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ABSTRACT 

This thesis focuses on thermo-elastic topology optimization of structures subject to both 

mechanical and thermal loads. Such problems are of significant importance, for example, in 

aircraft industry where aerodynamic forces and thermal-gradients are common.  

A popular topology optimization method for solving such problems is Solid Isotropic 

Material with Penalization (SIMP) where pseudo-densities are assigned to each finite element. 

With values varying between 0 and 1, the pseudo-densities serve as independent variables in the 

optimization process. Although popular and easy to implement, SIMP exhibits the deficiency of 

zero-slope at zero-density when solving thermo-elastic problems. This deficiency leads to 

convergence issues. To overcome such defects, another method, called Rational Approximation 

of Material Properties (RAMP), was proposed based on SIMP. However, since both methods 

fundamentally rely on parameterization of material properties as functions of pseudo-densities, 

they both suffer from ill-conditioned stiffness matrices, poorly defined boundary conditions and 

stress singularities. 

A topological sensitivity based level-set method, called Pareto, is studied instead in this 

thesis. Pareto does not suffer from the above deficiencies, i.e., the stiffness matrices are well-

conditioned, the boundary is well-defined and stress singularities do not arise. However, Pareto 

has only been demonstrated for pure elasticity, and constraints have not been addressed in a 

systematic way. 

Therefore, the achievement of this research is extending Pareto from pure elasticity to 

thermo-elasticity, and addressing a variety of constraints that may arise in such problems.  
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Unlike in pure elasticity, for thermo-elastic problems, the displacements and stresses are 

computed after taking into account the additional thermal loads. The fundamental notion of 

topological sensitivity (exploited in Pareto) must therefore be extended to consider both elastic 

and thermal scenarios. The derivations of topological sensitivities with respect to a variety of 

mechanical properties, for example, compliance, stress, modal and buckling, are one of the key 

theoretical accomplishments in this thesis.  

To address constraints, an augmented Lagrangian topological level-set method is proposed. 

By employing classic augmented Lagrangian algorithm, the proposed method is capable of 

solving topological optimization problems with multiple constraints. Specifically, the augmented 

Lagrangian algorithm and the concept of topological sensitivity are combined with level-set 

approach to absorb various constraints into a single objective. The augmented objective is then 

iteratively minimized by the classic Pareto method. In the process, questions of numerical 

efficiency and robustness are addressed. 

Finally, the thermo-elastic topology optimization formulation is integrated with the proposed 

augmented Lagrangian level-set method to solve multi-constrained thermo-elastic design 

problems in an efficient and correct way. While most of topology optimization algorithms are 

tested on simple 2D benchmark examples, the developed method is tested and applied on a series 

of 3D large-scale industrial models, rendering the proposed algorithm efficient and robust for a 

variety of real world applications.  
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1. INTRODUCTION TO THERMO-ELASTIC STRUCTURAL DESIGN 

PROBLEMS 

1.1 Structure Design in Thermal Environment 

Structural optimization of elastic structures in thermal environment has become an important 

research area in recent years. Generally speaking, this research is concerned with optimization of 

structural components which are subject to both thermal gradients and mechanical restraints. If not 

properly accounted for, thermal expansions can lead to thermal stresses and structural failure. 

Traditionally, in order to reduce or eliminate thermal stresses, most efforts were devoted to designing 

thermal structures that allow thermal expansions to be accommodated in some or all necessary 

directions. Examples of this design approach include expansion joints in concrete structures and gas 

turbine engine components.  

Nonetheless, several new design concepts, including engine exhaust-washed structure (EEWS) on a 

low observable aircraft, have resulted in new design scenarios in which mechanical constraints have to 

be considered. A concept of EEWS located aft of embedded engine is shown in Figure 1. High 

temperature exhaust gases are generated from the embedded engine and sprayed out through exhaust 

nozzle. During the process, not only the spray nozzle, aircraft engine, supporting substructures but also 

surrounding airplane skins are subject to high temperature gradients and aerodynamic forces.  
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Figure 1: Conceptual engine exhaust-washed structure [1] 

For this new design scenario, finding optimal designs for the nozzle structure by properly 

accommodating thermal expansions is not practical. Therefore, new optimization techniques are 

required. Topology optimization, as one of the most advanced design techniques, is an ideal candidate.  

1.2 Literature Review of Topology Optimization  

One of the earliest topology optimization works appear in [2] where K. Cheng and N. Olhoff 

demonstrated a shape and size optimization method for thickness distribution of elastic plates. A 

continuation study is followed in which M. Bendsoe introduced the material distribution method for 

topology designs [3]. This material distribution method was later adopted and modified by a number of 

researchers [4].  In the following years, various topology optimization methods were developed 

including ground structure methods [5], homogenization method [6], Solid Isotropic Material with 

Penalization (SIMP) [7], evolutionary structural optimization (ESO) [8] and level-set method [9], [10]. 

Ground structure approach is the classic method for optimizing the topology of truss systems. In this 

approach, a network of potential truss members is first prescribed in a design domain. A size 
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optimization is carried out on each truss member until the cross-section areas of non-optimal trusses 

approach zero and can therefore be removed [5].    

SIMP is the most popular topology optimization formulation due to its simplicity, generality and 

success in several applications [7]. Based on the finite element method (FEM), SIMP assigns each 

element with a pseudo-density, and the pseudo-densities are then optimized to meet the desired 

objective. Due to its simplicity and generality [7], SIMP has been applied to a variety of problems, 

including fluids, structural mechanics, and thermo-elasticity.  

In evolutionary structural optimization (ESO) [8], elements are gradually removed from the domain 

based on their relative significance order. BESO [11] addresses some of the limitations of ESO by 

permitting the insertion of elements.  

The level-set method was developed by [12] and introduced to structural optimization by [13]. 

Level-set formulation is gaining popularity in topology optimization since it permits an unambiguous 

description of the boundary, and therefore permits imposition of constraints on the boundary. The level-

set formulation relies on an evolving level-set which is typically controlled via Hamilton-Jacobi 

equations [14]. Readers are referred to [14] for a recent review of the success of level-set based methods 

in structural topology optimization. 

In spite of recent advances in pure mechanical problems, topology optimization still faces numerous 

challenges in thermo-elastic designs: (1) In elastic problems external loads are independent of design 

variables, while the calculation of thermal loads is directly based on design variables. Due to the 

inherent design-dependent property, numerical challenges may arise, making traditional optimization 

algorithm no longer available. (2) Compared with compliance, stress constraints in thermal topology 

optimization needs more careful treatment [15] and is arguably more important [16]. (3) A variety of 

constraints may have to be considered. Previous efforts adopted a series of heuristic approaches, like a 
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worst case method or a weighted method [17]. Although these methods are practically easy to 

implement, they are theoretically incorrect. Therefore, a new correct methods are needed. (4) Structures 

are often subject to more than one load in optimization. Multi-load design scenarios are so numerically 

challenging that a majority of current topology optimization algorithms are incapable. (5) When a 

thermal structure is restrained at boundaries, excessive thermal stress may result in various failures, for 

example buckling. A systematic approach is required to consider such failures in design process.  

A brief literature review of topology optimization with respect to the above challenges is 

summarized in the following sections. 

1.2.1 Review of thermo-elastic topology optimization 

Homogenization 

In a pioneering work of solving thermo-elastic topology optimization problems, the authors of [18] 

adopted homogenization approach where they combined asymptotic homogenization on periodic 

microstructures with thermo-elastic finite element formulations. It was found structures can be 

underutilized due to presence of thermal strains, and final topology is considered as a strong function of 

thermal gradients. From a computational perspective, the increase in check-board patterns was also 

observed; methods to overcome these issues were also proposed. 

SIMP 

In [19], the strain energy was minimized considering thermo-mechanical coupling where the 

sensitivity was calculated by adjoint method. In [1], a restrained thermal expansion problem was studied 

to minimize compliance in a homogeneous thermal environment. In [20], a pre-buckling problem was 

studied where a time-harmonic load was imposed on structures with prescribed excitation frequency. In 

[21], thermal dynamic compliance at resonance frequencies was minimized where final topologies were 
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strongly affected by excited modes and load locations. In [22], thermal stress was minimized within a 

functionally graded structure by using an iso-geometrical approach. In [23], thermal gradient was 

considered for a compliance minimization problem which was solved by a guide-weight method. In 

[24], compliance and elastic strain energy were compared when they were used as thermal topology 

optimization objects.     

RAMP 

One of the challenges with the SIMP model is that the material interpolation exhibits zero slope at 

zero density, leading to parasitic effects in thermo-elastic problems [25], [26]. To overcome this 

deficiency, the Rational Approximation of Material Properties (RAMP) was developed by Stolpe and 

Svanberg [25]; its superior performance over SIMP was demonstrated in [26]. In [27], a new stress-

relaxation method was proposed to include stress constraints, and a group-wise p-norm stress 

aggregation was adapted for better stress control. 

ESO 

For thermo-elastic problems, ESO was applied in [28] where a thermal source was placed inside the 

design domain and the temperature of the domain was minimized by removing elements with low 

sensitivities.  

Level-set 

For thermo-elastic problems, the level-set method was first reported in [29] where the mean 

compliance was minimized. In [30], a level-set based method was developed to study the effects of 

including material interface properties to thermo-elastic multi-phase structures. In [31], topological 

sensitivity was exploited within the Pareto framework to solve 2D stress-constrained topology 

optimization problems subject to uniformly elevated temperature.  
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All the relevant literatures are summarized in Table 1 in a chronological order.  

1.2.2 Review of multi-load multi-constrained topology optimization  

Multi-load topology optimization  

For multi-load problems, one can either adopt a worst-case approach or a weighted approach; these 

are not necessarily equivalent [17].  In the former, one arrives at a feasible but non-optimal solution. In 

the latter, the weights are subjective and difficult to establish a priori; the final topology will depend on 

the weights [7], [32], [33]. Additionally, due to convergence issues, application-specific methods have 

also been developed [34], [35]. For truss structures, an alternate approach based on the “envelope strain 

energy” was proposed in [36], but its advantages for continuum structures is not known.  

In [35], [37], [38], for multi-load problems, the authors propose an alternate discrete variable 

approach for mass minimization while satisfying various performance constraints, such as deflections, 

stress, etc. This has the advantage of synthesizing a minimum-mass solution that can satisfy many 

performance requirements. However, as stated by the authors [45], the underlying formulation is based 

on a heuristic measure. 

Multi-load problems are fairly common in compliant-mechanism design [6], [39]–[42]. Specifically, 

one must solve (at least) two problems: (1) the primary problem involving the external load, and (2) an 

auxiliary problem with a unit load at the ‘output’ location.  Further, multiple objectives must be met in 

the design of compliant mechanisms. These objectives are usually combined into a single weighted 

objective involving quantities such as the internal strain energy and mutual strain energy [39], [43]. 

Displacements constraints were included using a heuristic weighting approach [41], [44]. In [45], the 

topological level-set was exploited to solve multi-load problems, but the weights were once again 

determined in an ad hoc fashion.  
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Constrained topology optimization  

To solve a constrained topology optimization problem, a constrained optimization algorithm must be 

chosen.  

Various optimization algorithms have been developed, including method of moving asymptotes 

(MMA) [46], optimality criteria (OC) [47], simplex method [48], interior point method [49], Lagrangian 

multiplier method [49], augmented Lagrangian method [49] and so on. We review below various 

combinations of topology optimization formulations and optimization algorithms that have been 

proposed. A chronological summary of relevant literature is provided in Table 2 where the abbreviations 

of letter ‘M’, ‘D’, ‘C’, ‘S’, ‘E’ and ‘B’ stand for the constraint types of manufacturing, displacement, 

compliance, stress, eigen-value and buckling, respectively. The table and the review that follows are 

representative but not exhaustive; for example, constrained ground structures methods [50], [51], [52] 

are not reviewed here. 

SIMP 

Initially, SIMP was employed to solve compliance minimization problems [53]; it then evolved to 

include constraints. For example, one of the earliest SIMP-based stress-constrained topology 

optimization implementation was reported in [54] where authors coalesced local stress constraints into a 

global stress constraint, and addressed instability issues via a weighted combination of compliance and 

global stress constraints. Further research on compliance and stress-constrained SIMP-based topology 

optimization are discussed in [55], [56], [57], [58] and [59]. 

In [60], the authors proposed a SIMP-based trust-region method combined with augmented 

Lagrangian to solve a topology optimization problem of continuum structures subject to failure 

constraints. In [61], a Heaviside design parameterization was used in SIMP to consider manufacturing 
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constraints. The authors in [62] implemented SIMP with MMA to solve a topology optimization 

problem with compliance and manufacturing constraints. In [63], using SIMP, a manufacturing 

constraint and a unilateral contact constraint were absorbed into compliance minimization formulation 

through augmented Lagrangian method. In [64], the authors used a modified SIMP formulation coupled 

with quadratic programming technique to minimize structural weight subject to multiple displacement 

constraints. The authors in [65] used MMA to solve a topology optimization problem with a probability-

based high-cycle fatigue constraint. In [66], an algorithm was proposed to address multi-scale topology 

optimization problems subject to multiple material design constraints. In [67], a multi-point 

approximation algorithm was used as optimizer in a continuum structure topology optimization problem 

subject to dynamic constraints. In [68], a global/regional stress measurement combined with an adaptive 

normalization scheme was proposed to address stress constraints. A salient feature in [68] is the 

proposed adaptive stress-scaling that ensures that the stress constraints are met precisely at termination; 

however, methods to include additional constraints (example, displacement constraints) were not 

addressed. 

ESO/BESO  

In [69], a principal-stress based ESO method was proposed to find the optimal design of cable-

supported bridges subject to displacement and frequency constraints. During each optimization iteration, 

based on a threshold, elements were removed from the design domain. A similar method was used in 

[70] to solve contact design problems, where the authors proposed the interfacial gap between 

components be treated as optimization variables, while the contact stress be treated as an objective 

function. In [71], the Lagrangian multiplier method was used with BESO to combine the objective 

function of structural stiffness with a local displacement constraint. In [72], a modified BESO method 
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was combined with optimality criteria to solve a topology optimization problem with natural frequency 

constraints. The authors argued this method can successfully avoid artificial local modes. 

Level-Set  

In [73], X-FEM based level-set and OC method were combined to find optimal designs for 

continuum structures with geometric constraints. In [74], a topological level-set method was coupled 

with an adapted weight method for solving stress-constrained compliance minimization problem. In 

[75], the authors combined classic shape derivative and level set method for front propagation; the 

Lagrangian multiplier technique was used for perimeter-control. Since there was no implemented 

mechanism for creation of holes, the final design was dependent on initial material layout. In [76], the 

augmented Lagrangian technique was combined with the topological sensitivity based level-set method 

to handle displacement, stress and compliance constraints.  

In [77], level-set/X-FEM combined with a shape equilibrium constraint strategy was proposed. 

Specifically, a topology optimization problem with stress constraint was formulated through Lagrangian 

multiplier method which was then iteratively solved. In [78], a level-set based method was derived to 

handle casting constraints; augmented Lagrangian method was applied for posing the constraints and 

calculating the shape derivative of objective function. In [79], a level-set based method was applied to 

the representative wing box of NASA Common Research Model to find the optimal 3-D aircraft wing 

structures. Compliance was minimized while balancing the aerodynamic lift and total weight. The level-

set was shown to be robust and efficient by finding optimum solutions for multiple aerodynamic and 

body force load cases. 
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1.3 Thesis Overview  

The thesis is organized as follows. In the second chapter, a typical single-load topology optimization 

problem is studied with SIMP. The disadvantages and limitations of SIMP are discussed. In the third 

chapter, a remedy to overcome these challenges is presented in the context of topology sensitivity based 

level-set method. It is followed by a necessary technical background and an application in Pareto. In the 

fourth chapter, a weakly-coupled thermo-elastic topology optimization problem is studied on simple 2D 

benchmark examples. In the fifth chapter, an augmented Lagrangian formulation is implemented with 

topology sensitivity based level-set method for multi-load multi-constrained design scenarios. The 

algorithm is tested on 2D benchmark examples. In the sixth chapter, the proposed augmented 

Lagrangian method is applied for 3D large-scale models whose underlying FEA are accelerated by 

congruent gradient deflated method, element voxelization and high performance computing (HPC). 

Also, topological sensitivities with respect to a variety of mechanical properties are derived. In the 

seventh chapter, the thermo-elastic topology optimization is combined with augmented Lagrangian 

topological sensitivity based level-set method for 3D large-scale models. An application of the proposed 

algorithm in multi-constrained thermal buckling problems is present in Chapter 8. In the ninth chapter, 

conclusion and future work are given.  
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Table 1: Thermo-elastic topology optimization methods 

Time Authors TO method TO objective TO constraints Thermal 

gradient? 

Dimension 

1995 H. Rodrigues[18] Homogenization Compliance Volume √ 2 

1999 Q. Li[35] ESO Displacement Element thickness - 2 

2001 L. Yin[36] SIMP Output 

displacement 

Volume, element 

density 

- 2 

2003 Y. Li[37] SIMP Compliant 

mechanism 

Volume, element 

density 

- 2 

2004 Q. Li[28] ESO Temperature Non-negative 

sensitivity 

- 2 

2005 S. Cho[38] SIMP Compliance Volume, element 

density 

- 2 

2006 W. Kim[39] ESO Stress/ Eigen-

value 

Volume - 2 

2006 M.Prithiviraj[40] ESO Volume Stress/ Eigen-

value 

- 3 

2008 Q. Xia [29] Level-set Compliance Volume - 2 

2008 J. Yan[41] SIMP Compliance Volume, element 

density 

- 2 

2010 D. Li [19] SIMP Compliance Volume, element 

density 

- 2 

2010 P. Pederson[42] SIMP Stress Volume, element 

density 

- 2 

2010 T.Gao[43] RAMP Compliance Volume, element 

density 

- 2 

2012 J. Deaton[1] SIMP Compliance Volume, element 

density 

- 2 

2012 P. Pederson[44] RAMP Stress Volume, element 

density 

- 3 

2012 J. Yang[45] SIMP Compliance Volume, element 

density 

- 2 

2013 J. Deaton[46] RAMP Volume Stress - 2 

2013 X. Yang[20] SIMP Compliance  

/Buckling 

Volume, element 

density 

- 2 

2014 X. Yang[21] SIMP Eigen-value Volume, element 

density 

- 2 

2014 A.H. Taheri[22] SIMP Stress Volume, element 

density 

- 2 

2014 N.Vermaak[30] Level-set Compliance Volume - 2 

2014 X. Liu[23] SIMP Compliance Volume, element 

density 

√ 2,3 

2014 W. Zhang[24] SIMP Compliance 

/strain energy 

Volume, element 

density 

- 2 

2014 S. Deng[31] Level-set Stress volume - 2 

2015 J. Deaton[80] RAMP Compliance Stress, Volume 

element density 

- 2 
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Proposed12 S. Deng, K. 

Suresh 

Level-set Volume Compliance, 

Stress, buckling 

√ 3 

 

Table 2: Constrained topology optimization methods.  

Time Authors TO Method OPT Method 
Constraints 

Dimension 
M D C S E B 

1987 
Svanberg [46] Convex 

approximation 
MMA  √  √ √  2 

1992 Zhou, Rozvany [81] SIMP OC    √   2 

1996 
R. Haber [82] 

Homogenization 
Interior penalty 

method 
√  √    2 

1997 M. Kocvara [50] Ground structure Interior point method  √ √    2 

1998 
J. Petersson, O. 

Sigmund [83] 
SIMP Linear programming √  √    2 

2001 L. Yin, et. al. [84] SIMP OC  √  √ √  2 

2002 H. Guan, Y. Chen[69] ESO Parameterized criteria  √  √ √  2 

2003 W. Li, Q. Li [70] ESO Parameterized criteria √      2 

2004 
J. Pereira, E. Fancello 

[60] 
SIMP 

Augmented 

Lagrangian 
   √   2 

2004 G. Allaire, et.al. [85] Level-set Lagrangian multiplier √  √    2,3 

2006 K. Zuo, L. Chen [62] SIMP Modified MMA √  √    3 

2007 
M. Stolpe, T. Stidsen 

[86] 

Hierarchical 

optimization 
Linear programming  √  √   2 

2008 M. Werme [57] SIMP Linear programming   √ √   2 

2008 
M. Bruggi, P. Venini 

[58] 
SIMP MMA  √ √ √   2 

2009 
J. Paris, F. Casteleiro 

[87] 
SIMP Simplex method   √ √   2,3 

                                                                    
1 S. Deng, K. Suresh, “Thermo-elastic topology optimization via augmented topological level-set”, Computers and Structures, 2016, 

submitted. 

2 S. Deng, K. Suresh, “Topology optimization under thermos-elastic buckling”, Structures and Multidisciplinary Optimization, 2016, 

submitted. 
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2009 A. Ramani [38] Heuristic Substitution  √ √ √   2,3 

2010 X. Huang, Y Xie [71] BESO Lagrangian multiplier  √ √    2 

2010 X. Huang, et. al. [72] BESO OC     √  2,3 

2010 
N. Stromberg [63] 

SIMP 
Augmented 

Lagrangian 
√  √    2,3 

2010 
S. Yamasaki, T. 

Nomura [88]  
Level-set 

Augmented 

Lagrangian 
√  √    2,3 

2010 
J. Rong, J. Yi [64] 

SIMP 
Quadratic 

programming 
 √     2 

2011 A. Gersborg [61]  SIMP MMA √      2 

2012 
M. Bruggi, P. Duysinx 

[59] 
SIMP MMA   √ √   2 

2013 T. Liu, S. Wang [73] Level-set OC √      2 

2013 M. Wang, L. Li [77] Level-set Lagrangian multiplier    √   2 

2013 
G. Allaire [78] 

Level-set 
Augmented 

Lagrangian 
√  √    2,3 

2013 K. Suresh, et.al. [74] Level-set Adaptive weight   √ √   2,3 

2014 
S. Deng, K. Suresh 

[76] 
Level-set 

Augmented 

Lagrangian 
 √ √ √   2 

2014 
P. Dunning, B. 

Stanford [79] 
Level-set Lagrangian multiplier   √    3 

2014 E. Holmberg [65] SIMP MMA    √   2 

2015 
P. Coelho, 

H.  Rodrigues [66] 
SIMP MMA √ √     2,3 

2015 
J. Li, et. al. [67] 

SIMP 
Multi-point 

Approximation 
    √  3 

Proposed3 
S. Deng, K. Suresh 

Level-set 
Augmented 

Lagrangian 
√ √ √ √ √ √ 

3 

                                                                    
3 S. Deng and K. Suresh, “Multi-constrained 3D topology optimization via augmented topological level-set,” Comput. Struct., vol. 170, no. 

1, pp. 1–12, 2016. 
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2. INTRODUCTION TO TOPOLOGY OPTIMIZATION  

Over the last two decades, topology optimization [55], [90] has accelerated from an academic 

exercise into an exciting discipline with, potentially, numerous industrial applications. The focus 

of this chapter is specifically on introduction of topology optimization.  

2.1 A Pure Elastic Unconstrained Topology Optimization  

In structural mechanics, a constrained topology optimization problem may be posed as (see 

Figure 2): 

 

( , )

( , ) 0; 1,2,...,

subject to

D

i

Min u

g u i m

Ku f






  



  (1) 

where: 

 

:  Domain within which the topology must lie

:  External force vector

:  Constraints

:  Finite element stiffness matrix

:  Number of constraints 

:  Finite element displacement field

:  Objective to be min

i

D

f

g

K

m

u

 imized

:  Topology to be computed

   

 

Figure 2: A single-load structural problem.  
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For example, a special case of Equation (1) is the compliance-minimization  topology 

optimization problem: 

 

( )

subject to

T

D

D

Min J f u

Ku f

v v








  (2) 

where: 

 

:  Compliance

:  Volume fraction

:  Desired volume fractionD

J

v

v
    

Figure 3 illustrates the solution to a specific instance of Equation (2) where the allowable 

final volume fraction is 0.5. 

 

Figure 3: Optimal topology for a specific instance of Equation (2) over the structure in Figure 2.  

While various methods have been proposed to solve the specific instance of the single-load 

topology optimization problem, Solid Isotropic Material with Penalization (SIMP) is the most 

popular one. A brief review of the basic SIMP scheme is discussed in the following sections.  
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2.2 A Popular Topology Optimization Method: SIMP  

2.2.1 SIMP Formulation 

Building upon finite element analysis (FEA), SIMP is a widely used material interpolation 

scheme. It is essentially a power law as shown in Equation (3) which interpolates material 

properties to the scalar field in each finite element. 

 

0( )

0 1

p

e e e

e

E E

with

 





 
  (3) 

Where 

 
0

:  Finite elements

:  Penalized Young's modulus in elements

:  Young's modulus

:  Penalization parameter

:  Psedo-density in elements

e

e

e

E

E

p



   

In this formulation, the elemental material Young's modulus eE  becomes a function of 

elemental pseudo-density e  and penalization parameter p  which is generally varied between 

1.0 and 3.0. Therefore, SIMP can be seen as a procedure where different microstructures are 

placed at each point in design domain to optimize the structural global properties [91]. 

Topology optimization implies a discrete optimization at every point in design domain. In 

other words, an optimized point in the domain is supposed to be only material “full” or “void”. 

This is not only physically reasonable but also easy for manufacturing. However, implementation 

of such a discrete optimization scheme is not practical [91]. Therefore, a continuous optimization 
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strategy, whose design variable e  can be continuously varied between 0.0 and 1.0, is adopted. 

It is noted the pseudo-density value is usually not taken as 0.0 to avoid numerical singularity.  

A typical SIMP procedure is as follows. First, the design domain (for example, Figure 2) is 

discretized by finite elements (Figure 4). In this way, each finite element is assigned with a 

pseudo-density e , and each e  value is initialized to the desired volume fraction, 50% for 

instance. Second, based on the finite element formulation and the power-law approach in 

Equation (3), the compliance-minimization topology optimization problem in Equation (2) can 

be re-stated by SIMP as:  

 
1

:  

 to :  

                50%

                0 1

T

N

e e

e

e

Minimize J u Ku

Subject f Ku

v 











 

   (4) 

Third, the optimization problem stated in Equation (4) can be solved by several methods, 

including Optimality Criteria (OC), Method of Moving Asymptotes (MMA), etc. During the 

optimization, the updating scheme of design variables, calculation of sensitivity fields and 

stopping criteria are discussed in detail in [7].  

 

Figure 4: Finite element mesh and progression in SIMP.  

2.2.2 Limitations and Disadvantages  

Although SIMP is easy to implement and widely used, it suffers several disadvantages.  
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First, since the material density is penalized to be continuously changed from 0.0 to 1.0, the 

intermediate densities (i.e. between 0.0 and 1.0) have no real physical meaning in structures. Due 

to this inherent deficiency, several other challenges may include: (1) when the boundary 

elements have intermediate pseudo-densities, a boundary condition cannot be explicitly 

enforced; (2) the structures with “gray” elements of intermediate densities often have high 

condition numbers, leading to convergent problems; (3) using different penalization parameters 

may lead to distinct final designs; (4) the “gray” elements are physically nonsense and 

manufacturing infeasible; (5) “gray” elements can lead to other numerical challenges, like 

checker-board patterns.  

Second, since SIMP is developed on a single-load strain energy minimization formulation, it 

is theoretically infeasible to handle problems with multiple loads. Third, when the design-

dependent thermal loads are applied on design domain, SIMP suffers from a specific numerical 

deficiency, called “zero sensitivity at zero densities”. This defect may lead to more “gray” 

elements during optimization compared with pure elastic case [15]. 

Several other topology optimization methods are developed trying to remedy those 

shortcomings. Level-set, as one of the newly proposed methods, shows promising features. 

Topological sensitivity based level-set is therefore utilized in this research [76], [92].  In the 

following chapter, a brief review of its technical background is given.    
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3. INTRODUCTION TO TOPOLOGICAL SENSITIVITY BASED LEVEL-

SET METHOD 

In this chapter, the method of topological sensitivity based level-set method is introduced. 

The proposed method is based on the concept of topological sensitivity which is reviewed first. 

3.1 Topological Sensitivity 

Topological sensitivity captures the first order impact of inserting a small circular hole within 

a domain on various quantities of interest. This concept has its roots in the influential paper by 

Eschenauer [94], and has later been extended and explored by numerous authors [95]–[99], [100] 

including generalization to arbitrary features [101]–[103].  

Consider again the problem illustrated earlier in Figure 2. Let the quantity of interest be Q 

(example: compliance) that is dependent on the field u. Suppose a tiny hole is introduced, i.e., 

modifying the topology, as illustrated in Figure 5. The solution u from the static equilibrium 

equation and the quantity Q will change. The topological sensitivity (aka topological derivative) 

is defined in 2-D as: 

 
20

( )
( ) limQ

r

Q r Q
p

r




  (5) 

 

Figure 5: A topological change. 
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To find a closed-form expression for the topological sensitivity, often one relies on the 

concept of an adjoint. Recall that the adjoint field associated with a quantity of interest satisfies 

[104]–[106]: 

 
uK Q  

  (6) 

Once the adjoint is computed, the topological derivative is given by [107], [106]: 

 
   2

4 1 3
( ) : ( ) ( ) ( )

1 1
Q u tr u tr


     

 


  

    (7) 

where 

 

( ) :  Stress tensor of primary field

( ) :  Strain tensor of adjoint field

u

     

Thus, given the stress and strain field in the original domain (without the hole), one can 

compute the topological sensitivity over the entire domain. 

Observe that, as a special case, when TQ f u , i.e., in the case of compliance, Equation (6) 

reduces to: 

 
K f  

  (8) 

In other words we arrive at u    as expected, and the topological sensitivity reduces to 

[107]: 

 
2

4 1 3
( ) : ( ) ( )

1 1
J p tr tr


   

 


 

    (9) 
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If the domain is discretized into 2000 elements, and a unit is applied, the resulting field is 

illustrated in Figure 6; the magnitude of topological sensitivity field is normalized to 1.0 for 

convenience. In 3-D, the topological sensitivity field for compliance is given by [98]: 

 
 20 : 2 3 ( ) ( )J tr tr        

  (10) 

where   and   are the Lame parameters.  

 

Figure 6: Topological sensitivity field. 

3.2 Topological Level-set 

A simple approach to exploiting topological sensitivity in topology optimization is to ‘kill’ 

mesh-elements with low values. However, this leads to instability and checker-board patterns. 

Alternately, the topological sensitivity field can be used to introduce holes during the topology 

optimization process via an auxiliary level-set [75]. Here, we directly exploit the topological 

sensitivity field as a level-set, as described next (also see [108]). 

Consider again the compliance field illustrated in Figure 6; this is reproduced below in 

Figure 7a together with a cutting plane corresponding to an arbitrary cut-off value of 0.03  . 

Given the field, and the cutting plane, one can define a domain   per: 
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{ | ( ) }Jp p   

  (11) 

In other words, the domain   is the set of all points where the topological field exceeds  ; 

the induced domain   is illustrated in Figure 7b. Now, the   value can be chosen such that, 

say, 10% of the volume is removed. It is observed that the elements at the left-corners, as well as 

where the force is applied have relatively high sensitivity values while the sensitivity values for 

the elements at right corners are relatively low. Since elements with lower topological sensitivity 

values are least critical for the stiffness of the structure, they are likely to be eliminated. In other 

words, a ‘pseudo-optimal’ domain has been constructed directly from the topological sensitivity 

field. 

 

(a) Compliance topological sensitivity.  

    

(b) Induced domain   for a volume fraction of 0.95 
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Figure 7: Topological sensitivity field as a level-set.  

However, the computed domain may not be ‘optimal’ [109], i.e., it may not be the stiffest 

structure for the given volume fraction. One must now repeat the following three steps: (1) solve 

the finite element problem over   (2) re-compute the topological sensitivity, and (3) find a new 

value of   for the desired volume fraction. In essence, a fixed-point iteration is carried out [99], 

[110], [111], involving three quantities (see Figure 8): (1) domain  , (2) displacement fields u 

and v over  , and (3) topological sensitivity field over  . 

    

Figure 8: Fixed point iteration involving three quantities 

Once convergence has been achieved (in typically 2~3 iterations), an optimal domain at 90% 

volume fraction will be obtained. An additional 10% volume can now be removed by repeating 

this process.  

3.3 Pareto Method 

Using the fixed point iteration algorithm in Figure 8, the compliance problem posed in 

Equation (1) can be solved. A series of pareto-optimal topologies are resulted and illustrated in 

Figure 9. Therefore, the algorithm is capable to find pareto-optimal solutions to the problem: 

 
{ , }

D
Min J



  (12) 

Since all topologies are pareto-optimal, the topology optimization problem in Equation (2) is 

trivially solved by terminating the algorithm when the desired volume fraction has been reached.  
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Figure 9: Pareto-optimal topologies 

Observe that the above “Pareto” method is applicable to other objective functions (besides 

compliance) by replacing the compliance topological sensitivity field with the appropriate 

topological sensitivity field. 

After the introduction of the concept of the topological sensitivity based level-set method, its 

application in thermo-elastic topology optimization problem is illustrated in Chapter 4 and its 

implementation with augmented Lagrangian approach is demonstrated in Chapter 5, respectively.   



25 

 

 

4. THERMO-ELASTIC TOPOLOGICAL LEVEL-SET METHOD 

The focus of this chapter is to apply the topological sensitivity based level-set method to 

solve thermo-elastic topology optimization problems (see Figure 10) where the structure is 

subject to both mechanical and thermal loads. The goal is to find the optimal topology of 

minimum volume, subject to stress and compliance constraints. Unlike in pure elastic problems, 

in thermo-elastic problems, the displacements and stresses are computed after taking into 

account the additional thermal load. This poses both new theoretical and computational 

challenges discussed later in this chapter. 

 

Figure 10: A thermo-elastic problem.  

In the following sections, we first provide a brief review of necessary technical background. 

Then, the proposed thermos-elastic topology optimization and its implementation are discussed. 

Next, numerical experiments are presented, followed by conclusions. 

4.1 Formulation of Thermal Elastic FEA 

Finite element formulations of (weakly-coupled) thermo-elastic problems essentially reduce 

to solving two linear algebra problems: 

 
tK t q

  (13) 

 

thKu f f 
  (14) 
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where: 

 

:  Mechanical load

:  Structural load due to thermal effects

:  Structural stiffness matrix

:  Thermal stiffness matrix

:  Thermal load

:  Temperature field

:  Displacement field

th

t

f

f

K

K

q

t

u

   

The thermal load vector in Equation (14) is formed via [112]: 

 e

th T th

e e e ef B D d


 
  (15) 

 
0( )th T

e et t   
  (16) 

where: 

 0

:  Element strain-displacement matrix

D :  Element elasticity matrix

:  Finite elements

:  Nodal thermal load vector for each element

:  Element temperature from thermal analysis

:  Reference temperat

e

e

th

e

e

B

e

f

t

t ure

:  Thermal expansion coefficient

:  Element thermal strain vector

:  [1 1 1 0 0 0] in 3D; [1 1 0] in 2D 

:  Element domain

th

e

e









   

Finally, the stresses are obtained by subtracting the thermal strain from the total strain, and 

multiplying the resulting strain by the material tensor: 

 

th

e e e e e eD B u D  
  (17) 
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Further explanations and details may be found, for example, in [112].  The compliance for a 

thermo-elastic system is defined as: 

 
( )th T TJ f f u u Ku  

  (18) 

Observe that Equation (14) represents a weakly-coupled problem where the thermal field 

influences the displacements, but not the inverse. Strongly-coupled thermo-elastic problems are 

beyond the scope of this thesis. 

In this chapter, we extend the Pareto method to thermo-elastic problems with constraints. In 

particular, we consider two different formulations described in the following two sections. In 

both formulations, a compliance constraint and a stress constraint are imposed as follows: 

 
0/ JJ J 

  (19) 

 
max 0/  in    

  (20) 

Equation (19) states that the ratio of compliance J  of the final topology to the compliance 

0J  of the initial topology must not exceed a prescribed value of J  .  

Similarly, Equation (20) states that the ratio of maximum stress max (across all elements) in 

the final topology to the initial maximum stress 0  (across all elements) in the initial topology 

must not exceed a prescribed value of   .  

In the numerical experiments, J  and  range from 1.01 to 10.0, and they control the final 

termination. On the other hand, the path taken by the optimization process is controlled by 

choosing one of the two formulations described in Section 4.2.1 and 4.2.2 
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4.2 Formulation of Thermal Elastic Topology Optimization  

In this chapter, we extend the Pareto method to thermo-elastic problems with constraints. In 

particular, we consider two different formulations described in Section 4.2.1 and 4.2.2. In both 

formulations, a compliance constraint and a stress constraint are imposed as follows: 

 
0/ JJ J 

  (21) 

 
max 0/  in    

  (22) 

Equation (21) states that the ratio of compliance J  of the final topology to the compliance 

0J  of the initial topology must not exceed a prescribed value of J  .  

Similarly, Equation (22) states that the ratio of maximum stress max (across all elements) in 

the final topology to the initial maximum stress 0  (across all elements) in the initial topology 

must not exceed a prescribed value of   .  

In the numerical experiments, J  and  range from 1.01 to 10.0, and they control the final 

termination. On the other hand, the path taken by the optimization process is controlled by 

choosing one of the two formulations described in Section 4.2.1 and 4.2.2. 

4.2.1 Compliance Minimization  

In the first formulation the objective   is the compliance, i.e.: 
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D
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 



  (23) 

In other words, the goal is to trace the pareto-optimal topologies involving compliance and 

volume fraction until the stress (in any element) exceeds all allowable value, or until the 

compliance exceeds a specified value. Such topologies will be referred to as stiff topologies for 

thermo-elastic problems.  

4.2.2 Stress-Minimization 

In the second formulation   is the p-norm stress measure, i.e.: 

 

0

max 0

 { , }

/

/  in 

subject to

p
D

J

th

t

Min

J J

Ku f f

K t q







  






 

 



  (24) 

where 
p  is the p-norm stress measure [113] of the von Mises stress over all elements: 

 
 

1/ p

p

p e

e

 
 

  
 


  (25) 

The goal is to trace the pareto-optimal topologies involving the global stress measure and 

volume fraction until the stress (in any element) exceeds a specified value, or until the 
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compliance exceeds a specified value. Such topologies will be referred to here as strong 

topologies.  

Generating  ‘strong’ topologies is computationally more expensive than generating ‘stiff’ 

topologies [54], but arguably more important [16].  

4.2.3 Analytical Topological Sensitivity Fields 

For each of the two formulations, the topological sensitivity field associated with the 

objective    must be computed. For the compliance, the topological sensitivity expression is 

well-known and is given by [107]: 

 
2

4 1 3
: ( ) ( )

1 1
J tr tr


   

 


 

    (26) 

Note that the strain fields in Equation (26) is the total strain, while the stress field is 

computed via Equation (17). 

For the p-norm stress field, the topological sensitivity depends not only on the primary 

displacement field u but also on an adjoint field   [74]: 

 
2

4 1 3
( ) : ( ) ( ( )) ( ( ))

1 1p
u tr u tr


     

 


 

    (27) 

The adjoint field associated with the p-norm stress, by definition, satisfies the following 

equation [104]: 

 
 u pK  

  (28) 

Using the definition in Equation (25), one can show that (see [74]): 
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   
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 

  (29) 

and  
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  
 
    (30) 

 
[ ] [ ][ ]F D B

  (31) 

4.3 Algorithm of Thermo-Elastic Topological Level-Set 

1) Once the topological sensitivities can be computed, the overall algorithm (for both 

formulations) is fairly simple, and proceeds as follows: 

2) The optimization starts at a volume fraction of 1.0. The ‘current volume fraction’ v is 

set to 1.0, and ‘volume decrement’ v , is set to 0.05. 

3) The thermal and structural finite element problems in Equation (14) are solved, and 

the total strain and stress are extracted at the center of each element. For the stress-

objective, an additional adjoint problem in Equation (28) is solved. 

4) The topological sensitivity field (Equation (26) or (27)) is computed at the center of 

each element, and locally smoothened  with neighboring elements. 

5) Treating the topological sensitivity field as a level-set, a new topology with a volume 

fraction of ( v v ) is extracted. The compliance is computed over the new topology. 

If the compliance has converged, then the optimization moves to the next step, else it 

returns to step 2. 

6) The current volume fraction is set to ( v v ), and the optimization returns to step 2, 

until the final volume fraction is reached or until one of the constraints is violated. 
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Figure 11: An overview of the algorithm. 

4.4 Numerical Experiments 

 In this Section, we demonstrate the proposed method through numerical experiments. 

The default parameters are as follows: 

 The material is assumed to be steel, i.e., the elastic modulus is 2 11 E e Pa , the 

Poisson's ratio is 0.3   and the coefficient of thermal expansion 1.1 5e   . 

 The reference temperature is zero C, and a thermal load is applied by increasing the 

temperature uniformly by T  

 Unless otherwise noted, the p-norm value is 8. 

Bilinear quad elements are used for finite element analysis. For all experiments, the 

constraints are: 



33 

 

 

 
0/ 3.0J J 

  (32) 

 
max 0/ 1.5  

  (33) 

Further, the desired volume fraction is 0.1. In other words, the optimization terminates if the 

constraints are violated or if the final volume fraction is reached.  

4.4.1 Bi-clamped beam with a point load 

The first experiment is inspired by the classic bi-clamped structure which was previously 

studied by Rodrigues and Fernandes [18]. As illustrated in Figure 12, the structure is clamped on 

right and left edges and a mechanical point load of 1 6F e N  is applied at the center of the 

bottom edge; the structure is also subject to a homogeneous temperature increase of T . The 

domain is meshed with 4500 elements. 

 

Figure 12: The bi-clamped structure with point-load. 

Compliance Formulation (Stiff Designs) 

The results of the compliance minimization problem for three different levels of temperature 

loadings are summarized in Table 3. Observe that the final volume fraction and the topologies 

are a strong function of the temperature increase. Compared to the default case (middle column), 

a lower volume fraction is reached with decrease in temperature (left column); both are 
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compliance constrained. On the other hand, with an increase in temperature, the structure is 

stress constrained (stress constraints are difficult to meet exactly). 

Table 3: Final topologies and results for compliance minimization of the bi-clamped structure. 

T  -1.0 0.0 1.0 

Final topology 

   

finalv  0.106 0.175 0.205 

finalJ  02.89J  
02.98J  

02.16J  

final  00.99  
01.00  

01.37  

Stress Formulation (Strong Designs) 

The results of the stress minimization problem are summarized in Table 4. The results are 

similar to that of Table 3, except that in the last column, a lower volume fraction has been 

reached due to the compliance constraint. This highlights the difference between tracing 

compliance-minimization and tracing stress-minimization 

Table 4: Final topologies and results for stress minimization of the bi-clamped structure. 

T  -1.0 0.0 1.0 

Final 

topology 

   

finalv  0.112 0.183 0.155 

finalJ  02.96J  
02.97J  

03.00J  

final  01.08  
01.00  

01.20  

4.4.2 Bi-clamped beam with distributed loads 

Next we consider a similar bi-clamped beam but with distributed loads on the top edge as 

shown in Figure 13 [18]. The dimension of this beam is 0.5 0.28 0.01m m m  and the distributed 

load is 
26 9 /e N m . The domain is meshed with 3200 finite elements and subject to three 

different uniform temperature changes. 
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Figure 13: The bi-clamped structure with a distributed load. 

Compliance Formulation (Stiff Designs) 

The results of the compliance minimization problem for three different levels of temperature 

loadings are summarized in Table 5. Some minor differences in topologies are noted. 

Table 5: Final topology and results for compliance minimization of the bi-clamped structure with 

distributed load. 

T  -20 0.0 20 

Final 

topology 

   

finalv  0.355 0.40 0.375 

finalJ  02.95J  
02.88J  

02.93J  

final  01.47  
01.47  

01.45  

Stress Formulation (Strong Designs) 

The results of the corresponding stress minimization problem are summarized in Table 6. 

The topologies are consistent with those reported in [18]; relaxing the compliance constraint 

would result in a lower volume fraction. 

Table 6: Final topologies and results for stress-minimization of the bi-clamped structure with 

distributed loads. 

T  -20 0.0 20 

Final 

topology 

   

finalv  0.478 0.488 0.468 

finalJ  02.99J  03.00J  02.99J  
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final  01.43  
01.41  

01.42  

4.4.3 Clamped beam with tip load 

The next example is illustrated in Figure 14, where a beam that is 1.5m long, 1m wide and 

0.01m thick, is clamped on the left edge and subject to a point load 5 8F e N . The geometry is 

meshed with 3000 elements.  

 

Figure 14: The cantilever beam problem. 

Compliance Formulation (Stiff Designs) 

The results of the compliance minimization problem for three different levels of temperature 

loadings are summarized in Table 7. The impact of temperature on the final result is minimal in 

this case, i.e., the structure is largely dominated by the external force. 

Table 7: Final topologies and results for compliance minimization of cantilever beam. 

T  0 5 10 

Final 

topology 

   

finalv  0.55 0.56 0.53 

finalJ  01.55J  01.52J  01.60J  

final  01.50  01.49  01.50  

Stress Formulation (Strong Designs) 

The results of the stress minimization problem are summarized in Table 8. The topologies are 

significantly different from those in Table 7. Also note that for a temperature increase of 5, the 
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final stress is much closer to the constraint of 1.5, hence a lower volume fraction has been 

reached; this is purely a numerical artifact. 

Table 8: Final topologies and results for stress minimization of cantilever beam. 

T  0 5 10 

Final 

topology 

   

finalv  0.42 0.38 0.44 

finalJ  02.47  
02.85J  

02.55J  

final  01.43  
01.49  

01.48  

The main contribution of the chapter is a new method for stress constrained topology 

optimization of thermo-elastic problems. Two different formulations were presented and 

compared. Both formulations exploit the concept of topological sensitivity; thus material 

parameterization is not required. 

As the numerical experiments reveal, the impact of small temperature variations on the final 

topologies can be significant for certain problems, and minimal for other problems. Future work 

will focus on including other constraints including buckling and eigen-modes. 
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5. AUGMENTED TOPOLOGICAL LEVEL-SET METHOD 

The objective of this chapter is to introduce and demonstrate a robust method for multi-

constrained topology optimization. The method is derived by combining the topological 

sensitivity with the classic augmented Lagrangian formulation. 

The primary advantages of the proposed method are: (1) it rests on well-established 

augmented Lagrangian formulation for constrained optimization, (2) the augmented topological 

level-set can be derived systematically for an arbitrary set of loads and constraints, and (3) the 

level-set can be updated efficiently. The method is illustrated through numerical experiments. 

5.1 Multi-Constrained Topology Optimization  

 A typical single-load topology optimization problem in structural mechanics may be posed 

as (see Figure 15): 

 

( , )

( , ) 0; 1,2,...,

subject to

D

i

Min u

g u i m

Ku f






  



  (34) 

where: 

 

:  Domain within which the topology must lie

:  External force vector

:  Constraints

:  Finite element stiffness matrix

:  Number of constraints 

:  Finite element displacement field

:  Objective to be min

i

D

f

g

K

m

u

 imized

:  Topology to be computed
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Figure 15: A single-load structural problem.  

A classic example is compliance minimization: 

 
0

 

0

subject to

T

D
Min J f u

v

Ku f




  



  (35) 

Similarly, a stress-constrained volume-minimization problem [54], [16] (with additional 

compliance constraint to avoid pathological conditions) may be posed as: 

 

max

max

 in 

subject to

D
Min

J J

Ku f

 




 





  (36) 

where: 

 

max

max

:  Compliance

:  Max. compliance allowed

:  von Mises Stress

:  Max. allowable von Mises Stress

:  Topology to be computed

J

J







   

A multi-constrained multi-load problem on the other hand, may be posed as (see Figure 16 

for an example of a two-load problem): 
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  (37) 

where: 

 

:  External force vector for load-n

:  Number of loads

:  Displacement field for load-n

n

n

f

N

u
   

 

Figure 16: A multi-load structural problem.  

While various methods have been proposed to solve specific instances of single and multi-

constrained problems (see Section 2 for a review), the objective of this chapter is to develop a 

unified method that is applicable to all flavors of multi-constrained problems. 

The proposed method relies on the concepts of topological level-set [74], [109], [111], [114], 

[115] and augmented Lagrangian [49], and it overcomes the deficiencies of existing methods 

discussed next. 

5.2 Augmented Lagrangian Method 

Towards this end, consider the classic continuous-variable constrained optimization problem: 
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( )

( ) 0

x

i

Min f x

g x    (38) 

Observe that this is a continuous variable problem involving a continuous variable x opposed 

to a topology optimization problem. One of the most popular methods for solving such problems 

is the augmented Lagrangian method, also referred to as the “Method of Multipliers” [49]. Since 

the augmented Lagrangian method is well established, we only provide a brief summary of the 

method.  

In this method, the objective and the constraints are combined into a single unconstrained 

function, referred to as the augmented Lagrangian: 

 1

( , , ) ( ) ( , , )
m

i

i

L x f x L x   


 
  (39) 

In the above equation, ( , , )iL x   is defined as [116]: 
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  (40) 

where i are the Lagrangian multipliers and i   are the penalty parameters.  

Note that the gradient of the augmented Lagrangian is given by: 

 1

( , , ) ( , , )
m

i

i

L x f L x   

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  (41) 

Where 
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The Lagrangian multipliers and penalty parameters are initialized to an arbitrary set of 

positive values. Then, the Lagrangian in Equation (39) is minimized, typically via nonlinear 

conjugate gradient. Once the minimization terminates, the Lagrangian multipliers are updated as 

follows [116]: 

 

1 ˆmax{ ( ),0}, 1,2,3,...,k k k

i i ig x i m    
  (43) 

where the ˆ kx is the minimum at the (current) k iteration. The penalty parameters are also updated: 
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where 0 1   and 0  ; typically 0.25   and 10  . The updates ensure rapid 

minimization of the objective, while satisfying the constraints. In the following iterations, the 

augmented Lagrangian in Equation (39) is once again minimized with the updated values. The 

cycle is repeated until the objective cannot be reduced further. The implementation details and 

the robustness of the algorithm are discussed, for example, in [116]. 

5.3 Augmented Topological Level-Set 

Now consider the topology optimization problem: 

 ( , ) 0

D

i

Min

g u




    (45) 
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The objective is to extend the classic augmented Lagrangian method to solve the above 

problem. Drawing an analogy between Equations (38) and Equation (45), we define the 

topological augmented Lagrangian as follows: 

 1

( , ; , ) ( , ; , )
m

i i i i i

i
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Where 
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  (47) 

In classic continuous optimization, the gradient was defined with respect to the continuous 

variable x . Here, the gradient is defined with respect to a topological change. Drawing an 

analogy to the gradient operator in Equation (41), we propose the following topological gradient 

operator: 
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where   is the topological level-set associated with the objective, and 
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where  
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are the topological level-sets associated with each of the constraint functions. Observe that we 

have essentially combined various topological level-sets into a single topological level. The 

multipliers and penalty parameters are updated as described earlier. 

The above concept easily generalizes to multi-load constrained topology optimization 

problem: 

 

1 2

1 2

( , ,.., , )

( , ,.., , ) 0; 1,2,...,

N
D

i N

Min u u u

g u u u i I






     (51) 

in that the augmented Lagrangian is now defined as: 
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Thus, the only difference is that the constraint and objective depend on multiple displacement 

fields.  

5.4 Illustrative Examples 

Before we discuss implementation details, a few examples are provided to illustrate the 

concept of the augmented topological level-set. 

Displacement Constraint at a Point 

Consider the single-load problem posed in Figure 17, where a y-displacement constraint is 

imposed at point q: 

 
max( ) 0

D
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u q 


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    (53) 
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Figure 17: A single-load problem with displacement constraint.  

First consider the objective function. It is true that: 
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  (54) 

Next consider the displacement constraint. Since the point of interest does not coincide with 

the point of force-application, we first pose an adjoint problem: 

 
ˆ( )K q  

  (55) 

where  ˆ( )q  is the Dirac delta function at point q. Specifically, we have: 

 
   max
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  (56) 

In other words, as expected, one must apply a negative unit force at point q and solve for the 

adjoint. Once the adjoint is obtained, the topological sensitivity of the constraint is obtained as 

usual via:  
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Therefore, the combined topological level-set is given by: 
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Global p-norm Stress Constraint 

Now consider a global stress constraint: 

 
max 0

D
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 
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where the global stress is defined by weighting the von Mises stresses over all elements via the 

popular p-norm: 
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Computing the adjoint and the gradient of this global constraint is described in [74]. Once the 

adjoint has been computed, the topological level-set is defined as in Equation (57), followed by 

the augmented level-set as in Equation (58). 

Multi-load Displacement Constraint 

As an example of a multi-load problem, consider Figure 18, where the objective is to 

minimize volume such that the y-displacement at point q does not exceed a prescribed value 

under two different load conditions, i.e.,  
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1 max

2 max

( ) 0

( ) 0

D

y

y

Min

u q

u q








 

 
  (62) 

 

Figure 18: A multi-load problem with displacement constraint.  

Three different topological sensitivity fields must be computed. As before, the field 

associated with the objective is: 

 
1  

  (63) 

Next, since the constraint is applied at point q, a unit load is used to construct a single adjoint 

field per Equation (55). Given the two displacements fields and the adjoint fields, the remaining 

two topological sensitivity fields are computed as follows: 

 
   

1 1 12

4 1 3
( ) : ( ) ( ) ( )

1 1
g u tr u tr


     

 


  

    (64) 

 
   

2 2 22

4 1 3
( ) : ( ) ( ) ( )

1 1
g u tr u tr


     

 


  

    (65) 

5.5 Algorithm of Augmented Topological Level-Set 

The overall algorithm is illustrated in Figure 19, and described below: 
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1) The domain, desired volume fraction, multipliers and penalty parameters are 

initialized as described earlier.  

2) Multiple FEA are performed depending on the number of loads and adjoint problems. 

3) The constraints are evaluated, and the multipliers and penalty parameters are updated; 

the constraints are normalized to unity for numerical robustness. 

4) If the constraints are not satisfied, the volume decrement is decremented, and the 

algorithm returns to step-2.  

5) If the constraints are satisfied, the topological sensitivity fields for the objective and 

constraints are computed, and normalized to unity. 

6) The iso-surface is extracted using the augmented topological level-set L  

7) The topology is assumed to have converged if the compliance of the structure has 

converged to within 1%. 
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Figure 19: Proposed algorithm 

5.6 Numerical Experiments  

In this section, we demonstrate the proposed method through numerical experiments. The 

default material properties are 
112*10E   and 0.33  . All experiments were conducted on a 

Windows 7 64-bit machine with the following hardware: Intel I7 960 CPU quad-core running at 

3.2GHz with 6 GB of memory. 

All constraints are relative to the initial displacement and stresses, prior to optimization. 

Thus, a constraint: 

 
( ) 3.0 0yu q  

  (66) 
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implies that the vertical displacement at point q must not exceed three times the initial 

displacement at that point, prior to optimization. The constraint: 

 
2.0 0  

 (67) 

implies that the maximum von Mises stress must not exceed twice the maximum von Mises 

stress prior to optimization.  

5.6.1 Cantilever Beam: Displacement Constraints  

The first experiment involves the classic 2-D cantilever beam illustrated in Figure 20. A 

point of interest ‘q’ is located in the middle of the top edge. The problem is: 

 

max

max

( ) 0

( ) 0

D

y q

y a

Min

u q

u a








 

 
 (68) 

Thus, a displacement constraint is placed at the point-0f-force application ‘a’, and a 

secondary point-of-interest ‘q’.  

 

Figure 20: A single load cantilever beam problem with a displacement constraint 

Specific values for the allowable relative displacements at both points of interest are 

specified in Table 9. For FEA, the domain was discretized into 2000 elements. 
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The final volume fractions, the actual relative displacements reached, and the final topologies 

are also illustrated in Table 9. Observe that, at least one of the constraints is active (illustrated 

with a ‘box’) at termination. 

Table 9: Constraints and results for problem in Figure 20 

Constraints Final 

Volume 

Fraction 

Final 

displacements 

Final 

Topologies 

max

max

10.00

1.50

a

q








 

0.48 1.75

1.50

result

a

result

q








 

 

max

max

1.50

10.00

a

q








 

0.55 1.50

1.63

result

a

result

q








 

 

max

max

1.50

1.50

a

q








 

0.56 1.50

1.40

result

a

result

q








 

 

5.6.2 Cantilever Beam: Multi-load 

We now consider a multi-load problem illustrated in Figure 21. The displacement constraint 

for each load is placed at the point of force application, i.e., the problem is: 

 

max

1 1

max

2 2

0

0

D

y

y

Min

u

u








 

 
 (69) 
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Figure 21: A multi-load cantilever beam problem. 

The specific constraints and the final results are summarized in Table 10. Observe that the 

final topology is strongly dependent on the constraints. 

Table 10: Constraints and results for problem in Figure 21 

Constraints Final 

Volume 

Fraction 

Final 

displacements 

Final 

Topologies 

max

1

max

2

1.50

50.00








 

0.59 
1

2

1.50

1.47

result

result








 

 

max

1

max

2

50.0

1.50








 

0.48 
1

2

5.87

1.50

result

result








  

max

1

max

2

1.50

1.50








 

0.62 
1

2

1.50

1.36

result

result








  

5.6.3 L-bracket: Displacement & Stress Constraints  

We now consider a displacement (at the point of force application) and global stress 

constrained problem over an L-bracket (see Figure 22): 

 

max

max

0

0

D

y

Min

u 

 




 

 
 (70) 

The domain is discretized using 2000 finite elements. 
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Figure 22: A single-load L-bracket problem with global stress constraint.  

The specific constraints and the final results are summarized in Table 11. If the displacement 

constraint is active, then the topology corresponds to the classic ‘compliance-minimization’ 

problem, and if the stress constraint is active, the topology corresponds to the stress constraint 

problem [113]. 

Table 11: Constraints and results for problem in Figure 22. 

Constraints Final 

Volume 

Fraction 

Final 

displacements 

Final 

Topologies 

max

max

1000

1.5








 

0.35 2.49

1.50

result

J

result








 

 

max

max

1.5

1000








 

0.49 1.50

1.14

result

result









 

 

max

max

1.5

1.1








 

0.53 1.48

1.09

result

result









 

 

5.6.4 L-bracket: Multi-load, Multi-Constraint  

In this experiment, we consider the multi-load structure in Figure 23, where the topology 

optimization problem is 
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max

1 1

max

1 1

max

2 2

max

2 2

0

0

0

0

D

y

x

Min

u

u



 



 




 

 

 

 

 (71) 

 

Figure 23: A multi-load L-bracket problem. 

The results are summarized in Table 12; once again, the topologies are consistent with 

previous results. 

Table 12: Constraints & results for problem in Figure 23 

Constraints Final 

displacements 

Final 

Topologies 

max

1

max

2

max

1

max

2

1.5

10000

10000

10000

















 

1

2

1

2

1.50

5.05

1.14

2.85

result

result

result

result

















 
 

V=0.50 

max

1

max

2

max

1

max

2

10000

1.5

10000

10000

















 

1

2

1

2

25.30

1.50

11.22

1.29

result

result

result

result

















 
 

V=0.33 
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max

1

max

2

max

1

max

2

10000

10000

1.5

10000

















 

1

2

1

2

2.54

22.99

1.50

5.40

result

result

result

result

















 
 

V=0.37 

max

1

max

2

max

1

max

2

10000

10000

10000

1.5

















 

1

2

1

2

72.04

2.42

16.96

1.50

result

result

result

result

















 
 

V=0.25 

max

1

max

2

max

1

max

2

1.50

1.50

1.50

1.50

















 

1

2

1

2

1.49

1.50

1.13

1.26

result

result

result

result

















 
 

V=0.58 

5.6.5 Mitchell Bridge: Multi-load, Multi-Constraint  

We now solve the problem posed in Equation (71) over the classic Mitchell bridge structure 

in Figure 24. The results are summarized in Table 13. 

 

Figure 24: A multi-load Mitchell bridge problem. 

Table 13: Constraints & results for problem in Figure 24 

Constraints Final 

displacements 

Final 

Topologies 
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max

1

max

2

max

1

max

2

1.50

10.00

10.00

10.00

















 

1

2

1

2

1.50

1.32

1.04

1.03

result

result

result

result

















 
 

V=0.51 

max

1

max

2

max

1

max

2

10.00

1.50

10.00

10.00

















 

1

2

1

2

2.77

1.50

1.89

1.09

result

result

result

result

















 
 

V=0.40 

max

1

max

2

max

1

max

2

10.00

10.00

1.50

10.00

















 

1

2

1

2

4.12

3.18

1.50

1.22

result

result

result

result

















 
 

V=0.21 

max

1

max

2

max

1

max

2

10.00

10.00

10.00

1.50

















 

1

2

1

2

5.68

4.15

2.05

1.47

result

result

result

result

















 
 

V=0.16 

max

1

max

2

max

1

max

2

1.50

1.50

1.50

1.50

















 

1

2

1

2

1.50

1.36

1.03

1.01

result

result

result

result

















 
 

V=0.51 

In this chapter, a new method for multi-loaded, multi-constrained topology optimization is 

proposed, where the topological sensitivity field for each loading condition and constraint is 

calculated, and then combined via classic augmented Lagrangian methods. This is embedded in 

the Pareto algorithm to generate a set of Pareto-optimal topologies. As illustrated via numerical 
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examples, the proposed method not only generates topologies consistent with those published in 

the literature, but provides solutions to more complex problems that have not been considered 

before.  
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6. LARGE-SCALE CONSTRAINED TOPOLOGY OPTIMIZATION 

The objective of this chapter is to introduce and demonstrate a robust methodology for 

solving multi-constrained 3D topology optimization problems. The proposed methodology is a 

combination of the topological level-set formulation, augmented Lagrangian algorithm, and 

assembly-free deflated finite element analysis (FEA).  

The salient features of the proposed method include: (1) it exploits the topological sensitivity 

fields that can be derived for a variety of constraints, (2) it rests on well-established augmented 

Lagrangian formulation to solve constrained problems, and (3) it overcomes the computational 

challenges by employing assembly-free deflated FEA. The proposed method is illustrated 

through several 3D numerical experiments. 

6.1 Literature Review of Large-scale Topology Optimization  

In [117], the authors noted that in SIMP, as the density drops to zero, the underlying linear 

system becomes ill-conditioned, and iterative solvers such as conjugate gradient or MINRES 

perform poorly. Consequently, topology optimization of 3-D problems (where iterative solvers 

are essential) consume a significant amount of time. In [118] problems with 1~3 million degrees 

of freedom were optimized in 3~40 hours (depending on the specific problem) on a Cray T3E 

super computer. In [117], using specialized Krylov recycling methods, problems with about 1 

million degrees of freedom was optimized in 45 hours on a regular desktop. In [119], using 

approximate reanalysis, a speed-up of 3~5 was achieved (compared to standard implementation). 

In [120], the authors exploited graphics processing unit (GPU), and solved ‘box-like’ design 

spaces problem with 3 million degrees of freedom in about 2 hours. Using Optistruct (2013 

release) [121], the benchmark problem posed in [117] was solved in 20 hours on a high-end 

server desktop. 
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All of the above problems are simple single-load unconstrained compliance-minimization 

problems. The challenges increase many-fold in practice.  

For example, stress minimization problems are much harder to solve than compliance 

minimization problems [122], but arguably more important [123]. Numerous challenges arise in 

such problems; for example, stress singularity [124], and consistent agglomeration of point-wise 

stress constraints [125].  

In multi-load topology optimization, not only must one solve dozens of finite element 

problems at each step of the optimization, chances of disconnected topologies increase 

significantly [126].  

In multi-objective optimization, the notion of pareto-optimal topologies arises that represent 

a compromise between potentially conflicting objectives [127]; such problems require careful 

treatment, and significantly more computation [128]. 

Finally, constraints cannot be neglected during optimization; while several methods have 

been proposed for handling constraints in topology optimization [129], the theoretical, 

computational and robustness challenges have not been fully resolved.  

The evolutionary and level-set methods face their own set of challenges [92].  

From the above literature review, one can conclude that significant progress has been made 

in recent years on constrained topology optimization. Yet, a single method that can handle a 

variety of constraints, especially in 3D, has not been reported.  

In this chapter, we extend the 2D method proposed in [130] to achieve this goal; the main 

contributions of this chapter are: 
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o The topological level-set in 3D is combined with the augmented Lagrangian method. 

The 3D computational challenges are addressed by exploiting the assembly-free 

deflated FEA [122]. 

o While only displacement and stress constraints were addressed in [130], additional 

buckling and Eigen-value constraints, are included here. Inclusion of buckling and 

Eigen-value constraints necessitates the need for soft and hard constraints, discussed 

later in the chapter. 

o Casting constraints are also addressed in this chapter. 

o While single-load problems were considered in [130], multiple and multi-load problems 

are considered here. 

6.2 Formulation of Large-Scale Topology Optimization 

A practical challenge that arises in solving large-scale topology optimization is the 

computational costs rising from underlying FEA. To address the computational cost, we rely 

here on the assembly-free deflated conjugate gradient (AF-DCG) method proposed in [131]. The 

AF-DCG is a combination of three distinct but complimentary concepts: assembly-free, 

voxelization and deflation method. In this section, the three fundamental components are 

reviewed briefly.  

6.2.2 Assembly-Free FEA 

In classic FEA, the global stiffness matrix is assembled before solved as shown in Figure 71.  

 
e

e

Ku K u
 

  
 


 (72) 
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The computational bottleneck under modern computer architect is data transportation 

between CUP and memory.  For a large scale problem, the size of an assembled global stiffness 

matrix can be up to millions of degrees of freedom. Frequent transportation of the assembled 

stiffness matrix seriously slows down FEA speed. 

To overcome the deficiency, the assembly-free (or matrix-free) approach [131] is adopted, 

where neither the global stiffness matrix K is assembled or stored. Instead, the fundamental 

matrix operations are carried out on element level as shown in Equation (73). 

 
( )e e

e

Ku K u
 (73) 

In other words, instead of assembly, an elemental level of matrix multiplication between 

element stiffness matrix eK and displacement eu is performed and the multiplication result vector 

is then assembled. 

The assembly-free technique is more advantageous if (1) fewer element types are used, and 

element congruency and voxelization are explored; (2) deflated method is used to accelerate 

underlying iterative solvers. 

6.2.2 Element Congruency and Mesh Voxelization 

Two elements with the same number of DOF are said to be congruent within a specified 

tolerance ε if: 

 

2 1

1

Where

 is element stiffness

e e

e

e

K K

K

K






 (74) 
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For isotropic elements, the element-congruency can also be decided by comparing geometry. 

Congruent elements have identical element stiffness matrix. For assembly-free method, the 

solver only needs to compute and store distinct element stiffness matrix. By reducing memory 

fetching ‘footprint’, element-congruency can significantly accelerate computational speed.  

Hexahedral elements (voxelization) are used for congruency in this research.  For example, 

the bearing support in Figure 25 is meshed by congruent voxel elements with the same stiffness 

matrix. The most important benefits of adopting voxelization includes: (1) it is relatively easy for 

automatic mesh generator to create; (2) it significantly reduces memory foot-print and (3) when 

conjectured with mesh-free method and multi-core computer architecture, it significantly reduces 

finite element computational expense. Please refer to [131] for more details. 

 

Figure 25: Bearing support CAD model and its voxelization mesh. 

6.2.3 Deflated Method 

The deflated method rests on the observation that the computational bottle-neck in modern 

architecture is memory access [132]. The AF-DCG computes the preconditioner and the solution 

to the underlying linear system in an assembly-free manner, significantly reducing memory 

bandwidth. Similarly, for modal analysis, an assembly-free modal analysis proposed in [133] is 

employed. Finally, for linear buckling analysis, the assembly-free extension of this method to 

buckling [134] is used. 
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6.2.4 Pareto in 3D 

Integrated by AF-DCG, the Pareto method discussed in Chapter 3.3 can be easily generalized 

to 3D [97]; Figure 26, for example illustrates the Pareto-optimal for a 3D structural problem. 

 

Figure 26: The Pareto-optimal curve and optimal topologies for a 3D structural problem. 

6.3 Formulation of Constraints 

6.3.1 Hard and Soft Constraints 

In classic optimization [49], constraints are typically treated as ‘hard’ constraints, i.e., the 

algorithm will terminate if any of the constraints is violated. In design optimization, this can be 

too restrictive since design constraints may be unreasonable, and the algorithm may terminate 

without any solution. 
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Researchers have therefore developed algorithms for handling of soft constraints [135]: 

“Hard constraints limit the feasible space, while soft constraints prioritize solutions within this 

space.” Soft constraints are particularly useful in engineering [136] as an alternate to multi-

objective problems.  

In this study, we permit hard and soft constraints; for example: 

 
1

2

( , ) 0

( , ) 0   (soft)

D
Min

g u

g u




 

 
 (75) 

The first constraint is hard, while the second constraint is treated as soft. Soft constraints 

influence the topology through the Lagrangian multiplier (see algorithm below), but do not 

influence the termination of the algorithm, i.e., do not influence the feasible space. Typically, 

compliance and stress are treated as hard constraints, while buckling and Eigen-value can be 

treated as either hard or soft constraints. 

6.3.2 Casting Constraints 

In addition to performance constraints, it is often important to include manufacturing 

constraints. For example, in [78] the authors proposed a projection method within a level-set 

formulation to impose thickness constraint for cast parts. Similarly, in [137], the authors imposed 

a density constraint, within the SIMP formulation, along the casting direction. This ensures that 

the density variable is non-decreasing along the casting direction (on either sides of the parting 

plane), preventing cavities in cast parts. In this chapter, we adopt this method to the topological 

level-set formulation; specifically, after a casting direction is selected, we impose a constraint on 

topological level-set to be non-decreasing along the casting direction to prevent cavities. 
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6.4 Algorithm of Large-Scale Constrained Topology Optimization 

The four performance constraints considered here are compliance ( J ), p-norm Von Mises 

stress ( ), lowest Eigen-value ( ) and buckling load ( P ); soft constraints are identified, and 

casting constraints are optional. 

The constraints are typically set relative to their initial values prior to optimization, and the 

objective is to minimize volume, i.e., the generic problem considered here is: 

 

 

 

 

 

 

 

1 0

2 0

3 0 3

4 0 4

5 0

6 0

    ( 1)

    ( 1)

    (soft)

    (soft)

D
Min

J J

P P

P P

Ku f



  

 

   



  








 

 







 (76) 

Thus a constraint: 

 
03J J
 (77) 

implies that the final compliance must not exceed three times the initial compliance. Similarly, 

 
02 
 (78) 

implies that the final p-norm von Mises stress must not exceed twice the initial p-norm stress. On 

the other hand, the buckling and Eigen-value constraints may be hard or soft. For a soft 

constraint 

 
01.2    (soft)P P

 (79) 
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the algorithm will attempt to find solutions (within the feasible space) that satisfy the above 

equation. 

Observe that, if one imposes a hard constraint: 

 
01.2P P
 (80) 

the algorithm will terminate at the first iteration since the initial design will not satisfy this 

constraint! 

The overall algorithm is illustrated in Figure 19, and it proceeds as follows: 

1) The domain is discretized using hexahedral elements; the optimization parameters are 

initialized as 100   and 10  .  

2) Depending on the constraint imposed, several FEAs are performed. 

3) The constraints are evaluated, and the Lagrangian parameters are updated. 

4) If any of the hard constraints are violated, the algorithm proceeds to step-9, else, it 

proceeds to step-5.  

5) The topological sensitivity fields are computed, and the augmented topological level-

set is extracted. 

6) The topology for the current volume fraction is extracted. 

7) If the topology has converged (i.e., if the change in compliance is less than 1%), 

proceed to step-8, else return to step-2. 

8) Decrement the target-volume fraction v v v  , and return to step-2. 

9) Decrease the volume step-size v ; if the step-size is smaller than minv , terminate 

the algorithm, else return to step-2. 
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Figure 27: A multi-load Mitchell bridge problem. 

6.5 Numerical Examples  

In this section, numerical experiments are carried out to illustrate the above algorithm; the 

default parameters are: 

o Material properties: 
112*10E   and 0.3   

o All experiments were conducted using C++ on a Windows 7 64-bit machine with the 

following hardware: Intel I7 960 CPU quad-core running at 3.2GHz with 6 GB of 

memory. 
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6.5.1 L-bracket with Tip Load 

The first experiment involves the L-bracket, whose cross-section is illustrated in Figure 28 

(units in mm), with a thickness of 6 mm.  In the topology optimization literature, it is common to 

use an L-bracket with a sharp reentrant corner [138]. This is perfectly acceptable for compliance 

dominated problems, but may not be desirable for stress-constrained problems due to the stress 

singularity at the reentrant corner. We have therefore added a small fillet to relieve the stress 

singularity. The L-bracket is fixed on the top edge, while a unit load is applied as illustrated. The 

domain is discretized with 24,330 elements, i.e., 90,738 degrees of freedom (DOF). 

 

Figure 28: L-bracket cross-section. 

The specific constrained topology optimization problem considered here is: 

 
 

 

1 0

2 0

D
Min

J J

  







 (81) 
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Two scenarios are summarized in Table 10; the first scenario is compliance dominant, while 

the second is stress dominant. The final results, volume fractions and computing time are also 

summarized in Table 10. The active constraints are identified with a ‘box’.  

Table 14: Constraints and results for problem in Figure 28. 

Dominant 

Constraint 

Initial 

Constraints 

Final Results Final volume 

& running 

time (s) 

Compliance 
0

0

2

100

J J

 




 0

0

2

1.27

J J

 




 

0.34

142.11

v

t




 

Stress 
0

0

100

1.05

J J

 




 

0

0

1.75

1.05

J J

 




 

0.47

194.32

v

t




 

The corresponding optimized topologies are illustrated in Figure 29. Observe that when 

compliance is dominant, the classic stiff design is obtained, whereas when stress is dominant, a 

strong design is obtained where the fillet radius is increased to reduce stress [113].  

 

Figure 29: Final topologies which are subject to dominant constraints of compliance (left) and Von 

Mises stress (right). 

Figure 30 illustrates the relative cost of various parts of the algorithm. As one can observe, 

significant portion (88%) of the time is spent on FEA, while the remaining 12% is spent on 

computing the topological sensitivity field, and other tasks. This is typical for all the numerical 

examples considered. 
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Figure 30: Computational cost for scenario-1 in Table 10. 

6.5.2 Plate with Pressure Load 

In the next example, we consider a plate geometry whose cross-section is illustrated in Figure 

31 (units in mm); the thickness is 10 mm. The left face is fixed while a unit horizontal pressure is 

applied on the right face. The geometry is meshed with 50,560 hexahedral elements, i.e., 167,280 

DOF.  

 

Figure 31: Thick plate dimensions with pressure loading. 

The specific constrained topology optimization problem considered here is: 

 

 

 

 

1 0

2 0

3 0

D
Min

J J

P P



  












 (82) 
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Three instances are summarized in Table 15; once again, the active final constraints are 

identified with a box. The execution time for the buckling-dominated problem is much longer 

due to the inherent computational complexity.  

Table 15: Constraints and results for problem in Figure 31. 

Dominant 

Constraint 

Initial 

Constraints 

Final Results Final volume 

& running 

time (s) 

Compliance 
0

0

0

5

100

0.1

J J

P P

 







 
0

0

0

5

2.39

0.16

J J

P P

 







 

0.22

342.63

v

t




 

Stress 
0

0

0

100

2

0.1

J J

P P

 







 

0

0

0

5.25

2

0.11

J J

P P

 







 

0.22

401.09

v

t




 

Buckling load 
0

0

0

100

100

0.9

J J

P P

 







 

0

0

0

1.90

1.73

0.9

J J

P P

 







 

0.71

234.34

v

t




 

The corresponding topologies are illustrated in .Figure 32 As one can observe, the topologies 

for the first two cases are similar, and this is consistent with the results in Table 15. The topology 

for the buckling-dominated problem is, however, significantly different. 

 

Figure 32: Final topologies for compliance dominated (top) stress dominated (left) and buckling-

dominated (right). 

In order to study the termination criterion, the iteration history for scenario-2 is illustrated in 

Figure 33 (the plot is to be interpreted from the right to left). Observe that the optimization starts 

with a volume decrement of 0.025, and it reduces when divergence is detected; the decrement 
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increases slightly towards the end. Most importantly, the volume decrement is well above the 

minimum value during optimization. Thus the termination is triggered by the hard stress 

constraint rather than due to the volume decrement constraint. 

 

Figure 33: Iteration history of volume decrement for scenario-2 in Table 15. 

For scenario-2 in Table 15, the relative constraints are illustrated in Figure 34 (the plots are 

to be interpreted from the right to left). The optimization terminates due to a relative stress 

constraint of 2.0 at a final volume fraction of 0.22. 
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Figure 34: Constraint iteration history for scenario-2 in Table 15. 

6.5.3 Case Study: Flange 

This case study involves the flange illustrated in Figure 35; units are in inches. Flanges are 

commonly used, for example, to fasten pipes and rail-joints. The objective is to minimize the 

flange weight while subject to compliance, stress and Eigen-mode constraint. For FEA, 19,924 

hexahedral elements are used to discretize the design domain, resulting in 63,666 DOF. 
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Figure 35: Flange structure and dimensions. 

The specific constrained topology optimization problem considered here is: 

 

 

 

 

1 0

2 0

4 0 4    (soft,  if 1)

D
Min

J J

  

   








 

 (83) 

The Eigen-mode constraint is soft if the corresponding multiplier is greater than 1, to avoid 

early termination. 

Table-4 summarizes the results for 3 different scenarios. In particular, for scenario-3, observe 

that although the Eigen-value constraint is soft, its impact on the final result and topology is self-

evident.  

Table 16: Constraints and results for problem in Figure 35. 

Dominant 

Constraint 

Initial 

Constraints 

Final Results Final volume 

& running 

time (s) 

Compliance 
0

0

0

2

100

0.1

J J

 

 







 
0

0

0

2

1.12

0.69

J J

 

 







 

0.44

156.91

v

t




 

 Stress 
0

0

0

100

1.05

0.1

J J

 

 







 

0

0

0

4.66

1.05

1.27

J J

 

 







 

0.44

185.97

v

t




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Stress and 

Eigen-value 
0

0

0

100

1.2

1.5 (soft)

J J

 

 







 

0

0

0

1.84

1.20

2.49

J J

 

 







 

0.68

77.22

v

t




 

The corresponding topologies are illustrated in Figure 36. The volume fractions for the first 

two scenarios are identical, but the difference in topology is worth noticing (also see Table-4).  

 

Figure 36: Final topologies for compliance dominated (top-left) stress dominated (top-right), and 

stress and Eigen-value dominated (bottom). 

In order to study the iteration history of the soft-constrained optimization, the volume 

decrement history is plotted in Figure 37 for scenario-3 in Table 16. It is seen the volume 

decrement was kept constant until the last two steps when convergence error was detected.  

 

Figure 37: Volume decrement history for scenario-3 in Table 16. 
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The constraint iteration history for scenario-3 in Table 16 is illustrated in Figure 38 (plots are 

to be interpreted from right to left) where the lowest eigen-value sees a significant increase with 

material removal. However, since the eigen-value constraint is ‘soft’, it does not lead to early 

termination. The optimization terminated due to a hard stress constraint of 1.2 at a final volume 

of 0.68.  

 

Figure 38: Iteration history of constraints for scenario-3 in Table 16. 

6.5.4 Case Study: Bicycle Frame  

In this case study, we use the proposed algorithm to find a conceptual design for a bicycle 

frame. The design space is illustrated in Figure 39 where all units are in centimeters.  
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Figure 39: Design space of bike frame: front view (1st), top view (2nd) and side view (3rd) 

Two loads are applied as in Figure 40, where F1 is 60 N, and F2, is 140 N; see [139]. The two 

loads act simultaneously, i.e., this is a multiple-load problem. The design is discretized into 

51,280 hexahedral elements, i.e. 176,367 DOFs.   
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Figure 40: The bike frame subject to multiple loads.  

Only one scenario is considered; the constraints and final results are summarized in Table 17.  

Table 17: Constraints and results for problem in Figure 40. 

Dominant 

Constraint 

Initial 

Constraints 
Final Results 

Final volume & 

running time (s) 

Compliance, 

Stress and 

Buckling 

0

0

0

20

20

1.5 ( )

J J

P P soft

 







 

0

0

0

19.47

11.92

0.08

J J

P P

 







 
0.22

953.58

v

t




 

The final design is illustrated in Figure 41. 

 

Figure 41: Proposed design for a bike frame. 
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6.5.5 Case Study: Bicycle crank  

In the final case-study, we optimize the design of a bicycle crank arm. The 2-D sketch of the 

design space is illustrated in Figure 42 (units in mm), with a thickness of 15 mm. The structure is 

discretized using 36,608 elements, with 128,250 DOFs.  

 

Figure 42: Dimensions of the crank arm. 

In this example, a multi-load scenario is considered, i.e., during a full pedaling cycle, the 

crank arm passes through four distinct positions as illustrated in Figure 43. At each position, it 

experiences a different loading condition. At position A where the pedal is passing through the 

highest point, it sees a compressive load. At position B where the crank arm is horizontally 

placed, it sees a bending load. At position C, it sees a tension force. At position D, the load is 

negligible. The magnitudes of pedaling forces F1, F2 and F3 are in the ratio 1:5:2.2, with F1 being 

50 N [140].  
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Figure 43: The crank arm subject to multi-load during a pedaling cycle [140]. 

The objective is to minimize the weight subject to the constraints summarized in Table 18; 

stiffness and strength being the most important constraints. A soft buckling constraint is imposed 

for the compressive load F1. Thus, one can impose different constraints for different sets of 

loads. 

The optimization results are summarized in Table 18 where it is noted that the compliance 

constraints for loads F1 and F3 are active at termination. Since this is a multi-load problem, the 

computational cost if fairly high (about 25 minutes), despite the use of fast assembly-free 

methods.  

Table 18: Constraints and results for problem in Figure 42. 

Loads Initial Constraints Final Results v & t (s) 

Compression
1F  

0

0

0

1.5

4

5 ( )

J J

P P soft

 







 

0

0

0

1.50

1.33

0.75

J J

P P

 







 

0.69

1507.29

v

t




 

Bending
2F  

0

0

1.5

4

J J

 




 

0

0

1.25

1.01

J J

 




 

Tension
3F  

0

0

1.5

4

J J

 




 

0

0

1.50

1.33

J J

 




 

The final topology is illustrated in Figure 44. Although the design meets the performance 

constraints, it exhibits ‘undercuts’, i.e., cavities. This may not be desirable if the part needs to be 

cast. 

 

Figure 44: Final design of crank arm. 
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We therefore imposed a casting constraint (through the thickness) in addition to the 

performance constraints; the results are summarized in Table 19. Observe that the design now 

not only meets the performance constraint, but also the manufacturing constraint. In this 

example, the impact of the manufacturing constraint on performance, and computational time, 

was found to be negligible.  

Table 19: Constraints and results for problem in Figure 42. 

Loads Initial Constraints Final Constraints v & t (s) 

Compression
1F  

0

0

0

1.5

4

5 ( )

J J

P P soft

 







 

0

0

0

1.50

1.30

0.72

J J

P P

 







 

0.70

1489.59

v

t




 

Bending
2F  

0

0

1.5

4

J J

 




 

0

0

1.23

1.01

J J

 




 

Tension
3F  

0

0

1.5

4

J J

 




 

0

0

1.50

1.30

J J

 




 

The resulting design is illustrated in Figure 45; observe that the design does not exhibit 

undercuts. 

 

Figure 45: Final design of crank arm with casting constraint. 

The proposed method inherits the robustness and generality of the classic augmented 

Lagrangian method. Specifically, through several numerical experiments, we demonstrated that 

the proposed method can solve a variety of multi-constrained (single-load, multiple-load and 
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multi-load) topology optimization problems. By varying the constraint limits, we were able to 

explore the impact of these constraints on the final topology. We were also able to explore the 

impact of manufacturing constraint on the topology.  
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7. LARGE-SCALE THERMO-ELASTIC MULTI-CONSTRAINED 

TOPOLOGY OPTIMIZATION  

Popular methods for solving thermo-elastic topology optimization problems include Solid 

Isotropic Material with Penalization (SIMP) and Rational Approximation of Material Properties 

(RAMP). Here we propose an augmented topological level-set method that combines discrete 

topological sensitivity with augmented Lagrangian formulation. Both spatially uniform and 

spatially varying temperature changes are considered, and appropriate adjoint equations are 

developed.  

This leads to a comprehensive and efficient method for solving 3D stress and compliance 

constrained thermo-elastic topology optimization problems. Benchmark examples and case 

studies are presented to illustrate the efficacy of the proposed algorithm. 

The focus of this chapter is on thermo-elastic topology optimization where the objective is to 

optimize components that are subject to both structural and thermal loads.  

Figure 46, for example, illustrates a flange4 that is subject to both a structural load, and a 

thermal load.  

 

                                                                    
4 The corresponding STL file is downloaded from www.grabcad.com. 

http://www.grabcad.com/
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Figure 46: The structurally loaded flange (left) is also subject to a thermal load; the resulting stress 

plot (right). 

The objective of this chapter is to develop an efficient thermo-elastic topology optimization 

method, accounting for various thermal/elastic scenarios.  

Table 2 provides a chronological summary of the above literature review. From the table, one 

can identify the following research gaps. 

First, most of the researchers have focused on uniform temperature elevation; few have 

studied the effects of spatially varying temperature. Figure 47, for example, illustrates an exhaust 

duct 5  subject to a spatially varying temperature. Such structures pose additional challenges 

during optimization, and these are discussed and addressed in this chapter. 

  

Figure 47: Restrained exhaust duct subject to temperature gradient (left) and resulting stress 

(right). 

Second, most of the existing thermo-elastic topology optimization methods have focused on 

2D problems; very little progress has been reported on large-scale 3D problems, where the 

efficiency of the underlying optimization method becomes important. 

                                                                    
5 The corresponding STL file is downloaded from www.grabcad.com. 

http://www.grabcad.com/
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Finally, constraints in thermo-elastic topology optimization have largely been restricted to 

simple constraints such as volume and compliance. A methodology to include a variety of 

performance constraints is lacking.  

To address these research gaps, a new level-set method is proposed in this chapter. The 

proposed combines a discrete approximation to the topological sensitivity with augmented 

Lagrangian formulation to address spatially varying thermal problems, subject to a variety of 

constraints. In addition, to address the computational challenges, the assembly-free deflated 

finite element method proposed in [131] is extended here to address efficient 3D thermo-elastic 

analysis. 

7.1 Approximate Thermo-Elastic Topological Sensitivity 

Let Q be any quantity of interest in a thermo-elastic optimization problem; Q can either be an 

objective, or a constraint. To compute the sensitivity of Q with respect to a topological change, 

two distinct cases are considered: (a) spatially uniform increase in temperature, and (b) spatially 

varying temperature. 

7.1.1 Spatially Uniform Increase in Temperature 

In the case of a uniform temperature change, the sensitivity of Q, by definition, is given by: 

 
 

T

dQ Q d  
 (84) 

Further, from Equation (14): 

 
st thK d Kd f f    

 (85) 
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If one assumes that the structural body forces are absent, then its sensitivity to a topological 

change is zero: 

 

1( )thd K f K d   
 (86) 

Since the temperature change is spatially uniform, the change in thermal load (due to 

topological change) is given by (see Equation (15) and Equation (16)): 

 
thf H t  

 (87) 

where  

 

T

elems

H B D d


   
 (88) 

Substituting Equation (87) in Equation (86) we have: 

 

1( )d K H t K d    
 (89) 

Finally, substituting Equation (89) in Equation (84), we have: 

 
  1( )

T

dQ Q K H t K d     
 (90) 

One can now define the structural adjoint   as follows: 

 
dK Q  

 (91) 

Thus, we have: 

 
( )TQ H t K d     

 (92) 

For clarity, Equation (92) can be expressed as: 
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th stQ Q Q   

 (93) 

where 

 

T

th

T

st

Q H t

Q K d





   

    (94) 

Observe that, as the topology evolves, the sensitivity in Equation (93) can take either a 

positive or a negative value. This non-monotonic behavior can pose challenges for traditional 

monotonic approximation methods such as MMA and CONLIN [141]. In this chapter, we 

employ fixed-point iteration that does not suffer from this limitation, as illustrated later through 

numerical experiments. 

Further observe that the structural adjoint   depends on the quantity of interest; two specific 

instances are considered below. 

Compliance 

If the quantity of interest Q is compliance, i.e., if 

 
( )T

m thQ J d f f  
 (95) 

then 

 

1 1

dK Q K f d        
 (96) 

Therefore 

 

T TQ J d H t d K d      
 (97) 

P-norm von Mises Stress 
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On the other hand, if Q is the p-norm stress [74], i.e., if  

 

1/

( )

p

p

e

e

Q 
 

  
 


 (98) 

where: 

 

2 2

11 22 11 33

2

22 33

12 12 13 13 23 23

( ) ( ) ...
1

( ) ...
2

6( )

e

   

  

     

   

  

 
 (99) 

Then, the adjoint is defined by (see [74]):  

 
dK Q g   

 (100) 

where 

 

1
1

1
( )

p
p

e e

e e

g g
p





   
     

   
 

 (101) 

and 

 
 

11 22 1 2

2 11 33 1 3

22 33 2 3

12 4 13 5 23 6

( - )( - )

( - )( - )1

( - )( - )2

6( )

p

e e

F F

F F
g p

F F

F F F

 

 


 

  



 
 


 
 
 

  

 (102) 

 
[ ] [ ][ ]eF D B

 (103) 

where eB was defined in Equation (15); please see [74] for details. 



89 

 

 

7.1.2 Non-Uniform Change in Temperature 

Now consider the case of a non-uniform temperature change. In this case, one must solve 

Equation (13), and we have: 

 
   

T T

d tQ Q d Q t     
 (104) 

As before, the displacement sensitivity is given by Equation (86); therefore: 

 
   1( )

T T

d th tQ Q K f K d Q t       
 (105) 

However, the sensitivity of the thermal load is governed by: 

 
thf Ht H t   

 (106) 

If one assumes that the sensitivity of the thermal flux in Equation (13) to a topological 

change is zero, then: 

 

-1

t tt K K t 
 (107) 

Therefore: 

 

1 -1( )T T

d t t tQ Q K Ht H t K d Q K K t        
 (108) 

We now define the thermal adjoint  and thermo-elastic adjoint   as follows:  

 
t tK Q  

 (109) 

 

T

tK H 
 (110) 
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To the best of our knowledge, these adjoints have not been identified in the literature. 

Substituting these definitions into Equation (108): 

 

T T T T

t tQ K t H t K d K t          
 (111) 

Once again, for clarity, one can express Equation (111) as: 

 
th stQ Q Q   

 (112) 

with 

 

T T T

th t t

T

st

Q K t K t H t

Q K d

  



     

   (113) 

As before, we consider two special cases for the quantity of interest. 

Compliance 

If the quantity of interest Q is compliance, the adjoints are given by: 

 

1K f d    
 (114) 
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 (115) 

 

-1 -1T T
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 (116) 

Therefore, the compliance sensitivity simplifies to: 

 
2 T T T

tQ J K t d H t d K d        
 (117) 

P-norm von Mises Stress 
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If the quantity of interest is p-norm stress (see Equation (98)) the structural adjoint   is 

given by Equation (100), while thermal adjoint is defined by:  

 
t t tK Q g   

 (118) 

where: 
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where was defined in Equation (16). Once these two adjoints have been computed, the 

thermo-elastic adjoint can be computed via Equation (110). 

To summarize, various expressions for the sensitivity are summarized in the table below.  

Table 20: Sensitivity expressions 

Q  Compliance Generic 

Uniform temperature 

change 

T Td H t d K d    ( )T H t K d      

Spatially varying 

temperature 
2 T T

t

T

K t d H t

d K d
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 
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7.1.3 Sensitivity of Stiffness Matrices 

The last step is to compute the sensitivity of the stiffness matrices ( K , H  and 
tK ) in the 

above table. If pseudo-density parameterization is used (as in SIMP and RAMP), then the 

sensitivities can be computed via their respective material interpolation scheme [53]. One of the 

challenges with this approach is that the stiffness matrices will exhibit large condition numbers 

due to the spread in pseudo-densities [131]. This will result in slow convergence of iterative 

solvers. Here, we employ a discrete approximation, i.e., the sensitivities of the stiffness matrices 

are computed at the center of each element, for example: 

 
 eK K 

 (122) 

and then smoothened. 

7.2 Algorithm of Large-Scale Thermo-Elastic Constrained Topology Optimization 

Finally, the proposed algorithm proceeds as follows (see Figure 48): 

1) The domain is discretized using finite elements (here 3D hexahedral elements). The 

optimization starts at a volume fraction of 1.0. The ‘volume decrement’ v   is set to 

0.025. The initial values of Lagrangian multiplier and penalty number are set as 100 and 

10.  

2) The thermal problem (if necessary) and the structural problem in Equations (13) and (14) 

are solved.  

3) The constraint values are calculated, and the optimization parameters (multiplier and 

penalty) are updated. 

4) If any of the constraints is violated, the algorithm proceeds to step-9, else, it proceeds to 

step-5. 
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5) The sensitivities are calculated for each of the constraints, and the augmented element 

sensitivity field is computed. 

6) Treating the augmented sensitivity field as a level-set; a new topology with a volume 

fraction of ( v v ) is extracted.  

7) The compliance is now computed over the new topology. If the compliance has 

converged, then the optimization moves to the next step, else it goes to step 9. 

8) The current volume fraction is set to ( v v ). If the target volume fraction has not been 

reached, the optimization returns to step 2 to repeat iterations; else, terminate iteration 

and exit. 

9) Step-size is reduced; check if volume decrement is below threshold. If not, the 

optimization returns to Step-2; else, terminate the iteration. 
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Figure 48: An overview of the algorithm. 

7.3 Numerical Experiments 

In this Section, we demonstrate the efficacy of the proposed algorithm through numerical 

experiments. The default parameters are as follows: 

 The material is assumed to be steel, i.e., the elastic modulus is 2 11 E e Pa , the Poisson 

ratio is 0.3   and the coefficient of thermal expansion
51.2*10 / C  . 

 The reference temperature with zero stress is 
023 C . 

 Unless otherwise noted, the p-norm value used for computing the p-norm stress is 6. 

 8-noded hexahedral elements are used for 3D FEA. 
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 All experiments were conducted using C++ on a Windows 7 64-bit machine with the 

following hardware: Intel I7 960 CPU quad-core running at 3.2GHz with 6 GB of 

memory. 

 The desired volume fraction is 0.25, unless otherwise noted. In other words, the 

optimization terminates if the constraints are violated or if the desired volume fraction of 

0.25 is reached.  

The numerical experiments are organized as follows. Section 5.1 is a benchmark example to 

study the effectiveness of the proposed method for uniformly elevated temperature; both 

compliance and stress dominated problems are considered. In Section 5.2, another benchmark 

example is considered to study the effect of spatially varying temperature. In Section 5.3, a case-

study involving a flange subject to a uniform temperature increase is considered. Finally, in 

Section 5.4, a case study is considered where the structure is subject to temperature gradient 

fields. Important conclusions are drawn for each of the examples.  

7.3.1 Benchmark: Bi-clamped beam with a point load 

The aim of this experiment is two-fold: (1) illustrate the proposed algorithm for a benchmark 

problem [18], (2) illustrate the impact of temperature variations on the final topology. 

The structure is illustrated in Figure 49 [18], units are in meters, the load is 105 N, the 

thickness is 0.02m, and the structure is also subject to a homogeneous temperature increase of 

T , specified below. Since the thickness is small, the problem can be modeled as  plane-stress 

[18]. However, it is modeled here in 3D, and the domain is meshed with 15,000 hexahedral 

elements.   
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Figure 49: The bi-clamped structure with a central point load. 

Compliance Formulation (Stiff Designs) 

We first consider compliance-constrained thermo-elastic topology optimization problem: 

 
0

| |

0.25

5

subject to

:  Specified

D

st th

Min

D

J J

Kd f f

T




 



 



 (123) 

Observe that the thermal problem in Equation (13) need not be considered since the 

temperature increase is prescribed. 

If the temperature increase T  is 10C, the optimized topology for a 0.25 volume fraction is 

illustrated in Figure 50. The computational time is 58 seconds, involving 242 FEAs; the topology 

is identical to the one obtained in [18]. The final compliance is almost twice the initial 

compliance, while the stress has not increased significantly. 
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Figure 50: Optimized topology for compliance-constrained topology optimization. 

The iteration history is illustrated in Figure 51; one can observe the non-monotonic behavior 

of compliance, consistent with the discussion following Equation (94). 

 

Figure 51: Iteration history of compliance for problem in Equation (123).  

Next, we consider the impact of temperature change T  on the final topology. The target 

volume fraction was set to 0.25 and the final topologies are illustrated in Figure 52 for a 

temperature change ranging from 5oC  to 5oC . As one can observe, the final topology is a 

strong function of the temperature change, especially for a positive change. 
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Figure 52: The final topologies for different temperature variations for problem in Equation (123). 

There are two observations: First, if the temperature is increased, the compliance 

monotonically increases; second, if the temperature is decreased, the compliance first decreases, 

and then increases. One possible reason is that when the temperature decrement is small (e.g.

01 C ), the compressive thermal load partly cancels the tensile structural load.  

The relative magnitudes of thermal and mechanical loads are summarized in Table 21. 

Table 21: Load ratios for different temperature variations 

T  ( 0C ) -5 -3 -1 0 1 3 5 

f / fth st
 3.83 2.06 0.35 0 0.42 2.08 3.91 

Stress Formulation (Strong Designs) 

We pose a stress dominated thermo-elastic topology optimization as follows: 
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Similar to the previous experiment, the temperature is uniformly elevated by 010 C . The 

resulting topology of 0.25 volume fraction is illustrated in Figure 53. The computing time was 

122 seconds involving 363 FEA. The increased computing time is due to the additional adjoint 

FEA that needs to be performed. 

 

Figure 53: The optimized topology for stress-constrained topology optimization.  

Comparing Figure 53 and Figure 50, it can be observed that: (1) compliance and stress 

dominated topology optimization lead to slightly different topologies, and (2) the topology in 

Figure 50 has lower compliance while the topology in Figure 53 and has lower stress, as 

expected. 

The final topologies for different temperature variations are illustrated in Figure 54. As one 

can observe, the topologies are significantly different from those in Figure 52. 
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Figure 54: The final topologies for different temperature variations. 

7.3.2 Benchmark: Distributed load Bi-clamped beam  

The aim of this experiment is to study the impact of non-uniform temperature on the final 

topology. 

We once again consider the bi-clamped beam but with a distributed load as illustrated in 

Figure 13 [18]. The dimension of this beam is 0.5 0.28 0.01m m m   and the distributed load is 

6 5P e Pa . Once again the problem is modeled in 3D, and the domain is meshed with 15,000 

hexahedral elements.  
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Figure 55: The bi-clamped structure with a distributed load. 

Compliance Formulation (Stiff Designs) 

     The specific problem being considered here is: 
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 (125) 

If the temperature is uniformly elevated by 020T C  , the resulting topology and stress 

distribution are illustrated in Figure 56. This is consistent with the topology in [18]. 

 

Figure 56: Final topology and stress distribution when the structure in Figure 13 is subject to 

uniform temperature rise. 

Next, we consider the impact of spatially varying temperature on the optimal designs. 

Specifically, we increased the temperature on the left edge by 
00T C  , and on the right edge 

by 
040T C  , i.e., the average change in temperature  is 

020T C  . The final topology and its 

stress distribution are shown in Figure 57 where the asymmetry is due to the spatial thermal 

gradient. Comparison between Figure 56 and Figure 57 highlights the importance of accounting 

for spatially distributed temperature profiles. 
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Figure 57: Final topology and stress distribution when the structure is subject to spatially 

temperature gradient.  

The iteration history for the second experiment is illustrated in Figure 58. It is observed that: 

(1) both compliance and stress increase as volume decreases, although not monotonically; (2) the 

increase of compliance is generally smoother than stress. 

 

Figure 58: Iteration history of compliance and stress for problem in Equation (125). 

Stress Formulation (Strong Designs) 

Next a stress dominated problem is considered for the above problem in Figure 13: 
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On the left edge there was no temperature change, i.e.,
00T C  , and on the right edge the 

change was 
040T C  .  

The final topology and stress distribution results are illustrated in Figure 59. Observe the 

strong asymmetry in the stress-dominated problem. 

 

Figure 59: Final topology and stress distribution of stress-constrained topology optimization subject 

to spatially temperature gradient.  

Comparing the results in Figure 59 with Figure 57, it is clear: (1) the two optimization 

problems lead to distinct topologies; (2) for the same final volume fraction, a compliance 

minimization leads to a lower compliance result while a stress minimization leads to a lower 

stress value. The iteration history of the optimization process is shown in Figure 60.  
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Figure 60: Iteration history of stress constrained topology optimization for problem in Equation 

(126). 

7.3.3 Case study: Flange  

The purpose of this section is to show the robustness of the proposed algorithm for a non-

trivial application.  In particular, a thermo-elastic topology optimization problem over a flange is 

studied in this section. Flanges are commonly used, for example, to fasten pipes and rail-joints, 

and they are often subject to temperature changes. The dimensions of the flange and boundary 

conditions are illustrated in Figure 35. The flange is fixed at the two bolt centers, and a vertical 

force of 
510 N  is applied as shown. For FEA, 51,500 hexahedral elements are used to discretize 

the design domain, resulting in 175,374 DOF.  
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Figure 61: Flange structure and dimensions (unit: m). 

The specific thermo-elastic topology optimization problem considered here is: 
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First, a pure elastic problem (i.e., zero thermal load in Equation (127)) is considered. The 

resulting topology is illustrated in Figure 62 and the final constraint values are shown in Table 22 

where the optimization terminates due to the active stress constraint identified with a "box".   

  

Figure 62: Top view and bottom view of final topology for the pure elastic flange problem. 

Table 22: Constraints and results for problem in Figure 62. 

Initial 

Constraints 

Final Results Final volume 

fraction & 

time (sec) 

Final load ratio 

0

0

5

1.5

J J

 




 

0

0

4.89

1.50

J J

 




 

0.36

212.39

V

T




 

f
0

f

th

m

  
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Then, the thermal effect is added; we subject the structure to a uniform temperature elevation 

of 300C.  

The optimized topology, computed in 160 FEAs, is illustrated in Figure 63. Other results are 

summarized in Table 10; this problem terminated due to an active compliance constraint. 

Although the thermal load is small compared to the structural load, as noted in the fourth column 

of Table 10, this has a significant effect on the final topology.  

  

Figure 63: Top view and bottom view of final topology of the flange subject to a uniform 

temperature rise. 

Table 23: Constraints and results for problem in Equation (127). 

Initial 

Constraints 

Final Results Final volume 

fraction & 

time (sec) 

Final load ratio 

0

0

5

1.5

J J

 




 0

0

5

1.48

J J
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
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th

m
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7.3.4 Case study: Exhaust system  

Next we consider engine exhaust-washed structure, used in a low observable supersonic 

aircraft; this was first studied by J. Deaton [1]. Due to low radar observability requirement, 

engine and exhaust system are buried inside the aircraft. Because of the space restriction, the 

exhaust system is supported at the aircraft skins; thermal expansion is therefore limited. In order 

to reduce infrared detectability, hot exhaust gas is cooled within the exhaust duct.  
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A simplified exhaust system is illustrated in Figure 64 where the structure is fixed at left and 

right ends, and at the supporting structures. A temperature at intake is 0400T C  and cooled 

down to 0100T C at output nozzle. For FEA, the domain is meshed with 54,080 hexahedral 

elements, resulting in 208,374 DOF.  

 

Figure 64: Conceptual exhaust system. 

The dimensions of the exhaust duct are illustrated in Figure 65. 

   

Figure 65: Dimensions of the exhaust system (unit: m). 

The specific thermo-elastic topology optimization problem solved here is: 
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The final topology is illustrated in Figure 66. Optimization results are summarized in Table 

24. On termination, the compliance constraint is active and the maximum p-norm stress is 

reduced. 

   

Figure 66: Side view (left) and front view (right) of the optimized exhaust 

Table 24: Constraints and results for problem in Equation (128). 

Initial Constraints Final Results Final volume & time 

(s) 

0

0

1.5

1.5

J J

 




 0

0

1.50

0.83

J J
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
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0.46

531.4

v

T




 

The main contribution of this chapter is a comprehensive method for thermo-elastic topology 

optimization problems. Under two different thermal scenarios, the change in compliance and 

stress due to topological change are captured. Both formulations exploit the concept of discrete 

topological sensitivity; thus material parameterization is not required. Augmented Lagrangian 
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method was used for multi-constrained thermo-elastic topology optimization. AF-DCG method 

was implemented for FEA acceleration. 

As the numerical experiments reveal, the impact of both uniform temperature variations and 

spatially thermal gradients on the final topologies can be significant for certain problems. Future 

work will focus on including other constraints including buckling and eigen-modes.  
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8 APPLICATION: BUCKLING TOPOLOGY OPTIMIZATION 

8.1 Introduction to Thermo-Elastic Buckling  

This chapter focuses on topology optimization of structures subject to a compressive load in 

a thermal environment. Such problems are important, for example, in aerospace, where structures 

are prone to thermally induced buckling.  

Popular strategies for thermo-elastic topology optimization include Solid Isotropic Material 

with Penalization (SIMP) and Rational Approximation of Material Properties (RAMP). 

However, since both methods fundamentally rely on material parameterization, they are often 

challenged by: (1) pseudo buckling modes in low-density regions, and (2) ill-conditioned 

stiffness matrices.  

To overcome these, we consider here an alternate level-set approach that relies discrete 

topological sensitivity. Buckling sensitivity analysis is carried out via direct and adjoint 

formulations. Augmented Lagrangian method is then used to solve a buckling constrained 

compliance minimization problem. Finally, 3D numerical experiments illustrate the efficiency of 

the proposed method. 

The focus of this chapter is on thermo-elastic buckling topology optimization where 

structures are restrained and subject to thermal loading. For example, consider the wing rib 

structure of a high Mach supersonic aircraft in Figure 67. During rocket boost phase when the 

aircraft is subject to rapid acceleration and significant thermal gradients, its surface temperature 

can be as high as 
01650 C . Since the rib structures are welded onto wing skins, uneven thermal 

heating may induce significant compressive stresses to cause buckling. Therefore, a primary goal 
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for structural designs of airplanes operating in extreme thermal environment is to provide a light-

weight structure with thermal buckling resistance.  

 

Figure 67: (a) aircraft operating in high temperature6; (b) wing rib structures7; (c) design space of 

rib structure; (d) optimized rib structure. 

However, unlike in pure elasticity, for thermo-elastic problems, the displacements are 

computed after accounting for the additional thermal load. This poses both theoretical and 

computational challenges in topology optimization discussed later in the chapter. 

8.2 Literature Review of Buckling Constrained Topology Optimization 

Buckling problems mostly occur in thin-walled structures [142]. Buckling constrained 

topology optimization problems were originally studied by ground structure method, while more 

recent methods are continuum based and can be classified into the following types: Solid 

                                                                    

6 The figure is downloaded from www.ae.metu.edu.tr.  

7 The figure is downloaded from www.buran-energia.com.  

http://www.ae.metu.edu.tr/
http://www.buran-energia.com/
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Isotropic Material with Penalization (SIMP), evolutionary structural optimization (ESO) and 

level-set. In following sections, we review previous publications based on their methods. 

Ground structure approach 

Ground structure approach is the classic method for optimizing the topology of truss systems. 

In this approach, a network of potential truss members is first prescribed in a design domain. A 

size optimization is carried out on each truss member until the cross-section areas of non-optimal 

trusses approach zero and can therefore be removed [5].    

 However, including buckling constraint into truss topology optimization is non-trivial. The 

member forces in each truss have to satisfy functions which discontinuously depend on design 

variables [143]. Traditional optimizers face difficulty in solving such problems. In [143], the 

author argued that including slenderness constraints into buckling problems can guarantee 

solution existence and simplify the process. In [144], by using a smooth procedure to remove 

singular optimum from original formulation, size optimization was made more efficient. In a 

recent publication [145], the author used a mixed variable formulation to linearize buckling 

constraints in each ground structure member. 

Solid Isotropic Material with Penalization (SIMP) 

In continuum topology optimization, the most popular method is Solid Isotropic Material 

with Penalization (SIMP). Its primary advantages are that it is well understood, robust and easy 

to implement [7]. Indeed, SIMP has been applied to a variety of topology optimization problems 

ranging from fluids to non-linear structural mechanics.  

In buckling constrained topology optimization, the appearance of pseudo buckling modes in 

low-density regions can pose problems. In [146], a buckling load criterion was introduced to 
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ignore the geometric stiffness matrix of the elements whose density and principal stress were 

smaller than a prescribed value. In [147], the author argued such cut-off methods may abruptly 

change the objective function and sensitivity field, leading to oscillation. Instead, the author 

suggested using different penalization scheme for stiffness matrix and geometric stiffness matrix. 

Although the author in [148] suggested it was difficult to select an appropriate penalty scheme 

for accurate calculation of buckling load factor, the proposed approach by [147] became a 

popular formulation for many researchers [149]. In a recent publication [150], a new approach to 

remove pseudo buckling mode was based on eigen-value shift, and pseudo mode identification.  

ESO 

ESO [8] is an alternate topology optimization formulation where finite elements are 

gradually removed based on their significance with respect to the objective function. BESO [11] 

addresses some of the limitations of ESO by permitting insertion of elements. In [151], a 

modified ESO method was proposed to maximize buckling load factor. The sensitivity of the 

lowest eigen-value was first derived, and the buckling eigen-value maximization was then 

formulated by suitably selecting the optimization criteria. 

Level-Set 

The level-set strategy is gaining popularity for solving topology optimization problems for a 

main reason that the boundary is well-defined at all times, and some of the challenges associated 

with low-density regions do not arise; see [14] for a recent review and comparison of level-set 

based methods in structural topology optimization. In [134], a simplified buckling sensitivity 

field was incorporated into a level-set based framework to accelerate large-scale topology 

optimization process, however thermally induced buckling was not considered. 
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Research gap 

From the above literature review, one can conclude that there has been significant research 

devoted to solving buckling constrained topology optimization problems. However, one can 

identify the following research gaps: 

Although thermal buckling is of significant importance to stability analysis of structures 

under thermal gradients, there is very little research on buckling constrained thermo-elastic 

topology optimization. 

Computing buckling topological sensitivity is expensive, and efficient approaches are 

needed.      

Prior publications have validated their algorithms on simple bench mark examples for the 

sake of computational expense. Extension to large scale 3D problems is lacking. 

Proposed 

In this paper, we consider the topological level-set method proposed in [134] for pure-elastic 

buckling problems, and extend this to thermo-elastic buckling through two distinct approaches: 

direct and adjoint methods. In the topological level-set method, instead of relying on the 

Hamilton-Jacobi equations for level-set propagation [13], fixed-point iteration is exploited to 

advance the topology [111].  

8.2 Buckling Sensitivity Analysis 

In this section, two approaches are used to calculate the sensitivity of linear buckling load 

factor. The linear buckling load factor can be calculated from a well-known formulation [142]: 

 
( ) 0K K  

 (129) 
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Where 

 

:  Global geometric stiffness matrix

:  Buckling mode vector

:  Linear buckling load factor

K




  

In Equation (129), the global geometric stiffness matrix is defined via the assembly: 
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where N is the number of finite elements and  the elemental geometric stiffness matrix are 

defined as: 
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where  G  is obtained from shape functions by appropriate differentiation and reordering 

[142]. The matrix S can be defined as: 
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In addition, the stress in an element can be defined as: 

 
[ ] [ , , , , , ]T

e x y z xy xz yz      
 (134) 
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It is clear that in Equation (130) the geometric stiffness matrix K  is a function of stress ( ) 

which depends on the topological design variable, while the stiffness matrix ( K ), buckling load 

factor ( ) and buckling mode vector ( ) are explicitly dependent on design variables. It is also 

noted since the temperature field is uniformly elevated to a prescribed value, the temperature 

field ( t ) is not dependent on those quantities. 

Let Q be any quantity of interest in an optimization problem. The sensitivity of Q with 

respect to any design variable is defined as: 
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Q
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  (135) 

The derivatives of the global stiffness matrix and geometric stiffness matrix can be expressed 

as: 

 
'

K
K

x



  (136) 
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 


 
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8.3.1 Direct method 

Multiplying the buckling mode vector (
T ) on both sides of Equation (129), and taking the 

derivative with respect to design variable, we have: 

 
2 ( ) ( ) 0T TK K K K K              

 (138) 

Due to Equation (129), the first term in Equation (138) vanishes. Reordering terms in 

Equation (138), we have the sensitivity of the linear buckling load factor as: 
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 (139) 

A simple method to calculate ( K
 ) is to use finite difference, i..e, calculate the effect of 

removing a single element on the global geometric stiffness matrix. Obviously, this method is 

too expensive for topology optimization … the computational cost will increase significantly 

with the number of elements. Alternatively, we can employ a more direct and efficient approach.  

The term on the right hand side of Equation (137) can be written as the summation of all 

finite elements:  

 1

N

j

j j

K K  
 

  
      


 (140) 

where N  is the number of all finite elements. In words, the sensitivity of global geometric 

stiffness matrix equals the summation of the combinational effect between sensitivity of global 

geometric stiffness matrix with respect to each finite element stress and the sensitivity of the 

elemental stress. 

For a specific j-element in Equation (140), reuse the summation rule as Equation (140):    
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kj jk
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 

        


 (141) 

where the summation refers to the six elemental stress components in Equation (134). 

Further: 
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Since the geometric stiffness matrices in other elements are not explicitly dependent on the 

stress in j-element ( k

j ), the second term in numerator of Equation (142) can be dropped: 
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Where 
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 (144) 

For the six stress components in Equation (134), it is easy to calculate their matrices elements 

in Equation (144). For example, when 1k  , we have:  

 1

1 0 0

0 0 0

0 0 0

s



 
  

 
  

 (145) 

The term (

k

j

x




) in Equation (141) can be derived as follows. Rewrite Equation (17) for the 

j-element: 

 

th

j j jDBd D  
 (146) 

where the elemental thermal strain ( th

j ) can be calculated in Equation (16). Clearly, it is 

independent of design variable ( x ). Take derivative of each term in Equation (146), we have: 

 
j j jDBd DBd  

 (147) 
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We can calculate the term (
jd  ) in Equation (147) in the following manner. Taking derivative 

of the static equilibrium equation in Equation (14): 

 
thK d Kd f   

 (148) 

where the structural force is assumed independent of design variable. Reordering terms, we 

have  

 

1( )thd K f K d   
 (149) 

The elemental displacement sensitivity in j-element (
jd  ) can be directly obtained from 

Equation (149).  

8.3.2 Adjoint method 

An efficient way to compute the sensitivity field of buckling load factor is by adding adjoint 

variables and constraints into Equation (129) [152]. By carefully selecting the adjoint variables, 

the computational expensive terms ( j  ) and ( jd  ) in Equation (147) and (149) are expected to 

drop.  

Multiplying buckling mode vector (
T ) on both sides of Equation (129) and augmenting with 

two constraints multiplied by two adjoint variables (  ) and ( w ), we have: 

 
( ) [ )] ( ) 0T T T

thK K Yd Z w f Kd           
 (150) 

where the matrix (Y ) and ( Z ) relate displacement and thermal strain to stress, respectively.  
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In Equation (150), the adjoint  link the stress to deformation, and the adjoint w link the 

deformation to external load. Then, taking derivative of Equation (150) and simplifying terms, 

we get: 
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The first adjoint ( ) is chosen such that the terms with ( ' ) can be dropped from Equation 

(153):  

 
' ' 0T TK
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
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  (154) 

After factoring and rearranging terms, we have: 

 

T T K
v v 




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where the term
K






 is the assembly of all elemental sensitivities, each containing six 

components. 
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where the term 
k

j

K






 can be calculated from Equation (143). 

Equation (153) simplifies to: 
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The second adjoint w  is chosen such that the terms containing 'd  can be cancelled out: 

 
' ' 0T TYd w Kd  

 (158) 

After rearranging terms, we have: 

 

1T Tw YK  
 (159) 

Therefore, the sensitivity of the buckling load factor can be expressed as: 

 

1
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thT
K Z Y d w f w K d

K

     
 

     
 (160) 

8.3.3 Discrete element sensitivity approximation 

The last step is to compute the sensitivity of the global matrices in Equation (139) and (160), 

i.e., 'K , xK , 'Y and 'Z . If pseudo-density parameterization is used (e.g. SIMP), then the 

sensitivities can be computed via their respective material interpolation scheme [53]. One of the 

challenges with this approach is that the stiffness matrices will exhibit large condition numbers 

due to the elements with intermediate densities. This will result in slow convergence of iterative 

solvers.  

Here, we employ a discrete approximation, i.e., the sensitivities of the stiffness matrices are 

computed at the center of each element [153], i.e.: 

 
 eK K 

 (161) 

 
 'Y DB

 (162) 
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 'Z D

 (163) 

and then smoothened. 

8.4 Algorithm of Constrained Thermo-Elastic Buckling Topology Optimization 

The overall algorithm proceeds as follows: 

1) Start the optimization at a volume fraction of 1.0. The ‘current volume fraction’ v  is 

set to 1.0, and ‘volume decrement’ v , is set to 0.025. 

2) Solve the thermo-structural FEA problem in Equation (13) and the stress are extracted 

at the center of each element by Equation (17).  

3) Solve the linear buckling eigen-value problem in Equation (129). The buckling 

topological sensitivity field is computed at the center of each element and locally 

smoothened  with neighboring elements by either the direct method in Equation (139) 

or adjoint method in Equation (160). 

4) Use augmented Lagrangian formulation to combine the sensitivity fields of the 

objective function and constraints in Equation (48). 

5) Decrement volume fraction by ( v ) and trace the Pareto curve based on the 

sensitivity of the augmented Lagrangian equation. The compliance is computed over 

each new topology. If the compliance has converged, then the optimization moves to 

the next step, else it returns to step 2. 

6) The current volume fraction is set to ( v v ), and the optimization returns to step-2, 

until the final volume fraction is reached or the constraints are violated. 
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Figure 68: An overview of the algorithm. 

8.5 Numerical Experiments 

In this Section, we demonstrate the proposed method through numerical experiments. The 

default parameters are as follows: 

 A thermal load is applied by increasing the temperature uniformly with respect to the 

reference temperature ( 0
25oT C ). 

 Hexahedral elements are used for 3D finite element analysis. 
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8.5.1 Benchmark example 

The first experiment involves the classic thin plate structure which was previously studied in 

[134]. A thin plate is a flat sheet of material whose thickness is much smaller than other 

dimensions. A thin plate can support loads of significant magnitude in the direction of both 

normal to its surface and in-plane. However, a moderate compressive in-plane load may cause 

the plate to buckle whose magnitude can be much smaller than material yield strength. Since a 

buckled structure is considered unstable, it is important to consider buckling constraints in design 

process. In this section, a 3D thin column structure is optimized subject to buckling constraint 

with a uniformly elevated temperature.  

The structure material is assumed to be steel, i.e., the elastic modulus is 2 11 E e Pa , the 

Poisson's ratio is 0.3   and the coefficient of thermal expansion is 1.1 5 / oe C   . As 

illustrated in Figure 69a, the structure is clamped at bottom and a compressive load of 

1.0 5F e N  is applied at the center of the top edge; the structure is also subject to a 

homogeneous temperature elevation of 0150T C  .  Note that the 3D column will buckle out 

of the plane as illustrated in Figure 69c where the thickness is 0.01m. 
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Figure 69: (a) A thin column, (b) CAD model, and (c) buckling mode. 

The generic topology optimization problem considered in this section can be posted as: 

 

0

0

| |

2.5

0.6

subject to

150

D

st th
o

Min

J J

P P

Kd f f

T C

 (164) 

In words, we search for the optimal design whose final compliance should be no larger than 

2.5 times its initial value while the final buckling load factor should be larger than or equal to 

60% of its initial value. (We also consider special instances below where buckling is neglected.)  

In order to test the direct and adjoint methods, we use different meshes and compare their 

computational time as in Figure 70. It is clear the proposed adjoint method is significantly more 

efficient. Since the inverse of the global stiffness matrix ( 1K  ) has to be computed for every 

element as illustrated in Equation (140), the computing time of the direct method increases 

exponentially with the number of finite elements.  
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Figure 70: Comparison of computational time between direct and adjoint method 

Due to its simplicity and efficiency, the adjoint method is preferred henceforth. If we use 

30,000 elements (i.e., 104,832 degrees of freedom (DOF)) to mesh the design domain. We 

consider three different scenarios: (a) buckling constraint and temperature elevation are 

neglected, see Figure 71(a); (b) buckling constraint is neglected but temperature elevation is 

included, see Figure 71(b); and finally (c) where both buckling constraint and temperature 

elevation are included, see Figure 71(c). 

The impacts of temperature change and buckling constraint are clearly observable.  
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Figure 71: (a) compliance constrained elastic topology optimization; (b) buckling-compliance 

constrained elastic topology optimization; (c) buckling-compliance constrained thermal topology 

optimization from the adjoint method.  

The final volume fractions and constraints are summarized in Table 25 where the active 

constraints are emphasized with a ‘box’. 

Table 25: Constraints and results for problem in Figure 71 

Topology Initial 

Constraints 

Final 

Constraints 

Volume & 

time (sec) 

Figure 71(a) 
02.5J J  

02.50J J  0.33
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Figure 71(c) 
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
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For the specific case of Figure 71(c), the iteration history with evolving topologies are 

illustrated in Figure 72 where the values of the compliance and buckling load factor are scaled to 

unit according to the initial value at volume fraction of 1.0. Observe that with the decrement of 
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volume fraction from 1.0, the compliance monotonously increases, while the buckling load 

factor generally decreases. The non-monotonous feature of the buckling load factor curve in 

Figure 72 is due to its inherent complexity as stated in Equation (139) and Equation (160).  

 

Figure 72: Iteration history of the adjoint approach. 

In order to study the effect of temperature variations on the optimization, five thermal 

conditions are considered (
o o o o o25 C, 50 C, 75 C,100 C,125 CT  ). Combining with the 2 

previously studied cases in Figure 71 (a) and (b), we can plot the iteration history of compliance 

(in Figure 73) and buckling load factor (in Figure 74). Both plots are scaled to show their relative 

evolving values.  

There are several observations: First, optimizations with temperature change of 

o o o0 C,  25 C, 50 CT  are terminated due to pre-set buckling constraints ( 00.6P P ); 

optimizations with 
o o o o75 C,  100 C,  125 C,  150 CT   are terminated due to compliance 

constraint ( 02.5J J ). Second, in Figure 73, structures with higher temperature variations have 
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lower compliance value. One possible reason is that compressive external load eases thermal 

expansions. Third, in Figure 74, structures subject to severe thermal gradients tend to have lower 

buckling load factor. It means buckling is more likely to occur in a hotter environment. 

 

Figure 73: Iteration history of compliance for different temperature rises.  
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Figure 74: Iteration history of buckling load factor for different temperature rises.  

8.5.2 Industrial application: airplane wing rib structure 

The purpose of this experiment is to demonstrate the robustness of the proposed adjoint 

method for optimizing the airplane wing rib structure. 

In wing structures, to maintain wing contours in chord-wise direction and to shorten the 

length of longitudinal wing stringers, ribs are used as internal supporting units as shown in 

Figure 75 [154].    
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Figure 75: Wing rib structures with lower skin uninstalled [154].  

The rib structure consists of three distinct section as shown in Figure 76: the leading edge 

portion, the wing box portion and trailing edge. In the leading edge, lightening holes are often 

introduced for mass reduction and accessibility of wiring and pipe lines. Horizontal stiffeners are 

also used to prevent buckling. In the wing box portion, horizontal and vertical beads are used 

both to stiffen the structure and to prevent buckling. Trusses are heavily used in trailing edge 

portion. The rib can be welded, riveted or glutted onto wing skins. Such assembly configuration 

can easily conduct heat from hot skin (shown in Figure 67) to the rib structures. Deduced thermal 

compressive stress significantly increases the buckling failure risk.  
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Figure 76: Wing rib construction [154].  

Lightening holes and stiffening beads are often designed based on experience, and may not 

be optimal. In this section, the proposed thermo-elastic topology optimization method is used for 

optimizing both leading-edge portion and wing-box portion. 

Leading-edge portion 

During flight, the wing ribs are subject to three types of loads: (a) aerodynamic lift and drag 

forces, (b) concentrated forces from its connection with landing gears and fuselage, and (c) 

gravitational body force [154]. In this experiment, only the dominating aerodynamic forces are 

considered for simplicity. With speed limit up to 24 Mach, the lift and drag pressure on a 

supersonic aircraft (e.g. space shuttle) can be as high as 8 210 ( / m )N , while the surface 

temperature can be as high as 01650 C . Although thermally protected [155], the ribs underneath 

the skin can still reach 170 270o oC C [155].  

As shown in Figure 35, the leading edge is assumed to be fixed at the right edge, and loaded 

with a drag pressure of 146MPa  on the top edge and a lift pressure of 430MPa  at the bottom. 

The entire structure is subject to an increase in temperature of 270oT C . The material is 

assumed to be titanium alloy [156] (online document shows the space shuttle is made of this 

https://en.wikipedia.org/wiki/Titanium_alloy
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alloy and aluminum) with an elastic modulus of 111 GE Pa , Poisson's ratio of 0.33   and 

coefficient of thermal expansion of 06.0 6 / Ce   .  

For FEA, 294,670 hexahedral elements are used to discretize the design domain, resulting in 

972,192 DOF. The optimization problem is set as follows:  
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 (165) 

 

Figure 77: Leading-edge with a thickness of 0.1m, and applied boundary conditions (units are in 

meters). 

In words, the objective is to find the optimal topology with the minimal volume and its 

compliance is no more than 1.5 times the initial compliance, and its buckling load factor is no 

less than 40% of original value.  

To illustrate the impact of thermal load, we also solve the above problem by neglecting the 

temperature increase. The resulting topologies are illustrated in Figure 78. It can be observed that 

(we have to redo the experiments by neglecting the volume constraint: volume fraction constraint 

is not active here): (1) compared with elastic optimization result in Figure 78(b), the thermo-
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elastic optimization (Figure 78(a)) is terminated due to the same buckling constraint but at a 

higher volume fraction. It indicates a temperature rise may lead to buckling instability in a 

structure which is stable in regular room temperature. (2) since compliance constraint outweighs 

buckling constraint, a Michell truss sub-structures are observed in the optimized results.  

 

 

Figure 78: Optimal designs for the rib leading-edge portion: (a) With buckling constraint but no 

thermal load; (b) With buckling constraint and thermal load. 

The numerical results are summarized in Table 26.  

Table 26: Constraints and results for problem in Figure 78 

Topology Initial 

Constraints 

Final 

Constraints 

Volume & 

time  

Figure 

78(a) 

0

0

1.5

0.4
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P P
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
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78(b) 
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Wing-box portion 

Next, we consider optimization of the wing-box portion as shown in Figure 79 where both 

left and right ends are fixed,  a lift pressure of 430MPa  is loaded at the bottom, and a shear drag 

pressure of 146MPa  is exerted on the top edge. 308,480 finite elements are used to discretize 

the design domain, leading to 1,022,328 DOF. The temperature rise is assumed to be 

170oT C ,  lower than that on leading edge portion [155]. A similar topology optimization 

problem is solved in Equation (166) where the buckling constraint is set stricter due to the slim 

and thin geometry feature.  
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Figure 79: Rib wing-box portion with a thickness of 0.1 m, and applied FEA boundary conditions. 

The resulting topologies are shown in Figure 80. The results are detailed in Table 26. While 

both the buckling-compliance constrained topology optimization (in Figure 80 (a)) and thermo-
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elastic topology optimization (in Figure 80 (b)) are terminated due to buckling constraint, their 

optimized topologies have visibly bead-like features both vertically and horizontally.    

 

 

Figure 80: Optimal designs for the wing box portion: (a) With buckling constraint but no thermal 

load; (b) With buckling constraint and thermal load. 

 

Table 27: Constraints and results for problem in Figure 80 

Topology Initial 

constraints  

Final 

constraints 

Volume & time 

Figure 80(a) 0
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It can be seen the optimized designs (in Figure 78 and Figure 80) are non-trivial and quite 

different from the traditional design (in Figure 76). By employing the proposed topology 
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optimization method, the rib structure can be lightened by nearly 40% with a moderate 

compromise in stiffness and buckling resistance.  

The main contribution of this chapter is a new method for buckling constrained thermo-

elastic topology optimization algorithm. Two different formulations were presented and 

compared. Both formulations exploit the concept of topological sensitivity; thus material 

parameterization is not required. As the numerical experiments reveal, the impact of temperature 

variations on the final topologies can be significant for certain problems.  

This chapter is limited to linear buckling analysis where the buckling is assumed to occur at 

bifurcation which assumes a reference stable configuration and an infinitesimally close buckled 

configuration are both possible at the same load [157]. Structure stiffness matrix is also assumed 

unchanged [157]. Although linear analysis is sufficient for simple thin plates and flat structures, 

non-linearity has to be considered in many situations where structures undergo significant pre-

buckling rotations or have complex geometries. For buckling constrained topology optimization 

on such structures, non-linear analysis has to be considered. 
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9. CONCLUSION AND FUTURE WORK 

9.1 Conclusion 

The main contribution of this thesis is an efficient formulation of large-scale multi-

constrained thermos-elastic topological-sensitivity based level-set method for topology 

optimization. 

To establish this formulation, a series of novel algorithms were developed and numerous 

interesting results were found. They include:  

1) Topological-sensitivity based level-set method was successfully extended from pure 

elasticity to thermo-elasticity.  This method was proved efficient in solving 

theoretical and numerical challenges in thermal structural designs.  

2) Augmented Lagrangian method was successfully implemented with the topological 

sensitivities of optimization objective and constraints. The augmented level-set 

method can therefore solve topology optimization problems with multiple constraints.  

3) By combining augmented topological sensitivity fields of different simultaneously 

applied loads, the augmented level-set method was successful in handling topology 

optimization problems with multiple loads which often caused failures in density-

based method.   

4) By exploiting element-congruency, mesh voxelization and assembly-free deflated 

conjugate gradient method, the augmented level-set method was proved significantly 

efficient and robust in solving 3D large-scale topology optimization problems. 

5) The thermo-elastic level-set method was successfully combined with augmented 

Lagrangian method. By the proposed methods, solving restrained thermal design 

problems with multiple constraints became available.  
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6) Various topological sensitivity fields were derived by discrete approximation method. 

By using such sensitivity expressions, topology optimization can be extended to 

design scenarios where analytical sensitivity fields are infeasible.   

This thesis bridged the gap for topology optimization between academic research and real 

world applications. For one thing, the studied cases were extended from 2D benchmark examples 

to 3D large-scale industry applications. For another, various constraints were taken into 

consideration during optimization, including mechanical properties (for example, compliance, 

stress, eigen-mode and buckling), algorithm implementations (soft and hard constraints) and 

manufacturing limitations (tool path constraints). The application on thermo-elastic buckling 

problem presented in Chapter 8 illustrated its potential in industry.     

However, a number of open topics still require further investigations. A short description of 

each topic is given, as well as preliminary thoughts on accomplishing the work.  

9.2 Future Work 

9.2.1 Multi-level Topology Optimization 

Micro-structural design can be viewed as a special application of topology optimization in 

lower dimension (for example, mesoscale). Such optimization process can create surprisingly 

unique macro-level (bulk scale) behaviors. A classic example is the negative Poisson ratio bolt 

design [158].  

Based on the unique features of the micro-level topology optimization, a multi-level topology 

optimization may be proposed. In such method, the micro-level topology optimization is first 

carried out for obtaining desired materials properties, like Poisson ratio or shear modulus. Then, 

a macro-level topology optimization can be employed to optimize structural properties, like 
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compliance or stress. With desired properties at both micro and macro-levels, optimized 

structures would unsurprisingly own superior performance than traditional designs.   

 

Figure 81: An optimal micro-structural design [159]. 

9.2.2 Nonlinear Topology Optimization 

This research limited topology optimization within the scope of linearity. In other words, the 

proposed method assumed optimized structures were only subject to infinitesimally small 

displacements. There are some advantages in this linear assumption, including: (1) linear 

solutions are easy to compute; (2) the computational cost is low; (3) solutions can be superposed. 

However, this linear assumption is not adequate when the following scenarios happen: (1) 

structures are subject to large deformations; (2) structures are made of nonlinear materials; (3) 

structure failures occur. Thus, in order to meet such challenges, the current method is necessary 

to extended to nonlinearity.  A nonlinear finite element analysis example is given in Figure 82 

([https://i.ytimg.com/vi/5p4AkvwdmtE/hqdefault.jpg]) where the displacements are significant.   
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Figure 82: An example of non-linear buckling analysis 

9.2.3 Non-deterministic Topology Optimization  

While in this thesis topology optimization is utilized in an ‘ideal’ design condition where 

structural materials are assumed perfectly isotropic and loaded forces are determined, real design 

conditions can be far more complicated.  Due to material processing limitations, material 

property is not deterministic in the sense that it may deviate from expected performance but 

satisfy some specific statistics distributions. On another hand, during application process, the 

loading conditions can be also stochastic. For example, [160] studied the impact of stochastic 

wind loads on design of windfarm turbines. Topology optimization on structures with non-

deterministic properties remains an open research area.  

9.2.4 Topology Optimization in Additive Manufacturing 

Additive manufacturing (AM) is an evolutionary manufacturing process which builds an 

object by adding materials layer upon layer. Comparing with traditional subtractive 

manufacturing, AM has unlimited capacity of fabricating complex geometries and utilizing 

multiple types of heterogeneous materials.  

Topology optimization can be served as an integrated automatous design tool for AM. With 

the capacity of fabricating infinitely complex geometries, AM can provide topology optimization 

significant opportunities for wider applications in product design. The marriage between 

topology optimization and AM provides end-users an opportunity to design and manufacture 

customer-oriented final products in a ‘top-down’ approach.  

 Research potentials for the application of topology optimization in AM are significant. In 

[161], topology optimization is used to minimize support structures while maximizing structural 
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mechanical properties. Figure 838 is an example showing the ‘top-down’ design-manufacture 

process provided by topology optimization and AM.  

 

 

Figure 83: An example of 3D printed structures designed by topology optimization 

 

  

                                                                    
8 The figure is downloaded from http://www.materialise.com.  

http://www.materialise.com/
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