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Abstract

Inventory routing problem (IRP) appears in various chemical industry sectors, in which the
vessel/vehicle routes and the time and amount of material deliveries are decided simultaneously.
Given information about the real-time inventory levels at different nodes in the supply chain (SC),
as well as their consumption rate forecasts, a central decision maker solves the IRP to minimize the
total distribution cost subject to the inventory bounds. Essentially, IRP is the integration of the
vehicle routing problem and the inventory management problem. Solving this integrated problem
can result in significant cost savings. However, IRP is non-trivial to solve, especially for large SCs

with realistic constraints considered.

First, mixed-integer programming (MIP) models are developed to address inventory routing
with realistic features, including both anticipatable and order-only customers, heterogeneous
vehicles, time-varying consumption rates, and driver working and resting time constraints. Valid
inequalities are also presented to tighten the formulation. We also show how this model can be

extended to handle other important restrictions that may appear in practice.

Second, we propose a novel method, which includes a preprocessing algorithm and a
decomposition method, for solving vehicle-based IRPs. The preprocessing algorithm reduces the
problem size by eliminating customers and network arcs that are irrelevant for the current horizon.
The decomposition method divides the problem into two subproblems. The upper level
subproblem considers a simplified vehicle routing problem to minimize the distribution cost while
satisfying minimum demands, which are calculated based on consumption rate, initial inventory
and safety stock. In the lower level, a detailed schedule (considering drivers) is acquired using a
continuous-time MIP model, by adopting the routes selected from the upper level. An iterative
approach is presented based on the upper and lower level subproblems, with the addition of

different types of integer cuts and parameter updates.
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Third, we consider a maritime IRP (MIRP) under uncertainty. For realistic MIRP, new
information (e.g. newly forecasted production/consumption rate) arrives continuously and
disruptive events (e.g., delays due to bad weather) are common. Accordingly, we propose a
reoptimization framework that allows us to: (1) study the impact of different sources of uncertainty
on the closed-loop (i.e., implemented) solution; and (2) study how different policies impact the
closed-loop cost. We show that the closed-loop cost is higher than the open-loop cost (even without
uncertainty), which suggests that the methods to obtain high quality closed-loop solutions have to
be studied. We also show that adopting an effective mix of polices can reduce the distribution cost

greatly.

Finally, we study topics related to IRP, including terminal constraints for online scheduling and
modeling of changeovers. (1) We propose new types of linear terminal constraints on inventory
levels for different network structures. Compared to the traditional approach, the proposed
terminal constraints can lead to better closed-loop solutions in two aspects: they prevent stockout
for all types of networks we studied, and lead to savings on inventory holding cost. (2) We propose
a new type of formulation for sequence-dependent changeovers, which is tighter than previously
proposed formulations. Furthermore, we prove that this type of formulation is facet-defining for a
certain problem. Through computational study of eight types of formulations, we show that tighter

formulations do not always lead to faster solution times.
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Chapter 1

Introduction?

1.1. Inventory Routing

To improve the efficiency of their supply chains (SCs), vendors in a wide range of
manufacturing sectors switch to vendor-managed inventory practices. Vendor-managed inventory
(VMI) refers to an agreement between a vendor and a customer in which the latter allows the
vendor to choose the timing and volume of deliveries, while the former agrees to ensure that the
customer does not run out of product. In a more traditional relationship, a customer decides the
orders, and large inefficiencies can occur as a result of the timing of the orders from different
customers. A switch to a VMI policy has a distinct advantage because the vendor can combine
deliveries to make more efficient use of the resources and can therefore reduce the distribution
cost of its SC. Since distribution costs often represent 30-50% of total operating costs, the
implementation of VMI policies can have a substantial impact (Disney et al., 2003). It can also be to
the advantage of the customers because the vendor can pass some of the savings to the customer,

and the customer no longer has to dedicate resources to the inventory management.

However, executing a VMI policy in an effective way is nontrivial, because it requires the
integration of two components of SC management: inventory control and distribution routing,
which have been dealt with separately in the past. In inventory control, the goal is the
determination of orders in terms of time and amount for each customer, while in distribution

routing, the goal is the generation of routes (and schedules) to satisfy these orders. The integration

1 Some of this chapter is modified from Dong et al., 2014 and Dong et al., 2017.



of the two problems, which can have a significant impact on overall system performance, leads to

the inventory routing problem (IRP), which is at the heart of all VMI policies (Figure 1.1).

Loading p— .
600 units —— Delivering
{1.=15) 23{0 E{.];ts
Delivering o :
250 units # . I I @
(t=18) ‘ =
Delivering l
150 units “

(t=21)

Delivering
200 units
t=25)

Loadjngg

300 units
(=20 _
Delivering
ﬁ 270 units
{t=23)

Figure 1.1. Inventory routing problem under VMI policy with drivers.

IRPs arise in a wide range of manufacturing sectors, including gas, petrochemicals, and
suppliers of supermarkets and department stores (Viswanathan et al., 1997; Gaur and Fisher, 2004;
Moin and Salhi, 2007; Christiansen et al., 2011; Shen et al., 2011; Singh et al,, 2015). Each sector has
its own special characteristics. For example, in the petroleum industry, seagoing vessels with
several products in separate compartments visit multiple production and consumption ports. This
special class of IRP, the so-called maritime inventory routing problem (MIRP), has been studied
extensively in the literature (Jetlunt and Karimi, 2004; Savelsbergh and Song, 2007; Engineer et al.,
2012).In industrial gases and retails, however, the use of trucks instead of ships introduces complex
driver related constraints that are not taken into account in previous models. Furthermore, the
customer consumption rate can vary significantly in a day, and some customers, such as hospitals,
have strict inventory constraints. These are additional restrictions that have not been effectively

modeled in previous approaches.



There are many types of IRPs studied in the literature, which can be categorized in terms of
inventory policy, fleet type, and network structure (Coelho et al, 2014). When customers are
visited by the vessels/trucks, several inventory policies can be adopted: bringing the customer
inventory level to its maximum capacity, to a predefined target level or to any level as long as the
inventory bounds are respected (Coelho and Laporte, 2015). The fleet can be homogeneous or
heterogeneous in terms of capacities (Savelsbergh and Song, 2007; Hewitt et al, 2013). The
network structure is either single-vendor and multi-customer, or multi-vendor and multi-customer.
The former mostly appears in vehicle-based transportation, while the latter often shows up in
MIRPs (Papageorgiou et al., 2014a; Adulyasak et al,, 2015). In general, IRP can include either single-
product or multi-product distribution. In the latter case, dedicated or undedicated compartments

can be required (Jetlund et al., 2004; Al-Khayyal et al., 2007; Siswanto et al,, 2011).

1.2. Industrial Gases Supply Chain under Vendor Managed Inventory Policy

A distribution network consists of plants, customers, storage facilities, trucks (each associated
with a trailer) and drivers. Under VMI, most customer inventories are managed by the vendor, i.e.
the vendor installs storage facilities in customer locations with proper sizes and manages their
replenishments. The vendor proactively monitors the inventories of customers in real time, by
installing communicating units termed Remote Telemetry Units. The vendor can then decide when

and how much to deliver to each customer to satisfy demand.

A fleet of trailers of various capacities are employed in a certain region. The product is carried
on a variety of tanker-trailers, and it is transferred to the storage tank at each customer through
different routes. In this thesis, an arc means the connection between two nodes in the distribution
network. A route means an ordered set of arcs, {a;, a,, ..., a,}, in which the end node of an arc, q;, is

the same as the start node of the following arc a;,; the plant is the start node of the first arc and
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the end node of the last arc. Routes can be broadly classified as: single-customer routes and multi-

customer routes.

In a single-customer route, a trailer departs from the plant, delivers all or most of the product to
a customer, and then directly returns to the plant. These routes are typically for customers with a
storage tank of sufficient capacity to hold the entire volume of the trailer. Occasionally, there are

also emergency deliveries made to customers with smaller capacities, in order to prevent stockouts.

In a multi-customer route, a trailer departs from the plant, delivers the product to multiple
customers, and then returns to the plant. Customers with smaller storage tanks are typically served

on such routes.

Long-term decisions involve the number of tanks to install in each customer location and the
size of each tank (Shen and Qi, 2007; You et al, 2011a; You et al., 2011b). Other long-term decisions
include when and how to install new tanks at customer locations, as well as when and how to
upgrade and downgrade existing tanks (Vidal and Goetschalckx, 1997; Verderame and Floudas,
2010). Short-term distribution decisions include which customers to deliver to each day, when and
how much to deliver, how to combine deliveries into routes, how to fit routes into drivers’
schedules, and which truck or trailer to assign to each route. In this thesis, we consider the short-

term decisions.

1.3. Overview on Modeling Approaches

To address different types of IRPs, different mixed-integer programming (MIP) models have
been proposed. The first MIP model of IRP was introduced 34 years ago (Bell et al., 1983), which
includes binary variables denoting if a vehicle starts a route at a certain time and continuous

variables denoting the corresponding delivery amount to a customer on the route.

For IRP under VM]I, different inventory policies can be adopted. Archetti et al. (2007) modeled

IRPs under three types of policies: order-up-to level policy, maximum level policy and a policy
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without stock upper bounds. These models include binary variables denoting if an arc is used in a
certain time (i.e., if node A is followed directly after node B in the route traveled in time period ¢t); in
essence, they consider two subproblems simultaneously: the lot-sizing problem for each node, and
a vehicle routing problem for each time period. However, these models assume a large fleet with
homogeneous vessels, and the travelling time is not considered (i.e., it is assumed that all routes can
be finished in a single period). Avella et al. (2015) considered a reformulation for similar problems
with constant demand over time. In the reformulation, it is also assumed that the stock capacities
are integer multiples of the demand. IRP has also been modeled in a cyclic approach (Raa, 2015), as
well as using a fuzzy approach with multiple objective functions (Niakan and Rahimi, 2015).
Furthermore, several consistency features have been modeled to achieve smooth operations
(Coelho et al., 2012). Researchers have also proposed methods to address uncertainty (Kleywegt et

al, 2002).

For maritime IRP, most of the MIP models follow a discrete-time approach. In this approach,
there are binary variables denoting if a vessel starts to travel on an arc (from node A to node B) at
time ¢, and continuous variables denoting the loading amount on a vessel when it travels on an arc
(Song and Furman, 2013). Continuous-time models have also been developed by defining multiple
visiting slots for each node (Jiang and Grossmann, 2015; Agra et al., 2016), where constant

consumption and production rate is assumed.

1.4. Overview on Solution Methods

To solve an IRP model more effectively, different solution methods have been proposed. The
solution methods are based on valid inequalities (Persson and Goéthe-Lundgren, 2005; Song and
Furman, 2013), column generation (Grgnhaug et al., 2010; Hewitt et al., 2013; Desaulniers et al.,
2016), Lagrangian decomposition (Yu et al., 2006; Shen et al,, 2011), , and other decomposition-

based algorithms (Jetlund et al., 2004; Campbell and Savelsbergh, 2004). Heuristic based solution
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methods have also been developed for IRP, including genetic algorithms (Aziz and Moin, 2007), and
the emulation of the logic of human planners (Ronen, 2002). The solution methods of IRP have been
reviewed in several papers (Baita et al., 1998; Moin and Salhi, 2007; Andersson et al., 2010; Coelho

etal., 2014; Papageorgiou et al., 2014b).

Campbell and Savelsbergh proposed a decomposition approach (Campbell and Savelsbergh,
2004). In the first phase, they determined which customers to serve on each day and how much to
deliver to them; the decision was made by solving a MIP model, in which binary variables represent
which route are used in each day. In the second phase, they adopted an insertion heuristic for
solving vehicle routing problems with time windows, and constructed feasible vehicle routes and
schedules. The time interval used for the problems in the first phase was one day, while the second

phase considered a model with decision accuracy in terms of minutes.

Shen et al. proposed a Lagrangian relaxation approach for solving an IRP, in which crude oil is
transported from a supply center to multiple customer harbors (Shen et al, 2011). They
reformulated the capacity constraints into a non-linear form (with a maximum operator), and
relaxed the constraints after introducing a set of Lagrange multipliers. They also developed a new
heuristic algorithm to construct a feasible solution, based on the solution of the relaxed problem.

However, their approach cannot guarantee optimality.

Song and Furman considered a MIRP which includes various practical features (Song and
Furman, 2013). They proposed valid inequalities, an algorithm to implement a large neighborhood
search based on a feasible integer solution, and a heuristic method based on solution polishing and

the large neighborhood search.

Desaulniers et al. proposed a branch-price-and-cut algorithm for IRP (Desaulniers et al., 2016).
Four types of valid inequalities were adopted, based on the minimum number of visits per

customer, minimum number of routes per time interval, minimum number of subdeliveries per
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demand, and capacities. Column generation subproblems were solved using an ad hoc labeling

algorithm.

1.5. Topics related to Inventory Routing

First, IRP is related to the traditional vehicle routing problem, in which the customers to serve
and the delivery amounts are given. A lot of research effort has been made to solve different vehicle
routing problems for decades (Laporte et al, 1988; Nagy and Salhi, 2007; Dondo et al., 2008;
Laporte, 2009; Dondo et al., 2009; Gounaris et al., 2013). Considering the rules of drivers, models
and solution methods have been developed for driver scheduling and vehicle routing problems

(Goel, 2009; Goel, 2012; Rancourt et al., 2013).

Second, the integration of IRP and production has also been studied. Lei et al. were among the
first researchers to consider such an integration, and they solved it through a two-phase approach
(Lei et al., 2006). Glankwamdee et al. combined optimization with simulation to address the
production and distribution under demand and product availability uncertainty (Glankwamdee et
al,, 2008). Bard and Nanaukul considered the problem to minimize the production, inventory and
delivery cost simultaneously across various stages of the system, and developed a branch-and-price
framework to solve the underlying MIP model (Bard and Nananukul, 2010). Zhang et al. solved a
problem with multiple production facilities integrated with the inventory routing problem, and
proposed a MIP model that includes production constraints in a fine time grid and vehicle routing
constraints in a coarse grid; an iterative heuristic approach was developed to solve the MIP model,

in which the candidate routes were updated dynamically (Zhang et al., 2017).

Third, how to write the terminal constraints is a research topic closely related to IRP. For both
scheduling problems and IRPs, the optimization of a finite-horizon model to minimize the cost will
push inventories to their lower bounds at the end of horizon. Therefore, such a model can only

satisfy the current demand, and will overlook the consumption in future. Clearly, this situation
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would be suboptimal or even infeasible for the true (infinite-horizon) problem. Thus, we study how

to generate terminal constraints (for scheduling problems) in this thesis.

Fourth, sequence dependent changeover in scheduling are common in the process industries
(e.g., commodity, specialty, and fine chemicals; food and beverage manufacturing; pharmaceutical
manufacturing; consumer goods), where cleaning-in-place, sterilization-in-place, maintenance,
material transfer, and unit setup activities need to be performed between different tasks. If we view
the process tasks as different nodes in the network, the changeover time is the time to travel on the
arc connecting two nodes. This is very similar to inventory routing, in which the time on an arc is
the travel time from one supply chain node to another. Due to the similarity, we also study the

modeling of changeovers in the thesis.
1.6. Thesis Scope

The goal of the thesis is to propose a systematic framework for addressing general IRP
problems. The framework includes MIP models, as well as the associated algorithms and solution
techniques to find a solution in an efficient and accurate fashion. We also want to study how
reoptimization should be implemented for IRP under uncertainty, as well as research topics related

to IRP. More specifically, we aim to

(a) Propose MIP models that handle features and constraints that appear in IRP, especially, driver

constraints.

(b) Develop solution methods that can solve IRP efficiently.

(c) Study how reoptimization should be carried out for IRP.

(d) Study related topics, including terminal constraints and changeovers.

In Chapter 2, we present MIP models to address IRP. The basic model is based on a discrete-

time approach, considering both anticipatable and order-only customers, heterogeneous vehicles,
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and time-varying consumption rates. Valid inequalities are also proposed, as well as the constraints

to account for the working, driving and resting time of drivers.

In Chapter 3, we present solution methods for vehicle-based IRPs. First, we propose a
preprocessing algorithm that reduces the problem size by eliminating customers and network arcs
that are irrelevant for the current horizon. Second, we develop a decomposition method that
divides the problem into two subproblems. The upper level subproblem considers a simplified
vehicle routing problem to minimize the distribution cost while satisfying minimum demands,
which are calculated based on consumption rate, initial inventory and safety stock. In the lower
level, a detailed schedule (considering drivers) is acquired using a continuous-time MIP model, by
adopting the routes selected from the upper level. Finally, an iterative approach based on the upper
and lower levels is presented, including the addition of different types of integer cuts and
parameter updates. Different options of implementing this iterative approach are discussed, and

computational results are presented.

In Chapter 4, we study a MIRP in which shipments between production and consumption nodes
are carried out by a fleet of vessels. We first propose a discrete-time MIP model. Second, we discuss
different sources of uncertainty (including vessel availabilities, trip delays, pick-up window
specifications, and consumption/production rate variations), and how to simulate them a rolling
horizon reoptimization framework. Third, we discuss different policies that impact the quality of
the closed-loop solution (including adjusting reservation windows, restricting minimum number of
rented vessels, adding preference for early pick-up, and negotiating pick-up windows), and identify

the optimal set of policies by using the reoptimization framework.

In Chapter 5, we propose new types of linear terminal constraints on inventory levels for online
scheduling. Compared to the traditional approach, which does not exploit the relationships of

inventory levels among materials, the proposed terminal constraints can lead to better closed-loop
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solutions in two aspects: they prevent stockout for all types of networks we studied, and lead to
savings on inventory holding cost. Theoretically, we prove that for two types of networks, the

proposed terminal constraints can lead to recursive feasibility.

In Chapter 6, we propose a new formulation for sequence-dependent changeovers, and prove
that it is facet-defining for a certain problem. We compare the tightness of this new formulation to
seven formulations that were proposed previously. Through computational study, we show that

tighter formulations do not always lead to faster solution times.

Proofs and algorithms are given in the Appendices. Problem parameters and statistics can be
obtained from the online supporting materials of the articles on which each chapter is based. Each

chapter includes its own notation at the end.
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Chapter 2

Discrete-time MIP Model for IRP under VMI Policy?

Different characteristics and constraints that arise in real-world have to be considered in order
to make the solution of an IRP model implementable in practice. These complexities include: the
coexistence of VMI customers and traditional call-in customers, the time-varying consumption
profile of customers subject to their own production/sale schedules, the travelling time
requirements with specified delivery time windows at customer sites, and last but not least, driver-

related working time requirements, which are vital but often omitted by IRP works.

The goal of this chapter is to develop a MIP model that addresses these aforementioned
challenges. Towards this goal, a discrete-time modeling approach is adopted because it can be
easily modified to account for industrial restrictions. Specifically, we first propose a basic model to
minimize vendor’s cost while generating vehicle routes and delivery schedules. Valid inequalities to
tighten the basic model are also discussed. Then, the assignment of drivers to trucks is modeled so
that resting requirements for drivers are satisfied. Finally, extensions are discussed, including the
modeling of inventory violations, consideration of variable loading/delivering time, additional
maximum driving time constraint, and detailed modeling of drivers at the plant. While initially
inspired by an industrial liquid gas transportation problem, the proposed model can be applied to

other problems in the chemical manufacturing sector.

The chapter is structured as follows. In Section 2.1, we state the problem formally. In Section
2.2, a basic model is proposed based on a discrete-time approach, and then the detailed formulation
and valid inequalities are presented. Section 2.3 discusses the driver-related constraints, and

section 2.4 presents various extensions. Finally, section 2.5 presents an example. We use lowercase

2 This chapter is modified from Dong et al., 2014.
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italic letters for indices, uppercase bold letters for sets, and uppercase italic letters for variables.
Lowercase Greek letters are used for parameters, except for parameters representing the history of
the system and thus its initial state at the current planning horizon, which are denoted by upper
case italic letters with a hat (e.g, Eﬁ)). Subsets are denoted by the letter for the superset and a
superscript; e.g., J4 (anticipatable customers) is a subset of ] (all supply chain nodes). Superscripts

are also used to differentiate variables and parameters.
2.1. Problem Statement

The problem is represented by the following: a set of trucks, i€l; a set of SC nodes, jeJ, which
includes a central plant P, and a subset of customers J¢; and a set of drivers, keK. The objective is to
find the optimal delivery amounts, routes, schedules, and resource allocations (drivers, trucks), to
minimize the distribution cost, subject to the constraints described below. We assume that there is
only one central plant, and the liquid gases are always available at the plant. It is also assumed that
there is only one product in the problem, as different products use different trailers and are

scheduled independently.

Each truck i is associated with a trailer tank of specific capacity y;, and the capacities can
greatly vary. The customers are classified as either anticipatable, jeJ4 (i.e., customers whose
inventory we can forecast and maintain), or order-only customers, jeJ°. Each customer may have

multiple access windows in the horizon: given a windowm € MJAH during which customer j is

AHS/ AHE

accessible, we know the start/end time, o; IoF

im /Ofm of the window.

If traveling from j to j’is infeasible or too expensive, the arc (j,j’) is removed from the set of arcs

A C ] xJ of the SC network. The actual travel time along an arc (j;*) is7;;. The product loading
time at the plant (j=P) and the delivering time at the customers (j€J¢), denoted by S}, are fixed; i.e.,

they do not depend on the loading/delivering amount. Under this assumption, the traversal time of
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each arc can be calculated to include the actual travel time (7;;,) and the fixed loading/delivering
time at the starting node (f;). In section 2.4, we discuss the case in which the loading/delivering

times are not fixed.

An anticipatable customer may have variable consumption rate over the planning horizon (e.g.,
high during the day and low or zero during the night). The usage profile is assumed to be an input
(see discussion in section 2.2.1), calculated from demand forecasts prior to optimization. We are

also given the capacity, { JU, of the tank and the minimum inventory level, { ]L, for each anticipatable

customer jeJ4. At any time, the inventory level is required to be within these two bounds.

We assume that an order-only customer has at most one order placed over the current planning
horizon (this assumption can easily be relaxed by introducing a set of orders, m € M?, placed by

j€J9). An order from customer j is described by the amount, ¢;, and the start/end time of the

os

window ¢/”% /6%, within which the order has to be satisfied.

For each driver, a maximum daily working time should be respected, i.e., a driver cannot work
more than " hours within a 24-hour period. Also, the driver cannot work again until he has
remained off duty for at least { consecutive hours. In most cases, the parameters are: %= 14 hr,

and =10 hr.
2.2. Basic Model

To address the majority of constraints that appear in real instances, such as variable
consumption rate and multiple access hour windows, we choose to adopt a discrete-time approach.
Another advantage of this approach is that it can be easily extended to account for other
characteristics and constraints that the user may want to add. The disadvantages of discrete
modeling of time are that it requires more variables and constraints which, given the size of this

problem, leads to large MIP models and that time-related data (e.g., traveling times, loading times)
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have to be approximated. Nevertheless, we decided to adopt a discrete-time approach because
modeling all types of problem-specific constraints is critical if an automated optimization-based

tool for IRP is to be used in practice.

In this section, we show how to calculate the parameters for the discrete-time approach and we
introduce a dynamic network representation of the problem. We present a MIP model that does not
account for driver constraints and discuss a basic preprocessing algorithm for the initialization of

the system. Valid inequalities are also presented.
2.2.1. Discrete-time Approach

The planning horizon, 7, is partitioned into T time periods teT = {1, 2, ..., T} of uniform length
6 =n/T. The traversal time of arc (j,j') € Ais an approximation of the actual travel time and
loading/delivering time, calculated by 7;;, = [( Tjj + B;) /6]. We round up to ensure feasibility. For
small period length, this approximation is sufficiently accurate, but in some cases the calculation
may have to be modified to be less conservative. Similarly, we calculate maximum working time
and minimum resting time, 8% = [H_W/c?J, Y= [1/7/5]. Each period ¢ starts at point ¢-1, and ends at

point t.

Next, we convert the original data, such as access windows, order delivery windows, and
variable consumption rates, into parameters to be used in our MIP model. The calculation of the
associated parameters can be performed automatically, in seconds, prior to the solution of the MIP
formulation. Note that this approach leads only to changes in parameters, without increasing the

size or complexity of the problem (i.e., the number of variables and constraints remain the same).

The access window time information can be obtained from the start/end time of the windows.

Here, binary parameter a4

it is 1if period t is within one of the accessible windows of customer j. It

is calculated by Eq (2.1), which is essentially equivalent to rounding-up the window start time and

rounding-down the window end time (see Figure 2.1(a)).
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AP —

{1 if3m e M (a5 /5] + 1<t < |of®
jt

jm /5J, vjeJi,t (2.1)
0 otherwise

Similarly for the order-only customers, binary parameter aﬁ is 1, if period t is within the order

delivery window; in Eq (2.2), it is calculated from the original window within which an order
should be satisfied,

. 0S OE
](%:{1 if /8] + 1<t < 07/8] o, (2.2)

a.
0 otherwise

To represent the variable consumption profile, we simply need to calculate a period-specific
consumption rate pj; for each anticipatable customer and each period, which is basically the
integral of the consumption rate from ¢-1 to t. Figure 2.1(b) shows an example. After calculated
from forecasting data prior to each optimization, the period-specific consumption rate is used in the
material balance. Note that parameter pj; can be calculated for any consumption profile function

(linear, piece-wise linear, or any other non-linear).

Drivers can become available or stop working in the course of the planning horizon. The explicit
availability of each driver can be calculated after the individual window bounds are rounded up or
down to ensure feasibility, as presented earlier. Exactly the same approach can be followed for each

truck, using the availability window bounds.

Original windows

AHS AHE
Fm [ Ofm

Approximation

Parameter a2F 10 im0

e >
8 10 12 14 16 18 20

(a) Access window modeling: calculation of parameter aﬁ”'

Original rate |
(units/hr)

Consumption
Pijt

6 8 10 12 14 16 18
(b) Consumption rate modeling: parameter pj,

Figure 2.1. Modeling of access window and variable consumption rate (green rectangles represent access
hours).



t=1
(c) Time-expanded network NT% (d) Representation of route in (b)

(b)Route P-> b -> ¢
(at b during period 3)

Figure 2.2. Network representation of 3-customer supply chain. (a) 3-customer supply chain represented as
dynamic network. (b) An example of an incomplete truck route represented as a path in the dynamic
network. (c) Time-expanded network corresponding to the one-direction (i.e., only with P - b, no b - P)
dynamic network of figure (a). (d) Representation of the truck route in the time-expanded network.

2.2.2. Time Expanded Network Representation

The planning horizon, 7, is partitioned into T time periods teT = {1, 2, ..., T} of uniform length
6 =n/T. The traversal time of arc (j,j') € Ais an approximation of the actual travel time and
loading/delivering time, calculated by 7;;, = [( Tjj + b)) /6]. We round up to ensure feasibility. For
small period length, this approximation is sufficiently accurate, but in some cases the calculation
may have to be modified to be less conservative. Similarly, we calculate maximum working time
and minimum resting time, 8% = [§W/6J, Y= [1/7/5]. Each period ¢ starts at point ¢-1, and ends at

point t.
The basic model includes the following binary variables:

(a) Truck location: )?l-jt is one if truck i is at SC node j during time period t.

(b) Trip start: W;; ;7 is one if truck i starts trip from j to j” at time point t.

ji't
Throughout this chapter, variables whose time index t is used to denote a state or quantity
during a period have an over bar (e.g., X;;;); while variables whose index t is used to denote an

action/state at time point ¢, have no over bar (e.g, W;;;/;). We also use the following non-negative

continuous variables:
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(a) Anticipatable customer inventory: L}-‘} is the inventory level of anticipatable customer j at time
point t. Note that this variable stands for the inventory level of customer and truck load amount,

if the truck is at the customer (see Eq (2.6), (2.7)).

(b) Arc flow: FiA

e is the amount of product loaded in truck i, which starts the trip from node j to

node j’ at time t.

Interestingly, the problem can be represented in terms of a dynamic network: the plant and the
customers are the nodes, the connections between them are the arcs, and the traversal time is equal
to7j;,. A trip is then represented as a path in the dynamic network. A dynamic network NP can be
transformed into a time-expanded network N7E: (1) for each node v of NP, introduce T+1 nodes, vy,
V1, .., vrin NTE, where v; represents node v at time ¢; (2) introduce arc vi > wy in N7E if v — w is an
arcin NP and t’ - t = T,w. A flow along v: = wy in NTE corresponds to a flow along v — w in NP (Ahiujia
et al, 1993; Maravelias, 2012a). The construction of NT¢ and its representation of a route are

illustrated in Figure 2.2. Each truck has its own specific network.
2.2.3. Mathematical Formulation

The planning horizon, 7, is partitioned into T time periods teT = {1, 2, ..., T} of uniform length
6 =n/T. The traversal time of arc (j,j') € Ais an approximation of the actual travel time and
loading/delivering time, calculated by 7;;, = [( Tjj + b)) /6]. We round up to ensure feasibility. For
small period length, this approximation is sufficiently accurate, but in some cases the calculation
may have to be modified to be less conservative. Similarly, we calculate maximum working time
and minimum resting time, 8% = [H_W/c‘)‘J, Y= [1/7/5]. Each period ¢ starts at point ¢-1, and ends at

point t.

Truck location. Variables )?ijt which determine the location of the truck are defined by:
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Xijt = Xij,t—l + Z Wij’j,t—rj,j—l - z Wijj',t—lr Vi, j,t (2.3)
Jr Jj’

where the first sum represents the arrival of truck i at customer j at time ¢-1, and the second sum
represents the departure of truck i from j at ¢t-1. Constraints (2.3) require that truck i is at SC node j
during period ¢, if: (1) it was there during period t-1, and it did not leave at ¢-1; or (2) it arrived at
node j at t-1, from a trip that started earlier, and it did not leave node j immediately. Eq (2.3)
implies that a truck can be at only one node at a certain time, as long as the initial state is feasible
(i.e, at t = 0 the truck is either at a node or traveling along a single arc). Note that variables W,
represent binary flows in the time expanded network for trucks and Eq (2.3) expresses a flow

balance for node j: in this network (see Figure 2.3).

Arc flow. Variables FiA representing the truck loads along the arcs, are bounded by:

ji't’

A
F'jj’t SYLW

4

ijj'e YLt (24)

Fipjr = €yiWipje, Vi j,t (2.5)

Constraints (2.4) bound the arc flow variable Flf}j,t by the truck capacity, if the corresponding

trip start variable W;;/; is 1; otherwise, the arc flow variable is zero. Constraints (2.5) enforce a

ji't
minimum loading amount at the plant to avoid a route with very small deliveries, where ¢ is a

parameter less than 1. When full truck loading is required for each route, € will be set to 1.

Anticipatable customer inventory. The inventory level L}-‘} is defined by:
A _jA A A P _TA
Liy = Ljt—1y + Z Fij’j,t—rjrj - Z Fjjre = pjer Vel t (2.6)
Ny i’

where the first sum represents the incoming flow to customer j at time point t, and the second sum
represents the outgoing flow. Thus, the inventory at point t is the inventory at the previous time

point, plus the incoming flow, minus the outgoing flow, minus the consumption in the last period.

The inventory level is bounded by:
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<if<dV+ Zyi)?ij,uly vje]4t 2.7)
i

}?ibs = }?ibz T(Wippo + Wiapo + Wicp1) = Wippz + Wipaz + Wipez)

Figure 2.3. Truck location modeling, for truck i at customer b during time period 3.

States Variables Inventory
B W, start travel — level .modeled by variable Lf‘l
B X  atacustomer real-time level

----- real-time level after adjustment

i ST I M I i S o Fio__
F.A
g1 g
u ll ]
L J ] L ]

B tw=4 ] 7ec-3 B T =4 P the= 3 =2} Ty =4 = 3

t=4 6 8 10 " t=4 6 8 10 " t=4 6 8 10 "

(a) Truck starts another trip immediately (b) Truck stays idle for one period  (c) Delivery is adjusted earlier for low inventory

Figure 2.4. Inventory modeling for anticipatable customer b, with a truck traveling on a—b—c. The
loading/delivering time is included at the beginning of each traversal time. (a) The truck arrives at b,
immediately makes delivery, and leaves. (b) The truck stays at b, idle for one period before making delivery.
(c) The real-time inventory may go below the minimum level, when the truck is at the customer but has not
made delivery yet. This inventory violation can be avoided by starting the delivery earlier during the idle
period, as shown in the dashed line in (c).

The lower bound is simply the minimum level, while the upper bound is the maximum level
plus a summation of truck capacity multiplied by the truck location variable. Since the inventory
level, Lj-‘t, in Eq (2.6) includes the previous incoming flow for the entire tank, when truck i is at a

customer j, the maximum level should be adjusted accordingly in Eq (2.7). Figure 2.4 illustrates the

way we model deliveries and inventories.

Order satisfaction. For order-only customers, the order satisfaction is described by:



20

A A - 10
Z Fij'jt — Z Fi]-]-lt > (pj, V]G] (28)

ijt ijt
where the difference of the incoming and outgoing flows is greater than the order amount.

Objective function. The objective function minimizes cost,

z =min Z Wi Wijjre (2.9)
ijj't

where w;; ;7 is the travel cost along the (jj’) arc for truck i. When the cost is assumed to be

ijj

proportional to the distance and thus fuel expenses, parameter w;;;» can be replaced by the actual

ijj
travel time 7;;,. The setup costs for each delivery can be easily modeled, by adding a sum of trip

start variables W;; /, to the objective function. Parameters w;;; can also capture driving time, and

ji't ijj

cost, for drivers (since the time between nodes j and j’is known) and setup cost for the head node.
2.2.4. Preprocessing

The proposed model is meant to be used in a rolling horizon fashion, which means that
previously made decisions affect the current state (¢t = 0) of the system. Here, we assume that the
initial state of the system is described by the following: (1) inventory of anticipatable customers
jeW, Li; (2) inventory of trucks, LT, ; (3) truck locations (X;j, = 1if truck i is located at j at t = 0,

Xijo = 0 otherwise); (4) unfinished trips from the previous horizon (W;; s, = 1, if truck i started

ji't

trip from j to j” at ¢ Wijj’t = 0 otherwise); and (5) the arc flow of unfinished trips (Fi‘?j,t, =

o and FA

inventory of truck i starting a trip from j to j” at t). The index t in both VT/UJ ¢ ijj'c parameters

satisfies —Tjj <t<O.

Using the parameters defined above, the initial state of the system is determined as follows. For
the initial location, we set Xijo = XAijO: for all i, j. For a truck on the road at ¢t = 0, parameter Wijj’t is
included in Eq (2.3), by replacing Wjr; ., _; with w;

! ]

J it =1 whent —77; —1 < 0. The same
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is done with arc flow parameter of unfinished trip Fw . in Eq (2.6). Initial inventories are set for all

anticipatable customers via L A+ lOXUo, where the sum represents the truck inventory, if

it is at the customer initially.

In addition, some binary variables need to be fixed. For arcs (j,j') ¢ A, the corresponding trip

start variables WU] ¢ are set to zero, for all j, t. If time period ¢t is not within the access window of

customer j, i.e., aft =0, Xl]t and W;; 1, are set to zero, for all j, . In this way, a truck cannot stay at

jt ijj
a customer outside the customer’s access hours and the customer has no outgoing arcs outside its
access window, and thereby from Eq (2.3), no incoming arcs are allowed. However, this can be
relaxed, if we allow trucks to stay in a customer outside its access window. Variables X; jeand W,
are dealt similarly for the order delivery windows (a9 it = 0). In cases where the access window are
soft, we can also model early/late deliveries with penalties. We expand the start/end time but
include a penalty term for deliveries outside the window. When truck i is not available during time
t, we fix X;p; to one, and other )?ijt to zero. When truck i cannot serve customer j (e.g., due to pump

type or trailer size restrictions), we can simply set Xut, W, W ;jre to zero for all j”and ¢. Finally, if

l] jt’
customer j has to be served first in a route (e.g., hospitals), then we can remove all incoming arcs

except from the plant, which is equivalent to setting W,/ ;, to zero, for all i, Jj' # P, t

2.2.5. Valid Inequalities

The valid inequalities presented below, which tighten the formulation, are based on the idea of

cumulative demand and maximum delivery or loading amount per visit.

For anticipatable customers, the following inequality is valid:

C]L +thjt Zl] —T <t<0FL] jt
2, Wi 2

: , Vje]4 (2.10)
it mln((j —C]-, miaxyl-)
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which enforces that the number of visits to a customer jeJ4 should be above a round-up of a lower
bound, defined on the right-hand side (RHS). The numerator of the lower bound is the minimum
demand in the planning horizon for this customer (minimum level at the end of horizon, plus
consumption, minus initial inventory, and pre-assigned incoming arc flows), while the denominator
is the maximum delivery amount per visit. Additionally, to address the impact of the finite horizon

optimization approach, a terminal minimum level parameter {]-T can be used, replacing ZjL in the

numerator. In this way, the minimum level at the end of horizon is guaranteed to be above the

terminal minimum level.

Similarly, we can write the inequality for each order-only customer, with a small modification,

described in the following equation:

Pj . 10
Z Wij’jt 2 [m_axyi “: VJEI (211)
l

i,j't
where on the RHS, the numerator is modified to the order amount, while the denominator is the

maximum truck capacity.

Such inequalities can also be written for the plant as follows,

L L TA Y., F.o. ) .
Z Wipjt > Z}e]A ((] + 2 Pjt L}O Zl,] ~Tj1St<0 FU ]t) + Z]e]o Qj 2.12)

e maxy;
Ljt i

where the numerator now represents the minimum total demand over all customers in the
planning horizon.

With these valid inequalities, the basic model, M1, consists of Eq (2.3) -(2.12).

Note that valid inequalities in (2.10)-(2.12) have two other versions that can be useful in some
cases. We will just demonstrate them for Eq (2.10), but Eq (2.11) and (2.12) can be rewritten

following the same logic.
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First, if the truck capacities greatly vary, we can write the valid inequality as follows:

D min() Wy =g+ ) pe=To= D Py Vielt g
t

i,jt i,j’,—rj,].st<0

where on the left-hand side (LHS) is the sum of maximum delivery amount multiplied by the
incoming arc binary, with different truck capacities considered. Eq (2.13) is expected to be more

effective in instances with very different truck capacities.

Second, Eq (2.10) is rewritten with respect to the minimum demand up until every time point ¢

as follows,

L TA o
Cj + X<t Pjt' — Ljo - Zi,j’,—‘rﬁ/St’Smin(—l,t—T]-/]-) Fij’jt’

Wijrjer 2 ] U AL
min (¢} ~ ¢}, maxy,

, Vie]4t  (2.14)

where the LHS represents the number of visits to customer j, and the summation of consumption
variables until the current time ¢ is in the numerator on the RHS. Our computational studies show
that Eq (2.14) does not typically make the formulation tighter than Eq (2.10). Similar inequalities to

Eq (2.14) have been successfully implemented to address the maritime IRP.
2.3. Driver Constraints
2.3.1. New Variables

A driver is assigned to a truck, between the start time of checking-in and the finish time of
checking-out. During this assignment, he could be either working or resting away from the plant.
We assume that a driver that has returned to the plant can rest at his base. To model the driver
assignments to trucks and account for working time limits, we need to differentiate between the

states a driver can be at, so the following binary variables are introduced:

(a) Check-in: Y3, is one if driver k starts to check-in with truck i at time point ¢,

(b) Check-out: Y%, is one if driver k finishes the check-out process with truck i at time point t.
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(c) Driver assignment: Y;;, is one if driver k is assigned to truck i/ during time period t.
(d) Working: Y;}¥, is one if driver k, assigned to truck i, is working during time period t.
(e) Resting away: YR, is one if driver k, assigned to truck i, is resting away from the plant during
period t.
(f) Resting at base: VR is one if driver k is resting at his base beyond the minimum  periods,
during period t.

(g) Resting away (truck): Wiﬂ"-’t is one if the driver assigned to truck i starts a rest period after

visiting customer j, at time point ¢.

Briefly, the first two variables represent the check-in/out activities of the driver at a certain
time point, whereas the next four variables represent the states of drivers during a time period. The
last one is introduced to model the truck’s state when its assigned driver is resting at a certain

customer site.
2.3.2. Mathematical Formulation

Truck location. As we will see below, )?l-jt is used to monitor the on-the-clock time of a driver.
This means that if a driver is resting at customer j during period t, variable X; jt should be zero, as

illustrated in Figure 2.5. Thus, when driver engagement is considered, Eq (2.3) should be modified

for each customer site (the plant remains the same), as follows:

— _ —_— R R . .
Xijt = Xije—1 7+ Z Wij’j,t—‘r]./].—l - Z Wijire—r = Wh g + Wi yoq, ViLjEJE (2.15)
Jr j’

where the assigned driver can rest for i) periods at the customer site. Since resting away from the
plant leads to additional cost, the objective should be modified by adding a penalty term

Y1) 05Wis, where w is the driver resting cost for truck i at customer j.
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Also, the upper bound for the inventory level variable L}-‘} needs to be modified to include the

truck capacity, when the driver assigned to the truck is resting at this customer. Thus, Eq (2.7)

needs to be rewritten as follows,

States Variables
B w; jje start travel
B X jt at a customer
restmg 0| wh i start resting

E UI 1, finish resting

amves | depans
Lstays i ‘ | 1 |
=
v I T
goes to rest returns from rest

does not appear at location j while resting

Figure 2.5. Modeling of truck location and driver rest at a customer site.

¢ < <<,+Zyl(xl,t+1+ Z WED, vielh e (2.16)

t'=t—yP+1

Driver-truck engagement. Three set of equations are introduced, to model the driver-truck

engagements as follows,

Vier = Vieor + Vi ooq — Yier—1, Viok,t (2.17)
Yiee = Ve + Vi, Vik,t (2.18)
Z Yiee <1, Vit (2.19)

%

Eq (2.17) enforces that a driver is engaged with truck i during period ¢, if (1) he was engaged in
the last period and did not check out at t-1, or (2) checked in at t-1 and did not check out
immediately. Eq (2.18) enforces that when a driver is engaged with a truck, he can be either
working or resting. Then, Eq (2.19) requires that each truck cannot be assigned to more than one

driver.
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Working and resting away. The next step is to monitor the activity of a driver through the

activity of the truck the driver is assigned to. The sum of variables Y;, and Y%, are calculated as

follows:
t+9C0
Z Z Z WL_]_] t’ + Z Xl]t + Z Z lkt Z kt” Vl,t (220)
k t'=t-Tjj jeJA t'=t—@Cl t'=t
ZYlﬁt Z Z Wi, Vit (2.21)

j t'=st=y

where ¢¢!/@®? are the check-in/check-out times respectively. Eq (2.20) enforces that if truck i is
utilized during period t, then a driver assigned to it has to be working. The four terms in the RHS
represent possible activities: (1) driving, (2) waiting at a customer site, (3) checking in, and (4)
checking out (see Figure 2.5). Eq (2.20) is written as inequality rather than equality to include the
case where the driver is assigned to a truck but is idle at the plant. Eq (2.21) requires that if
someone assigned to truck i is resting away at a customer site at t, one of the associated driver

resting variable ¥;¥, should be 1.

Resting at the plant. The variable %, which represents driver resting at his base beyond the

minimum 1 periods, is defined by,
Ve = szt-l + Z Yillz,t—lp—l - Z Yii,t—l' Vk,t (2.22)
i i

Eq (2.22) requires that driver k is resting (beyond the minimum time) during period ¢, if he has
been resting or just finished the minimum resting hours after check-out, and did not check-in at the
start of the current period. Eq (2.22) allows for a flexible resting time at the plant. Note that the
availability of a driver is also modeled through VX if driver k is always available, the variable of the

initial time period will be set to one; otherwise, if he is only available after time point t’, V&, Y3, Yie:
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will be set to zero for any ¢t before t’, V,i,will be set to one, and Eq (2.22) will only be written for ¢

greater than t".

Maximum working time. Finally, the working time constraint is written as follows,

vW w
> ) T <ev, vkt (2.23)

i t'eT#*

where T?* is the set of periods fully or partially included in the 24-hour interval ending with period

t, which is defined byT?* = {t':t — 24/5 < t' < t}.

The model with driver constraints, named M2, includes Eq (2.3) forj = P, (2.4)-(2.6), (2.8)-

(2.12), and (2.15)-(2.23). Note that when Y;3,, Y, and Wi’]?t are required to be binary, variables

Yiee, YR, Y%, and VR can be treated as continuous variables, bounded between 0 and 1, because
constraints (2.16)-(2.21) ensure their integrality. We treat them as nonnegative continuous

variables in the example shown in section 2.5.

States Variables
B W, start travel
Xije:je]* at a customer

[ X;p: at the plant

check-in/out

B v;, start check-in
YF§§
£l 1= i 03
t=0 | 4 | s 12
Inequality:
idle at the plant
Yk zi{(vt = A
t+@C0-1

-1 s -1 7 F
Yk Zt’=t—gu01 Yiger + Ej.jfzt’=t—1”,wijf’r’ + EjE]f‘XiJ'l' + Et":z Yike!

Figure 2.6. Driver working modeling, with variables corresponding to different working activities.

2.4. Extensions

In this section, we show how the proposed model can be extended to account for features that

have to be considered in practice.

2.4.1. Inventory Violations
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In the basic model, the inventory level of an anticipatable customer is required to be between a

minimum inventory level { JL and the tank capacity (]V. However, customers often prefer to maintain

their inventory above a safety level { ]5 > ]L If that is the case, the following constraint is added.

Lft = Lf; — Lj.‘;, VieJ4,t

(2.24)

4 zZz=min..+ EJ- t(wlLftl_ + szftz_)
A _ A+ _ jAl— _ ;A2— '
A th = th — th —th
(U ______________ 1A2— JA1-
] . Jt ‘jt
= e G
S1 o A+ - 7U A =142-=90 E -
j = th = {J Jt Jt o
g,Sl _/ o
e __ 4
Al— S1_ 782
o | O=hie =676 [Al- = ¢$1_ ;52
{j _____________ P J’Atz J J Slope = -0‘)2 1
A2— 52 L 1A2- = slope = -0,
= ]A2- < 752 _ 7l : A
{L 0= th =6 {,’ Ji \ th N
/ " ¢t ) 51 -

j j
Figure 2.7. Piecewise linear penalties for inventory below {7* and ¢;2.

where Li" > {7 and 0 < L~ < {7 — {}. Together with Eq (2.7), (2.24) ensures the inventory

between lower ((]-L) and upper ({]V) bound, while the safety level violation Lft_ is penalized in the

objective. Piecewise linear penalties can also be easily modeled, as shown in Figure 2.7.

2.4.2. Variable Loading/ Delivering Time

If there is a pumping rate for the truck (at most r; units of product can be transferred in one

period), the loading/delivering time is no longer fixed. To model this aspect we introduce the

following binary and continuous variables:

(a) Delivering: )?gt € {0,1} is one if truck i is delivering at customer j during time period t.
(b) Loading: X% € {0,1} is one if truck i is being loaded at the plant during time period t.
(c) Delivery flow: Fj,

(d) Load flow: F} > 0 is the loading amount to truck i during period t.

(e) Truck inventory: L, > 0 is the inventory of truck i at time point ¢.

= 0 is the delivery amount from truck i to customer j during period t.
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In the basic model, the delivering amount was equal to the difference of incoming and outgoing

arc flows. Now the loading/delivering amount is modeled as follows,

X0 < Xije, Vij€JCE (2.25)
Fh. <miXPe, VijeJs e (2.26)
Xf < Xipy, Virt (2.27)
FE <mXL, vit (2.28)

Eq (2.25) ensures that a truck can deliver product to customer during a time period, if the truck is
there, and Eq (2.26) enforces a maximum delivery amount per period. Similarly, Eq (2.27), (2.28)
are written for the loading counterpart, following the same logic. Eq (2.25)-(2.28) replace Eq (2.4)-

(2.5).
Also, the truck inventory is monitored as shown in the following equation,

L, =1,  +Fk- Z FB <y Vit (2.29)
jeye

For anticipatable customers, the inventory level LJ'-‘} decreases due to consumption, increases

when there is a delivery flow, and is lower and upper bounded, as follows,
Ly = Ly + z Ffe = pje, Viel4t (2.30)
i
{F <Ly <{f, vjelit (2.31)

For order-only customers, the delivery flow throughout the planning horizon should satisfy the

ordered amount:

Z Ffe = ¢j, vjel® (2.32)
it

Thus, to model the variable loading/delivering time, Eq (2.6)-(2.8) shown in section 2.2 will be

replaced by Eq (2.29)-(2.32).
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2.4.3. Differentiation of Driving from Working

In addition to the maximum working time, there could be a maximum driving time limit, which
requires that a driver cannot drive more than 8° hours (6° periods) cumulatively, without having a

break of at least 1 hours (i periods).

Thus, keeping track of driving time is needed. We introduce a new binary variable Y2, which is
one if driver k is driving truck i during time period t. The old variable ¥}, is modified to be one if
driver k is working with, but not driving truck i during time period t. The following formulation is
based on the extension discussed in section 2.4.2 of variable loading/delivering time, with fixed

loading/delivering time being zero.

Eq (2.18) is modified, so the engagement of a driver to a truck can be classified as driving,
working but not driving, and resting:

Viee = Yige + Yty + Vo Vik,t (2.33)

Next, the driving and working binary variables are constrained as follows:

t—1
Zﬂ% :Z Z Wijjrer, Vit (2.34)
X

JJrt'=t-tjj
t+¢@C0
Zﬁ- LtJ’ZX”fJ’Z z lkt,+z Z YE., Vit (2.35)
k jeJA t'=t—qpCl t'=t

Eq (2.34) requires that if the truck is being driven, then there will be a driver assigned to it and
driving it. Eq 35 means that a driver is working, if the assigned truck is either: (1) loading product,
(2) at a customer site, (3) checking in, or (4) checking out. The inequality in Eq (2.35) is used, again,

to consider the case when the driver assigned to a truck is idle at the plant.

The maximum working/driving time constraints are written as follows
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% yw
z Z (Yillzt + Yikt’) < 6%, vkt (2.36)

i t'eT#*

vD D
Yige < 07, Vit (2.37)

i t'eT!

Eq (2.36) is modified from Eq (2.23), based on the new definition of variable ¥, while Eq
(2.37) means that a driver cannot drive more than 8° periods cumulatively, where T?! = {t':t —
(W + 6P)/8 < t' < t}. Typically, 8° = 11, soy + 8P = 21. To sum up, Eq (2.18), (2.20), (2.23) in
M2 will be replaced by Eq (2.33)-(2.37), when maximum driving time constraints need to be taken

into account.
2.4.4. Drivers at the Plant

Practically, drivers can have more flexibility at the plant. For instance, a driver can drive two
different trucks in one shift, thus, a checking-in (checking-out) does not necessarily coincide with
the start (end) of a driver’s day. Also, after a checking-out, a driver may wait for some time at the
plant, idle but on-the-clock, before checking in with another truck. To model all the different
situations arising when a driver is at the plant, the following three variables are introduced (see

Figure 2.8).

(a) Idle: 7, € {0,1} is one if driver k is idle at the plant (not engaged with truck) during period t.
(b) Go to work: Uy} € {0,1} is one if driver k starts working at time point t.

(c) Gotorest: UR € {0,1} is one if driver k goes to rest at time point ¢.

With the new variables, the following constraints are introduced,

Vit = V&g + Ugpmypor — Uleoy, kit (2.38)

_ _ 2.39

Vie = Vl€t—1 + Z Yii,t—l + Upp-1 — Z Yii,t—l - Ulst—p Vk,t ( )
7 7

UY +UR <1, Vk,t (2.40)
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With the new variables, the following constraints are introduced,

Eq (2.38) is based on Eq (2.22), but requires that driver k is resting (beyond the minimum time)
during period ¢, if: he has being resting or just finished the minimum resting hours; and did not go
to work at the start of the current period. Eq (2.39) requires that a driver is idle at the plant if: (1)
he was idle (V7;_; = 1), or just checked out (¥; Y ,_; = 1), or started working (U},_, = 1); and
(2) he did not check in (3; Yi,i’t_l = 0) nor started resting (U}f_t_1 = 0). Finally, Eq (2.40) enforces
that driver cannot go to work and go to rest at the same time. To sum up, Eq (2.22) in M2 will be

replaced by Eq (2.38)-(2.40), when the different situations at the plant need to be modeled.
2.4.5. Remarks

The model can be easily extended to account for a wide range of additional restrictions. For
example, we can add constraints to forbid the simultaneous deliveries of material from two trucks
to the same customer by requiring that the summation of)?i[]’-t over index i be less than or equal to 1,
for each customer in each time period. Also, we can forbid the transfer of material from a customer
to a truck. This can be accomplished by a constraint which requires that the sum of incoming flows
be greater than the sum of outgoing flows, for each customer and time t. Although loading from a
customer will in general be suboptimal, since this would incur additional traveling and set-up cost,
there may be situations where loading from a customer with high inventory level can reduce the
total cost. In the extension described in section 2.4.2, transferring from a customer to a truck is

intrinsically infeasible, since Fl-?t variable is non-negative.

Furthermore, the objective function can be modified to include driver cost explicitly, which may
include the following terms: (1) the working time based wage (X; ¢ w2 VW with w? being the
hourly wage); (2) the shift-taking based wage (X; . ¢+ w3 Y5, with w3 being the wage for every shift);

and (3) the resting cost (X ;¢ wf-Wi’}’t with wg- being the resting cost for truck i at customer j). Note

ij
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that the resting cost can also be represented as Y}; ¢ wRYR. where wf is the hourly resting-away

cost for the driver.

States . Variables )
[SSSY 10 br min-rest period [ ]check-in Uigg start restm.g BV,  start check-in
BB additional resting EZ ] check-out Ugr  start working liit finish check-out
F] idle at the plant [_driving BV resting EgVE  idle without a truck
Resting/idle Resting
B . 4 >
Check-in/out Check-in/out BaEl ] R
F Yy [y v
Truck 1
On the rl(ﬁ‘d ]
- - | Truck 2 LT X
=0 2 12 14 16 =0 2 .. 6 8 SRV 16

(a) Check-in/out coincides with working/resting start (b) Engagement with another vehicle after a trip

Figure 2.8. Driver modeling at the plant. (a) shows a case of going to rest, resting for more than the minimum
period, and then checking in a truck. (b) shows a case of different truck engagements in one single shift, and
the driver is idle without any truck for one period in this example.

Finally, note that solutions from M1 or M2 can be used to obtain initial solutions to models with
the extensions discussed in section 2.4. Thus, it is possible to decompose the entire problem to

different levels of detail and generate solutions of increasing complexity sequentially.
2.5. Example

A simple industrially inspired example is presented to illustrate what results can be obtained
using the proposed model. There are 4 trucks and 5 drivers, which are always available, serving 8
customers. The objective is to minimize the distribution cost. The planning horizon is 36 hours, and
the discrete time period is 1 hour. The check-in and check-out time is assumed to be 0.5 hour, the
maximum daily working time is 14 hours, and the minimum resting time is 10 hours. The MIP
model was implemented in GAMS 24.1 and solved using CPLEX 12.5 on a desktop with 3.4GHz Intel

Core processor (i7-2600) and 8GB RAM, running Windows 7. The resource limit is 1,800s.

Due to confidentiality issues, inventory levels and capacities are expressed in terms of material
units, denoted by MU. The capacities of truck T1, T2, T3, and T4 are 370, 383, 370, 374 MUs,

respectively. The minimum loading parameter ¢ is 0.5. All trucks and drivers are initially located at
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the plant with no product loaded in trucks, and the trucks are required to return to the plant at the
end of the horizon. The original travel times based on distance, without rounding or
loading/delivering time, are shown in Figure 2.9(a). The fixed loading/delivering time is assumed
to be 1 hour. Customers C1-C7 are anticipatable customers, while C8 is an order-only customer. The
order window for C8 is from 24 to 36 hour point, and the order amount is 267 MUs. For simplicity,
the consumption rates for anticipatable customers are assumed to be uniform throughout the

horizon (given in Table 2.1). Other anticipatable customer data are also given in Table 2.1.
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(a) Available traversal arcs (b) Optimal routes using basic model

Figure 2.9. The 8-customer example. (a) Availability and original travel time of arcs. (b) Truck routes in the
solution obtained using the basic model M1.

Table 2.1. Data for anticipatable customers; symbols and units in parentheses.

c1 C2 C3 C4 C5 (o3 C7
start/end time (07, /o ©, hr) 0/36  0/36 0/36  0/36  0/36 0/24  0/24
consumption rate (p;, MUs/hr) 8.43 6.21 19.75 2.69 26.71 6.79 2.87
min/max level ({}/¢/, MUs) 0/775 0/1513 0/815 0/609 0/4505 0/589 0/743
terminal minimum level ((jT, MUs) 488 1324 359 165 3554 193 111
initial inventory (Lf,, MUs) 748 1375 376 239 4301 397 189

In the objective function, the distribution cost has three parts: (1) fuel cost, based on traveling

distance, assuming that each hour of driving costs 4 cost units (4-%; ;7 Tj;W;;j7e); (2) fixed
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delivery cost, assuming that each delivery costs 1 cost unit, (3; ; i cjc . W;;j7¢); and (3) resting away

cost, which is equal to 5 cost units, (5 - X; jcjc Wi‘}?t).

The basic model M1 has 3,952 binary variables, 3,327 continuous variables, and 5,209
constraints. After 30 minutes, it yields a solution with an objective function value of 141 and an
optimality gap equal to 16.18%. Figure 2.9(b) shows the truck routes of the solution obtained using

M1. The solution with an objective value of 141 is actually optimal for this case.

When the valid inequalities in section 2.2.5 are removed from M1, its LP-relaxation decreases
from 117.69 to 93.63, which means that the integrality gap increases from 16.5% to 33.6%. Also,
while the model without the tightening constraints also obtains the optimal integer solution within
30 minutes, the optimality gap in this case is 31.63% instead of 16.18%. This shows that the cuts

presented are effective in tightening the LP feasible region.

When driver constraints are considered with model M2, the number of binary, continuous
variables, and constraints increases to 7,345 4,815 and 7,600 respectively. After 30 minutes, a
solution with an objective function value of 146 is found with a 19.31% optimality gap. The solution
is shown in Figure 2.10. The solutions of models M1 and M2 happen to include the same customers
in the generated routes. However, in the solution of model M2 a few visits got swapped, and driver
K2 is resting at C1, to satisfy the maximum working time restriction. When the extensions
described in section 5.2-4 are included, the model becomes computationally more expensive. The
best solution found within 30 minutes has an objective function value of 151. A better solution, with

an objective function equal to 146 and the same routes as M1, is found after 48 minutes.
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Figure 2.10. Gantt chart showing the solution using model M2.
2.6. Conclusions

One of the major challenges in the adoption of optimization-based methods for inventory
routing problems is the wide range of constraints that an IR solution should satisfy in order to be
implementable. To our knowledge, no systematic optimization-based method to address the
general IRP is currently available for truck-based distribution networks. Towards this challenge, we
developed a MIP framework for IR in industrial gases supply chains. Our framework allows us to
formulate models that account for a number of complex features simultaneously, including
maximum daily working and driving time per driver; time-varying consumption rates; customer
access hours; and heterogeneous fleet. We also showed how the framework allows us to consider
additional features. Most importantly, our analysis shows that the solutions found using the
proposed MIP models within a reasonable time, are on average better than the solutions manually

generated by the logistic planners based on heuristic rules.

Nevertheless, the proposed model becomes prohibitively expensive for larger instances, so the
development of advanced solution methods is necessary. The proposed framework can also be used
as the basis for the formulation of more effective MIP models as well as the design of decomposition
methods. For example, the basic model can be used for the generation of routes that can then be
used as input to a second level optimization model (employing discrete or continuous modeling of

time) for the assignment of drivers to routes subject to driving, working, and resting restrictions.
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2.7. Notation

Indices/Sets

iel trucks

je] supply chain nodes

keK drivers

me Mf‘H access window of customer j

teT time periods or points

Subsets

Jc customers

JA anticipatable customers

Jo order-only customers

T /T time periods included in the 21/24-hour interval ending with period t

Binary Variables

Ul JUR =1 if driver k starts working/resting at time point ¢

VE =1 driver ks idle at the plant (not engaged with any truck) during period ¢t

VR =1 if driver k is resting at the plant beyond the minimum 1 periods, during period t

Wijire = 1if truck i starts trip from j to j” at time point ¢

Wl-?t =1 if the driver assigned to truck i starts a rest period after visiting customer j, at
time point ¢

)?l-]-t =1 if truck i is at SC node j during time period t

)?gt =1 if truck i is delivering at customer j during time period ¢

Xk =1 if truck i is being loaded at the plant during time period ¢

Yike =1 if driver k is assigned to truck i during time period ¢

Vi /Yike

=1 if driver k starts to check-in/ finishes check-out of truck i at time point ¢



Vike/ Yiee/ Vike
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=1 if driver k is working/ driving/ resting away from the plant, with truck i during

time period t

Non-Negative Variables

A
Fijj’t

oD
Fijt
oL
Fit
A
th

Lf;f /Lj-‘;

Li;
Parameters
S

Pi

Yi

1)

&
$r157 187 14)
n

6v /6P

i

Pjt

T /T

oS OE
a;° /0

4y’

product loaded in truck i, which starts the trip from node j to node j’ at time ¢t
delivery amount from truck i to customer j during period ¢t

loading amount to truck i during period t

inventory level of anticipatable customer j at time point ¢

inventory level above/below safety level (for penalization), of anticipatable

customer j at time point ¢

inventory level of truck i at time point t

=1 if period t is within one of the accessible/ order window of customer j
fixed loading/delivering time at SC node j

capacity of truck i

time period length

minimum loading percentage

minimum,/ maximum/ safety/ terminal minimum level of anticipatable customer j
planning horizon

maximum working/driving time without resting, in unit of time periods
pumping rate of truck i in one time period

consumption amount for anticipatable customer j during period ¢t
start/end time of access window m of customer j

start/end time of order window of customer j

travel time of arc (j,j’), in unit of time periods
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order amount of order-only customer j

check-in/check-out time, in units of time periods
minimum resting time, in unit of time periods

travel cost of arc (j,;’) for truck i

assigned driver resting cost for truck i at customer j

driving/shift taking/resting payment for driver k

the truck inventory, if truck i is travelling on the arc (jj’) starting at t, zero otherwise
initial inventory of anticipatable customer j

initial inventory of truck i

=1 if truck i is on the road, due to pre-assigned trip from j to j’ starting at time point ¢

=1 if initial location of truck i is j
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Chapter 3

Solution Methods for IRP under VMI Policy with Driver Constraints3

A MIP model for IRP that addresses all the complex constraints has been proposed in the
previous chapter, but it becomes intractable for large instances. Accordingly, the goal of this
chapter is to address this challenge. Specifically, we propose solution methods to address the
computational difficulties of solving vehicle-based IRPs. While we use an industrial gas SC as an

example, the methods are general; i.e., they can be applied to vehicle-based IRPs in other industries.

The chapter is structured as follows. In Section 3.1, we provide a detailed problem statement,
and summarize the solution methods. In Section 3.2, we present a “dynamic” network
preprocessing algorithm that reduces the problem size by eliminating irrelevant SC nodes and
network arcs for the current horizon. In Section 3.3, an upper level vehicle routing (VR) model is
presented, which deals with the simplified vehicle routing problem to minimize the distribution
cost while satisfying minimum customer demand. In Section 3.4, a lower level scheduling problem
(SP) model is proposed, which yields a detailed schedule for each truck and driver, using the routes
selected in the upper level. In Section 3.5, we present an iterative approach that integrates the two
subproblems. In Section 3.6, different instances are presented. We use lowercase italic letters for
indices, uppercase bold letters for sets, and uppercase italic letters for variables. Lowercase Greek
letters are used for parameters, except for a few calculated parameters denoted by combinations of

Greek letters.
3.1. Problem and Method Overview

3.1.1. Problem Statement

3 This chapter is modified from Dong et al., 2017.
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The problem is represented by the following: a set of trucks, i€l; a set of SC nodes, jeJ, which
includes a central plant P, and a subset of customers J¢; and a set of drivers, kK. The objective is to
find the optimal delivery amounts, routes, schedules, and resource allocations (drivers, trucks), to
minimize the distribution cost, subject to the constraints described below. We assume that there is
only one central plant, and the liquid gases are always available at the plant. It is also assumed that
there is only one product in the problem, as different products use different trailers and are

scheduled independently.
The problem is represented in terms of the following sets:

(a) iel: trucks;
(b) keK: drivers;

(c) jeJ: SC nodes, including a central plant P, and a subset J¢, denoting customers.

Each truck i is associated with a trailer tank of capacity &;. For each driver, a maximum daily
working/driving time should be respected, i.e., a driver cannot work/drive more than 8" /9P
hours per day. Also, a driver cannot work again until he has remained off duty for at leasty
consecutive hours. For a route that cannot be finished within the working/driving time limits, the

driver can take a -hour rest on the road; we will refer to this type of route as a long route.

The customers are classified as either anticipatable customers,j € J4 (i.e., customers whose
inventory are forecasted and maintained by the vendor), or order-only customers, j € J°. Also, some
customers should be visited first in a route, denoted by J/¥¢. Each customer may have multiple
access windows in the horizon: for a window, m € M;, during which customer j can receive
products, we know its start/end time, aj‘f’,fl/ajff‘rfl. If traveling from j to j’ is infeasible or too
expensive, the arc (jj’) is removed from the set of arcs in the SC network, A € J X J. The travel time
along an arc (j,j) is 7o; ;. The product loading time at the plant (j=P) and the delivering time at the

customers (j € J¢), both denoted by pBj, are fixed; i.e., they do not depend on the loading/delivering



42
amount. Under this assumption, the traversal time (7; ;/) of each arc can be calculated to include the
travel time and the fixed loading/delivering time at the start SC node, i.e., T = ﬁj + 70; ;. In §3.4,

we discuss the case in which the loading/delivering time is not fixed.

An anticipatable customer may have variable consumption rate (e.g., high during the day and
low or zero during the night). The consumption profile in the planning horizon is assumed to be an
input, calculated from demand forecasts prior to optimization. For each anticipatable customer

j € J4, we are also given the capacity, { ]V, of the tank and the minimum inventory level, { ]L At any

time, the inventory level is required to be within these two bounds.

We assume that an order-only customer has at most one order placed in the current planning
horizon, though this assumption can be easily relaxed by introducing a set of orders, o € 0;, placed
by j € J°. An order from customer j is described by the amount, @;, as well as the start and end

time, Ujos and O'J-OE, within which the order has to be satisfied.

The objective is to find the optimal routes, delivery amounts, schedules, and resource
allocations (drivers, trucks), to minimize the distribution cost. We assume that there is only one
central plant, in which the products are always available. No loss during transportations and
deliveries is considered, though it can be easily modeled. It is also assumed that there is only one
product, as different products are often distributed by different trailers and scheduled
independently. In practice, drivers are shared among products, but here we assume that drivers are

also dedicated to products.
3.1.2. Solution Strategy

The proposed solution strategy includes three components, described in §3.2-§3.4. First, we
reduce the distribution network dynamically, using the current inventory levels, demand rates and

geographical information of the customers. Specifically, we eliminate nodes (customers) and arcs
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that can be neglected in the current planning horizon. Then, we adopt a decomposition method,
which includes an upper level vehicle routing subproblem and a lower level scheduling

subproblem.

Reduce network dynamically

v

Generate routes

v

Solve vehicle routing subproblem [<

v

Solve scheduling subproblem

e

Figure 3.1. Outline of the solution strategy.

Add integer cuts;

End (Use heuristics)

After the network reduction, we generate the routes to visit customers. In the upper level
subproblem, we solve a vehicle routing model; this model selects the routes to visit customers and
decides which truck to carry out each selected route. Based on the decisions in the upper level
subproblem, we solve a detailed lower-level scheduling model to determine the driver-truck
parings to carry out each route and the delivery times and amounts for each customer. Since the
upper level does not consider all the constraints in IRP (i.e,, it is a relaxation), the route-selection
and truck-route-paring decisions might lead to an infeasible or sub-optimal lower level model. To
address this, we iterate between the upper and lower level subproblems, using integer cuts to
obtain different upper-level solutions. The iterative approach, with different options, is described in

§3.5. A simplified flowchart of the solution approach is shown in Figure 3.1.

3.2. Dynamic Network Reduction
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One major difficulty in solving IRP stems from the large size of the distribution network, which
leads to computationally intractable MILP models. However, when solving a specific instance at a
specific time point, not all customers and customer-customer arcs have to be considered. Thus, we
propose a dynamic network reduction method that returns a sub-network which contains the

relevant SC nodes and arcs for the current planning horizon.

Since we address a detailed IRP whose parameters are updated in real time, its horizon is
relatively short. Thus, only a small proportion of customers are required to be visited within the
horizon. These customers are called “trigger” customers, denoted by J7. Furthermore, some other
customers should also be included, so that truck capacities are fully utilized, and the distribution
cost in the long run is minimized. These customers are referred to as “balance” customers, denoted
by JE. A balance customer should be “close” to the arc connecting the plant to a trigger customer,
and also have some vacant capacity to receive more product. In addition, arcs connecting the
customers that are not included in the sub-network are eliminated. Due to long distance or road

construction, some arcs which are very unlikely to be used are also eliminated.
3.2.1. Customer Selection

In the first step, we identify the trigger and balance customers to be included in the current sub-

network.

Trigger customers include the order-only customers that have pending orders within the
horizon, as well as anticipatable customers that are expected to run out of product if no deliveries
take place. Let pjT(t) denote the time-varying consumption rate of customer j, and LOJ‘-4 denote its
initial inventory. The minimum and maximum demand for each customer can be calculated as

follows:
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n
vin ) max(0,¢7 + f pf (H)dt —LOf) ifj € JA
= 0 (3.1)

?j ifj €J°

1
SMAX _ 43 +f pf(H)dt — LOF ifj € J4
J - 0

J (3.2)

9] ifj €J°
The minimum demand of an anticipatable customer is calculated based on its consumption rate,
initial inventory and safety stock level, while the maximum demand is calculated from the
consumption rate, initial inventory and tank capacity. For an order-only customer, both the
minimum and maximum demands are equal to the order amount. If the minimum demand is

greater than zero, then this customer is included in the set of trigger customers, i.e., JT = {j |0jMIN >

0}. This idea is illustrated in Figure 3.2.
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Figure 3.2. The procedure of determining trigger customers.

If safety stock levels are not given, they can be calculated using the equation below (Eppen and

Martin, 1988),
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o - - (33)
¢ =max{a-{j,{f +Tp;-p; +b- \/TPj ~6%(pj) + sz +8%(7ps)}

This tentative safety stock is a maximum of two terms. The first term requires safety level to be
greater than the minimum reserve stock level, where a is the minimum reserve level percentage.
The second term consists of three parts. The first part is a lower bound of stock level (]‘L, while the
second and third parts are based on statistical data on travel time and consumption rate. Here, both

the travel time, Tpj, from the plant to this customer and consumption rate, pj, are treated as random
variables: Tp; /ﬁj are their mean values, and 52(ij) /52(pj) are their variances. As a time-

invariant safety stock is preferred, consumption rate of each customer is treated as a random

variable with a time-invariant distribution. With these assumptions, the second part 7p; -ﬁj is the

average demand during the travel time from the plant to the customer; the third part is a buffering
term for the uncertainty of travel time and consumption rate. The vendor can specify a service level
(i.e., the percentage of cases that the buffering inventory will be sufficient), and parameter b in
equation (3.3) is associated with this service level. More specifically, 1 minus the specified service

level is the upper tail of a standard normal distribution at b.

To fully utilize the capacities of trucks, balance customers are included into the current SC sub-
network. They should have capacity to receive more product, and be in the vicinity of the line
extending from the plant to a trigger customer so that distribution cost will not increase
substantially. Thus, two types of criteria are used simultaneously to identify the set of potential

balance customers, based on the geographical locations and inventory levels.

In terms of geography, a balance customer is required to be in one of the trigger customer
regions. The region of customer j should be close to the radial line that extends from the plant to
this customer, and it can be defined based on longitude and latitude information (see Figure 3.3).

The adjustable parameters defining this region are the angle 6, and the radius r. When 0 =0, the
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shape becomes a stadium. We use ]f to denote the set of customers that are in the region of

customer j.

=0

Figure 3.3. [llustration of the trigger customer region. C is the trigger customer, and P is the plant.

Balance customers should also require a delivery in the near future. To quantify this, we
introduce a parameter T}, defined by the decision maker. A customer j will be included as a balance
customer, only if its current inventory level is less than the summation of (1) consumption in the
planning horizon, (2) the consumption in 7; days following the current horizon, and (3) its safety
stock. The bigger T; is defined, the more likely customer j will be included as a balance customer.
We present two options to define T;. In option A, customers are set into manually determined
regions, and customers in each region have the same Tj; the closer a region is to the plant, the
smaller T; will be, because it can be visited more easily (see Figure 3.4(a)). In option B, T; is defined
based on customer density around j. The number of customers within a disk centered at customer j
can be calculated. If this number is larger, customer j is located in a “denser” region, and thus has a
higher probability to be included as a balance customer. Thus, to avoid including j too frequently, T;

should have a smaller value. Following this reasoning, T; in option B is defined as follows,

)
— [C, Jr ],1} (3.4)

C/7
where T is the user-defined largest possible T;, 7 is the maximum distance between any customer

and the plant, C is the number of customer in the network, r is a user-defined neighbor distance
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(typically, r can be 80 miles, or the average distance a truck can travel in 2 hours), ; is the number
of other customers within the disk of radius r around customer j. With T; defined in equation (3.4),
which is illustrated in Figure 3.4(b), customers in different density regions have about the same
probability of being included as balance customers. To consider both the plant-customer distance
and customer density, we can use the average value, or any other affine combinations, of T; defined

in options A and B.
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Figure 3.4. Illustration of different T; definition in inventory level criterion, with both axes in unit of miles.

(a) is for option A to consider plant-customer distance, in which customers are divided into regions R1-R5.
(b) is for option B to consider customer density.

To consider both geographical and inventory criteria, the set of balance customers is defined as

follows,

(3.5)

When a trigger customer j does not lead to the inclusion of another customer inJ5, inventory

1N+24T
j' € U ]f and LOjA, —f ’ pJT,(t)dt < (]S,}
jer 0

criterion is relaxed, and the customer j’ that is within the trigger customer region and has the
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MAX

greatest o, " is included as a balance customer for j. By doing this, we can ensure that enough

balance customers are included after preprocessing so that the truck capacities are fully utilized.
3.2.2. Network Arc Elimination

The arcs in the original network are kept in the sub-network, except for the following 4 cases.
First, arcs with at least one SC node not in the sub-network are eliminated. Second, a customer-
customer arc with very large distance, which is unlikely to be included in the optimal schedule, is
eliminated: the following inequality is used to identify these arcs,

70; 7 = max|[c - 6°,d - (TOj,p + TOj’,P)] (3.6)

where 70} ! is the travel time along this arc; 70 p and T0j p are the travel time between the

customers and the plant; c and d are user-defined parameters. Inequality (3.6) requires that the
travel time from j to j’ is greater than both (1) a percentage of the maximum daily driving time and
(2) a percentage of the travel time of j->P->j’. Typically, c and d are selected between 0.7-1. Third, if
both ends of an arc are balance customers, and they are not in the same trigger customer region,
this arc is eliminated. Fourth, optionally, a neighbor list from history data can be used to remove
arcs: based on previous routing information, the arcs that have never been used will not appear in

the sub-network. The preprocessing algorithm is presented in Appendix G.
3.2.3. Example

The customer set shown in Figure 3.4 is used as an example. The planning horizon is 2 days.
Parameter T; is based on Figure 3.4(a), and the trigger customer region is defined using option A
(6=10° and r=10 miles). The preprocessing algorithm identifies 18 trigger customers, and 14

balance customers (see Figure 3.5). The number of customers drops from 111 to 32, and the

number of directed arcs drops from 6067 to 485.
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Figure 3.5. SC nodes in the distribution network after dynamic network reduction.

3.3. Vehicle Routing Subproblem

The upper level subproblem considers the selected customers (both trigger and balance
customers) after the dynamic network reduction. Before building the upper level model, which
corresponds to a modified vehicle routing (VR) problem, routes (reR) for the selected customers
are generated, and the corresponding time and cost parameters for each route are calculated. We
note that column generation has been adopted to speed up the VR solution process (Grgnhaug et al,,
2010; Bard and Nananukul, 2010; Persson and Gothe-Lundgren, 2005). However, column
generation is not considered here, because the number of generated routes is relatively small, and

the resulting VR model can be solved rather fast.
3.3.1. Route Generation

In a route, the customers and the sequence in which they are visited are specified. We use A, to
denote the arcs of a route r, J,- to denote the set of customers visited in route r, and R; to denote the

set of routes serving customer j. The following parameters are introduced for each route:

(a) t2: driving time, based on travel time 70} -
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(b) t/¥: working time, based on traversal time 7 j+ (including loading and delivering), plus possible
waiting time due to access window constraints.
(c) t&: routing time, which is working time plus resting time v, if the maximum driving/working
time is violated; otherwise, T8 = t//.

(d) y;R: routing cost, based on driving time ($y”/hour), working time ($y" /hour), number of

deliveries ($y" /delivery), and whether a rest is included in the route ($y? /rest).

These parameters are calculated as follows,

T,L,-) = Toj,j’ (37)
UJ"eA,
wo_ . _AS AE 3.8
Ty = Z T+ 2 max(0, min o, — maxojm, — 70; 1) (3.8)
(J.Jj")EAy (.Jj")EAy:j,j' P
R { W iftP <fPand ) <" (3.9)
Tl +y otherwise

R_{ Y2+ yWtV + 9V L ift? < 9P and ¥ < 6V (3.10)

" Y22+ WV +yV L + R otherwise

Each route in the generated route set R should satisfy the following criteria:

(a) The route should contain no more than cmax customers; i.e., |J,-| < cmax. Because of the limited
capacities of trucks, it is very unlikely that more than 3 customers are included in one single
route in the cases we studied, thus we choose cmax to be 3, but it can be generalized depending
on the characteristics of a specific SC.

(b) The arcs of the route should be in the valid arc set; i.e., if (j,j') € A,, then (j,j') € A. For
example, the 3-customer route, j->j->j”, is included in R, only if both arcs (j;’) and (j7j”) are
included in the sub-network after dynamic network reduction.

(c) There should be no obvious time conflicts on the access windows of customers; i.e., if

(j,j') €A, and j,j' # P, then max,, O'ﬁlfn > min,, Jj‘f‘rfl + 1. For example, the 2-customer
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route, j->j is included in R, only if the earliest arriving time at customer j’ after visiting j is
sooner than the end time of the last window of j".

(d) Based on distance, a truck should be able to arrive at the customer before the end time of its last

; Cia iFi AE RP
access window; i.e,, ifj € J,., then max,, Ojm = Z(jl’ju)eAI;’[]f Ty i, where Ar,j denotes all the arcs

in route r before visiting customer j.

(e) A customer in J775 should be visited first in a route; i.e., if j € J, N J77"5¢, then (P, ) € A,.

(f) The first customer visited in a route should be either a trigger customer or in set J/7st; i.e,, if
(P,j) € A,, thenj € J/"st UJT. This requirement is to ensure that the demands of trigger

customers are met in face of uncertainties.

We also include some optional criteria based on heuristic rules. By doing this, some routes that

are very unlikely to appear in the optimal schedule are excluded:

(g) The total time of a route should not be so long that more than one rest is required; i.e.,

™ < 26" and 12 < 26°.
(h) If the route includes more than two customers, the route should not include any customer
whose demand can be satisfied by one visit of a truck, and at the same time, whose capacity
MIN MAX

allows for a full truck load; ie, if|J,| >2andj €],, theng;" " > min;¢; or g;

< max; §;.
This is because such a customer can be served more efficiently using a 1-customer or 2-

customer route.

The algorithm to generate routes is given in Appendix G. The route generation process is
effective in filtering a large proportion of the infeasible routes; based on the instances studied, more

than 80% of routes (which include up to 3 customers) are excluded.

3.3.2. Vehicle Routing Model
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We present a modified capacitated VR model. Comparing to the standard VR model (Gounaris et
al, 2013), we add constraints on the upper bounds of customer demands and truck routing time.

The drivers are not modeled here. First, we introduce the following variables:

(@) Z;, € {0,1} is one if truck / is assigned to route r.

(b) Fi}}, j = 0: delivery amount from truck i to customer j using route r.

(© Fi}_?rx = 0: unused capacity (full truck load minus deliveries) of truck i when carrying out route r.
(d) 0VR: objective value of VR, corresponding to total distribution (routing) cost with penalized

unused capacity.

The VR model is formulated as follows,

min OVR = Z(VrRZi.r +yXFR¥ (3.11)
ir
Z FR i +FR =¢&2,,, vir (3.12)
ie

FR, <@V —ihz,, virjeling, (3.13)
o' < Z Ff . <™, vjeJ© (3.14)

i,TER]'
szZi,r <n, Vi (3.15)

T

The objective function (3.11) accounts for the routing cost, and a penalty term for unused truck
capacity (y* per unit of material). Constraints (3.12) enforce the truck capacity, and fix the delivery
amounts to zero if route r is not used by truck i. Constraints (3.13) enforce that each delivery
cannot exceed the difference between the maximum and minimum inventory levels, while
constraints (3.14) enforce demand satisfaction for each customer. Constraints (3.15) state that the

total routing time of a truck should be less than the horizon length.
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Two additional sets of constraints can be added to reduce either the computational cost for the
VR model, or the number of iterations between the upper and lower level subproblems. The first set

of constraints is defined as follows,

Z Zi,r >1, VJ € ]A (316)

l,T‘ER]':aTT']‘SwT]'

where wt; denote the time when the projected inventory of customer j (without delivery) goes
below its lower bound (defined in equation (3.17) below), and az, ; denote the earliest possible

time to visit j on route r (defined in equation (3.18) below). Thus, constraints (3.16) enforce that at

least one route whose at, ; is less than wt; should be selected to prevent j from running out of

product.
t (3.17)
— ; A T ! L
wTj = mtln{tlLOj —ij't,dt <}
at,; = T (3.18)

U".J"MeAss
The second constraints enforce that if customer j has demand which cannot be fulfilled by a
single truck, a full truck delivery should be used at least once,

Ziy =1, VjeJho™N = max¢ (3.19)
i,reRj:|Jr|=1 t

where r € R;:[],.| = 11is the single-customer route visiting j. Note that constraints (3.19) may cut

off the optimal solution, in some rare cases, of the finite horizon problem; however, in the long run,

customers with large demand should be served by full truck deliveries.
3.4. Scheduling Subproblem

From the upper level VR solution, the routes are selected, and the truck-route pairings are
determined. Based on these decisions, we consider a scheduling problem (SP) using a continuous

representation of time.
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3.4.1. Segment Generation

First, plant node P is replaced by two SC nodes: Ps, Pe, standing for plant-start and plant-end. To
model the resting on the road, we introduce a set of segments, ! € L. There are three types of

segments:

(a) I € LS: aroute that can be finished without driver resting, starting at Ps, and ending at Pe.
(b) I € L!: the first segment of a long route, starting at Ps, and ending at a customer.
(c) L € L?: the second segment of a long route, starting at the next SC node after the first segment of

this route, and ending at Pe.

[ ICheck-in/out ELoading Resting + driving

[ |Driving [MDelivering
r1 IMCT B 2§|J
15'hrs

n I1 €1, 15hrs

Resting (10 hrs) + driving (6 hrs)

12 (e [] I2€1?,75hrs
(b) Route r1 divided into segments /1 and I2

BLIE C1[M (3 € L', 8.5 hrs

OO ESGSTT T T
Resting (10 hrs) + driving (6 hrs)

4[] 14€l?0.5hrs
(©) Route r1 divided into segmentﬁ;.rjrfi and 14

Figure 3.6. All ways to break long routes into segments are considered.

Throughout the chapter, we use these two terms, route and segment, with slightly different
meanings. A route is an ordered set of arcs starting from the plant, visiting several customers, and
finally coming back to the plant. A segment is an ordered set of arcs that can be finished without
driver resting, and it can start or end at a customer. We divide a long route in which a driver needs
to rest on the road into two segments. From the end of the first segment, /, to the start of the second,
I’, the driver travels from the end SC node of I to the start SC node of I, and takes a rest. If segment /

is the entire route r (I € L), or part of it (I € L' U L?), segment I and route r are called related. We
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generate all related segments of each route selected in VR, including all ways to divide a long route,

as illustrated in Figure 3.6.

Segments

truck+slots driver+slots

trucks driver:Kll se{gmerllt:Lll drliver:Kl s?gment:LZ :

Kl 7] ¢ ]i E E f:-: :-:II
L o 1= 111 A = A 1 O
B~ c1 €2 | i c3 iC1
customer+slot ¢ : : : >
t=0 10 20 30 40 50
C1
(a) Earlier segment uses the slot (b)
with a smaller index
Non-zero X binary variables: Non-zero Y binary variables
Xr11Kk1,10150 X{;Ll =1; X§1J1=1; X{;’iifl; (only showing customer €1, omitting C2 and C3):
XT1,2,K1,2,L2=11 Xj[l;z = 1; XII((LZ::L; X%L]_JL2=1; YLI,C1,1=1; YLZ,C1,2=1;

Figure 3.7. Illustration of slots and binary variables; two routes/segments are assigned to the same truck
(T1) and driver (K1), and one customer (C1) appears in both routes.

Second, sets R, ], J¢, J4, J0 are updated, so that only the routes and the customers selected in the
solution of VR are included. Index slotn € N = {1, ..., maxN}is introduced, to model different
routes of the same truck, different segments assigned to the same driver, and different visits to the

same customer (see Figure 3.7(a)). Specifically, the following sets are defined:

(a) N = {1, ..., N™3*1} € N:route slots for trucks, where N™**! is the maximum number of routes
that a truck is assigned to in the VR solution, i.e., N™** = max; (3, Zir).

(b) Nj] = {1, ..., N/™**} € N: customer slots, where N/"** is the times that customer j is visited in the
VR solution, i.e, N/ = Zi'reR]. Ziy.

(c) N¥ = {1, ..., Nk} c N: segment slots for drivers , where N™%* js the maximum number of

segments a driver can have, which is the maximum of two terms as follows,

N™axXk — max (Z Ziy+ Zir)/IK| ,miax(z Ziyt z Zir)
ir r

ir:t2>0D or TV >0W r:72>0D or ¥ >0W
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In the first term, the numerator is the number of segments to be carried out based on the VR

solution, where ZLT:T?Q>9D or tWsgw Zir 18 added as a correction for long routes with driver resting;

the denominator is the cardinality of the driver set. The second term denotes the maximum number
of segments a truck can be assigned to; this ensures enough driver slots if a truck is assigned to a

single driver.
Third, we define the following subsets:

(a) A; € A: arcs included in segment I.

(b) I; € I: trucks that can carry out segment L.

(c) J; € J: SCnodes visited in segment 1.

(d) J5tart /jend c J: first/last SC node in segment L.

(e) L; < L: segments visiting customer j.

(f) L7*t c L: the second segment in a long route after segment ! € L1

(g) L, € L: segments related to route r.

(h) R; € R: route related to segment L.
We also calculate the following parameters:

(i) w, € Z: the times route r is selected in the current VR solution.

() 9; € R: the fixed working time at SC node j. Specifically, for a customer j € J¢, it is the fixed
delivering time (B;); for plant-start Ps, the checking-in time plus loading time (8p + h); for

plant-end Pe, the checking-out time (¢“?).

3.4.2. Variables
The following binary variables are introduced:

(a) X!, = 1ifslotn of truck i is used.

(b) Xg, = Lifslot n of driver k is used.
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(© XLI% = 1if trucki carries out segment L.
(d) X; nxn'1 = 1ifslotnof truck i is matched with slot n’ of driver k to carry out segment L
(e) Y, j» = 1ifthe visit of segment [ is assigned to customer j on slot n.
(0 Winkn'1jm = 1ifslot nof truckiis matched with slot n’ of driver k to carry out segment /, and
customer j is visited on its window m in this segment.

(8) Rkn = 1ifslotn of driver k is started after a rest.

The main binary variable is X; , . ,7;, which represents the segment assignments to trucks and
drivers. Variables X/, X§, X[;, as aggregated versions of Xinkn'y» are introduced to break
symmetry and accommodate time constraints, for truck usage, driver usage, and truck-segment
pairing respectively (see Figure 3.7(b), where an earlier segment is assigned to the slot with a
smaller index of trucks, drivers and customers). Variable Y, ;, is used in inventory constraints,

while W, 1 n 1 im and Ry, are used for access window constraints and time limit constraints

respectively.
The following continuous non-negative variables are used to model time:

(a) S{,/El,: start/end time of slot n of truck i.

(b) SKu/ER,: start/end time of slot n of driver k.

(c) SE/E}: start/end time of segment 1.

(d) SH-/Eﬂ-: start/end time of the visit on segment [ to SC nodej.

(€) Sinkn'1j/Einkn’y;: start/end time of visit to SC node j using slot n of truck i and slot n’ of
driver k on segment [.

JN ,-JN. , . .
() Sin /Ej'n : start/end time of visit to customer j on slot n.

JN

The main time variables are S;, ../ ;/E; Variables Sjrn/E]{Q’ are introduced for

nkn'Lj

inventory constraints. The remaining time variables, as aggregated versions of S;,, /1 i/E iy kn' 1>
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are introduced to express the constraints for different time grids (trucks, drivers, segments and

customers).
Finally, the following continuous non-negative variables are used to model material flows,

(a) FlLJ! : delivery amount on segment [ to customer j.

(b) Fipnkn' 1, delivery amount to customer j using slot n of truck i and slot n” of driver k on segment

L

(© F]]g : delivery amount to customer j on slot n.

(d) F{: unused capacity for truck / on segment .

The main material flow variable is F; , ; ,,; ;, and Flf]! is an aggregated version of it. Variable P}Jrly
is used for inventory constraints, while Filslx is introduced to penalize unused truck capacity.
3.4.3. Segment Assignment Constraints

Segments are assigned to different trucks and drivers as follows,

Xinkn't=Xin VineN (3.20)
k,n'eNK 1gL2
X, =Xl VineN (3.21)
Xingn's = Xew Vkn' €NK (3.22)
imeNl I
X’I((:n = X]IC(,TL+1 Vk,n € NK (323)

Constraints (3.20) define the truck aggregated variable Xil,n' while constraints (3.21) are used
for symmetry breaking. Constraints (3.22) define the driver aggregated variable X,’én, and
constraints (3.23) break the symmetry in the same way as constraints (3.21). Note that the
summation in constraints (3.20) excludes the second segment of long routes, L2, while constraints

(3.22) do not, because the slots of trucks correspond to routes, which can be represented by the
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first segment for a long route, while the slots of drivers correspond to segments, which can facilitate

the driver constraints.

X X[ vil

inkn'l = (3.24)
neNl kn’eNk
X(i=ur VT (3.25)
i,leL,\L2
Xinkn't = Xinkn'+1y VineN kn' eNK lelll’ el (3.26)

Constraints (3.24) define the truck-segment aggregated variable Xl-’f, while constraints (3.25)
require that the segments which are related to route r, but not a second segment of a long
route(L?), should be carried out as many times as route r is used in the VR solution. Constraints
(3.26) enforce that if the first segment of a long route is assigned to truck-slot (i, n) and driver-slot
(k, n"), the second segment of it should be assigned to the same truck (slot n for routes) and driver

(slot n’+1 for segments). We fix X; ,, . ,,v, to zero, if truck i is not in the set of trucks that can carry

outsegment/ (i ¢ I;).
3.4.4. Time Constraints

We constrain the variables of start and end time to respect the visiting sequence and the
working and resting time limits. Note that by the definition of segments, the driving time of each

segment is given, so the driving time limits are inherently satisfied and not written explicitly.

Sinkn'pj <N Xingn't Vin€NLkn"€NKLje] (3.27)
Eingn'1j SN Xinkn'y Vin €N kn'€NKLje], (3.28)
I .
Si,n = Z Si,n,k,n’,l,j Vi,n € N’ (3.29)
kn'eNK 1gl2,jejstart
I .
Ei,n = z Ei,n,k,n’,l,j Vl,n € NI (330)

kn'eNK 1gL1,je]end
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El,<Slpi+n-1—X,s) VineN (3.31)

y ’

Constraints (3.27)/(3.28) enforce the start/end time of visiting a SC node, S; , x n' 1.i/Ei njen’ 1 j»
are zero if the corresponding assignment variable X; ,, . ., is zero. Constraints (3.29)/(3.30) define

the truck start/end time variables S{n/Ei{n, while constraints (3.31) state that slot n+1 of truck i

cannot start before slot n of the same truck is finished.

K _ ! K
Sk,n’ - Si,n,k,n',l,j Vk,n € N

. s start
ineNl jeJ;

(3.32)

K _ e NK
En = z Einknyj VKN EN

i,neN!, jejend

(3.33)

Constraints (3.32)/(3.33) define the driver start/end time variables S,f'n/E,f'n. (The difference
between them and constraints (3.29), (3.30) is due to the same reason as for X,’f,n and X{_n). In

practice, a driver may be available only before/after a certain time and for a period smaller than 8°

due to weekly driving limits. These constraints can be easily added using variables S,I(",n/E,Ién.

Rin < X, VkneNK (3.34)
Skne1— Eiin 20 Rinar =1 (1= Xfny1)  Vk,n € N\(N™¥Y (3.35)
Ef i1 —SKa <0 +1n-Rynir  Vk,n € NE\(N™axk} (3.36)

Constraints (3.34)-(3.36) express restrictions on the working and resting time of drivers.
Constraints (3.34) require Ry ,, to be zero ifX,’f,n is zero. Constraints (3.35) enforce that if a driver
starts its n+1 segment (slot) without resting (Rgn+1=0 and Xg,,;=1), then &1 = Ef;
otherwise, if this segment is started after resting (Ry n+1=1 and X, ,=1), then S{,,, = Ef, + 9.
Constraints (3.36) require that if segment n+1 is started without resting (Ry,+,=0), then the
difference of the end time of segment n+1 and the start time of segment of n should be less than the

working time limit 8",



62

S;{f_n_l +26W 4y > Ellc(,n+1 -1 (Rgn+1-— z Xin ont) Vi€ NK\{1, Nmaxky (3.37)

in'eNl leLt

SI{t{,n—l +20W + 1y > Ellc{,n+1 — 1 (Rgns1 +1— Z Xint ent) Vi1 € NK\{l,Nmaxk} (3.38)

i;n'eNl lel?

Constraints (3.37) exclude schedules that have a long route succeeding a short route directly,
and violate the working time limit, as depicted in Figure 3.8(a). Specifically, if slot n of driver k is the
first segment of a long route (the summation term being 1) and it is started without resting
(Ry,»,=0), then the end time of slot n+1 should be less than the start time of slot n-1 plus 26" + 1.

Constraints (3.38) follow the same idea, for the case of a short route succeeding a long route

directly.
11:7h . i
segmegt 4 segmept U e
slot | [ 12:7hrs resting(10hrs) slot — 12:7hrs
—— driving(5hrs) | ;
~ S ’ . o~ 13:7h
I S#hes o
on ; o™ i
1 i |
Working ‘ Resting | Working Working | Resting ‘ Working
t=10 7 14 2‘.3 43 t=0 1l4- Zé 36 43
Infeasible schedule violating (37) Infeasible schedule violating (38)
(a) (b)

Figure 3.8. [llustration of infeasible schedules that are cut off by (3.37) and (3.38) . For both cases, the resting
time limit is 10 hours, while the maximum daily working time limit is 14 hours.

E =3S;

inkn'lLj
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Simn' 1’ = Eingn 1 ¥ 70550 =1 (A =X ppen) Vin €NLk,n’ €N L (j,j) €A, (3.40)

Sinkn'+1,1j' Z Eingn'yj + 7055 =11 —Xipxn' 1)
(3.41)
vi,n € N k,n' € NK L e Ll € L}, j e J§"4, ) e J3Fot

- with E

nkn'Lj

Constraints (3.39) relate S; inkn'; for the same SC node via fixed and variable

working time, while constraints (3.40) relate these two variables for the two consecutively visited

SC nodes using the travel time parameter 7o; ;. Note that the variable delivering time is considered

in constraints (3.39), where w; ; is the reciprocal of the rate of delivery. Constraints (3.41) state that
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the start time of the second segment of a long route, I, should be greater than the end time of the

first segment, ], plus resting time, plus the travel time from the last SC node of I to the first SC node

of I.
Sf = Z Sinkn'yj V1 (3.42)
ineNlkn'eNk jejstart
Ef = z Eingen'pj V1 (3.43)
i,neNLk,n'eNK, jejend
Ef <St+6% wvi (3.44)
Efi <SF+20" +y viel,l' eLpe* (3.45)

Constraints (3.42)/(3.43) define the segment start/end time variables S/ /EF. Constraints (3.44)
and (3.45) express restrictions on the durations of a single-route segment and a long route with

two segments.
3.4.5. Delivery Flow Constraints

Delivery flow should respect truck capacities, as well as customer demands, as follows,

Finkn'1j S & Xingn'y Vin €N kn eNX Lje] n]¢ (3.46)
SX _ IL : S
Fii + Z Fingn'rj =% -Xii Vil€L (3.47)
neNLk,n'eNk, jef;nj€

SX — IL

F + Z Finkn'1j+ 2 Fingn' 1 j' =$i " Xi
neNLk,n'eNK, jejinj¢ neN! k,n'eNK,I’eLFext j’e], n)C (3.48)

vi,l e L

Constraints (3.46) enforce no product delivery when X; ,, ; ,,»; = 0. Truck capacity constraints

are expressed in constraints (3.47) and (3.48), respectively for short and long routes. In constraints

(3.48), the two summations represent the delivery amount on the first and the second segments of

a long route.
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L] _ ]
Fl= ) Finway VL€ (3.49)
ineN! kn’eNk
MIN L] MAX : c
N < N R < g vje) (3.50)
lEL]'

Constraints (3.49) define the segment-customer aggregated delivery flow variable Ff} .

Constraints (3.50) state that the total delivery amount to a customer should satisfy its minimum

and maximum demands.
3.4.6. Access Window Constraints

Each visit to a customer should be within one of the customer access windows, as follows,

Z Winkn'Ljm = Xinkn'a Vin€NLkn € NKLje) n]¢ (3.51)
m
AS ; ;
Si,n,k,n',l,j 2 z O}',m * Wi,n,k,n',l,j,m Vl,Tl E NI, k, n, E NK, l,] E ]l ﬂ ]C (3.52)
m
AE ; ;
Ei,n,k,n',l,j S z O-]"m * Wi,n,k,n',l,j,m Vl,n E NI, k, n, E NK, l,] E ]l ﬂ ]C (3.53)
m

Constraints (3.51) require that if segment [ is assigned to a truck and a driver, then the visit to a
customer should correspond to an access window. Constraints (3.52) and (3.53) enforce access

window restrictions.
3.4.7. Inventory Constraints

When the consumption rate is constant, constraints in this subsection are used for inventory

bounds, as follows,

z Yy = le{% vljeJ, nJA (3.54)
nen’ l

J

ZYU'” =1 vjeJ neN (3.55)

lEL]'
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Constraints (3.54) state that if a segment is carried out, the visit to an anticipatable customer
corresponds to one of the customer slots. Constraints (3.55) require that every slot of an

anticipatable customer corresponds to a segment that contains this customer.

L .
Sl,]]' = Z Sinkn'sj VLi€JNJA (3.56)
ineN! kn'eNk

L .
El,]]' = Z Ei,n,k,n',l,j vz:] € ]l n ]A (357)

ineNLk,n'eNk

SH=n-(1-Yy) <SS <s+n-(1-Y,,) VLje],nJ4neN/ (3.58)
Ef—n-(1-Y) SEN <SE+n-(1-Y;,) VLjelnj4neN/ (3.59)
FH =0 (1Y) <FlY <FI+¢) - (1-Y,) VijelnJ4neN (3.60)

Constraints (3.56)/(3.57) define the segment-customer aggregated start/end time variables
L] ;L] . . . _ . JN . L] L
Sl,j/El,j' Constraints (3.58) require that ifY;;, =1, start time Sin is equal to S Similar

constraints are enforced for the end time and flow amount in (3.59) and (3.60).

A JN JN L . A ]
n'<n
A JN JN U : J
LOA —p; - E/ + Z Flo<¢ VvjieJhneN; (3.62)
n'sn
Sj{rly = E]{rly—l vjieJine NJ'] (3.63)

Constraints (3.61) require that just before a delivery is made, which corresponds to one of the
inventory minima during the planning horizon, the inventory should be greater than the lower
bound. Constraints (3.62) state that inventory should be lower than the upper bound after a
delivery, which corresponds to one of the inventory maxima. Constraints (3.63) are the sequencing
constraints for visits to a customer. These constraints in conjunction with constraints (3.50)

enforce inventory bounds throughout the horizon.

3.4.8. Time Varying Consumption Constraints
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Any projected inventory level due to time-varying consumption profile can be approximated by

a piecewise linear function, and modeled by special ordered set type 2 (SOS2) variables. We
introduce a set of points, denoted by g € Q = {0,1, ..., maxQ}, to model the projected inventory
levels without deliveries. Q;is the point subset for anticipatable customer j. Eachq € Q;is
associated with a given time ij,q when the consumption rate changes in the approximation, and
/Tj,o//Tj,maxQ is the start/end time of the horizon. Each q € Q; is also associated with a projected

inventory level at time A;

i denoted by (_j’q. Note that (_]-_q can be less than zero, because this is the

inventory projection considering only consumption (no deliveries). As shown in Figure 3.9, the

following variables are introduced:

(a) ijn,q: SOS2 variable over index g, representing the start time of slot n of customer j; a set of
SOS2 variables is defined for each (j,n) pair.
(b) PJ-_En,q: SOS2 variable over index g, representing the end time of slot n of customer j.

(© Lf‘n: projected inventory level at the start of slot n of customer j (considering no deliveries).

(d) Lfn: projected inventory level at the end of slot n of customer j (considering no deliveries).

The constraints are as follows,

JN _ 7 S : ]
Sim = z g Ping V€N nEN] (3.64)
qeqQ;
S _ 7 S : ]
Lin = Z g Ping Vi€JLnEN; (3.65)
qeQ;
S JN L : ]
Lin+ Z Fipz¢ Vi€lineN; (3.66)
n'<n
S — . A ]
Z Ping=1 VYj€JineN; (3.67)

qeqQ;
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Figure 3.9. lllustration of parameters and variables introduced for piecewise linear approximation, shown by

an example of the first visit to customer j.

In constraints (3.64), P]fnﬂ is related to Zj'q and start time variable Sj]g. In constraints (3.65), we

calculate the projected inventory level at the start of slot n of customer j, based on (_j_q. Constraints

(3.66) replace constraints (3.61) for the lower bound before a delivery. In constraints (3.67), the

summation of variable ijn’q over index g should be 1.

JN _ 7 E . A J
Ein = Z Aiq - Ping Vi€J,MEN;
qeqQ;

E _ 2 E : ]
o= > Ga By ViETineN;
qeQ;

Lf + Z Flv<¢) vjieJinen

'<n

n
— i J
Z Phg=1 Vj€JineN
qeqQ;

(3.68)

(3.69)

(3.70)

(3.71)

Constraints (3.68)-(3.71) are the counterpart of constraints (3.64)-(3.67) for the end time of a

customer slot, and constraints (3.70) replace constraints (3.62) for the upper bound after a

delivery.
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3.4.9. Objective

Following the objective function (3.11) in the upper level VR model, we minimize the total

distribution cost,

min0% =P > R xlt 4y N (Bl - SL)+ 0R =y ) Y ik
i,r,leLR\L2 ineN! i,leLl

(3.72)

+y ZIILOICI Kl yX )R
i,lgl?

which includes: driving cost, working cost, resting cost, delivery cost, and penalty for unused truck
capacity. The term —y" - 1 is included before the third summation, because the resting time during

a long route is already included in the second summation.
3.5. Iterative Approach

In the upper level VR subproblem (§3.3), we select the routes (and trucks to carry out the
routes) to minimize cost; based on the selected routes, the lower level SP model (§3.4) is solved to
obtain the detailed schedule. However, the selected routes can lead to infeasibility or higher
distribution cost in SP, which means that multiple iterations may be needed before finding a
feasible schedule and proving its optimality. Specifically, when SP is infeasible or has a higher
distribution cost compared to VR, we modify the VR model by adding integer cuts and updating
parameters, re-solve it to select another set of routes, and solve SP again. In this section, we present

how the iterative approach is implemented.

The objective is to minimize the distribution cost, and the upper and lower bounds on this cost
are provided by the solutions of the two subproblems; the penalty term for unused truck capacities
is not considered. We introduce indexs € Sto denote the iterations. The VR objective value
provides a lower bound (LB) on the optimal distribution cost, since VR is a relaxed version of IRP.

Thus, after solving VR, LB is updated by LB = max(LB, OVR — y* ¥, . Ff¥); the summation term is
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subtracted to exclude the penalty term for unused truck capacities. On the other hand, an upper
bound (UB) on the optimal distribution cost can be obtained from the objective value of SP, since it
gives a feasible solution. Similarly, UB is updated by UB = min(UB, 057 — y* ¥, j¢12 F/). When LB
and UB are close enough or when a predefined iteration number is reached, i.e., (UB — LB)/LB <

MAX

eors =s"2% the algorithm terminates. Note that both LB and UB correspond to the problem we

consider after the dynamic network reduction.

The fundamental reason that the iterative approach may require multiple iterations is because
the upper level problem is a relaxation of IRP; drivers are not modeled explicitly, and inventory

levels are not monitored over time. Thus, we may need to iterate in the following cases:

No integer feasible solution can be found by SP, because (1) there are not enough drivers to
carry out the routes selected in VR (since drivers are not considered in VR); or (2) some routes are

not feasible for SP when scheduling constraints are considered.

The solution of SP has a higher cost compared to VR, because for some routes selected in VR,

longer working time is needed.

To address these cases, we can add integer cuts or update parameters. There are multiple
options to modify VR, before re-solving it. One approach is to simply add “no-good” integer cuts
(§3.5.1), which may lead to intractable iterations (Hooker et al., 2000; Harjunkoski et al., 2002;
Maravelias, 2006). To reduce the number of iterations, we can also use some heuristics. More
specifically, we can employ one of these three procedures, depending on the SP solution (§3.5.3 and

§3.5.4):

(a) Add route number constraints if SP is integer infeasible due to the number of drivers, or
(b) Add heuristic integer cuts if SP is integer infeasible due to the routes that lead to infeasibility, or

(c) Update parameters if SP is feasible but UB>LB.
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As shown in procedures (a) and (b), the infeasibility of SP is due to either the number of drivers
or infeasible routes; this reason can be identified by solving a modified SP model with slack

variables (SPS).

Another option is to generate different SP models using the current VR solution (in §3.5.2).
Upper level VR decides the routes to select, as well as the truck-route pairings. The latter decision
can be either enforced or relaxed when generating the lower level SP. Enforcing truck-route
pairings leads to a smaller model and faster solution time for SP. On the other hand, relaxing truck-
route pairings can potentially reduce the number of iterations, through more effective integer cuts
(on condition that the resulting SP model can be solved fast enough). The overall solution method is

summarized in Figure 3.10.

* Choose whether to use heuristics (Yes/No)
= Choose truck-route pairing option (OptnE/OptnR)
7

Reduce network (Algorithm 3.1)
= Identify trigger and balance customers
* Eliminate redundantarcs

Generate routes
(Algorithm 3.2)

Iteration s=1
Solve VRP

Integer
easible?

= Add general integer cuts;
" s=s+1

LB = max(LB, 0"F — y* ¥, FR¥
= Introduce segments and slots
= Calculate the subsetsand parameters of SP

Solve SPS

Integer
S easible?

No

IAdd route number constraints|9

IAdd heuristicinteger cuts (Algorithm 3.3) |9

pdate parameters(Algorithm 3.4)
L

Figure 3.10. Detailed solution method flowchart; diamonds represent decision points, white boxes represent
the main procedures, and grey boxes represent procedures to run before re-solving the upper level VR model.
Algorithms 3.1-3.4 are shown in Appendix G.

3.5.1. General Integer Cuts for VR
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If the iterative procedure is not terminated after solving SP, i.e,, if SP is infeasible, or if UB is
greater than LB, we need to add integer cuts to cut off the current VR solution. We introduce set R?,i
denoting the route carried out by truck i in iteration s. In other words, Rgi = {r|Z;, = 1}, where the
value of Z; ,. is from the VR solution in iteration s. Previous solutions can be avoided by adding the

following “no-good” integer cut,

G
Z Ziy— Z Zir < ZlRS,il -1 vs (3.73)

: G : G i
l,TERS’i l,T‘ERS’i

Note that this inequality only cuts off the exact truck-route selections, which may make the iterative
procedure lengthy. To reduce the number of iterations, more effective procedures to avoid

symmetric solutions are proposed in the following three subsections.
3.5.2. Truck-route Paring Options

Binary variable Z; ,. determines whether truck i is assigned to route r. If route r is selected by
any truck, its related segments are generated for the lower level SP. As introduced earlier, I,
denotes the set of trucks that can carry out segment I By defining I; differently, we have the
flexibility to choose if the truck-route pairings are enforced in SP. The following two options of
defining subsetI; will be referred as OptnE/OptnR, standing for enforced/relaxed truck-route

pairing option.

In OptnE, subset I, is defined as follows,

I, =i Z Zir >0 (3.74)

r€ERy

which means that segment [ can be carried out by truck i in SP, only if the route related to [ is

assigned to truck i in VR.
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In OptnR, we relax some of the truck-route pairings. The rule is as follows: if truck i carries out
more than one route in VR, i.e, if };;er Z;» > 1, then the routes carried out by this truck can be
assigned to other trucks in SP; however, if truck i carries out exactly one route, then this route is

assigned to truck i in SP, as follows,

ZZ”>O 1fEIl€IZer—1andZZW—O (3.75)

TER[ TERy T¢R;
otherwise

Each of these two options have advantages and disadvantages. OptnE leads to a smaller SP
model and faster solution time; while OptnR requires fewer iterations, because relaxing the truck-
route pairing can avoid some infeasibilities. Also, stronger integer cuts may be used with OptnR, as

we discuss next.
3.5.3. Heuristic Procedures for Infeasible SP

When no integer feasible solution is found by SP, there are two possible reasons: either there
are not enough drivers to carry out the selected routes, or some routes are infeasible (even if there
were enough drivers). By solving SP with slack variables for access window and inventory bound
violations, we can identify which reason leads to infeasibility. The following non-negative variables

are introduced:

(@ §i,n,k,n',l,j/E'i,n,k,n',l,j: the violation in the start/end time to visit SC node j using truck-slot (i,n)
and driver-slot (k,n") on segment L.

(b) £}, /F},: the violation in the inventory lower/upper bound of customer j on slot n.

Using these slack variables, constraints (3.52), (3.53), (3.61), (3.62) are replaced by constraints

(3.76)-(3.79),

AS . 1 K . C
Si,n,k,n’,l] + Slnkn Lj 2 Z Ojim Wi,n,k,n’,l,j,m Vi,n € Ni'k' n' € Nkrl'] € Nn] (3.76)

m
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Ei,n,k.n',l,j - Ei,n,k,n’,l,j = Z O}Arg ) Wi,n,k,n',l,]',m vin € Nll'k'n, € NIIC(' Lieln ]C (3.77)
m
A JN IN | AL L ; J 3.78
L0 —pj-sj’n+ZFj,n,+Fj,n2(j vjeJAneN (3.78)
n'<n
A JN IN _ pU U F oA J 3.79
LOf —py BN+ Y FN Bl <l vieJineN (3.79)
n'sn

The new model, which consists of constraints (3.20)-(3.51), (3.54)-(3.60), (3.63), (3.76)-(3.79), and
minimizes objective function (3.72) with penalty terms for the slack variables, is referred to as

model SPS.

Therefore, if SP is integer infeasible, we solve SPS. If SPS is integer infeasible, then the number
of drivers is not enough to carry out the selected routes in the planning horizon; otherwise, if SPS is
integer feasible, then some slack variables are greater than zero, and the corresponding routes lead
to access window or inventory bound violations. For the former case, we add the route number
constraints (3.80)-(3.82) below, and re-solve VR; for the latter, we identify the infeasible routes and

add the corresponding heuristic integer cuts, before VR is re-solved.

If SPS is integer infeasible, these route number constraints are added:

Z Ziy < K] (3.80)
i,r:ern/Z
n :
Z W7y < K| {[ﬁ] 6" + min(6",n mod 24)} (3.81)
ir
n .
Z 772y < |K]|- {[ﬁj 6” + min(6”,n7 mod 24)} (3.82)

ir
In constraint (3.80), the total number of selected routes that are longer than half of the horizon

should be less than or equal to the number of drivers. In constraint (3.81), the summation of

working time over the selected routes should be less than the summation of maximum working
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time over drivers; the term in the curly brackets is the maximum working time of one driver in the

planning horizon. Constraint (3.82) is the counterpart of constraint (3.81) for driving time.
If SPS returns an integer feasible solution, then there are two possible reasons:

(a) Inventory levels are violated in the detailed scheduling problem. For example, a customer
initially has comparatively high inventory, and the consumption rate is quite large. Thus, it
needs to be served after a certain time so that the demand and inventory upper bound can be
respected at the same time. However, this customer must be visited earlier using routes
selected in the VR solution.

(b) When some customers have overlapping or strict access windows, especially when they have
multiple windows, it is infeasible to have them scheduled in a certain sequence, despite the

preliminary filtering done by constraints (3.16) and criterion (c) when generating routes.

Based on the non-zero slack variables in SPS, we can identify the routes that lead to the
infeasibility, and add integer cuts to the VR model. The procedure is summarized in Algorithm 3.3
in Appendix G, and the heuristic integer cuts are generated based on the truck-route pairing option.

If OptnE is adopted, we introduce infeasible truck set I£ and infeasible route set R‘L-E_S and add the

following constraints,

z Zi, <|RE| -1 vsi€lf (3.83)

E
rERLS

to exclude the infeasible route combinations for the assigned truck. Otherwise, if OptnR is used, we

introduce infeasible route set R%, and add the following constraints

i,rER§
to exclude the infeasible route combinations for all trucks.

3.5.4. Heuristic Procedures for Feasible SP
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If SP is feasible but UB>LB, it means that the cost for executing some routes in SP is higher than
that in VR (which was precalculated). This is due to longer working time needed in SP, if the
inventory or access window constraints require additional waiting at customers. We introduce
another parameter, 7x; ,, representing the extra working time needed for truck i to carry out route r
in SP; tx; .- is initially set to zero, and updated after solving SP in each iteration. Because a route may
be assigned to more than one truck, the extra driving time for different trucks to carry out the same
route can be different (even for using OptnR). Thus, this parameter update does not depend on the
truck-route pairing option. After updating 7x; ,- from the SP solution, objective function (3.11) and

constraints (3.15) of the original VR model are modified as follows,

minZ[(VrR +yW )2y + Y FE (3.85)
ir
Z(Tf +x,) 2 <1, Vi (3.86)
-

Algorithm 3.4 in Appendix G summarizes the parameter updating procedure.
3.6. Computational Study

In this section, we first use a toy example to illustrate the different options of solution methods,
and then we present results based on industrial-size instances. For all instances, the horizon is 48
hours, check-in/out time is 0.5 hours, loading/delivering time at the plant/customers is 1 hour,
minimum resting time is 10 hours, and maximum daily driving/working time is 11/14 hours. The
unused capacity penalty is $0.1 per unit, and other cost parameters are: driving cost y?=$40/hour,
working cost y"'=$8/hour, visit cost yV=$10/visit, rest cost y®=$100/rest. The 48-hour horizon is
chosen based on industrial requirements as well as an analysis of the benefit obtained from using a
horizon longer than two days. Using a shorter horizon can lead to myopic solutions, while using a
longer horizon will lead, in general, to computationally hard problems with uncertain returns since
the uncertainty beyond 48 hours increases significantly. We tested all the problems using 4

different options (combinations of truck-route parings and heuristics), as summarized in Table 3.1.
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Table 3.1. Different options in the iterative approach.
Option 1 2 3 4

Truck-route paring option OptnE  OptnE OptnR OptnR

Heuristics option no yes no yes

All the models and solution methods were implemented in GAMS 24.7 and solved using CPLEX
12.6.3.0 on a desktop with a 3.4 GHz Intel Core processor (i7-2600) and 8GB RAM on Windows 7.
The solution time limit was set to 300 seconds for each mathematical program. The termination

criterion, €, was 0.005. Also, the iterative procedure was terminated after 20 iterations.
3.6.1. Toy Example

We consider an example with 3 customers, 5 trucks and 6 drivers. This example was fabricated
to illustrate the complexities that may be present and that we should account for. The network
structure is shown in Figure 3.11, the data for customers and trucks are given in Tables 3.2-3.3, and

iterations and solution time are summarized in Table 3.4.

Figure 3.11. Network structure for the toy example, P is the plant, g, b, c are three customers.

Table 3.2. Customer parameters for the toy example.

Customer a b c
Consumption per hour 4 6 10
Min/max level 0/400 0/500 0/850
Safety/initial level 160/200 200/300 340/350
Access window [0,7][40,48] [0,48] [0,7][40,48]

Table 3.3. Truck capacities for the toy example.
Truck T1 T2 T3 T4 T5

Capacity 600 1100 1100 1100 600
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Table 3.4. Iterations and solution time for the toy example.

Option 1 2 3 4
Iterations 7 7 7 3
Time(s) 6.6 10.4 6.5 4.5

There are several optimal solutions for this problem (i.e., solutions with the same objective
function value). In one of the optimal solutions, truck T1 takes route P->c->P, arrives at customer ¢
at time 6, and delivers 570 units of product; truck T2 takes route P->b->a->P, arrives at customer
b/a at 42.5/44.5, and delivers 448/152 units of product. The objective function value is 665. It
takes 48 minutes to solve this toy problem and prove optimality using a full IRP model (shown in
Chapter 2), while this optimal solution is found within seconds using the proposed decomposition

method, even though multiple iterations are needed.

First, we discuss the iterations using option 1. The most economic truck-route selection in the
upper level VR subproblem would be that one truck with a capacity of 1100 (T2, T3 or T4) serves
all three customers in a single route with no driver rest, delivering to a, b, c respectively 152, 478,
470 units of product; with a VR objective value OVR = 454, However, routes, P->a->b->c->P or P->c-
>b->a->P, would lead to an infeasible SP, because the access window constraints and the inventory
lower bounds cannot be satisfied at the same time. It takes 6 iterations to exclude the (symmetric)
infeasible truck-route selections, that is, in iterations 1-6 trucks T2, T3, T4 take routes P->a->b->c-
>P or P->c->b->a->P, and the LB/UB are 454 /+4co. In the VR subproblem in iteration 7, one truck
with a capacity of 600, T1 or T5, delivers to a and b 152 and 448 units respectively, and one truck

OVR = 662. This truck-route selection is feasible in SP, but

with capacity of 600 visits c. Thus, LB =
due to customer capacity and window restrictions, only 570 out of 600 can be delivered to c; thus,

05P is 665, and the UB is updated to 662 (because of the exclusion of the penalty term). Since UB

and LB converge, the solution process ends at iteration 7.

Using options 2 and 3 leads to the same iterations as when using option 1. As can be seen in

Table 3.4, more solution time is needed for option 2, because it includes the additional model SPS to
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solve. Finally, 2 iterations are needed to exclude the selections of routes P->a->b->c->P and P->c-
>b->a->P, when option 4 is used. In iteration 3, routes P->c->P and P->b->a->P are selected, and the

iterative procedure ends (LB = 0VR = 662, 0"R = 665, UB = 662).
3.6.2. Industrial-size Instances

We consider 12 instances based on real industrial cases, with 45 to 155 customers in the
original networks (including 2 to 11 order-only customers). After the dynamic network reduction
(§3.2), there are typically fewer than 35 customers (including 0-2 order-only customers). We
classify the 12 instances into 3 groups, based on the number of selected customers: instances 1-4
have 5-14 selected customers; instances 5-8 have 15-24, while instances 9-12 have 25-34.
Generally speaking, more selected customers lead to a larger problem. Four options were used for
our testing. Table 3.5 shows the overall algorithm performance, including instance sizes, iteration
numbers, total solution time and objective values. Model statistics are shown in Tables 3.6-3.8,
where the VR and SP models in the first iteration are shown as representatives. Note that the
statistics of the VR model in the first iteration are all the same for the four options, while the
statistics of the SP model in the first iteration depend only on the truck-route paring option. We also
tested instances using the full IRP model (shown in Chapter 2). The corresponding solution

statistics for the smaller instances are given in Table 3.9.

First, we note that the decomposition method is significantly faster than the full IRP model.
Using the full model, the first integer solution can only be found after a few minutes, while using the
decomposition method, all instances 1-4 can be solved in a few seconds. After 20 hours, the
objective values of the solutions obtained by the full model are the same or inferior to the solutions
obtained by the decomposition. For instances 5-12, no integer solution can be found within an hour
using the full model, while all instances can be solved within 15 minutes using the proposed

method.



79

We observe that SP is sometimes slow using OptnR, so OptnE should be adopted for larger

problems. This is different from the toy problem, where OptnR helps to reduce the number of

iterations and solution time. For large scale instances, option 2 with heuristics and OptnE is the

optimal one in terms of computational cost.

Table 3.5. Instance characteristics, iterations, solution times, and objective function values using options 1-4.

Ins- Custo- Tru- Dri- Iterations Total time (s) Objective value
tance mers cks  vers Arcs  Routes 2 3 4 1 2 3 4 1 2 3 4
1 5 4 4 20 17 1 1 1 1 1.4 1.3 1.4 1.3 666.0 666.0 666.0 666.0
2 7 5 5 54 49 1 1 1 1 1.9 1.8 2.1 2.1 924.0 924.0 9240 924.0
3 8 3 5 23 16 1 1 1 1 2.6 2.6 4.0 3.9 1494.3 14943 1494.3 1494.3
4 13 4 6 137 218 1 1 1 1 5.4 5.6 8.4 8.4 1186.0 1186.0 1186.0 1186.0
5 16 4 6 50 40 1 1 1 1 8.1 8.1 26.0 26.5 2817.2 2817.2 2817.2 2817.2
6 17 7 9 74 100 17 2 20 2 2980.3 370.8 6105.5 970.9 5621.6 5625.6 NA 5630.9
7 23 4 6 385 1609 1 1 1 1 17.5 17.5 293 29.2 1809.0 1809.0 1809.0 1809.0
8 23 7 8 178 883 1 1 20 2 1819 1949 4840.2 8814 5506.0 5506.0 NA 5540.5
9 25 6 9 111 112 1 1 1 1 209 209 374 37.3 2241.8 22418 22418 22418
10 32 7 10 485 2293 3 2 20 20 1372.0 878.0 6616.6 9851.9 5517.8 5517.8 NA NA
11 32 10 13 485 4342 1 1 3 4 83.6 879 17735 3483.5 5002.8 5002.8 5002.8 5002.8
12 34 7 8 218 307 3 2 20 1760.2 892.1 7090.5 39529 3778.7 3778.7 NA 3785.8

Table 3.6. Solution statistics of the VR model in the first iteration.

Instance Variables Binaries Constraints Non-zeros Nodes Time(s)

1 248 68 226 944 1 0.08

2 650 170 593 2550 1 0.04

3 171 48 203 678 1 0.03

4 1504 360 1756 6784 1 0.08

5 512 136 636 2184 1 0.06

6 1869 448 2258 8428 1 0.11

7 16028 3376 21578 77664 1 3.17

8 19712 4130 25993 94373 480 7.57

9 683 171 796 2875 1 0.33

10 22764 5054 26491 94584 1528 11.67

11 60470 12810 69828 258774 936 61.03

12 7224 1659 8511 29867 1 0.39

Note. When nodes = 1, the solution was obtained and its optimality was proved, or the model was proved infeasible, in the

presolve phase or at the root node.



Table 3.7. Solution statistics of the SP model in the first iteration, using OptnE (options 1,2).

Instance Variables Binaries Constraints Non-zeros Nodes Time(s)
1 243 53 324 1205 1 0.28

2 405 66 569 2060 1 0.39

3 847 207 1126 4356 1 0.67

4 2110 657 2914 10836 1 0.39

5 3339 738 4753 17527 1 2.70

6 18879 3287 25233 104764 1275  286.11
7 3154 830 4614 16792 1 2.82

8 6112 1406 8820 32480 2762  153.36
9 2389 589 3303 12740 1 3.23
10 9392 1591 13231 50539 932 78.25
11 8201 1540 11285 44042 1 22.37
12 7076 1345 9927 37358 980 275.34
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Note. When nodes = 1, the solution was obtained and its optimality was proved, or the model was proved infeasible, in the

presolve phase or at the root node.

Table 3.8. Solution statistics of the SP model in the first iteration, using OptnR (options 3,4).

Instance Variables Binaries Constraints Non-zeros Nodes Time(s)
1 818 168 1043 4353 1 0.36

2 1791 254 2473 9749 1 0.38

3 1127 265 1459 6008 1 1.94

4 8571 2594 11855 45404 1 431

5 13528 3022 18962 71200 1 20.76
6 60850 9508 82717 337597 19 300.73
7 12768 3514 18226 69062 1 14.52
8 41608 9864 58022 220007 88 300.52
9 14103 3368 19480 78145 1 20.12
10 94907 11020 94907 368356 1 300.15
11 14103 3368 19480 78145 1 18.88
12 50442 9727 69732 266266 1 300.77

Note. When nodes = 1, the solution was obtained and its optimality was proved, or the model was proved infeasible, in the

presolve phase or at the root node.

Table 3.9. Solution statistics of the full model.

Time of Objective Objective
1stinteger value of Nodes value Gap after
Instance Variables Binaries Constraints Non-zeros : . after 20
solution 1st integer after 20 20 hours
: hours
(s) solution hours
1 16328 10445 8511 128029 342 774.0 104889 666.0 18%
2 30852 18260 15576 279301 430 1459.3 39005 924.0 39%
3 10130 6838 5443 81636 52 1922.6 237401 1496.4 11%
4 43222 25132 21959 406516 620 1734.2 22157 1186.0 60%
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For smaller problems (instances 1-4), the algorithm is finished within 10 seconds using all
options, and the objective values are the same; option 2 is the fastest. For medium-sized problems

(instances 5-8), we observe the following:

(a) OptnE is much better than OptnR, because OptnR leads to very large SP models. For example, no
integer solution was found within the limit of 300 seconds for instance 6 using option 3. To
further study this, we tested all instances with a 1200-second time limit for solving SP; OptnE
still outperformed OptnR.

(b) Option 2 is the fastest; all instances were solved within 7 minutes. However, option 2 can lead
to slightly suboptimal solutions compared to option 1, which may cut off the optimal solution in

the VR subproblem (e.g., instance 6).

For larger instances, 9-12, option 2 greatly outperforms the others. Thus, using OptnE and
heuristics is the best combination when obtaining near optimal solutions is acceptable (in all the
instances, the gap between the solution using option 2 and the best found solution is less than

0.1%).

C12

B Plant
o Visited customers
o Unvisited customers

Figure 3.12. Routes selected for instance 11.
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Finally, we show the routing and scheduling solution of instance 11, which was also used as the
example in §3.2.3. Figure 3.12 shows the routing decisions (note that some balance customers are

not visited in the planning horizon) and Figure 3.13 shows the final solution as a Gantt chart.
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Figure 3.13. Gantt chart showing the solution for instance 11.

3.6.3. Remarks

In real applications, time spent in solving IRP is critical. Thus, we discuss how to set the solution
time limits for both the upper and lower level subproblems, and how to react if the time limits are

reached.

For the upper level VR, we observe that the solution time depends, as expected, on problem
size, but does not change greatly among iterations. For all of the tested instances, the VR model in
the first iteration can be solved within 2 minutes, and the time increases as the numbers of trucks,
arcs and routes increase (Tables 3.5 and 3.6). During the iterative procedure, integer cuts are added
to VR, so the model becomes larger, but the solution time does not increase. We illustrate this
observation by showing the statistics for 100 iterations of instance 11, where the VR model is
solved repeatedly by adding “no-good” integer cuts. We use the results of “no-good” integer cuts,
because they are the most general cuts and lead to the densest matrix. As shown in Figure 3.14,
even though the number of non-zeros becomes 5 times larger, the solution time does not increase

significantly. Therefore, we can set a constant solution time limit for VR based on the numbers of
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trucks, arcs and routes. In the rare case that VR is not solved to optimality within the time limit, we
should update the LB using the best lower bound in the branch-and-bound tree, and increase the VR

time limit in the next iteration.

For the lower level SP, the size of the model depends not only on the number of trucks,
customers and drivers, but also on the number of routes selected in VR in the current iteration, so
the solution time can vary greatly across iterations. Accordingly, a good strategy to set the time
limit for SP is to use an adaptive algorithm with the following rules: (1) The solution time limit
should be a function of the numbers of trucks, customers, drivers, and selected routes in VR. (2)
When SP is not solved within the time limit, we do not use the heuristics shown in Figure 3.10, and
increase the time limit for the following iterations. (3) When heuristics have been aborted and SP is
solved within the time limit, we reuse the heuristics, and gradually decrease the time limit in the

following iterations.
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Figure 3.14. Effects of integer cuts on the number of non-zeros and solution time.

3.7. Conclusions

In this chapeter, we proposed novel solution methods for vehicle-based inventory routing
problems, including a preprocessing algorithm and an iterative approach based on a decomposition
to an upper level vehicle routing subproblem and a lower level detailed scheduling subproblem.
The preprocessing algorithm selects trigger customers, whose demands should be met in the

horizon, as well as balance customers to fully utilize truck capacities. This algorithm can be adapted
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to different networks by selecting user-defined parameters accordingly, and can be modified to
consider different features, such as time-varying consumption rates. In the upper level subproblem,
the routes to satisfy customer demand are selected, taking into account truck capacities and the
working and driving time needed for each route. In the lower level subproblem, detailed truck and
driver schedules are generated based on the routes determined at the upper level. We presented
different types of integer cuts that can be added to the upper level problem to exclude previously
found solutions or groups of solutions. Finally, we tested our methods using a set of industrial-scale
instances, based on distribution networks with up to 155 customers. Instances that were

intractable can now be solved within reasonable time.

3.8. Notation

Indices/sets

i€l trucks

JE] SC nodes, including plant P
k€K drivers

leL segments

m € M; access windows of customer j
n€eN time slots

qg€EQ piecewise linear approximation points
r €R routes

SES iterations

Subsets

Ac(Jx]) arcs
A /A, arcs included in segment //route r

Afﬁ- arcs traveled before j in route r

I; trucks that can carry out segment /
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J4/1°
jrirst

Ji

jiter e

Jr
J'/18

N’/N//NK
R,

R,
RS /RS;/RE
Parameters
Bi

vP IR
vV ir*
€

G515

trucks that are assigned to infeasible routes in OptnE
customers

anticipatable/order-only customers

customers required to be visited first in a route

SC nodes visited in segment /

start/end SC node of segment /

customers visited in route r

trigger/balance customers

customers in the region of j

single-route segments

first/second segments of long routes

segments visiting customer j

the second segment, following segment /, in a route
segments related to route r

slots of trucks/customer j/ drivers

routes related to segment [

routes visiting customer j

infeasible route combinations (for different types of integer cuts)

fixed loading or delivering time at SC node j

driving/resting/working cost
delivery/unused capacity cost
termination criterion

minimum,/ maximum/ safety level of anticipatable customer j
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(j.q

oY /6P

NN

7,9

&

Pj

pj (®)
afm/fm

oS OE
a;° /0

A
L0}

projected inventory level at point q of customer j without deliveries
planning horizon

maximum daily working/driving time

time at point q of customer j

capacity of truck i

constant consumption rate of anticipatable customer j
consumption rate of anticipatable customer; attime t

start/end time of access window m of customer j

start/end time of order window of customer j

traversal time of arc (j,j') including loading or delivering time at j
travel time of arc (j,j")

order amount of order-only customer j

check-in/check-out time
minimum resting time

variable time for a unit material delivery from truck i to customer j

initial inventory of anticipatable customer j

Calculated Parameters

Aty j

%
V;
.

O.].MIN/O}'MAX

T [T [tF

Txi'.r

earliest possible visiting time to customer j via route r

cost of route r

fixed working time at SC node j

number of times that route ris selected in VR solution
minimum/maximum demand in the planning horizon of customer j
working/driving/routing time of route r

updated extra working time of route r by truck i
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wT; time when the projected inventory of customer j goes below lower bound
Binary Variables in VR
Ziy =1ifand only if truck i uses route r

Continuous Non-Negative Variables in VR

Fi’fTX unused capacity of truck i when carrying out route r

Fl-lfr' j delivery amount from truck i to customer jin route r

OVR objective in VR

Binary Variables in SP

Xinkn'l = 1 if and only if truck-slot (i,n) is matched with driver-slot (k,n’) to carry out
segment /

X!, =1 if and only if slot n of truck i is used

X =1 if and only if slot n of driver k is used

X{% =1 if and only if truck i carries out segment /

Yijn =1 if and only if segment [ visits customer j on slot n

Winkn'yjm =1 1if and only if truck-slot (i,n) is matched with driver-slot (k,n’) to carry out

segment /, in which customer j is visited during window m

SOS2 Variables in SP
I’J-,Snlq/l}’fn’q SOS2 over index g representing start/end time on slot n of customer j

Continuous Non-Negative Variables in SP

F delivery amount to customer j at truck-slot (i,n) and driver-slot (k,n") on segment /

inkn'lj
FlL]! delivery amount on segment [ to customer j
Fj]::’ delivery amount to customer j at slot n
F]Ln/ﬁﬂl inventory lower/upper bound violation for customer j at slot n
F{_qu unused capacity for truck i on segment [
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L]S,n/Lfn projected inventory level at the start/end of slot n of customer j (which can be
negative)
(o objective in SP

Sinkn'1jlEinkn'1,j start/end time to visit SC node j using truck-slot (i,n) and driver-slot (k,n’) on
segment /

Si,n,k,n’,l,j/Ei,n,k,n’,l,j start/end time violation

S{'n/Ei{n start/end time of slot n of truck i

SkalERn start/end time of slot n of driver k

SE/EE start/end time of segment

SlL‘]]-/ElLJ]- start/end time to visit SC node j on segment /

SJ/;V/E]-],IY start/end time to visit SC node j on slot n
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Chapter 4

Policy Analysis based on Reoptimization for MIRP under Uncertainty+

In reality, IRP is a “dynamic” problem in which new information (e.g. newly forecasted
production/consumption rate) arrives continuously and disruptive events (e.g., delays due to bad
weather) are common. However, most models and solution methods have been developed for the
static IRP/MIRP. Accordingly, in this chapter, we propose a reoptimization framework that allows
us to: (1) study the impact of different sources of uncertainty on the closed-loop (implemented)
solution, as opposed to the open-loop solution; and (2) study how different policies impact the
quality of the closed-loop solution. In the MIRP we studied, the vessels may have specific capacities
and can be rented in different modes; for all the consumption nodes and some of the production
nodes, the inventory levels are monitored and should be maintained within specified bounds; for

other production nodes, orders should be picked up within pre-defined time windows.

The chapter is structured as follows. In Section 4.1, we discuss background on MIRP and
reoptimization. In Section 4.2, we propose a MIP model based on a discrete-time representation. In
Section 4.3, we discuss the sources of uncertainty we consider and the stochastic simulation we
employ to study them. In Section 4.4, we present the reoptimization framework, and in Section 4.5
we describe the different policies that can be adopted. Case studies are presented in Section 4.6. We
use uppercase bold Latin letters for sets, lowercase italic Latin letters for indices, lowercase italic
Greek letters for general parameters and uppercase italic Latin letters for optimization variables.
Subsets are represented by the letter of the superset and a superscript. Finally, parameters which
represent the history of the system, and consequently determine the state of the system at the

current time, are denoted by uppercase italic Latin letters with a hat.

4 This chapter is modified from Dong et al., submitted.
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4.1. Background

4.1.1. Distribution Supply Chain

In MIRP, there are generally two subsets of nodes (ports): production and consumption nodes.
Materials are distributed among these nodes by sea-going vessels. Traveling from one node to
another is referred to as a trip. For most nodes, inventory levels and estimates of future
consumption and production profiles are known. Additionally, to study features that are often
found in practice, we consider owned and third-party nodes (i.e., nodes not owned by the decision-

maker) as well as long- and short-term renting modes.
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Figure 4.1. An illustration of the overall distribution network.

Deliver

Deliver

Short-term mode

For all consumption nodes and the owned production nodes, the estimated future consumption
and production profiles are known, and the inventory levels should be kept within their upper and
lower bounds by delivering or picking up materials. For third-party production nodes, orders with
specified pick-up windows are given. Material distribution can be carried out by vessels either
rented in long- or short-term mode. The distribution problem is illustrated in Figure 4.1. Sources of
uncertainty include vessel availability, trip delays, pick-up window specifications,

consumption/production rate variations, etc.
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Most pick-ups and deliveries are completed by renting a seagoing vessel and its crew in long-
term mode. Once rented in long-term mode, a vessel needs to be held for at least a certain number
of days (normally 30). Vessel availability needs to be checked with the marine vessel company
before it is rented: the earlier an inquiry (call) is made, the higher the probability that a vessel will
be available and successfully reserved. The advantages of long-term rental are that (1) a vessel is
guaranteed to be available once rented, and (2) the decision maker can change its routes and
schedules. The disadvantage is that a fee has to be paid for as long as it is rented, regardless of its

utilization level.

A short-term rental is for a single node-to-node trip (e.g., pick up 1000 kilotons of material A at
production node P1 on October 15t and deliver it to consumption node C1 on October 25t) and the
rate charged is per trip. The decision maker also has to call the vessel company to make the
reservation. The advantage of short-term mode is that the decision maker only pays for the vessel
when it is in use. The disadvantages are: (1) a vessel may not be immediately available; (2) the per-
period cost is higher compared to that for the long-term mode; and (3) a scheduled trip cannot be

changed to react, for example, to a new order or trip delay.

4.1.2. Reoptimization

Reoptimization, or reactive optimization, is needed when the horizon is finite and/or the
system is subject to uncertainty. If reoptimization focuses only on revising the decisions that are
already made, it results in a shrinking-horizon approach; while if the horizon is rolled forward so
that additional decisions are made, it results in a rolling-horizon approach. In the field of production
scheduling (Méndez et al., 2006; Li and lerapetritou, 2008; Verderame et al., 2010; Harjunkoski et
al,, 2014), reoptimization has been studied (Vieira et al., 2003; Ouelhadj and Petrovic, 2009; Gupta
et al,, 2016). Upon obtaining new information or observing a disturbance, (part of) the unexecuted

schedule is recomputed. Rescheduling approaches can be broadly divided into deterministic



92
(Bassett et al, 1997; Novas and Henning, 2010; Gupta and Maravelias, 2016) and stochastic
(Balasubramanian and Grossmann, 2004; Janak et al., 2007; Cui and Engell, 2010). Deterministic
approaches are easier to implement and computationally less demanding, while stochastic
approaches can potentially lead to better solutions. A state space model explicitly accounting for
disturbances for chemical production rescheduling has been proposed (Subramanian et al.,, 2012).
An optimization framework of rolling horizons has been proposed for the vendor managed
inventory systems (Al-Ameri et al.,, 2008), while make-to-order polices have been analyzed on a

rolling horizon basis for order-based production SCs (Sahin et al., 2008).

In this chapter, we employ a deterministic approach and adopt a rolling horizon framework for
reoptimization. Each solution obtained from solving the MIP model is referred to as an open-loop
solution. The first move of this solution, that is, the decisions corresponding to the first period (t =
1) are implemented. After the horizon is rolled forward, uncertainty is observed and feedback is
incorporated, and the model is re-solved; the decisions for t = 1 are implemented and the process is

repeated. The final, implemented solution is referred to as the closed-loop solution.
4.1.3. Problem Statement

We consider a sufficiently large fleet of vessels that can be rented in long-term mode. Unrented
vessels are located in a pseudo node, the vessel center (vc). We do not model vessels rented in short-
term mode explicitly because it is unnecessary to keep track of their location (since they are rented

for single trips); we simply model the time and the pick-up quantity.
We consider the following indices and sets:

(a) i € I: shipping vessels (that can be rented in long-term mode).

(b) j € JP: production nodes, which can be classified as owned, j € J°, and third-party, j € J7".

(c) j € J¢: consumption nodes.

(d) j €] =J7 UJ€ U {vc}: all nodes in the supply chain network.
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(e) k € K;: orders from node j € J"”.
(f) m € M: materials.

(g) A €] x]J:arcs in the SC network.

The following data are assumed to be available:

(a) yMAX: capacity of vessel i.

(b) yMIN: lower bound on the load of vessel i when traveling from a production node to a
consumption node.

(c) 7;j: traversal time along arc (j,j*), which includes the travel time, plus the pick-up/delivery time
atnode .

(d) & J’.‘;’.?“X : maximum load along arc (j,j*), which is determined by the waterline bound along the arc.

(e) (}‘;’;qu/(}"’n{’v: maximum/minimum inventory level for material m in consumption node or owned
production node j; inventory violations leading to overflow or underflow are allowed but
penalized.

(f) @jmx: amount of material m in order k from node j € J'*.

(g) aj‘,){s/aj‘,)f: start/end time of pick-up windows for order k from node j € J7.

(h) The forecast production or consumption profile for node j € J°F U J¢ (discussed in §4.2).

We are also given the initial state of the system (see §4.2.2 for details), including node

inventories, vessel initial loads, and vessel location information.

The objective is to minimize the total distribution cost, which includes material holding,
overflow, underflow, vessel renting, and transportation cost. The corresponding parameters are as

follows:

(a) 9t: minimum number of periods for which each vessel can be rented in long-term mode.

(b) mfL: fixed cost for renting vessel i for the minimum number of periods.
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(c) mP": additional cost for extending the long-term rental of vessel i.

(d) njsjr: cost of renting a vessel in short-term mode to serve (j;").
(e) nijr: fixed transportation cost for trip along (j, j).
§i) n}?: unit variable transportation cost for trip (j, j).

(g) n}‘an: unit holding cost for material m at node j for one time period.

Note that parameters (b)-(d) include the cost of renting the vessels as well as their crew

members.

4.2. Discrete-time Model

We adopt a discrete-time approach, where the planning horizon 7 is divided into periods with
uniform length §. Time points and time periods are both denoted by t € T. Period t starts at point
t-1 and ends at point t, so the planning horizon has n/§ periods (1, 2, ..., n/8),and /8§ + 1 points (0,
1, .., n/8). Vessels start trips at time points, while they travel along arcs or stay at nodes during
time periods. The consumption/production rate of each node during each time period is known,
and its inventory level is modeled; it represents the level just after the pick-up/delivery occurring
at the same time point.

The traversal time along an arc is rounded up, 7;;» = [?jjr/S] to ensure that the solution is
feasible. The approximation can be modified, if it is desirable to be less conservative. For each node

J, we use pjm; to denote the production or consumption rate of material m during period ¢, which is

positive for production nodes (j € J*), and negative for consumption nodes (j € J¢). For a third-

]TP

party production nodej € J'", ordersk € K; are placed (described by parameters @j,; and

aj‘,)(s/aﬂf). To treat nodes uniformly, if j is a third-party production node, the production rate in the

period just before the start time of a pick-up window is equal to the order amount,

(4.1)
0 otherwise

Pjmt Z{
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Figure 4.2. Production rate, upper and lower bounds on inventory levels for a third-party production node.

We use {j, MIN ]I‘;',‘ftx to denote the lower/upper bound on the inventory level of material m in

IN/{MAX

node j at time ¢. For consumption or owned production nodes, {j, represent the physical

MIN MAX

constraints (see §2.3). For third-party production nodes, ¢ is always 0; while {7, is the order

amount if [03° /8] < t < |o3F /8| for an order k, and 0 otherwise (see Figure 4.2).

gHn = {5MIN ifj €JoP uJ© 42)
0 ifj e JTP '
(MAX lf] € IOP U ]C
Tl =< @jmi ifj €)7F and 3k € K: [ 516l <t <|oif /6| (4.3)

0 ifj€J™ and Ak € K;:[07°/8] <t < |a/3F /5]
4.2.1. Variables

An overhead bar is used for variables representing quantities or states during a time period t,
while no bar is placed for variables representing quantities or actions at a time point. We define the
following binary variables:

(a) w. l” 1. = lif vessel i starts a trip from j to j” at time point ¢.
(b) X it = lifvessel i is at node j during time period ¢; when not rented, Xl vet = 1.
(c) w. ” 1. = lifavessel in short-term mode starts a trip from j to j” at time point .

and the following nonnegative continuous variables to represent material flows and inventory

levels:

(@) F; J j'me: @mount of material m loaded in vessel i that starts to travel from jtoj’ at t.
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(b) Fji"mﬁ amount of material m loaded in short-term rental, from j to j’ starting at t.
(¢) Ljm:: inventory level of material m in node j at time point ¢.

(d) Lj-)mFt/L%ﬁt: amount over/below the upper/lower bound on the inventory level of material m in

node j at time point t.

Figure 4.3 illustrates the aforementioned variables based on a delivery to a consumption node

by a vessel in long-term mode.
Finally, we use the following variables to model different types of cost:

(a) Y% = 1ifvessel i is used during period t beyond the minimum 9* periods.
(b) CMH: material holding cost.

(c) cPf/clF: overflow/underflow cost.

(d) ¢fT: fixed transportation cost.

(e) C/T:variable transportation cost.

(f) CFL: renting cost for the minimum 9¥%-period in long-term mode.

(g) CEL: renting cost for extended time in long-term mode.

(h) C7 : short-term renting cost.

(i) CALL:total cost.
4.2.2. System Initial States

An overhead bar is used for variables representing quantities or states during a time period t,
while no bar is placed for variables representing quantities or actions at a time point. We define the

following binary variables:
We define the system initial state (t = 0) using the following:

(@) Ljmo: initial inventory of node j.
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(b) )?ith: initial location of vessel i; if located at j initially, then )?iLjO = 1; otherwise, XiLjO = 0; if
traveling initially and will arrive at j at t, then )?ith = 1; otherwise, )?l-th =0.

() Fi]}mt/ﬁjs'jmt: amount of en route material m, arriving at consumption node j at time point ¢,

from vessel i or from production node j’ using a short-term rental; the source of this incoming
flow is monitored in case it needs to be modified due to trip delay.

(d) Wiﬁj’t/Wji’t: previously made travel decisions (which should be respected in the solution);

= 1means that vessel i should leave j for j’ at time t, while W3

7L
W: it

it = 1 means that a vessel

in short-term mode should leave j for j’ at time t.

The letters used in these parameters are the same as the optimization variables (e.g., ijmo
represents initial inventory level and Lj,,; is an inventory level variable), though sometimes the

parameters have slightly different meaning (e.g., Fiﬁ-mt is the amount of material arriving at node j in

vessel i at time point ¢, while Fil}j,mt is the amount of material loaded in the vessel, if it starts to

travel from j to j’ at t).

States Variables Inventory
EEE Pick-up/delivery 5 'ﬂ/{.ﬁj;t =1 starta trip
EX.L =1 atanode

ijt =

Level modeled by variable L;,,
Real-time level

-
bt > Shmt
- = ,' e
E Tab :l 4 E The l: S E Tlab =4 EE The :l 3 S
t=4 6 8 10 t=4 6 8 10
(a) Vessel starts another tripimmediately (b) Vessel stays idle for one period

Figure 4.3. Inventory modeling for consumption node b, with a vessel traveling on a—b—c. The delivery time
is included at the beginning of each traversal time. (a) The vessel arrives at b, immediately makes delivery,
and leaves. (b) The vessel stays at b for one period before making delivery.

4.2.3. Constraints
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Vessel location. The following equation models the vessel location (including departing from

and returning to the vessel center):

SL ..
Xz]t Ut 1t z ij'jt— -1 z ijj't— 1+Xij,t—1 Vi)t (4.4)

Vessel i is at node j in period ¢, if (1) it was there in the previous period ()?i’“]-_t_l = 1) or it has just

arrived (either Y. W, =1lor X’iLj,t_l = 1), and (2) it does not leave at the start of period t.

l] "jt— Tjr=1

Note that Xilfvc,tzl represents that vessel i is not rented during ¢ (i.e., located at the vessel center).

Arc flow. Constraints (4.5) enforce that the vessel capacities and maximum load along arcs are
respected, and constraints (4.6) enforce that to avoid routes with small pick-ups, the flow amount

from a production node to a consumption node should be greater than a minimum amount.

. zMAX L T
z ijj'me S min (St JYLIVIAX) Wiiine Vi,G.J') €At (4.5)
z ijj'mt = INWS; e VijEJRJ ETNC () EAL (4.6)

Similarly, in short-term mode, the arc flow is subject to constraints (4.7) and (4.8).

. MAX A
Z irme < mIn@ yMOWE, VG, €A (4.7)
ZF] mt MINVV]:;’t VjE]P'j, E]C'(jﬁj,) EA,t (48)

For simplicity, the maximum/minimum pick-up amounts of vessels in short-term mode, y4%/

yMIN are assumed to be the same for all vessels, but this assumption can be relaxed.

Inventory level. The inventory level Lj,,; is equal to the inventory level at the previous time
point plus production (pjmy > 0) or consumption (pj,; < 0) plus incoming flows minus outgoing

flows,
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L

jmt = Lim,¢— 1+p]mt+z i jmt=;; z ' jmt= z ijj'mt
i’
z ]jmt+zF]mt+z S’jmt VjE]PU]C,m,t

where the last two terms represent the incoming flow to j that are initially en route. Inventory

(4.9)

levels are constrained as follows,
Lime — L%, < (04X +ZnM Xymers Vi €17 UJE,m,t (4.10)

Lime + Lime 2 Omt Vi€JPUJEm,t (4.11)

LUF

where overflow/underflow amounts are denoted by L7, /L3,

The second term on the right hand

side (RHS) of constraints (4.10) is needed because when a vessel is at a node, the amount of

material in the vessel is included in variable Lj,,; (see Figure 4.3(b)).
4.2.4. Objective Function

The objective is to minimize the overall distribution cost,

minCAY = (CUH + COF + CV + CET + CYT + +CF + CFY + CF) (4.12)

The material holding cost is calculated as follows,

CéVIH = Z MHL]mt vt (4.13)

jm

where T

m 1 is the unit holding cost for material m in node j.

The overflow and underflow cost are calculated as follows,

OF _ OF [OF

Ct _Z TimeLjme  Vt (4.14)
jm

UF _ UF JUF

Ce —z Tmeljme VT (4.15)

jm
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where n] F and ! mt are the unit inventory violation cost in each period for material m in node j.

Transportation cost includes fixed cost, which is independent of the load, and variable cost:

FT _ FT L FT S
G = Z i Wijjre ¥ z i Wijre vt (4.16)
ijJ’
VT _—
C" = Z U] "'mt Z mjjr ]J me VE (4.17)
ij.j'm Jj.Jj'm

where n” is the fixed cost for traveling along arc (jj’), and n , is the unit variable cost.

Long-term renting has two cost components: one for the renting over the minimum 9* periods,
and another for extending the renting beyond 9* periods. The binary variable Y%, representing

whether vessel i is rented beyond the minimum periods in time ¢, is constrained as follows,

7L 7L L L ]
Yii 2 Z Xije + Z Wi Z Wpejer — Xie Vit
jeJPuJc j,j’,t—T]-]-/st’St—l jt—9Ll<t'st-1

(4.18)

where parameter y;; = 1if (1) vessel i is already rented at the start of the horizon, and (2) period ¢t
is within the first 9% periods since this renting. Therefore, vessel i is rented beyond the minimum
number of periods, if it is still rented (one of the first two summation is 1) and the current rental

started more than 9 periods ago (last two terms are both 0). This constraint is illustrated in Figure

4.4.
Clw; w}-t=1 start a renting B8 x/.-1 wait (variable) [ ] Travel Within first 30 days of
Bw, zu 1, = 1startatrip(j # ve) [l ¥ = 1 additional period  [EZZ5] Wait (state) renting, if initially rented
Xie =1
Xir = 0,Vt i ;
Initial rent |
Schedule | .
1 1 _S| = BE ©
Variables ? ? H H i H H H H
t=0 2 30 32 34 t=-2 0 28 30 32
(a) Vessel iis not rentedatt=10 (b) Vesseliisrentedatt=10

Figure 4.4. Modeling for the extended renting of vessels beyond 9* periods; 9% = 30.
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With ¥ defined above, the two components of cost are expressed in (4.19) and (4.20)

respectively,
ctt = z ] Wipeje Yt (4.19)
Lj
Cft = Zm“f’i% vt (4.20)

i
where " is the fixed renting cost, and mF" is the extended renting cost for one period.

The short-term renting cost is calculated as follows,

s _ S S
C; —ZT[]-]-I I/ij’t vt (4.21)

where n]?s;., is the cost for renting a vessel in short term mode to serve trip (j;”), and nf;., normally

depends on the trip length ;;/ linearly.

4.2.5. Valid Inequalities

When no inventory violations are allowed, we can add valid inequalities to tighten the model.

For third-party production node j € J7? with orders K;, binary parameter 6j;;, which represents

whether a time period is within a pick-up window, is defined as follows,

e[ 08 OE
B0 = {1 if[63° /6] + 1<t < |07F /6| (422)
0 otherwise
There should be at least one outgoing arc during the pick-up window,
L S i = 1TP

i,j’,t:ejkt=1 j’,t:ijt=1

For owned production node j € J°F, the minimum number of pick-ups till time t should satisfy,

Zm(z' ot Xtr<t Pjme’ — fMAX

L S ‘im <t Fjmt jmt . OP

Z Wijj’t' + Z Vijltl > [ maX{maX)/MAX ,yMAX} V] E] ,t (424)
L

ijt'st jle'st :
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where the RHS represents the minimum number of pick-ups (so that the maximum inventory level
is respected). The numerator is the initial inventory plus the production amount till time ¢ minus

the upper bound on inventory level, while the denominator is the largest vessel capacity.

Following the same logic, we can write constraints (4.25) for consumption nodes,

. Wt ), Wi

i,j t’<t‘rr jt’<t Tjr;

(4.25)
Zm( JA;Ir{ItV ijO_Zt’Stpjmt th’<t ijmt’ Zj’,t’StFﬁjmt’)

max{max y 4%, yMAX}
l

vjeJS,t

where the numerator on the RHS is the minimum delivery amount to meet the lower bound on

inventory level.

In reality, uncertainty can sometimes make inventory violations inevitable, because trip delays
and vessel unavailability disrupt the implementation of the solutions previously obtained. In such
cases, we can still enforce constraints (4.23)-(4.25), with a small modification: (4.23) are enforced
for every order k of third-party production node j except its first order in the horizon, and (4.24),

(4.25) are enforced for time t greater than a threshold value max; 7 ;

Finally, when all the vessels have the same capacity and availability profile, the symmetry

breaking constraints shown below can be added,

L - .
z W ,vc‘]t < lcht+1 Vl,l’ >t (426)

where vessel i’ is not allowed to move out from the vessel center at time ¢, if vessel i < i’is not
rented in time t+1 (X{,..41 = 1). Thus, if two vessels are available for renting and only one is

needed, the one with a smaller index is rented.

4.3. Uncertainty and Stochastic Simulations
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In practice, there are different sources of uncertainty which can make the original solution
suboptimal or even infeasible as the horizon is rolled forward. To understand how solution quality
can deteriorate, we study the following uncertainties: vessel availability, trip delays, pick-up
window information, and consumption/production rates. We first discuss how they affect the
problem, and then describe how we incorporate them in the stochastic simulation. When needed,
we use a plus sign superscript to denote the parameters in the current iteration (e.g., p}’mt), and a

minus sign for the parameters used in the previous iteration (e.g., pj;,.)- The algorithms for

stochastic simulations are presented in the Appendix G.
4.3.1. Vessel Availability in Long-term Mode

Before a vessel is rented, the decision maker needs to “call” the vessel company within what we
refer to as the “reservation window”, to check availability and make the reservation. We use A4
and A8 to denote the start and the end of the reservation window. In other words, the availability
of vessel i is checked, if it needs to be rented in the open-loop solution (i.e, %; jrac<pL8 VI/l-,L,,C,j_t =
1), as shown in Figure 4.5. The probability of a vessel being available at time t is €, (t). Generally,
the earlier a call is made, the more likely a vessel is to be available, i.e., &, (t) is a non-decreasing
function of t. If a vessel is not available, we get feedback about the time when it will become

available, add constraints on availability, and re-solve the model.

E Mf,i%vc,jt:j- starta renting D Vessel in usage

Reservation window
A5A=q 15Bi=g
r 3
n the window
i14 [ —
Qut of thelwindow
2] i
t=0 2 4 6 8 10

Figure 4.5. Availability of vessels is checked if the solution of the model includes the start of a long-term
renting within the reservation window (t € [AX4, ALB]).
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In the stochastic simulation (Algorithm 4.1), I® denotes the set of vessels in long-term mode
that are still at the vessel center, but already reserved, and thus the availability of vessels in I¥ is
not checked. Stochastic parameters subject to uniform distributions are generated to determine the
availability of vessels. We assume that the probability that a vessel is available is a linear function of

t. To model the vessel availability, we introduce the following:

(a) Indexn € N ={1, ..., N} to denote the number of unreserved vessels;
(b) Parameter nmax to denote the maximum number of unreserved vessels that are possible to
start a long-term renting within the reservation window;

(c) Parameter 8% to denote the time that the nth vessel becomes available;

Wi, ;.=1startarenting [ Vessel in usage

A¥4=1  Reservation window ASB=9

s+ 1 T 1
Long-term availability profile
2
14
t+0 2 4 10
11+ Vessel schedule L
21 [ O ——
13 5 ) E| |
L
EiEIRJj115t<3VVi.vc,jt =0
L
YietR j1=tas Winejr =1

L
Eielﬁ,jﬂsmgm,vcjt =2

Figure 4.6. Constraining the number of unreserved vessels in long-term mode according to the availability
profile.

If the nth unreserved vessel is available at ¢, such that };¢r Wi jc =1, then 8L = t; otherwise,

the model is re-solved with updated availability information. The number of unreserved vessels is

constrained as follows,

L -
Witeje <n—1 Vn<nmax (4.27)
igIR,j, ALA<t<5k
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which means that before the nth vessel becomes available, and after the earliest long-term

reservation time, at most n-1 vessels can be moved out of the vessel center (see Figure 4.6).

4.3.2. Vessel Availability in Short-term Mode

Vessels rented in short-term mode should be reserved during a short-term reservation window;
we use 154 and 158 to denote the start and the end of the reservation window. If the open-loop
solution includes a trip (by a short-term rental) yet to be reserved during the window, a “call” is
made to check availability. If there is availability, the reservation is made and the horizon is rolled
forward; otherwise, constraints based on the received feedback are added and the model is re-
solved. The overall procedure is similar to the one for long-term rentals, but the short-term rental

availability depends on the location of the trip, as described next.

Arcs (trips) are grouped into clusters, denoted byl € L, according to their origins and
destinations. A cluster includes arcs that are close to each other. We assume that the number of
available vessels to serve different trips in a cluster is the same for all trips in that cluster. As in
§4.1, indexn € N = {1, ..., N} denotes the number of unreserved trips, and the nth vessel to serve a
trip in cluster I becomes available att = §;,, where the stochastic parameter &;, evolves as the

horizon is rolled (Algorithm 4.2). Based on the values of variables Wji?,t, we know the “desired”

renting time for the nth trip in each cluster. If the desired renting time is before the availability time,

the model is re-solved (Algorithm 4.3).

The number of unreserved trips is constrained as follows,

N —
Wi <n—1 vn,l (4.28)

A54<t<83,(j,j")EA\AR,

where A, denotes the set of trips in cluster /, and AR denotes the set of trips that start at time t and

are already reserved. Thus, constraints (4.28) require that for each cluster I, after the start of the
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short-term reservation window 154 and before the vessel to serve the nth trip becomes available, at

most n-1 unreserved trips are allowed to start.
4.3.3. Trip Delay

Scheduled trips may be delayed due to three reasons. First, the newly rented vessels may arrive
at their destination node late. Second, travel time of an on-going trip may vary, typically because of
weather-related reasons. Since longer trips have potential for larger delays, this second type of
delay is roughly proportional to trip duration. Third, unexpected events in pick-ups or deliveries

can extend any trip by 1 or 2 days. Trip delays are simulated using Algorithm 4.4.
4.3.4. Pick-up Window Specifications

Each order from a third-party production node should be picked up within a window. The pick-
up windows starting before t = APV are deterministically known and are usually 2 to 3 days wide;
normally, APU = 30 days. For the remaining orders (with t > APY), no window information is given,
so the start times of the windows are estimated based on order frequency. Also, the width of these
windows is assumed to be 10 days. The information on these windows becomes deterministically
known when the estimated start time is equal to t = APV (this process reflects industrial practice).

The order amount, which in the general case will be stochastic, is assumed to be deterministic here.

The simulation of pick-up window specifications is carried out using Algorithm 4.5.
4.3.5. Consumption/Production Rate

The actual consumption/production rate in the period just before t = 0 may differ from its
forecast, and the future forecast rate may change as the horizon is rolled forward. We assume that
these differences follow a normal distribution. For example, we assume that the change of future
forecast is (pj-'mt = Pjmt)/ Pjme~N (0, 0gf), where p]-_mt/p;'mt denotes the old/new forecast rate, and
orr denotes the standard deviation of the percentage change in the forecast rate. Algorithms 4.6

and 4.7 are used to simulate the actual production/consumption rates and forecast changes.
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4.4. Reoptimization Framework
We reoptimize at a given frequency, typically once a day. At each stage, we observe uncertainty,
update parameters and constraints, and re-solve the optimization model. We repeat D-1 times, so D
open-loop solutions with different initial time are obtained. We use dated € D = {1,2, ..., D} to
denote the absolute time each open-loop solution was obtained, and period/point ¢ to denote the
relative time in each solution (i.e., t = 0 is the initial time of each MIP model).
We use two MIP models: M1, without availability constraints (equations (4.4)-(4.26)); and M2,
with availability constraints (equations (4.4)-(4.28)). Before solving either model, we fix the
corresponding variables according to long-/short-term renting and long-term returning decisions

that have been made previously (see Algorithm 4.8).

| d=1 |

v

Fix variables according to

. . <
W0 W, 7 (Algorithm 4.8) [T

Solve model M1 |

Check vessel availability and
update parameters 6%, 55"
(Algorithms 4.1, 4.2, 4.3)

No Vv
| Roll horizon (Algorithm 4.9) H Solve model M2

No

d=D+1?
Yes
| End |

Figure 4.7. Flowchart of the reoptimization algorithm.

To obtain each open-loop solution, we first solve model M1, and then simulate the “call” to
check vessel availability (for both long- and short-term modes). If the desired vessels are available,
the reservations are made and the horizon is rolled forward. Otherwise, if any of the desired vessels

is unavailable, we evaluate what the decision maker would do by adding constraints (4.27) and
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(4.28), and solving M2. Based on the solution of M2, we make the new reservations, and roll the
horizon. The overall algorithm is summarized in Figure 4.7, and the detailed procedure to roll the
horizon is given in Algorithm 4.9.

We use parenthesis to denote the variable values from the open-loop solution at date d (e.g.,
CMH(d) denotes the material holding cost during period t in the open-loop solution obtained at date
d). We use C;(d) to denote the overall cost during period t from the open-loop solution at date d,
which is calculated as follows,

Ce(d) = CM"M(d) + CP7(d) + T (D) + €T (d) + CYT(d) + CFH(d) + CPH(d) + (D) (429)

We also introduce the estimated cost at date d, denoted by C'P (d), which has two components:
(1) the actual cost CA™®(d), between 0 and d-1, based on already implemented decisions; and (2)

the forecast cost CB'?(d), between d and D, based on future decisions in the open-loop solution at

d.
CAP(d) =CcA™(d-1)+C;(d—1) (4.30)
CBPD = ) Cld) (431)
t<D—-d+1
C'P(d) = CA™(d) + CB'™P(d) (4.32)

Therefore, C'P (1) denotes the first open-loop cost, while C’? (D) denotes the closed-loop cost
after the horizon is rolled D-1 times. The evolution of estimated cost is illustrated in Figure 4.8. In
§4.6, we will discuss how the evolution of the estimated cost helps us understand the effect of

reoptimization.

4.5. Policy Analysis
As new information becomes available and uncertainty is observed, previously obtained open-
loop solutions become suboptimal or even infeasible. Interestingly, solutions that appear to be good

when computed, result in poor implemented solutions, which leads us to study four policies that
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can be adopted, on top of the optimization models solved at each iteration, to improve the quality of

the implemented schedule:

[ Implemented solution  [__] Open-loop solution at d

Atd=1
Date.. 10, 1..2..3. 36..37..38 39 4D 41 9.60
t o1 2 3 36 37 38 39 4D 41 59 60
C'P (1) = CA'P (1) + CB'? (1); i.e., fhrecast cost of [0, 40]
Atd=2 _ :
::::::! : : | e |
Date |0 1 2 3 .. 36 37 38 39 40 41 59 60 61
t [ ) I T A T e R T 5475560

C'P(2) = CAP(2) + CB'P (2);
Le., actual cost of [0, 1] + forecast cost of [2, 40]

Atd=40
Date 36 37 38 39 4D 41 59 99
t 2 20 60

0
C'P (40) = €A™ (40) + CB'” (40);
i.e,, actual cost of [0, 39] +forecast dost of [39, 40]

Figure 4.8. The estimated cost C'?(d), as the horizon is rolled, from d=1 to d=D=40, using an open-loop
solution with n=60 (i.e., t € [0,60] in each model).

As new information becomes available and uncertainty is observed, previously obtained open-
loop solutions become suboptimal or even infeasible. Interestingly, solutions that appear to be good
when computed, result in poor implemented solutions, which leads us to study four policies that
can be adopted, on top of the optimization models solved at each iteration, to improve the quality of
the implemented schedule:

(a) Adjusting the start and end time of (long- and short-term) reservation windows;
(b) Placing restrictions on the minimum number of vessels rented in long-term mode;
(c) Adding a preference for early pick-up during a window; and

(d) Modifying start time and length of pick-up windows.
4.5.1. Reservation Windows

The start and the end times of the windows are adjustable parameters by the decision maker.
Reserving early makes it hard to adjust the schedule as uncertainty is observed, while attempting to
reserve late can lead to unavailability. If there is limited uncertainty, early reservations are

expected to be favorable. Similarly, if vessel availability decreases fast with time, then early
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reservations are also expected to lead to better solutions. Thus, given the uncertainty in the system,

our goal is to study how reservation windows should be chosen.
4.5.2. Vessel Constraints

In general, optimization over a short horizon tends to yield myopic solutions where, for
example, few vessels are rented in long-term mode because, among others, (1) many trips are
assigned to be performed by short-term vessels which are then found to be unavailable (unlike
long-term rentals); and (2) idle long-term rentals can be used to react to last minute delays.
Accordingly, we study how adding a lower bound, vmin, on the number of vessels rented in long-

term mode (modeled through vessels staying at the vessel center) can be beneficial:

> Rhee <Ml —vmin Ve (4.33)
i

4.5.3. Early Pick-up

If the pick-up of an order can be scheduled at any time during the pick-up window without
affecting the objective value, the optimization can arbitrarily allocate this pick-up to any time in
that window. However, when uncertainty is considered, it would be favorable to schedule the pick-
up early in this window to leave some room for trip delays, thereby leading to better closed-loop

solutions. The preference of early pick-up is modeled using a small penalty term:

EP _ EPy/L EPyssS

Lje]Tr ! jeIiTr !
where parameter nff is calculated as follows,

mf = ) O B (e [0%/8) (435)

REK]'
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and £ is a penalty parameter. In equation (4.35), if t is within the window of order k from node j, the

earlier t is, the smaller parameter nftp becomes. After adding term C£¥, objective function (4.12), is

modified as follows,

min CALL = Z(cg‘“f +CPF + PP + cFT + YT + +Cft + CEX + Cf + CEP) (4.36)
t

To implement this preference, we first solve the original model, and then fix the vessel-trip
assignment based on the solution of the original model and re-solve the model with constraints

(4.34)-(4.36).
4.5.4. Pick-up Windows

Pick-ups from third-party production nodes are expected to be carried out within the pick-up
windows. Due to either the limited number of vessels or the uncertainty in the system, it is
sometimes impossible to perform all pick-ups within these windows, which results in a penalty. To

address this, we study three remedies, which the decision-maker can potentially negotiate:

(a) Earlier specification of pick-up windows;
(b) Longer pick-up windows;

(c) Soft pick-up windows.

When soft pick-up windows are introduced, late/early pick-ups just outside the windows are
penalized with a comparatively small overflow/underflow cost. We use 05" to denote the number
of periods in a soft pick-up window. If an order cannot be picked up within this soft window, the
original large penalty is used (see Figure 4.9). We study different settings: (1) no soft pick-up
windows (05" = 0); (2) soft pick-up windows with 65" = 1; (3) soft pick-up windows with

%" = 2. For (2) and (3), we study different penalties to assess what penalties would be acceptable.

4.6. Case Study
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We consider an instance with 2 third-party production nodes, 1 owned production node, 2
consumption nodes, and 1 material. There are 7 vessels for long-term renting, which are enough to
generate the optimal solution. The time step is 1 day, and the planning horizon is 60 days. To

acquire one closed-loop solution, 40 open-loop solutions are obtained, i.e,, D = 40.
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Figure 4.9. P‘enalt.y modification for soft bick-ﬁp Window.

All models and algorithms were implemented in AIMMS 3.13 and solved using CPLEX 12.6 on a
machine with two 2.26 GHz Intel Xeon E5520 processors and 16GB RAM running Windows 8. The

solution time limit was 210 seconds for each MIP model. The optimality gap was, on average, 0.5%.
4.6.1. Effect of Short-term Renting and Reoptimization

We study four different solutions: (1) open-loop solution at d=1 without short-term renting; (2)
closed-loop solution without short-term renting; (3) open-loop solution at d=1 with short-term

renting; and (4) closed-loop solution with short-term renting. No uncertainty is considered.

The four solutions are shown in Figures 4.10, 4.11, where V1-V7 represent vessels in long-term
mode, while VS represents vessels in short-term mode. Estimated costs P (d) are shown in Table
4.1. Incorporating short-term renting can reduce the distribution cost by 15% in the open-loop

solution, and 8% in the closed-loop solution. We also see in Figure 4.11 that when short-term
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renting is allowed, more than 20% of the pick-ups from production nodes are made by vessels

rented in short-term mode.

Table 4.1. Estimated costs C'?(d) of the four solutions.
Without short-term  With short-term
180,000 153,750

188,950 174,750
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(b) Closed-loop solution without short-term renting

Figure 4.10. Open- and closed-loop solutions, without short-term renting.
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(b) Closed-loop solution without short-term renting

Figure 4.11. Open- and closed-loop solutions, with short-term renting.

We also see that closed-loop cost is 5% to 14% higher than the corresponding open loop cost at
d = 1. This is primarily due to the effect of the finite horizon problem we solve. Specifically, (1)
vessels in long-term mode are rented for longer periods in the closed-loop solution, considering the
deliveries beyond the horizon of the model solved at d=1; and (2) in the open-loop solution atd =1,

the inventory level of the owned production node (P3 in Figures 4.10, 4.11) at the end of horizon is
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high to minimize the distribution cost, but implementing this solution would lead to inventory
violations beyond the horizon, which leads to more pick-ups from this node in the closed-loop

solution.

These results suggest that the addition of short-term renting is essential to reduce the
distribution cost. Thus, short-term renting is incorporated in all the following studies. Moreover, we
verify that even in the deterministic case, the closed-loop solution is different from the initial open-
loop solution, which suggests that methods to obtain high quality closed-loop solutions have to be

studied even for the deterministic case.
4.6.2. Effect of Uncertainty

The following five problems are studied: (1) deterministic (all pick-up windows are specified);
(2) problem under uncertain vessel availability (§4.3.1, §4.3.2); (3) problem with trip-delays
(§4.3.3); (4) problem with uncertain pick-up window specifications (§4.3.4); and (5) problem under

consumption and production rate uncertainty (§4.3.5). We generate 60 samples for each problem.

Some results are shown in Figure 4.12, where C'P(d) for a typical but specific sample and the
average of C'P(d) over samples are given as functions of d. As expected, the fluctuation for the
specific sample is large, while the fluctuation of the average value of C'?(d) decreases. The open-
loop cost, C'P (1), is the same for all the problems except problem (4), in which the length of pick-up

/1PU

windows starting after t = are increased to 10 days at d=1, leading to a lower open-loop cost.

Nevertheless, the closed-loop cost, C'? (D), is the focus of our study.

Note that C'P (D) for one sample in Figure 4.12 has large fluctuations because there are multiple
optimal solutions which may lead to changes in C'?(d). For example, in the deterministic problem
solved at d = 16, there are seven pick-ups from the owned production node; three of them start in
[16,40], which are used to calculate C'P(d), and four after d = 40. However, in the open-loop

solution obtained at d=17, two of the four pick-ups beyond d = 40 are moved earlier (arbitrarily due
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to solution symmetry), thereby leading to a solution with five (rather than three) out of the seven
pick-ups scheduled before d = 40, which leads to an increase of C'?(d). Note that C!?(d) profiles
become flat as d approaches 40 because decisions for small t in the corresponding open-loop

solutions do not change.

As expected, the deterministic problem has the lowest closed-loop cost. On average, the cost of
the problem under consumption/production rate uncertainty does not increase significantly
compared to the deterministic problem, because the variations cancel out in the long-run, though
they do lead to slightly different decisions. The problem under pick-up window specification
uncertainty has a closed-loop cost 3% higher than the deterministic problem. Incorporation of
vessel availability and trip duration uncertainty increases the closed-loop cost by 14% and 10%,

respectively, compared to the deterministic case.
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Figure 4.12. Profiles of C'P(d), when different sources of uncertainty are incorporated.
4.6.3. Effect of Policies

As discussed in §4.5, adopting different policies may lead to different open- and closed-loop
solutions, especially in the presence of uncertainty. Accordingly, we study how different policies
affect closed-loop solutions. Policies related to pick-up windows are studied in the next subsection,

since they need to be negotiated with the third-party production nodes.



116

For the three groups of policies described above, 13 cases are studied (see Table 4.2). The best
reservation window parameters are obtained using the results of cases 1-6. The decision to adopt
vessel constraints and the corresponding parameters are studied through cases 7-11, and the
preference for early pick-ups is studied in cases 12-13. All sources of uncertainty are incorporated
in the reoptimization. We generate 60 samples for each case and compare the different policies

using the mean of the closed-loop cost.

The closed-loop cost is a random variable. The closed-loop cost of 60 samples and the
corresponding histogram are shown in Figure 4.13, along with a fitted normal distribution. We can
see that the distribution of closed-loop cost is similar to the fitted normal distribution. The

similarity is observed for all the other cases as well.

Table 4.2. Characteristics of 13 cases.

. Reservation windows Vessel constraints Preference of
Policy to study  Case . -
Long-term Short-term (minimum number) early pick-ups
1 [14,21] [2,10]
2 [14,21] [2,5]
Reservation 3 [14,21] [5,10]
. No No
windows 4 [7,14] [2,10]
5 [7,14] [2,5]
6 [7,14] [5,10]
7 No
| 8 Yes (3)
Vesse . 9 Best from cases 1-6 Yes (4) No
constraints
10 Yes (5)
11 Yes (6)
12 No
Prefere.nce of Best from cases 1-6 Best from cases 7-11
early pick-ups 13 Yes

If we view all closed-loop solutions for each case as a population, the expected value of random
variables in 2 populations (i.e., the expected closed-loop cost from solutions in 2 cases) can be

compared (Wonnacott and Wonnacott, 1990), as shown in the following equation,

—a Zm(Xl,m - )Tl)z + Zm(XZ,m - X_Z)Z . 1 1
2 ) |( ng +n, —2 ) (n_1+n_2) (437)

- 1
(U1 — H2)q = (X1 — X3) T t(
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Figure 4.13. Results of the closed-loop cost in case 2.

where (4, — Uy), is the range of the difference of expected values at confidence level a, t(x) is the
value above which the area of probability density function is x for student’s t-distribution. If we use
population 1 as reference, n, denotes the sample size, X; denotes the sample mean, and Xim
denotes the random variable value (closed-loop cost) of sample m. The number of degrees of
freedom for t(-) is n; + n, — 2. Based on equation (4.37), if the sample means of closed-loop cost in
case 1 and case 2 satisfy X; > X,, we can use equation (4.38) below to calculate the confidence

level, , that case 1 leads to higher closed-loop cost than case 2 (1 > u,).

nn—1)

a=1-t"1{(X;—X3) — —
Zm(Xl,m - Xl)z + Zm(Xz,m - XZ)Z

(4.38)

where n = n; = n, denotes the number of samples we have for each case, t~1() is the inverse
function of t(+), and the number of degrees of freedom is 2(n-1). The results and statistics are
shown in Tables 4.3-4.5, respectively for the three groups of policies. We make the following

remarks:

(a) Comparing cases 1-6 (Table 4.3), we observe that case 4 (using [7,14] in long-term mode and
[2,10] in short-term mode) has the lowest sample mean of closed-loop cost. Thus, for the

uncertainty used in our simulations, the closed-loop cost can be minimized by using a relatively
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late long-term reservation window and a wide short-term reservation window. Given the
confidence levels in Table 4.3, we conclude that the policies in case 4 outperform the others.

(b) The comparison of cases 7-11 (Table 4.4) suggests that adding vessel constraints leads to lower
cost. Case 10, where the minimum number of vessels (vmin) is 5, has the lowest sample mean.
(c) The comparison of cases 12 and 13 (Table 4.5) suggests that early pick-ups lead to lower

closed-loop cost, with a confidence level of 80%.

Based on these 13 cases, we choose the reservation windows in long- and short-term modes to be
[7,14] and [2,10], respectively; use vessel constraints with at least 5 vessels; and prefer early pick-
ups. We verified that making any changes in the policies used in case 13 does not lead to

improvements.
4.6.4. Effect of Policies related to Pick-up Windows

The policies related to pick-up windows are studied separately, since they have to be negotiated

/1PU

with third-party production nodes. We test multiple cases, using different 1Y, window length

(aj(,)(E - aj(,)cs), and o5". For each case, we generate 60 samples; sample means of the closed-loop

cost, as well as standard deviations, are summarized in Table 4.6. Soft window penalty is the ratio
of the inventory violation penalty during soft windows over the same penalty during other periods.
Adding 1- and 2-day soft windows can lower the cost by 7% and 13%, respectively (see cases 14, 16
and 17). Using windows between 4 and 5 days leads to about the same as using windows between 2

APU does

and 3 days combined with 2-day soft windows (comparing cases 15 and 17). Using larger
not change the closed-loop cost much, because the information farther in the horizon plays a small

role (see cases 14 and 18).

Different soft window penalties are also studied, and the results are shown in Figure 4.14. We
observe that as the soft window penalty increases to 0.7, the sample mean of the closed-loop cost

becomes similar to the original case (no soft windows, case 14). Note that the frequency of pick-ups
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during the soft windows increases as (1) the probability of trip delays increases, (2) the probability
of vessels being available decreases, and (3) pick-up windows from several production nodes have

similar start times. The decision maker can use these insights to negotiate soft window penalties.
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Figure 4.14. Sample mean of the closed-loop cost for different soft window length and penalties.

Table 4.3. Statistics of cases used to study reservation window paramters. The table includes the sample
mean of closed-loop cost (C'2(D)), sample standard deviation (SD) of the closed-loop cost, and the confidence
level (a) that the case with the smallest sample mean has a smaller expected value than the case in the
column. Best denotes the case in that column has the smallest sample mean.

Case 1 2 3 4 5 6
CW(D) (10%) 2.31 2.35 2.47 2.23 2.41 2.44
SD (104) 2.27 2.89 2.28 1.50 2.24 1.53
a (%) 98.86 99.74 9999 Best 99,99 99,99

Table 4.4. Statistics of cases with different vessel constraints. The table includes the sample mean of closed-
loop cost (C'P (D)), sample standard deviation (SD) of the closed-loop cost, and the confidence level (&) that

the case with the smallest sample mean has a smaller expected value than the case in the column. Best
denotes the case in that column has the smallest sample mean.

Case 7 8 9 10 11
CW(D) (105) 2.23 2.21 2.11 2.08 2.12
SD (104) 1.50 1.56 1.69 2.19 2.16
a (%) 9999 9998 7416 Best 80.96

Table 4.5. Statistics of cases studying whether to use the preference of early pick-ups. The table includes the
sample mean of closed-loop cost (C'P (D)), sample standard deviation (SD) of the closed-loop cost, and the
confidence level () that the case with the smallest sample mean has a smaller expected value than the case in
the column. Best denotes the case in that column has the smallest sample mean.

Case 12 13
C™(D) (105) 2.08  2.05
SD (104) 219  1.67

a (%) 80.16  Best
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Table 4.6. Statistics of cases with different pick-up windows.

Case 14 15 16 17 18
Window specifying time 30 30 30 30 45
Window length [2,3] [4,5] [2,3] [2,3] [2,3]
Soft window length 0 0 1 2 0
Soft window penalty 0.1 0.1

€ (D) (105) 2.05 1.78 1.90 1.78 2.04
SD (109 1.67 1.64 1.57 1.59 1.73

4.7. Conclusions

We developed a framework for reoptimization in maritime inventory routing under
uncertainty. The proposed framework, which includes solving MIP models and implementing
stochastic simulations, can be generalized to handle any inventory routing problem. Specifically, we
developed (1) a discrete-time MIP model considering vessels in long- and short-term renting
modes, as well as owned and third-party production nodes; (2) stochastic simulations to account
for uncertainty sources that appear in practice; and (3) a reoptimization algorithm integrating the
MIP model and stochastic simulations. Since the quality of the implemented solution depends
heavily on a number of policies, we studied the effect of different policy parameters.

Using a number of case studies, we first showed that the open- and closed-loop problems are
very different: even when no uncertainty is present, the closed-loop cost could be 5-15% higher
than the open-loop cost. The average closed-loop cost in the presence of all uncertainty sources was
nearly 30% higher than that in the deterministic case. Uncertainty of trip duration and vessel
availability increased the closed-loop cost significantly. We also discussed how to identify policy
parameters (including reservation windows, constraints on the number of rented vessels,
preference for early pick-ups, and different types of pick-up windows) that result in high quality

implemented solutions.

4.8. Notation
Indices/Sets

deD dates (absolute time)
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iel vessels
je] nodes in the SC network, including vessel center (vc)

(, j)eA< J x J arcs in the SC network

k € K; orders of third-party production node j

leL clusters

meM materials

neN number of unreserved vessels/trips

teT time points or periods

Subsets

A arcs that are within in cluster /

AR arcs (trips) that are already reserved at time ¢ (in short-term mode)

I? vessels (in long-term mode) that are still at the vessel center, but already reserved
12 /)¢ production/consumption nodes

JTP /JoP third-party/owned production nodes

Binary Variables

Wil]fjrt =1 if vessel i starts a trip from j to j’ at time point ¢

W;,t =1 if a vessel in short-term mode starts a trip from j to j” at time point ¢
)?ith =1 if vessel i is at node j during time period ¢

vk =1 if renting of vessel i is extended in period t beyond 9 periods

Non-Negative Variables

CALL/cPF /¢ F total Joverflow/underflow cost

CMH /CcFT /c/T material holding/fixed transportation/variable transportation cost
cFt/cEt/cf  fixed long-term/extended long-term/short-term renting cost

CEP penalty term for modeling the preference of early pick-ups
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material m in vessel i traveling from j to j’ starting at ¢ in long-term mode
material m in the short-term rental from j to j’ starting at t

inventory level of material m at node j at time point ¢

overflow/underflow amount of material m of node j at time point ¢

confidence level

penalty constant for modeling the preference of early pick-ups

capacity of vessel i/ vessels in short-term mode

minimum load on vessel i/ vessels in short-term mode when traveling from a
production node to a consumption node

time period length

earliest time when a vessel becomes available in long-term mode

time when the nth vessel becomes available in long-/short-term mode
probability of availability in long-term mode

maximum/minimum level of material m in node j at time point ¢

planning horizon

=1 if period tis in pick-up window k of third-party production node j

minimum number of renting periods in long-term mode

earliest reservation/latest reservation/returning notice time in long-term mode
earliest/latest reservation time in short-term mode

time when a pick-up window becomes deterministically known

maximum allowable load along (j,j)
material holding/overflow/underflow cost

fixed/variable transportation cost along (j,j”)
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long-term renting cost for the minimum periods/ each extended period
penalty for modeling the preference of early pick-ups
short-term renting cost for traveling on (jij)
production (positive) or consumption (negative) rate of node j during period ¢
start/end time of the pick-up window of order k from third-party production node j
soft window length
traversal time of arc (jj)
amount of material m in order k from third-party production node j
=1 if period t is within the first 9© periods of the current renting of vessel i
estimated cost at date d
amount of material m that is en route and will arrive at node j at ¢t from vessel i in
long-term mode
amount of material m that is en route and will arrive at node j at ¢t from production
node j’in short-term mode
=1 if vessel i should leave j for j’at ¢

=1 if a vessel in short-term mode should leave j forj at t

=1 if vessel i is at node j initially (¢t=0), or it is en route and will arrive atj at t (¢>0)
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Chapter 5

Terminal Constraints for Online Scheduling 5

Production scheduling, as an optimization problem that arises in many sectors, has been widely
studied (Drexl and Kimms, 1997; Proth, 2007; Verderame et al, 2010; Maravelias 2012b;
Harjunkoski et al., 2014). In practice, the production process is subject to many factors of
uncertainty, such as rush orders, yield losses, production delays, unit breakdowns, etc. After
observing such an uncertain “trigger” event, the existing schedule needs to be modified for
obtaining the (new) optimal schedule (Vieira et al., 2003; Ouelhadj and Petrovic, 2009). The other
way to modify the schedule is to re-compute the schedule periodically in a moving horizon
approach (Sand et al, 2000). Recently, it has been pointed out that despite uncertainty, online
scheduling should be carried out periodically to consider the new information, such as new demand
(Gupta and Maravelias, 2016; Gupta et al.,, 2016). At each iteration of online scheduling, an open-
loop solution is obtained from solving an optimization problem; while the implemented scheduling
solution, after observing the uncertainties (feedbacks), is called closed-loop solution. Most of the
research efforts focus on how to account for the uncertainty when obtaining each open-loop
solution by applying different optimization techniques, including robust optimization (Vin and
lerapetritou, 2001; Janak et al., 2007; Li and lerapetritou, 2008; Lappas and Gounaris, 2016),
stochastic programming (Bonfill et al, 2004), and fuzzy programming (Balasubramanian and

Grossmann, 2003). For online scheduling, we should also aim to improve the closed-loop solution.

To obtain good closed-loop solutions, terminal constraints should be included in the scheduling
model (Stadtler, 2000). In the optimal open-loop solution of a scheduling model without any

terminal constraints, inventory tends to deteriorate at the end of horizon, so that the production,

5 This chapter is modified from Dong and Maravelias, in preparation.
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transition and inventory holding cost can be minimized (Lima et al.,, 2011). If (a part of) such an
open-loop solution is implemented, the problem may become infeasible, or the closed-loop solution
may be very costly, after the horizon is moved forward. This is because the inventory is depleted at
the end of the previous horizon, and therefore the demand can hardly be satisfied. Thus, the
scheduling model should include some terminal constraints to avoid the inventory depletion. This
is similar to model predictive control (Mayne et al., 2000), in which the state variables of the last
time are constrained in a terminal region. For scheduling problems, however, how to define the

terminal region is not trivial.

Based upon the inventory management and SC literature, we can require the terminal inventory
level be greater than a lead-time-based inventory threshold, which includes a buffer term named
“safety stock” to address uncertainty (Eppen and Martin, 1988; Kreipl and Pinedo, 2004; You and
Grossmann, 2008; Sana and Goyal, 2015). This threshold value is calculated from the statistics of
the lead time of SC arcs and demand rate of SC nodes. On the other hand, based upon production
scheduling literature, the terminal inventory levels can be required to be equal to the initial value at
the start of the horizon (Baker, 1981; Shah et al., 1993), or to one of the values in a cyclic solution

(Subramanian et al., 2012).

However, all of the aforementioned approaches neglect the relationship of inventory levels
among materials. For instance, in a single-stage two-product problem, if the inventory level of one
product is high, a low inventory level of the other can possibly be acceptable, because more
resources can be allocated to produce the latter without leading to the stockout of the former. In

this way, we can reduce the total inventory levels, and therefore save the inventory holding cost.

Accounting for the relationship among materials, we propose new types of terminal constraints
on inventory levels for different network structures. These constraints are linear, and can be easily

incorporated in any mixed integer programming (MIP) scheduling model. Theoretically, we prove
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that for deterministic problems of two types of networks, if the terminal inventory levels satisfy the
proposed constraints, the scheduling model will be recursively feasible, which means that it will

remain feasible after we move the horizon forward.

In Section 5.1, we present motivating examples and problem statement; the proposed
framework to obtain the terminal constraints is shown in Section 5.2. Afterwards, we present the
terminal constraints for different networks, including multi-stage single-product problems (Section
5.3), single-stage multi-product problems (Section 5.4), and multi-stage multi-product problems
(Section 5.5); in these three sections, we consider a single machine in each stage. In Section 5.6, we
generalize the terminal constraints to problems with multiple machines in each stage. In Section
5.7, we discuss how to apply the terminal constraints, and how to modify them considering
uncertainty and periodic demand. In Section 5.8, we present computational results, using instances

with and without uncertainty. Theoretical proofs are shown in the Appendix.

5.1. Background

5.1.1. Motivating Examples

The traditional lead-time-based threshold is calculated based on the statistics of the lead time
and the demand (Eppen and Martin, 1988); if the problem is deterministic, the threshold is the lead
time multiplied by the demand rate. However, simply requiring the terminal inventory level of each
material to be greater than the threshold does not necessarily lead to good closed-loop solutions.
This is illustrated through examples of deterministic problems with constant demands (Figure 5.1).
We show that an initial inventory level equal to the threshold could be insufficiently low or

unnecessarily high. Thus, the threshold approach cannot result in good terminal constraints.

In the two-stage single-product example (data given in Figure 5.1(a)), the lead time for the
intermediate is the processing time in the first stage, and the lead time for the product is the

summation of the processing times in both stages. The demand is 1 (ton/period), the lead time is 2
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(periods) for A1, and 2+3=5 for A2, and thus the threshold is 2 (ton) for A1, and 5 for A2.However,
the scheduling problem with such threshold as initial inventory would have stockout of product A2,
because after the first batch of TA1 is finished, the inventory level of the intermediate is not enough
to start TA2 immediately. This example shows that for multi-stage networks, the lead time is tricky

to define; using values that are intuitively correct could result in stockout.

In the single-stage two-product example (data given in Figure 5.1(b)), the lead time is the
summation of processing times for both tasks, since either can be processed after the other. The
demand is 1 (ton/period), the lead time for both products is 2+3=5 (periods), and thus the
threshold is 5 (ton). Following the thresholds, the initial inventory of A should be greater than 5,
even when the initial inventory of B is fixed to be 8. However, this would lead to unnecessarily high
inventory level; in fact, it would be sufficient to have an initial inventory of A being 2. In other
words, when the initial inventory of one product is greater than the threshold, a lower value of the

other could be acceptable.

Network structure Network structure
"7 "Stage1™ 71 ! " StageZ _ 1 ;Tﬂ=é
| 1 TA =
) (a2) s
: Tra1 = 2: : Tra1 = 3: @ é
! Brai=21! Brai="5 —3
! 1! San =1 1 Tre
I 'I a2 Brs =5
A S A a1
Ganttchart Gantt chart
U1 : :
o 7
U2 142 | | Taz | | | !
| | |
4
2 ] 6 10 2 } 6 10
6 — g — Inventory levels
Inventory levels : A
0 2 - /I\
<A2
-2 — 0 B
(a) Two-stage single-product example (b) Single-stage two-product example

Figure 5.1. Network structure, Gantt chart and inventory levels of the motivating examples. Greek letters 7 8
and § denote processing time, batch size and demand rate respectively. In the network structure, circles are
for materials, triangles are for machines, and rectangles are for tasks.
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These two simple examples show that adding traditional thresholds as terminal constraints
cannot prevent stockout, or inventory holding cost may become high, because they neglect the

relationship of materials in the network.
5.1.2. Problem Statement
The problem we consider is defined in terms of the following sets:
(a) i € I: tasks (or operations);
(b) j € J: machines (or units);
(c) k € K: stages;
(d) m € M: materials;
(e) t € T: time periods/points;
The horizon is divided into T uniform periods t € {1, ..., T} with T+1 time points t € {0,1,...,T};

period t starts at point ¢t-1 and ends at t. The following subsets are also used to describe the

problem:

(a) I; < IL: tasks that can be carried out in machine j;
(b) I, /1, € I: tasks producing /consuming material m;
(©) Ji/Ix € J: machines that can carry out task i /tasks in stage k;

(d) MP € M: products;
We are given the following mappings:

(a) i(m/, k) € I: the task in stage k to produce product m’;

(b) m(m', k) € M: the material produced in stage k, which is used to produce product m’,
Finally, we are given the following parameters:

(@) 8,,: normalized demand (constant demand in every period), if m € M?; otherwise, &,,, = 0.

(b) B;j: batch size of task i in machine j;



129
(c) 7i;: processing time of task i in machine j;
(d) a;;: production cost of task i in machine j;

(e) m,,: inventory holding cost of material m for one period.
We make the following assumptions:

(a) Parameters &,, f;; and 7;; are such that the demand can be fulfilled by production.

(b) Raw materials are always available, and therefore are not included in set M. For problems in
which the inventory levels of raw materials are important, one dummy stage should be
introduced before the first stage, and the arrival of the raw material should be viewed as the
task of this dummy stage. By doing so, raw materials can be included in M, and the constraints
that will be proposed still apply.

(c) The problem is deterministic. The problems with uncertainty are discussed in §5.7.

We use S, to denote the terminal inventory level of material m, and s to denote the vector of
terminal inventory levels; ie., s = [Sml,sz,...,Sm|M|]T. The scheduling problem is solved in a
moving horizon approach; i.e., after the first period of the solution is implemented, the horizon (of
the same length) is advanced forward, and the scheduling problem with new information is re-
optimized. We want to study how to constrain the terminal inventory levels so that we can (1)

ensure recursive feasibility, and (2) keep the inventory levels as low as possible.
5.2. Proposed Framework
5.2.1. Overall Approach

We first need to identify the region of feasible terminal inventory levels, denoted by S € RMI.
Region SF is defined to be the largest set such that if s € SF is the value of the terminal inventory
levels, the scheduling problem will remain feasible after the horizon is moved forward. To obtain

region S, the assistance of a feasibility MIP model MF (given in §5.2.2) is needed, where s is used as
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a given parameter to denote the initial inventory levels. If model MF is feasible, a scheduling
solution whose terminal inventory level is equal to the given s will lead to recursive feasibility
(Figure 5.2(a)); i.e., s € SF. After discretizing the inventory space, we check if a point s can lead to a
feasible model MF, and thus decide if s € SF. By repeatedly solving model MF with different values

of s, we obtain region SF (orange blocks in Figure 5.2(b)).

Inventory |
N Scheduling model: | Feasibility model MF: -
Infeasible in rolling | Infeasible Change inventory
horizon approach | levels s
— n
| 5;:terminal inventory
| level of the schedulin .
| model orinitial inven%ory Solve model MF Finished? Y Region §F
| N1evel of MF Time
| -
Inventory :
Feasible in rolling | Feasible Shouldbea good
horizon approach N - approximation
I'\
' U
se the valueof ¢, ; ;
?\/\/\/\1 s, S Terminal
| i constraints
I Time
h
-
(a) Model MF of given initial inventory levels s (b) Method to obtain SF and terminal constraints

Figure 5.2. Model MF to check if s € SF and the overall approach.

Region S¥ might be non-convex, and therefore should be approximated by a set of linear
terminal constraints when used in the scheduling model. Moreover, for a network with many
materials, the iterative process to obtain S¥ might be intractable. Thus, we obtain region S¥ through
iterations for simple networks, and find the terminal constraints to approximate SF. Once we
understand the logic behind these constraints (for simple networks), we can write them generally
for networks with high dimensionality of materials. In the rest of the text, we use S® to denote the
feasible region subject to terminal constraints numbered (5.X). Good terminal constraints should
lead to a close approximation of region S¥ in two aspects: (1) S® should be a subset of SF; and (2)

SF\S® should be as small as possible.

To write our terminal constraints, we need to find out some “hidden” parameters, which are

revealed by solving a campaign model MC (given in §5.2.3). The value of variable c¢;; in MC, denoting



131
how many times task i should be executed in machine j, is to be used as a parameter in the terminal

constraints (purple blocks in Figure 5.2(b)).

We propose terminal constraints for different network structures, from the simplest to the most
general (Figure 5.3). The single-stage single-product problem is trivial, since it suffices to require
that the terminal inventory is greater than the demand during the first batch of production; others

will be studied in the following sections.

(c) Single-stage multi-product (d) Multi-stage multi-product

Figure 5.3. Different network structures.
5.2.2. Feasibility Model (MF)

As mentioned in §5.2.1, model MF is solved repeatedly with different values of s to obtain SF. If
s = [Sm1, Smas ...,Sm|M|]T € SF, then {s’ = [S,’nl, 'm2 ...,S,'n|M|]T|5’ > S Vm} c SF; therefore, we
do not need to check every point s. The algorithm to obtain S¥ is shown in Appendix.

Model MF involves task-machine assignment and timing decisions. The variables include:

(a) W, € {0,1}: =1 if and only if task i starts in machine j at time point ¢;

(b) L,; € R*: inventory level of material m during time period t.

Model MF is as follows,
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Minimize Z aijWije + Z TmLme (5.1a)
Lj€)pt mt
Subject to Ling =Sm = z BijWijo = 6m Ym (5.1b)
l’EI;n,].Ell‘

Lmt+1 = Line + Z BijWijt—z;; — Z BijWijt — 6m Vm,t >0 (5.1¢0)

ielt, jey; i€ln,j€li

w

iCl: t—1 /
lE[],t ‘r,]+1st <t

gee 1)t (5.1d)

The objective function (5.1a) is to minimize production cost and inventory holding cost.
Material balance is expressed in constraints (5.1b) and (5.1c). Constraints (5.1d) enforce that only
one task can be processed in a certain machine at each time. Note that when checking the feasibility

of model MF, horizon length should be long enough.

Proposition 5.1 below shows that if model MF is feasible with the given s, then a scheduling
problem whose terminal inventory levels are equal to s will be recursively feasible (i.e., s € SF). The

proof is given in Appendix A.

Proposition 5.1: Let Ly,:(S1) and W;;;(S1) be the values from a feasible solution, 51, of model
MF. If model MF has a feasible solution, S2, when using
Sm = Linr41(S1) + 8 + Xier;, jey, BijWijr(S1), then forany 1 <o < T + 1, using Sy, = Ly o(S1) +

Om + Ziers, jey; BijWij,o—1(S1), model MF also has a feasible solution, 3.

5.2.3. Campaign Model (MC)

Before writing the terminal constraints, we need to find how frequently each task is carried out
in a “typical” scheduling solution. This is achieved by solving an auxiliary linear programming (LP)

model MC. The variables include:

(@ ¢ € R*: number of batches that task i is processed in machine j;

(b) H € R*: campaign time.
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The value of ¢;jis to be used as a parameter when writing the terminal constraints. We
introduce a new parameter used in this model: §,, denotes the “propagated” normalized demand.
For productm’ € M?, §,.» = §,,,; for an intermediate material m produced in stage k, &, =

Xm’:m=m(m’ k) Om’- Model MC is as follows,

Bij
Minimize 3 Cu (5.2a)

mieLh,jel;
Subject to H= Z TijCiy V) (5.2b)

iEIj
Z Bijcij = 6t Vm (5.2¢)
i€l j€);
i€l j€);

The objective function (5.2a) minimizes the total production in a campaign (normalized to the
demand of each material). In constraints (5.2b), the campaign time is required to be greater than
the total production time for each machine. The production amount should be greater than the
demand, as shown in constraints (5.2c). To avoid the trivial solution in which all variables are zero,
constraints (5.2d) requires that each material is produced at least once. Because the values of ¢;;
appear linearly on both sides of the proposed terminal constraints (presented in §5.4 and §5.5), it is
their relative ratios that are important, and therefore variables c; j are defined to be continuous,
rather than integer. Because we assumed that demand can be fulfilled by production, model MC is

always feasible.
5.3.  Multi-stage Single-product Problems

The problem addressed in this section is similar to the flow shop scheduling problem with only
one type of product. To simplify the notation in this section, we drop index j, since there is only one

machine in each stage. Also, each material can be represented by the stage in which it is produced,
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and each task can be represented by the stage it belongs to. Thus, we replace both indices m and i
with k (using symbols of By, T, Wi¢, Sk, Lt ), and use § to denote the normalized demand of the

product. For the problem in this section, solving model MC is not needed.
5.3.1. Proposed Terminal Constraints

Starting from a case of two stages (shown in Figure 5.3(b)), model MF is feasible if initial

inventory levels S, satisfy the following two constraints:

Sz
?2‘[2

S1+5; B2
5 =T +T2+F

We define the normalized inventory S, = S, /8, denoting the number of periods for which the
inventory itself can meet the demand. The first constraint requires that the initial normalized
inventory of the product should be greater than the processing time of stage 2 so that the demand
before the finishing of the first batch can be satisfied. In the second constraint, if we view stages 1
and 2 together as a “pseudo-stage”, the left hand side (LHS) can be viewed as the “propagated”
inventory (from stage 1 to stage 2), and the right hand side (RHS) as the “propagated” lead time,
which is the summation of processing times plus the batch size of stage 2 divided by the demand.
Note that the last term, 8, /6, is added because model MF could be infeasible without it, as there
might be a gap in the production between the two stages when S, is less than 8, (shown in Figure

5.1(a) of the motivating example).

More generally, the terminal constraints can be written as follows,

K| LY

K|
Sk’ ﬁk’
IEEDNEDIL T
k'=k k'=k k

'=k+1
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There are |K| constraints included in (5.3). For the constraint written for stage k, the LHS is the
propagated normalized inventory (from stage k to the final stage |K]|), while the RHS is the

propagated lead time.

In Appendix B, we prove Proposition 5.2 below, which shows that if the initial inventory levels
satisfy constraints (5.3), model MF is guaranteed to be feasible. Together will Proposition 5.1, we
know the feasibly region subject to constraints (5.3) is a subset of SF (S®) c SF); i.e., constraints
(5.3) lead to recursive feasibility for model MF (Corollary 5.3). The proposed terminal constraints
are better than the traditional approach, because the feasible region subject to the traditional

threshold constraints is not always a subset of S¥ (shown in §5.3.2).

Proposition 5.2: For multi-stage single-product problems, if the initial inventory levels S

satisfy constraints (5.3), model MF is always feasible regardless of the horizon length.

Corollary 5.3: For multi-stage single-product problems, if the terminal inventory levels satisfy
constraints (5.3), model MF is recursively feasible.
20 - SF

15 | < (540

\ Parameters
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Figure 5.4. Parameters, region S¥, proposed terminal constraints, and the traditional thresholds for the 2-
stage example.

5.3.2. Examples

We consider a 2-stage example (parameters in Figure 5.4). Following constraints (5.3), the

proposed terminal constraints are:
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S, +S, > 14 (5.4a)

S, >4 (5.4b)

Using the traditional threshold approach, the terminal inventory levels are constrained as
follows,
S1=3 (5.4¢)

S, =7 (5.4d)

Region S, obtained by repeatedly solving model MF with different initial inventory levels, is
shown in Figure 5.4; we also show the proposed terminal constraints defined in constraints (5.4a),
(5.4b), as well as the constraints based upon the traditional thresholds (5.4c) and (5.4d). The
feasible region defined by (5.4a), (5.4b) (together with the non-negativity of §;) is included in
region SF, and is a very close approximation of S¥. On the other hand, the feasible region subject to
the traditional thresholds is not entirely in region S¥, which is the reason of the stockout shown in

§5.1.1.
5.4. Single-stage Multi-product Problems

The problem addressed in this section is similar to the single-machine problem for discrete
manufacturing. To simplify the notations in this section, each material can be represented by the
task that produces it. Thus, we replace index m by index i (using notation of §;, S;, L;; ), and drop
indices j and k. We propose two types of terminal constraints that lead to the same feasible region.
The first type includes more constraints compared to the second, but requires no auxiliary

variables.
5.4.1. Type 1 Terminal Constraints

Starting from a case of two products (shown in Figure 5.3(c)), model MF is feasible if initial

inventory levels S; satisfy the following three constraints:
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Sa
— =Ty (5.5a)
64
Sp
— =Tp (5.5b)
Op

CaTaSa  CpTpSg
+
04 0p

= (CATA + CBTB)(TA + TB) (SSC)

where ¢, and cg are obtained by solving model MC.

Similarly as in §5.3.1, we define the normalized inventory §; = S;/8;. Constraints (5.5a) and
(5.5b) requires that the normalized inventory should be greater than or equal to the processing
time, so that the inventory is sufficient to last during the execution of the first batch. To interpret
constraint (5.5c), we define p; = c;7; denoting the production time of a product fori € {4, B}, and
Pa+p = C4Ty4 + cpTp denoting the total production time of A + B. Thus, constraint (5.5c) can be

rewritten as follows,

Pa S, + PB

Sp =141 5.5d
Pa+B Pa+B 5 4 5 ( )

If we view A + B as a “pseudo-product”, constraint (5.5d) can be interpreted as a generalization
of (5.5a). The RHS is the processing time of the pseudo-product; while the LHS is the normalized
inventory of the pseudo-product, which is a weighted summation of the inventory of products. The
weight is the ratio of the production time of a product to the production time of all the products in
the pseudo-product. If product i requires a longer production time, the inventory of i, $;, plays a

more important role, and thus the weight is heavier.

More generally, the terminal constraints can be written as,

CiTS;
5 = Gt |* 7; |, Vp € P(I) (5.6)
i

i€l i€l i€l

where P(I) denotes the power set of I (i.e., the set of all subsets of I) except the empty set, indexed

by p; I, denotes the elements that are included in the subset p. The interpretation of constraints
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(5.6) follows the same logic as we discussed for constraints (5.5d). Because constraints (5.6) are

written for each subset of I except the empty set, the total number of constraints is 2/1 — 1.

In Appendix C, we prove Proposition 5.4, which shows that if the initial inventory levels satisfy
constraints (5.6), model MF is guaranteed to be feasible. Together with Proposition 5.1, we know

that the constraints lead to recursive feasibility for model MF (Corollary 5.5).

Proposition 5.4: For single-stage multi-product problems, if the initial inventory levels S;

satisfy constraints (5.6), model MF is always feasible regardless of the horizon length.

Corollary 5.5: For single-stage multi-product problems, if the terminal inventory levels satisfy

constraints (5.6), model MF is recursively feasible.
5.4.2. Type 2 Terminal Constraints

Starting from a case of two products again, model MF is feasible if inventory levels S; satisfy the

following three constraints:

S c
_AZTA+TB_BUAB (573)
8a Cqp
S c
B (R +1-Uyp) + 15 (5.7b)
g Cp ’
C
0<Upp < C—A +1 (5.7¢)
B

where an auxiliary continuous variable U, g is introduced. It can be shown that constraints (5.7a)-

(5.7c) lead to the same feasible region as constraints (5.5a)-(5.5c), in terms of inventory levels S;.

For general cases, we introduce auxiliary continuous variables U;;s for each i and i’ such that i">i
(in terms of the orders in the set). The type 2 constraints are as follows,

Si Cir Ci’ )
52Tt Z T (C—i +1- Ul.,i) + Z v Uy W (5.8a)

i'<i i'>i
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C.
0< Uy < C—‘ +1 Vii'>i (5.8b)
i’

which requires |I| - (|I| — 1)/2 additional U,; variables, but includes less constraints, |I| - (|I| +

1)/2, compared to the first type.

In Appendix D, we prove Proposition 5.6, which shows that the terminal constraints proposed
in §5.4.1 and §5.4.2 lead to the same feasible region of inventory levels. Thus, we can derive
Corollary 5.7 based on Corollary 5.5 and Proposition 5.6 to show that type 2 constraints also lead to

recursive feasibility for model MF.

Proposition 5.6: The projection of feasible region defined by constraints (5.8a) and (5.8b) on

the subspace of s =[Sy, S5, ..., S|I|]T is the same as the feasible region defined by constraints (5.6).

Corollary 5.7: For single-stage multi-product problems, if the terminal inventory levels satisfy

constraints (5.8a) and (5.8b), model MF is recursively feasible.

For the problems with many tasks, constraints (5.8a) and (5.8b) may perform better than
constraints (5.6), because the number of constraints (5.6) grows exponentially with the number of
tasks. Nevertheless, we will focus on the type 1 constraints in the rest of the chapter for the sake of

brevity.
5.4.3. Examples

We consider a 2-product example (parameters in Figure 5.5). Solving model MC, we obtain

¢4 = 2,cg = 1. The proposed terminal constraints (of type 1) are:

Sy >4 (5.9a)
Sp >3 (5.9b)
254 + 355 > 35 (5.9¢)

Using the traditional threshold approach, the terminal inventory levels are constrained as

follows,
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S, =10 (5.10a)
Sp=5 (5.10b)
20 SF
5.10a — = Usingother ¢;
15 (5.9a)> <-(5102)
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Figure 5.5. Parameters, region St proposed terminal constraints, and the traditional thresholds for the 2-
product example.

Region SF, obtained by repeatedly solving MF with different initial inventory levels, is shown in
Figure 5.5; we also show the proposed terminal constraints defined in constraints (5.9a)-(5.9¢c), the
traditional constraints (5.10a)-(5.10b), as well as the terminal constraints using other values of c;
(c4 = 2.571,c5 = 1, obtained by solving a revised MC with a different objective function), which are
feasible but not optimal for model MC. In this figure, we see that S(100(10b) ¢ §()(®b)(%) c §F: j e
both the proposed terminal constraints and the traditional approach can lead to recursive
feasibility, but the former has a larger feasible region than the latter. We also note that any c; that is
feasible for MC can be used to generate the terminal constraints, and neither the optimal ¢; from MC

nor the other feasible c; leads to a better approximation.

Second, we consider an example with three products 4, B, C, witht; = 2, 8; = 12, 6; = 2 for
i € {A,B,C}. We obtain ¢4, = cg = ¢ = 1. There are seven terminal constraints in (5.6), written for
subsets {4}, {B}, {C}, {A,B}, {A,C}, {B,C}, {4,B,C}. Using these terminal constraints, we approximate

the non-convex region S¥ by a convex region $(®), and $(®) c SF (Figure 5.6).
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Region ST (showing the boundary)

Terminal constraints

Figure 5.6. The boundary of region S¥ and the proposed terminal constraints for the 3-product example.

Multi-stage Multi-product Problems

5.5.

The problem addressed in this section is similar to the flow shop scheduling problem. We drop

index j once again. Both the multi-stage single-product problems and the single-stage multi-product

problems are special cases of the multi-stage multi-product problems. Thus, the constraints we will

present in this section can be viewed as a generalization of the constraints proposed in §5.3 and

§5.4.

5.5.1. Proposed Terminal Constraints

5.3(d)), we propose to use the

Starting from 2-stage 2-product problems (shown in Figure

following six constraints to constrain inventory levels S,,:
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Sp1+ Sp2 Bre2
(S 2 TTBl + TTBZ + _6 (Slld)
B2 B2
CTA2TTA2542  CTB2TTB2SEB2
5 + 5 > (CrazTraz + Crp2Tre2) (Traz + Tre2) (5.11¢)
42 B2
Sa1 + Saz Sp1+ Sp2
Cta1Trar— % T CrpilrB1— 5
82 8p2
(5.11f)
Braz Bre2
> (cra1Trar + cre1Tre) | Trar + Traz + S +Trp1 + Trpz + S
42 B2

The 2-stage 2-product network can be decomposed into (1) two 2-stage single-product
networks and (2) two single-stage 2-product networks. For the 2-stage single-product networks,
following constraints (5.3), we write constraints (5.11a), (5.11b) for the production of A2, and
constraints (5.11c) and (5.11d) for the production of B2. For the single-stage 2-product networks,
we write constraint (5.11e) directly following constraints (5.6) for stage 2; while for stage 1, we
write constraint (5.11f) using the idea of propagation introduced in §5.3. Specifically, the
propagated inventory is used on the LHS of constraint (5.11f), considering the inventory levels of
intermediates and products; subsequently, the term in the second parenthesis on the RHS is

modified to the propagated lead time.

Generally, the terminal constraints are as follow,

K| K| K|

S ! q,! . !
> D S N wiy + Y LDyt ek (5.12a)
K=k Om! k'=k ' k'=k Om!
= = =k+1

K
ZL’LkSm(m',k')

Z Ci(m' k) Ti(m' k) 5
m

!
m'eM,

K|

K]
> Zk’=k+1 ﬁi(m’,k’)
= Ciom' 1 Tigm' k) | Tim' k') T 5
m

! ! I—
m'eM, m'eM,, \k'=k

(5.12b)

vp € P(M?) and M| > 1,k
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Constraints (5.12a) are written for the multi-stage single-product networks, where i(m’, k)
denotes the task in stage k to produce product m’, and m(m', k) denotes the material produced in
stage k for producing product m’. Constraints (5.12b) are written for the single-stage multi-product
networks, where P(M?) denotes the power set of all products, M?, except the empty set, indexed
by p; M,, denotes the products that are included in the subset p. Note that constraints (5.12b) are
written for [M,| > 1, because the corresponding constraints of (5.12b) written for |Mp| = 1are

already included in constraints (5.12a).

As shown in the following example, the proposed terminal constraints also apply to the network

in which the same intermediate is used to produce different downstream materials.

Parameters
[ TAB1 TA2 TB2
T; 3 4 4
Bi 6 8 8
6 1 1

* Row of &,,, shows the demand
of the product produced by the
given task in the header.

Figure 5.7. Network and parameters for a 2-stage 2-product example with one intermediate.
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Figure 5.8. The boundary of region S¥ and the proposed terminal constraints for the 2-stage 2-product
example (with one intermediate).
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5.5.2. Examples

We consider a 2-stage 2-product example (Figure 5.7). Solving model MC, we obtain

crap1 = 1.33,¢p42 = crp, = 1. Based on (5.12a) and (5.12b), the proposed terminal constraints are:

Sz = 4 (5.13a)
Sagr + Saz = 15 (5.13b)

Sgp = 4 (5.13¢)

Sag + Sgz = 15 (5.13d)

44, + 4S5, > 64 (5.13¢)

4(Sap1 + Saz) + 4(Sap1 + Spz) = 240 (5.13f)

The inventory level of the intermediate, S;51, appears twice on the LHS of constraint (5.13f),
because AB1 is used to produce both products. The six terminal constraints, together with the non-
negativity of S,p;, approximate the non-convex region S¥ by a convex region (Figure 5.8). The

feasible region of the terminal constraints (with S5, = 0) is included in S¥,
5.6. Extension to Problems with Parallel Units

In §5.3-§5.5, we considered the problems with a single machine in each stage. In this section, we
study problems with parallel machines in each stage. In §5.6.1 and §5.6.2, we follow the simplified

notation used in §5.3 and §5.4 respectively.
5.6.1. Multi-stage Single-product Problems
5.6.1.1. Identical Units

If machines in the same stage are identical, we can still use the notation without index j.
Following the same logic of Corollary 5.3, the following constraints can be shown to ensure

recursive feasibility,
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K| S K| K| ol B
Z (’;zzrk,+ Z S vk (5.14)
k'=k k'=k k'=k+1

where the batch size is multiplied by the number of machines in the second summation on the RHS.

However, constraints (5.14) may not be a good approximation of S¥, and we want to use relaxed
constraints to have a larger feasible region. By studying different examples, we observe that the
original constraints (5.3) proposed in §5.3, which are relaxed constraints of (5.14), lead to a better

approximation of SF. Thus, we use constraints (5.3).
5.6.1.2. Non-identical Units

When machines in a certain stage are non-identical, we generalize constraints (5.3) as follows,

K| K| Kl maxfB,;
Sk’ jE]kI ﬁk J
> max T,/ ; + —— Vk (5.15)
6 JEN J o)
k'=k k'=k k'=k+1

in which the maximum processing time and the maximum batch size (over machines) are used in

the first and second summations of the RHS respectively.
5.6.2. Single-stage Multi-product Problems
5.6.2.1. Identical Units

If all machines are identical, there is a solution of model MC with Cij = ¢y for all i, j, j" Thus, we
can drop index j again. Constraints (5.6), proposed in §5.4, still lead to recursive feasibility, because
when all the machines are synchronized to carry out the same task, the inventory profile will be the

same as that in the single-machine case.

However, because machines are not required to be synchronized (i.e.,, we have more flexibility
with multiple machines), constraints (5.6) are too conservative. To have a better approximation of

region SF, the terminal constraints are modified as follows,
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c;T;S;
Z 1611 i > Z CiTiZ +u Z GTTyr  VpE P(I) (5.16)

i€lp i€l 1S PR PHAE S

where u is a pre-defined parameter between 0 and 1. When u = 1, constraints (5.16) reduce to
constraints (5.6). Based on our computational study, we use g = 1/|]J|, which leads to a good

approximation of region SF.
5.6.2.2. Non-identical Units

If machines are non-identical, the exact constraints for |I,,| = 1 can be written as follows,

l
Si > — min _51' - l5l + \—J ﬁl} Vi
1)

Oslsmax7;j—1
J

The RHS represents the maximum backlog of product i, if its initial inventory is zero and its
production is started in all machines at time 0. The other constraints (|1p| > 1) are harder to write,

because processing times and batch sizes can vary among machines. Herein, we introduce the

“average” parameters for each task i, (index j is again dropped,) as follows,

€ = Z Cij (5.17a)

JEl;

1 (5.17b)
T, = — CijTij
G Jeli

With these average parameters, constraints (5.16) can be used.

5.6.3. Multi-stage Multi-product Problems

The terminal constraints of the most general network, with multiple stages, multiple products
and multiple machines in each stage, can be obtained from the generalization of the constraints
presented in §5.5.1, §5.6.1 and §5.6.2. We treat identical- and non-identical-machine problems in

the same way. The following constraints are used,
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K| K| Kl max
5m<m’.k) S 7 ﬁ(m e "e MP 5.18
T_ ?é]a),(‘[l(mk)]'l‘ vm €M ,k ( a)
k'=k m =k+1
K|
Z m(m k")
Z Ci(m' k) Ti(m' k) —5 , =
m'eM, m
K|
IKl Yhmkr1 %i?ﬁi(m’,k’),j
Z Ciem' 1) Titm' k) z Tiem' k") T 5,
m'eM,, K=k " (5.18b)
K|
1 IKI Yhmkr1 ggf‘;fﬁi(m”,k’),j
_l_m Ci(m’,k)Ti(m',k) Z Ti(mlllkl) + 5
k m'eMp,,m' eMpy,m' m’ k'=k m

vp € P(M?) and IM,| > 1,k

In constraints (5.18b), the average parameter are calculated following the logic presented in

§5.6.2.2, as follows,

Ciom' k) = Z Ci(m' k),j vm' e M”, k (5.18¢)
T€im! 1oy
1 '
Titm' k) = 7 . Z Citm'k),j " Ti(m'k),; VM € M”, k (5.18d)
Um0 jefi

Terminal constraints for problems with different networks are summarized in Table 5.1.

Table 5.1. Terminal constraints for different problems.

Single machine  Identical machines Non-identical machines
Multi-stage single-product (5.3) (5.3) (5.15)
Single-stage multi-product (5.6) (5.16) (5.16)(5.17a)(5.17b)

Multi-stage multi-product (5.12a)(5.12b) (5.18a)(5.18b) (5.18a)(5.18b)(5.18¢)(5.18d)
5.7. Remarks

First, we comment on how to apply the terminal constraints when model MF is used as the
scheduling model to solve an instance, rather than to study region SF. The terminal constraints
should constrain the terminal inventory level, rather than S,,, because S,, is a given parameter

denoting the initial inventory level in the model. Moreover, even though we showed that the
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proposed terminal constraints ensure recursive feasibility for model MF, simply applying them for
the inventory levels of the last time may cause stockout. This is because when solving model MF
together with the terminal constraints, the model is modified (with terminal constraints added).
Thus, simply applying the terminal constraints for the inventory levels of the last time cannot
ensure recursive feasibility for the modified model. We note that the proposed terminal should be
applied to the inventory levels of the last max; ; 7;; times. By doing so, recursive feasibility is
achieved for the modified model. For example, when applying terminal constraints (5.12a) in model

MF, we should require the following constraints

K| IK| K|
Lm(m’,k’),t + 5m(m’,k’) + Ziel;n(m,_k,).jEliﬁijWij.t—l .Bi(m',k’)
Z Tim' k') T —

>
Bt Sy

k'=k k'=k k'=k+1

vm' € MP, k,t > T — max1;;
ij

Note that the numerator of the LHS is not simply L., "y because the numerator should

represent the inventory level at time point ¢t-1 (before the activity of consuming the product or the

intermediate), which is the inventory level of period ¢, plus the normalized demand, &’ '), Plus

the consumption by the tasks in the following stage, Ziel‘( ISl BijWijt-1-
m(m’,

Second, when uncertainty is considered, buffer terms should be added. The main sources of
uncertainty include the processing time and the demand. Based on safety stock literature (Eppen
and Martin, 1988), if the mean and variance of the processing time and the normalized demand are
denoted by 7;;, S, 02 (‘L’ij) and a2 (8,,) respectively, then we define a buffer term B,,for every S,, in

the terminal constraints:

i€l j€);

B, = ¢\/02(5m) iErl?Ez,ij)élifij + (6)? _Err+1ax az(rij) (5.19)

in which ¢ is the inverse distribution function of a standard normal distribution based on a

specified service level. For example, after considering this buffer term, constraints (5.12a) becomes



149

Kl _p K| IK] B
Z m(m' k )6 m(m_ k) > z Tim' iy + Z lism—k) vm' € MV, k
K=k m’ K=k Kokt ™

Third, when the demand is not constant but periodic, a simple change can be made. We assume
the demand pattern repeats every y,, periods for product m’, and the average demand per period
is 8,,7. Then, we can apply the proposed constraints by requiring that the inventory levels of the last

max(max; ; T;j , max,,’cm? V') times satisfy the terminal constraints.

5.8. Computational Results

In this section, we carry out simulations to study how the terminal constraints perform in
online scheduling. We use model MF as the scheduling model. In order to continue the online
scheduling when stockout happens, slack variables are introduced to allow negative inventory
levels (backlogs), which are penalized in the objective function. We compare the solutions of three

formulations:

(a) Model MF without any constraints on terminal inventory levels (referred as MFwo);
(b) Model MF with traditional threshold constraints (referred as MFrr); and

(c) Model MF with the proposed terminal constraints (referred as MFrc).

Applying the traditional threshold constraints or the proposed terminal constraints to the
inventory levels of the last time would fail to prevent stockout. Thus, for MFr and MFrc, we apply

those two types of constraints to the inventory levels of the last max; ; 7;; times, as discussed in

§5.7.
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Figure 5.9. Online scheduling procedure.

The online scheduling procedure is shown in Figure 5.9. After obtaining a solution through
optimization, we roll the horizon forward by one period and solve the scheduling model of the new
horizon. If there is uncertainty, we observe its realization and update before rolling the horizon.
After 72 iterations, we obtain the closed-loop solution from time 0 to time 72. After obtaining each

closed-loop solution, we use two solution quality indicators:

(a) Stockout percentage (SP), which is the number of periods with negative inventory levels
divided by the simulation horizon (72); and
(b) Average inventory levels (AIL), which is the average inventory levels (considering the

summation of all materials in the network) over the periods.

We compare the three formulations based on SP and AIL; on condition that SP remains very

low, the closed-loop solution is better if AIL has a lower value.
5.8.1. Deterministic Problem

We first consider deterministic problems, using three instances representing the three types of
networks we discussed. Based on the closed-loop solution, the values of SP and AIL can be
calculated (Table 5.2). When using MFwo, the values of SP are large, and they decrease to zero by
using MFrr and MFrc; this shows that constraints on terminal inventory levels are needed to

prevent stockout. When using MFr¢, the values of AIL are smaller compared to those when using



151

MFrr; this shows that the proposed terminal inventory levels can lead to lower inventory levels

compared to the traditional approach.

5.8.2. Problems with Uncertainty

To further compare the solutions of the three formulations, we consider problems with

uncertainty: the demand in each period is subject to a normal distribution, V' (6,,, (0.36,,,)?). Due to

the uncertainty, inventory buffers were added in the model. First, L,,; was required to be greater

than the buffer B, defined in equation (5.19), which is1.6-0.3:6,, - [/maxert ey, Tijs for the

uncertainty we consider; 1.6 is the value of ¢ used in equation (5.19) at a service level of 95%.

Second, in the proposed terminal constraints and the traditional threshold constraints, the same

buffer B,, was added.

Table 5.2. Values of SP (%) and AlIL for the deterministic problems.
SP/AIL  Single-stage multi-product Multi-stage single-product Multi-stage multi-product

MFuwo 6.94/11.44 31.94/4.18 2.88/24.93
MFrr 0.00/39.80 0.00/17.13 0.00/51.80
MFrc 0.00/20.36 0.00/12.00 0.00/43.48

Table 5.3. The sample mean of SP (%) for the single-stage multi-product problem.
Instance 1 2 3 4 5 6 7 8

MFwo 1.29 3.07 1122 765 150 154 447 1.14
MFrr 0.54 0.71 0.00 036 043 051 0.07 0.64
MFrc 036 0.69 024 053 075 117 019 1.01

Table 5.4. The sample mean of SP (%) for the multi-stage single-product problem.
Instance 9 10 11 12 13 14 15 16

MFwo 42.44 19.07 29.85 3446 6.01 7.28 844  0.00
MFrr 42.51 0.01 0.00 6139 3865 3865 39.19 2394
MFrc 0.03 0.89 1.03 0.00 0.00 0.00 0.00 0.00

Table 5.5. The sample mean of SP (%) for the multi-stage multi-product problem.

Instance 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
MFwo 43.53 3281 1072 9.04 5.01 2558 3651 713 626 249 158 190 1.03 142 199 272
MFrr 37.85 0.00 0.00 13.19 0.00 0.00 0.19 0.00 2996 586 793 9.29 443 822 938 0.82
MFrc 0.13 0.01 0.51 0.04 0.00 0.00 0.00 0.00 0.06 0.00 0.00 015 0.00 0.04 0.03 0.03
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We study 32 instances, which can be categorized into three types:

(a) Single-stage multi-product problem (instances 1-8);
(b) Multi-stage single-product problem (instances 9-16);

(c) Multi-stage multi-product problem (instances 17-32).

We obtained 100 samples for each instance; after obtaining the closed-loop solutions, we
calculate the mean values of SP and AIL over the 100 samples. The sample means of SP are shown
in Tables 5.3-5.5; while Figure 5.10 shows the increase (in percentage) in the sample mean of AIL
using MFrr compared to that using MFr, i.e., AlLpr_tc = (AIL(MFpt) — AIL(MFpc))/AIL(MFrc) -

100%. From the table and the figure, we can make the following observations:

(a) When no constraints on terminal inventory levels are applied, 26 out 32 instances have sample
mean of SP greater than 1.5%, which re-confirm the necessity of constraining the terminal
inventory levels;

(b) Taking SP<1.5% as the criterion of the effective prevention from stockout, the traditional
threshold approach can prevent stockout for single-stage problems (Table 5.3); however, for 15
instances of other problems (Tables 5.4-5.5), it cannot prevent stockout;

(c) The proposed terminal constraints can prevent stockout for all instances;

(d) For the instances that both MFrc and MFrr can prevent stockout, MFr¢ leads to lower inventory

levels.

100 | Allrrrc (%) 100 AlLrr.rc (%) Bl Using MFy; sample mean of 100 | AlLyrrc (%)
SP < 1.5%
Using MF;; sample mean of

SP >1.5%
50 50 50
0 I [ | I [ | 0 I I - ol — I I . | I
1 2 3 9 10 11 12 13 16

5 6 7 8 14 15 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Instance Instance Instance

S

-50 -50 -50

Single-stage multi-product Multi-stage single-product Multi-stage multi-product
-100 -100 -100

Figure 5.10. Increase of the sample mean of AIL using MFrr compared to that using MFrc.
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5.9. Conclusions

We proposed novel terminal constraints for the production scheduling problems of different
network structures, including multi-stage single-product networks, single-stage multi-product
networks, and multi-stage multi-product networks. The proposed constraints consider the
relationship of inventory levels of different materials. This is advantageous compared to the
traditional threshold approach, which constrains the inventory levels independently for each
material. Theoretically, we prove that for two types of networks, if the terminal inventory levels
satisfy the proposed terminal constraints, the scheduling problem will be recursively feasible. By
studying different problems with and without uncertainty, we show that the proposed terminal
constraints can effectively prevent stockout, and achieve substantial savings on inventory holding
cost by lowering the inventory levels, compared to the traditional approach. We also developed an
approach to obtain the region of feasible terminal inventory levels, through iterations of solving a
feasibility scheduling model. This approach can be generalized; i.e., one can obtain the region of
feasible terminal inventory levels for other scheduling problems by iteratively solving the

corresponding scheduling model.

5.10. Notation

Indices/Sets

iel tasks
JE] machines
keK stages
meM materials
MP cM products

p € P(MP) power set of the products (except the empty set)
teT time periods or points

Subsets
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I; tasks that can be carried out in machine j

It/ tasks producing /consuming material m

I, products (tasks) included in subset p (for single-stage problems)
Ji/Tx machines that can carry out task i /tasks in stage k

M, products included in subset p

Mappings

i(m',k) €l  taskin stage k to produce product m’

m(m', k) € M material produced in stage k, which is used to produce product m’

Parameters

a;j production cost of task i in machine j

Bij batch size of task i in machine j

8/ 6m normalized /propagated demand of m

T inventory holding cost of material m for one period
Tij processing time of task i in machine j

Variables in model MF
Wi €{0,1}  =1ifand only if task i starts in machine j at time point ¢
Ly € RT inventory level of material m during time period ¢t

Variables in model MC

cij € R* number of batches that task i is processed in machine j

HeR* campaign time.

Other notation

B, buffer term for uncertainty

Sm terminal inventory level of material m (or the given initial inventory level when

model MF is solved to obtain SF)

s vector [Spm1, Smas s Sm|M|]T
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SF c RMI region of feasible terminal inventory levels
S c RMI feasible region subject to constraints (5.X)

Uiir auxiliary continuous variable used in §5.4.2
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Chapter 6

Discrete-time Formulations in Scheduling Problems with Changeover®

A wide range of mixed-integer programming (MIP) models (Wolsey, 1998) have been proposed
in the literature to address manufacturing scheduling problems, and chemical production
scheduling problems in particular (Méndez et al, 2006; Maravelias, 2012b; Harjunkoski et al,,
2014). One of the differentiating attributes of the models is the modeling of time. In discrete-time
models, the scheduling horizon 7 is divided into T periods of fixed length § = n/T, defining T + 1
time points (i.e., period t starts at time pointt — 1 and ends at time point t). In continuous-time
models, the horizon is divided into a known number of periods with variable length. Discrete-time
models have several advantages over their continuous-time counterparts: they (1) are tighter
(Sundaramoorthy and Maravelias, 2011a; Velez and Maravelias, 2013), (2) can easily handle
intermediate release and due times, (3) can model holding and backlogging costs linearly, and (4)
can be readily extended to handle events during the execution of a task. Furthermore,
computational study showed that discrete-time models for problems in network production
environments (i.e., environments where tasks produce and consume multiple materials and batches
of materials can be mixed and split) can often be solved faster and find better solutions compared
to continuous-time models (Sundaramoorthy and Maravelias, 2011a). However, because the size of
discrete-time models grows at least linearly with the number of periods, the disadvantage of
discrete-time models is the large number of binary variables and constraints, especially when
sequence-dependent changeovers are considered. Such changeovers are common in the process
industries (e.g., commodity, specialty, and fine chemicals; food and beverage manufacturing;

pharmaceutical manufacturing; consumer goods), where cleaning-in-place, sterilization-in-place,

6 This chapter is modified from Velez et al., 2017.
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maintenance, material transfer, and unit setup activities need to be performed between different

tasks.

If changeovers do not require resources and do not incur a cost, then changeover times can be
enforced by simply allowing enough idle time between tasks (Kondili et al., 1993; Shah et al,, 1993;
Wolsey, 1997, Moniz et al., 2013). However, if resources are needed or costs need to be modeled,
additional binary variables are necessary (Karmarkar and Schrage, 1985; Sahinidis and Grossmann,
1991; Kondili et al., 1993; Zentner et al.,, 1994). We study changeovers for processes that neither

require resources nor incur a cost.

The chapter is structured as follows. In Section 6.1, we introduce the processes that we are
interested in, describe their corresponding MIP models, and present three changeover formulations
from the literature, and four changeover formulations proposed previously. In Section 6.2, we
present a new formulation. Section 6.3 presents results regarding the relative tightness of the
formulations. In Section 6.4, we present computational results. We use lowercase italic letters for
indices, uppercase italic letters for variables, uppercase bold letters for sets, and lowercase Greek

letters for parameters.

6.1. Background

We consider three variations on the single-stage environment with: (1) a single unit (machine),
(2) parallel units, and (3) parallel units with unequal capacities. The horizon, 7, is divided into T
uniform intervals of length § = /T, with T + 1 time pointst € {0,1, ..., T} occurring at t§. We use
these three problems to study our new formulations because of their simplicity and because they
represent three general classes of problems. We emphasize that the changeover constraints

developed here can be readily used in any discrete-time model.

6.1.1. Single Unit
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The single-unit problem consists of a set of tasks (jobs), i € I, with a fixed processing time, ;8.
We include a binary variable: X;; = 1 if and only if task i starts at time point t. We assume that each

task must be run exactly once (constraints (6.1)) and only one task can run at a time (constraints

(6.2)).

ZXit =1 Vi (6.1)
t

t
Xip <1 Vt (6.2)
i t'=t-1;+1

We can minimize makespan, MS € R,

MS > 2(1: )Xy (63)

4

We can also minimize tardiness, TRD € R™,

TRD = Z TRD; (6.4)
i

where TRD; € R* denotes the tardiness of task i. TRD; is defined in constraints (6.5), where ¢; is

the due time of task i:

TRD; > 2 (t— ¢+ )Xy Vi (6.5)
t=¢;-1;+1

6.1.2. Parallel Units

When there are parallel units (machines), we introduce a new index, j € J, for units; the
processing times, 7;;, are unit-dependent. To generate a schedule we must assign each task to a
unit, so the binary variables are indexed by j: X;;; = 1if and only if task i starts in unit j at time
point t. We still assume that each task must be run exactly once (constraints (6.6), where J; is the

set of units that can process task i), and only one task can run at a time on a unit (constraints (6.7)).
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Z Xije =1 Vi (6.6)

jelth

t

Xy <1 Vjt (6.7)

i t’=t—‘['i]'+1
Again, we consider makespan minimization,

MS > Z(t + Tij)Xijt vj,t (6.8)

i

Since a task may run on different units and the cost may be different in each unit, we also

consider cost, CST € R, minimization, where a;; is the cost to run task i in unit .

CST = Z ainijt (69)
Ljt

For cost minimization, we consider the case where each task i has a hard due date (deadline),

b,

Xijt =0 Vi j,t>¢;—1 (6.10)

We also consider tardiness minimization, TRD, with constraints (6.4) and (6.11)

T
TRD; 2 Z Z (t— ¢+ 1Ky Vi (6.11)

j t=¢i-ti+1
6.1.3. Parallel Units with Unequal Capacities

Each unit j has capacity §; and (the output of) each task i has known demand, §;. When units
have unequal capacities, we cannot calculate how many times each task must run prior to

optimization, so we replace constraints (6.6) with,

Z BiXije 2 & Vi (6.12)

Jelit
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Constraints (6.7) are also included to ensure that each unit processes at most one task at a time.
Again, we consider MS, CST, and TRD minimization. The constraints for different problems and

objective functions are summarized in Table 6.1.

Table 6.1. Constraints used in different production environments and objective functions.

Production environments min MS min TRD min CST
Single unit (6.1) (6.2) (6.3) (6.1) (6.2) (6.4) (6.5)
Parallel units (6.6) (6.7) (6.8) (6.4) (6.6) (6.7) (6.11) (6.6) (6.7) (6.9) (6.10)

Parallel units with unequal capacities  (6.7) (6.8) (6.12) (6.4) (6.7) (6.11) (6.12) (6.7) (6.9) (6.10) (6.12)

6.1.4. Assumptions and Literature Formulations

The changeover time after task i finishes and before task i’ starts on unitj is denoted by g;;7; in

terms of the number of periods. We make three assumptions.

Assumption 1. The changeover time between taskiand taski’is less than both 7;; and Ty
(o-ii’j < min{Tij, Tilj}).

Assumption 2. Changeover times satisfy the triangle inequality (o;;; < 0y + Ty + 07075).

Assumption 3. Tasks do not have a changeover with themselves (a;;; = 0).

For the single-unit problem, one drops the index j in 7;; and oy,

and the assumptions are then
analogous to those for the parallel-units problem. The changeover constraints presented in the
remaining of the chapter can be written for the single-unit problem, simply by replacing variables

Xij¢ by variables X;;. Also, when processing and/or changeover times are unit independent, all the

constraints in the chapter still apply.

Three discrete-time formulations have appeared in the literature to enforce changeover times

without additional binary variables.

Constraints (K). Kondili et al. (Kondili et al., 1993) used a big-M constraint:
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t+Tij+O'iilj—1

Z Xi’jt' S M(l - Xijt) Vi,j,t (613)

i'#i t’=t+‘['i]'

Although no value for M was suggested, one that is obviously large enough is

t+‘L'i]'+0'iil]-—1

My = Z Z 1= Z o) (6.14)

i'#iQ t’=t+Tl']' i'#i

While smaller values of M can be found, we observed that the value of M does not make a significant

difference in the solution time.

Constraints (SH). Shah et al. (Shah et al,, 1993) eliminated the big-M constraint by considering

pair of tasks:

Xijt +Xi’jt’S1 Vi,i,:rti,j,t,t_‘[i’j_o-i’ij<t,St_Tl"j (615)
Constraints (W). Finally, Wolsey (Wolsey, 1997) proposed the following constraints,
t t
Z Xijor + 2 Xpjpo <1 Vii' #1,j,t (6.16)
t’=t—‘rij—aii/j+1 t’=t—1'l-/j—ai/ij+1

Constraints (6.16) include the binary variable for task i for more than 7;; consecutive time points,
which prevents taskifrom occurring back-to-back, so they are valid only when each task is
restricted to run once. In the chapter, we also consider problems where multiple executions of the

same task are allowed (in problems of parallel units with unequal capacities).

Three discrete-time formulations have appeared in the literature to enforce changeover times

without additional binary variables.
Velez presented 4 changeover formulations (Velez, 2014), classified based on:

(a) The number of tasks for which each changeover constraint is written: a single task (S) or a pair

of tasks (P);
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b) The number of time points for which each changeover constraint is written: all pairs of time
p g p

points within an interval depending on the processing and changeover times (I), a subset of

pairs of time points (II), or a single time point (III).

For instance, the three formulations presented previously can be classified accordingly:
constraints (K) are type (S)/(IlI); constraints (SH) are type (P)/(I); constraints (W) are type
(P)/(II). The 5 new formulations we present in §3.1-3.5 are named based on their classification:

(SD), (SID), (SIIT) (a tighter version of (SII)), (SIII), and (P)=(PI)=(PII)= (PIII).
The following sets are introduced,

(a) szt = {t'|t —7;j + 1 < t’' < t}, referred to as the set of processing time points for i, j, t.

(b) TG, = {t'|t — T — o+ 1< t'<t- 7y}, referred to as the set of changeover time points

i'ijt

fromi’to i forj, t.

Considering a given task i, time point ¢, and unit j, constraints (6.7) enforce X;/;,» = 0, for each

i'elt' e Tlpjt, if X;jr = 1; while changeover constraints should enforce X;;,» = 0, for i e I\{i},

t'e Tlcut, 1le-]-t = 1. Thus, variables Xl, rwitht' € TLCL]t should be included in at least one

changeover constraint. Including X;/;,» with t'e Tﬁjt may tighten the changeover constraints, but it

is not necessary.

Constraints (SI). Constraints (SI) are written for a single task and unit and for pairs of time
points, as follows:

s o
mm{t ,t—ri,j}

Xijt + z z Xt’jt” <1

i'#i t”=max{t’,t—cririj}—‘ri/j+1 (6.17)

maxalru} <t'<t- min ;s

Vi, j,t,t — max {1’1’111’1‘[ s
l #1

ij iy
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Constraints (S11). We use integer parameter v;j,, where n indexes constraints (SII) and N;; is the
set of indices n for which v, is defined:

min{t—vijn,t—'ri,j}

Xije + Z z Xpjen <1 Vi, j,t,n € Ny (6.18)

i #i 1 i f— _
t —max{t Vijn,t O'i’ij} Tl-/]-+1

Parameter v;, is defined as follows

Viiqs = Minty; 6.19
ij1 e b ( )

Vijm+1 = Vijn +, min - 7y, (6.20)
! l':vi]"n<0'i/ij

The largest index n for an (i, j) pair satisfies thatv;, is greater than or equal to the changeover

from any task to i, i.e., vjjn;;| = Max;/,; 01y

Constraints (SIII). To write a constraint for a single time point, we sum constraints (SII) over n

to obtain a big-M constraint with |N;;| as the big-M parameter,

t—‘L'i/]-

Z Xirjer <IN | (1 = Xije) - Vi jt (6.21)

T —
U#it —t—‘L'l-l]-—G‘l-rl-]-+1

Constraints (P). To write a constraint for a for a pair of tasks (i,i"), we have

t—‘L'l./].

Xije + z Xiien <1 Vi, i" #1i,j,t (6.22)

"_
t —t—‘L'l-r]-—O'l-li]-+1

jt

which is (PI), (PII), and (PIII) and will be referred to as constraints (P).

6.1.5. Remarks

The problem in §6.1.1 is a traditional scheduling problem which involves only sequencing and
timing decisions. In addition to sequencing and timing, the problem in §6.1.2 includes also task-unit

assignment decisions, and the problem in §6.1.3 includes also batching decisions. For the problems
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in §6.1.1 and §6.1.2, each task is to be scheduled once, whereas in the problem of §6.1.3, the number
of times that a task is scheduled is determined by the optimization model. Discrete-time MIP
models can be applied to all of the aforementioned problem classes, while other methods are

limited in the types of problems they can address or the objectives they can handle.

Furthermore, discrete-time models can be easily extended to account for time-varying resource
availability and events during the execution of a task (e.g., intermediate material loading), and can
be used as a basis for many problems. For example, they can be extended to address problems in
production environments where batches can be split apart or mixed (Sundaramoorthy and
Maravelias, 2011b), problems with other types of constraints (e.g., limited utilities) (Zyngier and
Kelly, 2009; Velez and Maravelias, 2013), as well as problems with various objective functions
(Merchan et al., 2016). Thus, our choice to focus on discrete-time MIP formulations means that the

proposed changeover constraints will be applicable to a wide range of problems.
6.2. Facet-defining Constraints (SIIT)

Two modifications can be made to constraints (SI). First, many of the inequalities (SI) are
redundant, ast’is written for each time point within {t — max(minifiirl-/j,maxirii airij), v t—
min;r; Ty ;}. Second, for the remaining necessary constraints, more variables related to i and i’ can
be added to the left hand side (LHS) so that the constraints are tightened. Based on these two
observations, we propose constraints (SIIT), which do not include redundant constraints, while
making each constraint as tight as possible. The general form is,

WO ini!

¢ t—wb
z Xijt'+z Z Xpjpr <1 Vi jt,n €N (6.23)

I_ .. gl — g
t'=t-7;j+1 #it =t-wa; i,

where the first summation includes all variables corresponding to processing time points (t' € Ti'}t)

for task i, and the second term is a summation overi'andt’ € {t — wa;jn;’, -, t — Wb;jp;r}
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(parameters wa;j,;» and wb;j,;» will be defined later). Similar to (SII), we introduce |Nj;|

inequalities for every (i, /,t), and each indexn € N;; is associated with an integer parameter

(that may be different from the parameter v;j, used in (SII)). Parameter p;;, is the largest wb;jy;’

over index i’ that appears in the second summation.

Similarly to (SII), p;j; is set to the smallest processing time of any i’,

Hij1 = mlnr i’ (6.24)

i'j

The value of y;j 4 is chosen according to (6.25), so that no variables corresponding to
changeover time points are excluded in (6.23).

i = min{y;;, + min  Ty; maxar
Hijn+1 {Kijn e i'js ij} (6.25)

Before specifying wa; ;s and wb; ;" and thus completing constraints (6.23), we introduce two

disjoint task subsets: 1A, = {i'[i" # i, pijn < 075} and By, = {I'|i" # I, pyjn > 0745}

Parameters wa, j,,; and wb;,,;» depend on the subset taski’ belongs to, and are defined as
follows,
wa {T-I- + #ijn — 1, i'e IAijn
o = i
ynt + Ul’l] 1, i' e IBijn
. (6.26)
, Hijns I €IA;n
ijni’ max{o-i'ij'#ijn — ”rer}}.\n (oF "' l”e]B \{l (O’lul] g ’])} = IBijn

The definitions in (6.26) are discussed next.

(a) If i’ € 1A;jp, there are 7/ variables X ;s

i i’ j¢' In (6.23), which is the maximum number of variables

to be included for a task; including more than 7;; i’-indexed variables will make the constraint

invalid, because it would cut off the solution in which task i’ is carried out back-to-back.

(b) If i’ € IB;j,, the smallest index t’ for variables X;s ./ included in the constraint is the earliest

i'jt

changeover time point (t' =t —7;7; — + 1) and the largestt’ for included X, variables

0i'ij
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must be one period before the smallest of the following three (so that the constraint does not

exclude any feasible sequences while remaining as tight as possible):

(b1) ¢’ which would lead to the inclusion of exactly 7;/; + 1 variables for task i’ (if wb; ;'

0itij);

(b2) t’ that would make (6.23) cut off the solution where i € IA;j, takes place att — Ty —

Wijn + 1 and i’ takes place ;7 + 0,17 periods later (if wb; ;7 = pijn — 0117 5);

(b3) t’ that would make (6.23) cut off the solution where another i" € IB;, takes place at

t—tmj—oy;;+1 and i takes place 7,7 + 0;y; periods later (if wb;

j T

jni’
O'ini/j)_
In Appendix, we include the proof of correctness of (SIIT), and the algorithm summarizing the

jni’ and wb;j,;r. Table 6.2 gives the data for the example in

Figure 6.1, with hollow points illustrating which variables are included in (SIIT). Figure 6.2

presents a simple example illustrating how constraints (SIIT) cut off fractional solutions that are

feasible for the LP-relaxation of other formulations.

Table 6.2. Data for the 4-task example.

ori (i’ = left, i = top)

Ti T1 T2 T3 T4
T1 7 0 0 6 5
T2 4 1 0 3 1
T3 8 4 2 0 3
T4 6 2 2 2 0
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Subset 1A, 1B, 1B, Subset 1A, 1B, 1B,
WA 10 6 7 WA 12 7
wbpyr 4 4 2 wbipyr 6 6 2
(a)n=1 (b) n=2

Figure 6.1. Parameters and constraints (SIIT) for i = T3, t = 14, based on the data of Table 6.2.

0Obj=16 0bj=20

T1 T1 P05 ] 5]
T2 = T2 PeelS o5

0 2 4 6 81012 0 2 4 6 81012

(a) Constraints (SIIT) (b) Other constraints
Figure 6.2. [llustration of tightness of constraints (SIIT) for profit maximization. Two tasks, T1 (z; = 5) and
T2 (7, = 8), are to be scheduled on a single unit; with changeover times ot 1, = 3 and or, t; = 2; the horizon
is 13 hours; and the profit from running T1 and T2 are 4 and 16, respectively. The LP-relaxation with
constraints (SIIT) yields the (optimal) integer solution, shown in (a). The solution of the LP-relaxation with all
other changeover constraints, shown in (b), is cut off by constraints (21) withi=T1,t=8n=1

(wary,i,r2 =9, Wbry 112 = 2).

In Appendix, we include the proof of correctness of (SIIT), and the algorithm summarizing the
procedure for the calculation of wa;j,;” and wb;j,;’. Table 6.2 gives the data for the example in
Figure 6.1, with hollow points illustrating which variables are included in (SIIT). Figure 6.2
presents a simple example illustrating how constraints (SIIT) cut off fractional solutions that are

feasible for the LP-relaxation of other formulations.

Proposition 6.1 below establishes that (SIIT) are facet-defining for the problem containing

constraints (6.7) and (6.23) (proof in Appendix).

Proposition 6.1: Let H = {X € {0,1}"W'l: subject to constraints (6.7) (6.23)}. Then each inequality

in (6.23) is facet-defining for the convex hull of H, conv(H).

6.3. Relative Tightness of Formulations
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We evaluate the relative tightness of the new formulations and the three from the literature. To
show that one formulation is at least as tight as another, we prove that any point that is feasible for
the LP-relaxation of the tighter formulation is also feasible for the other formulation (see Velez et
al,, 2017). To show a formulation is tighter, we find a point for a specific instance that is feasible for
the less tight formulation, but not for the tighter one. In some cases, neither formulation is tighter,

so we find a point that satisfies either one but not the other.

The binary variables included in (K) are for time points after ¢, while all other changeover
constraints include binary variables before t. For consistency, we will use the backwards version of

(K), henceforth referred to as (KB), where we use M that is the forward analog of constraints (6.13):

t—‘[i/j

Z Xirjer < (Z o) (1 =Xije) Vit (6.27)
i'#i t,=t—Tilj—0'ilij+1 i'#i

Single-Task Pairwise
K KB SII SII SI SIIT SH P W

KB
SIII

SII

Single-Task

SI

SIIT

SH

P

Pairwise

W]

Figure 6.3. Relative tightnéss of all f;)rmlilations.

Figure 6.3 summarizes the relative tightness of all formulations. White indicates that the
formulation on the left is tighter than the formulation on the top; gray indicates the opposite. A
dotted block indicates that neither formulation is tighter. Constraints (W) are the tightest among

the pairwise changeover constraints and (SI) and (SIIT) are the tightest among the single-task
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changeover constraints. In most cases neither the pairwise nor the single-task constraints are
tighter. Single-task constraints have the advantage of including binary variables for many different
tasks in a single constraint. Pairwise constraints have the advantage that they can include binary

variables for more time points for a single task in a single constraint.
6.4. Computational Study

We tested several instances of the three problems we introduced in §6.1: the single unit
process, the parallel unit process, and the parallel unit process with unequal capacities. Different
objective functions were also studied: tardiness minimization and cost minimization are relatively
easier problems, so we considered instances with 5, 10, 15, 20, 25 tasks on 1, 3, 5 units. Makespan
minimization is harder, so instances with 7, 8, 9, 10, 11 tasks on 1, 3, 5 units were studied. We used
a step length of § = 1 hour for all instances. Processing times were randomly selected from 3-9
hours (uniform distribution) and rounded up so that they are multiples of the step size, §, and costs
for each task were randomly selected from 1-10 (uniform distribution). For the tardiness
minimization instances, due times were randomly selected between zero and the horizon length.
For the cost minimization problem with deadlines, deadlines were generated based on the solution
of tardiness minimization: if a task in the best solution is finished by the due time, then the due time
of this task was used as its deadline; otherwise, we randomly selected the deadline between the
finish time of the task and the horizon length. This adjustment was necessary to ensure that the cost

minimization instances, with strict deadlines, were feasible.

Changeover times were selected randomly so that they were less than some factor, ¢, times the
minimum processing time of the two tasks, o;/;; € [0, £ min{rl-j, Tirj}]. These changeover times may

.+ o;r;im;, then we

violate the triangle inequality from Assumption 2 (§6.1.4). If 0, > 0y + Ty i

ii'j

chose a new value g;;7; € [0, Oy + T o ] We updated the changeover times until all times

ii'j j

satisfy the triangular inequality and rounded the changeover times so that they were multiples of
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the step size, 6. We considered € = 0.25, 0.5, 0.75 and 1. For a given number of tasks and units, and a
given factor, 5 instances were generated. Thus, for makespan and tardiness minimization, we tested

500 instances, and for cost minimization 400 instances.

In this section, we refer to a specific model as M;E, where X denotes the changeover constraints,
i.e., Xe{K, SH, W, SI, SII, SIII, SIIT, P}; and Y denotes the objective function, which can be MS
(makespan minimization), TRD (tardiness minimization), and CST (cost minimization). We also use

MS-VI to denote makespan minimization with valid inequalities (6.28).

it

it
For example, M!SV{S is the model that includes constraints (SI) for makespan minimization. We use

My to denote all models with constraints X, regardless of the objective function; and MY to denote

all models with objective function Y, regardless of changeover constraints.

All the instances were solved using CPLEX 12.6.3 via GAMS 24.7.1 on a cluster with 21 Intel
Xeon (E5520) processors at 2.27 GHz and 16 GB of RAM running on CentOS Linux 7, with a 1800-
second resource limit. To better assess the effectiveness of the formulations we turned off the
aggregator, presolver and presolver for initial relaxation by setting CPLEX options aggind, preind,
and relaxpreind to zero. This set of CPLEX options is referred to as C1. Using CPLEX default settings,
referred to as C2, requires less time, but leads to similar conclusions, which are briefly discussed in

§6.4.

Finally, for constraints (K), we used a tight big-M, calculated using expression (6.29), though the
performance is similar to the performance using M defined in expression (6.14).

0! ;
M;; = E [_”’ (6.29)
Ti'j

i'#i

6.4.1. Single Unit
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The time horizon, ), is selected to ensure that there is enough time for all tasks to be completed.

The calculation is based on the number of tasks and the longest processing time.

n = (maxz;)- (2|1 - 1) (6.30)

The second term in the product is the number of tasks plus changeovers that take place. We

multiplied this term by the maximum processing time.

The performance charts in Figure 6.4 show the fraction of instances that are solved by each
model within the given amount of time (normalized to the fastest model for each instance). Figure
6.4(a) and 6.4(c) show the results for makespan minimization and tardiness minimization,
respectively, using different changeover constraints (SI), (SII), (SIII), (P), (SIIT), (K), (SH), (W). We
observe that although My, and Mgy are the tightest models, they are also the slowest. Also, Mgy is
one of the fastest models although it is among the weakest. Models Mg, Mg;, Mgy, Mgy, whose
changeover constraints are all written in terms of a single task, are much faster than Mp, Mgy, My,
whose changeover constraints are written in terms of pairs of tasks. Figure 6.4(b) shows the results
for makespan minimization with the four fastest changeover constraints, (SIII), (SII), (SI) and (K),
and with valid inequalities (6.28) included. Adding (6.28) does not lead to computational
enhancements for single-unit problems. For makespan minimization, M}y and MY are the fastest

models; while for tardiness minimization, MERP is the fastest.

100 cewr== 0 K

5 st g Il
50

3 o K(VD)
—SI(V])
- =SII(V)

ow = & SIII(VI)
1 2 3 4 5 6 7 8 910 1 2 3 45 6 7 8 910 1 2 3 4 5 6 7 8 9 10

Solution time (relative to fastest formulation) Solution time (relative to fastest formulation) Solution time (relative to fastest formulation)
(a) Makespan Minimization (b) Makespan Minimization(36) (c) Tardiness Minimization

Precent of instances solved
Precent of instances solved

Precent of instances solved

Figure 6.4. Performance charts of different models for single unit instances using C1 set of options.Models
with the same objective but different changeover constraints are compared in each sub-plot: (a) makespan
minimization; (b) makespan minimization with valid inequalities (6.28); and (c) tardiness minimization. The
changeover constraints are shown in the legends.
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All models have the same number of variables. Figure 6.5, in logarithmic scale, summarizes the
data for the number of constraints, nonzeros, and nodes in the branch-and-bound tree. The models
with pairwise changeover constraints, Mp, Mgy, My, have about an order of magnitude more
constraints than the models with single-task constraints, potentially explaining why they are
slower. The tightest models, My, and Mg, have the most non-zeros, the number of which is more
than 5 times greater than that of the fastest model Mgj;;. The changeover constraints account for
more than 99% of the total constraints for models with pairwise changeover constraints, and for
91% - 95% of the constraints for the models with single-task constraints. With CPLEX setting C1,
we find that Mg leads to the smallest branch-and-bound tree, while Mg being the least tight model
has the largest tree, with an order of magnitude more nodes searched compared to Mg;. If we also
turn off the cut generation process in CPLEX, then the number of nodes increases for all models;
more importantly, we find that the number of nodes for other models is more than 5 times larger

than that for Mgy, which is expected from the theoretical tightness.

@nonzeros COconstraints  BEnodes(with cuts)  mnodes{no cuts)

1E+6
1E+5
1E+4

1E43 F

1E+2
None Sl sli s SIT K P SH w

Figure 6.5. Average over all single unit instances of the number of constraints, nonzeros, and branch-and-
bound nodes. None refers to the model without changeovers.

Table 6.3 presents the average improvement of the integrality gap with respect to the gap of
Mg, which has the largest gap (the integrality gaps of any two models can be compared using the
relative gap with respect to Mg). Based on these results, models Mg and My, have the greatest
integrality gap improvement, followed by Mg;, Mgy, Mp, Mgy, and then by Mgy, an observation that

is in agreement with the theoretical study in the previous section. Note that the gap for tardiness
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minimization varies across changeover constraints much more than that for makespan

minimization.

Table 6.3. Single-unit problem: average integrality gap improvement with respect to the gap of M.

Problem K (ref) SI SII SIII SIIT p SH w
Makespan 0.94 0% 0% 0% 0.04% 0% 0% 0%
Tardiness 0.28 12.10% 12.0.% 10.42% 36.14% 11.24% 9.90% 33.76%

6.4.2. Parallel Units

The time horizon was selected based on the number of tasks, the number of units and the

longest processing time as follows,

(6.31)

The term in the round-down operator is the maximum number of tasks plus changeovers that
we would expect to take place in a single unit; note that we only need the horizon to be long enough
to start the last task, so we rounded down. We multiplied this term by the maximum processing

time of any task.

Figure 6.6 shows performance charts for makespan minimization with and without valid
inequalities (6.28), for tardiness minimization, and for cost minimization. As in the single-unit

MS
SI

problems (§6.4.1), we see that the models with single-task changeover constraints are faster. Mgj;

is the fastest among MMS, We tested the models with the four fastest changeover constraints
together with valid inequalities (6.28), and see improvements as expected. With valid inequalities
(6.28), MYP~VI MM~V MMS=VI are the fastest among MMS~V!, and they are faster than MMS. For
tardiness minimization, M{RP is the fastest; while for cost minimization, MSST and MSST are the

fastest. Table 6.4 shows the average integrality gap improvement for different models with respect

to Mg. Similar to the results in §6.1.4, Mgy, has the greatest integrality gap reduction.
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Figure 6.6. Performance charts of different models for instances with parallel units using C1 set of options.

Table 6.4. Parallel units problem: average integrality gap improvement with respect to the gap of Mg.

Problem K(ref) SI SII SIII SIIT P SH w
Makespan 0.91 0% 0% 0% 0.06% 0% 0% 0.03%
Tardiness 0.10 12.03% 12.01% 11.23% 24.77% 11.53% 10.32% 19.89%
Cost 0.04 29.78%  29.78%  29.78% 36.72% 29.51% 29.13% 36.42%

6.4.3. Parallel Units with Unequal Capacities

Unit capacities were randomly selected with a uniform distribution from 10-30 kg, and
customer demands were randomly selected from 20-40 kg. The time horizon for the makespan
minimization instances was chosen as

211 — 1J
(6.32)

7= {H}V?X[Tij[fi/ﬁj”}. {T

The first term is the maximum total time any task needs to run for to meet demand, which we found

by multiplying the processing time by the number of runs required in each unit and taking the



175
maximum over all units. The second term is the number of tasks plus changeovers expected on a

single unit.
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Figure 6.7. Performance charts of different models for unequal capacity parallel units instances using C1.

Figure 6.7 shows the performance charts. Constraints (W) are not tested because they are not
applicable when a task can be executed multiple times. For makespan minimization, M}, MY,
MYS are the fastest, while MY, and the two models with pairwise changeover constraints M} and
Mg’[HS are the slowest. Same as in the parallel units problems (§6.4.2), adding valid inequalites (6.28)
significantly improves the solution times for makespan minimization. For tardiness minimization,
MIRD

JBD and MERP are the fastest, while for cost minimization, M$ST and MSGT are the most fastest.

Table 6.5 compares the improvement of integrality gaps of the models.

Table 6.5. Parallel units with unequal capacities: average integrality gap improvement with respect to M.

Problem K(ref) SI SII SIII SIIT P SH
Makespan 0.94 0% 0% 0% 0.04% 0% 0%
Tardiness 0.35 0.94% 0.94% 0.87% 2.69% 0.82% 0.80%

Cost 0.26 3.43% 3.43% 3.21% 5.18% 3.19% 3.10%
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6.4.4. Additional Testing

We also studied the performance of all models using CPLEX default settings (C2). The relative
performance of the different changeover constraints remains the same, though solution times are
shorter. Table 6.6 summarizes how valid inequalities (6.28) affect the solution time for makespan
minimization problems, using C1 or C2. For the single unit problem, the average solution time using
valid inequalities (6.28) and C1 is 1%-106% higher, though it decreases by 36%-48% when C2
settings are used. For the parallel units problem, the average solution time using valid inequalities
(6.28) decreases by 1%-29% when C1 is used and by 39%-48% when C2 is used. For the instances
with unequal capacity units, solution times using valid inequalities (6.28) decrease by 18%-33%
(10%-13%) when using C1 (C2). We also tested all instances with both preprocessing and cut
generation turned off. The computational times in this case increase significantly: only 63% of the

instances were solved to optimality within 3600 seconds.

Table 6.6. Solution times for makespan minimization problems (different formulations and valid

inequalities).
Problem CPLEX K SI SII SIII K(36) SI(36) SII(36) SII(36)
Single unit C1 1.00 0.49 0.48 0.57 1.01 1.01 0.96 0.93
c2 0.31 0.33 0.32 0.34 0.20 0.17 0.16 0.19
parallel units C1 1.00 0.94 0.94 0.99 0.71 0.93 0.93 0.96
c2 0.55 0.79 0.77 0.73 0.34 0.41 0.41 0.40
Parallel units with C1 1.00 1.12 1.00 0.99 0.82 0.75 0.73 0.71
unequal capacities C2 0.31 0.34 0.34 0.35 0.27 0.31 0.31 0.30

Note. The solution time of each instance is normalized with respect to the solution time for M¥S using CPLEX setting C1. We
use the average normalized computational time over all instances for the same type of problem.

6.5. Conclusions

In this chapter, we proposed one new formulation for sequence-dependent changeover times in
discrete-time MIP scheduling models, and compared them with previous formulations both
theoretically and computationally. In terms of tightness, (SI), (SII), (SIIT) and (P) are tighter than
the two literature constraints, (SH) and (K). Among the constraints written for a single task,
constraints (K) are the weakest, followed by (SIII) and (SII); and (SI) and (SIIT) are the tightest.

Among the constraints written for pairs of tasks, constraints (W) are the tightest, and (SH) are the
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weakest. Constraints (W), however, cannot be applied to problems in which a task can be executed
more than once. In terms of computational effectiveness using CPLEX, although models with
constraints (K), (SIII), (SII), and (SI) have similar solution times, models with constraints (SII) and
(SII) are typically the fastest. We observed that tighter formulations did not necessarily lead to
faster computational times, as tighter formulations had typically more constraints and/or non-
zeros, and took longer time to solve the LP relaxations. Also, models with changeover constraints
written for a single task were faster than those written for pairs of tasks. We observe similar
computational results using Gurobi.

The constraints presented in this chapter can be added to any discrete-time MIP scheduling
formulation, including models developed to address problems in complex production environments
(e.g., environments with batch mixing, splitting and recycling) as well as problems with a range of
processing characteristics (e.g., general resource constraints, time-varying resource availability and

cost). Thus, the constraints presented herein are relevant for many real-world problems.

6.6. Notation

Indices/Sets

iel Tasks (jobs)

JE] Units (machines)

teT Time points/periods

neN Index used to select times points when a constraint is written
Subsets

I; Tasks that can be processed in unit j

Ji Units that can process task i

N;; Indices n for which v;j,, and y;;,, are defined

T/ ={t'|t —1;; +1<t' <t},forgiven (i,j,t)

TiC,l.].t ={t'|t—ty;—op;; +1<t' <t—1y;},forgiven (i,i, ), 1)



Parameters
a ij
Bj

6

n
Vijn/#ijn
unit j

$j

Oii'j

Tjj

bi/bi
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Cost to run task i in unitj

Capacity of unit j

Time step

Factor used to determine the maximum changeover length
Time horizon

Parameter to select the time points for which (SII)/(SIIT) is written for task i and

Demand for the output of task i
Changeover time between task i and task i’ on unit j
Fixed processing time for task i in unit j

Due time/dealine of task i

WQ;jn; /Wb, Parameters to define the summation over i’ for given (i, j, n) in (SIIT)

Binary Variables

Xijt

= 1if and only if task i starts on unit j at time point ¢

Continuous Nonnegative Variables

CST
MS
TRD;

TRD

Total cost
Makespan
Tardiness for task i

Total tardiness
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Chapter 7

Conclusions and Recommendations

7.1. Concluding Remarks

In this thesis, we studied inventory routing problem from different aspects. MIP models
considering different constraints were proposed, and solution methods were developed in order to
solve realistic instances in a timely fashion. We evaluated different policies for reoptimizing a

maritime IRP under uncertainty. Furthermore, we explored two research topics related to IRP.

First, we proposed MIP models that can account for a wide range of constraints, which are
necessary for obtaining an implementable solution. The models are based on a discrete-time
approach and time-expanded network representation. The complex constraints include maximum
daily working and driving time, driver resting and checking-in/out, time varying consumption rate,
and multiple access windows. However, the proposed model leads to prohibitively long solution
time for larger instances. A network with more than eight customers cannot be solved in a relistic

time frame (less than an hour).

Second, we developed solution methods, which lead to solutions of high quality obtained in a
reasonable time. A preprocessing algorithm reduces the nodes and the arcs in the distribution
network, based on the current inventory and forecast consumption profile. After preprocessing,
only the customers with demands that should be fulfilled in the planning horizon and their nearby
customers are included. A decomposition algorithm iteratively solves an upper level vehicle routing
subproblem and a lower level detailed scheduling subproblem. In the upper level, a MIP model is
solved to select the optimal routes and the corresponding trucks to carry out the routes, and the
distribution cost is minimized. In the lower level, drivers are explicitly modeled, and a continuous-

time approach is used to obtain a detailed schedule, based on the upper level decisions. Different
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options for running the iterative algorithm were presented. Using the proposed algorithm,
instances with distribution networks including up to 155 customers (34 customers after

preprocessing) were solved within half an hour.

Third, we developed a framework for the reoptimization of maritime IRP under uncertainty,
based on MIP models and stochastic simulations. The MIP model is formulated on a discrete-time
approach, and considers vessels in long- and short-term renting modes, and owned and third-party
production nodes. The stochastic simulations consider uncertainty in vessel availability, trip delays,
production/consumption variations, and pick-up windows. We showed that even when no
uncertainty is incorporated, the closed-loop solution (i.e., the implemented solution in a rolling
horizon manner) is very different from the open-loop solution (i.e., the initial solution obtained
from the optimization model). When uncertainty is incorporated, the closed-loop cost increases by

30%. We also identified policies which lead to high quality closed-loop solutions.

Fourth, we developed novel terminal constraints for online scheduling. Different network
structures were considered, including multi-stage single-product, single-stage multi-product, and
multi-stage multi-product. The proposed terminal constraints can prevent stock out, as well as save
inventory holding cost, compared to (1) the model without any terminal constraints and (2) the
model using a traditional threshold approach. Furthermore, for two types of networks, we proved

that the terminal constraints can lead to recursive feasibility.

Finally, we proposed one new formulation for modeling sequence dependent changeover in
scheduling problems, and we proved that the proposed formulation is facet-defining for a certain
problem. Moreover, we compared the proposed formulation with seven formulations that were
previously developed, both theoretically and computationally. Interestingly, the tighter
formulations can lead to longer solution times, because the solution time of their LP relaxations is

longer.
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7.2. Future Research Directions

First, we have made certain assumptions when developing the IRP models and solution
methods. It will be interesting to see how one can modify the models and solution methods if the

assumptions are not satisfied.

(a) We assumed that drivers are dedicated to products, so that we can solve the distribution
problems of each product independently. However, drivers can be shared among products in
reality. To consider this, the distribution of different products should be determined
simultaneously, which will lead to very large models. Therefore, one more layer might be
needed in the solution method, which decides the driver assignment to different products.

(b) We assumed that there is no limit on the amount of products at the plant. However, this
assumption might not be satisfied, because the production scheduling and IRP are not entirely
decoupled problems. To consider the production schedules, we may need to develop and solve a
MIP model in the dynamic network reduction phase (for a longer horizon) to decide the
customers to visit (in a relatively short horizon).

(c) We assumed that there is only one plant in the supply chain. For the supply chains including
multiple plants, the MIP model should be modified, to consider that a route can start from one

plant but end at another.

Second, we can further study how reoptimization should be conducted for the vehicle-based

IRP.

(a) In the dynamic network reduction algorithm, we used the safety stock level as a terminal
constraint to decide the minimum demand in the planning horizon. However, whether the
safety stock would be the “optimal” terminal constraint for reoptimization is unknown.

(b) As shown in Chapter 4 for MIRP, the closed-loop solution might be very different from the open-

loop solution, and one can expect that this is also true for vehicle-based IRP. Therefore, how to
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obtain high-quality closed-loop solution is an open question. Possible directions include the use

of certain policies and the modification of objective function to reflect the long-term effect.

Finally, there are a few interesting research extensions related to the terminal constraints and

changeovers.

(a) For the terminal constraints we proposed in Chapter 5, three types of network structures were
studied. It would be interesting to find out how to write terminal constraints for more complex
networks, which include mixing or recycling operations.

(b) In Chapter 6, we assumed that there is no cost associated with changeovers. Therefore, we can

further study what would be a good formulation when changeover cost should be considered.
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Appendices

A. Proof of Proposition 5.1

Proposition 5.1: Let Ly, (S1) and W;;;(S1) be the values from a feasible solution, 51, of model
MF. If model MF has a feasible solution, S2, when using
Sm = Linr41(SD) + 8 + Yierz, jey, BijWijr(S1), then forany 1 <o < T + 1, using Sy, = Ly, o(S1) +
Om + Diers, jey; BijWijo-1(51), model MF also has a feasible solution, S3.

Proof: Given solution S1 and S2, we can construct a schedule of time {0, ...,2T}, denoted by
inventory level variable L,,;(2T) and task start variable W;;;(2T). We show that based on this
schedule, we can find a feasible solution S3.

We use Ly (S1)/Ly (52) and Wy (S1) /W (S2) to denote the variable values of solution
$1/S82. Since Sy = L7141 (S1D) + 0 + Zier, jey, BijWij,r(S1) for solution S2, we can construct the
schedule of {0, ...,2T} as follows:

Lyt (2T) = Lppe(S1) VMt <T
Le(2T) = Ly —7(S2) Vm,T <t < 2T
WijeRT) = Wy (S1) Vi, j,t <T — 1y
Wije@RT) =0 Vij,T—7;+1<t<T-1

WijeQT) = Wyje—r(S2) Vi, j, T <t <2T

These variables Ly, (2T) and W;;; (2T) satisfy all constraints (5.1b)-(5.1d) after modifying the time
domain of the constraints to 0 < t < 2T.
Thus, for any1 <o <T+1, when Sy, = Ly (S1) + 6 + Xierz, jey, BijWijo-1(S1), we can
construct a feasible solution, $3, for model MF, whose variables are given as follows,
Linte(S3) = Ly t46-1(2T) VM,0<t<T

VVUt(SB) = Wij,t+d—1(2T) Vi;j,o <t<T
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Since constraints (5.1b)-(5.1d) are satisfied for 0 < t < 2T, S3 is a feasible solution for MF. =
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B. Proof of Proposition 5.2

Proposition 5.2: For multi-stage single-product problems, model MF is always feasible regardless
of the horizon length, if initial inventory levels Sy, satisfy constraints (5.3).

Proof: Based on the assumption that model MC is feasible, we know that 5, = 1,6, for every
stage k. We use Si(t) € RT to denote the inventory level of the material that has been produced in
stage k at time t, without considering the consumption of the final product. We use S; (t) to denote
the material that is being produced in stage k at time ¢; it can only be 0 or f. Because there is no

consumption of the product considered in Sy (t), the following inequalities (B1) are obvious,

IK]| IK]| IK]| IK|
Z Spr(t) + Z Sg(t) = Z Se(@®) + Z Sg(t)  Vkitt' >t (B1)
k'=k k'=k+1 k'=k k'=k+1

We show that with constraints (5.3), there exists a schedule satisfying S|k (t) = t6 for any t €
N; based on this schedule, we can construct a feasible solution for model MF, and therefore prove
Proposition 5.2.

First, we prove the following lemma by mathematical induction.

Lemma B1: If constraints (5.3) are satisfied, then there exists a schedule satisfying inequalities

(B2) below.
LS IK]| IK| K|
ZSkr(t)+ z SH(H) = 5+ Z o |6+ Z Bu k.t (B2)
k'=k k'=k+1 K'=k+1 k'=k+1

When k = 1, we know that if the task in stage 1 keeps running, then the total inventory levels of
all stages (without consuming the product) is greater than the initial value from the inequality of

k=1 of (5.3), plus the production in stage 1, as follows,

K| K| K| K|

Z S () + Z MO Z o |6+ z B + léj,@l vt
k'=2 k'=2

K'=1 ’ k'=1
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K| K] K| K|

> ) S+ Z S50z Y e |04 pt(Z-1)m v (B3)

k'=1 k'=1 k'=2

Since 8; = 1,6, we have

K] K] K] K] t
Z S () + ZS (6 > Z o |6+ Z ﬁk,+(T——1)rla vt
k'=1 k'=1 k'=2 1
K] K] K] K]
:Zsk(t)+25+(t)> zrk, -6+z,8kr+(t—11)6 vt
k'=1 k'=1 k'=2
K| |K| K| K|
N Z S () + Z SH(t) > t5+ Z T |6+ Z By (B4)
k'=1 k'= k'=2

Therefore, (B2) of k = 1 is satisfied.

Now, assuming (B2) of k = k1 is satisfied, we show that (B2) of k = k1 + 1 is also satisfied; i.e.,

we prove that if (B5) below is satisfied, (B6) is also satisfied.

K| IK]| K| K|
Z S () + Z SH(D) = t5 + Z T |6+ Z B (BS5)
k'=k1 k'=k1+1 k'=k1+1 k'=k1+1
K| K| 1 K|
S + 2 SH(t) > t5 + 2 v |6+ Z By (B6)
k'=k1+1 k'=k1+2 k'=k1+2 k'=k1+2

Apparently, if at t inventory levels satisfy (B7) below, (B6) is also satisfied, since each batch

takes at least one period. We can see from (5.3) that (B7) is satisfied for t = 0.

I kI K| I
S () + Z SH(t) = (t—1)5 + Z o | 6+ Z By (B7)
k'=k1+1 k'=k1+2 k'=k1+1 k'=k1+2

Now, we show that in the case that (B7) is violated, (B6) is also satisfied. Let t1 denote the first
time point (in its neighborhood) that (B7) is violated, i.e., (B7) is satisfied fort =t1 — 1, but

violated for t = t1. Mathematically, they are
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IK]| IK]| IK| IK]|
S (t1—1) + Z Sp(tl—1) = (t1—-2)6 + Z T |+ 6+ Z B! (B8)
k'=k1+1 k'=k1+2 k'=k1+1 k'=k1+2
K| IK]| K| K|
S (t1) + Z Sp(t) < (t1—-1)-6+ Z T |F6+ Z B’ (B9)
k'=k1+1 k'=k1+2 k'=k1+1 k'=k1+2

From (B1) and fi141 = Tx+19, we know that the LHS of (B8) and (B9) are equal, i.e,,

IK| K| IK| K|
Se(tl—1)+ Z Sq(tl—1) = Z S (1) + Z S (t1) (B10)
k'=k1+1 k'=k1+2 k'=k1+1 k'=k1+2

Fromt = t1 — 1 of (B5) and (B9), (B10), we know that,

Si(tl = 1) + Sfy (t1 = 1) > Beras (B11)

Thus, at time interval [t1,t1 + 7,14 — 1], one more batch can be finished in stage k1+1. (B11)

together with (B8) leads to

K| K|
S+ T =D+ D S+ T = 1)
k'=k1+1 k'=k1+2
K| K|
> (t1—-2)6 + 2 T |6+ Z Br' + Bri+1
k'=k1+1 k'=k1+2

Since fr141 = Tx1410, we have

1 K|
Sk’(tl + Tk1+1 - 1) + 2 S,:I(tl + Tk1+1 - 1)
k'=k1+1 k'=k1+2
(B12)
K| K|
2 (tl + Tk1+1 - 2)6 + Z Tk’ * 6 + z ﬁk,
k'=k1+1 k'=k1+2

which means that (B7) of t = t1 + 71,1 — 1is satisfied again. Now, we only need to show for any
timet € [t1,t1 + 73141 — 2], (B6) is satisfied. For any t € [t1,t1 + 73141 — 2], from (B1) and (B8),

we know
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K| K] K| K|
S () + Z S,j,(t)z Z Sp(l—-1)+ Z S,':,(tl—l)
k'=k1+1 k'=k1+2 k'=k1+1 k'=k1+2
K| K|
> (t1—2)6 + z T |6+ z Bur
k'=k1+1 k'=k1+2
K| K| K| K|
> z S () + Z SH(D) = (t1 + Taps — 2)8 + Z o |6+ Z By
k'=k1+1 k'=k1+2 k'=k1+2 k'=k1+2
K| K| K| K|
> Z S () + Z SH(t) =5+ Z T |8+ Z By
k'=k1+1 k'=k1+2 k'=k1+2 k'=k1+2

which is (B6).

Therefore, we have shown that if (B2) of k = k1 is satisfied, (B2) of k = k1 + 1 is also satisfied,
which finishes the proof of Lemma B1 by mathematical reduction.
Making the stage k = |K| in Lemma B1, we have

S| (t) =t5 vt

Accordingly, based on S (t), we can construct a feasible solution of MF, as follows,

K| IK]|
Wy = 1if and only if Z St + 1)) + Z Spr(t+ Tpr)
k'=k k'=k+1
K| K|
> Z S+, —1)+ 2 Sp(t+T10—1) Vit
Kk'=k Kk'=k+1

Lie = 5, (0) + Bx 2 Wit — Brsa 2 Wiy Ve <IK|t

t'<t-ty t'<t

Like = S (0) + Bk Z Wik —t6 vt

t’<t—‘l'|](|

Therefore, when constraints (5.3) are satisfied, model MF is always feasible. ]
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C. Proof of Proposition 5.4

Proposition 5.4: For single-stage multi-product problems, model MF is always feasible regardless
of the horizon length, if initial inventory levels S; satisfy constraints (5.6).

Proof: We show that if initial inventory levels satisfy constraints (5.6), there exists a schedule
that can satisfy demand for any t € N; based on this schedule, we can construct a feasible solution
for model MF, and therefore prove proposition 5.4.

We use S;(t) € R to denote the inventory level of product i at time t. To show there exists a
schedule that can satisfy demand for any t € N, we show that if the inventory levels S;(t) satisfy
constraints (5.6) and the unit is idle at ¢, one can always start a certain task i1 to process. During the
process, inventory levels are non-negative, and after the process, inventory levels S;(t + 7;;) satisfy
constraints (5.6) again.

Since the initial inventory levels S; satisfy constraints (5.6), we know that at time t = 0, (5.6) is
satisfied and the unit is idle.

Consider a time t at which the unit is idle. Without loss of generality, we assume that S;; (t)
satisfy

Su(®) _ 'nsi—(t)

5 mi 5, (C1

If the following constraints are satisfied,

ZCIT::—l(t)Z ZCiTi : ZTi ,Vp € P(I) (C2)

i€l, i€l, i€l,
Then, we can process task i1.

It is easy to show that inventory levels are non-negative during the process of task i1, because
forall i, S;(t)/d; = Si1(t)/8;1, and S;1 (t)/6;1 = 11 from the inequality (C2) with p = {i1}.

To show inventory levels S;(t + ;1) satisfy constraints (5.6) again is to show (C3) below.
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1.5 (t + T:
ZCLT”((S—TH)Z zcm ' zTi ,Vp € P(D) (@)
i

i€, i€l, i€l

Since task il is processed at time t, we know

Sin(t +7i1) = Sin(6) + Bin — 111611 (C4)
S:(t + 1; Si(t
CiTi 4 5. ) _ CiTj l(g_ )_ T (qr), Vie N\il} (C5)
L L

First, we show that for any subset p including task i1, (C3) is satisfied. From constraints (5.2b)

and (5.2¢) of model MC, we know that
Ci1 éﬁ = 2 CiT;
=
Siu(t+71) Si1(8) + Bin — T b > Si1(¢)

Sty s — = Cafu 5 = CTu—s— + T CiT (C6)
i i i i

Thus, by the summation of (C5) and (C6), (C3) of {p|i1 € I,,} can be deduced.

Second, by contradiction, we show that (C3) is also satisfied for any subset excluding task il.
Assuming (C3) is not satisfied for p such thatil € I,; i.e,,

> e (Y e Y w (©)

(€T, (€T, i€,

= Z CiTiSi(t)S;iTil& < (Z CiT;) (Z ;)

i€l (€T, i€L,

= Z CiT; Slé‘_(t) < (Z CT) " (z ) + 1y Z it (C8)

i€l i€l i€l i€l

The constraint of (C2) for p”such that L,y = I,, U {i1}is

Sia (1) Si(t)
Ci1Tia —l;l + Z CiT _16- 2 (cuTix + Z ¢ti) (T + Z T;) (C9)
L l

(€T, (€L, i€l
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From (C8) and (C9), we know
Six (1)

CuTit =5 — > CaTa T ¥ CuTit E Ti
H fet,

Sia (t) z
= 5.0 > T+ T; (C10)

i€l

From (C1) and (C10), we know

= > T4 + T Vi€l
& ~ on " ‘ P
i'ely
Si(t +1i1) S5i(t)
> ) ant = Y an( =) > O e () w)
i€l ! (€T, ! i€l i€L,

which contradicts (C7). Thus (C3) of {p|il & I} is also satisfied.

Thus, we have shown that after processing the task i with the smallest value of S;/6;, inventory
levels satisfy constraints (5.6) again. Therefore, there exists a feasible schedule for any horizon.
Accordingly, we can construct a feasible solution of MF, as follows,

W;; = 1if and only if i starts at ¢t in this schedule Vi, t

Lit = Si - t6i + .Bi z Wit' Vl,t
t'<t-1j

Therefore, when constraints (5.6) are satisfied, model MF is always feasible. ]
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D. Proof of Proposition 5.6

Proposition 5.6: The projection of feasible region defined by constraints (5.8a) and (5.8b) on the

subspace of s = [S1,S3, ..., S|,|]T is the same as the feasible region defined by constraints (5.6).
Proof: First we introduce two lemmas, which can be proved trivially.

Lemma D1: Assume the initial inventory levels s satisfy constraints (5.6). If two task subsets p, and

p2 are disjoint (1,1 N I,; = @), constraints (5.6) written for these two subsets cannot be both binding.

Otherwise, the constraint (5.6) written for p; such that L3 = L,1 U I, will be violated.

Lemma D2: Assume initial inventory levels s satisfy constraints (5.6). If two task subsets p; and p,

satisfy Ip1\Ip, # @ and Iy, \I,y # @, constraints (5.6) written for these two subsets cannot be both
binding. Otherwise, the constraints (5.6) written for ps,ps such that Ipz = L,y U Ly, Ips = Ly N 1,

cannot be satisfied at the same time.

Let S(® ={s|constraints (5.6)}, S® ={s|constraints (5.8a) and (5.8b)}. To show S® = $®), we

show S® < §(® and §©) c §®,

First, we show S® < §()_ Consider any subset p. By multiplying (5.8a) by c;7; on both side and

}

adding together the inequalities of all i € I, we have

Si Ci’ Ci'
ZCiTiEZZ CiTi Ti+zri’<?+1_Ui’i)+ZTiI?Uii'
L i L

i€l, i€l i'<i i'>i

Rewriting the RHS, we have
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Ci’ Ci’
+ Z CiTi Z T (C_ +1- Ui'i) + Z T C_Uii,

4 = . i e T i
lElp i elp.L <i i elp.L >i

From (5.8b), we know the last term on the RHS is non-negative. After simplifying the second sum

term on the RHS, we have

S
z CiT; 6_l = Z GT;T; + z {(ci + ¢ty
L

i€l i€l i€l,i €lp\(i}

Further rewriting the second sum term on the RHS, we have

S.
Z cirié‘—l' = Z CT;T; + Z CiT; - Z T;
l

i€l i€l i€l i€L\(1}

Then we can combine the two terms on the RHS

Z Cifiz_i > (Z CiTi) (z ;)

i€l i€l i€l,

Thus, (5.6) are derived. Thus, S® < §(®),

Second, we show S(® < S®_ Since both $(® and S® are convex, it suffices to show that each

(finite) extreme point and infinite point of $¢®) belongs to S$(®.

Any of the extreme points, [51,52,...,5|1|]T, of S(® is the intersection of at least |I| binding
constraints of (5.6). From Lemmas D1 and D2, we know that if (5.6) of task subsets p and p’ are

both binding, then I,, S L, or L,y S I,,. Thus, the subsets of the |I| binding constraints follow the

p="Tp
following format, if we order them in terms of the cardinality of the subset:

L, = {i1,i2}
(D1)

Iplll = {11, 12, ,llll}
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Based on the binding constraints, we can find define a;;» accordingly as below,

Umin =0 if ord(im) < ord(in)

C.
Uinim = 1 +— otherwise vm<n (D2)
' Cim

Note that the orders of m and n are related according to (D1); i.e., ifm <n,im € L,,,im € L,
in & Ly, in € I,,,. Also note that the orders of tasks are related according to (5.8b); i.e., Ujp in is
only defined for ord(im) < ord(in). Obviously, , for U;;s defined in (D2), (5.8a) and (5.8b) are

satisfied. Therefore any extreme point of $(®) belongs to S(®,

Now, consider any infinite point of S, Assume that [ dimensions are infinite, i.e., Sip ==

Sii = +o0. We can define U;;r as follows, if §; = +o0

C.
Up =1+— ifi<i ,
Ci/ v l:Si = +o0 (D3)
U =0 otherwise

For the remaining |I| —[ indices, we can find the extreme points for the subspace of
[Sit+1, Sit42, ...,Sim]T, and it would be the intersection of |I| — [ binding constraints of (5.6). Thus,

we can define U,;s following the same logic of (D2). Thus any infinite point of $®® also belongs to

S®,

Therefore, we have shown that every extreme point and every infinite point of $(®) belongs to

S® and S c §®), n
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E. Proof of Correctness of Constraints (SIIT)

Since the changeover constraints for different units are independent, we drop index j without

loss of generality. Thus, constraints (SIIT) become

¢ t—a)bim-/
Z Xipr + Z Z Xppr <1 Vit,n€N; (E1)
t'=t—-1;+1 i'#it'=t-wa;,

Proof: To prove the correctness of (SIIT) for given (i,t), we need to show two things: (SIIT)
forces all variables corresponding to i’ # i and t' € Tic’it to be zero if X;; = 1, and no valid solutions
are cut off.

First, we show that for anyi' # iandt’' € {t — 1,y —o0;; +1,...,t — 7y}, X;r¢r is included in at
least one constraint of n € N;, based on the following three observations. For all i’ # i, we have:

(1) X;r, for t' = t — 7,1, which is the largestt’ € T

i;» 1 included in the constraint for n = 1 since
wbjyy < 1y < wayyy for either i’ € 1A, ori’ € IBy,.

(2) X;rpr for t' =t —1y —0p; + 1, which is the first changeover time point, is included in the
constraint for the smallest element in N; for which u;;,, = o;/; (denoted by n;/).

(3) Whenn is less thanny, we have wb; ;11" < Uins1 < fin + Ty = WA + 1, which means that
variables X, for all changeover times (i.e., t' € Tigit) are included in at least one inequality.
Second, to prove that no valid solutions are cut off, we consider the following cases for given

(i,¢t):

(1) The same task scheduled back-to-back. Foriori’, the time indices of the binary variables
included in one of the inequalities have a difference less than or equal to the processing time of
this task, thus, no solution with the same task scheduled back-to-back is cut off.

(2) A taski’ # i scheduled afteri. The smallest time index of the included X;,/ variables is

tf =t —1; + 1, and the largest time index of the included X;/,+ variables cannot be larger than

ty =t.Sincety —tf =1, — 1 < 1; + 7,7, no solution with i’ scheduled after i is cut off.
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(3) A taski’ # iis scheduled before i. The smallest time index of the included X;/, variables is
tt =t—ty —min{oy;, win} +1 =t —17 —0y; + 1, and the largest time index of the included
X, variables is t¥ = t. Once again t¥ — t¥' < 7;/ + g;7; — 1, so no solution with task i scheduled
after i’ is cut off.

(4) Two tasks, both inIA;,, are scheduled back-to-back. The included variables have the same
largest time index, t — ;. Also, the difference between the largest and the smallest t’ of the
included X,/ variables, is t;; — 1. Thus, no solution with these tasks scheduled one after
another is cut off.

(5) Two tasks iy, ip, both inIB;,, are scheduled back-to-back. The smallest time index of the
included X; ;s variables is tf =t —1; — o0y + 1, while the time index of the included Xi,¢!
variables cannot be larger than ty =t — 0y ;+ 0y14,. Since t¥ —tf =14+ 01, —1, no
solution with task i, scheduled after i; is cut off.

(6) Taski; € IA;; is scheduled before i; € IBy,. The smallest time index of the included X; ./

variables is t! = t — p;, — 71 + 1, while the time index of X; . variables cannot be larger than

ty =t — iy + 041 4. Similar to (5), no solution with task i; scheduled before i, is cut off.

(7) Task i; € IA;, is scheduled after i, € IBy,. The smallest time index of the included X; ./
variables is t5 = t — 7, — 0;3; + 1, while the time index of X; ; variables cannot be larger than
t{ =t — Wiy The difference is 7;, + g5 — pin — 1. Since pi, > 052, (iz € IBy,), no solution with

task i; scheduled after i, is cut off. |
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F. Proof of Proposition 6.1

Proposition 6.1: Let H = {X € {0,1}""'l: subject to constraints (6.7) (6.23)}. Then each inequality

in (6.23) is facet-defining for the convex hull of H, conv(H).

Proof: Since changeovers in different units are independent, index j is dropped without loss of
generality.Let H = {X € {0,1}T'|1|:ZiZ@:t_TiHX“f < 1,Vtand

t t—wb. .1 .
Zt’:t—‘ri+1Xit' + Zi’:/:izt/ m ,Xi't' < 1,Vit,n € N;}.

St-way;
We want to prove that each face Fj;, defined by (F1) is facet-defining for the convex hull,
conv(H). We will prove it by showing that the face defined in expression (F1) has dimension T-|I|-1,

which is one less than the dimension of conv(H), as there are T:|I| X;;variables and H is full

dimensional.
t t=wby,
Fitn = { Xi; € conv(H): Z Xipr + Z Z Xppr =1 Vi,t,n € N; (F1)
t'=t-7;+1 #it'=t-wa;,

To show that Fj;,, has dimension T-|I|-1, it suffices to show that it has T-|I| affinely independent
points.

For given (i, t, n), the following points belong to F;;,,, and are affinely independent (one point is
shown in each curly bracket, and for simplicity of presentation, we only list the non-zero variables):
(D) {X;;r =1}, t' € {t —7; + 1, ..., t}. These are 7; points.

(2) Xy = LX; 14, = 1t €{1, ot =73 U{t +1,.., TLk €Z\{0} and t'+k-7,€{t—1; +

1, ..., t}. Note that k, as well as the k listed below, is negative if t" > t. These are T — t; points.
(3) Fori' € 1A, {X;rpr = 1}t € {t — way,’, .., t — Wb}

(4) For i' € 1A, , {Xyrp = L, Xp1 gy, = 118" € {1, t — 0@y — 13U {t — Wby +1,..., THk €

Z\{0}and t' + k- 7; € {t — wa;,;’, ...,t — wb;,;7}. Cases (3) and (4) have T - [IA;;,| points.

(5) Fori’ € IB;,, {X;rpr = 1}, t" € {t — wa;p;r, ., t — Wb }.
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(6) For i’ € IBin' {Xi’t’ = 1'Xit = 1}, t, € {1, ...,t - (J)aini’ - 1}.

(7) Fori’ € IB;, and t’' € {t — wb;,;» + 1, ..., T}, based on the definition of wb;,;, at least one of the

following three scenarios is true, and we can select the point accordingly (in case when more

than one scenario is true, we select one of them). Cases (5) - (7) have T - |IB;,,| points.

(7a) If wb;y,;r = oyr;, select the point {X;7,» = 1, X =1}

it-wa,

(7b) If wbyyr = pip — mingrgy, oy, select the point {X;rr =1, X, =1},i" € 1A,

4 ,t—a)ainiu

and gy = mini’”EIAin o

(7¢) fwbipyr = max;reg, \'y {0 — 017}, select the point {X;pr =1, X;n =1},i" €

4 ,t—a)ainill

IBiTL and O'illi - Ui”i’ = maXinlele\{il}{O'inli — O'illlil},

From the set definition, |[IA;,| + |IB;,| + 1 = |I|. Thus, there are totally T-|I| points in (1) to (7).

It is trivial to show the points are linearly independent, and thus affinely independent. [
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G. Algorithms

Algorithm 3.1. Dynamic network reduction (§3.2.1, 3.2.2).

1: for j
. S _MIN R.
2: calculate parameters and subsets Cj , 0, T;, ]j ;

3:J7 = {j: oM™ > 0};

4:forje JT

. N+24T .1
5: 1P =170 e IINTL0S — [ pli(Ddt < $i);

24T o

6: if{j € T L04 — [ pli(0)de < £3) = 0 then
7: JP=1P Uy eJf\T0) N = max; gy o™}
8:]=J" uJPu(P;
9:A=A\{(,j):j&Jorj €]}
10: for (j,j') €A
11: if (j, j)) is not in the neighbor list or satisfies inequality (3.6) then
12: A =A\{G.JD}
13: ifj €J% andj' € J¥ and {j" € J":j € ] and j' € J§} = @ then
14: A=A\{G.JD}

Note. Lines 1-8 preprocess customers; lines 9-14 preprocess network arcs.

Algorithm 3.2. Routes generation for VR subproblem (§3.3.1).

1: declare an array cus[];

2: for u=1:cmax

3: for v=1:u

4 for jeJ¢ and different from cus[1], cus[2], ..., cus[v-1]

5 cus[v] =J;

6 ifv=uthen

7: r =P - cus[1] -» -+ - cus[u] - P;

8 calculate parameters as in equations (3.7)-(3.10);
9 if r satisfies all the criteria in §3.3.1 then

10: R=RuU{r};

Note. Lines 2-7 list all possible routes; line 8 calculates the corresponding parameters; lines 9-10 verify the condition whether
a route should be included in set R.
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Algorithm 3.3. Set definition for heuristic integer cut generation (§3.5.3).

: - a 7 AL RU \ylIL
1:for i: Zn,k,n’,l,j(Si,n,k,n',l,j + Ei,n,k,n’,l,j) + Zl,j,n(Fj,n + F}',n)Xi,l Yl,j,n >0

2 forr,l:1 € LY and Y0 Xinpn's > 0

4 if OptnE is used then

5: IE=15u{i} RES = RES u{r}
6 else if OptnR is used then

7 RE =REU {};

Note. Line 1 checks if a truck is assigned to some routes that lead to infeasibility; lines 2-7 update the sets denoting infeasible
route combinations using OptE or OptR.

Algorithm 3.4. Parameter updating for the VR subproblem (§3.5.4).

1:fori,r,[:1 € LR\1?
2: if T5 < Zn,k,n’ Xi,n,k,n’,l(EiI.n - SiI,n)

. _ I I R
3: Xy = Zn.k.n’Xi,n,k,n',l(Ei,n = Sin) —Tr

Algorithm 4.1. Check long-term model vessel availability.

1: resolve = no;

2:nmax = 0;

3:for M <t <A ieNIR: }; Wi,ch,jc =1

4: nmax = nmax +1;

5. e(0) = e () + [elts) — e ()] o
6 sample random from a continuous uniform distribution of interval [0,1];
7: if random < ¢, (t) then

8 Simax =t

9 else

10: Skt . = ceil(random - A*¢);

11: resolve = yes;

12: break;

Note. If all desired vessels in long-term mode are available, the algorithm ends with resolve equal to no; otherwise, resolve
returns yes. In line 5, £ (t) denotes the probability that a vessel is available at time t. In line 10, A*C denotes the earliest time
a vessel in long-term mode is guaranteed to be available. In the case study, t; 4 = 7,t;p = 14,&,(t;4) = 0.85,&,(t10) =
1,2 = 14,
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Algorithm 4.2. Update availability of vessels in short-term mode.

1: for [

2: for n < nlast;

3 Spt = null;

4 for n: 65 # null

5 sample random1 from a continuous uniform distribution of interval [0,1];
6: if random1 € [0, &54] then

7 Spt =65 —1;

8 else if random1 € [eg4, 54 + £55] then

9 6l§1+ = 6[31_ - 2;

10: else if random1 € [esy + €5, €54 + Esp + €5¢] then

11: it =65

12: else if randoml € [eg4 + €55 + €5¢, Esa + €5 + Es¢ + €5p] then

13: it =657+ 1;

14: else

15: Spt = null;

16: sort the values of §;, over index n in ascending order so that 8}, < 615_;“ and all the null values are
moved to the larger end of n;

17: find the smallest index n’such that §;% = null;

18: sample random?2 from a discrete uniform distribution of {newA, newA+1,..., newB};
19: 8% = random2;

Note. The availability profiles of vessels rented in short-term mode are cluster-specific. For each cluster I, we (1) remove the
vessels that were reserved in the previous period (lines 2-3); (2) update the times when vessels become available (lines 4-15);
(3) sort those times in ascending order (line 16); and (4) generate new availability profile (lines 17-19). In line 2, nlast, is the
number of trips in cluster | reserved in the last period. Parameters &gy, £sp, €s¢, Esp denote the probability that the time a
vessel becomes available remains unchanged, decreases by 1 period, increases by 1 period, and increases by 2 periods,
respectively. For example, in the case that the time a vessel becomes available is unchanged, the new 83, is the old 83, minus
one as in line 7, because the horizon has been rolled forward by one day. It is also possible that a previously available vessel is
reserved by another party, and thus becomes unavailable, as shown in line 15. In the case study, €54 = 0.75, esg = 0.05, g5 =
0.05,e5p = 0.05,newA = 9,newB = 12.

Algorithm 4.3. Check availability of vessels in short-term mode.

1:forl

2: ncurrent = 0;

3 for 4 <t < A58

4 for (j,j') € A\AR: Wi, = 1

5 ncurrent = ncurrent +1;
6: ift < 87 urren: then
7 resolve = yes;
8 break;

Note. The availability of vessels rented in short-term mode is checked for each cluster; if some desired vessels are not
available, resolve returns yes.
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L:fori,j,t > 1:Wh, ;=1

2: sample random from a continuous uniform distribution of interval [0,1];
3: if random € [0, &p;4] then
4: Vl/i{“;;‘,j,t+1 = 1;Wi{‘v+c,jt =0;
5: else if random € [ep;q, €pjq + €p12] then
. L —1- WL+  —0-
6: M/i,ut:,j,ﬁz - 1' Wi,vt,jt _0'
P ~S—
7:forj,j',t > 1:W}.j,t =1
8: sample random from a continuous uniform distribution of interval [0,1];
9: if random € [0, ep;4] then
. S+ _ 4. TS+ Q.
10: Wil = LW =0;
11: else if random € [ep;q, €pj1 + €p2]then
. DSE 4. S+ Q.
12: Wil = LW =0;
13:fori,j,t > L: X}, =1
14: sample random from a continuous uniform distribution of interval [0,1];
15: if random € [0, epp,] then
16: Fil}';q,t+1 = Fil}"r_nt: Fi6'1+nt =0; XiLj,+t+1 =1 XleJtr =0;
17: else if random € [epp1, Epo1 + Epoz|then
. AL _ pL- . PL+ _ . PL — 1. PL+ — .
18: Fimesz = Fime Fijme = 0 Xijii = L Xiji = 0;
. ’\S_
19:forj,j', t > 1:Zijj’mt >0
20: sample random from a continuous uniform distribution of interval [0,1];
21: if random € [0, epp,] then
. pS+ _ pS— . pSt  _ Q.
22: P}j'm,t+1 - Fjj'mt' Fjj'mt =0;
23: else if random € [epp1, Epo1 + Epoz|then
. AS+ _ pS— . pS+  _ Q.
24: F}j’m,t+2 - Fjj'mt' Fjj’mt =0;
.. . L
25:fori,j # vc,]’:lﬂ/'l.jj,1 =1
26: sample random from a continuous uniform distribution of interval [0,1];
27: if random € [0, epr4] then
. pL+ _ 5l . pL+ — 1.
28: Fij'm,rjj/+2 - Fijj’ml’ Xij’,rjj/+2 =1
29: else if random € [eprq, Epr1 + Epr2]then
. AL+ _ L . pL+ -1-
30: Fij'm,r].]./+3 - Fijj’ml’ Xij',‘r}.].r+3 =1
31: else
. pL+ _ 5l . pL+ — 1.
32: Fij'm,rjj/+1 - Fijj’ml’ Xij’,rjj/+1 =1
.. S
33:forj,j": W, =1
34: sample random from a continuous uniform distribution of interval [0,1];
35: if random € [0, epr4] then
. AS+ _ S .
36: F}'j'm,‘r--/+2 - F}j’ml’
37: else if T'andom € [SDTl’ EpT1 + SDTz]then
. pS+ _ S .
38: P}j'm,r..,+3 - F}'j'ml’

JJ

39: else
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40: ESt =FS

ji'mT,a+1 ji'mi1’

Note. There are three typejsl of trip delays: (1) a reserved vessel that is yet to arrive can be late for 1 period with a probability
of epp1 or 2 periods with a probability ep, (lines 1-6 and 7-12 respectively for long- and short-term mode); (2) an on-going
trip can have a delay of 1/2 periods with a probability po1/&po2 (lines 13-18 and 19-24 for long- and short-term mode,
respectively); and (3) a pick-up/delivery can be 1/2 periods longer with a probability eprq/€pr, (lines 25-32,33-40
respectively for long- and short-term mode). Note that even though the probability of delay at each time period does not
depend on trip length, longer trips tend to have larger delays, because they have more time periods during which delays can
be observed. In the case study, ep;; = 0.15,ep;, = 0.05,ep91 = 0.08, epg, = 0.02,eprq = 0.15,ep, = 0.05.

Algorithm 4.5. Update pick-up windows.

1:forj €)™,k €K;:02° = 2V and 63"~ — 03>~ = 10

2: sample random from a discrete uniform distribution of {-newC, -newC+1,..., newC};
3 o2’ = a7 + random1;

4: sample random from a discrete uniform distribution of {newD, newD+1,..., newE};
5 ot = o> + random2;

6 update ;. according to equation (4.22);

Note. For pick-up windows whose estimated start time is t = APY, the actual start time and window length are specified.
Parameter newC( is the maximum adjustment of the start time; newD/newE is the shortest/longest window length. In the case
study, newC = 3,newD = 2,newE = 3.

Algorithm 4.6. Update initial inventory.

1: for j € JOPUJ°
2: sample random from a normal distribution NV (0, 045);

3: Lo = Ly + random - pj,;

Note. The real-time initial inventory level is updated using a normal distribution. The consumption/production rate in the
last period is included in L. In the case study, o, = 0.05.

Algorithm 4.7. Update forecast consumption/production rate.

1:forj € JOPUJC,t > 1
2: sample random from a normal distribution N (0, o5r);

3: Pime = (1 +random) - piye;

Note. Consumption/production forecast rate are updated using a normal distribution. In the case study, orr = 0.05.
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Algorithm 4.8. Fix variables according to decisions made previously.

1:fori,j,t < ALR

2: fix VVi?,vc,t to V’Viﬁ:;af;
3:fori,j,t < §LE;
4: fix Wi jr to Wit it
5:for j,j',t <54

. S S+
6: le]/V]JttOVVJ] t'

. . .1 1SA S S+ _
7:forj,j', 254 <t < A5B: W'j’t_l
8: fix W3, to WSF;

it it

Note. Variables related to three types of decisions are fixed. First, the vessel company should be notified AR periods before
returning a long-term rental (lines 1-2). Second, long-term renting decisions that were made previously are fixed (lines 3-4);
8LE is the earliest time when a vessel in long-term mode becomes available (updated in lines 20-23 in Algorithm 4.1). Finally,
short-term renting decisions are fixed (lines 5-8). In the case study, A*R = 15.

Algorithm 4.9. The procedure to roll the horizon one step forward.

1: if resolve = no then

2: fori ) A<t <A, lLUC]f 1
3: VVLVC]t = Wi.LUCJf’
4: else
5: fori ] ALA <t< 57%amx lecﬂ 1
6: Vl/)_vc]t VVHIC]t"
7:forj,j, A% < t < AP W, =1
. S+ _ S
8: W}J t WJ v
9:fori,j
i 7L+ — L .
10: VVL-]-,UC,ALR = W'l-j,,,C,ALR'

11: IR = {ll Zj,tSALB Wi{‘vt,jt = 1},
12:fort < A58
13 AR ={(, ’)|WS+ }

ji't
14: G (d) = C™ + CPF + CF + ¢ + ¢ + CFL + P+ CF;
15: update parameters W7, VV]?‘-F(;'XLZ}::' Fho FS " ime due to trip delays by Algorithm 4.4;

16: update pick-up windows o3>, 625", 6%, by Algorithm 4.5;

17: update initial inventory levels L mO by Algorithm 4.6;

18: update forecast consumption/production rate ijt by Algorithm 4.7;

19: calculate how many periods vessel i has been rented for, and update y;;;

20: if resolve = no then

21: SLEY = max(§LE~ — 1, 444);

22: else

23: SLEY = max(8k e — 1, A44).

24: roll horizon one period forward by modifying index ¢ for all related parameters (lines 25-26);

25:forij,j,t
26: Wi, = Wi, (Similarly for W25, X5 Five BT Gikes Pime)s

27: get the new information of consumption/production rate and orders at t = n;
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28:d =d +1;
Note. In the algorithm, (1) the new long-/short-term renting and long-term returning decisions are updated (lines 1-10); (2)

the reserved vessels/trips are updated (lines 11-13); (3) the implementation cost for the current period is recorded (line 14);
and (4) all parameters (including the stochastic parameters) are updated (lines 15-28).

Algorithm 5.1. Algorithm to obtain region SF.

l:formeM
2: define min,,, max,,;
3: Sm = min,,;

3: endFlag = 0; changeFlag = 0; S¥ = ¢;
4: while endFlag = 0

5: if [Sml'SmZ' ...,Sm|M|]T & SF

6: run model MF;

7: if model MF is feasible

8: SF = SF U {[Sh1, Stz -, Spumi] [ S 2 S Y}
9: for m € M: changeFlag = 0

10: if S, < max,,

11: Sm=8n+¢&

12: changeFlag = 1;
13: else

14: Sin = ming,;

15: if changeFlag = 0

16: endFlag = 1;

17: changeFlag = 0;

Note. min,,, max,, denote the range of S,,,; € denotes the resolution of the discretization.

Algorithm 6.1. Procedure to generate the parameters and sets used in (SIIT).

1:forj,i € 1;

2: n=1; wj; = ming,; 7y, ; stopflag = 0;
3 while stopflag = 0
N 72 17 . . ANy . .

4 IA;j, = {l |l F U < Ui’ij}' IBjjn, = {I'|i" # i, pijn > 04145}
5 fori' € 1A,

./
7 fori' € lBl]n
9 Wbjpyr = max{oj, Uijn — Mgy, Til"ilj o maXi”ElBijn\{i’}(o-i”ij — o)}
10: if pijn = max;r,; 01y
11: stopflag = 1; set N;; = {1, ...,n};
12: else
13: Uijn+r = Min {uijn + MING <oy il A airl.j}; n=n+1;
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