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ABSTRACT 

 Quantum chemical ab initio methods are applied to a variety of systems to support 

experimental efforts and to model reactions in harsh environments.  High level geometry 

optimizations and vibrational frequency calculations are combined with experimental fits of 

rotational spectra to obtain highly precise semi-experimental equilibrium structures (re
SE) of 

hydrazoic acid (HN3) and pyridazine (ortho C4H4N2 analog of benzene).  Purely theoretical 

equilibrium structures (re) are obtained for both HN3 and pyridazine and require corrections to 

account for the size of the basis set, for electron correlation, for relativity, and for the Born-

Oppenheimer approximation.  These corrections bring the theoretical re structures into agreement 

with the experimentally obtained re
SE structures.  Further, application of a novel analysis of the 

re
SE structure determination (xrefiteration) provides confidence that these re

SE structures are highly 

accurate, in addition to being highly precise.   
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 A combination of density function theory (DFT) and ab initio methods are used to model 

reactions in several systems.  The diastereoselectivity observed in the synthesis of 1-cyano-1,3-

butadienes is satisfactorily explained by the computational investigation of the conformational 

interconversion of the proposed intermediates.  A purely theoretical investigation of the reactions 

of highly unsaturated carbon chains (CnH2) utilizes spin-flip methods to describe the resulting 

radical species and intervening reactions and finds that the products of [4+2] cycloadditions are 

more likely to retain the initially formed six-membered ring than are the products of [2+2] 

cycloadditions to retain the initially formed four-membered ring. 

 Finally, we describe our application of established theory to derive formulas that can be 

used for the prediction of the vibration-rotation coupling constants that are used to fit the rotational 

spectra of coupled vibrational states.  Our initial results predict the experimentally determined 

values of Fbc for the coupled-state fits of benzonitrile to within 15%, and the formulas can be used 

to explain the origin of the proportional relationship of the coupling constants that was observed.  

The derivation also gives rise to the α corrections to the rotational constants in agreement with 

previous derivations.  Furthermore, the preliminary results of a computer algebra program we are 

developing are presented and discussed.  
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OVERVIEW 

 Theoretical calculations on molecular structures and reactions are applied to a variety of 

experimental efforts within the McMahon | Woods research group.  The chapters herein can be 

sorted into two groups: one group focuses on computational modeling of the mechanisms of 

reactions of small molecules in (harsh) environments (Chapters 4, 5, and 6) while the second group 

focuses on the accurate determination of the structure of small molecules and the prediction of 

properties relevant to rotational spectroscopy (Chapters 1, 2, and 7). 

 Chapter 1 describes the development and application of a novel algorithm (called 

xrefiteration) for the assessment of the accuracy of semi-experimental equilibrium structure (re
SE) 

determinations.  An re
SE structure determination uses high-quality experimental fits of rotational 

spectra of a molecule and its related isotopologues and combines the data with results of theoretical 

structure calculations to determine the molecule’s bonding parameters to a high precision.  The 

xrefiteration algorithm is applied to these structure determinations to better understand the effect 

of individual isotopologues on the resulting re
SE structural parameters and allows for more 

meaningful comparison of the re
SE structure to purely theoretical predictions.  Example analyses 

on a variety of re
SE structure determinations are provided. 

 Chapters 2 and 3 detail the re
SE structure determinations of hydrazoic acid (HN3) and 

pyridazine, respectively.  The re
SE structure of HN3 was previously obtained by our group but has 

now been improved through the use of higher-level theoretical predictions.  The high precision of 

the resulting re
SE structure is such that even a CCSD(T)/cc-pCV6Z geometry optimization is not 

within the uncertainties of the re
SE structural parameters.  Further calculations are conducted to 

correct for extrapolation to the complete basis set limit, for improved treatment of electron 

correlation, for effects due to relativity, and for the Born-Oppenheimer approximation.  
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Application of these corrections results in a “best theoretical estimate” (BTE) that agrees with the 

highly precise re
SE structure.  Application of the xrefiteration analysis provides further confidence 

that both the re
SE and the BTE structures are quite accurate.  The re

SE structure of pyridazine was 

also previously obtained by our group but we have since extended the spectroscopic data set, 

including the measurement of previously undetected isotopologues.  While the resulting re
SE 

structure is not as precise as that of HN3, the determination of the BTE structure and the application 

of the xrefiteration analysis gives us high confidence that the structure is also accurate. 

 Chapter 4 models the reaction mechanism believed to occur in the synthesis of 1-cyano-

1,3-butadiene from an aqueous solution of 1,4-dibromo-2-butene and cyanide.  Under cool 

conditions, the synthetic procedure applied to Z-1,4-dibromo-2-butene obtained 1-cyano-1,3-

butadiene in good yield with a diastereomeric ratio of 10:1 favoring the E diastereomer over the Z 

diastereomer.  Under warm conditions, the synthetic procedure applied to E-1,4-dibromo-2-butene 

resulted in a much lower yield of 1-cyano-1,3-butadiene with a diastereomeric ration of 2:3, now 

favoring the Z diastereomer.  The proposed rate-determining step – the 1,4-elimination of HBr 

from the 1-bromo-4-cyano-2-butene intermediate – was modeled computationally.  We determined 

the intermediate species was rapidly interconverting between a variety of conformational isomers.  

By application of the Curtin-Hammett principle, we found the relative energy of the transitions 

states for the proposed rate-determining step adequately predicted the diastereomeric ratios of the 

two different procedures. 

 Chapters 5 and 6 are theoretical investigations of reaction mechanisms under harsh 

conditions.  Chapter 5 considers the transformation of cyanobutadienes to form the aromatic 

pyridine under astrochemical conditions.  The activation barriers for the transformation under 

neutral conditions were found to be too high to be likely to occur in the interstellar medium.  The 
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transformation catalyzed by atomic hydrogen – while possessing activation barriers considerably 

lower than the neutral pathway – is also unlikely to occur.  The transformation catalyzed by the 

trihydrogen cation H3
+, however, does not contain high energy activation barriers and is likely to 

occur.  The transfer of a proton from H3
+ to cyanobutadiene at the beginning of the transformation 

is considerably exothermic, presumably due to the ability of the larger C5H6N
+ molecule to 

distribute the positive charge than H3
+.  The attachment of H+ provides the intermediate with more 

than enough internal energy to overcome the activation barriers for the transformation to pyridine.  

The high stability of the final intermediate pyridinium (protonated pyridine) suggests that it could 

be a notable sink of pyridine in the interstellar medium, where pyridine has yet to be detected. 

 Chapter 6 considers the combination of polyynes (CnH2) that are believed to occur within 

the ring coalescence and annealing model of the formation of fullerene.  Prior work by our group 

revealed that the initial [2+2] cycloaddition initially proposed within the ring coalescence and 

annealing model lead to an intermediate that had little to no barrier to undergoing a retro-Bergman 

cyclization and forming an eight-membered ring.  We compared this reaction mechanism to an 

alternative [4+2] cycloaddition.  Application of sophisticated theoretical treatments to increasingly 

more substituted versions of the two reaction pathways revealed that beginning with a [4+2] 

cycloaddition resulted in intermediates with significant activation barriers for undergoing the 

retro-Bergman cyclization in question, while beginning with the [2+2] cycloaddition consistently 

had no activation barrier for the same.   

 Chapter 7 again considers application of theoretical methods for rotational spectroscopy.  

In particular, we develop and implement a methodology for the prediction of vibration-rotation 

coupling constants used for the fitting of rotational spectra.  Having theoretical predictions for the 

vibration-rotation coupling constants is likely to aid spectroscopists in the fitting of the complex 
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rotational spectra arising from vibration-rotation coupling.  Furthermore, the lack of theoretical 

predictions for the vibration-rotation coupling constants (excepting the trivial first-order Coriolis 

coupling constant) prevents spectroscopists from assessing the quality of the coupled-state fit, and 

the lowers the confidence that such fits can be extended beyond the original frequency window 

that the spectra were observed in.  Building on the theoretical foundation already within the 

literature, we derive the formulas necessary for prediction of the second-order Coriolis coupling 

constants.  Furthermore, we developed a program to conduct such derivations for the higher-order 

coupling constants, and to process computational output files to obtain numeric predictions.  The 

results of our derivation and that of the program are compared to experimental coupled-state fits, 

and we discuss next steps towards obtaining predictions of the higher-order coupling constants. 
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ABSTRACT 

The effect of including additional isotopologues in the data set for re
SE structure 

determinations was examined using the novel xrefiteration routine for the re
SE structure 

determinations of hydrazoic acid, pyridazine, pyrimidine, thiophene, and thiazole.  In all molecules 

considered, incorporation of additional isotopologues beyond the minimal set resulted in an 

immediate and significant improvement in the total relative uncertainty (δre
SE) of the structural 

parameters.  The incorporation of further isotopologues continues to reduce the δre
SE for most 

molecules, until a typical rise at the end of the analyses due to incorporation of the last of the 

isotopologues.  The δre
SE values, however, remain well below their initial values, leading to the 

conclusion that more isotopologue data leads to a more precise re
SE structure.  Examination of the 

structural parameters throughout the analysis provides insight into how well each structural 

parameter is determined, and further comparison to theoretical structure predictions provides 

insight into the accuracy of the structures. 
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INTRODUCTION 

Molecular structure can be determined using rotational spectroscopy, via the substitution 

structure (rs) method or semi-experimental equilibrium structure (re
SE) method, which rely on the 

changes to the moments of inertia (and thus the change in the rotational constants and resulting 

rotational spectra) that occur upon isotopic substitution of the atoms' positions.1  Rotational 

spectroscopy allows for highly precise determination of the molecular structure due to the precise 

and numerous measurements of rotational transitions as compared to other spectroscopy methods.2  

In our group in particular, the union of synthesis and rotational spectroscopy have allowed for a 

considerable number of isotopologues to be included in the data set used for the structure 

determination of a molecule.3-9  Traditionally, studies using the re
SE structure methodology have 

often been limited to using only the isotopologues minimally necessary to obtain an rs structure, 

specifically the normal isotopologue and all singly substituted isotopologues.10-11  Although 

spectroscopic data from additional, multiply substituted isotopologues provides further constraints 

on atom positions and thereby improves the precision and accuracy of the re
SE structure, such an 

approach is not universally employed.  The trade-off for this improvement is the increased 

experimental effort needed to acquire spectroscopic data for additional isotopologues, particularly 

if they are not observable at natural abundance and require chemical synthesis/isotopic enrichment.  

Therefore, to inform our choice of the number of additional isotopologues to include in structure 

determinations, we systematically examine the effect of including isotopologues beyond the 

minimal set on the re
SE structure.   
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COMPUTATIONAL METHODS 

 The high accuracy and precision of our recent semi-experimental structure determinations 

derive, in part, from the inclusion of a large number of multiply substituted isotopologues in the 

data sets.3-7  This approach contrasts with the Kraitchman analysis for structure determination (rs 

substitution structure)10-13 and other implementations of the semi-experimental structure 

determination (re
SE)14-15 that commonly rely on single-atom isotopic substitution is sufficient for 

determining a molecular structure, the data set of singly substituted isotopologues represents the 

smallest set that is sufficient to do so.1  Herein, we refer to a data set consisting of the normal 

isotopologue and singly substituted isotopologues as the "minimal data set" or the "minimal set".  

Since the data sets for our structural determinations substantially exceed the "minimal data set", 

there are opportunities to develop new methods for analyzing and interpreting data.   

To assess the impact of the number of isotopologues (Niso) included in a data set used for 

an re
SE structure determination, one could simply compare the re

SE structure obtained using a 

minimal set of isotopologues to the re
SE structure obtained using all of the available isotopologues.  

This comparison, however, does not provide information about how the re
SE structure changes as 

a function of Niso or how the incorporation of additional isotopologues impacts the structure.  A 

more informative approach to assess the impact of the number of isotopologues is to determine the 

re
SE structural parameters using the minimal set, then sequentially add each isotopologue to the 

data set, and observe how the re
SE structural parameters and their statistical uncertainties change.  

Because the re
SE structure is a state function of the moments of inertia with respect to the 

isotopologues in the data set, the order in which the isotopologues are added has no effect on the 

final re
SE structure but does determine which intermediate re

SE structures that are generated.  

Determining each intermediate re
SE structure for every permutation of the addition of all 
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isotopologues would be a rigorous approach, but it is not practical.  Not only would it be 

cumbersome to obtain such an re
SE analysis,* it is not clear how one would interpret the results.  

Thus, the analysis method requires a different procedure for selecting which isotopologue should 

be added to the working set of isotopologues.  

We employed an approach where the isotopologue data set is sequentially expanded to 

include the isotopologue whose inclusion results in the greatest reduction of the statistical 

uncertainties of the re
SE parameters.  This criterion enables the analysis to probe the change in the 

re
SE structure via the addition of a single isotopologue.  If an isotopologue provides structural 

information consistent with that already in the data set, adding that isotopologue should have the 

impact of reducing the overall statistical uncertainty by providing redundant information.  If an 

isotopologue provides structural information that is not consistent with the rest of the data set (due 

to poor determination of its spectroscopic constants, providing structural information counter to 

that provided in the current data set, high error in the atomic position due to the location of 

principal axes, etc.), adding that isotopologue may result in the re
SE structural parameters with 

larger statistical uncertainty.  Because all isotopologues will eventually be added to the re
SE, the 

isotopologues that are not consistent with the rest of the data set will be represented by a 

characteristic increase in the statistical uncertainty at the end of the routine (vide infra).   

This approach has been implemented as a bash shell script – dubbed xrefiteration (because 

it iteratively utilizes the xrefit module of CFOUR) – and has been briefly described in two previous 

works.6-7  It is implemented as a bash shell script, which performs the following algorithm 

(depicted in Figure 1.1): 

 
* Using our recent work on pyridazine (see Chapter 3) as an example, there are 12 additional isotopologues beyond 

the core set which corresponds to 12! ≈ 479,000,000 permutations and, assuming 0.1 s per xrefit execution, ~13,000 

processor hours. 
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1) For the "accepted" set of isotopologues, execute xrefit to obtain an initial re
SE structure.  

The initial accepted set can be user-defined, but defaults to the "minimal set" as identified 

by assuming that the first isotopologue in the input file is the normal isotopologue and 

identifying all isotopologues that differ by single isotopic substitution. 

2) For each isotopologue that is not part of the accepted set, execute xrefit to obtain an re
SE 

structure using the accepted set of isotopologues plus that additional isotopologue.  

3) Of the resulting re
SE structures obtained in step 2, the additional isotopologue that resulted 

in the lowest statistical uncertainties of the structural parameters is added to the accepted 

set of isotopologues.  To obtain a single metric by which to evaluate the total statistical 

uncertainty, we calculated the relative (and thus dimensionless) uncertainties of the bond 

distances [Eq. (1.1)], angles [Eq. (1.2)], and dihedral angles [Eq. (1.3)], and combined the 

results to give the total relative statistical uncertainty of the re
SE structure (δre

SE) in Eq (1.4)

.  

 ( )
( )

2

fitSE 2
bonds

i

e

i i

R
r

R




 
=  

 
  (1.1) 

 ( )
( )

2

fitSE 2
angles

i

e

i i

r
 




 
=  

 
  (1.2) 

 ( )
( )

2

fitSE 2
dihedrals

i

e

i i

r
 




 
=  

 
  (1.3) 

 ( ) ( ) ( )
2 2 2

SE SE SE SEbonds angles dihedralse e e er r r r        = + +       (1.4) 

4) Repeat steps 2 and 3 until all isotopologues have been incorporated into the accepted set, 

at which point a final re
SE structure is calculated by executing xrefit.   
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Figure 1.1.  Flow chart depicting the xrefiteration algorithm. 

The routine collects various components of the re
SE calculations it has performed and provides a 

summary output file (.csv) for analysis.  A detailed explanation of the routine and its options are 

included in the Supporting Information.  The script, example input and output files, a .html report, 

and the script used to generate the report are included in the supporting information of Ref. 9. 

The xrefiteration routine has been applied to several re
SE structure determinations in our 

group: hydrazoic acid,8 pyrimidine,5 pyridazine,9 thiophene,7 and thiazole6 (Figure 1.2).  The 

results of these analyses are summarized here; further details are included in the cited references 

(excepting that of pyrimidine) and in Chapters 2 and 3 of this thesis. 

 



8 

 

Figure 1.2.  Molecules with re
SE structure determinations analyzed with the xrefiteration routine. 

RESULTS AND DISCUSSION 

 To illustrate the nature of the xrefiteration algorithm, consider the first iteration of the 

xrefiteration analysis of the pyridazine data set, using the minimal set of isotopologues as the initial 

accepted set: pyridazine and [3-13C]-, [4-13C]-, [15N]-, [3-2H]-, and [4-2H]-pyridazine.  First, the 

routine executes an initial run using the data from these six isotopologues and analyzes the results, 

which gives the total δre
SE of 0.001322 for the minimal set (recall that δre

SE is a combination of 

relative – and thus unitless – values).   

Second, the algorithm introduces one additional isotopologue to the previous accepted data 

set and runs xrefit; this is repeated for each of the remaining isotopologues.  There is a total of 

eighteen isotopologues of pyridazine for which experimental data was obtained, and since six of 

these isotopologues were used in the previous (in this case, initial) iteration, a total of twelve 

isotopologues remain to be tested for acceptance.  The data for each of these twelve isotopologues 

is combined with the previous six isotopologues to create twelve input files, each consisting of a 

total of seven isotopologues: the accepted set from the previous (initial) iteration and one of the 
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remaining isotopologues.  Then xrefit is executed for each of these input files, and the resulting 

output files are analyzed. 

As summarized in Table 1.1, we see that the δre
SE of the twelve test cases vary up to ~10% 

with respect to the previous accepted set.  Of the twelve re
SE structures thus generated, we see that 

the re
SE structure resulting from the addition of the [3,5-2H] isotopologue to the previous six 

isotopologues has the lowest total δre
SE of 0.001180.  Therefore, the third step of the algorithm is 

to select the [3,5-2H] isotopologue for incorporation into the accepted set of isotopologues for the 

next iteration, which will contain a total of seven isotopologues with eleven remaining.  The 

routine then repeats the above steps until all isotopologues are included in the data set for the re
SE 

structure determination.   

Table 1.1.  The δre
SE of Test re

SE Structures in the First Iteration of the xrefiteration Analysis of 

Pyridazine 

Isotopologues used to obtain re
SE δre

SE (Total) 

normal, [3-13C], [4-13C], [15N], [3-2H], [4-2H]a 0.001322 

normal, [3-13C], [4-13C], [15N], [3-2H], [4-2H], and [3,4-2H] 0.001260 

normal, [3-13C], [4-13C], [15N], [3-2H], [4-2H], and [3,5-2H]b 0.001180 

normal, [3-13C], [4-13C], [15N], [3-2H], [4-2H], and [3,6-2H] 0.001277 

normal, [3-13C], [4-13C], [15N], [3-2H], [4-2H], and [4,5-2H] 0.001304 

normal, [3-13C], [4-13C], [15N], [3-2H], [4-2H], and [4-2H, 3-13C] 0.001227 

normal, [3-13C], [4-13C], [15N], [3-2H], [4-2H], and [4-2H, 4-13C] 0.001303 

normal, [3-13C], [4-13C], [15N], [3-2H], [4-2H], and [4-2H, 5-13C] 0.001222 

normal, [3-13C], [4-13C], [15N], [3-2H], [4-2H], and [4-2H, 6-13C] 0.001310 

normal, [3-13C], [4-13C], [15N], [3-2H], [4-2H], and [3,4,5-2H] 0.001294 

normal, [3-13C], [4-13C], [15N], [3-2H], [4-2H], and [3,4,6-2H] 0.001412 

normal, [3-13C], [4-13C], [15N], [3-2H], [4-2H], and [3,4,5,6-2H] 0.001307 

normal, [3-13C], [4-13C], [15N], [3-2H], [4-2H], and [4,5-2H, 4-13C] 0.001342 
a The isotopologue data set from the previous iteration is provided for reference. 

b This isotopologue data set is highlighted to indicate it has the lowest δre
SE of the structures in the current iteration. 
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While additional tables like that of Table 1.1 could be created for the remaining iterations, 

it is easier to visualize the process by plotting the δre
SE of the test cases against the total number 

of isotopologues.  Such is done for pyrimidine in Figure 1.3.  For a particular Niso, the test case 

with the lowest δre
SE is also the one that becomes the accepted set for that iteration.  Individual 

isotopologues can also be tracked across test cases, as represented by the lines drawn in the figure.  

Note that once an isotopologue has been added to the accepted set, there are no further test cases 

where that isotopologue is being added; this is visualized in the figure as the trace for that 

isotopologue terminating in the dotted line representing the accepted sets.   

 

 

Figure 1.3.  Total relative error of all re
SE structures generated during the xrefiteration routine for 

sixteen isotopologues of pyrimidine, beginning from the minimal set.  The dotted line connects the 

accepted sets of each iteration. 

There are some common observations in examining plots like that of Figure 1.3.  First, the 

δre
SE of the test cases involving a particular isotopologue tend to decrease as Niso increases.  
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Another tendency is for there to be a clustering of the isotopologue traces, such as those of [2,5-

2H]-, [4,5-2H]-, and [2,4,5-2H]-pyrimidine above Niso = 10.  In that grouping, the δre
SE of the test 

cases generated are very similar, suggesting those isotopologues have similar impacts on the 

precision of the re
SE structure determination.  One feature is represented by the trace of [2,5-2H]-

pyrimidine in Figure 1.3, where the inclusion of that isotopologue in the first test case at Niso = 9 

results in a δre
SE larger than the initial set, but upon addition of another isotopologue the addition 

of the [2,5-2H] isotopologue results in a much smaller δre
SE that is comparable to other test cases.  

Such behavior is likely due to a poor determination of some structural parameter(s) by the initial 

set, parameter(s) for which the [2,5-2H] isotopologue data contains the necessary information but 

disagrees with the value poorly determined by the minimal set.  Inclusion of an additional 

isotopologue serves to bridge that disagreement.  Another feature – which is lacking in Figure 1.3 

but is common in preliminary analyses – is the presence of an isotopologue trace at significantly 

higher δre
SE than the rest, which might* indicate an issue with the underlying data for that 

isotopologue: an error in the corrections to the rotational constants, a poor fit of the spectral data, 

etc.  Therefore, this graph can be particularly useful for identifying problems in the preliminary 

analysis of the data set.  Finally, there are instances where inclusion of an isotopologue into the 

accepted set raises the δre
SE for subsequent test cases of certain other isotopologues.  For example, 

in Figure 1.3, the δre
SE for the [2,4,5-2H] and [2,4,5,6-2H] isotopologues is larger at Niso = 10 than 

at Niso = 9.  This suggests that the isotopologue being added in that iteration ([4,6-2H]) contains 

structural information differing from that provided by those two isotopologues.  In principle, there 

may be a way to extract insights about the relationship of the isotopologues to each other with 

 
* See the discussion of the xrefiteration analysis of pyridazine in Chapter 3. 
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respect to the structural information they are providing, but in practice we have not yet developed 

a rigorous method for extracting such insights. 

 Throughout the course of the analysis, the xrefiteration routine keeps track of the δre
SE, the 

contributing components [δre
SE(bonds), δre

SE(angles), and δre
SE(dihedrals)], the values of the 

structural parameters, and the statistical uncertainties of the fit to the structure parameters.  The 

δre
SE and its components can be plotted on the same graph, while the parameter values and their 

uncertainties are best plotted on individual graphs for each parameter.  Figure 1.4 displays the δre
SE 

and its components across the xrefiteration analysis for thiophene and shows a sharp decrease in 

the δre
SE as the first few isotopologues beyond the minimal set are added.  As more isotopologues 

are added, δre
SE continues to decrease and eventually plateaus, until only a couple of isotopologues 

remain to be included in the accepted set.  The addition of these last two isotopologues ([2,3-2H] 

and [2,4-2H]) increases the δre
SE but overall, the δre

SE for the full set of isotopologues is nearly half 

that of the δre
SE for the minimal set of isotopologues.  The rise in δre

SE at the end of the xrefiteration 

analysis is typical and can be understood by the nature of the algorithm: in each iteration, the 

isotopologue that resulted in the lowest δre
SE was added to the accepted set while isotopologues 

that resulted in higher δre
SE were carried over to the next iteration.  By the end of the analysis, the 

isotopologue(s) that remain consistently had higher δre
SE when included in the data set, so when 

they are finally included, the δre
SE increases.   
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Figure 1.4.  Plot of δre
SE as a function of the number of isotopologues (Niso) incorporated into the 

structure determination data set for thiophene.  The total relative statistical uncertainty (δre
SE, blue 

squares), the relative statistical uncertainty in the bond distances (green triangles), and the relative 

statistical uncertainty in the angles (purple circles) are presented.  The "Minimal Set" is composed 

of the normal and [2-13C], [3-13C], [34S], [2-2H], [3-2H] isotopologues of thiophene. 

As shown in Figure 1.5, the xrefiteration analyses for pyridazine, pyrimidine, and thiazole 

share similar characteristics with that of thiophene.  The δre
SE for all molecules generally decreases 

as Niso increases and is especially pronounced for the first isotopologue addition beyond the 

minimal set of single isotopic substitutions.  As additional isotopologues are incorporated into the 

data set, δre
SE continues to decrease for hydrazoic acid, thiophene, and thiazole, until a slight uptick 

at the end for thiophene and thiazole.  Pyridazine and pyrimidine, however, plateau shortly after 

the initial sharp decrease, then continue to rise slightly through the rest of the xrefiteration analysis.  

In this progression, pyrimidine increases more than pyridazine, until the addition of the final 

isotopologue to the pyridazine data set.  (The origin of this increase in δre
SE of pyridazine is 

discussed in detail in Chapter 3 of this thesis.)  Overall, the xrefiteration analysis of these 
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molecules demonstrates that inclusion of a few isotopologues beyond the minimal set has an 

immediate and significant effect, and addition of further isotopologues generally continues to 

reduce the δre
SE.  

 

 

Figure 1.5.  Comparison of total relative statistical uncertainty (δre
SE) as additional isotopologues 

are included in the data set for the re
SE structure determinations of hydrazoic acid, pyrimidine, 

pyridazine, thiophene, and thiazole, beginning from each of their respective minimal set of 

isotopologues. 

 Additional insights into the re
SE structure determination and the isotopologue data set can 

be found by examining the structural parameters of the re
SE structures obtained in the xrefiteration 

analysis.  Figure 1.6 presents the values and statistical uncertainties of the parameters of thiazole 

throughout the xrefiteration analysis in comparison to the best theoretical estimate (BTE)5-7 values 

and demonstrates a variety of behaviors across the many structural parameters.  Some parameters 

show little change in their values or uncertainties across the xrefiteration analysis (RC4-H, θC4-C5-S, 

θC5-C4-N and θC2-S-C5), strongly suggesting that these parameters are well-determined even while 
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using the initial set of isotopologues.  The uncertainties of these parameters contribute little to the 

change in δre
SE for thiazole shown in Figure 1.6.  Most parameters display moderate changes but 

appear to converge i.e., remain consistent in value and uncertainty, by the end of the analysis (RC5-

H, RC4-C5, RC4-N, RC5-S, RC2-S, θC4-C5-H, and θC5-C4-H), demonstrating the importance of including 

many isotopologues in the re
SE structure determination.  The uncertainties of these parameters are 

largely responsible for the steady decrease in the δre
SE in the later parts of the xrefiteration analysis.  

Several parameters have immediate and significant changes to their values and uncertainties that 

brings them into better agreement with the BTE values (RC2-H and θS-C2-H), demonstrating how 

impactful just a few additional isotopologues beyond the minimal set can be for the re
SE structure 

determination.  The uncertainties of these parameters are largely responsible for the sharp decrease 

in δre
SE that occurs at the beginning of the xrefiteration analysis.  
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Figure 1.6.  Plots of structural parameters of thiazole as a function of the number of isotopologues 

(Niso) and their 2σ uncertainties, with consistent scales for each distance (0.0035 Å) and each angle 

(0.34°).  The dashed line in each plot is the best theoretical estimate (BTE) value calculated for 

that parameter.  A plot of θS-C2-H is additionally provided on a separate y-axis scale (gray 

background) that enables visualization of all data points and corresponding error bars.  The 

isotopologue ordering is given in Table 1.2 in the Supporting Information. 
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The power in examining the structural parameters throughout the xrefiteration analysis lies 

in the comparison to the BTE values predicted for the structure.  As shown in Figure 1.6, at the 

beginning of the xrefiteration analysis RC2-H and θS-C2-H have the largest statistical uncertainties 

and disagreement with the BTE values.  The inclusion of an additional isotopologue reduces the 

uncertainties in these parameters by a factor of two and reduces the disagreement with the BTE 

values by more than a factor of two.  Considering the set of parameters that are not in agreement 

with the BTE values (RC5-H, RC2-H, θC4-C5-H, θC5-C4-H, θC2-S-C5, and θS-C2-H) reveals atoms C2 and C5 

as common factors, which is notable since these atoms lie very close to the b inertial axis of 

thiazole and historically their positions are the most difficult to determine.16    

CONCLUSIONS 

A novel routine, xrefiteration, was developed to examine the impact of additional 

isotopologues on re
SE structure determinations.  The routine begins with the re

SE structure 

determination of an initial set of isotopologues (often the minimal set necessary for an rs structure 

determination) and iteratively adds the remaining isotopologues to the data set until the full re
SE 

structure is obtained.  The order in which the isotopologues are added is determined by selecting 

the isotopologue whose inclusion results in the lowest total relative uncertainty (δre
SE).  Typically, 

the inclusion of additional isotopologues is found to immediately and significantly decrease δre
SE 

and continue to decrease – though with diminishing returns – as more isotopologues are added, 

until a slight increase at the end of the analysis.  A large increase in the δre
SE due to the inclusion 

of an isotopologue may indicate the underlying experimental or computational data is of poor 

quality, but this is merely a measure of the precision – not the accuracy – of the re
SE structure.   
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We found that tracking the values of the structural parameters throughout the xrefiteration 

analysis provided more insight into the structure determination of the molecule.  A structural 

parameter can be said to be well-determined when the inclusion of additional isotopologues has 

little effect on the values of the parameter with respect to the magnitude of the uncertainties.  

Furthermore, good agreement between the structural parameter of the re
SE structure and that of a 

high-level theoretical calculation strongly suggests such a parameter is also accurate.  Of the 

molecules we've examined thus far, application of this analysis reveals that some molecules e.g., 

pyridazine, are well-determined starting from the minimal set of isotopologues while other 

molecules e.g., thiophene and thiazole, are still not well-determined even after including all 

available isotopologues.  Being able to determine how many isotopologues (and which) are needed 

on an a priori basis thus remains an open challenge and the xrefiteration routine provides the 

foundation for addressing it. 
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Table 1.2.  Order of Addition for Isotopologues of Thiophene in the xrefiteration Analysis of 

Thiazole 

Niso Isotopologue Added 

9 

Initial set 

normal, [34S], [2-13C], [3-15N], [4-13C], 

[5-13C], [2-2H], [4-2H], [5-2H] 

10 [2,4,5-2H] 

11 [2,5-2H, 4-13C] 

12 [2-2H, 15N] 

13 [2-2H, 5-13C] 

14 [2-2H, 2-13C] 

15 [2-2H, 34S] 

16 [2-2H, 4-13C] 

17 [2,5-2H, 34S] 

18 [2,5-2H, 5-13C] 

19 [2,5-2H, 2-13C] 

20 [2,5-2H] 

21 [2-2H, 33S] 

22 [2,5-2H, 15N] 

23 [33S] 

24 [2,5-2H, 33S] 
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xrefiteration Usage Guide 

Requirements 

• bash 

The xrefiteration script was written for use on the Phoenix Cluster at the UW-Madison 

Department of Chemistry HPC Center (https://hpc.chem.wisc.edu), operating GNU bash, 

version 4.2.46(2)-release (x86_64-redhat-linux-gnu).  The script has not been tested on any 

other system. 

• CFOUR (http://www.cfour.de) 

• Location of CFOUR xrefit added to PATH 

Execute the following command before use, 

export PATH=/full/path/to/your/CFOUR/bin:$PATH 

or add that line to the .bash_profile file in your home directory.  You can check this was 

done correctly by executing which xrefit and the correct path should appear. 

• Script saved as xrefiteration with execute permissions. 

While the script doesn't have to be saved as xrefiteration, it is recommended since this 

guide and the script's help text refers to the script by that name. 

The command chmod +x xrefiteration should allow the script to run. 

xrefiteration input file 

The xrefiteration input file is the same as the standard xrefit INPUT file, with two 

exceptions: (a) specific parameter labels, and (b) additional isotopologue labels. 

https://hpc.chem.wisc.edu/
http://www.cfour.de/
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a) When defining the ZMAT, the parameter labels must begin with 'R' if it is a bond, 'A' if it 

is an angle, and 'D' if it is a dihedral angle.  The script uses the parameter labels to identify 

which of the parameters being optimized by xrefit are bonds, angles, and dihedral angles, 

in order to correctly calculate the δre
SE for each type of parameter.  

b) When providing the atomic numbers for the isotopologues, an additional label (iso###) is 

added after the last atomic number to specify which isotopologue that is. This is necessary 

for the script to keep track of the individual isotopologues and report the results properly, 

as well as for utilizing options involving specific isotopologues (vide infra).  

To understand the changes, compare the pyridazine xrefiteration input file provided 

(pyridazine_xrefiteration_input.txt) against that of the example xrefit INPUT file 

(pyridazine_example_xrefit_input.txt), which is what would normally have been used for 

obtaining the full re
SE structure determination of pyridazine.  

Running xrefiteration 

Once the above requirements have been satisfied and the input file has been prepared, 

xrefiteration can be run using xrefiteration inputfilename.  Status text will be printed to the 

screen as the script runs to monitor the progress.  The script can be aborted at any time using the 

Ctrl+C command in bash.   
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For an example, here is the output for running the provided pyridazine_xrefiteration_input.txt.  

$ xrefiteration pyridazine_xrefiteration_input.txt 

Fitting A B & C axes. 

There will be 12 runs. 

RUN000 uses isotopologues 001 002 003 004 005 006 

RUN001 uses isotopologues 001 002 003 004 005 006 008 

RUN002 uses isotopologues 001 002 003 004 005 006 008 019 

RUN003 uses isotopologues 001 002 003 004 005 006 008 019 010 

RUN004 uses isotopologues 001 002 003 004 005 006 008 019 010 017 

RUN005 uses isotopologues 001 002 003 004 005 006 008 019 010 017 027 

RUN006 uses isotopologues 001 002 003 004 005 006 008 019 010 017 027 023 

RUN007 uses isotopologues 001 002 003 004 005 006 008 019 010 017 027 023 

018 

RUN008 uses isotopologues 001 002 003 004 005 006 008 019 010 017 027 023 

018 009 

RUN009 uses isotopologues 001 002 003 004 005 006 008 019 010 017 027 023 

018 009 025 

RUN010 uses isotopologues 001 002 003 004 005 006 008 019 010 017 027 023 

018 009 025 020 

RUN011 uses isotopologues 001 002 003 004 005 006 008 019 010 017 027 023 

018 009 025 020 024 

RUN012 uses isotopologues 001 002 003 004 005 006 008 019 010 017 027 023 

018 009 025 020 024 007 

$ 

 

The isotopologues listed represent the accepted set being used in the current iteration (RUN).  The 

isotopologues used in RUN000 are the initial set, which in this case defaulted to the minimal set, 

while the last RUN uses all provided isotopologues, representing the full data set.   
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A variety of files are generated by the execution of the script: 

$ ls 

fort.16 

INPUT 

pyridazine_xrefiteration_input-allruns.csv 

pyridazine_xrefiteration_input_isotopologuesmasseslist.txt 

pyridazine_xrefiteration_input-results.csv 

pyridazine_xrefiteration_input_RUN000.out 

pyridazine_xrefiteration_input_RUN001.out 

pyridazine_xrefiteration_input_RUN002.out 

pyridazine_xrefiteration_input_RUN003.out 

pyridazine_xrefiteration_input_RUN004.out 

pyridazine_xrefiteration_input_RUN005.out 

pyridazine_xrefiteration_input_RUN006.out 

pyridazine_xrefiteration_input_RUN007.out 

pyridazine_xrefiteration_input_RUN008.out 

pyridazine_xrefiteration_input_RUN009.out 

pyridazine_xrefiteration_input_RUN010.out 

pyridazine_xrefiteration_input_RUN011.out 

pyridazine_xrefiteration_input_RUN012.out 

pyridazine_xrefiteration_input.template 

pyridazine_xrefiteration_input.txt 

VMLSYM 

$ 

 

As xrefiteration progresses through each iteration, it collects the parameter values and fit 

errors in the "-allruns.csv" file, along with the calculated δre
SE of each type, noting which 

isotopologues were included in the data set and which was most recently incorporated.  The results 

of the re
SE calculated after inclusion of the next isotopologue are collected in the "-results.csv" file 

and the corresponding xrefit output is kept, suffixed with "_RUN###.out".  Therefore, the last 

"_RUN###.out" is the xrefit output for using all provided isotopologues, while the first 

("_RUN000.out") is the xrefit output for the initial set of isotopologues.  
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NOTE: the script appends the results to the .csv files, so rerunning the same input filename 

will place the results at the end of the .csv files, not the top, and will not replace the files.  

The script will, however, replace any "_RUN###.out" files of the same name. 

The ".template" and "_isotopologuesmasseslist.txt" files are generated by xrefiteration based on 

the input you provided and is used to generate all xrefit INPUT files that are executed throughout 

the routine.  The "fort.16", "INPUT", and "VMLSYM" files are left over from executing xrefit.  

These files can be discarded once the routine has finished.   

Help text 

Help text for the xrefiteration script is built in and is printed upon entering the command 

xrefiteration or xrefiteration --help and will also display if the script doesn't understand 

the options (vide infra) being provided.   

$ xrefiteration 

OR 

$ xrefiteration --help 

prints 

Usage: xrefiteration arguments filename 

 

Optional arguments: 

-a Runs full analysis on initial set of isotopologues that the user is 

prompted to provide as a space-delimited list of the iso numbers, 

e.g. "1 2 5 9". 

-b Runs xrefit for a custom combination of isotopologues, without 

running the full analysis, using list provided by the user, e.g. "1 

2 5 9". 

-c Keeps the outputs of all xrefit runs for further analysis by the 

user. 

-d Runs full analysis allowing only the specified axes to be fit. User 

will be prompted to enter the axes, e.g. "a C" fits A & C axes only 
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(order & case insensitive). Default is to fit all three A, B, & C 

axes. 

-e Runs xrefit for all single "knockouts" of the full data set. That 

is, the data for one isotopologue is excluded from the full data 

set and xrefit executed. This is repeated for all isotopologues in 

the data set, with results written to "-knockouts.csv" 

-f Runs an additional "correlation" analysis of the isotopologues not 

part of the initial accepted set by running all pair-wise additions 

to the accepted set. Saved to "-pairs.csv"   !!!Experimental!!! 

-g Prompts the user to select an alternate metric to use as the metric 

for xrefiteration analysis.  A numbered list will be printed and 

the user needs to enter the number corresponding to the desired 

metric.  

-h Isotopologues are weighted by the values provided in the input file.  

This option is incompatible with option (-d).  

--help Prints this help text. 

 

This script automatically runs and analyzes CFOUR xrefit program for the 

user-provided file such that beginning from the initial set of 

isotopologues, the isotopologue that lowers the error of the least-squares 

fit the most is added to the next run of xrefit, until all isotopologues 

have been added. The outputs of every xrefit calculation are collected in 

the "-allruns.csv" file, while the final summary of the xrefiteration 

analysis is in the "-results.csv" file for convenient analysis in Excel. 

The xrefit output file form each iteration of the analysis is kept as 

"_RUN###.out" 

 

Note: the default initial set is given by whichever isotopologue is listed 

first, plus any isotopologues that differ by only 1 substitution from the 

first.  

 

Note: the errors (uncertainties) provided by xrefit are 1 sigma.  

Optional arguments 

The following provides additional information regarding the optional arguments. If an 

unrecognized option is specified by the user, the script will first print 

!!! Unrecognized Option _ !!! followed by the help text, where the underscore will be the 

option the user provided. 
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-a Runs full analysis on initial set of isotopologues that the user is 

prompted to provide as a space-delimited list of the iso numbers, e.g. "1 

2 5 9". 

This argument allows the user to specify which isotopologues they would like to use for 

the initial set.  The default is to use whichever isotopologue is listed first in the input file, 

plus any additional isotopologues that differ by a single isotopic substitution.  In some 

cases, however, this may not be ideal.  For example, if the molecule contains a sulfur atom 

and the 33S and 34S singly substituted isotopologues are included in the data set, the routine 

will include both isotopologues by default in the initial set, even though only one of them 

is required to obtain a substitution structure.  If the user provides five or fewer 

isotopologues, they will be asked to confirm if this was desired. 

 

-b Runs xrefit for a custom combination of isotopologues, without running 

the full analysis, using list provided by the user. 

This argument allows the user to run xrefit for a specific combination of isotopologues 

using the xrefiteration input file, instead of manually editing the xrefit INPUT.  The results 

will also be appended to the .csv files, allowing the user to run multiple custom 

combinations while keeping the results centralized.  The xrefit output files are also saved 

as ".custom######" files and will not be replaced by subsequent executions of 

xrefiteration.  

 

-c Keeps the outputs of all xrefit runs for further analysis by the user. 

The default is for xrefiteration to remove the extra xrefit outputs that were generated during 

each iterations' test of which isotopologue addition lowers the δre
SE the most.  The user can 

use this option to prevent that.  
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-d Runs full analysis allowing only the specified axes to be fit. User will 

be prompted to enter the axes, e.g. "a C" fits A & C axes only (order & 

case insensitive). Default is to fit all three A, B, & C axes. 

This argument will change the weighting of the axes in the xrefit inputs generated.  If the 

axis is being fit, its weight is set to one and if not, its weight is set to zero, for all 

isotopologues in the input file.  

 

-e Runs xrefit for all single "knockouts" of the full data set. That is, the 

data for one isotopologue is excluded from the full data set and xrefit 

executed. This is repeated for all isotopologues in the data set, with 

results written to "-knockouts.csv" 

This option executes an additional analysis, where all but one isotopologue is included in 

the data set for re
SE structure determination in xrefit.  The results of this should allow the 

user to identify which isotopologues have the largest impact on individual structural 

parameters or on the structure as a whole. 

 

-f Runs an additional "correlation" analysis of the isotopologues not part 

of the initial accepted set by running all pair-wise additions to the 

accepted set. Saved to "-pairs.csv"   !!!Experimental!!! 

This is an experimental analysis that can be executed during the xrefiteration routine.  If 

selected, this will run all combinations of the initial accepted set with one and with two 

additional isotopologues included and output the results to the specified .csv file. 
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-g Prompts the user to select an alternate metric to use as the metric for 

xrefiteration analysis.  A numbered list will be printed and the user 

needs to enter the number corresponding to the desired metric.  

This option allows the user to change the metric that drives the xrefiteration algorithm.  By 

default, the algorithm uses the Total Relative Error (δre
SE) to select which isotopologue 

should be used next to expand the data set.  Using this option, the user can select the Bonds' 

Relative Error, Angles' Relative Error, or Dihedrals' Relative Error, as well the error 

corresponding to any of the Z-matrix parameters being fit by xrefit.  A numbered list of the 

available metrics will be printed to the screen, and the user needs to enter the number 

corresponding to the desired metric.  The xrefiteration analysis, and any other options 

specified, will then run using this desired metric.   

 

-h Isotopologues are weighted by the values provided in the input file.  This 

option is incompatible with option (-d).  

By default, xrefiteration fits all axes [or those selected using option (-d)] equally at a value 

of 1, ignoring any weights provided by the user in the original input file.  Using this option 

tells the script to use the weights provided in the original input file, allowing the user to 

provide alternative weights.  The xrefiteration analysis, and any other options specified, 

will then run using the provided weights of each isotopologue.  This option is particularly 

useful for handling a molecule with high symmetry and redundant rotational constants, but 

which may change upon isotopic substitution.  As noted, this option is incompatible with 

option (-d) and will result in an error message, asking the user to select either (-d) or (-h). 
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Chapter 2: The Semi-Experimental and Theoretical 

Structures of Hydrazoic Acid 
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ABSTRACT 

 Hydrazoic acid (HN3) is used as a case study for investigating the accuracy and precision 

by which a molecular structure – specifically, a semi-experimental equilibrium structure (re
SE) – 

may be determined using current state-of-the-art methodology.  The influence of the theoretical 

corrections for effects of vibration-rotation coupling and electron-mass distribution that are 

employed in the analysis is explored in detail.  The small size of HN3 allowed us to deploy 

considerable computational resources to probe the basis-set dependence of these corrections using 

a series of CCSD(T) calculations with cc-pCVXZ (X = D, T, Q, 5) basis sets.  We extrapolated the 

resulting corrections to the complete basis set (CBS) limit to obtain CCSD(T)/CBS corrections, 

which were used in a subsequent re
SE structure determination.  The re

SE parameters obtained using 

the CCSD(T)/cc-pCV5Z corrections are nearly identical to those obtained using the 

CCSD(T)/CBS corrections, with uncertainties in the bond distances and angles of less than 0.0006 

Å and 0.08°, respectively.  The previously obtained re
SE structure using CCSD(T)/ANO2 agrees 

with that using CCSD(T)/cc-pCV5Z to within 0.00008 Å and 0.016° for bond distances and angles, 

respectively, and with only 25% larger uncertainties, validating the idea that re
SE structure 

determinations can be carried out with significantly smaller basis sets than those needed for 

similarly accurate, strictly ab initio determinations.  Although the purely computational re 

structural parameters (CCSD(T)/cc-pCV6Z) fall outside of the statistical uncertainties (2σ) of the 

corresponding re
SE structural parameters, the discrepancy is rectified by applying corrections to 

address the theoretical limitations of the CCSD(T)/cc-pCV6Z geometry with respect to basis set, 

electron correlation, relativity, and the Born-Oppenheimer approximation, thereby supporting the 

contention that the semi-experimental approach is both an accurate and vastly more efficient 

method for structure determinations than is brute-force computation. 
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INTRODUCTION 

 The recent theoretical and semi-experimental equilibrium structure determinations of 

pyrimidine,1 thiophene,2 thiazole,3 and pyridazine4 set an impressive standard for the agreement 

that is possible between semi-experimental (re
SE) and theoretical (re) equilibrium structures.  

Following the work on these larger aromatic systems,1 we were interested in revisiting our previous 

work5 on hydrazoic acid (HN3) to determine how accurately the re
SE and re parameters could be 

determined for a small molecule by pushing the limits of computation.  From both the experimental 

and theoretical points of view, HN3 (Figure 2.1) is nearly an ideal candidate for this type of 

investigation.  On the experimental side, HN3 is a small molecule that possesses a moderate dipole 

with both a- and b-axis components, producing intense rotational transitions across the microwave 

and millimeter-wave frequency range.  It is easily synthesized from sodium azide and aqueous 

acidic solution, allowing for convenient isotopologue generation.5  With only four atoms, 

rotational constants of 14 isotopologues (of 16 possible stable isotopologues) have been observed, 

providing 28 independent moments of inertia to determine its five independent structural 

parameters.  One potential complication in the structure determination, however, is the presence 

of coupling between the ground vibrational state and low-lying, vibrationally excited states.5-6  On 

the theoretical side, the electronic structure calculations involve only 22 electrons (including core 

electrons), allowing for fast computations of the geometry optimization and anharmonic 

vibrational frequencies, even when utilizing sophisticated treatments for electron correlation and 

larger basis sets.  For these reasons, HN3 can be used as a case study to probe the limits of structure 

determination for asymmetric top molecules. 
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Figure 2.1.  Hydrazoic acid (HN3, Cs, μa = 0.837 D, μb = 1.48 D, and κ = −0.999) with principal 

axes and atom numbering. 

 The nearly linear arrangement of the nitrogen atoms in hydrazoic acid was established in 

the early 20th century, as well as the substantial deviation of the hydrogen atom from the axis of 

the nitrogen atoms.7-9  Substitution structures refined the bond distances and the terminal N–N–H 

angle, but the position of the central nitrogen atom remained poorly determined,10-14 and thus the 

angle could only be estimated.15  The crystal structure of hydrazoic acid, first reported by Evers et 

al.,16 revealed the bent nitrogen chain (N–N–N angle 172.8°) in the solid state.17  The first complete 

gas phase structure determination of hydrazoic acid was the recent semi-experimental substitution 

structure (re
SE) obtained using the rotational spectra of 14 isotopologues.5  That work included 

isotopic substitutions of the central nitrogen atom for the first time and confirmed the N–N–N 

angle. 

 Computational investigations of HN3 have consistently supported the slight bend of the 

nitrogen-atom chain.5, 16, 18-20  Amberger et al. reported a high-level computational study involving 

coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)] and the 
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cc-pCV5Z basis,* which predicted bond distances and angles to within 0.0012 Å and 0.25°, 

respectively, of the re
SE structure determined therein.5  While the agreement between the theoretical 

and re
SE structures published in that work was indeed quite good, improvements in our 

implementation of the re
SE structure analysis and those possible in the theoretical treatments of the 

equilibrium structure suggest even better agreement could be achieved.   

METHODS 

Rotational Spectroscopy 

 The average "determinable rotational constants" (A0ʹʹ, B0ʹʹ, and C0ʹʹ)
21 for 14 isotopologues 

of HN3 (determined from the spectroscopic constants in both A- and S-reduced Hamiltonians, Ir 

representation), were taken directly from the supplemental material of our previous work.5  These 

determinable constants are free of the effects of centrifugal distortion and are independent of the 

choice of A or S reduction used in the least-squares fitting.  Details of the synthesis of the 

isotopologues, the instrumentation, the spectra, and further analyses are reported in the earlier 

study.  Due to complications arising from the coupling between the ground state and low-lying 

bending fundamentals ν5 and ν6, care must be taken to ensure that the rotational constants used in 

the structure determination are unperturbed.  The rotational constants determined in our previous 

work5 (which did not address the c-type Coriolis and a-type Coriolis couplings between the ground 

state and fundamentals ν5 and ν6, respectively) and determined in a more recent work6 (which 

contains additional ground-state transitions and addresses the coupling of ν5 and ν6) are provided 

 
* The CCSD(T)/cc-pCV5Z optimized parameters of hydrazoic acid reported in Table VI and Figure 3 of Amberger et 

al., 2015, are incorrect; specifically, the parameters are inconsistent with the CCSD(T)/cc-pCV5Z optimization output 

file in the supplementary material of that same work.  The values that are present in the output file of the supplementary 

material were replicated in this work, and all references and comparisons herein involving the previous CCSD(T)/cc-

pCV5Z structure refer to these correct CCSD(T)/cc-pCV5Z values. 
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in Table 2.1.  Neither of these least-squares fits adequately addresses the coupling present in the 

system, as evidenced by the relatively poor agreement between the computed centrifugal distortion 

constants and their corresponding experimentally determined values.  In particular, the K-

dependent computed and experimental centrifugal distortion constants (ΔK, δK, ΦK, and ϕK) do not 

have the expected level of agreement, making it likely that both fits have allowed Coriolis coupling 

to be absorbed into those constants.  A collaborative effort is underway to address the unresolved 

coupling issues of the ground and vibrationally excited states of HN3 and DN3.  Fortunately, the 

close agreement of the rotational constants between the two previous published least-squares fits5-

6 provides confidence that the ground state rotational constants can be used in a structure 

determination without addressing the coupling.  While addressing the Coriolis-coupling in 

different ways, the two least-squares fits obtained rotational constants that differ only in the sixth 

significant figure.  Furthermore, the determinable constants from the A- or an S-reduction least-

squares fit agree to within a few kHz.  Confidence in the rotational constants derived from this 

agreement is critically important because the interactions between the ground state and 

vibrationally excited states for many isotopologues observed at natural abundance cannot be 

addressed in a practical manner due to the low intensity of the rotational transitions for these 

species. 
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Table 2.1.  Spectroscopic Constants of HN3 (A-Reduced Hamiltonian, Ir Representation) 

 CCSD(T)/cc-pCV5Z Amberger et al.5  Vávra et al.6, a 

A0 (MHz) 611182 611034.132 (29) 611036.218 (13) 

B0 (MHz) 12053 12034.983 (62) 12035.03574 (95) 

C0 (MHz) 11801 11780.6713 (66) 11780.62295 (77) 

J (kHz) 4.75 4.9174 (10) 4.91845 (24) 

JK (kHz) 774 797.98 (15) 771.43 (61) 

K (kHz) 226000 267559 (27) 146050 (620) 

J (kHz) 0.0778 0.09118 (22) 0.091726 (28) 

K (kHz) 318 403.9 (31) 428.96 (41) 

J (Hz) −0.000966 [0]b [0]b 

JK (Hz) 1.95 1.19 (10) [0]b 

KJ (Hz) −983 255 (14) 16.89 (42) 

K (Hz) 282000 [0]b 661.1 (20) 

J (Hz) 0.0000784 [0]b [0]b 

JK (Hz) 1.46 [0]b [0]b 

K (Hz) 3960 [0]b [0]b 

LKKJ (mHz)  −40010 (400) [0]b 

i  (uÅ2) 0.0685 0.0794 0.0798 

lines  78 mmw 273 mmw / 859 ir 

fit (MHz)  0.032 0.042 / 72.5 
a a-type and c-type Coriolis couplings addressed with the ground state, ν5 and ν6, see previous work6 for details. 

b Computed sextic centrifugal distortion constants not available during previous work and values fixed to zero. 

 

Computations 

 A developmental version of CFOUR was used to conduct all ab initio calculations.22  These 

consisted of geometry optimizations, anharmonic VPT2, and magnetic properties calculations at 

CCSD(T) using frozen-core approximated (cc-pVXZ) or all-electron (cc-pCVXZ) Dunning-style 

basis sets (for X = D, T, Q, and 5).  Isotopologue-dependent corrections to the rotational constants 

were calculated to account for vibration-rotation interactions using the results of the VPT2 

calculations and for electron-mass distributions using the results of magnetic property calculations.  

These corrections were then combined with the average determinable A0ʹʹ, B0ʹʹ, and C0ʹʹ constants 

to obtain semi-experimental equilibrium constants (Be
x) for each isotopologue, using Eq. (2.S1).  



40 

The re
SE structure of HN3 was then determined by a nonlinear least-squares fit of the corresponding 

moments of inertia, using the xrefit module included within CFOUR, with all values weighted 

equally.   

 Further analysis of the re
SE structure determination was conducted using the xrefiteration 

routine, which is described in detail in Chapter 1 of this thesis and elsewhere.4  Concisely, an initial 

re
SE structure determination is obtained for the "minimal set" of isotopologues, which consist of 

the normal isotopologue and any isotopologue differing by a single isotopic substitution.  The 

xrefiteration routine then obtains a set of re
SE structures where only one previously unincorporated 

isotopologue of those remaining is added into the dataset.  The routine then estimates the overall 

"apparent precision" by calculating the total relative uncertainty (δre
SE) of the resulting structures 

using Eq. (2.1), where Ri, θi, and ϕi represent bond distances, angles, and dihedrals, respectively, 

and σfit is the statistical uncertainty from the least-squares fit of the re
SE.   
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The re
SE structure with the smallest apparent precision is kept and the process is repeated until all 

isotopologues are included.  As we demonstrated for thiophene,2 thiazole,3 and pyridazine,4 the 

utility of this analysis lies in tracking the progression of the structural parameters in comparison 

to the theoretical values to assess the accuracy of the final structure.   

 Finally, we calculated a "best theoretical estimate" (BTE) equilibrium structure for HN3, 

using the previously described methodology,1-4 which takes into account the following 

contributions to the geometry beyond a normal coupled cluster geometry optimization: 

1. Residual basis set effects, Eq. (2.2), by means of extrapolation to the complete basis 

set (CBS) limit using CCSD(T)/cc-pCVXZ (X = Q, 5, and 6). 
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 ( ) ( ) ( )basis CCSD(T)/cc-pCV6ZR R R =  −  (2.2) 

2. Residual electron correlation effects, Eq. (2.3), by use of CCSDT(Q).23 

 ( ) ( ) ( )corr CCSDT(Q)/cc-pCVTZ CCSD(T)/cc-pCVTZR R R = −  (2.3) 

3. Scalar relativistic effects, Eq. (2.4), by use of the X2C-1e variant of coupled-cluster 

theory.24-26 

 ( ) ( ) ( )
SFX2C-1e

rel CCSD(T)/cc-pCV5Z CCSD(T)/cc-pCV5ZR R R = −  (2.4) 

4. Effect of the Born-Oppenheimer approximation, Eq. (2.5), by use of the diagonal Born-

Oppenheimer correction (DBOC).27-28 

 ( ) ( ) ( )
DBOC

DBOC SCF/cc-pCVTZ SCF/cc-pCVTZR R R = −  (2.5) 

The correction to the CCSD(T)/cc-pCV56Z optimization necessary to obtain the BTE is then given 

by the sum of the above corrections for each parameter, as in Eq. (2.6).   

 ( ) ( ) ( ) ( ) ( )best basis corr rel DBOCR R R R R =  +  +  +   (2.6) 

RESULTS AND DISCUSSION 

Structure Determinations 

 The planar structure of HN3 allows an assessment of the quality of the computed 

corrections to the rotational corrections, specifically by examining inertial defects associated with 

the experimental and semi-experimental rotational constants.  The inertial defect is precisely zero 

for a rigid planar structure, but the uncorrected experimental rotational constants (B0
x) will have a 

non-zero inertial defect (Δi 0) due to vibration-rotation interactions and the electron-mass 
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distribution.  These deviations are addressed by the computational corrections used to obtain the 

semi-experimental Be
x rotational constants and should bring the approximate Δi e closer to zero.  

Previously for HN3,
5 the inertial defect was reduced to about 3% of its original value after inclusion 

of the vibration-rotation corrections (Table 2.2).  Subsequent addition of an isotopologue-

independent electron-mass correction to the rotational constants did not further reduce the 

magnitude of the inertial defect but slightly increased its value.  In cases where the electron-mass 

distribution in the molecule is not well-described by subsuming the electron masses into the nearby 

nuclei,1-4, 29 use of isotopologue-dependent electron-mass corrections has been shown to reduce 

the Δi e by about one order of magnitude.  In the current study, CCSD(T)/cc-pCV5Z corrections 

have been applied to the rotational constants resulting in inertial defects roughly two-thirds the 

magnitude of the ANO2-corrected inertial defects.  The inertial defects with both vibration-rotation 

and electron-mass corrections, however, are still slightly larger than those using just the vibration-

rotation corrections at the cc-pCV5Z level, similar to the relationship previously observed at the 

ANO2 level.  The extensive computational analysis in the current study allows us to extrapolate 

the vibration-rotation and electron-mass corrections to the rotational constants to the CBS limit 

(Supporting Information, Table 2.6).  Application of these CBS corrections to the B0
x constants to 

obtain the semi-experimental Be
x constants results in inertial defects that are nearly identical to 

those obtained at the cc-pCV5Z level, with identical standard deviations (Table 2.2).  The close 

agreement of the inertial defects obtained using either cc-pCV5Z or CBS corrections suggest that 

the cc-pCV5Z basis is sufficient for obtaining accurate corrections to the rotational constants.  The 

lack of improvement to the inertial defect with inclusion of the electron-mass correction is 

consistent with the earlier study5 and this lack of improvement is broadly consistent with the near-
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cylindrical nature of HN3 where electron mass is radially distributed around the H–N–N–N 

backbone in the in-plane and out-of-plane π orbitals.20 

Table 2.2.  Inertia Defects (Δi) of Hydrazoic Acid Isotopologues 

  Exp.5  ANO25  cc-pCV5Z  CBS 

Isotopologue  

Δi 0 

(uÅ2) 

 Δi e 

(uÅ2)a Δi e (uÅ2)b  Δi e (uÅ2)a Δi e (uÅ2)b  Δi e (uÅ2)a Δi e (uÅ2)b 

normal  0.0735  0.00353 0.00360  0.00273 0.00280  0.00274 0.00289 

[2H]  0.0963  0.00342 0.00343  0.00236 0.00243  0.00276 0.00291 

[1-15N]  0.0738  0.00355 0.00363  0.00274 0.00281  0.00271 0.00286 

[2-15N]  0.0736  0.00350 0.00357  0.00270 0.00277  0.00275 0.00290 

[3-15N]  0.0736  0.00353 0.00362  0.00273 0.00280  0.00238 0.00253 

[2H, 1-15N]  0.0967  0.00345 0.00345  0.00237 0.00245  0.00240 0.00255 

[2H, 2-15N]  0.0962  0.00345 0.00346  0.00239 0.00246  0.00241 0.00256 

[2H, 3-15N]  0.0964  0.00343 0.00344  0.00236 0.00244  0.00239 0.00254 

[1,2-15N]  0.0739  0.00354 0.00362  0.00273 0.00280  0.00275 0.00290 

[1,3-15N]  0.0739  0.00354 0.00363  0.00273 0.00280  0.00275 0.00290 

[2,3-15N]  0.0737  0.00348 0.00356  0.00267 0.00274  0.00269 0.00284 

[2H, 1,2-15N]  0.0966  0.00346 0.00347  0.00239 0.00246  0.00241 0.00256 

[2H, 1,3-15N]  0.0969  0.00346 0.00347  0.00238 0.00246  0.00241 0.00256 

[2H, 2,3-15N]  0.0963  0.00343 0.00345  0.00237 0.00244  0.00239 0.00254 

Average (𝑥̅)  0.0851  0.00348 0.00353  0.00255 0.00262  0.00257 0.00272 

Std. Dev. (s)  0.0118  0.00005 0.00008  0.00018 0.00018  0.00018 0.00018 

 a Vibration-rotation interaction corrections only. 

 b Vibration-rotation interaction and electron-mass corrections. 

 

The re
SE structure determinations in Table 2.3 (and visualized in Figure 2.6 in the 

Supporting Information) using previously obtained data and increasingly larger correlation-

consistent basis sets clearly demonstrate the improvement in the fitting of the structural parameters 

as the basis set grows larger.  The structure obtained using corrections with the largest basis set 

(cc-pCV5Z, Figure 2.2) has the smallest statistical uncertainties and agrees well with the re
SE 

structure obtained using the CBS corrections described above.  Unsurprisingly, the parameters of 

the re
SE cc-pCVDZ structure are the most poorly determined of all the re

SE structures, with 
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uncertainties in the parameters nearly twice as large as those obtained using the triple-zeta basis.  

Notably, the re
SE structure previously obtained using the ANO2 corrections is similar to that using 

the cc-pCVTZ corrections, with nearly identical 2σ uncertainties in the parameters, and with values 

of the parameters in better agreement with the re
SE cc-pCV5Z values. 

 

 

Figure 2.2.  Semi-experimental equilibrium structure (re
SE) of hydrazoic acid with 2σ statistical 

uncertainties from least-squares fitting the isotopologue moments of inertia, after applying 

computed corrections (CCSD(T)/cc-pCV5Z) for the effects of vibration-rotation coupling and 

electron-mass distribution. 

To examine the effects of the different isotopologues on the re
SE structure, we conducted 

an xrefiteration analysis on the re
SE CCSD(T)/cc-pCV5Z structure.  For hydrazoic acid, the 

minimal set necessary to obtain a substitution structure is comprised of the normal isotopologue 

and the singly substituted isotopologues ([2H]-, [1-15N]-, [2-15N]-, and [3-15N]-hydrazoic acid).  

Using the xrefiteration routine, we obtained the re
SE structure using this minimal set as the initial 

set and then iteratively expanded the set of isotopologues until all were included.  The isotopologue 

added to expand the set was that with the lowest "apparent precision", calculated using Eq. 2.1, in 

which δre
SE is the total relative i.e., dimensionless, uncertainty of the structural parameters 

explicitly determined in the fit.  As shown in Figure 2.3 (and enumerated in Table 2.7 of the 

Supporting Information), the effect of adding isotopologues beyond the minimal set required for a 
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substitution structure is immediately noticeable, with the inclusion of the first additional 

isotopologue ([2H, 3-15N]) reducing δre
SE by 15%.  Addition of the next isotopologue ([2H, 1,2-

15N]) reduces δre
SE by 30% relative to the minimal set.  With each iteration of the algorithm, δre

SE 

of the resulting re
SE structure continues to decrease, eventually to 50% smaller than the initial 

value.  Notably, a rise in the δre
SE at the end of the xrefiteration analysis, observed in previous 

works,2-4 did not occur here.  In those previous works, we observed that the last few isotopologues 

tend to increase the δre
SE due to the nature of the algorithm: the isotopologues that raise the δre

SE 

are only added at the end of the analysis, after all isotopologues that lower the δre
SE have been 

added.  The absence of such behavior for the HN3 re
SE structure suggests that even the "worst"* of 

the isotopologues in the data set still lower the δre
SE, giving us confidence that the underlying 

spectroscopic data and theoretical corrections for the re
SE structure determination are consistent.  

Therefore, given that the data set contains 14 of the 16 possible stable isotopologues of HN3, we 

suspect that such consistency corresponds to accuracy.   

 
* The use of the word "worst" here refers to the degree to which information provided by the isotopologue in question 

is consistent with the information provided by the other isotopologues in the data set and does not necessarily reflect 

the quality of the spectroscopic data or computed corrections for that isotopologue.  As seen in pyridazine,4 the 

inclusion of the final isotopologue resulted in a dramatic increase in the δre
SE but was required for accurate 

determination of several parameters.  



 

 

4
6
 

Table 2.3.  Summary of re
SE Structural Parameters of Hydrazoic Acida 

Parameter ANO25 cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCV5Z CBS 

RH–N1 (Å) 1.01577 (32) 1.01572 (59) 1.01571 (33) 1.01583 (26) 1.01584 (24) 1.01584 (25) 

RN1–N2 (Å) 1.24174 (74) 1.24166 (133) 1.24166 (74) 1.24176 (58) 1.24178 (55) 1.24178 (57) 

RN2–N3 (Å) 1.13066 (76) 1.13080 (136) 1.13066 (75) 1.13068 (59) 1.13068 (56) 1.13068 (58) 

θH–N1–N2 (°) 109.133 (34) 109.192 (62) 109.148 (35) 109.116 (27) 109.118 (26) 109.117 (27) 

θN1–N2–N3 (°) 171.50 (10) 171.47 (18) 171.53 (10) 171.499 (80) 171.497 (76) 171.495 (79) 
a Evaluated from the average determinable rotational constants of 14 isotopologues, with corrections for vibration-rotation coupling and electron-mass distribution 

computed at CCSD(T) using the specified basis set.  
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Figure 2.3.  Plot of the δre
SE value as a function of the number of isotopologues (Niso) incorporated 

into the re
SE CCSD(T)/cc-pCV5Z structure determination data set.  The total relative statistical 

uncertainty (δre
SE, blue squares), the relative statistical uncertainty in the bond distances (green 

triangles), and the relative statistical uncertainty in the bond angles (purple circles) are presented. 

To assess the quality of the re
SE structure of HN3, we examined how the parameters of the 

structure change throughout the xrefiteration analysis.  As demonstrated by Figure 2.4 and Table 

2.4, there is remarkably little change in the parameter values throughout the xrefiteration analysis.  

The variation in the values of the bond distances and angles is <0.00005 Å and <0.001°, 

respectively, which is well within the 2σ uncertainties of the respective parameters.  Such variation 

in the parameters throughout the xrefiteration analysis contrasts with that observed in our previous 

works: ~0.0004 Å and ~0.05° for the bond distances and angles of pyridazine and thiophene, and 

~0.0014 Å and ~0.4° for the bond distances and angles of thiazole.  It appears that the HN3 structure 

converges very rapidly, and, after nine isotopologues, the only change in the structural parameter 



48 

 

values is 0.00001 Å for RN1–N2.  The convergence of the structural parameters and their close 

agreement with their BTE values (dotted lines in Figure 2.4) provides confidence that the resulting 

re
SE structure is both accurate and precise, despite the unaddressed coupling in the least-squares 

fits used to determine the experimental rotational constants.   

 

 

Figure 2.4.  Plots of the re
SE CCSD(T)/cc-pCV5Z structural parameters of hydrazoic acid as a 

function of the number of isotopologues (Niso) and their 2σ uncertainties with consistent scales for 

each distance (0.002 Å) and each angle (0.2°).  The dashed line in each plot is the BTE value 

calculated for that parameter.  The isotopologue ordering along the x-axis is the same as that in 

Figure 2.3. 
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Table 2.4.  Values of the Structural Parameters of Hydrazoic Acid During the Iterative Analysis of the re
SE CCSD(T)/cc-pCV5Z 

(xrefiteration) 

Niso 
a 

Isotopologue 

Added 

Parameters 

RH–N1 (Å) RN1–N2 (Å) RN2–N3 (Å) θH–N1–N2 (°) θN1–N2–N3 (°) 

5 Minimal Set b 1.01584 (58) 1.24177 (116) 1.13069 (119) 109.119 (43) 171.496 (135) 

6 [2H, 3-15N] 1.01584 (41) 1.24178 (100) 1.13067 (104) 109.118 (37) 171.497 (113) 

7 [2H, 1,2-15N] 1.01584 (36) 1.24175 (76) 1.13070 (78) 109.118 (36) 171.497 (107) 

8 [1,2-15N] 1.01584 (35) 1.24174 (69) 1.13071 (72) 109.118 (32) 171.497 (98) 

9 [2,3-15N] 1.01584 (34) 1.24176 (63) 1.13069 (64) 109.118 (30) 171.497 (92) 

10 [2H, 2,3-15N] 1.01584 (30) 1.24177 (59) 1.13068 (61) 109.118 (29) 171.497 (87) 

11 [2H, 1-15N] 1.01584 (28) 1.24177 (55) 1.13068 (57) 109.118 (28) 171.497 (84) 

12 [2H, 2-15N] 1.01584 (26) 1.24177 (55) 1.13068 (56) 109.118 (28) 171.497 (82) 

13 [1,3-15N] 1.01584 (26) 1.24178 (55) 1.13068 (56) 109.118 (26) 171.497 (77) 

14 [2H, 1,3-15N] 1.01584 (24) 1.24178 (55) 1.13068 (56) 109.118 (26) 171.497 (76) 

 a Number of isotopologues in the iteration 

 b The initial iteration consists of the normal isotopologue and [2H]-, [1-15N]-, [2-15N]-, and [3-15N]-hydrazoic acid 
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Theoretical Predictions 

 As with the aromatic heterocycles that we have recently studied,1-4 we obtained CCSD(T) 

geometry optimizations using up to and including the all-electron quintuple-zeta basis set.  The 

small size of HN3 allowed us to expand the basis set even further to the all-electron sextuple-zeta 

basis set.  Interestingly, we see that the purely theoretical re structural parameters computed using 

CCSD(T)/cc-pCV6Z do not fall within the statistical uncertainties of the re
SE parameters.  As we 

noted in related works,1-4 molecular structures predicted using CCSD(T) computations with a large 

basis set – while an adequate approach in a wide variety of computational contexts30-31 – are 

insufficiently accurate for comparison to the high precision of re
SE structure determinations.  

Furthermore, extrapolating the parameters to the CBS limit (Supporting Information, Table 2.9, 

"re+ΔR(basis)") is not sufficient to bring the theoretical parameters into agreement with the re
SE 

parameters. 

 Similar to that observed with the re
SE structures when the basis set increases in size, the re 

parameters also converge at an exponential rate (Table 2.8 and Figure 2.7 in the Supporting 

Information) with the exception of θN1–N2–N3.  The non-exponential behavior of this angle leads to 

a spurious R(∞) value that is closer to the triple-zeta value than it is to the sextuple-zeta value.  As 

such, we set the R(∞) value for θN1–N2–N3 to the sextuple-zeta value, which is equivalent to setting 

the ΔR(basis) correction for θN1–N2–N3 to zero, as given in Table 2.5.  Ultimately, this change has 

practically no effect on the outcome of the BTE structure and the following discussion: the angle 

is now slightly smaller but still well within the statistical uncertainty of the re
SE CCSD(T)/cc-

pCV5Z value. 
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 The precision of the re
SE structure is such that correcting for the size of the basis set is 

insufficient to bring the re structure into agreement.  To do so, the re structure must also be treated 

for electron correlation and for effects due to relativity and the (diagonal) Born-Oppenheimer 

correction.  As demonstrated in Table 2.5 and Figure 2.5, the inclusion of such effects results in a 

best theoretical estimate (BTE) structure that is in complete agreement with the re
SE structure.  All 

parameters from the BTE structure fall within the statistical uncertainties of the re
SE structure.  As 

is typically the case, the CBS correction [Eq. (2.2)] contracts the bond lengths while the correlation 

correction [Eq. (2.3)] lengthens the bonds (Table 2.5).  Unlike pyrimidine, where the DBOC 

correction lengthened the bonds and the relativistic correction contracted the bonds, we observe 

mixed effects of the DBOC and relativistic corrections on the HN3 bond lengths (Table 2.5); such 

was also the case for pyridazine.  The largest magnitude correction is the correlation correction for 

all parameters except θH–N1–N2. 
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Table 2.5.  Corrections Used in Determining the Best Theoretical Estimate (BTE) of the Equilibrium Structural Parameters of Hydrazoic 

Acid, with Comparison to the re
SE Determined Values. 

Parameter 

ΔR(basis) 

eqn (2) 

ΔR(corr) 

eqn (3) 

ΔR(rel) 

eqn (4) 

ΔR(DBOC) 

eqn (5) 

ΔR(best) 

eqn (6) 

CCSD(T)/ 

cc-pCV6Z BTE a 

re
SE 

CCSD(T)/ 

cc-pCV5Z 

RH–N1 (Å) −0.000010 0.00014 0.000027 0.000078 0.00024 1.01548 1.01572 1.01584 (24) 

RN1–N2 (Å) −0.00011 0.00133 0.00019 −0.000065 0.00135 1.24078 1.24213 1.24178 (55) 

RN2–N3 (Å) −0.000078 0.00213 −0.00019 −0.000015 0.00185 1.12925 1.13109 1.13068 (56) 

θH–N1–N2 (°) 0.015 0.062 −0.087 0.012 0.0018 109.103 109.105 109.118 (26) 

θN1–N2–N3 (°) 0b −0.208 −0.026 0.0041 −0.166 171.697 171.467 171.497 (76) 

  a Obtained by adding the ΔR(best) correction to the CCSD(T)/cc-pCV6Z optimized values.   

b This angle does not converge at an exponential rate with respect to the size of the basis set, leading to a spurious R(∞) value upon extrapolation.  As 

such, the R(∞) value for this angle has been set to that of the CCSD(T)/cc-pCV6Z structure, which results in a ΔR(basis) of this angle of zero per Eq. (2.2). 
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Figure 2.5.  Graphical comparison of the hydrazoic acid structural parameters with bond distances 

in angstroms (Å) and angles in degrees (°).  Uncertainties shown are 2σ.  Data for re
SE 

CCSD(T)/ANO2 are taken from Ref. 5. 

CONCLUSIONS 

 The re
SE structure determinations of HN3 using CCSD(T)/cc-pCV5Z corrections for the 

effects of vibration-rotation coupling and electron-mass distribution resulted in a modest reduction 

of the statistical uncertainties (2σ) of the structural parameters over those previously obtained with 

CCSD(T)/ANO2 corrections.  Given that these two re
SE structures determined the bond distances 

and bond angles to within 0.0001 Å and 0.02° of each other, the smaller ANO2 basis is 

recommended for re
SE structure determinations of larger molecules, where a quintuple-zeta basis 

set is impractical.  In our previous work on pyridazine, application of isotopologue-dependent 

electron-mass corrections resulted in a dramatic improvement in the semi-experimental inertial 
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defects (Δi e), but similar treatment for HN3 in this work did not.  The lack of a reduction in Δi e for 

HN3 upon inclusion of the isotopologue-dependent electron-mass corrections is puzzling.  While 

HN3 is highly prolate and pyridazine is highly oblate, why (or even if) the near-cylindrical shape 

and radial distribution of the electrons of HN3 would affect the electron-mass corrections is not 

clear.  The more likely explanation is that the VPT2 corrections for treating the vibration-rotation 

interactions – while reducing the inertial defect – are not accurately adjusting the rotational 

constants and the subsequent electron-mass corrections (being smaller in magnitude) are unable to 

affect a change, in which case higher-order perturbation theory may be required.   

 Given the high level of theory used to obtain the corrections and the inclusion of rotational 

constants from 14 of the 16 possible isotopologues, further improvement to the re
SE structure 

determination will be difficult to achieve.  Analysis of the present re
SE structure determination 

using the xrefiteration routine revealed continuous improvement in the re
SE structure as additional 

isotopologues were included in the data set, with very little variation in the values of the structural 

parameters, suggesting the underlying data is remarkably self-consistent.  While the purely 

theoretical re structural parameters computed using CCSD(T)/cc-pCV6Z do not fall within the 

statistical uncertainties (2σ) of the re
SE structure, structural parameters obtained from the "best 

theoretical estimate" are in excellent agreement with the semi-experimental values.  The molecular 

structure of hydrazoic acid, already known to high precision through previous work, has been 

further refined by improvements in computational methods and theoretical analyses, illustrating 

the state-of-the-art for contemporary gas-phase structure determination.   
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Evaluation of Semi-Experimental Equilibrium Rotational Constants (Be
x) 

 The Be
x constants are obtained for each isotopologue using Eq. 2.S1.  The ground-state 

rotational constants (B0
x), in this case the averaged determinable constants take from Amberger et 
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al., 2015, are combined with the vibration-rotation interaction corrections ( 1
2

x
i ) and the 

electron-mass distribution corrections ( CCSD(T)
bb xg B− ).  This evaluation is handled automatically 

by the xrefit module of CFOUR, once provided the requisite information.  The moments of inertia 

and inertial defects are similarly calculated using xrefit.   

 0 CCSD(T)

1

2

x x x bb x
e iB B g B = + −  (2.S1) 

 

Complete Basis Set (CBS) Extrapolation 

All basis set extrapolations were conducted using Eq. 2.S2, which is the three-point solution to the 

exponential equation given by Eq. 2.S3, assuming that 1 2 32 1x x x+ = + =  for the zetas of the basis 

sets of the calculated parameters.   

 ( )
( ) ( ) ( )

( ) ( ) ( )

2

2 1 3

1 3 22

R x R x R x
R

R x R x R x

−
 = −

+ −
 (2.S2) 

 ( ) ( ) BxR x R Ae−=  +  (2.S3) 
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Table 2.6.  Semi-experimental equilibrium rotational constants (Be
x) of isotopologues of hydrazoic acid and the CCSD(T) corrections 

used to obtain them, including CBS extrapolation of the triple-, quadruple-, and quintuple-zeta corrections using Eq. 2.S2.  The ground 

state rotational constants (B0
x) are the average determinable rotational constants taken from Amberger et al. 2015. 

   normal  [2H] 

   cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCV5Z CBS  cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCV5Z CBS 

𝐵0
𝑥 

A  611034.143  344746.621 

B  12034.984  11350.717 

C  11782.287  10965.958 

1

2
∑𝛼𝑖

𝑥 

A  −503.701 −1208.588 −1950.624 −1986.772 −1988.623  340.712 −238.437 −527.732 −534.159 −534.305 

B  57.182 58.478 57.649 57.744 57.734  49.426 51.399 50.764 50.809 50.806 

C  73.384 75.014 74.130 74.253 74.238  67.992 70.059 69.368 69.449 69.440 

𝜂𝑔𝑏𝑏𝐵CCSD(T)
𝑥  

A  43.207 54.132 60.262 63.178 65.822  8.334 11.581 13.381 14.230 14.989 

B  −0.405 −0.448 −0.470 −0.486 −0.523  −0.358 −0.396 −0.415 −0.429 −0.463 

C  −0.370 −0.399 −0.414 −0.423 −0.437  −0.324 −0.349 −0.362 −0.370 −0.381 

𝐵0
𝑥 +

1

2
∑𝛼𝑖

𝑥 

A  610530.442 609825.555 609083.520 609047.371 609045.520  345087.333 344508.184 344218.889 344212.462 344212.316 

B  12092.165 12093.462 12092.633 12092.727 12092.718  11400.143 11402.117 11401.481 11401.526 11401.523 

C  11855.671 11857.301 11856.417 11856.541 11856.525  11033.951 11036.017 11035.326 11035.407 11035.399 

𝐵𝑒
𝑥 

A  610573.649 609879.687 609143.782 609110.549 609111.342  345095.667 344519.765 344232.270 344226.693 344227.306 

B  12091.760 12093.014 12092.163 12092.241 12092.194  11399.785 11401.721 11401.065 11401.097 11401.061 

C  11855.301 11856.902 11856.002 11856.117 11856.089  11033.626 11035.668 11034.964 11035.037 11035.018 
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Table 2.6 (continued) 

   [1-15N]  [2-15N] 

   cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCV5Z CBS  cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCV5Z CBS 

𝐵0
𝑥 

A  605576.900  610033.003 

B  11668.321  12034.149 

C  11428.634  11781.100 

1

2
∑𝛼𝑖

𝑥 

A  −613.863 −1276.628 −2013.172 −2050.642 −2052.650  −676.998 −1337.761 −2083.467 −2121.896 −2123.984 

B  55.010 56.192 55.373 55.466 55.457  56.554 57.796 56.986 57.079 57.070 

C  70.279 71.787 70.915 71.036 71.021  72.736 74.323 73.455 73.577 73.562 

𝜂𝑔𝑏𝑏𝐵CCSD(T)
𝑥  

A  43.821 54.590 60.644 63.523 66.137  42.859 53.763 59.868 62.771 65.404 

B  −0.382 −0.423 −0.444 −0.459 −0.493  −0.405 −0.448 −0.470 −0.486 −0.523 

C  −0.349 −0.377 −0.391 −0.399 −0.412  −0.370 −0.399 −0.414 −0.423 −0.436 

𝐵0
𝑥 +

1

2
∑𝛼𝑖

𝑥 

A  604963.036 604300.272 603563.727 603526.258 603524.249  609356.005 608695.242 607949.536 607911.106 607909.018 

B  11723.331 11724.513 11723.694 11723.788 11723.778  12090.704 12091.946 12091.136 12091.229 12091.219 

C  11498.914 11500.421 11499.549 11499.670 11499.656  11853.836 11855.423 11854.555 11854.677 11854.662 

𝐵𝑒
𝑥 

A  605006.857 604354.862 603624.371 603589.781 603590.386  609398.864 608749.005 608009.404 607973.878 607974.422 

B  11722.949 11724.091 11723.250 11723.329 11723.285  12090.299 12091.498 12090.665 12090.743 12090.696 

C  11498.565 11500.045 11499.159 11499.271 11499.244  11853.467 11855.024 11854.141 11854.254 11854.226 
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Table 2.6 (continued) 

   [3-15N]  [2H, 1-15N] 

   cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCV5Z CBS  cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCV5Z CBS 

𝐵0
𝑥 

A  610977.577  340247.312 

B  11642.536  11045.521 

C  11405.842  10676.372 

1

2
∑𝛼𝑖

𝑥 

A  −522.516 −1220.178 −1962.609 −1998.957 −2000.828  341.460 −212.127 −496.570 −503.009 −503.158 

B  54.951 56.205 55.415 55.507 55.497  47.727 49.573 48.936 48.983 48.980 

C  70.169 71.738 70.895 71.015 71.000  65.408 67.357 66.670 66.751 66.742 

𝜂𝑔𝑏𝑏𝐵CCSD(T)
𝑥  

A  43.151 54.072 60.197 63.111 65.755  8.831 12.019 13.794 14.634 15.387 

B  −0.377 −0.418 −0.439 −0.453 −0.489  −0.341 −0.377 −0.395 −0.408 −0.439 

C  −0.345 −0.373 −0.387 −0.395 −0.408  −0.308 −0.332 −0.344 −0.352 −0.362 

𝐵0
𝑥 +

1

2
∑𝛼𝑖

𝑥 

A  610455.061 609757.399 609014.968 608978.620 608976.749  340588.773 340035.186 339750.742 339744.304 339744.155 

B  11697.488 11698.742 11697.951 11698.043 11698.034  11093.248 11095.093 11094.457 11094.504 11094.500 

C  11476.011 11477.580 11476.737 11476.856 11476.841  10741.779 10743.729 10743.042 10743.123 10743.114 

𝐵𝑒
𝑥 

A  610498.211 609811.470 609075.166 609041.731 609042.504  340597.604 340047.205 339764.537 339758.937 339759.541 

B  11697.110 11698.324 11697.513 11697.590 11697.545  11092.907 11094.717 11094.062 11094.095 11094.061 

C  11475.665 11477.207 11476.350 11476.461 11476.433  10741.471 10743.397 10742.697 10742.771 10742.752 
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Table 2.6 (continued) 

   [2H, 2-15N]  [2H, 3-15N] 

   cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCV5Z CBS  cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCV5Z CBS 

𝐵0
𝑥 

A  344618.818  344727.744 

B  11348.346  10979.893 

C  10963.631  10619.408 

1

2
∑𝛼𝑖

𝑥 

A  328.923 −243.781 −533.488 −539.951 −540.098  341.055 −237.728 −526.734 −533.174 −533.321 

B  48.870 50.795 50.178 50.222 50.219  47.530 49.434 48.826 48.871 48.868 

C  67.428 69.455 68.780 68.860 68.852  64.995 66.988 66.329 66.407 66.399 

𝜂𝑔𝑏𝑏𝐵CCSD(T)
𝑥  

A  8.295 11.543 13.341 14.190 14.948  8.351 11.601 13.402 14.253 15.013 

B  −0.358 −0.396 −0.415 −0.429 −0.462  −0.334 −0.369 −0.387 −0.400 −0.432 

C  −0.324 −0.349 −0.362 −0.370 −0.381  −0.303 −0.326 −0.339 −0.346 −0.357 

𝐵0
𝑥 +

1

2
∑𝛼𝑖

𝑥 

A  344947.742 344375.038 344085.331 344078.868 344078.720  345068.799 344490.016 344201.010 344194.570 344194.423 

B  11397.216 11399.141 11398.523 11398.568 11398.565  11027.423 11029.327 11028.719 11028.764 11028.761 

C  11031.059 11033.086 11032.411 11032.491 11032.483  10684.403 10686.396 10685.737 10685.815 10685.807 

𝐵𝑒
𝑥 

A  344956.037 344386.581 344098.672 344093.058 344093.669  345077.149 344501.617 344214.413 344208.823 344209.436 

B  11396.858 11398.745 11398.108 11398.139 11398.103  11027.089 11028.958 11028.331 11028.364 11028.329 

C  11030.735 11032.737 11032.049 11032.121 11032.102  10684.100 10686.070 10685.398 10685.470 10685.451 
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Table 2.6 (continued) 

   [1,2-15N]  [1,3-15N] 

   cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCV5Z CBS  cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCV5Z CBS 

𝐵0
𝑥 

A  604507.443  605510.191 

B  11666.355  11283.093 

C  11426.344  11058.772 

1

2
∑𝛼𝑖

𝑥 

A  −796.361 −1413.775 −2153.962 −2193.824 −2196.094  −635.009 −1290.280 −2027.282 −2064.976 −2067.007 

B  54.393 55.522 54.721 54.813 54.803  52.845 53.990 53.208 53.299 53.290 

C  69.639 71.104 70.248 70.367 70.352  67.174 68.625 67.794 67.911 67.897 

𝜂𝑔𝑏𝑏𝐵CCSD(T)
𝑥  

A  43.465 54.211 60.238 63.105 65.706  43.763 54.527 60.575 63.452 66.063 

B  −0.382 −0.422 −0.443 −0.458 −0.493  −0.356 −0.394 −0.414 −0.427 −0.460 

C  −0.349 −0.376 −0.391 −0.399 −0.411  −0.325 −0.351 −0.365 −0.373 −0.384 

𝐵0
𝑥 +

1

2
∑𝛼𝑖

𝑥 

A  603711.082 603093.668 602353.481 602313.618 602311.349  604875.182 604219.911 603482.909 603445.215 603443.184 

B  11720.748 11721.877 11721.075 11721.168 11721.158  11335.938 11337.082 11336.301 11336.392 11336.382 

C  11495.983 11497.448 11496.592 11496.711 11496.697  11125.946 11127.397 11126.566 11126.683 11126.668 

𝐵𝑒
𝑥 

A  603754.547 603147.879 602413.719 602376.723 602377.055  604918.945 604274.438 603543.484 603508.668 603509.247 

B  11720.366 11721.455 11720.632 11720.709 11720.665  11335.582 11336.689 11335.887 11335.965 11335.922 

C  11495.635 11497.072 11496.201 11496.312 11496.285  11125.621 11127.045 11126.201 11126.310 11126.284 
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Table 2.6 (continued) 

   [2,3-15N]  [2H, 1,2-15N] 

   cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCV5Z CBS  cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCV5Z CBS 

𝐵0
𝑥 

A  609961.095  340093.984 

B  11642.642  11041.857 

C  11405.580  10672.817 

1

2
∑𝛼𝑖

𝑥 

A  −697.557 −1349.883 −2095.925 −2134.585 −2136.698  328.016 −218.559 −503.447 −509.952 −510.104 

B  54.339 55.541 54.768 54.859 54.849  47.176 48.974 48.355 48.401 48.398 

C  69.540 71.068 70.240 70.358 70.344  64.843 66.754 66.082 66.162 66.153 

𝜂𝑔𝑏𝑏𝐵CCSD(T)
𝑥  

A  42.795 53.695 59.794 62.696 65.327  8.790 11.979 13.752 14.590 15.342 

B  −0.377 −0.418 −0.439 −0.453 −0.488  −0.340 −0.376 −0.395 −0.408 −0.439 

C  −0.345 −0.373 −0.387 −0.395 −0.408  −0.308 −0.332 −0.344 −0.351 −0.362 

𝐵0
𝑥 +

1

2
∑𝛼𝑖

𝑥 

A  609263.538 608611.212 607865.169 607826.509 607824.396  340422.000 339875.425 339590.537 339584.032 339583.880 

B  11696.980 11698.182 11697.410 11697.500 11697.491  11089.034 11090.831 11090.212 11090.258 11090.255 

C  11475.120 11476.648 11475.820 11475.938 11475.924  10737.660 10739.570 10738.899 10738.978 10738.970 

𝐵𝑒
𝑥 

A  609306.333 608664.906 607924.964 607889.205 607889.723  340430.790 339887.404 339604.289 339598.622 339599.221 

B  11696.603 11697.765 11696.971 11697.047 11697.002  11088.693 11090.455 11089.818 11089.850 11089.816 

C  11474.775 11476.275 11475.434 11475.543 11475.516  10737.352 10739.239 10738.555 10738.627 10738.608 
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Table 2.6 (continued) 

   [2H, 1,3-15N]  [2H, 2,3-15N] 

   cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCV5Z CBS  cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCV5Z CBS 

𝐵0
𝑥 

A  340233.197  344602.438 

B  10680.118  10978.923 

C  10334.556  10618.402 

1

2
∑𝛼𝑖

𝑥 

A  341.818 −211.297 −495.478 −501.928 −502.078  329.360 −242.931 −532.355 −538.825 −538.973 

B  45.880 47.660 47.051 47.098 47.095  46.986 48.843 48.253 48.297 48.294 

C  62.496 64.376 63.721 63.799 63.791  64.447 66.403 65.759 65.837 65.828 

𝜂𝑔𝑏𝑏𝐵CCSD(T)
𝑥  

A  8.845 12.036 13.812 14.651 15.405  8.312 11.563 13.362 14.211 14.970 

B  −0.317 −0.351 −0.368 −0.380 −0.410  −0.334 −0.369 −0.387 −0.400 −0.431 

C  −0.287 −0.310 −0.321 −0.328 −0.338  −0.303 −0.326 −0.338 −0.346 −0.356 

𝐵0
𝑥 +

1

2
∑𝛼𝑖

𝑥 

A  340575.015 340021.900 339737.719 339731.269 339731.120  344931.798 344359.506 344070.083 344063.613 344063.465 

B  10725.998 10727.778 10727.169 10727.216 10727.213  11025.909 11027.766 11027.176 11027.220 11027.217 

C  10397.053 10398.933 10398.277 10398.356 10398.347  10682.850 10684.805 10684.161 10684.239 10684.230 

𝐵𝑒
𝑥 

A  340583.860 340033.936 339751.531 339745.921 339746.524  344940.109 344371.069 344083.445 344077.824 344078.435 

B  10725.681 10727.427 10726.801 10726.836 10726.803  11025.576 11027.397 11026.788 11026.820 11026.785 

C  10396.765 10398.623 10397.956 10398.027 10398.009  10682.547 10684.479 10683.823 10683.893 10683.874 
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Figure 2.6.  Graphical comparison of hydrazoic acid re
SE structural parameters obtained using 

CCSD(T) corrections with various levels of theory, with consistent scales for each bond distance 

(0.01 Å) and each angle (1°). 
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Table 2.7.  Values of δre
SE of hydrazoic acid during iterative analysis of the re

SE CCSD(T)/cc-

pCV5Z (xrefiteration). 

Niso 
a 

Isotopologue 

Added 

δre
SE 

Total Bonds Angles 

5 minimal set b 0.001756 0.001519 0.000880 

6 [2H, 3-15N] 0.001486 0.001289 0.000740 

7 [2H, 1,2-15N] 0.001212 0.000985 0.000706 

8 [1,2-15N] 0.001113 0.000910 0.000641 

9 [2,3-15N] 0.001030 0.000834 0.000604 

10 [2H, 2,3-15N] 0.000968 0.000781 0.000571 

11 [2H, 1-15N] 0.000912 0.000724 0.000554 

12 [2H, 2-15N] 0.000894 0.000712 0.000540 

13 [1,3-15N] 0.000878 0.000713 0.000511 

14 [2H, 1,3-15N] 0.000865 0.000704 0.000501 
 
a Number of isotopologues in the iteration 
b The initial iteration consists of the normal isotopologue and [2H]-, [1-15N]-, [2-15N]-, and [3-15N]-hydrazoic acid 
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Table 2.8.  Summary of geometry optimizations of hydrazoic acid. 

   CCSD(T)  

Parameter  cc-pVTZ cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCV5Z cc-pCV6Z CBS a 

RH-N1 (Å)  1.01808 1.02900 1.01664 1.01567 1.01543 1.01548 1.01547 

RN1-N2 (Å)  1.24764 1.25636 1.24416 1.24149 1.24098 1.24078 1.24067 

RN2-N3 (Å)  1.13618 1.14961 1.13300 1.13040 1.12948 1.12925 1.12917 

θH-N1-N2 (°)  108.308 107.478 108.546 108.918 109.064 109.103 109.118 

θN1-N2-N3 (°)  171.655 171.131 171.773 171.741 171.726 171.697 171.760 

 
   CCSDT(Q)  DBOC   SCF 

Parameter   cc-pVTZ cc-pCVDZ cc-pCVTZ  cc-pCVTZ   cc-pCVTZ 

RH-N1 (Å)   1.01820 1.02921 1.01678  1.00317   1.00310 

RN1-N2 (Å)   1.24899 1.25787 1.24550  1.23300   1.23306 

RN2-N3 (Å)   1.13823 1.15186 1.13513  1.08681   1.08682 

θH-N1-N2 (°)   108.364 107.547 108.608  108.196   108.184 

θN1-N2-N3 (°)   171.448 170.881 171.565  174.146   174.142 

 
  X2C-1e 

Parameter  cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCV5Z 

RH-N1 (Å)  1.02907 1.01668 1.01570 1.01545 

RN1-N2 (Å)  1.25661 1.24437 1.24168 1.24117 

RN2-N3 (Å)  1.14947 1.13282 1.13021 1.12929 

θH-N1-N2 (°)  107.388 108.458 108.830 108.976 

θN1-N2-N3 (°)  171.105 171.747 171.716 171.700 
a Extrapolated using Eq. (2.S2) and cc-pCVQZ, cc-pCV5Z, and cc-pCV6Z structures optimized with CCSD(T). 
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Figure 2.7.  Plots of the CCSD(T) optimized parameters of hydrazoic acid using increasingly 

larger basis sets compared to values [R(∞)] extrapolated using Eq. (2.S2) and cc-pCVQZ, cc-

pCV5Z, and cc-pCV6Z basis sets.  Values for the cc-pCVDZ calculations not displayed are beyond 

the scale of the current plots, as indicated by the arrows and accompanying values. 

 

Table 2.9.  Cumulative effect of applying corrections to obtain the BTE for hydrazoic acid. 

Parameter 

 

re 
a re+ΔR(basis) 

re+ΔR(basis) 

+ΔR(corr) 

re+ΔR(basis) 

+ΔR(corr)+ΔR(rel) BTE 

RH-N1 (Å)  1.01548 1.01547 1.01561 1.01564 1.01572 

RN1-N2 (Å)  1.24078 1.24067 1.24200 1.24220 1.24213 

RN2-N3 (Å)  1.12925 1.12917 1.13130 1.13111 1.13109 

θH-N1-N2 (°)  109.103 109.118 109.180 109.093 109.105 

θN1-N2-N3 (°)  171.697 171.697b 171.789 171.463 171.467 

 
a CCSD(T)/cc-pCV6Z 

b This angle does not converge at an exponential rate with respect to the size of the basis set, leading to a spurious 

R(∞) value upon extrapolation.  As such, the R(∞) value for this angle has been set to that of the CCSD(T)/cc-pCV6Z 

structure, which results in a ΔR(basis) of this angle of zero per Eq. (2.2). 
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Figure 2.8.  Graphical representation of the cumulative effects of corrections used to arrive at the 

BTE structure of hydrazoic acid, with consistent scales for each bond distance (0.01 Å) and each 

angle (1°).  Parameters from the re
SE structure with 2σ uncertainties are included for comparison.  

The re in the legend refers to the CCSD(T)/cc-pCV6Z optimized structure.  Per Table 2.5, 

ΔR(basis) for θN1–N2–N3 has effectively been set to zero. 
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ABSTRACT 

A semi-experimental equilibrium structure (re
SE) of pyridazine (o-C4H4N2) has been 

determined using the rotational spectra of 18 isotopologues.  Spectroscopic constants of four 

isotopologues are reported for the first time (measured from 235 to 360 GHz), while spectroscopic 

constants for previously reported isotopologues are improved by extending the frequency coverage 

(measured from 130 to 375 GHz).  The experimental values of the ground-state rotational constants 

(A0, B0, and C0) from each isotopologue were converted to determinable constants (A0ʹʹ, B0ʹʹ, and 

C0ʹʹ), which were then corrected for the effects of vibration-rotation interactions and electron-mass 

distributions using CCSD(T)/cc-pCVTZ calculations.  The resultant re
SE for pyridazine determines 

bond distances to within 0.001 Å and bond angles within 0.04°, a reduction in the statistical 

uncertainties by at least a factor of two relative to the previously reported re
SE.  The improvement 

in precision appears to be largely due to the use of higher-level theoretical calculations of the 

vibration-rotation and electron-mass effects, though the incorporation of the newly measured 

isotopologues ([4-2H, 4-13C]-, [4-2H, 5-13C]-, [4-2H, 6-13C]-, and [4,5-2H, 4-13C]-pyridazine) is 

partially responsible for the improved determination of the hydrogen-containing bond angles.  The 

computed equilibrium structure (re) (CCSD(T)/cc-pCV5Z) and a "best theoretical estimate" of the 

equilibrium structure (re) both agree with the updated re
SE structure within the statistical 

experimental uncertainty (2σ) of each structural parameter.  

INTRODUCTION 

Pyridazine (o-C4H4N2, C2v, μ = 4.22 D, Figure 3.1) is an aromatic heterocycle in which 

adjacent C–H units of benzene are replaced by nitrogen atoms (Figure 3.2).  As a prototypical 

aromatic heterocycle,1-2 it is a species of astrochemical relevance.3-5  Benzene has been detected 
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in the interstellar medium by infrared spectroscopy,6 but it cannot be observed by radioastronomy 

because it lacks a permanent dipole moment.  Aromatic compounds that are polar by virtue of 

inherent structural factors,7-9 heteroatom substitution,3-5 or polar substituents10-12 have been 

important targets for astronomical detection (Figure 3.2).  The recent detections of polar aromatic 

compounds by radioastronomy (benzonitrile13 and cyanonaphthalenes14) represent dramatic 

breakthroughs in astrochemistry and will undoubtedly inspire new searches for aromatic 

heterocycles.   

 

 

Figure 3.1.  Pyridazine (o-C4H4N2, C2v, μ = 4.22 D, κ = 0.824) with principal axes and atom 

numbering. 

 

Figure 3.2.  Benzene and nitrogen containing analogues. 
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Some time ago, Werner et al.15 measured the rotational spectrum of pyridazine and its 

singly heavy-atom-substituted isotopologues from 9 to 33 GHz and obtained a partial substitution 

structure (rs).  In that first structure determination, parameters involving hydrogen atoms were held 

constant because rotational constants from deuterium-containing isotopologues were not available.  

López et al.16 reported improved values for the rotational constants with precise Fourier-transform 

microwave (FT-MW) measurements of hyperfine-resolved transitions.  Several years later, our 

group measured the spectrum of pyridazine at a higher frequency (235–360 GHz), reporting 

spectroscopic constants for the ground state and six lowest-energy vibrationally excited states of 

the normal isotopologue.3  These measurements enabled the first direct comparison of the 

experimental and predicted [CCSD(T)] vibration-rotation interaction constants for an organic 

molecule of this size, demonstrating good agreement between the two.  Building on the synergy 

of experiment and theory, the investigation was expanded to include a semi-experimental structure 

(re
SE) determination for pyridazine.  Spectroscopic constants for a total of 14 isotopologues were 

measured, including the normal isotopologue, three singly substituted heavy-atom isotopologues 

detectable at natural abundance, and ten deuterium-substituted isotopologues from enriched 

samples.  Using CCSD(T) corrections to the rotational constants to account for the vibration-

rotation interaction and electron-mass distribution, a complete re
SE structure of pyridazine 

including the hydrogen-containing structural parameters was determined for the first time.  That 

study determined a highly precise re
SE of pyridazine with statistical uncertainties (2σ) on the order 

of 0.003 Å for bond distances and 0.1° for bond angles.   

The semi-experimental equilibrium structure of pyridazine3 represented a significant 

advance in the gas-phase structure determination of organic molecules.  Since then, however, a 

new standard for precision and accuracy has been achieved for re
SE structure determinations, in 
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general, and for aromatic heterocycles, in particular.17-19  In a striking result, each of the structural 

parameters of pyrimidine (the meta-dinitrogen analogue of pyridazine; Figure 3.2) predicted by 

the best available theoretical methods agree with those determined in the semi-experimental 

equilibrium (re
SE) structure to within the 2σ statistical uncertainties of the latter.19  The current 

work aims to incorporate new spectroscopic data, improve the computational treatment, and raise 

the precision of the re
SE structure of pyridazine to that same standard.  The previous observation, 

measurement, and least-squares fitting of the [4-2H, 3-13C]-isotopologue of pyridazine implied that 

the spectra of the [4-2H, 4-13C]-, [4-2H, 5-13C]-, and [4-2H, 6-13C]-isotopologues* should also be 

observable in the existing spectrum due to sharing the same natural 13C abundance, without the 

need for additional syntheses or spectroscopy.  Indeed, we identified transitions for these new 

species and included their spectroscopic constants in the current structure determination.  

Rotational constants for the normal and singly heavy-atom substituted isotopologues were 

improved by extending frequency coverage down to 130 GHz and up to 375 GHz.  The use of a 

larger, all-electron basis set (cc-pCVTZ) improved the quality of the vibration-rotation corrections 

used to determine the equilibrium rotational constants and consequent moments of inertia.  Finally, 

the electron-mass correction was improved by incorporating corrections specific to each 

isotopologue.  Such an improved re
SE structure for pyridazine provides an opportunity to test the 

generality of the close agreement between the experiment and theory observed in pyrimidine.19  

Furthermore, the effect on the re
SE structure determination of including isotopologues beyond those 

minimally required for a rs structure determination will be assessed using the novel xrefiteration 

analysis detailed in Chapter 1 of this thesis.  

 
* The systematic IUPAC name for the isotopologue that we designate as [4-2H, 6-13C] is actually [5-2H, 3-13C].  The 

latter numbering scheme, however, obscures the relationship with the other 4-2H substituted isotopologues.  
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COMPUTATIONAL METHODS 

 A developmental version of CFOUR20 was employed to conduct all ab initio calculations, 

which consisted of geometry optimizations, anharmonic second-order vibrational perturbation 

theory (VPT2), and magnetic property calculations at the CCSD(T) level of theory using the all-

electron cc-pCVTZ basis.  Isotopologue-dependent corrections to the rotational constants included 

vibration-rotation interaction constants from the VPT2 calculations and electron-mass corrections 

from the magnetic property calculations.  Output files of these calculations are provided in the 

supporting information of Ref. 21.    

 We calculated a "best theoretical estimate" (BTE) equilibrium structure for pyridazine 

using the methodology employed in previous studies of pyrimidine,19 thiophene,17 and thiazole.18  

The structure computed using a CCSD(T)/cc-pCV5Z optimization is corrected to account for the 

following limitations associated with the quantum mechanical treatment employed: 

1. Residual basis set effects, Eq. 3.1, by means of a complete basis set extrapolation22-23 using 

the results of CCSD(T)/cc-pCVXZ (X = T, Q, and 5) calculations in comparison to the 

quintuple zeta optimization.  

 ( ) ( ) ( )basis CCSD(T)/cc-pCV5ZR R R =  −  (3.1) 

2. Residual electron correlation effects, Eq. 3.2, by use of CCSDT(Q)24 in comparison to a 

CCSD(T) optimization.  

 ( ) ( ) ( )corr CCSDT(Q)/cc-pVDZ CCSD(T)/cc-pVDZR R R = −  (3.2) 

3. Scalar relativistic effects, Eq. 3.3, by use of the X2C-1e variant of the coupled-cluster 

theory25-27 in comparison to a traditional optimization (NR).   
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 ( ) ( ) ( )
SFX2C-1e NR

rel CCSD(T)/cc-pCVTZ CCSD(T)/cc-pCVTZR R R = −  (3.3) 

4. Effect of the Born–Oppenheimer approximation, Eq. 3.4, by use of the diagonal Born–

Oppenheimer correction (DBOC)28-29 in comparison to a traditional optimization (NR).   

 ( ) ( ) ( )
DBOC NR

DBOC SCF/cc-pCVTZ SCF/cc-pCVTZR R R = −  (3.4) 

The correction to the CCSD(T)/cc-pCV5Z optimization necessary to obtain the BTE is then given 

by summation of the above corrections for each parameter, as shown in Eq. 3.5. 

 ( ) ( ) ( ) ( ) ( )best basis corr rel DBOCR R R R R =  +  +  +   (3.5) 

 The semi-experimental equilibrium structural parameters (re
SE) of pyridazine were 

determined from the equilibrium moments of inertia by least-squares fitting, as described for 

previous structure determinations.3, 17-19, 30  In total, 18 isotopologues yield 36 independent 

moments of inertia, which produce a highly redundant determination of the 9 independent 

structural parameters of pyridazine (point group symmetry C2v).  In this work, all 3 moments of 

inertia for all 18 isotopologues were used with equal weighting.  To generate constants free of 

centrifugal distortion and the impact of the choice of an A- or S-reduced Hamiltonian, the 

rotational constants (B0
x) determined in each least-squares fit were converted to determinable 

constants (B0ʹʹ) using Eq. 3.S1 – Eq. 3.S6 in the Supporting Information.31  For each of the 

isotopologues presented in this work, differences in the determinable constants from the A and S 

reductions were quite small (Table 3.4 in the Supporting Information), demonstrating that both the 

A- and S-reduced Hamiltonians produce physically meaningful spectroscopic constants.  This 

gives us high confidence that the average determinable rotational constants are largely free of the 

effects of centrifugal distortion.  The computed vibration-rotation interaction and electron-mass 

corrections were combined with experimental equilibrium constants (Be
x) using Eq. 3.S7.17-19, 30  
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These equilibrium constants, after conversion to the corresponding moments of inertia, were used 

by the xrefit module of CFOUR to determine the re
SE structural parameters via a nonlinear least-

squares fit, using the Levenberg–Marquardt algorithm.  The xrefiteration analysis of the re
SE 

structure determination described in detail in Chapter 1 of this thesis is applied to assess the impact 

of including additional isotopologues beyond the minimal set, and for assessing the accuracy and 

precision of the overall structure. 

RESULTS AND DISCUSSION 

Improvement in the Precision and Accuracy of Rotational Constants and 

Moments of Inertia 

 For a planar molecule such as pyridazine, an indication of the quality of the computational 

corrections that are applied to the experimentally determined rotational constants is how close the 

resultant inertial defect (Δi) is to zero.  Uncorrected experimental rotational constants (B0
x) produce 

a non-zero inertial defect (Δi 0) due to the effects of electron mass.  By correcting the rotational 

constants for these effects, the magnitude of the inertial defect is decreased, ultimately vanishing 

in the limit that the applied corrections are exact.  Previously, CCSD(T)/ANO0 vibration-rotation 

interaction corrections3 reduced the magnitude of the inertial defects for all isotopologues by a 

factor of 3 and by an additional factor of 10 after the inclusion of electron-mass corrections (Table 

3.1).  Though the magnitude of the electron-mass corrections to the rotational constants is small 

compared to that of the vibration-rotation corrections, the impact of including the electron-mass 

corrections is clearly significant.  Despite the larger numbers of transitions for some isotopologues 

in the current study, the uncorrected inertial defect (Δi 0) values are quite similar to those obtained 

previously.   
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In this work, CCSD(T)/cc-pCVTZ corrections have been applied to the rotational 

constants, resulting in superior equilibrium inertial defect (Δi e) values.  There is a large reduction 

of the inertial defects from the CCSD(T)/cc-pCVTZ vibration-rotation interaction corrections than 

from those using an ANO0 basis set.  In both cases, however, these are over-corrections that result 

in negative inertial defect values.  The magnitude of the electron-mass corrections is smaller at the 

CCSD(T)/cc-pCVTZ level than with the ANO0 basis set.  Previously, the same value for the 

electron-mass correction was applied to every isotopologue, rather than the isotopologue-specific 

electron-mass corrections used in the current work.  As a result, not only are the fully corrected 

Δi e values obtained using the cc-pCVTZ basis approximately half the magnitude of those obtained 

using the ANO0 basis (average values −0.00108 vs 0.00207 μÅ2, respectively), but they also 

exhibit a considerably smaller standard deviation (0.00014 vs 0.00104, respectively) (Table 3.1).   

The small Δi e values are consistent with the high quality of the spectroscopic constants 

from the least-squares fits of the rotational spectra and the theoretical corrections employed in this 

work.  These values are quite similar to those determined for pyrimidine19 using corrections at the 

same level of theory: Δi e = 0.01353 ± 0.00013 without electron-mass corrections and Δi e = 

0.00151 ± 0.00013 with electron-mass corrections.  Given the systematic similarities in Δi e 

between analogous species pyridazine and pyrimidine, or as previously noted between thiophene17 

and thiazole,18 it is likely the inertial defects could be further corrected, despite the sophisticated 

treatments already employed.  Such an improved correction of these inertial defects may be 

possible through the use of a higher level of theory or basis set to perform the VPT2 or magnetic 

property calculations, or through use of higher-order vibrational perturbation theory to obtain 

additional vibration-rotation interaction corrections.   
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Table 3.1  Inertial Defects (Δi) of Pyridazine Isotopologues from Various Determinations of the 

Moments of Inertia 

 Pyridazine (2013)3  Pyridazine (current work) 

Isotopologue Δi 0 (uÅ2)   Δi e (uÅ2) a  Δi e (uÅ2) b Δi 0 (uÅ2)  Δi e (uÅ2) c  Δi e (uÅ2) d 

normal 0.03641 −0.01200 0.00081 0.03622 −0.01414 −0.00095 

[3-13C] 0.03702 −0.01193 0.00112 0.03681 −0.01410 −0.00090 

[4-13C] 0.03706 −0.01198 0.00116 0.03684 −0.01414 −0.00095 

[1-15N] 0.03686 −0.01206 0.00106 0.03671 −0.01414 −0.00095 

[3-2H] 0.03367 −0.01235 0.00133 0.03356 −0.01427 −0.00108 

[4-2H] 0.03406 −0.01228 0.00160 0.03391 −0.01428 −0.00108 

[3,4-2H] 0.03138 −0.01278 0.00195 0.03124 −0.01452 −0.00132 

[3,5-2H] 0.03143 −0.01287 0.00191 0.03132 −0.01455 −0.00135 

[3,6-2H] 0.03072 −0.01250 0.00224 0.03061 −0.01437 −0.00118 

[4,5-2H] 0.03185 −0.01206 0.00283 0.03169 −0.01417 −0.00097 

[4-2H, 3-13C] 0.03498 −0.01194 0.00218 0.03441 −0.01433 −0.00114 

[4-2H, 4-13C]    0.03456 −0.01416 −0.00097 

[4-2H, 5-13C]    0.03450 −0.01419 −0.00099 

[4-2H, 6-13C]    0.03462 −0.01420 −0.00100 

[3,4,5-2H] 0.02916 −0.01224 0.00351 0.02899 −0.01428 −0.00108 

[3,4,6-2H] 0.02852 −0.01283 0.00295 0.02836 −0.01454 −0.00134 

[3,4,5,6-2H] 0.02625 −0.01234 0.00440 0.02606 −0.01434 −0.00114 

[4,5-2H, 4-13C]    0.03209 −0.01427 −0.00107 

Average (𝑥̅) 0.03281 −0.01230 0.00207 0.03292 −0.01428 −0.00108 

Std. Dev. (s) 0.00347 0.00033 0.00104 0.00310 0.00014 0.00014 
a Vibration-rotation interaction corrections only (CCSD(T)/ANO0). 
b Vibration-rotation interaction and electron-mass corrections (CCSD(T)/ANO0). 

c Vibration-rotation interaction corrections only (CCSD(T)/cc-pCVTZ). 
d Vibration-rotation interaction and electron-mass corrections (CCSD(T)/cc-pCVTZ). 

 

Improvement in the Precision and Accuracy of the Structure 

 As demonstrated in Table 3.2, and displayed in Figure 3.3, the re
SE structure of pyridazine 

determined in this work exhibits structural parameters for which the statistical uncertainties have 

been reduced by a factor of 2–3 compared to the previous study.  Despite the greater precision of 

the current work, all of the previously determined structural parameters3 fall within the 2σ 

statistical uncertainties of the improved parameters in this work.  For all explicitly determined 

parameters, that is, excluding RN1-N2 and θN1-N2-C3, the statistical uncertainty is less than 0.001 Å 
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for bond lengths and 0.04° for angles.  These uncertainties are comparable to those observed in the 

re
SE of pyrimidine,19 whose bond lengths were slightly better determined with all statistical 

uncertainties (2σ) less than 0.0006 Å.  For pyridazine, the re
SE statistical uncertainties in the C–H 

distances, ±0.00023 and ±0.00024 Å, are three times smaller than the statistical uncertainties in 

the C–C and C–N distances, ±(0.00075–0.00095) Å.  This was not the case for pyrimidine, in 

which the statistical uncertainties in C–H distances, ±(0.00030–0.00039) Å, were only slightly 

smaller than the statistical uncertainties in C–C and C–N distances, ±(0.00038–0.00052) Å.  These 

differences in the uncertainties in C–H distances between pyridazine and pyrimidine may arise 

from symmetry considerations.  Pyridazine (C2v) possesses two independent C–H bonds with H-

atom positions determined by virtue of 2H-isotopic substitution in 11 of 14 isotopologues.  Figure 

3.3 presents the number of isotopologues with substitution(s) at the designated position used in the 

least-squares fit of the structure from all 18 isotopologues.  For example, 2 at the C3 position 

indicates that its substitution is present in two isotopologues: [3-13C] and [4-2H, 2-13C].  Symmetric 

atoms are accounted for separately, as some isotopologues break the C2v symmetry of the parent 

species. 
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Table 3.2.  Structural Parameters of Pyridazine 

 Experimental   

 re
SE (2013) a 

CCSD(T)/ANO0 

re
SE 

CCSD(T)/cc-pCVTZ 

 

Computational 

Parameter 

minimal 

data set 

full data set 

excluding [3,4-2H] 

full data set 

 

 CCSD(T) 

BTE b 

CCSD(T)/ 

cc-pCV5Z 

RC3-H (Å) 1.08104 (54) 1.08088 (20) 1.08093 (15) 1.08088 (23)  1.08108 1.08097 

RC4-H (Å) 1.08021 (74) 1.07992 (22) 1.07989 (16) 1.08000 (24)  1.07995 1.07988 

RC4-C5 (Å) 1.3761 (33) 1.37673 (88) 1.37676 (63) 1.37675 (95)  1.37638 1.37656 

RC3-C4 (Å) 1.3938 (24) 1.39352 (72) 1.39348 (50) 1.39338 (75)  1.39395 1.39353 

RN2-C3 (Å) 1.3302 (24) 1.33085 (70) 1.33082 (53) 1.33093 (79)  1.33091 1.33074 

RN1-N2 (Å)  1.33328 (82) c 1.33341 (77) c 1.33336 (116) c  1.33377 1.33215 

θH-C3-C4 (°) 121.35 (11) 121.367 (90) 121.396 (26) 121.361 (37)  121.353 121.335 

θH-C4-C5 (°) 122.368 (89) 122.344 (41) 122.357 (19) 122.358 (28)  122.349 122.346 

θC3-C4-C5 (°) 116.849 (60) 116.849 (16) 116.847 (12) 116.849 (17)  116.847 116.838 

θN2-C3-C4 (°) 123.863 (78) 123.860 (23) 123.868 (21) 123.867 (32)  123.879 123.857 

θN1-N2-C3 (°)  119.290 (16) c 119.285 (17) c 119.284 (27) c  119.275 119.305 

Niso 14 6 17 18    
a Data is given to one additional digit relative to the presentation in Ref. 3, and the uncertainties here are 2σ rather than 1σ. 
b Obtained by applying corrections for the best theoretical estimate [Δ𝑅(best)] to the CCSD(T)/cc-pCV5Z computed values. 

c Value and uncertainty for additional parameters determined from the re
SE structure using the alternate Z-matrix described in Supporting Information. 
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Figure 3.3.  (a) Semi-experimental equilibrium structure (re
SE) of pyridazine with 2σ uncertainties 

from least-squares fitting of the isotopologue moments of inertia.  The values and uncertainties for 

RN1-N2 and θN1-N2-C3 (in italic) were determined from the re
SE structure using the alternate Z-matrix 

described in the Supporting Information.  (b) Number of isotopologues with a substitution relative 

to the main isotopologue (o-C4H4N2) at the labeled atom. 

Quantifying the Importance of Including More Isotopologues in Structure 

Determinations 

 To determine the impact on the re
SE structure of including isotopologues beyond the 

minimal set necessary to obtain a substitution structure, we obtained an re
SE structure using only 

the normal and all single isotopic substitutions, which we refer to as "minimal re
SE".  As shown in 

Table 3.2, the parameters' values and uncertainties of the minimal re
SE agree well with those of the 

full re
SE structure.  In fact, the uncertainties of the minimal re

SE are slightly smaller for most of the 

parameters.  The exceptions (θH-C3-C4 and θH-C4-C5) are notable, as these are the angles involving a 

hydrogen atom.  The better determination of these angles in the full re
SE structure is likely due to 
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the inclusion of many more deuterium-substituted isotopologues, relative to the minimal re
SE set, 

which includes only two deuterium-substituted isotopologues.  Thus, it appears that bond lengths 

and angles involving only heavy atoms, as well as bond lengths involving hydrogen, are well 

determined using a minimal set of isotopologues but angles involving hydrogen are not.  This 

conclusion is supported by the behavior of the parameters in the xrefiteration analysis (vide infra).   

 The inclusion of additional isotopologues beyond the "minimal set" does indeed improve 

the overall relative statistical uncertainty of the results re
SE structure.  To explore the impact of 

additional isotopologues on the uncertainty and magnitude of each parameter, we conducted the 

xrefiteration analysis described above.  The δre
SE results of xrefiteration are plotted in Figure 3.4, 

showing a dramatic decrease in the relative statistical uncertainty by nearly 50% as the initial 

isotopologues are added to the re
SE data set.  Such behavior is expected based upon the xrefiteration 

results of pyrimidine, thiophene, thiazole, and hydrazoic acid (vide infra).  The significant 

reduction in uncertainty appears to be reversed with the addition of isotopologues in the range Niso 

= 12–18.  There is a slight increase in the uncertainty upon including isotopologues in the range 

of Niso = 12–17, without any discernable pattern in the isotopic substitution or the number of 

transitions in the least-squares fits for those isotopologues.  Thus, we do not suspect that there is 

an issue with the experimentally determined spectroscopic constants.  The incorporation of [3,4-

2H]-pyridazine (Niso = 18), however, results in a dramatic increase in δre
SE to 0.001204, which is 

only slightly lower than the value for the minimal re
SE.  From this behavior, we conclude that the 

structural information provided by [3,4-2H]-pyridazine to the re
SE determination is in contradiction 

with the information provided collectively by the other isotopologues.  We can infer, based on the 

xrefiteration algorithm, that at every step of the analysis, the addition of the [3,4-2H] isotopologue 

resulted in a larger δre
SE than another isotopologue, so the [3,4-2H] isotopologue was not 
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incorporated into the expanding data set.  At the end of the xrefiteration analysis, when there were 

no other isotopologues left, the [3,4-2H] isotopologue was allowed into the structure determination 

data set.   

 

 

Figure 3.4.  Plot of δre
SE as a function of the number of isotopologues (Niso) incorporated into the 

structure determination data set.  The total relative statistical uncertainty (δre
SE, blue squares), the 

relative statistical uncertainty in the bond distances (green triangles), and the relative statistical 

uncertainty in the angles (purple circles) are presented. 

In the course of this work and other structure determination analyses,17-18, 32 we observed 

that similar dramatic increases in the relative statistical uncertainties resulted from a variety of 

factors, including problems in the fitting of the spectroscopic constants, problems in the rotational 

constant corrections, or some other problem in the implementation.  Such issues appear to be 

absent in our implementation of the current analysis.  For the [3,4-2H] isotopologue in particular, 

the least-squares fit of the rotational spectrum has low uncertainty (σfit = 34 kHz) with sufficient 

line count (Nlines = 619), and all spectroscopic constants are in reasonable agreement with 
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computational predictions.  Furthermore, the corrected inertial defect for this isotopologue (Δi e = 

−0.0134 μÅ2) is comparable to those of the other isotopologues, albeit larger than those of all but 

two isotopologues ([3,5-2H]- and [3,4,6-2H]-pyridazine).  Taken collectively, this evidence 

suggests that the experimental data for the [3,4-2H] isotopologue are accurate and reasonably 

treated by the vibration-rotation interaction and electron-mass corrections.  Thus, we are confident 

that the behavior of the relative statistical uncertainty of the re
SE upon addition of the [3,4-2H] 

isotopologue is not due to an issue in data analysis. 

Comparison of the xrefiteration analysis of pyridazine to that of other molecules (Figure 

1.5 in Chapter 1 of this thesis) clearly demonstrates that the influence of [3,4-2H]-pyridazine on 

the re
SE structure is anomalous in relation to the other isotopologues in the limited set of 

comparison molecules (hydrazoic acid, pyrimidine, thiophene, and thiazole).  Even with the 

increase in the δre
SE for pyridazine from Niso = 12–18, however, the range of δre

SE values for 

pyridazine is similar to that of the other structure determinations.  Therefore, the increase in the 

δre
SE of pyridazine – particularly due to the inclusion of the [3,4-2H] isotopologue – does not 

necessarily indicate that the re
SE is not sufficiently determined.  

To further assess the quality of the re
SE and whether the structural parameters are reliable 

despite the aforementioned behavior of [3,4-2H]-pyridazine, we examined how the re
SE parameters 

change as additional isotopologues are included (Figure 3.5).  Interestingly, the value of the 

θH-C3-C4 angle in the final iteration (Niso = 18) is closer to its value in the minimal set (Niso = 6) than 

the intermediate iterations, which determine a larger angle.  Given our confidence in the data of 

the [3,4-2H] isotopologue, the trend in the θH-C3-C4 angle suggests that the other isotopologues 

added to the minimal set are quite consistent with respect to their impact on this angle, while also 

not providing new or sufficient information for determining this angle.  This interpretation is 
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further supported by comparison to the BTE value, which shows that the intermediate 

isotopologues cause the angle to deviate away from the BTE value.  Examination of the other 

parameters reveals that RC4-C5, RC3-C4, and RN2-C3 have similar, though less pronounced, behavior.  

The inclusion of the last few isotopologues, especially the [3,4-2H] isotopologue, brings the 

parameters into a better agreement with the theoretical prediction because these isotopologues are 

providing structural information that is not contained in the preceding iterations of the data set.     

 

 

Figure 3.5.  Plots of structural parameters as a function of the number of isotopologues (Niso) and 

their 2σ uncertainties, with consistent scales for each distance (0.002 Å) and each angle (0.2°).  

The dashed line in each plot is the BTE value calculated for that parameter.  The isotopologue 

ordering along the x-axis is the same as that in Figure 3.4. 
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The C3 atom, which lies very close to the b-axis, is present in three of the four parameters 

whose values deviate away from the BTE.  The difficulty in determining the C3 atom position was 

described in the original rs structure determination15 and seemingly addressed in the subsequent rs 

and first re
SE structure determination by greater isotopic substitution.3  Based upon this analysis, 

however, it appears that the classical difficulty in determining the position of the atoms that lie 

close to an inertial axis by Kraitchman analysis33-34 may not be fully addressed even with the first 

17 isotopologues in this work.  The inclusion of the [3,4-2H] isotopologue has a profound effect 

on the θH-C3-C4 angle.  The simultaneous isotopic substitution of the hydrogen atoms at C3 and C4 

causes a significant rotation of the principal axes (Supporting Information, Table 3.6) such that C3 

(and the symmetric C6) are no longer close to the b-axis.  It should be noted that other 

isotopologues have rotations of similar magnitude.  Finally, the two hydrogen-containing angles 

have considerable improvement in the uncertainties and the greatest change to their values when 

isotopologues beyond the minimal set are included.  Such behavior suggests that the minimal set 

of singly substituted isotopologues is not sufficient for a precise determination of these angles and 

that improvement in the uncertainties in the full re
SE structure for these angles is partly due to the 

increased number of isotopologues.   

Best Theoretical Estimate 

 As in the structure determination of pyrimidine,19 all structural parameters of the BTE of 

pyridazine fall within the 2σ uncertainties of their corresponding parameters for the re
SE structure 

of pyridazine (Figure 3.6 and Table 3.2).  Impressively, five of the nine independent BTE structural 

parameters fall within the 1σ statistical uncertainties of the re
SE parameters in this work, which is 
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reasonably close to the statistical expectation for a normal distribution.*  As can be seen from Table 

3.2, all of the re
SE bond angles fall within 0.01° of the corresponding BTE values.  The agreement 

is largely due to the quintuple-zeta basis set since all of the CCSD(T)/cc-pCV5Z structural 

parameters are also within the 2σ uncertainties of the corresponding re
SE parameters.  Indeed, 

examination of the CCSD(T)/cc-pCVQZ structural parameters (Supporting Information, Table 

3.7) reveals that only four of the nine independent parameters resulting from the smaller basis 

agree with the re
SE structure.  The difference between the quadruple-zeta and quintuple-zeta 

calculations, however, is only noticeable because of the small uncertainties in the current re
SE 

structure of pyridazine.  All parameters of the CCSD(T)/cc-pCVQZ re fell within 2σ of all the 

previously determined re
SE parameters,3 due to the larger statistical uncertainties in that work. 

 

 
* A normal distribution of the uncertainties of the parameters suggests that each parameter is being determined equally 

well by the re
SE method. 
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Figure 3.6.  Graphical comparison of pyridazine structural parameters with bond distances in 

angstroms (Å) and angles in degrees (°).  Uncertainties shown are 2σ.  Data for re
SE 

CCSD(T)/ANO0 are taken from Ref. 3.  The values and uncertainties for RN1-N2 (top box, last row) 

and θN1-N2-C3 were determined from the re
SE structure using the alternate Z-matrix described in the 

Supporting Information. 
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 Examination of the individual corrections in the BTE in Table 3.3 reveals differences in 

the effects of the various corrections for bond distances.  The ΔR(basis) and ΔR(rel) corrections 

shorten the bond distances from those predicted at the quintuple-zeta basis set, while the ΔR(corr) 

correction lengthens them.  Overall, the corrections lead to a partial cancellation that brings the 

BTE re structure into better agreement with the re
SE structure.   

Table 3.3.  Corrections (ΔR) Used for Obtaining the Best Theoretical Estimate (BTE) 

Parameter 

Δ𝑅(basis) 
Eq. (1) 

Δ𝑅(corr) 
Eq. (2) 

Δ𝑅(rel) 
Eq. (3) 

Δ𝑅(DBOC) 
Eq. (4) 

Δ𝑅(best) 
Eq. (5) 

RC3-H (Å) −0.000040 0.00012 −0.00011 0.00014 0.00011 

RC4-H (Å) −0.000063 0.00012 −0.00011 0.00014 0.000074 

RC4-C5 (Å) −0.00034 0.00042 −0.00024 −0.000022 −0.00018 

RC3-C4 (Å) −0.00021 0.00080 −0.00023 0.000058 0.00042 

RN2-C3 (Å) −0.00014 0.00042 −0.000089 −0.000022 0.00017 

θH-C3-C4 (°) 0.032 −0.019 0.0030 0.0023 0.018 

θH-C4-C5 (°) −0.00085 0.0026 0.0011 0.000045 0.0028 

θC3-C4-C5 (°) 0.010 −0.00083 −0.00045 0.00065 0.0090 

θN2-C3-C4 (°) −0.020 0.029 0.014 −0.0012 0.022 

 

CONCLUSION 

 We determined a highly accurate and precise semi-experimental structure (re
SE) for 

pyridazine with statistical uncertainties of <0.001 Å and <0.04° (2σ) for the bond distances and 

angles, respectively, and in complete agreement with the BTE.  The improvement in the re
SE 

structure in this work is largely due to improved theoretical corrections.  Our iterative analysis of 

the re
SE structure determination (xrefiteration) as a function of additional isotopologues beyond 

the minimal set can be utilized to examine not only the improvement in the re
SE determination as 

additional isotopologues are added, but also the relationship between an individual isotopologue 

and the rest of the data set.  The xrefiteration plots can be especially useful for identifying outliers 
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that occur due to problems in the spectroscopic analysis or the implementation of the re
SE structure 

determination.  When the spectroscopic constants are reliable and the structure determination is 

implemented correctly, the xrefiteration plots reveal important trends in how the individual 

parameters vary as a function of the number of isotopologues.  This provides insights into the 

structural information contributed by individual isotopologues.  Finally, the xrefiteration plots can 

reveal which re
SE parameters are well-converged, and which may benefit from the incorporation 

of additional isotopologues.   

 We are confident that the behavior of the [3,4-2H] isotopologue in the xrefiteration analysis 

is a real phenomenon and not a manifestation of a problem in the analysis or implementation.  

Given the impressive agreement between the BTE and the re
SE parameters, we can examine how 

this agreement is affected by the presence or absence of the [3,4-2H] isotopologue.  When the [3,4-

2H] isotopologue is excluded from the data set, the resulting re
SE does not display good agreement 

with the BTE (Table 3.2) for the two hydrogen-containing bond angles, θH-C3-C4 and θH-C4-C5.  The 

better agreement between the re
SE structure and the BTE when [3,4-2H] is included indicates that 

the apparent improvement in the statistical uncertainty as the other isotopologues were added to 

the minimal set (Figure 3.4) is actually deceptive; the preceding data sets did not include the 

isotopologue that is important for determining θH-C3-C4 and θH-C4-C5.  If the re
SE structure remains 

stable as additional isotopologues are incorporated beyond the 18 utilized in this work, it would 

confirm the validity of this assertion.  New syntheses – beyond the scope of this work – would be 

required, as all possible isotopologues observable in commercial pyridazine or in the deuteriated 

samples used in the previous and current works are included in the current re
SE.  While it is not a 

member of the canonical set of singly substituted isotopologues, the [3,4-2H] isotopologue appears 

to be vital in the structure determination, as this substitution tends to rotate the principal axes in 
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such a way that the C3 and C6 atoms are pulled away from the b-axis.  The standard problem in 

structure determination that is posed by near-axis atoms is lessened for this isotopomer, and an 

improved structure determination follows.  Regardless of the reason, the impact of the [3,4-2H] on 

the structure determination is as significant as it is unexpected, serving to reinforce the notion that 

structure determinations should seek to incorporate a variety of isotopologues to ensure that the 

atom positions can be satisfactorily determined.  

 The agreement of the re
SE and BTE structures is impressive.  What was unexpected, to us, 

is the finding that minimal set of six isotopologues provided re
SE structural parameters that are 

equally accurate and precise as those determined using the much larger set of 18 isotopologues.  

This case stands in sharp contrast to our findings for similar structure determinations of 

pyrimidine,19 thiophene,17 and thiazole.18  At the current time, it is not understood, a priori, 

whether a particular structure will be accurately determined from the minimal set of isotopologues.  

The unexpected significance of the [3,4-2H] isotopologue in the structure determination of 

pyridazine suggests that the best practice remains to include as many isotopologues as is practical.  
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Evaluation of Determinable Rotational Constants 

The ground-state rotational constants for both the S- and A-reduced Hamiltonians (Ir 

representation) were converted to the "determinable constants" (A0ʹʹ, B0ʹʹ, C0ʹʹ), to account for the 

influence of centrifugal distortion using Eq. 3.S1 – Eq. 3.S6.  The constants from each Hamiltonian 

reduction were then averaged to obtain the final determinable constants.  Values of the various 

forms of the constants (Ir representation) are given in Table 3.4.  These averaged determinable 

constants were used for all structure determinations reported in this work. 
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A reduction 

 ( )A

0 2 JA A = +   (3.S1) 

 ( )A

0 2 2 2J JK J KB B   = +  +  − −  (3.S2) 

 ( )A

0 2 2 2J JK J KC C   = +  +  + +  (3.S3) 

S reduction 

 ( )S

0 22 6JA A D d = + +  (3.S4) 

 
( )S

0 1 22 2 4J JKB B D D d d = + + + +  (3.S5) 

 ( )S

0 1 22 2 4J JKC C D D d d = + + − +  (3.S6) 
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Table 3.4.  Spectroscopic constants for isotopologues of pyridazine: A- and S-reduced Hamiltonians (Ir representation), determinable 

constants, their averages and differences (MHz).a 

 o-C4H4N2 [3-13C] [4-13C] [15N] [3-2H] [4-2H] [3,4-2H] 

Molecular  

Mass (μ) 
80.0374480 81.0408028 81.0408028 81.0344830 81.0437248 81.0437248 82.0500016 

AA 6242.950338 6112.22843 6217.71586 6218.91249 5962.40614 6192.44159 5854.14224 

AS 6242.951681 6112.22970 6217.71724 6218.91389 5962.40719 6192.44249 5854.14296 

Aʹʹ (A) 6242.951853 6112.22994 6217.71734 6218.91397 5962.40749 6192.44293 5854.14353 

Aʹʹ (S) 6242.951765 6112.22975 6217.71740 6218.91404 5962.40728 6192.44281 5854.14336 

Aʹʹ avg 6242.951809 6112.22985 6217.71737 6218.91401 5962.40739 6192.44287 5854.14345 

Aʹʹ diff 0.000088 0.00018 0.00006 0.00007 0.00022 0.00012 0.00017 

BA 5961.094509 5961.31665 5848.36633 5857.40244 5828.17979 5598.12089 5539.31651 

BS 5961.092358 5961.31423 5848.36415 5857.40070 5828.17845 5598.119084 5539.31509 

Bʹʹ (A) 5961.093890 5961.31606 5848.36569 5857.40181 5828.17930 5598.12026 5539.31595 

Bʹʹ (S) 5961.093678 5961.31551 5848.36537 5857.40193 5828.17958 5598.12004 5539.31577 

Bʹʹ avg 5961.093784 5961.31578 5848.36553 5857.40187 5828.17944 5598.12015 5539.31586 

Bʹʹ diff 0.000213 0.00055 0.00032 0.00012 0.00027 0.00022 0.00018 

CA 3048.714446 3017.24865 3013.02901 3015.70945 2946.68490 2939.56874 2845.68724 

CS 3048.715012 3017.24860 3013.02980 3015.71022 2946.68588 2939.56921 2845.68726 

Cʹʹ (A) 3048.717821 3017.25189 3013.03227 3015.71271 2946.68776 2939.57158 2845.68952 

Cʹʹ (S) 3048.717594 3017.25114 3013.03226 3015.71269 2946.68814 2939.571276 2845.68902 

Cʹʹ avg 3048.717708 3017.25151 3013.03227 3015.71270 2946.68795 2939.57143 2845.68927 

Cʹʹ diff 0.000228 0.00075 0.00001 0.00002 0.00038 0.00030 0.00050 

DJ 0.000471061 0.00046482 0.00047614 0.00047449 0.00042528 0.000466233 0.000468116 

DJK 0.00158089 0.0015538 0.00141934 0.00143106 0.0013460 0.00098613 0.00063917 

DK −0.00060128 −0.0006085 −0.00044697 −0.00045554 −0.00037785 0.00001682 0.00022290 

d1 −0.000315699 −0.000316053 −0.000308651 −0.000308489 −0.000281463 −0.000277035 −0.000270342 

d2 −0.0001430485 −0.000145153 −0.000132206 −0.000132730 −0.000126602 −0.0001017058 −0.000089180 

ΔJ 0.000757397 0.00075569 0.00074068 0.00073994 0.00067815 0.000669857 0.00064671 

ΔJK −0.00013631 −0.00018836 −0.00016800 −0.00016243 −0.00017315 −0.00023475 −0.00043105 

ΔK 0.00082979 0.00084272 0.00087628 0.00087301 0.00088896 0.00103417 0.00111477 

δJ 0.000315729 0.000316069 0.000308725 0.000308458 0.000281432 0.000277056 0.000270311 

δK 0.000682758 0.00064016 0.000666274 0.00066578 0.00055325 0.000588643 0.000440039 

a Values in square brackets held constant at the computed value (CCSD(T)/cc-pCVTZ) in least-squares fit.   
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Table 3.4 (continued) 

 [3,5-2H] [3,6-2H] [4,5-2H] [4-2H, 3-13C] [4-2H, 4-13C] [4-2H, 5-13C] [4-2H, 6-13C] 

Molecular  

Mass (μ) 
82.0500016 82.0500016 82.0500016 82.0470796 82.0470796 82.0470796 82.0470796 

AA 5889.76350 5959.19547 6002.71658 6079.738 6189.060 6116.705 6081.112 

AS 5889.76437 5959.19634 6002.71765 6079.744 6189.066 6116.715 6081.117 

Aʹʹ (A) 5889.76477 5959.19663 6002.71773 6079.740 6189.061 6116.706 6081.113 

Aʹʹ (S) 5889.76475 5959.19654 6002.71774 6079.745 6189.067 6116.715 6081.118 

Aʹʹ avg 5889.76476 5959.19658 6002.71774 6079.742 6189.064 6116.711 6081.115 

Aʹʹ diff 0.00002 0.00009 0.00000 0.005 0.006 0.009 0.005 

BA 5498.78476 5460.41884 5388.79929 5587.229 5486.805 5542.241 5580.968 

BS 5498.78347 5460.41744 5388.79769 5587.222 5486.798 5542.231 5580.962 

Bʹʹ (A) 5498.78420 5460.41837 5388.79879 5587.228 5486.804 5542.240 5580.968 

Bʹʹ (S) 5498.78418 5460.41843 5388.79889 5587.223 5486.799 5542.232 5580.963 

Bʹʹ avg 5498.78419 5460.41840 5388.79884 5587.225 5486.801 5542.236 5580.965 

Bʹʹ diff 0.00002 0.00005 0.00010 0.005 0.005 0.009 0.005 

CA 2843.278197 2848.96318 2839.09924 2910.96433 2907.82551 2907.08010 2909.57499 

CS 2843.278699 2848.96373 2839.10012 2910.96503 2907.82620 2907.08081 2909.57560 

Cʹʹ (A) 2843.280523 2848.96580 2839.10222 2910.96713 2907.82829 2907.08323 2909.57764 

Cʹʹ (S) 2843.280465 2848.96567 2839.10226 2910.96700 2907.82818 2907.08297 2909.57755 

Cʹʹ avg 2843.280494 2848.96574 2839.10224 2910.96707 2907.82823 2907.08310 2909.57760 

Cʹʹ diff 0.000058 0.00013 0.00003 0.00013 0.00012 0.00026 0.00009 

DJ 0.000457079 0.00038762 0.000363674 0.000484 0.000460 0.000438 0.000469 

DJK 0.00067631 0.00107532 0.00136927 0.000837 0.000902 0.001183 0.000845 

DK 0.00021466 −0.00007808 −0.00047127 [0.000092387] [0.000132565] [−0.000261299] 0.0001725 

d1 −0.000263950 −0.000237830 −0.000235860 −0.0002845 −0.0002676 −0.0002716 −0.0002747 

d2 −0.000088239 −0.000096857 −0.0001069048 −0.00009912 −0.00009440 −0.00010910 [−0.0000965015] 

ΔJ 0.000633588 0.00058131 0.000577448 0.0006818 0.0006511 0.000658 0.000665 

ΔJK −0.00038281 −0.00008707 0.00008590 [−0.000285674] [−0.000232563] [−0.0000570518] −0.000308 

ΔK 0.00109746 0.00089097 0.00059882 0.000964 0.001062 0.000691 0.0011143 

δJ 0.000263949 0.000237799 0.000235849 0.0002844 0.0002688 0.0002724 0.0002759 

δK 0.000456761 0.00053507 0.000633261 0.000575 0.000586 0.000663 [0.000536435] 
a Values in square brackets held constant at the computed value (CCSD(T)/cc-pCVTZ) in least-squares fit.   
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Table 3.4 (continued) 

 [3,4,5-2H] [3,4,6-2H] [3,4,5,6-2H] [4,5-2H, 4-13C] 

Molecular  

Mass (μ) 
83.0562784 83.0562784 84.0625552 83.0533564 

AA 5622.36523 5732.55731 5385.76207 5973.701 

AS 5622.36609 5732.55828 5385.76302 5973.718 

Aʹʹ (A) 5622.36637 5732.55838 5385.76309 5973.70252 

Aʹʹ (S) 5622.36617 5732.55844 5385.76307 5973.718 

Aʹʹ avg 5622.36627 5732.55841 5385.76308 5973.710 

Aʹʹ diff 0.00021 0.00006 0.00002 0.016 

BA 5385.21994 5299.12035 5275.67739 5307.990 

BS 5385.21826 5299.119120 5275.67618 5307.973 

Bʹʹ (A) 5385.21949 5299.11993 5275.67704 5307.98933 

Bʹʹ (S) 5385.21925 5299.12004 5275.67707 5307.974 

Bʹʹ avg 5385.21937 5299.11998 5275.67706 5307.982 

Bʹʹ diff 0.00025 0.00010 0.00002 0.015 

CA 2750.18297 2753.23426 2664.70755 2810.09742 

CS 2750.183089 2753.234974 2664.70797 2810.09811 

Cʹʹ (A) 2750.18548 2753.23667 2664.70973 2810.10054 

Cʹʹ (S) 2750.18502 2753.23677 2664.70970 2810.10020 

Cʹʹ avg 2750.18525 2753.23672 2664.70971 2810.10037 

Cʹʹ diff 0.00045 0.00010 0.00003 0.00034 

DJ 0.000359385 0.000354471 0.00031571 0.0003720 

DJK 0.00116461 0.00100965 0.00106291 0.001282 

DK −0.00044108 −0.00013559 −0.00033312 [−0.000448766] 

d1 −0.000237536 −0.000219641 −0.000210119 −0.0002370 

d2 −0.000106279 −0.0000909205 −0.000096842 −0.00010309 

ΔJ 0.000572171 0.000536231 0.00050939 0.0005836 

ΔJK −0.00011102 −0.00008172 −0.00009943 [0.000120109] 

ΔK 0.00062213 0.00077436 0.00063576 0.000405 

δJ 0.000237513 0.000219630 0.000210110 0.0002397 

δK 0.000501466 0.000487271 0.000419902 0.000678 
a Values in square brackets held constant at the computed value (CCSD(T)/cc-pCVTZ) in least-squares fit.   
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Evaluation of Semi-Experimental Equilibrium Rotational Constants (Be
x) 

The premise of the re
SE structure determination method is that the experimentally obtained 

rotational constants (B0
x) can be combined with computational corrections to obtain constants that 

are effectively the (semi-experimental) equilibrium rotational constants (Be
x).  This approach has 

several key requirements.  First, the experimental rotational constants should be well determined 

and, ideally, free of significant perturbation i.e., due to Coriolis coupling.  Second, the 

computational corrections for vibration-rotation interaction and, to a lesser extent, the electron-

mass distribution should be determined at a sufficiently high level of theory.  Finally, these 

corrections should be determined independently for each isotopologue.   

To generate constants free of centrifugal distortion and the impact of the choice of an A- 

or S-reduced Hamiltonian, the rotational constants (B0
x) determined in each least-squares fit were 

converted to determinable constants (B0′′) using Eq. 3.S1 – Eq. 3.S6.  The computed vibration-

rotation interaction and electron-mass corrections were combined with the averaged determinable 

constants to obtain the semi-experimental equilibrium constants (Be
x) using Eq. 3.S7.  This is the 

approach taken in this work, and the results of the evaluation using CCSD(T)/cc-pCVTZ 

corrections are summarized in Table 3.5.  

The evaluation of Be
x is handled automatically by the xrefit module of CFOUR, after 

providing the requisite data.  The module also converts these constants into moments of inertia, 

which are then used to calculate the inertial defects given in Table 3.1.  

 0 CCSD(T)

1

2

x x x bb x
e iB B g B = + −  (3.S7) 
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Table 3.5.  Semi-experimental rotational constants of isotopologues of pyridazine and the corrections (CCSD(T)/cc-pCVTZ) used to 

obtain them (MHz). 

 normal  [3-13C]  [4-13C]  [15N] 

 A B C  A B C  A B C  A B C 

𝐵0
𝑥 6242.952 5961.094 3048.718  6112.230 5961.316 3017.252  6217.717 5848.366 3013.032  6218.914 5857.402 3015.713 

1

2
∑𝛼𝑖

𝑥 51.239 41.840 24.103  49.936 41.581 23.751  50.623 40.957 23.687  50.586 41.043 23.703 

𝜂𝑔𝑏𝑏𝐵CCSD(T)
𝑥  −0.321 −0.416 0.061  −0.308 −0.416 0.060  −0.322 −0.399 0.059  −0.322 −0.399 0.060 

𝐵0
𝑥 +

1

2
∑𝛼𝑖

𝑥 6294.191 6002.934 3072.821  6162.166 6002.897 3041.002  6268.340 5889.323 3036.720  6269.500 5898.445 3039.416 

𝐵𝑒
𝑥 6294.512 6003.351 3072.760  6162.474 6003.313 3040.943  6268.662 5889.722 3036.661  6269.822 5898.844 3039.356 

 
 [3-2H]  [4-2H]  [3,4-2H]  [3,5-2H] 

 A B C  A B C  A B C  A B C 

𝐵0
𝑥 5962.407 5828.179 2946.688  6192.443 5598.120 2939.571  5854.143 5539.316 2845.689  5889.765 5498.784 2843.280 

1

2
∑𝛼𝑖

𝑥 42.142 46.416 22.992  50.226 38.694 22.823  45.165 39.446 21.827  45.226 39.333 21.801 

𝜂𝑔𝑏𝑏𝐵CCSD(T)
𝑥  −0.414 −0.282 0.057  −0.330 −0.358 0.056  −0.324 −0.325 0.053  −0.334 −0.314 0.053 

𝐵0
𝑥 +

1

2
∑𝛼𝑖

𝑥 6004.550 5874.595 2969.680  6242.669 5636.815 2962.394  5899.309 5578.762 2867.516  5934.991 5538.118 2865.081 

𝐵𝑒
𝑥 6004.963 5874.878 2969.623  6242.999 5637.172 2962.338  5899.632 5579.086 2867.463  5935.325 5538.432 2865.029 

 
 [3,6-2H]  [4,5-2H]  [4-2H, 3-13C]  [4-2H, 4-13C] 

 A B C  A B C  A B C  A B C 

𝐵0
𝑥 5959.197 5460.418 2848.966  6002.718 5388.799 2839.102  6079.742 5587.225 2910.967  6189.064 5486.801 2907.828 

1

2
∑𝛼𝑖

𝑥 42.160 42.496 21.937  48.294 36.514 21.680  48.906 38.552 22.505  49.874 37.736 22.435 

𝜂𝑔𝑏𝑏𝐵CCSD(T)
𝑥  −0.416 −0.246 0.053  −0.297 −0.343 0.052  −0.322 −0.353 0.055  −0.332 −0.343 0.055 

𝐵0
𝑥 +

1

2
∑𝛼𝑖

𝑥 6001.357 5502.914 2870.903  6051.012 5425.313 2860.782  6128.649 5625.778 2933.472  6238.938 5524.537 2930.263 

𝐵𝑒
𝑥 6001.773 5503.160 2870.850  6051.309 5425.656 2860.730  6128.971 5626.130 2933.417  6239.270 5524.879 2930.208 



 

 

1
0
8
 

Table 3.5 (continued) 
 [4-2H, 5-13C]  [4-2H, 6-13C]  [3,4,5-2H]  [3,4,6-2H] 

 A B C  A B C  A B C  A B C 

𝐵0
𝑥 6116.711 5542.236 2907.083  6081.115 5580.965 2909.578  5622.366 5385.219 2750.185  5732.558 5299.120 2753.237 

1

2
∑𝛼𝑖

𝑥 49.573 37.906 22.452  48.794 38.620 22.496  44.088 36.631 20.759  41.204 39.620 20.853 

𝜂𝑔𝑏𝑏𝐵CCSD(T)
𝑥  −0.314 −0.357 0.055  −0.325 −0.350 0.055  −0.261 −0.342 0.049  −0.365 −0.250 0.049 

𝐵0
𝑥 +

1

2
∑𝛼𝑖

𝑥 6166.283 5580.142 2929.535  6129.909 5619.585 2932.074  5666.455 5421.850 2770.944  5773.763 5338.740 2774.090 

𝐵𝑒
𝑥 6166.598 5580.500 2929.481  6130.234 5619.935 2932.019  5666.716 5422.192 2770.895  5774.128 5338.990 2774.040 

 
 [3,4,5,6-2H]  [4,5-2H, 4-13C] 

 A B C  A B C 

𝐵0
𝑥 5385.763 5275.677 2664.710  5973.710 5307.982 2810.100 

1

2
∑𝛼𝑖

𝑥 36.707 40.446 19.880  47.768 35.774 21.331 

𝜂𝑔𝑏𝑏𝐵CCSD(T)
𝑥  −0.343 −0.229 0.046  −0.295 −0.333 0.051 

𝐵0
𝑥 +

1

2
∑𝛼𝑖

𝑥 5422.470 5316.123 2684.589  6021.478 5343.756 2831.431 

𝐵𝑒
𝑥 5422.813 5316.352 2684.544  6021.773 5344.089 2831.381 
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Table 3.6.  Atomic coordinates of the isotopologues of pyridazine in their respective principal axes systems, using the re
SE structure 

determination. 

  normal  [3-13C]  [4-13C]  [15N]  [3-2H]  [4-2H] 

Parameter  a b  a b  a b  a b  a b  a b 

N1  -1.17903 -0.66645  -1.17085 -0.69631  -1.28854 -0.47046  -1.25249 -0.46976  -0.53374 -1.25972  -1.36248 -0.24978 

N2  -1.17903 0.66645  -1.18621 0.63651  -1.07043 0.84448  -1.04586 0.84703  0.78738 -1.08283  -0.92600 1.00963 

C3  -0.01906 1.31745  -0.03382 1.30084  0.18043 1.29689  0.20101 1.31033  1.27868 0.15328  0.38319 1.24489 

C4  1.22416 0.68812  1.21657 0.68588  1.30391 0.47260  1.33164 0.49588  0.48993 1.30198  1.35178 0.24315 

C5  1.22416 -0.68812  1.23243 -0.69027  1.07871 -0.88509  1.11828 -0.86372  -0.87414 1.11934  0.90111 -1.05721 

C6  -0.01906 -1.31745  -0.00345 -1.33389  -0.25073 -1.30250  -0.20747 -1.29272  -1.33292 -0.19640  -0.47964 -1.24473 

H(C3)  -0.10383 2.39527  -0.13101 2.37761  0.27318 2.37405  0.28435 2.38826  2.35822 0.21230  0.65604 2.29105 

H(C4)  2.13683 1.26569  2.12253 1.27393  2.29880 0.89304  2.32282 0.92498  0.94127 2.28324  2.40327 0.49001 

H(C5)  2.13683 -1.26569  2.15171 -1.25729  1.88457 -1.60422  1.93039 -1.57580  -1.56773 1.94729  1.57434 -1.90180 

H(C6)  -0.10383 -2.39527  -0.07579 -2.41262  -0.51073 -2.35192  -0.45830 -2.34437  -2.38995 -0.42346  -0.91268 -2.23537 

 
  [3,4-2H]  [3,5-2H]  [3,6-2H]  [4,5-2H]  [4-2H, 3-13C]  [4-2H, 4-13C] 

Parameter  a b  a b  a b  a b  a b  a b 

N1  -1.38715 -0.17709  -0.48553 -1.29484  -0.66645 -1.17648  -1.23144 -0.66645  -1.38139 -0.17642  -1.38621 0.20966 

N2  -0.56926 -1.22956  -1.34188 -0.27343  0.66645 -1.17648  -1.23144 0.66645  -0.86472 1.05228  -0.91071 -1.03554 

C3  0.74612 -1.03181  -0.87124 0.97069  1.31745 -0.01651  -0.07147 1.31745  0.45690 1.20274  0.40518 -1.22989 

C4  1.34160 0.22798  0.48577 1.28717  0.68812 1.22670  1.17174 0.68812  1.35898 0.14071  1.34208 -0.19846 

C5  0.49712 1.31466  1.36997 0.23254  -0.68812 1.22670  1.17174 -0.68812  0.82551 -1.12793  0.85112 1.08723 

C6  -0.87070 1.04872  0.82162 -1.04845  -1.31745 -0.01651  -0.07147 -1.31745  -0.56445 -1.22615  -0.53481 1.23164 

H(C3)  1.34056 -1.93487  -1.62867 1.74217  2.39527 -0.10128  -0.15624 2.39527  0.79655 2.22916  0.71050 -2.26703 

H(C4)  2.41667 0.33196  0.81409 2.31614  1.26569 2.13938  2.08442 1.26569  2.42418 0.31935  2.40076 -0.41243 

H(C5)  0.86336 2.33075  2.44044 0.37632  -1.26569 2.13938  2.08442 -1.26569  1.44295 -2.01412  1.49770 1.95239 

H(C6)  -1.59901 1.84775  1.44913 -1.92886  -2.39527 -0.10128  -0.15624 -2.39527  -1.06039 -2.18685  -0.99851 2.20830 
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Table 3.6 (continued) 

  [4-2H, 5-13C]  [4-2H, 6-13C]  [3,4,5-2H]  [3,4,6-2H]  [3,4,5,6-2H]  [4,5-2H, 4-13C] 

Parameter  a b  a b  a b  a b  a b  a b 

N1  -1.33890 -0.38723  -1.37096 -0.12607  -1.15937 -0.80706  -1.11859 -0.81201  -0.66645 -1.22770  -1.29293 -0.57893 

N2  -1.04431 0.91272  -0.83583 1.09470  -1.28361 0.52005  0.09459 -1.36410  0.66645 -1.22770  -1.19243 0.75018 

C3  0.23085 1.29125  0.48791 1.22523  -0.18938 1.27633  1.16759 -0.57797  1.31745 -0.06773  0.01332 1.31187 

C4  1.30424 0.40272  1.37388 0.14973  1.10709 0.76563  1.10973 0.81426  0.68812 1.17548  1.20555 0.59059 

C5  1.00008 -0.93948  0.82135 -1.11073  1.23537 -0.60462  -0.14290 1.38431  -0.68812 1.17548  1.10178 -0.78173 

C6  -0.35149 -1.27849  -0.56993 -1.18799  0.05623 -1.34709  -1.23065 0.51342  -1.31745 -0.06773  -0.18535 -1.31553 

H(C3)  0.38638 2.36116  0.84299 2.24641  -0.37425 2.34156  2.11349 -1.10156  2.39527 -0.15250  0.01005 2.39301 

H(C4)  2.32199 0.76431  2.44165 0.31230  1.96196 1.42576  2.01346 1.40573  1.26569 2.08816  2.15918 1.09771 

H(C5)  1.76254 -1.70448  1.42537 -2.00613  2.19792 -1.09460  -0.29056 2.45425  -1.26569 2.08816  1.96832 -1.42647 

H(C6)  -0.67237 -2.31093  -1.08029 -2.14111  0.07230 -2.42812  -2.24678 0.88271  -2.39527 -0.15250  -0.35114 -2.38390 

Table 3.7.  Optimized structural parameters of pyridazine at various levels of theory. 

 SCF SCF DBOC CCSD(T) CCSD(T) SFX2C-1e CCSDT(Q) 

Parameter cc-pCVTZ cc-pCVTZ cc-pVDZ cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCV5Z cc-pCVTZ cc-pVDZ 

RC3-H (Å) 1.07287 1.07301 1.09804 1.09653 1.08210 1.08115 1.08108 1.08199 1.09816 

RC4-H (Å) 1.07216 1.07229 1.09679 1.09519 1.08106 1.08010 1.07998 1.08094 1.09691 

RC4-C5 (Å) 1.36270 1.36268 1.39669 1.39405 1.37994 1.37735 1.37625 1.37970 1.39711 

RC3-C4 (Å) 1.39044 1.39050 1.41361 1.41116 1.39699 1.39420 1.39362 1.39676 1.41441 

RN2-C3 (Å) 1.30586 1.30584 1.34819 1.34614 1.33404 1.33129 1.33046 1.33395 1.34861 

θH-C3-C4 (°) 121.206 121.208 121.089 121.081 121.181 121.290 121.346 121.184 121.069 

θH-C4-C5 (°) 122.483 122.483 122.456 122.448 122.397 122.352 122.337 122.398 122.459 

θC3-C4-C5 (°) 116.717 116.718 116.560 116.582 116.765 116.819 116.849 116.765 116.560 

θN2-C3-C4 (°) 123.223 123.222 124.329 124.324 124.062 123.904 123.861 124.076 124.358 
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Alternate Z-Matrix 

An alternate Z-matrix was constructed to enable the determination of values and 

uncertainties for structural parameters that were not explicitly part of the original set of internal 

coordinates.   The uncertainties of these parameters are not able to be estimated with typical error 

propagation methods, which have an underlying assumption that the errors are statistically 

independent, which they certainly are not in this case.   

The alternate Z-matrix defines the structure in terms of an alternate set of bonds and angles 

in the internal coordinates.  The re
SE structure was re-determined with xrefit, using the alternate 

coordinates, to obtain values and statistical uncertainties of the alternate parameters.   

The bond distance and angle parameter values from each set of internal coordinates i.e., 

each Z-matrix, are identical.  The statistical uncertainties are very similar for all parameters from 

each set of internal coordinates.   
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Z-Matrix: 

X 

X 1 R1 

N 2 RNN* 1 A90 

N 2 RNN* 1 A90 3 D180 

C 3 RCN* 2 ACNN* 1 Dn90 

C 4 RCN* 2 ACNN* 1 D90 

C 5 RCC* 3 ACCN* 2 D0 

C 6 RCC* 4 ACCN* 2 D0 

H 5 RCH1* 3 AHCN* 2 D180 

H 6 RCH1* 4 AHCN* 2 D180 

H 7 RCH2* 5 AHCC* 3 D180 

H 8 RCH2* 6 AHCC* 4 D180 

 

R1=1.00 

RNN=0.6665 

RCN=1.3309 

RCC=1.3934 

RCH1=1.0809 

RCH2=1.0800 

A90=90.0 

ACNN=119.28 

 

ACCN=123.87 

AHCN=114.77 

AHCC=120.79 

D180=180.0 

Dn90=-90.0 

D90=90.0 

D0=0.0 
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ABSTRACT 

In the syntheses of 1-cyano-1,3-butadiene from 1,4-dibromo-2-butene and cyanide, 

specific diastereoselectivities were observed: reaction of the E-diastereomer yielded the desired 

product in a 10:1 E:Z ratio, while reaction of the Z- diastereomer yielded the desired product in a 

2:3 E:Z ratio.  The hypothesized rate-determining step of the reaction – the 1,4-elimination of HBr 

from the 1-bromo-4-cyano-2-butene intermediate – was investigated using B3LYP/cc-pVTZ, with 

a polarized continuum model for the solvent (H2O), at the experimental reaction temperatures.  For 

the rate-determining step of each reaction of the diastereomers, four distinct transition states were 

identified and determined to be higher in energy by at least 7 kcal/mol than the conformational 

changes of the preceding intermediate.  As such, the Curtin-Hammett principle was applied and 

using the difference in energy of the product-forming transition states, the observed synthetic 

diastereoselectivities were reproduced.  For the reaction of E-1,4-dibromo-2-butene at 273 K (0 

°C), the competing product-forming transition states differ by 2.4 kcal/mol in favor of forming 

(E)-1-cyano-1,3-butadiene.  This energy difference corresponds to a predicted E:Z ratio of ca. 60:1.  

For the reaction of (Z)-1,4-dibromo-2-butene at 323 K (50 °C), the competing product-forming 

transition states differ by only 0.1 kcal/mol, corresponding to a predicted E:Z ratio of 1:1.  The 

slight overestimation of the production of the E diastereomer by the theoretical predictions 

suggests the relative energies of the product-forming transition states are accurate to within 1 

kcal/mol. 

INTRODUCTION 

Over 200 different molecules have been detected in the interstellar medium (ISM) or 

circumstellar shells1-2 and are theorized to be involved in complex reaction networks.3-7  The vast 
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majority of these detections have been made via radioastronomy, through observation and 

assignment of rotational spectra.  Because of their large dipole moments,8-10 which confer intense 

rotational transitions, and composition of relatively abundant elements, nitriles (R–CN) represent 

attractive targets for detection by radioastronomy.  Approximately 10% of the known interstellar 

molecules are nitriles, including recently detected benzonitrile,11 hydroxyacetonitrile,12 and silyl 

cyanide.13  Interstellar nitriles are observed in varying degrees of hydrogenation, from highly 

unsaturated cyanopolyynes, RC2n+1N (R = H, n = 1–4; R = CH3, n = 1, 2),14-20 to vinyl and phenyl 

derivatives [vinyl cyanide (acrylonitrile),21 cyanoallene,22 and benzonitrile11], to compounds with 

fully saturated backbones (acetonitrile,23 hydroxyacetonitrile,12 propyl cyanide,24 and isopropyl 

cyanide25).  Spectroscopic data for the organic nitriles described herein – (E)-1-cyano-1,3-

butadiene (E-1), (Z)-1-cyano-1,3-butadiene (Z-1) (Figure 4.1) – would enable radioastronomical 

searches for these compounds.  Each of these nitriles has been proposed as a likely component of 

the ISM.26-30  Additionally, these nitriles are acyclic isomers of the aromatic heterocycle, pyridine, 

which has yet to be identified in the ISM.31  Detection of any of these nitriles would provide 

additional motivation to detect pyridine and other aromatic heterocycles.  The existence of organic 

nitriles in the ISM is relevant not only to our understanding of the chemical processes in the ISM 

but also to our understanding of the origin of amino acids, nucleotides, and other prebiotic 

compounds that are critical for life on Earth.   
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Figure 4.1.  Cyanobutadiene isomers: (E)-1-cyano-1,3-butadiene (E-1), (Z)-1-cyano-1,3-

butadiene (Z-1). 

Organic nitriles have also been detected in the nitrogen-rich atmosphere of Saturn's largest 

moon, Titan.  Titan has been of interest as a possible analogue to prebiotic Earth29 and has been 

visited by the Cassini–Huygens probe.32  Small organic nitriles (up to four carbon atoms) and their 

corresponding anions were detected in Titan's atmosphere.33  Electric discharge experiments 

performed on various gaseous mixtures e.g., N2, CH4, C2H6, NH3, H2O, and H2S, simulating the 

atmosphere of Titan produce a myriad of nitrile-containing small molecules.7, 34-35  It is plausible 

that the nitriles in Figure 4.1 are components of Titan's atmosphere.   

Despite the sophistication of modern synthetic chemistry, the synthesis, purification, and 

isolation of simple organic compounds shown in Figure 4.1 remain a challenge.  The recently 

described procedures36 enable detailed studies of the high-resolution rotational spectroscopy of the 

cyanobutadiene isomers (Figure 4.1).37  The rotational spectrum of each of these compounds is 

very complex; having a pure sample, for which spectral features are not obscured by impurities, is 

critical to achieve a sophisticated analysis of the complex spectrum.  Therefore, procedures were 

developed to synthesize E-1 and Z-1 separately and in high yield.  As shown in Scheme 4.1, the 

synthesis of E-1 from (E)-1,4-dibromo-2-butene (E-2) using cyanide was highly selective for the 

E-1 over Z-1.  Use of the other diastereomer for the starting material, (Z)-1,4-dibromo-2-butene 

(Z-2), however, resulted in only a slightly selectivity for Z-1 over E-1, as shown in Scheme 4.2.   
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Scheme 4.1.  Reaction Conditions for Synthesis and Purification of (E)-1-Cyano-1,3-butadiene 

(E-1) 

  

aIsolated (gravimetric) yield. bDiastereomeric ratio determined via 1H NMR.  

Scheme 4.2.  Reaction Conditions for Synthesis and Purification of (Z)-1-Cyano-1,3-butadiene 

(Z-1) 

 

aIsolated (gravimetric) yield. bDiastereomeric ratio determined via 1H NMR.  

 

The reaction to form 1-cyano-1,3-butadiene from (E)-1,4-dibromo-2-butene (E-2) is 

hypothesized to proceed through (E)-1-bromo-4-cyano-2-butene (E-3, Scheme 4.3a), which, once 

formed, reacts with another equivalent of cyanide to eliminate HBr in a concerted 1,4-elimination 

mechanism (E2ʹ mechanism), where the position of the dihedral angle determines whether E-1 or 

Z-1 is formed.  Similarly, the reaction to form 1-cyano-1,3-butadiene from (Z)-1,4-dibromo-2-

butene (Z-2) is hypothesized to proceed through (Z)-1-bromo-4-cyano-2-butene (Z-3, Scheme 

4.3b) followed by elimination of HBr by cyanide via the 1,4-elimination mechanism.  Given that 

E-1 and Z-1 are predicted to be very similar in energy (within 1 kcal/mol) and the reactions of 

different precursor diastereomers lead to different product ratios, it is clear that a kinetically 
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controlled reaction is responsible for the observed diastereoselectivity.  Thus, the E2ʹ transition 

state barriers leading to each diastereomer of 1,4-dibromo-2-butene must be responsible for the 

selectivity, or lack thereof, in the formation of E-1 and Z-1.  If this is indeed the mechanism, then 

computational analysis of the reaction should provide insight as to the origins of the 

diastereoselectivity observed in Schemes 4.2 and 4.3.   

Scheme 4.3.  Proposed Mechanism for Reaction of 1,4-Dibromo-2-butene with 2 Equivalents of 

Cyanide to Yield Diastereomers of 1-Cyano-1,3-butadiene 

 

 

COMPUTATIONAL METHODS 

Geometry optimizations, conformational analyses, and harmonic frequency calculations 

were conducted with density functional theory using the B3LYP functional38-39 and the cc-pVTZ 

basis set,40 correcting for water as a solvent by employing the polarizable continuum model as 

implemented in Gaussian 16.41  Thermally corrected Gibbs free energies for all species were 

obtained from the harmonic frequency calculations at 273, 298, and 323 K.  Intrinsic Reaction 

Coordinate (IRC) calculations were conducted to verify that each transition state smoothly 

connects on diastereomer of the starting material to one diastereomer of the product.  Natural Bond 
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Orbital (NBO) and Natural Resonance Theory (NRT) calculations42 were used to analyze the 

electronic structure, bonding, hyperconjugation, and relative energies of energy minima and 

transition states on the potential energy surfaces.  

RESULTS AND DISCUSSION 

The proposed E2ʹ substrates, Z-3 and E-3, exhibit multiple conformational isomers due to 

the bromo-methyl rotor and the cyano-methyl rotor.  The conformational isomers were identified 

using two-dimensional relaxed conformation scans at 15° intervals for the dihedral angle for the 

bromo- and cyano-methyl rotors of each diastereomer.  The stationary points on the 2-D energy 

surface were then separately optimized to obtain their structures and energies without the 15° 

interval constraint on the dihedrals.  The results of the 2-D scan and the individual optimizations 

are summarized in Figure 4.2 for E-3 and in Figure 4.3 for Z-3, with snapshots of the 

conformational stationary points and their relative energies.  In addition, the approximate entrance 

channels to the E2ʹ transition states are provided, based on IRC calculations.   
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Figure 4.2.  Relaxed 2-D conformational scan of (Z)-1-bromo-4-cyano-2-butene (Z-3) using 

B3LYP/cc-pVTZ electronic energies with PCM solvent correction for water.  Relative energies in 

kcal/mol.  The heat map ranges from 0 kcal/mol (blue) to 12.5 kcal/mol (red). 
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Figure 4.3.  Relaxed 2-D conformational scan of (E)-1-bromo-4-cyano-2-butene (E-3) using 

B3LYP/cc-pVTZ electronic energies with PCM solvent correction for water.  Relative energies in 

kcal/mol.  The heat map ranges from 0 kcal/mol (blue) to 12.5 kcal/mol (red). 

The conformations of the Z-3 species are the possible combinations of the anti-clinal 

bromo-methyl rotor with the anti-clinal cyano-methyl group, as the steric interactions of the bromo 

and cyano groups destabilize the syn-periplanar positions.  Thus, for Z-3 there are a total of four 

conformations consisting of two enantiomeric pairs of local minima.  Interconnecting these 

conformations are four pairs of enantiomeric transition states.  The stationary points denoted in 
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Figure 4.2 show that the largest activation barrier for interconversion of any of the conformations 

is 5.5 kcal/mol (Z-3z), which is at least 10 kcal/mol lower in energy than any of the outgoing E2ʹ 

transition state barriers (vide infra).   

The conformations of the E-3 species are the anti-clinal and syn-periplanar positions of the 

bromo-methyl rotor in various combinations with the anti-clinal and syn-periplanar positions of 

the cyano-methyl rotor.  Thus, for E-3 there are nine conformations consisting of four enantiomeric 

pairs of local minima and one unique local minimum.  Interconnecting these conformations are 

eight enantiomeric pairs of transition states and two unique transition states.  Examination of the 

stationary points in Figure 4.3 reveals that the largest activation barrier for interconversion of any 

of the conformations is 4.2 kcal/mol (E-3y), which is at least 10 kcal/mol lower in energy than any 

of the outgoing E2ʹ transition state barriers (vide infra).  This is consistent with the Curtin-Hammett 

principle, because the energy required to overcome the lowest of the E2ʹ transition states is more 

than sufficient to overcome any of the conformational activation barriers. 

For the reaction of each diastereomer of (Z-3 or E-3) with cyanide ion, the calculations 

predict two pairs of E2ʹ transition states (Figures 4.4 and 4.5) leading to the cyanobutadiene 

products (E-1 and Z-1).  In each of the transition state geometries, an acidic hydrogen atom at C-

4 is perpendicular to the plane of the adjacent alkene unit.  The bromide leaving group at C-1 can 

be in an anti or syn orientation with respect to the acidic hydrogen atom at C-4.  The cyano 

substituent at C-4 may occupy a syn-periplanar conformation relative to the alkene moiety, which 

leads to the formation of (Z)-1-cyano-1,3-butadiene (Z-1), or an anti-periplanar conformation, 

which leads to the formation of the (E)-1-cyano-1,3-butadiene (E-1).  Each transition state was 

verified to connect one diastereomer of the starting material (3) to one diastereomer of the product 

(1), using an IRC calculation.  Several attempts to explore a stepwise pathway beginning with 
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deprotonation of Z-3 or E-3 failed to obtain an anionic intermediate as a stationary point.  

Therefore, a stepwise mechanism was not considered further.   

 

 

Figure 4.4.  Computed reaction coordinate diagram for E2ʹ reaction of (Z)-1-bromo-4-cyano-2-

butene (Z-3) with cyanide in water.  Gibbs free energies at B3LYP/cc-pVTZ with the polarized 

continuum model for the solvent (H2O) at 273 K (0 °C).  Solid line: lower energy transition state.  

Dashed line: higher energy transition state. 
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Figure 4.5.  Computed reaction coordinate diagram for E2ʹ reaction of (E)-1-bromo-4-cyano-2-

butene (E-3) with cyanide in water.  Gibbs free energies at B3LYP/cc-pVTZ with the polarized 

continuum model for the solvent (H2O) at 323 K (50 °C).  Solid line: lower energy transition state.  

Dashed line: higher energy transition state. 

For either diastereomer of 1-bromo-4-cyano-2-butene (Z-3 or E-3), the computed 

activation barriers of the E2ʹ transition states are significantly higher (by 7 – 14 kcal/mol) than the 

activation barriers for conformational interconversion.  Thus, the diastereoselectivity in the 

elimination reaction is interpreted in terms of the Curtin – Hammett principle.43  Product selectivity 

is governed by the difference in energy between the competing product-forming transition states 
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(ΔΔG‡). The conformational equilibrium in the starting material is rapid and does not govern the 

composition of products.  If the reaction system has enough energy to surmount the lowest-energy 

E2ʹ barrier, it has sufficient energy to surmount the conformational barriers.  As such, the potential 

energy surfaces for the E2ʹ reactions shown in Figures 4.4 and 4.5 contain a simplified surface for 

the conformational isomerization of each 1-bromo-4-cyano-2-butene (Z-3 or E-3).   

In the E2ʹ reaction of (Z)-1-bromo-4-cyano-2-butene (Z-3) with cyanide in water at 273 K 

(0 °C) (Figure 4.4), the transition states TS2a and TS2b that lead to (Z)-1-cyano-1,3-butadiene (Z-

1) are higher in energy than the transition states TS1a and TS1b that lead to (E)-1-cyano-1,3-

butadiene (E-1).  Thus, the computational analysis is in qualitative accordance with the 

experimental observation of diastereoselectivity favoring the formation of (E)-1-cyano-1,3-

butadiene (E-1).  The difference in transition state energies (ΔΔG‡) appears to arise from a steric 

interaction in the transition states involving the –CH2CN group.  Both transition states leading to 

Z-1 (TS2a and TS2b) have a larger interaction between –CN and –CH2Br, relative to the transition 

states leading to E-1 (TS1a and TS1b).  The small energy difference between the E-1-forming 

transition states TS1a and TS1b (0.8 kcal/mol) is likely due to a subtle difference in electrostatic 

interactions (repulsion) between the bromo and cyano substituents in the anti versus syn E2ʹ 

elimination pathways.  Natural Bond Orbital (NBO) analysis of each transition state did not reveal 

any obvious hyperconjugation contribution to the energy differences among TS1a, TS1b, TS2a, 

and TS2b.  Assuming that this potential energy surface reasonably models this reaction, the E-

1/Z-1 ratio derived from the ΔΔG‡ between TS1a and TS2a (2.4 kcal/mol) is expected to be ca. 

60:1.  This result is in qualitative agreement with the experimental observation of an E-1/Z-1 ratio 

of 10:1.  This does indicate, however, that the computational prediction of ΔΔG‡ is larger than its 

true value by about 1 kcal/mol. 
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In a similar fashion, the potential energy surface of the E2ʹ reaction of (E)-1-bromo-4-

cyano-2-butene (E-3) with cyanide in water at 323 K (50 °C) is presented in Figure 4.5.  Unlike 

the reaction of the isomeric system (Z-3), the transition states for the E2ʹ reaction of E-3 leading 

to (E)- and (Z)-1-cyano-1,3-butadiene (1) are computed to be virtually isoergic (ΔΔG‡ = 0.1 

kcal/mol favoring the formation of E-1).  With the –CH2CN and –CH2Br groups in a trans 

orientation in the ground state of E-3, there is no significant preference for the –CN substituent to 

adopt one conformation over the other.  This situation is also manifested in the transition states 

(TS3a, TS3b, TS4a, and TS4b); the relative energies of the transition states reveal no preference 

for the stereochemical course of the reaction.  Thus, the rates of product formation would be 

expected to afford a diastereomeric ratio of nearly 1:1.  This prediction is consistent with the 

experimentally observed product ratio of E-1/Z-1 (E/Z ratio 2:3).  The deviation of the 

experimental ratio from 1:1 reveals that there is a slight energetic preference (<1 kcal/mol) for the 

transition states leading to the Z diastereomer.  Our computational model is not expected to be of 

sufficient accuracy to account for such a small energetic difference.   

SUMMARY 

We computationally analyzed the rate-determining step of the proposed mechanism for the 

synthesis of (E)-1-cyano-1,3-butadiene (E-1) and (Z)-1-cyano-1,3-butadiene (Z-1) from 1,4-

dibromo-2-butene (2) and cyanide.  The purported intermediate, 1-bromo-4-cyano-2-butene, 

consists of many conformational isomers arising from the two separate and mostly non-interacting 

rotors of the bromo-methyl group and the cyano-methyl group.  The conformational surface of the 

intermediate, though complex, does not affect the outcome of the reaction with cyanide because 

the 1,4-elimination (E2ʹ) transition states are significantly higher in energy than the conformational 
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transition states, justifying the use of the Curtin–Hammett principle.  For the reaction of (E)-1-

bromo-4-cyano-2-butene (E-3), the transition states leading to the Z-1 product possess increased 

steric interactions of the cyano-methyl rotor with the bromo-methyl rotor, resulting in higher 

energies than the transition states leading to the E-1 product, which lack such steric interaction.  

The difference in energy of the transition states corresponds to a predicted E-1/Z-1 ratio of ca. 

60:1, comparable to the 10:1 ratio observed experimentally.  For the reaction of (Z)-1-bromo-4-

cyano-2-butene (Z-3), the transition states leading to either E-1 or Z-1 are effectively the same 

energies, leading to a predicted E-1/Z-1 ratio of 1:1, comparable to the 2:3 ratio observed 

experimentally.  The agreement between the predicted and experimentally observed 

diastereoselectivities suggests the computed model free energies are accurate to with 1 kcal/mol, 

and strongly supports the proposed SN2/E2ʹ mechanism in the synthesis of E-1 and Z-1 from 2.  
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Table 4.1.  Summary of Absolute Electronic and Free Energies Determined by B3LYP/cc-pVTZ with PCM(H2O). 

 
Absolute Energies (Hartrees/Particle) 

Molecule 
B3LYP/cc-PVTZ 

+ PCM(H2O) 

Zero-Point Energy 

Correction 
ΔG(273) ΔG(298) ΔG(323) 

Br- -2574.418411 0.000000 -2574.418411 -2574.418411 -2574.418411 

CN- -92.991754 0.004908 -93.004002 -93.005874 -93.007747 

HBr -2574.838558 0.005931 -2574.849968 -2574.851857 -2574.853746 

HCN -93.468406 0.016417 -93.469431 -93.471341 -93.473257 

E-1a -248.340828 0.084356 -248.282958 -248.286009 -248.289100 

E-1b -248.334771 0.084168 -248.277418 -248.280511 -248.283644 

E-1y -248.334559 0.084012 -248.276615 -248.279577 -248.282573 

E-1z -248.327279 0.083381 -248.270103 -248.273087 -248.276106 

Z-1a -248.339893 0.084520 -248.281996 -248.285050 -248.288144 

Z-1b -248.332893 0.084422 -248.275466 -248.278565 -248.281702 

Z-1y -248.332731 0.084419 -248.274222 -248.277149 -248.280110 

Z-1z -248.327168 0.083577 -248.269759 -248.272725 -248.275725 

E-3a -2823.194404 0.098175 -2823.127395 -2823.131032 -2823.134719 

E-3b -2823.194485 0.098159 -2823.127363 -2823.130984 -2823.134655 

E-3c -2823.194389 0.098296 -2823.127250 -2823.130880 -2823.134561 

E-3d -2823.190835 0.097896 -2823.124064 -2823.127694 -2823.131374 

E-3e -2823.190824 0.097840 -2823.123940 -2823.127555 -2823.131221 

E-3q -2823.191723 0.097771 -2823.124021 -2823.127493 -2823.131012 

E-3r -2823.191330 0.097968 -2823.123583 -2823.127067 -2823.130597 

E-3s -2823.191353 0.097961 -2823.123395 -2823.126859 -2823.130370 

E-3t -2823.189099 0.097772 -2823.121718 -2823.125221 -2823.128771 

E-3u -2823.189151 0.097699 -2823.121494 -2823.124965 -2823.128482 



 

 

1
3
6
 

 
Absolute Energies (Hartrees/Particle) 

Molecule 
B3LYP/cc-PVTZ 

+ PCM(H2O) 

Zero-Point Energy 

Correction 
ΔG(273) ΔG(298) ΔG(323) 

E-3v -2823.189058 0.097803 -2823.121467 -2823.124954 -2823.128487 

E-3w -2823.187933 0.097626 -2823.120606 -2823.124104 -2823.127648 

E-3x -2823.187932 0.097423 -2823.120623 -2823.124100 -2823.127624 

E-3y -2823.187844 0.097561 -2823.120429 -2823.123910 -2823.127438 

E-3z -2823.187776 0.097621 -2823.120196 -2823.123665 -2823.127180 

Z-3a -2823.191453 0.098526 -2823.124487 -2823.128150 -2823.131863 

Z-3b -2823.191333 0.098385 -2823.124717 -2823.128403 -2823.132138 

Z-3w -2823.189959 0.098048 -2823.122111 -2823.125584 -2823.129102 

Z-3x -2823.186419 0.097900 -2823.119022 -2823.122526 -2823.126077 

Z-3y -2823.187784 0.098354 -2823.119423 -2823.122869 -2823.126361 

Z-3z -2823.182743 0.097987 -2823.115009 -2823.118484 -2823.122004 

TS1a -2916.168979 0.098350 -2916.111809 -2916.107383 -2916.116306 

TS1b -2916.168536 0.098410 -2916.106121 -2916.110469 -2916.114888 

TS2a -2916.166206 0.098627 -2916.103509 -2916.107845 -2916.112252 

TS2b -2916.165918 0.098570 -2916.103504 -2916.107866 -2916.112298 

TS3a -2916.170754 0.098139 -2916.108687 -2916.113050 -2916.117486 

TS3b -2916.170780 0.098076 -2916.108970 -2916.113357 -2916.117816 

TS4a -2916.170427 0.098153 -2916.108532 -2916.112916 -2916.117371 

TS4b -2916.170529 0.098102 -2916.108783 -2916.113178 -2916.117644 
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Table 4.2.  Summary of Relative Electronic and Free Energies Determined by B3LYP/cc-pVTZ with PCM(H2O). 

 

Relative Energies (kcal/mol)a 

Molecule 
B3LYP/cc-PVTZ 

+ PCM(H2O) 

B3LYP/cc-PVTZ + 

PCM(H2O) + ZPE 
ΔG(273) ΔG(298) ΔG(323) 

E-1a 0.0 0.0 0.0 0.0 0.0 

E-1b 3.8 3.7 3.5 3.5 3.4 

E-1y 3.9 3.7 4.0 4.0 4.1 

E-1z 8.5 7.9 8.1 8.1 8.2 

Z-1a 0.6 0.7 0.6 0.6 0.6 

Z-1b 5.0 5.0 4.7 4.7 4.6 

Z-1y 5.1 5.1 5.5 5.6 5.6 

Z-1z 8.6 8.1 8.3 8.3 8.4 

E-10a 26.0 27.5 24.7 24.4 24.0 

E-10b 26.0 27.4 24.7 24.4 24.1 

E-10c 26.0 27.6 24.8 24.5 24.1 

E-10d 28.3 29.5 26.8 26.5 26.1 

E-10e 28.3 29.5 26.9 26.6 26.2 

E-10q 27.7 28.9 26.8 26.6 26.4 

E-10r 28.0 29.3 27.1 26.9 26.6 

E-10s 27.9 29.3 27.2 27.0 26.8 

E-10t 29.4 30.6 28.3 28.0 27.8 

E-10u 29.3 30.5 28.4 28.2 27.9 

E-10v 29.4 30.6 28.4 28.2 27.9 

E-10w 30.1 31.2 29.0 28.7 28.5 

E-10x 30.1 31.1 29.0 28.7 28.5 

E-10y 30.1 31.2 29.1 28.9 28.6 

E-10z 30.2 31.3 29.2 29.0 28.8 

Z-10a 27.9 29.6 26.6 26.2 25.8 



 

 

1
3
8
 

 

Relative Energies (kcal/mol)a 

Molecule 
B3LYP/cc-PVTZ 

+ PCM(H2O) 

B3LYP/cc-PVTZ + 

PCM(H2O) + ZPE 
ΔG(273) ΔG(298) ΔG(323) 

Z-10b 28.0 29.5 26.4 26.0 25.7 

Z-10w 28.8 30.2 28.0 27.8 27.6 

Z-10x 31.0 32.3 30.0 29.7 29.5 

Z-10y 30.2 31.7 29.7 29.5 29.3 

Z-10z 33.4 34.7 32.5 32.3 32.0 

TS1a 36.8 35.3 37.0 42.9 40.5 

TS1b 37.1 35.6 40.6 41.0 41.3 

TS2a 38.6 37.2 42.2 42.6 43.0 

TS2b 38.7 37.4 42.2 42.6 43.0 

TS3a 35.7 34.0 39.0 39.4 39.7 

TS3b 35.7 34.0 38.8 39.2 39.5 

TS4a 35.9 34.3 39.1 39.4 39.8 

TS4b 35.8 34.2 38.9 39.3 39.6 

a Mass-balanced energies relative to E-1a on the C6H6N2Br− surface. 
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Chapter 5: Theoretical Investigation of the Conversion of 1-
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ABSTRACT 

Pyridine, the N-heterocyclic analog of benzene, has long been a target of astronomical 

surveys via radio astronomy.  1-Cyano-1,3-butadiene, a N-heterologue of 1,3-hexadien-5-yne, is 

known to form predominantly over that of pyridine in the reactions of cyano radicals with 

butadiene under conditions similar to that of the interstellar medium.  Given that 1,3-hexadien-5-

yne is known to isomerize to benzene, it may be that the isomerization of 1-cyano-1,3-butadiene 

to pyridine is a significant pathway to formation of pyridine in the interstellar medium.  If so, 

detection of 1-cyano-1,3-butadienes in the interstellar medium could provide evidence for the 

likely presence of pyridine in the interstellar medium, as well as to provide insight into the study 

of the astrochemical processes therein.  Our theoretical calculations support the conclusion that 1-

cyano-1,3-butadiene is likely to form pyridine under interstellar conditions with the assistance of 

trihydrogen cation.  The potential for astronomical searches of intermediates encountered in the 

pathways is discussed, and additional avenues of the transformation are considered for future 

study. 

INTRODUCTION 

The pervasiveness of aromatic (hetero)cycles in organic and biological chemistry is such 

that detection and characterization of these species in the interstellar medium is of paramount 

interest in the fields of astrochemistry and prebiotic chemistry.  While the prototypical aromatic 

molecule – benzene – has been detected in the interstellar medium (ISM) via measurements of its 

infrared spectra,1 the lack of a permanent dipole (and thus, pure rotational transitions) means that 

benzene is unable to be detected by radio astronomy, which has become the gold standard for 

detection of molecules in the ISM.  Aromatic heterocycles and aromatic rings with polar 
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substituents – particularly the cyano substituent – are much more suitable for detection via 

radioastronomy owing to their significant permanent dipole moments.  Though such molecules 

have long been targets for detection via radioastronomy,2-6 the first benzene-derived species 

(benzonitrile) was only recently detected.7  While other cyano-substituted molecules have since 

been detected,8-11 the nitrogen analog of benzene (pyridine) and other heterocycles have yet to be 

detected.5, 12-14 

Kaiser, Chang, and coworkers have considered the formation of pyridine under interstellar 

conditions both experimentally and computationally.15-17  They examined the reaction of cyano 

radical (•CN) with 1,3-butadiene (CH2−CH−CH−CH2) using crossed molecular beams under 

single-collision conditions and estimated that, at most, 6% of the products were attributable to 

pyridine, while the rest was attributed to the formation 1-cyano-1,3-butadiene.15  Their 

experimental results were consistent with that of their electronic structure and kinetics 

calculations15 (including the more thorough ensuing computational investigation17) which led to 

the conclusion that while pyridine is significantly more stable than 1-cyano-1,3-butadiene, the 

radical processes have significantly higher activation barriers for the formation of pyridine than 

the formation of 1-cyano-1,3-butadiene.  The conclusion that the formation of pyridine is not 

kinetically favored is supported by Jamal and Mebel18 who examined the reactions of the cyano 

radical with other open chain isomers of 1,3-butadiene e.g., 1-butyne, 2-butyne, and 1,2-butadiene, 

using similar computational methods.  They also found pyridine formation was negligible 

compared to a handful of open chain cyano compounds e.g., 2-cyano-1,3-butadiene, 1-cyano-1,2-

propadiene, cyanoethyne, and 3-cyano-1-propyne.  The formation of pyridine in the ISM, 

therefore, likely involves isomerization from a less stable constitutional isomer (whose formation 

is kinetically favorable), or from the decomposition of a larger molecule.  An example of the latter 
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is the reaction of vinyl cyanide (CH2=CH−CN) with cyanovinyl radical (•CH=CH−CN) in a 

pyrolytic reactor, where it is believed that cyanopyridyl radical [(cyclic-C5H5N
•)−CN] is formed 

before decomposing to yield pyridine and cyano radical.16   

Since the decomposition of larger molecules to form pyridine represents more complicated 

formation pathways – and a larger pool of possible reactions – we limit ourselves to examining the 

constitutional isomers that may rearrange to form pyridine.  The constitutional isomers with the 

simplest intramolecular isomerization to form pyridine are those that have a linear arrangement of 

the heavy atoms, such as 1-cyanobutadienes, imine-ene-ynes, cyanomethylene-allenes, and 

substituted ketenimines.  We consider such isomerizations to form pyridine to be ‘simple’ because 

they require only a single heavy-atom bond formation, whereas the isomerization of species with 

a branching arrangement of the heavy atoms e.g., 2-cyano-1,3-butadiene, require an additional 

heavy-atom bond dissociation and bond formation.  As noted previously, 1-cyano-1,3-butadiene 

is the dominant product in the reaction of cyano radical with 1,3-butadiene.  Furthermore, the 

transformation of 1-cyano-1,3-butadiene (1) to N-heterocyclic aromatic pyridine (2) is 

isoelectronic with the transformation of 1,3-hexadien-5-yne (3) to aromatic benzene (4), as is the 

transformation of protonated 1-cyano-1,3-butadiene (5) to protonated pyridine (6), as illustrated in 

Scheme 5.1.  Thus, we believe examining the neutral and protonated transformations of 1-cyano-

1,3-butadiene (1) to pyridine (2) represent the most fruitful avenue for investigating the formation 

of pyridine from a constitutional isomer under interstellar conditions. 
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Scheme 5.1.  Isoelectronic Formation of Six-Membered Aromatic Rings Open Chain 

Constitutional Isomers. 

 

 

 Consideration of the transformation of 1 to 2 in the literature thus far has been incidental19 

and often focuses on the radical formation15, 17-18 or dissociation20-22 of pyridine.  The most 

extensive examination of the transformation of 1 to 2 is that of Sun et al.,17 who – in investigating 

the reaction of cyano radical with 1,3-butadiene – examined over 300 local minima on the doublet 

C5H6N
• surface alone, along with over 100 dissociation products and a considerable number of 

interconnecting transition states.  The lowest energy pathway for the reaction 1 + H• → 2 + H• is 

shown in Figure 5.1.  The highest barrier in this pathway is the initial addition of H• to the cyano 

carbon of 7, with an activation barrier of 8 kcal/mol.  The radical 7 then cyclizes to form 8 and 

finally ejects H• to yield pyridine.  While the computational results are extensive, their focus was 

not on the transformation of 1 to 2 and so it may be that the pathway in Figure 5.1 is not the lowest 
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energy pathway for the transformation catalyzed by atomic hydrogen.  For example, they report 

the radical 9 resulting from attachment of H• to the nitrogen of 1 as being 2 kcal/mol lower in 

energy than 7, but do not report whether there is an activation energy for the formation of 9 or its 

cyclization, as highlighted in red in Figure 5.1.  Thus, in addition to the neutral and proton 

catalyzed pathways, we will also examine the transformation of 1 to 2 catalyzed by atomic 

hydrogen.  

 

 

Figure 5.1.  Computed energies (kcal/mol) of the H• catalyzed transformation of 1-cyano-1,3-

butadiene to pyridine, determined using CCSD(T)/cc-pVTZ//B3LYP/cc-pVTZ + ZPEB3LYP/cc-pVTZ 

calculations.17  Pathways in red were not reported in Ref. 17. 

COMPUTATIONAL METHODS 

To evaluate reactions of interest, geometry optimizations and frequency calculations were 

conducted using the B3LYP functional23-24 and correlation-consistent polarized valence and triple 

zeta basis set (cc-pVTZ).25  Transition states were further characterized via intrinsic reaction 

coordinate (IRC) calculations to ensure correspondence to the desired reaction.  Following the 
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methodology of previous works,15-18 energy calculations utilizing the B3LYP/cc-pVTZ geometries 

were conducted for each of the stationary points using coupled cluster with single, double, and 

perturbative triple excitations [CCSD(T)] and the cc-pVTZ basis set.  These energies are used in 

combination with the zero-point energy correction determined at B3LYP/cc-pVTZ to calculate the 

relative energies of the stationary points, reported herein as CCSD(T)/cc-pVTZ//B3LYP/cc-pVTZ 

+ ZPEB3LYP/cc-pVTZ.  All calculations were conducted using Gaussian 16.26  

RESULTS AND DISCUSSION 

The determination of the neutral pathway for the transformation of 1-cyano-1,3-butadiene 

(1) to pyridine (2) is based on the isoelectronic isomerization of Z-1,3-hexadiene-5-yne to 

benzene,27 and on the rather thorough exploration of the C6H6 surface.28  The neutral 

transformation of 1 to 2 proceeds through intermediates higher in energy than 1.  As shown in 

Figure 5.2, the lowest energy transformation proceeds through 1-isocyano-1,3-butadiene (10).  The 

highest energy point of this pathway is the transformation of 10 to 2 via a tandem [3,3]-sigmatropic 

shift (to form the six-membered ring) and a [1,2]-sigmatropic hydrogen transfer.  Alternatively, 1 

can cyclize directly via a [3,3]-sigmatropic shift to yield intermediate 11, and two subsequent [1,2]-

sigmatropic hydrogen transfers yields 2.  While Balcioglu et al.27 were careful to determine the 

exact nature of the intermediates, we decline to do so given that the high energies of these pathways 

precludes the viability of the neutral transformation of 1 to 2 under interstellar conditions.  It is 

also worth noting that the neutral transformation of 1 to 2 is considerably higher in energy than 

the isoelectronic isomerization of Z-1,3-hexadiene-5-yne to benzene,27 though this may be due to 

the difference in the choice of theory and basis set. 
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Figure 5.2.  The neutral isomerization of 1-cyano-1,3-butadiene (1) to pyridine (2) with energies 

as computed using CCSD(T)/cc-pVTZ//B3LYP/cc-pVTZ + ZPEB3LYP/cc-pVTZ. 

 As shown in Figure 5.3, the radical pathway described indirectly by Sun et al.17 (1 → 7 → 

8 → 2, green) prevails as the lowest energy pathway for the transformation of 1 to 2 as catalyzed 

by atomic hydrogen.  The transformation begins with H• attacking the cyano carbon of 1 to form 

7, followed by cyclization to form doublet 1H-pyridyl radical 8, and finally H• is ejected to yield 

2.  The highest energy point in this pathway is that of the initial attachment of H• to 1, with an 

activation energy of 7.9 kcal/mol.  While this has the highest activation barrier for the attachment 

of H• to 1 – due to the resulting intermediate 7 being the highest in energy of the possible 

attachment products (7, 9, 13–16) – all other pathways contain higher activation barriers for their 

respective transformations to 2.  Specifically, attachment of H• to any other atom necessitates at 

least one subsequent [1,2]-sigmatropic hydrogen transfer (either before or after cyclization to form 
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the six-membered ring) with an activation barrier of at least 30 kcal/mol.  Only by attaching H• to 

the cyano carbon can this high-energy transition state be avoided.  Therefore, provided sufficient 

collision energy, the attachment of atomic hydrogen to 1 is at least a feasible albeit unlikely 

pathway for the formation of pyridine in the ISM. 

 

 

Figure 5.3.  The isomerization of 1-cyano-1,3-butadiene (1) to pyridine (2) catalyzed by atomic 

hydrogen (H•) with energies as computed by CCSD(T)/cc-pVTZ//B3LYP/cc-pVTZ + ZPEB3LYP/cc-

pVTZ in this work (blue, underlined) or in the previous work of Sun et al.17 (black, italicized).  The 

path highlighted in green represents the minimum energy pathway between 1 and 2.   
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We used the trihydrogen cation (H3
+) as the source of proton for catalyzing the 

transformation of 1 to 2 under interstellar conditions.29-32  As shown in Figure 5.4, the transfer of 

a proton from the trihydrogen cation to 1 is considerably exothermic, a result of the larger C5H6N
+ 

molecule distributing the positive charge to a greater degree than H3
+.  This exothermicity provides 

the resulting C5H6N
+ intermediate with more than enough internal energy to overcome the large 

activation barriers that were present in the isoelectronic transformation under neutral conditions 

(vide supra).  For simplicity, we have assumed that the transfer of proton from H3
+ to C5H5N (and 

vice versa) is a barrierless process, as (gas-phase) ion-molecule reactions typically proceed without 

activation energy.33 

 

Figure 5.4.  The isomerization of 1-cyano-1,3-butadiene (1) to pyridine (2) catalyzed by 

trihydrogen cation (H3
+) with energies computed by CCSD(T)/cc-pVTZ//B3LYP/cc-pVTZ + 

ZPEB3LYP/cc-pVTZ. 
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We first considered the attachment of the proton onto the nitrogen atom of 1 to yield 22, 

as the nitrogen is the most basic atom of those present in 1.  Cyclization of 22 via bond formation 

between the nitrogen atom and the terminal carbon proceeds akin to that in the neutral pathway to 

yield 23, which is the protonated form of 11.  Subsequent transfer of the proton from the nitrogen 

atom to the former cyano carbon yields 2H-pyridinium cation, 24.  The hydrogen transfer can be 

combined with the cyclization reaction to yield 24 directly from 22 via a single transition state, 

which proceeds by first transferring the proton from the nitrogen to the cyano carbon followed by 

cyclization.  The single-step hydrogen transfer and cyclization has an activation barrier 20 

kcal/mol lower than the two-step transformation.  Once 24 is formed, a proton can be removed 

from the sp3-hybridized carbon by H2 to yield 2 and trihydrogen cation.  Alternatively, the proton 

can be transferred to the nitrogen atom via a [1,2]-sigmatropic shift to yield pyridinium, 25.  

Comparison of the relative energies of 2+H3
+ and 25+H2 reveals pyridine has a vastly greater 

proton affinity than molecular hydrogen by ca. 120 kcal/mol.  This is consistent with the 

experimental proton affinity values of 100 kcal/mol and 222 kcal/mol for molecular hydrogen and 

pyridine, respectively.34 

An alternate pathway for the transformation of 1 to 24 begins with the protonation of the 

C1 position to yield 26, which is less exothermic than the corresponding formation of 22.  

Subsequent cyclization of 26 to yield 27 forms the six-membered ring and is, interestingly, 

exothermic.  At first, the positive charge would appear to be better stabilized by 26 due to the 

allylic π conjugation, as compared to what is effectively a deprotonated imine in 27, but as 

evidenced by the relative energies this argument is insufficient.  We propose that additional 

hyperconjugation with the C–H σ bonds of the newly formed sp3-hybridized carbon is responsible 

for the higher stability of 27 compared to 26.  More specifically, we hypothesize that the positive 
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charge can be delocalized through the entire ring, by the donation of electron density from the C–

H σ bonds to the C–N π bond, and in turn donation from the C–C π bond to the C–H σ bonds.  

While such hyperconjugation is present in 26, it is not as significant because the group donating 

electron density to the C–H σ bonds via hyperconjugation is the electron-withdrawing cyano π 

bond.  Altogether, the stabilization due to hyperconjugation overcomes the cost of disrupting the 

allylic π system in 26 to form the six-membered ring of 27, leading to an exothermic reaction.  

This hypothesis, however, requires further investigation via natural bond orbital (NBO) and natural 

resonance theory (NRT) calculations, the analysis of which has not been completed at the time of 

this writing.  Regardless, a subsequent [1,2]-sigmatropic hydrogen transfer to the former cyano 

carbon yields 24.  Overall, the formation of 24 from 1 via intermediate 26 has only a slightly higher 

activation barrier (< 5 kcal/mol) than the path via 22, and so may represent a not insignificant 

contribution to the formation of 2 from 1.  

CONCLUSION 

The high energy calculated for the neutral transformation of 1-cyano-1,3-butadiene 1 to 

form pyridine 2 makes it clear that a catalyzing event is required to obtain 2 from 1 under 

astronomical conditions.  Catalysis of the transformation by atomic hydrogen is much more 

feasible, but this radical pathway possesses an activation barrier of 8 kcal/mol.  The most likely 

pathway of those considered thus far is catalysis by the trihydrogen cation H3
+.  The transfer of a 

proton from H3
+ to 1 is highly exothermic, owing to the low proton affinity of molecular hydrogen 

in comparison to the much larger C5H5N molecule.  This exothermicity in turn ensures the 

subsequent transition states have activation barriers significantly lower than the energy of the 

initial reactants, and 1 is easily obtained.  The high proton affinity of pyridine, however, is such 
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that the formation of pyridinium cation 25 is much more exothermic and thus the most likely 

thermodynamic product of the reaction of 1 with H3
+.  

As can be inferred from the discussion, this study is still a work in progress.  In addition to 

the proposed NBO/NRT supporting calculations, we plan to explore several other avenues for the 

transformation of 1 to 2.  In particular, the catalyzed pathways studied thus far proceed by attaching 

and then removing of an external mass (H• or H+).  In a similar manner, we will consider the 

transformation of 1 to 2 for the scenario where mass is removed and then reattached, that is, the 

dissociation of atomic or cationic hydrogen from 1 to form the corresponding C5H4N
• radical or 

C4H5N
− anion.  Subsequent cyclization to form the six-membered ring and then reattachment of 

the hydrogen can yield 2 and may involve little to no activation barriers beyond the initial 

detachment of the hydrogen, which we assume to be the result of a photochemical reaction or 

impact of cosmic rays.  The requisite transfer of a hydrogen atom from the terminal carbon to the 

cyano carbon – which was the rate-determining step for most transformations considered thus far 

– is then inherently distinct from the ring formation, and the corresponding activation barrier will 

be split into (and coupled with) the removal and attachment steps.  Further, noting that in both 

scenarios at least one two-body collision is required, we plan to consider the transformation of 1 

to 2 for the case of the removal or attachment of an electron.  Such a change in the electronic 

structure of 1 may facilitate its transformation into 2 and, other than the initial ionization energy, 

only requires the presence of free electrons to occur.  The computational modeling of these 

reactions is thus an active area of research in pursuit of the completion of this work.  
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ABSTRACT 

We present computational studies of reaction pathways for alkyne / polyyne dimerization 

that represent plausible early steps in mechanisms for carbon condensation.  A previous 

computational study of the ring coalescence and annealing model of C60 formation revealed that 

a 1,4-didehydrobenzocyclobutadiene intermediate (p-benzyne derivative) has little to no barrier to 

undergoing an unproductive retro-Bergman cyclization, which brings into question the relevance 

of that reaction pathway.  The current study investigates an alternative model, which proceeds 

through an initial [4+2] cycloaddition instead of a [2+2] cycloaddition.  In this pathway, the 

problematic intermediate is avoided, with the reaction proceeding via a (potentially) more 

kinetically stable tetradehydronaphthalene derivative.  The computational studies herein of the 

[2+2] and [4+2] model systems, with increasing alkyne substitutions, reveal that the para-benzyne 

diradical of the [4+2] pathway has a significantly greater barrier to ring opening than the analogous 

intermediates of the [2+2] pathway, and that alkyne substitution has little effect on this important 

barrier. 

INTRODUCTION 

 Allotropes of carbon continue to be active areas of research in chemistry and materials 

science.  Recent developments include a monolayer fullerene network,1 graphene nanoribbons of 

various geometries,2 and allotropes derived from nonbenzenoid aromatic structures (azulene, 

biphenylene, etc.).3  Cyclocarbon C18,
4-5 a known precursor of C60,

6 has been imaged on a surface.7  

A myriad of chemical models for the formation of fullerene have been proposed and can be 

categorized into two groups: pathways that start from large carbon aggregates that degrade into 

fullerene (“size-down”) and pathways that start from small carbon aggregates and condense into 
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fullerene (“size-up”).  The “size-down” pathways that have been proposed include the 

degradations of graphene,8-9 graphene nanoflakes,10 carbon nanotubes,11 and giant fullerenes,12-13 

while “size-up” pathways proposed include the fullerene road,14 pentagon road,15 closed network 

growth,15-17 and ring coalescence and annealing.6, 18-19  Of the “size-up” pathways, all but the ring 

coalescence and annealing model progress from smaller carbon aggregates to larger fullerenes 

through the steady incorporation of C2 fragments.  In contrast, the ring coalescence and annealing 

model proposes the addition of medium-sized (C12 – C20) cyclic polyynes, and subsequent 

annealing through a cascading radical mechanism, results in fullerenes.20  As illustrated in Scheme 

6.1, this combination has been proposed to occur through an initial [2+2] cycloaddition to yield a 

tetraalkynylcylcobuta-1,3-diene intermediate that subsequently undergoes a Bergman cyclization 

reaction.19-20   

While formation of a tetraalkynylcyclobutadiene may be a reasonable step in this process, 

it was previously shown21 that the model products formed by the subsequent Bergman cyclization 

reaction may have little or no barrier to undergo an exothermic retro-Bergman cyclization to yield 

an eight-membered ring intermediate.  This eight-membered ring intermediate is not currently 

accounted for in the ring coalescence and annealing model, and the structural element of an eight-

membered ring is obviously not present in fullerene C60.  These findings call into question whether 

or not the initial [2+2] dimerization represents a productive pathway to fullerene formation.  Thus, 

we turned our attention to the study of an alternative reaction pathway that involves initial [4+2] 

cycloaddition, or hexadehydro-Diels-Alder reaction (HDDA),22-23 of two polyynes to give a 

tetraalkynyl ortho-benzyne intermediate (Scheme 6.2).  Subsequent Bergman cyclization, 

followed by a cascading radical mechanism, may afford a viable pathway to C60, as illustrated in 

Scheme 6.2.  This pathway avoids forming a high-energy four-membered ring intermediate and 
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avoids the problematic retro-Bergman cyclization leading to the eight-membered ring species.  

Thus, we investigate whether a small modification to the ring coalescence and annealing model 

yields a more kinetically realistic reaction pathway. 

Scheme 6.1.  The [2+2] Ring Coalescence and Annealing Model of Fullerene Formation 
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Scheme 6.2.  Proposed [4+2] Ring Coalescence and Annealing Model of Fullerene Formation 

 

 

 The condensation of highly unsaturated carbon molecules via cycloadditions has been 

evaluated computationally at several levels of theory for a variety of species, as summarized in 
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Scheme 6.3, but the comparison of polyyne dimerization through [2+2] or [4+2] cycloaddition 

reactions has not been examined.  A thermal, concerted [2πs+2πs] cycloaddition is symmetry 

forbidden and thus the [2+2] cycloaddition is expected to proceed through a radical mechanism 

(top Scheme 6.3).24-26  The [4+2] cycloaddition can proceed through either a radical mechanism 

or a concerted [4πs+2πs] mechanism with the concerted reaction having an activation barrier of 

34–36 kcal/mol, compared to the rate-determining step of the radical mechanism having a barrier 

of 30–37 kcal/mol (middle Scheme 6.3).26-28  The competition of the [2+2] cycloaddition versus 

the [4+2] cycloaddition is exemplified by the combination of butadiyne and ethyne (middle 

Scheme 6.3, gray and underlined) to form either ortho-benzyne or ethynylcyclobutadiene.26  

Unsurprisingly, the computed barriers for stepwise and concerted processes are close in energy 

and the overall prediction of stepwise vs. concerted depends on the level of theory employed.  

Overall, the formation of the [4+2] product (ortho-benzyne) is significantly more exothermic (>40 

kcal/mol) than the formation of the [2+2] product (ethynylcyclobutadiene).26  Interestingly, in 

considering the stepwise pathway for reaction of ortho-benzyne and butadiyne (bottom Scheme 

6.3), the [2+2] product is kinetically favored by several kcal/mol, while the formation of the [4+2] 

product is thermodynamically favored by about 30 kcal/mol.25 
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Scheme 6.3.  Mechanisms of Simple Alkyne Cycloadditions 

 

CCSD(T)/cc-pVTZ//B3LYP/6-311++G(3df,3pd)
24 

 
 

CAS(12,12)-PT2/CBS//CAS(12,12)-PT2/cc-pVTZ + ZPVECASSCF
27 

M06-2X//6-311+G(d,p)
28

 

CCSD(T)/6-311+G(d,p)//M05-2X/6-311+G(d,p)
26 

 

CCSD(T)/6-311+G(d,p)//B3LYP/6-311+G(d,p) + ZPVE
25 
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 Following initial cycloadditions of the polyynes, the next step toward fullerene formation 

in the ring coalescence and annealing model is a Bergman cyclization.20, 29  The resulting 

intermediate for the [2+2] pathway is a substituted tetraalkynyl-didehydrobenzocyclobutadiene, 

which is a fused para-benzyne and cyclobutadiene species (Scheme 6.1), while for the [4+2] 

pathway the intermediate is a substituted tetraalkynyl-tetradehydronaphthalene, which is a fused 

ortho- and para-benzyne species (Scheme 6.2).  In principle, the para-benzyne intermediate of the 

[4+2] pathway is expected to be more stable than the corresponding para-benzyne intermediate of 

the [2+2] pathway: the ortho-benzyne present in the former is a strained, formally aromatic ring 

while the cyclobutadiene present in the latter is a highly strained, formally antiaromatic ring.  This 

argument is based upon the computational result that the [4+2] product of ortho-benzyne and 

butadiyne is 30 kcal/mol lower in energy than the [2+2] product (bottom Scheme 6.3).  With the 

[4+2] intermediate considerably lower in energy than the [2+2] intermediate, the subsequent retro-

Bergman cyclization will have a greater barrier within the [4+2] pathway than within the [2+2] 

pathway.  Thus the [4+2] pathway would be more likely to undergo the subsequent cascading 

radical mechanism that leads to fullerene. 

 The [2+2] and [4+2] carbon condensation pathways (I and II, respectively) studied in this 

work are illustrated in Scheme 6.4.  Because a computational study of a large carbon ring system 

as described in Schemes 6.1 and 6.2 is not computationally feasible with reasonable ab initio 

methods, we used a simplified substitution pattern described in Scheme 6.4 (a–d).  Substitution a 

is the parent system (R = R' = H).  Substitution b places additional alkynyl units at the end of the 

alkyne chains of the cycloaddition products 2b or 6b, while substitution c places additional alkynyl 

units on the ring of the cycloaddition products 2c or 6c.  The d substitution places alkynyl units on 

both the ring and the alkyne chains of the cycloaddition products 2d or 6d.  Scheme 6.4 (top) 
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illustrates a [2+2] cycloaddition pathway involving two polyynes (1a–d) to yield substituted 

cyclobutadiene 2a–d.  A Bergman cyclization of the enediyne unit of 2a–d results in the diradical 

didehydrobenzocyclobutadiene 3a–d.  Diradical species 3a–d can then undergo a retro-Bergman 

cyclization, breaking the shared carbon-carbon bond between the fused rings, to generate 

cycloocta-1,5-dien-3,7-diyne 4a–d. 

Scheme 6.4.  [2+2] and [4+2] Reaction Pathways. 

 

 

Scheme 6.4 (bottom) illustrates an alternative pathway that proceeds through an initial 

[4+2] cycloaddition of two polyynes 1/5a–d.  Necessarily, the pathway involves an extra alkynyl 

unit in one of the initial polyynes for system II compared to system I.  The [4+2] cycloaddition 

yields the substituted ortho-benzyne 6a–d, which can undergo the Bergman cyclization to generate 

the diradical tetradehydronaphthalene species 7a–d.  The retro-Bergman cyclization of 7a–d 

generates cyclodeca-1,7-dien-3,5,9-triyne 8a–d.   
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Regardless of whether the initial [2+2] or [4+2] adducts are formed by a stepwise or 

concerted process, we are keenly interested in elucidating the chemistry of these enediynes (2a-d 

and 6a-d) with respect to Bergman cyclization and subsequent ring opening.  An earlier study of 

reaction pathway Ia at the B3LYP level of theory but was  unsuccessful at identifying 3a as a 

stationary point for the reactions under investigation.21  In this work, we revisited pathway Ia by 

utilizing a smaller IRC step size to increase the sampling and produce a finer-detailed potential 

energy surface for the purpose of comparison to the SF-TDDFT model system.  Given the previous 

poor behavior using B3LYP,21 and with consideration to the system size, MP2/cc-pVTZ 

calculations were utilized to find the stationary points in these reaction pathways.  As noted 

previously21 and discussed further in this work, however, the MP2 description of diradicals 3a–d 

and 7a–d in these schemes is questionable as it employs a single-reference model for a species that 

is best treated with a multi-reference model.  The multi-reference equation-of-motion and spin-flip 

coupled cluster method, EOM-SF-CCSD employed previously on MP2 single point calculations,21 

is computationally too intensive and not suitable for studying the larger systems in this work.  

Analogous spin-flip approaches, however, have been applied to density functional theory30 and 

recent advances in the implementation31 give comparable results.  Thus, spin-flip, time-dependent 

DFT calculations were chosen to evaluate the energetics of the reaction pathways in this 

investigation.   

COMPUTATIONAL METHODS 

 To evaluate the reactions of interest, restricted Møller-Plesset second-order perturbation 

theory32 was employed with the correlation consistent polarized valence and triple zeta basis set33 

(MP2/cc-pVTZ) using Gaussian 09.34  Geometry optimizations with harmonic frequency 
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calculations were employed to determine the nature of the stationary points.  Intrinsic reaction 

coordinate (IRC) calculations were used to confirm the location of transition state structures for 

all model schemes.  For Ia and IIa, single point calculations on the MP2 structures were carried 

out with coupled-cluster calculations (CCSD(T)/cc-pVTZ) and equation-of-motion spin-flip 

coupled cluster with single and double excitations (EOM-SF-CCSD/cc-pVDZ) as implemented in 

Q-Chem 4.4.1.35  For all reaction schemes (Ia–d and IIa–d), single point calculations on the MP2 

structures were carried out using spin-flip time-dependent density functional theory within the 

Tamm-Dancoff approximation (SF-TDDFT)30 as implemented in Q-Chem 4.4.135 with the cc-

pVTZ basis set and utilizing the “collinear 50-50” functional30 (exchange = 50% HF + 8% Slater 

+ 42% Becke; correlation = 19% VWN + 81% LYP).  Additional properties of the MP2/cc-pVTZ 

local minima were analyzed by nuclear-independent chemical shifts (NICS),36 using the gauge-

independent atomic orbital (GIAO) method, and natural bond orbital/natural resonance theory 

(NBO/NRT)37 calculations with the B3LYP functional38-39 and the 6-31G(d) basis set,40 as 

implemented in Gaussian 09.34   

 While conducting the EOM-SF-CCSD and SF-TDDFT single point calculations on the 

MP2 IRC structures, multiple solutions to the reference SCF calculations were observed for closely 

related structures, particularly those around 3a–d and 7a–d, resulting in a variety of spin-flip 

excited states regardless of which reaction pathway or substitution pattern was considered.  This 

is partially explained by considering that, for the high-spin triplet reference, there is a change in 

the energetic ordering of two non-interacting triplet states that occurs near TS2–3 and TS6–7 in 

almost all substitution patterns (a–d).  Unfortunately, the reordering of the triplet states does not 

account for the varied results in the region around 3a–d and 7a–d, observed in the high-spin triplet 

reference calculations.  Rather, we hypothesize that the documented41 orbital instability of ab initio 
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calculations of para-benzyne (arising from the near-degeneracy of electronic states of different 

symmetry) is extended to the similar structures that occur in the region around 3a–d and 7a–d, for 

both CCSD and DFT high-spin reference calculations.  The difference between these solutions to 

the high-spin reference calculations appears to be related to the ordering of two radical-type 

orbitals associated with the para-benzyne structure and two π-type orbitals of the fused ring π 

system.  This variation was corrected by adjusting the orbital guess for the reference calculation 

to obtain a continuous reference energy surface from the enediyne species (2a–d and 6a–d) to the 

ring-opened species (4a–d and 8a–d).  The adjustment provided a continuous surface from the 

reactant to the product along the IRC, but the resultant energy values were not necessarily the 

lowest energy result for every electronic state for each structure in the reaction pathway. 

RESULTS AND DISCUSSION 

 The computational results of the [2+2] and [4+2] carbon condensation reaction pathways 

investigated in this work are displayed in Figures 6.1 and 6.2, respectively and summarized in 

Tables 6.1 and 6.2.  Given the multiple ways in which the condensation of polyynes can proceed 

through the [2+2] and [4+2] cycloadditions, as discussed above, we did not pursue a 

comprehensive examination of the transformation from 1a–d to 2a–d and 1/5a–d to 6a–d; rather, 

we directed our attention on the nature of the diradical species 3a–d and 7a–d.  As such, we 

focused on the transformations from 2a–d to 3a–d to 4a–d and from 6a–d to 7a–d to 8a–d.  To 

that end, the reaction coordinate for Figure 6.1 is the combination of the IRC results for the 

transition states connecting 2a–d and 3a–d with the IRC results for the transition states connecting 

3a–d and 4a–d.  For several cases, the IRC calculations were unable to be extended all the way to 

the connected local minima within a reasonable amount of processor time.  Thus, the local minima 
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structures are spaced between the IRC results in an energetically reasonable but ultimately 

arbitrary fashion.  Similarly, Figure 6.2 is the combination of the IRC results for the transition 

states connecting 6a–d and 7a–d with the IRC results for the transition states connecting 7a–d and 

8a–d, with the local minima structures spaced between.  For both figures, the reaction coordinate 

starts at the IRC calculated structure closest to the initial rings 2a–d and 6a–d.  To connect the 

initial ring structures to the transition states via the IRC would require an exceedingly long 

calculation due to the shallowness of the energy surface in this region, at the step size utilized.   
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Figure 6.1.  Potential energy surfaces for the Bergman cyclization and subsequent retro-Bergman 

cyclization of alkynyl-substituted cyclobutadienes (system I). 
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Figure 6.2.  Potential energy surfaces for the Bergman cyclization and subsequent retro-Bergman 

cyclization of alkynyl-substituted ortho-benzynes (system II). 
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Table 6.1.  Relative Energies (kcal/mol) of Stationary Points 

  SF-TDDFT a     MP2 d    

I  1b TS1-2 2 b TS2-3 c 3 c TS3-4 c 4 c  1 TS1-2 2 TS2-3 3 TS3-4 4 

a  14.9  

[242] 
- 

0.0  

[0.0] 

44.6  

[37.1] 

26.0  

[11.5] 

26.0  

[ - ] 

-34.8  

[-34.0] 

 10.4 

 

- 

 

0.0 

 

22.0 

 

-22.4 

 

-16.1 

 

-39.0 

 

b  17.0 - 0.0 57.9 45.6 - -20.4  12.3 - 0.0 21.1 -9.7 -4.0 -28.2 

c  14.1 - 0.0 47.2 31.1 31.3 -23.6  10.4 - 0.0 23.8 -20.1 -10.6 -30.1 

d  14.3 - 0.0 60.2 48.6 - -11.1  11.4 - 0.0 23.8 -6.5 2.4 -18.2 

II  1/5 b TS1/5-6 b 6 b TS6-7 c 7 c TS7-8 c 8 c  1/5 TS1/5-6 6 TS6-7 7 TS7-8 8 

a  51.8  

[170] 

104.7 

[119]  

0.0  

[0.0] 

42.1  

[37.1] 

26.3  

[16.0] 

34.4  

[31.6] 

-18.1  

[-8.9] 

 54.9 

 

83.8 

 

0.0 

 

22.3 

 

-5.1 

 

8.1 

 

-22.5 

 

b  51.8 - 0.0 53.2 42.0 50.2 -3.6  54.3 - 0.0 26.0 7.2 21.0 -10.9 

c  37.2  89.4 0.0 41.9 27.0 35.2 -18.1  43.5 73.8 0.0 22.2 -6.1 8.6 -21.7 

d  36.4 - 0.0 53.2 41.7 51.2 -3.5  42.4 - 0.0 26.2 6.7 22.0 -10.7 
a Energies calculated at SF-TDDFT/cc-pVTZ//MP2/cc-pVTZ; energies in brackets calculated at EOM-SF-CCSD/cc-pVDZ//MP2/cc-pVTZ.   
b Determined using structures that were stationary points at MP2/cc-pVTZ.   
c Determined by using the SF energies to identify stationary points based on PES curvature. 
d Energies calculated at MP2/cc-pVTZ. 
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Table 6.2.  Energetics (kcal/mol) of Reactions in Systems I and II 

   SF-TDDFT a    MP2 d  

  

Initial 

Cycloaddition 

(1-2 and 1/5-6) 

Bergman 

Cyclization 

(2-3 and 6-7) 

retro-Bergman  

Cyclization 

(3-4 and 7-8) 

 

Initial  

Cycloaddition  

(1-2 and 1/5-6) 

Bergman  

Cyclization  

(2-3 and 6-7) 

retro-Bergman  

Cyclization 

(3-4 and 7-8) 
  ΔG‡ b ΔGrxn 

b ΔG‡ c ΔGrxn 
c ΔG‡ c ΔGrxn 

c  ΔG‡ ΔGrxn ΔG‡ ΔGrxn ΔG‡ ΔGrxn 

Ia  
-  

-14.9  

[-242] 

44.6  

[37.1] 

26.0  

[11.5] 

0.0  

[N/A] 

-60.8  

[-45.4] 

 
- 

-10.4 

 

22.0 

 

-22.4 

 

6.3 

 

-16.6 

 

Ib  - -17.0 57.9 45.6 N/A -66.0  - -12.3 21.1 -9.7 5.7 -18.6 

Ic  - -14.1 47.2 31.1 0.1 -54.8  - -10.4 23.8 -20.1 9.5 -10.0 

Id  - -14.3 60.2 48.6 N/A -59.8  - -11.4 23.8 -6.5 8.9 -11.7 

IIa  52.9  

[-51] 

-51.8  

[-170] 

42.1  

[37.1] 

26.3  

[16.0] 

8.1  

[15.6] 

-44.4  

[-24.9] 

 28.9 

 

-54.9 

 

22.3 

 

-5.1 

 

13.2 

 

-17.4 

 

IIb  - -51.8 53.2 42.0 8.2 -45.6  - -54.3 26.0 7.2 13.8 -18.7 

IIc  52.2 -37.2 41.9 27.0 8.2 -45.1  30.3 -43.5 22.2 -6.1 14.6 -16.2 

IId  - -36.4 53.2 41.7 9.5 -45.1  - -42.4 26.2 6.7 15.3 -17.5 
a Energies calculated at SF-TDDFT/cc-pVTZ//MP2/cc-pVTZ; energies in brackets calculated at EOM-SF-CCSD/cc-pVDZ//MP2/cc-pVTZ.   
b Determined using structures that were stationary points at MP2/cc-pVTZ.   
c Determined by using the SF energies to identify stationary points based on PES curvature. 

d Energies calculated at MP2/cc-pVTZ. 
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The data depicted in Figures 6.1 and 6.2, and summarized in Tables 6.1 and 6.2, are 

reminiscent of those reported, previously, for the parent system 2a → 3a → 4a.21  The MP2 

energies of the diradicals 3a-d and 7a-d are anomalously low, relative to the spin-flip calculations, 

presumably because of the spin contamination problems that plague the application of MP2 in 

open shell systems.  Not only are the MP2 energies of diradicals 3 and 7 too low, the energies of 

the transition states leading to the diradicals are also too low.  These problems affect the overall 

reaction thermochemistry and, in the case of diradicals 3a-d, the interpretation concerning whether 

these species even exist as intermediates on the potential energy surface.   

 The reaction pathways detailed herein involve novel, highly unsaturated molecules, 

particularly that of the 1,2,5,8-tetradehydronaphthalene species 7a–d that result from the Bergman 

cyclization of 6a–d in the [4+2] pathway.  While similar unsaturated naphthalene species have 

been previously studied computationally,42 the current work is, to the best of our knowledge, the 

first to examine the 1,2,5,8 isomer 7a–d.  In Figures 6.1 and 6.2, zero-point vibrational energy 

(ZPVE) corrections were not included in the reported energies due to the unrealistically large 

vibrational frequencies calculated for the diradical species 3a–d and 7a–d.  These frequencies vary 

from 7,000 cm-1 to 42,000 cm-1 and are displayed in Figure 6.3 and significantly distort the ZPVE 

correction.  A similar issue was previously observed in Hartree-Fock calculations of para-benzyne 

and was attributed to orbital instability effects in para-benzyne caused by the near-degeneracy of 

electronic configurations of different symmetry among the solutions to the HF equations.41  This 

instability manifests in properties of the second-order and higher, such as vibrational frequencies, 

but in principle has no effect on the structure or its energy.41  Considering that a para-benzyne 

moiety is present in each of the offending species, the observed orbital instability effects are likely 

the root cause of the abnormal frequencies.  Therefore, the computed energies in Tables 6.1 and 
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6.2 – describing the energetics of the stationary points of systems I and II – do not include ZPVE 

corrections.   

 

 

Figure 6.3.  Species with unrealistically large harmonic vibrational frequencies as determined 

using MP2/cc-pVTZ calculations. 

Initial Cycloaddition 

The initial cycloadditions for the model systems studied are considerably more exothermic 

for the [4+2] pathways II than the [2+2] pathways I (by 30 kcal/mol), which agrees with previous 

studies.25-26  Such a result is not unexpected as the [4+2] cycloaddition of II results in a strained, 

aromatic ring, whereas the [2+2] cycloaddition of I results in a strained, formally antiaromatic 

ring.  The concerted transition states TS1/5–6a and TS1/5–6c that were located for the initial 

cycloadditions in II have a slightly lower activation barrier than those reported previously,26-27, 43 
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attributable to a difference in theory and basis set.  There is a small variation in ΔGrxn for the initial 

cycloaddition to form 2a–d, while it appears that the inclusion of an alkynyl unit on the ring of 6 

makes the initial cycloaddition producing 6c,d less exothermic than 6a,b (Table 6.2).  The o-

benzyne derivatives 6b and 6c are isomeric, and comparison of their computed energy difference 

(ΔG = 10.1 kcal/mol, Supporting Information) establishes that the energy difference favoring the 

bis(diyne) 6b over the tetrakis(mono-yne) 6c is thermodynamic in origin. Examination of the NBO 

results for 6a, 6b, and 6c did not reveal any obvious explanations, so to explore the origin of this 

energy difference, we computed the free energy of cyclization for a variety of alkynyl substituted 

ortho-benzynes, as shown in Figure 6.4.  A standard reference is required to eliminate a 

dependence of the energy of cyclization on different lengths of the initial polyynes.  Thus, the 

cyclization energies have been calculated relative to acetylene (C2H2) and the polyyne (CmH2) 

necessary to obtain the molecular formula of the corresponding ortho-benzyne (Cm+2H4).  Given 

that the regioisomers of 6a are all within 1 kcal/mol in energy of one another, and that the linearity 

of the trend in Figure 6.4 demonstrates group additivity, we conclude that the difference in 

cyclization energy between 6a and 6c is a thermodynamic consequence of the difference in 

bonding arrangement.  The substitution pattern, or steric factors associated with the substitution 

pattern, do not contribute to the difference in cyclization energy. 
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Figure 6.4.  Reaction energies for formation of alkynyl-substituted ortho-benzynes, relative to 

acetylene and the appropriately mass-balanced polyyne (MP2/cc-pVTZ). 

Bergman Cyclization 

Following the initial cyclization event – whether it be a [2+2] (I) or a [4+2] (II) reaction – 

the next step in the condensation pathway is proposed to be a Bergman cycloaromatization 

reaction.  The computed activation barriers for the cyclization step (2 → 3 or 6 → 7) vary 

significantly, depending on the computational method used (Table 6.2).  This difference is directly 

attributable to the discrepancy in computed energy of the 1,4-didehydroarene (p-benzyne) 
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intermediates 3 and 7 using SF-TDDFT or MP2 methodology.  As described earlier, we do not 

consider the MP2 values to be reliable for a diradical intermediate of this type, so we focus on the 

SF-TDDFT values in our discussion.  Consideration of the SF-TDDFT values reported in Table 

6.2 reveals the Bergman cyclization reaction in the [2+2] pathway (2 → 3) exhibits a higher barrier 

than that of the [4+2] pathway (6 → 7).  This relationship is consistent with the fact that activation 

barriers for Bergman cyclizations have been strongly correlated to the distance separating the 

alkyne units,44 with decreasing distance corresponding to decreasing activation barrier.  As shown 

in Table 6.3, the average distances are 5.2 and 4.1 angstroms for 2 and 6, respectively, and the 

average eneyne angle is 136 and 120 degrees for 2 and 6, respectively.   

Table 6.3.  Geometric Parameters of Enediyne Moieties (MP2/cc-pVTZ). 

 

  r (Å) 
θ 

(degrees) 

θʹ 

(degrees) 

2 

a 5.15 135.5 - 

b 5.14 135.2 - 

c 5.22 136.4 - 

d 5.23 136.3 - 

 average 5.18 135.9 - 

6 

a 4.11 118.8 122.4 

b 4.03 118.2 121.8 

c 4.09 118.6 122.4 

d 4.02 118.3 121.7 

 average 4.06 118.5 122.1 

 

In the case of both pathways, I and II, substitution patterns a and c are less endothermic 

and, consequently, have lower activation barriers to Bergman cyclization.  These cases afford 

cyclization products that do not bear alkyne substituents directly on the para-benzyne ring (3a, 3c, 
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7a, 7c).  In contrast, the substitution patterns that place alkyne substituents directly on the para-

benzyne ring (3b, 3d, 7b, 7d) ring are more endothermic and have higher activation energies for 

Bergman cyclization.  Analysis of the NBO/NRT results for 3a, 3b, 7a, and 7b (Supporting 

Information) suggests that the alkynyl units destabilize the para-benzyne portion of the ring due 

to a decrease in the stabilization of the radical orbitals through hyperconjugation.  Specifically, the 

overlap of the σCH and σCH* orbitals with the radical orbitals of the para-benzyne moiety in 3a and 

7a provides stabilization via hyperconjugation (8.6 and 9.2 kcal/mol, respectively) that is nearly 

twice the stabilization from the overlap of the σCC and σCC* orbitals with the radical orbitals in 3b 

and 7b (5.0 and 4.9 kcal/mol, respectively).  While it is possible that steric repulsions between the 

ortho-substituted alkyne units could be responsible for the destabilization of the para-benzyne 

moiety, this is contradicted by the reaction energy trends shown in Figure 6.5, which illustrates a 

linear change in the reaction energy of the Bergman cyclizations of 2 and 6 as alkyne units are 

substituted to the ring.  Thus, we conclude that any steric interactions due to adjacent alkynyl units 

have very little impact on the energy of the molecule, which is consistent with the narrow steric 

profile of alkynyl substituents.   
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Figure 6.5.  Reaction energies for the Bergman cyclizations of alkynyl substituted cyclobutadienes 

and ortho-benzynes that form para-benzyne moieties (MP2/cc-pVTZ). 

Ring Expansion (retro-Bergman Cyclization) 

As clearly evident from the SF-TDDFT data in Figure 6.1, the ring expansion (retro-

Bergman cyclization) of 3a–d to 4a–d occurs virtually without barrier.  As described previously 

for the overall conversion of enediyne 2a to cyclooctadienediyne 4a,21 the very substantial energy 

change of 70-90 kcal/mol, from the top of the highest barrier (TS2-3) to the product (4), makes it 

difficult, topologically, for diradical 3 to exist as a minimum on the potential energy surface and 
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thus have a barrier to ring opening to cyclooctadienediyne 4.  This contrasts with the retro-

Bergman cyclizations of 7a–d to 8a–d, which have activation barriers of 8-9 kcal/mol and 

corresponding energy changes (TS6-7 to 8) that are not as dramatically large (ca. 60 kcal/mol).   

To gain insight into the free energy changes associated with substitution of the ring opened 

products 4a-d and 8a-d, we computed the energies of the ring-opened products relative to 

acetylene (C2H2) and the polyyne (CmH2) necessary to obtain the molecular formula of the 

corresponding product (4 or 8) (Figure 6.6).  The linearity of the trend for cyclooctadienediyne 

derivatives (4) in Figure 6.6 demonstrates group additivity, which excludes the involvement of 

steric interactions among the substituents.  In the case of cyclodecadienetriyne derivatives (8), the 

regioisomeric monosubstituted compounds are within 0.3 kcal/mol in energy of one another, and 

the linearity of the trend in Figure 6.6 demonstrates group additivity.  We therefore conclude that 

the difference in cyclization energy 8a-d is a thermodynamic consequence of the differences in 

bonding arrangement.  The substitution pattern, or steric factors associated with the substitution 

pattern, do not contribute to the difference in cyclization energy.   
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Figure 6.6.  Reaction energies for the formation of the ring expansion products (retro-Bergman 

cyclization), relative to acetylene and the appropriately mass-balanced polyyne (MP2/cc-pVTZ). 

Reaction Pathways I and II 

 Consistent with the analyses associated with Figures 6.4 and 6.6, particularly that the 

alkyne substituents have little interaction with other alkyne substituents, is the fact that the reaction 

energetics for substitution pattern d can be predicted empirically using the reaction energetics of 

cases a–c.  The d substitution pattern has alkyne units substituted on the para-benzyne ring and 
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on the initially formed ring (cyclobutadiene in I, ortho-benzyne in II), while the a substitution 

pattern is the parent, unsubstituted system (R = R’ = H).  To understand the difference in energy 

between the structures in d compared to those in a, we must account for three effects: the energetic 

impact of replacing hydrogens with alkyne units on the para-benzyne ring, the energetic impact 

of replacing hydrogens with alkyne units on the initially formed ring, and the interaction between 

the substituents when both rings are substituted with alkyne units.  The first effect is accounted for 

by the difference between b and a, while the second effect is accounted for by the difference 

between c and a.  We could attempt to account for the third effect by considering additional 

substitution patterns, but it is apparent from Table 6.4 that this effect is small in magnitude since 

the difference between d and a can be predicted to ± 1 kcal/mol (MP2/cc-pVTZ) and ± 2 kcal/mol 

(SF-TDDFT/cc-pVTZ//MP2/cc-pVTZ) using only the first two effects.  

Table 6.4.  Empirical Demonstration of Independent Substituent Effect (kcal/mol) 

 

Initial 

Cycloaddition  

(1-2 and 1/5-6) 

Bergman 

Cyclization  

(2-3 and 6-7) 

retro-Bergman 

Cyclization  

(3-4 and 7-8) 

ΔG‡ ΔGrxn ΔG‡ ΔGrxn ΔG‡ ΔGrxn 

MP2 

I 

d - a - -11.4 23.8 -6.5 8.9 -11.7 

(b - a) + (c - a)   -12.3 22.9 -7.4 8.9 -12 

difference   -0.9 -0.9 -0.9 0 -0.3 

II 

d - a - -42.4 26.2 6.7 15.3 -17.5 

(b - a) + (c - a)   -42.9 25.9 6.2 15.2 -17.5 

difference   -0.5 -0.3 -0.5 -0.1 0 

SF-TDDFT 

I 

d - a - -14.3 60.2 48.6 N/A -59.8 

(b - a) + (c - a)   -16.2 60.5 50.7 N/A -60 

difference   -1.9 0.3 2.1 N/A -0.2 

II 

d - a - -36.4 53.2 41.7 9.5 -45.1 

(b - a) + (c - a)   -37.2 53 42.7 8.3 -46.3 

difference   -0.8 -0.2 1 -1.2 -1.2 
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 An interesting feature of these reactions is that after the initial cycloaddition of the 

polyynes, the reactions being investigated involve no formal change in aromaticity: 2 is a 4-

electron cyclic π system and both 3 and 4 are 8-electron cyclic π systems, thus 2, 3, and 4 are 

formally antiaromatic; 6 is a 6-electron cyclic π system and both 7 and 8 are 10-electron cyclic π 

systems, thus 6, 7, and 8 are formally aromatic.  To assess the degree of aromaticity (or 

antiaromaticity) in the species studied, NICS values36 have been calculated at B3LYP/6-31G(d) 

using the MP2/cc-pVTZ optimized structures.  We report the NICSzz(1) in Table 6.5 using the 

NMR convention where positive values correspond to antiaromatic character and negative values 

correspond to aromatic character.  The NICSzz(1) values, which have been shown to be effective 

measures of aromaticity,45 were obtained by taking the zz component (the direction perpendicular 

to the ring) of the magnetic shielding tensor of a ghost atom placed one angstrom above and 

perpendicular to the center of the ring.  In the case of bicyclic structures 3 and 7, we report the 

NICSzz(1) values for the center of each of the fused rings.  The results given in Table 6.5 confirm 

that 6, 7, and 8 have significant aromatic character and that 2 and 4 have significant antiaromatic 

character.  The NICSzz(1) values for 3 taken at the center of the cyclobutadiene ring and the center 

of the para-benzyne ring indicate antiaromatic and aromatic character, respectively.  All species 

show that substitution of alkyne units decreases the magnitude of the NICSzz(1) values i.e., the 

values move closer to zero.  The results in Table 6.5 show a qualitative agreement with previous 

studies involving molecules from this work (2a and 2c;46 3a;36, 47 4a47) as well as in comparison to 

similar species (cyclobutadiene;46, 48 ortho-benzyne and para-benzyne;49 naphthalene36).  We 

attribute the quantitative differences to the choice of computational methodology and basis sets 

for the structure optimizations and subsequent NICS calculations.   



186 

 

Table 6.5.  Nucleus-Independent Chemical Shift [NICSzz(1)] Values of Molecules in Pathways I 

and II. 

 Center of Ring 
Center of  

Original Ring 

Center of para- 

Benzyne Ring 
Center of Ring 

I 2 3 4 

a 14.8 18.8 -9.5 22.1 

b 13.8 17.1 -8.9 19.9 

c 11.5 15.8 -10.6 19.9 

d 11.0 14.3 -9.9 18.1 

II 6 7 8 

a -13.5 -12.4 -21.7 -13.9 

b -12.2 -11.6 -21.4 -12.6 

c -11.6 -11.0 -21.1 -12.6 

d -11.3 -10.1 -21.4 -11.4 

 

 We can now provide a general explanation of the relative stabilities and reaction energies 

of the [2+2] (I) and [4+2] (II) pathways for the condensation of polyynes.  The initial cycloaddition 

to form cyclobutadiene 2 or ortho-benzyne 6 is governed by ring strain and degree of 

(anti)aromatic character.  Therefore, formation of 2 (a highly strained and antiaromatic ring) is less 

exothermic than the formation of 6 (a partially strained and aromatic ring).  Bergman cyclization 

of the alkyne substituents to form a para-benzyne ring is endothermic.  The activation barriers for 

the Bergman cyclization of 2 and 6 are in accord with qualitative expectations based upon the 

distance between terminal carbons of the alkyne substituents.  The subsequent ring opening 

reaction (retro-Bergman cyclization) removes the diradical character and relieves the ring strain, 

and thus is exothermic.  The opening of the fused rings has a greater impact on the stability of the 

structure in I compared to that in II: the transformation from 3 to 4 has effectively no activation 

barrier and is more exothermic than the transformation from 6 to 7, which does have an activation 

barrier.  Substitution of alkyne units to the ring structures in I and II is destabilizing – most likely 
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due to the replacement of hydrogen atoms with more electronegative sp-hybridized carbon atoms 

of the alkyne units – but has little effect on the energetics of the retro-Bergman cyclization.   

The Medium Rings 

The current investigation draws attention to highly unsaturated cyclooctane and 

cyclodecane derivatives – medium ring compounds that are not commonly invoked in carbon 

condensation processes.  Whether derivatives of cyclooctadienediyne 4 or cyclodecadienetriyne 8 

might be directly involved in reaction pathways for carbon condensation, or whether they are 

simply reservoirs of carbon generated under harsh reaction conditions, is a topic for further 

investigation.  It is not inconceivable that medium ring intermediates could lead toward carbon 

condensation (Scheme 6.5).  One mode of cyclization of a cyclooctane derivative may generate a 

bicyclo[3.3.0]octane structure, which consists of fused 5-membered rings.  Although fullerenes do 

not contain fused 5-membered rings (the ‘isolated pentagon rule’),20, 50-51 the Stone-Wales 

rearrangement or other rearrangement reactions allow 5-membered rings to migrate in a sheet of 

carbon.51-52  In the current study, the cyclodecane skeleton was derived from a dehydronaphthalene 

precursor (Scheme 6.4).  Depending on the nature of substituents and substitution pattern, a 

cyclodecane derivative may afford the possibility for structural rearrangement and to permute the 

substituents on a dehydronaphthalene skeleton.  The structures depicted in Scheme 6.5 are 

representative of carbon connectivity and not representative of degree of hydrogenation, nature of 

substituents, or details of reaction mechanisms (thermal, radical catalyzed, etc.).  Experimental 

and computational investigations are ongoing.   
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Scheme 6.5.  Reaction Pathways Involving Collapse of Medium Rings. 

 

CONCLUSIONS 

On consideration of the energies calculated by SF-TDDFT, the para-benzyne intermediate 

in I – being fused with a cyclobutadiene ring – has effectively no barrier to undergoing a ring 

expansion, representing an unproductive pathway within the ring coalescence and annealing 

model.  On the other hand, the SF-TDDFT calculations on the para-benzyne intermediate in II – 

being fused with an ortho-benzyne ring – predict an activation barrier of 8–10 kcal/mol for 

undergoing a similar ring expansion.  The qualitative agreement of this activation barrier as 

calculated by EOM-SF-CCSD and SF-TDDFT for the parent system of the two pathways lends 

credence to the qualitative accuracy of the SF-TDDFT activation barriers for the alkynyl 

substituted species.  Further, given the little variation in the activation barriers across the 

substitution patterns, we may tentatively extend the conclusion to include the para-benzyne 
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intermediates formed by increasingly larger polyynes, as would be found in the ring coalescence 

and annealing model.   

As to the origins of the activation barriers (or lack thereof) for the ring expansion of the 

para-benzyne species, we previously proposed21 that the activation barrier for the retro-Bergman 

cyclization of 3a to 4a is small due to the large exothermicity of the reaction of 2a to 4a.  This 

argument is undermined, however, by the corresponding SF-TDDFT energies for the substituted 

versions of these reactions.  As more alkyne units are substituted into the system, the exothermicity 

of the transformation from 2 to 4 clearly decreases; yet there is no significant effect on the 

activation barrier for the ring expansion of 3 to 4.  Furthermore, the reactions for several of the 

substitution patterns in II have similar exothermicities for the transformation of 6 to 8 yet have 

significant activation barriers.  The activation barriers for the ring expansion do not seem to be 

strongly correlated to the overall exothermicity of the transformation from 2 to 4 and 6 to 8.  An 

alternative or concurrent explanation may be the exothermicity of the ring expansion itself: the 

ring expansion in I is exothermic by about 60 kcal/mol and has effectively no activation barrier, 

while the ring expansion in II is exothermic by about 45 kcal/mol and has an activation barrier of 

around 10 kcal/mol.  The larger exothermicity for the retro-Bergman cyclization in I is likely due 

to the relief of ring strain from expansion of the cyclobutadiene ring, as compared to that which 

occurs for the opening of ortho-benzyne ring in II. 

The multi-radical nature of the para-benzyne intermediate species complicates the 

characterization of the reactions of both pathways and may require more advanced treatments to 

be accurately modeled.  The orbital instabilities known to plague calculations of para-benzyne 

may be exacerbated by the incorporation of the cyclobutadiene ring or the ortho-benzyne ring, 

both of which can be considered to have some radical character.  The numerous variations in the 
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triplet reference calculations required by the spin-flip methodologies could indicate that a higher 

spin reference is necessary for the treatment of these species, though it could also indicate that the 

underlying single-reference MP2 optimized structures are an insufficient foundation upon which 

to properly treat the multi-reference problem.  
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Select NBO Orbitals and Hyperconjugation Analysis 

B3LYP/6-31G(d) Natural Bond Orbital (NBO) calculations were conducted on the 

MP2/cc-pVTZ optimized structures using the NBO6 program as implemented in Gaussian 09.  

Selective analyses consisted of identifying orbital interactions between the para-benzyne radical 

orbitals and para-benzyne substituent orbitals (C−H or C−C≡C).  The orbitals involved in these 

interactions are described by an image, the electron occupation, and the coefficients and 

hybridizations of their component Natural Hybrid Orbitals (NHO).  The interactions are reported 

in the “Second Order Perturbation Analysis” table along with the energy of stabilization.   
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Format: 

Molecule identifier 

Orbitals  

[orbital image] [orbital image] 

(Occupancy) Bond orbital  (Occupancy) Bond orbital  

Coefficients NHO1 / Hybridization Coefficients NHO1 / Hybridization 

Coefficients NHO2 / Hybridization Coefficients NHO2 / Hybridization 

 

Second Order Perturbation Analysis 

Donor Orbital Acceptor Orbital E(2) (kcal/mol) 

Bond orbital  Bond orbital energy value 
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3a 

Orbitals 

 

 

6. (1.81863) BD*( 1) C   2 - C   5 9. (1.96666) BD ( 1) C   3 - H  12 
( 50.00%)   0.7071* C   2 s(  9.43%)p 9.60( 90.53%)d 

0.00(  0.04%) 
( 63.10%)   0.7944* C   3 s( 29.06%)p 2.44( 70.88%)d 

0.00(  0.05%) 
( 50.00%)  -0.7071* C   5 s(  9.43%)p 9.60( 90.53%)d 

0.00(  0.04%) 
( 36.90%)   0.6074* H  12 s(100.00%) 

 

 
11. (1.96666) BD ( 1) C   4 - H  11 116. (0.36688) BD ( 1) C   2 - C   5 

( 63.10%)   0.7944* C   4 s( 29.06%)p 2.44( 70.88%)d 

0.00(  0.05%) 
( 50.00%)   0.7071* C   2 s(  9.43%)p 9.60( 90.53%)d 

0.00(  0.04%) 

( 36.90%)   0.6074* H  11 s(100.00%) 
( 50.00%)   0.7071* C   5 s(  9.43%)p 9.60( 90.53%)d 

0.00(  0.04%) 

  
119. (0.01247) BD*( 1) C   3 - H  12 121. (0.01247) BD*( 1) C   4 - H  11 

( 36.90%)   0.6074* C   3 s( 29.06%)p 2.44( 70.88%)d 

0.00(  0.05%) 
( 36.90%)   0.6074* C   4 s( 29.06%)p 2.44( 70.88%)d 

0.00(  0.05%) 
( 63.10%)  -0.7944* H  12 s(100.00%) ( 63.10%)  -0.7944* H  11 s(100.00%) 
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Second Order Perturbation Analysis 

Donor Orbital Acceptor Orbital E(2) (kcal/mol) 

6. BD*(   1) C   2 - C   5 119. BD*(   1) C   3 - H  12 2.21 

6. BD*(   1) C   2 - C   5 121. BD*(   1) C   4 - H  11 2.21 

9. BD (   1) C   3 - H  12 116. BD (   1) C   2 - C   5 1.16 

11. BD (   1) C   4 - H  11 116. BD (   1) C   2 - C   5 1.16 

116. BD (   1) C   2 - C   5 119. BD*(   1) C   3 - H  12 0.94 

116. BD (   1) C   2 - C   5 121. BD*(   1) C   4 - H  11 0.94 
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3b 

Orbitals 

  

6. (1.80249) BD*( 1) C   2 - C   5 168. (0.35483) BD ( 1) C   2 - C   5   
( 50.00%)   0.7071* C   2 s(  9.69%)p 9.31( 90.27%)d 

0.00(  0.04%) 

( 50.00%)   0.7071* C   2 s(  9.69%)p 9.31( 90.27%)d 

0.00(  0.04%) 

( 50.00%)  -0.7071* C   5 s(  9.69%)p 9.31( 90.27%)d 

0.00(  0.04%) 

( 50.00%)   0.7071* C   5 s(  9.69%)p 9.31( 90.27%)d 

0.00(  0.04%) 

  
171. (0.02557) BD*( 1) C   3 - C  14   173. (0.02557) BD*( 1) C   4 - C  11   

( 48.56%)   0.6968* C   3 s( 32.04%)p 2.12( 67.92%)d 

0.00(  0.04%) 

( 48.56%)   0.6968* C   4 s( 32.04%)p 2.12( 67.92%)d 

0.00(  0.04%) 

( 51.44%)  -0.7172* C  14 s( 47.16%)p 1.12( 52.80%)d 

0.00(  0.04%) 

( 51.44%)  -0.7172* C  11 s( 47.16%)p 1.12( 52.80%)d 

0.00(  0.04%) 

 

Second Order Perturbation Analysis 

Donor Orbital Acceptor Orbital E(2) (kcal/mol) 

6. BD*(   1) C   2 - C   5 171. BD*(   1) C   3 - C  14 1.71 

6. BD*(   1) C   2 - C   5 173. BD*(   1) C   4 - C  11 1.71 

168. BD (   1) C   2 - C   5 171. BD*(   1) C   3 - C  14 0.78 

168. BD (   1) C   2 - C   5 173. BD*(   1) C   4 - C  11 0.78 
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7a 

Orbitals 

 

 

12. (1.83192) BD*( 1) C   4 - C   8   13. (1.96015) BD ( 1) C   5 - H   6   
( 50.01%)   0.7072* C   4 s( 10.82%)p 8.24( 89.14%)d 

0.00(  0.03%) 

( 63.55%)   0.7972* C   5 s( 28.95%)p 2.45( 71.01%)d 

0.00(  0.05%) 

( 49.99%)  -0.7070* C   8 s( 10.86%)p 8.21( 89.11%)d 

0.00(  0.03%) 
( 36.45%)   0.6037* H   6 s(100.00%) 

 

 
17. (1.96232) BD ( 1) C   7 - H   9   148. (0.32613) BD ( 1) C   4 - C   8   

( 63.47%)   0.7967* C   7 s( 28.84%)p 2.47( 71.11%)d 

0.00(  0.05%) 

( 49.99%)   0.7070* C   4 s( 10.82%)p 8.24( 89.14%)d 

0.00(  0.03%) 

( 36.53%)   0.6044* H   9 s(100.00%) 
( 50.01%)   0.7072* C   8 s( 10.86%)p 8.21( 89.11%)d 

0.00(  0.03%) 

 
 

149. (0.01297) BD*( 1) C   5 - H   6   153. (0.01348) BD*( 1) C   7 - H   9   
( 36.45%)   0.6037* C   5 s( 28.95%)p 2.45( 71.01%)d 

0.00(  0.05%) 

( 36.53%)   0.6044* C   7 s( 28.84%)p 2.47( 71.11%)d 

0.00(  0.05%) 

( 63.55%)  -0.7972* H   6 s(100.00%) ( 63.47%)  -0.7967* H   9 s(100.00%) 
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Second Order Perturbation Analysis 

Donor Orbital Acceptor Orbital E(2) (kcal/mol) 

12. BD*(   1) C   4 - C   8 149. BD*(   1) C   5 - H   6 2.26 

12. BD*(   1) C   4 - C   8 153. BD*(   1) C   7 - H   9 2.22 

13. BD (   1) C   5 - H   6 148. BD (   1) C   4 - C   8 1.51 

17. BD (   1) C   7 - H   9 148. BD (   1) C   4 - C   8 1.41 

148. BD (   1) C   4 - C   8 149. BD*(   1) C   5 - H   6 0.9 

148. BD (   1) C   4 - C   8 153. BD*(   1) C   7 - H   9 0.9 
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7b 

Orbitals 

  
12. (1.81870) BD*( 1) C   4 - C   7   200. (0.30753) BD ( 1) C   4 - C   7   

( 49.98%)   0.7070* C   4 s( 11.10%)p 8.01( 88.87%)d 

0.00(  0.03%) 

( 50.02%)   0.7072* C   4 s( 11.10%)p 8.01( 88.87%)d 

0.00(  0.03%) 

( 50.02%)  -0.7072* C   7 s( 11.14%)p 7.98( 88.83%)d 

0.00(  0.03%) 

( 49.98%)   0.7070* C   7 s( 11.14%)p 7.98( 88.83%)d 

0.00(  0.03%) 

  
202. (0.02605) BD*( 1) C   5 - C  11   205. (0.02657) BD*( 1) C   6 - C   8   

( 48.23%)   0.6945* C   5 s( 32.04%)p 2.12( 67.92%)d 

0.00(  0.04%) 

( 48.24%)   0.6946* C   6 s( 31.86%)p 2.14( 68.10%)d 

0.00(  0.04%) 

( 51.77%)  -0.7195* C  11 s( 46.91%)p 1.13( 53.05%)d 

0.00(  0.04%) 

( 51.76%)  -0.7194* C   8 s( 46.95%)p 1.13( 53.00%)d 

0.00(  0.04%) 

 

Second Order Perturbation Analysis 

Donor Orbital Acceptor Orbital E(2) (kcal/mol) 

12. BD*(   1) C   4 - C   7 202. BD*(   1) C   5 - C  11 1.72 

12. BD*(   1) C   4 - C   7 205. BD*(   1) C   6 - C   8 1.73 

200. BD (   1) C   4 - C   7 202. BD*(   1) C   5 - C  11 0.74 

200. BD (   1) C   4 - C   7 205. BD*(   1) C   6 - C   8 0.75 
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Table 6.6.  Total Nucleus-Independent Chemical Shift [NICS(1)] Values of Molecules in 

Pathways I and II. 

 Center of Ring 
Center of  

Original Ring 

Center of para- 

Benzyne Ring 
Center of Ring 

I 2 3 4 

a 14.8 18.8 -9.5 22.1 

b 13.8 17.1 -8.9 19.9 

c 11.5 15.8 -10.6 19.9 

d 11.0 14.3 -9.9 18.1 

II 6 7 8 

a -13.5 -12.4 -21.7 -13.9 

b -12.2 -11.6 --21.4 -12.6 

c -11.6 -11.0 -21.1 -12.6 

d -11.3 -10.1 -21.4 -11.4 
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MP2/cc-pVTZ Geometric Parameters of Stationary Points in Pathways I and 

II 
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MP2/cc-pVTZ Stationary Point Data Summaries 

The following pages summarize the output files for the geometry optimizations and frequency 

calculations of the stationary point structures (local minima and transition states) obtained using 

Gaussian 09.  Data is ordered by molecule identifier, with duplicate structures noted and referred 

to the correct summary.  The data is tabulated in the format below and includes the structure, 

Cartesian coordinates, energies, and imaginary frequencies (if a transition state).  Note that 

“Electronic and Zero-Point Energy” values for molecules containing the para-benzyne moiety are 

significantly different than the corresponding “Electronic Energy” values due to the presence of 

unrealistically large vibrational frequencies, as discussed in the main text. 

 

Format: 

Molecule identifier(s) 

Molecule name (local minima only) 

[molecule Lewis structure] 

Charge Multiplicity Theory/Basis Set  Full Point Group 

[value] [value] [value]  [value] 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

[value] [value] [value]  [value] 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)  Imaginary Frequency (cm-1) 

[value] [value]   [value (if TS)] 

 

Atom Coordinates (Angstroms) 

  X Y Z 

Atom1 [value] [value] [value] 
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Directory of Data Summaries 

Molecule Page   

1a 218 TS1/5–6a 241 

1b, 1c, 5a 219 TS1/5–6c 242 

1d, 5b, 5c 220 6a 243 

2a 221 6b 244 

2b 222 6c 245 

2c 223 6d 246 

2d 224 TS6–7a 247 

TS2–3a 225 TS6–7b 248 

TS2–3b 226 TS6–7c 249 

TS2–3c 227 TS6–7d 250 

TS2–3d 228 7a 251 

3a 229 7b 252 

3b 230 7c 253 

3c 231 7d 254 

3d 232 TS7–8a 255 

TS3–4a 233 TS7–8b 256 

TS3–4b 234 TS7–8c 257 

TS3–4c 235 TS7–8d 258 

TS3–4d 236 8a 259 

4a 237 8b, 8c 260 

4b, 4c 238 8d 261 

4d 239   

5d 240   
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1a 

Buta-1,3-diyne 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  D∞h 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.036444 -153.152277 -153.115833  0.0000 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-153.110386 -153.138713    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C 0.000000 0.000000 0.684361 

C 0.000000 0.000000 1.903809 

H 0.000000 0.000000 2.965806 

C 0.000000 0.000000 -0.684361 

C 0.000000 0.000000 -1.903809 

H 0.000000 0.000000 -2.965806 
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1b, 1c, 5a 

Hexa-1,3,5-triyne 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  D∞h 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.046126 -229.149449 -229.103324  0.0000 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-229.095941 -229.129684    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C 0.000000 0.000000 3.197403 

C 0.000000 0.000000 1.975050 

C 0.000000 0.000000 0.615309 

C 0.000000 0.000000 -0.615309 

C 0.000000 0.000000 -1.975050 

C 0.000000 0.000000 -3.197403 

H 0.000000 0.000000 -4.259587 

H 0.000000 0.000000 4.259587 

 

 

1c 

Same as 1b 
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1d, 5b, 5c 

Octa-1,3,5,7-tetrayne 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  D∞h 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.055551 -305.147892 -305.092341  0.0000 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-305.082918 -305.122119    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C 0.000000 0.000000 4.488254 

C 0.000000 0.000000 3.264737 

C 0.000000 0.000000 1.908502 

C 0.000000 0.000000 0.673601 

C 0.000000 0.000000 -0.673601 

C 0.000000 0.000000 -1.908502 

C 0.000000 0.000000 -3.264737 

C 0.000000 0.000000 -4.488254 

H 0.000000 0.000000 -5.550741 

H 0.000000 0.000000 5.550741 
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2a 

1,2-Diethynylcyclobuta-1,3-diene 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  C2v 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.078705 -306.321131 -306.243186  0.3822 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-306.234308 -306.274637    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C 0.000000 0.684367 0.290682 

C 0.000000 -0.684367 0.290682 

C 0.000000 -0.671202 1.852710 

C 0.000000 0.671202 1.852710 

H 0.000000 1.443974 2.604281 

H 0.000000 -1.443974 2.604281 

C 0.000000 -1.677954 -0.685872 

C 0.000000 -2.574934 -1.516685 

H 0.000000 -3.343977 -2.249291 

C 0.000000 1.677954 -0.685872 

C 0.000000 2.574934 -1.516685 

H 0.000000 3.343977 -2.249291 
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2b 

1,2-Di(buta-1,3,-diynyl)cyclobuta-1,3-diene 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  C2v 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.097969 -458.318462 -458.222249  0.5567 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-458.2094 -458.260502    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C 0.000000 0.691237 1.251041 

C 0.000000 -0.691237 1.251041 

C 0.000000 -0.671797 2.808774 

C 0.000000 0.671797 2.808774 

H 0.000000 1.444493 3.560636 

H 0.000000 -1.444493 3.560636 

C 0.000000 -1.669461 0.280419 

C 0.000000 -2.571318 -0.565089 

C 0.000000 -3.549664 -1.504115 

C 0.000000 -4.434488 -2.350074 

H 0.000000 -5.200146 -3.086371 

C 0.000000 1.669461 0.280419 

C 0.000000 2.571318 -0.565089 

C 0.000000 3.549664 -1.504115 

C 0.000000 4.434488 -2.350074 

H 0.000000 5.200146 -3.086371 

 



223 

 

2c 

1,2,3,4-Tetraethynylbuta-1,3-diene 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  D2h 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.095842 -458.315530 -458.219689  0.0000 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-458.20631 -458.257528    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C 0.000000 0.779379 0.684405 

C 0.000000 -0.779379 0.684405 

C 0.000000 0.779386 -0.684427 

C 0.000000 -0.779386 -0.684427 

C 0.000000 1.737731 -1.692163 

C 0.000000 2.547279 -2.608564 

H 0.000000 3.261001 -3.395549 

C 0.000000 -1.737731 -1.692163 

C 0.000000 -2.547279 -2.608564 

H 0.000000 -3.261001 -3.395549 

C 0.000000 -1.737745 1.692173 

C 0.000000 -2.547295 2.608574 

H 0.000000 -3.261016 3.395559 

C 0.000000 1.737745 1.692173 

C 0.000000 2.547295 2.608574 

H 0.000000 3.261016 3.395559 
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2d 

1,2-Di(buta-1,3-diynyl)-3,4-diethynylcyclobuta-1,3-diene 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  C2v 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.114980 -610.314202 -610.199222  0.1457 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-610.181812 -610.243793    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C 0.000000 0.691158 0.185167 

C 0.000000 -0.691158 0.185167 

C 0.000000 -0.685166 1.740266 

C 0.000000 0.685166 1.740266 

C 0.000000 1.694166 2.696711 

C 0.000000 2.612506 3.504195 

H 0.000000 3.401989 4.215321 

C 0.000000 -1.694166 2.696711 

C 0.000000 -2.612506 3.504195 

H 0.000000 -3.401989 4.215321 

C 0.000000 -1.685438 -0.765613 

C 0.000000 -2.612947 -1.583594 

C 0.000000 -3.616978 -2.493775 

C 0.000000 -4.525493 -3.314532 

H 0.000000 -5.312445 -4.028266 

C 0.000000 1.685438 -0.765613 

C 0.000000 2.612947 -1.583594 

C 0.000000 3.616978 -2.493775 

C 0.000000 4.525493 -3.314532 

H 0.000000 5.312445 -4.028266 
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TS2–3a 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  CS 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.079357 -306.286070 -306.206713  0.2343 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)  

Imaginary  

Frequency (cm-1) 

-306.199233 -306.236996   364.9256 

 

Atom Coordinates (Angstroms) 

  X Y Z 

C 0.088320 2.040737 0.672851 

C -0.187730 0.521206 0.710795 

C -0.187730 0.521206 -0.710795 

C 0.088320 2.040737 -0.672851 

H 0.249594 2.781385 -1.438796 

C -0.041957 -0.654532 -1.393958 

C 0.088320 -1.884500 -1.125005 

C 0.088320 -1.884500 1.125005 

C -0.041957 -0.654532 1.393958 

H 0.068690 -2.918852 1.392383 

H 0.068690 -2.918852 -1.392383 

H 0.249594 2.781385 1.438796 
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TS2–3b 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  C2v 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.097699 -458.284832 -458.187133  0.6448 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)  

Imaginary  

Frequency (cm-1) 

-458.175451 -458.223042   476.9346 

 

Atom Coordinates (Angstroms) 

  X Y Z 

C 0.061539 1.923362 0.676518 

C 0.045580 0.394271 0.729582 

C 0.062663 0.394999 -0.727726 

C 0.077462 1.924060 -0.672724 

H 0.093671 2.684885 -1.436077 

C 0.060306 -0.765096 -1.405136 

C 0.044960 -2.021865 -1.094613 

C 0.019429 -2.022879 1.093824 

C 0.027212 -0.766392 1.405738 

H 0.060002 2.683433 1.440791 

C 0.036746 -3.333719 -1.468392 

C 0.028455 -4.532684 -1.725338 

H 0.021528 -5.562649 -1.984348 

C 0.002466 -3.335060 1.466197 

C -0.011816 -4.534232 1.721903 

H -0.024797 -5.564418 1.979800 
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TS2–3c 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  Cs 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.096359 -458.277524 -458.181165  0.2632 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)  

Imaginary  

Frequency (cm-1) 

-458.169175 -458.218179   404.6684 

 

Atom Coordinates (Angstroms) 

  X Y Z 

C -0.915162 0.687150 -0.079831 

C -0.915162 -0.687150 -0.079831 

C 0.621386 -0.708765 -0.187665 

C 0.621386 0.708766 -0.187665 

C 1.788563 1.401687 -0.027750 

C 3.014039 1.120340 0.125516 

H 4.049603 1.380874 0.164100 

C 1.788562 -1.401687 -0.027750 

C 3.014039 -1.120340 0.125517 

H 4.049603 -1.380873 0.164100 

C -1.887947 -1.678064 0.014696 

C -2.720586 -2.568886 0.099269 

H -3.451351 -3.336767 0.170485 

C -1.887948 1.678063 0.014696 

C -2.720587 2.568885 0.099269 

H -3.451352 3.336766 0.170485 
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TS2–3d 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  C2v 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.114905 -610.276225 -610.161320  0.2399 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)  

Imaginary  

Frequency (cm-1) 

-610.145192 -610.20337   486.4716 

 

Atom Coordinates (Angstroms) 

  X Y Z 

C -2.144002 -0.688863 0.000079 

C -0.617967 -0.726713 -0.000321 

C -0.617902 0.726637 -0.000149 

C -2.143941 0.688873 0.000210 

C 0.540070 1.408513 -0.000093 

C 1.795187 1.086610 -0.000217 

C 1.795109 -1.086694 -0.000481 

C 0.540007 -1.408611 -0.000532 

C 3.106332 1.464912 0.000226 

C 4.303936 1.727931 0.000581 

H 5.332722 1.992135 0.000873 

C 3.106248 -1.465025 -0.000110 

C 4.303878 -1.727920 0.000027 

H 5.332687 -1.992050 0.000313 

C -3.123401 -1.677811 0.000250 

C -3.965389 -2.563848 0.000522 

H -4.702351 -3.329453 0.000476 

C -3.123265 1.677877 0.000010 

C -3.965089 2.564063 -0.000231 

H -4.701934 3.329782 -0.000289 
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3a 

3,6-Didehydrobicyclo[4.2.0]octa-1,3,5,7-tetraene 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  C2v 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.111118 -306.356867 -306.245749  1.2023 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-306.239651 -306.274741    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C -0.505417 0.737658 0.004028 

C 0.656675 1.411537 0.006717 

C 1.861103 0.713345 0.009493 

C 1.861102 -0.713351 0.009491 

C 0.656674 -1.411541 0.006713 

C -0.505417 -0.737662 0.004025 

C -2.016467 -0.677592 0.000628 

C -2.016466 0.677590 0.000630 

H 2.827239 1.199507 0.011793 

H 2.827238 -1.199513 0.011791 

H -2.779917 -1.438752 -0.001129 

H -2.779916 1.438751 -0.001125 
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3b 

4,5-Diethynyl-3,6-didehydrobicyclo[4.2.0]octa-1,3,5,7-tetraene 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  C2v 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.152357 -458.333903 -458.181546  2.0330 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-458.171133 -458.21631    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C -0.401767 0.737283 0.004299 

C 0.755938 1.415063 0.006984 

C 1.976038 0.729260 0.009808 

C 1.976038 -0.729265 0.009807 

C 0.755937 -1.415067 0.006983 

C -0.401768 -0.737287 0.004298 

C -1.907704 -0.678797 0.000853 

C -1.907704 0.678794 0.000854 

H -2.670085 -1.441058 -0.000886 

H -2.670084 1.441056 -0.000884 

C 3.226940 1.395770 0.012761 

C 3.226939 -1.395775 0.012759 

C 4.302565 -1.969370 0.015286 

H 5.239122 -2.469521 0.017485 

C 4.302567 1.969364 0.015289 

H 5.239123 2.469514 0.017490 
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3c 

1,8-Diethynyl-3,6-didehydrobicyclo[4.2.0]octa-1,3,5,7-tetraene 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  C2v 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.145689 -458.347600 -458.201911  1.0592 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-458.19135 -458.237144    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C -0.548087 0.731402 0.003978 

C 0.612802 1.415638 0.006646 

C 1.814275 0.713537 0.009405 

C 1.814275 -0.713542 0.009403 

C 0.612801 -1.415642 0.006642 

C -0.548087 -0.731405 0.003976 

C -2.060418 -0.690786 0.000511 

C -2.060417 0.690783 0.000513 

H 2.779973 1.201178 0.011630 

H 2.779972 -1.201184 0.011626 

C -3.043417 1.679064 -0.001743 

C -3.043419 -1.679065 -0.001747 

C -3.886297 2.563566 -0.003677 

H -4.625865 3.326388 -0.005375 

C -3.886299 -2.563567 -0.003684 

H -4.625868 -3.326388 -0.005384 
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3d 

1,4,5,8-Tetraethynyl-3,6-didehydrobicyclo[4.2.0]octa-1,3,5,7-tetraene 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  C2v 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.142098 -610.324577 -610.182479  1.9757 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-610.167532 -610.223354    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C -0.574863 0.730636 0.000042 

C 0.581710 1.419188 0.000108 

C 1.799135 0.729259 0.000075 

C 1.799138 -0.729257 -0.000091 

C 0.581712 -1.419180 -0.000109 

C -0.574864 -0.730636 -0.000052 

C -2.082329 -0.692411 -0.000014 

C -2.082328 0.692408 -0.000064 

C -3.062774 1.682350 -0.000038 

C -3.062774 -1.682353 0.000044 

C -3.905339 2.567262 -0.000038 

H -4.643785 3.331514 -0.000246 

C -3.905339 -2.567264 0.000112 

H -4.643823 -3.331481 0.000364 

C 3.049963 1.396314 0.000172 

C 4.124977 1.971080 0.000165 

H 5.060916 2.472601 0.000132 

C 3.049965 -1.396313 -0.000116 

C 4.124977 -1.971082 -0.000201 

H 5.060901 -2.472632 -0.000217 
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TS3–4a 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  C2v 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.083487 -306.346856 -306.263369  1.5537 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)  

Imaginary  

Frequency (cm-1) 

-306.25678 -306.292733   673.9821 

 

Atom Coordinates (Angstroms) 

  X Y Z 

C -0.536964 0.894386 0.000000 

C 0.644318 1.389017 0.000000 

C 1.875381 0.701896 0.000000 

C 1.875381 -0.701896 0.000000 

C 0.644318 -1.389017 0.000000 

C -0.536964 -0.894386 0.000000 

C -1.990564 -0.676831 0.000000 

C -1.990564 0.676831 0.000000 

H 2.835259 1.197055 0.000000 

H 2.835259 -1.197055 0.000000 

H -2.788285 -1.402526 0.000000 

H -2.788285 1.402526 0.000000 
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TS3–4b 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  C2v 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.100188 -458.324859 -458.224671  2.1524 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)  

Imaginary  

Frequency (cm-1) 

-458.213648 -458.259891   675.7682 

 

Atom Coordinates (Angstroms) 

  X Y Z 

C -0.430184 0.887004 0.000000 

C 0.748536 1.390817 0.000000 

C 1.990092 0.720644 0.000000 

C 1.990092 -0.720644 0.000000 

C 0.748535 -1.390817 0.000000 

C -0.430184 -0.887004 0.000000 

C -1.882086 -0.677732 0.000000 

C -1.882086 0.677732 0.000000 

H -2.676511 -1.407026 0.000000 

H -2.676511 1.407026 0.000000 

C 3.230985 1.397161 0.000000 

C 4.299977 1.984308 0.000000 

H 5.231578 2.493706 0.000000 

C 3.230985 -1.397161 0.000000 

C 4.299977 -1.984308 0.000000 

H 5.231578 -2.493706 0.000000 
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TS3–4c 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  C2v 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.100457 -458.332498 -458.232041  1.5050 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)  

Imaginary  

Frequency (cm-1) 

-458.22097 -458.26704   671.8994 

 

Atom Coordinates (Angstroms) 

  X Y Z 

C 0.000000 0.914137 0.611608 

C 0.000000 1.386651 1.797477 

C 0.000000 0.701779 3.028448 

C 0.000000 -0.701779 3.028448 

C 0.000000 -1.386651 1.797477 

C 0.000000 -0.914137 0.611608 

C 0.000000 -0.689151 -0.837313 

C 0.000000 0.689151 -0.837313 

H 0.000000 1.198391 3.987611 

H 0.000000 -1.198391 3.987611 

C 0.000000 1.620684 -1.882517 

C 0.000000 -1.620684 -1.882517 

C 0.000000 2.440949 -2.786304 

H 0.000000 3.151852 -3.576005 

C 0.000000 -2.440949 -2.786304 

H 0.000000 -3.151852 -3.576005 
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TS3–4d 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  C2v 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.116959 -610.310447 -610.193489  2.1375 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)  

Imaginary  

Frequency (cm-1) 

-610.177859 -610.234255   677.0181 

 

Atom Coordinates (Angstroms) 

  X Y Z 

C 0.000000 0.907231 -0.591851 

C 0.000000 1.388076 0.591957 

C 0.000000 0.720739 1.833304 

C 0.000000 -0.720739 1.833304 

C 0.000000 -1.388076 0.591957 

C 0.000000 -0.907231 -0.591851 

C 0.000000 -0.690146 -2.039199 

C 0.000000 0.690146 -2.039199 

C 0.000000 1.626183 -3.079383 

C 0.000000 -1.626183 -3.079383 

C 0.000000 2.449646 -3.980286 

H 0.000000 3.164336 -4.766842 

C 0.000000 -2.449646 -3.980286 

H 0.000000 -3.164336 -4.766842 

C 0.000000 1.398105 3.073223 

C 0.000000 1.987042 4.141298 

H 0.000000 2.497470 5.072465 

C 0.000000 -1.398105 3.073223 

C 0.000000 -1.987042 4.141298 

H 0.000000 -2.497470 5.072465 
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4a 

Cycloocta-1,5-dien-3,7-diyne 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  D2h 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.084590 -306.383357 -306.298767  0.0005 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-306.291416 -306.328763    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C -0.607758 1.296549 0.001690 

C 0.622419 1.296307 0.004406 

C 1.921698 0.679874 0.008323 

C 1.921592 -0.680349 0.010668 

C 0.622207 -1.296616 0.008977 

C -0.607976 -1.296322 0.006337 

C -1.907337 -0.679876 0.002169 

C -1.907206 0.680356 -0.000168 

H 2.841827 1.245190 0.009328 

H 2.841642 -1.245784 0.013581 

H -2.827457 -1.245200 0.001018 

H -2.827219 1.245848 -0.003275 
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4b, 4c 

1,2-Diethynylcycloocta-1,5-dien-3,7-diyne 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  C2v 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.101343 -458.363501 -458.262166  0.2331 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-458.25042 -458.298199    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C -0.650255 1.288915 0.001508 

C 0.580711 1.293800 0.004272 

C 1.877761 0.680861 0.008256 

C 1.877614 -0.681256 0.010616 

C 0.580431 -1.293923 0.008757 

C -0.650534 -1.288781 0.005976 

C -1.958079 -0.694199 0.002000 

C -1.957928 0.694607 -0.000407 

H 2.797547 1.246583 0.009346 

H 2.797277 -1.247170 0.013668 

C -3.149454 1.451036 -0.004401 

C -3.149767 -1.450379 0.000627 

C -4.174427 2.112251 -0.007856 

H -5.068551 2.685410 -0.010863 

C -4.174883 -2.111379 -0.000536 

H -5.069132 -2.684351 -0.001557 

 

 

4c 

Same as 4b 
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4d 

1,2,5,6-Tetraethynylcycloocta-1,5-dien-3,7-diyne 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  D2h 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.117873 -610.343230 -610.225357  0.0006 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-610.209071 -610.267376    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C -0.615957 1.286855 0.000009 

C 0.615955 1.286856 0.000001 

C 1.921352 0.695593 -0.000012 

C 1.921353 -0.695596 -0.000026 

C 0.615956 -1.286860 -0.000024 

C -0.615956 -1.286860 -0.000016 

C -1.921355 -0.695596 -0.000001 

C -1.921355 0.695590 0.000012 

C -3.112491 1.451684 0.000026 

C -3.112490 -1.451690 -0.000002 

C -4.138544 2.111218 0.000046 

H -5.033103 2.683990 0.000156 

C -4.138547 -2.111218 0.000000 

H -5.033167 -2.683894 0.000034 

C 3.112489 1.451682 -0.000014 

C 4.138547 2.111210 -0.000010 

H 5.033121 2.683957 0.000050 

C 3.112490 -1.451685 -0.000045 

C 4.138551 -2.111207 -0.000031 

H 5.033165 -2.683893 0.000283 
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5a 

Same as 1b 

 

5b 

Same as 1d 

 

5c 

Same as 1d 

 

5d 

Deca-1,3,5,7,9-pentayne 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  D∞h 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.064895 -381.147001 -381.082114  0.0000 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-381.07062 -381.115332    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C 0.000000 0.000000 5.778218 

C 0.000000 0.000000 4.554099 

C 0.000000 0.000000 3.199554 

C 0.000000 0.000000 1.962561 

C 0.000000 0.000000 0.620134 

C 0.000000 0.000000 -0.620134 

C 0.000000 0.000000 -1.962561 

C 0.000000 0.000000 -3.199554 

C 0.000000 0.000000 -4.554099 

C 0.000000 0.000000 -5.778218 

H 0.000000 0.000000 -6.840807 

H 0.000000 0.000000 6.840807 
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TS1/5–6a 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  Cs 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.084385 -382.255699 -382.171314  1.3060 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)  

Imaginary  

Frequency (cm-1) 

-382.160013 -382.206382   367.4296 

 

Atom Coordinates (Angstroms) 

  X Y Z 

C -0.958695 -2.839324 0.000000 

C -0.958695 0.488148 0.000000 

C 0.963432 -1.807089 0.000000 

C 0.963432 -0.544086 0.000000 

H -0.755793 -3.888610 0.000000 

C -1.725505 -1.836579 0.000000 

C -1.725505 -0.514596 0.000000 

C -0.778028 1.848625 0.000000 

C -0.585642 3.055540 0.000000 

H -0.439343 4.107478 0.000000 

H 1.523032 -2.717192 0.000000 

C 1.768614 0.578745 0.000000 

C 2.465742 1.581242 0.000000 

H 3.097198 2.434568 0.000000 
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TS1/5–6c 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  C2v 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.101967 -534.249058 -534.147091  1.2338 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)  

Imaginary  

Frequency (cm-1) 

-534.132102 -534.186743   412.4567 

 

Atom Coordinates (Angstroms) 

  X Y Z 

C 0.000000 1.666236 -1.203133 

C 0.000000 0.654969 -1.976117 

C 0.000000 -0.654969 -1.976117 

C 0.000000 -1.666236 -1.203133 

C 0.000000 -3.018515 -0.993783 

C 0.000000 -4.215824 -0.741977 

H 0.000000 -5.261575 -0.554592 

C 0.000000 3.018515 -0.993783 

C 0.000000 4.215824 -0.741977 

H 0.000000 5.261575 -0.554592 

C 0.000000 -0.641230 0.680141 

C 0.000000 0.641230 0.680141 

C 0.000000 1.710391 1.544491 

C 0.000000 2.682448 2.287980 

H 0.000000 3.497418 2.968985 

C 0.000000 -1.710391 1.544491 

C 0.000000 -2.682448 2.287980 

H 0.000000 -3.497418 2.968985 
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6a 

3,4-Diethynyl-1,2-didehydrobenzene 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  Cs 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.092756 -382.389139 -382.296383  1.5641 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-382.286827 -382.329681    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C 0.000000 1.508585 -0.117244 

C 0.000000 0.667791 -1.223788 

C 0.000000 -0.592261 -1.220825 

C 0.000000 -1.430761 -0.114686 

C 0.000000 -0.678997 1.067539 

C 0.000000 0.736953 1.086273 

H 0.000000 -1.192333 2.020727 

H 0.000000 -2.510394 -0.114468 

C 0.000000 2.925793 -0.110831 

C 0.000000 4.143665 -0.103147 

H 0.000000 5.205444 -0.095703 

C 0.000000 1.416881 2.337800 

C 0.000000 2.002290 3.405859 

H 0.000000 2.517038 4.334520 
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6b 

3,4-di(buta-1,3-diynyl)-1,2-didehydrobenzene 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  Cs 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.111879 -534.383930 -534.272051  1.4785 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-534.258380 -534.312209    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C -1.017559 -0.927015 0.000000 

C -2.231495 -1.606108 0.000000 

C -3.383985 -1.096945 0.000000 

C -3.712050 0.252870 0.000000 

C -2.552668 1.038405 0.000000 

C -1.245659 0.489713 0.000000 

H -2.643410 2.117374 0.000000 

H -4.702397 0.682838 0.000000 

C 0.282772 -1.468965 0.000000 

C 1.426574 -1.917952 0.000000 

C -0.120319 1.348919 0.000000 

C 0.873686 2.070860 0.000000 

C 2.693233 -2.413683 0.000000 

C 3.832039 -2.857607 0.000000 

H 4.821631 -3.243229 -0.000001 

C 1.974522 2.871148 0.000000 

C 2.964159 3.588392 0.000000 

H 3.824677 4.210825 -0.000004 
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6c 

3,4,5,6-Tetraethynyl-1,2-didehydrobenzene 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  C2v 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.109079 -534.366717 -534.257638  1.6943 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-534.243517 -534.296092    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C 0.000000 1.477324 -0.925307 

C 0.000000 0.629053 -2.026850 

C 0.000000 -0.629053 -2.026850 

C 0.000000 -1.477324 -0.925307 

C 0.000000 -0.714050 0.281843 

C 0.000000 0.714050 0.281843 

C 0.000000 1.405329 1.522117 

C 0.000000 2.014724 2.577389 

H 0.000000 2.540990 3.499865 

C 0.000000 -1.405329 1.522117 

C 0.000000 -2.014724 2.577389 

H 0.000000 -2.540990 3.499865 

C 0.000000 -2.892120 -0.927826 

C 0.000000 -4.110441 -0.929590 

H 0.000000 -5.172448 -0.930520 

C 0.000000 2.892120 -0.927826 

C 0.000000 4.110441 -0.929590 

H 0.000000 5.172448 -0.930520 
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6d 

3,4-di(buta-1,3-diynyl)-5,6-diethynyl-1,2-didehydrobenzene 

 
Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  Cs 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.128176 -686.362493 -686.234317  1.6970 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-686.216041 -686.280277    

Atom Coordinates (Angstroms) 

  X Y Z 

C -1.402953 0.027434 0.000000 

C -2.137518 1.209417 0.000000 

C -1.693781 2.386717 0.000000 

C -0.364193 2.797610 0.000000 

C 0.500325 1.661282 0.000000 

C 0.000000 0.322742 0.000000 

C 0.909654 -0.756025 0.000000 

C 1.679290 -1.714927 0.000000 

C 1.904595 1.865836 0.000000 

C 3.109342 2.050825 0.000000 

H 4.160370 2.204751 0.000000 

C 0.128283 4.122927 0.000000 

C 0.555118 5.264228 0.000000 

H 0.927043 6.259083 0.000000 

C -1.880338 -1.294768 0.000000 

C -2.274366 -2.459454 0.000000 

C -2.708239 -3.747698 0.000000 

C -3.097299 -4.906668 0.000000 

H -3.435080 -5.913726 0.000000 

C 2.534099 -2.771967 0.000000 

C 3.301304 -3.724015 0.000000 

H 3.967736 -4.551077 0.000000 
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TS6–7a 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  CS 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.093144 -382.353579 -382.260435  2.0373 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)  

Imaginary  

Frequency (cm-1) 

-382.252372 -382.291779   569.5936 

 

Atom Coordinates (Angstroms) 

  X Y Z 

C -1.165650 1.447277 0.000000 

C 0.000000 0.638286 0.000000 

C -2.467034 0.939702 0.000000 

C -0.098937 -0.856752 0.000000 

H -3.337185 1.578559 0.000000 

C -2.444784 -0.450321 0.000000 

C 1.085755 -1.591740 0.000000 

C -1.439273 -1.205189 0.000000 

C 2.324202 -1.332229 0.000000 

H 3.330681 -1.694609 0.000000 

H -1.019857 2.519487 0.000000 

C 1.301152 1.150785 0.000000 

C 2.486170 0.708221 0.000000 

H 3.536756 0.908320 0.000000 
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TS6–7b 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  Cs 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.111545 -534.342555 -534.231010  1.8661 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)  

Imaginary  

Frequency (cm-1) 

-534.21871 -534.267927   615.1327 

 

Atom Coordinates (Angstroms) 

  X Y Z 

C -2.588534 1.239821 0.000116 

C -1.316867 0.602451 0.000111 

C -3.805182 0.558092 -0.000045 

C -1.208966 -0.912552 -0.000105 

H -4.754942 1.071225 -0.000042 

C -3.591616 -0.817667 -0.000102 

C 0.052621 -1.470575 -0.000022 

C -2.494094 -1.428980 -0.000104 

C 1.256756 -1.006837 0.000015 

H -2.590235 2.322003 0.000204 

C -0.112123 1.282896 0.000108 

C 1.138966 0.968201 0.000114 

C 2.416024 1.495103 0.000097 

C 3.561416 1.920238 -0.000325 

H 4.549152 2.310275 -0.000285 

C 2.585496 -1.383046 0.000041 

C 3.772395 -1.673112 0.000099 

H 4.798274 -1.947714 0.000129 
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TS6–7c 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  Cs 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.109611 -534.331267 -534.221656  2.2667 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)  

Imaginary  

Frequency (cm-1) 

-534.209053 -534.258812   572.2312 

 

Atom Coordinates (Angstroms) 

  X Y Z 

C -0.718904 0.331992 -0.000234 

C 0.705034 0.211308 -0.000192 

C -1.591932 -0.791879 0.000179 

C 1.376579 -1.123063 -0.000786 

C -0.851354 -1.971740 -0.000115 

C 2.767954 -1.157132 -0.000385 

C 0.397002 -2.103316 -0.000322 

C 3.705047 -0.306366 0.000429 

H 4.757032 -0.110902 0.000692 

C 1.556753 1.317104 0.000195 

C 2.806186 1.527742 0.000906 

H 3.612499 2.230712 0.000830 

C -1.285278 1.635652 -0.000427 

C -1.797178 2.741596 -0.000659 

H -2.233366 3.709822 -0.000849 

C -3.000414 -0.659809 0.000439 

C -4.213682 -0.548714 0.000704 

H -5.271046 -0.449892 0.000935 
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TS6–7d 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  Cs 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.127971 -686.320807 -686.192836  2.2073 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)  

Imaginary  

Frequency (cm-1) 

-686.175945 -686.235507   622.053 

Atom Coordinates (Angstroms) 

  X Y Z 

C 1.798976 0.307225 0.000026 

C 0.409167 -0.039133 -0.000011 

C 2.841573 -0.659059 -0.000142 

C -0.040948 -1.484709 -0.000239 

C 2.301766 -1.945537 -0.000342 

C -1.393787 -1.739189 -0.000261 

C 1.093103 -2.281078 -0.000381 

C -2.462695 -1.014933 -0.000129 

C -0.597888 0.906292 0.000153 

C -1.891007 0.873238 0.000165 

C -3.015950 1.673221 0.000308 

C -4.036368 2.345929 0.000426 

H -4.910007 2.949885 0.000536 

C -3.841069 -1.085176 -0.000120 

C -5.062948 -1.103782 -0.000105 

H -6.124368 -1.142954 -0.000096 

C 4.208789 -0.300079 -0.000095 

C 5.388123 0.006749 -0.000055 

H 6.415474 0.276090 -0.000019 

C 2.143047 1.685542 0.000233 

C 2.471002 2.859544 0.000407 

H 2.741590 3.886597 0.000559 
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7a 

1,2,5,8-Tetradehydronaphthalene 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  Cs 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.133465 -382.397318 -382.263853  1.8638 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-382.256699 -382.294597    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C -1.208993 1.405694 0.000000 

C 0.000000 0.634794 0.000000 

C -2.480637 0.850205 0.000000 

C -0.047533 -0.870241 0.000000 

H -3.372929 1.458308 0.000000 

C -2.423320 -0.549516 0.000000 

C 1.146021 -1.569534 0.000000 

C -1.386215 -1.257228 0.000000 

C 2.359109 -0.936108 0.000000 

H 3.300193 -1.469336 0.000000 

H -1.101132 2.482938 0.000000 

C 1.255662 1.225433 0.000000 

C 2.415299 0.496270 0.000000 

H 3.397506 0.949474 0.000000 
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7b 

6,7-Diethynyl-1,2,5,8-tetradehydronaphthalene 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  Cs 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.153654 -534.372380 -534.218725  1.7612 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-534.207254 -534.255084    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C -2.462795 1.387021 0.000000 

C -1.225110 0.661655 0.000000 

C -3.709838 0.778585 0.000000 

C -1.210348 -0.833319 0.000000 

H -4.626483 1.349448 0.000000 

C -3.596907 -0.619284 0.000000 

C 0.006549 -1.488725 0.000000 

C -2.530471 -1.282008 0.000000 

C 1.209629 -0.816150 0.000000 

H -2.397733 2.467784 0.000000 

C 0.000000 1.310812 0.000000 

C 1.205702 0.641738 0.000000 

C 2.460918 -1.487676 0.000000 

C 3.538706 -2.055110 0.000000 

H 4.476249 -2.553714 0.000000 

C 2.457967 1.313284 0.000000 

C 3.535303 1.881667 0.000000 

H 4.472130 2.381534 0.000000 

 



253 

 

7c 

3,4-Diethynyl-1,2,5,8-tetradehydronaphthalene 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  Cs 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.155138 -534.376362 -534.221224  2.0202 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-534.209537 -534.257777    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C 0.300610 1.737859 0.000000 

C -0.524098 0.587951 0.000000 

C 0.000000 -0.757682 0.000000 

C 1.475493 -1.010636 0.000000 

C 2.132484 0.218570 0.000000 

C 1.656237 1.379009 0.000000 

C 1.912823 -2.321228 0.000000 

C 1.050373 -3.385238 0.000000 

C -0.356920 -3.141979 0.000000 

C -0.850452 -1.857573 0.000000 

H -1.003439 -4.009828 0.000000 

H 1.388078 -4.412641 0.000000 

C -0.228446 3.050452 0.000000 

C -0.678650 4.182772 0.000000 

H -1.073685 5.168488 0.000000 

C -1.934426 0.754116 0.000000 

C -3.141189 0.928064 0.000000 

H -4.193991 1.067236 0.000000 
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7d 

3,4,6,7-tetraethynyl-1,2,5,8-tetradehydronaphthalene 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  Cs 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.233121 -686.351769 -686.118648  1.7902 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-686.102453 -686.161260    

Atom Coordinates (Angstroms) 

  X Y Z 

C 2.794722 0.673762 -0.000015 

C 1.764335 -0.296622 -0.000021 

C 0.362262 0.049514 -0.000012 

C -0.081465 1.468292 -0.000003 

C 1.046253 2.288492 0.000001 

C 2.260209 1.971857 -0.000001 

C -1.436471 1.734046 0.000006 

C -2.394803 0.741103 0.000009 

C -1.959126 -0.643739 0.000013 

C -0.607131 -0.945993 -0.000009 

C 4.164567 0.321611 -0.000005 

C 5.345714 0.021489 0.000020 

H 6.374674 -0.241567 0.000031 

C 2.109377 -1.673423 -0.000014 

C 2.430461 -2.849717 -0.000016 

H 2.696757 -3.877970 0.000006 

C -2.959009 -1.653847 0.000020 

C -3.822147 -2.513661 0.000023 

H -4.569376 -3.268187 0.000030 

C -3.785043 1.027204 -0.000003 

C -4.979610 1.265046 -0.000005 

H -6.020630 1.475248 -0.000008 
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TS7–8a 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  Cs 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.096577 -382.376294 -382.279717  2.0070 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)  

Imaginary  

Frequency (cm-1) 

-382.272148 -382.310751   607.1488 

 

Atom Coordinates (Angstroms) 

  X Y Z 

C -0.014280 0.012989 -0.000005 

C 1.229012 0.635001 -0.000002 

C 2.484322 -0.005104 0.000004 

C 2.441858 -1.978685 0.000009 

C 1.104984 -2.090502 0.000012 

C 0.065611 -1.380295 0.000007 

C 3.667522 -2.447353 0.000002 

C 4.870844 -1.816236 0.000001 

C 4.914383 -0.373987 -0.000001 

C 3.753449 0.335532 0.000008 

H 5.899176 0.071260 -0.000006 

H 5.825051 -2.323856 -0.000009 

H 1.264357 1.718171 -0.000006 

H -0.925766 0.592279 -0.000015 
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TS7–8b 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  Cs 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.113158 -534.350463 -534.237305  1.9896 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)  

Imaginary  

Frequency (cm-1) 

-534.225199 -534.274105   627.5896 

 

Atom Coordinates (Angstroms) 

  X Y Z 

C -3.788378 0.528854 0.000060 

C -2.621212 1.281993 0.000013 

C -1.301658 0.780515 0.000120 

C -1.125910 -1.168874 0.000032 

C -2.441372 -1.436811 -0.000241 

C -3.553707 -0.848459 -0.000015 

C 0.141023 -1.499834 -0.000134 

C 1.285092 -0.755648 -0.000147 

C 1.163975 0.716037 -0.000048 

C -0.084968 1.271257 0.000201 

H -2.700292 2.362904 0.000195 

H -4.758328 1.003754 0.000298 

C 2.365355 1.468052 -0.000027 

C 3.402349 2.107600 -0.000164 

H 4.304929 2.666971 -0.000310 

C 2.589344 -1.308150 0.000010 

C 3.713559 -1.777399 0.000229 

H 4.692749 -2.188414 0.000494 
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TS7–8c 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  Cs 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.113082 -534.353074 -534.239992  2.0827 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)  

Imaginary  

Frequency (cm-1) 

-534.227890 -534.276830   595.3388 

 

Atom Coordinates (Angstroms) 

  X Y Z 

C 1.564804 -0.787347 -0.000027 

C 0.773712 0.388645 -0.000254 

C -0.645790 0.418573 -0.000379 

C -1.572148 -1.326284 -0.000457 

C -0.453333 -2.064766 -0.000465 

C 0.798913 -1.956157 -0.000145 

C -2.865617 -1.127482 0.000028 

C -3.612346 0.007802 0.000487 

C -2.943291 1.285189 0.000456 

C -1.582194 1.340734 -0.000116 

H -3.585073 2.155153 0.000862 

H -4.692920 0.028444 0.001115 

C 1.433507 1.647904 -0.000283 

C 2.011323 2.720994 -0.000305 

H 2.514140 3.656300 -0.000345 

C 2.979387 -0.727791 0.000354 

C 4.197292 -0.685518 0.000679 

H 5.258540 -0.646873 0.000940 
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TS7–8d 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  Cs 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.129583 -686.327474 -686.197892  1.9809 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)  

Imaginary  

Frequency (cm-1) 

-686.18119 -686.240457   616.2097 

 

Atom Coordinates (Angstroms) 

  X Y Z 

C 2.799490 -0.677884 0.000164 

C 1.824587 0.350546 -0.000001 

C 0.417434 0.143804 -0.000173 

C -0.205812 -1.714035 -0.000193 

C 1.016070 -2.267032 -0.000328 

C 2.233903 -1.957271 0.000125 

C -1.511697 -1.731365 0.000067 

C -2.456120 -0.746116 -0.000082 

C -1.993115 0.656358 -0.000119 

C -0.648385 0.909284 -0.000187 

C 2.263181 1.701707 -0.000038 

C 2.652717 2.856695 -0.000115 

H 2.988529 3.864298 -0.000219 

C 4.183743 -0.386275 0.000165 

C 5.378048 -0.143112 0.000200 

H 6.418418 0.070579 0.000174 

C -3.851200 -0.983057 0.000086 

C -5.053024 -1.182961 0.000186 

H -6.100727 -1.357365 0.000140 

C -2.987421 1.665418 0.000035 

C -3.847611 2.528537 0.000140 

H -4.594943 3.283045 0.000292 
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8a 

Cyclodeca-1,7-diene-3,5,9-triyne 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  C2v 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.096006 -382.424980 -382.328974  1.8484 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-382.320169 -382.361117    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C -0.098296 0.033726 0.000358 

C 0.960203 0.950023 0.015468 

C 2.278483 0.545408 0.014216 

C 3.427410 0.063394 0.011682 

C 4.639871 -0.593498 0.008144 

C 4.727889 -1.990708 -0.009113 

H 5.702426 -2.460995 -0.011669 

C 3.549127 -2.704959 -0.022249 

C 2.296096 -2.732170 -0.026925 

C 1.076724 -2.220698 -0.024487 

C 0.218107 -1.307710 -0.015738 

H 5.559802 -0.019573 0.018432 

H 0.725030 2.008469 0.028042 

H -1.116708 0.399408 0.001653 
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8b, 8c 

1,2-Diethynylcyclodeca-1,7-diene-3,5,9-triyne 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  Cs 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.112972 -534.402199 -534.288338  1.8356 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-534.275023 -534.326392    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C -1.379789 -0.744394 0.000068 

C -1.033918 0.612302 0.000119 

C 0.279405 1.032729 -0.000350 

C 1.497878 1.292919 -0.000567 

C 2.868355 1.445805 0.000213 

C 3.738350 0.348832 0.000326 

H 4.806952 0.519090 0.000512 

C 3.178387 -0.910631 0.000091 

C 2.165186 -1.648380 -0.000124 

C 0.872059 -1.924605 -0.000144 

C -0.354133 -1.665181 -0.000113 

H 3.295937 2.442270 0.000224 

C -2.078089 1.574513 0.000079 

C -2.974214 2.400299 0.000044 

H -3.755208 3.119991 0.000014 

C -2.750917 -1.113379 0.000094 

C -3.927642 -1.430049 0.000116 

H -4.953186 -1.706034 0.000135 

 

8c 

Same as 8b 



261 

 

8d 

1,2,7,8-Tetraethynylcyclodeca-1,7-diene-3,5,9-triyne 

 

Charge Multiplicity Theory/Basis Set  Full Point Group 

0 1 MP2/cc-pVTZ  C2v 

Zero-point Energy Electronic Energy Electronic and Zero-Point Energy  Dipole Moment (D) 

0.129321 -686.379594 -686.250273  1.8704 

ΔH(298) ΔG(298) (Energies in Hartrees/particle)   

-686.23234 -686.294244    
 

Atom Coordinates (Angstroms) 

  X Y Z 

C 2.644009 -0.670417 0.000072 

C 2.004593 0.603575 0.000052 

C 0.622406 0.689493 0.000012 

C -0.622409 0.689504 -0.000024 

C -2.004595 0.603578 -0.000060 

C -2.644006 -0.670419 -0.000074 

C -1.803153 -1.767382 -0.000049 

C -0.661460 -2.280758 -0.000017 

C 0.661467 -2.280756 0.000019 

C 1.803161 -1.767382 0.000050 

C -4.058016 -0.772922 -0.000114 

C -5.273634 -0.860625 -0.000137 

H -6.333052 -0.938108 -0.000047 

C -2.786564 1.789596 -0.000085 

C -3.454095 2.809501 -0.000104 

H -4.036746 3.697642 -0.000098 

C 2.786555 1.789599 0.000069 

C 3.454077 2.809509 0.000089 

H 4.036786 3.697613 0.000152 

C 4.058020 -0.772917 0.000111 

C 5.273638 -0.860621 0.000149 

H 6.333058 -0.938073 0.000235 

 



262 

 

 

Chapter 7: Ab initio Predictions of Higher Order Vibration-

Rotation Coupling Constants for Rotational Spectroscopy 

 

 

 

Unpublished work with contributions from Brian J. Esselman, R. Claude Woods, and Robert J. 

McMahon 

 

 

 

 

  



263 

 

ABSTRACT 

The theoretical framework for the prediction of higher order vibration-rotation coupling 

constants has been known for some time – including derivations of formulas for several low order 

constants – but to date there has been no implementation of the theory for routine application to 

vibration-rotation coupling in rotational spectroscopy.  We have thus used established theory to 

derive analytic expressions for the second order Coriolis coupling constants Fbc, Fac, and Fab 

through the use of contact transformations i.e., Van Vleck perturbation theory, including defining 

rotational reductions to obtain results directly comparable to experiment.  In doing so, we have 

endeavored to make the theoretical framework more accessible for the broader rotational 

spectroscopy community.  We then used the results of a CCSD(T)/ANO0 anharmonic frequency 

calculation on benzonitrile to obtain theoretical predictions of the coupling constants for 

comparison to the recent coupled-state fits of the lowest dyad and triad of benzonitrile.  We found 

the predictions to be within 15% of the experimentally determined values and determined the 

origin of the multiplicative relationship between the coupling constants of the dyad and those of 

the triad.  We also present preliminary results of a computer-aided derivation program we are 

developing with the goal of more easily extending the theoretical framework to higher order 

coupling constants and to facilitate numeric predictions.  Lastly, we discuss implications of the 

results on experimental efforts of fitting rotational spectra of coupled vibrational states, and on the 

derivation of higher order coupling constants. 

INTRODUCTION 

Our group has taken advantage of VPT2 calculations to obtain theoretical predictions of 

various constants relevant to the fitting of rotational spectra: vibrational α corrections to the ground 
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state rotational constants, rotational constants of vibrationally excited states and the ground states 

of isotopologues, and quartic and sextic centrifugal distortion constants.  These ab initio constants 

can be used to predict the rotational spectra to aid in the search for transitions, and agreement of 

the final experimentally determined constants with the theoretical predictions provides confidence 

that the fit can be used for accurate prediction of transitions outside of the original frequency range.  

While these ab initio predictions of the rotational constants are useful, they are only comparable 

to experiment if vibration-rotation coupling is absent or, alternatively, if the coupling has been 

suitably accounted for.  The vibrational ground state of a molecule, barring the presence of a large-

amplitude motion such as an internal rotor, typically lacks vibration-rotation coupling to other 

vibrational states.  As we consider the excited vibrational states, however, the likelihood of 

vibrational states being coupled to one another increases with increasing energy.   

Successful coupled state fits have generally been limited to dyads of fundamental states for 

which the coupling is typically well described by a first-order Coriolis coupling constant, which is 

proportional to the Coriolis zeta (ζ) coupling constant.  The ab initio predictions of the two 

vibrational states in question will generally be in good agreement with the experimentally 

determined constants obtained from a coupled state fit in which the first order Coriolis coupling 

constants Gα are adequately determined.  Other vibrational states, however, may be coupled to one 

or more other vibrational states via higher-order coupling constants.  The fitting of such spectra 

can be a monumental task due to the complex interplay of the coupling constants and their effect 

on the rotational transitions.  Furthermore, the lack of theoretical predictions for the higher-order 

coupling constants means there is no point of reference for assessing the quality of the fit. 

Our goal in analyzing rotational spectra is to obtain fits that are predictive and physically 

meaningful.  We consider a fit to be predictive if we can accurately predict spectra outside of the 
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original frequency window of the spectra being fitted.  For example, if a fit was determined from 

the measurement of the rotational spectra from 100–300 GHz, it is predictive if the fitted constants 

can accurately determine the frequency of transitions <100 GHz and >300 GHz.  The broad 

applicability of a fit to spectra outside of the original frequency range gives us confidence that we 

are at least sufficiently modeling the vibrational and rotational quantum mechanics of the 

molecule.  This in turn makes it likely that the fit is also physically meaningful, but not necessarily 

so.  We consider a predictive fit to also be physically meaningful if the determined constants are 

in good agreement with theoretical calculations and if the fit is stable i.e., changes very little, upon 

the addition of more data.  In such a case, we believe the constants are not just empirical values 

devoid of meaning, but are accurate representations of the quantum structure of the molecule.  We 

can then have confidence that constants resulting from the fit can be used in broader contexts for 

the study of that particular molecule.  In summation, a predictive fit is not necessarily physically 

meaningful, but a physically meaningful fit can be expected to be highly predictive. 

This discussion on the nature of the fits of rotational spectra is particularly important in the 

context of astrochemistry.  Rotational spectra obtained from astronomical observations are often 

outside of the frequency range of laboratory spectra, and a highly predictive fit can be used for 

identifying transitions of a molecule in such spectra.  Furthermore, the astronomical application of 

fits of laboratory spectra is not limited to ground vibrational states, as molecules in astronomical 

sources can be vibrationally excited.  Thus, accurate fits of the rotational spectra of vibrationally 

excited states are important for determining the abundance and local conditions of a molecule in 

an astronomical source, especially if the observed spectra are outside of the frequency range of the 

laboratory data.  Since a molecule’s vibrational states are more than likely coupled to one another, 
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having accurate ab initio predictions of vibration-rotation coupling is essential for obtaining high 

quality and physically meaningful coupled-state fits.   

The theoretical framework for predicting vibration-rotation coupling constants has been 

known since the 1980s, as it is closely related to the theory for the prediction of centrifugal 

distortion constants and other molecular parameters.1-4  There are even several works that contain 

derived formulas that in principle can be used to calculate some of these coupling constants.3-5  

Yet, there are very few examples of the application of these formulas, and to our knowledge no 

methodology for routine application to such predictions has been developed.  We suspect there are 

several reasons why this is the case, owing to the state of the field several decades ago.  First, high-

quality rotational spectra of vibrationally coupled states and corresponding coupled-state fits were 

largely limited to di- and triatomic molecules.  The quality and quantity of the spectra was limited 

by the frequency range and resolution obtainable by laboratory instruments at the time.  

Furthermore, the processing and analysis of enough data to obtain the higher order coupling 

constants requires considerable computational resources, as well as software that can process the 

voluminous amounts of data.  Second, the process of deriving the requisite formulas is even more 

complex than that for deriving the centrifugal distortion constants.  Of the formulas that have been 

derived, some involve assumptions specific to a particular problem,3 and none contain the full 

derivation.3-5  The complexity of the theory is further increased by the necessity of rotational 

reductions of higher order constants in order to compare the predictions to experiments.  The nature 

of this reduction differs significantly from the corresponding reduction used to transform the 

centrifugal distortion constants2 and while a methodology for conducting such rotational 

reductions was developed,6-7 it appears to have mostly been applied to variational fits of high-

resolution infrared spectra of triatomic molecules, and ozone in particular (see Ref. 8 and citations 
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therein).  Furthermore, the limited experimental data prevented the assessment of the accuracy of 

predictions obtained from the theory.  Finally, application of the theoretical formulas requires 

sufficiently accurate ab initio data, particularly for the cubic force constants, which in turn would 

have required considerable computational resources, and so was limited, again, to small molecules.  

In total, development of the theory for routine prediction of higher order coupling constants was 

precluded by the instrumental and computational resources of the time, as well as the limited 

number of experimentally studied cases for which the theory was applicable. 

Since the theoretical framework was developed several decades ago, advances in 

instrumentation have increased the quantity and quality of rotational spectra that can be measured 

for a molecule, and corresponding advances in computational resources allows for the processing, 

analysis, and fitting of such data.  These advances in turn have led to the fitting of the rotational 

spectra of numerous coupled vibrational states across molecules of increasing size.  The amount 

of data means that not only can we experimentally determine higher order coupling constants, for 

many cases we are required to include the higher order coupling constants to obtain predictive fits 

of the spectra.  Having reasonable predictions of the coupling constants not only allows us to assess 

the physical meaningfulness of the fit, but can also constrain the range of possible values over 

which the constants are allowed to vary.  Thus, our goal in this work is to develop a methodology 

for routinely predicting higher-order vibration-rotation coupling constants for application to 

coupled-state fits of rotational spectra.   

Before we begin, we wish to highlight several important points.  First, many of the 

derivations conducted herein (particularly involving the sequential contact transformations) have 

been previously done, albeit tersely explained.  We report these derivations nonetheless, with the 

goal of producing a coherent, seamless, and more digestible framework for the broader community 
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that is not intimately familiar with Van Vleck perturbation theory.  Second, in composing this work 

we uncovered the theoretical origin for the proportional relationship of coupling constants that we 

had previously observed for the lowest dyad and triad of benzonitrile.9  In extending the analysis, 

we found that a similar relationship exists across coupled vibrational states that share the same 

vibrational modes and selection rules, which has significant implications for the fitting of even 

higher energy coupled vibrational states.  Finally, the rotational reduction of vibration-rotation 

coupling constants has significant implications in the experimental fitting of the rotational spectra 

of coupled vibrational states.  Foremost of these is that for the higher order coupling constants (on 

the order of 
3

J  and higher), there is more than one way in which the reduction can be conducted, 

leading to the possibility of a choice of which form of the reduction should be used for fitting 

spectra.  This choice of the reduction of the coupling constants is analogous to the situation 

encountered for the centrifugal distortion constants, in which the choice of terms that are to be 

eliminated leads to the Asymmetric and Symmetric reductions of the distorted rotor Hamiltonian.  

The presence of a choice in reduction of the coupling constants in turn begs the question of if and 

how the choice of reduction for the coupling constants is related to the choice of reduction for the 

centrifugal distortion constants.  To our knowledge, there has been no such consideration in the 

published fittings of rotational spectra of coupled vibrational states, until now.   

COMPUTATIONAL METHODS 

All ab initio data was taken from anharmonic vibrational calculations conducted using 

CFOUR10 and the method of coupled cluster with single, double, and perturbative triple excitations 

[CCSD(T)] using the ANO0 basis set.  The open-source computer algebra package SymPy11 was 

used in conjunction with Python 3.6 in our developmental computer-aided derivation program, 
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vib-rot-Van-Vleck.  Additional Python packages utilized by the program are listed in the 

Supporting Information, along with a brief description of the program and its structure.   

METHODOLOGY AND DERIVATIONS 

The vibration-rotation coupling constants are derived from application of Van Vleck 

perturbation theory to the Watson Hamiltonian, in a similar manner to that used to derive the 

centrifugal distortion constants.1-4  The full reasoning behind the derivation methodology and how 

the initial stage is reached is provided elsewhere,3-4 therefore we provide an overview of the 

mechanics necessary to obtain theoretical predictions of the coupling constants.  The methodology 

and derivations that follow are for application to asymmetric top rotors. 

Ordering the Hamiltonian 

To begin, Taylor expansions of the potential energy and the term containing the inverse 

inertial tensor are applied with respect to the normal coordinate position vibrational operators.  The 

resulting Hamiltonian contains terms with various orders of vibrational and rotational operator 

products.  Terms with m vibrational operators and n rotational operators are grouped under the 

label mnH , which is said to have m degrees of vibration and n degrees of rotation.  The Hamiltonian 

is separated into different orders with regards to the magnitudes of their expectation values for 

application of perturbation theory.  There are several different ways of ordering the Hamiltonian, 

but we will follow the approach taken by Aliev and Watson4: the order of a term mnH  of the 

Hamiltonian is given by 2m n+ − , with the exception of the rigid rotor 02H , which is arbitrarily 

assigned an order of one.  The zeroth order part of the Hamiltonian is then given by 20H , which is 
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simply the harmonic oscillator Hamiltonian in normal coordinates.  The Watson Hamiltonian is 

now given by Eq. (7.1), where λ is the perturbation parameter.   

 

2
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 (7.1) 

Contact Transformation 

With the vibration-rotation Hamiltonian so ordered, Van Vleck perturbation theory is 

applied.  The Hamiltonian is transformed using an arbitrary Hermitian function S , as given by Eq. 

(7.2).  This transformation can be rewritten in terms of a linear combination of (nested) 

commutators, as in Eq. (7.3)–(7.5), and the general form of an arbitrary order of the transformed 

Hamiltonian is given by Eq. (7.6).  The transform function is chosen such that the transformed 

Hamiltonian H has the desired form, which in the present case is one that leads to a Hamiltonian 

matrix that is block diagonal with respect to the vibrational states.  Use of a transform function 

that satisfies Eq. (7.7) will accomplish this goal for the term of the transformed Hamiltonian with 

m vibrational degrees and n rotational degrees. 

 i ie e−= S S
H H  (7.2) 

 0 0=H H  (7.3) 

  1 1 0,i= +H H S H  (7.4) 

    2 2 1 0
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i  = + −  H H S H S S H  (7.5) 

 
( )

 
1

1 0

0
 nested commutators

, , , ,
!

a ba

a a

b
a b

i

a b

−−



=
−

  = +   −
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 ( )  0block diagonal ,mn mn i= +H H S H  (7.7) 

Sequential Contact Transformation 

To obtain the block-diagonal term 
mnH , all lower order terms must similarly be made block 

diagonal.  While there are many possible ways to transform the Hamiltonian, it has been shown 

that the resulting formulas are equivalent12; the differences lie in the complexity of the derivation 

to obtain said results.4, 12  Again, we follow the approach used by Aliev and Watson:4 the transform 

functions with the lowest degree in vibration are applied first, in order of increasing degree of 

rotation, with each subsequent transform function defined by and applied to the result of the 

previous transformation.  This approach minimizes the complexity in the derivations of the desired 

formulas and the definitions of the requisite transform functions.  Once the final transformation 

has been applied, the Hamiltonian is block diagonal with respect to terms of m vibrational and n 

rotational degrees and lower, and the desired vibrational matrix element can be calculated.  To 

distinguish the transformations, we use the notation 
( )j

H  to represent the Hamiltonian after j 

transformations have been applied, and 
( )j

S  is the transform function used to obtain 
( )j

H  via Eq. 

(7.8).  Thus, 
( )0

H  is the expanded and ordered Watson Hamiltonian, 
( )1

H is the Hamiltonian after 

the first transform function (
( )1

S ) has been applied to 
( )0

H , 
( )2

H  is the Hamiltonian after the 

second transform function (
( )2

S ) has been applied to 
( )1

H , and so on.   

 ( ) ( ) ( ) ( )1j jj ji ie e
− −= S SH H  (7.8) 

The transform function is defined using the previously transformed Hamiltonian as in Eq. 

(7.9), in accordance with Eq. (7.7), where “b.d.” is short for “block diagonal” and the property 

( )
0 0

j
=H H  has been applied.  We refer to Eq. (7.9) as the “defining equation” for the transform 
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function ( )j

mnS , and we refer to the term ( )1j

mn

−
H  within Eq. (7.9) as the “defining part” of the defining 

equation.  We use H  to refer to the final transformed function, that is, for a sequential contact 

transformation with k total transformations, 
( )k

H H .  When deriving a particular sequential 

contact transformation, mnS  is used instead of ( )j

mnS  because the transformation number j is 

implicitly given by the sequence being applied. 

 
( ) ( ) ( ) ( )1

0b.d. ,
j j j

mn mn mni
−  = +

 
H H S H  (7.9) 

Vibrational and Rotational Commutators 

The commutators evaluated during the contact transformation may involve either 

vibrational operators, rotational operators, or both.  Consider a pair of terms A1 and A2 each 

consisting of a coefficient c, a vibrational part V containing vibrational operators, and a rotational 

part R containing rotational operators.  The commutator of these two terms can be expanded and 

then consolidated into the expression in Eq. (7.10), using the property that the vibrational parts V 

commute with the rotational parts R.  The commutator, thus, can be written in terms of a vibrational 

commutator and a rotational commutator in Eq. (7.11), using the definitions in Eq. (7.12).  This is 

the notation used in the works of Papousek and Aliev, and of Aliev and Watson.3-4   
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 (7.12) 

Selecting Desired Degrees of Vibration and Rotation 

In principle, the full Hamiltonian in Eq. (7.1) is subjected to the sequential contact 

transformations, but in practice this is unnecessary.  If the system in question is well described by 

the perturbation ordering in Eq. (7.1) i.e., the magnitude of terms 
j  is much larger than that of 

terms 
1j +
, then the original and transformed Hamiltonians can be truncated at the order of the 

desired term.  For the sequential contact transformation to obtain the formula for mnH , the full 

Hamiltonian can be approximated by Eq. (7.13).  Furthermore, only terms with m vibrational 

degrees and n rotational degrees in the final transformed Hamiltonian contribute to 
mnH , therefore 

the formula for mnH  is obtained by selecting the terms with degrees m and n.  We can represent 

this “selection” using a set of braces, demonstrated by Eq. (7.14).  This notation is particularly 

powerful when applied to commutators generated by the transformation.  It can be shown that the 

“selection braces” can “pass through” a commutator using the formulas in Eq. (7.15) and Eq. (7.16) 

for vibrational and rotational commutators (respectively) of the transform function abS  with an 

unspecified expression A .  This process can be applied recursively until the selection braces have 

reached the original Hamiltonian, at which point they are trivially evaluated by Eq. (7.17).  This 

process eliminates commutators that do not ultimately contribute to the desired degrees in vibration 

and rotation.  Eq. (7.15) and Eq. (7.16) can also be used to simplify the evaluation of defining 

equations. 
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  cd mc nd cdmn
 =H H  (7.17) 

General Definition of Hamiltonian Terms 

To obtain analytic formulas, more explicit definitions of the original Hamiltonian are 

required.  We use definitions adapted from those provided by Aliev and Watson.4  Specifically, 

we have ensured that every term in the definitions is in the form of – or a combination of terms in 

the form of – Eq. (7.18), where 3 6N −  is the number of vibrational modes of the asymmetric rotor, 

ρ  is either a position vibrational quantum operator q  or a momentum vibrational quantum 

operator p  in the normal coordinate system, J  is the angular momentum quantum operator, and 

Hmn  is the coefficient containing the constants and functions that commute with q , p , and J .  

The vibrational and rotational operator parts are restricted to a single product; if a summation 

contains an addition or subtraction of operators, then the summation is subdivided into additional 

summations until this requirement is met for each of the resulting terms.  Such a form ensures that 

the coefficients will always commute.  A complete list of the definitions used in this work is 

provided in the Supporting Information. 
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Obtaining Definitions of Transform Functions 

The exact definition of a transform function ( )j

mnS  is arbitrary, so long as the definition 

satisfies Eq. (7.9).  We employed one of two different approaches for solving Eq. (7.9) to obtain 

the definitions of all the transform functions within a given sequential contact transformation.  The 

first, which we’ll refer to as the “ladder” solution, follows the method described by Aliev and 

Watson.4  The second, which we’ll refer to as the “trial” solution, evaluates the commutator in Eq. 

(7.9) using a trial transform function and uses the results to identify a valid solution.  The ladder 

solution is easier for manually deriving the definitions of the transform functions but is limited to 

the case where 0 20=H H . 

Using vibrational ladder operators 

The ladder solution uses the approach described by Aliev and Watson,4 in which the 

defining equation is rewritten in terms of one-dimensional ladder operators i+  −q p  and 

i−  +q p .  Using   as the sign of the ladder operator and the general definition given by Eq. 

(7.19), the vibrational quantum operators q  and p  can be defined with respect to these ladder 

operators as in Eq. (7.20) and Eq. (7.21), where 1k =   and the summation over k  is implied to 

be over the set of  1,1− .  Substituting these definitions into Eq. (7.18) leads directly to the “ladder 

form” of an expression, as shown in Eq. (7.22).  For the particular case of Eq. (7.9) where the 

defining part ( 1)j
mn

−
H  is written in the form of Eq. (7.22) and the zeroth order Hamiltonian is the 

harmonic oscillator i.e., 0 20=H H , Aliev and Watson4 showed the definition of the transform 
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function in Eq. (7.23) will satisfy the condition of Eq. (7.9).  Terms involving resonant vibrational 

modes may have very small denominators and so the summations are restricted to avoid such 

terms.   

 k
k k k ki
 = −q p  (7.19) 
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We expand on the definition of the transform function in Eq. (7.23) in two ways.  First, we 

introduce a piece-wise “denominator” function D  defined in Eq. (7.24)  (where “r.t.” is short for 

resonance threshold) and which can be shown to have the properties given in Eq. (7.25).  Use of 

this function allows us to lift the restrictions from the summation indices; if the combination of 

indices results in a denominator that approaches zero, the removal of that combination is handled 

by the piece-wise function.  Second, although not strictly necessary, we ensure the transform 

function is Hermitian by rewriting the coefficient to contain both the forward and reverse ordering 

of the vibrational indices.  The formula for the definition of the transform function is now given 

by Eq. (7.26), but only if 0H  is the harmonic oscillator. 
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Using a trial transform function 

The trial solution of Eq. (7.9) for the transform function consists of evaluating the 

commutator therein for all possible operator combinations with the necessary degrees of vibration 

and rotation.  The trial transform function is defined as in Eq. (7.27), where i  is a member of the 

set of permutations of possible vibrational operators (Eq. (7.28)) and the coefficients ,Smn i  are 

undefined.  For example, the trial transforms for 12S  and 22S  would be given by Eq. (7.29) and 

Eq. (7.30).  Then, the commutator  0,mni S H  of Eq. (7.9) is evaluated and the results combined 

with mnH .  Each resulting term that corresponds with a term of mnH  that is to be eliminated is then 

set to zero, which yields a system of equations that can be used to solve for the coefficients ,Smn i .  
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Any coefficient ,Smn i  not required to block-diagonalize mnH  is set to zero.  Substitution of these 

definitions into (7.27) yields a solution of the transform function that satisfies (7.9). 

 ( ) ( )
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Rotational Reductions 

For terms of the transformed Hamiltonian with rotational degrees of greater than two, it is 

necessary to apply additional transformations to obtain results that can be compared to directly 

experimentally determined constants.  For terms that are vibrationally diagonal, the same 

methodology used to reduce the quartic and sextic distortion constants can be applied.1-4  This 

methodology, however, cannot be applied to the terms that are not vibrationally diagonal6-7 (which 

are those necessary for predicting the vibration-rotation coupling constants).  This is because the 

methodology to reduce the centrifugal distortion constants eliminates only the terms that are not 
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totally symmetric in the rotational operators and keeps those that are totally symmetric, but the 

coupling constants used for fitting coupled states are all not totally symmetric.  In fact, the nature 

of the methodology is such that it is impossible to remove the totally symmetric terms regardless 

of the definition of the transform functions.   

To reduce the rotational operators for the vibrationally off-diagonal terms, it is necessary 

to modify the known procedure used for the centrifugal distortion constants.  The solution – first 

described by Perevalov and Tyuterev6-7 – is to modify the zeroth order Hamiltonian to include the 

both the harmonic oscillator 20H  and the rigid rotor 02H .  Doing so introduces vibrational 

commutators into the reduction that, with proper definition of the transform functions, can 

eliminate the rotationally totally symmetric terms while keeping the rotationally non-totally 

symmetric terms.  Then, after evaluating the expectation value of the vibrational operators, these 

rotationally reduced coupling constants can be compared to those of experimental coupled-state 

fits.  To maintain a consistent form of the Hamiltonian throughout the derivation, however, our 

implementation of the rotational reduction for the off-diagonal terms differs from that described 

by Perevalov and Tyuterev.6-7 

We can write the rotational reduction as in Eq. (7.31), where the transform function S  is 

chosen such that the reduced Hamiltonian has the desired form.  In order for the transform function 

to affect the terms contained within mnH , the commutator expression must yield terms with m and 

n degrees of vibration and rotation, respectively.  That is, we can apply the selection brackets as 

in Eq. (7.14)–(7.17) to determine the transform function degrees that can perform the reduction.  

As illustrated by Eq. (7.32), we can use a transform function r r r
, 1mn m n−= +S S S  to apply the 

rotational reduction, where the ‘r’ superscript is used to distinguish the transform functions for 

applying the reduction from the transform functions used to vibrationally block diagonalize the 
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Hamiltonian.  The definitions of the transform functions can be obtained via the trial method (vide 

infra) once the desired form of the reduced rotational Hamiltonian red
mnH  is determined. 

 red r
20 02,mn mn i  = + + H H S H H  (7.31) 
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 (7.32) 

To identify which terms are to be eliminated, the rotational Hamiltonian is often written in 

terms of the cylindrical tensor coordinate system ( 2 , ,z x yi J J J J J ) and so a transformation 

from the Cartesian coordinates outputted by an anharmonic frequency calculation is necessary.  

Such a transformation can be accomplished by using the substitutions ( ) 2x − += +J J J  and 

( ) 2y i− += −J J J , and is straightforward (though tedious) for higher orders.  For the on-diagonal 

vibration-rotation coupling terms ( d d d
2 4 6, , ,m m mH H H ), the method prescribed by Watson2 is 

sufficient to achieve the desired result.  For the even-ordered off-diagonal vibration-rotation 

coupling terms ( od od od
2 4 6, , ,m m mH H H ), it is necessary to follow the guidance of Perevalov and 

Tyuterev.6-7  At this time, we are still developing the treatment of the odd-ordered vibration-

rotation coupling terms ( 1 3 5, ,m m mH H H ), which are inherently off-diagonal in rotation.  Our 

initial efforts used an adapted version of the procedure prescribed by Watson,2 but we are not 

certain the result will be the same as that following the prescription of Perevalov and Tyuterev.6-7  

Further discussion on this point occurs in the preliminary rotational reduction of 23H  (vide infra).  
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Connection to Experimental Vibration-Rotation Coupling Constants 

Predicting the vibration-rotation coupling between two vibrational states requires 

determination of the vibrationally off-diagonal transformed Hamiltonian.  Specifically, we need to 

evaluate the vibrational matrix element i jH  of the transformed Hamiltonian.  The first order 

Coriolis coupling constant is the coefficient of a single rotational operator, thus the largest 

contribution to the first order Coriolis coupling constants (Ga, Gb, Gc) comes from 
21H .  Similarly, 

the largest contribution to the second order Coriolis coupling constants (Fbc, Fac, Fab) comes from 

22H , while 
23H  is the largest contributor to the third order Coriolis coupling constants (Ga

J, Gb
J, 

Gc
J, Ga

K, Gb
K, Gc

K), and so forth.  The sequential contact transformations to obtain 
21H , 

22H , and 

23H  are provided in Table 7.1.  We first derive the formula for 21H  as an introduction to the 

methodology.  We then derive the formula for 
22H , the derivation of which is more representative 

of the methodology required to obtain predictions of other coupling constants.  Finally, we describe 

our current efforts for obtaining 23H , and provide a preliminary rotational reduction for terms with 

three rotational degrees.  Application of these derivations to experimental coupled-state fits is 

discussed in the subsequent Results and Discussion section.



 

 

2
8
2
 

Table 7.1.  Sequence of Contact Transformations and the Corresponding Defining Equations to Obtain 
21H , 

22H , and 
23H . 

 21H   
22H   

23H  

Transform  

number j 
( )j

S  Defining Equation 
 ( )j

S  Defining Equation 
 ( )j

S  Defining Equation 

1 21S  ( ) ( ) ( )  1 0

21 21 21 0b.d. ,i= +H H S H   
12S  ( ) ( ) ( )  1 0

12 12 12 0b.d. ,i= +H H S H   
12S  ( ) ( ) ( )  1 0

12 12 12 0b.d. ,i= +H H S H  

2    
21S  ( ) ( ) ( )  2 1

21 21 21 0b.d. ,i= +H H S H   
13S  ( ) ( ) ( )  2 1

13 13 13 0b.d. ,i= +H H S H  

3    
22S  ( ) ( ) ( )  3 2

22 22 22 0b.d. ,i= +H H S H   
21S  ( ) ( ) ( )  3 2

21 21 21 0b.d. ,i= +H H S H  

4       
22S  ( ) ( ) ( )  4 3

22 22 22 0b.d. ,i= +H H S H  

5       
23S  ( ) ( ) ( )  5 4

23 23 22 0b.d. ,i= +H H S H  
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Derivation of 𝐇̃𝟐𝟏 

Identifying the sequential contact transformation 

As shown in Table 7.1, only a single contact transformation using 21S  is required to obtain 

21H .  The transform function will be defined using the terms of the original Hamiltonian with two 

(2) degrees in vibration and one (1) degree in rotation.  The sequence can be obtained as described 

previously, but effectively is the result of alphabetically sorting the transform functions with 

vibrational degrees up to two and rotational degrees up to one, excluding the trivially zero 

transform functions.  That is, we can write the sequence as 00S , 01S , 10S , 11S , 20S , and 21S , where 

the only nonzero transform function is given by 21S : 00S , 01S , 10S , and 11S  are zero since there 

are no corresponding terms in the ordered Hamiltonian by which they could be defined, while 20S  

is zero because the harmonic oscillator is diagonal in the basis set of normal modes. 

Finding the general equation 

Next, we obtain the general equation for calculating 
21H .  To do so, the original 

Hamiltonian is approximated as in Eq. (7.33) by keeping only terms of up to and including λ1 of 

the ordered Hamiltonian in Eq. (7.1), per Eq. (7.13).  We then apply the sequential contact 

transformation using the commutator expressions given in Eq. (7.2)–(7.6), resulting in the 

transformed Hamiltonian given by Eq. (7.34).  Of the terms present in the transformed Hamiltonian 

in Eq. (7.34), only those with two degrees of vibration and one degree of rotation will contribute 

to 21H .  Using Eq. (7.14)–(7.17), we can exclude the unnecessary terms to yield the “general 

equation” for calculating 21H , given by Eq. (7.35).   
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General equation for defining S21 

A similar process used to obtain the general equation of 
21H  is applied in Eq. (7.36) to 

obtain the general form of the “defining part” of the defining equation in Table 7.1.  The resulting 

Eq. (7.37) is equivalent to the general equation found in Eq. (7.35).  As we will see, the 

correspondence of the defining equation of the transform function and the general equation for a 

particular problem only occurs for the last transformation in the sequence.   
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Required definitions of the original Hamiltonian 

Examination of the general equations for the final transformed Hamiltonian 
21H  and the 

for definition of 21S  reveals that the only terms of the original Hamiltonian that are required are 

20H  and 21H , which are defined in Eq. (7.38) and Eq. (7.39), respectively.  Now, the definition of 

21S  is all that is needed to evaluate the commutator in Eq. (7.35) and obtain an analytic expression 

of 
21H . 

 2 2
20

1 1

2 2

N N

j j j j

j j

 = + H q p  (7.38) 

 
3

21 2
N
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
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

 
= − 

 
 

H q p J  (7.39) 

Finding the definition of S21 

 The exact definition of 21S  is inherently arbitrary, so long as the result of Eq. (7.37) is 

block diagonal with respect to vibration.  We’ll apply the ladder solution to define the transform 

function.  Using the definitions provided in Eq. (7.20) and Eq. (7.21), we can express 21H  in terms 

of the vibrational ladder operators, as given by Eq. (7.40).  This expression is in the form described 

by Eq. (7.22), and so we can apply the formula Eq. (7.26) to obtain the definition of 21S , as given 

in Eq. (7.41).  By applying the definition of the vibrational ladder operator from Eq. (7.19), we 

can rewrite the definition of 21S  in terms of q and p.  The substitution of the vibrational operators 

is shown in Eq. (7.42) along with a condensed form, which uses the definitions of the coefficients 

provided in Eq. (7.43).   
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Evaluating the commutator 

With the transform function 21S  defined, the commutator  21 20 V
,i S H  can be evaluated.  

Using the definitions of Eq. (7.38) and Eq. (7.42), the commutator can be written as in Eq. (7.44).  

This expression is expanded using the commutator rules, and by keeping only the nonzero 

commutators we can write the expression as given in Eq. (7.45).  The vibrational commutators are 

evaluated using the identities provided in the Supporting Information to yield Eq. (7.46).  The 

expression is then expanded into individual summations following the form given in Eq. (7.18).  

Doing so allows us to evaluate the Kronecker delta functions for each summation, resulting in Eq. 

(7.47).  With judicious relabeling of the summation indices, these summations can be consolidated 

to just two, as in Eq. (7.48).   
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Obtaining the analytic expression 

The transformed Hamiltonian 21H  can be obtained by combining the definition of 21H  in 

Eq. (7.39) with the evaluated commutator obtained in Eq. (7.48).  This initially yields Eq. (7.49), 

which is dependent on the definitions of the coefficients of the transform function.  Substitution 

of the transform coefficient definitions from Eq. (7.43) and use of the properties of the denominator 

function from Eq. (7.25) allows us to write Eq. (7.50).  For convenience, we define a pair of 

coefficients (Eq. (7.51)) to shorten the expression, yielding Eq. (7.52). 
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Vibrational matrix element of two fundamentals 

Let us now consider the vibrational matrix elements for the case of a pair of fundamentals 

A  and B .  We can find the expression for the matrix element by evaluating Eq. (7.52) by 
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applying a sum over states.  The nonzero contributions to the matrix element are then given by Eq. 

(7.54).  Evaluation of the vibrational expectation values yields Eq. (7.55), and substitution of the 

definitions of the 
21H  coefficients from Eq. (7.51) gives the expression in Eq. (7.56).  There are 

two possible outcomes depending on whether the pair of fundamentals are resonant or not.  If they 

are not resonant, then the denominator function in Eq. (7.56) will cancel its multiplier to yield one, 

which in turn leads to zero within the parentheses and a zero value overall.  For the case of a 

resonant pair, the denominator function in Eq. (7.56) yields zero, leading to a value of one within 

the parentheses, and an overall nonzero value (assuming the   constant is nonzero as well).  The 

outcomes, summarized in Eq. (7.57), are effectively block diagonal with respect to vibration and 

thus we have successfully transformed the Hamiltonian to obtain 21H . 

 

( )

( )

( )

( )

3

A 21 B 21,0 A B

3

21,1 A B

3

21,0 A B

3

21,1 A B

H , ,

H , ,

H , ,

H , ,

N

j k

jk

N

j k

jk

N

j k

jk i

N

j k

jk i

j k

j k

j k i i

j k i i













    

  

  

  

=

+

 
=  

 

 
+  

 





 

 

H q p J

p q J

q p J

p q J

 (7.53) 

 

 

( ) ( )

( ) ( )

3

A 21 B 21,0 A A B A B B

3

21,1 A A B A B B

H , , 0 0 , ,

H , , 0 0 , ,

N

j k

jk

N

j k

jk

j k

j k







        

      

= +

+ +





H q p J

p q J

 (7.54) 

 



291 

 

 
( ) ( )(

( ) ( ))

3

A 21 B 21,0 21,0

21,1 21,1

1
H A,B, H B,A,

2

H A,B, H B,A,

i




   

 

= − +

+ −

H

J

 (7.55) 

 

 
( )

( ) ( )( )
3

A B

A 21 B A B AB

A B

1 D 1,A, 1,Bi B 
 



 
    

 

+
= − − − H J  (7.56) 

 

 ( )
A B

3
A BA 21 B

AB A B

A B

0 0

0i B 
 



 

  
  

 

−


+= 
−




H
J

 (7.57) 

Definition of Ga 

 The Hamiltonian used to treat the first-order Coriolis coupling in experimental fitting of 

rotational spectra is given by Eq. (7.58).  By comparison to Eq. (7.57), we can then define the first-

order Coriolis coupling constant Ga as Eq. (7.59), with the definitions of Gb and Gc obtained via 

permutation of the axes.  This formula agrees with that previously obtained and frequently utilized.   

 A coupling B a a b b c ciG iG iG  = + +H J J J  (7.58) 

 
( )A B

AB

A B

a
a aG B

 


 

+
=  (7.59) 

Connection of Ga to higher quanta states 

Formulas for the first order Coriolis coupling for different combinations of vibrational 

states can also be obtained by the evaluation of Eq. (7.52) for the appropriate vibrational matrix 

element e.g., the overtone A2  with the combination A B + , as allowed by the vibrational 
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operators.  The Hamiltonian will still be block diagonal with respect to vibration for these other 

matrix elements.  Furthermore, the exact formula for Ga, etc. will be some multiple of Eq. (7.59).  

This can be inferred from the evaluation of Eq. (7.54) to yield Eq. (7.55), where the whole 

expression is multiplied by the evaluation of the vibrational expectation values.  A clearer proof is 

obtained by determining the general expression of the vibrational matrix element for a Hamiltonian 

with two degrees of vibration (vide infra).   

Derivation of 𝐇̃𝟐𝟐 

Sequential contact transformation and the general equation 

As shown in Table 7.1, three contact transformations are required to obtain 22H : (1) 12S , 

(2) 21S , and (3) 22S .  With the sequential contact transformation identified, we can begin the 

process of writing the general equation of 
22H .  The original Hamiltonian is approximated in Eq. 

(7.60) by keeping only terms of up to and including 
2 , as per Eq. (7.1) and Eq. (7.13).  The 

Hamiltonian at each level of transformation is given by Eq. (7.61), with each order of the 

transformed Hamiltonian defined as in Eq. (7.62).   
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The final transformed Hamiltonian is given by the terms of 
( )3

H  with two degrees of 

vibration and two degrees of rotation.  Iterative application of our selection brace definitions from 

Eq. (7.14)–(7.17) to Eq. (7.60)–(7.62) yields the expressions in Eq. (7.63).  Using these results 

allows us to write the expression for the final transformed Hamiltonian 22H  in Eq. (7.64), first in 

terms of the twice-transformed Hamiltonian 
( )2

H , then in terms of the once-transformed 

Hamiltonian 
( )1

H , and finally the original Hamiltonian H .   
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General equations for defining the transform functions 

The defining parts of the transform definitions in Table 7.1 can be similarly derived.  The 

resulting defining equations for 12S , 21S , and 22S  are then given by Eq. (7.65)–(7.67), 

respectively.  Again, the defining equation for the last transform ( 22S , Eq. (7.67)) is the same as 

the general equation for the final transformed Hamiltonian term (
22H , Eq. (7.64)). 
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Required definitions of the original Hamiltonian 

Examination of the general equations for 22H  and the defining parts of the transform 

functions reveals that definitions of the following terms of the original Hamiltonian are required 

to obtain an analytic expression: 20H , 30H , 21H , 12H , 02H , 22H .  We will use abbreviated 

definitions of these functions as provided in Eq. (7.68)–(7.73); definitions of the coefficients are 

provided in the Supporting Information and will be used to obtain the final analytic expression. 

 ( ) ( )
0 0

0 0

2 2
20 20 0 20 0H Hv v

v v

v v= + H q p  (7.68) 

 ( )
0 1 2

0 1 2

30 30 0 1 2H , , v v v

v v v

v v v= H q q q  (7.69) 

 ( )
0 1 0

0 1 0

21 21 0 1 0H , , v v r

v v r

v v r= H q p J  (7.70) 



295 

 

 ( )
0 0 1

0 0 1

12 12 0 0 1H , , v r r

v r r

v r r= H q J J  (7.71) 

 ( )
0

0

2
02 02 0H r

r

r= H J  (7.72) 

 ( )
0 1 0 1

0 1 0 1

22 22 0 1 0 1H , , , v v r r

v v r r

v v r r= H q q J J  (7.73) 

Finding the definitions of S12 and S21 

The derivation of the first two transform functions 12S  and 21S  using Eq. (7.65) and Eq. 

(7.66), respectively, is straightforward, as their definitions are dependent only their counterparts 

from the original Hamiltonian.  A more detailed derivation is provided in the Supporting 

Information, and yields the results given in Eq. (7.74) and Eq. (7.75) using the coefficients defined 

in Eq. (7.76) and Eq. (7.77), respectively. 
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Evaluating the commutators from the first two transformations 

The derivation of the third transform function 22S  requires evaluation of two vibrational 

commutators and one rotational commutator, as well as a nested vibrational commutator, using the 

transform functions that we just defined.  These same commutators will need to be evaluated to 

obtain an expression for 
22H .  These commutators can be written as in Eq. (7.78)–(7.81), where 

the coefficients are defined in Eq. (7.82)–(7.85), respectively.  More detailed derivations of these 

expressions are provided in the Supporting Information. 
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12 30 22 0 1 2 0 1V
, A , , , , v v r r

v v v r r

i v v v r r=  S H q q J J  (7.78) 

 

 

  ( )

( )

0 1 0 1

0 1 2 0 1

0 1 0 1

0 1 2 0 1

21 21 22,0 0 1 2 0 1V

22,1 0 1 2 0 1

, B , , , ,

B , , , ,

v v r r

v v v r r

v v r r

v v v r r

i v v v r r

v v v r r

=

+

 

 

S H q q J J

p p J J
 (7.79) 

 

 

  ( )

( )

0 1 0 1

0 1 0 1 2

0 1 0 1

0 1 0 1 2

21 02 22,0 0 1 0 1 2R

22,1 0 1 0 1 2

, C , , , ,

C , , , ,

v v r r

v v r r r

v v r r

v v r r r

i v v r r r

v v r r r

=

+

 

 

S H q q J J

p p J J
 (7.80) 

 

 

  ( )

( )

0 1 0 1

0 1 2 0 1

0 1 0 1

0 1 2 0 1

21 21 20 22,0 0 1 2 0 1V V

22,1 0 1 2 0 1

1
, , D , , , ,

2

D , , , ,

v v r r

v v v r r

v v r r

v v v r r

v v v r r

v v v r r

 − = 

+

 

 

S S H q q J J

p p J J

 (7.81) 

 

 ( ) ( ) ( ) ( ) ( )( )22 0 1 2 0 1 12 2 0 1 30 0 1 2 30 0 2 1 30 2 0 1A , , , , S , , H , , H , , H , ,v v v r r v r r v v v v v v v v v= + +  (7.82) 
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( ) ( ) ( )(

( ) ( )

( ) ( )

( ) ( ))

( ) ( ) ( )( ) ( )(

( )

22,0 0 1 2 0 1 21,0 0 2 0 21 1 2 1

21,0 2 1 0 21 0 2 1

21,0 0 2 1 21 1 2 0

21,0 2 1 1 21 0 2 0

22,1 0 1 2 0 1 21,1 0 2 0 21,1 2 0 0 21 2 1 1

21,1 0 2 1 21

1
B , , , , S , , H , ,

2

S , , H , ,

S , , H , ,

S , , H , ,

1
B , , , , S , , S , , H , ,

2

S , , S

v v v r r v v r v v r

v v r v v r

v v r v v r

v v r v v r

v v v r r v v r v v r v v r

v v r

−
=

+

+

+

= +

+ + ( )( ) ( )),1 2 0 1 21 2 1 0, , H , ,v v r v v r

 (7.83) 

 

 
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
0 1 2

0 1 2

22,0 0 1 0 1 2 21,0 0 1 2 02 0 02 1

22,1 0 1 0 1 2 21,1 0 1 2 02 0 02 1

C , , , , S , , H H

C , , , , S , , H H

r r r

r r r

v v r r r v v r r r

v v r r r v v r r r

= −

= −
 (7.84) 

  (7.85)  

Finding the definition of S22 

Now that the commutators contained within the defining part of 22S  have been evaluated, 

the transform function can be defined.  The process of applying the ladder solution (rewriting the 

defining part of 22S  in terms of vibrational ladder operators, applying the formula in Eq. (7.26), 

and rewriting the result in terms of vibrational operators q and p) is the same as described before, 

albeit more extensive.  The transform function can then be written as Eq. (7.86), using the 

coefficients defined in Eq. (7.87) and Eq. (7.88).  The derivation of these expressions is provided 

in the Supporting Information. 

 ( ) ( )
0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

22 22,0 0 1 0 1 22,1 0 1 0 1S , , , S , , ,v v r r v v r r

v v r r v v r r

v v r r v v r r= + S q p J J p q J J  (7.86) 
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( )

( ) ( )( ) ( ) ( )( )(

( ) ( )( ) ( ) ( )( ))
( )

( ) ( )( ) ( )

22,0 0 1 0 1

0 1 0 1 22,0 0 1 0 1 22,0 1 0 0 1

0 1 0 1 22,1 0 1 0 1 22,1 1 0 0 1

22,1 0 1 0 1

0 1 0 1 22,0 0 1 0 1 22,0 1 0

S , , ,

1
D 1, ;1, D 1, ; 1, E , , , E , , ,

4

D 1, ;1, D 1, ; 1, E , , , E , , ,

S , , ,

1
D 1, ;1, D 1, ; 1, E , , , E ,

4

v v r r

v v v v v v r r v v r r

v v v v v v r r v v r r

v v r r

v v v v v v r r v v

= − + − +

+ + − +

−
= + − + ( )( )(

( ) ( )( ) ( ) ( )( ))

0 1

0 1 0 1 22,1 0 1 0 1 22,1 1 0 0 1

, ,

D 1, ;1, D 1, ; 1, E , , , E , , ,

r r

v v v v v v r r v v r r+ − + − +

 (7.87) 

 

 

( ) ( ) ( )

( ) ( )

( )

( ) ( ) ( )

2 2

2 2

22,0 0 1 0 1 22 0 1 0 1 22 0 1 2 0 1

22,0 0 1 2 0 1 22,0 0 1 0 1 2

22,0 0 1 2 0 1

22,1 0 1 0 1 22,1 0 1 2 0 1 22,1 0 1 0 1 2

1 1
E , , , H , , , A , , , ,

3 3

1 1
B , , , , C , , , ,

3

1
D , , , ,

3

1 1
E , , , B , , , , C , , , ,

3

v r

v r

v v r r v v r r v v v r r
N

v v v r r v v r r r
N

v v v r r

v v r r v v v r r v v r r r
N


= +



+ +


+ 




= +







( )22,1 0 1 2 0 1

1
D , , , ,

3
v v v r r


+ 





 (7.88) 

Evaluating the final commutator 

 All that remains to obtain the analytic expression for 22H  is to evaluate the commutator 

between the transform function 22S  and the zeroth order term of the original Hamiltonian, 20H .  

Applying the definitions from Eq. (7.68) and Eq. (7.86) yields Eq. (7.89), using the coefficients 

defined in Eq. (7.90).   

 

  ( )

( )

0 1 0 1

0 1 0 1

0 1 0 1

0 1 0 1

22 20 22,0 0 1 0 1V

22,1 0 1 0 1

, F , , ,

F , , ,

v v r r

v v r r

v v r r

v v r r

i v v r r

v v r r

=

+





S H q q J J

p p J J
 (7.89) 
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( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )
22,0 0 1 0 1 22,0 0 1 0 1 20 1 22,1 0 1 0 1 20 0

22,1 0 1 0 1 22,0 0 1 0 1 20 0 22,1 0 1 0 1 20 1

F , , , 2 S , , , H S , , , H

F , , , 2 S , , , H S , , , H

v v r r v v r r v v v r r v

v v r r v v r r v v v r r v

= +

= − +
 (7.90) 

The analytic expression 

Combining this commutator with the rest of the general equation (which were evaluated in 

order to obtain 22S ) yields Eq. (7.91) using the coefficients in Eq. (7.92).  A definition expressed 

in terms of the molecular properties can be obtained through iterative substitution of the 

coefficients that we’ve defined thus far.  Such a definition is provided in the Supporting 

Information. 

 ( ) ( )
0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

22 22,0 0 1 0 1 22,1 0 1 0 1H , , , H , , ,v v r r v v r r

v v r r v v r r

v v r r v v r r= + H q q J J p p J J  (7.91) 

 
( ) ( ) ( )

( ) ( ) ( )

22,0 0 1 0 1 22,0 0 1 0 1 22,0 0 1 0 1

22,1 0 1 0 1 22,1 0 1 0 1 22,1 0 1 0 1

H , , , E , , , F , , ,

H , , , E , , , F , , ,

v v r r v v r r v v r r

v v r r v v r r v v r r

= +

= +
 (7.92)  

Rotational Reduction of 𝐇̃𝟐𝟐 

The rotational contact transformation 

 Using Eq. (7.31), the transform function that will affect 22H  is given by r r r
22 21= +S S S , 

which results in the reduction equation Eq. (7.93).  The ‘r’ superscript for the transform functions 

is to denote that these transform functions are distinct from the ones used to block diagonalize the 

Hamiltonian in the previous section.  The definitions of the reducing transform functions are 

unknown at this point, and what follows is the process of defining them such that the Hamiltonian 

will be reduced as per Eq. (7.93). 

 
red r r
22 22 22 20 21 02

V R
, ,i i   = + +   H H S H S H  (7.93) 
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Trial transform functions 

Effectively, we are applying an abbreviated form of the trial solution approach to obtain 

definitions of the rotational reduction transform functions.  Consider that 
22H  contains only the 

products of vibrational operators qq  and pp .  The terms of the commutators containing those 

same products are all that are required to affect the transformation, and similarly only the terms of 

the transform functions that will yield said terms of the commutator are required.  Since the 

rotational commutator does not affect the vibrational operators, the transform function r
21S  is 

readily written as in Eq. (7.94).  Then, a quick consideration of the possible combinations of 

vibrational commutators leaves us with the definition of the transform function r
22S  as in Eq. (7.95)

.  The coefficients used in these expressions are yet to be defined, and the process of defining them 

constitutes the bulk of the effort for reducing the Hamiltonian.   

 ( ) ( )
0 1 0 0 1 0

0 1 0 0 1 0

r r r
21 21,0 0 1 0 21,1 0 1 0S , , S , ,v v r v v r

v v r v v r

v v r v v r= + S q q J p p J  (7.94) 

 ( ) ( )
0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

r r r
22 22,0 0 1 0 1 22,1 0 1 0 1S , , , S , , ,v v r r v v r r

v v r r v v r r

v v r r v v r r= + S q p J J p q J J  (7.95) 

The reduced Hamiltonian 

 Evaluation of the two commutators in Eq. (7.93) results in Eq. (7.96) and Eq. (7.97).  

Substituting these expressions back into Eq. (7.93) yields the reduced Hamiltonian shown in Eq. 

(7.98), using the coefficient defined in Eq. (7.99).  With the reduced Hamiltonian thus defined, we 

can begin the process of defining the coefficients of the transform functions that are contained 

within Eq. (7.99) so as to obtain the rotational reduction. 
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( ) ( )

( ) ( )( )

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

2 2 2 2 2 2

2 2

1 0 0 1 0 1

0 1 0 1

r
22 20

V

r r
22,0 0 1 0 1 22,1 0 1 0 1

V

r r
22,0 0 1 0 1 22,1 0 1 0 1

,

S , , , S , , ,

1 1
,

2 2

S , , , S , , ,

v v r r v v r r

v v r r v v r r

v v v v v v

v v

v v v v r r

v v r r

i

i v v r r v v r r

v v r r v v r r

 

 

 
 


= +




+ 



= +

+ −

 

 



S H

q p J J p q J J

q q p p

q q J J

( ) ( ) ( )( )
0 1 0 1 0 1

0 1 0 1

r r
22,0 0 1 0 1 22,1 0 1 0 11 S , , , S , , ,v v v v r r

v v r r

v v r r v v r r + p p J J

 (7.96) 

 

 

( ) ( )

( ) ( )

( ) ( )

0 1 0 0 1 0

0 1 0 0 1 0

1 1 1

1

0 1 2 0 1 0 1 0 1

0 1 0 1 2

0 1 2 0 1 0 1 0 1

0 1

r r r
21 02 21,0 0 1 0 21,1 0 1 0

R

R

r
21,0 0 1 2

r
21,1 0 1 2

, S , , S , ,

,

S , ,

S , ,

v v r v v r

v v r v v r

r r r

r

r r r r r v v r r

v v r r r

r r r r r v v r r

r r r

i i v v r v v r

B

B B v v r

B B v v r


  = + 







= −

+ −

 



 

S H q q J p p J

J J

q q J J

p p J J

0 1 2v v

 

 (7.97) 

 ( )
0 1

0 1

red red
22 22 0 1H , r r

r r

r r= H J J  (7.98) 

 

 

( ) ( ) ( ) ( )(

( ) ( )

( ) ( ) ( )(

( )

1 0

0 1

0 1 2 0 1 0 1

2

0 1

0 1

0 1 2 0 1

red r r
22 0 1 22,0 0 1 0 1 22,0 0 1 0 1 22,1 0 1 0 1

r
21,0 0 1 2

r r
22,1 0 1 0 1 22,0 0 1 0 1 22,1 0 1 0 1

H , H , , , S , , , S , , ,

S , ,

H , , , S , , , S , , ,

S

v v

v v

r r r r r v v

r

v v

v v

r r r r r

r r v v r r v v r r v v r r

B B v v r

v v r r v v r r v v r r

B B

 

 

= + +


+ − 



+ − −

+ −







q q

( )
0 1

2

r
21,1 0 1 2, , v v

r

v v r




 p p

 (7.99) 
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The reduced Hamiltonian in cylindrical tensor form 

 The reduced Hamiltonian in Cartesian coordinates is shown in Eq. (7.100).  The 

Hamiltonian can be written in the cylindrical tensor form by substitution of the definitions of xJ  

and yJ  in terms of J  and judicious application of commutator relations, as well as the identity 

2 22 2 z− + + −+ = −J J J J J J  (derived from 2 2 2 2
x y z= + +J J J J ).  The result is given by Eq. (7.101)

, in which we have made no assumptions regarding the nature of the coefficient and we use the 

anticommutator notation ( ,A B A B B A
+

  +  ) to abbreviate the expression.  (Note that in 

principle, the process currently being discussed should include all terms red
2mH , but for convenience 

we are assuming that the rotational reductions can be applied separately for each 
mnH .)  Within 

the expression are terms of order ~J, detailed in Eq. (7.102), but if the coefficient red
22H  is invariant 

to reversal of indices i.e., if ( ) ( )red red
22 22H , H ,i j j i= , they will be eliminated ( ( )~ 0→J ).  

Otherwise, these terms can be removed from red
22H  and placed in the expression for 1mH .  We now 

have an expression for red
22H , but it contains a total of six rotational operator terms, while only 

three such terms are required for the fitting of second-order Coriolis coupling constants.  

Elimination of terms from this expression is required and can be achieved through proper 

definition of the transform function coefficients.   

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

red red red red
22 22 22 22

red red red
22 22 22

red red red
22 22 22

H , H , H ,

H , H , H ,

H , H , H ,

x x x y x z

y x y y y z

z x z y z z

x x x y x z

y x y y y z

z x z y z z

= + +

+ + +

+ + +

H J J J J J J

J J J J J J

J J J J J J

 (7.100) 
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( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( )( )

( ) ( )( )( )

( ) ( )( ) 

( ) ( )( ) 

red red red 2 red red red 2
22 22 22 22 22 22

red red 2 2
22 22

red red 2 2
22 22

red red
22 22

red red
22 22

1 1
H , H , H , H , 2H ,

2 2

1
H , H ,

4

H , H ,
4

1
H , H , ,

4

H , H , ,
4

z

z

z

x x y y x x y y z z

x x y y

i
x y y x

x z z x

i
y z z y

− +

− +

− + +

− + +

= + − + −

+ − +

− + −

+ + +

− + −

H J J

J J

J J

J J J

J J J ( )~+ J

 (7.101) 

 

( ) ( ) ( )( ) ( ) ( )( )( )

( ) ( )( )( )

red red red red
22 22 22 22

red red
22 22

~ H , H , H , H ,
2 4

1
H , H ,

4

z

i i
x y y x y z z y

x z z x

− +

− +

= − − − − +

+ − −

J J J J

J J

 (7.102) 

Connection to experimental coupling constants 

 First, however, we must determine what terms are to be eliminated from Eq. (7.101).  For 

second order in rotation, there are two instances for which red
22H  can be used: (a) vibrationally on-

diagonal matrix elements red
22i iH  and (b) vibrationally off-diagonal matrix elements red

22i jH

.  The former matrix element corresponds to a correction to the rotational constants 02i iH  due 

to vibration-rotation coupling i.e., the α constants, while the latter corresponds to the second-order 

Coriolis coupling constants Fab, Fac, and Fbc connecting the vibrational states i  and j .  Note 

that such differentiation is absent for terms of odd order with respect to rotation, as only 

vibrationally off-diagonal matrix elements are allowed in that case.  
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(a) Vibrationally on-diagonal (α constants) 

TERMS TO BE ELIMINATED. 

The rotational Hamiltonian in the Ir reduction for the vibrationally on-diagonal matrix 

element requires that the non-totally symmetric terms 2 2
− +−J J ,  ,z − + +

+J J J , and  ,z − + +
−J J J  

are eliminated.  This can be achieved by defining the transform function coefficients such that the 

corresponding three coefficients will be zero.  We can therefore write Eq. (7.103)–(7.105).   

 ( ) ( )red red
22 220 H , H ,i x y y x i= +  (7.103) 

 ( ) ( )red red
22 220 H , H ,i x z z x i= +  (7.104) 

 ( ) ( )red red
22 220 H , H ,i y z z y i= +  (7.105) 

SOLVING FOR THE TRANSFORM COEFFICIENTS 

Considering the first condition, Eq. (7.103), we can substitute in the definition of red
22H  and 

write the condition as Eq. (7.106).  Ideally, to avoid a dependence of the solution on the particulars 

of the vibrational matrix elements 
0 1v vi iq q  and 

0 1v vi ip p , we solve for the coefficients to 

yield zero.  There are then effectively two equations, and so only two of the transform function 

coefficients can be solved for.  The simplest is to set the r
22S  transform coefficients to zero and 

solve for the r
21S  transform coefficients.  We then have the trivial definition in Eq. (7.107) and the 

nonzero definitions in Eq. (7.108) and Eq. (7.109), where the other required definitions can be 

obtained through cyclic permutation of the axes x, y, and z.  The superscript ‘r’ for the transform 

functions is now replaced by the superscript ‘d’ to indicate that these terms are for applying the 

(on) diagonal reduction. 
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( ) ( )(

( ) ( )( )

( ) ( )( ) ( ) ( ))

( ) ( )(

( )

0 1

1

0

0 1
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22,0 0 1 22,0 0 1
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





= +
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+ + + − 



+ +

− +





q q

( )( )

( ) ( )( ) ( ) ( ))
1

0 1

r
0 1

r r r
22,1 0 1 22,1 0 1 21,1 0 1

, , ,

S , , , S , , , 2 S , ,v x y

v v

v v y x

v v x y v v y x B B v v z

i i

− + + − 

 p p

 (7.106) 

 

 ( ) ( )d d
22,0 0 1 0 1 22,1 0 1 0 1S , , , S , , , 0v v r r v v r r= =  (7.107) 

 ( )
( ) ( )

( )
22,0 0 1 22,0 0 1d

21,0 0 1

H , , , H , , ,
S , ,  and cyclic permutations

2 x y

v v x y v v y x
v v z

B B

+
=

− −
 (7.108) 

 ( )
( ) ( )

( )
22,1 0 1 22,1 0 1d

21,1 0 1

H , , , H , , ,
S , ,  and cyclic permutations

2 x y

v v x y v v y x
v v z

B B

+
=

− −
 (7.109) 

DEFINITION OF THE REDUCED COEFFICIENTS 

Substitution of the definitions of coefficients of the transform functions into Eq. (7.106) 

confirms they satisfy the conditions Eq. (7.103)–(7.105).  After applying these definitions to the 

possible combinations of red
22H , the generalized definitions in Eq. (7.110) and Eq. (7.111) become 

apparent. 

 ( ) ( ) ( )
0 1 0 1

0 1 0 1

d,red
22 22,0 0 1 22,1 0 1H , H , , , H , , ,v v v v

v v v v

a a v v a a v v a a= + q q p p  (7.110) 
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( ) ( )

( ) ( )( )

( ) ( )( )

0 1

0 1

0 1

0 1

d,red d,red
22 22

22,0 0 1 22,0 0 1

22,1 0 1 22,1 0 1

H , H ,
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H , , , H , , ,
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1
H , , , H , , ,

2

v v

v v

v v

v v

a b b a

v v a b v v b a

v v a b v v b a

= −

= −

+ −





q q

p p

 (7.111) 

 The rotational Hamiltonian from Eq. (7.101) can now be written as in Eq. (7.112).  The 

lower order terms ( )~ J  can be written as Eq. (7.113), which per Eq. (7.111) will go to zero if 

( ) ( )22,0 0 1 22,0 0 1H , , , H , , ,v v a b v v b a=  and ( ) ( )22,1 0 1 22,1 0 1H , , , H , , ,v v a b v v b a= .  Returning to the 

Cartesian form, the reduced Hamiltonian can be written as in Eq. (7.114). 

 

( ) ( )( )

( ) ( ) ( )( )

( ) ( )( )( ) ( )

d,red d,red d,red 2
22 22 22

d,red d,red d,red 2
22 22 22

d,red d,red 2 2
22 22

1
H , H ,

2

1
H , H , 2H ,

2

1
H , H , ~

4

z

x x y y

x x y y z z

x x y y − +

= +

− + −

+ − + +
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THE 𝛼 CORRECTIONS 

For the ground state, we can write the vibrational matrix element as in Eq. (7.115).  By 

comparison to Eq. (7.116), the   corrections are given by Eq. (7.117).  The general formula for 

application to other vibrational states can be obtained in a similar manner.  Applying successive 
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substitutions of the previously obtained coefficient definitions yields Eq. (7.118), which in turn 

leads to the analytic expression for the   corrections in Eq. (7.119).  For these equations, we apply 

a strict resonance condition; that is, the resonance threshold is zero.  This expression is identical 

to the one previously obtained by Aliev and Watson (Eq. (100) in Ref. 4) once the on-diagonal 

condition has been applied.  The “deperturbed” expression for the   correction is similarly 

obtained, but where the resonance threshold is greater than zero.  The formula is effectively the 

same, except that ( )
0 1

1

v v 
−

−  in the last summation of Eq. (7.119) is replaced with the 

denominator function ( )
0 1

D 1, , 1,v v − .  
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0 0

1
,

2
r r

v

B B v r= −   (7.116) 

 

 ( ) ( ) ( )( )0 0 22,0 0 0 0 0 22,1 0 0 0 0, H , , , H , , ,v r v v r r v v r r = − +  (7.117) 
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(b) Vibrationally off-diagonal (Fbc) 

TERMS TO ELIMINATE 

The rotational Hamiltonian in the Ir reduction for the vibrationally off-diagonal matrix 

element requires that the totally symmetric terms 
2J , 2

zJ , and 2 2
− ++J J  are eliminated.  This can 

be achieved by defining the transform function coefficients such that the corresponding three 

coefficients will be zero, as in Eq. (7.120)–(7.122), which immediately leads to the requirement 

that ( )red
22H , 0i a a j = .   

 ( ) ( )red red
22 220 H , H ,i x x y y j= +  (7.120) 

 ( ) ( ) ( )red red red
22 22 220 H , H , 2H ,i x x y y z z j= + −  (7.121) 

 ( ) ( )red red
22 220 H , H ,i x x y y j= −  (7.122) 
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SOLVING FOR THE TRANSFORM COEFFICIENTS 

We can now write Eq. (7.123), and again set the coefficients of the vibrational expectation 

values to zero and solve for r
22,0S  and r

22,1S .  Doing this leads to the solutions Eq. (7.124) and Eq. 

(7.125), but since the summations in Eq. (7.123) are not restricted, there are terms unaffected by 

the transformation.  Thus, at this point, the Hamiltonian is not fully reduced.  Note that the 

superscript ‘r’ of the transform functions is replaced with the superscript ‘od’ to indicate that these 

solutions of the transform functions are for obtaining the off-diagonal reduction of the 

Hamiltonian. 
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DEPENDENCE ON VIBRATIONAL EXPECTATION VALUES 

 To ensure that the Hamiltonian is fully reduced, we have to distinguish the solutions for 

when the vibrational indices match and for when they do not match.  Thus, we separate each of 

the summations in Eq. (7.123) into two parts, as in Eq. (7.126).  The solutions Eq. (7.124) and Eq. 

(7.125) apply to the restricted summation, but solutions for the single-index summation are still 
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required.  Furthermore, we must consider the vibrational expectation values in order to affect a 

result that differs from the restricted solutions. 
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 The terms in the single-index summations will only be nonzero if the change in the 

quantum number of the kth mode is 0, 2kn =   and all other quantum numbers are unchanged 

between i  and j .  The case where 0kn =  occurs only when i j= , which is clearly not an 

off-diagonal vibrational matrix element and thus can be ignored.  For the case where 2kn =  , 

the single-index summations reduce to Eq. (7.127).  This expression is set to zero and the transform 

coefficients are solved for.  Only one transform coefficient can be defined, so the other is arbitrarily 

set to zero leading to Eq. (7.128) and ( )od
22,1 0 0S , , , 0v v a a = .  Any remaining transform coefficient 

not explicitly defined is set to zero.  That is, the remaining definitions are given by Eq. (7.129). 
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DEFINITION OF 𝐹𝑏𝑐 BETWEEN FUNDAMENTALS 

 We now consider the case of the vibrationally off-diagonal matrix element between two 

fundamental vibrations, A  and B .  Using the above definitions, the nonzero contributions to 

the matrix element are given by Eq. (7.130), and the full expression in terms of molecular 

properties is given by Eq. (7.131).   

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

0 1 0 1

0 1 0 1

od,red od,red
A 22 0 1 0 B A 22 1 0 0 B

22,0 0 1 0 1 A B 22,1 0 1 0 1 A B

22,0 A B 0 1 22,0 B A 0 1

22,1 A B 0 1 22,1 B A 0 1

H , H ,

H , , , H , , ,

1 1
H , , , H , , ,

2 2

1 1
H , , , H , , ,

2 2

v v v v

v v v v

r r r r

v v r r v v r r

v v r r v v r r

v v r r v v r r

   

   

 =

= +

= +

+ +

 q q p p

 (7.130) 

 



312 

 

 

( ) ( )

( )

( )( )( )
( )( )

( )

0 2 0 2 0 12 1 2 1

A B A B 2A B B A 2

2 22

A 2 B 2 A B 2 0 01 1

0 1 A 2 B 2 A 2 B 2

2 A B 2 A 2 B 2

od,red od,red
A 22 0 1 0 B A 22 1 0 0 BH , H ,

3 1 1
k

8 2

21

4

1

r r r r r rr r r r

v v v v vv v v v v

r vr

v v v v v v v r rr r

r r v v v v v v v v

v v v v v v v v

r r r r

C C C C C
B

B B

   

 

      
   

      

 =

= + +

− − + +
− +

+ +

+

 



( ) ( )

( )( )( )
( )

( )
( )

( )

2

A 2 B 2 A B 2 0 01 1

0 1 A 2 B 2 A 2 B 2

A B 2

A B 2

0 1 2 2 0 1A B

2 A B

A 2 B 2

A B

D 1, ; 1, D 1, ; 1,
4

2

D 1, ; 1,

v

v v v v v v v r rr r

r r v v v v v v v v

v v v

v v r

r r r r r rv v

r v v

v v v v

B B

v v B B B

      
   

  

 


 

− − 

+ + + −
 +

+
+ − −





 (7.131) 

The rotational Hamiltonian is then given by Eq. (7.132), where the ( )~ J  terms 

previously discussed go to zero using the definition of Eq. (7.130).  Returning to Cartesian form, 

the rotational Hamiltonian is given by Eq. (7.133) from which we can define the F Coriolis 

coupling constant between two fundamentals as Eq. (7.134).  The F Coriolis coupling constant 

between other vibrational states is readily obtained from evaluating the vibrational matrix element 

of Eq. (7.130), so long as the total change in quanta between the two vibrational states is 

2ii
n = . 

 

( ) ( )

( )  

( )  

od,red od,red 2 2
A 22 B A 22 B

od,red
A 22 B

od,red
A 22 B

H ,
2

1
H , ,

2

H , ,
2

z

z

i
x y

x z

i
y z

   

 

 

− +

− + +

− + +

= − −

+ +

− −

H J J

J J J

J J J

 (7.132) 

 

( ) ( )

( ) ( )

( ) ( )

od,red od,red
A 22 B A 22 B

od,red
A 22 B

od,red
A 22 B

H ,

H ,

H ,

x y y x

x z z x

y z z y

x y

x z

y z

   

 

 

= +

+ +

+ +

H J J J J

J J J J

J J J J

 (7.133) 



313 

 

 ( )od,red
A 22 BH ,F    =  (7.134) 

 The expression obtained in Eq. (7.130) is nearly identical to that previously derived by 

Aliev and Watson,4 except their formula (Eq. (101) of Ref. 4) appears to be lacking the last 

summation of Eq. (7.130), which is the contribution arising from the only rotational commutator 

within the transformation to obtain 
22H ,  21 02 R

,i S H .  The denominator function in this term, 

however, must always yield zero for the off-diagonal matrix element of a pair of resonant states 

and thus the two expressions are equivalent.   

Preliminary Rotational Reduction of 𝐇̃𝟐𝟑 

 We are still in the process of deriving the analytic expression for 
23H , but we can discuss 

our efforts in obtaining its rotational reduction.  Prior to encountering the work of Perevalov and 

Tyuterev,6-7 we derived a rotational reduction for 23H  using an approach adapted from the 

procedure used for the rotational reduction of the centrifugal distortion constants, as presented in 

the review by Watson.2  This is the derivation provided in this section.  While we are optimistic 

that a rotation reduction obtained in a manner similar to that for 22H  in the previous section will 

yield the same result, we are still in the process of confirming that such is the case.  Thus, we 

consider the rotational reduction that follows to be preliminary. 

The rotational contact transformation 

 The approach used for the centrifugal distortion constants uses the transform function 

0, 1
r

n−S  to reduce the Hamiltonian 0nH .  Similarly, we will use the transform function 02
r

S  to reduce 

the Hamiltonian 23H , specifically its vibrational matrix element.  We begin by defining 03  as an 



314 

 

arbitrary off-diagonal vibrational matrix element of 
23H , as in Eq. (7.135), which can be written 

as a linear combination of rotational operator.  The coefficients 03H  in this linear combination are 

the vibrational expectation values of 
23H  with the rotational operators removed and is simply some 

complex number as a function of the rotational indices.  With the Hamiltonian written as such, we 

can write the rotational contact transformation as Eq. (7.136), where the definition of the transform 

function is chosen to obtain the desired, reduced form of the Hamiltonian. 

 ( )
0 1 2

0 1 2

03 23 03 0 1 2H , , r r r

r r r

i j i r r r  = H J J J  (7.135) 

  red
03 03 02 02,i= + S H  (7.136) 

The trial transform function 

 Since the vibrational dependence of the current rotational reduction is ignored, the form of 

the transform function is simplified: it is simply a linear combination of rotational operators of 

order 
2~ J .  At the moment, the coefficients in the definition of the transform function (Eq. (7.137)

) are undefined; finding/choosing their definitions is the primary work in deriving the rotation 

reduction. 

 ( )
0 1

0 1

02 02 0 1S ,r r
r r

r r

r r= S J J  (7.137) 

The rotational commutator 

 We can evaluate the rotational commutator of the transform function with the rigid rotor, 

as the evaluation is independent of the definition of the transform function’s coefficients.  The 

commutator evaluates to Eq. (7.138).  
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The reduced Hamiltonian 

 With the commutator evaluated, we can now write the reduced Hamiltonian as in Eq. 

(7.139), where we have defined the coefficients as in Eq. (7.140).  The full Cartesian form of the 

reduced Hamiltonian is simply given by the permutations of the rotational indices over the x, y, 

and z axes. 
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 (7.140) 

The reduced Hamiltonian in cylindrical tensor form 

 As was done in the reduction of 22H , we will rewrite the reduced Hamiltonian in terms of 

products of 
2J , zJ , − ++J J , and − +−J J .  The process is extensive and requires judicial use of 

commutator relations, but eventually we obtain the expression given in Eq. (7.141), using the 

coefficients defined in Eq. (7.142).   
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The terms lower in order with respect to the rotational operator are given by Eq. (7.143) 

and Eq. (7.144), using the coefficients defined in Eq. (7.145) and Eq. (7.146), respectively.  Given 

the preliminary nature of this reduction, we will ignore these lower order terms for the present 

work. 
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 ( ) ( ) ( )0100 0010 0001~ zc c c− + − += + + + −J J J J J J  (7.144) 
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Terms to be eliminated 

Before we proceed further, we will first consider the conditions by which the Asymmetric 

and Symmetric reductions were chosen for the centrifugal distortion constants.  As described in 

Watson’s review,2 the Asymmetric reduction was obtained by defining the transform function 

coefficients such that terms with the rotational selection rules of 2k   were eliminated.  On the 

other hand, the Symmetric reduction was obtained by defining the transform function’s 
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coefficients such that terms containing the zJ  operator with rotational selection rules of 0k   

were eliminated.  We will keep these constraints in mind as we consider how to reduce the third 

order Coriolis coupling Hamiltonian. 

“Asymmetric” reduction 

Now, we consider the third order Coriolis coupling Hamiltonian that is used for the fitting 

of experimental spectra.  This Hamiltonian is limited to a maximum of six terms, and is given by 

Eq. (7.147) for the Ir representation.  Examination of this Hamiltonian in comparison to the full 

Hamiltonian written in Eq. (7.141) shows that the expression used experimentally has removed 

the n n
− +J J  terms from Eq. (7.141) for 1n  .  Written another way, the Hamiltonian used 

experimentally can be obtained by eliminating the terms with rotational selection rules of 1k   

(or equivalently, 2k  ). To us, this appears analogous to the condition applied to the centrifugal 

distortion constants to obtain the Asymmetric reduction.  Thus, we refer to the expression in Eq. 

(7.148) as the “asymmetric” reduction of 
23H , which is what the ‘a’ in the scripts of the equation 

is denoting (and is distinct from the ‘a’ used to represent the rotational axis in the rotational 

constants in Eq. (7.147)).  We will refer to this reduction with explicit use of the quotation marks 

because we are unsure of how or if this Hamiltonian interacts with the Asymmetric centrifugal 

distortion constants.   
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By comparison of the two expressions in Eq. (7.147) and Eq. (7.148), we can write the 

definitions of the third order Coriolis coupling constants as in Eq. (7.149), which are in turn 

dependent on the definitions of the transform function coefficients, defined below.  Note that these 

definitions are assuming the Ir representation. 
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 (7.149) 

 The constraint that the reduced form of 
23H  should not have terms with rotational selection 

rules of 2k   is equivalent to enforcing the condition in Eq. (7.150).  By substituting the 

definitions of the coefficients from above, we can – with sufficient algebraic manipulation – show 

that the transform function coefficients provided in Eq. (7.151)–(7.155)  will satisfy the constraint 

given by Eq. (7.150).  Here the superscript ‘a’ is used to represent that these transform coefficients 

are for obtaining the “asymmetric” reduction of the Hamiltonian. 
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 ( ) ( ) ( ) ( ) ( )a a a a a
02 02 02 02 020 S , S , S , S , S ,y y z z y x z x z y= = = = =  (7.155) 

DEFINITION OF THE REDUCED COEFFICIENTS 

 We can now write the full expression for the coefficients of the reduced Hamiltonian.  

Substituting the “asymmetric” reduction transform function coefficients into the reduced 

coefficients allows us to write the definitions for the reduced Hamiltonian in the cylindrical tensor 

form, as shown in Eq. (7.156)–(7.158).   
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 0120a 0102a 0030a 0003a0 c c c c= = = =  (7.158) 

“Symmetric” reduction 

If the experimental Hamiltonian in Eq. (7.147) is indeed analogous to the Asymmetric 

reduction of the centrifugal distortion constants, then we can attempt to extend the analogy to 

include the Symmetric reduction.  Let us write the Hamiltonian that would result from eliminating 

terms from the full Hamiltonian in Eq. (7.141) that contain the zJ  operator and have rotational 

selection rules of 0k  .  The result, shown in Eq. (7.159), has removed four terms as required, 

and consideration of the symmetries of the remaining terms suggests this Hamiltonian can be used 

to fit coupled state rotational spectra.  We consider this to be the “symmetric” reduction of 
23H , 

but again we are unclear as to the relationship between this form of the coupling Hamiltonian and 

the Symmetric reduction of the centrifugal distortion constants.  The ‘s’ in the scripts again denotes 

that these definitions are explicitly for this “symmetric” reduction. 
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The definition of the third order Coriolis coupling constants in this reduction is somewhat 

complicated by the different choice in terms that were kept.  By comparison of Eq. (7.147) and 

Eq. (7.159), the definitions of some of the constants is still clear, as shown in Eq. (7.160), but there 

does not appear to be an obvious definition for Gb
K and Gc

K.  Following the analogy to the 

centrifugal distortion constants, we propose the use of the constants G+ and G− as defined in Eq. 

(7.161) to denote the coefficients of ( )3 3
− ++J J  and ( )3 3

− +−J J , respectively, for the “symmetric” 

reduction of the third order Coriolis coupling constants. 



322 

 

 
2100s 2010s 2001s

0300s

, ,J J J
a b c

K
a

G c G c G c

G c

= = =

=
 (7.160) 

 
0030s

0003s

G c

G c

+

−

=

=
 (7.161) 

 The constraint that the reduced form of 
23H  should not have terms with a zJ  operator and 

rotational selection rules of 0k   is equivalent to enforcing the condition in Eq (7.162).  Using 

the definitions provided earlier, we can show that the definitions provided in Eq. (7.163)–(7.167) 

will satisfy this condition.  Here the superscript ‘s’ represents that these coefficients for the 

transform functions are for obtaining the “symmetric” reduction of the Hamiltonian. 

 0210 0201 0120 01020 c c c c= = = =  (7.162) 
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DEFINITION OF THE REDUCED COEFFICIENTS 

 We can now write the full expression for the coefficients of the reduced Hamiltonian.  

Substituting the “symmetric” reduction transform function coefficients into the reduced 

coefficients allows us to write the definitions for the reduced Hamiltonian in the cylindrical tensor 

form, as shown in Eq. (7.168)–(7.170). 
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 0210s 0201s 0120s 0102s0 c c c c= = = =  (7.170) 

Ratio of Coupling Constants of Combinations and Overtones with Common 

Vibrational Modes 

We again consider the vibrational matrix element of 21H  (Eq. (7.52)), but now for a pair 

of undefined states ,a bn n  and 1, 1a bn n+ −  involving the normal modes a  and b .  When the 

vibrational expectation values are evaluated, as in Eq. (7.171), we see that the only dependence on 

the quantum numbers an  and bn  occurs in the constant that multiplies the rest of the expression.  

Using this expression, we can define a relationship between the coupling constants of different 

sets of coupled states.  That is, using Eq. (7.172), we can write a ratio of the vibrational matrix 
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elements as in Eq. (7.173).  As will be discussed, this ratio has been observed experimentally in 

the fitting of the lowest dyad and triad of benzonitrile (vide infra).9   
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In fact, the derivation of the ratio of coupling constants can be generalized to describe the 

relationship of any off-diagonal vibrational matrix elements that involve the same set of vibrational 

modes.  We can define an arbitrary vibration-rotation Hamiltonian with vibrational degree of two 

as in Eq. (7.174).  Evaluation of this Hamiltonian for an arbitrary pair of vibrational states leads to 

an extensive expression (see Supporting Information) that can be used to obtain the relationship 

provided in Eq. (7.175).  The ratio for matrix elements of 21H  derived previously (vide supra) can 

be obtained from Eq. (7.175) using the values 1a an n = + , 1b bn n = − , and 2 21n =H H .  More 
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importantly, however, the formula shows that every off-diagonal matrix element is directly 

proportional to other off-diagonal matrix elements involving the same set of vibrational modes and 

selection rules.  To illustrate, per Eq. (7.175) the coupling constants of 2a n b H  are directly 

proportional to the coupling constants of 22 ,a n a b  H , 22 ,2 ,3a b n a b   H , 

2, 2a b n b  H , 22 , ,2a b n a b   H , 2,3 4a b n b  H , and more.  Note that while this 

derivation ignores contributions from terms with higher degrees of vibration i.e., 
4nH , such terms 

are at least two orders smaller, and excluding them should have little to no effect on the outcome.  

Furthermore, our discussions regarding the reduction of rotational operators have no impact on the 

relationships of these coupling constants, as the ratios are independent of the nature of the 

rotational operators. 
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RESULTS AND DISCUSSION 

 In principle, the vibration-rotation coupling constants can be predicted using the results of 

anharmonic frequency calculations and the formulas we have derived.  To assess the quality of 

these predictions, we compare the computational predictions to the experimental coupled-state fits 

of benzonitrile.9   

 First, we consider the lowest energy dyad consisting of vibration-rotation coupling between 

the fundamentals 22  (141 cm-1) and 33  (160 cm-1).  Using the Ir representation and the formulas 

in Eq. (7.59) and Eq. (7.130), we can predict the values of the first and second order Coriolis 

coupling constants using the results of a CCSD(T)/ANO0 VPT2 calculation.  As shown in Table 

7.2, the Fbc coupling constants predicted by Eq. (7.130) are indeed quite close to those determined 

from the coupled-state fit of the experimental data, with the predicted constants being 14% smaller.  

Whether or not a higher level of theory results in improved theoretical values remains to be seen. 
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Table 7.2.  Comparison of Theoretical Predictions of Coriolis Coupling Constants using 

CCSD(T)/ANO0 to Experimental Results for the Lowest Energy Dyad and Triad of Benzonitrile. 

  Ga (MHz)  Fbc (MHz) 

State 1 State 2 Exp.9 Eq. (7.52)  Exp.9 Eq. (7.134) 

22  33  9531. (46) 9351.  0.412 (30) 0.355 

222  22 33 +  13476.329 (25) a 13223.615  0.58568 (16) 0.503 

22 33 +  332  13476.329 (25) a 13223.615  0.58657 (14) 0.503 

22 332 +  22 332 +   18701.015   0.711 
a These Ga values were set equal to each other in the fit 

 

As mentioned earlier, a rather particular relationship was observed in the coupled state fits 

of the lowest energy dyad and triad of benzonitrile.9 Specifically, the first order Coriolis coupling 

between an overtone and combination band, 33 22 332 1 ,1aG   , was found to be larger than the 

corresponding coupling of the fundamentals of the two modes in question, 22 33aG  , by 

approximately a factor of 2 .  Using the ratio provided in Eq. (7.173) and the values 33 0n = , 

22 1n = , 33 1 = , and 22 0 = , we find that such indeed is the factor by which these two coupling 

constants should differ.  If instead we use the values 33 0 =  and 22 1 = , the same ratio is obtained 

for the coupling of the same combination band with the other overtone, 22 22 332 1 ,1aG   .  And, 

using the expression derived in Eq. (7.175), we can extend this statement to include the rest of the 

coupling constants involved.  That is, the ratio in Eq. (7.176) is independent of the rotational 

operators, and so applies to Ga, Gb, Gc, Fbc, Fac, Fab, Ga
J, Ga

K, Gb
J, etc. 

 
33 22 33 22 33 22 33 22

33 22 33 22 33 22 33 22

1 ,1 2 ,0 0 ,2 1 ,1 2

0 ,1 1 ,0 0 ,1 1 ,0 1

a a

a a

G G

G G

       

       
= =  (7.176) 
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 This can be further illustrated by considering the formulas for the second order Coriolis 

coupling constants obtained from the vibrational matrix element of 
22H .  The generalized matrix 

element of Eq. (7.177) can be applied to the coupled states in question to yield Eq. (7.178)–(7.180)

.  Comparison of these matrix elements reveals that the ratio of Eq. (7.176) does indeed hold for 

the second order Coriolis coupling.  Thus, the theoretical predictions of the coupling values of 

these states are multiples of the coupling constants of the two fundamental states.  The theoretical 

values provided in Table 7.2 reflect this fact, and the complete expression for calculating ratios of 

2nH  coupling terms is provided in Eq. (7.175). 
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Preliminary Results of the vib-rot-Van-Vleck Program 

 As discussed in the Introduction and Methods sections, we are developing a computer-

aided derivation program for the derivation and numeric calculation of effective Hamiltonians 

using Van Vleck perturbation theory.  From our efforts in deriving various transformed 

Hamiltonians, and as illustrated in the Derivations section, the complexity and length of the 

derivation of the transformed Hamiltonians greatly increases as the order of the terms get larger.  

As such, though the derivation process is unchanged, the derivation of higher order terms requires 

a considerable amount of time and effort.  Therefore, the primary goal of program is to reproduce 

the methodology described in this work, so that we can more easily extend the methodology to 

higher order transformations.  A secondary goal of the program is to facilitate the calculation of 

numeric predictions of the coupling constants of any given molecule by combining the results of 

the computer-aided derivation with the results of ab initio calculations.  We assess the efficacy of 

the program by considering the results for the derivation of 22H .  We limit this evaluation to 

numeric results at this time, as the current symbolic results are rather unwieldy and require the 

implementation of a simplification procedure to obtain expressions like those derived above. 

 First, the numeric results obtained using the vib-rot-Van-Vleck program and a 

CCSD(T)/ANO0 VPT2 calculation of benzonitrile agree exactly with the numeric results in Table 

7.2 obtained from evaluating the vibrational matrix elements of Eq. (7.52) and (7.134).  Next, we 

considered the α corrections to the rotational constants for the ground state as well as the 22  and 

33  fundamentals.  As demonstrated in Table 7.3, the α corrections of the ground state calculated 

using the vib-rot-Van-Vleck program (vrVV, r.t. = 30 cm-1) agree well with those reported by the 

VPT2 calculation.  The α corrections for the two fundamentals examined are considerably 

different, but we believe this is due to the known absence of “deperturbation” in the VPT2 results.  



331 

 

More specifically, for the A rotational axis the VPT2 α corrections for the two fundamentals are 

unexpectedly large, roughly equal in magnitude, and opposite in sign.  This arises due to the 

presence of Coriolis coupling between the two states and is manifest in the α corrections because 

the resonant denominators have not been removed from the expression used to calculate them.  

Since the vib-rot-Van-Vleck program uses the methodology we describe in this work, however, the 

resonant denominators are inherently excluded from the evaluation of the α corrections, which 

yields results more similar to the ground state corrections.   

Table 7.3.  Comparison of Theoretical Calculations of the α Corrections to the Rotational 

Constants of Benzonitrile using CCSD(T)/ANO0  

State  
0e

a aB B−  0e
b bB B−  0e

c cB B−  

Ground 

VPT2 45.658 6.779 6.544 

vrVV (r.t. = 30 cm-1) 45.663 6.779 6.544 

vrVV (r.t. = 0 cm-1) 45.663 6.779 6.544 

22  

VPT2 -167.892 1.656 1.751 

vrVV (r.t. = 30 cm-1) 50.773 5.123 4.794 

vrVV (r.t. = 0 cm-1) 213.554 5.123 4.794 

33  
VPT2 166.698 2.747 0.795 

vrVV (r.t. = 30 cm-1) 41.747 4.032 5.750 

vrVV (r.t. = 0 cm-1) -121.035 4.032 5.750 

 

We can test this assertion by enforcing a strict resonance threshold of zero, thereby 

removing the deperturbation effect of the denominator function.  That is, by setting the resonance 

threshold to zero we can calculate the perturbed α corrections.  As we can see by the results in 

Table 7.3, the α corrections calculated with the strict resonance threshold (‘r.t. = 0 cm-1’) for the 

fundamental states manifests a large and opposite magnitude α correction for the A rotational axis, 

similar to the result of the VPT2 calculation.  Interestingly, it appears that even though these are 
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the perturbed α corrections, the values for the B and C rotational axes are identical to those of the 

deperturbed calculation.  We are thus fairly confident that the vib-rot-Van-Vleck results are 

accurate for predictions of second order Coriolis coupling constants derived from 
22H , and are 

optimistic about the results of higher order terms.   

 Next, we demonstrate the character of coupling for benzonitrile by reporting the nonzero 

vib-rot-Van-Vleck predictions of the first and second order Coriolis coupling constants in Table 

7.4 for unique combinations of the fundamental states of benzonitrile with energy ca. 1000 cm-1 

or less.  An interesting feature of Table 7.4 is the coupling between 21  and 15  and the coupling 

between 13  and 16 : despite the absence of first order Coriolis coupling, each set of states has 

significant second order Coriolis coupling.  Attempts to fit experimental spectra of these coupled 

states with a first order term would likely be unsuccessful.  

Table 7.4.  The Nonzero vib-rot-Van-Vleck Predictions of 1st and 2nd Order Coriolis Coupling 

Constants for Fundamental States (<1000 cm-1) of Benzonitrile using CCSD(T)/ANO0. 

State 1a State 2a Axis x Gx (MHz) Fyz (MHz) 

22  (B1) 33  (B2) A -9350.508 0.355 

21  (B1) 15  (A2) C 0. -1.080 

32  (B2) 20  (B1) A 7409.005 0.065 

11  (A1) 18  (B1) B -760.620 0.034 

13  (A2) 16  (B1) C 0. 0.217 

13  (A2) 10  (A1) A 1683.940 0.007 

16  (B1) 10  (A1) B 193.834 -0.051 

a The state is followed by its symmetry in parentheses. 

 As stated above, our goal for the vib-rot-Van-Vleck program is to be able to obtain 

predictions of even higher order coupling constants.  The next order of consideration is the third 

order Coriolis coupling constants i.e., Ga
J, Ga

K, etc., derived from the transformed Hamiltonian 
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23H .  The vib-rot-Van-Vleck is able to derive the symbolic form of 
23H , but the expression is 

extensive (several thousand lines), due to the present lack of a routine for the simplification of the 

computer algebra representation of the Hamiltonian, and so it is impractical to report the symbolic 

form at this time.  Despite the size of the expression, the vib-rot-Van-Vleck program is still able to 

use the symbolic result it derived to conduct numeric calculations, provided sufficient 

computational data from a VPT2 calculation is provided to the program.  The numeric results 

obtained are effectively the 03H  coefficients described in Eq. (7.135).  The nonzero results for the 

vibrational matrix element between the 22  and 33  fundamentals are presented in Table 7.5.  

Similar numeric results can be obtained for the coupling between 222  and 22 33 +  as well as the 

coupling between 22 33 +  and 332 , and they are simply larger by a factor of 2 , consistent with 

our previous analysis (vide supra). 

Table 7.5.  Nonzero Coefficients of Third Order Rotational Operators Describing the Coupling 

Between 22  and 33  Fundamentals of Benzonitrile. a 

Operator Term 

(Ir representation) 

Value of the coefficient 

from vrVV (MHz) 

( )03H , , x x zx x z J J J  0.001831 

( )03H , , x z xx z x J J J  0.003867 

( )03H , , y y zy y z J J J  0.000108 

( )03H , , y z yy z y J J J  0.000021 

( )03H , , z x xz x x J J J  0.001831 

( )03H , , z y yz y y J J J  0.000108 

( )03H , , z z zz z z J J J  0.005073 

a Using computed data from CCSD(T)/ANO0 VPT2 calculation 
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 With the coefficients of the third order coupling Hamiltonian so defined, and using the 

computed rotational constants of Bx = 1527.107883, By = 1200.894594, and Bz = 5621.768537 

MHz, we can numerically evaluate the reduced coefficients we obtained in the preliminary 

rotational reduction of 
23H , given by Eq. (7.156)–(7.158) and Eq. (7.168)–(7.170).  The nonzero 

coefficients that result are c2100a = c2100s = 0.004023 MHz and c0300a = c0300s = 0.001050 MHz, 

which should correspond to Ga
J and Ga

K, respectively, for the coupling between the 22  and 33  

fundamentals of benzonitrile.  Experimentally, Ga
J was determined with a value of −0.004594 (20) 

MHz, while Ga
K was not reported.9  Ignoring the difference in sign (which is due to the vrVV 

prediction of Ga being negative instead of positive), we see that the value of Ga
J is predicted to 

within 15% of the experimentally determined value.  Since the 03H  coefficients calculated for the 

coupling in the higher quanta triad are proportional to the coefficients calculated for the dyad, so 

too are the resulting predictions of Ga
J and Ga

K. We are thus optimistic that the vib-rot-Van-Vleck 

program is correctly calculating the numeric (and by inference, the symbolic) expressions of 23H  

and that the preliminary reduction we determined for 23H  is likely close to the outcome that will 

be achieved after application of the reduction formalism that was applied to 22H . 

CONCLUSION 

 While the formula 22H  derived in this work has been in the literature for nearly a half-

century, and so too the method for the rotational reduction of its vibrational matrix elements, the 

application of Van Vleck perturbation theory to obtain theoretical predictions of Coriolis coupling 

constants has largely been absent.  At the time the theoretical framework was being developed, 

rotational spectroscopy was limited to low values of J and K and the effects of Coriolis coupling 
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were well treated by a first order term.  In addition, the high computational cost for obtaining the 

requisite cubic force constants limited the application of the theory to small molecules.  Thus, for 

the most part, the application of the theory to obtain predictions of higher order coupling constants 

remained a potential. 

 Now, the advances in hardware and analysis allow for the measurement and fitting of 

rotational spectra to values of J and K in the hundreds.  The fitting of such spectra, particularly for 

coupled vibrational states, requires higher order terms to properly describe the Coriolis coupling.  

Combined with the advances in computing power, we are now in a position where the theoretical 

framework previously developed can be applied and adequately assessed for larger molecules.  

Such is the primary focus of the present work, and in works to come. 

 In addition to obtaining formulas for the theoretical prediction of second order Coriolis 

coupling constants, the implementation of the theory has revealed a potentially powerful insight 

into the relationships of coupled vibrational states.  The multiplicative relationship of coupling 

constants that share common vibrational modes and selection rules expands the set of 

spectroscopic data that can be used to determine the coupling constants.  For example, the coupled 

state fitting of the lowest energy dyad in benzonitrile was conducted separately from the coupled 

state fitting of the corresponding triad, but by applying the results of the ratio expression in Eq. 

(7.175) these treatments could have been combined.  Furthermore, the coupling constants 

determined for a relatively isolated set of coupled vibrational states could be used to assist in the 

fitting of a more complex polyad that shares some of the same vibrational modes, and this potential 

is further extended by the observation that the ratio expression in Eq. (7.175) is not limited to 

describing the relationship of coupled states to their corresponding pair of fundamentals.  

Regardless of how this insight is applied, the proportional relationship of the coupling constants 
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can be used to reduce the number of parameters that require optimization in the fitting of coupled 

vibrational states.   

 At present, the prediction of the first and second order Coriolis coupling constants is limited 

to the case where the change in vibrational quanta between the resonant states is 2ii
n = , 

which largely limits the predictions to pairs of fundamental states and their higher quanta 

combinations.  The prediction of the coupling between other resonant vibrational states requires 

different terms of the transformed Hamiltonian.  For example, the first order Coriolis coupling 

constant between a fundamental and an unrelated combination – A B C,xG    – involves a 

change in vibrational quanta of three separate vibrational modes, and as such requires a product of 

three different vibrational operators to obtain a nonzero expectation value; that is, the prediction 

of such a value requires the determination of 
31H .  Similarly, the corresponding second order 

Coriolis coupling constant requires determination of 32H .  If instead the resonant states are an 

overtone and an unrelated combination i.e., A B C2 ,xG   , then a product of four vibrational 

operators is required, and so on and so forth.  The determination and application of such 

expressions to obtain predictions of vibration-rotation coupling constants is of considerable 

interest to us in our works involving the fitting of rotational spectra of coupled vibrational states, 

and as we continue to develop the vib-rot-Van-Vleck program.  Before we reach too far, however, 

we will need to explore the accuracy of the predictions that we can calculate now for a variety of 

experimentally measured and fit coupled-state rotational spectra and consider the dependence of 

the predictions on the level of theory employed for the underlying vibrational calculation. 
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Generalized Rotational Commutator 

 , i   


  = −  J J J  (7.S4) 

Vibrational Matrix Elements 

 ( )
1 1

1 1 1
2 2

v v v
 

 = +  
 

q  (7.S5) 

 ( )
1 1

1 1 1
2 2

v v i v
 

 = +  
 

p  (7.S6) 

Coefficients of the Expanded and Ordered Vibration-Rotation Hamiltonian 

The following are the definitions of the coefficients used to abbreviate the terms of the 

original Hamiltonian, where k  is the frequency of the kth harmonic vibrational mode, kabc  is the 

cubic force constant (invariant to change in ordering of indices), B  is the rotational constant for 

the   axis, ab
  is the Coriolis zeta coupling constant between the a and b harmonic vibrations 

through the   axis, and aC  is the unitless rotational derivative.  The cubic force constant kabc  

is invariant to changes in the ordering of its indices, ab ba
  = − , 0aa

 = , and a aC C = . 
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Table 7.6.  Transformation of 
2~ J  Rotational Operators from Cartesian to Cylindrical Form 

Cartesian Form Cylindrical Tensor Form 

x xJ J  ( )2 2 2 21 1 1

2 2 4
z − +− + +J J J J  

x yJ J  ( )2 2

4 2
z

i i
− +− − −J J J  

x zJ J  ( ) ( )( ) ( )
1 1

4 4
z z− + − + − ++ + + + −J J J J J J J J  

y xJ J  ( )2 2

4 2
z

i i
− +− − +J J J  

y yJ J  ( )2 2 2 21 1 1

2 2 4
z − +− − +J J J J  

y zJ J  ( ) ( )( ) ( )
4 4

z z

i i
− + − + − +− − + − − +J J J J J J J J  

z xJ J  ( ) ( )( ) ( )
1 1

4 4
z z− + − + − ++ + + − −J J J J J J J J  

z yJ J  ( ) ( )( ) ( )
4 4

z z

i i
− + − + − +− − + − + +J J J J J J J J  

z zJ J  2
zJ  
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Overview of the vib-rot-Van-Vleck Program 

 The vib-rot-Van-Vleck program is a computer-aided derivation program for obtaining 

transformed Hamiltonians using contact transformations.  The program also has features for 

routine numeric evaluation of the vibrational matrix elements of such transformed Hamiltonians, 

using results of ab initio calculations.  Essentially, the program is an object-oriented 

implementation of the methodology described in the paper.  In addition to the use of the SymPy 

package, the program utilizes open-source packages of NumPy, tqdm, pandas, and SciPy. 

The program contains three classes: the DataObject, the EquationObject, and the 

NumericObject classes.  The DataObject contains ab initio data of a molecule and is initialized 

using the output files of an ab initio calculation which are formatted in a consist fashion for later 

use in the NumericObject.  The EquationObject is the core of the symbolic derivation of the 

transformed Hamiltonian and is initialized by providing the degrees of vibration and rotation of 

the desired Hamiltonian.  The NumericObject combines one DataObject and one EquationObject 

and creates the numeric functions necessary to evaluate definitions contained within the 

EquationObject.   

 The DataObject first parses the provided computational output files and organizes the data 

it reads in.  Furthermore, the DataObject defines a function for creation of VibState objects, each 

one of which consists of a dictionary of the vibrational modes and their corresponding quanta.  

Effectively, the VibState object is a representation of a particular row (or column) of the vibrational 

matrix of the molecule in question and can be used to evaluate expectation values within the 

NumericObject. 

 The EquationObject applies the transformations discussed in the paper to a Term or 

Expression class.  Specifically, a Term is a representation of a summation in the form of Eq. (7.18) 
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and an Expression is a combination (addition) of Terms.  A Term consists of vibrational operators, 

rotational operators, a symbolic coefficient, and the vibration and rotation indices of which the 

operators and coefficient are functions of, along withs methods for the arithmetic manipulation of 

the summation it represents.  Combining two Term objects creates an Expression, which sorts and 

assesses the component Terms to obtain the smallest Expression object possible.  That is, if Term 

A uses the same operators as Term B and if it has the same number of vibration and rotation 

indices, the Expression will consolidate the two Terms by judicious relabeling of the summation 

indices and adding together the relabeled coefficients.  The Term and Expression also contain 

methods for implementing vibration and rotation commutators, as per the formulation in Eq. (7.10)

–(7.12).   

 To obtain the transformed Hamiltonian, the EquationObject determines the necessary 

sequence of contact transformations required.  Using a generic set of term objects (composed of m 

vibrational degrees, n rotational degrees, and “H” or “S” designation), the EquationObject 

iteratively applies the contact transformations to obtain an expression of the jth transformed 

Hamiltonian, and application of the selection braces using the relations in Eq. (7.13)–(7.17) 

quickly yields the general equation that must be evaluated.  The defining equations of the transform 

functions are similarly obtained as per Eq. (7.9). 

 To obtain solutions of the transform functions, the EquationObject makes use of the ladder 

solution.  Thus, analogous LadderTerm and LadderExpression objects are utilized, and – provided 

the defining equation and using a symbolic representation of the denominator – the definition of 

the transform function is obtained, as per Eq. (7.26).  The Term and Expression and the 

corresponding LadderTerm and LadderExpression objects include methods for interconverting 

between the two types using the definitions in Eq. (7.19)–(7.21) and properly accounts for the 
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summation over σ.  The definitions of the transform functions are obtained in order as per their 

sequence, with the previous definitions incorporated as required.   

Commutators of Terms are evaluated as per the method demonstrated in Eq. (7.44)–(7.48) 

and described in the corresponding text.  Once the Kronecker deltas are evaluated, the resulting 

Terms are combined into an Expression, which as noted previously will consolidate the expression 

to obtain the minimum number of Terms.  Once the transform functions are defined, the expression 

of the desired transformed Hamiltonian can be obtained by evaluation of the proper set of 

commutators.  During the symbolic derivation process, the program defines new coefficients to 

simplify the representation of expressions, akin to the process in the paper.  The implementation 

of a simplification routine is currently underway to allow for the evaluation and consolidation of 

expressions into molecular terms, as per the expression provided in Eq. (7.130).  Meanwhile, the 

development of a rotational reduction procedure is still in progress as the implications of the 

reduction of higher order coupling constants are considered. 

The results of the derivation program can be exported and saved, and the exported files can 

be imported back into the program at a later time.  Thus, the program does not have to redo the 

symbolic derivation to utilize expressions in the NumericObject.   

The coefficients of the original Hamiltonian can be defined with respect to the components 

contained by the DataObject.  These definitions are symbolic within the EquationObject.  Thus, a 

core purpose of the NumericObject is to create numeric functions by connecting the symbolic 

definitions contained within the EquationObject with the numeric definitions of the computational 

data contained with the DataObject.  The NumericObject can also define numeric functions for the 

coefficients created by the EquationObject and uses these definitions to obtain numeric functions 

for the final coefficients of the transformed Hamiltonian.  The numeric functions defined by the 
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NumericObject utilize a cache function to accelerate evaluation of frequently used coefficients.  

Using a pair of VibState objects from the DataObject, the NumericObject can calculate an arbitrary 

vibrational matrix element for the transformed Hamiltonian contained within the EquationObject. 

The program is under active development with the goal of fully reproducing the 

methodology described within the paper and to make execution of the program user-friendly.  

More details about the structure, features, and execution of the program will be provided at a later 

time, and we are planning to make the project freely available through GitHub.  Communications 

regarding this program should be directed to A.N.O.  
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Off-Diagonal Vibrational Matrix Element of 𝐇̃𝟐𝒏 

The general evaluation of the off-diagonal matrix elements of a Hamiltonian with two degrees of vibration is given by Eq. (7.S13)

.  The definitions 2 ,0H n , 2 ,1H n , 2 ,2H n , and 2 ,3H n  are the coefficients of the vibrational operators qq , qp , pq , and pp , respectively.  The 

ratio discussed in the main text is implied to be the ratio of the coefficients of the same product of arbitrary rotational operators i.e., both 

the numerator and denominator are coefficients of the same product 
0 1 nr r r J J J . 

 (7.S13) 

Supporting Derivations for 𝐇̃𝟐𝟐 

Derivation of S12 

First, we rewrite the defining part of Eq. (7.65) as an expression in terms of the ladder operators 


. 

 

( )

( )

0

0 10

0 0 1 0

0

0 10

0 0 1 0

12 12 0 0 1

12 0 0 1

1
H , ,

2

1
H , ,

2

v

v

v

v

r rv

v r r

r rv

v r r

v r r

v r r









 
 =
 
 

 
=  

 

 



H J J

J J

 (7.S14) 

The transform function can then be defined as Eq. (7.S15), as per Eq. (7.26). 
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 ( ) ( ) 0

0 0 10

0 0 1 0

12 0 12 0 0 1D , H , ,
2

v

v

v r rv

v r r

i
v v r r






−

= S J J  (7.S15) 

Substituting back in the definition for the ladder operator yields Eq. (7.S16) where the coefficient is defined in Eq. (7.S17). 

 

( ) ( )( )

( )

0 0 0 0 0 1

0 0 1 0

0 0 1

0 0 1

12 0 12 0 0 1

12 0 0 1

D , H , ,
2

S , ,

v

v v v v r r

v r r

v r r

v r r

i
v v r r i

v r r



 
−

= −

=





S q p J J

p J J

 (7.S16) 

 ( ) ( ) ( )12 0 0 1 0 12 0 0 1S , , D 1, H , ,v r r v v r r= −  (7.S17) 

Derivation of S21 

 First, we rewrite the defining part of Eq. (7.67) in terms of the ladder operators 


. 

 

( )

( )

0 1

1 00 1

0 1 0 0 1

0 1

1 00 1

0 1 0 0 1

21 21 0 1 0

21 0 1 0

1 1
H , ,

2 2

1
H , ,

4

v v

v v

v v

v v

v rv v

v v r

v rv v

v v r

v v r i

i v v r

 

 

 

 





  
  =

  
  

 
=  

 

  

 

H J

J

 (7.S18) 

The transform function can then be defined as Eq. (7.S19), as per Eq. (7.26). 

 ( ) ( ) ( )( ) 0 1

0 1 1 0 00 1

0 1 0 0 1

21 0 1 21 0 1 0 21 1 0 0

1
D , ; , H , , H , ,

8

v v

v v

v v v v rv v

v v r

v v v v r v v r
 

 

   = + S J (7.S19) 
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Substituting back in the definition for the ladder operator yields Eq. (7.S20), where the coefficients are defined in Eq. (7.S21). 

( ) ( ) ( )( )( )( )

( ) ( )

0 1 1 0 0 0 0 1 1 1 0

0 1 0 0 1

0 1 0 0 1 0

0 1 0 0 1 0

21 0 1 21 0 1 0 21 1 0 0

21,0 0 1 0 21,1 0 1 0

1
D , ; , H , , H , ,

8

S , , S , ,

v v

v v v v v v v v v v r

v v r

v v r v v r

v v r v v r

v v v v r v v r i i

v v r v v r

 

     = + − −

= +

 

 

S q p q p J

q q J p p J

 (7.S20) 

( ) ( ) ( ) ( )( )( ( ) ( ) ( )( ))

( ) ( ) ( ) ( )( )( ( ) ( ) ( )( ))

21,0 0 1 0 0 1 21 0 1 0 21 1 0 0 0 1 21 0 1 0 21 1 0 0

21,1 0 1 0 0 1 21 0 1 0 21 1 0 0 0 1 21 0 1 0 21 1 0 0

1
S , , D 1, ;1, H , , H , , D 1, ; 1, H , , H , ,

4

1
S , , D 1, ;1, H , , H , , D 1, ; 1, H , , H , ,

4

v v r v v v v r v v r v v v v r v v r

v v r v v v v r v v r v v v v r v v r

= + − − −

−
= + + − −

 (7.S21) 

Derivation of S22 

Two vibrational, one rotational, and one nested pair of vibrational commutators need to be evaluated prior to defining 22S . 

 

EVALUATION OF 𝑖[𝐒12, 𝐇30]V 

Substituting in the definitions from Eq. (7.65) and Eq. (7.69) yields Eq. (7.S22), where we have ensured that each summation 

index is distinct. 

 

  ( ) ( )

( ) ( )

0 0 1 1 2 3

0 0 1 1 2 3

0 0 1 1 2 3

0 1 2 3 0 1

12 30 12 0 0 1 30 1 2 3V

V

12 0 0 1 30 1 2 3
V

, S , , , H , ,

S , , ,H , ,

v r r v v v

v r r v v v

v r r v v v

v v v v r r

i i v r r v v v

i v r r v v v

 
=  

  

 =  

 

 

S H p J J q q q

p J J q q q

 (7.S22) 
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We then apply the definition of the vibrational commutator from Eq. (7.12) to obtain the pure vibrational commutator in Eq. (7.S23). 

 

  ( ) ( ) ( )

( ) ( )

0 1 2 3 0 1 0 1

0 1 2 3 0 1

0 1 2 3 0 1

0 1 2 3 0 1

12 30 12 0 0 1 30 1 2 3V V

12 0 0 1 30 1 2 3
V

1
, S , , H , , , 1 1

2

S , , H , , ,

v v v v r r r r

v v v v r r

v v v v r r

v v v v r r

i i v r r v v v

i v r r v v v

 =  +  

 =  

 

 

S H p q q q J J J J

p q q q J J

(7.S23) 

 Next, the pure vibrational commutator is evaluated to give Eq. (7.S24). 

   ( ) ( )( )
3 0 1 2 2 0 1 3 1 0 2 3 0 1

0 1 2 3 0 1

12 30 12 0 0 1 30 1 2 3V
, S , , H , , v v v v v v v v v v v v r r

v v v v r r

i v r r v v v   = + + S H q q q q q q J J (7.S24) 

The summations are expanded (Eq. (7.S25)), the Kronecker deltas are evaluated (Eq. (7.S26)), and the results consolidated (Eq. (7.S27)

).  

 

  ( ) ( )

( ) ( )

( ) ( )

3 0 1 2 0 1

0 1 2 3 0 1

2 0 1 3 0 1

0 1 2 3 0 1

1 0 2 3 0 1

0 1 2 3 0 1

12 30 12 0 0 1 30 1 2 3V

12 0 0 1 30 1 2 3

12 0 0 1 30 1 2 3

, S , , H , ,

S , , H , ,

S , , H , ,

v v v v r r

v v v v r r

v v v v r r

v v v v r r

v v v v r r

v v v v r r

i v r r v v v

v r r v v v

v r r v v v







=

+

+

 

 

 

S H q q J J

q q J J

q q J J

 (7.S25) 

 

  ( ) ( )

( ) ( )

( ) ( )

1 2 0 1

0 1 2 0 1

1 3 0 1

0 1 3 0 1

2 3 0 1

0 2 3 0 1

12 30 12 0 0 1 30 1 2 0V

12 0 0 1 30 1 0 3

12 0 0 1 30 0 2 3

, S , , H , ,

S , , H , ,

S , , H , ,

v v r r

v v v r r

v v r r

v v v r r

v v r r

v v v r r

i v r r v v v

v r r v v v

v r r v v v

=

+

+

 

 

 

S H q q J J

q q J J

q q J J

 (7.S26) 
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   ( ) ( ) ( ) ( )( )
0 1 0 1

0 1 2 0 1

12 30 12 2 0 1 30 0 1 2 30 0 2 1 30 2 0 1V
, S , , H , , H , , H , , v v r r

v v v r r

i v r r v v v v v v v v v= + + S H q q J J (7.S27) 

 

EVALUATION OF 𝑖[𝐒12, 𝐇30]V 

 Substituting in the definitions from Eq. (7.75) and Eq. (7.70) yields Eq. (7.S28), where we have ensured that each summation 

index is distinct. 

  ( ) ( ) ( )

( ) ( )

( )

0 1 0 0 1 0 0 1 0

0 1 0 0 1 0 0 1 0

0 1 0 2 3 1

0 1 2 3 0 1

0 1 0

21 21 21,0 0 1 0 21,1 0 1 0 21 0 1 0V

V

21,0 0 1 0 21 2 3 1
V

21,1 0 1 0

, S , , S , , , H , ,

S , , ,H , ,

S , , ,H

v v r v v r v v r

v v r v v r v v r

v v r v v r

v v v v r r

v v r

i i v v r v v r v v r

i v v r v v r

i v v r

 
= + 

  

 =  

+

  

 

S H q q J p p J q p J

q q J q p J

p p J ( )
2 3 1

0 1 2 3 0 1

21 2 3 1
V

, , v v r

v v v v r r

v v r 
   q p J

 (7.S28) 

We then apply the definition of the vibrational commutator from Eq. (7.12) to obtain the pure vibrational commutators in Eq. (7.S29). 

 

  ( ) ( ) ( )

( ) ( ) ( )

0 1 2 3 0 1 1 0

0 1 2 3 0 1

0 1 2 3 0 1 1 0

0 1 2 3 0 1

21 21 21,0 0 1 0 21 2 3 1V V

21,1 0 1 0 21 2 3 1
V

1
, S , , H , , ,

2

1
S , , H , , ,

2

v v v v r r r r

v v v v r r

v v v v r r r r

v v v v r r

i i v v r v v r

i v v r v v r

 = + 

 + + 

 

 

S H q q q p J J J J

p p q p J J J J

(7.S29) 

Next, the pure vibrational commutator is evaluated to give Eq. (7.S30). 
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  ( ) ( )( )( )

( ) ( ) ( )( )( )

1 3 0 2 0 3 2 1 0 1 1 0

0 1 2 3 0 1

2 1 0 3 2 0 1 3 0 1 1 0

0 1 2 3 0 1

21 21 21,0 0 1 0 21 2 3 1V

21,1 0 1 0 21 2 3 1

1
, S , , H , ,

2

1
S , , H , ,

2

v v v v v v v v r r r r

v v v v r r

v v v v v v v v r r r r

v v v v r r

i i v v r v v r i i

i v v r v v r i i

 

 

= + +

+ − + +

 

 

S H q q q q J J J J

p p p p J J J J

 (7.S30) 

The summations are expanded (Eq. (7.S31)), the Kronecker deltas are evaluated (Eq. (7.S32)), and the results consolidated (Eq. (7.S33)

).  

 

  ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 3 0 2 0 1 1 0

0 1 2 3 0 1

0 3 2 1 0 1 1 0

0 1 2 3 0 1

2 1 0 3 0 1 1 0

0 0 1

21 21 21,0 0 1 0 21 2 3 1V

21,0 0 1 0 21 2 3 1

21,1 0 1 0 21 2 3 1

1
, S , , H , ,

2

1
S , , H , ,

2

1
S , , H , ,

2

v v v v r r r r

v v v v r r

v v v v r r r r

v v v v r r

v v v v r r r r

v v r r

i v v r v v r

v v r v v r

v v r v v r







−
= +

−
+ +

+ +

 

 



S H q q J J J J

q q J J J J

p p J J J J

( ) ( ) ( )

1 2 3

2 0 1 3 0 1 1 0

0 1 2 3 0 1

21,1 0 1 0 21 2 3 1

1
S , , H , ,

2

v v

v v v v r r r r

v v v v r r

v v r v v r + +



  p p J J J J

(7.S31) 

 

  ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 2 0 1 1 0

0 1 2 0 1

2 1 0 1 1 0

0 1 2 0 1

0 3 0 1 1 0

0 1 3 0 1

21 21 21,0 0 1 0 21 2 1 1V

21,0 0 1 0 21 2 0 1

21,1 0 1 0 21 1 3 1

21,1 0 1

1
, S , , H , ,

2

1
S , , H , ,

2

1
S , , H , ,

2

1
S , ,

2

v v r r r r

v v v r r

v v r r r r

v v v r r

v v r r r r

v v v r r

i v v r v v r

v v r v v r

v v r v v r

v v r

−
= +

−
+ +

+ +

+

 

 

 

S H q q J J J J

q q J J J J

p p J J J J

( ) ( ) ( )
1 3 0 1 1 0

0 1 3 0 1

0 21 0 3 1H , , v v r r r r

v v v r r

v v r +  p p J J J J

(7.S32) 
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  ( ) ( )( ( ) ( )) ( )

( ) ( )( ) ( ) ( )

0 1 0 1 1 0

0 1 2 0 1

0 1 0 1 1 0

0 1 2 0 1

21 21 21,0 0 2 0 21 1 2 1 21,0 2 1 0 21 0 2 1V

21,1 0 2 0 21,1 2 0 0 21 2 1 1

1
, S , , H , , S , , H , ,

2

1
S , , S , , H , ,

2

v v r r r r

v v v r r

v v r r r r

v v v r r

i v v r v v r v v r v v r

v v r v v r v v r

−
= + +

+ + +

 

 

S H q q J J J J

p p J J J J

 (7.S33) 

This process is repeated to consolidate the rotational operators as well. 

  ( ) ( )( ( ) ( ))

( ) ( )( ( ) ( ))

( ) ( )( )

0 1 0 1

0 1 2 0 1

0 1 1 0

0 1 2 0 1

21 21 21,0 0 2 0 21 1 2 1 21,0 2 1 0 21 0 2 1V

21,0 0 2 0 21 1 2 1 21,0 2 1 0 21 0 2 1

21,1 0 2 0 21,1 2 0 0 21 2

1
, S , , H , , S , , H , ,

2

1
S , , H , , S , , H , ,

2

1
S , , S , , H ,

2

v v r r

v v v r r

v v r r

v v v r r

i v v r v v r v v r v v r

v v r v v r v v r v v r

v v r v v r v v

−
= +

−
+ +

+ +

 

 

S H q q J J

q q J J

( )

( ) ( )( ) ( )

0 1 0 1

0 1 2 0 1

0 1 1 0

0 1 2 0 1

1 1

21,1 0 2 0 21,1 2 0 0 21 2 1 1

,

1
S , , S , , H , ,

2

v v r r

v v v r r

v v r r

v v v r r

r

v v r v v r v v r+ +

 

 

p p J J

p p J J

 (7.S34) 

  ( ) ( )( ( ) ( ) ( ) ( )

( ) ( ))

( ) ( )( ) ( )(

0 1 2 0 1

0 1 0 1

0 1 2 0 1

21 21 21,0 0 2 0 21 1 2 1 21,0 2 1 0 21 0 2 1 21,0 0 2 1 21 1 2 0V

21,0 2 1 1 21 0 2 0

21,1 0 2 0 21,1 2 0 0 21 2 1 1

21,1 0 2

1
, S , , H , , S , , H , , S , , H , ,

2

S , , H , ,

1
S , , S , , H , ,

2

S ,

v v v r r

v v r r

v v v r r

i v v r v v r v v r v v r v v r v v r

v v r v v r

v v r v v r v v r

v v

−
= + +

+

+ +

+

 

 

S H

q q J J

( ) ( )( ) ( ))
0 1 0 11 21,1 2 0 1 21 2 1 0, S , , H , , v v r rr v v r v v r+ p p J J

 (7.S35) 
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EVALUATION OF 𝑖[𝐒21, 𝐇02]R 

Substituting in the definitions from Eq. (7.75) and Eq. (7.72) yields Eq. (7.S36), where we have ensured that each summation 

index is distinct. 

  ( ) ( ) ( )

( ) ( ) ( ) ( )

0 1 0 0 1 0 0

0 1 0 0 1 0 0

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

2
21 02 21,0 0 1 0 21,1 0 1 0 02 0R

R

2 2
21,0 0 1 0 02 1 21,1 0 1 0 02 1

R R

, S , , S , , , H

S , , ,H S , , ,H

v v r v v r r

v v r v v r r

v v r r v v r r

v v r r v v r r

i i v v r v v r r

i v v r r i v v r r

 
= + 

  

   = +   

  

 

S H q q J p p J J

q q J J p p J J

 (7.S36) 

We then apply the definition of the rotational commutator from Eq. (7.12) to obtain the pure rotational commutators in Eq. (7.S37). 

  ( ) ( ) ( ) ( )
0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

2 2
21 02 21,0 0 1 0 02 1 21,1 0 1 0 02 1R R R

, S , , H , S , , H ,v v r r v v r r

v v r r v v r r

i i v v r r i v v r r   = +    S H q q J J p p J J  (7.S37) 

Next, the pure rotational commutators are evaluated to give Eq. (7.S38). 

 

  ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 1 2 0 1 1 2 2 1

0 1 0 1 2

0 1 2 0 1 1 2 2 1

0 1 0 1 2

21 02 21,0 0 1 0 02 1R

21,1 0 1 0 02 1

, S , , H

S , , H

r r r v v r r r r

v v r r r

r r r v v r r r r

v v r r r

i i i v v r r

i i v v r r

= − +

+ − +

 

 

S H q q J J J J

p p J J J J
 (7.S38) 

The summations are expanded (Eq. (7.S39)) and the results consolidated (Eq. (7.S40)). 
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  ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 1 2 0 1 1 2 0 1 2 0 1 2 1

0 1 0 1 2 0 1 0 1 2

0 1 2 0 1 1 2 0 1 2 0

0 1 0 1 2

21 02 21,0 0 1 0 02 1 21,0 0 1 0 02 1R

21,1 0 1 0 02 1 21,1 0 1 0 02 1

, S , , H S , , H

S , , H S , , H

r r r v v r r r r r v v r r

v v r r r v v r r r

r r r v v r r r r r v

v v r r r

i i i v v r r i i v v r r

i i v v r r i i v v r r

= − + −

+ − + −

   

 

S H q q J J q q J J

p p J J p
1 2 1

0 1 0 1 2

v r r

v v r r r

  p J J
 (7.S39) 

 

  ( ) ( ) ( )( )

( ) ( ) ( )( )

0 1 2 0 1 0 1

0 1 0 1 2

0 1 2 0 1 0 1

0 1 0 1 2

21 02 21,0 0 1 2 02 0 02 1R

21,1 0 1 2 02 0 02 1

, S , , H H

S , , H H

r r r v v r r

v v r r r

r r r v v r r

v v r r r

i v v r r r

v v r r r

= −

+ −

 

 

S H q q J J

p p J J
 (7.S40) 

EVALUATION OF −
1

2
[𝐒21, [𝐒21, 𝐇20]V]V 

(i) Inner commutator 

Substituting in the definitions from Eq. (7.75) and Eq. (7.68) yields Eq. (7.S41), where we have ensured that each summation index is 

distinct. 

  ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 1 0 0 1 0 0 0

0 1 0 0 1 0 0 0

0 1 0 2 0 1 0 2

0 1 2 0 0 1 2 0

2 2
21 20 21,0 0 1 0 21,1 0 1 0 20 0 20 0V

V

2 2
21,0 0 1 0 20 2 21,0 0 1 0 20 2

V V

, S , , S , , , H H

S , , ,H S , , ,H

v v r v v r v v

v v r v v r v v

v v r v v v r v

v v v r v v v r

v v r v v r v v

v v r v v v r v

 
= + + 

  

   = +   

   

  

S H q q J p p J q p

q q J q q q J p

( ) ( ) ( ) ( )
0 1 0 2 0 1 0 2

0 1 2 0 0 1 2 0

2 2
21,1 0 1 0 20 2 21,1 0 1 0 20 2

V V
S , , ,H S , , ,Hv v r v v v r v

v v v r v v v r

v v r v v v r v   + +   



   p p J q p p J p

 (7.S41) 

We then apply the definition of the vibrational commutator from Eq. (7.12) and eliminate the trivially zero commutators to obtain the 

pure vibrational commutators in Eq. (7.S42). 
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  ( ) ( ) ( ) ( )
0 1 2 0 0 1 2 0

0 1 2 0 0 1 2 0

2 2
21 20 21,0 0 1 0 20 2 21,1 0 1 0 20 2V V V

, S , , H , S , , H ,v v v r v v v r

v v v r v v v r

v v r v v v r v   = +      S H q q p J p p q J  (7.S42) 

Next, the pure vibrational commutator is evaluated to give Eq. (7.S43). 

 

  ( ) ( )( )

( ) ( )( )

1 2 0 2 0 2 2 1 0

0 1 2 0

1 2 0 2 0 2 2 1 0

0 1 2 0

21 20 21,0 0 1 0 20 2V

21,1 0 1 0 20 2

, S , , H 2 2

S , , H 2 2

v v v v v v v v r

v v v r

v v v v v v v v r

v v v r

v v r v i i

v v r v i i

 

 

= +

+ − −

 

 

S H q p p q J

p q q p J
(7.S43) 

The summations are expanded (Eq. (7.S44)), the Kronecker deltas are evaluated (Eq. (7.S45)), and the results consolidated (Eq. (7.S46)

).  

 

  ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 0 2 0

0 1 2 0

0 2 2 1 0

0 1 2 0

1 2 0 2 0

0 1 2 0

0 2 2 1 0

0 1 2 0

21 20 21,0 0 1 0 20 2V

21,0 0 1 0 20 2

21,1 0 1 0 20 2

21,1 0 1 0 20 2

, 2 S , , H

2 S , , H

2 S , , H

2 S , , H

v v v v r

v v v r

v v v v r

v v v r

v v v v r

v v v r

v v v v r

v v v r

i v v r v

i v v r v

i v v r v

i v v r v









=

+

+ −

+ −

 

 

 

 

S H q p J

p q J

p q J

q p J

 (7.S44) 

  ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 1 0 0 1 0

0 1 0 0 1 0

0 1 0 0 1 0

0 1 0 0 1 0

21 20 21,0 0 1 0 20 1 21,0 0 1 0 20 0V

21,1 0 1 0 20 1 21,1 0 1 0 20 0

, 2 S , , H 2 S , , H

2 S , , H 2 S , , H

v v r v v r

v v r v v r

v v r v v r

v v r v v r

i v v r v i v v r v

i v v r v i v v r v

= +

+ − + −

 

 

S H q p J p q J

p q J q p J
 (7.S45) 
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  ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

0 1 0

0 1 0

0 1 0

0 1 0

21 20 21,0 0 1 0 20 1 21,1 0 1 0 20 0V

21,0 0 1 0 20 0 21,1 0 1 0 20 1

, 2 S , , H S , , H

2 S , , H S , , H

v v r

v v r

v v r

v v r

i v v r v v v r v

i v v r v v v r v

= −

+ −





S H q p J

p q J
(7.S46) 

 

(ii) Outer commutator 

Substituting in the definitions from Eq. (7.75) and Eq. (7.S46) yields Eq. (7.S47), where we have ensured that each summation index is 

distinct. 
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  ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

0 1 0 0 1 0

0 1 0 0 1 0

0 1 0

0 1 0

0 1 0

0 0

21 21 20 21,0 0 1 0 21,1 0 1 0V V

21,0 0 1 0 20 1 21,1 0 1 0 20 0

21,0 0 1 0 20 0 21,1 0 1 0 20 1

1 1
, , S , , S , ,

2 2

, 2 S , , H S , , H

2 S , , H S , , H

v v r v v r

v v r v v r

v v r

v v r

v v r

v r

v v r v v r

i v v r v v v r v

i v v r v v v r v


 − = − + 



−

+ −

 





S S H q q J p p J

q p J

p q J

( )

( ) ( ) ( ) ( )( )

( )

( ) ( ) ( ) ( )( )

1

0 1 0

0 1 2 3 0 1

2 3 1

0 1 0

0 1 2 3 0 1

2 3 1

V

21,0 0 1 0

21,0 2 3 1 20 3 21,1 2 3 1 20 2
V

21,0 0 1 0

21,0 2 3 1 20 2 21,1 2 3 1 20 3
V

2

1
S , ,

2

, 2 S , , H S , , H

1
S , ,

2

, 2 S , , H S , , H

1
S

2

v

v v r

v v v v r r

v v r

v v r

v v v v r r

v v r

v v r

i v v r v v v r v

v v r

i v v r v v v r v





= − 

− 

− 

− 

−



 

 

q q J

q p J

q q J

p q J

( )

( ) ( ) ( ) ( )( )

( )

( ) ( ) ( ) ( )( )

0 1 0

0 1 2 3 0 1

2 3 1

0 1 0

0 1 2 3 0 1

2 3 1

1,1 0 1 0

21,0 2 3 1 20 3 21,1 2 3 1 20 2
V

21,1 0 1 0

21,0 2 3 1 20 2 21,1 2 3 1 20 3
V

, ,

, 2 S , , H S , , H

1
S , ,

2

, 2 S , , H S , , H

v v r

v v v v r r

v v r

v v r

v v v v r r

v v r

v v r

i v v r v v v r v

v v r

i v v r v v v r v




− 

− 

− 

 

 

p p J

q p J

p p J

p q J

 (7.S47) 

We then apply the definition of the vibrational commutator from Eq. (7.12) to obtain the pure vibrational commutators in Eq. (7.S48). 
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  ( ) ( ) ( ) ( ) ( )( )

( )

( ) ( ) ( ) ( ) ( )( )

0 1 2 3 0 1

0 1 2 3 0 1 1 0

0 1 2 3 0 1

0 1 2

21 21 20 21,0 0 1 0 21,0 2 3 1 20 3 21,1 2 3 1 20 2V V

21,0 0 1 0 21,0 2 3 1 20 2 21,1 2 3 1 20 3

1
, , S , , S , , H S , , H

2 2

,

S , , S , , H S , , H
2

,

v v v v r r

v v v v r r r r

v v v v r r

v v v

i
v v r v v r v v v r v

i
v v r v v r v v v r v

−
 − = −  

  + 

−
+ − 



 

 

S S H

q q q p J J J J

q q p ( )

( ) ( ) ( ) ( ) ( )( )

( )

( ) ( ) ( ) ( ) ( )( )

3 0 1 1 0

0 1 2 3 0 1

0 1 2 3 0 1 1 0

0 1 2 3 0 1

0 1 2

21,1 0 1 0 21,0 2 3 1 20 3 21,1 2 3 1 20 2

21,1 0 1 0 21,0 2 3 1 20 2 21,1 2 3 1 20 3

S , , S , , H S , , H
2

,

S , , S , , H S , , H
2

,

v r r r r

v v v v r r

v v v v r r r r

v v v v r r

v v v

i
v v r v v r v v v r v

i
v v r v v r v v v r v

  + 

−
+ − 

  + 

−
+ − 



 

 

q J J J J

p p q p J J J J

p p p ( )
3 0 1 1 0v r r r r

  + q J J J J

 (7.S48) 

Next, the pure vibrational commutator is evaluated to give Eq. (7.S49). 
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  ( ) ( ) ( ) ( ) ( )( )

( )( )

( ) ( ) ( ) ( ) ( )( )

0 1 2 3 0 1

1 3 0 2 0 3 2 1 0 1 1 0

0 1 2 3 0 1

21 21 20 21,0 0 1 0 21,0 2 3 1 20 3 21,1 2 3 1 20 2V V

21,0 0 1 0 21,0 2 3 1 20 2 21,1 2 3 1 20 3

1
, , S , , S , , H S , , H

2 2

S , , S , , H S , , H
2

v v v v r r

v v v v v v v v r r r r

v v v v r r

i
v v r v v r v v v r v

i i

i
v v r v v r v v v r v

i

 



−
 − = −  

 + +

−
+ − 



 

 

S S H

q q q q J J J J

( )( )

( ) ( ) ( ) ( ) ( )( )

( )( )

( ) ( ) ( ) ( ) ( )( )

1 2 0 3 0 2 3 1 0 1 1 0

0 1 2 3 0 1

1 2 0 3 0 2 3 1 0 1 1 0

21,1 0 1 0 21,0 2 3 1 20 3 21,1 2 3 1 20 2

21,1 0 1 0 21,0 2 3 1 20 2 21,1 2 3 1 20 3

S , , S , , H S , , H
2

S , , S , , H S , , H
2

v v v v v v v v r r r r

v v v v r r

v v v v v v v v r r r r

i

i
v v r v v r v v v r v

i i

i
v v r v v r v v v r v



 

+ +

−
+ − 

 − − +

−
+ − 

 

q q q q J J J J

p p p p J J J J

( )( )
0 1 2 3 0 1

1 3 0 2 0 3 2 1 0 1 1 0

v v v v r r

v v v v v v v v r r r ri i  − − +

 

p p p p J J J J

 (7.S49) 

 

The summations are expanded (Eq. (7.S50)), the Kronecker deltas are evaluated (Eq. (7.S51)), and the results consolidated (Eq. (7.S53)

), after repeating the same process with the rotational operators.  

  (7.S50) 

  (7.S51) 
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  ( ) ( ) ( )( ) ( )(

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

( ) ( )

0 1 2 0 1

21 21 20 21,0 2 1 0 21,1 0 2 1 21,1 2 0 1 20 0V V

21,0 0 2 0 21,1 1 2 1 21,1 2 1 1 20 1

21,0 0 2 0 21,0 1 2 1 21,0 2 1 1 20 2

21,0 2 1 0 21,0 0 2 1

1 1
, , S , , S , , S , , H

2 2

S , , S , , S , , H

S , , S , , S , , H

S , , S , ,

v v v r r

v v r v v r v v r v

v v r v v r v v r v

v v r v v r v v r v

v v r v v r

 − = − + 

− +

+ +

+

 S S H

( )( ) ( )) ( )

( ) ( ) ( )( ) ( )(

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

0 1 0 1 1 0

0 1 2 0 1

21,0 2 0 1 20 2

21,1 2 1 0 21,0 0 2 1 21,0 2 0 1 20 0

21,1 0 2 0 21,0 1 2 1 21,0 2 1 1 20 1

21,1 0 2 0 21,1 1 2 1 21,1 2 1 1 20 2

21,1 2

S , , H

1
S , , S , , S , , H

2

S , , S , , S , , H

S , , S , , S , , H

S ,

v v r r r r

v v v r r

v v r v

v v r v v r v v r v

v v r v v r v v r v

v v r v v r v v r v

v

+ +

+ − +

− +

+ +

+

 

q q J J J J

( ) ( ) ( )( ) ( )) ( )
0 1 0 1 1 01 0 21,1 0 2 1 21,1 2 0 1 20 2, S , , S , , H v v r r r rv r v v r v v r v+ +p p J J J J

 (7.S52) 

  (7.S53) 

 

DEFINING THE TRANSFORM FUNCTION 

 Using the abbreviated definitions provided in Eq. (7.73) and Eq. (7.78)–(7.85) we can now write the defining part for the 

transform function in Eq. (7.S54). 

  (7.S54) 

For application of the formula for defining the transform function, it is helpful to define separate coefficients so that only the vibrational 

indices connected with vibrational operators, and similarly the rotational indices with the rotational operators, are being summed over 
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explicitly.  That is, we define coefficients in Eq. (7.S55) so as to write Eq. (7.S56), which simplifies the process of finding the definition 

of the transform function.   

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

2 2

22,0 0 1 0 1 22 0 1 0 1 22 0 1 2 0 1 22,0 0 1 2 0 1

22,0 0 1 0 1 2 22,0 0 1 2 0 1

22,1 0 1 0 1 22,1 0 1 2 0 1 22,1 0 1 0 1 2 22,1

1 1 1
E , , , H , , , A , , , , B , , , ,

3 3 3

1 1
C , , , , D , , , ,

3

1 1 1
E , , , B , , , , C , , , , D

3 3

v r

v v r r v v r r v v v r r v v v r r
N

v v r r r v v v r r
N

v v r r v v v r r v v r r r
N


= + +




+ + 



= + +



( )
2 2

0 1 2 0 1, , , ,
v r

v v v r r
 
 
 



 (7.S55) 

 

       

( ) ( )
0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

22 12 30 21 21 21 02 21 21 20V V R V V

22,0 0 1 0 1 22,1 0 1 0 1

1
, , , , ,

2

E , , , E , , ,v v r r v v r r

v v r r v v r r

i i i

v v r r v v r r

 + + + −  

= + 

H S H S H S H S S H

q q J J p p J J
 (7.S56) 

We now endeavor to write the defining part in terms of the ladder operators 


.   
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       

( )

( )

0 1

0 10 1

0 1 0 1 0 1

0 1

0 1 0 10 1

0 0 1

22 12 30 21 21 21 02 21 21 20V V R V V

22,0 0 1 0 1

22,1 0 1 0 1

1
, , , , ,

2

1 1
E , , ,

2 2

1 1
E , , ,

2 2

v v

v v

v v

v v

r rv v

v v r r

v v r rv v

r r

i i i

v v r r

v v r r i i

 

 

 

 

 

 + + + −  

  
  =

  
  

  
  +

  
  

  

 

H S H S H S H S S H

J J

J J

( )

( )

( ) ( )( )

0 1 1

0 1

0 10 1

0 1 0 1 0 1

0 1

0 1 0 10 1

0 1 0 1 0 1

0 1

0 1 0 10 1

0 1 0 1

22,0 0 1 0 1

22,1 0 1 0 1

22,0 0 1 0 1 22,1 0 1 0 1

1
E , , ,

4

1
E , , ,

4

1
E , , , E , , ,

4

v v

v v

v v

v v

v v

v v

v v

r rv v

v v r r

v v r rv v

v v r r

v v r rv v

r r

v v r r

v v r r

v v r r v v r r

 

 

 

 

 

 

 

 

=

−
+

 
= − 

 



 

 

 

J J

J J

J J

0 1v v



(7.S57) 

We can now define the transform function. 

( ) ( ) ( )( )

( ) ( )( )

0 1 0 1

0 1 0 1 0 1

0 1

0 1 0 10 1

22 0 1 22,0 0 1 0 1 22,1 0 1 0 1

22,0 1 0 0 1 22,1 1 0 0 1

1
D , ; , E , , , E , , ,

2 4

1
E , , , E , , ,

4

v v

v v

v v v v

v v r r

v v r rv v

i
v v v v r r v v r r

v v r r v v r r

 

 

   

 

−  
= − 

 

 
+ − 

 

 S

J J

 (7.S58) 
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( ) ( ) ( )( )

( ) ( )( ) ( )( )

( ) ( )( )

0 1 0 1

0 1 0 1 0 1
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Evaluation of 𝑖[𝑺22, 𝑯20]𝑉 

Substituting in the definitions from Eq. (7.86) and Eq. (7.68) yields Eq. (7.S60), where we have ensured that each summation 

index is distinct. 
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We then apply the definition of the vibrational commutator from Eq. (7.12) to obtain the pure vibrational commutators in Eq. (7.S61). 
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Next, the pure vibrational commutator is evaluated to give Eq. (7.S62). 
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The summations are already expanded so now the Kronecker deltas are evaluated (Eq. (7.S63)), and the results consolidated (Eq. (7.S64)

).  
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Obtaining the analytic expression 

Applying the previously obtained evaluations of the commutators, we can write  
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(7.S65) 

 

IN TERMS OF MOLECULAR PROPERTIES 

 Applying the definitions of the coefficients for the terms of the original Hamiltonian from Eq. (7.S7)–(7.S12), we can rewrite 

the expression in terms of the molecular properties. 
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Appendix A: Theoretical Investigation of the Reaction 

Mechanism of the NHC-Catalyzed Transesterification of 

Benzyl Alcohol and Vinyl Acetate 

 

Portions of this work were included in the laboratory manual for the Introductory Organic 

Chemistry Laboratory course at the University of Wisconsin – Madison in the Spring 2017 

semester and for several subsequent semesters.   

Includes contributions from Nicholas J. Hill, Brian J. Esselman, Maria A. Zdanovskaia, Ryan 

Van Hoveln, and Cheri A. Barta 
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ABSTRACT 

 In support of the development of an experiment for the introductory organic laboratory 

course, we used B3LYP calculations with and without solvent corrections to investigate the 

reaction mechanisms of the transesterification under basic conditions with and without the use of 

a catalytic N-heterocyclic carbene (NHC).  Three mechanisms were considered: the base-

catalyzed, nucleophilic attachment of the alcohol to the ester and subsequent transesterification; 

the analogous nucleophilic reaction where the NHC catalyst first replaces the carboxylate 

substituent to yield a NHC substituted ketone and then is in turn replaced by the alcohol reagent; 

and a mechanism wherein the carbene of the NHC forms an acid-base complex with the hydrogen 

of the alcohol, the activated alcohol oxygen attaches to the carbonyl, and the NHC assists the 

transfer of the proton to the ester substituent, which is eliminated and forms another acid-base 

complex with the NHC catalyst.  These mechanisms were considered on a small, model system as 

well as the full reaction that is conducted experimentally in the laboratory course.  Our calculations 

showed that the first two mechanisms considered had considerable activation barriers, while the 

mechanism where the NHC catalyst serves as a proton shuttle had little to no activation barrier.  

Within the low energy pathway is a considerable number of conformational isomers which do not 

appear to have a significant impact on the energetics of the reaction.  We thus present a simplified 

catalytic cycle for the NHC catalyzed transesterification that utilizes the NHC as a proton shuttle. 

INTRODUCTION 

 The reaction under present consideration was the focus of a multi-session laboratory 

experiment in the introductory organic laboratory course at the University of Wisconsin – 

Madison.  A primary goal of the experiment was to introduce students to a catalytic cycle in the 
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form of a transesterification catalyzed by a N-heterocyclic carbene (NHC).  Before they could 

carry out the target reaction, they first had to synthesize the catalyzing compound.  As illustrated 

in Scheme A.1, students first obtained a mesityl substituted diimine (1) via acid-catalyzed 

condensation of glyoxal and mesityl amine.  Next, the diimine was combined with methanediol 

(delivered in the form of methylene glycol) and a sterically hindered base to undergo base-

catalyzed condensation to yield the five-membered cyclic, aromatic carbene precursor (2) as a salt.  

The precursor 2 is isolated and can then be used to generate the NHC catalyst (3) in situ under 

mildly basic conditions.  Once generated, 3 can be used to catalyze the transesterification of an 

alcohol and an ester.  By using benzyl alcohol (4) and vinyl acetate (5) as the reagents, the resulting 

ester (6) can be easily isolated from the resulting vinyl alcohol, which readily tautomerizes to 

acetaldehyde (7) under the reaction conditions.   

Scheme A.1.  Transesterification of benzyl alcohol (4) and vinyl acetate (5) catalyzed by N-

heterocyclic carbene (3) to produce benzyl acetate (6) and acetaldehyde (7). 

 

 

 Prior to this work, the laboratory manual presented a mechanism of the NHC catalyzed 

reaction in which the NHC catalyst 3 acts as an intermediate nucleophile in the acid catalyzed 
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transesterification.  That is, the carbene of 3 forms a covalent bond with the carbonyl carbon of 5 

and the ethoxy group leaves to reform the carbonyl, which is now conjugated to the π system of 3.  

Subsequently, the carbonyl carbon undergoes nucleophilic attack by the benzyl alkoxide and the 

NHC carbene is removed, reforming the catalyst, and the product ester 6 is formed.  The goal of 

the present work was to obtain a computational model of the reaction mechanism, to facilitate 

students’ analysis of the reaction and its outcomes.  

  In addition to the nucleophilic NHC mechanism that has been discussed, we were inspired 

by the work of Lai et. al.1 to consider a mechanism for the NHC-catalyzed transesterification that 

proceeds through a concerted transition state, wherein the NHC carbene assisted a 1,3-hydride 

shift between the alcohol oxygen and the carbonyl oxygen during the nucleophilic attack by the 

alcohol oxygen.  The result of the process is a tetrahedral intermediate where the proton is attached 

to the carbonyl oxygen, and the carbene of the NHC is associated with that proton.  Finally, to 

further illustrate the effect of the NHC catalysis on the reaction energetics, we considered the 

mechanism of the base catalyzed transesterification reaction absent of the NHC carbene.  

 We initially considered a simplified form of the reaction presented in Scheme A.1, where 

the structures were substituted with methyl groups to reduce the size of the calculations.  More 

specifically, the mesityl groups of 3, the benzyl group of the alcohol 4, and the ethylene group of 

the ester 5 were each replaced with a methyl carbon so that the reaction consists of the NHC 

catalyst 9, methanol (10), and methyl acetate (11), respectively, as illustrated in Scheme A.2.  

Calculations using the smaller system could be conducted faster than on the larger target reaction 

and served as starting points for the optimization of the larger species.  Altogether, three different 

reaction mechanisms for two different transesterification reactions were modeled computationally. 



376 

 

Scheme A.2.  Transesterification of benzyl alcohol (4) and vinyl acetate (5) catalyzed by N-

heterocyclic carbene (3) to produce benzyl acetate (6) and acetaldehyde (7). 

 

 

COMPUTATIONAL METHODS 

All calculations were carried out using the Gaussian 09 software package2 as implemented 

on the Sunbird cluster at the University of Wisconsin – Madison Chemistry Department.  

Stationary points were determined using geometry optimizations and vibrational frequency 

calculations to evaluate their nature.  Intrinsic reaction coordinate (IRC) calculations were 

attempted for each local maximum to confirm that the transition state leads to the expected local 

minima.  All structures were optimized using the B3LYP density functional theory and the 6-

31G(d) basis set.  Additional calculations were carried out on the model systems using the cc-

pVDZ basis set in conjunction with the C-PCM solvation model3 in tetrahydrofuran to reproduce 

previous work.1 

RESULTS AND DISCUSSION 

A simplified mechanism for the NHC-catalyzed transesterification of benzyl alcohol and 

vinyl acetate is presented in Scheme A.3.  As described in Lai et. al.,1 the N-heterocyclic carbene 

3 (formed in situ by reaction of KHCO3 with precursor 2) interacts with benzylic alcohol 4 to form 

the acid-base complex INT1.  The O-atom of INT1 binds to the carbonyl C-atom of 5 while 
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simultaneously transferring the bridging H-atom to the carbonyl O-atom.  This produces the 

neutral tetrahedral intermediate INT2 from which 3 facilitates the intramolecular transfer of the 

H-atom to either of the other O-atoms.  Thus, in the forward reaction, the H-atom is transferred to 

the vinyl O-atom and the carbonyl reforms, generating the desired transesterification product 6 

and expelling the acid-base complex INT3.  This intermediate dissociates to 3 and vinyl alcohol 

8, the latter undergoing tautomerization to acetaldehyde 7.  An alternate mechanism involving 

nucleophilic acyl substitution to form an acylimidazolium species was calculated to be of higher 

energy than the acid-base pathway, and thus less likely to be operative.  

Scheme A.3.  Simplified catalytic cycle for the NHC-catalyzed transesterification of benzyl 

alcohol 4 and vinyl acetate 5, based on computational results. 

 

 

The simplifications to the mechanism presented in Scheme A.3 are related to (i) the 

synchronicity of the nucleophilic attack at the carbonyl carbon by the alcohol oxygen i.e., reaction 

of INT1 with 5, and (ii) the intramolecular transfer of an H-atom facilitated by 3 to form INT2 
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and INT3.  As shown in Figure A.1, the reaction of INT1 with 5 to generate INT2 proceeds 

through multiple intermediates rather than a single transition state.  Each intermediate represents 

a discrete step in the NHC-assisted intramolecular transfer of the H-atom.  The exact number and 

relative energies of the intermediates involved in the NHC-catalyzed transesterification are 

sensitive to the substituents of the alcohol and the NHC, as well as the level of theory used in the 

calculation.  Nevertheless, the motions of the H-atom and the NHC unit during the H-atom transfer 

processes are consistent with literature data regardless of the number and relative energies of the 

intermediates.  The additional intermediates and transition states are located in a relatively flat 

region of the potential energy surface and have minimal impact on the activation barriers, thus the 

simplifications made in the mechanism in Scheme A.3 are reasonable. 

 

 

Figure A.1.  Potential energy surface for the NHC-catalyzed transesterification of benzyl alcohol 

4 and vinyl acetate 5, with B3LYP/6-31G(d) relative energies. 
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Comparison of the potential energy surfaces of the three model pathways (Figures A.2 and 

A.3) suggests the proton shuttle mechanism (a) is a much more favorable process, regardless of 

theory, with activation barriers of no more than 20 kcal/mol (15 kcal/mol in THF).  The 

nucleophilic NHC mechanism (b) has a very high energy intermediate and, even though the 

corresponding transition state could not be located, an activation barrier at least as high and thus 

greater than 140 kcal/mol (50 kcal/mol in THF).  Similarly, the uncatalyzed mechanism (c) is 

estimated to have a barrier greater than 125 kcal/mol (35 kcal/mol in THF) for the deprotonation 

of methanol by the NHC.  Note that the nucleophilic NHC and the uncatalyzed mechanisms are 

shown as symmetric pathways, while the proton shuttle mechanism is not.  This is to illustrate that 

unlike the other mechanisms, the proton shuttle mechanism (a) has several conformations, and the 

nature of the structures is such that even though the same process is happening for I4-I5-b and 

I5b-I4-c, they are diastereotopic in nature and thus have different energies.   
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Figure A.2.  Comparison of relevant pathways of transesterification mechanisms of methanol 10 

and methyl acetate 11, evaluated at B3LYP/6-31G(d), with relative energies in kcal/mol. (a) Proton 

shuttle NHC catalysis, (b) nucleophilic NHC catalysis, and (c) uncatalyzed with basic NHC. 
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Figure A.3.  Comparison of relevant pathways of transesterification mechanisms of methanol 10 

and methyl acetate 11, evaluated at B3LYP/cc-pVDZ in tetrahydrofuran using C-PCM solvation 

model, with relative energies in kcal/mol. (a) Proton shuttle NHC catalysis, (b) nucleophilic NHC 

catalysis, and (c) uncatalyzed with basic NHC. 
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The full reaction pathway (Scheme A.4) for the NHC-catalyzed transesterification of 

benzyl alcohol 4 and vinyl acetate 5 proceeds surprisingly like that of the model system [Scheme 

A.5(a)], with the exception that the addition of benzyl alcohol includes another local minimum.  

As in the model system, the carbene of the NHC catalyst associates with the proton of the alcohol 

oxygen which makes the oxygen more nucleophilic.  The subsequent nucleophilic addition of the 

alcohol oxygen to the carbonyl carbon (I1-I2-a → I1-I2-b) has the largest activation barrier in the 

pathway at 14 kcal/mol.  As in the model systems, this addition step is a concerted by asynchronous 

process as evidenced by the IRC of the corresponding transition state: first is the transfer of the 

alcohol proton from the oxygen to the carbene carbon, followed by bond formation between the 

alcohol oxygen and the carbonyl carbon.  After the formation of I1-I2-c, multiple and various 

proton transfers assisted by the NHC catalyst occur, with barriers ranging from less than 1 kcal/mol 

up to 4 kcal/mol.  The number of these high-energy intermediates and their activation barriers are 

sensitive to the substituents involved and the level of theory used, though similar activation barriers 

were reported for the analogous NHC proton shuttle behavior by Lyu4 using the M06-2X 

functional (specifically, the NHC-3 → NHC-4 reaction in the NHC-CO2/1a/CO2 pathway reported 

therein).  As expected, elimination of the vinyl alcohol (I2b-I3-c) is also a concerted by 

asynchronous process that first breaks the bond between the vinyl oxygen and the carbonyl carbon, 

followed by the transfer of the proton from the carbene carbon to the vinyl oxygen, resulting in an 

NHC/vinyl alcohol dimer INT3 analogous to that of the NHC/benzyl alcohol dimer INT1.  The 

resulting vinyl alcohol 8 tautomerizes to form the acetaldehyde product 7, and the relative energies 

confirm that the keto-enol tautomerization is the overall driving force for the full reaction pathway.  

Finally, we note that in carrying out the calculations on the full reaction pathway, we observed 
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multiple conformations for each of the high-energy intermediates; these conformational isomers 

are not reported in this work.   

In examining the model systems, we obtained different stationary points than were reported 

in previous work.1  The stationary points we located, however, were in qualitative agreement with 

their structures and the motion of atoms.  In addition, we found a local minimum (I5b-I4-b in 

Scheme A.5 and Scheme A.6.) that exists between the concerted transition state and the tetrahedral 

intermediate.  Similar structures were found in the full reaction mechanism.   
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Scheme A.4.  Stationary points modeled for the NHC-catalyzed transesterification of benzyl 

alcohol 4 and vinyl acetate 5 using mesityl substituted NHC 3 to produce acetaldehyde 7 and 

benzyl acetate 6. 
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Scheme A.5.  Stationary points modeled for the transesterification of methanol 10 and methyl 

acetate 11 via three different pathways: (a) Proton shuttle NHC mechanism catalyzed by methyl 

substituted NHC 9, (b) nucleophilic NHC mechanism catalyzed by 9, and (c) uncatalyzed 

mechanism with basic 9. 
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SUPPORTING INFORMATION 

Scheme A.6.  Molecular structures of the stationary points modeled for the transesterification of 

methanol 10 and methyl acetate 11 via three different pathways: (a) Proton shuttle NHC 

mechanism catalyzed by methyl substituted NHC 9, (b) nucleophilic NHC mechanism catalyzed 

by 9, (c) uncatalyzed mechanism with basic 9. 
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