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ABSTRACT

Quantum chemical ab initio methods are applied to a variety of systems to support
experimental efforts and to model reactions in harsh environments. High level geometry
optimizations and vibrational frequency calculations are combined with experimental fits of
rotational spectra to obtain highly precise semi-experimental equilibrium structures (re>%) of
hydrazoic acid (HN3) and pyridazine (ortho CsHsN. analog of benzene). Purely theoretical
equilibrium structures (re) are obtained for both HNs and pyridazine and require corrections to
account for the size of the basis set, for electron correlation, for relativity, and for the Born-
Oppenheimer approximation. These corrections bring the theoretical re structures into agreement
with the experimentally obtained re>E structures. Further, application of a novel analysis of the
r.°F structure determination (xrefiteration) provides confidence that these re5E structures are highly

accurate, in addition to being highly precise.
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A combination of density function theory (DFT) and ab initio methods are used to model
reactions in several systems. The diastereoselectivity observed in the synthesis of 1-cyano-1,3-
butadienes is satisfactorily explained by the computational investigation of the conformational
interconversion of the proposed intermediates. A purely theoretical investigation of the reactions
of highly unsaturated carbon chains (CnH2) utilizes spin-flip methods to describe the resulting
radical species and intervening reactions and finds that the products of [4+2] cycloadditions are
more likely to retain the initially formed six-membered ring than are the products of [2+2]

cycloadditions to retain the initially formed four-membered ring.

Finally, we describe our application of established theory to derive formulas that can be
used for the prediction of the vibration-rotation coupling constants that are used to fit the rotational
spectra of coupled vibrational states. Our initial results predict the experimentally determined
values of Fyc for the coupled-state fits of benzonitrile to within 15%, and the formulas can be used
to explain the origin of the proportional relationship of the coupling constants that was observed.
The derivation also gives rise to the a corrections to the rotational constants in agreement with
previous derivations. Furthermore, the preliminary results of a computer algebra program we are

developing are presented and discussed.
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OVERVIEW

Theoretical calculations on molecular structures and reactions are applied to a variety of
experimental efforts within the McMahon | Woods research group. The chapters herein can be
sorted into two groups: one group focuses on computational modeling of the mechanisms of
reactions of small molecules in (harsh) environments (Chapters 4, 5, and 6) while the second group
focuses on the accurate determination of the structure of small molecules and the prediction of

properties relevant to rotational spectroscopy (Chapters 1, 2, and 7).

Chapter 1 describes the development and application of a novel algorithm (called
xrefiteration) for the assessment of the accuracy of semi-experimental equilibrium structure (re>%)
determinations. An r¢°E structure determination uses high-quality experimental fits of rotational
spectra of a molecule and its related isotopologues and combines the data with results of theoretical
structure calculations to determine the molecule’s bonding parameters to a high precision. The
xrefiteration algorithm is applied to these structure determinations to better understand the effect
of individual isotopologues on the resulting reSt structural parameters and allows for more
meaningful comparison of the r¢°E structure to purely theoretical predictions. Example analyses

on a variety of r¢° structure determinations are provided.

Chapters 2 and 3 detail the reSF structure determinations of hydrazoic acid (HNs) and
pyridazine, respectively. The re>E structure of HN3 was previously obtained by our group but has
now been improved through the use of higher-level theoretical predictions. The high precision of
the resulting reSE structure is such that even a CCSD(T)/cc-pCV6Z geometry optimization is not
within the uncertainties of the reE structural parameters. Further calculations are conducted to
correct for extrapolation to the complete basis set limit, for improved treatment of electron

correlation, for effects due to relativity, and for the Born-Oppenheimer approximation.
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Application of these corrections results in a “best theoretical estimate” (BTE) that agrees with the
highly precise re°E structure. Application of the xrefiteration analysis provides further confidence
that both the reF and the BTE structures are quite accurate. The reSF structure of pyridazine was
also previously obtained by our group but we have since extended the spectroscopic data set,
including the measurement of previously undetected isotopologues. While the resulting reSt

structure is not as precise as that of HN3, the determination of the BTE structure and the application

of the xrefiteration analysis gives us high confidence that the structure is also accurate.

Chapter 4 models the reaction mechanism believed to occur in the synthesis of 1-cyano-
1,3-butadiene from an aqueous solution of 1,4-dibromo-2-butene and cyanide. Under cool
conditions, the synthetic procedure applied to Z-1,4-dibromo-2-butene obtained 1-cyano-1,3-
butadiene in good yield with a diastereomeric ratio of 10:1 favoring the E diastereomer over the Z
diastereomer. Under warm conditions, the synthetic procedure applied to E-1,4-dibromo-2-butene
resulted in a much lower yield of 1-cyano-1,3-butadiene with a diastereomeric ration of 2:3, now
favoring the Z diastereomer. The proposed rate-determining step — the 1,4-elimination of HBr
from the 1-bromo-4-cyano-2-butene intermediate — was modeled computationally. We determined
the intermediate species was rapidly interconverting between a variety of conformational isomers.
By application of the Curtin-Hammett principle, we found the relative energy of the transitions
states for the proposed rate-determining step adequately predicted the diastereomeric ratios of the

two different procedures.

Chapters 5 and 6 are theoretical investigations of reaction mechanisms under harsh
conditions. Chapter 5 considers the transformation of cyanobutadienes to form the aromatic
pyridine under astrochemical conditions. The activation barriers for the transformation under

neutral conditions were found to be too high to be likely to occur in the interstellar medium. The
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transformation catalyzed by atomic hydrogen — while possessing activation barriers considerably
lower than the neutral pathway — is also unlikely to occur. The transformation catalyzed by the
trihydrogen cation Hs*, however, does not contain high energy activation barriers and is likely to
occur. The transfer of a proton from Hs* to cyanobutadiene at the beginning of the transformation
is considerably exothermic, presumably due to the ability of the larger CsHsN™ molecule to
distribute the positive charge than Hs". The attachment of H* provides the intermediate with more
than enough internal energy to overcome the activation barriers for the transformation to pyridine.
The high stability of the final intermediate pyridinium (protonated pyridine) suggests that it could

be a notable sink of pyridine in the interstellar medium, where pyridine has yet to be detected.

Chapter 6 considers the combination of polyynes (CnH>) that are believed to occur within
the ring coalescence and annealing model of the formation of fullerene. Prior work by our group
revealed that the initial [2+2] cycloaddition initially proposed within the ring coalescence and
annealing model lead to an intermediate that had little to no barrier to undergoing a retro-Bergman
cyclization and forming an eight-membered ring. We compared this reaction mechanism to an
alternative [4+2] cycloaddition. Application of sophisticated theoretical treatments to increasingly
more substituted versions of the two reaction pathways revealed that beginning with a [4+2]
cycloaddition resulted in intermediates with significant activation barriers for undergoing the
retro-Bergman cyclization in question, while beginning with the [2+2] cycloaddition consistently

had no activation barrier for the same.

Chapter 7 again considers application of theoretical methods for rotational spectroscopy.
In particular, we develop and implement a methodology for the prediction of vibration-rotation
coupling constants used for the fitting of rotational spectra. Having theoretical predictions for the

vibration-rotation coupling constants is likely to aid spectroscopists in the fitting of the complex



rotational spectra arising from vibration-rotation coupling. Furthermore, the lack of theoretical
predictions for the vibration-rotation coupling constants (excepting the trivial first-order Coriolis
coupling constant) prevents spectroscopists from assessing the quality of the coupled-state fit, and
the lowers the confidence that such fits can be extended beyond the original frequency window
that the spectra were observed in. Building on the theoretical foundation already within the
literature, we derive the formulas necessary for prediction of the second-order Coriolis coupling
constants. Furthermore, we developed a program to conduct such derivations for the higher-order
coupling constants, and to process computational output files to obtain numeric predictions. The
results of our derivation and that of the program are compared to experimental coupled-state fits,

and we discuss next steps towards obtaining predictions of the higher-order coupling constants.
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presented. 87



Figure 3.5. Plots of structural parameters as a function of the number of
isotopologues (Niso) and their 26 uncertainties, with consistent scales
for each distance (0.002 A) and each angle (0.2°). The dashed line in
each plot is the BTE value calculated for that parameter. The
isotopologue ordering along the x-axis is the same as that in Figure
3.4.

Figure 3.6. Graphical comparison of pyridazine structural parameters with bond
distances in angstroms (A) and angles in degrees (°). Uncertainties

shown are 2. Data for re°5 CCSD(T)/ANOO are taken from Ref. 3.

The values and uncertainties for Rni-n2 (top box, last row) and Oni-nz-c3

were determined from the re>E structure using the alternate Z-matrix

described in the Supporting Information.
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Figure 4.5. Computed reaction coordinate diagram for E2' reaction of (E)-1-

bromo-4-cyano-2-butene (E-3) with cyanide in water. Gibbs free

energies at B3LYP/cc-pVTZ with the polarized continuum model for

the solvent (H20) at 323 K (50 °C). Solid line: lower energy transition

state. Dashed line: higher energy transition state. 124
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ABSTRACT

The effect of including additional isotopologues in the data set for re>E structure
determinations was examined using the novel xrefiteration routine for the re>E structure
determinations of hydrazoic acid, pyridazine, pyrimidine, thiophene, and thiazole. Inall molecules
considered, incorporation of additional isotopologues beyond the minimal set resulted in an
immediate and significant improvement in the total relative uncertainty (Jre°F) of the structural
parameters. The incorporation of further isotopologues continues to reduce the JreE for most
molecules, until a typical rise at the end of the analyses due to incorporation of the last of the
isotopologues. The dre>F values, however, remain well below their initial values, leading to the
conclusion that more isotopologue data leads to a more precise re° structure. Examination of the
structural parameters throughout the analysis provides insight into how well each structural
parameter is determined, and further comparison to theoretical structure predictions provides

insight into the accuracy of the structures.



INTRODUCTION

Molecular structure can be determined using rotational spectroscopy, via the substitution
structure (rs) method or semi-experimental equilibrium structure (re5) method, which rely on the
changes to the moments of inertia (and thus the change in the rotational constants and resulting
rotational spectra) that occur upon isotopic substitution of the atoms' positions.! Rotational
spectroscopy allows for highly precise determination of the molecular structure due to the precise
and numerous measurements of rotational transitions as compared to other spectroscopy methods.?
In our group in particular, the union of synthesis and rotational spectroscopy have allowed for a
considerable number of isotopologues to be included in the data set used for the structure
determination of a molecule.®>® Traditionally, studies using the r¢° structure methodology have
often been limited to using only the isotopologues minimally necessary to obtain an rs structure,
specifically the normal isotopologue and all singly substituted isotopologues.’®t!  Although
spectroscopic data from additional, multiply substituted isotopologues provides further constraints
on atom positions and thereby improves the precision and accuracy of the re5F structure, such an
approach is not universally employed. The trade-off for this improvement is the increased
experimental effort needed to acquire spectroscopic data for additional isotopologues, particularly
if they are not observable at natural abundance and require chemical synthesis/isotopic enrichment.
Therefore, to inform our choice of the number of additional isotopologues to include in structure
determinations, we systematically examine the effect of including isotopologues beyond the

minimal set on the re5E structure.



COMPUTATIONAL METHODS

The high accuracy and precision of our recent semi-experimental structure determinations
derive, in part, from the inclusion of a large number of multiply substituted isotopologues in the
data sets.>" This approach contrasts with the Kraitchman analysis for structure determination (rs
substitution structure)®*® and other implementations of the semi-experimental structure
determination (re55)'4*° that commonly rely on single-atom isotopic substitution is sufficient for
determining a molecular structure, the data set of singly substituted isotopologues represents the
smallest set that is sufficient to do so.! Herein, we refer to a data set consisting of the normal
isotopologue and singly substituted isotopologues as the "minimal data set™ or the "minimal set".
Since the data sets for our structural determinations substantially exceed the "minimal data set",

there are opportunities to develop new methods for analyzing and interpreting data.

To assess the impact of the number of isotopologues (Niso) included in a data set used for
an reSt structure determination, one could simply compare the re°E structure obtained using a
minimal set of isotopologues to the re5E structure obtained using all of the available isotopologues.
This comparison, however, does not provide information about how the re5€ structure changes as
a function of Nis, or how the incorporation of additional isotopologues impacts the structure. A
more informative approach to assess the impact of the number of isotopologues is to determine the
r.°E structural parameters using the minimal set, then sequentially add each isotopologue to the
data set, and observe how the re>E structural parameters and their statistical uncertainties change.
Because the reF structure is a state function of the moments of inertia with respect to the
isotopologues in the data set, the order in which the isotopologues are added has no effect on the
final re5E structure but does determine which intermediate re>F structures that are generated.

Determining each intermediate ret structure for every permutation of the addition of all



isotopologues would be a rigorous approach, but it is not practical. Not only would it be
cumbersome to obtain such an re>E analysis,” it is not clear how one would interpret the results.
Thus, the analysis method requires a different procedure for selecting which isotopologue should

be added to the working set of isotopologues.

We employed an approach where the isotopologue data set is sequentially expanded to
include the isotopologue whose inclusion results in the greatest reduction of the statistical
uncertainties of the re°t parameters. This criterion enables the analysis to probe the change in the
r.°E structure via the addition of a single isotopologue. If an isotopologue provides structural
information consistent with that already in the data set, adding that isotopologue should have the
impact of reducing the overall statistical uncertainty by providing redundant information. If an
isotopologue provides structural information that is not consistent with the rest of the data set (due
to poor determination of its spectroscopic constants, providing structural information counter to
that provided in the current data set, high error in the atomic position due to the location of
principal axes, etc.), adding that isotopologue may result in the re>E structural parameters with
larger statistical uncertainty. Because all isotopologues will eventually be added to the re°, the
isotopologues that are not consistent with the rest of the data set will be represented by a

characteristic increase in the statistical uncertainty at the end of the routine (vide infra).

This approach has been implemented as a bash shell script — dubbed xrefiteration (because
it iteratively utilizes the xrefit module of CFOUR) — and has been briefly described in two previous
works.7 1t is implemented as a bash shell script, which performs the following algorithm

(depicted in Figure 1.1):

* Using our recent work on pyridazine (see Chapter 3) as an example, there are 12 additional isotopologues beyond
the core set which corresponds to 12! = 479,000,000 permutations and, assuming 0.1 s per xrefit execution, ~13,000
processor hours.



1) For the "accepted" set of isotopologues, execute xrefit to obtain an initial reSF structure.
The initial accepted set can be user-defined, but defaults to the "minimal set" as identified
by assuming that the first isotopologue in the input file is the normal isotopologue and
identifying all isotopologues that differ by single isotopic substitution.

2) For each isotopologue that is not part of the accepted set, execute xrefit to obtain an re>F
structure using the accepted set of isotopologues plus that additional isotopologue.

3) Of the resulting reSF structures obtained in step 2, the additional isotopologue that resulted
in the lowest statistical uncertainties of the structural parameters is added to the accepted
set of isotopologues. To obtain a single metric by which to evaluate the total statistical
uncertainty, we calculated the relative (and thus dimensionless) uncertainties of the bond

distances [Eq. (1.1)], angles [Eq. (1.2)], and dihedral angles [Eq. (1.3)], and combined the

results to give the total relative statistical uncertainty of the re5E structure (Jre°F) in Eq (1.4)

R.

St (bonds) = \/Z(ZG”—(R)JZ (1.1)

orF (angles) = \/2[2@‘%0‘)]2 (1.2)

SrF (dihedrals) = \/Z[Zaf‘—wf (1.3)

oI = .\/[&QSE (bonds)}2 +[ or* (angles)]2 +[or* (dihedrals)]2 (1.4)

4) Repeat steps 2 and 3 until all isotopologues have been incorporated into the accepted set,

at which point a final r¢5E structure is calculated by executing xrefit.
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Figure 1.1. Flow chart depicting the xrefiteration algorithm.

The routine collects various components of the re>E calculations it has performed and provides a
summary output file (.csv) for analysis. A detailed explanation of the routine and its options are
included in the Supporting Information. The script, example input and output files, a .html report,

and the script used to generate the report are included in the supporting information of Ref. 9.

The xrefiteration routine has been applied to several r°F structure determinations in our
group: hydrazoic acid,® pyrimidine,® pyridazine,® thiophene,” and thiazole® (Figure 1.2). The
results of these analyses are summarized here; further details are included in the cited references

(excepting that of pyrimidine) and in Chapters 2 and 3 of this thesis.



H
H
. H
N7 . H
by N
H ©® 0 N H
\ — . NS
N=N=N* ’ H)\N H
hydrazoic acid pyridazine pyrimidine
..S.. ,.S..
H H H H
.N
H H ) H
thiophene thiazole

Figure 1.2. Molecules with re5E structure determinations analyzed with the xrefiteration routine.

RESULTS AND DISCUSSION

To illustrate the nature of the xrefiteration algorithm, consider the first iteration of the
xrefiteration analysis of the pyridazine data set, using the minimal set of isotopologues as the initial
accepted set: pyridazine and [3-C]-, [4-13C]-, [**N]-, [3-2H]-, and [4-?H]-pyridazine. First, the
routine executes an initial run using the data from these six isotopologues and analyzes the results,
which gives the total 6r.>€ of 0.001322 for the minimal set (recall that r.°F is a combination of

relative — and thus unitless — values).

Second, the algorithm introduces one additional isotopologue to the previous accepted data
set and runs xrefit; this is repeated for each of the remaining isotopologues. There is a total of
eighteen isotopologues of pyridazine for which experimental data was obtained, and since six of
these isotopologues were used in the previous (in this case, initial) iteration, a total of twelve
isotopologues remain to be tested for acceptance. The data for each of these twelve isotopologues
is combined with the previous six isotopologues to create twelve input files, each consisting of a

total of seven isotopologues: the accepted set from the previous (initial) iteration and one of the



remaining isotopologues. Then xrefit is executed for each of these input files, and the resulting

output files are analyzed.

As summarized in Table 1.1, we see that the Jre°F of the twelve test cases vary up to ~10%
with respect to the previous accepted set. Of the twelve r¢°E structures thus generated, we see that
the re>F structure resulting from the addition of the [3,5-2H] isotopologue to the previous six
isotopologues has the lowest total 6r.>F of 0.001180. Therefore, the third step of the algorithm is
to select the [3,5-2H] isotopologue for incorporation into the accepted set of isotopologues for the
next iteration, which will contain a total of seven isotopologues with eleven remaining. The
routine then repeats the above steps until all isotopologues are included in the data set for the re>t

structure determination.

Table 1.1. The 67> of Test re°F Structures in the First Iteration of the xrefiteration Analysis of

Pyridazine
Isotopologues used to obtain re°F ore E (Total)
normal, [3-2C], [4-3C], [*N], [3-2H], [4-H]* 0.001322
normal, [3-13C], [4-33C], [*N], [3-2H], [4-2H], and [3,4-2H] 0.001260
normal, [3-13C], [4-13C], [1°N], [3-2H], [4-2H], and [3,5-2H]? 0.001180
normal, [3-13C], [4-13C], [*°N], [3-2H], [4-2H], and [3,6-2H] 0.001277
normal, [3-13C], [4-13C], [**N], [3-2H], [4-2H], and [4,5-2H] 0.001304

normal, [3-13C], [4-13C], [**N], [3-2H], [4-2H], and [4-2H, 3-13C] 0.001227
normal, [3-13C], [4-13C], [*N], [3-2H], [4-2H], and [4-2H, 4-13C]  0.001303
normal, [3-13C], [4-13C], [**N], [3-2H], [4-2H], and [4-2H, 5-13C] 0.001222
normal, [3-13C], [4-13C], [**N], [3-2H], [4-2H], and [4-2H, 6-13C]  0.001310
normal, [3-13C], [4-13C], [*N], [3-2H], [4-2H], and [3,4,5-2H] 0.001294
normal, [3-13C], [4-13C], [**N], [3-2H], [4-2H], and [3,4,6-2H] 0.001412
normal, [3-13C], [4-13C], [*N], [3-2H], [4-2H], and [3,4,5,6-2H] 0.001307
normal, [3-13C], [4-*3C], [*°N], [3-?H], [4-?H], and [4,5-2H, 4-13C]  0.001342

2 The isotopologue data set from the previous iteration is provided for reference.

b This isotopologue data set is highlighted to indicate it has the lowest Jr5F of the structures in the current iteration.
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While additional tables like that of Table 1.1 could be created for the remaining iterations,
it is easier to visualize the process by plotting the ore>F of the test cases against the total number
of isotopologues. Such is done for pyrimidine in Figure 1.3. For a particular Niso, the test case
with the lowest Jr°E is also the one that becomes the accepted set for that iteration. Individual
isotopologues can also be tracked across test cases, as represented by the lines drawn in the figure.
Note that once an isotopologue has been added to the accepted set, there are no further test cases
where that isotopologue is being added; this is visualized in the figure as the trace for that

isotopologue terminating in the dotted line representing the accepted sets.
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Figure 1.3. Total relative error of all re5 structures generated during the xrefiteration routine for
sixteen isotopologues of pyrimidine, beginning from the minimal set. The dotted line connects the

accepted sets of each iteration.

There are some common observations in examining plots like that of Figure 1.3. First, the

ore>E of the test cases involving a particular isotopologue tend to decrease as Niso increases.
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Another tendency is for there to be a clustering of the isotopologue traces, such as those of [2,5-
2H]-, [4,5-?H]-, and [2,4,5-2H]-pyrimidine above Nis, = 10. In that grouping, the ore>E of the test
cases generated are very similar, suggesting those isotopologues have similar impacts on the
precision of the reSE structure determination. One feature is represented by the trace of [2,5-2H]-
pyrimidine in Figure 1.3, where the inclusion of that isotopologue in the first test case at Niso = 9
results in a ore>F larger than the initial set, but upon addition of another isotopologue the addition
of the [2,5-?H] isotopologue results in a much smaller Jr¢>E that is comparable to other test cases.
Such behavior is likely due to a poor determination of some structural parameter(s) by the initial
set, parameter(s) for which the [2,5-2H] isotopologue data contains the necessary information but
disagrees with the value poorly determined by the minimal set. Inclusion of an additional
isotopologue serves to bridge that disagreement. Another feature — which is lacking in Figure 1.3
but is common in preliminary analyses — is the presence of an isotopologue trace at significantly
higher ore>t than the rest, which might™ indicate an issue with the underlying data for that
isotopologue: an error in the corrections to the rotational constants, a poor fit of the spectral data,
etc. Therefore, this graph can be particularly useful for identifying problems in the preliminary
analysis of the data set. Finally, there are instances where inclusion of an isotopologue into the
accepted set raises the Jr>E for subsequent test cases of certain other isotopologues. For example,
in Figure 1.3, the oreSE for the [2,4,5-?H] and [2,4,5,6->H] isotopologues is larger at Niso = 10 than
at Niso = 9. This suggests that the isotopologue being added in that iteration ([4,6-2H]) contains
structural information differing from that provided by those two isotopologues. In principle, there

may be a way to extract insights about the relationship of the isotopologues to each other with

* See the discussion of the xrefiteration analysis of pyridazine in Chapter 3.
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respect to the structural information they are providing, but in practice we have not yet developed

a rigorous method for extracting such insights.

Throughout the course of the analysis, the xrefiteration routine keeps track of the 6re>E, the
contributing components [dre>E(bonds), ore>E(angles), and oreE(dihedrals)], the values of the
structural parameters, and the statistical uncertainties of the fit to the structure parameters. The
ore>E and its components can be plotted on the same graph, while the parameter values and their
uncertainties are best plotted on individual graphs for each parameter. Figure 1.4 displays the ore>t
and its components across the xrefiteration analysis for thiophene and shows a sharp decrease in
the or5E as the first few isotopologues beyond the minimal set are added. As more isotopologues
are added, Jr.>F continues to decrease and eventually plateaus, until only a couple of isotopologues
remain to be included in the accepted set. The addition of these last two isotopologues ([2,3-2H]
and [2,4-2H]) increases the Jre> but overall, the 1. for the full set of isotopologues is nearly half
that of the Jr.> for the minimal set of isotopologues. The rise in Jr¢°E at the end of the xrefiteration
analysis is typical and can be understood by the nature of the algorithm: in each iteration, the
isotopologue that resulted in the lowest Jr.° was added to the accepted set while isotopologues
that resulted in higher 6r.>€ were carried over to the next iteration. By the end of the analysis, the
isotopologue(s) that remain consistently had higher 6re>¢ when included in the data set, so when

they are finally included, the 6> increases.
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Figure 1.4. Plot of 6r.° as a function of the number of isotopologues (Niso) incorporated into the
structure determination data set for thiophene. The total relative statistical uncertainty (5%, blue
squares), the relative statistical uncertainty in the bond distances (green triangles), and the relative
statistical uncertainty in the angles (purple circles) are presented. The "Minimal Set" is composed

of the normal and [2-13C], [3-13C], [**S], [2-2H], [3-2H] isotopologues of thiophene.

As shown in Figure 1.5, the xrefiteration analyses for pyridazine, pyrimidine, and thiazole
share similar characteristics with that of thiophene. The ore>F for all molecules generally decreases
as Niso increases and is especially pronounced for the first isotopologue addition beyond the
minimal set of single isotopic substitutions. As additional isotopologues are incorporated into the
data set, ore>E continues to decrease for hydrazoic acid, thiophene, and thiazole, until a slight uptick
at the end for thiophene and thiazole. Pyridazine and pyrimidine, however, plateau shortly after
the initial sharp decrease, then continue to rise slightly through the rest of the xrefiteration analysis.
In this progression, pyrimidine increases more than pyridazine, until the addition of the final
isotopologue to the pyridazine data set. (The origin of this increase in ore>E of pyridazine is

discussed in detail in Chapter 3 of this thesis.) Overall, the xrefiteration analysis of these
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molecules demonstrates that inclusion of a few isotopologues beyond the minimal set has an
immediate and significant effect, and addition of further isotopologues generally continues to

reduce the 6re°E.

[ h L Pyridazine
04025 — i * Pyrimidine
I L 4 Hydrazoic Acid
A ® ------ Thiophene
0.0020 — \-\ + -—— Thiazole
[ ‘\\
'Y
. L | ‘lk‘\‘__ ]
0.0015 - R i

. ]
. S —— |

SE
br,

0.0010

. .l e * .4
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Number of Isotapologues (V)
Figure 1.5. Comparison of total relative statistical uncertainty (dr.°F) as additional isotopologues
are included in the data set for the reSF structure determinations of hydrazoic acid, pyrimidine,
pyridazine, thiophene, and thiazole, beginning from each of their respective minimal set of

isotopologues.

Additional insights into the re5E structure determination and the isotopologue data set can
be found by examining the structural parameters of the r.> structures obtained in the xrefiteration
analysis. Figure 1.6 presents the values and statistical uncertainties of the parameters of thiazole
throughout the xrefiteration analysis in comparison to the best theoretical estimate (BTE)®>' values
and demonstrates a variety of behaviors across the many structural parameters. Some parameters
show little change in their values or uncertainties across the xrefiteration analysis (Rca-H, fcs-cs-s,

Ocs-can and Oco-s-cs), strongly suggesting that these parameters are well-determined even while
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using the initial set of isotopologues. The uncertainties of these parameters contribute little to the
change in Jr°E for thiazole shown in Figure 1.6. Most parameters display moderate changes but
appear to converge i.e., remain consistent in value and uncertainty, by the end of the analysis (Rcs-
H, Rca-cs, Rea-N, Res-s, Rez-s, Oca-cs-H, and Ocs.ca-H), demonstrating the importance of including
many isotopologues in the reSF structure determination. The uncertainties of these parameters are
largely responsible for the steady decrease in the 5re>F in the later parts of the xrefiteration analysis.
Several parameters have immediate and significant changes to their values and uncertainties that
brings them into better agreement with the BTE values (Rc2-+ and 6s.co-H), demonstrating how
impactful just a few additional isotopologues beyond the minimal set can be for the reSE structure
determination. The uncertainties of these parameters are largely responsible for the sharp decrease

in ore>E that occurs at the beginning of the xrefiteration analysis.
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Figure 1.6. Plots of structural parameters of thiazole as a function of the number of isotopologues

(Niso) and their 26 uncertainties, with consistent scales for each distance (0.0035 A) and each angle

(0.34°). The dashed line in each plot is the best theoretical estimate (BTE) value calculated for

that parameter.

background) that enables visualization of all data points and corresponding error bars.

isotopologue ordering is given in Table 1.2 in the Supporting Information.

A plot of Osco-n is additionally provided on a separate y-axis scale (gray

The
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The power in examining the structural parameters throughout the xrefiteration analysis lies
in the comparison to the BTE values predicted for the structure. As shown in Figure 1.6, at the
beginning of the xrefiteration analysis Rco-+ and 6s.co-n have the largest statistical uncertainties
and disagreement with the BTE values. The inclusion of an additional isotopologue reduces the
uncertainties in these parameters by a factor of two and reduces the disagreement with the BTE
values by more than a factor of two. Considering the set of parameters that are not in agreement
with the BTE values (Rcs-H, Rc2-H, Oca-cs-H, Ocs-ca-H, Oc2-s-cs, and Os.co-H) reveals atoms C2 and C5
as common factors, which is notable since these atoms lie very close to the b inertial axis of

thiazole and historically their positions are the most difficult to determine.

CONCLUSIONS

A novel routine, xrefiteration, was developed to examine the impact of additional
isotopologues on re°t structure determinations. The routine begins with the re> structure
determination of an initial set of isotopologues (often the minimal set necessary for an rs structure
determination) and iteratively adds the remaining isotopologues to the data set until the full rcS
structure is obtained. The order in which the isotopologues are added is determined by selecting
the isotopologue whose inclusion results in the lowest total relative uncertainty (re>%). Typically,
the inclusion of additional isotopologues is found to immediately and significantly decrease Jre>F
and continue to decrease — though with diminishing returns — as more isotopologues are added,
until a slight increase at the end of the analysis. A large increase in the or.°F due to the inclusion
of an isotopologue may indicate the underlying experimental or computational data is of poor

quality, but this is merely a measure of the precision — not the accuracy — of the reSE structure.
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We found that tracking the values of the structural parameters throughout the xrefiteration
analysis provided more insight into the structure determination of the molecule. A structural
parameter can be said to be well-determined when the inclusion of additional isotopologues has
little effect on the values of the parameter with respect to the magnitude of the uncertainties.
Furthermore, good agreement between the structural parameter of the re>F structure and that of a
high-level theoretical calculation strongly suggests such a parameter is also accurate. Of the
molecules we've examined thus far, application of this analysis reveals that some molecules e.g.,
pyridazine, are well-determined starting from the minimal set of isotopologues while other
molecules e.g., thiophene and thiazole, are still not well-determined even after including all
available isotopologues. Being able to determine how many isotopologues (and which) are needed
on an a priori basis thus remains an open challenge and the xrefiteration routine provides the

foundation for addressing it.
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Table 1.2. Order of Addition for Isotopologues of Thiophene in the xrefiteration Analysis of

Thiazole

Niso Isotopologue Added
Initial set
9 normal, [**S], [2-3C], [3-'°N], [4-3C],
[5-13C], [2-2H], [4-2H], [5-2H]

10 [2,4,5-2H]
11 [2,5-°H, 4-1C]
12 [2-2H, °N]
13 [2-2H, 5-13C]
14 [2-2H, 2-°C]
15 [2-2H, 3]
16 [2-2H, 4-°C]
17 [2,5-°H, 9]
18 [2,5-2H, 5-°C]
19 [2,5-2H, 2-13C]
20 [2,5-2H]

21 [2-2H, 39]
22 [2,5-2H, °N]
23 [*3S]

24 [2,5-°H, *°S]
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xrefiteration Usage Guide

Requirements

e bash

The xrefiteration script was written for use on the Phoenix Cluster at the UW-Madison

Department of Chemistry HPC Center (https://hpc.chem.wisc.edu), operating GNU bash,

version 4.2.46(2)-release (x86_64-redhat-linux-gnu). The script has not been tested on any

other system.

e CFOUR (http://www.cfour.de)

e Location of CFOUR xrefit added to PATH
Execute the following command before use,
export PATH=/full/path/to/your/CFOUR/bin:$PATH

or add that line to the .bash profile file in your home directory. You can check this was
done correctly by executing which xrefit and the correct path should appear.

e Script saved as xrefiteration With execute permissions.

While the script doesn't have to be saved as xrefiteration, it is recommended since this

guide and the script's help text refers to the script by that name.

The command chmod +x xrefiteration should allow the script to run.

xrefiteration input file

The xrefiteration input file is the same as the standard xrefit INPUT file, with two

exceptions: (a) specific parameter labels, and (b) additional isotopologue labels.


https://hpc.chem.wisc.edu/
http://www.cfour.de/
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a) When defining the ZMAT, the parameter labels must begin with 'R" if it is a bond, ‘A" if it
is an angle, and 'D' if it is a dihedral angle. The script uses the parameter labels to identify
which of the parameters being optimized by xrefit are bonds, angles, and dihedral angles,
in order to correctly calculate the oreSF for each type of parameter.

b) When providing the atomic numbers for the isotopologues, an additional label (iso###) is
added after the last atomic number to specify which isotopologue that is. This is necessary
for the script to keep track of the individual isotopologues and report the results properly,

as well as for utilizing options involving specific isotopologues (vide infra).

To understand the changes, compare the pyridazine xrefiteration input file provided
(pyridazine_xrefiteration_input.txt) against that of the example xrefit INPUT file
(pyridazine_example_xrefit_input.txt), which is what would normally have been used for

obtaining the full re>E structure determination of pyridazine.

Running xrefiteration

Once the above requirements have been satisfied and the input file has been prepared,
xrefiteration can be run using xrefiteration inputfilename. Status text will be printed to the
screen as the script runs to monitor the progress. The script can be aborted at any time using the

Ctrl+C command in bash.
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For an example, here is the output for running the provided pyridazine_xrefiteration_input.txt.

$ xrefiteration pyridazine xrefiteration input.txt

Fitting A B & C axes.

There will be 12 runs.

RUNOOO uses isotopologues 001 002 003 004 005 006

RUNOO1 uses isotopologues 001 002 003 004 005 006 008

RUNOO2 uses isotopologues 001 002 003 004 005 006 008 019

RUNOO3 uses isotopologues 001 002 003 004 005 006 008 019 010

RUNQOO4 uses isotopologues 001 002 003 004 005 006 008 019 010 017

RUNQOOS5 uses isotopologues 001 002 003 004 005 006 008 019 010 017 027
RUNOO6 uses isotopologues 001 002 003 004 005 006 008 019 010 017 027 023
RUNOO7 uses isotopologues 001 002 003 004 005 006 008 019 010 017 027 023
018

RUNQOO8 uses isotopologues 001 002 003 004 005 006 008 019 010 017 027 023
018 009

RUNOQ9 uses isotopologues 001 002 003 004 005 006 008 019 010 017 027 023
018 009 025

RUNO10O uses isotopologues 001 002 003 004 005 006 008 019 010 017 027 023
018 009 025 020

RUNO11 uses isotopologues 001 002 003 004 005 006 008 019 010 017 027 023
018 009 025 020 024

RUNO12 uses isotopologues 001 002 003 004 005 006 008 019 010 017 027 023
018 009 025 020 024 007

$

The isotopologues listed represent the accepted set being used in the current iteration (RUN). The
isotopologues used in RUNOOO are the initial set, which in this case defaulted to the minimal set,

while the last RUN uses all provided isotopologues, representing the full data set.
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A variety of files are generated by the execution of the script:

$ 1s

fort.16

INPUT

pyridazine xrefiteration input-allruns.csv
pyridazine xrefiteration input isotopologuesmasseslist.txt
pyridazine xrefiteration input-results.csv
pyridazine xrefiteration input RUNOOO.out
pyridazine xrefiteration input RUNOOI1.out
pyridazine xrefiteration input RUNOOZ.out
pyridazine xrefiteration input RUNOO3.out
pyridazine xrefiteration input RUNOO4.out
pyridazine xrefiteration input RUNOOS5.out
pyridazine xrefiteration input RUNO0O6.out
pyridazine xrefiteration input RUNOO7.out
pyridazine xrefiteration input RUNOOS.out
pyridazine xrefiteration input RUNO09.out
pyridazine xrefiteration input RUNO10.out
pyridazine xrefiteration input RUNO1l.out
pyridazine xrefiteration input RUNO12.out
pyridazine xrefiteration input.template
pyridazine xrefiteration input.txt

VMLSYM

$

As xrefiteration progresses through each iteration, it collects the parameter values and fit

errors in the "-allruns.csv" file, along with the calculated Jr.° of each type, noting which
isotopologues were included in the data set and which was most recently incorporated. The results
of the reF calculated after inclusion of the next isotopologue are collected in the "-results.csv" file
and the corresponding xrefit output is kept, suffixed with " RUN###.out". Therefore, the last

" RUN###.out" is the xrefit output for using all provided isotopologues, while the first

(" _RUNOOO0.out") is the xrefit output for the initial set of isotopologues.
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the script appends the results to the .csv files, so rerunning the same input filename

will place the results at the end of the .csv files, not the top, and will not replace the files.

The script will, however, replace any " RUN###.out" files of the same name.

The ".template™ and "_isotopologuesmasseslist.txt" files are generated by xrefiteration based on

the input you provided and is used to generate all xrefit INPUT files that are executed throughout

the routine. The "fort.16", "INPUT", and "VMLSYM" files are left over from executing xrefit.

These files can be discarded once the routine has finished.

Help text

Help text for the xrefiteration script is built in and is printed upon entering the command

xrefiteration OF xrefiteration --help and will also display if the script doesn't understand

the options (vide infra) being provided.

$ xrefiteration

OR

$ xrefiteration --help

prints

Usage:

xrefiteration arguments filename

Optional arguments:

—a

Runs full analysis on initial set of isotopologues that the user is
prompted to provide as a space-delimited list of the iso numbers,
e.g. "1 2 5 9".

Runs xrefit for a custom combination of isotopologues, without
running the full analysis, using list provided by the user, e.g. "1
2 5 9".

Keeps the outputs of all xrefit runs for further analysis by the
user.

Runs full analysis allowing only the specified axes to be fit. User
will be prompted to enter the axes, e.g. "a C" fits A & C axes only



28

(order & case insensitive). Default is to fit all three A, B, & C
axes.
-e Runs xrefit for all single "knockouts" of the full data set. That

is, the data for one isotopologue is excluded from the full data
set and xrefit executed. This is repeated for all isotopologues in

the data set, with results written to "-knockouts.csv"

-f Runs an additional "correlation" analysis of the isotopologues not
part of the initial accepted set by running all pair-wise additions
to the accepted set. Saved to "-pairs.csv" ' 'Experimental!!!

-g Prompts the user to select an alternate metric to use as the metric
for xrefiteration analysis. A numbered list will be printed and
the user needs to enter the number corresponding to the desired
metric.

-h Isotopologues are weighted by the values provided in the input file.

This option is incompatible with option (-d).
--help Prints this help text.

This script automatically runs and analyzes CFOUR xrefit program for the
user-provided file such that beginning from the initial set of
isotopologues, the isotopologue that lowers the error of the least-squares
fit the most is added to the next run of xrefit, until all isotopologues
have been added. The outputs of every xrefit calculation are collected in
the "-allruns.csv" file, while the final summary of the xrefiteration
analysis is in the "-results.csv" file for convenient analysis in Excel.
The xrefit output file form each iteration of the analysis is kept as
" RUN###.out"

Note: the default initial set is given by whichever isotopologue is listed
first, plus any isotopologues that differ by only 1 substitution from the

first.

Note: the errors (uncertainties) provided by xrefit are 1 sigma.

Optional arguments

The following provides additional information regarding the optional arguments. If an

unrecognized option is specified by the user, the script will first print

Unrecognized Option _ !!! followed by the help text, where the underscore will be the

option the user provided.



29

Runs full analysis on initial set of isotopologues that the user is
prompted to provide as a space-delimited list of the iso numbers, e.g. "1
2 5 9",

This argument allows the user to specify which isotopologues they would like to use for
the initial set. The default is to use whichever isotopologue is listed first in the input file,
plus any additional isotopologues that differ by a single isotopic substitution. In some
cases, however, this may not be ideal. For example, if the molecule contains a sulfur atom
and the %3S and 3*S singly substituted isotopologues are included in the data set, the routine
will include both isotopologues by default in the initial set, even though only one of them
is required to obtain a substitution structure. If the user provides five or fewer

isotopologues, they will be asked to confirm if this was desired.

Runs xrefit for a custom combination of isotopologues, without running
the full analysis, using list provided by the user.

This argument allows the user to run xrefit for a specific combination of isotopologues
using the xrefiteration input file, instead of manually editing the xrefit INPUT. The results
will also be appended to the .csv files, allowing the user to run multiple custom
combinations while keeping the results centralized. The xrefit output files are also saved
as ".custom##" files and will not be replaced by subsequent executions of

xrefiteration.

Keeps the outputs of all xrefit runs for further analysis by the user.
The default is for xrefiteration to remove the extra xrefit outputs that were generated during
each iterations' test of which isotopologue addition lowers the 5re°F the most. The user can

use this option to prevent that.
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Runs full analysis allowing only the specified axes to be fit. User will
be prompted to enter the axes, e.g. "a C" fits A & C axes only (order &
case insensitive). Default is to fit all three A, B, & C axes.

This argument will change the weighting of the axes in the xrefit inputs generated. If the
axis is being fit, its weight is set to one and if not, its weight is set to zero, for all

isotopologues in the input file.

Runs xrefit for all single "knockouts" of the full data set. That is, the
data for one isotopologue is excluded from the full data set and xrefit
executed. This 1is repeated for all isotopologues in the data set, with
results written to "-knockouts.csv"

This option executes an additional analysis, where all but one isotopologue is included in
the data set for re> structure determination in xrefit. The results of this should allow the
user to identify which isotopologues have the largest impact on individual structural

parameters or on the structure as a whole.

Runs an additional "correlation" analysis of the isotopologues not part
of the initial accepted set by running all pair-wise additions to the
accepted set. Saved to "-pairs.csv" ! 'Experimental!!!

This is an experimental analysis that can be executed during the xrefiteration routine. If

selected, this will run all combinations of the initial accepted set with one and with two

additional isotopologues included and output the results to the specified .csv file.
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Prompts the user to select an alternate metric to use as the metric for
xrefiteration analysis. A numbered list will be printed and the user
needs to enter the number corresponding to the desired metric.

This option allows the user to change the metric that drives the xrefiteration algorithm. By
default, the algorithm uses the Total Relative Error (6re°F) to select which isotopologue
should be used next to expand the data set. Using this option, the user can select the Bonds'
Relative Error, Angles' Relative Error, or Dihedrals' Relative Error, as well the error
corresponding to any of the Z-matrix parameters being fit by xrefit. A numbered list of the
available metrics will be printed to the screen, and the user needs to enter the number
corresponding to the desired metric. The xrefiteration analysis, and any other options

specified, will then run using this desired metric.

Isotopologues are weighted by the values provided in the input file. This
option is incompatible with option (-d).

By default, xrefiteration fits all axes [or those selected using option (-d)] equally at a value
of 1, ignoring any weights provided by the user in the original input file. Using this option
tells the script to use the weights provided in the original input file, allowing the user to
provide alternative weights. The xrefiteration analysis, and any other options specified,
will then run using the provided weights of each isotopologue. This option is particularly
useful for handling a molecule with high symmetry and redundant rotational constants, but
which may change upon isotopic substitution. As noted, this option is incompatible with

option (-d) and will result in an error message, asking the user to select either (-d) or (-h).
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Chapter 2: The Semi-Experimental and Theoretical

Structures of Hydrazoic Acid

Previously published within:

Andrew N. Owen, Nitai P. Sahoo, Brian J. Esselman, John F. Stanton, R. Claude Woods, Robert
J. McMahon, Semi-experimental equilibrium (re°5) and theoretical structures of hydrazoic acid

(HN3). Journal of Chemical Physics. 2022, 157 (3), 034303. https://doi.org/10.1063/5.0101064
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ABSTRACT

Hydrazoic acid (HN3) is used as a case study for investigating the accuracy and precision
by which a molecular structure — specifically, a semi-experimental equilibrium structure (re>%) —
may be determined using current state-of-the-art methodology. The influence of the theoretical
corrections for effects of vibration-rotation coupling and electron-mass distribution that are
employed in the analysis is explored in detail. The small size of HN3 allowed us to deploy
considerable computational resources to probe the basis-set dependence of these corrections using
a series of CCSD(T) calculations with cc-pCVXZ (X =D, T, Q, 5) basis sets. We extrapolated the
resulting corrections to the complete basis set (CBS) limit to obtain CCSD(T)/CBS corrections,
which were used in a subsequent r¢°E structure determination. The re°E parameters obtained using
the CCSD(T)/cc-pCV5Z corrections are nearly identical to those obtained using the
CCSD(T)/CBS corrections, with uncertainties in the bond distances and angles of less than 0.0006
A and 0.08°, respectively. The previously obtained reSE structure using CCSD(T)/ANO2 agrees
with that using CCSD(T)/cc-pCV5Z to within 0.00008 A and 0.016° for bond distances and angles,
respectively, and with only 25% larger uncertainties, validating the idea that re>t structure
determinations can be carried out with significantly smaller basis sets than those needed for
similarly accurate, strictly ab initio determinations. Although the purely computational re
structural parameters (CCSD(T)/cc-pCV62Z) fall outside of the statistical uncertainties (20) of the
corresponding re>E structural parameters, the discrepancy is rectified by applying corrections to
address the theoretical limitations of the CCSD(T)/cc-pCV6Z geometry with respect to basis set,
electron correlation, relativity, and the Born-Oppenheimer approximation, thereby supporting the
contention that the semi-experimental approach is both an accurate and vastly more efficient

method for structure determinations than is brute-force computation.
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INTRODUCTION

The recent theoretical and semi-experimental equilibrium structure determinations of
pyrimidine,* thiophene,? thiazole,® and pyridazine* set an impressive standard for the agreement
that is possible between semi-experimental (re°%) and theoretical (re) equilibrium structures.
Following the work on these larger aromatic systems,* we were interested in revisiting our previous
work® on hydrazoic acid (HNs) to determine how accurately the re>¢ and re parameters could be
determined for a small molecule by pushing the limits of computation. From both the experimental
and theoretical points of view, HNs (Figure 2.1) is nearly an ideal candidate for this type of
investigation. On the experimental side, HNz is a small molecule that possesses a moderate dipole
with both a- and b-axis components, producing intense rotational transitions across the microwave
and millimeter-wave frequency range. It is easily synthesized from sodium azide and aqueous
acidic solution, allowing for convenient isotopologue generation.® With only four atoms,
rotational constants of 14 isotopologues (of 16 possible stable isotopologues) have been observed,
providing 28 independent moments of inertia to determine its five independent structural
parameters. One potential complication in the structure determination, however, is the presence
of coupling between the ground vibrational state and low-lying, vibrationally excited states.>® On
the theoretical side, the electronic structure calculations involve only 22 electrons (including core
electrons), allowing for fast computations of the geometry optimization and anharmonic
vibrational frequencies, even when utilizing sophisticated treatments for electron correlation and
larger basis sets. For these reasons, HN3z can be used as a case study to probe the limits of structure

determination for asymmetric top molecules.
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I
, a
Figure 2.1. Hydrazoic acid (HN3, Cs, ua = 0.837 D, up = 1.48 D, and « = —0.999) with principal

axes and atom numbering.

The nearly linear arrangement of the nitrogen atoms in hydrazoic acid was established in
the early 20" century, as well as the substantial deviation of the hydrogen atom from the axis of
the nitrogen atoms.”® Substitution structures refined the bond distances and the terminal N-N-H
angle, but the position of the central nitrogen atom remained poorly determined,'®* and thus the
angle could only be estimated.®® The crystal structure of hydrazoic acid, first reported by Evers et
al.,' revealed the bent nitrogen chain (N-N—N angle 172.8°) in the solid state.*” The first complete
gas phase structure determination of hydrazoic acid was the recent semi-experimental substitution
structure (re°F) obtained using the rotational spectra of 14 isotopologues.® That work included
isotopic substitutions of the central nitrogen atom for the first time and confirmed the N-N-N

angle.

Computational investigations of HN3 have consistently supported the slight bend of the
nitrogen-atom chain.> 161820 Amberger et al. reported a high-level computational study involving

coupled-cluster theory with single, double, and perturbative triple excitations [CCSD(T)] and the
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cc-pCV5Z basis,” which predicted bond distances and angles to within 0.0012 A and 0.25°,
respectively, of the re5E structure determined therein.®> While the agreement between the theoretical
and reSF structures published in that work was indeed quite good, improvements in our
implementation of the r5E structure analysis and those possible in the theoretical treatments of the

equilibrium structure suggest even better agreement could be achieved.

METHODS

Rotational Spectroscopy

The average "determinable rotational constants" (Ao”, Bo”, and Co")?! for 14 isotopologues
of HN3 (determined from the spectroscopic constants in both A- and S-reduced Hamiltonians, I
representation), were taken directly from the supplemental material of our previous work.> These
determinable constants are free of the effects of centrifugal distortion and are independent of the
choice of A or S reduction used in the least-squares fitting. Details of the synthesis of the
isotopologues, the instrumentation, the spectra, and further analyses are reported in the earlier
study. Due to complications arising from the coupling between the ground state and low-lying
bending fundamentals vs and vs, care must be taken to ensure that the rotational constants used in
the structure determination are unperturbed. The rotational constants determined in our previous
work® (which did not address the c-type Coriolis and a-type Coriolis couplings between the ground
state and fundamentals vs and v, respectively) and determined in a more recent work® (which

contains additional ground-state transitions and addresses the coupling of vs and ve) are provided

* The CCSD(T)/cc-pCV5Z optimized parameters of hydrazoic acid reported in Table VI and Figure 3 of Amberger et
al., 2015, are incorrect; specifically, the parameters are inconsistent with the CCSD(T)/cc-pCV5Z optimization output
file in the supplementary material of that same work. The values that are present in the output file of the supplementary
material were replicated in this work, and all references and comparisons herein involving the previous CCSD(T)/cc-
pCV5Z structure refer to these correct CCSD(T)/cc-pCV5Z values.
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in Table 2.1. Neither of these least-squares fits adequately addresses the coupling present in the
system, as evidenced by the relatively poor agreement between the computed centrifugal distortion
constants and their corresponding experimentally determined values. In particular, the K-
dependent computed and experimental centrifugal distortion constants (4k, ok, @k, and ¢k) do not
have the expected level of agreement, making it likely that both fits have allowed Coriolis coupling
to be absorbed into those constants. A collaborative effort is underway to address the unresolved
coupling issues of the ground and vibrationally excited states of HN3 and DN3. Fortunately, the
close agreement of the rotational constants between the two previous published least-squares fits>
® provides confidence that the ground state rotational constants can be used in a structure
determination without addressing the coupling. While addressing the Coriolis-coupling in
different ways, the two least-squares fits obtained rotational constants that differ only in the sixth
significant figure. Furthermore, the determinable constants from the A- or an S-reduction least-
squares fit agree to within a few kHz. Confidence in the rotational constants derived from this
agreement is critically important because the interactions between the ground state and
vibrationally excited states for many isotopologues observed at natural abundance cannot be
addressed in a practical manner due to the low intensity of the rotational transitions for these

species.
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Table 2.1. Spectroscopic Constants of HN3 (A-Reduced Hamiltonian, I" Representation)

CCSD(T)/cc-pCV5Z  Amberger et al.® Vévra et al.%?
Ao (MHz) 611182 611034.132 (29) 611036.218 (13)
Bo (MHz) 12053 12034.983 (62) 12035.03574 (95)
Co (MHz) 11801 11780.6713 (66) 11780.62295 (77)
Ay (kHz) 4.75 4.9174 (10) 4.91845 (24)
A (kHz) 774 797.98 (15) 771.43 (61)
Ak (kHz) 226000 267559 (27) 146050 (620)
0y (kHz) 0.0778 0.09118 (22) 0.091726 (28)
o (kHz) 318 403.9 (31) 428.96 (41)
@; (Hz) —0.000966 [0]° [0]°
Dy (Hz) 1.95 1.19 (10) [0]°
@ (Hz) —983 255 (14) 16.89 (42)
dx (Hz) 282000 [0]° 661.1 (20)
¢ (Hz) 0.0000784 [0]° [0]°
¢ (Hz) 1.46 [0]° [0]°
o (Hz) 3960 [01° [0]°
Lkky (MHz) —40010 (400) [0]°
Aio (UA?) 0.0685 0.0794 0.0798
Mines 78 mmw 273 mmw / 859 ir
aiit (MHz) 0.032 0.042/72.5

3 a-type and c-type Coriolis couplings addressed with the ground state, v5 and v6, see previous work® for details.
b Computed sextic centrifugal distortion constants not available during previous work and values fixed to zero.

Computations

A developmental version of CFOUR was used to conduct all ab initio calculations.?? These
consisted of geometry optimizations, anharmonic VPT2, and magnetic properties calculations at
CCSD(T) using frozen-core approximated (cc-pVXZ) or all-electron (cc-pCVXZ) Dunning-style
basis sets (for X =D, T, Q, and 5). Isotopologue-dependent corrections to the rotational constants
were calculated to account for vibration-rotation interactions using the results of the VPT2
calculations and for electron-mass distributions using the results of magnetic property calculations.
These corrections were then combined with the average determinable Ao”, Bo”, and Co” constants

to obtain semi-experimental equilibrium constants (B¢*) for each isotopologue, using Eq. (2.51).
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The reSE structure of HN3 was then determined by a nonlinear least-squares fit of the corresponding
moments of inertia, using the xrefit module included within CFOUR, with all values weighted
equally.

Further analysis of the r¢°E structure determination was conducted using the xrefiteration
routine, which is described in detail in Chapter 1 of this thesis and elsewhere.* Concisely, an initial
r>E structure determination is obtained for the "minimal set” of isotopologues, which consist of
the normal isotopologue and any isotopologue differing by a single isotopic substitution. The
xrefiteration routine then obtains a set of r.° structures where only one previously unincorporated
isotopologue of those remaining is added into the dataset. The routine then estimates the overall
"apparent precision" by calculating the total relative uncertainty (dr.°F) of the resulting structures
using Eqg. (2.1), where R;, 6, and ¢i represent bond distances, angles, and dihedrals, respectively,
and orit is the statistical uncertainty from the least-squares fit of the re>E.

R EETCTECY B

The re>E structure with the smallest apparent precision is kept and the process is repeated until all
isotopologues are included. As we demonstrated for thiophene,? thiazole,® and pyridazine,* the
utility of this analysis lies in tracking the progression of the structural parameters in comparison

to the theoretical values to assess the accuracy of the final structure.

Finally, we calculated a "best theoretical estimate™ (BTE) equilibrium structure for HN3,
using the previously described methodology,’* which takes into account the following

contributions to the geometry beyond a normal coupled cluster geometry optimization:

1. Residual basis set effects, Eq. (2.2), by means of extrapolation to the complete basis

set (CBS) limit using CCSD(T)/cc-pCVXZ (X =Q, 5, and 6).
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AR (basis) = R(o0)— R(CCSD(T)/cc-pCV6Z) 2.2)

2. Residual electron correlation effects, Eq. (2.3), by use of CCSDT(Q).?
AR(corr) = R(CCSDT(Q)/cc-pCVTZ)—R(CCSD(T)/cc-pCVTZ) (2.3)

3. Scalar relativistic effects, Eq. (2.4), by use of the X2C-1e variant of coupled-cluster

theory.2426

AR(rel) = R(CCSD(T)/cc-pCV52) R(CCSD(T)/cc-pCV52) (2.4)

SFX2C-le

4. Effect of the Born-Oppenheimer approximation, Eq. (2.5), by use of the diagonal Born-

Oppenheimer correction (DBOC).?"-%

AR(DBOC) = R(SCF/cc-pCVTZ) R(SCF/cc-pCVTZ) (2.5)

DBOC
The correction to the CCSD(T)/cc-pCV56Z optimization necessary to obtain the BTE is then given

by the sum of the above corrections for each parameter, as in Eq. (2.6).

AR (best) = AR (basis )+ AR(corr)+ AR(rel )+ AR(DBOC) (2.6)

RESULTS AND DISCUSSION

Structure Determinations

The planar structure of HNs allows an assessment of the quality of the computed
corrections to the rotational corrections, specifically by examining inertial defects associated with
the experimental and semi-experimental rotational constants. The inertial defect is precisely zero
for a rigid planar structure, but the uncorrected experimental rotational constants (Bo*) will have a

non-zero inertial defect (4io) due to vibration-rotation interactions and the electron-mass
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distribution. These deviations are addressed by the computational corrections used to obtain the
semi-experimental B¢* rotational constants and should bring the approximate 4 e closer to zero.
Previously for HN3,® the inertial defect was reduced to about 3% of its original value after inclusion
of the vibration-rotation corrections (Table 2.2). Subsequent addition of an isotopologue-
independent electron-mass correction to the rotational constants did not further reduce the
magnitude of the inertial defect but slightly increased its value. In cases where the electron-mass
distribution in the molecule is not well-described by subsuming the electron masses into the nearby
nuclei,** 2° use of isotopologue-dependent electron-mass corrections has been shown to reduce
the 4i e by about one order of magnitude. In the current study, CCSD(T)/cc-pCV5Z corrections
have been applied to the rotational constants resulting in inertial defects roughly two-thirds the
magnitude of the ANO2-corrected inertial defects. The inertial defects with both vibration-rotation
and electron-mass corrections, however, are still slightly larger than those using just the vibration-
rotation corrections at the cc-pCV5Z level, similar to the relationship previously observed at the
ANO?2 level. The extensive computational analysis in the current study allows us to extrapolate
the vibration-rotation and electron-mass corrections to the rotational constants to the CBS limit
(Supporting Information, Table 2.6). Application of these CBS corrections to the Bo* constants to
obtain the semi-experimental B¢* constants results in inertial defects that are nearly identical to
those obtained at the cc-pCV5Z level, with identical standard deviations (Table 2.2). The close
agreement of the inertial defects obtained using either cc-pCV5Z or CBS corrections suggest that
the cc-pCV5Z basis is sufficient for obtaining accurate corrections to the rotational constants. The
lack of improvement to the inertial defect with inclusion of the electron-mass correction is

consistent with the earlier study® and this lack of improvement is broadly consistent with the near-



43

cylindrical nature of HNs where electron mass is radially distributed around the H-N-N-N

backbone in the in-plane and out-of-plane 7 orbitals.?°

Table 2.2. Inertia Defects (4;) of Hydrazoic Acid Isotopologues

Exp.° ANO2° cc-pCV5Z CBS
dio Aie
Isotopologue  (uA?) (UA??  Aie WAD®  Aie (UAD? die UAD®  Aie (UAD? Aie (UA?)P
normal  0.0735 0.00353 0.00360 0.00273 0.00280 0.00274  0.00289
[H] 0.0963 0.00342 0.00343 0.00236  0.00243 0.00276 0.00291
[1-1°N]  0.0738 0.00355 0.00363 0.00274 0.00281 0.00271 0.00286
[2-°N]  0.0736 0.00350 0.00357 0.00270 0.00277 0.00275 0.00290
[3-1°N] 0.0736 0.00353 0.00362 0.00273 0.00280 0.00238 0.00253
[°H, 1-°N]  0.0967 0.00345 0.00345 0.00237 0.00245 0.00240 0.00255
[H, 2-°N]  0.0962 0.00345 0.00346 0.00239 0.00246 0.00241 0.00256
[°H, 3-°N]  0.0964 0.00343 0.00344 0.00236 0.00244 0.00239 0.00254
[1,2-°N]  0.0739 0.00354 0.00362 0.00273 0.00280 0.00275 0.00290
[1,3-©®*N]  0.0739 0.00354 0.00363 0.00273 0.00280 0.00275 0.00290
[2,3-°N]  0.0737 0.00348 0.00356 0.00267 0.00274 0.00269 0.00284
[°H, 1,2-°’N]  0.0966 0.00346  0.00347 0.00239 0.00246 0.00241 0.00256
[°H, 1,3-°'N]  0.0969 0.00346 0.00347 0.00238 0.00246 0.00241 0.00256
[°H, 2,3-1°’N]  0.0963 0.00343 0.00345 0.00237 0.00244 0.00239 0.00254

Average (x¥)  0.0851 0.00348 0.00353  0.00255 0.00262  0.00257 0.00272
Std. Dev. (s)  0.0118 0.00005 0.00008  0.00018 0.00018  0.00018 0.00018

2 Vibration-rotation interaction corrections only.
b Vibration-rotation interaction and electron-mass corrections.

The re5E structure determinations in Table 2.3 (and visualized in Figure 2.6 in the
Supporting Information) using previously obtained data and increasingly larger correlation-
consistent basis sets clearly demonstrate the improvement in the fitting of the structural parameters
as the basis set grows larger. The structure obtained using corrections with the largest basis set
(cc-pCV5Z, Figure 2.2) has the smallest statistical uncertainties and agrees well with the re>t
structure obtained using the CBS corrections described above. Unsurprisingly, the parameters of

the re>E cc-pCVDZ structure are the most poorly determined of all the reSF structures, with
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uncertainties in the parameters nearly twice as large as those obtained using the triple-zeta basis.
Notably, the re>E structure previously obtained using the ANO2 corrections is similar to that using
the cc-pCVTZ corrections, with nearly identical 26 uncertainties in the parameters, and with values

of the parameters in better agreement with the re>F cc-pCV5Z values.

109.12 (3)°

1.0158 (2) L

1.1307 (6)

N
1.2418 (6) 171.50 (8)°

Figure 2.2. Semi-experimental equilibrium structure (re%) of hydrazoic acid with 2o statistical
uncertainties from least-squares fitting the isotopologue moments of inertia, after applying
computed corrections (CCSD(T)/cc-pCV52Z) for the effects of vibration-rotation coupling and

electron-mass distribution.

To examine the effects of the different isotopologues on the reE structure, we conducted
an xrefiteration analysis on the r.°8 CCSD(T)/cc-pCV5Z structure. For hydrazoic acid, the
minimal set necessary to obtain a substitution structure is comprised of the normal isotopologue
and the singly substituted isotopologues ([?H]-, [1-**N]-, [2-®N]-, and [3-°N]-hydrazoic acid).
Using the xrefiteration routine, we obtained the r¢>E structure using this minimal set as the initial
set and then iteratively expanded the set of isotopologues until all were included. The isotopologue
added to expand the set was that with the lowest "apparent precision™, calculated using Eqg. 2.1, in
which ore>E is the total relative i.e., dimensionless, uncertainty of the structural parameters
explicitly determined in the fit. As shown in Figure 2.3 (and enumerated in Table 2.7 of the

Supporting Information), the effect of adding isotopologues beyond the minimal set required for a
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substitution structure is immediately noticeable, with the inclusion of the first additional
isotopologue ([?H, 3-°N]) reducing Jr.°F by 15%. Addition of the next isotopologue ([°H, 1,2-
15N1) reduces dre>F by 30% relative to the minimal set. With each iteration of the algorithm, Jre5
of the resulting reF structure continues to decrease, eventually to 50% smaller than the initial
value. Notably, a rise in the dre°F at the end of the xrefiteration analysis, observed in previous
works,?* did not occur here. In those previous works, we observed that the last few isotopologues
tend to increase the ore>F due to the nature of the algorithm: the isotopologues that raise the Jre>t
are only added at the end of the analysis, after all isotopologues that lower the Jre.° have been

n*

added. The absence of such behavior for the HNj re°E structure suggests that even the "worst™” of
the isotopologues in the data set still lower the Jre5, giving us confidence that the underlying
spectroscopic data and theoretical corrections for the re5E structure determination are consistent.

Therefore, given that the data set contains 14 of the 16 possible stable isotopologues of HNs, we

suspect that such consistency corresponds to accuracy.

* The use of the word "worst" here refers to the degree to which information provided by the isotopologue in question
is consistent with the information provided by the other isotopologues in the data set and does not necessarily reflect
the quality of the spectroscopic data or computed corrections for that isotopologue. As seen in pyridazine,* the
inclusion of the final isotopologue resulted in a dramatic increase in the or.SF but was required for accurate
determination of several parameters.



Table 2.3. Summary of r¢5 Structural Parameters of Hydrazoic Acid?

Parameter ANO2° cc-pCvDZ cc-pCVTZ cc-pCVvQZ cc-pCV5Z CBS

Ru-n: (A) 1.01577 (32) 1.01572 (59) 1.01571 (33) 1.01583 (26) 1.01584 (24) 1.01584 (25)
Rninz (A) 1.24174 (74) 1.24166 (133) 1.24166 (74) 1.24176 (58) 1.24178 (55) 1.24178 (57)
Rnz-ns (A) 1.13066 (76) 1.13080 (136) 1.13066 (75) 1.13068 (59) 1.13068 (56) 1.13068 (58)

Onninz (°)  109.133 (34) 109.192 (62) 109.148 (35) 109.116 (27) 109.118 (26) 109.117 (27)
Oninzns (°) 17150 (10) 171.47 (18) 171.53 (10) 171.499 (80) 171.497 (76) 171.495 (79)

@ Evaluated from the average determinable rotational constants of 14 isotopologues, with corrections for vibration-rotation coupling and electron-mass distribution
computed at CCSD(T) using the specified basis set.

1%
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Figure 2.3. Plot of the 6r°F value as a function of the number of isotopologues (Niso) incorporated
into the re58 CCSD(T)/cc-pCV5Z structure determination data set. The total relative statistical
uncertainty (6re°%, blue squares), the relative statistical uncertainty in the bond distances (green

triangles), and the relative statistical uncertainty in the bond angles (purple circles) are presented.

To assess the quality of the reSE structure of HN3s, we examined how the parameters of the
structure change throughout the xrefiteration analysis. As demonstrated by Figure 2.4 and Table
2.4, there is remarkably little change in the parameter values throughout the xrefiteration analysis.
The variation in the values of the bond distances and angles is <0.00005 A and <0.001°,
respectively, which is well within the 26 uncertainties of the respective parameters. Such variation
in the parameters throughout the xrefiteration analysis contrasts with that observed in our previous
works: ~0.0004 A and ~0.05° for the bond distances and angles of pyridazine and thiophene, and
~0.0014 A and ~0.4° for the bond distances and angles of thiazole. Itappears that the HN3 structure

converges very rapidly, and, after nine isotopologues, the only change in the structural parameter
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values is 0.00001 A for Rni-na. The convergence of the structural parameters and their close
agreement with their BTE values (dotted lines in Figure 2.4) provides confidence that the resulting
rE structure is both accurate and precise, despite the unaddressed coupling in the least-squares

fits used to determine the experimental rotational constants.
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Figure 2.4. Plots of the r.° CCSD(T)/cc-pCV5Z structural parameters of hydrazoic acid as a
function of the number of isotopologues (Niso) and their 26 uncertainties with consistent scales for
each distance (0.002 A) and each angle (0.2°). The dashed line in each plot is the BTE value
calculated for that parameter. The isotopologue ordering along the x-axis is the same as that in

Figure 2.3.



Table 2.4. Values of the Structural Parameters of Hydrazoic Acid During the Iterative Analysis of the r. CCSD(T)/cc-pCV5Z

(xrefiteration)

Isotopologue Parameters
Niso Added Ru i (A) Rni e (A) Rz ns (A) Onnine (°)  Oninens (9)
5 Minimal Set® 1.01584 (58) 1.24177 (116) 1.13069 (119) 109.119 (43) 171.496 (135)
6  [2H,3-5N] 1.01584 (41) 1.24178(100) 1.13067 (104) 109.118 (37) 171.497 (113)
7 [PH,12-5N] 1.01584 (36) 1.24175(76) 1.13070(78) 109.118 (36) 171.497 (107)
8 [1,2-5N] 1.01584 (35) 1.24174(69) 1.13071(72) 109.118 (32) 171.497 (98)
9 [23-°N] 101584 (34) 1.24176 (63) 1.13069 (64) 109.118 (30) 171.497 (92)
10 [2H,23-5N] 1.01584 (30) 1.24177 (59) 1.13068 (61) 109.118 (29) 171.497 (87)
11 [2H,1-°N] 1.01584 (28) 1.24177 (55) 1.13068 (57) 109.118 (28) 171.497 (84)
12 [2H,2-5N] 1.01584 (26) 1.24177 (55) 1.13068 (56) 109.118 (28) 171.497 (82)
13 [1,3-15N] 1.01584 (26) 124178 (55) 1.13068 (56) 109.118 (26) 171.497 (77)
14 [?H, 1,3-°N] 1.01584 (24) 1.24178(55) 1.13068 (56) 109.118 (26) 171.497 (76)

2 Number of isotopologues in the iteration
® The initial iteration consists of the normal isotopologue and [?H]-, [1-*°N]-, [2-1°N]-, and [3-1°N]-hydrazoic acid

6v
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Theoretical Predictions

As with the aromatic heterocycles that we have recently studied,* we obtained CCSD(T)
geometry optimizations using up to and including the all-electron quintuple-zeta basis set. The
small size of HN3z allowed us to expand the basis set even further to the all-electron sextuple-zeta
basis set. Interestingly, we see that the purely theoretical re structural parameters computed using
CCSD(T)/cc-pCV6Z do not fall within the statistical uncertainties of the ret parameters. As we
noted in related works,* molecular structures predicted using CCSD(T) computations with a large
basis set — while an adequate approach in a wide variety of computational contexts®*-3! — are
insufficiently accurate for comparison to the high precision of reE structure determinations.
Furthermore, extrapolating the parameters to the CBS limit (Supporting Information, Table 2.9,
"re+4R(basis)") is not sufficient to bring the theoretical parameters into agreement with the re>t

parameters.

Similar to that observed with the re°E structures when the basis set increases in size, the re
parameters also converge at an exponential rate (Table 2.8 and Figure 2.7 in the Supporting
Information) with the exception of &n1-n2-n3. The non-exponential behavior of this angle leads to
a spurious R(o0) value that is closer to the triple-zeta value than it is to the sextuple-zeta value. As
such, we set the R(0) value for On1-n2-n3 t0 the sextuple-zeta value, which is equivalent to setting
the AR (basis) correction for Oni-n2-n3 tO zero, as given in Table 2.5. Ultimately, this change has
practically no effect on the outcome of the BTE structure and the following discussion: the angle
is now slightly smaller but still well within the statistical uncertainty of the re5¢ CCSD(T)/cc-

pCV5Z value.
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The precision of the re°E structure is such that correcting for the size of the basis set is
insufficient to bring the re structure into agreement. To do so, the re structure must also be treated
for electron correlation and for effects due to relativity and the (diagonal) Born-Oppenheimer
correction. As demonstrated in Table 2.5 and Figure 2.5, the inclusion of such effects results in a
best theoretical estimate (BTE) structure that is in complete agreement with the re5E structure. All
parameters from the BTE structure fall within the statistical uncertainties of the re5 structure. As
is typically the case, the CBS correction [Eq. (2.2)] contracts the bond lengths while the correlation
correction [Eq. (2.3)] lengthens the bonds (Table 2.5). Unlike pyrimidine, where the DBOC
correction lengthened the bonds and the relativistic correction contracted the bonds, we observe
mixed effects of the DBOC and relativistic corrections on the HN3 bond lengths (Table 2.5); such
was also the case for pyridazine. The largest magnitude correction is the correlation correction for

all parameters except On-n1-n2.



Table 2.5. Corrections Used in Determining the Best Theoretical Estimate (BTE) of the Equilibrium Structural Parameters of Hydrazoic

Acid, with Comparison to the re>E Determined Values.

reSE
AR(basis)  4R(corr) AR(rel) AR(DBOC)  4R(best) CCSD(T)/ CCSD(T)/
Parameter eqn (2) eqn (3) eqn (4) eqgn (5) eqn (6)  cc-pCV6Z BTE? cc-pCV5Z
Ru-n (A) —0.000010 0.00014 0.000027 0.000078 0.00024 1.01548 1.01572 1.01584 (24)
Rninz () —0.00011 0.00133 0.00019 —0.000065 0.00135 1.24078 1.24213 1.24178 (55)
Rnz-nz (A)  —0.000078 0.00213 —0.00019 —0.000015 0.00185 1.12925 1.13109 1.13068 (56)
On-n1N2 (°) 0.015 0.062 —0.087 0.012 0.0018  109.103 109.105 109.118 (26)
Oninens () O° —0.208 ~0.026 0.0041 -0.166  171.697  171.467  171.497 (76)

@ Obtained by adding the AR(best) correction to the CCSD(T)/cc-pCV6Z optimized values.

® This angle does not converge at an exponential rate with respect to the size of the basis set, leading to a spurious R() value upon extrapolation. As
such, the R(ec) value for this angle has been set to that of the CCSD(T)/cc-pCV6Z structure, which results in a 4R(basis) of this angle of zero per Eq. (2.2).

¢S
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Figure 2.5. Graphical comparison of the hydrazoic acid structural parameters with bond distances

in angstroms (A) and angles in degrees (°). Uncertainties shown are 2c. Data for re>t

CCSD(T)/ANO?2 are taken from Ref. 5.

CONCLUSIONS

The reSE structure determinations of HN3z using CCSD(T)/cc-pCV5Z corrections for the
effects of vibration-rotation coupling and electron-mass distribution resulted in a modest reduction
of the statistical uncertainties (20) of the structural parameters over those previously obtained with
CCSD(T)/ANO2 corrections. Given that these two re°F structures determined the bond distances
and bond angles to within 0.0001 A and 0.02° of each other, the smaller ANO2 basis is
recommended for r¢5E structure determinations of larger molecules, where a quintuple-zeta basis
set is impractical. In our previous work on pyridazine, application of isotopologue-dependent

electron-mass corrections resulted in a dramatic improvement in the semi-experimental inertial
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defects (4i ¢), but similar treatment for HN3 in this work did not. The lack of a reduction in 4; e for
HN3s upon inclusion of the isotopologue-dependent electron-mass corrections is puzzling. While
HN3s is highly prolate and pyridazine is highly oblate, why (or even if) the near-cylindrical shape
and radial distribution of the electrons of HNs would affect the electron-mass corrections is not
clear. The more likely explanation is that the VPT2 corrections for treating the vibration-rotation
interactions — while reducing the inertial defect — are not accurately adjusting the rotational
constants and the subsequent electron-mass corrections (being smaller in magnitude) are unable to

affect a change, in which case higher-order perturbation theory may be required.

Given the high level of theory used to obtain the corrections and the inclusion of rotational
constants from 14 of the 16 possible isotopologues, further improvement to the reSt structure
determination will be difficult to achieve. Analysis of the present re°E structure determination
using the xrefiteration routine revealed continuous improvement in the r¢>E structure as additional
isotopologues were included in the data set, with very little variation in the values of the structural
parameters, suggesting the underlying data is remarkably self-consistent. While the purely
theoretical re structural parameters computed using CCSD(T)/cc-pCV6Z do not fall within the
statistical uncertainties (26) of the re>F structure, structural parameters obtained from the "best
theoretical estimate™ are in excellent agreement with the semi-experimental values. The molecular
structure of hydrazoic acid, already known to high precision through previous work, has been
further refined by improvements in computational methods and theoretical analyses, illustrating

the state-of-the-art for contemporary gas-phase structure determination.
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Evaluation of Semi-Experimental Equilibrium Rotational Constants (B¢*)

The B¢* constants are obtained for each isotopologue using Eq. 2.S1. The ground-state

rotational constants (Bo*), in this case the averaged determinable constants take from Amberger et
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al., 2015, are combined with the vibration-rotation interaction corrections (%Zaix) and the

electron-mass distribution corrections (—7g™ Biesom )- This evaluation is handled automatically

by the xrefit module of CFOUR, once provided the requisite information. The moments of inertia

and inertial defects are similarly calculated using xrefit.

1
B =By +§Zaix —ng® BéCSD(T) (2.81)

Complete Basis Set (CBS) Extrapolation

All basis set extrapolations were conducted using Eq. 2.S52, which is the three-point solution to the

exponential equation given by Eq. 2.S3, assuming that X, + 2 = x, +1= x; for the zetas of the basis

sets of the calculated parameters.

RO -ROR()
M) = R00) + R (%) 2R () (252

R(X)=R(x)+Ae™ (2.53)



Table 2.6. Semi-experimental equilibrium rotational constants (B¢*) of isotopologues of hydrazoic acid and the CCSD(T) corrections
used to obtain them, including CBS extrapolation of the triple-, quadruple-, and quintuple-zeta corrections using Eqg. 2.S2. The ground

state rotational constants (Bo*) are the average determinable rotational constants taken from Amberger et al. 2015.

normal [*H]
cc-pCVDZ  cc-pCVTZ cc-pCVQZ  cc-pCV5Z CBS cc-pCVDZ cc-pCVTZ  cc-pCVQZ  cc-pCV5Z CBS

A 611034.143 344746.621

Bf B 12034.984 11350.717

C 11782.287 10965.958
A —503.701 —1208.588 —1950.624 -—1986.772 —1988.623 340.712  —238.437 -527.732 —534.159  —534.305
%Zai" B 57.182 58.478 57.649 57.744 57.734 49.426 51.399 50.764 50.809 50.806
c 73.384 75.014 74.130 74.253 74.238 67.992 70.059 69.368 69.449 69.440
A 43.207 54.132 60.262 63.178 65.822 8.334 11.581 13.381 14.230 14.989
n9°"B&cspr) B —0.405 -0.448 —0.470 —0.486 —0.523 —0.358 —0.396 —0.415 —0.429 —0.463
C —0.370 —0.399 —0.414 —0.423 —0.437 —0.324 —0.349 —0.362 —0.370 —0.381
A 610530.442 609825.555 609083.520 609047.371 609045.520 345087.333 344508.184 344218.889 344212.462 344212.316
B§+%Za§‘ B 12092.165 12093.462 12092.633 12092.727 12092.718  11400.143 11402.117 11401.481 11401.526 11401.523
C 11855671 11857.301 11856.417 11856.541 11856.525  11033.951 11036.017 11035.326 11035.407 11035.399
A 610573.649 609879.687 609143.782 609110.549 609111.342 345095.667 344519.765 344232.270 344226.693 344227.306
Bf B 12091.760 12093.014 12092.163 12092.241 12092.194  11399.785 11401.721 11401.065 11401.097 11401.061
C 11855301 11856.902 11856.002 11856.117 11856.089  11033.626 11035.668 11034.964 11035.037 11035.018

19



Table 2.6 (continued)

[l-lSN] [2_15N]
cc-pCVDZ cc-pCVTZ cc-pCVQZ  cc-pCV5Z CBS cc-pCVDZ cc-pCVTZ cc-pCVQZ  cc-pCV5Z CBS

A 605576.900 610033.003

Bf B 11668.321 12034.149

C 11428.634 11781.100
A —-613.863 —1276.628 -2013.172 -2050.642 —2052.650 —676.998 -1337.761 -2083.467 -2121.896 -2123.984
%Zai" B 55.010 56.192 55.373 55.466 55.457 56.554 57.796 56.986 57.079 57.070
c 70.279 71.787 70.915 71.036 71.021 72.736 74.323 73.455 73.577 73.562
A 43.821 54.590 60.644 63.523 66.137 42.859 53.763 59.868 62.771 65.404
n9°"BEcspr) B -0.382 -0.423 -0.444 -0.459 -0.493 —0.405 —0.448 —0.470 —0.486 —0.523
C -0.349 -0.377 -0.391 -0.399 -0.412 -0.370 -0.399 -0.414 -0.423 -0.436
A 604963.036 604300.272 603563.727 603526.258 603524.249 609356.005 608695.242 607949.536 607911.106 607909.018
B§+%Za3f B 11723331 11724513 11723.694 11723.788 11723.778  12090.704 12091.946 12091.136 12091.229 12091.219
C 11498914 11500.421 11499.549 11499.670 11499.656  11853.836 11855423 11854.555 11854.677 11854.662
A 605006.857 604354.862 603624.371 603589.781 603590.386 609398.864 608749.005 608009.404 607973.878 607974.422
BZ B 11722949 11724.091 11723.250 11723.329 11723.285  12090.299 12091.498 12090.665 12090.743 12090.696
C 11498565 11500.045 11499.159 11499.271 11499.244  11853.467 11855.024 11854.141 11854.254 11854.226

29



Table 2.6 (continued)

[3-5N] [?H, 1-15N]
cc-pCVDZ cc-pCVTZ cc-pCVQZ  cc-pCV5Z CBS cc-pCVDZ cc-pCVTZ cc-pCVQZ  cc-pCV5Z CBS
A 610977.577 340247.312
Bf B 11642.536 11045.521
C 11405.842 10676.372
A 522516 —1220.178 -1962.609 -1998.957 -2000.828 341460 —212.127 —496.570 -503.009 —503.158
%Zai" B 54.951 56.205 55.415 55.507 55.497 47.727 49.573 48.936 48.983 48.980
c 70.169 71.738 70.895 71.015 71.000 65.408 67.357 66.670 66.751 66.742
A 43.151 54.072 60.197 63.111 65.755 8.831 12.019 13.794 14.634 15.387
n9°"BEcspr) B -0.377 -0.418 -0.439 -0.453 -0.489 -0.341 -0.377 —0.395 —0.408 —0.439
C —0.345 -0.373 -0.387 -0.395 -0.408 -0.308 -0.332 -0.344 -0.352 -0.362
A 610455.061 609757.399 609014.968 608978.620 608976.749 340588.773 340035.186 339750.742 339744.304 339744.155
B§+%Za3f B 11697.488 11698.742 11697.951 11698.043 11698.034  11093.248 11095.093 11094.457 11094.504 11094.500
C  11476.011 11477580 11476.737 11476.856 11476.841  10741.779 10743.729 10743.042 10743.123 10743.114
A 610498.211 609811.470 609075.166 609041.731 609042.504 340597.604 340047.205 339764.537 339758.937 339759.541
BZ B 11697.110 11698.324 11697.513 11697.590 11697.545  11092.907 11094.717 11094.062 11094.095 11094.061
C  11475.665 11477.207 11476.350 11476.461 11476.433  10741.471 10743.397 10742.697 10742.771 10742.752

€9



Table 2.6 (continued)

[2H, 2-5N] [2H, 3-°N]
cc-pCVDZ cc-pCVTZ cc-pCVQZ  cc-pCV5Z CBS cc-pCVDZ cc-pCVTZ cc-pCVQZ  cc-pCV5Z CBS
A 344618.818 344727.744
Bf B 11348.346 10979.893
C 10963.631 10619.408
A 328.923 243781 -533.488 -539.951 —540.098 341.055 —237.728 -526.734 -533.174 -533.321
%Zai" B 48.870 50.795 50.178 50.222 50.219 47.530 49.434 48.826 48.871 48.868
c 67.428 69.455 68.780 68.860 68.852 64.995 66.988 66.329 66.407 66.399
A 8.295 11.543 13.341 14.190 14.948 8.351 11.601 13.402 14.253 15.013
n9°"BEcspr) B —0.358 -0.396 -0.415 -0.429 -0.462 -0.334 -0.369 —0.387 —0.400 —0.432
C —-0.324 -0.349 -0.362 -0.370 -0.381 -0.303 -0.326 -0.339 —0.346 -0.357
A 344947742 344375.038 344085.331 344078.868 344078.720 345068.799 344490.016 344201.010 344194.570 344194.423
B§+%Za3f B 11397.216 11399.141 11398.523 11398.568 11398.565  11027.423 11029.327 11028.719 11028.764 11028.761
C  11031.059 11033.086 11032.411 11032.491 11032.483  10684.403 10686.396 10685.737 10685.815 10685.807
A 344956.037 344386.581 344098.672 344093.058 344093.669 345077.149 344501.617 344214.413 344208.823 344209.436
BZ B 11396.858 11398.745 11398.108 11398.139 11398.103  11027.089 11028.958 11028.331 11028.364 11028.329
C  11030.735 11032.737 11032.049 11032.121 11032.102  10684.100 10686.070 10685.398 10685.470 10685.451

¥9



Table 2.6 (continued)

[1,2-55N] [1,3-®N]
cc-pCVDZ cc-pCVTZ cc-pCVQZ  cc-pCV5Z CBS cc-pCVDZ cc-pCVTZ cc-pCVQZ  cc-pCV5Z CBS
A 604507.443 605510.191
Bf B 11666.355 11283.093
C 11426.344 11058.772
A —796.361 -1413.775 -2153.962 -2193.824 -2196.094 —635.009 -1290.280 -2027.282 -2064.976 —2067.007
%Zai" B 54.393 55.522 54.721 54.813 54.803 52.845 53.990 53.208 53.299 53.290
c 69.639 71.104 70.248 70.367 70.352 67.174 68.625 67.794 67.911 67.897
A 43.465 54.211 60.238 63.105 65.706 43.763 54.527 60.575 63.452 66.063
n9°"BEcspr) B -0.382 -0.422 -0.443 -0.458 -0.493 —0.356 -0.394 -0.414 -0.427 —0.460
C -0.349 -0.376 -0.391 -0.399 -0.411 -0.325 -0.351 —0.365 -0.373 -0.384
A 603711.082 603093.668 602353.481 602313.618 602311.349 604875.182 604219.911 603482.909 603445.215 603443.184
B§+%Za3‘ B 11720.748 11721.877 11721.075 11721.168 11721.158  11335.938 11337.082 11336.301 11336.392 11336.382
C 11495983 11497.448 11496.592 11496.711 11496.697  11125.946 11127.397 11126.566 11126.683 11126.668
A 603754.547 603147.879 602413.719 602376.723 602377.055 604918.945 604274.438 603543.484 603508.668 603509.247
BZ B 11720.366 11721.455 11720.632 11720.709 11720.665  11335.582 11336.689 11335.887 11335.965 11335.922
C  11495.635 11497.072 11496.201 11496.312 11496.285  11125.621 11127.045 11126.201 11126.310 11126.284

99



Table 2.6 (continued)

[2,3-5N] [?H, 1,2-°N]
cc-pCVDZ cc-pCVTZ cc-pCVQZ  cc-pCV5Z CBS cc-pCVDZ cc-pCVTZ cc-pCVQZ  cc-pCV5Z CBS
A 609961.095 340093.984
Bf B 11642.642 11041.857
C 11405.580 10672.817
A —697.557 —1349.883 -2095.925 -2134.585 -2136.698 328.016 —218.559 -503.447 -509.952 -510.104
%Zai" B 54.339 55.541 54.768 54.859 54.849 47.176 48.974 48.355 48.401 48.398
c 69.540 71.068 70.240 70.358 70.344 64.843 66.754 66.082 66.162 66.153
A 42.795 53.695 59.794 62.696 65.327 8.790 11.979 13.752 14.590 15.342
n9°"BEcspr) B -0.377 -0.418 -0.439 -0.453 -0.488 —0.340 -0.376 —0.395 —0.408 —0.439
C —0.345 -0.373 -0.387 -0.395 -0.408 -0.308 -0.332 -0.344 -0.351 -0.362
A 609263.538 608611.212 607865.169 607826.509 607824.396 340422.000 339875.425 339590.537 339584.032 339583.880
B§+%Za3f B 11696.980 11698.182 11697.410 11697.500 11697.491  11089.034 11090.831 11090.212 11090.258 11090.255
C 11475120 11476.648 11475820 11475.938 11475.924  10737.660 10739.570 10738.899 10738.978 10738.970
A 609306.333 608664.906 607924.964 607889.205 607889.723 340430.790 339887.404 339604.289 339598.622 339599.221
BZ B 11696.603 11697.765 11696.971 11697.047 11697.002  11088.693 11090.455 11089.818 11089.850 11089.816
C 11474775 11476275 11475434 11475543 11475516  10737.352 10739.239 10738.555 10738.627 10738.608

99



Table 2.6 (continued)

[°H, 1,3-1°N] [°H, 2,3-1°N]
cc-pCVDZ cc-pCVTZ cc-pCVQZ  cc-pCV5Z CBS cc-pCVDZ cc-pCVTZ cc-pCVQZ  cc-pCV5Z CBS
A 340233.197 344602.438
Bf B 10680.118 10978.923
C 10334.556 10618.402
A 341.818 -211.297 495478 -501.928 -502.078 329.360 —242.931 -532.355 -538.825 —538.973
%Zai" B 45.880 47.660 47.051 47.098 47.095 46.986 48.843 48.253 48.297 48.294
c 62.496 64.376 63.721 63.799 63.791 64.447 66.403 65.759 65.837 65.828
A 8.845 12.036 13.812 14.651 15.405 8.312 11.563 13.362 14.211 14.970
n9°"BEcspr) B -0.317 -0.351 -0.368 -0.380 -0.410 -0.334 -0.369 —0.387 —0.400 —0.431
C -0.287 -0.310 -0.321 -0.328 -0.338 -0.303 -0.326 -0.338 —0.346 —0.356
A 340575.015 340021.900 339737.719 339731.269 339731.120 344931.798 344359.506 344070.083 344063.613 344063.465
B§+%Za3f B 10725.998 10727.778 10727.169 10727.216 10727.213 11025909 11027.766 11027.176 11027.220 11027.217
C  10397.053 10398.933 10398.277 10398.356 10398.347  10682.850 10684.805 10684.161 10684.239 10684.230
A 340583.860 340033.936 339751.531 339745.921 339746.524 344940.109 344371.069 344083.445 344077.824 344078.435
BZ B 10725.681 10727.427 10726.801 10726.836 10726.803 11025576 11027.397 11026.788 11026.820 11026.785
C  10396.765 10398.623 10397.956 10398.027 10398.009  10682.547 10684.479 10683.823 10683.893 10683.874

L9
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Figure 2.6. Graphical comparison of hydrazoic acid re>F structural parameters obtained using

CCSD(T) corrections with various levels of theory, with consistent scales for each bond distance

(0.01 A) and each angle (1°).
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Table 2.7. Values of 67.°F of hydrazoic acid during iterative analysis of the re58 CCSD(T)/cc-

pCV5Z (xrefiteration).
Isotopologue Jore™t
Niso * Added Total Bonds  Angles
5  minimal set® 0.001756 0.001519 0.000880
6 [°H, 3-N] 0.001486 0.001289 0.000740
7 [H, 1,2-®'N] 0.001212 0.000985 0.000706
8 [1,2-°N] 0.001113 0.000910 0.000641
9 [2,3-°N] 0.001030 0.000834 0.000604
10  [°H, 2,3-°N] 0.000968 0.000781 0.000571
11 [?H,1-N] 0.000912 0.000724 0.000554
12 [°H, 2-N] 0.000894 0.000712 0.000540
13 [1,3-1°N] 0.000878 0.000713 0.000511
14 [°H, 1,3-N] 0.000865 0.000704 0.000501

@ Number of isotopologues in the iteration
® The initial iteration consists of the normal isotopologue and [2H]-, [1-1°N]-, [2-1*N]-, and [3-1°N]-hydrazoic acid



Table 2.8. Summary of geometry optimizations of hydrazoic acid.

CCSD(T)
Parameter  cc-pVTZ cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCVhZ cc-pCveZ  CBS?
Runt (A) 1.01808  1.02900 1.01664  1.01567  1.01543  1.01548  1.01547
Rnznz (A) 124764  1.25636  1.24416  1.24149  1.24098  1.24078  1.24067
Ruzns (A) 113618 1.14961  1.13300 1.13040 1.12948  1.12925  1.12917
Ouninz () 108.308  107.478  108.546  108.918  109.064  109.103  109.118
Onino-ns (°) 171655 171,131 171773 171741 171726  171.697 171.760
CCSDT(Q) DBOC SCF

Parameter cc-pVTZ cc-pCVDZ cc-pCVTZ  cc-pCVTZ  cc-pCVTZ

Runt (A) 1.01820 1.02921  1.01678 1.00317 1.00310

Rnznz (A) 1.24899  1.25787  1.24550 1.23300 1.23306

Ruz-ns (A) 113823  1.15186  1.13513 1.08681 1.08682

On-ninz (°) 108.364  107.547  108.608 108.196 108.184
Oni-nz-ns (°) 171.448 170.881  171.565 174.146 174.142

X2C-1e

Parameter  cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCVhZ

Runa (A) 1.02907 1.01668  1.01570  1.01545

Rnznz (A) 1.25661  1.24437  1.24168  1.24117

Ruz-ns (A) 1.14947  1.13282  1.13021  1.12929

Onninz () 107.388  108.458  108.830  108.976
Oninons (°) 171105 171747 171716  171.700

@ Extrapolated using Eq. (2.S2) and cc-pCVQZ, cc-pCV5Z, and cc-pCV6Z structures optimized with CCSD(T).
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Figure 2.7. Plots of the CCSD(T) optimized parameters of hydrazoic acid using increasingly

larger basis sets compared to values [R(w0)] extrapolated using Eq. (2.S2) and cc-pCVQZ, cc-

pCV5Z, and cc-pCV6Z basis sets. Values for the cc-pCVDZ calculations not displayed are beyond

the scale of the current plots, as indicated by the arrows and accompanying values.

Table 2.9. Cumulative effect of applying corrections to obtain the BTE for hydrazoic acid.

re+4R(basis)

re+4R(basis)

Parameter re? retAR(basis) +4R(corr) +A4R(corn)+AR(rel)  BTE
Ru-nt (A) 1.01548  1.01547 1.01561 1.01564 1.01572
Rni-nz (A) 1.24078  1.24067 1.24200 1.24220 1.24213
Rnz-ns (A) 1.12925  1.12917 1.13130 1.13111 1.13109
On-nine (°)  109.103  109.118 109.180 109.093 109.105
Oninong (°) 171.697  171.697° 171.789 171.463 171.467

2 CCSD(T)/cc-pCV6Z

® This angle does not converge at an exponential rate with respect to the size of the basis set, leading to a spurious

R(o0) value upon extrapolation. As such, the R() value for this angle has been set to that of the CCSD(T)/cc-pCV6Z

structure, which results in a AR (basis) of this angle of zero per Eq. (2.2).
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Figure 2.8. Graphical representation of the cumulative effects of corrections used to arrive at the

BTE structure of hydrazoic acid, with consistent scales for each bond distance (0.01 A) and each

angle (1°). Parameters from the re5F structure with 26 uncertainties are included for comparison.

The re in the legend refers to the CCSD(T)/cc-pCV6Z optimized structure. Per Table 2.5,

AR(basis) for Oni-n2-n3 has effectively been set to zero.
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ABSTRACT

A semi-experimental equilibrium structure (re°5) of pyridazine (0-CsHsN2) has been
determined using the rotational spectra of 18 isotopologues. Spectroscopic constants of four
isotopologues are reported for the first time (measured from 235 to 360 GHz), while spectroscopic
constants for previously reported isotopologues are improved by extending the frequency coverage
(measured from 130 to 375 GHz). The experimental values of the ground-state rotational constants
(Ao, Bo, and Co) from each isotopologue were converted to determinable constants (Ao”, Bo”, and
Co"), which were then corrected for the effects of vibration-rotation interactions and electron-mass
distributions using CCSD(T)/cc-pCVTZ calculations. The resultant reS for pyridazine determines
bond distances to within 0.001 A and bond angles within 0.04°, a reduction in the statistical
uncertainties by at least a factor of two relative to the previously reported re>E. The improvement
in precision appears to be largely due to the use of higher-level theoretical calculations of the
vibration-rotation and electron-mass effects, though the incorporation of the newly measured
isotopologues ([4-2H, 4-1C]-, [4-2H, 5-13C]-, [4-?H, 6-1*C]-, and [4,5-2H, 4-13C]-pyridazine) is
partially responsible for the improved determination of the hydrogen-containing bond angles. The
computed equilibrium structure (re) (CCSD(T)/cc-pCV5Z) and a "best theoretical estimate™ of the
equilibrium structure (re) both agree with the updated re>E structure within the statistical

experimental uncertainty (26) of each structural parameter.

INTRODUCTION

Pyridazine (0-CsHsN2, Coy, 1 = 4.22 D, Figure 3.1) is an aromatic heterocycle in which
adjacent C—H units of benzene are replaced by nitrogen atoms (Figure 3.2). As a prototypical

aromatic heterocycle,!? it is a species of astrochemical relevance.>® Benzene has been detected
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in the interstellar medium by infrared spectroscopy,® but it cannot be observed by radioastronomy
because it lacks a permanent dipole moment. Aromatic compounds that are polar by virtue of
inherent structural factors,”® heteroatom substitution,>> or polar substituents’®*? have been
important targets for astronomical detection (Figure 3.2). The recent detections of polar aromatic
compounds by radioastronomy (benzonitrile® and cyanonaphthalenes'#) represent dramatic

breakthroughs in astrochemistry and will undoubtedly inspire new searches for aromatic

heterocycles.

Figure 3.1. Pyridazine (0-C4H4N2, Cay, u = 4.22 D, x = 0.824) with principal axes and atom

numbering.
N
| N
o O
benzene pyridine
N. N N
YU ()
= N N/
pyridazine pyrimidine pyrazine

Figure 3.2. Benzene and nitrogen containing analogues.
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Some time ago, Werner et al.!®> measured the rotational spectrum of pyridazine and its
singly heavy-atom-substituted isotopologues from 9 to 33 GHz and obtained a partial substitution
structure (rs). In that first structure determination, parameters involving hydrogen atoms were held
constant because rotational constants from deuterium-containing isotopologues were not available.
Lopez et al.*® reported improved values for the rotational constants with precise Fourier-transform
microwave (FT-MW) measurements of hyperfine-resolved transitions. Several years later, our
group measured the spectrum of pyridazine at a higher frequency (235-360 GHz), reporting
spectroscopic constants for the ground state and six lowest-energy vibrationally excited states of
the normal isotopologue.®> These measurements enabled the first direct comparison of the
experimental and predicted [CCSD(T)] vibration-rotation interaction constants for an organic
molecule of this size, demonstrating good agreement between the two. Building on the synergy
of experiment and theory, the investigation was expanded to include a semi-experimental structure
(reSF) determination for pyridazine. Spectroscopic constants for a total of 14 isotopologues were
measured, including the normal isotopologue, three singly substituted heavy-atom isotopologues
detectable at natural abundance, and ten deuterium-substituted isotopologues from enriched
samples. Using CCSD(T) corrections to the rotational constants to account for the vibration-
rotation interaction and electron-mass distribution, a complete re5E structure of pyridazine
including the hydrogen-containing structural parameters was determined for the first time. That
study determined a highly precise re5 of pyridazine with statistical uncertainties (26) on the order

of 0.003 A for bond distances and 0.1° for bond angles.

The semi-experimental equilibrium structure of pyridazine® represented a significant
advance in the gas-phase structure determination of organic molecules. Since then, however, a

new standard for precision and accuracy has been achieved for re°E structure determinations, in
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general, and for aromatic heterocycles, in particular.t”'° In a striking result, each of the structural
parameters of pyrimidine (the meta-dinitrogen analogue of pyridazine; Figure 3.2) predicted by
the best available theoretical methods agree with those determined in the semi-experimental
equilibrium (reF) structure to within the 2o statistical uncertainties of the latter.'® The current
work aims to incorporate new spectroscopic data, improve the computational treatment, and raise
the precision of the r¢°E structure of pyridazine to that same standard. The previous observation,
measurement, and least-squares fitting of the [4-2H, 3-1*C]-isotopologue of pyridazine implied that
the spectra of the [4-2H, 4-13C]-, [4-?H, 5-13C]-, and [4-?H, 6-'3C]-isotopologues™ should also be
observable in the existing spectrum due to sharing the same natural *C abundance, without the
need for additional syntheses or spectroscopy. Indeed, we identified transitions for these new
species and included their spectroscopic constants in the current structure determination.
Rotational constants for the normal and singly heavy-atom substituted isotopologues were
improved by extending frequency coverage down to 130 GHz and up to 375 GHz. The use of a
larger, all-electron basis set (cc-pCVTZ) improved the quality of the vibration-rotation corrections
used to determine the equilibrium rotational constants and consequent moments of inertia. Finally,
the electron-mass correction was improved by incorporating corrections specific to each
isotopologue. Such an improved reSE structure for pyridazine provides an opportunity to test the
generality of the close agreement between the experiment and theory observed in pyrimidine.*®
Furthermore, the effect on the reSE structure determination of including isotopologues beyond those
minimally required for a rs structure determination will be assessed using the novel xrefiteration

analysis detailed in Chapter 1 of this thesis.

* The systematic IUPAC name for the isotopologue that we designate as [4-2H, 6-1°C] is actually [5-?H, 3-*C]. The
latter numbering scheme, however, obscures the relationship with the other 4-2H substituted isotopologues.
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COMPUTATIONAL METHODS

A developmental version of CFOUR?® was employed to conduct all ab initio calculations,
which consisted of geometry optimizations, anharmonic second-order vibrational perturbation
theory (VPT2), and magnetic property calculations at the CCSD(T) level of theory using the all-
electron cc-pCVTZ basis. Isotopologue-dependent corrections to the rotational constants included
vibration-rotation interaction constants from the VPT2 calculations and electron-mass corrections
from the magnetic property calculations. Output files of these calculations are provided in the

supporting information of Ref. 21.

We calculated a "best theoretical estimate” (BTE) equilibrium structure for pyridazine
using the methodology employed in previous studies of pyrimidine,® thiophene,!” and thiazole.®
The structure computed using a CCSD(T)/cc-pCV5Z optimization is corrected to account for the

following limitations associated with the quantum mechanical treatment employed:

1. Residual basis set effects, Eq. 3.1, by means of a complete basis set extrapolation?>22 using
the results of CCSD(T)/cc-pCVXZ (X = T, Q, and 5) calculations in comparison to the

quintuple zeta optimization.
AR (basis) = R(e0) - R(CCSD(T)/cc-pCV5Z) (3.1)
2. Residual electron correlation effects, Eq. 3.2, by use of CCSDT(Q)?* in comparison to a
CCSD(T) optimization.
AR(corr) = R(CCSDT(Q)/cc-pVDZ)—R(CCSD(T)/cc-pVDZ) (3.2)

3. Scalar relativistic effects, Eq. 3.3, by use of the X2C-1e variant of the coupled-cluster

theory?®2 in comparison to a traditional optimization (NR).
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AR(rel) = R(CCSD(T)/cc-pCVTZ) R(CCSD(T)/ec-pCVTZ), (3.3)

SFX2C-le

4. Effect of the Born—Oppenheimer approximation, Eq. 3.4, by use of the diagonal Born—

Oppenheimer correction (DBOC)?2° in comparison to a traditional optimization (NR).

AR(DBOC) = R(SCF/ec-pCVTZ) .. —R(SCFlec-pCVTZ), (3.4)

The correction to the CCSD(T)/cc-pCV5Z optimization necessary to obtain the BTE is then given

by summation of the above corrections for each parameter, as shown in Eq. 3.5.
AR (best) = AR(basis)+ AR (corr )+ AR(rel )+ AR (DBOC) (3.5)

The semi-experimental equilibrium structural parameters (re%) of pyridazine were
determined from the equilibrium moments of inertia by least-squares fitting, as described for
previous structure determinations.®> 1% 30 n total, 18 isotopologues yield 36 independent
moments of inertia, which produce a highly redundant determination of the 9 independent
structural parameters of pyridazine (point group symmetry Ca). In this work, all 3 moments of
inertia for all 18 isotopologues were used with equal weighting. To generate constants free of
centrifugal distortion and the impact of the choice of an A- or S-reduced Hamiltonian, the
rotational constants (Bo*) determined in each least-squares fit were converted to determinable
constants (Bo”) using Eqg. 3.S1 — Eq. 3.56 in the Supporting Information.®! For each of the
isotopologues presented in this work, differences in the determinable constants from the A and S
reductions were quite small (Table 3.4 in the Supporting Information), demonstrating that both the
A- and S-reduced Hamiltonians produce physically meaningful spectroscopic constants. This
gives us high confidence that the average determinable rotational constants are largely free of the
effects of centrifugal distortion. The computed vibration-rotation interaction and electron-mass

corrections were combined with experimental equilibrium constants (B¢*) using Eq. 3.57.17-19.30
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These equilibrium constants, after conversion to the corresponding moments of inertia, were used
by the xrefit module of CFOUR to determine the reSE structural parameters via a nonlinear least-
squares fit, using the Levenberg—Marquardt algorithm. The xrefiteration analysis of the reS
structure determination described in detail in Chapter 1 of this thesis is applied to assess the impact
of including additional isotopologues beyond the minimal set, and for assessing the accuracy and

precision of the overall structure.

RESULTS AND DISCUSSION

Improvement in the Precision and Accuracy of Rotational Constants and

Moments of Inertia

For a planar molecule such as pyridazine, an indication of the quality of the computational
corrections that are applied to the experimentally determined rotational constants is how close the
resultant inertial defect () is to zero. Uncorrected experimental rotational constants (Bo*) produce
a non-zero inertial defect (4io) due to the effects of electron mass. By correcting the rotational
constants for these effects, the magnitude of the inertial defect is decreased, ultimately vanishing
in the limit that the applied corrections are exact. Previously, CCSD(T)/ANOOQ vibration-rotation
interaction corrections® reduced the magnitude of the inertial defects for all isotopologues by a
factor of 3 and by an additional factor of 10 after the inclusion of electron-mass corrections (Table
3.1). Though the magnitude of the electron-mass corrections to the rotational constants is small
compared to that of the vibration-rotation corrections, the impact of including the electron-mass
corrections is clearly significant. Despite the larger numbers of transitions for some isotopologues
in the current study, the uncorrected inertial defect (4io) values are quite similar to those obtained

previously.
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In this work, CCSD(T)/cc-pCVTZ corrections have been applied to the rotational
constants, resulting in superior equilibrium inertial defect (di¢) values. There is a large reduction
of the inertial defects from the CCSD(T)/cc-pCVTZ vibration-rotation interaction corrections than
from those using an ANOO basis set. In both cases, however, these are over-corrections that result
in negative inertial defect values. The magnitude of the electron-mass corrections is smaller at the
CCSD(T)/cc-pCVTZ level than with the ANOO basis set. Previously, the same value for the
electron-mass correction was applied to every isotopologue, rather than the isotopologue-specific
electron-mass corrections used in the current work. As a result, not only are the fully corrected
Ai e values obtained using the cc-pCVTZ basis approximately half the magnitude of those obtained
using the ANOO basis (average values —0.00108 vs 0.00207 pA?, respectively), but they also

exhibit a considerably smaller standard deviation (0.00014 vs 0.00104, respectively) (Table 3.1).

The small 4; e values are consistent with the high quality of the spectroscopic constants
from the least-squares fits of the rotational spectra and the theoretical corrections employed in this
work. These values are quite similar to those determined for pyrimidine!® using corrections at the
same level of theory: 4ie = 0.01353 + 0.00013 without electron-mass corrections and 4ie =
0.00151 + 0.00013 with electron-mass corrections. Given the systematic similarities in 4ie
between analogous species pyridazine and pyrimidine, or as previously noted between thiophene!’
and thiazole,*® it is likely the inertial defects could be further corrected, despite the sophisticated
treatments already employed. Such an improved correction of these inertial defects may be
possible through the use of a higher level of theory or basis set to perform the VPT2 or magnetic
property calculations, or through use of higher-order vibrational perturbation theory to obtain

additional vibration-rotation interaction corrections.
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Table 3.1 Inertial Defects (4;) of Pyridazine Isotopologues from Various Determinations of the

Moments of Inertia

Pyridazine (2013)3 Pyridazine (current work)
Isotopologue  dio (UA?) die UAD? Aie UAD) P | Aio (UA?) die UA?C dic (UA?)H
normal 0.03641 —0.01200 0.00081 | 0.03622 —0.01414 —0.00095
[3-13C] 0.03702 —-0.01193 0.00112 | 0.03681 —0.01410 —0.00090
[4-3C] 0.03706 —0.01198 0.00116 | 0.03684 —0.01414 —0.00095
[1-°N] 0.03686 —0.01206 0.00106 | 0.03671 —0.01414 —0.00095
[3-2H] 0.03367 —0.01235 0.00133 | 0.03356 —0.01427 -0.00108
[4-2H] 0.03406 —0.01228 0.00160 | 0.03391 —0.01428 —0.00108

[3,4-2H] 0.03138 —0.01278 0.00195| 0.03124 —-0.01452 -0.00132
[3,5-2H] 0.03143 —0.01287 0.00191 | 0.03132 —0.01455 —0.00135
[3,6-2H] 0.03072 —0.01250 0.00224 | 0.03061 —0.01437 -—0.00118
[4,5-2H] 0.03185 —0.01206 0.00283 | 0.03169 —0.01417 —0.00097
[4-2H,3-BC]  0.03498 —0.01194 0.00218 | 0.03441 —0.01433 -0.00114

[4-2H, 4-13C] 0.03456 —0.01416 —0.00097
[4-2H, 5-1°C] 0.03450 —0.01419 —0.00099
[4-2H, 6-13C] 0.03462 —0.01420 —0.00100

[3,45-2H]  0.02916 -0.01224  0.00351 | 0.02899 —0.01428 —0.00108
[3,4,62H] 002852 -0.01283  0.00295 | 0.02836 —0.01454 —0.00134
[3,456-2H] 002625 -0.01234  0.00440 | 0.02606 —0.01434 —0.00114
[4,5-2H, 4-23C] 0.03209 —0.01427 —0.00107
Average (¥)  0.03281 —0.01230  0.00207 | 0.03292 —0.01428 —0.00108
Std. Dev. (s)  0.00347  0.00033  0.00104 | 0.00310  0.00014  0.00014

2 Vibration-rotation interaction corrections only (CCSD(T)/ANQQO).

b Vibration-rotation interaction and electron-mass corrections (CCSD(T)/ANQOQ).

¢ Vibration-rotation interaction corrections only (CCSD(T)/cc-pCVTZ).

¢ Vibration-rotation interaction and electron-mass corrections (CCSD(T)/cc-pCVTZ).

Improvement in the Precision and Accuracy of the Structure

As demonstrated in Table 3.2, and displayed in Figure 3.3, the r¢5E structure of pyridazine
determined in this work exhibits structural parameters for which the statistical uncertainties have
been reduced by a factor of 2—-3 compared to the previous study. Despite the greater precision of
the current work, all of the previously determined structural parameters® fall within the 2c
statistical uncertainties of the improved parameters in this work. For all explicitly determined

parameters, that is, excluding Rni-nz and Oni-na-cs, the statistical uncertainty is less than 0.001 A
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for bond lengths and 0.04° for angles. These uncertainties are comparable to those observed in the
r.°E of pyrimidine,®® whose bond lengths were slightly better determined with all statistical
uncertainties (20) less than 0.0006 A. For pyridazine, the reSF statistical uncertainties in the C—H
distances, +0.00023 and +0.00024 A, are three times smaller than the statistical uncertainties in
the C—C and C-N distances, +(0.00075-0.00095) A. This was not the case for pyrimidine, in
which the statistical uncertainties in C—H distances, +(0.00030-0.00039) A, were only slightly
smaller than the statistical uncertainties in C—C and C—N distances, +(0.00038-0.00052) A. These
differences in the uncertainties in C—H distances between pyridazine and pyrimidine may arise
from symmetry considerations. Pyridazine (Czy) possesses two independent C—H bonds with H-
atom positions determined by virtue of 2H-isotopic substitution in 11 of 14 isotopologues. Figure
3.3 presents the number of isotopologues with substitution(s) at the designated position used in the
least-squares fit of the structure from all 18 isotopologues. For example, 2 at the C3 position
indicates that its substitution is present in two isotopologues: [3-*C] and [4-2H, 2-1*C]. Symmetric
atoms are accounted for separately, as some isotopologues break the Coy symmetry of the parent

species.



Table 3.2. Structural Parameters of Pyridazine

Experimental

reSE
re°F (2013) @ CCSD(T)/cc-pCVTZ Computational

CCSD(T)/ANOO minimal full data set full data set CCSD(T) CCSD(T)/
Parameter data set excluding [3,4-°H] BTE® cc-pCV5Z
Rea (A) 1.08104 (54) 1.08088 (20) 1.08093 (15) 1.08088 (23) 1.08108 1.08097
Rea-H (A) 1.08021 (74) 1.07992 (22) 1.07989 (16) 1.08000 (24) 1.07995 1.07988
Reacs (A) 1.3761 (33) 1.37673 (88) 1.37676 (63) 1.37675 (95) 1.37638 1.37656
Res-ca () 1.3938 (24) 1.39352 (72) 1.39348 (50) 1.39338 (75) 1.39395 1.39353
Rna-cs (A) 1.3302 (24) 1.33085 (70) 1.33082 (53) 1.33093 (79) 1.33091 1.33074
Rni-nz (A) 1.33328 (82) © 1.33341 (77) ¢ 1.33336 (116) © 1.33377 1.33215
On-ca-ca (°) 121.35 (11) 121.367 (90) 121.396 (26) 121.361 (37) 121.353 121.335
On-cacs (°) 122.368 (89) 122.344 (41) 122.357 (19) 122.358 (28) 122.349 122.346
Ocacacs (°)  116.849 (60) 116.849 (16) 116.847 (12) 116.849 (17) 116.847 116.838
On2-c3-ca (°)  123.863 (78) 123.860 (23) 123.868 (21) 123.867 (32) 123.879 123.857
Oninz-cs (°) 119.290 (16) ¢ 119.285 (17) © 119.284 (27) © 119.275  119.305
Niso 14 6 17 18

2 Data is given to one additional digit relative to the presentation in Ref. 3, and the uncertainties here are 2c rather than 1c.
® Obtained by applying corrections for the best theoretical estimate [AR (best)] to the CCSD(T)/cc-pCV5Z computed values.

¢ Value and uncertainty for additional parameters determined from the r.S8 structure using the alternate Z-matrix described in Supporting Information.

¥8
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108088 23) A 3
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¢ 122358 (28)

Figure 3.3. (a) Semi-experimental equilibrium structure (re5%) of pyridazine with 2 uncertainties
from least-squares fitting of the isotopologue moments of inertia. The values and uncertainties for
Rni-N2 and Oni-nz-cs (in italic) were determined from the reSE structure using the alternate Z-matrix
described in the Supporting Information. (b) Number of isotopologues with a substitution relative

to the main isotopologue (0-C4HsN?>) at the labeled atom.

Quantifying the Importance of Including More Isotopologues in Structure

Determinations

To determine the impact on the re5E structure of including isotopologues beyond the
minimal set necessary to obtain a substitution structure, we obtained an r5E structure using only
the normal and all single isotopic substitutions, which we refer to as "minimal r¢5t". As shown in
Table 3.2, the parameters' values and uncertainties of the minimal r°E agree well with those of the
full reSE structure. In fact, the uncertainties of the minimal re5F are slightly smaller for most of the
parameters. The exceptions (fH-ca-ca and GH-ca-cs) are notable, as these are the angles involving a

hydrogen atom. The better determination of these angles in the full reE structure is likely due to
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the inclusion of many more deuterium-substituted isotopologues, relative to the minimal re5E set,
which includes only two deuterium-substituted isotopologues. Thus, it appears that bond lengths
and angles involving only heavy atoms, as well as bond lengths involving hydrogen, are well
determined using a minimal set of isotopologues but angles involving hydrogen are not. This

conclusion is supported by the behavior of the parameters in the xrefiteration analysis (vide infra).

The inclusion of additional isotopologues beyond the "minimal set" does indeed improve
the overall relative statistical uncertainty of the results re°E structure. To explore the impact of
additional isotopologues on the uncertainty and magnitude of each parameter, we conducted the
xrefiteration analysis described above. The dre°F results of xrefiteration are plotted in Figure 3.4,
showing a dramatic decrease in the relative statistical uncertainty by nearly 50% as the initial
isotopologues are added to the re5E data set. Such behavior is expected based upon the xrefiteration
results of pyrimidine, thiophene, thiazole, and hydrazoic acid (vide infra). The significant
reduction in uncertainty appears to be reversed with the addition of isotopologues in the range Niso
=12-18. There is a slight increase in the uncertainty upon including isotopologues in the range
of Niso = 12-17, without any discernable pattern in the isotopic substitution or the number of
transitions in the least-squares fits for those isotopologues. Thus, we do not suspect that there is
an issue with the experimentally determined spectroscopic constants. The incorporation of [3,4-
2H]-pyridazine (Niso = 18), however, results in a dramatic increase in 6re>F to 0.001204, which is
only slightly lower than the value for the minimal r¢>E. From this behavior, we conclude that the
structural information provided by [3,4-2H]-pyridazine to the re5F determination is in contradiction
with the information provided collectively by the other isotopologues. We can infer, based on the
xrefiteration algorithm, that at every step of the analysis, the addition of the [3,4-2H] isotopologue

resulted in a larger ore>F than another isotopologue, so the [3,4-2H] isotopologue was not



87

incorporated into the expanding data set. At the end of the xrefiteration analysis, when there were

no other isotopologues left, the [3,4-2H] isotopologue was allowed into the structure determination

data set.
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Figure 3.4. Plot of 6r.° as a function of the number of isotopologues (Niso) incorporated into the
structure determination data set. The total relative statistical uncertainty (6.5, blue squares), the
relative statistical uncertainty in the bond distances (green triangles), and the relative statistical

uncertainty in the angles (purple circles) are presented.

In the course of this work and other structure determination analyses,*’*8 32 we observed
that similar dramatic increases in the relative statistical uncertainties resulted from a variety of
factors, including problems in the fitting of the spectroscopic constants, problems in the rotational
constant corrections, or some other problem in the implementation. Such issues appear to be
absent in our implementation of the current analysis. For the [3,4-2H] isotopologue in particular,
the least-squares fit of the rotational spectrum has low uncertainty (ofit = 34 kHz) with sufficient

line count (Niiness = 619), and all spectroscopic constants are in reasonable agreement with
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computational predictions. Furthermore, the corrected inertial defect for this isotopologue (4i e =
—0.0134 nA?) is comparable to those of the other isotopologues, albeit larger than those of all but
two isotopologues ([3,5-?H]- and [3,4,6-?H]-pyridazine). Taken collectively, this evidence
suggests that the experimental data for the [3,4-2H] isotopologue are accurate and reasonably
treated by the vibration-rotation interaction and electron-mass corrections. Thus, we are confident
that the behavior of the relative statistical uncertainty of the re>€ upon addition of the [3,4-2H]

isotopologue is not due to an issue in data analysis.

Comparison of the xrefiteration analysis of pyridazine to that of other molecules (Figure
1.5 in Chapter 1 of this thesis) clearly demonstrates that the influence of [3,4-?H]-pyridazine on
the reSE structure is anomalous in relation to the other isotopologues in the limited set of
comparison molecules (hydrazoic acid, pyrimidine, thiophene, and thiazole). Even with the
increase in the ore°E for pyridazine from Niss = 12-18, however, the range of ore°F values for
pyridazine is similar to that of the other structure determinations. Therefore, the increase in the
ore>E of pyridazine — particularly due to the inclusion of the [3,4-?H] isotopologue — does not

necessarily indicate that the r¢°E is not sufficiently determined.

To further assess the quality of the re5F and whether the structural parameters are reliable
despite the aforementioned behavior of [3,4-°H]-pyridazine, we examined how the reSF parameters
change as additional isotopologues are included (Figure 3.5). Interestingly, the value of the
On-ca-ca angle in the final iteration (Niso = 18) is closer to its value in the minimal set (Niso = 6) than
the intermediate iterations, which determine a larger angle. Given our confidence in the data of
the [3,4-H] isotopologue, the trend in the Gh.ca-ca angle suggests that the other isotopologues
added to the minimal set are quite consistent with respect to their impact on this angle, while also

not providing new or sufficient information for determining this angle. This interpretation is
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further supported by comparison to the BTE value, which shows that the intermediate
isotopologues cause the angle to deviate away from the BTE value. Examination of the other
parameters reveals that Rca-cs, Rea-ca, and Rnz-c3 have similar, though less pronounced, behavior.
The inclusion of the last few isotopologues, especially the [3,4-?H] isotopologue, brings the
parameters into a better agreement with the theoretical prediction because these isotopologues are

providing structural information that is not contained in the preceding iterations of the data set.
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Figure 3.5. Plots of structural parameters as a function of the number of isotopologues (Niso) and
their 26 uncertainties, with consistent scales for each distance (0.002 A) and each angle (0.2°).
The dashed line in each plot is the BTE value calculated for that parameter. The isotopologue

ordering along the x-axis is the same as that in Figure 3.4.
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The C3 atom, which lies very close to the b-axis, is present in three of the four parameters
whose values deviate away from the BTE. The difficulty in determining the C3 atom position was
described in the original rs structure determination®® and seemingly addressed in the subsequent rs
and first reSE structure determination by greater isotopic substitution.> Based upon this analysis,
however, it appears that the classical difficulty in determining the position of the atoms that lie
close to an inertial axis by Kraitchman analysis®*** may not be fully addressed even with the first
17 isotopologues in this work. The inclusion of the [3,4-2H] isotopologue has a profound effect
on the G1.ca-ca angle. The simultaneous isotopic substitution of the hydrogen atoms at C3 and C4
causes a significant rotation of the principal axes (Supporting Information, Table 3.6) such that C3
(and the symmetric C6) are no longer close to the b-axis. It should be noted that other
isotopologues have rotations of similar magnitude. Finally, the two hydrogen-containing angles
have considerable improvement in the uncertainties and the greatest change to their values when
isotopologues beyond the minimal set are included. Such behavior suggests that the minimal set
of singly substituted isotopologues is not sufficient for a precise determination of these angles and
that improvement in the uncertainties in the full r¢E structure for these angles is partly due to the

increased number of isotopologues.

Best Theoretical Estimate

As in the structure determination of pyrimidine,® all structural parameters of the BTE of
pyridazine fall within the 26 uncertainties of their corresponding parameters for the re°F structure
of pyridazine (Figure 3.6 and Table 3.2). Impressively, five of the nine independent BTE structural

parameters fall within the 1o statistical uncertainties of the r.°€ parameters in this work, which is
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reasonably close to the statistical expectation for a normal distribution.” As can be seen from Table
3.2, all of the r.>F bond angles fall within 0.01° of the corresponding BTE values. The agreement
is largely due to the quintuple-zeta basis set since all of the CCSD(T)/cc-pCV5Z structural
parameters are also within the 2c uncertainties of the corresponding re°c parameters. Indeed,
examination of the CCSD(T)/cc-pCVQZ structural parameters (Supporting Information, Table
3.7) reveals that only four of the nine independent parameters resulting from the smaller basis
agree with the reSF structure. The difference between the quadruple-zeta and quintuple-zeta
calculations, however, is only noticeable because of the small uncertainties in the current reSt
structure of pyridazine. All parameters of the CCSD(T)/cc-pCVQZ re fell within 20 of all the

previously determined r.5€ parameters,® due to the larger statistical uncertainties in that work.

* A normal distribution of the uncertainties of the parameters suggests that each parameter is being determined equally
well by the re5€ method.
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Figure 3.6. Graphical comparison of pyridazine structural parameters with bond distances in
angstroms (A) and angles in degrees (°). Uncertainties shown are 2c. Data for reSt
CCSD(T)/ANOOQ are taken from Ref. 3. The values and uncertainties for Rn1i-n2 (top box, last row)
and Oni-nz-c3 were determined from the reSE structure using the alternate Z-matrix described in the

Supporting Information.
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Examination of the individual corrections in the BTE in Table 3.3 reveals differences in
the effects of the various corrections for bond distances. The 4R(basis) and 4R(rel) corrections
shorten the bond distances from those predicted at the quintuple-zeta basis set, while the AR(corr)
correction lengthens them. Overall, the corrections lead to a partial cancellation that brings the

BTE re structure into better agreement with the re>F structure.

Table 3.3. Corrections (4R) Used for Obtaining the Best Theoretical Estimate (BTE)

AR (basis) AR(corr) AR(rel) AR(DBOC) AR (best)
Parameter Eq. (1) Eq. (2) Eqg. 3) Eq. (4) Eq. (5)
ReaH (A) —0.000040 0.00012 —0.00011 0.00014 0.00011
Rean (A) —0.000063 0.00012 —0.00011 0.00014 0.000074
Rea-cs (A) —0.00034 0.00042 —0.00024 —0.000022  —0.00018
Rea.ca (A) —0.00021 0.00080 —0.00023 0.000058 0.00042
Rnz-cs (A) —0.00014 0.00042 —0.000089 —0.000022 0.00017
On-ca-ca (°) 0.032 —0.019 0.0030 0.0023 0.018
Oh-ca-cs (°) —0.00085 0.0026 0.0011 0.000045 0.0028
Bca-ca-cs (°) 0.010 —0.00083 —0.00045 0.00065 0.0090
One-ca-ca (°) —0.020 0.029 0.014 —0.0012 0.022

CONCLUSION

We determined a highly accurate and precise semi-experimental structure (reSF) for
pyridazine with statistical uncertainties of <0.001 A and <0.04° (20) for the bond distances and
angles, respectively, and in complete agreement with the BTE. The improvement in the reSt
structure in this work is largely due to improved theoretical corrections. Our iterative analysis of
the re5E structure determination (xrefiteration) as a function of additional isotopologues beyond
the minimal set can be utilized to examine not only the improvement in the reE determination as
additional isotopologues are added, but also the relationship between an individual isotopologue

and the rest of the data set. The xrefiteration plots can be especially useful for identifying outliers
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that occur due to problems in the spectroscopic analysis or the implementation of the re>E structure
determination. When the spectroscopic constants are reliable and the structure determination is
implemented correctly, the xrefiteration plots reveal important trends in how the individual
parameters vary as a function of the number of isotopologues. This provides insights into the
structural information contributed by individual isotopologues. Finally, the xrefiteration plots can
reveal which re° parameters are well-converged, and which may benefit from the incorporation

of additional isotopologues.

We are confident that the behavior of the [3,4-2H] isotopologue in the xrefiteration analysis
is a real phenomenon and not a manifestation of a problem in the analysis or implementation.
Given the impressive agreement between the BTE and the r.°E parameters, we can examine how
this agreement is affected by the presence or absence of the [3,4-2H] isotopologue. When the [3,4-
2H] isotopologue is excluded from the data set, the resulting r.> does not display good agreement
with the BTE (Table 3.2) for the two hydrogen-containing bond angles, O1.ca-ca and On-csa-cs. The
better agreement between the re>E structure and the BTE when [3,4-2H] is included indicates that
the apparent improvement in the statistical uncertainty as the other isotopologues were added to
the minimal set (Figure 3.4) is actually deceptive; the preceding data sets did not include the
isotopologue that is important for determining 6h.cs.ca and Gn.ca-cs. If the reSF structure remains
stable as additional isotopologues are incorporated beyond the 18 utilized in this work, it would
confirm the validity of this assertion. New syntheses — beyond the scope of this work — would be
required, as all possible isotopologues observable in commercial pyridazine or in the deuteriated
samples used in the previous and current works are included in the current re>€. While it is not a
member of the canonical set of singly substituted isotopologues, the [3,4-2H] isotopologue appears

to be vital in the structure determination, as this substitution tends to rotate the principal axes in
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such a way that the C3 and C6 atoms are pulled away from the b-axis. The standard problem in
structure determination that is posed by near-axis atoms is lessened for this isotopomer, and an
improved structure determination follows. Regardless of the reason, the impact of the [3,4-2H] on
the structure determination is as significant as it is unexpected, serving to reinforce the notion that
structure determinations should seek to incorporate a variety of isotopologues to ensure that the

atom positions can be satisfactorily determined.

The agreement of the r.>€ and BTE structures is impressive. What was unexpected, to us,
is the finding that minimal set of six isotopologues provided re5E structural parameters that are
equally accurate and precise as those determined using the much larger set of 18 isotopologues.
This case stands in sharp contrast to our findings for similar structure determinations of
pyrimidine,’® thiophene,'” and thiazole.!® At the current time, it is not understood, a priori,
whether a particular structure will be accurately determined from the minimal set of isotopologues.
The unexpected significance of the [3,4-2H] isotopologue in the structure determination of

pyridazine suggests that the best practice remains to include as many isotopologues as is practical.
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Evaluation of Determinable Rotational Constants

The ground-state rotational constants for both the S- and A-reduced Hamiltonians (I
representation) were converted to the "determinable constants” (Ao”, Bo”, Co"’), to account for the
influence of centrifugal distortion using Eq. 3.S1 — Eq. 3.S6. The constants from each Hamiltonian
reduction were then averaged to obtain the final determinable constants. Values of the various
forms of the constants (I" representation) are given in Table 3.4. These averaged determinable

constants were used for all structure determinations reported in this work.



102

A reduction
A =AM 124, (3.51)
B, =B +2A, +A, —25, —25, (3.52)
Co =CW 4 2A, + Ay +265, +25, (3.53)
S reduction
A =A% +2D, +6d, (3.54)
B, =B +2D, + D, +2d, +4d, (3.55)

C, =C®+2D, +D,, —2d, +4d, (3.56)



Table 3.4. Spectroscopic constants for isotopologues of pyridazine: A- and S-reduced Hamiltonians (I" representation), determinable

constants, their averages and differences (MHz).?

0-CsHaN; [3-°C] [4-3C] [5N] [3-2H] [4-2H] [3,4-2H]
'\Ifg‘;?z:gr 80.0374480 81.0408028 81.0408028 81.0344830 81.0437248 81.0437248 82.0500016
AR 6242.950338 6112.22843 6217.71586 6218.91249 5962.40614 6192.44159 5854.14224
AS 6242.951681 6112.22970 6217.71724 6218.91389 5962.40719 6192.44249 5854.14296
A"(4) 6242951853 6112.22994 6217.71734 6218.91397 5962.40749 6192.44293 5854.14353
A"(S)  6242.951765 6112.22975 6217.71740 6218.91404 5962.40728 6192.44281 5854.14336
A"avg  6242.951809 6112.22985 6217.71737 6218.91401 5962.40739 6192.44287 5854.14345
A" diff 0.000088 0.00018 0.00006 0.00007 0.00022 0.00012 0.00017
BA 5961.094509 5961.31665 5848.36633 5857.40244 5828.17979 5598.12089 5539.31651
BS 5961.092358 5961.31423 5848.36415 5857.40070 5828.17845 5598.119084 5539.31509
B"(4)  5961.093890 5961.31606 5848.36569 5857.40181 5828.17930 5598.12026 5539.31595
B"(S)  5961.093678 5961.31551 5848.36537 5857.40193 5828.17958 5598.12004 5539.31577
B"avg  5961.093784 5961.31578 5848.36553 5857.40187 5828.17944 5598.12015 5539.31586
B" diff 0.000213 0.00055 0.00032 0.00012 0.00027 0.00022 0.00018
CA 3048.714446 3017.24865 3013.02901 3015.70945 2946.68490 2939.56874 2845.68724
cs 3048.715012 3017.24860 3013.02980 3015.71022 2946.68588 2939.56921 2845.68726
C"(4) 3048717821 3017.25189 3013.03227 3015.71271 2946.68776 2939.57158 2845.68952
C"(S)  3048.717594 3017.25114 3013.03226 3015.71269 2946.68814 2939.571276 2845.68902
C"avg  3048.717708 3017.25151 3013.03227 3015.71270 2946.68795 2939.57143 2845.68927
C" diff 0.000228 0.00075 0.00001 0.00002 0.00038 0.00030 0.00050
Dy 0.000471061 0.00046482 0.00047614 0.00047449 0.00042528 0.000466233 0.000468116
Duk 0.00158089 0.0015538 0.00141934 0.00143106 0.0013460 0.00098613 0.00063917
Dk ~0.00060128 ~0.0006085 ~0.00044697 ~0.00045554 ~0.00037785 0.00001682 0.00022290
th ~0.000315699 ~0.000316053  —0.000308651  —0.000308489  —0.000281463  —0.000277035 ~0.000270342
d —0.0001430485  —0.000145153  —0.000132206  —0.000132730  —0.000126602  —0.0001017058  —0.000089180
4 0.000757397 0.00075569 0.00074068 0.00073994 0.00067815 0.000669857 0.00064671
Ax ~0.00013631 ~0.00018836 ~0.00016800 ~0.00016243 ~0.00017315 ~0.00023475 ~0.00043105
Ak 0.00082979 0.00084272 0.00087628 0.00087301 0.00088896 0.00103417 0.00111477
d3 0.000315729 0.000316069 0.000308725 0.000308458 0.000281432 0.000277056 0.000270311
9 0.000682758 0.00064016 0.000666274 0.00066578 0.00055325 0.000588643 0.000440039

2 Values in square brackets held constant at the computed value (CCSD(T)/cc-pCVTZ) in least-squares fit.

€0t



Table 3.4 (continued)

[3,5-2H] [3,6-2H] [4,5-2H] [42H, 3-3C] [42H, 4-3C] [4-2H, 5-3C] [4-2H, 6-3C]
'\ﬁf:::‘zf)r 82.0500016 82.0500016 82.0500016 82.0470796 82.0470796 82.0470796 82.0470796
AR 5889.76350 5959.19547 6002.71658 6079.738 6189.060 6116.705 6081.112
AS 5889.76437 5959.19634 6002.71765 6079.744 6189.066 6116.715 6081.117
A"(4)  5889.76477 5959.19663 6002.71773 6079.740 6189.061 6116.706 6081.113
A"(S)  5889.76475 5959.19654 6002.71774 6079.745 6189.067 6116.715 6081.118
A"avg  5889.76476 5959.19658 6002.71774 6079.742 6189.064 6116.711 6081.115
A" diff 0.00002 0.00009 0.00000 0.005 0.006 0.009 0.005
BA 5498.78476 5460.41884 5388.79929 5587.229 5486.805 5542.241 5580.968
BS 5498.78347 5460.41744 5388.79769 5587.222 5486.798 5542.231 5580.962
B"(4)  5498.78420 5460.41837 5388.79879 5587.228 5486.804 5542.240 5580.968
B"(S)  5498.78418 5460.41843 5388.79889 5587.223 5486.799 5542.232 5580.963
B"avg  5498.78419 5460.41840 5388.79884 5587.225 5486.801 5542.236 5580.965
B" diff 0.00002 0.00005 0.00010 0.005 0.005 0.009 0.005
CcA 2843.278197 2848.96318 2839.09924 2910.96433 2907.82551 2907.08010 2909.57499
cs 2843.278699 2848.96373 2839.10012 2910.96503 2907.82620 2907.08081 2909.57560
C"(4) 2843280523 2848.96580 2839.10222 2910.96713 2907.82829 2907.08323 2909.57764
C"(S)  2843.280465 2848.96567 2839.10226 2910.96700 2907.82818 2907.08297 2909.57755
C"avg  2843.280494 2848.96574 2839.10224 2910.96707 2907.82823 2907.08310 2909.57760
C" diff 0.000058 0.00013 0.00003 0.00013 0.00012 0.00026 0.00009
Dy 0.000457079 0.00038762 0.000363674 0.000484 0.000460 0.000438 0.000469
Duk 0.00067631 0.00107532 0.00136927 0.000837 0.000902 0.001183 0.000845
D« 0.00021466 ~0.00007808 ~0.00047127 [0.000092387] [0.000132565]  [~0.000261299] 0.0001725
di ~0.000263950  —0.000237830  —0.000235860 ~0.0002845 ~0.0002676 ~0.0002716 ~0.0002747
da -0.000088239  —0.000096857  —0.0001069048  —0.00009912 ~0.00009440 ~0.00010910 [-0.0000965015]
A 0.000633588 0.00058131 0.000577448 0.0006818 0.0006511 0.000658 0.000665
Ax ~0.00038281 ~0.00008707 0.00008590 [-0.000285674]  [-0.000232563]  [~0.0000570518]  —0.000308
Ax 0.00109746 0.00089097 0.00059882 0.000964 0.001062 0.000691 0.0011143
5 0.000263949 0.000237799 0.000235849 0.0002844 0.0002688 0.0002724 0.0002759
P 0.000456761 0.00053507 0.000633261 0.000575 0.000586 0.000663 [0.000536435]

2 Values in square brackets held constant at the computed value (CCSD(T)/cc-pCVTZ) in least-squares fit.
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Table 3.4 (continued)

[3,4,5-2H] [3,4,6-2H] [3,4,5,6-2H] [4,5-2H, 4-3C]
Molecular g5 4569784 83.0562784 84.0625552 83.0533564
Mass (p)

AR 5622.36523 5732.55731 5385.76207 5973.701

AS 5622.36609 5732.55828 5385.76302 5973.718
A"(4)  5622.36637 5732.55838 5385.76309 5973.70252
A"(S)  5622.36617 5732.55844 5385.76307 5973.718
A"avg  5622.36627 5732.55841 5385.76308 5973.710
A" diff 0.00021 0.00006 0.00002 0.016

BA 5385.21994 5299.12035 5275.67739 5307.990

BS 5385.21826 5299.119120 5275.67618 5307.973
B"(4) 538521949 5299.11993 5275.67704 5307.98933
B"(S)  5385.21925 5299.12004 5275.67707 5307.974
B"avg  5385.21937 5299.11998 5275.67706 5307.982
B" diff 0.00025 0.00010 0.00002 0.015

CA 2750.18297 2753.23426 2664.70755 2810.09742

cs 2750.183089 2753.234974 2664.70797 2810.09811
C"(4)  2750.18548 2753.23667 2664.70973 2810.10054
C"(S)  2750.18502 2753.23677 2664.70970 2810.10020
C"avg  2750.18525 2753.23672 2664.70971 2810.10037
C" diff 0.00045 0.00010 0.00003 0.00034

D, 0.000359385 0.000354471 0.00031571 0.0003720

Duk 0.00116461 0.00100965 0.00106291 0.001282

Dk ~0.00044108 ~0.00013559 ~0.00033312  [0.000448766]

ds ~0.000237536  —0.000219641 -0.000210119  —0.0002370

d2 ~0.000106279  —0.0000909205  —0.000096842  —0.00010309

A; 0.000572171 0.000536231 0.00050939 0.0005836

A ~0.00011102 ~0.00008172 ~0.00009943 [0.000120109]

Ak 0.00062213 0.00077436 0.00063576 0.000405

Py 0.000237513 0.000219630 0.000210110 0.0002397

ok 0.000501466 0.000487271 0.000419902 0.000678

2 Values in square brackets held constant at the computed value (CCSD(T)/cc-pCVTZ) in least-squares fit.

S0T



106

Evaluation of Semi-Experimental Equilibrium Rotational Constants (Be)

The premise of the re>E structure determination method is that the experimentally obtained
rotational constants (Bo*) can be combined with computational corrections to obtain constants that
are effectively the (semi-experimental) equilibrium rotational constants (Be¢*). This approach has
several key requirements. First, the experimental rotational constants should be well determined
and, ideally, free of significant perturbation i.e., due to Coriolis coupling. Second, the
computational corrections for vibration-rotation interaction and, to a lesser extent, the electron-
mass distribution should be determined at a sufficiently high level of theory. Finally, these

corrections should be determined independently for each isotopologue.

To generate constants free of centrifugal distortion and the impact of the choice of an A-
or S-reduced Hamiltonian, the rotational constants (Bo*) determined in each least-squares fit were
converted to determinable constants (Bo") using Eq. 3.S1 — Eq. 3.S6. The computed vibration-
rotation interaction and electron-mass corrections were combined with the averaged determinable
constants to obtain the semi-experimental equilibrium constants (B¢*) using Eq. 3.S7. This is the
approach taken in this work, and the results of the evaluation using CCSD(T)/cc-pCVTZ

corrections are summarized in Table 3.5.

The evaluation of B¢* is handled automatically by the xrefit module of CFOUR, after
providing the requisite data. The module also converts these constants into moments of inertia,

which are then used to calculate the inertial defects given in Table 3.1.

X X l X X
B! =B} +§Zai —ngbbBCCSD(T) (3.57)



Table 3.5. Semi-experimental rotational constants of isotopologues of pyridazine and the corrections (CCSD(T)/cc-pCVTZ) used to

obtain them (MHz).

normal [3-33C] [4-3C] [**N]
A B C A B C A B C A B C
B} 6242.952 5961.094 3048.718 6112.230 5961.316 3017.252 6217.717 5848.366 3013.032 6218.914 5857.402 3015.713
1
-Yaf 51.239 41.840 24.103 49936 41581 23.751 50.623  40.957  23.687 50.586 41.043 23.703
2

ngbbBé‘csD(T) -0.321 -0.416 0.061 —0.308 —-0.416 0.060 -0.322 —-0.399 0.059 -0.322 —0.399 0.060
1
Bj +Ezaf 6294.191 6002.934 3072.821 6162.166 6002.897 3041.002 6268.340 5889.323 3036.720 6269.500 5898.445 3039.416

B 6294.512 6003.351 3072.760 6162.474 6003.313 3040.943 6268.662 5889.722 3036.661 6269.822 5898.844 3039.356

[3_2H] [4_2H] [314_2H] [315_2H]
A B C A B C A B C A B C
B; 5962.407 5828.179 2946.688 6192.443 5598.120 2939.571 5854.143 5539.316 2845.689 5889.765 5498.784 2843.280
1
-Yaf 42,142  46.416  22.992 50.226  38.694  22.823 45165 39.446  21.827 45226  39.333 21.801
2

ngbbBé‘CSD(T) -0.414 -0.282 0.057 —-0.330 —-0.358 0.056 -0.324  -0.325 0.053 -0.334 —-0.314 0.053
1
B} +Eza’i‘ 6004.550 5874.595 2969.680 6242.669 5636.815 2962.394 5899.309 5578.762 2867.516 5934.991 5538.118 2865.081

B 6004.963 5874.878 2969.623 6242.999 5637.172 2962.338 5899.632 5579.086 2867.463 5935.325 5538.432 2865.029

[3,6-H] [4,5-2H] [4-2H, 3-5°C] [4-2H, 4-5°C]
A B C A B C A B C A B C
B 5959.197 5460.418 2848.966 6002.718 5388.799 2839.102 6079.742 5587.225 2910.967 6189.064 5486.801 2907.828

1
-Yat 42.160 42496  21.937 48.294  36.514 21.680 48.906 38.552  22.505 49.874  37.736  22.435
2
r/gbbBé‘CSD(T) —0.416 —0.246 0.053 -0.297 —-0.343 0.052 -0.322 -0.353 0.055 -0.332 -0.343 0.055

1
B} +Eza’i‘ 6001.357 5502.914 2870.903 6051.012 5425.313 2860.782 6128.649 5625.778 2933.472 6238.938 5524.537 2930.263

B 6001.773 5503.160 2870.850 6051.309 5425.656 2860.730 6128.971 5626.130 2933.417 6239.270 5524.879 2930.208

e
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Table 3.5 (continued)

[4-2H, 5-5C]

[4-2H, 6-°C]

[3,4,5-2H]

[3,4,6-2H]

A B C

A B C

A B C

A B C

B 6116.711 5542.236 2907.083
1

—yar 49573 37.906 22.452
2
ng"Béspry —0314 —0357  0.055

1
B} +Eza;‘ 6166.283 5580.142 2929.535

6081.115 5580.965 2909.578
48.794  38.620 22.496
—0.325 —-0.350 0.055

6129.909 5619.585 2932.074

5622.366 5385.219 2750.185
44,088 36.631  20.759
-0.261 —-0.342 0.049

5666.455 5421.850 2770.944

5732.558 5299.120 2753.237
41.204  39.620  20.853
-0.365 —0.250 0.049

5773.763 5338.740 2774.090

B 6166.508 5580.500 2929.481 6130.234 5619.935 2932.019 5666.716 5422.192 2770.895 5774.128 5338.990 2774.040
[3,4,5,6-H] [4,5-2H, 4-5C]
A B C A B C
B 5385.763 5275.677 2664.710 5973.710 5307.982 2810.100
1
S Zaf 36.707 40.446 19.880  47.768 35774 21331

ng"Béspry 0343 0229  0.046
1

B +=Ya* 5422470 5316.123 2684.589
2

B, 5422.813 5316.352 2684.544

e

—-0.295 -0.333 0.051

6021.478 5343.756 2831.431

6021.773 5344.089 2831.381
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Table 3.6. Atomic coordinates of the isotopologues of pyridazine in their respective principal axes systems, using the re>F structure

determination.

Parameter

normal

Ry

[4-°C]

[15N]

[32H]

[42H]

a b

a b

a b

a b

a b

a b

N1
N2
c3
C4
c5
cé

H(C3)

H(C4)

H(C5)

H(C6)

-1.17903 -0.66645
-1.17903 0.66645
-0.01906 1.31745
1.22416 0.68812
1.22416 -0.68812
-0.01906 -1.31745
-0.10383 2.39527
2.13683 1.26569
2.13683 -1.26569
-0.10383 -2.39527

-1.17085 -0.69631
-1.18621 0.63651
-0.03382 1.30084
1.21657 0.68588
1.23243 -0.69027
-0.00345 -1.33389
-0.13101 2.37761
2.12253 1.27393
2.15171 -1.25729
-0.07579 -2.41262

-1.28854 -0.47046
-1.07043 0.84448
0.18043 1.29689
1.30391 0.47260
1.07871 -0.88509
-0.25073 -1.30250
0.27318 2.37405
2.29880 0.89304
1.88457 -1.60422
-0.51073 -2.35192

-1.25249 -0.46976
-1.04586 0.84703
0.20101 1.31033
1.33164 0.49588
1.11828 -0.86372
-0.20747 -1.29272
0.28435 2.38826
2.32282 0.92498
1.93039 -1.57580
-0.45830 -2.34437

-0.53374 -1.25972
0.78738 -1.08283
1.27868 0.15328
0.48993 1.30198
-0.87414 1.11934
-1.33292 -0.19640
2.35822 0.21230
0.94127 2.28324
-1.56773 1.94729
-2.38995 -0.42346

-1.36248 -0.24978
-0.92600 1.00963
0.38319 1.24489
1.35178 0.24315
0.90111 -1.05721
-0.47964 -1.24473
0.65604 2.29105
2.40327 0.49001
1.57434 -1.90180
-0.91268 -2.23537

Parameter

[3,4-%H]

[3,5-%H]

[3,6-°H]

[4,5-°H]

[4-2H, 3-5°C]

[4-2H, 4-3C]

a b

a b

a b

a b

a b

a b

N1
N2
c3
C4
c5
Ccé

H(C3)

H(C4)

H(C5)

H(C6)

-1.38715 -0.17709
-0.56926 -1.22956
0.74612 -1.03181
1.34160 0.22798
0.49712 1.31466
-0.87070 1.04872
1.34056 -1.93487
2.41667 0.33196
0.86336 2.33075
-1.59901 1.84775

-0.48553 -1.29484
-1.34188 -0.27343
-0.87124 0.97069
0.48577 1.28717
1.36997 0.23254
0.82162 -1.04845
-1.62867 1.74217
0.81409 2.31614
2.44044 0.37632
1.44913 -1.92886

-0.66645 -1.17648
0.66645 -1.17648
1.31745 -0.01651
0.68812 1.22670
-0.68812 1.22670
-1.31745 -0.01651
2.39527 -0.10128
1.26569 2.13938
-1.26569 2.13938
-2.39527 -0.10128

-1.23144 -0.66645
-1.23144 0.66645
-0.07147 1.31745
1.17174 0.68812
1.17174 -0.68812
-0.07147 -1.31745
-0.15624 2.39527
2.08442 1.26569
2.08442 -1.26569
-0.15624 -2.39527

-1.38139 -0.17642
-0.86472 1.05228
0.45690 1.20274
1.35898 0.14071
0.82551 -1.12793
-0.56445 -1.22615
0.79655 2.22916
2.42418 0.31935
1.44295 -2.01412
-1.06039 -2.18685

-1.38621 0.20966
-0.91071 -1.03554
0.40518 -1.22989
1.34208 -0.19846
0.85112 1.08723
-0.53481 1.23164
0.71050 -2.26703
2.40076 -0.41243
1.49770 1.95239
-0.99851 2.20830

60T



Table 3.6 (continued)

[4-*H, 5-BC] [4-%H, 6-1C] [3,4,5-°H] [3,4,6-°H] [3,4,5,6-2H] [4,5-°H, 4-13C]

Parameter a b a b a b a b a b a b
N1 -1.33890 -0.38723 -1.37096 -0.12607 -1.15937 -0.80706 -1.11859 -0.81201 -0.66645 -1.22770 -1.29293 -0.57893
N2 -1.04431 0.91272 -0.83583 1.09470 -1.28361 0.52005 0.09459 -1.36410 0.66645 -1.22770 -1.19243 0.75018
C3 0.23085 1.29125 0.48791 1.22523 -0.18938 1.27633 1.16759 -0.57797  1.31745 -0.06773 0.01332 1.31187
C4 1.30424 0.40272 1.37388 0.14973 1.10709 0.76563 1.10973 0.81426 0.68812 1.17548 1.20555 0.59059
C5 1.00008 -0.93948 0.82135 -1.11073  1.23537 -0.60462 -0.14290 1.38431 -0.68812 1.17548 1.10178 -0.78173
C6 -0.35149 -1.27849 -0.56993 -1.18799  0.05623 -1.34709 -1.23065 0.51342 -1.31745 -0.06773 -0.18535 -1.31553
H(C3) 0.38638 2.36116  0.84299 2.24641 -0.37425 2.34156 2.11349 -1.10156 2.39527 -0.15250 0.01005 2.39301
H(C4) 232199 0.76431 2.44165 0.31230 1.96196 1.42576 2.01346 1.40573 1.26569 2.08816 2.15918 1.09771
H(C5) 1.76254 -1.70448  1.42537 -2.00613 2.19792 -1.09460 -0.29056 2.45425 -1.26569 2.08816  1.96832 -1.42647
H(C6) -0.67237 -2.31093 -1.08029 -2.14111 0.07230 -2.42812 -2.24678 0.88271 -2.39527 -0.15250 -0.35114 -2.38390

Table 3.7. Optimized structural parameters of pyridazine at various levels of theory.

SCF  SCFDBOC CCSD(T) CCSD(T) SFX2C-1e CCSDT(Q)

Parameter cc-pCVTZ cc-pCVTZ cc-pVDZ  cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCV5Z cc-pCVTZ cc-pvDZ

Rean (A) 1.07287 1.07301 1.09804 1.09653 1.08210 1.08115 1.08108 1.08199 1.09816

Rean (A) 1.07216  1.07229 1.09679 1.09519 1.08106  1.08010 1.07998 1.08094 1.09691

Reacs (A) 1.36270 1.36268 1.39669 1.39405 1.37994 1.37735 1.37625 1.37970 1.39711

Res-ca (A) 1.39044 1.39050 1.41361 1.41116 1.39699 1.39420 1.39362 1.39676 1.41441

Ruz-cs (A) 1.30586 1.30584 1.34819 1.34614 1.33404 1.33129 1.33046 1.33395 1.34861

Oncaca (°)  121.206 121.208 121.089 121.081 121.181 121.290 121.346 121.184 121.069

On-cacs (°)  122.483 122.483 122.456 122.448 122.397 122.352 122.337 122.398 122.459

Ocs-cacs (°) 116.717 116.718 116.560 116.582 116.765 116.819 116.849 116.765 116.560

Ono-caca (°) 123.223 123.222 124.329 124.324 124.062 123.904 123.861 124.076 124.358

oTT
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Alternate Z-Matrix

An alternate Z-matrix was constructed to enable the determination of values and
uncertainties for structural parameters that were not explicitly part of the original set of internal
coordinates. The uncertainties of these parameters are not able to be estimated with typical error
propagation methods, which have an underlying assumption that the errors are statistically

independent, which they certainly are not in this case.

The alternate Z-matrix defines the structure in terms of an alternate set of bonds and angles
in the internal coordinates. The re>E structure was re-determined with xrefit, using the alternate

coordinates, to obtain values and statistical uncertainties of the alternate parameters.

The bond distance and angle parameter values from each set of internal coordinates i.e.,
each Z-matrix, are identical. The statistical uncertainties are very similar for all parameters from

each set of internal coordinates.



Z-Matrix:

X

X 1 Rl

N 2 RNN* 1 A90

N 2 RNN* 1 A90 3 D180

C 3 RCN* 2 ACNN* 1 Dn90

C 4 RCN* 2 ACNN* 1 D90

C 5 RCC* 3 ACCN* 2 DO

C 6 RCC* 4 ACCN* 2 DO

H 5 RCH1* 3 AHCN* 2 D180

H 6 RCH1* 4 AHCN* 2 D180

H 7 RCH2* 5 AHCC* 3 D180

H 8 RCH2* 6 AHCC* 4 D180
R1=1.00
RNN=0.6665
RCN=1.3309
RCC=1.3934

RCH1=1.0809
RCH2=1.0800
A90=90.0

ACNN=119.28

ACCN=123.
AHCN=114.
AHCC=120.
D180=180.
Dn9%0=-90.

D90=90.0
D0=0.0

87
77
79
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Cyanobutadiene Syntheses via Conformational Analysis of
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ABSTRACT

In the syntheses of 1-cyano-1,3-butadiene from 1,4-dibromo-2-butene and cyanide,
specific diastereoselectivities were observed: reaction of the E-diastereomer yielded the desired
product in a 10:1 E:Z ratio, while reaction of the Z- diastereomer yielded the desired product in a
2:3 E:Z ratio. The hypothesized rate-determining step of the reaction — the 1,4-elimination of HBr
from the 1-bromo-4-cyano-2-butene intermediate — was investigated using B3LYP/cc-pVTZ, with
a polarized continuum model for the solvent (H20), at the experimental reaction temperatures. For
the rate-determining step of each reaction of the diastereomers, four distinct transition states were
identified and determined to be higher in energy by at least 7 kcal/mol than the conformational
changes of the preceding intermediate. As such, the Curtin-Hammett principle was applied and
using the difference in energy of the product-forming transition states, the observed synthetic
diastereoselectivities were reproduced. For the reaction of E-1,4-dibromo-2-butene at 273 K (0
°C), the competing product-forming transition states differ by 2.4 kcal/mol in favor of forming
(E)-1-cyano-1,3-butadiene. This energy difference corresponds to a predicted E:Z ratio of ca. 60:1.
For the reaction of (Z2)-1,4-dibromo-2-butene at 323 K (50 °C), the competing product-forming
transition states differ by only 0.1 kcal/mol, corresponding to a predicted E:Z ratio of 1:1. The
slight overestimation of the production of the E diastereomer by the theoretical predictions
suggests the relative energies of the product-forming transition states are accurate to within 1

kcal/mol.

INTRODUCTION

Over 200 different molecules have been detected in the interstellar medium (ISM) or

circumstellar shells! and are theorized to be involved in complex reaction networks.>’ The vast
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majority of these detections have been made via radioastronomy, through observation and
assignment of rotational spectra. Because of their large dipole moments,®1° which confer intense
rotational transitions, and composition of relatively abundant elements, nitriles (R—CN) represent
attractive targets for detection by radioastronomy. Approximately 10% of the known interstellar
molecules are nitriles, including recently detected benzonitrile,'! hydroxyacetonitrile,'? and silyl
cyanide.!® Interstellar nitriles are observed in varying degrees of hydrogenation, from highly
unsaturated cyanopolyynes, RC2n+1N (R = H, n = 1-4; R = CHs, n = 1, 2),**% to vinyl and phenyl
derivatives [vinyl cyanide (acrylonitrile),?* cyanoallene,? and benzonitrile'], to compounds with
fully saturated backbones (acetonitrile,?® hydroxyacetonitrile,*? propyl cyanide,?* and isopropyl
cyanide®). Spectroscopic data for the organic nitriles described herein — (E)-1-cyano-1,3-
butadiene (E-1), (Z2)-1-cyano-1,3-butadiene (Z-1) (Figure 4.1) — would enable radioastronomical
searches for these compounds. Each of these nitriles has been proposed as a likely component of
the ISM.26-30 Additionally, these nitriles are acyclic isomers of the aromatic heterocycle, pyridine,
which has yet to be identified in the ISM.3! Detection of any of these nitriles would provide
additional motivation to detect pyridine and other aromatic heterocycles. The existence of organic
nitriles in the ISM is relevant not only to our understanding of the chemical processes in the ISM
but also to our understanding of the origin of amino acids, nucleotides, and other prebiotic

compounds that are critical for life on Earth.
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Figure 4.1. Cyanobutadiene isomers: (E)-1-cyano-1,3-butadiene (E-1), (Z)-1-cyano-1,3-

butadiene (Z-1).

Organic nitriles have also been detected in the nitrogen-rich atmosphere of Saturn's largest
moon, Titan. Titan has been of interest as a possible analogue to prebiotic Earth?® and has been
visited by the Cassini—-Huygens probe.®?> Small organic nitriles (up to four carbon atoms) and their
corresponding anions were detected in Titan's atmosphere.®® Electric discharge experiments
performed on various gaseous mixtures e.g., N2, CHs4, C2Hs, NH3, H20, and H.S, simulating the
atmosphere of Titan produce a myriad of nitrile-containing small molecules.” 343 |t is plausible

that the nitriles in Figure 4.1 are components of Titan's atmosphere.

Despite the sophistication of modern synthetic chemistry, the synthesis, purification, and
isolation of simple organic compounds shown in Figure 4.1 remain a challenge. The recently
described procedures®® enable detailed studies of the high-resolution rotational spectroscopy of the
cyanobutadiene isomers (Figure 4.1).3” The rotational spectrum of each of these compounds is
very complex; having a pure sample, for which spectral features are not obscured by impurities, is
critical to achieve a sophisticated analysis of the complex spectrum. Therefore, procedures were
developed to synthesize E-1 and Z-1 separately and in high yield. As shown in Scheme 4.1, the
synthesis of E-1 from (E)-1,4-dibromo-2-butene (E-2) using cyanide was highly selective for the
E-1 over Z-1. Use of the other diastereomer for the starting material, (Z)-1,4-dibromo-2-butene

(Z-2), however, resulted in only a slightly selectivity for Z-1 over E-1, as shown in Scheme 4.2.
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Scheme 4.1. Reaction Conditions for Synthesis and Purification of (E)-1-Cyano-1,3-butadiene
(E-1)

KCN (2.5 eq.) (in H,0)

Br—\_/—Br Delivered over 2.5 h /‘%\,/\\\ 90%2
= 18-crown-6 (50 mol%) N

0°C, 3h
Z-2 1(10:1 E:2)°

3Isolated (gravimetric) yield. ®Diastereomeric ratio determined via *H NMR.

Scheme 4.2. Reaction Conditions for Synthesis and Purification of (Z)-1-Cyano-1,3-butadiene

(2-1)
KCN (3 eq.) =
B N Br - 7N 35%3
18-crown-6 (50 mol%) N
H»0, 50 °C, 15 mi
E-2 2 min 1(2:3 E:Z)P

3Isolated (gravimetric) yield. ®Diastereomeric ratio determined via *H NMR.

The reaction to form 1-cyano-1,3-butadiene from (E)-1,4-dibromo-2-butene (E-2) is
hypothesized to proceed through (E)-1-bromo-4-cyano-2-butene (E-3, Scheme 4.3a), which, once
formed, reacts with another equivalent of cyanide to eliminate HBr in a concerted 1,4-elimination
mechanism (E2’ mechanism), where the position of the dihedral angle determines whether E-1 or
Z-1 is formed. Similarly, the reaction to form 1-cyano-1,3-butadiene from (2)-1,4-dibromo-2-
butene (Z-2) is hypothesized to proceed through (Z)-1-bromo-4-cyano-2-butene (Z-3, Scheme
4.3b) followed by elimination of HBr by cyanide via the 1,4-elimination mechanism. Given that
E-1 and Z-1 are predicted to be very similar in energy (within 1 kcal/mol) and the reactions of

different precursor diastereomers lead to different product ratios, it is clear that a kinetically



118

controlled reaction is responsible for the observed diastereoselectivity. Thus, the E2’ transition
state barriers leading to each diastereomer of 1,4-dibromo-2-butene must be responsible for the
selectivity, or lack thereof, in the formation of E-1 and Z-1. If this is indeed the mechanism, then
computational analysis of the reaction should provide insight as to the origins of the

diastereoselectivity observed in Schemes 4.2 and 4.3.

Scheme 4.3. Proposed Mechanism for Reaction of 1,4-Dibromo-2-butene with 2 Equivalents of

Cyanide to Yield Diastereomers of 1-Cyano-1,3-butadiene

S) S
Br Br C=N Br =N C=N ZENR
a — 0 -/ N
@ = (Sn2) — (1,4-elimination) SN
Z-2 Z-3 1
© N e
(b) AN~_Br _C=N /\N// C=N /\'\,\,/\\
d (Sn2) Br (1,4-elimination) SN
E-2 E-3 1

COMPUTATIONAL METHODS

Geometry optimizations, conformational analyses, and harmonic frequency calculations
were conducted with density functional theory using the B3LYP functional®-%° and the cc-pVTZ
basis set,*° correcting for water as a solvent by employing the polarizable continuum model as
implemented in Gaussian 16.** Thermally corrected Gibbs free energies for all species were
obtained from the harmonic frequency calculations at 273, 298, and 323 K. Intrinsic Reaction
Coordinate (IRC) calculations were conducted to verify that each transition state smoothly

connects on diastereomer of the starting material to one diastereomer of the product. Natural Bond
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Orbital (NBO) and Natural Resonance Theory (NRT) calculations* were used to analyze the
electronic structure, bonding, hyperconjugation, and relative energies of energy minima and

transition states on the potential energy surfaces.

RESULTS AND DISCUSSION

The proposed E2' substrates, Z-3 and E-3, exhibit multiple conformational isomers due to
the bromo-methyl rotor and the cyano-methyl rotor. The conformational isomers were identified
using two-dimensional relaxed conformation scans at 15° intervals for the dihedral angle for the
bromo- and cyano-methyl rotors of each diastereomer. The stationary points on the 2-D energy
surface were then separately optimized to obtain their structures and energies without the 15°
interval constraint on the dihedrals. The results of the 2-D scan and the individual optimizations
are summarized in Figure 4.2 for E-3 and in Figure 4.3 for Z-3, with snapshots of the
conformational stationary points and their relative energies. In addition, the approximate entrance

channels to the E2' transition states are provided, based on IRC calculations.
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‘Br =N: Z-3y(+H) Z-3x(+)
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_______ L Z-3z(+)
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Bromine Dihedral Angle (°)

Nitrile Dihedral Angle (°)
‘ % N\S)C-C-C=C .
Z-3x(-) Z-3y(-) Relative Energy (keal/mol)
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@—  Local minimum
©---- Transition state

> Approx. E2' TS
entrance channel

Figure 4.2. Relaxed 2-D conformational scan of (Z)-1-bromo-4-cyano-2-butene (Z-3) using
B3LYP/cc-pVTZ electronic energies with PCM solvent correction for water. Relative energies in

kcal/mol. The heat map ranges from 0 kcal/mol (blue) to 12.5 kcal/mol (red).
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E-3c(+H)
0.1

E-3a(+-)
\ 0.1 /

Figure 4.3. Relaxed 2-D conformational scan of (E)-1-bromo-4-cyano-2-butene (E-3) using

B3LYP/cc-pVTZ electronic energies with PCM solvent correction for water. Relative energies in

kcal/mol. The heat map ranges from 0 kcal/mol (blue) to 12.5 kcal/mol (red).

The conformations of the Z-3 species are the possible combinations of the anti-clinal

bromo-methyl rotor with the anti-clinal cyano-methyl group, as the steric interactions of the bromo

and cyano groups destabilize the syn-periplanar positions. Thus, for Z-3 there are a total of four

conformations consisting of two enantiomeric pairs of local minima. Interconnecting these

conformations are four pairs of enantiomeric transition states. The stationary points denoted in
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Figure 4.2 show that the largest activation barrier for interconversion of any of the conformations
is 5.5 kcal/mol (Z-3z), which is at least 10 kcal/mol lower in energy than any of the outgoing E2’

transition state barriers (vide infra).

The conformations of the E-3 species are the anti-clinal and syn-periplanar positions of the
bromo-methyl rotor in various combinations with the anti-clinal and syn-periplanar positions of
the cyano-methyl rotor. Thus, for E-3 there are nine conformations consisting of four enantiomeric
pairs of local minima and one unique local minimum. Interconnecting these conformations are
eight enantiomeric pairs of transition states and two unique transition states. Examination of the
stationary points in Figure 4.3 reveals that the largest activation barrier for interconversion of any
of the conformations is 4.2 kcal/mol (E-3y), which is at least 10 kcal/mol lower in energy than any
of the outgoing E2' transition state barriers (vide infra). This is consistent with the Curtin-Hammett
principle, because the energy required to overcome the lowest of the E2' transition states is more

than sufficient to overcome any of the conformational activation barriers.

For the reaction of each diastereomer of (Z-3 or E-3) with cyanide ion, the calculations
predict two pairs of E2' transition states (Figures 4.4 and 4.5) leading to the cyanobutadiene
products (E-1 and Z-1). In each of the transition state geometries, an acidic hydrogen atom at C-
4 is perpendicular to the plane of the adjacent alkene unit. The bromide leaving group at C-1 can
be in an anti or syn orientation with respect to the acidic hydrogen atom at C-4. The cyano
substituent at C-4 may occupy a syn-periplanar conformation relative to the alkene moiety, which
leads to the formation of (Z)-1-cyano-1,3-butadiene (Z-1), or an anti-periplanar conformation,
which leads to the formation of the (E)-1-cyano-1,3-butadiene (E-1). Each transition state was
verified to connect one diastereomer of the starting material (3) to one diastereomer of the product

(2), using an IRC calculation. Several attempts to explore a stepwise pathway beginning with
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deprotonation of Z-3 or E-3 failed to obtain an anionic intermediate as a stationary point.

Therefore, a stepwise mechanism was not considered further.

A
40
RN
T‘g
= L
X
T 20
2
10 -
. 4.7
0 ! -
E-1a Reaction Coordinate N Z-1a
0.0 /\JI 0.6
= ©
MN+HCN+Br NF +HCN+B|‘®

Figure 4.4. Computed reaction coordinate diagram for E2' reaction of (Z)-1-bromo-4-cyano-2-
butene (Z-3) with cyanide in water. Gibbs free energies at B3LYP/cc-pVTZ with the polarized
continuum model for the solvent (H-O) at 273 K (0 °C). Solid line: lower energy transition state.

Dashed line: higher energy transition state.
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Figure 4.5. Computed reaction coordinate diagram for E2' reaction of (E)-1-bromo-4-cyano-2-
butene (E-3) with cyanide in water. Gibbs free energies at B3LYP/cc-pVTZ with the polarized
continuum model for the solvent (H20) at 323 K (50 °C). Solid line: lower energy transition state.

Dashed line: higher energy transition state.

For either diastereomer of 1-bromo-4-cyano-2-butene (Z-3 or E-3), the computed
activation barriers of the E2’ transition states are significantly higher (by 7 — 14 kcal/mol) than the
activation barriers for conformational interconversion. Thus, the diastereoselectivity in the
elimination reaction is interpreted in terms of the Curtin — Hammett principle.*® Product selectivity

is governed by the difference in energy between the competing product-forming transition states
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(AAGY). The conformational equilibrium in the starting material is rapid and does not govern the
composition of products. If the reaction system has enough energy to surmount the lowest-energy
E2' barrier, it has sufficient energy to surmount the conformational barriers. As such, the potential
energy surfaces for the E2' reactions shown in Figures 4.4 and 4.5 contain a simplified surface for

the conformational isomerization of each 1-bromo-4-cyano-2-butene (Z-3 or E-3).

In the E2' reaction of (Z)-1-bromo-4-cyano-2-butene (Z-3) with cyanide in water at 273 K
(0 °C) (Figure 4.4), the transition states TS2a and TS2b that lead to (Z)-1-cyano-1,3-butadiene (Z-
1) are higher in energy than the transition states TS1a and TS1b that lead to (E)-1-cyano-1,3-
butadiene (E-1). Thus, the computational analysis is in qualitative accordance with the
experimental observation of diastereoselectivity favoring the formation of (E)-1-cyano-1,3-
butadiene (E-1). The difference in transition state energies (AAG?) appears to arise from a steric
interaction in the transition states involving the .CH>CN group. Both transition states leading to
Z-1 (TS2a and TS2b) have a larger interaction between —CN and —CH.Br, relative to the transition
states leading to E-1 (TS1la and TS1b). The small energy difference between the E-1-forming
transition states TS1a and TS1b (0.8 kcal/mol) is likely due to a subtle difference in electrostatic
interactions (repulsion) between the bromo and cyano substituents in the anti versus syn E2’
elimination pathways. Natural Bond Orbital (NBO) analysis of each transition state did not reveal
any obvious hyperconjugation contribution to the energy differences among TS1a, TS1b, TS2a,
and TS2b. Assuming that this potential energy surface reasonably models this reaction, the E-
1/Z-1 ratio derived from the AAG* between TS1a and TS2a (2.4 kcal/mol) is expected to be ca.
60:1. This result is in qualitative agreement with the experimental observation of an E-1/Z-1 ratio
of 10:1. This does indicate, however, that the computational prediction of AAG? is larger than its

true value by about 1 kcal/mol.
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In a similar fashion, the potential energy surface of the E2' reaction of (E)-1-bromo-4-
cyano-2-butene (E-3) with cyanide in water at 323 K (50 °C) is presented in Figure 4.5. Unlike
the reaction of the isomeric system (Z-3), the transition states for the E2' reaction of E-3 leading
to (E)- and (Z)-1-cyano-1,3-butadiene (1) are computed to be virtually isoergic (AAG* = 0.1
kcal/mol favoring the formation of E-1). With the -CH>CN and —CH2Br groups in a trans
orientation in the ground state of E-3, there is no significant preference for the —CN substituent to
adopt one conformation over the other. This situation is also manifested in the transition states
(TS3a, TS3b, TS4a, and TS4b); the relative energies of the transition states reveal no preference
for the stereochemical course of the reaction. Thus, the rates of product formation would be
expected to afford a diastereomeric ratio of nearly 1:1. This prediction is consistent with the
experimentally observed product ratio of E-1/Z-1 (E/Z ratio 2:3). The deviation of the
experimental ratio from 1:1 reveals that there is a slight energetic preference (<1 kcal/mol) for the
transition states leading to the Z diastereomer. Our computational model is not expected to be of

sufficient accuracy to account for such a small energetic difference.

SUMMARY

We computationally analyzed the rate-determining step of the proposed mechanism for the
synthesis of (E)-1-cyano-1,3-butadiene (E-1) and (Z)-1-cyano-1,3-butadiene (Z-1) from 1,4-
dibromo-2-butene (2) and cyanide. The purported intermediate, 1-bromo-4-cyano-2-butene,
consists of many conformational isomers arising from the two separate and mostly non-interacting
rotors of the bromo-methyl group and the cyano-methyl group. The conformational surface of the
intermediate, though complex, does not affect the outcome of the reaction with cyanide because

the 1,4-elimination (E2’) transition states are significantly higher in energy than the conformational
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transition states, justifying the use of the Curtin-Hammett principle. For the reaction of (E)-1-
bromo-4-cyano-2-butene (E-3), the transition states leading to the Z-1 product possess increased
steric interactions of the cyano-methyl rotor with the bromo-methyl rotor, resulting in higher
energies than the transition states leading to the E-1 product, which lack such steric interaction.
The difference in energy of the transition states corresponds to a predicted E-1/Z-1 ratio of ca.
60:1, comparable to the 10:1 ratio observed experimentally. For the reaction of (Z)-1-bromo-4-
cyano-2-butene (Z-3), the transition states leading to either E-1 or Z-1 are effectively the same
energies, leading to a predicted E-1/Z-1 ratio of 1:1, comparable to the 2:3 ratio observed
experimentally.  The agreement between the predicted and experimentally observed
diastereoselectivities suggests the computed model free energies are accurate to with 1 kcal/mol,

and strongly supports the proposed Sn2/E2’ mechanism in the synthesis of E-1 and Z-1 from 2.

ACKNOWLEDGEMENTS

We gratefully acknowledge the National Science Foundation for support of this project

(CHE-1664912, CHE-1362264). We thank Dr. Timothy S. Zwier for stimulating discussions.

REFERENCES

1. Endres, C. P.; Schlemmer, S.; Schilke, P.; Stutzki, J.; Muller, H. S. P., The Cologne
Database for Molecular Spectroscopy, CDMS, in the Virtual Atomic and Molecular Data

Centre, VAMDC. J. Mol. Spectrosc. 2016, 327, 95-104.

2. Muller, H. S. P.; Schloder, F.; Stutzki, J.; Winnewisser, G., The Cologne Database for
Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists. J. Mol.

Struct. 2005, 742 (1-3), 215-227.



10.

11.

128

Agundez, M.; Wakelam, V., Chemistry of Dark Clouds: Databases, Networks, and Models.

Chem. Rev. 2013, 113 (12), 8710-8737.

Costes, M.; Naulin, C., Studies of reactions relevant to astrochemistry. In Annual Reports
on the Progress of Chemistry 2013, Vol 109, Section C: Physical Chemistry, Webb, G. A,

Ed. Royal Soc Chemistry: Cambridge, 2013; Vol. 109, pp 189-210.

Garrod, R. T.; Weaver, S. L. W.; Herbst, E., Complex chemistry in star-forming regions:

An expanded gas-grain warm-up chemical model. Astrophys. J. 2008, 682 (1), 283-302.
Herbst, E., Chemistry in the interstellar medium. Annu. Rev. Phys. Chem. 1995, 46, 27-53.

Sagan, C.; Khare, B. N., Tholins - organic chemistry of interstellar grains and gas. Nature

1979, 277 (5692), 102-107.

Cumper, C. W. N.; Dev, S. K.; Landor, S. R., Electric dipole-moments of some
acrylonitriles, allyl cyanides, and alicyclic nitriles. J. Chem. Soc.-Perkin Trans. 2 1973,

(5), 537-540.

Hannay, N. B.; Smyth, C. P., The dipole moments and structures of ketene and of several
polar molecules containing conjugated systems. J. Am. Chem. Soc. 1946, 68 (7), 1357-

1360.

Soundararajan, S., Charge distribution, electric dipole moments, and molecular structure

of nitriles. Indian J. Chem. 1963, 1 (12), 503-&.

McGuire, B. A.; Burkhardt, A. M.; Kalenskii, S.; Shingledecker, C. N.; Remijan, A. J.;
Herbst, E.; McCarthy, M. C., Detection of the aromatic molecule benzonitrile (c-C6H5CN)

in the interstellar medium. Science 2018, 359 (6372), 202-205.



12.

13.

14.

15.

16.

17.

18.

129

Zeng, S.; Quenard, D.; Jimenez-Serra, l.; Martin-Pintado, J.; Rivilla, V. M.; Testi, L.;
Martin-Domenech, R., First detection of the pre-biotic molecule glycolonitrile
(HOCH2CN) in the interstellar medium. Mon. Not. Roy. Astron. Soc. 2019, 484 (1), L43-

L48.

Cernicharo, J.; Agundez, M.; Prieto, L. V.; Guelin, M.; Pardo, J. R.; Kahane, C.; Marka,
C.; Kramer, C.; Navarro, S.; Quintana-Lacaci, G.; Fonfria, J. P.; Marcelino, N.; Tercero,
B.; Moreno, E.; Massalkhi, S.; Santander-Garcia, M.; McCarthy, M. C.; Gottlieb, C. A,;
Alonso, J. L., Discovery of methyl silane and confirmation of silyl cyanide in IRC+10216.

Astron. Astrophys. 2017, 606, L5.

Avery, L. W.; Broten, N. W.; Macleod, J. M.; Oka, T.; Kroto, H. W., Detection of heavy

interstellar molecule cyanodiacetylene. Astrophys. J. 1976, 205 (3), L173-L175.

Broten, N. W.; Macleod, J. M.; Avery, L. W.; Irvine, W. M.; Hoglund, B.; Friberg, P.;
Hjalmarson, A., The detection of interstellar methylcyanoacetylene. Astrophys. J. 1984,

276 (1), L25-L.29.
Broten, N. W.; Oka, T.; Avery, L. W.; Macleod, J. M.; Kroto, H. W., Detection of HC9N

in interstellar space. Astrophys. J. 1978, 223 (2), L105-L107.

Kroto, H. W.; Kirby, C.; Walton, D. R. M.; Avery, L. W.; Broten, N. W.; Macleod, J. M.;
Oka, T., Detection of cyanohextriyne, H(C=C)3CN, in Heiles Cloud 2. Astrophys. J. 1978,

219 (3), L133-L137.

Snyder, L. E.; Buhl, D., Observations of radio emission from interstellar hydrogen cyanide.

Astrophys. J. 1971, 163 (2), L47-&.



19.

20.

21.

22.

23.

24,

25.

26.

130

Snyder, L. E.; Hollis, J. M.; Jewell, P. R.; Lovas, F. J.; Remijan, A., Confirmation of

interstellar methylcyanodiacetylene (CH3CsN). Astrophys. J. 2006, 647 (1), 412-417.

Walmsley, C. M.; Winnewisser, G.; Toelle, F., Cyanoacetylene and cyanodiacetylene in

interstellar clouds. Astron. Astrophys. 1980, 81 (1-2), 245-250.

Gardner, F. F.; Winnewisser, G., Detection of interstellar vinyl cyanide (acrylonitrile).

Astrophys. J. 1975, 195 (3), L127-L130.

Lovas, F. J.; Remijan, A. J.; Hollis, J. M.; Jewell, P. R.; Snyder, L. E., Hyperfine structure
identification of interstellar cyanoallene toward TMC-1. Astrophys. J. 2006, 637 (1), L37-

L40.

Solomon, P. M.; Jefferts, K. B.; Penzias, A. A.; Wilson, R. W., Detection of millimeter

emission lines from interstellar methyl cyanide. Astrophys. J. 1971, 168 (3), L107-&.

Belloche, A.; Garrod, R. T.; Muller, H. S. P.; Menten, K. M.; Comito, C.; Schilke, P.,
Increased complexity in interstellar chemistry: detection and chemical modeling of ethyl
formate and n-propyl cyanide in Sagittarius B2(N). Astron. Astrophys. 2009, 499 (1), 215-

U293.

Belloche, A.; Garrod, R. T.; Muller, H. S. P.; Menten, K. M., Detection of a branched alkyl
molecule in the interstellar medium: iso-propyl cyanide. Science 2014, 345 (6204), 1584-

1587.

Jamal, A.; Mebel, A. M., Theoretical Investigation of the Mechanism and Product
Branching Ratios of the Reactions of Cyano Radical with 1- and 2-Butyne and 1,2-

Butadiene. J. Phys. Chem. A 2013, 117 (4), 741-755.



217.

28.

29.

30.

31.

32.

33.

131

Morales, S. B.; Bennett, C. J.; Le Picard, S. D.; Canosa, A.; Sims, I. R.; Sun, B. J.; Chen,
P. H.; Chang, A. H. H.; Kislov, V. V.; Mebel, A. M.; Gu, X.; Zhang, F.; Maksyutenko, P.;
Kaiser, R. I., A crossed molecular beam, low-temperature Kinetics, and theoretical
investigation of the reation of the cyano radical (CN) with 1,3-butadiene (C4Hs). A route
to complex nitrogen-bearing molecules in low-temperature extraterrestrial environments.

Astrophys. J. 2011, 742 (1), 26.

Moreno, R.; Silla, E.; Tunon, I.; Arnau, A., Ab initio rotational constants of the nitriles

derived from cyanodiacetylene (HC4CN). Astrophys. J. 1994, 437 (1), 532-539.

Sagan, C.; Thompson, W. R.; Khare, B. N., Titan - A laboratory for prebiological organic

chemistry. Acc. Chem. Res. 1992, 25 (7), 286-292.

Sun, B. J.; Huang, C. H.; Chen, S. Y.; Chen, S. H.; Kaiser, R. I.; Chang, A. H. H.,
Theoretical Study on Reaction Mechanism of Ground-State Cyano Radical with 1,3-

Butadiene: Prospect of Pyridine Formation. J. Phys. Chem. A 2014, 118 (36), 7715-7724.

Charnley, S. B.; Kuan, Y.-J.; Huang, H.-C.; Botta, O.; Butner, H. M.; Cox, N.; Despois,
D.; Ehrenfreund, P.; Kisiel, Z.; Lee, Y.-Y.; Markwick, A. J.; Peeters, Z.; Rodgers, S. D.,

Astronomical searches for nitrogen heterocycles. Adv. Space Res. 2005, 36 (2), 137-145.

Cassini Titan Science; NASA Planetary Data System (PDS); National Aeronautics and
Space Administration.
https://atmos.nmsu.edu/data_and_services/atmospheres_data/Cassini/sci-

titan.html#huygens (accessed 2020).
Desai, R. T.; Coates, A. J.; Wellbrock, A.; Vuitton, V.; Crary, F. J.; Gonzalez-Caniulef, D.;

Shebanits, O.; Jones, G. H.; Lewis, G. R.; Waite, J. H.; Cordiner, M.; Taylor, S. A.; Kataria,

D. O.; Wahlund, J. E.; Edberg, N. J. T.; Sittler, E. C., Carbon Chain Anions and the Growth



34.

35.

36.

37.

38.

39.

40.

132

of Complex Organic Molecules in Titan's lonosphere. Astrophys. J. Lett. 2017, 844 (2),

L18.

Cable, M. L.; Horst, S. M.; Hodyss, R.; Beauchamp, P. M.; Smith, M. A.; Willis, P. A,,
Titan Tholins: Simulating Titan Organic Chemistry in the Cassini-Huygens Era. Chem.

Rev. 2012, 112 (3), 1882-19009.

Thompson, W. R.; Henry, T. J.; Schwartz, J. M.; Khare, B. N.; Sagan, C., Plasma discharge
in N2 + CHs at low pressures - experimental results and applications to Titan. Icarus 1991,

90 (1), 57-73.

Kougias, S. M.; Knezz, S. N.; Owen, A. N.; Sanchez, R. A.; Hyland, G. E.; Lee, D. J,;
Patel, A. R.; Esselman, B. J.; Woods, R. C.; McMahon, R. J.,, Synthesis and
Characterization of Cyanobutadiene Isomers-Molecules of Astrochemical Significance. J.

Org. Chem. 2020, 85 (9), 5787-5798.

Zdanovskaia, M. A.; Dorman, P. M.; Orr, V. L.; Owen, A. N.; Kougias, S. M.; Esselman,
B. J.; Woods, R. C.; McMahon, R. J., Rotational Spectra of Three Cyanobutadiene Isomers
(CsHsN) of Relevance to Astrochemistry and Other Harsh Reaction Environments. J. Am.

Chem. Soc. 2021, 143 (25), 9551-9564.

Becke, A. D., Density-functional thermochemistry .3. The role of exact exchange. J. Chem.

Phys. 1993, 98 (7), 5648-5652.

Lee, C. T.; Yang, W. T.; Parr, R. G., Development of the Colle-Salvetti correlation energy

formula into a functional of the electron density. Phys. Rev. B 1988, 37 (2), 785-789.

Dunning, T. H., Gaussian basis sets for use in correlated molecular calculations .1. The

atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90 (2), 1007-1023.



41.

42.

43.

133

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J.
R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.;
Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.;
Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini,
F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski,
V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda,
R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.;
Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.
J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand,
J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; lyengar, S. S.; Tomasi, J.; Cossi, M.;
Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision B.01,

Gaussian, Inc.: Wallingford, CT, USA, 2016.

Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A;;
Morales, C. M.; Landis, C. R.; Weinhold, F. NBO 6.0, Theoretical Chemistry Institute,

University of Wisconsin: Madison, WI, 2013.

Seeman, J. |., Effect of conformational change on reactivity in organic chemistry.
Evaluations, applications, and extensions of Curtin-Hammett Winstein-Holness kinetics.

Chem. Rev. 1983, 83 (2), 83-134.



134

SUPPORTING INFORMATION

All computational summaries, including Cartesian coordinates, are available online at

https://pubs.acs.org/doi/suppl/10.1021/acs.joc.9b03388/suppl file/jo9b03388 si 001.pdf

Table of Contents

Table 4.1. Summary of Absolute Electronic and Free Energies Determined by B3LYP/cc-
PVTZ With PCM(H20). ..ottt 135
Table 4.2. Summary of Relative Electronic and Free Energies Determined by B3LYP/cc-

PVTZ WIth PCM(H20). wvvvveeeerreoerroneeessseeseeesessssessseessssesssessesssssssssssssssssssssssssnsessssssssenn 137


https://pubs.acs.org/doi/suppl/10.1021/acs.joc.9b03388/suppl_file/jo9b03388_si_001.pdf

Table 4.1. Summary of Absolute Electronic and Free Energies Determined by B3LYP/cc-pVTZ with PCM(H20).

Absolute Energies (Hartrees/Particle)
B3LYP/cc-PVTZ  Zero-Point Energy

Molecule + PCM(H,0) Correction AG(273) AGq298) AG323)
Br- -2574.418411 0.000000 -2574.418411 -2574.418411 -2574.418411
CN- -92.991754 0.004908 -93.004002 -93.005874 -93.007747
HBr -2574.838558 0.005931 -2574.849968 -2574.851857 -2574.853746
HCN -93.468406 0.016417 -93.469431 -93.471341 -93.473257
E-la -248.340828 0.084356  -248.282958  -248.286009 -248.289100
E-1b -248.334771 0.084168  -248.277418  -248.280511 -248.283644
E-ly -248.334559 0.084012  -248.276615  -248.279577 -248.282573
E-1z -248.327279 0.083381  -248.270103  -248.273087 -248.276106
Z-1a -248.339893 0.084520  -248.281996  -248.285050 -248.288144
Z-1b -248.332893 0.084422  -248.275466  -248.278565 -248.281702
Z-1ly -248.332731 0.084419  -248.274222  -248.277149 -248.280110
Z-1z -248.327168 0.083577  -248.269759  -248.272725 -248.275725
E-3a -2823.194404 0.098175 -2823.127395 -2823.131032 -2823.134719
E-3b -2823.194485 0.098159 -2823.127363 -2823.130984  -2823.134655
E-3c -2823.194389 0.098296 -2823.127250 -2823.130880 -2823.134561
E-3d -2823.190835 0.097896 -2823.124064 -2823.127694  -2823.131374
E-3e -2823.190824 0.097840 -2823.123940 -2823.127555 -2823.131221
E-3q -2823.191723 0.097771 -2823.124021 -2823.127493  -2823.131012
E-3r -2823.191330 0.097968 -2823.123583 -2823.127067  -2823.130597
E-3s -2823.191353 0.097961 -2823.123395 -2823.126859  -2823.130370
E-3t -2823.189099 0.097772 -2823.121718 -2823.125221  -2823.128771
E-3u -2823.189151 0.097699 -2823.121494 -2823.124965  -2823.128482

GET



Molecule

Absolute Energies (Hartrees/Particle)

B3LYP/cc-PVTZ  Zero-Point Energy
+ PCM(H20)

Correction

AG(273)

AGq293)

AG(323)

E-3v
E-3w
E-3x
E-3y
E-3z
Z-3a
Z-3b
Z-3w
Z-3X
Z-3y
Z-3z
TSla
TS1b
TS2a
TS2b
TS3a
TS3b
TS4a
TS4b

-2823.189058
-2823.187933
-2823.187932
-2823.187844
-2823.187776
-2823.191453
-2823.191333
-2823.189959
-2823.186419
-2823.187784
-2823.182743
-2916.168979
-2916.168536
-2916.166206
-2916.165918
-2916.170754
-2916.170780
-2916.170427
-2916.170529

0.097803
0.097626
0.097423
0.097561
0.097621
0.098526
0.098385
0.098048
0.097900
0.098354
0.097987
0.098350
0.098410
0.098627
0.098570
0.098139
0.098076
0.098153
0.098102

-2823.121467
-2823.120606
-2823.120623
-2823.120429
-2823.120196
-2823.124487
-2823.124717
-2823.122111
-2823.119022
-2823.119423
-2823.115009
-2916.111809
-2916.106121
-2916.103509
-2916.103504
-2916.108687
-2916.108970
-2916.108532
-2916.108783

-2823.124954
-2823.124104
-2823.124100
-2823.123910
-2823.123665
-2823.128150
-2823.128403
-2823.125584
-2823.122526
-2823.122869
-2823.118484
-2916.107383
-2916.110469
-2916.107845
-2916.107866
-2916.113050
-2916.113357
-2916.112916
-2916.113178

-2823.128487
-2823.127648
-2823.127624
-2823.127438
-2823.127180
-2823.131863
-2823.132138
-2823.129102
-2823.126077
-2823.126361
-2823.122004
-2916.116306
-2916.114888
-2916.112252
-2916.112298
-2916.117486
-2916.117816
-2916.117371
-2916.117644

9¢T



Table 4.2. Summary of Relative Electronic and Free Energies Determined by B3LYP/cc-pVTZ with PCM(H20).

Relative Energies (kcal/mol)?
B3LYP/cc-PVTZ B3LYP/cc-PVTZ +

Molecule +PCM(H,0)  PCM(H,0)+zPE ~ A0@®  AGes)  AGez)
E-la 0.0 0.0 0.0 0.0 0.0
E-1b 3.8 3.7 35 35 3.4
E-ly 3.9 3.7 4.0 4.0 41
E-17 8.5 7.9 8.1 8.1 8.2
Z-1a 0.6 0.7 0.6 0.6 0.6
Z-1b 5.0 5.0 47 4.7 46
71y 5.1 5.1 55 5.6 5.6
7-17 8.6 8.1 8.3 8.3 8.4
E-10a 26.0 275 247 24.4 24.0
E-10b 26.0 274 247 24.4 201
E-10c 26.0 276 248 245 241
E-10d 28.3 295 26.8 26.5 26.1
E-10e 28.3 295 26.9 26.6 26.2
E-10q 277 28.9 26.8 26.6 26.4
E-10r 28.0 293 271 26.9 26.6
E-10s 279 203 272 27.0 26.8
E-10t 20.4 30.6 28.3 28.0 278
E-10u 203 305 28.4 28.2 27.9
E-10v 29.4 30.6 28.4 28.2 279
E-10w 30.1 312 29.0 28.7 28.5
E-10x 30.1 31.1 29.0 28.7 28.5
E-10y 30.1 312 291 28.9 28.6
E-102 30.2 313 29.2 29.0 28.8
Z-10a 279 20,6 26.6 26.2 258

LET



Relative Energies (kcal/mol)?
B3LYP/cc-PVTZ B3LYP/cc-PVTZ +

Molecule +PCM(H,0)  PCM(H,0)+zPE ~ A0@®  AGes)  AGez)
Z-10b 28.0 205 264 26.0 257
Z-10w 28.8 30.2 28.0 278 276
Z7-10x 31.0 323 30.0 29.7 205
Z-10y 30.2 317 29.7 205 203
7-10z 33.4 347 325 323 32.0
TSla 36.8 353 37.0 2.9 405
Tsib 37.1 35.6 40.6 41.0 413
TS2a 38.6 372 422 426 43.0
TS2b 38.7 37.4 422 426 43.0
TS3a 357 34.0 39.0 39.4 39.7
TS3b 357 34.0 38.8 39.2 395
Ts4a 35.9 34.3 39.1 39.4 30.8
Ts4b 35.8 342 38.9 393 39.6

& Mass-balanced energies relative to E-1a on the CsHeN2Br~ surface.
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Chapter 5: Theoretical Investigation of the Conversion of 1-
Cyano-1,3-butadiene to Pyridine Under Interstellar

Conditions

Unpublished work with contributions from Brian J. Esselman, R. Claude Woods, and Robert J.

McMahon.
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ABSTRACT

Pyridine, the N-heterocyclic analog of benzene, has long been a target of astronomical
surveys via radio astronomy. 1-Cyano-1,3-butadiene, a N-heterologue of 1,3-hexadien-5-yne, is
known to form predominantly over that of pyridine in the reactions of cyano radicals with
butadiene under conditions similar to that of the interstellar medium. Given that 1,3-hexadien-5-
yne is known to isomerize to benzene, it may be that the isomerization of 1-cyano-1,3-butadiene
to pyridine is a significant pathway to formation of pyridine in the interstellar medium. If so,
detection of 1-cyano-1,3-butadienes in the interstellar medium could provide evidence for the
likely presence of pyridine in the interstellar medium, as well as to provide insight into the study
of the astrochemical processes therein. Our theoretical calculations support the conclusion that 1-
cyano-1,3-butadiene is likely to form pyridine under interstellar conditions with the assistance of
trihydrogen cation. The potential for astronomical searches of intermediates encountered in the
pathways is discussed, and additional avenues of the transformation are considered for future

study.

INTRODUCTION

The pervasiveness of aromatic (hetero)cycles in organic and biological chemistry is such
that detection and characterization of these species in the interstellar medium is of paramount
interest in the fields of astrochemistry and prebiotic chemistry. While the prototypical aromatic
molecule — benzene — has been detected in the interstellar medium (ISM) via measurements of its
infrared spectra,® the lack of a permanent dipole (and thus, pure rotational transitions) means that
benzene is unable to be detected by radio astronomy, which has become the gold standard for

detection of molecules in the ISM. Aromatic heterocycles and aromatic rings with polar
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substituents — particularly the cyano substituent — are much more suitable for detection via
radioastronomy owing to their significant permanent dipole moments. Though such molecules
have long been targets for detection via radioastronomy,?® the first benzene-derived species
(benzonitrile) was only recently detected.” While other cyano-substituted molecules have since
been detected,®!! the nitrogen analog of benzene (pyridine) and other heterocycles have yet to be

detected.> 1214

Kaiser, Chang, and coworkers have considered the formation of pyridine under interstellar
conditions both experimentally and computationally.®>1" They examined the reaction of cyano
radical ("CN) with 1,3-butadiene (CH>—CH—CH—CH_) using crossed molecular beams under
single-collision conditions and estimated that, at most, 6% of the products were attributable to
pyridine, while the rest was attributed to the formation 1-cyano-1,3-butadiene.’® Their
experimental results were consistent with that of their electronic structure and Kinetics
calculations®® (including the more thorough ensuing computational investigation'’) which led to
the conclusion that while pyridine is significantly more stable than 1-cyano-1,3-butadiene, the
radical processes have significantly higher activation barriers for the formation of pyridine than
the formation of 1-cyano-1,3-butadiene. The conclusion that the formation of pyridine is not
kinetically favored is supported by Jamal and Mebel*® who examined the reactions of the cyano
radical with other open chain isomers of 1,3-butadiene e.g., 1-butyne, 2-butyne, and 1,2-butadiene,
using similar computational methods. They also found pyridine formation was negligible
compared to a handful of open chain cyano compounds e.g., 2-cyano-1,3-butadiene, 1-cyano-1,2-
propadiene, cyanoethyne, and 3-cyano-1-propyne. The formation of pyridine in the ISM,
therefore, likely involves isomerization from a less stable constitutional isomer (whose formation

is kinetically favorable), or from the decomposition of a larger molecule. An example of the latter
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is the reaction of vinyl cyanide (CH,=CH—CN) with cyanovinyl radical (CH=CH—-CN) in a
pyrolytic reactor, where it is believed that cyanopyridyl radical [(cyclic-CsHsN")—CN] is formed

before decomposing to yield pyridine and cyano radical.®

Since the decomposition of larger molecules to form pyridine represents more complicated
formation pathways — and a larger pool of possible reactions — we limit ourselves to examining the
constitutional isomers that may rearrange to form pyridine. The constitutional isomers with the
simplest intramolecular isomerization to form pyridine are those that have a linear arrangement of
the heavy atoms, such as 1-cyanobutadienes, imine-ene-ynes, cyanomethylene-allenes, and
substituted ketenimines. We consider such isomerizations to form pyridine to be ‘simple’ because
they require only a single heavy-atom bond formation, whereas the isomerization of species with
a branching arrangement of the heavy atoms e.g., 2-cyano-1,3-butadiene, require an additional
heavy-atom bond dissociation and bond formation. As noted previously, 1-cyano-1,3-butadiene
is the dominant product in the reaction of cyano radical with 1,3-butadiene. Furthermore, the
transformation of 1-cyano-1,3-butadiene (1) to N-heterocyclic aromatic pyridine (2) is
isoelectronic with the transformation of 1,3-hexadien-5-yne (3) to aromatic benzene (4), as is the
transformation of protonated 1-cyano-1,3-butadiene (5) to protonated pyridine (6), as illustrated in
Scheme 5.1. Thus, we believe examining the neutral and protonated transformations of 1-cyano-
1,3-butadiene (1) to pyridine (2) represent the most fruitful avenue for investigating the formation

of pyridine from a constitutional isomer under interstellar conditions.
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Scheme 5.1. Isoelectronic Formation of Six-Membered Aromatic Rings Open Chain

Constitutional Isomers.
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Consideration of the transformation of 1 to 2 in the literature thus far has been incidental®
and often focuses on the radical formation'® "8 or dissociation®?? of pyridine. The most
extensive examination of the transformation of 1 to 2 is that of Sun et al.,” who — in investigating
the reaction of cyano radical with 1,3-butadiene — examined over 300 local minima on the doublet
CsHeN" surface alone, along with over 100 dissociation products and a considerable number of
interconnecting transition states. The lowest energy pathway for the reaction 1 + H"— 2 + H' is
shown in Figure 5.1. The highest barrier in this pathway is the initial addition of H" to the cyano
carbon of 7, with an activation barrier of 8 kcal/mol. The radical 7 then cyclizes to form 8 and
finally ejects H" to yield pyridine. While the computational results are extensive, their focus was

not on the transformation of 1 to 2 and so it may be that the pathway in Figure 5.1 is not the lowest
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energy pathway for the transformation catalyzed by atomic hydrogen. For example, they report
the radical 9 resulting from attachment of H" to the nitrogen of 1 as being 2 kcal/mol lower in
energy than 7, but do not report whether there is an activation energy for the formation of 9 or its
cyclization, as highlighted in red in Figure 5.1. Thus, in addition to the neutral and proton
catalyzed pathways, we will also examine the transformation of 1 to 2 catalyzed by atomic

hydrogen.

0.0 -22.6

< H H H
N N
_— . | B | + H
™ =
7 10.1 21.4
9 -22.1

Figure 5.1. Computed energies (kcal/mol) of the H* catalyzed transformation of 1-cyano-1,3-
butadiene to pyridine, determined using CCSD(T)/cc-pVTZ//IB3LYP/cc-pVTZ + ZPEgsLvYpicc-pvTz

calculations.}” Pathways in red were not reported in Ref. 17.

COMPUTATIONAL METHODS

To evaluate reactions of interest, geometry optimizations and frequency calculations were
conducted using the B3LYP functional?®*?* and correlation-consistent polarized valence and triple
zeta basis set (cc-pVTZ).2® Transition states were further characterized via intrinsic reaction

coordinate (IRC) calculations to ensure correspondence to the desired reaction. Following the
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methodology of previous works,> 8 energy calculations utilizing the B3LYP/cc-pVTZ geometries
were conducted for each of the stationary points using coupled cluster with single, double, and
perturbative triple excitations [CCSD(T)] and the cc-pVTZ basis set. These energies are used in
combination with the zero-point energy correction determined at B3LYP/cc-pVTZ to calculate the
relative energies of the stationary points, reported herein as CCSD(T)/cc-pVTZ//B3LYP/cc-pVTZ

+ ZPEgsLvriccpvrz. All calculations were conducted using Gaussian 16.%

RESULTS AND DISCUSSION

The determination of the neutral pathway for the transformation of 1-cyano-1,3-butadiene
(1) to pyridine (2) is based on the isoelectronic isomerization of Z-1,3-hexadiene-5-yne to
benzene,?” and on the rather thorough exploration of the CeHs surface.® The neutral
transformation of 1 to 2 proceeds through intermediates higher in energy than 1. As shown in
Figure 5.2, the lowest energy transformation proceeds through 1-isocyano-1,3-butadiene (10). The
highest energy point of this pathway is the transformation of 10 to 2 via a tandem [3,3]-sigmatropic
shift (to form the six-membered ring) and a [1,2]-sigmatropic hydrogen transfer. Alternatively, 1
can cyclize directly via a [3,3]-sigmatropic shift to yield intermediate 11, and two subsequent [1,2]-
sigmatropic hydrogen transfers yields 2. While Balcioglu et al.?” were careful to determine the
exact nature of the intermediates, we decline to do so given that the high energies of these pathways
precludes the viability of the neutral transformation of 1 to 2 under interstellar conditions. It is
also worth noting that the neutral transformation of 1 to 2 is considerably higher in energy than
the isoelectronic isomerization of Z-1,3-hexadiene-5-yne to benzene,?’ though this may be due to

the difference in the choice of theory and basis set.
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Figure 5.2. The neutral isomerization of 1-cyano-1,3-butadiene (1) to pyridine (2) with energies

as computed using CCSD(T)/cc-pVTZ//IB3LYP/cc-pVTZ + ZPEB3LypiccpvTz.

As shown in Figure 5.3, the radical pathway described indirectly by Sunetal.’ (1 —» 7 —
8 — 2, green) prevails as the lowest energy pathway for the transformation of 1 to 2 as catalyzed
by atomic hydrogen. The transformation begins with H® attacking the cyano carbon of 1 to form
7, followed by cyclization to form doublet 1H-pyridyl radical 8, and finally H" is ejected to yield
2. The highest energy point in this pathway is that of the initial attachment of H* to 1, with an
activation energy of 7.9 kcal/mol. While this has the highest activation barrier for the attachment
of H" to 1 — due to the resulting intermediate 7 being the highest in energy of the possible
attachment products (7, 9, 13-16) — all other pathways contain higher activation barriers for their
respective transformations to 2. Specifically, attachment of H* to any other atom necessitates at

least one subsequent [1,2]-sigmatropic hydrogen transfer (either before or after cyclization to form
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the six-membered ring) with an activation barrier of at least 30 kcal/mol. Only by attaching H" to
the cyano carbon can this high-energy transition state be avoided. Therefore, provided sufficient

collision energy, the attachment of atomic hydrogen to 1 is at least a feasible albeit unlikely

pathway for the formation of pyridine in the ISM.
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Figure 5.3. The isomerization of 1-cyano-1,3-butadiene (1) to pyridine (2) catalyzed by atomic
hydrogen (H") with energies as computed by CCSD(T)/cc-pVTZ//IB3LYP/cc-pVTZ + ZPEg3Lypicc-
pvz in this work (blue, underlined) or in the previous work of Sun et al.1” (black, italicized). The

path highlighted in green represents the minimum energy pathway between 1 and 2.
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We used the trihydrogen cation (Hs") as the source of proton for catalyzing the
transformation of 1 to 2 under interstellar conditions.?®? As shown in Figure 5.4, the transfer of
a proton from the trihydrogen cation to 1 is considerably exothermic, a result of the larger CsHsN*
molecule distributing the positive charge to a greater degree than Hs*. This exothermicity provides
the resulting CsHeN™ intermediate with more than enough internal energy to overcome the large
activation barriers that were present in the isoelectronic transformation under neutral conditions
(vide supra). For simplicity, we have assumed that the transfer of proton from Hs* to CsHsN (and
vice versa) is a barrierless process, as (gas-phase) ion-molecule reactions typically proceed without
activation energy.

+ H || + H@ || + H
| 2 e | 3 » | 2
P
-93.0 1 0.0 ®
26 -71.5
4.

H
|
N@
Il
=
2
|

2
-54.9
J ;328 1-62.8
H
N N N
W + H2 -11.1 | + H2 28.4 \\ + H2
. -
N ™ N
23 -70.7 24 -90.5 27 -81.5
/ \im
o
N + ® N
| N Hs - | N + Hp
7 7
2 -26.1 25 -148.7

Figure 5.4. The isomerization of 1-cyano-1,3-butadiene (1) to pyridine (2) catalyzed by

trinydrogen cation (Hs*) with energies computed by CCSD(T)/cc-pVTZ//B3LYP/cc-pVTZ +

ZPEB3LYPicc-pvTZ.
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We first considered the attachment of the proton onto the nitrogen atom of 1 to yield 22,
as the nitrogen is the most basic atom of those present in 1. Cyclization of 22 via bond formation
between the nitrogen atom and the terminal carbon proceeds akin to that in the neutral pathway to
yield 23, which is the protonated form of 11. Subsequent transfer of the proton from the nitrogen
atom to the former cyano carbon yields 2H-pyridinium cation, 24. The hydrogen transfer can be
combined with the cyclization reaction to yield 24 directly from 22 via a single transition state,
which proceeds by first transferring the proton from the nitrogen to the cyano carbon followed by
cyclization. The single-step hydrogen transfer and cyclization has an activation barrier 20
kcal/mol lower than the two-step transformation. Once 24 is formed, a proton can be removed
from the sp3-hybridized carbon by H; to yield 2 and trihydrogen cation. Alternatively, the proton
can be transferred to the nitrogen atom via a [1,2]-sigmatropic shift to yield pyridinium, 25.
Comparison of the relative energies of 2+Hs" and 25+H; reveals pyridine has a vastly greater
proton affinity than molecular hydrogen by ca. 120 kcal/mol. This is consistent with the
experimental proton affinity values of 100 kcal/mol and 222 kcal/mol for molecular hydrogen and

pyridine, respectively.3*

An alternate pathway for the transformation of 1 to 24 begins with the protonation of the
C1 position to yield 26, which is less exothermic than the corresponding formation of 22.
Subsequent cyclization of 26 to yield 27 forms the six-membered ring and is, interestingly,
exothermic. At first, the positive charge would appear to be better stabilized by 26 due to the
allylic = conjugation, as compared to what is effectively a deprotonated imine in 27, but as
evidenced by the relative energies this argument is insufficient. We propose that additional
hyperconjugation with the C-H ¢ bonds of the newly formed sp3-hybridized carbon is responsible

for the higher stability of 27 compared to 26. More specifically, we hypothesize that the positive
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charge can be delocalized through the entire ring, by the donation of electron density from the C—
H o bonds to the C—N & bond, and in turn donation from the C—C & bond to the C—H ¢ bonds.
While such hyperconjugation is present in 26, it is not as significant because the group donating
electron density to the C—H o bonds via hyperconjugation is the electron-withdrawing cyano n
bond. Altogether, the stabilization due to hyperconjugation overcomes the cost of disrupting the
allylic 7 system in 26 to form the six-membered ring of 27, leading to an exothermic reaction.
This hypothesis, however, requires further investigation via natural bond orbital (NBO) and natural
resonance theory (NRT) calculations, the analysis of which has not been completed at the time of
this writing. Regardless, a subsequent [1,2]-sigmatropic hydrogen transfer to the former cyano
carbon yields 24. Overall, the formation of 24 from 1 via intermediate 26 has only a slightly higher
activation barrier (< 5 kcal/mol) than the path via 22, and so may represent a not insignificant

contribution to the formation of 2 from 1.

CONCLUSION

The high energy calculated for the neutral transformation of 1-cyano-1,3-butadiene 1 to
form pyridine 2 makes it clear that a catalyzing event is required to obtain 2 from 1 under
astronomical conditions. Catalysis of the transformation by atomic hydrogen is much more
feasible, but this radical pathway possesses an activation barrier of 8 kcal/mol. The most likely
pathway of those considered thus far is catalysis by the trihydrogen cation Hs*. The transfer of a
proton from Hs* to 1 is highly exothermic, owing to the low proton affinity of molecular hydrogen
in comparison to the much larger CsHsN molecule. This exothermicity in turn ensures the
subsequent transition states have activation barriers significantly lower than the energy of the

initial reactants, and 1 is easily obtained. The high proton affinity of pyridine, however, is such
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that the formation of pyridinium cation 25 is much more exothermic and thus the most likely

thermodynamic product of the reaction of 1 with Hs".

As can be inferred from the discussion, this study is still a work in progress. In addition to
the proposed NBO/NRT supporting calculations, we plan to explore several other avenues for the
transformation of 1 to 2. In particular, the catalyzed pathways studied thus far proceed by attaching
and then removing of an external mass (H* or H*). In a similar manner, we will consider the
transformation of 1 to 2 for the scenario where mass is removed and then reattached, that is, the
dissociation of atomic or cationic hydrogen from 1 to form the corresponding CsHsN" radical or
C4HsN™ anion. Subsequent cyclization to form the six-membered ring and then reattachment of
the hydrogen can yield 2 and may involve little to no activation barriers beyond the initial
detachment of the hydrogen, which we assume to be the result of a photochemical reaction or
impact of cosmic rays. The requisite transfer of a hydrogen atom from the terminal carbon to the
cyano carbon — which was the rate-determining step for most transformations considered thus far
— is then inherently distinct from the ring formation, and the corresponding activation barrier will
be split into (and coupled with) the removal and attachment steps. Further, noting that in both
scenarios at least one two-body collision is required, we plan to consider the transformation of 1
to 2 for the case of the removal or attachment of an electron. Such a change in the electronic
structure of 1 may facilitate its transformation into 2 and, other than the initial ionization energy,
only requires the presence of free electrons to occur. The computational modeling of these

reactions is thus an active area of research in pursuit of the completion of this work.
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ABSTRACT

We present computational studies of reaction pathways for alkyne / polyyne dimerization
that represent plausible early steps in mechanisms for carbon condensation. A previous
computational study of the ring coalescence and annealing model of Cgo formation revealed that
a 1,4-didehydrobenzocyclobutadiene intermediate (p-benzyne derivative) has little to no barrier to
undergoing an unproductive retro-Bergman cyclization, which brings into question the relevance
of that reaction pathway. The current study investigates an alternative model, which proceeds
through an initial [4+2] cycloaddition instead of a [2+2] cycloaddition. In this pathway, the
problematic intermediate is avoided, with the reaction proceeding via a (potentially) more
kinetically stable tetradehydronaphthalene derivative. The computational studies herein of the
[2+2] and [4+2] model systems, with increasing alkyne substitutions, reveal that the para-benzyne
diradical of the [4+2] pathway has a significantly greater barrier to ring opening than the analogous
intermediates of the [2+2] pathway, and that alkyne substitution has little effect on this important

barrier.

INTRODUCTION

Allotropes of carbon continue to be active areas of research in chemistry and materials
science. Recent developments include a monolayer fullerene network,! graphene nanoribbons of
various geometries,? and allotropes derived from nonbenzenoid aromatic structures (azulene,
biphenylene, etc.).> Cyclocarbon Cis,*° a known precursor of Ceo,® has been imaged on a surface.’
A myriad of chemical models for the formation of fullerene have been proposed and can be
categorized into two groups: pathways that start from large carbon aggregates that degrade into

fullerene (“size-down”) and pathways that start from small carbon aggregates and condense into
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fullerene (“size-up”). The “size-down” pathways that have been proposed include the
degradations of graphene,®*° graphene nanoflakes,'® carbon nanotubes,! and giant fullerenes,*>*3
while “size-up” pathways proposed include the fullerene road,** pentagon road,* closed network
growth, ™" and ring coalescence and annealing.® 181° Of the “size-up” pathways, all but the ring
coalescence and annealing model progress from smaller carbon aggregates to larger fullerenes
through the steady incorporation of C, fragments. In contrast, the ring coalescence and annealing
model proposes the addition of medium-sized (Ci2 — Cz0) cyclic polyynes, and subsequent
annealing through a cascading radical mechanism, results in fullerenes.?’ As illustrated in Scheme
6.1, this combination has been proposed to occur through an initial [2+2] cycloaddition to yield a

tetraalkynylcylcobuta-1,3-diene intermediate that subsequently undergoes a Bergman cyclization

reaction.1%20

While formation of a tetraalkynylcyclobutadiene may be a reasonable step in this process,
it was previously shown?! that the model products formed by the subsequent Bergman cyclization
reaction may have little or no barrier to undergo an exothermic retro-Bergman cyclization to yield
an eight-membered ring intermediate. This eight-membered ring intermediate is not currently
accounted for in the ring coalescence and annealing model, and the structural element of an eight-
membered ring is obviously not present in fullerene Ceo. These findings call into question whether
or not the initial [2+2] dimerization represents a productive pathway to fullerene formation. Thus,
we turned our attention to the study of an alternative reaction pathway that involves initial [4+2]
cycloaddition, or hexadehydro-Diels-Alder reaction (HDDA),?% of two polyynes to give a
tetraalkynyl ortho-benzyne intermediate (Scheme 6.2). Subsequent Bergman cyclization,
followed by a cascading radical mechanism, may afford a viable pathway to Ceo, as illustrated in

Scheme 6.2. This pathway avoids forming a high-energy four-membered ring intermediate and
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avoids the problematic retro-Bergman cyclization leading to the eight-membered ring species.
Thus, we investigate whether a small modification to the ring coalescence and annealing model

yields a more kinetically realistic reaction pathway.

Scheme 6.1. The [2+2] Ring Coalescence and Annealing Model of Fullerene Formation
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Scheme 6.2. Proposed [4+2] Ring Coalescence and Annealing Model of Fullerene Formation
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The condensation of highly unsaturated carbon molecules via cycloadditions has been

evaluated computationally at several levels of theory for a variety of species, as summarized in
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Scheme 6.3, but the comparison of polyyne dimerization through [2+2] or [4+2] cycloaddition
reactions has not been examined. A thermal, concerted [2ns+27ns] cycloaddition is symmetry
forbidden and thus the [2+2] cycloaddition is expected to proceed through a radical mechanism
(top Scheme 6.3).24% The [4+2] cycloaddition can proceed through either a radical mechanism
or a concerted [4ms+27ms] mechanism with the concerted reaction having an activation barrier of
34-36 kcal/mol, compared to the rate-determining step of the radical mechanism having a barrier
of 30-37 kcal/mol (middle Scheme 6.3).262 The competition of the [2+2] cycloaddition versus
the [4+2] cycloaddition is exemplified by the combination of butadiyne and ethyne (middle
Scheme 6.3, gray and underlined) to form either ortho-benzyne or ethynylcyclobutadiene.?
Unsurprisingly, the computed barriers for stepwise and concerted processes are close in energy
and the overall prediction of stepwise vs. concerted depends on the level of theory employed.
Overall, the formation of the [4+2] product (ortho-benzyne) is significantly more exothermic (>40
kcal/mol) than the formation of the [2+2] product (ethynylcyclobutadiene).?® Interestingly, in
considering the stepwise pathway for reaction of ortho-benzyne and butadiyne (bottom Scheme
6.3), the [2+2] product is kinetically favored by several kcal/mol, while the formation of the [4+2]

product is thermodynamically favored by about 30 kcal/mol.?
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Scheme 6.3. Mechanisms of Simple Alkyne Cycloadditions
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Following initial cycloadditions of the polyynes, the next step toward fullerene formation
in the ring coalescence and annealing model is a Bergman cyclization.?® 2° The resulting
intermediate for the [2+2] pathway is a substituted tetraalkynyl-didehydrobenzocyclobutadiene,
which is a fused para-benzyne and cyclobutadiene species (Scheme 6.1), while for the [4+2]
pathway the intermediate is a substituted tetraalkynyl-tetradehydronaphthalene, which is a fused
ortho- and para-benzyne species (Scheme 6.2). In principle, the para-benzyne intermediate of the
[4+2] pathway is expected to be more stable than the corresponding para-benzyne intermediate of
the [2+2] pathway: the ortho-benzyne present in the former is a strained, formally aromatic ring
while the cyclobutadiene present in the latter is a highly strained, formally antiaromatic ring. This
argument is based upon the computational result that the [4+2] product of ortho-benzyne and
butadiyne is 30 kcal/mol lower in energy than the [2+2] product (bottom Scheme 6.3). With the
[4+2] intermediate considerably lower in energy than the [2+2] intermediate, the subsequent retro-
Bergman cyclization will have a greater barrier within the [4+2] pathway than within the [2+2]
pathway. Thus the [4+2] pathway would be more likely to undergo the subsequent cascading

radical mechanism that leads to fullerene.

The [2+2] and [4+2] carbon condensation pathways (I and 11, respectively) studied in this
work are illustrated in Scheme 6.4. Because a computational study of a large carbon ring system
as described in Schemes 6.1 and 6.2 is not computationally feasible with reasonable ab initio
methods, we used a simplified substitution pattern described in Scheme 6.4 (a—d). Substitution a
is the parent system (R = R' = H). Substitution b places additional alkynyl units at the end of the
alkyne chains of the cycloaddition products 2b or 6b, while substitution ¢ places additional alkynyl
units on the ring of the cycloaddition products 2c or 6¢. The d substitution places alkynyl units on

both the ring and the alkyne chains of the cycloaddition products 2d or 6d. Scheme 6.4 (top)
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illustrates a [2+2] cycloaddition pathway involving two polyynes (la—d) to yield substituted
cyclobutadiene 2a—d. A Bergman cyclization of the enediyne unit of 2a—d results in the diradical
didehydrobenzocyclobutadiene 3a—d. Diradical species 3a—d can then undergo a retro-Bergman
cyclization, breaking the shared carbon-carbon bond between the fused rings, to generate

cycloocta-1,5-dien-3,7-diyne 4a—d.

Scheme 6.4. [2+2] and [4+2] Reaction Pathways.
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Scheme 6.4 (bottom) illustrates an alternative pathway that proceeds through an initial
[4+2] cycloaddition of two polyynes 1/5a—d. Necessarily, the pathway involves an extra alkynyl
unit in one of the initial polyynes for system Il compared to system I. The [4+2] cycloaddition
yields the substituted ortho-benzyne 6a—d, which can undergo the Bergman cyclization to generate
the diradical tetradehydronaphthalene species 7a—d. The retro-Bergman cyclization of 7a-d

generates cyclodeca-1,7-dien-3,5,9-triyne 8a—d.



167

Regardless of whether the initial [2+2] or [4+2] adducts are formed by a stepwise or
concerted process, we are keenly interested in elucidating the chemistry of these enediynes (2a-d
and 6a-d) with respect to Bergman cyclization and subsequent ring opening. An earlier study of
reaction pathway la at the B3LYP level of theory but was unsuccessful at identifying 3a as a
stationary point for the reactions under investigation.?! In this work, we revisited pathway la by
utilizing a smaller IRC step size to increase the sampling and produce a finer-detailed potential
energy surface for the purpose of comparison to the SF-TDDFT model system. Given the previous
poor behavior using B3LYP,?' and with consideration to the system size, MP2/cc-pVTZ
calculations were utilized to find the stationary points in these reaction pathways. As noted
previously?! and discussed further in this work, however, the MP2 description of diradicals 3a—d
and 7a—d in these schemes is questionable as it employs a single-reference model for a species that
is best treated with a multi-reference model. The multi-reference equation-of-motion and spin-flip
coupled cluster method, EOM-SF-CCSD employed previously on MP2 single point calculations,?
is computationally too intensive and not suitable for studying the larger systems in this work.
Analogous spin-flip approaches, however, have been applied to density functional theory*® and
recent advances in the implementation®! give comparable results. Thus, spin-flip, time-dependent
DFT calculations were chosen to evaluate the energetics of the reaction pathways in this

investigation.

COMPUTATIONAL METHODS

To evaluate the reactions of interest, restricted Mgller-Plesset second-order perturbation
theory®? was employed with the correlation consistent polarized valence and triple zeta basis set®

(MP2/cc-pVTZ) using Gaussian 09.3*  Geometry optimizations with harmonic frequency
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calculations were employed to determine the nature of the stationary points. Intrinsic reaction
coordinate (IRC) calculations were used to confirm the location of transition state structures for
all model schemes. For la and Ila, single point calculations on the MP2 structures were carried
out with coupled-cluster calculations (CCSD(T)/cc-pVTZ) and equation-of-motion spin-flip
coupled cluster with single and double excitations (EOM-SF-CCSD/cc-pVDZ) as implemented in
Q-Chem 4.4.1.% For all reaction schemes (la—d and Ila—d), single point calculations on the MP2
structures were carried out using spin-flip time-dependent density functional theory within the
Tamm-Dancoff approximation (SF-TDDFT)% as implemented in Q-Chem 4.4.1* with the cc-
pVTZ basis set and utilizing the “collinear 50-50” functional®® (exchange = 50% HF + 8% Slater
+ 42% Becke; correlation = 19% VWN + 81% LYP). Additional properties of the MP2/cc-pVTZ
local minima were analyzed by nuclear-independent chemical shifts (NICS),*® using the gauge-
independent atomic orbital (GIAO) method, and natural bond orbital/natural resonance theory
(NBO/NRT)®*" calculations with the B3LYP functional®®3° and the 6-31G(d) basis set,*® as

implemented in Gaussian 09.34

While conducting the EOM-SF-CCSD and SF-TDDFT single point calculations on the
MP2 IRC structures, multiple solutions to the reference SCF calculations were observed for closely
related structures, particularly those around 3a—d and 7a-d, resulting in a variety of spin-flip
excited states regardless of which reaction pathway or substitution pattern was considered. This
is partially explained by considering that, for the high-spin triplet reference, there is a change in
the energetic ordering of two non-interacting triplet states that occurs near TS2-3 and TS6-7 in
almost all substitution patterns (a—d). Unfortunately, the reordering of the triplet states does not
account for the varied results in the region around 3a—d and 7a—d, observed in the high-spin triplet

reference calculations. Rather, we hypothesize that the documented*! orbital instability of ab initio
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calculations of para-benzyne (arising from the near-degeneracy of electronic states of different
symmetry) is extended to the similar structures that occur in the region around 3a—d and 7a—d, for
both CCSD and DFT high-spin reference calculations. The difference between these solutions to
the high-spin reference calculations appears to be related to the ordering of two radical-type
orbitals associated with the para-benzyne structure and two n-type orbitals of the fused ring =
system. This variation was corrected by adjusting the orbital guess for the reference calculation
to obtain a continuous reference energy surface from the enediyne species (2a—d and 6a—d) to the
ring-opened species (4a—d and 8a-d). The adjustment provided a continuous surface from the
reactant to the product along the IRC, but the resultant energy values were not necessarily the

lowest energy result for every electronic state for each structure in the reaction pathway.

RESULTS AND DISCUSSION

The computational results of the [2+2] and [4+2] carbon condensation reaction pathways
investigated in this work are displayed in Figures 6.1 and 6.2, respectively and summarized in
Tables 6.1 and 6.2. Given the multiple ways in which the condensation of polyynes can proceed
through the [2+2] and [4+2] cycloadditions, as discussed above, we did not pursue a
comprehensive examination of the transformation from 1la—d to 2a—d and 1/5a—d to 6a—d; rather,
we directed our attention on the nature of the diradical species 3a—d and 7a—d. As such, we
focused on the transformations from 2a—d to 3a—d to 4a—d and from 6a—d to 7a—d to 8a-d. To
that end, the reaction coordinate for Figure 6.1 is the combination of the IRC results for the
transition states connecting 2a—d and 3a—d with the IRC results for the transition states connecting
3a—d and 4a—d. For several cases, the IRC calculations were unable to be extended all the way to

the connected local minima within a reasonable amount of processor time. Thus, the local minima
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structures are spaced between the IRC results in an energetically reasonable but ultimately
arbitrary fashion. Similarly, Figure 6.2 is the combination of the IRC results for the transition
states connecting 6a—d and 7a—d with the IRC results for the transition states connecting 7a—d and
8a—d, with the local minima structures spaced between. For both figures, the reaction coordinate
starts at the IRC calculated structure closest to the initial rings 2a—d and 6a—d. To connect the
initial ring structures to the transition states via the IRC would require an exceedingly long

calculation due to the shallowness of the energy surface in this region, at the step size utilized.



Energy (kcal/mol)

10 15
Reaction Coordinate (amul’2-bohr)
| -/ — 2
q e T W 57.9 4
& -+ TS2b3b 5y | eeeiees
5 - — 4
s
<
= 0
o .
o A 3b 5
Z 456
o) st
0.0 7 x
-40 = T — :
0 \\ 10 15 20
Reaction Coordinate (amul/2-bohr)
@ y (- Y —
] R 47.2 ' 1.3
1e T B 10.4| TS2¢-3¢ 55 ¢ + T8 3040_"’0’.6
1 “
£
3 o
£ oS =
- 0 q 236
? 2¢ % 4 . = % 3 = -30.1
31.1
ﬁ <20 = 0.0 _O 201
Z X = :
zZ S
-‘m T / T T T T
0 5 10 15 20 2
Reaction Coordinate (amul/2-bohr)
| ¢
60 - o B e T T | -
T 1.4 g
§ & = TS2d3d 5, 5
& : N
T 207 TS3ddd ), L 11.1
= 4l 18.2
= 0
2
@
LE'R
40

10
Reaction Coordinate (amul/2-bohr)

SF-TDDFT/cc-oVTZ//MP2/cc-o0VTZ

EOM-SF-CCSD/cc-pVDZ/MP2/cc-pVTZ

MP2/cc-pVTZ

171

Figure 6.1. Potential energy surfaces for the Bergman cyclization and subsequent retro-Bergman

cyclization of alkynyl-substituted cyclobutadienes (system I).
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Figure 6.2. Potential energy surfaces for the Bergman cyclization and subsequent retro-Bergman

cyclization of alkynyl-substituted ortho-benzynes (system I1).



Table 6.1. Relative Energies (kcal/mol) of Stationary Points

SF-TDDFT @ MP2 ¢
I 1P TS1-2 20 TS2-3¢ 3¢  TS3-4¢  4¢ 1 TS1-2 2 TS2-3 3 TS34 4
a 14.9 00 446 260 260 -34.8 10.4 - 0.0 220 -224 -16.1 -39.0
[242] i [0.0] [37.1] [11.5] [-]1 [-34.0]
b 17.0 - 00 579 456 - -20.4 12.3 - 00 211 -97 -40 -282
c 14.1 - 00 472 311 313 -236 10.4 - 00 238 -201 -10.6 -30.1
d 14.3 - 0.0 602 486 - -11.1 11.4 - 00 238 -65 24 -182
T 1/5° TS1/5-6® 6° TS6-7¢ 7°¢ TS7-8¢ 8¢ 1/5 TS15-6 6 TS6-7 7 TS7-8 8
a 51.8 1047 00 421 263 344  -181 549 838 00 223 -51 81 -225
[170] [119] [0.0] [37.1] [16.0] [31.6] [-8.9]
b 51.8 - 00 532 420 502 -3.6 54.3 - 00 260 72 210 -109
c 37.2 894 00 419 270 352 -181 435 738 00 222 61 86 -21.7
d 36.4 - 00 532 417 512 -35 42.4 - 00 262 67 220 -107

2 Energies calculated at SF-TDDFT/cc-pVTZ/IMP2/cc-pVTZ; energies in brackets calculated at EOM-SF-CCSD/cc-pVDZ//MP2/cc-pVTZ.

b Determined using structures that were stationary points at MP2/cc-pVTZ.

¢ Determined by using the SF energies to identify stationary points based on PES curvature.

d Energies calculated at MP2/cc-pVTZ.

€LT



Table 6.2. Energetics (kcal/mol) of Reactions in Systems I and 11

SF-TDDFT @ MP2 ¢

Initial Bergman retro-Bergman Initial Bergman retro-Bergman

Cycloaddition Cyclization Cyclization Cycloaddition Cyclization Cyclization

(1-2 and 1/5-6) (2-3 and 6-7) (3-4 and 7-8) (1-2 and 1/5-6) (2-3 and 6-7) (3-4 and 7-8)
AG®  AGwn®  AG*  AGxn®  AG*®  AGmn° AG!  AGyn  AG'  AGra  AG'  AGmn
la -14.9 44.6 26.0 0.0 -60.8 -10.4 22.0 -22.4 6.3 -16.6

i [-242] [37.1] [115] [N/A] [-45.4] i
Ib - -17.0 57.9 45.6 N/A -66.0 - -12.3 21.1 -9.7 5.7 -18.6
Ic - -14.1 47.2 31.1 0.1 -54.8 - -10.4 23.8 -20.1 9.5 -10.0
Id - -14.3 60.2 48.6 N/A -59.8 - -11.4 23.8 -6.5 8.9 -11.7
lla 52.9 -51.8 42.1 26.3 8.1 -44.4 28.9 -54.9 22.3 -5.1 13.2 -17.4
[-51] [-170] [37.1] [16.0] [15.6] [-24.9]

b - -51.8 53.2 42.0 8.2 -45.6 - -54.3 26.0 7.2 13.8 -18.7
lic 52.2 -37.2 41.9 27.0 8.2 -45.1 30.3 -43.5 22.2 -6.1 14.6 -16.2
lid - -36.4 53.2 41.7 9.5 -45.1 - -42.4 26.2 6.7 15.3 -17.5

@ Energies calculated at SF-TDDFT/cc-pVTZ/IMP2/cc-pVTZ; energies in brackets calculated at EOM-SF-CCSD/cc-pVDZ//IMP2/cc-pVTZ.

b Determined using structures that were stationary points at MP2/cc-pVTZ.

¢ Determined by using the SF energies to identify stationary points based on PES curvature.

d Energies calculated at MP2/cc-pVTZ.

VLT
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The data depicted in Figures 6.1 and 6.2, and summarized in Tables 6.1 and 6.2, are
reminiscent of those reported, previously, for the parent system 2a — 3a — 4a.?! The MP2
energies of the diradicals 3a-d and 7a-d are anomalously low, relative to the spin-flip calculations,
presumably because of the spin contamination problems that plague the application of MP2 in
open shell systems. Not only are the MP2 energies of diradicals 3 and 7 too low, the energies of
the transition states leading to the diradicals are also too low. These problems affect the overall
reaction thermochemistry and, in the case of diradicals 3a-d, the interpretation concerning whether

these species even exist as intermediates on the potential energy surface.

The reaction pathways detailed herein involve novel, highly unsaturated molecules,
particularly that of the 1,2,5,8-tetradehydronaphthalene species 7a—d that result from the Bergman
cyclization of 6a—d in the [4+2] pathway. While similar unsaturated naphthalene species have
been previously studied computationally,*? the current work is, to the best of our knowledge, the
first to examine the 1,2,5,8 isomer 7a—d. In Figures 6.1 and 6.2, zero-point vibrational energy
(ZPVE) corrections were not included in the reported energies due to the unrealistically large
vibrational frequencies calculated for the diradical species 3a—d and 7a—d. These frequencies vary
from 7,000 cm™ to 42,000 cm™ and are displayed in Figure 6.3 and significantly distort the ZPVE
correction. A similar issue was previously observed in Hartree-Fock calculations of para-benzyne
and was attributed to orbital instability effects in para-benzyne caused by the near-degeneracy of
electronic configurations of different symmetry among the solutions to the HF equations.** This
instability manifests in properties of the second-order and higher, such as vibrational frequencies,
but in principle has no effect on the structure or its energy.** Considering that a para-benzyne
moiety is present in each of the offending species, the observed orbital instability effects are likely

the root cause of the abnormal frequencies. Therefore, the computed energies in Tables 6.1 and
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6.2 — describing the energetics of the stationary points of systems I and Il — do not include ZPVE

corrections.
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Figure 6.3. Species with unrealistically large harmonic vibrational frequencies as determined

using MP2/cc-pVTZ calculations.

Initial Cycloaddition

The initial cycloadditions for the model systems studied are considerably more exothermic
for the [4+2] pathways 11 than the [2+2] pathways | (by 30 kcal/mol), which agrees with previous
studies.?>2® Such a result is not unexpected as the [4+2] cycloaddition of 11 results in a strained,
aromatic ring, whereas the [2+2] cycloaddition of I results in a strained, formally antiaromatic
ring. The concerted transition states TS1/5-6a and TS1/5-6¢ that were located for the initial

cycloadditions in 11 have a slightly lower activation barrier than those reported previously,?6-2: 43
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attributable to a difference in theory and basis set. There is a small variation in AGx for the initial
cycloaddition to form 2a-d, while it appears that the inclusion of an alkynyl unit on the ring of 6
makes the initial cycloaddition producing 6c,d less exothermic than 6a,b (Table 6.2). The o-
benzyne derivatives 6b and 6c¢ are isomeric, and comparison of their computed energy difference
(AG = 10.1 kcal/mol, Supporting Information) establishes that the energy difference favoring the
bis(diyne) 6b over the tetrakis(mono-yne) 6c¢ is thermodynamic in origin. Examination of the NBO
results for 6a, 6b, and 6c¢ did not reveal any obvious explanations, so to explore the origin of this
energy difference, we computed the free energy of cyclization for a variety of alkynyl substituted
ortho-benzynes, as shown in Figure 6.4. A standard reference is required to eliminate a
dependence of the energy of cyclization on different lengths of the initial polyynes. Thus, the
cyclization energies have been calculated relative to acetylene (C2H2) and the polyyne (CmH2)
necessary to obtain the molecular formula of the corresponding ortho-benzyne (Cm+2Hs4). Given
that the regioisomers of 6a are all within 1 kcal/mol in energy of one another, and that the linearity
of the trend in Figure 6.4 demonstrates group additivity, we conclude that the difference in
cyclization energy between 6a and 6c¢ is a thermodynamic consequence of the difference in
bonding arrangement. The substitution pattern, or steric factors associated with the substitution

pattern, do not contribute to the difference in cyclization energy.
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Figure 6.4. Reaction energies for formation of alkynyl-substituted ortho-benzynes, relative to

acetylene and the appropriately mass-balanced polyyne (MP2/cc-pVTZ).

Bergman Cyclization

Following the initial cyclization event — whether it be a [2+2] (I) or a [4+2] (1) reaction —
the next step in the condensation pathway is proposed to be a Bergman cycloaromatization
reaction. The computed activation barriers for the cyclization step (2 — 3 or 6 — 7) vary
significantly, depending on the computational method used (Table 6.2). This difference is directly

attributable to the discrepancy in computed energy of the 1,4-didehydroarene (p-benzyne)
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intermediates 3 and 7 using SF-TDDFT or MP2 methodology. As described earlier, we do not
consider the MP2 values to be reliable for a diradical intermediate of this type, so we focus on the
SF-TDDFT values in our discussion. Consideration of the SF-TDDFT values reported in Table
6.2 reveals the Bergman cyclization reaction in the [2+2] pathway (2 — 3) exhibits a higher barrier
than that of the [4+2] pathway (6 — 7). This relationship is consistent with the fact that activation
barriers for Bergman cyclizations have been strongly correlated to the distance separating the
alkyne units,** with decreasing distance corresponding to decreasing activation barrier. As shown
in Table 6.3, the average distances are 5.2 and 4.1 angstroms for 2 and 6, respectively, and the

average eneyne angle is 136 and 120 degrees for 2 and 6, respectively.

Table 6.3. Geometric Parameters of Enediyne Moieties (MP2/cc-pVTZ).

R 4 R’ . R // R’
R % N %
R’ R'
2 6
0 o'
r(A) (degrees) (degrees)
a 5.15 135.5 -
5 b 5.14 135.2 -
c 5.22 136.4 -
d 5.23 136.3 -
average 5.18 135.9 -
a 411 118.8 122.4
6 b 4.03 118.2 121.8
c 4.09 118.6 122.4
d 4.02 118.3 121.7
average 4.06 118.5 122.1

In the case of both pathways, | and I1, substitution patterns a and c are less endothermic
and, consequently, have lower activation barriers to Bergman cyclization. These cases afford

cyclization products that do not bear alkyne substituents directly on the para-benzyne ring (3a, 3c,
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7a, 7¢). In contrast, the substitution patterns that place alkyne substituents directly on the para-
benzyne ring (3b, 3d, 7b, 7d) ring are more endothermic and have higher activation energies for
Bergman cyclization. Analysis of the NBO/NRT results for 3a, 3b, 7a, and 7b (Supporting
Information) suggests that the alkynyl units destabilize the para-benzyne portion of the ring due
to a decrease in the stabilization of the radical orbitals through hyperconjugation. Specifically, the
overlap of the ocH and ocH* orbitals with the radical orbitals of the para-benzyne moiety in 3a and
7a provides stabilization via hyperconjugation (8.6 and 9.2 kcal/mol, respectively) that is nearly
twice the stabilization from the overlap of the occ and occ* orbitals with the radical orbitals in 3b
and 7b (5.0 and 4.9 kcal/mol, respectively). While it is possible that steric repulsions between the
ortho-substituted alkyne units could be responsible for the destabilization of the para-benzyne
moiety, this is contradicted by the reaction energy trends shown in Figure 6.5, which illustrates a
linear change in the reaction energy of the Bergman cyclizations of 2 and 6 as alkyne units are
substituted to the ring. Thus, we conclude that any steric interactions due to adjacent alkynyl units
have very little impact on the energy of the molecule, which is consistent with the narrow steric

profile of alkynyl substituents.
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Figure 6.5. Reaction energies for the Bergman cyclizations of alkynyl substituted cyclobutadienes

and ortho-benzynes that form para-benzyne moieties (MP2/cc-pVTZ).

Ring Expansion (retro-Bergman Cyclization)

As clearly evident from the SF-TDDFT data in Figure 6.1, the ring expansion (retro-
Bergman cyclization) of 3a—d to 4a—d occurs virtually without barrier. As described previously
for the overall conversion of enediyne 2a to cyclooctadienediyne 4a,?* the very substantial energy
change of 70-90 kcal/mol, from the top of the highest barrier (TS2-3) to the product (4), makes it

difficult, topologically, for diradical 3 to exist as a minimum on the potential energy surface and
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thus have a barrier to ring opening to cyclooctadienediyne 4. This contrasts with the retro-
Bergman cyclizations of 7a—d to 8a—d, which have activation barriers of 8-9 kcal/mol and

corresponding energy changes (TS6-7 to 8) that are not as dramatically large (ca. 60 kcal/mol).

To gain insight into the free energy changes associated with substitution of the ring opened
products 4a-d and 8a-d, we computed the energies of the ring-opened products relative to
acetylene (CzH2) and the polyyne (CmH2) necessary to obtain the molecular formula of the
corresponding product (4 or 8) (Figure 6.6). The linearity of the trend for cyclooctadienediyne
derivatives (4) in Figure 6.6 demonstrates group additivity, which excludes the involvement of
steric interactions among the substituents. In the case of cyclodecadienetriyne derivatives (8), the
regioisomeric monosubstituted compounds are within 0.3 kcal/mol in energy of one another, and
the linearity of the trend in Figure 6.6 demonstrates group additivity. We therefore conclude that
the difference in cyclization energy 8a-d is a thermodynamic consequence of the differences in
bonding arrangement. The substitution pattern, or steric factors associated with the substitution

pattern, do not contribute to the difference in cyclization energy.
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Figure 6.6. Reaction energies for the formation of the ring expansion products (retro-Bergman

cyclization), relative to acetylene and the appropriately mass-balanced polyyne (MP2/cc-pVTZ).

Reaction Pathways | and 11

Consistent with the analyses associated with Figures 6.4 and 6.6, particularly that the
alkyne substituents have little interaction with other alkyne substituents, is the fact that the reaction
energetics for substitution pattern d can be predicted empirically using the reaction energetics of

cases a—C. The d substitution pattern has alkyne units substituted on the para-benzyne ring and
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on the initially formed ring (cyclobutadiene in I, ortho-benzyne in I1), while the a substitution
pattern is the parent, unsubstituted system (R = R’ = H). To understand the difference in energy
between the structures in d compared to those in a, we must account for three effects: the energetic
impact of replacing hydrogens with alkyne units on the para-benzyne ring, the energetic impact
of replacing hydrogens with alkyne units on the initially formed ring, and the interaction between
the substituents when both rings are substituted with alkyne units. The first effect is accounted for
by the difference between b and a, while the second effect is accounted for by the difference
between ¢ and a. We could attempt to account for the third effect by considering additional
substitution patterns, but it is apparent from Table 6.4 that this effect is small in magnitude since
the difference between d and a can be predicted to + 1 kcal/mol (MP2/cc-pVTZ) and + 2 kcal/mol

(SF-TDDFT/cc-pVTZIIMP2/cc-pVTZ) using only the first two effects.

Table 6.4. Empirical Demonstration of Independent Substituent Effect (kcal/mol)

Initial Bergman retro-Bergman
Cycloaddition Cyclization Cyclization
(1-2 and 1/5-6) (2-3 and 6-7) (3-4 and 7-8)
AG* AGrxn AG* AGrxn AG* AGxn
d-a - -11.4 23.8 -6.5 8.9 -11.7
I (b-a)+(c-a) -12.3 22.9 -1.4 8.9 -12
MP2 difference -0.9 -0.9 -0.9 0 -0.3
d-a - -42.4 26.2 6.7 15.3 -17.5
Il (b-a)+(c-a) 429 259 6.2 15.2 -17.5
difference -0.5 -0.3 -0.5 -0.1 0
d-a - -14.3 60.2 48.6 N/A -59.8
I (b-a)+(c-a) -16.2 60.5 50.7 N/A -60
difference -1.9 0.3 2.1 N/A -0.2
SF-TDDFT d-a - -36.4 53.2 41.7 9.5 -45.1
Il (b-a)+(c-a) -37.2 53 42.7 8.3 -46.3

difference -0.8 -0.2 1 -1.2 -1.2
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An interesting feature of these reactions is that after the initial cycloaddition of the
polyynes, the reactions being investigated involve no formal change in aromaticity: 2 is a 4-
electron cyclic w system and both 3 and 4 are 8-electron cyclic n systems, thus 2, 3, and 4 are
formally antiaromatic; 6 is a 6-electron cyclic © system and both 7 and 8 are 10-clectron cyclic
systems, thus 6, 7, and 8 are formally aromatic. To assess the degree of aromaticity (or
antiaromaticity) in the species studied, NICS values® have been calculated at B3LYP/6-31G(d)
using the MP2/cc-pVTZ optimized structures. We report the NICS;;(1) in Table 6.5 using the
NMR convention where positive values correspond to antiaromatic character and negative values
correspond to aromatic character. The NICSz;(1) values, which have been shown to be effective
measures of aromaticity,* were obtained by taking the zz component (the direction perpendicular
to the ring) of the magnetic shielding tensor of a ghost atom placed one angstrom above and
perpendicular to the center of the ring. In the case of bicyclic structures 3 and 7, we report the
NICS;,(1) values for the center of each of the fused rings. The results given in Table 6.5 confirm
that 6, 7, and 8 have significant aromatic character and that 2 and 4 have significant antiaromatic
character. The NICSz;(1) values for 3 taken at the center of the cyclobutadiene ring and the center
of the para-benzyne ring indicate antiaromatic and aromatic character, respectively. All species
show that substitution of alkyne units decreases the magnitude of the NICSz,(1) values i.e., the
values move closer to zero. The results in Table 6.5 show a qualitative agreement with previous
studies involving molecules from this work (2a and 2c;*6 3a;%% 4" 4a*") as well as in comparison to
similar species (cyclobutadiene;*® %® ortho-benzyne and para-benzyne;*® naphthalene®). We
attribute the quantitative differences to the choice of computational methodology and basis sets

for the structure optimizations and subsequent NICS calculations.
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Table 6.5. Nucleus-Independent Chemical Shift [NICSz(1)] Values of Molecules in Pathways |

and I1.
. Center of  Center of para- .
Center of Ring Original Ring  Benzyne Ring Center of Ring

I 2 3 4

a 14.8 18.8 -9.5 22.1
b 13.8 17.1 -8.9 19.9
C 11.5 15.8 -10.6 19.9
d 11.0 14.3 -9.9 18.1
1 6 7 8

a -13.5 -12.4 -21.7 -13.9
b -12.2 -11.6 -21.4 -12.6
c -11.6 -11.0 -21.1 -12.6
d -11.3 -10.1 -21.4 -11.4

We can now provide a general explanation of the relative stabilities and reaction energies
of the [2+2] (1) and [4+2] (1) pathways for the condensation of polyynes. The initial cycloaddition
to form cyclobutadiene 2 or ortho-benzyne 6 is governed by ring strain and degree of
(anti)aromatic character. Therefore, formation of 2 (a highly strained and antiaromatic ring) is less
exothermic than the formation of 6 (a partially strained and aromatic ring). Bergman cyclization
of the alkyne substituents to form a para-benzyne ring is endothermic. The activation barriers for
the Bergman cyclization of 2 and 6 are in accord with qualitative expectations based upon the
distance between terminal carbons of the alkyne substituents. The subsequent ring opening
reaction (retro-Bergman cyclization) removes the diradical character and relieves the ring strain,
and thus is exothermic. The opening of the fused rings has a greater impact on the stability of the
structure in I compared to that in 11: the transformation from 3 to 4 has effectively no activation
barrier and is more exothermic than the transformation from 6 to 7, which does have an activation

barrier. Substitution of alkyne units to the ring structures in I and 11 is destabilizing — most likely
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due to the replacement of hydrogen atoms with more electronegative sp-hybridized carbon atoms

of the alkyne units — but has little effect on the energetics of the retro-Bergman cyclization.

The Medium Rings

The current investigation draws attention to highly unsaturated cyclooctane and
cyclodecane derivatives — medium ring compounds that are not commonly invoked in carbon
condensation processes. Whether derivatives of cyclooctadienediyne 4 or cyclodecadienetriyne 8
might be directly involved in reaction pathways for carbon condensation, or whether they are
simply reservoirs of carbon generated under harsh reaction conditions, is a topic for further
investigation. It is not inconceivable that medium ring intermediates could lead toward carbon
condensation (Scheme 6.5). One mode of cyclization of a cyclooctane derivative may generate a
bicyclo[3.3.0]octane structure, which consists of fused 5-membered rings. Although fullerenes do
not contain fused 5-membered rings (the ‘isolated pentagon rule’),?> %0°! the Stone-Wales
rearrangement or other rearrangement reactions allow 5-membered rings to migrate in a sheet of
carbon.>*2 In the current study, the cyclodecane skeleton was derived from a dehydronaphthalene
precursor (Scheme 6.4). Depending on the nature of substituents and substitution pattern, a
cyclodecane derivative may afford the possibility for structural rearrangement and to permute the
substituents on a dehydronaphthalene skeleton. The structures depicted in Scheme 6.5 are
representative of carbon connectivity and not representative of degree of hydrogenation, nature of
substituents, or details of reaction mechanisms (thermal, radical catalyzed, etc.). Experimental

and computational investigations are ongoing.
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Scheme 6.5. Reaction Pathways Involving Collapse of Medium Rings.

4a-d bicyclo[3.3.0]octane
cyclooctane structure
derivatives
R _ R'
L OO e
------- >
\ /
8a-d 7a-d and other
cyclodecane naphthalene structures
derivatives
a:R=H,R'=H
b:R=H,R'=CCH
c:R=CCH,R'=H
d: R=CCH, R'=CCH
CONCLUSIONS

On consideration of the energies calculated by SF-TDDFT, the para-benzyne intermediate
in 1 — being fused with a cyclobutadiene ring — has effectively no barrier to undergoing a ring
expansion, representing an unproductive pathway within the ring coalescence and annealing
model. On the other hand, the SF-TDDFT calculations on the para-benzyne intermediate in Il —
being fused with an ortho-benzyne ring — predict an activation barrier of 8-10 kcal/mol for
undergoing a similar ring expansion. The qualitative agreement of this activation barrier as
calculated by EOM-SF-CCSD and SF-TDDFT for the parent system of the two pathways lends
credence to the qualitative accuracy of the SF-TDDFT activation barriers for the alkynyl
substituted species. Further, given the little variation in the activation barriers across the

substitution patterns, we may tentatively extend the conclusion to include the para-benzyne
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intermediates formed by increasingly larger polyynes, as would be found in the ring coalescence

and annealing model.

As to the origins of the activation barriers (or lack thereof) for the ring expansion of the
para-benzyne species, we previously proposed?! that the activation barrier for the retro-Bergman
cyclization of 3a to 4a is small due to the large exothermicity of the reaction of 2a to 4a. This
argument is undermined, however, by the corresponding SF-TDDFT energies for the substituted
versions of these reactions. As more alkyne units are substituted into the system, the exothermicity
of the transformation from 2 to 4 clearly decreases; yet there is no significant effect on the
activation barrier for the ring expansion of 3 to 4. Furthermore, the reactions for several of the
substitution patterns in Il have similar exothermicities for the transformation of 6 to 8 yet have
significant activation barriers. The activation barriers for the ring expansion do not seem to be
strongly correlated to the overall exothermicity of the transformation from 2 to 4 and 6 to 8. An
alternative or concurrent explanation may be the exothermicity of the ring expansion itself: the
ring expansion in I is exothermic by about 60 kcal/mol and has effectively no activation barrier,
while the ring expansion in 11 is exothermic by about 45 kcal/mol and has an activation barrier of
around 10 kcal/mol. The larger exothermicity for the retro-Bergman cyclization in | is likely due
to the relief of ring strain from expansion of the cyclobutadiene ring, as compared to that which

occurs for the opening of ortho-benzyne ring in I1.

The multi-radical nature of the para-benzyne intermediate species complicates the
characterization of the reactions of both pathways and may require more advanced treatments to
be accurately modeled. The orbital instabilities known to plague calculations of para-benzyne
may be exacerbated by the incorporation of the cyclobutadiene ring or the ortho-benzyne ring,

both of which can be considered to have some radical character. The numerous variations in the
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triplet reference calculations required by the spin-flip methodologies could indicate that a higher
spin reference is necessary for the treatment of these species, though it could also indicate that the
underlying single-reference MP2 optimized structures are an insufficient foundation upon which

to properly treat the multi-reference problem.
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Select NBO Orbitals and Hyperconjugation Analysis

B3LYP/6-31G(d) Natural Bond Orbital (NBO) calculations were conducted on the
MP2/cc-pVTZ optimized structures using the NBO6 program as implemented in Gaussian 09.
Selective analyses consisted of identifying orbital interactions between the para-benzyne radical
orbitals and para-benzyne substituent orbitals (C—H or C—C=C). The orbitals involved in these
interactions are described by an image, the electron occupation, and the coefficients and
hybridizations of their component Natural Hybrid Orbitals (NHO). The interactions are reported

in the “Second Order Perturbation Analysis” table along with the energy of stabilization.
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Format:

Molecule identifier

Orbitals
[orbital image] [orbital image]
(Occupancy) Bond orbital (Occupancy) Bond orbital
Coefficients NHO1 / Hybridization Coefficients NHO1 / Hybridization
Coefficients NHO2 / Hybridization Coefficients NHO?2 / Hybridization

Second Order Perturbation Analysis

Donor Orbital Acceptor Orbital E(2) (kcal/mol)
Bond orbital Bond orbital energy value




3a

Orbitals

201

6. (1.81863) BD*(1)C 2-C 5

9.(1.96666) BD (1)C 3-H 12

. 0 . S( 9. 0)p Y. . 0
(50.00%) 0.7071* C 2 s( 9.43%)p 9.60( 90.53%)d
0.00( 0.04%)

(63.10%) 0.7944* C 3 5(29.06%)p 2.44( 70.88%)d
0.00( 0.05%)

(50.00%) -0.7071* C 5s( 9.43%)p 9.60( 90.53%)d
0.00( 0.04%)

(36.90%) 0.6074* H 12 s(100.00%)

11. (1.96666) BD (1) C 4-H 11

116. (0.36688) BD (1) C 2-C 5

(63.10%) 0.7944* C 4 s( 29.06%)p 2.44( 70.88%)d
0.00( 0.05%)

(50.00%) 0.7071* C 2 s( 9.43%)p 9.60( 90.53%)d
0.00( 0.04%)

(36.90%) 0.6074* H 11 s(100.00%)

(50.00%) 0.7071* C 5s( 9.43%)p 9.60( 90.53%)d
0.00( 0.04%)

119. (0.01247) BD*(1) C 3-H 12

121. (0.01247) BD*(1) C 4-H 11

(36.90%) 0.6074* C 3 s( 29.06%)p 2.44( 70.88%)d
0.00( 0.05%)

(36.90%) 0.6074* C 4 s( 29.06%)p 2.44( 70.88%)d
0.00( 0.05%)

(63.10%) -0.7944* H 12 5(100.00%)

(63.10%) -0.7944* H 11 5(100.00%)




Second Order Perturbation Analysis

202

Donor Orbital

Acceptor Orbita

E(2) (kcal/mol)

6.BD*( 1)C 2-C 5
6.BD*( 1)C 2-C 5
9.BD( 1)C 3-H 12
11.BD( 1)C 4-H 1
116.BD( 1)C 2-

1
C 5
116.BD( 1)C 2-C 5

119. BD*(
121. BD*(
116. BD (
116. BD (
119. BD*(
121. BD*(

1)C
1)C
1)C
1)C
1)C
1)C

1
el

NS O R NIV )
ITOOIX
(S 3y

el

2.21
2.21
1.16
1.16
0.94
0.94




3b

Orbitals

203

6. (1.80249) BD*(1)C 2-C 5

168.(0.35483) BD (1)C 2-C 5

(50.00%) 0.7071* C 2s( 9.69%)p 9.31( 90.27%)d
0.00( 0.04%)

(50.00%) 0.7071* C 2 s( 9.69%)p 9.31( 90.27%)d
0.00( 0.04%)

(50.00%) -0.7071* C 55( 9.69%)p 9.31( 90.27%)d
0.00( 0.04%)

(50.00%) 0.7071* C 5 s( 9.69%)p 9.31( 90.27%)d
0.00( 0.04%)

171. (0.02557) BD*(1) C 3-C 14

173. (0.02557) BD*(1) C 4-C 11

(48.56%) 0.6968* C 3 s(32.04%)p 2.12( 67.92%)d
0.00( 0.04%)

(48.56%) 0.6968* C 4 s(32.04%)p 2.12( 67.92%)d
0.00( 0.04%)

(51.44%) -0.7172* C 14 s(47.16%)p 1.12( 52.80%)d
0.00( 0.04%)

(51.44%) -0.7172* C 11 s(47.16%)p 1.12( 52.80%)d
0.00( 0.04%)

Second Order Perturbation Analysis

Donor Orbital

Acceptor Orbital

E(2) (kcal/mol)

6.BD*( 1)C 2-C
6.BD*( 1)C 2-C
168.BD( 1)C 2-C

-C

5
168.BD( 1)C 2-C 5

5 171.BD*( 1)C 3-C 14
5

173.BD*( 1)C 4-C 11

1.71
173.BD*( 1)C 4-C 11 1.71
171.BD*( 1)C 3-C 14 0.78
0.78




7a

Orbitals

204

12.(1.83192) BD*(1)C 4-C 8

13. (1.96015) BD (1)C 5-H 6

(50.01%) 0.7072* C 4 s( 10.82%)p 8.24( 89.14%)d
0.00( 0.03%)

(63.55%) 0.7972* C 5 s( 28.95%)p 2.45( 71.01%)d
0.00( 0.05%)

(49.99%) -0.7070* C 8 s( 10.86%)p 8.21( 89.11%)d
0.00( 0.03%)

(36.45%) 0.6037* H 6 (100.00%)

o

17.(1.96232) BD (1)C 7-H 9

148.(0.32613) BD (1)C 4-C 8

(63.47%) 0.7967* C 7 s( 28.84%)p 2.47( 71.11%)d
0.00(_0.05%)

(49.99%) 0.7070% C 4 s( 10.82%)p 8.24( 89.14%)d
0.00( 0.03%)

(36.53%) 0.6044* H 9 s(100.00%)

(50.01%) 0.7072* C 8 s( 10.86%)p 8.21( 89.11%)d
0.00( 0.03%)

e
I
|

149. (0.01297) BD*(1)C 5-H 6

153. (0.01348) BD*(1)C 7-H 9

(36.45%) 0.6037* C 5 s( 28.95%)p 2.45( 71.01%)d
0.00(_0.05%)

(36.53%) 0.6044* C 7 s( 28.84%)p 2.47( 71.11%)d
0.00( 0.05%)

(63.55%) -0.7972* H 6 5(100.00%)

(63.47%) -0.7967* H 9 s(100.00%)




205

Second Order Perturbation Analysis

Donor Orbital Acceptor Orbital E(2) (kcal/mol)
12.BD*( 1)C 4-C 8 149.BD*( 1)C 5-H 6 2.26
12.BD*( 1)C 4-C 8 153.BD*( 1)C 7-H 9 2.22
13.BD( 1)C 5-H 6 148.BD( 1)C 4-C 8 1.51
17.BD( 1)C 7-H 9 148.BD( 1)C 4-C 8 1.41
148.BD( 1)C 4-C 8 149.BD*( 1)C 5-H 6 0.9
148.BD( 1)C 4-C 8 153.BD*( )C 7-H 9 0.9




7b

Orbitals

206

12. (1.81870) BD*(1)C 4-C 7

200. (0.30753) BD (1) C 4-C 7

(49.98%) 0.7070* C 4 s( 11.10%)p 8.01( 88.87%)d
0.00(_0.03%)

(50.02%) 0.7072* C 4 s( 11.10%)p 8.01( 88.87%)d
0.00( 0.03%)

(50.02%) -0.7072* C 7 s( 11.14%)p 7.98( 88.83%)d
0.00( 0.03%)

(49.98%) 0.7070* C 7 s( 11.14%)p 7.98( 88.83%)d
0.00( 0.03%)

202. (0.02605) BD*(1) C 5-C 11

205. (0.02657) BD*(1)C 6-C 8

(48.23%) 0.6945* C 5 s( 32.04%)p 2.12( 67.92%)d
0.00( 0.04%)

(48.24%) 0.6946* C 6 s( 31.86%)p 2.14( 68.10%)d
0.00( 0.04%)

(51.77%) -0.7195* C 11 s( 46.91%)p 1.13( 53.05%)d
0.00( 0.04%)

(51.76%) -0.7194* C 8 5(46.95%)p 1.13( 53.00%)d

0.00( 0.04%)

Second Order Perturbation Analysis

Donor Orbital Acceptor Orbital E(2) (kcal/mol)
12.BD*( 1)C 4-C 7 202.BD*( 1)C 5-C 11 1.72
12.BD*( 1)C 4-C 7 205.BD*( 1)C 6-C 8 1.73
200.BD( 1)C 4-C 7 202.BD*( 1)C 5-C 11 0.74
200.BD( 1)C 4-C 7 205.BD*( 1)C 6-C 8 0.75




Table 6.6.

Pathways I and I1.

. Center of Center of para- .
Center of Ring Original Ring  Benzyne Ring Center of Ring

[ 2 3 4

a 14.8 18.8 -9.5 22.1
b 13.8 17.1 -8.9 19.9
c 11.5 15.8 -10.6 19.9
d 11.0 14.3 -9.9 18.1
1 6 7 8

a -13.5 -12.4 -21.7 -13.9
b -12.2 -11.6 --21.4 -12.6
c -11.6 -11.0 -21.1 -12.6
d -11.3 -10.1 -21.4 -11.4
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Total Nucleus-Independent Chemical Shift [NICS(1)] Values of Molecules in
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MP2/cc-pVTZ Geometric Parameters of Stationary Points in Pathways | and

Scheme I-A 1062
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Scheme I-B
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Scheme I-C
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Scheme II-A
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Scheme II-C
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MP2/cc-pVTZ Stationary Point Data Summaries

216

The following pages summarize the output files for the geometry optimizations and frequency

calculations of the stationary point structures (local minima and transition states) obtained using

Gaussian 09. Data is ordered by molecule identifier, with duplicate structures noted and referred

to the correct summary. The data is tabulated in the format below and includes the structure,

Cartesian coordinates, energies, and imaginary frequencies (if a transition state). Note that

“Electronic and Zero-Point Energy” values for molecules containing the para-benzyne moiety are

significantly different than the corresponding “Electronic Energy” values due to the presence of

unrealistically large vibrational frequencies, as discussed in the main text.

Format:
Molecule identifier(s)
Molecule name (local minima only)

[molecule Lewis structure]

Charge Multiplicity Theory/Basis Set Full Point Group
[value] [value] [value] [value]
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
[value] [value] [value] [value]
AH 298 AGq298) (Energies in Hartrees/particle) Imaginary Frequency (cm™)
[value] [value] [value (if TS)]
Atom Coordinates (Angstroms)
X Y z

Atom1 [value] [value] [value]



Directory of Data Summaries

Molecule
la

1b, 1c, 5a
1d, 5b, 5¢
2a

2b

2¢C

2d
TS2-3a
TS2-3b
TS2-3c
TS2-3d
3a

3b

3c

3d
TS3-4a
TS3-4b
TS3-4c
TS3-4d
4a

4b, 4c

4d

5d

Page
218

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

TS1/5-6a
TS1/5-6¢
6a

6b

6C

6d
TS6-7a
TS6-7b
TS6-7c
TS6-7d
7a

7b

7c

7d
TS7-8a
TS7-8b
TS7-8c
TS7-8d
8a

8b, 8¢
8d

241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
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la

Buta-1,3-diyne

218

H————H
Charge Multiplicity Theory/Basis Set Full Point Group
0 MP2/cc-pVTZ Dech
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.036444 -153.152277 -153.115833 0.0000
AH 298 AGa98) (Energies in Hartrees/particle)
-153.110386 -153.138713
Atom Coordinates (Angstroms)
X Y Z
C 0.000000  0.000000 0.684361
C 0.000000  0.000000 1.903809
H 0.000000  0.000000 2.965806
C 0.000000  0.000000  -0.684361
C 0.000000  0.000000  -1.903809
H 0.000000 0.000000  -2.965806



1b, 1c, 5a

Hexa-1,3,5-triyne

219

H———H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Dh
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.046126 -229.149449 -229.103324 0.0000
AH 298 AGa98) (Energies in Hartrees/particle)
-229.095941 -229.129684
Atom Coordinates (Angstroms)
X Y Z
C 0.000000  0.000000 3.197403
C 0.000000  0.000000 1.975050
C 0.000000  0.000000 0.615309
C 0.000000  0.000000  -0.615309
C 0.000000  0.000000  -1.975050
C 0.000000 0.000000  -3.197403
H 0.000000  0.000000  -4.259587
H 0.000000  0.000000 4.259587
1c

Same as 1b



1d, 5b, 5¢c

Octa-1,3,5,7-tetrayne

220

H—————H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Do
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.055551 -305.147892 -305.092341 0.0000
AH 298 AGa98) (Energies in Hartrees/particle)
-305.082918 -305.122119
Atom Coordinates (Angstroms)
X Y Z
Cc 0.000000  0.000000 4.488254
C 0.000000  0.000000 3.264737
C 0.000000  0.000000 1.908502
C 0.000000  0.000000 0.673601
C 0.000000  0.000000  -0.673601
C 0.000000  0.000000  -1.908502
Cc 0.000000  0.000000  -3.264737
C 0.000000 0.000000  -4.488254
H 0.000000  0.000000  -5.550741
H 0.000000  0.000000 5.550741



2a

1,2-Diethynylcyclobuta-1,3-diene

221

H
H Z
T
H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Coy
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.078705 -306.321131 -306.243186 0.3822
AH 298 AGq298) (Energies in Hartrees/particle)
-306.234308 -306.274637
Atom Coordinates (Angstroms)
X Y Z
C 0.000000  0.684367 0.290682
C 0.000000  -0.684367  0.290682
C 0.000000 -0.671202 1.852710
C 0.000000  0.671202 1.852710
H 0.000000  1.443974 2.604281
H 0.000000  -1.443974  2.604281
C 0.000000 -1.677954  -0.685872
C 0.000000 -2.574934  -1.516685
H 0.000000  -3.343977  -2.249291
C 0.000000  1.677954  -0.685872
C 0.000000 2.574934  -1.516685
H 0.000000  3.343977 -2.249291



2b

1,2-Di(buta-1,3,-diynyl)cyclobuta-1,3-diene

222

H
Z
H Z
H X
X
H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Coy
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.097969 -458.318462 -458.222249 0.5567
AH 29s) AG 298 (Energies in Hartrees/particle)
-458.2094 -458.260502
Atom Coordinates (Angstroms)
X Y Z
C 0.000000  0.691237 1.251041
C 0.000000  -0.691237 1.251041
C 0.000000  -0.671797  2.808774
C 0.000000  0.671797 2.808774
H 0.000000  1.444493 3.560636
H 0.000000  -1.444493  3.560636
C 0.000000 -1.669461  0.280419
C 0.000000 -2.571318  -0.565089
C 0.000000  -3.549664  -1.504115
C 0.000000 -4.434488  -2.350074
H 0.000000 -5.200146  -3.086371
C 0.000000  1.669461 0.280419
C 0.000000  2.571318  -0.565089
C 0.000000  3.549664  -1.504115
C 0.000000  4.434488  -2.350074
H 0.000000 5.200146  -3.086371



2C

1,2,3,4-Tetraethynylbuta-1,3-diene

223

H H
N F
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ D2n
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.095842 -458.315530 -458.219689 0.0000
AH 298 AGq298) (Energies in Hartrees/particle)
-458.20631 -458.257528
Atom Coordinates (Angstroms)
X Y Z

C 0.000000  0.779379 0.684405
C 0.000000  -0.779379  0.684405
C 0.000000  0.779386 -0.684427
C 0.000000  -0.779386  -0.684427
C 0.000000  1.737731 -1.692163
C 0.000000  2.547279 -2.608564
H 0.000000  3.261001 -3.395549
C 0.000000  -1.737731  -1.692163
C 0.000000 -2.547279  -2.608564
H 0.000000  -3.261001  -3.395549
C 0.000000  -1.737745 1.692173
C 0.000000  -2.547295  2.608574
H 0.000000 -3.261016  3.395559
C 0.000000  1.737745 1.692173
C 0.000000  2.547295 2.608574
H 0.000000  3.261016 3.395559



2d

1,2-Di(buta-1,3-diynyl)-3,4-diethynylcyclobuta-1,3-diene

224

H
H Z
X Z
Z X
H N
H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Coy
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.114980 -610.314202 -610.199222 0.1457
AH 29s) AG 298 (Energies in Hartrees/particle)
-610.181812 -610.243793
Atom Coordinates (Angstroms)
X Y Z

C 0.000000  0.691158 0.185167
C 0.000000 -0.691158  0.185167
C 0.000000 -0.685166  1.740266
C 0.000000  0.685166 1.740266
C 0.000000  1.694166 2.696711
C 0.000000  2.612506 3.504195
H 0.000000  3.401989 4.215321
C 0.000000 -1.694166  2.696711
C 0.000000  -2.612506  3.504195
H 0.000000 -3.401989  4.215321
C 0.000000  -1.685438  -0.765613
C 0.000000 -2.612947  -1.583594
C 0.000000 -3.616978  -2.493775
C 0.000000 -4.525493  -3.314532
H 0.000000  -5.312445  -4.028266
C 0.000000  1.685438  -0.765613
C 0.000000  2.612947  -1.583594
C 0.000000  3.616978  -2.493775
C 0.000000  4.525493  -3.314532
H 0.000000  5.312445  -4.028266



225

TS2-3a
i
H /. H
i
H =
H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Cs
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.079357 -306.286070 -306.206713 0.2343
Imaginary
AH 298 AGq(298) (Energies in Hartrees/particle) Frequency (cm™)
-306.199233 -306.236996 364.9256
Atom Coordinates (Angstroms)
X Y Z

C 0.088320  2.040737  0.672851

C -0.187730  0.521206  0.710795

C -0.187730  0.521206  -0.710795

C 0.088320  2.040737  -0.672851

H 0.249594  2.781385  -1.438796

C -0.041957  -0.654532  -1.393958

C 0.088320  -1.884500  -1.125005

C 0.088320  -1.884500  1.125005

C -0.041957  -0.654532  1.393958

H 0.068690 -2.918852  1.392383

H 0.068690  -2.918852  -1.392383

H 0.249594  2.781385 1.438796



226

TS2-3b
- 2E:
H
Z
H =
|
H =
X
H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Coy
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.097699 -458.284832 -458.187133 0.6448
Imaginary
AH 298 AGq298) (Energies in Hartrees/particle) Frequency (cm™)
-458.175451 -458.223042 476.9346
Atom Coordinates (Angstroms)
X Y Z

C 0.061539 1.923362 0.676518

C 0.045580 0.394271 0.729582

C 0.062663  0.394999  -0.727726

C 0.077462 1.924060 -0.672724

H 0.093671 2.684885  -1.436077

C 0.060306  -0.765096  -1.405136

C 0.044960  -2.021865 -1.094613

C 0.019429  -2.022879  1.093824

C 0.027212  -0.766392  1.405738

H 0.060002 2.683433 1.440791

C 0.036746  -3.333719  -1.468392

C 0.028455  -4.532684  -1.725338

H 0.021528  -5.562649  -1.984348

C 0.002466  -3.335060  1.466197

C -0.011816  -4.534232  1.721903

H

-0.024797

-5.564418

1.979800
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TS2-3c
. o
i
H Z T m
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Cs
Zero-point Energy  Electronic Energy  Electronic and Zero-Point Energy Dipole Moment (D)
0.096359 -458.277524 -458.181165 0.2632
Imaginary
AH(29s) AG 298 (Energies in Hartrees/particle) Frequency (cm™)
-458.169175 -458.218179 404.6684
Atom Coordinates (Angstroms)
X Y Y4
C -0.915162  0.687150  -0.079831
C -0.915162  -0.687150  -0.079831
C 0.621386  -0.708765  -0.187665
C 0.621386  0.708766  -0.187665
C 1.788563 1.401687  -0.027750
C 3.014039 1.120340  0.125516
H 4.049603 1.380874  0.164100
C 1.788562  -1.401687  -0.027750
C 3.014039  -1.120340  0.125517
H 4.049603  -1.380873  0.164100
C -1.887947  -1.678064  0.014696
C -2.720586  -2.568886  0.099269
H -3.451351  -3.336767  0.170485
C -1.887948  1.678063  0.014696
C -2.720587  2.568885  0.099269
H -3.451352  3.336766  0.170485



228

TS2-3d
. %
_ H
Z =
0 A
H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Coy
Zero-point Energy  Electronic Energy  Electronic and Zero-Point Energy Dipole Moment (D)
0.114905 -610.276225 -610.161320 0.2399
Imaginary
AH(29s) AG 298 (Energies in Hartrees/particle) Frequency (cm™)
-610.145192 -610.20337 486.4716
Atom Coordinates (Angstroms)
X Y Z
C -2.144002  -0.688863  0.000079
C -0.617967  -0.726713  -0.000321
C -0.617902  0.726637  -0.000149
C -2.143941  0.688873  0.000210
C 0.540070 1.408513  -0.000093
C 1.795187 1.086610  -0.000217
C 1.795109  -1.086694  -0.000481
C 0.540007  -1.408611 -0.000532
C 3.106332 1.464912  0.000226
C 4.303936 1727931  0.000581
H 5.332722 1.992135  0.000873
C 3.106248  -1.465025 -0.000110
C 4303878  -1.727920  0.000027
H 5.332687  -1.992050  0.000313
C -3.123401  -1.677811  0.000250
C -3.965389  -2.563848  0.000522
H -4.702351  -3.329453  0.000476
C -3.123265  1.677877  0.000010
C -3.965089  2.564063  -0.000231
H -4,701934  3.329782  -0.000289



3a

3,6-Didehydrobicyclo[4.2.0]octa-1,3,5,7-tetraene

229

H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Cay
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.111118 -306.356867 -306.245749 1.2023
AH 29s) AG 298 (Energies in Hartrees/particle)
-306.239651 -306.274741
Atom Coordinates (Angstroms)
X Y z
C -0.505417  0.737658  0.004028
C 0.656675 1.411537  0.006717
C 1.861103  0.713345  0.009493
C 1.861102  -0.713351  0.009491
C 0.656674  -1.411541  0.006713
C -0.505417  -0.737662  0.004025
C -2.016467 -0.677592  0.000628
C -2.016466  0.677590  0.000630
H 2.827239 1.199507  0.011793
H 2.827238  -1.199513  0.011791
H -2.779917  -1.438752  -0.001129
H -2.779916  1.438751  -0.001125



3b

4,5-Diethynyl-3,6-didehydrobicyclo[4.2.0]octa-1,3,5,7-tetraene

230

H
H . F
g
H : A
H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Coy
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.152357 -458.333903 -458.181546 2.0330
AH 298 AGq298) (Energies in Hartrees/particle)
-458.171133 -458.21631
Atom Coordinates (Angstroms)
X Y Y4

C -0.401767  0.737283  0.004299
C 0.755938  1.415063  0.006984
C 1976038  0.729260  0.009808
C 1976038  -0.729265  0.009807
C 0.755937  -1.415067  0.006983
C -0.401768  -0.737287  0.004298
C -1.907704  -0.678797  0.000853
C -1.907704  0.678794  0.000854
H -2.670085  -1.441058  -0.000886
H -2.670084  1.441056  -0.000884
C 3.226940  1.395770  0.012761
C 3.226939  -1.395775  0.012759
C 4302565 -1.969370  0.015286
H 5239122  -2.469521  0.017485
C 4302567  1.969364  0.015289
H 5239123  2.469514  0.017490



3c

1,8-Diethynyl-3,6-didehydrobicyclo[4.2.0]octa-1,3,5,7-tetraene

231

H
N aun
m
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Coy
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.145689 -458.347600 -458.201911 1.0592
AH 298 AGq298) (Energies in Hartrees/particle)
-458.19135 -458.237144
Atom Coordinates (Angstroms)
X Y Z

C -0.548087  0.731402 0.003978
C 0.612802 1.415638 0.006646
C 1.814275  0.713537 0.009405
C 1.814275  -0.713542  0.009403
C 0.612801  -1.415642  0.006642
C -0.548087 -0.731405  0.003976
C -2.060418 -0.690786  0.000511
C -2.060417  0.690783 0.000513
H 2.779973 1.201178 0.011630
H 2779972  -1.201184  0.011626
C -3.043417  1.679064  -0.001743
C -3.043419  -1.679065  -0.001747
C -3.886297  2.563566  -0.003677
H -4.625865  3.326388  -0.005375
C -3.886299  -2.563567 -0.003684
H -4.625868  -3.326388  -0.005384



3d

1,4,5,8-Tetraethynyl-3,6-didehydrobicyclo[4.2.0]octa-1,3,5,7-tetraene

232

H H
< P
g
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Coy
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.142098 -610.324577 -610.182479 1.9757
AH 298 AGq298) (Energies in Hartrees/particle)
-610.167532 -610.223354
Atom Coordinates (Angstroms)
X Y Z

C -0.574863  0.730636 0.000042
C 0.581710 1.419188 0.000108
C 1799135  0.729259 0.000075
C 1.799138  -0.729257  -0.000091
C 0.581712  -1.419180 -0.000109
C -0.574864  -0.730636  -0.000052
C -2.082329  -0.692411  -0.000014
C -2.082328  0.692408  -0.000064
C -3.062774  1.682350  -0.000038
C -3.062774  -1.682353  0.000044
C -3.905339  2.567262  -0.000038
H -4.643785  3.331514  -0.000246
C -3.905339  -2.567264  0.000112
H -4.643823  -3.331481  0.000364
C 3.049963 1.396314  0.000172
C 4.124977 1.971080 0.000165
H 5.060916 2.472601 0.000132
C 3.049965  -1.396313  -0.000116
C 4124977  -1.971082  -0.000201
H 5.060901  -2.472632  -0.000217



233

Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Coy
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.083487 -306.346856 -306.263369 1.5537
Imaginary
AH 298 AGq(298) (Energies in Hartrees/particle) Frequency (cm™)
-306.25678 -306.292733 673.9821
Atom Coordinates (Angstroms)
X Y Z
C -0.536964  0.894386  0.000000
C 0.644318 1.389017  0.000000
C 1.875381 0.701896  0.000000
C 1.875381  -0.701896  0.000000
C 0.644318  -1.389017  0.000000
C -0.536964  -0.894386  0.000000
C -1.990564  -0.676831  0.000000
C -1.990564  0.676831  0.000000
H 2.835259 1.197055  0.000000
H 2.835259  -1.197055  0.000000
H -2.788285  -1.402526  0.000000
H -2.788285  1.402526  0.000000



234

TS3-4b
_ H_ T
H . FZ
H AN
H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Coy
Zero-point Energy  Electronic Energy  Electronic and Zero-Point Energy Dipole Moment (D)
0.100188 -458.324859 -458.224671 2.1524
Imaginary
AH(29s) AG 298 (Energies in Hartrees/particle) Frequency (cm™)
-458.213648 -458.259891 675.7682
Atom Coordinates (Angstroms)
X Y Y4
C -0.430184  0.887004  0.000000
C 0.748536 1.390817  0.000000
C 1.990092 0.720644  0.000000
C 1.990092  -0.720644  0.000000
C 0.748535  -1.390817  0.000000
C -0.430184  -0.887004  0.000000
C -1.882086  -0.677732  0.000000
C -1.882086  0.677732  0.000000
H -2.676511  -1.407026  0.000000
H -2.676511  1.407026  0.000000
C 3.230985 1.397161  0.000000
C 4.299977 1.984308  0.000000
H 5.231578 2.493706  0.000000
C 3.230985  -1.397161  0.000000
C 4.299977  -1.984308  0.000000
H 5.231578  -2.493706  0.000000



235

TS3-4c
o -1
X “ _H
Paug
H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Coy
Zero-point Energy  Electronic Energy  Electronic and Zero-Point Energy Dipole Moment (D)
0.100457 -458.332498 -458.232041 1.5050
Imaginary
AH(29s) AG 298 (Energies in Hartrees/particle) Frequency (cm™)
-458.22097 -458.26704 671.8994
Atom Coordinates (Angstroms)
X Y Z
C 0.000000  0.914137 0.611608
C 0.000000  1.386651 1.797477
C 0.000000  0.701779 3.028448
C 0.000000 -0.701779  3.028448
C 0.000000  -1.386651 1.797477
C 0.000000 -0.914137  0.611608
C 0.000000  -0.689151  -0.837313
C 0.000000 0.689151  -0.837313
H 0.000000  1.198391 3.987611
H 0.000000 -1.198391  3.987611
C 0.000000  1.620684  -1.882517
C 0.000000 -1.620684  -1.882517
C 0.000000  2.440949  -2.786304
H 0.000000  3.151852  -3.576005
C 0.000000  -2.440949  -2.786304
H 0.000000 -3.151852  -3.576005



236

TS3-4d
- -1
H H
N l z
Z TN
H H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Coy
Zero-point Energy  Electronic Energy  Electronic and Zero-Point Energy Dipole Moment (D)
0.116959 -610.310447 -610.193489 2.1375
Imaginary
AH(29s) AG 298 (Energies in Hartrees/particle) Frequency (cm™)
-610.177859 -610.234255 677.0181
Atom Coordinates (Angstroms)
X Y Z
C 0.000000  0.907231  -0.591851
C 0.000000  1.388076 0.591957
C 0.000000  0.720739 1.833304
C 0.000000  -0.720739 1.833304
C 0.000000  -1.388076  0.591957
C 0.000000 -0.907231  -0.591851
C 0.000000  -0.690146  -2.039199
C 0.000000  0.690146  -2.039199
C 0.000000  1.626183  -3.079383
C 0.000000 -1.626183  -3.079383
C 0.000000  2.449646  -3.980286
H 0.000000 3.164336  -4.766842
C 0.000000  -2.449646  -3.980286
H 0.000000 -3.164336  -4.766842
C 0.000000  1.398105 3.073223
C 0.000000  1.987042 4.141298
H 0.000000  2.497470 5.072465
C 0.000000 -1.398105  3.073223
C 0.000000  -1.987042  4.141298
H 0.000000  -2.497470  5.072465



4a

Cycloocta-1,5-dien-3,7-diyne

I,
H H

237

Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ D2n
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.084590 -306.383357 -306.298767 0.0005
AH 298 AGq298) (Energies in Hartrees/particle)
-306.291416 -306.328763
Atom Coordinates (Angstroms)
X Y Z
C -0.607758  1.296549  0.001690
C 0.622419 1.296307  0.004406
C 1921698  0.679874  0.008323
C 1.921592  -0.680349  0.010668
C 0.622207  -1.296616  0.008977
C -0.607976  -1.296322  0.006337
C -1.907337  -0.679876  0.002169
C -1.907206  0.680356  -0.000168
H 2.841827 1.245190  0.009328
H 2.841642  -1.245784  0.013581
H -2.827457  -1.245200  0.001018
H -2.827219  1.245848  -0.003275



4b, 4c

1,2-Diethynylcycloocta-1,5-dien-3,7-diyne

238

_ H
H — =
="
H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Coy
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.101343 -458.363501 -458.262166 0.2331
AH 29s) AG 298 (Energies in Hartrees/particle)
-458.25042 -458.298199
Atom Coordinates (Angstroms)
X Y Y4
C -0.650255  1.288915  0.001508
C 0.580711 1.293800  0.004272
C 1.877761  0.680861  0.008256
C 1.877614  -0.681256  0.010616
C 0.580431  -1.293923  0.008757
C -0.650534  -1.288781  0.005976
C -1.958079  -0.694199  0.002000
C -1.957928  0.694607  -0.000407
H 2.797547 1.246583  0.009346
H 2.797277  -1.247170  0.013668
C -3.149454 1451036  -0.004401
C -3.149767  -1.450379  0.000627
C -4.174427 2.112251 -0.007856
H -5.068551  2.685410  -0.010863
C -4.174883  -2.111379  -0.000536
H -5.069132  -2.684351  -0.001557
4c

Same as 4b



4d

1,2,5,6-Tetraethynylcycloocta-1,5-dien-3,7-diyne

239

H H
= F
H é o % H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Dan
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.117873 -610.343230 -610.225357 0.0006
AH 29s) AG 298 (Energies in Hartrees/particle)
-610.209071 -610.267376
Atom Coordinates (Angstroms)
X Y Y4

C -0.615957  1.286855  0.000009
C 0.615955 1.286856  0.000001
C 1921352  0.695593  -0.000012
C 1921353  -0.695596  -0.000026
C 0.615956  -1.286860  -0.000024
C -0.615956  -1.286860  -0.000016
C -1.921355  -0.695596  -0.000001
C -1.921355  0.695590  0.000012
C -3.112491  1.451684  0.000026
C -3.112490  -1.451690  -0.000002
C -4.138544 2.111218 0.000046
H -5.033103  2.683990  0.000156
C -4.138547  -2.111218  0.000000
H -5.033167 -2.683894  0.000034
C 3.112489 1.451682  -0.000014
C 4138547  2.111210  -0.000010
H 5.033121  2.683957  0.000050
C 3.112490  -1.451685  -0.000045
C 4.138551 -2.111207  -0.000031
H 5.033165 -2.683893  0.000283



240

S5a
Same as 1b
5b
Same as 1d
5C

Same as 1d

5d

Deca-1,3,5,7,9-pentayne

H———————H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Doch
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.064895 -381.147001 -381.082114 0.0000
AH 298 AGq298) (Energies in Hartrees/particle)
-381.07062 -381.115332
Atom Coordinates (Angstroms)
X Y Z
C 0.000000  0.000000 5.778218
C 0.000000  0.000000 4.554099
C 0.000000  0.000000 3.199554
C 0.000000  0.000000 1.962561
C 0.000000  0.000000 0.620134
C 0.000000  0.000000  -0.620134
C 0.000000 0.000000  -1.962561
C 0.000000  0.000000  -3.199554
C 0.000000  0.000000  -4.554099
C 0.000000  0.000000  -5.778218
H 0.000000  0.000000  -6.840807
H 0.000000  0.000000 6.840807
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TS1/5-6a
i
Ho— —H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Cs
Zero-point Energy  Electronic Energy  Electronic and Zero-Point Energy Dipole Moment (D)
0.084385 -382.255699 -382.171314 1.3060
Imaginary
AH 298 AGq298) (Energies in Hartrees/particle) Frequency (cm™)
-382.160013 -382.206382 367.4296
Atom Coordinates (Angstroms)
X Y z
C -0.958695 -2.839324  0.000000
C -0.958695 0.488148  0.000000
C 0.963432 -1.807089  0.000000
C 0.963432 -0.544086  0.000000
H -0.755793 -3.888610  0.000000
C -1.725505 -1.836579  0.000000
C -1.725505 -0.514596  0.000000
C -0.778028 1.848625  0.000000
C -0.585642 3.055540  0.000000
H -0.439343 4.107478  0.000000
H 1.523032 -2.717192  0.000000
C 1.768614 0.578745  0.000000
C 2.465742  1.581242  0.000000
H 3.097198 2.434568  0.000000
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TS1/5-6¢
H—___ _——H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Cay
Zero-point Energy  Electronic Energy  Electronic and Zero-Point Energy Dipole Moment (D)
0.101967 -534.249058 -534.147091 1.2338
Imaginary
AH(29s) AG 298 (Energies in Hartrees/particle) Frequency (cm™)
-534.132102 -534.186743 412.4567
Atom Coordinates (Angstroms)
X Y Z
C 0.000000  1.666236  -1.203133
C 0.000000  0.654969  -1.976117
C 0.000000  -0.654969  -1.976117
C 0.000000 -1.666236  -1.203133
C 0.000000  -3.018515  -0.993783
C 0.000000 -4.215824  -0.741977
H 0.000000  -5.261575  -0.554592
C 0.000000  3.018515  -0.993783
C 0.000000  4.215824  -0.741977
H 0.000000  5.261575  -0.554592
C 0.000000  -0.641230  0.680141
C 0.000000  0.641230 0.680141
C 0.000000  1.710391 1.544491
C 0.000000  2.682448 2.287980
H 0.000000  3.497418 2.968985
C 0.000000  -1.710391 1.544491
C 0.000000  -2.682448  2.287980
H 0.000000 -3.497418  2.968985



6a

3,4-Diethynyl-1,2-didehydrobenzene

243

H H
H Z
N
H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Cs
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.092756 -382.389139 -382.296383 1.5641
AH 29s) AG 298 (Energies in Hartrees/particle)
-382.286827 -382.329681
Atom Coordinates (Angstroms)
X Y z

Cc 0.000000  1.508585  -0.117244
C 0.000000 0.667791  -1.223788
Cc 0.000000  -0.592261  -1.220825
C 0.000000 -1.430761  -0.114686
C 0.000000  -0.678997 1.067539
C 0.000000  0.736953 1.086273
H 0.000000  -1.192333  2.020727
H 0.000000 -2.510394  -0.114468
C 0.000000  2.925793  -0.110831
C 0.000000  4.143665  -0.103147
H 0.000000  5.205444  -0.095703
C 0.000000  1.416881 2.337800
C 0.000000  2.002290 3.405859
H 0.000000  2.517038 4.334520



6b

3,4-di(buta-1,3-diynyl)-1,2-didehydrobenzene

244

H
H Z
H Z
TN
X
H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Cs
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.111879 -534.383930 -534.272051 1.4785
AH 29s) AG 298 (Energies in Hartrees/particle)
-534.258380 -534.312209
Atom Coordinates (Angstroms)
X Y Z

C -1.017559  -0.927015  0.000000
C -2.231495  -1.606108  0.000000
C -3.383985  -1.096945  0.000000
C -3.712050  0.252870  0.000000
C -2.552668  1.038405  0.000000
C -1.245659  0.489713  0.000000
H -2.643410  2.117374  0.000000
H -4.702397  0.682838  0.000000
C 0.282772  -1.468965  0.000000
C 1.426574  -1.917952  0.000000
C -0.120319  1.348919  0.000000
C 0.873686  2.070860  0.000000
C 2.693233  -2.413683  0.000000
C 3.832039  -2.857607  0.000000
H 4821631  -3.243229  -0.000001
C 1.974522  2.871148  0.000000
C 2.964159  3.588392  0.000000
H 3.824677  4.210825  -0.000004



6C

3,4,5,6-Tetraethynyl-1,2-didehydrobenzene

245

H
we Al
X Z
N
H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Coy
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.109079 -534.366717 -534.257638 1.6943
AH 29s) AG 298 (Energies in Hartrees/particle)
-534.243517 -534.296092
Atom Coordinates (Angstroms)
X Y Z

C 0.000000  1.477324  -0.925307
C 0.000000  0.629053  -2.026850
C 0.000000  -0.629053  -2.026850
C 0.000000 -1.477324  -0.925307
C 0.000000  -0.714050  0.281843
C 0.000000  0.714050 0.281843
C 0.000000  1.405329 1.522117
C 0.000000  2.014724 2.577389
H 0.000000  2.540990 3.499865
C 0.000000 -1.405329  1.522117
C 0.000000  -2.014724  2.577389
H 0.000000 -2.540990  3.499865
Cc 0.000000 -2.892120  -0.927826
C 0.000000 -4.110441  -0.929590
H 0.000000  -5.172448  -0.930520
C 0.000000  2.892120  -0.927826
C 0.000000  4.110441  -0.929590
H 0.000000  5.172448  -0.930520



6d

3,4-di(buta-1,3-diynyl)-5,6-diethynyl-1,2-didehydrobenzene

246

Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Cs
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.128176 -686.362493 -686.234317 1.6970
AH 298 AGq298) (Energies in Hartrees/particle)
-686.216041 -686.280277
Atom Coordinates (Angstroms)
X Y Z
C -1.402953  0.027434  0.000000
C -2.137518  1.209417  0.000000
C -1.693781  2.386717  0.000000
C -0.364193  2.797610  0.000000
C 0.500325 1.661282  0.000000
C 0.000000 0.322742  0.000000
C 0.909654  -0.756025  0.000000
C 1.679290  -1.714927  0.000000
C 1.904595 1.865836  0.000000
C 3.109342 2.050825  0.000000
H 4.160370 2.204751  0.000000
C 0.128283 4.122927  0.000000
C 0.555118 5.264228  0.000000
H 0.927043 6.259083  0.000000
C -1.880338  -1.294768  0.000000
C -2.274366  -2.459454  0.000000
C -2.708239  -3.747698  0.000000
C -3.097299  -4.906668  0.000000
H -3.435080  -5.913726  0.000000
C 2.534099 -2.771967  0.000000
C 3.301304  -3.724015  0.000000
H 3.967736 -4.551077  0.000000



247

TS6-7a
i m

i :

N

H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Cs
Zero-point Energy  Electronic Energy  Electronic and Zero-Point Energy Dipole Moment (D)
0.093144 -382.353579 -382.260435 2.0373
Imaginary
AH(29s) AG 298 (Energies in Hartrees/particle) Frequency (cm™)
-382.252372 -382.291779 569.5936
Atom Coordinates (Angstroms)
X Y Y4

C -1.165650  1.447277  0.000000

C 0.000000 0.638286  0.000000

C -2.467034  0.939702  0.000000

C -0.098937  -0.856752  0.000000

H -3.337185  1.578559  0.000000

C -2.444784  -0.450321  0.000000

C 1.085755  -1.591740  0.000000

C -1.439273  -1.205189  0.000000

C 2.324202  -1.332229  0.000000

H 3.330681  -1.694609  0.000000

H -1.019857  2.519487  0.000000

C 1.301152 1.150785  0.000000

C 2.486170 0.708221  0.000000

H 3.536756 0.908320  0.000000
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Charge Multiplicity Theory/Basis Set Full Point Group

0 1 MP2/cc-pVTZ Cs
Zero-point Energy  Electronic Energy  Electronic and Zero-Point Energy Dipole Moment (D)
0.111545 -534.342555 -534.231010 1.8661
Imaginary
AH 298 AGq298) (Energies in Hartrees/particle) Frequency (cm™)
-534.21871 -534.267927 615.1327
Atom Coordinates (Angstroms)
X Y Z
C -2.588534  1.239821  0.000116
C -1.316867  0.602451  0.000111
C -3.805182  0.558092  -0.000045
C -1.208966  -0.912552  -0.000105
H -4.754942  1.071225  -0.000042
C -3.591616  -0.817667  -0.000102
C 0.052621  -1.470575  -0.000022
C -2.494094  -1.428980  -0.000104
C 1.256756  -1.006837  0.000015
H -2.590235  2.322003  0.000204
C -0.112123  1.282896  0.000108
C 1.138966  0.968201  0.000114
C 2.416024  1.495103  0.000097
C 3.561416 1.920238  -0.000325
H 4549152  2.310275  -0.000285
C 2.585496  -1.383046  0.000041
C 3.772395  -1.673112  0.000099
H

4.798274

-1.947714

0.000129
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TS6-7c
- -1
H
f
H % /I H
i
|
N =
H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Cs
Zero-point Energy  Electronic Energy  Electronic and Zero-Point Energy Dipole Moment (D)
0.109611 -534.331267 -534.221656 2.2667
Imaginary
AH 298 AGq298) (Energies in Hartrees/particle) Frequency (cm™)
-534.209053 -534.258812 572.2312
Atom Coordinates (Angstroms)
X Y Z
C -0.718904  0.331992  -0.000234
C 0.705034  0.211308  -0.000192
C -1.591932  -0.791879  0.000179
C 1.376579  -1.123063  -0.000786
C -0.851354  -1.971740  -0.000115
C 2.767954  -1.157132  -0.000385
C 0.397002  -2.103316 -0.000322
C 3.705047  -0.306366  0.000429
H 4757032  -0.110902  0.000692
C 1.556753 1.317104  0.000195
C 2.806186 1.527742  0.000906
H 3.612499  2.230712  0.000830
C -1.285278  1.635652  -0.000427
C -1.797178  2.741596  -0.000659
H -2.233366  3.709822  -0.000849
C -3.000414  -0.659809  0.000439
C -4.213682  -0.548714  0.000704
H

-5.271046

-0.449892

0.000935
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TS6-7d
- ok
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Cs
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.127971 -686.320807 -686.192836 2.2073
Imaginary
AH(29s) AG 298 (Energies in Hartrees/particle) Frequency (cm™)
-686.175945 -686.235507 622.053
Atom Coordinates (Angstroms)
X Y z
C 1.798976 0.307225 0.000026
C 0.409167 -0.039133 -0.000011
C 2.841573 -0.659059 -0.000142
C -0.040948 -1.484709 -0.000239
C 2.301766 -1.945537 -0.000342
C -1.393787 -1.739189 -0.000261
C 1.093103 -2.281078 -0.000381
C -2.462695 -1.014933 -0.000129
C -0.597888 0.906292 0.000153
C -1.891007 0.873238 0.000165
C -3.015950 1.673221 0.000308
C -4.036368 2.345929 0.000426
H -4.910007 2.949885 0.000536
C -3.841069 -1.085176 -0.000120
C -5.062948 -1.103782 -0.000105
H -6.124368 -1.142954 -0.000096
C 4.208789 -0.300079 -0.000095
C 5.388123 0.006749 -0.000055
H 6.415474 0.276090 -0.000019
C 2.143047 1.685542 0.000233
C 2.471002 2.859544 0.000407
H 2.741590 3.886597 0.000559



7a

1,2,5,8-Tetradehydronaphthalene

H

HH
A : H

251

Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Cs
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.133465 -382.397318 -382.263853 1.8638
AH 29s) AG 298 (Energies in Hartrees/particle)
-382.256699 -382.294597
Atom Coordinates (Angstroms)
X Y z
C -1.208993  1.405694  0.000000
C 0.000000 0.634794  0.000000
C -2.480637  0.850205  0.000000
C -0.047533  -0.870241  0.000000
H -3.372929  1.458308  0.000000
C -2.423320  -0.549516  0.000000
C 1.146021  -1.569534  0.000000
C -1.386215  -1.257228  0.000000
C 2.359109  -0.936108  0.000000
H 3.300193  -1.469336  0.000000
H -1.101132  2.482938  0.000000
C 1.255662 1.225433  0.000000
C 2.415299 0.496270  0.000000
H 3.397506 0.949474  0.000000



7b

6,7-Diethynyl-1,2,5,8-tetradehydronaphthalene

252

H H
n s A
i
H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Cs
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.153654 -534.372380 -534.218725 1.7612
AH 298 AGq298) (Energies in Hartrees/particle)
-534.207254 -534.255084
Atom Coordinates (Angstroms)
X Y Y4

C -2.462795  1.387021  0.000000
C -1.225110  0.661655  0.000000
C -3.709838  0.778585  0.000000
C -1.210348  -0.833319  0.000000
H -4.626483  1.349448  0.000000
C -3.596907  -0.619284  0.000000
C 0.006549  -1.488725  0.000000
C -2.530471  -1.282008  0.000000
C 1.209629  -0.816150  0.000000
H -2.397733  2.467784  0.000000
C 0.000000 1.310812  0.000000
C 1.205702 0.641738  0.000000
C 2.460918  -1.487676  0.000000
C 3.538706  -2.055110  0.000000
H 4476249  -2.553714  0.000000
C 2.457967 1.313284  0.000000
C 3.535303 1.881667  0.000000
H 4.472130 2.381534  0.000000



7C

3,4-Diethynyl-1,2,5,8-tetradehydronaphthalene

H

. [
S
UL,

253

Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Cs
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.155138 -534.376362 -534.221224 2.0202
AH 29s) AG 298 (Energies in Hartrees/particle)
-534.209537 -534.257777
Atom Coordinates (Angstroms)
X Y Y4
C 0.300610 1.737859  0.000000
C -0.524098  0.587951  0.000000
C 0.000000  -0.757682  0.000000
C 1.475493  -1.010636  0.000000
C 2.132484 0.218570  0.000000
C 1.656237 1.379009  0.000000
C 1912823  -2.321228  0.000000
C 1.050373  -3.385238  0.000000
C -0.356920  -3.141979  0.000000
C -0.850452  -1.857573  0.000000
H -1.003439  -4.009828  0.000000
H 1.388078  -4.412641  0.000000
C -0.228446  3.050452  0.000000
C -0.678650  4.182772  0.000000
H -1.073685  5.168488  0.000000
C -1.934426  0.754116  0.000000
C -3.141189  0.928064  0.000000
H -4,193991  1.067236  0.000000



7d

3,4,6,7-tetraethynyl-1,2,5,8-tetradehydronaphthalene

254

H
4
co N
H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Cs
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.233121 -686.351769 -686.118648 1.7902
AH 29s) AG 298 (Energies in Hartrees/particle)
-686.102453 -686.161260
Atom Coordinates (Angstroms)
X Y Y4
C 2.794722  0.673762  -0.000015
C 1.764335  -0.296622  -0.000021
C 0.362262  0.049514  -0.000012
C -0.081465  1.468292  -0.000003
C 1.046253 2.288492 0.000001
C 2.260209 1.971857  -0.000001
C -1.436471  1.734046 0.000006
C -2.394803  0.741103 0.000009
C -1.959126  -0.643739  0.000013
C -0.607131  -0.945993  -0.000009
C 4.164567  0.321611  -0.000005
C 5.345714  0.021489 0.000020
H 6.374674  -0.241567  0.000031
C 2.109377  -1.673423  -0.000014
C 2.430461  -2.849717  -0.000016
H 2.696757  -3.877970  0.000006
C -2.959009 -1.653847  0.000020
C -3.822147  -2.513661  0.000023
H -4.569376  -3.268187  0.000030
C -3.785043  1.027204  -0.000003
C -4.979610  1.265046  -0.000005
H -6.020630  1.475248  -0.000008
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TS7-8a
H i
H > H
H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Cs
Zero-point Energy  Electronic Energy  Electronic and Zero-Point Energy Dipole Moment (D)
0.096577 -382.376294 -382.279717 2.0070
Imaginary
AH(29s) AG 298 (Energies in Hartrees/particle) Frequency (cm™)
-382.272148 -382.310751 607.1488
Atom Coordinates (Angstroms)
X Y Z

C -0.014280  0.012989  -0.000005

C 1.229012  0.635001  -0.000002

C 2.484322  -0.005104  0.000004

C 2.441858  -1.978685  0.000009

C 1.104984  -2.090502  0.000012

C 0.065611  -1.380295  0.000007

C 3.667522  -2.447353  0.000002

C 4870844  -1.816236  0.000001

C 4914383  -0.373987  -0.000001

C 3.753449  0.335532  0.000008

H 5.899176  0.071260  -0.000006

H 5.825051  -2.323856  -0.000009

H 1.264357 1.718171 -0.000006

H -0.925766  0.592279  -0.000015
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- 1%
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Cs
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.113158 -534.350463 -534.237305 1.9896
Imaginary
AH(29s) AG 298 (Energies in Hartrees/particle) Frequency (cm™)
-534.225199 -534.274105 627.5896
Atom Coordinates (Angstroms)
X Y Y4
C -3.788378  0.528854  0.000060
C -2.621212  1.281993 0.000013
C -1.301658  0.780515 0.000120
C -1.125910 -1.168874  0.000032
C -2.441372  -1.436811 -0.000241
C -3.553707  -0.848459  -0.000015
C 0.141023  -1.499834  -0.000134
C 1.285092  -0.755648  -0.000147
C 1.163975 0.716037  -0.000048
C -0.084968  1.271257 0.000201
H -2.700292  2.362904  0.000195
H -4.758328  1.003754  0.000298
C 2.365355 1.468052  -0.000027
C 3.402349 2.107600  -0.000164
H 4.304929 2.666971  -0.000310
C 2.589344  -1.308150  0.000010
C 3.713559  -1.777399  0.000229
H 4692749  -2.188414  0.000494
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TS7-8c
_ " -1
; f
D _H
H
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Cs
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.113082 -534.353074 -534.239992 2.0827
Imaginary
AH 298 AGq298) (Energies in Hartrees/particle) Frequency (cm™)
-534.227890 -534.276830 595.3388
Atom Coordinates (Angstroms)
X Y Z
C 1564804  -0.787347  -0.000027
C 0.773712 0.388645  -0.000254
C -0.645790  0.418573  -0.000379
C -1.572148  -1.326284  -0.000457
C -0.453333  -2.064766  -0.000465
C 0.798913  -1.956157  -0.000145
C -2.865617  -1.127482  0.000028
C -3.612346  0.007802 0.000487
C -2.943291  1.285189 0.000456
C -1.582194  1.340734  -0.000116
H -3.585073  2.155153 0.000862
H -4.692920  0.028444  0.001115
C 1.433507 1.647904  -0.000283
C 2.011323 2.720994  -0.000305
H 2.514140 3.656300  -0.000345
C 2.979387  -0.727791  0.000354
C 4197292  -0.685518  0.000679
H

5.258540

-0.646873

0.000940
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TS7-8d
- %
Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Cs
Zero-point Energy  Electronic Energy  Electronic and Zero-Point Energy Dipole Moment (D)
0.129583 -686.327474 -686.197892 1.9809
Imaginary
AH(29s) AG 298 (Energies in Hartrees/particle) Frequency (cm™)
-686.18119 -686.240457 616.2097
Atom Coordinates (Angstroms)
X Y Y4

2.799490 -0.677884  0.000164
1.824587  0.350546  -0.000001
0.417434  0.143804  -0.000173
-0.205812  -1.714035 -0.000193
1.016070  -2.267032  -0.000328
2.233903  -1.957271  0.000125
-1.511697 -1.731365  0.000067
-2.456120 -0.746116  -0.000082
-1.993115  0.656358  -0.000119
-0.648385  0.909284  -0.000187
2.263181 1.701707  -0.000038
2.652717 2.856695  -0.000115
2.988529 3.864298  -0.000219
4183743  -0.386275  0.000165
5378048 -0.143112  0.000200
6.418418  0.070579 0.000174
-3.851200  -0.983057  0.000086
-5.053024 -1.182961  0.000186
-6.100727  -1.357365  0.000140
-2.987421  1.665418 0.000035
-3.847611  2.528537 0.000140
-4.594943  3.283045 0.000292

TOOITOOITOOITOOOOOOO0OO0OOO0OO0O0
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Cyclodeca-1,7-diene-3,5,9-triyne
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Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Cay
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.096006 -382.424980 -382.328974 1.8484
AH 29s) AG 298 (Energies in Hartrees/particle)
-382.320169 -382.361117
Atom Coordinates (Angstroms)
X Y Y4
C -0.098296  0.033726  0.000358
C 0.960203  0.950023  0.015468
C 2.278483  0.545408  0.014216
C 3.427410  0.063394  0.011682
C 4639871  -0.593498  0.008144
C 4727889  -1.990708 -0.009113
H 5702426  -2.460995 -0.011669
C 3.549127  -2.704959  -0.022249
C 2.296096  -2.732170  -0.026925
C 1.076724  -2.220698  -0.024487
C 0.218107  -1.307710 -0.015738
H 5559802  -0.019573  0.018432
H 0.725030  2.008469  0.028042
H -1.116708  0.399408  0.001653
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1,2-Diethynylcyclodeca-1,7-diene-3,5,9-triyne
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Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Cs
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.112972 -534.402199 -534.288338 1.8356
AH 298 AGq298) (Energies in Hartrees/particle)
-534.275023 -534.326392
Atom Coordinates (Angstroms)
X Y Z
C -1.379789  -0.744394  0.000068
C -1.033918  0.612302 0.000119
C 0.279405 1.032729  -0.000350
C 1.497878 1.292919  -0.000567
C 2.868355 1.445805 0.000213
C 3.738350 0.348832 0.000326
H 4.806952  0.519090 0.000512
C 3.178387  -0.910631  0.000091
C 2.165186  -1.648380  -0.000124
C 0.872059  -1.924605 -0.000144
C -0.354133  -1.665181  -0.000113
H 3.295937 2.442270 0.000224
C -2.078089  1.574513 0.000079
C -2.974214  2.400299 0.000044
H -3.755208  3.119991 0.000014
C -2.750917  -1.113379  0.000094
C -3.927642  -1.430049  0.000116
H -4.953186  -1.706034  0.000135
8c

Same as 8b



8d

1,2,7,8-Tetraethynylcyclodeca-1,7-diene-3,5,9-triyne
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Charge Multiplicity Theory/Basis Set Full Point Group
0 1 MP2/cc-pVTZ Coy
Zero-point Energy  Electronic Energy Electronic and Zero-Point Energy Dipole Moment (D)
0.129321 -686.379594 -686.250273 1.8704
AH 298 AGq298) (Energies in Hartrees/particle)
-686.23234 -686.294244
Atom Coordinates (Angstroms)
X Y Z
C 2.644009  -0.670417  0.000072
C 2.004593 0.603575 0.000052
C 0.622406  0.689493 0.000012
C -0.622409  0.689504  -0.000024
C -2.004595  0.603578  -0.000060
C -2.644006  -0.670419  -0.000074
C -1.803153  -1.767382  -0.000049
C -0.661460 -2.280758  -0.000017
C 0.661467  -2.280756  0.000019
C 1.803161  -1.767382  0.000050
C -4.058016  -0.772922  -0.000114
C -5.273634  -0.860625  -0.000137
H -6.333052  -0.938108  -0.000047
C -2.786564  1.789596  -0.000085
C -3.454095  2.809501  -0.000104
H -4.036746  3.697642  -0.000098
C 2.786555 1.789599 0.000069
C 3.454077 2.809509 0.000089
H 4.036786 3.697613 0.000152
C 4.058020  -0.772917  0.000111
C 5273638  -0.860621  0.000149
H 6.333058  -0.938073  0.000235
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Chapter 7: Ab initio Predictions of Higher Order Vibration-

Rotation Coupling Constants for Rotational Spectroscopy

Unpublished work with contributions from Brian J. Esselman, R. Claude Woods, and Robert J.
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ABSTRACT

The theoretical framework for the prediction of higher order vibration-rotation coupling
constants has been known for some time — including derivations of formulas for several low order
constants — but to date there has been no implementation of the theory for routine application to
vibration-rotation coupling in rotational spectroscopy. We have thus used established theory to
derive analytic expressions for the second order Coriolis coupling constants Fue, Fac, and Fap
through the use of contact transformations i.e., Van Vleck perturbation theory, including defining
rotational reductions to obtain results directly comparable to experiment. In doing so, we have
endeavored to make the theoretical framework more accessible for the broader rotational
spectroscopy community. We then used the results of a CCSD(T)/ANOOQ anharmonic frequency
calculation on benzonitrile to obtain theoretical predictions of the coupling constants for
comparison to the recent coupled-state fits of the lowest dyad and triad of benzonitrile. We found
the predictions to be within 15% of the experimentally determined values and determined the
origin of the multiplicative relationship between the coupling constants of the dyad and those of
the triad. We also present preliminary results of a computer-aided derivation program we are
developing with the goal of more easily extending the theoretical framework to higher order
coupling constants and to facilitate numeric predictions. Lastly, we discuss implications of the
results on experimental efforts of fitting rotational spectra of coupled vibrational states, and on the

derivation of higher order coupling constants.

INTRODUCTION

Our group has taken advantage of VPT2 calculations to obtain theoretical predictions of

various constants relevant to the fitting of rotational spectra: vibrational o corrections to the ground
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state rotational constants, rotational constants of vibrationally excited states and the ground states
of isotopologues, and quartic and sextic centrifugal distortion constants. These ab initio constants
can be used to predict the rotational spectra to aid in the search for transitions, and agreement of
the final experimentally determined constants with the theoretical predictions provides confidence
that the fit can be used for accurate prediction of transitions outside of the original frequency range.
While these ab initio predictions of the rotational constants are useful, they are only comparable
to experiment if vibration-rotation coupling is absent or, alternatively, if the coupling has been
suitably accounted for. The vibrational ground state of a molecule, barring the presence of a large-
amplitude motion such as an internal rotor, typically lacks vibration-rotation coupling to other
vibrational states. As we consider the excited vibrational states, however, the likelihood of

vibrational states being coupled to one another increases with increasing energy.

Successful coupled state fits have generally been limited to dyads of fundamental states for
which the coupling is typically well described by a first-order Coriolis coupling constant, which is
proportional to the Coriolis zeta ({) coupling constant. The ab initio predictions of the two
vibrational states in question will generally be in good agreement with the experimentally
determined constants obtained from a coupled state fit in which the first order Coriolis coupling
constants G, are adequately determined. Other vibrational states, however, may be coupled to one
or more other vibrational states via higher-order coupling constants. The fitting of such spectra
can be a monumental task due to the complex interplay of the coupling constants and their effect
on the rotational transitions. Furthermore, the lack of theoretical predictions for the higher-order

coupling constants means there is no point of reference for assessing the quality of the fit.

Our goal in analyzing rotational spectra is to obtain fits that are predictive and physically

meaningful. We consider a fit to be predictive if we can accurately predict spectra outside of the
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original frequency window of the spectra being fitted. For example, if a fit was determined from
the measurement of the rotational spectra from 100-300 GHz, it is predictive if the fitted constants
can accurately determine the frequency of transitions <100 GHz and >300 GHz. The broad
applicability of a fit to spectra outside of the original frequency range gives us confidence that we
are at least sufficiently modeling the vibrational and rotational quantum mechanics of the
molecule. This in turn makes it likely that the fit is also physically meaningful, but not necessarily
so. We consider a predictive fit to also be physically meaningful if the determined constants are
in good agreement with theoretical calculations and if the fit is stable i.e., changes very little, upon
the addition of more data. In such a case, we believe the constants are not just empirical values
devoid of meaning, but are accurate representations of the quantum structure of the molecule. We
can then have confidence that constants resulting from the fit can be used in broader contexts for
the study of that particular molecule. In summation, a predictive fit is not necessarily physically

meaningful, but a physically meaningful fit can be expected to be highly predictive.

This discussion on the nature of the fits of rotational spectra is particularly important in the
context of astrochemistry. Rotational spectra obtained from astronomical observations are often
outside of the frequency range of laboratory spectra, and a highly predictive fit can be used for
identifying transitions of a molecule in such spectra. Furthermore, the astronomical application of
fits of laboratory spectra is not limited to ground vibrational states, as molecules in astronomical
sources can be vibrationally excited. Thus, accurate fits of the rotational spectra of vibrationally
excited states are important for determining the abundance and local conditions of a molecule in
an astronomical source, especially if the observed spectra are outside of the frequency range of the

laboratory data. Since a molecule’s vibrational states are more than likely coupled to one another,
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having accurate ab initio predictions of vibration-rotation coupling is essential for obtaining high

quality and physically meaningful coupled-state fits.

The theoretical framework for predicting vibration-rotation coupling constants has been
known since the 1980s, as it is closely related to the theory for the prediction of centrifugal
distortion constants and other molecular parameters.2* There are even several works that contain
derived formulas that in principle can be used to calculate some of these coupling constants.®®
Yet, there are very few examples of the application of these formulas, and to our knowledge no
methodology for routine application to such predictions has been developed. We suspect there are
several reasons why this is the case, owing to the state of the field several decades ago. First, high-
quality rotational spectra of vibrationally coupled states and corresponding coupled-state fits were
largely limited to di- and triatomic molecules. The quality and quantity of the spectra was limited
by the frequency range and resolution obtainable by laboratory instruments at the time.
Furthermore, the processing and analysis of enough data to obtain the higher order coupling
constants requires considerable computational resources, as well as software that can process the
voluminous amounts of data. Second, the process of deriving the requisite formulas is even more
complex than that for deriving the centrifugal distortion constants. Of the formulas that have been
derived, some involve assumptions specific to a particular problem,® and none contain the full
derivation.®® The complexity of the theory is further increased by the necessity of rotational
reductions of higher order constants in order to compare the predictions to experiments. The nature
of this reduction differs significantly from the corresponding reduction used to transform the
centrifugal distortion constants?> and while a methodology for conducting such rotational
reductions was developed,®” it appears to have mostly been applied to variational fits of high-

resolution infrared spectra of triatomic molecules, and ozone in particular (see Ref. 8 and citations
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therein). Furthermore, the limited experimental data prevented the assessment of the accuracy of
predictions obtained from the theory. Finally, application of the theoretical formulas requires
sufficiently accurate ab initio data, particularly for the cubic force constants, which in turn would
have required considerable computational resources, and so was limited, again, to small molecules.
In total, development of the theory for routine prediction of higher order coupling constants was
precluded by the instrumental and computational resources of the time, as well as the limited

number of experimentally studied cases for which the theory was applicable.

Since the theoretical framework was developed several decades ago, advances in
instrumentation have increased the quantity and quality of rotational spectra that can be measured
for a molecule, and corresponding advances in computational resources allows for the processing,
analysis, and fitting of such data. These advances in turn have led to the fitting of the rotational
spectra of numerous coupled vibrational states across molecules of increasing size. The amount
of data means that not only can we experimentally determine higher order coupling constants, for
many cases we are required to include the higher order coupling constants to obtain predictive fits
of the spectra. Having reasonable predictions of the coupling constants not only allows us to assess
the physical meaningfulness of the fit, but can also constrain the range of possible values over
which the constants are allowed to vary. Thus, our goal in this work is to develop a methodology
for routinely predicting higher-order vibration-rotation coupling constants for application to

coupled-state fits of rotational spectra.

Before we begin, we wish to highlight several important points. First, many of the
derivations conducted herein (particularly involving the sequential contact transformations) have
been previously done, albeit tersely explained. We report these derivations nonetheless, with the

goal of producing a coherent, seamless, and more digestible framework for the broader community
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that is not intimately familiar with VVan Vleck perturbation theory. Second, in composing this work
we uncovered the theoretical origin for the proportional relationship of coupling constants that we
had previously observed for the lowest dyad and triad of benzonitrile.® In extending the analysis,
we found that a similar relationship exists across coupled vibrational states that share the same
vibrational modes and selection rules, which has significant implications for the fitting of even
higher energy coupled vibrational states. Finally, the rotational reduction of vibration-rotation
coupling constants has significant implications in the experimental fitting of the rotational spectra

of coupled vibrational states. Foremost of these is that for the higher order coupling constants (on

the order of J* and higher), there is more than one way in which the reduction can be conducted,
leading to the possibility of a choice of which form of the reduction should be used for fitting
spectra. This choice of the reduction of the coupling constants is analogous to the situation
encountered for the centrifugal distortion constants, in which the choice of terms that are to be
eliminated leads to the Asymmetric and Symmetric reductions of the distorted rotor Hamiltonian.
The presence of a choice in reduction of the coupling constants in turn begs the question of if and
how the choice of reduction for the coupling constants is related to the choice of reduction for the
centrifugal distortion constants. To our knowledge, there has been no such consideration in the

published fittings of rotational spectra of coupled vibrational states, until now.

COMPUTATIONAL METHODS

All ab initio data was taken from anharmonic vibrational calculations conducted using
CFOUR? and the method of coupled cluster with single, double, and perturbative triple excitations
[CCSD(T)] using the ANOO basis set. The open-source computer algebra package SymPy*! was

used in conjunction with Python 3.6 in our developmental computer-aided derivation program,
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vib-rot-Van-Vleck. Additional Python packages utilized by the program are listed in the

Supporting Information, along with a brief description of the program and its structure.

METHODOLOGY AND DERIVATIONS

The vibration-rotation coupling constants are derived from application of Van Vleck
perturbation theory to the Watson Hamiltonian, in a similar manner to that used to derive the
centrifugal distortion constants.1* The full reasoning behind the derivation methodology and how
the initial stage is reached is provided elsewhere,®* therefore we provide an overview of the
mechanics necessary to obtain theoretical predictions of the coupling constants. The methodology

and derivations that follow are for application to asymmetric top rotors.

Ordering the Hamiltonian

To begin, Taylor expansions of the potential energy and the term containing the inverse
inertial tensor are applied with respect to the normal coordinate position vibrational operators. The
resulting Hamiltonian contains terms with various orders of vibrational and rotational operator
products. Terms with m vibrational operators and n rotational operators are grouped under the

label H ., which is said to have m degrees of vibration and n degrees of rotation. The Hamiltonian

is separated into different orders with regards to the magnitudes of their expectation values for
application of perturbation theory. There are several different ways of ordering the Hamiltonian,

but we will follow the approach taken by Aliev and Watson®: the order of a term H_. of the
Hamiltonian is given by m-+n—2, with the exception of the rigid rotor H,,, which is arbitrarily

assigned an order of one. The zeroth order part of the Hamiltonian is then given by H,,, which is
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simply the harmonic oscillator Hamiltonian in normal coordinates. The Watson Hamiltonian is
now given by Eqg. (7.1), where 4 is the perturbation parameter.
H=H,+AH, + A°H, +---

=Hy +A(Hyp +Hy +Hypy + H02)+12(H4o +Hj +Hy,) (7.1)

+"'+ﬂ“n(Hn+2,O +Hn+l,l+Hn2)+"'

Contact Transformation

With the vibration-rotation Hamiltonian so ordered, Van Vleck perturbation theory is
applied. The Hamiltonian is transformed using an arbitrary Hermitian function S, as given by Eq.
(7.2). This transformation can be rewritten in terms of a linear combination of (nested)
commutators, as in Eq. (7.3)—(7.5), and the general form of an arbitrary order of the transformed
Hamiltonian is given by Eq. (7.6). The transform function is chosen such that the transformed
Hamiltonian H has the desired form, which in the present case is one that leads to a Hamiltonian
matrix that is block diagonal with respect to the vibrational states. Use of a transform function
that satisfies Eq. (7.7) will accomplish this goal for the term of the transformed Hamiltonian with

m vibrational degrees and n rotational degrees.

H=e®He™ (7.2)

H, =H, (7.3)

H,=H, +i[S,H,] (7.4)

H, = H2+i[S,Hl]—%[S,[S,HO]] (7.5)

A -n S [S[S...[SHo]---]] (7.6)

o
Il

5 (a—b)r

a—b nested commutators
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Hm (block diagonal) =H,,, +i[S, H,] (7.7)

Sequential Contact Transformation

To obtain the block-diagonal term H___, all lower order terms must similarly be made block

mn 1
diagonal. While there are many possible ways to transform the Hamiltonian, it has been shown
that the resulting formulas are equivalent!?; the differences lie in the complexity of the derivation
to obtain said results.* 12 Again, we follow the approach used by Aliev and Watson:* the transform
functions with the lowest degree in vibration are applied first, in order of increasing degree of
rotation, with each subsequent transform function defined by and applied to the result of the
previous transformation. This approach minimizes the complexity in the derivations of the desired
formulas and the definitions of the requisite transform functions. Once the final transformation
has been applied, the Hamiltonian is block diagonal with respect to terms of m vibrational and n

rotational degrees and lower, and the desired vibrational matrix element can be calculated. To
distinguish the transformations, we use the notation HY to represent the Hamiltonian after j
transformations have been applied, and S is the transform function used to obtain H'”) via Eq.
(7.8). Thus, H' is the expanded and ordered Watson Hamiltonian, H is the Hamiltonian after

2)

the first transform function (S")) has been applied to H®, H® is the Hamiltonian after the

second transform function (S'?') has been applied to H®, and so on.
HO) = g8 O Dgis (7.8)

The transform function is defined using the previously transformed Hamiltonian as in Eq.

(7.9), in accordance with Eq. (7.7), where “b.d.” is short for “block diagonal” and the property

Hg” =H, has been applied. We refer to Eq. (7.9) as the “defining equation” for the transform
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function SU), and we refer to the term HU™ within Eq. (7.9) as the “defining part” of the defining

mn mn
equation. We use H to refer to the final transformed function, that is, for a sequential contact
transformation with k total transformations, H=H®. When deriving a particular sequential
contact transformation, S, is used instead of S(m’r? because the transformation number j is

implicitly given by the sequence being applied.

HU (b.d) = HL Y +i| SO H, | (7.9)

Vibrational and Rotational Commutators

The commutators evaluated during the contact transformation may involve either
vibrational operators, rotational operators, or both. Consider a pair of terms A: and Az each
consisting of a coefficient c, a vibrational part V containing vibrational operators, and a rotational
part R containing rotational operators. The commutator of these two terms can be expanded and
then consolidated into the expression in Eq. (7.10), using the property that the vibrational parts V
commute with the rotational parts R. The commutator, thus, can be written in terms of a vibrational
commutator and a rotational commutator in Eq. (7.11), using the definitions in Eq. (7.12). This s

the notation used in the works of Papousek and Aliev, and of Aliev and Watson.>

[ALA]=[c,ViR;,c, V,R, ]

1 1 (7.10)
=§Cl C, [Vl,Vz](RlR2 + R2R1)+EC1 C, (V1V2 +V2V1)[Rl, Rz]

[ALA, ] =[A1,A2]V +[A1,A2]R (7.11)
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[Al,A2 ]V =—C,C, [Vl,Vz](RlR2 + Rle)

(7.12)

[Al,Az]R ==¢,C,(V,V, +V2V1)[R1, Rz]

NI~ N

Selecting Desired Degrees of Vibration and Rotation

In principle, the full Hamiltonian in Eq. (7.1) is subjected to the sequential contact

transformations, but in practice this is unnecessary. If the system in question is well described by
the perturbation ordering in Eq. (7.1) i.e., the magnitude of terms A’ is much larger than that of

terms A'*, then the original and transformed Hamiltonians can be truncated at the order of the

desired term. For the sequential contact transformation to obtain the formula for H__, the full

mn !
Hamiltonian can be approximated by Eq. (7.13). Furthermore, only terms with m vibrational

degrees and n rotational degrees in the final transformed Hamiltonian contribute to H__, therefore

mn?
the formula for I:Imn is obtained by selecting the terms with degrees m and n. We can represent

this “selection” using a set of braces, demonstrated by Eq. (7.14). This notation is particularly
powerful when applied to commutators generated by the transformation. It can be shown that the
“selection braces” can “pass through” a commutator using the formulas in Eq. (7.15) and Eq. (7.16)

for vibrational and rotational commutators (respectively) of the transform function S,, with an

unspecified expression A. This process can be applied recursively until the selection braces have
reached the original Hamiltonian, at which point they are trivially evaluated by Eq. (7.17). This
process eliminates commutators that do not ultimately contribute to the desired degrees in vibration
and rotation. Eg. (7.15) and Eq. (7.16) can also be used to simplify the evaluation of defining

equations.
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HI <5 20H() (7.13)
p=0
I:Imn E{Fl}mn :{Z : jk}
K mn (7.14)
=2 {Fid,,
jk
(8w AL}, =[Suor A}y aans |, (7.15)
{[Sw AL} = [Sab,{A}m_a,n_bﬂ]R (7.16)
{Hcd }mn = OneOng He (7.17)

General Definition of Hamiltonian Terms

To obtain analytic formulas, more explicit definitions of the original Hamiltonian are
required. We use definitions adapted from those provided by Aliev and Watson.* Specifically,
we have ensured that every term in the definitions is in the form of — or a combination of terms in
the form of — Eq. (7.18), where 3N —6 is the number of vibrational modes of the asymmetric rotor,
p is either a position vibrational quantum operator g or a momentum vibrational quantum
operator p in the normal coordinate system, J is the angular momentum quantum operator, and
H.., is the coefficient containing the constants and functions that commute with g, p, and J.
The vibrational and rotational operator parts are restricted to a single product; if a summation
contains an addition or subtraction of operators, then the summation is subdivided into additional
summations until this requirement is met for each of the resulting terms. Such a form ensures that

the coefficients will always commute. A complete list of the definitions used in this work is

provided in the Supporting Information.
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3N-6 3

Hon= D D Hon(VoViro il enl)

VoiVyse--Tosfpse e

5
_.: =

o, [] I (7.18)

Obtaining Definitions of Transform Functions

The exact definition of a transform function S(m’g is arbitrary, so long as the definition

satisfies Eq. (7.9). We employed one of two different approaches for solving Eq. (7.9) to obtain
the definitions of all the transform functions within a given sequential contact transformation. The
first, which we’ll refer to as the “ladder” solution, follows the method described by Aliev and
Watson.* The second, which we’ll refer to as the “trial” solution, evaluates the commutator in Eq.
(7.9) using a trial transform function and uses the results to identify a valid solution. The ladder
solution is easier for manually deriving the definitions of the transform functions but is limited to

the case where H, =H,,.

Using vibrational ladder operators

The ladder solution uses the approach described by Aliev and Watson,* in which the
defining equation is rewritten in terms of one-dimensional ladder operators £ =q—ip and
L =q-+ip. Using o as the sign of the ladder operator and the general definition given by Eq.
(7.19), the vibrational quantum operators g and p can be defined with respect to these ladder
operators as in Eq. (7.20) and Eq. (7.21), where o, = %1 and the summation over o, isimplied to
be over the set of {—1,1}. Substituting these definitions into Eq. (7.18) leads directly to the “ladder

form” of an expression, as shown in Eq. (7.22). For the particular case of Eq. (7.9) where the

defining part anjgl) is written in the form of Eq. (7.22) and the zeroth order Hamiltonian is the

harmonic oscillator i.e., H,=H,,, Aliev and Watson* showed the definition of the transform
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function in Eq. (7.23) will satisfy the condition of Eq. (7.9). Terms involving resonant vibrational

modes may have very small denominators and so the summations are restricted to avoid such

terms.
L =0, —iop, (7.19)
1
<N =52Lfk (7.20)
1.
Py =§|Zok£;’k (7.21)
Ok

3N-6 {-11

} 3 .. M.
H,. = Z z Z Hmn(vo,vl,...;aVo,avl,...;ro,rl,...) H Ly H J, (7.22)
j k

Vo Vir-- Oy 1Oy e TP e

3N-6  {-11}

S S

vo,vl,...*O'VO ,o‘vl,...* [N

VO,Vl,...;GVO,le,...;rO,I?L,...)VO'Vlv--- fo.fi,...

L J 7.23
Oy, @y + 0, B [T & 113 @29

VitV j

We expand on the definition of the transform function in Eq. (7.23) in two ways. First, we
introduce a piece-wise “denominator” function D defined in Eq. (7.24) (where “r.t.” is short for
resonance threshold) and which can be shown to have the properties given in Eq. (7.25). Use of
this function allows us to lift the restrictions from the summation indices; if the combination of
indices results in a denominator that approaches zero, the removal of that combination is handled
by the piece-wise function. Second, although not strictly necessary, we ensure the transform
function is Hermitian by rewriting the coefficient to contain both the forward and reverse ordering
of the vibrational indices. The formula for the definition of the transform function is now given

by Eq. (7.26), but only if H, is the harmonic oscillator.
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0 Oy, @y, T 0O, +‘ <rt
D(O‘VO,VO;O'Vl,Vl;...)E 1 (7.24)
o,,®, + 0,0, +‘ >r.t
0,,®, +0,0, +-
(1)
D(aVO,vo;avl,vl;...) =-D(-0,,, Vi =0, Vis.)
(ii)
D(a\,o,vo;avl,vl;...) = D(avl,vl;aVO,vo;...) (7.25)

(..;aVO,vO;aVl,vl)

Df.
D(...;avl,vl;aVO,vo)

N {-11} 3 i
S = Z z Z?D(GVO,VO;O'Vl,Vl;...)x

Vg Ve Oy 1Oy e 10 P

x(Hmn(vo,vl,...;aVO,avl,...;ro,rl,...)+Hmn(...,vl,vo;...,avl,aVO;ro,rl,...))x (7.26)

Vo Vi I,
|
<1 £ 11 %
j k

Using a trial transform function

The trial solution of Eqg. (7.9) for the transform function consists of evaluating the
commutator therein for all possible operator combinations with the necessary degrees of vibration

and rotation. The trial transform function is defined as in Eq. (7.27), where V, is a member of the
set of permutations of possible vibrational operators (Eq. (7.28)) and the coefficients S, ; are
undefined. For example, the trial transforms for S;, and S,, would be given by Eq. (7.29) and
Eq. (7.30). Then, the commutator i[Smn, HO] of Eq. (7.9) is evaluated and the results combined
with H_ .. Each resulting term that corresponds with a term of H,, that is to be eliminated is then

set to zero, which yields a system of equations that can be used to solve for the coefficients S ;.
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Any coefficient S ; not required to block-diagonalize H,, is set to zero. Substitution of these

definitions into (7.27) yields a solution of the transform function that satisfies (7.9).

Nperm 3N -6 (YL
Smn = Z Z Z Smnl VO’Vl’ ] m!rOlr]_!'--yrn))}i(voyvl,---,vm) H ‘]k (727)
IV AV/ISUUR VY A8 RN k

W (VorVaseosVin ) =Py, Py, Py, e{(xo,xl,...,xm)‘xj e{q,p}foreveryj e{O,l,...,m}} (7.28)

3N-6 3N-6
z Zslzo Voifos It qVO‘Jro n T Z 28121 V07r01r1 Py, Jr,Jn (7.29)
Vo Tl Vo Touln
3N-6 3N-6
Z ZSZZO VO’Vl’rO’rl)qvoqvl‘]roJrl+ Z 28221 VO’Vl’rO'rl)qvopv1 nvn
Vo.V1 To.l Vo.V1 To.l
3N-6 3N-6 (7.30)
+Z 25223 V0'V1’"0"’1)pvqu1‘]r0 n T Z 25224 V01V1’r0'r1)pv0pv1 LYn
VoV1 To.f VoVi To.f

Rotational Reductions

For terms of the transformed Hamiltonian with rotational degrees of greater than two, it is
necessary to apply additional transformations to obtain results that can be compared to directly
experimentally determined constants. For terms that are vibrationally diagonal, the same
methodology used to reduce the quartic and sextic distortion constants can be applied.X* This
methodology, however, cannot be applied to the terms that are not vibrationally diagonal®’ (which
are those necessary for predicting the vibration-rotation coupling constants). This is because the

methodology to reduce the centrifugal distortion constants eliminates only the terms that are not
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totally symmetric in the rotational operators and keeps those that are totally symmetric, but the
coupling constants used for fitting coupled states are all not totally symmetric. In fact, the nature
of the methodology is such that it is impossible to remove the totally symmetric terms regardless

of the definition of the transform functions.

To reduce the rotational operators for the vibrationally off-diagonal terms, it is necessary
to modify the known procedure used for the centrifugal distortion constants. The solution — first
described by Perevalov and Tyuterev®’ — is to modify the zeroth order Hamiltonian to include the

both the harmonic oscillator H,, and the rigid rotor H,,. Doing so introduces vibrational

commutators into the reduction that, with proper definition of the transform functions, can
eliminate the rotationally totally symmetric terms while keeping the rotationally non-totally
symmetric terms. Then, after evaluating the expectation value of the vibrational operators, these
rotationally reduced coupling constants can be compared to those of experimental coupled-state
fits. To maintain a consistent form of the Hamiltonian throughout the derivation, however, our
implementation of the rotational reduction for the off-diagonal terms differs from that described

by Perevalov and Tyuterev.5’

We can write the rotational reduction as in Eq. (7.31), where the transform function S is

chosen such that the reduced Hamiltonian has the desired form. In order for the transform function

to affect the terms contained within H__, the commutator expression must yield terms with m and

mn?
n degrees of vibration and rotation, respectively. That is, we can apply the selection brackets as

in Eq. (7.14)—(7.17) to determine the transform function degrees that can perform the reduction.

r
m,n-1

As illustrated by Eq. (7.32), we can use a transform function S"=S' +S to apply the

rotational reduction, where the ‘r’ superscript is used to distinguish the transform functions for

applying the reduction from the transform functions used to vibrationally block diagonalize the
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Hamiltonian. The definitions of the transform functions can be obtained via the trial method (vide

infra) once the desired form of the reduced rotational Hamiltonian H™ is determined.

i = Fly +1[ S Hop + Ho, | (7.31)

mn

[ HoHoe ]} ={[8"Ha ], | +{[S" Hae],

+{[Sr, HZO—_R}mn + {[Sr, Hoz]R }mn

(7.32)

To identify which terms are to be eliminated, the rotational Hamiltonian is often written in

terms of the cylindrical tensor coordinate system (J2,J,,J, =J, FiJ,) and so a transformation

from the Cartesian coordinates outputted by an anharmonic frequency calculation is necessary.

Such a transformation can be accomplished by using the substitutions J, =(J_+J+)/2 and
J, = (J_ —J+)/2i , and is straightforward (though tedious) for higher orders. For the on-diagonal

vibration-rotation coupling terms (HY, H?, H?  ...), the method prescribed by Watson? is

m2'° "m4»

sufficient to achieve the desired result. For the even-ordered off-diagonal vibration-rotation

coupling terms (H%,, H%, K H™

m2!" "m4r " 'm6rc

), it is necessary to follow the guidance of Perevalov and
Tyuterev.>” At this time, we are still developing the treatment of the odd-ordered vibration-

rotation coupling terms (H_,, H I:Ims...), which are inherently off-diagonal in rotation. Our

ml? " 'm3?
initial efforts used an adapted version of the procedure prescribed by Watson,? but we are not
certain the result will be the same as that following the prescription of Perevalov and Tyuterev.®”

Further discussion on this point occurs in the preliminary rotational reduction of |:|23 (vide infra).
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Connection to Experimental Vibration-Rotation Coupling Constants

Predicting the vibration-rotation coupling between two vibrational states requires

determination of the vibrationally off-diagonal transformed Hamiltonian. Specifically, we need to

evaluate the vibrational matrix element (i|H| j) of the transformed Hamiltonian. The first order
Coriolis coupling constant is the coefficient of a single rotational operator, thus the largest
contribution to the first order Coriolis coupling constants (Ga, Gb, G¢) comes from |:|21. Similarly,
the largest contribution to the second order Coriolis coupling constants (Fuc, Fac, Fan) cOmes from
I:Izz, while I:I23 is the largest contributor to the third order Coriolis coupling constants (Ga’, Gy’
G, GaX, GuK, GcX), and so forth. The sequential contact transformations to obtain H,,, H,,, and

H,, are provided in Table 7.1. We first derive the formula for H,, as an introduction to the

methodology. We then derive the formula for I:Izz, the derivation of which is more representative
of the methodology required to obtain predictions of other coupling constants. Finally, we describe
our current efforts for obtaining H ,3, and provide a preliminary rotational reduction for terms with

three rotational degrees. Application of these derivations to experimental coupled-state fits is

discussed in the subsequent Results and Discussion section.



Table 7.1. Sequence of Contact Transformations and the Corresponding Defining Equations to Obtain H,,, H,,, and H,,.

H21 H22 H23

Transform

() ini i (i) ini i (i) o -
number j S Defining Equation S Defining Equation S Defining Equation

1 Sy HY(bd)=HY +i[S,,H,] S HY(bd)=H+i[S,,H,] S (b
2 S, HY (bd)=HS +i[S,,H,] S (

3 Sy HY(bd)=HY +i[S,,H,] Su HY(b.
4 S (b
5 S (b

¢8¢
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Derivation of H,,

Identifying the sequential contact transformation

As shown in Table 7.1, only a single contact transformation using S,, is required to obtain

H,,. The transform function will be defined using the terms of the original Hamiltonian with two

(2) degrees in vibration and one (1) degree in rotation. The sequence can be obtained as described
previously, but effectively is the result of alphabetically sorting the transform functions with
vibrational degrees up to two and rotational degrees up to one, excluding the trivially zero
transform functions. That is, we can write the sequence as Sy, So;, Sy, Si1, Sy, and S,; , where
the only nonzero transform function is given by S,,: Sy, Sy, , Sy, and S;; are zero since there
are no corresponding terms in the ordered Hamiltonian by which they could be defined, while S,,

is zero because the harmonic oscillator is diagonal in the basis set of normal modes.

Finding the general equation

Next, we obtain the general equation for calculating H,,. To do so, the original
Hamiltonian is approximated as in Eq. (7.33) by keeping only terms of up to and including A* of
the ordered Hamiltonian in Eq. (7.1), per Eq. (7.13). We then apply the sequential contact
transformation using the commutator expressions given in Eq. (7.2)—(7.6), resulting in the
transformed Hamiltonian given by Eq. (7.34). Of the terms present in the transformed Hamiltonian

in Eq. (7.34), only those with two degrees of vibration and one degree of rotation will contribute

to I:|21. Using Eq. (7.14)—(7.17), we can exclude the unnecessary terms to yield the “general

equation” for calculating I:|21, given by Eq. (7.35).
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H~A°H, + A'H,

i 1 (7.33)
=A"H,, + 4 (H30 +H,, +H,, + HOZ)

H® = 2°H{ + AtHY
:/1°H0+/11(H1+i[SI,HO]) (7.34)
=2°H,, +/11(H30 +Hyy +Hy, +Hg, +i[S,,, HZO])

Al ={HY} = {Ha+Hao+ Hyy o+ Hyp + Hoy +i[Sy, Hy I},

= {H20}21 +{H30}21 +{H21}21 +{H12}21 +{H02}21 +i{[821’ Hzo]}z1

=H,, +i[821,{H20}20:|v
=H21+i[Szl,Hzo]v

(7.35)

General equation for defining Sz1

A similar process used to obtain the general equation of |:|21 is applied in Eq. (7.36) to

obtain the general form of the “defining part” of the defining equation in Table 7.1. The resulting
Eqg. (7.37) is equivalent to the general equation found in Eq. (7.35). As we will see, the
correspondence of the defining equation of the transform function and the general equation for a

particular problem only occurs for the last transformation in the sequence.

HY = {H( } ={HY +H<°>}

:{Ho} { } (7.36)
:{H } { 30+H21+H12+H02}
=H,

HY) (b.d.)=Hy +i[Sy, Hy ], (7.37)
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Required definitions of the original Hamiltonian

Examination of the general equations for the final transformed Hamiltonian H,, and the
for definition of S,, reveals that the only terms of the original Hamiltonian that are required are
H,, and H,,, which are defined in Eq. (7.38) and Eq. (7.39), respectively. Now, the definition of
S,, isall that is needed to evaluate the commutator in Eq. (7.35) and obtain an analytic expression
of H,,.

N

1 N1
Hy = Zzqu? +ZECOJD? (7.38)

j j
N 3

H, = zkz[—z, /%Ba:f&}q,wa (7.39)
J [24 J

Finding the definition of Sy1

The exact definition of S,; is inherently arbitrary, so long as the result of Eq. (7.37) is
block diagonal with respect to vibration. We’ll apply the ladder solution to define the transform
function. Using the definitions provided in Eq. (7.20) and Eq. (7.21), we can express H,, in terms
of the vibrational ladder operators, as given by Eq. (7.40). This expression is in the form described
by Eq. (7.22), and so we can apply the formula Eq. (7.26) to obtain the definition of S, , as given
in Eq. (7.41). By applying the definition of the vibrational ladder operator from Eq. (7.19), we
can rewrite the definition of S,, in terms of g and p. The substitution of the vibrational operators

is shown in Eq. (7.42) along with a condensed form, which uses the definitions of the coefficients

provided in Eq. (7.43).
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N3 o ol L. '
HZl:ZZ -2 ;BJJk EZ i E'Zakff Jo
Kk a j o] oy (740)
N {-11 3 1. o, .
=2, 2. 2| —Sio [ =B, | £ GHI,
ik ojox @ 2 a)j

NS &, - 1. o 1. o
S, = —D(o, j,0k)|| —Zio, [£B,¢G |+| —=io: [—2B, &S | |x
EE S0t ][ i o

L)L, (7.41)

N {11} 3 o
_ZZZ (TJ,jO'k, \/; \/7 ngkﬁa’ﬁfk\]

x(qj —iop; ) (ay —iakpk )Ja (7.42)

Kk «a

D(L j1K) —\/%+ Z—:}+D(l,j,—l,k)[\/%+ Z—:Bsagﬁ
] J

D(1 j,1k

821,0(j1k!a):

N |-

821’1(j,k,0()=

N |-
N
28
|
2 |4
N—
+
w)
=
N
=
7\
28
+
2 |4
N—
QU:J
=3
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Evaluating the commutator

With the transform function S,, defined, the commutator i[S,;,H,, ], can be evaluated.

Using the definitions of Eq. (7.38) and Eq. (7.42), the commutator can be written as in Eq. (7.44).
This expression is expanded using the commutator rules, and by keeping only the nonzero
commutators we can write the expression as given in Eq. (7.45). The vibrational commutators are
evaluated using the identities provided in the Supporting Information to yield Eq. (7.46). The
expression is then expanded into individual summations following the form given in Eq. (7.18).
Doing so allows us to evaluate the Kronecker delta functions for each summation, resulting in Eq.
(7.47). With judicious relabeling of the summation indices, these summations can be consolidated

to just two, as in Eq. (7.48).

N

3 N 3
i[821,H20]V=i ZZSZl,O(j’k’a)qjqk‘]a+22821,1(j7k'a)pjpk‘]a

jk «a jk «a

(7.44)
L1, 1,
’Zgquj““ZEa’Jpj
j j v
] N 3 | ) )
|[821’H20]V:ZZE(OISZl,l(J’k'a)l:pjpk’ql:IJa
M@
N3 (7.45)
+2. 2.5 @S0 (i-k @) a,00PF 3,
M@
. NS . . . . .
'[821’ Hzo]v ZZZEQ’l 821,1(J’k’05)(_1)('5|k(1|pj +16;9,Py +10,P;0; +15;P, A )‘]a
Mo«
(7.46)

N 3 ;

| . . . . .
+ZZ§C"| Ss10 ( Js kya)<|5k|qj'p| +16,q;p, +15;P,dy +15;P,0 )Ja

K«
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N 3
. 1 .
'[521’H20]V =225a)k821,1(11k1a)qkpj +zz ; 8211(1 K, a)q iPd

kK «a jk a

+Zzza’k 211(1 K, a)p ayJ, +Zz W; S211(] K, a)pkq]Ja

]ka ]ka

(7.47)
+ZZ a)k a0 (5K @)a;pd, +ZZ > a)k Suo(J Kk @)a;pd,
Jk a Jk a
+zz Sa10 J K,a p iAd +ZZ Sy J k, a)p iAJ,
ik a k «a
N 3 1 )
SZl’HZO ZZ(ECO 21 (Ko Jya) + S5, (K, a))_wk821,0(11k1a)jquk‘]a
e (7.48)

N |-

23]

a)k( 21 (J. K @) +Sy (K, a))_wj SZl,O(j’kva)JqukJa

Obtaining the analytic expression

The transformed Hamiltonian H,, can be obtained by combining the definition of H,, in

Eq. (7.39) with the evaluated commutator obtained in Eq. (7.48). This initially yields Eq. (7.49),
which is dependent on the definitions of the coefficients of the transform function. Substitution
of the transform coefficient definitions from Eq. (7.43) and use of the properties of the denominator
function from Eq. (7.25) allows us to write Eq. (7.50). For convenience, we define a pair of

coefficients (Eq. (7.51)) to shorten the expression, yielding Eqg. (7.52).
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I:|21 =H, + i [821’ Hzo]v

=ig( \/78 éVJkJr;a) ( lel(k,j,a)+82111(j,k,a))—a)k521'0(j,k,a)]x

ik ;

x(Q .pk (7.49)

+ZZ( ( 21 (1. K@) +S,, (K, ], a))—a)jsm(j,k,a)jx

jk «

ijqk a

|:|21 =H, +i[521’ Hzo]v

= ii[z\/%%(w’ ro) (e _wk)(D(l, j,Lk)-D(L -1, k))} B, %q;pd, (7.50)
a i

jk

+ZZ[—(0) +a)k)(a)j _a)k)(D(l, j,l,k)+D(1, j,]_,k))J B,<P;did,

jk a

Floo (Jok &) = —2&—%((0" +a\}kazj(;)k" _wk)(D(l, j,1k)-D(1 j,l,k))] B, L%

( )( ) (7.51)
~ . | w; + o )\ o; — o . o .
Ha(1ka)=| =5 oy (D(Lj.1k)+D(L ], Lk))JBach
1 =22 Hao(ika)apd, +2.3 Ha, (ki a)pjad, (7.52)
Kk «a jk «a

Vibrational matrix element of two fundamentals

Let us now consider the vibrational matrix elements for the case of a pair of fundamentals

vy and vg. We can find the expression for the matrix element by evaluating Eq. (7.52) by
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applying a sum over states. The nonzero contributions to the matrix element are then given by Eq.
(7.54). Evaluation of the vibrational expectation values yields Eq. (7.55), and substitution of the
definitions of the I:I21 coefficients from Eq. (7.51) gives the expression in Eq. (7.56). There are
two possible outcomes depending on whether the pair of fundamentals are resonant or not. If they
are not resonant, then the denominator function in Eq. (7.56) will cancel its multiplier to yield one,
which in turn leads to zero within the parentheses and a zero value overall. For the case of a
resonant pair, the denominator function in Eq. (7.56) yields zero, leading to a value of one within

the parentheses, and an overall nonzero value (assuming the ¢ constant is nonzero as well). The
outcomes, summarized in Eq. (7.57), are effectively block diagonal with respect to vibration and

thus we have successfully transformed the Hamiltonian to obtain H,, .

N 3
VA|H21|VB Zk:Z J K, a VA|q pk|VB>

3 ~ -
+2 2 Ho (i k@) (valpit|ve) .

- (7.53)
ORUIER AL ST NN
33 () ey | I )2,
(va[Ha|ve) = iiﬂ (i k@) (vala; (|0)(0]+|va.Va){va:ve|)Pi|ve)
oo (7.54)
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3

(Val|Ha|ve) :%ig(_ﬂzm (A,B,a)+H,,(B A ) 7.5

+H,., (A B,a)- HZM(B,A,a))Ja

3
(Val |:|21|VB> =i ((()A—\/ﬂB)(l_(a)A ~wg)D(LA, -1 B))Z B,¢Asds (7.56)
(N a
0 Wy —wg >0
(ValHazlve)= i(“’A + @) (7.57)

3
M ;BaCXBJa wp—wg ~0

Definition of Ga

The Hamiltonian used to treat the first-order Coriolis coupling in experimental fitting of
rotational spectra is given by Eq. (7.58). By comparison to Eq. (7.57), we can then define the first-
order Coriolis coupling constant Ga as Eq. (7.59), with the definitions of Gy and G, obtained via

permutation of the axes. This formula agrees with that previously obtained and frequently utilized.
(Va|Heoupiing | Vi) =1G,3, +1G,J, +iG I, (7.58)

g, -t ®%)p (7.59)

Connection of Ga to higher quanta states

Formulas for the first order Coriolis coupling for different combinations of vibrational
states can also be obtained by the evaluation of Eq. (7.52) for the appropriate vibrational matrix

element e.g., the overtone 2v, with the combination v, +vg, as allowed by the vibrational
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operators. The Hamiltonian will still be block diagonal with respect to vibration for these other
matrix elements. Furthermore, the exact formula for G,, etc. will be some multiple of Eq. (7.59).
This can be inferred from the evaluation of Eq. (7.54) to yield Eq. (7.55), where the whole
expression is multiplied by the evaluation of the vibrational expectation values. A clearer proof is
obtained by determining the general expression of the vibrational matrix element for a Hamiltonian

with two degrees of vibration (vide infra).
Derivation of H,,

Sequential contact transformation and the general equation

As shown in Table 7.1, three contact transformations are required to obtain I:IZZ: 1) S,,,
(2) S,;, and (3) S,,. With the sequential contact transformation identified, we can begin the
process of writing the general equation of |:|22. The original Hamiltonian is approximated in Eq.

(7.60) by keeping only terms of up to and including A°, as per Eq. (7.1) and Eq. (7.13). The
Hamiltonian at each level of transformation is given by Eq. (7.61), with each order of the
transformed Hamiltonian defined as in Eq. (7.62).

H~A°H,+A'H, + A°H,

o ) ) (7.60)
=247 (Hy )+ A (Hayy+Hy +Hyy +Hpy )+ A% (Hyg + Hy +Hy,)

HO) = 1) 1O 1 1) (7.61)
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D HEY + HE 4 R  HEY i S0) Hy, |
(7.62)

I
N
=
=
I

U )+ HG S0 HG HU )
1 . .
5187k ]

The final transformed Hamiltonian is given by the terms of H® with two degrees of
vibration and two degrees of rotation. Iterative application of our selection brace definitions from

Eq. (7.14)—(7.17) to Eq. (7.60)—(7.62) yields the expressions in Eq. (7.63). Using these results

allows us to write the expression for the final transformed Hamiltonian |:|22 in Eq. (7.64), firstin

terms of the twice-transformed Hamiltonian H(Z), then in terms of the once-transformed

Hamiltonian H" | and finally the original Hamiltonian H.

Ay, ={HY} =HE +i[S, Hy,

HE ={H®?| =HE+i[, HY | +i[ Sy HE | —%[521,[521, Haoly ],

HY = {HY] = H, +i[Sk Hy ], (7.63)
= {0} —h

MW,

H,, = {H(3)}22: HE +i [Sz Hal,

i . 1
HE) +i [821’ H(zll)l/ +1 [821’ Hglz)]R _5[8211[821’ Hzo]v]v
Fi[Sm o], (7.64)

=H,, +i[8121 H3o]v +i[szlv H21]V +i [Szp Hoz]R

1 .
_5[521’[521' Hzo]V]V +i[Sy Hyy
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General equations for defining the transform functions

The defining parts of the transform definitions in Table 7.1 can be similarly derived. The

resulting defining equations for S,,, S,, and S,, are then given by Eq. (7.65)—(7.67),
respectively. Again, the defining equation for the last transform (S,,, Eq. (7.67)) is the same as

the general equation for the final transformed Hamiltonian term (I:IZZ, Eq. (7.64)).

HY (b.d.)=Hy, +i[S, Hy ], (7.65)
HY (b.d.)=Hy, +i[S,, Hyl, (7.66)

) . . 1
H(z?é) (b-d-) =H,, +I [812’ Hso]v +1 [821’ H21]V +1 [821’ Hoz]R _E[Szl’[szl’ Hzo]VJ

+i[S,,, HZO]V

vV (7.67)

Required definitions of the original Hamiltonian

Examination of the general equations for |:|22 and the defining parts of the transform
functions reveals that definitions of the following terms of the original Hamiltonian are required
to obtain an analytic expression: H,,, Hy,, H,, Hy,, Hy, H,,. We will use abbreviated

definitions of these functions as provided in Eq. (7.68)—(7.73); definitions of the coefficients are

provided in the Supporting Information and will be used to obtain the final analytic expression.

Hyo ZZHzo (Vo)CﬁO +ZH20(Vo)p30 (7.68)
Vo Vo
Hy = Z Hao (V01V11V2)q\/0q\/1q\/2 (7.69)
VoViVa
Hy =ZZH21(V0’V17ro)qupvlJrO (7.70)

Vo To
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Hy, ZZZHH (VO’rO'ri.)qvo‘Jro‘Jrl (7.71)
Vo Toh
He =D He () J: (7.72)
fo
Ha = 20D Hao (Vo Vis Ty, 1) Gy Gy I (7.73)
Vov TR

Finding the definitions of Si2 and Sy1

The derivation of the first two transform functions S;, and S,, using Eq. (7.65) and Eq.

(7.66), respectively, is straightforward, as their definitions are dependent only their counterparts
from the original Hamiltonian. A more detailed derivation is provided in the Supporting
Information, and yields the results given in Eq. (7.74) and Eq. (7.75) using the coefficients defined

in Eq. (7.76) and Eq. (7.77), respectively.

S 222812 (VO'rO’rl)pvoJrO‘]rl (7.74)
Vo Toh
821 = ZZSZLO (VO V1 rO)qvoqvl‘Jro + ZZSZM (VO Vi ro)pvopvl‘Jro (775)
Vovi To Vovi To
Si (Vo o, 1) =—D(LVg ) Hy, (Yo, o, 1) (7.76)

1
Sy10(Vor Vo Ty ) = Z(D(l,vo;l,vl)(H21(vo,vl, o) +Hay (Vi Vo, 1))
—D(1,vg; =1,V ) (Hay (Vo Vi Ty ) — Hyp (V1 Vo, ro)))
-1
Sy11 (Vo Vi Ty) :T(D(l,vo;l,vl)(Hzl(vo,vl, o) +Ha (Vi Vo: o))

+D(1’Vo;—1’V1)(H21 (VorVa: o) = Har (Vi Vo, ro)))

(7.77)
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The derivation of the third transform function S,, requires evaluation of two vibrational

commutators and one rotational commutator, as well as a nested vibrational commutator, using the

transform functions that we just defined. These same commutators will need to be evaluated to

obtain an expression for |:|22. These commutators can be written as in Eq. (7.78)—(7.81), where

the coefficients are defined in Eq. (7.82)—(7.85), respectively. More detailed derivations of these

expressions are provided in the Supporting Information.

i[SIZ' Hso]v = z ZAzz (Vo’Vl’Vz’ lo, r1)(‘4v0quJr0‘]rl

VoviV2 Toh

[521’H21 z szzo V0vV1’V2vro"1)qV0qu nIn

VoViVe Toh

+ Z ZBZZ,l (VO’Vl’VZ’ fo, rl)pvopvl‘]rU‘Jrl

VoViVo Toh

[321,H02 chzzo Vo’Vllro’rlarz)ququJ Jy.

Vovi Tolih2

+Z Z Coas (VO’Vll fo: 11y rz)pvopvl‘lro‘]rl

Vovi Tolil2

1
—=[So.[San, Hzo]v]v = 2. 2P0 (Vo Vs Vas 0, ) 4y Ay I I

VoViVa foh

+ Z Z D2 (Vo Vi Vo, 1o, 1) Py, Py 1 Iy,

Vo\1V2 ol

(7.78)

(7.79)

(7.80)

(7.81)

A (Vo, Vi, Vs, T, 1) = Slz(vz,ro,r)(Hgo(vo,v Vy )+ Hao (Voo Vo, Vi ) +Hag (Vy, Vg, V )) (7.82)
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-1
Boao (Vos Vi Vo, T 1) = ?(521,0 (VorVar T ) Hay (Vi Vo, 1)

+S)10 (Vz Vi ro) 21 (Vo Vol

)
+S), (V01V2’ I ) 21 (Vl’VZ’ o)
)

+S10 (Vo Vi 1) Hay (Vo, V2 1y ) (7.83)
Bzz’l(vo,vl,vz,ro,rl):%((Sm(vo,vz,r0)+821,1(v2,v0,ro))H21(v2,v1,rl)
+(Sp11 (Vs Va1 )+8211(v2,v0,r))Hzl(vz,vl,ro))
Cooo (Vo Vi T 11,1, ) = rOrlrzSZlo(vO,vl,rz)(Hoz(ro)—HOZ(rl)) 7.8
Co1 (VorVis Ty 1. ) = €, Sona (Vor Vi ) (Hoo (1) —Hop (1))
(7.85)

Finding the definition of Sz,

Now that the commutators contained within the defining part of S,, have been evaluated,

the transform function can be defined. The process of applying the ladder solution (rewriting the

defining part of S,, in terms of vibrational ladder operators, applying the formula in Eq. (7.26),

and rewriting the result in terms of vibrational operators g and p) is the same as described before,
albeit more extensive. The transform function can then be written as Eq. (7.86), using the
coefficients defined in Eq. (7.87) and Eq. (7.88). The derivation of these expressions is provided

in the Supporting Information.

Sy = zzszz,o (V07V17 o rl)q\/opvlJrOJ n T 22822,1 (VO’VJ.' o r1) Py, Ay, Jr I (7.86)

Vovi Toh Vo ol
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Sy (VOvvlv fos rl)

1
_ Z((—D(l,vo;l,vl)+ D (1o ~1v)))(E 0 (Vor Vi 1o ) + E o (Vi Vo Ty, rl))

+(D(LVeiL V) + D (L Vi =1, ) (s (Vou Vo s ) + B (Vs Voo T, 1))

(7.87)
S22,1 (VO’Vl’ rO’ rl)
-1
- ?((D(l,vo;l,vl)+ D(l,vo;—l,vl))(Ezz’0 (Vo Vi, T 1) + Epp g (V4 Vo, Ty, rl))
(=D (LVi1,v,) + D (LVei=1,%,)) (Eps (Voo i Yo, ) + Epy (Vs Vo o, 1))
1
EZZO VO’Vl’rO'rl ZZ( 22 VO’V].’rO’rl)+3A22(V0’V1’V2’r0’r1)
1 1
+§Bzz,o (V01V1’V2' fos r1)+chz,o (VO’V1' fo, s rz)
1
+§ DI (vo,vl,vz,ro,rl)J (7.88)

1
E221 V0 Vl I’.0 rl ZZ( 22,1 VO Vl V2 rO rl) N C22,1(V0’V1’r0'ri.’r2)

Vo I

1
+§D22,1 (V01V17V21 fos rl)j

Evaluating the final commutator

All that remains to obtain the analytic expression for H,, is to evaluate the commutator

between the transform function S,, and the zeroth order term of the original Hamiltonian, H.,,.

Applying the definitions from Eq. (7.68) and Eq. (7.86) yields Eq. (7.89), using the coefficients

defined in Eq. (7.90).

[Szz Hzo zzezo Vo, Vi Tos rl)QVOQVlJ Jy
Yo% o 7.89
+ZZF22’1(VO,V1,ro,l’l)pVOpvlJroJrl (789

Vovi Toh
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F0 (VO’Vl’ o, r1) = 2(522,0 (VO’VI’ o, rl) Hao (V1)+522,1 (VO’VI’ o rl)HZO (Vo))

(7.90)
Fo1 (VO’Vl’ To, r1) = (_2)(822,0 (V01V1' o, rl) Hao (Vo)+szz,1 (V07V17 o r1) Hao (Vl))

The analytic expression

Combining this commutator with the rest of the general equation (which were evaluated in

order to obtain S,,) yields Eq. (7.91) using the coefficients in Eq. (7.92). A definition expressed

in terms of the molecular properties can be obtained through iterative substitution of the
coefficients that we’ve defined thus far. Such a definition is provided in the Supporting

Information.

Hy, = zzﬂzz,o (Vo Va, Ty, "1)qv()qv1‘JroJr1 +ZZ|:|22,1 (Vo Vi, Ty, rl)F)\/opvl‘]ro‘]r1 (7.91)

Vo1 foh Vovi Toh

F|22,0 (VO’Vl’ r.0’ rl) = E220 (VO’Vl’ r-0’ rl)+ I:22,0 (VO’Vl’ r.07 r.1)

' (7.92)
Hy i (V01V11 fo, rl) =Ep; (VO’Vl’ fo) rl)+ Foos (V01V11 fo, rl)

Rotational Reduction of H,,

The rotational contact transformation

Using Eg. (7.31), the transform function that will affect H,, is given by S" =S}, +S},

which results in the reduction equation Eq. (7.93). The ‘r’ superscript for the transform functions
is to denote that these transform functions are distinct from the ones used to block diagonalize the
Hamiltonian in the previous section. The definitions of the reducing transform functions are
unknown at this point, and what follows is the process of defining them such that the Hamiltonian

will be reduced as per Eqg. (7.93).

HES = Flp +i[ Sho Hao | +i] S5 He | (7.93)
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Trial transform functions

Effectively, we are applying an abbreviated form of the trial solution approach to obtain
definitions of the rotational reduction transform functions. Consider that H,, contains only the
products of vibrational operators g and pp. The terms of the commutators containing those

same products are all that are required to affect the transformation, and similarly only the terms of

the transform functions that will yield said terms of the commutator are required. Since the
rotational commutator does not affect the vibrational operators, the transform function S;, is
readily written as in Eq. (7.94). Then, a quick consideration of the possible combinations of
vibrational commutators leaves us with the definition of the transform function S, as in Eq. (7.95)

. The coefficients used in these expressions are yet to be defined, and the process of defining them

constitutes the bulk of the effort for reducing the Hamiltonian.

8212228210 (Vor Vi Ty ququJr0+228211 VO’Vl’rO)pvopvl o (7.94)
Vo1 To Vo\i To
Sy = Zzszzo VO’V11r0’r1 Py, Iy, rl"'zzszzl VO’Vl’rO’rl)pvoqvl (7.95)

Vovi Toh Vo1 ol

The reduced Hamiltonian

Evaluation of the two commutators in Eqg. (7.93) results in Eqg. (7.96) and Eq. (7.97).
Substituting these expressions back into Eq. (7.93) yields the reduced Hamiltonian shown in Eq.
(7.98), using the coefficient defined in Eq. (7.99). With the reduced Hamiltonian thus defined, we
can begin the process of defining the coefficients of the transform functions that are contained

within Eq. (7.99) so as to obtain the rotational reduction.
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i[ng’ Hzo]V

Zzszzo VO’Vl’rO’rl qVOpvl‘]rOJr1+zzszzl VO’Vl’rO'rl)pvoqvl

VoVi Toh VoVy ol
1
Z 2 @,,4,,9,, +Z @®,,Py,Py, (7.96)
VZ v
r r
- ZZ(G)Vl 822,0 (VO’Vl’ r0’ rzl) + CUVO S22,1 (VO’V]_! r0| rl))qvoqv1‘]fo‘]r1
Vo1 foh
r
+ZZ (a) S50 (VorVa To» r1)+a) Sr21 (Vo Vi, To, rl))pvopvl Hn

Vovi Toh,

[521’ 02] |:225210 VO’Vl’rO qvoqv‘]l’o+ZZS;1,1(V0’V17rO)pVOleJrO

Vovi To Vovi To

’z BﬁJrlJ"l:|
R

(7.97)
- Z Z €ront ( o )Sr21,0 (VO’Vl’ rz)ququJro‘]rl
VoVi fofif2
+Z z €ront ( o )SrZI,l (VO'Vl' rz)pvopvl‘lro‘]rl
Vo\i fofil2
Hy => HY (r,0)3,.J, (7.98)
oh
HE; (ro’ rl) = Z(sz,o (Vo Vi, Ty rl)+ @, S0 (VO’V1’ )+ @, Sha1 (Vo Vi T, rl)
VoVi
+Z 6rorlrz ( Iy )Sr21 0 (VO ! Vl’ r2 )] qvoqvl
(7.99)

+Z( 221 V0vV1'ro’r1) wvong,o(vwvvro'ﬁ)_wvlsgz,l(vwvl'ro'rl)

Vo1

+Zerorlr2( . )Sill(vo.vl,rz)Jpvopvl
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The reduced Hamiltonian in cylindrical tensor form

The reduced Hamiltonian in Cartesian coordinates is shown in Eqg. (7.100). The

Hamiltonian can be written in the cylindrical tensor form by substitution of the definitions of J,

and J, in terms of J. and judicious application of commutator relations, as well as the identity
J.J,+3,J.=23%-2J,% (derived from J*=J,2+J *+J,%). The result is given by Eq. (7.101)

, In which we have made no assumptions regarding the nature of the coefficient and we use the

anticommutator notation ([A, B]+ =A-B+B-A) to abbreviate the expression. (Note that in

principle, the process currently being discussed should include all terms H™? , but for convenience

m2 !
we are assuming that the rotational reductions can be applied separately for each H_.) Within

red

the expression are terms of order ~J, detailed in Eq. (7.102), but if the coefficient HY' is invariant
to reversal of indices i.e., if H (i, j)=H5 (j.i), they will be eliminated (O(~J)—0).

Otherwise, these terms can be removed from Hjy' and placed in the expression for H_,. We now

red

have an expression for H, but it contains a total of six rotational operator terms, while only

three such terms are required for the fitting of second-order Coriolis coupling constants.
Elimination of terms from this expression is required and can be achieved through proper

definition of the transform function coefficients.

Hy' =Hjy (%,%)J,J, +Hs (X, y)Jd,J, +H5; (x,2)3,3,
HAZ (9,) 3,3, A5 (v,¥) 3,9, + 5 (v.2)3,9, (7.100)
)

y
+H5 (2,%)3,,+H5 (2,y)3,d, +Hiy (2,2) 3,9,

Z7X
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~ re 1 ~ re "~ re 1 e e H®
szd:E(szd(X,X)"'szd(y’3/))~]2_E(szd(X'X)"'szd(y’y)_ZHZZd(Z’Z))J3

+%(F|;ezd(x x)—H5 (y,y )(J2+J )
(92-22

Z(Hr;zd(x y)+H5 (v.%)) ) (7.101)
+%(I:| (x,2)+H5 zx)J J_+J.]
(R (1, 2)+ A (2,))[3:,9.- 3.1, +0(=9)

O(=3) =3 (I (1) ~FZ (1)), ~ (A (.2)-FZ (2.9)) 0_+3.)

(7.102)
AR (x2)- R (20)(0 -2,

Connection to experimental coupling constants

First, however, we must determine what terms are to be eliminated from Eq. (7.101). For
second order in rotation, there are two instances for which H can be used: (a) vibrationally on-
diagonal matrix elements (i|H, |i) and (b) vibrationally off-diagonal matrix elements (i|H5 | j)
. The former matrix element corresponds to a correction to the rotational constants (i|Hy, |i) due

to vibration-rotation coupling i.e., the a constants, while the latter corresponds to the second-order

Coriolis coupling constants Fan, Fac, and Fne connecting the vibrational states |i) and | j). Note

that such differentiation is absent for terms of odd order with respect to rotation, as only

vibrationally off-diagonal matrix elements are allowed in that case.
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() Vibrationally on-diagonal (o constants)

TERMS TO BE ELIMINATED.
The rotational Hamiltonian in the I" reduction for the vibrationally on-diagonal matrix
element requires that the non-totally symmetric terms J2 —J7%, [J,,J_+J,],,and [J,,d_-J,]

are eliminated. This can be achieved by defining the transform function coefficients such that the

corresponding three coefficients will be zero. We can therefore write Eq. (7.103)—(7.105).

0=(i|H (x,y)+H5 (v, x)|i) (7.103)
0={(i|Hj (x,z)+H5 (z,x)|i) (7.104)
0={(i|Hy (y.2)+H% (z,y)|i) (7.105)

SOLVING FOR THE TRANSFORM COEFFICIENTS

Considering the first condition, Eq. (7.103), we can substitute in the definition of H;‘;d and
write the condition as Eq. (7.106). Ideally, to avoid a dependence of the solution on the particulars
of the vibrational matrix elements (i|q, g, |i) and (i|p, p, |i), we solve for the coefficients to
yield zero. There are then effectively two equations, and so only two of the transform function

coefficients can be solved for. The simplest is to set the S;, transform coefficients to zero and

solve for the S, transform coefficients. We then have the trivial definition in Eq. (7.107) and the

nonzero definitions in Eq. (7.108) and Eq. (7.109), where the other required definitions can be
obtained through cyclic permutation of the axes X, y, and z. The superscript ‘r’ for the transform
functions is now replaced by the superscript ‘d’ to indicate that these terms are for applying the

(on) diagonal reduction.
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0= Z(sz,o (Vo Vi, X, ¥) +Hap o (Vor i, ¥V, X)

Vo1
+a, (ngyo (Vos Vi, X, ¥ ) +S5,0 (Vo Vi, Y, x))
Ty, (S;M (Vo Vi, X, ¥ ) + S50 (Vo V. ¥, X))+2(Bx —B, )851,0 (Vo Vi, Z))X
X<I |qV0qV1 |I>

) i (7.106)
+Z(H22,1 (VO’Vl’ X, y)+ H,,, (VO’Vl’ Y, X)
VWi
-0, (Srzz,o (V01V1’ X, y) +S50 (VO’Vl’ Y, X))
~a, (352,1(V0'V1’ X, ¥)+Sh1 (Vor Vi, Vs x))+2(Bx - B),)S;L1 (Vg Vi, Z))x
x(ilpy,p,, i)
S22,0 (VO’Vl’ To rl) :ng,l (VO'Vll o rl) =0 (7.107)
H H
910 (Vo Vi, 2) = —222 (Yo: ¥, % ¥) + Hazo (Yo, 0, . X) and cyclic permutations ~ (7.108)
_Z(BX B By)
H H
911 (Voo i, 2) = 22 (Vo: Vo X V) + gy (Yo, 0, ¥ X) and cyclic permutations  (7.109)

-2(B,-B,)
DEFINITION OF THE REDUCED COEFFICIENTS

Substitution of the definitions of coefficients of the transform functions into Eq. (7.106)

confirms they satisfy the conditions Eq. (7.103)—(7.105). After applying these definitions to the
red

possible combinations of I:I22 , the generalized definitions in Eq. (7.110) and Eq. (7.111) become

apparent.

HggEd (a' a) = Z sz,o (VO’Vl’ a, a)q\lqul + Z |:|22,1 (Vo’V1’ a, a)pv0 Py, (7.110)

VoVt Vol
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" (00) =R 00

_Z ( 22,0 (Vo V1, 8,0) — 220(V0’V1’b a))qvoqvl (7.111)

V0V1

Z ( 1(Vorvi,a,0)~ H22,1(V0’V1’b’a))pvopv1

o 2

The rotational Hamiltonian from Eq. (7.101) can now be written as in Eq. (7.112). The
lower order terms O(~ J) can be written as Eq. (7.113), which per Eq. (7.111) will go to zero if
Hao o (Vo Vi, a,b) =Ha, o (Vo,vi,b,a) and Ha,, (Vo,vi,a,0)=H,,, (Vp,vy,b,a).  Returning to the

Cartesian form, the reduced Hamiltonian can be written as in Eq. (7.114).
F'd,red — l |:|d,red |:|d,red J2
22 5 \M22 (X’ X)"‘ 22 (y, Y)
1/~ ~ -
—E(Hgged (%, %)+ H5 (y,y)-2H5%% (z, z))Jf (7.112)

1/ can o
2 (FE™ () = HE™ (y,¥))(97 +38) +O(= 9)
i qd.re I~ re 1~ o
O(~J):_'Hg’2d(X,Y)Jz—§Hg'zd(y,z)(J_+J+)+EH§'2d(x,z)(J_—J+) (7.113)

H5* = H5™ (x,x) J% + Hys* (v, y)Ji +Hy™ (2,2)J?
ZHdl’ed r r J2 (7'114)
- O’ O

THE a CORRECTIONS

For the ground state, we can write the vibrational matrix element as in Eq. (7.115). By
comparison to Eq. (7.116), the « corrections are given by Eq. (7.117). The general formula for

application to other vibrational states can be obtained in a similar manner. Applying successive
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substitutions of the previously obtained coefficient definitions yields Eq. (7.118), which in turn
leads to the analytic expression for the « corrections in Eq. (7.119). For these equations, we apply
a strict resonance condition; that is, the resonance threshold is zero. This expression is identical
to the one previously obtained by Aliev and Watson (Eg. (100) in Ref. 4) once the on-diagonal
condition has been applied. The “deperturbed” expression for the « correction is similarly

obtained, but where the resonance threshold is greater than zero. The formula is effectively the

-1
same, except that (a)\,o—a)vl) in the last summation of Eqg. (7.119) is replaced with the
denominator function D (1, @, —Lao, ) .

(O] Hg, + Hy*|0) = (0] Hy, |0) + (0 H3 |0)

<O|ZH02(r0)Jfo |0)+(0]>. > Hag (Vo’Vrro'rO)ququ‘]Eo 0)

VoV To
+<0|ZZI:|22’1(VO,V1,I’O,I’O)pVOpvlJfo|0>
Vovi To
:ZBro‘]é +ZZH22,0 (VorVos To ro)<0|qvo |Vo><v0|qvo |0>JfO (7.115)
fo Vo o
+ZZ|:|22,1(V01V0'r01r0)<0|pv0|V0><V0|pvo|O>J$o
Vo To

1 ~
=2{Bro "‘EZ(sz,o (Vo’VO'ro’ro)"‘H22,1(V0’V07r0'r0))}]$0
o Vo

fo fo

B =B; —%Za(vo,ro) (7.116)

Vo

a(Vy, 1) = —(I:|22'0 (Vo,Vor Ty, Ty )+ Hopy (Vo Vo, T, ro)) (7.117)
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H22,O (VO’VO’ r-0’ r-O) = H22,1 (VO’VO’ rO’ r-0)

2
1 o, —a,
ZSZB—wVOZCJgﬁZ+ Zcforo v T Z (2 —e) o o0 (7.118)
h —h

V1 a)voa)v (a)vo +wv )

e (ara)
2

2 o 2
Bro é/vovl
v* a)vo wvl (a)vg - a)vl )

2
V r Z_ 2 rorl Zcrofo _Z (a)"o _a)Vl) B 2/ 2
0 0 VoVovi o VoVp

Vi a)Vo a)vl (COVO + Ct)vl) (7119)

(b) Vibrationally off-diagonal (Fuc)
TERMS TO ELIMINATE
The rotational Hamiltonian in the 1" reduction for the vibrationally off-diagonal matrix
element requires that the totally symmetric terms J*, J2, and J*+J? are eliminated. This can

be achieved by defining the transform function coefficients such that the corresponding three

coefficients will be zero, as in Eq. (7.120)—(7.122), which immediately leads to the requirement

that (i|H3; (a,a)| j)=0.

0= (i|H5 (x,x)+H5 (v, y)| J) (7.120)
0=(i[H5 (x,x)+H5 (v, y)-2A% (2.2)] }) (7.121)

0={(i|H5 (x,x)—H3% (y,y)| i) (7.122)
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SOLVING FOR THE TRANSFORM COEFFICIENTS
We can now write Eq. (7.123), and again set the coefficients of the vibrational expectation

values to zero and solve for S;,, and S,,,. Doing this leads to the solutions Eq. (7.124) and Eq.

(7.125), but since the summations in Eq. (7.123) are not restricted, there are terms unaffected by
the transformation. Thus, at this point, the Hamiltonian is not fully reduced. Note that the
superscript ‘r’ of the transform functions is replaced with the superscript ‘od’ to indicate that these
solutions of the transform functions are for obtaining the off-diagonal reduction of the
Hamiltonian.

([ Fg? (a.2)] )
ZV:(H (Vo,Vy,8,8) + a3, Shy (Vo Vir8,8) + @, Shy; (V. Vy,a, a))

x(i 0y, | 1) (7.123)

+Z( 221 (Vo Vi, @,@) =@, Sy (Vo Vy,8,8)— @, ngyl(vo,vl,a,a))x

Vo1

x(i[py,Py, | J)

1
S‘Z’gyo(vo,vko,a,a):(w - 2)(0) Haoo (Vo Vi a,8) + @, Hopy (Vo V4,2, a)) (7.124)
Vo v
1
Sgg,l(vo’vlvto’a’a):_(w 2_, 2)(60 Hao (Voo Vy2,8) + @) H221(VO’V1’a a)) (7.125)
Vo Vi

DEPENDENCE ON VIBRATIONAL EXPECTATION VALUES
To ensure that the Hamiltonian is fully reduced, we have to distinguish the solutions for
when the vibrational indices match and for when they do not match. Thus, we separate each of
the summations in Eq. (7.123) into two parts, as in Eq. (7.126). The solutions Eq. (7.124) and Eq.

(7.125) apply to the restricted summation, but solutions for the single-index summation are still



310

required. Furthermore, we must consider the vibrational expectation values in order to affect a

result that differs from the restricted solutions.

<|Fﬁ?(aa)|>

J
> (Floag (Yo, Vi, 8) + @, Shy o (Vo,Visor 8,8) + @, Sy (Vo Vo, 8,2) ) X

VoVi-0

x(ilay,a, | §)

+ Z ( 21 (Vo,Vy,8,8) — @y, S22 (VO’V1¢O’a’a)_a)V1 Sx21 (VO’V1¢O’a’a))X

VoVix0
x(i|p,,Py, | i) (7.126)

+Z( 220 (Vo Vo, 8,2) + @, Shys (Vo Vo, 2,) + @, Sy (Vo Vg, ,2) ) X

x(i|a,,a, | J)

+Z( 221 (Vo:Vg,8,8) — @, Shyo(V,Vy,8,8) 0, ngll(vo,vo,a,a))x
x(i[Py,Py, |J)
The terms in the single-index summations will only be nonzero if the change in the
quantum number of the kth mode is An, =0,+2 and all other quantum numbers are unchanged
between |i) and | j). The case where An, =0 occurs only when |i)=| j), which is clearly not an

off-diagonal vibrational matrix element and thus can be ignored. For the case where An, =+2,

the single-index summations reduce to Eq. (7.127). This expression is set to zero and the transform

coefficients are solved for. Only one transform coefficient can be defined, so the other is arbitrarily
set to zero leading to Eq. (7.128) and S, (V,,Vy,a,a)=0. Any remaining transform coefficient

not explicitly defined is set to zero. That is, the remaining definitions are given by Eq. (7.129).

(HZZ‘O (k.k,a,a)+ @, Sy, (k,k,a,a)+ @y Shy, (K, k,a,a))(nk |g?|n, £2)

| 2 (7.127)
+(H22’1(k, k,a,a)—a, Sy (k. k,a,a) - S, (K, k,a,a))(nk |p?|n £2)
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11/~ ~
S350 (Vo Vo, 8,a) = _E_(HZZ'O (Vo, Vo, &) —Hypp (Vo, Vo, &, a)) (7.128)

C!)VO

od od
0=521,o (VO’Vl’rO)ZSZLI (VO’Vl’rO) (7.129)
od od '
= S22,0 (Vo Vi, 1o, r1¢o) = S22,1 (Vo V1 gy T )
DEFINITION OF Fj,. BETWEEN FUNDAMENTALS
We now consider the case of the vibrationally off-diagonal matrix element between two

fundamental vibrations, |v,) and |vg). Using the above definitions, the nonzero contributions to

the matrix element are given by Eqg. (7.130), and the full expression in terms of molecular

properties is given by Eq. (7.131).

<VA | Hgg’rw (rO’ r1¢0)|VB> = <VA | Hgg'red ("1,-:0' rO)|VB>

= ~22,0 0 Vi fos ) \WVa [Yy, Yy, VB ~22,1 00 Vil I )\Va [Py, Py, VB
D Haoo (Vou Vi T, 1) (va |Gy Oy, [Ve) + D Hazs (Vor Vi 1o, B ) (Va | Py Py, Ve )

VoVq VoV
1 - 1 -~ (7.130)
:EHZZ,O (VA’VB’ rO’ rl)+§H22,0 (VB’VA’ rO’ rEI.)

+

|:|22,1 (VA’VB’ rO’ rl)+ |:|22,2I. (VB’VA’ rO’ rEI.)

N |-
N |-
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<VA | Hgg'red (ro’ r1¢0)|VB> = <VA | Hgg'md (r1¢o’ r0)|VB>

=§zia) @ (cfofzc%+cf0f20f2r1)+12k Clot
8 r, Brz TR YA TR Vs VA 2 Vo

VAVBY2 T V2

@,, —®, )(a)VB -a, )(a)VA + @, +2a)V2)

—%Z(

BroBrl( o n + n o )

VaV2 @ VgV2 VAV, 2 VgV,
Y2 Dup P D, (a)VA T, )(a)"a + wvz)
1
+2 " D(LVai=LV; ) D(LVg; -1V, ) (7.131)
4
(a)v +w, )(a)v +w, )(a)v +w, —2a)v)
X A 2 B 2 A B 2 Br Br( vfoV é’vrlv +é/\;1v gJov )
0 1 AV2 ©VBV2 AV2 2 VBV2
ﬂfa)v , o,
A B 2
(a)VAJra)VB) .

Jg:erorlrz D(Lvai-1 VB)WQMB B, (B, - B,)

The rotational Hamiltonian is then given by Eq. (7.132), where the O(~J) terms

previously discussed go to zero using the definition of Eq. (7.130). Returning to Cartesian form,
the rotational Hamiltonian is given by Eq. (7.133) from which we can define the F Coriolis
coupling constant between two fundamentals as Eq. (7.134). The F Coriolis coupling constant
between other vibrational states is readily obtained from evaluating the vibrational matrix element

of Eq. (7.130), so long as the total change in quanta between the two vibrational states is

Zi|Ani|=2'

3 i 3
(Val H3g"™ ve) = _E<VA | Hy"™ (%, 3/)|V|3>(‘]E _‘]i)

+%<VA|H§;“‘3"(x,z)|vB>[JZ,J_+J+]+ (7.132)

i ~yod,rel
‘§<VA|H23' d(yiz)|VB>[Jz’J—‘J+]+

<VA | Hggred |VB> = <VA | 99 e (x, y)|vB>(JXJy +JyJX)
+{(va | H55™ (X, 2)|vg ) (3,3, +3,9y) (7.133)
+(val A% (v, 2)|ve) (3,9, +3,3,)
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Fp=(valH3%™ (2. B)|vs) (7.134)

The expression obtained in Eq. (7.130) is nearly identical to that previously derived by
Aliev and Watson,* except their formula (Eq. (101) of Ref. 4) appears to be lacking the last

summation of Eq. (7.130), which is the contribution arising from the only rotational commutator

within the transformation to obtain H.,, i[Sy.Hp, |- The denominator function in this term,

however, must always yield zero for the off-diagonal matrix element of a pair of resonant states

and thus the two expressions are equivalent.

Preliminary Rotational Reduction of Hy3

We are still in the process of deriving the analytic expression for H., but we can discuss
our efforts in obtaining its rotational reduction. Prior to encountering the work of Perevalov and
Tyuterev,5” we derived a rotational reduction for I:I23 using an approach adapted from the

procedure used for the rotational reduction of the centrifugal distortion constants, as presented in

the review by Watson.? This is the derivation provided in this section. While we are optimistic

that a rotation reduction obtained in a manner similar to that for H,, in the previous section will

yield the same result, we are still in the process of confirming that such is the case. Thus, we
consider the rotational reduction that follows to be preliminary.
The rotational contact transformation

The approach used for the centrifugal distortion constants uses the transform function

S...1 to reduce the Hamiltonian H,,. Similarly, we will use the transform function S, to reduce

the Hamiltonian H., specifically its vibrational matrix element. We begin by defining #,, as an
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arbitrary off-diagonal vibrational matrix element of |:|23, as in Eq. (7.135), which can be written
as a linear combination of rotational operator. The coefficients H, in this linear combination are
the vibrational expectation values of H,, with the rotational operators removed and is simply some

complex number as a function of the rotational indices. With the Hamiltonian written as such, we
can write the rotational contact transformation as Eq. (7.136), where the definition of the transform

function is chosen to obtain the desired, reduced form of the Hamiltonian.

Hoa =(i| Al i#i) =2 Hos (1:1,1) 3, 3,31, (7.135)

oz

5 =Hos +1[Spp. Hop | (7.136)

The trial transform function

Since the vibrational dependence of the current rotational reduction is ignored, the form of

the transform function is simplified: it is simply a linear combination of rotational operators of

order ~ J%. At the moment, the coefficients in the definition of the transform function (Eq. (7.137)
) are undefined; finding/choosing their definitions is the primary work in deriving the rotation

reduction.

S, = Zsoz (1p,1)d (7.137)

ol

The rotational commutator

We can evaluate the rotational commutator of the transform function with the rigid rotor,
as the evaluation is independent of the definition of the transform function’s coefficients. The

commutator evaluates to Eq. (7.138).
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i[StoHoz |= 2 (B, — By, ) S (1o, 1) e + (B — By ) Sk (%02 ) gy, )349,9,, (7:138)

fohifaf3

The reduced Hamiltonian

With the commutator evaluated, we can now write the reduced Hamiltonian as in Eq.
(7.139), where we have defined the coefficients as in Eq. (7.140). The full Cartesian form of the
reduced Hamiltonian is simply given by the permutations of the rotational indices over the x, v,

and z axes.

red ZH""" (o 1.1,)3,3,d (7.139)

ner,
ol

H(r)%d (rO’ rl’ rZ)

=Hgs (1, 1, r2)+2((Br1 -B, )S(r)z (ro’ rs)erlrzr3 +(Br0 - Brl)s(rJZ (15, r2)6r0r1r3

3

) (7.140)

The reduced Hamiltonian in cylindrical tensor form
As was done in the reduction of H,,, we will rewrite the reduced Hamiltonian in terms of

products of J*, J,, J_+J,,and J_—J,. The process is extensive and requires judicial use of

commutator relations, but eventually we obtain the expression given in Eq. (7.141), using the
coefficients defined in Eq. (7.142).
5 = Coppd?J, +Coppod” (9 +J+)"‘¢2001‘]2 (J_-3,)+ Cosood?
oo [ 920 +3, | o[ 9530, | +Cou[ I, 37497 (7.141)
+Corgn| I, 9 —Jil + Cogan 9%+ )+ Coges (3° =93 ) + O~ 3%)+ O(~ J)
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1 I ( re
Ca100 = E(Ho%d (x,x,z)+ Hes (x,z,X)+ Hes (z,x, X))
1 re re re
"'E(Hoad (y1 Y, Z)"‘ Hoad (y’ Z, Y)"‘ Hoad (Z, Y, Y))

3 Ie 1 re re Ie
Coo10 = gHosd (X' X, X)+§(H03d (X, Y, Y)+ Hosd (Yv X, y)+ Hosd (y' Y, X))

3' re I re re re
Caoon =~ M (¥ YY) =g (HE (%X, y)+ HE' (6, x) + HEZ' (v, %, %))

Co300 = ~C2100 T ngsd (Z’ Z, Z)
Copto = —%czmo +%(ng3" (x,2,2)+Hg (z,%,2)+Hg (2,2, x))

1o

Co201 = _ECZOOI - 4(H<r)esd (y.z,2)+ Hea (z,y,2)+ Hes. (2,2, y))

Corzo = %(ng; (x,%,2)+Hgy (%,2,X)+Hgy (z,x, x))

l rei rei rei
_g(Hoad (y1 Y, Z)"‘ Ho3d (y’ Z, Y)"' Ho3d (Z, Y, Y))

i re re re
Co102 = _g(Hosd (X' Y, Z)+ Hosd (X, Z, Y)+ Hosd (y’ X, Z)
+HE (v,2.%)+ HE (2%, y) + HE (2. Y. %)) (7.142)

1 re 1 re rei re
Coozo = 8 Hosd (X, X, X)_g(Hosd (X, Y, Y)+ Hosd (y’ X, Y)+ Hosd (y7 Y, X))

‘é(HBZ" (%% y)+HE (% ¥, X) +HE' (v, %, %))

i re
Cooos = Py Hosd (Y1 Y, Y)
The terms lower in order with respect to the rotational operator are given by Eq. (7.143)
and Eq. (7.144), using the coefficients defined in Eq. (7.145) and Eq. (7.146), respectively. Given

the preliminary nature of this reduction, we will ignore these lower order terms for the present

work.

0(" Jz)zczooon +Coa0093 + Corso [J: - +J. ], +Coaoa [J509- =3, ]

+

+ Caggo (2 +32) + Cogpp (92 = 3) (7.143)

+

O(~J) =Cy00d; +Conz (I_ +J, ) +Co1 (I_—J.,) (7.144)
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(Hg‘;d(y,z z)- H{g’(z,z,y)) (7.145)

= -l>|—

|
4l

c —_E(Hred(x Hred - Hred _Hred

001 = " 4 Y, Y) 03 (Y1 y’X))+4( 03 (X,Z,Z) 03 (Z,Z,X))
i Ie re re (¢
Z(HOS"(x,y z)—Heg (2., x))——(Hogd(y x,2)—Heg (2, %, y))

'_\
o

1 re re re re
Cooo2 :Z(Hosd(xvx Z) Hosd(z X, X))_Z(Hosd(y Y,z ) Hoad(ZvaY))

1 re re
Co100 :_E(Hosd (X, z, X)"‘ Hosd (y, z, Y))

1 re re re
C0010Z_E(Hosd(X,X,X)+3H03d(y’X,Y)+4H03d(Z’X,Z))

1, r

+oe (HE (4 Y, y) +HE (v, 3.%)) (7.146)
Canos =~ (BHE (%, Y, X) + HE (v, ¥, y) + 4HE (2,,2))
0001 = 16 03 Yy, X s (Y:Y.Y 03 (4 Y,

i r
—E(HO%d (%%, y)+Hgs (V. X, x))

Terms to be eliminated

Before we proceed further, we will first consider the conditions by which the Asymmetric
and Symmetric reductions were chosen for the centrifugal distortion constants. As described in

Watson’s review,? the Asymmetric reduction was obtained by defining the transform function

coefficients such that terms with the rotational selection rules of |Ak| > 2 were eliminated. On the

other hand, the Symmetric reduction was obtained by defining the transform function’s
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coefficients such that terms containing the J, operator with rotational selection rules of |Ak| >0

were eliminated. We will keep these constraints in mind as we consider how to reduce the third

order Coriolis coupling Hamiltonian.

“Asymmetric” reduction

Now, we consider the third order Coriolis coupling Hamiltonian that is used for the fitting
of experimental spectra. This Hamiltonian is limited to a maximum of six terms, and is given by
Eq. (7.147) for the I" representation. Examination of this Hamiltonian in comparison to the full

Hamiltonian written in Eq. (7.141) shows that the expression used experimentally has removed

the J"+J7 terms from Eq. (7.141) for n>1. Written another way, the Hamiltonian used
experimentally can be obtained by eliminating the terms with rotational selection rules of |Ak| >1

(or equivalently, |Ak| >2). To us, this appears analogous to the condition applied to the centrifugal
distortion constants to obtain the Asymmetric reduction. Thus, we refer to the expression in Eq.
(7.148) as the “asymmetric” reduction of H.,, which is what the ‘a’ in the scripts of the equation

is denoting (and is distinct from the ‘@’ used to represent the rotational axis in the rotational
constants in Eq. (7.147)). We will refer to this reduction with explicit use of the quotation marks
because we are unsure of how or if this Hamiltonian interacts with the Asymmetric centrifugal

distortion constants.

HPP™ = G323, +GJJI?(I_+J,)+GJI%(I_-J,) 7,147
+GIIT+GY [ 32,(3_+3,)] +GI[3%,(3.-3.)]. '
Has = Corg0adJ; +Caor0ad” (I 3. )+ Cagerad” (- =3,
(7.148)

+Coz00as + Coz108 [Ji"]— +J+l + Coo01a [351\]— _JJ

+
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By comparison of the two expressions in Eq. (7.147) and Eq. (7.148), we can write the
definitions of the third order Coriolis coupling constants as in Eq. (7.149), which are in turn
dependent on the definitions of the transform function coefficients, defined below. Note that these

definitions are assuming the 1" representation.

G; = C2100a1th = C010a> GcJ = Co001a (7.149)

K _ K _ K _
Ga - C0300a ! Gb - C0210a ! Gc - C0201a

The constraint that the reduced form of H., should not have terms with rotational selection
rules of |Ak|22 is equivalent to enforcing the condition in Eq. (7.150). By substituting the

definitions of the coefficients from above, we can — with sufficient algebraic manipulation — show
that the transform function coefficients provided in Eq. (7.151)—(7.155) will satisfy the constraint
given by Eq. (7.150). Here the superscript ‘a’ is used to represent that these transform coefficients

are for obtaining the “asymmetric” reduction of the Hamiltonian.

0= Cy120 = Co102 = Cooz0 = Co003 (7.150)
1
S (X, X)=————(Hp (X, V,2)+Hq (X,2,y)+H X, Z
02( ) 4(By_Bz)( 03( y ) 03( y) os(y ) (7.151)
+H03(y,z,x)+H03(z,x,y)+HO3(z,y,x))
1
ng(x,y)= —H03(X,X,Z)—HO3(X,Z,X)—H03(Z,X,X)

2(28, —Bx—By)( (7.152)
+H03(y, Y, Z)+ Ho3(Yy Z, Y)+ HO3(Z, Y, Y))

Sz (%, 2) :m(Hos(y, Y, ¥)=Hos (X, %, ) =Hos (X, ¥, X)=Hgs (Y. X, X)) (7.153)

SSZ(y’Z): . )(HO3(X,X,X)—HO3(X, Y, y)—Hog(y,X, y)—HO3(y, Y, X)) (7.154)

2(B,-B,
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0=50(¥,Y) =50 (2,2) =S5, (¥, X) =S5, (2, X) =S5, (2, ) (7.155)

DEFINITION OF THE REDUCED COEFFICIENTS
We can now write the full expression for the coefficients of the reduced Hamiltonian.
Substituting the “asymmetric” reduction transform function coefficients into the reduced
coefficients allows us to write the definitions for the reduced Hamiltonian in the cylindrical tensor

form, as shown in Eq. (7.156)—(7.158).

B, B
Co100a = (ZB(Z ey i)By)(HOS(X,X,Z)+HO3(X,Z,X)+H03(Z,X,X))
(BZ_BX)
Hos (Y, Y, 2)+Hg (Y, 2,¥)+Hg (2, Y,y
(ZBZ_BX_By)( ol )+ Hal )+Hao )) (7.156)
1
Co010a = EHos(X, X, X)
[
Coo01a = _EHos(y’ Y, Y)
Coaooa = —Catooa + Hoz (2,2, 2)
1(-2B,+B, +B,
COZlOa=Z< (Bx_éy) )Hos(X,X,X)
+%(H03(x,z,z)+H03(z,x,z)+H03(z,z,x))
Bz_Bx
) Ha (103 H(9)
i (B,-2B, +B,
Cozola:Z( (BX_;y) )H03(y,y’y)
_jz(Hog(y,z,z)jLHos(z,y,z)+H03(z,z,y))
i (B,-B,)
o M (0 05



321

0 = Cy120a = Co02a = Coosoa = Cooosa (7.158)

“Symmetric” reduction

If the experimental Hamiltonian in Eq. (7.147) is indeed analogous to the Asymmetric
reduction of the centrifugal distortion constants, then we can attempt to extend the analogy to
include the Symmetric reduction. Let us write the Hamiltonian that would result from eliminating

terms from the full Hamiltonian in Eq. (7.141) that contain the J, operator and have rotational
selection rules of |Ak| >0. The result, shown in Eq. (7.159), has removed four terms as required,

and consideration of the symmetries of the remaining terms suggests this Hamiltonian can be used
to fit coupled state rotational spectra. We consider this to be the “symmetric” reduction of I:|23,
but again we are unclear as to the relationship between this form of the coupling Hamiltonian and
the Symmetric reduction of the centrifugal distortion constants. The ‘s’ in the scripts again denotes
that these definitions are explicitly for this “symmetric” reduction.

Hos = Car00s3"J; + Capgosd (- +3, )+ Capusd” (I_—J,)

(7.159)
+Co3005J3 + Cosos (‘]ﬁ +J3 ) + Coo03s (Ji -J )

The definition of the third order Coriolis coupling constants in this reduction is somewhat
complicated by the different choice in terms that were kept. By comparison of Eq. (7.147) and
Eq. (7.159), the definitions of some of the constants is still clear, as shown in Eq. (7.160), but there
does not appear to be an obvious definition for GpX and GX. Following the analogy to the

centrifugal distortion constants, we propose the use of the constants G+ and G- as defined in Eq.

. to denote the coefficients o C+ an C - , respectively, for the “symmetric
(7.161) to d he coeffici f(32+3%) and (J°-3° ively, for the «

reduction of the third order Coriolis coupling constants.
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G; = C210031G1;] = C20:|_051GcJ = Co001s (7 160)

K _
Ga - COSOOs

G+ = Coo30s

(7.161)
G = Coooas

The constraint that the reduced form of H,, should not have terms with a J, operator and
rotational selection rules of |Ak| >0 is equivalent to enforcing the condition in Eq (7.162). Using

the definitions provided earlier, we can show that the definitions provided in Eq. (7.163)—(7.167)
will satisfy this condition. Here the superscript ‘s’ represents that these coefficients for the

transform functions are for obtaining the “symmetric” reduction of the Hamiltonian.

0 = Cg210 = Coz01 = Co120 = Co102 (7.162)

1
Hos (X, X, Z)+Hgg (X, 2, X)+Hgg (2, X, X
BX+By—ZBZ)(( (XX, 2)+ Hog (X, 2,X) + Hog (2, %, X)) 7163

_(HO3(y, Y,Z)+Hg (¥, 2,y)+He (2., y)))

Sz (X, Y):%(

1
S, (X,2)=
0 (%7) (B, 58, +4B,)
3 1
X(_EH%(y’y'y)_E(Hos(X'X’y)+H03(X'ynx)+H03(y,X,X)) (7.164)
+2(H03(y,z,z)+H03(z,z,y)+H03(z,y,z)))
1
Sy, (Y, 2)=
o (¥.2) (5B, +B,+48B,)

X(g Hos (X, X, X)J%(Hos (%Y, ¥)+Hog (%, ¥) + Hos (¥, ¥,X)) ~ (7.165)

_Z(Hos (%2,2)+Hos (2,%,2)+Hg (2,2, X)))
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1
S (X, X)=—=7—"—(Hp (X, ¥,Z)+Hg (X, 2,y)+Hp (Y, X, Z
0=~ g (He009:)  Ho (52 Ho(502) -
+Hog (¥, 2,X) + Hg (2%, Y) +Hgs (2, Y, X))
0=S,(Y.Y)=S4(2,2) =S5, (¥, X) =S, (2. X) =Sp5 (2, Y) (7.167)

DEFINITION OF THE REDUCED COEFFICIENTS

We can now write the full expression for the coefficients of the reduced Hamiltonian.
Substituting the “symmetric” reduction transform function coefficients into the reduced
coefficients allows us to write the definitions for the reduced Hamiltonian in the cylindrical tensor

form, as shown in Eq. (7.168)—(7.170).

(By_BZ)
B, +B,-2B,)

(Bx _BZ)
(B, +B,-2B,)
(-B,+B,)
(-5B,+B, +4B,)
><(3H03(x,x,x)+ Hos (X, ¥, ¥)+Hes (V. %, ¥) +Hes (Vs y,x))
1 (BX_By)
2(-5B, +B, +4B, )
_i (By _BZ)
Cao001s = 2 (BX —5By +4BZ)X

CmOS:( (Hos (XX, 2)+ Hog (X, 2,X) + Hg (2, %, X))

+

(Hos(Yv sz)"'Hoa(YvZ, Y)"‘Hos(z’ Y, Y))

1
Coo10s = E x

(Hos (X,2,2)+Hoy (2,%,2) +Hys (2,2, X))

x(3Hqs (1 Y5 ¥) + Hoa (%%, ¥) + Hos (%, ¥, X) + Ho (¥, X, X))

_ (BX _ By)
2[5, 55, 145, w2 He(zey) Ha(zye) o (168)
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Coz00s = ~C2100 T H03(Z, Z, Z)
1 (-2B,+B, +B,)

C =— H.. (X, X, X
0030s 2(_SBX+By+4BZ) 03( )
1 (BX_BZ)
+_
2(-5B, +B, +4B,)

1 (Bx_By)
+_

2(-5B, +B, +4B,)
i (B,—2B,+B,)

(Hog(xv Y, y)"‘ Hos(yv X, y)"‘ Hos(y’ Y, X))

(Hos (X,2,2)+Hoy (2,%,2) +Hg (2,2, X))

¢ =5 H v Yo
0003s Z(BX—5By+4BZ) (V.Y Y)
+l (By_Bz) (H (X%, Y)+Hg (X, y,x)+H (yxx))
Z(Bx_5By+4Bz) eAm 03" 03\ )™
i (B,-B,)
5 H H H (7.169)
28, 58, +48,) "o (1 2:2) i (229) +Hoa (2.9.2)
0 = Coz105 = Coz015 = Coz20s = Corozs (7.170)

Ratio of Coupling Constants of Combinations and Overtones with Common

Vibrational Modes

We again consider the vibrational matrix element of H,, (Eq. (7.52)), but now for a pair
of undefined states |n,,n,) and |n, +1,n, —1) involving the normal modes v, and v,. When the

vibrational expectation values are evaluated, as in Eq. (7.171), we see that the only dependence on

the quantum numbers n, and n, occurs in the constant that multiplies the rest of the expression.

Using this expression, we can define a relationship between the coupling constants of different

sets of coupled states. That is, using Eqg. (7.172), we can write a ratio of the vibrational matrix
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elements as in Eq. (7.173). As will be discussed, this ratio has been observed experimentally in
the fitting of the lowest dyad and triad of benzonitrile (vide infra).°
(n,,ny|Hy n, +1 0, —1)
=22 Hao (i ka)(nnya;py n, +1n, -1)J,

jk «a
+> D Hyy (i koa){n,,ny|p;a [n, +1Ln, —1)J,, (7.171)

jk «a

:%‘/n +1) an( o(aba) H21,0(b’a’a)

—H,,,(a,b,a)+H,, (b, a,a))Ja

(N, +A,,n, + Ay | Hy |0, +A, +1n, + A, —1)

:%\/(na 8, +1) (1, +A,) Y (Floyg (3,0, @)~ Ay (b a,) (7.172)

a

- I:Izm(a, b,a)+ I:|21]1(b, a,a))Ja

(N, + A0+ Ay [Hy [Ny +A, +1,0y + Ay 113 _ N/(na +A, +1)(n, +A,)
<na’nb|H21|na +1’nb _1> (na+l)nb

(7.173)

In fact, the derivation of the ratio of coupling constants can be generalized to describe the
relationship of any off-diagonal vibrational matrix elements that involve the same set of vibrational
modes. We can define an arbitrary vibration-rotation Hamiltonian with vibrational degree of two
asin Eq. (7.174). Evaluation of this Hamiltonian for an arbitrary pair of vibrational states leads to

an extensive expression (see Supporting Information) that can be used to obtain the relationship

provided in Eq. (7.175). The ratio for matrix elements of H,, derived previously (vide supra) can

be obtained from Eq. (7.175) using the values n, =n,+1, n,=n,-1, and H, =H,. More
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importantly, however, the formula shows that every off-diagonal matrix element is directly

proportional to other off-diagonal matrix elements involving the same set of vibrational modes and

selection rules. To illustrate, per Eq. (7.175) the coupling constants of (v, |H,,|w,) are directly
proportional to the coupling constants of (2v,|H,.[va,vy).  (2va, 20, |Hon|va, 30s),
(Va Vo [Han|2v,)s (2va, v | Hon|Var 2}, (Vo34 |[Hp[414,), and more.  Note that while this

derivation ignores contributions from terms with higher degrees of vibration i.e., I:I4n , such terms

are at least two orders smaller, and excluding them should have little to no effect on the outcome.
Furthermore, our discussions regarding the reduction of rotational operators have no impact on the
relationships of these coupling constants, as the ratios are independent of the nature of the

rotational operators.

Hy= D0 Y Hpo (Kbt h,e )0, 0,3, 3, xooxd,

ety Kl
+ Z ZHZn,l(kJ;ro’rl"--arn)Qkp|Jr0Jr1><---><Jrn
Ryl Kl
- (7.174)
+ z ZHZn,Z(k’I;ro’rlv--’rn)pkqP]rOJrlX"'XJrn
LR kl

+ 3 D Hpa (kb h o n )PP, X x

[ LI A
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)

s J(n, + A, +1)(n, +A, +2)+ s J(n, +A)(n, +A,-1)
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RESULTS AND DISCUSSION

In principle, the vibration-rotation coupling constants can be predicted using the results of
anharmonic frequency calculations and the formulas we have derived. To assess the quality of
these predictions, we compare the computational predictions to the experimental coupled-state fits

of benzonitrile.?

First, we consider the lowest energy dyad consisting of vibration-rotation coupling between

the fundamentals v,, (141 cm™)and v4; (160 cm™). Using the I representation and the formulas

in Eq. (7.59) and Eq. (7.130), we can predict the values of the first and second order Coriolis
coupling constants using the results of a CCSD(T)/ANOO VPT2 calculation. As shown in Table
7.2, the Fyc coupling constants predicted by Eq. (7.130) are indeed quite close to those determined
from the coupled-state fit of the experimental data, with the predicted constants being 14% smaller.

Whether or not a higher level of theory results in improved theoretical values remains to be seen.



328

Table 7.2. Comparison of Theoretical Predictions of Coriolis Coupling Constants using

CCSD(T)/ANOO to Experimental Results for the Lowest Energy Dyad and Triad of Benzonitrile.

Ga (M HZ) Fbe (MHZ)
State 1  State 2 Exp.° Eq. (7.52) Exp.  Eq.(7.134)
V22 V33 9531. (46) 9351. 0.412 (30) 0.355

2v,, Vo +Vs  13476.329 (25) % 13223.615 0.58568 (16)  0.503
Vo + V33 2y, 13476.329 (25) # 13223.615 0.58657 (14)  0.503

2V, + Va3 Voy + 2V 18701.015 0.711
2 These G, values were set equal to each other in the fit

As mentioned earlier, a rather particular relationship was observed in the coupled state fits

of the lowest energy dyad and triad of benzonitrile.® Specifically, the first order Coriolis coupling

between an overtone and combination band, (2v,;|G, |1v,,,1v;,), was found to be larger than the
corresponding coupling of the fundamentals of the two modes in question, <v22|Ga|v33>, by

approximately a factor of J2. Using the ratio provided in Eq. (7.173) and the values ny, =0,
n, =1, A;;=1,and A,, =0, we find that such indeed is the factor by which these two coupling
constants should differ. If instead we use the values A;; =0 and A,, =1, the same ratio is obtained
for the coupling of the same combination band with the other overtone, (2v,, |G, |1v,,,1v5,). And,

using the expression derived in Eq. (7.175), we can extend this statement to include the rest of the
coupling constants involved. That is, the ratio in Eqg. (7.176) is independent of the rotational

operators, and so applies to Ga, Gb, Ge, Foc, Fac, Fab, Ga’, GaX, Gp’, etc.

(W3, 1v5 | Ga [ 2V35, 0vz) _ (0vas, 2V |G| ves Wvpp) _ V2 (7.176)
<Ov33 v, | G, |1v33, Ov,, > <0v33 vy, | G, |1v33 ,0v,, > 1
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This can be further illustrated by considering the formulas for the second order Coriolis
coupling constants obtained from the vibrational matrix element of H,,. The generalized matrix

element of Eq. (7.177) can be applied to the coupled states in question to yield Eq. (7.178)—(7.180)
. Comparison of these matrix elements reveals that the ratio of Eq. (7.176) does indeed hold for
the second order Coriolis coupling. Thus, the theoretical predictions of the coupling values of
these states are multiples of the coupling constants of the two fundamental states. The theoretical

values provided in Table 7.2 reflect this fact, and the complete expression for calculating ratios of

I:I2n coupling terms is provided in Eq. (7.175).

(n,,n, [Hy,|n, +1,n, —1)

1 ~ ~
= E«/(na +1)n, 3" (Fopo (@b, 15, 1) + Fy (b1, 1) (7.177)

ol

+H,.(a,b, 1, 1) +Hyp, (b2, 1, rl))J J.

o

- 1 - -
(V| Flyy |[Va3) =§Z(sz,o (22,33,1,,1,) +H,(33,22,1,1;)
fo.h (7.178)
+H51(22,33,15, 1)+ H,,,(33,22,1,1)) . I,
(235 |Flys | Vi Vag ) =£Z(F|22,O (22,33,1,,1,) +H,(33,22,1,,1;)
2 % (7.179)
+H51(22,33,15, 1)+ H5,,(33.22,1,1))J, 3,
(25 [Flyy [V Vs ) =£2(H22,0(22,33, o 1)+ F0(33,22,1,1,)
2 (7.180)

+H5, (22,331, 1)+ Hy,, (33,22, 1,1,)) 3, J
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Preliminary Results of the vib-rot-Van-Vleck Program

As discussed in the Introduction and Methods sections, we are developing a computer-
aided derivation program for the derivation and numeric calculation of effective Hamiltonians
using Van Vleck perturbation theory. From our efforts in deriving various transformed
Hamiltonians, and as illustrated in the Derivations section, the complexity and length of the
derivation of the transformed Hamiltonians greatly increases as the order of the terms get larger.
As such, though the derivation process is unchanged, the derivation of higher order terms requires
a considerable amount of time and effort. Therefore, the primary goal of program is to reproduce
the methodology described in this work, so that we can more easily extend the methodology to
higher order transformations. A secondary goal of the program is to facilitate the calculation of
numeric predictions of the coupling constants of any given molecule by combining the results of

the computer-aided derivation with the results of ab initio calculations. We assess the efficacy of

the program by considering the results for the derivation of I:Izz. We limit this evaluation to

numeric results at this time, as the current symbolic results are rather unwieldy and require the

implementation of a simplification procedure to obtain expressions like those derived above.

First, the numeric results obtained using the vib-rot-Van-Vleck program and a
CCSD(T)/ANOO VPT?2 calculation of benzonitrile agree exactly with the numeric results in Table
7.2 obtained from evaluating the vibrational matrix elements of Eq. (7.52) and (7.134). Next, we

considered the a corrections to the rotational constants for the ground state as well as the v,, and
V43 fundamentals. As demonstrated in Table 7.3, the a corrections of the ground state calculated

using the vib-rot-Van-Vleck program (vrVV, r.t. = 30 cm™) agree well with those reported by the
VPT2 calculation. The o corrections for the two fundamentals examined are considerably

different, but we believe this is due to the known absence of “deperturbation” in the VPT2 results.
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More specifically, for the A rotational axis the VPT2 a corrections for the two fundamentals are
unexpectedly large, roughly equal in magnitude, and opposite in sign. This arises due to the
presence of Coriolis coupling between the two states and is manifest in the a corrections because
the resonant denominators have not been removed from the expression used to calculate them.
Since the vib-rot-Van-Vleck program uses the methodology we describe in this work, however, the
resonant denominators are inherently excluded from the evaluation of the a corrections, which

yields results more similar to the ground state corrections.

Table 7.3. Comparison of Theoretical Calculations of the o Corrections to the Rotational

Constants of Benzonitrile using CCSD(T)/ANOO

State B;-B, B -B B -B
VPT2 45.658 6.779 6.544

Ground VrVV (r.t.=30 Cm'l) 45.663 6.779 6.544
vrVV (r.t. =0cm?) 45.663 6.779 6.544

VPT2 -167.892 1.656 1.751
viVW (rt.=30cm?) 50773 5123 4794
W (rt.=0cm?) 213554 5123 4794

VPT2 166.6908 2747  0.795
Vaa VIV (rt.=30cm?) 41747 4032  5.750
ViV (rt.=0cm?) -121.035  4.032  5.750

We can test this assertion by enforcing a strict resonance threshold of zero, thereby
removing the deperturbation effect of the denominator function. That is, by setting the resonance
threshold to zero we can calculate the perturbed o corrections. As we can see by the results in
Table 7.3, the o corrections calculated with the strict resonance threshold (‘r.t. = 0 cm™”) for the
fundamental states manifests a large and opposite magnitude o correction for the A rotational axis,

similar to the result of the VPT2 calculation. Interestingly, it appears that even though these are
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the perturbed a corrections, the values for the B and C rotational axes are identical to those of the

deperturbed calculation. We are thus fairly confident that the vib-rot-Van-Vleck results are
accurate for predictions of second order Coriolis coupling constants derived from H,,, and are
optimistic about the results of higher order terms.

Next, we demonstrate the character of coupling for benzonitrile by reporting the nonzero
vib-rot-Van-Vleck predictions of the first and second order Coriolis coupling constants in Table
7.4 for unique combinations of the fundamental states of benzonitrile with energy ca. 1000 cm™
or less. An interesting feature of Table 7.4 is the coupling between v,, and v, and the coupling
between v,; and v,: despite the absence of first order Coriolis coupling, each set of states has

significant second order Coriolis coupling. Attempts to fit experimental spectra of these coupled

states with a first order term would likely be unsuccessful.

Table 7.4. The Nonzero vib-rot-Van-Vleck Predictions of 1% and 2" Order Coriolis Coupling

Constants for Fundamental States (<1000 cm™) of Benzonitrile using CCSD(T)/ANOO.

State 1* State 2 Axisx Gx (MHz) Fy, (MH2z)
vy (Br) vz (B2) A -9350.508  0.355
vy (B1) vis (A2)  C 0. -1.080
vy, (B2) vy (B1) A 7409.005  0.065
vip (A1) v (B)) B -760.620  0.034
C
A

viz (A2) vy (Ba) 0. 0.217
Viz (A2) vy (Ag) 1683.940  0.007
V16 (Bl) VlO (Al) B 193834 '0051

& The state is followed by its symmetry in parentheses.

As stated above, our goal for the vib-rot-Van-Vleck program is to be able to obtain
predictions of even higher order coupling constants. The next order of consideration is the third

order Coriolis coupling constants i.e., Ga’, GaX, etc., derived from the transformed Hamiltonian
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H,,. The vib-rot-Van-Vleck is able to derive the symbolic form of H,,, but the expression is

extensive (several thousand lines), due to the present lack of a routine for the simplification of the
computer algebra representation of the Hamiltonian, and so it is impractical to report the symbolic
form at this time. Despite the size of the expression, the vib-rot-Van-Vleck program is still able to
use the symbolic result it derived to conduct numeric calculations, provided sufficient
computational data from a VPT2 calculation is provided to the program. The numeric results

obtained are effectively the H, coefficients described in Eq. (7.135). The nonzero results for the
vibrational matrix element between the v,, and v,; fundamentals are presented in Table 7.5.
Similar numeric results can be obtained for the coupling between 2v,, and v,, +v,, as well as the

coupling between v,, +v,; and 2v,,, and they are simply larger by a factor of J2 , consistent with

our previous analysis (vide supra).

Table 7.5. Nonzero Coefficients of Third Order Rotational Operators Describing the Coupling

Between v,, and v,, Fundamentals of Benzonitrile. 2

Operator Term Value of the coefficient
(I" representation) from vrVV (MHz)

Hs (%,%,2)3,J,J, 0.001831
Hs (%,2,%)3,J,d, 0.003867
Hos (Y. Y.2)3,3,d, 0.000108
Hos (Y.2,¥)3,3,d, 0.000021
Hs (2,%,%)J,3,J, 0.001831
Hes (2., y)J,3,d, 0.000108
Hy(2,2,2)3,9,9, 0.005073

2 Using computed data from CCSD(T)/ANOO VPT2 calculation
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With the coefficients of the third order coupling Hamiltonian so defined, and using the
computed rotational constants of Bx = 1527.107883, By = 1200.894594, and B; = 5621.768537

MHz, we can numerically evaluate the reduced coefficients we obtained in the preliminary
rotational reduction of |:|23, given by Eq. (7.156)—(7.158) and Eq. (7.168)—(7.170). The nonzero
coefficients that result are C2100a = C2100s = 0.004023 MHz and Coso0a = Cozoos = 0.001050 MHz,
which should correspond to Ga? and G2, respectively, for the coupling between the v,, and v,
fundamentals of benzonitrile. Experimentally, Ga’ was determined with a value of —0.004594 (20)
MHz, while G.X was not reported.® Ignoring the difference in sign (which is due to the vrvV
prediction of Ga being negative instead of positive), we see that the value of G’ is predicted to

within 15% of the experimentally determined value. Since the H; coefficients calculated for the

coupling in the higher quanta triad are proportional to the coefficients calculated for the dyad, so

too are the resulting predictions of G’ and GzX. We are thus optimistic that the vib-rot-Van-Vleck

program is correctly calculating the numeric (and by inference, the symbolic) expressions of |:|23
and that the preliminary reduction we determined for H,, is likely close to the outcome that will

be achieved after application of the reduction formalism that was applied to H,,.

CONCLUSION

While the formula H,, derived in this work has been in the literature for nearly a half-

century, and so too the method for the rotational reduction of its vibrational matrix elements, the
application of Van Vleck perturbation theory to obtain theoretical predictions of Coriolis coupling
constants has largely been absent. At the time the theoretical framework was being developed,

rotational spectroscopy was limited to low values of J and K and the effects of Coriolis coupling
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were well treated by a first order term. In addition, the high computational cost for obtaining the
requisite cubic force constants limited the application of the theory to small molecules. Thus, for
the most part, the application of the theory to obtain predictions of higher order coupling constants

remained a potential.

Now, the advances in hardware and analysis allow for the measurement and fitting of
rotational spectra to values of J and K in the hundreds. The fitting of such spectra, particularly for
coupled vibrational states, requires higher order terms to properly describe the Coriolis coupling.
Combined with the advances in computing power, we are now in a position where the theoretical
framework previously developed can be applied and adequately assessed for larger molecules.

Such is the primary focus of the present work, and in works to come.

In addition to obtaining formulas for the theoretical prediction of second order Coriolis
coupling constants, the implementation of the theory has revealed a potentially powerful insight
into the relationships of coupled vibrational states. The multiplicative relationship of coupling
constants that share common vibrational modes and selection rules expands the set of
spectroscopic data that can be used to determine the coupling constants. For example, the coupled
state fitting of the lowest energy dyad in benzonitrile was conducted separately from the coupled
state fitting of the corresponding triad, but by applying the results of the ratio expression in Eq.
(7.175) these treatments could have been combined. Furthermore, the coupling constants
determined for a relatively isolated set of coupled vibrational states could be used to assist in the
fitting of a more complex polyad that shares some of the same vibrational modes, and this potential
is further extended by the observation that the ratio expression in Eqg. (7.175) is not limited to
describing the relationship of coupled states to their corresponding pair of fundamentals.

Regardless of how this insight is applied, the proportional relationship of the coupling constants
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can be used to reduce the number of parameters that require optimization in the fitting of coupled

vibrational states.

At present, the prediction of the first and second order Coriolis coupling constants is limited

to the case where the change in vibrational quanta between the resonant states is zi|Ani| =2,

which largely limits the predictions to pairs of fundamental states and their higher quanta
combinations. The prediction of the coupling between other resonant vibrational states requires

different terms of the transformed Hamiltonian. For example, the first order Coriolis coupling

constant between a fundamental and an unrelated combination — (v, |G, |vg, V) — involves a

change in vibrational quanta of three separate vibrational modes, and as such requires a product of

three different vibrational operators to obtain a nonzero expectation value; that is, the prediction

of such a value requires the determination of |:|31. Similarly, the corresponding second order
Coriolis coupling constant requires determination of H,,. If instead the resonant states are an
overtone and an unrelated combination i.e., (2v,|G,|vg,vc), then a product of four vibrational

operators is required, and so on and so forth. The determination and application of such
expressions to obtain predictions of vibration-rotation coupling constants is of considerable
interest to us in our works involving the fitting of rotational spectra of coupled vibrational states,
and as we continue to develop the vib-rot-Van-Vleck program. Before we reach too far, however,
we will need to explore the accuracy of the predictions that we can calculate now for a variety of
experimentally measured and fit coupled-state rotational spectra and consider the dependence of

the predictions on the level of theory employed for the underlying vibrational calculation.
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[pa1pb] 0
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[0 AP ] =520
[qa7 pch] = i5ach (782)
[qa’ pbpc] = ié‘acpb + i§abpc

[qaqb’pc] = ié‘bcqa + ié‘acqb
[9.Py. P ] =i5,.P, (7.53)
[P0, P | =6,cP,

Generalized Rotational Commutator

13,9, ]= —i;eaﬁny (7.54)

Vibrational Matrix Elements
(v|a|v£1) :\/%[v+%(lil)J (7.55)
(v|p|v£1) ::Li\/%(v+%(1irl)] (7.56)

Coefficients of the Expanded and Ordered Vibration-Rotation Hamiltonian

The following are the definitions of the coefficients used to abbreviate the terms of the

original Hamiltonian, where @, is the frequency of the kth harmonic vibrational mode, K, is the

cubic force constant (invariant to change in ordering of indices), B, is the rotational constant for
the a axis, ¢y, is the Coriolis zeta coupling constant between the a and b harmonic vibrations
through the « axis, and C% is the unitless rotational derivative. The cubic force constant K.,

is invariant to changes in the ordering of its indices, ¢5 =—¢%, {2 =0, and C¥ =C/*.
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(7.57)

(7.58)

(7.59)

(7.510)

(7.511)

(7.512)

Table 7.6. Transformation of ~ J* Rotational Operators from Cartesian to Cylindrical Form

Cartesian Form Cylindrical Tensor Form
JJ, %JZ—%J§+%(JE+J5)
JJ, —%(JE—JE)—%JZ
3,3, %(JZ(J_+J+)+(J_+J+)JZ)+%(J_—J+)
J,J, —%(JZ—Jf)+12JZ
3,3, %JZ—%Jf—%(JEJrJf)
3,9, —%(JZ(J_—J+)+(J_—J+)JZ)—%(J_+J+)
J,3, %(JZ(J_+J+)+(J_+J+)Jz)—%(J_—J+)
J,J, —%(JZ(J_—J+)+(J_—J+)JZ)+%(J_+J+)

J,J, J2

z
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Overview of the vib-rot-Van-Vleck Program

The vib-rot-Van-Vleck program is a computer-aided derivation program for obtaining
transformed Hamiltonians using contact transformations. The program also has features for
routine numeric evaluation of the vibrational matrix elements of such transformed Hamiltonians,
using results of ab initio calculations. Essentially, the program is an object-oriented
implementation of the methodology described in the paper. In addition to the use of the SymPy

package, the program utilizes open-source packages of NumPy, tqdm, pandas, and SciPy.

The program contains three classes: the DataObject, the EquationObject, and the
NumericObject classes. The DataObject contains ab initio data of a molecule and is initialized
using the output files of an ab initio calculation which are formatted in a consist fashion for later
use in the NumericObject. The EquationObject is the core of the symbolic derivation of the
transformed Hamiltonian and is initialized by providing the degrees of vibration and rotation of
the desired Hamiltonian. The NumericObject combines one DataObject and one EquationObject
and creates the numeric functions necessary to evaluate definitions contained within the

EquationObject.

The DataObject first parses the provided computational output files and organizes the data
it reads in. Furthermore, the DataObject defines a function for creation of VibState objects, each
one of which consists of a dictionary of the vibrational modes and their corresponding quanta.
Effectively, the VibState object is a representation of a particular row (or column) of the vibrational
matrix of the molecule in question and can be used to evaluate expectation values within the

NumericObject.

The EquationObject applies the transformations discussed in the paper to a Term or

Expression class. Specifically, a Term is a representation of a summation in the form of Eq. (7.18)
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and an Expression is a combination (addition) of Terms. A Term consists of vibrational operators,
rotational operators, a symbolic coefficient, and the vibration and rotation indices of which the
operators and coefficient are functions of, along withs methods for the arithmetic manipulation of
the summation it represents. Combining two Term objects creates an Expression, which sorts and
assesses the component Terms to obtain the smallest Expression object possible. That is, if Term
A uses the same operators as Term B and if it has the same number of vibration and rotation
indices, the Expression will consolidate the two Terms by judicious relabeling of the summation
indices and adding together the relabeled coefficients. The Term and Expression also contain
methods for implementing vibration and rotation commutators, as per the formulation in Eq. (7.10)
—(7.12).

To obtain the transformed Hamiltonian, the EquationObject determines the necessary
sequence of contact transformations required. Using a generic set of term objects (composed of m
vibrational degrees, n rotational degrees, and “H” or “S” designation), the EquationObject
iteratively applies the contact transformations to obtain an expression of the jth transformed
Hamiltonian, and application of the selection braces using the relations in Eq. (7.13)—(7.17)
quickly yields the general equation that must be evaluated. The defining equations of the transform

functions are similarly obtained as per Eq. (7.9).

To obtain solutions of the transform functions, the EquationObject makes use of the ladder
solution. Thus, analogous LadderTerm and LadderExpression objects are utilized, and — provided
the defining equation and using a symbolic representation of the denominator — the definition of
the transform function is obtained, as per Eq. (7.26). The Term and Expression and the
corresponding LadderTerm and LadderExpression objects include methods for interconverting

between the two types using the definitions in Eq. (7.19)—(7.21) and properly accounts for the



344

summation over 6. The definitions of the transform functions are obtained in order as per their

sequence, with the previous definitions incorporated as required.

Commutators of Terms are evaluated as per the method demonstrated in Eq. (7.44)—(7.48)
and described in the corresponding text. Once the Kronecker deltas are evaluated, the resulting
Terms are combined into an Expression, which as noted previously will consolidate the expression
to obtain the minimum number of Terms. Once the transform functions are defined, the expression
of the desired transformed Hamiltonian can be obtained by evaluation of the proper set of
commutators. During the symbolic derivation process, the program defines new coefficients to
simplify the representation of expressions, akin to the process in the paper. The implementation
of a simplification routine is currently underway to allow for the evaluation and consolidation of
expressions into molecular terms, as per the expression provided in Eq. (7.130). Meanwhile, the
development of a rotational reduction procedure is still in progress as the implications of the

reduction of higher order coupling constants are considered.

The results of the derivation program can be exported and saved, and the exported files can
be imported back into the program at a later time. Thus, the program does not have to redo the

symbolic derivation to utilize expressions in the NumericObject.

The coefficients of the original Hamiltonian can be defined with respect to the components
contained by the DataObject. These definitions are symbolic within the EquationObject. Thus, a
core purpose of the NumericObject is to create numeric functions by connecting the symbolic
definitions contained within the EquationObject with the numeric definitions of the computational
data contained with the DataObject. The NumericObject can also define numeric functions for the
coefficients created by the EquationObject and uses these definitions to obtain numeric functions

for the final coefficients of the transformed Hamiltonian. The numeric functions defined by the
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NumericObject utilize a cache function to accelerate evaluation of frequently used coefficients.
Using a pair of VibState objects from the DataObject, the NumericObject can calculate an arbitrary

vibrational matrix element for the transformed Hamiltonian contained within the EquationObject.

The program is under active development with the goal of fully reproducing the
methodology described within the paper and to make execution of the program user-friendly.
More details about the structure, features, and execution of the program will be provided at a later
time, and we are planning to make the project freely available through GitHub. Communications

regarding this program should be directed to A.N.O.



Off-Diagonal Vibrational Matrix Element of H,,,

The general evaluation of the off-diagonal matrix elements of a Hamiltonian with two degrees of vibration is given by Eq. (7.513)
. The definitions H,, 5, H,n,, Hyn,, and H,, , are the coefficients of the vibrational operators qg, gp, pq, and pp, respectively. The
ratio discussed in the main text is implied to be the ratio of the coefficients of the same product of arbitrary rotational operators i.e., both
the numerator and denominator are coefficients of the same product J, J, x---xJ

ne

(7.513)
Supporting Derivations for Hy,

Derivation of S1»

First, we rewrite the defining part of Eq. (7.65) as an expression in terms of the ladder operators £".

Vo Toh

D)) ELHURIA| LS

Vo Toh oy,

O, Vo

Hy, =Y D Hi, (Vo 1, rl)[%Zlﬁ;“" ]Jro‘}rl

(7.514)

The transform function can then be defined as Eq. (7.515), as per Eq. (7.26).
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Sp = ZZZ (U Vo) 12(V0,r0,l’1)£\2'°\]r0‘]r1 (7.515)

Vo Tl oy,

Substituting back in the definition for the ladder operator yields Eq. (7.S16) where the coefficient is defined in Eq. (7.S17).

zzz ( 0) 12(\/0"’ovr1)((:]\,0—iO'\,OpVO)JrOJr1

o 01 % (7.516)
= DS (Vor 1o, 1) Py, I I
Vo ol
Si, (Vou o, 1) =—D(L Ve ) Hy, (Vo T, 1) (7.517)

Derivation of So1

First, we rewrite the defining part of Eq. (7.67) in terms of the ladder operators £*.

H, = ZZHzl V01V11r0[ Z[\;‘VOJ(_'Z 4/?1}]&)

VoVi O-VO

=23 3 (i Haln ) £ 60,

Vo1 o Oy, 0y

O'Vl

(7.518)

The transform function can then be defined as Eq. (7.S19), as per Eq. (7.26).

Sy, = ZZ Z (O'VO,VO;O'Vl,Vl)(O'Vl H,, (VO,Vl, ro)+0'VO H,, (Vl’Vm ro))[\‘/’OVo [glq‘]ro (7.519)

Vo\p To O_VOo_Vl

LVE



Substituting back in the definition for the ladder operator yields Eq. (7.S20), where the coefficients are defined in Eq. (7.S21).

Sy = Zz z %D(GVO'VO;GVl’Vl)(GVl Hy, (VO’Vll rO)JFO'VO Hy, (V1’V01 ro))(qvo —iO'VOpVO)(qu _iavlpvl)‘]ro

VOV]_ I’O O'VOO'Vl (7820)
= ) b Vo 1 T Iy . VD (R}

Zzsz1o(vo Vi ro)q a,J, "‘zzszn(vo Vi ro)pv Py, I

Vo\i To VoV To

1
Sy10(Vos Vi, Ty) :Z(D(l,vo;l,vl)(Hm(vo,vl, o)+ Hap (Vi Vo, 1)) =D (L Vg =1,V ) (Hag (Vo Vi Ty ) — Hip (V1 Vo, ro)))
(7.521)

Spu1 (Vo Vi 1) :%(D(l,vo;l,vl)(Hm(vo,vl, o)+ Hap (V3. Vo, 1))+ D (L Vg =Ly ) (Hay (Vo Vi Ty ) — Hay (V3 Vs, ro)))

Derivation of Sy

Two vibrational, one rotational, and one nested pair of vibrational commutators need to be evaluated prior to defining S, .

EVALUATION OF i[S1,, H3plv
Substituting in the definitions from Eq. (7.65) and Eq. (7.69) yields Eq. (7.522), where we have ensured that each summation
index is distinct.

i[Slz’Hso]V =i Zzslz (VO’rO’rl)pvo‘]ro‘]rl’ Z Ha (Vl’VZ’Vs)ququqV3
Vo Toh V1VaV3 \% (7822)

=i Z 2[812 (V01 fo, rl)pvo‘]ro‘]rl’ Hao (Vl’Vz’Vs)qvlquqV3 ]v

VoViVaV3 ol

8ve



We then apply the definition of the vibrational commutator from Eq. (7.12) to obtain the pure vibrational commutator in Eg. (7.523).

S12'H3o Z z S12 Vo fos Iy H30(V1’V2’V3)[pv0’ququqVJV(‘Jro‘]rl'1+1"]r0‘]r1)
VoV1VaV3 rorl (7.823)

- Z ZISIZ (Vo To 1) Hag (V11V21V3)[pvo,qvlquqv3 ]v NFNR

VoViVaVs ol

Next, the pure vibrational commutator is evaluated to give Eq. (7.524).

812’ H30 Z Zslz VO’ r-0' r-1 30 (Vl’VZ’V3)( v3v0qvlqv2 + vzvoqvlqv3 + vlvoquqv3 )‘] ‘J (7 524)

VoViVaV3 Tolt

The summations are expanded (Eq. (7.S25)), the Kronecker deltas are evaluated (Eq. (7.526)), and the results consolidated (Eq. (7.527)

).

i[Slz’HSO]VZ Z ZSIZ(VO’rO’rl)HBO(V1'V2'V3)5v3voqv1qv2‘lro‘]rl

VoViVaVs ol

+ 20 250 (Vo fo. 1) Hao (V1 V2,V3) 64,8 G, J 1, I (7.525)

VoViVaVs ol

+ Z ZSIZ(VO’rO'rl)HSO(Vl’VZ’VB) vivo O, Ay

VoV1VaV3 Tl

i[SpoHaol, = D0 D S1 (Vo Tor ) Hag (V1. V5,V ) 01,0, I,

VoviVa foh

+ 2 2250 (Vorfo 1) Hao (V1. Vo, V3) Gy, Oy, J 5, I (7.526)

VoViVs ol

+ Z 2812 (VOv ) Hag (VO’VZ’V3)qV2qV3‘JrOJI‘l

VoV2V3 foh

6vE



S12’H30 Z Zslz Vz’ro'rl ( 30(V07V1’V2)+Hso(V07V27V1)+Hso(Vz'Vo7V1))qV0qu‘JroJrl (7.527)

Voviv2 Toh

EVALUATION OF i[S;5, H3plv

Substituting in the definitions from Eq. (7.75) and Eq. (7.70) yields Eq. (7.528), where we have ensured that each summation

index is distinct.

i[521v H21]\/ =1 ZZSZLO (V01V1' I‘O)CIVOCIVIJ,O +ZZSZLI (VO’Vl’ rO)pvopvl‘]ro ’ZZHH (VO’Vl’ ro)qvopvl‘JrO

VoV To VoV To Vo\i To Y

=i Z Z[SZLO (Vo Vi Ty )qvoqvl‘]ro Hp (V5 rl)qupv3‘]r1 }v (7.528)

VoViVaV3 ol

+i Z 2[821,1 (Vo Vi, rO)vapvl‘Jro Ha (V5 v, )0y, Py, ]v

VoViVaV3 ol

We then apply the definition of the vibrational commutator from Eqg. (7.12) to obtain the pure vibrational commutators in Eq. (7.529).

. . 1
'[821’H21]V:' Z 25821,0(V0’V1!ro)Hzl(Vz’Vs’ﬁ)[ququ’qupvJV(‘]roJrl+‘]r1Jr0)

VoViVaV3 ol

H Z Z 211 VO’Vl’rO Hzl(vz’v3’rl)[pVopvl’qupvs:'v(Jfo‘]rl+‘]f1‘]ro)

VoV1VaV3 o r1

(7.529)

Next, the pure vibrational commutator is evaluated to give Eq. (7.S30).
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S21'H21 =i Z Z 21,0 VO'Vl’rO H21(V2’V3’r1)(|5vv3qvoqv2+|5v0v3qv2qvl)<‘] J, Jr‘Jr‘JrO)
VoV1VaV3 rofl

(7.530)
+ Z Z S211 VO'V1’rO H21(V2’V37r1)( ( vzvlpvopvs+|5v2vopvlpv3))(‘)ro‘]r1+Jr1‘]r0)

VoviVaV3 roﬁ

The summations are expanded (Eq. (7.S31)), the Kronecker deltas are evaluated (Eq. (7.S32)), and the results consolidated (Eq. (7.S33)
).

S21’H21 Z Z S210 (Vor Vo T ) Hay (V2 V5, 1) 6 \pv; Ay, Ay, (Jro‘]rl+‘]r1‘Jr0)

VoViVaV3 fohh

+ Z Z S210 V07V1’r0)H21(V2’V3"1) vovs v, Ay (Jro‘]rl+‘]r1‘]r0)

VoViVaVs Toh

(7.531)

+ Z Z S211 VO’Vl'rO) 21(V2'V3’ ) vzvlpvopv3 (‘]ro‘]rl""]rl‘]ro)

VoV1VaV3 rOrl
+ Z z S211 Vo, V1 rO)H21(V2'V3'rl)é‘vzvopvlpv3 (‘]ro‘]rl+‘]r1‘]r0)

VoV1VoV3 Irorl

S21’H21 Z z S210 (Vorvi Tp)H 21(V21V11r1)q\/0q\/2 ('Jro‘]r1+‘]rl‘]ro)
Vo\1V2 Tl
+ z Z S210 V07V1fr0)H21(V2’Vo’rl)ququ (‘]rOJrl +‘Jrl‘Jr0)
Yotttz Toh (7.532)

+ZZ Sp1a (Vo Vi 1o)H 21(V11V31r1)pv0pv3(‘]r0‘]r1+Jr1‘]ro)

Vo1V To "1

+z Z 211 vo,vl,rO)H21(v0,v3,r1)pvlpv3 (‘]ro‘]r1+‘]r1‘Jro)

VoViV3 To r1

16€



. -1
|[821'H21]\/ = Z Z_(SZLO (Vo’Vz’ro)H21(V1’V27r1)+521,0 (V2’V1’ro)H21(Vo'V2'r1))qvqu (J J, Jr‘Jr‘JrO)
Voviv2 foh

(7.533)
+Z Z ( 211 VO’V2’r0)+8211(v2’V0'rO))HZI(VZ'VPrl)pvopvl(‘]ro‘]rl+‘]r1‘]r0)

VoV "orl

This process is repeated to consolidate the rotational operators as well.

-1
[8211H21 Z Z ( 210(V01V21r0)H21(V11V21r1)+8210(V2’V1'ro)Hzl(Vo’Vzirl))ququ

VoviVa foh

+Z Z ( 21,0 Vo’V27r0)H21(V1’V2’r1)+821,o(V2'V1'ro)Hzl(Vo’Vz’rl))q%q\/l‘]rl‘]ro

VoviVa Toh

+ZZ ( 21 ( Vo’Vz’ro)+8211(V2’V0’ro))Hzl(Vle: )pv pyJyJ

VoV1V2 To r1

+Z Z ( 211 Vo Vo, r0)+8211(v2 Vos I’O))HZI(VZ,vl,l'l)pvopvljrljro

VoViva To r1

(7.534)

-1
[821’H21 Zz (210(V01V21r0)H21(V11V21 )+8210(V2’V1’rO)HZl(VO1V21 )+8210(V01V21r)H21(V1’V2’r0)

VoviVa foh

+S510 (Vs Vas 1) Hag (Vo Vs ro))‘:1\/0(:]\/1\]r0~]rl

+Z Z (( 211 Vo’Vz’r0)+8211(V2’V0’ro))H21(V2’V1’r1)

VoViVa ro"1

(7.535)

+(Sz1,1 (Vo Vo, rl) + S21,1 (Vz Vo '1)) H,, (Vz’Vlf Iy ))pvo pvl‘] ro‘Jrl

¢se



EVALUATION OF i[S,1, Hp2 |r

Substituting in the definitions from Eq. (7.75) and Eq. (7.72) yields Eq. (7.S36), where we have ensured that each summation

index is distinct.

[SZl’HOZ =i 228210 VO’Vl’rO)qvoqvl‘]rO+228211 VO’Vl’rO)pvopvlJro ZHoz (5)J r0

i o ? (7.536)
:iZZ[Szm (Yo V0,1 qVOq"lJrO’ o2 (1)9 ] +'ZZ[ 211 VO’Vl’rO)pvopvl oz('i)ijR
Y0t ot VoVi Tof

We then apply the definition of the rotational commutator from Eq. (7.12) to obtain the pure rotational commutators in Eq. (7.S37).

S21'H02 —'Zzszlo Vo, Vs T Hoz('l)ququ[JrolJéJR+i22821,1(V01V11r0)H02(rl)pvopvl[Jr()"]fl]R (7.337)

Vovi Tol Vovi ol

Next, the pure rotational commutators are evaluated to give Eg. (7.538).

i [821’ HOZ]R = IZ z (_ierorlrz )821,0 (VO’Vl’ r-O)HOZ (rgl.)qvoqvl (‘]rl‘]rz +Jr2Jr1)
Vo\p Tohly (7. 838)
_HZZ( rorlrz) 211 VO'Vl’rO)HOZ(rl)pvopvl (Jrl‘]rz +‘]r2‘]r1)

Vovi Tolil2

The summations are expanded (Eqg. (7.S39)) and the results consolidated (Eq. (7.S40)).
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i [821' H02 ]R = IZ Z (_ierorlrz )821,0 (VO’Vl’ r0 ) H02 (rl)qvoqvl‘J rl‘J rn + Iz Z (_ierorlrz )821,0 (VO’Vl’ r0 ) H02 (rl)qvoqvl"]rz‘]rl

Vovi Tolil2 Vovi Tolil2 (7 839)
-HZ Z( rorlrz) 211 VO'Vl’ rO) 02 (rl)pvopvl‘]rl‘]rz -HZ Z (_ierorlrz )821,1 (VO’Vl’ rO)Hoz(rl)pvopvl‘Jrz‘]rl
Vovi Tolil2 Vovi ol

8211 H02 Z Z €rorlrz 21,0 VO’Vl’ r2)(H02 (rO)_ HOZ (rl))qvoqvlJroJ'l
VoV fofir2 (7.540)

+Z Z €r0r1r2 S21,1 (VO’Vl’ r2 )(H02 (ro) 02 (rl))pvopvl o1

VoV ol
EVALUATION OF — % [S21, [S21, Hoolvly

(i) Inner commutator

Substituting in the definitions from Eq. (7.75) and Eq. (7.68) yields Eq. (7.S41), where we have ensured that each summation index is

distinct.

[521’H20 225210 VO’Vler)qvoqvl‘]ro+ZZSle VO’Vler)pvopvl‘]ro ZHZO Vo qu+ZH20 Vo pv0

Vovi To VoV To

v
= Z Z[ 21,0 VO’V1’r0 0y, Ay Jr, Hao Vz q\/z:' Z Z[ 21,0 VO'Vl’rO 0y, Ay I, 20(V2)pv2]v (7.541)
Vo\pVo Vo\aV2
+Z Z[ 211 V0'V1’ro)pvopv1 o Hao (V2) qV] Z Z[ 211 VO’V17r0 Py, Py Js, (Vz)p\ZJV
VoViV2 To Vo\iv2 o

We then apply the definition of the vibrational commutator from Eq. (7.12) and eliminate the trivially zero commutators to obtain the

pure vibrational commutators in Eq. (7.542).
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S21 Hzo z zszlo Vo, Vi, Tp ) Hyg (Vz)[ququapsz ilv‘]ro + Z Zszl,l(vwvlvro)Hzo (Vz)[pvopvl,Q52 :IV‘]rO (7.542)

Voviv2 o Vovvz o

Next, the pure vibrational commutator is evaluated to give Eq. (7.543).

821’ H20 Z 28210 VO ! Vl’ r0 H20 (V2 )(2I§v vzqvo pvz +2i6, VoVa pvzqvl ) )
e (7.543)
+ Z 2821,1 (VO ! Vl’ r0 ) H20 (V2 )( 2I5v1v2 pvoqv2 2|5v0v2qv2 pvl )J o

Vo2 o
The summations are expanded (Eq. (7.544)), the Kronecker deltas are evaluated (Eq. (7.545)), and the results consolidated (Eq. (7.S46)
).

[SanHao |, = 2 D216, Soro(VorVar Ty ) Hag (V2) 0y Py, I,

VoViVa To
+Z 22' Sa10 Vo’Vllro) ( )pvqul %

VoViV2 To
(7.544)
+ Z z I5v1v2 Soa Vo’Vliro)Hzo (Vz)pvoquJr0
Vouiva o
+ Z Z Ié‘v o, 211 Vo’Vl’ro)Hzo (Vz)qupvlJr0
Vo\av2 To

[Sar Hzo ZZZ' Sy10 (Vor Vi T ) Hap (Vl)qvopvl‘] o +222i Sy10 (Vor Vi Ty ) Hap (VO)pvoqvl‘]ro
Vo1 fo Vo' o (7.545)
+ZZ )iS11 (Yo, Vi o ) Hao (V pvoqvl‘]ro+zz )iSu, VO'Vl’rO)HZO(VO)qvopvl‘]rO

VoV Ty Vovi To
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[821’H20 ZZZ'( 21,0 VO1V1’rO)H2O(Vl)_821,1(v0’vl'r0) 20(Vo))qvopv1 o
VoVp

(7.546)
+ZZZ'( 210 (Vos Vi 1o ) Hao (Vo ) =Sp11 (Vo Vo T ) H 20(V1))pvoq\/1 o

Vovi To

(ii) Outer commutator

Substituting in the definitions from Eq. (7.75) and Eq. (7.546) yields Eq. (7.S47), where we have ensured that each summation index is

distinct.
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1 1
_5[821’[821’ Hzo]V:'V :_E ZZSZLO (VO’Vl’ rO)qvoqvl‘Jro +22821,1 (VO’Vl’ rO)pvopvlJro

Vo\1 To VoV To
, Z Z 2i (821,0 (Vo VasTo ) Hao (V1) =S11 (Vor Vi, T ) Hao (Vo ))qvopvl %
VoV1 o
+ZZ 2i (821,0 (Vo V1, I ) Ho (Vo ) —Sy1 (Vo V1l ) Ho (Vl)) Py, Ay, Jy,
Vo1 Ty \Y

=75 Z Z[ 21,0 V01V17 r0 qVOqu o
V0V1V2V3 foh
2 (521,0 (V2,Var 1) Hag (V3) =S (V2 Vai 1) Hag (V2 ))qupvs‘]rl ]v
1
) Z ZI:SZI,O (VO’Vl'rO)qvoqvl‘]ro
VoV1VoV3 Il
2 (821,0 (V2 V3, ) Haog (V; ) —S511 (V2 Vs, 1) Hag (Vs )) P, 4., r1:|
1
5 Z 2[321,1 (V07V11 Iy ) Py, Py Js,
VoV1V2V3 Tolfy
2 (Szl,o (V2,Var 1) Hag (V3) =S (V2 Vai ) Hag (V2 ))q\/z Py Iy ]v
1
-> 2 Z[Szm (Vo: Vi, T ) Py, Py I, (7.547)

VoV1VoV3 ol
2 (821,0 (Vz V3, r1) Ho (Vz ) —So1 (V21V3’ rl) 20 (V3 )) P4, r1:|

We then apply the definition of the vibrational commutator from Eqg. (7.12) to obtain the pure vibrational commutators in Eq. (7.548).
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1
2

[821 [521 Hzo ]

z z S210 VO Vl rO)(SZLO(VZ’VS’rl)H20(V3)_821,1(V2’V37rl)HZO (VZ))X

VoViVaVs ol

x[q%qﬁ APy, (353, +3,3, )

+ z z S210 Vo Vi ro)(szLo(Vz’Vyrl)Hzo(Vz)_Szl,l(Vz'str1)H20(V3))X

VoViVaVs ol

x| 0y P, (359 +3,9,

+ z z S211 Vo Vi ro)(smo(v Vs rl)HZO V3)_821,1(V2’V3’rl)HZO(VZ))X

(7.548)

VoViVaVs Toh

P

+ Z Z S211 Vor Vi ro)(szlo(v rl)HZO Vz)_821,1(V2vV3’rl)Hzo(V3))X

VoViVaVs Tl

)
(
x| PuyPuy APy (I35 +3:35)
(
)

X Py Py, (359, +3,9,

Next, the pure vibrational commutator is evaluated to give Eq. (7.549).
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1 —i
__[821’[8217H20]\/JV: z Z_SZLO(VO’Vl’rO)(SZl,O(VZ’VS’rl)HZO(VS)_SZLI(VZ’VS’rl)HZO(VZ))X

2 VoViVaVs ol

(i Vlvaqvoqu 18,5, 00,0 ) (353, + 3,35 )

+ z z S210 Vo Vi ro)(szLo(Vz’Vyrl)Hzo(Vz)_Szl,l(Vz'str1)H20(V3))X

VoViVaVs ol

( VlvquOqV3 +|5V0V2qV3qV1)(Jr0in +JF1J ) )

+ z z S211 Vo Vi ro)(SzLo(Vz’Vs'rl)Hzo(Vs)_Szl,l(Vzvvsirl)Hzo(Vz))X

VoViVaVs Toh

(7.549)

( V1V2pVopV3 V0V2pV3pV1)(Jr Jrl +J J )

+ Z Z S211 Vo’Vl’ro)(szl,o(vz’vslrl)Hzo(Vz)_821,1(V27V3’rl)Hzo(V3))X

VoViVaVs Tl

( V1V3pVopV2 v0v3pv2pvl)(~]r Jrl +J, J )

The summations are expanded (Eq. (7.S50)), the Kronecker deltas are evaluated (Eq. (7.S51)), and the results consolidated (Eq. (7.S53)
), after repeating the same process with the rotational operators.
(7.S50)

(7.551)
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1
2

VoViva To r1

__[821'[821'H20]V] Zz ( 21,0 Vz’Vlvro)(szl,l(vo’vz"1)+821,1(V2’V0’ﬁ))Hzo(Vo)

=10 (Vor Vi Iy )(821,1 (Vi Vs 1) +S511 (V2 Vo, r1)) Hyo (V1)
+S510(Vos Vas rO)(SZl,O (V1) Vo, 1) + S50 (V0 i, rl)) Hyo (V)

+5210(V21V1’ro)(szLo(Vo’Vz’rl)"'szl,o(Vz’Vo'ﬁ))Hzo(Vz))ququ(J Jy +Jr1.JO) (7.552)

+zz ( 211 Vz’V1’ro)(szLo(Vo’Vz’r1)+821,0(V2’V0’rl))Hzo(Vo)

VoVivz To "1

<

—82111(V0,V2,I’O)(Sm,O(Vl,V ) +Ss10 (Vo0 Vi, rl))HZO( )
+SZl,l(VO’V2’rO)(SZLI(Vl’VZ’r1)+8211(V2’Vl’ )) 20(V2)

H
+S511 (VZ’V1’ ro)(Szl,l (V07V27 r1)+5211(V2’V01 r1)) Ho (Vz )) Py, Py, (Jro‘Jr1 +J.J )

(7.553)

DEFINING THE TRANSFORM FUNCTION

Using the abbreviated definitions provided in Eq. (7.73) and Eq. (7.78)—(7.85) we can now write the defining part for the

transform function in Eq. (7.S54).

(7.554)

For application of the formula for defining the transform function, it is helpful to define separate coefficients so that only the vibrational

indices connected with vibrational operators, and similarly the rotational indices with the rotational operators, are being summed over
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explicitly. That is, we define coefficients in Eq. (7.S55) so as to write Eq. (7.S56), which simplifies the process of finding the definition

of the transform function.
1 1
E220 VO’Vl’rO’rl Zz 22 VO'Vl'rO’rl) 3A22(VO’Vl'VZ'rO'rl)+§BZZ,O(VO'V1’V2'rO’rl)
Vz r2

1 1
JrWczz,o (VO’Vl’ fo: 11 r2)+§D22,0 (V01V1’V2' fos rl)j

1 1
E221 VO'Vl’rO’rl ZZ( BZZl VO’Vl’VZ’rO’rl) N C22,1(V0’V1’rO'rl’r2)+§D22,1(VO’V1’V2’rO'ri.)j
Vo I
. . . 1
sz +1 [512’ H30]V +|[821’ H21]V +|[521’ Hoz]R _E[SZI’[SZD Hzo]V:'V

= ZZ E22,0 (VO'V1' rO’ rl)qvoqvl‘]ro‘lrl +ZZ E22,1 (V01V1' rO’ rl)pvopvl‘]ro‘lrl

VoV ol Vovi Toh

(7.556)

We now endeavor to write the defining part in terms of the ladder operators £*.

(7.555)
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. . 1
H22+I[812,H30]V+I[821,H21] [821’H02]R [ 21’[821’H20] :'v

=ZZE22,0(V0’V1’r0'r1[ ZL:,TVOJ[ z[\fvlJ N

Vovi ol Iy,

+ZZE22’1(v0,vl,ro,rl( iy o, J(%IZ 4&} I,
o (7.857)

Vo1 ol oy

_ZZ Z Ezzo Vo, Vi: oo 1y )[VUOVO[Z“JrOJrl

Vovi ol Oy, le

+ZZ 2 _0 0 Ov EZZl(VO Vi, I rl)[fvotval

Vovt ol Oy ovl

_ZZ Z( ( 22,0 VO’Vl'rO'rl) O-Voavl E22,1(VO’V1’rO’rl)))quoq\,l‘]roJrl

Vovi Tol OvpOvy

We can now define the transform function.

1
Sy —zz z _D(O' Vo;o_vl:Vl)((Z(Ezz,o(Vo’Vl’ro’rl)_o'voo_vl E22,1(V01V11r0"1)>j

Vovi Toh Ovg vy

4

1
+(—(E22,0 (VisVoi Tos 1) =0y, 0y, Ep (V1 Vo, Ty rl))D £0000nd, 3,

(7.558)
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=20 —D(a v11V1)[G(Ezz,o (VouVy. Ty, 1) =0, 0, Ezzvl(vo,vl,ro,rl)))

Vovi Toh Ovg vy

1 . .
+(Z(E22,O (Vl’VO’ o) rl) _O-voavl E22,1 (Vl’VO’ o) rl))jj(qvg B |O'\,0pvo )(qvl o Iavlpvl )‘]rO‘Jrl

-y (( (LVoiLVy)+D(LVi =14 ))(Eppp (Vou Vs o 1) + E g g (Vi Vg Ty 1)) (7.559)
Vo1 "orl

+(D(LVoiL Vg )+ D (Lo =1,%,) ) (B (Vo Vo s ) + By (Vo Vo T, 1)) )0y P31, 3,

Y — (( (LVg;L, v )+ D(l,vo;—l,vl))(EZZ’O (Vor Vi Tos 1)+ E g (V4 Vg Ty, rl))

Vovi Toh

+(_D(1’Vo;1’V1)+D(lvVo;_11V1))(E221(V0’V1’ro’ 1)+ B (Vi Vo o )))pvoqvl nYn

Evaluation of i[S,,, H,oly

Substituting in the definitions from Eq. (7.86) and Eq. (7.68) yields Eq. (7.S60), where we have ensured that each summation

index is distinct.
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[SZZ’HZO =1 ZZSZZO VO’Vl'rO’rl)qupvl‘]roJﬁ+228221 VO'Vl’rO’rl)pVqulJrOJrl ZHZO Vo qvo+ZH20 Vo pvo

VoVt foh Vovi Toh

=i Z ZI: 22,0 VO’Vl'rO’rl)qvopvl‘]rU‘Jrl'HZO(VZ)qu:IV

VoviVa Toh

i Z Z :822,0 (VO'Vl’ o) rl)qvopvl‘] rO‘Jrl’ HZO (Vz)p\i :IV

VoviV2 ol

i Z 2_8221 (VO’Vl’ o rl)pvoqvl‘]ro‘]rl ’ H20 (Vz)q\i :IV

VoViV foh

+i Z 2:8221 (VO’Vl’ o, rl)pvoqvl‘]ro‘]rl J H20 (Vz)p52 :IV

VoViVa foh

\Y

(7.560)

We then apply the definition of the vibrational commutator from Eqg. (7.12) to obtain the pure vibrational commutators in Eq. (7.S61).

Szzino =i z Zszzo VO’Vl’rO’ ) 20(V2)[qv0pv1 q\/z]

VoviVe foh

+H D > S0(Vor Ve Tor ) Hag (Vz)[qvopvl ’ p\%2 :"Jro‘]rl
o (7.561)

+i z ZSZZ,l(VO’Vl’rO'rl)HZO (VZ)I:pVqul qVJ nYn

Vo\1V2 Toh

H Z 2822,1 (Vo Vi, T 1) Hyg (Vz)[pvoqvl , p\z,2 }‘]ro‘]rl

VoviVe foh

Next, the pure vibrational commutator is evaluated to give Eq. (7.562).
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i[szz’Hzo]V =i z ZSZZ,O(VO’Vl’rO’rl)HZO(VZ)( 2|§V1V2qVOqV2) Yn

VoViVa Toh

H YL D Sn0 (Vo Vi o ) Hag (Vz)(2'5v0v2pv2pv1 )JroJr1

VoViVe Toh

H D" D S0 (Vo Vi o, 1) Hag (Vz)( 26, vzquqvl)‘]ro‘]rl

VoViVe Toh

H D" D S0 (Vo Vi o, 1) Hag (Vz)(2l5vlvzp\,0pvz )Jro‘Jr1

VoViVe Toh

(7.562)

The summations are already expanded so now the Kronecker deltas are evaluated (Eq. (7.563)), and the results consolidated (Eq. (7.S64)

)-

Szzv Hzo Zzzszzo Vo, Vs o, rl)Hzo (Vl)qvoqvl‘]ro‘]ﬁ

Vovi Toh
+2,2.(2)S200 (Vo Vi T, 1) Hao (Vo ) Py Py 10 I
Vovi Toly
(7.563)
+ZZ 2822']_ (V01V]_$ rOl r]_) HZO (VO )qVOquJ ro‘]rl
VoVi Tof

+ Z Z 221 VO’Vl'rO’rl)H20(V1)pVopV1Jr0Jr1

VoViV2 1 ol

i[szz’ Hzo]v = Zzz(szz,o (VO’V1’ o rl)HZO (V1)+S22,1 (V0vV1' fos rl)HZO (VO))qvoqvl‘]ro‘]rl

Vovi ol
+ZZ ( 22,0 Vo Vi, Iy, rl)HZO(V0)+822,1(VO’V1’rO’rl) 20(V1))pv0pv1

Vovi Tol

(7.564)
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Obtaining the analytic expression

Applying the previously obtained evaluations of the commutators, we can write

. . . 1 .
H,y, = (sz +1 [812’ H30]V +1 [821’ H21]V +|[821’ Hoz]R _5[821’[821’ Hzo]v]v}"(' [822' Hzo]v)

= (ZZ Ezno (VO’Vl' fos rl)qvoqvl‘]ro‘]rl +ZZ Esns (VO’V1’ fo) rl)pvopvl‘]ro‘]rl]

Vovi Toh VoVi Tl

Vovi Toly

ZZ( 220 (Vo Vs Tos 1)+ Fo o (Vo Vi o 1 ))qv qyJrJdy

VoV foly
+ZZ( 221 VO’V11r01 )+F221(V01V11r0’ ))pvopvl Yn

Vovi foh

"{ZZ Fzz,o (V07V17 o rl)qvoqvlJ ro‘]rl + ZZ I:22,1 (Vo V1, lo, rl)pvopvl‘] rOJ rlJ (7.S65)
VoV foly

IN TERMS OF MOLECULAR PROPERTIES

Applying the definitions of the coefficients for the terms of the original Hamiltonian from Eq. (7.S7)—(7.512), we can rewrite

the expression in terms of the molecular properties.

Sz (Vo To ) = D(LV, ) 3, C2° (7.566)

Snyo(vo,vl,ro):%D(l,vo;l,vl)MB Chuts LD(1vp-1v ) 2 g o5 (7.567)

. /a)VO @, . /a)VO @,
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Sm(vo,vl,ro):—%D(l,vo;l,vl)MB Chats LD (1L vpi-1v) Mg ¢ (7.568)

V0V1
\ /a)VO @, . /a)VO @,

1
Ay (Vo Vii Yy, Ty, 1) = > D(LV,)®, C" Ky, (7.569)
BZZ,O (VO’Vl’ V2’ r-0' rl) = % D (1’ VO ’1' V2 )% Bro Br1 (é/vovz é/vlvz é/vovz C:vlvz )
a)VO Ct)v1
a) + a)
1 VO’ 1 V2 o W ro n ( vov2 é/vlvz é/vovz é/vlvz )
oo (7.570)

lvl,l v2

ro "1( Von CVle é’Von §V1V2)
x’ Vo vl

1 o, + o,
2 -D (1 Vii— -1 Vv, )— (] (gvovz gvlvz é/vovz gvlvz )

600)

By (VorVis V) Ty, r1) = —D(l,Voil,Vz) @) =Dy, APy

W \/a)i\/1 Blro Brl (é,Vovz é,VlVZ é,VOVZ é,vlvz )
0 V2 2
¥ ,
\/ - \/\/: o n (é/Von é/"l"z CVOVZ é/vrlovz )

(7.571)
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Cos (V0vV1' fo, 11 I’2)
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Appendix A: Theoretical Investigation of the Reaction
Mechanism of the NHC-Catalyzed Transesterification of

Benzyl Alcohol and Vinyl Acetate

Portions of this work were included in the laboratory manual for the Introductory Organic
Chemistry Laboratory course at the University of Wisconsin — Madison in the Spring 2017

semester and for several subsequent semesters.

Includes contributions from Nicholas J. Hill, Brian J. Esselman, Maria A. Zdanovskaia, Ryan

Van Hoveln, and Cheri A. Barta
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ABSTRACT

In support of the development of an experiment for the introductory organic laboratory
course, we used B3LYP calculations with and without solvent corrections to investigate the
reaction mechanisms of the transesterification under basic conditions with and without the use of
a catalytic N-heterocyclic carbene (NHC). Three mechanisms were considered: the base-
catalyzed, nucleophilic attachment of the alcohol to the ester and subsequent transesterification;
the analogous nucleophilic reaction where the NHC catalyst first replaces the carboxylate
substituent to yield a NHC substituted ketone and then is in turn replaced by the alcohol reagent;
and a mechanism wherein the carbene of the NHC forms an acid-base complex with the hydrogen
of the alcohol, the activated alcohol oxygen attaches to the carbonyl, and the NHC assists the
transfer of the proton to the ester substituent, which is eliminated and forms another acid-base
complex with the NHC catalyst. These mechanisms were considered on a small, model system as
well as the full reaction that is conducted experimentally in the laboratory course. Our calculations
showed that the first two mechanisms considered had considerable activation barriers, while the
mechanism where the NHC catalyst serves as a proton shuttle had little to no activation barrier.
Within the low energy pathway is a considerable number of conformational isomers which do not
appear to have a significant impact on the energetics of the reaction. We thus present a simplified

catalytic cycle for the NHC catalyzed transesterification that utilizes the NHC as a proton shuttle.

INTRODUCTION

The reaction under present consideration was the focus of a multi-session laboratory
experiment in the introductory organic laboratory course at the University of Wisconsin —

Madison. A primary goal of the experiment was to introduce students to a catalytic cycle in the
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form of a transesterification catalyzed by a N-heterocyclic carbene (NHC). Before they could
carry out the target reaction, they first had to synthesize the catalyzing compound. As illustrated
in Scheme A.1, students first obtained a mesityl substituted diimine (1) via acid-catalyzed
condensation of glyoxal and mesityl amine. Next, the diimine was combined with methanediol
(delivered in the form of methylene glycol) and a sterically hindered base to undergo base-
catalyzed condensation to yield the five-membered cyclic, aromatic carbene precursor (2) as a salt.
The precursor 2 is isolated and can then be used to generate the NHC catalyst (3) in situ under
mildly basic conditions. Once generated, 3 can be used to catalyze the transesterification of an
alcohol and an ester. By using benzyl alcohol (4) and vinyl acetate (5) as the reagents, the resulting
ester (6) can be easily isolated from the resulting vinyl alcohol, which readily tautomerizes to

acetaldehyde (7) under the reaction conditions.

Scheme A.1l. Transesterification of benzyl alcohol (4) and vinyl acetate (5) catalyzed by N-

heterocyclic carbene (3) to produce benzyl acetate (6) and acetaldehyde (7).

Mes l\(les
oi 2MesNH, \L _Megsicl | N> e
- /
O trace H+ HO(CH,0),H N®
|
Mes Mes
1 2
HKHCO3

Prior to this work, the laboratory manual presented a mechanism of the NHC catalyzed

reaction in which the NHC catalyst 3 acts as an intermediate nucleophile in the acid catalyzed
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transesterification. That is, the carbene of 3 forms a covalent bond with the carbonyl carbon of 5
and the ethoxy group leaves to reform the carbonyl, which is now conjugated to the  system of 3.
Subsequently, the carbonyl carbon undergoes nucleophilic attack by the benzyl alkoxide and the
NHC carbene is removed, reforming the catalyst, and the product ester 6 is formed. The goal of
the present work was to obtain a computational model of the reaction mechanism, to facilitate

students’ analysis of the reaction and its outcomes.

In addition to the nucleophilic NHC mechanism that has been discussed, we were inspired
by the work of Lai et. al.! to consider a mechanism for the NHC-catalyzed transesterification that
proceeds through a concerted transition state, wherein the NHC carbene assisted a 1,3-hydride
shift between the alcohol oxygen and the carbonyl oxygen during the nucleophilic attack by the
alcohol oxygen. The result of the process is a tetrahedral intermediate where the proton is attached
to the carbonyl oxygen, and the carbene of the NHC is associated with that proton. Finally, to
further illustrate the effect of the NHC catalysis on the reaction energetics, we considered the

mechanism of the base catalyzed transesterification reaction absent of the NHC carbene.

We initially considered a simplified form of the reaction presented in Scheme A.1, where
the structures were substituted with methyl groups to reduce the size of the calculations. More
specifically, the mesityl groups of 3, the benzyl group of the alcohol 4, and the ethylene group of
the ester 5 were each replaced with a methyl carbon so that the reaction consists of the NHC
catalyst 9, methanol (10), and methyl acetate (11), respectively, as illustrated in Scheme A.2.
Calculations using the smaller system could be conducted faster than on the larger target reaction
and served as starting points for the optimization of the larger species. Altogether, three different

reaction mechanisms for two different transesterification reactions were modeled computationally.
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Scheme A.2. Transesterification of benzyl alcohol (4) and vinyl acetate (5) catalyzed by N-

heterocyclic carbene (3) to produce benzyl acetate (6) and acetaldehyde (7).

{ o ]
o 9 o)
CHsOH + \O)K )ko/ + CH3OH

10 1" 1 10

COMPUTATIONAL METHODS

All calculations were carried out using the Gaussian 09 software package? as implemented
on the Sunbird cluster at the University of Wisconsin — Madison Chemistry Department.
Stationary points were determined using geometry optimizations and vibrational frequency
calculations to evaluate their nature. Intrinsic reaction coordinate (IRC) calculations were
attempted for each local maximum to confirm that the transition state leads to the expected local
minima. All structures were optimized using the B3LYP density functional theory and the 6-
31G(d) basis set. Additional calculations were carried out on the model systems using the cc-
pVDZ basis set in conjunction with the C-PCM solvation model® in tetrahydrofuran to reproduce

previous work.!

RESULTS AND DISCUSSION

A simplified mechanism for the NHC-catalyzed transesterification of benzyl alcohol and
vinyl acetate is presented in Scheme A.3. As described in Lai et. al.,! the N-heterocyclic carbene
3 (formed in situ by reaction of KHCOs3 with precursor 2) interacts with benzylic alcohol 4 to form

the acid-base complex INT1. The O-atom of INT1 binds to the carbonyl C-atom of 5 while
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simultaneously transferring the bridging H-atom to the carbonyl O-atom. This produces the

neutral tetrahedral intermediate INT2 from which 3 facilitates the intramolecular transfer of the

H-atom to either of the other O-atoms. Thus, in the forward reaction, the H-atom is transferred to

the vinyl O-atom and the carbonyl reforms, generating the desired transesterification product 6

and expelling the acid-base complex INT3. This intermediate dissociates to 3 and vinyl alcohol

8, the latter undergoing tautomerization to acetaldehyde 7. An alternate mechanism involving

nucleophilic acyl substitution to form an acylimidazolium species was calculated to be of higher

energy than the acid-base pathway, and thus less likely to be operative.

Scheme A.3. Simplified catalytic cycle for the NHC-catalyzed transesterification of benzyl

alcohol 4 and vinyl acetate 5, based on computational results.
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The simplifications to the mechanism presented in Scheme A.3 are related to (i) the

synchronicity of the nucleophilic attack at the carbonyl carbon by the alcohol oxygen i.e., reaction

of INT1 with 5, and (ii) the intramolecular transfer of an H-atom facilitated by 3 to form INT2
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and INT3. As shown in Figure A.1, the reaction of INT1 with 5 to generate INT2 proceeds
through multiple intermediates rather than a single transition state. Each intermediate represents
a discrete step in the NHC-assisted intramolecular transfer of the H-atom. The exact number and
relative energies of the intermediates involved in the NHC-catalyzed transesterification are
sensitive to the substituents of the alcohol and the NHC, as well as the level of theory used in the
calculation. Nevertheless, the motions of the H-atom and the NHC unit during the H-atom transfer
processes are consistent with literature data regardless of the number and relative energies of the
intermediates. The additional intermediates and transition states are located in a relatively flat
region of the potential energy surface and have minimal impact on the activation barriers, thus the

simplifications made in the mechanism in Scheme A.3 are reasonable.

. Mes . OJ 3+6+8

1-3.5

Relative Energy (kcal/mol)

M6 [azd
‘ M-12-c
165 o 0
, = A
INT1+5 | Mes )LO., Mes o
' °N 5 RB3LYP/6-31G(d) °N . ; :
[ >*H"..\/Ar Electronic Energies [ >*H"Q\/ = . | —
—| N N 208 ——
o 216 210
220 Mes Mes 12b-13-d 3+6+7
Mi2a L Mi2a | L 12bd3d | INT3+6

Reaction Coordinate
Figure A.1. Potential energy surface for the NHC-catalyzed transesterification of benzyl alcohol

4 and vinyl acetate 5, with B3LYP/6-31G(d) relative energies.
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Comparison of the potential energy surfaces of the three model pathways (Figures A.2 and
A.3) suggests the proton shuttle mechanism (a) is a much more favorable process, regardless of
theory, with activation barriers of no more than 20 kcal/mol (15 kcal/mol in THF). The
nucleophilic NHC mechanism (b) has a very high energy intermediate and, even though the
corresponding transition state could not be located, an activation barrier at least as high and thus
greater than 140 kcal/mol (50 kcal/mol in THF). Similarly, the uncatalyzed mechanism (c) is
estimated to have a barrier greater than 125 kcal/mol (35 kcal/mol in THF) for the deprotonation
of methanol by the NHC. Note that the nucleophilic NHC and the uncatalyzed mechanisms are
shown as symmetric pathways, while the proton shuttle mechanism is not. This is to illustrate that
unlike the other mechanisms, the proton shuttle mechanism (a) has several conformations, and the
nature of the structures is such that even though the same process is happening for 14-15-b and

I5b-14-c, they are diastereotopic in nature and thus have different energies.
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Figure A.2. Comparison of relevant pathways of transesterification mechanisms of methanol 10
and methyl acetate 11, evaluated at B3LYP/6-31G(d), with relative energies in kcal/mol. (a) Proton
shuttle NHC catalysis, (b) nucleophilic NHC catalysis, and (c) uncatalyzed with basic NHC.
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Figure A.3. Comparison of relevant pathways of transesterification mechanisms of methanol 10
and methyl acetate 11, evaluated at B3LYP/cc-pVDZ in tetrahydrofuran using C-PCM solvation
model, with relative energies in kcal/mol. (a) Proton shuttle NHC catalysis, (b) nucleophilic NHC

catalysis, and (c) uncatalyzed with basic NHC.
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The full reaction pathway (Scheme A.4) for the NHC-catalyzed transesterification of
benzyl alcohol 4 and vinyl acetate 5 proceeds surprisingly like that of the model system [Scheme
A.5(a)], with the exception that the addition of benzyl alcohol includes another local minimum.
As in the model system, the carbene of the NHC catalyst associates with the proton of the alcohol
oxygen which makes the oxygen more nucleophilic. The subsequent nucleophilic addition of the
alcohol oxygen to the carbonyl carbon (11-12-a — 11-12-b) has the largest activation barrier in the
pathway at 14 kcal/mol. As in the model systems, this addition step is a concerted by asynchronous
process as evidenced by the IRC of the corresponding transition state: first is the transfer of the
alcohol proton from the oxygen to the carbene carbon, followed by bond formation between the
alcohol oxygen and the carbonyl carbon. After the formation of 11-12-c, multiple and various
proton transfers assisted by the NHC catalyst occur, with barriers ranging from less than 1 kcal/mol
up to 4 kcal/mol. The number of these high-energy intermediates and their activation barriers are
sensitive to the substituents involved and the level of theory used, though similar activation barriers
were reported for the analogous NHC proton shuttle behavior by Lyu* using the M06-2X
functional (specifically, the NHC-3 — NHC-4 reaction in the NHC-CO»/1a/CO; pathway reported
therein). As expected, elimination of the vinyl alcohol (I2b-13-c) is also a concerted by
asynchronous process that first breaks the bond between the vinyl oxygen and the carbonyl carbon,
followed by the transfer of the proton from the carbene carbon to the vinyl oxygen, resulting in an
NHC/vinyl alcohol dimer INT3 analogous to that of the NHC/benzyl alcohol dimer INT1. The
resulting vinyl alcohol 8 tautomerizes to form the acetaldehyde product 7, and the relative energies
confirm that the keto-enol tautomerization is the overall driving force for the full reaction pathway.

Finally, we note that in carrying out the calculations on the full reaction pathway, we observed
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multiple conformations for each of the high-energy intermediates; these conformational isomers

are not reported in this work.

In examining the model systems, we obtained different stationary points than were reported
in previous work.! The stationary points we located, however, were in qualitative agreement with
their structures and the motion of atoms. In addition, we found a local minimum (I15b-14-b in
Scheme A.5 and Scheme A.6.) that exists between the concerted transition state and the tetrahedral

intermediate. Similar structures were found in the full reaction mechanism.
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Scheme A.4. Stationary points modeled for the NHC-catalyzed transesterification of benzyl
alcohol 4 and vinyl acetate 5 using mesityl substituted NHC 3 to produce acetaldehyde 7 and

benzyl acetate 6.
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Scheme A.5. Stationary points modeled for the transesterification of methanol 10 and methyl
acetate 11 via three different pathways: (a) Proton shuttle NHC mechanism catalyzed by methyl
substituted NHC 9, (b) nucleophilic NHC mechanism catalyzed by 9, and (c) uncatalyzed

mechanism with basic 9.
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SUPPORTING INFORMATION

Scheme A.6. Molecular structures of the stationary points modeled for the transesterification of
methanol 10 and methyl acetate 11 via three different pathways: (a) Proton shuttle NHC
mechanism catalyzed by methyl substituted NHC 9, (b) nucleophilic NHC mechanism catalyzed

by 9, (c) uncatalyzed mechanism with basic 9.
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