

Modeling and Solution Methods for Inventory Routing Problems

in Chemical Industry

By

Yachao Dong

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Chemical Engineering)

at the

UNIVERSITY OF WISCONSIN-MADISON

2017

Date of final oral examination: 04/24/2017

The dissertation is approved by the following members of the Final Oral Committee:

 Christos T. Maravelias, Professor, Chemical and Biological Engineering

 James B. Rawlings, Professor, Chemical and Biological Engineering

 Ross E. Swaney, Associate Professor, Chemical and Biological Engineering

 Jeffrey T. Linderoth, Professor, Industrial and Systems Engineering

Alberto Del Pia, Assistant Professor, Industrial and Systems Engineering

i

Abstract

Inventory routing problem (IRP) appears in various chemical industry sectors, in which the

vessel/vehicle routes and the time and amount of material deliveries are decided simultaneously.

Given information about the real-time inventory levels at different nodes in the supply chain (SC),

as well as their consumption rate forecasts, a central decision maker solves the IRP to minimize the

total distribution cost subject to the inventory bounds. Essentially, IRP is the integration of the

vehicle routing problem and the inventory management problem. Solving this integrated problem

can result in significant cost savings. However, IRP is non-trivial to solve, especially for large SCs

with realistic constraints considered.

First, mixed-integer programming (MIP) models are developed to address inventory routing

with realistic features, including both anticipatable and order-only customers, heterogeneous

vehicles, time-varying consumption rates, and driver working and resting time constraints. Valid

inequalities are also presented to tighten the formulation. We also show how this model can be

extended to handle other important restrictions that may appear in practice.

Second, we propose a novel method, which includes a preprocessing algorithm and a

decomposition method, for solving vehicle-based IRPs. The preprocessing algorithm reduces the

problem size by eliminating customers and network arcs that are irrelevant for the current horizon.

The decomposition method divides the problem into two subproblems. The upper level

subproblem considers a simplified vehicle routing problem to minimize the distribution cost while

satisfying minimum demands, which are calculated based on consumption rate, initial inventory

and safety stock. In the lower level, a detailed schedule (considering drivers) is acquired using a

continuous-time MIP model, by adopting the routes selected from the upper level. An iterative

approach is presented based on the upper and lower level subproblems, with the addition of

different types of integer cuts and parameter updates.

ii

Third, we consider a maritime IRP (MIRP) under uncertainty. For realistic MIRP, new

information (e.g. newly forecasted production/consumption rate) arrives continuously and

disruptive events (e.g., delays due to bad weather) are common. Accordingly, we propose a

reoptimization framework that allows us to: (1) study the impact of different sources of uncertainty

on the closed-loop (i.e., implemented) solution; and (2) study how different policies impact the

closed-loop cost. We show that the closed-loop cost is higher than the open-loop cost (even without

uncertainty), which suggests that the methods to obtain high quality closed-loop solutions have to

be studied. We also show that adopting an effective mix of polices can reduce the distribution cost

greatly.

Finally, we study topics related to IRP, including terminal constraints for online scheduling and

modeling of changeovers. (1) We propose new types of linear terminal constraints on inventory

levels for different network structures. Compared to the traditional approach, the proposed

terminal constraints can lead to better closed-loop solutions in two aspects: they prevent stockout

for all types of networks we studied, and lead to savings on inventory holding cost. (2) We propose

a new type of formulation for sequence-dependent changeovers, which is tighter than previously

proposed formulations. Furthermore, we prove that this type of formulation is facet-defining for a

certain problem. Through computational study of eight types of formulations, we show that tighter

formulations do not always lead to faster solution times.

iii

Acknowledgements

First, I want to thank my advisor, Professor Christos Maravelias, who sets a great example for

me to be a dedicated researcher. He has shared with me much valuable knowledge and given me

guide on the research projects. With his help, I have learnt how to think critically, how to form a

research idea, how to conduct research, how to write a scientific paper, how to deliver an effective

and engaging presentation; I have also become a more patient and dedicated person. This past six

years will be a memory I can hold fondly later on.

I also want to thank the members of my Final Oral Examination Committee, Professors James

Rawlings, Ross Swaney, Jeffrey Linderoth, and Alberto Del Pia, for reviewing this thesis, attending

my defense and giving me feedbacks.

I would like to thank all the great teachers at UW Madison, who gave me very enjoyable lectures

and most valuable knowledge. I want to thank Professor Christos Maravelias, Ross Swaney, James

Rawling, and Dr. Eric Codner, with whom I worked as a teaching assistant; the teaching experience

really helped me to discover what I want to do. I want to thank the Department of Chemical and

Biological Engineering and its staff for the unfailing help and support.

I am very thankful to everyone in the research group, from whom I got a lot of friendship, help

and encouragement. Members senior to me, especially Dr. Sara Velez, Andres Merchan, Murat Sen,

Jee-Hoon Han, Kefeng Huang, and Rex Ng, really helped me when I started to do research. My

thanks also go to Dr. Julien Granger, Jose Pinto, Arul Sundaramoorthy, Norman Jerome, Ajit

Gopalakrishnan, Irene Loreto, Brian Besancon, with whom I had the opportunity to work with.

The six year experience has been most valuable to me because of many friends: some we know

each other for over twenty years, some only a few months. My gratitude for the happiness,

friendship and beautiful memory goes to Xuanxuan, Xiaoping, Xiaomeng, Jiaxing, Yuhai, Lisa, Ji Luo,

Yaqiong, Liu Han, Dandan, Eileen, Li Mao, Xiaobo, Tim, Loren, Colin.

iv

I am very thankful for my parents who allow me to choose what I want to do and how I want to

live this life. I am also very lucky for having a big family, including my grandparents, uncles, aunts,

my cousins, and my nephews and nieces, who always give me a lot of encouragement, even though I

fail to keep them company for the past few years.

Yachao

April, 2017

v

Table of Contents

Abstract ... i

Acknowledgements ... iii

Table of Contents .. v

List of Figures ... x

List of Tables ... xiii

Chapter 1. Introduction .. 1

1.1. Inventory Routing ... 1

1.2. Industrial Gases Supply Chain under Vendor Managed Inventory ... 3

1.3. Overview on Modeling Approaches ... 4

1.4. Overview on Solution Methods.. 5

1.5. Topics related to Inventory Routing ... 7

1.6. Thesis Scope .. 8

Chapter 2. Discrete-time MIP Model for IRP under VMI Policy ... 11

2.1. Problem Statement .. 12

2.2. Basic Model ... 13

2.2.1. Discrete-time Approach .. 14

2.2.2. Time Expanded Network Representation ... 16

2.2.3. Mathematical Formulation .. 17

2.2.4. Preprocessing .. 20

2.2.5. Valid Inequalities ... 21

2.3. Driver Constraints .. 23

2.3.1. New Variables ... 23

2.3.2. Mathematical Formulation .. 24

2.4. Extensions ... 27

2.4.1. Inventory Violations ... 27

2.4.2. Variable Loading/Delivering Time ... 28

2.4.3. Differentiation of Driving from Working ... 30

2.4.4. Drivers at the Plant ... 31

2.4.5. Remarks ... 32

2.5. Examples .. 33

2.6. Conclusions ... 36

vi

2.7. Notation .. 37

Chapter 3. Solution Methods for IRP under VMI Policy with Driver Constraints 40

3.1. Problem and Method Overview ... 40

3.1.1. Problem Statement ... 40

3.1.2. Solution Strategy .. 42

3.2. Dynamic Network Reduction .. 43

3.2.1. Customer Selection ... 44

3.2.2. Network Arc Elimination .. 49

3.2.3. Example ... 49

3.3. Vehicle Routing Subproblem ... 50

3.3.1. Route Generation ... 50

3.3.2. Vehicle Routing Model ... 52

3.4. Scheduling Subproblem ... 54

3.4.1. Segment Generation ... 55

3.4.2. Variables .. 57

3.4.3. Segment Assignment Constraints ... 59

3.4.4. Time Constraints .. 60

3.4.5. Delivery Flow Constraints ... 63

3.4.6. Access Window Constraints ... 64

3.4.7. Inventory Constraints ... 64

3.4.8. Time Varying Consumption Constraints ... 65

3.4.9. Objective ... 68

3.5. Iterative Approach .. 68

3.5.1. General Integer Cuts for VR .. 70

3.5.2. Truck-route Paring Options ... 71

3.5.3. Heuristic Procedures for Infeasible SP ... 72

3.5.4. Heuristic Procedures for Feasible SP .. 74

3.6. Computational Study .. 75

3.6.1. Toy Example ... 76

3.6.2. Industrial-size Instances .. 78

3.6.3. Remarks .. 82

3.7. Conclusions ... 83

3.8. Notation .. 84

Chapter 4. Policy Analysis based on Reoptimization for MIRP under Uncertainty 89

vii

4.1. Background ... 90

4.1.1. Distribution Supply Chain ... 90

4.1.2. Reoptimization .. 91

4.1.3. Problem Statement .. 92

4.2. Discrete-time Model. ... 94

4.2.1. Variables ... 95

4.2.2. System Initial States ... 96

4.2.3. Constraints ... 97

4.2.4. Objective Function .. 99

4.2.5. Valid Inequalities .. 101

4.3. Uncertainty and Stochastic Simulations .. 102

4.3.1. Vessel Availability in Long-term Mode .. 103

4.3.2. Vessel Availability in Short-term Mode ... 105

4.3.3. Trip Delay... 106

4.3.4. Pick-up Window Specifications .. 106

4.3.5. Consumption/Production rate .. 106

4.4. Reoptimization Framework .. 107

4.5. Policy Analysis .. 108

4.5.1. Reservation Windows ... 109

4.5.2. Vessel Constraints .. 110

4.5.3. Early Pick-up .. 110

4.5.4. Pick-up Windows .. 111

4.6. Case Study .. 111

4.6.1. Effect of Short-term Renting and Reoptimization ... 112

4.6.2. Effect of Uncertainty .. 114

4.6.3. Effect of Policies .. 115

4.6.4. Effect of Policies related to Pick-up Windows .. 118

4.7. Conclusions .. 120

4.8. Notation ... 120

Chapter 5. Terminal Constraints for Online Scheduling .. 124

5.1. Background .. 126

5.1.1. Motivating Examples ... 126

5.1.2. Problem Statement .. 128

5.2. Proposed Framework .. 129

viii

5.2.1. Overall Approach .. 129

5.2.2. Feasibility Model (MF).. 131

5.2.3. Campaign Model (MC) .. 132

5.3. Multi-stage Single-product Problems ... 133

5.3.1. Proposed Terminal Constraints .. 134

5.3.2. Examples .. 135

5.4. Single-stage Multi-product Problems ... 136

5.4.1. Type 1 Terminal Constraints ... 136

5.4.2. Type 2 Terminal Constraints ... 138

5.4.3. Examples .. 139

5.5. Multi-stage Multi-product Problems ... 141

5.5.1. Proposed Terminal Constraints .. 141

5.5.2. Examples .. 144

5.6. Extension to Problems with Parallel Units ... 144

5.6.1. Multi-stage Single-product Problems ... 144

5.6.1.1. Identical Units .. 144

5.6.1.2. Non-identical Units .. 145

5.6.2. Single-stage Multi-product Problems ... 145

5.6.2.1. Identical Units .. 145

5.6.2.2. Non-identical Units .. 146

5.6.3. Multi-stage Multi-product Problems .. 146

5.7. Remarks... 147

5.8. Computational Results .. 149

5.8.1. Deterministic Problems ... 150

5.8.2. Problems with Uncertainty... 151

5.9. Conclusions .. 153

5.9. Notation ... 153

Chapter 6. Discrete-time Formulations in Scheduling Problems with Changeover 156

6.1. Background .. 157

6.1.1. Single Unit .. 157

6.1.2. Parallel Units .. 158

6.1.3. Parallel Units with Unequal Capacities .. 159

6.1.4. Assumptions and Literature Formulations .. 160

ix

6.1.5. Remarks .. 163

6.2. Facet-defining Constraints (SIIT) ... 164

6.3. Relative Tightness of Formulations ... 167

6.4. Computational Study ... 169

6.4.1. Single Unit .. 170

6.4.2. Parallel Units .. 173

6.4.3. Parallel Units with Unequal Capacities .. 174

6.4.4. Additional Testing .. 176

6.5. Conclusions .. 176

6.6. Notation ... 177

Chapter 7. Conclusions and Recommendations .. 179

6.1. Concluding Remarks .. 179

6.2. Future Research Directions ... 181

Appendices .. 183

A. Proof of Proposition 5.1 ... 183

B. Proof of Proposition 5.2 ... 185

C. Proof of Proposition 5.4 ... 189

D. Proof of Proposition 5.6 ... 192

E. Proof of Correctness of Constraints (SIIT) ... 195

F. Proof of Proposition 6.1.. 197

G. Algorithms ... 199

Bibliography ... 206

x

List of Figures

Figure 1.1. Inventory routing problem under VMI policy with drivers .. 2

Figure 2.1. Modeling of access window and variable consumption rate .. 15

Figure 2.2. Network representation of 3-customer supply chain ... 16

Figure 2.3. Truck location modeling .. 19

Figure 2.4. Inventory modeling for anticipatable customer .. 19

Figure 2.5. Modeling of truck location and driver rest at a customer site ... 25

Figure 2.6. Driver working modeling with variables corresponding to different working activities 27

Figure 2.7. Piecewise linear penalties for inventory violation. .. 28

Figure 2.8. Driver modeling at the plant. ... 33

Figure 2.9. The 8-customer example ... 34

Figure 2.10. Gantt chart showing the solution using model M2. ... 36

Figure 3.1. Outline of the solution strategy .. 43

Figure 3.2. The procedure of determining trigger customers... 45

Figure 3.3. Illustration of the trigger customer region .. 47

Figure 3.4. Illustration of different Tj definition in inventory level criterion ... 48

Figure 3.5. SC nodes in the distribution network after dynamic network reduction. 50

Figure 3.6. All ways to break long routes into segments are considered ... 55

Figure 3.7. Illustration of slots and binary variables .. 56

Figure 3.8. Illustration of infeasible schedules that are cut off by (3.37) and (3.38) 62

Figure 3.9. Illustration of parameters and variables for piecewise linear approximation 67

Figure 3.10. Detailed solution method flowchart... 70

Figure 3.11. Network structure for the toy example .. 76

Figure 3.12. Routes selected for instance 11 ... 81

Figure 3.13. Gantt chart showing the solution for instance 11 .. 82

Figure 3.14. Effects of integer cuts on the number of non-zeros and solution time 83

Figure 4.1. An illustration of the overall distribution network .. 90

Figure 4.2. Production rate, upper and lower bounds on inventory levels for a third-party
production node ... 95

Figure 4.3. Inventory modeling for a consumption node.. 97

Figure 4.4. Modeling for the extended renting of vessels beyond ϑL periods .. 100

Figure 4.5. Availability of vessels is checked if the solution of the model includes the start of a long-
term renting within the reservation window ... 103

xi

Figure 4.6. Constraining the number of unreserved vessels in long-term mode according to the
availability profile .. 104

Figure 4.7. Flowchart of the reoptimization algorithm .. 107

Figure 4.8. The estimated cost 𝐶𝐼𝐷(𝑑) as the horizon is rolled ... 109

Figure 4.9. Penalty modification for soft pick-up window .. 112

Figure 4.10. Open- and closed-loop solutions without short-term renting ... 113

Figure 4.11. Open- and closed-loop solutions with short-term renting .. 113

Figure 4.12. Profiles of 𝐶𝐼𝐷(𝑑) when different sources of uncertainty are incorporated 115

Figure 4.13. Results of the closed-loop cost in case 2 ... 117

Figure 4.14. Sample mean of the closed-loop cost for different soft window length and penalties 119

Figure 5.1. Network structure, Gantt chart and inventory levels of the motivating examples 127

Figure 5.2. Model MF to check if 𝒔 ∈ 𝐒𝐹 and the overall approach .. 130

Figure 5.3. Different network structures .. 131

Figure 5.4. Parameters, region 𝐒F, proposed terminal constraints, and the traditional thresholds for
the 2-stage example ... 135

Figure 5.5. Parameters, region 𝐒F, proposed terminal constraints, and the traditional thresholds for
the 2-product example ... 140

Figure 5.6. The boundary of region 𝐒F and the proposed terminal constraints for the 3-product
example... 141

Figure 5.7. Network and parameters for a 2-stage 2-product example with one intermediate 143

Figure 5.8. The boundary of region 𝐒F and the proposed terminal constraints for the 2-stage 2-
product example (with one intermediate)... 143

Figure 5.9. Online scheduling procedure .. 150

Figure 5.10. Increase of the sample mean of AIL of MFTT compared to that of MFTC 152

Figure 6.1. Parameters and constraints (SIIT) for i=T3, t=14, based on the data of Table 6.2 167

Figure 6.2. Illustration of tightness of constraints (SIIT) for profit maximization.................................. 167

Figure 6.3. Relative tightness of all formulations .. 168

Figure 6.4. Performance charts of different models for single unit instances using C1 set of options
 .. 171

Figure 6.5. Average over all single unit instances of the number of constraints, nonzeros, and
branch-and-bound nodes .. 172

Figure 6.6. Performance charts of different models for instances with parallel units using C1 set of
options .. 174

Figure 6.7. Performance charts of different models for unequal capacity parallel units instances
using C1 .. 175

xii

List of Tables

Table 2.1. Data for anticipatable customers; symbols and units in parentheses .. 34

Table 3.1. Different options in the iterative approach ... 76

Table 3.2. Customer parameters for the toy example .. 76

Table 3.3. Truck capacities for the toy example ... 76

Table 3.4. Iterations and solution time for the toy example .. 77

Table 3.5. Instance characteristics, iterations, solution times, and objective function values using
options 1-4 ... 79

Table 3.6. Solution statistics of the VR model in the first iteration .. 79

Table 3.7. Solution statistics of the SP model in the first iteration, using OptnE (options 1,2) 80

Table 3.8. Solution statistics of the SP model in the first iteration, using OptnR (options 3,4) 80

Table 3.9. Solution statistics of the full model ... 80

Table 4.1. Estimated costs 𝐶𝐼𝐷(𝑑) of the four solutions ... 113

Table 4.2. Characteristics of 13 cases ... 116

Table 4.3. Statistics of cases used to study reservation window paramters ... 119

Table 4.4. Statistics of cases with different vessel constraints .. 119

Table 4.5. Statistics of cases studying whether to use the preference of early pick-ups 119

Table 4.6. Statistics of cases with different pick-up windows ... 120

Table 5.1. Terminal constraints for different problems ... 147

Table 5.2. Values of SP (%) and AIL for the deterministic problems .. 151

Table 5.3. The sample mean of SP (%) for the single-stage multi-product problem 151

Table 5.4. The sample mean of SP (%) for the multi-stage single-product problem 151

Table 5.5. The sample mean of SP (%) for the multi-stage multi-product problem 151

Table 6.1. Constraints used in different production environments and objective functions 160

Table 6.2. Data for the 4-task example .. 166

Table 6.3. Single-unit problem: average integrality gap improvement with respect to the gap of MK

 .. 173

Table 6.4. Parallel units problem: average integrality gap improvement with respect to the gap of
MK ... 174

Table 6.5. Parallel units with unequal capacities: average integrality gap improvement with respect
to MK .. 175

Table 6.6. Solution times for makespan minimization problems ... 176

1

Chapter 1

Introduction1

1.1. Inventory Routing

To improve the efficiency of their supply chains (SCs), vendors in a wide range of

manufacturing sectors switch to vendor-managed inventory practices. Vendor-managed inventory

(VMI) refers to an agreement between a vendor and a customer in which the latter allows the

vendor to choose the timing and volume of deliveries, while the former agrees to ensure that the

customer does not run out of product. In a more traditional relationship, a customer decides the

orders, and large inefficiencies can occur as a result of the timing of the orders from different

customers. A switch to a VMI policy has a distinct advantage because the vendor can combine

deliveries to make more efficient use of the resources and can therefore reduce the distribution

cost of its SC. Since distribution costs often represent 30-50% of total operating costs, the

implementation of VMI policies can have a substantial impact (Disney et al., 2003). It can also be to

the advantage of the customers because the vendor can pass some of the savings to the customer,

and the customer no longer has to dedicate resources to the inventory management.

However, executing a VMI policy in an effective way is nontrivial, because it requires the

integration of two components of SC management: inventory control and distribution routing,

which have been dealt with separately in the past. In inventory control, the goal is the

determination of orders in terms of time and amount for each customer, while in distribution

routing, the goal is the generation of routes (and schedules) to satisfy these orders. The integration

1 Some of this chapter is modified from Dong et al., 2014 and Dong et al., 2017.

2

of the two problems, which can have a significant impact on overall system performance, leads to

the inventory routing problem (IRP), which is at the heart of all VMI policies (Figure 1.1).

Figure 1.1. Inventory routing problem under VMI policy with drivers.

IRPs arise in a wide range of manufacturing sectors, including gas, petrochemicals, and

suppliers of supermarkets and department stores (Viswanathan et al., 1997; Gaur and Fisher, 2004;

Moin and Salhi, 2007; Christiansen et al., 2011; Shen et al., 2011; Singh et al., 2015). Each sector has

its own special characteristics. For example, in the petroleum industry, seagoing vessels with

several products in separate compartments visit multiple production and consumption ports. This

special class of IRP, the so-called maritime inventory routing problem (MIRP), has been studied

extensively in the literature (Jetlunt and Karimi, 2004; Savelsbergh and Song, 2007; Engineer et al.,

2012).In industrial gases and retails, however, the use of trucks instead of ships introduces complex

driver related constraints that are not taken into account in previous models. Furthermore, the

customer consumption rate can vary significantly in a day, and some customers, such as hospitals,

have strict inventory constraints. These are additional restrictions that have not been effectively

modeled in previous approaches.

3

There are many types of IRPs studied in the literature, which can be categorized in terms of

inventory policy, fleet type, and network structure (Coelho et al., 2014). When customers are

visited by the vessels/trucks, several inventory policies can be adopted: bringing the customer

inventory level to its maximum capacity, to a predefined target level or to any level as long as the

inventory bounds are respected (Coelho and Laporte, 2015). The fleet can be homogeneous or

heterogeneous in terms of capacities (Savelsbergh and Song, 2007; Hewitt et al., 2013). The

network structure is either single-vendor and multi-customer, or multi-vendor and multi-customer.

The former mostly appears in vehicle-based transportation, while the latter often shows up in

MIRPs (Papageorgiou et al., 2014a; Adulyasak et al., 2015). In general, IRP can include either single-

product or multi-product distribution. In the latter case, dedicated or undedicated compartments

can be required (Jetlund et al., 2004; Al-Khayyal et al., 2007; Siswanto et al., 2011).

1.2. Industrial Gases Supply Chain under Vendor Managed Inventory Policy

A distribution network consists of plants, customers, storage facilities, trucks (each associated

with a trailer) and drivers. Under VMI, most customer inventories are managed by the vendor, i.e.

the vendor installs storage facilities in customer locations with proper sizes and manages their

replenishments. The vendor proactively monitors the inventories of customers in real time, by

installing communicating units termed Remote Telemetry Units. The vendor can then decide when

and how much to deliver to each customer to satisfy demand.

A fleet of trailers of various capacities are employed in a certain region. The product is carried

on a variety of tanker-trailers, and it is transferred to the storage tank at each customer through

different routes. In this thesis, an arc means the connection between two nodes in the distribution

network. A route means an ordered set of arcs, {𝑎1, 𝑎2, … , 𝑎𝑛}, in which the end node of an arc, 𝑎𝑖 , is

the same as the start node of the following arc 𝑎𝑖+1; the plant is the start node of the first arc and

4

the end node of the last arc. Routes can be broadly classified as: single-customer routes and multi-

customer routes.

In a single-customer route, a trailer departs from the plant, delivers all or most of the product to

a customer, and then directly returns to the plant. These routes are typically for customers with a

storage tank of sufficient capacity to hold the entire volume of the trailer. Occasionally, there are

also emergency deliveries made to customers with smaller capacities, in order to prevent stockouts.

In a multi-customer route, a trailer departs from the plant, delivers the product to multiple

customers, and then returns to the plant. Customers with smaller storage tanks are typically served

on such routes.

Long-term decisions involve the number of tanks to install in each customer location and the

size of each tank (Shen and Qi, 2007; You et al., 2011a; You et al., 2011b). Other long-term decisions

include when and how to install new tanks at customer locations, as well as when and how to

upgrade and downgrade existing tanks (Vidal and Goetschalckx, 1997; Verderame and Floudas,

2010). Short-term distribution decisions include which customers to deliver to each day, when and

how much to deliver, how to combine deliveries into routes, how to fit routes into drivers’

schedules, and which truck or trailer to assign to each route. In this thesis, we consider the short-

term decisions.

1.3. Overview on Modeling Approaches

To address different types of IRPs, different mixed-integer programming (MIP) models have

been proposed. The first MIP model of IRP was introduced 34 years ago (Bell et al., 1983), which

includes binary variables denoting if a vehicle starts a route at a certain time and continuous

variables denoting the corresponding delivery amount to a customer on the route.

For IRP under VMI, different inventory policies can be adopted. Archetti et al. (2007) modeled

IRPs under three types of policies: order-up-to level policy, maximum level policy and a policy

5

without stock upper bounds. These models include binary variables denoting if an arc is used in a

certain time (i.e., if node A is followed directly after node B in the route traveled in time period t); in

essence, they consider two subproblems simultaneously: the lot-sizing problem for each node, and

a vehicle routing problem for each time period. However, these models assume a large fleet with

homogeneous vessels, and the travelling time is not considered (i.e., it is assumed that all routes can

be finished in a single period). Avella et al. (2015) considered a reformulation for similar problems

with constant demand over time. In the reformulation, it is also assumed that the stock capacities

are integer multiples of the demand. IRP has also been modeled in a cyclic approach (Raa, 2015), as

well as using a fuzzy approach with multiple objective functions (Niakan and Rahimi, 2015).

Furthermore, several consistency features have been modeled to achieve smooth operations

(Coelho et al., 2012). Researchers have also proposed methods to address uncertainty (Kleywegt et

al., 2002).

For maritime IRP, most of the MIP models follow a discrete-time approach. In this approach,

there are binary variables denoting if a vessel starts to travel on an arc (from node A to node B) at

time t, and continuous variables denoting the loading amount on a vessel when it travels on an arc

(Song and Furman, 2013). Continuous-time models have also been developed by defining multiple

visiting slots for each node (Jiang and Grossmann, 2015; Agra et al., 2016), where constant

consumption and production rate is assumed.

1.4. Overview on Solution Methods

To solve an IRP model more effectively, different solution methods have been proposed. The

solution methods are based on valid inequalities (Persson and Göthe-Lundgren, 2005; Song and

Furman, 2013), column generation (Grønhaug et al., 2010; Hewitt et al., 2013; Desaulniers et al.,

2016), Lagrangian decomposition (Yu et al., 2006; Shen et al., 2011), , and other decomposition-

based algorithms (Jetlund et al., 2004; Campbell and Savelsbergh, 2004). Heuristic based solution

6

methods have also been developed for IRP, including genetic algorithms (Aziz and Moin, 2007), and

the emulation of the logic of human planners (Ronen, 2002). The solution methods of IRP have been

reviewed in several papers (Baita et al., 1998; Moin and Salhi, 2007; Andersson et al., 2010; Coelho

et al., 2014; Papageorgiou et al., 2014b).

Campbell and Savelsbergh proposed a decomposition approach (Campbell and Savelsbergh,

2004). In the first phase, they determined which customers to serve on each day and how much to

deliver to them; the decision was made by solving a MIP model, in which binary variables represent

which route are used in each day. In the second phase, they adopted an insertion heuristic for

solving vehicle routing problems with time windows, and constructed feasible vehicle routes and

schedules. The time interval used for the problems in the first phase was one day, while the second

phase considered a model with decision accuracy in terms of minutes.

Shen et al. proposed a Lagrangian relaxation approach for solving an IRP, in which crude oil is

transported from a supply center to multiple customer harbors (Shen et al., 2011). They

reformulated the capacity constraints into a non-linear form (with a maximum operator), and

relaxed the constraints after introducing a set of Lagrange multipliers. They also developed a new

heuristic algorithm to construct a feasible solution, based on the solution of the relaxed problem.

However, their approach cannot guarantee optimality.

Song and Furman considered a MIRP which includes various practical features (Song and

Furman, 2013). They proposed valid inequalities, an algorithm to implement a large neighborhood

search based on a feasible integer solution, and a heuristic method based on solution polishing and

the large neighborhood search.

Desaulniers et al. proposed a branch-price-and-cut algorithm for IRP (Desaulniers et al., 2016).

Four types of valid inequalities were adopted, based on the minimum number of visits per

customer, minimum number of routes per time interval, minimum number of subdeliveries per

7

demand, and capacities. Column generation subproblems were solved using an ad hoc labeling

algorithm.

1.5. Topics related to Inventory Routing

First, IRP is related to the traditional vehicle routing problem, in which the customers to serve

and the delivery amounts are given. A lot of research effort has been made to solve different vehicle

routing problems for decades (Laporte et al., 1988; Nagy and Salhi, 2007; Dondo et al., 2008;

Laporte, 2009; Dondo et al., 2009; Gounaris et al., 2013). Considering the rules of drivers, models

and solution methods have been developed for driver scheduling and vehicle routing problems

(Goel, 2009; Goel, 2012; Rancourt et al., 2013).

Second, the integration of IRP and production has also been studied. Lei et al. were among the

first researchers to consider such an integration, and they solved it through a two-phase approach

(Lei et al., 2006). Glankwamdee et al. combined optimization with simulation to address the

production and distribution under demand and product availability uncertainty (Glankwamdee et

al., 2008). Bard and Nanaukul considered the problem to minimize the production, inventory and

delivery cost simultaneously across various stages of the system, and developed a branch-and-price

framework to solve the underlying MIP model (Bard and Nananukul, 2010). Zhang et al. solved a

problem with multiple production facilities integrated with the inventory routing problem, and

proposed a MIP model that includes production constraints in a fine time grid and vehicle routing

constraints in a coarse grid; an iterative heuristic approach was developed to solve the MIP model,

in which the candidate routes were updated dynamically (Zhang et al., 2017).

Third, how to write the terminal constraints is a research topic closely related to IRP. For both

scheduling problems and IRPs, the optimization of a finite-horizon model to minimize the cost will

push inventories to their lower bounds at the end of horizon. Therefore, such a model can only

satisfy the current demand, and will overlook the consumption in future. Clearly, this situation

8

would be suboptimal or even infeasible for the true (infinite-horizon) problem. Thus, we study how

to generate terminal constraints (for scheduling problems) in this thesis.

Fourth, sequence dependent changeover in scheduling are common in the process industries

(e.g., commodity, specialty, and fine chemicals; food and beverage manufacturing; pharmaceutical

manufacturing; consumer goods), where cleaning-in-place, sterilization-in-place, maintenance,

material transfer, and unit setup activities need to be performed between different tasks. If we view

the process tasks as different nodes in the network, the changeover time is the time to travel on the

arc connecting two nodes. This is very similar to inventory routing, in which the time on an arc is

the travel time from one supply chain node to another. Due to the similarity, we also study the

modeling of changeovers in the thesis.

1.6. Thesis Scope

The goal of the thesis is to propose a systematic framework for addressing general IRP

problems. The framework includes MIP models, as well as the associated algorithms and solution

techniques to find a solution in an efficient and accurate fashion. We also want to study how

reoptimization should be implemented for IRP under uncertainty, as well as research topics related

to IRP. More specifically, we aim to

(a) Propose MIP models that handle features and constraints that appear in IRP, especially, driver

constraints.

(b) Develop solution methods that can solve IRP efficiently.

(c) Study how reoptimization should be carried out for IRP.

(d) Study related topics, including terminal constraints and changeovers.

In Chapter 2, we present MIP models to address IRP. The basic model is based on a discrete-

time approach, considering both anticipatable and order-only customers, heterogeneous vehicles,

9

and time-varying consumption rates. Valid inequalities are also proposed, as well as the constraints

to account for the working, driving and resting time of drivers.

In Chapter 3, we present solution methods for vehicle-based IRPs. First, we propose a

preprocessing algorithm that reduces the problem size by eliminating customers and network arcs

that are irrelevant for the current horizon. Second, we develop a decomposition method that

divides the problem into two subproblems. The upper level subproblem considers a simplified

vehicle routing problem to minimize the distribution cost while satisfying minimum demands,

which are calculated based on consumption rate, initial inventory and safety stock. In the lower

level, a detailed schedule (considering drivers) is acquired using a continuous-time MIP model, by

adopting the routes selected from the upper level. Finally, an iterative approach based on the upper

and lower levels is presented, including the addition of different types of integer cuts and

parameter updates. Different options of implementing this iterative approach are discussed, and

computational results are presented.

In Chapter 4, we study a MIRP in which shipments between production and consumption nodes

are carried out by a fleet of vessels. We first propose a discrete-time MIP model. Second, we discuss

different sources of uncertainty (including vessel availabilities, trip delays, pick-up window

specifications, and consumption/production rate variations), and how to simulate them a rolling

horizon reoptimization framework. Third, we discuss different policies that impact the quality of

the closed-loop solution (including adjusting reservation windows, restricting minimum number of

rented vessels, adding preference for early pick-up, and negotiating pick-up windows), and identify

the optimal set of policies by using the reoptimization framework.

In Chapter 5, we propose new types of linear terminal constraints on inventory levels for online

scheduling. Compared to the traditional approach, which does not exploit the relationships of

inventory levels among materials, the proposed terminal constraints can lead to better closed-loop

10

solutions in two aspects: they prevent stockout for all types of networks we studied, and lead to

savings on inventory holding cost. Theoretically, we prove that for two types of networks, the

proposed terminal constraints can lead to recursive feasibility.

In Chapter 6, we propose a new formulation for sequence-dependent changeovers, and prove

that it is facet-defining for a certain problem. We compare the tightness of this new formulation to

seven formulations that were proposed previously. Through computational study, we show that

tighter formulations do not always lead to faster solution times.

Proofs and algorithms are given in the Appendices. Problem parameters and statistics can be

obtained from the online supporting materials of the articles on which each chapter is based. Each

chapter includes its own notation at the end.

11

Chapter 2

Discrete-time MIP Model for IRP under VMI Policy2

Different characteristics and constraints that arise in real-world have to be considered in order

to make the solution of an IRP model implementable in practice. These complexities include: the

coexistence of VMI customers and traditional call-in customers, the time-varying consumption

profile of customers subject to their own production/sale schedules, the travelling time

requirements with specified delivery time windows at customer sites, and last but not least, driver-

related working time requirements, which are vital but often omitted by IRP works.

The goal of this chapter is to develop a MIP model that addresses these aforementioned

challenges. Towards this goal, a discrete-time modeling approach is adopted because it can be

easily modified to account for industrial restrictions. Specifically, we first propose a basic model to

minimize vendor’s cost while generating vehicle routes and delivery schedules. Valid inequalities to

tighten the basic model are also discussed. Then, the assignment of drivers to trucks is modeled so

that resting requirements for drivers are satisfied. Finally, extensions are discussed, including the

modeling of inventory violations, consideration of variable loading/delivering time, additional

maximum driving time constraint, and detailed modeling of drivers at the plant. While initially

inspired by an industrial liquid gas transportation problem, the proposed model can be applied to

other problems in the chemical manufacturing sector.

The chapter is structured as follows. In Section 2.1, we state the problem formally. In Section

2.2, a basic model is proposed based on a discrete-time approach, and then the detailed formulation

and valid inequalities are presented. Section 2.3 discusses the driver-related constraints, and

section 2.4 presents various extensions. Finally, section 2.5 presents an example. We use lowercase

2 This chapter is modified from Dong et al., 2014.

12

italic letters for indices, uppercase bold letters for sets, and uppercase italic letters for variables.

Lowercase Greek letters are used for parameters, except for parameters representing the history of

the system and thus its initial state at the current planning horizon, which are denoted by upper

case italic letters with a hat (e.g., �̂�j0
A). Subsets are denoted by the letter for the superset and a

superscript; e.g., JA (anticipatable customers) is a subset of J (all supply chain nodes). Superscripts

are also used to differentiate variables and parameters.

2.1. Problem Statement

The problem is represented by the following: a set of trucks, iI; a set of SC nodes, jJ, which

includes a central plant P, and a subset of customers JC; and a set of drivers, kK. The objective is to

find the optimal delivery amounts, routes, schedules, and resource allocations (drivers, trucks), to

minimize the distribution cost, subject to the constraints described below. We assume that there is

only one central plant, and the liquid gases are always available at the plant. It is also assumed that

there is only one product in the problem, as different products use different trailers and are

scheduled independently.

Each truck i is associated with a trailer tank of specific capacity 𝛾𝑖 , and the capacities can

greatly vary. The customers are classified as either anticipatable, jJA (i.e., customers whose

inventory we can forecast and maintain), or order-only customers, jJO. Each customer may have

multiple access windows in the horizon: given a window 𝑚 ∈ 𝐌𝑗
𝐴𝐻 during which customer j is

accessible, we know the start/end time, 𝜎𝑗𝑚
𝐴𝐻𝑆/𝜎𝑗𝑚

𝐴𝐻𝐸 , of the window.

If traveling from j to j’ is infeasible or too expensive, the arc (j,j’) is removed from the set of arcs

𝐀 ⊆ 𝐉 × 𝐉 of the SC network. The actual travel time along an arc (j,j’) is 𝜏𝑗𝑗′. The product loading

time at the plant (j=P) and the delivering time at the customers (jJC), denoted by 𝛽𝑗, are fixed; i.e.,

they do not depend on the loading/delivering amount. Under this assumption, the traversal time of

13

each arc can be calculated to include the actual travel time (𝜏𝑗𝑗′) and the fixed loading/delivering

time at the starting node (𝛽𝑗). In section 2.4, we discuss the case in which the loading/delivering

times are not fixed.

An anticipatable customer may have variable consumption rate over the planning horizon (e.g.,

high during the day and low or zero during the night). The usage profile is assumed to be an input

(see discussion in section 2.2.1), calculated from demand forecasts prior to optimization. We are

also given the capacity, 𝜁𝑗
𝑈, of the tank and the minimum inventory level, 𝜁𝑗

𝐿, for each anticipatable

customer jJA. At any time, the inventory level is required to be within these two bounds.

We assume that an order-only customer has at most one order placed over the current planning

horizon (this assumption can easily be relaxed by introducing a set of orders, 𝑚 ∈ 𝐌𝑗
𝑂, placed by

jJO). An order from customer j is described by the amount, 𝜑𝑗 , and the start/end time of the

window 𝜎𝑗
𝑂𝑆/𝜎𝑗

𝑂𝐸, within which the order has to be satisfied.

For each driver, a maximum daily working time should be respected, i.e., a driver cannot work

more than �̅�𝑊 hours within a 24-hour period. Also, the driver cannot work again until he has

remained off duty for at least �̅� consecutive hours. In most cases, the parameters are: �̅�𝑊= 14 hr,

and �̅� = 10 hr.

2.2. Basic Model

To address the majority of constraints that appear in real instances, such as variable

consumption rate and multiple access hour windows, we choose to adopt a discrete-time approach.

Another advantage of this approach is that it can be easily extended to account for other

characteristics and constraints that the user may want to add. The disadvantages of discrete

modeling of time are that it requires more variables and constraints which, given the size of this

problem, leads to large MIP models and that time-related data (e.g., traveling times, loading times)

14

have to be approximated. Nevertheless, we decided to adopt a discrete-time approach because

modeling all types of problem-specific constraints is critical if an automated optimization-based

tool for IRP is to be used in practice.

In this section, we show how to calculate the parameters for the discrete-time approach and we

introduce a dynamic network representation of the problem. We present a MIP model that does not

account for driver constraints and discuss a basic preprocessing algorithm for the initialization of

the system. Valid inequalities are also presented.

2.2.1. Discrete-time Approach

The planning horizon, η, is partitioned into T time periods tT = {1, 2, …, T} of uniform length

𝛿 = 𝜂/𝑇. The traversal time of arc (𝑗, 𝑗′) ∈ 𝐀 is an approximation of the actual travel time and

loading/delivering time, calculated by 𝜏𝑗𝑗′ = ⌈(𝜏𝑗𝑗′ + 𝛽𝑗)/𝛿⌉. We round up to ensure feasibility. For

small period length, this approximation is sufficiently accurate, but in some cases the calculation

may have to be modified to be less conservative. Similarly, we calculate maximum working time

and minimum resting time, 𝜃𝑊 = ⌊�̅�𝑊/𝛿⌋, 𝜓 = ⌈ �̅�/𝛿⌉. Each period t starts at point t-1, and ends at

point t.

Next, we convert the original data, such as access windows, order delivery windows, and

variable consumption rates, into parameters to be used in our MIP model. The calculation of the

associated parameters can be performed automatically, in seconds, prior to the solution of the MIP

formulation. Note that this approach leads only to changes in parameters, without increasing the

size or complexity of the problem (i.e., the number of variables and constraints remain the same).

The access window time information can be obtained from the start/end time of the windows.

Here, binary parameter 𝛼𝑗𝑡
𝐴𝐻 is 1 if period t is within one of the accessible windows of customer j. It

is calculated by Eq (2.1), which is essentially equivalent to rounding-up the window start time and

rounding-down the window end time (see Figure 2.1(a)).

15

 𝛼𝑗𝑡
𝐴𝐻 = {

1 if ∃𝑚 ∈ 𝐌𝑗
𝐴𝐻: ⌈𝜎𝑗𝑚

𝐴𝐻𝑆/𝛿⌉ + 1 ≤ 𝑡 ≤ ⌊𝜎𝑗𝑚
𝐴𝐻𝐸/𝛿⌋

0 otherwise
, ∀𝑗 ∈ 𝐉𝐶 , 𝑡 (2.1)

Similarly for the order-only customers, binary parameter 𝛼𝑗𝑡
𝑂 is 1, if period t is within the order

delivery window; in Eq (2.2), it is calculated from the original window within which an order

should be satisfied,

 𝛼𝑗𝑡
𝑂 = {

1 if ⌈𝜎𝑗
𝑂𝑆/𝛿⌉ + 1 ≤ 𝑡 ≤ ⌊𝜎𝑗

𝑂𝐸/𝛿⌋

0 otherwise
, ∀𝑗 ∈ 𝐉𝑂 , 𝑡 (2.2)

To represent the variable consumption profile, we simply need to calculate a period-specific

consumption rate 𝜌𝑗𝑡 for each anticipatable customer and each period, which is basically the

integral of the consumption rate from t-1 to t. Figure 2.1(b) shows an example. After calculated

from forecasting data prior to each optimization, the period-specific consumption rate is used in the

material balance. Note that parameter 𝜌𝑗𝑡 can be calculated for any consumption profile function

(linear, piece-wise linear, or any other non-linear).

Drivers can become available or stop working in the course of the planning horizon. The explicit

availability of each driver can be calculated after the individual window bounds are rounded up or

down to ensure feasibility, as presented earlier. Exactly the same approach can be followed for each

truck, using the availability window bounds.

Figure 2.1. Modeling of access window and variable consumption rate (green rectangles represent access
hours).

16

Figure 2.2. Network representation of 3-customer supply chain. (a) 3-customer supply chain represented as
dynamic network. (b) An example of an incomplete truck route represented as a path in the dynamic
network. (c) Time-expanded network corresponding to the one-direction (i.e., only with P → b, no b → P)
dynamic network of figure (a). (d) Representation of the truck route in the time-expanded network.

2.2.2. Time Expanded Network Representation

The planning horizon, η, is partitioned into T time periods tT = {1, 2, …, T} of uniform length

𝛿 = 𝜂/𝑇. The traversal time of arc (𝑗, 𝑗′) ∈ 𝐀 is an approximation of the actual travel time and

loading/delivering time, calculated by 𝜏𝑗𝑗′ = ⌈(𝜏𝑗𝑗′ + 𝛽𝑗)/𝛿⌉. We round up to ensure feasibility. For

small period length, this approximation is sufficiently accurate, but in some cases the calculation

may have to be modified to be less conservative. Similarly, we calculate maximum working time

and minimum resting time, 𝜃𝑊 = ⌊�̅�𝑊/𝛿⌋, 𝜓 = ⌈ �̅�/𝛿⌉. Each period t starts at point t-1, and ends at

point t.

The basic model includes the following binary variables:

(a) Truck location: �̅�𝑖𝑗𝑡 is one if truck i is at SC node j during time period t.

(b) Trip start: 𝑊𝑖𝑗𝑗′𝑡 is one if truck i starts trip from j to j’ at time point t.

Throughout this chapter, variables whose time index t is used to denote a state or quantity

during a period have an over bar (e.g., �̅�𝑖𝑗𝑡); while variables whose index t is used to denote an

action/state at time point t, have no over bar (e.g., 𝑊𝑖𝑗𝑗′𝑡). We also use the following non-negative

continuous variables:

17

(a) Anticipatable customer inventory: 𝐿𝑗𝑡
𝐴 is the inventory level of anticipatable customer j at time

point t. Note that this variable stands for the inventory level of customer and truck load amount,

if the truck is at the customer (see Eq (2.6), (2.7)).

(b) Arc flow: 𝐹𝑖𝑗𝑗′𝑡
𝐴 is the amount of product loaded in truck i, which starts the trip from node j to

node j’ at time t.

Interestingly, the problem can be represented in terms of a dynamic network: the plant and the

customers are the nodes, the connections between them are the arcs, and the traversal time is equal

to 𝜏𝑗𝑗′. A trip is then represented as a path in the dynamic network. A dynamic network ND can be

transformed into a time-expanded network NTE: (1) for each node v of ND, introduce T+1 nodes, v0,

v1, …, vT in NTE, where vt represents node v at time t; (2) introduce arc vt wt’ in NTE if v w is an

arc in ND and t’ – t = τvw. A flow along vt wt’ in NTE corresponds to a flow along v w in ND (Ahiujia

et al., 1993; Maravelias, 2012a). The construction of NTE and its representation of a route are

illustrated in Figure 2.2. Each truck has its own specific network.

2.2.3. Mathematical Formulation

The planning horizon, η, is partitioned into T time periods tT = {1, 2, …, T} of uniform length

𝛿 = 𝜂/𝑇. The traversal time of arc (𝑗, 𝑗′) ∈ 𝐀 is an approximation of the actual travel time and

loading/delivering time, calculated by 𝜏𝑗𝑗′ = ⌈(𝜏𝑗𝑗′ + 𝛽𝑗)/𝛿⌉. We round up to ensure feasibility. For

small period length, this approximation is sufficiently accurate, but in some cases the calculation

may have to be modified to be less conservative. Similarly, we calculate maximum working time

and minimum resting time, 𝜃𝑊 = ⌊�̅�𝑊/𝛿⌋, 𝜓 = ⌈ �̅�/𝛿⌉. Each period t starts at point t-1, and ends at

point t.

Truck location. Variables �̅�𝑖𝑗𝑡 which determine the location of the truck are defined by:

18

 �̅�𝑖𝑗𝑡 = �̅�𝑖𝑗,𝑡−1 + ∑ 𝑊𝑖𝑗′𝑗,𝑡−𝜏
𝑗′𝑗

−1

𝑗′

− ∑ 𝑊𝑖𝑗𝑗′,𝑡−1

𝑗′

, ∀𝑖, 𝑗, 𝑡 (2.3)

where the first sum represents the arrival of truck i at customer j at time t-1, and the second sum

represents the departure of truck i from j at t-1. Constraints (2.3) require that truck i is at SC node j

during period t, if: (1) it was there during period t-1, and it did not leave at t-1; or (2) it arrived at

node j at t-1, from a trip that started earlier, and it did not leave node j immediately. Eq (2.3)

implies that a truck can be at only one node at a certain time, as long as the initial state is feasible

(i.e., at t = 0 the truck is either at a node or traveling along a single arc). Note that variables 𝑊𝑖𝑗𝑗′𝑡

represent binary flows in the time expanded network for trucks and Eq (2.3) expresses a flow

balance for node jt in this network (see Figure 2.3).

Arc flow. Variables 𝐹𝑖𝑗𝑗′𝑡
𝐴 , representing the truck loads along the arcs, are bounded by:

 𝐹𝑖𝑗𝑗′𝑡
𝐴 ≤ 𝛾𝑖𝑊𝑖𝑗𝑗′𝑡 , ∀𝑖, 𝑗, 𝑗′, 𝑡 (2.4)

 𝐹𝑖𝑃𝑗𝑡
𝐴 ≥ 𝜀𝛾𝑖𝑊𝑖𝑃𝑗𝑡 , ∀𝑖, 𝑗, 𝑡 (2.5)

Constraints (2.4) bound the arc flow variable 𝐹𝑖𝑗𝑗′𝑡
𝐴 by the truck capacity, if the corresponding

trip start variable 𝑊𝑖𝑗𝑗′𝑡 is 1; otherwise, the arc flow variable is zero. Constraints (2.5) enforce a

minimum loading amount at the plant to avoid a route with very small deliveries, where ε is a

parameter less than 1. When full truck loading is required for each route, ε will be set to 1.

Anticipatable customer inventory. The inventory level 𝐿𝑗𝑡
𝐴 is defined by:

 𝐿𝑗𝑡
𝐴 = 𝐿𝑗(𝑡−1)

𝐴 + ∑ 𝐹𝑖𝑗′𝑗,𝑡−𝜏
𝑗′𝑗

𝐴

𝑖,𝑗′

− ∑ 𝐹𝑖𝑗𝑗′𝑡
𝐴

𝑖,𝑗′

− 𝜌𝑗𝑡 , ∀𝑗𝐉𝐴, 𝑡 (2.6)

where the first sum represents the incoming flow to customer j at time point t, and the second sum

represents the outgoing flow. Thus, the inventory at point t is the inventory at the previous time

point, plus the incoming flow, minus the outgoing flow, minus the consumption in the last period.

The inventory level is bounded by:

19

 𝜁𝑗
𝐿 ≤ 𝐿𝑗𝑡

𝐴 ≤ 𝜁𝑗
𝑈 + ∑ 𝛾𝑖�̅�𝑖𝑗,𝑡+1

𝑖

, ∀𝑗𝐉𝐴, 𝑡 (2.7)

Figure 2.3. Truck location modeling, for truck i at customer b during time period 3.

Figure 2.4. Inventory modeling for anticipatable customer b, with a truck traveling on a→b→c. The
loading/delivering time is included at the beginning of each traversal time. (a) The truck arrives at b,
immediately makes delivery, and leaves. (b) The truck stays at b, idle for one period before making delivery.
(c) The real-time inventory may go below the minimum level, when the truck is at the customer but has not
made delivery yet. This inventory violation can be avoided by starting the delivery earlier during the idle
period, as shown in the dashed line in (c).

The lower bound is simply the minimum level, while the upper bound is the maximum level

plus a summation of truck capacity multiplied by the truck location variable. Since the inventory

level, 𝐿𝑗𝑡
𝐴 , in Eq (2.6) includes the previous incoming flow for the entire tank, when truck i is at a

customer j, the maximum level should be adjusted accordingly in Eq (2.7). Figure 2.4 illustrates the

way we model deliveries and inventories.

Order satisfaction. For order-only customers, the order satisfaction is described by:

20

 ∑ 𝐹𝑖𝑗′𝑗𝑡
𝐴

𝑖,𝑗′,𝑡

− ∑ 𝐹𝑖𝑗𝑗′𝑡
𝐴

𝑖,𝑗′,𝑡

≥ 𝜑𝑗 , ∀𝑗𝐉𝑂 (2.8)

where the difference of the incoming and outgoing flows is greater than the order amount.

Objective function. The objective function minimizes cost,

 𝑧 = 𝑚𝑖𝑛 ∑ 𝜔𝑖𝑗𝑗′𝑊𝑖𝑗𝑗′𝑡

𝑖,𝑗,𝑗′,𝑡

 (2.9)

where 𝜔𝑖𝑗𝑗′ is the travel cost along the (j,j’) arc for truck i. When the cost is assumed to be

proportional to the distance and thus fuel expenses, parameter 𝜔𝑖𝑗𝑗′ can be replaced by the actual

travel time 𝜏𝑗𝑗′. The setup costs for each delivery can be easily modeled, by adding a sum of trip

start variables 𝑊𝑖𝑗𝑗′𝑡 to the objective function. Parameters 𝜔𝑖𝑗𝑗′ can also capture driving time, and

cost, for drivers (since the time between nodes j and j’ is known) and setup cost for the head node.

2.2.4. Preprocessing

The proposed model is meant to be used in a rolling horizon fashion, which means that

previously made decisions affect the current state (t = 0) of the system. Here, we assume that the

initial state of the system is described by the following: (1) inventory of anticipatable customers

jJA, �̂�𝑗0
𝐴 ; (2) inventory of trucks, �̂�𝑖0

𝑇 ; (3) truck locations (�̂�𝑖𝑗0 = 1 if truck i is located at j at t = 0,

�̂�𝑖𝑗0 = 0 otherwise); (4) unfinished trips from the previous horizon (�̂�𝑖𝑗𝑗′𝑡 = 1, if truck i started

trip from j to j’ at t, �̂�𝑖𝑗𝑗′𝑡 = 0 otherwise); and (5) the arc flow of unfinished trips (�̂�𝑖𝑗𝑗′𝑡
𝐴 , =

inventory of truck i starting a trip from j to j’ at t). The index t in both �̂�𝑖𝑗𝑗′𝑡 and �̂�𝑖𝑗𝑗′𝑡
𝐴 parameters

satisfies −𝜏𝑗𝑗′ ≤ 𝑡 < 0.

Using the parameters defined above, the initial state of the system is determined as follows. For

the initial location, we set �̅�𝑖𝑗0 = �̂�𝑖𝑗0, for all i, j. For a truck on the road at t = 0, parameter �̂�𝑖𝑗𝑗′𝑡 is

included in Eq (2.3), by replacing 𝑊𝑖𝑗′𝑗,𝑡−𝜏
𝑗′𝑗

−1 with �̂�𝑖𝑗′𝑗,𝑡−𝜏
𝑗′𝑗

−1, when 𝑡 − 𝜏𝑗′𝑗 − 1 < 0. The same

21

is done with arc flow parameter of unfinished trip �̂�𝑖𝑗𝑗′𝑡
𝐴 in Eq (2.6). Initial inventories are set for all

anticipatable customers via 𝐿𝑗0
𝐴 = �̂�𝑗0

𝐴 + ∑ �̂�𝑖0
𝑇 �̂�𝑖𝑗0𝑖 , where the sum represents the truck inventory, if

it is at the customer initially.

In addition, some binary variables need to be fixed. For arcs (𝑗, 𝑗′) ∉ 𝒜 , the corresponding trip

start variables 𝑊𝑖𝑗𝑗′𝑡 are set to zero, for all i, t. If time period t is not within the access window of

customer j, i.e., 𝛼𝑗𝑡
𝐴𝐻 = 0, �̅�𝑖𝑗𝑡 and 𝑊𝑖𝑗𝑗′𝑡 are set to zero, for all i, j’. In this way, a truck cannot stay at

a customer outside the customer’s access hours and the customer has no outgoing arcs outside its

access window, and thereby from Eq (2.3), no incoming arcs are allowed. However, this can be

relaxed, if we allow trucks to stay in a customer outside its access window. Variables �̅�𝑖𝑗𝑡 and 𝑊𝑖𝑗𝑗′𝑡

are dealt similarly for the order delivery windows (𝛼𝑗𝑡
𝑂 = 0). In cases where the access window are

soft, we can also model early/late deliveries with penalties. We expand the start/end time but

include a penalty term for deliveries outside the window. When truck i is not available during time

t, we fix �̅�𝑖𝑃𝑡 to one, and other �̅�𝑖𝑗𝑡 to zero. When truck i cannot serve customer j (e.g., due to pump

type or trailer size restrictions), we can simply set �̅�𝑖𝑗𝑡 , 𝑊𝑖𝑗′𝑗𝑡 , 𝑊𝑖𝑗𝑗′𝑡 to zero for all j’ and t. Finally, if

customer j has to be served first in a route (e.g., hospitals), then we can remove all incoming arcs

except from the plant, which is equivalent to setting 𝑊𝑖𝑗′𝑗𝑡 to zero, for all i ,𝑗′ ≠ 𝑃, t.

2.2.5. Valid Inequalities

The valid inequalities presented below, which tighten the formulation, are based on the idea of

cumulative demand and maximum delivery or loading amount per visit.

For anticipatable customers, the following inequality is valid:

 ∑ 𝑊𝑖𝑗′𝑗𝑡

𝑖,𝑗′,𝑡

≥ ⌈
𝜁𝑗

𝐿 + ∑ 𝜌𝑗𝑡𝑡 − �̂�𝑗0
𝐴 − ∑ �̂�𝑖𝑗′𝑗𝑡𝑖,𝑗′,−𝜏𝑗′𝑗≤𝑡<0

min (𝜁𝑗
𝑈 − 𝜁𝑗

𝐿, max
𝑖

𝛾𝑖)
⌉, ∀𝑗𝐉𝐴 (2.10)

22

which enforces that the number of visits to a customer 𝑗𝐉𝐴 should be above a round-up of a lower

bound, defined on the right-hand side (RHS). The numerator of the lower bound is the minimum

demand in the planning horizon for this customer (minimum level at the end of horizon, plus

consumption, minus initial inventory, and pre-assigned incoming arc flows), while the denominator

is the maximum delivery amount per visit. Additionally, to address the impact of the finite horizon

optimization approach, a terminal minimum level parameter 𝜁𝑗
𝑇 can be used, replacing 𝜁𝑗

𝐿 in the

numerator. In this way, the minimum level at the end of horizon is guaranteed to be above the

terminal minimum level.

Similarly, we can write the inequality for each order-only customer, with a small modification,

described in the following equation:

 ∑ 𝑊𝑖𝑗′𝑗𝑡

𝑖,𝑗′,𝑡

≥ ⌈
𝜑𝑗

max
𝑖

𝛾𝑖
⌉ , ∀𝑗𝐉𝑂 (2.11)

where on the RHS, the numerator is modified to the order amount, while the denominator is the

maximum truck capacity.

Such inequalities can also be written for the plant as follows,

 ∑ 𝑊𝑖𝑃𝑗𝑡

𝑖,𝑗,𝑡

≥ ⌈
∑ (𝜁𝑗

𝐿 + ∑ 𝜌𝑗𝑡𝑡 − �̂�𝑗0
𝐴 − ∑ �̂�𝑖𝑗′𝑗𝑡𝑖,𝑗′,−𝜏𝑗′𝑗≤𝑡<0)𝑗𝐉𝐀 + ∑ 𝜑𝑗𝑗𝐉𝐎

max
𝑖

𝛾𝑖
⌉ (2.12)

where the numerator now represents the minimum total demand over all customers in the

planning horizon.

With these valid inequalities, the basic model, M1, consists of Eq (2.3) –(2.12).

Note that valid inequalities in (2.10)–(2.12) have two other versions that can be useful in some

cases. We will just demonstrate them for Eq (2.10), but Eq (2.11) and (2.12) can be rewritten

following the same logic.

23

First, if the truck capacities greatly vary, we can write the valid inequality as follows:

 ∑ min(𝜁𝑗
𝑈 − 𝜁𝑗

𝐿, 𝛾𝑖) 𝑊𝑖𝑗′𝑗𝑡

𝑖,𝑗′,𝑡

≥ 𝜁𝑗
𝐿 + ∑ 𝜌𝑗𝑡

𝑡

− �̂�𝑗0
𝐴 − ∑ �̂�𝑖𝑗′𝑗𝑡

𝑖,𝑗′,−𝜏𝑗′𝑗≤𝑡<0

, ∀𝑗𝐉𝐴
(2.13)

where on the left-hand side (LHS) is the sum of maximum delivery amount multiplied by the

incoming arc binary, with different truck capacities considered. Eq (2.13) is expected to be more

effective in instances with very different truck capacities.

Second, Eq (2.10) is rewritten with respect to the minimum demand up until every time point t

as follows,

 ∑ 𝑊𝑖𝑗′𝑗𝑡′

𝑖,𝑗′,𝑡′≤𝑡−𝜏𝑗′𝑗

≥ ⌈
𝜁𝑗

𝐿 + ∑ 𝜌𝑗𝑡′𝑡′≤𝑡 − �̂�𝑗0
𝐴 − ∑ �̂�𝑖𝑗′𝑗𝑡′𝑖,𝑗′,−𝜏𝑗𝑗′≤𝑡′≤min (−1,𝑡−𝜏𝑗′𝑗)

min (𝜁𝑗
𝑈 − 𝜁𝑗

𝐿, max
𝑖

𝛾𝑖)
⌉, ∀𝑗𝐉𝐴, 𝑡 (2.14)

where the LHS represents the number of visits to customer j, and the summation of consumption

variables until the current time t is in the numerator on the RHS. Our computational studies show

that Eq (2.14) does not typically make the formulation tighter than Eq (2.10). Similar inequalities to

Eq (2.14) have been successfully implemented to address the maritime IRP.

2.3. Driver Constraints

2.3.1. New Variables

A driver is assigned to a truck, between the start time of checking-in and the finish time of

checking-out. During this assignment, he could be either working or resting away from the plant.

We assume that a driver that has returned to the plant can rest at his base. To model the driver

assignments to trucks and account for working time limits, we need to differentiate between the

states a driver can be at, so the following binary variables are introduced:

(a) Check-in: 𝑌𝑖𝑘𝑡
𝑆 is one if driver k starts to check-in with truck i at time point t.

(b) Check-out: 𝑌𝑖𝑘𝑡
𝐹 is one if driver k finishes the check-out process with truck i at time point t.

24

(c) Driver assignment: �̅�𝑖𝑘𝑡 is one if driver k is assigned to truck i during time period t.

(d) Working: �̅�𝑖𝑘𝑡
𝑊 is one if driver k, assigned to truck i, is working during time period t.

(e) Resting away: �̅�𝑖𝑘𝑡
𝑅 is one if driver k, assigned to truck i, is resting away from the plant during

period t.

(f) Resting at base: �̅�𝑘𝑡
𝑅 is one if driver k is resting at his base beyond the minimum ψ periods,

during period t.

(g) Resting away (truck): 𝑊𝑖𝑗𝑡
𝑅 is one if the driver assigned to truck i starts a rest period after

visiting customer j, at time point t.

Briefly, the first two variables represent the check-in/out activities of the driver at a certain

time point, whereas the next four variables represent the states of drivers during a time period. The

last one is introduced to model the truck’s state when its assigned driver is resting at a certain

customer site.

2.3.2. Mathematical Formulation

Truck location. As we will see below, �̅�𝑖𝑗𝑡 is used to monitor the on-the-clock time of a driver.

This means that if a driver is resting at customer j during period t, variable �̅�𝑖𝑗𝑡 should be zero, as

illustrated in Figure 2.5. Thus, when driver engagement is considered, Eq (2.3) should be modified

for each customer site (the plant remains the same), as follows:

 �̅�𝑖𝑗𝑡 = �̅�𝑖𝑗,𝑡−1 + ∑ 𝑊𝑖𝑗′𝑗,𝑡−𝜏
𝑗′𝑗

−1

𝑗′

− ∑ 𝑊𝑖𝑗𝑗′,𝑡−1

𝑗′

− 𝑊𝑖𝑗,𝑡−1
𝑅 + 𝑊𝑖𝑗,𝑡−𝜓−1

𝑅 , ∀𝑖, 𝑗 ∈ 𝐉𝐶 , 𝑡 (2.15)

where the assigned driver can rest for ψ periods at the customer site. Since resting away from the

plant leads to additional cost, the objective should be modified by adding a penalty term

∑ 𝜔𝑖𝑗
𝑅 𝑊𝑖𝑗𝑡

𝑅
𝑖,𝑗,𝑡 , where 𝜔𝑖𝑗

𝑅 is the driver resting cost for truck i at customer j.

25

Also, the upper bound for the inventory level variable 𝐿𝑗𝑡
𝐴 needs to be modified to include the

truck capacity, when the driver assigned to the truck is resting at this customer. Thus, Eq (2.7)

needs to be rewritten as follows,

Figure 2.5. Modeling of truck location and driver rest at a customer site.

 𝜁𝑗
𝐿 ≤ 𝐿𝑗𝑡

𝐴 ≤ 𝜁𝑗
𝑈 + ∑ 𝛾𝑖(�̅�𝑖𝑗,𝑡+1 + ∑ 𝑊𝑖𝑗𝑡′

𝑅

𝑡

𝑡′=𝑡−𝜓+1

)

𝑖

, ∀𝑗𝐉𝐴, 𝑡 (2.16)

Driver-truck engagement. Three set of equations are introduced, to model the driver-truck

engagements as follows,

 �̅�𝑖𝑘𝑡 = �̅�𝑖𝑘,𝑡−1 + 𝑌𝑖𝑘,𝑡−1
𝑆 − 𝑌𝑖𝑘,𝑡−1

𝐹 , ∀𝑖, 𝑘, 𝑡 (2.17)

 �̅�𝑖𝑘𝑡 = �̅�𝑖𝑘𝑡
𝑊 + �̅�𝑖𝑘𝑡

𝑅 , ∀𝑖, 𝑘, 𝑡 (2.18)

 ∑ �̅�𝑖𝑘𝑡

𝑘

≤ 1, ∀𝑖, 𝑡 (2.19)

Eq (2.17) enforces that a driver is engaged with truck i during period t, if (1) he was engaged in

the last period and did not check out at t-1, or (2) checked in at t-1 and did not check out

immediately. Eq (2.18) enforces that when a driver is engaged with a truck, he can be either

working or resting. Then, Eq (2.19) requires that each truck cannot be assigned to more than one

driver.

26

Working and resting away. The next step is to monitor the activity of a driver through the

activity of the truck the driver is assigned to. The sum of variables 𝑌𝑖𝑘𝑡
𝑊 and 𝑌𝑖𝑘𝑡

𝑅 are calculated as

follows:

 ∑ �̅�𝑖𝑘𝑡
𝑊

𝑘

≥ ∑ ∑ 𝑊𝑖𝑗𝑗′𝑡′

𝑡−1

𝑡′=𝑡−𝜏𝑗𝑗′𝑗,𝑗′

+ ∑ �̅�𝑖𝑗𝑡

𝑗𝐉𝐀

+ ∑ ∑ 𝑌𝑖𝑘𝑡′
𝑆

𝑡−1

𝑡′=𝑡−𝜑𝐶𝐼𝑘

+ ∑ 𝑌𝑖𝑘𝑡′
𝐹

𝑡+𝜑𝐶𝑂−1

𝑡′=𝑡

, ∀𝑖, 𝑡 (2.20)

∑ �̅�𝑖𝑘𝑡

𝑅

𝑘

= ∑ ∑ 𝑊𝑖𝑗𝑡′
𝑅

𝑡−1

𝑡′=𝑡−𝜓𝑗

, ∀𝑖, 𝑡 (2.21)

where 𝜑𝐶𝐼/𝜑𝐶𝑂 are the check-in/check-out times respectively. Eq (2.20) enforces that if truck i is

utilized during period t, then a driver assigned to it has to be working. The four terms in the RHS

represent possible activities: (1) driving, (2) waiting at a customer site, (3) checking in, and (4)

checking out (see Figure 2.5). Eq (2.20) is written as inequality rather than equality to include the

case where the driver is assigned to a truck but is idle at the plant. Eq (2.21) requires that if

someone assigned to truck i is resting away at a customer site at t, one of the associated driver

resting variable �̅�𝑖𝑘𝑡
𝑅 should be 1.

Resting at the plant. The variable �̅�𝑘𝑡
𝑅 , which represents driver resting at his base beyond the

minimum ψ periods, is defined by,

 �̅�𝑘𝑡
𝑅 = �̅�𝑘,𝑡−1

𝑅 + ∑ 𝑌𝑖𝑘,𝑡−𝜓−1
𝐹

𝑖

− ∑ 𝑌𝑖𝑘,𝑡−1
𝑆

𝑖

, ∀𝑘, 𝑡 (2.22)

Eq (2.22) requires that driver k is resting (beyond the minimum time) during period t, if he has

been resting or just finished the minimum resting hours after check-out, and did not check-in at the

start of the current period. Eq (2.22) allows for a flexible resting time at the plant. Note that the

availability of a driver is also modeled through �̅�𝑘𝑡
𝑅 : if driver k is always available, the variable of the

initial time period will be set to one; otherwise, if he is only available after time point t’, �̅�𝑘𝑡
𝑅 , 𝑌𝑖𝑘𝑡

𝑆 , 𝑌𝑖𝑘𝑡
𝐹

27

will be set to zero for any t before t’, �̅�𝑘𝑡′
𝑅 will be set to one, and Eq (2.22) will only be written for t

greater than t’.

Maximum working time. Finally, the working time constraint is written as follows,

 ∑ ∑ �̅�𝑖𝑘𝑡′
𝑊

𝑡′∈𝐓𝑡
24𝑖

≤ 𝜃𝑊, ∀𝑘, 𝑡 (2.23)

where 𝐓𝑡
24 is the set of periods fully or partially included in the 24-hour interval ending with period

t, which is defined by𝐓𝑡
24 = {𝑡′: 𝑡 − 24/𝛿 < 𝑡′ ≤ 𝑡}.

The model with driver constraints, named M2, includes Eq (2.3) for 𝑗 = 𝑃, (2.4)-(2.6), (2.8)-

(2.12), and (2.15)-(2.23). Note that when 𝑌𝑖𝑘𝑡
𝑆 , 𝑌𝑖𝑘𝑡

𝐹 and 𝑊𝑖𝑗𝑡
𝑅 are required to be binary, variables

�̅�𝑖𝑘𝑡 , �̅�𝑖𝑘𝑡
𝑅 , �̅�𝑖𝑘𝑡

𝑊 , and �̅�𝑘𝑡
𝑅 can be treated as continuous variables, bounded between 0 and 1, because

constraints (2.16)-(2.21) ensure their integrality. We treat them as nonnegative continuous

variables in the example shown in section 2.5.

Figure 2.6. Driver working modeling, with variables corresponding to different working activities.

2.4. Extensions

In this section, we show how the proposed model can be extended to account for features that

have to be considered in practice.

2.4.1. Inventory Violations

28

In the basic model, the inventory level of an anticipatable customer is required to be between a

minimum inventory level 𝜁𝑗
𝐿 and the tank capacity 𝜁𝑗

𝑈. However, customers often prefer to maintain

their inventory above a safety level 𝜁𝑗
𝑆 > 𝜁𝑗

𝐿. If that is the case, the following constraint is added.

 𝐿𝑗𝑡
𝐴 = 𝐿𝑗𝑡

𝐴+ − 𝐿𝑗𝑡
𝐴−, ∀𝑗𝐉𝐴, 𝑡 (2.24)

Figure 2.7. Piecewise linear penalties for inventory below 𝜁𝑗

𝑆1 and 𝜁𝑗
𝑆2.

where 𝐿𝑗𝑡
𝐴+ ≥ 𝜁𝑗

𝑆 and 0 ≤ 𝐿𝑗𝑡
𝐴− ≤ 𝜁𝑗

𝑆 − 𝜁𝑗
𝐿. Together with Eq (2.7), (2.24) ensures the inventory

between lower (𝜁𝑗
𝐿) and upper (𝜁𝑗

𝑈) bound, while the safety level violation 𝐿𝑗𝑡
𝐴− is penalized in the

objective. Piecewise linear penalties can also be easily modeled, as shown in Figure 2.7.

2.4.2. Variable Loading/ Delivering Time

If there is a pumping rate for the truck (at most 𝜋𝑖 units of product can be transferred in one

period), the loading/delivering time is no longer fixed. To model this aspect we introduce the

following binary and continuous variables:

(a) Delivering: �̅�𝑖𝑗𝑡
𝐷 ∈ {0,1} is one if truck i is delivering at customer j during time period t.

(b) Loading: �̅�𝑖𝑡
𝐿 ∈ {0,1} is one if truck i is being loaded at the plant during time period t.

(c) Delivery flow: �̅�𝑖𝑗𝑡
𝐷 ≥ 0 is the delivery amount from truck i to customer j during period t.

(d) Load flow: �̅�𝑖𝑡
𝐿 ≥ 0 is the loading amount to truck i during period t.

(e) Truck inventory: 𝐿𝑖𝑡
𝑇 ≥ 0 is the inventory of truck i at time point t.

29

In the basic model, the delivering amount was equal to the difference of incoming and outgoing

arc flows. Now the loading/delivering amount is modeled as follows,

 �̅�𝑖𝑗𝑡
𝐷 ≤ �̅�𝑖𝑗𝑡 , ∀𝑖, 𝑗 ∈ 𝐉𝐶 , 𝑡 (2.25)

 �̅�𝑖𝑗𝑡
𝐷 ≤ 𝜋𝑖�̅�𝑖𝑗𝑡

𝐷 , ∀𝑖, 𝑗 ∈ 𝐉𝐶 , 𝑡 (2.26)

 �̅�𝑖𝑡
𝐿 ≤ �̅�𝑖𝑃𝑡 , ∀𝑖, 𝑡 (2.27)

 �̅�𝑖𝑡
𝐿 ≤ 𝜋𝑖�̅�𝑖𝑡

𝐿 , ∀𝑖, 𝑡 (2.28)

Eq (2.25) ensures that a truck can deliver product to customer during a time period, if the truck is

there, and Eq (2.26) enforces a maximum delivery amount per period. Similarly, Eq (2.27), (2.28)

are written for the loading counterpart, following the same logic. Eq (2.25)-(2.28) replace Eq (2.4)-

(2.5).

Also, the truck inventory is monitored as shown in the following equation,

 𝐿𝑖𝑡
𝑇 = 𝐿𝑖,𝑡−1

𝑇 + �̅�𝑖𝑡
𝐿 − ∑ �̅�𝑖𝑗𝑡

𝐷

𝑗∈𝐉𝐂

≤ 𝛾𝑖, ∀𝑖, 𝑡 (2.29)

For anticipatable customers, the inventory level 𝐿𝑗𝑡
𝐴 decreases due to consumption, increases

when there is a delivery flow, and is lower and upper bounded, as follows,

 𝐿𝑗𝑡
𝐴 = 𝐿𝑗,𝑡−1

𝐴 + ∑ �̅�𝑖𝑗𝑡
𝐷

𝑖

− 𝜌𝑗𝑡 , ∀𝑗𝐉𝐴, 𝑡 (2.30)

 𝜁𝑗
𝐿 ≤ 𝐿𝑗𝑡

𝐴 ≤ 𝜁𝑗
𝑈, ∀𝑗𝐉𝐴, 𝑡 (2.31)

For order-only customers, the delivery flow throughout the planning horizon should satisfy the

ordered amount:

 ∑ �̅�𝑖𝑗𝑡
𝐷

𝑖,𝑡

≥ 𝜑𝑗 , ∀𝑗𝐉𝑂 (2.32)

Thus, to model the variable loading/delivering time, Eq (2.6)-(2.8) shown in section 2.2 will be

replaced by Eq (2.29)–(2.32).

30

2.4.3. Differentiation of Driving from Working

In addition to the maximum working time, there could be a maximum driving time limit, which

requires that a driver cannot drive more than �̅�𝐷 hours (𝜃𝐷 periods) cumulatively, without having a

break of at least �̅� hours (ψ periods).

Thus, keeping track of driving time is needed. We introduce a new binary variable �̅�𝑖𝑘𝑡
𝐷 which is

one if driver k is driving truck i during time period t. The old variable �̅�𝑖𝑘𝑡
𝑊 is modified to be one if

driver k is working with, but not driving truck i during time period t. The following formulation is

based on the extension discussed in section 2.4.2 of variable loading/delivering time, with fixed

loading/delivering time being zero.

Eq (2.18) is modified, so the engagement of a driver to a truck can be classified as driving,

working but not driving, and resting:

 �̅�𝑖𝑘𝑡 = �̅�𝑖𝑘𝑡
𝐷 + �̅�𝑖𝑘𝑡

𝑊 + �̅�𝑖𝑘𝑡
𝑅 , ∀𝑖, 𝑘, 𝑡 (2.33)

Next, the driving and working binary variables are constrained as follows:

 ∑ �̅�𝑖𝑘𝑡
𝐷

𝑘

= ∑ ∑ 𝑊𝑖𝑗𝑗′𝑡′

𝑡−1

𝑡′=𝑡−𝜏𝑗𝑗′𝑗,𝑗′

, ∀𝑖, 𝑡 (2.34)

 ∑ �̅�𝑖𝑘𝑡
𝑊

𝑘

≥ �̅�𝑖𝑡
𝐿 + ∑ �̅�𝑖𝑗𝑡

𝑗𝐉𝐀

+ ∑ ∑ 𝑌𝑖𝑘𝑡′
𝑆

𝑡−1

𝑡′=𝑡−𝜑𝐶𝐼𝑘

+ ∑ ∑ 𝑌𝑖𝑘𝑡′
𝐹

𝑡+𝜑𝐶𝑂−1

𝑡′=𝑡𝑘

, ∀𝑖, 𝑡 (2.35)

Eq (2.34) requires that if the truck is being driven, then there will be a driver assigned to it and

driving it. Eq 35 means that a driver is working, if the assigned truck is either: (1) loading product,

(2) at a customer site, (3) checking in, or (4) checking out. The inequality in Eq (2.35) is used, again,

to consider the case when the driver assigned to a truck is idle at the plant.

The maximum working/driving time constraints are written as follows

31

 ∑ ∑ (�̅�𝑖𝑘𝑡
𝐷 + �̅�𝑖𝑘𝑡′

𝑊)

𝑡′∈𝐓𝑡
24𝑖

≤ 𝜃𝑊, ∀𝑘, 𝑡 (2.36)

 ∑ ∑ �̅�𝑖𝑘𝑡
𝐷

𝑡′∈𝐓𝑡
21𝑖

≤ 𝜃𝐷 , ∀𝑘, 𝑡 (2.37)

Eq (2.36) is modified from Eq (2.23), based on the new definition of variable �̅�𝑖𝑘𝑡
𝑊 , while Eq

(2.37) means that a driver cannot drive more than 𝜃𝐷 periods cumulatively, where 𝐓𝑡
21 = {𝑡′: 𝑡 −

(�̅� + �̅�𝐷)/𝛿 < 𝑡′ ≤ 𝑡}. Typically, �̅�𝐷 = 11, so �̅� + �̅�𝐷 = 21. To sum up, Eq (2.18), (2.20), (2.23) in

M2 will be replaced by Eq (2.33)-(2.37), when maximum driving time constraints need to be taken

into account.

2.4.4. Drivers at the Plant

Practically, drivers can have more flexibility at the plant. For instance, a driver can drive two

different trucks in one shift, thus, a checking-in (checking-out) does not necessarily coincide with

the start (end) of a driver’s day. Also, after a checking-out, a driver may wait for some time at the

plant, idle but on-the-clock, before checking in with another truck. To model all the different

situations arising when a driver is at the plant, the following three variables are introduced (see

Figure 2.8).

(a) Idle: �̅�𝑘𝑡
𝑃 ∈ {0,1} is one if driver k is idle at the plant (not engaged with truck) during period t.

(b) Go to work: 𝑈𝑘𝑡
𝑤 ∈ {0,1} is one if driver k starts working at time point t.

(c) Go to rest: 𝑈𝑘𝑡
𝑅 ∈ {0,1} is one if driver k goes to rest at time point t.

With the new variables, the following constraints are introduced,

 �̅�𝑘𝑡
𝑅 = �̅�𝑘,𝑡−1

𝑅 + 𝑈𝑘,𝑡−𝜓−1
𝑅 − 𝑈𝑘,𝑡−1

𝑤 , ∀𝑘, 𝑡 (2.38)

 �̅�𝑘𝑡
𝑃 = �̅�𝑘,𝑡−1

𝑃 + ∑ 𝑌𝑖𝑘,𝑡−1
𝐹

𝑖

+ 𝑈𝑘,𝑡−1
𝑤 − ∑ 𝑌𝑖𝑘,𝑡−1

𝑆

𝑖

− 𝑈𝑘,𝑡−1
𝑅 , ∀𝑘, 𝑡 (2.39)

 𝑈𝑘𝑡
𝑤 + 𝑈𝑘𝑡

𝑅 ≤ 1, ∀𝑘, 𝑡 (2.40)

32

With the new variables, the following constraints are introduced,

Eq (2.38) is based on Eq (2.22), but requires that driver k is resting (beyond the minimum time)

during period t, if: he has being resting or just finished the minimum resting hours; and did not go

to work at the start of the current period. Eq (2.39) requires that a driver is idle at the plant if: (1)

he was idle (�̅�𝑘,𝑡−1
𝑃 = 1), or just checked out (∑ 𝑌𝑖𝑘,𝑡−1

𝐹
𝑖 = 1), or started working (𝑈𝑘,𝑡−1

𝑤 = 1); and

(2) he did not check in (∑ 𝑌𝑖𝑘,𝑡−1
𝑆

𝑖 = 0) nor started resting (𝑈𝑘,𝑡−1
𝑅 = 0). Finally, Eq (2.40) enforces

that driver cannot go to work and go to rest at the same time. To sum up, Eq (2.22) in M2 will be

replaced by Eq (2.38)-(2.40), when the different situations at the plant need to be modeled.

2.4.5. Remarks

The model can be easily extended to account for a wide range of additional restrictions. For

example, we can add constraints to forbid the simultaneous deliveries of material from two trucks

to the same customer by requiring that the summation of �̅�𝑖𝑗𝑡
𝐷 over index i be less than or equal to 1,

for each customer in each time period. Also, we can forbid the transfer of material from a customer

to a truck. This can be accomplished by a constraint which requires that the sum of incoming flows

be greater than the sum of outgoing flows, for each customer and time t. Although loading from a

customer will in general be suboptimal, since this would incur additional traveling and set-up cost,

there may be situations where loading from a customer with high inventory level can reduce the

total cost. In the extension described in section 2.4.2, transferring from a customer to a truck is

intrinsically infeasible, since �̅�𝑖𝑗𝑡
𝐷 variable is non-negative.

Furthermore, the objective function can be modified to include driver cost explicitly, which may

include the following terms: (1) the working time based wage (∑ 𝜔𝑘
𝐷�̅�𝑖𝑘𝑡

𝑊
𝑖,𝑘,𝑡 with 𝜔𝑘

𝐷 being the

hourly wage); (2) the shift-taking based wage (∑ 𝜔𝑘
𝑆𝑌𝑖𝑘𝑡

𝑆
𝑖,𝑘,𝑡 with 𝜔𝑘

𝑆 being the wage for every shift);

and (3) the resting cost (∑ 𝜔𝑖𝑗
𝑅 𝑊𝑖𝑗𝑡

𝑅
𝑖,𝑗,𝑡 with 𝜔𝑖𝑗

𝑅 being the resting cost for truck i at customer j). Note

33

that the resting cost can also be represented as ∑ 𝜔𝑘
𝑅�̅�𝑖𝑘𝑡

𝑅
𝑖,𝑘,𝑡 where 𝜔𝑘

𝑅 is the hourly resting-away

cost for the driver.

Figure 2.8. Driver modeling at the plant. (a) shows a case of going to rest, resting for more than the minimum
period, and then checking in a truck. (b) shows a case of different truck engagements in one single shift, and
the driver is idle without any truck for one period in this example.

Finally, note that solutions from M1 or M2 can be used to obtain initial solutions to models with

the extensions discussed in section 2.4. Thus, it is possible to decompose the entire problem to

different levels of detail and generate solutions of increasing complexity sequentially.

2.5. Example

A simple industrially inspired example is presented to illustrate what results can be obtained

using the proposed model. There are 4 trucks and 5 drivers, which are always available, serving 8

customers. The objective is to minimize the distribution cost. The planning horizon is 36 hours, and

the discrete time period is 1 hour. The check-in and check-out time is assumed to be 0.5 hour, the

maximum daily working time is 14 hours, and the minimum resting time is 10 hours. The MIP

model was implemented in GAMS 24.1 and solved using CPLEX 12.5 on a desktop with 3.4GHz Intel

Core processor (i7-2600) and 8GB RAM, running Windows 7. The resource limit is 1,800s.

Due to confidentiality issues, inventory levels and capacities are expressed in terms of material

units, denoted by MU. The capacities of truck T1, T2, T3, and T4 are 370, 383, 370, 374 MUs,

respectively. The minimum loading parameter 𝜀 is 0.5. All trucks and drivers are initially located at

34

the plant with no product loaded in trucks, and the trucks are required to return to the plant at the

end of the horizon. The original travel times based on distance, without rounding or

loading/delivering time, are shown in Figure 2.9(a). The fixed loading/delivering time is assumed

to be 1 hour. Customers C1-C7 are anticipatable customers, while C8 is an order-only customer. The

order window for C8 is from 24 to 36 hour point, and the order amount is 267 MUs. For simplicity,

the consumption rates for anticipatable customers are assumed to be uniform throughout the

horizon (given in Table 2.1). Other anticipatable customer data are also given in Table 2.1.

Figure 2.9. The 8-customer example. (a) Availability and original travel time of arcs. (b) Truck routes in the
solution obtained using the basic model M1.

Table 2.1. Data for anticipatable customers; symbols and units in parentheses.

C1 C2 C3 C4 C5 C6 C7

start/end time (𝜎𝑗𝑚
𝐴𝐻𝑆/𝜎𝑗𝑚

𝐴𝐻𝐸, hr) 0/36 0/36 0/36 0/36 0/36 0/24 0/24

consumption rate (𝜌𝑗𝑡 , MUs/hr) 8.43 6.21 19.75 2.69 26.71 6.79 2.87

min/max level (𝜁𝑗
𝐿/𝜁𝑗

𝑈, MUs) 0/775 0/1513 0/815 0/609 0/4505 0/589 0/743

terminal minimum level (𝜁𝑗
𝑇 , MUs) 488 1324 359 165 3554 193 111

initial inventory (�̂�𝑗0
𝐴 , MUs) 748 1375 376 239 4301 397 189

In the objective function, the distribution cost has three parts: (1) fuel cost, based on traveling

distance, assuming that each hour of driving costs 4 cost units (4 ∙ ∑ 𝜏𝑗𝑗′𝑊𝑖𝑗𝑗′𝑡𝑖,𝑗,𝑗′,𝑡); (2) fixed

35

delivery cost, assuming that each delivery costs 1 cost unit, (∑ 𝑊𝑖𝑗𝑗′𝑡𝑖,𝑗,𝑗′𝐉𝐂,𝑡); and (3) resting away

cost, which is equal to 5 cost units, (5 ∙ ∑ 𝑊𝑖𝑗𝑡
𝑅

𝑖,𝑗𝐉𝐂,𝑡).

The basic model M1 has 3,952 binary variables, 3,327 continuous variables, and 5,209

constraints. After 30 minutes, it yields a solution with an objective function value of 141 and an

optimality gap equal to 16.18%. Figure 2.9(b) shows the truck routes of the solution obtained using

M1. The solution with an objective value of 141 is actually optimal for this case.

When the valid inequalities in section 2.2.5 are removed from M1, its LP-relaxation decreases

from 117.69 to 93.63, which means that the integrality gap increases from 16.5% to 33.6%. Also,

while the model without the tightening constraints also obtains the optimal integer solution within

30 minutes, the optimality gap in this case is 31.63% instead of 16.18%. This shows that the cuts

presented are effective in tightening the LP feasible region.

When driver constraints are considered with model M2, the number of binary, continuous

variables, and constraints increases to 7,345 4,815 and 7,600 respectively. After 30 minutes, a

solution with an objective function value of 146 is found with a 19.31% optimality gap. The solution

is shown in Figure 2.10. The solutions of models M1 and M2 happen to include the same customers

in the generated routes. However, in the solution of model M2 a few visits got swapped, and driver

K2 is resting at C1, to satisfy the maximum working time restriction. When the extensions

described in section 5.2-4 are included, the model becomes computationally more expensive. The

best solution found within 30 minutes has an objective function value of 151. A better solution, with

an objective function equal to 146 and the same routes as M1, is found after 48 minutes.

36

Figure 2.10. Gantt chart showing the solution using model M2.

2.6. Conclusions

One of the major challenges in the adoption of optimization-based methods for inventory

routing problems is the wide range of constraints that an IR solution should satisfy in order to be

implementable. To our knowledge, no systematic optimization-based method to address the

general IRP is currently available for truck-based distribution networks. Towards this challenge, we

developed a MIP framework for IR in industrial gases supply chains. Our framework allows us to

formulate models that account for a number of complex features simultaneously, including

maximum daily working and driving time per driver; time-varying consumption rates; customer

access hours; and heterogeneous fleet. We also showed how the framework allows us to consider

additional features. Most importantly, our analysis shows that the solutions found using the

proposed MIP models within a reasonable time, are on average better than the solutions manually

generated by the logistic planners based on heuristic rules.

Nevertheless, the proposed model becomes prohibitively expensive for larger instances, so the

development of advanced solution methods is necessary. The proposed framework can also be used

as the basis for the formulation of more effective MIP models as well as the design of decomposition

methods. For example, the basic model can be used for the generation of routes that can then be

used as input to a second level optimization model (employing discrete or continuous modeling of

time) for the assignment of drivers to routes subject to driving, working, and resting restrictions.

37

2.7. Notation

Indices/Sets

iI trucks

jJ supply chain nodes

kK drivers

𝑚 ∈ 𝐌𝑗
𝐴𝐻 access window of customer j

tT time periods or points

Subsets

JC customers

JA anticipatable customers

JO order-only customers

𝐓𝑡
21/𝐓𝑡

24 time periods included in the 21/24-hour interval ending with period t

Binary Variables

𝑈𝑘𝑡
𝑊/𝑈𝑘𝑡

𝑅 =1 if driver k starts working/resting at time point t

�̅�𝑘𝑡
𝑃 =1 driver k is idle at the plant (not engaged with any truck) during period t

�̅�𝑘𝑡
𝑅 =1 if driver k is resting at the plant beyond the minimum ψ periods, during period t

𝑊𝑖𝑗𝑗′𝑡 = 1 if truck i starts trip from j to j’ at time point t

𝑊𝑖𝑗𝑡
𝑅 =1 if the driver assigned to truck i starts a rest period after visiting customer j, at

time point t

�̅�𝑖𝑗𝑡 =1 if truck i is at SC node j during time period t

�̅�𝑖𝑗𝑡
𝐷 =1 if truck i is delivering at customer j during time period t

�̅�𝑖𝑡
𝐿 =1 if truck i is being loaded at the plant during time period t

�̅�𝑖𝑘𝑡 =1 if driver k is assigned to truck i during time period t

𝑌𝑖𝑘𝑡
𝑆 /𝑌𝑖𝑘𝑡

𝐹 =1 if driver k starts to check-in/ finishes check-out of truck i at time point t

38

�̅�𝑖𝑘𝑡
𝑊 /�̅�𝑖𝑘𝑡

𝐷 /�̅�𝑖𝑘𝑡
𝑅 =1 if driver k is working/ driving/ resting away from the plant, with truck i during

time period t

Non-Negative Variables

𝐹𝑖𝑗𝑗′𝑡
𝐴 product loaded in truck i, which starts the trip from node j to node j’ at time t

�̅�𝑖𝑗𝑡
𝐷 delivery amount from truck i to customer j during period t

�̅�𝑖𝑡
𝐿 loading amount to truck i during period t

𝐿𝑗𝑡
𝐴 inventory level of anticipatable customer j at time point t

𝐿𝑗𝑡
𝐴+/𝐿𝑗𝑡

𝐴− inventory level above/below safety level (for penalization), of anticipatable

customer j at time point t

𝐿𝑖𝑡
𝑇 inventory level of truck i at time point t

Parameters

𝛼𝑗𝑡
𝐴𝐻/𝛼𝑗𝑡

𝑂 =1 if period t is within one of the accessible/ order window of customer j

𝛽𝑗 fixed loading/delivering time at SC node j

𝛾𝑖 capacity of truck i

𝛿 time period length

𝜀 minimum loading percentage

𝜁𝑗
𝐿/𝜁𝑗

𝑈/𝜁𝑗
𝑆/𝜁𝑗

𝑇 minimum/ maximum/ safety/ terminal minimum level of anticipatable customer j

𝜂 planning horizon

𝜃𝑊/𝜃𝐷 maximum working/driving time without resting, in unit of time periods

𝜋𝑖 pumping rate of truck i in one time period

𝜌𝑗𝑡 consumption amount for anticipatable customer j during period t

𝜎𝑗𝑚
𝐴𝐻𝑆/𝜎𝑗𝑚

𝐴𝐻𝐸 start/end time of access window m of customer j

𝜎𝑗
𝑂𝑆/𝜎𝑗

𝑂𝐸 start/end time of order window of customer j

𝜏𝑗𝑗′ travel time of arc (j,j’), in unit of time periods

39

𝜑𝑗 order amount of order-only customer j

𝜑𝐶𝐼/𝜑𝐶𝑂 check-in/check-out time, in units of time periods

𝜓 minimum resting time, in unit of time periods

𝜔𝑖𝑗𝑗′ travel cost of arc (j,j’) for truck i

𝜔𝑖𝑗
𝑅 assigned driver resting cost for truck i at customer j

𝜔𝑘
𝐷/𝜔𝑘

𝑆/𝜔𝑘
𝑅 driving/shift taking/resting payment for driver k

�̂�𝑖𝑗𝑗′𝑡
𝐴 the truck inventory, if truck i is travelling on the arc (j,j’) starting at t, zero otherwise

�̂�𝑗0
𝐴 initial inventory of anticipatable customer j

�̂�𝑖0
𝑇 initial inventory of truck i

�̂�𝑖𝑗𝑗′𝑡 =1 if truck i is on the road, due to pre-assigned trip from j to j’ starting at time point t

�̂�𝑖𝑗0 =1 if initial location of truck i is j

40

Chapter 3

Solution Methods for IRP under VMI Policy with Driver Constraints3

A MIP model for IRP that addresses all the complex constraints has been proposed in the

previous chapter, but it becomes intractable for large instances. Accordingly, the goal of this

chapter is to address this challenge. Specifically, we propose solution methods to address the

computational difficulties of solving vehicle-based IRPs. While we use an industrial gas SC as an

example, the methods are general; i.e., they can be applied to vehicle-based IRPs in other industries.

The chapter is structured as follows. In Section 3.1, we provide a detailed problem statement,

and summarize the solution methods. In Section 3.2, we present a “dynamic” network

preprocessing algorithm that reduces the problem size by eliminating irrelevant SC nodes and

network arcs for the current horizon. In Section 3.3, an upper level vehicle routing (VR) model is

presented, which deals with the simplified vehicle routing problem to minimize the distribution

cost while satisfying minimum customer demand. In Section 3.4, a lower level scheduling problem

(SP) model is proposed, which yields a detailed schedule for each truck and driver, using the routes

selected in the upper level. In Section 3.5, we present an iterative approach that integrates the two

subproblems. In Section 3.6, different instances are presented. We use lowercase italic letters for

indices, uppercase bold letters for sets, and uppercase italic letters for variables. Lowercase Greek

letters are used for parameters, except for a few calculated parameters denoted by combinations of

Greek letters.

3.1. Problem and Method Overview

3.1.1. Problem Statement

3 This chapter is modified from Dong et al., 2017.

41

The problem is represented by the following: a set of trucks, iI; a set of SC nodes, jJ, which

includes a central plant P, and a subset of customers JC; and a set of drivers, kK. The objective is to

find the optimal delivery amounts, routes, schedules, and resource allocations (drivers, trucks), to

minimize the distribution cost, subject to the constraints described below. We assume that there is

only one central plant, and the liquid gases are always available at the plant. It is also assumed that

there is only one product in the problem, as different products use different trailers and are

scheduled independently.

The problem is represented in terms of the following sets:

(a) iI: trucks;

(b) kK: drivers;

(c) jJ: SC nodes, including a central plant P, and a subset 𝐉𝐶 , denoting customers.

Each truck i is associated with a trailer tank of capacity 𝜉𝑖 . For each driver, a maximum daily

working/driving time should be respected, i.e., a driver cannot work/drive more than 𝜃𝑊/𝜃𝐷

hours per day. Also, a driver cannot work again until he has remained off duty for at least 𝜓

consecutive hours. For a route that cannot be finished within the working/driving time limits, the

driver can take a 𝜓-hour rest on the road; we will refer to this type of route as a long route.

The customers are classified as either anticipatable customers, 𝑗 ∈ 𝐉𝐴 (i.e., customers whose

inventory are forecasted and maintained by the vendor), or order-only customers, 𝑗 ∈ 𝐉𝑂. Also, some

customers should be visited first in a route, denoted by 𝐉𝑓𝑖𝑟𝑠𝑡. Each customer may have multiple

access windows in the horizon: for a window, 𝑚 ∈ 𝐌𝑗, during which customer j can receive

products, we know its start/end time, 𝜎𝑗,𝑚
𝐴𝑆 /𝜎𝑗,𝑚

𝐴𝐸. If traveling from j to j’ is infeasible or too

expensive, the arc (j,j’) is removed from the set of arcs in the SC network, 𝐀 ⊆ 𝐉 × 𝐉. The travel time

along an arc (j,j’) is 𝜏𝑜𝑗,𝑗′ . The product loading time at the plant (j=P) and the delivering time at the

customers (𝑗 ∈ 𝐉𝐶), both denoted by 𝛽𝑗, are fixed; i.e., they do not depend on the loading/delivering

42

amount. Under this assumption, the traversal time (𝜏𝑗,𝑗′) of each arc can be calculated to include the

travel time and the fixed loading/delivering time at the start SC node, i.e., 𝜏𝑗,𝑗′ = 𝛽𝑗 + 𝜏𝑜𝑗,𝑗′ . In §3.4,

we discuss the case in which the loading/delivering time is not fixed.

An anticipatable customer may have variable consumption rate (e.g., high during the day and

low or zero during the night). The consumption profile in the planning horizon is assumed to be an

input, calculated from demand forecasts prior to optimization. For each anticipatable customer

𝑗 ∈ 𝐉𝐴, we are also given the capacity, 𝜁𝑗
𝑈, of the tank and the minimum inventory level, 𝜁𝑗

𝐿. At any

time, the inventory level is required to be within these two bounds.

We assume that an order-only customer has at most one order placed in the current planning

horizon, though this assumption can be easily relaxed by introducing a set of orders, 𝑜 ∈ 𝐎𝑗, placed

by 𝑗 ∈ 𝐉𝑂. An order from customer j is described by the amount, 𝜑𝑗 , as well as the start and end

time, 𝜎𝑗
𝑂𝑆 and 𝜎𝑗

𝑂𝐸 , within which the order has to be satisfied.

The objective is to find the optimal routes, delivery amounts, schedules, and resource

allocations (drivers, trucks), to minimize the distribution cost. We assume that there is only one

central plant, in which the products are always available. No loss during transportations and

deliveries is considered, though it can be easily modeled. It is also assumed that there is only one

product, as different products are often distributed by different trailers and scheduled

independently. In practice, drivers are shared among products, but here we assume that drivers are

also dedicated to products.

3.1.2. Solution Strategy

The proposed solution strategy includes three components, described in §3.2-§3.4. First, we

reduce the distribution network dynamically, using the current inventory levels, demand rates and

geographical information of the customers. Specifically, we eliminate nodes (customers) and arcs

43

that can be neglected in the current planning horizon. Then, we adopt a decomposition method,

which includes an upper level vehicle routing subproblem and a lower level scheduling

subproblem.

Figure 3.1. Outline of the solution strategy.

After the network reduction, we generate the routes to visit customers. In the upper level

subproblem, we solve a vehicle routing model; this model selects the routes to visit customers and

decides which truck to carry out each selected route. Based on the decisions in the upper level

subproblem, we solve a detailed lower-level scheduling model to determine the driver-truck

parings to carry out each route and the delivery times and amounts for each customer. Since the

upper level does not consider all the constraints in IRP (i.e., it is a relaxation), the route-selection

and truck-route-paring decisions might lead to an infeasible or sub-optimal lower level model. To

address this, we iterate between the upper and lower level subproblems, using integer cuts to

obtain different upper-level solutions. The iterative approach, with different options, is described in

§3.5. A simplified flowchart of the solution approach is shown in Figure 3.1.

3.2. Dynamic Network Reduction

44

One major difficulty in solving IRP stems from the large size of the distribution network, which

leads to computationally intractable MILP models. However, when solving a specific instance at a

specific time point, not all customers and customer-customer arcs have to be considered. Thus, we

propose a dynamic network reduction method that returns a sub-network which contains the

relevant SC nodes and arcs for the current planning horizon.

Since we address a detailed IRP whose parameters are updated in real time, its horizon is

relatively short. Thus, only a small proportion of customers are required to be visited within the

horizon. These customers are called “trigger” customers, denoted by 𝐉𝑇. Furthermore, some other

customers should also be included, so that truck capacities are fully utilized, and the distribution

cost in the long run is minimized. These customers are referred to as “balance” customers, denoted

by 𝐉𝐵. A balance customer should be “close” to the arc connecting the plant to a trigger customer,

and also have some vacant capacity to receive more product. In addition, arcs connecting the

customers that are not included in the sub-network are eliminated. Due to long distance or road

construction, some arcs which are very unlikely to be used are also eliminated.

3.2.1. Customer Selection

In the first step, we identify the trigger and balance customers to be included in the current sub-

network.

Trigger customers include the order-only customers that have pending orders within the

horizon, as well as anticipatable customers that are expected to run out of product if no deliveries

take place. Let 𝜌𝑗
𝑇(𝑡) denote the time-varying consumption rate of customer j, and 𝐿0𝑗

𝐴 denote its

initial inventory. The minimum and maximum demand for each customer can be calculated as

follows:

45

 𝜎𝑗
MIN = {

max (0, 𝜁𝑗
𝑆 + ∫ 𝜌𝑗

𝑇(𝑡)𝑑𝑡
𝜂

0

− 𝐿0𝑗
𝐴) if 𝑗 ∈ 𝐉𝐴

𝜑𝑗 if 𝑗 ∈ 𝐉𝑂

 (3.1)

 𝜎𝑗
MAX = {

𝜁𝑗
𝑈 + ∫ 𝜌𝑗

𝑇(𝑡)𝑑𝑡
𝜂

0

− 𝐿0𝑗
𝐴 if 𝑗 ∈ 𝐉𝐴

𝜑𝑗 if 𝑗 ∈ 𝐉𝑂

 (3.2)

The minimum demand of an anticipatable customer is calculated based on its consumption rate,

initial inventory and safety stock level, while the maximum demand is calculated from the

consumption rate, initial inventory and tank capacity. For an order-only customer, both the

minimum and maximum demands are equal to the order amount. If the minimum demand is

greater than zero, then this customer is included in the set of trigger customers, i.e., 𝐉𝑇 = {𝑗|𝜎𝑗
MIN >

0}. This idea is illustrated in Figure 3.2.

Figure 3.2. The procedure of determining trigger customers.

If safety stock levels are not given, they can be calculated using the equation below (Eppen and

Martin, 1988),

46

𝜁𝑗

𝑆 = max {𝑎 ∙ 𝜁𝑗
𝑈, 𝜁𝑗

𝐿 + 𝜏𝑃𝑗 ∙ 𝜌𝑗 + 𝑏 ∙ √𝜏𝑃𝑗 ∙ 𝛿2(𝜌𝑗) + 𝜌𝑗
2

∙ 𝛿2(𝜏𝑃𝑗)}
(3.3)

This tentative safety stock is a maximum of two terms. The first term requires safety level to be

greater than the minimum reserve stock level, where 𝑎 is the minimum reserve level percentage.

The second term consists of three parts. The first part is a lower bound of stock level 𝜁𝑗
𝐿, while the

second and third parts are based on statistical data on travel time and consumption rate. Here, both

the travel time, 𝜏𝑃𝑗, from the plant to this customer and consumption rate, 𝜌𝑗 , are treated as random

variables: 𝜏𝑃𝑗 /𝜌𝑗 are their mean values, and 𝛿2(𝜏𝑃𝑗) /𝛿2(𝜌𝑗) are their variances. As a time-

invariant safety stock is preferred, consumption rate of each customer is treated as a random

variable with a time-invariant distribution. With these assumptions, the second part 𝜏𝑃𝑗 ∙ 𝜌𝑗 is the

average demand during the travel time from the plant to the customer; the third part is a buffering

term for the uncertainty of travel time and consumption rate. The vendor can specify a service level

(i.e., the percentage of cases that the buffering inventory will be sufficient), and parameter b in

equation (3.3) is associated with this service level. More specifically, 1 minus the specified service

level is the upper tail of a standard normal distribution at b.

To fully utilize the capacities of trucks, balance customers are included into the current SC sub-

network. They should have capacity to receive more product, and be in the vicinity of the line

extending from the plant to a trigger customer so that distribution cost will not increase

substantially. Thus, two types of criteria are used simultaneously to identify the set of potential

balance customers, based on the geographical locations and inventory levels.

In terms of geography, a balance customer is required to be in one of the trigger customer

regions. The region of customer j should be close to the radial line that extends from the plant to

this customer, and it can be defined based on longitude and latitude information (see Figure 3.3).

The adjustable parameters defining this region are the angle θ, and the radius r. When θ =0, the

47

shape becomes a stadium. We use 𝐉𝑗
𝑅 to denote the set of customers that are in the region of

customer j.

Figure 3.3. Illustration of the trigger customer region. C is the trigger customer, and P is the plant.

Balance customers should also require a delivery in the near future. To quantify this, we

introduce a parameter 𝑇𝑗, defined by the decision maker. A customer j will be included as a balance

customer, only if its current inventory level is less than the summation of (1) consumption in the

planning horizon, (2) the consumption in 𝑇𝑗 days following the current horizon, and (3) its safety

stock. The bigger 𝑇𝑗 is defined, the more likely customer j will be included as a balance customer.

We present two options to define 𝑇𝑗. In option A, customers are set into manually determined

regions, and customers in each region have the same 𝑇𝑗; the closer a region is to the plant, the

smaller 𝑇𝑗 will be, because it can be visited more easily (see Figure 3.4(a)). In option B, 𝑇𝑗 is defined

based on customer density around j. The number of customers within a disk centered at customer j

can be calculated. If this number is larger, customer j is located in a “denser” region, and thus has a

higher probability to be included as a balance customer. Thus, to avoid including j too frequently, Tj

should have a smaller value. Following this reasoning, 𝑇𝑗 in option B is defined as follows,

𝑇𝑗 = max {𝑇 − ⌊

𝐶𝑗/𝑟2

𝐶̅/𝑟
2 ⌋ , 1}

(3.4)

where 𝑇 is the user-defined largest possible 𝑇𝑗, 𝑟 is the maximum distance between any customer

and the plant, 𝐶̅ is the number of customer in the network, r is a user-defined neighbor distance

48

(typically, r can be 80 miles, or the average distance a truck can travel in 2 hours), 𝐶𝑗 is the number

of other customers within the disk of radius r around customer j. With 𝑇𝑗 defined in equation (3.4),

which is illustrated in Figure 3.4(b), customers in different density regions have about the same

probability of being included as balance customers. To consider both the plant-customer distance

and customer density, we can use the average value, or any other affine combinations, of 𝑇𝑗 defined

in options A and B.

Figure 3.4. Illustration of different T𝒋 definition in inventory level criterion, with both axes in unit of miles.

(a) is for option A to consider plant-customer distance, in which customers are divided into regions R1-R5.
(b) is for option B to consider customer density.

To consider both geographical and inventory criteria, the set of balance customers is defined as

follows,

𝐉𝐵 = {𝑗′|𝑗′ ∈ ⋃ 𝐉𝑗

𝑅

𝑗∈𝐉𝑇
 and 𝐿0𝑗′

𝐴 − ∫ 𝜌𝑗′
𝑇 (𝑡)𝑑𝑡

𝜂+24𝑇
𝑗′

0

< 𝜁𝑗′
𝑆 }

(3.5)

When a trigger customer j does not lead to the inclusion of another customer in 𝐉𝐵, inventory

criterion is relaxed, and the customer j’ that is within the trigger customer region and has the

49

greatest 𝜎𝑗′
MAX is included as a balance customer for j. By doing this, we can ensure that enough

balance customers are included after preprocessing so that the truck capacities are fully utilized.

3.2.2. Network Arc Elimination

The arcs in the original network are kept in the sub-network, except for the following 4 cases.

First, arcs with at least one SC node not in the sub-network are eliminated. Second, a customer-

customer arc with very large distance, which is unlikely to be included in the optimal schedule, is

eliminated: the following inequality is used to identify these arcs,

 𝜏𝑜𝑗,𝑗′ ≥ max [𝑐 ∙ 𝜃𝐷 , 𝑑 ∙ (𝜏𝑜𝑗,𝑃 + 𝜏𝑜𝑗′,𝑃)] (3.6)

where 𝜏𝑜𝑗,𝑗′ is the travel time along this arc; 𝜏𝑜𝑗,𝑃 and 𝜏𝑜𝑗′,𝑃 are the travel time between the

customers and the plant; c and d are user-defined parameters. Inequality (3.6) requires that the

travel time from j to j’ is greater than both (1) a percentage of the maximum daily driving time and

(2) a percentage of the travel time of j->P->j’. Typically, c and d are selected between 0.7-1. Third, if

both ends of an arc are balance customers, and they are not in the same trigger customer region,

this arc is eliminated. Fourth, optionally, a neighbor list from history data can be used to remove

arcs: based on previous routing information, the arcs that have never been used will not appear in

the sub-network. The preprocessing algorithm is presented in Appendix G.

3.2.3. Example

The customer set shown in Figure 3.4 is used as an example. The planning horizon is 2 days.

Parameter 𝑇𝑗 is based on Figure 3.4(a), and the trigger customer region is defined using option A

(θ=10° and r=10 miles). The preprocessing algorithm identifies 18 trigger customers, and 14

balance customers (see Figure 3.5). The number of customers drops from 111 to 32, and the

number of directed arcs drops from 6067 to 485.

50

Figure 3.5. SC nodes in the distribution network after dynamic network reduction.

3.3. Vehicle Routing Subproblem

The upper level subproblem considers the selected customers (both trigger and balance

customers) after the dynamic network reduction. Before building the upper level model, which

corresponds to a modified vehicle routing (VR) problem, routes (rR) for the selected customers

are generated, and the corresponding time and cost parameters for each route are calculated. We

note that column generation has been adopted to speed up the VR solution process (Grønhaug et al.,

2010; Bard and Nananukul, 2010; Persson and Göthe-Lundgren, 2005). However, column

generation is not considered here, because the number of generated routes is relatively small, and

the resulting VR model can be solved rather fast.

3.3.1. Route Generation

In a route, the customers and the sequence in which they are visited are specified. We use 𝐀𝑟 to

denote the arcs of a route r, 𝐉𝑟 to denote the set of customers visited in route r, and 𝐑𝑗 to denote the

set of routes serving customer j. The following parameters are introduced for each route:

(a) 𝜏𝑟
𝐷: driving time, based on travel time 𝜏𝑜𝑗,𝑗′ .

51

(b) 𝜏𝑟
𝑊: working time, based on traversal time 𝜏𝑗,𝑗′ (including loading and delivering), plus possible

waiting time due to access window constraints.

(c) 𝜏𝑟
𝑅: routing time, which is working time plus resting time 𝜓, if the maximum driving/working

time is violated; otherwise, 𝜏𝑟
𝑅 = 𝜏𝑟

𝑊.

(d) 𝛾𝑟
𝑅: routing cost, based on driving time ($𝛾𝐷/hour), working time ($𝛾𝑊/hour), number of

deliveries ($𝛾𝑉/delivery), and whether a rest is included in the route ($𝛾𝑅/rest).

These parameters are calculated as follows,

 𝜏𝑟
𝐷 = ∑ 𝜏𝑜𝑗,𝑗′

(𝑗,𝑗′)∈𝐀𝑟

 (3.7)

 𝜏𝑟
𝑊 = ∑ 𝜏𝑗,𝑗′

(𝑗,𝑗′)∈𝐀𝑟

+ ∑ max(0, min
𝑚

𝜎𝑗′,𝑚
𝐴𝑆 − max

𝑚
𝜎𝑗,𝑚

𝐴𝐸 − 𝜏𝑜𝑗,𝑗′)

(𝑗,𝑗′)∈𝐀𝑟:𝑗,𝑗′≠𝑃

 (3.8)

𝜏𝑟

𝑅 = {
𝜏𝑟

𝑊 if 𝜏𝑟
𝐷 ≤ 𝜃𝐷 and 𝜏𝑟

𝑊 ≤ 𝜃𝑊

𝜏𝑟
𝑊 + 𝜓 otherwise

(3.9)

𝛾𝑟

𝑅 = {
𝛾𝐷 ∙ 𝜏𝑟

𝐷 + 𝛾𝑊 ∙ 𝜏𝑟
𝑊 + 𝛾𝑉 ∙ |𝐉𝑟| if 𝜏𝑟

𝐷 ≤ 𝜃𝐷 and 𝜏𝑟
𝑊 ≤ 𝜃𝑊

𝛾𝐷 ∙ 𝜏𝑟
𝐷 + 𝛾𝑊 ∙ 𝜏𝑟

𝑊 + 𝛾𝑉 ∙ |𝐉𝑟| + 𝛾𝑅 otherwise

(3.10)

Each route in the generated route set R should satisfy the following criteria:

(a) The route should contain no more than cmax customers; i.e., |𝐉𝑟| ≤ 𝑐𝑚𝑎𝑥. Because of the limited

capacities of trucks, it is very unlikely that more than 3 customers are included in one single

route in the cases we studied, thus we choose cmax to be 3, but it can be generalized depending

on the characteristics of a specific SC.

(b) The arcs of the route should be in the valid arc set; i.e., if (𝑗, 𝑗′) ∈ 𝐀𝑟, then (𝑗, 𝑗′) ∈ 𝐀. For

example, the 3-customer route, j->j’->j”, is included in R, only if both arcs (j,j’) and (j’,j”) are

included in the sub-network after dynamic network reduction.

(c) There should be no obvious time conflicts on the access windows of customers; i.e., if

(𝑗, 𝑗′) ∈ 𝐀𝑟 and 𝑗, 𝑗′ ≠ 𝑃 , then max𝑚 𝜎𝑗′,𝑚
𝐴𝐸 ≥ min𝑚 𝜎𝑗,𝑚

𝐴𝑆 + 𝜏𝑗,𝑗′ . For example, the 2-customer

52

route, j->j’ is included in R, only if the earliest arriving time at customer j’ after visiting j is

sooner than the end time of the last window of j’.

(d) Based on distance, a truck should be able to arrive at the customer before the end time of its last

access window; i.e., if 𝑗 ∈ 𝐉𝑟, then max𝑚 𝜎𝑗,𝑚
𝐴𝐸 ≥ ∑ 𝜏𝑗′,𝑗′′(𝑗′,𝑗′′)∈𝐀𝑟,𝑗

𝑅𝑃 , where 𝐀𝑟,𝑗
𝑅𝑃 denotes all the arcs

in route r before visiting customer j.

(e) A customer in 𝐉𝑓𝑖𝑟𝑠𝑡 should be visited first in a route; i.e., if 𝑗 ∈ 𝐉𝑟 ∩ 𝐉𝑓𝑖𝑟𝑠𝑡, then (𝑃, 𝑗) ∈ 𝐀𝑟.

(f) The first customer visited in a route should be either a trigger customer or in set 𝐉𝑓𝑖𝑟𝑠𝑡; i.e., if

(𝑃, 𝑗) ∈ 𝐀𝑟, then 𝑗 ∈ 𝐉𝑓𝑖𝑟𝑠𝑡 ∪ 𝐉𝑇 . This requirement is to ensure that the demands of trigger

customers are met in face of uncertainties.

We also include some optional criteria based on heuristic rules. By doing this, some routes that

are very unlikely to appear in the optimal schedule are excluded:

(g) The total time of a route should not be so long that more than one rest is required; i.e.,

𝜏𝑟
𝑊 ≤ 2𝜃𝑊 and 𝜏𝑟

𝐷 ≤ 2𝜃𝐷.

(h) If the route includes more than two customers, the route should not include any customer

whose demand can be satisfied by one visit of a truck, and at the same time, whose capacity

allows for a full truck load; i.e., if |𝐉𝑟| > 2 and 𝑗 ∈ 𝐉𝑟, then 𝜎𝑗
MIN > min𝑖 𝜉𝑖 or 𝜎𝑗

MAX < max𝑖 𝜉𝑖.

This is because such a customer can be served more efficiently using a 1-customer or 2-

customer route.

The algorithm to generate routes is given in Appendix G. The route generation process is

effective in filtering a large proportion of the infeasible routes; based on the instances studied, more

than 80% of routes (which include up to 3 customers) are excluded.

3.3.2. Vehicle Routing Model

53

We present a modified capacitated VR model. Comparing to the standard VR model (Gounaris et

al., 2013), we add constraints on the upper bounds of customer demands and truck routing time.

The drivers are not modeled here. First, we introduce the following variables:

(a) 𝑍𝑖,𝑟 ∈ {0,1} is one if truck i is assigned to route r.

(b) 𝐹𝑖,𝑟,𝑗
𝑅 ≥ 0: delivery amount from truck i to customer j using route r.

(c) 𝐹𝑖,𝑟
𝑅𝑋 ≥ 0: unused capacity (full truck load minus deliveries) of truck i when carrying out route r.

(d) 𝑂𝑉𝑅: objective value of VR, corresponding to total distribution (routing) cost with penalized

unused capacity.

The VR model is formulated as follows,

 min 𝑂𝑉𝑅 = ∑(𝛾𝑟
𝑅𝑍𝑖,𝑟 + 𝛾𝑋𝐹𝑖,𝑟

𝑅𝑋

𝑖,𝑟

) (3.11)

 ∑ 𝐹𝑖,𝑟,𝑗
𝑅

𝑗∈𝐉𝑟

+ 𝐹𝑖,𝑟
𝑅𝑋 = 𝜉𝑖𝑍𝑖,𝑟, ∀𝑖, 𝑟 (3.12)

 𝐹𝑖,𝑟,𝑗
𝑅 ≤ (𝜁𝑗

𝑈 − 𝜁𝑗
𝐿)𝑍𝑖,𝑟, ∀𝑖, 𝑟, 𝑗 ∈ 𝐉𝐴 ∩ 𝐉𝑟 (3.13)

 𝜎𝑗
MIN ≤ ∑ 𝐹𝑖,𝑟,𝑗

𝑅

𝑖,𝑟∈𝐑𝑗

≤ 𝜎𝑗
MAX, ∀𝑗 ∈ 𝐉𝐶 (3.14)

 ∑ 𝜏𝑟
𝑅𝑍𝑖,𝑟

𝑟

≤ 𝜂, ∀𝑖 (3.15)

The objective function (3.11) accounts for the routing cost, and a penalty term for unused truck

capacity (𝛾𝑋 per unit of material). Constraints (3.12) enforce the truck capacity, and fix the delivery

amounts to zero if route r is not used by truck i. Constraints (3.13) enforce that each delivery

cannot exceed the difference between the maximum and minimum inventory levels, while

constraints (3.14) enforce demand satisfaction for each customer. Constraints (3.15) state that the

total routing time of a truck should be less than the horizon length.

54

Two additional sets of constraints can be added to reduce either the computational cost for the

VR model, or the number of iterations between the upper and lower level subproblems. The first set

of constraints is defined as follows,

 ∑ 𝑍𝑖,𝑟

𝑖,𝑟∈𝐑𝑗:𝛼𝜏𝑟,𝑗≤𝜔𝜏𝑗

≥ 1, ∀𝑗 ∈ 𝐉𝐴 (3.16)

where 𝜔𝜏𝑗 denote the time when the projected inventory of customer j (without delivery) goes

below its lower bound (defined in equation (3.17) below), and 𝛼𝜏𝑟,𝑗 denote the earliest possible

time to visit j on route r (defined in equation (3.18) below). Thus, constraints (3.16) enforce that at

least one route whose 𝛼𝜏𝑟,𝑗 is less than 𝜔𝜏𝑗 should be selected to prevent j from running out of

product.

𝜔𝜏𝑗 = min

𝑡
{𝑡|𝐿0𝑗

𝐴 − ∫ 𝜌𝑗,𝑡′
𝑇 𝑑𝑡′

𝑡

0

≤ 𝜁𝑗
𝐿}

(3.17)

 𝛼𝜏𝑟,𝑗 = ∑ 𝜏𝑗′𝑗′′

(𝑗′,𝑗′′)∈𝐀𝑟,𝑗
𝑅𝑃

 (3.18)

The second constraints enforce that if customer j has demand which cannot be fulfilled by a

single truck, a full truck delivery should be used at least once,

 ∑ 𝑍𝑖,𝑟

𝑖,𝑟∈𝐑𝑗:|𝐉𝑟|=1

≥ 1, ∀𝑗 ∈ 𝐉𝐴: 𝜎𝑗
MIN ≥ max

𝑖
𝜉𝑖 (3.19)

where 𝑟 ∈ 𝐑𝑗: |𝐉𝑟| = 1 is the single-customer route visiting j. Note that constraints (3.19) may cut

off the optimal solution, in some rare cases, of the finite horizon problem; however, in the long run,

customers with large demand should be served by full truck deliveries.

3.4. Scheduling Subproblem

From the upper level VR solution, the routes are selected, and the truck-route pairings are

determined. Based on these decisions, we consider a scheduling problem (SP) using a continuous

representation of time.

55

3.4.1. Segment Generation

First, plant node P is replaced by two SC nodes: Ps, Pe, standing for plant-start and plant-end. To

model the resting on the road, we introduce a set of segments, 𝑙 ∈ 𝐋. There are three types of

segments:

(a) 𝑙 ∈ 𝐋𝑆: a route that can be finished without driver resting, starting at Ps, and ending at Pe.

(b) 𝑙 ∈ 𝐋1: the first segment of a long route, starting at Ps, and ending at a customer.

(c) 𝑙 ∈ 𝐋2: the second segment of a long route, starting at the next SC node after the first segment of

this route, and ending at Pe.

Figure 3.6. All ways to break long routes into segments are considered.

Throughout the chapter, we use these two terms, route and segment, with slightly different

meanings. A route is an ordered set of arcs starting from the plant, visiting several customers, and

finally coming back to the plant. A segment is an ordered set of arcs that can be finished without

driver resting, and it can start or end at a customer. We divide a long route in which a driver needs

to rest on the road into two segments. From the end of the first segment, l, to the start of the second,

l’, the driver travels from the end SC node of l to the start SC node of l’, and takes a rest. If segment l

is the entire route r (𝑙 ∈ 𝐋𝑆), or part of it (𝑙 ∈ 𝐋1 ∪ 𝐋2), segment l and route r are called related. We

56

generate all related segments of each route selected in VR, including all ways to divide a long route,

as illustrated in Figure 3.6.

Figure 3.7. Illustration of slots and binary variables; two routes/segments are assigned to the same truck
(T1) and driver (K1), and one customer (C1) appears in both routes.

Second, sets R, J, JC, JA, JO are updated, so that only the routes and the customers selected in the

solution of VR are included. Index slot 𝑛 ∈ 𝐍 = {1, … , 𝑚𝑎𝑥𝑁} is introduced, to model different

routes of the same truck, different segments assigned to the same driver, and different visits to the

same customer (see Figure 3.7(a)). Specifically, the following sets are defined:

(a) 𝐍𝐼 = {1, … , 𝑁𝑚𝑎𝑥𝑖} ⊆ 𝐍: route slots for trucks, where 𝑁𝑚𝑎𝑥𝑖 is the maximum number of routes

that a truck is assigned to in the VR solution, i.e., 𝑁𝑚𝑎𝑥𝑖 = max𝑖(∑ 𝑍𝑖,𝑟𝑟).

(b) 𝐍𝑗
𝐽 = {1, … , 𝑁𝑗

𝑚𝑎𝑥} ⊆ 𝐍: customer slots, where 𝑁𝑗
𝑚𝑎𝑥 is the times that customer j is visited in the

VR solution, i.e., 𝑁𝑗
𝑚𝑎𝑥 = ∑ 𝑍𝑖,𝑟𝑖,𝑟∈𝐑𝑗

.

(c) 𝐍𝐾 = {1, … , 𝑁𝑚𝑎𝑥𝑘} ⊆ 𝐍: segment slots for drivers , where 𝑁𝑚𝑎𝑥𝑘 is the maximum number of

segments a driver can have, which is the maximum of two terms as follows,

𝑁𝑚𝑎𝑥𝑘 = max {⌈(∑ 𝑍𝑖,𝑟

𝑖,𝑟

+ ∑ 𝑍𝑖,𝑟

𝑖,𝑟:𝜏𝑟
𝐷>𝜃𝐷 or 𝜏𝑟

𝑊>𝜃𝑊

)/|𝐊|⌉ , max
𝑖

(∑ 𝑍𝑖,𝑟

𝑟

+ ∑ 𝑍𝑖,𝑟

𝑟:𝜏𝑟
𝐷>𝜃𝐷 or 𝜏𝑟

𝑊>𝜃𝑊

)}

57

In the first term, the numerator is the number of segments to be carried out based on the VR

solution, where ∑ 𝑍𝑖,𝑟𝑖,𝑟:𝜏𝑟
𝐷>𝜃𝐷 or 𝜏𝑟

𝑊>𝜃𝑊 is added as a correction for long routes with driver resting;

the denominator is the cardinality of the driver set. The second term denotes the maximum number

of segments a truck can be assigned to; this ensures enough driver slots if a truck is assigned to a

single driver.

Third, we define the following subsets:

(a) 𝐀𝑙 ⊆ 𝐀: arcs included in segment l.

(b) 𝐈𝑙 ⊆ 𝐈: trucks that can carry out segment l.

(c) 𝐉𝑙 ⊆ 𝐉: SC nodes visited in segment l.

(d) 𝐉𝑙
𝑠𝑡𝑎𝑟𝑡/𝐉𝑙

𝑒𝑛𝑑 ⊆ 𝐉: first/last SC node in segment l.

(e) 𝐋𝑗 ⊆ 𝐋: segments visiting customer j.

(f) 𝐋𝑙
𝑛𝑒𝑥𝑡 ⊆ 𝐋: the second segment in a long route after segment 𝑙 ∈ 𝐋1.

(g) 𝐋𝑟 ⊆ 𝐋: segments related to route r.

(h) 𝐑𝑙 ⊆ 𝐑: route related to segment l.

We also calculate the following parameters:

(i) 𝜇𝑟 ∈ ℤ: the times route r is selected in the current VR solution.

(j) 𝜗𝑗 ∈ ℝ: the fixed working time at SC node j. Specifically, for a customer 𝑗 ∈ 𝐉𝐶 , it is the fixed

delivering time (𝛽𝑗); for plant-start Ps, the checking-in time plus loading time (𝛽𝑃 + 𝜑𝐶𝐼); for

plant-end Pe, the checking-out time (𝜑𝐶𝑂).

3.4.2. Variables

The following binary variables are introduced:

(a) 𝑋𝑖,𝑛
𝐼 = 1 if slot n of truck i is used.

(b) 𝑋𝑘,𝑛
𝐾 = 1 if slot n of driver k is used.

58

(c) 𝑋𝑖,𝑙
𝐼𝐿 = 1 if truck i carries out segment l.

(d) 𝑋𝑖,𝑛,𝑘,𝑛′,𝑙 = 1 if slot n of truck i is matched with slot n’ of driver k to carry out segment l.

(e) 𝑌𝑙,𝑗,𝑛 = 1 if the visit of segment l is assigned to customer j on slot n.

(f) 𝑊𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗,𝑚 = 1 if slot n of truck i is matched with slot n’ of driver k to carry out segment l, and

customer j is visited on its window m in this segment.

(g) 𝑅𝑘,𝑛 = 1 if slot n of driver k is started after a rest.

The main binary variable is 𝑋𝑖,𝑛,𝑘,𝑛′,𝑙, which represents the segment assignments to trucks and

drivers. Variables 𝑋𝑖,𝑛
𝐼 𝑋𝑘,𝑛

𝐾 𝑋𝑖,𝑙
𝐼𝐿 , as aggregated versions of 𝑋𝑖,𝑛,𝑘,𝑛′,𝑙 , are introduced to break

symmetry and accommodate time constraints, for truck usage, driver usage, and truck-segment

pairing respectively (see Figure 3.7(b), where an earlier segment is assigned to the slot with a

smaller index of trucks, drivers and customers). Variable 𝑌𝑙,𝑗,𝑛 is used in inventory constraints,

while 𝑊𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗,𝑚 and 𝑅𝑘,𝑛 are used for access window constraints and time limit constraints

respectively.

The following continuous non-negative variables are used to model time:

(a) 𝑆𝑖,𝑛
𝐼 /𝐸𝑖,𝑛

𝐼 : start/end time of slot n of truck i.

(b) 𝑆𝑘,𝑛
𝐾 /𝐸𝑘,𝑛

𝐾 : start/end time of slot n of driver k.

(c) 𝑆𝑙
𝐿/𝐸𝑙

𝐿: start/end time of segment l.

(d) 𝑆𝑙,𝑗
𝐿𝐽/𝐸𝑙,𝑗

𝐿𝐽: start/end time of the visit on segment l to SC node j.

(e) 𝑆𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗/𝐸𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗: start/end time of visit to SC node j using slot n of truck i and slot n’ of

driver k on segment l.

(f) 𝑆𝑗,𝑛
𝐽𝑁/𝐸𝑗,𝑛

𝐽𝑁: start/end time of visit to customer j on slot n.

The main time variables are 𝑆𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗/𝐸𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗 . Variables 𝑆𝑗,𝑛
𝐽𝑁/𝐸𝑗,𝑛

𝐽𝑁 are introduced for

inventory constraints. The remaining time variables, as aggregated versions of 𝑆𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗/𝐸𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗,

59

are introduced to express the constraints for different time grids (trucks, drivers, segments and

customers).

Finally, the following continuous non-negative variables are used to model material flows,

(a) 𝐹𝑙,𝑗
𝐿𝐽: delivery amount on segment l to customer j.

(b) 𝐹𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗: delivery amount to customer j using slot n of truck i and slot n’ of driver k on segment

l.

(c) 𝐹𝑗,𝑛
𝐽𝑁

: delivery amount to customer j on slot n.

(d) 𝐹𝑖,𝑙
𝑆𝑋: unused capacity for truck i on segment l.

The main material flow variable is 𝐹𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗, and 𝐹𝑙,𝑗
𝐿𝐽 is an aggregated version of it. Variable 𝐹𝑗,𝑛

𝐽𝑁

is used for inventory constraints, while 𝐹𝑖,𝑙
𝑆𝑋 is introduced to penalize unused truck capacity.

3.4.3. Segment Assignment Constraints

Segments are assigned to different trucks and drivers as follows,

 ∑ 𝑋𝑖,𝑛,𝑘,𝑛′,𝑙

𝑘,𝑛′∈𝐍𝐾,𝑙∉𝐋𝟐

= 𝑋𝑖,𝑛
𝐼 ∀𝑖, 𝑛 ∈ 𝐍𝐼 (3.20)

 𝑋𝑖,𝑛
𝐼 ≥ 𝑋𝑖,𝑛+1

𝐼 ∀𝑖, 𝑛 ∈ 𝐍𝐼 (3.21)

 ∑ 𝑋𝑖,𝑛,𝑘,𝑛′,𝑙

𝑖,𝑛∈𝐍𝐼,𝑙

= 𝑋𝑘,𝑛′
𝐾 ∀𝑘, 𝑛′ ∈ 𝐍𝐾 (3.22)

 𝑋𝑘,𝑛
𝐾 ≥ 𝑋𝑘,𝑛+1

𝐾 ∀𝑘, 𝑛 ∈ 𝐍𝐾 (3.23)

Constraints (3.20) define the truck aggregated variable 𝑋𝑖,𝑛
𝐼 , while constraints (3.21) are used

for symmetry breaking. Constraints (3.22) define the driver aggregated variable 𝑋𝑘,𝑛
𝐾 , and

constraints (3.23) break the symmetry in the same way as constraints (3.21). Note that the

summation in constraints (3.20) excludes the second segment of long routes, 𝐋2, while constraints

(3.22) do not, because the slots of trucks correspond to routes, which can be represented by the

60

first segment for a long route, while the slots of drivers correspond to segments, which can facilitate

the driver constraints.

 ∑ 𝑋𝑖,𝑛,𝑘,𝑛′,𝑙

𝑛∈𝐍𝑖
𝐼,𝑘,𝑛′∈𝐍𝐾

= 𝑋𝑖,𝑙
𝐼𝐿 ∀𝑖, 𝑙

(3.24)

 ∑ 𝑋𝑖,𝑙
𝐼𝐿

𝑖,𝑙∈𝐋𝑟\𝐋2

= 𝜇𝑟 ∀𝑟 (3.25)

 𝑋𝑖,𝑛,𝑘,𝑛′,𝑙 = 𝑋𝑖,𝑛,𝑘,𝑛′+1,𝑙′ ∀𝑖, 𝑛 ∈ 𝐍𝐼 , 𝑘, 𝑛′ ∈ 𝐍𝐾 , 𝑙 ∈ 𝐋1, 𝑙′ ∈ 𝐋𝑙
𝑛𝑒𝑥𝑡 (3.26)

Constraints (3.24) define the truck-segment aggregated variable 𝑋𝑖,𝑙
𝐼𝐿 , while constraints (3.25)

require that the segments which are related to route r, but not a second segment of a long

route(𝐋2), should be carried out as many times as route r is used in the VR solution. Constraints

(3.26) enforce that if the first segment of a long route is assigned to truck-slot (i, n) and driver-slot

(k, n’), the second segment of it should be assigned to the same truck (slot n for routes) and driver

(slot n’+1 for segments). We fix 𝑋𝑖,𝑛,𝑘,𝑛′,𝑙 to zero, if truck i is not in the set of trucks that can carry

out segment l (𝑖 ∉ 𝐈𝑙).

3.4.4. Time Constraints

We constrain the variables of start and end time to respect the visiting sequence and the

working and resting time limits. Note that by the definition of segments, the driving time of each

segment is given, so the driving time limits are inherently satisfied and not written explicitly.

 𝑆𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗 ≤ 𝜂 ⋅ 𝑋𝑖,𝑛,𝑘,𝑛′,𝑙 ∀𝑖, 𝑛 ∈ 𝐍𝐼 , 𝑘, 𝑛′ ∈ 𝐍𝐾 , 𝑙, 𝑗 ∈ 𝐉𝑙 (3.27)

 𝐸𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗 ≤ 𝜂 ⋅ 𝑋𝑖,𝑛,𝑘,𝑛′,𝑙 ∀𝑖, 𝑛 ∈ 𝐍𝐼 , 𝑘, 𝑛′ ∈ 𝐍𝐾 , 𝑙, 𝑗 ∈ 𝐉𝑙 (3.28)

 𝑆𝑖,𝑛
𝐼 = ∑ 𝑆𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗

𝑘,𝑛′∈𝐍𝐾,𝑙∉𝐋2,𝑗∈𝐉𝑙
𝑠𝑡𝑎𝑟𝑡

 ∀𝑖, 𝑛 ∈ 𝐍𝐼 (3.29)

 𝐸𝑖,𝑛
𝐼 = ∑ 𝐸𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗

𝑘,𝑛′∈𝐍𝐾,𝑙∉𝐋1,𝑗∈𝐉𝑙
𝑒𝑛𝑑

 ∀𝑖, 𝑛 ∈ 𝐍𝐼
(3.30)

61

 𝐸𝑖,𝑛
𝐼 ≤ 𝑆𝑖,𝑛+1

𝐼 + 𝜂 ⋅ (1 − 𝑋𝑖,𝑛+1
𝐼) ∀𝑖, 𝑛 ∈ 𝐍𝐼 (3.31)

Constraints (3.27)/(3.28) enforce the start/end time of visiting a SC node, 𝑆𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗/𝐸𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗,

are zero if the corresponding assignment variable 𝑋𝑖,𝑛,𝑘,𝑛′,𝑙 is zero. Constraints (3.29)/(3.30) define

the truck start/end time variables 𝑆𝑖,𝑛
𝐼 /𝐸𝑖,𝑛

𝐼 , while constraints (3.31) state that slot n+1 of truck i

cannot start before slot n of the same truck is finished.

 𝑆𝑘,𝑛′
𝐾 = ∑ 𝑆𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗

𝑖,𝑛∈𝐍𝐼,𝑗∈𝐉𝑙
𝑠𝑡𝑎𝑟𝑡

 ∀𝑘, 𝑛′ ∈ 𝐍𝐾 (3.32)

 𝐸𝑘,𝑛′
𝐾 = ∑ 𝐸𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗

𝑖,𝑛∈𝐍𝐼,𝑗∈𝐉𝑙
𝑒𝑛𝑑

 ∀𝑘, 𝑛′ ∈ 𝐍𝐾
(3.33)

Constraints (3.32)/(3.33) define the driver start/end time variables 𝑆𝑘,𝑛
𝐾 /𝐸𝑘,𝑛

𝐾 . (The difference

between them and constraints (3.29), (3.30) is due to the same reason as for 𝑋𝑘,𝑛
𝐾 and 𝑋𝑖,𝑛

𝐼). In

practice, a driver may be available only before/after a certain time and for a period smaller than 𝜃𝐷

due to weekly driving limits. These constraints can be easily added using variables 𝑆𝑘,𝑛
𝐾 /𝐸𝑘,𝑛

𝐾 .

 𝑅𝑘,𝑛 ≤ 𝑋𝑘,𝑛
𝐾 ∀𝑘, 𝑛 ∈ 𝐍𝐾 (3.34)

 𝑆𝑘,𝑛+1
𝐾 − 𝐸𝑘,𝑛

𝐾 ≥ 𝜓 ⋅ 𝑅𝑘,𝑛+1 − 𝜂 ⋅ (1 − 𝑋𝑘,𝑛+1
𝐾) ∀𝑘, 𝑛 ∈ 𝐍𝐾\{𝑁𝑚𝑎𝑥𝑘} (3.35)

 𝐸𝑘,𝑛+1
𝐾 − 𝑆𝑘,𝑛

𝐾 ≤ 𝜃𝑊 + 𝜂 ⋅ 𝑅𝑘,𝑛+1 ∀𝑘, 𝑛 ∈ 𝐍𝐾\{𝑁𝑚𝑎𝑥𝑘} (3.36)

Constraints (3.34)-(3.36) express restrictions on the working and resting time of drivers.

Constraints (3.34) require 𝑅𝑘,𝑛 to be zero if 𝑋𝑘,𝑛
𝐾 is zero. Constraints (3.35) enforce that if a driver

starts its n+1 segment (slot) without resting (𝑅𝑘,𝑛+1=0 and 𝑋𝑘,𝑛+1
𝐾 =1), then 𝑆𝑘,𝑛+1

𝐾 ≥ 𝐸𝑘,𝑛
𝐾 ;

otherwise, if this segment is started after resting (𝑅𝑘,𝑛+1=1 and 𝑋𝑘,𝑛+1
𝐾 =1), then 𝑆𝑘,𝑛+1

𝐾 ≥ 𝐸𝑘,𝑛
𝐾 + 𝜓.

Constraints (3.36) require that if segment n+1 is started without resting (𝑅𝑘,𝑛+1=0), then the

difference of the end time of segment n+1 and the start time of segment of n should be less than the

working time limit 𝜃𝑊.

62

𝑆𝑘,𝑛−1
𝐾 + 2𝜃𝑊 + 𝜓 ≥ 𝐸𝑘,𝑛+1

𝐾 − 𝜂 ⋅ (𝑅𝑘,𝑛 + 1 − ∑ 𝑋𝑖,𝑛′,𝑘,𝑛,𝑙

𝑖,𝑛′∈𝐍𝐼,𝑙∈𝐋1

) ∀𝑘, 𝑛 ∈ 𝐍𝐾\{1, 𝑁𝑚𝑎𝑥𝑘} (3.37)

𝑆𝑘,𝑛−1
𝐾 + 2𝜃𝑊 + 𝜓 ≥ 𝐸𝑘,𝑛+1

𝐾 − 𝜂 ⋅ (𝑅𝑘,𝑛+1 + 1 − ∑ 𝑋𝑖,𝑛′,𝑘,𝑛,𝑙

𝑖,𝑛′∈𝐍𝐼,𝑙∈𝐋2

) ∀𝑘, 𝑛 ∈ 𝐍𝐾\{1, 𝑁𝑚𝑎𝑥𝑘} (3.38)

Constraints (3.37) exclude schedules that have a long route succeeding a short route directly,

and violate the working time limit, as depicted in Figure 3.8(a). Specifically, if slot n of driver k is the

first segment of a long route (the summation term being 1) and it is started without resting

(𝑅𝑘,𝑛=0), then the end time of slot n+1 should be less than the start time of slot n-1 plus 2𝜃𝑊 + 𝜓.

Constraints (3.38) follow the same idea, for the case of a short route succeeding a long route

directly.

Figure 3.8. Illustration of infeasible schedules that are cut off by (3.37) and (3.38) . For both cases, the resting
time limit is 10 hours, while the maximum daily working time limit is 14 hours.

 𝐸𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗 = 𝑆𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗 + 𝜗𝑗 ⋅ 𝑋𝑖,𝑛,𝑘,𝑛′,𝑙 + 𝜔𝑖,𝑗 ∙ 𝐹𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗 ∀𝑖, 𝑛 ∈ 𝐍𝐼 , 𝑘, 𝑛′ ∈ 𝐍𝐾 , 𝑙, 𝑗 ∈ 𝐉𝑙 (3.39)

 𝑆𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗′ ≥ 𝐸𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗 + 𝜏𝑜𝑗,𝑗′ − 𝜂 ⋅ (1 − 𝑋𝑖,𝑛,𝑘,𝑛′,𝑙) ∀𝑖, 𝑛 ∈ 𝐍𝐼 , 𝑘, 𝑛′ ∈ 𝐍𝐾 , 𝑙, (𝑗, 𝑗′) ∈ 𝐀𝑙 (3.40)

 𝑆𝑖,𝑛,𝑘,𝑛′+1,𝑙′,𝑗′ ≥ 𝐸𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗 + 𝜏𝑜𝑗,𝑗′ + 𝜓 − 𝜂 ⋅ (1 − 𝑋𝑖,𝑛,𝑘,𝑛′,𝑙)

∀𝑖, 𝑛 ∈ 𝐍𝐼 , 𝑘, 𝑛′ ∈ 𝐍𝐾 , 𝑙 ∈ 𝐋1, 𝑙′ ∈ 𝐋𝑙
𝑛𝑒𝑥𝑡 , 𝑗 ∈ 𝐉𝑙

𝑒𝑛𝑑, 𝑗′ ∈ 𝐉𝑙′
𝑠𝑡𝑎𝑟𝑡

(3.41)

Constraints (3.39) relate 𝑆𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗 with 𝐸𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗 for the same SC node via fixed and variable

working time, while constraints (3.40) relate these two variables for the two consecutively visited

SC nodes using the travel time parameter 𝜏𝑜𝑗𝑗′ . Note that the variable delivering time is considered

in constraints (3.39), where 𝜔𝑖,𝑗 is the reciprocal of the rate of delivery. Constraints (3.41) state that

63

the start time of the second segment of a long route, l’, should be greater than the end time of the

first segment, l, plus resting time, plus the travel time from the last SC node of l to the first SC node

of l’.

 𝑆𝑙
𝐿 = ∑ 𝑆𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗

𝑖,𝑛∈𝐍𝐼,𝑘,𝑛′∈𝐍𝐾,𝑗∈𝐉𝑙
𝑠𝑡𝑎𝑟𝑡

 ∀𝑙 (3.42)

 𝐸𝑙
𝐿 = ∑ 𝐸𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗

𝑖,𝑛∈𝐍𝐼,𝑘,𝑛′∈𝐍𝐾,𝑗∈𝐉𝑙
𝑒𝑛𝑑

 ∀𝑙
(3.43)

 𝐸𝑙
𝐿 ≤ 𝑆𝑙

𝐿 + 𝜃𝑊 ∀𝑙 (3.44)

 𝐸𝑙′
𝐿 ≤ 𝑆𝑙

𝐿 + 2𝜃𝑊 + 𝜓 ∀𝑙 ∈ 𝐋1, 𝑙′ ∈ 𝐋𝑙
𝑛𝑒𝑥𝑡 (3.45)

Constraints (3.42)/(3.43) define the segment start/end time variables 𝑆𝑙
𝐿/𝐸𝑙

𝐿. Constraints (3.44)

and (3.45) express restrictions on the durations of a single-route segment and a long route with

two segments.

3.4.5. Delivery Flow Constraints

Delivery flow should respect truck capacities, as well as customer demands, as follows,

 𝐹𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗 ≤ 𝜉𝑖 ⋅ 𝑋𝑖,𝑛,𝑘,𝑛′,𝑙 ∀𝑖, 𝑛 ∈ 𝐍𝐼 , 𝑘, 𝑛′ ∈ 𝐍𝐾 , 𝑙, 𝑗 ∈ 𝐉𝑙 ∩ 𝐉𝐶 (3.46)

 𝐹𝑖,𝑙
𝑆𝑋 + ∑ 𝐹𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗

𝑛∈𝐍𝐼,𝑘,𝑛′∈𝐍𝐾,𝑗∈𝐉𝑙∩𝐉𝐶

= 𝜉𝑖 ⋅ 𝑋𝑖,𝑙
𝐼𝐿 ∀𝑖, 𝑙 ∈ 𝐋𝑆 (3.47)

 𝐹𝑖,𝑙
𝑆𝑋 + ∑ 𝐹𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗

𝑛∈𝐍𝐼,𝑘,𝑛′∈𝐍𝐾,𝑗∈𝐉𝑙
𝐿∩𝐉𝐶

+ ∑ 𝐹𝑖,𝑛,𝑘,𝑛′,𝑙′,𝑗′

𝑛∈𝐍𝐼,𝑘,𝑛′∈𝐍𝐾,𝑙′∈𝐋𝑙
𝑛𝑒𝑥𝑡,𝑗′∈𝐉𝑙′∩𝐉𝐶

= 𝜉𝑖 ⋅ 𝑋𝑖,𝑙
𝐼𝐿

∀𝑖, 𝑙 ∈ 𝐋1

(3.48)

Constraints (3.46) enforce no product delivery when 𝑋𝑖,𝑛,𝑘,𝑛′,𝑙 = 0. Truck capacity constraints

are expressed in constraints (3.47) and (3.48), respectively for short and long routes. In constraints

(3.48), the two summations represent the delivery amount on the first and the second segments of

a long route.

64

 𝐹𝑙,𝑗
𝐿𝐽

= ∑ 𝐹𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗

𝑖,𝑛∈𝐍𝑖
𝐼,𝑘,𝑛′∈𝐍𝑘

𝐾

 ∀𝑙, 𝑗 ∈ 𝐉𝑙
(3.49)

 𝜎𝑗
MIN ≤ ∑ 𝐹𝑙,𝑗

𝐿𝐽

𝑙∈𝐋𝑗

≤ 𝜎𝑗
MAX ∀𝑗 ∈ 𝐉𝐶 (3.50)

Constraints (3.49) define the segment-customer aggregated delivery flow variable 𝐹𝑙,𝑗
𝐿𝐽

.

Constraints (3.50) state that the total delivery amount to a customer should satisfy its minimum

and maximum demands.

3.4.6. Access Window Constraints

Each visit to a customer should be within one of the customer access windows, as follows,

 ∑ 𝑊𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗,𝑚

𝑚

= 𝑋𝑖,𝑛,𝑘,𝑛′,𝑙 ∀𝑖, 𝑛 ∈ 𝐍𝐼 , 𝑘, 𝑛′ ∈ 𝐍𝐾 , 𝑙, 𝑗 ∈ 𝐉𝑙 ∩ 𝐉𝐶 (3.51)

 𝑆𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗 ≥ ∑ 𝜎𝑗,𝑚
𝐴𝑆 ⋅ 𝑊𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗,𝑚

𝑚

 ∀𝑖, 𝑛 ∈ 𝐍𝐼 , 𝑘, 𝑛′ ∈ 𝐍𝐾 , 𝑙, 𝑗 ∈ 𝐉𝑙 ∩ 𝐉𝐶 (3.52)

 𝐸𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗 ≤ ∑ 𝜎𝑗,𝑚
𝐴𝐸 ⋅ 𝑊𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗,𝑚

𝑚

 ∀𝑖, 𝑛 ∈ 𝐍𝐼 , 𝑘, 𝑛′ ∈ 𝐍𝐾 , 𝑙, 𝑗 ∈ 𝐉𝑙 ∩ 𝐉𝐶 (3.53)

Constraints (3.51) require that if segment l is assigned to a truck and a driver, then the visit to a

customer should correspond to an access window. Constraints (3.52) and (3.53) enforce access

window restrictions.

3.4.7. Inventory Constraints

When the consumption rate is constant, constraints in this subsection are used for inventory

bounds, as follows,

 ∑ 𝑌𝑙,𝑗,𝑛

𝑛∈𝐍𝑗
𝐽

= ∑ 𝑋𝑖,𝑙
𝐼𝐿

𝑖

 ∀𝑙, 𝑗 ∈ 𝐉𝑙 ∩ 𝐉𝐴
(3.54)

 ∑ 𝑌𝑙,𝑗,𝑛

𝑙∈𝐋𝑗

= 1 ∀𝑗 ∈ 𝐉𝐴, 𝑛 ∈ 𝐍𝑗
𝐽 (3.55)

65

Constraints (3.54) state that if a segment is carried out, the visit to an anticipatable customer

corresponds to one of the customer slots. Constraints (3.55) require that every slot of an

anticipatable customer corresponds to a segment that contains this customer.

 𝑆𝑙,𝑗
𝐿𝐽 = ∑ 𝑆𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗

𝑖,𝑛∈𝐍𝐼,𝑘,𝑛′∈𝐍𝐾

 ∀𝑙, 𝑗 ∈ 𝐉𝑙 ∩ 𝐉𝐴 (3.56)

 𝐸𝑙,𝑗
𝐿𝐽

= ∑ 𝐸𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗

𝑖,𝑛∈𝐍𝐼,𝑘,𝑛′∈𝐍𝐾

 ∀𝑙, 𝑗 ∈ 𝐉𝑙 ∩ 𝐉𝐴 (3.57)

 𝑆𝑙,𝑗
𝐿𝐽

− 𝜂 ⋅ (1 − 𝑌𝑙,𝑗,𝑛) ≤ 𝑆𝑗,𝑛
𝐽𝑁

≤ 𝑆𝑙,𝑗
𝐿𝐽

+ 𝜂 ⋅ (1 − 𝑌𝑙,𝑗,𝑛) ∀𝑙, 𝑗 ∈ 𝐉𝑙 ∩ 𝐉𝐴, 𝑛 ∈ 𝐍𝑗
𝐽
 (3.58)

 𝐸𝑙,𝑗
𝐿𝐽

− 𝜂 ⋅ (1 − 𝑌𝑙,𝑗,𝑛) ≤ 𝐸𝑗,𝑛
𝐽𝑁

≤ 𝐸𝑙,𝑗
𝐿𝐽

+ 𝜂 ⋅ (1 − 𝑌𝑙,𝑗,𝑛) ∀𝑙, 𝑗 ∈ 𝐉𝑙 ∩ 𝐉𝐴, 𝑛 ∈ 𝐍𝑗
𝐽
 (3.59)

 𝐹𝑙,𝑗
𝐿𝐽 − 𝜁𝑗

𝑈 ⋅ (1 − 𝑌𝑙,𝑗,𝑛) ≤ 𝐹𝑗,𝑛
𝐽𝑁 ≤ 𝐹𝑙,𝑗

𝐿𝐽 + 𝜁𝑗
𝑈 ⋅ (1 − 𝑌𝑙,𝑗,𝑛) ∀𝑙, 𝑗 ∈ 𝐉𝑙 ∩ 𝐉𝐴, 𝑛 ∈ 𝐍𝑗

𝐽 (3.60)

Constraints (3.56)/(3.57) define the segment-customer aggregated start/end time variables

𝑆𝑙,𝑗
𝐿𝐽

/𝐸𝑙,𝑗
𝐿𝐽

. Constraints (3.58) require that if 𝑌𝑙,𝑗,𝑛 = 1, start time 𝑆𝑗,𝑛
𝐽𝑁

 is equal to 𝑆𝑙,𝑗
𝐿𝐽

. Similar

constraints are enforced for the end time and flow amount in (3.59) and (3.60).

 𝐿0𝑗
𝐴 − 𝜌𝑗 ⋅ 𝑆𝑗,𝑛

𝐽𝑁 + ∑ 𝐹
𝑗,𝑛′
𝐽𝑁

𝑛′<𝑛

≥ 𝜁𝑗
𝐿 ∀𝑗 ∈ 𝐉𝐴, 𝑛 ∈ 𝐍𝑗

𝐽 (3.61)

 𝐿0𝑗
𝐴 − 𝜌𝑗 ⋅ 𝐸𝑗,𝑛

𝐽𝑁
+ ∑ 𝐹

𝑗,𝑛′
𝐽𝑁

𝑛′≤𝑛

≤ 𝜁𝑗
𝑈 ∀𝑗 ∈ 𝐉𝐴, 𝑛 ∈ 𝐍𝑗

𝐽
 (3.62)

 𝑆𝑗,𝑛
𝐽𝑁 ≥ 𝐸𝑗,𝑛−1

𝐽𝑁 ∀𝑗 ∈ 𝐉𝐴, 𝑛 ∈ 𝐍𝑗
𝐽 (3.63)

Constraints (3.61) require that just before a delivery is made, which corresponds to one of the

inventory minima during the planning horizon, the inventory should be greater than the lower

bound. Constraints (3.62) state that inventory should be lower than the upper bound after a

delivery, which corresponds to one of the inventory maxima. Constraints (3.63) are the sequencing

constraints for visits to a customer. These constraints in conjunction with constraints (3.50)

enforce inventory bounds throughout the horizon.

3.4.8. Time Varying Consumption Constraints

66

Any projected inventory level due to time-varying consumption profile can be approximated by

a piecewise linear function, and modeled by special ordered set type 2 (SOS2) variables. We

introduce a set of points, denoted by 𝑞 ∈ 𝐐 = {0,1, … , 𝑚𝑎𝑥𝑄}, to model the projected inventory

levels without deliveries. 𝐐𝑗 is the point subset for anticipatable customer j. Each 𝑞 ∈ 𝐐𝑗 is

associated with a given time �̅�𝑗,𝑞 when the consumption rate changes in the approximation, and

�̅�𝑗,0/�̅�𝑗,𝑚𝑎𝑥𝑄 is the start/end time of the horizon. Each 𝑞 ∈ 𝐐𝑗 is also associated with a projected

inventory level at time �̅�𝑗,𝑞, denoted by 𝜁�̅�,𝑞. Note that 𝜁�̅�,𝑞 can be less than zero, because this is the

inventory projection considering only consumption (no deliveries). As shown in Figure 3.9, the

following variables are introduced:

(a) 𝑃𝑗,𝑛,𝑞
𝑆 : SOS2 variable over index q, representing the start time of slot n of customer j; a set of

SOS2 variables is defined for each (j,n) pair.

(b) 𝑃𝑗,𝑛,𝑞
𝐸 : SOS2 variable over index q, representing the end time of slot n of customer j.

(c) 𝐿𝑗,𝑛
𝑆 : projected inventory level at the start of slot n of customer j (considering no deliveries).

(d) 𝐿𝑗,𝑛
𝐸 : projected inventory level at the end of slot n of customer j (considering no deliveries).

The constraints are as follows,

 𝑆𝑗,𝑛
𝐽𝑁 = ∑ �̅�𝑗,𝑞 ⋅ 𝑃𝑗,𝑛,𝑞

𝑆

𝑞∈𝐐𝑗

 ∀𝑗 ∈ 𝐉𝐴, 𝑛 ∈ 𝐍𝑗
𝐽 (3.64)

 𝐿𝑗,𝑛
𝑆 = ∑ 𝜁�̅�,𝑞 ⋅ 𝑃𝑗,𝑛,𝑞

𝑆

𝑞∈𝐐𝑗

 ∀𝑗 ∈ 𝐉𝐴, 𝑛 ∈ 𝐍𝑗
𝐽 (3.65)

 𝐿𝑗,𝑛
𝑆 + ∑ 𝐹

𝑗,𝑛′
𝐽𝑁

𝑛′<𝑛

≥ 𝜁𝑗
𝐿 ∀𝑗 ∈ 𝐉𝐴, 𝑛 ∈ 𝐍𝑗

𝐽 (3.66)

 ∑ 𝑃𝑗,𝑛,𝑞
𝑆

𝑞∈𝐐𝑗

= 1 ∀𝑗 ∈ 𝐉𝐴, 𝑛 ∈ 𝐍𝑗
𝐽 (3.67)

67

Figure 3.9. Illustration of parameters and variables introduced for piecewise linear approximation, shown by
an example of the first visit to customer j.

In constraints (3.64), 𝑃𝑗,𝑛,𝑞
𝑆 is related to �̅�𝑗,𝑞 and start time variable 𝑆𝑗,𝑛

𝐽𝑁
. In constraints (3.65), we

calculate the projected inventory level at the start of slot n of customer j, based on 𝜁�̅�,𝑞. Constraints

(3.66) replace constraints (3.61) for the lower bound before a delivery. In constraints (3.67), the

summation of variable 𝑃𝑗,𝑛,𝑞
𝑆 over index q should be 1.

 𝐸𝑗,𝑛
𝐽𝑁 = ∑ �̅�𝑗,𝑞 ⋅ 𝑃𝑗,𝑛,𝑞

𝐸

𝑞∈𝐐𝑗

 ∀𝑗 ∈ 𝐉𝐴, 𝑛 ∈ 𝐍𝑗
𝐽 (3.68)

 𝐿𝑗,𝑛
𝐸 = ∑ 𝜁�̅�,𝑞 ⋅ 𝑃𝑗,𝑛,𝑞

𝐸

𝑞∈𝐐𝑗

 ∀𝑗 ∈ 𝐉𝐴, 𝑛 ∈ 𝐍𝑗
𝐽 (3.69)

 𝐿𝑗,𝑛
𝐸 + ∑ 𝐹

𝑗,𝑛′
𝐽𝑁

𝑛′≤𝑛

≤ 𝜁𝑗
𝑈 ∀𝑗 ∈ 𝐉𝐴, 𝑛 ∈ 𝐍𝑗

𝐽 (3.70)

 ∑ 𝑃𝑗,𝑛,𝑞
𝐸

𝑞∈𝐐𝑗

= 1 ∀𝑗 ∈ 𝐉𝐴, 𝑛 ∈ 𝐍𝑗
𝐽
 (3.71)

Constraints (3.68)-(3.71) are the counterpart of constraints (3.64)-(3.67) for the end time of a

customer slot, and constraints (3.70) replace constraints (3.62) for the upper bound after a

delivery.

68

3.4.9. Objective

Following the objective function (3.11) in the upper level VR model, we minimize the total

distribution cost,

 min 𝑂𝑆𝑃 = 𝛾𝐷 ∑ 𝜏𝑟
𝐷 ⋅ 𝑋𝑖,𝑙

𝐼𝐿

𝑖,𝑟,𝑙∈𝐋𝑟
𝑅\𝐋2

+ 𝛾𝑊 ∑ (𝐸𝑖,𝑛
𝐼 − 𝑆𝑖,𝑛

𝐼)

𝑖,𝑛∈𝐍𝐼

+ (𝛾𝑅 − 𝛾𝑊 ⋅ 𝜓) ∑ 𝑋𝑖,𝑙
𝐼𝐿

𝑖,𝑙∈𝐋1

+ 𝛾𝑉 ∑ |𝐉𝑙
𝐿 ∩ 𝐉𝐂| ⋅ 𝑋𝑖,𝑙

𝐼𝐿

𝑖,𝑙

+ 𝛾𝑋 ∑ 𝐹𝑖,𝑙
𝑆𝑋

𝑖,𝑙∉𝐋2

(3.72)

which includes: driving cost, working cost, resting cost, delivery cost, and penalty for unused truck

capacity. The term −𝛾𝑊 ⋅ 𝜓 is included before the third summation, because the resting time during

a long route is already included in the second summation.

3.5. Iterative Approach

In the upper level VR subproblem (§3.3), we select the routes (and trucks to carry out the

routes) to minimize cost; based on the selected routes, the lower level SP model (§3.4) is solved to

obtain the detailed schedule. However, the selected routes can lead to infeasibility or higher

distribution cost in SP, which means that multiple iterations may be needed before finding a

feasible schedule and proving its optimality. Specifically, when SP is infeasible or has a higher

distribution cost compared to VR, we modify the VR model by adding integer cuts and updating

parameters, re-solve it to select another set of routes, and solve SP again. In this section, we present

how the iterative approach is implemented.

The objective is to minimize the distribution cost, and the upper and lower bounds on this cost

are provided by the solutions of the two subproblems; the penalty term for unused truck capacities

is not considered. We introduce index 𝑠 ∈ 𝐒 to denote the iterations. The VR objective value

provides a lower bound (LB) on the optimal distribution cost, since VR is a relaxed version of IRP.

Thus, after solving VR, LB is updated by 𝐿𝐵 = max (𝐿𝐵, 𝑂𝑉𝑅 − 𝛾𝑋 ∑ 𝐹𝑖,𝑟
𝑅𝑋

𝑖,𝑟); the summation term is

69

subtracted to exclude the penalty term for unused truck capacities. On the other hand, an upper

bound (UB) on the optimal distribution cost can be obtained from the objective value of SP, since it

gives a feasible solution. Similarly, UB is updated by 𝑈𝐵 = min (𝑈𝐵, 𝑂𝑆𝑃 − 𝛾𝑋 ∑ 𝐹𝑖,𝑙
𝑆𝑋

𝑖,𝑙∉𝐋2). When LB

and UB are close enough or when a predefined iteration number is reached, i.e., (𝑈𝐵 − 𝐿𝐵)/𝐿𝐵 ≤

𝜖 or 𝑠 = 𝑠MAX, the algorithm terminates. Note that both LB and UB correspond to the problem we

consider after the dynamic network reduction.

The fundamental reason that the iterative approach may require multiple iterations is because

the upper level problem is a relaxation of IRP; drivers are not modeled explicitly, and inventory

levels are not monitored over time. Thus, we may need to iterate in the following cases:

No integer feasible solution can be found by SP, because (1) there are not enough drivers to

carry out the routes selected in VR (since drivers are not considered in VR); or (2) some routes are

not feasible for SP when scheduling constraints are considered.

The solution of SP has a higher cost compared to VR, because for some routes selected in VR,

longer working time is needed.

To address these cases, we can add integer cuts or update parameters. There are multiple

options to modify VR, before re-solving it. One approach is to simply add “no-good” integer cuts

(§3.5.1), which may lead to intractable iterations (Hooker et al., 2000; Harjunkoski et al., 2002;

Maravelias, 2006). To reduce the number of iterations, we can also use some heuristics. More

specifically, we can employ one of these three procedures, depending on the SP solution (§3.5.3 and

§3.5.4):

(a) Add route number constraints if SP is integer infeasible due to the number of drivers, or

(b) Add heuristic integer cuts if SP is integer infeasible due to the routes that lead to infeasibility, or

(c) Update parameters if SP is feasible but UB>LB.

70

As shown in procedures (a) and (b), the infeasibility of SP is due to either the number of drivers

or infeasible routes; this reason can be identified by solving a modified SP model with slack

variables (SPS).

Another option is to generate different SP models using the current VR solution (in §3.5.2).

Upper level VR decides the routes to select, as well as the truck-route pairings. The latter decision

can be either enforced or relaxed when generating the lower level SP. Enforcing truck-route

pairings leads to a smaller model and faster solution time for SP. On the other hand, relaxing truck-

route pairings can potentially reduce the number of iterations, through more effective integer cuts

(on condition that the resulting SP model can be solved fast enough). The overall solution method is

summarized in Figure 3.10.

Figure 3.10. Detailed solution method flowchart; diamonds represent decision points, white boxes represent
the main procedures, and grey boxes represent procedures to run before re-solving the upper level VR model.
Algorithms 3.1-3.4 are shown in Appendix G.

3.5.1. General Integer Cuts for VR

71

If the iterative procedure is not terminated after solving SP, i.e., if SP is infeasible, or if UB is

greater than LB, we need to add integer cuts to cut off the current VR solution. We introduce set 𝐑𝑠,𝑖
𝐺

denoting the route carried out by truck i in iteration s. In other words, 𝐑𝑠,𝑖
𝐺 = {𝑟|𝑍𝑖,𝑟 = 1}, where the

value of 𝑍𝑖,𝑟 is from the VR solution in iteration s. Previous solutions can be avoided by adding the

following “no-good” integer cut,

 ∑ 𝑍𝑖,𝑟

𝑖,𝑟∈𝐑𝑠,𝑖
𝐺

− ∑ 𝑍𝑖,𝑟

𝑖,𝑟∉𝐑𝑠,𝑖
𝐺

≤ ∑|𝐑𝑠,𝑖
𝐺 |

𝑖

− 1 ∀𝑠
(3.73)

Note that this inequality only cuts off the exact truck-route selections, which may make the iterative

procedure lengthy. To reduce the number of iterations, more effective procedures to avoid

symmetric solutions are proposed in the following three subsections.

3.5.2. Truck-route Paring Options

Binary variable 𝑍𝑖,𝑟 determines whether truck i is assigned to route r. If route r is selected by

any truck, its related segments are generated for the lower level SP. As introduced earlier, 𝐈𝑙

denotes the set of trucks that can carry out segment l. By defining 𝐈𝑙 differently, we have the

flexibility to choose if the truck-route pairings are enforced in SP. The following two options of

defining subset 𝐈𝑙 will be referred as OptnE/OptnR, standing for enforced/relaxed truck-route

pairing option.

In OptnE, subset 𝐈𝑙 is defined as follows,

𝐈𝑙 = {𝑖| ∑ 𝑍𝑖,𝑟

𝑟∈𝐑𝑙

> 0} (3.74)

which means that segment l can be carried out by truck i in SP, only if the route related to l is

assigned to truck i in VR.

72

In OptnR, we relax some of the truck-route pairings. The rule is as follows: if truck i carries out

more than one route in VR, i.e., if ∑ 𝑍𝑖,𝑟𝑟∈𝐑 > 1, then the routes carried out by this truck can be

assigned to other trucks in SP; however, if truck i carries out exactly one route, then this route is

assigned to truck i in SP, as follows,

𝐈𝑙 = {
{𝑖| ∑ 𝑍𝑖,𝑟

𝑟∈𝐑𝑙

> 0} if ∃𝑖 ∈ 𝐈: ∑ 𝑍𝑖,𝑟

𝑟∈𝐑𝑙

= 1 and ∑ 𝑍𝑖,𝑟

𝑟∉𝐑𝑙

= 0

𝐈 otherwise

 (3.75)

Each of these two options have advantages and disadvantages. OptnE leads to a smaller SP

model and faster solution time; while OptnR requires fewer iterations, because relaxing the truck-

route pairing can avoid some infeasibilities. Also, stronger integer cuts may be used with OptnR, as

we discuss next.

3.5.3. Heuristic Procedures for Infeasible SP

When no integer feasible solution is found by SP, there are two possible reasons: either there

are not enough drivers to carry out the selected routes, or some routes are infeasible (even if there

were enough drivers). By solving SP with slack variables for access window and inventory bound

violations, we can identify which reason leads to infeasibility. The following non-negative variables

are introduced:

(a) �̂�𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗/�̂�𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗: the violation in the start/end time to visit SC node j using truck-slot (i,n)

and driver-slot (k,n’) on segment l.

(b) �̂�𝑗,𝑛
𝐿 /�̂�𝑗,𝑛

𝑈 : the violation in the inventory lower/upper bound of customer j on slot n.

Using these slack variables, constraints (3.52), (3.53), (3.61), (3.62) are replaced by constraints

(3.76)-(3.79),

 𝑆𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗 + �̂�𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗 ≥ ∑ 𝜎𝑗,𝑚
𝐴𝑆 ⋅ 𝑊𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗,𝑚

𝑚

 ∀𝑖, 𝑛 ∈ 𝐍𝑖
𝐼 , 𝑘, 𝑛′ ∈ 𝐍𝑘

𝐾 , 𝑙, 𝑗 ∈ 𝐉𝑙 ∩ 𝐉𝐶 (3.76)

73

 𝐸𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗 − �̂�𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗 ≤ ∑ 𝜎𝑗,𝑚
𝐴𝐸 ⋅ 𝑊𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗,𝑚

𝑚

 ∀𝑖, 𝑛 ∈ 𝐍𝑖
𝐼 , 𝑘, 𝑛′ ∈ 𝐍𝑘

𝐾 , 𝑙, 𝑗 ∈ 𝐉𝑙 ∩ 𝐉𝐶 (3.77)

 𝐿0𝑗
𝐴 − 𝜌𝑗 ⋅ 𝑆𝑗,𝑛

𝐽𝑁
+ ∑ 𝐹

𝑗,𝑛′
𝐽𝑁

𝑛′<𝑛

+ �̂�𝑗,𝑛
𝐿 ≥ 𝜁𝑗

𝐿 ∀𝑗 ∈ 𝐉𝐴, 𝑛 ∈ 𝐍𝑗
𝐽
 (3.78)

 𝐿0𝑗
𝐴 − 𝜌𝑗 ⋅ 𝐸𝑗,𝑛

𝐽𝑁 + ∑ 𝐹
𝑗,𝑛′
𝐽𝑁

𝑛′≤𝑛

− �̂�𝑗,𝑛
𝑈 ≤ 𝜁𝑗

𝑈 ∀𝑗 ∈ 𝐉𝐴, 𝑛 ∈ 𝐍𝑗
𝐽 (3.79)

The new model, which consists of constraints (3.20)-(3.51), (3.54)-(3.60), (3.63), (3.76)-(3.79), and

minimizes objective function (3.72) with penalty terms for the slack variables, is referred to as

model SPS.

Therefore, if SP is integer infeasible, we solve SPS. If SPS is integer infeasible, then the number

of drivers is not enough to carry out the selected routes in the planning horizon; otherwise, if SPS is

integer feasible, then some slack variables are greater than zero, and the corresponding routes lead

to access window or inventory bound violations. For the former case, we add the route number

constraints (3.80)-(3.82) below, and re-solve VR; for the latter, we identify the infeasible routes and

add the corresponding heuristic integer cuts, before VR is re-solved.

If SPS is integer infeasible, these route number constraints are added:

 ∑ 𝑍𝑖,𝑟

𝑖,𝑟:𝜏𝑟
𝑅≥𝜂/2

≤ |𝐊| (3.80)

 ∑ 𝜏𝑟
𝑊𝑍𝑖,𝑟

𝑖,𝑟

≤ |𝐊| ∙ {⌊
𝜂

24
⌋ 𝜃𝑊 + min (𝜃𝑊, 𝜂 mod 24)} (3.81)

 ∑ 𝜏𝑟
𝐷𝑍𝑖,𝑟

𝑖,𝑟

≤ |𝐊| ∙ {⌊
𝜂

24
⌋ 𝜃𝐷 + min (𝜃𝐷, 𝜂 mod 24)} (3.82)

In constraint (3.80), the total number of selected routes that are longer than half of the horizon

should be less than or equal to the number of drivers. In constraint (3.81), the summation of

working time over the selected routes should be less than the summation of maximum working

74

time over drivers; the term in the curly brackets is the maximum working time of one driver in the

planning horizon. Constraint (3.82) is the counterpart of constraint (3.81) for driving time.

If SPS returns an integer feasible solution, then there are two possible reasons:

(a) Inventory levels are violated in the detailed scheduling problem. For example, a customer

initially has comparatively high inventory, and the consumption rate is quite large. Thus, it

needs to be served after a certain time so that the demand and inventory upper bound can be

respected at the same time. However, this customer must be visited earlier using routes

selected in the VR solution.

(b) When some customers have overlapping or strict access windows, especially when they have

multiple windows, it is infeasible to have them scheduled in a certain sequence, despite the

preliminary filtering done by constraints (3.16) and criterion (c) when generating routes.

Based on the non-zero slack variables in SPS, we can identify the routes that lead to the

infeasibility, and add integer cuts to the VR model. The procedure is summarized in Algorithm 3.3

in Appendix G, and the heuristic integer cuts are generated based on the truck-route pairing option.

If OptnE is adopted, we introduce infeasible truck set 𝐈𝑠
𝐸 and infeasible route set 𝐑𝑖,𝑠

𝐸 and add the

following constraints,

 ∑ 𝑍𝑖,𝑟

𝑟∈𝐑𝑖,𝑠
𝐸

≤ |𝐑𝑖,𝑠
𝐸 | − 1 ∀𝑠, 𝑖 ∈ 𝐈𝑠

𝐸
(3.83)

to exclude the infeasible route combinations for the assigned truck. Otherwise, if OptnR is used, we

introduce infeasible route set 𝐑𝑠
𝑅, and add the following constraints

 ∑ 𝑍𝑖,𝑟

𝑖,𝑟∈𝐑𝑠
𝑅

≤ |𝐑𝑠
𝑅| − 1 ∀𝑠 (3.84)

to exclude the infeasible route combinations for all trucks.

3.5.4. Heuristic Procedures for Feasible SP

75

If SP is feasible but UB>LB, it means that the cost for executing some routes in SP is higher than

that in VR (which was precalculated). This is due to longer working time needed in SP, if the

inventory or access window constraints require additional waiting at customers. We introduce

another parameter, 𝜏𝑥𝑖,𝑟, representing the extra working time needed for truck i to carry out route r

in SP; 𝜏𝑥𝑖,𝑟 is initially set to zero, and updated after solving SP in each iteration. Because a route may

be assigned to more than one truck, the extra driving time for different trucks to carry out the same

route can be different (even for using OptnR). Thus, this parameter update does not depend on the

truck-route pairing option. After updating 𝜏𝑥𝑖,𝑟 from the SP solution, objective function (3.11) and

constraints (3.15) of the original VR model are modified as follows,

 min ∑[(𝛾𝑟
𝑅 + 𝛾𝑊 ∙ 𝜏𝑥𝑖,𝑟)𝑍𝑖,𝑟 + 𝛾𝑋𝐹𝑖,𝑟

𝑅𝑋]

𝑖,𝑟

 (3.85)

 ∑(𝜏𝑟
𝑅 + 𝜏𝑥𝑖,𝑟)𝑍𝑖,𝑟

𝑟

≤ 𝜂, ∀𝑖 (3.86)

Algorithm 3.4 in Appendix G summarizes the parameter updating procedure.

3.6. Computational Study

In this section, we first use a toy example to illustrate the different options of solution methods,

and then we present results based on industrial-size instances. For all instances, the horizon is 48

hours, check-in/out time is 0.5 hours, loading/delivering time at the plant/customers is 1 hour,

minimum resting time is 10 hours, and maximum daily driving/working time is 11/14 hours. The

unused capacity penalty is $0.1 per unit, and other cost parameters are: driving cost 𝛾𝐷=$40/hour,

working cost 𝛾𝑊=$8/hour, visit cost 𝛾𝑉=$10/visit, rest cost 𝛾𝑅=$100/rest. The 48-hour horizon is

chosen based on industrial requirements as well as an analysis of the benefit obtained from using a

horizon longer than two days. Using a shorter horizon can lead to myopic solutions, while using a

longer horizon will lead, in general, to computationally hard problems with uncertain returns since

the uncertainty beyond 48 hours increases significantly. We tested all the problems using 4

different options (combinations of truck-route parings and heuristics), as summarized in Table 3.1.

76

Table 3.1. Different options in the iterative approach.

Option 1 2 3 4

Truck-route paring option OptnE OptnE OptnR OptnR

Heuristics option no yes no yes

All the models and solution methods were implemented in GAMS 24.7 and solved using CPLEX

12.6.3.0 on a desktop with a 3.4 GHz Intel Core processor (i7-2600) and 8GB RAM on Windows 7.

The solution time limit was set to 300 seconds for each mathematical program. The termination

criterion, 𝜖, was 0.005. Also, the iterative procedure was terminated after 20 iterations.

3.6.1. Toy Example

We consider an example with 3 customers, 5 trucks and 6 drivers. This example was fabricated

to illustrate the complexities that may be present and that we should account for. The network

structure is shown in Figure 3.11, the data for customers and trucks are given in Tables 3.2-3.3, and

iterations and solution time are summarized in Table 3.4.

Figure 3.11. Network structure for the toy example, P is the plant, a, b, c are three customers.

Table 3.2. Customer parameters for the toy example.

Customer a b c

Consumption per hour 4 6 10

Min/max level 0/400 0/500 0/850

Safety/initial level 160/200 200/300 340/350

Access window [0,7][40,48] [0,48] [0,7][40,48]

Table 3.3. Truck capacities for the toy example.

Truck T1 T2 T3 T4 T5

Capacity 600 1100 1100 1100 600

77

Table 3.4. Iterations and solution time for the toy example.

Option 1 2 3 4

Iterations 7 7 7 3

Time(s) 6.6 10.4 6.5 4.5

There are several optimal solutions for this problem (i.e., solutions with the same objective

function value). In one of the optimal solutions, truck T1 takes route P->c->P, arrives at customer c

at time 6, and delivers 570 units of product; truck T2 takes route P->b->a->P, arrives at customer

b/a at 42.5/44.5, and delivers 448/152 units of product. The objective function value is 665. It

takes 48 minutes to solve this toy problem and prove optimality using a full IRP model (shown in

Chapter 2), while this optimal solution is found within seconds using the proposed decomposition

method, even though multiple iterations are needed.

First, we discuss the iterations using option 1. The most economic truck-route selection in the

upper level VR subproblem would be that one truck with a capacity of 1100 (T2, T3 or T4) serves

all three customers in a single route with no driver rest, delivering to a, b, c respectively 152, 478,

470 units of product; with a VR objective value 𝑂𝑉𝑅 = 454. However, routes, P->a->b->c->P or P->c-

>b->a->P, would lead to an infeasible SP, because the access window constraints and the inventory

lower bounds cannot be satisfied at the same time. It takes 6 iterations to exclude the (symmetric)

infeasible truck-route selections, that is, in iterations 1-6 trucks T2, T3, T4 take routes P->a->b->c-

>P or P->c->b->a->P, and the LB/UB are 454/+∞. In the VR subproblem in iteration 7, one truck

with a capacity of 600, T1 or T5, delivers to a and b 152 and 448 units respectively, and one truck

with capacity of 600 visits c. Thus, 𝐿𝐵 = 𝑂𝑉𝑅 = 662. This truck-route selection is feasible in SP, but

due to customer capacity and window restrictions, only 570 out of 600 can be delivered to c; thus,

𝑂𝑆𝑃 is 665, and the UB is updated to 662 (because of the exclusion of the penalty term). Since UB

and LB converge, the solution process ends at iteration 7.

Using options 2 and 3 leads to the same iterations as when using option 1. As can be seen in

Table 3.4, more solution time is needed for option 2, because it includes the additional model SPS to

78

solve. Finally, 2 iterations are needed to exclude the selections of routes P->a->b->c->P and P->c-

>b->a->P, when option 4 is used. In iteration 3, routes P->c->P and P->b->a->P are selected, and the

iterative procedure ends (𝐿𝐵 = 𝑂𝑉𝑅 = 662, 𝑂𝑉𝑅 = 665, 𝑈𝐵 = 662).

3.6.2. Industrial-size Instances

We consider 12 instances based on real industrial cases, with 45 to 155 customers in the

original networks (including 2 to 11 order-only customers). After the dynamic network reduction

(§3.2), there are typically fewer than 35 customers (including 0-2 order-only customers). We

classify the 12 instances into 3 groups, based on the number of selected customers: instances 1-4

have 5-14 selected customers; instances 5-8 have 15-24, while instances 9-12 have 25-34.

Generally speaking, more selected customers lead to a larger problem. Four options were used for

our testing. Table 3.5 shows the overall algorithm performance, including instance sizes, iteration

numbers, total solution time and objective values. Model statistics are shown in Tables 3.6-3.8,

where the VR and SP models in the first iteration are shown as representatives. Note that the

statistics of the VR model in the first iteration are all the same for the four options, while the

statistics of the SP model in the first iteration depend only on the truck-route paring option. We also

tested instances using the full IRP model (shown in Chapter 2). The corresponding solution

statistics for the smaller instances are given in Table 3.9.

First, we note that the decomposition method is significantly faster than the full IRP model.

Using the full model, the first integer solution can only be found after a few minutes, while using the

decomposition method, all instances 1-4 can be solved in a few seconds. After 20 hours, the

objective values of the solutions obtained by the full model are the same or inferior to the solutions

obtained by the decomposition. For instances 5-12, no integer solution can be found within an hour

using the full model, while all instances can be solved within 15 minutes using the proposed

method.

79

We observe that SP is sometimes slow using OptnR, so OptnE should be adopted for larger

problems. This is different from the toy problem, where OptnR helps to reduce the number of

iterations and solution time. For large scale instances, option 2 with heuristics and OptnE is the

optimal one in terms of computational cost.

Table 3.5. Instance characteristics, iterations, solution times, and objective function values using options 1-4.

Ins-
tance

Custo-
mers

Tru-
cks

Dri-
vers

Arcs Routes
Iterations Total time (s) Objective value

1 2 3 4 1 2 3 4 1 2 3 4

1 5 4 4 20 17 1 1 1 1 1.4 1.3 1.4 1.3 666.0 666.0 666.0 666.0

2 7 5 5 54 49 1 1 1 1 1.9 1.8 2.1 2.1 924.0 924.0 924.0 924.0

3 8 3 5 23 16 1 1 1 1 2.6 2.6 4.0 3.9 1494.3 1494.3 1494.3 1494.3

4 13 4 6 137 218 1 1 1 1 5.4 5.6 8.4 8.4 1186.0 1186.0 1186.0 1186.0

5 16 4 6 50 40 1 1 1 1 8.1 8.1 26.0 26.5 2817.2 2817.2 2817.2 2817.2

6 17 7 9 74 100 17 2 20 2 2980.3 370.8 6105.5 970.9 5621.6 5625.6 NA 5630.9

7 23 4 6 385 1609 1 1 1 1 17.5 17.5 29.3 29.2 1809.0 1809.0 1809.0 1809.0

8 23 7 8 178 883 1 1 20 2 181.9 194.9 4840.2 881.4 5506.0 5506.0 NA 5540.5

9 25 6 9 111 112 1 1 1 1 20.9 20.9 37.4 37.3 2241.8 2241.8 2241.8 2241.8

10 32 7 10 485 2293 3 2 20 20 1372.0 878.0 6616.6 9851.9 5517.8 5517.8 NA NA

11 32 10 13 485 4342 1 1 3 4 83.6 87.9 1773.5 3483.5 5002.8 5002.8 5002.8 5002.8

12 34 7 8 218 307 3 2 20 6 1760.2 892.1 7090.5 3952.9 3778.7 3778.7 NA 3785.8

Table 3.6. Solution statistics of the VR model in the first iteration.

Instance Variables Binaries Constraints Non-zeros Nodes Time(s)

1 248 68 226 944 1 0.08

2 650 170 593 2550 1 0.04

3 171 48 203 678 1 0.03

4 1504 360 1756 6784 1 0.08

5 512 136 636 2184 1 0.06

6 1869 448 2258 8428 1 0.11

7 16028 3376 21578 77664 1 3.17

8 19712 4130 25993 94373 480 7.57

9 683 171 796 2875 1 0.33

10 22764 5054 26491 94584 1528 11.67

11 60470 12810 69828 258774 936 61.03

12 7224 1659 8511 29867 1 0.39

Note. When nodes = 1, the solution was obtained and its optimality was proved, or the model was proved infeasible, in the
presolve phase or at the root node.

80

Table 3.7. Solution statistics of the SP model in the first iteration, using OptnE (options 1,2).

Instance Variables Binaries Constraints Non-zeros Nodes Time(s)

1 243 53 324 1205 1 0.28

2 405 66 569 2060 1 0.39

3 847 207 1126 4356 1 0.67

4 2110 657 2914 10836 1 0.39

5 3339 738 4753 17527 1 2.70

6 18879 3287 25233 104764 1275 286.11

7 3154 830 4614 16792 1 2.82

8 6112 1406 8820 32480 2762 153.36

9 2389 589 3303 12740 1 3.23

10 9392 1591 13231 50539 932 78.25

11 8201 1540 11285 44042 1 22.37

12 7076 1345 9927 37358 980 275.34

Note. When nodes = 1, the solution was obtained and its optimality was proved, or the model was proved infeasible, in the
presolve phase or at the root node.

Table 3.8. Solution statistics of the SP model in the first iteration, using OptnR (options 3,4).

Instance Variables Binaries Constraints Non-zeros Nodes Time(s)

1 818 168 1043 4353 1 0.36

2 1791 254 2473 9749 1 0.38

3 1127 265 1459 6008 1 1.94

4 8571 2594 11855 45404 1 4.31

5 13528 3022 18962 71200 1 20.76

6 60850 9508 82717 337597 19 300.73

7 12768 3514 18226 69062 1 14.52

8 41608 9864 58022 220007 88 300.52

9 14103 3368 19480 78145 1 20.12

10 94907 11020 94907 368356 1 300.15

11 14103 3368 19480 78145 1 18.88

12 50442 9727 69732 266266 1 300.77

Note. When nodes = 1, the solution was obtained and its optimality was proved, or the model was proved infeasible, in the
presolve phase or at the root node.

Table 3.9. Solution statistics of the full model.

Instance Variables Binaries Constraints Non-zeros

Time of
1st integer
solution
(s)

Objective
value of
1st integer
solution

Nodes
after 20
hours

Objective
value
after 20
hours

Gap after
20 hours

1 16328 10445 8511 128029 342 774.0 104889 666.0 18%

2 30852 18260 15576 279301 430 1459.3 39005 924.0 39%

3 10130 6838 5443 81636 52 1922.6 237401 1496.4 11%

4 43222 25132 21959 406516 620 1734.2 22157 1186.0 60%

81

For smaller problems (instances 1-4), the algorithm is finished within 10 seconds using all

options, and the objective values are the same; option 2 is the fastest. For medium-sized problems

(instances 5-8), we observe the following:

(a) OptnE is much better than OptnR, because OptnR leads to very large SP models. For example, no

integer solution was found within the limit of 300 seconds for instance 6 using option 3. To

further study this, we tested all instances with a 1200-second time limit for solving SP; OptnE

still outperformed OptnR.

(b) Option 2 is the fastest; all instances were solved within 7 minutes. However, option 2 can lead

to slightly suboptimal solutions compared to option 1, which may cut off the optimal solution in

the VR subproblem (e.g., instance 6).

For larger instances, 9-12, option 2 greatly outperforms the others. Thus, using OptnE and

heuristics is the best combination when obtaining near optimal solutions is acceptable (in all the

instances, the gap between the solution using option 2 and the best found solution is less than

0.1%).

Figure 3.12. Routes selected for instance 11.

82

Finally, we show the routing and scheduling solution of instance 11, which was also used as the

example in §3.2.3. Figure 3.12 shows the routing decisions (note that some balance customers are

not visited in the planning horizon) and Figure 3.13 shows the final solution as a Gantt chart.

Figure 3.13. Gantt chart showing the solution for instance 11.

3.6.3. Remarks

In real applications, time spent in solving IRP is critical. Thus, we discuss how to set the solution

time limits for both the upper and lower level subproblems, and how to react if the time limits are

reached.

For the upper level VR, we observe that the solution time depends, as expected, on problem

size, but does not change greatly among iterations. For all of the tested instances, the VR model in

the first iteration can be solved within 2 minutes, and the time increases as the numbers of trucks,

arcs and routes increase (Tables 3.5 and 3.6). During the iterative procedure, integer cuts are added

to VR, so the model becomes larger, but the solution time does not increase. We illustrate this

observation by showing the statistics for 100 iterations of instance 11, where the VR model is

solved repeatedly by adding “no-good” integer cuts. We use the results of “no-good” integer cuts,

because they are the most general cuts and lead to the densest matrix. As shown in Figure 3.14,

even though the number of non-zeros becomes 5 times larger, the solution time does not increase

significantly. Therefore, we can set a constant solution time limit for VR based on the numbers of

83

trucks, arcs and routes. In the rare case that VR is not solved to optimality within the time limit, we

should update the LB using the best lower bound in the branch-and-bound tree, and increase the VR

time limit in the next iteration.

For the lower level SP, the size of the model depends not only on the number of trucks,

customers and drivers, but also on the number of routes selected in VR in the current iteration, so

the solution time can vary greatly across iterations. Accordingly, a good strategy to set the time

limit for SP is to use an adaptive algorithm with the following rules: (1) The solution time limit

should be a function of the numbers of trucks, customers, drivers, and selected routes in VR. (2)

When SP is not solved within the time limit, we do not use the heuristics shown in Figure 3.10, and

increase the time limit for the following iterations. (3) When heuristics have been aborted and SP is

solved within the time limit, we reuse the heuristics, and gradually decrease the time limit in the

following iterations.

Figure 3.14. Effects of integer cuts on the number of non-zeros and solution time.

3.7. Conclusions

In this chapeter, we proposed novel solution methods for vehicle-based inventory routing

problems, including a preprocessing algorithm and an iterative approach based on a decomposition

to an upper level vehicle routing subproblem and a lower level detailed scheduling subproblem.

The preprocessing algorithm selects trigger customers, whose demands should be met in the

horizon, as well as balance customers to fully utilize truck capacities. This algorithm can be adapted

84

to different networks by selecting user-defined parameters accordingly, and can be modified to

consider different features, such as time-varying consumption rates. In the upper level subproblem,

the routes to satisfy customer demand are selected, taking into account truck capacities and the

working and driving time needed for each route. In the lower level subproblem, detailed truck and

driver schedules are generated based on the routes determined at the upper level. We presented

different types of integer cuts that can be added to the upper level problem to exclude previously

found solutions or groups of solutions. Finally, we tested our methods using a set of industrial-scale

instances, based on distribution networks with up to 155 customers. Instances that were

intractable can now be solved within reasonable time.

3.8. Notation

Indices/sets

𝑖 ∈ 𝐈 trucks

𝑗 ∈ 𝐉 SC nodes, including plant P

𝑘 ∈ 𝐊 drivers

𝑙 ∈ 𝐋 segments

𝑚 ∈ 𝐌𝑗 access windows of customer j

𝑛 ∈ 𝐍 time slots

𝑞 ∈ 𝐐 piecewise linear approximation points

𝑟 ∈ 𝐑 routes

𝑠 ∈ 𝐒 iterations

Subsets

𝐀 ⊆ (𝐉 × 𝐉) arcs

𝐀𝑙/𝐀𝑟 arcs included in segment l/route r

𝐀𝑟,𝑗
𝑅𝑃 arcs traveled before j in route r

𝐈𝑙 trucks that can carry out segment l

85

𝐈𝑠
𝐸 trucks that are assigned to infeasible routes in OptnE

𝐉𝐶 customers

𝐉𝐴/𝐉𝑂 anticipatable/order-only customers

𝐉𝑓𝑖𝑟𝑠𝑡 customers required to be visited first in a route

𝐉𝑙 SC nodes visited in segment l

𝐉𝑙
𝑠𝑡𝑎𝑟𝑡/𝐉𝑙

𝑒𝑛𝑑 start/end SC node of segment l

𝐉𝑟 customers visited in route r

𝐉𝑇/𝐉𝐵 trigger/balance customers

𝐉𝑗
𝑅 customers in the region of j

𝐋𝑆 single-route segments

𝐋1/𝐋2 first/second segments of long routes

𝐋𝑗 segments visiting customer j

𝐋𝑙
𝑛𝑒𝑥𝑡 the second segment, following segment l, in a route

𝐋𝑟 segments related to route r

𝐍𝐼/𝐍𝑗
𝐽/𝐍𝐾 slots of trucks/customer j/ drivers

𝐑𝑙 routes related to segment l

𝐑𝑗 routes visiting customer j

𝐑𝑠,𝑖
𝐺 /𝐑𝑠,𝑖

𝐸 /𝐑𝑠
𝑅 infeasible route combinations (for different types of integer cuts)

Parameters

𝛽𝑗 fixed loading or delivering time at SC node j

𝛾𝐷/𝛾𝑅/𝛾𝑊 driving/resting/working cost

𝛾𝑉/𝛾𝑋 delivery/unused capacity cost

𝜖 termination criterion

𝜁𝑗
𝐿/𝜁𝑗

𝑈/𝜁𝑗
𝑆 minimum/ maximum/ safety level of anticipatable customer j

86

𝜁�̅�,𝑞 projected inventory level at point q of customer j without deliveries

𝜂 planning horizon

𝜃𝑊/𝜃𝐷 maximum daily working/driving time

�̅�𝑗,𝑞 time at point q of customer j

𝜉𝑖 capacity of truck i

𝜌𝑗 constant consumption rate of anticipatable customer j

𝜌𝑗
𝑇(𝑡) consumption rate of anticipatable customer j at time t

𝜎𝑗,𝑚
𝐴𝑆 /𝜎𝑗,𝑚

𝐴𝐸 start/end time of access window m of customer j

𝜎𝑗
𝑂𝑆/𝜎𝑗

𝑂𝐸 start/end time of order window of customer j

𝜏𝑗,𝑗′ traversal time of arc (j,j’) including loading or delivering time at j

𝜏𝑜𝑗,𝑗′ travel time of arc (j,j’)

𝜑𝑗 order amount of order-only customer j

𝜑𝐶𝐼/𝜑𝐶𝑂 check-in/check-out time

𝜓 minimum resting time

𝜔𝑖,𝑗 variable time for a unit material delivery from truck i to customer j

𝐿0𝑗
𝐴 initial inventory of anticipatable customer j

Calculated Parameters

𝛼𝜏𝑟,𝑗 earliest possible visiting time to customer j via route r

𝛾𝑟
𝑅 cost of route r

𝜗𝑗 fixed working time at SC node j

𝜇𝑟 number of times that route r is selected in VR solution

𝜎𝑗
MIN/𝜎𝑗

MAX minimum/maximum demand in the planning horizon of customer j

𝜏𝑟
𝑊/𝜏𝑟

𝐷/𝜏𝑟
𝑅 working/driving/routing time of route r

𝜏𝑥𝑖,𝑟 updated extra working time of route r by truck i

87

𝜔𝜏𝑗 time when the projected inventory of customer j goes below lower bound

Binary Variables in VR

𝑍𝑖,𝑟 = 1 if and only if truck i uses route r

Continuous Non-Negative Variables in VR

𝐹𝑖,𝑟
𝑅𝑋 unused capacity of truck i when carrying out route r

𝐹𝑖,𝑟,𝑗
𝑅 delivery amount from truck i to customer j in route r

𝑂𝑉𝑅 objective in VR

Binary Variables in SP

𝑋𝑖,𝑛,𝑘,𝑛′,𝑙 = 1 if and only if truck-slot (i,n) is matched with driver-slot (k,n’) to carry out

segment l

𝑋𝑖,𝑛
𝐼 =1 if and only if slot n of truck i is used

𝑋𝑘,𝑛
𝐾 =1 if and only if slot n of driver k is used

𝑋𝑖,𝑙
𝐼𝐿 =1 if and only if truck i carries out segment l

𝑌𝑙,𝑗,𝑛 =1 if and only if segment l visits customer j on slot n

𝑊𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗,𝑚 =1 if and only if truck-slot (i,n) is matched with driver-slot (k,n’) to carry out

segment l, in which customer j is visited during window m

SOS2 Variables in SP

𝑃𝑗,𝑛,𝑞
𝑆 /𝑃𝑗,𝑛,𝑞

𝐸 SOS2 over index q representing start/end time on slot n of customer j

Continuous Non-Negative Variables in SP

𝐹𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗 delivery amount to customer j at truck-slot (i,n) and driver-slot (k,n’) on segment l

𝐹𝑙,𝑗
𝐿𝐽 delivery amount on segment l to customer j

𝐹𝑗,𝑛
𝐽𝑁 delivery amount to customer j at slot n

�̂�𝑗,𝑛
𝐿 /�̂�𝑗,𝑛

𝑈 inventory lower/upper bound violation for customer j at slot n

𝐹𝑖,𝑙
𝑆𝑋 unused capacity for truck i on segment l

88

𝐿𝑗,𝑛
𝑆 /𝐿𝑗,𝑛

𝐸 projected inventory level at the start/end of slot n of customer j (which can be

negative)

𝑂𝑆𝑃 objective in SP

𝑆𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗/𝐸𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗 start/end time to visit SC node j using truck-slot (i,n) and driver-slot (k,n’) on

segment l

�̂�𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗/�̂�𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗 start/end time violation

𝑆𝑖,𝑛
𝐼 /𝐸𝑖,𝑛

𝐼 start/end time of slot n of truck i

𝑆𝑘,𝑛
𝐾 /𝐸𝑘,𝑛

𝐾 start/end time of slot n of driver k

𝑆𝑙
𝐿/𝐸𝑙

𝐿 start/end time of segment l

𝑆𝑙,𝑗
𝐿𝐽/𝐸𝑙,𝑗

𝐿𝐽 start/end time to visit SC node j on segment l

𝑆𝑗,𝑛
𝐽𝑁/𝐸𝑗,𝑛

𝐽𝑁 start/end time to visit SC node j on slot n

89

Chapter 4

Policy Analysis based on Reoptimization for MIRP under Uncertainty4

In reality, IRP is a “dynamic” problem in which new information (e.g. newly forecasted

production/consumption rate) arrives continuously and disruptive events (e.g., delays due to bad

weather) are common. However, most models and solution methods have been developed for the

static IRP/MIRP. Accordingly, in this chapter, we propose a reoptimization framework that allows

us to: (1) study the impact of different sources of uncertainty on the closed-loop (implemented)

solution, as opposed to the open-loop solution; and (2) study how different policies impact the

quality of the closed-loop solution. In the MIRP we studied, the vessels may have specific capacities

and can be rented in different modes; for all the consumption nodes and some of the production

nodes, the inventory levels are monitored and should be maintained within specified bounds; for

other production nodes, orders should be picked up within pre-defined time windows.

The chapter is structured as follows. In Section 4.1, we discuss background on MIRP and

reoptimization. In Section 4.2, we propose a MIP model based on a discrete-time representation. In

Section 4.3, we discuss the sources of uncertainty we consider and the stochastic simulation we

employ to study them. In Section 4.4, we present the reoptimization framework, and in Section 4.5

we describe the different policies that can be adopted. Case studies are presented in Section 4.6. We

use uppercase bold Latin letters for sets, lowercase italic Latin letters for indices, lowercase italic

Greek letters for general parameters and uppercase italic Latin letters for optimization variables.

Subsets are represented by the letter of the superset and a superscript. Finally, parameters which

represent the history of the system, and consequently determine the state of the system at the

current time, are denoted by uppercase italic Latin letters with a hat.

4 This chapter is modified from Dong et al., submitted.

90

4.1. Background

4.1.1. Distribution Supply Chain

In MIRP, there are generally two subsets of nodes (ports): production and consumption nodes.

Materials are distributed among these nodes by sea-going vessels. Traveling from one node to

another is referred to as a trip. For most nodes, inventory levels and estimates of future

consumption and production profiles are known. Additionally, to study features that are often

found in practice, we consider owned and third-party nodes (i.e., nodes not owned by the decision-

maker) as well as long- and short-term renting modes.

Figure 4.1. An illustration of the overall distribution network.

For all consumption nodes and the owned production nodes, the estimated future consumption

and production profiles are known, and the inventory levels should be kept within their upper and

lower bounds by delivering or picking up materials. For third-party production nodes, orders with

specified pick-up windows are given. Material distribution can be carried out by vessels either

rented in long- or short-term mode. The distribution problem is illustrated in Figure 4.1. Sources of

uncertainty include vessel availability, trip delays, pick-up window specifications,

consumption/production rate variations, etc.

91

Most pick-ups and deliveries are completed by renting a seagoing vessel and its crew in long-

term mode. Once rented in long-term mode, a vessel needs to be held for at least a certain number

of days (normally 30). Vessel availability needs to be checked with the marine vessel company

before it is rented: the earlier an inquiry (call) is made, the higher the probability that a vessel will

be available and successfully reserved. The advantages of long-term rental are that (1) a vessel is

guaranteed to be available once rented, and (2) the decision maker can change its routes and

schedules. The disadvantage is that a fee has to be paid for as long as it is rented, regardless of its

utilization level.

A short-term rental is for a single node-to-node trip (e.g., pick up 1000 kilotons of material A at

production node P1 on October 15th and deliver it to consumption node C1 on October 25th) and the

rate charged is per trip. The decision maker also has to call the vessel company to make the

reservation. The advantage of short-term mode is that the decision maker only pays for the vessel

when it is in use. The disadvantages are: (1) a vessel may not be immediately available; (2) the per-

period cost is higher compared to that for the long-term mode; and (3) a scheduled trip cannot be

changed to react, for example, to a new order or trip delay.

4.1.2. Reoptimization

Reoptimization, or reactive optimization, is needed when the horizon is finite and/or the

system is subject to uncertainty. If reoptimization focuses only on revising the decisions that are

already made, it results in a shrinking-horizon approach; while if the horizon is rolled forward so

that additional decisions are made, it results in a rolling-horizon approach. In the field of production

scheduling (Méndez et al., 2006; Li and Ierapetritou, 2008; Verderame et al., 2010; Harjunkoski et

al., 2014), reoptimization has been studied (Vieira et al., 2003; Ouelhadj and Petrovic, 2009; Gupta

et al., 2016). Upon obtaining new information or observing a disturbance, (part of) the unexecuted

schedule is recomputed. Rescheduling approaches can be broadly divided into deterministic

92

(Bassett et al., 1997; Novas and Henning, 2010; Gupta and Maravelias, 2016) and stochastic

(Balasubramanian and Grossmann, 2004; Janak et al., 2007; Cui and Engell, 2010). Deterministic

approaches are easier to implement and computationally less demanding, while stochastic

approaches can potentially lead to better solutions. A state space model explicitly accounting for

disturbances for chemical production rescheduling has been proposed (Subramanian et al., 2012).

An optimization framework of rolling horizons has been proposed for the vendor managed

inventory systems (Al-Ameri et al., 2008), while make-to-order polices have been analyzed on a

rolling horizon basis for order-based production SCs (Sahin et al., 2008).

In this chapter, we employ a deterministic approach and adopt a rolling horizon framework for

reoptimization. Each solution obtained from solving the MIP model is referred to as an open-loop

solution. The first move of this solution, that is, the decisions corresponding to the first period (t =

1) are implemented. After the horizon is rolled forward, uncertainty is observed and feedback is

incorporated, and the model is re-solved; the decisions for t = 1 are implemented and the process is

repeated. The final, implemented solution is referred to as the closed-loop solution.

4.1.3. Problem Statement

We consider a sufficiently large fleet of vessels that can be rented in long-term mode. Unrented

vessels are located in a pseudo node, the vessel center (vc). We do not model vessels rented in short-

term mode explicitly because it is unnecessary to keep track of their location (since they are rented

for single trips); we simply model the time and the pick-up quantity.

We consider the following indices and sets:

(a) 𝑖 ∈ 𝐈: shipping vessels (that can be rented in long-term mode).

(b) 𝑗 ∈ 𝐉𝑃: production nodes, which can be classified as owned, 𝑗 ∈ 𝐉𝑂𝑃, and third-party, 𝑗 ∈ 𝐉𝑇𝑃.

(c) 𝑗 ∈ 𝐉𝐶: consumption nodes.

(d) 𝑗 ∈ 𝐉 = 𝐉𝑃 ∪ 𝐉𝐶 ∪ {𝑣𝑐}: all nodes in the supply chain network.

93

(e) 𝑘 ∈ 𝐊𝑗: orders from node 𝑗 ∈ 𝐉𝑇𝑃.

(f) 𝑚 ∈ 𝐌: materials.

(g) 𝐀 ⊆ 𝐉 × 𝐉: arcs in the SC network.

The following data are assumed to be available:

(a) 𝛾𝑖
𝑀𝐴𝑋: capacity of vessel i.

(b) 𝛾𝑖
𝑀𝐼𝑁: lower bound on the load of vessel i when traveling from a production node to a

consumption node.

(c) 𝜏𝑗𝑗′ : traversal time along arc (j,j’), which includes the travel time, plus the pick-up/delivery time

at node j.

(d) 𝜉𝑗𝑗′
𝑀𝐴𝑋: maximum load along arc (j,j’), which is determined by the waterline bound along the arc.

(e) 𝜁𝑗𝑚
𝑀𝐴𝑋/𝜁𝑗𝑚

𝑀𝐼𝑁: maximum/minimum inventory level for material m in consumption node or owned

production node j; inventory violations leading to overflow or underflow are allowed but

penalized.

(f) 𝜑𝑗𝑚𝑘: amount of material m in order k from node 𝑗 ∈ 𝐉𝑇𝑃.

(g) 𝜎𝑗𝑘
𝑂𝑆/𝜎𝑗𝑘

𝑂𝐸: start/end time of pick-up windows for order k from node 𝑗 ∈ 𝐉𝑇𝑃.

(h) The forecast production or consumption profile for node 𝑗 ∈ 𝐉𝑂𝑃 ∪ 𝐉𝐶 (discussed in §4.2).

We are also given the initial state of the system (see §4.2.2 for details), including node

inventories, vessel initial loads, and vessel location information.

The objective is to minimize the total distribution cost, which includes material holding,

overflow, underflow, vessel renting, and transportation cost. The corresponding parameters are as

follows:

(a) 𝜗𝐿: minimum number of periods for which each vessel can be rented in long-term mode.

(b) 𝜋𝑖
𝐹𝐿: fixed cost for renting vessel i for the minimum number of periods.

94

(c) 𝜋𝑖
𝐷𝐿: additional cost for extending the long-term rental of vessel i.

(d) 𝜋𝑗𝑗′
𝑆 : cost of renting a vessel in short-term mode to serve (j,j’).

(e) 𝜋𝑗𝑗′
𝐹𝑇: fixed transportation cost for trip along (j, j’).

(f) 𝜋𝑗𝑗′
𝑉𝑇: unit variable transportation cost for trip (j, j’).

(g) 𝜋𝑗𝑚
𝑀𝐻: unit holding cost for material m at node j for one time period.

Note that parameters (b)-(d) include the cost of renting the vessels as well as their crew

members.

4.2. Discrete-time Model

We adopt a discrete-time approach, where the planning horizon 𝜂 is divided into periods with

uniform length 𝛿. Time points and time periods are both denoted by 𝑡 ∈ 𝐓. Period t starts at point

t-1 and ends at point t, so the planning horizon has 𝜂/𝛿 periods (1, 2, …, 𝜂/𝛿), and 𝜂/𝛿 + 1 points (0,

1, …, 𝜂/𝛿). Vessels start trips at time points, while they travel along arcs or stay at nodes during

time periods. The consumption/production rate of each node during each time period is known,

and its inventory level is modeled; it represents the level just after the pick-up/delivery occurring

at the same time point.

The traversal time along an arc is rounded up, 𝜏𝑗𝑗′ = ⌈ 𝜏𝑗𝑗′/𝛿⌉ to ensure that the solution is

feasible. The approximation can be modified, if it is desirable to be less conservative. For each node

j, we use 𝜌𝑗𝑚𝑡 to denote the production or consumption rate of material m during period t, which is

positive for production nodes (𝑗 ∈ 𝐉𝑃), and negative for consumption nodes (𝑗 ∈ 𝐉𝐶). For a third-

party production node 𝑗 ∈ 𝐉𝑇𝑃, orders 𝑘 ∈ 𝐊𝑗 are placed (described by parameters 𝜑𝑗𝑚𝑘 and

𝜎𝑗𝑘
𝑂𝑆/𝜎𝑗𝑘

𝑂𝐸). To treat nodes uniformly, if j is a third-party production node, the production rate in the

period just before the start time of a pick-up window is equal to the order amount,

 𝜌𝑗𝑚𝑡 = {
𝜑𝑗𝑚𝑘 if ∃𝑘 ∈ 𝐊𝑗: 𝑡 = ⌈𝜎𝑗𝑘

𝑂𝑆/𝛿⌉

0 otherwise
 (4.1)

95

Figure 4.2. Production rate, upper and lower bounds on inventory levels for a third-party production node.

We use 𝜁𝑗𝑚𝑡
𝑀𝐼𝑁/𝜁𝑗𝑚𝑡

𝑀𝐴𝑋 to denote the lower/upper bound on the inventory level of material m in

node j at time t. For consumption or owned production nodes, 𝜁𝑗𝑚
𝑀𝐼𝑁/𝜁𝑗𝑚

𝑀𝐴𝑋 represent the physical

constraints (see §2.3). For third-party production nodes, 𝜁𝑗𝑚𝑡
𝑀𝐼𝑁 is always 0; while 𝜁𝑗𝑚𝑡

𝑀𝐴𝑋 is the order

amount if ⌈𝜎𝑗𝑘
𝑂𝑆/𝛿⌉ ≤ 𝑡 < ⌊𝜎𝑗𝑘

𝑂𝐸/𝛿⌋ for an order k, and 0 otherwise (see Figure 4.2).

 𝜁𝑗𝑚𝑡
𝑀𝐼𝑁 = {

𝜁𝑗𝑚
𝑀𝐼𝑁 if 𝑗 ∈ 𝐉𝑂𝑃 ∪ 𝐉𝐶

0 if 𝑗 ∈ 𝐉𝑇𝑃
 (4.2)

𝜁𝑗𝑚𝑡
𝑀𝐴𝑋 = {

𝜁𝑗𝑚
𝑀𝐴𝑋 if 𝑗 ∈ 𝐉𝑂𝑃 ∪ 𝐉𝐶

𝜑𝑗𝑚𝑘 if 𝑗 ∈ 𝐉𝑇𝑃 and ∃𝑘 ∈ 𝐊𝑗: ⌈𝜎𝑗𝑘
𝑂𝑆/𝛿⌉ ≤ 𝑡 < ⌊𝜎𝑗𝑘

𝑂𝐸/𝛿⌋

0 if 𝑗 ∈ 𝐉𝑇𝑃 and ∄𝑘 ∈ 𝐊𝑗: ⌈𝜎𝑗𝑘
𝑂𝑆/𝛿⌉ ≤ 𝑡 < ⌊𝜎𝑗𝑘

𝑂𝐸/𝛿⌋

 (4.3)

4.2.1. Variables

An overhead bar is used for variables representing quantities or states during a time period t,

while no bar is placed for variables representing quantities or actions at a time point. We define the

following binary variables:

(a) 𝑊𝑖𝑗𝑗′𝑡
𝐿 = 1 if vessel 𝑖 starts a trip from j to j’ at time point t.

(b) �̅�𝑖𝑗𝑡
𝐿 = 1 if vessel 𝑖 is at node j during time period t; when not rented, �̅�𝑖,𝑣𝑐,𝑡

𝐿 = 1.

(c) 𝑊𝑗𝑗′𝑡
𝑆 = 1 if a vessel in short-term mode starts a trip from j to j’ at time point t.

and the following nonnegative continuous variables to represent material flows and inventory

levels:

(a) 𝐹𝑖𝑗𝑗′𝑚𝑡
𝐿 : amount of material m loaded in vessel 𝑖 that starts to travel from j to j’ at t.

96

(b) 𝐹𝑗𝑗′𝑚𝑡
𝑆 : amount of material m loaded in short-term rental, from j to j’ starting at t.

(c) 𝐿𝑗𝑚𝑡: inventory level of material m in node j at time point t.

(d) 𝐿𝑗𝑚𝑡
𝑂𝐹 /𝐿𝑗𝑚𝑡

𝑈𝐹 : amount over/below the upper/lower bound on the inventory level of material m in

node j at time point t.

Figure 4.3 illustrates the aforementioned variables based on a delivery to a consumption node

by a vessel in long-term mode.

Finally, we use the following variables to model different types of cost:

(a) �̅�𝑖𝑡
𝐿 = 1 if vessel i is used during period t beyond the minimum 𝜗𝐿 periods.

(b) 𝐶𝑡
𝑀𝐻: material holding cost.

(c) 𝐶𝑡
𝑂𝐹/𝐶𝑡

𝑈𝐹: overflow/underflow cost.

(d) 𝐶𝑡
𝐹𝑇: fixed transportation cost.

(e) 𝐶𝑡
𝑉𝑇: variable transportation cost.

(f) 𝐶𝑡
𝐹𝐿: renting cost for the minimum 𝜗𝐿-period in long-term mode.

(g) 𝐶𝑡
𝐸𝐿: renting cost for extended time in long-term mode.

(h) 𝐶𝑡
𝑆 : short-term renting cost.

(i) 𝐶𝐴𝐿𝐿: total cost.

4.2.2. System Initial States

An overhead bar is used for variables representing quantities or states during a time period t,

while no bar is placed for variables representing quantities or actions at a time point. We define the

following binary variables:

We define the system initial state (t = 0) using the following:

(a) �̂�𝑗𝑚0: initial inventory of node j.

97

(b) �̂�𝑖𝑗𝑡
𝐿 : initial location of vessel i; if located at j initially, then �̂�𝑖𝑗0

𝐿 = 1; otherwise, �̂�𝑖𝑗0
𝐿 = 0; if

traveling initially and will arrive at j at t, then �̂�𝑖𝑗𝑡
𝐿 = 1; otherwise, �̂�𝑖𝑗𝑡

𝐿 = 0.

(c) �̂�𝑖𝑗𝑚𝑡
𝐿 /�̂�𝑗′𝑗𝑚𝑡

𝑆 : amount of en route material m, arriving at consumption node j at time point t,

from vessel i or from production node j’ using a short-term rental; the source of this incoming

flow is monitored in case it needs to be modified due to trip delay.

(d) �̂�𝑖𝑗𝑗′𝑡
𝐿 /�̂�𝑗𝑗′𝑡

𝑆 : previously made travel decisions (which should be respected in the solution);

�̂�𝑖𝑗𝑗′𝑡
𝐿 = 1means that vessel i should leave j for j’ at time t, while �̂�𝑗𝑗′𝑡

𝑆 = 1 means that a vessel

in short-term mode should leave j for j’ at time t.

The letters used in these parameters are the same as the optimization variables (e.g., �̂�𝑗𝑚0

represents initial inventory level and 𝐿𝑗𝑚𝑡 is an inventory level variable), though sometimes the

parameters have slightly different meaning (e.g., �̂�𝑖𝑗𝑚𝑡
𝐿 is the amount of material arriving at node j in

vessel i at time point t, while 𝐹𝑖𝑗𝑗′𝑚𝑡
𝐿 is the amount of material loaded in the vessel, if it starts to

travel from j to j’ at t).

Figure 4.3. Inventory modeling for consumption node b, with a vessel traveling on a→b→c. The delivery time
is included at the beginning of each traversal time. (a) The vessel arrives at b, immediately makes delivery,
and leaves. (b) The vessel stays at b for one period before making delivery.

4.2.3. Constraints

98

Vessel location. The following equation models the vessel location (including departing from

and returning to the vessel center):

 �̅�𝑖𝑗𝑡
𝐿 = �̅�𝑖𝑗,𝑡−1

𝐿 + ∑ 𝑊𝑖𝑗′𝑗,𝑡−𝜏
𝑗′𝑗

−1
𝐿

𝑗′

− ∑ 𝑊𝑖𝑗𝑗′,𝑡−1
𝐿

𝑗′

+ �̂�𝑖𝑗,𝑡−1
𝐿 ∀𝑖, 𝑗, 𝑡 (4.4)

Vessel i is at node j in period t, if (1) it was there in the previous period (�̅�𝑖𝑗,𝑡−1
𝐿 = 1) or it has just

arrived (either ∑ 𝑊𝑖𝑗′𝑗,𝑡−𝜏
𝑗′𝑗

−1
𝐿

𝑗′ = 1 or �̂�𝑖𝑗,𝑡−1
𝐿 = 1), and (2) it does not leave at the start of period t.

Note that �̅�𝑖,𝑣𝑐,𝑡
𝐿 =1 represents that vessel i is not rented during t (i.e., located at the vessel center).

Arc flow. Constraints (4.5) enforce that the vessel capacities and maximum load along arcs are

respected, and constraints (4.6) enforce that to avoid routes with small pick-ups, the flow amount

from a production node to a consumption node should be greater than a minimum amount.

 ∑ 𝐹𝑖𝑗𝑗′𝑚𝑡
𝐿

𝑚

≤ min (𝜉𝑗𝑗′
𝑀𝐴𝑋, 𝛾𝑖

𝑀𝐴𝑋) 𝑊𝑖𝑗𝑗′𝑡
𝐿 ∀𝑖, (𝑗, 𝑗′) ∈ 𝐀, 𝑡 (4.5)

 ∑ 𝐹𝑖𝑗𝑗′𝑚𝑡
𝐿

𝑚

≥ 𝛾𝑖
𝑀𝐼𝑁𝑊𝑖𝑗𝑗′𝑡

𝐿 ∀𝑖, 𝑗 ∈ 𝐉𝑃 , 𝑗′ ∈ 𝐉𝐶 , (𝑗, 𝑗′) ∈ 𝐀, 𝑡 (4.6)

Similarly, in short-term mode, the arc flow is subject to constraints (4.7) and (4.8).

 ∑ 𝐹𝑗𝑗′𝑚𝑡
𝑆

𝑚

≤ min (𝜉𝑗𝑗′
𝑀𝐴𝑋, 𝛾𝑀𝐴𝑋)𝑊𝑗𝑗′𝑡

𝑆 ∀(𝑗, 𝑗′) ∈ 𝐀, 𝑡 (4.7)

 ∑ 𝐹𝑗𝑗′𝑚𝑡
𝑆

𝑚

≥ 𝛾𝑀𝐼𝑁𝑊𝑗𝑗′𝑡
𝑆 ∀𝑗 ∈ 𝐉𝑃 , 𝑗′ ∈ 𝐉𝐶 , (𝑗, 𝑗′) ∈ 𝐀, 𝑡 (4.8)

For simplicity, the maximum/minimum pick-up amounts of vessels in short-term mode, 𝛾𝑀𝐴𝑋/

𝛾𝑀𝐼𝑁, are assumed to be the same for all vessels, but this assumption can be relaxed.

Inventory level. The inventory level 𝐿𝑗𝑚𝑡 is equal to the inventory level at the previous time

point plus production (𝜌𝑗𝑚𝑡 > 0) or consumption (𝜌𝑗𝑚𝑡 < 0) plus incoming flows minus outgoing

flows,

99

𝐿𝑗𝑚𝑡 = 𝐿𝑗𝑚,𝑡−1 + 𝜌𝑗𝑚𝑡 + ∑ 𝐹𝑖𝑗′𝑗𝑚,𝑡−𝜏
𝑗′𝑗

𝐿

𝑖,𝑗′

+ ∑ 𝐹𝑗′𝑗𝑚,𝑡−𝜏
𝑗′𝑗

𝑆

𝑗′

− ∑ 𝐹𝑖𝑗𝑗′𝑚𝑡
𝐿

𝑖,𝑗′

− ∑ 𝐹𝑗𝑗′𝑚𝑡
𝑆

𝑗′

+ ∑ �̂�𝑖𝑗𝑚𝑡
𝐿

𝑖

+ ∑ �̂�𝑗′𝑗𝑚𝑡
𝑆

𝑗′

 ∀𝑗 ∈ 𝐉𝑃 ∪ 𝐉𝐶 , 𝑚, 𝑡

(4.9)

where the last two terms represent the incoming flow to j that are initially en route. Inventory

levels are constrained as follows,

 𝐿𝑗𝑚𝑡 − 𝐿𝑗𝑚𝑡
𝑂𝐹 ≤ 𝜁𝑗𝑚𝑡

𝑀𝐴𝑋 + ∑ 𝛾𝑖
𝑀𝐴𝑋�̅�𝑖𝑗𝑚,𝑡+1

𝑖

 ∀𝑗 ∈ 𝐉𝑃 ∪ 𝐉𝐶 , 𝑚, 𝑡 (4.10)

 𝐿𝑗𝑚𝑡 + 𝐿𝑗𝑚𝑡
𝑈𝐹 ≥ 𝜁𝑗𝑚𝑡

𝑀𝐼𝑁 ∀𝑗 ∈ 𝐉𝑃 ∪ 𝐉𝐶 , 𝑚, 𝑡 (4.11)

where overflow/underflow amounts are denoted by 𝐿𝑗𝑚𝑡
𝑂𝐹 /𝐿𝑗𝑚𝑡

𝑈𝐹 . The second term on the right hand

side (RHS) of constraints (4.10) is needed because when a vessel is at a node, the amount of

material in the vessel is included in variable 𝐿𝑗𝑚𝑡 (see Figure 4.3(b)).

4.2.4. Objective Function

The objective is to minimize the overall distribution cost,

 min 𝐶𝐴𝐿𝐿 = ∑(𝐶𝑡
𝑀𝐻 + 𝐶𝑡

𝑂𝐹 + 𝐶𝑡
𝑈𝐹 + 𝐶𝑡

𝐹𝑇 + 𝐶𝑡
𝑉𝑇 + +𝐶𝑡

𝐹𝐿 + 𝐶𝑡
𝐸𝐿 + 𝐶𝑡

𝑆)

𝑡

 (4.12)

The material holding cost is calculated as follows,

 𝐶𝑡
𝑀𝐻 = ∑ 𝜋𝑗𝑚

𝑀𝐻𝐿𝑗𝑚𝑡

𝑗,𝑚

 ∀𝑡 (4.13)

where 𝜋𝑗𝑚
𝑀𝐻 is the unit holding cost for material m in node j.

The overflow and underflow cost are calculated as follows,

 𝐶𝑡
𝑂𝐹 = ∑ 𝜋𝑗𝑚𝑡

𝑂𝐹 𝐿𝑗𝑚𝑡
𝑂𝐹

𝑗,𝑚

 ∀𝑡 (4.14)

 𝐶𝑡
𝑈𝐹 = ∑ 𝜋𝑗𝑚𝑡

𝑈𝐹 𝐿𝑗𝑚𝑡
𝑈𝐹

𝑗,𝑚

 ∀𝑡 (4.15)

100

where 𝜋𝑗𝑚𝑡
𝑂𝐹 and 𝜋𝑗𝑚𝑡

𝑈𝐹 are the unit inventory violation cost in each period for material m in node j.

Transportation cost includes fixed cost, which is independent of the load, and variable cost:

 𝐶𝑡
𝐹𝑇 = ∑ 𝜋𝑗𝑗′

𝐹𝑇𝑊𝑖𝑗𝑗′𝑡
𝐿

𝑖,𝑗,𝑗′

+ ∑ 𝜋𝑗𝑗′
𝐹𝑇𝑊𝑗𝑗′𝑡

𝑆

𝑗,𝑗′

 ∀𝑡 (4.16)

 𝐶𝑡
𝑉𝑇 = ∑ 𝜋𝑗𝑗′

𝑉𝑇𝐹𝑖𝑗𝑗′𝑚𝑡
𝐿

𝑖,𝑗,𝑗′,𝑚

+ ∑ 𝜋𝑗𝑗′
𝑉𝑇𝐹𝑗𝑗′𝑚𝑡

𝑆

𝑗,𝑗′,𝑚

 ∀𝑡 (4.17)

where 𝜋𝑗𝑗′
𝐹𝑇 is the fixed cost for traveling along arc (j,j’), and 𝜋𝑗𝑗′

𝑉𝑇 is the unit variable cost.

Long-term renting has two cost components: one for the renting over the minimum 𝜗𝐿 periods,

and another for extending the renting beyond 𝜗𝐿 periods. The binary variable �̅�𝑖𝑡
𝐿, representing

whether vessel i is rented beyond the minimum periods in time t, is constrained as follows,

 �̅�𝑖𝑡
𝐿 ≥ ∑ �̅�𝑖𝑗𝑡

𝐿

𝑗∈𝐉𝑃∪𝐉𝐶

+ ∑ 𝑊𝑖𝑗𝑗′𝑡′
𝐿

𝑗,𝑗′,𝑡−𝜏𝑗𝑗′≤𝑡′≤𝑡−1

− ∑ 𝑊𝑖,𝑣𝑐,𝑗𝑡′
𝐿

𝑗,𝑡−𝜗𝐿≤𝑡′≤𝑡−1

− 𝜒𝑖𝑡 ∀𝑖, 𝑡
(4.18)

where parameter 𝜒𝑖𝑡 = 1 if (1) vessel i is already rented at the start of the horizon, and (2) period t

is within the first 𝜗𝐿 periods since this renting. Therefore, vessel i is rented beyond the minimum

number of periods, if it is still rented (one of the first two summation is 1) and the current rental

started more than 𝜗𝐿 periods ago (last two terms are both 0). This constraint is illustrated in Figure

4.4.

Figure 4.4. Modeling for the extended renting of vessels beyond 𝜗𝐿 periods; 𝜗𝐿 = 30.

101

With �̅�𝑖𝑡
𝐿 defined above, the two components of cost are expressed in (4.19) and (4.20)

respectively,

 𝐶𝑡
𝐹𝐿 = ∑ 𝜋𝑖

𝐹𝐿𝑊𝑖,𝑣𝑐,𝑗𝑡
𝐿

𝑖,𝑗

 ∀𝑡 (4.19)

 𝐶𝑡
𝐸𝐿 = ∑ 𝜋𝑖

𝐸𝐿�̅�𝑖𝑡
𝐿

𝑖

 ∀𝑡 (4.20)

where 𝜋𝑖
𝐹𝐿 is the fixed renting cost, and 𝜋𝑖

𝐸𝐿 is the extended renting cost for one period.

The short-term renting cost is calculated as follows,

 𝐶𝑡
𝑆 = ∑ 𝜋𝑗𝑗′

𝑆 ∙ 𝑊𝑗𝑗′𝑡
𝑆

𝑗,𝑗′

 ∀𝑡 (4.21)

where 𝜋𝑗𝑗′
𝑆 is the cost for renting a vessel in short term mode to serve trip (j,j’), and 𝜋𝑗𝑗′

𝑆 normally

depends on the trip length 𝜏𝑗𝑗′ linearly.

4.2.5. Valid Inequalities

When no inventory violations are allowed, we can add valid inequalities to tighten the model.

For third-party production node 𝑗 ∈ 𝐉𝑇𝑃 with orders 𝐊𝑗, binary parameter 𝜃𝑗𝑘𝑡, which represents

whether a time period is within a pick-up window, is defined as follows,

 𝜃𝑗𝑘𝑡 = {
1 if ⌈𝜎𝑗𝑘

𝑂𝑆/𝛿⌉ + 1 ≤ 𝑡 ≤ ⌊𝜎𝑗𝑘
𝑂𝐸/𝛿⌋

0 otherwise
 (4.22)

There should be at least one outgoing arc during the pick-up window,

 ∑ 𝑊𝑖𝑗𝑗′𝑡
𝐿

𝑖,𝑗′,𝑡:𝜃𝑗𝑘𝑡=1

+ ∑ 𝑊𝑗𝑗′𝑡
𝑆

𝑗′,𝑡:𝜃𝑗𝑘𝑡=1

≥ 1 ∀𝑗 ∈ 𝐉𝑇𝑃, 𝑘 ∈ 𝐊𝑗 (4.23)

For owned production node 𝑗 ∈ 𝐉𝑂𝑃, the minimum number of pick-ups till time t should satisfy,

∑ 𝑊𝑖𝑗𝑗′𝑡′

𝐿

𝑖,𝑗′,𝑡′≤𝑡

+ ∑ 𝑊𝑗𝑗′𝑡′
𝑆

𝑗′,𝑡′≤𝑡

≥ ⌈
∑ (�̂�𝑗𝑚0 + ∑ 𝜌𝑗𝑚𝑡′𝑡′≤𝑡 − 𝜁𝑗𝑚𝑡

𝑀𝐴𝑋)𝑚

max {max
𝑖

𝛾𝑖
𝑀𝐴𝑋 , 𝛾𝑀𝐴𝑋}

⌉ ∀𝑗 ∈ 𝐉𝑂𝑃, 𝑡 (4.24)

102

where the RHS represents the minimum number of pick-ups (so that the maximum inventory level

is respected). The numerator is the initial inventory plus the production amount till time t minus

the upper bound on inventory level, while the denominator is the largest vessel capacity.

Following the same logic, we can write constraints (4.25) for consumption nodes,

 ∑ 𝑊𝑖𝑗𝑗′𝑡′
𝐿

𝑖,𝑗′,𝑡′≤𝑡−𝜏𝑗′𝑗

+ ∑ 𝑊𝑗𝑗′𝑡′
𝑆

𝑗′,𝑡′≤𝑡−𝜏𝑗′𝑗

≥ ⌈
∑ (𝜁𝑗𝑚𝑡

𝑀𝐼𝑁 − �̂�𝑗𝑚0 − ∑ 𝜌𝑗𝑚𝑡′𝑡′≤𝑡 − ∑ �̂�𝑖𝑗𝑚𝑡′
𝐿

𝑖,𝑡′≤𝑡 − ∑ �̂�𝑗′𝑗𝑚𝑡′
𝑆

𝑗′,𝑡′≤𝑡)𝑚

max {max
𝑖

𝛾𝑖
𝑀𝐴𝑋 , 𝛾𝑀𝐴𝑋}

⌉ ∀𝑗 ∈ 𝐉𝐶 , 𝑡

(4.25)

where the numerator on the RHS is the minimum delivery amount to meet the lower bound on

inventory level.

In reality, uncertainty can sometimes make inventory violations inevitable, because trip delays

and vessel unavailability disrupt the implementation of the solutions previously obtained. In such

cases, we can still enforce constraints (4.23)–(4.25), with a small modification: (4.23) are enforced

for every order k of third-party production node j except its first order in the horizon, and (4.24),

(4.25) are enforced for time t greater than a threshold value max𝑗′ 𝜏𝑗′𝑗

Finally, when all the vessels have the same capacity and availability profile, the symmetry

breaking constraints shown below can be added,

 ∑ 𝑊𝑖′,𝑣𝑐,𝑗𝑡
𝐿

𝑗

≤ 1 − �̅�𝑖,𝑣𝑐,𝑡+1
𝐿 ∀𝑖, 𝑖′ > 𝑖, 𝑡 (4.26)

where vessel i’ is not allowed to move out from the vessel center at time t, if vessel 𝑖 < 𝑖′ is not

rented in time t+1 (�̅�𝑖,𝑣𝑐,𝑡+1
𝐿 = 1). Thus, if two vessels are available for renting and only one is

needed, the one with a smaller index is rented.

4.3. Uncertainty and Stochastic Simulations

103

In practice, there are different sources of uncertainty which can make the original solution

suboptimal or even infeasible as the horizon is rolled forward. To understand how solution quality

can deteriorate, we study the following uncertainties: vessel availability, trip delays, pick-up

window information, and consumption/production rates. We first discuss how they affect the

problem, and then describe how we incorporate them in the stochastic simulation. When needed,

we use a plus sign superscript to denote the parameters in the current iteration (e.g., 𝜌𝑗𝑚𝑡
+), and a

minus sign for the parameters used in the previous iteration (e.g., 𝜌𝑗𝑚𝑡
−). The algorithms for

stochastic simulations are presented in the Appendix G.

4.3.1. Vessel Availability in Long-term Mode

Before a vessel is rented, the decision maker needs to “call” the vessel company within what we

refer to as the “reservation window”, to check availability and make the reservation. We use 𝜆𝐿𝐴

and 𝜆𝐿𝐵 to denote the start and the end of the reservation window. In other words, the availability

of vessel i is checked, if it needs to be rented in the open-loop solution (i.e., ∑ 𝑊𝑖,𝑣𝑐,𝑗,𝑡
𝐿

𝑗,𝜆𝐿𝐴≤𝑡≤𝜆𝐿𝐵 =

1), as shown in Figure 4.5. The probability of a vessel being available at time t is 𝜀𝐿(𝑡). Generally,

the earlier a call is made, the more likely a vessel is to be available, i.e., 𝜀𝐿(𝑡) is a non-decreasing

function of t. If a vessel is not available, we get feedback about the time when it will become

available, add constraints on availability, and re-solve the model.

Figure 4.5. Availability of vessels is checked if the solution of the model includes the start of a long-term
renting within the reservation window (𝑡 ∈ [𝜆𝐿𝐴, 𝜆𝐿𝐵]).

104

In the stochastic simulation (Algorithm 4.1), 𝐈𝑅 denotes the set of vessels in long-term mode

that are still at the vessel center, but already reserved, and thus the availability of vessels in 𝐈𝑅 is

not checked. Stochastic parameters subject to uniform distributions are generated to determine the

availability of vessels. We assume that the probability that a vessel is available is a linear function of

t. To model the vessel availability, we introduce the following:

(a) Index 𝑛 ∈ 𝐍 = {1, … , 𝑁} to denote the number of unreserved vessels;

(b) Parameter nmax to denote the maximum number of unreserved vessels that are possible to

start a long-term renting within the reservation window;

(c) Parameter 𝛿𝑛
𝐿 to denote the time that the nth vessel becomes available;

Figure 4.6. Constraining the number of unreserved vessels in long-term mode according to the availability
profile.

If the nth unreserved vessel is available at t, such that ∑ 𝑊𝑖,𝑣𝑐,𝑗,𝑡
𝐿

𝑖∉𝐈𝑅,𝑗 = 1, then 𝛿𝑛
𝐿 = 𝑡; otherwise,

the model is re-solved with updated availability information. The number of unreserved vessels is

constrained as follows,

 ∑ 𝑊𝑖,𝑣𝑐,𝑗𝑡
𝐿

𝑖∉𝐈𝑅,𝑗, 𝜆𝐿𝐴≤𝑡<𝛿𝑛
𝐿

≤ 𝑛 − 1 ∀𝑛 ≤ 𝑛𝑚𝑎𝑥 (4.27)

105

which means that before the nth vessel becomes available, and after the earliest long-term

reservation time, at most n-1 vessels can be moved out of the vessel center (see Figure 4.6).

4.3.2. Vessel Availability in Short-term Mode

Vessels rented in short-term mode should be reserved during a short-term reservation window;

we use 𝜆𝑆𝐴 and 𝜆𝑆𝐵 to denote the start and the end of the reservation window. If the open-loop

solution includes a trip (by a short-term rental) yet to be reserved during the window, a “call” is

made to check availability. If there is availability, the reservation is made and the horizon is rolled

forward; otherwise, constraints based on the received feedback are added and the model is re-

solved. The overall procedure is similar to the one for long-term rentals, but the short-term rental

availability depends on the location of the trip, as described next.

Arcs (trips) are grouped into clusters, denoted by 𝑙 ∈ 𝐋, according to their origins and

destinations. A cluster includes arcs that are close to each other. We assume that the number of

available vessels to serve different trips in a cluster is the same for all trips in that cluster. As in

§4.1, index 𝑛 ∈ 𝐍 = {1, … , 𝑁} denotes the number of unreserved trips, and the nth vessel to serve a

trip in cluster l becomes available at 𝑡 = 𝛿𝑙𝑛
𝑆 , where the stochastic parameter 𝛿𝑙𝑛

𝑆 evolves as the

horizon is rolled (Algorithm 4.2). Based on the values of variables 𝑊𝑗𝑗′𝑡
𝑆 , we know the “desired”

renting time for the nth trip in each cluster. If the desired renting time is before the availability time,

the model is re-solved (Algorithm 4.3).

The number of unreserved trips is constrained as follows,

 ∑ 𝑊𝑗𝑗′𝑡
𝑆

 𝜆𝑆𝐴≤𝑡<𝛿𝑙𝑛
𝑆 ,(𝑗,𝑗′)∈𝐀𝑙\𝐀𝑡

𝑅,

≤ 𝑛 − 1 ∀𝑛, 𝑙
(4.28)

where 𝐀𝑙 denotes the set of trips in cluster l, and 𝐀𝑡
𝑅 denotes the set of trips that start at time t and

are already reserved. Thus, constraints (4.28) require that for each cluster l, after the start of the

106

short-term reservation window 𝜆𝑆𝐴 and before the vessel to serve the nth trip becomes available, at

most n-1 unreserved trips are allowed to start.

4.3.3. Trip Delay

Scheduled trips may be delayed due to three reasons. First, the newly rented vessels may arrive

at their destination node late. Second, travel time of an on-going trip may vary, typically because of

weather-related reasons. Since longer trips have potential for larger delays, this second type of

delay is roughly proportional to trip duration. Third, unexpected events in pick-ups or deliveries

can extend any trip by 1 or 2 days. Trip delays are simulated using Algorithm 4.4.

4.3.4. Pick-up Window Specifications

Each order from a third-party production node should be picked up within a window. The pick-

up windows starting before 𝑡 = 𝜆𝑃𝑈 are deterministically known and are usually 2 to 3 days wide;

normally, 𝜆𝑃𝑈 = 30 days. For the remaining orders (with 𝑡 > 𝜆𝑃𝑈), no window information is given,

so the start times of the windows are estimated based on order frequency. Also, the width of these

windows is assumed to be 10 days. The information on these windows becomes deterministically

known when the estimated start time is equal to 𝑡 = 𝜆𝑃𝑈 (this process reflects industrial practice).

The order amount, which in the general case will be stochastic, is assumed to be deterministic here.

The simulation of pick-up window specifications is carried out using Algorithm 4.5.

4.3.5. Consumption/Production Rate

The actual consumption/production rate in the period just before 𝑡 = 0 may differ from its

forecast, and the future forecast rate may change as the horizon is rolled forward. We assume that

these differences follow a normal distribution. For example, we assume that the change of future

forecast is (𝜌𝑗𝑚𝑡
+ − 𝜌𝑗𝑚𝑡

−)/𝜌𝑗𝑚𝑡
− ~𝒩(0, 𝜎𝐹𝐹), where 𝜌𝑗𝑚𝑡

− /𝜌𝑗𝑚𝑡
+ denotes the old/new forecast rate, and

𝜎𝐹𝐹 denotes the standard deviation of the percentage change in the forecast rate. Algorithms 4.6

and 4.7 are used to simulate the actual production/consumption rates and forecast changes.

107

4.4. Reoptimization Framework

We reoptimize at a given frequency, typically once a day. At each stage, we observe uncertainty,

update parameters and constraints, and re-solve the optimization model. We repeat D-1 times, so D

open-loop solutions with different initial time are obtained. We use date 𝑑 ∈ 𝐃 = {1,2, … , 𝐷} to

denote the absolute time each open-loop solution was obtained, and period/point t to denote the

relative time in each solution (i.e., t = 0 is the initial time of each MIP model).

We use two MIP models: M1, without availability constraints (equations (4.4)–(4.26)); and M2,

with availability constraints (equations (4.4)–(4.28)). Before solving either model, we fix the

corresponding variables according to long-/short-term renting and long-term returning decisions

that have been made previously (see Algorithm 4.8).

Figure 4.7. Flowchart of the reoptimization algorithm.

To obtain each open-loop solution, we first solve model M1, and then simulate the “call” to

check vessel availability (for both long- and short-term modes). If the desired vessels are available,

the reservations are made and the horizon is rolled forward. Otherwise, if any of the desired vessels

is unavailable, we evaluate what the decision maker would do by adding constraints (4.27) and

108

(4.28), and solving M2. Based on the solution of M2, we make the new reservations, and roll the

horizon. The overall algorithm is summarized in Figure 4.7, and the detailed procedure to roll the

horizon is given in Algorithm 4.9.

We use parenthesis to denote the variable values from the open-loop solution at date d (e.g.,

𝐶𝑡
𝑀𝐻(𝑑) denotes the material holding cost during period t in the open-loop solution obtained at date

d). We use 𝐶𝑡(𝑑) to denote the overall cost during period t from the open-loop solution at date d,

which is calculated as follows,

 𝐶𝑡(𝑑) = 𝐶𝑡
𝑀𝐻(𝑑) + 𝐶𝑡

𝑂𝐹(𝑑) + 𝐶𝑡
𝑈𝐹(𝑑) + 𝐶𝑡

𝐹𝑇(𝑑) + 𝐶𝑡
𝑉𝑇(𝑑) + 𝐶𝑡

𝐹𝐿(𝑑) + 𝐶𝑡
𝐸𝐿(𝑑) + 𝐶𝑡

𝑆(𝑑) (4.29)

We also introduce the estimated cost at date d, denoted by 𝐶𝐼𝐷(𝑑), which has two components:

(1) the actual cost 𝐶𝐴𝐼𝐷(𝑑), between 0 and d-1, based on already implemented decisions; and (2)

the forecast cost 𝐶𝐵𝐼𝐷(𝑑), between d and D, based on future decisions in the open-loop solution at

d.

 𝐶𝐴𝐼𝐷(𝑑) = 𝐶𝐴𝐼𝐷(𝑑 − 1) + 𝐶1(𝑑 − 1) (4.30)

 𝐶𝐵𝐼𝐷(𝑑) = ∑ 𝐶𝑡(𝑑)

𝑡≤𝐷−𝑑+1

 (4.31)

 𝐶𝐼𝐷(𝑑) = 𝐶𝐴𝐼𝐷(𝑑) + 𝐶𝐵𝐼𝐷(𝑑) (4.32)

Therefore, 𝐶𝐼𝐷(1) denotes the first open-loop cost, while 𝐶𝐼𝐷(𝐷) denotes the closed-loop cost

after the horizon is rolled D-1 times. The evolution of estimated cost is illustrated in Figure 4.8. In

§4.6, we will discuss how the evolution of the estimated cost helps us understand the effect of

reoptimization.

4.5. Policy Analysis

As new information becomes available and uncertainty is observed, previously obtained open-

loop solutions become suboptimal or even infeasible. Interestingly, solutions that appear to be good

when computed, result in poor implemented solutions, which leads us to study four policies that

109

can be adopted, on top of the optimization models solved at each iteration, to improve the quality of

the implemented schedule:

Figure 4.8. The estimated cost 𝐶𝐼𝐷(𝑑), as the horizon is rolled, from d=1 to d=D=40, using an open-loop
solution with η=60 (i.e., 𝑡 ∈ [0,60] in each model).

As new information becomes available and uncertainty is observed, previously obtained open-

loop solutions become suboptimal or even infeasible. Interestingly, solutions that appear to be good

when computed, result in poor implemented solutions, which leads us to study four policies that

can be adopted, on top of the optimization models solved at each iteration, to improve the quality of

the implemented schedule:

(a) Adjusting the start and end time of (long- and short-term) reservation windows;

(b) Placing restrictions on the minimum number of vessels rented in long-term mode;

(c) Adding a preference for early pick-up during a window; and

(d) Modifying start time and length of pick-up windows.

4.5.1. Reservation Windows

The start and the end times of the windows are adjustable parameters by the decision maker.

Reserving early makes it hard to adjust the schedule as uncertainty is observed, while attempting to

reserve late can lead to unavailability. If there is limited uncertainty, early reservations are

expected to be favorable. Similarly, if vessel availability decreases fast with time, then early

110

reservations are also expected to lead to better solutions. Thus, given the uncertainty in the system,

our goal is to study how reservation windows should be chosen.

4.5.2. Vessel Constraints

In general, optimization over a short horizon tends to yield myopic solutions where, for

example, few vessels are rented in long-term mode because, among others, (1) many trips are

assigned to be performed by short-term vessels which are then found to be unavailable (unlike

long-term rentals); and (2) idle long-term rentals can be used to react to last minute delays.

Accordingly, we study how adding a lower bound, vmin, on the number of vessels rented in long-

term mode (modeled through vessels staying at the vessel center) can be beneficial:

 ∑ �̅�𝑖,𝑣𝑐,𝑡
𝐿

𝑖

≤ |𝐈| − 𝑣𝑚𝑖𝑛 ∀𝑡 (4.33)

4.5.3. Early Pick-up

If the pick-up of an order can be scheduled at any time during the pick-up window without

affecting the objective value, the optimization can arbitrarily allocate this pick-up to any time in

that window. However, when uncertainty is considered, it would be favorable to schedule the pick-

up early in this window to leave some room for trip delays, thereby leading to better closed-loop

solutions. The preference of early pick-up is modeled using a small penalty term:

 𝐶𝑡
𝐸𝑃 = ∑ 𝜋𝑗𝑡

𝐸𝑃𝑊𝑖𝑗𝑗′𝑡
𝐿

𝑖,𝑗∈𝐉𝑇𝑃,𝑗′

+ ∑ 𝜋𝑗𝑡
𝐸𝑃𝑊𝑗𝑗′𝑡

𝑆

𝑗∈𝐉𝑇𝑃,𝑗′

 ∀𝑡 (4.34)

where parameter 𝜋𝑗,𝑡
𝐸𝑃 is calculated as follows,

 𝜋𝑗𝑡
𝐸𝑃 = ∑ 𝜃𝑗𝑘𝑡 ∙ 𝛽 ∙ (𝑡 − ⌈𝜎𝑗𝑘

𝑂𝑆/𝛿⌉)

𝑘∈𝐊𝑗

 (4.35)

111

and 𝛽 is a penalty parameter. In equation (4.35), if t is within the window of order k from node j, the

earlier t is, the smaller parameter 𝜋𝑗𝑡
𝐸𝑃 becomes. After adding term 𝐶𝑡

𝐸𝑃, objective function (4.12), is

modified as follows,

 min 𝐶𝐴𝐿𝐿 = ∑(𝐶𝑡
𝑀𝐻 + 𝐶𝑡

𝑂𝐹 + 𝐶𝑡
𝑈𝐹 + 𝐶𝑡

𝐹𝑇 + 𝐶𝑡
𝑉𝑇 + +𝐶𝑡

𝐹𝐿 + 𝐶𝑡
𝐸𝐿 + 𝐶𝑡

𝑆 + 𝐶𝑡
𝐸𝑃)

𝑡

 (4.36)

To implement this preference, we first solve the original model, and then fix the vessel-trip

assignment based on the solution of the original model and re-solve the model with constraints

(4.34)-(4.36).

4.5.4. Pick-up Windows

Pick-ups from third-party production nodes are expected to be carried out within the pick-up

windows. Due to either the limited number of vessels or the uncertainty in the system, it is

sometimes impossible to perform all pick-ups within these windows, which results in a penalty. To

address this, we study three remedies, which the decision-maker can potentially negotiate:

(a) Earlier specification of pick-up windows;

(b) Longer pick-up windows;

(c) Soft pick-up windows.

When soft pick-up windows are introduced, late/early pick-ups just outside the windows are

penalized with a comparatively small overflow/underflow cost. We use 𝜎𝑆𝑊 to denote the number

of periods in a soft pick-up window. If an order cannot be picked up within this soft window, the

original large penalty is used (see Figure 4.9). We study different settings: (1) no soft pick-up

windows (𝜎𝑆𝑊 = 0); (2) soft pick-up windows with 𝜎𝑆𝑊 = 1; (3) soft pick-up windows with

𝜎𝑆𝑊 = 2. For (2) and (3), we study different penalties to assess what penalties would be acceptable.

4.6. Case Study

112

We consider an instance with 2 third-party production nodes, 1 owned production node, 2

consumption nodes, and 1 material. There are 7 vessels for long-term renting, which are enough to

generate the optimal solution. The time step is 1 day, and the planning horizon is 60 days. To

acquire one closed-loop solution, 40 open-loop solutions are obtained, i.e., 𝐷 = 40.

Figure 4.9. Penalty modification for soft pick-up window.

All models and algorithms were implemented in AIMMS 3.13 and solved using CPLEX 12.6 on a

machine with two 2.26 GHz Intel Xeon E5520 processors and 16GB RAM running Windows 8. The

solution time limit was 210 seconds for each MIP model. The optimality gap was, on average, 0.5%.

4.6.1. Effect of Short-term Renting and Reoptimization

We study four different solutions: (1) open-loop solution at d=1 without short-term renting; (2)

closed-loop solution without short-term renting; (3) open-loop solution at d=1 with short-term

renting; and (4) closed-loop solution with short-term renting. No uncertainty is considered.

The four solutions are shown in Figures 4.10, 4.11, where V1-V7 represent vessels in long-term

mode, while VS represents vessels in short-term mode. Estimated costs 𝐶𝐼𝐷(𝑑) are shown in Table

4.1. Incorporating short-term renting can reduce the distribution cost by 15% in the open-loop

solution, and 8% in the closed-loop solution. We also see in Figure 4.11 that when short-term

113

renting is allowed, more than 20% of the pick-ups from production nodes are made by vessels

rented in short-term mode.

Table 4.1. Estimated costs 𝐶𝐼𝐷(𝑑) of the four solutions.
 Without short-term With short-term
Open-loop 180,000 153,750
Closed-loop 188,950 174,750

Figure 4.10. Open- and closed-loop solutions, without short-term renting.

Figure 4.11. Open- and closed-loop solutions, with short-term renting.

We also see that closed-loop cost is 5% to 14% higher than the corresponding open loop cost at

d = 1. This is primarily due to the effect of the finite horizon problem we solve. Specifically, (1)

vessels in long-term mode are rented for longer periods in the closed-loop solution, considering the

deliveries beyond the horizon of the model solved at d=1; and (2) in the open-loop solution at d = 1,

the inventory level of the owned production node (P3 in Figures 4.10, 4.11) at the end of horizon is

114

high to minimize the distribution cost, but implementing this solution would lead to inventory

violations beyond the horizon, which leads to more pick-ups from this node in the closed-loop

solution.

These results suggest that the addition of short-term renting is essential to reduce the

distribution cost. Thus, short-term renting is incorporated in all the following studies. Moreover, we

verify that even in the deterministic case, the closed-loop solution is different from the initial open-

loop solution, which suggests that methods to obtain high quality closed-loop solutions have to be

studied even for the deterministic case.

4.6.2. Effect of Uncertainty

The following five problems are studied: (1) deterministic (all pick-up windows are specified);

(2) problem under uncertain vessel availability (§4.3.1, §4.3.2); (3) problem with trip-delays

(§4.3.3); (4) problem with uncertain pick-up window specifications (§4.3.4); and (5) problem under

consumption and production rate uncertainty (§4.3.5). We generate 60 samples for each problem.

Some results are shown in Figure 4.12, where 𝐶𝐼𝐷(𝑑) for a typical but specific sample and the

average of 𝐶𝐼𝐷(𝑑) over samples are given as functions of d. As expected, the fluctuation for the

specific sample is large, while the fluctuation of the average value of 𝐶𝐼𝐷(𝑑) decreases. The open-

loop cost, 𝐶𝐼𝐷(1), is the same for all the problems except problem (4), in which the length of pick-up

windows starting after 𝑡 = 𝜆𝑃𝑈 are increased to 10 days at d=1, leading to a lower open-loop cost.

Nevertheless, the closed-loop cost, 𝐶𝐼𝐷(𝐷), is the focus of our study.

Note that 𝐶𝐼𝐷(𝐷) for one sample in Figure 4.12 has large fluctuations because there are multiple

optimal solutions which may lead to changes in 𝐶𝐼𝐷(𝑑). For example, in the deterministic problem

solved at d = 16, there are seven pick-ups from the owned production node; three of them start in

[16,40], which are used to calculate 𝐶𝐼𝐷(𝑑), and four after d = 40. However, in the open-loop

solution obtained at d=17, two of the four pick-ups beyond d = 40 are moved earlier (arbitrarily due

115

to solution symmetry), thereby leading to a solution with five (rather than three) out of the seven

pick-ups scheduled before d = 40, which leads to an increase of 𝐶𝐼𝐷(𝑑). Note that 𝐶𝐼𝐷(𝑑) profiles

become flat as d approaches 40 because decisions for small t in the corresponding open-loop

solutions do not change.

As expected, the deterministic problem has the lowest closed-loop cost. On average, the cost of

the problem under consumption/production rate uncertainty does not increase significantly

compared to the deterministic problem, because the variations cancel out in the long-run, though

they do lead to slightly different decisions. The problem under pick-up window specification

uncertainty has a closed-loop cost 3% higher than the deterministic problem. Incorporation of

vessel availability and trip duration uncertainty increases the closed-loop cost by 14% and 10%,

respectively, compared to the deterministic case.

Figure 4.12. Profiles of 𝐶𝐼𝐷(𝑑), when different sources of uncertainty are incorporated.

4.6.3. Effect of Policies

As discussed in §4.5, adopting different policies may lead to different open- and closed-loop

solutions, especially in the presence of uncertainty. Accordingly, we study how different policies

affect closed-loop solutions. Policies related to pick-up windows are studied in the next subsection,

since they need to be negotiated with the third-party production nodes.

5 10 15 20 25 30 35 40
1.2

1.4

1.6

1.8

2

Date d

C
ID

(d
)

(1
0

5
)

One specific sample

5 10 15 20 25 30 35 40
1.2

1.4

1.6

1.8

2

Date d

C
ID

(d
)

(1
0

5
)

Average over 60 samples

No uncertainty

Vessel availability

Trip delay

Pick-up window

Cons/prod rate

116

For the three groups of policies described above, 13 cases are studied (see Table 4.2). The best

reservation window parameters are obtained using the results of cases 1-6. The decision to adopt

vessel constraints and the corresponding parameters are studied through cases 7-11, and the

preference for early pick-ups is studied in cases 12-13. All sources of uncertainty are incorporated

in the reoptimization. We generate 60 samples for each case and compare the different policies

using the mean of the closed-loop cost.

The closed-loop cost is a random variable. The closed-loop cost of 60 samples and the

corresponding histogram are shown in Figure 4.13, along with a fitted normal distribution. We can

see that the distribution of closed-loop cost is similar to the fitted normal distribution. The

similarity is observed for all the other cases as well.

Table 4.2. Characteristics of 13 cases.

Policy to study Case
Reservation windows Vessel constraints

(minimum number)
Preference of
early pick-ups Long-term Short-term

Reservation
windows

1 [14,21] [2,10]

No No

2 [14,21] [2,5]

3 [14,21] [5,10]

4 [7,14] [2,10]

5 [7,14] [2,5]

6 [7,14] [5,10]

Vessel
constraints

7

Best from cases 1-6

No

No

8 Yes (3)

9 Yes (4)

10 Yes (5)

11 Yes (6)

Preference of
early pick-ups

12
Best from cases 1-6 Best from cases 7-11

No

13 Yes

If we view all closed-loop solutions for each case as a population, the expected value of random

variables in 2 populations (i.e., the expected closed-loop cost from solutions in 2 cases) can be

compared (Wonnacott and Wonnacott, 1990), as shown in the following equation,

(𝜇1 − 𝜇2)𝛼 = (𝑋1
̅̅ ̅ − 𝑋2

̅̅ ̅) ± 𝑡(
1 − 𝛼

2
)√(

∑ (𝑋1,𝑚 − 𝑋1
̅̅ ̅)2

𝑚 + ∑ (𝑋2,𝑚 − 𝑋2
̅̅ ̅)2

𝑚

𝑛1 + 𝑛2 − 2
) ∙ (

1

𝑛1
+

1

𝑛2
) (4.37)

117

Figure 4.13. Results of the closed-loop cost in case 2.

where (𝜇1 − 𝜇2)𝛼 is the range of the difference of expected values at confidence level 𝛼, 𝑡(𝑥) is the

value above which the area of probability density function is x for student’s t-distribution. If we use

population 1 as reference, 𝑛1 denotes the sample size, 𝑋1
̅̅ ̅ denotes the sample mean, and 𝑋1,𝑚

denotes the random variable value (closed-loop cost) of sample m. The number of degrees of

freedom for 𝑡(∙) is 𝑛1 + 𝑛2 − 2. Based on equation (4.37), if the sample means of closed-loop cost in

case 1 and case 2 satisfy 𝑋1
̅̅ ̅ > 𝑋2

̅̅ ̅, we can use equation (4.38) below to calculate the confidence

level, 𝛼, that case 1 leads to higher closed-loop cost than case 2 (𝜇1 > 𝜇2).

𝛼 = 1 − 𝑡−1 {(𝑋1
̅̅ ̅ − 𝑋2

̅̅ ̅)√
𝑛(𝑛 − 1)

∑ (𝑋1,𝑚 − 𝑋1
̅̅ ̅)

2
𝑚 + ∑ (𝑋2,𝑚 − 𝑋2

̅̅ ̅)
2

𝑚

} (4.38)

where 𝑛 = 𝑛1 = 𝑛2 denotes the number of samples we have for each case, 𝑡−1(∙) is the inverse

function of 𝑡(∙), and the number of degrees of freedom is 2(n-1). The results and statistics are

shown in Tables 4.3-4.5, respectively for the three groups of policies. We make the following

remarks:

(a) Comparing cases 1-6 (Table 4.3), we observe that case 4 (using [7,14] in long-term mode and

[2,10] in short-term mode) has the lowest sample mean of closed-loop cost. Thus, for the

uncertainty used in our simulations, the closed-loop cost can be minimized by using a relatively

1.5 2 2.5 3 3.5
0

5

10

15

20

Closed-loop cost (105)

F
re

q
u

en
cy

Histogram of the closed-loop cost

Data

Normal fit

0 10 20 30 40 50 60

1.5

2

2.5

3

Sample

C
lo

se
d

-l
o

o
p

 c
o

st
 (

1
0

5
)

Closed-loop cost of 60 samples

118

late long-term reservation window and a wide short-term reservation window. Given the

confidence levels in Table 4.3, we conclude that the policies in case 4 outperform the others.

(b) The comparison of cases 7-11 (Table 4.4) suggests that adding vessel constraints leads to lower

cost. Case 10, where the minimum number of vessels (vmin) is 5, has the lowest sample mean.

(c) The comparison of cases 12 and 13 (Table 4.5) suggests that early pick-ups lead to lower

closed-loop cost, with a confidence level of 80%.

Based on these 13 cases, we choose the reservation windows in long- and short-term modes to be

[7,14] and [2,10], respectively; use vessel constraints with at least 5 vessels; and prefer early pick-

ups. We verified that making any changes in the policies used in case 13 does not lead to

improvements.

4.6.4. Effect of Policies related to Pick-up Windows

The policies related to pick-up windows are studied separately, since they have to be negotiated

with third-party production nodes. We test multiple cases, using different 𝜆𝑃𝑈, window length

(𝜎𝑗𝑘
𝑂𝐸 − 𝜎𝑗𝑘

𝑂𝑆), and 𝜎𝑆𝑊. For each case, we generate 60 samples; sample means of the closed-loop

cost, as well as standard deviations, are summarized in Table 4.6. Soft window penalty is the ratio

of the inventory violation penalty during soft windows over the same penalty during other periods.

Adding 1- and 2-day soft windows can lower the cost by 7% and 13%, respectively (see cases 14, 16

and 17). Using windows between 4 and 5 days leads to about the same as using windows between 2

and 3 days combined with 2-day soft windows (comparing cases 15 and 17). Using larger 𝜆𝑃𝑈 does

not change the closed-loop cost much, because the information farther in the horizon plays a small

role (see cases 14 and 18).

Different soft window penalties are also studied, and the results are shown in Figure 4.14. We

observe that as the soft window penalty increases to 0.7, the sample mean of the closed-loop cost

becomes similar to the original case (no soft windows, case 14). Note that the frequency of pick-ups

119

during the soft windows increases as (1) the probability of trip delays increases, (2) the probability

of vessels being available decreases, and (3) pick-up windows from several production nodes have

similar start times. The decision maker can use these insights to negotiate soft window penalties.

Figure 4.14. Sample mean of the closed-loop cost for different soft window length and penalties.

Table 4.3. Statistics of cases used to study reservation window paramters. The table includes the sample

mean of closed-loop cost (𝐶𝐼𝐷̅̅ ̅̅̅(𝐷)), sample standard deviation (SD) of the closed-loop cost, and the confidence
level (𝛼) that the case with the smallest sample mean has a smaller expected value than the case in the
column. Best denotes the case in that column has the smallest sample mean.

Case 1 2 3 4 5 6

𝐶𝐼𝐷̅̅ ̅̅̅(𝐷) (105) 2.31 2.35 2.47 2.23 2.41 2.44
SD (104) 2.27 2.89 2.28 1.50 2.24 1.53
𝛼 (%) 98.86 99.74 99.99 Best 99.99 99.99

Table 4.4. Statistics of cases with different vessel constraints. The table includes the sample mean of closed-

loop cost (𝐶𝐼𝐷̅̅ ̅̅̅(𝐷)), sample standard deviation (SD) of the closed-loop cost, and the confidence level (𝛼) that
the case with the smallest sample mean has a smaller expected value than the case in the column. Best
denotes the case in that column has the smallest sample mean.

Case 7 8 9 10 11

𝐶𝐼𝐷̅̅ ̅̅̅(𝐷) (105) 2.23 2.21 2.11 2.08 2.12
SD (104) 1.50 1.56 1.69 2.19 2.16
𝛼 (%) 99.99 99.98 74.16 Best 80.96

Table 4.5. Statistics of cases studying whether to use the preference of early pick-ups. The table includes the

sample mean of closed-loop cost (𝐶𝐼𝐷̅̅ ̅̅̅(𝐷)), sample standard deviation (SD) of the closed-loop cost, and the
confidence level (𝛼) that the case with the smallest sample mean has a smaller expected value than the case in
the column. Best denotes the case in that column has the smallest sample mean.

Case 12 13

𝐶𝐼𝐷̅̅ ̅̅̅(𝐷) (105) 2.08 2.05
SD (104) 2.19 1.67
𝛼 (%) 80.16 Best

0 0.2 0.4 0.6 0.8
1.6

1.7

1.8

1.9

2

2.1

Soft window penalty

C
lo

se
d

-l
o

o
p

 c
o

st
 (

1
0

5
)

1-day soft windows

2-day soft windows

Without soft windows

120

Table 4.6. Statistics of cases with different pick-up windows.
Case 14 15 16 17 18
Window specifying time 30 30 30 30 45
Window length [2,3] [4,5] [2,3] [2,3] [2,3]
Soft window length 0 0 1 2 0
Soft window penalty 0.1 0.1

𝐶𝐼𝐷̅̅ ̅̅̅(𝐷) (105) 2.05 1.78 1.90 1.78 2.04
SD (104) 1.67 1.64 1.57 1.59 1.73

4.7. Conclusions

We developed a framework for reoptimization in maritime inventory routing under

uncertainty. The proposed framework, which includes solving MIP models and implementing

stochastic simulations, can be generalized to handle any inventory routing problem. Specifically, we

developed (1) a discrete-time MIP model considering vessels in long- and short-term renting

modes, as well as owned and third-party production nodes; (2) stochastic simulations to account

for uncertainty sources that appear in practice; and (3) a reoptimization algorithm integrating the

MIP model and stochastic simulations. Since the quality of the implemented solution depends

heavily on a number of policies, we studied the effect of different policy parameters.

Using a number of case studies, we first showed that the open- and closed-loop problems are

very different: even when no uncertainty is present, the closed-loop cost could be 5-15% higher

than the open-loop cost. The average closed-loop cost in the presence of all uncertainty sources was

nearly 30% higher than that in the deterministic case. Uncertainty of trip duration and vessel

availability increased the closed-loop cost significantly. We also discussed how to identify policy

parameters (including reservation windows, constraints on the number of rented vessels,

preference for early pick-ups, and different types of pick-up windows) that result in high quality

implemented solutions.

4.8. Notation

Indices/Sets

dD dates (absolute time)

121

iI vessels

jJ nodes in the SC network, including vessel center (vc)

(j, j’)A⊆ 𝐉 × 𝐉 arcs in the SC network

𝑘 ∈ 𝐊𝑗 orders of third-party production node j

lL clusters

mM materials

nN number of unreserved vessels/trips

tT time points or periods

Subsets

𝐀𝑙 arcs that are within in cluster l

𝐀𝑡
𝑅 arcs (trips) that are already reserved at time t (in short-term mode)

𝐈𝑅 vessels (in long-term mode) that are still at the vessel center, but already reserved

𝐉𝑃/𝐉𝐶 production/consumption nodes

𝐉𝑇𝑃/𝐉𝑂𝑃 third-party/owned production nodes

Binary Variables

𝑊𝑖𝑗𝑗′𝑡
𝐿 =1 if vessel 𝑖 starts a trip from j to j’ at time point t

𝑊𝑗𝑗′𝑡
𝑆 =1 if a vessel in short-term mode starts a trip from j to j’ at time point t

�̅�𝑖𝑗𝑡
𝐿 =1 if vessel i is at node j during time period t

�̅�𝑖𝑡
𝐿 =1 if renting of vessel i is extended in period t beyond 𝜗𝐿 periods

Non-Negative Variables

𝐶𝐴𝐿𝐿/𝐶𝑡
𝑂𝐹/𝐶𝑡

𝑈𝐹 total/overflow/underflow cost

𝐶𝑡
𝑀𝐻/𝐶𝑡

𝐹𝑇/𝐶𝑡
𝑉𝑇 material holding/fixed transportation/variable transportation cost

𝐶𝑡
𝐹𝐿/𝐶𝑡

𝐸𝐿/𝐶𝑡
𝑆 fixed long-term/extended long-term/short-term renting cost

𝐶𝑡
𝐸𝑃 penalty term for modeling the preference of early pick-ups

122

𝐹𝑖𝑗𝑗′𝑚𝑡
𝐿 material m in vessel i traveling from j to j’ starting at t in long-term mode

𝐹𝑗𝑗′𝑚𝑡
𝑆 material m in the short-term rental from j to j’ starting at t

𝐿𝑗𝑚𝑡 inventory level of material m at node j at time point t

𝐿𝑗𝑚𝑡
𝑂𝐹 /𝐿𝑗𝑚𝑡

𝑈𝐹 overflow/underflow amount of material m of node j at time point t

Parameters

𝛼 confidence level

𝛽 penalty constant for modeling the preference of early pick-ups

𝛾𝑖
𝑀𝐴𝑋/𝛾𝑀𝐴𝑋 capacity of vessel i/ vessels in short-term mode

𝛾𝑖
𝑀𝐼𝑁/𝛾𝑀𝐼𝑁 minimum load on vessel i/ vessels in short-term mode when traveling from a

production node to a consumption node

𝛿 time period length

𝛿𝐿𝐸 earliest time when a vessel becomes available in long-term mode

𝛿𝑛
𝐿/𝛿𝑙𝑛

𝑆 time when the nth vessel becomes available in long-/short-term mode

𝜀𝐿 probability of availability in long-term mode

𝜁𝑗𝑚𝑡
𝑀𝐴𝑋/𝜁𝑗𝑚𝑡

𝑀𝐼𝑁 maximum/minimum level of material m in node j at time point t

𝜂 planning horizon

𝜃𝑗𝑘𝑡 =1 if period t is in pick-up window k of third-party production node j

𝜗𝐿 minimum number of renting periods in long-term mode

𝜆𝐿𝐴/𝜆𝐿𝐵/𝜆𝐿𝑅 earliest reservation/latest reservation/returning notice time in long-term mode

𝜆𝑆𝐴/𝜆𝑆𝐵 earliest/latest reservation time in short-term mode

𝜆𝑃𝑈 time when a pick-up window becomes deterministically known

𝜉𝑗𝑗′
𝑀𝐴𝑋 maximum allowable load along (j,j’)

𝜋𝑗𝑚
𝑀𝐻/𝜋𝑗𝑚𝑡

𝑂𝐹 /𝜋𝑗𝑚𝑡
𝑈𝐹 material holding/overflow/underflow cost

𝜋𝑗𝑗′
𝐹𝑇/𝜋𝑗𝑗′

𝑉𝑇 fixed/variable transportation cost along (j,j’)

123

𝜋𝑖
𝐹𝐿/𝜋𝑖

𝐸𝐿 long-term renting cost for the minimum periods/ each extended period

𝜋𝑗𝑡
𝐸𝑃 penalty for modeling the preference of early pick-ups

 𝜋𝑗𝑗′
𝑆 short-term renting cost for traveling on (j,j’)

𝜌𝑗𝑚𝑡 production (positive) or consumption (negative) rate of node j during period t

𝜎𝑗𝑘
𝑂𝑆/𝜎𝑗𝑘

𝑂𝐸 start/end time of the pick-up window of order k from third-party production node j

𝜎𝑆𝑊 soft window length

𝜏𝑗𝑗′ traversal time of arc (j,j’)

𝜑𝑗𝑚𝑘 amount of material m in order k from third-party production node j

𝜒𝑖𝑡 =1 if period t is within the first 𝜗𝐿 periods of the current renting of vessel i

𝐶𝐼𝐷(𝑑) estimated cost at date d

�̂�𝑖𝑗𝑚𝑡
𝐿 amount of material m that is en route and will arrive at node j at t from vessel i in

long-term mode

�̂�𝑗′𝑗𝑚𝑡
𝑆 amount of material m that is en route and will arrive at node j at t from production

node j’ in short-term mode

�̂�𝑖𝑗𝑗′𝑡
𝐿 =1 if vessel i should leave j for j’ at t

�̂�𝑗𝑗′𝑡
𝑆 =1 if a vessel in short-term mode should leave j for j’ at t

�̂�𝑖𝑗𝑡
𝐿 =1 if vessel i is at node j initially (t=0), or it is en route and will arrive at j at t (t>0)

124

Chapter 5

Terminal Constraints for Online Scheduling 5

Production scheduling, as an optimization problem that arises in many sectors, has been widely

studied (Drexl and Kimms, 1997; Proth, 2007; Verderame et al., 2010; Maravelias 2012b;

Harjunkoski et al., 2014). In practice, the production process is subject to many factors of

uncertainty, such as rush orders, yield losses, production delays, unit breakdowns, etc. After

observing such an uncertain “trigger” event, the existing schedule needs to be modified for

obtaining the (new) optimal schedule (Vieira et al., 2003; Ouelhadj and Petrovic, 2009). The other

way to modify the schedule is to re-compute the schedule periodically in a moving horizon

approach (Sand et al., 2000). Recently, it has been pointed out that despite uncertainty, online

scheduling should be carried out periodically to consider the new information, such as new demand

(Gupta and Maravelias, 2016; Gupta et al., 2016). At each iteration of online scheduling, an open-

loop solution is obtained from solving an optimization problem; while the implemented scheduling

solution, after observing the uncertainties (feedbacks), is called closed-loop solution. Most of the

research efforts focus on how to account for the uncertainty when obtaining each open-loop

solution by applying different optimization techniques, including robust optimization (Vin and

Ierapetritou, 2001; Janak et al., 2007; Li and Ierapetritou, 2008; Lappas and Gounaris, 2016),

stochastic programming (Bonfill et al., 2004), and fuzzy programming (Balasubramanian and

Grossmann, 2003). For online scheduling, we should also aim to improve the closed-loop solution.

To obtain good closed-loop solutions, terminal constraints should be included in the scheduling

model (Stadtler, 2000). In the optimal open-loop solution of a scheduling model without any

terminal constraints, inventory tends to deteriorate at the end of horizon, so that the production,

5 This chapter is modified from Dong and Maravelias, in preparation.

125

transition and inventory holding cost can be minimized (Lima et al., 2011). If (a part of) such an

open-loop solution is implemented, the problem may become infeasible, or the closed-loop solution

may be very costly, after the horizon is moved forward. This is because the inventory is depleted at

the end of the previous horizon, and therefore the demand can hardly be satisfied. Thus, the

scheduling model should include some terminal constraints to avoid the inventory depletion. This

is similar to model predictive control (Mayne et al., 2000), in which the state variables of the last

time are constrained in a terminal region. For scheduling problems, however, how to define the

terminal region is not trivial.

Based upon the inventory management and SC literature, we can require the terminal inventory

level be greater than a lead-time-based inventory threshold, which includes a buffer term named

“safety stock” to address uncertainty (Eppen and Martin, 1988; Kreipl and Pinedo, 2004; You and

Grossmann, 2008; Sana and Goyal, 2015). This threshold value is calculated from the statistics of

the lead time of SC arcs and demand rate of SC nodes. On the other hand, based upon production

scheduling literature, the terminal inventory levels can be required to be equal to the initial value at

the start of the horizon (Baker, 1981; Shah et al., 1993), or to one of the values in a cyclic solution

(Subramanian et al., 2012).

However, all of the aforementioned approaches neglect the relationship of inventory levels

among materials. For instance, in a single-stage two-product problem, if the inventory level of one

product is high, a low inventory level of the other can possibly be acceptable, because more

resources can be allocated to produce the latter without leading to the stockout of the former. In

this way, we can reduce the total inventory levels, and therefore save the inventory holding cost.

Accounting for the relationship among materials, we propose new types of terminal constraints

on inventory levels for different network structures. These constraints are linear, and can be easily

incorporated in any mixed integer programming (MIP) scheduling model. Theoretically, we prove

126

that for deterministic problems of two types of networks, if the terminal inventory levels satisfy the

proposed constraints, the scheduling model will be recursively feasible, which means that it will

remain feasible after we move the horizon forward.

In Section 5.1, we present motivating examples and problem statement; the proposed

framework to obtain the terminal constraints is shown in Section 5.2. Afterwards, we present the

terminal constraints for different networks, including multi-stage single-product problems (Section

5.3), single-stage multi-product problems (Section 5.4), and multi-stage multi-product problems

(Section 5.5); in these three sections, we consider a single machine in each stage. In Section 5.6, we

generalize the terminal constraints to problems with multiple machines in each stage. In Section

5.7, we discuss how to apply the terminal constraints, and how to modify them considering

uncertainty and periodic demand. In Section 5.8, we present computational results, using instances

with and without uncertainty. Theoretical proofs are shown in the Appendix.

5.1. Background

5.1.1. Motivating Examples

The traditional lead-time-based threshold is calculated based on the statistics of the lead time

and the demand (Eppen and Martin, 1988); if the problem is deterministic, the threshold is the lead

time multiplied by the demand rate. However, simply requiring the terminal inventory level of each

material to be greater than the threshold does not necessarily lead to good closed-loop solutions.

This is illustrated through examples of deterministic problems with constant demands (Figure 5.1).

We show that an initial inventory level equal to the threshold could be insufficiently low or

unnecessarily high. Thus, the threshold approach cannot result in good terminal constraints.

In the two-stage single-product example (data given in Figure 5.1(a)), the lead time for the

intermediate is the processing time in the first stage, and the lead time for the product is the

summation of the processing times in both stages. The demand is 1 (ton/period), the lead time is 2

127

(periods) for A1, and 2+3=5 for A2, and thus the threshold is 2 (ton) for A1, and 5 for A2.However,

the scheduling problem with such threshold as initial inventory would have stockout of product A2,

because after the first batch of TA1 is finished, the inventory level of the intermediate is not enough

to start TA2 immediately. This example shows that for multi-stage networks, the lead time is tricky

to define; using values that are intuitively correct could result in stockout.

In the single-stage two-product example (data given in Figure 5.1(b)), the lead time is the

summation of processing times for both tasks, since either can be processed after the other. The

demand is 1 (ton/period), the lead time for both products is 2+3=5 (periods), and thus the

threshold is 5 (ton). Following the thresholds, the initial inventory of A should be greater than 5,

even when the initial inventory of B is fixed to be 8. However, this would lead to unnecessarily high

inventory level; in fact, it would be sufficient to have an initial inventory of A being 2. In other

words, when the initial inventory of one product is greater than the threshold, a lower value of the

other could be acceptable.

Figure 5.1. Network structure, Gantt chart and inventory levels of the motivating examples. Greek letters 𝜏 𝛽
and 𝛿 denote processing time, batch size and demand rate respectively. In the network structure, circles are
for materials, triangles are for machines, and rectangles are for tasks.

128

These two simple examples show that adding traditional thresholds as terminal constraints

cannot prevent stockout, or inventory holding cost may become high, because they neglect the

relationship of materials in the network.

5.1.2. Problem Statement

The problem we consider is defined in terms of the following sets:

(a) 𝑖 ∈ 𝐈: tasks (or operations);

(b) 𝑗 ∈ 𝐉: machines (or units);

(c) 𝑘 ∈ 𝐊: stages;

(d) 𝑚 ∈ 𝐌: materials;

(e) 𝑡 ∈ 𝐓: time periods/points;

The horizon is divided into T uniform periods 𝑡 ∈ {1, … , 𝑇} with T+1 time points 𝑡 ∈ {0,1, … , 𝑇};

period t starts at point t-1 and ends at t. The following subsets are also used to describe the

problem:

(a) 𝐈𝑗 ⊆ 𝐈: tasks that can be carried out in machine j;

(b) 𝐈𝑚
+ /𝐈𝑚

− ⊆ 𝐈: tasks producing /consuming material m;

(c) 𝐉𝑖/𝐉𝑘 ⊆ 𝐉: machines that can carry out task i /tasks in stage k;

(d) 𝐌𝑃 ⊆ 𝐌: products;

We are given the following mappings:

(a) 𝑖(𝑚′, 𝑘) ∈ 𝐈: the task in stage k to produce product m’;

(b) 𝑚(𝑚′, 𝑘) ∈ 𝐌: the material produced in stage k, which is used to produce product m’;

Finally, we are given the following parameters:

(a) 𝛿𝑚: normalized demand (constant demand in every period), if 𝑚 ∈ 𝐌𝑃; otherwise, 𝛿𝑚 = 0.

(b) 𝛽𝑖𝑗: batch size of task i in machine j;

129

(c) 𝜏𝑖𝑗: processing time of task i in machine j;

(d) 𝛼𝑖𝑗: production cost of task i in machine j;

(e) 𝜋𝑚: inventory holding cost of material m for one period.

We make the following assumptions:

(a) Parameters 𝛿𝑚 𝛽𝑖𝑗 and 𝜏𝑖𝑗 are such that the demand can be fulfilled by production.

(b) Raw materials are always available, and therefore are not included in set 𝐌. For problems in

which the inventory levels of raw materials are important, one dummy stage should be

introduced before the first stage, and the arrival of the raw material should be viewed as the

task of this dummy stage. By doing so, raw materials can be included in M, and the constraints

that will be proposed still apply.

(c) The problem is deterministic. The problems with uncertainty are discussed in §5.7.

We use 𝑆𝑚 to denote the terminal inventory level of material m, and 𝒔 to denote the vector of

terminal inventory levels; i.e., 𝒔 = [𝑆𝑚1, 𝑆𝑚2, … , 𝑆𝑚|𝐌|]
T. The scheduling problem is solved in a

moving horizon approach; i.e., after the first period of the solution is implemented, the horizon (of

the same length) is advanced forward, and the scheduling problem with new information is re-

optimized. We want to study how to constrain the terminal inventory levels so that we can (1)

ensure recursive feasibility, and (2) keep the inventory levels as low as possible.

5.2. Proposed Framework

5.2.1. Overall Approach

We first need to identify the region of feasible terminal inventory levels, denoted by 𝐒F ⊆ ℝ|𝐌|.

Region 𝐒F is defined to be the largest set such that if 𝒔 ∈ 𝐒F is the value of the terminal inventory

levels, the scheduling problem will remain feasible after the horizon is moved forward. To obtain

region 𝐒F, the assistance of a feasibility MIP model MF (given in §5.2.2) is needed, where s is used as

130

a given parameter to denote the initial inventory levels. If model MF is feasible, a scheduling

solution whose terminal inventory level is equal to the given s will lead to recursive feasibility

(Figure 5.2(a)); i.e., 𝒔 ∈ 𝐒F. After discretizing the inventory space, we check if a point s can lead to a

feasible model MF, and thus decide if 𝒔 ∈ 𝐒F. By repeatedly solving model MF with different values

of s, we obtain region 𝐒F (orange blocks in Figure 5.2(b)).

Figure 5.2. Model MF to check if 𝒔 ∈ 𝐒F and the overall approach.

Region 𝐒F might be non-convex, and therefore should be approximated by a set of linear

terminal constraints when used in the scheduling model. Moreover, for a network with many

materials, the iterative process to obtain 𝐒F might be intractable. Thus, we obtain region 𝐒F through

iterations for simple networks, and find the terminal constraints to approximate 𝐒F. Once we

understand the logic behind these constraints (for simple networks), we can write them generally

for networks with high dimensionality of materials. In the rest of the text, we use 𝐒(X) to denote the

feasible region subject to terminal constraints numbered (5.X). Good terminal constraints should

lead to a close approximation of region 𝐒F in two aspects: (1) 𝐒(X) should be a subset of 𝐒F; and (2)

𝐒F\𝐒(X) should be as small as possible.

To write our terminal constraints, we need to find out some “hidden” parameters, which are

revealed by solving a campaign model MC (given in §5.2.3). The value of variable 𝑐𝑖𝑗 in MC, denoting

131

how many times task i should be executed in machine j, is to be used as a parameter in the terminal

constraints (purple blocks in Figure 5.2(b)).

We propose terminal constraints for different network structures, from the simplest to the most

general (Figure 5.3). The single-stage single-product problem is trivial, since it suffices to require

that the terminal inventory is greater than the demand during the first batch of production; others

will be studied in the following sections.

Figure 5.3. Different network structures.

5.2.2. Feasibility Model (MF)

As mentioned in §5.2.1, model MF is solved repeatedly with different values of 𝒔 to obtain 𝐒F. If

𝒔 = [𝑆𝑚1, 𝑆𝑚2, … , 𝑆𝑚|𝐌|]
T ∈ 𝐒F, then {𝒔′ = [𝑆𝑚1

′ , 𝑆𝑚2
′ , … , 𝑆𝑚|𝐌|

′]
T

|𝑆𝑚
′ ≥ 𝑆𝑚, ∀𝑚} ⊆ 𝐒F; therefore, we

do not need to check every point s. The algorithm to obtain 𝐒F is shown in Appendix.

Model MF involves task-machine assignment and timing decisions. The variables include:

(a) 𝑊𝑖𝑗𝑡 ∈ {0,1}: =1 if and only if task i starts in machine j at time point t;

(b) 𝐿𝑚𝑡 ∈ ℝ+: inventory level of material m during time period t.

Model MF is as follows,

132

Minimize ∑ 𝛼𝑖𝑗𝑊𝑖𝑗𝑡

𝑖,𝑗∈𝐉𝑖,𝑡

+ ∑ 𝜋𝑚𝐿𝑚𝑡

𝑚,𝑡

 (5.1a)

Subject to 𝐿𝑚,1 = 𝑆𝑚 − ∑ 𝛽𝑖𝑗𝑊𝑖𝑗,0

𝑖∈𝐈𝑚
− ,𝑗∈𝐉𝑖

− 𝛿𝑚 ∀𝑚 (5.1b)

 𝐿𝑚,𝑡+1 = 𝐿𝑚𝑡 + ∑ 𝛽𝑖𝑗𝑊𝑖𝑗,𝑡−𝜏𝑖𝑗

𝑖∈𝐈𝑚
+ ,𝑗∈𝐉𝑖

− ∑ 𝛽𝑖𝑗𝑊𝑖𝑗𝑡

𝑖∈𝐈𝑚
− ,𝑗∈𝐉𝑖

− 𝛿𝑚 ∀𝑚, 𝑡 > 0 (5.1c)

 ∑ 𝑊𝑖𝑗𝑡′

𝑖∈𝐈𝑗,𝑡−𝜏𝑖𝑗+1≤𝑡′≤𝑡

≤ 1 ∀𝑗, 𝑡 (5.1d)

The objective function (5.1a) is to minimize production cost and inventory holding cost.

Material balance is expressed in constraints (5.1b) and (5.1c). Constraints (5.1d) enforce that only

one task can be processed in a certain machine at each time. Note that when checking the feasibility

of model MF, horizon length should be long enough.

Proposition 5.1 below shows that if model MF is feasible with the given s, then a scheduling

problem whose terminal inventory levels are equal to s will be recursively feasible (i.e., 𝒔 ∈ 𝐒F). The

proof is given in Appendix A.

Proposition 5.1: Let 𝐿𝑚𝑡(𝑆1) and 𝑊𝑖𝑗𝑡(𝑆1) be the values from a feasible solution, S1, of model

MF. If model MF has a feasible solution, S2, when using

𝑆𝑚 = 𝐿𝑚,𝑇+1(𝑆1) + 𝛿𝑚 + ∑ 𝛽𝑖𝑗𝑊𝑖𝑗,𝑇(𝑆1)𝑖∈𝐈𝑚
− ,𝑗∈𝐉𝑖

, then for any 1 < 𝜎 ≤ 𝑇 + 1, using 𝑆𝑚 = 𝐿𝑚,𝜎(𝑆1) +

𝛿𝑚 + ∑ 𝛽𝑖𝑗𝑊𝑖𝑗,𝜎−1(𝑆1)𝑖∈𝐈𝑚
− ,𝑗∈𝐉𝑖

, model MF also has a feasible solution, S3.

5.2.3. Campaign Model (MC)

Before writing the terminal constraints, we need to find how frequently each task is carried out

in a “typical” scheduling solution. This is achieved by solving an auxiliary linear programming (LP)

model MC. The variables include:

(a) 𝑐𝑖𝑗 ∈ ℝ+: number of batches that task i is processed in machine j;

(b) 𝐻 ∈ ℝ+: campaign time.

133

The value of 𝑐𝑖𝑗 is to be used as a parameter when writing the terminal constraints. We

introduce a new parameter used in this model: 𝛿𝑚 denotes the “propagated” normalized demand.

For product 𝑚′ ∈ 𝐌𝑃 , 𝛿𝑚′ = 𝛿𝑚′; for an intermediate material m produced in stage k, 𝛿𝑚 =

∑ 𝛿𝑚′𝑚′:𝑚=𝑚(𝑚′,𝑘) . Model MC is as follows,

Minimize ∑
𝛽𝑖𝑗

𝛿𝑚

𝑐𝑖𝑗

𝑚,𝑖∈𝐈𝑚
+ ,𝑗∈𝐉𝑖

 (5.2a)

Subject to 𝐻 ≥ ∑ 𝜏𝑖𝑗𝑐𝑖𝑗

𝑖∈𝐈𝑗

 ∀𝑗 (5.2b)

 ∑ 𝛽𝑖𝑗𝑐𝑖𝑗

𝑖∈𝐈𝑚
+ ,𝑗∈𝐉𝑖

≥ 𝛿𝑚𝐻 ∀𝑚 (5.2c)

 ∑ 𝑐𝑖𝑗

𝑖∈𝐈𝑚
+ ,𝑗∈𝐉𝑖

≥ 1 ∀𝑚 (5.2d)

The objective function (5.2a) minimizes the total production in a campaign (normalized to the

demand of each material). In constraints (5.2b), the campaign time is required to be greater than

the total production time for each machine. The production amount should be greater than the

demand, as shown in constraints (5.2c). To avoid the trivial solution in which all variables are zero,

constraints (5.2d) requires that each material is produced at least once. Because the values of 𝑐𝑖𝑗

appear linearly on both sides of the proposed terminal constraints (presented in §5.4 and §5.5), it is

their relative ratios that are important, and therefore variables 𝑐𝑖𝑗 are defined to be continuous,

rather than integer. Because we assumed that demand can be fulfilled by production, model MC is

always feasible.

5.3. Multi-stage Single-product Problems

The problem addressed in this section is similar to the flow shop scheduling problem with only

one type of product. To simplify the notation in this section, we drop index j, since there is only one

machine in each stage. Also, each material can be represented by the stage in which it is produced,

134

and each task can be represented by the stage it belongs to. Thus, we replace both indices m and i

with k (using symbols of 𝛽𝑘, 𝜏𝑘, 𝑊𝑘𝑡, 𝑆𝑘, 𝐿𝑘𝑡), and use 𝛿 to denote the normalized demand of the

product. For the problem in this section, solving model MC is not needed.

5.3.1. Proposed Terminal Constraints

Starting from a case of two stages (shown in Figure 5.3(b)), model MF is feasible if initial

inventory levels 𝑆𝑘 satisfy the following two constraints:

𝑆2

𝛿
≥ 𝜏2

𝑆1 + 𝑆2

𝛿
≥ 𝜏1 + 𝜏2 +

𝛽2

𝛿

We define the normalized inventory �̂�𝑘 = 𝑆𝑘/𝛿, denoting the number of periods for which the

inventory itself can meet the demand. The first constraint requires that the initial normalized

inventory of the product should be greater than the processing time of stage 2 so that the demand

before the finishing of the first batch can be satisfied. In the second constraint, if we view stages 1

and 2 together as a “pseudo-stage”, the left hand side (LHS) can be viewed as the “propagated”

inventory (from stage 1 to stage 2), and the right hand side (RHS) as the “propagated” lead time,

which is the summation of processing times plus the batch size of stage 2 divided by the demand.

Note that the last term, 𝛽2/𝛿, is added because model MF could be infeasible without it, as there

might be a gap in the production between the two stages when 𝛽1 is less than 𝛽2 (shown in Figure

5.1(a) of the motivating example).

More generally, the terminal constraints can be written as follows,

∑
𝑆𝑘′

𝛿

|𝐊|

𝑘′=𝑘

≥ ∑ 𝜏𝑘′

|𝐊|

𝑘′=𝑘

+ ∑
𝛽𝑘′

𝛿

|𝐊|

𝑘′=𝑘+1

 ∀𝑘 (5.3)

135

There are |K| constraints included in (5.3). For the constraint written for stage k, the LHS is the

propagated normalized inventory (from stage k to the final stage |K|), while the RHS is the

propagated lead time.

In Appendix B, we prove Proposition 5.2 below, which shows that if the initial inventory levels

satisfy constraints (5.3), model MF is guaranteed to be feasible. Together will Proposition 5.1, we

know the feasibly region subject to constraints (5.3) is a subset of 𝐒F (𝐒(3) ⊆ 𝐒F); i.e., constraints

(5.3) lead to recursive feasibility for model MF (Corollary 5.3). The proposed terminal constraints

are better than the traditional approach, because the feasible region subject to the traditional

threshold constraints is not always a subset of 𝐒F (shown in §5.3.2).

Proposition 5.2: For multi-stage single-product problems, if the initial inventory levels 𝑆𝑘

satisfy constraints (5.3), model MF is always feasible regardless of the horizon length.

Corollary 5.3: For multi-stage single-product problems, if the terminal inventory levels satisfy

constraints (5.3), model MF is recursively feasible.

Figure 5.4. Parameters, region 𝐒F, proposed terminal constraints, and the traditional thresholds for the 2-
stage example.

5.3.2. Examples

We consider a 2-stage example (parameters in Figure 5.4). Following constraints (5.3), the

proposed terminal constraints are:

136

𝑆1 + 𝑆2 ≥ 14 (5.4a)

𝑆2 ≥ 4 (5.4b)

Using the traditional threshold approach, the terminal inventory levels are constrained as

follows,

𝑆1 ≥ 3 (5.4c)

𝑆2 ≥ 7 (5.4d)

Region 𝐒F, obtained by repeatedly solving model MF with different initial inventory levels, is

shown in Figure 5.4; we also show the proposed terminal constraints defined in constraints (5.4a),

(5.4b), as well as the constraints based upon the traditional thresholds (5.4c) and (5.4d). The

feasible region defined by (5.4a), (5.4b) (together with the non-negativity of 𝑆1) is included in

region 𝐒F, and is a very close approximation of 𝐒F. On the other hand, the feasible region subject to

the traditional thresholds is not entirely in region 𝐒F, which is the reason of the stockout shown in

§5.1.1.

5.4. Single-stage Multi-product Problems

The problem addressed in this section is similar to the single-machine problem for discrete

manufacturing. To simplify the notations in this section, each material can be represented by the

task that produces it. Thus, we replace index m by index i (using notation of 𝛿𝑖 , 𝑆𝑖 , 𝐿𝑖𝑡), and drop

indices j and k. We propose two types of terminal constraints that lead to the same feasible region.

The first type includes more constraints compared to the second, but requires no auxiliary

variables.

5.4.1. Type 1 Terminal Constraints

Starting from a case of two products (shown in Figure 5.3(c)), model MF is feasible if initial

inventory levels 𝑆𝑖 satisfy the following three constraints:

137

𝑆𝐴

𝛿𝐴
≥ 𝜏𝐴 (5.5a)

𝑆𝐵

𝛿𝐵
≥ 𝜏𝐵 (5.5b)

𝑐𝐴𝜏𝐴𝑆𝐴

𝛿𝐴
+

𝑐𝐵𝜏𝐵𝑆𝐵

𝛿𝐵
≥ (𝑐𝐴𝜏𝐴 + 𝑐𝐵𝜏𝐵)(𝜏𝐴 + 𝜏𝐵) (5.5c)

where 𝑐𝐴 and 𝑐𝐵 are obtained by solving model MC.

Similarly as in §5.3.1, we define the normalized inventory �̂�𝑖 = 𝑆𝑖/𝛿𝑖 . Constraints (5.5a) and

(5.5b) requires that the normalized inventory should be greater than or equal to the processing

time, so that the inventory is sufficient to last during the execution of the first batch. To interpret

constraint (5.5c), we define 𝜌𝑖 = 𝑐𝑖𝜏𝑖 denoting the production time of a product for 𝑖 ∈ {𝐴, 𝐵}, and

𝜌𝐴+𝐵 = 𝑐𝐴𝜏𝐴 + 𝑐𝐵𝜏𝐵 denoting the total production time of 𝐴 + 𝐵. Thus, constraint (5.5c) can be

rewritten as follows,

𝜌𝐴

𝜌𝐴+𝐵
�̂�𝐴 +

𝜌𝐵

𝜌𝐴+𝐵
�̂�𝐵 ≥ 𝜏𝐴 + 𝜏𝐵 (5.5d)

If we view 𝐴 + 𝐵 as a “pseudo-product”, constraint (5.5d) can be interpreted as a generalization

of (5.5a). The RHS is the processing time of the pseudo-product; while the LHS is the normalized

inventory of the pseudo-product, which is a weighted summation of the inventory of products. The

weight is the ratio of the production time of a product to the production time of all the products in

the pseudo-product. If product i requires a longer production time, the inventory of i, �̂�𝑖, plays a

more important role, and thus the weight is heavier.

More generally, the terminal constraints can be written as,

∑
𝑐𝑖𝜏𝑖𝑆𝑖

𝛿𝑖
𝑖∈𝐈𝑝

≥ (∑ 𝑐𝑖𝜏𝑖

𝑖∈𝐈𝑝

) ∙ (∑ 𝜏𝑖

𝑖∈𝐈𝑝

) , ∀𝑝 ∈ 𝐏(𝐈) (5.6)

where P(I) denotes the power set of I (i.e., the set of all subsets of I) except the empty set, indexed

by p; 𝐈𝑝 denotes the elements that are included in the subset p. The interpretation of constraints

138

(5.6) follows the same logic as we discussed for constraints (5.5d). Because constraints (5.6) are

written for each subset of I except the empty set, the total number of constraints is 2|𝐈| − 1.

In Appendix C, we prove Proposition 5.4, which shows that if the initial inventory levels satisfy

constraints (5.6), model MF is guaranteed to be feasible. Together with Proposition 5.1, we know

that the constraints lead to recursive feasibility for model MF (Corollary 5.5).

Proposition 5.4: For single-stage multi-product problems, if the initial inventory levels 𝑆𝑖

satisfy constraints (5.6), model MF is always feasible regardless of the horizon length.

Corollary 5.5: For single-stage multi-product problems, if the terminal inventory levels satisfy

constraints (5.6), model MF is recursively feasible.

5.4.2. Type 2 Terminal Constraints

Starting from a case of two products again, model MF is feasible if inventory levels 𝑆𝑖 satisfy the

following three constraints:

𝑆𝐴

𝛿𝐴
≥ 𝜏𝐴 + 𝜏B

𝑐𝐵

𝑐𝐴
𝑈𝐴,𝐵 (5.7a)

𝑆𝐵

𝛿𝐵
≥ 𝜏𝐴(

𝑐𝐴

𝑐𝐵
+ 1 − 𝑈𝐴,𝐵) + 𝜏𝐵 (5.7b)

0 ≤ 𝑈𝐴,𝐵 ≤
𝑐𝐴

𝑐𝐵
+ 1 (5.7c)

where an auxiliary continuous variable 𝑈𝐴,B is introduced. It can be shown that constraints (5.7a)-

(5.7c) lead to the same feasible region as constraints (5.5a)-(5.5c), in terms of inventory levels 𝑆𝑖.

For general cases, we introduce auxiliary continuous variables 𝑈𝑖𝑖′ for each i and i’ such that i’>i

(in terms of the orders in the set). The type 2 constraints are as follows,

𝑆𝑖

𝛿𝑖
≥ 𝜏𝑖 + ∑ 𝜏𝑖′ (

𝑐𝑖′

𝑐𝑖
+ 1 − 𝑈𝑖′𝑖)

𝑖′<𝑖

+ ∑ 𝜏𝑖′

𝑐𝑖′

𝑐𝑖
𝑈𝑖𝑖′

𝑖′>𝑖

 ∀𝑖 (5.8a)

139

0 ≤ 𝑈𝑖𝑖′ ≤
𝑐𝑖

𝑐𝑖′
+ 1 ∀𝑖, 𝑖′ > 𝑖 (5.8b)

which requires |𝐈| ∙ (|𝐈| − 1)/2 additional 𝑈𝑖𝑖′ variables, but includes less constraints, |𝐈| ∙ (|𝐈| +

1)/2, compared to the first type.

In Appendix D, we prove Proposition 5.6, which shows that the terminal constraints proposed

in §5.4.1 and §5.4.2 lead to the same feasible region of inventory levels. Thus, we can derive

Corollary 5.7 based on Corollary 5.5 and Proposition 5.6 to show that type 2 constraints also lead to

recursive feasibility for model MF.

Proposition 5.6: The projection of feasible region defined by constraints (5.8a) and (5.8b) on

the subspace of 𝒔 = [𝑆1, 𝑆2, … , 𝑆|𝐈|]
T is the same as the feasible region defined by constraints (5.6).

Corollary 5.7: For single-stage multi-product problems, if the terminal inventory levels satisfy

constraints (5.8a) and (5.8b), model MF is recursively feasible.

For the problems with many tasks, constraints (5.8a) and (5.8b) may perform better than

constraints (5.6), because the number of constraints (5.6) grows exponentially with the number of

tasks. Nevertheless, we will focus on the type 1 constraints in the rest of the chapter for the sake of

brevity.

5.4.3. Examples

We consider a 2-product example (parameters in Figure 5.5). Solving model MC, we obtain

𝑐𝐴 = 2, 𝑐𝐵 = 1. The proposed terminal constraints (of type 1) are:

𝑆𝐴 ≥ 4 (5.9a)

𝑆𝐵 ≥ 3 (5.9b)

2𝑆𝐴 + 3𝑆𝐵 ≥ 35 (5.9c)

Using the traditional threshold approach, the terminal inventory levels are constrained as

follows,

140

𝑆𝐴 ≥ 10 (5.10a)

𝑆𝐵 ≥ 5 (5.10b)

Figure 5.5. Parameters, region 𝐒F, proposed terminal constraints, and the traditional thresholds for the 2-
product example.

Region 𝐒F, obtained by repeatedly solving MF with different initial inventory levels, is shown in

Figure 5.5; we also show the proposed terminal constraints defined in constraints (5.9a)-(5.9c), the

traditional constraints (5.10a)-(5.10b), as well as the terminal constraints using other values of 𝑐𝑖

(𝑐𝐴 = 2.571, 𝑐𝐵 = 1, obtained by solving a revised MC with a different objective function), which are

feasible but not optimal for model MC. In this figure, we see that 𝐒(10a)(10b) ⊆ 𝐒(9a)(9b)(9c) ⊆ 𝐒F; i.e.,

both the proposed terminal constraints and the traditional approach can lead to recursive

feasibility, but the former has a larger feasible region than the latter. We also note that any 𝑐𝑖 that is

feasible for MC can be used to generate the terminal constraints, and neither the optimal ci from MC

nor the other feasible ci leads to a better approximation.

Second, we consider an example with three products A, B, C, with 𝜏𝑖 = 2, 𝛽𝑖 = 12, 𝛿𝑖 = 2 for

𝑖 ∈ {𝐴, 𝐵, 𝐶}. We obtain 𝑐𝐴 = 𝑐𝐵 = 𝑐𝐶 = 1. There are seven terminal constraints in (5.6), written for

subsets {A}, {B}, {C}, {A,B}, {A,C}, {B,C}, {A,B,C}. Using these terminal constraints, we approximate

the non-convex region 𝐒F by a convex region 𝐒(6), and 𝐒(6) ⊆ 𝐒F (Figure 5.6).

141

Figure 5.6. The boundary of region 𝐒F and the proposed terminal constraints for the 3-product example.

5.5. Multi-stage Multi-product Problems

The problem addressed in this section is similar to the flow shop scheduling problem. We drop

index j once again. Both the multi-stage single-product problems and the single-stage multi-product

problems are special cases of the multi-stage multi-product problems. Thus, the constraints we will

present in this section can be viewed as a generalization of the constraints proposed in §5.3 and

§5.4.

5.5.1. Proposed Terminal Constraints

Starting from 2-stage 2-product problems (shown in Figure 5.3(d)), we propose to use the

following six constraints to constrain inventory levels 𝑆𝑚:

𝑆𝐴2

𝛿𝐴2
≥ 𝜏𝑇𝐴2 (5.11a)

𝑆𝐴1 + 𝑆𝐴2

𝛿𝐴2
≥ 𝜏𝑇𝐴1 + 𝜏𝑇𝐴2 +

𝛽𝑇𝐴2

𝛿𝐴2
 (5.11b)

𝑆𝐵2

𝛿𝐵2
≥ 𝜏𝑇𝐵2 (5.11c)

142

𝑆𝐵1 + 𝑆𝐵2

𝛿𝐵2
≥ 𝜏𝑇𝐵1 + 𝜏𝑇𝐵2 +

𝛽𝑇𝐵2

𝛿𝐵2
 (5.11d)

𝑐𝑇𝐴2𝜏𝑇𝐴2𝑆𝐴2

𝛿𝐴2
+

𝑐𝑇𝐵2𝜏𝑇𝐵2𝑆𝐵2

𝛿𝐵2
≥ (𝑐𝑇𝐴2𝜏𝑇𝐴2 + 𝑐𝑇𝐵2𝜏𝑇𝐵2)(𝜏𝑇𝐴2 + 𝜏𝑇𝐵2) (5.11e)

𝑐𝑇𝐴1𝜏𝑇𝐴1

𝑆𝐴1 + 𝑆𝐴2

𝛿𝐴2
+ 𝑐𝑇𝐵1𝜏𝑇𝐵1

𝑆𝐵1 + 𝑆𝐵2

𝛿𝐵2

≥ (𝑐𝑇𝐴1𝜏𝑇𝐴1 + 𝑐𝑇𝐵1𝜏𝑇𝐵1) (𝜏𝑇𝐴1 + 𝜏𝑇𝐴2 +
𝛽𝑇𝐴2

𝛿𝐴2
+ 𝜏𝑇𝐵1 + 𝜏𝑇𝐵2 +

𝛽𝑇𝐵2

𝛿𝐵2
)

(5.11f)

The 2-stage 2-product network can be decomposed into (1) two 2-stage single-product

networks and (2) two single-stage 2-product networks. For the 2-stage single-product networks,

following constraints (5.3), we write constraints (5.11a), (5.11b) for the production of A2, and

constraints (5.11c) and (5.11d) for the production of B2. For the single-stage 2-product networks,

we write constraint (5.11e) directly following constraints (5.6) for stage 2; while for stage 1, we

write constraint (5.11f) using the idea of propagation introduced in §5.3. Specifically, the

propagated inventory is used on the LHS of constraint (5.11f), considering the inventory levels of

intermediates and products; subsequently, the term in the second parenthesis on the RHS is

modified to the propagated lead time.

Generally, the terminal constraints are as follow,

∑
𝑆𝑚(𝑚′,𝑘′)

𝛿𝑚′

|𝐊|

𝑘′=𝑘

≥ ∑ 𝜏𝑖(𝑚′,𝑘′)

|𝐊|

𝑘′=𝑘

+ ∑
𝛽𝑖(𝑚′,𝑘′)

𝛿𝑚′

|𝐊|

𝑘′=𝑘+1

 ∀𝑚′ ∈ 𝐌𝑃 , 𝑘 (5.12a)

∑ 𝑐𝑖(𝑚′,𝑘)𝜏𝑖(𝑚′,𝑘)

∑ 𝑆𝑚(𝑚′,𝑘′)
|𝐊|
𝑘′=𝑘

𝛿𝑚′
𝑚′∈𝐌𝑝

≥ (∑ 𝑐𝑖(𝑚′,𝑘)𝜏𝑖(𝑚′,𝑘)

𝑚′∈𝐌𝑝

) ∙ ∑ (∑ 𝜏𝑖(𝑚′,𝑘′)

|𝐊|

𝑘′=𝑘

+
∑ 𝛽𝑖(𝑚′,𝑘′)

|𝐊|
𝑘′=𝑘+1

𝛿𝑚′
)

𝑚′∈𝐌𝑝

∀𝑝 ∈ 𝐏(𝐌𝑃) and |𝐌𝑝| > 1, 𝑘

(5.12b)

143

Constraints (5.12a) are written for the multi-stage single-product networks, where 𝑖(𝑚′, 𝑘)

denotes the task in stage k to produce product m’, and 𝑚(𝑚′, 𝑘) denotes the material produced in

stage k for producing product m’. Constraints (5.12b) are written for the single-stage multi-product

networks, where 𝐏(𝐌𝑃) denotes the power set of all products, 𝐌𝑃, except the empty set, indexed

by p; 𝐌𝑝 denotes the products that are included in the subset p. Note that constraints (5.12b) are

written for |𝐌𝑝| > 1, because the corresponding constraints of (5.12b) written for |𝐌𝑝| = 1 are

already included in constraints (5.12a).

As shown in the following example, the proposed terminal constraints also apply to the network

in which the same intermediate is used to produce different downstream materials.

Figure 5.7. Network and parameters for a 2-stage 2-product example with one intermediate.

Figure 5.8. The boundary of region 𝐒F and the proposed terminal constraints for the 2-stage 2-product
example (with one intermediate).

144

5.5.2. Examples

We consider a 2-stage 2-product example (Figure 5.7). Solving model MC, we obtain

𝑐𝑇𝐴𝐵1 = 1.33, 𝑐𝑇𝐴2 = 𝑐𝑇𝐵2 = 1. Based on (5.12a) and (5.12b), the proposed terminal constraints are:

𝑆𝐴2 ≥ 4 (5.13a)

𝑆𝐴𝐵1 + 𝑆𝐴2 ≥ 15 (5.13b)

𝑆𝐵2 ≥ 4 (5.13c)

𝑆𝐴𝐵1 + 𝑆𝐵2 ≥ 15 (5.13d)

4𝑆𝐴2 + 4𝑆𝐵2 ≥ 64 (5.13e)

4(𝑆𝐴𝐵1 + 𝑆𝐴2) + 4(𝑆𝐴𝐵1 + 𝑆𝐵2) ≥ 240 (5.13f)

The inventory level of the intermediate, 𝑆𝐴𝐵1, appears twice on the LHS of constraint (5.13f),

because AB1 is used to produce both products. The six terminal constraints, together with the non-

negativity of 𝑆𝐴𝐵1, approximate the non-convex region 𝐒F by a convex region (Figure 5.8). The

feasible region of the terminal constraints (with 𝑆𝐴𝐵1 ≥ 0) is included in 𝐒F.

5.6. Extension to Problems with Parallel Units

In §5.3-§5.5, we considered the problems with a single machine in each stage. In this section, we

study problems with parallel machines in each stage. In §5.6.1 and §5.6.2, we follow the simplified

notation used in §5.3 and §5.4 respectively.

5.6.1. Multi-stage Single-product Problems

5.6.1.1. Identical Units

If machines in the same stage are identical, we can still use the notation without index j.

Following the same logic of Corollary 5.3, the following constraints can be shown to ensure

recursive feasibility,

145

∑
𝑆𝑘′

𝛿

|𝐊|

𝑘′=𝑘

≥ ∑ 𝜏𝑘′

|𝐊|

𝑘′=𝑘

+ ∑
|𝐉𝑘′| ∙ 𝛽𝑘′

𝛿

|𝐊|

𝑘′=𝑘+1

 ∀𝑘 (5.14)

where the batch size is multiplied by the number of machines in the second summation on the RHS.

However, constraints (5.14) may not be a good approximation of 𝐒F, and we want to use relaxed

constraints to have a larger feasible region. By studying different examples, we observe that the

original constraints (5.3) proposed in §5.3, which are relaxed constraints of (5.14), lead to a better

approximation of 𝐒F. Thus, we use constraints (5.3).

5.6.1.2. Non-identical Units

When machines in a certain stage are non-identical, we generalize constraints (5.3) as follows,

∑
𝑆𝑘′

𝛿

|𝐊|

𝑘′=𝑘

≥ ∑ max
𝑗∈𝐉𝑘′

𝜏𝑘′𝑗

|𝐊|

𝑘′=𝑘

+ ∑

max
𝑗∈𝐉𝑘′

𝛽𝑘′𝑗

𝛿

|𝐊|

𝑘′=𝑘+1

 ∀𝑘 (5.15)

in which the maximum processing time and the maximum batch size (over machines) are used in

the first and second summations of the RHS respectively.

5.6.2. Single-stage Multi-product Problems

5.6.2.1. Identical Units

If all machines are identical, there is a solution of model MC with 𝑐𝑖𝑗 = 𝑐𝑖𝑗′ for all i, j, j'. Thus, we

can drop index j again. Constraints (5.6), proposed in §5.4, still lead to recursive feasibility, because

when all the machines are synchronized to carry out the same task, the inventory profile will be the

same as that in the single-machine case.

However, because machines are not required to be synchronized (i.e., we have more flexibility

with multiple machines), constraints (5.6) are too conservative. To have a better approximation of

region 𝐒F, the terminal constraints are modified as follows,

146

∑
𝑐𝑖𝜏𝑖𝑆𝑖

𝛿𝑖
𝑖∈𝐈𝑝

≥ ∑ 𝑐𝑖𝜏𝑖
2

𝑖∈𝐈𝑝

+ 𝜇 ∑ 𝑐𝑖𝜏𝑖𝜏𝑖′

𝑖∈𝐈𝑝,𝑖′∈𝐈𝑝:𝑖′≠𝑖

 ∀𝑝 ∈ 𝐏(𝐈) (5.16)

where μ is a pre-defined parameter between 0 and 1. When 𝜇 = 1, constraints (5.16) reduce to

constraints (5.6). Based on our computational study, we use 𝜇 = 1/|𝐉|, which leads to a good

approximation of region 𝐒F.

5.6.2.2. Non-identical Units

If machines are non-identical, the exact constraints for |𝐈𝑝| = 1 can be written as follows,

𝑆𝑖 ≥ − min
0≤𝑙≤max

𝑗
𝜏𝑖𝑗−1

{−𝛿𝑖 − 𝑙𝛿𝑖 + ∑ ⌊
𝑙

𝜏𝑖𝑗
⌋ 𝛽𝑖𝑗

𝑗∈𝐉𝑖

} ∀𝑖

The RHS represents the maximum backlog of product i, if its initial inventory is zero and its

production is started in all machines at time 0. The other constraints (|𝐈𝑝| > 1) are harder to write,

because processing times and batch sizes can vary among machines. Herein, we introduce the

“average” parameters for each task i, (index j is again dropped,) as follows,

𝑐𝑖 = ∑ 𝑐𝑖𝑗

𝑗∈𝐉𝑖

 (5.17a)

𝜏𝑖 =
1

𝑐𝑖
∑ 𝑐𝑖𝑗𝜏𝑖𝑗

𝑗∈𝐉𝑖

(5.17b)

With these average parameters, constraints (5.16) can be used.

5.6.3. Multi-stage Multi-product Problems

The terminal constraints of the most general network, with multiple stages, multiple products

and multiple machines in each stage, can be obtained from the generalization of the constraints

presented in §5.5.1, §5.6.1 and §5.6.2. We treat identical- and non-identical-machine problems in

the same way. The following constraints are used,

147

∑
𝑆𝑚(𝑚′,𝑘′)

𝛿𝑚′

|𝐊|

𝑘′=𝑘

≥ ∑ max
𝑗∈𝐉𝑘′

𝜏𝑖(𝑚′,𝑘′),𝑗

|𝐊|

𝑘′=𝑘

+ ∑

max
𝑗∈𝐉𝑘′

𝛽𝑖(𝑚′,𝑘′),𝑗

𝛿𝑚′

|𝐊|

𝑘′=𝑘+1

 ∀𝑚′ ∈ 𝐌𝑃 , 𝑘 (5.18a)

∑ 𝑐𝑖(𝑚′,𝑘)𝜏𝑖(𝑚′,𝑘)

∑ 𝑆𝑚(𝑚′,𝑘′)
|𝐊|
𝑘′=𝑘

𝛿𝑚′
𝑚′∈𝐌𝑝

≥

∑ [𝑐𝑖(𝑚′,𝑘)𝜏𝑖(𝑚′,𝑘) (∑ 𝜏𝑖(𝑚′,𝑘′)

|𝐊|

𝑘′=𝑘

+

∑ max
𝑗∈𝐉𝑘′

𝛽𝑖(𝑚′,𝑘′),𝑗
|𝐊|
𝑘′=𝑘+1

𝛿𝑚′
)]

𝑚′∈𝐌𝑝

+
1

|𝐉𝑘|
∙ ∑ [𝑐𝑖(𝑚′,𝑘)𝜏𝑖(𝑚′,𝑘) (∑ 𝜏𝑖(𝑚′′,𝑘′)

|𝐊|

𝑘′=𝑘

+

∑ max
𝑗∈𝐉𝑘′

𝛽𝑖(𝑚′′,𝑘′),𝑗
|𝐊|
𝑘′=𝑘+1

𝛿𝑚′′
)]

𝑚′∈𝐌𝑝,𝑚′′∈𝐌𝑝,𝑚′′≠𝑚′

∀𝑝 ⊆ 𝐏(𝐌𝑃) and |𝐌𝑝| > 1, 𝑘

(5.18b)

In constraints (5.18b), the average parameter are calculated following the logic presented in

§5.6.2.2, as follows,

𝑐𝑖(𝑚′,𝑘) = ∑ 𝑐𝑖(𝑚′,𝑘),𝑗

𝑗∈𝐉𝑖(𝑚′,𝑘)

 ∀𝑚′ ∈ 𝐌𝑃 , 𝑘 (5.18c)

𝜏𝑖(𝑚′,𝑘) =
1

𝑐𝑖(𝑚′,𝑘)
∙ ∑ 𝑐𝑖(𝑚′,𝑘),𝑗 ∙ 𝜏𝑖(𝑚′,𝑘),𝑗

𝑗∈𝐉𝑖(𝑚′,𝑘)

 ∀𝑚′ ∈ 𝐌𝑃 , 𝑘 (5.18d)

Terminal constraints for problems with different networks are summarized in Table 5.1.

Table 5.1. Terminal constraints for different problems.

Single machine Identical machines Non-identical machines

Multi-stage single-product (5.3) (5.3) (5.15)
Single-stage multi-product (5.6) (5.16) (5.16)(5.17a)(5.17b)
Multi-stage multi-product (5.12a)(5.12b) (5.18a)(5.18b) (5.18a)(5.18b)(5.18c)(5.18d)

5.7. Remarks

First, we comment on how to apply the terminal constraints when model MF is used as the

scheduling model to solve an instance, rather than to study region 𝐒F. The terminal constraints

should constrain the terminal inventory level, rather than 𝑆𝑚, because 𝑆𝑚 is a given parameter

denoting the initial inventory level in the model. Moreover, even though we showed that the

148

proposed terminal constraints ensure recursive feasibility for model MF, simply applying them for

the inventory levels of the last time may cause stockout. This is because when solving model MF

together with the terminal constraints, the model is modified (with terminal constraints added).

Thus, simply applying the terminal constraints for the inventory levels of the last time cannot

ensure recursive feasibility for the modified model. We note that the proposed terminal should be

applied to the inventory levels of the last max𝑖,𝑗 𝜏𝑖𝑗 times. By doing so, recursive feasibility is

achieved for the modified model. For example, when applying terminal constraints (5.12a) in model

MF, we should require the following constraints

∑
𝐿𝑚(𝑚′,𝑘′),𝑡 + 𝛿𝑚(𝑚′,𝑘′) + ∑ 𝛽𝑖𝑗𝑊𝑖𝑗,𝑡−1𝑖∈𝐈

𝑚(𝑚′,𝑘′)
− ,𝑗∈𝐉𝑖

𝛿𝑚′

|𝐊|

𝑘′=𝑘

≥ ∑ 𝜏𝑖(𝑚′,𝑘′)

|𝐊|

𝑘′=𝑘

+ ∑
𝛽𝑖(𝑚′,𝑘′)

𝛿𝑚′

|𝐊|

𝑘′=𝑘+1

∀𝑚′ ∈ 𝐌𝑃 , 𝑘, 𝑡 > 𝑇 − max
𝑖,𝑗

𝜏𝑖𝑗

Note that the numerator of the LHS is not simply 𝐿𝑚(𝑚′,𝑘′),𝑡, because the numerator should

represent the inventory level at time point t-1 (before the activity of consuming the product or the

intermediate), which is the inventory level of period t, plus the normalized demand, 𝛿𝑚(𝑚′,𝑘′), plus

the consumption by the tasks in the following stage, ∑ 𝛽𝑖𝑗𝑊𝑖𝑗,𝑡−1𝑖∈𝐈
𝑚(𝑚′,𝑘′)
− ,𝑗∈𝐉𝑖

.

Second, when uncertainty is considered, buffer terms should be added. The main sources of

uncertainty include the processing time and the demand. Based on safety stock literature (Eppen

and Martin, 1988), if the mean and variance of the processing time and the normalized demand are

denoted by �̅�𝑖𝑗 , 𝛿�̅�, 𝜎2(𝜏𝑖𝑗) and 𝜎2(𝛿𝑚) respectively, then we define a buffer term 𝐵𝑚for every 𝑆𝑚 in

the terminal constraints:

𝐵𝑚 = 𝜙√𝜎2(𝛿𝑚) max
𝑖∈𝐈𝑚

+ ,𝑗∈𝐉𝑖

�̅�𝑖𝑗 + (𝛿�̅�)2 max
𝑖∈𝐈𝑚

+ ,𝑗∈𝐉𝑖

𝜎2(𝜏𝑖𝑗) (5.19)

in which 𝜙 is the inverse distribution function of a standard normal distribution based on a

specified service level. For example, after considering this buffer term, constraints (5.12a) becomes

149

∑
𝑆𝑚(𝑚′,𝑘′) − 𝐵𝑚(𝑚′,𝑘′)

𝛿𝑚′

|𝐊|

𝑘′=𝑘

≥ ∑ 𝜏𝑖(𝑚′,𝑘′)

|𝐊|

𝑘′=𝑘

+ ∑
𝛽𝑖(𝑚′,𝑘′)

𝛿𝑚′

|𝐊|

𝑘′=𝑘+1

 ∀𝑚′ ∈ 𝐌𝑁, 𝑘

Third, when the demand is not constant but periodic, a simple change can be made. We assume

the demand pattern repeats every 𝛾𝑚′ periods for product m’, and the average demand per period

is 𝛿𝑚′ . Then, we can apply the proposed constraints by requiring that the inventory levels of the last

max (max𝑖,𝑗 𝜏𝑖𝑗 , max𝑚′∈𝐌𝑃 𝛾𝑚′) times satisfy the terminal constraints.

5.8. Computational Results

In this section, we carry out simulations to study how the terminal constraints perform in

online scheduling. We use model MF as the scheduling model. In order to continue the online

scheduling when stockout happens, slack variables are introduced to allow negative inventory

levels (backlogs), which are penalized in the objective function. We compare the solutions of three

formulations:

(a) Model MF without any constraints on terminal inventory levels (referred as MFWO);

(b) Model MF with traditional threshold constraints (referred as MFTT); and

(c) Model MF with the proposed terminal constraints (referred as MFTC).

Applying the traditional threshold constraints or the proposed terminal constraints to the

inventory levels of the last time would fail to prevent stockout. Thus, for MFTT and MFTC, we apply

those two types of constraints to the inventory levels of the last max𝑖,𝑗 𝜏𝑖𝑗 times, as discussed in

§5.7.

150

Figure 5.9. Online scheduling procedure.

The online scheduling procedure is shown in Figure 5.9. After obtaining a solution through

optimization, we roll the horizon forward by one period and solve the scheduling model of the new

horizon. If there is uncertainty, we observe its realization and update before rolling the horizon.

After 72 iterations, we obtain the closed-loop solution from time 0 to time 72. After obtaining each

closed-loop solution, we use two solution quality indicators:

(a) Stockout percentage (SP), which is the number of periods with negative inventory levels

divided by the simulation horizon (72); and

(b) Average inventory levels (AIL), which is the average inventory levels (considering the

summation of all materials in the network) over the periods.

We compare the three formulations based on SP and AIL; on condition that SP remains very

low, the closed-loop solution is better if AIL has a lower value.

5.8.1. Deterministic Problem

We first consider deterministic problems, using three instances representing the three types of

networks we discussed. Based on the closed-loop solution, the values of SP and AIL can be

calculated (Table 5.2). When using MFWO, the values of SP are large, and they decrease to zero by

using MFTT and MFTC; this shows that constraints on terminal inventory levels are needed to

prevent stockout. When using MFTC, the values of AIL are smaller compared to those when using

151

MFTT; this shows that the proposed terminal inventory levels can lead to lower inventory levels

compared to the traditional approach.

5.8.2. Problems with Uncertainty

To further compare the solutions of the three formulations, we consider problems with

uncertainty: the demand in each period is subject to a normal distribution, 𝒩(𝛿𝑚, (0.3𝛿𝑚)2). Due to

the uncertainty, inventory buffers were added in the model. First, 𝐿𝑚𝑡 was required to be greater

than the buffer 𝐵𝑚 defined in equation (5.19), which is 1.6 ∙ 0.3 ∙ 𝛿𝑚 ∙ √max𝑖∈𝐈𝑚
+ ,𝑗∈𝐉𝑖

𝜏𝑖𝑗, for the

uncertainty we consider; 1.6 is the value of 𝜙 used in equation (5.19) at a service level of 95%.

Second, in the proposed terminal constraints and the traditional threshold constraints, the same

buffer 𝐵𝑚 was added.

Table 5.2. Values of SP (%) and AIL for the deterministic problems.

SP/AIL Single-stage multi-product Multi-stage single-product Multi-stage multi-product

MFWO 6.94/11.44 31.94/4.18 2.88/24.93

MFTT 0.00/39.80 0.00/17.13 0.00/51.80

MFTC 0.00/20.36 0.00/12.00 0.00/43.48

Table 5.3. The sample mean of SP (%) for the single-stage multi-product problem.

Instance 1 2 3 4 5 6 7 8

MFWO 1.29 3.07 11.22 7.65 1.50 1.54 4.47 1.14

MFTT 0.54 0.71 0.00 0.36 0.43 0.51 0.07 0.64

MFTC 0.36 0.69 0.24 0.53 0.75 1.17 0.19 1.01

Table 5.4. The sample mean of SP (%) for the multi-stage single-product problem.

Instance 9 10 11 12 13 14 15 16

MFWO 42.44 19.07 29.85 34.46 6.01 7.28 8.44 0.00

MFTT 42.51 0.01 0.00 61.39 38.65 38.65 39.19 23.94

MFTC 0.03 0.89 1.03 0.00 0.00 0.00 0.00 0.00

Table 5.5. The sample mean of SP (%) for the multi-stage multi-product problem.

Instance 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

MFWO 43.53 32.81 10.72 9.04 5.01 25.58 36.51 7.13 6.26 2.49 1.58 1.90 1.03 1.42 1.99 2.72

MFTT 37.85 0.00 0.00 13.19 0.00 0.00 0.19 0.00 29.96 5.86 7.93 9.29 4.43 8.22 9.38 0.82

MFTC 0.13 0.01 0.51 0.04 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.15 0.00 0.04 0.03 0.03

152

We study 32 instances, which can be categorized into three types:

(a) Single-stage multi-product problem (instances 1-8);

(b) Multi-stage single-product problem (instances 9-16);

(c) Multi-stage multi-product problem (instances 17-32).

We obtained 100 samples for each instance; after obtaining the closed-loop solutions, we

calculate the mean values of SP and AIL over the 100 samples. The sample means of SP are shown

in Tables 5.3-5.5; while Figure 5.10 shows the increase (in percentage) in the sample mean of AIL

using MFTT compared to that using MFTC, i.e., AILTT−TC = (AIL(MFTT) − AIL(MFTC))/AIL(MFTC) ∙

100%. From the table and the figure, we can make the following observations:

(a) When no constraints on terminal inventory levels are applied, 26 out 32 instances have sample

mean of SP greater than 1.5%, which re-confirm the necessity of constraining the terminal

inventory levels;

(b) Taking SP<1.5% as the criterion of the effective prevention from stockout, the traditional

threshold approach can prevent stockout for single-stage problems (Table 5.3); however, for 15

instances of other problems (Tables 5.4-5.5), it cannot prevent stockout;

(c) The proposed terminal constraints can prevent stockout for all instances;

(d) For the instances that both MFTC and MFTT can prevent stockout, MFTC leads to lower inventory

levels.

Figure 5.10. Increase of the sample mean of AIL using MFTT compared to that using MFTC.

153

5.9. Conclusions

We proposed novel terminal constraints for the production scheduling problems of different

network structures, including multi-stage single-product networks, single-stage multi-product

networks, and multi-stage multi-product networks. The proposed constraints consider the

relationship of inventory levels of different materials. This is advantageous compared to the

traditional threshold approach, which constrains the inventory levels independently for each

material. Theoretically, we prove that for two types of networks, if the terminal inventory levels

satisfy the proposed terminal constraints, the scheduling problem will be recursively feasible. By

studying different problems with and without uncertainty, we show that the proposed terminal

constraints can effectively prevent stockout, and achieve substantial savings on inventory holding

cost by lowering the inventory levels, compared to the traditional approach. We also developed an

approach to obtain the region of feasible terminal inventory levels, through iterations of solving a

feasibility scheduling model. This approach can be generalized; i.e., one can obtain the region of

feasible terminal inventory levels for other scheduling problems by iteratively solving the

corresponding scheduling model.

5.10. Notation

Indices/Sets

𝑖 ∈ 𝐈 tasks

𝑗 ∈ 𝐉 machines

𝑘 ∈ 𝐊 stages

𝑚 ∈ 𝐌 materials

𝐌𝑃 ⊆ 𝐌 products

𝑝 ∈ 𝐏(𝐌𝑃) power set of the products (except the empty set)

𝑡 ∈ 𝐓 time periods or points

Subsets

154

𝐈𝑗 tasks that can be carried out in machine j

𝐈𝑚
+ /𝐈𝑚

− tasks producing /consuming material m

𝐈𝑝 products (tasks) included in subset p (for single-stage problems)

𝐉𝑖/𝐉𝑘 machines that can carry out task i /tasks in stage k

𝐌𝑝 products included in subset p

Mappings

𝑖(𝑚′, 𝑘) ∈ 𝐈 task in stage k to produce product m’

𝑚(𝑚′, 𝑘) ∈ 𝐌 material produced in stage k, which is used to produce product m’

Parameters

𝛼𝑖𝑗 production cost of task i in machine j

𝛽𝑖𝑗 batch size of task i in machine j

𝛿𝑚/𝛿𝑚 normalized/propagated demand of m

𝜋𝑚 inventory holding cost of material m for one period

𝜏𝑖𝑗 processing time of task i in machine j

Variables in model MF

𝑊𝑖𝑗𝑡 ∈ {0,1} =1 if and only if task i starts in machine j at time point t

𝐿𝑚𝑡 ∈ ℝ+ inventory level of material m during time period t

Variables in model MC

𝑐𝑖𝑗 ∈ ℝ+ number of batches that task i is processed in machine j

𝐻 ∈ ℝ+ campaign time.

Other notation

𝐵𝑚 buffer term for uncertainty

𝑆𝑚 terminal inventory level of material m (or the given initial inventory level when

model MF is solved to obtain 𝐒F)

𝒔 vector [𝑆𝑚1, 𝑆𝑚2, … , 𝑆𝑚|𝐌|]
T

155

𝐒F ⊆ ℝ|𝐌| region of feasible terminal inventory levels

𝐒(X) ⊆ ℝ|𝐌| feasible region subject to constraints (5.X)

𝑈𝑖𝑖′ auxiliary continuous variable used in §5.4.2

156

Chapter 6

Discrete-time Formulations in Scheduling Problems with Changeover6

A wide range of mixed-integer programming (MIP) models (Wolsey, 1998) have been proposed

in the literature to address manufacturing scheduling problems, and chemical production

scheduling problems in particular (Méndez et al., 2006; Maravelias, 2012b; Harjunkoski et al.,

2014). One of the differentiating attributes of the models is the modeling of time. In discrete-time

models, the scheduling horizon η is divided into Τ periods of fixed length 𝛿 = 𝜂/𝑇, defining 𝑇 + 1

time points (i.e., period t starts at time point 𝑡 − 1 and ends at time point t). In continuous-time

models, the horizon is divided into a known number of periods with variable length. Discrete-time

models have several advantages over their continuous-time counterparts: they (1) are tighter

(Sundaramoorthy and Maravelias, 2011a; Velez and Maravelias, 2013), (2) can easily handle

intermediate release and due times, (3) can model holding and backlogging costs linearly, and (4)

can be readily extended to handle events during the execution of a task. Furthermore,

computational study showed that discrete-time models for problems in network production

environments (i.e., environments where tasks produce and consume multiple materials and batches

of materials can be mixed and split) can often be solved faster and find better solutions compared

to continuous-time models (Sundaramoorthy and Maravelias, 2011a). However, because the size of

discrete-time models grows at least linearly with the number of periods, the disadvantage of

discrete-time models is the large number of binary variables and constraints, especially when

sequence-dependent changeovers are considered. Such changeovers are common in the process

industries (e.g., commodity, specialty, and fine chemicals; food and beverage manufacturing;

pharmaceutical manufacturing; consumer goods), where cleaning-in-place, sterilization-in-place,

6 This chapter is modified from Velez et al., 2017.

157

maintenance, material transfer, and unit setup activities need to be performed between different

tasks.

If changeovers do not require resources and do not incur a cost, then changeover times can be

enforced by simply allowing enough idle time between tasks (Kondili et al., 1993; Shah et al., 1993;

Wolsey, 1997, Moniz et al., 2013). However, if resources are needed or costs need to be modeled,

additional binary variables are necessary (Karmarkar and Schrage, 1985; Sahinidis and Grossmann,

1991; Kondili et al., 1993; Zentner et al., 1994). We study changeovers for processes that neither

require resources nor incur a cost.

The chapter is structured as follows. In Section 6.1, we introduce the processes that we are

interested in, describe their corresponding MIP models, and present three changeover formulations

from the literature, and four changeover formulations proposed previously. In Section 6.2, we

present a new formulation. Section 6.3 presents results regarding the relative tightness of the

formulations. In Section 6.4, we present computational results. We use lowercase italic letters for

indices, uppercase italic letters for variables, uppercase bold letters for sets, and lowercase Greek

letters for parameters.

6.1. Background

We consider three variations on the single-stage environment with: (1) a single unit (machine),

(2) parallel units, and (3) parallel units with unequal capacities. The horizon, η, is divided into T

uniform intervals of length 𝛿 = 𝜂/𝑇, with 𝑇 + 1 time points 𝑡 ∈ {0,1, … , 𝑇} occurring at 𝑡𝛿. We use

these three problems to study our new formulations because of their simplicity and because they

represent three general classes of problems. We emphasize that the changeover constraints

developed here can be readily used in any discrete-time model.

6.1.1. Single Unit

158

The single-unit problem consists of a set of tasks (jobs), 𝑖 ∈ 𝐈, with a fixed processing time, 𝜏𝑖𝛿.

We include a binary variable: 𝑋𝑖𝑡 = 1 if and only if task 𝑖 starts at time point t. We assume that each

task must be run exactly once (constraints (6.1)) and only one task can run at a time (constraints

(6.2)).

∑ 𝑋𝑖𝑡

𝑡

= 1 ∀𝑖 (6.1)

∑ ∑ 𝑋𝑖𝑡′

𝑡

𝑡′=𝑡−𝜏𝑖+1𝑖

≤ 1 ∀𝑡 (6.2)

We can minimize makespan, 𝑀𝑆 ∈ ℝ+,

𝑀𝑆 ≥ ∑(𝑡 + 𝜏𝑖)𝑋𝑖𝑡

𝑖

 ∀𝑡 (6.3)

We can also minimize tardiness, 𝑇𝑅𝐷 ∈ ℝ+,

𝑇𝑅𝐷 = ∑ 𝑇𝑅𝐷𝑖

𝑖

 (6.4)

where 𝑇𝑅𝐷𝑖 ∈ ℝ+ denotes the tardiness of task i. 𝑇𝑅𝐷𝑖 is defined in constraints (6.5), where 𝜙𝑖 is

the due time of task i:

𝑇𝑅𝐷𝑖 ≥ ∑ (𝑡 − 𝜙𝑖 + 𝜏𝑖)𝑋𝑖𝑡

𝑇

𝑡=𝜙𝑖−𝜏𝑖+1

 ∀𝑖 (6.5)

6.1.2. Parallel Units

When there are parallel units (machines), we introduce a new index, 𝑗 ∈ 𝐉, for units; the

processing times, 𝜏𝑖𝑗 , are unit-dependent. To generate a schedule we must assign each task to a

unit, so the binary variables are indexed by j: 𝑋𝑖𝑗𝑡 = 1 if and only if task 𝑖 starts in unit j at time

point t. We still assume that each task must be run exactly once (constraints (6.6), where 𝐉𝑖 is the

set of units that can process task 𝑖), and only one task can run at a time on a unit (constraints (6.7)).

159

∑ 𝑋𝑖𝑗𝑡

𝑗∈𝐉𝑖,𝑡

= 1 ∀𝑖 (6.6)

∑ ∑ 𝑋𝑖𝑗𝑡′

𝑡

𝑡′=𝑡−𝜏𝑖𝑗+1𝑖

≤ 1 ∀𝑗, 𝑡 (6.7)

Again, we consider makespan minimization,

𝑀𝑆 ≥ ∑(𝑡 + 𝜏𝑖𝑗)𝑋𝑖𝑗𝑡

𝑖

 ∀𝑗, 𝑡 (6.8)

Since a task may run on different units and the cost may be different in each unit, we also

consider cost, 𝐶𝑆𝑇 ∈ ℝ+, minimization, where 𝛼𝑖𝑗 is the cost to run task 𝑖 in unit j.

𝐶𝑆𝑇 = ∑ 𝛼𝑖𝑗𝑋𝑖𝑗𝑡

𝑖,𝑗,𝑡

 (6.9)

For cost minimization, we consider the case where each task i has a hard due date (deadline),

�̅�𝑖,

𝑋𝑖𝑗𝑡 = 0 ∀𝑖, 𝑗, 𝑡 > �̅�𝑖 − 𝜏𝑖 (6.10)

We also consider tardiness minimization, 𝑇𝑅𝐷, with constraints (6.4) and (6.11)

𝑇𝑅𝐷𝑖 ≥ ∑ ∑ (𝑡 − 𝜙𝑖 + 𝜏𝑖𝑗)𝑋𝑖𝑗𝑡

𝑇

𝑡=𝜙𝑖−𝜏𝑖𝑗+1𝑗

 ∀𝑖 (6.11)

6.1.3. Parallel Units with Unequal Capacities

Εach unit j has capacity 𝛽𝑗 and (the output of) each task i has known demand, 𝜉𝑖 . When units

have unequal capacities, we cannot calculate how many times each task must run prior to

optimization, so we replace constraints (6.6) with,

∑ 𝛽𝑗𝑋𝑖𝑗𝑡

𝑗∈𝐉𝑖,𝑡

≥ 𝜉𝑖 ∀𝑖 (6.12)

160

Constraints (6.7) are also included to ensure that each unit processes at most one task at a time.

Again, we consider MS, CST, and TRD minimization. The constraints for different problems and

objective functions are summarized in Table 6.1.

Table 6.1. Constraints used in different production environments and objective functions.

Production environments min MS min TRD min CST

Single unit (6.1) (6.2) (6.3) (6.1) (6.2) (6.4) (6.5)

Parallel units (6.6) (6.7) (6.8) (6.4) (6.6) (6.7) (6.11) (6.6) (6.7) (6.9) (6.10)

Parallel units with unequal capacities (6.7) (6.8) (6.12) (6.4) (6.7) (6.11) (6.12) (6.7) (6.9) (6.10) (6.12)

6.1.4. Assumptions and Literature Formulations

The changeover time after task 𝑖 finishes and before task 𝑖′ starts on unit j is denoted by 𝜎𝑖𝑖′𝑗 in

terms of the number of periods. We make three assumptions.

Assumption 1. The changeover time between task 𝑖 and task 𝑖′ is less than both 𝜏𝑖𝑗 and 𝜏𝑖′𝑗

(𝜎𝑖𝑖′𝑗 < min{𝜏𝑖𝑗, 𝜏𝑖′𝑗}).

Assumption 2. Changeover times satisfy the triangle inequality (𝜎𝑖𝑖′′𝑗 < 𝜎𝑖𝑖′𝑗 + 𝜏𝑖′𝑗 + 𝜎𝑖′𝑖′′𝑗).

Assumption 3. Tasks do not have a changeover with themselves (𝜎𝑖𝑖𝑗 = 0).

For the single-unit problem, one drops the index j in 𝜏𝑖𝑗 and 𝜎𝑖𝑖′𝑗 , and the assumptions are then

analogous to those for the parallel-units problem. The changeover constraints presented in the

remaining of the chapter can be written for the single-unit problem, simply by replacing variables

𝑋𝑖𝑗𝑡 by variables 𝑋𝑖𝑡. Also, when processing and/or changeover times are unit independent, all the

constraints in the chapter still apply.

Three discrete-time formulations have appeared in the literature to enforce changeover times

without additional binary variables.

Constraints (K). Kondili et al. (Kondili et al., 1993) used a big-M constraint:

161

∑ ∑ 𝑋𝑖′𝑗𝑡′

𝑡+𝜏𝑖𝑗+𝜎
𝑖𝑖′𝑗

−1

𝑡′=𝑡+𝜏𝑖𝑗𝑖′≠𝑖

≤ 𝑀(1 − 𝑋𝑖𝑗𝑡) ∀𝑖, 𝑗, 𝑡 (6.13)

Although no value for M was suggested, one that is obviously large enough is

𝑀𝑖𝑗 = ∑ ∑ 1

𝑡+𝜏𝑖𝑗+𝜎
𝑖𝑖′𝑗

−1

𝑡′=𝑡+𝜏𝑖𝑗𝑖′≠𝑖

= ∑ 𝜎𝑖𝑖′𝑗

𝑖′≠𝑖

 (6.14)

While smaller values of M can be found, we observed that the value of M does not make a significant

difference in the solution time.

Constraints (SH). Shah et al. (Shah et al., 1993) eliminated the big-M constraint by considering

pair of tasks:

𝑋𝑖𝑗𝑡 + 𝑋𝑖′𝑗𝑡′ ≤ 1 ∀𝑖, 𝑖′ ≠ 𝑖, 𝑗, 𝑡, 𝑡 − 𝜏𝑖′𝑗 − 𝜎𝑖′𝑖𝑗 < 𝑡′ ≤ 𝑡 − 𝜏𝑖′𝑗 (6.15)

Constraints (W). Finally, Wolsey (Wolsey, 1997) proposed the following constraints,

∑ 𝑋𝑖𝑗𝑡′

𝑡

𝑡′=𝑡−𝜏𝑖𝑗−𝜎𝑖𝑖′𝑗+1

+ ∑ 𝑋𝑖′𝑗𝑡′

𝑡

𝑡′=𝑡−𝜏𝑖′𝑗−𝜎𝑖′𝑖𝑗+1

≤ 1 ∀𝑖, 𝑖′ ≠ 𝑖, 𝑗, 𝑡 (6.16)

Constraints (6.16) include the binary variable for task 𝑖 for more than 𝜏𝑖𝑗 consecutive time points,

which prevents task 𝑖 from occurring back-to-back, so they are valid only when each task is

restricted to run once. In the chapter, we also consider problems where multiple executions of the

same task are allowed (in problems of parallel units with unequal capacities).

Three discrete-time formulations have appeared in the literature to enforce changeover times

without additional binary variables.

Velez presented 4 changeover formulations (Velez, 2014), classified based on:

(a) The number of tasks for which each changeover constraint is written: a single task (S) or a pair

of tasks (P);

162

(b) The number of time points for which each changeover constraint is written: all pairs of time

points within an interval depending on the processing and changeover times (I), a subset of

pairs of time points (II), or a single time point (III).

For instance, the three formulations presented previously can be classified accordingly:

constraints (K) are type (S)/(III); constraints (SH) are type (P)/(I); constraints (W) are type

(P)/(III). The 5 new formulations we present in §3.1-3.5 are named based on their classification:

(SI), (SII), (SIIT) (a tighter version of (SII)), (SIII), and (P)=(PI)=(PII)= (PIII).

The following sets are introduced,

(a) 𝐓𝑖𝑗𝑡
𝑃 = {𝑡′|𝑡 − 𝜏𝑖𝑗 + 1 ≤ 𝑡′ ≤ 𝑡}, referred to as the set of processing time points for i, j, t.

(b) 𝐓𝑖′𝑖𝑗𝑡
𝐶 = {𝑡′|𝑡 − 𝜏𝑖′𝑗 − 𝜎𝑖′𝑖𝑗 + 1 ≤ 𝑡′ ≤ 𝑡 − 𝜏𝑖′𝑗}, referred to as the set of changeover time points

from i’ to i for j, t.

Considering a given task i, time point t, and unit j, constraints (6.7) enforce 𝑋𝑖′𝑗𝑡′ = 0, for each

𝑖′ ∈ 𝐈, 𝑡′ ∈ 𝐓𝑖′𝑗𝑡
𝑃 , if 𝑋𝑖𝑗𝑡 = 1; while changeover constraints should enforce 𝑋𝑖′𝑗𝑡′ = 0, for 𝑖′ ∈ 𝐈\{𝑖},

𝑡′ ∈ 𝐓𝑖′𝑖𝑗𝑡
𝐶 , if 𝑋𝑖𝑗𝑡 = 1. Thus, variables 𝑋𝑖′𝑗𝑡′ with 𝑡′ ∈ 𝐓𝑖′𝑖𝑗𝑡

𝐶 should be included in at least one

changeover constraint. Including 𝑋𝑖′𝑗𝑡′ with 𝑡′ ∈ 𝐓𝑖′𝑗𝑡
𝑃 may tighten the changeover constraints, but it

is not necessary.

Constraints (SI). Constraints (SI) are written for a single task and unit and for pairs of time

points, as follows:

𝑋𝑖𝑗𝑡 + ∑ ∑ 𝑋𝑖′𝑗𝑡′′

min{𝑡′,𝑡−𝜏
𝑖′𝑗

}

𝑡′′=max{𝑡′,𝑡−𝜎𝑖′𝑖𝑗}−𝜏𝑖′𝑗+1𝑖′≠𝑖

≤ 1

∀𝑖, 𝑗, 𝑡, 𝑡 − max {min
𝑖′≠𝑖

𝜏𝑖′𝑗 , max
𝑖′≠𝑖

𝜎𝑖′𝑖𝑗} ≤ 𝑡′ ≤ 𝑡 − min
𝑖′≠𝑖

𝜏𝑖′𝑗

(6.17)

163

Constraints (SII). We use integer parameter 𝜈𝑖𝑗𝑛, where n indexes constraints (SII) and 𝐍𝑖𝑗 is the

set of indices n for which 𝜈𝑖𝑗𝑛 is defined:

𝑋𝑖𝑗𝑡 + ∑ ∑ 𝑋𝑖′𝑗𝑡′′

min{𝑡−𝜈𝑖𝑗𝑛,𝑡−𝜏
𝑖′𝑗

}

𝑡′′=max{𝑡−𝜈𝑖𝑗𝑛,𝑡−𝜎𝑖′𝑖𝑗}−𝜏𝑖′𝑗+1𝑖′≠𝑖

≤ 1 ∀𝑖, 𝑗, 𝑡, 𝑛 ∈ 𝐍𝑖𝑗 (6.18)

Parameter 𝜈𝑖𝑗𝑛 is defined as follows

𝜈𝑖𝑗1 = min
𝑖′≠𝑖

𝜏𝑖′𝑗 (6.19)

𝜈𝑖𝑗,𝑛+1 = 𝜈𝑖𝑗𝑛 + min
𝑖′:𝜈𝑖𝑗,𝑛<𝜎𝑖′𝑖𝑗

𝜏𝑖′𝑗 (6.20)

The largest index n for an (𝑖, 𝑗) pair satisfies that 𝜈𝑖𝑗𝑛 is greater than or equal to the changeover

from any task to 𝑖, i.e., 𝜈𝑖𝑗,|𝐍𝑖𝑗| ≥ max𝑖′≠𝑖 𝜎𝑖′𝑖𝑗.

Constraints (SIII). To write a constraint for a single time point, we sum constraints (SII) over n

to obtain a big-M constraint with |𝐍𝑖𝑗| as the big-M parameter,

∑ ∑ 𝑋𝑖′𝑗𝑡′

𝑡−𝜏
𝑖′𝑗

𝑡′=𝑡−𝜏𝑖′𝑗−𝜎𝑖′𝑖𝑗+1𝑖′≠𝑖

≤ |𝐍𝑖𝑗|(1 − 𝑋𝑖𝑗𝑡) ∀𝑖, 𝑗, 𝑡 (6.21)

Constraints (P). To write a constraint for a for a pair of tasks (𝑖, 𝑖′), we have

𝑋𝑖𝑗𝑡 + ∑ 𝑋𝑖′𝑗𝑡′′

𝑡−𝜏
𝑖′𝑗

𝑡′′=𝑡−𝜏𝑖′𝑗−𝜎𝑖′𝑖𝑗+1

≤ 1 ∀𝑖, 𝑖′ ≠ 𝑖, 𝑗, 𝑡 (6.22)

which is (PI), (PII), and (PIII) and will be referred to as constraints (P).

6.1.5. Remarks

The problem in §6.1.1 is a traditional scheduling problem which involves only sequencing and

timing decisions. In addition to sequencing and timing, the problem in §6.1.2 includes also task-unit

assignment decisions, and the problem in §6.1.3 includes also batching decisions. For the problems

164

in §6.1.1 and §6.1.2, each task is to be scheduled once, whereas in the problem of §6.1.3, the number

of times that a task is scheduled is determined by the optimization model. Discrete-time MIP

models can be applied to all of the aforementioned problem classes, while other methods are

limited in the types of problems they can address or the objectives they can handle.

Furthermore, discrete-time models can be easily extended to account for time-varying resource

availability and events during the execution of a task (e.g., intermediate material loading), and can

be used as a basis for many problems. For example, they can be extended to address problems in

production environments where batches can be split apart or mixed (Sundaramoorthy and

Maravelias, 2011b), problems with other types of constraints (e.g., limited utilities) (Zyngier and

Kelly, 2009; Velez and Maravelias, 2013), as well as problems with various objective functions

(Merchan et al., 2016). Thus, our choice to focus on discrete-time MIP formulations means that the

proposed changeover constraints will be applicable to a wide range of problems.

6.2. Facet-defining Constraints (SIIT)

Two modifications can be made to constraints (SI). First, many of the inequalities (SI) are

redundant, as 𝑡′ is written for each time point within {𝑡 − max(min𝑖′≠𝑖 𝜏𝑖′𝑗 , max𝑖′≠𝑖 𝜎𝑖′𝑖𝑗) , … , 𝑡 −

min𝑖′≠𝑖 𝜏𝑖′𝑗}. Second, for the remaining necessary constraints, more variables related to 𝑖 and 𝑖′ can

be added to the left hand side (LHS) so that the constraints are tightened. Based on these two

observations, we propose constraints (SIIT), which do not include redundant constraints, while

making each constraint as tight as possible. The general form is,

∑ 𝑋𝑖𝑗𝑡′

𝑡

𝑡′=𝑡−𝜏𝑖𝑗+1

+ ∑ ∑ 𝑋𝑖′𝑗𝑡′

𝑡−𝜔𝑏
𝑖𝑗𝑛𝑖′

𝑡′=𝑡−𝜔𝑎𝑖𝑗𝑛𝑖′𝑖′≠𝑖

≤ 1 ∀𝑖, 𝑗, 𝑡, 𝑛 ∈ 𝐍𝑖𝑗 (6.23)

where the first summation includes all variables corresponding to processing time points (𝑡′ ∈ 𝐓𝑖𝑗𝑡
𝑃)

for task 𝑖 , and the second term is a summation over 𝑖′ and 𝑡′ ∈ {𝑡 − 𝜔𝑎𝑖𝑗𝑛𝑖′ , … , 𝑡 − 𝜔𝑏𝑖𝑗𝑛𝑖′}

165

(parameters 𝜔𝑎𝑖𝑗𝑛𝑖′ and 𝜔𝑏𝑖𝑗𝑛𝑖′ will be defined later). Similar to (SII), we introduce |𝐍𝑖𝑗|

inequalities for every (𝑖, 𝑗, 𝑡), and each index 𝑛 ∈ 𝐍𝑖𝑗 is associated with an integer parameter 𝜇𝑖𝑗𝑛

(that may be different from the parameter 𝜈𝑖𝑗𝑛 used in (SII)). Parameter 𝜇𝑖𝑗𝑛 is the largest 𝜔𝑏𝑖𝑗𝑛𝑖′

over index 𝑖′ that appears in the second summation.

Similarly to (SII), 𝜇𝑖𝑗1 is set to the smallest processing time of any 𝑖′,

𝜇𝑖𝑗1 = min
𝑖′≠𝑖

𝜏𝑖′𝑗 (6.24)

The value of 𝜇𝑖𝑗,𝑛+1 is chosen according to (6.25), so that no variables corresponding to

changeover time points are excluded in (6.23).

𝜇𝑖𝑗,𝑛+1 = min {𝜇𝑖𝑗𝑛 + min
𝑖′:𝜇𝑖𝑗𝑛<𝜎𝑖′𝑖𝑗

𝜏𝑖′𝑗 , max
𝑖′≠𝑖

𝜎𝑖′𝑖𝑗} (6.25)

Before specifying 𝜔𝑎𝑖𝑗𝑛𝑖′ and 𝜔𝑏𝑖𝑗𝑛𝑖′ and thus completing constraints (6.23), we introduce two

disjoint task subsets: 𝐈𝐀𝑖𝑗𝑛 = {𝑖′|𝑖′ ≠ 𝑖, 𝜇𝑖𝑗𝑛 ≤ 𝜎𝑖′𝑖𝑗} and 𝐈𝐁𝑖𝑗𝑛 = {𝑖′|𝑖′ ≠ 𝑖, 𝜇𝑖𝑗𝑛 > 𝜎𝑖′𝑖𝑗}.

Parameters 𝜔𝑎𝑖𝑗𝑛𝑖′ and 𝜔𝑏𝑖𝑗𝑛𝑖′ depend on the subset task 𝑖′ belongs to, and are defined as

follows,

𝜔𝑎𝑖𝑗𝑛𝑖′ = {
𝜏𝑖′𝑗 + 𝜇𝑖𝑗𝑛 − 1, 𝑖′ ∈ 𝐈𝐀𝑖𝑗𝑛

𝜏𝑖′𝑗 + 𝜎𝑖′𝑖𝑗 − 1, 𝑖′ ∈ 𝐈𝐁𝑖𝑗𝑛

𝜔𝑏𝑖𝑗𝑛𝑖′ = {
𝜇𝑖𝑗𝑛, 𝑖′ ∈ 𝐈𝐀𝑖𝑗𝑛

max {𝜎𝑖′𝑖𝑗 , 𝜇𝑖𝑗𝑛 − min
𝑖′′∈𝐈𝐀𝑖𝑗𝑛

𝜎𝑖′′𝑖′𝑗 , max
𝑖′′∈𝐈𝐁𝑖𝑗𝑛\{𝑖′}

(𝜎𝑖′′𝑖𝑗 − 𝜎𝑖′′𝑖′𝑗)}, 𝑖′ ∈ 𝐈𝐁𝑖𝑗𝑛

(6.26)

The definitions in (6.26) are discussed next.

(a) If 𝑖′ ∈ 𝐈𝐀𝑖𝑗𝑛, there are 𝜏𝑖′𝑗 variables 𝑋𝑖′𝑗𝑡′ in (6.23), which is the maximum number of variables

to be included for a task; including more than 𝜏𝑖′𝑗 𝑖′-indexed variables will make the constraint

invalid, because it would cut off the solution in which task 𝑖′ is carried out back-to-back.

(b) If 𝑖′ ∈ 𝐈𝐁𝑖𝑗𝑛, the smallest index 𝑡′ for variables 𝑋𝑖′𝑗𝑡′ included in the constraint is the earliest

changeover time point (𝑡′ = 𝑡 − 𝜏𝑖′𝑗 − 𝜎𝑖′𝑖𝑗 + 1) and the largest 𝑡′ for included 𝑋𝑖′𝑗𝑡′ variables

166

must be one period before the smallest of the following three (so that the constraint does not

exclude any feasible sequences while remaining as tight as possible):

(b1) 𝑡′ which would lead to the inclusion of exactly 𝜏𝑖′𝑗 + 1 variables for task 𝑖′ (if 𝜔𝑏𝑖𝑗𝑛𝑖′ =

𝜎𝑖′𝑖𝑗);

(b2) 𝑡′ that would make (6.23) cut off the solution where 𝑖′′ ∈ 𝐈𝐀𝑖𝑗𝑛 takes place at 𝑡 − 𝜏𝑖′′𝑗 −

𝜇𝑖𝑗𝑛 + 1 and 𝑖′ takes place 𝜏𝑖′′𝑗 + 𝜎𝑖′′𝑖′𝑗 periods later (if 𝜔𝑏𝑖𝑗𝑛𝑖′ = 𝜇𝑖𝑗𝑛 − 𝜎𝑖′′𝑖′𝑗);

(b3) 𝑡′ that would make (6.23) cut off the solution where another 𝑖′′ ∈ 𝐈𝐁𝑖𝑗𝑛 takes place at

𝑡 − 𝜏𝑖′′𝑗 − 𝜎𝑖′′𝑖𝑗 + 1 and 𝑖′ takes place 𝜏𝑖′′𝑗 + 𝜎𝑖′′𝑖′𝑗 periods later (if 𝜔𝑏𝑖𝑗𝑛𝑖′ = 𝜎𝑖′′𝑖𝑗 −

𝜎𝑖′′𝑖′𝑗).

In Appendix, we include the proof of correctness of (SIIT), and the algorithm summarizing the

procedure for the calculation of 𝜔𝑎𝑖𝑗𝑛𝑖′ and 𝜔𝑏𝑖𝑗𝑛𝑖′ . Table 6.2 gives the data for the example in

Figure 6.1, with hollow points illustrating which variables are included in (SIIT). Figure 6.2

presents a simple example illustrating how constraints (SIIT) cut off fractional solutions that are

feasible for the LP-relaxation of other formulations.

Table 6.2. Data for the 4-task example.

 σi’i (i’ = left, i = top)

 τi T1 T2 T3 T4

T1 7 0 0 6 5

T2 4 1 0 3 1

T3 8 4 2 0 3

T4 6 2 2 2 0

167

Figure 6.1. Parameters and constraints (SIIT) for 𝑖 = T3, 𝑡 = 14, based on the data of Table 6.2.

Figure 6.2. Illustration of tightness of constraints (SIIT) for profit maximization. Two tasks, T1 (𝜏1 = 5) and
T2 (𝜏2 = 8), are to be scheduled on a single unit; with changeover times 𝜎T1,T2 = 3 and 𝜎T2,T1 = 2; the horizon

is 13 hours; and the profit from running T1 and T2 are 4 and 16, respectively. The LP-relaxation with
constraints (SIIT) yields the (optimal) integer solution, shown in (a). The solution of the LP-relaxation with all
other changeover constraints, shown in (b), is cut off by constraints (21) with 𝑖 = T1, 𝑡 = 8, 𝑛 = 1
(𝜔𝑎T1,1,T2 = 9, 𝜔𝑏T1,1,T2 = 2).

In Appendix, we include the proof of correctness of (SIIT), and the algorithm summarizing the

procedure for the calculation of 𝜔𝑎𝑖𝑗𝑛𝑖′ and 𝜔𝑏𝑖𝑗𝑛𝑖′ . Table 6.2 gives the data for the example in

Figure 6.1, with hollow points illustrating which variables are included in (SIIT). Figure 6.2

presents a simple example illustrating how constraints (SIIT) cut off fractional solutions that are

feasible for the LP-relaxation of other formulations.

Proposition 6.1 below establishes that (SIIT) are facet-defining for the problem containing

constraints (6.7) and (6.23) (proof in Appendix).

Proposition 6.1: Let 𝐻 = {𝑋 ∈ {0,1}𝑇∙|𝐈|∙|𝐉|: subject to constraints (6.7) (6.23)}. Then each inequality

in (6.23) is facet-defining for the convex hull of H, conv(H).

6.3. Relative Tightness of Formulations

168

We evaluate the relative tightness of the new formulations and the three from the literature. To

show that one formulation is at least as tight as another, we prove that any point that is feasible for

the LP-relaxation of the tighter formulation is also feasible for the other formulation (see Velez et

al., 2017). To show a formulation is tighter, we find a point for a specific instance that is feasible for

the less tight formulation, but not for the tighter one. In some cases, neither formulation is tighter,

so we find a point that satisfies either one but not the other.

The binary variables included in (K) are for time points after t, while all other changeover

constraints include binary variables before t. For consistency, we will use the backwards version of

(K), henceforth referred to as (KB), where we use M that is the forward analog of constraints (6.13):

∑ ∑ 𝑋𝑖′𝑗𝑡′

𝑡−𝜏
𝑖′𝑗

𝑡′=𝑡−𝜏𝑖′𝑗−𝜎𝑖′𝑖𝑗+1𝑖′≠𝑖

≤ (∑ 𝜎𝑖′𝑖𝑗

𝑖′≠𝑖

) ∙ (1 − 𝑋𝑖𝑗𝑡) ∀𝑖, 𝑗, 𝑡 (6.27)

Figure 6.3. Relative tightness of all formulations.

Figure 6.3 summarizes the relative tightness of all formulations. White indicates that the

formulation on the left is tighter than the formulation on the top; gray indicates the opposite. A

dotted block indicates that neither formulation is tighter. Constraints (W) are the tightest among

the pairwise changeover constraints and (SI) and (SIIT) are the tightest among the single-task

169

changeover constraints. In most cases neither the pairwise nor the single-task constraints are

tighter. Single-task constraints have the advantage of including binary variables for many different

tasks in a single constraint. Pairwise constraints have the advantage that they can include binary

variables for more time points for a single task in a single constraint.

6.4. Computational Study

We tested several instances of the three problems we introduced in §6.1: the single unit

process, the parallel unit process, and the parallel unit process with unequal capacities. Different

objective functions were also studied: tardiness minimization and cost minimization are relatively

easier problems, so we considered instances with 5, 10, 15, 20, 25 tasks on 1, 3, 5 units. Makespan

minimization is harder, so instances with 7, 8, 9, 10, 11 tasks on 1, 3, 5 units were studied. We used

a step length of δ = 1 hour for all instances. Processing times were randomly selected from 3-9

hours (uniform distribution) and rounded up so that they are multiples of the step size, δ, and costs

for each task were randomly selected from 1-10 (uniform distribution). For the tardiness

minimization instances, due times were randomly selected between zero and the horizon length.

For the cost minimization problem with deadlines, deadlines were generated based on the solution

of tardiness minimization: if a task in the best solution is finished by the due time, then the due time

of this task was used as its deadline; otherwise, we randomly selected the deadline between the

finish time of the task and the horizon length. This adjustment was necessary to ensure that the cost

minimization instances, with strict deadlines, were feasible.

Changeover times were selected randomly so that they were less than some factor, ε, times the

minimum processing time of the two tasks, 𝜎𝑖′𝑖𝑗 ∈ [0, 𝜀 ∙ min{𝜏𝑖𝑗 , 𝜏𝑖′𝑗}]. These changeover times may

violate the triangle inequality from Assumption 2 (§6.1.4). If 𝜎𝑖𝑖′′𝑗 > 𝜎𝑖𝑖′𝑗 + 𝜏𝑖′𝑗 + 𝜎𝑖′𝑖′′𝑗 , then we

chose a new value 𝜎𝑖𝑖′′𝑗 ∈ [0, 𝜎𝑖𝑖′𝑗 + 𝜏𝑖′𝑗 + 𝜎𝑖′𝑖′′𝑗]. We updated the changeover times until all times

satisfy the triangular inequality and rounded the changeover times so that they were multiples of

170

the step size, δ. We considered ε = 0.25, 0.5, 0.75 and 1. For a given number of tasks and units, and a

given factor, 5 instances were generated. Thus, for makespan and tardiness minimization, we tested

500 instances, and for cost minimization 400 instances.

In this section, we refer to a specific model as MX
Y, where X denotes the changeover constraints,

i.e., X∈{K, SH, W, SI, SII, SIII, SIIT, P}; and Y denotes the objective function, which can be MS

(makespan minimization), TRD (tardiness minimization), and CST (cost minimization). We also use

MS-VI to denote makespan minimization with valid inequalities (6.28).

𝑀𝑆 ≥ ∑ 𝜏𝑖𝑗𝑋𝑖𝑗𝑡

𝑖,𝑡

+ ∑ (min
𝑖≠𝑖′

𝜎𝑖′𝑖𝑗) 𝑋𝑖′𝑗𝑡

𝑖′,𝑡

− max
𝑖′

(min
𝑖≠𝑖′

𝜎𝑖′𝑖𝑗) ∀𝑗 (6.28)

For example, MSI
MS is the model that includes constraints (SI) for makespan minimization. We use

MX to denote all models with constraints X, regardless of the objective function; and MY to denote

all models with objective function Y, regardless of changeover constraints.

All the instances were solved using CPLEX 12.6.3 via GAMS 24.7.1 on a cluster with 21 Intel

Xeon (E5520) processors at 2.27 GHz and 16 GB of RAM running on CentOS Linux 7, with a 1800-

second resource limit. To better assess the effectiveness of the formulations we turned off the

aggregator, presolver and presolver for initial relaxation by setting CPLEX options aggind, preind,

and relaxpreind to zero. This set of CPLEX options is referred to as C1. Using CPLEX default settings,

referred to as C2, requires less time, but leads to similar conclusions, which are briefly discussed in

§6.4.

Finally, for constraints (K), we used a tight big-M, calculated using expression (6.29), though the

performance is similar to the performance using M defined in expression (6.14).

𝑀𝑖𝑗 = ∑ ⌈
𝜎𝑖𝑖′𝑗

𝜏𝑖′𝑗
⌉

𝑖′≠𝑖

 (6.29)

6.4.1. Single Unit

171

The time horizon, η, is selected to ensure that there is enough time for all tasks to be completed.

The calculation is based on the number of tasks and the longest processing time.

𝜂 = (max
𝑖

𝜏𝑖) ∙ (2|𝐈| − 1) (6.30)

The second term in the product is the number of tasks plus changeovers that take place. We

multiplied this term by the maximum processing time.

The performance charts in Figure 6.4 show the fraction of instances that are solved by each

model within the given amount of time (normalized to the fastest model for each instance). Figure

6.4(a) and 6.4(c) show the results for makespan minimization and tardiness minimization,

respectively, using different changeover constraints (SI), (SII), (SIII), (P), (SIIT), (K), (SH), (W). We

observe that although MW and MSIIT are the tightest models, they are also the slowest. Also, MSIII is

one of the fastest models although it is among the weakest. Models MK, MSI, MSII, MSIII, whose

changeover constraints are all written in terms of a single task, are much faster than MP, MSH, MW,

whose changeover constraints are written in terms of pairs of tasks. Figure 6.4(b) shows the results

for makespan minimization with the four fastest changeover constraints, (SIII), (SII), (SI) and (K),

and with valid inequalities (6.28) included. Adding (6.28) does not lead to computational

enhancements for single-unit problems. For makespan minimization, MSII
MS and MSIII

MS are the fastest

models; while for tardiness minimization, MK
TRD is the fastest.

Figure 6.4. Performance charts of different models for single unit instances using C1 set of options.Models
with the same objective but different changeover constraints are compared in each sub-plot: (a) makespan
minimization; (b) makespan minimization with valid inequalities (6.28); and (c) tardiness minimization. The
changeover constraints are shown in the legends.

172

All models have the same number of variables. Figure 6.5, in logarithmic scale, summarizes the

data for the number of constraints, nonzeros, and nodes in the branch-and-bound tree. The models

with pairwise changeover constraints, MP, MSH, MW, have about an order of magnitude more

constraints than the models with single-task constraints, potentially explaining why they are

slower. The tightest models, MW and MSIIT, have the most non-zeros, the number of which is more

than 5 times greater than that of the fastest model MSIII. The changeover constraints account for

more than 99% of the total constraints for models with pairwise changeover constraints, and for

91% - 95% of the constraints for the models with single-task constraints. With CPLEX setting C1,

we find that MSI leads to the smallest branch-and-bound tree, while MK being the least tight model

has the largest tree, with an order of magnitude more nodes searched compared to MSI. If we also

turn off the cut generation process in CPLEX, then the number of nodes increases for all models;

more importantly, we find that the number of nodes for other models is more than 5 times larger

than that for MSIIT, which is expected from the theoretical tightness.

Figure 6.5. Average over all single unit instances of the number of constraints, nonzeros, and branch-and-
bound nodes. None refers to the model without changeovers.

Table 6.3 presents the average improvement of the integrality gap with respect to the gap of

MK, which has the largest gap (the integrality gaps of any two models can be compared using the

relative gap with respect to MK). Based on these results, models MSIIT and MW have the greatest

integrality gap improvement, followed by MSI, MSII, MP, MSIII, and then by MSH, an observation that

is in agreement with the theoretical study in the previous section. Note that the gap for tardiness

173

minimization varies across changeover constraints much more than that for makespan

minimization.

Table 6.3. Single-unit problem: average integrality gap improvement with respect to the gap of MK.

Problem K (ref) SI SII SIII SIIT P SH W

Makespan 0.94 0% 0% 0% 0.04% 0% 0% 0%

Tardiness 0.28 12.10% 12.0.% 10.42% 36.14% 11.24% 9.90% 33.76%

6.4.2. Parallel Units

The time horizon was selected based on the number of tasks, the number of units and the

longest processing time as follows,

𝜂 = (max
𝑖,𝑗

𝜏𝑖𝑗) ∙ ⌊
2|𝐈| − 1

|𝐉|
⌋ (6.31)

The term in the round-down operator is the maximum number of tasks plus changeovers that

we would expect to take place in a single unit; note that we only need the horizon to be long enough

to start the last task, so we rounded down. We multiplied this term by the maximum processing

time of any task.

Figure 6.6 shows performance charts for makespan minimization with and without valid

inequalities (6.28), for tardiness minimization, and for cost minimization. As in the single-unit

problems (§6.4.1), we see that the models with single-task changeover constraints are faster. MSII
MS

is the fastest among MMS. We tested the models with the four fastest changeover constraints

together with valid inequalities (6.28), and see improvements as expected. With valid inequalities

(6.28), MSII
MS−VI, MSIII

MS−VI, MK
MS−VI are the fastest among MMS−VI, and they are faster than MMS. For

tardiness minimization, MK
TRD is the fastest; while for cost minimization, MSII

CST and MSIII
CST are the

fastest. Table 6.4 shows the average integrality gap improvement for different models with respect

to MK. Similar to the results in §6.1.4, MSIIT, has the greatest integrality gap reduction.

174

Figure 6.6. Performance charts of different models for instances with parallel units using C1 set of options.

Table 6.4. Parallel units problem: average integrality gap improvement with respect to the gap of MK.

Problem K(ref) SI SII SIII SIIT P SH W

Makespan 0.91 0% 0% 0% 0.06% 0% 0% 0.03%

Tardiness 0.10 12.03% 12.01% 11.23% 24.77% 11.53% 10.32% 19.89%

Cost 0.04 29.78% 29.78% 29.78% 36.72% 29.51% 29.13% 36.42%

6.4.3. Parallel Units with Unequal Capacities

Unit capacities were randomly selected with a uniform distribution from 10-30 kg, and

customer demands were randomly selected from 20-40 kg. The time horizon for the makespan

minimization instances was chosen as

𝜂 = {max
𝑖,𝑗

[𝜏𝑖𝑗⌈𝜉𝑖/𝛽𝑗⌉]} ∙ ⌊
2|𝐈| − 1

|𝐉|
⌋ (6.32)

The first term is the maximum total time any task needs to run for to meet demand, which we found

by multiplying the processing time by the number of runs required in each unit and taking the

175

maximum over all units. The second term is the number of tasks plus changeovers expected on a

single unit.

Figure 6.7. Performance charts of different models for unequal capacity parallel units instances using C1.

Figure 6.7 shows the performance charts. Constraints (W) are not tested because they are not

applicable when a task can be executed multiple times. For makespan minimization, MSII
MS, MSIII

MS ,

MK
MS are the fastest, while MSIIT

MS and the two models with pairwise changeover constraints MP
MS and

MSH
MS are the slowest. Same as in the parallel units problems (§6.4.2), adding valid inequalites (6.28)

significantly improves the solution times for makespan minimization. For tardiness minimization,

MSIII
TRD and MK

TRD are the fastest, while for cost minimization, MSII
CST and MSIII

CST are the most fastest.

Table 6.5 compares the improvement of integrality gaps of the models.

Table 6.5. Parallel units with unequal capacities: average integrality gap improvement with respect to MK.
Problem K(ref) SI SII SIII SIIT P SH
Makespan 0.94 0% 0% 0% 0.04% 0% 0%
Tardiness 0.35 0.94% 0.94% 0.87% 2.69% 0.82% 0.80%
Cost 0.26 3.43% 3.43% 3.21% 5.18% 3.19% 3.10%

176

6.4.4. Additional Testing

We also studied the performance of all models using CPLEX default settings (C2). The relative

performance of the different changeover constraints remains the same, though solution times are

shorter. Table 6.6 summarizes how valid inequalities (6.28) affect the solution time for makespan

minimization problems, using C1 or C2. For the single unit problem, the average solution time using

valid inequalities (6.28) and C1 is 1%-106% higher, though it decreases by 36%-48% when C2

settings are used. For the parallel units problem, the average solution time using valid inequalities

(6.28) decreases by 1%-29% when C1 is used and by 39%-48% when C2 is used. For the instances

with unequal capacity units, solution times using valid inequalities (6.28) decrease by 18%-33%

(10%-13%) when using C1 (C2). We also tested all instances with both preprocessing and cut

generation turned off. The computational times in this case increase significantly: only 63% of the

instances were solved to optimality within 3600 seconds.

Table 6.6. Solution times for makespan minimization problems (different formulations and valid
inequalities).

Problem CPLEX K SI SII SIII K(36) SI(36) SII(36) SIII(36)

Single unit
C1 1.00 0.49 0.48 0.57 1.01 1.01 0.96 0.93

C2 0.31 0.33 0.32 0.34 0.20 0.17 0.16 0.19

Parallel units
C1 1.00 0.94 0.94 0.99 0.71 0.93 0.93 0.96
C2 0.55 0.79 0.77 0.73 0.34 0.41 0.41 0.40

Parallel units with
unequal capacities

C1 1.00 1.12 1.00 0.99 0.82 0.75 0.73 0.71

C2 0.31 0.34 0.34 0.35 0.27 0.31 0.31 0.30

Note. The solution time of each instance is normalized with respect to the solution time for 𝑀𝐾
𝑀𝑆 using CPLEX setting C1. We

use the average normalized computational time over all instances for the same type of problem.

6.5. Conclusions

In this chapter, we proposed one new formulation for sequence-dependent changeover times in

discrete-time MIP scheduling models, and compared them with previous formulations both

theoretically and computationally. In terms of tightness, (SI), (SII), (SIIT) and (P) are tighter than

the two literature constraints, (SH) and (K). Among the constraints written for a single task,

constraints (K) are the weakest, followed by (SIII) and (SII); and (SI) and (SIIT) are the tightest.

Among the constraints written for pairs of tasks, constraints (W) are the tightest, and (SH) are the

177

weakest. Constraints (W), however, cannot be applied to problems in which a task can be executed

more than once. In terms of computational effectiveness using CPLEX, although models with

constraints (K), (SIII), (SII), and (SI) have similar solution times, models with constraints (SII) and

(SIII) are typically the fastest. We observed that tighter formulations did not necessarily lead to

faster computational times, as tighter formulations had typically more constraints and/or non-

zeros, and took longer time to solve the LP relaxations. Also, models with changeover constraints

written for a single task were faster than those written for pairs of tasks. We observe similar

computational results using Gurobi.

The constraints presented in this chapter can be added to any discrete-time MIP scheduling

formulation, including models developed to address problems in complex production environments

(e.g., environments with batch mixing, splitting and recycling) as well as problems with a range of

processing characteristics (e.g., general resource constraints, time-varying resource availability and

cost). Thus, the constraints presented herein are relevant for many real-world problems.

6.6. Notation

Indices/Sets

𝑖 ∈ 𝐈 Tasks (jobs)

𝑗 ∈ 𝐉 Units (machines)

𝑡 ∈ 𝐓 Time points/periods

𝑛 ∈ 𝐍 Index used to select times points when a constraint is written

Subsets

𝐈𝑗 Tasks that can be processed in unit j

𝐉𝑖 Units that can process task 𝑖

𝐍𝑖𝑗 Indices n for which 𝜈𝑖𝑗𝑛 and 𝜇𝑖𝑗𝑛 are defined

𝐓𝑖𝑗𝑡
𝑃 = {𝑡′|𝑡 − 𝜏𝑖𝑗 + 1 ≤ 𝑡′ ≤ 𝑡}, for given (𝑖, 𝑗, 𝑡)

𝐓𝑖′𝑖𝑗𝑡
𝐶 = {𝑡′|𝑡 − 𝜏𝑖′𝑗 − 𝜎𝑖′𝑖𝑗 + 1 ≤ 𝑡′ ≤ 𝑡 − 𝜏𝑖′𝑗}, for given (𝑖, 𝑖′, 𝑗, 𝑡)

178

Parameters

𝛼𝑖𝑗 Cost to run task 𝑖 in unit j

𝛽𝑗 Capacity of unit j

δ Time step

ε Factor used to determine the maximum changeover length

η Time horizon

𝜈𝑖𝑗𝑛/𝜇𝑖𝑗𝑛 Parameter to select the time points for which (SII)/(SIIT) is written for task 𝑖 and

unit j

𝜉𝑗 Demand for the output of task 𝑖

𝜎𝑖𝑖′𝑗 Changeover time between task 𝑖 and task 𝑖′ on unit j

𝜏𝑖𝑗 Fixed processing time for task 𝑖 in unit j

𝜙𝑖/�̅�𝑖 Due time/dealine of task 𝑖

𝜔𝑎𝑖𝑗𝑛𝑖′/𝜔𝑏𝑖𝑗𝑛𝑖′ Parameters to define the summation over 𝑖′ for given (𝑖, 𝑗, 𝑛) in (SIIT)

Binary Variables

𝑋𝑖𝑗𝑡 = 1 if and only if task 𝑖 starts on unit j at time point t

Continuous Nonnegative Variables

𝐶𝑆𝑇 Total cost

𝑀𝑆 Makespan

𝑇𝑅𝐷𝑖 Tardiness for task 𝑖

TRD Total tardiness

179

Chapter 7

Conclusions and Recommendations

7.1. Concluding Remarks

In this thesis, we studied inventory routing problem from different aspects. MIP models

considering different constraints were proposed, and solution methods were developed in order to

solve realistic instances in a timely fashion. We evaluated different policies for reoptimizing a

maritime IRP under uncertainty. Furthermore, we explored two research topics related to IRP.

First, we proposed MIP models that can account for a wide range of constraints, which are

necessary for obtaining an implementable solution. The models are based on a discrete-time

approach and time-expanded network representation. The complex constraints include maximum

daily working and driving time, driver resting and checking-in/out, time varying consumption rate,

and multiple access windows. However, the proposed model leads to prohibitively long solution

time for larger instances. A network with more than eight customers cannot be solved in a relistic

time frame (less than an hour).

Second, we developed solution methods, which lead to solutions of high quality obtained in a

reasonable time. A preprocessing algorithm reduces the nodes and the arcs in the distribution

network, based on the current inventory and forecast consumption profile. After preprocessing,

only the customers with demands that should be fulfilled in the planning horizon and their nearby

customers are included. A decomposition algorithm iteratively solves an upper level vehicle routing

subproblem and a lower level detailed scheduling subproblem. In the upper level, a MIP model is

solved to select the optimal routes and the corresponding trucks to carry out the routes, and the

distribution cost is minimized. In the lower level, drivers are explicitly modeled, and a continuous-

time approach is used to obtain a detailed schedule, based on the upper level decisions. Different

180

options for running the iterative algorithm were presented. Using the proposed algorithm,

instances with distribution networks including up to 155 customers (34 customers after

preprocessing) were solved within half an hour.

Third, we developed a framework for the reoptimization of maritime IRP under uncertainty,

based on MIP models and stochastic simulations. The MIP model is formulated on a discrete-time

approach, and considers vessels in long- and short-term renting modes, and owned and third-party

production nodes. The stochastic simulations consider uncertainty in vessel availability, trip delays,

production/consumption variations, and pick-up windows. We showed that even when no

uncertainty is incorporated, the closed-loop solution (i.e., the implemented solution in a rolling

horizon manner) is very different from the open-loop solution (i.e., the initial solution obtained

from the optimization model). When uncertainty is incorporated, the closed-loop cost increases by

30%. We also identified policies which lead to high quality closed-loop solutions.

Fourth, we developed novel terminal constraints for online scheduling. Different network

structures were considered, including multi-stage single-product, single-stage multi-product, and

multi-stage multi-product. The proposed terminal constraints can prevent stock out, as well as save

inventory holding cost, compared to (1) the model without any terminal constraints and (2) the

model using a traditional threshold approach. Furthermore, for two types of networks, we proved

that the terminal constraints can lead to recursive feasibility.

Finally, we proposed one new formulation for modeling sequence dependent changeover in

scheduling problems, and we proved that the proposed formulation is facet-defining for a certain

problem. Moreover, we compared the proposed formulation with seven formulations that were

previously developed, both theoretically and computationally. Interestingly, the tighter

formulations can lead to longer solution times, because the solution time of their LP relaxations is

longer.

181

7.2. Future Research Directions

First, we have made certain assumptions when developing the IRP models and solution

methods. It will be interesting to see how one can modify the models and solution methods if the

assumptions are not satisfied.

(a) We assumed that drivers are dedicated to products, so that we can solve the distribution

problems of each product independently. However, drivers can be shared among products in

reality. To consider this, the distribution of different products should be determined

simultaneously, which will lead to very large models. Therefore, one more layer might be

needed in the solution method, which decides the driver assignment to different products.

(b) We assumed that there is no limit on the amount of products at the plant. However, this

assumption might not be satisfied, because the production scheduling and IRP are not entirely

decoupled problems. To consider the production schedules, we may need to develop and solve a

MIP model in the dynamic network reduction phase (for a longer horizon) to decide the

customers to visit (in a relatively short horizon).

(c) We assumed that there is only one plant in the supply chain. For the supply chains including

multiple plants, the MIP model should be modified, to consider that a route can start from one

plant but end at another.

Second, we can further study how reoptimization should be conducted for the vehicle-based

IRP.

(a) In the dynamic network reduction algorithm, we used the safety stock level as a terminal

constraint to decide the minimum demand in the planning horizon. However, whether the

safety stock would be the “optimal” terminal constraint for reoptimization is unknown.

(b) As shown in Chapter 4 for MIRP, the closed-loop solution might be very different from the open-

loop solution, and one can expect that this is also true for vehicle-based IRP. Therefore, how to

182

obtain high-quality closed-loop solution is an open question. Possible directions include the use

of certain policies and the modification of objective function to reflect the long-term effect.

Finally, there are a few interesting research extensions related to the terminal constraints and

changeovers.

(a) For the terminal constraints we proposed in Chapter 5, three types of network structures were

studied. It would be interesting to find out how to write terminal constraints for more complex

networks, which include mixing or recycling operations.

(b) In Chapter 6, we assumed that there is no cost associated with changeovers. Therefore, we can

further study what would be a good formulation when changeover cost should be considered.

183

Appendices

A. Proof of Proposition 5.1

Proposition 5.1: Let 𝐿𝑚𝑡(𝑆1) and 𝑊𝑖𝑗𝑡(𝑆1) be the values from a feasible solution, S1, of model

MF. If model MF has a feasible solution, S2, when using

𝑆𝑚 = 𝐿𝑚,𝑇+1(𝑆1) + 𝛿𝑚 + ∑ 𝛽𝑖𝑗𝑊𝑖𝑗,𝑇(𝑆1)𝑖∈𝐈𝑚
− ,𝑗∈𝐉𝑖

, then for any 1 < 𝜎 ≤ 𝑇 + 1, using 𝑆𝑚 = 𝐿𝑚,𝜎(𝑆1) +

𝛿𝑚 + ∑ 𝛽𝑖𝑗𝑊𝑖𝑗,𝜎−1(𝑆1)𝑖∈𝐈𝑚
− ,𝑗∈𝐉𝑖

, model MF also has a feasible solution, S3.

Proof: Given solution S1 and S2, we can construct a schedule of time {0, … ,2𝑇}, denoted by

inventory level variable 𝐿𝑚𝑡(2𝑇) and task start variable 𝑊𝑖𝑗𝑡(2𝑇). We show that based on this

schedule, we can find a feasible solution S3.

We use 𝐿𝑚𝑡(𝑆1)/𝐿𝑚𝑡(𝑆2) and 𝑊𝑖𝑗𝑡(𝑆1)/𝑊𝑖𝑗𝑡(𝑆2) to denote the variable values of solution

S1/S2. Since 𝑆𝑚 = 𝐿𝑚,𝑇+1(𝑆1) + 𝛿𝑚 + ∑ 𝛽𝑖𝑗𝑊𝑖𝑗,𝑇(𝑆1)𝑖∈𝐈𝑚
− ,𝑗∈𝐉𝑖

 for solution S2, we can construct the

schedule of {0, … ,2𝑇} as follows:

𝐿𝑚𝑡(2𝑇) = 𝐿𝑚𝑡(𝑆1) ∀𝑚, 𝑡 ≤ 𝑇

𝐿𝑚𝑡(2𝑇) = 𝐿𝑚,𝑡−𝑇(𝑆2) ∀𝑚, 𝑇 < 𝑡 ≤ 2𝑇

𝑊𝑖𝑗𝑡(2𝑇) = 𝑊𝑖𝑗𝑡(𝑆1) ∀𝑖, 𝑗, 𝑡 ≤ 𝑇 − 𝜏𝑖𝑗

𝑊𝑖𝑗𝑡(2𝑇) = 0 ∀𝑖, 𝑗, 𝑇 − 𝜏𝑖𝑗 + 1 ≤ 𝑡 ≤ 𝑇 − 1

𝑊𝑖𝑗𝑡(2𝑇) = 𝑊𝑖𝑗,𝑡−𝑇(𝑆2) ∀𝑖, 𝑗, 𝑇 ≤ 𝑡 ≤ 2𝑇

These variables 𝐿𝑚𝑡(2𝑇) and 𝑊𝑖𝑗𝑡(2𝑇) satisfy all constraints (5.1b)-(5.1d) after modifying the time

domain of the constraints to 0 < 𝑡 ≤ 2𝑇.

Thus, for any 1 < 𝜎 ≤ 𝑇 + 1, when 𝑆𝑚 = 𝐿𝑚,𝜎(𝑆1) + 𝛿𝑚 + ∑ 𝛽𝑖𝑗𝑊𝑖𝑗,𝜎−1(𝑆1)𝑖∈𝐈𝑚
− ,𝑗∈𝐉𝑖

, we can

construct a feasible solution, S3, for model MF, whose variables are given as follows,

𝐿𝑚𝑡(𝑆3) = 𝐿𝑚,𝑡+𝜎−1(2𝑇) ∀𝑚, 0 < 𝑡 ≤ 𝑇

𝑊𝑖𝑗𝑡(𝑆3) = 𝑊𝑖𝑗,𝑡+𝜎−1(2𝑇) ∀𝑖, 𝑗, 0 ≤ 𝑡 ≤ 𝑇

184

Since constraints (5.1b)-(5.1d) are satisfied for 0 < 𝑡 ≤ 2𝑇, S3 is a feasible solution for MF. ∎

185

B. Proof of Proposition 5.2

Proposition 5.2: For multi-stage single-product problems, model MF is always feasible regardless

of the horizon length, if initial inventory levels 𝑆𝑘 satisfy constraints (5.3).

Proof: Based on the assumption that model MC is feasible, we know that 𝛽𝑘 ≥ 𝜏𝑘𝛿, for every

stage k. We use 𝑆𝑘(𝑡) ∈ ℝ+ to denote the inventory level of the material that has been produced in

stage k at time t, without considering the consumption of the final product. We use 𝑆𝑘
+(𝑡) to denote

the material that is being produced in stage k at time t; it can only be 0 or 𝛽𝑘. Because there is no

consumption of the product considered in 𝑆𝑘(𝑡), the following inequalities (B1) are obvious,

∑ 𝑆𝑘′(𝑡′)

|𝐊|

𝑘′=𝑘

+ ∑ 𝑆𝑘′
+ (𝑡′)

|𝐊|

𝑘′=𝑘+1

≥ ∑ 𝑆𝑘′(𝑡)

|𝐊|

𝑘′=𝑘

+ ∑ 𝑆𝑘′
+ (𝑡)

|𝐊|

𝑘′=𝑘+1

 ∀𝑘, 𝑡, 𝑡′ > 𝑡 (B1)

We show that with constraints (5.3), there exists a schedule satisfying 𝑆|𝐊|(𝑡) ≥ 𝑡𝛿 for any 𝑡 ∈

ℕ; based on this schedule, we can construct a feasible solution for model MF, and therefore prove

Proposition 5.2.

First, we prove the following lemma by mathematical induction.

Lemma B1: If constraints (5.3) are satisfied, then there exists a schedule satisfying inequalities

(B2) below.

∑ 𝑆𝑘′(𝑡)

|𝐊|

𝑘′=𝑘

+ ∑ 𝑆𝑘′
+ (𝑡)

|𝐊|

𝑘′=𝑘+1

≥ 𝑡𝛿 + (∑ 𝜏𝑘′

|𝐊|

𝑘′=𝑘+1

) ∙ 𝛿 + ∑ 𝛽𝑘′

|𝐊|

𝑘′=𝑘+1

 ∀𝑘, 𝑡 (B2)

When 𝑘 = 1, we know that if the task in stage 1 keeps running, then the total inventory levels of

all stages (without consuming the product) is greater than the initial value from the inequality of

k=1 of (5.3), plus the production in stage 1, as follows,

∑ 𝑆𝑘′(𝑡)

|𝐊|

𝑘′=1

+ ∑ 𝑆𝑘′
+ (𝑡)

|𝐊|

𝑘′=2

≥ (∑ 𝜏𝑘′

|𝐊|

𝑘′=1

) ∙ 𝛿 + ∑ 𝛽𝑘′

|𝐊|

𝑘′=2

+ ⌊
𝑡

𝜏1
⌋ 𝛽1 ∀𝑡

186

⇒ ∑ 𝑆𝑘′(𝑡)

|𝐊|

𝑘′=1

+ ∑ 𝑆𝑘′
+ (𝑡)

|𝐊|

𝑘′=2

≥ (∑ 𝜏𝑘′

|𝐊|

𝑘′=1

) ∙ 𝛿 + ∑ 𝛽𝑘′

|𝐊|

𝑘′=2

+ (
𝑡

𝜏1
− 1) 𝛽1 ∀𝑡 (B3)

Since 𝛽1 ≥ 𝜏1𝛿, we have

∑ 𝑆𝑘′(𝑡)

|𝐊|

𝑘′=1

+ ∑ 𝑆𝑘′
+ (𝑡)

|𝐊|

𝑘′=2

≥ (∑ 𝜏𝑘′

|𝐊|

𝑘′=1

) ∙ 𝛿 + ∑ 𝛽𝑘′

|𝐊|

𝑘′=2

+ (
𝑡

𝜏1
− 1) 𝜏1𝛿 ∀𝑡

⇒ ∑ 𝑆𝑘′(𝑡)

|𝐊|

𝑘′=1

+ ∑ 𝑆𝑘′
+ (𝑡)

|𝐊|

𝑘′=2

≥ (∑ 𝜏𝑘′

|𝐊|

𝑘′=1

) ∙ 𝛿 + ∑ 𝛽𝑘′

|𝐊|

𝑘′=2

+ (𝑡 − 𝜏1)𝛿 ∀𝑡

⇒ ∑ 𝑆𝑘′(𝑡)

|𝐊|

𝑘′=1

+ ∑ 𝑆𝑘′
+ (𝑡)

|𝐊|

𝑘′=2

≥ 𝑡𝛿 + (∑ 𝜏𝑘′

|𝐊|

𝑘′=2

) ∙ 𝛿 + ∑ 𝛽𝑘′

|𝐊|

𝑘′=2

 (B4)

Therefore, (B2) of 𝑘 = 1 is satisfied.

Now, assuming (B2) of 𝑘 = 𝑘1 is satisfied, we show that (B2) of 𝑘 = 𝑘1 + 1 is also satisfied; i.e.,

we prove that if (B5) below is satisfied, (B6) is also satisfied.

∑ 𝑆𝑘′(𝑡)

|𝐊|

𝑘′=𝑘1

+ ∑ 𝑆𝑘′
+ (𝑡)

|𝐊|

𝑘′=𝑘1+1

≥ 𝑡𝛿 + (∑ 𝜏𝑘′

|𝐊|

𝑘′=𝑘1+1

) ∙ 𝛿 + ∑ 𝛽𝑘′

|𝐊|

𝑘′=𝑘1+1

 (B5)

∑ 𝑆𝑘′(𝑡)

|𝐊|

𝑘′=𝑘1+1

+ ∑ 𝑆𝑘′
+ (𝑡)

|𝐊|

𝑘′=𝑘1+2

≥ 𝑡𝛿 + (∑ 𝜏𝑘′

|𝐊|

𝑘′=𝑘1+2

) ∙ 𝛿 + ∑ 𝛽𝑘′

|𝐊|

𝑘′=𝑘1+2

 (B6)

Apparently, if at t inventory levels satisfy (B7) below, (B6) is also satisfied, since each batch

takes at least one period. We can see from (5.3) that (B7) is satisfied for 𝑡 = 0.

∑ 𝑆𝑘′(𝑡)

|𝐊|

𝑘′=𝑘1+1

+ ∑ 𝑆𝑘′
+ (𝑡)

|𝐊|

𝑘′=𝑘1+2

≥ (𝑡 − 1)𝛿 + (∑ 𝜏𝑘′

|𝐊|

𝑘′=𝑘1+1

) ∙ 𝛿 + ∑ 𝛽𝑘′

|𝐊|

𝑘′=𝑘1+2

 (B7)

Now, we show that in the case that (B7) is violated, (B6) is also satisfied. Let 𝑡1 denote the first

time point (in its neighborhood) that (B7) is violated, i.e., (B7) is satisfied for 𝑡 = 𝑡1 − 1, but

violated for 𝑡 = 𝑡1. Mathematically, they are

187

∑ 𝑆𝑘′(𝑡1 − 1)

|𝐊|

𝑘′=𝑘1+1

+ ∑ 𝑆𝑘′
+ (𝑡1 − 1)

|𝐊|

𝑘′=𝑘1+2

≥ (𝑡1 − 2)𝛿 + (∑ 𝜏𝑘′

|𝐊|

𝑘′=𝑘1+1

) ∙ 𝛿 + ∑ 𝛽𝑘′

|𝐊|

𝑘′=𝑘1+2

 (B8)

∑ 𝑆𝑘′(𝑡1)

|𝐊|

𝑘′=𝑘1+1

+ ∑ 𝑆𝑘′
+ (𝑡1)

|𝐊|

𝑘′=𝑘1+2

< (𝑡1 − 1) ∙ 𝛿 + (∑ 𝜏𝑘′

|𝐊|

𝑘′=𝑘1+1

) ∙ 𝛿 + ∑ 𝛽𝑘′

|𝐊|

𝑘′=𝑘1+2

 (B9)

From (B1) and 𝛽𝑘1+1 ≥ 𝜏𝑘+1𝛿, we know that the LHS of (B8) and (B9) are equal, i.e.,

∑ 𝑆𝑘′(𝑡1 − 1)

|𝐊|

𝑘′=𝑘1+1

+ ∑ 𝑆𝑘′
+ (𝑡1 − 1)

|𝐊|

𝑘′=𝑘1+2

= ∑ 𝑆𝑘′(𝑡1)

|𝐊|

𝑘′=𝑘1+1

+ ∑ 𝑆𝑘′
+ (𝑡1)

|𝐊|

𝑘′=𝑘1+2

 (B10)

From 𝑡 = 𝑡1 − 1 of (B5) and (B9), (B10), we know that,

𝑆𝑘(𝑡1 − 1) + 𝑆𝑘+1
+ (𝑡1 − 1) > 𝛽𝑘1+1 (B11)

Thus, at time interval [𝑡1, 𝑡1 + 𝜏𝑘1+1 − 1], one more batch can be finished in stage k1+1. (B11)

together with (B8) leads to

∑ 𝑆𝑘′(𝑡1 + 𝜏𝑘1+1 − 1)

|𝐊|

𝑘′=𝑘1+1

+ ∑ 𝑆𝑘′
+ (𝑡1 + 𝜏𝑘1+1 − 1)

|𝐊|

𝑘′=𝑘1+2

≥ (𝑡1 − 2)𝛿 + (∑ 𝜏𝑘′

|𝐊|

𝑘′=𝑘1+1

) ∙ 𝛿 + ∑ 𝛽𝑘′

|𝐊|

𝑘′=𝑘1+2

+ 𝛽𝑘1+1

Since 𝛽𝑘1+1 ≥ 𝜏𝑘1+1𝛿, we have

∑ 𝑆𝑘′(𝑡1 + 𝜏𝑘1+1 − 1)

|𝐊|

𝑘′=𝑘1+1

+ ∑ 𝑆𝑘′
+ (𝑡1 + 𝜏𝑘1+1 − 1)

|𝐊|

𝑘′=𝑘1+2

≥ (𝑡1 + 𝜏𝑘1+1 − 2)𝛿 + (∑ 𝜏𝑘′

|𝐊|

𝑘′=𝑘1+1

) ∙ 𝛿 + ∑ 𝛽𝑘′

|𝐊|

𝑘′=𝑘1+2

(B12)

which means that (B7) of 𝑡 = 𝑡1 + 𝜏𝑘1+1 − 1 is satisfied again. Now, we only need to show for any

time 𝑡 ∈ [𝑡1, 𝑡1 + 𝜏𝑘1+1 − 2], (B6) is satisfied. For any 𝑡 ∈ [𝑡1, 𝑡1 + 𝜏𝑘1+1 − 2], from (B1) and (B8),

we know

188

∑ 𝑆𝑘′(𝑡)

|𝐊|

𝑘′=𝑘1+1

+ ∑ 𝑆𝑘′
+ (𝑡)

|𝐊|

𝑘′=𝑘1+2

≥ ∑ 𝑆𝑘′(𝑡1 − 1)

|𝐊|

𝑘′=𝑘1+1

+ ∑ 𝑆𝑘′
+ (𝑡1 − 1)

|𝐊|

𝑘′=𝑘1+2

≥ (𝑡1 − 2)𝛿 + (∑ 𝜏𝑘′

|𝐊|

𝑘′=𝑘1+1

) ∙ 𝛿 + ∑ 𝛽𝑘′

|𝐊|

𝑘′=𝑘1+2

⇒ ∑ 𝑆𝑘′(𝑡)

|𝐊|

𝑘′=𝑘1+1

+ ∑ 𝑆𝑘′
+ (𝑡)

|𝐊|

𝑘′=𝑘1+2

≥ (𝑡1 + 𝜏𝑘1+1 − 2)𝛿 + (∑ 𝜏𝑘′

|𝐊|

𝑘′=𝑘1+2

) ∙ 𝛿 + ∑ 𝛽𝑘′

|𝐊|

𝑘′=𝑘1+2

⇒ ∑ 𝑆𝑘′(𝑡)

|𝐊|

𝑘′=𝑘1+1

+ ∑ 𝑆𝑘′
+ (𝑡)

|𝐊|

𝑘′=𝑘1+2

≥ 𝑡𝛿 + (∑ 𝜏𝑘′

|𝐊|

𝑘′=𝑘1+2

) ∙ 𝛿 + ∑ 𝛽𝑘′

|𝐊|

𝑘′=𝑘1+2

which is (B6).

Therefore, we have shown that if (B2) of 𝑘 = 𝑘1 is satisfied, (B2) of 𝑘 = 𝑘1 + 1 is also satisfied,

which finishes the proof of Lemma B1 by mathematical reduction.

Making the stage 𝑘 = |𝐊| in Lemma B1, we have

𝑆|𝐊|(𝑡) ≥ 𝑡𝛿 ∀𝑡

Accordingly, based on 𝑆𝑘(𝑡), we can construct a feasible solution of MF, as follows,

𝑊𝑘𝑡 = 1 if and only if ∑ 𝑆𝑘′(𝑡 + 𝜏𝑘′)

|𝐊|

𝑘′=𝑘

+ ∑ 𝑆𝑘′
+ (𝑡 + 𝜏𝑘′)

|𝐊|

𝑘′=𝑘+1

> ∑ 𝑆𝑘′(𝑡 + 𝜏𝑘′ − 1)

|𝐊|

𝑘′=𝑘

+ ∑ 𝑆𝑘′
+ (𝑡 + 𝜏𝑘′ − 1)

|𝐊|

𝑘′=𝑘+1

 ∀𝑘, 𝑡

𝐿𝑘𝑡 = 𝑆𝑘(0) + 𝛽𝑘 ∑ 𝑊𝑘𝑡′

𝑡′<𝑡−𝜏𝑘

− 𝛽𝑘+1 ∑ 𝑊𝑘+1,𝑡′

𝑡′<𝑡

 ∀𝑘 < |𝐊|, 𝑡

𝐿|𝐊|,𝑡 = 𝑆|𝐊|(0) + 𝛽|𝐊| ∑ 𝑊|𝐊|,𝑡′

𝑡′<𝑡−𝜏|𝐊|

− 𝑡𝛿 ∀𝑡

Therefore, when constraints (5.3) are satisfied, model MF is always feasible. ∎

189

C. Proof of Proposition 5.4

Proposition 5.4: For single-stage multi-product problems, model MF is always feasible regardless

of the horizon length, if initial inventory levels 𝑆𝑖 satisfy constraints (5.6).

Proof: We show that if initial inventory levels satisfy constraints (5.6), there exists a schedule

that can satisfy demand for any 𝑡 ∈ ℕ; based on this schedule, we can construct a feasible solution

for model MF, and therefore prove proposition 5.4.

We use 𝑆𝑖(𝑡) ∈ ℝ+ to denote the inventory level of product i at time t. To show there exists a

schedule that can satisfy demand for any 𝑡 ∈ ℕ, we show that if the inventory levels 𝑆𝑖(𝑡) satisfy

constraints (5.6) and the unit is idle at t, one can always start a certain task i1 to process. During the

process, inventory levels are non-negative, and after the process, inventory levels 𝑆𝑖(𝑡 + 𝜏𝑖1) satisfy

constraints (5.6) again.

Since the initial inventory levels 𝑆𝑖 satisfy constraints (5.6), we know that at time 𝑡 = 0, (5.6) is

satisfied and the unit is idle.

Consider a time t at which the unit is idle. Without loss of generality, we assume that 𝑆𝑖1(𝑡)

satisfy

𝑆𝑖1(𝑡)

𝛿𝑖1
= min

𝑖

𝑆𝑖(𝑡)

𝛿𝑖
 (C1)

If the following constraints are satisfied,

∑
𝑐𝑖𝜏𝑖𝑆𝑖(𝑡)

𝛿𝑖
𝑖∈𝐈𝑝

≥ (∑ 𝑐𝑖𝜏𝑖

𝑖∈𝐈𝑝

) ∙ (∑ 𝜏𝑖

𝑖∈𝐈𝑝

) , ∀𝑝 ∈ 𝐏(𝐈) (C2)

Then, we can process task i1.

It is easy to show that inventory levels are non-negative during the process of task i1, because

for all i, 𝑆𝑖(𝑡)/𝛿𝑖 ≥ 𝑆𝑖1(𝑡)/𝛿𝑖1, and 𝑆𝑖1(𝑡)/𝛿𝑖1 ≥ 𝜏1 from the inequality (C2) with 𝑝 = {𝑖1}.

To show inventory levels 𝑆𝑖(𝑡 + 𝜏𝑖1) satisfy constraints (5.6) again is to show (C3) below.

190

∑
𝑐𝑖𝜏𝑖𝑆𝑖(𝑡 + 𝜏𝑖1)

𝛿𝑖
𝑖∈𝐈𝑝

≥ (∑ 𝑐𝑖𝜏𝑖

𝑖∈𝐈𝑝

) ∙ (∑ 𝜏𝑖

𝑖∈𝐈𝑝

) , ∀𝑝 ∈ 𝐏(𝐈) (C3)

Since task i1 is processed at time t, we know

𝑆𝑖1(𝑡 + 𝜏𝑖1) = 𝑆𝑖1(𝑡) + 𝛽𝑖1 − 𝜏𝑖1𝛿𝑖1 (C4)

𝑐𝑖𝜏𝑖

𝑆𝑖(𝑡 + 𝜏𝑖1)

𝛿𝑖
= 𝑐𝑖𝜏𝑖

𝑆𝑖(𝑡)

𝛿𝑖
− 𝜏𝑖1 ∙ (𝑐𝑖𝜏𝑖), ∀𝑖 ∈ 𝐈\{𝑖1} (C5)

First, we show that for any subset p including task i1, (C3) is satisfied. From constraints (5.2b)

and (5.2c) of model MC, we know that

𝑐𝑖1

𝛽𝑖1

𝛿𝑖1
≥ ∑ 𝑐𝑖𝜏𝑖

𝑖∈𝐈

⇒ 𝑐𝑖1𝜏𝑖1

𝑆𝑖1(𝑡 + 𝜏𝑖1)

𝛿𝑖1
= 𝑐𝑖1𝜏𝑖1

𝑆𝑖1(𝑡) + 𝛽𝑖1 − 𝜏𝑖1𝛿𝑖1

𝛿𝑖1
≥ 𝑐𝑖1𝜏𝑖1

𝑆𝑖1(𝑡)

𝛿𝑖1
+ 𝜏𝑖1 ∙ ∑ 𝑐𝑖𝜏𝑖

𝑖∈𝐈\{𝑖1}

 (C6)

Thus, by the summation of (C5) and (C6), (C3) of {𝑝|𝑖1 ∈ 𝐈𝑝} can be deduced.

Second, by contradiction, we show that (C3) is also satisfied for any subset excluding task i1.

Assuming (C3) is not satisfied for p such that 𝑖1 ∉ 𝐈𝑝; i.e.,

∑ 𝑐𝑖𝜏𝑖

𝑆𝑖(𝑡 + 𝜏𝑖1)

𝛿𝑖
𝑖∈𝐈𝑝

< (∑ 𝑐𝑖𝜏𝑖

𝑖∈𝐈𝑝

) ∙ (∑ 𝜏𝑖

𝑖∈𝐈𝑝

) (C7)

⇒ ∑ 𝑐𝑖𝜏𝑖

𝑆𝑖(𝑡) − 𝜏𝑖1𝛿𝑖

𝛿𝑖
𝑖∈𝐈𝑝

< (∑ 𝑐𝑖𝜏𝑖

𝑖∈𝐈𝑝

) ∙ (∑ 𝜏𝑖

𝑖∈𝐈𝑝

)

⇒ ∑ 𝑐𝑖𝜏𝑖

𝑆𝑖(𝑡)

𝛿𝑖
𝑖∈𝐈𝑝

< (∑ 𝑐𝑖𝜏𝑖

𝑖∈𝐈𝑝

) ∙ (∑ 𝜏𝑖

𝑖∈𝐈𝑝

) + 𝜏𝑖1 ∑ 𝑐𝑖𝜏𝑖

𝑖∈𝐈𝑝

(C8)

The constraint of (C2) for p’ such that 𝐈𝑝′ = 𝐈𝑝 ∪ {𝑖1} is

𝑐𝑖1𝜏𝑖1

𝑆𝑖1(𝑡)

𝛿𝑖1
+ ∑ 𝑐𝑖𝜏𝑖

𝑆𝑖(𝑡)

𝛿𝑖
𝑖∈𝐈𝑝

≥ (𝑐𝑖1𝜏𝑖1 + ∑ 𝑐𝑖𝜏𝑖

𝑖∈𝐈𝑝

) ∙ (𝜏𝑖1 + ∑ 𝜏𝑖

𝑖∈𝐈𝑝

) (C9)

191

From (C8) and (C9), we know

𝑐𝑖1𝜏𝑖1

𝑆𝑖1(𝑡)

𝛿𝑖1
> 𝑐𝑖1𝜏𝑖1𝜏𝑖1 + 𝑐𝑖1𝜏𝑖1 ∑ 𝜏𝑖

𝑖∈𝐈𝑝

⇒
𝑆𝑖1(𝑡)

𝛿𝑖1
> 𝜏𝑖1 + ∑ 𝜏𝑖

𝑖∈𝐈𝑝

 (C10)

From (C1) and (C10), we know

𝑆𝑖(𝑡)

𝛿𝑖
≥

𝑆𝑖1(𝑡)

𝛿𝑖1
> 𝜏𝑖1 + ∑ 𝜏𝑖′

𝑖′∈𝐈𝑝

 ∀𝑖 ∈ 𝐈𝑝

⇒ ∑ 𝑐𝑖𝜏𝑖

𝑆𝑖(𝑡 + 𝜏𝑖1)

𝛿𝑖
𝑖∈𝐈𝑝

= ∑ 𝑐𝑖𝜏𝑖(
𝑆𝑖(𝑡)

𝛿𝑖
− 𝜏𝑖1)

𝑖∈𝐈𝑝

> (∑ 𝑐𝑖𝜏𝑖

𝑖∈𝐈𝑝

) ∙ (∑ 𝜏𝑖

𝑖∈𝐈𝑝

)

which contradicts (C7). Thus (C3) of {𝑝|𝑖1 ∉ 𝐈𝑝} is also satisfied.

Thus, we have shown that after processing the task i with the smallest value of 𝑆𝑖/𝛿𝑖 , inventory

levels satisfy constraints (5.6) again. Therefore, there exists a feasible schedule for any horizon.

Accordingly, we can construct a feasible solution of MF, as follows,

𝑊𝑖𝑡 = 1 if and only if 𝑖 starts at 𝑡 in this schedule ∀𝑖, 𝑡

𝐿𝑖𝑡 = 𝑆𝑖 − 𝑡𝛿𝑖 + 𝛽𝑖 ∑ 𝑊𝑖𝑡′

𝑡′<𝑡−𝜏i

 ∀𝑖, 𝑡

Therefore, when constraints (5.6) are satisfied, model MF is always feasible. ∎

192

D. Proof of Proposition 5.6

Proposition 5.6: The projection of feasible region defined by constraints (5.8a) and (5.8b) on the

subspace of 𝑠 = [𝑆1, 𝑆2, … , 𝑆|𝐼|]
𝑇 is the same as the feasible region defined by constraints (5.6).

Proof: First we introduce two lemmas, which can be proved trivially.

Lemma D1: Assume the initial inventory levels 𝑠 satisfy constraints (5.6). If two task subsets 𝑝1 and

𝑝2 are disjoint (𝐼𝑝1 ∩ 𝐼𝑝2 = ∅), constraints (5.6) written for these two subsets cannot be both binding.

Otherwise, the constraint (5.6) written for 𝑝3 such that 𝐼𝑝3 = 𝐼𝑝1 ∪ 𝐼𝑝2 will be violated.

Lemma D2: Assume initial inventory levels 𝑠 satisfy constraints (5.6). If two task subsets 𝑝1 and 𝑝2

satisfy 𝐼𝑝1\𝐼𝑝2 ≠ ∅ and 𝐼𝑝2\𝐼𝑝1 ≠ ∅, constraints (5.6) written for these two subsets cannot be both

binding. Otherwise, the constraints (5.6) written for 𝑝3, 𝑝4 such that 𝐼𝑝3 = 𝐼𝑝1 ∪ 𝐼𝑝2, 𝐼𝑝4 = 𝐼𝑝1 ∩ 𝐼𝑝2

cannot be satisfied at the same time.

Let 𝐒(6) ={𝒔|constraints (5.6)}, 𝐒(8) ={𝒔|constraints (5.8a) and (5.8b)}. To show 𝐒(8) = 𝐒(6), we

show 𝐒(8) ⊆ 𝐒(6) and 𝐒(6) ⊆ 𝐒(8).

First, we show 𝐒(8) ⊆ 𝐒(6). Consider any subset p. By multiplying (5.8a) by 𝑐𝑖𝜏𝑖 on both side and

adding together the inequalities of all 𝑖 ∈ 𝐈𝑝, we have

∑ 𝑐𝑖𝜏𝑖

𝑆𝑖

𝛿𝑖
𝑖∈𝐈𝑝

≥ ∑ {𝑐𝑖𝜏𝑖 [𝜏𝑖 + ∑ 𝜏𝑖′ (
𝑐𝑖′

𝑐𝑖
+ 1 − 𝑈𝑖′𝑖)

𝑖′<𝑖

+ ∑ 𝜏𝑖′

𝑐𝑖′

𝑐𝑖
𝑈𝑖𝑖′

𝑖′>𝑖

]}

𝑖∈𝐈𝑝

Rewriting the RHS, we have

∑ 𝑐𝑖𝜏𝑖

𝑆𝑖

𝛿𝑖
𝑖∈𝐈𝑝

≥ ∑ 𝑐𝑖𝜏𝑖𝜏𝑖

𝑖∈𝐈𝑝

+ ∑ {𝑐𝑖𝜏𝑖 [∑ 𝜏𝑖′ (
𝑐𝑖′

𝑐𝑖
+ 1 − 𝑈𝑖′𝑖)

𝑖′∈𝐈𝑝:𝑖′<𝑖

+ ∑ 𝜏𝑖′

𝑐𝑖′

𝑐𝑖
𝑈𝑖𝑖′

𝑖′∈𝐈𝑝:𝑖′>𝑖

]}

𝑖∈𝐈𝑝

193

+ ∑ {𝑐𝑖𝜏𝑖 [∑ 𝜏𝑖′ (
𝑐𝑖′

𝑐𝑖
+ 1 − 𝑈𝑖′𝑖)

𝑖′∉𝐈𝑝:𝑖′<𝑖

+ ∑ 𝜏𝑖′

𝑐𝑖′

𝑐𝑖
𝑈𝑖𝑖′

𝑖′∉𝐈𝑝:𝑖′>𝑖

]}

𝑖∈𝐈𝑝

From (5.8b), we know the last term on the RHS is non-negative. After simplifying the second sum

term on the RHS, we have

∑ 𝑐𝑖𝜏𝑖

𝑆𝑖

𝛿𝑖
𝑖∈𝐈𝑝

≥ ∑ 𝑐𝑖𝜏𝑖𝜏𝑖

𝑖∈𝐈𝑝

+ ∑ {(𝑐𝑖 + 𝑐𝑖′)𝜏𝑖𝜏𝑖′}

𝑖∈𝐈𝑝,𝑖′∈𝐈𝑝\{𝑖}

Further rewriting the second sum term on the RHS, we have

∑ 𝑐𝑖𝜏𝑖

𝑆𝑖

𝛿𝑖
𝑖∈𝐈𝑝

≥ ∑ 𝑐𝑖𝜏𝑖𝜏𝑖

𝑖∈𝐈𝑝

+ ∑ [𝑐𝑖𝜏𝑖 ∙ (∑ 𝜏𝑖

𝑖∈𝐈𝑝\{𝑖}

)]

𝑖∈𝐈𝑝

Then we can combine the two terms on the RHS

∑ 𝑐𝑖𝜏𝑖

𝑆𝑖

𝛿𝑖
𝑖∈𝐈𝑝

≥ (∑ 𝑐𝑖𝜏𝑖

𝑖∈𝐈𝑝

) ∙ (∑ 𝜏𝑖

𝑖∈𝐈𝑝

)

Thus, (5.6) are derived. Thus, 𝐒(8) ⊆ 𝐒(6).

Second, we show 𝐒(6) ⊆ 𝐒(8). Since both 𝐒(6) and 𝐒(8) are convex, it suffices to show that each

(finite) extreme point and infinite point of 𝐒(6) belongs to 𝐒(8).

Any of the extreme points, [𝑆1, 𝑆2, … , 𝑆|𝐈|]
T, of 𝐒(6) is the intersection of at least |𝐈| binding

constraints of (5.6). From Lemmas D1 and D2, we know that if (5.6) of task subsets p and p’ are

both binding, then 𝐈𝑝 ⊆ 𝐈𝑝′ or 𝐈𝑝′ ⊆ 𝐈𝑝. Thus, the subsets of the |𝐈| binding constraints follow the

following format, if we order them in terms of the cardinality of the subset:

𝐈𝑝1 = {𝑖1}

𝐈𝑝2 = {𝑖1, 𝑖2}

……

𝐈𝑝|𝐈| = {𝑖1, 𝑖2, … , 𝑖|𝐈|}

(D1)

194

Based on the binding constraints, we can find define 𝑎𝑖𝑖′ accordingly as below,

{

𝑈𝑖𝑚,𝑖𝑛 = 0 if ord(𝑖𝑚) < ord(𝑖𝑛)

𝑈𝑖𝑛,𝑖𝑚 = 1 +
𝑐𝑖𝑛

𝑐𝑖𝑚
otherwise

 ∀ 𝑚 < 𝑛 (D2)

Note that the orders of m and n are related according to (D1); i.e., if 𝑚 < 𝑛, 𝑖𝑚 ∈ 𝐈𝑝𝑚, 𝑖𝑚 ∈ 𝐈𝑝𝑛,

𝑖𝑛 ∉ 𝐈𝑝𝑚, 𝑖𝑛 ∈ 𝐈𝑝𝑛. Also note that the orders of tasks are related according to (5.8b); i.e., 𝑈𝑖𝑚,𝑖𝑛 is

only defined for ord(𝑖𝑚) < ord(𝑖𝑛). Obviously, , for 𝑈𝑖𝑖′ defined in (D2), (5.8a) and (5.8b) are

satisfied. Therefore any extreme point of 𝐒(6) belongs to 𝐒(8).

Now, consider any infinite point of 𝐒(6). Assume that 𝑙 dimensions are infinite, i.e., 𝑆𝑖1 = ⋯ =

𝑆𝑖𝑙 = +∞. We can define 𝑈𝑖𝑖′ as follows, if 𝑆𝑖 = +∞

{
𝑈𝑖𝑖′ = 1 +

𝑐𝑖

𝑐𝑖′
if 𝑖 < 𝑖′

𝑈𝑖′𝑖 = 0 otherwise
 ∀ 𝑖: 𝑆𝑖 = +∞ (D3)

For the remaining |𝐈| − 𝑙 indices, we can find the extreme points for the subspace of

[𝑆𝑖𝑙+1, 𝑆𝑖𝑙+2, … , 𝑆𝑖|𝐈|]
T, and it would be the intersection of |𝐈| − 𝑙 binding constraints of (5.6). Thus,

we can define 𝑈𝑖𝑖′ following the same logic of (D2). Thus any infinite point of 𝐒(6) also belongs to

𝐒(8).

Therefore, we have shown that every extreme point and every infinite point of 𝐒(6) belongs to

𝐒(8), and 𝐒(6) ⊆ 𝐒(8). ∎

195

E. Proof of Correctness of Constraints (SIIT)

Since the changeover constraints for different units are independent, we drop index 𝑗 without

loss of generality. Thus, constraints (SIIT) become

∑ 𝑋𝑖𝑡′

𝑡

𝑡′=𝑡−𝜏𝑖+1

+ ∑ ∑ 𝑋𝑖′𝑡′

𝑡−𝜔𝑏
𝑖𝑛𝑖′

𝑡′=𝑡−𝜔𝑎𝑖𝑛𝑖′𝑖′≠𝑖

≤ 1 ∀𝑖, 𝑡, 𝑛 ∈ 𝐍𝑖 (E1)

Proof: To prove the correctness of (SIIT) for given (𝑖, 𝑡), we need to show two things: (SIIT)

forces all variables corresponding to 𝑖′ ≠ 𝑖 and 𝑡′ ∈ 𝐓𝑖′𝑖𝑡
𝐶 to be zero if 𝑋𝑖𝑡 = 1, and no valid solutions

are cut off.

First, we show that for any 𝑖′ ≠ 𝑖 and 𝑡′ ∈ {𝑡 − 𝜏𝑖′ − 𝜎𝑖′𝑖 + 1, … , 𝑡 − 𝜏𝑖′}, 𝑋𝑖′𝑡′ is included in at

least one constraint of 𝑛 ∈ 𝐍𝑖, based on the following three observations. For all 𝑖′ ≠ 𝑖, we have:

(1) 𝑋𝑖′𝑡′ for 𝑡′ = 𝑡 − 𝜏𝑖′ , which is the largest 𝑡′ ∈ 𝐓𝑖′𝑖𝑡
𝐶 , is included in the constraint for 𝑛 = 1 since

𝜔𝑏𝑖1𝑖′ ≤ 𝜏𝑖′ ≤ 𝜔𝑎𝑖1𝑖′ for either 𝑖′ ∈ 𝐈𝐀𝑖𝑛 or 𝑖′ ∈ 𝐈𝐁𝑖𝑛.

(2) 𝑋𝑖′𝑡′ for 𝑡′ = 𝑡 − 𝜏𝑖′ − 𝜎𝑖′𝑖 + 1, which is the first changeover time point, is included in the

constraint for the smallest element in 𝐍𝑖 for which 𝜇𝑖𝑛 ≥ 𝜎𝑖′𝑖 (denoted by 𝑛𝑖′).

(3) When 𝑛 is less than 𝑛𝑖′ , we have 𝜔𝑏𝑖,𝑛+1,𝑖′ ≤ 𝜇𝑖,𝑛+1 ≤ 𝜇𝑖𝑛 + 𝜏𝑖′ = 𝜔𝑎𝑖𝑛𝑖′ + 1, which means that

variables 𝑋𝑖′𝑡′ for all changeover times (i.e., 𝑡′ ∈ 𝐓𝑖′𝑖𝑡
𝐶) are included in at least one inequality.

Second, to prove that no valid solutions are cut off, we consider the following cases for given

(𝑖, 𝑡):

(1) The same task scheduled back-to-back. For 𝑖 or 𝑖′, the time indices of the binary variables

included in one of the inequalities have a difference less than or equal to the processing time of

this task, thus, no solution with the same task scheduled back-to-back is cut off.

(2) A task 𝑖′ ≠ 𝑖 scheduled after 𝑖 . The smallest time index of the included 𝑋𝑖𝑡′ variables is

𝑡1
𝐿 = 𝑡 − 𝜏𝑖 + 1, and the largest time index of the included 𝑋𝑖′𝑡′ variables cannot be larger than

𝑡2
𝑈 = 𝑡. Since 𝑡2

𝑈 − 𝑡1
𝐿 = 𝜏𝑖 − 1 < 𝜏𝑖 + 𝜎𝑖𝑖′ , no solution with 𝑖′ scheduled after 𝑖 is cut off.

196

(3) A task 𝑖′ ≠ 𝑖 is scheduled before 𝑖. The smallest time index of the included 𝑋𝑖′𝑡′ variables is

𝑡1
𝐿 = 𝑡 − 𝜏𝑖′ − min {𝜎𝑖′𝑖 , 𝜇𝑖𝑛} + 1 ≥ 𝑡 − 𝜏𝑖′ − 𝜎𝑖′𝑖 + 1, and the largest time index of the included

𝑋𝑖𝑡′ variables is 𝑡2
𝑈 = 𝑡. Once again 𝑡2

𝑈 − 𝑡1
𝐿 ≤ 𝜏𝑖′ + 𝜎𝑖′𝑖 − 1, so no solution with task 𝑖 scheduled

after 𝑖′ is cut off.

(4) Two tasks, both in 𝐈𝐀𝑖𝑛, are scheduled back-to-back. The included variables have the same

largest time index, 𝑡 − 𝜇𝑖𝑛. Also, the difference between the largest and the smallest 𝑡′ of the

included 𝑋𝑖′𝑡′ variables, is 𝜏𝑖′ − 1. Thus, no solution with these tasks scheduled one after

another is cut off.

(5) Two tasks 𝑖1, 𝑖2, both in 𝐈𝐁𝑖𝑛, are scheduled back-to-back. The smallest time index of the

included 𝑋𝑖1𝑡′ variables is 𝑡1
𝐿 = 𝑡 − 𝜏𝑖1 − 𝜎𝑖1,𝑖 + 1, while the time index of the included 𝑋𝑖2𝑡′

variables cannot be larger than 𝑡2
𝑈 = 𝑡 − 𝜎𝑖1,𝑖 + 𝜎𝑖1,𝑖2 . Since 𝑡2

𝑈 − 𝑡1
𝐿 = 𝜏𝑖1 + 𝜎𝑖1,𝑖2 − 1 , no

solution with task 𝑖2 scheduled after 𝑖1 is cut off.

(6) Task 𝑖1 ∈ 𝐈𝐀𝑖𝑛 is scheduled before 𝑖2 ∈ 𝐈𝐁𝑖𝑛. The smallest time index of the included 𝑋𝑖1𝑡′

variables is 𝑡1
𝐿 = 𝑡 − 𝜇𝑖𝑛 − 𝜏𝑖1 + 1, while the time index of 𝑋𝑖2𝑡′ variables cannot be larger than

𝑡2
𝑈 = 𝑡 − 𝜇𝑖𝑛 + 𝜎𝑖1,𝑖2. Similar to (5), no solution with task 𝑖1 scheduled before 𝑖2 is cut off.

(7) Task 𝑖1 ∈ 𝐈𝐀𝑖𝑛 is scheduled after 𝑖2 ∈ 𝐈𝐁𝑖𝑛 . The smallest time index of the included 𝑋𝑖2𝑡′

variables is 𝑡2
𝐿 = 𝑡 − 𝜏𝑖2 − 𝜎𝑖2,𝑖 + 1, while the time index of 𝑋𝑖1𝑡′ variables cannot be larger than

𝑡1
𝑈 = 𝑡 − 𝜇𝑖𝑛. The difference is 𝜏𝑖2 + 𝜎𝑖2,𝑖 − 𝜇𝑖𝑛 − 1. Since 𝜇𝑖𝑛 > 𝜎𝑖2,𝑖 (𝑖2 ∈ 𝐈𝐁𝑖𝑛), no solution with

task 𝑖1 scheduled after 𝑖2 is cut off. ∎

197

F. Proof of Proposition 6.1

Proposition 6.1: Let 𝐻 = {𝑋 ∈ {0,1}𝑇∙|𝐈|∙|𝐉|: subject to constraints (6.7) (6.23)}. Then each inequality

in (6.23) is facet-defining for the convex hull of H, conv(H).

Proof: Since changeovers in different units are independent, index 𝑗 is dropped without loss of

generality.Let 𝐻 = {𝑋 ∈ {0,1}𝑇∙|𝐈|: ∑ ∑ 𝑋𝑖𝑡′
𝑡
𝑡′=𝑡−𝜏𝑖+1𝑖 ≤ 1, ∀𝑡 and

∑ 𝑋𝑖𝑡′
𝑡
𝑡′=𝑡−𝜏𝑖+1 + ∑ ∑ 𝑋𝑖′𝑡′

𝑡−𝜔𝑏
𝑖𝑛𝑖′

𝑡′=𝑡−𝜔𝑎𝑖𝑛𝑖′𝑖′≠𝑖 ≤ 1, ∀𝑖, 𝑡, 𝑛 ∈ 𝐍𝑖}.

We want to prove that each face 𝐹𝑖𝑡𝑛 defined by (F1) is facet-defining for the convex hull,

conv(H). We will prove it by showing that the face defined in expression (F1) has dimension T∙|I|−1,

which is one less than the dimension of conv(H), as there are T∙|I| 𝑋𝑖𝑡variables and H is full

dimensional.

𝐹𝑖𝑡𝑛 = {𝑋𝑖𝑡 ∈ conv(𝐻): ∑ 𝑋𝑖𝑡′

𝑡

𝑡′=𝑡−𝜏𝑖+1

+ ∑ ∑ 𝑋𝑖′𝑡′

𝑡−𝜔𝑏
𝑖𝑛𝑖′

𝑡′=𝑡−𝜔𝑎𝑖𝑛𝑖′𝑖′≠𝑖

= 1} ∀𝑖, 𝑡, 𝑛 ∈ 𝐍𝑖 (F1)

To show that 𝐹𝑖𝑡𝑛 has dimension T∙|I|−1, it suffices to show that it has T∙|I| affinely independent

points.

For given (𝑖, 𝑡, 𝑛), the following points belong to 𝐹𝑖𝑡𝑛, and are affinely independent (one point is

shown in each curly bracket, and for simplicity of presentation, we only list the non-zero variables):

(1) {𝑋𝑖𝑡′ = 1}, 𝑡′ ∈ {𝑡 − 𝜏𝑖 + 1, … , 𝑡}. These are 𝜏𝑖 points.

(2) {𝑋𝑖𝑡′ = 1, 𝑋𝑖,𝑡′+𝑘∙𝜏𝑖
= 1}, 𝑡′ ∈ {1, … , 𝑡 − 𝜏𝑖} ∪ {𝑡 + 1, … , 𝑇}, 𝑘 ∈ ℤ\{0} and 𝑡′ + 𝑘 ∙ 𝜏𝑖 ∈ {𝑡 − 𝜏𝑖 +

1, … , 𝑡}. Note that 𝑘, as well as the 𝑘 listed below, is negative if 𝑡′ > 𝑡. These are 𝑇 − 𝜏𝑖 points.

(3) For 𝑖′ ∈ 𝐈𝐀𝑖𝑛, {𝑋𝑖′𝑡′ = 1}, 𝑡′ ∈ {𝑡 − 𝜔𝑎𝑖𝑛𝑖′ , … , 𝑡 − 𝜔𝑏𝑖𝑛𝑖′}.

(4) For 𝑖′ ∈ 𝐈𝐀𝑖𝑛 , {𝑋𝑖′𝑡′ = 1, 𝑋𝑖′,𝑡′+𝑘∙𝜏𝑖
= 1}, 𝑡′ ∈ {1, … , 𝑡 − 𝜔𝑎𝑖𝑛𝑖′ − 1} ∪ {𝑡 − 𝜔𝑏𝑖𝑛𝑖′ + 1, … , 𝑇}, 𝑘 ∈

ℤ\{0} and 𝑡′ + 𝑘 ∙ 𝜏𝑖 ∈ {𝑡 − 𝜔𝑎𝑖𝑛𝑖′ , … , 𝑡 − 𝜔𝑏𝑖𝑛𝑖′}. Cases (3) and (4) have 𝑇 ∙ |𝐈𝐀𝑖𝑛| points.

(5) For 𝑖′ ∈ 𝐈𝐁𝑖𝑛, {𝑋𝑖′𝑡′ = 1}, 𝑡′ ∈ {𝑡 − 𝜔𝑎𝑖𝑛𝑖′ , … , 𝑡 − 𝜔𝑏𝑖𝑛𝑖′}.

198

(6) For 𝑖′ ∈ 𝐈𝐁𝑖𝑛, {𝑋𝑖′𝑡′ = 1, 𝑋𝑖𝑡 = 1}, 𝑡′ ∈ {1, … , 𝑡 − 𝜔𝑎𝑖𝑛𝑖′ − 1}.

(7) For 𝑖′ ∈ 𝐈𝐁𝑖𝑛 and 𝑡′ ∈ {𝑡 − 𝜔𝑏𝑖𝑛𝑖′ + 1, … , 𝑇}, based on the definition of 𝜔𝑏𝑖𝑛𝑖′ , at least one of the

following three scenarios is true, and we can select the point accordingly (in case when more

than one scenario is true, we select one of them). Cases (5) – (7) have 𝑇 ∙ |𝐈𝐁𝑖𝑛| points.

(7a) If 𝜔𝑏𝑖𝑛𝑖′ = 𝜎𝑖′𝑖, select the point {𝑋𝑖′𝑡′ = 1, 𝑋𝑖′,𝑡−𝜔𝑎
𝑖𝑛𝑖′

= 1}.

(7b) If 𝜔𝑏𝑖𝑛𝑖′ = 𝜇𝑖𝑛 − min𝑖′′∈𝐈𝐀𝑖𝑛
𝜎𝑖′′𝑖′ , select the point {𝑋𝑖′𝑡′ = 1, 𝑋𝑖′′,𝑡−𝜔𝑎

𝑖𝑛𝑖′′
= 1}, 𝑖′′ ∈ 𝐈𝐀𝑖𝑛

and 𝜎𝑖′′𝑖′ = min𝑖′′′∈𝐈𝐀𝑖𝑛
𝜎𝑖′′′𝑖′ .

(7c) If 𝜔𝑏𝑖𝑛𝑖′ = max𝑖′′∈𝐈𝐁𝑖𝑛\{𝑖′}{𝜎𝑖′′𝑖 − 𝜎𝑖′′𝑖′}, select the point {𝑋𝑖′𝑡′ = 1, 𝑋𝑖′′,𝑡−𝜔𝑎
𝑖𝑛𝑖′′

= 1}, 𝑖′′ ∈

𝐈𝐁𝑖𝑛 and 𝜎𝑖′′𝑖 − 𝜎𝑖′′𝑖′ = max𝑖′′′∈𝐈𝐁𝑖𝑛\{𝑖′}{𝜎𝑖′′′𝑖 − 𝜎𝑖′′′𝑖′}.

From the set definition, |𝐈𝐀𝑖𝑛| + |𝐈𝐁𝑖𝑛| + 1 = |𝐈|. Thus, there are totally T∙|I| points in (1) to (7).

It is trivial to show the points are linearly independent, and thus affinely independent. ∎

199

G. Algorithms

Algorithm 3.1. Dynamic network reduction (§3.2.1, 3.2.2).

1: for 𝑗

2: calculate parameters and subsets 𝜁𝑗
𝑆, 𝜎𝑗

MIN, 𝑇𝑗 , 𝐉𝑗
𝑅;

3: 𝐉𝑇 = {𝑗: 𝜎𝑗
MIN > 0};

4: for 𝑗 ∈ 𝐉𝑇

5: 𝐉𝐵 = 𝐉𝐵 ∪ {𝑗′ ∈ 𝐉𝑗
𝑅\𝐉𝑇: 𝐿0𝑗′

𝐴 − ∫ 𝜌𝑗′
𝑇 (𝑡)𝑑𝑡

𝜂+24𝑇
𝑗′

0
< 𝜁𝑗′

𝑆 };

6: if {𝑗′ ∈ 𝐉𝑗
𝑅\𝐉𝑇: 𝐿0𝑗′

𝐴 − ∫ 𝜌𝑗′
𝑇 (𝑡)𝑑𝑡

𝜂+24𝑇
𝑗′

0
< 𝜁𝑗′

𝑆 } = ∅ then

7: 𝐉𝐵 = 𝐉𝐵 ∪ {𝑗′ ∈ 𝐉𝑗
𝑅\𝐉𝑇: 𝜎𝑗′

MAX = max𝑗′′∈𝐉𝑗
𝑅 𝜎𝑗′′

MAX};

8: 𝐉 = 𝐉𝑇 ∪ 𝐉𝐵⋃{𝑃};

9: 𝐀 = 𝐀 ∖ {(𝑗, 𝑗′): 𝑗 ∉ 𝐉 or 𝑗′ ∉ 𝐉 }

10: for (𝑗, 𝑗′) ∈ 𝐀

11: if (j, j’) is not in the neighbor list or satisfies inequality (3.6) then

12: 𝐀 = 𝐀 ∖ {(𝑗, 𝑗′)};

13: if 𝑗 ∈ 𝐉𝐵 and 𝑗′ ∈ 𝐉𝐵 and {𝑗′′ ∈ 𝐉𝑇: 𝑗 ∈ 𝐉𝑗′′
𝑅 and 𝑗′ ∈ 𝐉𝑗′′

𝑅 } = ∅ then

14: 𝐀 = 𝐀 ∖ {(𝑗, 𝑗′)};
Note. Lines 1-8 preprocess customers; lines 9-14 preprocess network arcs.

Algorithm 3.2. Routes generation for VR subproblem (§3.3.1).

1: declare an array cus[];

2: for u=1:cmax

3: for v=1:u

4: for jJC and different from cus[1], cus[2], …, cus[v-1]

5: cus[v] = j;

6: if v = u then

7: 𝑟 = 𝑃 → 𝑐𝑢𝑠[1] → ⋯ → 𝑐𝑢𝑠[𝑢] → 𝑃;

8: calculate parameters as in equations (3.7)-(3.10);

9: if r satisfies all the criteria in §3.3.1 then

10: 𝐑 = 𝐑 ∪ {𝑟};
Note. Lines 2-7 list all possible routes; line 8 calculates the corresponding parameters; lines 9-10 verify the condition whether
a route should be included in set R.

200

Algorithm 3.3. Set definition for heuristic integer cut generation (§3.5.3).

1: for 𝑖: ∑ (�̂�𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗 + �̂�𝑖,𝑛,𝑘,𝑛′,𝑙,𝑗)𝑛,𝑘,𝑛′,𝑙,𝑗 + ∑ (�̂�𝑗,𝑛
𝐿 + �̂�𝑗,𝑛

𝑈)𝑋𝑖,𝑙
𝐼𝐿𝑌𝑙,𝑗,𝑛𝑙,𝑗,𝑛 > 0

2: for 𝑟, 𝑙: 𝑙 ∈ 𝐋𝑟
𝑅 and ∑ 𝑋𝑖,𝑛,𝑘,𝑛′,𝑙𝑛,𝑘,𝑛′ > 0

4: if OptnE is used then

5: 𝐈𝑠
𝐸 = 𝐈𝑠

𝐸 ∪ {𝑖}; 𝐑𝑖,𝑠
𝐸 = 𝐑𝑖,𝑠

𝐸 ∪ {𝑟};

6: else if OptnR is used then

7: 𝐑𝑠
𝑅 = 𝐑𝑠

𝑅 ∪ {𝑟};
Note. Line 1 checks if a truck is assigned to some routes that lead to infeasibility; lines 2-7 update the sets denoting infeasible
route combinations using OptE or OptR.

Algorithm 3.4. Parameter updating for the VR subproblem (§3.5.4).

1: for 𝑖, 𝑟, 𝑙: 𝑙 ∈ 𝐋𝑟
𝑅\𝐋2

2: if 𝜏𝑟
𝑅 < ∑ 𝑋𝑖,𝑛,𝑘,𝑛′,𝑙(𝐸𝑖,𝑛

𝐼 − 𝑆𝑖,𝑛
𝐼)𝑛,𝑘,𝑛′

3: 𝜏𝑥𝑖,𝑟 = ∑ 𝑋𝑖,𝑛,𝑘,𝑛′,𝑙(𝐸𝑖,𝑛
𝐼 − 𝑆𝑖,𝑛

𝐼)𝑛,𝑘,𝑛′ − 𝜏𝑟
𝑅

Algorithm 4.1. Check long-term model vessel availability.

1: resolve = no;

2: nmax = 0;

3: for 𝜆𝐿𝐴 ≤ 𝑡 ≤ 𝜆𝐿𝐵 , 𝑖 ∈ 𝐈\𝐈𝑅: ∑ 𝑊𝑖,𝑣𝑐,𝑗𝑡
𝐿

𝑗 = 1

4: nmax = nmax +1;

5: 𝜀𝐿(𝑡) = 𝜀𝐿(𝑡𝐿𝐴) + [𝜀𝐿(𝑡𝐿𝐵) − 𝜀𝐿(𝑡𝐿𝐴)] ∙
𝑡−𝑡𝐿𝐴

𝑡𝐿𝐵−𝑡𝐿𝐴
;

6: sample random from a continuous uniform distribution of interval [0,1];

7: if 𝑟𝑎𝑛𝑑𝑜𝑚 ≤ 𝜀𝐿(𝑡) then

8: 𝛿𝑛𝑚𝑎𝑥
𝐿+ = 𝑡;

9: else

10: 𝛿𝑛𝑎𝑚𝑥
𝐿+ = ceil(𝑟𝑎𝑛𝑑𝑜𝑚 ∙ 𝜆𝐿𝐶);

11: resolve = yes;

12: break;

Note. If all desired vessels in long-term mode are available, the algorithm ends with resolve equal to no; otherwise, resolve
returns yes. In line 5, 𝜀𝐿(𝑡) denotes the probability that a vessel is available at time 𝑡. In line 10, 𝜆𝐿𝐶 denotes the earliest time
a vessel in long-term mode is guaranteed to be available. In the case study, 𝑡𝐿𝐴 = 7, 𝑡𝐿𝐵 = 14, 𝜀𝐿(𝑡𝐿𝐴) = 0.85, 𝜀𝐿(𝑡𝐿𝐴) =
1, 𝜆𝐿𝐶 = 14.

201

Algorithm 4.2. Update availability of vessels in short-term mode.

1: for l

2: for 𝑛 ≤ 𝑛𝑙𝑎𝑠𝑡𝑙

3: 𝛿𝑙𝑛
𝑆+ = 𝑛𝑢𝑙𝑙;

4: for n: 𝛿𝑙𝑛
𝑆+ ≠ 𝑛𝑢𝑙𝑙

5: sample random1 from a continuous uniform distribution of interval [0,1];

6: if 𝑟𝑎𝑛𝑑𝑜𝑚1 ∈ [0, 𝜀𝑆𝐴] then

7: 𝛿𝑙𝑛
𝑆+ = 𝛿𝑙𝑛

𝑆− − 1;

8: else if 𝑟𝑎𝑛𝑑𝑜𝑚1 ∈ [𝜀𝑆𝐴, 𝜀𝑆𝐴 + 𝜀𝑆𝐵] then

9: 𝛿𝑙𝑛
𝑆+ = 𝛿𝑙𝑛

𝑆− − 2;

10: else if 𝑟𝑎𝑛𝑑𝑜𝑚1 ∈ [𝜀𝑆𝐴 + 𝜀𝑆𝐵, 𝜀𝑆𝐴 + 𝜀𝑆𝐵 + 𝜀𝑆𝐶] then

11: 𝛿𝑙𝑛
𝑆+ = 𝛿𝑙𝑛

𝑆−;

12: else if 𝑟𝑎𝑛𝑑𝑜𝑚1 ∈ [𝜀𝑆𝐴 + 𝜀𝑆𝐵 + 𝜀𝑆𝐶 , 𝜀𝑆𝐴 + 𝜀𝑆𝐵 + 𝜀𝑆𝐶 + 𝜀𝑆𝐷] then

13: 𝛿𝑙𝑛
𝑆+ = 𝛿𝑙𝑛

𝑆− + 1;

14: else

15: 𝛿𝑙𝑛
𝑆+ = 𝑛𝑢𝑙𝑙;

16: sort the values of 𝛿𝑙𝑛
𝑆+ over index n in ascending order so that 𝛿𝑙𝑛

𝑆+ ≤ 𝛿𝑙,𝑛+1
𝑆+ and all the null values are

moved to the larger end of n;

17: find the smallest index n’ such that 𝛿𝑙𝑛′
𝑆+ = 𝑛𝑢𝑙𝑙;

18: sample random2 from a discrete uniform distribution of {newA, newA+1,…, newB};

19: 𝛿𝑙𝑛′
𝑆+ = 𝑟𝑎𝑛𝑑𝑜𝑚2;

Note. The availability profiles of vessels rented in short-term mode are cluster-specific. For each cluster l, we (1) remove the
vessels that were reserved in the previous period (lines 2-3); (2) update the times when vessels become available (lines 4-15);
(3) sort those times in ascending order (line 16); and (4) generate new availability profile (lines 17-19). In line 2, 𝑛𝑙𝑎𝑠𝑡𝑙 is the
number of trips in cluster l reserved in the last period. Parameters 𝜀𝑆𝐴, 𝜀𝑆𝐵, 𝜀𝑆𝐶 , 𝜀𝑆𝐷 denote the probability that the time a
vessel becomes available remains unchanged, decreases by 1 period, increases by 1 period, and increases by 2 periods,
respectively. For example, in the case that the time a vessel becomes available is unchanged, the new 𝛿𝑙𝑛

𝑆 is the old 𝛿𝑙𝑛
𝑆 minus

one as in line 7, because the horizon has been rolled forward by one day. It is also possible that a previously available vessel is
reserved by another party, and thus becomes unavailable, as shown in line 15. In the case study, 𝜀𝑆𝐴 = 0.75, 𝜀𝑆𝐵 = 0.05, 𝜀𝑆𝐶 =
0.05, 𝜀𝑆𝐷 = 0.05, 𝑛𝑒𝑤𝐴 = 9, 𝑛𝑒𝑤𝐵 = 12.

Algorithm 4.3. Check availability of vessels in short-term mode.

1: for l

2: ncurrent = 0;

3: for 𝜆𝑆𝐴 ≤ 𝑡 ≤ 𝜆𝑆𝐵

4: for (𝑗, 𝑗′) ∈ 𝐀𝑙\𝐀𝑡
𝑅: 𝑊𝑗𝑗′𝑡

𝑆 = 1

5: ncurrent = ncurrent +1;

6: if 𝑡 < 𝛿𝑙,𝑛𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑆+ then

7: resolve = yes;

8: break;

Note. The availability of vessels rented in short-term mode is checked for each cluster; if some desired vessels are not
available, resolve returns yes.

202

Algorithm 4.4. Update parameters due to trip delays.

1: for 𝑖, 𝑗, 𝑡 > 1: �̂�𝑖,𝑣𝑐,𝑗𝑡
𝐿− = 1

2: sample random from a continuous uniform distribution of interval [0,1];

3: if 𝑟𝑎𝑛𝑑𝑜𝑚 ∈ [0, 𝜀𝐷𝐼1] then

4: �̂�𝑖,𝑣𝑐,𝑗,𝑡+1
𝐿+ = 1;�̂�𝑖,𝑣𝑐,𝑗𝑡

𝐿+ =0;

5: else if 𝑟𝑎𝑛𝑑𝑜𝑚 ∈ [𝜀𝐷𝐼1, 𝜀𝐷𝐼1 + 𝜀𝐷𝐼2] then

6: �̂�𝑖,𝑣𝑐,𝑗,𝑡+2
𝐿+ = 1; �̂�𝑖,𝑣𝑐,𝑗𝑡

𝐿+ =0;

7: for 𝑗, 𝑗′, 𝑡 > 1: �̂�𝑗𝑗′𝑡
𝑆− = 1

8: sample random from a continuous uniform distribution of interval [0,1];

9: if 𝑟𝑎𝑛𝑑𝑜𝑚 ∈ [0, 𝜀𝐷𝐼1] then

10: �̂�𝑗𝑗′,𝑡+1
𝑆+ = 1; �̂�𝑗𝑗′𝑡

𝑆+ =0;

11: else if 𝑟𝑎𝑛𝑑𝑜𝑚 ∈ [𝜀𝐷𝐼1, 𝜀𝐷𝐼1 + 𝜀𝐷𝐼2]then

12: �̂�𝑗𝑗′,𝑡+2
𝑆+ = 1; �̂�𝑗𝑗′𝑡

𝑆+ =0;

13: for 𝑖, 𝑗, 𝑡 > 1: �̂�𝑖𝑗𝑡
𝐿− = 1

14: sample random from a continuous uniform distribution of interval [0,1];

15: if 𝑟𝑎𝑛𝑑𝑜𝑚 ∈ [0, 𝜀𝐷𝑂1] then

16: �̂�𝑖𝑗𝑚,𝑡+1
𝐿+ = �̂�𝑖𝑗𝑚𝑡

𝐿− ; �̂�𝑖𝑗𝑚𝑡
𝐿+ = 0; �̂�𝑖𝑗,𝑡+1

𝐿+ = 1; �̂�𝑖𝑗𝑡
𝐿+ = 0;

17: else if 𝑟𝑎𝑛𝑑𝑜𝑚 ∈ [𝜀𝐷𝑂1, 𝜀𝐷𝑂1 + 𝜀𝐷𝑂2]then

18: �̂�𝑖𝑗𝑚,𝑡+2
𝐿+ = �̂�𝑖𝑗𝑚𝑡

𝐿− ; �̂�𝑖𝑗𝑚𝑡
𝐿+ = 0; �̂�𝑖𝑗,𝑡+2

𝐿+ = 1; �̂�𝑖𝑗𝑡
𝐿+ = 0;

19: for 𝑗, 𝑗′, 𝑡 > 1: ∑ �̂�𝑗𝑗′𝑚𝑡
𝑆−

𝑚 > 0

20: sample random from a continuous uniform distribution of interval [0,1];

21: if 𝑟𝑎𝑛𝑑𝑜𝑚 ∈ [0, 𝜀𝐷𝑂1] then

22: �̂�𝑗𝑗′𝑚,𝑡+1
𝑆+ = �̂�𝑗𝑗′𝑚𝑡

𝑆− ; �̂�𝑗𝑗′𝑚𝑡
𝑆+ = 0;

23: else if 𝑟𝑎𝑛𝑑𝑜𝑚 ∈ [𝜀𝐷𝑂1, 𝜀𝐷𝑂1 + 𝜀𝐷𝑂2]then

24: �̂�𝑗𝑗′𝑚,𝑡+2
𝑆+ = �̂�𝑗𝑗′𝑚𝑡

𝑆− ; �̂�𝑗𝑗′𝑚𝑡
𝑆+ = 0;

25: for 𝑖, 𝑗 ≠ 𝑣𝑐, 𝑗′: 𝑊𝑖𝑗𝑗′1
𝐿 = 1

26: sample random from a continuous uniform distribution of interval [0,1];

27: if 𝑟𝑎𝑛𝑑𝑜𝑚 ∈ [0, 𝜀𝐷𝑇1] then

28: �̂�𝑖𝑗′𝑚,𝜏
𝑗𝑗′+2

𝐿+ = 𝐹𝑖𝑗𝑗′𝑚1
𝐿 ; �̂�𝑖𝑗′,𝜏

𝑗𝑗′+2
𝐿+ = 1;

29: else if 𝑟𝑎𝑛𝑑𝑜𝑚 ∈ [𝜀𝐷𝑇1, 𝜀𝐷𝑇1 + 𝜀𝐷𝑇2]then

30: �̂�𝑖𝑗′𝑚,𝜏
𝑗𝑗′+3

𝐿+ = 𝐹𝑖𝑗𝑗′𝑚1
𝐿 ; �̂�𝑖𝑗′,𝜏

𝑗𝑗′+3
𝐿+ = 1;

31: else

32: �̂�𝑖𝑗′𝑚,𝜏
𝑗𝑗′+1

𝐿+ = 𝐹𝑖𝑗𝑗′𝑚1
𝐿 ; �̂�𝑖𝑗′,𝜏

𝑗𝑗′+1
𝐿+ = 1;

33: for 𝑗, 𝑗′: 𝑊𝑗𝑗′1
𝑆 = 1

34: sample random from a continuous uniform distribution of interval [0,1];

35: if 𝑟𝑎𝑛𝑑𝑜𝑚 ∈ [0, 𝜀𝐷𝑇1] then

36: �̂�𝑗𝑗′𝑚,𝜏
𝑗𝑗′+2

𝑆+ = 𝐹𝑗𝑗′𝑚1
𝑆 ;

37: else if 𝑟𝑎𝑛𝑑𝑜𝑚 ∈ [𝜀𝐷𝑇1, 𝜀𝐷𝑇1 + 𝜀𝐷𝑇2]then

38: �̂�𝑗𝑗′𝑚,𝜏
𝑗𝑗′+3

𝑆+ = 𝐹𝑗𝑗′𝑚1
𝑆 ;

39: else

203

40: �̂�𝑗𝑗′𝑚,𝜏
𝑗𝑗′+1

𝑆+ = 𝐹𝑗𝑗′𝑚1
𝑆 ;

Note. There are three types of trip delays: (1) a reserved vessel that is yet to arrive can be late for 1 period with a probability
of 𝜀𝐷𝐼1 or 2 periods with a probability 𝜀𝐷𝐼2 (lines 1-6 and 7-12 respectively for long- and short-term mode); (2) an on-going
trip can have a delay of 1/2 periods with a probability 𝜀𝐷𝑂1/𝜀𝐷𝑂2 (lines 13-18 and 19-24 for long- and short-term mode,
respectively); and (3) a pick-up/delivery can be 1/2 periods longer with a probability 𝜀𝐷𝑇1/𝜀𝐷𝑇2 (lines 25-32,33-40
respectively for long- and short-term mode). Note that even though the probability of delay at each time period does not
depend on trip length, longer trips tend to have larger delays, because they have more time periods during which delays can
be observed. In the case study, 𝜀𝐷𝐼1 = 0.15, 𝜀𝐷𝐼2 = 0.05, 𝜀𝐷𝑂1 = 0.08, 𝜀𝐷𝑂2 = 0.02, 𝜀𝐷𝑇1 = 0.15, 𝜀𝐷𝑇2 = 0.05.

Algorithm 4.5. Update pick-up windows.

1: for 𝑗 ∈ 𝐉𝑇𝑃, 𝑘 ∈ 𝐊𝑗: 𝜎𝑗𝑘
𝑂𝑆− = 𝜆𝑃𝑈 and 𝜎𝑗𝑘

𝑂𝐸− − 𝜎𝑗𝑘
𝑂𝑆− = 10

2: sample random from a discrete uniform distribution of {-newC, -newC+1,…, newC};

3: 𝜎𝑗𝑘
𝑂𝑆+ = 𝜎𝑗𝑘

𝑂𝑆− + 𝑟𝑎𝑛𝑑𝑜𝑚1;

4: sample random from a discrete uniform distribution of {newD, newD+1,…, newE};

5: 𝜎𝑗𝑘
𝑂𝐸+ = 𝜎𝑗𝑘

𝑂𝑆+ + 𝑟𝑎𝑛𝑑𝑜𝑚2;

6: update 𝜃𝑗𝑘𝑡 according to equation (4.22);

Note. For pick-up windows whose estimated start time is 𝑡 = 𝜆𝑃𝑈 , the actual start time and window length are specified.
Parameter newC is the maximum adjustment of the start time; newD/newE is the shortest/longest window length. In the case
study, 𝑛𝑒𝑤𝐶 = 3, 𝑛𝑒𝑤𝐷 = 2, 𝑛𝑒𝑤𝐸 = 3.

Algorithm 4.6. Update initial inventory.

1: for 𝑗 ∈ 𝐉𝑂𝑃⋃𝐉𝐶

2: sample random from a normal distribution 𝒩(0, 𝜎𝐴𝐹);

3: �̂�𝑗𝑚0
+ = 𝐿𝑗𝑚1 + 𝑟𝑎𝑛𝑑𝑜𝑚 ⋅ 𝜌𝑗𝑚1

− ;

Note. The real-time initial inventory level is updated using a normal distribution. The consumption/production rate in the
last period is included in 𝐿𝑗𝑚1. In the case study, 𝜎𝐴𝐹 = 0.05.

Algorithm 4.7. Update forecast consumption/production rate.

1: for 𝑗 ∈ 𝐉𝑂𝑃⋃𝐉𝐶 , 𝑡 > 1

2: sample random from a normal distribution 𝒩(0, 𝜎𝐹𝐹);

3: 𝜌𝑗𝑚𝑡
+ = (1 + 𝑟𝑎𝑛𝑑𝑜𝑚) ⋅ 𝜌𝑗𝑚𝑡

− ;

Note. Consumption/production forecast rate are updated using a normal distribution. In the case study, 𝜎𝐹𝐹 = 0.05.

204

Algorithm 4.8. Fix variables according to decisions made previously.

1: for 𝑖, 𝑗, 𝑡 < 𝜆𝐿𝑅

2: fix 𝑊𝑖𝑗,𝑣𝑐,𝑡
𝐿 to �̂�𝑖𝑗,𝑣𝑐,𝑡

𝐿+ ;

3: for 𝑖, 𝑗, 𝑡 < 𝛿𝐿𝐸;

4: fix 𝑊𝑖.𝑣𝑐.𝑗𝑡
𝐿 to �̂�𝑖,𝑣𝑐,𝑗𝑡

𝐿+ ;

5: for 𝑗, 𝑗′, 𝑡 < 𝜆𝑆𝐴

6: fix 𝑊𝑗𝑗′𝑡
𝑆 to �̂�𝑗𝑗′𝑡

𝑆+ ;

7: for 𝑗, 𝑗′, 𝜆𝑆𝐴 ≤ 𝑡 ≤ 𝜆𝑆𝐵 : �̂�𝑗𝑗′𝑡
𝑆+ = 1

8: fix 𝑊𝑗𝑗′𝑡
𝑆 to �̂�𝑗𝑗′𝑡

𝑆+ ;

Note. Variables related to three types of decisions are fixed. First, the vessel company should be notified 𝜆𝐿𝑅 periods before
returning a long-term rental (lines 1-2). Second, long-term renting decisions that were made previously are fixed (lines 3-4);
𝛿𝐿𝐸 is the earliest time when a vessel in long-term mode becomes available (updated in lines 20-23 in Algorithm 4.1). Finally,
short-term renting decisions are fixed (lines 5-8). In the case study, 𝜆𝐿𝑅 = 15.

Algorithm 4.9. The procedure to roll the horizon one step forward.

1: if resolve = no then

2: for 𝑖, 𝑗, 𝜆𝐿𝐴 ≤ 𝑡 ≤ 𝜆𝐿𝐵: 𝑊𝑖,𝑣𝑐,𝑗𝑡
𝐿 = 1

3: �̂�𝑖,𝑣𝑐,𝑗𝑡
𝐿+ = 𝑊𝑖,𝑣𝑐,𝑗𝑡

𝐿 ;

4: else

5: for 𝑖, 𝑗, 𝜆𝐿𝐴 ≤ 𝑡 ≤ 𝛿𝑛𝑎𝑚𝑥
𝐿 : 𝑊𝑖,𝑣𝑐,𝑗𝑡

𝐿 = 1

6: �̂�𝑖,𝑣𝑐,𝑗𝑡
𝐿+ = 𝑊𝑖,𝑣𝑐,𝑗𝑡

𝐿 ;

7: for 𝑗, 𝑗′, 𝜆𝑆𝐴 ≤ 𝑡 ≤ 𝜆𝑆𝐵 : 𝑊𝑗𝑗′𝑡
𝑆 = 1

8: �̂�𝑗𝑗′𝑡
𝑆+ = 𝑊𝑗𝑗′𝑡

𝑆 ;

9: for 𝑖, 𝑗

10: �̂�
𝑖𝑗,𝑣𝑐,𝜆𝐿𝑅
𝐿+ = 𝑊

𝑖𝑗,𝑣𝑐,𝜆𝐿𝑅
𝐿 ;

11: 𝐈𝑅 = {𝑖| ∑ �̂�𝑖,𝑣𝑐,𝑗𝑡
𝐿+

𝑗,𝑡≤𝜆𝐿𝐵 = 1};

12: for 𝑡 ≤ 𝜆𝑆𝐵

13: 𝐀𝑡
𝑅 = {(𝑗, 𝑗′)|�̂�𝑗𝑗′𝑡

𝑆+ = 1};

14: 𝐶1(𝑑) = 𝐶1
𝑀𝐻 + 𝐶1

𝑂𝐹 + 𝐶1
𝑈𝐹 + 𝐶1

𝐹𝑇 + 𝐶1
𝑉𝑇 + 𝐶1

𝐹𝐿 + 𝐶1
𝐸𝐿 + 𝐶1

𝑆;

15: update parameters �̂�𝑖𝑗𝑗′𝑡
𝐿+ , �̂�𝑗𝑗′𝑡

𝑆+ , �̂�𝑖𝑗𝑡
𝐿+, �̂�𝑖𝑗𝑚𝑡

𝐿+ , �̂�𝑗′𝑗𝑚𝑡
𝑆+ due to trip delays by Algorithm 4.4;

16: update pick-up windows 𝜎𝑗𝑘
𝑂𝑆+, 𝜎𝑗𝑘

𝑂𝐸+, 𝜃𝑗𝑘𝑡
+ by Algorithm 4.5;

17: update initial inventory levels �̂�𝑗𝑚0
+ by Algorithm 4.6;

18: update forecast consumption/production rate 𝜌𝑗𝑚𝑡
+ by Algorithm 4.7;

19: calculate how many periods vessel i has been rented for, and update 𝜒𝑖𝑡;

20: if resolve = no then

21: 𝛿𝐿𝐸+ = max(𝛿𝐿𝐸− − 1, 𝜆𝐿𝐴) ;

22: else

23: 𝛿𝐿𝐸+ = max(𝛿𝑛𝑎𝑚𝑥
𝐿 − 1, 𝜆𝐿𝐴).

24: roll horizon one period forward by modifying index t for all related parameters (lines 25-26);

25: for i, j, j’, t

26: �̂�𝑖𝑗𝑗′𝑡
𝐿+ = �̂�𝑖𝑗𝑗′𝑡+1

𝐿+ (Similarly for �̂�𝑗𝑗′𝑡
𝑆+ , �̂�𝑖𝑗𝑡

𝐿+, �̂�𝑖𝑗𝑚𝑡
𝐿+ , �̂�𝑗𝑗′𝑚𝑡

𝑆+ , 𝜃𝑗𝑘𝑡
+ , 𝜌𝑗𝑚𝑡

+);

27: get the new information of consumption/production rate and orders at 𝑡 = 𝜂;

205

28: 𝑑 = 𝑑 + 1;

Note. In the algorithm, (1) the new long-/short-term renting and long-term returning decisions are updated (lines 1-10); (2)
the reserved vessels/trips are updated (lines 11-13); (3) the implementation cost for the current period is recorded (line 14);
and (4) all parameters (including the stochastic parameters) are updated (lines 15-28).

Algorithm 5.1. Algorithm to obtain region 𝐒F.

1: for 𝑚 ∈ 𝐌
2: define 𝑚𝑖𝑛𝑚, 𝑚𝑎𝑥𝑚;
3: 𝑆𝑚 = 𝑚𝑖𝑛𝑚;
3: 𝑒𝑛𝑑𝐹𝑙𝑎𝑔 = 0; 𝑐ℎ𝑎𝑛𝑔𝑒𝐹𝑙𝑎𝑔 = 0; 𝐒F = ∅;
4: while 𝑒𝑛𝑑𝐹𝑙𝑎𝑔 = 0
5: if [𝑆𝑚1, 𝑆𝑚2, … , 𝑆𝑚|𝐌|]

T ∉ 𝐒F

6: run model MF;
7: if model MF is feasible

8: 𝐒F = 𝐒F ∪ {[𝑆𝑚1
′ , 𝑆𝑚2

′ , … , 𝑆𝑚|𝐌|
′]

T
| 𝑆𝑚

′ ≥ 𝑆𝑚, ∀𝑚}

9: for 𝑚 ∈ 𝐌: 𝑐ℎ𝑎𝑛𝑔𝑒𝐹𝑙𝑎𝑔 = 0
10: if 𝑆𝑚 < 𝑚𝑎𝑥𝑚
11: 𝑆𝑚 = 𝑆𝑚 + 𝜀;
12: 𝑐ℎ𝑎𝑛𝑔𝑒𝐹𝑙𝑎𝑔 = 1;
13: else
14: 𝑆𝑚 = 𝑚𝑖𝑛𝑚;
15: if 𝑐ℎ𝑎𝑛𝑔𝑒𝐹𝑙𝑎𝑔 = 0
16: 𝑒𝑛𝑑𝐹𝑙𝑎𝑔 = 1;
17: 𝑐ℎ𝑎𝑛𝑔𝑒𝐹𝑙𝑎𝑔 = 0;
Note. 𝑚𝑖𝑛𝑚, 𝑚𝑎𝑥𝑚 denote the range of 𝑆𝑚; 𝜀 denotes the resolution of the discretization.

Algorithm 6.1. Procedure to generate the parameters and sets used in (SIIT).

1: for 𝑗, 𝑖 ∈ 𝐈𝑗

2: 𝑛 = 1; 𝜇𝑖𝑗1 = min𝑖′≠𝑖 𝜏𝑖′𝑗 ; stopflag = 0;

3: while stopflag = 0

4: 𝐈𝐀𝑖𝑗𝑛 = {𝑖′|𝑖′ ≠ 𝑖, 𝜇𝑖𝑗𝑛 ≤ 𝜎𝑖′𝑖𝑗}; 𝐈𝐁𝑖𝑗𝑛 = {𝑖′|𝑖′ ≠ 𝑖, 𝜇𝑖𝑗𝑛 > 𝜎𝑖′𝑖𝑗};

5: for 𝑖′ ∈ 𝐈𝐀𝑖𝑗𝑛

6: 𝜔𝑎𝑖𝑗𝑛𝑖′ = 𝜏𝑖′𝑗 + 𝜇𝑖𝑗𝑛 − 1; 𝜔𝑏𝑖𝑗𝑛𝑖′ = 𝜇𝑖𝑗𝑛;

7: for 𝑖′ ∈ 𝐈𝐁𝑖𝑗𝑛

8: 𝜔𝑎𝑖𝑗𝑛𝑖′ = 𝜏𝑖′𝑗 + 𝜎𝑖′𝑖𝑗 − 1;

9: 𝜔𝑏𝑖𝑗𝑛𝑖′ = max {𝜎𝑖′𝑖𝑗 , 𝜇𝑖𝑗𝑛 − min𝑖′′∈𝐈𝐀𝑖𝑗𝑛
𝜎𝑖′′𝑖′𝑗 , max𝑖′′∈𝐈𝐁𝑖𝑗𝑛\{𝑖′}(𝜎𝑖′′𝑖𝑗 − 𝜎𝑖′′𝑖′𝑗)};

10: if 𝜇𝑖𝑗𝑛 ≥ max𝑖′≠𝑖 𝜎𝑖′𝑖𝑗

11: stopflag = 1; set 𝐍𝑖𝑗 = {1, … , 𝑛};

12: else

13: 𝜇𝑖𝑗,𝑛+1 = min {𝜇𝑖𝑗𝑛 + min𝑖′:𝜇𝑖𝑗𝑛<𝜎
𝑖′𝑖𝑗

𝜏𝑖′𝑗 , max𝑖′≠𝑖 𝜎𝑖′𝑖𝑗} ; 𝑛 = 𝑛 + 1;

206

Bibliography

Adulyasak, Y.; Cordeau, J.F.; Jans, R. Benders decomposition for production routing under demand
uncertainty. Oper. Res. 2015, 63(4), 851-867.

Agra, A.; Christiansen, M.; Delgado, A. Discrete time and continuous time formulations for a short
sea inventory routing problem Optim. Eng. 2016, doi:10.1007/s11081-016-9319-0.

Ahujia, R.K.; Magnanti, T.L.; Orlin, J.B. Network flows: theory, algorithms, and applications; Prentice
Hall: Eaglewood Cliffs, NJ, 1993.

Al-Ameri, T.A.; Shah, N.; Papageorgiou, L.G. Optimization of vendor-managed inventory systems in a
rolling horizon framework. Comput. Ind. Eng. 2008, 54(4), 1019-1047.

Al-Khayyal, F.; Hwang, S.J. Inventory constrained maritime routing and scheduling for multi-
commodity liquid bulk, part I: Applications and model. Eur. J. Oper. Res. 2007, 176(1), 106-130.

Andersson, H.; Hoff, A.; Christiansen, M.; Hasle, G.; Løkketangen, A. Industrial aspects and literature
survey: Combined inventory management and routing. Comput. Oper. Res. 2010, 37(9), 1515-
1536.

Archetti, C.; Bertazzi, L.; Laporte, G.; Speranza, M.G. A branch-and-cut algorithm for a vendor-
managed inventory-routing problem. Transport. Sci. 2007, 41(3), 382-391.

Avella, P.; Boccia, M.; Wolsey, L.A. Single-item reformulations for a vendor managed inventory
routing problem: computational experience with benchmark instances. Networks. 2015, 65(2),
129-138.

Aziz, N.A.B.; Moin, N.H. Genetic algorithm based approach for the multi product multi period
inventory routing problem. Proceedings of International Conference on Industrial Engineering
and Engineering Management, 2007, 1619-1623

Baita, F.; Ukovich, W.; Pesenti, R.; Favaretto, D. Dynamic routing-and-inventory problems: a review.
Transport. Res. A-Pol. 1998, 32(8), 585-598.

Baker, K.R. An analysis of terminal conditions in rolling schedules. Eur. J. Oper. Res. 1981, 7(4):355-
361.

Balasubramanian, J.; Grossmann, I.E. Scheduling optimization under uncertainty - an alternative
approach. Comput. Chem. Eng. 2003, 27(4), 469-490.

Balasubramanian, J.; Grossmann, I.E. Approximation to multistage stochastic optimization in
multiperiod batch plant scheduling under demand uncertainty. Ind. Eng. Chem. Res. 2004,
43(14), 3695-3713.

Bard, J.F.; Nananukul, N. A branch-and-price algorithm for an integrated production and inventory
routing problem. Comput. Oper. Res. 2010, 37(12), 2202-2217.

Bassett, M.H.; Pekny, J.F.; Reklaitis, G.V. Using detailed scheduling to obtain realistic operating
policies for a batch processing facility. Ind. Eng. Chem. Res. 1997, 36(5), 1717-1726.

Bell, W.J.; Dalberto, L.M.; Fisher, M.L.; Greenfield, A.J.; Jaikumar, R.; Kedia, P.; Mack, R.G.; Prutzman,
P.J. Improving the distribution of industrial gases with an on-line computerized routing and
scheduling optimizer. Interfaces, 1983, 13(6), 4-23.

Bonfill, A.; Bagajewicz, M.; Espuña, A.; Puigjaner, L. Risk management in the scheduling of batch
plants under uncertain market demand. Ind. Eng. Chem. Res. 2004, 43(3), 741-750.

207

Campbell, A.M.; Savelsbergh, M.W.P. A decomposition approach for the inventory-routing problem.
Transport. Sci. 2004, 38(4), 488-502.

Christiansen, M.; Fagerholt, K.; Flatberg, T.; Haugen, O.; Kloster, O.; Lund, E.H. Maritime inventory
routing with multiple products: A case study from the cement industry. Eur. J. Oper. Res. 2011,
208(1), 86-94.

Coelho, L.C.; Cordeau, J.F.; Laporte, G. Consistency in multi-vehicle inventory-routing. Transport. Res.
C-EMER. 2012, 24, 270-287.

Coelho, L.C.; Cordeau, J.F.; Laporte, G. Thirty years of inventory-routing. Transport. Sci. 2014, 48(1),
1-19.

Coelho, L.C.; Laporte, G. An optimised target-level inventory replenishment policy for vendor-
managed inventory systems. Int. J. Prod. Res. 2015, 53(12), 3651-3660.

Cui, J.; Engell, S. Medium-term planning of a multiproduct batch plant under evolving multi-period
multi-uncertainty by means of a moving horizon strategy. Comput. Chem. Eng. 2010, 34(5), 598-
619.

Desaulniers, G.; Rakke, J. G.; Coelho, L. C. A branch-price-and-cut algorithm for the inventory routing
problem. Transport. Sci. 2016, 50(3), 1060-1076.

Disney, S.M.; Potter, A.T.; Gardner, B.M. The impact of vendor managed inventory on transport
operations. Transport. Res. E-Log. 2003, 39(5), 363-380.

Dondo, R.; Mendez, C.A.; Cerda; J. Optimal management of logistic activities in multi-site
environments. Comput. Chem. Eng. 2008, 32 (11), 2547-2569.

Dondo, R.; Mendez, C.A.; Cerda; J. Managing distribution in supply chain networks. Ind. Eng. Chem.
Res. 2009, 48 (22), 9961-9978.

Dong, Y.; Pinto, J.M.; Sundaramoorthy, A.; Maravelias, C.T. MIP model for inventory routing in
industrial gases supply chain. Ind. Eng. Chem. Res. 2014, 53(44), 17214-17225.

Dong, Y.; Maravelias, C.T.; Pinto, J.M.; Sundaramoorthy, A. Solution Methods for Vehicle-based
Inventory Routing Problems. Comput. Chem. Eng. 2017, doi: 10.1016/j.compchemeng.2017.02.
036.

Dong, Y.; Maravelias, C.T.; Jerome, N.F. Reoptimization Framework and Policy Analysis for Maritime
Inventory Routing under Uncertainty. Submitted.

Dong, Y.; Maravelias, C.T. Terminal Constraints on Inventory Levels for Online Scheduling. In
preparation.

Drexl A.; Kimms A. Lot sizing and scheduling—survey and extensions. Eur. J. Oper. Res. 1997,
99(2):221-235.

Engineer, F.G.; Furman, K.C.; Nemhauser, G.L.; Savelsbergh, M.W.; Song, J.H. A branch-price-and-cut
algorithm for single–product maritime inventory routing. Oper. Res. 2012, 60 (1), 106-122.

Eppen, G.D.; Martin, R.K. Determining safety stock in the presence of stochastic lead time and
demand. Manage. Sci. 1988, 34(11), 1380-1390.

Gaur, V.; Fisher, M.L. A periodic inventory routing problem at a supermarket chain. Oper. Res. 2004,
52(6), 813-822.

208

Glankwamdee, W.; Linderoth, J.; Shen J.; Connard, P.; Hutton, J. Combining optimization and
simulation for strategic and operational industrial gas production and distribution. Comput.
Chem. Eng. 2008, 32 (11), 2536-2546.

Goel, A. Vehicle scheduling and routing with drivers’ working hours. Transport. Sci. 2009, 43(1), 17-
26.

Goel, A. The minimum duration truck driver scheduling problem. EURO. J. Transp. Logist. 2012, 1(4),
285-306.

Gounaris, C.E.; Wiesemann, W.; Floudas, C.A. The robust capacitated vehicle routing problem under
demand uncertainty. Oper. Res. 2013, 61(3), 677-693.

Grønhaug, R.; Christiansen, M.; Desaulniers, G.; Descrosiers,J. A branch-and-price method for a
liquefied natural gas inventory routing problem. Transport. Sci. 2010, 44(3), 400-415.

Gupta, D.; Maravelias, C.T. On deterministic online scheduling: major considerations, paradoxes and
remedies. Comput. Chem. Eng. 2016, 94, 312-330.

Gupta, D.; Maravelias, C.T.; Wassick, J.M. From rescheduling to online scheduling. Chem. Eng. Res.
Des. 2016, 116, 83-97.

Harjunkoski, I.; Grossmann, I.E. Decomposition techniques for multistage scheduling problems
using mixed-integer and constraint programming methods. Comput. Chem. Eng. 2002, 26(11),
1533-1552.

Harjunkoski, I.; Maravelias, C.T.; Bongers, P.; Castro, P.M.; Engell, S.; Grossmann, I.E.; Hooker, J.;
Méndez, C.;Sand, G.; Wassick, J. Scope for industrial applications of production scheduling
models and solution methods. Comput. Chem. Eng. 2014, 62, 161-193.

Hewitt, M.; Nemhauser, G.; Savelsbergh, M.; Song, J.H. A branch-and-price guided search approach to
maritime inventory routing. Comput. Oper. Res. 2013, 40(5), 1410-1419.

Hooker, J.N.; Ottosson, G.; Thornsteinsson, E.S.; Kim, H.-J. A Scheme for unifying optimization and
constraint satisfaction methods. Knowl. Eng. Rev. 2000, 15, 11-30.

Janak, S.L.; Lin, X.; Floudas, C.A. A new robust optimization approach for scheduling under
uncertainty: II. Uncertainty with known probability distribution. Comput. Chem. Eng. 2007,
31(3), 171-195.

Jetlund, A.S.; Karimi, I.A. Improving the logistics of multi-compartment chemical tankers. Comput.
Chem. Eng. 2004, 28(8), 1267-1283.

Jiang, Y.; Grossmann, I.E. Alternative mixed-integer linear programming models of a maritime
inventory routing problem. Comput. Chem. Eng. 2015, 77, 147-161.

Karmarkar, U.S.; Schrage, L. The Deterministic Dynamic Product Cycling Problem. Oper. Res. 1985,
33(2): 326-345.

Kelly, J.D.; Zyngier, D. An Improved MILP Modeling of Sequence-Dependent Switchovers for
Discrete-Time Scheduling Problems. Ind. Eng. Chem. Res. 2007, 46(14): 4964-4973.

Kleywegt, A.J.; Nori, V.S.; Savelsbergh, M.W.P. The stochastic inventory routing problem with direct
deliveries. Transport. Sci. 2002, 36(1), 94-118.

Kondili, E.; Pantelides, C.C.; Sargent, R.W.H. A General Algorithm for Short-Term Scheduling of
Batch-Operations. 1. Milp Formulation. Comput. Chem. Eng. 1993, 17: 211-227.

209

Kreipl, S.; Pinedo, M. Planning and scheduling in supply chains: an overview of issues in practice.
Prod. Oper. Manag. 2004, 13(1), 77-92.

Laporte, G.; Nobert, Y; Taillefer, S. Solving a family of multi-depot vehicle routing and location-
routing problems. Transport Sci. 1988, 22(3):161-172.

Laporte, G. Fifty years of vehicle routing. Transport. Sci. 2009, 43 (4), 408-416.

Lappas, N.H.; Gounaris, C.E. Multi-stage adjustable robust optimization for process scheduling
under uncertainty. AIChE J. 2016, 62(5), 1646-1667.

Lei, L.; Liu, S.; Ruszczynski, A.; Park, S. On the integrated production, inventory, and distribution
routing problem. IIE Trans. 2006, 38 (11), 955-970.

Li, Z.; Ierapetritou. Process scheduling under uncertainty: Review and challenges. Comput. Chem.
Eng. 2008a, 32, 715-727.

Li, Z; Ierapetritou, M.G. Robust optimization for process scheduling under uncertainty. Ind. Eng.
Chem. Res. 2008b, 47(12), 4148-4157.

Lima, R.M.; Grossmann, I.E.; Jiao, Y. Long-term scheduling of a single-unit multi-product continuous
process to manufacture high performance glass. Comput. Chem. Eng. 2011, 35(3), 554-574.

Maravelias, C.T. A decomposition framework for the scheduling of single- and multi-stage
processes. Comput. Chem. Eng. 2006, 30(3), 407-420.

Maravelias, C.T. On the combinatorial structure of discrete-time MIP formulations for chemical
production scheduling. Comput. Chem. Eng. 2012a, 38, 204-212.

Maravelias, C.T. General framework and modeling approach classification for chemical production
scheduling. AIChE J. 2012b, 58(6), 1812-1828.

Mayne, D.Q.; Rawlings, J.B.; Rao, C.V.; Scokaert, P.O.M. Constrained model predictive control:
stability and optimality. Automatica .2000, 36(6), 789-814.

Méndez, C.A.; Cerdá, J.; Grossmann, I.E.; Harjunkoski, I; Fahl, M. State-of-the-art review of
optimization methods for short-term scheduling of batch processes. Comput. Chem. Eng. 2006,
30(6), 913-946.

Nagy, G.; Salhi, S. Location-routing: Issues, models and methods. Eur. J. Oper. Res. 2007, 177 (2),
649-672.

Moin, N.H.; Salhi, S. Inventory routing problems: a logistical overview. J. Oper. Res. Soc. 2007, 58(9),
1185-1194.

Moniz, S.; Barbosa-Póvoa, A.P.; de Sousa, J.P. New General Discrete-Time Scheduling Model for
Multipurpose Batch Plants. Ind. Eng. Chem. Res. 2013, 52(48): 17206-17220.

Niakan, F.; Rahimi, M. A multi-objective healthcare inventory routing problem; a fuzzy possibilistic
approach. Transport. Res. E-Log. 2015, 80, 74-94.

Novas, J.M.; Henning, G.P. Reactive scheduling framework based on domain knowledge and
constraint programming. Comput. Chem. Eng. 2010, 34(12), 2129-2148.

Ouelhadj, D.; Petrovic, S. A survey of dynamic scheduling in manufacturing systems. J. Sched. 2009,
12, 417-431.

Papageorgiou, D.J.; Keha, A.B.; Nemhauser, G.L.; Sokol, J. Two-stage decomposition algorithms for
single product maritime inventory routing. INFORMS J. Comput. 2014a, 26(4), 825-847.

210

Papageorgiou, D.J.; Nemhauser, G.L.; Sokol, J.; Cheon, M.S.; Keha, A.B. MIRPLib - A library of
maritime inventory routing problem instances: Survey, core model, and benchmark results. Eur.
J. Oper. Res. 2014b, 235(2), 350-366.

Persson, J.A.; Göthe-Lundgren, M. Shipment planning at oil refineries using column generation and
valid inequalities. Eur. J. Oper. Res. 2005, 163(3), 631-652.

Proth, J.M. Scheduling: New trends in industrial environment. Annu. Rev. Control. 2007, 31(1):157-
166.

Raa, B. Fleet optimization for cyclic inventory routing problems. Int. J. Prod. Econ. 2015, 160, 172-
181.

Rancourt, M.E.; Cordeau, J.F.; Laporte, G. Long-haul vehicle routing and scheduling with working
hour rules. Transport. Sci. 2013, 47(1), 81-107.

Ronen, D. Marine inventory routing: shipments planning. J. Oper. Res. Soc. 2002, 53(1), 108-114.

Sahin, F.; Robinson, E.P.; Gao, L.-L. Master production scheduling policy and rolling schedules in a
two-stage make-to-order supply chain. Int. J. Prod. Econ. 2008, 115(2), 528-541.

Sahinidis, N.V.; Grossmann, I.E. MINLP Model for Cyclic Multiproduct Scheduling on Continuous
Parallel Lines. Comput. Chem. Eng. 1991, 15(2): 85-103.

Sana, S.S.; Goyal, S.K. (Q,r,L) model for stochastic demand with lead-time dependent partial
backlogging. Ann. Oper. Res. 2015, 233(1), 401-410.

Sand, G.; Engell, S.; Märkert, A., Schultz, R.; Schulz, C. Approximation of an ideal online scheduler for
a multiproduct batch plant. Comput. Chem. Eng. 2000, 24(2-7), 361-367.

Savelsbergh, M.; Song, J.H. Inventory routing with continuous moves. Comput. Oper. Res. 2007,
34(6), 1744-1763.

Shah, N.; Pantelides, C.C.; Sargent, R.W.H. Optimal periodic scheduling of multipurpose batch plants.
Ann. Oper. Res. 1993, 42(1), 193-228.

Stadtler, H. Improved rolling schedules for the dynamic single-level lot-sizing problem. Manag. Sci.
2000, 46(2):318-326.

Shen, Z.J.M.; Qi, L. Incorporating inventory and routing costs in strategic location models. Eur. J.
Oper. Res. 2007, 179 (2), 372-389.

Shen, Q.; Chu, F.; Chen, H. A Lagrangian relaxation approach for a multi-mode inventory routing
problem with transshipment in crude oil transportation. Comput. Chem. Eng. 2011, 35(10),
2113-2123.

Singh, T.; Arbogast, J.E.; Neagu, N. An incremental approach using local-search heuristic for
inventory routing problem in industrial gases. Comput. Chem. Eng. 2015, 80, 199-210.

Siswanto, N.; Essam, D.; Sarker, R. Solving the ship inventory routing and scheduling problem with
undedicated compartments. Comput. Ind. Eng. 2011, 61(2), 289-299.

Song, J.H.; Furman, K.C.. A maritime inventory routing problem: Practical approach. Comput. Oper.
Res. 2013, 40(3), 657-665.

Subramanian, K.; Maravelias, C.T.; Rawlings, J.B. A state-space model for chemical production
scheduling. Comput. Chem. Eng. 2012, 47, 97-110.

211

Sundaramoorthy, A.; Maravelias, C.T. Computational Study of Network-Based Mixed-Integer
Programming Approaches for Chemical Production Scheduling. Ind. Eng. Chem. Res. 2011a,
50(9): 5023-5040.

Sundaramoorthy, A.; Maravelias, C.T. A General Framework for Process Scheduling. AIChE J. 2011b,
57(3): 695-710.

Velez, S.; Maravelias C.T. Mixed-Integer Programming Model and Tightening Methods for
Scheduling in General Chemical Production Environments. Ind. Eng. Chem. Res. 2013, 52(9):
3407-3423.

Velez, S. Models and Solution Methods for Chemical Production Scheduling. Doctoral thesis,
University of Wisconsin-Madison, 2014.

Velez, S.; Dong, Y.; Maravelias, C.T. Changeover Formulations for Discrete-Time Mixed-integer
Programming Scheduling Models. Eur. J. Oper Res. 2017, doi: 10.1016/j.ejor.2017.01.004.

Verderame, P.M.; Floudas, C.A. Operational planning framework for multisite production and
distribution networks. Comput. Chem. Eng. 2009, 33 (5), 1036-1050.

Verderame, P.M.; Elia, J.A.; Li, J.; Floudas, C.A. Planning and scheduling under uncertainty: a review
across multiple sectors. Ind. Eng. Chem. Res. 2010, 49(9), 3993-4017.

Vidal, C.J.; Goetschalckx, M. Strategic production-distribution models: A critical review with
emphasis on global supply chain models. Eur. J. Oper. Res. 1997, 98 (1), 1-18.

Vieira, G.; Herrmann, J.W.; Lin, E. Rescheduling manufacturing systems: a framework of strategies,
policies, and methods. J. Sched. 2003, 6, 39-62.

Vin, J.P.; Ierapetritou, M.G. Robust short-term scheduling of multiproduct batch plants under
demand uncertainty. Ind. Eng. Chem. Res. 2001, 40(21), 4543-4554.

Viswanathan, S.; Mathur, K. Integrating routing and inventory decisions in one-warehouse
multiretailer multiproduct distribution systems. Manage. Sci. 1997, 43 (3), 294-312.

Wolsey, L.A. MIP modelling of changeovers in production planning and scheduling problems. Eur. J.
Oper. Res. 1997, 99(1): 154-165.

Wolsey, L. A. Integer Programming. 1998, Wiley: New York, NY.

Wonnacott, T.H.; Wonnacott, R.J. Introductory Statistics for Business and Economics. 1990, John
Wiley & Sons: Toronto, Canada.

You, F.; Grossmann, I.E. Design of responsive supply chains under demand uncertainty. Comput.
Chem. Eng. 2008, 32(12), 3090-3111.

You, F; Pinto, J.M.; Capon, E.; Grossmann, I.E.; Arora, N.; Megan L. Optimal distribution-inventory
planning of industrial gases. I. Fast computational strategies for large-scale problems. Ind. Eng.
Chem. Res. 2011a, 50 (5), 2910-2927.

You, F.; Pinto, J.M.; Grossmann, I.E.; Megan L. Optimal distribution-inventory planning of industrial
gases. II. MINLP models and algorithms for stochastic cases. Ind. Eng. Chem. Res. 2011b, 50 (5),
2928-2945.

Yu, Y.; Chu, F.; Chen, H. A model and algorithm for large scale stochastic inventory routing problem.
Proceedings of Service Systems and Service Management International Conference, 2006, 355–
360.

212

Zhang, Q.; Sundaramoorthy, A.; Grossmann, I.E.; Pinto, J.M. Multiscale production routing in
multicommodity supply chains with complex production facilities. Comput. Oper. Res. 2017, 79,
207-222.

Zentner, M.G.; Pekny, J.F.; Reklaitis, G.V.; Gupta, J.N.D. Practical considerations in using model-based
optimization for the scheduling and planning of batch/semicontinuous processes. J. Proc.
Control 1994, 4(4): 259-280.

