at each position as purple sticks. Resveratrol, a natural ligand of TtgR, is shown as orange
sticks. The tolerated mutations at each position are shown with the violet background while the
wildtype identity is shown in white. (¢) Sequence relative positional entropy of the clustered data
for all tolerated positions. In this plot, a higher relative entropy indicates a changed amino acid
distribution after clustering. (d) Heatmap of the fold change in amino acid abundance across
allowed positions for clusters 7, 11, and 12. The fold change of frequency is the log2 of the ratio
of amino acid frequency after clustering to the frequency before clustering. (e) Heatmap of the
fold change in amino acid abundance across allowed positions for the top 40 variants for each
ligand. Fold change is calculated identical to (D).
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Figure 4: DMS of TtgR against endoxifen and
tamoxifen highlights functional hotspots. (a)
Heatmap of DMS library performance when exposed
to endoxifen. White squares are positions and muta-
tions that did not pass the CV filter (see methods).
The remaining positions are colored by the fold
enrichment of the mutant normalized to wildtype.
The diagram on the right of the heatmap shows the
location of alpha helices (rectangles) and disordered
loops (lines). The DNA binding domain helices are
colored orange while the ligand binding domain
helices are colored in purple. (b) Heatmap of DMS
library performance when exposed to tamoxifen.
Coloring is identical to (a). (¢) Functional hotspots of
TtgR. Positions defined as hotspots are shown as
green sticks (PDB ID: 7K1C). Resveratrol, a native
ligand of TtgR, is shown as orange sticks.




Supplementary Figure 1: Ligands used in this study

Structures of (a) tamoxifen, (b) endoxifen, (c) 4-hydroxytamoxifen, (d) N-desmeth-
yltamoxifen, (e) ellagic acid, (f) quinine, (g) naltrexone, (h) naringenin, and (i)
resveratrol. Carbon atoms are shown in grey, oxygen atoms in red, and nitrogen
atoms in blue. Hydrogens are not shown.
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Supplementary Figure 2: Barcodes per variant of agnostic library from map-
ping data

The agnostic library was split into 4 pools containing approximately 4,400 variants
(see methods). Barcodes and variants were mapped as separate pools. The box
plot represents the number of barcodes mapped to each variant in the pools.

139



140

Tam

Ligand

Variant

Supplementary Figure 3: Shared sequences in top performing variants

The top 40 variants for each ligand were selected and listed (x-axis). Variants are
marked in green if they are within the top 40 for a particular ligand. There are 251
unique variants in the set of top performers across all ligands.
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Supplementary Figure 4: Cell sorting gates for repressed sort
Flow cytometry scatterplot (left) and fluorescence histogram (right) for the library of top variants
with no ligand. The scatterplot shows forward scatter area (FSC-A) and forward scatter height

(FSC-H). The singlet gate was used to subset the population. Cells falling into the repressed
gate in the fluorescence histogram were sorted.
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Supplementary Figure 5: Cell sorting gates for ligand-induced cultures

Flow cytometry scatterplots and histograms for libraries induced with (a) no ligand, (b) naringenin,
(c) tamoxifen, (d) naltrexone, (e) quinine, (f) endoxifen, (g) phloretin, (h) 4-hydroxytamoxifen, (i)
N-desmethyltamoxifen, (j) ellagic acid. The scatterplot shows forward scatter height versus area;
cells falling into the singlet gates were sorted based on the fluorescence histogram (EGFP-A+
gate). The repressed gate indicates the major peak of the no ligand population.



Silhouette Score

143

0.50 1

0.45 1

0.40 4

0.351

0.30 1

0.254

5 10 15 20 25
Cluster Size
Supplementary Figure 6: Silhouette score of cluster sizes

The silhouette score is plotted against cluster size for hierarchical clustering with the
UPGMA algorithm with a correlation distance metric (see methods).
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Supplementary Figure 7: CV filter of RNA-Seq fold enrichment for

the agnostic library

Scatter plots of agnostic variants after applying a 30% CV filter for (a)
4-hydroxytamoxifen, (b) ellagic acid, (c¢) endoxifen, (d) naltrexone, (e)
naringenin, (f) N-desmethyltamoxifen, (g) phloretin, (h) quinine, and (i)
tamoxifen. The fold enrichment of each variant (green circle) is plotted
across the three biological replicates on the X, Y, and Z axes. The best fit
line is shown in black and is calculated using a least squares approach.
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Supplementary Figure 8: CV filter of RNA-Seq fold enrichment for the DMS

library with endoxifen

Scatter plots of DMS variants after applying a 30% CV filter for DMS segments
(a)1, (b)2, (c)3, (d) 4, (e) 5, and (f) 6 after dosing with endoxifen. Plot layout is
identical to Supplementary Fig. 7.
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Supplementary Figure 9: CV filter of RNA-Seq fold enrich-
ment for the DMS library with tamoxifen

Scatter plots of DMS variants after applying a 30% CV filter for
DMS segments (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, and (f) 6 after
dosing with tamoxifen. Plot layout is identical to Supplementary
Fig 7.
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Supplementary Figure 10: Optimizing RNA expression and amplification

(a) qRT-PCR fold enrichment of a 150nt amplicon in the sfGFP gene at different
OD,,, values at the time of RNA harvesting. RNA was harvested at OD,, 0.6, 1.2,
and 2.8 (x-axis). Each OD_, value was measured in biological triplicate at 1mM
naringenin. Fold enrichment of the amplicon was calculated as the 222! value of the
SfGFP gene in comparison to a constitutively expressed control (see methods).
Error bars are the standard error propagated from the technical replicates. (b)
gRT-PCR fold enrichment of different amplicon sizes. Each amplicon used the same
5’ primer, but differing 3’ primers to yield a 75nt, 150nt, and 300nt amplicon. The
same samples in biological triplicate were used as template for the qRT-PCR experi-
ment. Fold enrichment was calculated using the same methods as (a).
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Supplementary Figure 11: Barcodes per variant of DMS library from map-
ping data

The DMS library was split into 6 pools containing approximately 700 variants
(see methods). Barcodes and variants were mapped as separate segments.
The box plot represents the number of barcodes mapped to each variant in the
segment.



149

Name Sequence

KN_124 gtcagtgtcgtgccatagatccacgaggceccttttticgte

KN_125 gggatctcgacgctctcccttatgactgattaccgectttgagtgag

KN_126 tcataagggagagcgtcgagatccc

KN_127 ctcactcaaaggcggtaatcagggccgcecaccgce

KN_128 gcggtggceggcecctgattaccgcectttgagtgag

KN_129 gtcgagatcccgggcgcgccAAAAAATTTATTTGCTTTCAGGAAAA

KN_130 CTTCTTCTTTGGTGCGACGCACCATAAAGGTTCCACTGCTAGATT

KN_131 ATGGTGCGTCGCACCAAAGAAGAAG

KN_132 ggcgcgceccgggatctcgac

KN_133 gtcgagatcccgggegcegecgcttgatatcgaattcctgcageccg

KN_134 cgggctgcaggaattcgatatcaagcggegegceccgggatctcgac

KN_135 tcataagggagagcgtcgagatcccGGCGCGCCTTGACAATTAATCATC

KN_136 CTTCTTCTTTGGTGCGACGCACCATCATATGAAAAGATCCCGGGC
TAGATTAAG

KN_137 gggggatcccatggtacgc

KN_138 aagacgaaaaaagggcctcgtg

KN_139 cacgaggcccttttttcgtcttttatttgtacagttcatccatacc

KN_140 gcgtaccatgggatcceccccacctcgagatgcetage

KN_141 ccgacgictaagaaaccattattatcacgaggcccitttttcgtctt

KN_142 gtcagatagcaccacatagcaggatctatggcacgacactgac

KN_143 TCGCCAGCAGGCCTTTTTATTTG

KN_144 gtcagatagcaccacatagcagTAATAATCATCGCGAAGACTTGATCG

KN_145 gggagagcgtcgagatcccTTGACAATTAATCATCCGGCTCGTATAATAG

KN_146 CAAATAAAAAGGCCTGCTGGCGATTATTTGCGCAGCGCCGG

KN_147 cacctcgagatgctagcaaaaaaagagtaCACCCAGCAGTATTTACAAACAAC
C

KN_148 CAAATAAAAAGGCCTGCTGGCGAgggatctcgacgctctee

KN_149 CCCAGATACGCTGTTTCAATTCCTTTATTATTATTTGCGCAGCGC
CG

KN_150 ACCGCACAGGTTGCCCACTTGACAATTAATCATCCGGCTCG

KN_156 gtcggccaaggtaccgg

KN_157 tggtTtcgtcActattctggtgg

KN_160 tgaagagtttgatcatggctcag

KN_161 tttcccagacattactcacccg

KN_162 tcaccctcgecacgca

KN_163 cgcgtttigtacgtgecg

KN_164 ggtctcCACTGCTGGATTCTCTGCACG

KN_165 ggtctcCAACGACGAATCAGGCCATCC

KN_166 agtgagttgattgctacgtaaggcttcggactgGGTCTCcaattCATCgACgtctGetge
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KN_167 acGGTCTCtcgtgtataatggNNNNNNNNNNNNNNNNgcagCagacGTcGA
TGaattg

KN_168 ccccgaaaagtgccacctggeggegtigtgacaatttaagtgagttgattgctacgtaag

KN_169 gcgaCTGaaTATtgcggcacgAtacCATTTgCTCataagacGGTCTCtcgtgtat
aat

KN_170 ctGg(gTCTCGcacgaggcccttttttcg

KN_171 ctGGTCTCGaattgttacgtagcaatcaactc

KN_172 AGGCGTCTTTCTTAGCCGGCGGTCTCcaattgttacgtagcaatcaactca

KN_173 GCCGGCTAAGAAAGACGCCTGGTCTCgcacgaggcccttttttcgt

KN_174 gagttgattgctacgtaacaatt

KN_175 ctgcAAACCCTGTGCCAGAGGGTGccattatacacgaggcccttttttcg

KN_176 GGCACAGGGTTTgcagCagacGTcGATGaattgttacgtagcaatcaactc

KN_177 tGetgcGAGTGACCTTAAGTCAGGGAccattatacacgaggcccttttttcg

KN_178 AAGGTCACTCgcagCagacGTcGATGaattgttacgtagcaatcaactc

KN_179 tgcGCTTCTGTCCAAGCAGGTTAccattatacacgaggcccttttttcg

KN_180 TTGGACAGAAGCgcagCagacGTcGATGaattgttacgtagcaatcaactc

KN_193 CGTCTGGTCTCAGCGTGCCGAACTGGTTCAGGC

KN_194 GAGTCGGTCTCCTCTCggatgaactgtacaaataaaagacg

KN_195 CGTCTGGTCTCAGCGTTGCGAATTTACGGATGATATGTGTG

KN_196 ggceccttttttcgtcttTTAagtcggccaaggtaccggcea

KN_197 GCCGGCTAAGAAAGACGCCTGGTCTCgcacgTTATTAcagttccaccag
aatagTgacga

KN_198 CAGGCGTCTTTCTTAGCCGGCGGTCTCcGaACgatggtgatgtcaacggtc
at

KN_199 GAGTCGGTCTCCTCTCcgtcActattctggtggaactgTAA

KN_200 TCCACGCGATGGCCCNNNNNNNNNNNNNNNNNNNNIttgacatcaccat
cGTtCCATC

KN_201 tctggtggaactgTAATAAcgtgta

KN_202 AGCCTCCTGGGCGGGTCATGNNNNNNNNNNNNNNNNtcaccctegee
acgca

KN_204 GA?GTCGGTCTCgatcccTTGACAATTAATCATCCGGCTCGTAT

KN_205 ACCGTGGTCTCCGCGAgaggcttttgactttctgctaatttat

KN_206 CCGACGGTCTCGggatctcgacgctctcecttatgac

KN_207 CGAAGGGTCTCGTCGCCAGCAGGCCTTTTTATTTGGGGG

KN_208 CGTCTGGTCTCAGCGTTCATTAGAGTCTAGAGAAAGACAGGATT

KN_209 CGTCTGGTCTCAGCGTCGTACCACGCTGGCAG

KN_210 CGTCTGGTCTCAGCGTACGAAACGCATGATCACCTGG

KN_211 CGTCTGGTCTCAGCGTACGTACCCGTCGCATTAATGAAATC

KN_212 CGTCTGGTCTCAGCGTGCACTGGCAAACGCAGTTC

KN_213

CGTCTGGTCTCAGCGTGCCGGATAGTGTTGATCTGCTG
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SPS_7b_MS_SPR_
R1

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCAGCAGCCA
ACGACGA

SPS_7b_MS_SPR_
R2

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNGCAGCA
GCCAACGACGA

SPS_7b_MS_SPR_
R3

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNGC
AGCAGCCAACGACGA

SPS_NovaSeq_Barc
ode_F1

ACACTCTTTCCCTACACGACGCTCTTCCGATCTcaattCATCgACgtct
Gctge

SPS_NovaSeq_Barc

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNCcaattCATCgA

ode_F2 CgtctGcetgce
SPS_NovaSeq_Barc | ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNCcaattCAT
ode_F3 CgACqgtctGcetge

SPS_S1_spacer_mi
seq_R1

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCAGTGCCAGG
GTGATACC

SPS_S1_spacer_mi
seq_R2

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNCAGTGC
CAGGGTGATACC

SPS_S1_spacer_mi
seq_R3

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNCA
GTGCCAGGGTGATACC

SPS_V5_UMI2_BC_
F1

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCCTCCTGGGC
GGGTCATG

SPS_V5_UMI2_BC_
F2

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNAGCCTCCTG
GGCGGGTCATG

SPS_V5_UMI2_BC_
F3

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNAGCCTCC
TGGGCGGGTCATG

ML_Seg1_SPR1

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGTAGATTGCA
CCGCGGG

ML_Seg1_SPR2

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNAGTAGA
TTGCACCGCGGG

ML_Seg1_SPRS3

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNAG
TAGATTGCACCGCGGG

ML_Seg2_SPR1

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTATGCAGCCCA
GCGGG

ML_Seg2_SPR2

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNATGCAG
CCCAGCGGG

ML_Seg2_SPRS3

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNAT
GCAGCCCAGCGGG

ML_Seg3_SPR1

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCGCTGCTGAC
GAATTTCAC

ML_Seg3_SPR2

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNCGCTGC
TGACGAATTTCAC

ML_Seg3_SPRS3

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNCGC
TGCTGACGAATTTCAC

ML_Seg4_SPR1

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACCGCTGCGC
GTTC

ML_Seg4_SPR2

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNACCGCT
GCGCGTTC

ML_Seg4_SPRS3

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNAC
CGCTGCGCGTTC
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ML_Seg5_SPR1

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCGCAGCATAT
CCAGACCG

ML_Seg5_SPR2

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNCGCAGC
ATATCCAGACCG

ML_Seg5_SPRS3

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNCG
CAGCATATCCAGACCG

ML_Seg6_SPR1

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCCTGCTGGC

GAgagg

ML_Seg6_SPR2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNGCCTGC
TGGCGAgagg

ML_Seg6_SPR3 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNGC
CTGCTGGCGAgagg

SPS_UMI2_BC_rep
1_F1

ACACTCTTTCCCTACACGACGCTCTTCCGATCTACTGAGCCTCCT
GGGCGGGTCATG

SPS_UMI2_BC_rep
1_F2

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNACTGAGCCTC
CTGGGCGGGTCATG

SPS_UMI2_BC_rep
1_F3

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNACTGAGCCT
CCTGGGCGGGTCATG

SPS_UMI2_BC_rep
2_F1

ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGATAGCCTCCT
GGGCGGGTCATG

SPS_UMI2_BC_rep
2_F2

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNCGATAGCCTC
CTGGGCGGGTCATG

SPS_UMI2_BC_rep
2_F3

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNCGATAGCCT
CCTGGGCGGGTCATG

SPS_UMI2_BC_rep
3_F1

ACACTCTTTCCCTACACGACGCTCTTCCGATCTGTCAAGCCTCCT
GGGCGGGTCATG

SPS_UMI2_BC_rep
3_F2

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNGTCAAGCCTC
CTGGGCGGGTCATG

SPS_UMI2_BC_rep
3_F3

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNGTCAAGCCT
CCTGGGCGGGTCATG

Adap_TtgR_S2F_ext

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNCGCTG
GCAGATATTGCAGAA

Adap_TtgR_S4R_ex
t

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNCCAGTTC
ACCCGGCAG

Supplementary Table 1: Primers
Names and sequences of primers used in this study.



Ligand | Concentration (mol/L)

Tamoxifen 0.00005

Endoxifen 0.00005

4-hydroxy tamoxifen 0.00005

N-desmethyl tamoxifen 0.00005
Naltrexone 0.001

Quinine 0.0005

Ellagic Acid 0.00015
Naringenin 0.001

Phloretin 0.0003
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Supplementary Table 2: Ligand concentrations used in the RNA-Seq experiment.
Concentrations were based on solubility in agueous solution. No more than 2% v/v (DMSO) or
1% v/v (EtOH and H:0) of solvent were tolerated.



Condition | Replicate Has Constants | Reads Mapped

1 3.44E+07 2.12E+07

2 3.38E+07 2.09E+07

4Hy 3 3.37E+07 2.09E+07
1 7.50E+07 4.60E+07

2 7.32E+07 4.49E+07

DMSO 3 7.25E+07 4.46E+07
1 1.80E+06 1.11E+06

2 1.87E+06 1.16E+06

ElIA 3 8.82E+05 5.42E+05
1 1.93E+07 1.19E+07

2 1.91E+07 1.18E+07

End 3 1.97E+07 1.22E+07
1 5.30E+07 3.27E+07

2 5.69E+07 3.52E+07

EtOH 3 5.53E+07 3.42E+07
1 5.79E+07 3.57E+07

2 5.94E+07 3.66E+07

H20 3 5.48E+07 3.39E+07
1 5.06E+07 3.16E+07

2 6.29E+07 3.91E+07

Nal 3 5.87E+07 3.66E+07
1 4.05E+07 2.45E+07

2 4.87E+07 2.92E+07

Nar 3 4.65E+07 2.79E+07
1 4.12E+07 2.35E+07

2 4.04E+07 2.35E+07

Ndes 3 3.88E+07 2.22E+07
1 4.10E+07 2.47E+07

2 5.38E+07 3.21E+07

Phlo 3 4.99E+07 2.98E+07
1 3.87E+07 2.38E+07

2 4.21E+07 2.58E+07

Quin 3 4.13E+07 2.54E+07
1 3.01E+07 1.84E+07

2 3.14E+07 1.93E+07

Tam 3 3.20E+07 1.97E+07
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Supplementary Table 3: Read counts for DNA from the agnostic library for different

conditions.

Read counts after merging and quality filter based on the presence of the constant regions
surrounding the 16nt barcode and UMI. Reads mapped are the number of reads that
correspond to a barcode identified in the mapping sequencing run.



Condition | Replicate | Has Constants | Reads Mapped
1 2.10E+07 9.66E+06
2 2.22E+07 1.02E+07
4Hy 3 2.21E+07 1.01E+07
1 2.38E+07 1.04E+07
2 2.55E+07 1.12E+07
DMSO 3 2.41E+07 1.05E+07
1 1.55E+07 6.70E+06
2 2.32E+07 1.00E+07
ElIA 3 2.32E+07 1.00E+07
1 2.43E+07 1.14E+07
2 2.33E+07 1.09E+07
End 3 2.54E+07 1.19E+07
1 1.96E+07 8.70E+06
2 2.28E+07 1.01E+07
EtOH 3 2.33E+07 1.03E+07
1 2.09E+07 8.98E+06
2 2.19E+07 9.36E+06
H20 3 2.26E+07 9.77E+06
1 1.90E+07 8.31E+06
2 2.18E+07 9.41E+06
Nal 3 2.15E+07 9.35E+06
1 2.47E+07 1.34E+07
2 2.77E+07 1.50E+07
Nar 3 2.68E+07 1.45E+07
1 2.28E+07 1.09E+07
2 2.31E+07 1.10E+07
Ndes 3 2.44E+07 1.17E+07
1 2.52E+07 1.37E+07
2 2.71E+07 1.47E+07
Phlo 3 2.72E+07 1.47E+07
1 2.13E+07 9.92E+06
2 2.39E+07 1.11E+07
Quin 3 2.40E+07 1.11E+07
1 2.60E+07 1.23E+07
2 2.49E+07 1.17E+07
Tam 3 2.44E+07 1.13E+07
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Supplementary Table 4: Read counts for DNA from the agnostic library for different

conditions.
Read counts after merging and quality filter based on the presence of the constant regions
surrounding the 16nt barcode and UMI. Reads mapped are the number of reads that

correspond to a barcode identified in the mapping sequencing run.



EtOH End Tam
Segment | Replicate | Has Constants | Reads Mapped | Has Constants | Reads Mapped | Has Constants | Reads Mapped
1 5.09E+06 1.77E+06 5.22E+06 1.82E+06 4.42E+06 1.54E+06
2 4.90E+06 1.71E+06 6.02E+06 2.09E+06 4.95E+06 1.72E+06
1 3 4.90E+06 1.71E+06 5.88E+06 2.04E+06 4.96E+06 1.72E+06
1 3.44E+06 8.17E+05 4.26E+06 1.00E+06 4.63E+06 1.09E+06
2 4.18E+06 9.93E+05 4.38E+06 1.03E+06 5.09E+06 1.20E+06
2 3 4.66E+06 1.10E+06 4.68E+06 1.10E+06 5.30E+06 1.25E+06
1 3.95E+06 6.99E+05 3.87E+06 6.77E+05 3.67E+06 6.48E+05
2 3.89E+06 6.94E+05 4.78E+06 8.43E+05 3.75E+06 6.67E+05
3 3 5.34E+06 9.48E+05 4.29E+06 7.56E+05 3.68E+06 6.49E+05
1 7.53E+06 2.29E+06 7.46E+06 2.26E+06 6.93E+06 2.10E+06
2 8.86E+06 2.69E+06 8.78E+06 2.65E+06 8.89E+06 2.69E+06
4 3 9.02E+06 2.74E+06 8.06E+06 2.44E+06 8.80E+06 2.67E+06
1 4.67E+06 1.26E+06 3.62E+06 9.71E+05 5.50E+06 1.47E+06
2 5.90E+06 1.58E+06 3.53E+06 9.47E+05 5.97E+06 1.59E+06
5 3 6.23E+06 1.66E+06 3.56E+06 9.53E+05 6.90E+06 1.83E+06
1 2.76E+06 8.28E+05 2.28E+06 6.85E+05 2.25E+06 6.72E+05
2 3.13E+06 9.39E+05 2.32E+06 6.97E+05 2.56E+06 7.68E+05
6 3 2.93E+06 8.83E+05 2.58E+06 7.77E+05 2.57E+06 7.76E+05

Supplementary Table 5: Read counts for DNA from the DMS library under different conditions.
Read counts after merging and quality filter based on the presence of the constant regions surrrounding the 16nt barcode and
UMI. Reads mapped are the number of reads that correspond to a barcode identified in the mapping sequencing run.
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EtOH

End

Tam

Segment | Replicate | Has Constants | Reads Mapped | Has Constants | Reads Mapped | Has Constants | Reads Mapped
1 2.18E+06 6.77E+05 4.63E+06 1.48E+06 5.82E+06 1.85E+06
2 2.18E+06 6.74E+05 4.83E+06 1.55E+06 6.23E+06 1.96E+06
1 3 1.97E+06 6.10E+05 4.66E+06 1.48E+06 6.18E+06 1.94E+06
1 3.45E+06 6.77E+05 8.34E+06 1.68E+06 7.87E+06 1.56E+06
2 2.96E+06 5.82E+05 5.06E+06 1.03E+06 7.21E+06 1.45E+06
2 3 2.71E+06 5.32E+05 7.27E+06 1.47E+06 7.51E+06 1.49E+06
1 2.32E+06 3.03E+05 5.30E+06 7.38E+05 4. 50E+06 6.04E+05
2 2.88E+06 1.68E+05 4.79E+06 6.69E+05 4 .58E+06 6.17E+05
3 3 2.00E+06 2.62E+05 5.94E+06 8.21E+05 4.38E+06 5.91E+05
1 2.53E+06 6.81E+05 6.13E+06 1.70E+06 7.05E+06 1.92E+06
2 2.61E+06 6.97E+05 6.42E+06 1.77E+06 7.29E+06 1.98E+06
4 3 2.30E+06 6.17E+05 6.78E+06 1.87E+06 5.69E+06 1.55E+06
1 1.50E+06 3.28E+05 3.78E+06 8.75E+05 4.24E+06 9.54E+05
2 1.48E+06 3.24E+05 3.72E+06 8.58E+05 4.28E+06 9.58E+05
5 3 1.39E+06 3.03E+05 3.62E+06 8.37E+05 3.88E+06 8.79E+05
1 2.43E+06 6.48E+05 5.37E+06 1.50E+06 5.27E+06 1.46E+06
2 2.28E+06 6.07E+05 5.27E+06 1.47E+06 5.33E+06 1.47E+06
6 3 2.06E+06 5.50E+05 5.25E+06 1.45E+06 4.95E+06 1.35E+06

Supplementary Table 6: Read counts for RNA from the DMS library under different conditions.

Read counts after merging and quality filter based on the presence of the constant regions surrrounding the 16nt barcode and

UMI. Reads mapped are the number of reads that correspond to a barcode identified in the mapping sequencing run.
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4.0.0 Conclusions and Future Directions
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4.1.0 Conclusions

Allosteric transcription factors (aTFs) have fundamental roles in a wide range of cellular processes
due to their ability to alter gene expression at the transcription level. aTFs have the capacity to
interact with small molecules or proteins, bind to DNA, and undergo allosteric changes. However,
little is known about the molecular mechanisms that give rise to these functions. These proteins
have evolved from ancient predecessors; the molecular interactions that confer the ability to
control gene expression have been preserved under selective pressures. Mutations fixed during
evolution can affect each fithess parameter independently and have a nonadditive effect on gene
expression control. This work took the initial steps in understanding the epistatic effect of amino
acid interactions across multiple fitness parameters and the sequence-function relationship
underlying ligand specificity. | developed a novel design-screening workflow that can be applied

to create novel aTF biosensors.

4.1.1 Epistasis across multiple fitness parameters

To understand the complexity of the evolution of novel function in ATFs, | used an engineered
TtgR variant with resveratrol specificity through the addition of four mutations: C1371, 1141W,
M167L, and F168Y. By assaying all combinations of these four mutations against naringenin, the
native ligand, and resveratrol, the target ligand, | show that epistasis affects both protein functions
but to different extents. | used dose response curves to characterize the epistatic interactions in
basal gene expression, maximum gene expression, and EC50 between both ligands. Epistasis is
pervasive, but unique through across all parameters of transcription factor function. However,
pairs of epistatic residues, such as C1371+1141W and M167L+F168Y were consistent across

multiple fitness parameters.
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This study utilized computational design to engineer a specificity switch into TtgR, which
constrained mutations to a select set of residues in the ligand binding pocket. In the natural
evolution of an aTF, mutations that increase fitness can occur throughout the primary sequence
and become fixed through natural selection. The mutations presented in this work are a single
solution to confer resveratrol specificity, but evolution could have selected a different set of
mutations at different positions. By selecting mutations at positions that directly interact with the

ligand, | focused on the effect of epistasis on both biophysical interactions and biological function.

Epistasis in the development of novel function in aTFs is intricately linked to all facets of gene
expression control. Classically, epistasis has been visualized as the ruggedness of a fithess
landscape’2. In these examples, the height of the landscape is the measure of a single functional
parameter like binding affinity, stability, or catalytic activity. An evolutionary process will navigate
a combination of all parameters in complex functions, which can be envisioned as a
multidimensional fithess surface. | show that a single sequence may not be optimal in all
parameters. For example, combinations of the four mutations in this study showed that as basal
fluorescence decreases, sensitivity also decreases. Furthermore, this work implies that varying
selection pressures on an evolutionary scale may enable multifunctional proteins to bypass fitness
barriers in different landscapes. In our case, higher order epistasis prevents access to the
quadruple mutant in the naringenin fold induction landscape but could be bypassed by selection
pressure in the resveratrol response fitness landscape. The evolution of allosteric proteins is
inherently dependent on epistasis and the interactions arising between mutations in these

proteins uniquely affects multiple adaptive landscapes.

4.1.2 Engineering novel ligand affinity into TtgR



163

Allosteric transcription factors have important applications as biosensors in biotechnology as
these proteins naturally control gene expression in response to small molecules in the
environment3. However, these proteins remain difficult engineering candidates despite high
demand to bring designer transcription factors into biotechnology as specific, sensitive, in vivo
biosensors#5. A natural transcription factor that interacts with the desired molecules with high
sensitivity may not exist, creating a need to engineer new affinities into existing aTFs. This
redesign requires the manipulation of ligand binding interactions and the preservation of existing

allosteric interactions.

In chapter 3, | use a combination of a phylogenetically derived library and an RNA-Seq screening
workflow that enables screening of 16,000 transcription factor variants across multiple ligands.
By selecting a ligand-agnostic library design workflow, the resulting variants may have altered

affinity for any small molecule®.

The RNA-Seq workflow was validated with a small library consisting of the combinatorial mutants
assayed in chapter 2. | used the RNA-Seq workflow to probe the agnostic library for response on
tamoxifen, 4-hydroxytamoxifen, endoxifen, N-desmethyltamoxifen, naltrexone, ellagic acid,
quinine, naringenin, and phloretin. | selected the top performing variants from each ligand based
on RNA-Seq data and inserted them into a sfGFP reporter system to screen via fluorescence-
activated cell sorting. The fluorescence screen indicated that the variants responded to the

ligands, validating the existence of novel sensors in the agnostic library.

Sequence trends between variants suggest that the RNA-Seq screening approach reveals amino
acid preferences that are consistent in the top performers. By analyzing the positional entropy

and amino acid distribution for each mutable position, | found that similar ligands had similar
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preferences for amino acids at positions with high selectivity. These preferences were also shared
on the subset of best-performing variants for each ligand, suggesting that the RNA-Seq can be

used to inform future design workflows by incorporating fold enrichment data.

In addition to screening the agnostic library, | applied the RNA-Seq approach to a deep mutational
scan library of TtgR against endoxifen and tamoxifen. | found that this approach can characterize
thousands of variants across multiple biological replicates. Mutational hotspots were across the
protein. A small subset of these positions was located between the DNA binding domain and the
ligand binding domain, suggesting structural or functional importance. Thus, the RNA-Seq

workflow can also be applied to understand the underlying biology of gene expression.

4.2.0 Future Directions

4.2.1 Epistasis in allosteric transcription factors

The concept of multidimensional epistasis in aTF evolution has not been examined exhaustively.
With the increase in next-generation sequencing read capacity, assaying both gene expression
and its functional parameters is now possible. Assuming that read volumes are no longer a
limitation in the future, assaying large combinations of mutations to probe the depth and strength
of epistasis can be done more deeply than before’. This work is the first step in observing the
effects of mutations across multiple fithess parameters. Next steps include expanding the

transcription factor variant library and increasing the number of ligands screened.

The set of four mutations that provided resveratrol specificity is only one solution to changing
ligand specificity in TtgR. The next step is to ascertain if these four mutations are the only solution
at both the four positions and across the entire protein sequence. Searching sequence space at

the four mutable positions (137, 141, 167, and 168) would give greater insight into the epistatic
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relationship between each position. C1371 and 1141W created an epistatic interaction in this work,
but the pairing may be specific for these two substitutions. This experiment would elucidate the
underlying intersection of fithess parameters across multiple substitutions and positions. | expect
that a global maximum of fithess across all parameters will be inaccessible as fitness tradeoffs
are an innate property of evolution®?®. This result can be visualized as a Pareto front across each

functional parameter.

Mutagenesis across the protein domain in a combinatorial fashion has been performed to a limited
extent'?. Future experiments need to increase the number of combinatorial mutations sampled to
better characterize the extent of epistasis in the fitness landscape. For TtgR, a protein with
approximately 200 amino acids, mutating any four positions to the non-wildtype amino acids will
yield a library of approximately 10'° variants. Assuming that technology has advanced to the point
that sequencing this number of variants is feasible, this theoretical library will reveal both

functional hotspots and epistatic trends at a greater depth than previous experiments.

Understanding epistasis in promiscuous aTFs requires assaying both an extensive transcription
factor library across multiple ligands. Additional ligands, like phloretin or tetracycline, can give
insight into the entire functional landscape of TtgR. Response to these ligands may be individually
affected by the mutations across the three different fithess parameters. | expect that each ligand
will have a unique set of optimal sequences and that the current sequence of TtgR is not optimal

for each ligand based on other works examining the evolution of functional specificity'*12.

By increasing the number of mutations, positions, and ligands in transcription factor variant
libraries, the next studies can probe the fitness surface of aTF and examine higher-order epistatic

interactions. In the future, | believe that libraries of all combinations of mutations can be created
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and assayed using next-generation sequencing. These studies can determine the exact

prevalence and importance of epistasis across transcription factor function.

4.2.2 Computational design and RNA-Seq

| have shown that the computational design workflow and RNA-Seq screening approach have
successfully generated variants with function on eight novel ligands. This workflow requires final
validation of variant function, but additional ligands, mutations, and scaffolds create the potential

for developing an extensive set of designer biosensors for biotechnology.

Each functional sequence identified via fluorescence screen must be validated in a clonal gRT-
PCR and fluorescence assay to verify function. | expect that top performing variants have some
response to at least one of the ligands but may be promiscuous. Clonal validation of function will
provide a small list of variants that can then be crystallized with one of the eight ligands. At this
point, specificity or fold enrichment can be improved using directed evolution to create highly

sensitive, highly active sensors.

Using an agnostic approach to computational design had multiple advantages over targeted
design. First, mutations selected through the computational workflow were derived from a
phylogenetic alignment. The evolutionary history of these mutations theoretically creates more
stable alterations in the protein structure compared to random mutagenesis. Second, the same
library can be screened across multiple ligands, streamlining the screening process. | believe that
as the capacity for chip oligo synthesis and next generation sequencing increases, the next
agnostic libraries can incorporate additional positions and mutations. Combinatorial mutations
across all allowed positions in TtgR creates a library of 151,165,440 variants. Future screens can

incorporate these variants, which have mutations throughout the entire binding pocket, to create
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new biosensors for additional small molecules. | believe that mutating additional positions within
the pocket will yield a larger number of functional variants. The set of positions in this study are
largely localized to one face of the binding pocket; increasing the potential interactions throughout

the binding pocket will enable higher affinities for different molecules.

One goal of the RNA-Seq workflow is to obtain data that can be used to improve targeted
computational design. The data from the agnostic library can be used to improve the scoring
function weights across the nine ligands to decrease the number of designs that are selected for
screening. However, this screening approach should also be applied to the combinatorial
mutagenesis libraries described above to create a functional landscape across all positions and
multiple ligands. | believe that the nuanced data from this experiment would be invaluable for
machine learning approaches to iteratively improve the Rosetta design process beyond the limited

set of mutations tested here.

This work is the first step towards creating a toolkit for biosensor design. Now that a workflow to
create new sensors is established, | think an immediate follow to this work would be using
computational and RNA-Seq screening process on a new system. Although | observed numerous
functional variants to the eight selected ligands, TtgR may not be a suitable scaffold to engineer
for any random target ligand affinity. However, TtgR is a promiscuous scaffold, which may make
it more amenable to adopting novel functions than more specific aTFs like TetR'3. | believe that
other promiscuous scaffolds will have the greatest potential for adopting novel ligand affinity.
QacR is another TetR family member that can bind to multiple organic compounds'. These
proteins could create a central set of scaffolds from which many additional biosensors can be
created at will. Future researchers should be able to pick a ligand of interest and have a method

to search for the most suitable candidate scaffold from the set. Applying either the targeted design
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or the agnostic approach with RNA-Seq screening would then generate the novel sensor for

metabolic engineering, environmental monitoring, or gene circuits.
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