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Abstract 

The emergence of novel functions in allosteric transcription factors is driven by mutations whose 

effects propagate through the allosteric network to create epistasis in gene expression. 

Elucidating the relationship between mutations and their global effects is essential to 

understanding the evolution of allosteric proteins. I integrate computational design, high-

throughput screening, structural analysis, and biophysical characterization to create and probe 

the emergence of novel inducer affinity and specificity in an allosteric transcription factor. The 

functional parameters of gene expression create a multidimensional fitness surface that bypasses 

suboptimal regions of the fitness landscape by altering selective pressures. I develop a 

generalizable design and screening workflow that yields sensors for eight selected small 

molecules and can be used to probe the function of any protein that can control transcription using 

variant libraries through direct measurement of RNA abundance. 
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1.1.0 Introduction 

Allosteric transcription factors (aTFs) have critical roles in cellular processes such as 

development, antibiotic resistance, and metabolism in both prokaryotes and eukaryotes1-3. Many 

aTFs control gene expression by interacting with small molecules inside the cell4,5. These proteins 

have evolved from ancient predecessors, establishing the need for gene expression control 

across evolutionary scales6. Gene duplication and mutagenesis created diverse functions in 

extant aTFs7. However, the intermolecular interactions that give rise to new function in aTFs 

remain largely unknown. The goal of this work is to characterize the molecular mechanisms 

underlying the emergence of novel function and to apply new techniques to engineer ligand affinity 

into aTFs. 

 

Extant transcription factors have evolved from ancient precursors that carry the capacity for gene 

expression control and allosteric communication8. Transcription factors are a complex platform 

from which to probe evolution because gene expression control is the product of multiple 

functional parameters: affinity for DNA, affinity for the small molecule, and the capability to 

undergo allosteric changes that alter each. Mutations that yield novel function may affect each 

parameter differently. The effect of mutations is further complicated by epistasis, or the non-

additive effect of combinations of mutations on protein function, but the prevalence of epistasis in 

complex functions has not been explored. 

 

A deeper understanding of the emergence of novel transcription factor function creates the 

capacity to engineer new ligand affinity into existing aTFs. Changing ligand affinity and specificity 

in aTFs can also reveal amino acid identities and positions in the protein that are critical for these 

two functions. However, engineering novel ligand affinity challenging due to the intricacy of long-

range interactions in allosteric proteins. Computational approaches can readily simulate protein-
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ligand interactions but lack the ability to account for allosteric function. In the absence of 

mechanistic understanding of allosteric interactions, high-throughput screening must be used to 

screen for designed aTFs that have preserved allosteric function.  

 

Prokaryotic allosteric transcription factors are a simple, one component transcription regulation 

system that are simple models for understanding transcription control. The TetR family of 

transcriptional repressors control gene expression in response to antibiotics and other organic 

molecules9. In the absence of a small molecule inducer, these proteins bind to the operator 

sequence in the promoter of controlled genes to prevent RNA polymerase interaction. Once the 

small molecule is present, the proteins undergo an allosteric change that reduces affinity for the 

operator sequence and allows transcription of downstream genes10. For the TetR family, these 

downstream genes are typically antibiotic transporter proteins9. These proteins are a useful 

framework that can probe the role of epistasis in controlling gene expression and are a useful 

chassis to engineer novel function. 

 

In chapter 2, I examine the molecular mechanisms underlying the evolution of ligand specificity in 

TtgR, a member of the TetR family. For an allosteric transcription factor (aTF), function is the 

combination of affinity for the inducer ligand, affinity for DNA, and allosteric changes that 

accompany binding to the ligand. I engineer a specificity switch into TtgR to model the acquisition 

of novel function and show that each parameter has unique patterns of epistasis even though the 

epistatic interactions are consistent across parameters. These interactions and the resulting 

altered specificity can be rationalized through the structural model of the engineered aTF bound 

to resveratrol. Finally, I compare biophysical affinity to sensitivity to emphasize that epistasis may 

also affect the allosteric response of the protein. The unique patterns of epistasis create functional 

trade-offs where optimizing one function comes at the cost of another. An evolving aTF 
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simultaneously traverses these multiple fitness landscapes and can bypass regions of low fitness 

by switching selective pressures. 

 

In chapter 3, I create a library of aTF variants and develop an RNA-Seq strategy to screen 

transcription factors for novel ligand affinity. I generate a ligand-agnostic library of variants using 

phylogeny and a set of computationally stable mutations11. The ligand-agnostic nature of this 

design workflow enables the same library to be screened across multiple ligands. Using RNA-

Seq, I identified multiple transcription factors that could respond to at least one of nine different 

ligands. I also applied the RNA-Seq screening workflow to deep mutational scanning libraries of 

TtgR. I tested the performance of these libraries against two ligands and found functional hotspots 

in the DNA binding domain, at the interface between the DNA binding domain and the ligand 

binding domain, and in second-shell residues of the ligand binding pocket. 

 

In chapter 4, I discuss the conclusions of this work and future directions for both the evolution of 

transcription factors and engineering aTF biosensors. This work is a preliminary glimpse into the 

complexity of evolution in multifunctional proteins and the role of epistasis in function switching. I 

explore the larger implications of the pervasiveness of epistasis on the evolution of novel function 

in aTFs. I elaborate on the next steps required to validate the engineering workflow and improve 

targeted computational design approaches. 

 

1.2.0 Protein evolution, evolvability, and epistasis 

In the following sections, I discuss the importance of epistasis on the evolution of new functions. 

Epistasis is primarily visualized through fitness landscapes and characterized through two lenses: 

specific and nonspecific epistasis. Epistasis has been characterized in different proteins through 

the use of ancestral protein reconstruction or directed evolution. I then examine the role of 
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epistasis in the emergence of complex functions and consider the ability to bypass classical 

fitness barriers by deconstructing these functions into separate fitness parameters. 

 

Proteins are a complex arrangement of amino acids in three-dimensional space. The creation of 

active sites, binding domains, and allosteric interactions are dependent on both the three-

dimensional arrangement and chemical properties of groups of amino acids12. As proteins 

accumulate mutations during evolution, the chemical properties and spatial orientation of these 

amino acid groups change to create novel interactions and functions13,14. Understanding the 

relationship between these molecular changes and the resulting influence on protein function is 

essential to understanding protein evolution. 

 

A central concept to the acquisition of novel functions is evolvability. Evolvability is the potential 

of an amino acid sequence to acquire mutations that confer a novel function. Functional 

promiscuity, the capacity to interact with multiple proteins or small molecules, has been argued 

as a key effector of the evolution of function15-17. Many monofunctional proteins reach an 

intermediate promiscuous stage before switching to be specific for the new function, indicating 

promiscuity plays an important role in the evolution of novel protein functions15,16,18. The amino 

acid interactions that underlie the changes in specificity and function are often epistatic in nature, 

highlighting the need to understand epistasis in the context of protein function19. 

 

1.2.1 Epistasis and fitness landscapes 

The changes in protein function that arise from mutation are dependent on the chemical nature 

of the mutation and its interactions with nearby amino acids. The effect of a mutation on protein 

function can change depending on the amino acid identities at other positions; this phenomenon 
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is called epistasis20. Epistasis is typically studied through a genetic lens but has been increasingly 

studied in the context of protein evolution. 

 

A useful context used to imagine epistasis is a fitness landscape, typically visualized as a three-

dimensional surface. The X and Y axes are used to describe sequence space, or the set of 

possible amino acid sequences. The fitness of each sequence can then be plotted on the z-axis 

to create a topographical map of protein function. As a protein evolves, it traverses sequence 

space through the accumulation and fixation of mutations that increase fitness under selective 

pressure18. If each mutation contributes additively to fitness, then the fitness landscape has a 

single maxima representing the sequence with optimal function21. The number of paths that are 

allowed between the starting sequence and the fitness maximum is equivalent to 2n, where n is 

the number of mutations between the two points. The number of available paths to a peak in the 

fitness landscape is one method of characterizing epistasis. 

 

1.2.2 Effect of epistasis on evolutionary trajectories 

Epistasis results in certain combinations of mutations creating context-dependent changes in 

fitness and the shape of the fitness landscape. In an epistatic system, the fitness landscape 

becomes rugged, with multiple local maxima and minima corresponding to the epistatic 

interactions21. An inherent property of the ruggedness of the fitness landscape is the path-

dependence of evolutionary trajectories. Combinations of mutations will be beneficial in one 

region of sequence space and be deleterious in another. Thus, the order of mutations constrains 

the available evolutionary pathways of a particular sequence to discrete regions of sequence 

space20. Similarly, the global maxima of the fitness landscape is not readily accessible from any 

point in sequence space because of multiple fitness minima, resulting in multiple “dead ends” of 

theoretical evolutionary trajectories22.  
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The effect of epistatic interactions has been argued to be the key effector in mutation fixation 

during evolution23-25. In a blue fluorescent protein, epistatic interactions made up a minority of all 

interactions, but were sufficient to build a model that could accurately predict phenotypes of 

combinations of mutations with a correlation of 0.9824. Epistatic interactions are differentially 

distributed across protein domains, but contribute significantly to function25. Reshaping the fitness 

landscapes drastically alter the paths through sequence space that a protein can take to acquire 

novel function. 

 

1.2.3 Types of epistasis 

Epistatic interactions are characterized by both the effect on protein function and the synergy of 

the two contributing mutations. Specific epistasis refers to epistatic interactions in the context of 

biophysical properties. Nonspecific epistasis refers to nonlinear effects on biological properties 

like solubility, expression, or activity. In addition to these general categories based on functional 

effect, one can also describe epistatic interactions in terms of individual and combinatorial effects 

of mutations26. Magnitude epistasis occurs when the combinatorial effect of two mutations is 

amplified in comparison to the individual effect of each. Sign epistasis occurs when the effect of 

one mutation is dependent on the presence of the other. Reciprocal sign epistasis occurs when 

the effect of each mutation reverses in the presence of the other.  

 

Specific epistasis encompasses function-switching mutations that can interact with DNA, small 

molecules, or other proteins, but are affected by the identity of physically interacting nearby 

residues. These nearby residues are permissive mutations, which can be required for the function 

switch to occur27. Permissive mutations must generally satisfy three categories: stabilization of 

protein structure, maintenance of free energy states in different conformations, and compatibility 
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with parent and derived sequences28. These mutations, when combined, nonlinearly affect the 

biophysical properties contributing to novel function8. 

 

In contrast to specific epistasis, nonspecific epistasis affects the function at the biological level. 

Nonspecific epistasis is commonly observed in the context of protein stability across a large range 

of proteins29. The initial increase in stability of the thermostable variants were required for fixation 

of function-switching mutations30,31.  Stability-mediated epistasis can be achieved through a 

variety of means; any stabilizing mutation will thus be epistatic with any destabilizing, function-

conferring mutation. This nonspecific pairing is the root of nonspecific epistasis. The molecular 

mechanism of stabilization may differ, but the overall effect remains the same32,33. The key effect 

is that each mutation affects the same biophysical property, like stability, that then has a 

nonadditive effect on biological function. In these examples, any mutation that stabilizes the 

protein exhibits nonspecific epistasis for any destabilizing mutation that also changes function. 

Since the nonadditive effect manifests at the biological level, the mutations do not necessarily 

directly interact.  

 

1.2.4 Directed evolution and ancestral reconstruction are tools to study epistasis 

The influence of epistasis on protein evolution can only really be examined in depth when the 

sequence history of a protein is known. For example, stability-mediated epistasis in the evolution 

of influenza has benefitted from the availability of the genome sequence of previous historical 

strains that enabled closer examination of residue interactions30. Directed evolution is one 

laboratory technique that is used to engineer novel function and preserves the sequence history 

of the evolved protein19,34. However, directed evolution cannot be applied to examine protein 

evolution in existing aTFs as the process involves iterative mutagenesis.  

 



 9 

Ancestral reconstruction is one approach that can enable the laboratory resurrection of ancient 

protein sequences using a combination of phylogenetically related sequences and maximum 

likelihood estimations35. Ancestral reconstructions of steroid hormone receptors have revealed 

numerous intricacies about the evolution of mammalian transcription factors36. Ancestral 

reconstruction has also been employed to examine the folding properties of RNAse H and ligand-

specificity of methyl-parathion hydrolase. In both cases, subtle changes in structure lead to 

biological differences in either the folding pathway or the activity between ancestral and extant 

proteins37,38. Ancestral reconstruction provides the ability to test ancient protein sequences to 

investigate the role of epistasis in the evolution of natural proteins.  

 

1.2.5 Epistasis in proteins with complex function 

The influence and abundance of epistasis has been thoroughly examined in numerous 

proteins28,37. However, many studies focus on a singular aspect of protein function to measure 

the effects of epistasis. Stability, enzyme activity, DNA affinity, or small molecule affinity are all 

aspects of biological function; examining each individually will give an inaccurate representation 

of the influence of a mutation on protein fitness. For simple proteins with a singular biological 

function such as antibodies and binding affinity, mutations are fixed under a single biological 

context. However, complex proteins have multiple functions that can be optimized at different 

times during evolution. Often, these proteins evolve towards one specific function and become 

specialized after gene duplication events39. This process can occur through stepwise 

accumulation of mutations conferring additional specificity as subtle differences appear in the 

effector molecules17.  

 

There is a limited understanding of the effects of mutations in multifunctional proteins on multiple 

parameters and functions in an evolutionary context. In addition to selection pressures that may 
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favor one biological function over another during evolution, each function can also be divided into 

multiple parameters that can individually affect fitness. Transcription factor gene expression 

control can be affected by changes in ligand binding affinity, DNA affinity, and allosteric 

communication. While evolution will drive biological function towards an optimal fitness under 

selection pressure, the biophysical mechanisms of improved fitness differ32. Like biological 

functions, each parameter may be selected independently during evolution based on the 

responsiveness of the transcription factor or the activity of the enzyme. Each function and 

parameter can be visualized with individual fitness landscapes. Elucidating the trajectories 

complex proteins undergo through sequence space during evolution requires understanding of 

the intersection of fitness parameter and function under selective pressure. 

 

1.3.0 Engineering novel function into transcription factors 

A fundamental property of many transcription factors is the ability to alter gene expression in 

response to a small molecule. These molecules may be metabolites, therapeutics, or solvents 

that the cell must respond to in order to survive in changing environments. The previous section 

details the complexity of interactions that create transcription factor function; a natural progression 

of this understanding is the engineering of new functions in characterized aTFs with rational 

approaches.  

 

The capacity to engineer small molecule affinity into aTFs is important because an engineering 

workflow can be used to create novel biosensors. Biosensors are devices that use a biological 

component to sense analytes in the environment. Biosensors have also been used in 

environmental monitoring, food quality monitoring, and drug discovery40. Transcription factor 

biosensors are particularly useful because the biological sensing and the production of the 

transducer are incorporated into a single protein in vivo. Transcription factors have been used in 
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a broad array of sensing applications such as detection of trace compounds, generation of 

complex gene circuits with natural and engineered transcription factors, and modulation of 

metabolic control41-48. The ability for cells to control the expression of key enzymes and proteins 

to optimize readout is critical to generating automated biosynthetic production pipelines.  

 

1.3.1 Challenges in engineering novel ligand affinity into aTFs 

Engineering novel ligand affinity into transcription factors poses two major challenges. First, 

redesigning the binding pocket of proteins to accommodate chemically distinct small molecules 

is a challenging task. These proteins are also allosteric49,50. As mutations are introduced into the 

ligand binding pocket to engineer affinity, the allosteric network of residues must be maintained 

so that the act of ligand binding can be communicated to the DNA binding domain.  

 

Computational design and directed evolution are two approaches that can facilitate acquisition of 

new functions through mutagenesis. Directed evolution of an aTF is best suited for target 

molecules that weakly interact with the wildtype transcription factor because few initial 

substitutions must confer measurable improvement in function51. Computational design enables 

rapid testing of a large number of amino acid sequences in silico, producing a set of sequences 

that are most likely to interact with the ligand of interest52. This approach can be used to engineer 

affinity for molecules that are drastically different from the native ligand. While efficient at creating 

and optimizing close-range protein-ligand interactions, computational methods cannot account 

for the long-range interactions that arise in allosteric proteins53. This limitation creates the 

possibility of designed transcription factor sequences with high affinity for the target molecule, but 

without the ability to undergo allosteric changes.  
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Without prior knowledge of allosteric interactions, large numbers of designed aTFs must be 

tested. High-throughput screening techniques such as RNA-Seq and fluorescence-activated cell 

sorting (FACS) facilitate testing of many variants in a single experiment. The combination of 

computational design and high-throughput screening will create and isolate a transcription factor 

variant that has affinity for the target and maintains inherent allosteric properties. 

 

1.3.2 Computational design to engineer ligand binding 

Rosetta is a software suite developed to model the molecular interactions that comprise protein 

tertiary and quaternary structures but is insufficient to engineer transcription factor biosensors 

alone54. Rosetta has been extensively used to model novel protein interactions55-59. LacI was 

engineered to bind to novel sugar molecules like sucralose, gentiobiose, fucose, and lactitol using 

a combination of Rosetta design and high-throughput screening60. The success of the LacI 

redesign effort represents a small step in chemical space away from the natural ligand. Future 

endeavors must strive to push the boundaries of binding pocket design to create tools that allow 

more radical redesign of the transcription factor that expands the repertoire of biosensors. 

 

Despite the wide range of successful protein designs using the Rosetta software suite, the 

computational design process has limitations that must be considered prior to its implementation. 

Any in silico model has errors in its energy functions used to model amino acid states that is 

propagated across all residues in the protein61. The Rosetta Energy Function is used to calculate 

the energy of an amino acid conformation and is a linear combination of different energy 

parameters62. These parameters model biophysical properties like electrostatics, repulsive forces 

between atoms, solvation energies, and hydrogen bonding energies. However, there is no 

guarantee that these computational models are accurate63. Over reliance on computational 
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approaches of engineering novel affinity may be detrimental in the absence of thorough 

experimental validation and understanding of allosteric interactions. 

 

1.3.3 Fluorescence screens to find successful designs 

High throughput screens for computationally designed libraries can use the expression of a 

fluorescent protein as a marker for transcription factor function. Flow cytometry and fluorescence 

activated cell sorting (FACS) enables rapid screening of thousands of transcription factor variants 

using GFP fluorescence60. The transcription factor variants are assayed for the proper function 

based on GFP expression levels in the presence and absence of the target small molecule57. 

Each variant has its own unique fluorescence profile, and the fluorescence distribution of the 

resulting library is the summation of all the fluorescence distributions of the individual variants. 

Repeated sorting of different fluorescence populations in either the presence or the absence of 

the ligand can isolate functional designs. 

 

The sorting process relies on the ability of the transcription factor variants to control gene 

expression in response to the small molecule. The function of the variant is then dependent on 

fraction of the population isolated for both sorts in the presence of the ligand and sorts in the 

absence of the ligand. Isolating a smaller fraction theoretically subsets variants with higher 

induced gene expression and lower basal expression but may also result in the loss of the variants 

with intermediate phenotypes. Once an observable shift in fluorescence between the uninduced 

and the induced libraries is obtained during the sorting process, clonal assays will identify the 

variants responsible. 

 

1.3.4 RNA-Seq is an alternative to fluorescence screens 
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RNA-Seq is a high-throughput alternative to the fluorescence-based screens that overcomes 

several limitations of cell sorting approaches and generates functional scores for every variant in 

the library. Fluorescence assays can also be used to obtain the phenotypes of all library members 

by incorporating next-generation sequencing technology. These Sort-Seq approaches separate 

a fluorescence distribution into bins of discrete fluorescence ranges via fluorescence-activated 

cell sorting (FACS)64-68. Each bin is then sequenced with NGS to elucidate the abundance of each 

library member within the bin. The proportion of reads attributed to a single variant across all 

fluorescence bins is used to infer the fluorescence distribution of the variant. However, accurate 

reconstruction of the phenotypes of the library members requires careful consideration of the 

range of the bins and knowledge of the underlying individual distributions64. 

 

RNA-Seq based approaches map transcription factor function in without the need to partition the 

library. RNA-Seq relies on sequencing a short, random set of nucleotides called a “barcode”. In a 

transcription factor library, the transcription factor variants control the expression of unique 

barcodes69. Each transcription factor variant will be linked to multiple barcodes. These barcodes 

can be mapped back to the transcription factor variant controlling its expression and then 

sequenced using NGS to elucidate the abundance of each barcode. The performance of the 

transcription factor variant is calculated by taking the ratio of these barcode abundances in the 

presence and absence of small molecule ligands. This approach enables the characterization of 

the entire transcription factor library in a single pooled assay.  

 

One of the main challenges of the barcode-based RNA-Seq approach is mapping the randomized 

barcode to the variant responsible for its expression. One way to overcome this challenge was 

developed to characterize the architecture of σ70 promoters using a short barcode at the 3’ of the 

sfGFP gene70. The barcodes were mapped to the promoter variant responsible for their 
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expression prior to incorporation of the sfGFP gene. Another similar approach involved short 

barcodes mapping to GPCR activity in human cell lines69, which established a generalizable 

method of screening eukaryotic transcription factors.  PacBio long-read sequencing was used in 

another deep mutational scanning library of the SARS-CoV-2 receptor binding domain71. 

 

RNA-Seq yields counts of all barcodes extensively mapped to transcription factor variants, 

creating a fitness landscape of ligand responsiveness over the designed sequence space. This 

approach increases the number of variants that can be screened compared to Sort-Seq. Sort-Seq 

requires sequencing of multiple fluorescence partitions, which requires higher read volumes per 

library or fewer variants. Furthermore, RNA-Seq is a direct measure of aTF function as it 

measures the abundance of transcripts instead of GFP expression as a proxy. High-throughput 

screens of computationally designed aTF libraries would benefit from the improvements provided 

by RNA-Seq screens. 

 

1.4.0 Probing epistasis and improving the aTF redesign 

Despite their importance in biotechnology applications, relatively little is known about transcription 

factors and the molecular mechanisms used in these proteins to confer novel ligand affinity. These 

proteins often are simple, 1-component transcription regulators that control gene expression in 

response to small molecules. A key aspect of aTF function is allostery; these proteins undergo 

conformational or dynamic changes in response to ligand binding that alters their affinity for DNA. 

Controlling gene expression is a complex function that involves multiple functional parameters. 

Epistasis can affect each parameter to different extents, creating complex mutational interactions 

over the course of evolution. The goal of the first part of this work is to probe these intricate 

epistatic interactions across multiple functional parameters using changing ligand specificity. 
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Transcription factors represent a versatile chassis and untapped resource for sensing platforms. 

Expanding the use of aTF sensors requires expanding the repertoire of molecules that can be 

sensed with these proteins. However, previous methods that aimed to engineer novel ligand 

affinity had limited success. The latter part of this work is devoted to creating new computational 

and high-throughput screening workflows that can generate new aTF biosensors that increase 

the range of sensed molecules. 
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2.1 Abstract 

Epistasis is a major determinant in the emergence of novel protein function. In allosteric proteins, 

direct interactions between inducer-binding mutations propagate through the allosteric network, 

manifesting as epistasis at the level of biological function. Elucidating this relationship between 

local interactions and their global effects is essential to understanding evolution of allosteric 

proteins. We integrate computational design, structural and biophysical analysis to characterize 

the emergence of novel inducer specificity in an allosteric transcription factor. Adaptive 

landscapes of different inducers of the designed mutant show that a few strong epistatic 

interactions constrain the number of viable sequence pathways, revealing ridges in the fitness 

landscape leading to new specificity.  The structure of the designed mutant shows a striking 

change in inducer orientation still retains allosteric function. Comparing biophysical and functional 

properties suggests a nonlinear relationship between local inducer affinity and allostery. Our 

results highlight the functional and evolutionary complexity of allosteric proteins.  
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2.2 Introduction 

Interactions between mutations direct the evolution of protein function1. As proteins evolve, they 

follow paths through the fitness landscape to reach a fitness peak that represents a novel function2. 

For N mutations required to confer novel function, there are N! possible pathways connecting the 

start and end states. However, some pathways may not be evolutionarily favorable due to 

epistasis – a phenomenon that occurs when the sequence background into which a mutation is 

introduced changes the functional effect of that mutation. The non-additivity due to epistasis 

strongly influences the sequence trajectory a protein takes to gain new function1,3-5. Therefore, 

understanding the nature of epistatic interactions is the foundation for investigating the 

mechanisms leading to novel protein function6. 

 

Epistasis is generally categorized as specific or nonspecific based on cause-effect relationships 

between the interactions of mutations and their outcome. Specific epistasis occurs between a 

limited number of residues that typically physically interact, leading to nonadditive changes in 

thermodynamically-driven biophysical properties such as protein stability or affinity7. Specific 

epistasis has been extensively investigated in protein-protein, protein-ligand, protein-DNA 

interactions5,8-16. Nonspecific epistasis occurs when mutations are nonadditive with respect to 

protein traits when combined17-20. Such mutations can be spatially distant such as a global 

suppressor that can interact with many destabilizing mutations with low pairing specificity4,21,22.  

 

In this study, we examine the role of epistasis in the evolution of ligand specificity in an allosteric 

transcription factor. Allostery is a fundamental mechanism by which proteins recognize 

environmental cues (such as binding of an inducer or effector) within a localized region resulting 

in modulation of function at a distal site23,24. Mutations in the binding pocket that trigger the 

allosteric network have the potential to create new epistatic interactions at the level of protein 
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function beyond the physical interactions commonly seen in specific epistasis and can create 

complex nonspecific interactions. As allosteric proteins evolve toward new function, such as 

orthologs in different organisms, their inducer specificity changes to adapt to the new 

environment25. Allosteric proteins may accrue mutations during evolution that would 

simultaneously affect specificities for old and new inducers. Further, these mutations may also 

impact function by affecting the capability of the protein to produce an allosteric change in 

response to an inducer26,27.  For an allosteric transcription factor (aTF), function is the outcome of 

three parameters: affinity for the inducer ligand, affinity for DNA, and allosteric changes that 

accompany binding to the ligand. Each of these parameters will have its own fitness function 

mapped over the same sequence space, creating unique fitness landscapes. An aTF 

simultaneously traverses these multiple fitness landscapes which collectively govern the 

evolutionary trajectory of the aTF under selective pressure. Thus any one fitness landscape is not 

adequate as a global measure of transcription factor function. We need to examine multiple fitness 

landscapes and characterize epistasis in each individually to understand the evolutionary 

trajectory of an aTF. 

  

Here, we integrate functional, structural, and biophysical analysis to characterize epistasis in the 

functional parameters of an allosteric transcription factor (aTF). Using computation-guided design, 

we changed the ligand specificity of TtgR, a promiscuous microbial aTF, to respond to one of its 

native ligands (resveratrol), but not to another (naringenin) by targeting mutations to positions that 

directly interact with the ligand28,29. By reconstructing all sequence pathways connecting the two 

states (promiscuous and specific), we found that epistatic interactions of two distinct sets of amino 

acids separately drive naringenin response while increasing resveratrol response (response is 

the reporter expression when induced by a ligand). We characterized the fitness landscapes of 

TtgR in terms of four functional parameters: fold change in gene expression, basal gene 
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expression, maximum gene expression, and sensitivity to the ligand (EC50) and showed that 

although ligand-induced allostery is a composite effect of all four parameters, each parameter 

shows unique patterns of epistasis, but also notable similarities. The crystal structure of the 

computationally designed mutant shows that one of the mutations reshapes the binding pocket to 

favor resveratrol over naringenin through a striking change in its binding orientation while 

maintaining allostery. We found that epistasis creates distinct biophysical and biological functional 

landscapes. Our results highlight the functional and evolutionary complexity of allosteric proteins 

because pathways can traverse through multiple adaptive landscapes under evolutionary 

pressure29. Our approach also provides a general conceptual and methodological framework to 

investigate epistasis in transcription factors.  

 

2.3 Computational design of ligand specificity switch 

We chose TtgR, a ligand-inducible aTF belonging to the diverse TetR-like protein family, as a 

target for computational engineering of ligand specificity29. TtgR is a 1-component transcriptional 

system and represents the simplest molecular mechanism for converting biophysical interaction 

between inducer and protein into a complex biological response like transcription29. In the 

uninduced state, TtgR physically obstructs the RNA polymerase by binding to DNA29. When 

induced, ligand-binding allosterically lowers affinity for DNA, thereby allowing transcription29,30. 

Since TtgR is found in a plant-associated microbe (Pseudomonas putida), it is induced by multiple 

plant molecules including resveratrol and naringenin28. Thus, TtgR provides a suitable functional 

backdrop to investigate the role of epistasis in emergence of novel function (ligand specificity) in 

an allosteric protein28,31. To emulate emergence of novel function, we engineered TtgR to respond 

to resveratrol and not to naringenin.  
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We used computational design (Rosetta software suite) to engineer TtgR specificity by generating 

function-switching mutations that directly interact with the ligand32. Less directed approaches may 

yield a specificity switch, but these can also include distal mutations whose effects on ligand 

affinity will confound our examination of epistasis10,33. Since our goal was to study how local 

interactions shape global function, computational design was the appropriate tool as in silico 

mutations are chosen based on interaction energies between protein and ligand34,35.   

 

To increase resveratrol specificity, we redesigned the ligand-contacting residues for greater 

affinity for resveratrol, assuming greater affinity may result in greater specificity. Since Rosetta is 

a structure-based design tool, the absence of a resveratrol-bound TtgR crystal structure made 

the design task challenging because the correct position of the ligand in the binding pocket was 

not known a priori. Therefore, we generated a set of diverse starting poses (16) by docking 

resveratrol conformers in different orientations within the binding pocket (Fig. 1). For each starting 

pose, we redesigned ligand-contacting residues while permitting constrained rigid-body flexibility 

of the ligand and torsional flexibility of the protein backbone. We computationally generated 

approximately 19,000 unique TtgR design variants with an average of 5 mutations per variant 

(Supplementary Fig. 1). After design, each output variant comes with a set of Rosetta-calculated 

scores that reflect physical properties such as stability, repulsion, hydrogen bonds, and protein-

ligand affinity. The best variants for library construction can be selected from the distribution of all 

scores of output designs based on user-defined preferences. The variants were curated using 

parameter-specific median absolute deviation cutoffs on a select set of Rosetta scoring metrics 

of to yield a final list of approximately 3,500 unique sequences for experimental testing 

(Supplementary Fig. 2). The mutations generated in the 3,500 sequences are diverse, but 

designed sequences generally favor the wildtype amino acid at each mutable position 

(Supplementary Fig. 2). A few positions such as 96, 137, 168, and 175 have mutations that are 
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more abundant than the wildtype amino acid. We synthesized oligonucleotides encoding 

approximately 3,500 designed variants as a pool of exact chip-DNA sequences (Twist Bioscience 

Inc).  

 

To determine the activity of TtgR variants, we designed a pooled screen by sorting E. coli cells 

containing a GFP reporter system regulated by a TtgR operator adapted for E. coli. We quantified 

the activity of variants based on fold induction: the ratio of GFP expression with and without 

inducer. Fold induction is a simple measure of the transcriptional activity of an aTF that accounts 

for factors affected by epistasis including DNA affinity, ligand affinity and allostery5,9. The activity 

of the initial library was greater toward naringenin than resveratrol with a median fold induction of 

21-fold and 2.4-fold with naringenin and resveratrol, respectively (Fig. 1). To enrich resveratrol-

specific variants in the library, we devised a toggled screening scheme where we first sorted 

variants competent for binding to DNA (low GFP with no resveratrol) followed by sorting variants 

that can activate expression of the reporter (high GFP with resveratrol) (Supplementary Fig. 3). 

After three rounds of toggled screening, we observed much greater response to resveratrol than 

naringenin in the enriched population compared to the input population (Fig.1).  From the enriched 

population, we isolated a resveratrol-specific TtgR variant with four mutations: C137I, I141W, 

M167L, and F168Y which we will henceforth refer to as the ‘quadruple mutant’. All four mutations 

were in close proximity to the ligand and no mutations were found elsewhere on TtgR. The 

quadruple mutant gave 80- and 6-fold induction with 250µM resveratrol and 2mM naringenin, 

respectively, compared to 60- and 54-fold of wildtype TtgR (Fig. 1, Supplementary Fig. 4). These 

concentrations were selected based on maximum solubility in aqueous solution.  The goal of 

Rosetta design was to narrow the potential designable sequence space to a subspace of 

sequences most likely to offer high resveratrol function. It is possible that other Rosetta designs 

were successful in generating ligand specificity, but were lost in the screening process that was 
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engineered to identify only the most successful variants. We found that the while the quadruple 

mutant fell within the cutoffs imposed during the curation process, it was not the best in any 

scoring parameter. We chose the quadruple mutant as the functional endpoint for characterizing 

epistasis. 

 

2.4 Epistasis shapes the fitness landscape of resveratrol response 

We constructed multiple fitness landscapes derived from dose-response curves to examine 

epistatic constraints in the transition from wildtype TtgR to the resveratrol-specific quadruple 

mutant. We made all single, double, and triple mutation combinations of the four mutations that 

provide resveratrol specificity as individual clones, resulting in a total of 16 variants (including 

endpoints).  Experimental fitness landscapes are a useful framework for characterizing epistasis 

by revealing fitness pathways through mutational intermediates that connect two functional states. 

Fitness landscapes are commonly illustrated as a series of nodes and edges. Each node is 

designated by a binary string in which each number corresponds to a mutable position. A zero 

indicates the wildtype amino acid identity and a one indicates the substituted amino acid. The 

positions in order from left to right are: 137, 141, 167, and 168 (0000 is wildtype TtgR, 1111 is 

quadruple mutant, and 0100 represents the I141W mutant).  

 

The ability of a transcription factor to control gene expression in response to a small molecule is 

broadly described by four parameters – (1) fold change in gene expression upon induction (fold 

induction), (2) basal gene expression without the inducer, (3) maximum gene expression upon 

induction, and (4) sensitivity to ligand concentration or EC50. These parameters capture the 

mechanistic properties of binding to inducer, binding to DNA, and allosteric communication of 

ligand binding. To investigate how the same set of binding pocket mutations might uniquely affect 

each parameter, we constructed the fitness landscape of each parameter individually. We 
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quantified the number of viable pathways in the resveratrol landscape by requiring that each 

additional mutation must increase parameter fitness if the quadruple mutant performs better than 

wildtype or decrease parameter fitness if the quadruple mutant performs worse than wildtype. 

There are 24 possible pathways from wildtype to quadruple mutant (Fig. 2a). Each functional 

parameter shows distinctive patterns of epistasis, although some are closely related. In the fold 

induction landscape, viable pathways must go through 0010 as all other single mutants have 

lower resveratrol response relative to wildtype TtgR (Fig. 2a). This restricts the number of 

available pathways from 24 to a maximum of 6. From 0010, there are three possible double 

mutants: 0011, 0110 and 1010. Both 0110 and 0011 are not viable as their activity substantially 

decreases compared to 0010 (Fig. 2a). However, 1010 is viable as it gives modestly higher 

resveratrol response (Fig. 2a). Both C137I and M167L manifest as key permissive intermediates 

in the fitness landscape that allows I141W (1110) or F168Y (1011) to be added. Since 1010 is 

the only viable double mutant, the number of available pathways reduces to two (Fig. 2a, bold red 

lines). Both triple mutants (1011 and 1110) have higher resveratrol response than 1010 which 

allows two viable pathways to reach the quadruple mutant, which is the global maxima of this 

fitness landscape (Fig. 2a).  

 

The fitness landscape of basal gene expression resembles the fold induction landscape, with 

identical viable pathways, as the nodes with lower basal gene expression also show higher fold 

induction. All the nodes along viable pathways have lower basal gene expression than wildtype 

TtgR (0000) with the quadruple mutant ranking among mutants with lowest basal gene expression 

(Fig. 2b). The adaptive landscapes of maximum gene expression and EC50 show similar features 

to each other including a general trend of increasing magnitude from 0000 to 1111 (Fig. 2c,d). 

Since the global maxima for maximum gene expression is 0111 (not 1111), all pathways on the 

maximum gene expression landscape terminate at 0111 (Fig. 2c). Six pathways are allowed in 
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the EC50 landscape because of the general tendency of mutations to increase EC50 regardless of 

mutational background (Fig. 2d). There is an interesting dependence between maximum gene 

expression and EC50 where nodes with high expression tended to also have high EC50 (low ligand 

sensitivity), indicating a likely trade off where high gene expression comes at the expense of 

ligand sensitivity. In other words, it may be difficult to achieve an ultrasensitive response 

concomitantly with a large change in gene expression. 

 

Next, we delved deeper into the key epistatic interactions that shape the fitness landscapes. 

Epistatic interactions are classified as magnitude, sign, or reciprocal sign based on the combined 

effect of a pair of mutations relative to the effect of each mutant individually. Magnitude epistasis 

occurs when both mutations individually are beneficial or detrimental and their combined effect is 

greater in magnitude than sum of their individual effects (Supplementary Fig. 5).  Sign epistasis 

occurs when the effect of one mutation switches from beneficial to deleterious or vice versa 

depending on if the other mutation is present (Supplementary Fig. 5). Reciprocal sign epistasis 

occurs when both mutations switch effects when paired (Supplementary Fig. 5).  

 

Two epistatic interactions, C137I-I141W and M167L-F168Y, play important roles in modulating 

basal gene expression and fold induction. C137I mutation makes epistatic interactions with all the 

other three mutations (1100, 1010, or 1001) which are critical to control basal gene expression 

through sign or reciprocal sign epistasis (Fig. 2b). This is best exemplified by the interaction 

between C137I (1000) and I141W (0100) in the basal gene expression landscape. Both 1000 and 

0100 have high basal gene expression while the double mutant 1100 has low basal gene 

expression leading to reciprocal sign epistasis. This interaction shows mutations in the binding 

pocket trigger the allosteric network to create new epistatic interactions at a distal site (in this 

case, the DNA-binding interface). The other double mutants that contain C137I (1010 and 1001) 



 

 
 

30 

also have decreased basal gene expression, which is maintained through the quadruple mutant 

by non-epistatic (1100-1111, 1010-1111, and 1001-1111) interactions (Fig. 2b). The I141W 

mutation is also key modulator of fold induction that manifests through controlling basal gene 

expression. Although this mutation by itself causes high basal gene expression (low fold 

induction) when paired with either M167L (0110) or F168Y (0101) in any combination, in the 1100 

background both M167L (1110) and F168Y (1101) have low basal gene expression (high fold 

induction) and form a magnitude epistasis interaction to generate the phenotype of the quadruple 

mutant (Fig. 2b). 

 

The M167L mutation makes a strong epistatic pair with the F168Y mutation, creating a reciprocal 

sign epistasis interaction in the EC50 landscape and sign epistasis in the basal gene expression, 

maximum gene expression, and fold induction landscapes. In the EC50 landscape, M167L is the 

only node that decreases EC50 that does not contain C137I (Fig. 2d). However, this effect is 

masked by the addition of either C137I or I141W. The two mutations show sign epistasis in the 

maximum gene expression landscape in the C137I background (1000-1011) and magnitude 

epistasis in the I141W or C137I-I141W background, indicating that the pair behavior is dependent 

on the background mutations (Fig. 2c). 

 

While a qualitative description of epistasis is easy to visualize, we wanted to also quantify the 

extent of and characterize the type of epistasis within all individual subnetworks and the entire 

16-variant system. We used Bahadur expansion to describe all pairwise and higher order 

interactions (see methods)36. The Bahadur expansion models the activity of the landscape using 

a linear sum of interaction terms and coefficients. Orders of interactions (first [solo], second 

[pairwise], third [three way], or fourth [four way]) can be included in this sum to understand their 

contribution to modeling the behavior of all variants. For each subnetwork, we computed the 
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correlation coefficient between a linear sum of first order interaction terms and actual experimental 

data. In the simplest case of no epistasis, the correlation coefficient of this comparison (R2) is 

close to 1, but any deviation (R2<1.0) indicates prevalence of epistasis. The patterns of epistasis 

for fold induction, basal gene expression, maximum gene expression, and EC50 are all different. 

Of the 24 possible subnetworks, 11 subnetworks are epistatic in the fold induction landscape 

which includes seven, four, and two instances of sign, reciprocal sign and magnitude epistasis, 

respectively (Fig. 2e). In the basal gene expression landscape, 12 subnetworks are epistatic with 

ten sign and two reciprocal sign epistasis subnetworks (Fig. 2f). The maximum gene expression 

landscape has 24 epistatic subnetworks: 12 magnitude, 10 sign, and 2 reciprocal sign (Fig. 2g). 

The EC50 landscape has 19 epistatic subnetworks: 7 magnitude, 9 sign, and 3 reciprocal sign (Fig. 

2h). The magnitude and location of the epistatic interactions in the fitness landscapes are unique 

to their respective fitness property.  

 

Since small deviations in activity may be permitted during evolution, we relaxed the requirement 

that each subsequent step through sequence space change fitness to be more like the quadruple 

mutant. We allowed small losses in function of 25% between nodes and found that additional 

pathways are tolerated in the basal gene expression, maximum gene expression, and EC50 

landscapes. No additional pathways exist in the resveratrol fold induction landscape 

(Supplementary Fig. 6). 

 

Epistasis thus has a large role in shaping the fold induction landscape between the promiscuous 

wildtype and resveratrol-specific quadruple mutant through key interactions. These same 

interactions create unique epistatic interactions in the fitness landscapes of basal gene 

expression, maximum gene expression, and EC50. Although the global expansion first-order terms 

explain the majority of the variance in the fold induction landscape, higher-order epistatic 
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interactions influence resveratrol fold induction by modulating interactions in secondary and 

tertiary subnetworks to improve the resveratrol response (Supplementary Fig. 7).  

 

2.5 Epistasis uniquely influences the fitness landscape of each ligand 

As inducer specificity changes, the fitness landscape of the same mutational intermediates will 

differ for each inducer. These differences may reveal alternative adaptive pathways in the fitness 

landscape of one inducer that circumvent functional “dead ends” in the fitness landscape of 

another inducer. Therefore, we examined the fitness landscape of naringenin-induced response 

by evaluating the same four parameters: fold induction, basal gene expression, maximum gene 

expression (at 2000µM), and EC50 of all 16 variants for comparison with the fitness landscapes of 

resveratrol. We determined the number of viable pathways by requiring that each additional 

mutation must have a change in fitness that bridges wildtype and the quadruple mutant to emulate 

the progressive change in function during evolution.  

 

In the fold induction landscape, none of the 24 possible pathways viably connect wildtype to 

quadruple mutant because the global minima (variant with lowest naringenin response) in the 

landscape is the double mutant 0110, not the quadruple mutant (1111) (Fig. 3a). In the basal 

gene expression landscape, three pathways connect wildtype to the quadruple mutant through 

the C137I (1000) mutation (Fig. 3b). Pathways emerging from 1000 pass through two double 

mutants, 1001 and 1100, with lower basal gene expression. The basal gene expression of 1001 

is higher than 1100, allowing 1001 to link to both triple mutants (1011 and 1101) compared to the 

single triple mutant from 1100 (1110). The maximum gene expression landscape contains two 

pathways connecting wildtype to quadruple mutant (Fig. 3c). Although many nodes have lower 

maximum gene expression compared to the preceding node, most are not part of pathways that 

bridge wildtype and the quadruple mutant. Two single mutants (1000 and 0100) have lower 
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maximum gene expression than wildtype, but only one is connected to a viable double mutant 

(0110). Both triple mutants (0111 and 1110) accessible from 0110 connect to the quadruple 

mutant. Like the EC50 landscape of resveratrol, the EC50 landscape of naringenin is characterized 

by a general increase in EC50 as mutations accumulate (Fig. 3d). There are 8 possible pathways 

that link wildtype to the quadruple mutant. Three of the four single mutants increase EC50 (0100, 

0010, and 0001). Four of the double mutants and all the triple mutants are accessible by at least 

one of the preceding nodes, but not every double or triple mutant is accessible from all preceding 

nodes due to minor deviations in the general trend of increasing EC50. No additional mutational 

pathways are tolerated even when increases of up to 25% naringenin response are allowed 

between nodes for the naringenin fold induction landscape (Supplementary Fig. 8). Similarly to 

the resveratrol landscapes, the basal gene expression, maximum gene expression, and EC50 

landscapes show additional pathways at this tolerance. 

 

Closer examination of the role of individual mutations shows that C137I and I141W have strong 

effects on multiple landscapes. C137I (1000) is the only mutation that decreases EC50 relative to 

wildtype (Fig. 3d). Two additional double mutants 1010 and 1001 further decrease EC50 but 

pairing C137I with I141W (1100) or C137I with both M167L and F168Y (1011) increases in EC50, 

suggesting that these mutational combinations may mask the effect of C137I. As with the 

resveratrol landscapes, the I141W mutation has an important role in modulating basal gene 

expression and fold induction (Fig. 3a,b). Any mutant containing I141W, but not C137I has higher 

basal gene expression (low folder induction) than wildtype. Combining I141W and C137I results 

in a large decrease in basal gene expression, which further decreases upon addition of either 

M167L (1110) or F168Y (1101). M167L and F168Y individually result in incremental changes in 

basal gene expression, maximum gene expression, and EC50 (Fig. 3b,c,d). However, the M167L-

F168Y double mutant shows interesting context-dependent effects due to epistasis. For example, 
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in the fold induction landscape, the combination of M167L and F168Y is beneficial in 1000 

background, but detrimental in the 1100 background (Fig. 3a). This dependent behavior extends 

to all the other fitness landscapes even though the mutational background and types of epistasis 

change.  

 

Next, we quantified epistasis both within all individual subnetworks and the entire 16-variant 

system. Epistasis was much more prevalent in the subnetworks of the fitness landscapes of 

naringenin than those in the fitness landscapes of resveratrol. In the fold induction landscape, 19 

of the 24 subnetworks show epistasis (Fig. 3e). Nine were sign, six magnitude, and four reciprocal 

sign. In the basal gene expression landscape, 16 subnetworks show epistasis with 3 examples of 

magnitude epistasis and 13 examples of sign epistasis (Fig. 3f). The maximum gene expression 

landscape has 24 epistatic subnetworks with 11 magnitude, 6 sign, and 7 reciprocal sign 

subnetworks (Fig. 3g). The EC50 landscape has 17 epistatic subnetworks: 8 magnitude epistasis, 

8 sign epistasis, and 1 reciprocal sign epistasis (Fig. 3h). The same set of mutations that create 

epistatic interactions giving rise to high resveratrol response forge ligand-specific epistatic 

patterns in the fold induction, basal gene expression, maximum gene expression, and EC50 

landscapes (Supplementary Fig. 9).  

 

Epistasis shapes the fitness landscape of each function (naringenin and resveratrol) in distinct 

ways. Furthermore, each functional parameter (basal gene expression, maximum gene 

expression, or EC50) is affected uniquely by the addition of multiple combinations of mutations. 

I141W controls high basal gene expression and strongly modulates fold induction regardless of 

ligand. In contrast, C137I is more context-dependent; it is responsible for low EC50 values solo or 

in combination with either M167L or F168Y in the naringenin landscape, but is strongly influenced 

by M167L in the resveratrol EC50 landscape. Some epistatic pairs are consistent between 
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resveratrol and naringenin. The C137I+I141W pair strongly affects basal gene expression and 

fold induction for both ligands. The M167L+F168Y pair has unique behavior in all fitness 

landscapes that is dependent on the mutation background into which they are introduced. 

However, the pair’s effect on the wildtype background is stronger in resveratrol compared to 

naringenin for all parameters.  

 

2.6 Crystal structure reveals molecular basis of specificity of quadruple mutant 

To understand the structural basis of TtgR-ligand interactions, we solved high-resolution crystal 

structures of quadruple mutant (resveratrol-bound and apo) and wildtype TtgR (resveratrol-

bound) at a resolution of 1.9Å or better (Table S2). TtgR is a compact, dimeric, all-helical 

transcription factor with a large cavity between five angled helices forming the ligand binding 

pocket (Supplementary Fig. 10a,b). The quadruple mutant bound to resveratrol (PDB: 7KD8) is 

structurally very similar to the wildtype with an all-atom RMSD of 1.2Å over the entire structure. 

The DNA binding domains of the resveratrol-bound quadruple mutant and the resveratrol-bound 

wildtype are extremely similar with an all-atom RMSD of 1.0Å (Supplementary Fig. 11).  The four 

mutations do not substantially change the volume of the pocket (215Å3 in wildtype compared to 

234Å3 in the quadruple mutant) or the surface area of the pocket (184Å in wildtype compared to 

186Å in the quadruple mutant) (Supplementary Fig. 12). The position and orientation of 

resveratrol in the wildtype TtgR structure (PDB: 7K1C) resembles the position and orientation of 

naringenin in a previously solved co-crystal structure of TtgR (PDB: 2UXU)28. In both structures, 

the ligands bind in a vertical mode such that the plane of the molecule is roughly perpendicular to 

DNA (Supplementary Fig. 10c). In wildtype TtgR, the four mutated positions (C137, I141, M167 

and F168) are located approximately in the center of the binding pocket and make nonspecific 

van der Waals interactions with resveratrol (Fig. 4a, upper panel). Other neighboring residues 

N110, D172 and H114 make specific hydrogen bonds that stabilize resveratrol in the vertical 
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orientation (Fig. 4a, lower panel). Although both naringenin and resveratrol bind in the vertical 

orientation, only N110 is able to make a hydrogen bond with both naringenin and resveratrol28. 

The ability of wildtype TtgR to bind multiple ligands likely arises from the nonspecific interactions 

made by the nonpolar amino acids in the binding pocket. 

 

Structure of the quadruple mutant reveals the role of individual residues in ligand specificity. 

I141W, a mutation critical for resveratrol specificity, creates a large steric barrier that alters the 

shape of the pocket and obstructs the vertical binding orientation of ligands (Fig. 4b, upper panel). 

Resveratrol is accommodated in the binding pocket in a horizontal binding orientation almost 

parallel to the plane of the tryptophan. Unlike I141W which plays a clear steric role, the other three 

mutations (C137I, M167L and F168Y) have a more subtle effect in reshaping the binding pocket 

through nonpolar interactions. C137I mutation creates a protrusion in the binding pocket that 

increases shape complementarity to resveratrol (Supplementary Fig. 13a). M167L is buried 

between the residues in the binding pocket and the dimerization helix and may play a role in 

positioning the I141W tryptophan to stabilize its horizontal orientation through van der Waals 

interactions (Supplementary Fig. 13b). F168Y allows the formation of multiple hydrogen bonds 

with nearby water molecules and may serve to stabilize the structure (Supplementary Fig. 13b). 

A different hydrogen bonding network consisting of D71, R75, and E78 make hydrogen bonds 

with the resveratrol molecules in chain A (Supplementary Fig. 13c) and  D71, E78, D172, and a 

nearby water molecule make a hydrogen bond with the single resveratrol molecule in chain B (Fig. 

4b, lower panel).  

 

Although resveratrol and naringenin share similar chemical backbones, naringenin is bulkier than 

resveratrol due to the fused carbon rings of the chromanone. This reduces shape 

complementarity of naringenin to the redesigned binding pocket despite the similarity in volume 
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of the quadruple mutant and wildtype binding pockets (Supplementary Fig. 12, 14).. The 4-

hydroxyphenyl moiety and the carbonyl group of the 4-chromanone backbone of naringenin could 

create steric clashes with residues lining the wall of the pocket and cause the ligand to sample 

less space in the pocket compared to resveratrol, which provides a reasonable structural basis 

for ligand specificity.  

 

The new binding mode of the quadruple mutant was not predicted in the original design scheme. 

We seeded the input structures for Rosetta design with resveratrol docked in the vertical 

orientation to mimic the binding mode of the wildtype structure. The design process is only able 

to make minor alterations to the position and angle of the ligand in the binding pocket 

(Supplementary Fig. 15).  

 

The structural basis of ligand specificity relies on the I141W substitution to create a steric barrier 

to prevent binding in the vertical orientation, which is observed in wildtype TtgR for multiple ligands. 

In the novel horizontal mode, other ligands may be occluded from the pocket through steric 

clashes with wildtype residues in the pocket. The epistatic interactions observed in the fitness 

landscapes for naringenin and resveratrol can be rationalized through examination of the structure. 

The C137I-I141W pair increases shape complementarity to resveratrol while M167L-F186Y 

contact the dimerization helix and potentially affect the positioning of nearby residues that interact 

with the ligand. The altered binding mode establishes that allostery is robust to major changes in 

binding mode in TtgR.  

 

2.7 Relationship between biophysical affinity and biological response 

Ligand response of an aTF is a complex combination of both biophysical interactions and allostery. 

Mutations that affect aTF fold induction can do so by altering ligand affinity, DNA affinity, or the 
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allosteric signal upon ligand binding. Since all four mutations are localized to the binding pocket, 

the observed changes in fold induction of TtgR are likely due to altered binding affinity to ligand, 

transmission of allosteric signal, or both. To understand the relationship between biophysical 

affinity and biological response, we compared changes in ligand affinity (Kd) to changes in ligand 

sensitivity (EC50) for both naringenin and resveratrol. We chose mutants in the 0000-1000-0100-

1100 subnetwork because it is important for the high resveratrol response in the quadruple mutant. 

Further, this network shows a strong manifestation of epistasis through reciprocal sign change 

and is therefore a good model to understand the relationship between biophysical affinity and 

biological response. We estimated ligand affinity using isothermal titration calorimetry (ITC) of 

purified proteins and ligand sensitivity from dose-response curves. Ligand sensitivity is derived 

from reporter expression and is thus a combination of both allostery and affinity. 

 

Affinity and sensitivity of resveratrol for different variants are generally concordant for resveratrol, 

with the exception of 1100 (Fig. 5a). We note though that the ITC and dose response curves for 

some variants did not plateau due to poor ligand solubility at high concentrations resulting in 

imprecise estimates of Kd and EC50. Nonetheless, qualitative comparisons can be made to gain 

useful insight. For instance, comparison of ITC profiles of 0000 and 1111 for resveratrol shows 

weaker binding for 1111 even though the precise Kd may be difficult to measure. Similarly, dose 

response curves show weaker EC50 for 1111 than 0000 even though it is not fully saturated. The 

C137I mutation appears to be largely responsible for the affinity in 1100, but the I141W mutation 

causes the increase in sensitivity.  In general, as mutations accumulate from wildtype, the affinity 

and sensitivity generally decrease, suggesting a decreased ability to undergo allosteric changes 

is likely due to weaker binding (Fig. 5a). The discordance between affinity and sensitivity is much 

greater for naringenin than resveratrol. In the case of naringenin, no relationship was evident 

between affinity and sensitivity across the subnetwork (Fig. 5b). Although the quadruple mutant 
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has higher resveratrol fold induction than wildtype, its affinity and sensitivity for resveratrol is lower 

than that of wildtype (Fig. 1, 5a). In essence, these examples illustrate the complex relationship 

between local interactions and their global effects in allosteric proteins. 

 

The 0000-1000-0100-1100 subnetwork displays a unique, ligand-specific pattern of epistasis for 

biophysical and biological parameters. The mutations we introduced into TtgR suggest an effect 

on allostery changes in EC50 as the complexities of function may not be simply explained by 

changes in biophysical affinity. These measurements also suggest that by optimizing a particular 

protein function (fold induction), other parameters (sensitivity or affinity) may not necessarily stay 

at fitness maxima as the 1111 mutant shows poor sensitivity to both ligands. 

 

 

2.8 Discussion 

In this study, we describe the pervasive effects of epistasis on ligand specificity in a simple 

allosteric transcription factor by the examining fold induction, basal gene expression, maximum 

gene expression, and EC50 of two ligands across multiple mutants. By leveraging computational 

protein design, we engineered four mutations into TtgR, a promiscuous transcription factor that 

can normally bind to both resveratrol and naringenin, to only bind to resveratrol. By characterizing 

the functional response to both resveratrol and naringenin across all combinations of mutations, 

we show that the extent of epistasis between mutations affecting multiple protein functions is 

specific for each ligand. For instance, 50% of subnetworks meet the criteria for epistasis for 

resveratrol fold induction while 83% of subnetworks are epistatic for naringenin fold induction. 

However, the fitness landscapes of both ligands are shaped by common critical pairs of epistatic 

interactions (C137I and I141W or M167L and F168Y), though their behavior may be different 

depending on the functional parameter. Biological effects of these mutations are further validated 
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by the crystal structures. The four mutations localize to one face of the binding pocket, making 

nonpolar interactions with the ligand. C137I and I141W increase shape complementarity of the 

pocket for resveratrol, but only in an alternative horizontal binding pose. The four mutations that 

confer ligand specificity decrease both affinity and sensitivity suggesting that the changes in 

sensitivity could be a consequence of lower affinity and not necessarily a purely allosteric effect.  

 

Our study used a constrained set of mutations chosen through in silico selection as opposed to 

natural selection of random mutations found in bona fide evolutionary pathways. An evolutionary 

process may have selected a different set of mutations to confer the same functional outcome, 

leading to the presence of a different pattern of epistasis for either naringenin or resveratrol 

response. Often in natural evolution, mutations that are distal to the site of interest have a 

profound effect on protein function8,21. These background mutations complicate any examination 

of key mutations within the targeted area of the protein and their influence on protein function. By 

utilizing a combination of computational design and high-throughput screening, we targeted 

mutations to a discrete set of ligand-interacting positions within the binding pocket. Our approach 

enabled us to examine the propensity of epistasis in a constrained setting where mutations are 

limited to those that interact directly with the ligand, enabling the examination of the intersection 

of mutation, biophysical epistasis, and biological epistasis. 

 

Our results highlight the dependence of epistasis on protein function and the prevalence of 

distinctive adaptive landscapes for multiple functions within the same set of mutations. This 

process highlights the functional tradeoffs that occur during an evolutionary process and raises 

the implication that proteins with multiple functions may readily traverse nonoptimal sequence 

space through varying selective pressures. These landscapes can thus become interconnected 

by changing selection pressures between different protein functions. On an evolutionary scale, 
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simultaneously changing protein sequence and selection pressure may enable improbable 

trajectories by bypassing epistatic barriers to reach previously inaccessible mutational states. In 

our case, higher order epistasis which prevents access to the quadruple mutant in the naringenin 

fold induction landscape, could be bypassed by toggling between naringenin and resveratrol 

selection pressures. The evolution of allosteric proteins is inherently dependent on epistasis and 

the interactions arising between mutations in these proteins uniquely affects multiple adaptive 

landscapes.  
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2.9 Methods 

Computational Design: 

Protein modeling and design was performed with Rosetta version 3.5 (2015.19.57819)35,37. 

Python and shell scripts for generating input from Rosetta and analyzing from Rosetta are 

available at: https://github.com/raman-lab/biosensor_design 

 

Structure and ligand preparation: 

The high-resolution TtgR structure co-crystalized with tetracycline was selected as the starting 

point for computational design (PDB ID: 2UXH)28. The structure was prepared for use in Rosetta 

by performing an all-atom, coordinate-constrained relaxation38. 

Commands: 

Rosetta/main/source/bin/idealize_jd2.linuxgccrelease -database Rosetta/main/database/ -

in::file::fullatom -s 2UXH.pdb -extra_res_fa LG.params -no_optH false -flip_HNQ 

 

Rosetta/main/source/bin/relax.linuxgccrelease -database Rosetta/main/database/ -

relax::sequence_file always_constrained_relax_script -constrain_relax_to_native_coords -

relax::coord_cst_width 0.25 -relax::coord_cst_stdev 0.25 -s 2UXH_idealized.pdb -in::file::native 

2UXH_idealized.pdb -extra_res_fa LG.params -in::file::fullatom -no_optH false -flip_HNQ 

 

Rosetta/main/source/scripts/python/public/molfile_to_params.py -n resveratrol.params -p 

resveratrol.pdb 

 

Protein design simulations: 

The RosettaScripts protocol used to design the ligand binding pocket of each starting TtgR-

resveratrol complex was based on enzyme design protocols32,39.  
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Command: 

Rosetta/main/source/bin/rosetta_scripts.linuxgccrelease -database Rosetta/main/database/ -

parser::protocol enzdes.xml -in::file::s 2UXH_resvertrol.pdb -extra_res_fa resv.params -

use_input_sc -packing:linmem_ig 10 -ex1-ex2 -run:preserve_header -enzdes_out -

enzdes:bb_min_allowed_dev 0.2 -enzdes:loop_bb_min_allowed_dev 0.5 -

enzdes:minimize_ligand_torsions 15 -parser::script_vars ligchain=X resfile=TtgR.resfile -

out::pdb -nstruct 10 

 

The TtgR.resfile is a plain text file containing the amino acid position numbers that were able to 

be mutated during design, and these were positions 137, 141, 167, 168, 171, 172, 175, and 176. 

We used UW-Madison’s Center for High Throughput Computing computer cluster to perform 

320,000 different design simulations. The resulting designed structures were curated to yield the 

set of sequences that we synthesized to isolate resveratrol-specific TtgR variants. 

 

Selection of designs for synthesis: 

We selected computational designs for synthesis by first removing designs that were repetitive 

and then removing designs that were energetically unfavorable. The criteria for unfavorable 

energies were selected empirically based on the distribution of energies for all designs to yield 

approximately 104 sequences for synthesis. Specifically, on each unique design, ∆∆G stability 

calculations were performed on designed residues to ensure the number of destabilizing changes 

was limited. If the mutation destabilized the TtgR-resveratrol complex by 0.5 Rosetta Energy Units 

(REU), the residue was reverted to its wild-type identity. After this, non-unique designs were again 

removed. The unique designs were filtered using distance from the median absolute deviation of 

several salient Rosetta scoring metrics including total ligand binding energy, hydrogen bond 
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energy, Leonard-Jones repulsive energy, solvation energy, and total score, which is a weighted, 

linear combination of all score terms in the energy function34. Designs that passed this filter were 

synthesized for library screening. 

 

Commands: 

./biosensor_design/fas_from_pdb_stdout.py *.pdb > TtgR_resveratrol_all_designs.fasta 

 

./biosensor_design/uniquify_fas.py TtgR_resveratrol_all_designs.fasta > 

TtgR_resveratrol_unique_designs.fasta 

 

./ddg_monomer.static.linuxgccrelease -database ./database @ddg_flags -in:file:s 

design_pdb.pdb -ddg::mut_file list_of_positions_to_calc_ddg.mutfile -ddg::iterations 50 

 

./gen_enzdes_cutoffs.py concatentated_design_score_file.sc -c 

median_abolute_deviation_cutoffs.txt -o designs_passing_filter.sc 

 

The median absolute deviation cutoffs used were: 

total_score < +1 MAD 

fa_rep < +3 MAD 

hbond_sc < +3 MAD 

tot_burunsat_pm < +3 MAD 

%(LIG)s_fa_rep < +3 SD 

%(LIG)s_hbond_sc < +3 MAD 

%(LIG)s_burunsat_pm < 2.5 ABS 

%(LIG)s_total_score < -1 MAD 
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Library synthesis: 

Creating sfGFP reporter plasmid: 

The sfGFP reporter plasmid was constructed using a backbone containing the ColE1 origin and 

a kanamycin resistance gene. The TtgR operator sequence was modified to contain canonical -

10 (5’-TATAAT-3’) and -35 (5’-TTGACA-3’) elements in the promoter. A strong RBS (g10) was 

chosen for high sfGFP expression40. The TtgR operator-RBS sequence was constructed via 

sequential PCR reactions with overlapping primers containing homology to the pColE1 backbone 

5’ of sfGFP. The plasmid was annealed using isothermal assembly using 0.16pmol of backbone 

and 0.43pmol of promoter41. DH10B cells (NEB) were transformed with the pColE1 reporter 

plasmid and plated on LB-kanamycin agar (50µg/mL). A colony was selected and grown in LB-

kanamycin media (50µg/mL) shaking for 16 hours at 37°C. An aliquot of the culture was stored at 

-80°C in 25% glycerol. Plasmids were isolated using a DNA miniprep kit (Omega BioTek) 

according to the manufacturer’s protocol. The insertion of TtgR operator sequence was confirmed 

via Sanger sequencing.  

 

Creating TtgR expression plasmid: 

The TtgR expression plasmid used the SC101 origin and a spectinomycin resistance gene. The 

constitutive promoter-RBS combination apFAB61-BBa_J61132 and the TtgR gene were amplified 

via KAPA HiFi PCR mix (Roche) using primers with homology to the pSC101 backbone42. The 

TtgR-pSC101 construct was generated using isothermal assembly (0.046pmol backbone and 

0.24pmol TtgR) and DH10B cells were transformed with the TtgR-pSC101 construct. A colony 

was selected and grown in LB-spectinomycin media (50µg/mL) shaking for 16 hours at 37°C. An 

aliquot was stored at -80°C and plasmids were isolated and verified as described previously. 
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Library cloning: 

Rosetta-designed sequences were synthesized as exact oligos (Twist Biosciences). Oligos were 

converted to double-strand DNA using qPCR and purified on a spin column (EZNA Cycle Pure kit 

from Omega BioTek). The pSC101 backbone was amplified with two separate primer pairs 

encoding BsaI cut sites that matched the insertion location of the oligos on the TtgR gene. The 

amplified backbone was treated with Dpn1 for 16 hours at 37°C (NEB) followed by a purification 

using a spin column. The backbone was treated with BsaI (NEB) for 2.5 hours at 37°C followed 

by purification using a spin column. The digested backbone was treated with Antarctic 

phosphatase (NEB) for 1 hour at 37°C followed by purification using a spin column. A golden gate 

reaction (NEB) was performed using 0.12pmol backbone and 0.89pmol library oligo in roughly a 

1:7 molar ratio and incubating for 30 cycles of 37°C for 5min and 16°C for 5 min followed by 60°C 

for 5min. A control reaction was made using just the pSC101 backbone with no Rosetta oligos 

added. The golden gate reactions were dialyzed using semi-permeable membranes (Millipore) 

for 1 hour at 25°C against dH2O. 25µL of C3020 cells (NEB) were transformed with 2µL of the 

dialyzed golden gate mixture via electroporation. Cells recovered for 1 hour in SOC media shaking 

at 37°C and were diluted 5X with LB. Dilutions of 100X, 500X, and 1,000X were plated to calculate 

transformation efficiency relative to the control. A transformation was considered successful when 

CFU/mL of the Golden Gate reactions exceeded CFU/mL of control reactions by a factor of 10 or 

more. Cells grew for 6 hours post transformation before the culture was diluted 50X and grown 

overnight shaking at 37°C for 16 hours. Plasmids of the library were harvested using a DNA 

miniprep kit and stored at -20°C. 

 

Preparing electrocompetent cells with reporter plasmid: 
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An aliquot of the pColE1 frozen stock was streaked on a LB-kanamycin agar plate and grown for 

16 hours at 37°C. A single colony was selected and grown in LB-kanamycin media shaking for 

16 hours at 37°C. The culture was diluted 50X and grown at 37°C to an OD600 of 0.6. Cells were 

placed on ice and 5mL aliquots were centrifuged at 5,500g for 5 minutes at 4°C. Pellets were 

resuspended, washed with ice cold dH2O, and spun at 5,500g twice. The cells were resuspended 

in 20µL of water to create electrocompetent DH10B containing the pColE1 plasmid. DH10B E.coli 

containing the pColE1 reporter plasmid were transformed with the initial Rosetta library in pSC101 

via electroporation. The transformed cells were recovered for 1 hour shaking at 37°C before 

dilutions were plated on LB-kanamycin/spectinomycin agar plates (50µg/mL each) to calculate 

transformation efficiency. The remaining cells were diluted 5X with LB- kanamycin/spectinomycin 

media and grown shaking at 37°C for 16 hours. A frozen stock was made with 25% glycerol. 

 

Sorting the resveratrol library: 

50µL aliquots of the co-transformed Rosetta libraries were thawed on ice and inoculated into 5mL 

of LB-kanamycin/spectinomycin and grown shaking at 37°C to an OD600 of 0.2. Wildtype co-

transformed TtgR sensor+reporter was also inoculated as a reference. These were then split into 

4 1mL aliquots and inoculated with either 500µM naringenin (DMSO), 95µM resveratrol (ethanol), 

DMSO, ethanol and grown for 14 hours at 37°C shaking. Cells were diluted 50X in ice cold PBS 

(137mM NaCl, 2.7mM KCl, 10mM Na2HPO4, 1.8mM KH2PO4) and stored on ice prior to sorting. 

Sorting was conducted using a Sony SH800 cell sorter. Cells were excited by a 488nm laser and 

GFP fluorescence was captured through a 525/50 filter. Gain settings were adjusted such that all 

cells fell between 102 and 106 RFU. 100,000 event measurements of all libraries, induced and 

repressed, were taken to draw gates according to population percentage.  
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Sorting followed an induced-repressed schema; the first library sort consists of taking 500,000 

cells of median 50% of fluorescence from the nontreated distribution. This sort isolates cells that 

contain TtgR variants capable of repressing GFP expression. Cells were sorted into 2mL of LB. 

LB as added to a final volume of 5mL and incubated for 1 hour at 37°C shaking. Kanamycin and 

spectinomycin were added after 1 hour to a final concentration of 50µg/mL each from 1mg/mL 

stocks. These grew to an OD600 of 0.2 before frozen stocks were made in 25% glycerol. A small 

aliquot was stored as a frozen stock at -80°C in 25% glycerol. The remaining culture was induced 

with naringenin, resveratrol, DMSO, or ethanol at an OD600 of 0.2.  

The next sort consisted of isolating 100,000 cells in the top 5% of fluorescence from the 

resveratrol-induced library. This subpopulation was grown as described previously and induced 

with 95µM resveratrol at an OD600 of 0.2. The final sort consisted of isolating 500,000 cells the 

bottom 60% of the nontreated fluorescence distribution. The sorted cells were incubated at 37°C 

until the culture reached an OD600 of 0.2. A frozen stock was stored at -80°C in 25% glycerol. 

 

Clonal Testing: 

Aliquots of the sorted library, wildtype TtgR, and a GFP-positive control were thawed on ice. 50µL 

of the library was plated on LB-kanamycin/spectinomycin and incubated at 37°C for 16 hours. 

The GFP control aliquot was streaked on LB-kanamycin and the wildtype TtgR aliquot was 

streaked on LB-kanamycin/spectinomycin and incubated in the same fashion. Colonies were 

selected from each plate and inoculated into 150µL of LB in a 96 well plate. The colonies were 

incubated at 37C shaking in a SBT1500-H microplate shaker (Southwest Science) and grew to 

saturation (approximately 8 hours). The cultures were diluted 15X into fresh LB with either 500µM 

naringenin or 95µM resveratrol and incubated in a Synergy HTX plate reader (BioTek) for 16 

hours at 37°C. The performance of each colony was measured using the ratio of fluorescence to 
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optical density (RFU/OD600). The ratio of this measurement in the presence and absence of ligand 

defined the response to each ligand. Successful colonies had higher response for resveratrol than 

for naringenin. These colonies were sequenced using Sanger sequencing. 

 

Testing of combinatorial mutants: 

Generation of combinatorial mutants: 

The 14 mutational intermediates were generated using eight primers specifically encoding 

combinations of either 137+141 or 167+168. The resulting oligos were inserted into the TtgR-

pSC101 plasmid using isothermal assembly using .042pmol of backbone and 0.8pmol TtgR. 

DH10B E.coli cells (NEB) were transformed with the resulting reaction via electroporation. 

Colonies were selected and sequenced to verify the correct mutations were present. The correct 

colonies were inoculated into LB-spectinomycin and incubated at 37°C for 16 hours. An aliquot 

was stored at -80°C in 25% glycerol and plasmids were harvested from the remaining culture. 

DH10B cells were cotransformed with the 14 TtgR-pSC101 plasmids and the pColE1 reporter 

plasmid. These were grown for 16 hours shaking at 37°C in LB-kanamycin/spectinomycin media 

and frozen in 25% glycerol at -80C. 

 

Dose response curves: 

A 250mM stock of naringenin was made in DMSO and a 100mM stock of resveratrol was made 

in ethanol. The TtgR-pSC101/pColE1 frozen stocks were struck out onto LB-

kanamycin/spectinomycin plates. Colonies were selected and inoculated into 150uL LB in a 96-

well plate. These grew in a microplate shaker to saturation (approximately 8 hours) at 37°C. The 

cultures were diluted 15X into fresh LB-kanamycin/spectinomycin in a 96-well plate with varying 

concentrations of either naringenin (0µM, 10µM, 25µM, 50µM, 75µM, 100µM, 250µM, 500µM, 
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750µM, 1000µM, 1500µM, 2000µM) or resveratrol  (0µM, 2.5µM, 5µM, 7.5µM, 10µM, 25µM, 

50µM, 75µM, 100µM, 150µM, 200µM, 250µM). The concentration series for each ligand differ 

due to solubility limits in aqueous solutions. A series of naringenin and resveratrol stock 

concentrations were made such that a 50X or a 100X dilution, respectively, would yield the desired 

concentrations in the assay. Most variants were assayed with three biological replicates. Variants 

with more biological noise (1010, 1001, 1110, and 1101 for naringenin and 1001, 1000, 0001, and 

0011 for resveratrol) were assayed with six replicates. The assay was incubated in the microplate 

shaker for 14 hours at 37°C shaking. Cells containing wildtype TtgR pSC101 with the pColE1 

reporter and cells containing pColE1 reporter alone served as controls and were included on 

every plate. A set of 6 biological replicates of a sfGFP positive control were induced with both 

sets of ligands and concentrations.  

Cells were diluted 50X in ice cold PBS. Fluorescence measurements were conducted on a LSR-

Fortessa system (BD Biosciences) using a 488nm laser for excitation and a 530/30 filter for 

fluorescence emission. Using gates on FSC-H vs FSC-A, 100,000 events were gathered per well. 

To account for changes in fluorescence that are independent of TtgR function, raw fluorescence 

values were normalized by fold changes in sfGFP fluorescence in the positive control (N=6). The 

median values of the fluorescence distributions were used as the basis for fold induction 

calculations. Fold induction as calculated by obtaining the ratio of induced average median 

fluorescence to baseline average median fluorescence. 

 

Quantifying epistasis: 

Analyzing fluorescence data: 

The mean and standard deviation of each concentration of ligand for each combinatorial mutant 

were used to calculate a fit using the Hill equation as a function of ligand concentration (x)43. 
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!(#, %, &'()) = ,-./01230 + ((,5.6 − ,-./01230) ∗ 9
6:

;<=>
:?6:

@) (1) 

TtgR function was defined as the maximum fold induction of the system, which is the ratio of the 

median fluorescence at the highest ligand concentration and the median fluorescence at 0µM 

ligand: 

!ABC	E%CFGHEA% = 	
IJKL

IMKNOPQ:O
 (2) 

The Python 2.7 function curve_fit() from the Scipy module was used to fit the dose response 

curves to the Hill equation (Supplementary Fig. 16, Supplementary Fig. 17)44. This function 

provides both fit parameters and error as a covariance matrix as output. Basal gene expression 

was the fluorescence at 0µM ligand. Maximum gene expression was the fluorescence at the 

highest ligand concentration. EC50 was estimated using the Hill equation. 

 

Bahadur expansion: 

The Bahadur expansion was used to analyze the data36. Fitness for the bahadur expansion was 

defined as: 

!EH%RSST.U2.3V = 	 BAWX)(
YZ1[	23[\]V2Z3^K_QK:`
YZ1[	23[\]V2Z3aQPb`cdO

) (3) 

Fold induction in Eq.2 was changed to “basal gene expression”, “maximum gene expression”, or 

“EC50” for each functional parameter. Each mutant can be represented as a numerical string (z 

string), where each mutable position is one number (zi) in the string. A wild type residue at a 

position is designated by a -1 while the mutated residue is designated by a 1. The mutant 

M167L+F168Y thus becomes [-1, -1, 1, 1]. The interaction terms can be modeled as follows: 

e) = 1 

eX, eg, … , e3 = iX, ig, … , i3 

e3?X, e3?g, … , e3?<j: = 	 iXig, iXik, … , i3lXi3 

… 



 

 
 

53 

eg:lX = iXig … i3 

An orthonormal matrix of psi-values is created based on the combinations of mutations within the 

set (Supplementary Table 3). The Bahadur coefficients can be calculated using this orthonormal 

matrix and a fluorescence values f(x) for a particular mutant x in the set of all mutants X. 

m2 =
X

g:
∑ !(#)e2(#)6∈p  (4) 

The fluorescence of each combinatorial mutant can be calculated based on the Bahadur 

coefficients and z string. 

!(#) = ∑ m2e2(#)
g3lX
2q)  (5) 

The R2 between the modeled fluorescence values and the experimental data is 1.0 when all 

interaction terms are included in the expansion. By truncating Eq. (5) to contain only low-order 

interactions, the effect of these contributions to the model can be determined. The expansion was 

applied to the full set of mutations (4 positions) and modeled using first order terms; first and 

second order terms; first, second, and third order terms; and all terms (Supplementary Fig. 18). 

An identical approach was applied to all 24 subnetworks and utilized only first order terms in the 

reconstruction (Supplementary Fig 19).  

Errors in the R2 statistics were estimated using a Monte Carlo simulation. 500 sets of fluorescence 

values for all mutants were sampled based on experimental fluorescence means and standard 

deviations following a Gaussian distribution using the NumPy module in Python 2.745,46. Eq. (4) 

and (5) were applied to reconstruct the fluorescence values and calculate R2 values between the 

sampled model and the sampled data to give a distribution of R2 values. Bias-corrected adjusted 

95% confidence intervals were calculated by obtaining the average R2 of 10,000 bootstrap 

iterations of the Monte Carlo simulation R2. The bahadur expansion was applied to each functional 

parameter. 
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A control set of additive data was used to calculate the R2 of data showing no epistasis 

(Supplementary Table 1). This subnetwork was analyzed using the same approach as the 

subnetwork workflow. 

 

Protein characterization: 

Purifying proteins for isothermal titration calorimetry: 

The TtgR gene for variants 0000, 1000, 0100, 1100, and 1111 were cloned into a pET31B vector 

downstream of the T7 promoter for lac-inducible transcription control using isothermal assembly 

with 0.18pmol backbone and 0.392pmol TtgR. MBP was amplified with primers to add a C-

terminal His-tag and TEV site and inserted into the TtgR-pET31B vector upstream of TtgR to 

create a MBP-His-TtgR fusion with a TEV cleavage site between the His-tag and the TtgR protein. 

BL21 chemically competent cells (NEB) were transformed with 20ng of pET31B vector. Dilutions 

of transformants were plated on LB-ampicillin agar. A colony was selected and grown in 5mL LB-

ampicillin media shaking at 37°C for 16 hours. This culture was added to 500mL autoinduction 

media (Terrific Broth, 0.8% glycerol, 2mM MgSO4, 0.375% (w/v) aspartic acid, 0.015% (w/v) 

glucose, 0.5% (w/v) lactose) and grown for 8 hours at 37°C shaking. The culture was grown for 

an additional 16 hours at 25°C shaking. 

The cells were spun down at 5,500g for 15 minutes at 4°C. The supernatant was removed and 

the cells were resuspended in a lysis buffer (300mM NaCl, 50mM HEPES, 1mM PMSF, 1mg/mL 

Lysozyme, 5mM BME, 10% glycerol, pH 7.5). A Q500 sonicator (Qsonica) was used to lyse cells 

using a 5 second on, 15 second off sonication protocol for 4 minutes total sonication time. The 

lysate was centrifuged at 14,000g for 45 minutes at 4°C. The supernatant was isolated and filtered 

through a 0.22µm filter. The filtered supernatant was purified on an Akta Start using 2 5mL 

HisTrap HP columns. The column was washed with 5 column volumes (CV) IMAC-A (500mM 
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NaCl, 20mM Imidazole, 20mM MOPS, 0.3mM TCEP, pH 7). MBP-6His-TtgR was eluted with a 

gradient of 100% IMAC-A to 100% IMAC-B (500mM NaCl, 500mM Imidazole, 20mM MOPS, 

0.3mM TCEP, pH7) over 5CV and collected in 2mL fractions. Fractions with the highest 

absorbance at 280nm (A280) were combined and dialyzed in 8L of dialysis buffer A (100mM NaCl, 

20mM MOPS, 0.3mM TCEP, pH 7.5). TEV was added to the proteins prior to dialysis at a ratio of 

1:50 w/w TEV:TtgR. Dialysis occurred over a 16 hour interval at 4°C while stirring at low speed. 

Dialyzed protein was centrifuged at 14,000g for 10 minutes at 4°C. The supernatant was passed 

through a 0.22µm filter and loaded onto the HisTrap columns at 5mL/min. The column was 

washed with 5CV of IMAC-A and 2mL fractions were collected. 5CV of IMAC-B was used to 

remove the MBP-6His from the column. The column was washed with an additional 10CV IMAC-

A. Wash fractions with high A280 were combined and reapplied to the column. The column was 

washed with 5CV of IMAC-A and 2mL fractions were collected. 5CV of IMAC-B was used to strip 

the MBP-6His from the column. Fractions with high A280 were combined and dialyzed in 4L of 

dialysis buffer C (100mM NaCl, 20mM MOPS, 10mM MgCl2, 0.3mM TCEP, pH 7.8). The protein 

was centrifuged at 14,000g for 10 minutes at 4°C. The supernatant was passed through a 0.22µm 

filter. The protein was concentrated to approximately 9mg/mL and frozen in 60µL aliquots in liquid 

nitrogen before storing at -80°C. Dialysis buffer C was passed through a 0.22µm filter and stored 

at 4°C for ITC experiments. 

 

Determining binding affinity of TtgR variants: 

Stocks of 250mM naringenin and 100mM resveratrol were diluted to 500µM and 250µM, 

respectively, in dialysis buffer C. Aliquots of TtgR were thawed on ice and diluted to a final 

concentration of 7.5µM. DMSO or ethanol was added to the TtgR solution to match the solution 

composition of the naringenin or resveratrol dilutions. An aliquot of dialysis buffer C was also 
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prepared with DMSO or ethanol for a control injection and to wash the sample cell between ITC 

injections. 

The ITC experiments were conducted on a VP-ITC (MicroCal). An initial control injection scheme 

consisted of loading the sample cell with dialysis buffer C and performing a series of 10 10µL 

ligand injections with 10 minute intervals at 25°C. The sample cell was washed 5 times with 

dialysis buffer C before the 7.5µM protein solution was loaded. 25 10µL naringenin injections or 

28 10µL resveratrol injections occurred in 10 minute intervals at 25°C.  

Data analysis was primarily conducted using Origin 7.0 (MicroCal). The heats of injection from 

the control sample were averaged. The protein-ligand injection profile was subtracted by this 

average heat prior to curve fitting. Due to low affinity for both naringenin and resveratrol, the 

stoichiometry of binding was fixed to 1 to reduce the degrees of freedom prior to fitting. The curves 

were fit with the single binding site model (Supplementary Fig. 20).  

 

X-ray crystallography: 

Purifying Proteins for X-ray crystallography: 

TtgR-pET31B vector was electroporated into BL21 cells (NEB) and recovered in 1mL SOC. The 

cells were incubated for 1 hour at 37°C before serial dilutions were plated on LB-ampicillin 

(100µg/mL) plates. A single colony was selected and incubated in 5mL LB-ampicillin (100µg/mL) 

at 37°C shaking for 3 hours. The 5mL culture was added to 500mL LB-ampicillin media and 

incubated at 37°C shaking at 250rpm for approximately 3 hours until the OD600 reached 0.6. The 

culture was induced with 100µM IPTG followed by an incubation at 16°C for 16 hours shaking at 

250rpm.  

The cells were spun down at 5,500g for 15 minutes at 4C. The supernatant was removed and the 

cells were resuspended in a lysis buffer (300mM NaCl, 50mM HEPES, 1mM PMSF, 1mg/mL 
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Lysozyme, 5mM BME, 10% glycerol, pH 7.5). A Q500 sonicator (Qsonica) was used to lyse cells 

using a 25 second on, 50 second off sonication protocol for 3 minutes and 45 seconds total 

sonication time. The lysate was centrifuged at 14,000g for 45 minutes at 4°C. The supernatant 

was isolated and filtered through a 0.22µm filter. The filtered supernatant was purified on an Akta 

Start (Cytiva) using a 5mL HisTrap HP columns (Cytiva). The supernatant was loaded onto the 

column at a flow rate of 5mL/min. The column was washed with 5 column volumes (CV) IMAC-A. 

MBP-6His-TtgR was eluted with a gradient of 100% IMAC-A to 100% IMAC-B over 10CV and 

collected in 2mL fractions. Fractions with the highest absorbance at 280nm (A280) were 

combined and dialyzed in 8L of dialysis buffer A. TEV was added to the proteins prior to dialysis 

at a ratio of 1:50 w/w TEV:TtgR. Dialysis occurred over a 16 hour interval at 4°C while stirring at 

low speed. 

TtgR was isolated from MBP-6His through a subtractive IMAC protocol using the Akta Start and 

5mL HisTrap HP column. The dialyzed protein was centrifuged at 4,000g for 10 minutes at 4C. 

Supernatant was passed through a 0.22µm filter and applied to the HisTrap column at 5mL/min. 

5CV IMAC-A was used to wash the column while 2mL fractions were collected. 2.5CV IMAC-B 

was used to remove the MBP from the column and 5mL fractions were collected. Wash fractions 

with high A280 were combined and dialyzed in 4L of dialysis buffer B (50mM NaCl, 5mM MOPS, 

0.3mM TCEP, pH 7.5). EDTA was added to the protein wash fractions to a final concentration of 

10mM prior to dialysis. Dialysis occurred over a 16 hour interval at 4C while stirring at low speed. 

TtgR was concentrated to 10mg/mL using spin concentrators. Samples were spun at intervals of 

3,500g for 5 minutes and mixed via pipette between spins. Concentrated TtgR was separated into 

60µL aliquots and frozen in liquid nitrogen prior to storage at -80°C. 

 

Size exclusion chromatography:  
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Samples of TtgR wildtype and mutant proteins were received frozen in 5 mM MOPS, pH 7.4, 50 

mM NaCl, 0.3 mM TCEP.  Samples were thawed and centrifuged for 5 minutes at 21,130g.  

Sample supernatants were filtered with a 0.22 micron MillexGV syringe filter unit (Millipore) before 

applying to an equilibrated 10 mm x 300 mm Superdex 200 column (GE Healthcare).  

Chromatography was performed on a GE AKTA FPLC system.  Column buffer was 20 mM 

HEPES, pH 7.5, 350 mM NaCl, 0.3 mM TCEP.  Two primary peaks were obtained from each 

sample with major peak at approximately 45kD MW and a minor peak at approximately 79kD.  

The fractions corresponding to the major peak were pooled and concentrated with an Amicon 

Ultracel-10 centrifugal filter device (Millipore) and dialyzed vs. 5 mM HEPES, pH 7.5, 50 mM NaCl, 

0.3 mM TCEP.  Samples collected after dialysis were divided into small aliquots and flash frozen 

in PCR tubes with liquid nitrogen. 

 

Crystallization screening and optimization: 

Crystallization screening and optimization was conducted in the Collaborative Crystallography 

Core in the Department of Biochemistry and the University of Wisconsin-Madison. Crystallization 

experiments were set up using a SPT Labtech mosquitoâ crystallization robot in MRC SD-2 

crystallization plates at 4°C and 20°C (277 and 293 K.) Crystals progressing to diffraction 

experiments were all obtained at 20°C. Two general screens, Hampton Research IndexHT and 

Molecular Dimensions JCSG+ were used in this study47. Crystals were detected using brightfield 

and UV fluorescence imaging with a JANSi UVEX-P crystallization plate imaging system 

supplementing visual inspection with stereomicroscopes. Initial rounds of crystallization 

optimization were performed in SD2 plates using the mosquito to expand 24 solution conditions 

by setting columns of experiments in four different sample to reservoir volume ratios. 
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Cryoprotected crystals were harvested in Mitegen micro mounts and flash cooled by immersion 

in liquid nitrogen. 

 

Crystallography: 

Crystals were screened and X-ray diffraction data was collected at Advanced Photon Source 

(APS) beamlines LS-CAT and GM/CA@APS, universally on crystals cooled to 100K. Diffraction 

data was reduced using XDS and scaled with XSCALE48,49. Structures were solved by molecular 

replacement with Phaser within the Phenix suite of programs, automatically rebuilt with 

phenix.autobuild, iteratively improved with alternating rounds of rebuilding in Coot and refinement 

using phenix.refine, and validated using MOLPROBITY50-54.  

 

7K1A crystals providing diffraction data were grown by mixing 200 nL of protein at 9.7 mg/mL in 

sample buffer (5mM HEPES pH 7.5, 50 mM NaCl, 0.3 mM TCEP) with 150 nL of reservoir solution,  

was equilibrated against 150 nL 20% MEPEG, 0.2M MgCl2, 0.1M bistris HCL pH 6.5 equilibrated 

against 50 microliters of reservoir solution in a SD2 plate. Samples were cryoprotected with 

reservoir solution supplemented to 35% MEPEG 2000. A 360° sweep of data (720 frames) was 

collected on a MAR 300 CCD detector at LS-CAT beamline 21ID-G on 2018-12-16 using 0.97856 

Å X-rays. The phase problem was solved using 2UXU(A) as a molecular replacement model28.  

 

 

 

7K1C crystals of wild-type TtgR with resveratrol were prepared by incubating 0.41 mM protein 

(9.8 mg/mL) and 0.5 mM resveratrol dissolved in sample buffer for 30 minutes at room 

temperature prior to setting up crystallization experiments. The crystal yielding the best diffraction 

data was grown by mixing 200 nL of the protein-ligand sample with 250 nL reservoir (18% 
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PEG4000, 0.2M MgCl2, 0.1M bistris HCl pH 6.5) equilibrated against 50 microliters of reservoir a 

SD2 plate. Samples were cryoprotected with reservoir solution supplemented with 35% PEG4000.  

A 360° sweep of data (720 frames) was collected on a MAR 300 CCD detector at LS-CAT 

beamline 21ID-G on 2018-12-16 using 0.97856 Å X-rays. The phase problem was solved using 

2XDN as a molecular replacement model. 

 

7KD8 crystals were prepared by incubating 0.43 mM (10.4 mg/mL) quadruple mutant protein with 

1 mM resveratrol in sample buffer for 30 minutes prior to setting up crystallization experiments. 

Crystals providing the reported diffraction data set grew from 2 microliters of sample mixed with 

2 microliters of reservoir solution (12% MEPEG 2000, 5% 2-methyl-2,4-pentanediol, 0.3 M MgCl2, 

0.1 M bistris buffer at pH 6.5 equilibrated in a hanging drop experiment using a siliconized glass 

cover slip. Samples were cryoprotected with reservoir solution supplemented to 30% MEPEG 

2000. A 360°(3600 frames) shutterless data set was collected at LS-CAT 21ID-D on 2019-05-30 

with an Eiger 9M direct detector and 1.07812 Å X-rays. The phase problem was solved using 

7K1A as a molecular replacement model. 

 

Figures and scripts: 

All figures were generated using the Matplotlib module in Python 2.755. Scripts used in data 

analysis and figure generation can be found at: https://github.com/raman-lab/epistasis. POVME 

3.0 was used to calculate pocket volumes based on the location of resveratrol56. 
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Figure 1: Design of resveratrol-specific TtgR variant. Resveratrol conformers are 
docked into TtgR followed by Rosetta-based computational design of the binding 
pocket. Candidates with favorable Rosetta score metrics (green points) are synthe-
sized and cloned into an expression vector. Distribution of fluorescence in cells contain-
ing uninduced TtgR variant library (light green), induced with naringenin (light blue) and 
resveratrol (red) before sorting (Pre-Sort) and after three rounds of sorting (Post-Sort) 
are shown. Colony screening identified a quadruple mutant showing resveratrol speci-
ficity: C137I/I141W/M167L/F168Y. 
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Figure 2: Fitness landscapes for multiple functional parameters in response to induction 
with resveratrol. Fitness landscapes of (a) fold induction, (b) basal gene expression, (c) maxi-
mum gene expression, and (d) EC50 parameters for all 16 TtgR variants in response to resveratrol 
with each variant shown as a node in the graph. Each variant is labeled with a binary string 
corresponding to the presence (1) or absence (0) of a mutation at position 137, 141, 167, or 168 in 
order. Nodes separated by a single mutation are connected by edges showing viable (bold red) 
and unviable paths (light gray) through sequence space. Nodes are shaded by log10 of the fold 
induction ratio at 250μM resveratrol normalized to the fold induction ratio of wildtype TtgR. Number 
of epistatic subnetworks in the resveratrol (d) fold induction, (e) basal gene expression, (f) maxi-
mum gene expression, and (g) EC50 landscape determined by Bahadur expansion. 
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Figure 3: Fitness landscapes for multiple functional parameters in response to induction with 
naringenin. Fitness landscapes of (a) fold induction, (b) basal gene expression, (c) maximum gene 
expression, and (d) EC50 parameters for all 16 TtgR variants in response to naringenin with each 
variant shown as a node in the graph. Each variant is labeled with a binary string corresponding to the 
presence (1) or absence (0) of a mutation at position 137, 141, 167, or 168 in order. Nodes separated 
by a single mutation are connected by edges showing viable (bold blue) and unviable paths (light gray) 
through sequence space. Nodes are shaded by log10 of the fold induction ratio at 2000μM resveratrol 
normalized to the fold induction ratio of wildtype TtgR. Number of epistatic subnetworks in the resvera-
trol (e) fold induction, (f) basal gene expression, (g) maximum gene expression, and (h) EC50 land-
scape determined by Bahadur expansion. 
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Figure 4: Structural basis for ligand specificity. Wildtype TtgR and quadruple mutant are 
shown in blue and green ribbons, respectively. Positions 137, 141, 167, and 168 are colored in 
pink. Resveratrol is shown as gray sticks. Water molecules are shown as red spheres. (a) Binding 
pocket of resveratrol-bound wildtype TtgR (PDB ID: 7K1C) (upper panel) with residues making 
hydrogen bonds to resveratrol highlighted in orange (lower panel). (b) Binding pocket of resvera-
trol-bound quadruple mutant TtgR (PDB ID: 7KD8) (upper panel) with residues making hydrogen 
bonds to resveratrol highlighted in orange (lower panel). 
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Figure 5: Comparison of biophysical and biological properties of TtgR variants. Ligand affinity (light bar) 
and EC50 sensitivity (dark bar) for resveratrol (a) and naringenin (b) are shown for TtgR variants 0000, 1000, 
0100, 1100, and 1111. Ligand affinity was determined by isothermal calorimetry and EC50 sensitivity from fitting 
dose response curves to the Hill equation.  EC50 values and error are calculated based on fitting to triplicate dose 
response curves. ITC values and error are generated from a one-site binding model (see methods). 
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Supplementary Figure 1: Mutation distribution for synthesized resveratrol 
designs
Histogram of the number of mutations in the library of experimentally screened, Roset-
ta-generated designs. The average number of mutations was 5.1 with a variance of 1.8.
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Supplementary Figure 2: Mutation heatmap for synthesized resveratrol designs
Heatmaps are colored by PSSM score calculated from the set of curated Rosetta 
designs. A black box is drawn around the wildtype amino acid identity at each position. 
(a) Heatmap of the first of two designed regions of TtgR. (b) Heatmap of the second 
designed region in TtgR.
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Supplementary Figure 3: Workflow for screening ligand-specific TtgR variants by 
fluorescence activated cell sorting
Rosetta-designed TtgR variants are transformed into E. coli cells carrying the reporter 
plasmid. TtgR variants are sorted by toggling between repressed and induced states (solid 
arrow). The lower 50% of fluorescent cells are sorted in the absence of inducer to isolate 
variants that are able to repress transcription. Subsequently, the sorted population are 
grown and induced with resveratrol. The top 5% of fluorescent cells are sorted to isolate 
variants capable of binding to the ligand and inducing GFP expression. After toggling multi-
ple times, the repressed sort is repeated a final time before the subpopulation is clonally 
tested with both naringenin and resveratrol (dashed arrow).
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Supplementary Figure 4: Fluorescence distributions of wildtype TtgR and quadruple 
mutant
Flow cytometry histograms of wildtype TtgR and quadruple mutant TtgR with and without 
inducers. Naringenin 2000μM (blue) dissolved in DMSO and DMSO-only control (red), Res-
veratrol 250μM (blue) dissolved in ethanol and ethanol-only control (red) are shown.
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Supplementary Figure 5: Additional mutational pathways permitted by a 25% toler-
ance window for resveratrol functional parameters
The tolerance window describes the acceptance of a mutation that performs worse than 
the background variant when describing allowed pathways through sequence space. 
Each variant is labeled with a binary string corresponding to the presence (1) or absence 
(0) of a mutation at position 137, 141, 167, or 168 in order. Nodes separated by a single 
mutation are connected by edges showing viable (bold red) and unviable paths (light 
gray) through sequence space. Nodes are shaded by log10 of the fitness parameter at 
250μM resveratrol normalized to the fitness of wildtype TtgR. All new tolerated pathways 
are shown as red dashed lines. Additional pathways have been calculated for resveratrol 
(a) fold induction, (b) basal expression, (c) maximum expression, and (d) EC50 land-
scapes. The fold induction landscape shows no additional pathways while the basal 
expression, maximum fluorescence, and EC50 landscapes show 11, 8, and 8 additional 
paths, respectively.
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Supplementary Figure 6: Visual definition of different types of epistasis
Visual representation of different types of epistasis. This graphical representation separates 
example subnetworks based on the type of epistasis. An arbitrary fitness metric is plotted 
against a sequence coordinate where each mutation is represented by a binary string. A 
system is non-epistatic when the combined effect of mutations is the sum of their individual 
effects. Magnitude epistasis occurs when the combined effect of mutations is greater than the 
sum of their individual effects (no change in direction). Sign epistasis occurs when one muta-
tion switches direction from beneficial to detrimental (or vice versa) depending on the back-
ground in which it is introduced. Reciprocal sign epistasis occurs when both mutations switch 
direction depending on the background. 
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Supplementary Figure 7: Bahadur expansion of subnetworks in resveratrol functional parameters
Bahadur expansion was applied to the 24 subnetworks of the (a) fold induction, (b) basal expression, (c) maximum expression, and (d) EC50 
landscapes. The box plots show the bootstrap averages (N=10,000 bootstrap replicates). Epistatic subnetworks were defined as those with 
an R2 value of less than 0.9, based on simulated additive data (“Control”). The box denotes the interquartile range and the orange line 
denotes the median R2 value for the bootstrap averages. The whiskers extend to the maximum and minimum R2 values. The fold induction 
landscape shows that the majority of subnetworks in a wildtype or single-mutant background show epistasis while those in double-mutant 
backgrounds are less likely to show epistasis. The basal expression landscape shows similar patterns of R2 values as the fold induction land-
scape. All of the subnetworks in the maximum expression landscape are epistatic. The EC50 landscape shows more epistasis than the fold 
induction landscape in subnetworks with a double mutant background.
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Supplementary Figure 8: Additional mutational pathways permitted by a 25% toler-
ance window for naringenin functional parameters
The tolerance window describes the acceptance of a mutation that performs worse than 
the background variant when describing allowed pathways through sequence space. 
Each variant is labeled with a binary string corresponding to the presence (1) or absence 
(0) of a mutation at position 137, 141, 167, or 168 in order. Nodes separated by a single 
mutation are connected by edges showing viable (bold red) and unviable paths (light 
gray) through sequence space. Nodes are shaded by log10 of the fitness parameter at 
2000μM naringenin normalized to the fitness of wildtype TtgR. All new tolerated path-
ways are shown as blue dashed lines. Additional pathways have been calculated for 
resveratrol (a) fold induction, (b) basal expression, (c) maximum expression, and (d) 
EC50 landscapes. The fold induction landscape shows no additional pathways while the 
basal expression, maximum fluorescence, and EC50 landscapes show 2, 8, and 6 addi-
tional paths, respectively.
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Supplementary Figure 9: Bahadur expansion of subnetworks in naringenin functional parameters
Bahadur expansion was applied to the 24 subnetworks of the (a) fold induction, (b) basal expression, (c) maximum expression, and (d) EC50 land-
scapes. Epistatic subnetworks are defined in the same fashion as Supplementary Fig. 7. The box plots show the bootstrap averages (N=10,000 
bootstrap replicates). The box denotes the interquartile range and the orange line denotes the median R2 value for the subnetwork. The whiskers 
extend to the maximum and minimum R2 values. The fold induction landscape shows that only a small number of subnetworks in the wildtype or 
single mutant background are not epistatic. In contrast, the basal expression landscape has nonepistatic subnetworks in the wildtype, single, and 
double mutant backgrounds. Like the subnetworks of the resveratrol maximum fluorescence landscape, the majority of subnetworks in the narin-
genin maximum fluorescence landscape show epistasis. The EC50 landscape shows similarity to the fold induction landscape with nonepistatic 
subnetworks in the wildtype and single mutant backgrounds.
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a b

Supplementary Figure 10: Structure of ligand-bound wildtype and quvadruple mutant 
TtgR is as an all-helical dimer. The helix-turn-helix domain at the N-terminal end binds to DNA. The ligand binding pocket is enclosed 
by five angled helices. An additional helix at the C-terminal end forms the dimerization interface. The quadruple mutant (PDB: 7KD8) 
(a) is structurally identical to the wildtype (PDB: 7K1C) (b). Resveratrol is shown as pink sticks in both. (c) A close-up view of the bind-
ing orientation of resveratrol in the pocket. The quadruple mutant (left) binds to resveratrol in the horizontal orientation. Wildtype TtgR 
binds to resveratrol (middle) or to naringenin (right, PDB ID: 2UXU) in the vertical orientation. Resveratrol is shown as grey sticks.

c
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a

b

Supplementary Figure 11: Alignment of DNA binding domains for resveratrol-bound 
quadruple mutant, resveratrol-bound wildtype, and apo quadruple mutant TtgR
(a) The DNA binding domains of the resveratrol-bound quadruple mutant (green) and the 
resveratrol-bound wildtype (blue) TtgR. The RMSD of these two domains is 1.03Å. (b) The 
DNA binding domains of resveratrol-bound wildtype (blue) and apo wildtype (yellow) TtgR. 
The RMSD of these two domains is 1.35Å.
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Supplementary Figure 12: TtgR binding pocket volume visualization
Binding pocket volumes were calculated using POVME3.0 and visualized in Pymol. (a) The 
pocket volume of apo wildtype TtgR, represented by the Xs, is 170Å3. The pocket was not 
predefined in this calculation. (b) The pocket volume of resveratrol-bound wildtype TtgR is 
215Å3. (c) The pocket volume of resveratrol-bound quadruple mutant TtgR is 234Å3. The 
pockets for (b) and (c) were defined using the resveratrol molecule.
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Supplementary Figure 13: Interactions of mutated positions and alternate hydrogen 
bonding networks
(a) The C137I mutation creates a small cleft in the binding pocket that can enhance shape com-
plementarity to resveratrol in the horizontal binding mode. The quadruple mutant (left) is shown 
in comparison to wildtype (right). The van der Waals surface of residue 137 and 141 is shown 
for both structures. Positions 137, 141, 167, and 168 are shown as pink sticks. (b) (Left) M167L 
creates nonpolar interactions with residues in helices composing the binding pocket and 
dimerization interface (purple sticks). Mutated positions 137, 141, 167, and 168 are shown in 
pink. 167 also plays a role in positioning the I141W side chain. (Right) The F168Y substitution 
enables the formation of additional hydrogen bonds to solvent that can create a hydrogen bond 
network with D172. Water molecules are shown as red spheres. (c) The hydrogen bond network 
differs for the quadruple mutant between chain A and chain B due to the slightly different position 
of the resveratrol molecules in each. (Left) In the quadruple mutant, D71, R75 and E78 (orange) 
make hydrogen bonds with the resveratrol molecules. (Right) The hydrogen bonding network of 
wildtype chain A is identical to chain B. Water molecules are shown as red spheres.
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Supplementary Figure 14: Naringenin and resveratrol overlap
Naringenin (in brown) derived from a previous structure (PDB: 2UXU) is over-
lapped with resveratrol (in grey) via the pair_fit function in Pymol. The structures 
of each ligand are similar with respect to the location of hydroxyl groups, but 
differ by the addition of a carbonyl in the 4-chromanone backbone of naringenin.
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167

168

141

137

Supplementary Figure 15: Designed TtgR quadruple mutant binding pocket compared to crystal structure of TtgR qua-
druple mutant
The designed TtgR quadruple mutant (brown) is aligned to the crystal structure of the TtgR quadruple mutant (blue). (a) Resvera-
trol positions of the designed TtgR (brown) and the crystal structure (grey). (b) Mutated positions are shown as sticks. The design 
was unable to model the resveratrol in the horizontal orientation even though the residue rotamer states are similar to those in the 
crystal structure.
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Supplementary Figure 16: Gating scheme for fluorescence-activated cell sorting and flow 
cytometry
(a) Gating strategy to sort cells containing a TtgR variant that is able to repress sfGFP expression. (b) 
Gating strategy to sort cells containing a TtgR variant that is able to induce sfGFP expression when 
exposed to 95.5μM resveratrol. (c) Gating strategy to isolate cells containing a TtgR variant that is able 
to both repress sfGFP expression in the absence of resveratrol and induce sfGFP expression in the 
presence of resveratrol. The sorting gating schemes are presented in Figure 1 and Supplementary Fig. 
3. (d) Gating strategy to calculate fluorescence for flow cytometry experiments presented in Fig. 2, Fig. 
3, Supplementary Fig. 4, Supplementary Fig. 6, Supplementary Fig. 7, Supplementary Fig. 8, Supple-
mentary Fig. 9, Supplementary Fig. 16, and Supplementary Fig. 17.
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Supplementary Figure 17: Naringenin dose response curves
Dose response curves to naringenin for all 16 mutational combinations. Naringenin concen-
tration varied between 0μM and 2000μM naringenin. Fit is shown as a solid line and experi-
mental data is shown as markers with error bars. The marker denotes the averages and the 
error bars show the standard deviations of biological triplicate measurements (n=3) unless 
otherwise specified (see Methods). (a) Single mutant fits (1000, 0100, 0010, and 0001). (b) 
Double mutant fits (1010, 1001, 0110, 1100, and 0011). (c) Triple mutant fits (1011, 0111, 
1110, and 1101). (d) Wildtype (0000) and quadruple mutant (1111) dose response curves. 
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Supplementary Figure 18: Resveratrol dose response curves
Dose response curves for all 16 mutational combinations to resveratrol. Resveratrol concen-
tration varied between 0μM and 250μM resveratrol. Fit is shown as a solid line and experi-
mental data is shown as markers with error bars. The marker denotes the averages and the 
error bars show the standard deviations of biological triplicate measurements (n=3) unless 
otherwise specified (see Methods). (a) Single mutant fits (1000, 0100, 0010, and 0001). (b) 
Double mutant fits (1010, 1001, 0110, 1100, and 0011). (c) Triple mutant fits (1011, 0111, 
1110, and 1101). (d) Wildtype (0000) and quadruple mutant (1111) dose response curves. 
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a b

Supplementary Figure 19: Distribution of R2 for first and higher order interactions for the full network
Distribution of R2 values from the Bahadur expansion model applied to the full 16-member network after stochastic sampling (N=500) 
of  fold induction values based on experimental averages and standard deviations. Boxplots of first, second, third, and fourth order inter-
actions are shown for (a) resveratrol and (b) naringenin. The orange line is the median R2 value for the distribution and the box encloses 
the interquartile range (IQR). The whiskers extend to the maximum and minimum R2 values. The raw R2 values for the fold induction, 
baseline fluorescence, EC50, and  can be found online at https://github.com/raman-lab/epistasis.
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Supplementary Figure 20: Distribution of R2 for first order interactions for individual 
subnetworks
Distribution of R2 values from the Bahadur expansion model applied to each subnetwork 
after stochastic sampling of experimental fold induction values for (a) resveratrol or (b) narin-
genin based on experimental averages and standard deviations. Each subnetwork network 
was modeled 500 times by stochastic sampling. The orange line is the median R2 value for 
the distribution and the box encloses the interquartile range (IQR). The whiskers extend to 
the maximum and minimum R2 values.The raw R2 values for the fold induction, baseline 
fluorescence, EC50, and  can be found online at https://github.com/raman-lab/epistasis.
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Supplementary Figure 21: Estimating binding parameters from isothermal calorimetry of wildtype TtgR and variants
Isothermal titration calorimetry experimental data for affinity of TtgR mutants to either naringenin or resveratrol. Heat per mole of 
ligand injected (kCal/mol) is plotted as a function of the molar ratio of ligand:protein. Binding parameters are estimated from single site 
binding model fits using  Origin 7.0 software (MicroCal).  Due to low affinities for both naringenin and resveratrol, stoichiometry was 
fixed to 1 for both naringenin and resveratrol (see methods).
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Supplementary Figure 22: mFo-DFc and 2mFo-DFc omit maps for resveratrol-bound quadru-
ple mutant TtgR and resveratrol-bound wildtype TtgR
Maps for the protein density were calculated in phenix from deposited models and structure factor 
amplitudes. The mFo-Dfc map is contoured at 3σ and the 2mFo-DFc maps were contoured at 2σ. 
The mFo-DFc omit map is shown as green wires while the 2mFo-DFc omit map is shown in grey. 
(a) mFo-DFc and 2mFo-DFc omit maps for resveratrol-bound quadruple mutant TtgR. Chain A is 
shown in the top panel on the left and chain B is on the right. The lower panel depicts chain C (left) 
and chain D (right). (b) mFo-DFc and 2mFo-DFc omit maps for resveratrol-bound wildtype TtgR. 
Chain A is shown on the left and chain B is shown on the right.
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Tables 

Name Sequence 
KN_E1 TATCACGAGGCCCTTTCGTCTTCACCACCCAGCAGTATTGACAAACAAC 
KN_E2 TTCATGGTTGTTTGTCAATACTGCTGGGTGggcgcgccatgactaagcttttcattgtct 
KN_E3 aaagttaaatgTTGCTAAGGATTATACTTACATTCATGGTTGTTTGTCAATACTGCTGGG 
KN_E4 atgtatatctccttcttaaagttaaatgTTGCTAAGGATTATACTTA 
KN_E5 cagctcttcgcctttacgcatatgtatatctccttcttaaagttaaatgTT 
KN_E6 GTGAAGACGAAAGGGCCTCG 
KN_E7 atgcgtaaaggcgaagagctg 
KN_E8 catgctgcttcatGtggtcc 
KN_E9 GCTGGCAATTCCGACGTC 
KN_E10 TTGACAATTAATCATCCGGC 
KN_E11 CGAGCCGGATGATTAATTGTCAA 
KN_E12 TGAattagcagaaagtcaaaagcctccga 
KN_E13 tcggaggcttttgactttctgctaatTCATTATTTGCGCAGCGCCGG 
KN_E14 gCGATCGTGCCCACCT 
KN_E15 GTGCGGGCTCCAACT 
KN_E16 ggCTGGTGCGTCGTCT 
KN_E17 cGGGAAGTGTTCGCCG 
KN_E18 GGTCTCGGTTCTGGATGCACGTACCCGTCGC 
KN_E19 GGTCTCGCAGTGCCTGAACCAGTTCGGC 
KN_E20 GGTCTCGCGTTGGCTGCTGCTGCCGGATAG 
KN_E21 GGTCTCGATCCAGCACGGCGCTCTGGCGC 
KN_E22 GAAATTCGTCAGCAGCGCCAGAGCGCCGTGCTGGATattCATAAAGGTATCACC 
KN_E23 GAAATTCGTCAGCAGCGCCAGAGCGCCGTGCTGGATTGTCATAAAGGTtggACC 
KN_E24 GAAATTCGTCAGCAGCGCCAGAGCGCCGTGCTGGATattCATAAAGGTtggACC 
KN_E25 GAAATTCGTCAGCAGCGCCAGAGCGCCGTGCTGGATTGTCATAAAGGTATCACC 
KN_E26 CAGCAGCAGCCAACGGCGAATCAGGCCATCCACATAGGCAAAcagCGCAACCGC 
KN_E27 CAGCAGCAGCCAACGGCGAATCAGGCCATCCACATAGGCataCATCGCAACCGC 
KN_E28 CAGCAGCAGCCAACGGCGAATCAGGCCATCCACATAGGCatacagCGCAACCGC 
KN_E29 CAGCAGCAGCCAACGGCGAATCAGGCCATCCACATAGGCAAACATCGCAACCGC 
KN_E30 TTTTGTTTAACTTTAAGAAGGAGATATACATATGaaaatcgaagaaggtaaactggtaat 
KN_E31 CATATGTATATCTCCTTCTTAAAGTTAAACAAAA 
KN_E32 attgaaaatataaattttcGTGGTGGTGGTGGTGGTGgtcgccgttaattaaagtctgcg 
KN_E33 CCACCACCACgaaaatttatattttcaatctATGGTGCGTCGCACCAAAGAAGAAG 
KN_E34 CTTTGTTAGCAGCCGGATCTCATTATTTGCGCAGCGCCGGGCTCAG 
KN_E35 TGAGATCCGGCTGCTAACAAAGCCCGAAAGGA 

Supplementary Table 1: Primers 
Names and sequences of all primers used in this study. 
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Binary Average St. Dev 
00 3.1 0.93 
01 24.5 7.35 
10 56.1 16.83 
11 74.4 22.32 

Supplementary Table 2: Control additive data set 
A set of random values that are additive with respect to the mean. The standard deviation 
of each datapoint is 30% of the mean. This control set was used to calculate the R2 for 
comparison to the subnetwork Bahadur expansions. 
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Quadruple Mutant (Apo) 
7K1A 

TtgR QM STL 7KD8 wtTtgR STL 7K1C 

Wavelength 0.9786 1.078 0.9786 

Resolution range 32.14  - 1.75 (1.813  - 1.75) 25.65  - 1.71 (1.771  - 1.71) 28.63  - 1.9 (1.968  - 1.9) 

Space group C 2 2 21 P 1 C 2 2 21 

Unit cell 57.92 64.28 223.87 90 90 90 43.497 43.587 115.942 97.969 
98.648 96.761 

57.73 64.5 223.22 90 90 90 

Total reflections 578957 (41577) 311123 (31645) 481016 (49244) 

Unique reflections 42585 (4137) 82029 (8133) 33367 (3316) 

Multiplicity 13.6 (10.1) 3.8 (3.9) 14.4 (14.9) 

Completeness (%) 99.71 (97.73) 91.78 (91.33) 99.88 (99.97) 

Mean I/sigma(I) 16.20 (1.29) 13.88 (1.92) 22.92 (2.06) 

Wilson B-factor 35.18 31.18 36.4 

R-merge 0.09432 (1.303) 0.04573 (0.5776) 0.07704 (1.294) 

R-meas 0.09805 (1.373) 0.05349 (0.6697) 0.07997 (1.339) 

R-pim 0.02647 (0.4257) 0.02758 (0.3382) 0.02123 (0.3446) 

CC1/2 0.987 (0.578) 0.998 (0.901) 0.999 (0.739) 

CC* 0.997 (0.856) 1 (0.974) 1 (0.922) 

Reflections used in refinement 42566 (4136) 81923 (8104) 33349 (3315) 

Reflections used for R-free 1979 (197) 1975 (197) 2020 (202) 

R-work 0.1966 (0.3962) 0.1927 (0.2891) 0.1833 (0.3081) 

R-free 0.2400 (0.3854) 0.2406 (0.3556) 0.2246 (0.3837) 

CC(work) 0.955 (0.728) 0.959 (0.912) 0.963 (0.810) 

CC(free) 0.920 (0.647) 0.930 (0.871) 0.948 (0.650) 

Number of non-hydrogen atoms 3609 7247 3552 

  macromolecules 3321 6841 3322 

  ligands 2 72 36 

  solvent 286 334 194 

Protein residues 413 830 415 

RMS(bonds) 0.003 0.006 0.016 

RMS(angles) 0.48 0.72 1.23 

Ramachandran favored (%) 99.27 99.27 99.51 

Ramachandran allowed (%) 0.73 0.61 0.49 

Ramachandran outliers (%) 0 0.12 0 

Rotamer outliers (%) 0.58 0.84 0.86 

Clashscore 2.11 2.17 2.53 

Average B-factor 39.41 40.02 42.83 

  macromolecules 39.27 39.83 42.66 

  ligands 35.92 53 52.81 

  solvent 41.05 41.07 43.92 
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Number of TLS groups 14 22 1 

Supplementary Table 3: Crystallography refinement statistics 
Refinement statistics for three structures: apo quadruple mutant TtgR (7K1A), wildtype 
TtgR bound to resveratrol (7K1C), and quadruple mutant TtgR bound to resveratrol 
(7KD8). Statistics for the highest resolution shell are shown in parentheses. 
 

 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 Residue 
Interactions 

Ψ0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

Ψ1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1 1 

Ψ2 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 2 

Ψ3 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 3 

Ψ4 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 4 

Ψ5 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1-2 

Ψ6 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1-3 

Ψ7 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1-4 

Ψ8 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 2-3 

Ψ9 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 2-4 

Ψ10 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 3-4 

Ψ11 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1 1-2-3 

Ψ12 -1 1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 1-2-4 

Ψ13 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 1-3-4 

Ψ14 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 2-3-4 

Ψ15 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 1-2-3-4 

Supplementary Table S4: Psi values for Bahadur Expansion 
Psi values for all orders of interactions (right column) for each mutant. 
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3.1 Abstract 

Engineering novel ligand affinity into allosteric transcription factors has enormous importance in 

biotechnology, where these proteins can serve as natural biosensors. Efforts to engineer these 

proteins has been limited due to extensive long-range interactions that create the allosteric 

response. In the absence of prior knowledge of these interactions, novel function must be found 

through many empirical measurements of function. Here, we create a novel computational design 

and high-throughput screening workflow that incorporates ligand-agnostic variants with RNA-Seq 

to engineer new biosensors. This approach generated variants with affinity to eight nonnative 

ligands. Sequence analysis of high performing variants revealed distinct sequence profiles for 

different ligand specificities. We also apply the screening workflow to characterize functional 

hotspots in a DMS library, revealing important locations at the interface between the ligand 

binding domain and the DNA binding domain. This workflow can be applied to screen function in 

any protein whose function is a measurable change in transcription. 
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3.2 Introduction 

The production of value-added chemicals such as proteins, pharmaceuticals, polymer precursors, 

and biofuels has exploded in part due to laboratory development of novel biosynthetic processes1-

3. Creating and optimizing novel biosynthetic pathways to the point of commercialization often 

involves iterative design-build-test-learn cycles4. Rational design and random mutagenesis 

approaches can create thousands of pathway variants. The bottleneck of this approach is testing, 

where direct measurement of the value-added compound may rely on direct quantification through 

inherently low-throughput techniques3. High-throughput screens using fluorescence reporters and 

flow cytometry workflows create the potential for testing a vast library for optimization in a single 

experiment5. Transcription factor biosensors are increasingly valuable in this process as these 

proteins have natural small-molecule sensing capabilities. Furthermore, the utility of transcription 

factors in biotechnology extends far beyond metabolic engineering as these proteins are also 

critical in the detection of trace compounds in the environment, as a diagnostic tool, and in the 

generation of complex gene circuits6-8. 

 

Allosteric transcription factors (aTFs) control gene expression in response to changes in the 

environment9. Prokayrotic transcription factors such as LacI or TetR have the capacity to detect 

small molecules and have a simple mechanism of gene expression control, making these proteins 

logical candidates for biosensing applications10. In the absence of the small molecule inducer, the 

transcription factor remains bound to the operator sequence in the promoter of controlled genes, 

physically preventing RNA polymerase from interacting with the promoter11. aTF binding to the 

inducer causes an allosteric change that decreases affinity for the operator sequence, allowing 

downstream gene expression12. 
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A major limitation of implementing transcription factor biosensors is the narrow range of molecules 

that can be bound by characterized transcription factors. While genome mining has been able to 

identify novel transcription factors for select target molecules, this approach cannot be realistically 

applied to any arbitrary molecule of interest (Fig. 1a)13,14. The capacity to engineer novel ligand 

specificity into existing, well-characterized aTF scaffolds will greatly expand the uses of these 

biosensors in metabolic engineering, both as control systems in circuits and sensing platforms for 

pathway improvement15,16. Currently, design approaches have been used to engineer novel 

affinity for molecules that are structurally like the wildtype ligand17-19. Widespread adoption of 

transcription factor biosensors in biotechnology requires the ability to design known aTFs to bind 

to a diverse array of small molecules (Fig 1a)20. However, designing aTFs for novel ligand affinity 

has two major challenges: mutating the ligand binding pocket for affinity for the target molecule 

and maintaining allosteric function.  

 

Computational design is one solution to the challenge of engineering affinity for a target 

molecule21-23. Unlike random mutagenesis, computational approaches are not reliant on iterative 

experimental workflows as these algorithms search sequence space for optimal interactions in 

silico24. This process is able to analyze millions of sequences and generate a subset of mutations 

that are most likely to increase affinity for the target molecule. However, computational tools 

cannot account for long-range interactions required for the allosteric changes in response to 

ligand binding and has had limited success in aTF scaffolds25.  

 

High-throughput screening approaches are required for searching massive computationally 

designed libraries to isolate variants that can both interact with the target ligand and maintain 

allosteric function. While fluorescence-based Sort-Seq approaches can recreate the fluorescence 

profile of all variants in the library, this approach is limited by the number of gates and the 
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individual fluorescence distribution of each library member5,26,27. Furthermore, sorting cannot be 

scaled across multiple ligands. RNA-Seq is a pooled alternative to fluorescence-based screens 

to gain quantitative measurement of transcription factor function and has been used to quantify 

promoter activity and GPCR variant libraries28,29.  

 

Here, we describe a ligand-agnostic computational design approach coupled with an RNA-Seq 

workflow for quantitative analysis of transcription factor function. We leverage the evolutionary 

history of TtgR to create a library of phylogenetically derived, computationally stable amino acid 

substitutions at key locations in the binding pocket30. We screen this library of TtgR variants 

against nine different ligands for functional aTFs and show that RNA-Seq is also applicable in 

mutational scanning libraries by screening a TtgR deep mutational scanning (DMS) library against 

endoxifen and tamoxifen.  We find groups of variants change gene expression in response to 

each ligand and validate top performing variants in a fluorescence-based assay. Furthermore, we 

show that the variant library contains unique patterns of ligand specificity across all tested ligands, 

which are reflected by amino acid preferences at important positions. Finally, the DMS screen is 

able to identify allosterically important regions connecting the DNA binding domain and ligand 

binding pocket. This work establishes a novel approach to create new transcription factor 

biosensors that is also pertinent to basic science applications and can be applied to any protein 

whose functional readout can be quantified via transcription. 

  

3.3 Validating RNA-Seq on a 16-member library 

To assay the function of a library of transcription factor variants, we elected to assay transcript 

quantity directly via RNA-Seq. One of the major challenges was linking the expression of a 

reporter gene to the transcription factor variant responsible for controlling its expression. 

Transcription factors can be uniquely identified using the expression of a short, randomized 
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barcode as the reporter gene. To link the transcription factor to the barcode, we created a plasmid 

that contained both the transcription factor variant and the barcode on the same piece of DNA 

(Fig. 1b). A second construct was used to map the aTF variant to the barcode with next-generation 

sequencing (Fig. 1c). Once the transcription factor and barcode pairings are known, transcription 

factor function is a measure of the abundance of the barcodes during RNA-Seq (Fig. 1c). E. coli 

containing the plasmid library are dosed with either the target ligand or a vehicle control and 

harvested in log phase to obtain both total RNA and the library plasmids (Fig. 1d). The RNA 

provides a measure of function while the plasmids facilitate normalization to prevent library skew 

from affecting results.  

 

We used a small test library of 16 TtgR variants that have differential response to naringenin31. 

Gene fragments encoding the variants were inserted with random barcodes into our expression 

vector. Barcodes were mapped to variants in a separate next-generation sequencing run. For 

barcodes that are mapped to multiple variants, the majority variant was selected if the read counts 

for each other variant amounted to less than 10% of the read count of the most abundant variant. 

Each variant in the test library had approximately 8,000 barcodes (Fig. 1e).  

 

To analyze the performance of RNA-Seq on a transcription factor library, we compared RNA-Seq 

fold enrichment to qRT-PCR fold enrichment. 8 of the 16 variants were isolated from random 

colony screening of the test library for individual quantification. The test library and clonal variants 

were dosed with either 1mM naringenin or DMSO as a vehicle control. The RNA-Seq data was 

subset to barcodes that appeared in all four conditions (naringenin RNA, naringenin DNA, DMSO 

RNA, and DMSO DNA). The performance of a variant was calculated as the sum of the barcode 

counts for each variant (Fig. 1f). Comparison of the qRT-PCR fold enrichment and the RNA-Seq 
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data showed high correlation (R2=0.83) (Fig. 1g). The RNA-Seq approach readily replicates 

differences observed via qRT-PCR across a range of functions.  

 

A bigger library with 8,000 barcodes per variant will be too large to sequence thoroughly. We 

hypothesized that down-sampling fewer barcodes per variant will affect the accuracy of the fold 

enrichment calculation. We used a Monte Carlo sampling approach to randomly select 10, 25, 

50, and 100 barcodes per variant for 500 trials each and scored each sample by its correlation to 

the qRT-PCR dataset (Fig. 1h). Each bootstrap group shows, on average, similar correlation to 

the qRT-PCR assay compared to the 8,000 barcodes per variant. Thus, larger libraries can be 

accommodated with a smaller barcode to variant ratio to reduce the sequencing volume 

requirements. 

 

3.4 Identifying novel sensors in the agnostic library 

We tested an agnostic library against a range of small molecules to find new biosensors 

(Supplementary Fig. 1). We selected four derivatives of tamoxifen (Tam), a breast cancer 

therapeutic, to create specific and multi-specific sensors. Tamoxifen is a selective estrogen 

receptor (ER) modulator that is metabolized by cytochrome P450 into 4-hydroxy-tamoxifen (4Hy) 

and N-desmethyltamoxifen (Ndes). These two metabolites are then catabolized to endoxifen 

(End). Endoxifen and 4Hy are the most abundant metabolites and show high activity32,33. By using 

sensing platforms for active metabolites of Tam like End and 4Hy, physicians can ensure 

maximum efficacy during treatment.  

 

We also selected quinine (Quin), naltrexone (Nal), and ellagic acid (EllA) as targets for the 

agnostic library. Quinine is a small molecule therapeutic used to treat malaria. It is isolated from 

the bark of the cinchona tree; a sensor for quinine will be useful for creating a biosynthetic pathway 
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in prokaryotes for scalable production. Furthermore, a quinine sensor may be useful for 

monitoring quinine resistance and variations in pharmacokinetics during treatment34. Naltrexone 

is used to treat addiction as an opioid receptor antagonist35. Chemically, it shares many similarities 

to other compounds that interact with the opioid receptors like morphine and heroin. Naltrexone 

is chemically distinct from TtgR’s native ligands and thus poses a challenging target for affinity 

engineering. By obtaining an opioid sensor, we can develop portable devices for quick detection 

of this class of compounds. Ellagic acid is a plant polyphenol with a highly conjugated chemical 

structure and shares chemical features with native ligands of TtgR (Supplementary Fig. 1). 

 

We obtained a set of computationally stable substitutions at key positions in the ligand binding 

domain of TtgR using the FuncLib tool and constructed a 17,737-member library comprising of 1-

4 mutations30. Mapping barcode-variant pairs identified 17,533 variants (98.8%) with an average 

of 20 barcodes per variant (Supplementary Fig. 2). RNA-Seq of the 16N barcodes corresponding 

to TtgR variants contained barcodes associated with 17,365 TtgR variants (97.9%). Each ligand 

had a wide range of functional responses; top performing variants are candidates for novel 

biosensors (Fig. 2a). 

 

The variants in the top standard deviation for any one ligand were selected for further analysis 

(red points) (Fig. 2a). These variants performed the best against naringenin and phloretin, the 

native ligands of TtgR, and had the weakest response to ellagic acid. The top 40 sequences for 

each ligand were selected for validation in a fluorescence-based assay. The best performers of 

the naringenin and phloretin ligands shared many variants (Supplementary Fig. 3). Similarly, the 

tamoxifen, endoxifen, 4-hydroxytamoxifen, and N-desmethyltamoxifen sets shared variants 

(Supplementary Fig. 3) The quinine, naltrexone, and ellagic acid top performing variants were 

unique to each ligand (Supplementary Fig. 3).  
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The 251 unique top variants were cloned into an expression vector containing sfGFP under 

control of the TtgR operator sequence (Fig. 2b). Variants capable of repressing transcription in 

the absence of any small molecule were first isolated via cell sorting (Supplementary Fig 4). These 

variants were then exposed to each ligand and the high fluorescence cells were sorted 

(Supplementary Fig. 5). The performance of these variants is the fold change in percent 

population of the high fluorescence and repressed sorts.  

 

The fold change of variant abundance in the sorted library indicated that each ligand had a subset 

of functional transcription factors. However, the library showed no change in fluorescence when 

inoculated with ellagic acid, suggesting that a fluorescence assay is insufficient for screening this 

ligand. Variants showed response to all other ligands (Fig. 2c). Although the naltrexone top 

variants only showed high activity for naltrexone, these variants showed generalized response 

across most ligands (Fig. 2c). In contrast, quinine top performers are generally specific for quinine 

(Fig. 2c). Surprisingly, naringenin and phloretin top variants do not show strong response to these 

ligands, but the low fold change may be due to the large number of variants that were isolated in 

the high fluorescence sort during the sorting process (Supplementary Fig. 5). The percent 

abundance in the induced state will thus differ less for each variant compared to the abundance 

in the repressed state. The cross reactivity of the top performing variants to eight of the nine 

ligands highlights the broad applicability of this approach. The majority of sequences with high 

function in the RNA-Seq dataset also show response in a fluorescence-based assay.  

 

3.5 Elucidating ligand-specific sequence preferences from RNA-Seq 

The agnostic library was designed to provide a set of stable substitutions without optimizing 

affinity for any ligand. This approach enables the same library to be screened across multiple 
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ligands, as each aTF variant has the potential to interact with a new subset of small molecules 

due to the redesigned ligand binding pocket. Given these design constraints, we expect that many 

variants will have similar ligand specificity profiles. We can leverage the RNA-Seq to gain 

information about mutations that create and affect function across all aTF variants and ligands. 

We selected all 16,190 variants (91.2% of all variants) with data for at least 6 of the 9 ligands and 

imputed the missing data using KNN imputation (see methods). Variants that performed at least 

1.5 fold better than wildtype (3,135 variants) on at least one of the nine ligands were selected for 

hierarchical clustering via the UPGMA algorithm with a correlation distance metric and a target of 

12 clusters (Fig. 3a, Supplementary Fig. 6)36. The ligand clusters (top dendrogram) are grouped 

appropriately based on the chemical structure (Supplementary Fig. 1). The tamoxifen ligands are 

most closely related by their performance. Similarly, naringenin and phloretin, the two native 

ligands of TtgR, also cluster together. In contrast, the ligands with the most structural diversity 

(ellagic acid, naltrexone, and quinine) are the most distant. 

 

The variant clusters (left dendrogram) display unique sequence specificity profiles based on the 

normalized fold enrichment across the 9 ligands. Cluster 1 (blue, top) is characterized by higher 

4-hydroxytamoxifen and endoxifen normalized fold enrichment. The third cluster (green) contains 

variants with high naltrexone response. The fourth cluster (red) is primarily composed of variants 

with high quinine normalized fold enrichment. Cluster 7 (pink) is characterized by variants with 

high N-desmethyltamoxifen and tamoxifen normalized fold enrichment.  

 

We wanted to characterize the sequence profiles of the cluster members to understand the 

important substitutions that contribute to the unique specificity profile of each cluster. The agnostic 

library is a combination of selected mutations across a limited number of positions in the binding 

pocket with potential to directly interact with small molecules (Fig. 3b). We calculated the relative 
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positional entropy of all mutable positions for each cluster in comparison to the entire 16,190 

sequences (see methods). Relative positional entropy quantifies the change in amino acid 

distribution after clustering. In this context, high relative entropy indicates that certain amino acids 

are preferred at a particular position once clustered. Each cluster except cluster 2, cluster 10, and 

cluster 11 has one or more positions with high selective pressure (Fig. 3c). L113 and H114 show 

low relative positional entropy across all clusters, suggesting that these two positions do not 

contribute to unique protein-ligand interactions (Fig. 3c). These two residues are located at the 

bottom of the binding pocket and have the potential to make hydrogen bond and nonpolar 

interactions with small molecules that are oriented in the native “vertical” binding pose for many 

ligands in wildtype TtgR (Fig. 3b). Surprisingly, N110 is adjacent to L113 and H114 and has the 

potential to make similar interactions with ligands at the bottom of the binding pocket as L113 and 

H114, but has high entropy in Cluster 7 (Fig. 3b, 3c). N-desmethyltamoxifen and tamoxifen thus 

interact with this position in preference over L113 and H114. All other positions make up one face 

of the ligand binding pocket and have at least one cluster that has high relative positional entropy. 

 

Comparing amino acid sequence preferences at high selectivity positions across clustered 

sequences and top performing variants for each ligand can identify distinct amino acid trends for 

each ligand. Some clusters are very similar to one another across the nine ligands. Clusters 7, 

11, and 12 all share high naringenin and phloretin fold response but differing tamoxifen response 

profiles (Fig. 3a). Cluster 7 has higher N-desmethyltamoxifen and tamoxifen response while 

cluster 12 has higher 4-hydroxytamoxifen and endoxifen response (Fig. 3a). Cluster 11 shows 

high naringenin and phloretin response but does not respond to any of the tamoxifen ligands. We 

examined the positions in clusters 7, 11, and 12 in the top 80th percentile of relative positional 

entropy to identify large changes in amino acid distribution before and after clustering. Cluster 7 

has two positions with large changes: 92 and 110. Cluster 11 has no positions with high relative 
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entropy. Cluster 12 shows high relative positional entropy at 67, 78, and 92. In Cluster 7, position 

92 favors the wildtype leucine substitution over all possible mutations. Only the best tamoxifen 

variants also show this behavior (Fig. 3d). N-desmethyltamoxifen, tamoxifen, and phloretin favor 

the valine substitution while naringenin does not. In contrast, naringenin favors alanine, 

isoleucine, or methionine at 92 (Fig. 3d). These differences highlight the generalizable approach 

of the agnostic library.  

 

Selecting amino acid substitutions from a limited set at a limited number of positions can 

drastically change ligand response. Cluster 11, which contains variants with high response 

naringenin, phloretin, and quinine, contains no positions with high relative entropy. Since 

naringenin and phloretin are two of the native ligands of TtgR and every position has a high 

percentage of wildtype residues due to the limited number of mutations in the library, many 

variants show little change in the amino acid distributions in response to clustering (Fig. 3d). The 

small change in amino acid distribution before and after clustering across the positions implies 

that wildtype response is largely maintained regardless of amino acid substitution. Often, the 

change in amino acid frequency in the clusters are matched by the changes observed in the top 

performers of associated ligands. For example, cluster 7, which has high N-desmethyltamoxifen 

and tamoxifen shows similar amino acid preferences as the top variants of N-desmethyltamoxifen. 

The amino acid preferences of each cluster and the top performing variants imply that the 

sequence-based analysis can highlight key functional substitutions that are associated with high 

ligand response. 

 

The agnostic design scheme of the aTF library creates a set of variants with the potential to 

interact with a wide variety of ligands while having a constrained set of mutations that are selected 

for stability. By clustering the variants based on their performance across ligands, we can gain 
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insight into the amino acid preferences at each position and an initial understanding of the 

importance of each in conferring novel ligand affinity. Comparing the sequence profiles of clusters 

with shared naringenin and phloretin performance highlights the unique solutions that can give 

rise to novel patterns of ligand specificity. The library thus contains variants with unique sets of 

ligand specificity, creating a wide variety of potential sensors with tunable response profiles. 

 

3.6 DMS of TtgR against endoxifen and tamoxifen highlights functional hotspots 

One benefit of an RNA-Seq based screening workflow is that many libraries can be screened in 

parallel to create a functional landscape of variants. We tested a deep-mutational scan library of 

TtgR consisting of single point mutations of every position to all 19 other amino acids against 

tamoxifen and endoxifen37. The library was split into 6 different pools spanning amino acids 1-39, 

40-77, 78-115, 116-153, 154-191, and 192-210. The majority of single point mutations have little 

effect on function, with 3,897 variants in the endoxifen dataset and 3,996 variants in the tamoxifen 

dataset between 1.2 and 0.8 of wildtype fold enrichment (Fig 4A, 4B).  

 

The DNA binding domain has regions of high and low function across multiple substitutions. The 

helix of the HTH motif that directly interacts with the major groove of the operator sequence 

contains many positions where the majority (61%) of mutations decrease aTF function (Fig. 4a, 

4b). Substitutions at positions between 81 and 101 are often detrimental (approximately 53%) to 

protein function than the wildtype residue. These positions correspond to a solvent-facing region 

of a helix in the ligand binding pocket, suggesting an allosteric role in gene expression control. In 

contrast, 65% of mutations to positions between 116 and 153 confer increased function (Fig. 4a, 

4b). These positions compose a single helix of the ligand binding pocket, but high-performing 

positions are agnostic of orientation on the helix. Surprisingly, the helix associated with 
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dimerization (186-210) also contains many positions where the majority of substitutions 

(approximately 64%) are beneficial to protein function.  

 

The variants that show high performance or low performance may be indicative of hotspots that 

are critical for protein design. Hotspots were selected based on the number of mutations whose 

performance fell outside the interquartile range of fold enrichment normalized to wildtype 

performance (see methods). The majority of identified hotspots are near the DNA binding domain 

and the interface between the DNA binding domain and the ligand binding domain.  

 

Positions within the DNA binding domain can be classified as solvent interactions, DNA 

interactions, or potential allosteric interactions (Fig. 4c). T5, K6, A9, and R27 are located in the 

first helix of the DNA binding domain and do not have any significant interactions with the operator 

sequence, the ligand, or the other TtgR monomer. The high mutability of positions 5, 6, 9, and 27 

may be because these positions have nonspecific interactions with the solvent. A38 is located in 

the recognition helix that interacts with the major groove of the operator sequence and has a 

direct effect on the capacity of TtgR to repress gene expression. Six of the seven positions at A38 

drastically reduce function. A19, A23, A30, and R31 have possible structural or allosteric functions 

based on their location. A19 and A23 make van der Waals interactions with I37 and L40 in the 

recognition helix and possibly stabilize the position of the recognition helix conformation. These 

positions may also be important for the allosteric changes that occur in response to ligand binding 

that decrease affinity for the operator sequence. The backbone amide of A30 makes a hydrogen 

bond with D118. Mutating A30 to polar residues increases function by creating additional 

interactions with A30 and R31 on the opposite monomer. R31 makes hydrogen bond interactions 

with T120 and D122 on the opposite monomer. The hydrogen bond interactions are substituted 

for van der Waals interactions in the majority of mutations at this position. 
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The positions in the ligand binding domain either directly interact with the ligand or interface with 

the DNA binding domain. L93 and N110 directly interact with the ligand and are mutable positions 

in the agnostic library. Mutating position 93 results in a loss of function for the majority of 

mutations. However, tamoxifen and endoxifen yield different sets of mutations that improve 

function. In contrast, mutations at position 110 largely improve function with the exception of the 

cysteine mutation, which is consistent across both ligands. I112 is located at the interface of the 

ligand binding domain and the DNA binding domain. The side group of 112 is located between 

F24 and Y25 in the DNA binding domain. The size and polarity of this position is important as only 

the leucine substitution increases function. Any substitution to residues with different shape or 

polarity results in a loss of function. D84 is a solvent-accessible position located in a loop in the 

ligand binding pocket. Selecting positions that have multiple substitutions that confer either high 

or low function via the RNA-Seq approach identifies functional hotspots in TtgR in the DNA binding 

domain and the ligand binding domain. The importance of these hotspots can be rationalized 

based on their location in the structure of TtgR. 

  

3.7 Discussion 

Transcription factor biosensors have an important role in developing novel metabolic engineering 

pathways4. However, creating new biosensors with affinity for any desired target molecule is 

challenging because allosteric properties of the aTF must also be maintained. To solve this 

challenge, we created an agnostic library of TtgR variants and used RNA-Seq to screen for affinity 

to tamoxifen, endoxifen, N-desmethyltamoxifen, 4-hydroxytamoxifen, naringenin, phloretin, 

naltrexone, ellagic acid, and quinine.  
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Screening the agnostic library with RNA-Seq to quantify barcode expression revealed multiple 

variants with high performance to each ligand. These top performers were validated using a 

fluorescence-based cell sorting scheme. The fold change in variant abundance resulting from the 

sorting workflow showed that these variants had a range of both specificities and activity against 

eight of the nine ligands. Some variants, like those that performed best on quinine, were largely 

specific for that one molecule. Others, like naltrexone top performers, often responded to multiple 

ligands. 

 

Although the agnostic library is not designed for affinity to any one ligand, our results suggest that 

unique ligand specificities arise from screening the same ligand-agnostic library against multiple 

ligands. Even a small subset of mutations in the allowed set enables drastic function-switching 

phenotypes across dissimilar ligands. Variants with similar ligand specificity profiles can be found 

using hierarchical clustering and we show that each cluster has unique amino acid compositions 

at critical positions that may enable function switching. 

 

We have also shown that the RNA-Seq workflow can be applied to functional screens the 

application of a DMS library to endoxifen and tamoxifen. Hotspots were identified in the DNA 

binding domain and the ligand binding domain. Some of these positions, like T5, K6, A9, and R27, 

are solvent-exposed and likely have a wide range of tolerable mutations. Others are in direct 

contact with either the DNA or the ligand and thus have a large number of mutations that decrease 

function. The last group lies at the interface of the DNA binding domain and the ligand binding 

domain, indicating a potential allosteric or a structural role in function. 

 

These results validate an RNA-Seq based approach for assaying transcription factor function. 

However, a similar workflow can be adapted to any protein whose function results in altered gene 
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expression. This work establishes a base for expanded aTF usage in biotechnology by increasing 

the design potential of well-characterized transcription factors. In the future, improvements of this 

technology will enable designer aTFs to be created for any desired small molecule. 

 

Despite the initial potential of this method, we acknowledge that additional data is required to 

completely validate this design and screening system. Although initial RNA-Seq and fluorescence 

screens have both shown changes in gene expression across top performing variants for multiple 

ligands, clonal assays of each variant via transcript measurement (qRT-PCR) or GFP 

fluorescence (flow cytometry) will prove that the responses observed in the RNA-Seq and 

fluorescence screens are real. Crystal structures of the top hits will reveal the molecular 

interactions responsible for the altered binding specificities. Finally, the RNA-Seq data can be 

applied to improve the accuracy of targeted Rosetta design methods by using machine learning 

to update the scoring process used to evaluate designed sequences. Improving the computational 

design process will decrease the number of variants tested enabling additional ligands to be 

assayed for the same cost. 

 

New sensors have been found for the majority of ligands tested, indicating that TtgR is an 

extraordinary scaffold that is amenable to the acquisition of many novel functions. This functional 

plasticity may be a byproduct of the evolutionary history of TtgR. TtgR naturally controls the 

expression of TtgABCD in pseudomonas putida38. These proteins form subunits of a multidrug 

exporter; TtgR must also be able to sense multiple ligands in order to control exporter 

expression39. The ability to interact with multiple ligands has been posited as a key characteristic 

of more evolvable proteins40. Thus, future biosensor design efforts may warrant additional focus 

on scaffolds that already have multifunctionality. QacR is another aTF that can bind to a wide 

variety of ligands and is a potential candidate for redesign towards novel ligand specificity41. 
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hierarchical clustering47. Clustering was visualized using Seaborn. Flow cytometry data were 

analyzed in FlowJo V10. 

 

3.8 Methods 

General cloning methods 

Plasmid creation: 

Amplicons are generated using Kapa HiFi (Roche) PCR kits following the manufacturer protocol 

(Supplementary Table 1). Amplicons are treated with 15U of Dpn1 (NEB) for 2.5 hours at 37°C 

followed by 20 minutes at 80°C. PCR amplicons are then purified using EZNA Cycle Pure kits 

(Omega BioTek). Isothermal assembly followed Gibson Assembly protocols (NEB), but 

contained 100 mM Tris-HCl pH 7.5, 20 mM MgCl2, 0.2 mM dATP, 0.2 mM dCTP, 0.2 mM dGTP, 

10 mM dTT, 5% PEG-8000, 1 mM NAD+, 4 U/ml T5 exonuclease, 4 U/μl Taq DNA ligase, and 

25 U/ml Phusion polymerase. Isothermal assembly reactions are diluted 10X in dH2O prior to 

transformation. DH10B (NEB) electrocompetent cells are transformed with 2µL of diluted 

isothermal assembly reaction. Transformants are recovered in 700µL SOC for 1 hour at 37°C. 

Dilutions are plated on LB-kanamycin (50µg/mL) plates and incubated at 37°C overnight. 

Colony PCR is performed using Kapa Robust (Roche) using a single colony diluted in 100µL of 

dH2O. Plasmid purifications are performed using the ZR Plasmid Miniprep Classic kit (Zymo).  

 

Library creation: 

Plasmid libraries are generated using Golden Gate Assembly Kits (NEB, BsaI-HFv2). The 

reactions undergo a cycling protocol of 30 alternating 5-minute 37°C and 16°C cycles followed 

by a final 60°C 5-minute hold. The reactions are dialyzed against dH2O on semi-permeable 

membranes (Millipore) for 1 hour at room temperature. DH10B (NEB) cells were transformed 
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with 3µL of dialyzed reaction via electroporation. Transformants were recovered in 1mL of SOC 

and then diluted 2X, 5X, and 10X with fresh SOC. Each dilution recovered for 1 hour shaking at 

37°C. 4mL of LB-kanamycin (50µg/mL) was added to each dilution after recovery and 50X and 

500X dilutions were plated of each recovered dilution to calculate transformation efficiency. The 

remaining transformants were grown for 6 hours shaking at 225rpm. A frozen stock was made 

in 25% glycerol and stored at -80 for each dilution. Fresh cultures were created by diluting each 

6-hour growth 50X into fresh LB-kanamycin. These were grown overnight and plasmids were 

harvested via ZR Plasmid Miniprep Classic kit (Zymo). 

 

RNA purification: 

Cells were struck out on an LB-Kan plate and grown overnight at 37°C. Three colonies were 

inoculated into LB-kanamycin for overnight growth. The overnight cultures were diluted 50X into 

fresh LB-kanamycin containing either ligand or solvent. The cultures were grown at 37°C 

shaking at 250rpm in an Innova 4230 (New Brunswick Scientific). At the targeted OD600, cultures 

were placed on ice for 10 minutes. 5*108 cells were harvested by centrifugation at 5,500g based 

on the OD600 and the assumption that 1.0 OD600 cultures have 8*108 cells/mL. The pelleted cells 

were decanted and stored at -80°C. This process was repeated in biological triplicate for each 

target OD600 with new colonies.  

 

RNA was purified from cell pellets via Trizol reagent (Invitrogen). 1mL of Trizol reagent 

(Invitrogen) was added to each cell pellet and vortexed briefly. The samples incubated at room 

temperature for 5 minutes. 200µL of chloroform (Sigma Aldrich) was added to each sample. The 

samples incubated at room temperature for 2 minutes and were centrifuged at 12,000g for 15 

minutes at 4°C. 300µL of the aqueous phase was transferred to a clean 2mL centrifuge tube 
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and placed on ice. RNA was purified from the aqueous phase using the RNA Clean and 

Concentrator 5 kit (Zymo) and eluted in 15µL Ultrapure RNase-free dH2O (Invitrogen). The 

purified RNA was digested using 4U DnaseI (NEB) in a 50µL reaction incubated at 37°C for 30 

minutes. The digestion reactions were purified using the RNA Clean and Concentrator 5 kit 

(Zymo) and eluted in 15µL Ultrapure RNase-free dH2O (Invitrogen). Concentrations were 

measured using a Nanodrop instrument (Thermo Fisher).  

 
qRT-PCR quantification of transcript abundance: 

The abundance of the sfGFP and rrsA transcripts were measured via qRT-PCR. Each biological 

triplicate RNA was run in technical triplicate in a MicroAmp Fast Optical 96-well plate (Life 

Technologies). 1ng of RNA was added to Luna Universal One-Step qRT-PCR mix (NEB) 

containing 4µmol of each primer on ice. The standard cycling protocol was used according to 

the manufacturer’s suggestion. Each sample consisted of a set of reactions containing sfGFP-

specific primers and another set containing rrsA-specific primers. The reactions were run on a 

CFX Connect Real Time PCR Detection System (BioRad). 

Fold enrichment was calculated using equations (1) and (2). The error was propagated from the 

technical replicates and biological replicates using (3). 

 

!"#$	&'()*ℎ,&'- = 201123  (1) 

ΔΔ56 = (56	89: − 56	<<=>)@ABCDEF − (56	89: − 56	<<=>)0ABCDEF  (2) 

&(("( = 	G∑(IB) (3) 

 

Short barcode oligo synthesis: 

Pre-defined or random barcodes were synthesized as a short primer (IDT). These barcode 

primers were combined separately with another constant primer to create short double-stranded 
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fragments containing the barcode flanked by BsaI cut sites in a single cycle of PCR using Kapa 

HiFi (Roche). 1µL of this reaction was added into a second Kapa HiFi (Roche) reaction with 

additional primers to increase the length of the amplicon over 18 cycles. The resulting amplicon 

was purified using the DNA Clean and Concentrator-5 kit (Zymo). 

 
Barcode-variant mapping via next-generation sequencing: 

Two primer groups were used to add Illumina sequencing regions to the barcode-spacer-variant 

region of the mapping plasmid libraries. Each primer group consisted of three primers with 

different numbers of Ns (0N, 3N, or 6N) to increase positional base diversity during runs. The 

adapter primers had complementarity to the plasmid and contained Illumina sequencing primer 

binding regions. Stem primers had the i7 and i5 indices and the adapter sequence to anneal to 

the sequencing flow cell. The adapter regions were added using 1ng of template, 0.6µL of 10µM 

primers, and Kapa HiFi mix (Roche) for 14 cycles. These reactions were purified using the DNA 

Clean and Concentrator 5 kit (Zymo). The stem primers were used in a second PCR reaction 

using 4µL of the first reaction for 10 cycles.  

 
Sample preparation for sequencing: 

For MiSeq-based sequencing, the proper band was isolated using gel extraction on a 0.5% 

agarose gel followed by purification with the EZNA gel extraction kit (Omega BioTek). The 

concentration of the DNA was measured using AccuClear (Biotium) following manufacturer 

protocols. The flow cell was loaded with 15pM DNA with 5% PhiX. For NovaSeq-based 

sequencing, samples were purified using PippinHT (Sage Science) and the concentration was 

measured via 4200 TapeStation (Agilent). The size selection, concentration measurement, and 

NovaSeq runs were performed by the University of Wisconsin Madison Biotechnology Center 

(UWBC).  
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Mapping Data Analysis: 

The FastQ output was merged using PEAR. A C++ script was used to filter poor-scoring reads 

based on Q-scores. Reads that passed the quality filter were then filtered on constant regions 

surrounding the barcode and TtgR variants. Barcodes that had read counts greater than 10 and 

were unique for a single TtgR variant were mapped to a that variant. If a barcode mapped to 

more than one TtgR variant, then the TtgR variant that had the most reads was selected if each 

other variant was less than 10% of the reads of the most abundant variant. 

 

RNA-Seq preparation: 

RNA is harvested according to the RNA purification protocol. cDNA synthesis uses 

approximately 3µg total RNA, a primer encoding a 16nt unique molecular identifier (UMI), and 

the Maxima H Minus Double-Stranded cDNA Synthesis Kit. The cDNA is purified using the DNA 

Clean and Concentrator 5 kit (Zymo). The Illumina sequencing regions are added in 2 PCR 

reactions in the same manner as the MiSeq barcode-variant mapping reactions. Three sets of 

primers containing the Illumina sequencing primer and a predefined barcode (ATCG, CGAT, 

and GTCA) were used in the first PCR reaction to add the Illumina sequencing regions (11 

cycles). One set of primers was used for each biological replicate. The first reaction is purified 

using the DNA Clean and Concentrator 5 kit (Zymo). The second reaction uses 4µL of the first 

reaction and primers that add i5 and i7 indices in 8 cycles. The final amplicons are purified 

again. All replicates were combined in an equal molar ratio after purification. 
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Plasmids are harvested from the remaining culture of the RNA preparation step. The UMI is 

added to the plasmid-derived samples in a 2-cycle PCR reaction using 100ng of template. The 

amplification of all DNA libraries followed an identical protocol to the RNA preparation. 

 

The cDNA and DNA samples are sequenced using either a NovaSeq SP chip (test library) or a 

NovaSeq S4 chip (DMS and agnostic libraries) by the UWBC. 

 

RNA-Seq Data Analysis: 

Fastq files were merged using NGmerge and filtered using Fastp based on average Q-score > 

Q30 for reads42,43. Reads containing the 5’ and 3’ constant regions were isolated using UMI-

Tools and counted using Tally44,45. Reads containing the central constant region were isolated 

and UMI sequences were removed with UMI-Tools. The barcodes were then counted with Tally. 

RNA-Seq barcodes were matched to mapped barcode-variant pairs with a Hamming distance 

tolerance of 1 using Seal (sourceforge.net/projects/bbmap/).  

 

RNA-Seq barcodes that were successfully mapped to known barcode-variant pairs were 

analyzed across the induced RNA, induced DNA, control RNA, and control DNA samples. A 

barcode both had to be found in all four datasets to be included in downstream analysis. The 

read counts for a variant were then a sum of the barcode counts for all barcodes mapped and 

found in all four datasets. No read count threshold was imposed during analysis. The fold 

enrichment calculation uses equation (4). 

 

J"#$	K'()*ℎ,&'- =

LMNOPQR
SMNOPQR
LMNTPQR
SMNTPQR

 (4) 
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If biological replicates were available for each condition, the fold enrichment per variant was 

curated based on the coefficient of variation (CV). Percent deviation is calculated with equation 

(5). 

 

5U = 	 V
W̅

 (5) 

 

In this equation, σ is the standard deviation of the fold enrichment and Y̅ is the mean fold 

enrichment across replicates. A 30% CV cutoff was imposed for the agnostic dataset and a 20% 

deviation cutoff was imposed on the DMS dataset (Supplementary Fig. 7, Supplementary Fig. 8, 

Supplementary Fig. 9).  

 

All variants were normalized to wildtype fold enrichment for each replicate. Heatmaps were 

constructed using the average performance of each variant after normalization. 

 

Cell Sorting: 

An overnight culture is diluted 50X in phosphate buffered saline (137mM NaCl, 2.7mM KCl, 

10mM Na2HPO4, 1.8mM KH2PO4) and placed on ice for 10 minutes prior to sorting. Sorting was 

performed on an SH800 (Sony) using the 488nm laser and a 525±25 filter. Sorted cells were 

grown for 1 hour shaking at 37°C in 5mL LB. Kanamycin was added to a final concentration of 

50µg/mL and the culture was grown overnight. An aliquot of the sorted culture was stored at -

80°C in 25% glycerol. Plasmids were isolated from the remaining culture using the ZR Plasmid 

Miniprep – Classic kit (Zymo). 

 

Creating TtgR_pBBR1_SPS_V2: 
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The plasmid containing the TtgR gene and the sfGFP gene under control of the TtgR operator 

sequence was created using two Gibson Assembly reactions. The sfGFP gene was under 

control of a modified TtgR operator sequence with canonical -10 (5’-TATAAT-3’) and -35 (5’-

TTGACA-3’) elements in the promoter. The backbone contains the TtgR gene under an 

apFAB61-BBaJ61132 constitutive operator sequence, a kanamycin resistance marker, and the 

pBBR1 origin (TtgR_pBBR1). The sfGFP gene was inserted into the pBBR1 backbone following 

the standard methodology. Next, a terminator was placed at the 3’ end of the sfGFP gene 

according to protocol. This plasmid was labeled as TtgR_pBBR1_SPS_V2. 

 

Creating TtgR_ColE1_SPS_V5: 

The pBBR1 origin was exchanged for a ColE1 origin. The sfGFP fragment was amplified from 

TtgR_pBBR1_V2 using primers specific for the sfGFP region with 5’ ends complementary to the 

destination ColE1 backbone and to the sfGFP amplicon. The TtgR gene was amplified from the 

TtgR_SC101BBa plasmid with primers containing complementary regions to the backbone and 

GFP amplicon. The sfColE1 backbone amplicon contains a kanamycin marker and a ColE1 

origin. Plasmids were labeled as TtgR_ColE1_SPS.  

 

The sfGFP promoter was modified to have the wildtype TtgR operator sequence. sfGFP with the 

wildtype operator sequence was amplified from a separate plasmid using primers with overlap 

to the TtgR_ColE1_SPS plasmid. The backbone amplicon was amplified from 

TtgR_ColE1_SPS and consisted of the TtgR gene, the Kanamycin resistance marker, and the 

ColE1 origin. The plasmid was labeled as TtgR_ColE1_SPS_V2. 

 

A third Gibson assembly reaction was required to insert stop codons and BsaI cut sites into the 

middle of the GFP gene to create the barcode insertion site. The stop codons and BsaI sites 
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were encoded on overlapping primers and added to the TtgR_ColE1_SPS_V2 plasmid. The 

backbone as annealed to itself in a 1-part isothermal assembly. This construct was labeled 

TtgR_ColE1_SPS_V5. 

 

Creating GFP control: 

To create a GFP positive control, the TtgR gene was removed from the TtgR_ColE1_SPS_V2 

plasmid. The backbone was amplified with primers that had complementary overlap with the 

sfGFP gene. The sfGFP gene was amplified with primers complementary to the backbone. The 

BsaI cut sites and early stop codons were inserted into sfGFP in the same fashion as the 

creation of TtgR_ColE1_SPS_V5. The plasmid was labeled TtgR_ColE1_SPS_V3_GFPControl. 

Three pre-defined 20nt barcodes (AAACCCTGTGCCAGAGGGTG, 

GAGTGACCTTAAGTCAGGGA, and GCTTCTGTCCAAGCAGGTTA) were generated 

according to standard protocols. The barcodes were inserted into the 

TtgR_ColE1_SPS_V3_GFPControl using Golden Gate assembly.  

 

OD600 optimization: 

mRNA levels were assayed at three different OD600 values: 0.6, 1.2, and ~2.8 (overnight 

growth). Testing was performed with the TtgR_ColE1_SPS_V2 plasmid with primers specific for 

the 5’ region of sfGFP. rrsA, a ribosomal subunit and constitutively expressed gene, was used 

as a reference. 2mL cultures were grown and RNA harvested according to standard protocols. 

The abundance of the sfGFP and rrsA transcripts were measured via qRT-PCR following the 

standard protocol (Supplementary Fig. 10a).  

 

Length Optimization: 
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The OD600 0.6 induction samples were used to test the effect of different amplicon lengths on 

qRT-PCR fold enrichment. One of the TtgR_ColE1_SPS_V2 samples assayed with DMSO was 

used to calculate the primer efficiency of three different primer pairs. Each pair shared the same 

forward primer but had differing reverse primers that yielded amplicon lengths of 75bp, 150bp, 

and 300bp. 0.001ng, 0.01ng, 0.1ng, or 1ng of RNA was added to Luna Universal One-Step 

qRT-PCR mix (NEB) containing 4µmol of each primer on ice. These RNA amounts were also 

assayed with the rrsA primers in the same manner. The abundance of the sfGFP and rrsA 

transcripts were measured via qRT-PCR following the standard protocol (Supplementary Fig. 

10b).  

 

Creating TtgR Test Library: 

The TtgR gene variants were isolated from a set of 16 pre-existing plasmids each containing a 

single TtgR variant. 100ng of each amplicon was combined into a single aliquot and stored at -

20°C. Barcodes for the RNA-Seq were 16nt in length and were encoded on a ssDNA primer 

(IDT). The TtgR_ColE1_SPS_V5 backbone was amplified using primers that encompassed the 

sfGFP gene, the ColE1 origin, and the kanamycin resistance marker. The barcodes, TtgR gene 

variants, and backbone were assembled in a single Golden Gate reaction (NEB) according to 

standard protocols. 

 

Mapping test library barcode-variant pairs: 

A 60nt spacer was created to bring the random barcode and TtgR variants physically adjacent 

on the same plasmid to enable short read next generation sequencing mapping of barcode-

variant pairs. The test library plasmids were amplified with primers encoding BsaI cut sites that 

would place the spacer between the barcode and the TtgR variant region. The spacer was 
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inserted into the backbone using Golden Gate (NEB) following standard protocols. The resulting 

library was sequenced on a 15M 2x250 MiSeq chip (Illumina). Data analysis followed standard 

protocols. 

 

RNA-Seq of test library: 

The induction of the test library used either 1mM naringenin or DMSO as a control. DH10B 

containing each barcoded GFP Control plasmid were struck out on LB-kanamycin plates. One 

colony was selected from each barcoded DH10B and grown in 3mL LB-kanamycin overnight. 

These barcoded control cultures were combined in equal ratio and added to the test library 

culture to a final composition of 0.25% control. The induced cultures were grown and prepared 

following standard protocols.  

 

Validating RNA-Seq test library results: 

The test library frozen stock was struck out on LB-kanamycin and grown overnight. 16 colonies 

were selected and the TtgR variants were identified using colony PCR per standard protocols. 8 

of the 16 total variants were verified via sequencing and were stored at -80°C. RNA was 

harvested from each variant in biological triplicate under 1mM naringenin and DMSO conditions. 

qRT-PCR was used to assay barcode transcript enrichment.  

 

Creating agnostic libraries: 

FuncLib-tolerated mutations were encoded into short oligos (Agilent) consisting of the TtgR 

gene region flanked by BsaI cut sites for Golden Gate assembly. Four pools of approximately 

4,400 variants were created by randomly combining between 1 and 5 tolerated mutations. Each 

pool had unique priming sequences to isolate from a pooled sample. The pooled library was 

diluted to 0.005µM in Tris-HCl (pH 7.5). Each pool was amplified using Kapa HiFi and 1µL of the 
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diluted library in 15 cycles in triplicate. The amplified reactions were pooled together and 

purified using the DNA Clean and Concentrator 5 kit (Zymo). The pooled oligos were cloned into 

the TtgR_ColE1_SPS_V5 backbone using Golden Gate assembly (NEB). The libraries with 

approximately 15 barcodes per variant, calculated by CFU/mL, were selected for RNA-Seq. 

 

Mapping agnostic Libraries: 

The mapping process was performed as described in the general cloning methods. The spacer 

library was sequenced using an 2x250 NovaSeq SP chip (Illumina) by the UWBC.  

 

Agnostic RNA-Seq: 

The agnostic libraries were induced with the ligand (Supplementary Table 2). DMSO, dH2O, and 

EtOH were included as solvent controls. The four pools were grown individually in 5mL LB-

kanamycin overnight in triplicate. The four pools were combined prior to inoculation in 25mL LB-

kanamycin for the RNA harvest. GFP Control barcoded cells were spiked into the combined 

agnostic replicates at a final concentration of 0.25%. The same pooled replicates were used for 

all ligand inductions. Read volumes were calculated by targeting 500 reads per barcode with the 

assumption that 50% of the reads will be lost due to filtering criteria. 

 

RNA-Seq data analysis: 

Data analysis followed the RNA-Seq pipeline described above. Variants with data passing CV 

thresholds for more than 5 ligands and performed at least 1.5 times better than wildtype were 

selected for clustering. Missing data was imputed using KNN methods in SciKit Learn46. The 

UPGMA algorithm with a correlation distance metric and a target of 12 clusters was used to 

cluster in SciPy36,47. The number of clusters was selected by plotting the silhouette score 
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against the number of clusters (Supplementary Fig. 6). The relative positional entropy was 

calculated for each cluster compared to the total set of variants using equation (6)48: 

 

ZK =	∑ ![\]=6^<,D `
abcde3fg,h
ahcc,h

iD  (6) 

 

In this equation, a is the set of all amino acids observed at a single position and f is the 

frequency with which that amino acid is observed. This equation compares clustered sets of 

sequences compared to all possible agnostic sequences. This equation was only applied to 

clusters with more than 20 sequences.  

 

Testing Top Hits: 

Top performing variants were selected based on the mean rank of each variant across the three 

biological replicates. These variants were encoded in gene fragments (Twist) and synthesized in 

a 96-well plate format. The fragments were resuspended to a final concentration of 10ng/µL, 

pooled together, and cloned into the TtgR_ColE1_SPS_V2 backbone using Golden Gate 

Assembly. The resulting library was sorted based on fluorescence. 

 

LB media is inoculated with 50µL of the frozen stock of the library and grown overnight shaking 

at 37°C. Sorting was performed according to the Cell Sorting protocol. 500,000 cells were 

isolated of the lower 70% of the population based on fluorescence. Plasmids were isolated from 

the remaining culture using the ZR Plasmid Miniprep – Classic kit (Zymo). DH10B (NEB) were 

transformed with the purified plasmid library according to the Library Creation protocol. 
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LB media is inoculated with 50µL of the frozen stock of the repressed library and grown 

overnight shaking at 37°C. The culture was diluted 50X into fresh LB and grown overnight at 

37°C shaking with the ligands (Supplementary Table 2). Sorting was performed according to the 

Cell Sorting protocol. 400,000 cells were isolated using a gate that encompassed the top 0.5% 

of the population based on the fluorescence distribution in the absence of any ligand. Plasmids 

were isolated from the remaining culture using the ZR Plasmid Miniprep – Classic kit (Zymo).  

 

The abundance of variants was determined using next-generation sequencing. Sequencing 

amplicons were generated using primers that had complementarity to the TtgR gene around the 

gene fragment insertion site. The amplification process followed the “Barcode-variant mapping 

via next-generation sequencing” protocol. The concentration of the DNA was measured using 

Qubit Fluorometric Quantification (Thermo Fisher) following manufacturer protocols. The flow 

cell was loaded with 15pM DNA with 5% PhiX. Sequencing was performed on a MiSeq 

instrument (Illumina).  

 

Fastq files were merged using NGmerge and filtered using Fastp based on average Q-score > 

Q30 for reads42,43. 

 

DMS Library synthesis: 

The TtgR DMS libraries were created from pre-existing TtgR DMS libraries. This DMS library 

was split into 6 different segments that encompassed the length of the TtgR gene. Each 

segment was a separate plasmid library. These segments were amplified separately and cloned 

into the TtgR_ColE1_SPS_V5 backbone using Golden Gate assembly (NEB). Libraries with 

approximately 10 barcodes per variant were selected for RNA-Seq. 
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Mapping DMS Libraries: 

The mapping process was performed as described in the general cloning methods. The spacer 

library was sequenced using an 2x250 NovaSeq SP chip (Illumina) by the UWBC 

(Supplementary Fig. 11). 

 

DMS RNA-Seq: 

The DMS libraries were induced with the either 50µM tamoxifen, 50µM endoxifen, or EtOH. The 

six pools were grown individually in 5mL LB-kanamycin overnight in triplicate. Each segment 

was induced separately. Read volumes were calculated by targeting 500 reads per barcode with 

the assumption that 50% of the reads will be lost due to filtering criteria. 

 

Data analysis followed the RNA-Seq pipeline described above. The 90th percentile of positions 

by number of mutations outside the interquartile range of all variants were defined as functional 

hotspots. 
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Figure 1: Validating RNA-Seq on a 16-member library. (a) The space of transcription factors 
and small molecules that can be sensed with different approaches. Black points represent 
specific ligand:aTF pairs. The dark green circle represents the extent to which methods can 
currently expand aTF:ligand affinity. The light green circle represents the extent to which new 
methodologies must increase aTF:ligand pairs. (b) Construct design pairs aTF variants to 
randomized barcodes. (c) A separate construct is used to pair barcodes to aTF variants such 
that RNA-Seq of barcodes can be translated to aTF function. (d) Methodology to harvest plas-
mids and RNA from E. coli transformed with aTF libraries. This approach can easily be scaled 
across multiple ligands and multiple libraries. (e) The number of barcodes per variant identified 
using next-generation sequencing of the construct in (C). Each variant is identified by a sepa-
rate binary string. (f) Box plots of fold enrichment for each variant via RNA-Seq. The box 
represents the interquartile range. Whiskers extend to 1.5 times the IQR. Fliers denote points 
that lie outside the whiskers. Variants are represented by binary strings. (g) Correlation of 
qRT-PCR data and fold enrichment from RNA-Seq. qRT-PCR fold enrichment was measured 
via biological replicates of clonal strains of 8 of the 16 variants (see methods). The RNA-Seq 
fold enrichment value was calculated by summing the counts of all barcodes associated with a 
particular variant (see methods). The R2 for this dataset is 0.83. (h) Bootstrap correlation of 
qRT-PCR fold enrichment to RNA-Seq data for 8 of the 16 variants. Groups of 10, 25, 50, 100, 
or 500 barcodes were sampled for each variant across 500 cycles. The resulting correlation for 
each cycle is plotted. 
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Figure 2: Identifying novel sensors in the agnostic library. (a) The top 40 best variants from each ligand were selected for a 
fluorescence-based screen (red points). The violin plot shows the fold enrichment calculated by RNA-Seq for all 17,365 variants 
for each ligand. The circle inside the violin plot denotes the median of fold enrichment for each ligand. The thick grey line inside 
the violin plot represents the IQR and the thin grey line extends to 1.5 times the IQR. (b) Fluorescence screening workflow that 
incorporates a construct with sfGFP. A single repressed sort and an induced sort were sequenced (see methods). Fold change 
(FC) was calculated as the ratio of percent change in the population with and without ligand. (c) Fold change for each ligand 
across the 251 best performing variants. 
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Figure 3: Elucidating ligand-specific sequence preferences from RNA-Seq. (a) RNA-Seq 
fold enrichment data for 3,3135 variants across nine ligands. Ligands and variants have been 
clustered via the UPGMA algorithm with a correlation distance metric and a target of 12 clusters 
(see methods). The different clusters are denoted by the colored bars on the right of the heat-
map. aTF function is shown as the log2(fold enrichment) normalized to wildtype. (b) Structure of 
TtgR with tolerated mutations at each position (PDB ID: 7K1C). The wildtype residue is highlight-
ed at each position as purple sticks. Resveratrol, a natural ligand of TtgR, is shown as orange 
sticks. The tolerated mutations at each position are shown with the violet background while the 
wildtype identity is shown in white. (c) Sequence relative positional entropy of the clustered data 
for all tolerated positions. In this plot, a higher relative entropy indicates a changed amino acid 
distribution after clustering. (d) Heatmap of the fold change in amino acid abundance across 
allowed positions for clusters 7, 11, and 12. The fold change of frequency is the log2 of the ratio 
of amino acid frequency after clustering to the frequency before clustering. (e) Heatmap of the 
fold change in amino acid abundance across allowed positions for the top 40 variants for each 
ligand. Fold change is calculated identical to (D).
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Figure 4: DMS of TtgR against endoxifen and 
tamoxifen highlights functional hotspots. (a) 
Heatmap of DMS library performance when exposed 
to endoxifen. White squares are positions and muta-
tions that did not pass the CV filter (see methods). 
The remaining positions are colored by the fold 
enrichment of the mutant normalized to wildtype. 
The diagram on the right of the heatmap shows the 
location of alpha helices (rectangles) and disordered 
loops (lines). The DNA binding domain helices are 
colored orange while the ligand binding domain 
helices are colored in purple. (b) Heatmap of DMS 
library performance when exposed to tamoxifen. 
Coloring is identical to (a). (c) Functional hotspots of 
TtgR. Positions defined as hotspots are shown as 
green sticks (PDB ID: 7K1C). Resveratrol, a native 
ligand of TtgR, is shown as orange sticks. 
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Supplementary Figure 1: Ligands used in this study
Structures of (a) tamoxifen, (b) endoxifen, (c) 4-hydroxytamoxifen, (d) N-desmeth-
yltamoxifen, (e) ellagic acid, (f) quinine, (g) naltrexone, (h) naringenin, and (i) 
resveratrol. Carbon atoms are shown in grey, oxygen atoms in red, and nitrogen 
atoms in blue. Hydrogens are not shown.
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Supplementary Figure 2: Barcodes per variant of agnostic library from map-
ping data
The agnostic library was split into 4 pools containing approximately 4,400 variants 
(see methods). Barcodes and variants were mapped as separate pools. The box 
plot represents the number of barcodes mapped to each variant in the pools.



140

Supplementary Figure 3: Shared sequences in top performing variants
The top 40 variants for each ligand were selected and listed (x-axis). Variants are 
marked in green if they are within the top 40 for a particular ligand. There are 251 
unique variants in the set of top performers across all ligands.
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Supplementary Figure 4: Cell sorting gates for repressed sort
Flow cytometry scatterplot (left) and fluorescence histogram (right) for the library of top variants 
with no ligand. The scatterplot shows forward scatter area (FSC-A) and forward scatter height 
(FSC-H). The singlet gate was used to subset the population. Cells falling into the repressed 
gate in the fluorescence histogram were sorted. 
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Supplementary Figure 5: Cell sorting gates for ligand-induced cultures
Flow cytometry scatterplots and histograms for libraries induced with (a) no ligand, (b) naringenin, 
(c) tamoxifen, (d) naltrexone, (e) quinine, (f) endoxifen, (g) phloretin, (h) 4-hydroxytamoxifen, (i) 
N-desmethyltamoxifen, (j) ellagic acid. The scatterplot shows forward scatter height versus area; 
cells falling into the singlet gates were sorted based on the fluorescence histogram (EGFP-A+ 
gate). The repressed gate indicates the major peak of the no ligand population.
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Supplementary Figure 6: Silhouette score of cluster sizes
The silhouette score is plotted against cluster size for hierarchical clustering with the 
UPGMA algorithm with a correlation distance metric (see methods).
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Supplementary Figure 7: CV filter of RNA-Seq fold enrichment for 
the agnostic library
Scatter plots of agnostic variants after applying a 30% CV filter for (a) 
4-hydroxytamoxifen, (b) ellagic acid, (c) endoxifen, (d) naltrexone, (e) 
naringenin, (f) N-desmethyltamoxifen, (g) phloretin, (h) quinine, and (i) 
tamoxifen. The fold enrichment of each variant (green circle) is plotted 
across the three biological replicates on the X, Y, and Z axes. The best fit 
line is shown in black and is calculated using a least squares approach. 
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Supplementary Figure 8: CV filter of RNA-Seq fold enrichment for the DMS 
library with endoxifen
Scatter plots of DMS variants after applying a 30% CV filter for DMS segments 
(a) 1, (b) 2, (c) 3, (d) 4, (e) 5, and (f) 6 after dosing with endoxifen. Plot layout is 
identical to Supplementary Fig. 7.
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Supplementary Figure 9: CV filter of RNA-Seq fold enrich-
ment for the DMS library with tamoxifen
Scatter plots of DMS variants after applying a 30% CV filter for 
DMS segments (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, and (f) 6 after 
dosing with tamoxifen. Plot layout is identical to Supplementary 
Fig 7.
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Supplementary Figure 10: Optimizing RNA expression and amplification
(a) qRT-PCR fold enrichment of a 150nt amplicon in the sfGFP gene at different 
OD600 values at the time of RNA harvesting. RNA was harvested at OD600 0.6, 1.2, 
and 2.8 (x-axis). Each OD600 value was measured in biological triplicate at 1mM 
naringenin. Fold enrichment of the amplicon was calculated as the 2-ΔΔCt value of the 
sfGFP gene in comparison to a constitutively expressed control (see methods). 
Error bars are the standard error propagated from the technical replicates. (b) 
qRT-PCR fold enrichment of different amplicon sizes. Each amplicon used the same 
5’ primer, but differing 3’ primers to yield a 75nt, 150nt, and 300nt amplicon. The 
same samples in biological triplicate were used as template for the qRT-PCR experi-
ment. Fold enrichment was calculated using the same methods as (a). 
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Supplementary Figure 11: Barcodes per variant of DMS library from map-
ping data
The DMS library was split into 6 pools containing approximately 700 variants 
(see methods). Barcodes and variants were mapped as separate segments. 
The box plot represents the number of barcodes mapped to each variant in the 
segment.
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Name Sequence 
KN_124 gtcagtgtcgtgccatagatccacgaggcccttttttcgtc 
KN_125 gggatctcgacgctctcccttatgactgattaccgcctttgagtgag 
KN_126 tcataagggagagcgtcgagatccc 
KN_127 ctcactcaaaggcggtaatcagggccgccaccgc 
KN_128 gcggtggcggccctgattaccgcctttgagtgag 
KN_129 gtcgagatcccgggcgcgccAAAAAATTTATTTGCTTTCAGGAAAA 
KN_130 CTTCTTCTTTGGTGCGACGCACCATAAAGGTTCCACTGCTAGATT 
KN_131 ATGGTGCGTCGCACCAAAGAAGAAG 
KN_132 ggcgcgcccgggatctcgac 
KN_133 gtcgagatcccgggcgcgccgcttgatatcgaattcctgcagcccg 
KN_134 cgggctgcaggaattcgatatcaagcggcgcgcccgggatctcgac 
KN_135 tcataagggagagcgtcgagatcccGGCGCGCCTTGACAATTAATCATC 
KN_136 CTTCTTCTTTGGTGCGACGCACCATCATATGAAAAGATCCCGGGC

TAGATTAAG 
KN_137 gggggatcccatggtacgc 
KN_138 aagacgaaaaaagggcctcgtg 
KN_139 cacgaggcccttttttcgtcttttatttgtacagttcatccatacc 
KN_140 gcgtaccatgggatccccccacctcgagatgctagc 
KN_141 ccgacgtctaagaaaccattattatcacgaggcccttttttcgtctt 
KN_142 gtcagatagcaccacatagcaggatctatggcacgacactgac 
KN_143 TCGCCAGCAGGCCTTTTTATTTG 
KN_144 gtcagatagcaccacatagcagTAATAATCATCGCGAAGACTTGATCG 
KN_145 gggagagcgtcgagatcccTTGACAATTAATCATCCGGCTCGTATAATAG 
KN_146 CAAATAAAAAGGCCTGCTGGCGATTATTTGCGCAGCGCCGG 
KN_147 cacctcgagatgctagcaaaaaaagagtaCACCCAGCAGTATTTACAAACAAC

C 
KN_148 CAAATAAAAAGGCCTGCTGGCGAgggatctcgacgctctcc 
KN_149 CCCAGATACGCTGTTTCAATTCCTTTATTATTATTTGCGCAGCGC

CG 
KN_150 ACCGCACAGGTTGCCCACTTGACAATTAATCATCCGGCTCG 
KN_156 gtcggccaaggtaccgg 
KN_157 tggtTtcgtcActattctggtgg 
KN_160 tgaagagtttgatcatggctcag 
KN_161 tttcccagacattactcacccg 
KN_162 tcaccctcgccacgca 
KN_163 cgcgttttgtacgtgccg 
KN_164 ggtctcCACTGCTGGATTCTCTGCACG 
KN_165 ggtctcCAACGACGAATCAGGCCATCC 
KN_166 agtgagttgattgctacgtaaggcttcggactgGGTCTCcaattCATCgACgtctGctgc 
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KN_167 acGGTCTCtcgtgtataatggNNNNNNNNNNNNNNNNgcagCagacGTcGA
TGaattg 

KN_168 ccccgaaaagtgccacctggcggcgttgtgacaatttaagtgagttgattgctacgtaag 
KN_169 gcgaCTGaaTATtgcggcacgAtacCATTTgCTCataagacGGTCTCtcgtgtat

aatgg 
KN_170 ctGGTCTCGcacgaggcccttttttcg 
KN_171 ctGGTCTCGaattgttacgtagcaatcaactc 
KN_172 AGGCGTCTTTCTTAGCCGGCGGTCTCcaattgttacgtagcaatcaactca 
KN_173 GCCGGCTAAGAAAGACGCCTGGTCTCgcacgaggcccttttttcgt 
KN_174 gagttgattgctacgtaacaatt 
KN_175 ctgcAAACCCTGTGCCAGAGGGTGccattatacacgaggcccttttttcg 
KN_176 GGCACAGGGTTTgcagCagacGTcGATGaattgttacgtagcaatcaactc 
KN_177 tGctgcGAGTGACCTTAAGTCAGGGAccattatacacgaggcccttttttcg 
KN_178 AAGGTCACTCgcagCagacGTcGATGaattgttacgtagcaatcaactc 
KN_179 tgcGCTTCTGTCCAAGCAGGTTAccattatacacgaggcccttttttcg 
KN_180 TTGGACAGAAGCgcagCagacGTcGATGaattgttacgtagcaatcaactc 
KN_193 CGTCTGGTCTCAGCGTGCCGAACTGGTTCAGGC 
KN_194 GAGTCGGTCTCCTCTCggatgaactgtacaaataaaagacg 
KN_195 CGTCTGGTCTCAGCGTTGCGAATTTACGGATGATATGTGTG 
KN_196 ggcccttttttcgtcttTTAagtcggccaaggtaccggca 
KN_197 GCCGGCTAAGAAAGACGCCTGGTCTCgcacgTTATTAcagttccaccag

aatagTgacga 
KN_198 CAGGCGTCTTTCTTAGCCGGCGGTCTCcGaACgatggtgatgtcaacggtc

at 
KN_199 GAGTCGGTCTCCTCTCcgtcActattctggtggaactgTAA 
KN_200 TCCACGCGATGGCCCNNNNNNNNNNNNNNNNNNNNttgacatcaccat

cGTtCCATC 
KN_201 tctggtggaactgTAATAAcgtgta 
KN_202 AGCCTCCTGGGCGGGTCATGNNNNNNNNNNNNNNNNtcaccctcgcc

acgca 
KN_204 GAGTCGGTCTCgatcccTTGACAATTAATCATCCGGCTCGTAT 
KN_205 ACCGTGGTCTCCGCGAgaggcttttgactttctgctaatttat 
KN_206 CCGACGGTCTCGggatctcgacgctctcccttatgac 
KN_207 CGAAGGGTCTCGTCGCCAGCAGGCCTTTTTATTTGGGGG 
KN_208 CGTCTGGTCTCAGCGTTCATTAGAGTCTAGAGAAAGACAGGATT 
KN_209 CGTCTGGTCTCAGCGTCGTACCACGCTGGCAG 
KN_210 CGTCTGGTCTCAGCGTACGAAACGCATGATCACCTGG 
KN_211 CGTCTGGTCTCAGCGTACGTACCCGTCGCATTAATGAAATC 
KN_212 CGTCTGGTCTCAGCGTGCACTGGCAAACGCAGTTC 
KN_213 CGTCTGGTCTCAGCGTGCCGGATAGTGTTGATCTGCTG 
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SPS_7b_MS_SPR_
R1 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCAGCAGCCA
ACGACGA 

SPS_7b_MS_SPR_
R2 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNGCAGCA
GCCAACGACGA 

SPS_7b_MS_SPR_
R3 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNGC
AGCAGCCAACGACGA 

SPS_NovaSeq_Barc
ode_F1 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTcaattCATCgACgtct
Gctgc 

SPS_NovaSeq_Barc
ode_F2 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNcaattCATCgA
CgtctGctgc 

SPS_NovaSeq_Barc
ode_F3 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNcaattCAT
CgACgtctGctgc 

SPS_S1_spacer_mi
seq_R1 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCAGTGCCAGG
GTGATACC 

SPS_S1_spacer_mi
seq_R2 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNCAGTGC
CAGGGTGATACC 

SPS_S1_spacer_mi
seq_R3 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNCA
GTGCCAGGGTGATACC 

SPS_V5_UMI2_BC_
F1 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCCTCCTGGGC
GGGTCATG 

SPS_V5_UMI2_BC_
F2 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNAGCCTCCTG
GGCGGGTCATG 

SPS_V5_UMI2_BC_
F3 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNAGCCTCC
TGGGCGGGTCATG 

ML_Seg1_SPR1 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTAGTAGATTGCA
CCGCGGG 

ML_Seg1_SPR2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNAGTAGA
TTGCACCGCGGG 

ML_Seg1_SPR3 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNAG
TAGATTGCACCGCGGG 

ML_Seg2_SPR1 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTATGCAGCCCA
GCGGG 

ML_Seg2_SPR2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNATGCAG
CCCAGCGGG 

ML_Seg2_SPR3 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNAT
GCAGCCCAGCGGG 

ML_Seg3_SPR1 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCGCTGCTGAC
GAATTTCAC 

ML_Seg3_SPR2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNCGCTGC
TGACGAATTTCAC 

ML_Seg3_SPR3 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNCGC
TGCTGACGAATTTCAC 

ML_Seg4_SPR1 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACCGCTGCGC
GTTC 

ML_Seg4_SPR2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNACCGCT
GCGCGTTC 

ML_Seg4_SPR3 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNAC
CGCTGCGCGTTC 
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ML_Seg5_SPR1 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTCGCAGCATAT
CCAGACCG 

ML_Seg5_SPR2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNCGCAGC
ATATCCAGACCG 

ML_Seg5_SPR3 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNCG
CAGCATATCCAGACCG 

ML_Seg6_SPR1 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGCCTGCTGGC
GAgagg 

ML_Seg6_SPR2 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNGCCTGC
TGGCGAgagg 

ML_Seg6_SPR3 GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNNNNNNGC
CTGCTGGCGAgagg 

SPS_UMI2_BC_rep
1_F1 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTACTGAGCCTCCT
GGGCGGGTCATG 

SPS_UMI2_BC_rep
1_F2 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNACTGAGCCTC
CTGGGCGGGTCATG 

SPS_UMI2_BC_rep
1_F3 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNACTGAGCCT
CCTGGGCGGGTCATG 

SPS_UMI2_BC_rep
2_F1 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTCGATAGCCTCCT
GGGCGGGTCATG 

SPS_UMI2_BC_rep
2_F2 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNCGATAGCCTC
CTGGGCGGGTCATG 

SPS_UMI2_BC_rep
2_F3 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNCGATAGCCT
CCTGGGCGGGTCATG 

SPS_UMI2_BC_rep
3_F1 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTGTCAAGCCTCCT
GGGCGGGTCATG 

SPS_UMI2_BC_rep
3_F2 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNGTCAAGCCTC
CTGGGCGGGTCATG 

SPS_UMI2_BC_rep
3_F3 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNGTCAAGCCT
CCTGGGCGGGTCATG 

Adap_TtgR_S2F_ext ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNNNCGCTG
GCAGATATTGCAGAA 

Adap_TtgR_S4R_ex
t 

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNCCAGTTC
ACCCGGCAG 

Supplementary Table 1: Primers 
Names and sequences of primers used in this study. 
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Ligand Concentration (mol/L) 
Tamoxifen 0.00005 
Endoxifen 0.00005 

4-hydroxy tamoxifen 0.00005 
N-desmethyl tamoxifen 0.00005 

Naltrexone 0.001 
Quinine 0.0005 

Ellagic Acid 0.00015 
Naringenin 0.001 

Phloretin 0.0003 
Supplementary Table 2: Ligand concentrations used in the RNA-Seq experiment.  
Concentrations were based on solubility in aqueous solution. No more than 2% v/v (DMSO) or 
1% v/v (EtOH and H2O) of solvent were tolerated. 
  



 154 

 
 

Condition Replicate Has Constants Reads Mapped 

4Hy 

1 3.44E+07 2.12E+07 
2 3.38E+07 2.09E+07 
3 3.37E+07 2.09E+07 

DMSO 

1 7.50E+07 4.60E+07 
2 7.32E+07 4.49E+07 
3 7.25E+07 4.46E+07 

EllA 

1 1.80E+06 1.11E+06 
2 1.87E+06 1.16E+06 
3 8.82E+05 5.42E+05 

End 

1 1.93E+07 1.19E+07 
2 1.91E+07 1.18E+07 
3 1.97E+07 1.22E+07 

EtOH 

1 5.30E+07 3.27E+07 
2 5.69E+07 3.52E+07 
3 5.53E+07 3.42E+07 

H2O 

1 5.79E+07 3.57E+07 
2 5.94E+07 3.66E+07 
3 5.48E+07 3.39E+07 

Nal 

1 5.06E+07 3.16E+07 
2 6.29E+07 3.91E+07 
3 5.87E+07 3.66E+07 

Nar 

1 4.05E+07 2.45E+07 
2 4.87E+07 2.92E+07 
3 4.65E+07 2.79E+07 

Ndes 

1 4.12E+07 2.35E+07 
2 4.04E+07 2.35E+07 
3 3.88E+07 2.22E+07 

Phlo 

1 4.10E+07 2.47E+07 
2 5.38E+07 3.21E+07 
3 4.99E+07 2.98E+07 

Quin 

1 3.87E+07 2.38E+07 
2 4.21E+07 2.58E+07 
3 4.13E+07 2.54E+07 

Tam 

1 3.01E+07 1.84E+07 
2 3.14E+07 1.93E+07 
3 3.20E+07 1.97E+07 
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Supplementary Table 3: Read counts for DNA from the agnostic library for different 
conditions. 
Read counts after merging and quality filter based on the presence of the constant regions 
surrounding the 16nt barcode and UMI. Reads mapped are the number of reads that 
correspond to a barcode identified in the mapping sequencing run. 
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Condition Replicate Has Constants Reads Mapped 

4Hy 

1 2.10E+07 9.66E+06 
2 2.22E+07 1.02E+07 
3 2.21E+07 1.01E+07 

DMSO 

1 2.38E+07 1.04E+07 
2 2.55E+07 1.12E+07 
3 2.41E+07 1.05E+07 

EllA 

1 1.55E+07 6.70E+06 
2 2.32E+07 1.00E+07 
3 2.32E+07 1.00E+07 

End 

1 2.43E+07 1.14E+07 
2 2.33E+07 1.09E+07 
3 2.54E+07 1.19E+07 

EtOH 

1 1.96E+07 8.70E+06 
2 2.28E+07 1.01E+07 
3 2.33E+07 1.03E+07 

H2O 

1 2.09E+07 8.98E+06 
2 2.19E+07 9.36E+06 
3 2.26E+07 9.77E+06 

Nal 

1 1.90E+07 8.31E+06 
2 2.18E+07 9.41E+06 
3 2.15E+07 9.35E+06 

Nar 

1 2.47E+07 1.34E+07 
2 2.77E+07 1.50E+07 
3 2.68E+07 1.45E+07 

Ndes 

1 2.28E+07 1.09E+07 
2 2.31E+07 1.10E+07 
3 2.44E+07 1.17E+07 

Phlo 

1 2.52E+07 1.37E+07 
2 2.71E+07 1.47E+07 
3 2.72E+07 1.47E+07 

Quin 

1 2.13E+07 9.92E+06 
2 2.39E+07 1.11E+07 
3 2.40E+07 1.11E+07 

Tam 

1 2.60E+07 1.23E+07 
2 2.49E+07 1.17E+07 
3 2.44E+07 1.13E+07 
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Supplementary Table 4: Read counts for DNA from the agnostic library for different 
conditions. 
Read counts after merging and quality filter based on the presence of the constant regions 
surrounding the 16nt barcode and UMI. Reads mapped are the number of reads that 
correspond to a barcode identified in the mapping sequencing run. 
 



Segment Replicate Has Constants Reads Mapped Has Constants Reads Mapped Has Constants Reads Mapped
1 5.09E+06 1.77E+06 5.22E+06 1.82E+06 4.42E+06 1.54E+06
2 4.90E+06 1.71E+06 6.02E+06 2.09E+06 4.95E+06 1.72E+06
3 4.90E+06 1.71E+06 5.88E+06 2.04E+06 4.96E+06 1.72E+06
1 3.44E+06 8.17E+05 4.26E+06 1.00E+06 4.63E+06 1.09E+06
2 4.18E+06 9.93E+05 4.38E+06 1.03E+06 5.09E+06 1.20E+06
3 4.66E+06 1.10E+06 4.68E+06 1.10E+06 5.30E+06 1.25E+06
1 3.95E+06 6.99E+05 3.87E+06 6.77E+05 3.67E+06 6.48E+05
2 3.89E+06 6.94E+05 4.78E+06 8.43E+05 3.75E+06 6.67E+05
3 5.34E+06 9.48E+05 4.29E+06 7.56E+05 3.68E+06 6.49E+05
1 7.53E+06 2.29E+06 7.46E+06 2.26E+06 6.93E+06 2.10E+06
2 8.86E+06 2.69E+06 8.78E+06 2.65E+06 8.89E+06 2.69E+06
3 9.02E+06 2.74E+06 8.06E+06 2.44E+06 8.80E+06 2.67E+06
1 4.67E+06 1.26E+06 3.62E+06 9.71E+05 5.50E+06 1.47E+06
2 5.90E+06 1.58E+06 3.53E+06 9.47E+05 5.97E+06 1.59E+06
3 6.23E+06 1.66E+06 3.56E+06 9.53E+05 6.90E+06 1.83E+06
1 2.76E+06 8.28E+05 2.28E+06 6.85E+05 2.25E+06 6.72E+05
2 3.13E+06 9.39E+05 2.32E+06 6.97E+05 2.56E+06 7.68E+05
3 2.93E+06 8.83E+05 2.58E+06 7.77E+05 2.57E+06 7.76E+05

5

6

EtOH End Tam

1

2

3

4

Supplementary Table 5: Read counts for DNA from the DMS library under different conditions.
Read counts after merging and quality filter based on the presence of the constant regions surrrounding the 16nt barcode and 
UMI. Reads mapped are the number of reads that correspond to a barcode identified in the mapping sequencing run.
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Supplementary Table 6: Read counts for RNA from the DMS library under different conditions.
Read counts after merging and quality filter based on the presence of the constant regions surrrounding the 16nt barcode and 
UMI. Reads mapped are the number of reads that correspond to a barcode identified in the mapping sequencing run.

Segment Replicate Has Constants Reads Mapped Has Constants Reads Mapped Has Constants Reads Mapped
1 2.18E+06 6.77E+05 4.63E+06 1.48E+06 5.82E+06 1.85E+06
2 2.18E+06 6.74E+05 4.83E+06 1.55E+06 6.23E+06 1.96E+06
3 1.97E+06 6.10E+05 4.66E+06 1.48E+06 6.18E+06 1.94E+06
1 3.45E+06 6.77E+05 8.34E+06 1.68E+06 7.87E+06 1.56E+06
2 2.96E+06 5.82E+05 5.06E+06 1.03E+06 7.21E+06 1.45E+06
3 2.71E+06 5.32E+05 7.27E+06 1.47E+06 7.51E+06 1.49E+06
1 2.32E+06 3.03E+05 5.30E+06 7.38E+05 4.50E+06 6.04E+05
2 2.88E+06 1.68E+05 4.79E+06 6.69E+05 4.58E+06 6.17E+05
3 2.00E+06 2.62E+05 5.94E+06 8.21E+05 4.38E+06 5.91E+05
1 2.53E+06 6.81E+05 6.13E+06 1.70E+06 7.05E+06 1.92E+06
2 2.61E+06 6.97E+05 6.42E+06 1.77E+06 7.29E+06 1.98E+06
3 2.30E+06 6.17E+05 6.78E+06 1.87E+06 5.69E+06 1.55E+06
1 1.50E+06 3.28E+05 3.78E+06 8.75E+05 4.24E+06 9.54E+05
2 1.48E+06 3.24E+05 3.72E+06 8.58E+05 4.28E+06 9.58E+05
3 1.39E+06 3.03E+05 3.62E+06 8.37E+05 3.88E+06 8.79E+05
1 2.43E+06 6.48E+05 5.37E+06 1.50E+06 5.27E+06 1.46E+06
2 2.28E+06 6.07E+05 5.27E+06 1.47E+06 5.33E+06 1.47E+06
3 2.06E+06 5.50E+05 5.25E+06 1.45E+06 4.95E+06 1.35E+06

Tam

1

2

5

6

EtOH End

3

4
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4.0.0 Conclusions and Future Directions 
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4.1.0 Conclusions 

Allosteric transcription factors (aTFs) have fundamental roles in a wide range of cellular processes 

due to their ability to alter gene expression at the transcription level. aTFs have the capacity to 

interact with small molecules or proteins, bind to DNA, and undergo allosteric changes. However, 

little is known about the molecular mechanisms that give rise to these functions. These proteins 

have evolved from ancient predecessors; the molecular interactions that confer the ability to 

control gene expression have been preserved under selective pressures. Mutations fixed during 

evolution can affect each fitness parameter independently and have a nonadditive effect on gene 

expression control. This work took the initial steps in understanding the epistatic effect of amino 

acid interactions across multiple fitness parameters and the sequence-function relationship 

underlying ligand specificity. I developed a novel design-screening workflow that can be applied 

to create novel aTF biosensors. 

 

4.1.1 Epistasis across multiple fitness parameters 

To understand the complexity of the evolution of novel function in ATFs, I used an engineered 

TtgR variant with resveratrol specificity through the addition of four mutations: C137I, I141W, 

M167L, and F168Y. By assaying all combinations of these four mutations against naringenin, the 

native ligand, and resveratrol, the target ligand, I show that epistasis affects both protein functions 

but to different extents. I used dose response curves to characterize the epistatic interactions in 

basal gene expression, maximum gene expression, and EC50 between both ligands. Epistasis is 

pervasive, but unique through across all parameters of transcription factor function. However, 

pairs of epistatic residues, such as C137I+I141W and M167L+F168Y were consistent across 

multiple fitness parameters. 
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This study utilized computational design to engineer a specificity switch into TtgR, which 

constrained mutations to a select set of residues in the ligand binding pocket. In the natural 

evolution of an aTF, mutations that increase fitness can occur throughout the primary sequence 

and become fixed through natural selection. The mutations presented in this work are a single 

solution to confer resveratrol specificity, but evolution could have selected a different set of 

mutations at different positions. By selecting mutations at positions that directly interact with the 

ligand, I focused on the effect of epistasis on both biophysical interactions and biological function.  

 

Epistasis in the development of novel function in aTFs is intricately linked to all facets of gene 

expression control. Classically, epistasis has been visualized as the ruggedness of a fitness 

landscape1,2. In these examples, the height of the landscape is the measure of a single functional 

parameter like binding affinity, stability, or catalytic activity. An evolutionary process will navigate 

a combination of all parameters in complex functions, which can be envisioned as a 

multidimensional fitness surface. I show that a single sequence may not be optimal in all 

parameters. For example, combinations of the four mutations in this study showed that as basal 

fluorescence decreases, sensitivity also decreases. Furthermore, this work implies that varying 

selection pressures on an evolutionary scale may enable multifunctional proteins to bypass fitness 

barriers in different landscapes. In our case, higher order epistasis prevents access to the 

quadruple mutant in the naringenin fold induction landscape but could be bypassed by selection 

pressure in the resveratrol response fitness landscape. The evolution of allosteric proteins is 

inherently dependent on epistasis and the interactions arising between mutations in these 

proteins uniquely affects multiple adaptive landscapes.  

 

4.1.2 Engineering novel ligand affinity into TtgR 
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Allosteric transcription factors have important applications as biosensors in biotechnology as 

these proteins naturally control gene expression in response to small molecules in the 

environment3. However, these proteins remain difficult engineering candidates despite high 

demand to bring designer transcription factors into biotechnology as specific, sensitive, in vivo 

biosensors4,5. A natural transcription factor that interacts with the desired molecules with high 

sensitivity may not exist, creating a need to engineer new affinities into existing aTFs. This 

redesign requires the manipulation of ligand binding interactions and the preservation of existing 

allosteric interactions.  

 

In chapter 3, I use a combination of a phylogenetically derived library and an RNA-Seq screening 

workflow that enables screening of 16,000 transcription factor variants across multiple ligands. 

By selecting a ligand-agnostic library design workflow, the resulting variants may have altered 

affinity for any small molecule6. 

 

The RNA-Seq workflow was validated with a small library consisting of the combinatorial mutants 

assayed in chapter 2. I used the RNA-Seq workflow to probe the agnostic library for response on 

tamoxifen, 4-hydroxytamoxifen, endoxifen, N-desmethyltamoxifen, naltrexone, ellagic acid, 

quinine, naringenin, and phloretin. I selected the top performing variants from each ligand based 

on RNA-Seq data and inserted them into a sfGFP reporter system to screen via fluorescence-

activated cell sorting. The fluorescence screen indicated that the variants responded to the 

ligands, validating the existence of novel sensors in the agnostic library. 

 

Sequence trends between variants suggest that the RNA-Seq screening approach reveals amino 

acid preferences that are consistent in the top performers. By analyzing the positional entropy 

and amino acid distribution for each mutable position, I found that similar ligands had similar 
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preferences for amino acids at positions with high selectivity. These preferences were also shared 

on the subset of best-performing variants for each ligand, suggesting that the RNA-Seq can be 

used to inform future design workflows by incorporating fold enrichment data. 

 

In addition to screening the agnostic library, I applied the RNA-Seq approach to a deep mutational 

scan library of TtgR against endoxifen and tamoxifen. I found that this approach can characterize 

thousands of variants across multiple biological replicates. Mutational hotspots were across the 

protein. A small subset of these positions was located between the DNA binding domain and the 

ligand binding domain, suggesting structural or functional importance. Thus, the RNA-Seq 

workflow can also be applied to understand the underlying biology of gene expression.  

 

4.2.0 Future Directions 

4.2.1 Epistasis in allosteric transcription factors 

The concept of multidimensional epistasis in aTF evolution has not been examined exhaustively. 

With the increase in next-generation sequencing read capacity, assaying both gene expression 

and its functional parameters is now possible. Assuming that read volumes are no longer a 

limitation in the future, assaying large combinations of mutations to probe the depth and strength 

of epistasis can be done more deeply than before7. This work is the first step in observing the 

effects of mutations across multiple fitness parameters. Next steps include expanding the 

transcription factor variant library and increasing the number of ligands screened. 

 

The set of four mutations that provided resveratrol specificity is only one solution to changing 

ligand specificity in TtgR. The next step is to ascertain if these four mutations are the only solution 

at both the four positions and across the entire protein sequence. Searching sequence space at 

the four mutable positions (137, 141, 167, and 168) would give greater insight into the epistatic 
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relationship between each position. C137I and I141W created an epistatic interaction in this work, 

but the pairing may be specific for these two substitutions. This experiment would elucidate the 

underlying intersection of fitness parameters across multiple substitutions and positions. I expect 

that a global maximum of fitness across all parameters will be inaccessible as fitness tradeoffs 

are an innate property of evolution8,9. This result can be visualized as a Pareto front across each 

functional parameter.  

 

Mutagenesis across the protein domain in a combinatorial fashion has been performed to a limited 

extent10. Future experiments need to increase the number of combinatorial mutations sampled to 

better characterize the extent of epistasis in the fitness landscape. For TtgR, a protein with 

approximately 200 amino acids, mutating any four positions to the non-wildtype amino acids will 

yield a library of approximately 1019 variants. Assuming that technology has advanced to the point 

that sequencing this number of variants is feasible, this theoretical library will reveal both 

functional hotspots and epistatic trends at a greater depth than previous experiments. 

 

Understanding epistasis in promiscuous aTFs requires assaying both an extensive transcription 

factor library across multiple ligands. Additional ligands, like phloretin or tetracycline, can give 

insight into the entire functional landscape of TtgR. Response to these ligands may be individually 

affected by the mutations across the three different fitness parameters. I expect that each ligand 

will have a unique set of optimal sequences and that the current sequence of TtgR is not optimal 

for each ligand based on other works examining the evolution of functional specificity11,12.  

 

By increasing the number of mutations, positions, and ligands in transcription factor variant 

libraries, the next studies can probe the fitness surface of aTF and examine higher-order epistatic 

interactions. In the future, I believe that libraries of all combinations of mutations can be created 
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and assayed using next-generation sequencing. These studies can determine the exact 

prevalence and importance of epistasis across transcription factor function.  

 

4.2.2 Computational design and RNA-Seq 

I have shown that the computational design workflow and RNA-Seq screening approach have 

successfully generated variants with function on eight novel ligands. This workflow requires final 

validation of variant function, but additional ligands, mutations, and scaffolds create the potential 

for developing an extensive set of designer biosensors for biotechnology. 

 

Each functional sequence identified via fluorescence screen must be validated in a clonal qRT-

PCR and fluorescence assay to verify function. I expect that top performing variants have some 

response to at least one of the ligands but may be promiscuous. Clonal validation of function will 

provide a small list of variants that can then be crystallized with one of the eight ligands. At this 

point, specificity or fold enrichment can be improved using directed evolution to create highly 

sensitive, highly active sensors. 

 

Using an agnostic approach to computational design had multiple advantages over targeted 

design. First, mutations selected through the computational workflow were derived from a 

phylogenetic alignment. The evolutionary history of these mutations theoretically creates more 

stable alterations in the protein structure compared to random mutagenesis. Second, the same 

library can be screened across multiple ligands, streamlining the screening process. I believe that 

as the capacity for chip oligo synthesis and next generation sequencing increases, the next 

agnostic libraries can incorporate additional positions and mutations. Combinatorial mutations 

across all allowed positions in TtgR creates a library of 151,165,440 variants. Future screens can 

incorporate these variants, which have mutations throughout the entire binding pocket, to create 
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new biosensors for additional small molecules. I believe that mutating additional positions within 

the pocket will yield a larger number of functional variants. The set of positions in this study are 

largely localized to one face of the binding pocket; increasing the potential interactions throughout 

the binding pocket will enable higher affinities for different molecules. 

 

One goal of the RNA-Seq workflow is to obtain data that can be used to improve targeted 

computational design. The data from the agnostic library can be used to improve the scoring 

function weights across the nine ligands to decrease the number of designs that are selected for 

screening. However, this screening approach should also be applied to the combinatorial 

mutagenesis libraries described above to create a functional landscape across all positions and 

multiple ligands. I believe that the nuanced data from this experiment would be invaluable for 

machine learning approaches to iteratively improve the Rosetta design process beyond the limited 

set of mutations tested here.  

 

This work is the first step towards creating a toolkit for biosensor design. Now that a workflow to 

create new sensors is established, I think an immediate follow to this work would be using 

computational and RNA-Seq screening process on a new system. Although I observed numerous 

functional variants to the eight selected ligands, TtgR may not be a suitable scaffold to engineer 

for any random target ligand affinity. However, TtgR is a promiscuous scaffold, which may make 

it more amenable to adopting novel functions than more specific aTFs like TetR13. I believe that 

other promiscuous scaffolds will have the greatest potential for adopting novel ligand affinity. 

QacR is another TetR family member that can bind to multiple organic compounds14. These 

proteins could create a central set of scaffolds from which many additional biosensors can be 

created at will. Future researchers should be able to pick a ligand of interest and have a method 

to search for the most suitable candidate scaffold from the set. Applying either the targeted design 
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or the agnostic approach with RNA-Seq screening would then generate the novel sensor for 

metabolic engineering, environmental monitoring, or gene circuits. 
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